GROUNDWATER INVESTIGATION REPORT

Petrocelli Electric Company Inc. Facility 22-09 Queens Bridge Plaza North Long Island City, NY Spill \# 0330001

September 9, 2010

GROUNDWATER INVESTIGATION REPORT
 Petrocelli Electric Company Inc. Facility 22-09 Queens Bridge Plaza North Long Island City, NY Spill \# 0330001

TABLE OF CONTENTS
1.0 Introduction 1
2.0 Area / Site Characterization 1
3.0 Methodology 2
3.1 Principal Personnel 2
3.2 Applicable Remediation Standards 2
3.3 Laboratory Analytical Results 2
4.0 Groundwater Investigation 3
4.1 Monitoring Well Installation 3
4.2 Well Installation - Soil Sample Results 3
4.3 Groundwater Sampling 4
4.4 Groundwater Sampling Results 4
4.5 Groundwater Gauging Results/Flow Direction 4
5.0 Historic Report Review 4
6.0 Findings and Recommendations 5

TABLES

Table 1 - Soil Sampling Results - May 26, 2010
Table 2 - Monitoring Well Gauging - May 26, 2010
Table 3 - Groundwater Sampling Results - May 26, 2010
Table 4 - Monitoring Well Gauging - May 12, 2010
FIGURES
Figure 1 - Site Location Map
Figure 2 - Site Features Map
Figure 3 - Groundwater Contour Map - May 12, 2010
Figure 4 - Groundwater Contour Map - May 26, 2010

GROUNDWATER INVESTIGATION REPORT

Petrocelli Electric Company Inc. Facility
22-09 Queens Bridge Plaza North
Long Island City, NY
Spill \# 0330001

TABLE OF CONTENTS
(continued)

APPENDICES

Appendix I - NYSDEC Letter dated February 11, 2010
Appendix II - Monitoring Well Construction Logs
Appendix III - Survey Map of Well Locations
Appendix IV - Laboratory Analytical Data: Soil - May 26, 2010
Appendix V - Monitoring Well Sampling Data Forms
Appendix VI - Laboratory Analytical Data: Groundwater - May 26, 2010

GROUNDWATER INVESTIGATION REPORT

Petrocelli Electric Company Inc. Facility
22-09 Queens Bridge Plaza North Long Island City, NY
Spill \# 0330001

September 9, 2010

1.0 INTRODUCTION

Brinkerhoff Environmental Services, Inc. (Brinkerhoff) has prepared the following Groundwater Investigation Report (Report) on behalf of Petrocelli Electric Company for the property located at 22-09 Queens Bridge Plaza North, Long Island City, New York (hereinafter referred to as the Site or subject property). (Refer to Figure 1 - Site Location Map.)

The Report was prepared in response to New York State Department of Environmental Conservation (NYSDEC) correspondence dated February 11, 2010 (refer to Appendix I). The letter required a determination of the source of free petroleum product (FPP) discovered on site on April 8, 2003.

This Report describes investigations performed that include the gauging of existing wells, installation and surveying of two (2) monitoring wells, groundwater sampling results, and a review of a historic report. Based on the results of the investigation, no FPP was encountered on site and in the newly installed monitoring wells, and groundwater flow direction was consistent with historic contouring; therefore, no further investigation/action is proposed at this time.

2.0 AREA / SITE CHARACTERIZATION

The Site is utilized as administrative and maintenance facilities for the Petrocelli Electric Company Inc., located at 22-09 Queens Plaza North, between 22nd and 23rd Streets, Long Island City, Queens County, New York. The area surrounding the site is primarily commercial, with some residential units upgradient of the site, east on 23 rd Street. A site location map is included as Figure 1, and a site plan illustrating all site features is included as Figure 2.

3.0 METHODOLOGY

The following section presents the sampling and analytical methods for the investigations at the subject property.

3.1 Principal Personnel

Project Manager:	Ron J. Rosenberg (Brinkerhoff) Responsibilities: Managed all aspects of the project including report preparation, coordination of Subcontractors, and communication with the
	NYSDEC and Client.

3.2 Applicable Remediation Standards

Soil and groundwater samples were collected in accordance with the standard field sampling practices of the NYSDEC and the United States Environmental Protection Agency (USEPA).

- Soil was subject to NYSDEC Soil Cleanup Objectives Technical and Administrative Guidance Memorandum (TAGM).
- Groundwater was subject to NYSDEC Ambient Water Quality Standards (AWQS).

3.3 Laboratory Analytical Results

Groundwater samples were submitted to Aqua Pro-Tech Laboratories (APL), Fairfield, New Jersey (New York Department of Health Certification No. 11634). Samples were submitted for the following USEPA methods:

Soil Samples:	Volatile Organics (VO+10)USEPA Method 8260
	Base Neutrals (BN+15)......................USEPA Method 8270
Groundwater Samples:	VO+10 ..USEPA Method 624
	BN+15..USEPA Method 625

4.0 GROUNDWATER INVESTIGATION

As per the NYSDEC requirements, Brinkerhoff performed a groundwater investigation that included gauging of existing wells, installation of two (2) upgradient monitoring wells, surveying, and groundwater sample analysis.

Prior to initiation of the groundwater investigation, Brinkerhoff performed a site inspection that included the gauging (utilizing an oil/water interface probe) of all monitoring wells on site to evaluate for the presence of FPP. No FPP was detected at that time. Subsequent to the site inspection, Brinkerhoff contacted the NYSDEC Case Manager to inform him of the findings. Based on that information, the NYSDEC modified their initial requirements in the letter and approved the location and installation of two (2) on-site upgradient monitoring wells at the eastern border of the property, adjacent to the entrance along 23 rd street.

4.1 Monitoring Well Installation

Brinkerhoff directed the installation of two (2) monitoring wells on the upgradient side of the property adjacent to $23^{\text {rd }}$ Street. The wells were installed by a Licensed Well Driller (Foresight) using hollow stem auger drilling techniques. Soils were continuously fieldscreened during the well installation by a Brinkerhoff representative using a properly calibrated photoionization detector (PID) for evidence of contamination and to prepare lithologic logs.

Monitoring Wells MW-8 and MW-9 were installed to a total depth of 14.75 feet below grade and screened from 4.75 to 14.75 feet below grade and were constructed of two-inch-diameter polyvinyl chloride (PVC) with 10 feet of 0.01 -inch slotted well screen. A licensed surveyor performed the surveying of the newly installed monitoring wells and accessible wells relative to the on-site structure.

Copies of the monitoring well construction logs and a survey of the property are provided in Appendix II and III. Refer to Figures 3 and 4 for monitoring well locations.

4.2 Well Installation - Soil Sample Results

In accordance with the NYSDEC requirements, the soil cuttings were continuously fieldscreened using a PID during the well installations. No PID readings beyond background were detected during the well installations; therefore, one (1) sample was collected from each well approximately six (6) inches above the water interface at 7.5 to 8.0 feet below grade. Soil samples were submitted to a certified laboratory and analyzed for volatile organics and base neutrals via USEPA Methods 8260 and 8270.

Soil sample results from monitoring wells MW-8 and MW-9 did not detect the presence of targeted compounds exceeding the NYSDEC Soil Cleanup Objectives (SCO) TAGM. A summary of soil results is presented on Table 1, and the laboratory data package is provided in Appendix IV.

4.3 Groundwater Sampling

On May 26, 2010, Brinkerhoff performed groundwater sampling of newly installed monitoring wells MW-8 and MW-9 in accordance with the standard field sampling practices of the NYSDEC and the USEPA. Prior to sampling, three (3) to five (5) volumes of water were purged from each well via a submersible pump with dedicated polytubing. As a precaution, purge water was filtered through activated carbon filtration containers before being discharged to the subject property. Field readings, including depth to water, temperature, pH (potential of hydrogen), dissolved oxygen, redox potential, specific conductivity, and dissolved solids, were taken prior to and after purging and prior to sampling. Headspace readings were collected with a PID prior to purging. Gauging field data for the sampling event is presented on Table 2, and Monitoring Well Sampling Data Forms are provided in Appendix V.

Samples were collected with disposable bailers and transferred to laboratory-supplied glassware. The sample bottles were placed in a cooler on ice, transported to Brinkerhoff's office, and placed in a designated refrigerator until picked up by the laboratory. The samples were transported and analyzed within required holding times.

4.4 Groundwater Sampling Results

Laboratory results from monitoring wells MW-8 and MW-9 reported elevated concentrations of tetrachlorethene of 13.7 and 5.18 parts per billion (ppb) exceeding the NYSDEC AWQS of 5 ppb . Remaining targeted compounds were below the applicable AWQS. A summary of groundwater sample results is presented on Table 3, and the laboratory data package is provided on Appendix VI.

4.5 Groundwater Gauging Results/Flow Direction

Brinkerhoff collected groundwater gauging data on May 12 and 26, 2010. Groundwater contour maps were prepared for each gauging event completed. Based on the information collected, groundwater at the Site generally flows to the west. Groundwater gauging data is provided on Tables 2 and 4, and contour maps are depicted on Figures 3 and 4.

5.0 HISTORIC REPORT REVIEW

Prior to well installation activities, Brinkerhoff reviewed a No Further Action Report prepared by EnSolutions, Inc., dated March 2003. The report included an evaluation of groundwater flow direction, potential upgradient sources, and a fingerprint analysis of FPP identified in monitoring well MW-6. Based on the results of the No Further Action Report the following conclusions were made:

- MW-6 (the most upgradient well) was the only well that exhibited increasing contaminate results from November 25, 2002 to February 6, 2003 of all benzene, toluene, ethylbenzene, and xylenes (BTEX) constituents of concern and also methyl
tert-butyl ether (MTBE).
- Laboratory results of fingerprint analysis of the free product obtained from MW-6 confirmed that this product most closely resembled a Diesel/\#2 Fuel Oil. The underground storage tanks (USTs) on site contain unleaded gasoline.
- On March 7, 2003, all USTs and product lines passed a comprehensive precision tightness test.
- Results of an upgradient survey identified three (3) potential sources of petroleum contamination.

6.0 FINDINGS AND RECOMMENDATIONS

Brinkerhoff performed a groundwater investigation that included the gauging of existing wells, installation of two (2) upgradient monitoring wells, surveying, and groundwater sample analysis. Based on the results of this groundwater investigation and a review of historic reports, the following conclusions can be made:

- FPP was not detected in any wells on site, including the two (2) newly installed upgradient wells.
- Based on a recent survey, groundwater flow direction is confirmed to the west, which is consistent with historic groundwater gauging events.
- Historic documents confirmed the FPP detected on site in monitoring well MW-6 in 2003 was not stored in the on-site USTs.

Based on the investigations performed, a source of the FPP could not be identified; therefore, Brinkerhoff on behalf of Petrocelli Electric Company proposes No Further Action and closure of Spill Case \# 0330001.

This report has been prepared and is respectfully submitted by
BRINKERHOFF ENVIRONMENTAL SERVICES, INC.

September 13, 2010
Date

September 13, 2010 Date

Table 1

Soil Sampling Results

22-09 Queens Bridge Plaza North

Long Island City, New York
May 26, 2010
(Results reported in parts per million [ppm])

Compound	SB-MW-8	SB-MW-9	SCO
Volatile Organic Compounds			
TIC (Total)	2.708	1.807	NSE
Semivolatile Organic Compounds			
Dimethylphthalate	0.122	. 113	2.0
Bis(2-Ethylhexyl)phthalate	0.043 J	.039 J	50
TICs (Total)	1.28	709	NSE

SCO - Soil Cleanup Objectives as outlined in New York State Department of Environmental Conservation (NYSDEC) TAGM (Technical and Administrative Guidance Memorandum) No. 4046; J - Estimated concentration; TICs - Tentatively Identified Compounds; NSE - No Standard Established

Table 2
Monitoring Well Gauging
22-09 Queens Plaza North
Long Island City, New York
May 26, 2010

Monitoring Well	Date	Depth to Product	PID Reading, (ppm)	Top of Casing Elevation (Feet)	Depth to Water (Feet)	Groundwater Elevation (Feet)
MW-2	$5 / 26 / 10$	ND	ND	50.0	8.03	41.97
MW-4	$5 / 26 / 10$	ND	ND	50.68	8.50	42.18
MW-6	$5 / 26 / 10$	ND	ND	51.03	8.47	42.56
MW-8	$5 / 26 / 10$	ND	ND	51.76	9.19	42.57
MW-9	$5 / 26 / 10$	ND	ND	52.03	9.39	42.64

ND - Not Detected

Table 3
Groundwater Sampling Results

22-09 Queens Plaza North

Long Island City, New York
May 26, 2010
(Results reported in parts per billion [ppb])

Compound	MW-8	MW-9	AWQS
Volatile Organic Compounds			
Trichloroethene (TCE)	0.718	ND	5
Tetrachloroethene (PCE)	13.7	5.18	5
Naphthalene	3.19	ND	10
Methyl tert-Butyl Ether	ND	5.84	NSE
TICs (total)	ND	ND	NSE
Semivolatile Organic Compounds			
Bis(2-ethythexyl)phthalate	1.03	ND	5
TICs (total)	11.02	10.08	NSE

AWQS - NYSDEC Ambient Water Quality Standards; ND - Compound not detected; NSE - No standard established; Results in BOLD indicate results are greater than the AWQS; TICs - Tentatively Identified Compounds.

Table 4
Monitoring Well Gauging 22-09 Queens Plaza North Long Island City, New York May 12, 2010

Monitoring Well	Date	Depth to Product	PID Reading (ppm)	Top of Casing Elevation (Feet)	Depth to Water (Feet)	Groundwater Elevation (Feet)
MW-2	$5 / 12 / 10$	ND	ND	50.0	7.87	42.13
MW-4	$5 / 12 / 10$	ND	ND	50.68	8.25	42.23
MW-6	$5 / 12 / 10$	ND	ND	51.03	8.32	42.71
MW-8	$5 / 12 / 10$	ND	ND	51.76	9.02	42.74
MW-9	$5 / 12 / 10$	ND	ND	52.03	9.23	42.80

ND - Not Detected

New York State Department of Environmental Conservation Division of Environmental Remediation, Region 2

One Hunters Point Plaza
47-40 $21^{\text {st }}$ Street, Long Island Clty, 11101
Phone: (718) 482-7366 • Fax: (718) 482-4098 - Website: wow.dec.nv.gov

Alexander B. Grannis Commissioner

February 11, 2010
Petrocelli Electric.Co. Inc. 22-09 Queens Plaza North Long Isiand City, NY 11101 Attn.: Tony Theodorakakis

י

Re.: Spill at	22-09 Queens Pla
	Queens, NY

Spill Case \#: 0330001
Project Manager: Firalkumar Patel
Dear Mr. Theodorakakis,
On 04/08/2003, the New York State Department of Environmental Conservation (the Department) was notified that free petroleum product was discovered in one of the monitoring well at the above referenced site. This is a violation of Article 12 of the New York State Navigation Law (NL).Section 173. As of today, the Department has not received any subsequent information regarding the cause of the release or actions taken to address this problem. Therefore, this case will remain open in our database until the Department receives sufficient information to ascertain that the discharge has been properly cleaned up.

To rectify this problem, the Department requires the following:

1. Delineation of Groundwater Contamination via Installation of Monitoring Wells:

To determine the source of grouddwater contamination, the Department is requiring delineation of contamination. If an off-site source is determined by the Department, the responsible parties will be held responsible for the cost of investigation and remediation. As per DER-10 (Technical Guidance for Site Investigation and Remediation, available at http://www.dec.ny.gov/regulations/2393.html) 3.7.2 (b) 4.i: "A minimum of three groundwater monitoring wells or piezometers are required in each affected aquifer or water bearing zone to determine the groundwater flow direction in that zone. The monitoring wells or piezometers must be properly installed and surveyed relative to a permanent surface structure to provide for adequate triangulation." Also as per 3.7.3 (b) 2: "A minimum of one background monitoring well should be installed in each water bearing zone that is believed to contain background groundwater contamination." During installation of the monitoring wells, soil must be sampled continuously with a photoionization detector (PID). The deepest dry soil sample and the sample with the highest PID reading must be sent to a NYSDOH certified laboratory for EPA Method 8260/8270 analyses and the results must be sent to the Department. Water samples must be analyzed for EPA Method 8260/8270 analyses: Prior to installation, all utilities must be located and marked out.

An investigation report must be submitted to the Department including: scaled site plan with
sampling locations, well installation logs, sampling results, site specific groundwater flow direction, site observations, conclusions and recommendations. The report must be submitted to this office no later than two months from the date of this letter. It should be sent to my attention, referencing the spill case number and the site address. Additional borings/monitoring wells and/or a remedial action plan may be required based upon review of the investigation report.

The Department holds the responsible party liable for addressing any on- or off-site contamination associated with this spill case. Under the New York State Environmental Conservation Law (ECL) and/or the New York State Navigation Law (NL), any person who discharges petroleum and fails to promptly clean up such prohibited discharge may be subject to a penalty of up to $\$ 37,500$ per day per violation.

If you have any questions, please call me at (718) 482-7366.
's
Sincerely,

Hiralkumar Patel
Environmental Engineer 1
Spill Prevention \& Response Programs
$0211175-$ Tun Dimes No Funtioncou

Analytical Results GC/MS VOLATILES AND SEMI-VOLATILES

Brinkerhoff Environmental
 Manasquan, NJ

Project: Petrocelli Electric

Reviewed By: \qquad
Olga Deleanu, Organics Manager
$\frac{07-J u n-2010}{\text { Date }}$

[^0]Page
General Information
Chain of Custody/Relog 3
Methodology Summary 4
Data Reporting Forms and Qualifiers 5
Organics
Volatiles by GC/MS
Sample Location and Identification 7
Laboratory Chronicle 8
Analytical Results 9
Quantitation Reports 12
Conformance/Non-conformance Summary 19
Quality Control 20
Semi-volatiles by GC/MS
Sample Location and Identification 59
Laboratory Chronicle 60
Analytical Results 61
Quantitation Reports 64
Conformance/Non-conformance Summary 71
Quality Control 72
$\frac{\text { PAGE } 1}{\text { TURN-AROUND TIME }}$ APL STANDARD 2 weeks
RUSH (choose one below)
 $\square 24 \mathrm{hr}$. date \& ume required $\square 72 \mathrm{hr}$ date \& time required $\square 1$ week
\square RESUITS ONLY NJ DEP FULL DELIVERABLES SRP\# \square STATE FORMS/E2 REPORTING

C- CONCRETE L-LAKE

CHAIN OF CUSTODY
CLIENT: Bran ${ }^{2}$ SEND REPORT TO: ADDRESS: nkernct \quad ADDRESS: igi3Atlantic Ave Manasquan, NT PHONE: $732-2252225$ E-MAIL: PROJJECT

PROJECTMGR: Petrocelli Eiectric ADDRESS: Ren Roscnberge
P.O. NUMBER Aun Roscmberg lobROGO

AOUA PRO-TECH LABORATORIES www.aquaprotechlabs.com

I275 BLOOMFIELD AVENUE • BUILDING 6 FAIRFIELD, NEW JERSEY 07004

TEL: 973.227 .0422
FAX: 973.227 .2813
CONTAMINATION LEVEL
\square HIGH \square MEDIUM \square LOW MATRIX ABBREVIATIONS:

DATE $5 \cdot 13.10$ RECEIVED BY (Print) Sample Source:
Field ID
-
SB-mw-8
SB-mw-9
SB-mw APL Lab ID\#
$705 / 1(0)-1$
RELINQUISHED BY (Print) Duane Shiaton
COMMENTS/SPECIAL INSTRUCTIONS
NYASP Ccot. 17

Cooler Temp. upon receipt at lab

C DATE 5:10
DATE
Time
RELINQUISHED BY (Print) lac) Dofrancesco
Signature
RELINQUISHED BY (Print)
Signature
RELINQUISHED BY (Print)
Signature
Signature
commentishecal
$4^{\circ} \mathrm{C}$
CERTIFICATIONS: NELAP (National Environmental Laboratory Accredation Program) NJDEP \#07010 PADEP \#68-02903 NYDOH \#11634 CTPH \#0233 US ARMY
By signing this Chain of Custody Agreement, cosione expessly agrees to pay AFL for all charges, reasonably incurn in connection whans and

Extractable Petroleum Hydrocarbons:

Gas Chromatography/Flame Ionization Detector
USEPA SW-846 Test Methods for Evaluating Solid Waste Physical/Chemical Methods
Update III, Method 8015B or
NJDEP Office of Quality Assurance Quantitation of Semi-Volatile Petroleum Products
in Water, Soil and Sediment OQA-QAM-025, Revision 6.

Metals:

Inductively-Coupled Plasma Atomic Emission Spectrometry Water Samples-USEPA Methods for the Analysis of Water and Wastes, Method 200.7 Soil Samples-USEPA Methods for Evaluating Solid Waste Physical/Chemical Methods Update III, Method 6010B.

Mercury:

Cold Vapor Atomic Absorption Spectrometry
Water Samples-USEPA Methods for the Analysis of Water and Wastes, Method 245.1
Soil Samples-USEPA SW-846 Test Methods for Evaluating Solid Waste Physical/Chemical Methods Update III, Method 7171A.

Volatile Organic Compounds:

Purge and Trap Gas Chromatography/Mass Spectroscopy
Drinking Water Samples-USEPA Methods for the Determination of Organic Compounds in Drinking Water, Method 524.2.
Water Samples-USEPA Methods for the Analysis of Water and Wastes, Method 624.
Soil Samples-USEPA SW-846 Test Methods for Evaluating Solid Waste Physical/Chemical Methods Update III, Method 8260B

Semi-Volatile Organic Compounds:

Gas Chromatography/Mass Spectroscopy

Water Samples-USEPA Methods for the Analysis of Water and Wastes, Method 625.
Soil Samples-USEPA SW-846 Test Methods for Evaluating Soil Waste Physical/Chemical Methods Update III, Method 8270C.

Pesticides:

Gas Chromatography/Electron Capture Detector
Water Samples-USEPA Methods for the Analysis of Water and Wastes, Method 608.
Soil Samples-USEPA SW-846 Test Methods for Evaluating Solid Waste Physical/Chemical Methods Update III, Method 8081A.

Polychlorinated Biphenyls (PCBs):

Gas Chromatography/Electron Capture Detector.
Water Samples-USEPA Methods for the Analysis of Water and Wastes, Method 608.
Soil Samples-USEPA SW-846 Test Methods for Evaluating Solid Waste Physical/Chemical Methods
Update III, Method 8082

General Chemistry Methods:

Various general chemistry methods are taken from Standard
Methods for the Examination of Water and Wastewater, 19th Edition. Specific method citations can be found on the Analytical Results Summary page of this report listed under 'Method'.

Data Reporting Abbreviations and Qualifiers

MDL:

Method Detection Limit. The minimum reportable concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero. The value is calculated from the analysis of seven replicates of a spike sample. On analytical reports this value is corrected for percent moisture and any concentration or dilution factors.

PQL:

Practical Quantitation Limit. The Concentration of the lowest calibration standard that was included in the initial calibration of the instrument. On analytical reports this value is corrected for percent moisture and any concentration or dilution factors.

Concentration (Conc) / Result:

If the compound is detected, the measured concentration is reported. If this column is
left blank, or contains a 'less than' (<) symbol, the compound was not detected.

Tentatively Identified Compound (TIC):

A TIC is a non-targeted compound, not included in the calibration, identified by a mass spectral library search.

Qualifiers:

U:
Indicates the compound was analyzed for but was not detected.
J :
Indicates an estimated value. All tentatively identified compounds (TICs) and results below the MDL receive this qualifier.
B:
Indicates the analyte was found in the method blank as well as the sample.
E:
Indicates that the concentration of the compound exceeds the calibration range of the instrument. The
results of a diluted analysis will also be reported. The results of the dilution should be used for those compounds exceeding the calibration range in the undiluted analysis.
N :
Used when reporting a specific tentatively identified compound.

Volatile Organics

by

GC/MS

Client Sample Number	Aqua Pro-Tech Sample Number	Matrix
SB-MW-8	$10050460-001$	Soil
SB-MW-9	$10050460-002$	Soil

	Aqua Pro-Tech Laboratories Laboratory Chronicle GC/MS VOLATILES	
	Date Performed	Performed By
Receipt/Refrigeration:	5/13/10	KPONSI

Analysis	Date Analyzed	Analyzed By
$10050460-001$	$05 / 25 / 2010$	O. Deleanu
$10050460-002$	$05 / 25 / 2010$	O. Deleanu

Client:	Brinkerhoff Environmental
Project:	Petrocelli Electric
Matrix:	Soil

Sample Weight	5.0 Grams
Level:	Low
\% Moisture:	10.2%

Client Sample:
 SB-MW-8

CAS No.	Compound	Conc ug/kg	Q	MDL	PQL
75-71-8	Dichlorodifluoromethane		U	1.04	5.57
74-87-3	Chloromethane		U	0.947	5.57
75-01-4	Vinyl Chloride		U	0.935	5.57
74-83-9	Bromomethane		U	1.92	5.57
75-00-3	Chloroethane		U	1.04	5.57
75-69-4	Trichlorofluoromethane		U	0.846	5.57
107-02-8	Acrolein		U	1.71	55.7
67-64-1	Acetone		U	3.13	5.57
75-35-4	1,1-Dichloroethene		U	1.16	5.57
75-65-0	tert-Butyl Alcohol		U	18.8	55.7
75-09-2	Methylene Chloride		U	1.57	5.57
75-15-0	Carbon Disulfide		U	1.08	5.57
107-13-1	Acrylonitrile		U	2.46	55.7
1634-04-4	Methyl tert-Butyl Ether		U	1.70	5.57
156-60-5	trans-1,2-Dichloroethene		U	1.51	5.57
75-34-3	1,1-Dichloroethane		U	1.33	5.57
108-05-4	Vinyl Acetate		U	1.68	5.57
78-93-3	2-Butanone		U	1.51	5.57
594-20-7	2,2-Dichloropropane		U	1.19	5.57
156-59-2	cis-1,2-Dichloroethene		U	1.15	5.57
67-66-3	Chloroform		U	0.958	5.57
74-97-5	Bromochloromethane		U	1.33	5.57
71-55-6	1,1,1-Trichloroethane		U	1.30	5.57
563-58-6	1,1-Dichloropropene		U	1.01	5.57
56-23-5	Carbon Tetrachloride		U	1.11	5.57
107-06-2	1,2-Dichloroethane		U	1.29	5.57
71-43-2	Benzene		U	1.40	5.57
79-01-6	Trichloroethene		U	1.40	5.57
78-87-5	1,2-Dichloropropane		U	1.55	5.57
75-27-4	Bromodichloromethane		U	1.01	5.57
74-95-3	Dibromomethane		U	1.00	5.57
110-75-8	2-Chloroethylvinyl ether		U	1.48	11.1
108-10-1	4-Methyl-2-Pentanone		U	1.36	5.57
10061-01-5	cis-1,3-Dichloropropene		U	1.28	5.57
108-88-3	Toluene		U	1.35	5.57
10061-02-6	trans-1,3-Dichloropropene		U	1.27	5.57
79-00-5	1,1,2-Trichloroethane		U	1.33	5.57
591-78-6	2-Hexanone		U	2.20	5.57
142-28-9	1,3-Dichloropropane		U	1.48	5.57

Client: Brinkerhoff Environmental
Project: Petrocelli Electric
Matrix: Soil

Sample Weight	5.0 Grams
Level:	Low
\% Moisture:	10.2%

Client Sample:
SB-MW-8

Lab Sample ID:	10050460-001
Lab File ID:	1V0660.D
Date Collected:	12-May-10
Date Analyzed:	$25-$ May-10
Dilution Factor:	1

CAS No.	Compound	Conc ug/kg	Q	MDL	PQL
127-18-4	Tetrachloroethene		U	1.59	5.57
124-48-1	Dibromochloromethane		U	1.19	5.57
106-93-4	1,2-Dibromoethane		U	1.28	5.57
108-90-7	Chlorobenzene		U	1.22	5.57
630-20-6	1,1,1,2-Tetrachloroethane		U	1.50	5.57
100-41-4	Ethylbenzene		U	1.63	5.57
1330-20-7	m+p-Xylenes		U	2.62	11.1
95-47-6	o-Xylene		U	1.33	5.57
100-42-5	Styrene		U	1.53	5.57
75-25-2	Bromoform		U	1.79	5.57
79-34-5	1,1,2,2-Tetrachloroethane		U	1.70	5.57
96-18-4	1,2,3-Trichloropropane		U	1.37	5.57
108-86-1	Bromobenzene		U	1.36	5.57
95-49-8	2-Chlorotoluene		U	1.39	5.57
106-43-4	4-Chlorotoluene		U	1.94	5.57
541-73-1	1,3-Dichlorobenzene		U	2.13	5.57
106-46-7	1,4-Dichlorobenzene		U	1.56	5.57
95-50-1	1,2-Dichlorobenzene		U	1.71	5.57
96-12-8	1,2-Dibromo-3-chloropropane		U	5.38	5.57
120-82-1	1,2,4-Trichlorobenzene		U	1.92	5.57
87-68-3	Hexachlorobutadiene		U	3.03	5.57
91-20-3	Naphthalene		U	2.16	5.57
87-61-6	1,2,3-Trichlorobenzene		U	3.56	5.57

Aqua Pro-Tech Laboratories

EPA Method 8260 B Analytical Report
Tentatively Identified Compounds

Client:	Brinkerhoff Environmen	
Project:	Petrocelli Electric	
Matrix:	Soil	
Sample Weight	5.0 Grams	
Level:	Low	
\% Moisture:	10.2%	

Client Sample:
SB-MW-8

Lab Sample ID: 10050460-001
Lab File ID: 1V0660.D
Date Collected: 12-May-10

Date Analyzed: 25-May-10
Dilution Factor:
1

CAS No.	Compound	Est. Conc.	Q	RT
	unknown	258	J	18.7
$17302-28-2$	Nonane, 2,6-dimethyl-	825	JN	20.04
	unknown	977	J	20.72
$493-02-7$	Naphthalene, decahydro-, trans-	648	JN	21.71

Number of TICs found: 4
Total Est. Concentration: 2708 ug/kg

Data File : G: \HPChem\1\Data\05252010\1V0660.D
Vial: 5
Acq On : 25 May 2010 3:00 pm
Sample : 10050460-001
Misc : soil 5.0 g
MS Integration Params: RTEINT.P
Quant Time: May 25 15:34 2010
Quant Results File: 0309WCl.RES

Method	$:$ G: \backslash HPChem $\backslash 1 \backslash$ Methods $\backslash 0309 \mathrm{WCl} . \mathrm{M}$ (RTE Integrator)
Title	: Volatile Organics by GC/MS Method 8260 B
Last Update	: Fri May 21 16:31:29 2010
Response via	: Initial Calibration

Approved:
Method : G: \HPChem $\backslash 1 \backslash$ Methods $\backslash 0309 \mathrm{WCl} . \mathrm{M}$ (RTE Integrator)
Last Update : Fri May 21 16:31:29 2010
25-Mav-2010 17:57

TIC: 1V0660.D

540000
 540000

520000
500000
480000
460000
440000
420000
400000
380000
360000
340000
320000
300000
280000
260000 :
240000
220000
200000
180000
160000
140000
120000
100000
80000
60000
40000
20000
Operator: omd
Inst : GC/MS-1
Multiplr: 1.00

480000
ob

Aqua Pro-Tech Laboratories

Client: Brinkerhoff Environmental
Project: Petrocelli Electric
Matrix: Soil

Client Sample:
SB-MW-9

Sample Weight	5.0 Grams	Lab Sample ID:	10050460-002
Level:	Low	Lab File ID:	1V0661.D
\% Moisture:	$\mathbf{1 3 . 4 \%}$	Date Collected:	12-May-10
		Date Analyzed:	$25-$ May-10
		Dilution Factor:	1

CAS No.	Compound	Conc ug/kg	Q	MDL	PQL
75-71-8	Dichlorodifluoromethane		U	1.07	5.77
74-87-3	Chloromethane		U	0.982	5.77
75-01-4	Vinyl Chloride		U	0.970	5.77
74-83-9	Bromomethane		U	1.99	5.77
75-00-3	Chloroethane		U	1.07	5.77
75-69-4	Trichlorofluoromethane		U	0.878	5.77
107-02-8	Acrolein		U	1.78	57.7
67-64-1	Acetone		U	3.24	5.77
75-35-4	1,1-Dichloroethene		U	1.20	5.77
75-65-0	tert-Butyl Alcohol		U	19.5	57.7
75-09-2	Methylene Chloride		U	1.63	5.77
75-15-0	Carbon Disulfide		U	1.12	5.77
107-13-1	Acrylonitrile		U	2.55	57.7
1634-04-4	Methyl tert-Butyl Ether		U	1.77	5.77
156-60-5	trans-1,2-Dichloroethene		U	1.57	5.77
75-34-3	1,1-Dichloroethane		U	1.37	5.77
108-05-4	Vinyl Acetate		U	1.74	5.77
78-93-3	2-Butanone		U	1.57	5.77
594-20-7	2,2-Dichloropropane		U	1.24	5.77
156-59-2	cis-1,2-Dichloroethene		U	1.19	5.77
67-66-3	Chloroform		U	0.993	5.77
74-97-5	Bromochloromethane		U	1.37	5.77
71-55-6	1,1,1-Trichloroethane		U	1.35	5.77
563-58-6	1,1-Dichloropropene		U	1.05	5.77
56-23-5	Carbon Tetrachloride		U	1.15	5.77
107-06-2	1,2-Dichloroethane		U	1.34	5.77
71-43-2	Benzene		U	1.45	5.77
79-01-6	Trichloroethene		U	1.45	5.77
78-87-5	1,2-Dichloropropane		U	1.61	5.77
75-27-4	Bromodichloromethane		U	1.05	5.77
74-95-3	Dibromomethane		U	1.04	5.77
110-75-8	2-Chloroethylvinyl ether		U	1.54	11.5
108-10-1	4-Methyl-2-Pentanone		U	1.41	5.77
10061-01-5	cis-1,3-Dichloropropene		U	1.33	5.77
108-88-3	Toluene		U	1.40	5.77
10061-02-6	trans-1,3-Dichloropropene		U	1.32	5.77
79-00-5	1,1,2-Trichloroethane		U	1.37	5.77
591-78-6	2-Hexanone		U	2.29	5.77
142-28-9	1,3-Dichloropropane		U	1.54	5.77

Client: Brinkerhoff Environmental
Project: Petrocelli Electric
Matrix:
Soil

Sample Weight	5.0 Grams
Level:	Low
\% Moisture:	$\mathbf{1 3 . 4 \%}$

Client Sample:
SB-MW-9

Lab Sample ID:	10050460-002
Lab File ID:	1V0661.D
Date Collected:	12-May-10

Date Analyzed:	
Dilution Factor:	1

CAS No.	Compound	Conc ug/kg	Q	MDL	PQL
127-18-4	Tetrachloroethene		U	1.65	5.77
124-48-1	Dibromochloromethane		U	1.24	5.77
106-93-4	1,2-Dibromoethane		U	1.33	5.77
108-90-7	Chlorobenzene		U	1.27	5.77
630-20-6	1,1,1,2-Tetrachloroethane		U	1.56	5.77
100-41-4	Ethylbenzene		U	1.69	5.77
1330-20-7	m+p-Xylenes		U	2.71	11.5
95-47-6	o-Xylene		U	1.37	5.77
100-42-5	Styrene		U	1.58	5.77
75-25-2	Bromoform		U	1.86	5.77
79-34-5	1,1,2,2-Tetrachloroethane		U	1.77	5.77
96-18-4	1,2,3-Trichloropropane		U	1.42	5.77
108-86-1	Bromobenzene		U	1.41	5.77
95-49-8	2-Chlorotoluene		U	1.44	5.77
106-43-4	4-Chlorotoluene		U	2.01	5.77
541-73-1	1,3-Dichlorobenzene		U	2.21	5.77
106-46-7	1,4-Dichlorobenzene		U	1.62	5.77
95-50-1	1,2-Dichlorobenzene		\cup	1.78	5.77
96-12-8	1,2-Dibromo-3-chloropropane		U	5.58	5.77
120-82-1	1,2,4-Trichlorobenzene		U	1.99	5.77
87-68-3	Hexachlorobutadiene		U	3.14	5.77
91-20-3	Naphthalene		U	2.24	5.77
87-61-6	1,2,3-Trichlorobenzene		U	3.70	5.77

