

August 2, 2019

Jane H. O'Connell, P.G. New York State Department of Environmental Conservation 47-40 21st Street Long Island City, NY 11101

Re: Supplemental Remedial Investigation Work Plan

241 West 28th Street

New York, NY

Langan Project No.: 170017004

Dear Ms. O'Connell:

241 West 28th Street Owner LLC (the Requestor) is applying to the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) as a Volunteer to remediate the 241 West 28th Street property ("the site"). On behalf of the Requestor, Langan prepared this Supplemental Remedial Investigation Work Plan (SRIWP) in support of their BCP Application.

The objective of this SRIWP is to supplement the April 2012 Remedial Investigation by assessing the presence of emerging contaminants (per- and polyfluoroalkyl substances [PFAS] and 1,4-dioxane) in soil and groundwater. This SRIWP was developed in accordance with the process and requirements identified in NYSDEC "Division of Environmental Remediation (DER)-10: Technical Guidance for Site Investigation and Remediation" (May 2010) and the NYSDEC June 2019 Sampling for 1,4-Dioxane and Per- and Polyfluoroalkyl Substances Guidance Document (Emerging Contaminant Guidance Document).

SITE BACKGROUND

The site is identified as Block 778, Lots 13, 16, 18, and 66 on the New York City Manhattan Borough Tax Map and is a vacant lot improved with asphalt pavement and concrete slabs surrounded by a wooden construction fence. An application for Mergers or Apportionments was submitted to the NYC Department of Finance on July 9, 2019 to merge Lots 13, 16, 18, and 66 into a single lot (13). The 29,315-square-foot site is bound by West 29th Street to the north, a 13-story commercial office building (Block 778, Lot 57) and a 12-story commercial office building (Block 778, Lot 20) to the east, West 28th Street to the south, and a 5-story industrial manufacturing building (Block 778, Lot 7) and a 7-story public institutional building (Block 778, Lot 70) to the west. The site has 145 feet of frontage along West 29th Street to the north and 149.25 feet of frontage along West 28th Street to the south.

The site is located in an urban setting characterized by multi-story residential, mixed-use, industrial, commercial, and institutional buildings. Because of the urban nature of the area, major infrastructure (e.g., storm drains, sewers, and underground utility lines) exist in the vicinity of the site. A site location plan is included as Figure 1.

SUPPLEMENTAL INVESTIGATION SCOPE OF WORK

The SRI consists of the following activities:

- Collect 7 shallow (0 to 5 feet bgs) and 7 deep (5 to 15 feet bgs) soil samples from 12 soil borings for a total of 14 soil samples (plus quality assurance/quality control [QA/QC] samples) for laboratory analysis.
- Install and develop four permanent groundwater monitoring wells.
- Collect one groundwater sample from each newly-installed monitoring well and one existing on-site monitoring well (plus QA/QC samples) for laboratory analysis.

The field investigation will be completed in accordance with NYSDEC DER-10 Guidance, the Emerging Contaminant Guidance Document, and the procedures specified in the Health and Safety Plan (HASP) and Quality Assurance Project Plan (QAPP) included in Attachments A and B, respectively. A Community Air Monitoring Plan will be implemented during this investigation (Attachment C).

Soil Investigation

Drilling and Logging

An environmental drilling subcontractor will advance 13 borings across the site to accommodate sample collection for emerging contaminant analysis. A site plan showing the proposed boring locations is included as Figure 2. Langan personnel will document the work, screen the soil samples for environmental impacts, and collect environmental samples for laboratory analyses. Work will comply with the safety guidelines outlined in the HASP included in Attachment A.

Soil borings will be advanced using direct-push drilling technology (i.e., Geoprobe®). Soil will be screened continuously to the boring termination depth with a photoionization detector (PID) equipped with a 10.6 electron volt (eV) bulb and for visual and olfactory evidence of environmental impacts (e.g., staining and odor). Soil descriptions will be recorded in a field log. Boring logs will be provided in an SRI Report (SRIR).

Soil Sampling and Analysis

Seven shallow grab soil samples will be collected from between 0 and 5 feet bgs and seven deeper grab soil samples will be collected from between 5 and 15 feet bgs for laboratory analysis from the interval exhibiting the greatest degree of contamination, where observed (based on the presence of staining, odor, and/or PID readings above background). Non-disposable, down-hole drilling equipment and sampling apparatus will be decontaminated between locations with Alconox® and water.

The samples will be collected in laboratory-supplied containers and will be sealed, labeled, and placed in an ice-chilled cooler (to attempt to maintain a temperature of about 4°C) for delivery to a NYSDOH Environmental Laboratory Approval Program (ELAP)-certified laboratory. Soil samples will be analyzed using the latest United States Environmental Protection Agency (USEPA) methods as follows:

- NYSDEC List of PFAS by USEPA Method 537
- 1,4-dioxane by USEPA Method 8270 SIM isotope dilution (SIM will be performed only if necessary based on the laboratory's calibrated reporting limits' compliance with the attached QAPP)

A list of the emerging contaminant analytes is provided in Table 1. Relevant QA/QC procedures to be followed are described in the QAPP in Attachment B.

Groundwater Investigation

Monitoring Well Installation

Four soil borings (WC02B, WC03C, WC06C, and WC07A) will be converted to permanent groundwater monitoring wells. A plan showing the proposed well locations is included as Figure 2. Wells will be installed across the observed water table and will be constructed with 2-inch-diameter, threaded, flush-joint, polyvinyl chloride (PVC) casing and 10-foot-long 0.01-inch slot well screens. Clean sand will be used to fill the annulus around the screen up to about two feet above the top of the screened interval. A two-foot bentonite seal will be installed above the sand and the borehole annulus will be grouted to the surface. The wells will be finished with flush-mounted steel manhole covers.

The monitoring wells will be developed using a surge block across the well screen to agitate and remove fines. The surge block will be moved within the well screen in 2- to 3-foot increments for approximately 2 minutes per increment. After surging, the well will be purged via pumping until the water becomes clear. The well will then be allowed to sit for a minimum of one week prior to collecting groundwater samples.

The four newly-installed monitoring wells and one existing on-site monitoring well (MW-1) will be sampled during the SRI.

Groundwater Sampling and Analysis

One groundwater sample will be collected from each of the five wells. Prior to sampling, the monitoring wells will be purged. Purging will consist of pumping, at minimum, the stabilized drawdown volume plus the pump's tubing volume, and waiting until the physical and chemical parameters (e.g., temperature, dissolved oxygen, oxygen reduction potential, turbidity) stabilize within the ranges specified in the USEPA's Low Stress Purging and Sampling Procedure for the Collection of Groundwater Samples From Monitoring Wells, dated July 30, 1996, and 4th revision September 19, 2017. Samples will be collected with a peristaltic pump and dedicated high-density polyethylene tubing. Development and purge water will be containerized for off-site

disposal. Following sample collection, monitoring wells will be gauged using an oil-water interface probe.

The groundwater samples will be collected into laboratory-supplied containers and will be sealed, labeled, and placed in an ice-chilled cooler (to maintain a temperature of about 4°C) for delivery to the laboratory. Groundwater samples will be analyzed using the latest USEPA methods as follows:

- NYSDEC List PFAS by EPA Method 537
- 1,4-dioxane by EPA Method 8270 SIM isotope dilution (SIM will be performed only if necessary based on the laboratory's calibrated reporting limits' compliance with the attached QAPP)

A list of the emerging contaminant analytes is provided in Table 1. QA/QC procedures to be followed are described in the QAPP in Attachment B.

DATA MANAGEMENT AND VALIDATION

Laboratory analyses of soil and groundwater will be conducted by a NYSDOH ELAP-approved laboratory in accordance with USEPA SW-846 methods and NYSDEC Analytical Services Protocol (ASP) Category B deliverable format. Environmental data will be reported electronically using the database software application EQuIS as part of NYSDEC's Environmental Information Management System (EIMS).

QA/QC procedures required by the NYSDEC ASP and SW-846 methods, including initial and continuing instrument calibrations, standard compound spikes, surrogate compound spikes, and analysis of other samples (blanks, laboratory control samples, and matrix spikes/matrix spike duplicates), will be followed. The laboratory will provide sample bottles, which will be pre-cleaned and preserved in accordance with the SW-846 methods. Where there are differences in the SW-846 and NYSDEC ASP requirements, the NYSDEC ASP will take precedence.

Data validation will be performed in accordance with the USEPA validation guidelines for organic and inorganic data review. Validation will include the following:

- Verification of QC sample results (both qualitative and quantitative).
- Verification of sample results (both positive hits and non-detects).
- Recalculation of 10 percent of all investigative sample results.
- Preparation of Data Usability Summary Reports (DUSR).

The DUSRs will be prepared and reviewed by the Program Quality Assurance Monitor (PQAM). The DUSRs will present the results of data validation, including a summary assessment of laboratory data packages, sample preservation and chain of custody procedures, and a summary assessment of precision, accuracy, representativeness, comparability, and completeness for each analytical method. A detailed assessment of each sample delivery group will follow. Additional details on the DUSRs are provided in the QAPP in Attachment B.

MANAGEMENT OF INVESTIGATION-DERIVED WASTE

Soil cuttings will be returned to the borehole unless:

- The borehole is converted into a groundwater monitoring well;
- Free product or grossly-contaminated soil is present in the cuttings;
- Backfilling the borehole with cuttings will create a significant path for vertical movement
 of contaminants. Soil additives (bentonite) may be added to the cuttings to reduce
 permeability; and
- The soil cannot fit into the borehole.

Boreholes requiring disposal of drill cuttings will be filled with hydrated bentonite chips or clean sand and capped with asphalt or concrete. Excess investigation-derived waste (IDW), including soil cuttings, purged groundwater, and decontamination fluids, will be containerized in properly-labeled and sealed United Nations/Department of Transportation (UN/DOT)-approved 55-gallon drums and staged for future waste characterization and off-site disposal at a facility permitted to accept the waste. The drums will be staged in an area on-site, pending receipt of laboratory data and off-site disposal to an appropriate facility. The site will be secured during and after investigation to prevent public's access to the site.

AIR MONITORING

Air monitoring will be conducted for site workers and the community (Community Air Monitoring Program [CAMP]). Air monitoring results will be recorded in the field book during the investigation activities, downloaded from field instruments and summarized in the SRIR.

Worker Air Monitoring

Air monitoring of the breathing zone will be performed periodically during drilling and sampling activities to document health and safety protection for the work team. We will monitor VOCs with a PID in accordance with the HASP (Attachment A). If air monitoring during intrusive operations identifies the presence of VOCs, the field engineer will follow the guidelines outlined in the HASP regarding action levels, permissible exposure, engineering controls, and personal protective equipment. If the VOC action level is exceeded, work will cease and the work location will be evacuated. Monitoring will continue until the levels drop to permissible limits, at which point work will resume with continued monitoring. If high levels persist, field activities will be halted and the work relocated to another area. If dust emissions are observed, work will stop and dust suppression measures (i.e., water spray) will be implemented.

Community Air Monitoring Plan

In addition to air monitoring in the worker breathing zone, community air monitoring will be performed in compliance with the NYSDOH Generic CAMP during any outdoor intrusive work. The CAMP is included in Attachment C.

Langan Project No.: 170017004

CAMP will consist of continuous monitoring for VOCs and dust emissions during ground-intrusive activities (i.e., soil boring and monitoring well installation). Upwind concentrations will be measured at the start of each workday to establish background concentrations. VOCs and dust emissions will be monitored at the downwind perimeter of the work zone, which will be established at a point on the site where the general public or site employees may be present. VOC Monitoring will be conducted with a PID equipped with a 10.6 eV lamp. VOC community air monitoring requirements will be conducted until it is determined that the site is not a source of organic vapors. Dust emissions will be monitored using real-time monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM10) and capable of averaging a period of 15 minutes (or less) for comparison to the airborne particulate action level (e.g., DustTrak). If dust emissions are observed, work will stop and dust suppression measures will be implemented.

SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT

Following completion of the SRI and receipt of analytical data, an SRIR in letter format will be prepared to summarize the results for NYSDEC review. The report will include soil borings, monitoring well construction logs, tabulated analytical results, a sample location map, laboratory data packages, and DUSRs.

Sincerely,

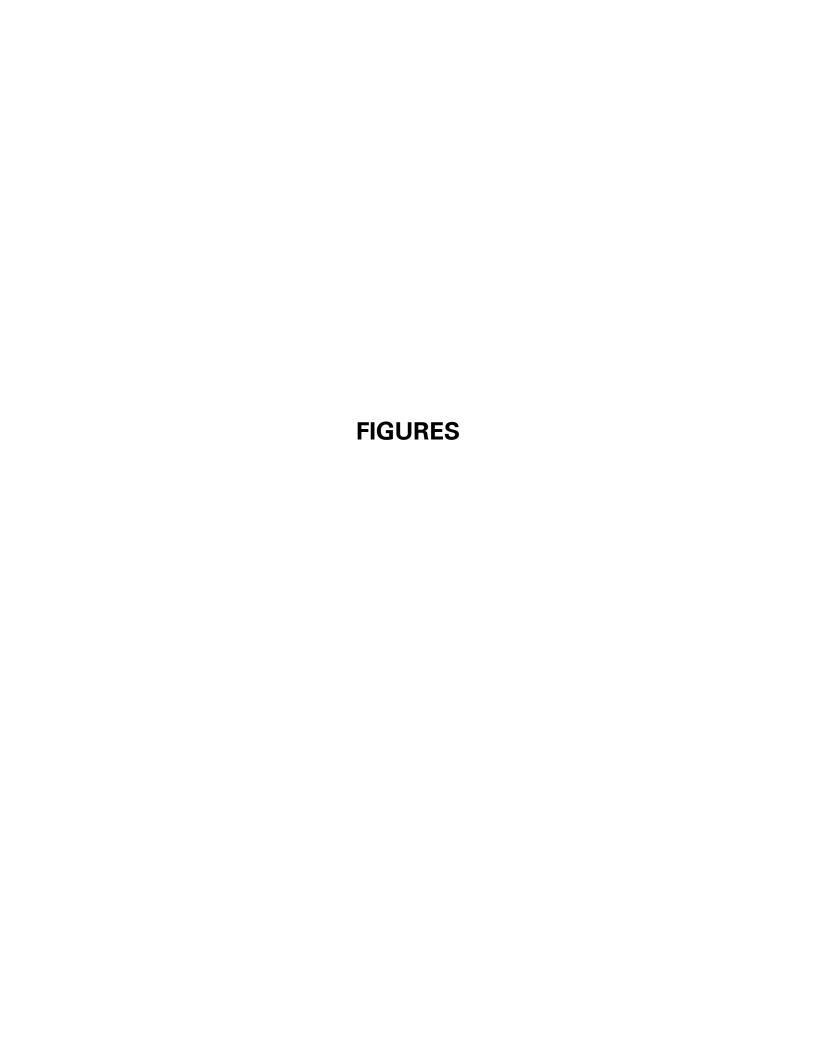
Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C.

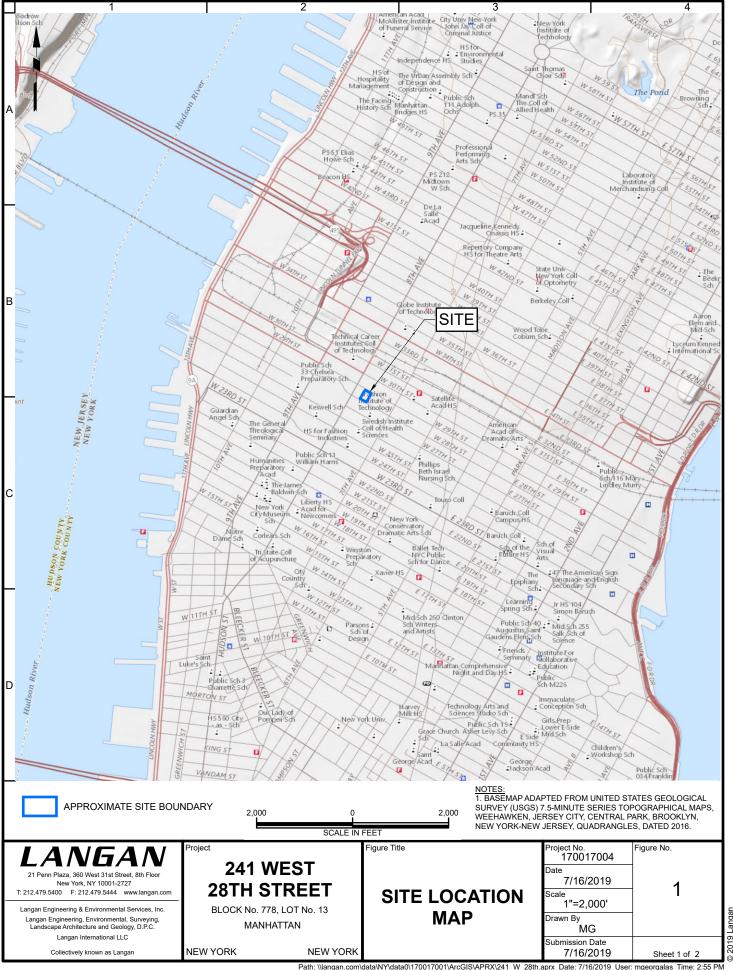
Michael Burke, PG, CHMM Principal/Vice President

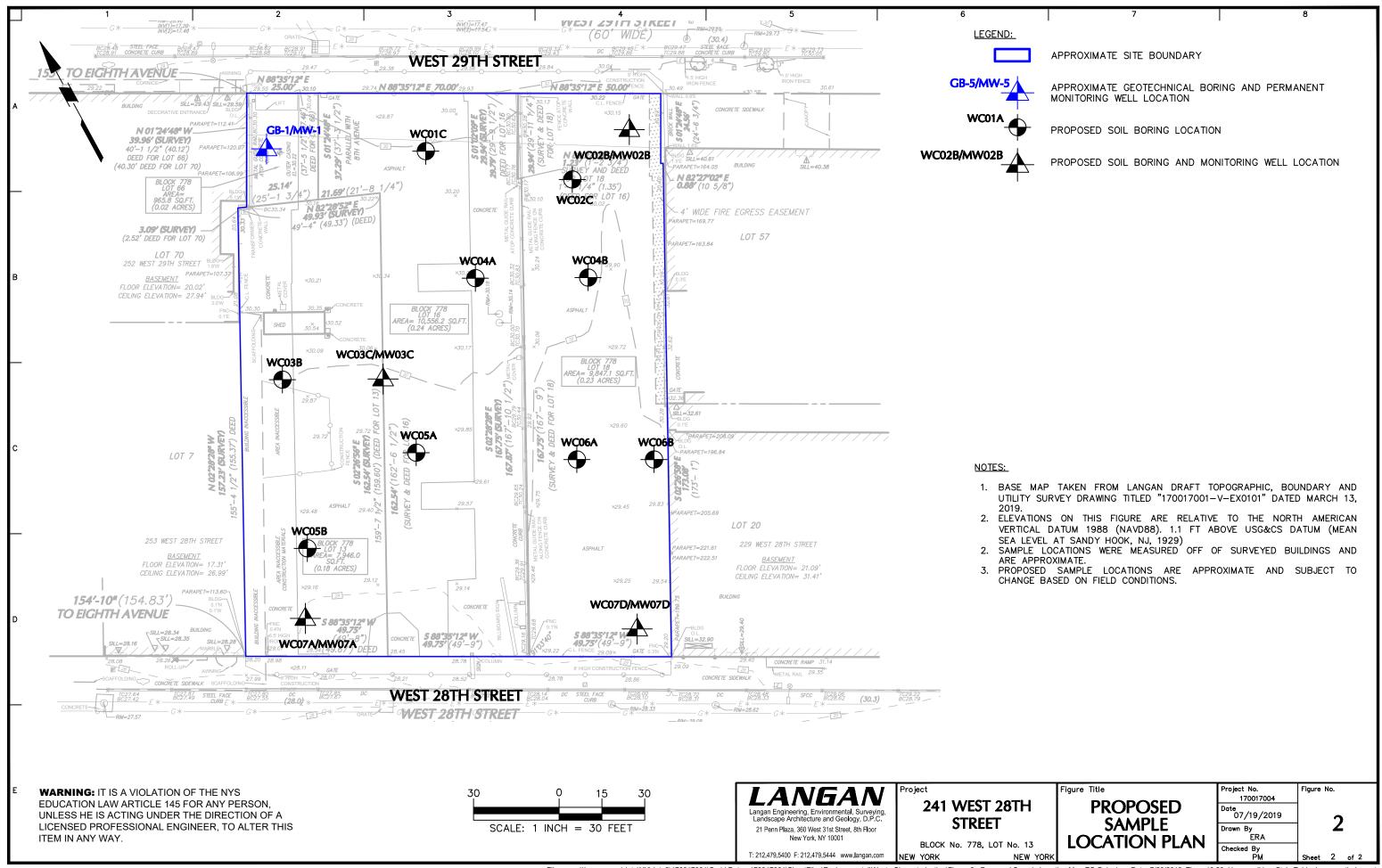
Enclosure(s): Figure 1 Site Location Map

Figure 2 Proposed Sample Location Plan

Table 1 Emerging Contaminant Analyte List


Attachment 1 Health and Safety Plan (HASP)


Attachment 2 Quality Assurance Project Plan (QAPP)
Attachment 3 Community Air Monitoring Plan (CAMP)


cc: G. Nicholls, P. McMahon, E. Adkins


\langan.com\data\NY\data0\170017001\Office Data\Reports\BCP SRIWP\Text\SRIWP_241 West 28th Street.docx

Table 1 Emerging Contaminant Analyte List Supplemental Remedial Investigation Work Plan

241 West 28th Street New York, NY Langan Project No.: 170017004

	PFAS Compound A	nalyte		
Group	Compound Name	Abbreviation	CAS Number	Analytical Method
-	Perfluorobutanesulfonic acid	PFBS	375-73-5	
	Perfluorohexanesulfonic acid	PFHxS	355-46-4	
Perfluoroalkyl sulfonates	Perfluoroheptanesulfonic acid	PFHpS	375-92-8	
	Perfluorooctanesulfonic acid	PFOS	1763-23-1	
	Perfluorodecanesulfonic acid	PFDS	335-77-3	
	Perfluorobutanoic acid	PFBA	375-22-4	
	Perfluoropentanoic acid	PFPeA	2706-90-3	1
	Perfluorohexanoic acid	PFHxA	307-24-4	USEPA Method 537
	Perfluoroheptanoic acid	PFHpA	375-85-9	
	Perfluorooctanoic acid	PFOA	335-67-1	
Perfluoroalkyl carboxylates	Perfluorononanoic acid	PFNA	375-95-1	
	Perfluorodecanoic acid	PFDA	335-76-2	
	Perfluoroundecanoic acid	PFUA/PFUdA	2058-94-8	
	Perfluorododecanoic acid	PFDoA	307-55-1	
	Perfluorotridecanoic acid	PFTriA/PFTrD	72629-94-8	1
	Perfluorotetradecanoic acid	PFTA/PFTeDA	376-06-7	
Fluorinated Talaman Culfonates	6:2 Fluorotelomer sulfonate	6:2 FTS	27619-97-2	1
Fluorinated Telomer Sulfonates	8:2 Fluorotelomer sulfonate	8:2 FTS	39108-34-4	
Perfluorooctane-sulfonamides	Perfluroroctanesulfonamide	FOSA	754-91-6	1
Perfluorooctane-sulfonamidoacetic	N-methyl perfluorooctanesulfonamidoacetic acid	N-MeFOSAA	2355-31-9	7
acids	N-ethyl perfluorooctanesulfonamidoacetic acid	N-EtFOSAA	2991-50-6	
	1,4-Dioxane			
1,4-Dioxane	1,4-dioxane	None	123-91-1	USEPA Method 8270 S

Notes:

- 1. PFAS per- and polyfluoroalkyl substances
- 2. USEPA = United States Environmental Protection Agency

ATTACHMENT A HEALTH AND SAFETY PLAN

HEALTH AND SAFETY PLAN

FOR

241 WEST 28TH STREET **NEW YORK, NEW YORK Manhattan Borough Tax Map** Block 5778, Lots 13, 16, 18 and 66

Prepared For

241 West 28th Street Owner LLC 142 West 57th Street New York, New York 10019

Prepared By:

Langan Engineering, Environmental, Surveying Landscape Architecture, and Geology, D.P.C. 21 Penn Plaza 360 West 31st Street, 8th Floor New York, New York 10001

LANGAN

July 2019 Langan Project No. 170017004

TABLE OF CONTENTS

Page No.

1.0 IN	TRODUCTION	1
1.1 (GENERAL	1
	SITE LOCATION AND BACKGROUND	
1.3	SUMMARY OF WORK TASKS	2
1.3.1	Geophysical Investigation	2
1.3.2	Waste Characterization - Soil Investigation and Sampling	2
1.3.3	Groundwater Investigation and Sampling	
1.3.4	Equipment Decontamination	3
1.3.5	Management of Investigative-Derived Waste	3
1.3.6	Drum Sampling	3
1.3.7	Surveying	3
2.0 IDE	ENTIFICATION OF KEY PERSONNEL/HEALTH AND SAFETY PERSONNEL	3
2.1 l	LANGAN PROJECT MANAGER	4
2.2 l	LANGAN CORPORATE HEALTH AND SAFETY MANAGER	4
2.3 l	LANGAN SITE HEALTH & SAFETY OFFICER	4
2.4 l	LANGAN FIELD TEAM LEADER RESPONSIBILITIES	5
2.5	Contractor Responsibilities	5
3.0 TA	SK/OPERATION SAFETY AND HEALTH RISK ANALYSES	6
3.1	SPECIFIC TASK SAFETY ANALYSIS	6
3.1.1	Geophysical Survey	6
3.1.2	Soil Investigation and Sampling	6
3.1.3	Indoor Drilling and Excavation	7
3.1.4	Groundwater Investigation and Sampling	7
3.1.5	Drum Sampling	7
	Radiation Hazards	8
3.3 F	Physical Hazards	
3.3.1	Explosion	
3.3.2	Heat Stress	
3.3.3	Cold-Related Illness	
3.3.4	Noise	
3.3.5	Hand and Power Tools	
3.3.6	Slips, Trips and Fall Hazards	
3.3.7	Utilities (Electrocution and Fire Hazards)	
	.7.1 Utility Clearance	
3.3.8	Physical Hazard Considerations for Material Handling	
3.3.9	Hearing Conservation	
3.3.9	Open Water	
	BIOLOGICAL HAZARDS	
3.4.1	Animals	
3.4.2	Insects	
3.4.3	Plants	
	Additional Safety Analysis	
3.5.1	Presence of Non-Aqueous Phase Liquids (NAPL)	

3.6	Job Safety Analysis	15
4.0	PERSONNEL TRAINING	15
4.1	Basic Training	
4.2	Initial Site-Specific Training	
4.3	TAILGATE SAFETY BRIEFINGS	
5.0	MEDICAL SURVEILLANCE	
6.0	PERSONAL PROTECTIVE EQUIPMENT	17
6.1	LEVELS OF PROTECTION	
6.2 6.3	RESPIRATOR FIT-TESTRESPIRATOR CARTRIDGE CHANGE-OUT SCHEDULE	
7.0	AIR QUALITY MONITORING AND ACTIONS LEVELS	
7.1 7	MONITORING DURING SITE OPERATIONS	
	.1.2 Metals	20
7.2	MONITORING EQUIPMENT CALIBRATION AND MAINTENANCE	
7.3	DETERMINATION OF BACKGROUND LEVELS	
8.0	COMMUNITY AIR MONITORING PROGRAM	20
8.1	VAPOR EMISSION RESPONSE PLAN	
8.2	MAJOR VAPOR EMISSION	
8.3 8.4	Major Vapor Emission Response Plan Dust Suppression Techniques	
9.0	WORK ZONES AND DECONTAMINATION	
9.1	SITE CONTROL	
9.2	CONTAMINATION ZONE	
9	.2.1 Personnel Decontamination Station	
	.2.2 Minimization of Contact with Contaminants	
_	.2.3 Personnel Decontamination Sequence	
	.2.4 Emergency Decontamination	
	.2.6 Heavy Equipment Decontamination	
9.3		
9.4	Communications	
9.5	THE BUDDY SYSTEM	
10.0	NEAREST MEDICAL ASSISTANCE	
11.0	STANDING ORDERS/SAFE WORK PRACTICES	
12.0	SITE SECURITY	27
13.0	UNDERGROUND UTILITIES	27
14.0	SITE SAFETY INSPECTION	27
15.0		
15.0	HAND AND POWER TOOLS	27
16.0	HAND AND POWER TOOLS EMERGENCY RESPONSE	
	EMERGENCY RESPONSE GENERAL	28 28

16.2.1 Health and Safety Officer (HSO)	
16.2.2 Emergency Coordinator	
16.2.3 Site Personnel	
16.3 COMMUNICATIONS	
16.4 LOCAL EMERGENCY SUPPORT UNITS	
16.5 Pre-Emergency Planning	
16.6 EMERGENCY MEDICAL TREATMENT	
16.7 Personnel with current first aid and CPR certification will be ide	
16.8 EMERGENCY SITE EVACUATION ROUTES AND PROCEDURES	
16.8.1 Designated Assembly Locations	
16.8.2 Accounting for Personnel	
16.9 FIRE PREVENTION AND PROTECTION	
16.9.1 Fire Prevention	
16.10 SIGNIFICANT VAPOR RELEASE	
16.11 OVERT CHEMICAL EXPOSURE	
16.12 DECONTAMINATION DURING MEDICAL EMERGENCIES	
16.13 Adverse Weather Conditions	
16.14 SPILL CONTROL AND RESPONSE	
16.15 EMERGENCY EQUIPMENT	
16.16 RESTORATION AND SALVAGE	
16.17 Documentation	35
17.0 SPECIAL CONDITIONS	36
17.1 Scope	
17.2 RESPONSIBILITIES	
17.3 Procedures	
17.3.1 Ladders	36
17.3.1.1 Ladder Use	36
17.3.1.1 Ladder Use	36 37
17.3.1.1 Ladder Use	36 37 37
17.3.1.1 Ladder Use	
17.3.1.1 Ladder Use	36 37 37 37 38 38 38 38 38
17.3.1.1 Ladder Use 17.3.1.2 Portable Ladders	36 37 37 37 38 38 38 39
17.3.1.1 Ladder Use 17.3.1.2 Portable Ladders 17.3.1.3 Step Stools 17.3.1.4 Extension Ladders 17.3.1.5 Inspection 17.3.2 First Aid/Cardiopulmonary Resuscitation (CPR) 17.3.2.1 Emergency Procedures 17.3.2.2 First Aid Supplies 17.3.3 Hydrogen Sulfide 17.3.3.1 Characteristics 17.3.3.2 Health Effects 17.3.3.3 Protective Clothing and Equipment 17.3.3.4 Emergency and First Aid Procedures	36 37 37 38 38 38 39 39 40
17.3.1.1 Ladder Use 17.3.1.2 Portable Ladders 17.3.1.3 Step Stools 17.3.1.4 Extension Ladders 17.3.1.5 Inspection 17.3.2 First Aid/Cardiopulmonary Resuscitation (CPR) 17.3.2.1 Emergency Procedures 17.3.2.2 First Aid Supplies 17.3.3 Hydrogen Sulfide 17.3.3.1 Characteristics 17.3.3.2 Health Effects 17.3.3.3 Protective Clothing and Equipment 17.3.3.4 Emergency and First Aid Procedures 19.3.4 Fire Protection/Extinguishers	36 37 37 38 38 38 38 39 40 41
17.3.1.1 Ladder Use 17.3.1.2 Portable Ladders	36 37 37 38 38 38 38 39 40 41 41
17.3.1.1 Ladder Use 17.3.1.2 Portable Ladders	36 37 37 38 38 38 38 39 40 41 41 42
17.3.1.1 Ladder Use 17.3.1.2 Portable Ladders	36 37 37 38 38 38 38 39 40 41 41 42 42
17.3.1.1 Ladder Use 17.3.1.2 Portable Ladders	36 37 37 37 38 38 38 38 39 40 41 41 42 42 43
17.3.1.1 Ladder Use 17.3.1.2 Portable Ladders	36 37 37 38 38 38 38 39 39 40 41 41 42 42 43
17.3.1.1 Ladder Use 17.3.1.2 Portable Ladders	36 37 37 38 38 38 38 39 39 40 41 41 42 42 43
17.3.1.1 Ladder Use 17.3.1.2 Portable Ladders	36 37 37 38 38 38 38 39 40 41 41 42 42 43 43
17.3.1.1 Ladder Use	36 37 37 37 38 38 38 38 39 40 41 41 42 42 42 43 43
17.3.1.1 Ladder Use	36 37 37 38 38 38 38 39 40 41 41 42 42 42 43 43 43 45
17.3.1.1 Ladder Use 17.3.1.2 Portable Ladders	36 37 37 38 38 38 38 39 39 40 41 41 42 42 42 42 43 43 43 45
17.3.1.1 Ladder Use	36 37 37 37 38 38 38 38 39 40 41 41 41 42 42 42 42 43 43 43 43 45

20 O	HACDA	CKNOWI EDGEMENT FORM	19
13.0	CONFIN	EU SFACE EININT	48
19.0	CONIEINI	ED SPACE ENTRY	40
	18.7.1.3	OSHA Form 300	48
	18.7.1.2	First Aid Treatment Record	48
	18.7.1.1	Accident/Incident Report	47
1		ident and Injury Report Forms	
18.7	' Docun	MENTATION	47
18.6	6 Hazar	D COMMUNICATION PROGRAM/MSDS-SDS	47
18.5	EXPOS	URE RECORDS	47

LIST OF TABLES

Table 1	Task Hazard Analysis
Table 2	Contaminant Hazards of Concern
Table 3	Summary of Monitoring Equipment
Table 4	Instrumentation Action Levels
Table 5	Emergency Notification List*
Table 6	Suggested Frequency of Physiological Monitoring For Fit and Acclimated Workers
Table 7	Heat Index

LIST OF FIGURES

Figure 1	Site Location Map
----------	-------------------

Figure 2 Route to Hospital (map with directions)*

LIST OF APPENDICES

Attachment A	Standing Orders*
Attachment B	Decontamination Procedures
Attachment C	Employee Exposure/Injury Incident Report
Attachment D	Calibration Log
Attachment E	Material Data Safety Sheets / Safety Data Sheets*
Attachment F	Jobsite Safety Inspection Checklist
Attachment G	Job Safety Analysis Forms
Attachment H	Tailgate Safety Meeting Log

^{*} Items to be posted prominently on site, or made readily available to personnel.

1.0 INTRODUCTION

1.1 General

This HEALTH AND SAFETY PLAN (HASP) was developed to address disturbance of known and reasonably anticipated subsurface contaminants and comply with Occupational Safety and Health Administration (OSHA) Standard 29 CFR 1910.120(b)(4), *Hazardous Waste Operations and Emergency Response* during anticipated site work at 241 West 28th Street in the Borough of Manhattan, city of New York in the state of New York (Tax Map Block 778, Lots 13, 16, 18 and 66) ("the Site"). This HASP provides the minimum requirements for implementing site operations during future remedial measure activities. All contractors performing work on this site shall implement their own HASP that, at a minimum, adheres to this HASP. The contractor is responsible for their own health and safety and that of their subcontractors. Langan personnel will implement this HASP while onsite.

The management of the day-to-day site activities and implementation of this HASP in the field is the responsibility of the site Langan Field Team Leader (FTL). Assistance in the implementation of this HASP can also be obtained from the site Langan Health and Safety Officer (HSO) and the Langan Health and Safety Manager (HSM). Contractors operating on the site shall designate their own FTL, HSO and HSM. The content of this HASP may change or undergo revision based upon additional information made available to health and safety personnel, monitoring results, or changes in the work plan.

1.2 Site Location and Background

The site is identified as Block 778, Lots 13, 16, 18, and 66 on the New York City Manhattan Borough Tax Map and is improved with an asphalt-paved open-air parking lot surrounded by a wooden construction fence. The approximately 29,315 -square-foot site is bound by West 29th Street to the north, a 13-story commercial office building (Block 778, Lot 57) and a 12-story commercial office building (Block 778, Lot 20) to the east, West 28th Street to the south, and a 5-story industrial manufacturing building (Block 778, Lot 7) and a 7-story public institutional building (Block 778, Lot 70) to the west. The site has 145 feet of frontage along West 29th Street to the north and 149.25 feet of frontage along West 28th Street to the south, respectively.

The site is located in an urban setting characterized by multi-story residential, mixed-use, industrial, commercial, and institutional buildings. Because of the urban nature of the area, major infrastructure (e.g., storm drains, sewers, and underground utility lines) exist in the vicinity of the site. A site location map is included as Figure 1.

1.3 Summary of Work Tasks

1.3.1 Geophysical Investigation

Prior to the commencement of intrusive field activities (i.e., soil borings); a geophysical consultant may conduct a geophysical survey using ground penetrating radar (GPR) and electromagnetic detection equipment. Langan personnel will coordinate the geophysical survey. The objective of the survey will be to identify any underground storage tank (UST) structures, drains, underground utilities, and other subsurface anomalies that may be encountered during the investigation. During this time Langan personnel will inspect the site and confirm sample locations.

1.3.2 Waste Characterization - Soil Investigation and Sampling

Langan will retain a drilling contractor to advance soil borings to a depth below grade surface (bgs) specified in the work plan. Borings locations will be based on the results of a previous geophysical survey and the site inspection and document review. The drilling contractor will contact the appropriate utility mark-out authority and make available to their drilling staff the verification number and effective dates. Langan will record the verification number and effective dates from the drillers. Langan will also note the location of marked out utilities on the site plan and scan the data into the project folder. The borings may be filled with clean soil cuttings after samples are collected.

Langan personnel will screen soil for visual, olfactory, and instrumental indicators suggestive of a potential petroleum release. Instrument screening for the presence of VOCs may be performed with a calibrated photoionization detector (PID) equipped with a 10.6 electron volt (eV) bulb (or equivalent). Langan personnel will collect soil samples from the proposed soil boring locations following the sampling plan outlined in the work plan. The borings will be filled with clean soil cuttings or bentonite grout after samples are collected.

Soil samples will be submitted to a New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP)-certified laboratory and analyzed in accordance with work plan specifications.

1.3.3 Groundwater Investigation and Sampling

Selected soil borings will be converted into groundwater monitoring wells and sampled to evaluate groundwater quality. Groundwater samples will be collected from one or more of the new and if available, pre-existing monitoring wells in accordance with the Langan Low Flow Groundwater Sampling SOP (SOP #12). Groundwater samples will be submitted to an NYSDOH

ELAP-certified laboratory and analyzed for constituents as specified in the work plan. The monitoring wells will be backfilled and abandoned in accordance with State and Local regulations.

1.3.4 Equipment Decontamination

Before the start of the day's sampling and after sampling each run, sampling equipment will be decontaminated by the decontamination process outlined Attachment B - Decontamination Procedures. Decontamination wastes and purge water will be temporarily stored on site pending analytical results.

1.3.5 Management of Investigative-Derived Waste

The investigative-derived waste (IDW) generated during this investigation will be contained in DOT-approved 55-gallon drums. The drums will be temporarily stored on the site or as directed by the client representative. All drums will be filled between to two-thirds full to allow easy maneuvering during drum pickup and disposal. Drum labels are to be provided by Langan (Environmental Closet). All drums will be labeled as "IDW Pending Analysis" until sample data are reported from the laboratory. Drum labels will include date filled and locations where waste was generated along with the standard information required by the labels in accordance with the Langan SOP09, Drum Labeling..

Closed top drums are to be used to store liquids. Debris, including plastic sheeting, polyethylene tubing, personal protection equipment (PPE), decontamination debris, etc. will be segregated from and disposed in large heavy duty garbage bags and disposed of at the site. Excess unused glassware should be returned to the lab along with the last day of collection samples.

1.3.6 Drum Sampling

Langan personnel may collect drum samples, as required, prior to off-site drum disposal. Samples will be placed into laboratory-supplied batch-certified clean glassware and submitted to a NYSDOH ELAP-certified laboratory.

1.3.7 Surveying

Surveying activities defined in the work plan may be completed by Langan. Surveying will be conducted by licensed surveyors.

2.0 IDENTIFICATION OF KEY PERSONNEL/HEALTH AND SAFETY PERSONNEL

The following briefly describes the health and safety (H&S) designations and general responsibilities that may be employed for this site. The titles have been established to

accommodate the project needs and requirements and ensure the safe conduct of site activities. The H&S personnel requirements for a given work location are based upon the proposed site activities.

2.1 Langan Project Manager

The Langan Environmental Project Managers (PM) is Paul McMahon. His responsibilities include:

- Ensuring that this HASP is developed, current, and approved prior to on-site activities.
- Ensuring that all the tasks in the project are performed in a manner consistent with Langan's comprehensive *Health and Safety Program for Hazardous Waste Operations* and this HASP.

2.2 Langan Corporate Health and Safety Manager

The Langan Corporate Health and Safety Manager (HSM) is Tony Moffa. His responsibilities include:

- Updating the Construction Health and Safety Program for Hazardous Waste Operations.
- Assisting the site Health and Safety Officer (HSO) with development of the HASP, updating HASP as dictated by changing conditions, jobsite inspection results, etc. and approving changes to this HASP.
- Assisting the HSO in the implementation of this HASP and conducting Jobsite Safety Inspections and assisting with communication of results and correction of shortcomings found.
- Maintaining records on personnel (medical evaluation results, training and certifications, accident investigation results, etc.).

2.3 Langan Site Health & Safety Officer

The Langan site HSO is William Bohrer. His responsibilities include:

- Participating in the development and implementation of this HASP.
- When on-site, assisting the Langan Field Team Leader in conducting Tailgate Safety Meetings and Jobsite Safety Inspections and correcting any shortcomings in a timely manner.
- Ensuring that proper PPE is available, worn by employees, and properly stored and maintained.
- Controlling entry into and exit from the site contaminated areas or zones.
- Monitoring employees for signs of stress, such as heat stress, fatigue, and cold exposure.

- Monitoring site hazards and conditions.
- Knowing (and ensuring that all site personnel also know) emergency procedures, evacuation routes, and the telephone numbers of the ambulance, local hospital, poison control center, fire department, and police department.
- Resolving conflicts that may arise concerning safety requirements and working conditions.
- Reporting all incidents, injuries and near misses to the Langan Incident/Injury Hotline immediately and the client representative.

2.4 Langan Field Team Leader Responsibilities

The Langan Field Team Leader (FTL) is to be determined prior to the start of the start of field activities. The Field Team Leader's responsibilities include:

- The management of the day-to-day site activities and implementation of this HASP in the field.
- Participating in and/or conducting Tailgate Safety Meetings and Jobsite Safety Inspections and correcting any shortcomings in a timely manner.
- When a Community Air Monitoring Operating Program (CAMP) is part of the scope, the FTL will set up and maintaining community air monitoring activities and instructing the responsible contractor to implement organic vapor or dust mitigation when necessary.
- Overseeing the implementation of activities specified in the work plan.

2.5 Contractor Responsibilities

The contractor shall develop and implement their own HASP for their employees, lower-tier subcontractors, and consultants. The contractor is responsible for their own health and safety and that of their subcontractors. Contractors operating on the site shall designate their own FTL, HSO and HSM. The contractor's HASP will be at least as stringent as this Langan HASP. The contractor must be familiar with and abide by the requirements outlined in their own HASP. A contractor may elect to adopt Langan's HASP as its own provided that it has given written notification to Langan, but where Langan's HASP excludes provisions pertinent to the contractor's work (i.e., confined space entry); the contractor must provide written addendums to this HASP. Additionally, the contractor must:

- Ensure their employees are trained in the use of all appropriate PPE for the tasks involved;
- Notify Langan of any hazardous material brought onto the job site or site related area, the hazards associated with the material, and must provide a material safety data sheet (MSDS) or safety data sheet (SDS) for the material;
- Have knowledge of, understand, and abide by all current federal, state, and local health

and safety regulations pertinent to the work;

- Ensure their employees handling hazardous materials, if identified at the Site, have received current training in the appropriate levels of 29 CFR 1910.120, *Hazardous Waste Operations and Emergency Response* (HAZWOPER) if hazardous waste is identified at the Site;
- Ensure their employees handling hazardous materials, if identified at the Site, have been fit-tested within the year on the type respirator they will wear; and
- Ensure all air monitoring is in place pertaining to the health and safety of their employees as required by OSHA 1910.120; and
- All contractors must adherer to all federal, state, and local regulatory requirements.

3.0 TASK/OPERATION SAFETY AND HEALTH RISK ANALYSES

A Task-Hazard Analysis (Table 1) was completed for general construction hazards that may be encountered at the Site. The potential contaminants that might be encountered during the field activities and the exposure limits are listed in Table 2 complete inventory of MSDS/SDS for chemical products used on site is included as Attachment E.

3.1 Specific Task Safety Analysis

3.1.1 Geophysical Survey

Langan personnel are not permitted to operate or otherwise handle the geophysical equipment including any downhole geophysical equipment subsequently used to survey boreholes. When soil, groundwater or soil vapor point locations are surveyed with surface geophysical equipment, the locations of the point as well as possible utilities and other artifacts that may interfere with the subsurface investigation are to be marked with indelible paint, flags, or color tape (when marking indoor locations that the client has specifically requested not be marked with indelible paint). This information must also be added to the site map. When applying paint, proper PPE including at a minimum hand protections should be used.

3.1.2 Soil Investigation and Sampling

Sampling the soil requires the donning of chemical resistant gloves in addition to the standard PPE. Langan personnel are not to operate drilling or excavation equipment nor open sampling devices (acetate liners, sonic sample bags, etc.). These tasks are to be completed by the driller or excavation contractor.

3.1.3 Indoor Drilling and Excavation

The work scope may require indoor drilling or drilling in locations where there may not be adequate ventilation sufficient to safely operate any rig or excavation equipment powered by an internal combustion engine. Where possible, all such work should be done by equipment powered by electricity. If such equipment is used and must be directly wired to the buildings electrical system or to an independent system, this work must be completed by a licensed electrician in accordance with all electrical codes applicable to the work.

Indoor work which is to be completed with equipment powered by an internal combustion engine must incorporate air monitoring of carbon monoxide (CO) using calibrated air monitoring equipment (MultiRAE or equivalent). In addition, the work plan should incorporate mitigation for venting engine exhaust fumes directly to the outdoors and for circulating fresh air into the work area.

The OSHA Time Weighted Average (TWA) Permissible Exposure Limit (PEL) for CO from 50 to 35 parts per million (ppm). Langan will monitor CO with a suitable monitoring device. If CO levels exceed 5 ppm, Langan will instruct contractors to begin mitigation measures. These measures are at a minimum:

- Increase air circulation using industrial size fans to bring additional fresh air into the building or vent exhaust to the outside;
- Modify the passive exhaust method being used to increase venting circulation by using wider diameter tubing or sealing tubing connections; or
- Modify the work schedule where the rig is turned off to allow time for CO levels to fall back to background

All work must cease if CO levels reach 35 ppm. The Langan engineer is to report to the PM and H&S officer when an action level is reached.

3.1.4 Groundwater Investigation and Sampling

Sampling groundwater requires the donning of chemical resistant gloves in addition to the standard PPE and cut resistant gloves when cutting sampling-tubing to length. Langan personnel are not to operate drilling equipment nor assemble or install monitoring well equipment. These tasks are to be completed by the driller contractor.

3.1.5 Drum Sampling

Drilling fluid, rinse water, grossly-contaminated soil samples and cuttings will be containerized in 55-gallon drums for disposed off-site. Each drum must be labeled in accordance with the Langan

Drum Labeling Standard Operating Procedure (SOP-#9). Sampling drums requires the donning of work gloves when opening the drums and chemical resistant gloves when sampling in addition to standard PPE.

Langan personnel and contractors are not to move or opened any orphaned (unlabeled) drum found on the site without approval of the project manager.

3.2 Radiation Hazards

No radiation hazards are known or expected at the site.

3.3 Physical Hazards

Physical hazards, which may be encountered during site operations for this project, are detailed in Table 1.

3.3.1 Explosion

No explosion hazards are expected for the scope of work at this site.

3.3.2 Heat Stress

The use of Level C protective equipment, or greater, may create heat stress. Monitoring of personnel wearing personal protective clothing should commence when the ambient temperature is 72°F or above. Table 6 presents the suggested frequency for such monitoring. Monitoring frequency should increase as ambient temperature increases or as slow recovery rates are observed. Refer to the Table 7 to assist in assessing when the risk for heat related illness is likely. To use this table, the ambient temperature and relative humidity must be obtained (a regional weather report should suffice). Heat stress monitoring should be performed by the HSO or the FTL, who shall be able to recognize symptoms related to heat stress.

To monitor the workers, be familiar with the following heat-related disorders and their symptoms:

- **Heat Cramps**: Painful spasm of arm, leg or abdominal muscles, during or after work
- **Heat Exhaustion:** Headache, nausea, dizziness; cool, clammy, moist skin; heavy sweating; weak, fast pulse; shallow respiration, normal temperature
- **Heat Stroke**: Headache, nausea, weakness, hot dry skin, fever, rapid strong pulse, rapid deep respirations, loss of consciousness, convulsions, coma. <u>This is a life threatening</u> condition.

<u>Do not</u> permit a worker to wear a semi-permeable or impermeable garment when they are showing signs or symptoms of heat-related illness.

To monitor the worker, measure:

- **Heart rate**: Count the radial pulse during a 30-second period as early as possible in the rest period. If the heart rate exceeds 100 beats per minute at the beginning of the rest period, shorten the next work cycle by one-third and keep the rest period the same. If the heart rate still exceeds 100 beats per minute at the next rest period, shorten the following work cycle by one-third. A worker cannot return to work after a rest period until their heart rate is below 100 beats per minute.
- Oral temperature: Use a clinical thermometer (3 minutes under the tongue) or similar device to measure the oral temperature at the end of the work period (before drinking). If oral temperature exceeds 99.6°F (37.6°C), shorten the next work cycle by one-third without changing the rest period. A worker cannot return to work after a rest period until their oral temperature is below 99.6°F. If oral temperature still exceeds 99.6°F (37.6°C) at the beginning of the next rest period, shorten the following cycle by one-third. Do not permit a worker to wear a semi-permeable or impermeable garment when oral temperature exceeds 100.6°F (38.1°C).

<u>Prevention of Heat Stress</u> - Proper training and preventative measures will aid in averting loss of worker productivity and serious illness. Heat stress prevention is particularly important because once a person suffers from heat stroke or heat exhaustion, that person may be predisposed to additional heat related illness. To avoid heat stress the following steps should be taken:

- Adjust work schedules.
- Mandate work slowdowns as needed.
- Perform work during cooler hours of the day if possible or at night if adequate lighting can be provided.
- Provide shelter (air-conditioned, if possible) or shaded areas to protect personnel during rest periods.
- Maintain worker's body fluids at normal levels. This is necessary to ensure that the cardiovascular system functions adequately. Daily fluid intake must approximately equal the amount of water lost in sweat, id., eight fluid ounces (0.23 liters) of water must be ingested for approximately every eight ounces (0.23 kg) of weight lost. The normal thirst mechanism is not sensitive enough to ensure that enough water will be drunk to replace lost sweat. When heavy sweating occurs, encourage the worker to drink more. The following strategies may be useful:
 - o Maintain water temperature 50° to 60°F (10° to 16.6°C).
 - o Provide small disposal cups that hold about four ounces (0.1 liter).

- Have workers drink 16 ounces (0.5 liters) of fluid (preferably water or dilute drinks) before beginning work.
- O Urge workers to drink a cup or two every 15 to 20 minutes, or at each monitoring break. A total of 1 to 1.6 gallons (4 to 6 liters) of fluid per day are recommended, but more may be necessary to maintain body weight.
- o Train workers to recognize the symptoms of heat related illness.

3.3.3 Cold-Related Illness

If work on this project begins in the winter months, thermal injury due to cold exposure can become a problem for field personnel. Systemic cold exposure is referred to as hypothermia. Local cold exposure is generally called frostbite.

- **Hypothermia** Hypothermia is defined as a decrease in the patient core temperature below 96°F. The body temperature is normally maintained by a combination of central (brain and spinal cord) and peripheral (skin and muscle) activity. Interference with any of these mechanisms can result in hypothermia, even in the absence of what normally is considered a "cold" ambient temperature. Symptoms of hypothermia include: shivering, apathy, listlessness, sleepiness, and unconsciousness.
- **Frostbite** Frostbite is both a general and medical term given to areas of local cold injury. Unlike systemic hypothermia, frostbite rarely occurs unless the ambient temperatures are less than freezing and usually less than 20°F. Symptoms of frostbite are: a sudden blanching or whitening of the skin; the skin has a waxy or white appearance and is firm to the touch; tissues are cold, pale, and solid.

Prevention of Cold-Related Illness - To prevent cold-related illness:

- Educate workers to recognize the symptoms of frostbite and hypothermia
- Identify and limit known risk factors:
- Assure the availability of enclosed, heated environment on or adjacent to the site.
- Assure the availability of dry changes of clothing.
- Assure the availability of warm drinks.
- Start (oral) temperature recording at the job site:
- At the FSO or Field Team Leader's discretion when suspicion is based on changes in a worker's performance or mental status.
- At a worker's request.
- As a screening measure, two times per shift, under unusually hazardous conditions (e.g., wind-chill less than 20°F, or wind-chill less than 30°F with precipitation).
- As a screening measure whenever anyone worker on the site develops hypothermia.

Any person developing moderate hypothermia (a core temperature of 92°F) cannot return to

work for 48 hours.

3.3.4 Noise

Work activities during the proposed activities may be conducted at locations with high noise levels from the operation of equipment. Hearing protection will be used as necessary.

3.3.5 Hand and Power Tools

The use of hand and power tools can present a variety of hazards, including physical harm from being struck by flying objects, being cut or struck by the tool, fire, and electrocution. All hand and power tools should be inspected for health and safety hazards prior to use. If deemed unserviceable/un-operable, notify supervisor and tag equipment out of service. Ground Fault Circuit Interrupters (GFCIs) are required for all power tools requiring direct electrical service.

3.3.6 Slips, Trips and Fall Hazards

Care should be exercised when walking at the site, especially when carrying equipment. The presence of surface debris, uneven surfaces, pits, facility equipment, and soil piles contribute to tripping hazards and fall hazards. To the extent possible, all hazards should be identified and marked on the site, with hazards communicated to all workers in the area.

3.3.7 Utilities (Electrocution and Fire Hazards)

3.3.7.1 Utility Clearance

The possibility of encountering underground utilities poses fire, explosion, and electrocution hazards. All excavation work will be preceded by review of available utility drawings and by notification of the subsurface work to the N.Y. One –Call–Center.

