555 West 22nd Street NEW YORK, NEW YORK

Final Engineering Report

NYSDEC Site Number: C231101

Prepared for:

22nd and 11th Associates, L.L.C. c/o The Related Companies 60 Columbus Circle New York, NY 10023

Prepared by:

Matthew M. Carroll, P.E.

&

TENEN

121 West 27th Street, Suite 702 New York, NY 10001 (646) 606-2332

CERTIFICATIONS

I, Matthew M. Carroll, am currently a registered professional engineer licensed by the State of New York, I had primary direct responsibility for implementation of the remedial program activities, and I certify that the Remedial Action Work Plan was implemented and that all construction activities were completed in substantial conformance with the Department-approved Remedial Action Work Plan.

I certify that the data submitted to the Department with this Final Engineering Report demonstrates that the remediation requirements set forth in the Remedial Action Work Plan and in all applicable statutes and regulations have been or will be achieved in accordance with the time frames, if any, established for the remedy.

I certify that all use restrictions, Institutional Controls, Engineering Controls, and/or any operation and maintenance requirements applicable to the Site are contained in an environmental easement created and recorded pursuant ECL 71-3605 and that all affected local governments, as defined in ECL 71-3603, have been notified that such easement has been recorded.

I certify that a Site Management Plan has been submitted for the continual and proper operation, maintenance, and monitoring of all Engineering Controls employed at the Site, including the proper maintenance of all remaining monitoring wells, and that such plan has been approved by the Department.

I certify that all documents generated in support of this report have been submitted in accordance with the DER's electronic submission protocols and have been accepted by the Department.

I certify that all data generated in support of this report have been submitted in accordance with the Department's electronic data deliverable and have been accepted by the Department.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, Matthew M. Carroll, of 1085 Sackett Avenue, Bronx, NY, am certifying as Owner's Designated Site Representative for the site.

091629	11/06/2019	
091029		
NYS Professional Engineer #	Date	Signature

TABLE OF CONTENTS

CE	ERTIFICATIONS	II
TA	ABLE OF CONTENTS	IV
LIS	ST OF ACRONYMS	VI
FIN	NAL ENGINEERING REPORT	1
1.0	BACKGROUND AND SITE DESCRIPTION	1
2.1	REMEDIAL ACTION OBJECTIVES	2
	2.1.1 Groundwater RAOs	2
	2.1.2 Soil RAOs	
	2.1.3 Soil Vapor RAOs	3
2.2	DESCRIPTION OF SELECTED REMEDY	3
	INTERIM REMEDIAL MEASURES, OPERABLE UNITS AND REMEI	
CO	ONTRACTS	5
4.0	DESCRIPTION OF REMEDIAL ACTIONS PERFORMED	6
4.1	GOVERNING DOCUMENTS	6
	4.1.1 Site Specific Health & Safety Plan (HASP)	6
	4.1.2 Quality Assurance Project Plan (QAPP)	6
	4.1.3 Soil/Materials Management Plan (S/MMP)	
	4.1.4 Storm-Water Pollution Prevention Plan (SWPPP)	
	4.1.6 Contractors Site Operations Plans (SOPs)	
	4.1.7 Community Participation Plan	
4.2	REMEDIAL PROGRAM ELEMENTS	10
	4.2.1 Contractors and Consultants	10
	4.2.2 Site Preparation	13
	4.2.3 General Site Controls	14

4.2.4 Nuisance controls	15
4.2.5 CAMP results	17
4.2.6 Reporting	18
4.3 CONTAMINATED MATERIALS REMOVAL	20
4.3.1 Waste Characterization	
4.3.2 Excavation and Disposal of Impacted Soil/Fill	
4.3.3 Dewatering	22
4.3.4 Underground Storage Tanks	
4.3.5 Onsite Reuse	26
4.4 REMEDIAL PERFORMANCE/DOCUMENTATION SAMPLING	26
4.4.1 Endpoint Sampling	26
4.4.2 Groundwater Sampling for Emerging Contaminants	
4.5 IMPORTED MATERIAL	28
4.6 CONTAMINATION REMAINING AT THE SITE	29
4.7 COMPOSITE COVER SYSTEM	30
4.8 INSTITUTIONAL CONTROLS	30
4.9 DEVIATIONS FROM THE REMEDIAL ACTION WORK PLAN.	30
LIST OF TABLES	32

LIST OF ACRONYMS

Acronym	Definition	
AGV	NYSDOH Air Guidance Value	
AOC	Area of Concern	
AS	Air Sparging	
BCA	Brownfield Cleanup Agreement	
BCP	Brownfield Cleanup Program	
BTEX	Benzene, Toluene, Ethylbenzene, and Xylenes	
CAMP	Community Air Monitoring Plan	
C&D	Construction and Demolition	
CDS	Construction Dewatering System	
Class GA Standards	NYSDEC TOGS 1.1.1 Class GA Ambient Water Quality Standards and Guidance Values	
CEQR	City Environmental Quality Review	
CFR	Code of Federal Regulations	
CPP	Citizen Participation Plan	
COC	Certificate of Completion	
DER-10	NYSDEC Division of Environmental Remediation (DER), DER-10/Technical Guidance for Site Investigation and Remediation	
DRO	Diesel Range Organics	
DOC	Dissolved Organic Carbon	
DUSR	Data Usability Summary Report	
EC	Engineering Control	
ECL	Environmental Conservation Law	
ESA	Environmental Site Assessment	
EZ	Exclusion Zone	
FB	Field Blank	
FER	Final Engineering Report	
Ft-bg	Feet Below Sidewalk Grade	
Ft-msl	Feet Below Mean Sea Level	
GPM	Gallons per Minute	
HASP	Health and Safety Plan	
HSA	Hollow Stem Auger	
HSO	Health and Safety Officer	
IC	Institutional Control	
ISCO	In-Situ Chemical Oxidation	
IRM	Interim Remedial Measure	
MW	Monitoring Well	
NAVD	North American Vertical Datum of 1988	
NGVD	National Geodetic Vertical Datum of 1929	

NIOSH	National Institute for Occupational Safety and Health		
NYCDEP	New York City Department of Environmental Protection		
NYCDEP Limits	NYCDEP Limits for Effluent to Sanitary or Combined Sewers		
NYCDOB	New York City Department of Buildings		
NYCDOT	New York City Department of Transportation		
NYCRR	New York Codes, Rules and Regulations		
NYSDEC	New York State Department of Environmental Conservation		
NYSDOH	New York State Department of Health		
NYSDOH-ELAP	NYSDOH Environmental Laboratory Approval Program		
O&M Plan	Operations and Maintenance Plan		
OSHA	Occupational Safety and Health Association		
PCB	Polychlorinated Biphenyl		
PID	Photoionization Detector		
PGWSCOs	6 NYCRR 375-6.8(b) and CP-51 Protection of Groundwater Soil Cleanup Objectives		
PPE	Personal Protective Equipment		
ppm	Parts per million		
QA/QC	Quality Assurance/Quality Control		
QAPP	Quality Assurance Project Plan		
RAWP	Remedial Action Work Plan		
RCNY	Rules of the City of New York		
RAO	Remedial Action Objective		
RE	Remedial Engineer		
RI	Remedial Investigation		
RSCOs	Recommended Soil Cleanup Objectives		
RRUSCOs	6 NYCRR 375-6.8(b) and CP-51 Restricted-Residential Use Soil Cleanup Objectives		
SB	Soil Boring		
SCGs	Standards, Criteria and Guidance		
SCOs	Soil Cleanup Objectives		
SV	Soil Vapor		
SMP	Site Management Plan		
SMMP	Soils/Materials Management Plan		
SVE	Soil Vapor Extraction		
SVOC	Semi-volatile Organic Compound		
TAL	Target Analyte List		
TAGM 4046	NYSDEC Technical and Administrative Guidance Memorandum #4046		
TB	Trip Blank		
TCL	Target Compound List		
TCLP	Toxicity Characteristic Leaching Procedure		

TCLP Limits	USEPA Maximum Concentrations of Contaminants for the Toxicity Characteristic	
TOC	Total Organic Carbon	
USEPA	United States Environmental Protection Agency	
USGS	United States Geological Survey	
UST	Underground Storage Tank	
UUSCOs	6 NYCRR 375-6.8(a) Unrestricted Use Soil Cleanup Objectives	
VOC	Volatile Organic Compounds	

FINAL ENGINEERING REPORT

1.0 BACKGROUND AND SITE DESCRIPTION

22nd and 11th Associates, L.L.C. entered into a Brownfield Cleanup Agreement (BCA) with the New York State Department of Environmental Conservation (NYSDEC) in August 2016, to investigate and remediate a 0.77-acre property located in the West Chelsea neighborhood of New York, New York. The property was remediated to restricted residential use and will be used for residential use.

The site is located in the County of New York, New York and is identified as Block 694 and Lots 2, 5, 60, 61 and 65 on the New York City Tax Map. The site is situated on an approximately 0.77-acre area bounded by West 23rd Street to the north followed by a residential building, mixed commercial and residential buildings and West 22nd Street to the south, mixed commercial and residential buildings to the east, and 11th Avenue to the west followed by a park (see Figure 1). The boundaries of the site are fully described in Appendix A: Survey Map, Metes and Bounds.

An electronic copy of this FER with all supporting documentation is included as Appendix B.

2.0 SUMMARY OF SITE REMEDY

2.1 REMEDIAL ACTION OBJECTIVES

Based on the results of the Remedial Investigation, the following Remedial Action Objectives (RAOs) were identified for this site.

2.1.1 Groundwater RAOs

RAOs for Public Health Protection

- Prevent ingestion of groundwater containing contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of, volatiles emanating from contaminated groundwater.

RAOs for Environmental Protection

- Restore ground water aquifer, to the extent practicable, to pre-disposal/prerelease conditions.
- Prevent the discharge of contaminants to surface water.

2.1.2 Soil RAOs

RAOs for Public Health Protection

- Prevent ingestion/direct contact with contaminated soil.
- Prevent inhalation of, or exposure to, contaminants volatilizing from contaminated soil.

RAOs for Environmental Protection

- Prevent migration of contaminants that would result in groundwater or surface water contamination.
- Prevent impacts to biota from ingestion/direct contact with soil causing toxicity or impacts from bioaccumulation through the terrestrial food chain.

2.1.3 Soil Vapor RAOs

RAOs for Public Health Protection

• Mitigate impacts to public health resulting from existing, or the potential for, soil vapor intrusion into buildings at a site.

2.2 DESCRIPTION OF SELECTED REMEDY

The site was remediated in accordance with the remedy selected by the NYSDEC in the RAWP dated June 2018 and the Decision Document dated July 2018.

The factors considered during the selection of the remedy are those listed in 6NYCRR 375-1.8. The following are the components of the selected remedy:

- 1. Development and execution of plans for the protection of on-site workers, community, and environment during remediation and construction activities;
- 2. Excavation of approximately 13,000 cubic yards of soil/fill exceeding Restricted Residential Use SCOs listed in Table 3 for remedial purposes, to a depth of 10 to 15 feet below grade (ft-bg);
- 3. Excavation of approximately 20,000 cubic yards of material for development purposes, from varying depths beginning at 10 to 15 ft-bg and up to 29 ft-bg;
- 4. Design and construction of a support of excavation incorporating a perimeter drilled, intersecting, reinforced concrete piles anchored into a clay confining layer to create a secant pile wall;
- Removal of all previously identified and any unknown underground storage tanks (USTs)/aboveground storage tanks (ASTs) and petroleum impacted material, if present;
- 6. Dewatering and treatment of impacted groundwater, if present;
- 7. Collection and analysis of endpoint soil samples to confirm and document removal of targeted materials;

- 8. Collection and analysis of groundwater samples from existing monitoring wells to evaluate the presence of emerging contaminants;
- 9. Disposal of impacted material from the Site in accordance with all federal, state, and local rules and regulations for handling, transport, and disposal;
- 10. Importation of fill meeting the NYSDEC DER-10 soil criteria;
- 11. Placement of a waterproofing membrane beneath the building slab and along foundation side walls as part of green remediation;
- 12. Installation of a composite cover system within the Track 4 locations onsite consisting of approximately 12" of concrete to prevent human exposure to remaining contaminated soil/fill remaining at the site;
- 13. Execution and recording of an Environmental Easement to restrict land use and prevent future exposure to any contamination remaining at the site.
- 14. Development and implementation of a Site Management Plan for long term management of remaining contamination as required by the Environmental Easement, which includes plans for: (1) Institutional and Engineering Controls, (2) monitoring, (3) operation and maintenance and (4) reporting;
- 15. Periodic certification of the institutional and engineering controls listed above.

3.0 INTERIM REMEDIAL MEASURES, OPERABLE UNITS AND REMEDIAL CONTRACTS

The remedy for this site was performed as a single project, and no interim remedial measures, operable units or separate construction contracts were performed.

4.0 DESCRIPTION OF REMEDIAL ACTIONS PERFORMED

Remedial activities completed at the Site were conducted in accordance with the NYSDEC-approved Remedial Action Work Plan (RAWP) for the 555 West 22nd Street site (June 2018). All deviations from the RAWP are noted below.

4.1 GOVERNING DOCUMENTS

4.1.1 Site Specific Health & Safety Plan (HASP)

All remedial work performed under this Remedial Action was in full compliance with governmental requirements, including Site and worker safety requirements mandated by Federal OSHA.

The Health and Safety Plan (HASP) was complied with for all remedial and invasive work performed at the Site and was provided as Appendix F of the approved RAWP.

4.1.2 Quality Assurance Project Plan (QAPP)

The QAPP was included as Appendix G of the approved RAWP. The QAPP describes the specific policies, objectives, organization, functional activities and quality assurance/ quality control activities designed to achieve the project data quality objectives.

4.1.3 Soil/Materials Management Plan (S/MMP)

The SMMP was included as Appendix B of the approved RAWP. Soil and materials management onsite was conducted in accordance with the SMMP. The main goal of the SMMP was to handle all potentially contaminated soil and manage activities associated with soil in a manner that prevented contamination from reaching the community, workers, future occupants and workers, and the environment, and in compliance with applicable regulatory requirements.

During construction excavation, direct soil loading onto trucks for immediate offsite disposal was conducted to the extent practicable. If direct loading could not be performed, excavated soils were stockpiled on, at minimum, double layers of 8-mil (minimum) sheeting, and kept covered during non-work hours with appropriately

anchored plastic tarps. Broken or ripped tarps were replaced promptly. Excavated soil from areas of contamination (e.g., USTs, petroleum-impacted soil, etc.) was stockpiled separately and covered with foam suppressant if an odor issue was created.

4.1.4 Storm-Water Pollution Prevention Plan (SWPPP)

The development is less than one acre in area and a SWPPP was not required. Provisions for erosion and sediment controls were implemented as described in Section 4.2.3.

4.1.5 Community Air Monitoring Plan (CAMP)

On site air monitoring was conducted consistent with the requirements of the site-specific Community Air Monitoring Plan (CAMP) and the project HASP. The purpose of the CAMP was to protect downwind and adjacent receptors (e.g., residences, businesses, nearby workers, and the public) from potential airborne contaminants released as a direct result of the Remedial Action being performed at the Site. A summary of the CAMP plan is provided in Section 5.0 of the HASP, included as Appendix F of the RAWP. In accordance with the HASP, continuous air monitoring was implemented during all ground-intrusive activities, including installation of SOE, excavation and foundation element installation (piles and caissons). The approved HASP includes action levels for two monitoring stations at the upwind and downwind perimeters of the exclusion zone, consistent with the New York State Department of Health (NYSDOH) Generic CAMP.

Air monitoring stations were established at the upwind perimeter and downwind perimeter of the Site, with locations determined on a daily basis. Each monitoring station was equipped with a photoionization meter (PID) to measure volatile organics (VOCs), and a dust monitor to measure for particulate emissions. Background levels were measured at the start of each work day and periodically thereafter, particularly if the wind direction changed. Equipment was calibrated on a daily basis and was capable of calculating 15-minute running average concentrations, which were compared to specified action levels. Due to the project schedule and excavation extent, the locations of the air monitoring equipment changed with the progress of the excavation.

The following action levels for VOC monitoring were used:

- 1. If the ambient air concentration of total organic vapors at the downwind perimeter of the work area of exclusion zone exceeded 5 parts-per-million (ppm) above background for the 15-minute average, work activities were temporarily halted and monitoring continued. If the total organic vapor level readily decreased (per instantaneous readings) below 5 ppm over background, work activities resumed with continued monitoring.
- 2. If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persisted at levels in excess of 5 ppm over background but less than 25 ppm, work activities were halted, the source of vapors were identified, corrective actions were taken to abate emissions, and monitoring continued. After these steps, work activities resumed provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less but in no case less than 200 feet was below 5 ppm over background for the 15-minute average.
- 3. If the organic vapor concentration was above 25 ppm at the perimeter of the work zone, activities were shut down.
- 4. All 15-minute readings were recorded and were available for State (NYSDEC and NYSDOH) personnel to review. Instantaneous readings, if any, used for decision purposes were also recorded.

The following action levels for particulate monitoring were implemented:

- 1. If the downwind PM-10 particulate level was 100 micrograms per cubic meter (mcg/m³) greater than background (upwind perimeter) for the 15-minute period or if airborne dust was observed leaving the work zone, dust suppression techniques were employed. Work continued with dust suppression techniques provided that downwind PM-10 particulate levels did not exceed 150 mcg/m³ above the upwind level and provided that no visible dust was migrating from the work area.
- 2. If, after implementation of dust suppression techniques, downwind PM-10 particulate levels were greater than 150 mcg/m³ above the upwind level, work

was stopped and re-evaluation of activities initiated. Work resumed provided that dust suppression measures and other controls were successful in reducing the downwind PM-10 particulate concentration to within 150 mcg/m³ of the upwind level and in preventing visible dust migration.

3. All readings were recorded and were available for State (NYSDEC and NYSDOH) personnel to review.

CAMP data from the two stations is shown in Appendix C. A summary of CAMP results is further described in Section 4.2.5 of this FER.

4.1.6 Contractors Site Operations Plans (SOPs)

The Remediation Engineer reviewed all plans and submittals for this remedial project (i.e. those listed above plus contractor and subcontractor submittals) and confirmed that they were in compliance with the RAWP. All remedial documents were submitted to NYSDEC and NYSDOH in a timely manner and prior to the start of work.

4.1.7 Community Participation Plan

The Community Participation Plan (CPP) enables citizens to participate more fully in decisions that affect their health, environment, and social well being.

A certification of mailing was sent by the Volunteer to the NYSDEC project manager following the distribution of all Fact Sheets and included: (1) certification that the Fact Sheets were mailed; (2) the date they were mailed; (3) a copy of the Fact Sheet; and (4) a list of recipients (contact list).

No changes were made to the approved Fact Sheets authorized for release by NYSDEC without written consent of the NYSDEC. No other information, such as brochures and flyers, was included with the Fact Sheet mailing.

Document repositories were established at the following locations and contain all applicable project documents:

Manhattan Community Board Four 330 West 42nd Street, Suite 2618 New York, NY 10036

New York Public Library, Muhlenberg Branch 209 West 23rd Street New York, NY 10011

Once the NYSDEC approves the Final Engineering Report, a final Fact Sheet will be prepared and distributed to announce that (1) remediation has been completed; and (2) the Certificate of Completion (COC) has been issued.

4.2 REMEDIAL PROGRAM ELEMENTS

4.2.1 Contractors and Consultants

The Remedial Engineer (RE) for this project was Matthew M. Carroll, P.E., a registered professional engineer (PE) licensed by the State of New York. The RE has certified in this FER that the remedial actions were observed by representatives under his supervision and the requirements set forth in the RAWP and any other relevant provisions of ECL 27-1419 have been achieved in conformance with the RAWP.

Matthew M. Carroll, P.E., served as the Engineer of Record and provided oversight for the remedial activities. NYSDEC was the lead agency, providing regulatory approval for all components of the remedy. The following parties completed various tasks as noted:

Environmental Consultant

Tenen Environmental LLC

121 West 27th Street, Suite 702, New York, NY 10001

(646) 606-2332

- Alana Carroll, Professional Geologist: Responsible for overall coordination and management of the project.
- Mohamed Ahmed, Professional Geologist: Responsible for quality assurance of sampling procedures and laboratory data.
- Ashley Platt, Environmental Scientist: Responsible for the day-to-day field monitoring activities, including soil excavation and load-out, dust monitoring, and PID monitoring.

Laboratory

```
Alpha Analytical, Inc.

8 Walkup Drive, Westborough, MA 01581
(800) 624-9220
```

Alpha Analytical performed sampling analysis related to the RI, waste characterization, emerging contaminant samples, and endpoint samples. The laboratory is certified under the NYSDOH Environmental Laboratory Approval Program (ELAP) IDs 11148 and 11627 for soild and hazardous waste air and emissions, respectively. NYSDEC Analytical Services Protocol (ASP) Category B deliverables were prepared by the laboratory.

Subcontractor Drilling and Underground Storage Tank Removal

AARCO Environmental Services
50 Gear Avenue, Lindenhurst, NY 11757
(631) 586-5900

AARCO performed drilling related to implementation of the RI and waste characterization. Underground storage tanks encountered during the course of excavation were cleaned and disposed by AARCO, a New York City Fire Department (FDNY) registered tank contractor.

Data Validation

L.A.B. Validation Corp.14 West Point Drive, East Northport, NY 11731(516) 523-7891

Data validation was completed for post-excavation endpoint and emerging contaminant sampling.

Remedial Contractors

Related Construction 60 Columbus Circle, New York, NY 10023 (212) 801-1000 Related Construction was the remedial contractor responsible for general construction management for the duration of the project.

ECD NY Inc.

35-12 19th Avenue, Suite 2W, Astoria, NY 11105

(718) 388-6705

ECD NY was the remedial contractor responsible for excavation, support-of-excavation, dewatering, and foundation for the project.

Soil Disposal Management

Earth Efficient

30 West Main Street, Riverhead, NY 11901

(631) 209-4245

Earth Efficient provided soil disposal management services for the duration of the project.

Soil Transporters

A list of soil transporters for the duration of the excavation is included as Table 1.

Soil Disposal Facility

A list of soil disposal facilities utilized for soil disposal during excavation of the Site is included as Table 2.

Dewatering Contractor

ECD NY Inc.

35-12 19th Avenue, Suite 2W, Astoria, NY 11105

(718) 388-6705

Dewatering fluids were discharged into the New York City sewer system with prior approval from New York City Department of Environmental Protection (NYCDEP). A system of well points was installed by ECD NY.

An organization chart with emergency contacts is included below:

Title/Role	Name	Entity	Contact Information
Remedial Engineer	Matthew Carroll	Tenen Environmental	(646) 606-2332
QEP	Alana Carroll	Tenen Environmental	(646) 606-2332
Volunteer	Andrew Orchulli	22 nd and 11 th Associates, L.L.C.	(212) 801-1000
NYSDEC	Nathan Freeman	NYSDEC	(518) 402-9767
NYSDOH	Kristin Kulow	NYSDOH	(518) 402-7860
Emergency	Ambulance	FDNY	911

4.2.2 Site Preparation

Prior to initializing demolition and excavation work, all existing underground utilities were marked and cleared. The presence of utilities and easements on the Site was investigated by the Remedial Contractor. It was determined that no risk or impediment to the planned work under the RAWP was posed by utilities or easements on the Site.

The Remedial Contractor mobilized to the Site on July 2, 2018 to install controls specified in the SMMP (Appendix B of the approved RAWP), including perimeter fencing and stabilized construction entrances prior to the start of excavation. Soil disturbance activities (excavation and offsite disposal of construction and demolition debris) began on July 5th, 2018.

A pre-construction meeting was held with the owner and all contractors in June 2018. NYSDEC was notified via email on July 2, 2018 of the July 5th mobilization date. The start of the Remedial Action was discussed with NYSDEC during a call on July 2, 2018.

Documentation of agency approvals required by the RAWP is included in Appendix E. Other non-agency permits relating to the remediation project are provided in Appendix F.

4.2.3 General Site Controls

Temporary construction fencing was installed around the perimeter of the Site leaving three controlled ingress/egress points; two along West 23rd Street and one along West 22nd Street. Construction office trailers were established along West 22nd Street. Site controls consisted of locking gates, turnstiles that only allowed access to Site with security-provided identification badges, signs prohibiting Site access, 24-hour onsite security personnel, and perimeter cameras. Walkways adjacent to Site were maintained with barriers to protect the public.

Truck washes were maintained at all three entrances to the Site. All vehicles exiting the Site were inspected for sediments from the Site. Any sediments identified on the tires, undercarriage, or surface of the vehicles were removed from the vehicle using a water hose to prevent tracking soil from the Site to local roadways. Trucks entering or exiting the Site were covered with tarps to limit dust and prevent the dispersal of dust from material exiting the Site.

Photographs were taken of all remedial activities and submitted to NYSDEC in digital (JPEG) format. Photos illustrated all remedial program elements and were of acceptable quality. Representative photos of the Remedial Actions were provided of each contaminant source, source area, and Site structures during the implementation of the RA. Photos were included in the daily reports as needed and a Project Photo Log (Appendix D) is included in this FER.

Job site record-keeping for all remedial work was appropriately documented. These records were maintained onsite at all times during the project and were available for inspection by NYSDEC and NYSDOH staff.

Provisions for sediment and erosion control and stormwater management were in conformance with requirements presented in the New York State Guidelines for Urban Erosion and Sediment Control. A SWPPP was not required for the development as the Site is less than one acre in size and there was no discharge to surface waters.

The following erosion and sediment control measures were implemented prior to removal of the concrete slab and/or asphalt pavement that covered the Site prior to the start of remediation construction activities and remained in place throughout the RA:

Stabilized Construction Exit Controls: The construction exits consisted of a stabilized pad underlain with filter cloth. The pads consisted of three to six-inch stone or ³/₄-inch clean recycled concrete aggregate (RCA), with a minimum thickness of eight inches. The minimum thickness of the pad was maintained throughout the duration of the project and the pad was reconstructed as necessary as excavation across the Site continued. This measure was provided to reduce offsite transport of soil and sediment from the construction Site.

Stockpiles: Stockpiles were used only when necessary and subsequently removed as soon as practicable. Excavated soils were stockpiled on, at minimum, double layers of 8-mil minimum sheeting, and were kept covered when not in use with appropriately anchored plastic tarps. Excavated soil from suspected areas of contamination (e.g., hot spots, USTs, drains, etc.) was stockpiled separately and was kept segregated from clean soil and construction materials. Broken or ripped tarps were promptly replaced.

4.2.4 Nuisance controls

Odor Nuisances

All necessary means were employed to prevent on- and offsite odor nuisances. The following odor control measures were implemented during all invasive work: (a) limiting the area of open excavations; (b) shrouding open excavations with tarps and other covers; and (c) use of foams to cover exposed odorous soils.

When nuisance odors were identified, work was halted and the sources of odors were identified and corrected. Work did not resume until all nuisance odors had been abated. There were no odor complaint events.

Rusmar Incorporated AC-645 Long Duration Foam odor suppressant was maintained onsite throughout the RA. Nuisance odors requiring the use of foam were not encountered during the course of this RA.

Dust Nuisances

Dust management during invasive onsite work included:

- Use of a dedicated water spray method at suitable supply and pressure for roads, excavation areas, and stockpiles;
- Construction fencing between the Site and adjoining properties;
- Installation of dust screens between the Site and adjoining properties during demolition;
- Identification of air intakes on adjoining residential properties;
- Use of properly anchored tarps to cover stockpiles;
- Exercise of extra care during high-dry and high-wind periods; and
- Use of gravel or recycled concrete aggregate on egress and other roadways to provide a clean and dust-free road surface.

When nuisance dust emissions were identified, work was halted and the source of dust was identified and corrected. Work did not resume until all nuisance dust emissions had been abated. There were no dust complaint events.

Other Nuisances

Noise control was exercised during the remedial program. All remedial work conformed, at a minimum, to NYC noise control standards.

Rodent control was provided during the Site clearing, grubbing, demolition, and during the remedial program, as necessary, to prevent nuisances.

Truck Wash and Housekeeping

One truck-equipment decontamination pad was constructed adjacent to each entrance to the Site. All construction equipment exiting the Site was first decontaminated regardless of whether the equipment has come in contact with contaminated materials.

During remediation, soil and liquids adhered to construction vehicles and equipment were removed in the decontamination area prior to such vehicles and equipment leaving the Site.

After wetting with potable water, brooms or shovels were utilized for the gross removal of soil from vehicles and equipment. The decontamination procedure for the

removal of the remaining soil and liquids consisted of washing with potable water. Soil generated by the decontamination process was swept back on to the Site to prevent sediment migration on to adjacent public roadways.

Decontamination liquids percolated through the truck was pad and were collected via the dewatering system and treated along with the dewatering liquids.

Truck Routing

All transport of materials was performed by licensed haulers in accordance with appropriate local, state, and federal regulations, including 6NYCRR Part 364. Haulers were appropriately licensed and trucked properly placarded, and followed the routes set forth in the RAWP.

These truck routes took into account: (a) limiting transport through residential areas and past sensitive sites; (b) use of city mapped truck routes; (c) limiting total distance to major highways; (d) promoting safety in access to highways; and (e) overall safety in transport. All trucks loaded with Site materials exited the vicinity of the Site using only the most current New York City Department of Transportation (NYCDOT)-approved truck routes (currently the 2015 New York City Truck Route Map).

Trucks were prohibited from stopping and idling in the neighborhood outside the Site. Egress points for truck and equipment transport for the Site were kept clean of dirt and other materials during Site remediation and development.

Material transported by trucks exiting the Site was secured with heavy-duty covers. Wet material capable of producing free liquid was not encountered as the Site was dewatered. All trucks transporting urban fill/soils from the Site were equipped with vinyl tarps to prevent dust migration during travel. All trucks were washed prior to entering the city streets.

4.2.5 CAMP results

Data generated by CAMP stations was tabulated and compared to action limits established for the Site. The remedial action commenced in July 2018 with an approved plan for two CAMP stations monitoring upwind and downwind conditions at the Site.

Particulate matter less than 100 micrometers in size (PM-10) exceeded the 100 microgram per cubic meter (ug/m³) action level sporadically throughout the excavation period, and measures included watering down the excavation area were used to control dust. Visible dust from construction activities was not observed leaving the Site. During excavation, a PID was used to screen the soil during loading.

The Environmental Consultant field personnel investigated all particulate exceedances to determine whether they were caused by monitoring equipment malfunction, weather related (hazy condition) or the result of field interference (mobilization, set-up, demobilization). For those particulate exceedances that were determined to not be caused by such a false detection, the Environmental Consultant field personnel directed the Environmental Contractor to enhance dust mitigation measures or reduce or cease the dust-generating activities, as necessary.

VOC spikes in exceedance of the 5 ppm action levels were also noted sporadically throughout the excavation period. Similarly, the Environmental Consultant field personnel investigated all VOC exceedances to determine whether they were caused by monitoring equipment malfunction, weather related (humidity), or the result of field interference. For those VOC exceedances that were determined to not be caused by such a false detection, the Environmental Consultant field personnel directed the Environmental Contractor to enhance odor mitigation measures or reduce or cease the VOC-generating activities, as necessary.

Results of the CAMP monitoring data were submitted to the NYSDEC and the NYSDOH in daily reports. Based on the CAMP data, several short-term particulate and volatile exceedances were noted. As indicated in the daily reports, work was immediately halted based on these readings and proper actions taken to address them.

Copies of all field data sheets relating to the CAMP are provided in electronic format in Appendix C.

4.2.6 Reporting

During periods of active Site remediation including soil excavation, air monitoring, soil segregation, offsite disposal, endpoint sampling, and pouring of the concrete mud slab, onsite Environmental Consultant personnel maintained a daily field

log, updated throughout the workday. The daily log recorded weather conditions, identified issues related to the CAMP, and any health and safety concerns.

Daily reports were submitted to the NYSDEC and NYSDOH project managers by the end of each week following the reporting period for the duration of the remedial action. Daily reports included the following:

- An update of progress made during the reporting day;
- Locations of work and quantities of material imported and exported from the Site;
- References to grid maps by cut for Site activities;
- Photographs of remedial work activities;
- Summary of samples collected, if any, and analytical testing to be performed;
- A summary of any and all complaints with relevant details (names, phone numbers, etc.);
- A summary of CAMP findings, including excursions, as well as graphs of all CAMP station readings; and
- An explanation of notable Site conditions.

CAMP exceedances and associated mitigation efforts were detailed in daily reports submitted to DEC throughout the RA and are included in Appendix G of this FER.

Monthly reports were submitted by the tenth of each month following the reporting period. Monthly reports included an update of progress made during the month, summary of samples collected and analytical results, if any, and planned activities for the following month.

All daily and monthly reports are included in electronic format in Appendix G.

The digital photo log required by the RAWP is included in electronic format in Appendix D.

4.3 CONTAMINATED MATERIALS REMOVAL

The soil cleanup objectives (SCOs) for the Track 2 and Track 4 portions of this project are NYCRR 375-6.7(b) Restricted-Residential SCOs (RRSCOs). Per NYSDEC Final Commissioner Policy, CP-51 Soil Cleanup Guidance, after source removal, the SCOs do not need to be achieved more than 15 feet below ground surface. A figure of the location of contaminant sources and areas where excavations were performed is shown in Figure 2. A list of the SCOs for this project is included in Table 3.

4.3.1 Waste Characterization

Waste Characterization sampling was performed by Integral Engineering (Integral) across the Site in December 2017 to characterize Site soils for proper disposal according to local, state, and federal guidelines. The Site was divided into 42 grids consisting of approximately 500 cubic yards of volume each. Additional sampling was performed in January 2018 by Integral and May 2018 by Tenen to add three grids to allow for deeper excavation in the eastern portion of the Site to accommodate the installation of deeper foundation elements (i.e. pile caps). Additional sampling was performed in September 2018 and May 2019 by Tenen to accommodate the disposal of approximately 20 cubic yards of soil removed adjacent to the Site on West 22nd Street to accommodate installation of the dewatering system and to accommodate the disposal of approximately 20 cubic yards of soil removed adjacent to the Site on West 23rd Street to accommodate installation of plumbing piping, respectively.

Twenty-four soil borings were advanced across the Site. Soil borings were advanced using a track-mounted direct-push Geoprobe. Two soil borings were advanced within each 500 cubic yard grid and grab and composite samples were collected. Composite samples were composed of a minimum of five grab samples. All materials proposed for excavation were screened using a PID. Grab samples were also collected from each set of soil borings and analyzed for VOCs. Grab samples were collected using Encore® sampling kits. All samples were collected using disposable equipment and in such a manner as to minimize headspace/vapor leakage within the sampling bottles. All

samples were labeled, preserved on ice, and transported under chain-of-custody procedures to Alpha Analytical.

Discrete VOC [target compound list (TCL) and toxicity characteristic leachate procedure (TCLP)] analysis was completed on the grab sample from each grid with highest suspected volatile contamination, based on PID readings and field observations. Each composite sample was analyzed for SVOCs, pesticides, polychlorinated biphenyls (PCBs), herbicides, Target Analyte List (TAL) metals, total petroleum hydrocarbons (TPH) diesel range organics (DRO), gasoline range organics (GRO), total extractable petroleum hydrocarbons (EPH), total cyanide, hexavalent chromium, TCLP SVOCs, TCLP pesticides, TCLP herbicides, TCLP metals, synthetic precipitation leaching procedure (SPLP) metals, RCRA characteristics, Form U ASTM leachate, organic matter, pH and paint filter test (PFT).

Analytical data was reviewed by the authorized environmental compliance engineer for each disposal facility. A list of reports provided to disposal facilities for review can be seen in the acceptance letters from disposal facility owners in Appendix I.

A summary of the grid intervals and associated facility destinations can be found on Table 5. Waste characterization sampling grid locations, a summary of the samples collected to characterize the waste, and associated analytical results are summarized on Tables and Figures included as Appendix H.

4.3.2 Excavation and Disposal of Impacted Soil/Fill

Soil excavation for disposal began on July 5, 2018 under the direction and continuous observation of a representative of the Remedial Engineer, under direct oversight by the Remedial Engineer. Excavation and loading was completed by ECD NY utilizing track-mounted excavators. Track 2 locations were excavated to approximately 10 to 15 ft-bg for remedial purposes and then extended to between 16 and 23 ft-bg, with localized deeper excavations for the installation of foundational elements. Track 4 locations were excavated to approximately 2 ft-bg.

Fill ranged in thickness from 6 to 15 ft-bg across the Site. During the course of excavation across the Site, several previously unknown underground storage tanks (USTs) were discovered (see section 4.3.3 for excavation and disposal details).

4.3.2.1 Disposal Details

Off-site disposal of impacted soil/fill began on July 25, 2018 and ended on June 27, 2019. Approximately 46,000 tons of impacted soil/fill and 5,500 tons of construction and demolition debris (C&D) was removed from Track 2 areas across Site. Of the 46,000 tons of impacted soil/fill and 5,500 tons of C&D removed in the Track 2 area, approximately 18,000 tons and 5,500 tons, were removed for remedial purposes, respectively. Approximately 325 tons of impacted soil/fill and 1,500 tons of construction and demolition debris was removed from Track 4 areas across Site for remedial purposes. Soil and fill material and construction and demolition debris was disposed of at multiple permitted facilities. Table 4 shows the total quantities of each category of material removed from the Site. Letters from applicants to disposal facility owners and acceptance letters from disposal facility owners are attached in Appendix I. Manifests and bills of lading are included in electronic format Appendix J.

4.3.3 Dewatering

Dewatering fluids were discharged into the New York City sewer system with prior approval from NYCDEP. A system of well points and sump pumps was installed and used to dewater surface water and groundwater. Surface water dewatering began in July and was contained in an Adler settling tank until a dewatering permit was obtained from NYCDEP. Groundwater dewatering began on December 14, 2018 and ended on January 14, 2019. After the groundwater dewatering system was shut down, sump pumps continued to be utilized for surface water dewatering throughout the remainder of the Remedial Action. Consistent with the NYCDEP permit, an effluent sample was collected from the Adler settling tank on August 1, 2018, prior to the start of effluent discharge into the NYC sewer system. All results met the NYCDEP Limitations for Effluent to Sanitary or Combined Sewers (Effluent Limitations). The effluent analytical report is included in Appendix K.

4.3.4 Underground Storage Tanks

A total of eight USTs were discovered during Site excavation activities. Three USTs, including one abandoned 1,000-gallon UST, one abandoned 550-gallon UST and one abandoned 5,000-gallon AST, were expected to be encountered based on historic

records review. UST removal, sampling and disposal was performed in accordance with the UST contingency plan detailed in Section 3.8.2 of the approved RAWP. UST removal was overseen by the Remedial Engineer and AARCO Environmental, an FDNY licensed tank contractor. A map indicating the locations of the USTs is included in Figure 4. UST removal and disposal details are provided below:

- UST-1 was discovered on 7/3/2018 in the eastern portion of Lot 60. The tank had a capacity of approximately 1,000 gallons and had approximately 2" of sludge material in the bottom. The tank was removed from the ground on 7/3/2018 and was cleaned by AARCO on 7/14/2018. The tank was disposed of offsite by AARCO on 7/19/2018.
- UST-2 was discovered on 7/5/2018 in the southeast corner of Lot 61. The tank had a capacity of approximately 550 gallons and was filled with soil. The tank was removed from the ground on 7/13/18 and soil in the tank was removed and stockpiled on poly sheeting. The soil was sampled (Sample UST-2+6) for analysis of VOCs, SVOCs and TAL metals. The tank was cleaned and disposed of offsite by AARCO on 7/14/2018 and the soil was disposed of at Dale Transfer Corp. by AARCO on 7/26/2018.
- UST-3 was discovered on 7/10/2018 in the center of Lot 65. The tank had a capacity of approximately 550 gallons, was vaulted in concrete, and was filled with soil and liquid that appeared to be water with a light sheen.

 1,071 gallons of liquid was removed by AARCO from UST-3, 4, 5, and 6 on 7/11/2018 and disposed as petroleum-impacted material. The tank was removed from the ground on 7/20/2018. Approximately 10 cubic yards of soil from below UST-3 and 7 that appeared visually to be petroleum-impacted was excavated and stockpiled on poly sheeting. Soil within the tank was removed from the tank and also stockpiled on poly sheeting. The soil within the tank and below the tanks was sampled (Sample UST-3+7) for analysis of VOCs, SVOCs and TAL metals. The soil was disposed of at Dale Transfer Corp. on 7/26/2018 by AARCO and the tank and surrounding concrete was crushed and disposed of as scrap metal and construction and demolition (C&D) material by ECD. This tank was

- previously registered as administratively closed with the NYSDEC Petroleum Bulk Storage (PBS) Database.
- UST-4 and 5 were discovered on 7/11/2018 directly next to each other in the northern portion of Lot 61 within the former UST grave. Both tanks had a capacity of approximately 550 gallons and were filled with liquid with a mild sheen. UST-5 was punctured by ECD during excavation and leaked less than 2 gallons of liquid onto surrounding soil. 1,071 gallons of liquid was removed by AARCO from UST-3, 4, 5, and 6 on 7/11/2018 and disposed as petroleum-impacted material. Both tanks were removed from the ground on 7/13/2018. Soil below UST-5 that was noted to be stained with petroleum was excavated and stockpiled on poly sheeting and sampled (Sample UST-5) for analysis of VOCs, SVOCs and TAL metals. Approximately 5 cubic yards of material was removed from below UST-5. Both tanks were cleaned and disposed of offsite by AARCO on 7/14/2018. The soil below UST-5 was disposed of at Dale Transfer Corp. by AARCO on 7/26/2018.
- UST-6 was discovered on 7/11/2018 along the eastern perimeter of Lot 65. The tank had a capacity of approximately 550 gallons, was vaulted in concrete, and was filled with soil and approximately 4" of water that appeared visually to be unimpacted. 1,071 gallons of liquid was removed by AARCO from UST-3, 4, 5, and 6 on 7/11/2018. The tank was removed from the ground on 7/13/2018. Soil inside the tank was removed, stockpiled on poly sheeting, and sampled (Sample UST-2+6) for analysis of VOCs, SVOCs and TAL metals. The tank was cleaned and disposed of offsite by AARCO on 7/14/2018. The soil within the tank was disposed of at Dale Transfer Corp. by AARCO on 7/26/2018.
- UST-7 was discovered on 7/13/2018 in the center of Lot 65, just west of UST-3. The tank had a capacity of approximately 1,000 gallons, was vaulted in concrete, and was filled with grout. The tank was removed from the ground on 7/20/2018. Approximately 10 cubic yards of material that appeared visually to be petroleum-impacted was removed from below

UST-3 and 7, stockpiled and sampled (Sample UST-3+7) for analysis of VOCs, SVOCs and TAL metals. Grout was removed from the tank by AARCO and ECD on 7/26/2018 and appeared visually to be unimpacted. The grout was removed as C&D material by ECD. The tank was cleaned and disposed of offsite by AARCO on 7/26/2018 and the soil below the tank was disposed of at Dale Transfer Corp. on 7/26/2018 by AARCO.

• UST-8 was discovered on 6/18/2019 along the eastern perimeter of Lot 5 within the Track 4 portion of the Site. The tank had a capacity of approximately 550 gallons and was filled partially with soil and a small amount of liquid that appeared to be water. The tank was temporarily removed from the ground on 6/19/2019 to accommodate the collection of an endpoint sample (EP-UST-8) for analysis of VOCs, SVOCs and TAL metals. The tank was placed back in the ground after the collection of the sample. In addition, a sample was collected from the soil inside the tank (UST-8) on 6/19/2019 to characterize the material. The tank was permanently removed from the ground on 6/22/2019. The tank was cleaned and removed from Site for disposal by AARCO and the soil within the tank was disposed of at Dale Transfer Corp. on 6/27/2019 by AARCO.

The top of all tanks were encountered between 0.5 and 3 ft-bg and groundwater was not encountered about the tank inverts. UST sample data is included as Table 6. Manifests for the disposal of USTs 1-2 and 4-8, the contents of USTs 2-6 and 8, and the manifests for the disposal of soil below USTs 3, 5, and 7 are included in Appendix J.

All USTs that had not been previously registered were registered with NYSDEC and closed in conformance with all applicable federal, state, and local regulations, including those defined in DER-10 and 6 NYCRR Parts 612 and 613. NYSDEC was notified prior to the removal of all USTs. USTs without prior PBS records documenting abandonment were removed by a contractor licensed by the FDNY in accordance with the procedures set forth in the American Petroleum Institute (API) Recommended Practice 1604 entitled "Removal and Disposal of Used Underground Storage Tanks".

Updated PBS Applications were sent to NYSDEC representatives and updates to the PBS records included the designation of 'closed-removed' for all USTs. The Site is listed under the PBS database as Site No. 2-084069. PBS records are included in Appendix E.

4.3.5 Onsite Reuse

There were no materials reused or relocated onsite as a result of the remedial work activities.

4.4 REMEDIAL PERFORMANCE/DOCUMENTATION SAMPLING

4.4.1 Endpoint Sampling

Endpoint sampling was completed in Track 2 and Track 4 areas of the Site.

Endpoint samples were collected from the bottom of the Track 2 excavation
(approximately 16 to 31 ft-bg) and the bottom of the Track 4 excavation (approximately 2 ft-bg) every 900 SF, in accordance with the NYSDEC's Division of Environmental Remediation Technical Guidance for Site Investigation Remediation (DER-10). Endpoint samples were also collected from the sidewalls of the pre-trenching for SOE installation every 30 linear feet along West 23rd Street and 11th Avenue, in accordance with NYSDEC's DER-10, to document offsite conditions in soil. Sample collection was biased towards the location of highest suspected contamination based on PID readings, field observations, and historic data.

A total of 40 bottom of excavation endpoint samples, 14 sidewall samples, and three sets of QA/QC samples (field blank, duplicate, and MS/MSD) was collected from the Site. Twenty-nine bottom of excavation endpoint samples were collected in the Track 2 portion of Site and eleven 11 bottom of excavation endpoint samples were collected in the Track 4 portion of Site. Endpoint samples were analyzed for Part 375 VOCs, SVOCs and TAL metals.

Concentrations of a variety of polyaromatic hydrocarbons (PAHs) were detected in exceedance of RRSCOs in nine of eleven Track 4 endpoint samples (TR4-EP-2, TR4-EP-3, TR4-EP-4, TR4-EP-5, TR4-EP-6, TR4-EP-7, TR4-EP-8, TR4-EP-9 and TR4-EP-11) and concentrations of various metals (copper, lead, mercury, and nickel) were

detected in exceedance of RRSCOs in five of eleven Track 4 endpoint samples (TR4-EP-2, TR4-EP-3, TR4-EP-5, TR4-EP-7 and TR4-EP-8), all of which were collected on July 11, 2018. Per DEC's direction via email on September 25, 2018, no additional remediation was required in the locations of the Track 4 endpoints, as, following implementation of the Remedial Action, these areas will have appropriate cover system and proper site management.

Concentrations of mercury were detected in exceedance of RRSCOs in three of twenty-nine Track 2 endpoint samples (TR2-EP-13, TR2-EP-20, and TR2-EP-28) and an associated duplicate sample. Concentrations of lead were also detected in exceedance of RRSCOs in two of twenty-nine Track 2 endpoint samples (TR2-EP-13 and TR2-EP-28). Concentrations of arsenic were detected in exceedance of RRSCOs in one of twenty-nine Track 2 endpoint samples (TR2-EP-28). Per DEC's direction via email on February 20, 2019, no additional remediation was required in the locations of the Track 2 endpoints with exceedances, as they were minor and located more than 15 ft-bg after source removal, per CP-51. In addition, these areas will be part of site management following completion of the remedial action.

On November 13, 2018, ECD informed Tenen that they would be excavating further in the Track 4 portion of the Site for electrical installation. Tenen contacted DEC in an email dated November 13, 2018 to determine if additional endpoint sampling would be required in the Track 4 portion of the Site. Per DEC's direction via email on November 13, 2018, additional endpoint samples were not needed in the Track 4 area of the Site, as the endpoint samples collected on July 11, 2018 are representative of the material to remain after the electrical installation excavation.

A table summarizing all Track 2, Track 4 and sidewall end-point sampling data is included in Tables 7a through 7c. End-point sampling locations are depicted on Figure 5. A figure summarizing all Track 2 and Track 4 end-point sample exceedances of applicable soil cleanup objectives is included as Figure 6. Email correspondence with DEC regarding endpoint samples is included in Appendix E.

Data Usability Summary Reports (DUSRs) were prepared for all data generated in this remedial performance evaluation program. These DUSRs and associated raw data are provided electronically in Appendix K.

4.4.2 Groundwater Sampling for Emerging Contaminants

One existing offsite monitoring well (MW-1) was sampled for 1,4-dioxane and per- and polyfluoroalkyl substances (PFAS) and one existing onsite monitoring well (MW-2) was sampled for PFAS as part of a statewide evaluation of remedial sites for risks associated with emerging contaminants. MW-2 was not sampled for 1,4-dioxane due to the monitoring well being destroyed by during the implementation of the Remedial Action. A third offsite monitoring well (MW-3) contained approximately 0.65" of light non-aqueous phase liquid (LNAPL) and was not sampled. The presence of LNAPL in MW-3 was reported to NYSDEC.

Emerging contaminant samples were compared to EPA Drinking Water Health Advisory Standards for perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). Concentrations of PFOA exceeded its EPA Drinking Water Health Advisory Standard of 0.07 ug/l in both wells sampled and the duplicate (max. concentration of 0.115 ug/l in MW-1).

A table summarizing all emerging contaminant sampling data is included in Table 8. Email correspondence with DEC regarding emerging contaminant sampling is included in Appendix E.

4.5 IMPORTED MATERIAL

Approximately 630 tons of imported clean ³/₄" RCA was used to grade Track 4 portions of Site, to construct truck wash pads, and to backfill around dewatering points for surface water. The imported material was received from Rockrete Recycling Corporation, a New Jersey (NJ) Approved Class B Recycling Facility, Registration #132695. Clean RCA (less than 10% fines by weight passing the 80 sieve), as was imported to the Site, does not require analytical testing.

Approximately 150 tons of clean virgin stone was imported to the Site for the construction of truck wash pads. The stone was imported from Tilcon-Mount Hope Quarry and Rocktech-Liberty Stone, both NJ Department of Transportation (DOT) Certified Clean Fill Locations. Clean virgin stone does not require analytical testing.

Approximately 250 tons of agricultural lime was imported to the Site to mix with drilling spoils resulting from SOE installation that were too wet to be shipped to a disposal facility. The agricultural lime was imported from Braen Aggregates LLC. Analytical and gradation testing was performed on the agricultural lime and the results were reviewed by the Remedial Engineer before importation to Site began. Analytical testing indicated the sample meets the criteria for Agricultural Liming Material as per ASTM C602; this material was stabilized and removed from the Site.

A table of all sources of imported backfill with quantities for each source is shown in Table 9. A figure showing the site locations where backfill was used at the site is shown in Figure 3.

4.6 CONTAMINATION REMAINING AT THE SITE

Residual contamination remains in groundwater and soil vapor surrounding the Site. In addition, residual contamination remains in soil within the Track 4 portions of Site; all of these areas are depicted on the Environmental Easement Survey (included as Appendix A) as Track 4 areas. Residual contamination in soil in the Track 2 portion of the Site is located greater than 15 ft-bg.

Material left in place in in the Track 4 portions of the Site was sampled in accordance with DER-10. Results indicated that nine of eleven samples collected were in exceedance of RRSCOs for a variety of PAHs and five of eleven samples collected were in exceedance of RRSCOs for a variety of metals. No additional remediation was required in the locations of the Track 4 endpoints, as these areas have an appropriate cover system that will be managed under a Site Management Plan (SMP) after the completion of the remedial action. The Track 4 portion of Site is capped with a horizontal concrete mud slab, waterproofing/vapor barrier and concrete structural slab in accordance with the approved RAWP and Decision Document.

Tables 7a and 7b and Figure 6 summarize the results of all soil samples remaining at the site after completion of Remedial Action that exceed the Restricted-Residential SCOs.

Since contaminated soil remains beneath portions of the Site and contaminated soil vapor and groundwater remain surrounding the Site after completion of the Remedial Action, Institutional and Engineering Controls are required to protect human health and

the environment. These Engineering and Institutional Controls (ECs/ICs) are described in the following sections. Long-term management of these EC/ICs and residual contamination will be performed under the Site Management Plan (SMP) approved by the NYSDEC.

4.7 COMPOSITE COVER SYSTEM

Exposure to remaining contamination in soil/fill in Track 4 areas at the Site is prevented by an engineered, composite cover system. This cover system is comprised of a 4-inch thick concrete mud slab underlying a waterproofing membrane/vapor barrier and a 12-inch concrete structural slab. Appendix L includes the as-built drawings depicting the remedial cover type used in each area of the Site. An Excavation Work Plan, which outlines the procedures required in the event the cover system and/or underlying residual contamination are disturbed, is provided in Appendix E of the SMP.

4.8 INSTITUTIONAL CONTROLS

The site remedy requires that an environmental easement be placed on the property to (1) implement, maintain and monitor the Engineering Controls; (2) prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and, (3) limit the use and development of the site to restricted residential, commercial, or industrial uses only, as permitted by zoning.

The environmental easement for the site was executed by the Department on October 11, 2019 and filed with the New York County Clerk on October 31, 2019. The County Recording Identifier number for this filing is 2019000355452. A copy of the easement and proof of filing is provided in Appendix A.

4.9 DEVIATIONS FROM THE REMEDIAL ACTION WORK PLAN

Underground Storage Tanks

The RAWP noted that one abandoned 550-gallon UST, one 1,000-gallon UST and one abandoned 5,000-gallon UST were suspected to be located onsite based on historical records. During the course of excavation, eight USTs were identified at the Site and were removed, as discussed in Section 4.3.3 of this FER.

Support of Excavation

The RAWP indicates that the support of excavation would be comprised of driven/vibrated interlocking sheet piles driven into a clay confining layer. During implementation of the Remedial Action, the support of excavation was installed in its entirety with intersecting, reinforced concrete piles making up a secant pile wall, with no steel sheeting.

Endpoint Sampling

The RAWP stated that all endpoint samples collected would meet Restricted-Residential Use Soil Cleanup Objectives. However, multiple endpoint samples collected from the Track 4 portion of the Site and three endpoint samples collected from the Track 2 portion of the Site did not meet RRSCOs, as discussed in Section 4.4.1 of this FER. DEC confirmed additional remediation and re-sampling would not be necessary for these endpoint samples in e-mails dated September 25, 2018 and February 20, 2019. E-mail correspondence with DEC is included as Appendix E.

Groundwater Sampling for Emerging Contaminants

The RAWP noted that three existing on/offsite monitoring wells would be sampled for 1,4-dioxane and per- and polyfluoroalkyl substances (PFAS) as part of a statewide evaluation of remedial sites for risks associated with emerging contaminants. During the course of sampling, one off-site monitoring well northwest of the Site (MW-3) was noted to have approximately 0.65" of light non-aqueous phase liquid (LNAPL) and was not sampled. MW-2 was not sampled for 1,4-dioxane.

Remedial Oversight

The RAWP noted that the remedial action would be completed continuously. However, during the course of the remedial action, the Track 2 portion of the Site was completely capped with concrete before work in the Track 4 portion of the Site was scheduled to commence. DEC approved halting remedial oversight and CAMP monitoring in an e-mail dated March 21, 2019, provided that no soil disturbance would be occurring in the Track 4 portion of the Site. Tenen remobilized when soil disturbance activities resumed in the Track 4 portion of the Site. E-mail correspondence with DEC is included as Appendix E.