Aqua Pro-Tech Laboratories

EPA Method 8260 B Analytical Report

Tentatively Identified Compounds
Client: Brinkerhoff Environmental
Project: Petrocelli Electric
Matrix: Soil
Client Sample:
SB-MW-9

Sample Weight	5.0 Grams	Lab Sample ID:	10050460-002
Level:	Low	Lab File ID:	1V0661.D
\% Moisture:	13.4%	Date Collected:	12-May-10
		Date Analyzed:	25-May-10
		Dilution Factor:	1

CAS No.	Compound	Est. Conc.	Q	RT
$2847-72-5$	Decane, 4-methyl-	638	JN	20.05
	unknown hydrocarbon	690	J	20.71
	unknown	479	J	21.71

Number of TICs found: 3
Total Est. Concentration: 1807 ug/kg

Vial: 6 Operator: omd Inst: GC/MS-1 Multiplr: 1.00

Quant Results File: 0309WC1.RES
Method : G: \HPChem $\backslash 1 \backslash$ Methods $\backslash 0309 \mathrm{WC1} . \mathrm{M}$ (RTE Integrator)
Title : Volatile Organics by GC/MS Method 8260 B
Last Update : Fri May 21 16:31:29 2010
Response via : Initial Calibration
TIC: 1V0661.D

320000

310000
300000
290000
280000
270000
260000
250000
240000
230000
220000
210000
200000
190000
180000
170000
160000
150000
140000
130000
120000
110000
100000
90000
80000
70000
60000

	YES	NO
GC/MS TUNE SPECIFICATIONS		
BFB passes criteria	X	
GC/MS TUNING FREQUENCY		
Method 624-Performed within 24 hours prior to sample analysis		
Method 8260B-Performed within 12 hours prior to sample analysis	X	
GC/MS INITIAL CALIBRATION REQUIREMENTS		
Calibration Check Compounds pass criteria	X	
System Performance Check Compounds pass criteria	X	
GC/MS CONTINUING CALIBRATION PASS REQUIREMENTS	X	
SURROGȦE RECOVERIES PASS CRITERIA	X	
MATRIX SPIKE/SPIKE DUPLICATE RECOVERIES PASS CRITERIA		X
BLANK SPIKE RECOVERIES PASS CRITERIA	X	
INTERNAL STANDARD AREAS AND RETENTION TIMES	X	
PASS CRITERIA		
ANALYSIS HOLDING TIMES MET (from date of collection)		
Method 624 (non-preserved water) 7 days		
Method 624 (acid preserved water)-14 days		
Method 8260B(soil/solid waste)-14 days	X	
COMMENTS:		
The matrix spike (1V0718) and the matrix spike dup (1V071	QC cris	the

Client: Brinkerhoff Environmental
Project: Petrocelli Electric

		(\% Recovery)
QC Limits	S1 $=$ Dibromofluoromethane	$(59-147 \%)$
S2 $=$ Toluene-d8	$(66-134 \%)$	
S3 $=4-$ Bromofluorobenzene	$(64-125 \%)$	

* = Values outside of QC limits
$\mathrm{D}=$ System Monitoring Compound diluted out

Sample ID	Sample Name	S1	S2	S3	TOTAL OUT
$10050460-001$	SB-MW-8	92	82	106	0
$10050460-002$	SB-MW-9	92	80	98	0
Blank-1	Blank	96	79	100	0

Volatile Matrix Spike/Matrix Spike Duplicate Recovery

Client: Brinkerhoff Environmental
Project: Petrocelli Electric
Sample File: 10050726-001 (G:IHPChemi11Datal0601201011V0717.D)

CAS	Compound	Spike Added $(\mathrm{ug} / \mathrm{kg})$	Sample Concentration $(\mathrm{ug} / \mathrm{kg})$	MS Concentration $(\mathrm{ug} / \mathrm{kg})$	MS $\%$ Rec	QC Limits $\%$ Rec
$79-01-6$	Trichloroethene	213	0	271	127^{*}	$83-119$
$108-90-7$	Chlorobenzene	213	0	198	93	$77-121$
$108-88-3$	Toluene	213	0	209	98	$74-116$
$75-35-4$	$1,1-$ Dichloroethene	213	0	229	107	$67-116$
$71-43-2$	Benzene	213	0	242	114	$79-118$

Compound	Spike Added $(\mathrm{ug} / \mathrm{kg})$	Concentration $(\mathrm{ug} / \mathrm{kg})$	MSD $\%$ Rec	RPD \%	QC Limits RPD	
Trichloroethene	213	270	127^{*}	1	12	$83-119$
Chlorobenzene	213	212	99	6	14	$77-121$
Toluene	213	234	110	12	16	$74-116$
1,1-Dichloroethene	213	247	116	8	22	$67-116$
Benzene	213	247	116	2	14	$79-118$

*Values outside of QC limits
RPD: 0 out of 5 outside of limits
Spike Recovery: 2 out of 10 outside of limits

```
Jata File : G:\HPChem\1\Data\06012010\1V0717.D
Ang On : 1 Jun 2010 11:53 pm
    mple : 10050726-001
    Vial: 18
    Operator: omd
    Inst : GC/MS-1
    Multiplr: 1.00
IS Integration Params: RTEIN'.P
    ruant Time: Jun 2 11:35 2010
                            Quant Results File: 0309WC1.RES
ant Method : G:\HPCHEM\1\METHODS\0309WC1.M (RTE Integrator)
Title : Volatile Organics by GC/MS Method 8260 B
.ast Update : Fri May 21 16:31:29 2010
    sponse via : Initial Calibration
    taAcq Meth : VOCRUN1
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Tnternal Standards & \multicolumn{2}{|r|}{R.T. QIon} & \multicolumn{4}{|r|}{Conc Units Dev (Min)} \\
\hline 1) Pentafluorobenzene & 12.15 & 168 & 39714 & 50.00 & \(\mathrm{ug} / \mathrm{kg}\) & 0.03 \\
\hline 30) 1,4-Difluorobenzene & 13.03 & 114 & 65947 & 50.00 & \(\mathrm{ug} / \mathrm{kg}\) & 0.02 \\
\hline 47) Chlorobenzene-d5 & 17.63 & 82 & 50866 & 50.00 & \(\mathrm{ug} / \mathrm{kg}\) & 0.06 \\
\hline 69) 1,4-Dichlorobenzene-d4 & 21.57 & 152 & 38568 & 50.00 & \(\mathrm{ug} / \mathrm{kg}\) & 0.05 \\
\hline \multicolumn{7}{|l|}{System Monitoring Compounds} \\
\hline 24) Dibromofluoromethane & 11.54 & 113 & 82384 & 51.61 & \(\mathrm{ug} / \mathrm{kg}\) & 0.03 \\
\hline Spiked Amount 50.000 & Range 59 & - 147 & Recovery & = & 103.22\% & \\
\hline 38) Toluene-d8 & 15.15 & 98 & 332634 & 37.08 & \(\mathrm{ug} / \mathrm{kg}\) & 0.04 \\
\hline Spiked Amount 50.000 & Range 66 & - 134 & Recovery & & \(74.16 \%\) & \\
\hline 57) 4-Bromofluorobenzene & 19.58 & 95 & 155970 & 52.80 & \(\mathrm{ug} / \mathrm{kg}\) & 0.05 \\
\hline Spiked Amount 50.000 & Range 64 & - 125 & Recovery & = & 105.60\% & \\
\hline
\end{tabular}
Target Compounds Qvalue
```

Data File : G:\HPChem\1\Data\06012010\1V0717.D
Acq On : 1 Jun 2010 11:53 pm Sample : 10050726-001
Misc : soil 5.0g
MS Integration Params: RTEINT.P
Quant Time: Jun 2 11:35 2010

Vial: 18
Operator: omd Inst: GC/MS-1
Multiplr: 1.00
Method : G: \HPChem $\backslash 1 \backslash$ Methods $\backslash 0309 \mathrm{WCI} . \mathrm{M}$ (RTE Integrator)

Title : Volatile Organics by GC/MS Method 8260 B
Last Update : Fri May 21 16:31:29 2010
Response via : Initial Calibration

Approved:
02-Jun-2010 10:43

250000 -

240000
230000
220000
210000
200000 !

190000

180000

170000

160000

150000
140000

130000

120000
110000.

100000

Vial: 19
Operator: omd Inst: GC/MS-1 Multiplr: 1.00
$\begin{gathered}\text { Acq On } \\ \text { mple }\end{gathered}: \frac{2}{}$ Jun 2010 12
sc : soil 5.0g
MS Integration Params: RTEINT.P
Ouant Time: Jun 2 11:35 2010

Quant Results File: 0309WC1.RES
ant Method : G: \HPCHEM $\backslash 1 \backslash$ METHODS $\backslash 0309 \mathrm{WC1} . \mathrm{M}$ (RTE Integrator)
Title : Volatile Organics by GC/MS Method 8260 B
Last Update : Fri May 21 16:31:29 2010
sponse via : Initial Calibration
taAcq Meth : VOCRUN1

'Targ	Compounds						ue
2)	Dichlorodifluoromethane	4.82	85	158298	140.04	$\mathrm{ug} / \mathrm{kg}$	96
3)	Chloromethane	5.31	50	321027	166.29	$\mathrm{ug} / \mathrm{kg}$	97
4)	Vinyl Chloride	5.49	62	273779	183.01	$\mathrm{ug} / \mathrm{kg}$	91
5)	Bromomethane	6.22	94	147218	85.61	$\mathrm{ug} / \mathrm{kg}$	97
6)	Chloroethane	6.49	64	190246	143.43	ug/kg	90
7)	Trichlorofluoromethane	6.80	101	245830	223.04	ug/kg	98
8)	Acrolein	8.36	56	3388	13.63	ug/kg\#	13
9)	Acetone	8.83	43	25917	200.61	ug/kg	87
10)	1,1-Dichloroethene	7.77	61	313367	214.65	ug/kg	95
11)	tert-Butyl Alcohol	9.26	59	74214	64.57	ug/kg	96
12)	Methylene Chloride	8.77	84	203742	272.94	ug/kg	82
*13)	Carbon Disulfide	7.89	76	624241	219.18	ug/kg	100
14)	Acrylonitrile	10.11	53	27466	45.27	ug/kg	84
15)	Methyl tert-Butyl Ether	9.19	73	335394	178.46	ug/kg	97
16)	trans-1,2-Dichloroethene	9.05	61	290427	217.76	ug/kg	96
17)	1,1-Dichloroethane	10.05	63	392027	241.12	$\mathrm{ug} / \mathrm{kg}$	98
18)	Vinyl Acetate	10.34	43	315956	210.45	ug/kg	94
19)	2-Butanone	11.69	43	45627	219.58	ug/kg	97
20)	2,2-Dichloropropane	11.05	77	248765	204.09	$\mathrm{ug} / \mathrm{kg}$	97
21)	cis-1,2-Dichloroethene	10.88	61	273367	242.74	$\mathrm{ug} / \mathrm{kg}$	85
22)	Chloroform	11.25	83	301992	242.19	ug/kg	99
23)	Bromochloromethane	11.19	49	177430	220.09	ug/kg\#	73
25)	1,1,1-Trichloroethane	11.63	97	211886	228.44	$\mathrm{ug} / \mathrm{kg}$	91
26)	1,1-Dichloropropene	11.80	75	230994	228.13	ug/kg	94
27)	Carbon Tetrachloride	11.54	117	192241	236.77	ug/kg	100
28)	1,2-Dichloroethane	12.48	62	156334	243.32	ug/kg	98
29)	Benzene	12.18	78	650441	227.34	ug/kg	98
31)	Trichloroethene	13.03	130	134570	254.11	ug/kg	92
32)	1,2-Dichloropropane	13.83	63	166776	207.46	ug/kg	99
33)	Bromodichloromethane	13.88	83	169214	223.10	ug/kg	96
34)	Dibromomethane	13.71	174	49895	199.99	ug/kg	79
- 35)	2-Chloroethylvinyl ether	14.65	63	69078	150.30	$\mathrm{ug} / \mathrm{kg}$	89
36)	4-Methyl-2-Pentanone	15.71	43	127154	187.12	ug/kg	96
37)	cis-1,3-Dichloropropene	14.83	75	207577	178.68	ug/kg	97
39)	Toluene	15.22	91	737092	195.68	ug/kg	99
**-10)	trans-1,3-Dichloropropene	15.80	75	168304	184.86	ug/kg\#	91
41)	1,1,2-Trichloroethane	16.08	97	82116	195.03	$\mathrm{ug} / \mathrm{kg}$	92
12)	2-Hexanone	17.00	43	96257	179.28	ug/kg\#	97
13)	1,3-Dichloropropane	16.54	76	183821	183.06	$\mathrm{ug} / \mathrm{kg}$	100
**4)	Tetrachloroethene	15.86	166	172600	247.53	ug/kg	99
45)	Dibromochloromethane	16.41	129	97285	181.38	ug/kg	95
16)	1,2-Dibromoethane	16.86	107	78951	183.42	ug/kg	82
18)	Chlorobenzene	17.64	112	420660	185.94	ug/kg	99
49)	1,1,1,2-Tetrachloroethane	17.72	131	145889	206.18	ug/kg	95

' \ddagger) = qualifier out of range $(m)=$ manual integration

ant Method : G: \HPCHEM $\backslash 1 \backslash M E T H O D S \backslash 0309 W C 1 . M$ (RTE Integrator)
Title : Volatile Organics by GC/MS Method 8260 B
Inst Update : Fri May 21 16:31:29 2010
sponse via : Initial Calibration
taAcq Meth : VOCRUN1

Data File : G:\HPChem\1\Data\06012010\1V0718.D
Acq On : 2 Jun 2010 12:32 am
Sample : ms10050726-001
Misc : soil 5.0g
MS Integration Params: RTEINT.P
Quant Time: Jun 2 11:35 2010

Vial: 19
Operator: omd Inst : GC/MS-1

Method : G: \HPChem\1\Methods $\backslash 0309 \mathrm{WCl} . \mathrm{M}$ (RTE Integrator)
Title : Volatile Organics by GC/MS Method 8260 B
Last Update : Fri May 21 16:31:29 2010
Response via : Initial Calibration

Approved:
02-Jun-2010 10:43

TIC: 1V0718.D

1000000 .

950000

900000

850000 .

800000

750000

700000

650000

600000

550000

500000

450000

400000

350000

250000
200000 .

150000
is.
100000

50000

Toluene, M

In71\& \cap n 2 nawry M
Wer . T11n 0210.44 .592010

```
Jata File : G:\HPChem\1\Data\06012010\1V0719.D
Arg On : 2 Jun 2010 1:12 am
        imple : msd10050726-001
        sc : soil 5.0g
```

MS Integration Params: RTEINT.P
Ouant Time: Jun 2 11:36 2010
Vial: 20
Operator: omd
Inst : GC/MS-1
Multiplr: 1.00
Quant Results File: 0309WC1.RES

Title : Volatile Organics by GC/MS Method 8260 B
Iast Update : Fri May 21 16:31:29 2010
:sponse via : Initial Calibration
itaAcq Meth : VOCRUN1

Inter	al Standards	R.T. QIon		Response	Conc Units Dev(Min)		
1)	Pentafluorobenzene	12.15	168	39134	50.00	$\mathrm{ug} / \mathrm{kg}$	0.02
30)	1,4-Difluorobenzene	13.02	114	61190	50.00	$\mathrm{ug} / \mathrm{kg}$	0.02
47)	Chlorobenzene-d5	17.62	82	59326	50.00	$\mathrm{ug} / \mathrm{kg}$	0.06
69)	1,4-Dichlorobenzene-d4	21.56	152	40705	50.00	$\mathrm{ug} / \mathrm{kg}$	0.03
Stystem Monitoring Compounds							
24)	Dibromofluoromethane	11.53	113	87723	55.77	ug/kg	0.02
	iked Amount 50.000 R	Range 59	- 147	Recov		111.54\%	
38)	Toluene-d8	15.15	98	350555	42.12	ug/kg	0.04
	iked Amount 50.000 R	Range 66	- 134	Recov		84.24\%	
57)	4-Bromofluorobenzene	19.58	95	156588	45.45	$\mathrm{ug} / \mathrm{kg}$	0.05
	iked Amount 50.000 R	Range 64	- 125	Recov	ry =	90.90\%	
Target Compounds						Qvalue	
		4.82	85	169750	157.34	$\mathrm{ug} / \mathrm{kg}$	100
3)	Chloromethane	5.31	50	347739	188.73	$\mathrm{ug} / \mathrm{kg}$	99
4)	Vinyl Chloride	5.50	62	287921	201.66	$\mathrm{ug} / \mathrm{kg}$	97
5)	Bromomethane	6.22	94	156452	95.33	$\mathrm{ug} / \mathrm{kg}$	100
6)	Chloroethane	6.50	64	192000	151.66	$\mathrm{ug} / \mathrm{kg}$	94
7)	Trichlorofluoromethane	6.79	101	246283	234.12	$\mathrm{ug} / \mathrm{kg}$	96
8)	Acrolein	8.36	56	7255	30.59	ug/kg\#	13
9)	Acetone	8.83	43	35206	285.53	$\mathrm{ug} / \mathrm{kg}$	90
10)	1,1-Dichloroethene	7.77	61	322671	231.58	$\mathrm{ug} / \mathrm{kg}$	94
11)	tert-Butyl Alcohol	9.26	59	107306	97.82	$\mathrm{ug} / \mathrm{kg}$	95
12)	Methylene Chloride	8.77	84	216275	303.57	$\mathrm{ug} / \mathrm{kg}$	83
13)	Carbon Disulfide	7.90	76	623794	229.48	$\mathrm{ug} / \mathrm{kg}$	96
14)	Acrylonitrile	10.09	53	34096	58.89	$\mathrm{ug} / \mathrm{kg}$	94
15)	Methyl tert-Butyl Ether	9.19	73	453074	252.59	$\mathrm{ug} / \mathrm{kg}$	100
, 16)	trans-1,2-Dichloroethene	- 9.05	61	295117	231.85	$\mathrm{ug} / \mathrm{kg}$	93
* 17)	1,1-Dichloroethane	10.05	63	416683	268.52	$\mathrm{ug} / \mathrm{kg}$	96
18)	Vinyl Acetate	10.34	43	407841	284.62	$\mathrm{ug} / \mathrm{kg}$	94
19)	2-Butanone	11.70	43	60963	307.40	$\mathrm{ug} / \mathrm{kg}$	98
20)	2,2-Dichloropropane	11.06	77	254358	218.64	$\mathrm{ug} / \mathrm{kg}$	93
21)	cis-1,2-Dichloroethene	10.87	61	300659	279.72	$\mathrm{ug} / \mathrm{kg}$	88
22)	Chloroform	11.24	83	331473	278.53	ug/kg	98
23)	Bromochloromethane	11.20	49	202280	262.89	$\mathrm{ug} / \mathrm{kg} \#$	71
25)	1,1,1-Trichloroethane	11.64	97	211997	239.47	ug/kg	92
* 26)	1,1-Dichloropropene	11.81	75	225009	232.83	ug/kg	93
27)	Carbon Tetrachloride	11.55	117	196210	253.20	$\mathrm{ug} / \mathrm{kg}$	96
28)	1,2-Dichloroethane	12.49	62	191976	313.06	$\mathrm{ug} / \mathrm{kg}$	94
29)	Benzene	12.20	78	632611	231.67	$\mathrm{ug} / \mathrm{kg}$	100
31)	Trichloroethene	13.04	130	129285	253.01	$\mathrm{ug} / \mathrm{kg}$	87
32)	1,2-Dichloropropane	13.84	63	166557	214.72	$\mathrm{ug} / \mathrm{kg}$	94
33)	Bromodichloromethane	13.89	83	183178	250.29	$\mathrm{ug} / \mathrm{kg}$	98
34)	Dibromomethane	13.72	174	64180	266.59	ug/kg	73
54*35)	2-Chloroethylvinyl ether	$\cdots \quad 14.65$	63	87086	196.37	ug/kg	89
36)	4-Methyl-2-Pentanone	15.72	43	167141	254.91	$\mathrm{ug} / \mathrm{kg}$	96
"me37)	cis-1,3-Dichloropropene	14.84	75	223027	198.96	$\mathrm{ug} / \mathrm{kg}$	96
39)	Toluene	15.22	91	797272	219.35	ug/kg	95
40)	trans-1,3-Dichloropropene	ne 15.81	75	196908	224.14	$\mathrm{ug} / \mathrm{kg}$	91
41)	1,1,2-Trichloroethane	16.09	97	91051	224.11	$\mathrm{ug} / \mathrm{kg}$	94
- 42)	2-Hexanone	17.01	43	121851	235.20	$\mathrm{ug} / \mathrm{kg}$	92
43)	1,3-Dichloropropane	16.55	76	218152	225.15	$\mathrm{ug} / \mathrm{kg}$	96
(tan 4)	Tetrachloroethene	15.87	166	179773	267.19	$\mathrm{ug} / \mathrm{kg}$	99
45)	Dibromochloromethane	16.42	129	117190	226.43	$\mathrm{ug} / \mathrm{kg}$	93
"*46)	1,2-Dibromoethane	16.87	107	100887	242.90	$\mathrm{ug} / \mathrm{kg}$	94
48)	Chlorobenzene	17.66	112	458064	198.90	$\mathrm{ug} / \mathrm{kg}$	99
* 49)	1,1,1,2-Tetrachloroethane	ne 17.73	131	155396	215.74	$\mathrm{ug} / \mathrm{kg}$	94

```
jata File : G:\HPChem\1\Data\06012010\1V0719.D
sq\mp@code{On : 2 Jun 2010 1:12 am}
    mple : msdl0050726-001
    sc : soil 5.0g
    Vial: 20
Operator: omd
Inst : GC/MS-1
Multiplr: 1.00
MS Integration Params: RTEINT.P
    Ouant Time: Jun 2 11:36 2010
Quant Results File: 0309WC1.RES
ant Method : G:\HPCHEM\I\METHODS\0309WC1.M (RTE Integrator)
ritle : Volatile Organics by GC/MS Method 8260 B
Uast Update : Fri May 21 16:31:29 2010
    sponse via : Initial Calibration
    taAcq Meth : VOCRUN1
```

	Compound	R.T. QIon		Response	Conc Unit		Qvalue
50)	Ethylbenzene	17.61	91	993480	192.33	$\mathrm{ug} / \mathrm{kg}$	96
51)	$\mathrm{m}+\mathrm{p}$-Xylenes	17.83	106	671276	394.18	$\mathrm{ug} / \mathrm{kg}$	89
52)	o-Xylene	18.57	91	746320	192.49	$\mathrm{ug} / \mathrm{kg}$	95
,53)	Styrene	18.63	104	522129	187.63	$\mathrm{ug} / \mathrm{kg}$	93
54)	Isopropylbenzene	19.05	105	941492	191.17	$\mathrm{ug} / \mathrm{kg}$	95
55)	Bromoform	18.78	173	75780	210.17	$\mathrm{ug} / \mathrm{kg}$	92
56)	1,1,2,2-Tetrachloroethane	19.82	83	162037	221.07	$\mathrm{ug} / \mathrm{kg}$	94
58)	1,2,3-Trichloropropane	20.14	110	33815	213.26	$\mathrm{ug} / \mathrm{kg}$	85
59)	n -Propylbenzene	19.74	91	1245081	204.86	$\mathrm{ug} / \mathrm{kg}$	97
60)	Bromobenzene	19.83	77	416609	193.03	$\mathrm{ug} / \mathrm{kg}$	76
61)	1,3,5-Trimethylbenzene	20.02	105	716020	191.59	$\mathrm{ug} / \mathrm{kg}$	97
62)	2-Chlorotoluene	20.09	91	731374	186.64	$\mathrm{ug} / \mathrm{kg}$	96
63)	4-Chlorotoluene	20.37	91	682287	193.02	$\mathrm{ug} / \mathrm{kg}$	95
64)	tert-Butylbenzene	20.63	119	709418	191.94	$\mathrm{ug} / \mathrm{kg}$	95
65)	1,2,4-Trimethylbenzene	20.74	105	721422	184.79	$\mathrm{ug} / \mathrm{kg}$	96
66)	sec-Butylbenzene	20.96	105	1082590	199.51	$\mathrm{ug} / \mathrm{kg}$	96
67)	4-Isopropyltoluene	21.16	119	806165	183.29	$\mathrm{ug} / \mathrm{kg}$	94
68)	1,3-Dichlorobenzene	21.45	146	410391	196.44	$\mathrm{ug} / \mathrm{kg}$	91
70)	1,4-Dichlorobenzene	21.59	146	360352	183.14	$\mathrm{ug} / \mathrm{kg}$	90
71)	n -Butylbenzene	21.89	91	928218	198.39	$\mathrm{ug} / \mathrm{kg}$	96
72)	1,2-Dichlorobenzene	22.37	146	346283	221.62	$\mathrm{ug} / \mathrm{kg}$	92
73)	1,2-Dibromo-3-chloropropan	23.88	75	19082	219.03	$\mathrm{ug} / \mathrm{kg}$	84
74)	1,2,4-Trichlorobenzene	25.35	180	202646	190.22	$\mathrm{ug} / \mathrm{kg}$	95
75)	Hexachlorobutadiene	25.17	225	145518	200.51	ug/kg	95
76)	Naphthalene	26.14	128	351008	194.04	ug/kg	97
77)	1,2,3-Trichlorobenzene	26.58	180	157767	180.73	$\mathrm{ug} / \mathrm{kg}$	95

```
Data File : G:\HPChem\1\Data\06012010\1V0719.D
Acq On : 2 Jun 2010 1:12 am
Sample : msd10050726-001
Misc : soil 5.0g
MS Integration Params: RTEINT.P
Quant Time: Jun 2 11:36 2010
```

Vial: 20
Operator: omd
Inst : GC/MS-1
29

Inst : GC/MS-1

Quant Results File: 0309WCl.RES

Method	: G: \HPChem $\backslash 1 \backslash$ Methods $\backslash 0309 \mathrm{WCl} . \mathrm{M}$ (RTE Integrator)
Title	: Volatile Organics by GC/MS Method 8260 B
Last Update	: Fri May 21 16:31:29 2010
Response via $: ~ I n i t i a l ~ C a l i b r a t i o n ~$	

TIC: 1V0719.D

1000000

950000

900000

850000

800000

750000

700000
650000

600000

550000

450000

400000

350000

300000

250000

150000
100000

50000


```
Jata File : G:\HPChem\1\Data\05252010\1V0658.D
Aqq On : 25 May 2010 1:15 pm
    mple : 200 ppb m5035A lcs
! sc : soil
```

MS Integration Params: RTEINT.P
Quant Time: May 25 13:40 2010

Vial: 3
Operator: omd
Inst : GC/MS-1
Multiplr: 1.00

MS Integration Params: RTEINT.P
Quant Time: May 25 13:40 2010
Quant Results File: 0309WC1.RES

```
ant Method : G:\HPCHEM\1\METHODS\0309WC1.M (RTE Integrator)
Title : Volatile Organics by GC/MS Method 8260 B
uast Update : Fri May 21 16:31:29 2010
    sponse via : Initial Calibration
    taAcq Meth : VOCRUN1
```

Inte	rnal Standards	R.T. QIon		Response	Conc Units Dev(Min)		
1)	Pentafluorobenzene	12.11	168	48935	50.00	ug/kg	-0.02
30)	1,4-Difluorobenzene	12.98	114	60749	50.00	ug/kg	-0.02
47)	Chlorobenzene-d5	17.58	82	57697	50.00	ug/kg	0.02
69)	1,4-Dichlorobenzene-d4	21.52	152	38672	50.00	$\mathrm{ug} / \mathrm{kg}$	0.00
*System Monitoring Compounds							
		11.49	113	92491	47.02	g/kg	. 02
	iked Amount 50.000 R	Range 59	- 147	Recov	ry	94.0	
38)	Toluene-d8	15.09	98	388930	47.07	$\mathrm{ug} / \mathrm{kg}$	-0.01
	iked Amount 50.000 R	Range 66	- 134	Recov		94.1	
57)	4-Bromofluorobenzene	19.54	95	155189	46.31	$\mathrm{ug} / \mathrm{kg}$	0.00
	iked Amount 50.000 R	Range 64	- 125	Recov	$\mathrm{y}=$	92.62	
Target Compounds						Qvalue	
2)	Dichlorodifluoromethane	4.79	85	230658	170.98	ug/kg	100
3)	Chloromethane	5.28	50	424895	184.42	$\mathrm{ug} / \mathrm{kg}$	99
4)	Vinyl Chloride	5.45	62	340412	190.67	ug/kg	6
5)	Bromomethane	6.19	94	189757	92.47	ug/kg	7
6)	Chloroethane	6.45	64	228196	144.15	ug/kg	9
7)	Trichlorofluoromethane	6.76	101	291712	221.76	$\mathrm{ug} / \mathrm{kg}$	99
8)	Acrolein	8.31	56	6298	21.24	ug/kg\#	3
9)	Acetone	8.80	43	35603	230.91	$\mathrm{ug} / \mathrm{kg}$	5
10)	1,1-Dichloroethene	7.74	61	374040	214.68	$\mathrm{ug} / \mathrm{kg}$	3
11)	tert-Butyl Alcohol	9.23	59	97106	70.79	$\mathrm{ug} / \mathrm{kg}$	4
12)	Methylene Chloride	8.73	84	237381	266.46	$\mathrm{ug} / \mathrm{kg}$	5
13)	Carbon Disulfide	7.85	76	752163	221.28	$\mathrm{ug} / \mathrm{kg}$	8
14)	Acrylonitrile	10.08	53	35748	49.37	$\mathrm{ug} / \mathrm{kg}$	8
15)	Methyl tert-Butyl Ether	9.15	73	492076	219.39	$\mathrm{ug} / \mathrm{kg}$	100
16)	trans-1,2-Dichloroethene	- 9.02	61	351824	221.04	$\mathrm{ug} / \mathrm{kg}$	4
17)	1,1-Dichloroethane	10.00	63	448836	231.31	$\mathrm{ug} / \mathrm{kg}$	99
18)	Vinyl Acetate	10.31	43	436087	243.38	$\mathrm{ug} / \mathrm{kg}$	96
19)	2-Butanone	11.66	43	56990	229.81	$\mathrm{ug} / \mathrm{kg}$	8
20)	2,2-Dichloropropane	11.02	77	339196	233.17	$\mathrm{ug} / \mathrm{kg}$	95
21)	cis-1,2-Dichloroethene	10.83	61	330280	245.74	$\mathrm{ug} / \mathrm{kg}$	81
22)	Chloroform	11.20	83	349354	234.76	$\mathrm{ug} / \mathrm{kg}$	95
23)	Bromochloromethane	11.14	49	211677	220.01	$\mathrm{ug} / \mathrm{kg}$	84
25)	1,1,1-Trichloroethane	11.60	97	287700	259.90	$\mathrm{ug} / \mathrm{kg}$	91
26)	1,1-Dichloropropene	11.75	75	320504	265.22	$\mathrm{ug} / \mathrm{kg}$	95
27)	Carbon Tetrachloride	11.51	117	263870	272.31	$\mathrm{ug} / \mathrm{kg}$	6
28)	1,2-Dichloroethane	12.43	62	195144	254.49	$\mathrm{ug} / \mathrm{kg}$	96
29)	Benzene	12.15	78	776202	227.32	$\mathrm{ug} / \mathrm{kg}$	100
31)	Trichloroethene	13.00	130	168465	332.07	$\mathrm{ug} / \mathrm{kg}$	0
32)	1,2-Dichloropropane	13.80	63	211281	274.36	ug/kg	97
33)	Bromodichloromethane	13.85	83	212414	292.34	ug/kg	97
34)	Dibromomethane	13.68	174	65119	272.46	ug/kg	3
* "35)	2-Chloroethylvinyl ether	14.60	63	83080	188.69	$\mathrm{ug} / \mathrm{kg}$	9
36)	4-Methyl-2-Pentanone	15.66	43	135909	208.78	$\mathrm{ug} / \mathrm{kg}$	9
-37)	cis-1,3-Dichloropropene	14.78	75	263256	236.56	$\mathrm{ug} / \mathrm{kg}$	96
39)	Toluene	15.19	91	832600	230.73	$\mathrm{ug} / \mathrm{kg}$	8
**40)	trans-1,3-Dichloropropene	He 15.76	75	202078	231.70	$\mathrm{ug} / \mathrm{kg}$	9
41)	1,1,2-Trichloroethane	16.03	97	93594	232.04	$\mathrm{ug} / \mathrm{kg}$	9
-42)	2-Hexanone	16.95	43	104085	202.37	$\mathrm{ug} / \mathrm{kg} \#$	94
43)	1,3-Dichloropropane	16.49	76	211874	220.26	$\mathrm{ug} / \mathrm{kg}$	97
****44)	Tetrachloroethene	15.82	166	175289	262.42	$\mathrm{ug} / \mathrm{kg}$	96
45)	Dibromochloromethane	16.36	129	108096	210.38	$\mathrm{ug} / \mathrm{kg}$	92
-46)	1,2-Dibromoethane	16.82	107	87115	211.26	$\mathrm{ug} / \mathrm{kg}$	96
48)	Chlorobenzene	17.60	112	478013	213.42	ug/kg	100
"49)	1,1,1,2-Tetrachloroethane	ne 17.68	131	142434	203.33	ug/kg	89

[^1]```
Data File : G:\HPChem\1\Data\05252010\1V0658.D
Acq On : 25 May 2010 1:15 pm
Sample : 200 ppb m5035A lcs
Misc : soil
MS Integration Params: RTEINT.P
```

Quant Time: May 25 13:40 $2010 \quad$ Quant Results File: 0309WCl.RES

```
```

Method : G:\HPChem\1\Methods\0309WC1.M (RTE Integrator)

```
```

Method : G:\HPChem\1\Methods\0309WC1.M (RTE Integrator)
Title : Volatile Organics by GC/MS Method 8260 B
Title : Volatile Organics by GC/MS Method 8260 B
Last Update : Fri May 21 16:31:29 2010
Last Update : Fri May 21 16:31:29 2010
Response via : Initial Calibration