3.3.7.2 Lockout-Tagout

The potential adverse effects of electrical hazards include burns and electrocution, which could result in death. Therefore, there is a procedure that establishes the requirements for the lockout/tagout (LOTO) of energy isolating devices in accordance with the OSHA electrical lockout and tagging requirements as specified in 29 CFR 1926.417. This procedure will be used to ensure that all machines and equipment are isolated from potentially hazardous energy. If possible, equipment that could cause injury due to unexpected energizing, start-up, or release of stored energy will be locked/tagged, before field personnel perform work activities.

Depending upon the specific work task involved, Langan's SSC or FTL will serve as the authorized

lockout/tagout coordinator, implement the lockout/tagout procedure and will be responsible to locate, lock and tag valves, switches, etc.

SPECIAL NOTE: Project personnel will assume that all electrical equipment at surface, subsurface and overhead locations is energized, until equipment has been designated and confirmed as de-energized by a utility company representative. Langan will notify the designated utility representative prior to working adjacent to this equipment and will verify that the equipment is energized or de-energized in the vicinity of the work location.

No project work shall be performed by Langan personnel or subcontractors on or near energized electrical lines or equipment unless hazard assessments are completed in writing, reviewed by Langan's SSHO, and clearly communicated to the field personnel.

The FTL shall conduct a survey to locate and identify all energy isolating devices. They shall be certain which switches, valves or other isolating devices apply to the equipment. The lockout/tagout procedure involves, but is not limited to, electricity, motors, steam, natural gas, compressed air, hydraulic systems, digesters, sewers, etc.

3.3.8 Physical Hazard Considerations for Material Handling

There are moderate to severe risks associated with moving heavy objects at the Site. The following physical hazards should be considered when handling materials at the Site:

- Heavy objects will be lifted and moved by mechanical devices rather than manual effort whenever possible.
- The mechanical devices will be appropriate for the lifting of moving task and will be operated only by trained and authorized personnel.
- Objects that require special handling or rigging will only be moved under the guidance of a person who has been specifically trained to move such objects.
- Lifting devices will be inspected, certified, and labeled to confirm their weight capacities. Defective equipment will be taken out of service immediately and repaired or destroyed.
- The wheels of any trucks being loaded or unloaded will be chocked to prevent movement. Outriggers will be fully extended on a flat, firm surface during operation.
- Personnel will not pass under a raised load, nor will a suspended load be left unattended.
- Personnel will not be carried on lifting equipment, unless it is specifically designed to carry passengers.
- All reciprocating, rotating, or other moving parts will be guarded at all times.

- Accessible fire extinguishers, currently (monthly) inspected, will be available in all mechanical lifting devices.
- Verify all loads/materials are secure before transportation.

Material handling tasks that are unusual or require specific guidance will need a written addendum to this HASP. The addendum must identify the lifting protocols before the tasks are performed. Upon approval, the plan must be reviewed with all affected employees and documented. Any deviation from a written plan will require approval by the Langan HSM.

3.3.9 Hearing Conservation

Under the construction industry standard, the maximum permissible occupational noise exposure is 90 dbA (8-hour TWA), and noise levels in excess of 90 dbA must be reduced through feasible administrative and engineering controls. (20 CFR 1926.52). Hearing protection is required when working within 15 feet of vacuum extraction equipment and drill rigs.

3.3.9 Open Water

Employees working over or near water, where the danger of drowning exists, shall be provided with U.S. Coast Guard-approved life jackets or buoyant work vests. Prior to and after each use, the buoyant work vests or life preservers shall be inspected for defects which would alter their strength or buoyancy. Defective units shall not be used.

And should a worker fall into the water, OSHA requires (29 CFR 1926.106(c)) that ring buoys with at least 90 feet of line shall be provided and readily available for emergency rescue operations. The distance between ring buoys shall not exceed 200 feet. Another remedial action required by OSHA (29 CFR 1926.106(d)) is the use of lifesaving skiffs.

OSHA requires that at least one lifesaving skiff shall be immediately available at locations where employees are working over or adjacent to water and must include the following provisions.

- The skiff must be in the water or capable of being quickly launched by one person.
- At least one person must be present and specifically designated to respond to water emergencies and operate the skiff at all times when there are employees above water.
- When the operator is on break another operator must be designated to provide requisite coverage when there are employees above water.
- The designated operator must either have the skiff staffed at all times or have someone remain in the immediate area such that the operator can quickly reach the skiff and perform rescue services.
- The skiff operator maybe assigned other tasks provided the tasks do not interfere with the operator's ability to quickly reach the skiff.

- A communication system, such as a walkie-talkie, must be used to inform the skiff operator of an emergency and to inform the skiff operator where the skiff is needed.
- The skiff must be equipped with both a motor and oars.

With regard to the number of skiffs required and the appropriate maximum response time, the following factors must be evaluated:

- The number of work locations where there is a danger of falling into water;
- The distance to each of those locations;
- Water temperature and currents;
- Other hazards such as, but not limited to, rapids, dams, and water intakes;

Other regulations that present S&H practices and PPE for work on or near water include: 29 CFR 1910, Subpart T (401 – 440)

3.4 Biological Hazards

3.4.1 Animals

There is a possibility of encountering wildlife including reptiles, rodents and other small and medium size mammals. The Langan personnel is to avoid interacting with any wildlife.

3.4.2 Insects

Ticks and other biting or stinging insects may to be encountered during site operations. Langan personnel should take necessary precautions including donning long sleeve shirts and insecticide to prevent bites and stings. After field work, Langan personnel should perform a complete visual inspection of their clothing to insure they are not inadvertently harboring ticks. If they do observe a tick bite, they are to contact the HSM or HSO and report the event.

3.4.3 Plants

Poisonous plants may to be encountered during site operations. Langan personnel should take necessary precautions including donning long sleeve shirts and applying preventative poison lvy/Sumac lotion to prevent or limit effects of exposure. If after field work, Langan employees do observe a reaction to poisonous plant exposure, they are to contact the HSM or HSO and report the event.

3.5 Additional Safety Analysis

3.5.1 Presence of Non-Aqueous Phase Liquids (NAPL)

There is potential for exposure to NAPL at this site. Special care and PPE should be considered when NAPL is observed as NAPL is a typically flammable fluid and releases VOCs known to be toxic and/or carcinogenic. If NAPL is present in a monitoring well, vapors from the well casing may contaminate the work area breathing zone with concentrations of VOCs potentially exceeding health and safety action levels. In addition, all equipment used to monitor or sample NAPL (or ground water from wells containing NAPL) must be intrinsically safe. Equipment that directly contacts NAPL must also be resistant to organic solvents.

At a minimum, a PID should be used to monitor for VOCs when NAPL is observed. If NAPL is expected to be observed in an excavation or enclosed area, air monitoring must be started using calibrated air monitoring equipment designed to sound an audio alarm when atmospheric concentrations of VOC are within 10% of the LEL. In normal atmospheric oxygen concentrations, the LEL monitoring may be done with a Wheatstone bridge/catalytic bead type sensor (i.e. MultiRAE). However in oxygen depleted atmospheres (confined space), only an LEL designed to work in low oxygen environments may be used. Best practices require that the LEL monitoring unit be equipped with a long sniffer tube to allow the LEL unit to remain outside the UST excavation.

When NAPL is present, Langan personnel are required to use disposable nitrile gloves at all times to prevent skin contact with contaminated materials. They should also consider having available a respirator and protective clothing (Tyvek® overalls), especially if NAPL is in abundance and there are high concentrations of VOCs.

All contaminated disposables including PPE and sampling equipment must be properly disposed of in labeled 55-gallong drums

3.6 Job Safety Analysis

A Job Safety Analysis (JSA) is a process to identify existing and potential hazards associated with each job or task so these hazards can be eliminated, controlled or minimized. A JSA will be performed at the beginning of each work day, and additionally whenever an employee begins a new task or moves to a new location. All JSAs must be developed and reviewed by all parties involved. A blank JSA form and documentation of completed JSAs are in Attachment G.

4.0 PERSONNEL TRAINING

4.1 Basic Training

Completion of an initial 40-hour HAZWOPER training program as detailed in OSHA's 29 CFR 1910.120(e) is required for all employees working on a site engaged in hazardous substance removal or other activities which expose or potentially expose workers to hazardous substances, health hazards, or safety hazards as defined by 29 CFR 1910.120(a). Annual 8-hour refresher training is also required to maintain competencies to ensure a safe work environment. In addition to these training requirements, all employees must complete the OSHA 10 hour Construction Safety and Health training and supervisory personnel must also receive eight additional hours of specialized management training. Training records are maintained by the HSM.

4.2 Initial Site-Specific Training

Training will be provided to specifically address the activities, procedures, monitoring, and equipment for site operations at the beginning of each field mobilization and the beginning of each discrete phase of work. The training will include the site and facility layout, hazards, and emergency services at the site, and will detail all the provisions contained within this HASP. For a HAZWOPER operation, training on the site must be for a minimum of 3 days. Specific issues that will be addressed include the hazards described in Section 3.0.

4.3 Tailgate Safety Briefings

Before starting work each day or as needed, the Langan HSO will conduct a brief tailgate safety meeting to assist site personnel in conducting their activities safely. Tailgate meetings will be documented in Attachment H. Briefings will include the following:

- Work plan for the day;
- Review of safety information relevant to planned tasks and environmental conditions;
- New activities/task being conducted;
- Results of Jobsite Safety Inspection Checklist;
- Changes in work practices;
- Safe work practices; and
- Discussion and remedies for noted or observed deficiencies.

5.0 MEDICAL SURVEILLANCE

All personnel who will be performing field work involving potential exposure to toxic and hazardous substances (defined by 29 CFR 1910.120(a)) will be required to have passed an initial baseline medical examination, with follow-up medical exams thereafter, consistent with 29 CFR 1910.120(f). Medical evaluations will be performed by, or under the direction of, a physician board-certified in occupational medicine.

Additionally, personnel who may be required to perform work while wearing a respirator must receive medical clearance as required under CFR 1910.134(e), *Respiratory Protection*. Medical evaluations will be performed by, or under the direction of, a physician board-certified in occupational medicine. Results of medical evaluations are maintained by the HSM.

6.0 PERSONAL PROTECTIVE EQUIPMENT

6.1 Levels of Protection

Langan will provide PPE to Langan employees to protect them from the specific hazards they are likely to encounter on-site. Direct hired contractors will provide their employees with equivalent PPE to protect them from the specific hazards likely to be encountered on-site. Selection of the appropriate PPE must take into consideration: (1) identification of the hazards or suspected hazards; (2) potential exposure routes; and, (3) the performance of the PPE construction (materials and seams) in providing a barrier to these hazards.

Based on anticipated site conditions and the proposed work activities to be performed at the site, Level D protection will be used. The upgrading/downgrading of the level of protection will be based on continuous air monitoring results as described in Section 6.0 (when applicable). The decision to modify standard PPE will be made by the site HSO or FTL after conferring with the PM. The levels of protection are described below.

Level D Protection (as needed)

- Safety glasses with side shields or chemical splash goggles
- Safety boots/shoes
- Coveralls (Tyvek® or equivalent)
- Hard hat
- Long sleeve work shirt and work pants
- Nitrile gloves
- Hearing protection
- Reflective safety vest

Level D Protection (Modified, as needed)

- Safety glasses with sideshields or chemical splash goggles
- Safety boots/shoes (toe-protected)
- Disposable chemical-resistant boot covers
- Coveralls (polycoated Tyvek or equivalent to be worn when contact with wet contaminated soil, groundwater, or non-aqueous phase liquids is anticipated)

- Hard hat
- Long sleeve work shirt and work pants
- Nitrile gloves
- Hearing protection (as needed)
- Personal floatation device (for work within 5 ft of the water)
- Reflective traffic vest

Level C Protection (as needed)

- Full or Half face, air-purifying respirator, with NIOSH approved HEPA filter
- Inner (latex) and outer (nitrile) chemical-resistant gloves
- Safety glasses with side shields or chemical splash goggles
- Chemical-resistant safety boots/shoes
- Hard hat
- Long sleeve work shirt and work pants
- Coveralls (Tyvek® or equivalent)
- Hearing protection (as needed)
- Reflective safety vest

The action levels used in determining the necessary levels of respiratory protection and upgrading to Level C are summarized in Table 4. The written Respiratory Protection Program is maintained by the HSM and is available if needed. The monitoring procedures and equipment are outlined in Section 6.0 (when applicable).

6.2 Respirator Fit-Test

All Langan employees who may be exposed to hazardous substances at the work site are in possession of a full or half face-piece, air-purifying respirator and have been successfully fit-tested within the past year. Fit-test records are maintained by the HSM.

6.3 Respirator Cartridge Change-Out Schedule

Respiratory protection is required to be worn when certain action levels (table 2) are reached. A respirator cartridge change-out schedule has been developed in order to comply with 29 CFR 1910.134. The respirator cartridge change-out schedule for this project is as follows:

- Cartridges shall be removed and disposed of at the end of each shift, when cartridges become wet or wearer experiences breakthrough, whichever occurs first.
- If the humidity exceeds 85%, then cartridges shall be removed and disposed of after 4 hours of use.

Respirators shall not be stored at the end of the shift with contaminated cartridges left on. Cartridges shall not be worn on the second day, no matter how short the time period was the previous day they were used.

7.0 AIR QUALITY MONITORING AND ACTIONS LEVELS

7.1 Monitoring During Site Operations

Atmospheric air monitoring results may be collected and used to provide data to determine when exclusion zones need to be established and when certain levels of personal protective equipment are required. For all instruments there are Site-specific action level criteria which are used in making field health and safety determinations. Other data, such as the visible presence of contamination or the steady state nature of air contaminant concentration, are also used in making field health and safety decisions. Therefore, the HSO may establish an exclusion zone or require a person to wear a respirator even though atmospheric air contaminant concentrations are below established HASP action levels.

During site work involving disturbance of petroleum-impacted or fill material, real time air monitoring may be conducted for volatile organic compounds (VOCs). A photoionization detector (PID) and/or flame ionization detector (FID) will be used to monitor concentrations of VOCs at personnel breathing-zone height. Air monitoring will be the responsibility of the HSO or designee. Air monitoring may be conducted during intrusive activities associated with the completion of excavation, debris removal, and soil grading. All manufacturers' instructions for instrumentation and calibration will be available onsite.

Subcontractors' air monitoring plans must be equal or more stringent as the Langan plan.

An air monitoring calibration log is provided in Attachment D of this HASP.

7.1.1 Volatile Organic Compounds

Monitoring with a PID, such as a MiniRAE 2000 (10.6v) or equivalent may occur during intrusive work in the AOCs. Colormetric Indicator Tubes for benzene may be used as backup for the PID, if measurements remain above background monitor every 2 hours. The HSO will monitor the employee breathing zone at least every 30 minutes, or whenever there is any indication that concentrations may have changed (odors, visible gases, etc.) since the last measurement. If VOC levels are observed above 5 ppm for longer than 5 minutes or if the site PPE is upgraded to Level C, the HSO will begin monitoring the site perimeter at a location downwind of the AOC every 30 minutes in addition to the employee breathing zone. Instrument action levels for monitored gases are provided in Table 4.

7.1.2 Metals

Based upon the site historical fill, there is a potential for the soils to contain PAHs and metals. During invasive procedures which have the potential for creating airborne dust, such as excavation of dry soils, a real time airborne dust monitor such as a Mini-Ram may be used to monitor for air particulates. The HSO will monitor the employee breathing zone at least every 30 minutes, or whenever there is any indication that concentrations may have changed (appearance of visible dust) since the last measurement. If dust levels are observed to be greater than 0.100 mg/m³ or visible dust is observed for longer than 15 minutes or if the site PPE is upgraded to Level C, the HSO will begin monitoring the site perimeter at a location downwind of the AOC every 30 minutes in addition to the employee breathing zone. Instrument action levels for dust monitoring are provided in Table 4.

7.2 Monitoring Equipment Calibration and Maintenance

Instrument calibration shall be documented and included in a dedicated safety and health logbook or on separate calibration pages of the field book. All instruments shall be calibrated before and after each shift. Calibration checks may be used during the day to confirm instrument accuracy. Duplicate readings may be taken to confirm individual instrument response.

All instruments shall be operated in accordance with the manufacturers' specifications. Manufacturers' literature, including an operations manual for each piece of monitoring equipment will be maintained on site by the HSO for reference.

7.3 Determination of Background Levels

Background (BKD) levels for VOCs and dust will be established prior to intrusive activities within the AOC at an upwind location. A notation of BKD levels will be referenced in the daily monitoring log. BKD levels are a function of prevailing conditions. BKD levels will be taken in an appropriate upwind location as determined by the HSO.

Table 4 lists the instrument action levels.

8.0 COMMUNITY AIR MONITORING PROGRAM

Community air monitoring may be conducted in compliance with the NYSDOH Generic CAMP outlined below:

Monitoring for dust and odors will be conducted during all ground intrusive activities by the FTL. Continuous monitoring on the perimeter of the work zones for odor, VOCs, and dust may be required for all ground intrusive activities such as soil excavation and handling activities. The

work zone is defined as the general area in which machinery is operating in support of remediation activities. A portable PID will be used to monitor the work zone and for periodic monitoring for VOCs during activities such as soil and groundwater sampling and .soil excavation. The site perimeter will be monitored for fugitive dust emissions by visual observations as well as instrumentation measurements (if required). When required, particulate or dust will be monitored continuously with real-time field instrumentation that will meet, at a minimum, the performance standards from DER-10 Appendix 1B.

If VOC monitoring is required, the following actions will be taken based on VOC levels measured:

- If total VOC levels exceed 5 ppm above background for the 15-minute average at the
 perimeter, work activities will be temporarily halted and monitoring continued. If levels
 readily decrease (per instantaneous readings) below 5 ppm above background, work
 activities will resume with continued monitoring.
- If total VOC levels at the downwind perimeter of the hot zone persist at levels in excess of 5 ppm above background but less than 25 ppm, work activities will be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps work activities will resume provided that the total organic vapor level 200 feet downwind of the hot zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less but in no case less than 20 feet, is below 5 ppm above background for the 15-minute average.
- If the total VOC level is above 25 ppm at the perimeter of the hot zone, activities will be shut down.

If dust monitoring with field instrumentation is required, the following actions will be taken based on instrumentation measurements:

- If the downwind particulate level is 100 micrograms per cubic meter (µg/m³) greater than background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression must be employed. Work may continue with dust suppression techniques provided that downwind PM10 levels do not exceed 150 µg/m³ above the background level and provided that no visible dust is migrating from the work area.
- If, after implementation of dust suppression techniques, downwind PM10 levels are greater than 150 μg/m³ above the background level, work must be stopped and a reevaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind PM10 concentration to within 150 μg/m³ of the upwind level and in preventing visible dust migration.

8.1 Vapor Emission Response Plan

This section applies if VOC monitoring is required. If the ambient air concentration of organic vapors exceeds 5 ppm above background at the perimeter of the hot zone, boring and well installation, and excavation activities will be halted or odor controls will be employed, and monitoring continued. When work shut-down occurs, downwind air monitoring as directed by the HSO or FTL will be implemented to ensure that vapor emission does not impact the nearest residential or commercial structure at levels exceeding those specified in the Major Vapor Emission section.

If the organic vapor level decreases below 5 ppm above background, sampling and boring and well installation can resume, provided:

- The organic vapor level 200 feet downwind of the hot zone or half the distance to the nearest residential or commercial structure, whichever is less, is below 1 ppm over background, and
- More frequent intervals of monitoring, as directed by the HSO or FTL, are conducted.

8.2 Major Vapor Emission

This section applies if VOC monitoring is required. If any organic levels greater than 5 ppm over background are identified 200 feet downwind from the work site, or half the distance to the nearest residential or commercial property, whichever is less, all work activities must be halted or odor controls must be implemented.

If, following the cessation of the work activities, or as the result of an emergency, organic levels persist above 5 ppm above background 200 feet downwind or half the distance to the nearest residential or commercial property from the hot zone, then the air quality must be monitored within 20 feet of the perimeter of the nearest residential or commercial structure (20 Foot Zone).

If either of the following criteria is exceeded in the 20 Foot Zone, then the Major Vapor Emission Response Plan shall automatically be implemented.

- Sustained organic vapor levels approaching 5 ppm above background for a period of more than 30 minutes, or
- Organic vapor levels greater than 5 ppm above background for any time period.

8.3 Major Vapor Emission Response Plan

Upon activation, the following activities will be undertaken:

- The local police authorities will immediately be contacted by the HSO or FTL and advised of the situation;
- Frequent air monitoring will be conducted at 30-minute intervals within the 20 Foot Zone. If two successive readings below action levels are measured, air monitoring may be halted or modified by the HSO or FTL; and
- All Emergency contacts will go into effect as appropriate.

8.4 Dust Suppression Techniques

Preventative measures for dust generation may include wetting site fill and soil, construction of an engineered construction entrance with gravel pad, a truck wash area, covering soils with tarps, and limiting vehicle speeds to five miles per hour.

Work practices to minimize odors and vapors include limiting the time that the excavations remain open, minimizing stockpiling of contaminated-source soil, and minimizing the handling of contaminated material. Offending odor and organic vapor controls may include the application of foam suppressants or tarps over the odor or VOC source areas. Foam suppressants may include biodegradable foams applied over the source material for short-term control of the odor and VOCs.

If odors develop and cannot be otherwise controlled, additional means to eliminate odor nuisances will include: direct load-out of soils to trucks for off-site disposal; use of chemical odorants in spray or misting systems; and, use of staff to monitor odors in surrounding neighborhoods.

Where odor nuisances have developed during remedial work and cannot be corrected, or where the release of nuisance odors cannot otherwise be avoided due to on-site conditions or close proximity to sensitive receptors, odor control will be achieved by sheltering excavation and handling areas under tented containment structures equipped with appropriate air venting/filtering systems.

9.0 WORK ZONES AND DECONTAMINATION

9.1 Site Control

Work zones are intended to control the potential spread of contamination throughout the site and to assure that only authorized individuals are permitted into potentially hazardous areas.

Any person working in an area where the potential for exposure to site contaminants exists will only be allowed access after providing the HSO with proper training and medical documentation.

Exclusion Zone (EZ) - All activities which may involve exposure to site contaminants, hazardous materials and/or conditions should be considered an EZ. Decontamination of field equipment will also be conducted in the Contaminant Reduction Zone (CRZ) which will be located on the perimeter of the EZ. The EZ and the CRZ will be clearly delineated by cones, tapes or other means. The HSO may establish more than one EZ where different levels of protection may be employed or different hazards exist. The size of the EZ shall be determined by the HSO allowing adequate space for the activity to be completed, field members and emergency equipment.

9.2 Contamination Zone

9.2.1 Personnel Decontamination Station

Personal hygiene, coupled with diligent decontamination, will significantly reduce the potential for exposure.

9.2.2 Minimization of Contact with Contaminants

During completion of all site activities, personnel should attempt to minimize the chance of contact with contaminated materials. This involves a conscientious effort to keep "clean" during site activities. All personnel should minimize kneeling, splash generation, and other physical contact with contamination as PPE is intended to minimize accidental contact. This may ultimately minimize the degree of decontamination required and the generation of waste materials from site operations.

Field procedures will be developed to control over spray and runoff and to ensure that unprotected personnel working nearby are not affected.

9.2.3 Personnel Decontamination Sequence

Decontamination may be performed by removing all PPE used in EZ and placing it in drums/trash cans at the CRZ. Baby wipes should be available for wiping hands and face. Drums/trash canswill be labeled by the field crews in accordance with all local, state, and federal requirements. Management plans for contaminated PPE, and tools are provided below.

9.2.4 Emergency Decontamination

If circumstances dictate that contaminated clothing cannot be readily removed, then remove gross contamination and wrap injured personnel with clean garments/blankets to avoid contaminating other personnel or transporting equipment. If the injured person can be moved, he/she will be decontaminated by site personnel as described above before emergency responders handle the victim. If the person cannot be moved because of the extent of the injury

(a back or neck injury), provisions shall be made to ensure that emergency response personnel will be able to respond to the victim without being exposed to potentially hazardous atmospheric conditions. If the potential for inhalation hazards exist, such as with open excavation, this area will be covered with polyethylene sheeting to eliminate any potential inhalation hazards. All emergency personnel are to be immediately informed of the injured person's condition, potential contaminants, and provided with all pertinent data.

9.2.5 Hand-Held Equipment Decontamination

Hand-held equipment includes all monitoring instruments as stated earlier, samples, hand tools, and notebooks. The hand-held equipment is dropped at the first decontamination station to be decontaminated by one of the decontamination team members. These items must be decontaminated or discarded as waste prior to removal from the CRZ.

To aid in decontamination, monitoring instruments can be sealed in plastic bags or wrapped in polyethylene. This will also protect the instruments against contaminants. The instruments will be wiped clean using wipes or paper towels if contamination is visually evident. Sampling equipment, hand tools, etc. will be cleaned with non-phosphorous soap to remove any potentially contaminated soil, and rinsed with deionized water. All decontamination fluids will be containerized and stored on-site pending waste characterization sampling and appropriate off-site disposal.

9.2.6 Heavy Equipment Decontamination

All heavy equipment and vehicles arriving at the work site will be free from contamination from offsite sources. Any vehicles arriving to work that are suspected of being impacted will not be permitted on the work site. Potentially contaminated heavy equipment will not be permitted to leave the EZ unless it has been thoroughly decontaminated and visually inspected by the HSO or his designee.

9.3 Support Zone

The support zone or cold zone will include the remaining areas of the job site. Break areas and support facilities (include equipment storage and maintenance areas) will be located in this zone. No equipment or personnel will be permitted to enter the cold zone from the hot zone without passing through the decontamination station in the warm zone (if necessitated). Eating, smoking, and drinking will be allowed only in this area.

9.4 Communications

The following communications equipment will be utilized as appropriate.

- Telephones A cellular telephone will be located with the HSO for communication with the HSM and emergency support services/facilities.
- Hand Signals Hand signals shall be used by field teams, along with the buddy system.
 The entire field team shall know them before operations commence and their use covered during site-specific training. Typical hand signals are the following:

Hand Signal	Meaning
Hand gripping throat	Out of air; cannot breathe
Grip partners wrists or place both hands around	Leave immediately without
waist	debate
Hands on top of head	Need assistance
Thumbs up	OK; I'm alright; I understand
Thumbs down	No; negative
Simulated "stick" break with fists	Take a break; stop work

9.5 The Buddy System

When working in teams of two or more, workers will use the "buddy system" for all work activities to ensure that rapid assistance can be provided in the event of an emergency. This requires work groups to be organized such that workers can remain close together and maintain visual contact with one another. Workers using the "buddy system" have the following responsibilities:

- Provide his/her partner with assistance.
- Observe his/her partner for signs of chemical or heat exposure.
- Periodically check the integrity of his/her partner's PPE.
- Notify the HSO or other site personnel if emergency service is needed.

10.0 NEAREST MEDICAL ASSISTANCE

The address and telephone number of the nearest hospital:

Bellevue Hospital Center 462 First Avenue New York, New York 212-562-4141

Map with directions to the hospital are shown in Figure 2. This information will either be posted prominently at the site or will be available to all personnel all of the time. Further, all field

personnel, including the HSO & FTL, will know the directions to the hospital.

11.0 STANDING ORDERS/SAFE WORK PRACTICES

The standing orders, which consist of a description of safe work practices that must always be followed while on-site by Langan employees and contractors, are shown in Attachment A. The site HSO and FTL each have the responsibility for enforcing these practices. The standing orders will be posted prominently at the site, or are made available to all personnel at all times. Those who do not abide by these safe work practices will be removed from the site.

12.0 SITE SECURITY

No unauthorized personnel shall be permitted access to the work areas.

13.0 UNDERGROUND UTILITIES

As provided in Langan's Underground Utility Clearance Guidelines, the following safe work practices should be followed by Langan personnel and the contractor before and during subsurface work in accordance with federal, state and local regulations:

- Obtain available utility drawings from the property owner/client or operator.
- Provide utility drawings to the project team.
- In the field, mark the proposed area of subsurface disturbance (when possible).
- Ensure that the utility clearance system has been notified.
- Ensure that utilities are marked before beginning subsurface work.
- Discuss subsurface work locations with the owner/client and contractors.
- Obtain approval from the owner/client and operators for proposed subsurface work locations.
- Use safe digging procedures when applicable.
- Stay at least 10 feet from all equipment performing subsurface work.

14.0 SITE SAFETY INSPECTION

The Langan HSO or alternate will check the work area daily, at the beginning and end of each work shift or more frequently to ensure safe work conditions. The HSO or alternate must complete the Jobsite Safety Inspection Checklist, found in Attachment F. Any deficiencies shall be shared with the FTL, HSM and PM and will be discussed at the daily tailgate meeting.

15.0 HAND AND POWER TOOLS

All hand- and electric-power tools and similar equipment shall be maintained in a safe operating

condition. All electric-power tools must be inspected before initial use. Damaged tools shall be removed immediately from service or repaired. Tools shall be used only for the purpose for which they were designed. All users must be properly trained in their safe operation.

16.0 EMERGENCY RESPONSE

16.1 General

This section establishes procedures and provides information for use during a project emergency. Emergencies happen unexpectedly and quickly, and require an immediate response; therefore, contingency planning and advanced training of staff is essential. Specific elements of emergency support procedures that are addressed in the following subsections include communications, local emergency support units, and preparation for medical emergencies, first aid for injuries incurred on site, record keeping, and emergency site evacuation procedures. In case of emergency, in addition to 911, call lncident Intervention@ at 1-888-479-7787 to report their injuries. For all other communications, contact the Langan Incident Hotline at (800) 9-LANGAN (800-952-6426) extension 4699 as soon as possible.

Should outside assistance be needed for accidents, fire, or release of hazardous substances, the emergency numbers will be available and posted at the site (Table 5) where a readily accessible telephone is made available for emergency use.

Also, in the event of an incident where a team member becomes exposed or suffers from an acute symptom from contact with site materials and has to be taken to a hospital, a short medical data sheet (Attachment T) for that individual will be made available to the attending physician. The medical data sheet will include the following:

- Name, address, home phone
- Age, height, weight
- Name of person to be notified in case of an accident
- Alleraies
- Particular sensitivities
- Does he/she wear contact lenses
- Short checklist of previous illness
- Name of personal physician and phone
- Name of company physician and phone
- Prescription and non-prescription medications currently used.

A sample medical data sheet is included in Attachment T.

16.2 Responsibilities

16.2.1 Health and Safety Officer (HSO)

The HSO is responsible for ensuring that all personnel are evacuated safely and that machinery and processes are shut down or stabilized in the event of a stop work order or evacuation. The HSO is responsible for ensuring the HSM are notified of all incidents, all injuries, near misses, fires, spills, releases or equipment damage. The HSO is required to immediately notify the HSM of any fatalities or catastrophes (three or more workers injured and hospitalized) so that the HSM can notify OSHA within the required time frame.

16.2.2 Emergency Coordinator

The HSO or their designated alternate will serve as the Emergency Coordinator. The Emergency Coordinator is responsible for ensuring that all personnel are evacuated safely and that machinery and processes are shut down or stabilized in the event of a stop work order or evacuation. They are also responsible for ensuring the HSM are notified of all incidents, all injuries, near misses, fires, spills, releases or equipment damage. The Emergency Coordinator is required to immediately notify the HSM of any fatalities or catastrophes (three or more workers injured and hospitalized.

The Emergency Coordinator shall locate emergency phone numbers and identify hospital routes prior to beginning work on the sites. The Emergency Coordinator shall make necessary arrangements to be prepared for any emergencies that could occur.

The Emergency Coordinator is responsible for implementing the Emergency Response Plan.

16.2.3 Site Personnel

Project site personnel are responsible for knowing the Emergency Response Plan and the procedures contained herein. Personnel are expected to notify the Emergency Coordinator of situations that could constitute a site emergency. Project site personnel, including all subcontractors will be trained in the Emergency Response Plan.

16.3 Communications

Once an emergency situation has been stabilized, or as soon as practically, the injured Langan personnel should contact <u>Incident Intervention®</u> at 1-888-479-7787 to report their injuries. For all other communications, contact the Langan Incident Hotline at **(800) 9-LANGAN** (800-952-6426) extension 4699 as soon as possible.

Langan Project No. 170017004

16.4 Local Emergency Support Units

In order to be able to deal with any emergency that might occur during investigative activities at the site, the Emergency Notification Numbers (Table 5) will be posted and provided to all personnel conducting work within the EZ.

Figure 2 shows the hospital route map. Outside emergency number 911 and local ambulance should be relied on for response to medical emergencies and transport to emergency rooms. Always contact first responders when there are serious or life threatening emergencies on the site. Project personnel are instructed not to drive injured personnel to the Hospital. In the event of an injury, provide first aid and keep the injured party calm and protected from the elements and treat for shock when necessary.

16.5 Pre-Emergency Planning

Langan will communicate directly with administrative personnel from the emergency room at the hospital in order to determine whether the hospital has the facilities and personnel needed to treat cases of trauma resulting from any of the contaminants expected to be found on the site. Instructions for finding the hospital will be posted conspicuously in the site office and in each site vehicle.

16.6 Emergency Medical Treatment

The procedures and rules in this HASP are designed to prevent employee injury. However, should an injury occur, no matter how slight, it will be reported to the HSO immediately. First-aid equipment will be available on site at the following locations:

• First Aid Kit: Contractor Vehicles

Emergency Eye Wash: Contractor Vehicles

During the site safety briefing, project personnel will be informed of the location of the first aid station(s) that has been set up. Some injuries, such as severe cuts and lacerations or burns, may require immediate treatment. Any first aid instructions that can be obtained from doctors or paramedics, before an emergency-response squad arrives at the site or before the injured person can be transported to the hospital, will be followed closely.

16.7 Personnel with current first aid and CPR certification will be identified.

Only in non-emergency situations may an injured person be transported to an urgent care facility. Due to hazards that may be present at the site and the conditions under which operations are conducted, it is possible that an emergency situation may develop. Emergency situations can be

characterized as injury or acute chemical exposure to personnel, fire or explosion, environmental release, or hazardous weather conditions.

16.8 Emergency Site Evacuation Routes and Procedures

All project personnel will be instructed on proper emergency response procedures and locations of emergency telephone numbers during the initial site safety meeting. If an emergency occurs as a result of the site investigation activities, including but not limited to fire, explosion or significant release of toxic gas into the atmosphere, the Langan Project Manager will be verbally notified immediately. All heavy equipment will be shut down and all personnel will evacuate the work areas and assemble at the nearest intersection to be accounted for and to receive further instructions.

In the event that an emergency situation arises, the FTL will implement an immediate evacuation of all project personnel due to immediate or impending danger. The FTL will also immediately communicate with the contractor to coordinate any needed evacuation of the property.

The FTL or Site Supervisor will give necessary instructions until the Designated Incident Commander (IC) assumes control. After the emergency has been resolved, the FTL or Site Supervisor will coordinate with the IC and indicate when staff should resume their normal duties. If dangers are present for those at the designated assembly point, another designated location of assembly will be established.

It will be the responsibility of the FTL or Site Supervisor to report a fire or emergency, assess the seriousness of the situation, and initiate emergency measures until the arrival of the local fire fighters or other first responders, should they be necessary. The FTL, working with emergency responders, may also order the closure of the Site for an indefinite period as long as it is deemed necessary.

Under no circumstances will incoming visitors be allowed to proceed to the area of concern, once an emergency evacuation has been implemented. Visitors or other persons present in the area of the emergency shall be instructed to evacuate the area. The FTL will ensure that access roads are not obstructed and will remain on-site to provide stand-by assistance upon arrival of emergency personnel.

If it is necessary to temporarily control traffic in the event of an emergency, those persons controlling traffic will wear proper reflection warning vests until the arrival of police or fire personnel.

16.8.1 Designated Assembly Locations

All personnel will evacuate the site and assemble at a designated assembly location. The assembly location will be designated by Langan personnel and discussed during each shift's prejob safety briefing.

16.8.2 Accounting for Personnel

All contractor and subcontractor supervisors are responsible for the accounting of all personnel assembled at the designed assembly area. The Designated Incident Commander shall be notified if personnel are not found.

16.9 Fire Prevention and Protection

In the event of a fire or explosion, procedures will include immediately evacuating the site and notification of the Langan Project Manager of the investigation activities. Portable fire extinguishers will be provided at the work zone. The extinguishers located in the various locations should also be identified prior to the start of work. No personnel will fight a fire beyond the stage where it can be put out with a portable extinguisher (incipient stage).

16.9.1 Fire Prevention

Fires will be prevented by adhering to the following precautions:

- Good housekeeping and storage of materials.
 - Storage of flammable liquids and gases away from oxidizers.
 - Shutting off engines to refuel.
 - Grounding and bonding metal containers during transfer of flammable liquids.
 - Use of UL approved flammable storage cans.
 - Fire extinguishers rated at least 10 pounds ABC located on all heavy equipment, in all trailers and near all hot work activities.

The person responsible for the control of fuel source hazards and the maintenance of fire prevention and/or control equipment is the HSO.

16.10 Significant Vapor Release

Based on the proposed tasks, the potential for a significant vapor release is low. However, if a release occurs, the following steps will be taken:

- Move all personnel to an upwind location. All non-essential personnel shall evacuate.
- Upgrade to Level C Respiratory Protection.

- Downwind perimeter locations shall be monitored for volatile organics.
- If the release poses a potential threat to human health or the environment in the community, the Emergency Coordinator shall notify the Langan Project Manager.
- Local emergency response coordinators will be notified.

16.11 Overt Chemical Exposure

The following are standard procedures to treat chemical exposures. Other, specific procedures detailed on the Material Safety Data Sheet (MSDS) will be followed, when necessary.

SKIN AND EYE: Use copious amounts of soap and water from eye-wash kits and portable hand wash stations.

CONTACT: Wash/rinse affected areas thoroughly, then provide appropriate medical attention. Skin shall also be rinsed for 15 minutes if contact with caustics, acids or hydrogen peroxide occurs. Affected items of clothing shall also be removed from contact with skin.

Providing wash water and soap will be the responsibility of each individual contractor or subcontractor on-site.

16.12 Decontamination during Medical Emergencies

If emergency life-saving first aid and/or medical treatment is required, normal decontamination procedures may need to be abbreviated or omitted. The HSO or designee will accompany contaminated victims to the medical facility to advice on matters involving decontamination when necessary. The outer garments can be removed if they do not cause delays, interfere with treatment or aggravate the problem. Respiratory equipment must always be removed. Protective clothing can be cut away. If the outer contaminated garments cannot be safely removed on site, a plastic barrier placed between the injured individual and clean surfaces should be used to help prevent contamination of the inside of ambulances and/or medical personnel. Outer garments may then be removed at the medical facility. No attempt will be made to wash or rinse the victim if his/her injuries are life threatening, unless it is known that the individual has been contaminated with an extremely toxic or corrosive material which could also cause severe injury or loss of life to emergency response personnel. For minor medical problems or injuries, the normal decontamination procedures will be followed.

16.13 Adverse Weather Conditions

In the event of adverse weather conditions, the HSO will determine if work will continue without potentially risking the safety of all field workers. Some of the items to be considered prior to

determining if work should continue are:

- Potential for heat stress and heat-related injuries.
- Potential for cold stress and cold-related injuries.
- Treacherous weather-related working conditions (hail, rain, snow, ice, high winds).
- Limited visibility (fog).
- Potential for electrical storms.
- Earthquakes.
- Other major incidents.

Site activities will be limited to daylight hours, or when suitable artificial light is provided, and acceptable weather conditions prevail. The HSO will determine the need to cease field operations or observe daily weather reports and evacuate, if necessary, in case of severe inclement weather conditions.

16.14 Spill Control and Response

All small spills/environmental releases shall be contained as close to the source as possible. Whenever possible, the MSDS will be consulted to assist in determining proper waste characterization and the best means of containment and cleanup. For small spills, sorbent materials such as sand, sawdust or commercial sorbents should be placed directly on the substance to contain the spill and aid recovery. Any acid spills should be diluted or neutralized carefully prior to attempting recovery. Berms of earthen or sorbent materials can be used to contain the leading edge of the spills. All spill containment materials will be properly disposed. An exclusion zone of 50 to 100 feet around the spill area should be established depending on the size of the spill.

All contractor vehicles shall have spill kits on them with enough material to contain and absorb the worst-case spill from that vehicle. All vehicles and equipment shall be inspected prior to be admitted on site. Any vehicle or piece of equipment that develops a leak will be taken out of service and removed from the job site.

The following seven steps shall be taken by the Emergency Coordinator:

- 1. Determine the nature, identity and amounts of major spills.
- 2. Make sure all unnecessary persons are removed from the spill area.
- 3. Notify the HSO immediately.
- 4. Use proper PPE in consultation with the HSO.
- 5. If a flammable liquid, gas or vapor is involved, remove all ignition sources and use non-sparking and/or explosion-proof equipment to contain or clean up the spill (diesel-only vehicles, air-operated pumps, etc.)

- 6. If possible, try to stop the leak with appropriate material.
- 7. Remove all surrounding materials that can react or compound with the spill.

In addition to the spill control and response procedures described in this HASP, Langan personnel will coordinate with the designated project manager relative to spill response and control actions. Notification to the Project Manager must be immediate and, to the extent possible, include the following information:

- Time and location of the spill.
- Type and nature of the material spilled.
- Amount spilled.
- Whether the spill has affected or has a potential to affect a waterway or sewer.
- A brief description of affected areas/equipment.
- Whether the spill has been contained.
- Expected time of cleanup completion. If spill cleanup cannot be handled by Langan's on-site personnel alone, such fact must be conveyed to the Project Manager immediately.

Langan shall not make any notification of spills to outside agencies. The client will notify regulatory agencies as per their reporting procedures.

16.15 Emergency Equipment

The following minimum emergency equipment shall be kept and maintained on site:

- Industrial first aid kit.
- Fire extinguishers (one per site).

16.16 Restoration and Salvage

After an emergency, prompt restoration of utilities, fire protection equipment, medical supplies and other equipment will reduce the possibility of further losses. Some of the items that may need to be addressed are:

- Refilling fire extinguishers.
- Refilling medical supplies.
- Recharging eyewashes and/or showers.
- Replenishing spill control supplies.

16.17 Documentation

Immediately following an incident or near miss, unless emergency medical treatment is required, either the employee or a coworker must contact the Langan Incident/Injury Hotline at 1-(800)-9-

LANGAN (ext. #4699) and the client representative to report the incident or near miss. For emergencies involving personnel injury and/or exposure, the HSO and affected employee will complete and submit an Employee Exposure/Injury Incident Report (Attachment C) to the Langan Corporate Health and Safety Manager as soon as possible following the incident.

17.0 SPECIAL CONDITIONS

This guideline contains information and requirements for special conditions that may not be routinely encountered.

17.1 Scope

The guideline applies to the specific projects identified within this document. Additional provisions will be addressed in each Site-Specific HEALTH AND SAFETY PLAn (HASP), as needed.

17.2 Responsibilities

Site Personnel - All site personnel must be alert to safety hazards on work sites and take action to minimize such hazards. Personnel must utilize the buddy system, watch for inappropriate behavior, and be alert to changes in site conditions.

Health and Safety Officer (HSO) - The HSO is responsible for considering these procedures in the development of site specific HASPs. The HSO shall schedule frequent "tail gate" safety briefings to enhance safety awareness and discuss potential problems.

17.3 Procedures

The procedures outlined below shall be followed when such conditions are encountered.

17.3.1 Ladders

Langan safety procedures shall be used to ensure employee safety when using ladders in the office or work sites. All ladders shall be coated or repaired to prevent injury to the employee from punctures or lacerations and to prevent snagging or clothing. Any wood ladders used must have an opaque covering except for identification or warning labels, which may be placed on one face only of a side rail.

17.3.1.1 Ladder Use

Employees shall only use ladders for the purposes, which they were designed and shall not be

used as scaffolding. Ladders will be maintained and inspected prior to use for slip hazards including oil and grease. Employees shall use ladders only on stable and level surfaces unless the ladder is secured to prevent possible displacement. Ladders should not be used on slippery surfaces unless secured or provided with slip resistant feet to prevent accidental displacement. Ladders should not be used in locations where they could be displaced by workplace activities or traffic. Ladder rungs, cleats and steps shall be parallel, level and uniformly spaced when the ladder is in the use position.

Employees should not be carrying anything including equipment that could cause injury if there was a fall while utilizing the ladder. The top and bottom of the ladder area must remain clear while in use. When ascending and descending the ladder, employees must face the ladder.

Ladders shall not be loaded beyond the maximum intended load for which they were built or the manufacturer's rated capacity.

17.3.1.2 Portable Ladders

Rungs, cleats and steps for portable ladders and fixed ladders shall be spaced not less than 10 inches apart, nor more than 14 inches apart, as measured between center lines of the rungs, cleats and steps. When used to access an upper landing surface, the ladder side rails must extend at least three feet above the upper landing surface to which the ladder is used to gain access. If this is not possible, due to the ladders length, then the top of the ladder shall be secured at its top to a rigid support.

17.3.1.3 Step Stools

Rungs, cleats and steps of step stools shall not be less than 8 inches apart, nor more than 12 inches apart, as measured between center lines of the rungs, cleats and steps.

17.3.1.4 Extension Ladders

Rungs, cleats and steps of the base section of extension trestle ladders shall be spaced not less than 8 inches apart, nor more than 18 inches apart, as measured between center lines of the rungs, cleats and steps. The rung spacing on the extension section of the extension trestle ladder shall not be less than 6 inches nor more than 12 inches, as measured between center lines of the rungs, cleats and steps. Ladders shall be used at an angle such that the horizontal distance from the top support to the foot of the ladder is approximately one-quarter of the working length of the ladder (the distance along the ladder between the foot and the top support).

17.3.1.5 Inspection

Ladders will be inspected for visible detects periodically, prior to utilization or after any occurrence that could have negatively affected the ladder. Portable ladders with defects including broken or missing rungs, cleats, or steps, broken or split rails, corroded components or other faulty or defective components shall not be used. The ladder will be immediately marked as defective, tagged as "Do Not Use" or blocked from being used and removed from service until repaired.

17.3.2 First Aid/Cardiopulmonary Resuscitation (CPR)

Langan field and office personnel will be encouraged to be trained in First Aid and Cardiopulmonary Resuscitation (CPR). Training will be provided free of charge by Langan to all employees. Employees will receive a training certificate that will be kept on file with the Health & Safety Coordinator (HSC). Training and certification will be provided by a credited provider such as American Red Cross or equivalent.

17.3.2.1 Emergency Procedures

Prior to work at sites the Langan employees certified in first aid and CPR will be identified in the site specific HASP. Langan will endear to have at least one employee at a job site trained and able to render first aid and CPR. The site specific HASP will contain first aid information on both potential chemical and physical hazards. Emergency procedures to be followed are in case of injury or illnesses are provided in the HASP. The HASP will include emergency contact information including local police and fire departments, hospital emergency rooms, ambulance services, on-site medical personnel and physicians. The HASP will also include directions and contact information to the nearest emergency facility in case immediate medical attention is required. The emergency contact information will be conspicuously posted at the worksite. Employees that are injured and require immediate medical attention shall call either 911 or the local posted emergency contacts. Employees should use ambulatory services to transport injured workers to the nearest facility for emergency medical care. In areas where 911 is not available, the telephone numbers of the physicians, hospitals, or ambulances shall be conspicuously posted.

17.3.2.2 First Aid Supplies

First aid supplies are readily available to all Langan employees when required. First aid kits are located in each Langan office. Portable first aid kits are available for employees to use at work sites. First aid kits should consist of items needed to treat employees for potential chemical and physical injuries. At a minimum, first aid kits should contain items to allow basic first aid to be rendered. Where the eyes or body of an employee may be exposed to corrosive materials,

suitable facilities for quick drenching or flushing of the eyes and body shall be provided within the work area for immediate emergency use including eye wash.

First aid kits will be weatherproof with individual sealed packages of each item. All portable first aid kits shall be inspected by Langan employees before and after use to ensure all used items are replaced. When out in the field, employees shall check first aid kits weekly to ensure used items are replaced.

17.3.3 Hydrogen Sulfide

Langan employees with the potential to be exposed to hydrogen sulfide while at work sites shall have training in hydrogen sulfide awareness. The training will include identification of areas where employees could be exposed to hydrogen sulfide, health effects, permissible exposure limits, first aid procedures and personnel protective equipment. Langan employees could be exposed to hydrogen sulfide while at job sites including petroleum refineries, hazardous waste treatment, storage and disposal facilities, uncontrolled hazardous waste sites and remediation projects.

17.3.3.1 Characteristics

Hydrogen sulfide is a colorless gas with a strong odor of rotten eggs that is soluble in water. Hydrogen sulfide is used to test and make other chemicals. It is also found as a by-product of chemical reactions, such as in sewer treatment. It is a highly flammable gas and a dangerous fire hazard. Poisonous gases are produced in fires including sulfur oxides. Hydrogen sulfide is not listed as a carcinogen.

17.3.3.2 Health Effects

Hydrogen Sulfide can affect employees if inhaled or through contact with skin or eyes. Acute (or short term) health effects of hydrogen sulfide exposure include irritation of the nose and throat, dizziness, confusion, headache and trouble sleeping. Inhalation of hydrogen sulfide can irritate the lungs causing coughing and/or shortness of breath. Higher levels of exposure can cause build-up of fluid in the lungs (pulmonary edema), a medical emergency, with severe shortness of breath.

Chronic (or long term) health effects of low levels of exposure to hydrogen sulfide can cause pain and redness of the eyes with blurred vision. Repeated exposure may cause bronchitis with cough, phlegm and shortness of breath.

17.3.3.3 Protective Clothing and Equipment

Respirators are required for those operations in which employees will be exposed to hydrogen sulfide above OSHA permissible exposure level. The maximum OSHA permissible exposure limit (PEL) for hydrogen sulfide is 20 parts of hydrogen sulfide vapor per million parts of air (20 ppm) for an 8-hour workday and the maximum short-term exposure limit (STEL) is 10 ppm for any 10-minute period.

Where employees are exposed to levels up to 100 parts of hydrogen sulfide vapor per million parts of air (100 ppm), the following types of respiratory protection are allowed:

- Any powered, air purifying respirator with cartridge(s);
- Any air purifying, full-facepiece respirator (gas mask) with a chin style, front- or backmounted canister;
- Any supplied air system with escape self-contained breathing apparatus, if applicable;
 and.
- Any self-contained breathing apparatus with a full facepiece.

Respirators used by employees must have joint Mine Safety and Health Administration and the National Institute for Occupational Safety and Health (NIOSH) seal of approval. Cartridges or canisters must be replaced before the end of their service life, or the end of the shift, whichever occurs first. Langan employees that have the potential to be exposed to hydrogen sulfide will be trained in the proper use of respirators. Respirator training is discussed under— Langan's Respiratory Protection Program.

Employees with potential exposure to hydrogen sulfide, or when required by the client, will wear a portable hydrogen sulfide gas detector. The detector should have an audible, visual and vibrating alarm. The detector may also provide detection for carbon monoxide, sulfur dioxide and oxygen deficient atmospheres. The hydrogen sulfide monitor will, at a minimum, be calibrated to detect hydrogen sulfide at a level of 20 parts of hydrogen sulfide vapor per million parts of air (20 ppm). Many portable gas detectors will have factory defaults with a low level alarm at 10 ppm and a high level alarm at 15 ppm. Langan employees shall consult clients to determine if any site specific threshold levels exist.

If the hydrogen sulfide gas detector sounds and employees are not wearing appropriate respiratory protection, employees must immediately vacate the area and meet at the assigned emergency location. Langan employees may not re- enter the site without proper respiratory protection and approval from the client or property owner, if needed.

Employees shall wear PPE to prevent eye and skin contact with hydrogen sulfide. Employees

must wear appropriate protective clothing including boots, gloves, sleeves and aprons, over any parts of their body that could be exposed to hydrogen sulfide. Non-vented, impact resistant goggles should be worn when working with or exposed to hydrogen sulfide.

17.3.3.4 Emergency and First Aid Procedures

Eye and Face Exposure

If hydrogen sulfide comes in contact with eyes, it should be washed out immediately with large amounts of water for 30 minutes, occasionally lifting the lower and upper eye lids. Seek medical attention immediately.

Skin Exposure

If hydrogen sulfide contaminates clothing or skin, remove the contaminated clothing immediately and wash the exposed skin with large amounts of water and soap. Seek medical attention immediately. Contaminated clothing should either be disposed of or washed before wearing again.

Breathing

If a Langan employee or other personnel breathe in hydrogen sulfide, immediately get the exposed person to fresh air. If breathing has stopped, artificial respiration should be started. Call for medical assistance or a doctor as soon as possible.

Safety Precautions

Hydrogen sulfide is a highly flammable gas and a dangerous fire hazard. Containers of hydrogen sulfide may explode in a fire situation. Poisonous gases are produced during fires.

Langan employees should contact property owners and operators prior to conducting work onsite to be aware of any site specific contingency plans, identify where hydrogen sulfide is used at the facility and be informed about additional safety rules or procedures.

19.3.4 Fire Protection/Extinguishers

Langan field personnel that have been provided with portable fire extinguishers for use at worksites will be trained to familiarize employees with general principles of fire extinguisher use and hazards associated with the incipient stage of firefighting. Training will be provided prior to initial assignment for field work and annually thereafter.

Portable fire extinguishers shall be visually inspected monthly and subjected to an annual maintenance check. Langan shall retain records of the annual maintenance date.

17.3.5 Overhead lines

When field work is performed near overhead lines, the lines shall be deenergized and grounded, or other protective measures shall be provided before the work shall commence. If overhead lines are to be deenergized, arrangements shall be made with the client, property owner or organization that operates or controls the electric circuits involved to deenergize and ground them. If protective measures, such as guarding, isolating, or insulating, are provided, these precautions shall prevent employees from contacting such lines directly with any part of their body or indirectly through conductive materials, tools, or equipment.

When unqualified Langan personnel are working in an elevated position near overhead lines, the location shall be such that the person and the longest conductive object they may contact cannot come closer to any unguarded, energized overhead line than the following distances:

- 1. For voltages to ground 50kV or below 10 feet; and
- 2. For voltages to ground over 50kV 10 feet, plus 4 inches for every 10kV over 50kV.

As previously indicated, Langan does not retain qualified employees to perform work on energized equipment.

17.3.5.1 Vehicle and Equipment Clearance

Any vehicle or mechanical equipment capable of having parts of its structure elevated near energized overhead lines shall be operated so that a clearance of 10 feet is maintained. If the voltage of the overhead lines is higher than 50kV, the clearance shall be increased 4 inches for every 10kV over that voltage.