LIST OF TABLES

Table 1	Soil Disposal Trucker Information
Table 2	Soil Disposal Facility Information
Table 3	Soil Cleanup Objectives (SCOs) for the Project
Table 4	Soil Disposal Volumes
Table 5	Soil Grids and Destinations
Table 6	UST Waste Characterization Sample Results
Table 7a	Track 2 Endpoint Sample Results
Table 7b	Track 4 Endpoint Sample Results
Table 7c	Sidewall Endpoint Sample Results
Table 8	Emerging Contaminants Sample Results
Table 9	Backfill Quantities and Sources
	LIST OF FIGURES
Figure 1	Project Site Map
Figure 2	Extent of Excavation
Figure 3	Contour Maps of Cut and Fill Thicknesses

Underground Storage Tank Locations

Exceedances of Restricted-Residential SCOs (After Remedy)

Endpoint Sample Location Map

Remaining Contamination Figure

Figure 4

Figure 5

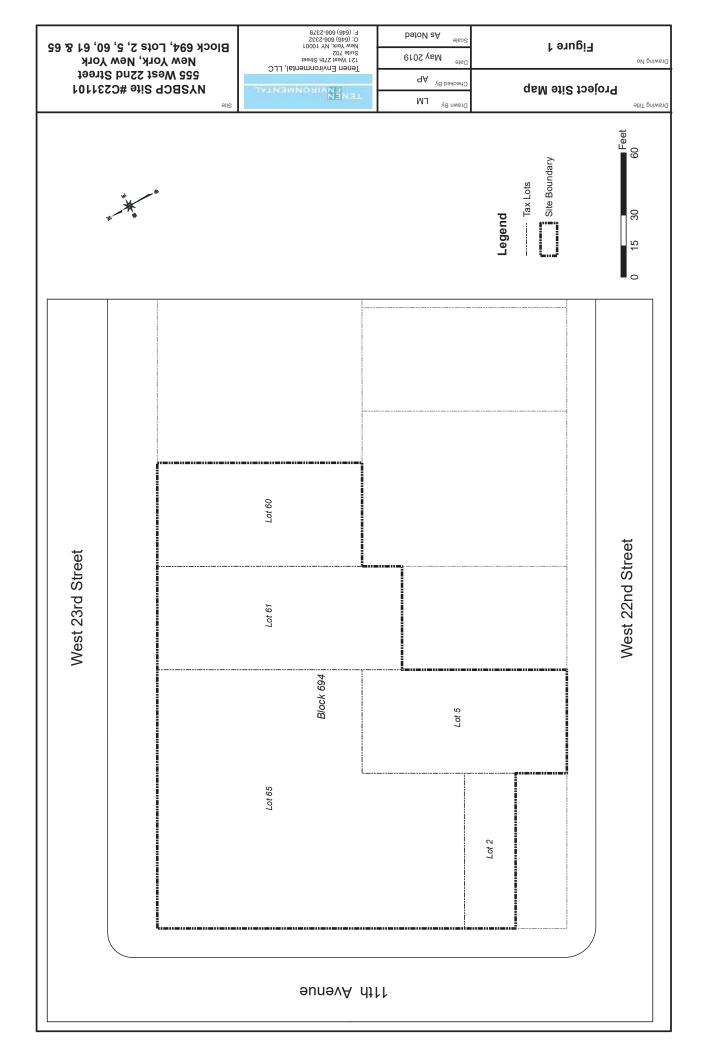
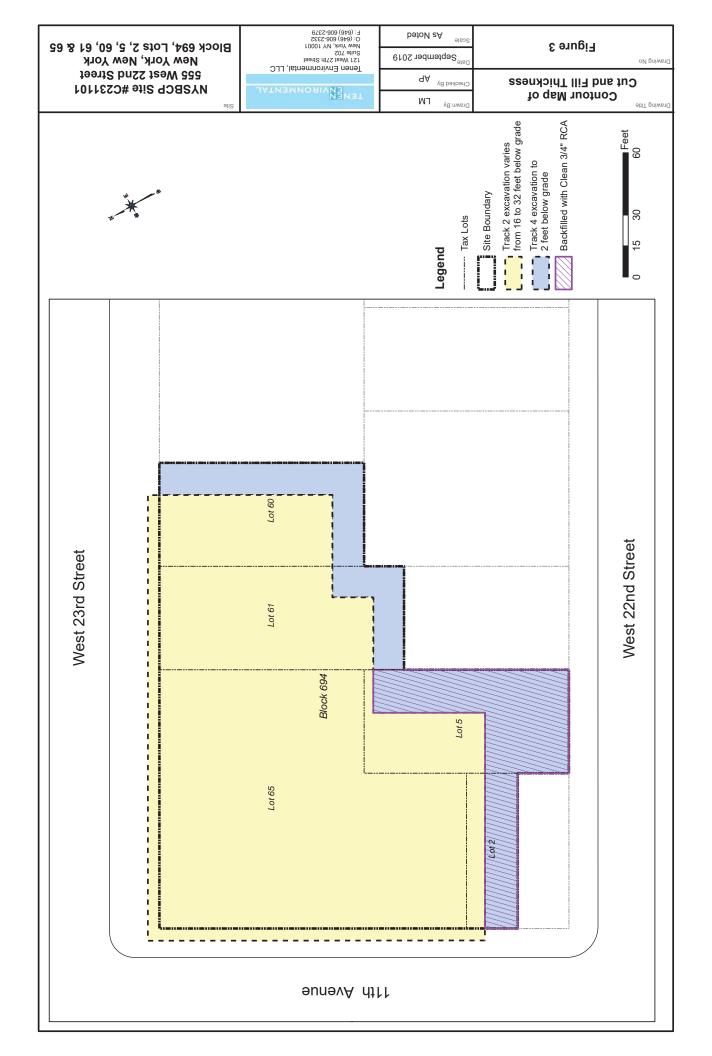
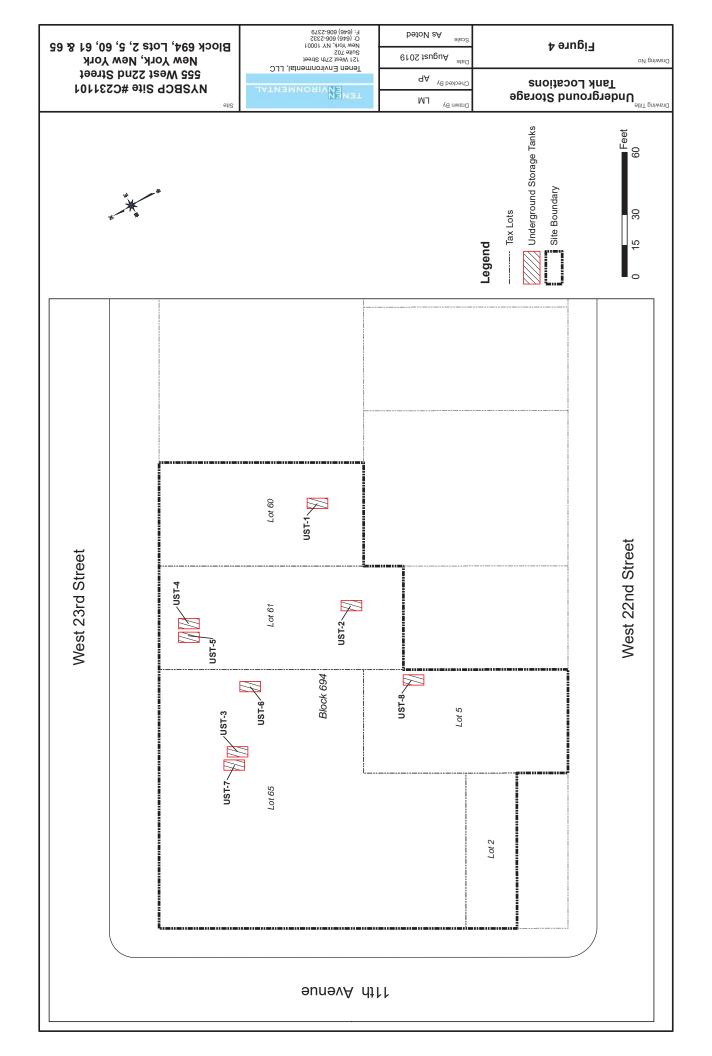
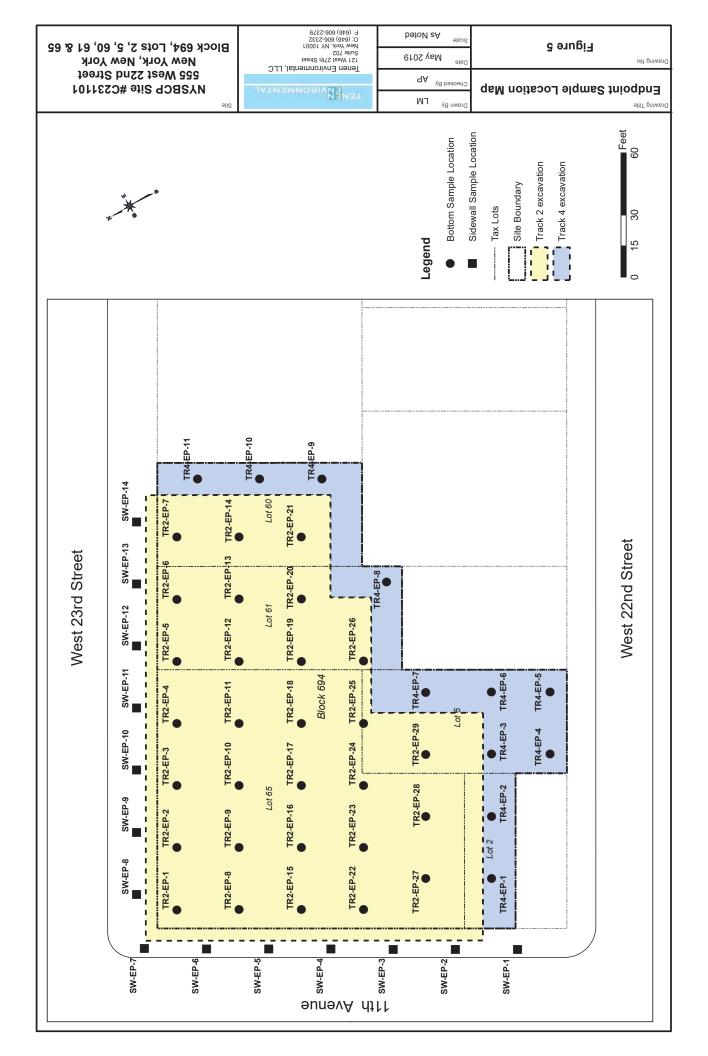
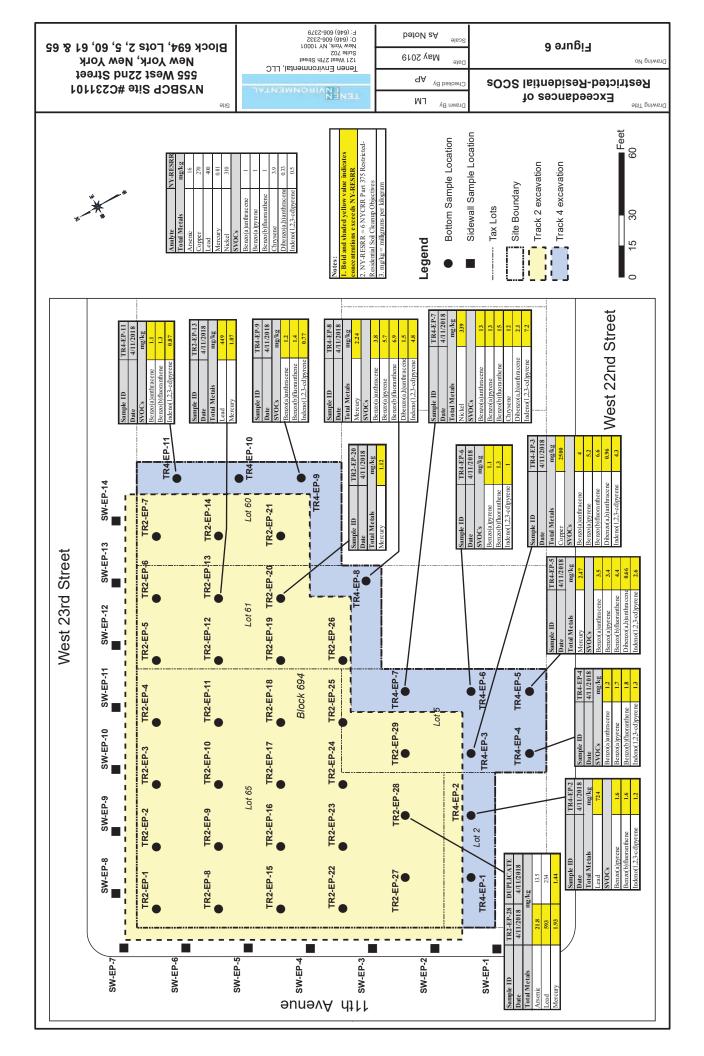

Figure 6

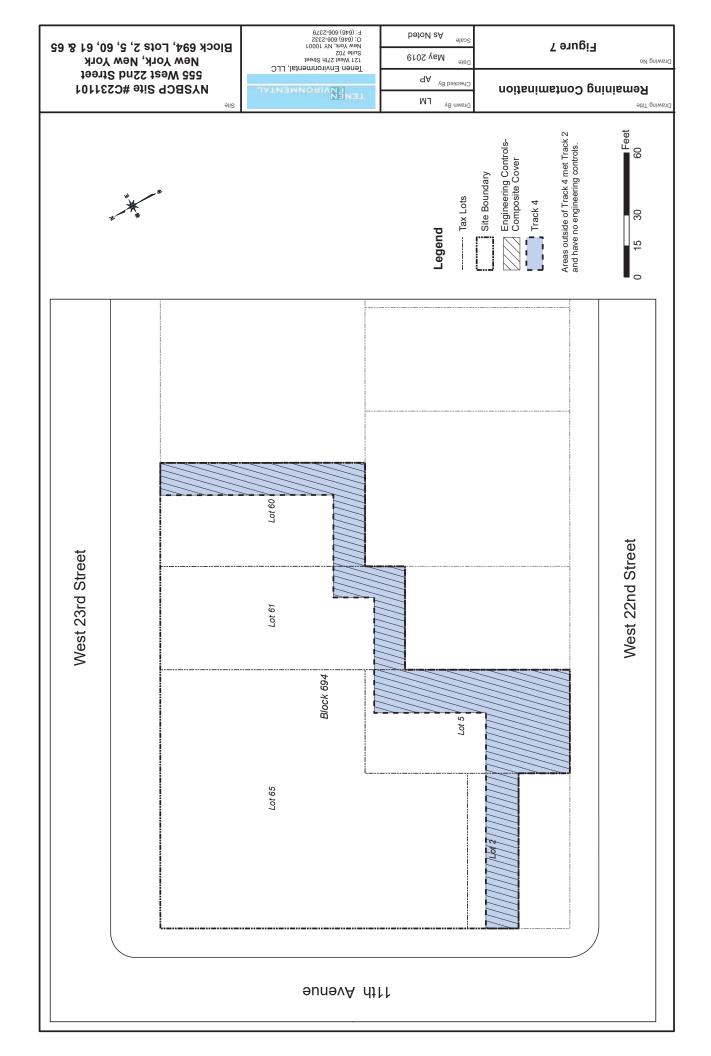

Figure 7


LIST OF APPENDICES


Appendix A	Survey Map, Metes and Bounds (Environmental Easement)
Appendix B	Digital Copy of the FER (CD)
Appendix C	CAMP Data Sheets and Air Monitoring Data (Incl. CD)
Appendix D	Project Photo Log (CD)
Appendix E	NYSDEC Approvals of Substantive Technical Requirements
Appendix F	Remediation Related Permits
Appendix G	Daily and Monthly Reports (CD)
Appendix H	Soil/Waste Characterization Sampling Plan and Data
Appendix I	Disposal Facility Applications, Approval Letters, Permits and Part 360 Waste Hauler Permit Certificates
Appendix J	Manifests or Bills of Lading for Disposal including Liquid Disposal (CD)
Appendix K	Raw Analytical Laboratory Data (Incl. CD) and DUSRs for all Endpoint Samples and Emerging Contaminant Samples
Appendix L	EC As-Built Drawings and Documentation
Appendix M	Vapor Barrier Details
Appendix N	Imported Materials Documentation


Figures





Tables

Table 1. Soil Disposal Transporter Information 555 West 22nd Street BCP Site No. C231101 Final Engineering Report

Transporter Name	Address
Brava Construction LLC	919 19th Street, 2nd Floor, Union City, NJ 07087
C.V. Trucking, Inc.	182 Calcutta Street, Newark, NJ 07114
DI Trucking LLC	614 S. Broad Street, Apt. 403, Elizabeth, NJ 07202
JC Transport, Inc.	39-43 Porete Avenue, North Arlington, NJ 07031
Manolos Trucking, LLC	58 Moore Place, 1st Floor, Belleville, NJ 07109
Mendez Trucking Inc.	490 Union Ave, Belleville, NJ 07109
P.A. Carsillo & Sons, LLC	11 Roosevelt Ave, East Hanover, NJ 07936
T.E.V. Corporation	182 Calcutta Street, Newark, NJ 07114
Uriel Trucking, LLC	2507 New Brunswick Ave, South Plainfield, NJ 07080

Table 2. Soil Disposal Facility Information 555 West 22nd Street BCP Site No. C231101 Final Engineering Report

Facility Name	Address	Approval Number
Hoffman Griffett Quarry Mine Reclamation Site	426 US-46, Belvidere, NJ 07823	GRIFF011-18
Rodota Fill Site	401 S Bridgeville Road, Belvidere, NJ 07823	RTE004-18
Earth Efficient Greenview LLC	862 Greenview Drive, Stroudsburg, PA 18360	GV009-18
Bell Ecologic LLC - Bethlehem Earth	3200 Commerce Center Blvd, Bethlehem, PA 18015	0083
Impact Environmental - Doremus Avenue Redevelopment Project	191 Doremus Avenue, Newark, NJ 07105	12790-01-1001
Soil Safe, Inc Metro 12 Facility	18 Peter J Sica Industrial Highway, Carteret, NJ 07008	M6-1354 & M6-1355
ACV Enviro - Cycle Chem Inc.	217 South First Street, Elizabeth, NJ 07206	7614

Table 3. Site Specific Soil Cleanup Objectives 555 West 22nd Street New York, New York Final Engineering Report

Contaminant Metals	Track 2 SCOs*	Track 4 SCOs*	Units
Arsenic	16	16	ma/ka
Barium	400	400	mg/kg mg/kg
Beryllium	72	72	mg/kg
Cadmium	4.3	4.3	mg/kg
Chromium, hexavalent	110	110	mg/kg
Chromium, trivalent	180	180	mg/kg
Copper	270	270	mg/kg
Total Cyanide	27	27	mg/kg
Lead	400	400	mg/kg
Manganese	2000	2000	mg/kg
Total Mercury	0.81	0.81	mg/kg
Nickel Selenium	310 180	310 180	mg/kg
Silver	180	180	mg/kg mg/kg
Zinc	10000	10000	mg/kg
Semivolatile Organic Compounds			6/8
Acenaphthene	100	100	mg/kg
Acenapthylene	100	100	mg/kg
Aniline	100	100	mg/kg
Anthracene	100	100	mg/kg
Benzo(a)anthracene	1	1	mg/kg
Benzo(a)pyrene	1	1	mg/kg
Benzo(b)fluoranthene	100	100	mg/kg
Benzo(g,h,i)perylene Benzo(k)fluoranthene	3.9	3.9	mg/kg mg/kg
Chrysene	3.9	3.9	mg/kg
Dibenzo(a,h)anthracene	0.33	0.33	mg/kg
Fluoranthene	100	100	mg/kg
Fluorene	100	100	mg/kg
Indeno(1,2,3-cd)pyrene	0.5	0.5	mg/kg
m-Cresol	100	100	mg/kg
Naphthalene	100	100	mg/kg
Nitrobenzene	15	15	mg/kg
o-Cresol	100	100	mg/kg
p-Cresol	100 6.7	100 6.7	mg/kg
Pentachlorophenol Phenanthrene	100	100	mg/kg mg/kg
Phenol	100	100	mg/kg
Pyrene	100	100	mg/kg
Volatile Organic Compounds			<u> </u>
1,1,1-Trichloroethane	100	100	mg/kg
1,1-Dichloroethane	26	26	mg/kg
1,1-Dichloroethene	100	100	mg/kg
1,2-Dichlorobenzene	100	100	mg/kg
1,2-Dichloroethane	3.1	3.1	mg/kg
cis-1,2-Dichloroethene	100	100	mg/kg
trans-1,2-Dichloroethene 1,3-Dichlorobenzene	100 49	100 49	mg/kg
1,4-Dichlorobenzene	13	13	mg/kg mg/kg
1,4-Dioxane	13	13	mg/kg
Acetone	100	100	mg/kg
Benzene	4.8	4.8	mg/kg
Butylbenzene	100	100	mg/kg
Carbon tetrachloride	2.4	2.4	mg/kg
Chlorobenzene	100	100	mg/kg
Chloroform	49	49	mg/kg
Ethylbenzene	41	41	mg/kg
Hexachlorobenzene	1.2	1.2	mg/kg
Methyl ethyl ketone Methyl tert-butyl ether	100 100	100 100	mg/kg
Methylene chloride	100	100	mg/kg mg/kg
n-Propylbenzene	100	100	mg/kg
sec-Butylbenzene	100	100	mg/kg
tert-Butylbenzene	100	100	mg/kg
Tetrachloroethene	19	19	mg/kg
Toluene	100	100	mg/kg
Trichloroethene	21	21	mg/kg
1,2,4-Trimethylbenzene	52	52	mg/kg
1,3,5-Trimethylbenzene	52	52	mg/kg
Vinyl chloride	0.9	0.9	mg/kg
Xylene (mixed)	100	100	mg/kg

Table 4. Soil and C&D Disposal Volume 555 West 22nd Street New York, New York Final Engineering Report

Name of Facility Hoffman Griffett Quarty Rootbreat Greenwew Earth Effect Greenwew Soil Safe, inc Alektro12 Facility Doremus, see Redevelopment Project Cycle Chem Inc. Rootbreate Recycling Corporation Bow yith Load; LLC Silva R Location Inpaction Impacted Soil/Fill Include Town Repressible Track																								
	Name of Facility	Hoffman G	riffett Quarry	Rodota	Fill Site	Earth Effice	int Greenview	Bethleh	arth	2	- Metro12 Facility	emus Ave	opment Proj	ζ	Chem Inc.	Recycli	ng Corpo	Buy the	Load,	Silva Recy	Recycling V	Vanbro Corporation	Hunters F	Point Recycling
of Waste Impacted Soll/Fill Impacted Soll/Fill Impacted Soll/Fill Impacted Soll/Fill Impacted Soll/Fill Impacted Soll/Fill C&D C&D C&D Torks Tracks Track	Location	Belvio	ere, NJ	Belvid	ere, NJ	Stroud	sburg, PA	Bethle	hem, PA	Cari	rteret,	New		Eliz	abeth, NJ	Elizabe	th, NJ	Poconc	ν Pines, PA	Newark, NJ	Į,	Staten Island, NY	Long Is	Island City, NY
Trucks Tones (Approxa.) Trucks	ype	Impacte	d Soil/Fill	Impacter	1 Soil/Fill	Impacted Sc	and C&	Impacte	od Soil∕Fill	\simeq	ed Soil,	Impacte	Soil	Impa	Soil	SS	D		2&D	C&D		C&D		C&D
68 1,904,00 830 23,240,00 424 11,655,25 321 8,216,06 53 1,502,18 1 26,82 1 34,02 31 781,20 232 5		Trucks T.	ons (Approx.)	Trucks T.	ons (Approx.)	Trucks	⊢	Trucks To	ons (Approx.)	Trucks	Tons (Approx.)	Trucks	Tons (Approx.)	s>	ons (Appr	Ė	ons (Approx.)	ucks 1	Appro	-	(Approx.) Truck	cks Tons (Approx.)	Trucks	Tons (Approx.)
	Total	89	1,904.00		23,240.00	424	11,655.25	321	8,216.06	53	1,502.18	1	26.82	1	34.02	31	781.20	232	5,846.40	3	75.60	48.57	1	25.20

Table 5. Soil Grids and Destinations 555 West 22nd Street BCP Site No. C231101 Final Engineering Report

Grid	Cut (ft-bg)	Hoffman Griffett Ollarry Rodota Eill Site	Rodota Fill Site	Farth Efficient Greenview	Rethlehem Farth	Soil Safe - Metro12 Facility	Doremus Ave Redevelonment Project	Cycle Chem Inc.
WC-1	0 to 3.5							
WC-2	0 to 3.5				×	×		
WC-3	0 to 18.5			×	×	×		
WC-4	0 to 3.5					×		
WC-5	0 to 3.5					×		
9-JM	0 to 3.5			×	×	×		
WC-7	0 to 3.5			×	×	×		
WC-8	0 to 3.5			×	×	X		
WC-9	0 to 3.5				×	×		
WC-10	0 to 3.5			×	×	×		
WC-11	3.5 to 6.5				×	×		
WC-12	3.5 to 6.5			×	×	×		
WC-13	3.5 to 6.5			×		×		
WC-14	3.5 to 6.5			×	×	X		
WC-15	3.5 to 6.5				×	X		
WC-16	3.5 to 6.5					X		
WC-17	3.5 to 6.5				×	X		
WC-18	6.5 to 10			×	×	X		
WC-19	6.5 to 10	×	×	×		×		
WC-20	6.5 to 10			×		×		
WC-21	6.5 to 10			×	×	×		
WC-22	6.5 to 10				×	×		
WC-23	6.5 to 10	×	×	×		×		
WC-24	6.5 to 10	×	×	×	×	X		
WC-25	10 to 13.5	×	×	×	×	X		
WC-26	10 to 13.5	×	×	×				
WC-27	10 to 13.5	×	×	X				
WC-28	10 to 13.5	×	×	×				
WC-29	10 to 13.5	×	×	×	×			
WC-30	10 to 13.5	×	×	×				
WC-31	10 to 13.5	×	×	×	×	×		
WC-32	13.5 to 17.75	×	×	×	×			
WC-33	13.5 to 17.75	×	×	×				
WC-34	13.5 to 15.75	×	×	×				
WC-35	13.5 to 15.75	×	×	×				
WC-36	13.5 to 17.75	×	×	×	×			
WC-37	13.5 to 15.75	×	×	×				
WC-38	13.5 to 15.75	×	×	×	×			
WC-39	17.75 to 22	×	×	×	×			
WC-40	17.75 to 22	X	×	X	×			
WC-41	15.75 to 18.5	×	×	X	×			
WC-42	15.75 to 18.5			×	×			
WC-43	15.75 to 29.5	×	×	×	×			
WC-44	15.75 to 17.75		×	×				
WC-45	17.75 to 22.5	×	×	×	×			
W-22	1			×			×	
WC-Plumbers Trench	ı							×

CLIENT SAMPLE ID		UST-5	UST-3+7	UST-2+6	UST-8	EP-UST-8
SAMPLING DATE	TT24.	13-JUL-18	20-JUL-18	16-JUL-18	19-JUN-19	19-JUN-19
LAB SAMPLE ID	Units	L1826797-01	L1828029-01	L1916402-01	L1926501-01	L1926502-01
		Qual	Qual	Qual	Qual	Qual
General Chemistry						
Solids, Total	%	86.2	77.9	82.6	76.8	81.8
Cyanide, Total	mg/kg				ND	
рН (Н)	SU			8	11	
Chromium, Hexavalent	mg/kg				ND	
Cyanide, Reactive	mg/kg				ND	
Sulfide, Reactive	mg/kg				12	
Paint Filter Liquid	-				NEGATIVE	
Flash Point	deg F			>150		
Ignitability of Solids						
Ignitability	-				NI	
TCLP Metals by EPA 1311						
Arsenic, TCLP	mg/l			ND	0.021 J	
Barium, TCLP	mg/l			0.576	0.56	
Cadmium, TCLP	mg/l			ND	ND	
Chromium, TCLP	mg/l			ND	ND	
Copper, TCLP	mg/l				ND	
Lead, TCLP	mg/l			0.065 J	0.179 J	
Mercury, TCLP	mg/l			ND	ND	
Nickel, TCLP	mg/l				0.063 J	
Selenium, TCLP	mg/l			ND	ND	
Silver, TCLP	mg/l			ND	ND	
Zinc, TCLP	mg/l				0.219 J	
Total Metals						
Aluminum, Total	mg/kg	5640	5740		7510	7470
Antimony, Total	mg/kg	0.5 J	ND		0.559 J	1.01 J
Arsenic, Total	mg/kg	8.48	3.2		16.6	6.43
Barium, Total	mg/kg	75.3	104		70.5	58.3
Beryllium, Total	mg/kg	0.277 J	0.266 J		0.406 J	0.379 J
Cadmium, Total	mg/kg	1.33	ND		0.579 J	ND
Calcium, Total	mg/kg	15300	11500		8850	10400
Chromium, Total	mg/kg	21.7	9.63		16.8	15.1
Cobalt, Total	mg/kg	6.06	4.75		6.27	6.08
Copper, Total	mg/kg	58.4	16.4		44.9	36.6
Iron, Total	mg/kg	28400	10500		20400	14300
Lead, Total	mg/kg	128	119		138	103
Magnesium, Total	mg/kg	2240	2330		2600	2440
Manganese, Total	mg/kg	201	174		280	293
Mercury, Total	mg/kg	0.226	0.195		0.896	0.176
Nickel, Total	mg/kg	40.9	10.6		17.8	18.1
Potassium, Total	mg/kg	905	1100		1150	857
Selenium, Total	mg/kg	0.892 J	ND		0.447 J	ND
Silver, Total	mg/kg	ND	ND		ND	ND
Sodium, Total	mg/kg	628	430		363	310
Thallium, Total	mg/kg	ND	ND		ND	ND
Vanadium, Total	mg/kg	15.8	13.4		18.6	18.7

CLIENT SAMPLE ID		UST-5	UST-3+7	UST-2+6	UST-8	EP-UST-8
SAMPLING DATE		13-JUL-18	20-JUL-18	16-JUL-18	19-JUN-19	19-JUN-19
LAB SAMPLE ID	Units	L1826797-01	L1828029-01	L1916402-01	L1926501-01	L1926502-01
		Qual	Qual	Qual	Qual	Qual
Zinc, Total	mg/kg	59	37.7		54.9	70.2
Volatile Organics by 8260/5035						
1,1,1,2-Tetrachloroethane	mg/kg	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	mg/kg	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	mg/kg	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	mg/kg	ND	ND	ND	ND	ND
1,1-Dichloroethane	mg/kg	ND	ND	ND	ND	ND
1,1-Dichloroethene	mg/kg	ND	ND	ND	ND	ND
1,1-Dichloropropene	mg/kg	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	mg/kg	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	mg/kg	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	mg/kg	ND	1.5	ND	0.22	0.0051
1,2,4-Trichlorobenzene	mg/kg	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	mg/kg	ND	3.5	ND	0.078 J	0.0024
1,2-Dibromo-3-chloropropane	mg/kg	ND	ND	ND	ND	ND
1,2-Dibromoethane	mg/kg	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	mg/kg	ND	ND	ND	ND	ND
1,2-Dichloroethane	mg/kg	ND	ND	ND	ND	ND
1,2-Dichloroethene, Total	mg/kg	ND	ND	ND	ND	ND
1,2-Dichloropropane	mg/kg	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	mg/kg	ND	1.4	ND	0.029 J	0.00096 J
1,3-Dichlorobenzene	mg/kg	ND	ND	ND	ND	ND
1,3-Dichloropropane	mg/kg	ND	ND	ND	ND	ND
1,3-Dichloropropene, Total	mg/kg	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	mg/kg	ND	ND	ND	ND	ND
1,4-Dioxane	mg/kg	ND	ND	ND	ND	ND
2,2-Dichloropropane	mg/kg	ND	ND	ND	ND	ND
2-Butanone	mg/kg	ND	ND	ND	ND	ND
2-Hexanone	mg/kg	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	mg/kg	ND	ND	ND	ND	ND
Acetone	mg/kg	0.01 J	ND	ND	ND	0.02
Acrolein	mg/kg				ND	
Acrylonitrile	mg/kg	ND	ND	ND	ND	ND
Benzene	mg/kg	0.00076	0.3	ND	ND	ND
Bromobenzene	mg/kg	ND	ND	ND	ND	ND
Bromochloromethane	mg/kg	ND	ND	ND	ND	ND
Bromodichloromethane	mg/kg	ND	ND	ND	ND	ND
Bromoform	mg/kg	ND	ND	ND	ND	ND
Bromomethane	mg/kg	ND	ND	ND	ND	ND
Carbon disulfide	mg/kg	ND	ND	ND	ND	ND
Carbon tetrachloride	mg/kg	ND	ND	ND	ND	ND
Chlorobenzene	mg/kg	ND	ND	ND	ND	ND
Chloroethane	mg/kg	ND	ND	ND	ND	ND
Chloroform	mg/kg	ND	ND	ND	ND	ND
Chloromethane	mg/kg	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	mg/kg	ND	ND	ND	ND	ND
	2 0					

CLIENT SAMPLE ID		UST-5	UST-3+7	UST-2+6	UST-8	EP-UST-8
SAMPLING DATE	\dashv	13-JUL-18	20-JUL-18	16-JUL-18	19-JUN-19	19-JUN-19
LAB SAMPLE ID	Units	L1826797-01	L1828029-01	L1916402-01	L1926501-01	L1926502-01
		Qual	Qual	Qual	Qual	Qual
cis-1,3-Dichloropropene	mg/kg	ND	ND	ND	ND	ND
Cyclohexane	mg/kg				ND	
Dibromochloromethane	mg/kg	ND	ND	ND	ND	ND
Dibromomethane	mg/kg	ND	ND	ND	ND	ND
Dichlorodifluoromethane	mg/kg	ND	ND	ND	ND	ND
Ethyl ether	mg/kg	ND	ND	ND	ND	ND
Ethylbenzene	mg/kg	ND	1.4	ND	ND	0.00015 J
Freon-113	mg/kg				ND	
Hexachlorobutadiene	mg/kg	ND	ND	ND	ND	ND
Isopropylbenzene	mg/kg	ND	1.7	ND	ND	0.00012 J
Methyl acetate	mg/kg				ND	
Methyl cyclohexane	mg/kg				ND	
Methyl tert butyl ether	mg/kg	ND	0.015 J	ND	ND	ND
Methylene chloride	mg/kg	ND	ND	ND	ND	ND
n-Butylbenzene	mg/kg	ND	1.1	ND	0.038 J	0.00065 J
n-Propylbenzene	mg/kg	ND	2.2	ND	0.02 J	0.00026 J
Naphthalene	mg/kg	ND	0.87	ND	0.12 J	0.0041 J
o-Chlorotoluene	mg/kg	ND	ND	ND	ND	ND
o-Xylene	mg/kg	0.00041 J	1.2	ND	ND	0.00045 J
p-Chlorotoluene	mg/kg	ND	ND	ND	ND	ND
p-Diethylbenzene	mg/kg	ND	1.6	ND	0.044 J	0.0029
p-Ethyltoluene	mg/kg	ND	2.8	ND	0.056 J	0.0014 J
p-Isopropyltoluene	mg/kg	ND	0.58	ND	0.014 J	0.00042 J
p/m-Xylene	mg/kg	ND	3.6	ND	ND	ND
sec-Butylbenzene	mg/kg	ND	0.72	ND	0.022 J	0.00059 J
Styrene	mg/kg	ND	ND	ND	ND	ND
Tert-Butyl alcohol	mg/kg				ND	
tert-Butylbenzene	mg/kg	ND	0.13 J	ND	ND	0.00014 J
Tetrachloroethene	mg/kg	ND	ND	ND	ND	0.00094
Toluene	mg/kg	0.002	0.91	ND	ND	ND
trans-1,2-Dichloroethene	mg/kg	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	mg/kg	ND	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene	mg/kg	ND	ND	ND	ND	ND
Trichloroethene	mg/kg	ND	ND	ND	ND	ND
Trichlorofluoromethane	mg/kg	ND	ND	ND	ND	ND
Vinyl acetate	mg/kg	ND	ND	ND	ND	ND
Vinyl chloride	mg/kg	ND	ND	ND	ND	ND
Xylenes, Total	mg/kg	0.00041 J	4.8	ND	ND	0.00045 J
Semivolatile Organics by GC/MS	, , ,					
1,2,4,5-Tetrachlorobenzene	mg/kg	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	mg/kg	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	mg/kg	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	mg/kg	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	mg/kg	ND	ND	ND	ND	ND
1,4-Dioxane	mg/kg					ND
2,3,4,6-Tetrachlorophenol	mg/kg				ND	

CLIENT SAMPLE ID		UST-5		UST-3	3+7	UST-2	2+6	UST	-8	EP-US	т-8
SAMPLING DATE	\dashv \mid	13-JUL-18		20-JUI		16-JUI		19-JUN		19-JUN	
LAB SAMPLE ID	Units	L1826797-0		L182802		L19164		L192650		L192650	
		Qu	_	210200	Qual	Elylor	Qual	217200	Qual	217200	Qual
2,4,5-Trichlorophenol	mg/kg	ND		ND	Q	ND	Q	ND	· · · · ·	ND	C
2,4,6-Trichlorophenol	mg/kg	ND		ND		ND		ND		ND	
2,4-Dichlorophenol	mg/kg	ND		ND		ND		ND		ND	
2,4-Dimethylphenol	mg/kg	ND		ND		ND		ND		ND	
2,4-Dinitrophenol	mg/kg	ND		ND		ND		ND		ND	
2,4-Dinitrotoluene	mg/kg	ND		ND		ND		ND		ND	
2,6-Dinitrotoluene	mg/kg	ND		ND		ND		ND		ND	
2-Chloronaphthalene	mg/kg	ND		ND		ND		ND		ND	
2-Chlorophenol	mg/kg	ND		ND		ND		ND		ND	
2-Methylnaphthalene	mg/kg		J	0.26	J	0.11	J	0.17	J	0.1	J
2-Methylphenol	mg/kg	ND		ND		ND		ND		ND	
2-Nitroaniline	mg/kg	ND		ND		ND		ND		ND	
2-Nitrophenol	mg/kg	ND		ND		ND		ND		ND	
3,3'-Dichlorobenzidine	mg/kg	ND		ND		ND		ND		ND	
3-Methylphenol/4-Methylphenol	mg/kg	ND		ND		0.035	J	0.11	J	0.041	J
3-Nitroaniline	mg/kg	ND		ND		ND		ND		ND	
4,6-Dinitro-o-cresol	mg/kg	ND		ND		ND		ND		ND	
4-Bromophenyl phenyl ether	mg/kg	ND		ND		ND		ND		ND	
4-Chloroaniline	mg/kg	ND		ND		ND		ND		ND	
4-Chlorophenyl phenyl ether	mg/kg	ND		ND		ND		ND		ND	
4-Nitroaniline	mg/kg	ND		ND		ND		ND		ND	
4-Nitrophenol	mg/kg	ND		ND		ND		ND		ND	
Acenaphthene	mg/kg	0.068 J	J	ND		0.62		0.14	J	0.22	
Acenaphthylene	mg/kg	ND		ND		0.23		0.3		0.081	J
Acetophenone	mg/kg	ND		ND		ND		ND		ND	
Aniline	mg/kg							ND			
Anthracene	mg/kg	0.16		ND		1.2		0.38		0.55	
Atrazine	mg/kg							ND			
Azobenzene	mg/kg							ND			
Benzaldehyde	mg/kg							ND			
Benzidine	mg/kg							ND			
Benzo(a)anthracene	mg/kg	0.58		ND		5.1		1.4		2	
Benzo(a)pyrene	mg/kg	0.82		ND		7.8		1.7		2.9	
Benzo(b)fluoranthene	mg/kg					7.2					
Benzo(b)fluoranthene	mg/kg	0.89		ND		8.2	Е	2		3.2	
Benzo(ghi)perylene	mg/kg	0.62		ND		5.1		1.1		2.2	
Benzo(k)fluoranthene	mg/kg	0.3		ND		2.8		0.65		1.2	
Benzoic Acid	mg/kg	ND		ND		ND		ND		ND	
Benzyl Alcohol	mg/kg	ND		ND		ND				ND	
Biphenyl	mg/kg	ND		ND		ND		ND		ND	
Bis(2-chloroethoxy)methane	mg/kg	ND		ND		ND		ND		ND	
Bis(2-chloroethyl)ether	mg/kg	ND		ND		ND		ND		ND	
Bis(2-chloroisopropyl)ether	mg/kg	ND		ND		ND		ND		ND	
Bis(2-ethylhexyl)phthalate	mg/kg	ND		ND		ND		ND		ND	
Butyl benzyl phthalate	mg/kg	ND		ND		ND		ND		ND	
Caprolactam	mg/kg							ND			

Units mg/kg	UST- 13-JUL L182679	-18	UST-3+7 20-JUL-18	UST-2+6 16-JUL-18	UST-8 19-JUN-19	EP-UST-8 19-JUN-19
				10 002 10	17 0011 17	
mg/kg	LIGIO		L1828029-01	L1916402-01	L1926501-01	L1926502-01
mg/kg		Qual	Qual	Qual	Qual	Qual
0 0	0.062	J	ND	0.49	0.15 J	0.3
mg/kg	0.54		ND	4.8	1.4	2
mg/kg	ND		ND	ND	ND	ND
	ND		ND	ND	ND	ND
	0.14		ND	1.4	0.26	0.44
	0.036	J	ND	0.23	0.14 J	0.14 J
	ND		ND	ND	ND	ND
	ND		ND	ND	ND	ND
	0.87		ND	6.6	1.9	2.6
	0.05	J	ND	0.39	0.29	0.21
	ND		ND	ND	ND	ND
mg/kg	ND		ND	ND	ND	ND
mg/kg	ND		ND	ND	ND	ND
	ND		ND	ND	ND	ND
	0.7		ND	5.7	1.2	2.1
	ND		ND	ND	ND	ND
	ND		ND	ND	ND	ND
					ND	
	0.046	J	0.72	0.22	0.29	0.19 J
	ND		ND	ND	ND	ND
	ND		ND	ND	ND	ND
	ND		ND	ND	ND	ND
	ND		ND	ND	ND	ND
	0.61		ND	4.7	1.3	1.8
	ND		ND	ND	0.073 J	ND
mg/kg	0.78		ND	6.1	1.9	2.5
mg/kg				ND	ND	
				ND	ND	
				ND	ND	
				ND	ND	
				ND	ND	
				ND	0.0105 J	
				0.0458	ND	
				ND	ND	
				ND	ND	
				0.0458	0.0105 J	
mg/kg					ND	
mg/kg					ND	
mg/kg					ND	
mg/kg					ND	
mg/kg					ND	
					ND	
_					ND	
					ND	
	mg/kg	mg/kg 0.14 mg/kg 0.036 mg/kg ND mg/kg ND mg/kg 0.87 mg/kg 0.05 mg/kg ND mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	mg/kg 0.14 mg/kg 0.036 J mg/kg ND mg/kg mg/kg ND mg/kg mg/kg 0.05 J mg/kg ND mg/kg mg/kg 0.61 mg/kg mg/kg 0.78 mg/kg 0.78 mg/kg 0.78 mg/kg 0.78 mg/kg 0.78 mg/kg 0.78 mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg <	mg/kg 0.14 ND mg/kg 0.036 J ND mg/kg ND ND MD mg/kg ND ND MD mg/kg 0.87 ND MD mg/kg 0.05 J ND mg/kg ND ND MD mg/kg ND ND ND mg/kg mg/kg	mg/kg 0.14 ND 1.4 mg/kg 0.036 J ND 0.23 mg/kg ND ND ND ND mg/kg ND ND ND N	mg/kg 0.14 ND 1.4 0.26 mg/kg 0.036 J ND 0.23 0.14 J mg/kg ND ND ND ND ND mg/kg ND ND ND ND ND mg/kg 0.87 ND ND ND ND ND MD MD MD MD MD MD ND MD ND MD ND ND

CLIENT SAMPLE ID		UST-5	UST-3+7	UST-2+6	UST-8	EP-UST-8		
SAMPLING DATE	Units	13-JUL-18	20-JUL-18	16-JUL-18	19-JUN-19	19-JUN-19		
LAB SAMPLE ID	Units	L1826797-01	L1828029-01	L1916402-01	L1926501-01	L1926502-01		
		Qual	Qual	Qual	Qual	Qual		
Dieldrin	mg/kg				ND			
Endosulfan I	mg/kg		-		ND			
Endosulfan II	mg/kg				ND			
Endosulfan sulfate	mg/kg				ND			
Endrin	mg/kg				ND			
Endrin aldehyde	mg/kg				ND			
Endrin ketone	mg/kg				ND			
Heptachlor	mg/kg				ND			
Heptachlor epoxide	mg/kg				ND			
Lindane	mg/kg				ND			
Methoxychlor	mg/kg				ND			
Toxaphene	mg/kg				ND			
Petroleum Hydrocarbon Quantitation								
ТРН	mg/kg				933			

Notes:

J = Estimated value

E = Concentration exceeds the calibration range of the instrument

ND = Not detected

-- = Not analyzed

CLIENT SAMPLE ID			TR2-EP-20		TR2-E	P-21	TP2-E	P-7	TP2-E	P-14
SAMPLING DATE	NW DECDD	TT */	11-JAN-19		11-JAN	N-19	14-JA	N-19	14-JAI	N-19
LAB SAMPLE ID	NY-RESRR*	Units	L1901461-01	1	L190140	61-02	L19017	01-01	L19017	01-02
			Qı	ual		Qual		Qual		Qual
General Chemistry			•							
Solids, Total	NS	%	69.6		86.7		65.6		62.2	
Total Metals										
Aluminum, Total	NS	mg/kg	9420		4840		9010		11100	
Antimony, Total	NS	mg/kg	0.883 J	J	0.392	J	ND		ND	
Arsenic, Total	16	mg/kg	7.9		1.94		9.75		8.5	
Barium, Total	400	mg/kg	61.1		41.5		17.6		33.8	
Beryllium, Total	72	mg/kg	0.396 J	J	0.292	J	0.316	J	0.376	J
Cadmium, Total	4.3	mg/kg	0.34 J	J	0.155	J	0.524	J	0.564	J
Calcium, Total	NS	mg/kg	4520		2900		16200		3340	
Chromium, Total	NS	mg/kg	20.1		10.8		19.4		21	
Cobalt, Total	NS	mg/kg	7.66		4.68		8.27		9.26	
Copper, Total	270	mg/kg	26.1		13.2		9.78		14.9	
Iron, Total	NS	mg/kg	18400		8690		22300		25000	
Lead, Total	400	mg/kg	200		50.5		8.5		38.6	
Magnesium, Total	NS	mg/kg	3890		2190		4870		5220	
Manganese, Total	2000	mg/kg	438		335		602		654	
Mercury, Total	0.81	mg/kg	1.12		ND		ND		0.157	
Nickel, Total	310	mg/kg	15.8		10.5		16.2		18.5	
Potassium, Total	NS	mg/kg	1020		953		1760		1990	
Selenium, Total	180	mg/kg	ND		ND		1.05	J	0.953	J
Silver, Total	180	mg/kg	ND		ND		ND		ND	
Sodium, Total	NS	mg/kg	1530		1210		2260		2450	
Thallium, Total	NS	mg/kg	ND		ND		ND		ND	
Vanadium, Total	NS	mg/kg	23.5		13.6		24		27.3	
Zinc, Total	10000	mg/kg	61.4		18.7		49.8		59.7	
Volatile Organic Compounds										
1,1,1,2-Tetrachloroethane	NS	mg/kg	ND		ND		ND		ND	
1,1,1-Trichloroethane	100	mg/kg	ND		ND		ND		ND	
1,1,2,2-Tetrachloroethane	NS	mg/kg	ND		ND		ND		ND	
1,1,2-Trichloroethane	NS	mg/kg	ND		ND		ND		ND	
1,1-Dichloroethane	26	mg/kg	ND		ND		ND		ND	
1,1-Dichloroethene	100	mg/kg	ND		ND		ND		ND	
1,1-Dichloropropene	NS	mg/kg	ND		ND		ND		ND	
1,2,3-Trichlorobenzene	NS	mg/kg	ND		ND		ND		ND	
1,2,3-Trichloropropane	NS	mg/kg	ND		ND		ND		ND	
1,2,4,5-Tetramethylbenzene	NS	mg/kg	ND		ND		ND		0.0009	J
1,2,4-Trichlorobenzene	NS	mg/kg	ND		ND		ND		ND	
1,2,4-Trimethylbenzene	52	mg/kg	ND	一	ND		ND		ND	
1,2-Dibromo-3-chloropropane	NS	mg/kg	ND		ND		ND		ND	
1,2-Dibromoethane	NS	mg/kg	ND		ND		ND		ND	

CLIENT SAMPLE ID			TR2-EP-20	TR2-EP-21	TP2-EP-7	TP2-EP-14
SAMPLING DATE			11-JAN-19	11-JAN-19	14-JAN-19	14-JAN-19
LAB SAMPLE ID	NY-RESRR*	Units	L1901461-01	L1901461-02	L1901701-01	L1901701-02
			Qual	Qual	Qual	Qual
1,2-Dichlorobenzene	100	mg/kg	ND	ND	ND	ND
1,2-Dichloroethane	3.1	mg/kg	ND	ND	ND	ND
1,2-Dichloroethene, Total	NS	mg/kg	ND	ND	ND	ND
1,2-Dichloropropane	NS	mg/kg	ND	ND	ND	ND
1,3,5-Trimethylbenzene	52	mg/kg	ND	ND	ND	ND
1,3-Dichlorobenzene	49	mg/kg	ND	ND	ND	ND
1,3-Dichloropropane	NS	mg/kg	ND	ND	ND	ND
1,3-Dichloropropene, Total	NS	mg/kg	ND	ND	ND	ND
1,4-Dichlorobenzene	13	mg/kg	ND	ND	ND	ND
1,4-Dioxane	13	mg/kg	ND	ND	ND	ND
2,2-Dichloropropane	NS	mg/kg	ND	ND	ND	ND
2-Butanone	100	mg/kg	0.0096 J	0.0026 J	ND	0.011 J
2-Hexanone	NS	mg/kg	ND	ND	ND	ND
4-Methyl-2-pentanone	NS	mg/kg	ND	ND	ND	ND
Acetone	100	mg/kg	0.046	0.026	0.023	0.07
Acrylonitrile	NS	mg/kg	ND	ND	ND	ND
Benzene	4.8	mg/kg	ND	ND	ND	ND
Bromobenzene	NS	mg/kg	ND	ND	ND	ND
Bromochloromethane	NS	mg/kg	ND	ND	ND	ND
Bromodichloromethane	NS	mg/kg	ND	ND	ND	ND
Bromoform	NS	mg/kg	ND	ND	ND	ND
Bromomethane	NS	mg/kg	ND	ND	ND	ND
Carbon disulfide	NS	mg/kg	ND	ND	ND	ND
Carbon tetrachloride	2.4	mg/kg	ND	ND	ND	ND
Chlorobenzene	100	mg/kg	ND	ND	ND	ND
Chloroethane	NS	mg/kg	ND	ND	ND	ND
Chloroform	49	mg/kg	ND	ND	ND	ND
Chloromethane	NS	mg/kg	ND	ND	ND	ND
cis-1,2-Dichloroethene	100	mg/kg	ND	ND	ND	ND
cis-1,3-Dichloropropene	NS	mg/kg	ND	ND	ND	ND
Dibromochloromethane	NS	mg/kg	ND	ND	ND	ND
Dibromomethane	NS	mg/kg	ND	ND	ND	ND
Dichlorodifluoromethane	NS	mg/kg	ND	ND	ND	ND
Ethyl ether	NS	mg/kg	ND	ND	ND	ND
Ethylbenzene	41	mg/kg	ND	ND	ND	ND
Hexachlorobutadiene	NS	mg/kg	ND	ND	ND	ND
Isopropylbenzene	NS	mg/kg	ND	ND	ND	0.00031 J
Methyl tert butyl ether	100	mg/kg	0.00038 J	ND	ND	ND
Methylene chloride	100	mg/kg	ND	ND	ND	ND
n-Butylbenzene	100	mg/kg	ND	ND	ND	ND
n-Propylbenzene	100	mg/kg	ND	ND	ND	ND

CLIENT SAMPLE ID			TR2-EP-20	TR2-EP-21	TP2-EP-7	TP2-EP-14
SAMPLING DATE			11-JAN-19	11-JAN-19	14-JAN-19	14-JAN-19
LAB SAMPLE ID	NY-RESRR*	Units	L1901461-01	L1901461-02	L1901701-01	L1901701-02
			Qual	Qual	Qual	Qual
Naphthalene	100	mg/kg	ND	ND	ND	ND
o-Chlorotoluene	NS	mg/kg	ND	ND	ND	ND
o-Xylene	NS	mg/kg	ND	ND	ND	ND
p-Chlorotoluene	NS	mg/kg	ND	ND	ND	ND
p-Diethylbenzene	NS	mg/kg	ND	ND	ND	0.00044 J
p-Ethyltoluene	NS	mg/kg	ND	ND	ND	ND
p-Isopropyltoluene	NS	mg/kg	ND	ND	ND	ND
p/m-Xylene	NS	mg/kg	ND	ND	ND	ND
sec-Butylbenzene	100	mg/kg	ND	ND	ND	ND
Styrene	NS	mg/kg	ND	ND	ND	ND
tert-Butylbenzene	100	mg/kg	ND	ND	ND	ND
Tetrachloroethene	19	mg/kg	ND	ND	ND	ND
Toluene	100	mg/kg	ND	ND	ND	ND
trans-1,2-Dichloroethene	100	mg/kg	ND	ND	ND	ND
trans-1,3-Dichloropropene	NS	mg/kg	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene	NS	mg/kg	ND	ND	ND	ND
Trichloroethene	21	mg/kg	ND	ND	ND	ND
Trichlorofluoromethane	NS	mg/kg	ND	ND	ND	ND
Vinyl acetate	NS	mg/kg	ND	ND	ND	ND
Vinyl chloride	0.9	mg/kg	ND	ND	ND	ND
Xylenes, Total	100	mg/kg	ND	ND	ND	ND
Semivolatile Organic Compounds						
1,2,4,5-Tetrachlorobenzene	NS	mg/kg	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NS	mg/kg	ND	ND	ND	ND
1,2-Dichlorobenzene	100	mg/kg	ND	ND	ND	ND
1,3-Dichlorobenzene	49	mg/kg	ND	ND	ND	ND
1,4-Dichlorobenzene	13	mg/kg	ND	ND	ND	ND
2,4,5-Trichlorophenol	NS	mg/kg	ND	ND	ND	ND
2,4,6-Trichlorophenol	NS	mg/kg	ND	ND	ND	ND
2,4-Dichlorophenol	NS	mg/kg	ND	ND	ND	ND
2,4-Dimethylphenol	NS	mg/kg	ND	ND	ND	ND
2,4-Dinitrophenol	NS	mg/kg	ND	ND	ND	ND
2,4-Dinitrotoluene	NS	mg/kg	ND	ND	ND	ND
2,6-Dinitrotoluene	NS	mg/kg	ND	ND	ND	ND
2-Chloronaphthalene	NS	mg/kg	ND	ND	ND	ND
2-Chlorophenol	NS	mg/kg	ND	ND	ND	ND
2-Methylnaphthalene	NS	mg/kg	ND	ND	ND	ND
2-Methylphenol	100	mg/kg	ND	ND	ND	ND
2-Nitroaniline	NS	mg/kg	ND	ND	ND	ND
2-Nitrophenol	NS	mg/kg	ND	ND	ND	ND
3,3'-Dichlorobenzidine	NS	mg/kg	ND	ND	ND	ND

CLIENT SAMPLE ID			TR2-EP-20	TR2-EP-21	TP2-EP-7	TP2-EP-14
SAMPLING DATE			11-JAN-19	11-JAN-19	14-JAN-19	14-JAN-19
LAB SAMPLE ID		Units	L1901461-01		L1901701-01	L1901701-02
			Qu		Qual	Qual
3-Methylphenol/4-Methylphenol	100	mg/kg	0.076 J		ND	ND
3-Nitroaniline	NS	mg/kg	ND	ND	ND	ND
4,6-Dinitro-o-cresol	NS	mg/kg	ND	ND	ND	ND
4-Bromophenyl phenyl ether	NS	mg/kg	ND	ND	ND	ND
4-Chloroaniline	NS	mg/kg	ND	ND	ND	ND
4-Chlorophenyl phenyl ether	NS	mg/kg	ND	ND	ND	ND
4-Nitroaniline	NS	mg/kg	ND	ND	ND	ND
4-Nitrophenol	NS	mg/kg	ND	ND	ND	ND
Acenaphthene	100	mg/kg	ND	ND	ND	ND
Acenaphthylene	100	mg/kg	ND	ND	ND	ND
Acetophenone	NS	mg/kg	ND	ND	ND	ND
Anthracene	100	mg/kg	ND	ND	ND	ND
Benzo(a)anthracene	1	mg/kg	ND	ND	ND	ND
Benzo(a)pyrene	1	mg/kg	ND	ND	ND	ND
Benzo(b)fluoranthene	1	mg/kg	ND	ND	ND	ND
Benzo(ghi)perylene	100	mg/kg	ND	ND	ND	ND
Benzo(k)fluoranthene	3.9	mg/kg	ND	ND	ND	ND
Benzoic Acid	NS	mg/kg	ND	ND	ND	ND
Benzyl Alcohol	NS	mg/kg	ND	ND	ND	ND
Biphenyl	NS	mg/kg	ND	ND	ND	ND
Bis(2-chloroethoxy)methane	NS	mg/kg	ND	ND	ND	ND
Bis(2-chloroethyl)ether	NS	mg/kg	ND	ND	ND	ND
Bis(2-chloroisopropyl)ether	NS	mg/kg	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate	NS	mg/kg	0.092 J	ND	ND	ND
Butyl benzyl phthalate	NS	mg/kg	ND	ND	ND	ND
Carbazole	NS	mg/kg	ND	ND	ND	ND
Chrysene	3.9	mg/kg	ND	ND	ND	ND
Di-n-butylphthalate	NS	mg/kg	ND	ND	ND	ND
Di-n-octylphthalate	NS	mg/kg	ND	ND	ND	ND
Dibenzo(a,h)anthracene	0.33	mg/kg	ND	ND	ND	ND
Dibenzofuran	59	mg/kg	ND	ND	ND	ND
Diethyl phthalate	NS	mg/kg	ND	ND	ND	ND
Dimethyl phthalate	NS	mg/kg	ND	ND	ND	ND
Fluoranthene	100	mg/kg	ND	0.035 J	ND	ND
Fluorene	100	mg/kg	ND	ND	ND	ND
Hexachlorobenzene	1.2	mg/kg	ND	ND	ND	ND
Hexachlorobutadiene	NS	mg/kg	ND	ND	ND	ND
Hexachlorocyclopentadiene	NS	mg/kg	ND	ND	ND	ND
Hexachloroethane	NS	mg/kg	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.5	mg/kg	ND	ND	ND	ND
Isophorone	NS	mg/kg	ND	ND	ND	ND

CLIENT SAMPLE ID			TR2-EP-20	TR2-EP-21	TP2-EP-7	TP2-EP-14
SAMPLING DATE	NY-RESRR*	Units	11-JAN-19	11-JAN-19	14-JAN-19	14-JAN-19
LAB SAMPLE ID	NY-KESKK"	Units	L1901461-01	L1901461-02	L1901701-01	L1901701-02
			Qual	Qual	Qual	Qual
n-Nitrosodi-n-propylamine	NS	mg/kg	ND	ND	ND	ND
Naphthalene	100	mg/kg	ND	ND	ND	ND
NDPA/DPA	NS	mg/kg	ND	ND	ND	ND
Nitrobenzene	NS	mg/kg	ND	ND	ND	ND
p-Chloro-m-cresol	NS	mg/kg	ND	ND	ND	ND
Pentachlorophenol	6.7	mg/kg	ND	ND	ND	ND
Phenanthrene	100	mg/kg	ND	0.026 J	ND	ND
Phenol	100	mg/kg	ND	ND	ND	ND
Pyrene	100	mg/kg	ND	0.028 J	ND	ND

Notes:

Bold and shaded yellow value indicates concentration exceeds 6 NYCRR Part 375 Restricted Restricted-Residential SCOs

J = Estimated value

ND = Not detected

NS = No standard

* = 6 NYCRR Part 375 Restricted Restricted-Residential Soil Cleanup Objectives

CLIENT SAMPLE ID			TP2-EP-13	TP2-EP-6	TR2-EP-5	TR2-EP-12
SAMPLING DATE		A.	14-JAN-19	14-JAN-19	28-JAN-19	28-JAN-19
LAB SAMPLE ID	NY-RESRR*	Units	L1901701-03	L1901701-04	L1903543-01	L1903543-02
			Qua	l Qual	Qual	Qual
General Chemistry						
Solids, Total	NS	%	69.2	67.8	69.7	64.2
Total Metals						
Aluminum, Total	NS	mg/kg	5770	9150	9300	10300
Antimony, Total	NS	mg/kg	ND	ND	ND	ND
Arsenic, Total	16	mg/kg	12	8.61	4.48	4.64
Barium, Total	400	mg/kg	40.8	28.9	30.6	21.4
Beryllium, Total	72	mg/kg	0.112 J	0.303 J	0.283 J	0.388 J
Cadmium, Total	4.3	mg/kg	0.326 J	0.536 J	0.646 J	0.812 J
Calcium, Total	NS	mg/kg	3640	3200	4810	3070
Chromium, Total	NS	mg/kg	16	18.4	17.4	19.2
Cobalt, Total	NS	mg/kg	5.64	8.49	7.56	8.74
Copper, Total	270	mg/kg	22.6	17	14.2	12.8
Iron, Total	NS	mg/kg	14200	20900	20000	23800
Lead, Total	400	mg/kg	449	39.1	45.4	15.7
Magnesium, Total	NS	mg/kg	3110	4450	4430	5300
Manganese, Total	2000	mg/kg	366	565	465	654
Mercury, Total	0.81	mg/kg	1.07	0.127	0.073 J	0.03 J
Nickel, Total	310	mg/kg	11	16.4	16.5	18.9
Potassium, Total	NS	mg/kg	1170	1630	1530	1950
Selenium, Total	180	mg/kg	ND	0.711 J	ND	0.594 J
Silver, Total	180	mg/kg	ND	ND	ND	ND
Sodium, Total	NS	mg/kg	1310	1970	1860	3770
Thallium, Total	NS	mg/kg	ND	ND	ND	ND
Vanadium, Total	NS	mg/kg	30.1	24	22.2	24.2
Zinc, Total	10000	mg/kg	64.8	54.2	50	56.6
Volatile Organic Compounds						
1,1,1,2-Tetrachloroethane	NS	mg/kg	ND	ND	ND	ND
1,1,1-Trichloroethane	100	mg/kg	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	NS	mg/kg	ND	ND	ND	ND
1,1,2-Trichloroethane	NS	mg/kg	ND	ND	ND	ND
1,1-Dichloroethane	26	mg/kg	ND	ND	ND	ND
1,1-Dichloroethene	100	mg/kg	ND	ND	ND	ND
1,1-Dichloropropene	NS	mg/kg	ND	ND	ND	ND
1,2,3-Trichlorobenzene	NS	mg/kg	ND	ND	ND	ND
1,2,3-Trichloropropane	NS	mg/kg	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	NS	mg/kg	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NS	mg/kg	ND	ND	ND	ND
1,2,4-Trimethylbenzene	52	mg/kg	ND	0.0039 J	0.00057 J	ND
1,2-Dibromo-3-chloropropane	NS	mg/kg	ND	ND	ND	ND
1,2-Dibromoethane	NS	mg/kg	ND	ND	ND	ND

CLIENT SAMPLE ID			TP2-EP-13	TP2-EP-6	TR2-EP-5	TR2-EP-12
SAMPLING DATE		A.	14-JAN-19	14-JAN-19	28-JAN-19	28-JAN-19
LAB SAMPLE ID	NY-RESRR*	Units	L1901701-03	L1901701-04	L1903543-01	L1903543-02
			Qual	Qual	Qual	Qual
1,2-Dichlorobenzene	100	mg/kg	ND	ND	ND	ND
1,2-Dichloroethane	3.1	mg/kg	ND	ND	ND	ND
1,2-Dichloroethene, Total	NS	mg/kg	ND	ND	ND	ND
1,2-Dichloropropane	NS	mg/kg	ND	ND	ND	ND
1,3,5-Trimethylbenzene	52	mg/kg	ND	ND	ND	ND
1,3-Dichlorobenzene	49	mg/kg	ND	ND	ND	ND
1,3-Dichloropropane	NS	mg/kg	ND	ND	ND	ND
1,3-Dichloropropene, Total	NS	mg/kg	ND	ND	ND	ND
1,4-Dichlorobenzene	13	mg/kg	ND	ND	ND	ND
1,4-Dioxane	13	mg/kg	ND	ND	ND	ND
2,2-Dichloropropane	NS	mg/kg	ND	ND	ND	ND
2-Butanone	100	mg/kg	0.01 J	0.014 J	0.014 J	0.017 J
2-Hexanone	NS	mg/kg	ND	ND	ND	ND
4-Methyl-2-pentanone	NS	mg/kg	ND	ND	ND	ND
Acetone	100	mg/kg	0.059	0.084	0.066	0.082
Acrylonitrile	NS	mg/kg	ND	ND	ND	ND
Benzene	4.8	mg/kg	ND	ND	ND	ND
Bromobenzene	NS	mg/kg	ND	ND	ND	ND
Bromochloromethane	NS	mg/kg	ND	ND	ND	ND
Bromodichloromethane	NS	mg/kg	ND	ND	ND	ND
Bromoform	NS	mg/kg	ND	ND	ND	ND
Bromomethane	NS	mg/kg	ND	ND	ND	ND
Carbon disulfide	NS	mg/kg	ND	ND	ND	ND
Carbon tetrachloride	2.4	mg/kg	ND	ND	ND	ND
Chlorobenzene	100	mg/kg	ND	ND	ND	ND
Chloroethane	NS	mg/kg	ND	ND	ND	ND
Chloroform	49	mg/kg	ND	ND	ND	ND
Chloromethane	NS	mg/kg	ND	ND	ND	ND
cis-1,2-Dichloroethene	100	mg/kg	ND	ND	ND	ND
cis-1,3-Dichloropropene	NS	mg/kg	ND	ND	ND	ND
Dibromochloromethane	NS	mg/kg	ND	ND	ND	ND
Dibromomethane	NS	mg/kg	ND	ND	ND	ND
Dichlorodifluoromethane	NS	mg/kg	ND	ND	ND	ND
Ethyl ether	NS	mg/kg	ND	ND	ND	ND
Ethylbenzene	41	mg/kg	ND	ND	0.00023 J	ND
Hexachlorobutadiene	NS	mg/kg	ND	ND	ND	ND
Isopropylbenzene	NS	mg/kg	ND	0.0064	0.0005 J	ND
Methyl tert butyl ether	100	mg/kg	ND	ND	ND	ND
Methylene chloride	100	mg/kg	ND	ND	ND	ND
n-Butylbenzene	100	mg/kg	ND	ND	ND	ND
n-Propylbenzene	100	mg/kg	ND	ND	ND	ND

CLIENT SAMPLE ID			TP2-EP-13	TP2-EP-6	TR2-EP-5	TR2-EP-12
SAMPLING DATE			14-JAN-19	14-JAN-19	28-JAN-19	28-JAN-19
LAB SAMPLE ID	NY-RESRR*	Units	L1901701-03	L1901701-04	L1903543-01	L1903543-02
			Qual		Qual	Qual
Naphthalene	100	mg/kg	ND	0.0026 J	0.0023 J	ND
o-Chlorotoluene	NS	mg/kg	ND	ND	ND	ND
o-Xylene	NS	mg/kg	ND	0.0036	ND	ND
p-Chlorotoluene	NS	mg/kg	ND	ND	ND	ND
p-Diethylbenzene	NS	mg/kg	ND	0.0014 J	ND	ND
p-Ethyltoluene	NS	mg/kg	ND	ND	ND	ND
p-Isopropyltoluene	NS	mg/kg	ND	ND	ND	ND
p/m-Xylene	NS	mg/kg	ND	ND	ND	ND
sec-Butylbenzene	100	mg/kg	ND	ND	ND	ND
Styrene	NS	mg/kg	ND	ND	ND	ND
tert-Butylbenzene	100	mg/kg	ND	ND	ND	ND
Tetrachloroethene	19	mg/kg	ND	ND	ND	ND
Toluene	100	mg/kg	ND	ND	ND	ND
trans-1,2-Dichloroethene	100	mg/kg	ND	ND	ND	ND
trans-1,3-Dichloropropene	NS	mg/kg	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene	NS	mg/kg	ND	ND	ND	ND
Trichloroethene	21	mg/kg	ND	ND	ND	ND
Trichlorofluoromethane	NS	mg/kg	ND	ND	ND	ND
Vinyl acetate	NS	mg/kg	ND	ND	ND	ND
Vinyl chloride	0.9	mg/kg	ND	ND	ND	ND
Xylenes, Total	100	mg/kg	ND	0.0036	ND	ND
Semivolatile Organic Compounds						
1,2,4,5-Tetrachlorobenzene	NS	mg/kg	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NS	mg/kg	ND	ND	ND	ND
1,2-Dichlorobenzene	100	mg/kg	ND	ND	ND	ND
1,3-Dichlorobenzene	49	mg/kg	ND	ND	ND	ND
1,4-Dichlorobenzene	13	mg/kg	ND	ND	ND	ND
2,4,5-Trichlorophenol	NS	mg/kg	ND	ND	ND	ND
2,4,6-Trichlorophenol	NS	mg/kg	ND	ND	ND	ND
2,4-Dichlorophenol	NS	mg/kg	ND	ND	ND	ND
2,4-Dimethylphenol	NS	mg/kg	ND	ND	ND	ND
2,4-Dinitrophenol	NS	mg/kg	ND	ND	ND	ND
2,4-Dinitrotoluene	NS	mg/kg	ND	ND	ND	ND
2,6-Dinitrotoluene	NS	mg/kg	ND	ND	ND	ND
2-Chloronaphthalene	NS	mg/kg	ND	ND	ND	ND
2-Chlorophenol	NS	mg/kg	ND	ND	ND	ND
2-Methylnaphthalene	NS	mg/kg	ND	0.91	ND	ND
2-Methylphenol	100	mg/kg	ND	ND	ND	ND
2-Nitroaniline	NS	mg/kg	ND	ND	ND	ND
2-Nitrophenol	NS	mg/kg	ND	ND	ND	ND
3,3'-Dichlorobenzidine	NS	mg/kg	ND	ND	ND	ND