```
```

Response via : Initial Calibration

```
```

Vial: 3
Operator: omd
Inst : GC/MS-1

TIC: 1V0658.D
1100000

1050000

1000000

950000

900000

850000

800000

750000
700000

650000

600000


V0658.D 0309WC1.M Tue Mav 25 18:00:35 2010

Blank:
Client: Brinkerhoff Environmental
O- MBlank \#1
Project: Petrocelli Electric
Lab File ID: 1V0659.D
Lab Sample ID: blank
Date Acquired: 25-May-10
Time Acquired 14:21
This Method Blank applies to the following samples:

| Client Sample | Lab <br> Sample ID | Lab <br> File ID | Time <br> Acquired |
| :---: | :---: | :---: | :---: |
| SB-MW-8 | $10050460-001$ | 1V0660.D | $15: 00$ |
| SB-MW-9 | $10050460-002$ | 1V0661.D | $15: 39$ |

Aqua Pro-Tech Laboratories

Client: Brinkerhoff Environmental
Project: Petrocelli Electric
Matrix: Soil

Client Sample:
Blank - 1

| Sample Weight | 5.0 Grams | Lab Sample ID: | Blank - 1 |
| :--- | :--- | :--- | :--- |
| Level: | Low | Lab File ID: | 1V0659.D |

Dilution Factor:
1

| CAS No. | Compound | Conc ug/kg | Q | MDL | PQL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 75-71-8 | Dichlorodifluoromethane |  | U | 0.930 | 5 |
| 74-87-3 | Chloromethane |  | U | 0.850 | 5 |
| 75-01-4 | Vinyl Chloride |  | U | 0.840 | 5 |
| 74-83-9 | Bromomethane |  | U | 1.72 | 5 |
| 75-00-3 | Chloroethane |  | $U$ | 0.930 | 5 |
| 75-69-4 | Trichlorofluoromethane |  | U | 0.760 | 5 |
| 107-02-8 | Acrolein |  | $U$ | 1.54 | 50 |
| 67-64-1 | Acetone |  | U | 2.81 | 5 |
| 75-35-4 | 1,1-Dichloroethene |  | U | 1.04 | 5 |
| 75-65-0 | tert-Butyl Alcohol |  | U | 16.9 | 50 |
| 75-09-2 | Methylene Chloride |  | U | 1.41 | 5 |
| 75-15-0 | Carbon Disulfide |  | U | 0.970 | 5 |
| 107-13-1 | Acrylonitrile |  | U | 2.21 | 50 |
| 1634-04-4 | Methyl tert-Butyl Ether |  | U | 1.53 | 5 |
| 156-60-5 | trans-1,2-Dichloroethene |  | U | 1.36 | 5 |
| 75-34-3 | 1,1-Dichloroethane |  | U | 1.19 | 5 |
| 108-05-4 | Vinyl Acetate |  | U | 1.51 | 5 |
| 78-93-3 | 2-Butanone |  | U | 1.36 | 5 |
| 594-20-7 | 2,2-Dichloropropane |  | U | 1.07 | 5 |
| 156-59-2 | cis-1,2-Dichloroethene |  | U | 1.03 | 5 |
| 67-66-3 | Chloroform |  | U | 0.860 | 5 |
| 74-97-5 | Bromochioromethane |  | U | 1.19 | 5 |
| 71-55-6 | 1,1,1-Trichloroethane |  | U | 1.17 | 5 |
| 563-58-6 | 1,1-Dichloropropene |  | U | 0.910 | 5 |
| 56-23-5 | Carbon Tetrachloride |  | $U$ | 1.00 | 5 |
| 107-06-2 | 1,2-Dichloroethane |  | $U$ | 1.16 | 5 |
| 71-43-2 | Benzene |  | U | 1.26 | 5 |
| 79-01-6 | Trichloroethene |  | U | 1.26 | 5 |
| 78-87-5 | 1,2-Dichloropropane |  | $U$ | 1.39 | 5 |
| 75-27-4 | Bromodichloromethane |  | U | 0.910 | 5 |
| 74-95-3 | Dibromomethane |  | U | 0.900 | 5 |
| 110-75-8 | 2-Chloroethylvinyl ether |  | U | 1.33 | 10 |
| 108-10-1 | 4-Methyl-2-Pentanone |  | U | 1.22 | 5 |
| 10061-01-5 | cis-1,3-Dichloropropene |  | U | 1.15 | 5 |
| 108-88-3 | Toluene |  | U | 1.21 | 5 |
| 10061-02-6 | trans-1,3-Dichloropropene |  | U | 1.14 | 5 |
| 79-00-5 | 1,1,2-Trichloroethane |  | U | 1.19 | 5 |
| 591-78-6 | 2-Hexanone |  | U | 1.98 | 5 |
| 142-28-9 | 1,3-Dichloropropane |  | U | 1.33 | 5 |

Client: Brinkerhoff Environmental
Project: Petrocelli Electric
Matrix: Soil

| Sample Weight | 5.0 Grams |
| :--- | :--- |
| Level: | Low |

Client Sample:
Blank - 1

Lab Sample ID:
Blank - 1
Lab File ID:
1V0659.D

Dilution Factor:
1

| CAS No. | Compound | Conc ug/kg | Q | MDL | PQL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 127-18-4 | Tetrachloroethene |  | U | 1.43 | 5 |
| 124-48-1 | Dibromochloromethane |  | U | 1.07 | 5 |
| 106-93-4 | 1,2-Dibromoethane |  | U | 1.15 | 5 |
| 108-90-7 | Chlorobenzene |  | U | 1.10 | 5 |
| 630-20-6 | 1,1,1,2-Tetrachloroethane |  | U | 1.35 | 5 |
| 100-41-4 | Ethylbenzene |  | U | 1.46 | 5 |
| 1330-20-7 | $\mathrm{m}+\mathrm{p}$-Xylenes |  | U | 2.35 | 10 |
| 95-47-6 | o-Xylene |  | U | 1.19 | 5 |
| 100-42-5 | Styrene |  | U | 1.37 | 5 |
| 75-25-2 | Bromoform |  | U | 1.61 | 5 |
| 79-34-5 | 1,1,2,2-Tetrachloroethane |  | U | 1.53 | 5 |
| 96-18-4 | 1,2,3-Trichloropropane |  | U | 1.23 | 5 |
| 108-86-1 | Bromobenzene |  | U | 1.22 | 5 |
| 95-49-8 | 2-Chlorotoluene |  | U | 1.25 | 5 |
| 106-43-4 | 4-Chiorotoluene |  | U | 1.74 | 5 |
| 541-73-1 | 1,3-Dichlorobenzene |  | U | 1.91 | 5 |
| 106-46-7 | 1,4-Dichlorobenzene |  | U | 1.40 | 5 |
| 95-50-1 | 1,2-Dichlorobenzene |  | U | 1.54 | 5 |
| 96-12-8 | 1,2-Dibromo-3-chloropropane |  | U | 4.83 | 5 |
| 120-82-1 | 1,2,4-Trichlorobenzene |  | U | 1.72 | 5 |
| 87-68-3 | Hexachlorobutadiene |  | U | 2.72 | 5 |
| 91-20-3 | Naphthalene |  | U | 1.94 | 5 |
| 87-61-6 | 1,2,3-Trichlorobenzene |  | U | 3.20 | 5 |

Client: Brinkerhoff Environmental
Project: Petrocelli Electric
Matrix: Soil

| Sample Weight | 5.0 Grams |
| :--- | :--- |
| Level: | Low |

Lab Sample ID: Blank - 1 Lab File ID: 1V0659.D

Dilution Factor:
1

| CAS No. | Compound | Est. <br> Conc. | Q | RT |
| :---: | :---: | :---: | :---: | :---: |

Number of TICs found: 0
Total Est. Concentration: $0 \mathrm{ug} / \mathrm{kg}$


```
Data File : G:\HPChem\1\Data\05252010\IV0659.D
Acq On : 25 May 2010 2:21 pm
Sample : blank
Misc : soil
```

Vial: 4
MS Integration Params: RTEINT.P
Quant Time: May 25 15:32 $2010 \quad$ Quant Results File: 0309WCI.RES
Method : G: \HPChem $\backslash 1 \backslash$ Methods $\backslash 0309 \mathrm{WCI} . M$ (RTE Integrator)
Title : Volatile Organics by GC/MS Method 8260 B
Last Update : Fri May 21 16:31:29 2010
Response via : Initial Calibration
Operator: omd
Inst : GC/MS-1

TIC: 1V0659.D

260000
250000
240000
230000
220000
210000
200000
190000
180000
170000
160000.

150000
140000
130000
120000
110000
100000.

90000
80000


Volatile Organic Instrument Performance Check (Tune) Bromofluorobenzene(BFB)

| Client: | Brinkerhoff Environmental | BFB Injection Date: | 25-May-10 |
| :--- | :--- | :--- | :--- |
| Project: | Petrocelli Electric | BFB Injection Time: | $11: 57$ |

Lab File ID: G:IHPChemI11Datal0525201011V0656.D

| $\mathrm{m} / \mathrm{z}$ | Ion Abundance Criteria | \% Relative <br> Abundance |
| :---: | :---: | :---: |
| 50 | $15.0-40.0 \%$ of mass 95 | 29.6 |
| 75 | $30.0-80.0 \%$ of mass 95 | 57.7 |
| 95 | $100-100 \%$ of mass 95 | 100 |
| 96 | $5.00-9.00 \%$ of mass 95 | 5.60 |
| 173 | $0.00-2.00 \%$ of mass 174 | 0.00 |
| 174 | $50.0-100 \%$ of mass 95 | 77.9 |
| 175 | $5.00-9.00 \%$ of mass 174 | 8.40 |
| 176 | $95.0-101 \%$ of mass 174 | 99.7 |
| 177 | $5.00-9.00 \%$ of mass 176 | 6.40 |

This check applies to the following Samples, MS, MSD, Blanks, and Standards

| Client Sample | Lab <br> Sample ID | Lab <br> File ID | Date <br> Acquired | Time <br> Acquired |
| :---: | :---: | :---: | :---: | :---: |
| CCV | 200 ppb m5035A ccV | 1V0657.D | 25-May-10 | $12: 37$ |
| Blank -1 | blank | 1V0659.D | 25-May-10 | $14: 21$ |
| Blank Spike -1 | 200 ppb m5035A Ics | 1V0658.D | $25-$ May-10 | $13: 15$ |
| SB-MW-8 | $10050460-001$ | 1V0660.D | $25-$ May-10 | $15: 00$ |
| SB-MW-9 | $10050460-002$ | 1V0661.D | 25-May-10 | $15: 39$ |

Data File : G: \HPChem\1\Data\05252010\1V0656.D
Acq On : 25 May 2010 11:57 am
Sample : bfb
Misc : soil
MS Integration Params: RTEINT.P
Method : G: \HPChem\I\Methods $\backslash 0309 \mathrm{WC1}$.M (RTE Integrator)
Title : Volatile Organics by GC/MS Method 8260 B
Vial: 1
Operator: omd
Inst : GC/MS-1
Multiplr: 1.00
8260 B

TIC: 1 V0656.D

350000

300000

250000
200000
150000
100000

50000
 $\begin{array}{llllllllllllllllllllllllllll}17.60 & 17.80 & 18.00 & 18.20 & 18.40 & 18.60 & 18.80 & 19.00 & 19.20 & 19.40 & 19.60 & 19.80 & 20.00 & 20.20 & 20.40 & 20.60 & 20.80 & 21.00 & 21.20 & 21.40\end{array}$ 45000 Scan 975 (19.542 min): 1V0656.D

40000

35000


Spectrum Information: Scan 975

| Target Mass | $\begin{aligned} & \text { Rel. to } \\ & \text { Mass } \end{aligned}$ | Lower <br> Limit\% | Upper Limit\% | Rel. <br> Abn\% | Raw <br> Abn | $\begin{gathered} \text { Result } \\ \text { Pass/Fail } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 50 | 95 | 15 | 40 | 29.6 | 12703 | PASS |
| 75 | 95 | 30 | 80 | 57.7 | 24744 | PASS |
| 95 | 95 | 100 | 100 | 100.0 | 42880 | PASS |
| 96 | 95 | 5 | 9 | 5.6 | 2410 | PASS |
| 173 | 174 | 0.00 | 2 | 0.0 | 0 | PASS |
| 174 | 95 | 50 | 100 | 77.9 | 33392 | PASS |
| 175 | 174 | 5 | 9 | 8.4 | 2807 | PASS |
| 176 | 174 | 95 | 101 | 99.7 | 33296 | PASS |
| 177 | 176 | 5 | 9 | 6.4 | 2133 | PASS |

Aqua Pro-Tech Laboratories
Volatile Organic Instrument Performance Check (Tune) Bromofluorobenzene(BFB)

| Client: | Brinkerhoff Environmental | BFB Injection Date: | 1-Jun-10 |
| :--- | :--- | :--- | :--- |
| Project: | Petrocelli Electric | BFB Injection Time: | 11:45 |
| Lab File ID: | G:IHPChemI11Datal0601201011V0699.D |  |  |


| $\mathrm{m} / \mathrm{z}$ | lon Abundance Criteria | \% Relative <br> Abundance |
| :---: | :---: | :---: |
| 50 | $15.0-40.0 \%$ of mass 95 | 27.8 |
| 75 | $30.0-80.0 \%$ of mass 95 | 53.3 |
| 95 | $100-100 \%$ of mass 95 | 100 |
| 96 | $5.00-9.00 \%$ of mass 95 | 5.10 |
| 173 | $0.00-2.00 \%$ of mass 174 | 0.00 |
| 174 | $50.0-100 \%$ of mass 95 | 76.0 |
| 175 | $5.00-9.00 \%$ of mass 174 | 7.60 |
| 176 | $95.0-101 \%$ of mass 174 | 98.1 |
| 177 | $5.00-9.00 \%$ of mass 176 | 6.30 |

This check applies to the following Samples, MS, MSD, Blanks, and Standards

| Client Sample | Lab <br> Sample ID | Lab <br> File ID | Date <br> Acquired | Time <br> Acquired |
| :---: | :---: | :---: | :---: | :---: |
| CCV | 200 ppb m5035A ccV | 1V0700.D | 1-Jun-10 | $12: 28$ |
| Matrix Spike -2 | $\mathrm{ms10050726-001}$ | 1V0718.D | 2-Jun-10 | $0: 32$ |
| Matrix Spike Dup - 2 | msd10050726-001 | 1V0719.D | 2-Jun-10 | $1: 12$ |

Data File : G:\HPChem\1\Data\06012010\1V0699.D
Acq On : 1 Jun 2010 11:45 am
Sample : bfb
Misc : soil
MS Integration Params: RTEINT.P
Method : G: \HPChem \I \Methods $\backslash 0309 \mathrm{WC1} . \mathrm{M}$ (RTE Integrator)
Title : Volatile Organics by GC/MS Method 8260 B
Vial: 44
Operator: omd
Inst: GC/MS-1
Multiplr: 1.00
Approved:
01-Jun-2010 15:55
$\qquad$
TIC: 1V0699.D
350000

300000

250000

200000

150000

100000

50000

 Scan 979 (19.601 min): 1V0699.D


Spectrum Information: Scan 979

| Target <br> Mass | Rel. to Mass | Lower <br> Limit\% | Upper <br> Limit\% | Rel. <br> Abn\% | Raw Abn | $\begin{gathered} \text { Result } \\ \text { Pass/Fail } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 50 | 95 | 15 | 40 | 27.8 | 13943 | PASS |
| 75 | 95 | 30 | 80 | 53.3 | 26712 | PASS |
| 95 | 95 | 100 | 100 | 100.0 | 50072 | PASS |
| 96 | 95 | 5 | 9 | 5.1 | 2561 | PASS |
| 173 | 174 | 0.00 | 2 | 0.0 | 0 | PASS |
| 174 | 95 | 50 | 100 | 76.0 | 38048 | PASS |
| 175 | 174 | 5 | 9 | 7.6 | 2889 | PASS |
| 176 | 174 | 95 | 101 | 98.1 | 37328 | PASS |
| 177 | 176 | 5 | 9 | 6.3 | 2348 | PASS |

IV0699.D 0309WC1.M
Tue Jun 01 15:55:06 2010

Client: Brinkerhoff Environmental
Project: Petrocelli Electric

Calibration Date:
Lab File ID:

9-Mar-10
RRF5: 1V0314.D
RRF200: 1V0318.D

RRF80:
1V0316.D
RRF400: 1V0319.D

RRF120: 1V0317.D
RRF800: 1V0320.D

* Compounds with required maximum \%RSD values. (CC Compounds)
** Compounds with required minimum RRF values. (SPC Compounds)

| Compound | RRF5 | RRF80 | RRF120 | RRF200 | RRF400 | RRF800 | Avg RRF | $\begin{gathered} \% \\ \text { RSD } \end{gathered}$ | $\begin{gathered} \text { Cal } \\ \text { Type } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dichlorodifluoromethane | 1.27 | 1.25 | 1.32 | 1.53 | 1.55 | 1.35 | 1.38 | 9.35 | Average RRF |
| Chloromethane ** | 2.55 | 2.08 | 2.15 | 2.63 | 2.54 | 2.18 | 2.35 | 10.4 | Average RRF |
| Vinyl Chloride * | 2.22 | 1.53 | 1.65 | 1.82 | 1.91 | 1.81 | 1.82 | 12.9 | Average RRF |
| Bromomethane |  | 1.40 | 1.68 | 2.29 | 2.58 | 2.53 | 2.10 | 25.3 | Average RRF |
| Chloroethane * |  | 0.976 | 1.08 | 1.22 | 2.58 | 2.23 | 1.62 | 45.6 | Average RRF |
| Trichlorofluoromethane | 1.31 | 1.29 | 1.31 | 1.45 | 1.19 | 1.51 | 1.34 | 8.59 | Average RRF |
| 1,1-Dichloroethene * |  | 1.68 | 1.79 | 1.81 | 1.92 | 1.71 | 1.78 | 5.30 | Average RRF |
| Carbon Disulfide |  | 3.33 | 3.46 | 3.59 | 3.69 | 3.30 | 3.47 | 4.81 | Average RRF |
| Acrolein |  | 0.257 | 0.237 | 0.333 | 0.349 | 0.338 | 0.303 | 17.1 | Average RRF |
| Methylene Chloride |  | 0.914 | 0.865 | 0.963 | 0.957 | 0.852 | 0.910 | 5.61 | Average RRF |
| Acetone |  | 0.116 | 0.128 | 0.191 | 0.174 | 0.179 | 0.158 | 21.2 | Average RRF |
| trans-1,2-Dichloroethene | 2.08 | 1.47 | 1.50 | 1.53 | 1.62 | 1.56 | 1.63 | 14.1 | Average RRF |
| Methyl tert-Butyl Ether | 3.11 | 2.29 | 2.11 | 2.32 | 2.08 | 1.83 | 2.29 | 19.1 | Average RRF |
| tert-Butyl Alcohol |  | 0.479 | 0.398 | 0.662 | 0.619 | 0.542 | 0.540 | 19.6 | Average RRF |
| 1,1-Dichloroethane ** | 2.18 | 1.91 | 1.90 | 1.98 | 2.05 | 1.87 | 1.98 | 5.83 | Average RRF |
| Acrylonitrile |  | 0.697 | 0.655 | 0.832 | 0.778 | 0.737 | 0.740 | 9.31 | Average RRF |
| Vinyl Acetate |  | 2.00 | 1.83 | 1.95 | 1.79 | 1.59 | 1.83 | 8.69 | Average RRF |
| cis-1,2-Dichloroethene | 1.53 | 1.33 | 1.32 | 1.37 | 1.39 | 1.30 | 1.37 | 6.21 | Average RRF |
| 2,2-Dichloropropane | 1.98 | 1.49 | 1.47 | 1.39 | 1.38 | 1.20 | 1.49 | 17.8 | Average RRF |
| Bromochloromethane | 1.02 | 1.02 | 1.02 | 0.998 | 0.940 | 0.893 | 0.983 | 5.54 | Average RRF |
| Chloroform * | 1.95 | 1.38 | 1.45 | 1.46 | 1.48 | 1.40 | 1.52 | 14.0 | Average RRF |
| Dibromoflucromethane | 2.08 | 1.99 | 2.00 | 2.09 | 2.00 | 1.90 | 2.01 | 3.47 | Average RRF |
| Carbon Tetrachloride | 0.925 | 1.03 | 1.01 | 1.02 | 1.02 | 0.926 | 0.990 | 5.10 | Average RRF |
| 1,1,1-Trichloroethane | 1.32 | 1.12 | 1.13 | 1.12 | 1.11 | 0.991 | 1.13 | 9.35 | Average RRF |
| 2-Butanone |  | 0.252 | 0.216 | 0.271 | 0.270 | 0.257 | 0.253 | 8.83 | Average RRF |
| 1,1-Dichloropropene | 1.45 | 1.24 | 1.19 | 1.18 | 1.20 | 1.15 | 1.23 | 8.87 | Average RRF |
| Benzene | 5.34 | 3.26 | 3.19 | 3.05 | 3.11 | 3.00 | 3.49 | 26.1 | Average RRF |
| 1,2-Dichloroethane | 0.548 | 0.830 | 0.798 | 0.896 | 0.837 | 0.791 | 0.783 | 15.5 | Average RRF |
| Trichloroethene | 0.160 | 0.500 | 0.461 | 0.487 | 0.488 | 0.410 | 0.418 | 31.2 | Average RRF |
| Dibromomethane |  | 0.170 | 0.173 | 0.231 | 0.215 | 0.195 | 0.197 | 13.4 | Average RRF |
| 1,2-Dichloropropane * | 0.563 | 0.720 | 0.646 | 0.685 | 0.648 | 0.540 | 0.634 | 11.0 | Average RRF |
| Bromodichloromethane | 0.370 | 0.681 | 0.639 | 0.696 | 0.637 | 0.565 | 0.598 | 20.2 | Average RRF |
| 2-Chloroethylvinyl ether |  | 0.318 | 0.310 | 0.414 | 0.404 | 0.367 | 0.363 | 13.2 | Average RRF |
| cis-1,3-Dichloroproperie | 1.05 | 0.874 | 0.855 | 0.950 | 0.928 | 0.841 | 0.916 | 8.43 | Average RRF |
| Toluene-d8 | 5.78 | 6.60 | 6.65 | 7.68 | 7.54 | 6.56 | 6.80 | 10.3 | Average RRF |
| Toluene * | 4.05 | 2.71 | 2.65 | 3.04 | 2.94 | 2.43 | 2.97 | 19.3 | Average RRF |
| 4-Methyl-2-Pentanone |  | 0.488 | 0.446 | 0.652 | 0.609 | 0.484 | 0.536 | 16.7 | Average RRF |
| trans-1,3-Dichloropropene | 0.577 | 0.701 | 0.658 | 0.789 | 0.828 | 0.754 | 0.718 | 12.8 | Average RRF |
| Tetrachloroethene | 0.338 | 0.563 | 0.591 | 0.626 | 0.628 | 0.551 | 0.550 | 19.7 | Average RRF |
| 1,1,2-Trichloroethane |  | 0.297 | 0.294 | 0.364 | 0.367 | 0.337 | 0.332 | 10.6 | Average RRF |
| Dibromochloromethane |  | 0.390 | 0.361 | 0.461 | 0.481 | 0.422 | 0.423 | 11.7 | Average RRF |
| 1,3-Dichloropropane | 0.777 | 0.776 | 0.704 | 0.873 | 0.850 | 0.770 | 0.792 | 7.71 | Average RRF |
| 1,2-Dibromoethane |  | 0.301 | 0.305 | 0.380 | 0.382 | 0.330 | 0.340 | 11.6 | Average RRF |

Aqua Pro-Tech Laboratories

Project: Petrocelli Electric
Calibration Date:
9-Mar-10
Lab File ID: RRF5: 1V0314.D
RRF80: 1V0316.D
RRF120: 1V0317.D
RRF800: 1V0320.D

* Compounds with required maximum \%RSD values. (CC Compounds)
** Compounds with required minimum RRF values. (SPC Compounds)

| Compound | RRF5 | RRF80 | RRF120 | RRF200 | RRF400 | RRF800 | Avg RRF | $\%$ <br> RSD |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2-Hexanone |  | 0.402 | 0.353 | 0.533 | 0.480 | 0.349 | 0.423 | 19.1 | Average RRF |
| Ethylbenzene* | 6.72 | 4.15 | 3.84 | 3.51 | 3.88 | 4.02 | 4.35 | 27.1 | Average RRF |
| Chlorobenzene ** | 2.43 | 1.93 | 1.18 | 1.70 | 1.86 | 1.94 | 1.94 | 13.2 | Average RRF |
| 1,1,1,2-Tetrachloroethane |  | 0.620 | 0.584 | 0.525 | 0.619 | 0.687 | 0.607 | 9.73 | Average RRF |
| $\mathrm{m}+\mathrm{p}$-Xylenes | 1.90 | 1.43 | 1.30 | 1.23 | 1.35 | 1.40 | 1.44 | 16.6 | Average RRF |
| o-Xylene | 4.54 | 3.17 | 2.96 | 2.73 | 3.08 | 3.13 | 3.27 | 19.6 | Average RRF |
| Styrene | 2.91 | 2.29 | 2.16 | 2.05 | 2.30 | 2.36 | 2.35 | 12.8 | Average RRF |
| Bromoform ** |  | 0.310 | 0.268 | 0.305 | 0.317 | 0.320 | 0.304 | 6.90 | Average RRF |
| Isopropylbenzene | 5.76 | 3.96 | 3.72 | 3.56 | 3.96 | 3.95 | 4.15 | 19.4 | Average RRF |
| 4-Bromofluorobenzene | 2.66 | 2.93 | 2.75 | 2.71 | 3.14 | 3.24 | 2.90 | 8.25 | Average RRF |
| n-Propylbenzene |  | 5.26 | 5.02 | 4.78 | 5.26 | 5.29 | 5.12 | 4.29 | Average RRF |
| 1,1,2,2-Tetrachloroethane ** |  | 0.696 | 0.623 | 0.686 | 0.608 | 0.475 | 0.618 | 14.3 | Average RRF |
| Bromobenzene | 2.14 | 1.85 | 1.67 | 1.72 | 1.81 | 1.72 | 1.82 | 9.34 | Average RRF |
| 1,3,5-Trimethylbenzene | 3.76 | 3.11 | 2.90 | 2.81 | 3.18 | 3.14 | 3.15 | 10.6 | Average RRF |
| 2-Chlorotoluene | 4.50 | 3.15 | 3.00 | 2.88 | 3.18 | 3.11 | 3.30 | 18.0 | Average RRF |
| 1,2,3-Trichloropropane |  | 0.117 | 0.104 | 0.148 | 0.154 | 0.146 | 0.134 | 16.4 | Average RRF |
| 4-Chlorotoluene | 3.73 | 2.90 | 2.71 | 2.70 | 2.93 | 2.90 | 2.98 | 12.9 | Average RRF |
| tert-Butylbenzene | 3.97 | 2.96 | 2.88 | 2.75 | 3.02 | 3.11 | 3.12 | 14.0 | Average RRF |
| 1,2,4-Trimethylbenzene | 4.38 | 3.11 | 2.95 | 2.86 | 3.26 | 3.19 | 3.29 | 16.8 | Average RRF |
| sec-Butylbenzene |  | 4.71 | 4.43 | 4.36 | 4.72 | 4.64 | 4.57 | 3.63 | Average RRF |
| 4-Isopropyltoluene | 5.12 | 3.44 | 3.26 | 3.18 | 3.68 | 3.56 | 3.71 | 19.4 | Average RRF |
| 1,3-Dichlorobenzene | 2.00 | 1.71 | 1.64 | 1.64 | 1.82 | 1.75 | 1.76 | 7.75 | Average RRF |
| 1,4-Dichlorobenzene | 3.32 | 2.24 | 2.59 | 2.20 | 2.19 | 1.95 | 2.42 | 20.2 | Average RRF |
| n-Butyibenzene |  | 5.66 | 6.52 | 5.71 | 5.69 | 5.16 | 5.75 | 8.48 | Average RRF |
| 1,2-Dichlorobenzene | 1.61 | 2.02 | 2.22 | 2.10 | 1.90 | 1.66 | 1.92 | 12.7 | Average RRF |
| 1,2-Dibromo-3-chloropropane |  |  | 0.0940 | 0.125 | 0.0890 | 0.120 | 0.107 | 16.9 | Average RRF |
| Hexachlorobutadiene |  | 0.787 | 1.00 | 0.884 | 0.844 | 0.941 | 0.891 | 9.33 | Average RRF |
| 1,2,4-Trichlorobenzene |  | 1.22 | 1.40 | 1.28 | 1.33 | 1.32 | 1.31 | 4.99 | Average RRF |
| Naphthalene |  | 2.13 | 2.33 | 2.30 | 2.22 | 2.13 | 2.22 | 4.18 | Average RRF |
| 1,2,3-Trichlorobenzene |  | 0.953 | 1.11 | 1.10 | 1.11 | 1.08 | 1.07 | 6.30 | Average RRF |

Average $\%$ RSD $=13.2$

Aqua Pro-Tech Laboratories

| Client: | Brinkerhoff Environmental | BFB Injection Date: | 9-Mar-10 |
| :--- | :--- | :--- | :--- |
| Project: | Petrocelli Electric | BFB Injection Time: | 14:04 |

Lab File ID: G:IHPChemI1IDatal0310201011V0311.D

| $\mathrm{m} / \mathrm{z}$ | Ion Abundance Criteria | \% Relative <br> Abundance |
| :---: | :---: | :---: |
| 50 | $15.0-40.0 \%$ of mass 95 | 30.4 |
| 75 | $30.0-80.0 \%$ of mass 95 | 59.1 |
| 95 | $100-100 \%$ of mass 95 | 100 |
| 96 | $5.00-9.00 \%$ of mass 95 | 6.80 |
| 173 | $0.00-2.00 \%$ of mass 174 | 0.00 |
| 174 | $50.0-100 \%$ of mass 95 | 72.9 |
| 175 | $5.00-9.00 \%$ of mass 174 | 6.30 |
| 176 | $95.0-101 \%$ of mass 174 | 99.2 |
| 177 | $5.00-9.00 \%$ of mass 176 | 6.20 |

This check applies to the following Samples, MS, MSD, Blanks, and Standards

| Client Sample | Lab <br> Sample ID | Lab <br> File ID | Date <br> Acquired | Time <br> Acquired |
| :---: | :---: | :---: | :---: | :---: |
| VSTD5 | 005 ppb m5035A ical | 1V0314.D | 9 -Mar-10 | $16: 12$ |
| VSTD80 | 080 ppb m5035A ical | 1V0316.D | 9-Mar-10 | $17: 32$ |
| VSTD120 | 120 ppb m5035A ical | 1V0317.D | 9 -Mar-10 | $18: 10$ |
| VSTD200 | 200 ppb m5035A ical | 1V0318.D | 9-Mar-10 | $18: 48$ |
| VSTD400 | 400 ppb m5035A ical | 1V0319.D | 9-Mar-10 | $19: 27$ |
| VSTD800 | 800 ppb m5035A ical | 1V0320.D | 9-Mar-10 | $20: 06$ |

Acq On : 9 Mar 2010 2:04 pm
Sample : BFB
Misc : soil
MS Integration Params: RTEINT.P
Method : G: \HPChem\} \backslash \backslash Methods \backslash 1 1 2 0 \mathrm { WCl } . \mathrm { M } (RTE Integrator)
Operator: omd
Inst : GC/MS-1
Multiplr: 1.00

Title : Volatile Organics by GC/MS Method 8260 B

TIC: 1V0311.D

300000


35000

30000

25000


Spectrum Information: Scan 975

| Target Mass | Rel. to Mass | Lower <br> Limit\% | Upper <br> Limit\% | Rel. <br> Abn\% | Raw <br> Abn | $\begin{gathered} \text { Result } \\ \text { Pass/Fail } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 50 | 95 | 15 | 40 | 30.4 | 10802 | PASS |
| 75 | 95 | 30 | 80 | 59.1 | 21008 | PASS |
| 95 | 95 | 100 | 100 | 100.0 | 35544 | PASS |
| 96 | 95 | 5 | 9 | 6.8 | 2403 | PASS |
| 173 | 174 | 0.00 | 2 | 0.0 | 0 | PASS |
| 174 | 95 | 50 | 100 | 72.9 | 25920 | PASS |
| 175 | 174 | 5 | 9 | 6.3 | 1631 | PASS |
| 176 | 174 | 95 | 101 | 99.2 | 25712 | PASS |
| 177 | 176 | 5 | 9 | 6.2 | 1606 | PASS |

Aqua Pro-Tech Laboratories

Client: Brinkerhoff Environmental
Project: Petrocelli Electric

| * Compounds with required maximum \%RSD values. (CC Compounds) <br> ** Compounds with required minimum RRF values. (SPC Compounds) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
| Compound | Avg <br> RRF | $\begin{aligned} & \mathrm{CCC} \\ & \text { RRF } \end{aligned}$ | Min <br> RRF | $\begin{aligned} & \text { RRF } \\ & \% \mathrm{D} \end{aligned}$ | Conc | $\begin{aligned} & \text { Ccc } \\ & \text { Conc } \end{aligned}$ | $\begin{gathered} \text { Conc } \\ \% \mathrm{D} \end{gathered}$ | $\begin{aligned} & \text { Max } \\ & \% \mathrm{D} \end{aligned}$ | $\begin{aligned} & \text { Cal } \\ & \text { Type } \end{aligned}$ |
| Dichlorodifluoromethane | 1.38 | 0.951 |  | 31.0 | 200 | 138 | 31.0 |  | Average RRF |
| Chloromethane ** | 2.35 | 1.85 | 0.100 | 21.3 | 200 | 157 | 21.3 |  | Average RRF |
| Vinyl Chloride* | 1.82 | 1.52 |  | 16.8 | 200 | 166 | 16.8 | 20.0 | Average RRF |
| Bromomethane | 2.10 | 0.850 |  | 59.5 | 200 | 81.1 | 59.5 |  | Average RRF |
| Chloroethane* | 1.62 | 1.03 |  | 36.5 | 200 | 127 | 36.5 |  | Average RRF |
| Trichlorofluoromethane | 1.34 | 1.36 |  | 1.41 | 200 | 203 | 1.42 |  | Average RRF |
| 1,1-Dichloroethene* | 1.78 | 1.80 |  | 0.887 | 200 | 202 | 0.896 | 20.0 | Average RRF |
| Carbon Disulfide | 3.47 | 3.43 |  | 1.23 | 200 | 198 | 1.23 |  | Average RRF |
| Acrolein | 0.303 | 0.0308 |  | 89.8 | 200 | 20.3 | 89.8 |  | Average RRF |
| Methylene Chloride | 0.910 | 1.06 |  | 17.0 | 200 | 234 | 17.0 |  | Average RRF |
| Acetone | 0.158 | 0.159 |  | 0.698 | 200 | 201 | 0.735 |  | Average RRF |
| trans-1,2-Dichloroethene | 1.63 | 1.61 |  | 0.891 | 200 | 198 | 0.882 |  | Average RRF |
| Methyl tert-Butyl Ether | 2.29 | 2.08 |  | 9.26 | 200 | 181 | 9.26 |  | Average RRF |
| tert-Butyl Alcohol | 0.540 | 0.443 |  | 17.9 | 200 | 63.2 | 68.4 |  | Average RRF |
| 1,1-Dichloroethane ** | 1.98 | 2.12 | 0.100 | 6.86 | 200 | 214 | 6.85 |  | Average RRF |
| Acrylonitrile | 0.740 | 0.152 |  | 79.5 | 200 | 41.0 | 79.5 |  | Average RRF |
| Vinyl Acetate | 1.83 | 1.92 |  | 4.92 | 200 | 210 | 4.93 |  | Average RRF |
| cis-1,2-Dichloroethene | 1.37 | 1.49 |  | 8.42 | 200 | 217 | 8.42 |  | Average RRF |
| 2,2-Dichloropropane | 1.49 | 1.51 |  | 1.31 | 200 | 203 | 1.31 |  | Average RRF |
| Bromochloromethane | 0.983 | 1.02 |  | 3.96 | 200 | 208 | 3.95 |  | Average RRF |
| Chloroform* | 1.52 | 1.60 |  | 5.06 | 200 | 210 | 5.06 | 20.0 | Average RRF |
| Dibromofluoromethane | 2.01 | 1.79 |  | 11.1 | 50.0 | 44.5 | 11.1 |  | Average RRF |
| Carbon Tetrachloride | 0.990 | 1.11 |  | 12.5 | 200 | 225 | 12.5 |  | Average RRF |
| 1,1,1-Trichloroethane | 1.13 | 1.21 |  | 6.74 | 200 | 214 | 6.75 |  | Average RRF |
| 2-Butanone | 0.253 | 0.274 |  | 8.41 | 200 | 217 | 8.33 |  | Average RRF |
| 1,1-Dichloropropene | 1.23 | 1.35 |  | 9.09 | 200 | 218 | $9.10{ }^{\circ}$ |  | Average RRF |
| Benzene | 3.49 | 3.39 |  | 2.80 | 200 | 194 | 2.80 |  | Average RRF |
| 1,2-Dichloroethane | 0.783 | 0.919 |  | 17.3 | 200 | 235 | 17.3 |  | Average RRF |
| Trichloroethene | 0.418 | 0.596 |  | 42.6 | 200 | 285 | 42.6 |  | Average RRF |
| Dibromomethane | 0.197 | 0.240 |  | 21.8 | 200 | 244 | 21.9 |  | Average RRF |
| 1,2-Dichloropropane* | 0.634 | 0.755 |  | 19.1 | 200 | 238 | 19.1 | 20.0 | Average RRF |
| Bromodichloromethane | 0.598 | 0.760 |  | 27.0 | 200 | 254 | 27.0 |  | Average RRF |
| 2-Chloroethylvinyl ether | 0.363 | 0.311 |  | 14.1 | 200 | 172 | 14.1 |  | Average RRF |
| cis-1,3-Dichloropropene | 0.916 | 0.973 |  | 6.24 | 200 | 213 | 6.25 |  | Average RRF |
| Toluene-d8 | 6.80 | 6.14 |  | 9.77 | 50.0 | 45.1 | 9.78 |  | Average RRF |
| Toluene* | 2.97 | 3.20 |  | 7.60 | 200 | 215 | 7.60 | 20.0 | Average RRF |
| 4-Methyl-2-Pentanone | 0.536 | 0.543 |  | 1.36 | 200 | 203 | 1.36 |  | Average RRF |
| trans-1,3-Dichloropropene | 0.718 | 0.759 |  | 5.79 | 200 | 212 | 5.78 |  | Average RRF |
| Tetrachloroethene | 0.550 | 0.729 |  | 32.6 | 200 | 265 | 32.6 |  | Average RRF |
| 1,1,2-Trichloroethane | 0.332 | 0.351 |  | 5.91 | 200 | 212 | 5.86 |  | Average RRF |
| Dibromochloromethane | 0.423 | 0.432 |  | 2.03 | 200 | 204 | 2.05 |  | Average RRF |
| 1,3-Dichloropropane | 0.792 | 0.821 |  | 3.76 | 200 | 208 | 3.75 |  | Average RRF |
| 1,2-Dibromoethane | 0.340 | 0.346 |  | 1.91 | 200 | 204 | 1.98 |  | Average RRF |
| 2-Hexanone | 0.423 | 0.402 |  | 5.05 | 200 | 190 | 5.03 |  | Average RRF |

Client: Brinkerhoff Environmental
Project: Petrocelli Electric

* Compounds with required maximum \%RSD values. (CC Compounds)
** Compounds with required minimum RRF values. (SPC Compounds)

| Compound | Avg <br> RRF | CCC <br> RRF | Min <br> RRF | RRF <br> \% D | Conc | CCC <br> Conc | Conc \%D | Max <br> \%D | Cal <br> Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ethylbenzene* | 4.35 | 4.54 |  | 4.31 | 200 | 209 | 4.30 | 20.0 | Average RRF |
| Chlorobenzene ** | 1.94 | 2.07 | 0.300 | 6.80 | 200 | 214 | 6.81 |  | Average RRF |
| 1,1,1,2-Tetrachloroethane | 0.607 | 0.629 |  | 3.59 | 200 | 207 | 3.58 |  | Average RRF |
| $\mathrm{m}+\mathrm{p}$-Xylenes | 1.44 | 1.51 |  | 5.53 | 400 | 422 | 5.53 |  | Average RRF |
| o-Xylene | 3.27 | 3.32 |  | 1.56 | 200 | 203 | 1.56 |  | Average RRF |
| Styrene | 2.35 | 2.25 |  | 4.26 | 200 | 191 | 4.26 |  | Average RRF |
| Bromoform ** | 0.304 | 0.295 | 0.100 | 3.09 | 200 | 194 | 3.05 |  | Average RRF |
| \|sopropylbenzene | 4.15 | 4.25 |  | 2.32 | 200 | 205 | 2.32 |  | Average RRF |
| 4-Bromofluorobenzene | 2.90 | 2.74 |  | 5.79 | 50.0 | 47.1 | 5.79 |  | Average RRF |
| n-Propylbenzene | 5.12 | 5.68 |  | 10.8 | 200 | 222 | 10.8 |  | Average RRF |
| 1,1,2,2-Tetrachloroethane ** | 0.618 | 0.669 | 0.300 | 8.31 | 200 | 217 | 8.28 |  | Average RRF |
| Bromobenzene | 1.82 | 1.65 |  | 9.25 | 200 | 181 | 9.25 |  | Average RRF |
| 1,3,5-Trimethylbenzene | 3.15 | 3.19 |  | 1.41 | 200 | 203 | 1.41 |  | Average RRF |
| 2-Chlorotoluene | 3.30 | 3.33 |  | 0.761 | 200 | 202 | 0.761 |  | Average RRF |
| 1,2,3-Trichloropropane | 0.134 | 0.120 |  | 10.3 | 200 | 180 | 10.2 |  | Average RRF |
| 4-Chlorotoluene | 2.98 | 3.08 |  | 3.52 | 200 | 207 | 3.52 |  | Average RRF |
| teri-Butylbenzene | 3.12 | 3.26 |  | 4.74 | 200 | 209 | 4.75 |  | Average RRF |
| 1,2,4-Trimethylbenzene | 3.29 | 3.21 |  | 2.43 | 200 | 195 | 2.43 |  | Average RRF |
| sec-Butylbenzene | 4.57 | 5.00 |  | 9.23 | 200 | 218 | 9.23 |  | Average RRF |
| 4-Isopropyltoluene | 3.71 | 3.71 |  | 0.0809 | 200 | 200 | 0.0825 |  | Average RRF |
| 1,3-Dichlorobenzene | 1.76 | 1.80 |  | 1.96 | 200 | 204 | 1.95 |  | Average RRF |
| 1,4-Dichlorobenzene | 2.42 | 2.45 |  | 1.36 | 200 | 203 | 1.36 |  | Average RRF |
| n-Butylbenzene | 5.75 | 6.56 |  | 14.2 | 200 | 228 | 14.2 |  | Average RRF |
| 1,2-Dichlorobenzene | 1.92 | 2.24 |  | 16.9 | 200 | 234 | 16.9 |  | Average RRF |
| 1,2-Dibromo-3-chloropropane | 0.107 | 0.0983 |  | 8.13 | 200 | 184 | 8.14 |  | Average RRF |
| Hexachlorobutadiene | 0.891 | 0.984 |  | 10.3 | 200 | 221 | 10.3 |  | Average RRF |
| 1,2,4-Trichiorobenzene | 1.31 | 1.28 |  | 2.25 | 200 | 195 | 2.27 |  | Average RRF |
| Naphthalene | 2.22 | 2.01 |  | 9.53 | 200 | 181 | 9.52 |  | Average RRF |
| 1,2,3-Trichlorobenzene | 1.07 | 0.969 |  | 9.60 | 200 | 181 | 9.61 |  | Average RRF |

Average Conc \% D $=12.5$