If any of the following discussed conditions occur, the clearance may be reduced.

- If the vehicle is in transit with its structure lowered, the clearance may be reduced to 4 ft. If the voltage is higher than 50kV, the clearance shall be increased 4 in. for every 10 kV over that voltage.
- If insulating barriers are installed to prevent contact with the lines, and if the barriers are rated for the voltage of the line being guarded and are not a part of or an attachment to the vehicle or its raised structure, the clearance may be reduced to a distance within the designed working dimensions of the insulating barrier.

Employees standing on the ground may not contact the vehicle or mechanical equipment or any

of its attachments, unless the employee is using protective equipment rated for the voltage; or the equipment is located so that no uninsulated part of its structure (that portion of the structure that provides a conductive path to employees on the ground) can come closer to the overhead line than permitted.

If any vehicle or mechanical equipment capable of having parts of its structure elevated near energized overhead lines is intentionally grounded, employees working on the ground near the point of grounding may not stand at the grounding location whenever there is a possibility of overhead line contact. Additional precautions, such as the use of barricades or insulation, shall be taken to protect employees from hazardous ground potentials, depending on earth resistivity and fault currents, which can develop within the first few feet or more outward from the grounding point.

17.3.6 Trade Secret

Langan employees could potentially be provided trade secret information by the client or property owner when site specific information is provided about highly hazardous chemicals. Trade secret means any confidential formula, pattern, process, device, information or compilation of information that is used in an employer's business, and that gives the employer an opportunity to obtain an advantage over competitors who do not know or use it. Langan employees understand that this information should be kept confident and if required, may enter into a confidentially agreement with the client.

17.3.7 Bloodborne Pathogens

Langan employees that can reasonably anticipate exposure to blood or other potentially infectious material while at work sites shall have training in bloodborne pathogens. Applicable employees would include those trained in first aid and serving a designated role as an emergency medical care provider. Bloodborne pathogens are pathogenic microorganisms that are present in human blood and can cause disease in humans. These pathogens include, but are not limited to, hepatitis B virus and human immunodeficiency virus.

17.3.7.1 Training

Langan employees with potential occupational exposure to blood or other potentially infectious material must participate in a training program. Training must be conducted prior to initial assignment where there would be potential for exposure and annually thereafter within one year of previous training. The training program will be provided to Langan employees at no cost to them and during working hours.

Langan will ensure the training program shall consist of the following:

- An accessible copy of the regulatory text of 29 CFR 1910.1030 and an explanation of its contents;
- A general explanation of the epidemiology and symptoms of bloodborne diseases;
- An explanation of the modes of transmission of bloodborne pathogens;
- An explanation of Langan's exposure control plan and the means by which the employee can obtain a copy of the written plan;
- An explanation of the appropriate methods for recognizing tasks and other activities that may involve exposure to blood and other potentially infectious materials;
- An explanation of the use and limitations of personal protective
 - o equipment (PPE) to prevent and reduce exposure;
 - o Information on the types, proper use, location, removal, handling and disposal of PPE;
 - o An explanation of the basis for selection of PPE;
 - o Information on the hepatitis B vaccine, including information on its efficacy, safety, method of administration, the benefits of being vaccinated, and that the vaccine and vaccination will be offered free of charge;
 - o Information on the appropriate actions to take and persons to contact in an emergency involving blood or other potentially infectious materials;
 - o An explanation of the procedure to follow if an exposure incident occurs, including the method of reporting the incident and the medical follow-up that will be made available;
 - o Information on the post-exposure evaluation and follow-up that the
 - o employer is required to provide for the employee following an exposure incident;
 - An explanation of the signs and labels and/or color coding required by paragraph 29
 CFR 1910.1030(g)(1); and
 - An opportunity for interactive questions and answers with the person conducting the training session.

Langan will develop and implement a written Exposure Control Plan, which will be designed to eliminate or minimize employee exposure to bloodborne pathogens. The Exposure Control Plan will contain the following elements:

- An exposure determination for employees;
- The schedule and method of implementation for Methods of Compliance (29 CFR 191.1030(d)), Hepatitis B Vaccination and Post-Exposure Evaluation and Follow-up (29 CFR 1910.1030(f)), Communication of Hazards to Employees (29 CFR 1910.1030(g)) and (h) Recordkeeping (29 CFR 1910.1030(h));
- The procedure for the evaluation of circumstances surrounding exposure incidents;
- Ensure a copy of the Exposure Control Plan will be accessible to employees; and,
- The Exposure Control Plan shall be reviewed and updated at least annually.

Langan employees with occupational exposure to bloodborne pathogens include any employees trained in first aid that would be expected to provide emergency medical care. This determination is made without regards to the use of PPE, which could eliminate or minimize exposure.

Universal precautions shall be observed to prevent contact with blood or other potentially infectious materials. According to the concept of Universal Precautions, all human blood and certain human body fluids are treated as if known to be infectious for bloodborne pathogens. Under circumstances in which differentiation between body fluid types is difficult or impossible, all body fluids shall be considered potentially infectious materials.

Work practice controls shall be used to eliminate or minimize employee exposure, if applicable. Since Langan employees will have occupational exposure only during rendering of first aid, personnel protective equipment will be utilized to reduce or minimize exposure. PPE that could be available to Langan personnel when administering first aid includes safety glasses, gloves, and Tyvek suits or sleeves. PPE and first aid kits will be provided to employees at no cost to them.

Langan employees that render first aid in office areas will have access to hand washing facilities or restrooms. For first aid rendered at field locations, first aid kits will contain an appropriate antiseptic hand cleanser and clean cloth/paper towels or antiseptic towelettes. After using antiseptic hand cleansers or towelettes, employees shall wash their hands with soap and running water as soon as feasible.

After administering first aid, potentially infectious materials, including towels, personnel protective equipment, clothes and bandages, shall be placed in a container, which prevents leakage during collection, handling, processing, storage, transport, or shipping. All PPE will be dispose of after use. Any equipment or working surfaces which was been exposed to blood or potentially infectious materials due to an injury, will be decontaminated prior to reuse.

Langan will make available the hepatitis B vaccine and vaccination series to all employees who have occupational exposure, and post-exposure evaluation and follow-up to all employees who have had an exposure incident. These services will be available to the employee at no cost to them through a medical provider.

17.3.7.2 Recordkeeping

Langan will maintain training and medical records for each employee with occupational exposure to blood or potentially infectious materials. Medical and training records will be maintained by Langan's H&S Department.

Training records will include the following:

- Dates of the training sessions;
- Contents or a summary of the training sessions;
- Names and qualifications of persons conducting the training; and
- Names and job titles of all persons attending the training sessions.

Training records shall be maintained for 3 years from the date on which the training occurred. Medical records will be will be preserved and maintained for the duration of employment plus 30 years.

All records will be made available upon request to employees, the Assistant Secretary of Labor for Occupational Safety and Health, and Director of National Institute for Occupational Safety and Health Director of OSHA for examination and copying. Medical records must have written consent from employee before releasing.

If Langan ceases to do business, all records shall be transferred to the successor employer. The successor employer shall receive and maintain these records.

If there will not be a successor, Langan will notify current employees of their rights to access records at least three months prior to the cessation of business.

18.0 RECORDKEEPING

The following is a summary of required health and safety logs, reports and recordkeeping.

18.1 Field Change Authorization Request

Any changes to the work to be performed that is not included in the HASP will require an addendum that is approved by the Langan project manager and Langan HSM to be prepared. Approved changes will be reviewed with all field personnel at a safety briefing.

18.2 Medical and Training Records

Copies or verification of training (40-hour, 8-hour, supervisor, site-specific training, documentation of three-day OJT, and respirator fit-test records) and medical clearance for site work and respirator use will be maintained in the office and available upon request. Records for all subcontractor employees must also be available upon request. All employee medical records will be maintained by the HSM.

18.3 Onsite Log

A log of personnel on site each day will be kept by the HSO or designee.

18.4 Daily Safety Meetings ("Tailgate Talks")

Completed safety briefing forms will be maintained by the HSO.

18.5 Exposure Records

All personal monitoring results, laboratory reports, calculations and air sampling data sheets are part of an employee exposure record. These records will be maintained by the HSO during site work. At the end of the project they will be maintained according to 29 CFR 1910.1020.

18.6 Hazard Communication Program/MSDS-SDS

Material safety data sheets (MSDS) of Safety Data Sheets (SDS) have been obtained for applicable substances and are included in this HASP (Attachment D). Langan's written hazard communication program, in compliance with 29 CFR 1910.1200, is maintained by the HSM.

18.7 Documentation

Immediately following an incident or near miss, unless emergency medical treatment is required, either the employee or a coworker must contact the Langan incident/injury hotline at 1-800-952-6426, extension 4699 and the Project Manager to report the incident or near miss. The Project Manager will contact the client or client representative. A written report must be completed and submitted HSM within 24 hours of the incident. For emergencies involving personnel injury and/or exposure, employee will complete and submit the Langan incident/injury report to the Langan corporate health and safety manager as soon as possible following the incident. Accidents will be investigated in-depth to identify all causes and to recommend hazard control measures.

18.7.1 Accident and Injury Report Forms

18.7.1.1 Accident/Incident Report

All injuries, no matter how slight, shall be reported to the FTL and the PM immediately. The accident/incident report forms, attached in Attachment U and Attachment V will be filled out on all accidents by the applicable contractor supervision personnel, the FTL, or the HSO. Copies of all accident/incident reports shall be kept on-site and available for review. Project personnel will be instructed on the location of the first aid station, hospital, and doctor and ambulance service near the job. The emergency telephone numbers will be conspicuously posted in site vehicles near the work zone. First aid supplies will be centrally located and conspicuously posted between

restricted and non-restricted areas to be readily accessible to all on the site.

18.7.1.2 First Aid Treatment Record

The forms in will be used for recording all non-lost time injuries treated by the project first-aid attendant, the local physician or hospital will be entered in detail on this record. "Minor" treatment of scratches, cuts, etc. will receive the same recording attention as treatment of more severe injuries.

18.7.1.3 OSHA Form 300

An OSHA Form 300 will be kept at the Langan Corporate Office in Parsippany, New Jersey. All recordable injuries or illnesses will be recorded on this form. Subcontractor employers must also meet the requirements of maintaining an OSHA 300 form. The Incident Report form used to capture the details of work-related injuries/illnesses meets the requirements of the OSHA Form 301 (supplemental record) and must be maintained with the OSHA Form 300 for all recordable injuries or illnesses. Forms for recording OSHA work-related injuries and illnesses are included in Attachment U and Attachment V.

19.0 CONFINED SPACE ENTRY

Confined spaces are not anticipated at the Site during planned construction activities. If confined spaces are identified, the contractor must implement their own confined space program that all applicable federal, state and local regulations. Confined spaces **will not** be entered by Langan personnel.

20.0 HASP ACKNOWLEDGEMENT FORM

All Langan personnel and contractors will sign this HASP Compliance Agreement indicating that they have become familiar with this HASP and that they understand it and agree to abide by it.

Printed Name	Signature	Company	Date

TABLE 1 TASK HAZARD ANALYSES

Task	Hazard	Description	Control Measures	First Aid
1.3.1 - 1.3.7	Contaminated Soil or Groundwater- Dermal Contact	Contaminated water spills on skin, splashes in eyes; contact with contaminated soil/fill during construction activities or sampling.	Wear proper PPE; follow safe practices, maintain safe distance from construction activities	See Table 2, seek medical attention as required
1.3.1 - 1.3.7	Lacerations, abrasions, punctures	Cutting bailer twine, pump tubing, acetate liners, etc. with knife; cuts from sharp site objects or previously cut piles, tanks, etc.; Using tools in tight spaces	Wear proper PPE; follow safe practices	Clean wound, apply pressure and/or bandages; seek medical attention as required.
1.3.1 - 1.3.7	Contaminated Media Inhalation	Opening drums, tanks, wells; vapors for non-aqueous phase liquids or other contaminated site media; dust inhalation during excavation; vapor accumulation in excavation	Follow air monitoring plan; have quick access to respirator, do not move or open unlabeled drums found at the site, maintain safe distance from construction activities	See Table 2, seek medical attention as required
1.3.1 - 1.3.7	Lifting	Improper lifting/carrying of equipment and materials causing strains	Follow safe lifting techniques; Langan employees are not to carry contractor equipment or materials	Rest, ice, compression, elevation; seek medical attention as required
1.3.1 - 1.3.7	Slips, trips, and falls	Slips, trips and falls due to uneven surfaces, cords, steep slopes, debris and equipment in work areas	Good housekeeping at site; constant awareness and focus on the task; avoid climbing on stockpiles; maintain safe distance from construction activities and excavations; avoid elevated areas over six feet unless fully accredited in fall protection and wearing an approved fall protection safety apparatus	Rest, ice, compression, elevation; seek medical attention as required
1.3.1 - 1.3.7	Noise	Excavation equipment, hand tools, drilling equipment.	Wear hearing protection; maintain safe distance from construction activities	Seek medical attention as required
1.3.1 - 1.3.7	Falling objects	Soil material, tools, etc. dropping from drill rigs, front-end loaders, etc.	Hard hats to be worn at all times while in work zones; maintain safe distance from construction activities and excavations	Seek medical attention as required
1.3.1 - 1.3.7	Underground/ overhead utilities	Excavation equipment, drill rig auger makes contact with underground object; boom touches overhead utility	"One Call" before dig; follow safe practices; confirm utility locations with contractor; wear proper PPE; maintain safe distance from construction activities and excavations	Seek medical attention as required
1.3.1 - 1.3.7	Insects (bees, wasps, hornet, mosquitoes, and spider)	Sings, bites	Insect Repellent; wear proper protective clothing (work boots, socks and light colored pants); field personnel who may have insect allergies (e.g., bee sting) should provide this information to the HSO or FSO prior to commencing work, and will have allergy medication on site.	Seek medical attention as required
1.3.1 - 1.3.7	Vehicle traffic / Heavy Equipment Operation	Vehicles unable to see workers on site, operation of heavy equipment in tight spaces, equipment failure, malfunctioning alarms	Wear proper PPE, especially visibility vest; use a buddy system to look for traffic; rope off area of work with cones and caution tape or devices at points of hazard, maintain safe distance from construction activities and equipment	Seek medical attention as required

TABLE 2
CONTAMINANT HAZARDS OF CONCERN

Task	Contaminant	CAS Number	Monitoring Device	PEL/ IDLH	Source of Concentration on Site	Route of Exposure	Symptoms	First Aid
1.3.1 – 1.3.7	1,1'-Biphenyl 1,1-Biphenyl Biphenyl Phenyl benzene Diphenyl	92-52-4	None	1 mg/m ² 100 mg/m ²	Soil Vapor	inhalation, skin absorption, ingestion, skin and/or eye contact	irritation to the eyes, throat; headache, nausea, lassitude (weakness, exhaustion), numb limbs; liver damage	Eye: Irrigate immediately Skin: Water flush immediately Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	1,2,4,5-Tetramethylbenzene	95-93-2	NA	None None	Groundwater Soil	inhalation, skin absorption, ingestion, skin and/or eye contact	irritation to the eyes, skin, nose, throat, respiratory system; bronchitis; hypochromic anemia; headache, drowsiness, lassitude (weakness, exhaustion), dizziness, nausea, incoordination; vomiting, confusion; chemical pneumonitis (aspiration liquid)	Eye: Irrigate immediately Skin: Soap flush immediately Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	1,2,4-Trimethylbenzene	95-63-6	PID	None None	Groundwater Soil Vapor	inhalation, ingestion, skin and/or eye contact	irritation to the eyes, skin, nose, throat, respiratory system; bronchitis; hypochromic anemia; headache, drowsiness, lassitude (weakness, exhaustion), dizziness, nausea, incoordination; vomiting, confusion; chemical pneumonitis (aspiration liquid)	Eye: Irrigate immediately Skin: Soap wash Breathing: Respiratory support Swallow: Medical attention immediately

Task	Contaminant	CAS Number	Monitoring Device	PEL/ IDLH	Source of Concentration on Site	Route of Exposure	Symptoms	First Aid
1.3.1 – 1.3.7	1,2-Dichlorobenzene	95-50-1	PID	50 ppm 200 ppm	Groundwater Soil Vapor	inhalation, skin absorption, ingestion, skin and/or eye contact	irritation to the eye, swelling periorbital (situated around the eye); profuse rhinitis; headache, anorexia, nausea, vomiting; weight loss, jaundice, cirrhosis; in animals: liver, kidney injury; [potential occupational carcinogen]	Eye: Irrigate immediately Skin: Soap wash Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Trans-1,2-Dichloroethene trans-1,2-Dichloroethylene tDEC trans-Acetylene dichloride	156-60-5	PID	200 ppm 4000 ppm	Groundwater Soil Vapor	inhalation, ingestion, skin and/or eye contact	Irritant to eyes, skin, mucous membranes and respiratory system. May be harmful by ingestion, skin absorption and inhalation	Eye: Irrigate immediately Skin: Soap wash promptly Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	1,3,5-Trimethylbenzene Mesitylene sym-Trimethylbenzene	108-67-8	PID	None None	Groundwater Soil Vapor	inhalation, ingestion, skin and/or eye contact	irritation to the eyes, skin, nose, throat, respiratory system; bronchitis; hypochromic anemia; headache, drowsiness, lassitude (weakness, exhaustion), dizziness, nausea, incoordination; vomiting, confusion; chemical pneumonitis (aspiration liquid)	Eye: Irrigate immediately Skin: Soap wash Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	1,3-Butadiene Biethylene Bivinyl Butadiene Divinyl Erythrene Vinylethylene	106-99-0	PID	1 ppm 2000 ppm	Vapor	inhalation, skin and/or eye contact (liquid)	irritation to the eyes, nose, throat; drowsiness, dizziness; liquid: frostbite; teratogenic, reproductive effects; [potential occupational carcinogen]	Eye: Frostbite Skin: Frostbite Breathing: Respiratory support

Task	Contaminant	CAS Number	Monitoring Device	PEL/ IDLH	Source of Concentration on Site	Route of Exposure	Symptoms	First Aid
1.3.1 – 1.3.7	1,3-Dichlorobenzene m-Dichlorobenzol; m-Phenylene dichloride m-dichlorobenzene	541-73-1	PID	None None	Groundwater Soil Vapor	inhalation, skin absorption, ingestion, skin and/or eye contact	irritation to the eyes, swelling periorbital (situated around the eye); profuse rhinitis; headache, anorexia, nausea, vomiting; weight loss, jaundice, cirrhosis; in animals: liver, kidney injury; [potential occupational carcinogen]	Eye: Irrigate immediately Skin: Soap wash Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	2,2,4-Trimethylpentane	540-84-1	PID	NA NA	Groundwater Soil Vapor	inhalation, ingestion, skin and/or eye contact	irritation to the eyes, skin, nose, throat, respiratory system; bronchitis; hypochromic anemia; headache, drowsiness, lassitude (weakness, exhaustion), dizziness, nausea, incoordination; vomiting, confusion; chemical pneumonitis (aspiration liquid)	Eye: Irrigate immediately Skin: Soap wash Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	2-Butanone Ethyl methyl ketone MEK Methyl acetone Methyl ethyl ketone	78-93-3	PID	200 ppm 3000 ppm	Soil Groundwater Vapor	inhalation, ingestion, skin and/or eye contact	irritation to the eyes, skin, nose; headache; dizziness; vomiting; dermatitis	Eye: Irrigate immediately Skin: Water wash immediately Breathing: Fresh air Swallow: Medical attention immediately

Task	Contaminant	CAS Number	Monitoring Device	PEL/ IDLH	Source of Concentration on Site	Route of Exposure	Symptoms	First Aid
1.3.1 – 1.3.7	2-Methylnaphthalene β-methylnaphthalene	91-57-6	PID	NA NA	Groundwater Soil Vapor	inhalation, ingestion or skin absorption, eye contact	irritation to the skin, eyes, mucous membranes and upper respiratory tract. It may also cause headaches, nausea, vomiting, diarrhea, anemia, jaundice, euphoria, dermatitis, visual disturbances, convulsions and comatose	Eye: Irrigate immediately Skin: Water flush promptly Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	4,4'-DDD Dichlorodiphenyldichloroethan e 1,1'-(2,2-Dichloroethylidene)bis (4-chlorobenzene)	72-54-8	None	NA NA	Groundwater Soil	inhalation, skin absorption, ingestion, skin and/or eye contact	irritation to the eyes, skin; paresthesia tongue, lips, face; tremor; anxiety, dizziness, confusion, malaise (vague feeling of discomfort), headache, lassitude (weakness, exhaustion); convulsions; paresis hands; vomiting; [potential occupational carcinogen]	Eye: Irrigate immediately Skin: Soap wash promptly Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	4-Methyl-2-pentanone Hexone Isobutyl methyl ketone Methyl isobutyl ketone MIBK	108-10-1	PID	100 ppm 500 ppm	Groundwater Soil Vapor	inhalation, ingestion, skin and/or eye contact	irritation to the eyes, skin, mucous membrane; headache, narcosis, coma; dermatitis; in animals: liver, kidney damage	Eye: Irrigate immediately Skin: Water flush promptly Breathing: Respiratory support Swallow: Medical attention immediately

Task	Contaminant	CAS Number	Monitoring Device	PEL/ IDLH	Source of Concentration on Site	Route of Exposure	Symptoms	First Aid
1.3.1 – 1.3.7	Acenaphthene 1,2-Dihydroacenaphthylene 1,8-Ethylenenaphthalene peri-Ethylenenaphthalene Naphthyleneethylene Tricyclododecapentaene	83-32-9	PID	NA NA	Soil	inhalation, ingestion, skin and/or eye contact,	irritation to the skin, eyes, mucous membranes and upper respiratory tract; If ingested, it can cause vomiting	Eye: Irrigate immediately Skin: Soap wash immediately, if redness or irritation develop, seek medical attention immediately Breathing: Move to fresh air Swallow: do not induce vomiting, seek medical attention immediately
1.3.1 – 1.3.7	Acenaphthylene Cycopental(de)naphthalene, Acenaphthalene	208-96-8	PID	NA NA	Soil	inhalation, ingestion, skin and/or eye contact	irritation to the skin, eyes, mucous membranes and upper respiratory tract	Eye: Irrigate immediately, seek medical attention immediately, Skin: Soap wash immediately, if redness or irritation develop, seek medical attention immediately Breathing: Move to fresh air Swallow: do not induce vomiting, seek medical attention immediately

Task	Contaminant	CAS Number	Monitoring Device	PEL/ IDLH	Source of Concentration on Site	Route of Exposure	Symptoms	First Aid
1.3.1 – 1.3.7	Acetone Dimethyl ketone Ketone propane 2-Propanone	67-64-1	PID	1000 ppm 2500 ppm	Groundwater Soil	inhalation, ingestion, skin and/or eye contact	irritation to the eyes, nose, throat; headache, dizziness, central nervous system depression; dermatitis	Eye: Irrigate immediately Skin: Soap wash immediately Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Aluminum	7429-90- 5	None	0.5 mg/m3 50 mg/m3	Soil	inhalation, skin and/or eye contact	irritation to the eyes, skin, respiratory system	Eye: Irrigate immediately Breathing: Fresh air
1.3.1 – 1.3.7	Anthracene	120-12-7	PID	0.2 mg/m ² 80 mg/m ² (Coal Pitch Tar)	Soil	inhalation, skin or eye contact, ingestion	irritation to the skin, eyes, mucous membranes and upper respiratory tract, abdominal pain if ingested.	Eye: Irrigate immediately, seek medical attention immediately, Skin: Soap wash immediately, Breathing: Move to fresh air, refer to medical attention; Swallow: refer to medical attention
1.3.1 – 1.3.7	Antimony	7440-36- 0	None	0.5 mg/m ² 50 mg/m ²	Groundwater Soil	inhalation, ingestion, skin and/or eye contact	irritation skin, possible dermatitis; resp distress; diarrhea; muscle tremor, convulsions; possible gastrointestinal tract	Eye: Irrigate immediately Skin: Soap wash immediately Breathing: Respiratory support Swallow: Medical attention immediately

Task	Contaminant	CAS Number	Monitoring Device	PEL/ IDLH	Source of Concentration on Site	Route of Exposure	Symptoms	First Aid
1.3.1 – 1.3.7	Aroclor 1254	11097- 69-1	None	0.5 mg/m ² 5 mg/m ²	Groundwater Soil	inhalation, skin absorption, ingestion, skin and/or eye contact	irritation to the eyes, chloracne	Eye: Irrigate immediately Skin: Soap wash immediately Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Aroclor 1260	11096- 82-5	None	0.5 mg/m ² 5 mg/m ²	Groundwater Soil	inhalation, skin absorption, ingestion, skin and/or eye contact	irritation to the eyes, chloracne	Eye: Irrigate immediately Skin: Soap wash immediately Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Arsenic	NA	None	0.5 mg/m ⁻ NA	Groundwater Soil	inhalation, ingestion, skin and/or eye contact	irritation skin, possible dermatitis; resp distress; diarrhea; muscle tremor, convulsions; possible gastrointestinal tract	Eye: Irrigate immediately Skin: Soap wash immediately Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Barium	10022- 31-8	None	0.5 mg/m ² 50 mg/m ²	Groundwater Soil	inhalation, ingestion, skin and/or eye contact	irritation to the eyes, skin, upper respiratory system; skin burns; gastroenteritis; muscle spasm; slow pulse	Eye: Irrigate immediately Skin: Water flush immediately Breathing: Respiratory support Swallow: Medical attention immediately

Task	Contaminant	CAS Number	Monitoring Device	PEL/ IDLH	Source of Concentration on Site	Route of Exposure	Symptoms	First Aid
1.3.1 – 1.3.7	Benzene Benzol Phenyl hydride	71-43-2	PID	3.19 mg/m ⁻ 1,595 mg/mg ⁻	Groundwater Soil Vapor	inhalation, skin absorption, ingestion, skin and/or eye contact	irritation to the eyes, skin, nose, respiratory system; dizziness; headache, nausea, staggered gait; lassitude (weakness, exhaustion) [potential occupational carcinogen]	Eye: Irrigate immediately Skin: Soap wash immediately Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Benzo(a)anthracene Benzanthracene Benzanthrene 1,2-Benzanthracene Benzo[b]phenanthrene Tetraphene	56-55-3	PID	0.2 mg/m- 80 mg/m- (Coal Pitch Tar)	Groundwater Soil	inhalation, skin or eye contact, ingestion	dermatitis, bronchitis, [potential occupational carcinogen]	Eye: Irrigate immediately Skin: Soap wash immediately Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Benzo(a)pyrene	50-32-8	PID	0.2 mg/m ² 80 mg/m ² (Coal Pitch Tar)	Soil	inhalation, skin or eye contact, ingestion	dermatitis, bronchitis, [potential occupational carcinogen]	Eye: Irrigate immediately, seek medical attention Skin: Soap wash immediately; Breathing: move to fresh air; Swallow: Induce vomiting if conscious, seek medical attention immediately

Task	Contaminant	CAS Number	Monitoring Device	PEL/ IDLH	Source of Concentration on Site	Route of Exposure	Symptoms	First Aid
1.3.1 – 1.3.7	Benzo(b)fluoranthene	205-99-2	PID	0.2 mg/m ² 80 mg/m ² (Coal Pitch Tar)	Soil	inhalation, skin or eye contact, ingestion	irritation to eyes and skin, respiratory irritation(dizziness, weakness, fatigue, nausea, headache)	Eye: Irrigate immediately, refer to medical attention Skin: Soap wash immediately Breathing: move to fresh air Swallow: Medical attention immediately
1.3.1 – 1.3.7	Benzo(g,h,i)perylene Benzo(ghi)perylene	191-24-2	PID	0.2 mg/m ² 80 mg/m ² (Coal Pitch Tar)	Soil	inhalation, skin or eye contact, ingestion	NA	Eye: Irrigate immediately, refer to medical attention Skin: Soap wash immediately Breathing: move to fresh air Swallow: Medical attention immediately
1.3.1 – 1.3.7	Benzo(k)fluoranthene	207-08-9	PID	0.2 mg/m ⁻ 80 mg/m ⁻ (Coal Pitch Tar)	Soil	inhalation, skin or eye contact, ingestion	irritation to eyes and skin, respiratory irritation (dizziness, weakness, fatigue, nausea, headache)	Eye: Irrigate immediately, refer to medical attention Skin: Soap wash immediately Breathing: move to fresh air Swallow: Medical attention immediately
1.3.1 – 1.3.7	Benzoic acid Carboxybenzene E210 Dracylic acid Phenylmethanoic acid Benzenecarboxylic acid	65-85-0	None	NA NA	Groundwater Soil Vapor	inhalation, skin or eye contact, ingestion	irritation to eyes with possible eye damage, skin causing rash, redness or burning, irritation to nose, throat and lungs	Eye: Irrigate immediately, refer to medical attention Skin: Soap wash immediately Breathing: move to fresh air

Task	Contaminant	CAS Number	Monitoring Device	PEL/ IDLH	Source of Concentration on Site	Route of Exposure	Symptoms	First Aid
1.3.1 – 1.3.7	Benzyl butyl phthalate Butyl benzyl phthalate Butylbenzylphthalate	86-66-7	None	NA NA	Groundwater Soil Vapor	inhalation, skin or eye contact, ingestion	irritation to eyes and skin, respiratory irritation (dizziness, weakness, fatigue, nausea, headache	Eye: Irrigate immediately, refer to medical attention Skin: Soap wash immediately Breathing: move to fresh air Swallow: Medical attention immediately
1.3.1 – 1.3.7	Beryllium	7440-41- 7	None	0.002 mg/m ² 4 mg/m ²	Soil	inhalation, skin and/or eye contact	berylliosis (chronic exposure): anorexia, weight loss, lassitude (weakness, exhaustion), chest pain, cough, clubbing of fingers, cyanosis, pulmonary insufficiency; irritation to the eyes; dermatitis; [potential occupational carcinogen]	Eye: Irrigate immediately Breathing: Fresh air
1.3.1 – 1.3.7	Bis(2-ethylhexyl)phthalate Bis(2-Ethylhexyl) Phthalate Di-sec octyl phthalate DEHP Di(2-ethylhexyl)phthalate Octyl phthalate	117-81-7	None	5 mg/m ⁻ 5000 mg/m ⁻	Groundwater Soil Vapor	inhalation, ingestion, skin and/or eye contact	irritation to the eyes, mucous membrane; in animals: liver damage; teratogenic effects; [potential occupational carcinogen	Eye: Irrigate immediately Breathing: Respiratory support Swallow: Medical attention immediately

Task	Contaminant	CAS Number	Monitoring Device	PEL/ IDLH	Source of Concentration on Site	Route of Exposure	Symptoms	First Aid
1.3.1 – 1.3.7	Bromodichloromethane dichlorobromomethane	75-27-4	None	NA NA	Groundwater Soil Vapor	inhalation, skin or eye contact, ingestion	irritation of the skin, eyes, mucous membranes and respiratory tract, narcosis, nausea, dizziness and headache	Eye: Irrigate immediately (liquid) Skin: Water flush immediately (liquid) Breathing: Respiratory support Swallow: Medical attention immediately
1.3.7 1.3.7	Cadmium	7440-43- 9	None	0.005 mg/m ² 9 mg/m ³	Soil	inhalation, ingestion	pulmonary edema, dyspnea (breathing difficulty), cough, chest tightness, substernal (occurring beneath the sternum) pain; headache; chills, muscle aches; nausea, vomiting, diarrhea; anosmia (loss of the sense of smell), emphysema, proteinuria, mild anemia; [potential occupational carcinogen]	Eye: Irrigate immediately Skin: Soap wash Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Calcium	7440-70- 2	None	NA	Groundwater Soil	inhalation, ingestion, skin and/or eye contact	irritation to the eyes, skin, upper resp tract; ulcer, perforation nasal septum; pneumonitis; dermatitis	Eye: Irrigate immediately Skin: Water flush immediately Breathing: Respiratory support Swallow: Medical attention immediately

Task	Contaminant	CAS Number	Monitoring Device	PEL/ IDLH	Source of Concentration on Site	Route of Exposure	Symptoms	First Aid
1.3.1 – 1.3.7	Carbazole 9-azafluorene Dibenzopyrrole Diphenylenimine diphenyleneimide	86-74-8	None	NA NA	Soil	inhalation, skin absorption (liquid), skin and/or eye contact	irritation to eyes and skin, respiratory irritation	Eye: Irrigate immediately, refer to medical attention Skin: Soap wash immediately Breathing: move to fresh air Swallow: Medical attention immediately
1.3.1 – 1.3.7	Carbon disulfide	75-15-0	PID	20 ppm 500 ppm	Soil Groundwater Vapor	inhalation, skin or eye contact, ingestion	irritation to the eyes, skin, respiratory system	Eye: Irrigate immediately (liquid) Skin: Water flush immediately (liquid) Breathing: Respiratory support
1.3.1 – 1.3.7	Chloroform Methane trichloride Trichloromethane	67-66-3	None	50 ppm 500 ppm	Groundwater Soil	inhalation, skin absorption, ingestion, skin and/or eye contact	irritation to the eyes, skin; dizziness, mental dullness, nausea, confusion; headache, lassitude (weakness, exhaustion); anesthesia; enlarged liver; [potential occupational carcinogen]	Eye: Irrigate immediately Skin: Soap wash promptly Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Chromium Total Chromium	7440-47- 3	None	1.0 mg/m ² 250 mg/m ²	Groundwater Soil	inhalation absorption ingestion	irritation to eye, skin, and respiratory	Eye: Irrigate immediately Skin: Soap wash Breathing: Respiratory support Swallow: Medical attention immediately

Task	Contaminant	CAS Number	Monitoring Device	PEL/ IDLH	Source of Concentration on Site	Route of Exposure	Symptoms	First Aid
1.3.1 – 1.3.7	Chrysene Benzo[a]phenanthrene 1,2-Benzphenanthrene	218-01-9	PID	0.2 mg/m ⁻ 80 mg/m ⁻ (Coal Pitch Tar)	Groundwater Soil	inhalation, absorption, ingestion, consumption	irritation to eye, skin, and respiratory, gastrointestinal irritation nausea, vomit, diarrhea [potential occupational carcinogen]	Eyes: Irrigate immediately Skin: Soap wash promptly. Breath: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	cis-1,2-Dichloroethene	156-59-2	PID	200 ppm 1000 ppm	Groundwater Soil Vapor	inhalation, ingestion, skin and/or eye contact	irritation to the eyes, respiratory system; central nervous system depression	Eye: Irrigate immediately Skin: Soap wash promptly Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Cobalt	7440-48- 4	None	0.1mg/m , 20 mg/m	Soil	inhalation, ingestion, skin and/or eye contact	Cough, dyspnea (breathing difficulty), wheezing, decreased pulmonary function; weight loss; dermatitis; diffuse nodular fibrosis; resp hypersensitivity, asthma	Eye: Irrigate immediately Skin: Soap wash Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Copper	7440-50- 8	None	1.0 mg/m ² 100 mg/m ²	Groundwater Soil	inhalation, ingestion, skin and/or eye contact	irritation to the eyes, nose, metallic taste; dermatitis; anemia	Eye: Irrigate immediately Skin: Soap wash promptly Breathing: Respiratory support Swallow: Medical attention immediately

Task	Contaminant	CAS Number	Monitoring Device	PEL/ IDLH	Source of Concentration on Site	Route of Exposure	Symptoms	First Aid
1.3.1 – 1.3.7	Cumene Cumol Isopropylbenzene 2-Phenyl propane	98-82-8	PID	50 ppm 900 ppm	Groundwater Soil	inhalation, skin absorption, ingestion, skin and/or eye contact	irritation to the eyes, skin, mucous membrane; dermatitis; headache, narcosis, coma	Eye: Irrigate immediately Skin: Water flush promptly Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Cyclohexane Benzene hexahydride Hexahydrobenzene Hexamethylene Hexanaphthene	110-82-7	PID	300 ppm 1300 ppm	Soil Vapor	inhalation, ingestion, skin and/or eye contact	irritation to the eyes, skin, respiratory system; drowsiness; dermatitis; narcosis, coma	Eye: Irrigate immediately Skin: Water flush promptly Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	DDT 4,4-DDT 4,4'-DDT p,p'-DDT Dichlorodiphenyltrichloroethan e 1,1,1-Trichloro-2,2-bis(p- chlorophenyl)ethane	50-29-3	None	1 mg/m ⁻ 500 mg/m ⁻	Groundwater Soil	inhalation, skin absorption, ingestion, skin and/or eye contact	irritation to the eyes, skin; paresthesia tongue, lips, face; tremor; anxiety, dizziness, confusion, malaise (vague feeling of discomfort), headache, lassitude (weakness, exhaustion); convulsions; paresis hands; vomiting; [potential occupational carcinogen]	Eye: Irrigate immediately Skin: Soap wash promptly Breathing: Respiratory support Swallow: Medical attention immediately

Task	Contaminant	CAS Number	Monitoring Device	PEL/ IDLH	Source of Concentration on Site	Route of Exposure	Symptoms	First Aid
1.3.1 – 1.3.7	Dibenz(a,h)anthracene Dibenzo(a,h)anthracene	53-70-3	PID	0.2 mg/m ² 80 mg/m ² (Coal Pitch Tar)	Groundwater Soil	inhalation, absorption, ingestion, consumption	irritation to eyes, skin, respiratory, and digestion [potential occupational carcinogen]	Eyes: Irrigate immediately Skin: Soap wash promptly. Breath: Respiratory support PID Swallow: Medical attention immediately
1.3.1 – 1.3.7	Dibenzofuran	132-64-9	None	NA NA	Soil	inhalation, absorption	irritation to eyes, and skin	Eyes: Irrigate immediately Skin: Soap wash promptly.
1.3.1 – 1.3.7	Dibutyl phthalate Di-n-butyl phthalate Butyl phthalate n-Butyl phthalate 1,2-Benzenedicarboxylic acid dibutyl ester o-Benzenedicarboxylic acid dibutyl ester DBP Palatinol C, Elaol Dibutyl-1,2-benzene- dicarboxylate Di-n-butylphthalate	84-74-2	None	5 mg/m ⁻ 4000 mg/m ⁻	Groundwater Soil Vapor	inhalation, ingestion, skin and/or eye contact	irritation to the eyes, upper respiratory system, stomach	Eye: Irrigate immediately Skin: Wash regularly Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Dichlorodifluoromethane Difluorodichloromethane, Fluorocarbon 12 Freon 12 Freon® 12 Genetron® 12 Halon® 122 Propellant 12 Refrigerant 12 Dichlorodifluromethane	75-71-8	None	1000 pp, 15,000 ppm	Groundwater Soil Vapor	inhalation, skin and/or eye contact (liquid)	dizziness, tremor, asphyxia, unconsciousness, cardiac arrhythmias, cardiac arrest; liquid: frostbite	Eye: Frostbite Skin: Frostbite Breathing: Respiratory support

Task	Contaminant	CAS Number	Monitoring Device	PEL/ IDLH	Source of Concentration on Site	Route of Exposure	Symptoms	First Aid
1.3.1 – 1.3.7	Diesel Fuel automotive diesel fuel oil No. 2 distillate diesoline diesel oil diesel oil light diesel oil No. 1-D summer diesel	68334- 30-5	PID	NA NA	Groundwater Soil Vapor	inhalation, ingestion, skin and/or eye contact	irritation to the eyes, skin, nose, throat; burning sensation in chest; headache, nausea, lassitude (weakness, exhaustion), restlessness, incoordination, confusion, drowsiness; vomiting, diarrhea; dermatitis; chemical pneumonitis (aspiration liquid)	Eye: Irrigate immediately Skin: Soap flush immediately Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Diethyl phthalate DEP Diethyl ester of phthalic acid Ethyl phthalate Diethylphthalate	84-66-2	PID	NA NA	Groundwater Soil	inhalation, ingestion, skin and/or eye contact	irritation eyes, skin, nose, throat; headache, dizziness, nausea; lacrimation (discharge of tears); possible polyneuropathy, vestibular dysfunc; pain, numb, lassitude (weakness, exhaustion), spasms in arms & legs; In Animals: reproductive effects	Eye: Irrigate immediately Skin: Wash regularly Breathing: Respiratory support Swallow: Medical attention immediately

Task	Contaminant	CAS Number	Monitoring Device	PEL/ IDLH	Source of Concentration on Site	Route of Exposure	Symptoms	First Aid
1.3.1 – 1.3.7	Ethanol Absolute alcohol Alcohol cologne spirit drinking alcohol ethane monoxide ethylic alcohol EtOH ethyl alcohol ethyl hydrate ethyl hydroxide ethylol grain alcohol hydroxyethane methylcarbinol	64-17-5	PID	1000 ppm 3300 ppm	Groundwater Soil Vapor	inhalation, ingestion, skin and/or eye contact	irritation to the eyes, skin, nose; headache, drowsiness, lassitude (weakness, exhaustion), narcosis; cough; liver damage; anemia; reproductive, teratogenic effects	Eye: Irrigate immediately Skin: Water flush promptly Breathing: Fresh air Swallow: Medical attention immediately
1.3.1 – 1.3.7	Ethyl benzene Ethylbenzene Ethylbenzol Phenylethane	100-40-4	PID	435 mg/m ⁻ 3,472 mg/m ⁻	Groundwater Soil Vapor	inhalation, ingestion, skin and/or eye contact	irritation to the eyes, skin, mucous membrane; headache; dermatitis; narcosis, coma	Eye: Irrigate immediately Skin: Water flush promptly Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Fluoranthene Benzo(j, k)fluorene	206-44-0	PID	0.2 mg/m ² 80 mg/m ² (Coal Pitch Tar)	Groundwater Soil	inhalation, skin or eye contact, ingestion	irritation to eyes and skin, respiratory irritation(dizziness, weakness, fatigue, nausea, headache)	Eye: Irrigate immediately, refer to medical attention Skin: Soap wash immediately Breathing: move to fresh air Swallow: Medical attention immediately

Task	Contaminant	CAS Number	Monitoring Device	PEL/ IDLH	Source of Concentration on Site	Route of Exposure	Symptoms	First Aid
1.3.1 – 1.3.7	Fluorene	86-73-7	PID	0.2 mg/m ² 80 mg/m ² (Coal Pitch Tar)	Soil	inhalation, skin or eye contact, ingestion	irritation to eyes and skin, respiratory irritation(dizziness, weakness, fatigue, nausea, headache)	Eye: Irrigate immediately, refer to medical attention Skin: Soap wash immediately Breathing: move to fresh air Swallow: Medical attenti
1.3.1 – 1.3.7	Fuel Oil No. 2	68476- 30-2	PID	NA NA	Groundwater Soil Vapor	inhalation, ingestion, skin and/or eye contact	irritation to the eyes, skin, nose, throat; burning sensation in chest; headache, nausea, lassitude (weakness, exhaustion), restlessness, incoordination, confusion, drowsiness; vomiting, diarrhea; dermatitis; chemical pneumonitis (aspiration liquid)	Eye: Irrigate immediately Skin: Soap flush immediately Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Gasoline	8006-61- 9	PID	NA NA	Groundwater Soil Vapor	inhalation, skin absorption, ingestion, skin and/or eye contact	irritation to the eyes, skin, mucous membrane; dermatitis; headache, lassitude (weakness, exhaustion), blurred vision, dizziness, slurred speech, confusion, convulsions; chemical pneumonitis (aspiration liquid)	Eye: Irrigate immediately Skin: Soap flush immediately Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Helium	7440-59- 7	Helium Detector	NA NA	NA	inhalation	dizziness, headache, and nausea	Breathing: Respiratory support

Task	Contaminant	CAS Number	Monitoring Device	PEL/ IDLH	Source of Concentration on Site	Route of Exposure	Symptoms	First Aid
1.3.1 – 1.3.7	Heptane n-Heptane	142-82-5	PID	500 ppm 750 ppm	Goundwater Soil Vapor	inhalation, ingestion, skin and/or eye contact	dizziness, stupor, incoordination; loss of appetite, nausea; dermatitis; chemical pneumonitis (aspiration liquid); unconsciousness	Eye: Irrigate immediately Skin: Soap wash promptly Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Indeno(1,2,3-cd)pyrene Indeno(1,2,3-c,d)Pyrene Indeno(1,2,3-cd)Pyrene	193-39-5	None	0.2 mg/m ² 80 mg/m ³ (Coal Pitch Tar)	Groundwater Soil	inhalation, absorption, ingestion, consumption	irritation to eyes, skin, respiratory, and digestion [potential occupational carcinogen]	Eyes: Irrigate immediately Skin: Soap wash promptly. Breath: Respiratory support Swallow: Medical attention immediately, wash mouth with water
1.3.1 – 1.3.7	Iron	7439-89- 6	None	10 mg/m ⁻ NA	Groundwater Soil	inhalation, ingestion, skin and/or eye contact	irritation to the eyes, skin, mucous membrane; abdominal pain, diarrhea, vomiting	Eye: Irrigate immediately Skin: Soap wash Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Isopropyl alcohol Iso-Propyl Alcohol Carbinol IPA Isopropanol 2-Propanol sec-Propyl alcohol Rubbing alcohol Isopropylalcohol	67-63-0	PID	400 ppm 2000 ppm	Groundwater Soil Vapor	inhalation, ingestion, skin and/or eye contact	irritation to the eyes, nose, throat; drowsiness, dizziness, headache; dry cracking skin; in animals: narcosis	Eye: Irrigate immediately Skin: Water flush Breathing: Respiratory support Swallow: Medical attention immediately

Task	Contaminant	CAS Number	Monitoring Device	PEL/ IDLH	Source of Concentration on Site	Route of Exposure	Symptoms	First Aid
1.3.1 – 1.3.7	Lead	7439-92- 1	None	0.050 mg/m ² 100 mg/m ²	Groundwater Soil	inhalation, ingestion, skin and/or eye contact	lassitude (weakness, exhaustion), insomnia; facial pallor; anorexia, weight loss, malnutrition; constipation, abdominal pain, colic; anemia; gingival lead line; tremor; paralysis wrist, ankles; encephalopathy; kidney disease; irritation to the eyes; hypertension	Eye: Irrigate immediately Skin: Soap flush promptly Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Magnesium	7439-95- 4	None	15 mg/m [,] NA	Soil	inhalation, skin and/or eye contact	irritation to the eyes, skin, respiratory system; cough	Eye: Irrigate immediately Breathing: Fresh air
1.3.1 – 1.3.7	Manganese	7439-96- 5	None	5 mg/m ² 500 mg/m ²	Groundwater Soil	inhalation, ingestion	aerosol is irritating to the respiratory tract	Eye: Irrigate immediately Skin: Soap flush promptly Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	m-Cresol 4 meta-Cresol 3-Cresol m-Cresylic acid 1-Hydroxy-3-methylbenzene 3-Hydroxytoluene 3-Methylphenol	108-39-4	PID	5 ppm 250 ppm	Groundwater Soil Vapor	inhalation, skin absorption, ingestion, skin and/or eye contact	irritation to the eyes, skin, mucous membrane; central nervous system effects: confusion, depression, resp failure; dyspnea (breathing difficulty), irreg rapid resp, weak pulse; eye, skin burns; dermatitis; lung, liver, kidney, pancreas damage	Eye: Irrigate immediately Skin: Soap wash immediately Breathing: Respiratory support Swallow: Medical attention immediately

Task	Contaminant	CAS Number	Monitoring Device	PEL/ IDLH	Source of Concentration on Site	Route of Exposure	Symptoms	First Aid
1.3.1 – 1.3.7	Mercury	7439-97- 6	None	0.1 mg/m ² 10 mg/m ²	Groundwater Soil	inhalation, skin absorption, ingestion, skin and/or eye contact	irritation to the eyes, skin; cough, chest pain, dyspnea (breathing difficulty), bronchitis, pneumonitis; tremor, insomnia, irritability, headache, lassitude (weakness, exhaustion); stomatitis, salivation; gastrointestinal disturbance, anorexia, weight loss; proteinuria	Eye: Irrigate immediately Skin: Soap wash promptly Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Methyl Chloride Chloromethane Monochloromethane	74-87-3	NA	100 ppm 2000 ppm	Groundwater Soil	inhalation, skin and/or eye contact	dizziness, nausea, vomiting; visual disturbance, stagger, slurred speech, convulsions, coma; liver, kidney damage; liquid: frostbite; reproductive, teratogenic effects; [potential occupational carcinogen]	Eye: Frostbite Skin: Frostbite Breathing: Respiratory support
1.3.1 – 1.3.7	Methyl chloroform Chlorothene 1,1,1-Trichloroethane 1,1,1-Trichloroethane- (stabilized) 1,1,1-TCA	71-55-6	PID	350 ppm 700 ppm	Groundwater Soil Vapor	inhalation, ingestion, skin and/or eye contact	irritation to the eyes, skin; headache, lassitude (weakness, exhaustion), central nervous system depression, poor equilibrium; dermatitis; cardiac arrhythmias; liver damage	Eye: Irrigate immediately Skin: Soap wash promptly Breathing: Respiratory support Swallow: Medical attention

Task	Contaminant	CAS Number	Monitoring Device	PEL/ IDLH	Source of Concentration on Site	Route of Exposure	Symptoms	First Aid
1.3.1 – 1.3.7	Methyl tert-butyl ether MTBE Methyl tertiary-butyl ether Methyl t-butyl ether tert-Butyl methyl ether tBME tert-BuOMe	1634-04- 4	PID	NA NA	Groundwater Soil Vapor	inhalation, ingestion, skin and/or eye contact	irritation to the eyes, skin, nose, throat; burning sensation in chest; headache, nausea, lassitude (weakness, exhaustion), restlessness, incoordination, confusion, drowsiness; vomiting, diarrhea; dermatitis; chemical pneumonitis (aspiration liquid)	Eye: Irrigate immediately Skin: Soap flush immediately Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Methylene Chloride Dichloromethane Methylene dichloride	75-09-2	PID	25 ppm 2300 ppm	Groundwater Soil Vapor	inhalation, skin absorption, ingestion, skin and/or eye contact	irritation to the eyes, skin; lassitude (weakness, exhaustion), drowsiness, dizziness; numb, tingle limbs; nausea; [potential occupational carcinogen]	Eye: Irrigate immediately Skin: Soap wash promptly Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	m-Xylenes 1,3-Dimethylbenzene m-Xylol Metaxylene	108-38-3	PID	100 ppm 900 ppm	Groundwater Soil Vapor	inhalation, skin absorption, ingestion, skin and/or eye contact	irritation to the eyes, skin, nose, throat; dizziness, excitement, drowsiness, incoordination, staggering gait; corneal vacuolization; nausea, vomiting, abdominal pain; dermatitis	Eye: Irrigate immediately Skin: Soap flush immediately Breathing: Respiratory support Swallow: Medical attention immediately

Task	Contaminant	CAS Number	Monitoring Device	PEL/ IDLH	Source of Concentration on Site	Route of Exposure	Symptoms	First Aid
1.3.1 – 1.3.7	Naphthalene Naphthalin Tar camphor White tar	91-20-3	PID	50 mg/m ² 250 ppm	Groundwater Soil Vapor	inhalation, skin absorption, ingestion, skin and/or eye contact	irritation to the eyes; headache, confusion, excitement, malaise (vague feeling of discomfort); nausea, vomiting, abdominal pain; irritation bladder; profuse sweating; hematuria (blood in the urine); dermatitis, optical neuritis	Eye: Irrigate immediately Skin: Molten flush immediately/solid- liquid soap wash promptly Breathing: Respiratory support Swallow: Medical attention immediately
1.3.7	n-Hexane Hexane, Hexyl hydride, normal-Hexane	110-54-3	PID	500 ppm 1100 ppm	Groundwater Soil Vapor	inhalation, ingestion, skin and/or eye contact	irritation to the eyes, nose; nausea, headache; peripheral neuropathy: numb extremities, muscle weak; dermatitis; dizziness; chemical pneumonitis (aspiration liquid)	Eye: Irrigate immediately Skin: Soap wash immediately Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Nickel	7440-02-	None	NA 10 mg/m ⁻	Groundwater Soil	ion, ingestion, skin and/or eye contact	sensitization dermatitis, allergic asthma, pneumonitis; [potential occupational carcinogen]	Skin: Water flush immediately Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Non-Flammable Gas Mixture CALGAS (Equipment Calibration Gas : Oxygen Methane Hydrogen Sulfide Carbon Monoxide Nitrogen	7782-44- 7 74-82-8 7783-08- 4 830-08-0 7727-37- 9	Multi-Gas PID	NA/NA NA/NA 10/100 ppm 50/1200 ppm NA/NA	NA	inhalation	dizziness, headache, and nausea	Breathing: Respiratory support

Task	Contaminant	CAS Number	Monitoring Device	PEL/ IDLH	Source of Concentration on Site	Route of Exposure	Symptoms	First Aid
1.3.1 – 1.3.7	Non-Flammable Gas Mixture CALGAS (Equipment Calibration Gas: Oxygen Isobutylene Nitrogen	7782-44- 7 115-11-7 7727-37- 9	PID	NA/NA NA/NA NA/NA	NA	inhalation	dizziness, headache, and nausea	Breathing: Respiratory support
1.3.1 – 1.3.7	n-Propylbenzene Isocumene Propylbenzene 1-Phenylpropane 1-Propylbenzene Phenylpropane	103-65-1	PID	NA NA	Groundwater Soil Vapor	inhalation, ingestion, skin and/or eye contact	irritation to the eyes, skin; dry nose, throat; headache; low blood pressure, tachycardia, abnormal cardiovascular system stress; central nervous system, hematopoietic depression; metallic taste; liver, kidney injury	Eye: Irrigate immediately Skin: Water flush promptly Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	o-Cresol ortho-Cresol 2-Cresol o-Cresylic acid 1-Hydroxy-2-methylbenzene 2-Hydroxytoluene 2-Methyl phenol 2-Methylphenol 2-Metyhlphenol	95-48-7	PID	5 ppm 250 ppm	Groundwater Soil Vapor	inhalation, skin absorption, ingestion, skin and/or eye contact	irritation to the eyes, skin, mucous membrane; central nervous system effects: confusion, depression, resp failure; dyspnea (breathing difficulty), irreg rapid resp, weak pulse; eye, skin burns; dermatitis; lung, liver, kidney, pancreas damage	Eye: Irrigate immediately Skin: Soap wash immediately Breathing: Respiratory support Swallow: Medical attention immediatelyethylp hhhhhhhhhhhh