CLIENT SAMPLE ID			TP2-EP-13	TP2-EP-6	TR2-EP-5	TR2-EP-12
SAMPLING DATE	MIN DECED	#T •-	14-JAN-19	14-JAN-19	28-JAN-19	28-JAN-19
LAB SAMPLE ID	NY-RESRR*	Units	L1901701-03	L1901701-04	L1903543-01	L1903543-02
			Qual	Qual	Qual	Qual
3-Methylphenol/4-Methylphenol	100	mg/kg	0.2 J	0.13 J	ND	ND
3-Nitroaniline	NS	mg/kg	ND	ND	ND	ND
4,6-Dinitro-o-cresol	NS	mg/kg	ND	ND	ND	ND
4-Bromophenyl phenyl ether	NS	mg/kg	ND	ND	ND	ND
4-Chloroaniline	NS	mg/kg	ND	ND	ND	ND
4-Chlorophenyl phenyl ether	NS	mg/kg	ND	ND	ND	ND
4-Nitroaniline	NS	mg/kg	ND	ND	ND	ND
4-Nitrophenol	NS	mg/kg	ND	ND	ND	ND
Acenaphthene	100	mg/kg	ND	0.27	ND	ND
Acenaphthylene	100	mg/kg	ND	0.083 J	ND	ND
Acetophenone	NS	mg/kg	ND	ND	ND	ND
Anthracene	100	mg/kg	ND	0.2	ND	ND
Benzo(a)anthracene	1	mg/kg	ND	0.056 J	ND	ND
Benzo(a)pyrene	1	mg/kg	ND	ND	ND	ND
Benzo(b)fluoranthene	1	mg/kg	ND	ND	ND	ND
Benzo(ghi)perylene	100	mg/kg	ND	ND	ND	ND
Benzo(k)fluoranthene	3.9	mg/kg	ND	ND	ND	ND
Benzoic Acid	NS	mg/kg	ND	ND	ND	ND
Benzyl Alcohol	NS	mg/kg	ND	ND	ND	ND
Biphenyl	NS	mg/kg	ND	ND	ND	ND
Bis(2-chloroethoxy)methane	NS	mg/kg	ND	ND	ND	ND
Bis(2-chloroethyl)ether	NS	mg/kg	ND	ND	ND	ND
Bis(2-chloroisopropyl)ether	NS	mg/kg	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate	NS	mg/kg	ND	ND	ND	ND
Butyl benzyl phthalate	NS	mg/kg	ND	ND	ND	ND
Carbazole	NS	mg/kg	ND	ND	ND	ND
Chrysene	3.9	mg/kg	ND	0.061 J	ND	ND
Di-n-butylphthalate	NS	mg/kg	ND	ND	ND	ND
Di-n-octylphthalate	NS	mg/kg	ND	ND	ND	ND
Dibenzo(a,h)anthracene	0.33	mg/kg	ND	ND	ND	ND
Dibenzofuran	59	mg/kg	ND	0.029 J	ND	ND
Diethyl phthalate	NS	mg/kg	ND	ND	ND	ND
Dimethyl phthalate	NS	mg/kg	ND	ND	ND	ND
Fluoranthene	100	mg/kg	ND	0.13 J	ND	ND
Fluorene	100	mg/kg	ND	0.21 J	ND	ND
Hexachlorobenzene	1.2	mg/kg	ND	ND	ND	ND
Hexachlorobutadiene	NS	mg/kg	ND	ND	ND	ND
Hexachlorocyclopentadiene	NS	mg/kg	ND	ND	ND	ND
Hexachloroethane	NS	mg/kg	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.5	mg/kg	ND	ND	ND	ND
Isophorone	NS	mg/kg	ND	ND	ND	ND

CLIENT SAMPLE ID			TP2-EP-13	TP2-EP-6	TR2-EP-5	TR2-EP-12
SAMPLING DATE	NY-RESRR*	Units	14-JAN-19	14-JAN-19	28-JAN-19	28-JAN-19
LAB SAMPLE ID	NY-KESKK"	Units	L1901701-03	L1901701-04	L1903543-01	L1903543-02
			Qual	Qual	Qual	Qual
n-Nitrosodi-n-propylamine	NS	mg/kg	ND	ND	ND	ND
Naphthalene	100	mg/kg	ND	0.71	ND	ND
NDPA/DPA	NS	mg/kg	ND	ND	ND	ND
Nitrobenzene	NS	mg/kg	ND	ND	ND	ND
p-Chloro-m-cresol	NS	mg/kg	ND	ND	ND	ND
Pentachlorophenol	6.7	mg/kg	ND	ND	ND	ND
Phenanthrene	100	mg/kg	0.032 J	1.6	ND	ND
Phenol	100	mg/kg	ND	ND	ND	ND
Pyrene	100	mg/kg	ND	0.15	ND	ND

Notes:

Bold and shaded yellow value indicates concentration exceeds 6 NYCRR Part 375 Restricted Restricted-Residential SCOs

J = Estimated value

ND = Not detected

NS = No standard

* = 6 NYCRR Part 375 Restricted Restricted-Residential Soil

Cleanup Objectives

CLIENT SAMPLE ID			TR2-EP-19	TR2-EP-29	TR2-EP-28	TR2-EP-27
SAMPLING DATE		#T 4:	28-JAN-19	11-FEB-19	11-FEB-19	11-FEB-19
LAB SAMPLE ID	NY-RESRR*	Units	L1903543-03	L1905437-01	L1905437-02	L1905437-03
			Qual	Qual	Qual	Qual
General Chemistry						
Solids, Total	NS	%	66.1	52.5	71.1	74.6
Total Metals						
Aluminum, Total	NS	mg/kg	10900	13200	9340	9010
Antimony, Total	NS	mg/kg	ND	ND	ND	ND
Arsenic, Total	16	mg/kg	6.74	12.4	21.8	9.33
Barium, Total	400	mg/kg	21.9	47	103	26.4
Beryllium, Total	72	mg/kg	0.382 J	0.573 J	0.237 J	0.361 J
Cadmium, Total	4.3	mg/kg	0.846 J	1.07 J	0.807 J	0.787 J
Calcium, Total	NS	mg/kg	3730	7190	3280	2480
Chromium, Total	NS	mg/kg	23.5	24.7	25.1	18.3
Cobalt, Total	NS	mg/kg	8.97	11	8.15	8.51
Copper, Total	270	mg/kg	11.3	25.8	52.7	16
Iron, Total	NS	mg/kg	25300	27600	19400	19500
Lead, Total	400	mg/kg	10.6	57.2	593	40
Magnesium, Total	NS	mg/kg	5680	6260	4280	4570
Manganese, Total	2000	mg/kg	715	922	287	418
Mercury, Total	0.81	mg/kg	0.024 J	0.193	1.93	0.119
Nickel, Total	310	mg/kg	19.8	25.8	19.7	19.4
Potassium, Total	NS	mg/kg	2320	2420	1730	1650
Selenium, Total	180	mg/kg	0.545 J	1.29 J	0.915 J	0.797 J
Silver, Total	180	mg/kg	ND	ND	0.818 J	ND
Sodium, Total	NS	mg/kg	4150	1950	1570	2280
Thallium, Total	NS	mg/kg	ND	ND	ND	ND
Vanadium, Total	NS	mg/kg	30.2	33.1	26.6	24
Zinc, Total	10000	mg/kg	57.6	74.6	101	56.4
Volatile Organic Compounds						
1,1,1,2-Tetrachloroethane	NS	mg/kg	ND	ND	ND	ND
1,1,1-Trichloroethane	100	mg/kg	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	NS	mg/kg	ND	ND	ND	ND
1,1,2-Trichloroethane	NS	mg/kg	ND	ND	ND	ND
1,1-Dichloroethane	26	mg/kg	ND	ND	ND	ND
1,1-Dichloroethene	100	mg/kg	ND	ND	ND	ND
1,1-Dichloropropene	NS	mg/kg	ND	ND	ND	ND
1,2,3-Trichlorobenzene	NS	mg/kg	ND	ND	ND	ND
1,2,3-Trichloropropane	NS	mg/kg	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	NS	mg/kg	ND	0.0026 J	ND	ND
1,2,4-Trichlorobenzene	NS	mg/kg	ND	ND	ND	ND
1,2,4-Trimethylbenzene	52	mg/kg	ND	0.013	ND	ND
1,2-Dibromo-3-chloropropane	NS	mg/kg	ND	ND	ND	ND
1,2-Dibromoethane	NS	mg/kg	ND	ND	ND	ND

CLIENT SAMPLE ID			TR2-EP-19	TR2-EP-29	TR2-EP-28	TR2-EP-27
SAMPLING DATE			28-JAN-19	11-FEB-19	11-FEB-19	11-FEB-19
LAB SAMPLE ID	NY-RESRR*	Units	L1903543-03	L1905437-01	L1905437-02	L1905437-03
			Qual	Qual	Qual	Qual
1,2-Dichlorobenzene	100	mg/kg	ND	ND	ND	ND
1,2-Dichloroethane	3.1	mg/kg	ND	ND	ND	ND
1,2-Dichloroethene, Total	NS	mg/kg	ND	ND	ND	ND
1,2-Dichloropropane	NS	mg/kg	ND	ND	ND	ND
1,3,5-Trimethylbenzene	52	mg/kg	ND	0.0015 J	ND	ND
1,3-Dichlorobenzene	49	mg/kg	ND	ND	ND	ND
1,3-Dichloropropane	NS	mg/kg	ND	ND	ND	ND
1,3-Dichloropropene, Total	NS	mg/kg	ND	ND	ND	ND
1,4-Dichlorobenzene	13	mg/kg	ND	ND	ND	ND
1,4-Dioxane	13	mg/kg	ND	ND	ND	ND
2,2-Dichloropropane	NS	mg/kg	ND	ND	ND	ND
2-Butanone	100	mg/kg	0.011 J	0.026 J	0.048	0.015 J
2-Hexanone	NS	mg/kg	ND	ND	ND	ND
4-Methyl-2-pentanone	NS	mg/kg	ND	ND	ND	ND
Acetone	100	mg/kg	0.054	0.15	0.22	0.09
Acrylonitrile	NS	mg/kg	ND	ND	ND	ND
Benzene	4.8	mg/kg	ND	ND	ND	ND
Bromobenzene	NS	mg/kg	ND	ND	ND	ND
Bromochloromethane	NS	mg/kg	ND	ND	ND	ND
Bromodichloromethane	NS	mg/kg	ND	ND	ND	ND
Bromoform	NS	mg/kg	ND	ND	ND	ND
Bromomethane	NS	mg/kg	ND	ND	ND	ND
Carbon disulfide	NS	mg/kg	ND	ND	ND	ND
Carbon tetrachloride	2.4	mg/kg	ND	ND	ND	ND
Chlorobenzene	100	mg/kg	ND	ND	ND	ND
Chloroethane	NS	mg/kg	ND	ND	ND	ND
Chloroform	49	mg/kg	ND	ND	ND	ND
Chloromethane	NS	mg/kg	ND	ND	ND	ND
cis-1,2-Dichloroethene	100	mg/kg	ND	ND	ND	ND
cis-1,3-Dichloropropene	NS	mg/kg	ND	ND	ND	ND
Dibromochloromethane	NS	mg/kg	ND	ND	ND	ND
Dibromomethane	NS	mg/kg	ND	ND	ND	ND
Dichlorodifluoromethane	NS	mg/kg	ND	ND	ND	ND
Ethyl ether	NS	mg/kg	ND	ND	ND	ND
Ethylbenzene	41	mg/kg	ND	0.0034	ND	ND
Hexachlorobutadiene	NS	mg/kg	ND	ND	ND	ND
Isopropylbenzene	NS	mg/kg	0.0072	0.017	ND	ND
Methyl tert butyl ether	100	mg/kg	ND	ND	0.0009 J	ND
Methylene chloride	100	mg/kg	ND	ND	ND	ND
n-Butylbenzene	100	mg/kg	ND	ND	ND	ND
n-Propylbenzene	100	mg/kg	ND	ND	ND	ND

CLIENT SAMPLE ID			TR2-EP-19	TR2-EP-29	TR2-EP-28	TR2-EP-27
SAMPLING DATE			28-JAN-19	11-FEB-19	11-FEB-19	11-FEB-19
LAB SAMPLE ID	NY-RESRR*	Units	L1903543-03	L1905437-01	L1905437-02	L1905437-03
			Qual	Qual	Qual	Qual
Naphthalene	100	mg/kg	ND	0.045	ND	ND
o-Chlorotoluene	NS	mg/kg	ND	ND	ND	ND
o-Xylene	NS	mg/kg	0.0043	0.016	ND	ND
p-Chlorotoluene	NS	mg/kg	ND	ND	ND	ND
p-Diethylbenzene	NS	mg/kg	ND	0.0049 J	ND	ND
p-Ethyltoluene	NS	mg/kg	ND	0.0029 J	ND	ND
p-Isopropyltoluene	NS	mg/kg	0.0018	0.094	ND	ND
p/m-Xylene	NS	mg/kg	ND	ND	ND	ND
sec-Butylbenzene	100	mg/kg	ND	0.00052 J	ND	ND
Styrene	NS	mg/kg	ND	ND	ND	ND
tert-Butylbenzene	100	mg/kg	ND	ND	ND	ND
Tetrachloroethene	19	mg/kg	ND	ND	ND	ND
Toluene	100	mg/kg	ND	ND	ND	ND
trans-1,2-Dichloroethene	100	mg/kg	ND	ND	ND	ND
trans-1,3-Dichloropropene	NS	mg/kg	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene	NS	mg/kg	ND	ND	ND	ND
Trichloroethene	21	mg/kg	ND	ND	ND	ND
Trichlorofluoromethane	NS	mg/kg	ND	ND	ND	ND
Vinyl acetate	NS	mg/kg	ND	ND	ND	ND
Vinyl chloride	0.9	mg/kg	ND	ND	ND	ND
Xylenes, Total	100	mg/kg	0.0043	0.016	ND	ND
Semivolatile Organic Compounds						
1,2,4,5-Tetrachlorobenzene	NS	mg/kg	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NS	mg/kg	ND	ND	ND	ND
1,2-Dichlorobenzene	100	mg/kg	ND	ND	ND	ND
1,3-Dichlorobenzene	49	mg/kg	ND	ND	ND	ND
1,4-Dichlorobenzene	13	mg/kg	ND	ND	ND	ND
2,4,5-Trichlorophenol	NS	mg/kg	ND	ND	ND	ND
2,4,6-Trichlorophenol	NS	mg/kg	ND	ND	ND	ND
2,4-Dichlorophenol	NS	mg/kg	ND	ND	ND	ND
2,4-Dimethylphenol	NS	mg/kg	ND	ND	ND	ND
2,4-Dinitrophenol	NS	mg/kg	ND	ND	ND	ND
2,4-Dinitrotoluene	NS	mg/kg	ND	ND	ND	ND
2,6-Dinitrotoluene	NS	mg/kg	ND	ND	ND	ND
2-Chloronaphthalene	NS	mg/kg	ND	ND	ND	ND
2-Chlorophenol	NS	mg/kg	ND	ND	ND	ND
2-Methylnaphthalene	NS	mg/kg	ND	0.16 J	0.068 J	ND
2-Methylphenol	100	mg/kg	ND	ND	ND	ND
2-Nitroaniline	NS	mg/kg	ND	ND	ND	ND
2-Nitrophenol	NS	mg/kg	ND	ND	ND	ND
3,3'-Dichlorobenzidine	NS	mg/kg	ND	ND	ND	ND

CLIENT SAMPLE ID			TR2-EP-19	TR2-E	P-29	TR2-E	P-28	TR2-E	P-27
SAMPLING DATE	MV PECPE!	TT **	28-JAN-19	11-FEH	3-19	11-FE	B-19	11-FE	B-19
LAB SAMPLE ID	NY-RESRR*	Units	L1903543-03	L190543	37-01	L19054	37-02	L19054	37-03
			Qual		Qual		Qual		Qual
3-Methylphenol/4-Methylphenol	100	mg/kg	ND	0.13	J	0.76		0.1	J
3-Nitroaniline	NS	mg/kg	ND	ND		ND		ND	
4,6-Dinitro-o-cresol	NS	mg/kg	ND	ND		ND		ND	
4-Bromophenyl phenyl ether	NS	mg/kg	ND	ND		ND		ND	
4-Chloroaniline	NS	mg/kg	ND	ND		ND		ND	
4-Chlorophenyl phenyl ether	NS	mg/kg	ND	ND		ND		ND	
4-Nitroaniline	NS	mg/kg	ND	ND		ND		ND	
4-Nitrophenol	NS	mg/kg	ND	ND		ND		ND	
Acenaphthene	100	mg/kg	ND	0.1	J	0.024	J	ND	
Acenaphthylene	100	mg/kg	ND	ND		ND		ND	
Acetophenone	NS	mg/kg	ND	ND		ND		ND	
Anthracene	100	mg/kg	ND	0.077	J	ND		ND	
Benzo(a)anthracene	1	mg/kg	ND	0.051	J	0.089	J	0.03	J
Benzo(a)pyrene	1	mg/kg	ND	ND		0.11	J	ND	
Benzo(b)fluoranthene	1	mg/kg	ND	ND		0.11	J	ND	
Benzo(ghi)perylene	100	mg/kg	ND	ND		0.056	J	ND	
Benzo(k)fluoranthene	3.9	mg/kg	ND	ND		0.04	J	ND	
Benzoic Acid	NS	mg/kg	ND	ND		ND		ND	
Benzyl Alcohol	NS	mg/kg	ND	ND		ND		ND	
Biphenyl	NS	mg/kg	ND	ND		ND		ND	
Bis(2-chloroethoxy)methane	NS	mg/kg	ND	ND		ND		ND	
Bis(2-chloroethyl)ether	NS	mg/kg	ND	ND		ND		ND	
Bis(2-chloroisopropyl)ether	NS	mg/kg	ND	ND		ND		ND	
Bis(2-ethylhexyl)phthalate	NS	mg/kg	ND	ND		ND		ND	
Butyl benzyl phthalate	NS	mg/kg	ND	ND		ND		ND	
Carbazole	NS	mg/kg	ND	ND		ND		ND	
Chrysene	3.9	mg/kg	ND	0.059	J	0.088	J	0.026	J
Di-n-butylphthalate	NS	mg/kg	ND	ND		ND		ND	
Di-n-octylphthalate	NS	mg/kg	ND	ND		ND		ND	
Dibenzo(a,h)anthracene	0.33	mg/kg	ND	ND		ND		ND	
Dibenzofuran	59	mg/kg	ND	ND		ND		ND	
Diethyl phthalate	NS	mg/kg	ND	ND		ND		ND	
Dimethyl phthalate	NS	mg/kg	ND	ND		ND		ND	
Fluoranthene	100	mg/kg	ND	0.071	J	0.15		0.039	J
Fluorene	100	mg/kg	ND	0.063	J	0.034	J	ND	
Hexachlorobenzene	1.2	mg/kg	ND	ND		ND		ND	
Hexachlorobutadiene	NS	mg/kg	ND	ND		ND		ND	
Hexachlorocyclopentadiene	NS	mg/kg	ND	ND		ND		ND	
Hexachloroethane	NS	mg/kg	ND	ND		ND		ND	
Indeno(1,2,3-cd)pyrene	0.5	mg/kg	ND	ND		0.058	J	ND	
Isophorone	NS	mg/kg	ND	ND		ND		ND	

CLIENT SAMPLE ID			TR2-EP-19	TR2-EP-29	TR2-EP-28	TR2-EP-27
SAMPLING DATE	NY-RESRR*	Units	28-JAN-19	11-FEB-19	11-FEB-19	11-FEB-19
LAB SAMPLE ID	NY-KESKK"	Units	L1903543-03	L1905437-01	L1905437-02	L1905437-03
			Qual	Qual	Qual	Qual
n-Nitrosodi-n-propylamine	NS	mg/kg	ND	ND	ND	ND
Naphthalene	100	mg/kg	ND	0.15 J	0.13 J	ND
NDPA/DPA	NS	mg/kg	ND	ND	ND	ND
Nitrobenzene	NS	mg/kg	ND	ND	ND	ND
p-Chloro-m-cresol	NS	mg/kg	ND	ND	ND	ND
Pentachlorophenol	6.7	mg/kg	ND	ND	ND	ND
Phenanthrene	100	mg/kg	ND	0.59	0.17	0.041 J
Phenol	100	mg/kg	ND	ND	ND	ND
Pyrene	100	mg/kg	ND	0.1 J	0.15	0.039 J

Notes:

Bold and shaded yellow value indicates concentration exceeds 6 NYCRR Part 375 Restricted Restricted-Residential SCOs

J = Estimated value

ND = Not detected

NS = No standard

* = 6 NYCRR Part 375 Restricted Restricted-Residential Soil

Cleanup Objectives

CLIENT SAMPLE ID			TR2-E	P-23	TR2-E	P-16	TR2-E	P-22	DUPLIC	CATE
SAMPLING DATE			11-FEH		11-FE		11-FE		11-FEI	
LAB SAMPLE ID	NY-RESRR*	Units	L190543		L19054		L19054		L19054	
				Qual		Qual		Qual		Qual
General Chemistry	,									
Solids, Total	NS	%	59		68.3		64.7		73.5	
Total Metals										
Aluminum, Total	NS	mg/kg	12900		8350		10900		7230	
Antimony, Total	NS	mg/kg	ND		ND		ND		ND	
Arsenic, Total	16	mg/kg	11		8.2		12.6		13.5	
Barium, Total	400	mg/kg	32.8		18.7		34.5		52.7	
Beryllium, Total	72	mg/kg	0.55	J	0.32	J	0.423	J	0.188	J
Cadmium, Total	4.3	mg/kg	1.05	J	0.783	J	1	J	0.574	J
Calcium, Total	NS	mg/kg	3240		11200		3560		2500	
Chromium, Total	NS	mg/kg	22.7		16.7		21.8		16.2	
Cobalt, Total	NS	mg/kg	11.3		8		9.73		6.32	
Copper, Total	270	mg/kg	20.7		10.6		21.2		26.9	
Iron, Total	NS	mg/kg	26300		19600		26000		15000	
Lead, Total	400	mg/kg	31.9		15		57		234	
Magnesium, Total	NS	mg/kg	6230		4780		5460		3440	
Manganese, Total	2000	mg/kg	576		520		744		264	
Mercury, Total	0.81	mg/kg	0.06	J	ND		0.13		1.44	
Nickel, Total	310	mg/kg	26.3		17.9		22.2		15	
Potassium, Total	NS	mg/kg	2110		1660		1880		1300	
Selenium, Total	180	mg/kg	1.21	J	0.595	J	1.03	J	0.491	J
Silver, Total	180	mg/kg	ND		ND		ND		0.449	J
Sodium, Total	NS	mg/kg	3600		3620		2000		1130	
Thallium, Total	NS	mg/kg	ND		ND		ND		ND	
Vanadium, Total	NS	mg/kg	30.5		21.2		30.2		18.2	
Zinc, Total	10000	mg/kg	74.6		50.6		65.1		56.1	
Volatile Organic Compounds										
1,1,1,2-Tetrachloroethane	NS	mg/kg	ND		ND		ND		ND	
1,1,1-Trichloroethane	100	mg/kg	ND		ND		ND		ND	
1,1,2,2-Tetrachloroethane	NS	mg/kg	ND		ND		ND		ND	
1,1,2-Trichloroethane	NS	mg/kg	ND		ND		ND		ND	
1,1-Dichloroethane	26	mg/kg	ND		ND		ND		ND	
1,1-Dichloroethene	100	mg/kg	ND		ND		ND		ND	
1,1-Dichloropropene	NS	mg/kg	ND		ND		ND		ND	
1,2,3-Trichlorobenzene	NS	mg/kg	ND		ND		ND		ND	
1,2,3-Trichloropropane	NS	mg/kg	ND		ND		ND		ND	
1,2,4,5-Tetramethylbenzene	NS	mg/kg	0.0039	J	0.0036		0.001	J	ND	
1,2,4-Trichlorobenzene	NS	mg/kg	ND		ND		ND		ND	
1,2,4-Trimethylbenzene	52	mg/kg	0.011		0.025		0.0047		ND	
1,2-Dibromo-3-chloropropane	NS	mg/kg	ND		ND		ND		ND	
1,2-Dibromoethane	NS	mg/kg	ND		ND		ND		ND	

CLIENT SAMPLE ID			TR2-EP	-23	TR2-E	P-16	TR2-EP	2-22	DUPLIC	ATE
SAMPLING DATE	- NILL DEGED	#T #.	11-FEB-	-19	11-FEI	B-19	11-FEB	-19	11-FEB	-19
LAB SAMPLE ID	NY-RESRR*	Units	L1905437	7-04	L190543	37-05	L190543	7-06	L190543	7-07
				Qual		Qual		Qual		Qual
1,2-Dichlorobenzene	100	mg/kg	ND		ND		ND		ND	
1,2-Dichloroethane	3.1	mg/kg	ND		ND		ND		ND	
1,2-Dichloroethene, Total	NS	mg/kg	ND		ND		ND		ND	
1,2-Dichloropropane	NS	mg/kg	ND		ND		ND		ND	
1,3,5-Trimethylbenzene	52	mg/kg	0.0017	J	0.0011	J	0.0015	J	ND	
1,3-Dichlorobenzene	49	mg/kg	ND		ND		ND		ND	
1,3-Dichloropropane	NS	mg/kg	ND		ND		ND		ND	
1,3-Dichloropropene, Total	NS	mg/kg	ND		ND		ND		ND	
1,4-Dichlorobenzene	13	mg/kg	ND		ND		ND		ND	
1,4-Dioxane	13	mg/kg	ND		ND		ND		ND	
2,2-Dichloropropane	NS	mg/kg	ND		ND		ND		ND	
2-Butanone	100	mg/kg	0.024	J	0.013	J	0.021		0.096	
2-Hexanone	NS	mg/kg	ND		ND		ND		ND	
4-Methyl-2-pentanone	NS	mg/kg	ND		ND		ND		ND	
Acetone	100	mg/kg	0.12		0.064		0.1		0.42	
Acrylonitrile	NS	mg/kg	ND		ND		ND		ND	
Benzene	4.8	mg/kg	0.00078	J	ND		ND		ND	
Bromobenzene	NS	mg/kg	ND		ND		ND		ND	
Bromochloromethane	NS	mg/kg	ND		ND		ND		ND	
Bromodichloromethane	NS	mg/kg	ND		ND		ND		ND	
Bromoform	NS	mg/kg	ND		ND		ND		ND	
Bromomethane	NS	mg/kg	ND		ND		ND		ND	
Carbon disulfide	NS	mg/kg	ND		ND		ND		ND	
Carbon tetrachloride	2.4	mg/kg	ND		ND		ND		ND	
Chlorobenzene	100	mg/kg	ND		ND		ND		ND	
Chloroethane	NS	mg/kg	ND		ND		ND		ND	
Chloroform	49	mg/kg	ND		ND		ND		ND	
Chloromethane	NS	mg/kg	ND		ND		ND		ND	
cis-1,2-Dichloroethene	100	mg/kg	ND		ND		ND		ND	
cis-1,3-Dichloropropene	NS	mg/kg	ND		ND		ND		ND	
Dibromochloromethane	NS	mg/kg	ND		ND		ND		ND	
Dibromomethane	NS	mg/kg	ND		ND		ND		ND	
Dichlorodifluoromethane	NS	mg/kg	ND		ND		ND		ND	
Ethyl ether	NS	mg/kg	ND		ND		ND		ND	
Ethylbenzene	41	mg/kg	0.0014	J	0.0044		0.00037	J	ND	
Hexachlorobutadiene	NS	mg/kg	ND		ND		ND		ND	
Isopropylbenzene	NS	mg/kg	0.0043		0.018		0.00022	J	ND	
Methyl tert butyl ether	100	mg/kg	ND		ND		0.002	J	0.00063	J
Methylene chloride	100	mg/kg	ND		ND		ND		ND	
n-Butylbenzene	100	mg/kg	ND		ND		0.00038	J	ND	
n-Propylbenzene	100	mg/kg	ND		0.0014	J	0.00054	J	ND	

CLIENT SAMPLE ID			TR2-EP-23	TR2-EP-16	TR2-EP-22	DUPLICATE
SAMPLING DATE	NV DECDD*	IIn:ta	11-FEB-19	11-FEB-19	11-FEB-19	11-FEB-19
LAB SAMPLE ID	NY-RESRR*	Units	L1905437-04	L1905437-05	L1905437-06	L1905437-07
			Qual	Qual	Qual	Qual
Naphthalene	100	mg/kg	0.3	0.23	0.0076	ND
o-Chlorotoluene	NS	mg/kg	ND	ND	ND	ND
o-Xylene	NS	mg/kg	0.0026	0.013	0.00076 J	ND
p-Chlorotoluene	NS	mg/kg	ND	ND	ND	ND
p-Diethylbenzene	NS	mg/kg	0.0079	0.0036	0.0025 J	ND
p-Ethyltoluene	NS	mg/kg	0.0036 J	0.01	0.0032 J	ND
p-Isopropyltoluene	NS	mg/kg	0.051	0.0062	0.0015 J	ND
p/m-Xylene	NS	mg/kg	ND	0.0028 J	0.0015 J	ND
sec-Butylbenzene	100	mg/kg	ND	0.00069 J	ND	ND
Styrene	NS	mg/kg	ND	ND	ND	ND
tert-Butylbenzene	100	mg/kg	ND	0.00037 J	ND	ND
Tetrachloroethene	19	mg/kg	ND	ND	ND	ND
Toluene	100	mg/kg	ND	ND	ND	0.0012 J
trans-1,2-Dichloroethene	100	mg/kg	ND	ND	ND	ND
trans-1,3-Dichloropropene	NS	mg/kg	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene	NS	mg/kg	ND	ND	ND	ND
Trichloroethene	21	mg/kg	ND	ND	ND	ND
Trichlorofluoromethane	NS	mg/kg	ND	ND	ND	ND
Vinyl acetate	NS	mg/kg	ND	ND	ND	ND
Vinyl chloride	0.9	mg/kg	ND	ND	ND	ND
Xylenes, Total	100	mg/kg	0.0026	0.016 J	0.0023 J	ND
Semivolatile Organic Compounds	s					
1,2,4,5-Tetrachlorobenzene	NS	mg/kg	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NS	mg/kg	ND	ND	ND	ND
1,2-Dichlorobenzene	100	mg/kg	ND	ND	ND	ND
1,3-Dichlorobenzene	49	mg/kg	ND	ND	ND	ND
1,4-Dichlorobenzene	13	mg/kg	ND	ND	ND	ND
2,4,5-Trichlorophenol	NS	mg/kg	ND	ND	ND	ND
2,4,6-Trichlorophenol	NS	mg/kg	ND	ND	ND	ND
2,4-Dichlorophenol	NS	mg/kg	ND	ND	ND	ND
2,4-Dimethylphenol	NS	mg/kg	ND	ND	ND	ND
2,4-Dinitrophenol	NS	mg/kg	ND	ND	ND	ND
2,4-Dinitrotoluene	NS	mg/kg	ND	ND	ND	ND
2,6-Dinitrotoluene	NS	mg/kg	ND	ND	ND	ND
2-Chloronaphthalene	NS	mg/kg	ND	ND	ND	ND
2-Chlorophenol	NS	mg/kg	ND	ND	ND	ND
2-Methylnaphthalene	NS	mg/kg	0.23 J	0.12 J	0.032 J	0.041 J
2-Methylphenol	100	mg/kg	ND	ND	ND	ND
2-Nitroaniline	NS	mg/kg	ND	ND	ND	ND
2-Nitrophenol	NS	mg/kg	ND	ND	ND	ND
3,3'-Dichlorobenzidine	NS	mg/kg	ND	ND	ND	ND

CLIENT SAMPLE ID			TR2-E	P-23	TR2-E	P-16	TR2-E	P-22	DUPLIC	CATE
SAMPLING DATE	NIV PEGPP	TT 4.	11-FEI	B-19	11-FE	B-19	11-FE	B-19	11-FE	B-19
LAB SAMPLE ID		Units	L19054	37-04	L19054	37-05	L19054	37-06	L19054	37-07
				Qual		Qual		Qual		Qual
3-Methylphenol/4-Methylphenol	100	mg/kg	ND	_	ND		0.12	J	0.61	
3-Nitroaniline	NS	mg/kg	ND		ND		ND		ND	
4,6-Dinitro-o-cresol	NS	mg/kg	ND		ND		ND		ND	
4-Bromophenyl phenyl ether	NS	mg/kg	ND		ND		ND		ND	
4-Chloroaniline	NS	mg/kg	ND		ND		ND		ND	
4-Chlorophenyl phenyl ether	NS	mg/kg	ND		ND		ND		ND	
4-Nitroaniline	NS	mg/kg	ND		ND		ND		ND	
4-Nitrophenol	NS	mg/kg	ND		ND		ND		ND	
Acenaphthene	100	mg/kg	0.12	J	0.066	J	0.036	J	ND	
Acenaphthylene	100	mg/kg	ND		ND		ND		ND	
Acetophenone	NS	mg/kg	ND		ND		ND		ND	
Anthracene	100	mg/kg	0.19		0.074	J	0.068	J	ND	
Benzo(a)anthracene	1	mg/kg	0.11	J	0.13	J	0.066	J	0.071	J
Benzo(a)pyrene	1	mg/kg	0.1	J	0.11	J	ND		0.077	J
Benzo(b)fluoranthene	1	mg/kg	0.11	J	0.12	J	0.066	J	0.09	J
Benzo(ghi)perylene	100	mg/kg	0.054	J	0.044	J	ND		0.037	J
Benzo(k)fluoranthene	3.9	mg/kg	ND		0.049	J	ND		ND	
Benzoic Acid	NS	mg/kg	ND		ND		ND		ND	
Benzyl Alcohol	NS	mg/kg	ND		ND		ND		ND	
Biphenyl	NS	mg/kg	ND		ND		ND		ND	
Bis(2-chloroethoxy)methane	NS	mg/kg	ND		ND		ND		ND	
Bis(2-chloroethyl)ether	NS	mg/kg	ND		ND		ND		ND	
Bis(2-chloroisopropyl)ether	NS	mg/kg	ND		ND		ND		ND	
Bis(2-ethylhexyl)phthalate	NS	mg/kg	ND		ND		ND		ND	
Butyl benzyl phthalate	NS	mg/kg	ND		ND		ND		ND	
Carbazole	NS	mg/kg	0.17	J	ND		0.032	J	ND	
Chrysene	3.9	mg/kg	0.098	J	0.11	J	0.06	J	0.083	J
Di-n-butylphthalate	NS	mg/kg	ND		ND		ND		ND	
Di-n-octylphthalate	NS	mg/kg	ND		ND		ND		ND	
Dibenzo(a,h)anthracene	0.33	mg/kg	ND		ND		ND		ND	
Dibenzofuran	59	mg/kg	0.12	J	ND		0.028	J	ND	
Diethyl phthalate	NS	mg/kg	ND		ND		ND		ND	
Dimethyl phthalate	NS	mg/kg	ND		ND		ND		ND	
Fluoranthene	100	mg/kg	0.23		0.11	J	0.13	J	0.092	J
Fluorene	100	mg/kg	0.24	J	0.044	J	0.042	J	0.026	J
Hexachlorobenzene	1.2	mg/kg	ND		ND		ND		ND	
Hexachlorobutadiene	NS	mg/kg	ND		ND		ND		ND	
Hexachlorocyclopentadiene	NS	mg/kg	ND		ND		ND		ND	
Hexachloroethane	NS	mg/kg	ND		ND		ND		ND	
Indeno(1,2,3-cd)pyrene	0.5	mg/kg	0.057	J	0.046	J	ND		0.037	J
Isophorone	NS	mg/kg	ND		ND		ND		ND	

CLIENT SAMPLE ID			TR2-EP-23	TR2-EP-16	TR2-EP-22	DUPLICATE
SAMPLING DATE	NY-RESRR*	Units	11-FEB-19	11-FEB-19	11-FEB-19	11-FEB-19
LAB SAMPLE ID	NY-KESKK"	Units	L1905437-04	L1905437-05	L1905437-06	L1905437-07
			Qual	Qual	Qual	Qual
n-Nitrosodi-n-propylamine	NS	mg/kg	ND	ND	ND	ND
Naphthalene	100	mg/kg	0.59	0.22 J	0.072 J	0.086 J
NDPA/DPA	NS	mg/kg	ND	ND	ND	ND
Nitrobenzene	NS	mg/kg	ND	ND	ND	ND
p-Chloro-m-cresol	NS	mg/kg	ND	ND	ND	ND
Pentachlorophenol	6.7	mg/kg	ND	ND	ND	ND
Phenanthrene	100	mg/kg	0.95	0.54	0.18	0.12 J
Phenol	100	mg/kg	ND	ND	ND	ND
Pyrene	100	mg/kg	0.22	0.12 J	0.12 J	0.1 J

Notes:

Bold and shaded yellow value indicates concentration exceeds 6 NYCRR Part 375 Restricted Restricted-Residential SCOs

J = Estimated value

ND = Not detected

NS = No standard

* = 6 NYCRR Part 375 Restricted Restricted-Residential Soil

Cleanup Objectives

CLIENT SAMPLE ID			TP2-EP-	1	TP2-E	P-8	ТР2-Е	P-2	TP2-E	P-15
SAMPLING DATE	NIV DECED	#T **	19-FEB-1	19	19-FEB		19-FEF	B-19	19-FE	B-19
LAB SAMPLE ID	NY-RESRR*	Units	L1906538-	-01	L190653	8-02	L190653	88-03	L19065	38-04
				Qual		Qual		Qual		Qual
General Chemistry	<u> </u>									
Solids, Total	NS	%	59.9		62.8		61		59.8	
Total Metals										
Aluminum, Total	NS	mg/kg	12600		12900		13300		13600	
Antimony, Total	NS	mg/kg	ND		ND		ND		ND	
Arsenic, Total	16	mg/kg	8.55		11.7		11.6		8.74	
Barium, Total	400	mg/kg	30.5		31.3		33.2		32.8	
Beryllium, Total	72	mg/kg	0.625	J	0.615		0.618	J	0.623	J
Cadmium, Total	4.3	mg/kg	0.447	J	0.504	J	0.555	J	0.47	J
Calcium, Total	NS	mg/kg	2840		3380		3940		2250	
Chromium, Total	NS	mg/kg	21.8		24		24.1		22.2	
Cobalt, Total	NS	mg/kg	10		10.3		10.7		10.8	
Copper, Total	270	mg/kg	21.5		22.8		22.9		20.4	
Iron, Total	NS	mg/kg	27800		29400		33000		27800	
Lead, Total	400	mg/kg	33.8		33.8		46.1		30.1	
Magnesium, Total	NS	mg/kg	5840		6080		6360		6140	
Manganese, Total	2000	mg/kg	886		1130		1220		593	
Mercury, Total	0.81	mg/kg	0.164		0.162		0.204		0.101	J
Nickel, Total	310	mg/kg	21.4		21.4		22.3		22.8	
Potassium, Total	NS	mg/kg	2010		2230		2380		2110	
Selenium, Total	180	mg/kg	0.855	J	1.04	J	1.14	J	0.47	J
Silver, Total	180	mg/kg	ND		ND		ND		ND	
Sodium, Total	NS	mg/kg	2590		3320		4540		3690	
Thallium, Total	NS	mg/kg	0.817	J	1.11	J	1.14	J	0.509	J
Vanadium, Total	NS	mg/kg	29.2		33.1		34.4		30.3	
Zinc, Total	10000	mg/kg	66.7		66.8		69.1		70.9	
Volatile Organic Compounds	<u> </u>									
1,1,1,2-Tetrachloroethane	NS	mg/kg	ND		ND		ND		ND	
1,1,1-Trichloroethane	100	mg/kg	ND		ND		ND		ND	
1,1,2,2-Tetrachloroethane	NS	mg/kg	ND		ND		ND		ND	
1,1,2-Trichloroethane	NS	mg/kg	ND		ND		ND		ND	
1,1-Dichloroethane	26	mg/kg	ND		ND		ND		ND	
1,1-Dichloroethene	100	mg/kg	ND		ND		ND		ND	
1,1-Dichloropropene	NS	mg/kg	ND		ND		ND		ND	
1,2,3-Trichlorobenzene	NS	mg/kg	ND		ND		ND		ND	
1,2,3-Trichloropropane	NS	mg/kg	ND		ND		ND		ND	
1,2,4,5-Tetramethylbenzene	NS	mg/kg	ND		0.00095	J	ND		ND	
1,2,4-Trichlorobenzene	NS	mg/kg	ND		ND		ND		ND	
1,2,4-Trimethylbenzene	52	mg/kg	ND		0.0031	J	0.00072	J	ND	
1,2-Dibromo-3-chloropropane	NS	mg/kg	ND		ND		ND		ND	
1,2-Dibromoethane	NS	mg/kg	ND		ND		ND		ND	

CLIENT SAMPLE ID			TP2-EP-1	TP2-EP-8	TP2-EP-2	TP2-EP-15
SAMPLING DATE			19-FEB-19	19-FEB-19	19-FEB-19	19-FEB-19
LAB SAMPLE ID	NY-RESRR*	Units	L1906538-01	L1906538-02	L1906538-03	L1906538-04
			Qual	Qual	Qual	Qual
1,2-Dichlorobenzene	100	mg/kg	ND	ND	ND	ND
1,2-Dichloroethane	3.1	mg/kg	ND	ND	ND	ND
1,2-Dichloroethene, Total	NS	mg/kg	ND	ND	ND	ND
1,2-Dichloropropane	NS	mg/kg	ND	ND	ND	ND
1,3,5-Trimethylbenzene	52	mg/kg	ND	ND	ND	ND
1,3-Dichlorobenzene	49	mg/kg	ND	ND	ND	ND
1,3-Dichloropropane	NS	mg/kg	ND	ND	ND	ND
1,3-Dichloropropene, Total	NS	mg/kg	ND	ND	ND	ND
1,4-Dichlorobenzene	13	mg/kg	ND	ND	ND	ND
1,4-Dioxane	13	mg/kg	ND	ND	ND	ND
2,2-Dichloropropane	NS	mg/kg	ND	ND	ND	ND
2-Butanone	100	mg/kg	0.012 J	0.011 J	0.0095 J	0.017 J
2-Hexanone	NS	mg/kg	ND	ND	ND	ND
4-Methyl-2-pentanone	NS	mg/kg	ND	ND	ND	ND
Acetone	100	mg/kg	0.065	0.051	0.048	0.081
Acrylonitrile	NS	mg/kg	ND	ND	ND	ND
Benzene	4.8	mg/kg	ND	ND	ND	ND
Bromobenzene	NS	mg/kg	ND	ND	ND	ND
Bromochloromethane	NS	mg/kg	ND	ND	ND	ND
Bromodichloromethane	NS	mg/kg	ND	ND	ND	ND
Bromoform	NS	mg/kg	ND	ND	ND	ND
Bromomethane	NS	mg/kg	ND	ND	ND	ND
Carbon disulfide	NS	mg/kg	ND	ND	ND	ND
Carbon tetrachloride	2.4	mg/kg	ND	ND	ND	ND
Chlorobenzene	100	mg/kg	ND	ND	ND	ND
Chloroethane	NS	mg/kg	ND	ND	ND	ND
Chloroform	49	mg/kg	ND	ND	ND	ND
Chloromethane	NS	mg/kg	ND	ND	ND	ND
cis-1,2-Dichloroethene	100	mg/kg	ND	ND	ND	ND
cis-1,3-Dichloropropene	NS	mg/kg	ND	ND	ND	ND
Dibromochloromethane	NS	mg/kg	ND	ND	ND	ND
Dibromomethane	NS	mg/kg	ND	ND	ND	ND
Dichlorodifluoromethane	NS	mg/kg	ND	ND	ND	ND
Ethyl ether	NS	mg/kg	ND	ND	ND	ND
Ethylbenzene	41	mg/kg	ND	0.00048 J	ND	ND
Hexachlorobutadiene	NS	mg/kg	ND	ND	ND	ND
Isopropylbenzene	NS	mg/kg	ND	0.0012 J	0.0016 J	ND
Methyl tert butyl ether	100	mg/kg	0.00068 J	ND	ND	ND
Methylene chloride	100	mg/kg	ND	ND	ND	ND
n-Butylbenzene	100	mg/kg	ND	ND	ND	ND
n-Propylbenzene	100	mg/kg	ND	ND	ND	ND

CLIENT SAMPLE ID			TP2-EP-1	TP2-EP-8	TP2-EP-2	TP2-EP-15	
SAMPLING DATE	MW DECDE!	#T *·	19-FEB-19	19-FEB-19	19-FEB-19	19-FEB-19	
LAB SAMPLE ID	NY-RESRR*	Units	L1906538-01	L1906538-02	L1906538-03	L1906538-04	
			Qual	Qual	Qual	Qual	
Naphthalene	100	mg/kg	0.0013 J	0.06	0.0029 J	ND	
o-Chlorotoluene	NS	mg/kg	ND	ND	ND	ND	
o-Xylene	NS	mg/kg	ND	0.00076 J	0.002	ND	
p-Chlorotoluene	NS	mg/kg	ND	ND	ND	ND	
p-Diethylbenzene	NS	mg/kg	ND	ND	ND	ND	
p-Ethyltoluene	NS	mg/kg	ND	ND	ND	ND	
p-Isopropyltoluene	NS	mg/kg	0.0023	0.015	0.0047	0.0005 J	
p/m-Xylene	NS	mg/kg	ND	ND	ND	ND	
sec-Butylbenzene	100	mg/kg	ND	ND	ND	ND	
Styrene	NS	mg/kg	ND	ND	ND	ND	
tert-Butylbenzene	100	mg/kg	ND	ND	ND	ND	
Tetrachloroethene	19	mg/kg	ND	ND	ND	ND	
Toluene	100	mg/kg	ND	ND	ND	ND	
trans-1,2-Dichloroethene	100	mg/kg	ND	ND	ND	ND	
trans-1,3-Dichloropropene	NS	mg/kg	ND	ND	ND	ND	
trans-1,4-Dichloro-2-butene	NS	mg/kg	ND	ND	ND	ND	
Trichloroethene	21	mg/kg	ND	ND	ND	ND	
Trichlorofluoromethane	NS	mg/kg	ND	ND	ND	ND	
Vinyl acetate	NS	mg/kg	ND	ND	ND	ND	
Vinyl chloride	0.9	mg/kg	ND	ND	ND	ND	
Xylenes, Total	100	mg/kg	ND	0.00076 J	0.002	ND	
Semivolatile Organic Compounds							
1,2,4,5-Tetrachlorobenzene	NS	mg/kg	ND	ND	ND	ND	
1,2,4-Trichlorobenzene	NS	mg/kg	ND	ND	ND	ND	
1,2-Dichlorobenzene	100	mg/kg	ND	ND	ND	ND	
1,3-Dichlorobenzene	49	mg/kg	ND	ND	ND	ND	
1,4-Dichlorobenzene	13	mg/kg	ND	ND	ND	ND	
2,4,5-Trichlorophenol	NS	mg/kg	ND	ND	ND	ND	
2,4,6-Trichlorophenol	NS	mg/kg	ND	ND	ND	ND	
2,4-Dichlorophenol	NS	mg/kg	ND	ND	ND	ND	
2,4-Dimethylphenol	NS	mg/kg	ND	ND	ND	ND	
2,4-Dinitrophenol	NS	mg/kg	ND	ND	ND	ND	
2,4-Dinitrotoluene	NS	mg/kg	ND	ND	ND	ND	
2,6-Dinitrotoluene	NS	mg/kg	ND	ND	ND	ND	
2-Chloronaphthalene	NS	mg/kg	ND	ND	ND	ND	
2-Chlorophenol	NS	mg/kg	ND	ND	ND	ND	
2-Methylnaphthalene	NS	mg/kg	ND	0.24 J	0.12 J	ND	
2-Methylphenol	100	mg/kg	ND	ND	ND	ND	
2-Nitroaniline	NS	mg/kg	ND	ND	ND	ND	
2-Nitrophenol	NS	mg/kg	ND	ND	ND	ND	
3,3'-Dichlorobenzidine	NS	mg/kg	ND	ND	ND	ND	

CLIENT SAMPLE ID			TP2-E	P-1	TP2-I	EP-8	TP2-F	P-2	TP2-EP-15
SAMPLING DATE			19-FEB		19-FE		19-FE		19-FEB-19
LAB SAMPLE ID	MY-RESRR*	Units	L190653		L19065		L19065		L1906538-04
			217 0000	Qual	215 000	Qual	217000	Qual	Qua
3-Methylphenol/4-Methylphenol	100	mg/kg	ND		0.044	J	0.055	J	ND
3-Nitroaniline	NS	mg/kg	ND		ND		ND		ND
4,6-Dinitro-o-cresol	NS	mg/kg	ND		ND		ND		ND
4-Bromophenyl phenyl ether	NS	mg/kg	ND		ND		ND		ND
4-Chloroaniline	NS	mg/kg	ND		ND		ND		ND
4-Chlorophenyl phenyl ether	NS	mg/kg	ND		ND		ND		ND
4-Nitroaniline	NS	mg/kg	ND		ND		ND		ND
4-Nitrophenol	NS	mg/kg	ND		ND		ND		ND
Acenaphthene	100	mg/kg	0.028	J	0.13	J	0.074	J	ND
Acenaphthylene	100	mg/kg	ND		ND		ND		ND
Acetophenone	NS	mg/kg	ND		ND		ND		ND
Anthracene	100	mg/kg	0.055	J	0.087	J	0.073	J	ND
Benzo(a)anthracene	1	mg/kg	0.065	J	0.049	J	0.036	J	ND
Benzo(a)pyrene	1	mg/kg	ND		ND		ND		ND
Benzo(b)fluoranthene	1	mg/kg	ND		ND		ND		ND
Benzo(ghi)perylene	100	mg/kg	ND		ND		ND		ND
Benzo(k)fluoranthene	3.9	mg/kg	ND		ND		ND		ND
Benzoic Acid	NS	mg/kg	ND		ND		ND		ND
Benzyl Alcohol	NS	mg/kg	ND		ND		ND		ND
Biphenyl	NS	mg/kg	ND		ND		ND		ND
Bis(2-chloroethoxy)methane	NS	mg/kg	ND		ND		ND		ND
Bis(2-chloroethyl)ether	NS	mg/kg	ND		ND		ND		ND
Bis(2-chloroisopropyl)ether	NS	mg/kg	ND		ND		ND		ND
Bis(2-ethylhexyl)phthalate	NS	mg/kg	ND		ND		ND		ND
Butyl benzyl phthalate	NS	mg/kg	ND		ND		ND		ND
Carbazole	NS	mg/kg	ND		0.03	J	ND		ND
Chrysene	3.9	mg/kg	0.078	J	0.051	J	0.036	J	ND
Di-n-butylphthalate	NS	mg/kg	ND		ND		ND		ND
Di-n-octylphthalate	NS	mg/kg	ND		ND		ND		ND
Dibenzo(a,h)anthracene	0.33	mg/kg	ND		ND		ND		ND
Dibenzofuran	59	mg/kg	ND		ND		0.026	J	ND
Diethyl phthalate	NS	mg/kg	ND		ND		ND		ND
Dimethyl phthalate	NS	mg/kg	ND		ND		ND		ND
Fluoranthene	100	mg/kg	0.096	J	0.097	J	0.081	J	ND
Fluorene	100	mg/kg	ND		0.084	J	0.071	J	ND
Hexachlorobenzene	1.2	mg/kg	ND		ND		ND		ND
Hexachlorobutadiene	NS	mg/kg	ND		ND		ND		ND
Hexachlorocyclopentadiene	NS	mg/kg	ND		ND		ND		ND
Hexachloroethane	NS	mg/kg	ND		ND		ND		ND
Indeno(1,2,3-cd)pyrene	0.5	mg/kg	ND		ND		ND		ND
Isophorone	NS	mg/kg	ND		ND		ND		ND

CLIENT SAMPLE ID			TP2-E	CP-1	TP2-	EP-8	TP2-I	TP2-EP-2		P-15
SAMPLING DATE	NY-RESRR*	V DECDDA II '		B-19	19-FE	B-19	19-FEB-19		19-FEB-19	
LAB SAMPLE ID	N1-KESKK"	Units	L19065	38-01	L19065	538-02	L19065	38-03	L19065	38-04
				Qual		Qual		Qual		Qual
n-Nitrosodi-n-propylamine	NS	mg/kg	ND		ND		ND		ND	
Naphthalene	100	mg/kg	0.039	J	0.66		0.19	J	0.035	J
NDPA/DPA	NS	mg/kg	ND		ND		ND		ND	
Nitrobenzene	NS	mg/kg	ND		ND		ND		ND	
p-Chloro-m-cresol	NS	mg/kg	ND		ND		ND		ND	
Pentachlorophenol	6.7	mg/kg	ND		ND		ND		ND	
Phenanthrene	100	mg/kg	0.1	J	0.63		0.4		0.045	J
Phenol	100	mg/kg	ND		ND		ND		ND	
Pyrene	100	mg/kg	0.12	J	0.12	J	0.094	J	0.027	J

Notes:

Bold and shaded yellow value indicates concentration exceeds 6 NYCRR Part 375 Restricted Restricted-Residential SCOs

J = Estimated value

ND = Not detected

NS = No standard

* = 6 NYCRR Part 375 Restricted Restricted-Residential Soil

Cleanup Objectives

CLIENT SAMPLE ID			ТР2-ЕР	-24	TR2-E	P-9	TR2-F	:P-3	TR2-E	P-4
SAMPLING DATE	 		19-FEB		22-FEI		22-FE		08-MA	
LAB SAMPLE ID	NY-RESRR*	Units	L190653		L190718		L19071		L19091'	
			2170000	Qual	Elyuni	Qual	217071	Qual	217071	Qual
General Chemistry			<u> </u>	C		C		Ç		C
Solids, Total	NS	%	61.1		63.3		66.9		70	
Total Metals										
Aluminum, Total	NS	mg/kg	13400		11400		9290		7290	
Antimony, Total	NS	mg/kg	ND		1.07	J	0.614	J	0.998	J
Arsenic, Total	16	mg/kg	10.8		7.13		5.25		7.49	
Barium, Total	400	mg/kg	34.2		29.7		21		16.1	
Beryllium, Total	72	mg/kg	0.644		0.63		0.487	J	0.377	J
Cadmium, Total	4.3	mg/kg	0.541	J	ND		ND		ND	
Calcium, Total	NS	mg/kg	3650		2800		2710		15000	
Chromium, Total	NS	mg/kg	24.5		21.1		18.2		23.8	
Cobalt, Total	NS	mg/kg	10.8		9.56		8.12		7.9	
Copper, Total	270	mg/kg	23		21.3		13.5		10.8	
Iron, Total	NS	mg/kg	33600		26100		21300		20400	
Lead, Total	400	mg/kg	36.9		26.8		10.9		9.56	
Magnesium, Total	NS	mg/kg	6410		5240		4650		4320	
Manganese, Total	2000	mg/kg	1320		858		574		591	
Mercury, Total	0.81	mg/kg	0.4		0.147		0.055	J	0.071	J
Nickel, Total	310	mg/kg	22.3		21.2		17.3		17.3	
Potassium, Total	NS	mg/kg	2330		2050		1880		1570	
Selenium, Total	180	mg/kg	1	J	1.48	J	0.892	J	1.25	J
Silver, Total	180	mg/kg	ND		ND		ND		ND	
Sodium, Total	NS	mg/kg	3460		3560		3350		3140	
Thallium, Total	NS	mg/kg	1.54	J	ND		ND		ND	
Vanadium, Total	NS	mg/kg	35.2		29.5		22.9		20.6	
Zinc, Total	10000	mg/kg	70.1		64.6		52.4		46.6	
Volatile Organic Compounds										
1,1,1,2-Tetrachloroethane	NS	mg/kg	ND		ND		ND		ND	
1,1,1-Trichloroethane	100	mg/kg	ND		ND		ND		ND	
1,1,2,2-Tetrachloroethane	NS	mg/kg	ND		ND		ND		ND	
1,1,2-Trichloroethane	NS	mg/kg	ND		ND		ND		ND	
1,1-Dichloroethane	26	mg/kg	ND		ND		ND		ND	
1,1-Dichloroethene	100	mg/kg	ND		ND		ND		ND	
1,1-Dichloropropene	NS	mg/kg	ND		ND		ND		ND	
1,2,3-Trichlorobenzene	NS	mg/kg	ND		ND		ND		ND	
1,2,3-Trichloropropane	NS	mg/kg	ND		ND		ND		ND	
1,2,4,5-Tetramethylbenzene	NS	mg/kg	ND		0.00036	J	ND		ND	
1,2,4-Trichlorobenzene	NS	mg/kg	ND		ND		ND		ND	
1,2,4-Trimethylbenzene	52	mg/kg	0.00073	J	0.0017	J	0.0011	J	ND	
1,2-Dibromo-3-chloropropane	NS	mg/kg	ND		ND		ND		ND	
1,2-Dibromoethane	NS	mg/kg	ND		ND		ND		ND	

CLIENT SAMPLE ID			TP2-EP-24	TR2-EP-9	TR2-EP-3	TR2-EP-4
SAMPLING DATE			19-FEB-19	22-FEB-19	22-FEB-19	08-MAR-19
LAB SAMPLE ID	NY-RESRR*	Units	L1906538-05	L1907185-01	L1907185-02	L1909179-01
			Qual	Qual	Qual	Qual
1,2-Dichlorobenzene	100	mg/kg	ND	ND	ND	ND
1,2-Dichloroethane	3.1	mg/kg	ND	ND	ND	ND
1,2-Dichloroethene, Total	NS	mg/kg	ND	ND	ND	ND
1,2-Dichloropropane	NS	mg/kg	ND	ND	ND	ND
1,3,5-Trimethylbenzene	52	mg/kg	ND	0.0006 J	0.00034 J	ND
1,3-Dichlorobenzene	49	mg/kg	ND	ND	ND	ND
1,3-Dichloropropane	NS	mg/kg	ND	ND	ND	ND
1,3-Dichloropropene, Total	NS	mg/kg	ND	ND	ND	ND
1,4-Dichlorobenzene	13	mg/kg	ND	ND	ND	ND
1,4-Dioxane	13	mg/kg	ND	ND	ND	ND
2,2-Dichloropropane	NS	mg/kg	ND	ND	ND	ND
2-Butanone	100	mg/kg	0.011 J	0.0048 J	0.0093 J	0.0081 J
2-Hexanone	NS	mg/kg	ND	ND	ND	ND
4-Methyl-2-pentanone	NS	mg/kg	ND	ND	ND	ND
Acetone	100	mg/kg	0.047	0.023	0.082	0.045
Acrylonitrile	NS	mg/kg	ND	ND	ND	ND
Benzene	4.8	mg/kg	ND	ND	ND	ND
Bromobenzene	NS	mg/kg	ND	ND	ND	ND
Bromochloromethane	NS	mg/kg	ND	ND	ND	ND
Bromodichloromethane	NS	mg/kg	ND	ND	ND	ND
Bromoform	NS	mg/kg	ND	ND	ND	ND
Bromomethane	NS	mg/kg	ND	ND	ND	ND
Carbon disulfide	NS	mg/kg	ND	ND	ND	ND
Carbon tetrachloride	2.4	mg/kg	ND	ND	ND	ND
Chlorobenzene	100	mg/kg	ND	ND	ND	ND
Chloroethane	NS	mg/kg	ND	ND	ND	ND
Chloroform	49	mg/kg	ND	ND	ND	ND
Chloromethane	NS	mg/kg	ND	ND	ND	ND
cis-1,2-Dichloroethene	100	mg/kg	ND	ND	ND	ND
cis-1,3-Dichloropropene	NS	mg/kg	ND	ND	ND	ND
Dibromochloromethane	NS	mg/kg	ND	ND	ND	ND
Dibromomethane	NS	mg/kg	ND	ND	ND	ND
Dichlorodifluoromethane	NS	mg/kg	ND	ND	ND	ND
Ethyl ether	NS	mg/kg	ND	ND	ND	ND
Ethylbenzene	41	mg/kg	ND	0.00028 J	ND	ND
Hexachlorobutadiene	NS	mg/kg	ND	ND	ND	ND
Isopropylbenzene	NS	mg/kg	0.0006 J	0.00074 J	0.00037 J	0.00027 J
Methyl tert butyl ether	100	mg/kg	ND	ND	ND	ND
Methylene chloride	100	mg/kg	ND	ND	ND	ND
n-Butylbenzene	100	mg/kg	ND	ND	ND	ND
n-Propylbenzene	100	mg/kg	ND	ND	ND	ND