```
Jata File : G:\HPChem\1\Data\05252010\1V0657.D
Nrq On : 25 May 2010 12:37 pm
:200 ppb m5035A CCV
```

Vial: 2
Operator: omd
Inst : GC/MS-1
Multiplr: 1.00
MS Integration Params: RTEINT.P
nuant Time: May 25 13:42 2010
Quant Results File: 0309WCl.RES
ant Method : G:\HPCHEM $\backslash 1 \backslash$ METHODS $\backslash 0309 \mathrm{WCl} . \mathrm{M}$ (RTE Integrator)
Title
: Volatile Organics by GC/MS Method 8260 B
$\vdots$ sponse via $:$ Fri May $2116: 31: 292010$
: Initial Calibration
: taAcq Meth $:$ VOCRUN1

| Tnternal Standards | R.T. QIon |  | Conc Units Dev (Min) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1) Pentafluorobenzene | 12.12 | 168 | 56077 | $50.00 \mathrm{ug} / \mathrm{kg}$ | 0.00 |
| 30) 1,4-Difluorobenzene | 12.98 | 114 | 68275 | $50.00 \mathrm{ug} / \mathrm{kg}$ | -0.02 |
| 47) Chlorobenzene-d5 | 17.58 | 82 | 60433 | $50.00 \mathrm{ug} / \mathrm{kg}$ | 0.01 |
| 69) 1,4-Dichlorobenzene-d4 | 21.52 | 152 | 39935 | $50.00 \mathrm{ug} / \mathrm{kg}$ | 0.00 |
| System Monitoring Compounds |  |  |  |  |  |
| $24)$ Dibromofluoromethane | 11.49 | 113 | 100203 | $44.45 \mathrm{ug} / \mathrm{kg}$ | -0.02 |
| Spiked Amount 50.000 | Range 59 | 147 | Recovery | = 88.90 |  |
| 38) Toluene-d8 | 15.09 | 98 | 418966 | $45.11 \mathrm{ug} / \mathrm{kg}$ | -0.02 |
| Spiked Amount 50.000 | Range 66 | 134 | Recovery | 90.22 |  |
| 57) 4-Bromofluorobenzene | 19.54 | 95 | 165328 | $47.10 \mathrm{ug} / \mathrm{kg}$ | 0.00 |
| Spiked Amount 50.000 | Range 64 | 125 | Recove | 94.20 |  |


| Target Compounds |  |  |  |  |  | Qvalue |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2) | Dichlorodifluoromethane | 4.78 | 85 | 213207 | 137.92 | $\mathrm{ug} / \mathrm{kg}$ | 98 |
| 3) | Chloromethane | 5.26 | 50 | 415695 | 157.45 | ug/kg | 98 |
| 4) | Vinyl Chloride | 5.44 | 62 | 340436 | 166.40 | $\mathrm{ug} / \mathrm{kg}$ | 91 |
| 5) | Bromomethane | 6.17 | 94 | 190615 | 81.05 | $\mathrm{ug} / \mathrm{kg}$ | 97 |
| 6) | Chloroethane | 6.45 | 64 | 230494 | 127.06 | $\mathrm{ug} / \mathrm{kg}$ | 93 |
| 7) | Trichlorofluoromethane | 6.75 | 101 | 305747 | 202.83 | $\mathrm{ug} / \mathrm{kg}$ | 95 |
| 8) | Acrolein | 8.31 | 56 | 6903 | 20.31 | $\mathrm{ug} / \mathrm{kg}$ | 77 |
| 9) | Acetone | 8.80 | 43 | 35597 | 201.47 | $\mathrm{ug} / \mathrm{kg}$ | 92 |
| 10) | 1,1-Dichloroethene | 7.74 | 61 | 402891 | 201.79 | $\mathrm{ug} / \mathrm{kg}$ | 90 |
| 11) | tert-Butyl Alcohol | 9.22 | 59 | 99406 | 63.24 | $\mathrm{ug} / \mathrm{kg}$ | 98 |
| 12) | Methylene Chloride | 8.72 | 84 | 238807 | 233.92 | $\mathrm{ug} / \mathrm{kg}$ | 86 |
| 13) | Carbon Disulfide | 7.85 | 76 | 769474 | 197.55 | $\mathrm{ug} / \mathrm{kg}$ | 98 |
| 14) | Acrylonitrile | 10.06 | 53 | 34035 | 41.02 | $\mathrm{ug} / \mathrm{kg} \#$ | 86 |
| 15) | Methyl tert-Butyl Ether | 9.14 | 73 | 466447 | 181.48 | $\mathrm{ug} / \mathrm{kg}$ | 100 |
| 16) | trans-1,2-Dichloroethene | 9.00 | 61 | 361576 | 198.24 | $\mathrm{ug} / \mathrm{kg}$ | 92 |
| 17) | 1,1-Dichloroethane | 10.00 | 63 | 475187 | 213.70 | $\mathrm{ug} / \mathrm{kg}$ | 99 |
| 18) | Vinyl Acetate | 10.29 | 43 | 430895 | 209.86 | $\mathrm{ug} / \mathrm{kg}$ | 95 |
| 19) | 2-Butanone | 11.66 | 43 | 61569 | 216.65 | $\mathrm{ug} / \mathrm{kg}$ | 95 |
| 20) | 2,2-Dichloropropane | 11.01 | 77 | 337758 | 202.61 | $\mathrm{ug} / \mathrm{kg}$ | 94 |
| 21) | cis-1,2-Dichloroethene | 10.83 | 61 | 333984 | 216.85 | $\mathrm{ug} / \mathrm{kg}$ | 87 |
| 22) | Chloroform | 11.20 | 83 | 358324 | 210.12 | $\mathrm{ug} / \mathrm{kg}$ | 99 |
| 23) | Bromochloromethane | 11.15 | 49 | 229224 | 207.90 | $\mathrm{ug} / \mathrm{kg}$ | 80 |
| 25) | 1,1,1-Trichloroethane | 11.58 | 97 | 270836 | 213.50 | $\mathrm{ug} / \mathrm{kg}$ | 94 |
| 26) | 1,1-Dichloropropene | 11.75 | 75 | 302169 | 218.20 | ug/kg | 95 |
| 27) | Carbon Tetrachloride | 11.49 | 117 | 249792 | 224.95 | ug/kg | 97 |
| 28) | 1,2-Dichloroethane | 12.43 | 62 | 206061 | 234.50 | ug/kg | 100 |
| 29) | Benzene | 12.14 | 78 | 760659 | 194.40 | ug/kg | 97 |
| 31) | Trichloroethene | 13.00 | 130 | 162646 | 285.26 | $\mathrm{ug} / \mathrm{kg}$ | 89 |
| 32) | 1,2-Dichloropropane | 13.80 | 63 | 206182 | 238.22 | ug/kg | 93 |
| 33) | Bromodichloromethane | 13.84 | 83 | 207446 | 254.03 | $\mathrm{ug} / \mathrm{kg}$ | 99 |
| 34) | Dibromomethane | 13.66 | 174 | 65472 | 243.74 | $\mathrm{ug} / \mathrm{kg}$ | 87 |
| 35) | 2-Chloroethylvinyl ether | 14.60 | 63 | 85053 | 171.88 | $\mathrm{ug} / \mathrm{kg}$ | 91 |
| 36) | 4-Methyl-2-Pentanone | 15.67 | 43 | 148307 | 202.71 | ug/kg | 97 |
| 37) | cis-1,3-Dichloropropene | 14.79 | 75 | 265790 | 212.51 | ug/kg | 98 |
| 39) | Toluene | 15.18 | 91 | 872781 | 215.21 | ug/kg | 100 |
| 40) | trans-1,3-Dichloropropene | 15.75 | 75 | 207383 | 211.57 | $\mathrm{ug} / \mathrm{kg}$ | 95 |
| 41) | 1,1,2-Trichloroethane | 16.03 | 97 | 95976 | 211.72 | ug/kg | 95 |
| 42) | 2-Hexanone | 16.95 | 43 | 109797 | 189.94 | $\mathrm{ug} / \mathrm{kg}$ | 94 |
| 43) | 1,3-Dichloropropane | 16.50 | 76 | 224334 | 207.50 | $\mathrm{ug} / \mathrm{kg}$ | 97 |
| 44) | Tetrachloroethene | 15.81 | 166 | 199032 | 265.12 | $\mathrm{ug} / \mathrm{kg}$ | 95 |
| 45) | Dibromochloromethane | 16.36 | 129 | 117857 | 204.09 | $\mathrm{ug} / \mathrm{kg}$ | 95 |
| 46) | 1,2-Dibromoethane | 16.81 | 107 | 94522 | 203.96 | $\mathrm{ug} / \mathrm{kg}$ | 97 |
| 48) | Chlorobenzene | 17.61 | 112 | 501132 | 213.61 | $\mathrm{ug} / \mathrm{kg}$ | 98 |
| **49) | 1,1,1,2-Tetrachloroethane | 17.68 | 131 | 152004 | 207.17 | $\mathrm{ug} / \mathrm{kg}$ | 98 |

```
Jata File : G:\HPChem\1\Data\05252010\1V0657.D
R?q On : 25 May 2010 12:37 pm
 mple : 200 ppb m5035A ccv
l .SC : soil
```

MS Integration Params: RTEINT.P
?uant Time: May 25 13:42 2010
Vial: 2
Operator: omd
Inst : GC/MS-1
Multiplr: 1.00
Quant Results File: 0309WCl. RES
s iant Method : G: \HPCHEM \1 \METHODS $\backslash 0309 \mathrm{WCl} . \mathrm{M}$ (RTE Integrator)
Title : Volatile Organics by GC/MS Method 8260 B
rast Update : Fri May 21 16:31:29 2010
:sponse via : Initial Calibration
1.. .taAcq Meth : VOCRUN1

|  | Compound | R.T. QIon |  | Response | Conc Unit |  | Qvalue |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 50) | Ethylbenzene | 17.57 | 91 | 1097650 | 208.60 | ug/kg | 96 |
| 51) | $\mathrm{m}+\mathrm{p}-\mathrm{Xy}$ lenes | 17.78 | 106 | 732286 | 422.13 | ug/kg | 90 |
| 52) | o-Xylene | 18.51 | 91 | 802238 | 203.12 | ug/kg | 96 |
| 53) | Styrene | 18.59 | 104 | 542792 | 191.48 | ug/kg | 93 |
| 54) | Isopropylbenzene | 19.00 | 105 | 1026662 | 204.64 | ug/kg | 92 |
| 55) | Bromoform | 18.72 | 173 | 71218 | 193.90 | $\mathrm{ug} / \mathrm{kg}$ | 93 |
| 56) | 1,1,2,2-Tetrachloroethane | 19.77 | 83 | 161700 | 216.57 | ug/kg | 95 |
| 58) | 1,2,3-Trichloropropane | 20.10 | 110 | 29013 | 179.62 | $\mathrm{ug} / \mathrm{kg}$ | 97 |
| 59) | n-Propylbenzene | 19.68 | 91 | 1372370 | 221.67 | $\mathrm{ug} / \mathrm{kg}$ | 97 |
| 60) | Bromobenzene | 19.77 | 77 | 399008 | 181.49 | $\mathrm{ug} / \mathrm{kg}$ | 78 |
| 61) | 1,3,5-Trimethylbenzene | 19.97 | 105 | 772120 | 202.81 | $\mathrm{ug} / \mathrm{kg}$ | 100 |
| 62) | 2-Chlorotoluene | 20.04 | 91 | 804433 | 201.52 | $\mathrm{ug} / \mathrm{kg}$ | 96 |
| 63) | 4-Chlorotoluene | 20.33 | 91 | 745507 | 207.04 | ug/kg | 95 |
| 64) | tert-Butylbenzene | 20.59 | 119 | 788718 | 209.49 | $\mathrm{ug} / \mathrm{kg}$ | 92 |
| 65) | 1,2,4-Trimethylbenzene | 20.70 | 105 | 776037 | 195.14 | $\mathrm{ug} / \mathrm{kg}$ | 96 |
| 66) | sec-Butylbenzene | 20.90 | 105 | 1207578 | 218.46 | $\mathrm{ug} / \mathrm{kg}$ | 96 |
| 67) | 4-Isopropyltoluene | 21.10 | 119 | 896837 | 200.16 | $\mathrm{ug} / \mathrm{kg}$ | 96 |
| 68) | 1,3-Dichlorobenzene | 21.39 | 146 | 433937 | 203.90 | ug/kg | 93 |
| 70) | 1,4-Dichlorobenzene | 21.53 | 146 | 391350 | 202.73 | ug/kg | 90 |
| 71) | n -Butylbenzene | 21.84 | 91 | 1048427 | 228.41 | $\mathrm{ug} / \mathrm{kg}$ | 97 |
| 72) | 1,2-Dichlorobenzene | 22.32 | 146 | 358454 | 233.84 | $\mathrm{ug} / \mathrm{kg}$ | 90 |
| 73) | 1,2-Dibromo-3-chloropropan | 23.82 | 75 | 15703 | 183.72 | $\mathrm{ug} / \mathrm{kg}$ | 82 |
| 74) | 1,2,4-Trichlorobenzene | 25.27 | 180 | 204296 | 195.47 | $\mathrm{ug} / \mathrm{kg}$ | 91 |
| 75) | Hexachlorobutadiene | 25.12 | 225 | 157123 | 220.67 | $\mathrm{ug} / \mathrm{kg}$ | 98 |
| 76) | Naphthalene | 26.07 | 128 | 321152 | 180.95 | $\mathrm{ug} / \mathrm{kg}$ | 95 |
| 77) | 1,2,3-Trichlorobenzene | 26.53 | 180 | 154834 | 180.79 | $\mathrm{ug} / \mathrm{kg}$ | 96 |

Data File : G:\HPChem\1\Data\05252010\1V0657.D
Acq On : 25 May 2010 12:37 pm
Sample : 200 ppb m 5035 A ccv
Misc : soil
MS Integration Params: RTEINT.P
Quant Time: May 25 13:42 2010
Method : G: \HPChem\1\Methods $\backslash 0309 \mathrm{WCl} . \mathrm{M}$ (RTE Integrator)
Title : Volatile Organics by GC/MS Method 8260 B
Last Update : Fri May 21 16:31:29 2010
Response via : Initial Calibration

Vial: 2
Operator: omd
Inst : GC/MS-I
Multiplr: 1.00

Quant Results File: 0309WCl.RES
Approved:
25-Mav-2010 17:57 od
TIC: 1V0657.D

1100000

1050000
... 1000000


Vn657 n n२n9wry M Tue Mav 25 18:00:00 2010

Aqua Pro-Tech Laboratories

Client: Brinkerhoff Environmental
Project: Petrocelli Electric

* Compounds with required maximum \%RSD values. (CC Compounds)
** Compounds with required minimum RRF values. (SPC Compounds)

| Compound | Avg <br> RRF | $\begin{aligned} & \mathrm{CCC} \\ & \text { RRF } \end{aligned}$ | Min <br> RRF | $\begin{aligned} & \text { RRF } \\ & \% \mathrm{D} \end{aligned}$ | Conc | $\begin{aligned} & \mathrm{Ccc} \\ & \text { Conc } \end{aligned}$ | Conc \%D | $\begin{gathered} \text { Max } \\ \% D \end{gathered}$ | $\begin{aligned} & \text { Cal } \\ & \text { Type } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dichlorodifluoromethane | 1.38 | 1.04 |  | 24.9 | 200 | 150 | 24.9 |  | Average RRF |
| Chloromethane ** | 2.35 | 2.02 | 0.100 | 14.2 | 200 | 172 | 14.2 |  | Average RRF |
| Vinyl Chloride* | 1.82 | 1.62 |  | 11.4 | 200 | 177 | 11.4 | 20.0 | Average RRF |
| Bromomethane | 2.10 | 0.841 |  | 59.9 | 200 | 80.2 | 59.9 |  | Average RRF |
| Chloroethane* | 1.62 | 1.11 |  | 31.6 | 200 | 137 | 31.6 |  | Average RRF |
| Trichlorofluoromethane | 1.34 | 1.46 |  | 8.36 | 200 | 217 | 8.36 |  | Average RRF |
| 1,1-Dichloroethene* | 1.78 | 1.86 |  | 4.31 | 200 | 209 | 4.32 | 20.0 | Average RRF |
| Carbon Disulfide | 3.47 | 3.54 |  | 2.03 | 200 | 204 | 2.03 |  | Average RRF |
| Acrolein | 0.303 | 0.0161 |  | 94.7 | 200 | 10.6 | 94.7 |  | Average RRF |
| Methylene Chloride | 0.910 | 1.02 |  | 12.3 | 200 | 224 | 12.2 |  | Average RRF |
| Acetone | 0.158 | 0.137 |  | 12.9 | 200 | 174 | 12.9 |  | Average RRF |
| trans-1,2-Dichloroethene | 1.63 | 1.74 |  | 7.08 | 200 | 214 | 7.09 |  | Average RRF |
| Methyl tert-Butyl Ether | 2.29 | 2.19 |  | 4.26 | 200 | 191 | 4.27 |  | Average RRF |
| tert-Butyl Alcohol | 0.540 | 0.532 |  | 1.41 | 200 | 76.0 | 62.0 |  | Average RRF |
| 1,1-Dichloroethane ** | 1.98 | 2.33 | 0.100 | 17.5 | 200 | 235 | 17.5 |  | Average RRF |
| Acrylonitrile | 0.740 | 0.150 |  | 79.7 | 200 | 40.5 | 79.7 |  | Average RRF |
| Vinyl Acetate | 1.83 | 2.05 |  | 11.9 | 200 | 224 | 11.9 |  | Average RRF |
| cis-1,2-Dichloroethene | 1.37 | 1.67 |  | 21.8 | 200 | 244 | 21.8 |  | Average RRF |
| 2,2-Dichloropropane | 1.49 | 1.69 |  | 13.7 | 200 | 227 | 13.7 |  | Average RRF |
| Bromochloromethane | 0.983 | 1.01 |  | 2.26 | 200 | 204 | 2.25 |  | Average RRF |
| Chloroform* | 1.52 | 1.76 |  | 15.8 | 200 | 232 | 15.8 | 20.0 | Average RRF |
| Dibromofluoromethane | 2.01 | 1.87 |  | 6.98 | 50.0 | 46.5 | 6.98 |  | Average RRF |
| Carbon Tetrachloride | 0.990 | 1.21 |  | 22.7 | 200 | 245 | 22.7 |  | Average RRF |
| 1,1,1-Trichloroethane | 1.13 | 1.36 |  | 20.0 | 200 | 240 | 20.0 |  | Average RRF |
| 2-Butanone | 0.253 | 0.267 |  | 5.45 | 200 | 211 | 5.35 |  | Average RRF |
| 1,1-Dichloropropene | 1.23 | 1.45 |  | 17.3 | 200 | 235 | 17.3 |  | Average RRF |
| Benzene | 3.49 | 3.65 |  | 4.65 | 200 | 209 | 4.65 |  | Average RRF |
| 1,2-Dichloroethane | 0.783 | 0.955 |  | 21.9 | 200 | 244 | 21.9 |  | Average RRF |
| Trichloroethene | 0.418 | 0.574 |  | 37.5 | 200 | 275 | 37.5 |  | Average RRF |
| Dibromomethane | 0.197 | 0.219 |  | 11.3 | 200 | 223 | 11.4 |  | Average RRF |
| 1,2-Dichloropropane* | 0.634 | 0.706 |  | 11.4 | 200 | 223 | 11.4 | 20.0 | Average RRF |
| Bromodichloromethane | 0.598 | 0.726 |  | 21.5 | 200 | 243 | 21.5 |  | Average RRF |
| 2-Chloroethylvinyl ether | 0.363 | 0.290 |  | 20.0 | 200 | 160 | 20.0 |  | Average RRF |
| cis-1,3-Dichloropropene | 0.916 | 0.901 |  | 1.67 | 200 | 197 | 1.67 |  | Average RRF |
| Toluene-d8 | 6.80 | 5.62 |  | 17.3 | 50.0 | 41.3 | 17.4 |  | Average RRF |
| Toluene* | 2.97 | 2.96 |  | 0.256 | 200 | 199 | 0.256 | 20.0 | Average RRF |
| 4-Methyl-2-Pentanone | 0.536 | 0.486 |  | 9.31 | 200 | 181 | 9.32 |  | Average RRF |
| trans-1,3-Dichloropropene | 0.718 | 0.737 |  | 2.61 | 200 | 205 | 2.61 |  | Average RRF |
| Tetrachloroethene | 0.550 | 0.677 |  | 23.2 | 200 | 246 | 23.1 |  | Average RRF |
| 1,1,2-Trichloroethane | 0.332 | 0.320 |  | 3.53 | 200 | 193 | 3.58 |  | Average RRF |
| Dibromochloromethane | 0.423 | 0.382 |  | 9.57 | 200 | 181 | 9.56 |  | Average RRF |
| 1,3-Dichloropropane | 0.792 | 0.762 |  | 3.68 | 200 | 193 | 3.70 |  | Average RRF |
| 1,2-Dibromoethane | 0.340 | 0.314 |  | 7.42 | 200 | 185 | 7.37 |  | Average RRF |
| 2-Hexanone | 0.423 | 0.358 |  | 15.5 | 200 | 169 | 15.5 |  | Average RRF |

Client: Brinkerhoff Environmental
Project: Petrocelli Electric

* Compounds with required maximum \%RSD values. (CC Compounds)
${ }^{* *}$ Compounds with required minimum RRF values. (SPC Compounds)

| Compound | Avg <br> RRF | $\operatorname{ccc}$ <br> RRF | Min <br> RRF | $\begin{gathered} \text { RRF } \\ \% \mathrm{D} \end{gathered}$ | Conc | CCC <br> Conc | Conc <br> \%D | Max <br> $\%$ D | Cal <br> Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ethylbenzene* | 4.35 | 4.30 |  | 1.19 | 200 | 198 | 1.20 | 20.0 | Average RRF |
| Chlorobenzene ** | 1.94 | 1.90 | 0.300 | 2.37 | 200 | 195 | 2.36 |  | Average RRF |
| 1,1,1,2-Tetrachloroethane | 0.607 | 0.614 |  | 1.07 | 200 | 202 | 1.05 |  | Average RRF |
| m+p-Xylenes | 1.44 | 1.44 |  | 0.290 | 400 | 401 | 0.299 |  | Average RRF |
| o-Xylene | 3.27 | 3.17 |  | 3.11 | 200 | 194 | 3.11 |  | Average RRF |
| Styrene | 2.35 | 2.15 |  | 8.53 | 200 | 183 | 8.53 |  | Average RRF |
| Bromoform ** | 0.304 | 0.272 | 0.100 | 10.5 | 200 | 179 | 10.5 |  | Average RRF |
| Isopropylbenzene | 4.15 | 4.03 |  | 2.97 | 200 | 194 | 2.97 |  | Average RRF |
| 4-Bromofluorobenzene | 2.90 | 2.58 |  | 11.0 | 50.0 | 44.5 | 11.0 |  | Average RRF |
| n-Propylbenzene | 5.12 | 5.52 |  | 7.66 | 200 | 215 | 7.67 |  | Average RRF |
| 1,1,2,2-Tetrachloroethane ** | 0.618 | 0.554 | 0.300 | 10.3 | 200 | 179 | 10.4 |  | Average RRF |
| Bromobenzene | 1.82 | 1.66 |  | 8.50 | 200 | 183 | 8.50 |  | Average RRF |
| 1,3,5-Trimethylbenzene | 3.15 | 3.09 |  | 1.78 | 200 | 196 | 1.78 |  | Average RRF |
| 2-Chlorotoluene | 3.30 | 3.15 |  | 4.52 | 200 | 191 | 4.52 |  | Average RRF |
| 1,2,3-Trichloropropane | 0.134 | 0.0999 |  | 25.3 | 200 | 150 | 25.2 |  | Average RRF |
| 4-Chlorotoluene | 2.98 | 2.95 |  | 0.839 | 200 | 198 | 0.843 |  | Average RRF |
| tert-Butylbenzene | 3.12 | 3.14 |  | 0.645 | 200 | 201 | 0.648 |  | Average RRF |
| 1,2,4-Trimethylbenzene | 3.29 | 3.06 |  | 7.03 | 200 | 186 | 7.03 |  | Average RRF |
| sec-Butylbenzene | 4.57 | 4.72 |  | 3.13 | 200 | 206 | 3.13 |  | Average RRF |
| 4-Isopropyltoluene | 3.71 | 3.57 |  | 3.74 | 200 | 193 | 3.74 |  | Average RRF |
| 1,3-Dichlorobenzene | 1.76 | 1.71 |  | 2.66 | 200 | 195 | 2.66 |  | Average RRF |
| 1,4-Dichlorobenzene | 2.42 | 2.06 |  | 14.7 | 200 | 171 | 14.7 |  | Average RRF |
| n-Butylbenzene | 5.75 | 5.82 |  | 1.27 | 200 | 203 | 1.26 |  | Average RRF |
| 1,2-Dichlorobenzene | 1.92 | 1.94 |  | 1.34 | 200 | 203 | 1.34 |  | Average RRF |
| 1,2-Dibromo-3-chloropropane | 0.107 | 0.0810 |  | 24.3 | 200 | 151 | 24.3 |  | Average RRF |
| Hexachlorobutadiene | 0.891 | 0.932 |  | 4.58 | 200 | 209 | 4.57 |  | Average RRF |
| 1,2,4-Trichlorobenzene | 1.31 | 1.16 |  | 11.0 | 200 | 178 | 11.0 |  | Average RRF |
| Naphthalene | 2.22 | 1.72 |  | 22.4 | 200 | 155 | 22.4 |  | Average RRF |
| 1,2,3-Trichlorobenzene | 1.07 | 0.851 |  | 20.7 | 200 | 159 | 20.7 |  | Average RRF |

Average Conc \%D $=14.0$

| Jata File : G: \HPChem\1\Data 06 | 601 | O.D Vial: 1 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Arq on : 1 Jun 2010 12:28 | pm | Operator: omd |  |  |  |  |
| ¢ mple : 200 ppb m5035A ccv |  | Inst : GC/MS |  |  |  |  |
| Mowsc : soil |  | Multiplr: 1.00 |  |  |  |  |
| MS Integration Params: RTEINT.P |  |  |  |  |  |  |
| Ruant Time: Jun 1 12:52 2010 |  | Quant Results File: 0309WCl.RES |  |  |  |  |
| -a, Method : G: \HPCHEM $\backslash 1 \backslash \mathrm{METHODS} \backslash 0309 \mathrm{WCl}$. M (RTE Integrator) |  |  |  |  |  |  |
| Title : Volatile Organics by GC/MS Method 8260 B |  |  |  |  |  |  |
| Last Update : Fri May 21 16:31:29 2010 |  |  |  |  |  |  |
| $F$ sponse via : Initial Calibration |  |  |  |  |  |  |
| I. taAcq Meth : VOCRUN1 |  |  |  |  |  |  |
| Tnternal Standards | R.'T. | QIon | Response | Conc | its De | (in) |
| 1) Pentafluorobenzene | 12.16 | 168 | 51722 | 50.00 | ug/kg | 0.03 |
| 30) 1,4-Difluorobenzene | 13.03 | 114 | 73378 | 50.00 | ug/kg | 0.03 |
| 47) Chlorobenzene-d5 | 17.63 | 82 | 65929 | 50.00 | $\mathrm{ug} / \mathrm{kg}$ | 0.06 |
| 59) 1,4-Dichlorobenzene-d4 | 21.57 | 152 | 46378 | 50.00 | ug/kg | 0.05 |
| System Monitoring Compounds |  |  |  |  |  |  |
| 24) Dibromofluoromethane | 11.54 | 113 | 96693 | 46.51 | $\mathrm{ug} / \mathrm{kg}$ | 0.03 |
| Spiked Amount 50.000 R | Range 59 | - 147 | Recove |  | 93.02 |  |
| 38) Toluene-d8 | 15.15 | 98 | 412473 | 41.32 | ug/kg | 0.04 |
| Spiked Amount 50.000 R | Range 66 | - 134 | Recov |  | 82.64 |  |
| 57) 4-Bromofluorobenzene | 19.60 | 95 | 170392 | 44.50 | ug/kg | 0.06 |
| Spiked Amount 50.000 R | Range 64 | - 125 | Recov | ry = | 89.00 |  |
| Target Compounds Qvalue |  |  |  |  |  |  |
| 2) Dichlorodifluoromethane | 4.82 | 85 | 214195 | 150.22 | ug/kg | 96 |
| 3) Chloromethane | 5.31 | 50 | 418053 | 171.68 | $\mathrm{ug} / \mathrm{kg}$ | 99 |
| 4) Vinyl Chloride | 5.50 | 62 | 334245 | 177.13 | $\mathrm{ug} / \mathrm{kg}$ | 97 |
| 5) Bromomethane | 6.23 | 94 | 174061 | 80.25 | ug/kg | 95 |
| 6) Chloroethane | 6.49 | 64 | 228981m | 136.85 | $\mathrm{ug} / \mathrm{kg}$ |  |
| 7) Trichlorofluoromethane | 6.80 | 101 | 301324 | 216.73 | $\mathrm{ug} / \mathrm{kg}$ | 87 |
| 8) Acrolein | 8.38 | 56 | 3333 | 10.63 | ug/kg\# | 13 |
| 9) Acetone | 8.85 | 43 | 28395 | 174.24 | ug/kg | 92 |
| 10) 1,1-Dichloroethene | 7.79 | 61 | 384226 | 208.65 | $\mathrm{ug} / \mathrm{kg}$ | 90 |
| L1) tert-Butyl Alcohol | 9.27 | 59 | 110137 m | 75.97 | ug/kg |  |
| 12) Methylene Chloride | 8.77 | 84 | 211390 | 224.50 | ug/kg | 86 |
| 13) Carbon Disulfide | 7.90 | 76 | 733135 | 204.06 | $\mathrm{ug} / \mathrm{kg}$ | 98 |
| 14) Acrylonitrile | 10.11 | 53 | 31027 | 40.55 | $\mathrm{ug} / \mathrm{kg}$ | 96 |
| L5) Methyl tert-Butyl Ether | 9.20 | 73 | 453906 | 191.47 | $\mathrm{ug} / \mathrm{kg}$ | 97 |
| 16) trans-1,2-Dichloroethene | 9.06 | 61 | 360314 | 214.18 | $\mathrm{ug} / \mathrm{kg}$ | 90 |
| 17) 1,1-Dichloroethane | 10.07 | 63 | 481960 | 235.00 | $\mathrm{ug} / \mathrm{kg}$ | 99 |
| 18) Vinyl Acetate | 10.36 | 43 | 424023 | 223.90 | $\mathrm{ug} / \mathrm{kg}$ | 99 |
| 19) 2-Butanone | 11.71 | 43 | 55229 | 210.71 | $\mathrm{ug} / \mathrm{kg}$ | 93 |
| 20) 2,2-Dichloropropane | 11.06 | 77 | 349696 | 227.44 | $\mathrm{ug} / \mathrm{kg}$ | 98 |
| 21) cis-1,2-Dichloroethene | 10.88 | 61 | 346149 | 243.67 | $\mathrm{ug} / \mathrm{kg}$ | 88 |
| 22) Chloroform | 11.26 | 83 | 364255 | 231.59 | $\mathrm{ug} / \mathrm{kg}$ | 98 |
| 23) Bromochloromethane | 11.20 | 49 | 207958 | 204.49 | $\mathrm{ug} / \mathrm{kg}$ | 83 |
| 25) 1,1,1-Trichloroethane | 11.65 | 97 | 280717 | 239.92 | $\mathrm{ug} / \mathrm{kg}$ | 92 |
| 26) 1,1-Dichloropropene | 11.82 | 75 | 299605 | 234.57 | $\mathrm{ug} / \mathrm{kg}$ | 93 |
| 27) Carbon Tetrachloride | 11.56 | 117 | 251323 | 245.39 | $\mathrm{ug} / \mathrm{kg}$ | 99 |
| 28) 1,2-Dichloroethane | 12.50 | 62 | 197533 | 243.72 | $\mathrm{ug} / \mathrm{kg}$ | 97 |
| 29) Benzene | 12.20 | 78 | 755353 | 209.30 | $\mathrm{ug} / \mathrm{kg}$ | 100 |
| 31) Trichloroethene | 13.05 | 130 | 168568 | 275.09 | $\mathrm{ug} / \mathrm{kg}$ | 93 |
| 32) 1,2-Dichloropropane | 13.85 | 63 | 207280 | 222.83 | $\mathrm{ug} / \mathrm{kg}$ | 92 |
| 33) Bromodichloromethane | 13.90 | 83 | 213243 | 242.97 | $\mathrm{ug} / \mathrm{kg}$ | 99 |
| 34) Dibromomethane | 13.72 | 174 | 64305 | 222.75 | $\mathrm{ug} / \mathrm{kg}$ | 77 |
| 35) 2-Chloroethylvinyl ether | 14.66 | 63 | 85123 | 160.06 | $\mathrm{ug} / \mathrm{kg}$ | 89 |
| 36) 4-Methyl-2-Pentanone | 15.72 | 43 | 142604 | 181.36 | $\mathrm{ug} / \mathrm{kg}$ | 97 |
| 37) cis-1,3-Dichloropropene | 14.85 | 75 | 264364 | 196.67 | $\mathrm{ug} / \mathrm{kg}$ | 96 |
| 19) Toluene | 15.23 | 91 | 869504 | 199.49 | $\mathrm{ug} / \mathrm{kg}$ | 99 |
| 40) trans-1,3-Dichloropropene | ne 15.81 | 75 | 216204 | 205.23 | $\mathrm{ug} / \mathrm{kg}$ | 95 |
| 41) 1,1,2-Trichloroethane | 16.09 | 97 | 93951 | 192.84 | $\mathrm{ug} / \mathrm{kg}$ | 85 |
| :2) 2-Hexanone | 17.01 | 43 | 104955 | 168.94 | $\mathrm{ug} / \mathrm{kg}$ | 92 |
| :3) 1,3-Dichloropropane | 16.55 | 76 | 223797 | 192.61 | $\mathrm{ug} / \mathrm{kg}$ | 98 |
| ${ }^{4} 44$ ) Tetrachloroethene | 15.87 | 166 | 198668 | 246.23 | $\mathrm{ug} / \mathrm{kg}$ | 97 |
| 45) Dibromochloromethane | 16.43 | 129 | 112262 | 180.88 | $\mathrm{ug} / \mathrm{kg}$ | 92 |
| :6) 1,2-Dibromoethane | 16.88 | 107 | 92269 | 185.25 | $\mathrm{ug} / \mathrm{kg}$ | 99 |
| 8) Chlorobenzene | 17.66 | 112 | 499770 | 195.27 | $\mathrm{ug} / \mathrm{kg}$ | 100 |
| 49) 1,1,1,2-Tetrachloroethane | ne 17.74 | 131 | 161780 | 202.11 | $\mathrm{ug} / \mathrm{kg}$ | 97 |