Task	Contaminant	CAS Number	Monitoring Device	PEL/ IDLH	Source of Concentration on Site	Route of Exposure	Symptoms	First Aid
1.3.1 – 1.3.7	o-Xylenes 1,2-Dimethylbenzene ortho-Xylene o-Xylol	95-47-6	PID	100 ppm 900 ppm	Groundwater Soil Vapor	inhalation, skin absorption, ingestion, skin and/or eye contact	irritation to the eyes, skin, nose, throat; dizziness, excitement, drowsiness, incoordination, staggering gait; corneal vacuolization; nausea, vomiting, abdominal pain; dermatitis	Eye: Irrigate immediately Skin: Soap flush immediately Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	p-Cresol para-Cresol 4-Cresol p-Cresylic acid 1-Hydroxy-4-methylbenzene 4-Hydroxytoluene 4-Methylphenol	106-44-5	PID	5 ppm 250 ppm	Groundwater Soil Vapor	inhalation, skin absorption, ingestion, skin and/or eye contact	irritation to the eyes, skin, mucous membrane; central nervous system effects: confusion, depression, resp failure; dyspnea (breathing difficulty), irreg rapid resp, weak pulse; eye, skin burns; dermatitis; lung, liver, kidney, pancreas damage	Eye: Irrigate immediately Skin: Soap wash immediately Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	p-Diethylbenzene 1,4-Diethylbenzene 1,4-Diethyl benzene	105-05-5	PID	None None	Groundwater Soil Vapor	inhalation, ingestion, skin and/or eye contact	irritation to the eyes, skin, respiratory system; skin burns; in animals: central nervous system depression	Eye: Irrigate immediately Skin: Soap wash Breathing: Respiratory support Swallow: Medical attention immediately

Task	Contaminant	CAS Number	Monitoring Device	PEL/ IDLH	Source of Concentration on Site	Route of Exposure	Symptoms	First Aid
1.3.1 – 1.3.7	p-Ethyltoluene 4-Ethyltoluene 1-ethyl-4-methyl-benzene 1-methyl-4-ethylbenzene	622-96-8	NA	NA NA	Soil	ingestion, skin and/or eye contact	irritation to the eyes, skin, mucous membrane; headache; dermatitis; narcosis, coma	Eye: Irrigate immediately Skin: Water flush promptly Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Phenanthrene	85-01-8	PID	0.2 mg/m- 80 mg/m- (Coal Pitch Tar)	Groundwater Soil	inhalation, skin or eye contact, ingestion	irritation to eyes and skin, respiratory irritation(dizziness, weakness, fatigue, nausea, headache)	Eye: Irrigate immediately, refer to medical attention Skin: Soap wash immediately Breathing: move to fresh air Swallow: Medical attention immediately
1.3.1 – 1.3.7	Phenol Carbolic acid Hydroxybenzene, Monohydroxybenzene Phenyl alcohol Phenyl hydroxide	108-95-2	PID	5 ppm 250 ppm	Groundwater Soil	inhalation, skin absorption, ingestion, skin and/or eye contact	irritation to the eyes, nose, throat; anorexia, weight loss; lassitude (weakness, exhaustion), muscle ache, pain; dark urine, skin burns; dermatitis; tremor, convulsions, twitching	Eye: Irrigate immediately Skin: Soap wash immediately Breathing: Respiratory support Swallow: Medical attention immediately

Task	Contaminant	CAS Number	Monitoring Device	PEL/ IDLH	Source of Concentration on Site	Route of Exposure	Symptoms	First Aid
1.3.7	Potassium	7440-09-	None	NA NA	Soil	inhalation, skin absorption, ingestion, skin and/or eye contact inhalation, ingestion, skin and/or eye contact	eye: Causes eye burns. Skin: Causes skin burns. Reacts with moisture in the skin to form potassium hydroxide and hydrogen with much heat. ingestion: Causes gastrointestinal tract burns. inhalation: May cause irritation of the respiratory tract with burning pain in the nose and throat, coughing, wheezing, shortness of breath and pulmonary edema. Causes chemical burns to the respiratory tract. inhalation may be fatal as a result of spasm, inflammation, edema of the larynx and bronchi, chemical pneumonitis and pulmonary edema.	Eyes: Get medical aid immediately Skin: Get medical aid immediately. Immediately flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Ingestion: If victim is conscious and alert, give 2-4 full cups of milk or water. Get medical aid immediately. inhalation: Get medical aid immediately.
1.3.1 – 1.3.7	Propylene Propene Methyl ethylene	115-07-1	PID	NA NA	Vapor	inhalation, skin absorption, ingestion, skin and/or eye contact	irritation to the eyes, nose, throat, skin burns asphyxiation	Eye: Irrigate immediately Skin: Soap wash immediately Breathing: Respiratory support Swallow: Medical attention immediately

Task	Contaminant	CAS Number	Monitoring Device	PEL/ IDLH	Source of Concentration on Site	Route of Exposure	Symptoms	First Aid
1.3.1 – 1.3.7	p-Xylenes 1,4-Dimethylbenzene para-Xylene p-Xylol	106-42-3	PID	100 ppm 900 ppm	Groundwater Soil Vapor	inhalation, skin absorption, ingestion, skin and/or eye contact	irritation to the eyes, skin, nose, throat; dizziness, excitement, drowsiness, incoordination, staggering gait; corneal vacuolization; nausea, vomiting, abdominal pain; dermatitis	Eye: Irrigate immediately Skin: Soap flush immediately Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Pyrene benzo[def]phenanthrene	129-00-0	PID	0.2 mg/m ² 80 mg/m ² (Coal Pitch Tar)	Groundwater Soil	inhalation, skin or eye contact, ingestion	irritation to eyes and skin, respiratory irritation(dizziness, weakness, fatigue, nausea, headache)	Eye: Irrigate immediately, refer to medical attention Skin: Soap wash immediately Breathing: move to fresh air Swallow: Medical attention immediately
1.3.1 – 1.3.7	sec-Butylbenzene	135-98-8	PID	10 ppm 100 ppm	Groundwater Soil	inhalation, skin absorption, ingestion, skin and/or eye contact	irritation to the eyes, nose, throat; inhalation: nausea or vomiting	Eye: Irrigate immediately Skin: Soap wash immediately Breathing: Respiratory support Swallow: Medical attention immediately

Task	Contaminant	CAS Number	Monitoring Device	PEL/ IDLH	Source of Concentration on Site	Route of Exposure	Symptoms	First Aid
1.3.1 – 1.3.7	Selenium	7782-49- 2	None	1 mg/m ² 0.2 mg/m ²	Soil	inhalation, ingestion, skin and/or eye contact	irritation to the eyes, skin, nose, throat; visual disturbance; headache; chills, fever; dyspnea (breathing difficulty), bronchitis; metallic taste, garlic breath, gastrointestinal disturbance; dermatitis; eye, skin burns; in animals: anemia; liver necrosis, cirrhosis; kidney, spleen damage	Eye: Irrigate immediately Skin: Soap wash immediately Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Silver	7440-22- 4	None	0.01mg/ m ² 10 mg/m ²	Soil	inhalation, ingestion, skin and/or eye contact	blue-gray eyes, nasal septum, throat, skin; irritation, ulceration skin; gastrointestinal disturbance	Eye: Irrigate immediately Skin: Water flush Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Sodium	7440-23- 5	None	NA NA	Groundwater Soil	ion, ingestion, skin and/or eye contact	sensitization dermatitis, allergic asthma, pneumonitis; [potential occupational carcinogen]	Skin: Water flush immediately Breathing: Respiratory support Swallow: Medical attention immediately

Task	Contaminant	CAS Number	Monitoring Device	PEL/ IDLH	Source of Concentration on Site	Route of Exposure	Symptoms	First Aid
1.3.1 – 1.3.7	Styrene Ethenyl benzene Phenylethylene Styrene monomer Styrol Vinyl benzene	100-42-5	PID	100 ppm 700 ppm	Groundwater Soil Vapor	inhalation, skin absorption, ingestion, skin and/or eye contact	irritation to the eyes, nose, respiratory system; headache, lassitude (weakness, exhaustion), dizziness, confusion, malaise (vague feeling of discomfort), drowsiness, unsteady gait; narcosis; defatting dermatitis; possible liver injury; reproductive effects	Eye: Irrigate immediately Skin: Water flush Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Tetrachloroethylene Perchloroethylene Perchloroethylene PCE Perk Tetrachlorethylene Tetrachloroethene	127-18-4	PID	100 ppm 150 ppm	Groundwater Soil Vapor	inhalation, skin absorption, ingestion, skin and/or eye contact	irritation to the eyes, skin, nose, throat, respiratory system; nausea; flush face, neck; dizziness, incoordination; headache, drowsiness; skin erythema (skin redness); liver damage; [potential occupational carcinogen]	Eye: Irrigate immediately Skin: Soap wash promptly Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Tetrahydrofuran Diethylene oxide 1,4-Epoxybutane Tetramethylene oxide THF	109-99-9	PID	200 ppm 2000 ppm	Groundwater Soil Vapor	inhalation, skin and/or eye contact, ingestion	irritation to the eyes, upper respiratory system; nausea, dizziness, headache, central nervous system depression	Eye: Irrigate immediately Skin: Water flush promptly Breathing: Respiratory support Swallow: Medical attention immedi

Task	Contaminant	CAS Number	Monitoring Device	PEL/ IDLH	Source of Concentration on Site	Route of Exposure	Symptoms	First Aid
1.3.1 – 1.3.7	Thallium	7440-28- 0	None	0.1 mg/m ² 15 mg/m ²	Groundwater Soil	inhalation, skin absorption, ingestion, skin and/or eye contact	nausea, diarrhea, abdominal pain, vomiting; ptosis, strabismus; peri neuritis, tremor; retrosternal (occurring behind the sternum) tightness, chest pain, pulmonary edema; convulsions, chorea, psychosis; liver, kidney damage; alopecia; paresthesia legs	Eye: Irrigate immediately Skin: Water flush promptly Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Toluene Methyl benzene Methyl benzol Phenyl methane Toluol	108-88-3	PID	200 ppm 500 ppm	Groundwater Soil Vapor	inhalation, skin absorption, ingestion, skin and/or eye contact	irritation to the eyes, nose; lassitude (weakness, exhaustion), confusion, euphoria, dizziness, headache; dilated pupils, lacrimation (discharge of tears); anxiety, muscle fatigue, paresthesia; dermatitis	Eye: Irrigate immediately Skin: Soap wash promptly Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Total PCBs Chlorodiphenyl (42% chlorine) Aroclor® 1242 PCB Polychlorinated biphenyl	53469- 21-9	None	0.5 mg/m ² 5 mg/m ²	Groundwater Soil	inhalation, skin absorption, ingestion, skin and/or eye contact	irritation to the eyes, chloracne	Eye: Irrigate immediately Skin: Soap wash immediately Breathing: Respiratory support Swallow: Medical attention immediately

Task	Contaminant	CAS Number	Monitoring Device	PEL/ IDLH	Source of Concentration on Site	Route of Exposure	Symptoms	First Aid
1.3.1 – 1.3.7	Total Xylenes Dimethylbenzene Xylol	1330-20- 7	PID	100 ppm 900 ppm	Groundwater Soil Vapor	inhalation, skin absorption, ingestion, skin and/or eye contact	irritation to the eyes, skin, nose, throat; dizziness, excitement, drowsiness, incoordination, staggering gait; corneal vacuolization; nausea, vomiting, abdominal pain; dermatitis	Eye: Irrigate immediately Skin: Soap flush immediately Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Trichloroethylene Ethylene trichloride TCE Trichloroethene Trilene	79-01-6	PID	100 ppm 1000 ppm	Groundwater Soil Vapor	inhalation, skin absorption, ingestion, skin and/or eye contact	irritation to the eyes, skin; headache, visual disturbance, lassitude (weakness, exhaustion), dizziness, tremor, drowsiness, nausea, vomiting; dermatitis; cardiac arrhythmias, paresthesia; liver injury; [potential occupational carcinogen]	Eye: Irrigate immediately Skin: Soap wash promptly Breathing: Respiratory support Swallow: Medical attention immediately
1.3.1 – 1.3.7	Trichlorofluoromethane Fluorotrichloromethane Freon® 11 Monofluorotrichloromethane Refrigerant 11 Trichloromonofluoromethane	75-69-4	PID	1000 ppm 2000 ppm	Groundwater Soil Vapor	inhalation, ingestion, skin and/or eye contact	incoordination, tremor; dermatitis; cardiac arrhythmias, cardiac arrest; asphyxia; liquid: frostbite	Eye: Irrigate immediately Skin: Water flush immediately Breathing: Respiratory support Swallow: Medical attention immediately

Task	Contaminant	CAS Number	Monitoring Device	PEL/ IDLH	Source of Concentration on Site	Route of Exposure	Symptoms	First Aid
1.3.7 1.3.7	Vanadium	7440-62- 2	None	0.1 mg/m3 15 mg/m3	Groundwater Soil	inhalation, skin absorption, ingestion, skin and/or eye contact	nausea, diarrhea, abdominal pain, vomiting; ptosis, strabismus; peri neuritis, tremor; retrosternal (occurring behind the sternum) tightness, chest pain, pulmonary edema; convulsions, chorea, psychosis; liver, kidney damage; alopecia; paresthesia legs	Eye: Irrigate immediately Skin: Water flush promptly Breathing: Respiratory support Swallow: Medical attention immediately
1.3.7 1.3.7	Zinc	7440-62- 2	None	15 mg/m ² 500 mg/m ²	Groundwater Soil	inhalation	chills, muscle ache, nausea, fever, dry throat, cough; lassitude (weakness, exhaustion); metallic taste; headache; blurred vision; low back pain; vomiting; malaise (vague feeling of discomfort); chest tightness; dyspnea (breathing difficulty), rales, decreased pulmonary function	Breathing: Respiratory support`

EXPLANATION OF ABBREVIATIONS

PID = Photoionization Detector

PEL = Permissible Exposure Limit (8-hour Time Weighted Average)

IDLH = Immediately Dangerous to Life and Health

ppm = part per million

mg/m³ = milligrams per cubic meter

500 mg/m³

TABLE 3 Summary of Monitoring Equipment

Instrument	Operation Parameters
Photoionization	Hazard Monitored: Many organic and some inorganic gases and vapors.
Detector (PID)	Application: Detects total concentration of many organic and some inorganic gases and
	vapors. Some identification of compounds is possible if more than one probe is measured.
	Detection Method: Ionizes molecules using UV radiation; produces a current that is
	proportional to the number of ions.
	General Care/Maintenance: Recharge or replace battery. Regularly clean lamp window.
	Regularly clean and maintain the instrument and accessories.
	Typical Operating Time: 10 hours. 5 hours with strip chart recorder.
Oxygen Meter	Hazard Monitored: Oxygen (O ₂).
	Application : Measures the percentage of O ₂ in the air.
	Detection Method : Uses an electrochemical sensor to measure the partial pressure of
	O_2 in the air, and converts the reading to O_2 concentration.
	General Care/Maintenance: Replace detector cell according to manufacturer's
	recommendations. Recharge or replace batteries prior to explanation of the specified
	interval. If the ambient air is less than 0.5% C O ₂ , replace the detector cell frequently.
	Typical Operating Time: 8 – 12 hours.
Additional equipment (if	needed, based on site conditions)
Combustible Gas	Hazard Monitored: Combustible gases and vapors.
Indicator (CGI)	Application: Measures the concentration of combustible gas or vapor.
	Detection Method: A filament, usually made of platinum, is heated by burning the
	combustible gas or vapor. The increase in heat is measured. Gases and vapors are ionized
	in a flame. A current is produced in proportion to the number of carbon atoms present.
	General Care/Maintenance: Recharge or replace battery. Calibrate immediately before
	use.
	Typical Operating Time: Can be used for as long as the battery lasts, or for the
	recommended interval between calibrations, whichever is less.
Flame Ionization	Hazard Monitored: Many organic gases and vapors (approved areas only).
Detector (FID) with	Application: In survey mode, detects the concentration of many organic gases and
Gas Chromatography	vapors. In gas chromatography (GC) mode, identifies and measures specific compounds.
Option	In survey mode, all the organic compounds are ionized and detected at the same time. In
(i.e., Foxboro Organic	GC mode, volatile species are separated.
Vapor Analyzer (OVA))	General Care/Maintenance: Recharge or replace battery. Monitor fuel and/or
	combustion air supply gauges. Perform routine maintenance as described in the manual.
	Check for leaks.
	Typical Operating Time: 8 hours; 3 hours with strip chart recorder.
Potable Infrared (IR)	Hazard Monitored: Many gases and vapors.
Spectrophotometer	Application: Measures concentration of many gases and vapors in air. Designed to
	quantify one or two component mixtures.
	Detection Method: Passes different frequencies of IR through the sample. The
	frequencies absorbed are specific for each compound.
	General Care/Maintenance: As specified by the manufacturer.

Instrument	Operation Parameters							
Direct Reading	Hazard Monitored: Specific gas and vapors.							
Colorimetric Indicator	Application: Measures concentration of specific gases and vapors.							
Tube	Detection Method: The compound reacts with the indicator chemical in the tube,							
	producing a stain whose length or color change is proportional to the compound's							
	concentration.							
	General Care/Maintenance: Do not use a previously opened tube even if the indicator							
	chemical is not stained. Check pump for leaks before and after use. Refrigerate before							
	use to maintain a shelf life of about 2 years. Check expiration dates of tubes. Calibrate							
	pump volume at least quarterly. Avoid rough handling which may cause channeling.							
Aerosol Monitor	Hazard Monitored: Airborne particulate (dust, mist, fume) concentrations							
	Application: Measures total concentration of semi-volatile organic compounds, PCBs, and							
	metals.							
	Detection Method: Based on light-scattering properties of particulate matter. Using an							
	internal pump, air sample is drawn into the sensing volume where near infrared light							
	scattering is used to detect particles.							
	General Care/Maintenance: As specified by the mfr. Also, the instrument must be							
	calibrated with particulates of a size and refractive index similar to those to be measured							
	in the ambient air.							
Monitox	Hazard Monitored: Gases and vapors.							
	Application: Measures specific gases and vapors.							
	Detection Method: Electrochemical sensor relatively specific for the chemical species in							
	question.							
	General Care/Maintenance: Moisten sponge before use; check the function switch;							
0 5 11 11	change the battery when needed.							
Gamma Radiation	Hazard Monitored: Gamma Radiation.							
Survey Instrument	Application: Environmental radiation monitor.							
	Detection Method: Scintillation detector.							
	General Care/Maintenance: Must be calibrated annually at a specialized facility.							
	Typical Operating Time: Can be used for as long as the battery lasts, or for the							
	recommended interval between calibrations, whichever is less.							

TABLE 4 INSTRUMENTATION ACTION LEVELS

Photoionization Detector Action Levels	Action Required
Background to 5 ppm	No respirator; no further action required
> 1 ppm but < 5 ppm for > 5 minutes	 Temporarily discontinue all activities and evaluate potential causes of the excessive readings. If these levels persist and cannot be mitigated (i.e., by slowing drilling or excavation activities), contact HSO to review conditions and determine source and appropriate response action. If PID readings remain above 1 ppm, temporarily discontinue work and upgrade to Level C protection. If sustained PID readings fall below 1 ppm, downgrading to Level D protection may be permitted.
> 5 ppm but < 150 ppm for > 5 minutes	 Discontinue all work; all workers shall move to an area upwind of the jobsite. Evaluate potential causes of the excessive readings and allow work area to vent until VOC concentrations fall below 5 ppm. Level C protection will continue to be used until PID readings fall below 1 ppm.
> 150 ppm	Evacuate the work area

- Notes: 1. 1 ppm level based on OSHA Permissible Exposure Limit (PEL) for benzene.
 - 2. 5 ppm level based on OSHA Short Term Exposure Limit (STEL) maximum exposure for benzene for any 15 minute period.
 - 3. 150 ppm level based on NIOSH Immediately Dangerous to Life and Health (IDLH) for tetrachloroethylene.

TABLE 5 EMERGENCY NOTIFICATION LIST

ORGANIZATION	CONTACT	TELEPHONE
Local Police Department	NYPD	911
Local Fire Department	NYFD	911
Ambulance/Rescue Squad	NYFD	911
Hospital	Bellevue Hospital Center	911 or 212-562-4141
Langan Incident Hotline		800-952-6426 ex 4699
Medical Treatment Hotline	Incident Intervention	888-449-7787
Langan Project Manager	Paul McMahon	914-433-1157 (cell)
Langan Health and Safety Manager (HSM)	Tony Moffa	215-756-2523 (cell)
Langan Health & Safety Officer (HSO)	William Bohrer	410-984-3068 (cell)
Langan Field Team Leader (FTL)	To Be Determined	
Client's Representative	Victoria Morrison	973-849-2587
National Response Center (NRC)		800-424-8802
Chemical Transportation Emergency Center (Chemtrec)		800-424-9300
Center for Disease Control (CDC)		404-639-3534
EPA (RCRA Superfund Hotline)		800-424-9346
TSCA Hotline		202-554-1404
Poison Control Center		800-222-1222

Immediately following an injury, unless immediate emergency medical treatment is required, the injured employee must contact <u>Incident Intervention®</u> at 888-449-7787.

For all other incidents or near misses, unless emergency response is required, either the employee or a coworker must contact the Langan Incident Hotline at 1-(800)-9-LANGAN (ext. #4699).

Adjusted	Normal Work	Impermeable		
Temperature ^b	Ensemble ^c	Ensemble		
90°F or above (32.2°C) or above	After each 45 min. of work	After each 15 min. of work		
87.5°F	After each 60 min.	After each 30 min.		
(30.8°-32.2°C)	of work	of work		
82.5°-87.5°F	After each 90 min.	After each 60 min.		
(28.1°-30.8°C)	of work	of work		
77.5°-82.5°F	After each 120 min.	After each 90 min.		
(25.3°-28.1°C)	of work	of work		
72.5°-77.5°F	After each 150 min.	After each 120 min.		
(22.5°-25.3°C)	of work	of work		

a For work levels of 250 kilocalories/hour.

b Calculate the adjusted air temperature (ta adj) by using this equation: ta adj ${}^{0}F = ta {}^{0}F + (13 \times \% \text{ sunshine})$. Measure air temperature (ta) with a standard mercury-in-glass thermometer, with the bulb shielded from radiant heat. Estimate percent sunshine by judging what percent time the sun is not covered by clouds that are thick enough to produce a shadow. (100 percent sunshine = no cloud cover and a sharp, distinct shadow; 0 percent sunshine = no shadows.)

c A normal work ensemble consists of cotton coveralls or other cotton clothing with long sleeves and pants.

TABLE 7
HEAT INDEX

ENVIRONMENTAL TEMPERATURE (Fahrenheit)

	70	75	80	85	90	95	100	105	110	115	120	
RELATIVE												
HUMIDITY		APPARENT TEMPERATURE*										
0%	64	69	73	78	83	87	91	95	99	103	107	
10%	65	70	75	80	85	90	95	100	105	111	116	
20%	66	72	77	82	87	93	99	105	112	120	130	
30%	67	73	78	84	90	96	104	113	123	135	148	
40%	68	74	79	86	93	101	110	123	137	151		
50%	69	75	81	88	96	107	120	135	150			
60%	70	76	82	90	100	114	132	149				
70%	70	77	85	93	106	124	144					
80%	71	78	86	97	113	136						
90%	71	79	88	102	122							
100%	72	80	91	108								

^{*}Combined Index of Heat and Humidity...what it "feels like" to the body Source: National Oceanic and Atmospheric Administration

How to use Heat Index:

- 1. Across top locate Environmental Temperature
- 2. Down left side locate Relative Humidity
- 3. Follow across and down to find Apparent Temperature
- 4. Determine Heat Stress Risk on chart at right

Note: Exposure to full sunshine can increase Heat Index values by up to 15 degrees F.

Apparent Temperature	Heat Stress Risk with Physical Activity and/or Prolonged Exposure
90-105	Heat Cramps or Heat Exhaustion Possible
105-130	Heat Cramps or Heat Exhaustion Likely, Heat Stroke Possible
>130	Heatstroke Highly Likely

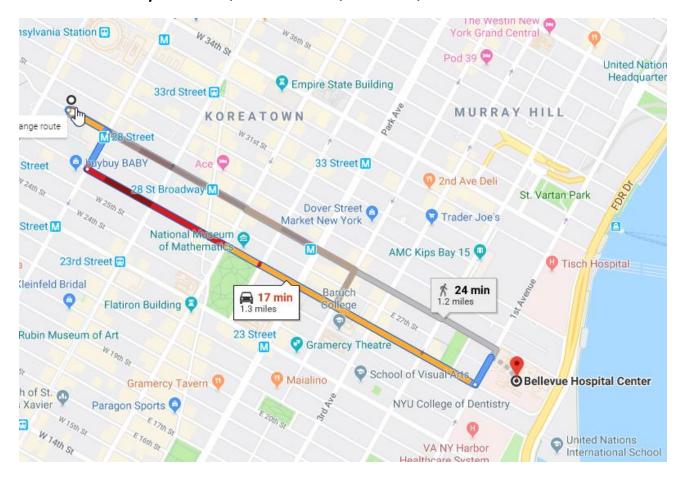
FIGURES

FIGURE 1

Site Location Map

FIGURE 2 HOSPITAL ROUTE PLAN

Hospital Location: Bellevue Hospital Center


462 First Avenue New York, New York

212-562-4141

START: 241 West 28th Street, New York, New York

- 1. Head southeast on West 28th Street toward 7th Avenue
- 2. Turn right at the 1st cross street onto 7th Avenue
- 3. Turn left at the 2nd cross street onto West 26th Street
- 4. Turn left onto 1st Avenue.

END: Bellevue Hospital Center, 462 1st Avenue, New York, NY

ATTACHMENT A STANDING ORDERS

STANDING ORDERS

GENERAL

- No smoking, eating, or drinking in this work zone.
- Upon leaving the work zone, personnel will thoroughly wash their hands and face.
- Minimize contact with contaminated materials through proper planning of work areas and decontamination areas, and by following proper procedures. Do not place equipment on the ground. Do not sit on contaminated materials.
- No open flames in the work zone.
- Only properly trained and equipped personnel are permitted to work in potentially contaminated areas.
- Always use the appropriate level of personal protective equipment (PPE).
- Maintain close contact with your buddy in the work zone
- Contaminated material will be contained in the Exclusion Zone (EZ).
- Report any unusual conditions.
- Work areas will be kept clear and uncluttered. Debris and other slip, trip, and fall hazards will be removed as frequently as possible.
- The number of personnel and equipment in the work zone will be kept to an essential minimum.
- Be alert to the symptoms of fatigue and heat/cold stress, and their effects on the normal caution and judgment of personnel.
- Conflicting situations which may arise concerning safety requirements and working conditions must be addressed and resolved quickly by the site HSO.

TOOLS AND HEAVY EQUIPMENT

- Do not, under any circumstances, enter or ride in or on any backhoe bucket, materials hoist, or any other device not specifically designed to carrying passengers.
- Loose-fitting clothing or loose long hair is prohibited around moving machinery.
- Ensure that heavy equipment operators and all other personnel in the work zone are using the same hand signals to communicate.
- Drilling/excavating within 10 feet in any direction of overhead power lines is prohibited.
- The locations of all underground utilities must be identified and marked out prior to initiating any subsurface activities.
- Check to insure that the equipment operator has lowered all blades and buckets to the ground before shutting off the vehicle.
- If the equipment has an emergency stop device, have the operator show all personnel its location and how to activate it.
- Help the operator ensure adequate clearances when the equipment must negotiate in tight quarters; serve as a signalman to direct backing as necessary.
- Ensure that all heavy equipment that is used in the Exclusion Zone is kept in that zone until the job is done, and that such equipment is completely decontaminated before moving it into the clean area of the work zone.
- Samplers must not reach into or get near rotating equipment such as the drill rig. If personnel
 must work near any tools that could rotate, the equipment operator must completely shut
 down the rig prior to initiating such work. It may be necessary to use a remote sampling
 device.

ATTACHMENT B DECONTAMINATION PROCEDURES

PERSONNEL DECONTAMINATION

LEVEL C DECONTAMINATION

Station 1:	Equipment Drop	1. Deposit equipment used on-site (tools, sampling devices and containers, monitoring instruments, radios, clipboards, etc.) on plastic drop cloths. Segregation at the drop reduces the probability of cross contamination. During hot weather operations, cool down stations may be set up within this area.
Station 2:	Outer Garment, Boots, and Gloves Wash and Rinse	Scrub outer boots, outer gloves and chemical-re- sistant splash suit with decon solution or detergent and water. Rinse off using copious amounts of water.
Station 3:	Outer Boot and Glove Removal	Remove outer boots and gloves. Deposit in container with plastic liner.
Station 4:	Canister or Mask Change	4. If worker leaves Exclusion Zone to change canister (or mask), this is the last step in the decontamination procedure. Worker's canister is exchanged, new outer gloves and boot covers donned, joints taped, and worker returns to duty.
Station 5:	Boot, Gloves and Outer Garment Removal	Boots, chemical-resistant splash suit, inner gloves removed and deposited in separate containers lined with plastic.
Station 6:	Face piece Removal	Face piece is removed (avoid touching face with fingers). Face piece deposited on plastic sheets.
Station 7:	Field Wash	Hands and face are thoroughly washed. Shower as soon as possible.

LEVEL D DECONTAMINATION

Station 1:	Equipment Drop	1. Deposit equipment used on-site (tools, sampling devices and containers, monitoring instruments, radios, clipboards, etc.) on plastic drop cloths. Segregation at the drop reduces the probability of cross contamination. During hot weather operations, cool down stations may be set up within this area.
Station 2:	Outer Garment, Boots, and Gloves Wash and Rinse	Scrub outer boots, outer gloves and chemical-re- sistant splash suit with decon solution or detergent and water. Rinse off using copious amounts of water.
Station 3:	Outer Boot and Glove Removal	Remove outer boots and gloves. Deposit in container with plastic liner.
Station 4:	Boot, Gloves and Outer Garment Removal	 Boots, chemical-resistant splash suit, inner gloves removed and deposited in separate containers lined with plastic.
Station 5:	Field Wash	Hands and face are thoroughly washed. Shower as soon as possible.

EQUIPMENT DECONTAMINATION

GENERAL:

Equipment to be decontaminated during the project may include tools, monitoring equipment, respirators, sampling containers, laboratory equipment and drilling equipment.

All decontamination will be done by personnel in protective gear, appropriate for the level of decontamination, as determined by the site HSO. The decontamination work tasks will be split or rotated among support and work crews.

Depending on site conditions, backhoe and pumps may be decontaminated over a portable decontamination pad to contain wash water; or, wash water may be allowed to run off into a storm sewer system. Equipment needed may include a steam generator with high-pressure water, empty drums, screens, screen support structures, and shovels. Drums will be used to hold contaminated wash water pumped from the lined pit. These drums will be labeled as such.

Miscellaneous tools and equipment will be dropped into a plastic pail, tub, or other container. They will be brushed off and rinsed with a detergent solution, and finally rinsed with clean water.

MONITORING EQUIPMENT:

Monitoring equipment will be protected as much as possible from contamination by draping, masking, or otherwise covering as much of the instruments as possible with plastic without hindering the operation of the unit. The PID, HNu or OVA meter, for example, can be placed in a clear plastic bag, which allows reading of the scale and operation of knobs. The probes can be partially wrapped keeping the sensor tip and discharge port clear.

The contaminated equipment will be taken from the drop area and the protective coverings removed and disposed in the appropriate containers. Any dirt or obvious contamination will be brushed or wiped with a disposable paper wipe.

RESPIRATORS:

Respirators will be cleaned and disinfected after every use. Taken from the drop area, the masks (with the cartridges removed and disposed of with other used disposable gear) will be immersed in a cleaning solution and scrubbed gently with a soft brush, followed by a rinse in plain warm water, and then allowed to air dry. In the morning, new cartridges will be installed. Personnel will inspect their own masks for serviceability prior to donning them. And, once the mask is on, the wearer will check the respirator for leakage using the negative and positive pressure fit check techniques.

ATTACHMENT C

EMPLOYEE EXPOSURE/ INJURY INCIDENT REPORT

EMPLOYEE INCIDENT/INJURY REPORT LANGAN ENGINEERING & ENVIRONMENTAL SERVICES

(Complete and return to Tony Moffa in the Doylestown Office)

Affected Employee	Name:				Da	ite:		
Incident type:		Injury Near Miss		Report On Other:		ury		
EMPLOYEE INFOR	MATION	(Person comp	oleting Form)					
Employee Name: _ No:					En	nployee		
Title:					fice			Location:
Length of		time	employed	or		date	of	hire:
Mailing								address:
Sex: M F F Susiness phone & e					esidence,	/cell		phone:
ACCIDENT INFORI	<u>MATION</u>							
Project:					Pro	oject		#:
			-	Time	work	started	&	ended:
Date & time of incid	dent:							

Names incident:		of	person(s		who		witne	essed	the
Exact		lo	ocation		inc	cident			occurred:
Describe done:				work					being
Describe	what	affected	employee	was do	ng pri	or to	the	incident	occurring:
Describe occurred:		in	detail	I	how		the		incident
Nature affected):	of	the	incident	(List	the	parts	of	the	body
Person(s)	to	whom	incident	was	repo	orted	(Time	and	Date):
List th	ne r	names o	f other	persons	affe	ected	during	this	incident:

Possible	causes	of	the incident	: (equipment,	unsafe	work	practices,	lack (of PPE,	etc.):
Veather				cor	nditions					during
MEDICA	L CARE II	NFORI	MATION_							
If	f	Yes,	eceive medical when	care? and	Yes wher 	·e	No 🗌 was	med	ical	care
P -	Provide		name	of f	acility	(h	ospital,	clini	C,	etc.):
L	ength.		of	stay		at		the		facility?
Date emp	oloyee las	t work		Yes No	D	ideterm ate	employe	e r	eturned	to
Has the e	employee	return	ed to work?	Yes No						
Does the If		e have	any work limi Ye	tations or restri s,	ctions from	n the in plea		es 🗌	No [escribe:
– Did the e	xposure/ir	njury r	esult in perma	nent disability?	Yes 🗌		No 🗌	Unk	known [
If	f		Ye	S,		plea	se		d	escribe:

HEALTH & SAFETY INFORMATION Was the operation being conducted under an established site specific CONSTRUCTION HEALTH AND SAFETY PLAN? Not Applicable: Yes 🗌 No 🗌 Describe protective equipment and clothing used by the employee: Did any limitations in safety equipment or protective clothing contribute to or affect exposure / injury? If so, explain: Employee Signature Date Langan Representative Date

ATTACHMENT D CALIBRATION LOG

DATE: PROJECT:	·····
----------------	-------

CALIBRATION LOG

Inst Type	Inst #	Media	Initial Reading	Span #	Calibrat. Reading	Performed By:
	1	1				
	1					
					Inst Type Inst # Media Initial Reading Initial Span # Initial Reading Initial Reading	Inst Type Inst # Media Initial Reading Reading Reading Reading Reading

ATTACHMENT E MATERIAL SAFETY DATA SHEETS SAFETY DATA SHEETS

All Langan Field Personnel Completing This Work Plan Are To Have Real Time Accessibility To Material Safety Data Sheet (MSDs) or Safety Data Sheet (SDSs) Through Their Smart Phone.

The link is http://www.msds.com/
The login name is "drapehead"
The password is "2angan987"

If You Are Unable To Use the Smart Phone App, You Are To Bring Printed Copies of the MSDs/SDSs to the Site

ATTACHMENT F JOBSITE SAFETY INSPECTION CHECKLIST

Jobsite Safety Inspection Checklist

Date:	Inspected By:	_
Location:	Project #:	_
Check one of the following:	A: Acceptable NA: Not Applicable D: Deficiency	

	Α	NA	D	Remark
1. HASP available onsite for inspection?				
2. Health & Safety Compliance agreement (in HASP)				
appropriately signed by Langan employees and				
contractors?				
3. Hospital route map with directions posted on site?				
4. Emergency Notification List posted on site?				
5. First Aid kit available and properly stocked?				
6. Personnel trained in CPR/First Aid on site?				
7. MSDSs readily available, and all workers				
knowledgeable about the specific chemicals and				
compounds to which they may be exposed?				
8 Appropriate PPE being worn by Langan employees and contractors?				
Project site safe practices ("Standing Orders") posted?				
10. Project staff have 40-hr./8-hr./Supervisor HAZWOPER				
training?				
11. Project staff medically cleared to work in hazardous				
waste sites and fit-tested to wear respirators, if needed?				
12. Respiratory protection readily available?				
13. Health & Safety Incident Report forms available?				
14. Air monitoring instruments calibrated daily and results				
recorded on the Daily Instrument Calibration check				
sheet?				
15. Air monitoring readings recorded on the air monitoring				
data sheet/field log book?				
16. Subcontract workers have received 40-hr./8-hr./Spvsr.				
HAZWOPER training, as appropriate?				
17. Subcontract workers medically cleared to work on				
site, and fit-tested for respirator wear?				
18. Subcontract workers have respirators readily				
available?				
19. Mark outs of underground utilities done prior to				
initiating any subsurface activities?				
20. Decontamination procedures being followed as outlined in HASP?				
21. Are tools in good condition and properly used?				
22. Drilling performed in areas free from underground				
objects including utilities?				

1 1			

ATTACHMENT G JOB SAFETY ANALYSIS FORM

LANGAN	Job Safety Analysis (JSA) Health and Safety			
JSA TITLE:	DATE CREATED:			
OOA IIIEE.	CREATED BY:			
ICA NUMBED.	REVISION DATE:			
JSA NUMBER:	REVISED BY:			
Langan amployees must review and revise the Joh Safety Analysis (ISA) as needed to address the any site specific hazards not identify				

Langan employees must review and revise the Job Safety Analysis (JSA) as needed to address the any site specific hazards not identified. Employees must provide their signatures on the last page of the JSA indicating they have review the JSA and are aware the potential hazards associated with this work and will follow the provided preventive or corrective measures.

u		
PERSONAL PROTECTIVE EQUIPMENT REC	UIRED: (PPE): ■ Required 🗵 As Ne	eeded
☐ Steel-toed boots	☐ Nitrile gloves	☐ Dermal Protection (Specify)
☐ Long-sleeved shirt	☐ Leather/ Cut-resistant gloves	☐ High visibility vest/clothing
☐ Safety glasses	□Face Shield	☐ Hard hat
ADDITIONAL PERSONAL PROTECTIVE EQU	JIPMENT NEEDED (Provide specific type(s) or d	escriptions)
☐ Air Monitoring:	☐ Respirators:	☐ Other:
JOB STEPS	POTENTIAL HAZARDS	PREVENTATIVE OR CORRECTIVE ACTION
1.	1. 2.	1a. 1b. 2a. 2b.
2.	1.	1
Additional items identified in the field.		
Additional Items.		
If additional items are identifie	d during daily work activities, ple	ase notify all relevant personnel

If additional items are identified during daily work activities, please notify all relevant personnel about the change and document on this JSA.

LANGAN	AN
--------	-----------

JSA Title: Subsurface Investigation

JSA Number: JSA030-01

PERSONAL PROTECTIVE EQUIPMENT (Required or to be worn as needed):				
		☐ Face Shield	☐ Nitrile Gloves	☐ PVC Gloves
□ Leather Gloves		☐ Fall Protection	☐ Fire Resistant Clothing	☐ Rubber Boots
☐ Insect/Animal Repellent	☐ Ivy Blocker/Cleaner	☐ Traffic Cones/Signs	☐ Life Vest/Jacket	
Other: Dielectric Overshoes, Sun Block				

JOB STEPS	POTENTIAL HAZARDS	PREVENTATIVE / CORRECTIVE ACTION
Transport equipment to work area	Back/strain Slip/Trip/Falls Traffic Cuts/abrasions/contusions from equipment Accidents due to vehicle operations	 Use proper lifting techniques/Use wheeled transport Minimize distance to work area/unobstructed path to work area/follow good housekeeping procedures Wear proper PPE (high visibility vest or clothing) Wear proper PPE (leather gloves, long sleeves, Langan approved safety shoes) Observe posted speed limits/ Wear seat belts at all times
2. Traffic	Hit by moving vehicle	Use traffic cones and signage/ Use High visibility traffic vests and clothing/ Caution tape when working near active roadways.
Field Work (drilling, resistivity testing, and inspection)	Biological Hazards: insects, rats, snakes, poisonous plants, and other animals Heat stress/injuries Cold Stress/injuries High Energy Transmission Lines Underground Utilities Electrical (soil resistivity testing)	 Inspect work area to identify biological hazards. Wear light colored long sleeve shirt and long pants/ Use insect repellant as necessary/ Beware of tall grass, bushes, woods and other areas where ticks may live/ Avoid leaving garbage on site to prevent attracting animals/ Identify and avoid contact with poisonous plants/Beware of rats, snakes, or stray animals. Wear proper clothing (light colored)/ drink plenty of water/ take regular breaks/use sun block Wear proper clothing/ dress in layers/ take regular breaks. Avoid direct contact with high energy transmission lines/ position equipment at least 15 feet or as required by PSE&G from the transmission lines/ wear proper PPE (dielectric overshoes 15 kV minimum rating). Call one-call service before performing intrusive field work/ Review utility mark-outs and available utility drawings (with respect to proposed work locations)/ Follow Underground Utility Guidelines

JOB STEPS	POTENTIAL HAZARDS	PREVENTATIVE / CORRECTIVE ACTION
		See AGI Sting R1 operating manual for specific concerns during operating instrument
4.All activities	 Slips/ Trips/ Falls Hand injuries, cuts or lacerations during manual handling of materials Foot injuries Back injuries Traffic Wildlife: Stray dogs, Mice/rats, Vectors (i.e. mosquitoes, bees, etc.) High Noise levels Overhead hazards Heat Stress/ Cold Stress Eye Injuries 	 Be aware of potential trip hazards / Follow good housekeeping procedures/ Mark significant hazards Inspect for jagged/sharp edges, and rough or slippery surfaces / Keep fingers away from pinch points / Wipe off greasy, wet, slippery or dirty objects before handling / Wear leather/ cut-resistant gloves Wear Langan approved safety shoes Use proper lifting techniques / Consider load location, task repetition, and load weigh when evaluating what is safe or unsafe to lift / Obtain assistance when possible Wear high visibility clothing & vest / Use cones or signs to designate work area Be aware of surroundings at all times, including the presence of wildlife/ Do not approach stray dogs / Carry/use dog/animal repellant / Use bug spray when needed Wear proper hearing protection Wear proper attire for weather conditions (sunscreen or protective clothing in sunlight, layers for cold weather) / Drink plenty of fluids to avoid dehydration / Takes breaks as necessary to avoid heat/cold stress Wear safety glasses
Additional items.		
Additional Items identified while in the field.		
(Delete row if not needed.)		

Print Name	Sign Name	<u>Date</u>		
Prepared by:				
Reviewed by:				

LANGAN

Job Safety Analysis (JSA) Health and Safety

JSA Title: Field Sampling
JSA Number: JSA022-01

<u> </u>				
PERSONAL PROTECTIVE EQUIPMENT (Required or to be worn as needed):				
		☐ Safety Vest (Class 2)		
	☐ Safety Goggles	☐ Face Shield		☐ PVC Gloves
	☐ Cut Resist. Gloves	☐ Fall Protection	☐ Fire Resistant Clothing	☐ Rubber Boots
☐ Insect/Animal Repellent	☐ Ivy Blocker/Cleaner	☑ Traffic Cones/Signs	☐ Life Vest/Jacket	
Other:				

JOB STEPS	POTENTIAL HAZARDS	PREVENTATIVE / CORRECTIVE ACTION
Unpack/Transport equipment to work area.	6. Back Strains7. Slip/Trips/Falls8. Cuts/Abrasions from equipment9. Contusions from dropped equipment	 6. Use proper lifting techniques/Use wheeled transport 7. Minimize distance to work area/Unobstructed path to work area/follow good housekeeping procedures. Mark slip/trip/fall hazards with orange safety cones. 8. Wear proper PPE (leather gloves, long sleeves). 9. Wear proper PPE (Langan approved safety shoes).
Initial Site Arrival-Site Assessment	1. Traffic	Situational awareness (be alert of your surroundings). Secure area from through traffic.
7. Surface Water Sampling	Contaminated media. Skin/eye contact with biological agents and/or chemicals.	Wear appropriate PPE (Safety glasses, appropriate gloves). Review (M)SDS for all chemicals being.
Sampling from bridges	Struck by vehicles	Wear appropriate PPE (Safety Vest). Use buddy system and orange safety cones.
Icing of Samples/ Transporting coolers/equipment from work area.	11. Back Strains12. Slips/Trips/Falls13. Cuts/Abrasions from equipment14. Pinch/Crushing Hazards.	 17. Drain coolers of water. Use proper lifting techniques. Use wheeled transport. 18. Have unobstructed path from work area. Aware of surroundings. 19. Wear proper PPE (Leather gloves, long sleeves) 20. Wear proper PPE (Leather gloves, long sleeves)
10. Site Departure	1. Contaminated PPE/Vehicle	Contaminated PPE should be disposed of on-site. Remove boots and soiled clothing for secure storage in trunk. Wash hands promptly.
11. All activities	Slips/ Trips/ Falls Hand injuries, cuts or lacerations during manual handling of materials	Be aware of potential trip hazards / Follow good housekeeping procedures/ Mark significant hazards

JOB STEPS	POTENTIAL HAZARDS	PREVENTATIVE / CORRECTIVE ACTION
Additional items.	3. Foot injuries 4. Back injuries 15. Traffic 16. Wildlife: Stray dogs, Mice/rats, Vectors (i.e. mosquitoes, bees, etc.) 17. High Noise levels 18. Overhead hazards 19. Heat Stress/ Cold Stress 20. Eye Injuries	 Inspect for jagged/sharp edges, and rough or slippery surfaces / Keep fingers away from pinch points / Wipe off greasy, wet, slippery or dirty objects before handling / Wear leather/ cut-resistant gloves Wear Langan approved safety shoes Use proper lifting techniques / Consider load location, task repetition, and load weigh when evaluating what is safe or unsafe to lift / Obtain assistance when possible Wear high visibility clothing & vest / Use cones or signs to designate work area Be aware of surroundings at all times, including the presence of wildlife/ Do not approach stray dogs / Carry/use dog/animal repellant / Use bug spray when needed Wear hearing protection Wear hard hat / Avoid areas were overhead hazards exist. Wear proper attire for weather conditions (sunscreen or protective clothing in sunlight, layers for cold weather) / Drink plenty of fluids to avoid dehydration / Takes breaks as necessary to avoid heat/cold stress Wear safety glasses
Additional Managidants		
Additional Items identified while in the field.		
(Delete row if not needed.)		

Print Name	Sign Name	<u>Date</u>			
Prepared by:					
Reviewed by:					

JSA Title: Equipment Transportation and Set-Up

JSA Number: JSA012-01

addiction.				
PERSONAL PROTECTIVE EQUIPMENT (Required or to be worn as needed):				
	☐ Safety Goggles	☐ Face Shield	☐ Nitrile Gloves	☐ PVC Gloves
	☐ Cut Resist. Gloves	☐ Fall Protection	☐ Fire Resistant Clothing	☐ Rubber Boots
☐ Insect/Animal Repellent	☐ Ivy Blocker/Cleaner	☐ Traffic Cones/Signs	☐ Life Vest/Jacket	
Other:				

JOB STEPS	POTENTIAL HAZARDS	PREVENTATIVE / CORRECTIVE ACTION
12.Transport equipment to work area	10.Back Strain 11.Slips/ Trips/ Falls 12.Traffic 13.Cuts/abrasions from equipment 14.Contusions from dropped equipment	 Use proper lifting techniques / Use wheeled transport Minimize distance to work area / Have unobstructed path to work area / Follow good housekeeping procedures Wear proper PPE (high visibility vest or clothing) Wear proper PPE (leather gloves, long sleeves) Wear proper PPE (safety shoes)
13.Moving equipment to its planned location	Pinch Hazard Slips/ Trips/ Falls	Wear proper PPE (leather gloves) Be aware of potential trip hazards / Practice good housekeeping procedures / Mark significant below-grade hazards (i.e. holes, trenches) with safety cones or spray paint
14.Equipment Set-up	Pinch Hazard Cuts/abrasions to knuckles/hands Back Strain	 Wear proper PPE (leather gloves) Wear proper PPE (leather gloves) Use proper lifting techniques / Use wheeled transport
15. All activities	 21. Slips/ Trips/ Falls 22. Hand injuries, cuts or lacerations during manual handling of materials 23. Foot injuries 24. Back injuries 25. Traffic 26. Wildlife: Stray dogs, Mice/rats, Vectors (i.e. mosquitoes, bees, etc.) 27. High Noise levels 28. Overhead hazards 29. Heat Stress/ Cold Stress 30. Eye Injuries 	 27. Be aware of potential trip hazards / Follow good housekeeping procedures/ Mark significant hazards 28. Inspect for jagged/sharp edges, and rough or slippery surfaces / Keep fingers away from pinch points / Wipe off greasy, wet, slippery or dirty objects before handling / Wear leather/ cut-resistant gloves 29. Wear Langan approved safety shoes 30. Use proper lifting techniques / Consider load location, task repetition, and load weigh when evaluating what is safe or unsafe to lift / Obtain assistance when possible 31. Wear high visibility clothing & vest / Use cones or signs to designate work area

JOB STEPS	POTENTIAL HAZARDS	PREVENTATIVE / CORRECTIVE ACTION
4. All activities (cont'd)		32. Be aware of surroundings at all times, including the presence of wildlife/ Do not approach stray dogs / Carry/use dog/animal repellant / Use bug spray when needed 33. Wear hearing protection 34. Wear hard hat / Avoid areas were overhead hazards exist. 35. Wear proper attire for weather conditions (sunscreen or protective clothing in sunlight, layers for cold weather) / Drink plenty of fluids to avoid dehydration / Takes breaks as necessary to avoid heat/cold stress 36. Wear safety glasses
Additional items.		
Additional Items identified while in the field.		
(Delete row if not needed.)		

Print Name	Sign Name	<u>Date</u>			
Prepared by:	Prepared by:				
Reviewed by:	Reviewed by:				

LA	V	G/	AN
	1 / W		

JSA Title: 55-gallon Drum Sampling

JSA Number: JSA043-01

dollorio.					
PERSONAL PROTECTIVE EQUIPMENT (Required or to be worn as needed):					
				☐ Hearing Protection	
				☑ PVC Gloves	
	☐ Cut Resist. Gloves	☐ Fall Protection	☐ Fire Resistant Clothing	☐ Rubber Boots	
☐ Insect/Animal Repellent	☐ Ivy Blocker/Cleaner	☐ Traffic Cones/Signs	☐ Life Vest/Jacket		
Other: All Drums are required to be labeled. Langan employees do not open or move undocumented drums or unlabeled drums without proper project manager authorization.					

JOB STEPS	POTENTIAL HAZARDS	PREVENTATIVE / CORRECTIVE ACTION
16.Unpack/Transport equipment to work area.	15.Back Strains 16.Slip/Trips/Falls 17.Cuts/Abrasions from equipment 4. Contusions from dropped equipment	 Use proper lifting techniques/Use wheeled transport Minimize distance to work area/Unobstructed path to work area/follow good housekeeping procedures. Mark slip/trip/fall hazards with orange safety cones. Wear proper PPE (leather gloves, long sleeves). Wear proper PPE (Langan approved safety shoes).
17.Open Drums	Hand Injuries, cuts or lacerations when untightening drum locking bolt, removing drum lid strap, or removing lid. Pressure from drums.	 Inspect for jagged/sharp edges, and rough or slippery surfaces / Keep fingers away from pinch points / Wipe off greasy, wet, slippery or dirty objects before handling / Wear leather/ cut-resistant gloves. Use non-metallic mallet and non-sparking tools/wrenches. Open drum slowly to relieve pressure. Wear proper PPE: face shield and goggles; correct gloves; and over garments.
18.Collecting Soil/Fluid Sample	4. Irritation to eye from vapor, soil dust, or splashing5. Irritation to exposed skin	 Wear proper eye protection including safety glasses/ face shield/googles and when necessary, splash guard. If dust or vapor phase is present, wear appropriate safety breathing gear (1/2 mask or full face mask with correct filter) Wear proper skin protection including nitrile gloves.
19.Closing Drums	Hand Injuries, cuts or lacerations when untightening drum locking bolt, removing drum lid strap, or removing lid.	Inspect for jagged/sharp edges, and rough or slippery surfaces / Keep fingers away from pinch points / Wipe off greasy, wet, slippery or dirty objects before handling / Wear leather/ cut-resistant gloves. Use non-metallic mallet and non-sparking tools/wrenches.
20.Moving Drums	 Hand Injuries, cuts or lacerations when untightening drum locking bolt, removing drum lid strap, or removing lid. Back Strains 	 Inspect for jagged/sharp edges, and rough or slippery surfaces / Keep fingers away from pinch points / Wipe off greasy, wet, slippery or dirty objects before handling / Wear leather/ cut-resistant gloves. Use non-metallic mallet and non-sparking tools/wrenches. Use proper lifting techniques/Use wheeled transport

JOB STEPS	POTENTIAL HAZARDS	PREVENTATIVE / CORRECTIVE ACTION
21. All activities	 31. Slips/Trips/ Falls 32. Hand injuries, cuts or lacerations during manual handling of materials 33. Foot injuries 34. Back injuries 35. Traffic 36. Wildlife: Stray dogs, Mice/rats, Vectors (i.e. mosquitoes, bees, etc.) 37. High Noise levels 38. Overhead hazards 39. Heat Stress/ Cold Stress 40. Eye Injuries 	 37. Be aware of potential trip hazards / Follow good housekeeping procedures/ Mark significant hazards 38. Inspect for jagged/sharp edges, and rough or slippery surfaces / Keep fingers away from pinch points / Wipe off greasy, wet, slippery or dirty objects before handling / Wear leather/ cut-resistant gloves 39. Wear Langan approved safety shoes 40. Use proper lifting techniques / Consider load location, task repetition, and load weigh when evaluating what is safe or unsafe to lift / Obtain assistance when possible 41. Wear high visibility clothing & vest / Use cones or signs to designate work area 42. Be aware of surroundings at all times, including the presence of wildlife/ Do not approach stray dogs / Carry/use dog/animal repellant / Use bug spray when needed 43. Wear hearing protection 44. Wear hard hat / Avoid areas were overhead hazards exist. 45. Wear proper attire for weather conditions (sunscreen or protective clothing in sunlight, layers for cold weather) / Drink plenty of fluids to avoid dehydration / Takes breaks as necessary to avoid heat/cold stress
Additional items.		46. Wear safety glasses
Additional Items identified while in the field. (Delete row if not needed.)		