CLIENT SAMPLE ID			TP2-EP-24	TR2-EP-9	TR2-EP-3	TR2-EP-4
SAMPLING DATE	NIV BEGBE	TT *-	19-FEB-19	22-FEB-19	22-FEB-19	08-MAR-19
LAB SAMPLE ID	NY-RESRR*	Units	L1906538-05	L1907185-01	L1907185-02	L1909179-01
			Qual	Qual	Qual	Qual
Naphthalene	100	mg/kg	0.0085	0.024	0.0018 J	0.0023 J
o-Chlorotoluene	NS	mg/kg	ND	ND	ND	ND
o-Xylene	NS	mg/kg	0.0007 J	0.00088 J	0.00049 J	ND
p-Chlorotoluene	NS	mg/kg	ND	ND	ND	ND
p-Diethylbenzene	NS	mg/kg	ND	ND	0.00046 J	ND
p-Ethyltoluene	NS	mg/kg	ND	ND	0.00066 J	ND
p-Isopropyltoluene	NS	mg/kg	0.0061	0.005	0.00055 J	ND
p/m-Xylene	NS	mg/kg	ND	ND	ND	ND
sec-Butylbenzene	100	mg/kg	ND	ND	ND	ND
Styrene	NS	mg/kg	ND	ND	ND	ND
tert-Butylbenzene	100	mg/kg	ND	ND	ND	ND
Tetrachloroethene	19	mg/kg	ND	ND	ND	ND
Toluene	100	mg/kg	ND	ND	ND	ND
trans-1,2-Dichloroethene	100	mg/kg	ND	ND	ND	ND
trans-1,3-Dichloropropene	NS	mg/kg	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene	NS	mg/kg	ND	ND	ND	ND
Trichloroethene	21	mg/kg	ND	ND	ND	ND
Trichlorofluoromethane	NS	mg/kg	ND	ND	ND	ND
Vinyl acetate	NS	mg/kg	ND	ND	ND	ND
Vinyl chloride	0.9	mg/kg	ND	ND	ND	ND
Xylenes, Total	100	mg/kg	0.0007 J	0.00088 J	0.00049 J	ND
Semivolatile Organic Compounds	8					
1,2,4,5-Tetrachlorobenzene	NS	mg/kg	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NS	mg/kg	ND	ND	ND	ND
1,2-Dichlorobenzene	100	mg/kg	ND	ND	ND	ND
1,3-Dichlorobenzene	49	mg/kg	ND	ND	ND	ND
1,4-Dichlorobenzene	13	mg/kg	ND	ND	ND	ND
2,4,5-Trichlorophenol	NS	mg/kg	ND	ND	ND	ND
2,4,6-Trichlorophenol	NS	mg/kg	ND	ND	ND	ND
2,4-Dichlorophenol	NS	mg/kg	ND	ND	ND	ND
2,4-Dimethylphenol	NS	mg/kg	ND	ND	ND	ND
2,4-Dinitrophenol	NS	mg/kg	ND	ND	ND	ND
2,4-Dinitrotoluene	NS	mg/kg	ND	ND	ND	ND
2,6-Dinitrotoluene	NS	mg/kg	ND	ND	ND	ND
2-Chloronaphthalene	NS	mg/kg	ND	ND	ND	ND
2-Chlorophenol	NS	mg/kg	ND	ND	ND	ND
2-Methylnaphthalene	NS	mg/kg	0.19 J	0.15 J	ND	0.033 J
2-Methylphenol	100	mg/kg	ND	ND	ND	ND
2-Nitroaniline	NS	mg/kg	ND	ND	ND	ND
2-Nitrophenol	NS	mg/kg	ND	ND	ND	ND
3,3'-Dichlorobenzidine	NS	mg/kg	ND	ND	ND	ND

CLIENT SAMPLE ID			TP2-EI	P-24	TR2-I	EP-9	TR2-EP	-3	TR2-E	EP-4
SAMPLING DATE	-		19-FEF		22-FE		22-FEB-		08-MA	
LAB SAMPLE ID		Units	L190653		L19071		L1907185	_	L19091'	
			2170000	Qual	217071	Qual		Qual	217071	Qual
3-Methylphenol/4-Methylphenol	100	mg/kg	0.072	J	0.074	J	ND	C	ND	
3-Nitroaniline	NS	mg/kg	ND		ND		ND		ND	
4,6-Dinitro-o-cresol	NS	mg/kg	ND		ND		ND		ND	
4-Bromophenyl phenyl ether	NS	mg/kg	ND		ND		ND		ND	
4-Chloroaniline	NS	mg/kg	ND		ND		ND		ND	
4-Chlorophenyl phenyl ether	NS	mg/kg	ND		ND		ND		ND	
4-Nitroaniline	NS	mg/kg	ND		ND		ND		ND	
4-Nitrophenol	NS	mg/kg	ND		ND		ND		ND	
Acenaphthene	100	mg/kg	0.15	J	0.1	J	ND		ND	
Acenaphthylene	100	mg/kg	ND		ND		ND		ND	
Acetophenone	NS	mg/kg	ND		ND		ND		ND	
Anthracene	100	mg/kg	0.12	J	0.1	J	ND		ND	
Benzo(a)anthracene	1	mg/kg	0.047	J	0.055	J	ND		ND	
Benzo(a)pyrene	1	mg/kg	ND		ND		ND		ND	
Benzo(b)fluoranthene	1	mg/kg	ND		ND		ND		ND	
Benzo(ghi)perylene	100	mg/kg	ND		ND		ND		ND	
Benzo(k)fluoranthene	3.9	mg/kg	ND		ND		ND		ND	
Benzoic Acid	NS	mg/kg	ND		ND		ND		ND	
Benzyl Alcohol	NS	mg/kg	ND		ND		ND		ND	
Biphenyl	NS	mg/kg	ND		ND		ND		ND	
Bis(2-chloroethoxy)methane	NS	mg/kg	ND		ND		ND		ND	
Bis(2-chloroethyl)ether	NS	mg/kg	ND		ND		ND		ND	
Bis(2-chloroisopropyl)ether	NS	mg/kg	ND		ND		ND		ND	
Bis(2-ethylhexyl)phthalate	NS	mg/kg	0.12	J	ND		ND		ND	
Butyl benzyl phthalate	NS	mg/kg	ND		ND		ND		ND	
Carbazole	NS	mg/kg	ND		ND		ND		ND	
Chrysene	3.9	mg/kg	0.052	J	0.066	J	ND		ND	
Di-n-butylphthalate	NS	mg/kg	ND		ND		ND		ND	
Di-n-octylphthalate	NS	mg/kg	ND		ND		ND		ND	
Dibenzo(a,h)anthracene	0.33	mg/kg	ND		ND		ND		ND	
Dibenzofuran	59	mg/kg	0.047	J	0.025	J	ND		ND	
Diethyl phthalate	NS	mg/kg	ND		ND		ND		ND	
Dimethyl phthalate	NS	mg/kg	ND		ND		ND		ND	
Fluoranthene	100	mg/kg	0.12	J	0.11	J	ND		ND	
Fluorene	100	mg/kg	0.16	J	0.07	J	ND		ND	
Hexachlorobenzene	1.2	mg/kg	ND		ND		ND		ND	
Hexachlorobutadiene	NS	mg/kg	ND		ND		ND		ND	
Hexachlorocyclopentadiene	NS	mg/kg	ND		ND		ND		ND	
Hexachloroethane	NS	mg/kg	ND		ND		ND		ND	
Indeno(1,2,3-cd)pyrene	0.5	mg/kg	ND		ND		ND		ND	
Isophorone	NS	mg/kg	ND		ND		ND		ND	

CLIENT SAMPLE ID			TP2-EP-24	TR2-EP-9	TR2-EP-3	TR2-EP-4
SAMPLING DATE	NY-RESRR*	Units	19-FEB-19	22-FEB-19	22-FEB-19	08-MAR-19
LAB SAMPLE ID	NY-KESKK"	Units	L1906538-05	L1907185-01	L1907185-02	L1909179-01
			Qual	Qual	Qual	Qual
n-Nitrosodi-n-propylamine	NS	mg/kg	ND	ND	ND	ND
Naphthalene	100	mg/kg	0.46	0.56	ND	0.072 J
NDPA/DPA	NS	mg/kg	ND	ND	ND	ND
Nitrobenzene	NS	mg/kg	ND	ND	ND	ND
p-Chloro-m-cresol	NS	mg/kg	ND	ND	ND	ND
Pentachlorophenol	6.7	mg/kg	ND	ND	ND	ND
Phenanthrene	100	mg/kg	0.73	0.49	ND	0.13 J
Phenol	100	mg/kg	ND	ND	ND	ND
Pyrene	100	mg/kg	0.16	0.14 J	ND	ND

Notes:

Bold and shaded yellow value indicates concentration exceeds 6 NYCRR Part 375 Restricted Restricted-Residential SCOs

J = Estimated value

ND = Not detected

NS = No standard

* = 6 NYCRR Part 375 Restricted Restricted-Residential Soil

Cleanup Objectives

CLIENT SAMPLE ID			TR2-EP	-11	TR2-E	P-17	TR2-E	P-10	TR2-E	P-18
SAMPLING DATE	NW DECDD#	TT */	08-MAR	2-19	08-MA	R-19	14-MA	R-19	18-MA	R-19
LAB SAMPLE ID	NY-RESRR*	Units	L1909179	9-02	L19091	79-03	L19100	90-01	L19107	56-01
				Qual		Qual		Qual		Qual
General Chemistry										
Solids, Total	NS	%	70.1		75.5		68.2		67.4	
Total Metals										
Aluminum, Total	NS	mg/kg	8350		5980		9810		10600	
Antimony, Total	NS	mg/kg	1.15	J	0.907	J	1.04	J	0.685	J
Arsenic, Total	16	mg/kg	11.8		3.45		6.32		7.91	
Barium, Total	400	mg/kg	16		34.9		21.8		19.3	
Beryllium, Total	72	mg/kg	0.453	J	0.214	J	0.541	J	0.502	J
Cadmium, Total	4.3	mg/kg	ND		ND		0.472	J	ND	
Calcium, Total	NS	mg/kg	15400		3300		3780		4970	
Chromium, Total	NS	mg/kg	19.6		12.4		17.2		19.6	
Cobalt, Total	NS	mg/kg	8.27		5.68		8.36		9.13	
Copper, Total	270	mg/kg	11.3		23.2		12.2		13	
Iron, Total	NS	mg/kg	24000		15000		21100		25000	
Lead, Total	400	mg/kg	9.11		107		10.5		9.75	
Magnesium, Total	NS	mg/kg	5470		3290		4910		5550	
Manganese, Total	2000	mg/kg	602		457		440		619	
Mercury, Total	0.81	mg/kg	ND		ND		ND		ND	
Nickel, Total	310	mg/kg	16.9		12.6		18.4		17.8	
Potassium, Total	NS	mg/kg	1940		530		2020		2240	
Selenium, Total	180	mg/kg	1.29	J	0.703	J	ND		0.308	J
Silver, Total	180	mg/kg	ND		ND		ND		ND	
Sodium, Total	NS	mg/kg	3920		574		3640		4240	
Thallium, Total	NS	mg/kg	0.409	J	ND		ND		ND	
Vanadium, Total	NS	mg/kg	26.4		11.5		23.6		24	
Zinc, Total	10000	mg/kg	50.8		52.9		51.4		54.7	
Volatile Organic Compounds										
1,1,1,2-Tetrachloroethane	NS	mg/kg	ND		ND		ND		ND	
1,1,1-Trichloroethane	100	mg/kg	ND		ND		ND		ND	
1,1,2,2-Tetrachloroethane	NS	mg/kg	ND		ND		ND		ND	
1,1,2-Trichloroethane	NS	mg/kg	ND		ND		ND		ND	
1,1-Dichloroethane	26	mg/kg	ND		ND		ND		ND	
1,1-Dichloroethene	100	mg/kg	ND		ND		ND		ND	
1,1-Dichloropropene	NS	mg/kg	ND		ND		ND		ND	
1,2,3-Trichlorobenzene	NS	mg/kg	ND		ND		ND		ND	
1,2,3-Trichloropropane	NS	mg/kg	ND		ND		ND		ND	
1,2,4,5-Tetramethylbenzene	NS	mg/kg	ND		ND		0.00087	J	ND	
1,2,4-Trichlorobenzene	NS	mg/kg	ND		ND		ND		ND	
1,2,4-Trimethylbenzene	52	mg/kg	0.00055	J	ND		0.0033	J	ND	
1,2-Dibromo-3-chloropropane	NS	mg/kg	ND		ND		ND		ND	
1,2-Dibromoethane	NS	mg/kg	ND		ND		ND		ND	

CLIENT SAMPLE ID			TR2-EP-11	TR2-EP-17	TR2-EP-10	TR2-EP-18
SAMPLING DATE	_		08-MAR-19	08-MAR-19	14-MAR-19	18-MAR-19
LAB SAMPLE ID	MY-RESRR*	Units	L1909179-02	L1909179-03	L1910090-01	L1910756-01
			Qual	Qual	Qual	Qual
1,2-Dichlorobenzene	100	mg/kg	ND	ND	ND	ND
1,2-Dichloroethane	3.1	mg/kg	ND	ND	ND	ND
1,2-Dichloroethene, Total	NS	mg/kg	ND	ND	ND	ND
1,2-Dichloropropane	NS	mg/kg	ND	ND	ND	ND
1,3,5-Trimethylbenzene	52	mg/kg	ND	ND	ND	ND
1,3-Dichlorobenzene	49	mg/kg	ND	ND	ND	ND
1,3-Dichloropropane	NS	mg/kg	ND	ND	ND	ND
1,3-Dichloropropene, Total	NS	mg/kg	ND	ND	ND	ND
1,4-Dichlorobenzene	13	mg/kg	ND	ND	ND	ND
1,4-Dioxane	13	mg/kg	ND	ND	ND	ND
2,2-Dichloropropane	NS	mg/kg	ND	ND	ND	ND
2-Butanone	100	mg/kg	ND	0.034	0.017 J	ND
2-Hexanone	NS	mg/kg	ND	ND	ND	ND
4-Methyl-2-pentanone	NS	mg/kg	ND	ND	ND	ND
Acetone	100	mg/kg	0.052	0.13	0.091	0.55 J
Acrylonitrile	NS	mg/kg	ND	ND	ND	ND
Benzene	4.8	mg/kg	ND	0.00038 J	ND	ND
Bromobenzene	NS	mg/kg	ND	ND	ND	ND
Bromochloromethane	NS	mg/kg	ND	ND	ND	ND
Bromodichloromethane	NS	mg/kg	ND	ND	ND	ND
Bromoform	NS	mg/kg	ND	ND	ND	ND
Bromomethane	NS	mg/kg	ND	ND	ND	ND
Carbon disulfide	NS	mg/kg	ND	ND	ND	ND
Carbon tetrachloride	2.4	mg/kg	ND	ND	ND	ND
Chlorobenzene	100	mg/kg	ND	ND	ND	ND
Chloroethane	NS	mg/kg	ND	ND	ND	ND
Chloroform	49	mg/kg	ND	ND	ND	ND
Chloromethane	NS	mg/kg	ND	ND	ND	ND
cis-1,2-Dichloroethene	100	mg/kg	ND	ND	ND	ND
cis-1,3-Dichloropropene	NS	mg/kg	ND	ND	ND	ND
Dibromochloromethane	NS	mg/kg	ND	ND	ND	ND
Dibromomethane	NS	mg/kg	ND	ND	ND	ND
Dichlorodifluoromethane	NS	mg/kg	ND	ND	ND	ND
Ethyl ether	NS	mg/kg	ND	ND	ND	ND
Ethylbenzene	41	mg/kg	ND	ND	0.00089 J	ND
Hexachlorobutadiene	NS	mg/kg	ND	ND	ND	ND
Isopropylbenzene	NS	mg/kg	0.00058 J	ND	0.0053	0.024 J
Methyl tert butyl ether	100	mg/kg	ND	0.0014 J	ND	ND
Methylene chloride	100	mg/kg	ND	ND	ND	ND
n-Butylbenzene	100	mg/kg	ND	ND	ND	ND
n-Propylbenzene	100	mg/kg	ND	ND	ND	ND

CLIENT SAMPLE ID			TR2-EP-11	TR2-EP-17	TR2-EP-10	TR2-EP-18
SAMPLING DATE	NV DECDD*	TI24-0	08-MAR-19	08-MAR-19	14-MAR-19	18-MAR-19
LAB SAMPLE ID	NY-RESRR*	Units	L1909179-02	L1909179-03	L1910090-01	L1910756-01
			Qual	Qual	Qual	Qual
Naphthalene	100	mg/kg	0.0026 J	ND	0.023	0.52
o-Chlorotoluene	NS	mg/kg	ND	ND	ND	ND
o-Xylene	NS	mg/kg	0.00059 J	ND	0.0041	ND
p-Chlorotoluene	NS	mg/kg	ND	ND	ND	ND
p-Diethylbenzene	NS	mg/kg	ND	ND	0.00069 J	0.044 J
p-Ethyltoluene	NS	mg/kg	ND	ND	0.0013 J	ND
p-Isopropyltoluene	NS	mg/kg	ND	ND	0.00065 J	0.021 J
p/m-Xylene	NS	mg/kg	ND	ND	ND	ND
sec-Butylbenzene	100	mg/kg	ND	ND	ND	ND
Styrene	NS	mg/kg	ND	ND	ND	ND
tert-Butylbenzene	100	mg/kg	ND	ND	ND	ND
Tetrachloroethene	19	mg/kg	ND	ND	ND	ND
Toluene	100	mg/kg	ND	0.0024	ND	ND
trans-1,2-Dichloroethene	100	mg/kg	ND	ND	ND	ND
trans-1,3-Dichloropropene	NS	mg/kg	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene	NS	mg/kg	ND	ND	ND	ND
Trichloroethene	21	mg/kg	ND	ND	ND	ND
Trichlorofluoromethane	NS	mg/kg	ND	ND	ND	ND
Vinyl acetate	NS	mg/kg	ND	ND	ND	ND
Vinyl chloride	0.9	mg/kg	ND	ND	ND	ND
Xylenes, Total	100	mg/kg	0.00059 J	ND	0.0041	ND
Semivolatile Organic Compounds	S					
1,2,4,5-Tetrachlorobenzene	NS	mg/kg	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NS	mg/kg	ND	ND	ND	ND
1,2-Dichlorobenzene	100	mg/kg	ND	ND	ND	ND
1,3-Dichlorobenzene	49	mg/kg	ND	ND	ND	ND
1,4-Dichlorobenzene	13	mg/kg	ND	ND	ND	ND
2,4,5-Trichlorophenol	NS	mg/kg	ND	ND	ND	ND
2,4,6-Trichlorophenol	NS	mg/kg	ND	ND	ND	ND
2,4-Dichlorophenol	NS	mg/kg	ND	ND	ND	ND
2,4-Dimethylphenol	NS	mg/kg	ND	ND	ND	ND
2,4-Dinitrophenol	NS	mg/kg	ND	ND	ND	ND
2,4-Dinitrotoluene	NS	mg/kg	ND	ND	ND	ND
2,6-Dinitrotoluene	NS	mg/kg	ND	ND	ND	ND
2-Chloronaphthalene	NS	mg/kg	ND	ND	ND	ND
2-Chlorophenol	NS	mg/kg	ND	ND	ND	ND
2-Methylnaphthalene	NS	mg/kg	ND	ND	ND	ND
2-Methylphenol	100	mg/kg	ND	ND	ND	ND
2-Nitroaniline	NS	mg/kg	ND	ND	ND	ND
2-Nitrophenol	NS	mg/kg	ND	ND	ND	ND
3,3'-Dichlorobenzidine	NS	mg/kg	ND	ND	ND	ND

CLIENT SAMPLE ID			TR2-EP-11	TR2-EP-17	TR2-EP-10	TR2-EP-18
SAMPLING DATE			08-MAR-19	08-MAR-19	14-MAR-19	18-MAR-19
LAB SAMPLE ID		Units	L1909179-02	L1909179-03	L1910090-01	L1910756-01
			Qual	Qual	Qual	Qual
3-Methylphenol/4-Methylphenol	100	mg/kg	ND	0.37	ND	ND
3-Nitroaniline	NS	mg/kg	ND	ND	ND	ND
4,6-Dinitro-o-cresol	NS	mg/kg	ND	ND	ND	ND
4-Bromophenyl phenyl ether	NS	mg/kg	ND	ND	ND	ND
4-Chloroaniline	NS	mg/kg	ND	ND	ND	ND
4-Chlorophenyl phenyl ether	NS	mg/kg	ND	ND	ND	ND
4-Nitroaniline	NS	mg/kg	ND	ND	ND	ND
4-Nitrophenol	NS	mg/kg	ND	ND	ND	ND
Acenaphthene	100	mg/kg	ND	ND	ND	ND
Acenaphthylene	100	mg/kg	ND	ND	ND	ND
Acetophenone	NS	mg/kg	ND	ND	ND	ND
Anthracene	100	mg/kg	ND	ND	ND	ND
Benzo(a)anthracene	1	mg/kg	ND	ND	ND	ND
Benzo(a)pyrene	1	mg/kg	ND	ND	ND	ND
Benzo(b)fluoranthene	1	mg/kg	ND	ND	ND	ND
Benzo(ghi)perylene	100	mg/kg	ND	ND	ND	ND
Benzo(k)fluoranthene	3.9	mg/kg	ND	ND	ND	ND
Benzoic Acid	NS	mg/kg	ND	ND	ND	ND
Benzyl Alcohol	NS	mg/kg	ND	ND	ND	ND
Biphenyl	NS	mg/kg	ND	ND	ND	ND
Bis(2-chloroethoxy)methane	NS	mg/kg	ND	ND	ND	ND
Bis(2-chloroethyl)ether	NS	mg/kg	ND	ND	ND	ND
Bis(2-chloroisopropyl)ether	NS	mg/kg	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate	NS	mg/kg	ND	ND	ND	ND
Butyl benzyl phthalate	NS	mg/kg	ND	ND	ND	ND
Carbazole	NS	mg/kg	ND	ND	ND	ND
Chrysene	3.9	mg/kg	ND	ND	ND	ND
Di-n-butylphthalate	NS	mg/kg	ND	ND	ND	ND
Di-n-octylphthalate	NS	mg/kg	ND	ND	ND	ND
Dibenzo(a,h)anthracene	0.33	mg/kg	ND	ND	ND	ND
Dibenzofuran	59	mg/kg	ND	ND	ND	ND
Diethyl phthalate	NS	mg/kg	ND	ND	ND	ND
Dimethyl phthalate	NS	mg/kg	ND	ND	ND	ND
Fluoranthene	100	mg/kg	ND	ND	ND	ND
Fluorene	100	mg/kg	ND	ND	ND	ND
Hexachlorobenzene	1.2	mg/kg	ND	ND	ND	ND
Hexachlorobutadiene	NS	mg/kg	ND	ND	ND	ND
Hexachlorocyclopentadiene	NS	mg/kg	ND	ND	ND	ND
Hexachloroethane	NS	mg/kg	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.5	mg/kg	ND	ND	ND	ND
Isophorone	NS	mg/kg	ND	ND	ND	ND

CLIENT SAMPLE ID			TR2-EP-11	TR2-EP-17	TR2-EP-10	TR2-EP-18
SAMPLING DATE	NY-RESRR*	Units	08-MAR-19	08-MAR-19	14-MAR-19	18-MAR-19
LAB SAMPLE ID	NY-KESKK"	Units	L1909179-02	L1909179-03	L1910090-01	L1910756-01
			Qual	Qual	Qual	Qual
n-Nitrosodi-n-propylamine	NS	mg/kg	ND	ND	ND	ND
Naphthalene	100	mg/kg	ND	ND	ND	ND
NDPA/DPA	NS	mg/kg	ND	ND	ND	ND
Nitrobenzene	NS	mg/kg	ND	ND	ND	ND
p-Chloro-m-cresol	NS	mg/kg	ND	ND	ND	ND
Pentachlorophenol	6.7	mg/kg	ND	ND	ND	ND
Phenanthrene	100	mg/kg	ND	ND	ND	ND
Phenol	100	mg/kg	ND	ND	ND	ND
Pyrene	100	mg/kg	ND	ND	ND	ND

Notes:

Bold and shaded yellow value indicates concentration exceeds 6 NYCRR Part 375 Restricted Restricted-Residential SCOs

J = Estimated value

ND = Not detected

NS = No standard

* = 6 NYCRR Part 375 Restricted Restricted-Residential Soil Cleanup Objectives

CLIENT SAMPLE ID			TR2-EP-	TR2-E	P-25	
SAMPLING DATE	NIV DECEDE	TT 4.	20-MAR-	-19	22-MA	R-19
LAB SAMPLE ID	NY-RESRR*	Units	L1910984	-01	L191150	02-01
				Qual		Qual
General Chemistry						
Solids, Total	NS	%	81.2		60.5	
Total Metals			•			
Aluminum, Total	NS	mg/kg	6530		13700	
Antimony, Total	NS	mg/kg	ND		1.44	J
Arsenic, Total	16	mg/kg	1.73		8.61	
Barium, Total	400	mg/kg	44.8		35.9	
Beryllium, Total	72	mg/kg	0.293	J	0.756	
Cadmium, Total	4.3	mg/kg	ND		0.681	J
Calcium, Total	NS	mg/kg	2830		2710	
Chromium, Total	NS	mg/kg	11.2		24.6	
Cobalt, Total	NS	mg/kg	5.56		11.6	
Copper, Total	270	mg/kg	15.6		27	
Iron, Total	NS	mg/kg	12000		28600	
Lead, Total	400	mg/kg	62.9		50.9	
Magnesium, Total	NS	mg/kg	2680		6310	
Manganese, Total	2000	mg/kg	169		588	
Mercury, Total	0.81	mg/kg	0.188		0.283	
Nickel, Total	310	mg/kg	10.9		27.1	
Potassium, Total	NS	mg/kg	964		2170	
Selenium, Total	180	mg/kg	0.256	J	ND	
Silver, Total	180	mg/kg	ND		ND	
Sodium, Total	NS	mg/kg	484		3530	
Thallium, Total	NS	mg/kg	ND		ND	
Vanadium, Total	NS	mg/kg	15.1		34.2	
Zinc, Total	10000	mg/kg	37		75.1	
Volatile Organic Compounds						
1,1,1,2-Tetrachloroethane	NS	mg/kg	ND		ND	
1,1,1-Trichloroethane	100	mg/kg	ND		ND	
1,1,2,2-Tetrachloroethane	NS	mg/kg	ND		ND	
1,1,2-Trichloroethane	NS	mg/kg	ND		ND	
1,1-Dichloroethane	26	mg/kg	ND		ND	
1,1-Dichloroethene	100	mg/kg	ND		ND	
1,1-Dichloropropene	NS	mg/kg	ND		ND	
1,2,3-Trichlorobenzene	NS	mg/kg	ND		ND	
1,2,3-Trichloropropane	NS	mg/kg	ND		ND	
1,2,4,5-Tetramethylbenzene	NS	mg/kg	ND		0.0004	J
1,2,4-Trichlorobenzene	NS	mg/kg	ND		ND	
1,2,4-Trimethylbenzene	52	mg/kg	ND		0.0008	J
1,2-Dibromo-3-chloropropane	NS	mg/kg	ND		ND	
1,2-Dibromoethane	NS	mg/kg	ND		ND	

CLIENT SAMPLE ID			TR2-EP-26	TR2-EP-25
SAMPLING DATE			20-MAR-19	22-MAR-19
LAB SAMPLE ID	NY-RESRR*	Units	L1910984-01	L1911502-01
			Qual	Qual
1,2-Dichlorobenzene	100	mg/kg	ND	ND
1,2-Dichloroethane	3.1	mg/kg	ND	ND
1,2-Dichloroethene, Total	NS	mg/kg	ND	ND
1,2-Dichloropropane	NS	mg/kg	ND	ND
1,3,5-Trimethylbenzene	52	mg/kg	ND	ND
1,3-Dichlorobenzene	49	mg/kg	ND	ND
1,3-Dichloropropane	NS	mg/kg	ND	ND
1,3-Dichloropropene, Total	NS	mg/kg	ND	ND
1,4-Dichlorobenzene	13	mg/kg	ND	ND
1,4-Dioxane	13	mg/kg	ND	ND
2,2-Dichloropropane	NS	mg/kg	ND	ND
2-Butanone	100	mg/kg	ND	0.044
2-Hexanone	NS	mg/kg	ND	ND
4-Methyl-2-pentanone	NS	mg/kg	ND	ND
Acetone	100	mg/kg	0.14	0.2
Acrylonitrile	NS	mg/kg	ND	ND
Benzene	4.8	mg/kg	ND	ND
Bromobenzene	NS	mg/kg	ND	ND
Bromochloromethane	NS	mg/kg	ND	ND
Bromodichloromethane	NS	mg/kg	ND	ND
Bromoform	NS	mg/kg	ND	ND
Bromomethane	NS	mg/kg	ND	ND
Carbon disulfide	NS	mg/kg	ND	ND
Carbon tetrachloride	2.4	mg/kg	ND	ND
Chlorobenzene	100	mg/kg	ND	ND
Chloroethane	NS	mg/kg	ND	ND
Chloroform	49	mg/kg	ND	ND
Chloromethane	NS	mg/kg	ND	ND
cis-1,2-Dichloroethene	100	mg/kg	ND	ND
cis-1,3-Dichloropropene	NS	mg/kg	ND	ND
Dibromochloromethane	NS	mg/kg	ND	ND
Dibromomethane	NS	mg/kg	ND	ND
Dichlorodifluoromethane	NS	mg/kg	ND	ND
Ethyl ether	NS	mg/kg	ND	ND
Ethylbenzene	41	mg/kg	ND	ND
Hexachlorobutadiene	NS	mg/kg	ND	ND
Isopropylbenzene	NS	mg/kg	ND	0.001 J
Methyl tert butyl ether	100	mg/kg	ND	ND
Methylene chloride	100	mg/kg	ND	ND
n-Butylbenzene	100	mg/kg	ND	ND
n-Propylbenzene	100	mg/kg	ND	ND

CLIENT SAMPLE ID			TR2-EP-26	P-25	
SAMPLING DATE			20-MAR-19	22-MA	
LAB SAMPLE ID	NY-RESRR*	Units	L1910984-01	L191150	
			Qu		Qual
Naphthalene	100	mg/kg	ND	0.0018	J
o-Chlorotoluene	NS	mg/kg	ND	ND	
o-Xylene	NS	mg/kg	ND	0.001	J
p-Chlorotoluene	NS	mg/kg	ND	ND	
p-Diethylbenzene	NS	mg/kg	ND	ND	
p-Ethyltoluene	NS	mg/kg	ND	ND	
p-Isopropyltoluene	NS	mg/kg	0.00017 J	ND	
p/m-Xylene	NS	mg/kg	ND	ND	
sec-Butylbenzene	100	mg/kg	ND	ND	
Styrene	NS	mg/kg	ND	ND	
tert-Butylbenzene	100	mg/kg	ND	ND	
Tetrachloroethene	19	mg/kg	ND	ND	
Toluene	100	mg/kg	ND	ND	
trans-1,2-Dichloroethene	100	mg/kg	ND	ND	
trans-1,3-Dichloropropene	NS	mg/kg	ND	ND	
trans-1,4-Dichloro-2-butene	NS	mg/kg	ND	ND	
Trichloroethene	21	mg/kg	ND	ND	
Trichlorofluoromethane	NS	mg/kg	ND	ND	
Vinyl acetate	NS	mg/kg	ND	ND	
Vinyl chloride	0.9	mg/kg	ND	ND	
Xylenes, Total	100	mg/kg	ND	0.001	J
Semivolatile Organic Compounds					
1,2,4,5-Tetrachlorobenzene	NS	mg/kg	ND	ND	
1,2,4-Trichlorobenzene	NS	mg/kg	ND	ND	
1,2-Dichlorobenzene	100	mg/kg	ND	ND	
1,3-Dichlorobenzene	49	mg/kg	ND	ND	
1,4-Dichlorobenzene	13	mg/kg	ND	ND	
2,4,5-Trichlorophenol	NS	mg/kg	ND	ND	
2,4,6-Trichlorophenol	NS	mg/kg	ND	ND	
2,4-Dichlorophenol	NS	mg/kg	ND	ND	
2,4-Dimethylphenol	NS	mg/kg	ND	ND	
2,4-Dinitrophenol	NS	mg/kg	ND	ND	
2,4-Dinitrotoluene	NS	mg/kg	ND	ND	
2,6-Dinitrotoluene	NS	mg/kg	ND	ND	
2-Chloronaphthalene	NS	mg/kg	ND	ND	
2-Chlorophenol	NS	mg/kg	ND	ND	
2-Methylnaphthalene	NS	mg/kg	ND	ND	
2-Methylphenol	100	mg/kg	ND	ND	
2-Nitroaniline	NS	mg/kg	ND	ND	
2-Nitrophenol	NS	mg/kg	ND	ND	
3,3'-Dichlorobenzidine	NS	mg/kg	ND	ND	

CLIENT SAMPLE ID			TR2-EI	P-26	TR2-E	P-25
SAMPLING DATE			20-MAI	R-19	22-MA	R-19
LAB SAMPLE ID		Units	L1910984-01		L1911502-01	
				Qual		Qual
3-Methylphenol/4-Methylphenol	100	mg/kg	ND		ND	
3-Nitroaniline	NS	mg/kg	ND		ND	
4,6-Dinitro-o-cresol	NS	mg/kg	ND		ND	
4-Bromophenyl phenyl ether	NS	mg/kg	ND		ND	
4-Chloroaniline	NS	mg/kg	ND		ND	
4-Chlorophenyl phenyl ether	NS	mg/kg	ND		ND	
4-Nitroaniline	NS	mg/kg	ND		ND	
4-Nitrophenol	NS	mg/kg	ND		ND	
Acenaphthene	100	mg/kg	0.032	J	ND	
Acenaphthylene	100	mg/kg	ND		ND	
Acetophenone	NS	mg/kg	ND		ND	
Anthracene	100	mg/kg	0.065	J	ND	
Benzo(a)anthracene	1	mg/kg	0.14		ND	
Benzo(a)pyrene	1	mg/kg	0.12	J	ND	
Benzo(b)fluoranthene	1	mg/kg	0.14		ND	
Benzo(ghi)perylene	100	mg/kg	0.064	J	ND	
Benzo(k)fluoranthene	3.9	mg/kg	0.06	J	ND	
Benzoic Acid	NS	mg/kg	ND		ND	
Benzyl Alcohol	NS	mg/kg	ND		ND	
Biphenyl	NS	mg/kg	ND		ND	
Bis(2-chloroethoxy)methane	NS	mg/kg	ND		ND	
Bis(2-chloroethyl)ether	NS	mg/kg	ND		ND	
Bis(2-chloroisopropyl)ether	NS	mg/kg	ND		ND	
Bis(2-ethylhexyl)phthalate	NS	mg/kg	ND		ND	
Butyl benzyl phthalate	NS	mg/kg	ND		ND	
Carbazole	NS	mg/kg	0.026	J	ND	
Chrysene	3.9	mg/kg	0.13		ND	
Di-n-butylphthalate	NS	mg/kg	ND		ND	
Di-n-octylphthalate	NS	mg/kg	ND		ND	
Dibenzo(a,h)anthracene	0.33	mg/kg	ND		ND	
Dibenzofuran	59	mg/kg	0.028	J	ND	
Diethyl phthalate	NS	mg/kg	ND		ND	
Dimethyl phthalate	NS	mg/kg	ND		ND	
Fluoranthene	100	mg/kg	0.26		ND	
Fluorene	100	mg/kg	0.035	J	ND	
Hexachlorobenzene	1.2	mg/kg	ND		ND	
Hexachlorobutadiene	NS	mg/kg	ND		ND	
Hexachlorocyclopentadiene	NS	mg/kg	ND		ND	
Hexachloroethane	NS	mg/kg	ND		ND	
Indeno(1,2,3-cd)pyrene	0.5	mg/kg	0.066	J	ND	
Isophorone	NS	mg/kg	ND		ND	

CLIENT SAMPLE ID			TR2-EP-26		TR2-E	P-25
SAMPLING DATE	NY-RESRR*	Units	20-MA	20-MAR-19		R-19
LAB SAMPLE ID	NY-KESKK"	Units	L19109	84-01	L19115	502-01
				Qual		Qual
n-Nitrosodi-n-propylamine	NS	mg/kg	ND		ND	
Naphthalene	100	mg/kg	0.04	J	ND	
NDPA/DPA	NS	mg/kg	ND		ND	
Nitrobenzene	NS	mg/kg	ND		ND	
p-Chloro-m-cresol	NS	mg/kg	ND		ND	
Pentachlorophenol	6.7	mg/kg	ND		ND	
Phenanthrene	100	mg/kg	0.31		ND	
Phenol	100	mg/kg	ND		ND	
Pyrene	100	mg/kg	0.24		ND	

Notes:

Bold and shaded yellow value indicates concentration exceeds 6 NYCRR Part 375 Restricted Restricted-Residential SCOs

J = Estimated value

ND = Not detected

NS = No standard

* = 6 NYCRR Part 375 Restricted Restricted-Residential Soil Cleanup Objectives

CLIENT SAMPLE ID		TR4-EP-1			TR4-EP-2		TR4-EP-3	
SAMPLING DATE	NIV DECDD*	II*4	11-JUL-18		11-JU	1-JUL-18	11-JUI	18
LAB SAMPLE ID	NY-RESRR*	Units	L1826318-09	L	18263	18-10	L18263	18-16
			Qua	al		Qual		Qual
General Chemistry								
Solids, Total	NS	%	86		88		92.8	
Total Metals								
Aluminum, Total	NS	mg/kg	7540		1710		5300	
Antimony, Total	NS	mg/kg	ND		ND		0.852	J
Arsenic, Total	16	mg/kg	5.53		2.57		7.95	
Barium, Total	400	mg/kg	56.4		25.2		178	
Beryllium, Total	72	mg/kg	0.288 J	(0.035	J	0.238	J
Cadmium, Total	4.3	mg/kg	ND		ND		0.262	J
Calcium, Total	NS	mg/kg	20500	7	3700		12800	
Chromium, Total	NS	mg/kg	11.1		4.42		26.8	
Cobalt, Total	NS	mg/kg	4.78		2.01		5.39	
Copper, Total	270	mg/kg	22.1		88.6		2500	
Iron, Total	NS	mg/kg	11500	(5200		17400	
Lead, Total	400	mg/kg	150		724		320	
Magnesium, Total	NS	mg/kg	2040		1210		3830	
Manganese, Total	2000	mg/kg	276		90.2		375	
Mercury, Total	0.81	mg/kg	0.511	().221		0.789	
Nickel, Total	310	mg/kg	11.1	_	3.59		19.6	
Potassium, Total	NS	mg/kg	788		438		1010	
Selenium, Total	180	mg/kg	ND	().457	J	0.27	J
Silver, Total	180	mg/kg	0.271 J		ND		0.557	J
Sodium, Total	NS	mg/kg	443		783		623	
Thallium, Total	NS	mg/kg	ND		ND		ND	
Vanadium, Total	NS	mg/kg	15		5.65		20.5	
Zinc, Total	10000	mg/kg	60.1		16.8		834	
Volatile Organic Compounds								
1,1,1,2-Tetrachloroethane	NS	mg/kg	ND		ND		ND	
1,1,1-Trichloroethane	100	mg/kg	ND		ND		0.001	
1,1,2,2-Tetrachloroethane	NS	mg/kg	ND		ND		ND	
1,1,2-Trichloroethane	NS	mg/kg	ND		ND		ND	
1,1-Dichloroethane	26	mg/kg	ND		ND		0.00067	J
1,1-Dichloroethene	100	mg/kg	ND		ND		ND	
1,1-Dichloropropene	NS	mg/kg	ND		ND		ND	
1,2,3-Trichlorobenzene	NS	mg/kg	ND		ND			
1,2,3-Trichloropropane	NS	mg/kg	ND	\top	ND		ND	
1,2,4,5-Tetramethylbenzene	NS	mg/kg	ND	1	ND		ND	
1,2,4-Trichlorobenzene	NS	mg/kg	ND	_	ND			
1,2,4-Trimethylbenzene	52	mg/kg	ND	_	ND			
1,2-Dibromo-3-chloropropane	NS	mg/kg	ND		ND			
1,2-Dibromoethane	NS	mg/kg	ND	_	ND			
1,2-Dichlorobenzene	100	mg/kg	ND	_	ND		ND	
		00	1					

CLIENT SAMPLE ID			TR4-EP-1	TR4-EP-2	TR4-EP-3	
SAMPLING DATE	ppgpp.	A.	11-JUL-18	11-JUL-18	11-JUL-18	
LAB SAMPLE ID	NY-RESRR*	Units	L1826318-09	L1826318-10	L1826318-16	
			Qual	Qual	Qual	
1,2-Dichloroethane	3.1	mg/kg	ND	ND	ND	
1,2-Dichloroethene, Total	NS	mg/kg	ND	ND	0.0012	
1,2-Dichloropropane	NS	mg/kg	ND	ND	ND	
1,3,5-Trimethylbenzene	52	mg/kg	ND	ND	ND	
1,3-Dichlorobenzene	49	mg/kg	ND	ND	ND	
1,3-Dichloropropane	NS	mg/kg	ND	ND	ND	
1,3-Dichloropropene, Total	NS	mg/kg	ND	ND	ND	
1,4-Dichlorobenzene	13	mg/kg	ND	ND	ND	
1,4-Dioxane	13	mg/kg	ND	ND	ND	
2,2-Dichloropropane	NS	mg/kg	ND	ND	ND	
2-Butanone	100	mg/kg	ND	ND	ND	
2-Hexanone	NS	mg/kg	ND	ND	ND	
4-Methyl-2-pentanone	NS	mg/kg	ND	ND	ND	
Acetone	100	mg/kg	ND	ND	0.025	
Acrylonitrile	NS	mg/kg	ND	ND	ND	
Benzene	4.8	mg/kg	ND	ND	ND	
Bromobenzene	NS	mg/kg	ND	ND	ND	
Bromochloromethane	NS	mg/kg	ND	ND	ND	
Bromodichloromethane	NS	mg/kg	ND	ND	ND	
Bromoform	NS	mg/kg	ND	ND	ND	
Bromomethane	NS	mg/kg	ND	ND	ND	
Carbon disulfide	NS	mg/kg	ND	ND	ND	
Carbon tetrachloride	2.4	mg/kg	ND	ND	ND	
Chlorobenzene	100	mg/kg	ND	ND	ND	
Chloroethane	NS	mg/kg	ND	ND	ND	
Chloroform	49	mg/kg	ND	ND	ND	
Chloromethane	NS	mg/kg	ND	ND	ND	
cis-1,2-Dichloroethene	100	mg/kg	ND	ND	0.0012	
cis-1,3-Dichloropropene	NS	mg/kg	ND	ND	ND	
Dibromochloromethane	NS	mg/kg	ND	ND	ND	
Dibromomethane	NS	mg/kg	ND	ND	ND	
Dichlorodifluoromethane	NS	mg/kg	ND	ND	ND	
Ethyl ether	NS	mg/kg	ND	ND	ND	
Ethylbenzene	41	mg/kg	ND	ND	ND	
Hexachlorobutadiene	NS	mg/kg	ND	ND	ND	
Isopropylbenzene	NS	mg/kg	ND	ND	ND	
Methyl tert butyl ether	100	mg/kg	ND	ND	ND	
Methylene chloride	100	mg/kg	ND	0.0032 J	ND	
n-Butylbenzene	100	mg/kg	ND	ND	ND	
n-Propylbenzene	100	mg/kg	ND	ND	ND	
Naphthalene	100	mg/kg	ND	ND	ND	
o-Chlorotoluene	NS	mg/kg	ND	ND	ND	

CLIENT SAMPLE ID			TR4-EP-1	TR4-EP-2	TR4-EP-3
SAMPLING DATE		A.	11-JUL-18	11-JUL-18	11-JUL-18
LAB SAMPLE ID	NY-RESRR*	Units	L1826318-09	L1826318-10	L1826318-16
			Qual	Qual	Qual
o-Xylene	NS	mg/kg	ND	ND	ND
p-Chlorotoluene	NS	mg/kg	ND	ND	ND
p-Diethylbenzene	NS	mg/kg	ND	ND	ND
p-Ethyltoluene	NS	mg/kg	ND	ND	ND
p-Isopropyltoluene	NS	mg/kg	ND	ND	ND
p/m-Xylene	NS	mg/kg	ND	ND	ND
sec-Butylbenzene	100	mg/kg	ND	ND	ND
Styrene	NS	mg/kg	ND	ND	ND
tert-Butylbenzene	100	mg/kg	ND	ND	ND
Tetrachloroethene	19	mg/kg	ND	ND	0.0089
Toluene	100	mg/kg	ND	ND	ND
trans-1,2-Dichloroethene	100	mg/kg	ND	ND	ND
trans-1,3-Dichloropropene	NS	mg/kg	ND	ND	ND
trans-1,4-Dichloro-2-butene	NS	mg/kg	ND	ND	ND
Trichloroethene	21	mg/kg	ND	ND	0.0039
Trichlorofluoromethane	NS	mg/kg	ND	ND	ND
Vinyl acetate	NS	mg/kg	ND	ND	ND
Vinyl chloride	0.9	mg/kg	ND	ND	ND
Xylenes, Total	100	mg/kg	ND	ND	ND
Semivolatile Organic Compounds					
1,2,4,5-Tetrachlorobenzene	NS	mg/kg	ND	ND	ND
1,2,4-Trichlorobenzene	NS	mg/kg	ND	ND	ND
1,2-Dichlorobenzene	100	mg/kg	ND	ND	0.12 J
1,3-Dichlorobenzene	49	mg/kg	ND	ND	ND
1,4-Dichlorobenzene	13	mg/kg	ND	ND	0.043 J
2,4,5-Trichlorophenol	NS	mg/kg	ND	ND	ND
2,4,6-Trichlorophenol	NS	mg/kg	ND	ND	ND
2,4-Dichlorophenol	NS	mg/kg	ND	ND	ND
2,4-Dimethylphenol	NS	mg/kg	ND	ND	ND
2,4-Dinitrophenol	NS	mg/kg	ND	ND	ND
2,4-Dinitrotoluene	NS	mg/kg	ND	ND	ND
2,6-Dinitrotoluene	NS	mg/kg	ND	ND	ND
2-Chloronaphthalene	NS	mg/kg	ND	ND	ND
2-Chlorophenol	NS	mg/kg	ND	ND	ND
2-Methylnaphthalene	NS	mg/kg	ND	ND	0.12 J
2-Methylphenol	100	mg/kg	ND	ND	ND
2-Nitroaniline	NS	mg/kg	ND	ND	ND
2-Nitrophenol	NS	mg/kg	ND	ND	ND
3,3'-Dichlorobenzidine	NS	mg/kg	ND	ND	ND
3-Methylphenol/4-Methylphenol	100	mg/kg	ND	ND	0.05 J
3-Nitroaniline	NS	mg/kg	ND	ND	ND
4,6-Dinitro-o-cresol	NS	mg/kg	ND	ND	ND

CLIENT SAMPLE ID			TR4-EP-1	TR4-E	P-2	TR4-I	EP-3
SAMPLING DATE	NW DECDD4	TT *.	11-JUL-18	11-JUI	L-18	11-JU	L-18
LAB SAMPLE ID	NY-RESRR*	Units	L1826318-09	L18263	18-10	L18263	18-16
			Qual		Qual		Qual
4-Bromophenyl phenyl ether	NS	mg/kg	ND	ND		ND	
4-Chloroaniline	NS	mg/kg	ND	ND		ND	
4-Chlorophenyl phenyl ether	NS	mg/kg	ND	ND		ND	
4-Nitroaniline	NS	mg/kg	ND	ND		ND	
4-Nitrophenol	NS	mg/kg	ND	ND		ND	
Acenaphthene	100	mg/kg	ND	0.03	J	0.21	
Acenaphthylene	100	mg/kg	ND	ND		0.6	
Acetophenone	NS	mg/kg	ND	ND		ND	
Anthracene	100	mg/kg	ND	0.1	J	0.85	
Benzo(a)anthracene	1	mg/kg		-			
Benzo(a)anthracene	1	mg/kg	ND	0.79		4	
Benzo(a)pyrene	1	mg/kg					
Benzo(a)pyrene	1	mg/kg	ND	1.6		5.2	
Benzo(b)fluoranthene	1	mg/kg		-			
Benzo(b)fluoranthene	1	mg/kg	ND	1.6		6.6	
Benzo(ghi)perylene	100	mg/kg	ND	1.1		4.1	
Benzo(k)fluoranthene	3.9	mg/kg	ND	0.58		1.3	
Benzoic Acid	NS	mg/kg	ND	ND		ND	
Benzyl Alcohol	NS	mg/kg	ND	ND		ND	
Biphenyl	NS	mg/kg	ND	ND		ND	
Bis(2-chloroethoxy)methane	NS	mg/kg	ND	ND		ND	
Bis(2-chloroethyl)ether	NS	mg/kg	ND	ND		ND	
Bis(2-chloroisopropyl)ether	NS	mg/kg	ND	ND		ND	
Bis(2-ethylhexyl)phthalate	NS	mg/kg	ND	ND		ND	
Butyl benzyl phthalate	NS	mg/kg	ND	ND		ND	
Carbazole	NS	mg/kg	ND	0.044	J	0.52	
Chrysene	3.9	mg/kg					
Chrysene	3.9	mg/kg	ND	0.82		3.8	
Di-n-butylphthalate	NS	mg/kg	ND	ND		0.04	J
Di-n-octylphthalate	NS	mg/kg	ND	ND		ND	
Dibenzo(a,h)anthracene	0.33	mg/kg	ND	0.23		0.96	
Dibenzofuran	59	mg/kg	ND	0.044	J	0.17	J
Diethyl phthalate	NS	mg/kg	ND	ND		0.35	
Dimethyl phthalate	NS	mg/kg	ND	ND		ND	
Fluoranthene	100	mg/kg					
Fluoranthene	100	mg/kg	ND	0.72		6.3	
Fluorene	100	mg/kg	ND	ND		0.19	
Hexachlorobenzene	1.2	mg/kg	ND	ND		ND	
Hexachlorobutadiene	NS	mg/kg	ND	ND		ND	
Hexachlorocyclopentadiene	NS	mg/kg	ND	ND		ND	
Hexachloroethane	NS	mg/kg	ND	ND		ND	
Indeno(1,2,3-cd)pyrene	0.5	mg/kg	ND	1.2		4.3	

CLIENT SAMPLE ID			TR4-EP-1	TR4-EP-2	TR4-EP-3
SAMPLING DATE	MW DECDD*	TT*4	11-JUL-18	11-JUL-18	11-JUL-18
LAB SAMPLE ID	NY-RESRR*	Units	L1826318-09	L1826318-10	L1826318-16
			Qual	Qual	Qual
Isophorone	NS	mg/kg	ND	ND	ND
n-Nitrosodi-n-propylamine	NS	mg/kg	ND	ND	ND
Naphthalene	100	mg/kg	ND	0.075 J	0.39
NDPA/DPA	NS	mg/kg	ND	ND	ND
Nitrobenzene	NS	mg/kg	ND	ND	ND
p-Chloro-m-cresol	NS	mg/kg	ND	ND	ND
Pentachlorophenol	6.7	mg/kg	ND	ND	ND
Phenanthrene	100	mg/kg			
Phenanthrene	100	mg/kg	ND	0.45	3.1
Phenol	100	mg/kg	ND	ND	ND
Pyrene	100	mg/kg			
Pyrene	100	mg/kg	ND	0.73	5.8

Notes:

Bold and shaded yellow value indicates concentration exceeds 6 NYCRR Part 375 Restricted Restricted-Residential SCOs

J = Estimated value

E = Concentration exceeds calibration range of the instrument

ND = Not detected

-- = Not analyzed

NS = No standard

* = 6 NYCRR Part 375 Restricted Restricted-Residential Soil Cleanup Objectives

CLIENT SAMPLE ID			TR4-EP-4		TR4-EP-5		TR4-EP-6
SAMPLING DATE	NI DECED	#T #.	11-JUL-1	8	11-JUL	-18	11-JUL-18
LAB SAMPLE ID	NY-RESRR*	Units	L1826318-	-15	L182631	8-12	L1826318-08
			Qual		Qual		Qual
General Chemistry							
Solids, Total	NS	%	93.6		89.6		87.7
Total Metals			•				
Aluminum, Total	NS	mg/kg	5980		6330		7270
Antimony, Total	NS	mg/kg	0.833	J	ND		ND
Arsenic, Total	16	mg/kg	8.35		7.59		14.4
Barium, Total	400	mg/kg	95.6		92.7		57.5
Beryllium, Total	72	mg/kg	0.231	J	0.258	J	0.58
Cadmium, Total	4.3	mg/kg	0.61	J	0.129	J	ND
Calcium, Total	NS	mg/kg	18300		28500		5940
Chromium, Total	NS	mg/kg	13.7		16		28.5
Cobalt, Total	NS	mg/kg	4.92		6.34		6.5
Copper, Total	270	mg/kg	80.4		51.5		30.4
Iron, Total	NS	mg/kg	14700		16800		26300
Lead, Total	400	mg/kg	178		164		110
Magnesium, Total	NS	mg/kg	3630		5710		2050
Manganese, Total	2000	mg/kg	240		347		281
Mercury, Total	0.81	mg/kg	0.78		2.47		0.339
Nickel, Total	310	mg/kg	17.4		14.4		282
Potassium, Total	NS	mg/kg	893		1390		1030
Selenium, Total	180	mg/kg	ND		ND		0.43 J
Silver, Total	180	mg/kg	ND		ND		ND
Sodium, Total	NS	mg/kg	480		681		775
Thallium, Total	NS	mg/kg	ND		ND		ND
Vanadium, Total	NS	mg/kg	19.6		20.4		26
Zinc, Total	10000	mg/kg	315		239		56.7
Volatile Organic Compounds			•				
1,1,1,2-Tetrachloroethane	NS	mg/kg	ND		ND		ND
1,1,1-Trichloroethane	100	mg/kg	ND		ND		ND
1,1,2,2-Tetrachloroethane	NS	mg/kg	ND		ND		ND
1,1,2-Trichloroethane	NS	mg/kg	ND		ND		ND
1,1-Dichloroethane	26	mg/kg	ND		ND		ND
1,1-Dichloroethene	100	mg/kg	ND		ND		ND
1,1-Dichloropropene	NS	mg/kg	ND		ND		ND
1,2,3-Trichlorobenzene	NS	mg/kg	ND		ND		ND
1,2,3-Trichloropropane	NS	mg/kg	ND		ND		ND
1,2,4,5-Tetramethylbenzene	NS	mg/kg	ND		ND		ND
1,2,4-Trichlorobenzene	NS	mg/kg	ND		ND		ND
1,2,4-Trimethylbenzene	52	mg/kg	ND		ND		ND
1,2-Dibromo-3-chloropropane	NS	mg/kg	ND		ND		ND
1,2-Dibromoethane	NS	mg/kg	ND		ND		ND
1,2-Dichlorobenzene	100	mg/kg	ND		ND		ND

CLIENT SAMPLE ID			TR4-EP-4	TR4-EP-5	TR4-EP-6	
SAMPLING DATE		4.	11-JUL-18	11-JUL-18	11-JUL-18	
LAB SAMPLE ID	NY-RESRR*	Units	L1826318-15	L1826318-12	L1826318-08	
			Qual	Qual	Qual	
1,2-Dichloroethane	3.1	mg/kg	ND	ND	ND	
1,2-Dichloroethene, Total	NS	mg/kg	ND	ND	ND	
1,2-Dichloropropane	NS	mg/kg	ND	ND	ND	
1,3,5-Trimethylbenzene	52	mg/kg	ND	ND	ND	
1,3-Dichlorobenzene	49	mg/kg	ND	ND	ND	
1,3-Dichloropropane	NS	mg/kg	ND	ND	ND	
1,3-Dichloropropene, Total	NS	mg/kg	ND	ND	ND	
1,4-Dichlorobenzene	13	mg/kg	ND	ND	ND	
1,4-Dioxane	13	mg/kg	ND	ND	ND	
2,2-Dichloropropane	NS	mg/kg	ND	ND	ND	
2-Butanone	100	mg/kg	ND	ND	ND	
2-Hexanone	NS	mg/kg	ND	ND	ND	
4-Methyl-2-pentanone	NS	mg/kg	ND	ND	ND	
Acetone	100	mg/kg	0.012 J	0.088	ND	
Acrylonitrile	NS	mg/kg	ND	ND	ND	
Benzene	4.8	mg/kg	ND	ND	ND	
Bromobenzene	NS	mg/kg	ND	ND	ND	
Bromochloromethane	NS	mg/kg	ND	ND	ND	
Bromodichloromethane	NS	mg/kg	ND	ND	ND	
Bromoform	NS	mg/kg	ND	ND	ND	
Bromomethane	NS	mg/kg	ND	ND	ND	
Carbon disulfide	NS	mg/kg	ND	ND	ND	
Carbon tetrachloride	2.4	mg/kg	ND	ND	ND	
Chlorobenzene	100	mg/kg	ND	ND	ND	
Chloroethane	NS	mg/kg	ND	ND	ND	
Chloroform	49	mg/kg	ND	ND	ND	
Chloromethane	NS	mg/kg	ND	ND	ND	
cis-1,2-Dichloroethene	100	mg/kg	ND	ND	ND	
cis-1,3-Dichloropropene	NS	mg/kg	ND	ND	ND	
Dibromochloromethane	NS	mg/kg	ND	ND	ND	
Dibromomethane	NS	mg/kg	ND	ND	ND	
Dichlorodifluoromethane	NS	mg/kg	ND	ND	ND	
Ethyl ether	NS	mg/kg	ND	ND	ND	
Ethylbenzene	41	mg/kg	ND	ND	ND	
Hexachlorobutadiene	NS	mg/kg	ND	ND	ND	
Isopropylbenzene	NS	mg/kg	ND	ND	ND	
Methyl tert butyl ether	100	mg/kg	ND	ND	ND	
Methylene chloride	100	mg/kg	ND	0.0048 J	ND	
n-Butylbenzene	100	mg/kg	ND	ND	ND	
n-Propylbenzene	100	mg/kg	ND	ND	ND	
Naphthalene	100	mg/kg	ND	ND	ND	
o-Chlorotoluene	NS	mg/kg	ND	ND	ND	

CLIENT SAMPLE ID			TR4-EP-4	TR4-EP-5	TR4-EP-6	
SAMPLING DATE	MW DECDD*	Units	11-JUL-18	11-JUL-18	11-JUL-18	
LAB SAMPLE ID	NY-RESRR*		L1826318-15	L1826318-12	L1826318-08	
			Qual	Qual	Qual	
o-Xylene	NS	mg/kg	ND	ND	ND	
p-Chlorotoluene	NS	mg/kg	ND	ND	ND	
p-Diethylbenzene	NS	mg/kg	ND	ND	ND	
p-Ethyltoluene	NS	mg/kg	ND	ND	ND	
p-Isopropyltoluene	NS	mg/kg	ND	ND	ND	
p/m-Xylene	NS	mg/kg	ND	ND	ND	
sec-Butylbenzene	100	mg/kg	ND	ND	ND	
Styrene	NS	mg/kg	ND	ND	ND	
tert-Butylbenzene	100	mg/kg	ND	ND	ND	
Tetrachloroethene	19	mg/kg	0.00042 J	ND	ND	
Toluene	100	mg/kg	ND	ND	ND	
trans-1,2-Dichloroethene	100	mg/kg	ND	ND	ND	
trans-1,3-Dichloropropene	NS	mg/kg	ND	ND	ND	
trans-1,4-Dichloro-2-butene	NS	mg/kg	ND	ND	ND	
Trichloroethene	21	mg/kg	ND	ND	ND	
Trichlorofluoromethane	NS	mg/kg	ND	ND	ND	
Vinyl acetate	NS	mg/kg	ND	ND	ND	
Vinyl chloride	0.9	mg/kg	ND	ND	ND	
Xylenes, Total	100	mg/kg	ND	ND	ND	
Semivolatile Organic Compounds						
1,2,4,5-Tetrachlorobenzene	NS	mg/kg	ND	ND	ND	
1,2,4-Trichlorobenzene	NS	mg/kg	ND	ND	ND	
1,2-Dichlorobenzene	100	mg/kg	ND	ND	ND	
1,3-Dichlorobenzene	49	mg/kg	ND	ND	ND	
1,4-Dichlorobenzene	13	mg/kg	ND	ND	ND	
2,4,5-Trichlorophenol	NS	mg/kg	ND	ND	ND	
2,4,6-Trichlorophenol	NS	mg/kg	ND	ND	ND	
2,4-Dichlorophenol	NS	mg/kg	ND	ND	ND	
2,4-Dimethylphenol	NS	mg/kg	ND	ND	ND	
2,4-Dinitrophenol	NS	mg/kg	ND	ND	ND	
2,4-Dinitrotoluene	NS	mg/kg	ND	ND	ND	
2,6-Dinitrotoluene	NS	mg/kg	ND	ND	ND	
2-Chloronaphthalene	NS	mg/kg	ND	ND	ND	
2-Chlorophenol	NS	mg/kg	ND	ND	ND	
2-Methylnaphthalene	NS	mg/kg	0.099 J	0.12 J	0.078 J	
2-Methylphenol	100	mg/kg	ND	ND	ND	
2-Nitroaniline	NS	mg/kg	ND	ND	ND	
2-Nitrophenol	NS	mg/kg	ND	ND	ND	
3,3'-Dichlorobenzidine	NS	mg/kg	ND	ND	ND	
3-Methylphenol/4-Methylphenol	100	mg/kg	ND	0.096 J	ND	
3-Nitroaniline	NS	mg/kg	ND	ND	ND	
4,6-Dinitro-o-cresol	NS	mg/kg	ND	ND	ND	