```
Data File : G:\HPChem\1\Data\06012010\1V0700.D
Acq On : 1 Jun 2010 12:28 pm
Sample : 200 ppb m5035A ccv
```

Vial: 1
Operator: omd
Inst: GC/MS-1
56
Multiplr: 1.00
MS Integration Params: RTEINT.P
Quant Time: Jun 1 12:52 2010
Quant Results File: 0309WCl.RES
Method : G: \HPChem \1 \Methods $\backslash 0309 \mathrm{WCl} . \mathrm{M}$ (RTE Integrator)
Title : Volatile Organics by GC/MS Method 8260 B
Last Update : Fri May 21 16:31:29 2010
Response via : Initial Calibration

Approved:
01-Jun-2010 15:55
*.
1150000
1100000 :
1050000
1000000
950000
900000 .
850000
800000
750000
700000
650000

Client: Brinkerhoff Environmental
Project: Petrocelli Electric
Date Acquired: 25-May-10
Lab File ID (Standard): 1V0657.D
Time Acquired: $12: 37$
IS1= Pentafluorobenzene
Area Upper Limit $=+100 \%$ of Internal Standard Area
IS2= 1,4-Difluorobenzene
Area Lower Limit=-50\% of Internal Standard Area
IS3= Chlorobenzene-d5
RT Upper Limit=+0.50 minutes of Internal Standard RT
IS4 = 1,4-Dichlorobenzene-d4
RT Lower Limit=-0.50 minutes of Internal Standard RT

* Denotes values outside of method required QC limits

|  | IS1 <br> Area | RT | IS2 <br> Area | RT | IS3 <br> Area | RT | IS4 <br> Area | RT |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 Hour Std. | 56077 | 12.12 | 68275 | 12.98 | 60433 | 17.58 | 39935 | 21.52 |
| Upper Limit | 112154 | 12.62 | 136550 | 13.48 | 120866 | 18.08 | 79870 | 22.02 |
| Lower Limit | 28038 | 11.62 | 34138 | 12.48 | 30216 | 17.08 | 19968 | 21.02 |
| Client Sample |  |  |  |  |  |  |  |  |
| Blank -1 | 51320 | 12.1 | 72194 | 12.97 | 50584 | 17.57 | 36040 | 21.51 |
| SB-MW-8 | 47480 | 12.12 | 70805 | 12.99 | 49040 | 17.59 | 32878 | 21.52 |
| SB-MW-9 | 52281 | 12.12 | 76861 | 12.98 | 54239 | 17.58 | 37066 | 21.52 |

# Semi-Volatile Organics 

## by

GC/MS

| Client Sample Number | Aqua Pro-Tech Sample Number | Matrix |
| :---: | :---: | :---: |
| SB-MW-8 | $10050460-001$ | Soil |
| SB-MW-9 | $10050460-002$ | Soil |


|  | Date Performed | Performed By |
| :---: | :---: | :---: |
| Receipt/Refrigeration: | $5 / 13 / 10$ | KPONSI |


| Analysis | Date Extracted | Extracted By | Date Analyzed | Analyzed By |
| :---: | :---: | :---: | :---: | :---: |
| $10050460-001$ | $05 / 14 / 2010$ | DRANA | $05 / 15 / 2010$ | S. Pradhan |
| $10050460-002$ | $05 / 14 / 2010$ | DRANA | $05 / 15 / 2010$ | S. Pradhan |


| Client: <br> Project: <br> Matrix: | Brinkerhoff Environmental Petrocelli Electric Soil | Client Sample: |  |
| :---: | :---: | :---: | :---: |
|  |  |  | SB-MW-8 |
|  |  |  |  |
| Sample Volume | 15.0 mL | Lab Sample ID: | 10050460-001 |
|  |  | Lab File ID: | 5S8666.D |
| \% Moisture: | 10.2\% | Date Collected: | 12-May-10 |
|  |  | Date Extracted: | 14-May-10 |
| Extract Volume: | 1 mL | Date Analyzed: | 15-May-10 |
|  |  | Dilution Factor: | 1 |


| CAS No. | Compound | $\begin{aligned} & \hline \text { Conc } \\ & \text { ug/L } \end{aligned}$ | Q | MDL | PQL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 110-86-1 | Pyridine |  | U | 213 | 371 |
| 62-75-9 | n-Nitroso-dimethylamine |  | U | 334 | 371 |
| 62-53-3 | Aniline |  | U | 16.3 | 371 |
| 111-44-4 | bis(2-Chloroethyl)ether |  | U | 23.0 | 371 |
| 541-73-1 | 1,3-Dichlorobenzene |  | U | 22.3 | 371 |
| 106-46-7 | 1,4-Dichlorobenzene |  | U | 28.2 | 371 |
| 100-51-6 | Benzyl Alcohol |  | U | 514 | 371 |
| 95-50-1 | 1,2-Dichlorobenzene |  | U | 17.1 | 371 |
| 108-60-1 | bis(2-Chloroisopropyl)ether |  | U | 18.6 | 371 |
| 621-64-7 | n-Nitroso-di-n-propylamine |  | U | 32.7 | 371 |
| 67-72-1 | Hexachloroethane |  | U | 20.8 | 371 |
| 98-95-3 | Nitrobenzene |  | U | 14.8 | 371 |
| 78-59-1 | Isophorone |  | U | 15.6 | 371 |
| 111-91-1 | bis(2-Chloroethoxy)methane |  | U | 25.2 | 371 |
| 120-82-1 | 1,2,4-Trichlorobenzene |  | U | 26.0 | 371 |
| 91-20-3 | Naphthalene |  | U | 16.3 | 371 |
| 106-47-8 | 4-Chloroaniline |  | U | 22.3 | 371 |
| 87-68-3 | Hexachlorobutadiene |  | U | 21.5 | 371 |
| 91-57-6 | 2-Methylnaphthalene |  | U | 19.3 | 371 |
| 77-47-4 | Hexachlorocyclopentadiene |  | U | 304 | 742 |
| 91-58-7 | 2-Chloronaphthalene |  | U | 14.8 | 371 |
| 88-74-4 | 2-Nitroaniline |  | U | 8.17 | 371 |
| 131-11-3 | Dimethylphthalate | 122 | B | 21.5 | 371 |
| 208-96-8 | Acenaphthylene |  | U | 11.9 | 371 |
| 606-20-2 | 2,6-Dinitrotoluene |  | U | 31.2 | 371 |
| 99-09-2 | 3-Nitroaniline |  | U | 362 | 371 |
| 83-32-9 | Acenaphthene |  | U | 14.8 | 371 |
| 132-64-9 | Dibenzofuran |  | U | 16.3 | 371 |
| 121-14-2 | 2,4-Dinitrotoluene |  | U | 29.0 | 371 |
| 86-73-7 | Fluorene |  | U | 11.1 | 371 |
| 84-66-2 | Diethylphthalate |  | U | 802 | 371 |
| 7005-72-3 | 4-Chlorophenyl phenyl ether |  | U | 20.0 | 371 |
| 100-01-6 | 4-Nitroaniline |  | U | 203 | 371 |
| 86-30-6 | n -Nitrosodiphenylamine |  | U | 16.3 | 371 |
| 103-33-3 | 1,2-Diphenylhydrazine |  | U | 12.6 | 371 |
| 101-55-3 | 4-Bromophenyl-phenyl ether |  | U | 23.8 | 371 |
| 118-74-1 | Hexachlorobenzene |  | $\cup$ | 33.4 | 371 |
| 85-01-8 | Phenanthrene |  | U | 5.94 | 371 |
| 120-12-7 | Anthracene |  | U | 10.4 | 371 |

Client: Brinkerhoff Environmental
Project: Petrocelli Electric
Matrix: Soil

| Sample Volume | 15.0 mL | Lab Sample ID: | 10050460-001 |
| :--- | :--- | :--- | :--- |
| \% Moisture: | $10.2 \%$ | Lab File ID: | 5 Sa666.D |
|  |  | Date Collected: | 12-May-10 |
| Extract Volume: | 1 mL | Date Extracted: | $14-\mathrm{May-10}$ |
|  |  | Date Analyzed: | $15-\mathrm{May-10}$ |
|  |  | Dilution Factor: | 1 |


| CAS No. | Compound | Conc <br> ug/L | Q | MDL | PQL |
| :--- | :--- | :---: | :---: | :---: | :---: |
| $86-74-8$ |  |  | U | 23.0 | 371 |
| $84-74-2$ | Carbazole |  | U | 35.6 | 371 |
| $206-44-0$ | Di-n-butylphthalate |  | U | 18.6 | 371 |
| $92-87-5$ | Fluoranthene |  | U | 348 | 371 |
| $129-00-0$ | Benzidine | Pyrene |  | U | 10.4 |
| $85-68-7$ | Butylbenzylphthalate |  | U | 14.1 | 371 |
| $56-55-3$ | Benzo(a)anthracene |  | U | 12.6 | 371 |
| $91-94-1$ | 3,3'-Dichlorobenzidine |  | U | 195 | 371 |
| $218-01-9$ | Chrysene | U | 14.8 | 371 |  |
| $117-81-7$ | bis(2-Ethylhexyl)phthalate | 43.1 | BJ | 254 | 371 |
| $117-84-0$ | Di-n-octylphthalate |  | U | 23.0 | 371 |
| $205-99-2$ | Benzo(b)fluoranthene |  | U | 25.2 | 371 |
| $207-08-9$ | Benzo(k)fluoranthene |  | U | 20.0 | 371 |
| $50-32-8$ | Benzo(a)pyrene |  | U | 14.1 | 371 |
| $193-39-5$ | Indeno(1,2,3-cd)pyrene |  | U | 9.65 | 371 |
| $53-70-3$ | Dibenzo(a,h)anthracene |  | U | 11.9 | 371 |
| $191-24-2$ | Benzo(g,h,i)perylene |  | U | 19.3 | 371 |



Number of TICs found: 1
Total Est. Concentration: 1280 ug/L

```
Data File : G:\HPChem\5\Data\05142010\5S8666.D
Vial: 18
Amq On : 15 May 2010 12:19 am
s mple : 10050460-001
NvesC : (2029-134)
MS Integration Params: rteint.p
 @uant Time: May 17 13:05 2010
Operator: sdp
Operator: sdp

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Internal Standards & \multicolumn{2}{|r|}{R.T. QIon} & \multicolumn{4}{|r|}{Conc Units Dev(Min)} \\
\hline 1) 1,4-Dichlorobenzene-d4 & 6.97 & 152 & 55266 & 40.00 & \(\mathrm{ug} / \mathrm{kg}\) & -0.02 \\
\hline 21) Naphthalene-d8 & 9.63 & 136 & 251234 & 40.00 & \(\mathrm{ug} / \mathrm{kg}\) & -0.03 \\
\hline 38) Acenaphthene-d10 & 13.40 & 164 & 187179 & 40.00 & \(\mathrm{ug} / \mathrm{kg}\) & -0.03 \\
\hline 60) Phenanthrene-dlo & 16.57 & 188 & 377827 & 40.00 & \(\mathrm{ug} / \mathrm{kg}\) & -0.03 \\
\hline 4.74) Chrysene-d12 & 20.91 & 240 & 520374 & 40.00 & \(\mathrm{ug} / \mathrm{kg}\) & -0.03 \\
\hline 83) Perylene-dl2 & 23.40 & 264 & 503650 & 40.00 & \(\mathrm{ug} / \mathrm{kg}\) & -0.06 \\
\hline \multicolumn{7}{|l|}{ystem Monitoring Compounds} \\
\hline * 4) 2-Fluorophenol & 4.35 & 112 & 116827 & 79.44 & ug/kg & 0.00 \\
\hline Spiked Amount 100.000 & Range 46 & - 77 & Recovery & & 79.44 & \\
\hline 7) Phenol-d6 & 6.34 & 99 & 192453 & 77.53 & ug/kg & -0.02 \\
\hline Spiked Amount 100.000 & Range 32 & - 60 & Recovery & = & 77.53 & \\
\hline 22) Nitrobenzene-d5 & 8.13 & 82 & 104745 & 39.09 & \(\mathrm{ug} / \mathrm{kg}\) & -0.03 \\
\hline Spiked Amount 50.000 & Range 49 & - 112 & Recovery & = & 78.18 & \\
\hline 42) 2-Fluorobiphenyl & 12.00 & 172 & 213165 & 34.91 & \(\mathrm{ug} / \mathrm{kg}\) & -0.04 \\
\hline Spiked Amount 50.000 & Range 45 & - 115 & Recovery & & 69.82 & \\
\hline \#, 64) 2,4,6-Tribromophenol & 15.10 & 330 & 141359 & 81.32 & \(\mathrm{ug} / \mathrm{kg}\) & -0.04 \\
\hline Spiked Amount 100.000 & Range 43 & - 126 & Recovery & & 81.32 & \\
\hline 77) p-Terphenyl-d14 & 19.49 & 244 & 406523 & 39.23 & \(\mathrm{ug} / \mathrm{kg}\) & -0.03 \\
\hline Spiked Amount 50.000 & Range 50 & - 125 & Recovery & = & 78.46 & \\
\hline \multicolumn{7}{|l|}{Target Compounds Qvalue} \\
\hline 46) Dimethylphthalate & 12.92 & 163 & 10474 & 1.64 & \(\mathrm{ug} / \mathrm{kg} \#\) & 87 \\
\hline 82) bis(2-Ethylhexyl) phthal & ate 20.92 & 149 & 6856 & 0.58 & \(\mathrm{ug} / \mathrm{kg}\) & 95 \\
\hline
\end{tabular}

Client: Brinkerhoff Environmental
Project: Petrocelli Electric
Matrix: Soil

Client Sample:
SB-MW-9
\begin{tabular}{llll}
Sample Volume & 15.0 mL & Lab Sample ID: & 10050460-002 \\
& & Lab File ID: & \(5 S 8667 . \mathrm{D}\) \\
\% Moisture: & \multirow{2}{*}{\(13.4 \%\)} & Date Collected: & 12-May-10 \\
Extract Volume: & \multirow{2}{*}{mL} & Date Extracted: & 14-May-10 \\
& & Date Analyzed: & \(15-\mathrm{May-10}\) \\
& & Dilution Factor: & 1
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CAS No. & Compound & Conc ug/L & Q & MDL & PQL \\
\hline 110-86-1 & Pyridine & & U & 221 & 385 \\
\hline 62-75-9 & n-Nitroso-dimethylamine & & U & 346 & 385 \\
\hline 62-53-3 & Aniline & & U & 16.9 & 385 \\
\hline 111-44-4 & bis(2-Chloroethyl)ether & & U & 23.9 & 385 \\
\hline 541-73-1 & 1,3-Dichlorobenzene & & U & 23.1 & 385 \\
\hline 106-46-7 & 1,4-Dichlorobenzene & & U & 29.3 & 385 \\
\hline 100-51-6 & Benzyl Alcohol & & U & 533 & 385 \\
\hline 95-50-1 & 1,2-Dichlorobenzene & & U & 17.7 & 385 \\
\hline 108-60-1 & bis(2-Chloroisopropyl)ether & & U & 19.2 & 385 \\
\hline 621-64-7 & n-Nitroso-di-n-propylamine & & U & 33.9 & 385 \\
\hline 67-72-1 & Hexachloroethane & & U & 21.6 & 385 \\
\hline 98-95-3 & Nitrobenzene & & U & 15.4 & 385 \\
\hline 78-59-1 & Isophorone & & U & 16.2 & 385 \\
\hline 111-91-1 & bis(2-Chloroethoxy)methane & & U & 26.2 & 385 \\
\hline 120-82-1 & 1,2,4-Trichlorobenzene & & U & 26.9 & 385 \\
\hline 91-20-3 & Naphthalene & & U & 16.9 & 385 \\
\hline 106-47-8 & 4-Chloroaniline & & U & 23.1 & 385 \\
\hline 87-68-3 & Hexachlorobutadiene & & U & 22.3 & 385 \\
\hline 91-57-6 & 2-Methylnaphthalene & & U & 20.0 & 385 \\
\hline 77-47-4 & Hexachlorocyclopentadiene & & U & 316 & . 770 \\
\hline 91-58-7 & 2-Chloronaphthalene & & U & 15.4 & 385 \\
\hline 88-74-4 & 2-Nitroaniline & & U & 8.47 & 385 \\
\hline 131-11-3 & Dimethylphthalate & 113 & B & 22.3 & 385 \\
\hline 208-96-8 & Acenaphthylene & & U & 12.3 & 385 \\
\hline 606-20-2 & 2,6-Dinitrotoluene & & U & 32.3 & 385 \\
\hline 99-09-2 & 3-Nitroaniline & & U & 376 & 385 \\
\hline 83-32-9 & Acenaphthene & & U & 15.4 & 385 \\
\hline 132-64-9 & Dibenzofuran & & U & 16.9 & 385 \\
\hline 121-14-2 & 2,4-Dinitrotoluene & & U & 30.0 & 385 \\
\hline 86-73-7 & Fluorene & & U & 11.5 & 385 \\
\hline 84-66-2 & Diethylphthalate & & U & 831 & 385 \\
\hline 7005-72-3 & 4-Chlorophenyl phenyl ether & & U & 20.8 & 385 \\
\hline 100-01-6 & 4-Nitroaniline & & U & 211 & 385 \\
\hline 86-30-6 & n -Nitrosodiphenylamine & & U & 16.9 & 385 \\
\hline 103-33-3 & 1,2-Diphenylhydrazine & & U & 13.1 & 385 \\
\hline 101-55-3 & 4-Bromophenyl-phenyl ether & & U & 24.6 & 385 \\
\hline 118-74-1 & Hexachlorobenzene & & U & 34.6 & 385 \\
\hline 85-01-8 & Phenanthrene & & U & 6.16 & 385 \\
\hline 120-12-7 & Anthracene & & U & 10.8 & 385 \\
\hline
\end{tabular}

Client: Brinkerhoff Environmental
Client Sample:
Project: Petrocelli Electric
Matrix: Soil
\begin{tabular}{llll}
Sample Volume & 15.0 mL & Lab Sample ID: & 10050460-002 \\
\% Moisture: & \multirow{2}{*}{\(13.4 \%\)} & Lab File ID: & 5 S88667.D \\
Extract Volume: & \multirow{2}{*}{mL} & Date Collected: & \(12-\mathrm{May-10}\) \\
& & Date Extracted: & \(14-\mathrm{May-10}\) \\
& & Date Analyzed: & \(15-\mathrm{May-10}\) \\
& & Dilution Factor: & 1
\end{tabular}
\begin{tabular}{|l|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ CAS No. } & \multicolumn{1}{|c|}{ Compound } & \begin{tabular}{c}
Conc \\
ug/L
\end{tabular} & Q & MDL & PQL \\
\hline \(86-74-8\) & & U & 23.9 & 385 \\
\hline \(84-74-2\) & Carbazole & & U & 37.0 & 385 \\
\hline \(206-44-0\) & Di-n-butylphthalate & & U & 19.2 & 385 \\
\hline \(92-87-5\) & Fluoranthene & & U & 361 & 385 \\
\hline \(129-00-0\) & Benzidine & Pyrene & & U & 10.8 \\
\hline \(85-68-7\) & Butylbenzylphthalate & & U & 14.6 & 385 \\
\hline \(56-55-3\) & Benzo(a)anthracene & & U & 13.1 & 385 \\
\hline \(91-94-1\) & 3,3'-Dichlorobenzidine & & U & 202 & 385 \\
\hline \(218-01-9\) & Chrysene & & U & 15.4 & 385 \\
\hline \(117-81-7\) & bis(2-Ethylhexyl)phthalate & 38.6 & BJ & 263 & 385 \\
\hline \(117-84-0\) & Di-n-octylphthalate & & U & 23.9 & 385 \\
\hline \(205-99-2\) & Benzo(b)fluoranthene & & U & 26.2 & 385 \\
\hline \(207-08-9\) & Benzo(k)fluoranthene & & U & 20.8 & 385 \\
\hline \(50-32-8\) & Benzo(a)pyrene & & U & 14.6 & 385 \\
\hline \(193-39-5\) & Indeno(1,2,3-cd)pyrene & & U & 10.0 & 385 \\
\hline \(53-70-3\) & Dibenzo(a,h)anthracene & & U & 12.3 & 385 \\
\hline \(191-24-2\) & Benzo(g,h,i)perylene & & U & 20.0 & 385 \\
\hline
\end{tabular}

Aqua Pro-Tech Laboratories
Tentatively Identified Compounds
Client: Brinkerhoff Environmental
Project: Petrocelli Electric
Matrix: Soil
\begin{tabular}{ll}
Sample Volume & 15.0 mL \\
\% Moisture: & \(13.4 \%\) \\
Extract Volume: & 1 mL
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline CAS No. & Compound & \begin{tabular}{c}
Est. \\
Conc.
\end{tabular} & Q & RT \\
\hline & unknown & 709 & J & 20.79 \\
\hline
\end{tabular}

Number of TICs found: 1
Total Est. Concentration: \(709 \mathrm{ug} / \mathrm{L}\)

is Integration Params: rteint.p
ouant Time: May 17 13:05 2010
ant Method : G: \HPCHEM \(\backslash 5 \backslash\) METHODS \(\backslash 0510\) ABNS.M (RTE Integrator)
Title : BNA by EPA 8270C method
ast Update : Thu May 13 16:55:39 2010
sponse via : Initial Calibration
taAcq Meth : RUN8270
```

Data File : G:\HPChem\5\Data\05142010\5S8667.D
Acq On : 15 May 2010 12:55 am
Sample : 10050460-002
Misc: (2029-134)

```
Vial: 19
Operator: sdp
Inst : GC/MS-5
MS Integration Params: rteint.p
Quant Time: May 17 13:05 2010

Quant Results File: 0510ABNS.RES
\begin{tabular}{ll}
Method & \(:\) G: \HPChem \(\backslash 5 \backslash\) Methods \(\backslash 0510 A B N S . M\) (RTE Integrator) \\
Title & : BNA by EPA 8270C method \\
Last Update & : Thu May 13 16:55:39 2010 \\
Response via & : Initial Calibration
\end{tabular}

2300000

2200000

2100000
2000000
1900000
1800000

1700000

1600000
1500000

1400000
1300000

1200000
1100000
1000000
900000
800000

700000
600000

500000
400000

300000

200000
100000 .
\begin{tabular}{|c|c|c|}
\hline & YES & NO \\
\hline GC/MS TUNE SPECIFICATIONS & & \\
\hline DFTPP passes criteria & X & \\
\hline GC/MS TUNING FREQUENCY & & \\
\hline Method 625-Performed within 24 hours prior to sample analysis & & \\
\hline Method 8270C-Performed within 12 hours prior to sample analysis & X & \\
\hline GC/MS INITIAL CALIBRATION REQUIREMENTS & & \\
\hline Calibration Check Compounds pass criteria & X & \\
\hline System Performance Check Compounds pass criteria & X & \\
\hline GC/MS CONTINUING CALIBRATION PASS REQLIREMENTS & X & \\
\hline SURROGATE RECOVERIES PASS CRITERIA & X & \\
\hline MATRIX SPIKE/SPIKE DUPLICATE RECOVERIES PASS CRITERIA & \(x\) & \\
\hline BLANK SPIKE RECOVERIES PASS CRITERIA & X & \\
\hline INTERNAL STANDARD AREAS AND RETENTION TIMES & & \\
\hline PASS CRITERIA & X & \\
\hline EXTRACTION HOLDING TIMES MET (from date of collection) & & \\
\hline Method 625 (water/wastewater)-7 days & & \\
\hline Method 8270 C(soil/solid waste)-14 days & X & \\
\hline ANALYSIS HOLDING TIMES MET (from date of extraction) & & \\
\hline Method 625 (water extracts)-40 days & & \\
\hline Method 8270C(soil/solid extracts)-40 days & X & \\
\hline
\end{tabular}

COMMENTS:

Client: Brinkerhoff Environmental
Project: Petrocelli Electric

> (\% Recovery)

QC Limits
\begin{tabular}{ll}
S1 \(=2\)-Fluorophenol & \((46-77 \%)\) \\
S2 \(=\) Phenol-d6 & \((32-60 \%)\) \\
S3 \(=\) Nitrobenzene-d5 & \((49-112 \%)\) \\
S4 \(=2-\) Fluorobiphenyl & \((45-115 \%)\) \\
S5 \(=2,4,6\)-Tribromophenol & \((43-126 \%)\) \\
S6 \(=\) p-Terphenyl-d14 & \((50-125 \%)\)
\end{tabular}
* \(=\) Values outside of QC limits
\(D=\) System Monitoring Compound diluted out
N/A = Not Applicable To This Method
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Sample ID & Sample Name & S1 & S2 & S3 & S4 & S5 & S6 & \[
\begin{array}{|c}
\text { TOTAL } \\
\text { OUT }
\end{array}
\] \\
\hline 10050460-001 & SB-MW-8 & N/A & N/A & 78 & 70 & N/A & 78 & 0 \\
\hline 10050460-002 & SB-MW-9 & N/A & N/A & 82 & 73 & N/A & 83 & 0 \\
\hline Blank -2029 & Blank & N/A & N/A & 82 & 73 & N/A & 80 & 0 \\
\hline
\end{tabular}

iS Integration Params: rteint.p
Ouant Time: May 17 12:16 2010
ant Method : G: \HPCHEM \(\backslash 5 \backslash\) METHODS \(\backslash 0510 \mathrm{ABNS} . \mathrm{M}\) (RTE Integrator)
Iitle : BNA by EPA 8270C method
ast Update : Thu May 13 16:55:39 2010
sponse via : Initial Calibration
taAcq Meth : RUN8270

\footnotetext{
' \(\ddagger\)) = qualifier out of range \((m)=\) manual integration
ПFinARNG M
}

Data File : G:\HPChem\5\Data\05142010\5S8660.D
Acq On : 14 May 2010 8:39 pm Sample : 10050398-001 Misc: (2029-134)
MS Integration Params: rteint.p
Quant Time: May 17 12:16 2010
Vial: 12
Operator: sdp
Inst : GC/MS-5
Multiplr: 1.00
Quant Results File: 0510ABNS.RES
Method : G: \HPChem \(\backslash 5 \backslash\) Methods \(\backslash 0510 A B N S . M\) (RTE Integrator)
Title : BNA by EPA 8270C method Last Update : Thu May 13 16:55:39 2010 Response via : Initial Calibration

TIC: 5S8660.D 2700000

2600000
2500000
2400000 :
2300000

Jata File : G:\HPChem\5\Data\05142010\5S8669.D
\(\begin{array}{cl}\text { Acq On } & : \text { 15 May 2010 2:09 am } \\ \text { mple } & : \text { ms 10050398-001 }\end{array}\) .sc : (2029-134)
4 Integration Params: rteint.p
Ouant Time: May 17 13:01 2010

Vial: 21
Operator: sdp
Inst : GC/MS-5
Multiplr: 1.00
lant Method : G: \HPCHEM \(\backslash 5 \backslash\) METHODS \(\backslash 0510 A B N S . M\) (RTE Integrator)
Fitle : BNA by EPA 8270C method
jast Update : Thu May 13 16:55:39 2010
:sponse via : Initial Calibration
เtaAcq Meth : RUN8270

```

ata File : G:\HPChem\5\Data\05142010\5S8669.D
Vial: 21
req On : 15 May 2010 2:09 am
mple : ms 10050398-001
SC : (2029-134)
4S Integration Params: rteint.p
Ouant Time: May 17 13:01 2010
Operator: sdp
Multiplr: 1.00

```

4 Integration Params: rteint.p
Ouant 'Time: May 17 13:01 2010
```

| ?itle | BNA by EPA 8270c method |
| :---: | :---: |
| izst Update | Thu May 13 16:55:39 2010 |
| sponse via | Initial Calibration |
| taAcq Meth | RUN8270 |

```

Inst : GC/MS-5

Quant Results File: 0510ABNS.RES
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Compound & \multicolumn{2}{|l|}{R.T. QIon} & Response & Conc Unit & Qvalue \\
\hline 48) & 2,6-Dinitrotoluene & 13.03 & 165 & 58329 & \(40.94 \mathrm{ug} / \mathrm{kg}\) & 94 \\
\hline 49) & 3-Nitroaniline & 13.36 & 138 & 62659 & \(34.54 \mathrm{ug} / \mathrm{kg}\) & 88 \\
\hline 50) & Acenaphthene & 13.46 & 153 & 188676 & \(35.91 \mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 51) & 2,4-Dinitrophenol & 13.62 & 184 & 7514 & \(15.48 \mathrm{ug} / \mathrm{kg}\) & 97 \\
\hline 52) & Dibenzofuran & 13.84 & 168 & 280933 & \(34.89 \mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 53) & 4-Nitrophenol & 13.84 & 65 & 72415 & \(43.36 \mathrm{ug} / \mathrm{kg}\) & 95 \\
\hline 54) & 2,4-Dinitrotoluene & 13.88 & 165 & 89366 & \(41.21 \mathrm{ug} / \mathrm{kg}\) & 97 \\
\hline 56) & Fluorene & 14.58 & 166 & 225170 & \(35.71 \mathrm{ug} / \mathrm{kg}\) & 97 \\
\hline 57) & Diethylphthalate & 14.45 & 149 & 276182 & \(38.46 \mathrm{ug} / \mathrm{kg}\) & 98 \\
\hline 58) & 4-Chlorophenyl phenyl ethe & 14.62 & 204 & 117272 & \(36.53 \mathrm{ug} / \mathrm{kg}\) & 97 \\
\hline 59) & 4-Nitroaniline & 14.66 & 138 & 76153 & \(38.50 \mathrm{ug} / \mathrm{kg}\) & 96 \\
\hline 61) & 4,6-Dinitro-2-methylphenol & 14.76 & 198 & 32598 & \(26.34 \mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 62) & n-Nitrosodiphenylamine & 14.89 & 169 & 164545 & \(36.25 \mathrm{ug} / \mathrm{kg}\) & 98 \\
\hline 63) & 1,2-Diphenylhydrazine & 14.96 & 77 & 366897 & \(42.04 \mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 65) & 4-Bromophenyl-phenyl ether & 15.66 & 248 & 85907 & \(38.32 \mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline \(66)\) & Hexachlorobenzene & 15.77 & 284 & 112429 & \(37.76 \mathrm{ug} / \mathrm{kg}\) & 100 \\
\hline 68) & Pentachlorophenol & 16.22 & 266 & 31407 & \(22.76 \mathrm{ug} / \mathrm{kg}\) & 94 \\
\hline 69) & Phenanthrene & 16.62 & 178 & 372012 & \(36.39 \mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 70) & Anthracene & 16.72 & 178 & 380476 & \(38.30 \mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 71) & Carbazole & 17.12 & 167 & 370674 & \(36.21 \mathrm{ug} / \mathrm{kg}\) & 98 \\
\hline 72) & Di-n-butylphthalate & 17.92 & 149 & 571813 & \(38.69 \mathrm{ug} / \mathrm{kg}\) & 98 \\
\hline 73) & Fluoranthene & 18.87 & 202 & 470185 & \(37.89 \mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 75) & Benzidine & 19.11 & 184 & 99274 & \(38.20 \mathrm{ug} / \mathrm{kg}\) & 97 \\
\hline 76) & Pyrene & 19.22 & 202 & 476759 & \(36.72 \mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 78) & Butylbenzylphthalate & 20.17 & 149 & 300632 & \(39.96 \mathrm{ug} / \mathrm{kg}\) & 97 \\
\hline 79) & Benzo (a) anthracene & 20.89 & 228 & 463927 & \(37.26 \mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 80) & 3,3'-Dichlorobenzidine & 20.86 & 252 & 161619 & \(34.73 \mathrm{ug} / \mathrm{kg}\) & 98 \\
\hline 81) & Chrysene & 20.94 & 228 & 433643 & \(35.49 \mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 82) & bis (2-Ethylhexyl) phthalate & 20.93 & 149 & 423642 & \(39.81 \mathrm{ug} / \mathrm{kg}\) & 98 \\
\hline 84) & Di-n-octylphthalate & 21.89 & 149 & 740053 & \(32.28 \mathrm{ug} / \mathrm{kg}\) & 100 \\
\hline 85) & Benzo (b) fluoranthene & 22.63 & 252 & 516325 & \(33.59 \mathrm{ug} / \mathrm{kg}\) & 96 \\
\hline 86) & Benzo(k)fluoranthene & 22.67 & 252 & 446588 & \(29.44 \mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 87) & Benzo(a) pyrene & 23.28 & 252 & 424839 & \(29.64 \mathrm{ug} / \mathrm{kg}\) & 98 \\
\hline 88) & Indeno (1, 2, 3-cd) pyrene & 26.08 & 276 & 528281 & \(30.48 \mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 89) & Dibenzo (\(a, h\)) anthracene & 26.12 & 278 & 430081 & \(30.50 \mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 90) & Benzo(\(9, h, i)\) perylene & 26.77 & 276 & 449421 & \(29.98 \mathrm{ug} / \mathrm{kg}\) & 100 \\
\hline
\end{tabular}