Print Name	Sign Name	<u>Date</u>
Prepared by:		
Reviewed by:		

JSA Title: Direct-Push Soil Borings

JSA Number: JSA004-01

PERSONAL PROTECTIVE EQU	JIPMENT REQUIRED:				
	☐ Safety Goggles	☐ Face Shield			☐ PVC Gloves
		☐ Fall Protection		☐ Fire Resistant Clothing	☐ Rubber Boots
☐ Insect/Animal Repellent	☐ Ivy Blocker/Cleaner	☐ Traffic Cones/S	igns	☐ Life Vest/Jacket	
Other: Half-face respirator, d	ust cartridges, PID (if applicable)				
JOB STEPS	POTENTIAL HAZA	ARDS		PREVENTATIVE / CORRE	CTIVE ACTION
22.Move equipment to work site	18.Back strain when lifting equip 19.Slips/ Trips/ Falls while movin 20.Traffic (if applicable) 21.Pinched fingers or running ov geoprobe set-up 22.Overturn drilling rig while tran dock on flat-bed tow truck	ng equipment er toes during	back)/ handlir 14. Use properties back) / when have uses 15. Wear has geopro 17. Drill right brake sunneces	ng loads greater than 50 lbs. / Min oper lifting technique (use legs fo Use wheeled transport for heavy nandling loads greater than 50 lbs	equipment / Get assistance when imize distance to vehicle r bending and lifting and not the equipment / Get assistance . / Minimize distance to vehicle / llection point / Do not lift/walk with ng / Exercise caution / Stay alert, be aware of t-bed tow truck / Emergency ansport on the flat-bed truck/ All
23.Calibration of monitoring equipment	6. Skin or eye contact with calib7. Pinch fingers in monitoring ed		4. Wear pro	oper PPE (safety glasses/ goggle	s)
24.Set-up geoprobe rig	Geoprobe rig movement	 Quipment 5. Wear proper PPE (leather gloves) 3. All field personnel should stay clear of the geoprobe rig while a spotter when backing up the geoprobe 		geoprobe rig while moving / Use	
25.Advance geoprobe rods below ground surface to desired depth	Underground utilities High noise levels		4. Clean all	subsurface soil borings to a mini oper PPE (hearing protection)	mum of 5 feet below grade
26. Remove and open acetate liner	41. Pinched fingers while remove42. Cuts/lacerations when cuttingopen43. Exposure to hazardous vapor	g acetate liner	2. Wear programmer 3. Do not programmer vapors	roper PPE (nitrile gloves, cut-resistroper PPE (cut-resistant or leather obtace face over acetate liner where in air with PID / Upgrade PPE as the din the Health and Safety Plan	r gloves) n opening / Monitor hazardous necessary based on levels

JOB STEPS	POTENTIAL HAZARDS	PREVENTATIVE / CORRECTIVE ACTION
Remove and open acetate liner (cont'd)	44. Skin contact with contaminated soil	Wear proper PPE (nitrile gloves)
27. Sample Collections a) Monitor parameters b) Prepare sample containers and labels	Contact with potentially contaminated soil Lacerations from broken sample bottles Back strain while transporting full coolers Internal exposure to contaminants and metals through inhalation of dust	Use monitoring devices / Wear proper PPE (safety glasses, nitrile gloves) Do not over-tighten bottle caps / Handle bottles safely to prevent breakage Use proper lifting techniques / Do not lift heavy loads without assistance Avoid creating dust / If necessary, wear a half mask respirator with applicable dust cartridge / Inspect respirator for damage and cleanliness prior to use / Clean respirator after each use and store in a clean, secure location
	5. Slips/ Trips/ Falls	8. Be alert / Follow good housekeeping procedures
28. Remove excess soil from acetate liner and place in 55-gallon drum (IF NOT PERFORMED BY LANGAN, REMOVE!)	Cuts/lacerations from acetate liner Pinched fingers/hand while opening/closing drum Skin contact with contaminated soil Soil debris in eyes	Wear proper PPE (cut-resistant or leather gloves) Wear proper PPE (cut-resistant or leather gloves) Wear proper PPE (nitrile gloves) Wear proper PPE (safety glasses)
Transport drums to central staging location (IF NOT	Back, arm or shoulder strain from moving drums	47. Use drum cart for moving drums / Use proper lifting techniques / Do not lift heavy loads without assistance
PERFORMED BY LANGAN, REMOVE!)	Pinch fingers/hand in drum cart when moving drums	48. Wear proper PPE (cut-resistant or leather gloves)
,	Pinch fingers/hand when operating lift-gate on vehicle	49. Wear proper PPE (cut-resistant or leather gloves)
	Contact with potentially contaminated groundwater when moving improperly sealed drums	50. Wear proper PPE (nitrile gloves underneath work gloves)
	5. Slips when moving drums	51. Follow good housekeeping procedures / Ensure route to move drum and storage space is free from obstructions
	6. Drop drum on feet/toes	52. Wear proper PPE (safety shoes) / Work in a safe manner to prevent dropped drum
9. All activities	1. Slips/ Trips/ Falls	Be aware of potential trip hazards / Follow good housekeeping procedures/ Mark significant hazards
	Hand injuries, cuts or lacerations during manual handling of materials	Inspect for jagged/sharp edges, and rough or slippery surfaces / Keep fingers away from pinch points / Wipe off greasy, wet, slippery or dirty objects before handling / Wear leather/ cut-resistant gloves
	Foot injuries Back injuries	 3. Wear Langan approved safety shoes 4. Use proper lifting techniques / Consider load location, task repetition, and load weigh when evaluating what is safe or unsafe to lift / Obtain assistance when possible
	5. Traffic	5. Wear high visibility clothing & vest / Use cones or signs to designate work area
	Wildlife: Stray dogs, Mice/rats, Vectors (i.e. mosquitoes, bees, etc.)	6. Be aware of surroundings at all times, including the presence of wildlife/ Do not approach stray dogs / Carry/use dog/animal repellant / Use bug spray when needed
	7. High Noise levels	7. Wear hearing protection
	8. Overhead hazards 9. Heat Stress/ Cold Stress	 8. Wear hard hat / Avoid areas were overhead hazards exist. 9. Wear proper attire for weather conditions (sunscreen or protective clothing in sunlight, layers for cold weather) / Drink plenty of fluids to avoid dehydration / Takes breaks as necessary to avoid heat/cold stress

JOB STEPS	POTENTIAL HAZARDS	PREVENTATIVE / CORRECTIVE ACTION
9. All activities (cont'd)	10. Eye Injuries	10. Wear safety glasses
Additional items.		
Additional Items identified while in the field.		
(Delete row if not needed.)		

Print Name	Sign Name	<u>Date</u>			
Prepared by:	Prepared by:				
Reviewed by:	Reviewed by:				

LANGAN	
--------	--

JSA Title: Monitoring Well Development

JSA Number: JSA026-01

actions.				
PERSONAL PROTECTIVE EQUIPMENT (Required or to be worn as needed):				
				☐ Hearing Protection
	☐ Safety Goggles			☐ PVC Gloves
	□ Cut Resist. Gloves	☐ Fall Protection	☐ Fire Resistant Clothing	☐ Rubber Boots
☐ Insect/Animal Repellent	☐ Ivy Blocker/Cleaner	☐ Traffic Cones/Signs	☐ Life Vest/Jacket	
Other: Tyvek Sleeves				

JOB STEPS	POTENTIAL HAZARDS	PREVENTATIVE / CORRECTIVE ACTION
29.Transport equipment to work area	23.Back Strains 24.Slips/Trips/Falls	18. Use proper lifting techniques/ Use wheeled transport/ use buddy system when lifting equipment.
	25.Traffic	19. Minimize distance from work area/ unobstructed path to collection
	26.Cuts/Abrasions/Contusions from	points and vehicle/ Follow good housekeeping procedures.
	equipment	20. Wear high-visibility vest or clothing/Exercise caution/ Use traffic
		cones or signage if needed.
		21. Wear proper PPE (leather gloves, long sleeves, Langan approved
		safety shoes).
30.Measure depth of water	Exposure to hazardous substances	6. Wear proper PPE (Nitrile gloves, Safety glasses/Face shield).
	Pinched fingers	7. Wear proper PPE (cut-resistant gloves).
31.Install Tremie pipe in the	6. Hand injuries during installation (pinched	4. Wear proper PPE (Nitrile gloves/cut-resistant gloves).
monitoring well and connect to	fingers/hands).	5. Use proper lifting techniques/ Use two personnel when lowering pump
water source.	7. Back strain from holding Tremie pipe.	greater than 80 feet.
	8. High pressure water spray.	6. Ensure all hose connections are tight and secure/ Use proper PPE (face
		shield and safety glasses).
32.Install pump in to well	6. Hand injuries during pump installation and	Wear proper PPE when installing pump and cutting sample tubing (Nitrile
a. Connect pump to sample	sample tubing cutting.	and cut-resistant gloves)/ Use tubing cutter.
tubing.	7. Back strain	10. Proper lifting techniques/ Two personnel when installing pump at
b. Lower pump to desired depth in	8. Electric shock	depths greater than 80 feet/ Use buddy when lifting heavy loads (pump,
well.	Exhaust gases from generator	generator)/Use wheeled transport.
c. Connect sample tubing to flow	10. Burns from hot equipment	11. Ensure equipment is (LO/TO: locked out/tagged out) prior to
cell		preforming any electrical connections/ Inspect wires for frays or
d. Connect pump to power source		cuts/Ensure generator is properly grounded prior to starting.
(generator)		12. Position generator so that exhaust is flowing away from work area.

JOB STEPS	POTENTIAL HAZARDS	PREVENTATIVE / CORRECTIVE ACTION
e. Turn on power source (generator)		13. Do not touch exhaust or any hot part of generator/ Allow equipment time to cool down prior to carrying/ Use proper PPE (long sleeves, leather gloves)
 33. Develop monitoring well a. Jet water into well using Tremie pipe b. Turn pump on and adjust to desired flow rate. c. Surge pump up and down well to remove sediment from screen d. Containerize all purge water from well. 	45. Hand injuries46. Face injuries47. Contaminated spray from water	 53. Wear proper PPE (cut-resistant gloves and nitrile gloves). 54. Wear proper PPE (face shield and safety glasses)/do not stand over well opening. 55. Wear proper PPE (Face shield and safety goggles)/Tyvek over garments/ Ensure all connections are secure and tight/ Tubing outlet is contained in an overflow container.
34. Drum staging area.	 Back, Arm, and shoulder strain. Pinch points Cross contamination Slip/Trips/Falls 	 Use proper lifting techniques/ Use drum carts when moving drums/ use buddy system for moving of drums if needed/Move drums shortest distance needed. Keep fingers and feet away from pinch points/ Use proper PPE (cutresistant gloves, Langan approved safety shoes) Use proper PPE (Nitrile gloves, Tyvek sleeves) Ensure pathway is clear prior to moving equipment/ Mark all hazards/ Use additional person as a spotter if needed.
35. Equipment pack-up	 Back Strains Slips/Trips/Falls Traffic Cuts/Abrasions/Contusions from equipment. 	 Use proper lifting techniques/ Use wheeled transport/ use buddy system when lifting equipment. Minimize distance from work area/ Unobstructed path to collection points and vehicle/ Follow good housekeeping procedures. Wear high-visibility vest or clothing/Exercise caution/ Use traffic cones or signage if needed. Wear proper PPE (leather gloves, long sleeves, Langan approved safety shoes).
36. All activities	 Slips/ Trips/ Falls Hand injuries, cuts or lacerations during manual handling of materials Foot injuries Back injuries Traffic Wildlife: Stray dogs, Mice/rats, Vectors (i.e. mosquitoes, bees, etc.) High Noise levels Overhead hazards Heat Stress/ Cold Stress Eye Injuries 	 Be aware of potential trip hazards / Follow good housekeeping procedures/ Mark significant hazards Inspect for jagged/sharp edges, and rough or slippery surfaces / Keep fingers away from pinch points / Wipe off greasy, wet, slippery or dirty objects before handling / Wear leather/ cut-resistant gloves Wear Langan approved safety shoes Use proper lifting techniques / Consider load location, task repetition, and load weigh when evaluating what is safe or unsafe to lift / Obtain assistance when possible Wear high visibility clothing & vest / Use cones or signs to designate work area Be aware of surroundings at all times, including the presence of wildlife/ Do not approach stray dogs / Carry/use dog/animal repellant / Use bug spray when needed Wear hearing protection Wear hard hat / Avoid areas were overhead hazards exist.

JOB STEPS	POTENTIAL HAZARDS	PREVENTATIVE / CORRECTIVE ACTION
		9. Wear proper attire for weather conditions (sunscreen or protective clothing in sunlight, layers for cold weather) / Drink plenty of fluids to avoid dehydration / Takes breaks as necessary to avoid heat/cold stress 10. Wear safety glasses.
Additional items.		
Additional Items identified while in the field.		
(Delete row if not needed.)		

Print Name	Sign Name	<u>Date</u>	
Prepared by:			
Reviewed by:			

JSA Title: Groundwater Sampling

JSA Number: JSA008-01

addition .				
PERSONAL PROTECTIVE EQUIPMENT (Required or to be worn as needed):				
	☐ Safety Goggles	☐ Face Shield		☐ PVC Gloves
	☐ Cut Resist. Gloves		☐ Fire Resistant Clothing	☐ Rubber Boots
☐ Insect/Animal Repellent	☐ Ivy Blocker/Cleaner	☐ Traffic Cones/Signs	☐ Life Vest/Jacket	

JOB STEPS	POTENTIAL HAZARDS	PREVENTATIVE / CORRECTIVE ACTION
37.Transport equipment to work area	Back Strain Slips/ Trips/ Falls Traffic Cuts/abrasions from equipment Contusions from dropped equipment	Use proper lifting techniques / Use wheeled transport Minimize distance to work area / Have unobstructed path to work area / Follow good housekeeping procedures Wear proper PPE (high visibility vest or clothing) Wear proper PPE (leather gloves, long sleeves) Wear proper PPE (safety shoes)
38. Remove well cover	10.Scrape knuckles/hand 11.Strain wrist/bruise palm 12.Pinch fingers or hand	 Wear proper PPE (leather gloves) Using a hammer, tap the end of the wrench to loosen grip of bolts Wear proper PPE (leather gloves)
39. Remove well cap and lock	9. Well can pops from pressure 10. Exposure to hazardous substances through inhalation or dermal exposure 11. Scrape knuckles/hand 12. Strain write/bruise palm	 Remove cap slowly to relieve pressure / Do not place face over well when opening / Wear proper PPE (safety glasses) Use direct air monitoring/reading instrument (i.e. PID) / Be familiar with and follow actions prescribed in the HASP / Wear proper PPE (nitrile gloves) Wear proper PPE (leather gloves) Using hammer, tap the end of the wrench to loosen grip
40. Measure head-space vapor levels	Exposure to hazardous substances through inhalation	Do not place face over well when collecting measurement
41. Remove dedicated tubing (if necessary)	Exposure to hazardous substances through inhalation or dermal exposure Tubing swings around after removal	Wear proper PPE (nitrile gloves, Tyvek sleeves) Wear proper PPE (safety glasses)
42. Set-up plastic sheeting for work site around the well	Lacerations when cutting plastic sheeting	Use scissors to cut plastic sheeting / Cut motions should always be away from body and body parts
43. Measure depth to water	Exposure to hazardous substances through inhalation or dermal exposure Pinch fingers or hand in water level instrument	Wear proper PPE (nitrile gloves) Wear proper PPE (leather gloves)

JOB STEPS	POTENTIAL HAZARDS	PREVENTATIVE / CORRECTIVE ACTION							
44. Calibrate monitoring	Skin or eye contact with calibration chemicals	Wear proper PPE (safety glasses, nitrile gloves)							
equipment	Pinch fingers or hand in monitoring equipment	2. Wear proper PPE (leather gloves) / Avoid pinch points							
45. Install sampling pump in	Hand injuries during installation of pump	Wear proper PPE (leather gloves, nitrile gloves)							
well	Lacerations when cutting tubing	Use safety tubing cutter							
	Back strain during installation of pump	Use proper lifting techniques							
	4. Physical hazards associated with manual lifting	4. Use proper lifting techniques / Use wheeled transport for heavy							
	of heavy equipment	equipment							
	Back strain from starting generator	5. Use arm when starting generator / Do not over-strain if generator does							
	Burns from hot exhaust from generator	not start							
	7. Electrical shock from improper use of	6. Do not touch generator near exhaust / Use proper handle to carry / Allow							
	generator and pump	generator to cool down before moving							
	Contaminated water spray from loose	7. Properly plug in pump to generator / Do not allow the pump or generator							
	connections	to contact water / Check for breaks in the cord							
		8. Check all tubing connections to ensure they are tight and secure							
10. Purge water	Contact with potentially contaminated	Wear proper PPE (safety glasses, nitrile gloves)							
	groundwater	2. Use proper lifting techniques / Use wheeled transport							
	Back strain from lifting buckets of water	Organize discharge of electric line to keep out of way as much as							
	Tripping potential on sample discharge lines	possible / Mark potential tripping hazards with caution tape or safety							
11.0	and pump electric line	cones							
11. Sample water collection	Contact with potentially contaminated	Wear proper PPE (safety glasses, nitrile gloves)							
	groundwater through dermal exposure	2. Wear proper PPE (safety glasses, nitrile gloves) / Ensure sample bottle							
	Contact with and burns from acid used for	lids are secure before use and after sample collection							
	sample preservation	3. Organize line to keep out of the way as much as possible / Mark potential							
	Tripping potential on sample discharge lines	tripping hazards with caution tape or safety cones							
	and pump electric line	4. Do not over-tighten bottle caps / Handle bottles safely to prevent							
	4. Lacerations from broken sample bottles	breakage / Wrap glass bottles in bubble wrap, if possible							
	Back strain when transporting coolers full of collected complete	5. Use proper lifting techniques / Use wheeled transport / Seek assistance if							
	collected samples	coolers weight exceeds 50lbs. / Minimize distance to vehicle							
	6. Slips/ Trips/ Falls	6. Have unobstructed path to vehicle or collection point / Follow good							
		housekeeping procedures / Do not lift/walk with coolers that are too heavy/difficult to lift							
12. Remove pump and pack	Back strain when removing pump or lifting	Use proper lifting technique / Use wheeled transport for heavy equipment							
up equipment	heavy equipment	1. Ose proper litting technique / Ose wheeled transport for heavy equipment							
13. Replace well cap and lock	Scrape fingers/hand	Wear proper PPE (leather gloves)							
To. Replace Well cap and look	Strain wrist/bruise palm	Using hammer, tap the end of the well cap to tighten grip							
14. Replace well cover	Scrape knuckles/hand	Wear proper PPE (leather gloves)							
The respondent ment server	Strain write/bruise palm	2. Using hammer, tap the end of the wrench to tighten the grip of the bolts							
	Pinch fingers or hand	3. Wear proper PPE (leather gloves)							
15. Transport drums to	Back, arm or shoulder strain from moving	1. Use drum cart for moving drums / Use proper lifting techniques / Obtain							
disposal staging location	drums	assistance, if needed							
	2. Pinch hazard	2. Wear proper PPE (leather gloves)							
	Contact with potentially contaminated	3. Wear proper PPE (nitrile gloves under leather gloves) / Properly seal							
	groundwater when moving improperly sealed	drum to prevent leak							
	drums	4. Ensure route to move drum to storage space is dry and free from							
	4. Slips/ Trips/ Falls when moving drum	obstructions							
	5. Drop drum on feet/toes	5. Wear proper PPE (safety shoes)							

JOB STEPS	POTENTIAL HAZARDS	PREVENTATIVE / CORRECTIVE ACTION
16. Place used PPE in designated disposal drum 17. Decontaminate equipment 18. All activities	1. Pressure build-up inside drum 2. Pinch hazard 1. Splashing water/soap from decontamination 2. Contact with potentially contaminated groundwater through dermal exposure 3. Electrical shock from broken electric cords 55. Slips/ Trips/ Falls 56. Hand injuries, cuts or lacerations during manual handling of materials 57. Foot injuries 58. Back injuries 59. Traffic 60. Wildlife: Stray dogs, Mice/rats, Vectors (i.e. mosquitoes, bees, etc.) 61. High Noise levels 62. Overhead hazards 63. Heat Stress/ Cold Stress 64. Eye Injuries	 Remove cap from bung hole in drum to relieve pressure Wear proper PPE (leather gloves) Wear proper PPE (safety glasses) Wear proper PPE (safety glasses, dermal protection) Properly plug in pump to generator / Do not allow the pump or generator to contact water / Check for breaks in the cord Be aware of potential trip hazards / Follow good housekeeping procedures/ Mark significant hazards Inspect for jagged/sharp edges, and rough or slippery surfaces / Keep fingers away from pinch points / Wipe off greasy, wet, slippery or dirty objects before handling / Wear leather/ cut-resistant gloves Wear Langan approved safety shoes Use proper lifting techniques / Consider load location, task repetition, and load weigh when evaluating what is safe or unsafe to lift / Obtain assistance when possible Wear high visibility clothing & vest / Use cones or signs to designate work area Be aware of surroundings at all times, including the presence of wildlife/ Do not approach stray dogs / Carry/use dog/animal repellant / Use bug spray when needed Wear hearing protection Wear hard hat / Avoid areas were overhead hazards exist. Wear proper attire for weather conditions (sunscreen or protective clothing in sunlight, layers for cold weather) / Drink plenty of fluids to avoid
Additional items. Additional Items identified while in the field. (Delete row if not needed.)		dehydration / Takes breaks as necessary to avoid heat/cold stress 66. Wear safety glasses

Print Name	Sign Name	<u>Date</u>
Prepared by:		
Reviewed by:		

ATTACHMENT H TAILGATE SAFETY BRIEFING FORM

LANGAN TAILGATE SAFETY BRIEFING

Date:	lime:	
Leader:	Location:	
Work Task:		
SAFETY TOPICS	_(provide some detail of discussion	points)
Chemical Exposure Hazards and Cont	rol:	
Physical Hazards and Control:		.
Air Monitoring:		
PPE:		
Communications: Safe Work Practices:		
Emergency Response:		
Hospital/Medical Center Location:		
Phone Nos.:		
Other:		
FOR FOLLOW-U	P (the issues, responsibilities, due dat	tes, etc.)
	<u>ATTENDEES</u>	
PRINT NAME	COMPANY	SIGNATURE

ATTACHMENT B QUALITY ASSURANCE PROJECT PLAN

QUALITY ASSURANCE PROJECT PLAN

for

241 West 28th Street Block 778, Lots 13, 16, 18, and 66 New York, New York

Prepared For:

241 West 28th Street Owner LLC 142 West 57th Street New York, New York 10019

Prepared By:

Langan Engineering, Environmental, Surveying,
Landscape Architecture and Geology, D.P.C.
21 Penn Plaza
360 West 31st Street, 8th Floor
New York, New York 10001

LANGAN

July 19, 2019 Langan Project No. 170017004

TABLE OF CONTENTS

				PAGE
1.0		PROJI	ECT DESCRIPTION	1
	1.1		Introduction	1
	1.2		Project Objectives	1
	1.3		Scope of Work	1
2.0		DATA	QUALITY OBJECTIVES AND PROCESS	2
3.0		PROJI	ECT ORGANIZATION	4
4.0		QUAL	ITY ASSURANCE OBJECTIVES FOR COLLECTION OF DATA	5
	4.1		Precision	5
	4.2		Accuracy	5
	4.3		Completeness	6
	4.4		Representativeness	6
	4.5		Comparability	7
	4.6		Sensitivity	8
5.0		SAMP	PLE COLLECTION AND FIELD DATA ACQUISITION PROCEDURE	S 9
	5.1		Field Documentation Procedures	9
		5.1.1	Field Data and Notes	9
		5.1.2	Sample Labeling	10
	5.2		Equipment Calibration and Preventative Maintenance	10
	5.3		Sample Collection	11
	5.4		Sample Containers and Handling	13
	5.5		Special Considerations for PFAS Sample Collection	14
	5.6		Sample Preservation	15
	5.6		Sample Shipment	15
		5.6.1	Packaging	15
		5.6.2	Shipping	16
	5.7		Decontamination Procedures	16
	5.8		Residuals Management	16
	5.9		Chain of Custody Procedures	17
	5.10)	Laboratory Sample Storage Procedures	22
6.0		DATA	REDUCTION, VALIDATION, AND REPORTING	23
	6.1		Introduction	23
	6.2		Data Reduction	23
	6.3		Data Validation	24
7.0		QUAL	ITY ASSURANCE PERFORMANCE AUDITS AND SYSTEM AUD	ITS 26
	7.1		Introduction	26
	7.2		System Audits	26
	7.3		Performance Audits	26

al Audits	26					
E ACTION	28					
duction	28					
edure Description	28					
S	31					
FIGURES						
ustody	21					
Custody Record - Air Samples	22					
Custody Record - Soil and Groundwater Samples	23					
Action Request	32					
ATTACHMENTS						
Resumes						
Laboratory Reporting Limits and Method Detection Limits						
Analytical Methods/Quality Assurance Summary Table						
Attachment D: Sample Nomenclature						
Perfluorinated Compound Sampling Protocol						
	FIGURES FIGURES Ustody Sustody Record - Air Samples Sustody Record - Soil and Groundwater Samples Action Request ATTACHMENTS Resumes Laboratory Reporting Limits and Method Detection Limits Analytical Methods/Quality Assurance Summary Table Sample Nomenclature					

1.0 PROJECT DESCRIPTION

1.1 INTRODUCTION

This Quality Assurance Project Plan (QAPP) is for the 29,315-square-foot property located at 241 West 28th Street in Manhattan, New York (the site). 241 West 28th Street Owner LLC (the Requestor) is applying to the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) as a Volunteer. Additional site information, including site maps, is provided in the Supplemental Remedial Investigation Work Plan (SRIWP).

This QAPP specifies analytical methods to be used to ensure that data collected during the Supplemental Remedial Investigation (SRI) are precise, accurate, representative, comparable, complete, and meet the sensitivity requirements of the project.

1.2 PROJECT OBJECTIVES

The objective of the SRI is to assess the presence of emerging contaminants, including PFAS and 1,4-dioxane, in soil and groundwater.

1.3 SCOPE OF WORK

Implementation of the SRIWP will include the collection of soil and groundwater samples. The scope of work is described in detail in the SRIWP. A dust, odor, and organic vapor control and monitoring plan will be implemented during ground intrusive activities.

The following samples will be collected as part of the SRIWP:

Soil Borings and Sampling

• Collect 7 shallow (0 to 5 feet bgs) and 7 deep (5 to 15 feet bgs) soil samples from 12 soil borings for a total of 14 soil samples (plus quality assurance/quality control [QA/QC] samples) for laboratory analysis.

Monitoring Well Installation and Sampling

- Install and develop four permanent groundwater monitoring wells.
- Collect one groundwater sample from each newly-installed monitoring well and one existing on-site monitoring well (plus QA/QC samples) for laboratory analysis.

2.0 DATA QUALITY OBJECTIVES AND PROCESS

Data Quality Objectives (DQO) are qualitative and quantitative statements to help ensure that data of known and appropriate quality are obtained during the project. The sampling program will provide for collection of soil and groundwater samples as part of the SRIWP. DQOs for sampling activities are determined by evaluating five factors:

- Data needs and uses: The types of data required and how the data will be used after it is obtained.
- Parameters of Interest: The types of chemical or physical parameters required for the intended use.
- Level of Concern: Levels of constituents, which may require remedial actions or further investigations.
- Required Analytical Level: The level of data quality, data precision, and QA/QC documentation required for chemical analysis.
- Required Detection Limits: The detection limits necessary based on the above information.

The quality assurance and quality control objectives for all measurement data include:

- **Precision** an expression of the reproducibility of measurements of the same parameter under a given set of conditions. Field sampling precision will be determined by analyzing coded duplicate samples and analytical precision will be determined by analyzing internal QC duplicates and/or matrix spike duplicates.
- Accuracy a measure of the degree of agreement of a measured value with the
 true or expected value of the quantity of concern. For soil and groundwater
 samples, accuracy will be determined through the assessment of the analytical
 results of field blanks and trip blanks for each sample set. Analytical accuracy will
 be assessed by examining the percent recoveries of surrogate compounds that
 are added to each sample (organic analyses only), internal standards, laboratory
 method blanks, instrument calibration, and the percent recoveries of matrix spike
 compounds added to selected samples and laboratory blanks.

For soil vapor or air samples, analytical accuracy will be assessed by examining the percent recoveries that are added to each sample, internal standards, laboratory method blanks, and instrument calibration.

- Representativeness expresses the degree to which sample data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is dependent upon the adequate design of the sampling program and will be satisfied by ensuring that the scope of work is followed and that specified sampling and analysis techniques are used. Representativeness in the laboratory is ensured by compliance to nationally-recognized analytical methods, meeting sample holding times, and maintaining sample integrity while the samples are in the laboratory's possession. This is accomplished by following all applicable methods, laboratory-issued standard operating procedures (SOP), the laboratory's Quality Assurance Manual, and this QAPP. The laboratory is required to be properly certified and accredited.
- **Completeness** the percentage of measurements made which are judged to be valid. Completeness will be assessed through data validation. The QC objective for completeness is generation of valid data for at least 90 percent of the analyses requested.
- **Comparability** expresses the degree of confidence with which one data set can be compared to another. The comparability of all data collected for this project will be ensured using several procedures, including standard methods for sampling and analysis as documented in the QAPP, using standard reporting units and reporting formats, and data validation.
- **Sensitivity** the ability of the instrument or method to detect target analytes at the levels of interest. The project manager will select, with input from the laboratory and QA personnel, sampling and analytical procedures that achieve the required levels of detection.

3.0 PROJECT ORGANIZATION

The SRI will be overseen by Langan or another environmental consultant for the Requestor or a future owner. The environmental consultant will also arrange data analysis and reporting tasks. The analytical services will be performed by an ELAP-certified laboratory. Data validation services will be performed by approved data validation contractor(s). Sampling will be conducted by Langan and the analytical services will be performed by Alpha Analytical Laboratories, Inc. of Westborough, Massachusetts (NYSDOH ELAP certification number 11148). Data validation services will be performed by Emily Strake; résumé attached (Attachment A).

Key contacts for this project are as follows:

241 West 28th Street Owner LLC Ms. Standish Lee

Telephone: (212) 339-3911

Langan Project Manager: Mr. Paul McMahon

Résumé attached (Attachment A) Telephone: (212) 479-5451

Langan Quality Assurance Officer (QAO): Mr. Gerald Nicholls, PE

Résumé attached (Attachment A) Telephone: (212) 479-5559

Program Quality Assurance Monitor: Mr. William Bohrer

Résumé attached (Attachment A) Telephone: (212) 479-5533

Data Validator: Ms. Emily Strake

Telephone: (215) 491-6526

Laboratory Representative: Mr. Ben Rao

Telephone: (201) 847-9100

4.0 QUALITY ASSURANCE/QUALITY CONTROL OBJECTIVES FOR COLLECTION OF DATA

The overall quality assurance and quality control objectives for all measurement data include precision, accuracy, representativeness, completeness, comparability, and sensitivity. These objectives are defined in following subsections. Variances from the quality assurance objectives at any stage of the investigation will result in the implementation of appropriate corrective measures and an assessment of the impact of corrective measures on the usability of the data.

4.1 PRECISION

Precision is a measure of the degree to which two or more measurements are in agreement. Field precision is assessed through the collection and measurement of field duplicates. Laboratory precision and sample heterogeneity also contribute to the uncertainty of field duplicate measurements. This uncertainty is taken into account during the data assessment process. For field duplicates, results less than 2x the reporting limit (RL) meet the precision criteria if the absolute difference is less than $\pm 2x$ the RL and acceptable based on professional judgment. For results greater than 2x the RL, the acceptance criteria is a relative percent difference (RPD) of $\leq 50\%$ (soil and air), < 30% (water). RLs and method detection limits (MDL) are provided in Attachment B.

4.2 ACCURACY

Accuracy is the measurement of the reproducibility of the sampling and analytical methodology. It should be noted that precise data may not be accurate data. For the purpose of this QAPP, bias is defined as the constant or systematic distortion of a measurement process, which manifests itself as a persistent positive or negative deviation from the known or true value. This may be due to (but not limited to) improper sample collection, sample matrix, poorly calibrated analytical or sampling equipment, or limitations or errors in analytical methods and techniques.

Accuracy in the field is assessed through the use of field blanks and through compliance to all sample handling, preservation, and holding time requirements. All field blanks should be non-detect when analyzed by the laboratory. Any contaminant detected in an associated field blank will be evaluated against laboratory blanks (preparation or method) and evaluated against field samples collected on the same day to determine potential for

bias. Trip blanks are not required for non-aqueous matrices but are planned for non-aqueous matrices where high concentrations of VOCs are anticipated.

Laboratory accuracy is assessed by evaluating the percent recoveries of matrix spike/matrix spike duplicate (MS/MSD) samples, laboratory control samples (LCS), surrogate compound recoveries, and the results of method preparation blanks. MS/MSD, LCS, and surrogate percent recoveries will be compared to either method-specific control limits or laboratory-derived control limits. Sample volume permitting, samples displaying outliers should be reanalyzed. All associated method blanks should be non-detect when analyzed by the laboratory.

4.3 COMPLETENESS

Laboratory completeness is the ratio of total number of samples analyzed and verified as acceptable compared to the number of samples submitted to the fixed-base laboratory for analysis, expressed as a percent. Three measures of completeness are defined:

- Sampling completeness, defined as the number of valid samples collected relative to the number of samples planned for collection;
- Analytical completeness, defined as the number of valid sample measurements relative to the number of valid samples collected; and
- Overall completeness, defined as the number of valid sample measurements relative to the number of samples planned for collection.

Air, soil vapor, soil, and groundwater data will meet a 90% completeness criterion. If the criterion is not met, sample results will be evaluated for trends in rejected and unusable data. The effect of unusable data required for a determination of compliance will also be evaluated.

4.4 REPRESENTATIVENESS

Representativeness expresses the degree to which data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, a process condition, or an environmental condition within a defined spatial and/or temporal boundary. Representativeness is dependent upon the adequate design of the sampling program and will be satisfied by ensuring that the scope of work is followed and that specified sampling and analysis techniques are used. This is performed by following

applicable SOPs and this QAPP. All field technicians will be given copies of appropriate documents prior to sampling events and are required to read, understand, and follow each document as it pertains to the tasks at hand.

Representativeness in the laboratory is ensured by compliance to nationally-recognized analytical methods, meeting sample holding times, and maintaining sample integrity while the samples are in the laboratory's possession. This is performed by following all applicable EPA methods, laboratory-issued SOPs, the laboratory's Quality Assurance Manual, and this QAPP. The laboratory is required to be properly certified and accredited.

4.5 **COMPARABILITY**

Comparability is an expression of the confidence with which one data set can be compared to another. The comparability of all data collected for this project will be ensured by:

- Using identified standard methods for both sampling and analysis phases of this project;
- Requiring traceability of all analytical standards and/or source materials to the U.S. Environmental Protection Agency (EPA) or National Institute of Standards and Technology (NIST);
- Requiring that all calibrations be verified with an independently prepared standard from a source other than that used for calibration (if applicable);
- Using standard reporting units and reporting formats including the reporting of QC data;
- Performing a complete data validation on a representative fraction of the analytical results, including the use of data qualifiers in all cases where appropriate; and
- Requiring that all validation qualifiers be used any time an analytical result is used for any purpose.

These steps will ensure all future users of either the data or the conclusions drawn from them will be able to judge the comparability of these data and conclusions.

.

4.6 SENSITIVITY

Sensitivity is the ability of the instrument or method to detect target analytes at the levels of interest. The project director will select, with input from the laboratory and QA personnel, sampling and analytical procedures that achieve the required levels of detection and QC acceptance limits that meet established performance criteria. Concurrently, the project director will select the level of data assessment to ensure that only data meeting the project DQOs are used in decision-making.

Field equipment will be used that can achieve the required levels of detection for analytical measurements in the field. In addition, the field sampling staff will collect and submit full volumes of samples as required by the laboratory for analysis, whenever possible. Full volume aliquots will help ensure achievement of the required limits of detection and allow for reanalysis if necessary. The concentration of the lowest level check standard in a multi-point calibration curve will represent the reporting limit.

Analytical methods and quality assurance parameters associated with the sampling program are presented in Attachment C. The frequency of associated field blanks and duplicate samples will be based on the recommendations listed in DER-10, and as described in Section 5.3.

Site-specific MS and MSD samples will be prepared and analyzed by the analytical laboratory by spiking an aliquot of submitted sample volume with analytes of interest. Additional sample volume is not required by the laboratory for this purpose, so long as the full volume required for the sample analysis is collected. An MS/MSD analysis will be analyzed at a rate of 1 out of every 20 samples, or one per analytical batch. MS/MSD samples are only required for soil and groundwater samples.

5.0 SAMPLE COLLECTION AND FIELD DATA ACQUISITION PROCEDURES

Soil and groundwater sampling will be conducted in accordance with the established NYSDEC protocols contained in DER-10/Technical Guidance for Site Investigation and Remediation (May 2010). The following sections describe procedures to be followed for specific tasks.

5.1 FIELD DOCUMENTATION PROCEDURES

Field documentation procedures will include summarizing field data in field books and proper sample labeling. These procedures are described in the following sections.

5.1.1 Field Data and Notes

Field notebooks contain the documentary evidence regarding procedures conducted by field personnel. Hard cover, bound field notebooks will be used because of their compact size, durability, and secure page binding. The pages of the notebook will not be removed.

Entries will be made in waterproof, permanent blue or black ink. No erasures will be allowed. If an incorrect entry is made, the information will be crossed out with a single strike mark and the change initialed and dated by the team member making the change. Each entry will be dated. Entries will be legible and contain accurate and complete documentation of the individual or sampling team's activities or observations made. The level of detail will be sufficient to explain and reconstruct the activity conducted. Each entry will be signed by the person(s) making the entry.

The following types of information will be provided for each sampling task, as appropriate:

- Project name and number
- Reasons for being on-site or taking the sample
- Date and time of activity
- Sample identification numbers
- Geographical location of sampling points with references to the site, other facilities or a map coordinate system. Sketches will be made in the field logbook when appropriate

- Physical location of sampling locations such as depth below ground surface
- Description of the method of sampling including procedures followed, equipment used and any departure from the specified procedures
- Description of the sample including physical characteristics, odor, etc.
- Readings obtained from health and safety equipment
- Weather conditions at the time of sampling and previous meteorological events that may affect the representative nature of a sample
- Photographic information including a brief description of what was photographed, the date and time, the compass direction of the picture and the number of the picture on the camera
- Other pertinent observations such as the presence of other persons on the site, actions by others that may affect performance of site tasks, etc.
- Names of sampling personnel and signature of persons making entries

Field records will also be collected on field data sheets including boring logs, which will be used for geologic and drilling data during soil boring activities. Field data sheets will include the project-specific number and stored in the field project files when not in use. At the completion of the field activities, the field data sheets will be maintained in the central project file.

5.1.2 Sample Labeling

Each sample collected will be assigned a unique identification number in accordance with the sample nomenclature guidance included in Attachment D, and placed in an appropriate sample container. Each sample container will have a sample label affixed to the outside with the date and time of sample collection and project name. In addition, the label will contain the sample identification number, analysis required and chemical preservatives added, if any. All documentation will be completed in waterproof ink.

5.2 EQUIPMENT CALIBRATION AND PREVENTATIVE MAINTENANCE

A photoionization detector (PID) will be used during the sampling activities to evaluate work zone action levels and screen soil samples. Field calibration and/or field checking of

the PID will be the responsibility of the field team leader and the site HSO, and will be accomplished by following the procedures outlined in the operating manual for the instrument. At a minimum, field calibration and/or field equipment checking will be performed once daily, prior to use. Field calibration will be documented in the field notebook. Entries made into the logbook regarding the status of field equipment will include the following information:

- Date and time of calibration
- Type of equipment serviced and identification number (such as serial number)
- Reference standard used for calibration
- Calibration and/or maintenance procedure used
- Other pertinent information

Equipment that fails calibration or becomes inoperable during use will be removed from service and segregated to prevent inadvertent utilization. The equipment will be properly tagged to indicate that it is out of calibration. Such equipment will be repaired and recalibrated to the manufacturer's specifications by qualified personnel. Equipment that cannot be repaired will be replaced.

Off-site calibration and maintenance of field instruments will be conducted as appropriate throughout the duration of project activities. All field instrumentation, sampling equipment and accessories will be maintained in accordance with the manufacturer's recommendations and specifications and established field equipment practice. Off-site calibration and maintenance will be performed by qualified personnel. A logbook will be kept to document that established calibration and maintenance procedures have been followed. Documentation will include both scheduled and unscheduled maintenance.

5.3 SAMPLE COLLECTION

Soil Samples

Soil samples will be visually classified and field screened using a PID to assess potential impacts from VOCs and for health and safety monitoring. Soil samples collected for analysis of VOCs will be collected using either EnCore® or Terra Core® sampling equipment. For analysis of non-volatile parameters, samples will be homogenized and

placed into glass jars. After collection, all sample jars will be capped and securely tightened, and placed in iced coolers and maintained at 4°C ±2°C until they are transferred to the laboratory for analysis, in accordance with the procedures outlined in Section 5.4. Analysis and/or extraction and digestion of collected soil samples will meet the holding times required for each analyte as specified in Attachment C. In addition, analysis of collected soil sample will meet all quality assurance criteria set forth by this QAPP and DER-10.

Groundwater Samples

Groundwater sampling will be conducted using low-flow sampling procedures following USEPA guidance ("Low Stress [low flow] Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells", EQASOP-GW 004, January 19, 2017).

During purging, field parameters should be measured, including: water level drawdown, purge rate, pH, specific conductance, temperature, dissolved oxygen, turbidity and oxidation-reduction-potential (ORP), every five minutes using a water quality meter (Horiba U-52 or similar) and a depth-to-water interface probe that should be decontaminated between wells. Samples should generally not be collected until the field parameters have stabilized. Field parameters will be considered stable once three sets of measurements are within ±0.1 standard units for pH, ±3% for conductivity and temperature, ±10 millivolts for ORP, and ±10% for turbidity and dissolved oxygen. Purge rates should be adjusted to keep the drawdown in the well to less than 0.3 feet, as practical. Additionally, an attempt should be made to achieve a stable turbidity reading of less than 10 Nephelometric Turbidity Units (NTU) prior to sampling. If the turbidity reading does not stabilize at reading of less than 10 NTU for a given well, then both filtered and unfiltered samples should be collected from that well. If necessary, field filtration should be performed using a 0.45 micron disposable in-line filter. Groundwater samples should be collected after parameters have stabilized as noted above or the readings are within the precision of the meter. Deviations from the stabilization and drawdown criteria, if any, should be noted on the sampling logs.

Samples should be collected directly into laboratory-supplied jars. After collection, all sample jars will be capped and securely tightened, and placed in iced coolers and maintained at 4°C ±2°C until they are transferred to the laboratory for analysis, in accordance with the procedures outlined in Section 5.4. Analysis and/or extraction and digestion of collected groundwater samples will meet the holding times required for each

analyte as specified in Attachment C. In addition, analysis of collected groundwater sample will meet all quality assurance criteria set forth by this QAPP and DER-10.

Sample Field Blanks and Duplicates

Field blanks will be collected for quality assurance purposes at a rate of one per day per matrix for soil and groundwater emerging contaminant samples. Field blanks will be obtained by pouring laboratory-demonstrated analyte-free water on or through a decontaminated sampling device following use and implementation of decontamination protocols. The water will be collected off of the sampling device into a laboratory-provided sample container for analysis. Field blank samples will be analyzed for the complete list of analytes on the day of sampling.

Duplicate soil and groundwater samples will be collected and analyzed for quality assurance purposes. Duplicate samples will be collected at a frequency of 1 per 20 investigative soil samples per analysis and will be submitted to the laboratory as "blind" samples. If less than 20 samples are collected during a particular sampling event, one duplicate sample will be collected.

5.4 SAMPLE CONTAINERS AND HANDLING

Certified, commercially clean sample containers will be obtained from the analytical laboratory. If soil or groundwater samples are being collected, the laboratory will also prepare and supply the required trip blanks and field blank sample containers and reagent preservatives. Sample bottle containers, including the field blank containers, will be placed into plastic coolers by the laboratory. These coolers will be received by the field sampling team within 24 hours of their preparation in the laboratory. Prior to the commencement of field work, Langan field personnel will fill the plastic coolers with ice in Ziploc® bags (or equivalent) to maintain a temperature of 4° ±2° C.

Soil, groundwater and soil vapor samples collected in the field for laboratory analysis will be placed directly into the laboratory-supplied sample containers. Soil and groundwater samples will then be placed and stored on-ice in laboratory provided coolers until shipment to the laboratory. Blue ice will not be used to cool PFAS samples. The temperature in the coolers containing samples and associated field blanks will be maintained at a temperature of 4°±2°C while on-site and during sample shipment to the analytical laboratory.

Possession of samples collected in the field will be traceable from the time of collection until they are analyzed by the analytical laboratory or are properly disposed. Chain-of-custody procedures, described in Section 5.9, will be followed to maintain and document sample possession. Samples will be packaged and shipped as described in Section 5.6.

5.5 SPECIAL CONSIDERATIONS FOR PFAS SAMPLE COLLECTION

The following special considerations apply to the collection of soil and groundwater samples for PFAS analysis to prevent cross-contamination:

- Field equipment will not contain Teflon®
- All sampling material will be made from stainless steel, HDPE, acetate, silicon, or polypropylene
- No waterproof field books will be used
- No plastic clipboards, binders, or spiral hard cover notebooks will be used
- No adhesives will be used
- No sharpies or permanent markers will be used; ball point pens are acceptable
- Aluminum foil will not be used
- PFAS samples will be kept in a separate cooler from other sampling containers
- Coolers will be filled only with regular ice

DER has developed a PFAS target analyte list. At minimum, the laboratory will report the following PFAS target compounds:

Group	Analyte Name	Abbreviation	CAS#
		DEDA	075.00.4
	Perfluorobutanoic acid	PFBA	375-22-4
	Perfluoropentanoic acid	PFPeA	2706-90-3
	Perfluorohexanoic acid	PFHxA	307-24-4
	Perfluoroheptanoic acid	PFHpA	375-85-9
Dorfluoroallad	Perfluorooctanoic acid	PFOA	335-67-1
Perfluoroalkyl carboxylates	Perfluorononanoic acid	PFNA	375-95-1
Carboxylates	Perfluorodecanoic acid	PFDA	335-76-2
	Perfluoroundecanoic acid	PFUA/PFUdA	2058-94-8
	Perfluorododecanoic acid	PFDoA	307-55-1
	Perfluorotridecanoic acid	PFTriA/PFTrDA	72629-94-8
	Perfluorotetradecanoic acid	PFTA/PFTeDA	376-06-7

	Perfluorobutanesulfonic acid	PFBS	375-73-5
Danfleranaallod	Perfluorohexanesulfonic acid	PFHxS	355-46-4
Perfluoroalkyl sulfonates	Perfluoroheptanesulfonic acid	PFHpS	375-92-8
Sunonates	Perfluorooctanessulfonic acid	PFOS	1763-23-1
	Perfluorodecanesulfonic acid	PFDS	335-77-3
Fluorinated	6:2 Fluorotelomer sulfonate	6:2 FTS	27619-97-2
Telomer Sulfonates	8:2 Fluorotelomer sulfonate	8:2 FTS	39108-34-4
Perfluorooctane- sulfonamides	Perfluroroctanesulfonamide	FOSA	754-91-6
Perfluorooctane-	N-methyl perfluorooctanesulfonamidoacetic acid	N-MeFOSAA	2355-31-9
sulfonamidoacetic acids	N-ethyl perfluorooctanesulfonamidoacetic acid	N-EtFOSAA	2991-50-6

The PFAS compound sampling protocol is provided in Attachment E.

5.6 SAMPLE PRESERVATION

Sample preservation measures will be used in an attempt to prevent sample decomposition by contamination, degradation, biological transformation, chemical interactions and other factors during the time between sample collection and analysis. Preservation will commence at the time of sample collection and will continue until analyses are performed. Should chemical preservation be required, the analytical laboratory will add the preservatives to the appropriate sample containers before shipment to the office or field. Samples will be preserved according to the requirements of the specific analytical method selected, as shown in Attachment C.

5.7 SAMPLE SHIPMENT

5.7.1 Packaging

Soil and groundwater sample containers will be placed in plastic coolers. Ice in Ziploc® bags (or equivalent) will be placed around sample containers. Cushioning material will be added around the sample containers if necessary. Chains-of-custody and other paperwork will be placed in a Ziploc® bag (or equivalent) and placed inside the cooler. The cooler will be taped closed and custody seals will be affixed to one side of the cooler at a

minimum. If the samples are being shipped by an express delivery company (e.g. FedEx) then laboratory address labels will be placed on top of the cooler.

5.7.2 Shipping

Standard procedures to be followed for shipping environmental samples to the analytical laboratory are outlined below.

- All environmental samples will be transported to the laboratory by a laboratory-provided courier under the chain-of-custody protocols described in Section 5.9.
- Prior notice will be provided to the laboratory regarding when to expect shipped samples. If the number, type or date of shipment changes due to site constraints or program changes, the laboratory will be informed.

5.8 DECONTAMINATION PROCEDURES

Decontamination procedures will be used for non-dedicated sampling equipment. Decontamination of field personnel is discussed in the site-specific CHASP included in Appendix E of the RAWP. Field sampling equipment that is to be reused will be decontaminated in the field in accordance with the following procedures:

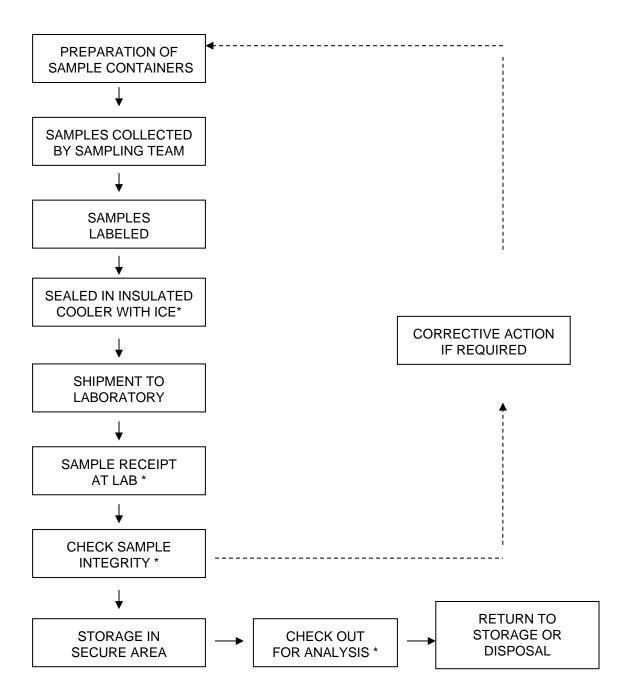
- 1. Laboratory-grade glassware detergent and tap water scrub to remove visual contamination
- 2. Generous tap water rinse
- 3. Distilled/de-ionized water rinse

5.9 RESIDUALS MANAGEMENT

Debris (e.g., paper, plastic and disposable PPE) will be collected in plastic garbage bags and disposed of as non-hazardous industrial waste. Debris is expected to be transported to a local municipal landfill for disposal. If applicable, residual solids (e.g., leftover soil cuttings) will be placed back in the borehole from which it was sampled. If gross contamination is observed, soil will be collected and stored in Department of Transportation (DOT)-approved 55-gallon drums in a designated storage area at the Site. The residual materials stored in a designated storage area at the site for further characterization, treatment or disposal.

Residual fluids (such as purge water) will be collected and stored in DOT-approved (or equivalent) 55-gallon drums in a designated storage area at the site. The residual fluids will be transported to the on-site wastewater treatment plant or analyzed, characterized and disposed off-site in accordance with applicable federal and state regulations. Residual fluids such as decontamination water may be discharged to the ground surface, however, if gross contamination is observed, the residual fluids will be collected, stored, and transported similar purge water or other residual fluids.

5.10 CHAIN OF CUSTODY PROCEDURES


A chain-of-custody protocol has been established for collected samples that will be followed during sample handling activities in both field and laboratory operations. The primary purpose of the chain-of-custody procedures is to document the possession of the samples from collection through shipping, storage and analysis to data reporting and disposal. Chain-of-custody refers to actual possession of the samples. Samples are considered to be in custody if they are within sight of the individual responsible for their security or locked in a secure location. Each person who takes possession of the samples, except the shipping courier, is responsible for sample integrity and safe keeping. Chain-of-custody procedures are provided below:

- Chain-of-custody will be initiated by the laboratory supplying the pre-cleaned and prepared sample containers. Chain-of-custody forms will accompany the sample containers.
- Following sample collection, the chain-of-custody form will be completed for the sample collected. The sample identification number, date and time of sample collection, analysis requested and other pertinent information (e.g., preservatives) will be recorded on the form. All entries will be made in waterproof, permanent blue or black ink.
- Langan field personnel will be responsible for the care and custody of the samples
 collected until the samples are transferred to another party, dispatched to the
 laboratory, or disposed. The sampling team leader will be responsible for
 enforcing chain-of-custody procedures during field work.
- When the form is full or when all samples have been collected that will fit in a single cooler, the sampling team leader will check the form for possible errors and sign the chain-of-custody form. Any necessary corrections will be made to the record with a single strike mark, dated, and initialed.

Sample coolers will be accompanied by the chain-of-custody form, sealed in a Ziploc® bag (or equivalent) and placed on top of the samples or taped to the inside of the cooler lid. If applicable, a shipping bill will be completed for each cooler and the shipping bill number recorded on the chain-of-custody form.

Samples will be packaged for shipment to the laboratory with the appropriate chain-of-custody form. A copy of the form will be retained by the sampling team for the project file and the original will be sent to the laboratory with the samples. Bills of lading will also be retained as part of the documentation for the chain-of-custody records, if applicable. When transferring custody of the samples, the individuals relinquishing and receiving custody of the samples will verify sample numbers and condition and will document the sample acquisition and transfer by signing and dating the chain-of-custody form. This process documents sample custody transfer from the sampler to the analytical laboratory. A flow chart showing a sample custody process is included as Figure 5.1, and chain-of-custody forms from Alpha are included as Figures 5.2 and 5.3.