CLIENT SAMPLE ID			TR4-EP-4		TR4-EP-5		TR4-I	EP-6
SAMPLING DATE	NIV DECEDE	#T */	11-JU	L-18	11-JU	L-18	11-JU	L-18
LAB SAMPLE ID	NY-RESRR*	Units	L18263	18-15	L18263	318-12	L18263	18-08
				Qual		Qual		Qual
4-Bromophenyl phenyl ether	NS	mg/kg	ND		ND		ND	
4-Chloroaniline	NS	mg/kg	ND		ND		ND	
4-Chlorophenyl phenyl ether	NS	mg/kg	ND		ND		ND	
4-Nitroaniline	NS	mg/kg	ND		ND		ND	
4-Nitrophenol	NS	mg/kg	ND		ND		ND	
Acenaphthene	100	mg/kg	0.12	J	0.094	J	0.038	J
Acenaphthylene	100	mg/kg	0.15		1		0.071	J
Acetophenone	NS	mg/kg	ND		ND		ND	
Anthracene	100	mg/kg	0.28		0.93		0.13	
Benzo(a)anthracene	1	mg/kg						
Benzo(a)anthracene	1	mg/kg	1.2		3.5		0.68	
Benzo(a)pyrene	1	mg/kg						
Benzo(a)pyrene	1	mg/kg	1.7		3.4		1.1	
Benzo(b)fluoranthene	1	mg/kg						
Benzo(b)fluoranthene	1	mg/kg	1.8		4.4		1.3	
Benzo(ghi)perylene	100	mg/kg	1.3		2.4		0.97	
Benzo(k)fluoranthene	3.9	mg/kg	0.65		1.3		0.39	
Benzoic Acid	NS	mg/kg	ND		ND		ND	
Benzyl Alcohol	NS	mg/kg	ND		ND		ND	
Biphenyl	NS	mg/kg	ND		ND		ND	
Bis(2-chloroethoxy)methane	NS	mg/kg	ND		ND		ND	
Bis(2-chloroethyl)ether	NS	mg/kg	ND		ND		ND	
Bis(2-chloroisopropyl)ether	NS	mg/kg	ND		ND		ND	
Bis(2-ethylhexyl)phthalate	NS	mg/kg	0.27		ND		ND	
Butyl benzyl phthalate	NS	mg/kg	0.15	J	ND		ND	
Carbazole	NS	mg/kg	0.15	J	0.4		0.064	J
Chrysene	3.9	mg/kg						
Chrysene	3.9	mg/kg	1		3.2		0.66	
Di-n-butylphthalate	NS	mg/kg	ND		ND		ND	
Di-n-octylphthalate	NS	mg/kg	ND		ND		ND	
Dibenzo(a,h)anthracene	0.33	mg/kg	0.25		0.66		0.21	
Dibenzofuran	59	mg/kg	0.089	J	0.31		0.036	J
Diethyl phthalate	NS	mg/kg	ND		ND		ND	
Dimethyl phthalate	NS	mg/kg	ND		ND		ND	
Fluoranthene	100	mg/kg						
Fluoranthene	100	mg/kg	1.7		7.3		0.76	
Fluorene	100	mg/kg	0.088	J	0.16	J	0.028	J
Hexachlorobenzene	1.2	mg/kg	ND		ND		ND	
Hexachlorobutadiene	NS	mg/kg	ND		ND		ND	
Hexachlorocyclopentadiene	NS	mg/kg	ND		ND		ND	
Hexachloroethane	NS	mg/kg	ND		ND		ND	
Indeno(1,2,3-cd)pyrene	0.5	mg/kg	1.3		2.6		1	

CLIENT SAMPLE ID		Units	TR4-EP-4	TR4-EP-5	TR4-EP-6
SAMPLING DATE	MY DECDD*		11-JUL-18	11-JUL-18	11-JUL-18
LAB SAMPLE ID	NY-RESRR*		L1826318-15	L1826318-12	L1826318-08
			Qual	Qual	Qual
Isophorone	NS	mg/kg	ND	ND	ND
n-Nitrosodi-n-propylamine	NS	mg/kg	ND	ND	ND
Naphthalene	100	mg/kg	0.18	0.26	0.13 J
NDPA/DPA	NS	mg/kg	ND	ND	ND
Nitrobenzene	NS	mg/kg	ND	ND	ND
p-Chloro-m-cresol	NS	mg/kg	ND	ND	ND
Pentachlorophenol	6.7	mg/kg	ND	ND	ND
Phenanthrene	100	mg/kg			
Phenanthrene	100	mg/kg	1.1	4.9	0.46
Phenol	100	mg/kg	ND	0.065 J	ND
Pyrene	100	mg/kg			
Pyrene	100	mg/kg	1.6	6.4	0.7

Notes:

Bold and shaded yellow value indicates concentration exceeds 6 NYCRR Part 375 Restricted Restricted-Residential SCOs

J = Estimated value

E = Concentration exceeds calibration range of the instrument

ND = Not detected

-- = Not analyzed

NS = No standard

* = 6 NYCRR Part 375 Restricted Restricted-Residential Soil Cleanup Objectives

CLIENT SAMPLE ID			TR4-EP-7	TR4-EP-8	TR4-EP-9
SAMPLING DATE	NIV DECDD4	III	11-JUL-18	11-JUL-18	11-JUL-18
LAB SAMPLE ID	NY-RESRR*	Units	L1826318-07	L1826318-11	L1826318-05
			Qual	Qual	Qual
General Chemistry					
Solids, Total	NS	%	89	88.2	91.9
Total Metals					
Aluminum, Total	NS	mg/kg	4860	5390	6640
Antimony, Total	NS	mg/kg	ND	1.1 J	ND
Arsenic, Total	16	mg/kg	7.02	9.81	2.58
Barium, Total	400	mg/kg	70.8	132	29.9
Beryllium, Total	72	mg/kg	0.222 J	0.284 J	0.216 J
Cadmium, Total	4.3	mg/kg	ND	ND	ND
Calcium, Total	NS	mg/kg	10100	10400	3250
Chromium, Total	NS	mg/kg	8.75	11.4	9.67
Cobalt, Total	NS	mg/kg	5.27	5.34	4.3
Copper, Total	270	mg/kg	61.2	93	26.7
Iron, Total	NS	mg/kg	8660	15400	10300
Lead, Total	400	mg/kg	106	324	36.3
Magnesium, Total	NS	mg/kg	2180	2290	2250
Manganese, Total	2000	mg/kg	194	217	89.7
Mercury, Total	0.81	mg/kg	0.274	2.24	0.791
Nickel, Total	310	mg/kg	339	11.9	9.98
Potassium, Total	NS	mg/kg	1190	1120	526
Selenium, Total	180	mg/kg	0.264 J	0.338 J	ND
Silver, Total	180	mg/kg	ND	ND	ND
Sodium, Total	NS	mg/kg	392	520	518
Thallium, Total	NS	mg/kg	ND	ND	ND
Vanadium, Total	NS	mg/kg	14.8	18.9	11.7
Zinc, Total	10000	mg/kg	74.8	196	52.2
Volatile Organic Compounds					
1,1,1,2-Tetrachloroethane	NS	mg/kg	ND	ND	ND
1,1,1-Trichloroethane	100	mg/kg	ND	ND	ND
1,1,2,2-Tetrachloroethane	NS	mg/kg	ND	ND	ND
1,1,2-Trichloroethane	NS	mg/kg	ND	ND	ND
1,1-Dichloroethane	26	mg/kg	ND	ND	ND
1,1-Dichloroethene	100	mg/kg	ND	ND	ND
1,1-Dichloropropene	NS	mg/kg	ND	ND	ND
1,2,3-Trichlorobenzene	NS	mg/kg	ND	ND	ND
1,2,3-Trichloropropane	NS	mg/kg	ND	ND	ND
1,2,4,5-Tetramethylbenzene	NS	mg/kg	ND	ND	ND
1,2,4-Trichlorobenzene	NS	mg/kg	ND	ND	ND
1,2,4-Trimethylbenzene	52	mg/kg	ND	ND	ND
1,2-Dibromo-3-chloropropane	NS	mg/kg	ND	ND	ND
1,2-Dibromoethane	NS	mg/kg	ND	ND	ND
1,2-Dichlorobenzene	100	mg/kg	ND	ND	ND

CLIENT SAMPLE ID			TR4-EP-7	TR4-EP-8	TR4-EP-9
SAMPLING DATE		A.	11-JUL-18	11-JUL-18	11-JUL-18
LAB SAMPLE ID	NY-RESRR*	Units	L1826318-07	L1826318-11	L1826318-05
			Qual	Qual	Qual
1,2-Dichloroethane	3.1	mg/kg	ND	ND	ND
1,2-Dichloroethene, Total	NS	mg/kg	ND	ND	ND
1,2-Dichloropropane	NS	mg/kg	ND	ND	ND
1,3,5-Trimethylbenzene	52	mg/kg	ND	ND	ND
1,3-Dichlorobenzene	49	mg/kg	ND	ND	ND
1,3-Dichloropropane	NS	mg/kg	ND	ND	ND
1,3-Dichloropropene, Total	NS	mg/kg	ND	ND	ND
1,4-Dichlorobenzene	13	mg/kg	ND	ND	ND
1,4-Dioxane	13	mg/kg	ND	ND	ND
2,2-Dichloropropane	NS	mg/kg	ND	ND	ND
2-Butanone	100	mg/kg	ND	ND	ND
2-Hexanone	NS	mg/kg	ND	ND	ND
4-Methyl-2-pentanone	NS	mg/kg	ND	ND	ND
Acetone	100	mg/kg	ND	ND	ND
Acrylonitrile	NS	mg/kg	ND	ND	ND
Benzene	4.8	mg/kg	ND	ND	ND
Bromobenzene	NS	mg/kg	ND	ND	ND
Bromochloromethane	NS	mg/kg	ND	ND	ND
Bromodichloromethane	NS	mg/kg	ND	ND	ND
Bromoform	NS	mg/kg	ND	ND	ND
Bromomethane	NS	mg/kg	ND	0.00068 J	ND
Carbon disulfide	NS	mg/kg	ND	ND	ND
Carbon tetrachloride	2.4	mg/kg	ND	ND	ND
Chlorobenzene	100	mg/kg	ND	ND	ND
Chloroethane	NS	mg/kg	ND	ND	ND
Chloroform	49	mg/kg	ND	ND	ND
Chloromethane	NS	mg/kg	ND	ND	ND
cis-1,2-Dichloroethene	100	mg/kg	ND	ND	ND
cis-1,3-Dichloropropene	NS	mg/kg	ND	ND	ND
Dibromochloromethane	NS	mg/kg	ND	ND	ND
Dibromomethane	NS	mg/kg	ND	ND	ND
Dichlorodifluoromethane	NS	mg/kg	ND	ND	ND
Ethyl ether	NS	mg/kg	ND	ND	ND
Ethylbenzene	41	mg/kg	ND	ND	ND
Hexachlorobutadiene	NS	mg/kg	ND	ND	ND
Isopropylbenzene	NS	mg/kg	ND	ND	ND
Methyl tert butyl ether	100	mg/kg	ND	ND	ND
Methylene chloride	100	mg/kg	ND	ND	ND
n-Butylbenzene	100	mg/kg	ND	ND	ND
n-Propylbenzene	100	mg/kg	ND	ND	ND
Naphthalene	100	mg/kg	ND	ND	ND
o-Chlorotoluene	NS	mg/kg	ND	ND	ND

CLIENT SAMPLE ID			TR4-EP-7	TR4-EP-8	TR4-EP-9
SAMPLING DATE		Units	11-JUL-18	11-JUL-18	11-JUL-18
LAB SAMPLE ID	NY-RESRR*		L1826318-07	L1826318-11	L1826318-05
			Qual	Qual	Qual
o-Xylene	NS	mg/kg	ND	ND	ND
p-Chlorotoluene	NS	mg/kg	ND	ND	ND
p-Diethylbenzene	NS	mg/kg	ND	ND	ND
p-Ethyltoluene	NS	mg/kg	ND	ND	ND
p-Isopropyltoluene	NS	mg/kg	ND	ND	ND
p/m-Xylene	NS	mg/kg	ND	ND	ND
sec-Butylbenzene	100	mg/kg	ND	ND	ND
Styrene	NS	mg/kg	ND	ND	ND
tert-Butylbenzene	100	mg/kg	ND	ND	ND
Tetrachloroethene	19	mg/kg	0.00033 J	ND	ND
Toluene	100	mg/kg	ND	ND	ND
trans-1,2-Dichloroethene	100	mg/kg	ND	ND	ND
trans-1,3-Dichloropropene	NS	mg/kg	ND	ND	ND
trans-1,4-Dichloro-2-butene	NS	mg/kg	ND	ND	ND
Trichloroethene	21	mg/kg	ND	ND	ND
Trichlorofluoromethane	NS	mg/kg	ND	ND	ND
Vinyl acetate	NS	mg/kg	ND	ND	ND
Vinyl chloride	0.9	mg/kg	ND	ND	ND
Xylenes, Total	100	mg/kg	ND	ND	ND
Semivolatile Organic Compounds					
1,2,4,5-Tetrachlorobenzene	NS	mg/kg	ND	ND	ND
1,2,4-Trichlorobenzene	NS	mg/kg	ND	ND	ND
1,2-Dichlorobenzene	100	mg/kg	ND	ND	ND
1,3-Dichlorobenzene	49	mg/kg	ND	ND	ND
1,4-Dichlorobenzene	13	mg/kg	ND	ND	ND
2,4,5-Trichlorophenol	NS	mg/kg	ND	ND	ND
2,4,6-Trichlorophenol	NS	mg/kg	ND	ND	ND
2,4-Dichlorophenol	NS	mg/kg	ND	ND	ND
2,4-Dimethylphenol	NS	mg/kg	ND	ND	ND
2,4-Dinitrophenol	NS	mg/kg	ND	ND	ND
2,4-Dinitrotoluene	NS	mg/kg	ND	ND	ND
2,6-Dinitrotoluene	NS	mg/kg	ND	ND	ND
2-Chloronaphthalene	NS	mg/kg	ND	ND	ND
2-Chlorophenol	NS	mg/kg	ND	ND	ND
2-Methylnaphthalene	NS	mg/kg	0.24	0.14 J	0.052 J
2-Methylphenol	100	mg/kg	ND	ND	ND
2-Nitroaniline	NS	mg/kg	ND	ND	ND
2-Nitrophenol	NS	mg/kg	ND	ND	ND
3,3'-Dichlorobenzidine	NS	mg/kg	ND	ND	ND
3-Methylphenol/4-Methylphenol	100	mg/kg	0.058 J	0.11 J	ND
3-Nitroaniline	NS	mg/kg	ND	ND	ND
4,6-Dinitro-o-cresol	NS	mg/kg	ND	ND	ND

CLIENT SAMPLE ID			TR4-EP-7		TR4-EP-8		TR4-EP-9		
SAMPLING DATE	NW DECDDA	TT */	11-JU	L-18	11-JU	L-18	11-JU	L-18	
LAB SAMPLE ID	NY-RESRR*	Units	L18263	18-07	L18263	318-11	L18263	318-05	
				Qual		Qual		Qual	
4-Bromophenyl phenyl ether	NS	mg/kg	ND		ND		ND		
4-Chloroaniline	NS	mg/kg	ND		ND		ND		
4-Chlorophenyl phenyl ether	NS	mg/kg	ND		ND		ND		
4-Nitroaniline	NS	mg/kg	ND		ND		ND		
4-Nitrophenol	NS	mg/kg	ND		ND		ND		
Acenaphthene	100	mg/kg	0.35		0.34		0.16		
Acenaphthylene	100	mg/kg	0.36		0.097	J	0.11	J	
Acetophenone	NS	mg/kg	ND		ND		ND		
Anthracene	100	mg/kg	3		0.78		0.45		
Benzo(a)anthracene	1	mg/kg	13						
Benzo(a)anthracene	1	mg/kg	13	E	3.8		1.2		
Benzo(a)pyrene	1	mg/kg	13						
Benzo(a)pyrene	1	mg/kg	10	E	5.7		1		
Benzo(b)fluoranthene	1	mg/kg	15						
Benzo(b)fluoranthene	1	mg/kg	14	E	6.9		1.4		
Benzo(ghi)perylene	100	mg/kg	6.7		4.2		0.75		
Benzo(k)fluoranthene	3.9	mg/kg	2.4		1.3		0.41		
Benzoic Acid	NS	mg/kg	ND		ND		ND		
Benzyl Alcohol	NS	mg/kg	ND		ND		ND		
Biphenyl	NS	mg/kg	0.046	J	ND		ND		
Bis(2-chloroethoxy)methane	NS	mg/kg	ND		ND		ND		
Bis(2-chloroethyl)ether	NS	mg/kg	ND		ND		ND		
Bis(2-chloroisopropyl)ether	NS	mg/kg	ND		ND		ND		
Bis(2-ethylhexyl)phthalate	NS	mg/kg	ND		ND		ND		
Butyl benzyl phthalate	NS	mg/kg	ND		ND		ND		
Carbazole	NS	mg/kg	1.3		0.43		0.25		
Chrysene	3.9	mg/kg	12						
Chrysene	3.9	mg/kg	8.3	E	3.3		1.2		
Di-n-butylphthalate	NS	mg/kg	ND		ND		ND		
Di-n-octylphthalate	NS	mg/kg	ND		ND		ND		
Dibenzo(a,h)anthracene	0.33	mg/kg	2.1		1.5		0.18		
Dibenzofuran	59	mg/kg	0.4		0.18	J	0.11	J	
Diethyl phthalate	NS	mg/kg	ND		ND		ND		
Dimethyl phthalate	NS	mg/kg	ND		ND		ND		
Fluoranthene	100	mg/kg	18						
Fluoranthene	100	mg/kg	14	Е	4		2.4		
Fluorene	100	mg/kg	0.53		0.21		0.15	J	
Hexachlorobenzene	1.2	mg/kg	ND		ND		ND		
Hexachlorobutadiene	NS	mg/kg	ND		ND		ND		
Hexachlorocyclopentadiene	NS	mg/kg	ND		ND		ND		
Hexachloroethane	NS	mg/kg	ND		ND		ND		
Indeno(1,2,3-cd)pyrene	0.5	mg/kg	7.2		4.8		0.77		

CLIENT SAMPLE ID		Units	TR4-EP-7	TR4-EP-8	TR4-EP-9
SAMPLING DATE	MAY DECDD\$		11-JUL-18	11-JUL-18	11-JUL-18
LAB SAMPLE ID	NY-RESRR*		L1826318-07	L1826318-11	L1826318-05
			Qual	Qual	Qual
Isophorone	NS	mg/kg	ND	ND	ND
n-Nitrosodi-n-propylamine	NS	mg/kg	ND	ND	ND
Naphthalene	100	mg/kg	0.36	0.22	0.18
NDPA/DPA	NS	mg/kg	ND	ND	ND
Nitrobenzene	NS	mg/kg	ND	ND	ND
p-Chloro-m-cresol	NS	mg/kg	ND	ND	ND
Pentachlorophenol	6.7	mg/kg	ND	ND	ND
Phenanthrene	100	mg/kg	9.3		
Phenanthrene	100	mg/kg	8 E	2.5	1.7
Phenol	100	mg/kg	0.04 J	ND	ND
Pyrene	100	mg/kg	17		
Pyrene	100	mg/kg	14 E	3.9	2

Notes:

Bold and shaded yellow value indicates concentration exceeds 6 NYCRR Part 375 Restricted Restricted-Residential SCOs

J = Estimated value

E = Concentration exceeds calibration range of the instrument

ND = Not detected

-- = Not analyzed

NS = No standard

* = 6 NYCRR Part 375 Restricted Restricted-Residential Soil Cleanup Objectives

CLIENT SAMPLE ID			DUP_TR4		TR4-E		TR4-E	P-11
SAMPLING DATE	NY-RESRR*	Units	11-JUL	-18	11-JUI	L-18	11-JU	L-18
LAB SAMPLE ID	NI-KESKK"	Cints	L182631	8-06	L18263	18-04	L18263	18-03
				Qual		Qual		Qual
General Chemistry								
Solids, Total	NS	%	92		90.9		91.1	
Total Metals								
Aluminum, Total	NS	mg/kg	7720		7100		5610	
Antimony, Total	NS	mg/kg	ND		ND		ND	
Arsenic, Total	16	mg/kg	2.76		1.89		4.88	
Barium, Total	400	mg/kg	27		43.7		146	
Beryllium, Total	72	mg/kg	0.243	J	0.366	J	0.31	J
Cadmium, Total	4.3	mg/kg	ND		ND		ND	
Calcium, Total	NS	mg/kg	894		1240		5680	
Chromium, Total	NS	mg/kg	10.1		32.2		19.8	
Cobalt, Total	NS	mg/kg	4.3		5.53		7.08	
Copper, Total	270	mg/kg	14.9		16.1		73.2	
Iron, Total	NS	mg/kg	11500		12200		12400	
Lead, Total	400	mg/kg	25.5		12		258	
Magnesium, Total	NS	mg/kg	2050		2210		1760	
Manganese, Total	2000	mg/kg	91.2		279		218	
Mercury, Total	0.81	mg/kg	0.423		0.019	J	0.373	
Nickel, Total	310	mg/kg	9.56		12.8		16.7	
Potassium, Total	NS	mg/kg	476		1020		675	
Selenium, Total	180	mg/kg	ND		ND		ND	
Silver, Total	180	mg/kg	ND		ND		ND	
Sodium, Total	NS	mg/kg	326		333		699	
Thallium, Total	NS	mg/kg	ND		ND		ND	
Vanadium, Total	NS	mg/kg	13.3		19.1		15.6	
Zinc, Total	10000	mg/kg	28.7		24.9		63.2	
Volatile Organic Compounds						<u> </u>		
1,1,1,2-Tetrachloroethane	NS	mg/kg	ND		ND		ND	
1,1,1-Trichloroethane	100	mg/kg	ND		ND		ND	
1,1,2,2-Tetrachloroethane	NS	mg/kg	ND		ND		ND	
1,1,2-Trichloroethane	NS	mg/kg	ND		ND		ND	
1,1-Dichloroethane	26	mg/kg	ND		ND		ND	
1,1-Dichloroethene	100	mg/kg	ND		ND		ND	
1,1-Dichloropropene	NS	mg/kg	ND		ND		ND	
1,2,3-Trichlorobenzene	NS	mg/kg	ND		ND		ND	
1,2,3-Trichloropropane	NS	mg/kg	ND		ND		ND	
1,2,4,5-Tetramethylbenzene	NS	mg/kg	ND		ND		ND	
1,2,4-Trichlorobenzene	NS	mg/kg	ND		ND		ND	
1,2,4-Trimethylbenzene	52	mg/kg	ND		ND		ND	
1,2-Dibromo-3-chloropropane	NS	mg/kg	ND		ND		ND	
1,2-Dibromoethane	NS	mg/kg	ND		ND		ND	
1,2-Dichlorobenzene	100	mg/kg	ND		ND		ND	
,	100				_			

CLIENT SAMPLE ID			DUP_TR4-EP-9	TR4-EP-10	TR4-EP-11
SAMPLING DATE	NW DECDD	#T */	11-JUL-18	11-JUL-18	11-JUL-18
LAB SAMPLE ID	NY-RESRR*	Units	L1826318-06	L1826318-04	L1826318-03
			Qual	Qual	Qual
1,2-Dichloroethane	3.1	mg/kg	ND	ND	ND
1,2-Dichloroethene, Total	NS	mg/kg	ND	ND	ND
1,2-Dichloropropane	NS	mg/kg	ND	ND	ND
1,3,5-Trimethylbenzene	52	mg/kg	ND	ND	ND
1,3-Dichlorobenzene	49	mg/kg	ND	ND	ND
1,3-Dichloropropane	NS	mg/kg	ND	ND	ND
1,3-Dichloropropene, Total	NS	mg/kg	ND	ND	ND
1,4-Dichlorobenzene	13	mg/kg	ND	ND	ND
1,4-Dioxane	13	mg/kg	ND	ND	ND
2,2-Dichloropropane	NS	mg/kg	ND	ND	ND
2-Butanone	100	mg/kg	ND	ND	ND
2-Hexanone	NS	mg/kg	ND	ND	ND
4-Methyl-2-pentanone	NS	mg/kg	ND	ND	ND
Acetone	100	mg/kg	ND	ND	ND
Acrylonitrile	NS	mg/kg	ND	ND	ND
Benzene	4.8	mg/kg	ND	ND	ND
Bromobenzene	NS	mg/kg	ND	ND	ND
Bromochloromethane	NS	mg/kg	ND	ND	ND
Bromodichloromethane	NS	mg/kg	ND	ND	ND
Bromoform	NS	mg/kg	ND	ND	ND
Bromomethane	NS	mg/kg	ND	ND	ND
Carbon disulfide	NS	mg/kg	ND	ND	ND
Carbon tetrachloride	2.4	mg/kg	ND	ND	ND
Chlorobenzene	100	mg/kg	ND	ND	ND
Chloroethane	NS	mg/kg	ND	ND	ND
Chloroform	49	mg/kg	ND	ND	ND
Chloromethane	NS	mg/kg	ND	ND	ND
cis-1,2-Dichloroethene	100	mg/kg	ND	ND	ND
cis-1,3-Dichloropropene	NS	mg/kg	ND	ND	ND
Dibromochloromethane	NS	mg/kg	ND	ND	ND
Dibromomethane	NS	mg/kg	ND	ND	ND
Dichlorodifluoromethane	NS	mg/kg	ND	ND	ND
Ethyl ether	NS	mg/kg	ND	ND	ND
Ethylbenzene	41	mg/kg	ND	ND	ND
Hexachlorobutadiene	NS	mg/kg	ND	ND	ND
Isopropylbenzene	NS	mg/kg	ND	ND	ND
Methyl tert butyl ether	100	mg/kg	ND	ND	ND
Methylene chloride	100	mg/kg	ND	ND	ND
n-Butylbenzene	100	mg/kg	ND	ND	ND
n-Propylbenzene	100	mg/kg	ND	ND	ND
Naphthalene	100	mg/kg	ND	ND	ND
o-Chlorotoluene	NS	mg/kg	ND	ND	ND

CLIENT SAMPLE ID			DUP_TR4-EP-9	TR4-EP-10	TR4-EP-11
SAMPLING DATE			11-JUL-18	11-JUL-18	11-JUL-18
LAB SAMPLE ID	NY-RESRR*	Units	L1826318-06	L1826318-04	L1826318-03
			Qual	Qual	Qual
o-Xylene	NS	mg/kg	ND	ND	ND
p-Chlorotoluene	NS	mg/kg	ND	ND	ND
p-Diethylbenzene	NS	mg/kg	ND	ND	ND
p-Ethyltoluene	NS	mg/kg	ND	ND	ND
p-Isopropyltoluene	NS	mg/kg	ND	ND	ND
p/m-Xylene	NS	mg/kg	ND	ND	ND
sec-Butylbenzene	100	mg/kg	ND	ND	ND
Styrene	NS	mg/kg	ND	ND	ND
tert-Butylbenzene	100	mg/kg	ND	ND	ND
Tetrachloroethene	19	mg/kg	ND	ND	ND
Toluene	100	mg/kg	ND	ND	ND
trans-1,2-Dichloroethene	100	mg/kg	ND	ND	ND
trans-1,3-Dichloropropene	NS	mg/kg	ND	ND	ND
trans-1,4-Dichloro-2-butene	NS	mg/kg	ND	ND	ND
Trichloroethene	21	mg/kg	ND	ND	ND
Trichlorofluoromethane	NS	mg/kg	ND	ND	ND
Vinyl acetate	NS	mg/kg	ND	ND	ND
Vinyl chloride	0.9	mg/kg	ND	ND	ND
Xylenes, Total	100	mg/kg	ND	ND	ND
Semivolatile Organic Compounds					
1,2,4,5-Tetrachlorobenzene	NS	mg/kg	ND	ND	ND
1,2,4-Trichlorobenzene	NS	mg/kg	ND	ND	ND
1,2-Dichlorobenzene	100	mg/kg	ND	ND	ND
1,3-Dichlorobenzene	49	mg/kg	ND	ND	ND
1,4-Dichlorobenzene	13	mg/kg	ND	ND	ND
2,4,5-Trichlorophenol	NS	mg/kg	ND	ND	ND
2,4,6-Trichlorophenol	NS	mg/kg	ND	ND	ND
2,4-Dichlorophenol	NS	mg/kg	ND	ND	ND
2,4-Dimethylphenol	NS	mg/kg	ND	ND	ND
2,4-Dinitrophenol	NS	mg/kg	ND	ND	ND
2,4-Dinitrotoluene	NS	mg/kg	ND	ND	ND
2,6-Dinitrotoluene	NS	mg/kg	ND	ND	ND
2-Chloronaphthalene	NS	mg/kg	ND	ND	ND
2-Chlorophenol	NS	mg/kg	ND	ND	ND
2-Methylnaphthalene	NS	mg/kg	0.025 J	ND	0.069 J
2-Methylphenol	100	mg/kg	ND	ND	ND
2-Nitroaniline	NS	mg/kg	ND	ND	ND
2-Nitrophenol	NS	mg/kg	ND	ND	ND
3,3'-Dichlorobenzidine	NS	mg/kg	ND	ND	ND
3-Methylphenol/4-Methylphenol	100	mg/kg	ND	ND	0.033 J
3-Nitroaniline	NS	mg/kg	ND	ND	ND
4,6-Dinitro-o-cresol	NS	mg/kg	ND	ND	ND

CLIENT SAMPLE ID			DUP TR4-EP	-9	TR4-EP-10	TR4-EP-11	
SAMPLING DATE	NW DECDD4	TT */	11-JUL-18		11-JUL-18	11-JUI	L-18
LAB SAMPLE ID	NY-RESRR*	Units	L1826318-00	6	L1826318-04	L18263	18-03
			Q	ual	Qual		Qual
4-Bromophenyl phenyl ether	NS	mg/kg	ND		ND	ND	
4-Chloroaniline	NS	mg/kg	ND		ND	ND	
4-Chlorophenyl phenyl ether	NS	mg/kg	ND		ND	ND	
4-Nitroaniline	NS	mg/kg	ND		ND	ND	
4-Nitrophenol	NS	mg/kg	ND		ND	ND	
Acenaphthene	100	mg/kg	0.12	J	ND	0.096	J
Acenaphthylene	100	mg/kg	0.038	J	ND	0.18	
Acetophenone	NS	mg/kg	ND		ND	ND	
Anthracene	100	mg/kg	0.26		ND	0.33	
Benzo(a)anthracene	1	mg/kg					
Benzo(a)anthracene	1	mg/kg	0.69		ND	1.1	
Benzo(a)pyrene	1	mg/kg					
Benzo(a)pyrene	1	mg/kg	0.56		ND	1	
Benzo(b)fluoranthene	1	mg/kg					
Benzo(b)fluoranthene	1	mg/kg	0.78		ND	1.3	
Benzo(ghi)perylene	100	mg/kg	0.38		ND	0.81	
Benzo(k)fluoranthene	3.9	mg/kg	0.22		ND	0.42	
Benzoic Acid	NS	mg/kg	ND		ND	ND	
Benzyl Alcohol	NS	mg/kg	ND		ND	ND	
Biphenyl	NS	mg/kg	ND		ND	ND	
Bis(2-chloroethoxy)methane	NS	mg/kg	ND		ND	ND	
Bis(2-chloroethyl)ether	NS	mg/kg	ND		ND	ND	
Bis(2-chloroisopropyl)ether	NS	mg/kg	ND		ND	ND	
Bis(2-ethylhexyl)phthalate	NS	mg/kg	ND		ND	ND	
Butyl benzyl phthalate	NS	mg/kg	ND		ND	ND	
Carbazole	NS	mg/kg	0.13	J	ND	0.18	
Chrysene	3.9	mg/kg					
Chrysene	3.9	mg/kg	0.63		ND	0.99	
Di-n-butylphthalate	NS	mg/kg	ND		ND	ND	
Di-n-octylphthalate	NS	mg/kg	ND		ND	ND	
Dibenzo(a,h)anthracene	0.33	mg/kg	0.091	J	ND	0.21	
Dibenzofuran	59	mg/kg	0.061	J	ND	0.089	J
Diethyl phthalate	NS	mg/kg	ND		ND	ND	
Dimethyl phthalate	NS	mg/kg	ND		ND	ND	
Fluoranthene	100	mg/kg					
Fluoranthene	100	mg/kg	1.4		ND	1.6	
Fluorene	100	mg/kg	0.1	J	ND	0.14	J
Hexachlorobenzene	1.2	mg/kg	ND		ND	ND	
Hexachlorobutadiene	NS	mg/kg	ND		ND	ND	
Hexachlorocyclopentadiene	NS	mg/kg	ND		ND	ND	
Hexachloroethane	NS	mg/kg	ND		ND	ND	
Indeno(1,2,3-cd)pyrene	0.5	mg/kg	0.39		ND	0.87	

CLIENT SAMPLE ID			DUP_TR4	4-EP-9	TR4-EP-1	0	TR4-E	P-11
SAMPLING DATE	NIV DECDD*	MV DECDD\$ II		11-JUL-18		11-JUL-18		L-18
LAB SAMPLE ID	NY-RESRR*	Units	L182631	18-06	L1826318-0	04	L18263	18-03
				Qual	Qı	ual		Qual
Isophorone	NS	mg/kg	ND		ND		ND	
n-Nitrosodi-n-propylamine	NS	mg/kg	ND		ND		ND	
Naphthalene	100	mg/kg	0.072	J	ND		0.076	J
NDPA/DPA	NS	mg/kg	ND		ND		ND	
Nitrobenzene	NS	mg/kg	ND		ND		ND	
p-Chloro-m-cresol	NS	mg/kg	ND		ND		ND	
Pentachlorophenol	6.7	mg/kg	ND		ND		ND	
Phenanthrene	100	mg/kg						
Phenanthrene	100	mg/kg	1		ND		1.4	
Phenol	100	mg/kg	ND		ND		0.055	J
Pyrene	100	mg/kg						
Pyrene	100	mg/kg	1.1		0.018	J	1.5	

Notes:

Bold and shaded yellow value indicates concentration exceeds 6 NYCRR Part 375 Restricted Restricted-Residential SCOs

J = Estimated value

E = Concentration exceeds calibration range of the instrument

ND = Not detected

-- = Not analyzed

NS = No standard

* = 6 NYCRR Part 375 Restricted Restricted-Residential Soil Cleanup Objectives

Final	Engineering	Report
i iiiai	Linginieening	report

CLIENT SAMPLE ID			SW-EP-14	DUP_SW-EP-14	SW-EP-13
SAMPLING DATE	MY DECDD*	TI•4	11-JUL-18	11-JUL-18	12-JUL-18
LAB SAMPLE ID	NY-RESRR*	Units	L1826318-01	L1826318-02	L1826576-01
			Qual	Qual	Qua
General Chemistry					
Solids, Total	NS	%	94.3	92.6	85.9
Total Metals					
Aluminum, Total	NS	mg/kg	6390	6330	5440
Antimony, Total	NS	mg/kg	ND	ND	0.668 J
Arsenic, Total	16	mg/kg	3.41	2.76	3.56
Barium, Total	400	mg/kg	30.6	32.6	35.6
Beryllium, Total	72	mg/kg	0.234 J	0.223 J	0.285 J
Cadmium, Total	4.3	mg/kg	ND	ND	0.463 J
Calcium, Total	NS	mg/kg	1120	1580	5600
Chromium, Total	NS	mg/kg	8.99	9	9.22
Cobalt, Total	NS	mg/kg	5.91	5.22	6.59
Copper, Total	270	mg/kg	13.8	12	11.7
Iron, Total	NS	mg/kg	11300	11000	11200
Lead, Total	400	mg/kg	56.2	71.8	20.7
Magnesium, Total	NS	mg/kg	2690	2910	7660
Manganese, Total	2000	mg/kg	93.1	107	159
Mercury, Total	0.81	mg/kg	0.072	0.095	0.07 J
Nickel, Total	310	mg/kg	13.5	12.3	70.9
Potassium, Total	NS	mg/kg	374	383	419
Selenium, Total	180	mg/kg	ND	ND	ND
Silver, Total	180	mg/kg	ND	ND	ND
Sodium, Total	NS	mg/kg	491	404	669
Thallium, Total	NS	mg/kg	ND	ND	ND
Vanadium, Total	NS	mg/kg	11.4	11.9	14.3
Zinc, Total	10000	mg/kg	42.3	55.6	49
Volatile Organic Compounds					
1,1,1,2-Tetrachloroethane	NS	mg/kg	ND	ND	ND
1,1,1-Trichloroethane	100	mg/kg	ND	ND	ND
1,1,2,2-Tetrachloroethane	NS	mg/kg	ND	ND	ND
1,1,2-Trichloroethane	NS	mg/kg	ND	ND	ND
1,1-Dichloroethane	26	mg/kg	ND	ND	ND
1,1-Dichloroethene	100	mg/kg	ND	ND	ND
1,1-Dichloropropene	NS	mg/kg	ND	ND	ND
1,2,3-Trichlorobenzene	NS	mg/kg	ND	ND	ND
1,2,3-Trichloropropane	NS	mg/kg	ND	ND	ND
1,2,4,5-Tetramethylbenzene	NS	mg/kg	ND	ND	ND
1,2,4-Trichlorobenzene	NS	mg/kg	ND	ND	ND
1,2,4-Trimethylbenzene	52	mg/kg	ND	ND	ND
1,2-Dibromo-3-chloropropane	NS	mg/kg	ND	ND	ND
1,2-Dibromoethane	NS	mg/kg	ND	ND	ND
1,2-Dichlorobenzene	100	mg/kg	ND	ND	ND

CLIENT SAMPLE ID			SW-EP-14	DUP_SW-EP-14	SW-EP-13
SAMPLING DATE	NIV DECDD*	TI•4	11-JUL-18	11-JUL-18	12-JUL-18
LAB SAMPLE ID	NY-RESRR*	Units	L1826318-01	L1826318-02	L1826576-01
			Qual	Qual	Qual
1,2-Dichloroethane	3.1	mg/kg	ND	ND	ND
1,2-Dichloroethene, Total	NS	mg/kg	ND	ND	ND
1,2-Dichloropropane	NS	mg/kg	ND	ND	ND
1,3,5-Trimethylbenzene	52	mg/kg	ND	ND	ND
1,3-Dichlorobenzene	49	mg/kg	ND	ND	ND
1,3-Dichloropropane	NS	mg/kg	ND	ND	ND
1,3-Dichloropropene, Total	NS	mg/kg	ND	ND	ND
1,4-Dichlorobenzene	13	mg/kg	ND	ND	ND
1,4-Dioxane	13	mg/kg	ND	ND	ND
2,2-Dichloropropane	NS	mg/kg	ND	ND	ND
2-Butanone	100	mg/kg	ND	ND	ND
2-Hexanone	NS	mg/kg	ND	ND	ND
4-Methyl-2-pentanone	NS	mg/kg	ND	ND	ND
Acetone	100	mg/kg	ND	ND	ND
Acrylonitrile	NS	mg/kg	ND	ND	ND
Benzene	4.8	mg/kg	ND	ND	ND
Bromobenzene	NS	mg/kg	ND	ND	ND
Bromochloromethane	NS	mg/kg	ND	ND	ND
Bromodichloromethane	NS	mg/kg	ND	ND	ND
Bromoform	NS	mg/kg	ND	ND	ND
Bromomethane	NS	mg/kg	ND	ND	ND
Carbon disulfide	NS	mg/kg	ND	ND	ND
Carbon tetrachloride	2.4	mg/kg	ND	ND	ND
Chlorobenzene	100	mg/kg	ND	ND	ND
Chloroethane	NS	mg/kg	ND	ND	ND
Chloroform	49	mg/kg	0.0007 J	0.00095 J	ND
Chloromethane	NS	mg/kg	ND	ND	ND
cis-1,2-Dichloroethene	100	mg/kg	ND	ND	ND
cis-1,3-Dichloropropene	NS	mg/kg	ND	ND	ND
Dibromochloromethane	NS	mg/kg	ND	ND	ND
Dibromomethane	NS	mg/kg	ND	ND	ND
Dichlorodifluoromethane	NS	mg/kg	ND	ND	ND
Ethyl ether	NS	mg/kg	ND	ND	ND
Ethylbenzene	41	mg/kg	ND	ND	ND
Hexachlorobutadiene	NS	mg/kg	ND	ND	ND
Isopropylbenzene	NS	mg/kg	ND	ND	ND
Methyl tert butyl ether	100	mg/kg	ND	ND	ND
Methylene chloride	100	mg/kg	ND	ND	ND
n-Butylbenzene	100	mg/kg	ND	ND	ND
n-Propylbenzene	100	mg/kg	ND	ND	ND
Naphthalene	100	mg/kg	ND	ND	ND
o-Chlorotoluene	NS	mg/kg	ND	ND	ND
	1,15	~~~5/ ** 5	1.2		1.2

CLIENT SAMPLE ID			SW-EP-14	DUP SW-EP-14	SW-EP-13
SAMPLING DATE			11-JUL-18	11-JUL-18	12-JUL-18
LAB SAMPLE ID	NY-RESRR*	Units	L1826318-01	L1826318-02	L1826576-01
			Qual	Qual	Qual
o-Xylene	NS	mg/kg	ND	ND	ND
p-Chlorotoluene	NS	mg/kg	ND	ND	ND
p-Diethylbenzene	NS	mg/kg	ND	ND	ND
p-Ethyltoluene	NS	mg/kg	ND	ND	ND
p-Isopropyltoluene	NS	mg/kg	ND	ND	ND
p/m-Xylene	NS	mg/kg	0.00065 J	ND	ND
sec-Butylbenzene	100	mg/kg	ND	ND	ND
Styrene	NS	mg/kg	ND	ND	ND
tert-Butylbenzene	100	mg/kg	ND	ND	ND
Tetrachloroethene	19	mg/kg	ND	ND	ND
Toluene	100	mg/kg	ND	ND	ND
trans-1,2-Dichloroethene	100	mg/kg	ND	ND	ND
trans-1,3-Dichloropropene	NS	mg/kg	ND	ND	ND
trans-1,4-Dichloro-2-butene	NS	mg/kg	ND	ND	ND
Trichloroethene	21	mg/kg	ND	ND	ND
Trichlorofluoromethane	NS	mg/kg	ND	ND	ND
Vinyl acetate	NS	mg/kg	ND	ND	ND
Vinyl chloride	0.9	mg/kg	ND	ND	ND
Xylenes, Total	100	mg/kg	0.00065 J	ND	ND
Semivolatile Organic Compounds					
1,2,4,5-Tetrachlorobenzene	NS	mg/kg	ND	ND	ND
1,2,4-Trichlorobenzene	NS	mg/kg	ND	ND	ND
1,2-Dichlorobenzene	100	mg/kg	ND	ND	ND
1,3-Dichlorobenzene	49	mg/kg	ND	ND	ND
1,4-Dichlorobenzene	13	mg/kg	ND	ND	ND
2,4,5-Trichlorophenol	NS	mg/kg	ND	ND	ND
2,4,6-Trichlorophenol	NS	mg/kg	ND	ND	ND
2,4-Dichlorophenol	NS	mg/kg	ND	ND	ND
2,4-Dimethylphenol	NS	mg/kg	ND	ND	ND
2,4-Dinitrophenol	NS	mg/kg	ND	ND	ND
2,4-Dinitrotoluene	NS	mg/kg	ND	ND	ND
2,6-Dinitrotoluene	NS	mg/kg	ND	ND	ND
2-Chloronaphthalene	NS	mg/kg	ND	ND	ND
2-Chlorophenol	NS	mg/kg	ND	ND	ND
2-Methylnaphthalene	NS	mg/kg	ND	ND	ND
2-Methylphenol	100	mg/kg	ND	ND	ND
2-Nitroaniline	NS	mg/kg	ND	ND	ND
2-Nitrophenol	NS	mg/kg	ND	ND	ND
3,3'-Dichlorobenzidine	NS	mg/kg	ND	ND	ND
3-Methylphenol/4-Methylphenol	100	mg/kg	ND	ND	ND
3-Nitroaniline	NS	mg/kg	ND	ND	ND
4,6-Dinitro-o-cresol	NS	mg/kg	ND	ND	ND

CLIENT SAMPLE ID			SW-EP-14	DUP_SW-EP-14	SW-EP-13
SAMPLING DATE	NIV DECDD*	TI*4	11-JUL-18	11-JUL-18	12-JUL-18
LAB SAMPLE ID	NY-RESRR*	Units	L1826318-01	L1826318-02	L1826576-01
			Qual	Qual	Qual
4-Bromophenyl phenyl ether	NS	mg/kg	ND	ND	ND
4-Chloroaniline	NS	mg/kg	ND	ND	ND
4-Chlorophenyl phenyl ether	NS	mg/kg	ND	ND	ND
4-Nitroaniline	NS	mg/kg	ND	ND	ND
4-Nitrophenol	NS	mg/kg	ND	ND	ND
Acenaphthene	100	mg/kg	ND	ND	ND
Acenaphthylene	100	mg/kg	ND	ND	ND
Acetophenone	NS	mg/kg	ND	ND	ND
Anthracene	100	mg/kg	ND	ND	ND
Benzo(a)anthracene	1	mg/kg			
Benzo(a)anthracene	1	mg/kg	ND	ND	ND
Benzo(a)pyrene	1	mg/kg	ND	ND	ND
Benzo(b)fluoranthene	1	mg/kg			
Benzo(b)fluoranthene	1	mg/kg	ND	ND	ND
Benzo(ghi)perylene	100	mg/kg	ND	ND	ND
Benzo(k)fluoranthene	3.9	mg/kg	ND	ND	ND
Benzoic Acid	NS	mg/kg	ND	ND	ND
Benzyl Alcohol	NS	mg/kg	ND	ND	ND
Biphenyl	NS	mg/kg	ND	ND	ND
Bis(2-chloroethoxy)methane	NS	mg/kg	ND	ND	ND
Bis(2-chloroethyl)ether	NS	mg/kg	ND	ND	ND
Bis(2-chloroisopropyl)ether	NS	mg/kg	ND	ND	ND
Bis(2-ethylhexyl)phthalate	NS	mg/kg	ND	ND	ND
Butyl benzyl phthalate	NS	mg/kg	ND	ND	ND
Carbazole	NS	mg/kg	ND	ND	ND
Chrysene	3.9	mg/kg	ND	ND	ND
Di-n-butylphthalate	NS	mg/kg	ND	ND	ND
Di-n-octylphthalate	NS	mg/kg	ND	ND	ND
Dibenzo(a,h)anthracene	0.33	mg/kg	ND	ND	ND
Dibenzofuran	59	mg/kg	ND	ND	ND
Diethyl phthalate	NS	mg/kg	ND	ND	ND
Dimethyl phthalate	NS	mg/kg	ND	ND	ND
Fluoranthene	100	mg/kg			
Fluoranthene	100	mg/kg	ND	ND	ND
Fluorene	100	mg/kg	ND	ND	ND
Hexachlorobenzene	1.2	mg/kg	ND	ND	ND
Hexachlorobutadiene	NS	mg/kg	ND	ND	ND
Hexachlorocyclopentadiene	NS	mg/kg	ND	ND	ND
Hexachloroethane	NS	mg/kg	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.5	mg/kg	ND	ND	ND
Isophorone	NS	mg/kg	ND	ND	ND
n-Nitrosodi-n-propylamine	NS	mg/kg	ND	ND	ND

Final	Engin	eering	R	eport
			_	

CLIENT SAMPLE ID			SW-EP-14	DUP_SW-EP-14	SW-EP-13	
SAMPLING DATE	NY-RESRR*	TI•4	11-JUL-18	11-JUL-18	12-JUL-18	
LAB SAMPLE ID	NY-KESKK"	Units	L1826318-01	L1826318-02	L1826576-01	
			Qual	Qual	Qual	
Naphthalene	100	mg/kg	ND	ND	ND	
NDPA/DPA	NS	mg/kg	ND	ND	ND	
Nitrobenzene	NS	mg/kg	ND	ND	ND	
p-Chloro-m-cresol	NS	mg/kg	ND	ND	ND	
Pentachlorophenol	6.7	mg/kg	ND	ND	ND	
Phenanthrene	100	mg/kg				
Phenanthrene	100	mg/kg	ND	ND	ND	
Phenol	100	mg/kg	ND	ND	ND	
Pyrene	100	mg/kg				
Pyrene	100	mg/kg	ND	ND	ND	

Notes:

Bold and shaded yellow value indicates concentration exceeds 6 NYCRR Part 375 Restricted Restricted-Residential SCOs

J = Estimated value

E = Concentration exceeds calibration range of the instrument

ND = Not detected

-- = Not analyzed

NS = No standard

* = 6 NYCRR Part 375 Restricted Restricted-Residential Soil Cleanup Objectives

Einal	Engino	orina	Donort
riiidi	cligille	ering	Report

Name	CLIENT SAMPLE ID			SW-EP-	12	SW-EI	P-11	SW-E	P-10
Care	SAMPLING DATE	NW DECDDA	TT */	12-JUL-18		13-JUL-18		16-JU	L-18
Solids, Total	LAB SAMPLE ID	NY-RESRR*	Units	L1826576	-02	L182679	96-01	L18270	14-01
Solids, Total				(Qual		Qual		Qual
NS mg/kg 2.16	General Chemistry	•							
Aluminum, Total	Solids, Total	NS	%	83.1		90.4		82.6	
Antimony, Total	Total Metals	•					•		
Arsenic, Total 16 mg/kg 4.77 6.21 8.79	Aluminum, Total	NS	mg/kg	4160		5680		4750	
Barium, Total	Antimony, Total	NS	mg/kg	2.16	J	1.34	J	ND	
Beryllium, Total	Arsenic, Total	16	mg/kg	4.77		6.21		8.79	
Cadmium, Total 4.3 mg/kg 0.581 J 0.509 J 0.246 J Calcium, Total NS mg/kg 1650 6630 4450 Chromium, Total NS mg/kg 10.5 14.6 9.55 Cobalt, Total NS mg/kg 5 5.64 6.62 Copper, Total 270 mg/kg 24.9 25.5 37.4 Iron, Total NS mg/kg 12900 11000 9380 Lead, Total 400 mg/kg 1135 223 362 Magnesium, Total NS mg/kg 1150 223 362 Magnesium, Total NS mg/kg 1750 1630 755 Manganesc, Total 2000 mg/kg 14.6 13.8 15.6 Mercury, Total 0.81 mg/kg 11.6 13.8 15.6 Potassium, Total 180 mg/kg 918 776 532 Selenium, Total 180	Barium, Total	400	mg/kg	57.9		271		146	
Calcium, Total	Beryllium, Total	72	mg/kg	0.257	J	0.404	J	0.464	
Chromium, Total NS mg/kg 10.5 14.6 9.55 Cobalt, Total NS mg/kg 5 5.64 6.62 Copper, Total 270 mg/kg 24.9 25.5 37.4 Iron, Total NS mg/kg 12900 11000 9380 Lead, Total 400 mg/kg 135 223 362 Magnesium, Total NS mg/kg 1750 1630 755 Manganese, Total 2000 mg/kg 240 233 68.4 Mercury, Total 0.81 mg/kg 1.05 0.303 0.488 Nickel, Total 310 mg/kg 11.6 13.8 15.6 Potassium, Total NS mg/kg 918 776 532 Selenium, Total 180 mg/kg 0.286 J 0.281 J 0.492 J Silver, Total 180 mg/kg ND ND ND ND Valutium, Total <	Cadmium, Total	4.3	mg/kg	0.581	J	0.509	J	0.246	J
Cobalt, Total NS mg/kg 5 5.64 6.62 Copper, Total 270 mg/kg 24.9 25.5 37.4 Iron, Total NS mg/kg 12900 11000 9380 Lead, Total 400 mg/kg 135 223 362 Magnesium, Total NS mg/kg 1750 1630 755 Manganese, Total 2000 mg/kg 240 233 68.4 Mercury, Total 0.81 mg/kg 1.05 0.303 0.488 Nickel, Total 310 mg/kg 11.6 13.8 15.6 Potassium, Total NS mg/kg 11.6 13.8 15.6 Potassium, Total NS mg/kg 918 776 532 Selenium, Total NS mg/kg 918 776 532 Silver, Total 180 mg/kg ND ND ND Sodium, Total NS mg/kg ND ND <td< td=""><td>Calcium, Total</td><td>NS</td><td>mg/kg</td><td>1650</td><td></td><td>6630</td><td></td><td>4450</td><td></td></td<>	Calcium, Total	NS	mg/kg	1650		6630		4450	
Copper, Total 270 mg/kg 24.9 25.5 37.4 Iron, Total NS mg/kg 12900 11000 9380 Lead, Total 400 mg/kg 135 223 362 Magnesium, Total NS mg/kg 1750 1630 755 Manganese, Total 2000 mg/kg 240 233 68.4 Mercury, Total 0.81 mg/kg 1.05 0.303 0.488 Nickel, Total 310 mg/kg 11.6 13.8 15.6 Potassium, Total NS mg/kg 918 776 532 Selenium, Total 180 mg/kg 0.286 J 0.281 J 0.492 J Silver, Total 180 mg/kg ND ND ND Sodium, Total NS mg/kg ND ND ND Sodium, Total NS mg/kg ND ND ND Vanadium, Total NS mg/kg 14.3 20.3 20.9 Zinc, Total 10000 mg/kg 92.4 58.1 67.4 Volatile Organic Compounds 1.1,1.2-Tetrachloroethane 100 mg/kg ND ND ND 1,1,2-Trichloroethane NS mg/kg ND ND ND 1,1,2-Trichloroethane 100 mg/kg ND ND ND 1,1-Dichloroethane 26 mg/kg ND ND ND 1,1-Dichloroethene 100 mg/kg ND ND ND 1,1-Dichloroptopene NS mg/kg ND ND ND 1,2,3-Trichloroptopene NS mg/kg ND ND ND 1,2,3-Trichloroptopene NS mg/kg ND ND ND 1,2,4-Trimethylbenzene NS mg/kg ND ND ND 1,2,0-Dibromoethane NS mg/kg ND N	Chromium, Total	NS	mg/kg	10.5		14.6		9.55	
Iron, Total	Cobalt, Total	NS	mg/kg	5		5.64		6.62	
Iron, Total	Copper, Total	270	mg/kg	24.9		25.5		37.4	
Lead, Total	**	NS				11000		9380	
Magnesium, Total NS mg/kg 1750 1630 755 Manganese, Total 2000 mg/kg 240 233 68.4 Mercury, Total 0.81 mg/kg 1.05 0.303 0.488 Nickel, Total 310 mg/kg 11.6 13.8 15.6 Potassium, Total NS mg/kg 918 776 532 Selenium, Total 180 mg/kg 0.286 J 0.281 J 0.492 J Silver, Total 180 mg/kg ND ND ND ND Sodium, Total NS mg/kg ND ND ND ND Sodium, Total NS mg/kg ND ND ND ND Valatium, Total NS mg/kg ND ND ND ND Valatium, Total NS mg/kg ND ND </td <td></td> <td>+</td> <td></td> <td>135</td> <td></td> <td>223</td> <td></td> <td>362</td> <td></td>		+		135		223		362	
Manganese, Total 2000 mg/kg 240 233 68.4 Mercury, Total 0.81 mg/kg 1.05 0.303 0.488 Nickel, Total 310 mg/kg 11.6 13.8 15.6 Potassium, Total NS mg/kg 918 776 532 Selenium, Total 180 mg/kg 0.286 J 0.281 J 0.492 J Silver, Total 180 mg/kg ND ND ND ND Sodium, Total NS mg/kg ND ND ND ND Vanadium, Total NS mg/kg ND ND ND ND Vanidium, Total NS mg/kg ND ND ND ND Vanidium, Total NS mg/kg ND ND<	Magnesium, Total	NS		1750		1630		755	
Mercury, Total 0.81 mg/kg 1.05 0.303 0.488 Nickel, Total 310 mg/kg 11.6 13.8 15.6 Potassium, Total NS mg/kg 918 776 532 Selenium, Total 180 mg/kg 0.286 J 0.281 J 0.492 J Silver, Total 180 mg/kg ND ND ND ND Sodium, Total NS mg/kg 785 909 1150 ND ND <td></td> <td>2000</td> <td></td> <td></td> <td></td> <td>233</td> <td></td> <td>68.4</td> <td></td>		2000				233		68.4	
Nickel, Total 310 mg/kg 11.6 13.8 15.6		0.81		1.05		0.303		0.488	
NS		310		11.6		13.8		15.6	
Selenium, Total 180 mg/kg 0.286 J 0.281 J 0.492 J Silver, Total 180 mg/kg ND ND ND Sodium, Total NS mg/kg 785 909 1150 Thallium, Total NS mg/kg ND ND ND Vanadium, Total NS mg/kg 14.3 20.3 20.9 Zinc, Total 10000 mg/kg 92.4 58.1 67.4 Volatile Organic Compounds 1,1,2-Tetrachloroethane NS mg/kg ND ND ND 1,1,1-Trichloroethane 100 mg/kg ND ND ND 1,1,2-Tetrachloroethane NS mg/kg ND ND ND 1,1,2-Trichloroethane NS mg/kg ND ND ND 1,1-Dichloroethane 26 mg/kg ND ND ND 1,1-Dichloroethane 100 mg/kg ND ND ND	Potassium, Total	NS	mg/kg	918		776		532	
Silver, Total 180 mg/kg ND ND ND Sodium, Total NS mg/kg 785 909 1150 Thallium, Total NS mg/kg ND ND ND Vanadium, Total NS mg/kg 14.3 20.3 20.9 Zinc, Total 10000 mg/kg 92.4 58.1 67.4 Volatile Organic Compounds 1,1,2-Tetrachloroethane NS mg/kg ND ND ND 1,1,1-Trichloroethane 100 mg/kg ND ND ND 1,1,2-Tetrachloroethane NS mg/kg ND ND ND 1,1,2-Trichloroethane NS mg/kg ND ND ND 1,1-Dichloroethane 26 mg/kg ND ND ND 1,1-Dichloroethane 100 mg/kg ND ND ND 1,1-Dichloropropene NS mg/kg ND ND ND 1,2,3-Trichlorobenzene	Selenium, Total	180		0.286	J	0.281	J	0.492	J
Sodium, Total NS mg/kg 785 909 1150 Thallium, Total NS mg/kg ND ND ND Vanadium, Total NS mg/kg 14.3 20.3 20.9 Zinc, Total 10000 mg/kg 92.4 58.1 67.4 Volatile Organic Compounds 1,1,2-Tetrachloroethane NS mg/kg ND ND ND 1,1,1-Trichloroethane 100 mg/kg ND ND ND 1,1,2-Trichloroethane NS mg/kg ND ND ND 1,1-Dichloroethane 26 mg/kg ND ND ND 1,1-Dichloroethane 100 mg/kg ND ND ND 1,1-Dichloropropene NS mg/kg ND ND ND 1,2,3-Trichlorobenzene NS mg/kg ND ND ND 1,2,3-Trichlorobenzene NS mg/kg ND ND ND 1,2,4-Trichlorobenzene	Silver, Total	180		ND		ND		ND	
Vanadium, Total NS mg/kg 14.3 20.3 20.9 Zinc, Total 10000 mg/kg 92.4 58.1 67.4 Volatile Organic Compounds I,1,1,2-Tetrachloroethane NS mg/kg ND ND ND 1,1,1-Trichloroethane 100 mg/kg ND ND ND 1,1,2-Tetrachloroethane NS mg/kg ND ND ND 1,1-2-Trichloroethane NS mg/kg ND ND ND 1,1-Dichloroethane 26 mg/kg ND ND ND 1,1-Dichloroethane 100 mg/kg ND ND ND 1,1-Dichloropropene NS mg/kg ND ND ND 1,1-Dichloropropene NS mg/kg ND ND ND 1,2,3-Trichlorobenzene NS mg/kg ND ND ND 1,2,4,5-Tetramethylbenzene NS mg/kg ND ND ND 1	Sodium, Total	NS	mg/kg	785		909		1150	
Zinc, Total 10000 mg/kg 92.4 58.1 67.4 Volatile Organic Compounds I,1,2-Tetrachloroethane NS mg/kg ND ND ND 1,1,1-Trichloroethane 100 mg/kg ND ND ND ND 1,1,2-Trichloroethane NS mg/kg ND ND ND ND 1,1-Dichloroethane NS mg/kg ND ND ND ND 1,1-Dichloroethane 26 mg/kg ND ND ND ND 1,1-Dichloroethane 100 mg/kg ND ND ND ND 1,1-Dichloropropene NS mg/kg ND ND ND ND 1,1-Dichloropropene NS mg/kg ND ND ND ND 1,2,3-Trichlorobenzene NS mg/kg ND ND ND ND 1,2,4,5-Tetramethylbenzene NS mg/kg ND ND ND ND 1,2,4-Trimethylbenze	Thallium, Total	NS	mg/kg	ND		ND		ND	
Volatile Organic Compounds NS mg/kg ND ND ND 1,1,1,2-Tetrachloroethane NS mg/kg ND ND ND 1,1,1-Trichloroethane 100 mg/kg ND ND ND 1,1,2,2-Tetrachloroethane NS mg/kg ND ND ND 1,1,2-Trichloroethane NS mg/kg ND ND ND 1,1-Dichloroethane 26 mg/kg ND ND ND 1,1-Dichloroethane 100 mg/kg ND ND ND 1,1-Dichloropropene NS mg/kg ND ND ND 1,1-Dichloropropene NS mg/kg ND ND ND 1,2,3-Trichlorobenzene NS mg/kg ND ND ND 1,2,4,5-Tetramethylbenzene NS mg/kg ND ND ND 1,2,4-Trichlorobenzene NS mg/kg ND ND ND 1,2-Dibromo-3-chloropropane NS mg/kg	Vanadium, Total	NS	mg/kg	14.3		20.3		20.9	
1,1,1,2-Tetrachloroethane NS mg/kg ND ND ND 1,1,1-Trichloroethane 100 mg/kg ND ND ND 1,1,2,2-Tetrachloroethane NS mg/kg ND ND ND 1,1,2-Trichloroethane NS mg/kg ND ND ND 1,1-Dichloroethane 26 mg/kg ND ND ND 1,1-Dichloroethene 100 mg/kg ND ND ND 1,1-Dichloropropene NS mg/kg ND ND ND 1,2,3-Trichlorobenzene NS mg/kg ND ND ND 1,2,3-Trichloropropane NS mg/kg ND ND ND 1,2,4,5-Tetramethylbenzene NS mg/kg ND ND ND 1,2,4-Triinethylbenzene NS mg/kg ND ND ND 1,2-Dibromo-3-chloropropane NS mg/kg ND ND ND 1,2-Dibromoethane NS mg/kg	Zinc, Total	10000	mg/kg	92.4		58.1		67.4	
1,1,1-Trichloroethane 100 mg/kg ND ND ND 1,1,2,2-Tetrachloroethane NS mg/kg ND ND ND 1,1,2-Trichloroethane NS mg/kg ND ND ND 1,1-Dichloroethane 26 mg/kg ND ND ND 1,1-Dichloroethane 100 mg/kg ND ND ND 1,1-Dichloropropene NS mg/kg ND ND ND 1,2,3-Trichlorobenzene NS mg/kg ND ND ND 1,2,3-Trichloropropane NS mg/kg ND ND ND 1,2,4-S-Tetramethylbenzene NS mg/kg ND ND ND 1,2,4-Trichlorobenzene NS mg/kg ND ND ND 1,2,4-Trimethylbenzene 52 mg/kg ND ND ND 1,2-Dibromo-3-chloropropane NS mg/kg ND ND ND 1,2-Dibromoethane NS mg/kg	Volatile Organic Compounds								
1,1,2,2-Tetrachloroethane NS mg/kg ND ND ND 1,1,2-Trichloroethane NS mg/kg ND ND ND 1,1-Dichloroethane 26 mg/kg ND ND ND 1,1-Dichloroethane 100 mg/kg ND ND ND 1,1-Dichloropropene NS mg/kg ND ND ND 1,2,3-Trichlorobenzene NS mg/kg ND ND ND 1,2,3-Trichloropropane NS mg/kg ND ND ND 1,2,4-S-Tetramethylbenzene NS mg/kg ND ND ND 1,2,4-Trichlorobenzene NS mg/kg ND ND ND 1,2,4-Trimethylbenzene 52 mg/kg ND ND ND 1,2-Dibromo-3-chloropropane NS mg/kg ND ND ND 1,2-Dibromoethane NS mg/kg ND ND ND	1,1,1,2-Tetrachloroethane	NS	mg/kg	ND		ND		ND	
1,1,2-Trichloroethane NS mg/kg ND ND ND 1,1-Dichloroethane 26 mg/kg ND ND ND 1,1-Dichloroethene 100 mg/kg ND ND ND 1,1-Dichloropropene NS mg/kg ND ND ND 1,2,3-Trichlorobenzene NS mg/kg ND ND ND 1,2,3-Trichloropropane NS mg/kg ND ND ND 1,2,4,5-Tetramethylbenzene NS mg/kg ND ND ND 1,2,4-Trichlorobenzene NS mg/kg ND ND ND 1,2,4-Trimethylbenzene 52 mg/kg ND ND ND 1,2-Dibromo-3-chloropropane NS mg/kg ND ND ND 1,2-Dibromoethane NS mg/kg ND ND ND	1,1,1-Trichloroethane	100	mg/kg	ND		ND		ND	
1,1-Dichloroethane 26 mg/kg ND ND 1,1-Dichloroethene 100 mg/kg ND ND ND 1,1-Dichloropropene NS mg/kg ND ND ND 1,2,3-Trichlorobenzene NS mg/kg ND ND ND 1,2,3-Trichloropropane NS mg/kg ND ND ND 1,2,4,5-Tetramethylbenzene NS mg/kg ND ND ND 1,2,4-Trichlorobenzene NS mg/kg ND ND ND 1,2,4-Trimethylbenzene 52 mg/kg ND ND ND 1,2-Dibromo-3-chloropropane NS mg/kg ND ND ND 1,2-Dibromoethane NS mg/kg ND ND ND	1,1,2,2-Tetrachloroethane	NS	mg/kg	ND		ND		ND	
1,1-Dichloroethene 100 mg/kg ND ND 1,1-Dichloropropene NS mg/kg ND ND ND 1,2,3-Trichlorobenzene NS mg/kg ND ND ND 1,2,3-Trichloropropane NS mg/kg ND ND ND 1,2,4,5-Tetramethylbenzene NS mg/kg ND ND ND 1,2,4-Trichlorobenzene NS mg/kg ND ND ND 1,2,4-Trimethylbenzene 52 mg/kg ND ND ND 1,2-Dibromo-3-chloropropane NS mg/kg ND ND ND 1,2-Dibromoethane NS mg/kg ND ND ND	1,1,2-Trichloroethane	NS	mg/kg	ND		ND		ND	
1,1-Dichloropropene NS mg/kg ND ND 1,2,3-Trichlorobenzene NS mg/kg ND ND 1,2,3-Trichloropropane NS mg/kg ND ND 1,2,4,5-Tetramethylbenzene NS mg/kg ND ND 1,2,4-Trichlorobenzene NS mg/kg ND ND 1,2,4-Trimethylbenzene 52 mg/kg ND ND 1,2-Dibromo-3-chloropropane NS mg/kg ND ND 1,2-Dibromoethane NS mg/kg ND ND	1,1-Dichloroethane	26	mg/kg	ND		ND		ND	
1,2,3-TrichlorobenzeneNSmg/kgNDND1,2,3-TrichloropropaneNSmg/kgNDND1,2,4,5-TetramethylbenzeneNSmg/kgNDND1,2,4-TrichlorobenzeneNSmg/kgNDND1,2,4-Trimethylbenzene52mg/kgNDND1,2-Dibromo-3-chloropropaneNSmg/kgNDND1,2-DibromoethaneNSmg/kgNDND	1,1-Dichloroethene	100	mg/kg	ND		ND		ND	
1,2,3-Trichloropropane NS mg/kg ND ND 1,2,4,5-Tetramethylbenzene NS mg/kg ND ND ND 1,2,4-Trichlorobenzene NS mg/kg ND ND ND 1,2,4-Trimethylbenzene 52 mg/kg ND ND ND 1,2-Dibromo-3-chloropropane NS mg/kg ND ND ND 1,2-Dibromoethane NS mg/kg ND ND ND	1,1-Dichloropropene	NS	mg/kg	ND		ND		ND	
1,2,4,5-TetramethylbenzeneNSmg/kgNDND1,2,4-TrichlorobenzeneNSmg/kgNDND1,2,4-Trimethylbenzene52mg/kgNDND1,2-Dibromo-3-chloropropaneNSmg/kgNDND1,2-DibromoethaneNSmg/kgNDND	1,2,3-Trichlorobenzene	NS	mg/kg	ND		ND		ND	
1,2,4-Trichlorobenzene NS mg/kg ND ND ND 1,2,4-Trimethylbenzene 52 mg/kg ND ND ND 1,2-Dibromo-3-chloropropane NS mg/kg ND ND ND 1,2-Dibromoethane NS mg/kg ND ND ND	1,2,3-Trichloropropane	NS	mg/kg	ND		ND		ND	
1,2,4-Trimethylbenzene52mg/kgNDND1,2-Dibromo-3-chloropropaneNSmg/kgNDND1,2-DibromoethaneNSmg/kgNDND	1,2,4,5-Tetramethylbenzene	NS	mg/kg	ND		ND		ND	
1,2,4-Trimethylbenzene52mg/kgNDND1,2-Dibromo-3-chloropropaneNSmg/kgNDND1,2-DibromoethaneNSmg/kgNDND	1,2,4-Trichlorobenzene	NS	mg/kg	ND		ND		ND	
1,2-Dibromo-3-chloropropaneNSmg/kgNDNDND1,2-DibromoethaneNSmg/kgNDNDND	1,2,4-Trimethylbenzene	52		ND		ND		ND	
1,2-Dibromoethane NS mg/kg ND ND ND	•	NS		ND		ND		ND	
1,2-Dichlorobenzene 100 mg/kg ND ND ND	1,2-Dibromoethane	NS	mg/kg	ND		ND		ND	
	1,2-Dichlorobenzene	100	mg/kg	ND		ND		ND	