IC: 5S8669.D

* Denotes values outside of method required QC Limits
\begin{tabular}{|c|c|c|c|}
\hline CAS & Compound & Conc. & QC Limits \\
\hline 111-44-4 & bis(2-Chloroethyl)ether & 48.4 & 21.5-63.0 \\
\hline 106-46-7 & 1,4-Dichlorobenzene & 38.9 & 18.7-52.9 \\
\hline 108-60-1 & bis(2-Chloroisopropyl)ether & 47.2 & 31.4-69.3 \\
\hline 98-95-3 & Nitrobenzene & 45.0 & 27.2-78.8 \\
\hline 111-91-1 & bis(2-Chloroethoxy)methane & 44.5 & 24.6-82.4 \\
\hline 91-20-3 & Naphthalene & 38.8 & 17.8-59.8 \\
\hline 91-58-7 & 2-Chloronaphthalene & 44.6 & 32.3-56.8 \\
\hline 131-11-3 & Dimethylphthalate & 48.3 & Detected - 50.0 \\
\hline 606-20-2 & 2,6-Dinitrotoluene & 51.1 & 34.1-68.4 \\
\hline 121-14-2 & 2,4-Dinitrotoluene & 52.0 & 23.8-63.5 \\
\hline 7005-72-3 & 4-Chlorophenyl phenyl ether & 45.0 & 19.2-72.4 \\
\hline 118-74-1 & Hexachlorobenzene & 45.6 & 3.90-70.8 \\
\hline 120-12-7 & Anthracene & 45.8 & 21.7-59.0 \\
\hline 206-44-0 & Fluoranthene & 44.6 & 21.5-60.7 \\
\hline 129-00-0 & Pyrene & 45.1 & 34.8-50.0 \\
\hline 56-55-3 & Benzo[a]anthracene & 44.9 & 20.9-66.5 \\
\hline 218-01-9 & Chrysene & 43.0 & 22.1-70.0 \\
\hline 117-84-0 & Di-n-octylphthalate & 38.2 & 9.30-65.9 \\
\hline 50-32-8 & Benzo[a]pyrene & 35.0 & 15.9-74.0 \\
\hline 53-70-3 & Dibenzo[a, h]anthracene & 36.3 & Detected - 99.9 \\
\hline 95-50-1 & 1,2-Dichlorobenzene & 41.2 & 24.3-56.0 \\
\hline 621-64-7 & n-Nitroso-di-n-propylamine & 47.0 & 6.80-99.0 \\
\hline 87-68-3 & Hexachlorobutadiene & 38.1 & 18.9-51.1 \\
\hline 86-73-7 & Fluorene & 43.4 & 35.8-53.2 \\
\hline 84-74-2 & Di-n-butylphthalate & 47.3 & 4.20-55.5 \\
\hline 117-81-7 & bis(2-Ethylhexyl)phthalate & 47.1 & 14.5-68.4 \\
\hline 205-99-2 & Benzo[b]fluoranthene & 37.9 & 21.0-70.2 \\
\hline 541-73-1 & 1,3-Dichlorobenzene & 39.2 & 8.40-77.0 \\
\hline 67-72-1 & Hexachloroethane & 40.4 & 27.6-50.0 \\
\hline 78-59-1 & Isophorone & 44.4 & 23.3-90.1 \\
\hline 120-82-1 & 1,2,4-Trichlorobenzene & 37.8 & 28.7-64.6 \\
\hline 208-96-8 & Acenaphthylene & 47.4 & 26.8-63.0 \\
\hline 83-32-9 & Acenaphthene & 44.2 & 30.1-66.2 \\
\hline 84-66-2 & Diethylphthalate & 46.7 & Detected - 50.0 \\
\hline 101-55-3 & 4-Bromophenyl-phenyl ether & 44.1 & 32.5-57.2 \\
\hline 85-01-8 & Phenanthrene & 43.6 & 32.6-53.4 \\
\hline 85-68-7 & Butylbenzylphthalate & 49.4 & Detected - 70.0 \\
\hline 91-94-1 & 3,3'-Dichlorobenzidine & 42.3 & 4.10-160 \\
\hline 207-08-9 & Benzo[k]fluoranthene & 37.7 & 12.6-72.9 \\
\hline 193-39-5 & Indeno(1,2,3-cd)pyrene & 35.6 & Detected - 75.5 \\
\hline 191-24-2 & Benzo[g,h,i]perylene & 35.2 & Detected-97.5 \\
\hline
\end{tabular}
\begin{tabular}{ll}
ata File & \(: \mathrm{G}: \backslash\) HPChem \(\backslash 5 \backslash\) Data \(\backslash 05142010 \backslash 5 S 8658 . \mathrm{D}\) \\
cq On & \(: 14\) May \(2010 \quad 7: 26 \mathrm{pm}\) \\
mple & \(:\) sabn 134 lcs \\
sc & \(:(2029-134)\)
\end{tabular}

Vial: 10
Operator: sdp
Inst : GC/MS-5
Multiplr: 1.00
S Integration Params: rteint.p
Ouant Time: May 17 12:07 2010
Quant Results File: 0510ABNS.RES
\begin{tabular}{rl}
ant Method & \(: G: \backslash H P C H E M \backslash 5 \backslash\) METHODS \(\backslash 0510 A B N S . M\) (RTE Integrator) \\
itle & \(:\) BNA by EPA 8270 C method \\
ast Update & \(:\) Thu May \(1316: 55: 392010\) \\
sponse via & \(:\) Initial Calibration \\
taAcq Meth & \(:\) RUN8270
\end{tabular}

```

Jata File : G:\HPChem\5\Data\05142010\5S8658.D
Vial: 10
acq On : 14 May 2010 7:26 pm
imple : sabn 134 lcs
.sc: (2029-134)
Operator: sdp
Inst : GC/MS-5
Multiplr: 1.00
MS Integration Params: rteint.p
Quant Time: May 17 12:07 2010
Quant Results File: 0510ABNS.RES
lant Method : G:\HPCHEM\5\METHODS\0510ABNS.M (RTE Integrator)
Title : BNA by EPA 8270C method
Last Update : Thu May 13 16:55:39 2010
spponse via : Initial Calibration
taAcq Meth : RUN8270

```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Compound & \multicolumn{2}{|l|}{R.T. QIon} & Response & \multicolumn{2}{|l|}{Conc Unit} & Qvalue \\
\hline 48) & 2,6-Dinitrotoluene & 13.02 & 165 & 68136 & 51.14 & \(\mathrm{ug} / \mathrm{kg}\) & 96 \\
\hline 49) & 3-Nitroaniline & 13.36 & 138 & 74329 & 43.81 & \(\mathrm{ug} / \mathrm{kg}\) & 90 \\
\hline 50) & Acenaphthene & 13.46 & 153 & 217313 & 44.23 & \(\mathrm{ug} / \mathrm{kg}\) & 97 \\
\hline 51) & 2,4-Dinitrophenol & 13.61 & 184 & 24027 & 36.42 & \(\mathrm{ug} / \mathrm{kg}\) & 85 \\
\hline 52) & Dibenzofuran & 13.85 & 168 & 315407 & 41.89 & \(\mathrm{ug} / \mathrm{kg}\) & 98 \\
\hline 53) & 4-Nitrophenol & 13.84 & 65 & 87407 & 55.97 & \(\mathrm{ug} / \mathrm{kg}\) & 98 \\
\hline 54) & 2,4-Dinitrotoluene & 13.88 & 165 & 105464 & 52.00 & \(\mathrm{ug} / \mathrm{kg}\) & 97 \\
\hline 56) & Fluorene & 14.58 & 166 & 256063 & 43.43 & \(\mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 57) & Diethylphthalate & 14.46 & 149 & 313842 & 46.74 & \(\mathrm{ug} / \mathrm{kg}\) & 98 \\
\hline 58) & 4-Chlorophenyl phenyl ethe & 14.63 & 204 & 135202 & 45.04 & \(\mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 59) & 4-Nitroaniline & 14.67 & 138 & 88850 & 48.03 & \(\mathrm{ug} / \mathrm{kg}\) & 95 \\
\hline 61) & 4,6-Dinitro-2-methylphenol & 14.76 & 198 & 52147 & 40.53 & \(\mathrm{ug} / \mathrm{kg}\) & 98 \\
\hline 62) & n-Nitrosodiphenylamine & 14.89 & 169 & 191770 & 44.45 & \(\mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 63) & 1,2-Diphenylhydrazine & 14.96 & 77 & 420575 & 50.70 & \(\mathrm{ug} / \mathrm{kg}\) & 98 \\
\hline 65) & 4-Bromophenyl-phenyl ether & 15.67 & 248 & 94147 & 44.18 & \(\mathrm{ug} / \mathrm{kg}\) & 97 \\
\hline 66) & Hexachlorobenzene & 15.77 & 284 & 129219 & 45.66 & \(\mathrm{ug} / \mathrm{kg}\) & 97 \\
\hline 68) & Pentachlorophenol & 16.22 & 266 & 39860 & 30.40 & \(\mathrm{ug} / \mathrm{kg}\) & 94 \\
\hline 69) & Phenanthrene & 16.62 & 178 & 424045 & 43.64 & \(\mathrm{ug} / \mathrm{kg}\) & 100 \\
\hline 70) & Anthracene & 16.73 & 178 & 433001 & 45.86 & ug/kg & 99 \\
\hline 71) & Carbazole & 17.12 & 167 & 427605 & 43.95 & \(\mathrm{ug} / \mathrm{kg}\) & 98 \\
\hline 72) & Di-n-butylphthalate & 17.92 & 149 & 665615 & 47.38 & \(u \mathrm{~g} / \mathrm{kg}\) & 97 \\
\hline 73) & Fluoranthene & 18.88 & 202 & 526991 & 44.69 & \(\mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 75) & Benzidine & 19.12 & 184 & 162644 & 65.76 & \(\mathrm{ug} / \mathrm{kg}\) & 98 \\
\hline 76) & Pyrene & 19.22 & 202 & 558019 & 45.16 & \(u \mathrm{~g} / \mathrm{kg}\) & 99 \\
\hline 78) & Butylbenzylphthalate & 20.18 & 149 & 353893 & 49.42 & \(\mathrm{ug} / \mathrm{kg}\) & 97 \\
\hline 79) & Benzo(a) anthracene & 20.89 & 228 & 533000 & 44.98 & \(\mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 80) & 3,3'-Dichlorobenzidine & 20.86 & 252 & 187664 & 42.37 & \(\mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 81) & Chrysene & 20.94 & 228 & 500582 & 43.05 & \(\mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 82) & bis (2-Ethylhexyl) phthalate & 20.93 & 149 & 477940 & 47.19 & \(\mathrm{ug} / \mathrm{kg}\) & 97 \\
\hline 84) & Di-n-octylphthalate & 21.89 & 149 & 859534 & 38.23 & \(\mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 85) & Benzo (b)fluoranthene & 22.63 & 252 & 571962 & 37.95 & \(\mathrm{ug} / \mathrm{kg}\) & 98 \\
\hline 86) & Benzo (k)fluoranthene & 22.68 & 252 & 560755 & 37.70 & \(\mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 87) & Benzo(a) pyrene & 23.29 & 252 & 492076 & 35.01 & \(\mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 88) & Indeno (1,2,3-cd) pyrene & 26.08 & 276 & 605545 & 35.63 & ug/kg & 99 \\
\hline 89) & Dibenzo (\(a, h\)) anthracene & 26.13 & 278 & 502864 & 36.37 & \(\mathrm{ug} / \mathrm{kg}\) & 98 \\
\hline 90) & Benzo (g, h,i) perylene & 26.78 & 276 & 518705 & 35.28 & \(\mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline
\end{tabular}

\footnotetext{
*\#) = qualifier out of range (m) = manual integration
}

Data File : G:\HPChem\5\Data\05142010\5S8658.D
Acq On : 14 May 2010 7:26 pm
Sample : sabn 134 lcs
Misc : (2029-134)
MS Integration Params: rteint.p
Quant Time: May 17 12:07 2010
Method : G: \HPChem \(\backslash 5 \backslash\) Methods \(\backslash 0510 A B N S . M\) (RTE Integrator)
Title : BNA by EPA 8270C method
Last Update : Thu May 13 16:55:39 2010
Response via : Initial Calibration
\(\qquad\)
```

- 

```

TIC: 5S8658.D

Vial: 10
Operator: sdp
Inst : GC/MS-5
Multiplr: 1.00

3200000

3000000
2800000
2600000

2000000

1800000

1600000

1400000

1000000

800000

200000

6.00
8.00

Client: Brinkerhoff Environmental
Project: Petrocelli Electric
Lab File ID: 5S8659.D
Matrix: Water

Blank:
SVO MBlank \#2029

Lab Sample ID: sabn 134 blk Date Analyzed: 14-May-10
Time Acquired: 20:03

This Method Blank applies to the following samples:
\begin{tabular}{|c|c|c|c|}
\hline Client Sample & \begin{tabular}{c}
Lab \\
Sample ID
\end{tabular} & \begin{tabular}{c}
Lab \\
File ID
\end{tabular} & \begin{tabular}{c}
Time \\
Acquired
\end{tabular} \\
\hline SB-MW-8 & \(10050460-001\) & 5S8666.D & \(0: 19\) \\
\hline SB-MW-9 & \(10050460-002\) & 5S8667.D & \(0: 55\) \\
\hline
\end{tabular}

Client: Brinkerhoff Environmental
Project: Petrocelli Electric
Matrix: Water

Client Sample:
Blank - 2029

Lab Sample ID:
Blank - 2029
5S8659.D

Extract Volume: 1 mL
Dilution Factor:
1
\begin{tabular}{|c|c|c|c|c|c|}
\hline CAS No. & Compound & Conc ug/L & Q & MDL & PQL \\
\hline 110-86-1 & Pyridine & & U & 191 & 333 \\
\hline 62-75-9 & n-Nitroso-dimethylamine & & U & 300 & 333 \\
\hline 100-52-7 & Benzaldehyde & & U & 99.3 & 333 \\
\hline 62-53-3 & Aniline & & U & 14.7 & 333 \\
\hline 108-95-2 & Phenol & & U & 14.7 & 333 \\
\hline 111-44-4 & bis(2-Chloroethyl)ether & & U & 20.7 & 333 \\
\hline 95-57-8 & 2-Chlorophenol & & U & 14.0 & 333 \\
\hline 541-73-1 & 1,3-Dichlorobenzene & & U & 20.0 & 333 \\
\hline 106-46-7 & 1,4-Dichlorobenzene & & U & 25.3 & 333 \\
\hline 100-51-6 & Benzyl Alcohol & & U & 462 & 333 \\
\hline 95-50-1 & 1,2-Dichlorobenzene & & \(U\) & 15.3 & 333 \\
\hline 95-48-7 & 2-Methylphenol & & U & 15.3 & 333 \\
\hline 108-60-1 & bis(2-Chloroisopropyl)ether & & U & 16.7 & 333 \\
\hline 98-86-2 & Acetophenone & & U & 88.0 & 333 \\
\hline 1319-77-3 & 3+4-Methylphenol & & U & 25.3 & 333 \\
\hline 621-64-7 & n-Nitroso-di-n-propylamine & & U & 29.3 & 333 \\
\hline 67-72-1 & Hexachloroethane & & U & 18.7 & 333 \\
\hline 98-95-3 & Nitrobenzene & & U & 13.3 & 333 \\
\hline 78-59-1 & Isophorone & & U & 14.0 & 333 \\
\hline 88-75-5 & 2-Nitrophenol & & U & 142 & 333 \\
\hline 105-67-9 & 2,4-Dimethylphenol & & U & 18.7 & 333 \\
\hline 111-91-1 & bis(2-Chloroethoxy)methane & & U & 22.7 & 333 \\
\hline 120-83-2 & 2,4-Dichlorophenol & & U & 41.3 & 333 \\
\hline 65-85-0 & Benzoic Acid & & U & 423 & 667 \\
\hline 120-82-1 & 1,2,4-Trichlorobenzene & & U & 23.3 & 333 \\
\hline 91-20-3 & Naphthaiene & & U & 14.7 & 333 \\
\hline 87-65-0 & 2,6-Dichlorophenol & & U & 17.3 & 333 \\
\hline 106-47-8 & 4-Chloroaniline & & U & 20.0 & 333 \\
\hline 87-68-3 & Hexachlorobutadiene & & U & 19.3 & 333 \\
\hline 105-60-2 & Caprolactam & & U & 60.7 & 333 \\
\hline 59-50-7 & 4-Chloro-3-methylphenol & & U & 23.3 & 333 \\
\hline 91-57-6 & 2-Methylnaphthalene & & U & 17.3 & 333 \\
\hline 77-47-4 & Hexachlorocyclopentadiene & & U & 273 & 667 \\
\hline 88-06-2 & 2,4,6-Trichlorophenol & & U & 17.3 & 333 \\
\hline 95-95-4 & 2,4,5-Trichlorophenol & & U & 34.0 & 333 \\
\hline 92-52-4 & Biphenyl & & U & 65.3 & 333 \\
\hline 91-58-7 & 2-Chloronaphthalene & & U & 13.3 & 333 \\
\hline 88-74-4 & 2-Nitroaniline & & U & 7.33 & 333 \\
\hline 131-11-3 & Dimethylphthalate & 80.3 & & 19.3 & 333 \\
\hline
\end{tabular}

Client: Brinkerhoff Environmental
Project: Petrocelli Electric
Matrix: Water

Client Sample:
Blank - 2029

Sample Volume
15.0 mL

Lab Sample ID: Lab File ID:

Blank - 2029
5S8659.D

Extract Volume: 1 mL
Dilution Factor:
1
\begin{tabular}{|c|c|c|c|c|c|}
\hline CAS No. & Compound & Conc ug/L & Q & MDL & PQL \\
\hline 208-96-8 & Acenaphthylene & & U & 10.7 & 333 \\
\hline 606-20-2 & 2,6-Dinitrotoluene & & U & 28.0 & 333 \\
\hline 99-09-2 & 3-Nitroaniline & & U & 325 & 333 \\
\hline 83-32-9 & Acenaphthene & & U & 13.3 & 333 \\
\hline 51-28-5 & 2,4-Dinitrophenol & & U & 26.0 & 667 \\
\hline 132-64-9 & Dibenzofuran & & U & 14.7 & 333 \\
\hline 100-02-7 & 4-Nitrophenol & & U & 87.3 & 667 \\
\hline 121-14-2 & 2,4-Dinitrotoluene & & U & 26.0 & 333 \\
\hline 58-90-2 & 2,3,4,6-Tetrachlorophenol & & U & 434 & 333 \\
\hline 86-73-7 & Fluorene & & U & 10.0 & 333 \\
\hline 84-66-2 & Diethylphthalate & & U & 720 & 333 \\
\hline 7005-72-3 & 4-Chlorophenyl phenyl ether & & U & 18.0 & 333 \\
\hline 100-01-6 & 4-Nitroaniline & & U & 183 & 333 \\
\hline 534-52-1 & 4,6-Dinitro-2-methylphenol & & U & 189 & 667 \\
\hline 86-30-6 & n-Nitrosodiphenylamine & & U & 14.7 & 333 \\
\hline 103-33-3 & 1,2-Diphenylhydrazine & & U & 11.3 & 333 \\
\hline 101-55-3 & 4-Bromophenyl-phenyi ether & & U & 21.3 & 333 \\
\hline 118-74-1 & Hexachlorobenzene & & U & 30.0 & 333 \\
\hline 1912-24-9 & Atrazine & & U & 54.7 & 333 \\
\hline 87-86-5 & Pentachlorophenol & & U & 141 & 1330 \\
\hline 85-01-8 & Phenanthrene & & U & 5.33 & 333 \\
\hline 120-12-7 & Anthracene & & U & 9.33 & 333 \\
\hline 86-74-8 & Carbazole & & U & 20.7 & 333 \\
\hline 84-74-2 & Di-n-butylphthalate & & U & 32.0 & 333 \\
\hline 206-44-0 & Fluoranthene & & U & 16.7 & 333 \\
\hline 92-87-5 & Benzidine & & U & 313 & 333 \\
\hline 129-00-0 & Pyrene & & U & 9.33 & 333 \\
\hline 85-68-7 & Butylbenzylphthalate & & U & 12.7 & 333 \\
\hline 56-55-3 & Benzo(a)anthracene & & U & 11.3 & 333 \\
\hline 91-94-1 & 3,3'-Dichlorobenzidine & & U & 175 & 333 \\
\hline 218-01-9 & Chrysene & & U & 13.3 & 333 \\
\hline 117-81-7 & bis(2-Ethylhexyl)phthalate & 37.3 & J & 228 & 333 \\
\hline 117-84-0 & Di-n-octylphthalate & & U & 20.7 & 333 \\
\hline 205-99-2 & Benzo(b)fluoranthene & & U & 22.7 & 333 \\
\hline 207-08-9 & Benzo(k)fluoranthene & & U & 18.0 & 333 \\
\hline 50-32-8 & Benzo(a)pyrene & & U & 12.7 & 333 \\
\hline 193-39-5 & Indeno(1,2,3-cd)pyrene & & U & 8.67 & 333 \\
\hline 53-70-3 & Dibenzo(a,h)anthracene & & U & 10.7 & 333 \\
\hline 191-24-2 & Benzo(g,h,i)perylene & & U & 17.3 & 333 \\
\hline
\end{tabular}

Number of TICs found: 0
Total Est. Concentration: 0 ug/L

Data File : G: \HPChem\5\Data\05142010\5S8659.D
Acq On : 14 May 2010 8:03 pm Sample : sabn 134 blk
Misc : (2029-134)
MS Integration Params: rteint.p
Quant Time: May 17 12:08 2010
Method : G: \HPChem \(\backslash 5 \backslash\) Methods \(\backslash 0510\) ABNS.M (RTE Integrator)
Title : BNA by EPA 8270C method
Last Update : Thu May 13 16:55:39 2010
Response via : Initial Calibration
Vial: 11
Operator: sdp
Inst : GC/MS-5
Multiplr: 1.00
Quant Results File: 0510ABNS.RES
Approved:
17-Mav-2010 12:10
2
TIC: 5S8659.D

3200000

3000000

2800000

2600000

2400000

2200000

2000000
\(\therefore 1800000\)

1600000

roren \(n\) netnォдмт м

Client: Brinkerhoff Environmental
Project: Petrocelli Electric
Lab File ID: G:IHPCheml5IDatal0514201015S8649.D

DFTPP Injection Date: 14-May-10
DFTPP Injection Time: 14:29
\begin{tabular}{|c|c|c|}
\hline \(\mathrm{m} / \mathrm{z}\) & Ion Abundance Criteria & \begin{tabular}{c}
\(\%\) Relative \\
Abundance
\end{tabular} \\
\hline 51 & \(30.0-60.0 \%\) of mass 198 & 55.4 \\
\hline 68 & \(0.00-2.00 \%\) of mass 69 & 0.600 \\
\hline 69 & \(0.00-100 \%\) of mass 198 & 64.7 \\
\hline 70 & \(0.00-2.00 \%\) of mass 69 & 0.00 \\
\hline 127 & \(40.0-60.0 \%\) of mass 198 & 40.1 \\
\hline 197 & \(0.00-1.00 \%\) of mass 198 & 0.00 \\
\hline 198 & \(100-100 \%\) of mass 198 & 100 \\
\hline 199 & \(5.00-9.00 \%\) of mass 198 & 6.80 \\
\hline 275 & \(10.0-30.0 \%\) of mass 198 & 22.1 \\
\hline 365 & \(1.00-100 \%\) of mass 198 & 1.70 \\
\hline 441 & \(0.0100-100 \%\) of mass 443 & 72.7 \\
\hline 442 & \(40.0-100 \%\) of mass 198 & 60.8 \\
\hline 443 & \(17.0-23.0 \%\) of mass 442 & 19.3 \\
\hline
\end{tabular}

This check applies to the following Samples, MS, MSD, Blanks, and Standards
\begin{tabular}{|c|c|c|c|c|}
\hline Client Sample & \begin{tabular}{c}
Lab \\
Sample ID
\end{tabular} & \begin{tabular}{c}
Lab \\
File ID
\end{tabular} & \begin{tabular}{c}
Date \\
Acquired
\end{tabular} & \begin{tabular}{c}
Time \\
Acquired
\end{tabular} \\
\hline CCV & 050 ppb ABN cCV & 5S8650.D & 14-May-10 & \(14: 43\) \\
\hline Blank-2029 & sabn 134 blk & 5S8659.D & 14-May-10 & \(20: 03\) \\
\hline Blank Spike-2029 & sabn 134 ICs & 5S8658.D & 14-May-10 & \(19: 26\) \\
\hline Matrix Spike-2029 & ms 10050398-001 & 5S8669.D & 15-May-10 & \(2: 09\) \\
\hline SB-MW-8 & \(10050460-001\) & 5S8666.D & 15-May-10 & \(0: 19\) \\
\hline SB-MW-9 & \(10050460-002\) & 5S8667.D & 15-May-10 & \(0: 55\) \\
\hline
\end{tabular}

Data File : G:\HPChem\5\Data\05142010\5S8649.D
Acq On : 14 May 2010 2:29 pm
Sample : Dftpp tune
Misc :

Vial: 1
Operator: sdp
Inst : GC/MS-5
Multiplr: 1.00

MS Integration Params: rteint.p
Method : G: \HPChem \(\backslash 5 \backslash\) Methods \(\backslash 0510\) ABNS.M (RTE Integrator)
Title : BNA by EPA 8270C method

TIC: 5S8649.D

600000

500000

400000

300000

200000

100000

50000

Spectrum Information: Average of 4.129 to 4.147 min .
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Target Mass & Rel. to Mass & \begin{tabular}{l}
Lower \\
Limit\%
\end{tabular} & \begin{tabular}{l}
Upper \\
Limit\%
\end{tabular} & \begin{tabular}{l}
Rel. \\
Abn\%
\end{tabular} & \begin{tabular}{l}
Raw \\
Abn
\end{tabular} & \[
\begin{gathered}
\text { Result } \\
\text { Pass/Fail }
\end{gathered}
\] \\
\hline 51 & 198 & 30 & 60 & 55.4 & 27956 & PASS \\
\hline 68 & 69 & 0.00 & 2 & 0.6 & 191 & PASS \\
\hline 69 & 198 & 0.00 & 100 & 64.7 & 32655 & PASS \\
\hline 70 & 69 & 0.00 & 2 & 0.0 & 0 & PASS \\
\hline 127 & 198 & 40 & 60 & 40.1 & 20231 & PASS \\
\hline 197 & 198 & 0.00 & 1 & 0.0 & 0 & PASS \\
\hline 198 & 198 & 100 & 100 & 100.0 & 50480 & PASS \\
\hline 199 & 198 & 5 & 9 & 6.8 & 3417 & PASS \\
\hline 275 & 198 & 10 & 30 & 22.1 & 11157 & PASS \\
\hline 365 & 198 & 1 & 100 & 1.7 & 878 & PASS \\
\hline 441 & 443 & 0.01 & 100 & 72.7 & 4297 & PASS \\
\hline 442 & 198 & 40 & 100 & 60.8 & 30692 & PASS \\
\hline 443 & 442 & 17 & 23 & 19.3 & 5914 & PASS \\
\hline
\end{tabular}

ECOEAO \(\cap\) ПFT ПADNTC M

Client:
Brinkerhoff Environmental
Project: Petrocelli Electric

Calibration Date:
Lab File ID:

10-May-10
RRF5: 5S8604.D
RRF50: 5S8601.D

RRF10: 5S8603.D
RRF60: 5S8600.D

RRF20:
RRF80:

5S8602.D
5S8599.D
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Compound & RRF5 & RRF10 & RRF20 & RRF50 & RRF60 & RRF80 & Avg RRF & \begin{tabular}{l}
\% \\
RSD
\end{tabular} & \[
\begin{gathered}
\text { Cal } \\
\text { Type }
\end{gathered}
\] \\
\hline n-Nitroso-dimethylamine & 0.788 & 0.909 & 1.00 & 1.03 & 1.01 & 0.990 & 0.955 & 9.61 & Average RRF \\
\hline Pyridine & 1.19 & 1.24 & 1.26 & 1.30 & 1.24 & 1.23 & 1.24 & 2.75 & Average RRF \\
\hline 2-Fluorophenol & 0.858 & 0.949 & 1.11 & 1.18 & 1.15 & 1.15 & 1.06 & 12.2 & Average RRF \\
\hline Benzaldehyde & 0.772 & 0.947 & 0.915 & 0.719 & 0.598 & 0.491 & 0.740 & 23.9 & Average RRF \\
\hline Aniline & 2.02 & 2.14 & 2.19 & 2.13 & 2.05 & 2.06 & 2.10 & 3.16 & Average RRF \\
\hline Phenol-d6 & 1.61 & 1.76 & 1.84 & 1.87 & 1.84 & 1.85 & 1.80 & 5.36 & Average RRF \\
\hline Phenol & 1.63 & 1.73 & 1.81 & 1.82 & 1.82 & 1.78 & 1.77 & 4.23 & Average RRF \\
\hline bis(2-Chloroethyl)ether & 1.16 & 1.35 & 1.33 & 1.41 & 1.34 & 1.31 & 1.32 & 6.39 & Average RRF \\
\hline 2-Chlorophenol & 1.28 & 1.38 & 1.42 & 1.42 & 1.38 & 1.38 & 1.38 & 3.88 & Average RRF \\
\hline 1,3-Dichlorobenzene & 1.61 & 1.55 & 1.53 & 1.56 & 1.54 & 1.51 & 1.55 & 2.27 & Average RRF \\
\hline 1,4-Dichlorobenzene & 1.52 & 1.62 & 1.67 & 1.61 & 1.58 & 1.58 & 1.60 & 3.12 & Average RRF \\
\hline 1.2-Dichlorobenzene & 1.54 & 1.54 & 1.53 & 1.52 & 1.47 & 1.42 & 1.50 & 3.24 & Average RRF \\
\hline Benzyl Alcohol & 0.522 & 0.721 & 0.813 & 0.911 & 0.864 & 0.880 & 0.785 & 18.5 & Average RRF \\
\hline 2-Methylphenol & 1.14 & 1.22 & 1.32 & 1.34 & 1.27 & 1.33 & 1.27 & 6.42 & Average RRF \\
\hline bis(2-Chloroisopropyl')ether & 4.21 & 4.55 & 4.43 & 4.52 & 4.39 & 4.20 & 4.38 & 3.35 & Average RRF \\
\hline Acetophenone & 2.09 & 2.21 & 2.20 & 2.23 & 2.23 & 2.17 & 2.19 & 2.44 & Average RRF \\
\hline n-Nitroso-di-n-propylamine & 1.35 & 1.26 & 1.34 & 1.37 & 1.34 & 1.30 & 1.32 & 3.05 & Average RRF \\
\hline 3+4-Methylphenol & 1.24 & 1.41 & 1.42 & 1.50 & 1.46 & 1.49 & 1.42 & 6.77 & Average RRF \\
\hline Hexachloroethane & 0.823 & 0.851 & 0.843 & 0.857 & 0.862 & 0.855 & 0.848 & 1.65 & Average RRF \\
\hline Nitrobenzene-d5 & 0.348 & 0.418 & 0.439 & 0.463 & 0.451 & 0.441 & 0.427 & 9.68 & Average RRF \\
\hline Nitrobenzene & 0.373 & 0.418 & 0.421 & 0.440 & 0.439 & 0.415 & 0.418 & 5.83 & Average RRF \\
\hline Isophorone & 0.778 & 0.848 & 0.799 & 0.826 & 0.822 & 0.797 & 0.812 & 3.09 & Average RRF \\
\hline 2-Nitrophenol & 0.161 & 0.190 & 0.206 & 0.238 & 0.229 & 0.236 & 0.210 & 14.5 & Average RRF \\
\hline 2,4-Dimethylphenol & 0.386 & 0.382 & 0.378 & 0.400 & 0.396 & 0.386 & 0.388 & 2.16 & Average RRF \\
\hline bis(2-Chloroethoxy)methane & 0.445 & 0.523 & 0.510 & 0.511 & 0.515 & 0.490 & 0.499 & 5.73 & Average RRF \\
\hline Benzoic Acid & & 0.125 & 0.0800 & 0.140 & 0.135 & 0.240 & 0.144 & 40.7 & Average RRF \\
\hline 2,4-Dichlorophenol & 0.276 & 0.330 & 0.330 & 0.345 & 0.340 & 0.337 & 0.326 & 7.76 & Average RRF \\
\hline 1,2,4-Trichlorobenzene & 0.384 & 0.378 & 0.390 & 0.363 & 0.376 & 0.364 & 0.376 & 2.86 & Average RRF \\
\hline Naphthalene & 1.17 & 1.11 & 1.08 & 1.06 & 1.04 & 1.00 & 1.08 & 5.40 & Average RRF \\
\hline 4-Chloroaniline & 0.463 & 0.508 & 0.505 & 0.497 & 0.494 & 0.477 & 0.491 & 3.54 & Average RRF \\
\hline 2,6-Dichlorophenol & 0.342 & 0.351 & 0.350 & 0.346 & 0.346 & 0.330 & 0.344 & 2.22 & Average RRF \\
\hline Hexachlorobutadiene & 0.250 & 0.247 & 0.267 & 0.261 & 0.258 & 0.248 & 0.255 & 3.17 & Average RRF \\
\hline Caprolactam & 0.109 & 0.127 & 0.144 & 0.148 & 0.147 & 0.155 & 0.138 & 12.4 & Average RRF \\
\hline 4-Chloro-3-methylphenol & 0.343 & 0.386 & 0.403 & 0.441 & 0.415 & 0.433 & 0.404 & 8.85 & Average RRF \\
\hline 2-Methylnaphthalene & 0.809 & 0.837 & 0.779 & 0.746 & 0.744 & 0.698 & 0.769 & 6.51 & Average RRF \\
\hline Hexachlorocyclopentadiene & & 0.172 & 0.218 & 0.312 & 0.308 & 0.352 & 0.272 & 27.4 & Quadratic \\
\hline 2,4,6-Trichlorophenol & 0.333 & 0.369 & 0.407 & 0.411 & 0.406 & 0.399 & 0.388 & 7.93 & Average RRF \\
\hline 2,4,5-Trichlorophenol & 0.341 & 0.383 & 0.442 & 0.448 & 0.447 & 0.449 & 0.418 & 10.9 & Average RRF \\
\hline 2-Fluorobiphenyl & 1.41 & 1.36 & 1.33 & 1.25 & 1.26 & 1.22 & 1.31 & 5.78 & Average RRF \\
\hline Biphenyl & 1.48 & 1.40 & 1.38 & 1.28 & 1.30 & 1.18 & 1.34 & 8.10 & Average RRF \\
\hline 2-Chloronaphthalene & 1.13 & 1.09 & 1.06 & 0.993 & 1.00 & 0.936 & 1.04 & 6.91 & Average RRF \\
\hline 2-Nitroaniline & 0.301 & 0.409 & 0.468 & 0.485 & 0.499 & 0.498 & 0.443 & 17.4 & Average RRF \\
\hline Dimethylphthalate & 1.32 & 1.40 & 1.40 & 1.36 & 1.34 & 1.35 & 1.36 & 2.28 & Average RRF \\
\hline
\end{tabular}