Figure 5.1 Sample Custody

* REQUIRES SIGN-OFF ON CHAIN-OF-CUSTODY FORM

Figure 5.2 Sample Chain-of-Custody Form – Air Sample

ALPHA C		R ANALY	SIS	PAG	BE	OF	Date Re	ec'd in Lai	b:				1	ALP	ΉΑ	Job	#:		
ANALYTICAL	HAIN OF CUS		Informati	on			Report Information - Data Deliverables						Billing Information						
320 Forbes Blvd, Mansfiel TEL: 508-822-9300 FAX		Project N	Project Name:			□ FAX						☐ Same as Client info PO#:							
Client Information	ient Information						□ ADE	Ex iriteria Che	-cker										
Client:		Project #:]	(Default base	d an Regu	latory Crin	ovia Indicate	a)	- -						
Address:	_	Project M	anager:				Other Formats:						-	Reg	ulat	ory I	Requirements	Report Limits	
		ALPHA C	ALPHA Quote #:					litional Del					3	State	/Fed		Program	Res / Comm	
Phone:		Turn-A	round Tim	10			Report	to: or arreve	than Project	Manager)		$ \square$							
Fax:							-						- -			+			
Email:		□ Standa	rd 🗆	RUSH (ant): co	ntiresed if pre-est	(proved)						_			1A	IAL	YSIS		
Other Project Specific Project-Specific Tar	fic Requirement	s/Comments:	e:	1	Time:		<u> </u>					_ /	//	/	PS Parking High	ragingua h.	8		
ALPHA Lab ID		All Col						Sampler's		i t	I D - Flow	/,	70-15 Site		00 Gas	2009 & Mar	//		
(Lab Use Only)	Sample ID	End Date	COL Start Time	End Time	Initial Vacuum	Final Vacuum	Matrix*	Initials	Size	Can	Controller	/2/	/d/	₹/₫	1/8	//	Sample Con	ments (i.e. PID)	
												Ц	\perp	┸	L	Ш			
												Н				$ \ $			
												П	Т	Т	Г	П			
												П	\top	T	Т	П			
												Н	†	†	\vdash	Н	+		
												Н	$^{+}$	$^{+}$	\vdash	H			
												Н	+	+	\vdash	Н			
												Н	+	+	+	\forall	+		
												Н	+	+	+	\forall			
												Н	+	+	\vdash	\vdash			
																Ш			
*SAMPLE MATRIX CODES S		SV = Soil Vap	A = Ambient Air (IndoorOutdoor) V = Soil Vapor/Landfill Gas/SVE wher = Please Specify			Container Type										completely. Sar	Please print clearly, legibly and completely. Samples can not be		
		Relinqui	shed By:		Date	e/Time		Recei	ved By:				Date/Time			_	clock will not sta guittes are reso	logged in and tumaround time clock will not start until any ambi- guities are resolved. All samples submitted are subject to Alpha's	
Form No: 101-02 Rev: (25-Sep-15	51																Terms and Con See reverse sid	fitions.	

Figure 5.3 Sample Chain-of-Custody Form – Soil and Groundwater

Westberough, MA 01581 s Walkup Br. TEL 109-639-9220 FAX: 508-838-9193 Client Information Cilent: Address:	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Ferbas Blvd TEL 1030-022-0900 FAX: 508-822-3288	Service Centers Mattersh. N. 1940e. 15 Whitney I. Mattersh. N. 1940e. 15 Whitney II Tonssende, NY 14159: 275 Coop Project Information Project Name: Project Name: Project Mattersh. (Use Project name as Pro Project Manager: ALPHAQuote #: Turn-Around Time	Delivi	Date I in L ASP- EQuil: Other Intervention NY TO	A S (1 F Requi	ile) iremen	File)	ALPHA Job # Billing Information Same as Client Info Po # Disposal Site Information Please identify below location of applicable disposal facilities. Disposal Facility:							
Fax: Email:		Turn-Around Time								NJ NY NY Other:					
These samples have be Other project specific							ANA	LYSIS		_		_		_	Sample Filtration
Please specify Metals					Lab to do Preservation Lab to do (Please Specify below)										
ALPHA Lab ID (Lab Use Only)	Sa	ample ID	Colle	ection Time	Sample Matrix	Sampler's Initials								_	Sample Specific Comments
			<u></u> '	<u> </u>	<u> </u>		Ш	ш	Ш	ш		Ш	ш	╙	
			 '		——ˈ	<u> </u>	Щ	₩	L	Н		Ш	Ш	⊢	
			 -	 	├ ──	├ ──	├	₩	H	Н	_	H	\vdash	⊢	
			$\vdash \vdash \vdash$		-	\vdash	⊢	\vdash	Н	Н		Н	Н	⊢	+
						\vdash	\vdash	\vdash	\vdash	Н		Н	\vdash	\vdash	
	i -		\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	Н		\vdash	\vdash	\vdash	
Preservative Code: Container Code A = None P = Plastic B = HCI A = Amber Glass C = HNO ₃ V = Vial D = H ₂ SO ₄ G = Glass B = Restation Cur		Westboro: Certification No: MA935 Mansfield: Certification No: MA015				ntainer Type Preservative	++++								Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are
F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃	= NaOH B = Bacteria Cup • MeOH C = Cube • NaHSO ₄ O = Other • Na ₂ S ₂ O ₃ E = Encore E = Zn ActNaOH B = BoD Bottle		By:	Date/	Time		Receiv	ved By	r			Date	/Time		resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)

Laboratory chain-of-custody will be maintained throughout the analytical processes as described in the laboratory's Quality Assurance (QA) Manual. The analytical laboratory will provide a copy of the chain-of-custody in the analytical data deliverable package. The chain-of-custody becomes the permanent record of sample handling and shipment.

5.11 LABORATORY SAMPLE STORAGE PROCEDURES

The subcontracted laboratory will use a laboratory information management system (LIMS) to track and schedule samples upon receipt by the analytical laboratories. Any sample anomalies identified during sample log-in must be evaluated on individual merit for the impact upon the results and the data quality objectives of the project. When irregularities do exist, the environmental consultant must be notified to discuss recommended courses of action and documentation of the issue must be included in the project file.

For samples requiring thermal preservation, the temperature of each cooler will be immediately recorded. Each sample and container will be will be assigned a unique laboratory identification number and secured within the custody room walk-in coolers designated for new samples. Samples will be, as soon as practical, disbursed in a manner that is functional for the operational team. The temperature of all coolers and freezers will be monitored and recorded using a certified temperature sensor. Any temperature excursions outside of acceptance criteria (i.e., below 2°C or above 6°C) will initiate an investigation to determine whether any samples may have been affected. Samples for VOCs will be maintained in satellite storage areas within the VOC laboratory. Following analysis, the laboratory's specific procedures for retention and disposal will be followed as specified in the laboratory's SOPs and/or QA manual.

6.0 DATA REDUCTION, VALIDATION, AND REPORTING

6.1 INTRODUCTION

Data collected during the field investigation will be reduced and reviewed by the laboratory QA personnel, and a report on the findings will be tabulated in a standard format. The criteria used to identify and quantify the analytes will be those specified for the applicable methods in the USEPA SW-846 and subsequent updates. The data package provided by the laboratory will contain all items specified in the USEPA SW-846 appropriate for the analyses to be performed, and be reported in standard format.

The completed copies of the chain-of-custody records (both external and internal) accompanying each sample from time of initial bottle preparation to completion of analysis shall be attached to the analytical reports.

6.2 DATA REDUCTION

The Analytical Services Protocol (ASP) Category B data packages and an electronic data deliverable (EDD) will be provided by the laboratory after receipt of a complete sample delivery group. The Project Manager will immediately arrange for archiving the results and preparation of result tables. These tables will form the database for assessment of the site contamination condition.

Each EDD deliverable must be formatted using a Microsoft Windows operating system and the NYSDEC data deliverable format for EQuIS. To avoid transcription errors, data will be loaded directly into the ASCII format from the laboratory information management system (LIMS). If this cannot be accomplished, the consultant should be notified via letter of transmittal indicating that manual entry of data is required for a particular method of analysis. All EDDs must also undergo a QC check by the laboratory before delivery. The original data, tabulations, and electronic media are stored in a secure and retrievable fashion.

The Project Manager or Task Manager will maintain close contact with the QA reviewer to ensure all non-conformance issues are acted upon prior to data manipulation and assessment routines. Once the QA review has been completed, the Project Manager may direct the Team Leaders or others to initiate and finalize the analytical data assessment.

6.3 DATA VALIDATION

Data validation will be performed in accordance with the USEPA validation guidelines for organic and inorganic data review. Validation will include the following:

- Verification of the QC sample results,
- Verification of the identification of sample results (both positive hits and nondetects),
- Recalculation of 10% of all investigative sample results, and
- Preparation of Data Usability Summary Reports (DUSR).

A DUSR will be prepared and reviewed by the QAO before issuance. The DUSR will present the results of data validation, including a summary assessment of laboratory data packages, sample preservation and COC procedures, and a summary assessment of precision, accuracy, representativeness, comparability, and completeness for each analytical method. A detailed assessment of each SDG will follow. For each of the organic analytical methods, the following will be assessed:

- Holding times;
- Instrument tuning;
- Instrument calibrations;
- Blank results;
- System monitoring compounds or surrogate recovery compounds (as applicable);
- Internal standard recovery results;
- MS and MSD results;
- Target compound identification;
- Chromatogram quality;
- Pesticide cleanup (if applicable);
- Compound quantitation and reported detection limits;
- System performance; and
- Results verification.

Langan Project No. 170017004

For each of the inorganic compounds, the following will be assessed:

- Holding times;
- Calibrations;
- Blank results;
- Interference check sample;
- Laboratory check samples;
- Duplicates;
- Matrix Spike;
- Furnace atomic absorption analysis QC;
- ICP serial dilutions; and
- Results verification and reported detection limits.

Based on the results of data validation, the validated analytical results reported by the laboratory will be assigned one of the following usability flags:

- "U" Not detected. The associated number indicates the approximate sample concentration necessary to be detected significantly greater than the level of the highest associated blank;
- "UJ" Not detected. Quantitation limit may be inaccurate or imprecise;
- "J" Analyte is present. Reported value may be associated with a higher level of uncertainty than is normally expected with the analytical method
- "N" Tentative identification. Analyte is considered present in the sample;
- "R" Unreliable result; data is rejected or unusable. Analyte may or may not be present in the sample; and
- No Flag Result accepted without qualification.

6.4 REPORTING

Upon receipt of validated analytical results, NYSDEC format electronic data deliverables (EDDs), compatible with EQuIS, will be prepared and submitted to the NYSDEC.

7.0 QUALITY ASSURANCE PERFORMANCE AUDITS AND SYSTEM AUDITS

7.1 INTRODUCTION

Quality assurance audits may be performed by the project quality assurance group under the direction and approval of the QAO. These audits will be implemented to evaluate the capability and performance of project and subcontractor personnel, items, activities, and documentation of the measurement system(s). Functioning as an independent body and reporting directly to corporate quality assurance management, the QAO may plan, schedule, and approve system and performance audits based upon procedures customized to the project requirements. At times, the QAO may request additional personnel with specific expertise from company and/or project groups to assist in conducting performance audits. However, these personnel will not have responsibility for the project work associated with the performance audit.

7.2 SYSTEM AUDITS

System audits may be performed by the QAO or designated auditors, and encompass a qualitative evaluation of measurement system components to ascertain their appropriate selection and application. In addition, field and laboratory quality control procedures and associated documentation may be system audited. These audits may be performed once during the performance of the project. However, if conditions adverse to quality are detected or if the Project Manager requests, additional audits may occur.

7.3 PERFORMANCE AUDITS

The laboratory may be required to conduct an analysis of Performance Evaluation samples or provide proof that Performance Evaluation samples submitted by USEPA or a state agency have been analyzed within the past twelve months.

7.4 FORMAL AUDITS

Formal audits refer to any system or performance audit that is documented and implemented by the QA group. These audits encompass documented activities performed by qualified lead auditors to a written procedure or checklists to objectively verify that quality assurance requirements have been developed, documented, and instituted in accordance with contractual and project criteria. Formal audits may be performed on project and subcontractor work at various locations.

Audit reports will be written by auditors who have performed the site audit after gathering and evaluating all data. Items, activities, and documents determined by lead auditors to be in noncompliance shall be identified at exit interviews conducted with the involved management. Non-compliances will be logged, and documented through audit findings, which are attached to and are a part of the integral audit report. These audit-finding forms are directed to management to satisfactorily resolve the noncompliance in a specified and timely manner.

The Project Manager has overall responsibility to ensure that all corrective actions necessary to resolve audit findings are acted upon promptly and satisfactorily. Audit reports must be submitted to the Project Manager within fifteen days of completion of the audit. Serious deficiencies will be reported to the Project Manager within 24 hours. All audit checklists, audit reports, audit findings, and acceptable resolutions are approved by the QAO prior to issue. Verification of acceptable resolutions may be determined by re-audit or documented surveillance of the item or activity. Upon verification acceptance, the QAO will close out the audit report and findings.

8.0 CORRECTIVE ACTION

8.1 INTRODUCTION

The following procedures have been established to ensure that conditions adverse to quality, such as malfunctions, deficiencies, deviations, and errors, are promptly investigated, documented, evaluated, and corrected.

8.2 PROCEDURE DESCRIPTION

When a significant condition adverse to quality is noted at site, laboratory, or subcontractor location, the cause of the condition will be determined and corrective action will be taken to preclude repetition. Condition identification, cause, reference documents, and corrective action planned to be taken will be documented and reported to the QAO, Project Manager, Field Team Leader and involved contractor management, at a minimum. Implementation of corrective action is verified by documented follow-up action.

All project personnel have the responsibility, as part of the normal work duties, to promptly identify, solicit approved correction, and report conditions adverse to quality. Corrective actions will be initiated as follows:

- When predetermined acceptance standards are not attained;
- When procedure or data compiled are determined to be deficient;
- When equipment or instrumentation is found to be faulty;
- When samples and analytical test results are not clearly traceable;
- When quality assurance requirements have been violated;
- When designated approvals have been circumvented;
- As a result of system and performance audits;
- As a result of a management assessment;
- As a result of laboratory/field comparison studies; and
- As required by USEPA SW-846, and subsequent updates, or by the NYSDEC ASP.

Project management and staff, such as field investigation teams, remedial response planning personnel, and laboratory groups, monitor on-going work performance in the normal course of daily responsibilities. Work may be audited at the sites, laboratories, or

contractor locations. Activities, or documents ascertained to be noncompliant with quality assurance requirements will be documented. Corrective actions will be mandated through audit finding sheets attached to the audit report. Audit findings are logged, maintained, and controlled by the Task Manager.

Personnel assigned to quality assurance functions will have the responsibility to issue and control Corrective Action Request (CAR) Forms (Figure 12.1 or similar). The CAR identifies the out-of-compliance condition, reference document(s), and recommended corrective action(s) to be administered. The CAR is issued to the personnel responsible for the affected item or activity. A copy is also submitted to the Project Manager. The individual to whom the CAR is addressed returns the requested response promptly to the QA personnel, affixing his/her signature and date to the corrective action block, after stating the cause of the conditions and corrective action to be taken. The QA personnel maintain the log for status of CARs, confirms the adequacy of the intended corrective action, and verifies its implementation. CARs will be retained in the project file for the records.

Any project personnel may identify noncompliance issues; however, the designated QA personnel are responsible for documenting, numbering, logging, and verifying the close out action. The Project Manager will be responsible for ensuring that all recommended corrective actions are implemented, documented, and approved.

FIGURE 8.1

CORREC	CTIVE ACTIO	N REQUEST	
Number:	-	Date:	_
TO: You are hereby requested to tak determined by you to (a) resolve Your written response is to be	te corrective a	dition and (b) to p	revent it from recurring.
CONDITION:			
REFERENCE DOCUMENTS:			
RECOMMENDED CORRECTIVE ACTION	ONS:		
Originator Date Approval	Date	Approval	Date
RESPONSE			
CAUSE OF CONDITION			
CORRECTIVE ACTION			
(A) RESOLUTION			
(B) PREVENTION			
(C) AFFECTED DOCUMENTS			
C.A. FOLLOWUP:			
CORRECTIVE ACTION VERIFIED BY:			DATE:

9.0 REFERENCES

- NYSDEC. Division of Environmental Remediation. DER-10/Technical Guidance for Site Investigation and Remediation, dated May 3, 2010.
- NYSDEC. Sampling for 1,4-Dioxane and Per- and Polyfluoroalkyl Substances (PFAS) Under DEC's Part 375 Remedial Programs, dated June 2019.
- NYSDOH. Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, dated October 2006, updated May 2017.
- Taylor, J. K., 1987. Quality Assurance of Chemical Measurements. Lewis Publishers, Inc., Chelsea, Michigan
- USEPA, 2014. "Test Method for Evaluating Solid Waste," Update V dated July 2014 U.S. Environmental Protection Agency, Washington, D.C.
- USEPA, 2016. Region II Standard Operating Procedure (SOP) #HW-34, "Trace Volatile Data Validation" (July 2015, Revision 0), USEPA Hazardous Waste Support Section. USEPA Region II
- USEPA, 2016. Region II SOP #HW-35A, "Semivolatile Data Validation" (June 2015, Revision 0), USEPA Hazardous Waste Support Section. USEPA Region II
- USEPA, 2016. Region II SOP #HW-36A, "Pesticide Data Validation" (June 2015, Revision 0), USEPA Hazardous Waste Support Section. USEPA Region II
- USEPA, 2015. Region II SOP #HW-37A, "PCB Aroclor Data Validation" (June 2015, Revision 0), USEPA Hazardous Waste Support Section. USEPA Region II
- USEPA 2016. Region II SOP #HW-3a, "ICP-AES Data Validation" (July 2015, Revision 0), USEPA Hazardous Waste Support Section. USEPA Region II
- USEPA 2014. Hazardous Waste Support Section. Analysis of Volatile Organic Compounds in Air Contained in Canisters by Method TO-15. SOP No. HW-31, Revision 6, dated June 2014.
- USEPA 2017. National Functional Guidelines for Superfund Organic Methods Data Review, Office of Superfund Remediation and Technology Innovation, EPA-540-R-2017-002, January 2017.
- USEPA 2017b. National Functional Guidelines for Superfund Inorganic Methods Data Review, Office of Superfund Remediation and Technology Innovation, EPA-540-R-201 7-001, January 2017.

ATTACHMENT A Résumés

JASON J. HAYES, PE, LEED AP

PRINCIPAL/VICE PRESIDENT

ENVIRONMENTAL ENGINEERING

Mr. Hayes has experience in New York, New Jersey, Washington D.C., California, Washington, Oregon, Alaska, and Internationally. His experience includes Environmental Protection Agency (EPA), New York State (NYS) Brownfields applications, investigation, and remediation; New York City Department of Environmental Protection (NYCDEP) and New York City Office of Environmental Remediation (OER) E-designated site applications, investigations, and remediation. His expertise also includes Phase I and II Environmental Site Investigations and Assessments; contaminated building cleanup and Underground Storage Tank (UST) permitting, removal specifications, and closure reporting; soil vapor intrusion investigation and mitigation system design (depressurization systems, etc.); development of groundwater contaminant plume migration models; environmental analysis; and oversight, design and specification generation for remediation operations with contaminants of concern to include polychlorinated biphenyls (PCBs), solvents, mercury, arsenic, petroleum products, asbestos, mold and lead.

SELECTED PROJECTS

- Confidential Location (Remediation for Mercury-Contaminated Site), New York, NY
- Confidential Location (Phase II ESI and Remedial Design for Mercury Impacted Site), Brooklyn, NY
- NYC School Construction Authority (PCB Remediation), Various Locations, New York, NY
- 28-29 High Line (Phase I ESA, Phase II ESI, and Environmental Remediation), New York, NY
- Georgetown Heating Plant (Phase II ESI and Remedial Design for Mercury Impacted Site), Washington D.C.
- 268 West Street (BCP Application, RI and RIWP), New York, NY
- Confidential Multiple Mixed-Use Tower Location (BCP Application, RI, Phase I ESA, and Phase II ESI), New York, NY
- Dock 72 at Brooklyn Navy Yard, (NYS Voluntary Cleanup Program), Brooklyn, NY
- 27-21 44th Drive (BCP Application, Remedial Investigation Phase I ESA, and Phase II ESI), Long Island City, NY
- Purves Street Development, BCP Application, RAWP, and Phase II ESI, Long Island City, NY
- 267-273 West 87th Street (BCP Application, Remedial Investigation, RIWP, RAWP), New York, NY
- New York Aquarium, Shark Tank and Animal Care Facility (Environmental Remediation), Coney Island, NY
- International Leadership Charter School (Environmental Remediation), Bronx, NY
- West & Watts (BCP Application), New York, NY

EDUCATION

M.S., Environmental Engineering Columbia University

B.S., Chemistry, Environmental Toxicology Humboldt State University

Business Administration (minor) Humboldt State University

PROFESSIONAL REGISTRATION

Professional Engineer (PE) in NY

LEED Accredited Professional (LEED AP)

Troxler Certification for Nuclear Densometer Training

CPR and First Aid Certification

OSHA 40-Hour HAZWOPER

OSHA HAZWOPER Site Supervisor

AFFILIATIONS

US Green Building Council, NYC Chapter (USGBC), Communications Committee

JASON J. HAYES, PE, LEED AP

- Hudson Yards Redevelopment (Phase I ESA and Phase II ESI), New York, NY
- 627 Smith Street (RI and Report), Brooklyn, NY
- Gateway Center II Retail (Phase I ESA and Phase II ESI), Brooklyn,
- 261 Hudson Street (Phase I ESA, Phase II ESI, BCP, and RAWP), New York, NY
- Riverside Center, Building 2 (BCP, Phase I ESA and Phase II ESI), New York, NY
- New York Police Academy, (Sub-Slab Depressurization and Vapor Barrier System), College Point, NY
- Bronx Terminal Market (BCP, RIWP, RAWP, Phase I ESA and Phase II ESI), Bronx, NY
- Jacob Javits Convention Center (Phase I ESA and Phase II ESI), New York, NY
- Yankee Stadium Development Waterfront Park (NYSDEC Spill Sites), Bronx, NY
- Bushwick Inlet Park (Phase I ESA, Approvals for NYC E-Designation), Brooklyn, NY
- Silvercup West (BCP, RIWP, RIR, RAWP, and RAA), Long Island City, NY
- 29 Flatbush, Tall Residential Building (Groundwater Studies, RIR and RAWP), Brooklyn, NY
- Gowanus Village I (BCP, RIWP and RIR), Brooklyn, NY
- Sullivan Street Hotel (Site Characterization Study and Owner Representation), New York, NY
- Riker's Island Co-Generation Plant (Soil and Soil Vapor Quality Investigations), Bronx, NY
- The Shops at Atlas Park (Sub-Slab Depressurization and Vapor Barrier
 - Design), Glendale, NY
- Memorial Sloan-Kettering Cancer Center (Subsurface and Soil Vapor Intrusion Investigations), New York, NY
- Element West 59th Street (Oversight and Monitoring of Sub-Slab Depressurization and Vapor Barrier Systems), New York, NY
- Teterboro Airport (Delineation and Remedial Oversight of Petroleum-Contaminated Soils), Teterboro, NJ
- Proposed New York JETS Stadium (Phase I ESA), New York, NY
- Former Con Edison Manufactured Gas Plant Sites (Research Reports).
 - New York, NY
- 7 World Trade Center (Endpoint Sampling and Final Closure Report). New York, NY
- Peter Cooper Village, Environmental Subsurface Investigations, New York, NY

SELECTED PUBLICATIONS, REPORTS, AND PRESENTATIONS

NYC Mayor's Office of Environmental Remediation - Big Apple Brownfield Workshop - Presented on Soil Vapor Intrusion Remedies (e.g., SSD Systems, Vapor Barriers, Modified HVAC)

Urban Land Institute (ULI), member

Commercial Real Estate **Development Associations** (NAIOP), member

NYC Brownfield Partnership, member

JASON J. HAYES, PE, LEED AP

New York City Brownfield Partnership – Presented on environmental considerations and complications of the Hudson Yards Development

Waterfront Development Technical Course – Presented on Impacted Waterfront Planning Considerations

MICHAEL D. BURKE, PG, CHMM, LEED AP

PRINCIPAL/VICE PRESIDENT

ENVIRONMENTAL ENGINEERING AND REMEDIATION

Mr. Burke is a geologist/environmental scientist whose practice involves site investigation and remediation, transactional due diligence, environmental site assessments, in-situ remedial technology, and manufactured gas plant (MGP) site characterization and remediation. His additional services include multi-media compliance audits, sub-slab depressurization system design, non-hazardous and hazardous waste management, emergency response, community air monitoring programs, environmental and geotechnical site investigations, and health and safety monitoring. He has experience with projects in the New York State Department of Environmental Conservation (NYSDEC) and New York State Brownfield Cleanup (NYS BCP) Programs; Inactive Hazardous Waste, and Spill Programs, and New York City Office of Environmental Remediation (OER) e-designated and New York City Voluntary Cleanup Program (NYC VCP) sites.

SELECTED PROJECTS

- 227-14 North Conduit Avenue, Industrial Wastewater Compliance, Jamaica, NY
- 420 Kent Avenue, NYS Brownfield Cleanup Program, Brooklyn, NY
- 572 Eleventh Avenue, NYC VCP, New York, NY
- Monian Site A, OER E-Designated Site, New York, NY
- 537 Sackett Street, Gowanus Canal Due Diligence/MGP Site, Brooklyn, NY
- ABC Blocks 25, 26 and 27, NYS Brownfield Cleanup Program Sites, Long Island City, NY
- 432 Rodney Street, NYS Brownfield Cleanup Program, Petroleum and Chlorinated Volatile Organic Compound Investigation and Remediation, Brooklyn, NY
- 787 Eleventh Avenue, NYS Brownfield Cleanup Program Site, New York, NY
- President Street at Gowanus Canal, NYS Brownfield Cleanup Program Site, Brooklyn, NY
- 22-36 Second Avenue at Gowanus Canal, NYS Brownfield Cleanup Program Site, Brooklyn, NY
- 563 Sacket Street, NYS Brownfield Cleanup Program Site, MGP Investigation, and Remediation, Brooklyn, NY
- 156-162 Perry Street, NYS Brownfield Cleanup Program Site, New York, NY
- Christopher and Weehawken Streets, NYS Brownfield Cleanup Program, New York, NY
- Phelps Dodge Block 2529 (Lots 40, 50, and 45), Inactive Hazardous Waste Disposal Site, Maspeth NY
- 42-50 24th Street, NYS Brownfield Cleanup Program Site, Long Island City, NY
- Storage Deluxe (163 6th Street), OER E-Designation Site, New York, NY

EDUCATION

M.S., Environmental Geology Rutgers University

B.S., Geological Sciences Rutgers University

B.S., Environmental Science Rutgers University

PROFESSIONAL REGISTRATION

Professional Geologist (PG) in NY

Certified Hazardous Materials Manager – CHMM No. 15998

LEED Accredited Professional (LEED AP)

OSHA Certification for Hazardous Waste Site Supervisor

OSHA 29 CFR 1910.120 Certification for Hazardous Waste Operations and Emergency Response

NJDEP Certification for Community Noise Enforcement

Troxler Certification for Nuclear Densometer Training

- Prospect Park Redevelopment, Landfill Reclamation, Prospect Park, NJ
- 431 Carroll Street, Gowanus Canal Due Diligence, Brooklyn, NY
- 76 4th Street Property, Gowanus Due Diligence, Brooklyn, NY
- Foxgate/MREC, Due Diligence and Solid Waste Compliance, Central Islip, NY
- 175-225 3rd Street at Gowanus Canal, NYS Brownfield Cleanup Program, Brooklyn, NY
- New York University Tandon School of Engineering, Spill Investigation/Remediation Dual Phase Recovery, and Laser Fluorescence Investigation, Brooklyn, NY
- 2420-2430 Amsterdam Avenue, NYS Brownfield Cleanup Program/Board of Standards and Appeals Variance, New York, NY
- 170 Amsterdam Avenue, NYC VCP, New York, NY
- 538-540 Hudson Street, NYS Brownfield Cleanup Program (Former Gas Station), New York, NY
- 234 Butler Street, Gowanus Canal Due Diligence, Brooklyn, NY
- 550 Clinton Street, NYS Brownfield Cleanup Program E-Designation, Brooklyn, NY
- 111 Leroy Street, OER E-Designation Site, New York, NY
- 335 Bond Street, NYS Brownfield Cleanup Program, New York, NY
- Gowanus Canal Northside, NYS BCP Former Fuel Oil Terminal, Brooklyn, NY
- Multiple Buildings, Major Oil Storage Facility, Gowanus Canal Location, Brooklyn, NY
- 197-205 Smith Street at Gowanus Canal, MGP Due Diligence, Brooklyn, NY
- 450 Union Street at Gowanus Canal, NYS Brownfield Cleanup Program, Brooklyn, NY
- 86 Fleet Place, NYC VCP E-Designation, Brooklyn, NY
- New York University College of Nursing at 433 1st Avenue, NYS BCP, Bronx, NY
- Retail Building at 225 3rd Street, Brooklyn, NY
- 29-37 41st Avenue, NYS Brownfield Cleanup Program, Long Island City, NY
- 43-01 22nd Street, NYS Brownfield Cleanup Program, Long Island City, NY
- Compliance Audit for NYU at Washington Square Park, New York, NY
- Former Watermark Locations, NYS Brownfield Cleanup Program, Chlorinated Volatile Organic Compound Investigation and Remediation; AS/SVE, Brooklyn, NY
- Former Gas Station (1525 Bedford Avenue), Brooklyn, NY
- NYS Brownfield Cleanup Program at 514 West 24th Street, New York, NY
- Gowanus Canal Due Diligence at 76 4th Street, Brooklyn, NY
- Urban Health Plan, Medical Building, NYS Brownfield Cleanup Program CVOC Investigation and Remediation, Bronx, NY
- 420 East 54th Street, NYS Spill Closure, New York, NY
- Equity Residential at 160 Riverside Boulevard, NYS Spill Closure, New York, NY
- 357-359 West Street and 156 Leroy Street, NYC VCP, New York, NY
- Emergency Spill Response at 322 West 57th Street, Investigation and Closure, New York, NY

- Hurricane Sandy, Emergency Response at 21 West Street, New York, NY
- Hurricane Sandy, Emergency Response at 71 Pine Street, New York, NY
- Greenpoint Landing, NYC E-Designation, Brooklyn, NY
- 23-01 42nd Road, NYS Brownfield Cleanup Program, Long Island City, NY
- Greenpoint Waterfront Development, NYS Brownfield Cleanup Program, Brooklyn, NY
- 125th Street and Lenox Avenue, NYC VCP, New York, NY
- Whitehead Realty Solvent Site, Inactive Hazardous Waste site, CVOC
 - Investigation and Remediation, Brooklyn, NY
- SunCap Property Group Environmental On-Call Consulting, Various Locations, Nationwide
- Consolidated Edison Company of New York, Underground Storage Tank On-Call Contract, Five Boroughs of New York City, NY
- Consolidated Edison Company of New York, Appendix B Spill Sites On-Call Contract, Five Boroughs of New York City, NY
- Meeker Avenue Plume Trackdown Site, Brooklyn, NY
- Distribution Facility, Superfund Redevelopment, Long Island City, NY
- Edison Properties, West 17th Street Development Site (Former MGP Site), New York, NY
- Con Edison on Governors Island, Dielectric Fluid Spill, Investigation and Remediation, New York, NY
- 144-150 Barrow Street, NYS Brownfield Cleanup Program, New York, NY
- West 17th Street Development, NYS Brownfield Cleanup Program, MGP Investigation and Remediation, New York, NY
- Montefiore Medical Center, Emergency Response, PCB Remediation, Bronx, NY
- New York University, 4 Washington Square Village Fuel Oil Remediation, New York, NY
- NYCSCA, Proposed New York City School Construction Sites, Five Boroughs of New York City, NY
- Con Edison, East 60th Street Generating Station, New York, NY
- Residential Building at 82 Irving Place, Environmental Remediation, New York, NY
- 1113 York Avenue, Storage Tank Closures, New York, NY
- Peter Cooper Village/Stuyvesant Town, Phase I ESA, New York, NY
- Superior Ink, Waste Characterization and Remedial Action Plans, New York, NY
- Bronx Mental Health Redevelopment Project, Phase I ESA, Bronx, NY
- 2950 Atlantic Avenue, Site Characterization Investigation, Brooklyn, NY
- Con Edison, East 74th Street Generating Station, Sediment Investigation, New York, NY
- Con Edison, First Avenue Properties, New York, NY
- Queens West Development Corp. Stage II, Long Island City, NY
- Article X Project Environmental Reviews, Various New York State Electrical Generation Sites, NY
- Poletti Generating Station, Astoria, NY
- Arthur Kill Generating Station, Staten Island, NY

ANDY CIANCIA, PE, LEED AP, D.GE, F. ASCE

- Distribution Facility, Phase I & Phase II ESA and Regulatory Compliance, Bohemia, NY
- Huntington Station Superfund Due Diligence, Huntington Station, NY
- Garvies Point Bulkhead, Glen Cove, NY
- Johnson & Hoffman Metal Stamping Facility, Environmental Compliance, Carle Place, NY
- Floral Park Storage Facility, Phase I and Phase II ESA
- Garden City Phase I ESAs at two sites, including part of a Superfund Site, Garden City, NY
- Huntington Station Storage Facility, Phase I and II ESA, Huntington Station, NY

GERALD F. NICHOLLS, PE, CHMM

ASSOCIATE

ENVIRONMENTAL ENGINEERING & HAZARDOUS MATERIALS MANAGMENT

Mr. Nicholls' expertise includes management of remediation and site investigations, brownfield cleanups, remedial design, industrial hygiene, air monitoring and environmental health and safety projects including data collection, inspection and reporting for projects throughout New York and New Jersey. He works closely with various private, Department of Defense, state, commercial, industrial, and municipal clients, acting as a liaison between the client and project team.

As an Associate, Mr. Nicholls is responsible for supervising project staff; conducting technical review; maintaining quality control; budget forecasting and control; and managing the technical and financial aspects of active projects.

In 2019, Real Estate Weekly named Mr. Nicholls one of the Rising Stars of Real Estate.

SELECTED PROJECTS

- New York City School Construction Authority On-Call Contract for Hazmat Consulting Services, Various Locations, Five Boroughs of New York, NY
- G4 Capital third party due diligence reviews and environmental risk evaluations, Various Locations, New York, NY
- 140 6th Avenue, Sub-Membrane Depressurization System Design, Spill
 - Remediation, Subslab Remediation and Monitoring Well Piping Design, Remediation Oversight, and Construction Administration, New York, NY
- 23-01 42nd Road, Phase I, Phase II Remedial Investigation, Remedial Action Work Plan, Sub-Membrane Depressurization System Design,
 - Underground Storage Tank Closure and Remediation, Brownfield Cleanup Program, Remediation Oversight, Construction Administration, Long Island City, NY
- 23-10 Queens Plaza South, Phase I, Phase II Remedial Investigation, Remedial Action Work Plan, Sub-Membrane Depressurization System Design, Underground Storage Tank Closure and Remediation, Brownfield Cleanup Program, Remediation Oversight, Construction Administration, Long Island City, NY
- 170 Amsterdam Avenue, Remedial Action Work Plan, Voluntary Cleanup Program, Remediation Oversight, Construction Administration, New York, NY
- Urban Health Plan, Medical Building, DNAPL Delineation, Remedial Action Work Plan, Hazardous Waste Management and Minimization, Brownfield Cleanup Program, Bronx, NY

EDUCATION

M.S., Environmental Engineering New Jersey Institute of Technology

B.S., Chemistry and Environmental Studies (Double Major) Ursinus College

PROFESSIONAL REGISTRATION

Professional Engineer (PE) in NY

Certified Hazardous Materials Manager (CHMM)

AFFILIATIONS

City of Jersey City Environmental Commission, Former Commission, Vice Chair and Chair

Alliance of Hazardous Materials Professionals (AHMP)

Academy of Hazardous Materials Managers (ACHMM), NJ Chapter

American Chemical Society

GERALD F. NICHOLLS, PE, CHMM

- Whitehead Realty, Acme Sites, DNAPL Delineation, Site Characterization, Remedial Investigation and Reporting, Brooklyn, NY
- Second Avenue Subway, Air Monitoring and Ventilated Air Treatment Program, New York, NY
- West 17th Street Development, DNAPL Assessment, DNAPL Recovery, Remedial Design, Closure through Brownfield Cleanup Program, Remediation Oversight, Bid Documents, ISS and Containment Wall Design, Construction Administration, New York, NY
- New York University Spill Sites, 4 Washington Square Village, 7-13, Washington Square North, and 251 Mercer Street, Fuel Oil Spill Cleanup and Closure, New York, NY
- Dormitory Authority of New York (DASNY), City College of New York, Fuel Protection and Leak Detection System Repair and Upgrades, New York, NY
- Surfactant Remediation Project, In-Situ Chemical Oxidation Design and
 - Implementation and Site Closure, Margate City, NJ
- NYU Langone Medical Center, New Science Building, Remediation Oversight and Construction Administration, Voluntary Cleanup Program, New York, NY
- 86 Warren Street, Waste Characterization and Construction Documents, New York, NY
- 459 Smith Street, Due Diligence and Cost Estimating, Brooklyn, NY
- 491 Wortman Ave, Air Sparge/Soil Vapor Extraction Design and Implementation, Brownfield Cleanup Program, Bid Documents, Construction Administration, Brooklyn, NY
- Gowanus Canal Northside, Demolition and Decommissioning of MOSF.
 - Remediation Investigation, Brownfield Cleanup Program, Brooklyn, NY
- 163 6th Street, Phase I and Phase II Due Diligence, Spill Response, Remedial Action Work Plan, Brooklyn, NY
- 111 Leroy Street, New York, NY
- 45 Broad Street, Waste Characterization, Construction Documents, New York, NY
- 411 Broadway, Phase I, Remedial Investigation, Air/Noise Coordination for E-Designation, New York, NY
- Modera on the Hudson, Remediation Oversight, Remedial Action Work Plan, Submembrane Depressurization System Design, Yonkers. NY
- Honeywell Quanta, Remedial Design Peer Review, Edgewater, NJ
- New York University Tandon School of Engineering (Spill 1009933), Remediation, Laser-Induced Fluorescence Investigation, Remedial System Optimization, Product Recovery, Spill Cleanup, Brooklyn, NY
- 237-261 North 9th Street, Peer Review and Due Diligence, Brooklyn, NY

SELECTED PUBLICATIONS, REPORTS, AND PRESENTATIONS

Burke, M., Ciambruschini, S., Nicholls, G., Tashji, A., Vaidya, S., "Redeveloping a Remediated MGP Site", MGP Symposium 2019, Atlantic City, NJ.

Association of NJ Environmental Commissions (ANJEC) "Biodegradation Pathways and End Products of Sodium Dioctyl Sulfosuccinate/Sodium Hexadecyl Diphenyl Oxide Disulfonate Surfactant Solution." Florida Remediation Conference, Orlando, Florida, November 2005.

PAUL MCMAHON, PE

PROJECT MANAGER

ENVIRONMENTAL ENGINEERING

Mr. McMahon is an environmental engineer working in the NY Metro area. He has experience with projects in the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP), Voluntary Cleanup Program (VCP) and Spill Programs, and New York City Office of Environmental Remediation (NYCOER) "E" Designated and VCP sites. His field experience includes conducting Phase II Environmental Site Investigations (ESI), remedial investigations, and indoor air quality analysis Investigations, and performing remediation oversight. Mr. McMahon's most recent experience includes the preparation of investigation reports and investigation work plans, management of NYSDEC BCP remediation projects and NYSDEC spill remediation projects, design of submembrane depressurization systems, and development of remediation work plans.

SELECTED PROJECTS

- 55 Bank Street, NYSDEC BCP Site Remediation Project Management, White Plains, NY
- 23-01 42nd Road, NYSDEC BCP Site Remediation Oversight and Project Management, Long Island City, NY
- 23-10 Queens Plaza South, NYSDEC BCP Remedial Investigation Report, Interim Remedial Measures Work Plan, and Remediation Project Management, Long Island City, NY
- Brooklyn Navy Yard Dock 72, Management of Environmental Oversight in Accordance with NYSDEC VCP Site Management Plan, Brooklyn, NY
- Purves Street Development, Tall Residential Building, Phase II ESI/NYSDEC BCP Remedial Investigation, Remedial Action Work Plan, and Site Remediation Project Management, Long Island City, NY
- 27-21 44th Drive, NYSDEC BCP Site Remediation Project Management, Long Island City, NY
- NYU Tandon School of Engineering, NYSDEC Spill Investigation and Remediation Project Management, Brooklyn, NY
- Parcel B West, East Harlem, Affordable Housing Development, NYSDEC BCP Remedial Investigation, Remedial Action Work Plan, and Site Remediation Project Management, New York, NY
- 267-273 West 87th Street, NYSDEC BCP Remedial Investigation and Remedial Action Work Plan, and Site Remediation Project Management, New York, NY
- DuPont-Stauffer Landfill, NYSDEC Superfund Site, Site Management Plan Compliance, Newburgh, NY
- 190 Riverside Drive, Fuel Oil Spill Emergency Response, Site Investigation, and Remediation, New York, NY
- 473 President Street, NYSDEC BCP Remedial Investigation, Interim Remedial Measures, Project Management, Brooklyn, NY

EDUCATION

M.E., Environmental Engineering Manhattan College

B.S., Civil Engineering Washington University in St. Louis

PROFESSIONAL REGISTRATION

Professional Engineer (PE) in NY

10-Hour OSHA

40-Hour OSHA HAZWOPER

PAUL MCMAHON, PE

- 175-225 3rd Street, NYSDEC BCP Remedial Investigation, Project Management, Brooklyn, NY 322 West 57th Street, Sheffield Building Oversight of Emergency Spill Response, New York, NY
- Hudson Yards Terra Firma and Hudson Yards Platform, Construction Oversight and Community Air Monitoring Program, New York, NY
- Columbia University Manhattanville Redevelopment, Remediation Oversight and Community Air Monitoring Program, New York, NY

Emily G. Strake

Project Chemist/ Risk Assessor Environmental Engineering

14 years in the industry ~ 2 years with Langan

Ms. Strake has fourteen years of environmental chemistry, risk assessment, auditing, and quality assurance experience. Most recently, she has focused her efforts on human health risk assessment, and has been the primary author or key contributor of risk assessment reports and screening evaluations for projects governed under RCRA, CERCLA, SWRCB, DTSC, DNREC, PADEP, NJDEP, CTDEEP, ODEQ, NYSDEC and MDE. She has experience in sitespecific strategy development, which has enabled her to perform assessments to focus areas of investigation and identify risk-based alternatives for reducing remediation costs.

Ms. Strake has broad experience in the development of preliminary remediation goals and site-specific action levels. She is proficient with the USEPA and Cal/ EPA Johnson and Ettinger Models for Subsurface Vapor Intrusion into Buildings, USEPA's Adult Lead Methodology, DTSC's Leadspread 7 and 8, and statistical evaluation of data using USEPA's ProUCL software. Ms. Strake is a member of the Interstate Technology and Regulatory Council Risk Assessment Team responsible for the development and review of organizational risk assessment guidance documents and serves as a National Trainer in risk assessment for the organization.

Selected Projects

- •Major League Soccer's San Jose Earthquakes Stadium, Santa Clara, CA
- DuPont, Waynesboro, VA
- PECO/Exelon, Various Locations
- •Texas Instruments, San Francisco, CA
- •Regency, Philadelphia, PA
- ·Veteran's Affairs, Palo Alto, CA
- •DOW Chemical, Various Locations
- Avon, Rye, NY
- •Golden Gate National Parks Conservancy, San Francisco, CA
- •Sunoco Refineries, Various Locations
- ·Honeywell, Highland Park, NJ
- Delaware City Refinery, DE
- ·Occidental Chemical, Bakersfield, CA
- Floreffe Terminal, Pittsburgh, PA
- •Ryder, Hartford, CT
- •Rohm and Haas, Philadelphia, PA

MBA The University of Scranton

B.S., Chemistry Cedar Crest College

Training

40 hr. OSHA HAZWOPER Training/Nov

8 hr. HAZWOPER Supervisor/June 2004

8 hr. OSHA HAZWOPER Refresher/2013

WILLIAM BOHRER, PG

PROJECT GEOLOGIST
GEOLOGIST

Mr. Bohrer is an experienced geologist responsible for managing Langan's environmental standards and Health and Safety compliance for projects throughout New York City. His services include dissemination of environmental protocols, troubleshooting at project sites, in-house/field training, and maintenance of quality standards across the environmental discipline. Mr. Bohrer has a diverse and extensive background in geophysics, hydrogeology, mining and petroleum, and geotechnical engineering. He has developed conceptual site models for public, industrial and commercial facilities nationwide.

SELECTED PROJECTS

- NYU Poly 122 Johnson Street, Brooklyn, NY
- Con Edison of New York at Governor's Island, NY, NY
- 535 4th Avenue, Brooklyn, NY
- 27 Wooster Street, New York, NY
- 42 West Street, Brooklyn, NY
- 455 West 19th Street, New York, NY
- Kings Plaza Mall, Brooklyn, NY
- Hudson Yards "Terra Firma", New York, NY
- Hudson Yards, Platform Special Inspection, New York, NY
- PSAC II, Bronx, NY
- 595-647 Smith Street, Brooklyn, NY
- New York University, 7-13 Washington Square North Investigation, New York, NY
- NYU 4 Washington Square Village, New York, NY
- 125th Street and Lenox Avenue, New York, NY
- Sullivan Street Development, New York, NY
- Hudson Crossing II, New York, NY
- New York Aquarium, Shark Tank & Animal Care Facility, Brooklyn, NY
- 209-219 Sullivan Street, New York, NY
- 261 Hudson Street, New York, NY
- 460 Washington Street, New York, NY
- 552 West 24th Street, New York, NY
- Brooklyn Bridge Park Pier 1, New York, NY
- International Leadership Bronx Charter School, Bronx, NY
- 203 East 92nd Street, New York, NY
- HighLine 28-29, New York, NY
- 539 Smith Street Bulkhead, Brooklyn, NY
- · Willets Point, Corona, NY
- Plume Migration and Fracture Flow Aquifer Investigation, Brunswick, MD
- Plume Migration and Fracture Flow Aquifer Investigation, Fallston, MD
- Emergency Response Site Investigation & Remediation, Wappingers Falls, NY

EDUCATION

Post Graduate Studies in Geophysics Cornell University

B.S., Geology Tufts University

PROFESSIONAL REGISTRATION

Professional Geologist (PG) in NY

40 Hour OSHA HazWOPER

OSHA Construction Safety & Health

OSHA Supervisory Certification Credential (TWIC)

Transportation Worker Identification

NYS DEC- Protecting New York's Natural Resources with Better Construction Site Management

AFFILIATIONS

American Association of Petroleum Geologists

National Groundwater Association

Geological Society of America

LANGAN

ANDY CIANCIA, PE, LEED AP, D.GE, F. ASCE

- Emergency Response Site Investigation & Remediation, Allentown, PA
- Emergency Response Site Investigation & Remediation, Shamokin, PA
- Bermuda International Airport, Jet Fuel Release Investigation, Bermuda
- Little Missouri River Basin, Geotechnical Site Evaluation (Horizontal Drilling Pipeline Install), ND
- Seismic Susceptibility Evaluation (Class 2 Injection Wells), Litchfield, OH
- Bedrock Mapping, Bradford and Sullivan Counties, PA
- Soil Solidification, Carteret, NJ

PA Council of Professional Geologists

ATTACHMENT B Laboratory Reporting Limits and Method Detection Limits

Date Created: 04/13/18 Created By: Ben Rao File: PM4764-2 Page: 1

TCL Volatiles - EPA 8260C/5035 High&Low (SOIL)

Holding Time: 14 days

Container/Sample Preservation: 1 - 1 Vial MeOH/2 Vial Water

		l			LCS		MS		Duplicate	Surrogate	1
Analyte	CAS #	RL	MDL	Units	Criteria	LCS RPD	Criteria	MS RPD	RPD	Criteria	
Methylene chloride	75-09-2	0.01	0.00165	mg/kg	70-130	30	70-130	30	30		
1,1-Dichloroethane	75-34-3	0.0015	0.00027	mg/kg	70-130	30	70-130	30	30		
Chloroform	67-66-3	0.0015	0.00037	mg/kg	70-130	30	70-130	30	30		
Carbon tetrachloride	56-23-5	0.001	0.000345	mg/kg	70-130	30	70-130	30	30		
1,2-Dichloropropane	78-87-5	0.0035	0.000228	mg/kg	70-130	30	70-130	30	30		
Dibromochloromethane	124-48-1	0.001	0.000176	mg/kg	70-130	30	70-130	30	30		
1,1,2-Trichloroethane	79-00-5	0.0015	0.000313	mg/kg	70-130	30	70-130	30	30		
Tetrachloroethene	127-18-4	0.001	0.000302	mg/kg	70-130	30	70-130	30	30		
Chlorobenzene	108-90-7	0.001	0.000348	mg/kg	70-130	30	70-130	30	30		
Trichlorofluoromethane	75-69-4	0.005	0.000417	mg/kg	70-139	30	70-139	30	30		
1,2-Dichloroethane	107-06-2	0.001	0.000246	mg/kg	70-130	30	70-130	30	30		
1,1,1-Trichloroethane	71-55-6	0.001	0.00035	mg/kg	70-130	30	70-130	30	30		
Bromodichloromethane	75-27-4	0.001	0.000308	mg/kg	70-130	30	70-130	30	30		
trans-1,3-Dichloropropene	10061-02-6	0.001	0.000208	mg/kg	70-130	30	70-130	30	30		
cis-1,3-Dichloropropene	10061-01-5	0.001	0.000231	mg/kg	70-130	30	70-130	30	30		
1,3-Dichloropropene, Total	542-75-6	0.001	0.000208	mg/kg				30	30		
1,3-Dichloropropene, Total	542-75-6	0.001	0.000208	mg/kg				30	30		
1,1-Dichloropropene	563-58-6	0.005	0.000328	mg/kg	70-130	30	70-130	30	30		
Bromoform	75-25-2	0.004	0.000237	mg/kg	70-130	30	70-130	30	30		
1,1,2,2-Tetrachloroethane	79-34-5	0.001	0.000298	mg/kg	70-130	30	70-130	30	30		
Benzene	71-43-2	0.001	0.000193	mg/kg	70-130	30	70-130	30	30		
Toluene	108-88-3	0.0015	0.000195	mg/kg	70-130	30	70-130	30	30		
Ethylbenzene	100-41-4	0.001	0.00017	mg/kg	70-130	30	70-130	30	30		
Chloromethane	74-87-3	0.005	0.000436	mg/kg	52-130	30	52-130	30	30		
Bromomethane	74-83-9	0.002	0.000338	mg/kg	57-147	30	57-147	30	30		
Vinyl chloride	75-01-4	0.002	0.000315	mg/kg	67-130	30	67-130	30	30		
Chloroethane	75-00-3	0.002	0.000316	mg/kg	50-151	30	50-151	30	30		
1,1-Dichloroethene	75-35-4	0.001	0.000372	mg/kg	65-135	30	65-135	30	30		
trans-1,2-Dichloroethene	156-60-5	0.0015	0.000241	mg/kg	70-130	30	70-130	30	30		
Trichloroethene	79-01-6	0.001	0.000302	mg/kg	70-130	30	70-130	30	30		
1,2-Dichlorobenzene	95-50-1	0.005	0.000182	mg/kg	70-130	30	70-130	30	30		
1,3-Dichlorobenzene	541-73-1	0.005	0.000218	mg/kg	70-130	30	70-130	30	30		
1,4-Dichlorobenzene	106-46-7	0.005	0.000182	mg/kg	70-130	30	70-130	30	30		
Methyl tert butyl ether	1634-04-4	0.002	0.000153	mg/kg	66-130	30	66-130	30	30		
p/m-Xylene	179601-23-1	0.002	0.000351	mg/kg	70-130	30	70-130	30	30		
o-Xylene	95-47-6	0.002	0.000338	mg/kg	70-130	30	70-130	30	30		
Xylene (Total)	1330-20-7	0.002	0.000338	mg/kg				30	30		
Xylene (Total)	1330-20-7	0.002	0.000338	mg/kg				30	30		
cis-1,2-Dichloroethene	156-59-2	0.001	0.000342	mg/kg	70-130	30	70-130	30	30		
1,2-Dichloroethene (total)	540-59-0	0.001	0.000241	mg/kg	1			30	30		
1,2-Dichloroethene (total)	540-59-0	0.001	0.000241	mg/kg				30	30		
Dibromomethane	74-95-3	0.01	0.000239	mg/kg	70-130	30	70-130	30	30		

Date Created: 04/13/18 Created By: Ben Rao File: PM4764-2 Page: 2

TCL Volatiles - EPA 8260C/5035 High&Low (SOIL)