CLIENT SAMPLE ID			SW-EP-12	SW-EP-11	SW-EP-10
SAMPLING DATE	MV DECDD*	TT *4	12-JUL-18	13-JUL-18	16-JUL-18
LAB SAMPLE ID	NY-RESRR*	Units	L1826576-02	L1826796-01	L1827014-01
			Qual	Qual	Qual
1,2-Dichloroethane	3.1	mg/kg	ND	ND	ND
1,2-Dichloroethene, Total	NS	mg/kg	ND	ND	ND
1,2-Dichloropropane	NS	mg/kg	ND	ND	ND
1,3,5-Trimethylbenzene	52	mg/kg	ND	ND	ND
1,3-Dichlorobenzene	49	mg/kg	ND	ND	ND
1,3-Dichloropropane	NS	mg/kg	ND	ND	ND
1,3-Dichloropropene, Total	NS	mg/kg	ND	ND	ND
1,4-Dichlorobenzene	13	mg/kg	ND	ND	ND
1,4-Dioxane	13	mg/kg	ND	ND	ND
2,2-Dichloropropane	NS	mg/kg	ND	ND	ND
2-Butanone	100	mg/kg	ND	ND	0.0031 J
2-Hexanone	NS	mg/kg	ND	ND	ND
4-Methyl-2-pentanone	NS	mg/kg	ND	ND	ND
Acetone	100	mg/kg	ND	0.014	0.016
Acrylonitrile	NS	mg/kg	ND	ND	ND
Benzene	4.8	mg/kg	ND	ND	ND
Bromobenzene	NS	mg/kg	ND	ND	ND
Bromochloromethane	NS	mg/kg	ND	ND	ND
Bromodichloromethane	NS	mg/kg	ND	ND	ND
Bromoform	NS	mg/kg	ND	ND	ND
Bromomethane	NS	mg/kg	ND	ND	ND
Carbon disulfide	NS	mg/kg	ND	ND	ND
Carbon tetrachloride	2.4	mg/kg	ND	ND	ND
Chlorobenzene	100	mg/kg	ND	ND	ND
Chloroethane	NS	mg/kg	ND	ND	ND
Chloroform	49	mg/kg	ND	ND	ND
Chloromethane	NS	mg/kg	ND	ND	ND
cis-1,2-Dichloroethene	100	mg/kg	ND	ND	ND
cis-1,3-Dichloropropene	NS	mg/kg	ND	ND	ND
Dibromochloromethane	NS	mg/kg	ND	ND	ND
Dibromomethane	NS	mg/kg	ND	ND	ND
Dichlorodifluoromethane	NS	mg/kg	ND	ND	ND
Ethyl ether	NS	mg/kg	ND	ND	ND
Ethylbenzene	41	mg/kg	ND	ND	ND
Hexachlorobutadiene	NS	mg/kg	ND	ND	ND
Isopropylbenzene	NS	mg/kg	ND	ND	0.0002 J
Methyl tert butyl ether	100	mg/kg	ND	ND	ND
Methylene chloride	100	mg/kg	ND	ND	ND
n-Butylbenzene	100	mg/kg	ND	ND	ND
n-Propylbenzene	100	mg/kg	ND	ND	ND
Naphthalene	100	mg/kg	ND	ND	ND
o-Chlorotoluene	NS	mg/kg	ND	ND	ND
L					

CLIENT SAMPLE ID			SW-EP-12	SW-EP-11	SW-EP-10
SAMPLING DATE	MV DECDD*	TI*4	12-JUL-18	13-JUL-18	16-JUL-18
LAB SAMPLE ID	NY-RESRR*	Units	L1826576-02	L1826796-01	L1827014-01
			Qual	Qual	Qual
o-Xylene	NS	mg/kg	ND	ND	ND
p-Chlorotoluene	NS	mg/kg	ND	ND	ND
p-Diethylbenzene	NS	mg/kg	ND	ND	ND
p-Ethyltoluene	NS	mg/kg	ND	ND	ND
p-Isopropyltoluene	NS	mg/kg	ND	ND	ND
p/m-Xylene	NS	mg/kg	ND	ND	ND
sec-Butylbenzene	100	mg/kg	ND	ND	0.00023 J
Styrene	NS	mg/kg	ND	ND	ND
tert-Butylbenzene	100	mg/kg	ND	ND	ND
Tetrachloroethene	19	mg/kg	ND	ND	ND
Toluene	100	mg/kg	ND	ND	ND
trans-1,2-Dichloroethene	100	mg/kg	ND	ND	ND
trans-1,3-Dichloropropene	NS	mg/kg	ND	ND	ND
trans-1,4-Dichloro-2-butene	NS	mg/kg	ND	ND	ND
Trichloroethene	21	mg/kg	ND	ND	ND
Trichlorofluoromethane	NS	mg/kg	ND	ND	ND
Vinyl acetate	NS	mg/kg	ND	ND	ND
Vinyl chloride	0.9	mg/kg	ND	ND	ND
Xylenes, Total	100	mg/kg	ND	ND	ND
Semivolatile Organic Compounds					
1,2,4,5-Tetrachlorobenzene	NS	mg/kg	ND	ND	ND
1,2,4-Trichlorobenzene	NS	mg/kg	ND	ND	ND
1,2-Dichlorobenzene	100	mg/kg	ND	ND	ND
1,3-Dichlorobenzene	49	mg/kg	ND	ND	ND
1,4-Dichlorobenzene	13	mg/kg	ND	ND	ND
2,4,5-Trichlorophenol	NS	mg/kg	ND	ND	ND
2,4,6-Trichlorophenol	NS	mg/kg	ND	ND	ND
2,4-Dichlorophenol	NS	mg/kg	ND	ND	ND
2,4-Dimethylphenol	NS	mg/kg	ND	ND	ND
2,4-Dinitrophenol	NS	mg/kg	ND	ND	ND
2,4-Dinitrotoluene	NS	mg/kg	ND	ND	ND
2,6-Dinitrotoluene	NS	mg/kg	ND	ND	ND
2-Chloronaphthalene	NS	mg/kg	ND	ND	ND
2-Chlorophenol	NS	mg/kg	ND	ND	ND
2-Methylnaphthalene	NS	mg/kg	0.026 J	ND	ND
2-Methylphenol	100	mg/kg	ND	ND	ND
2-Nitroaniline	NS	mg/kg	ND	ND	ND
2-Nitrophenol	NS	mg/kg	ND	ND	ND
3,3'-Dichlorobenzidine	NS	mg/kg	ND	ND	ND
3-Methylphenol/4-Methylphenol	100	mg/kg	ND	ND	ND
3-Nitroaniline	NS	mg/kg	ND	ND	ND
4,6-Dinitro-o-cresol	NS	mg/kg	ND	ND	ND

CLIENT SAMPLE ID			SW-EP-12		SW-EP-11		SW-EP-10	
SAMPLING DATE	NIV DECDD*	TI*4	12-JUL-18 L1826576-02		13-JUL	-18	16-JU	L-18
LAB SAMPLE ID	NY-RESRR*	Units			L1826796-01		L1827014-01	
			Qua	ıl		Qual		Qual
4-Bromophenyl phenyl ether	NS	mg/kg	ND		ND		ND	
4-Chloroaniline	NS	mg/kg	ND		ND		ND	
4-Chlorophenyl phenyl ether	NS	mg/kg	ND		ND		ND	
4-Nitroaniline	NS	mg/kg	ND		ND		ND	
4-Nitrophenol	NS	mg/kg	ND		ND		ND	
Acenaphthene	100	mg/kg	ND		ND		ND	
Acenaphthylene	100	mg/kg	ND		ND		ND	
Acetophenone	NS	mg/kg	ND		ND		ND	
Anthracene	100	mg/kg	ND		ND		ND	
Benzo(a)anthracene	1	mg/kg						
Benzo(a)anthracene	1	mg/kg	0.042 J		0.13		0.064	J
Benzo(a)pyrene	1	mg/kg	ND		0.18		0.057	J
Benzo(b)fluoranthene	1	mg/kg						
Benzo(b)fluoranthene	1	mg/kg	0.048 J		0.2		0.072	J
Benzo(ghi)perylene	100	mg/kg	0.026 J		0.12	J	0.041	J
Benzo(k)fluoranthene	3.9	mg/kg	ND		0.075	J	ND	
Benzoic Acid	NS	mg/kg	ND		ND		ND	
Benzyl Alcohol	NS	mg/kg	ND		ND		ND	
Biphenyl	NS	mg/kg	ND		ND		ND	
Bis(2-chloroethoxy)methane	NS	mg/kg	ND		ND		ND	
Bis(2-chloroethyl)ether	NS	mg/kg	ND		ND		ND	
Bis(2-chloroisopropyl)ether	NS	mg/kg	ND		ND		ND	
Bis(2-ethylhexyl)phthalate	NS	mg/kg	ND		ND		ND	
Butyl benzyl phthalate	NS	mg/kg	ND		ND		ND	
Carbazole	NS	mg/kg	ND		ND		ND	
Chrysene	3.9	mg/kg	0.043 J		0.13		0.056	J
Di-n-butylphthalate	NS	mg/kg	ND		ND		ND	
Di-n-octylphthalate	NS	mg/kg	ND		ND		ND	
Dibenzo(a,h)anthracene	0.33	mg/kg	ND		0.028	J	ND	
Dibenzofuran	59	mg/kg	0.023 J		ND		ND	
Diethyl phthalate	NS	mg/kg	ND		ND		ND	
Dimethyl phthalate	NS	mg/kg	ND		ND		ND	
Fluoranthene	100	mg/kg						
Fluoranthene	100	mg/kg	0.061 J		0.16		0.11	J
Fluorene	100	mg/kg	ND		ND		ND	
Hexachlorobenzene	1.2	mg/kg	ND		ND		ND	
Hexachlorobutadiene	NS	mg/kg	ND		ND		ND	
Hexachlorocyclopentadiene	NS	mg/kg	ND		ND		ND	
Hexachloroethane	NS	mg/kg	ND		ND		ND	
Indeno(1,2,3-cd)pyrene	0.5	mg/kg	ND		0.14		0.044	J
Isophorone	NS	mg/kg	ND		ND		ND	
n-Nitrosodi-n-propylamine	NS	mg/kg	ND	I	ND		ND	

CLIENT SAMPLE ID		<u> </u>		P-12	SW-EP-11	SW-EP-10 16-JUL-18	
SAMPLING DATE	NY-RESRR*	TI*4	12-JUL-18		13-JUL-18		
LAB SAMPLE ID	NY-KESKK"	Units	L18265	76-02	L1826796-01	L182701	14-01
				Qual	Qual		Qual
Naphthalene	100	mg/kg	0.038	J	ND	ND	
NDPA/DPA	NS	mg/kg	ND		ND	ND	
Nitrobenzene	NS	mg/kg	ND		ND	ND	
p-Chloro-m-cresol	NS	mg/kg	ND		ND	ND	
Pentachlorophenol	6.7	mg/kg	ND		ND	ND	
Phenanthrene	100	mg/kg					
Phenanthrene	100	mg/kg	0.064	J	0.11	0.081	J
Phenol	100	mg/kg	ND		ND	ND	
Pyrene	100	mg/kg					
Pyrene	100	mg/kg	0.054	J	0.14	0.094	J

Notes:

Bold and shaded yellow value indicates concentration exceeds 6 NYCRR Part 375 Restricted Restricted-Residential SCOs

J = Estimated value

E = Concentration exceeds calibration range of the instrument

ND = Not detected

-- = Not analyzed

NS = No standard

* = 6 NYCRR Part 375 Restricted Restricted-Residential Soil Cleanup Objectives

CLIENT SAMPLE ID			SW-E	P-9	SW-E	EP-8	SW-E	P-1	
SAMPLING DATE			16-JUL-18		16-JUL-18			09-AUG-18	
LAB SAMPLE ID	NY-RESRR*	Units	L182701		L18270		L1831151-01		
				Qual		Qual		Qual	
General Chemistry	,								
Solids, Total	NS	%	87.3		86.3		85.2		
Total Metals		<u> </u>							
Aluminum, Total	NS	mg/kg	6500		5780		6900		
Antimony, Total	NS	mg/kg	ND		1.07	J	2.52	J	
Arsenic, Total	16	mg/kg	2.75		5.54		5.66		
Barium, Total	400	mg/kg	40.7		88.8		124		
Beryllium, Total	72	mg/kg	0.33	J	0.328	J	0.325	J	
Cadmium, Total	4.3	mg/kg	0.294	J	0.373	J	1.09		
Calcium, Total	NS	mg/kg	1020		7260		12200		
Chromium, Total	NS	mg/kg	11.7		10.7		12.9		
Cobalt, Total	NS	mg/kg	4.91		5.62		8.48		
Copper, Total	270	mg/kg	14.2		44.4		85.7		
Iron, Total	NS	mg/kg	12000		13000		30300		
Lead, Total	400	mg/kg	70.8		170		341		
Magnesium, Total	NS	mg/kg	2320		2250		3550		
Manganese, Total	2000	mg/kg	227		235		199		
Mercury, Total	0.81	mg/kg	0.33		1.14		0.832		
Nickel, Total	310		11.6		12.8		17.5		
Potassium, Total	NS	mg/kg	646		850		945		
· ·	180	mg/kg	ND			т		т	
Selenium, Total		mg/kg			0.408	J	1.19	J	
Silver, Total	180	mg/kg	ND 570		ND 004		ND		
Sodium, Total	NS	mg/kg	578		894		450		
Thallium, Total	NS	mg/kg	ND		ND		ND		
Vanadium, Total	NS	mg/kg	15.5		15.7		18.8		
Zinc, Total	10000	mg/kg	34.8		75.7		164		
Volatile Organic Compounds		I							
1,1,1,2-Tetrachloroethane	NS	mg/kg	ND		ND		ND		
1,1,1-Trichloroethane	100	mg/kg	ND		ND		ND		
1,1,2,2-Tetrachloroethane	NS	mg/kg	ND		ND		ND		
1,1,2-Trichloroethane	NS	mg/kg	ND		ND		ND		
1,1-Dichloroethane	26	mg/kg	ND		ND		ND		
1,1-Dichloroethene	100	mg/kg	ND		ND		ND		
1,1-Dichloropropene	NS	mg/kg	ND		ND		ND		
1,2,3-Trichlorobenzene	NS	mg/kg	ND		ND		ND		
1,2,3-Trichloropropane	NS	mg/kg	ND		ND		ND		
1,2,4,5-Tetramethylbenzene	NS	mg/kg	ND		ND		ND		
1,2,4-Trichlorobenzene	NS	mg/kg	ND		ND		ND		
1,2,4-Trimethylbenzene	52	mg/kg	ND		ND		ND		
1,2-Dibromo-3-chloropropane	NS	mg/kg	ND		ND		ND		
1,2-Dibromoethane	NS	mg/kg	ND		ND		ND		
1,2-Dichlorobenzene	100	mg/kg	ND		ND		ND		

CLIENT SAMPLE ID			SW-EP-9	SW-EP-8	SW-EP-1	
SAMPLING DATE	l propp.	*** *.	16-JUL-18	16-JUL-18	09-AUG-18	
LAB SAMPLE ID	NY-RESRR*	Units	L1827014-02	L1827014-03	L1831151-01	
			Qual	Qual	Qual	
1,2-Dichloroethane	3.1	mg/kg	ND	ND	ND	
1,2-Dichloroethene, Total	NS	mg/kg	ND	ND	ND	
1,2-Dichloropropane	NS	mg/kg	ND	ND	ND	
1,3,5-Trimethylbenzene	52	mg/kg	ND	ND	ND	
1,3-Dichlorobenzene	49	mg/kg	ND	ND	ND	
1,3-Dichloropropane	NS	mg/kg	ND	ND	ND	
1,3-Dichloropropene, Total	NS	mg/kg	ND	ND	ND	
1,4-Dichlorobenzene	13	mg/kg	ND	ND	ND	
1,4-Dioxane	13	mg/kg	ND	ND	ND	
2,2-Dichloropropane	NS	mg/kg	ND	ND	ND	
2-Butanone	100	mg/kg	ND	ND	ND	
2-Hexanone	NS	mg/kg	ND	ND	ND	
4-Methyl-2-pentanone	NS	mg/kg	ND	ND	ND	
Acetone	100	mg/kg	ND	ND	ND	
Acrylonitrile	NS	mg/kg	ND	ND	ND	
Benzene	4.8	mg/kg	ND	ND	ND	
Bromobenzene	NS	mg/kg	ND	ND	ND	
Bromochloromethane	NS	mg/kg	ND	ND	ND	
Bromodichloromethane	NS	mg/kg	ND	ND	ND	
Bromoform	NS	mg/kg	ND	ND	ND	
Bromomethane	NS	mg/kg	ND	ND	ND	
Carbon disulfide	NS	mg/kg	ND	ND	ND	
Carbon tetrachloride	2.4	mg/kg	ND	ND	ND	
Chlorobenzene	100	mg/kg	ND	ND	ND	
Chloroethane	NS	mg/kg	ND	ND	ND	
Chloroform	49	mg/kg	ND	ND	ND	
Chloromethane	NS	mg/kg	ND	ND	ND	
cis-1,2-Dichloroethene	100	mg/kg	ND	ND	ND	
cis-1,3-Dichloropropene	NS	mg/kg	ND	ND	ND	
Dibromochloromethane	NS	mg/kg	ND	ND	ND	
Dibromomethane	NS	mg/kg	ND	ND	ND	
Dichlorodifluoromethane	NS	mg/kg	ND	ND	ND	
Ethyl ether	NS	mg/kg	ND	ND	ND	
Ethylbenzene	41	mg/kg	ND	ND	ND	
Hexachlorobutadiene	NS	mg/kg	ND	ND	ND	
Isopropylbenzene	NS	mg/kg	ND	ND	ND	
Methyl tert butyl ether	100	mg/kg	ND	ND	ND	
Methylene chloride	100	mg/kg	ND	ND	ND	
n-Butylbenzene	100	mg/kg	ND	ND	ND	
n-Propylbenzene	100	mg/kg	ND	ND	ND	
Naphthalene	100	mg/kg	ND	ND	ND	
o-Chlorotoluene	NS	mg/kg	ND	ND	ND	
	1	00			·	

Einal	Engino	orina	Donort
riiidi	cligille	ering	Report

CLIENT SAMPLE ID			SW-EP-9	SW-EP-8	SW-EP-1	
SAMPLING DATE	MV DECDD*	TT *4	16-JUL-18	16-JUL-18	09-AUG-18	
LAB SAMPLE ID	NY-RESRR*	Units	L1827014-02	L1827014-03	L1831151-01	
			Qual	Qual	Qual	
o-Xylene	NS	mg/kg	ND	ND	ND	
p-Chlorotoluene	NS	mg/kg	ND	ND	ND	
p-Diethylbenzene	NS	mg/kg	ND	ND	ND	
p-Ethyltoluene	NS	mg/kg	ND	ND	ND	
p-Isopropyltoluene	NS	mg/kg	ND	ND	ND	
p/m-Xylene	NS	mg/kg	ND	ND	ND	
sec-Butylbenzene	100	mg/kg	ND	ND	ND	
Styrene	NS	mg/kg	ND	ND	ND	
tert-Butylbenzene	100	mg/kg	ND	ND	ND	
Tetrachloroethene	19	mg/kg	ND	ND	ND	
Toluene	100	mg/kg	ND	ND	ND	
trans-1,2-Dichloroethene	100	mg/kg	ND	ND	ND	
trans-1,3-Dichloropropene	NS	mg/kg	ND	ND	ND	
trans-1,4-Dichloro-2-butene	NS	mg/kg	ND	ND	ND	
Trichloroethene	21	mg/kg	ND	ND	ND	
Trichlorofluoromethane	NS	mg/kg	ND	ND	ND	
Vinyl acetate	NS	mg/kg	ND	ND	ND	
Vinyl chloride	0.9	mg/kg	ND	ND	ND	
Xylenes, Total	100	mg/kg	ND	ND	ND	
Semivolatile Organic Compounds						
1,2,4,5-Tetrachlorobenzene	NS	mg/kg	ND	ND	ND	
1,2,4-Trichlorobenzene	NS	mg/kg	ND	ND	ND	
1,2-Dichlorobenzene	100	mg/kg	ND	ND	ND	
1,3-Dichlorobenzene	49	mg/kg	ND	ND	ND	
1,4-Dichlorobenzene	13	mg/kg	ND	ND	ND	
2,4,5-Trichlorophenol	NS	mg/kg	ND	ND	ND	
2,4,6-Trichlorophenol	NS	mg/kg	ND	ND	ND	
2,4-Dichlorophenol	NS	mg/kg	ND	ND	ND	
2,4-Dimethylphenol	NS	mg/kg	ND	ND	ND	
2,4-Dinitrophenol	NS	mg/kg	ND	ND	ND	
2,4-Dinitrotoluene	NS	mg/kg	ND	ND	ND	
2,6-Dinitrotoluene	NS	mg/kg	ND	ND	ND	
2-Chloronaphthalene	NS	mg/kg	ND	ND	ND	
2-Chlorophenol	NS	mg/kg	ND	ND	ND	
2-Methylnaphthalene	NS	mg/kg	ND	0.036 J	ND	
2-Methylphenol	100	mg/kg	ND	ND	ND	
2-Nitroaniline	NS	mg/kg	ND	ND	ND	
2-Nitrophenol	NS	mg/kg	ND	ND	ND	
3,3'-Dichlorobenzidine	NS	mg/kg	ND	ND	ND	
3-Methylphenol/4-Methylphenol	100	mg/kg	ND	ND	ND	
3-Nitroaniline	NS	mg/kg	ND	ND	ND	
4,6-Dinitro-o-cresol	NS	mg/kg	ND	ND	ND	

CLIENT SAMPLE ID			SW-EP-9		SW-EP-8		SW-EP-1	
SAMPLING DATE	NIV DECDD*	TI*4	16-JUL-18 L1827014-02		16-JU	L-18	09-AU	G-18
LAB SAMPLE ID	NY-RESRR*	Units			L1827014-03		L1831151-01	
				Qual		Qual		Qual
4-Bromophenyl phenyl ether	NS	mg/kg	ND		ND		ND	
4-Chloroaniline	NS	mg/kg	ND		ND		ND	
4-Chlorophenyl phenyl ether	NS	mg/kg	ND		ND		ND	
4-Nitroaniline	NS	mg/kg	ND		ND		ND	
4-Nitrophenol	NS	mg/kg	ND		ND		ND	
Acenaphthene	100	mg/kg	ND		0.18		0.062	J
Acenaphthylene	100	mg/kg	ND		0.038	J	0.068	J
Acetophenone	NS	mg/kg	ND		ND		ND	
Anthracene	100	mg/kg	ND		0.4		0.15	
Benzo(a)anthracene	1	mg/kg						
Benzo(a)anthracene	1	mg/kg	0.092	J	2		0.6	
Benzo(a)pyrene	1	mg/kg	0.13	J	3.2		0.65	
Benzo(b)fluoranthene	1	mg/kg						
Benzo(b)fluoranthene	1	mg/kg	0.13		3.3		0.8	
Benzo(ghi)perylene	100	mg/kg	0.089	J	2.2		0.43	
Benzo(k)fluoranthene	3.9	mg/kg	0.052	J	1.2		0.27	
Benzoic Acid	NS	mg/kg	ND		ND		ND	
Benzyl Alcohol	NS	mg/kg	ND		ND		ND	
Biphenyl	NS	mg/kg	ND		ND		ND	
Bis(2-chloroethoxy)methane	NS	mg/kg	ND		ND		ND	
Bis(2-chloroethyl)ether	NS	mg/kg	ND		ND		ND	
Bis(2-chloroisopropyl)ether	NS	mg/kg	ND		ND		ND	
Bis(2-ethylhexyl)phthalate	NS	mg/kg	ND		ND		ND	
Butyl benzyl phthalate	NS	mg/kg	ND		ND		ND	
Carbazole	NS	mg/kg	ND		0.17	J	0.064	J
Chrysene	3.9	mg/kg	0.082	J	1.9		0.58	
Di-n-butylphthalate	NS	mg/kg	ND		ND		ND	
Di-n-octylphthalate	NS	mg/kg	ND		ND		ND	
Dibenzo(a,h)anthracene	0.33	mg/kg	0.022	J	0.56		0.097	J
Dibenzofuran	59	mg/kg	ND		0.069	J	0.037	J
Diethyl phthalate	NS	mg/kg	ND		ND		ND	
Dimethyl phthalate	NS	mg/kg	ND		ND		ND	
Fluoranthene	100	mg/kg						
Fluoranthene	100	mg/kg	0.084	J	2.1		1.2	
Fluorene	100	mg/kg	ND		0.097	J	0.045	J
Hexachlorobenzene	1.2	mg/kg	ND		ND		ND	
Hexachlorobutadiene	NS	mg/kg	ND		ND		ND	
Hexachlorocyclopentadiene	NS	mg/kg	ND		ND		ND	
Hexachloroethane	NS	mg/kg	ND		ND		ND	
Indeno(1,2,3-cd)pyrene	0.5	mg/kg	0.095	J	2.5		0.46	
Isophorone	NS	mg/kg	ND		ND		ND	
n-Nitrosodi-n-propylamine	NS	mg/kg	ND		ND		ND	

Final Engineering Report

CLIENT SAMPLE ID			SW-EP-9	SW-EP-8	SW-EP-1
SAMPLING DATE	NY-RESRR*	TT:4-0	16-JUL-18	16-JUL-18	09-AUG-18
LAB SAMPLE ID	NY-KESKK"	Units	L1827014-02	L1827014-03	L1831151-01
			Qual	Qua	Qual
Naphthalene	100	mg/kg	ND	0.087 J	0.042 J
NDPA/DPA	NS	mg/kg	ND	ND	ND
Nitrobenzene	NS	mg/kg	ND	ND	ND
p-Chloro-m-cresol	NS	mg/kg	ND	ND	ND
Pentachlorophenol	6.7	mg/kg	ND	ND	ND
Phenanthrene	100	mg/kg			
Phenanthrene	100	mg/kg	0.049 J	1.4	0.7
Phenol	100	mg/kg	ND	ND	ND
Pyrene	100	mg/kg			
Pyrene	100	mg/kg	0.087 J	2	1

Notes:

Bold and shaded yellow value indicates concentration exceeds 6 NYCRR Part 375 Restricted Restricted-Residential SCOs

J = Estimated value

E = Concentration exceeds calibration range of the instrument

ND = Not detected

-- = Not analyzed

NS = No standard

* = 6 NYCRR Part 375 Restricted Restricted-Residential Soil Cleanup Objectives

Name	CLIENT SAMPLE ID			SW-EP-2 S		SW-EI	SW-EP-3		EP-4
Carrier Carr	SAMPLING DATE	NIV DECDD*	TI•4	09-AUG-18		09-AUC	G-18	09-AU	G-18
Solids, Total	LAB SAMPLE ID	NY-KESKK*	Units	L1831151	1-02	L183115	1-03	L18311	51-04
Solids, Total				(Qual		Qual		Qual
No.	General Chemistry								
Aluminum, Total	Solids, Total	NS	%	90.6		93.3		86.2	
Antimony, Total	Total Metals								
Arsenie, Total	Aluminum, Total	NS	mg/kg	7320		7300		7760	
Barium, Total	Antimony, Total	NS	mg/kg	1.96	J	3.26	J	ND	
Beryllium, Total	Arsenic, Total	16	mg/kg	3.44		5.74		6.69	
Cadmium, Total 4.3 mg/kg 0.358 J 0.595 J 0.383 J Calcium, Total NS mg/kg 37800 24000 3130 Chromium, Total NS mg/kg 14 17.8 13.5 Cobalt, Total NS mg/kg 5.59 6.2 6.16 Copper, Total 270 mg/kg 5.59 6.2 6.16 Copper, Total 270 mg/kg 10900 14800 13700 Lead, Total 400 mg/kg 160 4640 13700 Lead, Total 400 mg/kg 4650 4640 2160 Manganesium, Total NS mg/kg 4650 4640 286 219 Mercury, Total 0.81 mg/kg 4650 4640 286 219 Mercury, Total 0.81 mg/kg 11.7 16.6 13.3 Potassium, Total 180 mg/kg 11.7 16.6 13.3	Barium, Total	400	mg/kg	61.5		112		106	
Calcium, Total	Beryllium, Total	72	mg/kg	0.3	J	0.34	J	0.463	
Chromium, Total	Cadmium, Total	4.3	mg/kg	0.358	J	0.595	J	0.383	J
Cobalt, Total NS mg/kg 5.59 6.2 6.16 Copper, Total 270 mg/kg 26 82.3 39.7 Iron, Total NS mg/kg 10900 14800 13700 Lead, Total 400 mg/kg 37.7 237 178 Magnesium, Total NS mg/kg 4650 4640 2160 Magnesium, Total 0.81 mg/kg 4650 4640 216 Magnesium, Total 0.81 mg/kg 0.134 16.7 0.821 Mercury, Total 310 mg/kg 0.134 16.7 0.821 Nickel, Total 310 mg/kg 11.7 16.6 13.3 Potassium, Total NS mg/kg 180 1920 968 Selenium, Total 180 mg/kg 0.491 J 0.62 J 0.668 J Silver, Total 180 mg/kg ND ND ND ND ND ND	Calcium, Total	NS	mg/kg	37800		24000		3130	
Copper, Total 270	Chromium, Total	NS	mg/kg	14		17.8		13.5	
Iron, Total	Cobalt, Total	NS	mg/kg	5.59		6.2		6.16	
Lead, Total	Copper, Total	270	mg/kg	26		82.3		39.7	
Magnesium, Total NS mg/kg 4650 4640 2160 Manganesc, Total 2000 mg/kg 164 286 219 Mercury, Total 0.81 mg/kg 0.134 16.7 0.821 Nickel, Total 310 mg/kg 11.7 16.6 13.3 Potassium, Total NS mg/kg 1880 1920 968 Selenium, Total 180 mg/kg 0.491 J 0.62 J 0.668 J Silver, Total 180 mg/kg ND ND ND ND Sodium, Total NS mg/kg 628 373 374 Thallium, Total NS mg/kg ND	Iron, Total	NS	mg/kg	10900		14800		13700	
Magnesium, Total NS mg/kg 4650 4640 2160 Manganese, Total 2000 mg/kg 164 286 219 Mercury, Total 0.81 mg/kg 0.134 16.7 0.821 Nickel, Total 310 mg/kg 11.7 16.6 13.3 Potassium, Total NS mg/kg 1880 1920 968 Selenium, Total 180 mg/kg 0.491 J 0.62 J 0.668 J Silver, Total 180 mg/kg 0.491 J 0.62 J 0.668 J Silver, Total 180 mg/kg 0.491 J 0.62 J 0.668 J Silver, Total 180 mg/kg ND ND ND ND Sodium, Total NS mg/kg ND ND ND ND Valudium, Total NS mg/kg ND ND ND ND ND ND ND	Lead, Total	400		37.7		237		178	
Manganese, Total 2000 mg/kg 164 286 219 Mercury, Total 0.81 mg/kg 0.134 16.7 0.821 Nickel, Total 310 mg/kg 11.7 16.6 13.3 Potassium, Total NS mg/kg 1880 1920 968 Selenium, Total 180 mg/kg 0.491 J 0.62 J 0.668 J Silver, Total 180 mg/kg 0.491 J 0.62 J 0.668 J Silver, Total 180 mg/kg 0.491 J 0.62 J 0.668 J Silver, Total 180 mg/kg ND ND<	Magnesium, Total	NS		4650		4640		2160	
Mercury, Total 0.81 mg/kg 0.134 16.7 0.821 Nickel, Total 310 mg/kg 11.7 16.6 13.3 Potassium, Total NS mg/kg 1880 1920 968 Selenium, Total 180 mg/kg 0.491 J 0.62 J 0.668 J Silver, Total 180 mg/kg ND ND ND ND Sodium, Total NS mg/kg 628 373 374 Thallium, Total NS mg/kg ND	Manganese, Total	2000		164		286		219	
Nickel, Total 310 mg/kg 11.7 16.6 13.3 Potassium, Total NS mg/kg 1880 1920 968 Selenium, Total 180 mg/kg 0.491 J 0.62 J 0.668 J Silver, Total 180 mg/kg ND ND ND Sodium, Total NS mg/kg 628 373 374 Thallium, Total NS mg/kg ND ND ND Vanadium, Total NS mg/kg ND ND ND Vanadium, Total NS mg/kg 18.7 22.4 19.4 Zinc, Total 10000 mg/kg 56 216 174 Volatile Organic Compounds 1,1,2-Tetrachloroethane NS mg/kg ND ND ND 1,1,2-Tetrachloroethane 100 mg/kg ND ND ND 1,1,2-Trichloroethane NS mg/kg ND ND ND 1,1,2-Trichloroethane NS mg/kg ND ND ND 1,1,2-Trichloroethane 26 mg/kg ND ND ND 1,1-Dichloroethane 26 mg/kg ND ND ND 1,1-Dichloroethane 100 mg/kg ND ND ND 1,1-Dichloroethane 100 mg/kg ND ND ND 1,2,3-Trichlorobenzene NS mg/kg ND ND ND 1,2,3-Trichloropropane NS mg/kg ND ND ND 1,2,4-Trichlorobenzene NS mg/kg ND ND ND 1,2,4-Trichlorobenzene NS mg/kg ND ND ND 1,2,4-Trichlorobenzene NS mg/kg ND ND ND 1,2,2-Trichlorobenzene NS mg/kg ND ND ND 1,2,3-Trichlorobenzene NS mg/kg ND ND ND 1,2,3-Trichl						16.7		0.821	
Potassium, Total NS mg/kg 1880 1920 968 Selenium, Total 180 mg/kg 0.491 J 0.62 J 0.668 J Silver, Total 180 mg/kg ND ND ND ND ND Sodium, Total NS mg/kg 628 373 374 Thallium, Total NS mg/kg ND ND ND ND ND ND ND N		310		11.7		16.6		13.3	
Selenium, Total 180 mg/kg 0.491 J 0.62 J 0.668 J Silver, Total 180 mg/kg ND ND ND Sodium, Total NS mg/kg 628 373 374 Thallium, Total NS mg/kg ND ND ND Vanadium, Total NS mg/kg ND ND ND Vanadium, Total NS mg/kg 18.7 22.4 19.4 Zinc, Total 10000 mg/kg 56 216 174 Volatile Organic Compounds 1,1,1,2-Tetrachloroethane NS mg/kg ND ND ND 1,1,1-Trichloroethane 100 mg/kg ND ND ND ND 1,1,2-Trichloroethane NS mg/kg ND ND ND ND 1,1-Dichloroethane 26 mg/kg ND ND ND ND 1,1-Dichloroethane 100 mg/kg ND ND<	Potassium, Total	NS		1880		1920		968	
Silver, Total 180 mg/kg ND ND Sodium, Total NS mg/kg 628 373 374 Thallium, Total NS mg/kg ND ND ND Vanadium, Total NS mg/kg 18.7 22.4 19.4 Zinc, Total 10000 mg/kg 56 216 174 Volatile Organic Compounds 1,1,2-Tetrachloroethane NS mg/kg ND ND ND 1,1,1-Trichloroethane 100 mg/kg ND ND ND ND 1,1,2-Tetrachloroethane NS mg/kg ND ND ND ND 1,1-2-Trichloroethane NS mg/kg ND ND ND ND 1,1-Dichloroethane 26 mg/kg ND ND ND ND 1,1-Dichloropropene NS mg/kg ND ND ND ND 1,2,3-Trichlorobenzene NS mg/kg ND ND ND ND	Selenium, Total	180		0.491	J	0.62	J	0.668	J
Sodium, Total NS mg/kg 628 373 374 Thallium, Total NS mg/kg ND ND ND Vanadium, Total NS mg/kg 18.7 22.4 19.4 Zinc, Total 10000 mg/kg 56 216 174 Volatile Organic Compounds 1,1,2-Tetrachloroethane NS mg/kg ND ND ND 1,1,1-Trichloroethane 100 mg/kg ND ND ND 1,1,2-Tetrachloroethane NS mg/kg ND ND ND 1,1,2-Trichloroethane NS mg/kg ND ND ND 1,1-Dichloroethane 26 mg/kg ND ND ND 1,1-Dichloropropene NS mg/kg ND ND ND 1,1-Dichloropropene NS mg/kg ND ND ND 1,2,3-Trichlorobenzene NS mg/kg ND ND ND 1,2,4,5-Tetramethylbenzene	Silver, Total	180	mg/kg	ND		ND		ND	
Vanadium, Total NS mg/kg 18.7 22.4 19.4 Zinc, Total 10000 mg/kg 56 216 174 Volatile Organic Compounds 1,1,1,2-Tetrachloroethane NS mg/kg ND ND ND 1,1,1-Trichloroethane 100 mg/kg ND ND ND 1,1,2-Tetrachloroethane NS mg/kg ND ND ND 1,1-2-Trichloroethane NS mg/kg ND ND ND 1,1-Dichloroethane 26 mg/kg ND ND ND 1,1-Dichloroethane 100 mg/kg ND ND ND 1,1-Dichloropropene NS mg/kg ND ND ND 1,1-Dichloropropene NS mg/kg ND ND ND 1,2,3-Trichlorobenzene NS mg/kg ND ND ND 1,2,4-Trichlorobenzene NS mg/kg ND ND ND 1,2,4-Trimethylbenzen	Sodium, Total	NS	mg/kg	628		373		374	
Zinc, Total 10000 mg/kg 56 216 174	Thallium, Total	NS	mg/kg	ND		ND		ND	
Zinc, Total 10000 mg/kg 56 216 174	Vanadium, Total	NS	mg/kg	18.7		22.4		19.4	
Volatile Organic Compounds NS mg/kg ND ND ND 1,1,1,2-Tetrachloroethane 100 mg/kg ND ND ND 1,1,1-Trichloroethane 100 mg/kg ND ND ND 1,1,2-Trichloroethane NS mg/kg ND ND ND 1,1-Dichloroethane 26 mg/kg ND ND ND 1,1-Dichloroethane 100 mg/kg ND ND ND 1,1-Dichloroethane 100 mg/kg ND ND ND 1,1-Dichloroethane 100 mg/kg ND ND ND 1,2-Trichloropropene NS mg/kg ND ND ND 1,2,3-Trichloropropane NS mg/kg ND ND ND 1,2,4,5-Tetramethylbenzene NS mg/kg ND ND ND 1,2,4-Triinethylbenzene NS mg/kg ND ND ND 1,2-Dibromo-3-chloropropane NS mg/kg	Zinc, Total	10000		56		216		174	
1,1,1-Trichloroethane 100 mg/kg ND ND ND 1,1,2,2-Tetrachloroethane NS mg/kg ND ND ND 1,1,2-Trichloroethane NS mg/kg ND ND ND 1,1-Dichloroethane 26 mg/kg ND ND ND 1,1-Dichloroethane 100 mg/kg ND ND ND 1,1-Dichloroethane NS mg/kg ND ND ND 1,1-Dichloropropene NS mg/kg ND ND ND 1,2,3-Trichlorobenzene NS mg/kg ND ND ND 1,2,3-Trichloropropane NS mg/kg ND ND ND 1,2,4,5-Tetramethylbenzene NS mg/kg ND ND ND 1,2,4-Trichlorobenzene NS mg/kg ND ND ND 1,2-Dibromo-3-chloropropane NS mg/kg ND ND ND 1,2-Dibromoethane NS mg/kg ND </td <td>Volatile Organic Compounds</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Volatile Organic Compounds								
1,1,2,2-Tetrachloroethane NS mg/kg ND ND ND 1,1,2-Trichloroethane NS mg/kg ND ND ND 1,1-Dichloroethane 26 mg/kg ND ND ND 1,1-Dichloroethene 100 mg/kg ND ND ND 1,1-Dichloropropene NS mg/kg ND ND ND 1,2,3-Trichlorobenzene NS mg/kg ND ND ND 1,2,3-Trichloropropane NS mg/kg ND ND ND 1,2,4,5-Tetramethylbenzene NS mg/kg ND ND ND 1,2,4-Trichlorobenzene NS mg/kg ND ND ND 1,2,4-Trimethylbenzene 52 mg/kg ND ND ND 1,2-Dibromo-3-chloropropane NS mg/kg ND ND ND 1,2-Dibromoethane NS mg/kg ND ND ND	1,1,1,2-Tetrachloroethane	NS	mg/kg	ND		ND		ND	
1,1,2-Trichloroethane NS mg/kg ND ND ND 1,1-Dichloroethane 26 mg/kg ND ND ND 1,1-Dichloroethene 100 mg/kg ND ND ND 1,1-Dichloropropene NS mg/kg ND ND ND 1,2,3-Trichlorobenzene NS mg/kg ND ND ND 1,2,3-Trichloropropane NS mg/kg ND ND ND 1,2,4,5-Tetramethylbenzene NS mg/kg ND ND ND 1,2,4-Trichlorobenzene NS mg/kg ND ND ND 1,2,4-Trimethylbenzene 52 mg/kg ND ND ND 1,2-Dibromo-3-chloropropane NS mg/kg ND ND ND 1,2-Dibromoethane NS mg/kg ND ND ND	1,1,1-Trichloroethane	100	mg/kg	ND		ND		ND	
1,1-Dichloroethane 26 mg/kg ND ND ND 1,1-Dichloroethene 100 mg/kg ND ND ND 1,1-Dichloropropene NS mg/kg ND ND ND 1,2,3-Trichlorobenzene NS mg/kg ND ND ND 1,2,3-Trichloropropane NS mg/kg ND ND ND 1,2,4,5-Tetramethylbenzene NS mg/kg ND ND ND 1,2,4-Trichlorobenzene NS mg/kg ND ND ND 1,2,4-Trimethylbenzene 52 mg/kg ND ND ND 1,2-Dibromo-3-chloropropane NS mg/kg ND ND ND 1,2-Dibromoethane NS mg/kg ND ND ND	1,1,2,2-Tetrachloroethane	NS	mg/kg	ND		ND		ND	
1,1-Dichloroethene 100 mg/kg ND ND ND 1,1-Dichloropropene NS mg/kg ND ND ND 1,2,3-Trichlorobenzene NS mg/kg ND ND ND 1,2,3-Trichloropropane NS mg/kg ND ND ND 1,2,4,5-Tetramethylbenzene NS mg/kg ND ND ND 1,2,4-Trichlorobenzene NS mg/kg ND ND ND 1,2,4-Trimethylbenzene 52 mg/kg ND ND ND 1,2-Dibromo-3-chloropropane NS mg/kg ND ND ND 1,2-Dibromoethane NS mg/kg ND ND ND	1,1,2-Trichloroethane	NS	mg/kg	ND		ND		ND	
1,1-Dichloroethene 100 mg/kg ND ND ND 1,1-Dichloropropene NS mg/kg ND ND ND 1,2,3-Trichlorobenzene NS mg/kg ND ND ND 1,2,3-Trichloropropane NS mg/kg ND ND ND 1,2,4,5-Tetramethylbenzene NS mg/kg ND ND ND 1,2,4-Trichlorobenzene NS mg/kg ND ND ND 1,2,4-Trimethylbenzene 52 mg/kg ND ND ND 1,2-Dibromo-3-chloropropane NS mg/kg ND ND ND 1,2-Dibromoethane NS mg/kg ND ND ND	1,1-Dichloroethane	26		ND		ND		ND	
1,1-Dichloropropene NS mg/kg ND ND 1,2,3-Trichlorobenzene NS mg/kg ND ND 1,2,3-Trichloropropane NS mg/kg ND ND 1,2,4,5-Tetramethylbenzene NS mg/kg ND ND 1,2,4-Trichlorobenzene NS mg/kg ND ND 1,2,4-Trimethylbenzene 52 mg/kg ND ND 1,2-Dibromo-3-chloropropane NS mg/kg ND ND 1,2-Dibromoethane NS mg/kg ND ND	1,1-Dichloroethene	100		ND		ND		ND	
1,2,3-Trichlorobenzene NS mg/kg ND ND ND 1,2,3-Trichloropropane NS mg/kg ND ND ND 1,2,4,5-Tetramethylbenzene NS mg/kg ND ND ND 1,2,4-Trichlorobenzene NS mg/kg ND ND ND 1,2,4-Trimethylbenzene 52 mg/kg ND ND ND 1,2-Dibromo-3-chloropropane NS mg/kg ND ND ND 1,2-Dibromoethane NS mg/kg ND ND ND	1,1-Dichloropropene	NS		ND		ND		ND	
1,2,3-Trichloropropane NS mg/kg ND ND ND 1,2,4,5-Tetramethylbenzene NS mg/kg ND ND ND 1,2,4-Trichlorobenzene NS mg/kg ND ND ND 1,2,4-Trimethylbenzene 52 mg/kg ND ND ND 1,2-Dibromo-3-chloropropane NS mg/kg ND ND ND 1,2-Dibromoethane NS mg/kg ND ND ND	1,2,3-Trichlorobenzene	NS		ND		ND		ND	
1,2,4,5-Tetramethylbenzene NS mg/kg ND ND ND 1,2,4-Trichlorobenzene NS mg/kg ND ND ND 1,2,4-Trimethylbenzene 52 mg/kg ND ND ND 1,2-Dibromo-3-chloropropane NS mg/kg ND ND ND 1,2-Dibromoethane NS mg/kg ND ND ND		NS		ND		ND			
1,2,4-Trichlorobenzene NS mg/kg ND ND ND 1,2,4-Trimethylbenzene 52 mg/kg ND ND ND 1,2-Dibromo-3-chloropropane NS mg/kg ND ND ND 1,2-Dibromoethane NS mg/kg ND ND ND	<u> </u>	NS		ND		ND		ND	
1,2,4-Trimethylbenzene 52 mg/kg ND ND ND 1,2-Dibromo-3-chloropropane NS mg/kg ND ND ND 1,2-Dibromoethane NS mg/kg ND ND ND	•	NS		ND		ND		ND	
1,2-Dibromo-3-chloropropaneNSmg/kgNDND1,2-DibromoethaneNSmg/kgNDND									
1,2-Dibromoethane NS mg/kg ND ND ND	• •								
		NS		ND		ND		ND	
1,2-Diemoroochzene 100 mg/kg ND ND ND	1,2-Dichlorobenzene	100	mg/kg	ND		ND		ND	

CLIENT SAMPLE ID			SW-EP-2	SW-EP-3	SW-EP-4	
SAMPLING DATE	Lui DECDD	TT 1.	09-AUG-18	09-AUG-18	09-AUG-18	
LAB SAMPLE ID	NY-RESRR*	Units	L1831151-02	L1831151-03	L1831151-04	
			Qual	Qual	Qual	
1,2-Dichloroethane	3.1	mg/kg	ND	ND	ND	
1,2-Dichloroethene, Total	NS	mg/kg	ND	ND	ND	
1,2-Dichloropropane	NS	mg/kg	ND	ND	ND	
1,3,5-Trimethylbenzene	52	mg/kg	ND	ND	ND	
1,3-Dichlorobenzene	49	mg/kg	ND	ND	ND	
1,3-Dichloropropane	NS	mg/kg	ND	ND	ND	
1,3-Dichloropropene, Total	NS	mg/kg	ND	ND	ND	
1,4-Dichlorobenzene	13	mg/kg	ND	ND	ND	
1,4-Dioxane	13	mg/kg	ND	ND	ND	
2,2-Dichloropropane	NS	mg/kg	ND	ND	ND	
2-Butanone	100	mg/kg	ND	ND	ND	
2-Hexanone	NS	mg/kg	ND	ND	ND	
4-Methyl-2-pentanone	NS	mg/kg	ND	ND	ND	
Acetone	100	mg/kg	0.0063 J	ND	0.013	
Acrylonitrile	NS	mg/kg	ND	ND	ND	
Benzene	4.8	mg/kg	ND	ND	ND	
Bromobenzene	NS	mg/kg	ND	ND	ND	
Bromochloromethane	NS	mg/kg	ND	ND	ND	
Bromodichloromethane	NS	mg/kg	ND	ND	ND	
Bromoform	NS	mg/kg	ND	ND	ND	
Bromomethane	NS	mg/kg	ND	ND	ND	
Carbon disulfide	NS	mg/kg	ND	ND	ND	
Carbon tetrachloride	2.4	mg/kg	ND	ND	ND	
Chlorobenzene	100	mg/kg	ND	ND	ND	
Chloroethane	NS	mg/kg	ND	ND	ND	
Chloroform	49	mg/kg	ND	ND	0.0002 J	
Chloromethane	NS	mg/kg	ND	ND	ND	
cis-1,2-Dichloroethene	100	mg/kg	ND	ND	ND	
cis-1,3-Dichloropropene	NS	mg/kg	ND	ND	ND	
Dibromochloromethane	NS	mg/kg	ND	ND	ND	
Dibromomethane	NS	mg/kg	ND	ND	ND	
Dichlorodifluoromethane	NS	mg/kg	ND	ND	ND	
Ethyl ether	NS	mg/kg	ND	ND	ND	
Ethylbenzene	41	mg/kg	ND	ND	ND	
Hexachlorobutadiene	NS	mg/kg	ND	ND	ND	
Isopropylbenzene	NS	mg/kg	ND	ND	ND	
Methyl tert butyl ether	100	mg/kg	ND	ND	ND	
Methylene chloride	100	mg/kg	ND	ND	ND	
n-Butylbenzene	100	mg/kg	ND	ND	ND	
n-Propylbenzene	100	mg/kg	ND	ND	ND	
Naphthalene	100	mg/kg	ND	ND	ND	
o-Chlorotoluene	NS	mg/kg	ND	ND	ND	
<u> </u>	1	00				

Final	Engineering	Report
ı ıııaı	Linginieening	report

CLIENT SAMPLE ID			SW-EP-2	SW-EP-3	SW-EP-4
SAMPLING DATE	NIV DECDD*	TI*4	09-AUG-18	09-AUG-18	09-AUG-18
LAB SAMPLE ID	NY-RESRR*	Units	L1831151-02	L1831151-03	L1831151-04
			Qual	Qual	Qual
o-Xylene	NS	mg/kg	ND	ND	ND
p-Chlorotoluene	NS	mg/kg	ND	ND	ND
p-Diethylbenzene	NS	mg/kg	ND	ND	ND
p-Ethyltoluene	NS	mg/kg	ND	ND	ND
p-Isopropyltoluene	NS	mg/kg	ND	ND	ND
p/m-Xylene	NS	mg/kg	ND	ND	ND
sec-Butylbenzene	100	mg/kg	ND	ND	ND
Styrene	NS	mg/kg	ND	ND	ND
tert-Butylbenzene	100	mg/kg	ND	ND	ND
Tetrachloroethene	19	mg/kg	ND	ND	ND
Toluene	100	mg/kg	ND	ND	ND
trans-1,2-Dichloroethene	100	mg/kg	ND	ND	ND
trans-1,3-Dichloropropene	NS	mg/kg	ND	ND	ND
trans-1,4-Dichloro-2-butene	NS	mg/kg	ND	ND	ND
Trichloroethene	21	mg/kg	ND	ND	ND
Trichlorofluoromethane	NS	mg/kg	ND	ND	ND
Vinyl acetate	NS	mg/kg	ND	ND	ND
Vinyl chloride	0.9	mg/kg	ND	ND	ND
Xylenes, Total	100	mg/kg	ND	ND	ND
Semivolatile Organic Compounds					
1,2,4,5-Tetrachlorobenzene	NS	mg/kg	ND	ND	ND
1,2,4-Trichlorobenzene	NS	mg/kg	ND	ND	ND
1,2-Dichlorobenzene	100	mg/kg	ND	ND	ND
1,3-Dichlorobenzene	49	mg/kg	ND	ND	ND
1,4-Dichlorobenzene	13	mg/kg	ND	ND	ND
2,4,5-Trichlorophenol	NS	mg/kg	ND	ND	ND
2,4,6-Trichlorophenol	NS	mg/kg	ND	ND	ND
2,4-Dichlorophenol	NS	mg/kg	ND	ND	ND
2,4-Dimethylphenol	NS	mg/kg	ND	ND	ND
2,4-Dinitrophenol	NS	mg/kg	ND	ND	ND
2,4-Dinitrotoluene	NS	mg/kg	ND	ND	ND
2,6-Dinitrotoluene	NS	mg/kg	ND	ND	ND
2-Chloronaphthalene	NS	mg/kg	ND	ND	ND
2-Chlorophenol	NS	mg/kg	ND	ND	ND
2-Methylnaphthalene	NS	mg/kg	ND	0.46	ND
2-Methylphenol	100	mg/kg	ND	ND	ND
2-Nitroaniline	NS	mg/kg	ND	ND	ND
2-Nitrophenol	NS	mg/kg	ND	ND	ND
3,3'-Dichlorobenzidine	NS	mg/kg	ND	ND	ND
3-Methylphenol/4-Methylphenol	100	mg/kg	ND	ND	ND
3-Nitroaniline	NS	mg/kg	ND	ND	ND
4,6-Dinitro-o-cresol	NS	mg/kg	ND	ND	ND

CLIENT SAMPLE ID			SW-EP-2		SW-EP-3		SW-EP-4	
SAMPLING DATE	,,, peapp.	*** *.	09-AUG-18 L1831151-02		09-AUG-18		09-AUG-18	
LAB SAMPLE ID	NY-RESRR*	Units			L1831151-03		L1831151-04	
				Qual		Qual		Qual
4-Bromophenyl phenyl ether	NS	mg/kg	ND		ND		ND	
4-Chloroaniline	NS	mg/kg	ND		ND		ND	
4-Chlorophenyl phenyl ether	NS	mg/kg	ND		ND		ND	
4-Nitroaniline	NS	mg/kg	ND		ND		ND	
4-Nitrophenol	NS	mg/kg	ND		ND		ND	
Acenaphthene	100	mg/kg	0.03	J	1.2		0.072	J
Acenaphthylene	100	mg/kg	0.058	J	0.51		ND	
Acetophenone	NS	mg/kg	ND		ND		ND	
Anthracene	100	mg/kg	0.12		2.9		0.14	
Benzo(a)anthracene	1	mg/kg			7.5			
Benzo(a)anthracene	1	mg/kg	0.62		7	Е	0.76	
Benzo(a)pyrene	1	mg/kg	0.6		5.8		1.4	
Benzo(b)fluoranthene	1	mg/kg			8.8			
Benzo(b)fluoranthene	1	mg/kg	0.82		8	Е	1.4	
Benzo(ghi)perylene	100	mg/kg	0.5		4.2		1	
Benzo(k)fluoranthene	3.9	mg/kg	0.23		2.1		0.5	
Benzoic Acid	NS	mg/kg	ND		ND		ND	
Benzyl Alcohol	NS	mg/kg	ND		ND		ND	
Biphenyl	NS	mg/kg	ND		0.12	J	ND	
Bis(2-chloroethoxy)methane	NS	mg/kg	ND		ND		ND	
Bis(2-chloroethyl)ether	NS	mg/kg	ND		ND		ND	
Bis(2-chloroisopropyl)ether	NS	mg/kg	ND		ND		ND	
Bis(2-ethylhexyl)phthalate	NS	mg/kg	ND		ND		ND	
Butyl benzyl phthalate	NS	mg/kg	ND		ND		ND	
Carbazole	NS	mg/kg	0.03	J	1.1		0.069	J
Chrysene	3.9	mg/kg	0.66		6.7		0.74	
Di-n-butylphthalate	NS	mg/kg	ND		ND		ND	
Di-n-octylphthalate	NS	mg/kg	ND		ND		ND	
Dibenzo(a,h)anthracene	0.33	mg/kg	0.11		1.1		0.24	
Dibenzofuran	59	mg/kg	0.023	J	0.69		0.028	J
Diethyl phthalate	NS	mg/kg	ND		ND		ND	
Dimethyl phthalate	NS	mg/kg	ND		ND		ND	
Fluoranthene	100	mg/kg			15			
Fluoranthene	100	mg/kg	1		12	Е	0.81	
Fluorene	100	mg/kg	0.024	J	1.2		0.034	J
Hexachlorobenzene	1.2	mg/kg	ND		ND		ND	
Hexachlorobutadiene	NS	mg/kg	ND		ND		ND	
Hexachlorocyclopentadiene	NS	mg/kg	ND		ND		ND	
Hexachloroethane	NS	mg/kg	ND		ND		ND	
Indeno(1,2,3-cd)pyrene	0.5	mg/kg	0.46		4.5		1.1	
Isophorone	NS	mg/kg	ND		ND		ND	
n-Nitrosodi-n-propylamine	NS	mg/kg	ND		ND		ND	