Client: Brinkerhoff Environmental
Project: Petrocelli Electric
Calibration Date:
Lab File ID:
RRF5: 5S8604.D
\(\begin{array}{llll}\text { RRF10: } & 5 S 8603 . D & \text { RRF20: } & 5 S 8602 . D \\ \text { RRF60: } & 5 S 8600 . D & \text { RRF80: } & 5 S 8599 . D\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Compound & RRF5 & RRF10 & RRF20 & RRF50 & RRF60 & RRF80 & Avg RRF & \begin{tabular}{l}
\[
\%
\] \\
RSD
\end{tabular} & \begin{tabular}{l}
Cal \\
Type
\end{tabular} \\
\hline 2,6-Dinitrotoluene & 0.216 & 0.284 & 0.322 & 0.342 & 0.340 & 0.356 & 0.310 & 16.9 & Average RRF \\
\hline Acenaphthylene & 1.70 & 1.70 & 1.66 & 1.66 & 1.64 & 1.59 & 1.66 & 2.68 & Average RRF \\
\hline 3-Nitroaniline & 0.318 & 0.346 & 0.392 & 0.438 & 0.434 & 0.440 & 0.395 & 13.3 & Average RRF \\
\hline Acenaphthene & 1.15 & 1.23 & 1.18 & 1.12 & 1.12 & 1.06 & 1.14 & 5.19 & Average RRF \\
\hline 2,4-Dinitrophenol & & 0.0320 & 0.103 & 0.196 & 0.206 & 0.252 & 0.158 & 56.2 & Quadratic \\
\hline 4-Nitrophenol & & 0.288 & 0.342 & 0.400 & 0.391 & 0.397 & 0.364 & 13.3 & Average RRF \\
\hline Dibenzofuran & 1.80 & 1.81 & 1.81 & 1.73 & 1.71 & 1.65 & 1.75 & 3.76 & Average RRF \\
\hline 2,4-Dinitrotoluene & 0.372 & 0.448 & 0.476 & 0.511 & 0.514 & 0.510 & 0.472 & 11.7 & Average RRF \\
\hline 2,3,4,6-Tetrachbrophenol & 0.278 & 0.340 & 0.391 & 0.420 & 0.417 & 0.424 & 0.378 & 15.4 & Average RRF \\
\hline Diethylphthalate & 1.44 & 1.59 & 1.59 & 1.60 & 1.59 & 1.57 & 1.56 & 4.02 & Average RRF \\
\hline Fluorene & 1.34 & 1.42 & 1.38 & 1.40 & 1.38 & 1.31 & 1.37 & 3.04 & Average RRF \\
\hline 4-Chlorophenyl phenyl ether & 0.677 & 0.736 & 0.740 & 0.687 & 0.686 & 0.666 & 0.699 & 4.50 & Average RRF \\
\hline 4-Nitroaniline & 0.317 & 0.416 & 0.428 & 0.481 & 0.475 & 0.466 & 0.431 & 14.3 & Average RRF \\
\hline 4,6-Dinitro-2-methylphenol & & 0.0770 & 0.123 & 0.168 & 0.166 & 0.185 & 0.144 & 30.5 & Quadratic \\
\hline n-Nitrosodiphenylamine & 0.501 & 0.526 & 0.503 & 0.501 & 0.500 & 0.491 & 0.504 & 2.33 & Average RRF \\
\hline 1,2-Diphenylhydrazine & 0.941 & 0.978 & 0.978 & 0.984 & 0.993 & 0.937 & 0.969 & 2.43 & Average RRF \\
\hline 2,4,6-Tribromophenol & 0.150 & 0.176 & 0.189 & 0.202 & 0.197 & 0.191 & 0.184 & 10.3 & Average RRF \\
\hline 4-Bromophenyl-phenyl ether & 0.232 & 0.254 & 0.248 & 0.253 & 0.257 & 0.249 & 0.249 & 3.57 & Average RRF \\
\hline Hexachlorobenzene & 0.349 & 0.336 & 0.330 & 0.328 & 0.323 & 0.316 & 0.330 & 3.44 & Average RRF \\
\hline Atrazine & 0.196 & 0.213 & 0.217 & 0.213 & 0.204 & 0.189 & 0.205 & 5.38 & Average RRF \\
\hline Pentachlorophenol & & 0.148 & 0.110 & 0.160 & 0.160 & 0.188 & 0.153 & 18.5 & Average RRF \\
\hline Phenanthrene & 1.27 & 1.18 & 1.13 & 1.09 & 1.09 & 1.05 & 1.13 & 6.96 & Average RRF \\
\hline Anthracene & 1.10 & 1.14 & 1.13 & 1.14 & 1.10 & 1.04 & 1.10 & 2.99 & Average RRF \\
\hline Carbazole & 1.12 & 1.18 & 1.16 & 1.15 & 1.13 & 1.08 & 1.14 & 3.09 & Average RRF \\
\hline Di-n-butylphthalate & 1.58 & 1.67 & 1.68 & 1.68 & 1.70 & 1.52 & 1.64 & 4.35 & Average RRF \\
\hline Fluoranthene & 1.40 & 1.40 & 1.41 & 1.38 & 1.38 & 1.29 & 1.38 & 3.21 & Average RRF \\
\hline Benzidine & 0.294 & 0.301 & 0.286 & 0.195 & 0.129 & 0.123 & 0.221 & 37.6 & Average RRF \\
\hline Pyrene & 1.09 & 1.10 & 1.09 & 1.11 & 1.10 & 1.15 & 1.11 & 2.01 & Average RRF \\
\hline p-Terphenyl-d 14 & 0.755 & 0.799 & 0.787 & 0.807 & 0.808 & 0.824 & 0.797 & 2.98 & Average RRF \\
\hline Butylbenzylphthalate & 0.588 & 0.619 & 0.632 & 0.673 & 0.663 & 0.674 & 0.641 & 5.39 & Average RRF \\
\hline 3,3'-Dichlorobenzidine & 0.392 & 0.420 & 0.418 & 0.401 & 0.379 & 0.370 & 0.397 & 5.12 & Average RRF \\
\hline Benzo(a)anthracene & 1.09 & 1.07 & 1.05 & 1.05 & 1.05 & 1.05 & 1.06 & 1.62 & Average RRF \\
\hline bis(2-Ethylhexyl)phthalate & 0.924 & 0.902 & 0.902 & 0.910 & 0.909 & 0.896 & 0.907 & 1.07 & Average RRF \\
\hline Chrysene & 1.10 & 1.08 & 1.06 & 1.01 & 0.996 & 1.01 & 1.04 & 4.10 & Average RRF \\
\hline Di-n-octylphthalate & 1.70 & 1.87 & 1.94 & 2.05 & 2.01 & 1.98 & 1.92 & 6.45 & Average RRF \\
\hline Benzo(b)fluoranthene & 1.31 & 1.32 & 1.31 & 1.28 & 1.25 & 1.27 & 1.29 & 2.15 & Average RRF \\
\hline Benzo(k)fluoranthene & 1.29 & 1.31 & 1.24 & 1.30 & 1.29 & 1.21 & 1.27 & 3.16 & Average RRF \\
\hline Benzo(a)pyrene & 1.20 & 1.19 & 1.20 & 1.22 & 1.20 & 1.21 & 1.20 & 0.900 & Average RRF \\
\hline Indeno(1,2,3-cd)pyrene & 1.38 & 1.44 & 1.46 & 1.50 & 1.48 & 1.46 & 1.46 & 2.85 & Average RRF \\
\hline Dibenzo(a,h)anthracene & 1.15 & 1.20 & 1.19 & 1.22 & 1.20 & 1.16 & 1.18 & 2.18 & Average RRF \\
\hline Benzo(g, h,i)perylene & 1.17 & 1.26 & 1.26 & 1.30 & 1.29 & 1.27 & 1.26 & 3.79 & Average RRF \\
\hline
\end{tabular}

Average \%RSD \(=8.17\)

\section*{Semi-Volatile Organic Instrument Performance Check (Tune)} DECAFLUOROTRIPHENYLPHOSPHINE(DFTPP)
\begin{tabular}{llll}
Client: & Brinkerhoff Environmental & DFTPP Injection Date: & 10-May-10 \\
Project: & Petrocelli Electric & DFTPP Injection Time: & 10:26 \\
Lab File ID: & G:\HPChemI5\Data\0510201015S8598.D &
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \(\mathrm{m} / \mathrm{z}\) & Ion Abundance Criteria & \begin{tabular}{c}
\% Relative \\
Abundance
\end{tabular} \\
\hline 51 & \(30.0-60.0 \%\) of mass 198 & 50.4 \\
\hline 68 & \(0.00-2.00 \%\) of mass 69 & 0.00 \\
\hline 69 & \(0.00-100 \%\) of mass 198 & 60.3 \\
\hline 70 & \(0.00-2.00 \%\) of mass 69 & 0.200 \\
\hline 127 & \(40.0-60.0 \%\) of mass 198 & 40.1 \\
\hline 197 & \(0.00-1.00 \%\) of mass 198 & 0.00 \\
\hline 198 & \(100-100 \%\) of mass 198 & 100 \\
\hline 199 & \(5.00-9.00 \%\) of mass 198 & 6.80 \\
\hline 275 & \(10.0-30.0 \%\) of mass 198 & 21.5 \\
\hline 365 & \(1.00-100 \%\) of mass 198 & 2.10 \\
\hline 441 & \(0.0100-100 \%\) of mass 443 & 73.0 \\
\hline 442 & \(40.0-100 \%\) of mass 198 & 55.5 \\
\hline 443 & \(17.0-23.0 \%\) of mass 442 & 20.3 \\
\hline
\end{tabular}

This check applies to the following Samples, MS, MSD, Blanks, and Standards
\begin{tabular}{|c|c|c|c|c|}
\hline Client Sample & \begin{tabular}{c}
Lab \\
Sample ID
\end{tabular} & \begin{tabular}{c}
Lab \\
File ID
\end{tabular} & \begin{tabular}{c}
Date \\
Acquired
\end{tabular} & \begin{tabular}{c}
Time \\
Acquired
\end{tabular} \\
\hline SSTD5 & 005 ppb ABN ical std & 5 S8604.D & 10 -May-10 & \(13: 53\) \\
\hline SSTD10 & 010 ppb ABN ical std & 5 S8603.D & 10 -May-10 & \(13: 12\) \\
\hline SSTD20 & 020 ppb ABN ical std & 5 58602.D & \(10-\) May-10 & \(12: 30\) \\
\hline SSTD40 & 040 ppb ABN ical std & \(5 S 8606 . \mathrm{D}\) & \(10-\) May-10 & \(15: 04\) \\
\hline SSTD50 & 050 ppb ABN ical std & 5 S8601.D & \(10-\) May-10 & \(11: 54\) \\
\hline SSTD60 & 060 ppb ABN ical std & 5 S8600.D & \(10-\) May-10 & 1117 \\
\hline SSTD80 & 080 ppb ABN ical std & 5 58599.D & \(10-\) May-10 & \(10: 43\) \\
\hline
\end{tabular}

Data File : G:\HPChem\5\Data\05102010\5S8598.D
Acq On : 10 May 2010 10:26 am
Sample : Dftpp tune
Misc
MS Integration Farams: rteint.p
Method : G: \HPCHEM \(\backslash 5 \backslash\) ME'rHODS \(\backslash 0510 A B N S . M\) (RTE Integrator)
Title: BNA by EPA 8270C method
Vial: 1
Operator: sdp
Inst : GC/MS-5
Multiplr: 1.00

TIC: 5S8598.D
1600000

1400000
1200000

1000000

800000

600000

400000

200000

120000

100000

Spectrum Information: Average of 4.222 to 4.240 min .
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Target Mass & Rel. to Mass & \begin{tabular}{l}
Lower \\
Limit응
\end{tabular} & \begin{tabular}{l}
Upper \\
Limit\%
\end{tabular} & \begin{tabular}{l}
Rel. \\
Abn\%
\end{tabular} & \begin{tabular}{l}
Raw \\
Abn
\end{tabular} & \[
\begin{gathered}
\text { Result } \\
\text { Pass/Fail }
\end{gathered}
\] \\
\hline 51 & 198 & 30 & 60 & 50.4 & 66920 & PASS \\
\hline 68 & 69 & 0.00 & 2 & 0.0 & 0 & PASS \\
\hline 69 & 198 & 0.00 & 100 & 60.3 & 79933 & PASS \\
\hline 70 & 69 & 0.00 & 2 & 0.2 & 178 & PASS \\
\hline 127 & 198 & 40 & 60 & 40.1 & 53176 & PASS \\
\hline 197 & 198 & 0.00 & 1 & 0.0 & 0 & PASS \\
\hline 198 & 198 & 100 & 100 & 100.0 & 132656 & PASS \\
\hline 199 & 198 & 5 & 9 & 6.8 & 9024 & PASS \\
\hline 275 & 198 & 10 & 30 & 21.5 & 28476 & PASS \\
\hline 365 & 198 & 1 & 100 & 2.1 & 2764 & PASS \\
\hline 441 & 443 & 0.01 & 100 & 73.0 & 10894 & PASS \\
\hline 442 & 198 & 40 & 100 & 55.5 & 73574 & PASS \\
\hline 443 & 442 & 17 & 23 & 20.3 & 14932 & PASS \\
\hline
\end{tabular}

Aqua Pro-Tech Laboratories
\begin{tabular}{|c|c|c|c|}
\hline CAS & Compound & Conc. & QC Limits \\
\hline 105-67-9 & 2,4-Dimethylphenol & 52.2 & 40.0-60.0 \\
\hline 86-73-7 & Fluorene & 48.7 & 40.0-60.0 \\
\hline 117-81-7 & bis(2-Ethylhexyl)phthalate & 50.2 & 40.0-60.0 \\
\hline 541-73-1 & 1,3-Dichlorobenzene & 48.7 & 40.0-60.0 \\
\hline 88-06-2 & 2,4,6-Trichlorophenol & 52.5 & 40.0-60.0 \\
\hline 85-01-8 & Phenanthrene & 46.3 & 40.0-60.0 \\
\hline 191-24-2 & Benzo[g,h,i]perylene & 51.3 & 40.0-60.0 \\
\hline 78-59-1 & Isophorone & 54.7 & 40.0-60.0 \\
\hline 100-02-7 & 4-Nitrophenol & 59.1 & 40.0-60.0 \\
\hline 91-94-1 & 3,3'-Dichlorobenzidine & 55.2 & 40.0-60.0 \\
\hline 95-57-8 & 2-Chlorophenol & 50.4 & 40.0-60.0 \\
\hline 106-46-7 & 1,4-Dichlorobenzene & 48.8 & 40.0-60.0 \\
\hline 621-64-7 & n-Nitroso-di-n-propylamine & 53.9 & 40.0-60.0 \\
\hline 98-95-3 & Nitrobenzene & 55.5 & 40.0-60.0 \\
\hline 88-75-5 & 2-Nitrophenol & 56.5 & 40.0-60.0 \\
\hline 111-91-1 & bis(2-Chloroethoxy)methane & 53.4 & 40.0-60.0 \\
\hline 120-83-2 & 2,4-Dichlorophenol & 52.4 & 40.0-60.0 \\
\hline 91-20-3 & Naphthalene & 49.3 & 40.0-60.0 \\
\hline 59-50-7 & 4-Chloro-3-methylphenol & 55.3 & 40.0-60.0 \\
\hline 91-58-7 & 2-Chloronaphthalene & 45.6 & 40.0-60.0 \\
\hline 606-20-2 & 2,6-Dinitrotoluene & 57.7 & 40.0-60.0 \\
\hline 51-28-5 & 2,4-Dinitrophenol & 58.5 & 40.0-60.0 \\
\hline 121-14-2 & 2,4-Dinitrotoluene & 57.1 & 40.0-60.0 \\
\hline 84-66-2 & Diethylphthalate & 52.0 & 40.0-60.0 \\
\hline 7005-72-3 & 4-Chlorophenyl phenyl ether & 50.3 & 40.0-60.0 \\
\hline 101-55-3 & 4-Bromophenyl-phenyl ether & 50.4 & 40.0-60.0 \\
\hline 87-86-5 & Pentachlorophenol & 58.0 & 40.0-60.0 \\
\hline 120-12-7 & Anthracene & 48.7 & 40.0-60.0 \\
\hline 129-00-0 & Pyrene & 49.7 & 40.0-60.0 \\
\hline 56-55-3 & Benzo[a]anthracene & 51.0 & 40.0-60.0 \\
\hline 218-01-9 & Chrysene & 48.2 & 40.0-60.0 \\
\hline 117-84-0 & Di-n-octylphthalate & 51.1 & 40.0-60.0 \\
\hline 205-99-2 & Benzo[b]fluoranthene & 48.0 & 40.0-60.0 \\
\hline 50-32-8 & Benzo[a]pyrene & 49.6 & 40.0-60.0 \\
\hline 53-70-3 & Dibenzo[a,h]anthracene & 50.0 & 40.0-60.0 \\
\hline 95-50-1 & 1,2-Dichlorobenzene & 48.2 & 40.0-60.0 \\
\hline 131-11-3 & Dimethylphthalate & 49.6 & 40.0-60.0 \\
\hline 84-74-2 & Di-n-butylphthalate & 51.7 & 40.0-60.0 \\
\hline 111-44-4 & bis(2-Chloroethyl)ether & 52.4 & 40.0-60.0 \\
\hline 67-72-1 & Hexachloroethane & 50.5 & 40.0-60.0 \\
\hline 87-68-3 & Hexachlorobutadiene & 49.0 & 40.0-60.0 \\
\hline 83-32-9 & Acenaphthene & 48.5 & 40.0-60.0 \\
\hline 118-74-1 & Hexachlorobenzene & 51.0 & 40.0-60.0 \\
\hline 85-68-7 & Butylbenzylphthalate & 53.6 & 40.0-60.0 \\
\hline 193-39-5 & Indeno(1,2,3-cd)pyrene & 50.6 & 40.0-60.0 \\
\hline 108-95-2 & Phenol & 55.1 & 40.0-60.0 \\
\hline 120-82-1 & 1,2,4-Trichlorobenzene & 49.6 & 40.0-60.0 \\
\hline 534-52-1 & 4,6-Dinitro-2-methylphenol & 56.5 & 40.0-60.0 \\
\hline
\end{tabular}
* Denotes values outside of method required QC Limits
\begin{tabular}{|c|l|c|c|}
\hline CAS & \multicolumn{1}{|c|}{ Compound } & Conc. & QC Limits \\
\hline \(207-08-9\) & Benzo[k]fluoranthene & 47.8 & \(40.0-60.0\) \\
\hline \(108-60-1\) & bis(2-Chloroisopropyl)ether & 55.7 & \(40.0-60.0\) \\
\hline \(208-96-8\) & Acenaphthylene & 49.9 & \(40.0-60.0\) \\
\hline \(206-44-0\) & Fluoranthene & 49.0 & \(40.0-60.0\) \\
\hline
\end{tabular}
```

\#ata File : G:\HPChem\5\Data\05142010\5S8650.D

```
Vial: 2
Operator: sdp
Inst : GC/MS-5
Multiplr: 1.00
is Integration Params: rteint.p
Duant Time: May 14 16:49 2010

Quant Results File: 0510ABNS.RES
```

tant Method : G:\HPCHEM\5\METHODS\0510ABNS.M (RTE Integrator)

```
Title : BNA by EPA 8270C method
ast Update : Thu May 13 16:55:39 2010
 :sponse via : Initial Calibration
 .taAcq Meth : RUN8270

```

ata File : G:\HPChem\5\Data\05142010\5S8650.D

```
Vial: 2
Operator: sdp
Inst: GC/MS-5
Multiplr: 1.00
\(1: S\) Integration Params: rteint.p
Ouant Time: May 14 16:49 2010

Quant Results File: 0510ABNS.RES
ant Method : G: \HPCHEM \(\backslash 5 \backslash\) METHODS \(\backslash 0510\) ABNS.M (RTE Integrator)
'itle : BNA by EPA 8270C method
-ast Update : Thu May 13 16:55:39 2010
sponse via : Initial Calibration
taAcq Meth : RUN8270
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Compound & \multicolumn{2}{|l|}{R.T. QIon} & Response & \multicolumn{2}{|l|}{Conc Unit} & Qvalue \\
\hline 44) & 2-Chloronaphthalene & 12.21 & 162 & 283029 & 45.60 & \(\mathrm{ug} / \mathrm{kg}\) & 97 \\
\hline 45) & 2-Nitroaniline & 12.47 & 138 & 154795 & 58.27 & \(\mathrm{ug} / \mathrm{kg}\) & 92 \\
\hline 46) & Dimethylphthalate & 12.93 & 163 & 405418 & 49.63 & \(\mathrm{ug} / \mathrm{kg}\) & 97 \\
\hline 47) & Acenaphthylene & 13.08 & 152 & 495877 & 49.94 & \(\mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 48) & 2,6-Dinitrotoluene & 13.03 & 165 & 107359 & 57.79 & \(\mathrm{ug} / \mathrm{kg}\) & 95 \\
\hline 49) & 3-Nitroaniline & 13.36 & 138 & 137505 & 58.14 & \(\mathrm{ug} / \mathrm{kg}\) & 95 \\
\hline 50) & Acenaphthene & 13.46 & 153 & 332241 & 48.50 & \(\mathrm{ug} / \mathrm{kg}\) & 100 \\
\hline 51) & 2,4-Dinitrophenol & 13.61 & 184 & 71558 & 58.52 & ug/kg & 98 \\
\hline 52) & Dibenzofuran & 13.85 & 168 & 503165 & 47.94 & \(\mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 53) & 4-Nitrophenol & 13.84 & 65 & 128677 & 59.10 & \(\mathrm{ug} / \mathrm{kg}\) & 94 \\
\hline 54) & 2,4-Dinitrotoluene & 13.89 & 165 & 161517 & 57.13 & \(\mathrm{ug} / \mathrm{kg}\) & 98 \\
\hline 55) & 2,3,4,6-Tetrachlorophenol & 14.16 & 232 & 129896 & 57.31 & \(\mathrm{ug} / \mathrm{kg}\) & 98 \\
\hline 56) & Fluorene & 14.58 & 166 & 400834 & 48.76 & \(\mathrm{ug} / \mathrm{kg}\) & 98 \\
\hline 57) & Diethylphthalate & 14.46 & 149 & 487186 & 52.04 & \(\mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 58) & 4-Chlorophenyl phenyl ethe & 14.63 & 204 & 210803 & 50.37 & \(\mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 59) & 4-Nitroaniline & 14.67 & 138 & 148516 & 57.59 & \(\mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 61) & 4,6-Dinitro-2-methylphenol & 14.77 & 198 & 111709 & 56.54 & \(\mathrm{ug} / \mathrm{kg}\) & 97 \\
\hline 62) & n-Nitrosodiphenylamine & 14.89 & 169 & 287259 & 47.55 & \(\mathrm{ug} / \mathrm{kg}\) & 98 \\
\hline "53) & 1,2-Diphenylhydrazine & 14.97 & 77 & 613643 & 52.83 & \(\mathrm{ug} / \mathrm{kg}\) & 98 \\
\hline 55) & 4-Bromophenyl-phenyl ether & 15.67 & 248 & 150456 & 50.43 & \(\mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 66) & Hexachlorobenzene & 15.77 & 284 & 202274 & 51.04 & \(\mathrm{ug} / \mathrm{kg}\) & 98 \\
\hline 67) & Atrazine & 16.11 & 200 & 126736 & 51.46 & \(\mathrm{ug} / \mathrm{kg}\) & 94 \\
\hline "58) & Pentachlorophenol & 16.22 & 266 & 106534 & 58.02 & \(\mathrm{ug} / \mathrm{kg}\) & 96 \\
\hline 59) & Phenanthrene & 16.62 & 178 & 630744 & 46.36 & \(\mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline *70) & Anthracene & 16.73 & 178 & 644413 & 48.74 & \(\mathrm{ug} / \mathrm{kg}\) & 100 \\
\hline 71) & Carbazole & 17.12 & 167 & 669882 & 49.17 & \(\mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 72) & Di-n-butylphthalate & 17.92 & 149 & 1017725 & 51.74 & \(\mathrm{ug} / \mathrm{kg}\) & 97 \\
\hline 73) & Fluoranthene & 18.88 & 202 & 809547 & 49.02 & \(\mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 75) & Benzidine & 19.12 & 184 & 161948 & 46.96 & \(\mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 76) & Pyrene & 19.22 & 202 & 857962 & 49.79 & \(\mathrm{ug} / \mathrm{kg}\) & 100 \\
\hline \(78)\) & Butylbenzylphthalate & 20.17 & 149 & 536075 & 53.69 & \(\mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 79) & Benzo(a) anthracene & 20.89 & 228 & 844148 & 51.09 & \(\mathrm{ug} / \mathrm{kg}\) & 100 \\
\hline (80) & 3,3'-Dichlorobenzidine & 20.86 & 252 & 341114 & 55.23 & \(\mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 81) & Chrysene & 20.95 & 228 & 781850 & 48.22 & \(\mathrm{ug} / \mathrm{kg}\) & 100 \\
\hline 32) & bis (2-Ethylhexyl) phthalate & 20.93 & 149 & 709192 & 50.22 & \(\mathrm{ug} / \mathrm{kg}\) & 97 \\
\hline 34) & Di-n-octylphthalate & 21.89 & 149 & 1428482 & 51.17 & \(\mathrm{ug} / \mathrm{kg}\) & 100 \\
\hline 85) & Benzo (b) fluoranthene & 22.64 & 252 & 899395 & 48.06 & \(\mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 86) & Benzo(k) fluoranthene & 22.68 & 252 & 882915 & 47.81 & \(\mathrm{ug} / \mathrm{kg}\) & 98 \\
\hline "37) & Benzo (a) pyrene & 23.29 & 252 & 865495 & 49.60 & \(\mathrm{ug} / \mathrm{kg}\) & 99 \\
\hline 38) & Indeno (1, 2, 3-cd) pyrene & 26.09 & 276 & 1069339 & 50.67 & \(\mathrm{ug} / \mathrm{kg}\) & 98 \\
\hline "*89) & Dibenzo (\(a, h\)) anthracene & 26.14 & 278 & 859926 & 50.09 & \(\mathrm{ug} / \mathrm{kg}\) & 98 \\
\hline 90) & Benzo (g, h, i) perylene & 26.79 & 276 & 937171 & 51.34 & \(\mathrm{ug} / \mathrm{kg}\) & 100 \\
\hline
\end{tabular}

Data File : G: \HPChem\5\Data\05142010\5S8650.D
Acq On : 14 May 2010 2:43 pm
Sample : 050 ppb ABN ccv
Misc :
MS Integration Params: rteint.p
Quant Time: May 14 16:49 2010
```

Method : G:\HPChem\5\Methods\0510ABNS.M (RTE Integrator)
Title : BNA by EPA 8270C method
Last Update : Thu May 13 16:55:39 2010

```
Response via : Initial Calibration
Vial: 2
Operator: sdp
Inst : GC/MS-5
Multiplr: 1.00

Quant Results File: 0510ABNS.RES

TIC: 5S8650.D

Approved:
17-Mav-2010 12:10
\(\square\) . 3200000

3000000

2800000

2600000

2400000
" 2200000
- 2000000
. 1800000

1600000

1400000
\(\because 1000000\)
- 800000

ne

200000

S8650.D 0510ARNS.M

Client: Brinkerhoff Environmental
Project: Petrocelli Electric
Lab File ID (Standard): 5S8650.D
IS1= 1,4-Dichlorobenzene-d4
IS2= Naphthalene-d8
IS3= Acenaphthene-d10

Date Acquired: 14-May-10
Time Acquired: 14:43
Area Upper Limit \(=+100 \%\) of Internal Standard Area Area Lower Limit=-50\% of Internal Standard Area RT Upper Limit=+0.50 minutes of Internal Standard RT RT Lower Limit=-0.50 minutes of Internal Standard RT
* Denotes values outside of method required QC limits
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline & \begin{tabular}{c}
IS1 \\
Area
\end{tabular} & RT & \begin{tabular}{c}
IS2 \\
Area
\end{tabular} & RT & \begin{tabular}{c}
IS3 \\
Area
\end{tabular} & RT \\
\hline 12 Hour Std. & 69622 & 6.97 & 312698 & 9.64 & 239649 & 13.4 \\
\hline Upper Limit & 139244 & 7.47 & 625396 & 10.14 & 479298 & 13.9 \\
\hline Lower Limit & 34811 & 6.47 & 156349 & 9.14 & 119824 & 12.9 \\
\hline Client Sample & \multicolumn{7}{|c|}{} & \\
\hline Blank-2029 & 50602 & 6.97 & 237730 & 9.63 & 175606 & 13.4 \\
\hline SB-MW-8 & 55266 & 6.97 & 251234 & 9.63 & 187179 & 13.4 \\
\hline SB-MW-9 & 51918 & 6.96 & 231893 & 9.64 & 173102 & 13.39 \\
\hline
\end{tabular}

Aqua Pro-Tech Laboratories

Client: Brinkerhoff Environmental
Project: Petrocelli Electric
Lab File ID (Standard): 5S8650.D
IS4= Phenanthrene-d10
IS5= Chrysene-d12
IS6= Perylene-d12

Date Acquired: 14-May-10
Time Acquired: 14:43
Area Upper Limit=+100\% of Internal Standard Area Area Lower Limit=-50\% of Internal Standard Area RT Upper Limit=+0.50 minutes of Internal Standard RT RT Lower Limit=-0.50 minutes of Internal Standard RT
* Denotes values outside of method required QC limits
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline & \begin{tabular}{c}
IS4 \\
Area
\end{tabular} & RT & \begin{tabular}{c}
IS5 \\
Area
\end{tabular} & RT & \begin{tabular}{c}
IS6 \\
Area
\end{tabular} & RT \\
\hline 12 Hour Std. & 479693 & 16.57 & 622716 & 20.91 & 580130 & 23.4 \\
\hline Upper Limit & 959386 & 17.07 & 1245432 & 21.41 & 1160260 & 23.9 \\
\hline Lower Limit & 239846 & 16.07 & 311358 & 20.41 & 290065 & 22.9 \\
\hline Client Sample & 354279 & 16.57 & 501266 & 20.91 & 494638 & 23.4 \\
\hline Blank -2029 & 377827 & 16.57 & 520374 & 20.91 & 503650 & 23.4 \\
\hline SB-MW-8 & 350595 & 16.57 & 491578 & 20.9 & 481019 & 23.4 \\
\hline SB-MW-9 & \multicolumn{6}{|l|}{}
\end{tabular}

\section*{Brinkerhoff Environmental Services, Inc. \\ Monitoring Well Sampling Data Form}

Location: Petrocelli Electric, 22-09 Queens Bridge Plaza North, Long Island City, New York
\begin{tabular}{|c|c|c|c|}
\hline Sample Date: & 5/26/10 & BES Job \# : & 10BR060 \\
\hline Sample ID\#: & MW-8 & Sampled By: & Duane Shinton \\
\hline Monitoring Well Number: & MW-8 & Casing Type \& Diameter: & Schedule 40 PVC 2 * \\
\hline \multirow[t]{2}{*}{Weather Conditions:} & Sunny, \(88^{\circ} \mathrm{F}\) & Monitoring Well Permit \#: & Not Applicable \\
\hline & \multicolumn{3}{|l|}{Readings Prior to Well Purging} \\
\hline Time: & 11:00 AM & Product Thickness (ft.): & 0.0 \\
\hline pH: & 7.98 & Depth, top of Inner Casing to Water (ft.): & 9.19 \\
\hline Dissolved Oxygen (mg/l): & 0.45 & Total Depth, Top of Inner Casing (ft.): & 14.76 \\
\hline Temp. \(\left({ }^{\circ} \mathrm{C}\right)\) : & 16.6 & Length of Screen (ft.): & 10.0 \\
\hline Conductivity (\(\mathrm{mS} / \mathrm{cm}\)) & 2.05 & Volume of Water in Well (gal.): & . 91 \\
\hline
\end{tabular}

\section*{Readings Subsequent to Purging}
pH :
Dissolved Oxygen (mg/l):
Temp. \(\left({ }^{\circ} \mathrm{C}\right)\) :
Conductivity (\(\mathrm{mS} / \mathrm{cm}\))
6.99
0.46
15.7
1.89

Pump Start Time:
Pump End Time:
Purge Rate:
Volume Purged (gal.):
Purge Method:

11:00 AM
11:11 AM
0.41 (gal./min.)
4.5

Submersible pump w/ dedicated poly tubing

\section*{Reading Subsequent to Sampling}
\begin{tabular}{llll}
pH: & 6.59 & Sampling Method: & \begin{tabular}{l}
Dedicated Teflon \\
bailer
\end{tabular} \\
Dissolved Oxygen \((\mathrm{mg} / \mathrm{l}):\) & 0.48 & Sample Start Time: & \(11: 35 \mathrm{AM}\) \\
Temp. \(\left({ }^{\circ} \mathrm{C}\right):\) & 15.2 & Sample End Time: & \(11: 40 \mathrm{AM}\) \\
Conductivity \((\mathrm{mS} / \mathrm{cm})\) & 1.91 & &
\end{tabular}

\section*{Brinkerhoff Environmental Services, Inc. Monitoring Well Sampling Data Form}

Location: Petrocelli Electric, 22-09 Queens Bridge Plaza North, Long Island City, New York
\begin{tabular}{|c|c|c|c|}
\hline Sample Date: & 5/26/10 & BES Job \# : & 10BR060 \\
\hline Sample ID\#: & MW-9 & Sampled By: & Duane Shinton \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Monitoring Well Number: \\
Weather Conditions:
\end{tabular}} & MW-9 & Casing Type \& Diameter: & Schedule 40 PV \\
\hline & Sunny, \(88^{\circ} \mathrm{F}\) & Monitoring Well Permit \#: & Not Applicable \\
\hline & \multicolumn{3}{|l|}{Readings Prior to Well Purging} \\
\hline Time: & 11:17 AM & Product Thickness (ft.): & 0.0 \\
\hline pH: & 7.02 & Depth, top of Inner Casing to Water (ft.): & 9.39 \\
\hline Dissolved Oxygen (mg/l): & 0.45 & Total Depth, Top of Inner Casing (ft.): & 14.68 \\
\hline Temp. (\({ }^{\circ} \mathrm{C}\)): & 16.4 & Length of Screen (ft.): & 10.0 \\
\hline Conductivity (\(\mathrm{mS} / \mathrm{cm}\)) & 1.46 & Volume of Water in Well (gal.): & . 86 \\
\hline
\end{tabular}

\section*{Readings Subsequent to Purging}
pH:
Dissolved Oxygen (mg/l):
Temp. \(\left({ }^{\circ} \mathrm{C}\right)\) :
Conductivity (\(\mathrm{mS} / \mathrm{cm}\))
6.76
0.46
15.6
1.57

Pump Start Time:
Pump End Time:
Purge Rate:
Volume Purged (gal.):
Purge Method:

11:17 AM
11:29 AM
0.33 (gal./min.)
4.0

Submersible pump w/ dedicated poly tubing

\section*{Reading Subsequent to Sampling}

Sampling Method:
Sample Start Time:
Sample End Time:

Dedicated Teflon bailer

11:55 AM
12:00 PM
7.24
0.46
15.9 1.67

\title{
ANALYTICAL RESULTS SUMMARY
}

QA
TEL: 973.227 .0422
FAX 973.227 .2813
WWW.aquaprotechabs.com
CONTAMINATION LEVEL
\(\square\) HIGH \(\square\) MEDIUM \(\square\) LOW
AQUA PROTECM LIBORATORIES
Certified Envinonmental Testing
FAIRFIELD, NEW JERSEY 07004

\section*{APL LAB ID\#}
GOMMENTS/SPECIAL INSTRUCTHNS
Cooler Temp. upon receipt at lab
CERTIFICATIONS: NELAP (National EIvironmental Laboratory Accredation Prograim) NJDEP \#07010 NYCOH \#11634 CTPH \#O233 US ARMY
By signing this Chain of Custody Agreement, customer expressly agrees to pay APL for all charges, reasonabiy incurred in connection with analysis and reporting for your sample

Aqua Pro-Tech Laboratories EPA Method 624 Analytical Report Voin
\(\begin{array}{ll}\text { Client: } & \text { Brinkerhoff Environmental } \\ \text { Project: } & \text { Petrocelli }\end{array}\)
Project: Petrocelli
Matrix: Groundwater