Holding Time: 14 days

Container/Sample Preservation: 1 - 1 Vial MeOH/2 Vial Water

			1		LCS		MS		Duplicate	Surrogate	
Analyte	CAS #	RL	MDL	Units	Criteria	LCS RPD	Criteria	MS RPD	RPD	Criteria	
Styrene	100-42-5	0.002	0.000401	mg/kg	70-130	30	70-130	30	30		
Dichlorodifluoromethane	75-71-8	0.01	0.0005	mg/kg	30-146	30	30-146	30	30		
Acetone	67-64-1	0.01	0.00229	mg/kg	54-140	30	54-140	30	30		
Carbon disulfide	75-15-0	0.01	0.0011	mg/kg	59-130	30	59-130	30	30		
2-Butanone	78-93-3	0.01	0.00069	mg/kg	70-130	30	70-130	30	30		
Vinyl acetate	108-05-4	0.01	0.000153	mg/kg	70-130	30	70-130	30	30		
4-Methyl-2-pentanone	108-10-1	0.01	0.000244	mg/kg	70-130	30	70-130	30	30		
1,2,3-Trichloropropane	96-18-4	0.01	0.000177	mg/kg	68-130	30	68-130	30	30		
2-Hexanone	591-78-6	0.01	0.000666	mg/kg	70-130	30	70-130	30	30		
Bromochloromethane	74-97-5	0.005	0.000357	mg/kg	70-130	30	70-130	30	30		
2,2-Dichloropropane	594-20-7	0.005	0.00045	mg/kg	70-130	30	70-130	30	30		
1,2-Dibromoethane	106-93-4	0.004	0.000199	mg/kg	70-130	30	70-130	30	30		
1,3-Dichloropropane	142-28-9	0.005	0.000183	mg/kg	69-130	30	69-130	30	30		
1,1,1,2-Tetrachloroethane	630-20-6	0.001	0.000318	mg/kg	70-130	30	70-130	30	30		
Bromobenzene	108-86-1	0.005	0.000219	mg/kg	70-130	30	70-130	30	30		1
n-Butylbenzene	104-51-8	0.001	0.000228	mg/kg	70-130	30	70-130	30	30		1
sec-Butylbenzene	135-98-8	0.001	0.000217	mg/kg	70-130	30	70-130	30	30		
tert-Butylbenzene	98-06-6	0.005	0.000247	mg/kg	70-130	30	70-130	30	30		
o-Chlorotoluene	95-49-8	0.005	0.000221	mg/kg	70-130	30	70-130	30	30		
p-Chlorotoluene	106-43-4	0.005	0.000183	mg/kg	70-130	30	70-130	30	30		
1,2-Dibromo-3-chloropropane	96-12-8	0.005	0.000396	mg/kg	68-130	30	68-130	30	30		1
Hexachlorobutadiene	87-68-3	0.005	0.000348	mg/kg	67-130	30	67-130	30	30		
Isopropylbenzene	98-82-8	0.001	0.000194	mg/kg	70-130	30	70-130	30	30		
p-Isopropyltoluene	99-87-6	0.001	0.000202	mg/kg	70-130	30	70-130	30	30		
Naphthalene	91-20-3	0.005	0.000138	mg/kg	70-130	30	70-130	30	30		1
Acrylonitrile	107-13-1	0.01	0.000514	mg/kg	70-130	30	70-130	30	30		
n-Propylbenzene	103-65-1	0.001	0.000215	mg/kg	70-130	30	70-130	30	30		
1,2,3-Trichlorobenzene	87-61-6	0.005	0.000251	mg/kg	70-130	30	70-130	30	30		
1,2,4-Trichlorobenzene	120-82-1	0.005	0.000215	mg/kg	70-130	30	70-130	30	30		
1,3,5-Trimethylbenzene	108-67-8	0.005	0.000161	mg/kg	70-130	30	70-130	30	30		
1,2,4-Trimethylbenzene	95-63-6	0.005	0.000186	mg/kg	70-130	30	70-130	30	30		
1,4-Dioxane	123-91-1	0.04	0.0144	mg/kg	65-136	30	65-136	30	30		
1,4-Diethylbenzene	105-05-5	0.004	0.004	mg/kg	70-130	30	70-130	30	30		
4-Ethyltoluene	622-96-8	0.004	0.000234	mg/kg	70-130	30	70-130	30	30		
1,2,4,5-Tetramethylbenzene	95-93-2	0.004	0.000156	mg/kg	70-130	30	70-130	30	30		1
Ethyl ether	60-29-7	0.005	0.00026	mg/kg	67-130	30	67-130	30	30		
trans-1,4-Dichloro-2-butene	110-57-6	0.005	0.000392	mg/kg	70-130	30	70-130	30	30		
1,2-Dichloroethane-d4	17060-07-0			1						70-130	
2-Chloroethoxyethane	İ				1						1
Toluene-d8	2037-26-5			1				1		70-130	1
4-Bromofluorobenzene	460-00-4			1						70-130	
Dibromofluoromethane	1868-53-7			1		1		1		70-130	

Date Created: 04/13/18 Created By: Ben Rao File: PM4764-2

Page: 1

NYTCL Semivolatiles - EPA 8270D (SOIL)

Holding Time: 14 days

Container/Sample Preservation: 1 - Glass 250ml/8oz unpreserved

	1	1			LCS		MS		Duplicate	Surrogate	
Analyte	CAS #	RL	MDL	Units	Criteria	LCS RPD	Criteria	MS RPD	RPD	Criteria	
Acenaphthene	83-32-9	0.1332	0.0172494	mg/kg	31-137	50	31-137	50	50		
1,2,4-Trichlorobenzene	120-82-1	0.1665	0.0190476	mg/kg	38-107	50	38-107	50	50		
Hexachlorobenzene	118-74-1	0.0999	0.018648	mg/kg	40-140	50	40-140	50	50		
Bis(2-chloroethyl)ether	111-44-4	0.14985	0.0225774	mg/kg	40-140	50	40-140	50	50		
2-Chloronaphthalene	91-58-7	0.1665	0.0165168	mg/kg	40-140	50	40-140	50	50		
1,2-Dichlorobenzene	95-50-1	0.1665	0.0299034	mg/kg	40-140	50	40-140	50	50		
1,3-Dichlorobenzene	541-73-1	0.1665	0.028638	mg/kg	40-140	50	40-140	50	50		
1,4-Dichlorobenzene	106-46-7	0.1665	0.0290709	mg/kg	28-104	50	28-104	50	50		
3,3'-Dichlorobenzidine	91-94-1	0.1665	0.044289	mg/kg	40-140	50	40-140	50	50		
2,4-Dinitrotoluene	121-14-2	0.1665	0.0333	mg/kg	40-132	50	40-132	50	50		
2,6-Dinitrotoluene	606-20-2	0.1665	0.0285714	mg/kg	40-140	50	40-140	50	50		
Fluoranthene	206-44-0	0.0999	0.0191142	mg/kg	40-140	50	40-140	50	50		
4-Chlorophenyl phenyl ether	7005-72-3	0.1665	0.0178155	mg/kg	40-140	50	40-140	50	50		
4-Bromophenyl phenyl ether	101-55-3	0.1665	0.0254079	mg/kg	40-140	50	40-140	50	50		
Bis(2-chloroisopropyl)ether	108-60-1	0.1998	0.0284382	mg/kg	40-140	50	40-140	50	50		
Bis(2-chloroethoxy)methane	111-91-1	0.17982	0.0166833	mg/kg	40-117	50	40-117	50	50		
Hexachlorobutadiene	87-68-3	0.1665	0.0243756	mg/kg	40-140	50	40-140	50	50		
Hexachlorocyclopentadiene	77-47-4	0.47619	0.150849	mg/kg	40-140	50	40-140	50	50		
Hexachloroethane	67-72-1	0.1332	0.0269397	mg/kg	40-140	50	40-140	50	50		
Isophorone	78-59-1	0.14985	0.0216117	mg/kg	40-140	50	40-140	50	50		
Naphthalene	91-20-3	0.1665	0.0202797	mg/kg	40-140	50	40-140	50	50		
Nitrobenzene	98-95-3	0.14985	0.024642	mg/kg	40-140	50	40-140	50	50		
NitrosoDiPhenylAmine(NDPA)/DPA	86-30-6	0.1332	0.0189477	mg/kg	36-157	50	36-157	50	50		
n-Nitrosodi-n-propylamine	621-64-7	0.1665	0.0257076	mg/kg	32-121	50	32-121	50	50		
Bis(2-Ethylhexyl)phthalate	117-81-7	0.1665	0.057609	mg/kg	40-140	50	40-140	50	50		
Butyl benzyl phthalate	85-68-7	0.1665	0.041958	mg/kg	40-140	50	40-140	50	50		
Di-n-butylphthalate	84-74-2	0.1665	0.0315684	mg/kg	40-140	50	40-140	50	50		
Di-n-octylphthalate	117-84-0	0.1665	0.05661	mg/kg	40-140	50	40-140	50	50		
Diethyl phthalate	84-66-2	0.1665	0.0154179	mg/kg	40-140	50	40-140	50	50		
Dimethyl phthalate	131-11-3	0.1665	0.034965	mg/kg	40-140	50	40-140	50	50		
Benzo(a)anthracene	56-55-3	0.0999	0.0187479	mg/kg	40-140	50	40-140	50	50		
Benzo(a)pyrene	50-32-8	0.1332	0.040626	mg/kg	40-140	50	40-140	50	50		
Benzo(b)fluoranthene	205-99-2	0.0999	0.0280386	mg/kg	40-140	50	40-140	50	50		
Benzo(k)fluoranthene	207-08-9	0.0999	0.02664	mg/kg	40-140	50	40-140	50	50		
Chrysene	218-01-9	0.0999	0.017316	mg/kg	40-140	50	40-140	50	50		
Acenaphthylene	208-96-8	0.1332	0.0257076	mg/kg	40-140	50	40-140	50	50		
Anthracene	120-12-7	0.0999	0.0324675	mg/kg	40-140	50	40-140	50	50		
Benzo(ghi)perylene	191-24-2	0.1332	0.0195804	mg/kg	40-140	50	40-140	50	50		
Fluorene	86-73-7	0.1665	0.0161838	mg/kg	40-140	50	40-140	50	50		
Phenanthrene	85-01-8	0.0999	0.0202464	mg/kg	40-140	50	40-140	50	50		
Dibenzo(a,h)anthracene	53-70-3	0.0999	0.0192474	mg/kg	40-140	50	40-140	50	50		
Indeno(1,2,3-cd)Pyrene	193-39-5	0.1332	0.0232101	mg/kg	40-140	50	40-140	50	50		

Date Created: 04/13/18 Created By: Ben Rao File: PM4764-2 Page: 2

NYTCL Semivolatiles - EPA 8270D (SOIL)

Holding Time: 14 days

Container/Sample Preservation: 1 - Glass 250ml/8oz unpreserved

	<u> </u>		1		LCS	1	MS		Duplicate	Surrogate	T
Analyte	CAS#	RL	MDL	Units	Criteria	LCS RPD	Criteria	MS RPD	RPD	Criteria	
Pyrene	129-00-0	0.0999	0.0165501	mg/kg	35-142	50	35-142	50	50	Criccia	
Biphenyl	92-52-4	0.37962	0.038628	mg/kg	54-104	50	54-104	50	50		
4-Chloroaniline	106-47-8	0.1665	0.030303	mg/kg	40-140	50	40-140	50	50		
2-Nitroaniline	88-74-4	0.1665	0.0321012	mg/kg	47-134	50	47-134	50	50		
3-Nitroaniline	99-09-2	0.1665	0.0314019	mg/kg	26-129	50	26-129	50	50		
4-Nitroaniline	100-01-6	0.1665	0.068931	mg/kg	41-125	50	41-125	50	50		
Dibenzofuran	132-64-9	0.1665	0.0157509	mg/kg	40-140	50	40-140	50	50		
2-Methylnaphthalene	91-57-6	0.1998	0.0201132	mg/kg	40-140	50	40-140	50	50		
Acetophenone	98-86-2	0.1665	0.0206127	mg/kg	14-144	50	14-144	50	50		
2,4,6-Trichlorophenol	88-06-2	0.0999	0.0315684	mg/kg	30-130	50	30-130	50	50		
P-Chloro-M-Cresol	59-50-7	0.1665	0.0248085	mg/kg	26-103	50	26-103	50	50		
2-Chlorophenol	95-57-8	0.1665	0.0196803	mg/kg	25-102	50	25-102	50	50		
2,4-Dichlorophenol	120-83-2	0.14985	0.0267732	mg/kg	30-130	50	30-130	50	50		
2,4-Dimethylphenol	105-67-9	0.1665	0.054945	mg/kg	30-130	50	30-130	50	50		
2-Nitrophenol	88-75-5	0.35964	0.062604	mg/kg	30-130	50	30-130	50	50		
4-Nitrophenol	100-02-7	0.2331	0.067932	mg/kg	11-114	50	11-114	50	50		
2,4-Dinitrophenol	51-28-5	0.7992	0.077589	mg/kg	4-130	50	4-130	50	50		
4,6-Dinitro-o-cresol	534-52-1	0.4329	0.07992	mg/kg	10-130	50	10-130	50	50		
Pentachlorophenol	87-86-5	0.1332	0.03663	mg/kg	17-109	50	17-109	50	50		
Phenol	108-95-2	0.1665	0.0251415	mg/kg	26-90	50	26-90	50	50		
2-Methylphenol	95-48-7	0.1665	0.0258075	mg/kg	30-130.	50	30-130.	50	50		
3-Methylphenol/4-Methylphenol	106-44-5	0.23976	0.0260739	mg/kg	30-130	50	30-130	50	50		
2,4,5-Trichlorophenol	95-95-4	0.1665	0.0319014	mg/kg	30-130	50	30-130	50	50		
Benzoic Acid	65-85-0	0.53946	0.168498	mg/kg	10-110	50	10-110	50	50		
Benzyl Alcohol	100-51-6	0.1665	0.050949	mg/kg	40-140	50	40-140	50	50		
Carbazole	86-74-8	0.1665	0.0161838	mg/kg	54-128	50	54-128	50	50		
2-Fluorophenol	367-12-4			J, J						25-120	
Phenol-d6	13127-88-3									10-120	
Nitrobenzene-d5	4165-60-0									23-120	
2-Fluorobiphenyl	321-60-8									30-120	
2,4,6-Tribromophenol	118-79-6									10-136	
4-Terphenyl-d14	1718-51-0									18-120	
,											

Date Created: 04/13/18 Created By: Ben Rao File: PM4764-2

Page: 1

Langan Engineering & Environmental

TCL Pesticides - EPA 8081B (SOIL)

Holding Time: 14 days

Container/Sample Preservation: 1 - Glass 250ml/8oz unpreserved

					LCS	1	MS	1	Duplicate	Surrogate	1
Analyte	CAS #	RL	MDL	Units	Criteria	LCS RPD	Criteria	MS RPD	RPD	Criteria	
Delta-BHC	319-86-8	0.007992	0.0015651	mg/kg	30-150	30	30-150	50	50	Criteria	
Lindane	58-89-9	0.007332	0.0013031	mg/kg	30-150	30	30-150	50	50		
Alpha-BHC	319-84-6	0.00333	0.00094572	mg/kg	30-150	30	30-150	50	50		
Beta-BHC	319-85-7	0.00333	0.0030303	mg/kg	30-150	30	30-150	50	50		
Heptachlor	76-44-8	0.007992	0.0030303	mg/kg	30-150	30	30-150	50	50		
Aldrin	309-00-2	0.003990	0.00281385	mg/kg	30-150	30	30-150	50	50		
Heptachlor epoxide	1024-57-3	0.014985	0.0044955	mg/kg	30-150	30	30-150	50	50		
Endrin	72-20-8	0.00333	0.0013653	mg/kg	30-150	30	30-150	50	50		
Endrin aldehyde	7421-93-4	0.00999	0.0034965	mg/kg	30-150	30	30-150	50	50		
Endrin ketone	53494-70-5	0.007992	0.00205794	mg/kg	30-150	30	30-150	50	50		
Dieldrin	60-57-1	0.004995	0.0024975	mg/kg	30-150	30	30-150	50	50		
4,4'-DDE	72-55-9	0.007992	0.00184815	mg/kg	30-150	30	30-150	50	50		
4,4'-DDD	72-54-8	0.007992	0.00285048	mg/kg	30-150	30	30-150	50	50		
4,4'-DDT	50-29-3	0.014985	0.0064269	mg/kg	30-150	30	30-150	50	50		
Endosulfan I	959-98-8	0.007992	0.00188811	mg/kg	30-150	30	30-150	50	50		
Endosulfan II	33213-65-9	0.007992	0.00267066	mg/kg	30-150	30	30-150	50	50		
Endosulfan sulfate	1031-07-8	0.00333	0.00158508	mg/kg	30-150	30	30-150	50	50		
Methoxychlor	72-43-5	0.014985	0.004662	mg/kg	30-150	30	30-150	50	50		
Toxaphene	8001-35-2	0.14985	0.041958	mg/kg	30-150	30	30-150	50	50		
cis-Chlordane	5103-71-9	0.00999	0.00278388	mg/kg	30-150	30	30-150	50	50		
trans-Chlordane	5103-74-2	0.00999	0.00263736	mg/kg	30-150	30	30-150	50	50		
Chlordane	57-74-9	0.064935	0.0264735	mg/kg	30-150	30	30-150	50	50		
2,4,5,6-Tetrachloro-m-xylene	877-09-8			<i>J,</i> J						30-150	
Decachlorobiphenyl	2051-24-3									30-150	
											_
											_

Date Created: 04/13/18 Created By: Ben Rao File: PM4764-2

Page: 1

Langan Engineering & Environmental

Herbicides -EPA 8151A (SOIL)

Holding Time: 14 days

Container/Sample Preservation: 1 - Glass 250ml/8oz unpreserved

	T		1		LCS	1	MS		Dunlicate	Surrogato	ı — —	I
Analyte	CAS #	RL	MDL	Units	Critoria	LCS RPD	Criteria	MS RPD	Duplicate RPD	Surrogate Criteria		
Allalyte	94-75-7	0.1665	0.0104895	mg/kg	30-150	LC3 KPD	30-150	20	20 20	Criteria		
2,4-D 2,4,5-T 2,4,5-TP (Silvex) <i>DCAA</i>	94-73-7		0.0104695	mg/kg	30-150	30 30	30-150	30 30	30 30			
2,4,5-1	93-76-5 93-72-1 19719-28-9	0.1665 0.1665	0.0051615	mg/kg	30-150	30	30-150	30	30			
2,4,5-17 (Silvex)	93-72-1	0.1005	0.0044289	mg/kg	30-150	30	30-150	30	30	30-150		
DCAA	19/19-28-9									30-150		
		1		i	İ							
		†		1	1			1		1		
		†		1	1			1		1		
		 		 	 			 		 		
		 		1	†							
		 		1	†							
		 		1	1			1				
		-	-	-	1					-	-	
		 			ļ			 				
	_	 		 	1					 	-	
	_	1	-		1						-	
		1			1							
		1			l							

Please Note that the RL information provided in this table is calculated using a 100% Solids factor (Soil/Solids only)
Please Note that the information provided in this table is subject to change at anytime at the discretion of Alpha Analytical, Inc.

8 Walkup Drive, Westborough, Massachusetts 01581 • 508-898-9220 • www.alphalab.com

Westborough, MA • Mansfield, MA • Bangor, ME • Portsmouth, NH • Mahwah, NJ • Albany, NY • Buffalo, NY • Holmes, PA

Date Created: 04/13/18 Created By: Ben Rao File: PM4764-2 Page: 1

TCL PCBs - EPA 8082A (SOIL)

Holding Time: 14 days

Container/Sample Preservation: 1 - Glass 250ml/8oz unpreserved

	1		1		LCS		MS	1	Duplicate	Surrogate	1
Analyte	CAS#	RL	MDL	Units	Criteria	LCS RPD	Criteria	MS RPD	RPD	Criteria	
Aroclor 1016	12674-11-2	0.0335	0.0037989	mg/kg	40-140	50	40-140	50	50	Criteria	
Aroclor 1221	11104-28-2	0.0335	0.0050987	mg/kg	40-140	50	40-140	50	50		
Aroclor 1221 Aroclor 1232	11141-16-5	0.0335	0.0030967	mg/kg	40-140	50	40-140	50	50		
Aroclor 1242	53469-21-9	0.0335	0.0041004	mg/kg	40-140	50	40-140	50	50		
Aroclor 1248	12672-29-6	0.0335	0.0037587	mg/kg	40-140	50	40-140	50	50		
Aroclor 1254	11097-69-1	0.0335	0.0027336	mg/kg	40-140	50	40-140	50	50		
Aroclor 1260	11096-82-5	0.0335	0.0034974	mg/kg	40-140	50	40-140	50	50		
Aroclor 1262	37324-23-5	0.0335	0.0027537	mg/kg	40-140	50	40-140	50	50		
Aroclor 1268	11100-14-4	0.0335	0.0023718	mg/kg	40-140	50	40-140	50	50		
PCBs, Total	1336-36-3	0.0335	0.001541	mg/kg				50	50		
PCBs, Total	1336-36-3	0.0335	0.001541	mg/kg				50	50		
2,4,5,6-Tetrachloro-m-xylene	877-09-8			5, 5						30-150	
Decachlorobiphenyl	2051-24-3									30-150	
, ,											

Create

Created By: Ben Rao File: PM4764-2 Page: 1

Date Created: 04/13/18

Langan Engineering & Environmental

METALS by 6010C (SOIL)

	646.11				LCS		MS		Duplicate		Holding	Container/Sample
Analyte	CAS #	RL	MDL	Units		LCS RPD	Criteria	MS RPD	RPD	Criteria	Time	Preservation
Aluminum, Total	7429-90-5	4	1.08	mg/kg	48-151		75-125	20	20		180 days	Metals Only-Glass 60mL/2oz unpreserve
Antimony, Total	7440-36-0	2	0.152	mg/kg	1-208		75-125	20	20			Metals Only-Glass 60mL/2oz unpreserve
Arsenic, Total	7440-38-2	0.4	0.0832	mg/kg	79-121		75-125	20	20			Metals Only-Glass 60mL/2oz unpreserve
Barium, Total	7440-39-3	0.4	0.0696	mg/kg	83-117		75-125	20	20			Metals Only-Glass 60mL/2oz unpreserve
Beryllium, Total	7440-41-7	0.2	0.0132	mg/kg	83-117		75-125	20	20			Metals Only-Glass 60mL/2oz unpreserve
Cadmium, Total	7440-43-9	0.4	0.0392	mg/kg	83-117		75-125	20	20			Metals Only-Glass 60mL/2oz unpreserve
Calcium, Total	7440-70-2	4	1.4	mg/kg	81-119		75-125	20	20			Metals Only-Glass 60mL/2oz unpreserve
Chromium, Total	7440-47-3	0.4	0.0384	mg/kg	80-120		75-125	20	20			Metals Only-Glass 60mL/2oz unpreserve
Cobalt, Total	7440-48-4	0.8	0.0664	mg/kg	84-115		75-125	20	20			Metals Only-Glass 60mL/2oz unpreserve
Copper, Total	7440-50-8	0.4	0.1032	mg/kg	81-118		75-125	20	20			Metals Only-Glass 60mL/2oz unpreserve
Iron, Total	7439-89-6	2	0.3612	mg/kg	45-155		75-125	20	20			Metals Only-Glass 60mL/2oz unpreserve
Lead, Total	7439-92-1	2	0.1072	mg/kg	81-117		75-125	20	20			Metals Only-Glass 60mL/2oz unpreserve
Magnesium, Total	7439-95-4	4	0.616	mg/kg	76-124		75-125	20	20			Metals Only-Glass 60mL/2oz unpreserve
Manganese, Total	7439-96-5	0.4	0.0636	mg/kg	81-117		75-125	20	20			Metals Only-Glass 60mL/2oz unpreserve
Nickel, Total	7440-02-0	1	0.0968	mg/kg	83-117		75-125	20	20		180 days	Metals Only-Glass 60mL/2oz unpreserve
Potassium, Total	7440-09-7	100	5.76	mg/kg	71-129		75-125	20	20		180 days	Metals Only-Glass 60mL/2oz unpreserve
Selenium, Total	7782-49-2	0.8	0.1032	mg/kg	78-122		75-125	20	20		180 days	Metals Only-Glass 60mL/2oz unpreserve
Silver, Total	7440-22-4	0.4	0.1132	mg/kg	75-124		75-125	20	20		180 days	Metals Only-Glass 60mL/2oz unpreserve
Sodium, Total	7440-23-5	80	1.26	mg/kg	72-127		75-125	20	20		180 days	Metals Only-Glass 60mL/2oz unpreserve
Thallium, Total	7440-28-0	0.8	0.126	mg/kg	80-120		75-125	20	20		180 days	Metals Only-Glass 60mL/2oz unpreserve
Vanadium, Total	7440-62-2	0.4	0.0812	mg/kg	78-122		75-125	20	20		180 days	Metals Only-Glass 60mL/2oz unpreserve
Zinc, Total	7440-66-6	2	0.1172	mg/kg	82-118		75-125	20	20		180 davs	Metals Only-Glass 60mL/2oz unpreserve
,				J. J					-			,
				1				1				
				1				1				
				1				1				
				1				+				
								1				
								1				
				1				+				
								1				
								-				
		 	-	 	+	-	-	-				
		1	-	<u> </u>	+			1		-	!	
		+		 	+	 	-	+		 	 	ļ
		1	ļ	1	1			1				
			ļ		1							
		_		ļ				1				
						1						

Date Created: 04/13/18 Created By: Ben Rao File: PM4764-2

Page: 1

Langan Engineering & Environmental

METALS by 7471B (SOIL)

					LCS		MS		Duplicate	Surrogate Criteria	Holding	Container/Sample Preservation
Analyte	CAS #	RL	MDL	Units	Criteria	LCS RPD	Criteria	MS RPD	RPD	Criteria	Time	Preservation
Mercury, Total	7439-97-6	0.08	0.016896	mg/kg	72-128		80-120	20	20		28 days	Metals Only-Glass 60mL/2oz unpreserve
					1						1	
					1						1	
					1						1	
					1						1	
	+	—	—	 	†					—	-	
		†	†	 	1					†	-	
		†	†	 	1					†	-	
		†	†	 	1					†	-	
		 	 	 	 			1		 	1	
		1		1	1		1	1		1	1	

Please Note that the RL information provided in this table is calculated using a 100% Solids factor (Soil/Solids only)
Please Note that the information provided in this table is subject to change at anytime at the discretion of Alpha Analytical, Inc

8 Walkup Drive, Westborough, Massachusetts 01581 • 508-898-9220 • www.alphalab.com

Westborough, MA • Mansfield, MA • Bangor, ME • Portsmouth, NH • Mahwah, NJ • Albany, NY • Buffalo, NY • Holmes, PA

Date Created: 04/13/18 Created By: Ben Rao File: PM4764-2

Page: 1

Langan Engineering & Environmental

WETCHEM (SOIL)

					LCS		MS	1	Duplicate		Holding	Container/Sample
Analyte	CAS #	RL	MDL	Units		LCS RPD		MS RPD	Duplicate RPD	Method	Holding Time	Container/Sample Preservation
Chromium, Hexavalent	18540-29-9	0.8	0.16	mg/kg	80-120	20	75-125	20	20	7196A	30 days	1 - Glass 120ml/4oz unpreserved
Cyanide, Total	57-12-5	1	0.212	mg/kg	80-120	35	75-125	35	35	9010C/9012B	14 days	1 - Glass 250ml/8oz unpreserved
				J. J						,	,	
								 				
					1			1				
								 				
								 				
								1				
					-							
					-							
		-		-								
				1	1							
				 								
	1	1	1		1							

Please Note that the RL information provided in this table is calculated using a 100% Solids factor (Soil/Solids only)
Please Note that the information provided in this table is subject to change at anytime at the discretion of Alpha Analytical, Inc

8 Walkup Drive, Westborough, Massachusetts 01581 • 508-898-9220 • www.alphalab.com

Westborough, MA • Mansfield, MA • Bangor, ME • Portsmouth, NH • Mahwah, NJ • Albany, NY • Buffalo, NY • Holmes, PA

Created By: Ben Rao File: PM4765-1 Page: 1

Date Created: 04/13/18

Langan Engineering & Environmental

TCL Volatiles - EPA 8260C (WATER)

Holding Time: 14 days

Container/Sample Preservation: 3 - Vial HCl preserved

	1			I	LCS	1	MS		Duplicate	Surrogate	
Analyte	CAS #	RL	MDL	Units	Criteria	LCS RPD	Criteria	MS RPD	RPD	Criteria	
Methylene chloride	75-09-2	2.5	0.7	ug/l	70-130	20	70-130	20	20	Criteria	
1.1-Dichloroethane	75-34-3	2.5	0.7	ug/l	70-130	20	70-130	20	20		
Chloroform	67-66-3	2.5	0.7	ug/l	70-130	20	70-130	20	20		
Carbon tetrachloride	56-23-5	0.5	0.134	ug/l	63-132	20	63-132	20	20		
1,2-Dichloropropane	78-87-5	1	0.137	ug/l	70-130	20	70-130	20	20		
Dibromochloromethane	124-48-1	0.5	0.149	ug/l	63-130	20	63-130	20	20		
1.1.2-Trichloroethane	79-00-5	1.5	0.5	ug/l	70-130	20	70-130	20	20		
Tetrachloroethene	127-18-4	0.5	0.181	ug/l	70-130	20	70-130	20	20		
Chlorobenzene	108-90-7	2.5	0.7	ug/l	75-130	20	75-130	20	20		
Trichlorofluoromethane	75-69-4	2.5	0.7	ug/l	62-150	20	62-150	20	20		
1,2-Dichloroethane	107-06-2	0.5	0.132	ug/l	70-130	20	70-130	20	20		
1,1,1-Trichloroethane	71-55-6	2.5	0.7	ug/l	67-130	20	67-130	20	20		
Bromodichloromethane	75-27-4	0.5	0.192	ug/l	67-130	20	67-130	20	20		
trans-1,3-Dichloropropene	10061-02-6	0.5	0.164	ug/l	70-130	20	70-130	20	20		
cis-1,3-Dichloropropene	10061-01-5	0.5	0.144	ug/l	70-130	20	70-130	20	20		
1,3-Dichloropropene, Total	542-75-6	0.5	0.144	ug/l				20	20		
1,3-Dichloropropene, Total	542-75-6	0.5	0.144	ug/l				20	20		
1,1-Dichloropropene	563-58-6	2.5	0.7	ug/l	70-130	20	70-130	20	20		
Bromoform	75-25-2	2	0.65	ug/l	54-136	20	54-136	20	20		
1,1,2,2-Tetrachloroethane	79-34-5	0.5	0.167	ug/l	67-130	20	67-130	20	20		
Benzene	71-43-2	0.5	0.159	ug/l	70-130	20	70-130	20	20		
Toluene	108-88-3	2.5	0.7	ug/l	70-130	20	70-130	20	20		
Ethylbenzene	100-41-4	2.5	0.7	ug/l	70-130	20	70-130	20	20		
Chloromethane	74-87-3	2.5	0.7	ug/l	64-130	20	64-130	20	20		
Bromomethane	74-83-9	2.5	0.7	ug/l	39-139	20	39-139	20	20		
Vinyl chloride	75-01-4	1	0.0714	ug/l	55-140	20	55-140	20	20		
Chloroethane	75-00-3	2.5	0.7	ug/l	55-138	20	55-138	20	20		
1,1-Dichloroethene	75-35-4	0.5	0.169	ug/l	61-145	20	61-145	20	20		
trans-1,2-Dichloroethene	156-60-5	2.5	0.7	ug/l	70-130	20	70-130	20	20		
Trichloroethene	79-01-6	0.5	0.175	ug/l	70-130	20	70-130	20	20		
1,2-Dichlorobenzene	95-50-1	2.5	0.7	ug/l	70-130	20	70-130	20	20		
1,3-Dichlorobenzene	541-73-1	2.5	0.7	ug/l	70-130	20	70-130	20	20		
1,4-Dichlorobenzene	106-46-7	2.5	0.7	ug/l	70-130	20	70-130	20	20		
Methyl tert butyl ether	1634-04-4	2.5	0.7	ug/l	63-130	20	63-130	20	20		
p/m-Xylene	179601-23-1	2.5	0.7	ug/l	70-130	20	70-130	20	20		
o-Xylene	95-47-6	2.5	0.7	ug/l	70-130	20	70-130	20	20		
Xylene (Total)	1330-20-7	2.5	0.7	ug/l				20	20		
Xylene (Total)	1330-20-7	2.5	0.7	ug/l				20	20		
cis-1,2-Dichloroethene	156-59-2	2.5	0.7	ug/l	70-130	20	70-130	20	20		
1,2-Dichloroethene (total)	540-59-0	2.5	0.7	ug/l				20	20		
1,2-Dichloroethene (total)	540-59-0	2.5	0.7	ug/l				20	20		
Dibromomethane	74-95-3	5	1	ug/l	70-130	20	70-130	20	20		

Date Created: 04/13/18 Created By: Ben Rao File: PM4765-1

Page: 2

TCL Volatiles - EPA 8260C (WATER)

Holding Time: 14 days

Container/Sample Preservation: 3 - Vial HCl preserved

					LCS		MS		Duplicate	plicate Surrogate		
Analyte	CAS #	RL	MDL	Units	Criteria	LCS RPD	Criteria	MS RPD	RPD	Criteria		
1,2,3-Trichloropropane	96-18-4	2.5	0.7	ug/l	64-130	20	64-130	20	20			
Acrylonitrile	107-13-1	5	1.5	ug/l	70-130	20	70-130	20	20			
Styrene	100-42-5	2.5	0.7	ug/l	70-130	20	70-130	20	20			
Dichlorodifluoromethane	75-71-8	5	1	ug/l	36-147	20	36-147	20	20			
Acetone	67-64-1	5	1.46	ug/l	58-148	20	58-148	20	20			
Carbon disulfide	75-15-0	5	1	ug/l	51-130	20	51-130	20	20			
2-Butanone	78-93-3	5	1.94	ug/l	63-138	20	63-138	20	20			
Vinyl acetate	108-05-4	5	1	ug/l	70-130	20	70-130	20	20			
4-Methyl-2-pentanone	108-10-1	5	1	ug/l	59-130	20	59-130	20	20			
2-Hexanone	591-78-6	5	1	ug/l	57-130	20	57-130	20	20			
Bromochloromethane	74-97-5	2.5	0.7	ug/l	70-130	20	70-130	20	20			
2,2-Dichloropropane	594-20-7	2.5	0.7	ug/l	63-133	20	63-133	20	20			
1,2-Dibromoethane	106-93-4	2	0.65	ug/l	70-130	20	70-130	20	20			
1,3-Dichloropropane	142-28-9	2.5	0.7	ug/l	70-130	20	70-130	20	20			
1,1,1,2-Tetrachloroethane	630-20-6	2.5	0.7	ug/l	64-130	20	64-130	20	20			
Bromobenzene	108-86-1	2.5	0.7	ug/l	70-130	20	70-130	20	20			
n-Butylbenzene	104-51-8	2.5	0.7	ug/l	53-136	20	53-136	20	20			
sec-Butylbenzene	135-98-8	2.5	0.7	ug/l	70-130	20	70-130	20	20			
tert-Butylbenzene	98-06-6	2.5	0.7	ug/l	70-130	20	70-130	20	20			
o-Chlorotoluene	95-49-8	2.5	0.7	ug/l	70-130	20	70-130	20	20			
p-Chlorotoluene	106-43-4	2.5	0.7	ug/l	70-130	20	70-130	20	20			
1,2-Dibromo-3-chloropropane	96-12-8	2.5	0.7	ug/l	41-144	20	41-144	20	20			
Hexachlorobutadiene	87-68-3	2.5	0.7	ug/l	63-130	20	63-130	20	20			
Isopropylbenzene	98-82-8	2.5	0.7	ug/l	70-130	20	70-130	20	20			
p-Isopropyltoluene	99-87-6	2.5	0.7	ug/l	70-130	20	70-130	20	20			
Naphthalene	91-20-3	2.5	0.7	ug/l	70-130	20	70-130	20	20			
n-Propylbenzene	103-65-1	2.5	0.7	ug/l	69-130	20	69-130	20	20			
1,2,3-Trichlorobenzene	87-61-6	2.5	0.7	ug/l	70-130	20	70-130	20	20			
1,2,4-Trichlorobenzene	120-82-1	2.5	0.7	ug/l	70-130	20	70-130	20	20			
1,3,5-Trimethylbenzene	108-67-8	2.5	0.7	ug/l	64-130	20	64-130	20	20			
1,2,4-Trimethylbenzene	95-63-6	2.5	0.7	ug/l	70-130	20	70-130	20	20			
1,4-Dioxane	123-91-1	250	60.8	ug/l	56-162	20	56-162	20	20			
1,4-Diethylbenzene	105-05-5	2	0.7	ug/l	70-130	20	70-130	20	20			
4-Ethyltoluene	622-96-8	2	0.7	ug/l	70-130	20	70-130	20	20			
1,2,4,5-Tetramethylbenzene	95-93-2	2	0.542	ug/l	70-130	20	70-130	20	20			
Ethyl ether	60-29-7	2.5	0.7	ug/l	59-134	20	59-134	20	20			
trans-1,4-Dichloro-2-butene	110-57-6	2.5	0.7	ug/l	70-130	20	70-130	20	20			
1,2-Dichloroethane-d4	17060-07-0									70-130		
Toluene-d8	2037-26-5									70-130		
4-Bromofluorobenzene	460-00-4									70-130		
Dibromofluoromethane	1868-53-7									70-130		

Date Created: 04/13/18 Created By: Ben Rao File: PM4765-1

Page: 1

Langan Engineering & Environmental

NYTCL Semivolatiles - EPA 8270D (WATER)

Holding Time: 7 days

Container/Sample Preservation: 2 - Amber 1000ml unpreserved

		LCS MS Duplicate Surrogate									
Analyte	CAS #	RL	MDL	Units	Criteria	LCS RPD	Criteria	MS RPD	RPD	Criteria	
Acenaphthene	83-32-9	2	0.591	ug/l	37-111	30	37-111	30	30		
1,2,4-Trichlorobenzene	120-82-1	5	0.661	ug/l	39-98	30	39-98	30	30		
Hexachlorobenzene	118-74-1	2	0.579	ug/l	40-140	30	40-140	30	30		
Bis(2-chloroethyl)ether	111-44-4	2	0.669	ug/l	40-140	30	40-140	30	30		
2-Chloronaphthalene	91-58-7	2	0.64	ug/l	40-140	30	40-140	30	30		
1,2-Dichlorobenzene	95-50-1	2	0.732	ug/l	40-140	30	40-140	30	30		
1,3-Dichlorobenzene	541-73-1	2	0.732	ug/l	40-140	30	40-140	30	30		
1,4-Dichlorobenzene	106-46-7	2	0.708	ug/l	36-97	30	36-97	30	30		
3,3'-Dichlorobenzidine	91-94-1	5	1.39	ug/l	40-140	30	40-140	30	30		
2,4-Dinitrotoluene	121-14-2	5	0.845	ug/l	24-96	30	24-96	30	30		
2,6-Dinitrotoluene	606-20-2	5	1.12	ug/l	40-140	30	40-140	30	30		
Fluoranthene	206-44-0	2	0.568	ug/l	40-140	30	40-140	30	30		
4-Chlorophenyl phenyl ether	7005-72-3	2	0.625	ug/l	40-140	30	40-140	30	30		
4-Bromophenyl phenyl ether	101-55-3	2	0.731	ug/l	40-140	30	40-140	30	30		
Bis(2-chloroisopropyl)ether	108-60-1	2	0.696	ug/l	40-140	30	40-140	30	30		
Bis(2-chloroethoxy)methane	111-91-1	5	0.626	ug/l	40-140	30	40-140	30	30		
Hexachlorobutadiene	87-68-3	2	0.658	ug/l	40-140	30	40-140	30	30		
Hexachlorocyclopentadiene	77-47-4	20	7.84	ug/l	40-140	30	40-140	30	30		
Hexachloroethane	67-72-1	2	0.682	ug/l	40-140	30	40-140	30	30		
Isophorone	78-59-1	5	0.601	ug/l	40-140	30	40-140	30	30		
Naphthalene	91-20-3	2	0.68	ug/l	40-140	30	40-140	30	30		
Nitrobenzene	98-95-3	2	0.753	ug/l	40-140	30	40-140	30	30		
NitrosoDiPhenylAmine(NDPA)/DPA	86-30-6	2	0.644	ug/l	40-140	30	40-140	30	30		
n-Nitrosodi-n-propylamine	621-64-7	5	0.7	ug/l	29-132	30	29-132	30	30		
Bis(2-Ethylhexyl)phthalate	117-81-7	3	0.91	ug/l	40-140	30	40-140	30	30		
Butyl benzyl phthalate	85-68-7	5	1.26	ug/l	40-140	30	40-140	30	30		
Di-n-butylphthalate	84-74-2	5	0.689	ug/l	40-140	30	40-140	30	30		
Di-n-octylphthalate	117-84-0	5	1.14	ug/l	40-140	30	40-140	30	30		
Diethyl phthalate	84-66-2	5	0.628	ug/l	40-140	30	40-140	30	30		
Dimethyl phthalate	131-11-3	5	0.65	ug/l	40-140	30	40-140	30	30		
Benzo(a)anthracene	56-55-3	2	0.61	ug/l	40-140	30	40-140	30	30		
Benzo(a)pyrene	50-32-8	2	0.539	ug/l	40-140	30	40-140	30	30		
Benzo(b)fluoranthene	205-99-2	2	0.635	ug/l	40-140	30	40-140	30	30		
Benzo(k)fluoranthene	207-08-9	2	0.597	ug/l	40-140	30	40-140	30	30		
Chrysene	218-01-9	2	0.543	ug/l	40-140	30	40-140	30	30		
Acenaphthylene	208-96-8	2	0.658	ug/l	45-123	30	45-123	30	30		
Anthracene	120-12-7	2	0.645	ug/l	40-140	30	40-140	30	30		
Benzo(ghi)perylene	191-24-2	2	0.611	ug/l	40-140	30	40-140	30	30		
Fluorene	86-73-7	2	0.619	ug/l	40-140	30	40-140	30	30		
Phenanthrene	85-01-8	2	0.613	ug/l	40-140	30	40-140	30	30		
Dibenzo(a,h)anthracene	53-70-3	2	0.548	ug/l	40-140	30	40-140	30	30		
Indeno(1,2,3-cd)Pyrene	193-39-5	2	0.707	ug/l	40-140	30	40-140	30	30		

Date Created: 04/13/18 Created By: Ben Rao File: PM4765-1 Page: 2

NYTCL Semivolatiles - EPA 8270D (WATER)

Holding Time: 7 days

Container/Sample Preservation: 2 - Amber 1000ml unpreserved

	1			1	LCS	1	MS		Duplicate	Surrogate	
Analyte	CAS#	RL	MDL	Units	Criteria	LCS RPD	Criteria	MS RPD	RPD	Criteria	
Pyrene	129-00-0	2	0.569	ug/l	26-127	30	26-127	30	30	0	
Biphenyl	92-52-4	2	0.757	ug/l	54-104	30	54-104	30	30		
4-Chloroaniline	106-47-8	5	0.632	ug/l	40-140	30	40-140	30	30		
2-Nitroaniline	88-74-4	5	1.14	ug/l	52-143	30	52-143	30	30		
3-Nitroaniline	99-09-2	5	1.14	ug/l	25-145	30	25-145	30	30		
4-Nitroaniline	100-01-6	5	1.3	ug/l	51-143	30	51-143	30	30		
Dibenzofuran	132-64-9	2	0.656	ug/l	40-140	30	40-140	30	30		
2-Methylnaphthalene	91-57-6	2	0.72	ug/l	40-140	30	40-140	30	30		
Acetophenone	98-86-2	5	0.847	ug/l	39-129	30	39-129	30	30		
2,4,6-Trichlorophenol	88-06-2	5	0.681	ug/l	30-130	30	30-130	30	30		
P-Chloro-M-Cresol	59-50-7	2	0.617	ug/l	23-97	30	23-97	30	30		
2-Chlorophenol	95-57-8	2	0.631	ug/l	27-123	30	27-123	30	30		
2,4-Dichlorophenol	120-83-2	5	0.769	ug/l	30-130	30	30-130	30	30		
2,4-Dimethylphenol	105-67-9	5	1.64	ug/l	30-130	30	30-130	30	30		
2-Nitrophenol	88-75-5	10	1.52	ug/l	30-130	30	30-130	30	30		
4-Nitrophenol	100-02-7	10	1.77	ug/l	10-80	30	10-80	30	30		
2,4-Dinitrophenol	51-28-5	20	5.47	ug/l	20-130	30	20-130	30	30		
4,6-Dinitro-o-cresol	534-52-1	10	2.1	ug/l	20-164	30	20-164	30	30		
Pentachlorophenol	87-86-5	10	3.43	ug/l	9-103	30	9-103	30	30		
Phenol	108-95-2	5	1.89	ug/l	12-110	30	12-110	30	30		
2-Methylphenol	95-48-7	5	1.02	ug/l	30-130	30	30-130	30	30		
3-Methylphenol/4-Methylphenol	106-44-5	5	1.11	ug/l	30-130	30	30-130	30	30		
2,4,5-Trichlorophenol	95-95-4	5	0.715	ug/l	30-130	30	30-130	30	30		
Benzoic Acid	65-85-0	50	12.9	ug/l	10-110	30	10-110	30	30		
Benzyl Alcohol	100-51-6	2	0.725	ug/l	15-110	30	15-110	30	30		
Carbazole	86-74-8	2	0.627	ug/l	55-144	30	55-144	30	30		
2-Fluorophenol	367-12-4									21-120	
Phenol-d6	13127-88-3									10-120	
Nitrobenzene-d5	4165-60-0									23-120	
2-Fluorobiphenyl	321-60-8									15-120	
2,4,6-Tribromophenol	118-79-6									10-120	
4-Terphenyl-d14	1718-51-0									41-149	
					1						
					1						
					1						
					1						
					1						
					1						

Date Created: 04/13/18 Created By: Ben Rao File: PM4765-1 Page: 1

NYTCL Semivolatiles -EPA 8270D-SIM (WATER)

Holding Time: 7 days

Container/Sample Preservation: 2 - Amber 1000ml unpreserved

					LCS		MS		Duplicate	Surrogate	
Analyte	CAS #	RL	MDL	Units	Criteria	LCS RPD	Criteria	MS RPD	RPD	Criteria	
Acenaphthene	83-32-9	0.1	0.035	ug/l	37-111	40	37-111	40	40		
2-Chloronaphthalene	91-58-7	0.2	0.035	ug/l	40-140	40	40-140	40	40		
Fluoranthene	206-44-0	0.1	0.038	ug/l	40-140	40	40-140	40	40		
Hexachlorobutadiene	87-68-3	0.5	0.036	ug/l	40-140	40	40-140	40	40		
Naphthalene	91-20-3	0.1	0.043	ug/l	40-140	40	40-140	40	40		
Benzo(a)anthracene	56-55-3	0.1	0.018	ug/l	40-140	40	40-140	40	40		
Benzo(a)pyrene	50-32-8	0.1	0.039	ug/l	40-140	40	40-140	40	40		
Benzo(b)fluoranthene	205-99-2	0.1	0.016	ug/l	40-140	40	40-140	40	40		
Benzo(k)fluoranthene	207-08-9	0.1	0.042	ug/l	40-140	40	40-140	40	40		
Chrysene	218-01-9	0.1	0.038	ug/l	40-140	40	40-140	40	40		
Acenaphthylene	208-96-8	0.1	0.035	ug/l	40-140	40	40-140	40	40		
Anthracene	120-12-7	0.1	0.035	ug/l	40-140	40	40-140	40	40		
Benzo(ghi)perylene	191-24-2	0.1	0.042	ug/l	40-140	40	40-140	40	40		
Fluorene	86-73-7	0.1	0.037	ug/l	40-140	40	40-140	40	40		
Phenanthrene	85-01-8	0.1	0.015	ug/l	40-140	40	40-140	40	40		
Dibenzo(a,h)anthracene	53-70-3	0.1	0.039	ug/l	40-140	40	40-140	40	40		
Indeno(1,2,3-cd)Pyrene	193-39-5	0.1	0.04	ua/l	40-140	40	40-140	40	40		
Pyrene	129-00-0	0.1	0.04	ug/l	26-127	40	26-127	40	40		
2-Methylnaphthalene	91-57-6	0.1	0.045	ug/l	40-140	40	40-140	40	40		
Pentachlorophenol	87-86-5	0.8	0.22	ug/l	9-103	40	9-103	40	40		
Hexachlorobenzene	118-74-1	0.8	0.032	ug/l	40-140	40	40-140	40	40		
Hexachloroethane	67-72-1	0.8	0.03	ug/l	40-140	40	40-140	40	40		
2-Fluorophenol	367-12-4			- 3"						21-120	
Phenol-d6	13127-88-3									10-120	
Nitrobenzene-d5	4165-60-0									23-120	
2-Fluorobiphenyl	321-60-8									15-120	
2,4,6-Tribromophenol	118-79-6									10-120	
4-Terphenyl-d14	1718-51-0									41-149	
	i										
	i										
		1	İ	1	1	İ					
		1	İ	1	1	İ					
		1	İ	1	1	İ				İ	
	1										
					1						
		1	1	1	1	i					
					1						
		1	1	1	1	i					
	Diana Nata the							1		1	1

Date Created: 04/13/18 Created By: Ben Rao File: PM4765-1

Page: 1

Langan Engineering & Environmental

TCL Pesticides - EPA 8081B (WATER)

Holding Time: 7 days

Container/Sample Preservation: 2 - Amber 500ml unpreserved

					LCS		MS		Duplicate	Surrogate	
Analyte	CAS #	RL	MDL	Units	Criteria	LCS RPD	Criteria	MS RPD	RPD	Criteria	
Delta-BHC	319-86-8	0.02	0.00467	ug/l	30-150	20	30-150	30	30		
Lindane	58-89-9	0.02	0.00434	ug/l	30-150	20	30-150	30	30		
Alpha-BHC	319-84-6	0.02	0.00439	ug/l	30-150	20	30-150	30	30		
Beta-BHC	319-85-7	0.02	0.0056	ug/l	30-150	20	30-150	30	30		
Heptachlor	76-44-8	0.02	0.0031	ug/l	30-150	20	30-150	30	30		
Aldrin	309-00-2	0.02	0.00216	ug/l	30-150	20	30-150	30	30		
Heptachlor epoxide	1024-57-3	0.02	0.00415	ug/l	30-150	20	30-150	30	30		
Endrin	72-20-8	0.04	0.00429	ug/l	30-150	20	30-150	30	30		
Endrin aldehyde	7421-93-4	0.04	0.0081	ug/l	30-150	20	30-150	30	30		
Endrin ketone	53494-70-5	0.04	0.00477	ug/l	30-150	20	30-150	30	30		
Dieldrin	60-57-1	0.04	0.00429	ug/l	30-150	20	30-150	30	30		
4,4'-DDE	72-55-9	0.04	0.00381	ug/l	30-150	20	30-150	30	30		
4,4'-DDD	72-54-8	0.04	0.00464	ug/l	30-150	20	30-150	30	30		
4,4'-DDT	50-29-3	0.04	0.00432	ug/l	30-150	20	30-150	30	30		
Endosulfan I	959-98-8	0.02	0.00345	ug/l	30-150	20	30-150	30	30		
Endosulfan II	33213-65-9	0.04	0.00519	ug/l	30-150	20	30-150	30	30		
Endosulfan sulfate	1031-07-8	0.04	0.00481	ug/l	30-150	20	30-150	30	30		
Methoxychlor	72-43-5	0.2	0.00684	ug/l	30-150	20	30-150	30	30		
Toxaphene	8001-35-2	0.2	0.0627	ug/l	30-150	20	30-150	30	30		
cis-Chlordane	5103-71-9	0.02	0.00666	ug/l	30-150	20	30-150	30	30		
trans-Chlordane	5103-74-2	0.02	0.00627	ug/l	30-150	20	30-150	30	30		
Chlordane	57-74-9	0.2	0.0463	ug/l	30-150	20	30-150	30	30		
2,4,5,6-Tetrachloro-m-xylene	877-09-8			<u> </u>						30-150	
Decachlorobiphenyl	2051-24-3									30-150	
					1						
					1						
					1						
					1			1			
					1						
					1	İ	İ	1		İ	

Please Note that the RL information provided in this table is calculated using a 100% Solids factor (Soil/Solids only)
Please Note that the information provided in this table is subject to change at anytime at the discretion of Alpha Analytical, Inc.

Langan Engineering & Environmental

Date Created: 04/13/18 Created By: Ben Rao File: PM4765-1 Page: 1

TCL PCBs - EPA 8082A (WATER)

Holding Time: 7 days

Container/Sample Preservation: 2 - Amber 1000ml unpreserved

	I		1	1	LCS	1	MS	1	Duplicate	Surrogate	1
Analyte	CAS #	RL	MDL	Units	Criteria	LCS RPD	Criteria	MS RPD	RPD	Criteria	
Aroclor 1016	12674-11-2	0.083	0.019588	ug/l	40-140	50	40-140	50	50	Criteria	
Aroclor 1221	11104-28-2	0.083	0.031872	ug/l	40-140	50	40-140	50	50		
Aroclor 1232	11141-16-5	0.083	0.027058	ug/l	40-140	50	40-140	50	50		
Aroclor 1242	53469-21-9	0.083	0.029548	ug/l	40-140	50	40-140	50	50		
Aroclor 1248	12672-29-6	0.083	0.022576	ug/l	40-140	50	40-140	50	50		
Aroclor 1254	11097-69-1	0.083	0.034611	ug/l	40-140	50	40-140	50	50		
Aroclor 1260	11096-82-5	0.083	0.01992	ug/l	40-140	50	40-140	50	50		
Aroclor 1262	37324-23-5	0.083	0.017098	ug/l	40-140	50	40-140	50	50		
Aroclor 1268	11100-14-4	0.083	0.027058	ug/l	40-140	50	40-140	50	50		
PCBs, Total	1336-36-3	0.083	0.017098	ug/l				50	50		
PCBs, Total	1336-36-3	0.083	0.017098	ug/l				50	50		
2,4,5,6-Tetrachloro-m-xylene	877-09-8			5,						30-150	
Decachlorobiphenyl	2051-24-3									30-150	
, ,											

Please Note that the RL information provided in this table is calculated using a 100% Solids factor (Soil/Solids only)
Please Note that the information provided in this table is subject to change at anytime at the discretion of Alpha Analytical, Inc.