Final Engineering Report

CLIENT SAMPLE ID			SW-EP-2 09-AUG-18		SW-EP-3 09-AUG-18		SW-EP-4 09-AUG-18	
SAMPLING DATE	NIV DECDD*	TT *4						
LAB SAMPLE ID	NY-RESRR*	Units	L1831151-02		L1831151-03		L18311	151-04
				Qual		Qual		Qual
Naphthalene	100	mg/kg	0.039	J	0.51		0.031	J
NDPA/DPA	NS	mg/kg	ND		ND		ND	
Nitrobenzene	NS	mg/kg	ND		ND		ND	
p-Chloro-m-cresol	NS	mg/kg	ND		ND		ND	
Pentachlorophenol	6.7	mg/kg	ND		ND		ND	
Phenanthrene	100	mg/kg			13			
Phenanthrene	100	mg/kg	0.38		11	Е	0.48	
Phenol	100	mg/kg	ND		ND		ND	
Pyrene	100	mg/kg			14			
Pyrene	100	mg/kg	0.95		11	Е	0.76	

Notes:

Bold and shaded yellow value indicates concentration exceeds 6 NYCRR Part 375 Restricted Restricted-Residential SCOs

J = Estimated value

E = Concentration exceeds calibration range of the instrument

ND = Not detected

-- = Not analyzed

NS = No standard

* = 6 NYCRR Part 375 Restricted Restricted-Residential Soil Cleanup Objectives

CLIENT SAMPLE ID		Units	SW-EP-5 09-AUG-18		SW-EP-6 09-AUG-18		SW-EP-7 09-AUG-18	
SAMPLING DATE	NW DECDE							
LAB SAMPLE ID	NY-RESRR*		L1831151-05		L1831151-06		L1831151-07	
				Qual		Qual		Qual
General Chemistry						,		
Solids, Total	NS	%	88		90.1		87.6	
Total Metals						•		
Aluminum, Total	NS	mg/kg	6340		5380		5430	
Antimony, Total	NS	mg/kg	1.45	J	2.38	J	1.02	J
Arsenic, Total	16	mg/kg	4.27		9.34		4.31	
Barium, Total	400	mg/kg	105		155		62.9	
Beryllium, Total	72	mg/kg	0.341	J	0.389	J	0.286	J
Cadmium, Total	4.3	mg/kg	0.332	J	0.371	J	0.286	J
Calcium, Total	NS	mg/kg	19000		32900		2120	
Chromium, Total	NS	mg/kg	12.4		10.7		11.9	
Cobalt, Total	NS	mg/kg	5.96		5.36		6.02	
Copper, Total	270	mg/kg	57.2		56		25.4	
Iron, Total	NS	mg/kg	12600		10900		12900	
Lead, Total	400	mg/kg	182		234		153	
Magnesium, Total	NS	mg/kg	2260		1850		1980	
Manganese, Total	2000	mg/kg	264		217		270	
Mercury, Total	0.81	mg/kg	0.773		1.01		0.379	
Nickel, Total	310	mg/kg	12.2		14.2		14.5	
Potassium, Total	NS	mg/kg	903		1010		1140	
Selenium, Total	180	mg/kg	0.377	J	0.901	J	0.447	J
Silver, Total	180	mg/kg	ND		ND		ND	
Sodium, Total	NS	mg/kg	399		1020		1270	
Thallium, Total	NS	mg/kg	ND		ND		ND	
Vanadium, Total	NS	mg/kg	14.9		17		14.7	
Zinc, Total	10000	mg/kg	83.5		154		57.4	
Volatile Organic Compounds	<u> </u>							
1,1,1,2-Tetrachloroethane	NS	mg/kg	ND		ND		ND	
1,1,1-Trichloroethane	100	mg/kg	ND		ND		ND	
1,1,2,2-Tetrachloroethane	NS	mg/kg	ND		ND		ND	
1,1,2-Trichloroethane	NS	mg/kg	ND		ND		ND	
1,1-Dichloroethane	26	mg/kg	ND		ND		ND	
1,1-Dichloroethene	100	mg/kg	ND		ND		ND	
1,1-Dichloropropene	NS	mg/kg	ND		ND		ND	
1,2,3-Trichlorobenzene	NS	mg/kg	ND		ND		ND	
1,2,3-Trichloropropane	NS	mg/kg	ND		ND		ND	
1,2,4,5-Tetramethylbenzene	NS	mg/kg	ND		ND		ND	
1,2,4-Trichlorobenzene	NS	mg/kg	ND		ND		ND	
1,2,4-Trimethylbenzene	52	mg/kg	ND		ND		ND	
1,2-Dibromo-3-chloropropane	NS	mg/kg	ND		ND		ND	
1,2-Dibromoethane	NS	mg/kg	ND		ND		ND	
1,2-Dichlorobenzene	100	mg/kg	ND		ND		ND	

CLIENT SAMPLE ID			SW-EP-5	SW-EP-6	SW-EP-7	
SAMPLING DATE	NV DECDD*	TT *4	09-AUG-18	09-AUG-18	09-AUG-18	
LAB SAMPLE ID	NY-RESRR*	Units	L1831151-05	L1831151-06	L1831151-07	
			Qual	Qual	Qual	
1,2-Dichloroethane	3.1	mg/kg	ND	ND	ND	
1,2-Dichloroethene, Total	NS	mg/kg	ND	ND	ND	
1,2-Dichloropropane	NS	mg/kg	ND	ND	ND	
1,3,5-Trimethylbenzene	52	mg/kg	ND	ND	ND	
1,3-Dichlorobenzene	49	mg/kg	ND	ND	ND	
1,3-Dichloropropane	NS	mg/kg	ND	ND	ND	
1,3-Dichloropropene, Total	NS	mg/kg	ND	ND	ND	
1,4-Dichlorobenzene	13	mg/kg	ND	ND	ND	
1,4-Dioxane	13	mg/kg	ND	ND	ND	
2,2-Dichloropropane	NS	mg/kg	ND	ND	ND	
2-Butanone	100	mg/kg	ND	ND	ND	
2-Hexanone	NS	mg/kg	ND	ND	ND	
4-Methyl-2-pentanone	NS	mg/kg	ND	ND	ND	
Acetone	100	mg/kg	ND	0.018	0.011	
Acrylonitrile	NS	mg/kg	ND	ND	ND	
Benzene	4.8	mg/kg	ND	ND	ND	
Bromobenzene	NS	mg/kg	ND	ND	ND	
Bromochloromethane	NS	mg/kg	ND	ND	ND	
Bromodichloromethane	NS	mg/kg	ND	ND	ND	
Bromoform	NS	mg/kg	ND	ND	ND	
Bromomethane	NS	mg/kg	ND	ND	ND	
Carbon disulfide	NS	mg/kg	ND	ND	ND	
Carbon tetrachloride	2.4	mg/kg	ND	ND	ND	
Chlorobenzene	100	mg/kg	ND	ND	ND	
Chloroethane	NS	mg/kg	ND	ND	ND	
Chloroform	49	mg/kg	ND	ND	ND	
Chloromethane	NS	mg/kg	ND	ND	ND	
cis-1,2-Dichloroethene	100	mg/kg	ND	ND	ND	
cis-1,3-Dichloropropene	NS	mg/kg	ND	ND	ND	
Dibromochloromethane	NS	mg/kg	ND	ND	ND	
Dibromomethane	NS	mg/kg	ND	ND	ND	
Dichlorodifluoromethane	NS	mg/kg	ND	ND	ND	
Ethyl ether	NS	mg/kg	ND	ND	ND	
Ethylbenzene	41	mg/kg	ND	ND	ND	
Hexachlorobutadiene	NS	mg/kg	ND	ND	ND	
Isopropylbenzene	NS	mg/kg	ND	ND	ND	
Methyl tert butyl ether	100	mg/kg	ND	ND	ND	
Methylene chloride	100	mg/kg	ND	ND	ND	
n-Butylbenzene	100	mg/kg	ND	ND	ND	
n-Propylbenzene	100	mg/kg	ND	ND	ND	
Naphthalene	100	mg/kg	ND	ND	ND	
o-Chlorotoluene	NS	mg/kg	ND	ND	ND	

CLIENT SAMPLE ID			SW-EP-5	SW-EP-6	SW-EP-7	
SAMPLING DATE	MV DECDD*	TT *4	09-AUG-18	09-AUG-18	09-AUG-18	
AB SAMPLE ID NY-RESRR*		Units	L1831151-05	L1831151-06	L1831151-07	
			Qual	Qual	Qual	
o-Xylene	NS	mg/kg	ND	ND	ND	
p-Chlorotoluene	NS	mg/kg	ND	ND	ND	
p-Diethylbenzene	NS	mg/kg	ND	ND	ND	
p-Ethyltoluene	NS	mg/kg	ND	ND	ND	
p-Isopropyltoluene	NS	mg/kg	ND	ND	ND	
p/m-Xylene	NS	mg/kg	ND	ND	ND	
sec-Butylbenzene	100	mg/kg	ND	ND	ND	
Styrene	NS	mg/kg	ND	ND	ND	
tert-Butylbenzene	100	mg/kg	ND	ND	ND	
Tetrachloroethene	19	mg/kg	ND	ND	ND	
Toluene	100	mg/kg	ND	ND	ND	
trans-1,2-Dichloroethene	100	mg/kg	ND	ND	ND	
trans-1,3-Dichloropropene	NS	mg/kg	ND	ND	ND	
trans-1,4-Dichloro-2-butene	NS	mg/kg	ND	ND	ND	
Trichloroethene	21	mg/kg	ND	ND	ND	
Trichlorofluoromethane	NS	mg/kg	ND	ND	ND	
Vinyl acetate	NS	mg/kg	ND	ND	ND	
Vinyl chloride	0.9	mg/kg	ND	ND	ND	
Xylenes, Total	100	mg/kg	ND	ND	ND	
Semivolatile Organic Compounds						
1,2,4,5-Tetrachlorobenzene	NS	mg/kg	ND	ND	ND	
1,2,4-Trichlorobenzene	NS	mg/kg	ND	ND	ND	
1,2-Dichlorobenzene	100	mg/kg	ND	ND	ND	
1,3-Dichlorobenzene	49	mg/kg	ND	ND	ND	
1,4-Dichlorobenzene	13	mg/kg	ND	ND	ND	
2,4,5-Trichlorophenol	NS	mg/kg	ND	ND	ND	
2,4,6-Trichlorophenol	NS	mg/kg	ND	ND	ND	
2,4-Dichlorophenol	NS	mg/kg	ND	ND	ND	
2,4-Dimethylphenol	NS	mg/kg	ND	ND	ND	
2,4-Dinitrophenol	NS	mg/kg	ND	ND	ND	
2,4-Dinitrotoluene	NS	mg/kg	ND	ND	ND	
2,6-Dinitrotoluene	NS	mg/kg	ND	ND	ND	
2-Chloronaphthalene	NS	mg/kg	ND	ND	ND	
2-Chlorophenol	NS	mg/kg	ND	ND	ND	
2-Methylnaphthalene	NS	mg/kg	ND	0.053 J	0.064 J	
2-Methylphenol	100	mg/kg	ND	ND	ND	
2-Nitroaniline	NS	mg/kg	ND	ND	ND	
2-Nitrophenol	NS	mg/kg	ND	ND	ND	
3,3'-Dichlorobenzidine	NS	mg/kg	ND	ND	ND	
3-Methylphenol/4-Methylphenol	100	mg/kg	ND	ND	ND	
3-Nitroaniline	NS	mg/kg	ND	ND	ND	
4,6-Dinitro-o-cresol	NS	mg/kg	ND	ND	ND	

Table 7c. Sidewall Endpoint Analytical Results 555 West 22nd Street BCP Site No. C231101

Final Engineering Report

CLIENT SAMPLE ID			SW-El	P-5	SW-l	E P-6	SW-I	EP-7
SAMPLING DATE	MV DECDD4	TT *4	09-AUC	G-18	09-AU	JG-18	09-AU	G-18
LAB SAMPLE ID	NY-RESRR*	Units	L183115	1-05	L1831	151-06	L18311	51-07
				Qual		Qual		Qual
4-Bromophenyl phenyl ether	NS	mg/kg	ND		ND		ND	
4-Chloroaniline	NS	mg/kg	ND		ND		ND	
4-Chlorophenyl phenyl ether	NS	mg/kg	ND		ND		ND	
4-Nitroaniline	NS	mg/kg	ND		ND		ND	
4-Nitrophenol	NS	mg/kg	ND		ND		ND	
Acenaphthene	100	mg/kg	0.13	J	0.23	J	0.45	
Acenaphthylene	100	mg/kg	0.064	J	ND		0.079	J
Acetophenone	NS	mg/kg	ND		ND		ND	
Anthracene	100	mg/kg	0.33		0.62		1.2	
Benzo(a)anthracene	1	mg/kg						
Benzo(a)anthracene	1	mg/kg	1.4		2.1		4.6	
Benzo(a)pyrene	1	mg/kg	1.9		2.8		7.5	
Benzo(b)fluoranthene	1	mg/kg						
Benzo(b)fluoranthene	1	mg/kg	2.2		3.2		7.9	
Benzo(ghi)perylene	100	mg/kg	1.3		1.9		4.9	
Benzo(k)fluoranthene	3.9	mg/kg	0.8		1.1		2.8	
Benzoic Acid	NS	mg/kg	ND		ND		ND	
Benzyl Alcohol	NS	mg/kg	ND		ND		ND	
Biphenyl	NS	mg/kg	ND		ND		ND	
Bis(2-chloroethoxy)methane	NS	mg/kg	ND		ND		ND	
Bis(2-chloroethyl)ether	NS	mg/kg	ND		ND		ND	
Bis(2-chloroisopropyl)ether	NS	mg/kg	ND		ND		ND	
Bis(2-ethylhexyl)phthalate	NS	mg/kg	ND		ND		ND	
Butyl benzyl phthalate	NS	mg/kg	ND		ND		ND	
Carbazole	NS	mg/kg	0.14	J	0.23	J	0.52	
Chrysene	3.9	mg/kg	1.4		2		4.4	
Di-n-butylphthalate	NS	mg/kg	ND		ND		ND	
Di-n-octylphthalate	NS	mg/kg	ND		ND		ND	
Dibenzo(a,h)anthracene	0.33	mg/kg	0.32		0.46		1.2	
Dibenzofuran	59	mg/kg	0.068	J	0.12	J	0.22	J
Diethyl phthalate	NS	mg/kg	ND		ND		ND	
Dimethyl phthalate	NS	mg/kg	ND		ND		ND	
Fluoranthene	100	mg/kg						
Fluoranthene	100	mg/kg	2		3.4		5.4	
Fluorene	100	mg/kg	0.095	J	0.16	J	0.26	J
Hexachlorobenzene	1.2	mg/kg	ND		ND		ND	
Hexachlorobutadiene	NS	mg/kg	ND		ND		ND	
Hexachlorocyclopentadiene	NS	mg/kg	ND		ND		ND	
Hexachloroethane	NS	mg/kg	ND		ND		ND	
Indeno(1,2,3-cd)pyrene	0.5	mg/kg	1.5		2.1		5.6	
Isophorone	NS	mg/kg	ND		ND		ND	
n-Nitrosodi-n-propylamine	NS	mg/kg	ND		ND		ND	
ΓΓ/		0 0						

Table 7c. Sidewall Endpoint Analytical Results 555 West 22nd Street BCP Site No. C231101

Final Engineering Report

CLIENT SAMPLE ID			SW-E	P-5	SW-E	EP-6	SW-I	E P-7
SAMPLING DATE	NY-RESRR*	TT *4	09-AU	G-18	09-A U	G-18	09-AU	G-18
LAB SAMPLE ID	NY-KESKK"	Units	L18311	51-05	L18311	51-06	L18311	51-07
				Qual		Qual		Qual
Naphthalene	100	mg/kg	0.079	J	0.088	J	0.22	J
NDPA/DPA	NS	mg/kg	ND		ND		ND	
Nitrobenzene	NS	mg/kg	ND		ND		ND	
p-Chloro-m-cresol	NS	mg/kg	ND		ND		ND	
Pentachlorophenol	6.7	mg/kg	ND		ND		ND	
Phenanthrene	100	mg/kg						
Phenanthrene	100	mg/kg	1.2		2.5		3.7	
Phenol	100	mg/kg	ND		ND		ND	
Pyrene	100	mg/kg						
Pyrene	100	mg/kg	1.7		2.9		5	

Notes:

Bold and shaded yellow value indicates concentration exceeds 6 NYCRR Part 375 Restricted Restricted-Residential SCOs

J = Estimated value

E = Concentration exceeds calibration range of the instrument

ND = Not detected

-- = Not analyzed

NS = No standard

* = 6 NYCRR Part 375 Restricted Restricted-Residential Soil Cleanup Objectives

Table 8. Emerging Contaminats Results 555 West 22nd Street BCP Site No. C231101 Final Engineering Report

CPA-DWHAS* Units One Dilution CD-AAV-18 (Data) 02-MAV-18 (Data) 02-MAV-18 (Data) 02-MAV-18 (Data) 02-MAV-18 (Data) 07-SEP-18 (Data) Image Dilution NS ug/1 0.291 mic Acid (B.2FTS) NS ug/1 ND ND ND ND mic Acid (B.2FTS) NS ug/1 ND ND ND ND mic Acid (B.2FTS) NS ug/1 ND ND ND ND soacetic Acid (NMeFOSAA) NS ug/1 ND ND ND 0.291 s) ug/1 ND ND ND ND ND 0.291 0.291 0.291 0.291 0.291 0.291 0.291 0.291 0.291 0.291 0.291	CLIENT SAMPLE ID			MW-01	MW-01 DUP	MW-02	FIELD BLANK	MW-01	FIELD BLANK
NS ug/l	SAMPLING DATE		Units	02-MAY-18	02-MAY-18	02-MAY-18	02-MAY-18	07-SEP-18	07-SEP-18
NS ug/l ND ND ND ND ND ND ND N				Qual	Qual	Qual	Qual	Qual	Qual
Ope Dilution NS ug/I —	1,4 Dioxane by 8270D-SIM								
Deptition Dept	1,4-Dioxane	SN	ug/l	-	1	1	-	0.291	ND
ic Acid (8:2FTS) NS	Perfluorinated Alkyl Acids by Isotope Dilution								
ic Acid (6.2FTS) log ug/l log ug/l	1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	SN	ug/l	ND	ND	ND	ND	ı	:
acetic Acid (NEtFOSAA) NS ug/1 ND ND ND ND ND	1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	SN	ug/l	ND	ND	ND	ND	ı	:
Joacetic Acid (NMeFOSAA) NS ug/1 ND ND ND - (1) NS ug/1 0.0115 0.0117 0.0966 ND - - (2) NS ug/1 0.0476 0.0482 0.0416 ND - - (3) NS ug/1 0.00098 J 0.00145 J 0.0021 J -	N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	SN	ug/1	ND	ND	ND	ND	1	
NS ug/l 0.0115 0.0416 ND ND ND ND NS ug/l 0.0476 0.0482 0.0416 ND ND ND ND NS ug/l 0.00098 J 0.00145 J 0.00021 J ND ND ND ND ND ND ND	N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	SN	ug/l	ND	ND	ND	ND	ı	
NS ug/l 0.0476 0.0482 0.0416 ND ND ND ND ND ND ND N	Perfluorobutanesulfonic Acid (PFBS)	SN	l/gn	0.0115	0.0117	9960.0	ND	-	:
NS ug/l ND ND ND ND ND ND ND N	Perfluorobutanoic Acid (PFBA)	SN	ng/l	0.0476	0.0482	0.0416	ND	-	-
pS) NS ug/l 0.00098 J 0.00145 J O.00021 J ND - pS) NS ug/l ND ND ND ND - - - S) NS ug/l 0.0527 0.0539 0.0354 ND - - - S) NS ug/l 0.0053 0.00646 0.00482 ND - - - - NS ug/l 0.011 0.0046 0.00482 ND - <td>Perfluorodecanesulfonic Acid (PFDS)</td> <td>SN</td> <td>ug/1</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>1</td> <td></td>	Perfluorodecanesulfonic Acid (PFDS)	SN	ug/1	ND	ND	ND	ND	1	
pS) NS ug/1 ND ND ND ND - <th< td=""><td>Perfluorodecanoic Acid (PFDA)</td><td>SN</td><td>ug/l</td><td>0.00098 J</td><td>0.00145 J</td><td>0.00021 J</td><td>N</td><td>ı</td><td>:</td></th<>	Perfluorodecanoic Acid (PFDA)	SN	ug/l	0.00098 J	0.00145 J	0.00021 J	N	ı	:
pS) NS ug/l ND ND ND ND - P S) NS ug/l 0.0527 0.0539 0.0354 ND - - - S) NS ug/l 0.0053 0.00646 0.00482 ND -	Perfluorododecanoic Acid (PFDoA)	SN	ng/l	ND	ND	ND	ND	-	-
Sample	Perfluoroheptanesulfonic Acid (PFHpS)	NS	ug/l	ND	ND	ND	ND	-	-
Sample	Perfluoroheptanoic Acid (PFHpA)	NS	ug/l	0.0527	0.0539	0.0354	ND	-	-
NS ug/l 0.11 0.11 0.0661 ND NS ug/l 0.00945 0.00977 0.00158 J ND NS ug/l 0.00945 0.00977 0.00158 J ND NS ug/l 0.0272 0.0257 0.00597 0.000132 J NS ug/l 0.124 0.124 0.0732 ND NS ug/l ND ND ND ND ND NS ug/l ND ND ND ND ND NS ug/l ND ND ND ND ND ND NS ug/l ND ND ND ND ND ND ND NS ug/l ND ND ND ND ND ND ND NS ug/l ND ND ND ND ND ND ND NS ug/l ND ND ND ND ND ND ND N	Perfluorohexanesulfonic Acid (PFHxS)	NS	ng/l	0.0053	0.00646	0.00482	ND	-	-
NS ug/l 0.00945 0.00977 0.00158 J ND ND ND ND ND ND ND	Perfluorohexanoic Acid (PFHxA)	SN	ng/l	0.11	0.11	0.0661	ND	-	-
NS	Perfluorononanoic Acid (PFNA)	SN	ug/l	0.00945	0.00977	0.00158 J	ND	-	-
) 0.07 ug/l 0.0272 0.0257 0.000132 J – 0.07 ug/l 0.115 0.114 0.114 0.00064 J – NS ug/l ND	Perfluorooctanesulfonamide (FOSA)	NS	ug/l	ND	ND	ND	ND	-	
0.07 ug/l 0.115 0.114 0.000664 J NS ug/l 0.124 0.124 0.0732 ND NS ug/l ND ND ND ND ND ND ND N	Perfluorooctanesulfonic Acid (PFOS)	0.07	ng/l	0.0272	0.0257	0.00597	0.000132 J	-	-
NS ug/l 0.124 0.0124 ND - ND - ND	Perfluorooctanoic Acid (PFOA)	0.07	ug/l	0.115	0.114	0.114	0.000664 J	-	-
- ON	Perfluoropentanoic Acid (PFPeA)	SN	ug/l	0.124	0.124	0.0732	ND	-	-
- GN	Perfluorotetradecanoic Acid (PFTA)	NS	ug/l	ND	ND	ND	ND	-	
	Perfluorotridecanoic Acid (PFTrDA)	NS	ug/l	ND	ND	ND	ND	-	-
- GNI GNI ISBN CNI	Perfluoroundecanoic Acid (PFUnA)	SN	ng/l	ND	ND	ND	ND	-	-

Bold and shaded yellow value indicates concentration exceeds EPA-DWHAS

J = Estimated Value

ND = Not Detected

-- = Not Analyzed

* = EPA Drinking Water Health Advisory Standard

Table 9. Backfill Quantities and Sources 555 West 22nd Street BCP Site No. C231101 Final Engineering Report

Facility	Facility Location	Material Type	Quantity Imported (Approx. Tons)
Tilcon New York Inc.	625 Mount Hope Road, Wharton, NJ 07885	3-6" Gabion/Rip Rap Stone	24.14
Liberty Stone and Aggregates, LLC	506 Caven Point Avenue, Jersey City, NJ 07305	3-5" TPS	128.22
Rockrete Recycling Corporation	400 Veterans Memorial Drive, Elizabeth, NJ 07206	3/4" Clean RCA	630.00
Braen Aggregates LLC	400-402 Central Avenue, Haledon, NJ 07508	Lime Dust - Soil Stabilization Agent	250.96

Appendix A

Survey Map, Metes and Bounds (Environmental Easement)

ord Bearlet Description Asset for for Lots 2, to 40, 40.

Out combast that and Bearlet for Tota 2, and 4, 40.

Out and an additional for the compassion of compassion.

Map Amendments

VAEAUE

(100, MIDE CILL BICHL OF WAY)

ELEVENTH

(86.70° 0550 & 1.M.) MOCK 684 BLOCK 884 LOT 60 (118, DEED W EW) 101 7 WEST 23^{RD} (100' WIDE CITY RICHT OF WAY) STREET MODE 884 UST 61 (118, DEED W EW) (88'10, DEED W EW) (M.T & 0330 'k.M.) (96.79' 0550 & T.M.) 107 68 (75° 0000 & TAL) (75° 0000 & TAL) (76' DEED & T.M.) (76' DEED & T.M.) MCOK 884 1

100 May 100

STREET (60° WIDE CITY RIGHT OF WAY) WEST 22ND

Point of Commencement for Tenck 284

Appendix B

Digital Copy of the FER (CD)

Appendix C

CAMP Data Sheets and Air Monitoring Data

Downwind CAMP Data July 2018

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/5/2018 7:39		0.113
7/5/2018 7:40		0.111
7/5/2018 7:41	0.052	0.104
7/5/2018 7:42	0.041	0.103
7/5/2018 7:43	0.042	0.113
7/5/2018 7:44	0.058	0.104
7/5/2018 7:45	0.04	0.099
7/5/2018 7:46	0.043	0.099
7/5/2018 7:47	0.047	0.101
7/5/2018 7:48	0.04	0.102
7/5/2018 7:49	0.039	0.101
7/5/2018 7:50	0.039	0.119
7/5/2018 7:51	0.04	0.112
7/5/2018 7:52	0.038	0.11
7/5/2018 7:53	0.05	0.117
7/5/2018 7:54	0.147	0.111
7/5/2018 7:55	0.228	0.116
7/5/2018 7:56	0.098	0.118
7/5/2018 7:57	0.049	0.118
7/5/2018 7:58	0.045	0.119
7/5/2018 7:59	0.039	0.119
7/5/2018 8:00	0.051	0.116
7/5/2018 8:01	0.069	0.123
7/5/2018 8:02	0.047	0.123
7/5/2018 8:03	0.042	0.13
7/5/2018 8:04	0.043	0.125
7/5/2018 8:05	0.035	0.124
7/5/2018 8:06	0.034	0.131
7/5/2018 8:07	0.058	0.135
7/5/2018 8:08	0.059	0.135
7/5/2018 8:09	0.074	0.138
7/5/2018 8:10	0.039	0.137
7/5/2018 8:11	0.037	0.145
7/5/2018 8:12	0.029	0.14
7/5/2018 8:13	0.03	0.142
7/5/2018 8:14	0.038	0.146
7/5/2018 8:15	0.032	0.144
7/5/2018 8:16	0.031	0.15
7/5/2018 8:17	0.03	0.151
7/5/2018 8:18	0.032	0.156
7/5/2018 8:19 7/5/2018 8:20	0.03	0.156
7/5/2018 8:20	0.035 0.041	0.158 0.163
7/5/2018 8:21 7/5/2018 8:22	0.041	0.163
7/5/2018 8:23	0.028	0.161
7/5/2018 8:24	0.026	0.21
7/3/2010 0.24	0.027	0.103

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (nnm)
7/5/2018 8:25	0.027	0.172
7/5/2018 8:26	0.028	0.174
7/5/2018 8:27	0.027	0.176
7/5/2018 8:28	0.024	0.185
7/5/2018 8:29	0.034	0.181
7/5/2018 8:30	0.039	0.185
7/5/2018 8:31	0.04	0.189
7/5/2018 8:32	0.037	0.195
7/5/2018 8:33	0.03	0.189
7/5/2018 8:34	0.043	0.206
7/5/2018 8:35	0.029	0.195
7/5/2018 8:36	0.033	0.199
7/5/2018 8:37	0.028	0.204
7/5/2018 8:38	0.035	0.206
7/5/2018 8:39	0.078	0.231
7/5/2018 8:40	0.034	0.212
7/5/2018 8:41	0.034	0.215
7/5/2018 8:42	0.065	0.215
7/5/2018 8:43	0.078	0.221
7/5/2018 8:44	0.066	0.222
7/5/2018 8:45	0.036	0.239
7/5/2018 8:46	0.026	0.237
7/5/2018 8:47	0.026	0.231
7/5/2018 8:48	0.027	0.233
7/5/2018 8:49	0.027	0.229
7/5/2018 8:50	0.037	0.232
7/5/2018 8:51	0.053	0.293
7/5/2018 8:52	0.025	0.244
7/5/2018 8:53	0.025	0.251
7/5/2018 8:54	0.023	0.27
7/5/2018 8:55	0.023	0.279
7/5/2018 8:56	0.022	0.262
7/5/2018 8:57	0.021	0.261
7/5/2018 8:58	0.023	0.263
7/5/2018 8:59	0.023	0.27
7/5/2018 9:00	0.021	0.272
7/5/2018 9:01	0.023	0.277
7/5/2018 9:02	0.028	0.275
7/5/2018 9:03	0.028	0.276
7/5/2018 9:04	0.025	0.286
7/5/2018 9:05	0.024	0.295
7/5/2018 9:06	0.029	0.291
7/5/2018 9:07	0.028	0.296
7/5/2018 9:08	0.031	0.299
7/5/2018 9:09	0.027	0.312
7/5/2018 9:10	0.03	0.31

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/5/2018 9:11	0.025	0.317
7/5/2018 9:12	0.027	0.35
7/5/2018 9:13	0.044	0.329
7/5/2018 9:14	0.034	0.335
7/5/2018 9:15	0.029	0.341
7/5/2018 9:16	0.037	0.346
7/5/2018 9:17	0.028	0.362
7/5/2018 9:18	0.039	0.365
7/5/2018 9:19	0.024	0.367
7/5/2018 9:20	0.022	0.372
7/5/2018 9:21	0.023	0.376
7/5/2018 9:22	0.027	0.402
7/5/2018 9:23	0.03	0.399
7/5/2018 9:24	0.029	0.399
7/5/2018 9:25	0.026	0.403
7/5/2018 9:26	0.043	0.407
7/5/2018 9:27	0.035	0.402
7/5/2018 9:28	0.039	0.409
7/5/2018 9:29	0.053	0.418
7/5/2018 9:30	0.041	0.417
7/5/2018 9:31	0.146	0.419
7/5/2018 9:32	0.027	0.423
7/5/2018 9:33	0.029	0.431
7/5/2018 9:34	0.023	0.423
7/5/2018 9:35	0.023	0.427
7/5/2018 9:36	0.018	0.426
7/5/2018 9:37	0.018	0.43
7/5/2018 9:38	0.026	0.432
7/5/2018 9:39	0.034	0.435
7/5/2018 9:40	0.026	0.444
7/5/2018 9:41	0.021	0.447
7/5/2018 9:42	0.018	0.443
7/5/2018 9:43	0.02	0.442
7/5/2018 9:44	0.017	0.444
7/5/2018 9:45	0.018	0.444
7/5/2018 9:46	0.019	0.437
7/5/2018 9:47	0.02	0.451
7/5/2018 9:48	0.021	0.454
7/5/2018 9:49	0.047	0.46
7/5/2018 9:50	0.04	0.461
7/5/2018 9:51	0.021	0.464
7/5/2018 9:52	0.019	0.465
7/5/2018 9:53 7/5/2018 9:54	0.019	0.47
7/5/2018 9:54 7/5/2018 9:55	0.02 0.022	0.476 0.476
7/5/2018 9:56	0.022	0.476
7/3/2010 3.30	0.024	0.403

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/5/2018 9:57	0.023	0.483
7/5/2018 9:58	0.019	0.482
7/5/2018 9:59	0.02	0.481
7/5/2018 10:00	0.021	0.489
7/5/2018 10:01	0.02	0.495
7/5/2018 10:02	0.02	0.498
7/5/2018 10:03	0.026	0.502
7/5/2018 10:04	0.021	0.506
7/5/2018 10:05	0.02	0.507
7/5/2018 10:06	0.022	0.516
7/5/2018 10:07	0.026	0.516
7/5/2018 10:08	0.032	0.522
7/5/2018 10:09	0.032	0.5
7/5/2018 10:10	0.021	0.501
7/5/2018 10:11	0.018	0.495
7/5/2018 10:12	0.03	0.511
7/5/2018 10:13	0.032	0.496
7/5/2018 10:14	0.026	0.504
7/5/2018 10:15	0.022	0.501
7/5/2018 10:16	0.021	0.501
7/5/2018 10:17	0.019	0.499
7/5/2018 10:18	0.019	0.498
7/5/2018 10:19	0.022	0.504
7/5/2018 10:20	0.017	0.501
7/5/2018 10:21	0.019	0.506
7/5/2018 10:22	0.017	0.511
7/5/2018 10:23	0.018	0.512
7/5/2018 10:24	0.019	0.504
7/5/2018 10:25	0.021	0.502
7/5/2018 10:26	0.021	0.5
7/5/2018 10:27	0.02	0.502
7/5/2018 10:28	0.019	0.501
7/5/2018 10:29	0.018	0.495
7/5/2018 10:30	0.018	0.502
7/5/2018 10:31	0.017	0.498
7/5/2018 10:32	0.017	0.499
7/5/2018 10:33	0.024	0.503
7/5/2018 10:34	0.02	0.502
7/5/2018 10:35	0.017	0.501
7/5/2018 10:36	0.017	0.501
7/5/2018 10:37	0.017	0.497
7/5/2018 10:38	0.015	0.501
7/5/2018 10:39	0.016	0.5
7/5/2018 10:40	0.016	0.494
7/5/2018 10:41	0.015	0.491
7/5/2018 10:42	0.015	0.486

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (nnm)
7/5/2018 10:43	0.016	0.494
7/5/2018 10:44	0.017	0.494
7/5/2018 10:45	0.031	0.486
7/5/2018 10:46	0.017	0.478
7/5/2018 10:47	0.017	0.478
7/5/2018 10:48	0.019	0.478
7/5/2018 10:49	0.035	0.475
7/5/2018 10:50	0.02	0.475
7/5/2018 10:51	0.024	0.478
7/5/2018 10:52	0.018	0.476
7/5/2018 10:53	0.015	0.471
7/5/2018 10:54	0.027	0.473
7/5/2018 10:55	0.014	0.482
7/5/2018 10:56	0.015	0.474
7/5/2018 10:57	0.025	0.473
7/5/2018 10:58	0.021	0.468
7/5/2018 10:59	0.016	0.469
7/5/2018 11:00	0.017	0.473
7/5/2018 11:01	0.019	0.474
7/5/2018 11:02	0.016	0.479
7/5/2018 11:03	0.017	0.48
7/5/2018 11:04	0.018	0.485
7/5/2018 11:05	0.015	0.487
7/5/2018 11:06	0.03	0.485
7/5/2018 11:07	0.026	0.492
7/5/2018 11:08	0.029	0.497
7/5/2018 11:09	0.022	0.509
7/5/2018 11:10	0.02	0.503
7/5/2018 11:11	0.016	0.5
7/5/2018 11:12	0.013	0.502
7/5/2018 11:13	0.015	0.505
7/5/2018 11:14	0.014	0.51
7/5/2018 11:15	0.014	0.508
7/5/2018 11:16	0.013	0.51
7/5/2018 11:17	0.012	0.519
7/5/2018 11:18	0.013	0.516
7/5/2018 11:19	0.013	0.514
7/5/2018 11:20	0.011	0.509
7/5/2018 11:21	0.015	0.508
7/5/2018 11:22	0.012	0.507
7/5/2018 11:23	0.011	0.504
7/5/2018 11:24	0.012	0.5
7/5/2018 11:25	0.011	0.498
7/5/2018 11:26	0.011	0.496
7/5/2018 11:27 7/5/2018 11:28	0.013 0.014	0.492 0.491
//3/2010 11.20	0.014	0.431

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/5/2018 11:29	0.011	0.487
7/5/2018 11:30	0.011	0.486
7/5/2018 11:31	0.011	0.484
7/5/2018 11:32	0.011	0.483
7/5/2018 11:33	0.013	0.481
7/5/2018 11:34	0.011	0.482
7/5/2018 11:35	0.01	0.486
7/5/2018 11:36	0.01	0.48
7/5/2018 11:37	0.011	0.479
7/5/2018 11:38	0.011	0.485
7/5/2018 11:39	0.028	0.478
7/5/2018 11:40	0.039	0.48
7/5/2018 11:41	0.023	0.49
7/5/2018 11:42	0.015	0.493
7/5/2018 11:43	0.015	0.491
7/5/2018 11:44	0.019	0.485
7/5/2018 11:45	0.021	0.488
7/5/2018 11:46	0.013	0.491
7/5/2018 11:47	0.013	0.501
7/5/2018 11:48	0.015	0.494
7/5/2018 11:49	0.013	0.502
7/5/2018 11:50	0.012	0.502
7/5/2018 11:51	0.012	0.505
7/5/2018 11:51	0.012	0.503
7/5/2018 11:53	0.013	0.511
7/5/2018 11:54	0.012	0.504
7/5/2018 11:55		0.51
	0.014	
7/5/2018 11:56	0.015	0.512
7/5/2018 11:57	0.041	0.514
7/5/2018 11:58	0.014	0.516
7/5/2018 11:59	0.011	0.514
7/5/2018 12:00	0.011	0.513
7/5/2018 12:01	0.013	0.522
7/5/2018 12:02	0.014	0.513
7/5/2018 12:03	0.009	0.523
7/5/2018 12:04	0.009	0.537
7/5/2018 12:05	0.009	0.532
7/5/2018 12:06	0.013	0.531
7/5/2018 12:07	0.013	0.531
7/5/2018 12:08	0.016	0.522
7/5/2018 12:09	0.011	0.525
7/5/2018 12:10	0.009	0.529
7/5/2018 12:11	0.012	0.529
7/5/2018 12:12	0.008	0.533
7/5/2018 12:13	0.008	0.535
7/5/2018 12:14	0.007	0.532

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/5/2018 12:15	0.026	0.521
7/5/2018 12:16	0.015	0.526
7/5/2018 12:17	0.011	0.525
7/5/2018 12:18	0.009	0.536
7/5/2018 12:19	0.008	0.527
7/5/2018 12:20	0.009	0.534
7/5/2018 12:21	0.01	0.53
7/5/2018 12:22	0.013	0.525
7/5/2018 12:23	0.017	0.515
7/5/2018 12:24	0.01	0.519
7/5/2018 12:25	0.01	0.531
7/5/2018 12:26	0.008	0.521
7/5/2018 12:27	0.01	0.52
7/5/2018 12:28	0.009	0.522
7/5/2018 12:29	0.008	0.523
7/5/2018 12:30	0.011	0.527
7/5/2018 12:31	0.021	0.517
7/5/2018 12:32	0.011	0.528
7/5/2018 12:33	0.023	0.531
7/5/2018 12:34	0.012	0.519
7/5/2018 12:35	0.012	0.51
7/5/2018 12:36	0.013	0.504
7/5/2018 12:37	0.026	0.512
7/5/2018 12:38	0.009	0.51
7/5/2018 12:39	0.007	0.507
7/5/2018 12:40	0.01	0.502
7/5/2018 12:41	0.011	0.509
7/5/2018 12:42	0.009	0.498
7/5/2018 12:43	0.008	0.503
7/5/2018 12:44	0.02	0.505
7/5/2018 12:45	0.008	0.511
7/5/2018 12:46	0.011	0.516
7/5/2018 12:47	0.009	0.52
7/5/2018 12:48	0.009	0.513
7/5/2018 12:49	0.009	0.515
7/5/2018 12:50	0.012	0.512
7/5/2018 12:51	0.011	0.514
7/5/2018 12:52	0.009	0.52
7/5/2018 12:53	0.008	0.519
7/5/2018 12:54	0.006	0.52
7/5/2018 12:55	0.008	0.516
7/5/2018 12:56	0.019	0.518
7/5/2018 12:57	0.019	0.518
7/5/2018 12:58	0.013	0.513
7/5/2018 12:59	0.013	0.51
7/5/2018 13:00	0.013	0.503
7,5,2010 13.00	0.01	0.505

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/5/2018 13:01	0.011	0.507
7/5/2018 13:02	0.009	0.504
7/5/2018 13:03	0.008	0.505
7/5/2018 13:04	0.009	0.511
7/5/2018 13:05	0.008	0.505
7/5/2018 13:06	0.008	0.507
7/5/2018 13:07	0.007	0.518
7/5/2018 13:08	0.013	
7/5/2018 13:09	0.01	
7/5/2018 13:10	0.017	0.071
7/5/2018 13:11	0.012	0.06
7/5/2018 13:12	0.014	0.069
7/5/2018 13:13	0.01	0.077
7/5/2018 13:14	0.01	0.084
7/5/2018 13:15	0.009	0.089
7/5/2018 13:16	0.01	0.092
7/5/2018 13:17	0.01	0.1
7/5/2018 13:18	0.014	0.093
7/5/2018 13:19	0.012	0.102
7/5/2018 13:20	0.01	0.105
7/5/2018 13:21	0.009	0.115
7/5/2018 13:22	0.009	0.118
7/5/2018 13:23	0.008	0.123
7/5/2018 13:24	0.007	0.141
7/5/2018 13:25	0.006	0.131
7/5/2018 13:26	0.007	0.134
7/5/2018 13:27	0.007	0.136
7/5/2018 13:28	0.006	0.137
7/5/2018 13:29	0.007	0.133
7/5/2018 13:30	0.008	0.131
7/5/2018 13:31	0.013	0.127
7/5/2018 13:32	0.013	0.123
7/5/2018 13:33	0.009	0.131
7/5/2018 13:34	0.009	0.133
7/5/2018 13:35	0.009	0.147
7/5/2018 13:36	0.01	0.138
7/5/2018 13:37	0.01	0.141
7/5/2018 13:38	0.01	0.14
7/5/2018 13:39	0.011	0.133
7/5/2018 13:40	0.011	0.133
7/5/2018 13:41	0.01	0.138
7/5/2018 13:42	0.013	0.143
7/5/2018 13:43	0.008	0.147
7/5/2018 13:44	0.008	0.149
7/5/2018 13:45	0.007	0.146
7/5/2018 13:46	0.009	0.145

Timestamp (America/New_York)		
7/5/2018 13:47	0.009	0.147
7/5/2018 13:48	0.009	0.149
7/5/2018 13:49	0.007	0.15
7/5/2018 13:50	0.006	0.149
7/5/2018 13:51	0.005	0.149
7/5/2018 13:52	0.006	0.147
7/5/2018 13:53	0.005	0.143
7/5/2018 13:54	0.005	0.139
7/5/2018 13:55	0.005	0.139
7/5/2018 13:56	0.005	0.141
7/5/2018 13:57	0.006	0.138
7/5/2018 13:58	0.006	0.136
7/5/2018 13:59	0.007	0.133
7/5/2018 14:00	0.02	0.131
7/5/2018 14:01	0.026	0.134
7/5/2018 14:02	0.009	0.131
7/5/2018 14:03	0.01	0.132
7/5/2018 14:04	0.008	0.135
7/5/2018 14:05	0.011	0.122
7/5/2018 14:06	0.01	0.128
7/5/2018 14:07	0.009	0.13
7/5/2018 14:08	0.008	0.122
7/5/2018 14:09	0.009	0.128
7/5/2018 14:10	0.007	0.129
7/5/2018 14:11	0.007	0.134
7/5/2018 14:12	0.007	0.128
7/5/2018 14:13	0.007	0.135
7/5/2018 14:14	0.007	0.125
7/5/2018 14:15	0.007	0.125
7/5/2018 14:16	0.008	0.12
7/5/2018 14:17	0.01	0.127
7/5/2018 14:18	0.01	0.122
7/5/2018 14:19	0.009	0.12
7/5/2018 14:20	0.009	0.123
7/5/2018 14:21	0.007	0.117
7/5/2018 14:22	0.007	0.119
7/5/2018 14:23	0.008	0.127
7/5/2018 14:24	0.008	0.12
7/5/2018 14:25	0.009	0.123
7/5/2018 14:26	0.009	0.122
7/5/2018 14:27	0.008	0.126
7/5/2018 14:28	0.007	0.123
7/5/2018 14:29	0.009	0.127
7/5/2018 14:30	0.01	0.126
7/5/2018 14:31	0.009	0.117
7/5/2018 14:32	0.01	0.122

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/5/2018 14:33	0.009	0.124
7/5/2018 14:34	0.009	0.12
7/5/2018 14:35	0.009	0.123
7/5/2018 14:36	0.008	0.119
7/5/2018 14:37	0.009	0.122
7/5/2018 14:38	0.008	0.122
7/5/2018 14:39	0.009	0.114
7/5/2018 14:40	0.011	0.116
7/5/2018 14:41	0.009	0.122
7/5/2018 14:42	0.015	0.116
7/5/2018 14:43	0.015	0.117
7/5/2018 14:44	0.012	0.104
7/5/2018 14:45	0.01	0.11
7/5/2018 14:46	0.01	0.118
7/5/2018 14:47	0.007	0.115
7/5/2018 14:48	0.008	0.107
7/5/2018 14:49	0.01	0.112
7/5/2018 14:50	0.013	0.119
7/5/2018 14:51	0.006	0.123
7/5/2018 14:52	0.005	0.128
7/5/2018 14:53	0.006	0.122
7/5/2018 14:54	0.006	0.127
7/5/2018 14:55	0.006	0.119
7/5/2018 14:56	0.007	0.121
7/5/2018 14:57	0.009	0.109
7/5/2018 14:58	0.01	0.107
7/5/2018 14:59	0.009	0.099
7/5/2018 15:00	0.009	0.101
7/5/2018 15:01	0.01	0.097
7/5/2018 15:02	0.008	0.101
7/5/2018 15:03	0.009	0.1
7/5/2018 15:04	0.008	0.098
7/5/2018 15:05	0.009	0.084
7/5/2018 15:06	0.01	0.084
7/5/2018 15:07	0.008	0.08
7/5/2018 15:08	0.008	0.081
7/5/2018 15:09	0.006	0.079
7/5/2018 15:10	0.007	0.074
7/5/2018 15:11	0.007	0.082
7/5/2018 15:12	0.011	0.074
7/5/2018 15:13	0.021	0.078
7/5/2018 15:14	0.255	0.09
7/5/2018 15:15	0.027	0.084
7/5/2018 15:16	0.013	0.094
7/5/2018 15:17	0.053	0.096
7/5/2018 15:18	0.012	0.092

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/5/2018 15:19	0.067	0.091
7/5/2018 15:20	0.009	0.086
7/5/2018 15:21	0.009	0.082
7/5/2018 15:22	0.007	0.073
7/5/2018 15:23	0.01	0.076
7/5/2018 15:24	0.01	0.066
7/5/2018 15:25	0.008	0.064
7/5/2018 15:26	0.013	0.057
7/5/2018 15:27	0.031	0.058
7/5/2018 15:28	0.015	0.056
7/5/2018 15:29	0.01	0.055
7/5/2018 15:30	0.008	0.058
7/5/2018 15:31	0.01	0.057
7/5/2018 15:32	0.008	0.057
7/5/2018 15:33	0.042	0.059
7/5/2018 15:34	0.039	0.063
7/5/2018 15:35	0.027	0.068
7/5/2018 15:36	0.056	0.074
7/5/2018 15:37	0.157	0.074
7/5/2018 15:38	0.028	0.079
7/5/2018 15:39	0.104	0.075
7/5/2018 15:40	0.169	0.076
7/5/2018 15:41	0.025	0.075
7/5/2018 15:42	0.214	0.079
7/5/2018 15:43	0.824	0.074
7/5/2018 15:44	0.009	0.075
7/5/2018 15:45	0.008	0.073
7/5/2018 15:46	0.008	0.071
7/5/2018 15:47	0.013	0.08
7/5/2018 15:48	0.007	0.072
7/5/2018 15:49	0.007	0.074
7/5/2018 15:50	0.008	0.077
7/5/2018 15:51	0.009	0.074
7/5/2018 15:52	0.006	0.07
7/5/2018 15:53	0.006	0.073
7/5/2018 15:54	0.006	0.071
7/5/2018 15:55	0.006	0.065
7/5/2018 15:56	0.006	0.062
7/5/2018 15:57	0.013	0.065
7/5/2018 15:58	0.007	0.066
7/5/2018 15:59	0.008	0.055
7/5/2018 16:00	0.006	0.061
7/5/2018 16:01	0.006	0.064
7/5/2018 16:02	0.006	0.06
7/5/2018 16:03	0.007	0.059
7/5/2018 16:04	0.006	0.058

Timestamp (America/New_York)		VOC (ppm)
7/5/2018 16:05	0.007	0.063
7/5/2018 16:06	0.008	0.061
7/5/2018 16:07	0.009	0.063
7/5/2018 16:08	0.025	0.063
7/5/2018 16:09	0.015	0.063
7/5/2018 16:10	0.006	0.062
7/5/2018 16:11	0.011	0.061
7/5/2018 16:12	0.008	0.052
7/5/2018 16:13	0.007	0.052
7/5/2018 16:14	0.007	0.048
7/5/2018 16:15	0.008	0.05
7/5/2018 16:16	0.006	0.052
7/5/2018 16:17	0.006	0.054
7/5/2018 16:18	0.006	0.053
7/5/2018 16:19	0.006	0.051
7/5/2018 16:20	0.006	0.055
7/5/2018 16:21	0.005	0.048
7/5/2018 16:22	0.006	0.045
7/5/2018 16:23	0.006	0.044
7/5/2018 16:24	0.008	0.038
7/5/2018 16:25	0.008	0.032
7/5/2018 16:26	0.011	0.029
7/9/2018 7:09	0.011	0.491
7/9/2018 7:10	0.03	0.432
7/9/2018 7:11	0.0325	0.3907
7/9/2018 7:12	0.042	0.3548
7/9/2018 7:13	0.0443	0.3254
7/9/2018 7:14	0.0424	0.3254
7/9/2018 7:15	0.0405	0.2794
7/9/2018 7:16	0.0391	0.2618
7/9/2018 7:17	0.038	0.2463
7/9/2018 7:17	0.0402	0.2403
7/9/2018 7:19	0.0448	0.2218
7/9/2018 7:19	0.0448	0.2218
7/9/2018 7:21	0.0439	0.2111
7/9/2018 7:22	0.0448	0.2013
• •		
7/9/2018 7:23	0.0426	0.1855
7/9/2018 7:24	0.0415	0.1579
7/9/2018 7:25	0.0413	0.138
7/9/2018 7:26	0.0409	0.1221
7/9/2018 7:27	0.0386	0.1105
7/9/2018 7:28	0.0373	0.1015
7/9/2018 7:29	0.0369	0.0955
7/9/2018 7:30	0.0365	0.092
7/9/2018 7:31	0.0363	0.0894
7/9/2018 7:32	0.036	0.0881

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/9/2018 7:33	0.0337	0.0882
7/9/2018 7:34	0.0297	0.0899
7/9/2018 7:35	0.0281	0.0925
7/9/2018 7:36	0.0278	0.0971
7/9/2018 7:37	0.0276	0.1013
7/9/2018 7:38	0.0272	0.1076
7/9/2018 7:39	0.0282	0.1153
7/9/2018 7:40	0.0291	0.1231
7/9/2018 7:41	0.0291	0.1321
7/9/2018 7:42	0.0292	0.1417
7/9/2018 7:43	0.0289	0.1515
7/9/2018 7:44	0.0287	0.1615
7/9/2018 7:45	0.029	0.1716
7/9/2018 7:46	0.0315	0.1817
7/9/2018 7:47	0.0317	0.1929
7/9/2018 7:48	0.0317	0.2037
7/9/2018 7:49	0.0321	0.2137
7/9/2018 7:50	0.036	0.2243
7/9/2018 7:51	0.0367	0.2337
7/9/2018 7:52	0.0367	0.2437
7/9/2018 7:53	0.0395	0.2523
7/9/2018 7:54	0.0391	0.2592
7/9/2018 7:55	0.0381	0.2669
7/9/2018 7:56	0.0401	0.2738
7/9/2018 7:57	0.0408	0.2803
7/9/2018 7:58	0.0409	0.2861
7/9/2018 7:59	0.0408	0.2904
7/9/2018 8:00	0.0404	0.2948
7/9/2018 8:01	0.0376	0.2989
7/9/2018 8:02	0.0373	0.3017
7/9/2018 8:03	0.0398	0.3047
7/9/2018 8:04	0.0429	0.3069
7/9/2018 8:05	0.0414	0.3089
7/9/2018 8:06	0.0415	0.311
7/9/2018 8:07	0.0418	0.3129
7/9/2018 8:08	0.039	0.3145
7/9/2018 8:09	0.0383	0.3165
7/9/2018 8:10	0.0389	0.3183
7/9/2018 8:11	0.0376	0.3193
7/9/2018 8:12	0.0366	0.3195
7/9/2018 8:13	0.0361	0.3203
7/9/2018 8:14	0.0359	0.3207
7/9/2018 8:15	0.0357	0.3207
7/9/2018 8:16	0.0357	0.3209
7/9/2018 8:17	0.0355	0.3213
7/9/2018 8:18	0.0329	0.3209

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/9/2018 8:19	0.0291	0.3211
7/9/2018 8:20	0.026	0.3209
7/9/2018 8:21	0.0255	0.3204
7/9/2018 8:22	0.0287	0.3197
7/9/2018 8:23	0.0296	0.3193
7/9/2018 8:24	0.03	0.3186
7/9/2018 8:25	0.0291	0.3176
7/9/2018 8:26	0.028	0.3163
7/9/2018 8:27	0.0278	0.315
7/9/2018 8:28	0.0277	0.3137
7/9/2018 8:29	0.0276	0.3135
7/9/2018 8:30	0.0276	0.3124
7/9/2018 8:31	0.0277	0.3116
7/9/2018 8:32	0.0279	0.3101
7/9/2018 8:33	0.0277	0.3087
7/9/2018 8:34	0.0278	0.3072
7/9/2018 8:35	0.0278	0.3055
7/9/2018 8:36	0.0267	0.303
7/9/2018 8:37	0.0228	0.3012
7/9/2018 8:38	0.0215	0.2995
7/9/2018 8:39	0.0206	0.2982
7/9/2018 8:40	0.0205	0.2965
7/9/2018 8:41	0.0213	0.2953
7/9/2018 8:42	0.0218	0.2944
7/9/2018 8:43	0.0227	0.2934
7/9/2018 8:44	0.0228	0.2918
7/9/2018 8:45	0.0231	0.2905
7/9/2018 8:46	0.0232	0.2885
7/9/2018 8:47	0.0239	0.2869
7/9/2018 8:48	0.0269	0.2845
7/9/2018 8:49	0.0283	0.2823
7/9/2018 8:50	0.0285	0.2803
7/9/2018 8:51	0.0285	0.2793
7/9/2018 8:52	0.0287	0.2773
7/9/2018 8:53	0.0291	0.2745
7/9/2018 8:54	0.0293	0.2709
7/9/2018 8:55	0.0293	0.2684
7/9/2018 8:56	0.0286	0.2667
7/9/2018 8:57	0.0289	0.2673
7/9/2018 8:58	0.0307	0.2657
7/9/2018 8:59	0.0311	0.2631
7/9/2018 9:00	0.0309	0.2601
7/9/2018 9:01	0.0307	0.2577
7/9/2018 9:02	0.0298	0.2548
7/9/2018 9:03	0.0269	0.2529
7/9/2018 9:04	0.0254	0.2501

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/9/2018 9:05	0.0251	0.2469
7/9/2018 9:06	0.0251	0.2435
7/9/2018 9:07	0.0251	0.2397
7/9/2018 9:08	0.0256	0.2367
7/9/2018 9:09	0.0263	0.2337
7/9/2018 9:10	0.0265	0.2296
7/9/2018 9:11	0.0272	0.2255
7/9/2018 9:12	0.0267	0.2188
7/9/2018 9:13	0.0243	0.214
7/9/2018 9:14	0.0239	0.2096
7/9/2018 9:15	0.0237	0.2065
7/9/2018 9:16	0.0235	0.2029
7/9/2018 9:17	0.0237	0.2001
7/9/2018 9:18	0.0235	0.1964
7/9/2018 9:19	0.0239	0.1935
7/9/2018 9:20	0.0243	0.1909
7/9/2018 9:21	0.0247	0.1881
7/9/2018 9:22	0.0249	0.1857
7/9/2018 9:23	0.025	0.1831
7/9/2018 9:24	0.0243	0.1806
7/9/2018 9:25	0.0242	0.1782
7/9/2018 9:26	0.0256	0.1755
7/9/2018 9:27	0.0251	0.1733
7/9/2018 9:28	0.0249	0.171
7/9/2018 9:29	0.0247	0.1698
7/9/2018 9:30	0.0246	0.1676
7/9/2018 9:31	0.0245	0.1657
7/9/2018 9:32	0.0241	0.1632
7/9/2018 9:33	0.0239	0.1617
7/9/2018 9:34	0.0231	0.1599
7/9/2018 9:35	0.0225	0.1582
7/9/2018 9:36	0.0219	0.1565
7/9/2018 9:37	0.0215	0.1549
7/9/2018 9:38	0.0205	0.1529
7/9/2018 9:39	0.0203	0.1515
7/9/2018 9:40	0.0203	0.1502
7/9/2018 9:41	0.0185	0.1488
7/9/2018 9:42	0.0184	0.1473
7/9/2018 9:43	0.0181	0.1462
7/9/2018 9:44	0.018	0.1444
7/9/2018 9:45	0.0183	0.1432
7/9/2018 9:46	0.0185	0.1412
7/9/2018 9:47	0.0186	0.1395
7/9/2018 9:48	0.0187	0.138
7/9/2018 9:49	0.0187	0.1369
7/9/2018 9:50	0.0187	0.1353
., 5, 2220 3.00	0.0207	0.2000

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/9/2018 9:51	0.0187	0.134
7/9/2018 9:52	0.0187	0.1333
7/9/2018 9:53	0.0188	0.1325
7/9/2018 9:54	0.019	0.132
7/9/2018 9:55	0.0187	0.1313
7/9/2018 9:56	0.0185	0.1298
7/9/2018 9:57	0.0185	0.1283
7/9/2018 9:58	0.019	0.1269
7/9/2018 9:59	0.0199	0.1257
7/9/2018 10:00	0.0202	0.125
7/9/2018 10:01	0.0201	0.1243
7/9/2018 10:02	0.0204	0.1235
7/9/2018 10:03	0.0205	0.1216
7/9/2018 10:04	0.0207	0.121
7/9/2018 10:05	0.0212	0.1187
7/9/2018 10:06	0.0215	0.1161
7/9/2018 10:07	0.0216	0.1132
7/9/2018 10:08	0.0219	0.1107
7/9/2018 10:09	0.0221	0.1075
7/9/2018 10:10	0.0223	0.1045
7/9/2018 10:11	0.0225	0.1019
7/9/2018 10:12	0.0231	0.0991
7/9/2018 10:13	0.0235	0.0962
7/9/2018 10:14	0.0233	0.0933
7/9/2018 10:15	0.0232	0.0899
7/9/2018 10:16	0.0237	0.0869
7/9/2018 10:17	0.0235	0.0843
7/9/2018 10:18	0.0234	0.0817
7/9/2018 10:19	0.0235	0.0773
7/9/2018 10:20	0.0237	0.0754
7/9/2018 10:21	0.0237	0.0733
7/9/2018 10:22	0.0238	0.0718
7/9/2018 10:23	0.0236	0.0697
7/9/2018 10:24	0.0237	0.0679
7/9/2018 10:25	0.0241	0.0658
7/9/2018 10:26	0.0237	0.0638
7/9/2018 10:27	0.0233	0.0622
7/9/2018 10:28	0.0229	0.0599
7/9/2018 10:29	0.0227	0.0579
7/9/2018 10:30	0.0229	0.0555
7/9/2018 10:31	0.0225	0.0528
7/9/2018 10:32	0.0227	0.0505
7/9/2018 10:33	0.0231	0.0483
7/9/2018 10:34	0.0232	0.0457
7/9/2018 10:35	0.0227	0.0435
7/9/2018 10:36	0.0227	0.0413

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/9/2018 10:37	0.0227	0.0389
7/9/2018 10:38	0.0229	0.0365
7/9/2018 10:39	0.0227	0.0339
7/9/2018 10:40	0.0227	0.0319
7/9/2018 10:41	0.0237	0.0297
7/9/2018 10:42	0.0246	0.0277
7/9/2018 10:43	0.0251	0.0265
7/9/2018 10:44	0.0254	0.0251
7/9/2018 10:45	0.0255	0.024
7/9/2018 10:46	0.0311	0.0232
7/9/2018 10:47	0.0331	0.022
7/9/2018 10:48	0.0333	0.0211
7/9/2018 10:49	0.0344	0.0204
7/9/2018 10:50	0.0358	0.0194
7/9/2018 10:51	0.0362	0.0183
7/9/2018 10:52	0.0381	0.0169
7/9/2018 10:53	0.0401	0.0156
7/9/2018 10:54	0.0405	0.0148
7/9/2018 10:55	0.0403	0.0139
7/9/2018 10:56	0.0396	0.0129
7/9/2018 10:57	0.0398	0.0117
7/9/2018 10:58	0.0394	0.0103
7/9/2018 10:59	0.0391	0.0091
7/9/2018 11:00	0.0387	0.0075
7/9/2018 11:01	0.0332	0.0064
7/9/2018 11:02	0.0317	0.0053
7/9/2018 11:03	0.0317	0.0041
7/9/2018 11:04	0.0311	0.0034
7/9/2018 11:05	0.0301	0.0023
7/9/2018 11:06	0.0299	0.0015
7/9/2018 11:07	0.0279	0.001
7/9/2018 11:08	0.0259	0.0008
7/9/2018 11:09	0.0254	0.0005
7/9/2018 11:10	0.0257	0
7/9/2018 11:11	0.0258	0
7/9/2018 11:12	0.0249	0
7/9/2018 11:13	0.0247	0
7/9/2018 11:14	0.0245	0
7/9/2018 11:15	0.0245	0
7/9/2018 11:16	0.0246	0
7/9/2018 11:17	0.0242	0
7/9/2018 11:18	0.0239	0
7/9/2018 11:19	0.0234	0
7/9/2018 11:20	0.0242	0
7/9/2018 11:21	0.0247	0
7/9/2018 11:22	0.0249	0