Client Sample:
MW8
\begin{tabular}{ll}
Lab Sample ID: & 10051003-001 \\
Lab File ID: & 7V6342.D \\
Date Collected: & 26-May-10 \\
& \\
Date Analyzed: & 4-Jun-10 \\
Dilution Factor: & 1
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CAS No. & Compound & Conc ug/L & Q & MDL & PQL \\
\hline 75-71-8 & Dichlorodifluoromethane & & U & 0.640 & 2 \\
\hline 74-87-3 & Chloromethane & & U & 0.190 & 2 \\
\hline 75-01-4 & Vinyl Chloride & & U & 0.510 & 2 \\
\hline 74-83-9 & Bromomethane & & U & 0.770 & 2 \\
\hline 75-00-3 & Chloroethane & & U & 1.19 & 2 \\
\hline 75-69-4 & Trichlorofluoromethane & & U & 0.250 & 2 \\
\hline 107-02-8 & Acrolein & & U & 4.71 & 4 \\
\hline 67-64-1 & Acetone & & U & 0.650 & 5 \\
\hline 75-35-4 & 1,1-Dichloroethene & & U & 0.200 & 2 \\
\hline 75-65-0 & tert-Butyl Alcohol & & U & 7.18 & 20 \\
\hline 75-09-2 & Methylene Chloride & & U & 0.280 & 2 \\
\hline 75-15-0 & Carbon Disulfide & & U & 0.530 & 2 \\
\hline 107-13-1 & Acrylonitrile & & U & 1.12 & 4 \\
\hline 1634-04-4 & Methyl tert-Butyl Ether & & U & 0.260 & 2 \\
\hline 156-60-5 & trans-1,2-Dichloroethene & & U & 0.330 & 2 \\
\hline 108-05-4 & Vinyl Acetate & & U & 0.270 & 2 \\
\hline 75-34-3 & 1,1-Dichloroethane & & U & 0.200 & 2 \\
\hline 78-93-3 & 2-Butanone & & U & 0.640 & 5 \\
\hline 594-20-7 & 2,2-Dichloropropane & & U & 0.640 & 2 \\
\hline 156-59-2 & cis-1,2-Dichloroethene & & U & 0.270 & 2 \\
\hline 67-66-3 & Chloroform & & U & 0.270 & 2 \\
\hline 74-97-5 & Bromochloromethane & & U & 0.640 & 2 \\
\hline 71-55-6 & 1,1,1-Trichloroethane & & U & 0.140 & 2 \\
\hline 563-58-6 & 1,1-Dichloropropene & & U & 0.220 & 2 \\
\hline 56-23-5 & Carbon Tetrachloride & & U & 0.380 & 2 \\
\hline 107-06-2 & 1,2-Dichloroethane & & U & 0.480 & 2 \\
\hline 71-43-2 & Benzene & & U & 0.240 & 2 \\
\hline 79-01-6 & Trichloroethene & 0.718 & & 0.390 & 2 \\
\hline 78-87-5 & 1,2-Dichloropropane & & U & 0.280 & 2 \\
\hline 75-27-4 & Bromodichloromethane & & U & 0.340 & 2 \\
\hline 74-95-3 & Dibromomethane & & U & 0.690 & 2 \\
\hline 110-75-8 & 2-Chloroethylvinyl ether & & U & 2.42 & 2 \\
\hline 108-10-1 & 4-Methyl-2-Pentanone & & U & 0.240 & 2 \\
\hline 10061-01-5 & cis-1,3-Dichloropropene & & U & 0.250 & 2 \\
\hline 108-88-3 & Toluene & & U & 0.190 & 2 \\
\hline 10061-02-6 & trans-1,3-Dichloropropene & & U & 0.400 & 2 \\
\hline 591-78-6 & 2-Hexanone & & U & 0.420 & 2 \\
\hline 79-00-5 & 1,1,2-Trichloroethane & & U & 0.180 & 2 \\
\hline 142-28-9 & 1,3-Dichloropropane & & U & 0.220 & 2 \\
\hline
\end{tabular}

Aqua Pro-Tech Laboratories EPA Method 624 Analytical Report

Client:
Project:
Matrix: Groundwater

Client Sample:
\(\square\) MW8
\begin{tabular}{ll}
Lab Sample ID: & 10051003-001 \\
Lab File ID: & 7 V6342.D \\
Date Collected: & 26-May-10 \\
& \\
Date Analyzed: & 4-Jun-10 \\
Dilution Factor: & 1
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CAS No. & Compound & Conc ug/L & Q & MDL & PQL \\
\hline 127-18-4 & Tetrachloroethene & 13.7 & & 0.600 & 2 \\
\hline 124-48-1 & Dibromochloromethane & & U & 0.180 & 2 \\
\hline 106-93-4 & 1,2-Dibromoethane & & U & 0.370 & 2 \\
\hline 108-90-7 & Chlorobenzene & & U & 0.180 & 2 \\
\hline 630-20-6 & 1,1,1,2-Tetrachloroethane & & U & 0.250 & 2 \\
\hline 1330-20-7 & m+p-Xylenes & & U & 0.360 & 4 \\
\hline 100-41-4 & Ethylbenzene & & U & 0.220 & 2 \\
\hline 95-47-6 & o-Xylene & & U & 0.260 & 2 \\
\hline 100-42-5 & Styrene & & U & 0.200 & 2 \\
\hline 98-82-8 & Isopropylbenzene & & U & 0.250 & 2 \\
\hline 75-25-2 & Bromoform & & U & 1.33 & 2 \\
\hline 79-34-5 & 1,1,2,2-Tetrachloroethane & & U & 0.450 & 2 \\
\hline 96-18-4 & 1,2,3-Trichloropropane & & U & 0.950 & 2 \\
\hline 108-86-1 & Bromobenzene & & U & 0.400 & 2 \\
\hline 95-49-8 & 2-Chlorotoluene & & U & 0.470 & 2 \\
\hline 106-43-4 & 4-Chlorotoluene & & U & 0.590 & 2 \\
\hline 541-73-1 & 1,3-Dichlorobenzene & & U & 0.320 & 2 \\
\hline 106-46-7 & 1,4-Dichlorobenzene & & U & 0.170 & 2 \\
\hline 95-50-1 & 1,2-Dichlorobenzene & & U & 0.200 & 2 \\
\hline 96-12-8 & 1,2-Dibromo-3-chloropropane & & U & 4.03 & 2 \\
\hline 120-82-1 & 1,2,4-Trichlorobenzene & & U & 0.740 & 2 \\
\hline 87-68-3 & Hexachlorobutadiene & & U & 0.770 & 2 \\
\hline 91-20-3 & Naphthalene & 3.19 & & 0.340 & 2 \\
\hline 87-61-6 & 1,2,3-Trichlorobenzene & & U & 0.990 & 2 \\
\hline
\end{tabular}

> Aqua Pro-Tech Laboratories EPA Method 624 Analytical Report
> Tentatively Identified Compounds

Number of TICs found: 0
Total Est. Concentration: 0 ug/L

Aqua Pro-Tech Laboratories
EPA Method 624 Analytical Report \(V\)

Client: Brinkerhoff Environmental
Project: Petrocelli
Matrix: Groundwater

Client Sample:
\begin{tabular}{|c|}
\hline MW9 \\
\hline
\end{tabular}

10051003-002
7V6388.D
26-May-10
Date Analyzed:
Dilution Factor:
\begin{tabular}{ll}
Lab Sample ID: & 10051003-002 \\
Lab File ID: & 7 V6388.D \\
Date Collected: & \(26-M a y-10\) \\
& \\
Date Analyzed: & 8 -Jun-10 \\
Dilution Factor: & 1
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CAS No. & Compound & Conc ug/L & Q & MDL & PQL \\
\hline 75-71-8 & Dichlorodifluoromethane & & U & 0.640 & 2 \\
\hline 74-87-3 & Chloromethane & & U & 0.190 & 2 \\
\hline 75-01-4 & Vinyl Chloride & & U & 0.510 & 2 \\
\hline 74-83-9 & Bromomethane & & U & 0.770 & 2 \\
\hline 75-00-3 & Chloroethane & & U & 1.19 & 2 \\
\hline 75-69-4 & Trichlorofluoromethane & & U & 0.250 & 2 \\
\hline 107-02-8 & Acrolein & & U & 4.71 & 4 \\
\hline 67-64-1 & Acetone & & U & 0.650 & 5 \\
\hline 75-35-4 & 1,1-Dichloroethene & & U & 0.200 & 2 \\
\hline 75-65-0 & tert-Butyl Alcohol & & U & 7.18 & 20 \\
\hline 75-09-2 & Methylene Chloride & & U & 0.280 & 2 \\
\hline 75-15-0 & Carbon Disulfide & & U & 0.530 & 2 \\
\hline 107-13-1 & Acrylonitrile & & U & 1.12 & 4 \\
\hline 1634-04-4 & Methyl tert-Butyl Ether & 5.84 & & 0.260 & 2 \\
\hline 156-60-5 & trans-1,2-Dichloroethene & & U & 0.330 & 2 \\
\hline 108-05-4 & Vinyl Acetate & & U & 0.270 & 2 \\
\hline 75-34-3 & 1,1-Dichloroethane & & U & 0.200 & 2 \\
\hline 78-93-3 & 2-Butanone & & U & 0.640 & 5 \\
\hline 594-20-7 & 2,2-Dichloropropane & & U & 0.640 & 2 \\
\hline 156-59-2 & cis-1,2-Dichloroethene & & U & 0.270 & 2 \\
\hline 67-66-3 & Chloroform & & U & 0.270 & 2 \\
\hline 74-97-5 & Bromochloromethane & & U & 0.640 & 2 \\
\hline 71-55-6 & 1,1,1-Trichloroethane & & U & 0.140 & 2 \\
\hline 563-58-6 & 1,1-Dichloropropene & & U & 0.220 & 2 \\
\hline 56-23-5 & Carbon Tetrachloride & & U & 0.380 & 2 \\
\hline 107-06-2 & 1,2-Dichloroethane & & U & 0.480 & 2 \\
\hline 71-43-2 & Benzene & & U & 0.240 & 2 \\
\hline 79-01-6 & Trichloroethene & & U & 0.390 & 2 \\
\hline 78-87-5 & 1,2-Dichloropropane & & U & 0.280 & 2 \\
\hline 75-27-4 & Bromodichloromethane & & U & 0.340 & 2 \\
\hline 74-95-3 & Dibromomethane & & U & 0.690 & 2 \\
\hline 110-75-8 & 2-Chloroethylvinyl ether & & U & 2.42 & 2 \\
\hline 108-10-1 & 4-Methyl-2-Pentanone & & U & 0.240 & 2 \\
\hline 10061-01-5 & cis-1,3-Dichloropropene & & U & 0.250 & 2 \\
\hline 108-88-3 & Toluene & & U & 0.190 & 2 \\
\hline 10061-02-6 & trans-1,3-Dichloropropene & & U & 0.400 & 2 \\
\hline 591-78-6 & 2-Hexanone & & U & 0.420 & 2 \\
\hline 79-00-5 & 1,1,2-Trichloroethane & & U & 0.180 & 2 \\
\hline 142-28-9 & 1,3-Dichloropropane & & U & 0.220 & 2 \\
\hline
\end{tabular}

\section*{Aqua Pro-Tech Laboratories \\ EPA Method 624 Analytical Report}
\begin{tabular}{llll|}
Client: & Brinkerhoff Environmental & & Client Sample: \\
Project: & \begin{tabular}{l}
Petrocelli \\
Groundwater \\
Matrix:
\end{tabular} & & MW9 \\
& & Lab Sample ID: & 10051003-002 \\
& & Lab File ID: & 7V6388.D \\
& & Date Collected: & 26-May-10 \\
& & Date Analyzed: & 8-Jun-10 \\
& & Dilution Factor: & 1
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CAS No. & Compound & Conc ug/L & Q & MDL & PQL \\
\hline 127-18-4 & Tetrachloroethene & 5.18 & & 0.600 & 2 \\
\hline 124-48-1 & Dibromochloromethane & & U & 0.180 & 2 \\
\hline 106-93-4 & 1,2-Dibromoethane & & U & 0.370 & 2 \\
\hline 108-90-7 & Chlorobenzene & & U & 0.180 & 2 \\
\hline 630-20-6 & 1,1,1,2-Tetrachloroethane & & U & 0.250 & 2 \\
\hline 100-41-4 & Ethylbenzene & & U & 0.220 & 2 \\
\hline 1330-20-7 & m+p-Xylenes & & U & 0.360 & 4 \\
\hline 95-47-6 & o-Xylene & & U & 0.260 & 2 \\
\hline 100-42-5 & Styrene & & U & 0.200 & 2 \\
\hline 98-82-8 & Isopropylbenzene & & U & 0.250 & 2 \\
\hline 75-25-2 & Bromoform & & U & 1.33 & 2 \\
\hline 79-34-5 & 1,1,2,2-Tetrachloroethane & & U & 0.450 & 2 \\
\hline 96-18-4 & 1,2,3-Trichloropropane & & U & 0.950 & 2 \\
\hline 108-86-1 & Bromobenzene & & U & 0.400 & 2 \\
\hline 95-49-8 & 2-Chlorotoluene & & U & 0.470 & 2 \\
\hline 106-43-4 & 4-Chlorotoluene & & U & 0.590 & 2 \\
\hline 541-73-1 & 1,3-Dichlorobenzene & & U & 0.320 & 2 \\
\hline 106-46-7 & 1,4-Dichlorobenzene & & U & 0.170 & 2 \\
\hline 95-50-1 & 1,2-Dichlorobenzene & & U & 0.200 & 2 \\
\hline 96-12-8 & 1,2-Dibromo-3-chloropropane & & U & 4.03 & 2 \\
\hline 120-82-1 & 1,2,4-Trichlorobenzene & & U & 0.740 & 2 \\
\hline 87-68-3 & Hexachlorobutadiene & & U & 0.770 & 2 \\
\hline 91-20-3 & Naphthalene & & U & 0.340 & 2 \\
\hline 87-61-6 & 1,2,3-Trichlorobenzene & & U & 0.990 & 2 \\
\hline
\end{tabular}

Aqua Pro-Tech Laboratories EPA Method 624 Analytical Report
Tentatively Identified Compounds

Client: Brinkerhoff Environmental
Project: Petrocelli
Matrix: Groundwater

Client Sample:

\section*{MW9}
\begin{tabular}{ll}
Lab Sample ID: & 10051003-002 \\
Lab File ID: & 7V6388.D \\
Date Collected: & 26-May-10 \\
& \\
Date Analyzed: & 8 -Jun-10 \\
Dilution Factor: & 1
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline CAS No. & Compound & \begin{tabular}{c}
Est. \\
Conc.
\end{tabular} & Q & RT \\
\hline
\end{tabular}

Number of TICs found: 0
Total Est. Concentration: 0 ug/L

Aqua Pro-Tech Laboratories
EPA Method 8270 C Analytical Report Sm... Von.... \(\&\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{ll}
Client: & Brinkerhoff Environmental \\
Proiect: & Petrocelli \\
Matrix: & Groundwater
\end{tabular}}} & \multicolumn{4}{|c|}{Client Sample:} \\
\hline & & & \multicolumn{2}{|c|}{MW8} & \\
\hline \multirow[t]{3}{*}{Sample Volume} & \multirow[t]{3}{*}{980.0 mL} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Lab Sample ID: \\
Lab File ID:
\end{tabular}} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { 10051003-001 } \\
& \text { BM6240.D }
\end{aligned}
\]} \\
\hline & & \multicolumn{2}{|l|}{Date Collected:} & \multicolumn{2}{|l|}{26-May-10} \\
\hline & & Date Extr & & -Jun-10 & \\
\hline \multirow[t]{2}{*}{Extract Volume:} & \multirow[t]{2}{*}{1 mL} & \multicolumn{2}{|l|}{Date Analyzed:} & \multicolumn{2}{|l|}{5-Jun-10} \\
\hline & & Dilution F & & \multicolumn{2}{|c|}{1} \\
\hline CAS No. & Compound & Conc ug/L & Q & MDL & PQL \\
\hline 62-75-9 & n-Nitroso-dimethylamine & & U & 0.0918 & 0.102 \\
\hline 118-74-1 & Hexachlorobenzene & & U & 0.0204 & 0.0204 \\
\hline 87-86-5 & Pentachlorophenol & & U & 0.0204 & 0.0204 \\
\hline 56-55-3 & Benzo(a)anthracene & 0.0838 & & 0.0306 & 0.0204 \\
\hline 205-99-2 & Benzo(b)fluoranthene & 0.0877 & & 0.0408 & 0.0204 \\
\hline 207-08-9 & Benzo(k)fluoranthene & 0.0673 & & 0.0306 & 0.0204 \\
\hline 50-32-8 & Benzo(a)pyrene & 0.0786 & & 0.0306 & 0.0204 \\
\hline 193-39-5 & Indeno(1,2,3-cd)pyrene & 0.0695 & & 0.0306 & 0.102 \\
\hline 53-70-3 & Dibenzo(a,h)anthracene & & U & 0.0510 & 0.102 \\
\hline
\end{tabular}

Aqua Pro－Tech Laboratories
EPA Method 625 Analytical Report ぶい・טめぐくに

Client：Brinkerhoff Environmental
Project：Petrocelli
Matrix：Groundwater

Client Sample：
MW8
\begin{tabular}{llll}
Sample Volume & \multirow{2}{*}{980.0 mL} & Lab Sample ID： & 10051003－001 \\
& & Lab File ID： & 9 9S9707．D \\
& & Date Collected： & 26－May－10 \\
Extract Volume： & \multirow{2}{*}{mL} & Date Extracted： & 1－Jun－10 \\
& & Date Analyzed： & 2－Jun－10 \\
& & Dilution Factor： & 1
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CAS No． & Compound & Conc ug／L & Q & MDL & PQL \\
\hline 110－86－1 & Pyridine & & U & 4.02 & 5.1 \\
\hline 62－75－9 & n－Nitroso－dimethylamine & & U & 1.09 & 5.1 \\
\hline 100－52－7 & Benzaldehyde & & U & 0.520 & 5.1 \\
\hline 62－53－3 & Aniline & & U & 0.265 & 5.1 \\
\hline 108－95－2 & Phenol & & U & 0.327 & 5.1 \\
\hline 111－44－4 & bis（2－Chloroethyl）ether & & U & 0.714 & 5.1 \\
\hline 95－57－8 & 2－Chlorophenol & & U & 0.480 & 5.1 \\
\hline 541－73－1 & 1，3－Dichlorobenzene & & U & 0.724 & 5.1 \\
\hline 106－46－7 & 1，4－Dichlorobenzene & & U & 0.724 & 5.1 \\
\hline 100－51－6 & Benzyl Alcohol & & U & 0.357 & 5.1 \\
\hline 95－50－1 & 1，2－Dichlorabenzene & & U & 0.561 & 5.1 \\
\hline 95－48－7 & 2－Methylphenol & & U & 0.306 & 5.1 \\
\hline 108－60－1 & bis（2－Chloroisopropyl）ether & & U & 0.357 & 5.1 \\
\hline 98－86－2 & Acetophenone & & U & 0.286 & 5.1 \\
\hline 1319－77－3 & 3＋4－Methylphenol & & U & 0.531 & 5.1 \\
\hline 621－64－7 & n－Nitroso－di－n－propylamine & & U & 0.592 & 5.1 \\
\hline 67－72－1 & Hexachloroethane & & U & 0.571 & 5.1 \\
\hline 98－95－3 & Nitrobenzene & & U & 0.561 & 5.1 \\
\hline 78－59－1 & Isophorone & & U & 0.510 & 5.1 \\
\hline 88－75－5 & 2－Nitrophenol & & U & 0.633 & 5.1 \\
\hline 105－67－9 & 2，4－Dimethylphenol & & U & 0.388 & 5.1 \\
\hline 111－91－1 & bis（2－Chloroethoxy）methane & & U & 0.592 & 5.1 \\
\hline 120－83－2 & 2，4－Dichlorophenol & & U & 0.398 & 5.1 \\
\hline 65－85－0 & Benzoic Acid & & U & 8.37 & 20.4 \\
\hline 120－82－1 & 1，2，4－Trichlorobenzene & & U & 0.418 & 5.1 \\
\hline 91－20－3 & Naphthalene & & U & 0.122 & 5.1 \\
\hline 87－65－0 & 2，6－Dichlorophenol & & U & 0.327 & 5.1 \\
\hline 106－47－8 & 4－Chloroaniline & & U & 0.378 & 5.1 \\
\hline 87－68－3 & Hexachlorobutadiene & & U & 0.643 & 5.1 \\
\hline 105－60－2 & Caprolactam & & U & 2.04 & 5.1 \\
\hline 59－50－7 & 4－Chloro－3－methylphenol & & U & 0.582 & 5.1 \\
\hline 91－57－6 & 2－Methylnaphthalene & & U & 0.235 & 7.65 \\
\hline 77－47－4 & Hexachlorocyclopentadiene & & U & 5.48 & 20.4 \\
\hline 88－06－2 & 2，4，6－Trichlorophenol & & U & 0.418 & 5.1 \\
\hline 95－95－4 & 2，4，5－Trichlorophenol & & U & 0.551 & 5.1 \\
\hline 92－52－4 & Biphenyl & & U & 0.214 & 5.1 \\
\hline 91－58－7 & 2－Chloronaphthalene & & U & 0.418 & 5.1 \\
\hline 88－74－4 & 2－Nitroaniline & & U & 0.337 & 5.1 \\
\hline 131－11－3 & Dimethylphthalate & & U & 0.469 & 5.1 \\
\hline
\end{tabular}

Aqua Pro-Tech Laboratories EPA Method 625 Analytical Report

Client: Brinkerhoff Environmental
Project: Petrocelli
Matrix: Groundwater

Client Sample:
MW8
\begin{tabular}{llll}
Sample Volume & \multirow{2}{*}{980.0 mL} & \begin{tabular}{l}
Lab Sample ID: \\
Lab File ID:
\end{tabular} & \begin{tabular}{l}
10051003-001 \\
9S9707.D
\end{tabular} \\
& & Date Collected: & 26-May-10 \\
Extract Volume: & \multirow{2}{*}{1 mL} & Date Extracted: & 1-Jun-10 \\
& & Date Analyzed: & 2-Jun-10 \\
& & Dilution Factor: & 1
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CAS No. & Compound & Conc ug/L & Q & MDL & PQL \\
\hline 208-96-8 & Acenaphthylene & & U & 0.286 & 5.1 \\
\hline 606-20-2 & 2,6-Dinitrotoluene & & U & 0.653 & 5.1 \\
\hline 99-09-2 & 3-Nitroaniline & & U & 0.602 & 5.1 \\
\hline 83-32-9 & Acenaphthene & & U & 0.194 & 5.1 \\
\hline 51-28-5 & 2,4-Dinitrophenol & & U & 4.33 & 20.4 \\
\hline 132-64-9 & Dibenzofuran & & U & 0.265 & 5.1 \\
\hline 100-02-7 & 4-Nitrophenol & & U & 0.296 & 10.2 \\
\hline 121-14-2 & 2,4-Dinitrotoluene & & U & 0.194 & 5.1 \\
\hline 58-90-2 & 2,3,4,6-Tetrachlorophenol & & U & 6.64 & 5.1 \\
\hline 86-73-7 & Fluorene & & U & 0.235 & 5.1 \\
\hline 84-66-2 & Diethylphthalate & & U & 2.01 & 5.1 \\
\hline 7005-72-3 & 4-Chlorophenyl phenyl ether & & U & 0.551 & 5.1 \\
\hline 100-01-6 & 4-Nitroaniline & & U & 1.01 & 5.1 \\
\hline 534-52-1 & 4,6-Dinitro-2-methylphenol & & U & 4.38 & 10.2 \\
\hline 86-30-6 & n-Nitrosodiphenylamine & & U & 0.357 & 5.1 \\
\hline 103-33-3 & 1,2-Diphenylhydrazine & & U & 0.388 & 5.1 \\
\hline 101-55-3 & 4-Bromophenyl-phenyl ether & & U & 0.286 & 5.1 \\
\hline 118-74-1 & Hexachlorobenzene & & U & 0.520 & 5.1 \\
\hline 1912-24-9 & Atrazine & & U & 0.765 & 5.1 \\
\hline 87-86-5 & Pentachlorophenol & & U & 2.53 & 20.4 \\
\hline 85-01-8 & Phenanthrene & & U & 0.367 & 5.1 \\
\hline 120-12-7 & Anthracene & & U & 0.143 & 5.1 \\
\hline 86-74-8 & Carbazole & & U & 0.265 & 5.1 \\
\hline 84-74-2 & Di-n-butylphthalate & & U & 0.194 & 5.1 \\
\hline 206-44-0 & Fluoranthene & & U & 0.194 & 5.1 \\
\hline 92-87-5 & Benzidine & & U & 7.30 & 10.2 \\
\hline 129-00-0 & Pyrene & & U & 0.194 & 5.1 \\
\hline 85-68-7 & Butylbenzylphthalate & & U & 0.469 & 5.1 \\
\hline 56-55-3 & Benzo(a)anthracene & & U & 0.255 & 5.1 \\
\hline 91-94-1 & 3,3'-Dichlorobenzidine & & U & 2.72 & 5.1 \\
\hline 218-01-9 & Chrysene & & U & 0.276 & 5.1 \\
\hline 117-81-7 & bis(2-Ethylhexyl)phthalate & 1.03 & B & 0.449 & 5.1 \\
\hline 117-84-0 & Di-n-octylphthalate & & U & 0.173 & 5.1 \\
\hline 205-99-2 & Benzo(b)fluoranthene & & U & 0.214 & 5.1 \\
\hline 207-08-9 & Benzo(k)fluoranthene & & U & 0.133 & 5.1 \\
\hline 50-32-8 & Benzo(a)pyrene & & U & 0.429 & 5.1 \\
\hline 193-39-5 & Indeno(1,2,3-cd)pyrene & & U & 0.276 & 5.1 \\
\hline 53-70-3 & Dibenzo(a,h)anthracene & & U & 0.408 & 5.1 \\
\hline 191-24-2 & Benzo(g,h,i)perylene & & U & 0.327 & 5.1 \\
\hline
\end{tabular}

Number of TICs found: 2
Total Est. Concentration: 11.02 ug/L

\section*{Aqua Pro-Tech Laboratories}

EPA Method 8270 C Analytical Report
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Client: \\
Project: \\
Matrix:
\end{tabular}} & \multirow[t]{3}{*}{Brinkerhoff Environmental Petrocelli Groundwater} & \multicolumn{2}{|c|}{Client Sample:} \\
\hline & & & \multirow[t]{2}{*}{MW9} \\
\hline & & & \\
\hline \multirow[t]{4}{*}{Sample Volume} & \multirow[t]{4}{*}{950.0 mL} & Lab Sample ID: & 10051003-002 \\
\hline & & Lab File ID: & BM6241.D \\
\hline & & Date Collected: & 26-May-10 \\
\hline & & Date Extracted: & 1-Jun-10 \\
\hline \multirow[t]{2}{*}{Extract Volume:} & 1 mL & Date Analyzed: & 5-Jun-10 \\
\hline & & Dilution Factor: & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ CAS No. } & \multicolumn{1}{|c|}{ Compound } & \multicolumn{1}{c|}{\begin{tabular}{c}
Conc \\
\(u g / L\)
\end{tabular}} & \multicolumn{1}{|c|}{Q} & MDL & PQL \\
\hline \(62-75-9\) & n-Nitroso-dimethylamine & & \(U\) & 0.0947 & 0.105 \\
\hline \(118-74-1\) & Hexachlorobenzene & & \(U\) & 0.0210 & 0.021 \\
\hline \(87-86-5\) & Pentachlorophenol & & & \(U\) & 0.0210 \\
\hline \(56-55-3\) & Benzo(a)anthracene & & \(U\) & 0.021 \\
\hline \(205-99-2\) & Benzo(b)fluoranthene & & \(U\) & 0.0316 & 0.021 \\
\hline \(207-08-9\) & Benzo(k)fluoranthene & & \(U\) & 0.0316 & 0.021 \\
\hline \(50-32-8\) & Benzo(a)pyrene & & \(U\) & 0.0316 & 0.021 \\
\hline \(193-39-5\) & Indeno(1,2,3-cd)pyrene & & \(U\) & 0.0316 & 0.105 \\
\hline \(53-70-3\) & Dibenzo(a,h)anthracene & & \(U\) & 0.0526 & 0.105 \\
\hline
\end{tabular}

Aqua Pro-Tech Laboratories

Client: Brinkerhoff Environmental
Project: Petrocelli
Matrix: Groundwater

Client Sample:
MW9
\begin{tabular}{ll}
Sample Volume & 950.0 \\
Extract Volume: & 1 mL
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CAS No. & Compound & Conc ug/L & Q & MDL & PQL \\
\hline 110-86-1 & Pyridine & & U & 4.15 & 5.26 \\
\hline 62-75-9 & n-Nitroso-dimethylamine & & U & 1.13 & 5.26 \\
\hline 100-52-7 & Benzaldehyde & & U & 0.537 & 5.26 \\
\hline 62-53-3 & Aniline & & U & 0.274 & 5.26 \\
\hline 108-95-2 & Phenol & & U & 0.337 & 5.26 \\
\hline 111-44-4 & bis(2-Chloroethyl)ether & & U & 0.737 & 5.26 \\
\hline 95-57-8 & 2-Chlorophenol & & U & 0.495 & 5.26 \\
\hline 541-73-1 & 1,3-Dichlorobenzene & & U & 0.747 & 5.26 \\
\hline 106-46-7 & 1,4-Dichlorobenzene & & U & 0.747 & 5.26 \\
\hline 100-51-6 & Benzyl Alcohol & & U & 0.368 & 5.26 \\
\hline 95-50-1 & 1,2-Dichlorobenzene & & U & 0.579 & 5.26 \\
\hline 95-48-7 & 2-Methyiphenol & & U & 0.316 & 5.26 \\
\hline 108-60-1 & bis(2-Chloroisopropyl)ether & & U & 0.368 & 5.26 \\
\hline 98-86-2 & Acetophenone & & U & 0.295 & 5.26 \\
\hline 1319-77-3 & 3+4-Methylphenol & & U & 0.547 & 5.26 \\
\hline 621-64-7 & n-Nitroso-di-n-propylamine & & U & 0.611 & 5.26 \\
\hline 67-72-1 & Hexachloroethane & & U & 0.589 & 5.26 \\
\hline 98-95-3 & Nitrobenzene & & U & 0.579 & 5.26 \\
\hline 78-59-1 & Isophorone & & U & 0.526 & 5.26 \\
\hline 88-75-5 & 2-Nitrophenol & & U & 0.653 & 5.26 \\
\hline 105-67-9 & 2,4-Dimethylphenol & & U & 0.400 & 5.26 \\
\hline 111-91-1 & bis(2-Chloroethoxy)methane & & U & 0.611 & 5.26 \\
\hline 120-83-2 & 2,4-Dichlorophenol & & U & 0.411 & 5.26 \\
\hline 65-85-0 & Benzoic Acid & & U & 8.63 & 21.1 \\
\hline 120-82-1 & 1,2,4-Trichlorobenzene & & U & 0.432 & 5.26 \\
\hline 91-20-3 & Naphthalene & & U & 0.126 & 5.26 \\
\hline 87-65-0 & 2,6-Dichlorophenol & & U & 0.337 & 5.26 \\
\hline 106-47-8 & 4-Chloroaniline & & U & 0.389 & 5.26 \\
\hline 87-68-3 & Hexachlorobutadiene & & U & 0.663 & 5.26 \\
\hline 105-60-2 & Caprolactam & & U & 2.11 & 5.26 \\
\hline 59-50-7 & 4-Chloro-3-methylphenol & & U & 0.600 & 5.26 \\
\hline 91-57-6 & 2-Methylnaphthalene & & U & 0.242 & 7.89 \\
\hline 77-47-4 & Hexachlorocyclopentadiene & & U & 5.65 & 21.1 \\
\hline 88-06-2 & 2,4,6-Trichlorophenol. & & U & 0.432 & 5.26 \\
\hline 95-95-4 & 2,4,5-Trichlorophenol & & U & 0.568 & 5.26 \\
\hline 92-52-4 & Biphenyl & & U & 0.221 & 5.26 \\
\hline 91-58-7 & 2-Chloronaphthalene & & U & 0.432 & 5.26 \\
\hline 88-74-4 & 2-Nitroaniline & & U & 0.347 & 5.26 \\
\hline 131-11-3 & Dimethylphthalate & & U & 0.484 & 5.26 \\
\hline
\end{tabular}

Aqua Pro-Tech Laboratories EPA Method 625 Analytical Report

Client: Brinkerhoff Environmental
Project: Petrocelli
Matrix: Groundwater
\begin{tabular}{llll}
Sample Volume & \multirow{2}{*}{950.0 mL} & Lab Sample ID: & 10051003-002 \\
& & Lab File ID: & 9 9S9708.D \\
& \multirow{3}{*}{} & Date Collected: & 26-May-10 \\
Extract Volume: & \multirow{2}{*}{mL} & Date Extracted: & 1-Jun-10 \\
& & Date Analyzed: & 2-Jun-10 \\
& & Dilution Factor: & 1
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CAS No. & Compound & Conc ug/L & Q & MDL & PQL \\
\hline 208-96-8 & Acenaphthylene & & U & 0.295 & 5.26 \\
\hline 606-20-2 & 2,6-Dinitrotoluene & & U & 0.674 & 5.26 \\
\hline 99-09-2 & 3-Nitroaniline & & U & 0.621 & 5.26 \\
\hline 83-32-9 & Acenaphthene & & U & 0.200 & 5.26 \\
\hline 51-28-5 & 2,4-Dinitrophenol & & U & 4.46 & 21.1 \\
\hline 132-64-9 & Dibenzofuran & & U & 0.274 & 5.26 \\
\hline 100-02-7 & 4-Nitrophenol & & U & 0.305 & 10.5 \\
\hline 121-14-2 & 2,4-Dinitrotoluene & & U & 0.200 & 5.26 \\
\hline 58-90-2 & 2,3,4,6-Tetrachlorophenol & & U & 6.85 & 5.26 \\
\hline 86-73-7 & Fluorene & & U & 0.242 & 5.26 \\
\hline 84-66-2 & Diethylphthalate & & U & 2.07 & 5.26 \\
\hline 7005-72-3 & 4-Chlorophenyl phenyl ether & & U & 0.568 & 5.26 \\
\hline 100-01-6 & 4-Nitroaniline & & U & 1.04 & 5.26 \\
\hline 534-52-1 & 4,6-Dinitro-2-methylphenol & & U & 4.52 & 10.5 \\
\hline 86-30-6 & n-Nitrosodiphenylamine & & U & 0.368 & 5.26 \\
\hline 103-33-3 & 1,2-Diphenylhydrazine & & U & 0.400 & 5.26 \\
\hline 101-55-3 & 4-Bromophenyl-phenyl ether & & U & 0.295 & 5.26 \\
\hline 118-74-1 & Hexachlorobenzene & & U & 0.537 & 5.26 \\
\hline 1912-24-9 & Atrazine & & U & 0.789 & 5.26 \\
\hline 87-86-5 & Pentachlorophenol & & U & 2.61 & 21.1 \\
\hline 85-01-8 & Phenanthrene & & U & 0.379 & 5.26 \\
\hline 120-12-7 & Anthracene & & U & 0.147 & 5.26 \\
\hline 86-74-8 & Carbazole & & U & 0.274 & 5.26 \\
\hline 84-74-2 & Di-n-butylphthalate & & U & 0.200 & 5.26 \\
\hline 206-44-0 & Fluoranthene & & U & 0.200 & 5.26 \\
\hline 92-87-5 & Benzidine & & U & 7.53 & 10.5 \\
\hline 129-00-0 & Pyrene & & U & 0.200 & 5.26 \\
\hline 85-68-7 & Butylbenzylphthalate & & U & 0.484 & 5.26 \\
\hline 56-55-3 & Benzo(a)anthracene & & U & 0.263 & 5.26 \\
\hline 91-94-1 & 3,3'-Dichlorobenzidine & & U & 2.81 & 5.26 \\
\hline 218-01-9 & Chrysene & & U & 0.284 & 5.26 \\
\hline 117-81-7 & bis(2-Ethylhexyl)phthalate & & U & 0.463 & 5.26 \\
\hline 117-84-0 & Di-n-octylphthalate & & U & 0.179 & 5.26 \\
\hline 205-99-2 & Benzo(b)fluoranthene & & U & 0.221 & 5.26 \\
\hline 207-08-9 & Benzó(k)fluoranthene & & U & 0.137 & 5.26 \\
\hline 50-32-8 & Benzo(a)pyrene & & U & 0.442 & 5.26 \\
\hline 193-39-5 & Indeno(1,2,3-cd)pyrene & & U & 0.284 & 5.26 \\
\hline 53-70-3 & Dibenzo(\(\mathrm{a}, \mathrm{h}\))anthracene & & U & 0.421 & 5.26 \\
\hline 191-24-2 & Benzo(g,h,i)perylene & & U & 0.337 & 5.26 \\
\hline
\end{tabular}

Number of TICs found: 2
Total Est. Concentration: \(10.08 \mathrm{ug} / \mathrm{L}\)```

[^0]: 1275 Bloomfield Ave., Bldg. 6, Fairfield, New Jersey, 07004
 (t)973.227.0422 (f)973.227.2813 (w)www.aquaprotechlabs.com

 NELAC National Environmental Laboratory Accreditation Conference
 NJDEP \#07010/NYDOH \#11634
 CTPHB \#0233/US ARMY

[^1]: (4) = qualifier out of range (m) = manual integration
 10658.D 0309WC1.M Tue Mav 25 18:00:33 2010