Date Created: 04/13/18 Created By: Ben Rao File: PM4765-1

Page: 1

Langan Engineering & Environmental

METALS by 6020A (WATER)

	ı	1	1		LCS		MS		Duplicate	Surrogate	Holding	Container/Sample
Analyte	CAS #	RL	MDL	Units	Criteria	LCS RPD	Criteria	MS RPD	RPD	Criteria	Time	Preservation
Aluminum, Total	7429-90-5	0.01	0.00327	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Aluminum, Dissolved	7429-90-5	0.01	0.00327	ma/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Antimony, Total	7440-36-0	0.004	0.000429	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Antimony, Dissolved	7440-36-0	0.004	0.000429	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Arsenic, Total	7440-38-2	0.0005	0.000165	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Arsenic, Dissolved	7440-38-2	0.0005	0.000165	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Barium, Dissolved	7440-39-3	0.0005	0.000173	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Barium, Total	7440-39-3	0.0005	0.000173	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Beryllium, Dissolved	7440-41-7	0.0005	0.000107	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Beryllium, Total	7440-41-7	0.0005	0.000107	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Cadmium, Total	7440-43-9	0.0002	0.0000599	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Cadmium, Dissolved	7440-43-9	0.0002	0.0000599	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Calcium, Total	7440-70-2	0.1	0.0394	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Calcium, Dissolved	7440-70-2	0.1	0.0394	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Chromium, Total	7440-47-3	0.001	0.000178	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Cobalt, Total	7440-48-4	0.0005	0.000163	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Copper, Total	7440-50-8	0.001	0.000384	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Chromium, Dissolved	7440-47-3	0.001	0.000178	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Iron, Total	7439-89-6	0.05	0.0191	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Lead, Total	7439-92-1	0.001	0.000343	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Cobalt, Dissolved	7440-48-4	0.0005	0.000163	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Copper, Dissolved	7440-50-8	0.001	0.000384	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Magnesium, Total	7439-95-4	0.07	0.0242	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Manganese, Total	7439-96-5	0.001	0.00044	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Iron, Dissolved	7439-89-6	0.05	0.0191	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Lead, Dissolved	7439-92-1	0.001	0.000343	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Magnesium, Dissolved	7439-95-4	0.07	0.0242	mg/l	80-120		75-125	20	20			1 - Plastic 500ml HNO3 preserved
Nickel, Total	7440-02-0	0.002	0.000556	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Manganese, Dissolved	7439-96-5	0.001	0.00044	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Potassium, Total	7440-09-7	0.1	0.0309	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Selenium, Total	7782-49-2	0.005	0.00173	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Silver, Total	7440-22-4	0.0004	0.000163	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Sodium, Total	7440-23-5	0.1	0.0293	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Nickel, Dissolved	7440-02-0	0.002	0.000556	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Potassium, Dissolved	7440-09-7	0.1	0.0309	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Thallium, Total	7440-28-0	0.0005	0.000143	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Selenium, Dissolved	7782-49-2	0.005	0.00173	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Vanadium, Total	7440-62-2	0.005	0.00157	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Zinc, Total	7440-66-6	0.01	0.00341	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Silver, Dissolved	7440-22-4	0.0004	0.000163	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Sodium, Dissolved	7440-23-5	0.1	0.0293	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
Thallium, Dissolved	7440-28-0	0.0005	0.000143	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved

Please Note that the RL information provided in this table is calculated using a 100% Solids factor (Soil/Solids only)
Please Note that the information provided in this table is subject to change at anytime at the discretion of Alpha Analytical, Inc

Langan Engineering & Environmental

Date Created: 04/13/18 Created By: Ben Rao File: PM4765-1

Page: 2

0

METALS by 6020A (WATER)

Analyte	CAS#	RL	MDL	Units	LCS Criteria	LCS RPD	MS Criteria	MS RPD	Duplicate RPD	Surrogate Criteria	Holding Time	Container/Sample Preservation
Vanadium, Dissolved	7440-62-2	0.005	0.00157	mg/l	80-120		75-125	20	20	0	180 days	1 - Plastic 500ml HNO3 preserved
Zinc, Dissolved	7440-66-6	0.01	0.00341	mg/l	80-120		75-125	20	20		180 days	1 - Plastic 500ml HNO3 preserved
	İ											
		-		-	-							
					-							
												<u> </u>
								ļ				
								ļ				
		-		-	-							
								 				
		-		-	-							
								 				
		-		-								
					1							
	Diana Nata tha		l	l	l	l	l			l		

Please Note that the RL information provided in this table is calculated using a 100% Solids factor (Soil/Solids only) Please Note that the information provided in this table is subject to change at anytime at the discretion of Alpha Analytical, Inc

Date Created: 04/13/18 Created By: Ben Rao File: PM4765-1

Page: 1

Langan Engineering & Environmental

METALS by 7470A (WATER)

Analyte	CAS#	RL	MDL	Units	LCS Criteria	LCS RPD	MS Criteria	MS RPD	Duplicate RPD	Surrogate Criteria	Holding Time	Container/Sample Preservation
Mercury, Dissolved	7439-97-6	0.0002	0.0002	mg/l	80-120	100 100 2	75-125	20	20	0.100.10	28 days	1 - Plastic 500ml HNO3 preserved
Mercury, Total	7439-97-6	0.0002	0.000066	mg/l	80-120		75-125	20	20		28 days	1 - Plastic 500ml HNO3 preserved
, (a. ca.,), (c. ca.,)												
	_											
	+											
								1				
	+											
	+											
	+											
	1											
	1											
	1											
	1											
	_											
	+											
	+			-	1			1		-		
	1											
	+			-	1			1		-		
	1											
	+	-		-						-		
	+				1			1				
	Diana Nata the	L	1	L								

Please Note that the RL information provided in this table is calculated using a 100% Solids factor (Soil/Solids only)
Please Note that the information provided in this table is subject to change at anytime at the discretion of Alpha Analytical, Inc.

ohalab.com J- Albany, NY - Buffalo, NY - Holmes, PA

Date Created: 04/13/18 Created By: Ben Rao File: PM4765-1

Page: 1

Langan Engineering & Environmental

WETCHEM (WATER)

					LCS		MS		Duplicate RPD		Holding Time	Container/Sample Preservation
Analyte	CAS #	RL	MDL	Units	Criteria	LCS RPD	Criteria	MS RPD	RPD	Method	Time	Preservation
Chromium, Hexavalent	18540-29-9	0.01	0.003	mg/l	85-115	20	85-115	20	20	7196A	24 hours	1 - Plastic 500ml unpreserved
Cyanide, Total	57-12-5	0.005	0.0018	mg/l	85-115	20	80-120	20	20	9010C/9012B	14 days	1 - Plastic 250ml NaOH preserved
								1				
								1				
								1				
								1				
					-							
								1				
								1				
					-							
		+	†	1								
		+	†	1								
		+	+	 		l	l	1		-	-	
		1	 		1			1				
		1	 		1			1				
		+	+	 		l	l	1		-	-	
				1	1	l	l	i .			l	

Please Note that the RL information provided in this table is calculated using a 100% Solids factor (Soil/Solids only) Please Note that the information provided in this table is subject to change at anytime at the discretion of Alpha Analytical, Inc

8 Walkup Drive, Westborough, Massachusetts 01581 • 508-898-9220 • www.alphalab.com

Westborough, MA • Mansfield, MA • Bangor, ME • Portsmouth, NH • Mahwah, NJ • Albany, NY • Buffalo, NY • Holmes, PA

Date Created: 07/02/19

Created By: Kristen Simonis File: PM6920-2

Page: 1

Langan Engineering & Environmental

NYTCL Semivolatiles - EPA 8270D (SOIL)

Holding Time: 14 days

Container/Sample Preservation: 1 - Glass 250ml/8oz unpreserved

					LCS		MS		Duplicate	Surrogate	
Analyte	CAS #	RL	MDL	Units	Criteria	LCS RPD	Criteria	MS RPD	RPD	Criteria	
1,4-Dioxane	123-91-1	25.05	7.682	ug/kg	40-140	50	40-140	50	50		
2-Fluorophenol	<i>367-12-4</i>									25-120	
Phenol-d6	<i>13127-88-3</i>									10-120	
Nitrobenzene-d5	4165-60-0									23-120	
2-Fluorobiphenyl	321-60-8									30-120	
2,4,6-Tribromophenol	<i>118-79-6</i>									10-136	
4-Terphenyl-d14	1718-51-0									18-120	

Please Note that the RL information provided in this table is calculated using a 100% Solids factor (Soil/Solids only)

Please Note that the information provided in this table is subject to change at anytime at the discretion of Alpha Analytical, Inc

Date Created: 07/02/19 Created By: Kristen Simonis File: PM6921-1

Page: 1

Langan Engineering & Environmental

1,4 Dioxane via EPA 8270D-SIM (WATER)

Holding Time: 7 days

Container/Sample Preservation: 2 - Amber 250ml unpreserved

					LCS		MS		Duplicate	Surrogate Criteria	
Analyte	CAS #	RL	MDL	Units	Criteria	LCS RPD	Criteria	MS RPD	RPD	Criteria	
1.4-Dioxane	123-91-1	150	33.9	ng/l	40-140	30	40-140	30	30		
1,4-Dioxane-d8 1,4-Dioxane-d8 (IS)	17647-74-4 17647-74-4									15-110	
1,4-Dioxane-d8 (IS)	17647-74-4			ng/l							
	Diagga Nota tha										

Please Note that the RL information provided in this table is calculated using a 100% Solids factor (Soil/Solids only)
Please Note that the information provided in this table is subject to change at anytime at the discretion of Alpha Analytical, Inc.

8 Walkup Drive, Westborough, Massachusetts 01581 • 508-898-9220 • www.alphalab.com

Westborough, MA • Mansfield, MA • Bangor, ME • Portsmouth, NH • Mahwah, NJ • Albany, NY • Buffalo, NY • Holmes, PA

Langan Engineering & Environmental

NY PFAAs via EPA 537(M)-Isotope Dilution (SOIL)

Date Created: 07/02/19 **Created By:** Kristen Simonis **File:** PM6920-2

Page: 1

Holding Time: 28 days

Container/Sample Preservation: 1 - Plastic 8oz unpreserved

					LCS		MS		Duplicate	Surrogate	
Analyte	CAS #	RL	MDL	Units	Criteria	LCS RPD	Criteria	MS RPD	RPD	Criteria	
Perfluorobutanoic Acid (PFBA)	375-22-4	1	0.0227	ug/kg	71-135	30	71-135	30	30		
Perfluoropentanoic Acid (PFPeA)	2706-90-3	1	0.046	ug/kg	69-132	30	69-132	30	30		
Perfluorobutanesulfonic Acid (PFBS)	375-73-5	1	0.039	ug/kg	72-128	30	72-128	30	30		
Perfluorohexanoic Acid (PFHxA)	307-24-4	1	0.0525	ug/kg	70-132	30	70-132	30	30		
Perfluoroheptanoic Acid (PFHpA)	375-85-9	1	0.0451	ug/kg	71-131	30	71-131	30	30		
Perfluorohexanesulfonic Acid (PFHxS)	355-46-4	1	0.0605	ug/kg	67-130	30	67-130	30	30		
Perfluorooctanoic Acid (PFOA)	335-67-1	1	0.0419	ug/kg	69-133	30	69-133	30	30		
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	27619-97-2	1	0.1795	ug/kg	64-140	30	64-140	30	30		
Perfluoroheptanesulfonic Acid (PFHpS)	375-92-8	1	0.1365	ug/kg	70-132	30	70-132	30	30		
Perfluorononanoic Acid (PFNA)	375-95-1	1	0.075	ug/kg	72-129	30	72-129	30	30		
Perfluorooctanesulfonic Acid (PFOS)	1763-23-1	1	0.13	ug/kg	68-136	30	68-136	30	30		
Perfluorodecanoic Acid (PFDA)	335-76-2	1	0.067	ug/kg	69-133	30	69-133	30	30		
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	39108-34-4	1	0.287	ug/kg	65-137	30	65-137	30	30		
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSA	2355-31-9	1	0.2015	ug/kg	63-144	30	63-144	30	30		
Perfluoroundecanoic Acid (PFUnA)	2058-94-8	1	0.0468	ug/kg	64-136	30	64-136	30	30		
Perfluorodecanesulfonic Acid (PFDS)	335-77-3	1	0.153	ug/kg	59-134	30	59-134	30	30		
Perfluorooctanesulfonamide (FOSA)	754-91-6	1	0.098	ug/kg	67-137	30	67-137	30	30		
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	2991-50-6	1	0.0845	ug/kg	61-139	30	61-139	30	30		
Perfluorododecanoic Acid (PFDoA)	307-55-1	1	0.07	ug/kg	69-135	30	69-135	30	30		
Perfluorotridecanoic Acid (PFTrDA)	72629-94-8	1	0.2045	ug/kg	66-139	30	66-139	30	30		
Perfluorotetradecanoic Acid (PFTA)	376-06-7	1	0.054	ug/kg	69-133	30	69-133	30	30		
PFOA/PFOS, Total		1	0.0419	ug/kg				30	30		
Perfluoro[13C4]Butanoic Acid (MPFBA)	NONE									60-153	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	NONE									65-182	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	NONE									70-151	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	NONE									61-147	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	NONE									62-149	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	NONE									63-166	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	NONE									62-152	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-	NONE									32-182	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	NONE									61-154	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	NONE									65-151	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	NONE									65-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-	NONE									25-186	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid	NONE									45-137	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	NONE									64-158	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	NONE									1-125	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (NONE									42-136	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	NONE									56-148	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	NONE									26-160	
·											

Please Note that the RL information provided in this table is calculated using a 100% Solids factor (Soil/Solids only)
Please Note that the information provided in this table is subject to change at anytime at the discretion of Alpha Analytical, Inc.

Date Created: 07/02/19 Created By: Kristen Simonis File: PM6921-1

Page: 1

Langan Engineering & Environmental

NY PFAAs via EPA 537(M)-Isotope Dilution (WATER)

Holding Time: 14 days

Container/Sample Preservation: 1 - 2 Plastic/1 Plastic/1 H20 Plastic

					LCS		MS		Duplicate	Surrogate		
Analyte	CAS #	RL	MDL	Units	Criteria	LCS RPD	Criteria	MS RPD	RPD	Criteria		
Perfluorobutanoic Acid (PFBA)	375-22-4	2	0.408	ng/l	67-148	30	67-148	30	30			-
Perfluoropentanoic Acid (PFPeA)	2706-90-3	2	0.396	ng/l	63-161	30	63-161	30	30			
Perfluorobutanesulfonic Acid (PFBS)	375-73-5	2	0.238	ng/l	65-157	30	65-157	30	30			-
Perfluorohexanoic Acid (PFHxA)	307-24-4	2	0.328	ng/l	69-168	30	69-168	30	30			
Perfluoroheptanoic Acid (PFHpA)	375-85-9	2	0.2252	ng/l	58-159	30	58-159	30	30			
Perfluorohexanesulfonic Acid (PFHxS)	355-46-4	2	0.376	ng/l	69-177	30	69-177	30	30			
Perfluorooctanoic Acid (PFOA)	335-67-1	2	0.236	ng/l	63-159	30	63-159	30	30			
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	27619-97-2	2	1.332	ng/l	49-187	30	49-187	30	30			-
Perfluoroheptanesulfonic Acid (PFHpS)	375-92-8	2	0.688	ng/l	61-179	30	61-179	30	30			
Perfluorononanoic Acid (PFNA)	375-95-1	2	0.312	ng/l	68-171	30	68-171	30	30			
Perfluorooctanesulfonic Acid (PFOS)	1763-23-1	2	0.504	ng/l	52-151	30	52-151	30	30			
Perfluorodecanoic Acid (PFDA)	335-76-2	2	0.304	ng/l	63-171	30	63-171	30	30	i i		
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	39108-34-4	2	1.212	ng/l	56-173	30	56-173	30	30			-
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSA	2355-31-9	2	0.648	ng/l	60-166	30	60-166	30	30	i i		
Perfluoroundecanoic Acid (PFUnA)	2058-94-8	2	0.26	ng/l	60-153	30	60-153	30	30			
Perfluorodecanesulfonic Acid (PFDS)	335-77-3	2	0.98	ng/l	38-156	30	38-156	30	30			
Perfluorooctanesulfonamide (FOSA)	754-91-6	2	0.58	ng/l	46-170	30	46-170	30	30			-
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	2991-50-6	2	0.804	ng/l	45-170	30	45-170	30	30			
Perfluorododecanoic Acid (PFDoA)	307-55-1	2	0.372	ng/l	67-153	30	67-153	30	30			
Perfluorotridecanoic Acid (PFTrDA)	72629-94-8	2	0.3272	ng/l	48-158	30	48-158	30	30			-
Perfluorotetradecanoic Acid (PFTA)	376-06-7	2	0.248	ng/l	59-182	30	59-182	30	30			
PFOA/PFOS, Total		2	0.236	ng/l				30	30			
Perfluoro[13C4]Butanoic Acid (MPFBA)	NONE			,						2-156		
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	NONE									16-173		
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	NONE									31-159		
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	NONE									21-145		
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	NONE									30-139		
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	NONE									47-153		
Perfluoro[13C8]Octanoic Acid (M8PFOA)	NONE									36-149		
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-	NONE									1-244		
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	NONE									34-146		
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	NONE									42-146		
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	NONE									38-144		
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-	NONE	1			1		İ	1		7-170		
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid	NONE	1			1		İ	1		1-181		
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	NONE									40-144		
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	NONE									1-87		
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (NONE	1			1		İ	1		23-146		
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	NONE		1							24-161		
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	NONE									33-143		
										i i		
		1			1		İ	1		i		
			mation musuidad			' .					l .	

Please Note that the RL information provided in this table is calculated using a 100% Solids factor (Soil/Solids only)
Please Note that the information provided in this table is subject to change at anytime at the discretion of Alpha Analytical, Inc.

ATTACHMENT C Analytical Methods and Quality Assurance Summary Table

ATTACHMENT C ANALYTICAL METHODS/QUALITY ASSURANCE SUMMARY TABLE

Matrix Type	Field Parameters	Laboratory Parameters	Analytical Methods	Sample Preservation	Sample Container Volume and Type	Sample Hold Time	Field Duplicate Samples	Equipment Blank Samples	Trip Blank Samples	Ambient Air Samples	MS/MSD Samples
		Part 375 and TCL VOCs	EPA 8260C	Cool to 4°C; HCl to pH <2; no headspace	Three 40-mL VOC vials with Teflon® -lined cap	Analyze within 14 days of collection			1 per Shipment of VOC samples		
		Part 375 and TCL SVOCs	EPA 8270D and 8270D with SIM	Cool to 4°C	Two 1-Liter Amber Glass	7 days to extract; 40 days after extraction to analyze		1 per 20 samples			
		Part 375 and TCL Pesticides	EPA 8081B	Cool to 4°C	Two 1-Liter Amber Glass	7 days to extract; 40 days after		(minimum 1)			
	Temperature,	PCBs	EPA 8082A	Cool to 4°C	TWO 1-Litter Affiber Glass	extraction to analyze	1 per 20 samples	(11111111111111111111111111111111111111			
Groundwater	Turbidity, pH, ORP, Conductivity	Part 375 and TAL Metals	EPA 6010C, 6020A, 7470A	Cool to 4°C; HNO ₃ to pH <2	250 mL plastic	6 months, except Mercury 28 days	(minimum 1)		NA	NA	1 per 20 samples
		Hexavalent Chromium	EPA 7196A	Cool to 4°C	250 mL plastic	24 Hours			INA		
		Cyanide	EPA 9012B/SM4500 C/E	NaOH plus 0.6g ascorbic acid	250 mL plastic	14 days					
		PFAS**	EPA 537M	Cool to 4°C; Trizma	Three 250-mL HDPE or polypropylene container	1 ' ' ' 1		1 per sampling day			
		1,4-Dioxane as SVOC***	EPA 8270D with SIM	Cool to 4°C	Two 250-mL Amber Glass	7 days to extract; 40 days after extraction to analyze		1 per sampling day			
		Part 375 and TCL VOCs	EPA 8260C	Cool to 4°C	Two 40-mL VOC Vials with 5mL H_2O , one with MeOH	48 hours after sampling if not frozen to -70 or extruded into methanol. If frozen. analyze within 14 days of collection			1 per Shipment of VOC samples	of	
		Part 375 and TCL SVOCs	EPA 8270D and 8270D with SIM	Cool to 4°C	4 oz. jar*	14 days to extract; 40 days after extraction to analyze		1 per 20 samples (minimum 1)			
	Total VOCavia	Part 375 and TCL Pesticides	EPA 8081B	Cool to 4°C	4 oz iar*	14 days to extract; 40 days after	1 nor 20 comples				1 nor 30 camples
Soil	Total VOCs via	PCBs	EPA 8082A	Cool to 4°C	4 oz. jar*	extraction to analyze	1 per 20 samples			NA	1 per 20 samples
	PID -	Part 375 and TAL Metals	EPA 6010C, 7471B	Cool to 4°C	2 oz. jar*	6 months, except Mercury 28 days	(minimum 1)		NA		
		PFAS**	EPA 537M	Cool to 4°C; Trizma	One plastic 8 oz. jar	14 days to extract; 40 days after extraction to analyze		1 per sampling day			
		1,4-Dioxane as SVOC***	EPA 8270D	Cool to 4°C	8 oz. jar	14 days		1 per sampling day			
		Percent Solids	SM 2540G			NA		NA			NA
Soil Gas	Total VOCs via PID	TO-15 Listed VOCs	EPA TO-15	Ambient Temperature	6-Liter Summa Canister	Analyze within 30 days of collection	1 per 20 samples (minimum 1)	1 per 20 samples (minimum 1)	NA	1 per 10 samples	NA
Indoor Air	Total VOCs via PID	TO-15 Listed VOCs	EPA TO-15	Ambient Temperature	6-Liter Summa Canister	Analyze within 30 days of collection	1 per 20 samples (minimum 1)	1 per 20 samples (minimum 1)	NA	1 per 10 samples	NA

Notes:

ORP - Oxidation-Reduction Potential

VOCs - Volatile Organic Compounds

SVOCs - Semivolatile Organic Compounds

PCBs - Polychlorinated Biphenyls

PFAS - Per- and Polyfluoroalkyl Substances

SIM - Selected Ion Monitoring

HCl - Hydrochloric Acid

HNO₃ - Nitric Acid

MeOH - Methanol

NaOH - Sodium Hydroxide

*Can be combined in one or more 8 oz. jars

^{**}The Reporting Limit for PFAS compounds in soil is 1 μ g/kg and in water is 2 ng/L

^{***}The Reporting Limits for 1,4-Dioxane in soil is 25.05 μg/kg and in water is 0.15 μg/L.

ATTACHMENT D Sample Nomenclature Standard Operating Procedure

06/30/2015

SOP #01 - Sample Nomenclature

INTRODUCTION

The Langan Environmental Group conducts an assortment of site investigations where samples (Vapor, Solids, and Aqueous) are collected and submitted to analytical laboratories for analysis. The results of which are then evaluated and entered into a data base allowing quick submittal to the state regulatory authority (New York State Division of Environmental Conservation [NYSDEC]). In addition, Langan is linking their data management system to graphic and analytical software to enable efficient evaluation of the data as well as creating client-ready presentational material.

SCOPE AND APPLICATION

This Standard Operating Procedure (SOP) is applicable to the general framework for labeling vapor, solid (soil) and aqueous (groundwater) samples that will be submitted for laboratory analysis. The nomenclature being introduced is designed to meet the NYSDEC EQUIS standard and has been incorporated into Langan software scripts to assist project personnel in processing the data. While this SOP is applicable to all site investigation; unanticipated conditions may arise which may require considerable flexibility in complying with this SOP. Therefore, guidance provided in this SOP is presented in terms of general steps and strategies that should be applied; but deviation from this SOP must be reported to the Project Manager (PM) immediately.

GENERAL SAMPLE IDENTIFICATION CONSIDERATIONS

Sample Labels

All sample ware must have a label. Recall that when you are using the Encore™ samples (see below); they are delivered in plastic lined foil bags. You are to label the bags¹:

All other samples containers including Terra Cores™ must be labeled with laboratory provided self-adhesive labels.

Quick Breakdown of Sample Format

The general format for sample nomenclature is:

¹Both Alpha and York laboratories permit the combining of the three Encore™ into a single bag. This may not be appropriate for all laboratories so please confirm with the labs themselves Page 1 of 4

LLNN_ID

Where

LL is a grouping of two (2) to four (4) letters signifying the sample media source. In older nomenclature SOPs this portion of the sample identification is commonly referred to as the *Sample Investigation Code*

NN represents a two digit number identifying the specific sample location or sample sequence number

_ (underscore) is required between the sample lettering and numeric identification and additional modifying data that determines the date of sampling or the depth of the sample interval

ID is a modifier specific to the sample type media (depth of soil sample or date of groundwater sample)

LL - Sample Investigation Code

Langan has devised a list of two to four letters to insure a quick ability to identify the sample investigation.

Code	Investigation
AA	Ambient Air
DS	Drum
EPB	Endpoint Location - Bottom (Excavation)
EPSW	Endpoint Location - Sidewall (Excavation)
FP	Free Product
IA	Indoor Air
IDW	Investigation Derived Waste (Soil Pile)
MW	Monitoring Well (Permanent)
SB	Soil Boring
SG	Staff Gauge (Stream Gauging)
SL	Sludge
SV	Soil Vapor Point
SVE	Soil Vapor Extraction Well
SW	Surface Water
TMW	Temporary Monitoring Well
TP	Test Pit (Excavated Material from Test Pit Not Associated With Sidewall or Bottom Samples)
WC	Waste Characterization Boring
COMP	Composite Sample
ТВ	Trip Blank (QA/QC Sampling – All Investigations)
FB	Field Blank (QA/QC Sampling – All Investigations)
DUP	Duplicate (QA/QC Sampling – All Investigations)

NN - Numeric Identifier

The two digit number that follows the sample investigation code (LL) identifies the specific sample based on the soil boring, monitoring well, endpoint or other location identification. For a subset of samples Page 2 of 4

06/30/2015

where there is no specific location identifier, the two digit number is the sequence number for the sample submitted. For example, an aqueous sample from a monitoring well identified as MW-1 would have the sample investigation code of MW and the numeric identifier as 01. Note there is no hyphen. The same can be done for soil borings, a soil sample collected from soil boring 9 (SB-9) would be have the LLNN identification of SB09 (again, no hyphen).

Note however that there is a subset of samples related to laboratory analytical quality assurance, among these includes TB, FB, and DUP. On many investigations, the Scope will require multiple collections of these types of samples, therefore the numerical number represents the sequence sample count where the first sample is 01, the second sample is 02, and the third sample is 03 and so on.

Underscore

The underscore is required. It separates the investigation code and numeric identifier from the modifier specific to the sample itself. Note that every effort should be made to insure that the underscore is clear on the sample label and chain of custody (COC).

ID – Modifier Specific to Type Media

Each sample investigation code and numeric identifier is further modified by an ID specific to the sample type media. In general, soil samples (soil borings or endpoint samples) use an ID that indicates the depth at which the sample was taken. Aqueous samples (groundwater or surface water samples) are identified by the date the sample was collected. Other types of samples including quality control (TB, FB, and DUP), Vapor samples (AA, IA, SV or SVE), other soil type samples (IDW, sludge, free product, drum, and others) are also identified by a date. The following rules apply to the ID when using sample depth or sample date.

Sample Depth

The sample depth must be whole numbers (no fractions) separated by a hyphen. Thus for a soil sample collected from the soil boring SB-1 from a depth of 6 feet to 8 feet, the sample would be identified as:

SB01_6-8

Unfortunately, the NYSDEC EQuIS system does not accept fractions. Therefore, if your sample interval is a fraction of a foot (6.5-7.5), round up to the larger interval (6-8).

Sample Date

The sample date is always in the format of MMDDYY. Note that the year is two digits. Thus for a groundwater sample collected on July 1, 2015 from the monitoring well MW-1, the sample would be identified as:

MW01_070115

Special Cases

There are a couple of specific sample types that require further explanation.

Endpoint Sampling

End point sidewall samples are sometimes modified by magnetic direction (N, S, E, and W). For example, the first sidewall endpoint sample from the north wall of an excavation at a depth of 5 feet would be written as:

EPSW01_N_5

SOP #01: Sample Nomenclature_V01.1

06/30/2015

Again, note that the N in the identification refers to north and is separated from the prefix investigation code/numeric identifier and ID modifier suffix by underscores.

Vapor Extraction Well Sample

As with the sidewall endpoint samples, the sample name is altered by inserting a middle modifier between the prefix and suffix of the sample name. The middle modifier is used to identify the source of the sample (inlet sample port, midpoint sample port or outlet sample port). For example the midpoint port of the vapor extraction well number 1 sampled on July 1, 2015 would be written as;

SVE01_MID_070115

Matrix Spike and Matrix Spike Duplicate

On occasion, a Langan investigation will collect a sample to be used to provide the lab with a site specific medium to spike to determine the quality of the analytical method. This special case of sampling requires additional information to be used in the sample name, specifically, a suffix specifying whether the sample is the matrix spike (MS) or the matrix spike duplicate (MSD). In the following example, the sample is collected from soil boring number 1 at a depth of 2-4 feet. For the matrix spike sample:

SB01_2-4_MS

and for the matrix spike duplicate sample:

SB01_2-4_MSD

Multiple Interval Groundwater Sampling

Although not currently a common practice, low flow sampling facilitates stratigraphic sampling of a monitoring well. If the scope requires stratigraphic sampling then groundwater samples will be labeled with a lower case letter following the well number. For example, placing the pump or sampling tube at 10 feet below surface in MW01 on July 1, 2015 would require the sample to be labeled as:

MW01a_070115

While a second sample where the pump or tubing intake is placed at 20 feet would be labeled as:

MW01b_070115

Note that it is important that you record what depth the intake for each sample represents in your field notes; as this information is going to be critical to interpreting the results.

ATTACHMENT E Per- and Polyfluoroalkyl Substance (PFAS) Sampling Protocol

Sampling for 1,4-Dioxane and Per- and Polyfluoroalkyl Substances (PFAS) Under DEC's Part 375 Remedial Programs

Objective

The Department of Environmental Conservation (DEC) is requiring sampling of all environmental media and subsequent analysis for the emerging contaminants 1,4-Dioxane and PFAS as part of all remedial programs implemented under 6 NYCRR Part 375, as further described in the guidance below.

Sample Planning

The number of samples required for emerging contaminant analyses is to be the same number of samples where "full TAL/TCL sampling" would typically be required in an investigation or remedial action compliance program.

Sampling of all media for ECs is required at all sites coming into or already in an investigative phase of any DER program. In other words, if the sampling outlined in the guidance hasn't already been done or isn't part of an existing work plan to be sampled for in the future, it will be necessary to go back out and perform the sampling prior to approving a SC report or issuing a decision document.

PFAS and 1,4-dioxane shall be incorporated into the investigation of potentially affected media, including soil, groundwater, surface water, and sediment as an addition to the standard "full TAL/TCL sampling." Biota sampling may be necessary based upon the potential for biota to be affected as determined pursuant to a Fish and Wildlife Impact analysis. Soil vapor sampling for PFAS and 1,4-dioxane is not required.

Upon an emerging contaminant being identified as a contaminant of concern (COC) for a site, those compounds must be assessed as part of the remedy selection process in accordance with Part 375 and DER-10 and included as part of the monitoring program upon entering the site management phase.

<u>Special Testing Requirements for Import or Reuse of Soil:</u> Soil imported to a site for use in a soil cap, soil cover, or as backfill must be tested for 1,4-dioxane and PFAS contamination in general conformance with DER-10, Section 5.4(e). Soil samples must be analyzed for 1,4-dioxane using EPA Method 8270, as well as the full list of PFAS compounds (currently 21) using EPA Method 537.1 (modified).

For 1,4-dioxane, soil exceeding the Unrestricted SCO of 0.1 ppm must be rejected per DER 10: Appendix 5 - Allowable Constituent Levels for Imported Fill or Soil, Subdivision 5.4(e).

If PFOA or PFOS is detected in any sample at or above 1 ppb, then a soil sample must be tested by the Synthetic Precipitation Leaching Procedure (SPLP) and the leachate analyzed. If the SPLP results exceed 70 ppt combined PFOA/S, then the source of backfill must be rejected. Remedial parties have the option of analyzing samples concurrently for both PFAS in soil and in the SPLP leachate to minimize project delays.

The work plan should explicitly describe analysis and reporting requirements, including laboratory analytical procedures for modified methods discussed below.

Analysis and Reporting

Labs should provide a full category B deliverable, and a DUSR should be prepared by an independent 3rd party data validator. QA/QC samples should be collected as required in DER-10, Section 2.3(c). The electronic data submission should meet the requirements provided at: https://www.dec.nv.gov/chemical/62440.html.

<u>PFAS analysis and reporting:</u> DEC has developed a *PFAS Analyte List* (below) for remedial programs. It is expected that reported results for PFAS will include, at a minimum, all the compounds listed. If lab and/or matrix specific issues are encountered for any compounds, the DEC project manager, in consultation with the DEC remedial program chemist, will make case-by-case decisions as to whether certain analytes may be temporarily or permanently discontinued from analysis at each site.

Currently, ELAP does not offer certification for PFAS compounds in matrices other than finished drinking water. However, laboratories analyzing environmental samples (e.g., soil, sediments, and groundwater) are required by DER to hold ELAP certification for PFOA and PFOS in drinking water by EPA Method 537 or ISO 25101. Labs must also adhere to the requirements and criteria set forth in the Laboratory Guidance for Analysis of PFAS in Non-Potable Water and Solids.

Modified EPA Method 537 is the preferred method to use for environmental samples due to its ability to achieve very low detection limits. Reporting limits for PFAS in groundwater and soil are to be 2 ng/L (ppt) and 1 ug/kg (ppb), respectively. If contract labs or work plans submitted by responsible parties indicate that they are not able to achieve these reporting limits for the entire list of 21 PFAS, site-specific decisions will need to be made by the DEC project manager in consultation with the DEC remedial program chemist. Note: Reporting limits for PFOA and PFOS in groundwater should not exceed 2 ng/L.

Additional laboratory methods for analysis of PFAS may be warranted at a site. These methods include Synthetic Precipitation Leaching Procedure (SPLP) by EPA Method 1312 and Total Oxidizable Precursor Assay (TOP Assay).

SPLP is a technique for determining the potential for chemicals in soil to leach to groundwater and may be helpful in determining the need for addressing PFAS-containing soils or other solid material as part of the remedy. SPLP sampling need not be considered if there are no elevated PFAS levels in groundwater. If elevated levels of PFAS are detected in water, and PFAS are also seen in soil, then an SPLP test should be considered to better understand the relationship between the PFAS in the two media.

The TOP Assay can assist in determining the potential PFAS risk at a site. For example, some polyfluoroalkyl substances may transform to form perfluoroalkyl substances, resulting in an increase in perfluoroalkyl substance concentrations as contaminated groundwater moves away from the site. To conceptualize the amount and type of oxidizable perfluoroalkyl substances which could be liberated in the environment, a "TOP Assay" analysis can be performed, which approximates the maximum concentration of perfluoroalkyl substances that could be generated if all polyfluoroalkyl substances were oxidized.

PFAS-containing materials can be made up of per- and polyfluoroalkyl substances that are not analyzable by routine analytical methodology (LC-MS/MS). The TOP assay converts, through oxidation, polyfluoroalkyl substances (precursors) into perfluoroalkyl substances that can be detected by current

analytical methodology. Please note that analysis of highly contaminated samples, such as those from an AFFF site, can result in incomplete oxidation of the samples and an underestimation of the total perfluoroalkyl substances. Please consult with a DEC remedial program chemist for assistance interpreting the results.

<u>1,4-Dioxane analysis and reporting:</u> The reporting limit for 1,4-dioxane in groundwater should be no higher than 0.35 μg/L (ppb) and no higher than 0.1 mg/kg (ppm) in soil. Although ELAP offers certification for both EPA Method 8260 and EPA Method 8270 for 1,4-dioxane, DER is advising the use of Method 8270 SIM for water samples and EPA Method 8270 for soil samples. EPA Method 8270 SIM is not necessary for soils if the lab can achieve the required reporting limits without the use of SIM. Note: 1,4-dioxane is currently listed as a VOC in the Part 375 SCO tables but will be moved to the SVOC table with the next update to Part 375.

<u>Refinement of sample analyses:</u> As with other contaminants that are analyzed for at a site, the emerging contaminant analyte list may be refined for future sampling events based on investigative findings. Initially, however, sampling using this PFAS Analyte List and 1,4-dioxane is needed to understand the nature of contamination.

PFAS Analyte List

Group	Chemical Name	Abbreviation	CAS Number
Perfluoroalkyl sulfonates	Perfluorobutanesulfonic acid	PFBS	375-73-5
	Perfluorohexanesulfonic acid	PFHxS	355-46-4
	Perfluoroheptanesulfonic acid	PFHpS	375-92-8
	Perfluorooctanesulfonic acid	PFOS	1763-23-1
	Perfluorodecanesulfonic acid	PFDS	335-77-3
Perfluoroalkyl carboxylates	Perfluorobutanoic acid	PFBA	375-22-4
	Perfluoropentanoic acid	PFPeA	2706-90-3
	Perfluorohexanoic acid	PFHxA	307-24-4
	Perfluoroheptanoic acid	PFHpA	375-85-9
	Perfluorooctanoic acid	PFOA	335-67-1
	Perfluorononanoic acid	PFNA	375-95-1
	Perfluorodecanoic acid	PFDA	335-76-2
	Perfluoroundecanoic acid	PFUA/PFUdA	2058-94-8
	Perfluorododecanoic acid	PFDoA	307-55-1
	Perfluorotridecanoic acid	PFTriA/PFTrDA	72629-94-8
	Perfluorotetradecanoic acid	PFTA/PFTeDA	376-06-7
Fluorinated Telomer Sulfonates	6:2 Fluorotelomer sulfonate	6:2 FTS	27619-97-2
	8:2 Fluorotelomer sulfonate	8:2 FTS	39108-34-4
Perfluorooctane- sulfonamides	Perfluroroctanesulfonamide	FOSA	754-91-6
Perfluorooctane-	N-methyl perfluorooctanesulfonamidoacetic acid	N-MeFOSAA	2355-31-9
sulfonamidoacetic acids	N-ethyl perfluorooctanesulfonamidoacetic acid	N-EtFOSAA	2991-50-6

Groundwater Sampling for Emerging Contaminants

February 2018

<u>Issue:</u> NYSDEC has committed to analyzing representative groundwater samples at remediation sites for emerging contaminants (1,4-dioxane and PFAS) as described in the below quidance.

Implementation

NYSDEC project managers will be contacting site owners to schedule sampling for these chemicals. Only groundwater sampling is required. The number of samples required will be similar to the number of samples where "full TAL/TCL sampling" would typically be required in a remedial investigation. If sampling is not feasible (e.g., the site no longer has any monitoring wells in place), sampling may be waived on a site-specific basis after first considering potential sources of these chemicals and whether there are water supplies nearby.

Upon a new site being brought into any program (i.e., SSF, BCP), PFAS and 1,4-dioxane will be incorporated into the investigation of groundwater as part of the standard "full TAL/TCL" sampling. Until an SCO is established for PFAS, soil samples do not need to be analyzed for PFAS unless groundwater contamination is detected. Separate guidance will be developed to address sites where emerging contaminants are found in the groundwater. The analysis currently performed for SVOCs in soil is adequate for evaluation of 1,4-dioxane, which already has an established SCO.

Analysis and Reporting

Labs should provide a full category B deliverable including preparation of a DUSR.

The work plan should explicitly describe analysis and reporting requirements.

<u>PFAS sample analysis</u>: Samples should be analyzed by an environmental laboratory certified by ELAP to use EPA method 537 or ISO 25101. ELAP does not currently offer certification for PFAS analysis of non-drinking water samples (including groundwater, soil and sediment), so there is no requirement to use an ELAP certified method. The preferred method is the modified EPA Method 537. Labs have been able to achieve reporting limits for PFOA and PFOS of 2 ng/l (part per trillion). If labs are not able to achieve similar reporting limits, the NYSDEC project manager will make case-by-case decisions as to whether the analysis can meet the needs for the specific site.

<u>PFAS sample reporting:</u> DER has developed a PFAS target analyte list (below) with the intent of achieving reporting consistency between labs for commonly reportable analytes. It is expected that reported results for PFAS will include, at a minimum, all the compounds listed. This list may be updated in the future as new information is learned and as labs develop new capabilities. If lab and/or matrix specific issues are encountered for any particular compounds, the NYSDEC project manager will make case-by-case decisions as to whether particular analytes may be temporarily or permanently discontinued from analysis for each site. Any technical lab issues should be brought to the attention of a NYSDEC chemist.

Some sampling using this full PFAS target analyte list is needed to understand the nature of contamination. It may also be critical to differentiate PFAS compounds associated with a site from other sources of these chemicals. Like routine refinements to parameter lists based on investigative findings, the full PFAS target analyte list may not be needed for all sampling intended to define the extent of

contamination. Project managers may approve a shorter analyte list (e.g., just the UCMR3 list) for some reporting on a case by case basis.

<u>1,4-Dioxane Analysis and Reporting:</u> The method detection limit (MDL) for 1,4-dioxane should be no higher than 0.28 μ g/l (ppb). ELAP offers certification for both EPA Methods 8260 and 8270. In order to get the appropriate detection limits, the lab would need to run either of these methods in "selective ion monitoring" (SIM) mode. DER is advising PMS to use 8270, since this method provides a more robust extraction procedure, uses a larger sample volume, and is less vulnerable to interference from chlorinated solvents (we acknowledge that 8260 has been shown to have a higher recovery in some studies).

Full PFAS Target Analyte List

Perfluoroalkyl sulfonates	Perfluorobutanesulfonic acid	PFBS	375-73-5
	Perfluorohexanesulfonic acid	PFHxS	355-46-4
	Perfluoroheptanesulfonic acid	PFHpS	375-92-8
	Perfluorooctanessulfonic acid	PFOS	1763-23-1
	Perfluorodecanesulfonic acid	PFDS	335-77-3
Perfluoroalkyl carboxylates	Perfluorobutanoic acid	PFBA	375-22-4
	Perfluoropentanoic acid	PFPeA	2706-90-3
	Perfluorohexanoic acid	PFHxA	307-24-4
	Perfluoroheptanoic acid	PFHpA	375-85-9
	Perfluorooctanoic acid	PFOA	335-67-1
	Perfluorononanoic acid	PFNA	375-95-1
	Perfluorodecanoic acid	PFDA	335-76-2
	Perfluoroundecanoic acid	PFUA/PFUdA	2058-94-8
	Perfluorododecanoic acid	PFDoA	307-55-1
	Perfluorotridecanoic acid	PFTriA/PFTrDA	72629-94-8
	Perfluorotetradecanoic acid	PFTA/PFTeDA	376-06-7
Fluorinated Telomer Sulfonates	6:2 Fluorotelomer sulfonate	6:2 FTS	27619-97-2
	8:2 Fluorotelomer sulfonate	8:2 FTS	39108-34-4
Perfluorooctane- sulfonamides	Perfluroroctanesulfonamide	FOSA	754-91-6
Perfluorooctane-	N-methyl perfluorooctanesulfonamidoacetic acid	N-MeFOSAA	2355-31-9
sulfonamidoacetic acids	N-ethyl perfluorooctanesulfonamidoacetic acid	N-EtFOSAA	2991-50-6

Bold entries depict the 6 original UCMR3 chemicals

Collection of Groundwater Samples for Perfluorooctanoic Acid (PFOA) and Perfluorinated Compounds (PFCs) from Monitoring Wells Sample Protocol

Samples collected using this protocol are intended to be analyzed for perfluorooctanoic acid (PFOA) and other perfluorinated compounds by Modified (Low Level) Test Method 537.

The sampling procedure used must be consistent with the NYSDEC March 1991 SAMPLING GUIDELINES AND PROTOCOLS

http://www.dec.ny.gov/regulations/2636.html with the following materials limitations.

At this time acceptable materials for sampling include: stainless steel, high density polyethylene (HDPE) and polypropylene. Additional materials may be acceptable if proven not to contain PFCs. NOTE: Grunfos pumps and bladder pumps are known to contain PFC materials (e.g. Teflon™ washers for Grunfos pumps and LDPE bladders for bladder pumps). All sampling equipment components and sample containers should not come in contact with aluminum foil, low density polyethylene (LDPE), glass or polytetrafluoroethylene (PTFE, Teflon™) materials including sample bottle cap liners with a PTFE layer. Standard two step decontamination using detergent and clean water rinse should be considered for equipment that does come in contact with PFC materials. Clothing that contains PTFE material (including GORE-TEX®) or that have been waterproofed with PFC materials must be avoided. Many food and drink packaging materials and "plumbers thread seal tape" contain PFCs.

All clothing worn by sampling personnel must have been laundered multiple times. The sampler must wear nitrile gloves while filling and sealing the sample bottles.

Pre-cleaned sample bottles with closures, coolers, ice, sample labels and a chain of custody form will be provided by the laboratory.

- 1. Fill two pre-cleaned 500 mL HDPE or polypropylene bottle with the sample.
- 2. Cap the bottles with an acceptable cap and liner closure system.
- 3. Label the sample bottles.
- 4. Fill out the chain of custody.
- 5. Place in a cooler maintained at 4 ± 20 Celsius.

Collect one equipment blank for every sample batch, not to exceed 20 samples.

Collect one field duplicate for every sample batch, not to exceed 20 samples.

Collect one matrix spike / matrix spike duplicate (MS/MSD) for every sample batch, not to exceed 20 samples.

Request appropriate data deliverable (Category A or B) and an electronic data deliverable.

DOC ID: 23413 Published:

Revision: 3 Page 1 of 2

EPA 537 Field Sampling Guidelines

Sampling for PFAAs via EPA 537 can be challenging due to the prevalence of these compounds in consumer products. The following guidelines are strongly recommended when conducting sampling.

Reference-NHDES https://www.des.nh.gov/organization/divisions/waste/hwrb/documents/pfc-stakeholder-notification-20161122.pdf

Field Clothing and PPE

- · No clothing or boots containing Gore-TexTM
- · All safety boots made from polyurethane and PVC
- No materials containing Tyvek®
- Do not use fabric softener on clothing to be worn in field
- Do not used cosmetics, moisturizers, hand cream, or other related products the morning of sampling
- Do not use unauthorized sunscreen or insect repellant (see reference above for acceptable products)

Sample Containers

- All sample containers made of HDPE or polypropylene
- Caps are unlined and made of HDPE or polypropylene

Wet Weather (as applicable)

Wet weather gear made of polyurethane and PVC only

Equipment Decontamination

- "PFC-free" water on-site for decontamination of sample equipment. No other water sources to be used.
- Only Alconox and Liquinox can be used as decontamination materials

Food Considerations

No food or drink on-site with exception of bottled water and/or hydration drinks (i.e., Gatorade and Powerade) that is available for consumption only in the staging area

Other Recommendations

Sample for PFCs first! Other containers for other methods may have PFCs present on their sampling containers

Field Equipment

- Must not contain Teflon® (aka PTFE) or LDPE materials
- All sampling materials must be made from stainless steel, HDPE, acetate, silicon, or polypropylene
- · No waterproof field books can be used
- No plastic clipboards, binders, or spiral hard cover notebooks can be used
- No adhesives (i.e.Post-It Notes) can be used
- Sharpies and permanent markers not allowed; regular ball point pens are acceptable
- · Aluminum foil must not be used
- Keep PFC samples in separate cooler, away from sampling containers that may contain PFCs
- Coolers filled with regular ice only. Do not use chemical (blue) ice packs.

DOC ID: 23413 Published:

Revision: 3 Page 2 of 2

EPA Method 537 (PFAS) Sampling Instructions

Please read instructions entirely prior to sampling event.

*Sampler must wash hands before wearing nitrile gloves in order to limit contamination during sampling.

Each sample set* requires a set of containers to comply with the method as indicated below.

*sample set is composed of samples collected from the same sample site and at the same time.

Container Count	Container Type	Preservative	
3 Sampling Containers - Empty	250 mL container	Pre preserved with 1.25 g Trizma	
Reagent Water for Field Blank use	250 mL container	Pre preserved with 1.25 g Trizma	
1 Field Blank (FRB) Container - Empty	250 mL container	Unpreserved	

^{**} Sampling container <u>must be filled to the neck</u>. For instructional purposes a black line has been drawn to illustrate the required fill level for each of the 3 Sample containers**

Field blanks are recommended and the containers have been provided, please follow the instructions below.

Field Blank Instructions:

- 1. Locate the Reagent Water container from the bottle order. The Reagent Water container will be prefilled with PFAS-free water and is preserved with Trizma.
- 2. Locate the empty container labeled "Field Blank".
- 3. Open both containers and proceed to transfer contents of the "Reagent Water" container into the "Field Blank" container.
- 4. If field blanks are to be analyzed, they need to be noted on COC, and will be billed accordingly as a sample.

Both the <u>empty</u> Reagent Water container and the <u>filled</u> Field Blank container must be returned to the laboratory along with the samples taken.

Sampling Instructions:

- 1. Each sampling event requires 3 containers to be filled to the neck of the provided containers for each sampling location.
- 2. Before sampling, remove faucet aerator, run water for 5 min, slow water to flow of pencil to avoid splashing and fill sample containers to neck of container (as previously illustrated) and invert 5 times.
- 3. Do not overfill or rinse the container.
- 4. Close containers securely. Place containers in sealed ZipLoc bags, and in a separate cooler (no other container types).
- 5. Ensure Chain-of-Custody and all labels on containers contain required information. Place sample, Field Blank and empty Reagent Blank containers in ice filled cooler (do not use blue ice) and return to the laboratory. Samples should be kept at 4°C ±2. Samples must not exceed 10°C during first 48 hours after collection. Hold time is 14 days.

Please contact your project manager with additional questions or concerns.

ATTACHMENT C COMMUNITY AIR MONITORING PLAN

New York State Department of Health Generic Community Air Monitoring Plan

A Community Air Monitoring Plan (CAMP) requires real-time monitoring for volatile organic compounds (VOCs) and particulates (i.e., dust) at the downwind perimeter of each designated work area and when certain activities are in progress at contaminated sites. The CAMP is not intended for use in establishing action levels for worker respiratory protection. Rather, its intent is to provide a measure of protection for the downwind community (i.e., off-site receptors including residences and businesses and on-site workers not directly involved with the subject work activities) from potential airborne contaminant releases as a direct result of investigative and remedial work activities. The action levels specified herein require increased monitoring, corrective actions to abate emissions, and/or work shutdown. Additionally, the CAMP helps to confirm that work activities did not spread contamination off-site through the air.

The generic CAMP presented below will be sufficient to cover many, if not most, sites. Specific requirements should be reviewed for each situation in consultation with NYSDOH to ensure proper applicability. In some cases, a separate site-specific CAMP or supplement may be required. Depending upon the nature of contamination, chemical specific monitoring with appropriately-sensitive methods may be required. Depending upon the proximity of potentially exposed individuals, more stringent monitoring or response levels than those presented below may be required. Special requirements will be necessary for work within 20 feet of potentially exposed individuals or structures and for indoor work with co-located residences or facilities. These requirements should be determined in consultation with NYSDOH. Reliance on the CAMP should not preclude simple, common-sense measures to keep VOCs, dust, and odors at a minimum around the work areas.

Community Air Monitoring Plan

Depending upon the nature of known or potential contaminants at each site, real-time air monitoring for volatile organic compounds (VOCs) and/or particulate levels at the perimeter of the exclusion zone or work area will be necessary. Most sites will involve VOC and particulate monitoring; sites known to be contaminated with heavy metals alone may only require particulate monitoring. If radiological contamination is a concern, additional monitoring requirements may be necessary per consultation with appropriate NYSDEC/NYSDOH staff.

Continuous monitoring will be required for all ground intrusive activities and during the demolition of contaminated or potentially contaminated structures. Ground intrusive activities include, but are not limited to, soil/waste excavation and handling, test pitting or trenching, and the installation of soil borings or monitoring wells.

Periodic monitoring for VOCs will be required during non-intrusive activities such as the collection of soil and sediment samples or the collection of groundwater samples from existing monitoring wells. "Periodic" monitoring during sample collection might reasonably consist of taking a reading upon arrival at a sample location, monitoring while opening a well cap or overturning soil, monitoring during well baling/purging, and taking a reading prior to leaving a sample location. In some instances, depending upon the proximity of potentially exposed individuals, continuous monitoring may be required during sampling activities. Examples of such situations include groundwater sampling at wells on the curb of a busy urban street, in the midst of a public park, or adjacent to a school or residence.

VOC Monitoring, Response Levels, and Actions

Volatile organic compounds (VOCs) must be monitored at the downwind perimeter of the immediate work area (i.e., the exclusion zone) on a **continuous** bases or as otherwise specified. Upwind concentrations should be measured at the start of each workday and periodically thereafter to establish background conditions. The monitoring work should be performed using equipment appropriate to measure the types of contaminants known or suspected to be present. The equipment should be calibrated at least daily for the contaminant(s) of concern or for an appropriate surrogate. The equipment

should be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below.

- If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 parts per million (ppm) above background for the 15-minute average, work activities must be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.
- If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities must be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities can resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less but in no case less than 20 feet, is below 5 ppm over background for the 15-minute average.
- If the organic vapor level is above 25 ppm at the perimeter of the work area, activities must be shutdown.

All 15-minute readings must be recorded and available for State (DEC and DOH) personnel to review. Instantaneous readings, if any, used for decision purposes should also be recorded.

Particulate Monitoring, Response Levels, and Actions

Particulate concentrations should be monitored **continuously** at the upwind and downwind perimeters of the exclusion zone at temporary particulate monitoring stations. The particulate monitoring should be performed using real-time monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The equipment must be equipped with an audible alarm to indicate exceedance of the action level. In addition, fugitive dust migration should be visually assessed during all work activities.

- If the downwind PM-10 particulate level is 100 micrograms per cubic meter (mcg/m3) greater than background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques must be employed. Work may continue with dust suppression techniques provided that downwind PM-10 particulate levels do not exceed 150 mcg/m3 above the upwind level and provided that no visible dust is migrating from the work area.
- If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 mcg/m3 above the upwind level, work must be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 mcg/m3 of the upwind level and in preventing visible dust migration.

All readings must be recorded and be available for State (DEC and DOH) personnel to review.

Special Requirements for Work Within 20 Feet of Potentially Exposed Individuals or Structures

When work areas are within 20 feet of potentially exposed populations or occupied structures, the continuous monitoring locations for VOCs and particulates must reflect the nearest potentially exposed individuals and the location of ventilation system intakes for nearby structures. The use of engineering controls such as vapor/dust barriers, temporary negative-pressure enclosures, or special ventilation devices should be considered to prevent exposures related to the work activities and to control dust and odors. Consideration should be given to implementing the planned activities when potentially exposed populations are at a minimum, such as during weekends or evening hours in non-residential settings.

- If total VOC concentrations opposite the walls of occupied structures or next to intake vents
 exceed 1 ppm, monitoring should occur within the occupied structure(s). Background readings in
 the occupied spaces must be taken prior to commencement of the planned work. Any unusual
 background readings should be discussed with NYSDOH prior to commencement of the work.
- If total particulate concentrations opposite the walls of occupied structures or next to intake vents
 exceed 150 mcg/m3, work activities should be suspended until controls are implemented and are
 successful in reducing the total particulate concentration to 150 mcg/m3 or less at the monitoring
 point.
- Depending upon the nature of contamination and remedial activities, other parameters (e.g., explosivity, oxygen, hydrogen sulfide, carbon monoxide) may also need to be monitored. Response levels and actions should be pre-determined, as necessary, for each site.

Special Requirements for Indoor Work with Co-Located Residences or Facilities

Unless a self-contained, negative-pressure enclosure with proper emission controls will encompass the work area, all individuals not directly involved with the planned work must be absent from the room in which the work will occur. Monitoring requirements shall be as stated above under "Special Requirements for Work Within 20 Feet of Potentially Exposed Individuals or Structures" except that in this instance "nearby/occupied structures" would be adjacent occupied rooms. Additionally, the location of all exhaust vents in the room and their discharge points, as well as potential vapor pathways (openings conduits, etc.) relative to adjoining rooms, should be understood and the monitoring locations established accordingly. In these situations, it is strongly recommended that exhaust fans or other engineering controls be used to create negative air pressure within the work area during remedial activities. Additionally, it is strongly recommended that the planned work be implemented during hours (e.g. weekends or evenings) when building occupancy is at a minimum.