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/9/2018 11:23	0.0251	0
7/9/2018 11:24	0.0255	0
7/9/2018 11:25	0.0261	0
7/9/2018 11:26	0.0273	0
7/9/2018 11:27	0.0285	0
7/9/2018 11:28	0.029	0
7/9/2018 11:29	0.0292	0
7/9/2018 11:30	0.0299	0
7/9/2018 11:31	0.0306	0
7/9/2018 11:32	0.0309	0
7/9/2018 11:33	0.0311	0
7/9/2018 11:34	0.0315	0
7/9/2018 11:35	0.0311	0
7/9/2018 11:36	0.0311	0
7/9/2018 11:37	0.0314	0
7/9/2018 11:38	0.0319	0
7/9/2018 11:39	0.0369	0
7/9/2018 11:40	0.0375	0
7/9/2018 11:41	0.0366	0
7/9/2018 11:42	0.0365	0
7/9/2018 11:43	0.0363	0
7/9/2018 11:44	0.0364	0
7/9/2018 11:45	0.036	0
7/9/2018 11:46	0.0355	0
7/9/2018 11:47	0.0353	0
7/9/2018 11:48	0.0351	0
7/9/2018 11:49	0.0351	0
7/9/2018 11:50	0.0348	0
7/9/2018 11:51	0.0345	0
7/9/2018 11:52	0.0343	0
7/9/2018 11:53	0.0339	0
7/9/2018 11:54	0.0291	0
7/9/2018 11:55	0.0279	0
7/9/2018 11:56	0.0277	0
7/9/2018 11:57	0.027	0
7/9/2018 11:58	0.0271	0
7/9/2018 11:59	0.0273	0
7/9/2018 12:00	0.027	0
7/9/2018 12:01	0.0266	0
7/9/2018 12:02	0.0267	0
7/9/2018 12:03	0.0275	0
7/9/2018 12:04	0.0277	0
7/9/2018 12:05	0.0292	0
7/9/2018 12:06	0.0313	0
7/9/2018 12:07	0.0327	0
7/9/2018 12:08	0.0333	0

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/9/2018 12:09	0.0335	0
7/9/2018 12:10	0.0339	0
7/9/2018 12:11	0.0343	0
7/9/2018 12:12	0.037	0
7/9/2018 12:13	0.0366	0
7/9/2018 12:14	0.0364	0
7/9/2018 12:15	0.0365	0
7/9/2018 12:16	0.0366	0
7/9/2018 12:17	0.0363	0
7/9/2018 12:18	0.0357	0
7/9/2018 12:19	0.0353	0
7/9/2018 12:20	0.0337	0
7/9/2018 12:21	0.0316	0
7/9/2018 12:22	0.0303	0
7/9/2018 12:23	0.0297	0
7/9/2018 12:24	0.0291	0
7/9/2018 12:25	0.0285	0
7/9/2018 12:26	0.0282	0
7/9/2018 12:27	0.0261	0
7/9/2018 12:28	0.0264	0
7/9/2018 12:29	0.0264	0
7/9/2018 12:30	0.0264	0
7/9/2018 12:31	0.0271	0
7/9/2018 12:32	0.0277	0
7/9/2018 12:33	0.0278	0
7/9/2018 12:34	0.0277	0
7/9/2018 12:35	0.0276	0
7/9/2018 12:36	0.029	0
7/9/2018 12:37	0.0293	0
7/9/2018 12:38	0.0293	0
7/9/2018 12:39	0.029	0
7/9/2018 12:40	0.0289	0
7/9/2018 12:41	0.0283	0
7/9/2018 12:42	0.0272	0
7/9/2018 12:43	0.0266	0
7/9/2018 12:44	0.0261	0
7/9/2018 12:45	0.0259	0
7/9/2018 12:46	0.0251	0
7/9/2018 12:47	0.0253	0
7/9/2018 12:48	0.0275	0
7/9/2018 12:49	0.0273	0
7/9/2018 12:50	0.0275	0
7/9/2018 12:51	0.0262	0
7/9/2018 12:52	0.0265	0
7/9/2018 12:53	0.0265	0
7/9/2018 12:54	0.0269	0

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/9/2018 12:55	0.0277	0
7/9/2018 12:56	0.0281	0
7/9/2018 12:57	0.0289	0
7/9/2018 12:58	0.0302	0
7/9/2018 12:59	0.0316	0
7/9/2018 13:00	0.0335	0
7/9/2018 13:01	0.0351	0
7/9/2018 13:02	0.0353	0
7/9/2018 13:03	0.0335	0
7/9/2018 13:04	0.0338	0
7/9/2018 13:05	0.0338	0
7/9/2018 13:06	0.0338	0
7/9/2018 13:07	0.0338	0
7/9/2018 13:08	0.0341	0
7/9/2018 13:09	0.0341	0
7/9/2018 13:10	0.0338	0
7/9/2018 13:11	0.0339	0
7/9/2018 13:12	0.035	0
7/9/2018 13:13	0.0347	0
7/9/2018 13:14	0.034	0
7/9/2018 13:15	0.0327	0
7/9/2018 13:16	0.0317	0
7/9/2018 13:17	0.0313	0
7/9/2018 13:18	0.0315	0
7/9/2018 13:19	0.0319	0
7/9/2018 13:20	0.0321	0
7/9/2018 13:21	0.0322	0
7/9/2018 13:22	0.0319	0
7/9/2018 13:23	0.0319	0
7/9/2018 13:24	0.0321	0
7/9/2018 13:25	0.0324	0
7/9/2018 13:26	0.0333	0
7/9/2018 13:27	0.0327	0
7/9/2018 13:28	0.0337	0
7/9/2018 13:29	0.0355	0
7/9/2018 13:30	0.0357	0
7/9/2018 13:31	0.036	0
7/9/2018 13:32	0.0359	0
7/9/2018 13:33	0.0357	0
7/9/2018 13:34	0.0353	0
7/9/2018 13:35	0.0351	0
7/9/2018 13:36	0.035	0
7/9/2018 13:37	0.0349	0
7/9/2018 13:38	0.0348	0
7/9/2018 13:39	0.0345	0
7/9/2018 13:40	0.0342	0

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/9/2018 13:41	0.0332	0
7/9/2018 13:42	0.0323	0
7/9/2018 13:43	0.0307	0
7/9/2018 13:44	0.0286	0
7/9/2018 13:45	0.0281	0
7/9/2018 13:46	0.0275	0
7/9/2018 13:47	0.0272	0
7/9/2018 13:48	0.0269	0
7/9/2018 13:49	0.0266	0
7/9/2018 13:50	0.0264	0
7/9/2018 13:51	0.0261	0
7/9/2018 13:52	0.0256	0
7/9/2018 13:53	0.0253	0
7/9/2018 13:54	0.0253	0
7/9/2018 13:55	0.0254	0
7/9/2018 13:56	0.0251	0
7/9/2018 13:57	0.0248	0
7/9/2018 13:58	0.0247	0
7/9/2018 13:59	0.0246	0
7/9/2018 14:00	0.0245	0
7/9/2018 14:01	0.0243	0
7/9/2018 14:02	0.0241	0
7/9/2018 14:03	0.024	0
7/9/2018 14:04	0.0239	0
7/9/2018 14:05	0.0238	0
7/9/2018 14:06	0.0237	0
7/9/2018 14:07	0.0237	0
7/9/2018 14:08	0.0239	0
7/9/2018 14:09	0.0239	0
7/9/2018 14:10	0.0237	0
7/9/2018 14:11	0.024	0
7/9/2018 14:12	0.0241	0
7/9/2018 14:13	0.0253	0
7/9/2018 14:14	0.0261	0
7/9/2018 14:15	0.0263	0
7/9/2018 14:16	0.0267	0
7/9/2018 14:17	0.0273	0
7/9/2018 14:18	0.0283	0
7/9/2018 14:19	0.0292	0
7/9/2018 14:20	0.0295	0
7/9/2018 14:21	0.0298	0
7/9/2018 14:22	0.0336	0
7/9/2018 14:23	0.0343	0
7/9/2018 14:24	0.0342	0
7/9/2018 14:25	0.0343	0
7/9/2018 14:26	0.0436	0

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/9/2018 14:27	0.0464	0
7/9/2018 14:28	0.0452	0
7/9/2018 14:29	0.0449	0
7/9/2018 14:30	0.0469	0
7/9/2018 14:31	0.0484	0
7/9/2018 14:32	0.0505	0
7/9/2018 14:33	0.0515	0
7/9/2018 14:34	0.0517	0
7/9/2018 14:35	0.052	0
7/9/2018 14:36	0.0531	0
7/9/2018 14:37	0.0495	0
7/9/2018 14:38	0.0491	0
7/9/2018 14:39	0.0521	0
7/9/2018 14:40	0.0556	0
7/9/2018 14:41	0.05	0
7/9/2018 14:42	0.0497	0
7/9/2018 14:43	0.0517	0
7/9/2018 14:44	0.0581	0
7/9/2018 14:45	0.0684	0
7/9/2018 14:46	0.0725	0
7/9/2018 14:47	0.0759	0
7/9/2018 14:48	0.0956	0
7/9/2018 14:49	0.097	0
7/9/2018 14:50	0.0985	0
7/9/2018 14:51	0.1024	0
7/9/2018 14:52	0.1048	0
7/9/2018 14:53	0.1068	0
7/9/2018 14:54	0.1177	0
7/9/2018 14:55	0.1187	0
7/9/2018 14:56	0.1161	0
7/9/2018 14:57	0.1141	0
7/9/2018 14:58	0.1127	0
7/9/2018 14:59	0.1075	0
7/9/2018 15:00	0.0982	0
7/9/2018 15:01	0.0958	0
7/9/2018 15:02	0.1017	0
7/9/2018 15:03	0.0819	0
7/9/2018 15:04	0.0805	0
7/9/2018 15:05	0.0878	0
7/9/2018 15:06	0.0892	0
7/9/2018 15:07	0.1249	0
7/9/2018 15:08	0.1778	0
7/9/2018 15:09	0.1699	0
7/9/2018 15:10	0.1663	0
7/9/2018 15:11	0.1671	0
7/9/2018 15:12	0.1685	0

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/9/2018 15:13	0.1682	0
7/9/2018 15:14	0.1667	0
7/9/2018 15:15	0.1643	0
7/9/2018 15:16	0.1615	0
7/9/2018 15:17	0.1507	0
7/9/2018 15:18	0.1502	0
7/9/2018 15:19	0.1519	0
7/9/2018 15:20	0.1431	0
7/9/2018 15:21	0.1375	0
7/9/2018 15:22	0.0998	0
7/9/2018 15:22	0.0451	0
7/9/2018 15:24	0.0395	0
7/9/2018 15:25	0.0394	0
7/9/2018 15:26	0.0379	0
7/9/2018 15:27	0.0379	0
	0.0376	0
7/9/2018 15:28 7/9/2018 15:29		
• •	0.0387	0
7/9/2018 15:30	0.0409	0
7/9/2018 15:31	0.0425	0
7/9/2018 15:32	0.0419	0
7/9/2018 15:33	0.0408	0
7/9/2018 15:34	0.0384	0
7/9/2018 15:35	0.0382	0
7/9/2018 15:36	0.0375	0
7/9/2018 15:37	0.0375	0
7/9/2018 15:38	0.0368	0
7/9/2018 15:39	0.0365	0
7/9/2018 15:40	0.0359	0
7/9/2018 15:41	0.0352	0
7/9/2018 15:42	0.0347	0
7/9/2018 15:43	0.0332	0
7/9/2018 15:44	0.0317	0
7/9/2018 15:45	0.0289	0
7/9/2018 15:46	0.0275	0
7/9/2018 15:47	0.0277	0
7/9/2018 15:48	0.0277	0
7/9/2018 15:49	0.0271	0
7/9/2018 15:50	0.0276	0
7/9/2018 15:51	0.0305	0
7/9/2018 15:52	0.0307	0
7/9/2018 15:53	0.0309	0
7/9/2018 15:54	0.0311	0
7/9/2018 15:55	0.0308	0
7/9/2018 15:56	0.0335	0
7/9/2018 15:57	0.0359	0
7/9/2018 15:58	0.0362	0

Timestamp (America/New_York) Ma 7/9/2018 15:59 7/9/2018 16:00	0.0363 0.0363	0
	0.0363	
//9//UIX I6:UU		0
7/9/2018 16:01	0.0354	0
7/9/2018 16:02	0.0348	0
7/9/2018 16:03	0.0345	0
7/9/2018 16:04	0.0345	0
7/9/2018 16:05	0.0334	0
7/9/2018 16:06	0.0301	0
7/9/2018 16:07	0.0292	0
7/9/2018 16:08	0.0288	0
7/9/2018 16:09	0.0285	0
7/9/2018 16:10	0.0294	0
7/9/2018 16:11	0.0315	0
7/9/2018 16:12	0.0305	0
7/9/2018 16:13	0.0301	0
7/9/2018 16:14	0.0299	0
7/9/2018 16:15	0.0296	0
7/9/2018 16:16	0.0293	0
7/10/2018 6:44		0
7/10/2018 6:45		0
7/10/2018 6:46	0.042	0
7/10/2018 6:47	0.0425	0
7/10/2018 6:48	0.0427	0
7/10/2018 6:49	0.0427	0
7/10/2018 6:50	0.0426	0
7/10/2018 6:51	0.0427	0
7/10/2018 6:52	0.0427	0
7/10/2018 6:53	0.0426	0
7/10/2018 6:54	0.0426	0
7/10/2018 6:55	0.0427	0
7/10/2018 6:56	0.0428	0
7/10/2018 6:57	0.043	0
7/10/2018 6:58	0.0431	0
7/10/2018 6:59	0.043	0
7/10/2018 7:00	0.0429	0
7/10/2018 7:01	0.0429	0
7/10/2018 7:02	0.0453	0
7/10/2018 7:03	0.0487	0
7/10/2018 7:04	0.0555	0
7/10/2018 7:05	0.0636	0
7/10/2018 7:06	0.0665	0
7/10/2018 7:07	0.0681	0
7/10/2018 7:08	0.0701	0
7/10/2018 7:09	0.0729	0
7/10/2018 7:10	0.0741	0
7/10/2018 7:11	0.0749	0

Timestamp (America/New_York) Mass Conc. Total (mg/m³) VOC (ppm) 7/10/2018 7:12 0.0756 0 7/10/2018 7:13 0.0776 0 7/10/2018 7:14 0.0822 0 7/10/2018 7:15 0.0844 0 7/10/2018 7:16 0.0851 0 7/10/2018 7:17 0.0847 0 7/10/2018 7:18 0.0828 0 7/10/2018 7:19 0.0763 0 7/10/2018 7:20 0.072 0 7/10/2018 7:21 0.0699 0 7/10/2018 7:22 0.0697 0 7/10/2018 7:23 0.0709 0 7/10/2018 7:24 0.0687 0
7/10/2018 7:13 0.0776 0 7/10/2018 7:14 0.0822 0 7/10/2018 7:15 0.0844 0 7/10/2018 7:16 0.0851 0 7/10/2018 7:17 0.0847 0 7/10/2018 7:18 0.0828 0 7/10/2018 7:19 0.0763 0 7/10/2018 7:20 0.072 0 7/10/2018 7:21 0.0699 0 7/10/2018 7:22 0.0697 0 7/10/2018 7:23 0.0709 0
7/10/2018 7:14 0.0822 0 7/10/2018 7:15 0.0844 0 7/10/2018 7:16 0.0851 0 7/10/2018 7:17 0.0847 0 7/10/2018 7:18 0.0828 0 7/10/2018 7:19 0.0763 0 7/10/2018 7:20 0.072 0 7/10/2018 7:21 0.0699 0 7/10/2018 7:22 0.0697 0 7/10/2018 7:23 0.0709 0
7/10/2018 7:15 0.0844 0 7/10/2018 7:16 0.0851 0 7/10/2018 7:17 0.0847 0 7/10/2018 7:18 0.0828 0 7/10/2018 7:19 0.0763 0 7/10/2018 7:20 0.072 0 7/10/2018 7:21 0.0699 0 7/10/2018 7:22 0.0697 0 7/10/2018 7:23 0.0709 0
7/10/2018 7:16 0.0851 0 7/10/2018 7:17 0.0847 0 7/10/2018 7:18 0.0828 0 7/10/2018 7:19 0.0763 0 7/10/2018 7:20 0.072 0 7/10/2018 7:21 0.0699 0 7/10/2018 7:22 0.0697 0 7/10/2018 7:23 0.0709 0
7/10/2018 7:17 0.0847 0 7/10/2018 7:18 0.0828 0 7/10/2018 7:19 0.0763 0 7/10/2018 7:20 0.072 0 7/10/2018 7:21 0.0699 0 7/10/2018 7:22 0.0697 0 7/10/2018 7:23 0.0709 0
7/10/2018 7:18 0.0828 0 7/10/2018 7:19 0.0763 0 7/10/2018 7:20 0.072 0 7/10/2018 7:21 0.0699 0 7/10/2018 7:22 0.0697 0 7/10/2018 7:23 0.0709 0
7/10/2018 7:19 0.0763 0 7/10/2018 7:20 0.072 0 7/10/2018 7:21 0.0699 0 7/10/2018 7:22 0.0697 0 7/10/2018 7:23 0.0709 0
7/10/2018 7:20 0.072 0 7/10/2018 7:21 0.0699 0 7/10/2018 7:22 0.0697 0 7/10/2018 7:23 0.0709 0
7/10/2018 7:21 0.0699 0 7/10/2018 7:22 0.0697 0 7/10/2018 7:23 0.0709 0
7/10/2018 7:22 0.0697 0 7/10/2018 7:23 0.0709 0
7/10/2018 7:23 0.0709 0
7/10/2018 7:25 0.0675 0
7/10/2018 7:26 0.0673 0
7/10/2018 7:27 0.073 0
7/10/2018 7:28 0.0733 0
7/10/2018 7:29 0.0699 0
7/10/2018 7:30 0.0682 0
7/10/2018 7:31 0.0687 0
7/10/2018 7:32 0.0673 0
7/10/2018 7:33 0.0677 0
7/10/2018 7:34 0.0688 0
7/10/2018 7:35 0.0667 0
7/10/2018 7:36 0.0667 0
7/10/2018 7:37 0.0669 0
7/10/2018 7:38 0.0656 0
7/10/2018 7:39 0.0657 0
7/10/2018 7:40 0.0659 0
7/10/2018 7:41 0.0655 0
7/10/2018 7:42 0.0594 0
7/10/2018 7:43 0.0587 0
7/10/2018 7:44 0.0613 0
7/10/2018 7:45 0.0616 0
7/10/2018 7:46 0.0606 0
7/10/2018 7:47 0.0605 0
7/10/2018 7:48 0.0589 0
7/10/2018 7:49 0.0581 0
7/10/2018 7:50 0.0577 0
7/10/2018 7:51 0.0575 0
7/10/2018 7:52 0.0558 0
7/10/2018 7:53 0.0541 0
7/10/2018 7:54 0.0546 0
7/10/2018 7:55 0.0571 0
7/10/2018 7:56 0.0575 0
7/10/2018 7:57 0.0569 0

Timestamp (America/New_York) Mass Conc. Total (mg/m³) VOC (ppm) 7/10/2018 7:58 0.0559 0 7/10/2018 7:59 0.0525 0 7/10/2018 8:00 0.0521 0 7/10/2018 8:01 0.0525 0 7/10/2018 8:02 0.0525 0 7/10/2018 8:03 0.0516 0 7/10/2018 8:04 0.0507 0 7/10/2018 8:05 0.0496 0 7/10/2018 8:06 0.0485 0 7/10/2018 8:06 0.0485 0 7/10/2018 8:09 0.0467 0 7/10/2018 8:09 0.0467 0 7/10/2018 8:10 0.0445 0 7/10/2018 8:11 0.0443 0 7/10/2018 8:12 0.0454 0 7/10/2018 8:13 0.0461 0 7/10/2018 8:14 0.0453 0 7/10/2018 8:15 0.0448 0 7/10/2018 8:16 0.0483 0 7/10/2018 8:19 0.0485 0 7/10/2018
7/10/2018 7:59 0.0525 0 7/10/2018 8:00 0.0521 0 7/10/2018 8:01 0.0525 0 7/10/2018 8:02 0.0525 0 7/10/2018 8:03 0.0516 0 7/10/2018 8:04 0.0507 0 7/10/2018 8:05 0.0496 0 7/10/2018 8:06 0.0485 0 7/10/2018 8:07 0.0481 0 7/10/2018 8:08 0.0476 0 7/10/2018 8:09 0.0467 0 7/10/2018 8:10 0.0445 0 7/10/2018 8:11 0.0443 0 7/10/2018 8:12 0.0454 0 7/10/2018 8:13 0.0461 0 7/10/2018 8:14 0.0453 0 7/10/2018 8:15 0.0448 0 7/10/2018 8:16 0.0483 0 7/10/2018 8:19 0.0488 0 7/10/2018 8:20 0.0491 0 7/10/2018 8:21 0.0499 0 7/10/2018 8:22 0.0501 0 7/10/2018 8:24 0.05 0
7/10/2018 8:00 0.0521 0 7/10/2018 8:01 0.0525 0 7/10/2018 8:02 0.0525 0 7/10/2018 8:03 0.0516 0 7/10/2018 8:04 0.0507 0 7/10/2018 8:05 0.0496 0 7/10/2018 8:06 0.0485 0 7/10/2018 8:07 0.0481 0 7/10/2018 8:08 0.0476 0 7/10/2018 8:09 0.0467 0 7/10/2018 8:10 0.0445 0 7/10/2018 8:11 0.0443 0 7/10/2018 8:12 0.0454 0 7/10/2018 8:13 0.0461 0 7/10/2018 8:14 0.0453 0 7/10/2018 8:15 0.0448 0 7/10/2018 8:16 0.0483 0 7/10/2018 8:19 0.0485 0 7/10/2018 8:20 0.0491 0 7/10/2018 8:21 0.0499 0 7/10/2018 8:22 0.0501 0 7/10/2018 8:24 0.05 0 7/10/2018 8:25 0.0492 0
7/10/2018 8:01 0.0525 0 7/10/2018 8:02 0.0525 0 7/10/2018 8:03 0.0516 0 7/10/2018 8:04 0.0507 0 7/10/2018 8:05 0.0496 0 7/10/2018 8:06 0.0485 0 7/10/2018 8:07 0.0481 0 7/10/2018 8:08 0.0476 0 7/10/2018 8:09 0.0467 0 7/10/2018 8:10 0.0445 0 7/10/2018 8:11 0.0443 0 7/10/2018 8:12 0.0454 0 7/10/2018 8:13 0.0461 0 7/10/2018 8:14 0.0453 0 7/10/2018 8:15 0.0448 0 7/10/2018 8:16 0.0483 0 7/10/2018 8:19 0.0485 0 7/10/2018 8:20 0.0491 0 7/10/2018 8:21 0.0499 0 7/10/2018 8:22 0.0501 0 7/10/2018 8:24 0.05 0 7/10/2018 8:25 0.0492 0 7/10/2018 8:26 0.0483 0
7/10/2018 8:02
7/10/2018 8:03
7/10/2018 8:04
7/10/2018 8:05
7/10/2018 8:06
7/10/2018 8:07
7/10/2018 8:08 7/10/2018 8:09 7/10/2018 8:10 7/10/2018 8:11 7/10/2018 8:11 7/10/2018 8:12 7/10/2018 8:13 7/10/2018 8:13 7/10/2018 8:14 7/10/2018 8:15 7/10/2018 8:15 7/10/2018 8:16 7/10/2018 8:17 7/10/2018 8:18 7/10/2018 8:18 7/10/2018 8:19 7/10/2018 8:20 7/10/2018 8:21 7/10/2018 8:21 7/10/2018 8:22 7/10/2018 8:23 7/10/2018 8:23 7/10/2018 8:24 7/10/2018 8:25 7/10/2018 8:25 7/10/2018 8:26 7/10/2018 8:27 7/10/2018 8:27 7/10/2018 8:26 7/10/2018 8:27 7/10/2018 8:26 7/10/2018 8:27 7/10/2018 8:27 7/10/2018 8:27 7/10/2018 8:27 7/10/2018 8:28
7/10/2018 8:09 0.0445 0 7/10/2018 8:10 0.0445 0 7/10/2018 8:11 0.0443 0 7/10/2018 8:12 0.0454 0 7/10/2018 8:13 0.0461 0 7/10/2018 8:14 0.0453 0 7/10/2018 8:15 0.0448 0 7/10/2018 8:16 0.0483 0 7/10/2018 8:17 0.0485 0 7/10/2018 8:18 0.0487 0 7/10/2018 8:19 0.0488 0 7/10/2018 8:20 0.0491 0 7/10/2018 8:21 0.0499 0 7/10/2018 8:22 0.0501 0 7/10/2018 8:23 0.0506 0 7/10/2018 8:24 0.05 0 7/10/2018 8:25 0.0492 0 7/10/2018 8:26 0.0483 0 7/10/2018 8:27 0.0469 0 7/10/2018 8:28 0.0451 0
7/10/2018 8:10 0.0445 0 7/10/2018 8:11 0.0443 0 7/10/2018 8:12 0.0454 0 7/10/2018 8:13 0.0461 0 7/10/2018 8:14 0.0453 0 7/10/2018 8:15 0.0448 0 7/10/2018 8:16 0.0483 0 7/10/2018 8:17 0.0485 0 7/10/2018 8:18 0.0487 0 7/10/2018 8:19 0.0488 0 7/10/2018 8:20 0.0491 0 7/10/2018 8:21 0.0499 0 7/10/2018 8:22 0.0501 0 7/10/2018 8:23 0.0506 0 7/10/2018 8:24 0.05 0 7/10/2018 8:25 0.0492 0 7/10/2018 8:26 0.0483 0 7/10/2018 8:27 0.0469 0 7/10/2018 8:28 0.0451 0
7/10/2018 8:12 0.0454 0 7/10/2018 8:13 0.0461 0 7/10/2018 8:14 0.0453 0 7/10/2018 8:15 0.0448 0 7/10/2018 8:16 0.0483 0 7/10/2018 8:17 0.0485 0 7/10/2018 8:18 0.0487 0 7/10/2018 8:19 0.0488 0 7/10/2018 8:20 0.0491 0 7/10/2018 8:21 0.0499 0 7/10/2018 8:22 0.0501 0 7/10/2018 8:23 0.0506 0 7/10/2018 8:24 0.05 0 7/10/2018 8:25 0.0492 0 7/10/2018 8:26 0.0483 0 7/10/2018 8:27 0.0469 0 7/10/2018 8:28 0.0451 0
7/10/2018 8:13 0.0461 0 7/10/2018 8:14 0.0453 0 7/10/2018 8:15 0.0448 0 7/10/2018 8:16 0.0483 0 7/10/2018 8:17 0.0485 0 7/10/2018 8:18 0.0487 0 7/10/2018 8:19 0.0488 0 7/10/2018 8:20 0.0491 0 7/10/2018 8:21 0.0499 0 7/10/2018 8:22 0.0501 0 7/10/2018 8:23 0.0506 0 7/10/2018 8:24 0.05 0 7/10/2018 8:25 0.0492 0 7/10/2018 8:26 0.0483 0 7/10/2018 8:27 0.0469 0 7/10/2018 8:28 0.0451 0
7/10/2018 8:14 0.0453 0 7/10/2018 8:15 0.0448 0 7/10/2018 8:16 0.0483 0 7/10/2018 8:17 0.0485 0 7/10/2018 8:18 0.0487 0 7/10/2018 8:19 0.0488 0 7/10/2018 8:20 0.0491 0 7/10/2018 8:21 0.0499 0 7/10/2018 8:22 0.0501 0 7/10/2018 8:23 0.0506 0 7/10/2018 8:24 0.05 0 7/10/2018 8:25 0.0492 0 7/10/2018 8:26 0.0483 0 7/10/2018 8:27 0.0469 0 7/10/2018 8:28 0.0451 0
7/10/2018 8:15 0.0448 0 7/10/2018 8:16 0.0483 0 7/10/2018 8:17 0.0485 0 7/10/2018 8:18 0.0487 0 7/10/2018 8:19 0.0488 0 7/10/2018 8:20 0.0491 0 7/10/2018 8:21 0.0499 0 7/10/2018 8:22 0.0501 0 7/10/2018 8:23 0.0506 0 7/10/2018 8:24 0.05 0 7/10/2018 8:25 0.0492 0 7/10/2018 8:26 0.0483 0 7/10/2018 8:27 0.0469 0 7/10/2018 8:28 0.0451 0
7/10/2018 8:16 0.0483 0 7/10/2018 8:17 0.0485 0 7/10/2018 8:18 0.0487 0 7/10/2018 8:19 0.0488 0 7/10/2018 8:20 0.0491 0 7/10/2018 8:21 0.0499 0 7/10/2018 8:22 0.0501 0 7/10/2018 8:23 0.0506 0 7/10/2018 8:24 0.05 0 7/10/2018 8:25 0.0492 0 7/10/2018 8:26 0.0483 0 7/10/2018 8:27 0.0469 0 7/10/2018 8:28 0.0451 0
7/10/2018 8:17 0.0485 0 7/10/2018 8:18 0.0487 0 7/10/2018 8:19 0.0488 0 7/10/2018 8:20 0.0491 0 7/10/2018 8:21 0.0499 0 7/10/2018 8:22 0.0501 0 7/10/2018 8:23 0.0506 0 7/10/2018 8:24 0.05 0 7/10/2018 8:25 0.0492 0 7/10/2018 8:26 0.0483 0 7/10/2018 8:27 0.0469 0 7/10/2018 8:28 0.0451 0
7/10/2018 8:18 0.0487 0 7/10/2018 8:19 0.0488 0 7/10/2018 8:20 0.0491 0 7/10/2018 8:21 0.0499 0 7/10/2018 8:22 0.0501 0 7/10/2018 8:23 0.0506 0 7/10/2018 8:24 0.05 0 7/10/2018 8:25 0.0492 0 7/10/2018 8:26 0.0483 0 7/10/2018 8:27 0.0469 0 7/10/2018 8:28 0.0451 0
7/10/2018 8:19 0.0488 0 7/10/2018 8:20 0.0491 0 7/10/2018 8:21 0.0499 0 7/10/2018 8:22 0.0501 0 7/10/2018 8:23 0.0506 0 7/10/2018 8:24 0.05 0 7/10/2018 8:25 0.0492 0 7/10/2018 8:26 0.0483 0 7/10/2018 8:27 0.0469 0 7/10/2018 8:28 0.0451 0
7/10/2018 8:20 0.0491 0 7/10/2018 8:21 0.0499 0 7/10/2018 8:22 0.0501 0 7/10/2018 8:23 0.0506 0 7/10/2018 8:24 0.05 0 7/10/2018 8:25 0.0492 0 7/10/2018 8:26 0.0483 0 7/10/2018 8:27 0.0469 0 7/10/2018 8:28 0.0451 0
7/10/2018 8:21 0.0499 0 7/10/2018 8:22 0.0501 0 7/10/2018 8:23 0.0506 0 7/10/2018 8:24 0.05 0 7/10/2018 8:25 0.0492 0 7/10/2018 8:26 0.0483 0 7/10/2018 8:27 0.0469 0 7/10/2018 8:28 0.0451 0
7/10/2018 8:22
7/10/2018 8:23 0.0506 0 7/10/2018 8:24 0.05 0 7/10/2018 8:25 0.0492 0 7/10/2018 8:26 0.0483 0 7/10/2018 8:27 0.0469 0 7/10/2018 8:28 0.0451 0
7/10/2018 8:24 0.05 0 7/10/2018 8:25 0.0492 0 7/10/2018 8:26 0.0483 0 7/10/2018 8:27 0.0469 0 7/10/2018 8:28 0.0451 0
7/10/2018 8:25 0.0492 0 7/10/2018 8:26 0.0483 0 7/10/2018 8:27 0.0469 0 7/10/2018 8:28 0.0451 0
7/10/2018 8:26 0.0483 0 7/10/2018 8:27 0.0469 0 7/10/2018 8:28 0.0451 0
7/10/2018 8:27 0.0469 0 7/10/2018 8:28 0.0451 0
7/10/2018 8:28 0.0451 0
7/40/2040 0 20
7/10/2018 8:29 0.0454 0
7/10/2018 8:30 0.0458 0
7/10/2018 8:31 0.0415 0
7/10/2018 8:32 0.0403 0
7/10/2018 8:33 0.0401 0
7/10/2018 8:34 0.0398 0
7/10/2018 8:35 0.0389 0
7/10/2018 8:36 0.038 0
7/10/2018 8:37 0.0377 0
7/10/2018 8:38 0.037 0
7/10/2018 8:39 0.0368 0
7/10/2018 8:40 0.0366 0
7/10/2018 8:41 0.0367 0
7/10/2018 8:42 0.0367 0
7/10/2018 8:43 0.0366 0

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (nnm)
7/10/2018 8:44	0.0359	0
7/10/2018 8:45	0.0353	0
7/10/2018 8:46	0.0355	0
7/10/2018 8:47	0.0367	0
7/10/2018 8:48	0.0367	0
7/10/2018 8:49	0.0367	0
7/10/2018 8:50	0.0367	0
7/10/2018 8:51	0.0375	0
7/10/2018 8:52	0.0401	0
7/10/2018 8:53	0.0409	0
7/10/2018 8:54	0.0411	0
7/10/2018 8:55	0.0415	0
7/10/2018 8:56	0.0416	0
7/10/2018 8:57	0.0416	0
7/10/2018 8:58	0.0415	0
7/10/2018 8:59	0.0417	0
7/10/2018 9:00	0.0416	0
7/10/2018 9:01	0.041	0
7/10/2018 9:02	0.0396	0
7/10/2018 9:03	0.0394	0
7/10/2018 9:04	0.0394	0
7/10/2018 9:05	0.0393	0
7/10/2018 9:06	0.0382	0
7/10/2018 9:07	0.0351	0
7/10/2018 9:08	0.0338	0
7/10/2018 9:09	0.0331	0
7/10/2018 9:10	0.0323	0
7/10/2018 9:11	0.0316	0
7/10/2018 9:12	0.0313	0
7/10/2018 9:13	0.0309	0
7/10/2018 9:14	0.0304	0
7/10/2018 9:15	0.0298	0
7/10/2018 9:16	0.0294	0
7/10/2018 9:17	0.0291	0
7/10/2018 9:18	0.0289	0
7/10/2018 9:19	0.0285	0
7/10/2018 9:20	0.0287	0
7/10/2018 9:21	0.0293	0
7/10/2018 9:22	0.0294	0
7/10/2018 9:23	0.0296	0
7/10/2018 9:24	0.0298	0
7/10/2018 9:25	0.0299	0
7/10/2018 9:26	0.0304	0
7/10/2018 9:27	0.0327	0
7/10/2018 9:28	0.035	0
7/10/2018 9:29	0.0367	0

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/10/2018 9:30	0.0376	0
7/10/2018 9:31	0.038	0
7/10/2018 9:32	0.0381	0
7/10/2018 9:33	0.0381	0
7/10/2018 9:34	0.038	0
7/10/2018 9:35	0.0384	0
7/10/2018 9:36	0.0381	0
7/10/2018 9:37	0.0383	0
7/10/2018 9:38	0.0386	0
7/10/2018 9:39	0.0387	0
7/10/2018 9:40	0.0386	0
7/10/2018 9:41	0.0383	0
7/10/2018 9:42	0.0359	0
7/10/2018 9:43	0.0344	0
7/10/2018 9:44	0.0332	0
7/10/2018 9:45	0.0326	0
7/10/2018 9:46	0.0324	0
7/10/2018 9:47	0.0323	0
7/10/2018 9:48	0.0323	0
7/10/2018 9:49	0.0324	0
7/10/2018 9:50	0.0315	0
7/10/2018 9:51	0.0315	0
7/10/2018 9:52	0.0315	0
7/10/2018 9:53	0.0311	0
7/10/2018 9:54	0.0331	0
7/10/2018 9:55	0.0341	0
7/10/2018 9:56	0.0347	0
7/10/2018 9:57	0.0349	0
7/10/2018 9:58	0.0343	0
7/10/2018 9:59	0.0343	0
7/10/2018 10:00	0.0351	0
7/10/2018 10:01	0.036	0
7/10/2018 10:02	0.0364	0
7/10/2018 10:03	0.0364	0
7/10/2018 10:04	0.0363	0
7/10/2018 10:05	0.0361	0
7/10/2018 10:06	0.0356	0
7/10/2018 10:07	0.0351	0
7/10/2018 10:08	0.0349	0
7/10/2018 10:09	0.0325	0
7/10/2018 10:10	0.0313	0
7/10/2018 10:11	0.0302	0
7/10/2018 10:12	0.0299	0
7/10/2018 10:13	0.0295	0
7/10/2018 10:14	0.0289	0
7/10/2018 10:15	0.028	0

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/10/2018 10:16	0.0272	0
7/10/2018 10:17	0.0268	0
7/10/2018 10:18	0.0266	0
7/10/2018 10:19	0.0265	0
7/10/2018 10:20	0.0264	0
7/10/2018 10:21	0.0263	0
7/10/2018 10:22	0.0265	0
7/10/2018 10:23	0.0264	0
7/10/2018 10:24	0.0263	0
7/10/2018 10:25	0.0262	0
7/10/2018 10:26	0.0261	0
7/10/2018 10:27	0.0259	0
7/10/2018 10:28	0.0259	0
7/10/2018 10:29	0.0257	0
7/10/2018 10:30	0.0255	0
7/10/2018 10:31	0.0252	0
7/10/2018 10:32	0.025	0
7/10/2018 10:33	0.0252	0
7/10/2018 10:34	0.0263	0
7/10/2018 10:35	0.0264	0
7/10/2018 10:36	0.0264	0
7/10/2018 10:37	0.0267	0
7/10/2018 10:38	0.0287	0
7/10/2018 10:39	0.0294	0
7/10/2018 10:40	0.031	0
7/10/2018 10:41	0.0311	0
7/10/2018 10:42	0.0399	0
7/10/2018 10:43	0.0413	0
7/10/2018 10:44	0.0417	0
7/10/2018 10:45	0.0499	0
7/10/2018 10:46	0.0769	0
7/10/2018 10:47	0.0845	0
7/10/2018 10:48	0.0846	0
7/10/2018 10:49	0.0835	0
7/10/2018 10:50	0.0846	0
7/10/2018 10:51	0.0977	0
7/10/2018 10:52	0.0989	0
7/10/2018 10:53	0.1015	0
7/10/2018 10:54	0.1155	0
7/10/2018 10:55	0.1156	0
7/10/2018 10:56	0.1168	0
7/10/2018 10:57	0.1083	0
7/10/2018 10:58	0.1073	0
7/10/2018 10:59	0.1073	0
7/10/2018 11:00	0.1052	0
7/10/2018 11:01	0.0932	0

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/10/2018 11:02	0.0918	0
7/10/2018 11:03	0.0971	0
7/10/2018 11:04	0.0985	0
7/10/2018 11:05	0.0973	0
7/10/2018 11:06	0.0841	0
7/10/2018 11:07	0.0829	0
7/10/2018 11:08	0.0782	0
7/10/2018 11:09	0.0631	0
7/10/2018 11:10	0.0611	0
7/10/2018 11:11	0.0605	0
7/10/2018 11:12	0.0609	0
7/10/2018 11:13	0.0602	0
7/10/2018 11:14	0.0619	0
7/10/2018 11:15	0.0593	0
7/10/2018 11:16	0.0463	0
7/10/2018 11:17	0.0417	0
7/10/2018 11:18	0.0383	0
7/10/2018 11:19	0.039	0
7/10/2018 11:20	0.0397	0
7/10/2018 11:21	0.04	0
7/10/2018 11:22	0.0404	0
7/10/2018 11:23	0.0409	0
7/10/2018 11:24	0.0411	0
7/10/2018 11:25	0.0412	0
7/10/2018 11:26	0.0405	0
7/10/2018 11:27	0.0399	0
7/10/2018 11:28	0.0401	0
7/10/2018 11:29	0.0389	0
7/10/2018 11:30	0.0361	0
7/10/2018 11:31	0.0343	0
7/10/2018 11:32	0.0329	0
7/10/2018 11:33	0.032	0
7/10/2018 11:34	0.0315	0
7/10/2018 11:35	0.0329	0
7/10/2018 11:36	0.0347	0
7/10/2018 11:37	0.0377	0
7/10/2018 11:38	0.0431	0
7/10/2018 11:39	0.0527	0
7/10/2018 11:40	0.0582	0
7/10/2018 11:41	0.0643	0
7/10/2018 11:42	0.0767	0
7/10/2018 11:43	0.0842	0
7/10/2018 11:44	0.0971	0
7/10/2018 11:45	0.1139	0
7/10/2018 11:46	0.1362	0
7/10/2018 11:47	0.1926	0

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/10/2018 11:48	0.2361	0
7/10/2018 11:49	0.2704	0
7/10/2018 11:50	0.3005	0
7/10/2018 11:51	0.3165	0
7/10/2018 11:52	0.3188	0
7/10/2018 11:53	0.3141	0
7/10/2018 11:54	0.3061	0
7/10/2018 11:55	0.3037	0
7/10/2018 11:56	0.3013	0
7/10/2018 11:57	0.2928	0
7/10/2018 11:58	0.2891	0
7/10/2018 11:59	0.2804	0
7/10/2018 12:00	0.2695	0
7/10/2018 12:01	0.2563	0
7/10/2018 12:02	0.2955	0
7/10/2018 12:03	0.3437	0
7/10/2018 12:04	0.3202	0
7/10/2018 12:05	0.2921	0
7/10/2018 12:06	0.2795	0
7/10/2018 12:07	0.3196	0
7/10/2018 12:08	0.3238	0
7/10/2018 12:09	0.3502	0
7/10/2018 12:10	0.36	0
7/10/2018 12:11	0.3583	0
7/10/2018 12:12	0.3613	0
7/10/2018 12:13	0.3609	0
7/10/2018 12:14	0.3568	0
7/10/2018 12:15	0.3509	0
7/10/2018 12:16	0.3427	0
7/10/2018 12:17	0.2481	0
7/10/2018 12:18	0.1592	0
7/10/2018 12:19	0.1527	0
7/10/2018 12:20	0.1506	0
7/10/2018 12:21	0.1469	0
7/10/2018 12:22	0.1017	0
7/10/2018 12:23	0.0978	0
7/10/2018 12:24	0.0717	0
7/10/2018 12:25	0.0596	0
7/10/2018 12:26	0.0587	0
7/10/2018 12:27	0.0527	0
7/10/2018 12:28	0.0501	0
7/10/2018 12:29	0.0502	0
7/10/2018 12:30	0.0499	0
7/10/2018 12:31 7/10/2018 12:32	0.051 0.0513	0 0
7/10/2018 12:32	0.0513	0
// 10/2010 12.33	0.0465	U

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/10/2018 12:34	0.0433	0
7/10/2018 12:35	0.0434	0
7/10/2018 12:36	0.0425	0
7/10/2018 12:37	0.0429	0
7/10/2018 12:37	0.0473	0
7/10/2018 12:39	0.0476	0
7/10/2018 12:39	0.0478	0
7/10/2018 12:40	0.0478	0
7/10/2018 12:41	0.0473	0
7/10/2018 12:43	0.0488	0
7/10/2018 12:44	0.0495	0
7/10/2018 12:45	0.0507	0
7/10/2018 12:46	0.0494	0
7/10/2018 12:47	0.0485	0
7/10/2018 12:48	0.0489	0
7/10/2018 12:49	0.0517	0
7/10/2018 12:50	0.0506	0
7/10/2018 12:51	0.0501	0
7/10/2018 12:52	0.0488	0
7/10/2018 12:53	0.0437	0
7/10/2018 12:54	0.044	0
7/10/2018 12:55	0.0437	0
7/10/2018 12:56	0.0441	0
7/10/2018 12:57	0.0433	0
7/10/2018 12:58	0.0473	0
7/10/2018 12:59	0.0494	0
7/10/2018 13:00	0.0519	0
7/10/2018 13:01	0.0535	0
7/10/2018 13:02	0.0593	0
7/10/2018 13:03	0.0677	0.01
7/10/2018 13:04	0.1109	0.01
7/10/2018 13:05	0.1459	0.0409
7/10/2018 13:06	0.2427	0.0409
7/10/2018 13:07	0.2473	0.0409
7/10/2018 13:08	0.2503	0.0409
7/10/2018 13:09	0.2499	0.0409
7/10/2018 13:10	0.2557	0.0409
7/10/2018 13:11	0.2561	0.0409
7/10/2018 13:12	0.258	0.0409
7/10/2018 13:13	0.2592	0.0409
7/10/2018 13:14	0.2561	0.0409
7/10/2018 13:14	0.2523	0.0409
7/10/2018 13:15	0.2525	0.0409
7/10/2018 13:17	0.2523	0.0409
·		
7/10/2018 13:18	0.2468	0.0275
7/10/2018 13:19	0.2006	0.0275

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	(maa) OOV
7/10/2018 13:20	0.1658	0
7/10/2018 13:21	0.0733	0
7/10/2018 13:22	0.0707	0
7/10/2018 13:23	0.0677	0
7/10/2018 13:24	0.0663	0
7/10/2018 13:25	0.0604	0
7/10/2018 13:26	0.0595	0
7/10/2018 13:27	0.0573	0
7/10/2018 13:28	0.0516	0
7/10/2018 13:29	0.0513	0
7/10/2018 13:30	0.0509	0
7/10/2018 13:31	0.0484	0
7/10/2018 13:32	0.0399	0
7/10/2018 13:33	0.0386	0
7/10/2018 13:34	0.0398	0
7/10/2018 13:35	0.0398	0
7/10/2018 13:36	0.0354	0
7/10/2018 13:37	0.0332	0
7/10/2018 13:38	0.0331	0
7/10/2018 13:39	0.0327	0
7/10/2018 13:40	0.0324	0
7/10/2018 13:41	0.032	0
7/10/2018 13:42	0.0323	0
7/10/2018 13:43	0.0322	0
7/10/2018 13:44	0.0333	0
7/10/2018 13:45	0.0339	0
7/10/2018 13:46	0.0379	0
7/10/2018 13:47	0.0385	0
7/10/2018 13:48	0.0385	0
7/10/2018 13:49	0.0366	0
7/10/2018 13:50	0.0351	0
7/10/2018 13:51	0.0347	0
7/10/2018 13:52	0.0347	0
7/10/2018 13:53	0.0341	0
7/10/2018 13:54	0.0337	0
7/10/2018 13:55	0.0335	0
7/10/2018 13:56	0.0336	0
7/10/2018 13:57	0.033	0
7/10/2018 13:58	0.0317	0
7/10/2018 13:59	0.0299	0
7/10/2018 14:00	0.0289	0
7/10/2018 14:01	0.0246	0
7/10/2018 14:02	0.024	0
7/10/2018 14:03	0.0231	0
7/10/2018 14:04	0.0239	0
7/10/2018 14:05	0.024	0

Timestamp (America/New_York) Mass Conc. Total (mg/m³) VOC (ppr 7/10/2018 14:06 0.0241 0 7/10/2018 14:07 0.0243 0 7/10/2018 14:08 0.0245 0 7/10/2018 14:09 0.025 0 7/10/2018 14:10 0.0251 0 7/10/2018 14:11 0.0253 0 7/10/2018 14:12 0.0252 0	,
7/10/2018 14:07 0.0243 0 7/10/2018 14:08 0.0245 0 7/10/2018 14:09 0.025 0 7/10/2018 14:10 0.0251 0 7/10/2018 14:11 0.0253 0	
7/10/2018 14:08 0.0245 0 7/10/2018 14:09 0.025 0 7/10/2018 14:10 0.0251 0 7/10/2018 14:11 0.0253 0	
7/10/2018 14:09 0.025 0 7/10/2018 14:10 0.0251 0 7/10/2018 14:11 0.0253 0	
7/10/2018 14:10 0.0251 0 7/10/2018 14:11 0.0253 0	
7/10/2018 14:11 0.0253 0	
7/10/2018 14:13 0.0254 0	
7/10/2018 14:14 0.0257 0	
7/10/2018 14:15 0.0257 0	
7/10/2018 14:16 0.0257 0	
7/10/2018 14:17 0.0255 0	
7/10/2018 14:18 0.0275 0	
7/10/2018 14:19 0.0279 0	
7/10/2018 14:20 0.0285 0	
7/10/2018 14:21 0.0285 0	
7/10/2018 14:22 0.0283 0	
7/10/2018 14:23 0.0293 0	
7/10/2018 14:24 0.0295 0	
7/10/2018 14:25 0.03 0	
7/10/2018 14:26 0.0297 0	
7/10/2018 14:27 0.0298 0	
7/10/2018 14:28 0.0295 0	
7/10/2018 14:29 0.0295 0	
7/10/2018 14:30 0.0296 0	
7/10/2018 14:31 0.0297 0	
7/10/2018 14:32 0.03 0	
7/10/2018 14:33 0.0283 0	
7/10/2018 14:34 0.0277 0	
7/10/2018 14:35 0.0279 0	
7/10/2018 14:36 0.0283 0	
7/10/2018 14:37 0.0285 0	
7/10/2018 14:38 0.0281 0	
7/10/2018 14:39 0.029 0	
7/10/2018 14:40 0.0291 0	
7/10/2018 14:41 0.03 0	
7/10/2018 14:42 0.0298 0	
7/10/2018 14:43 0.03 0	
7/10/2018 14:44 0.0306 0	
7/10/2018 14:45 0.0313 0	
7/10/2018 14:46 0.0319 0	
7/10/2018 14:47 0.0317 0	
7/10/2018 14:48 0.0311 0	
7/10/2018 14:49 0.0307 0	
7/10/2018 14:50 0.0305 0	
7/10/2018 14:51 0.0299 0	

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/10/2018 14:52	0.0294	0
7/10/2018 14:53	0.0294	0
7/10/2018 14:54	0.0284	0
7/10/2018 14:55	0.0274	0
7/10/2018 14:56	0.0261	0
7/10/2018 14:57	0.0263	0
7/10/2018 14:58	0.026	0
7/10/2018 14:59	0.0252	0
7/10/2018 15:00	0.0232	0
7/10/2018 15:01	0.0233	0
7/10/2018 15:01	0.0234	0
7/10/2018 15:02	0.0234	0
7/10/2018 15:04	0.0247	0
7/10/2018 15:05	0.0243	0
7/10/2018 15:06	0.0243	0
• •		
7/10/2018 15:07	0.0253	0
7/10/2018 15:08	0.0251	0
7/10/2018 15:09	0.0251	0
7/10/2018 15:10	0.0272	0
7/10/2018 15:11	0.0316	0
7/10/2018 15:12	0.0321	0
7/10/2018 15:13	0.0327	0
7/10/2018 15:14	0.0331	0
7/10/2018 15:15	0.0337	0
7/10/2018 15:16	0.0342	0
7/10/2018 15:17	0.0341	0
7/10/2018 15:18	0.0332	0
7/10/2018 15:19	0.0331	0
7/10/2018 15:20	0.0455	0.2488
7/10/2018 15:21	0.2321	0.2551
7/10/2018 15:22	0.3683	0.2709
7/10/2018 15:23	0.4619	0.2715
7/10/2018 15:24	0.5218	0.3146
7/10/2018 15:25	0.6505	0.3146
7/10/2018 15:26	0.6542	0.3146
7/10/2018 15:27	0.6574	0.3146
7/10/2018 15:28	0.6591	0.3146
7/10/2018 15:29	0.6597	0.3146
7/10/2018 15:30	0.6602	0.3146
7/10/2018 15:31	0.6599	0.3146
7/10/2018 15:32	0.6605	0.3146
7/10/2018 15:33	0.6612	0.3146
7/10/2018 15:34	0.6612	0.3146
7/10/2018 15:35	0.6487	0.0658
7/10/2018 15:36	0.4633	0.0595
7/10/2018 15:37	0.3281	0.0437

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/10/2018 15:38	0.2405	0.0431
7/10/2018 15:39	0.1851	0
7/10/2018 15:40	0.0587	0
7/10/2018 15:41	0.0597	0
7/10/2018 15:42	0.0602	0
7/10/2018 15:43	0.0621	0
7/10/2018 15:44	0.0616	0
7/10/2018 15:45	0.0607	0
7/10/2018 15:46	0.0609	0
7/10/2018 15:47	0.0622	0
7/10/2018 15:48	0.0618	0
7/10/2018 15:49	0.064	0
7/10/2018 15:50	0.0645	0
7/10/2018 15:51	0.0628	0
7/10/2018 15:52	0.0615	0
7/10/2018 15:53	0.0551	0
7/10/2018 15:54	0.0501	0
7/10/2018 15:55	0.0461	0
7/10/2018 15:56	0.0375	0
7/10/2018 15:57	0.0333	0
7/10/2018 15:58	0.0291	0
7/10/2018 15:59	0.0285	0
7/10/2018 16:00	0.0285	0
7/10/2018 16:01	0.0281	0
7/10/2018 16:02	0.0258	0
7/10/2018 16:03	0.0249	0
7/10/2018 16:04	0.0225	0
7/10/2018 16:05	0.0219	0
7/10/2018 16:06	0.0215	0
7/10/2018 16:07	0.0212	0
7/10/2018 16:08	0.0209	0
7/10/2018 16:09	0.021	0
7/10/2018 16:10	0.0203	0
7/10/2018 16:11	0.02	0
7/10/2018 16:12	0.0199	0
7/10/2018 16:13	0.0213	0
7/10/2018 16:14	0.0226	0
7/10/2018 16:15	0.0226	0
7/10/2018 16:16	0.0227	0
7/10/2018 16:17	0.0237	0
7/10/2018 16:18	0.0241	0
7/10/2018 16:19	0.0242	0
7/10/2018 16:20	0.0285	0
7/10/2018 16:21	0.0295	0
7/10/2018 16:22	0.0301	0
7/10/2018 16:23	0.0306	0

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/10/2018 16:24	0.0306	0
7/10/2018 16:25	0.0307	0
7/11/2018 7:02		0
7/11/2018 7:03	0.053	0
7/11/2018 7:04	0.0415	0
7/11/2018 7:05	0.0373	0
7/11/2018 7:06	0.035	0
7/11/2018 7:07	0.0338	0
7/11/2018 7:08	0.0328	0
7/11/2018 7:09	0.032	0
7/11/2018 7:10	0.0315	0
7/11/2018 7:11	0.0313	0
7/11/2018 7:12	0.0309	0
7/11/2018 7:13	0.0306	0
7/11/2018 7:14	0.0304	0
7/11/2018 7:15	0.0302	0
7/11/2018 7:16	0.0299	0
7/11/2018 7:17	0.0297	0
7/11/2018 7:18	0.028	0
7/11/2018 7:19	0.0279	0
7/11/2018 7:20	0.0278	0
7/11/2018 7:21	0.0279	0
7/11/2018 7:22	0.0277	0
7/11/2018 7:23	0.0276	0
7/11/2018 7:24	0.0275	0
7/11/2018 7:25	0.0275	0
7/11/2018 7:26	0.0273	0
7/11/2018 7:27	0.0275	0
7/11/2018 7:28	0.0275	0
7/11/2018 7:29	0.0277	0
7/11/2018 7:30	0.0285	0
7/11/2018 7:31	0.0287	0
7/11/2018 7:32	0.0288	0
7/11/2018 7:33	0.0289	0
7/11/2018 7:34	0.0288	0
7/11/2018 7:35	0.0287	0
7/11/2018 7:36	0.0285	0
7/11/2018 7:37	0.0284	0
7/11/2018 7:38	0.0285	0
7/11/2018 7:39	0.0285	0
7/11/2018 7:40	0.0285	0
7/11/2018 7:41	0.0285	0
7/11/2018 7:42	0.0283	0
7/11/2018 7:43	0.0284	0
7/11/2018 7:44	0.0282	0
7/11/2018 7:45	0.0275	0

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/11/2018 7:46	0.0273	0
7/11/2018 7:47	0.0275	0
7/11/2018 7:48	0.0277	0
7/11/2018 7:49	0.0278	0
7/11/2018 7:50	0.0279	0
7/11/2018 7:51	0.0279	0
7/11/2018 7:52	0.0279	0
7/11/2018 7:53	0.0279	0
7/11/2018 7:54	0.0279	0
7/11/2018 7:55	0.0285	0
7/11/2018 7:56	0.0303	0
7/11/2018 7:57	0.0314	0
7/11/2018 7:58	0.0312	0
7/11/2018 7:59	0.0311	0
7/11/2018 8:00	0.0311	0
7/11/2018 8:01	0.0311	0
7/11/2018 8:02	0.0306	0
7/11/2018 8:03	0.0302	0
7/11/2018 8:04	0.03	0
7/11/2018 8:05	0.0299	0
7/11/2018 8:06	0.0299	0
7/11/2018 8:07	0.0298	0
7/11/2018 8:08	0.0296	0
7/11/2018 8:09	0.0295	0
7/11/2018 8:10	0.0289	0
7/11/2018 8:11	0.0267	0
7/11/2018 8:12	0.0255	0
7/11/2018 8:13	0.0255	0
7/11/2018 8:14	0.0255	0
7/11/2018 8:15	0.0252	0
7/11/2018 8:16	0.0251	0
7/11/2018 8:17	0.0251	0
7/11/2018 8:18	0.025	0
7/11/2018 8:19	0.0249	0
7/11/2018 8:20	0.0249	0
7/11/2018 8:21	0.0247	0
7/11/2018 8:22	0.0248	0
7/11/2018 8:23	0.0249	0
7/11/2018 8:24	0.0249	0
7/11/2018 8:25	0.0249	0
7/11/2018 8:26	0.0249	0
7/11/2018 8:27	0.0249	0
7/11/2018 8:28	0.0249	0
7/11/2018 8:29	0.0247	0
7/11/2018 8:30	0.0247	0
7/11/2018 8:31	0.0247	0

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/11/2018 8:32	0.0247	0
7/11/2018 8:33	0.0247	0
7/11/2018 8:34	0.0247	0
7/11/2018 8:35	0.0248	0
7/11/2018 8:36	0.0249	0
7/11/2018 8:37	0.0247	0
7/11/2018 8:38	0.0251	0
7/11/2018 8:39	0.025	0
7/11/2018 8:40	0.0249	0
7/11/2018 8:41	0.0249	0
7/11/2018 8:42	0.0247	0
7/11/2018 8:43	0.0247	0
7/11/2018 8:44	0.0246	0
7/11/2018 8:45	0.0246	0
7/11/2018 8:46	0.0245	0
7/11/2018 8:47	0.0243	0
7/11/2018 8:48	0.0242	0
7/11/2018 8:49	0.0241	0
7/11/2018 8:50	0.0239	0
7/11/2018 8:51	0.0237	0
7/11/2018 8:52	0.0238	0
7/11/2018 8:53	0.0237	0
7/11/2018 8:54	0.0237	0
7/11/2018 8:55	0.024	0.1079
7/11/2018 8:56	0.0243	0.1079
7/11/2018 8:57	0.0243	0.1079
7/11/2018 8:58	0.0245	0.1079
7/11/2018 8:59	0.0249	0.1079
7/11/2018 9:00	0.0249	0.1079
7/11/2018 9:01	0.0249	0.1079
7/11/2018 9:02	0.025	0.1079
7/11/2018 9:03	0.0251	0.1079
7/11/2018 9:04	0.025	0.1079
7/11/2018 9:05	0.0249	0.1079
7/11/2018 9:06	0.0249	0.1079
7/11/2018 9:07	0.0247	0.1079
7/11/2018 9:08	0.0241	0.1079
7/11/2018 9:09	0.024	0.1079
7/11/2018 9:10	0.0235	0
7/11/2018 9:11	0.0232	0
7/11/2018 9:12	0.023	0
7/11/2018 9:13	0.0227	0
7/11/2018 9:14	0.0222	0
7/11/2018 9:15	0.022	0
7/11/2018 9:16	0.0219	0
7/11/2018 9:17	0.0218	0

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/11/2018 9:18	0.0234	0
7/11/2018 9:19	0.0233	0
7/11/2018 9:20	0.0232	0
7/11/2018 9:21	0.0231	0
7/11/2018 9:22	0.0231	0
7/11/2018 9:23	0.0231	0
7/11/2018 9:24	0.0232	0
7/11/2018 9:25	0.0232	0
7/11/2018 9:26	0.0231	0
7/11/2018 9:27	0.0233	0
7/11/2018 9:28	0.0233	0
7/11/2018 9:29	0.0233	0
7/11/2018 9:30	0.0233	0
7/11/2018 9:31	0.0234	0
7/11/2018 9:32	0.0233	0
7/11/2018 9:33	0.0215	0
7/11/2018 9:34	0.0215	0
7/11/2018 9:35	0.0216	0
7/11/2018 9:36	0.0215	0
7/11/2018 9:37	0.0216	0
7/11/2018 9:38	0.0218	0
7/11/2018 9:39	0.0217	0
7/11/2018 9:40	0.0219	0
7/11/2018 9:41	0.022	0
7/11/2018 9:42	0.0222	0
7/11/2018 9:43	0.0225	0
7/11/2018 9:44	0.0231	0
7/11/2018 9:45	0.0231	0
7/11/2018 9:46	0.0231	0
7/11/2018 9:47	0.0231	0
7/11/2018 9:48	0.0231	0
7/11/2018 9:49	0.0232	0
7/11/2018 9:50	0.0239	0
7/11/2018 9:51	0.0239	0
7/11/2018 9:52	0.0237	0
7/11/2018 9:53	0.0235	0
7/11/2018 9:54	0.0233	0
7/11/2018 9:55	0.0233	0
7/11/2018 9:56	0.0231	0
7/11/2018 9:57 7/11/2018 9:58	0.0228	0 0
7/11/2018 9:58	0.0225 0.0219	0
7/11/2018 9:59	0.0219	0
7/11/2018 10:00	0.0219	0
7/11/2018 10:01	0.0219	0
7/11/2018 10:02	0.0219	0
,,11,2010 10.03	0.0213	U

Timestamp (America/New_York) Mass Conc. Total (mg/m³) VOC (pp 7/11/2018 10:04 0.0217 0 7/11/2018 10:05 0.0211 0 7/11/2018 10:06 0.0213 0 7/11/2018 10:07 0.0213 0 7/11/2018 10:08 0.0218 0 7/11/2018 10:09 0.0223 0	
7/11/2018 10:05 0.0211 0 7/11/2018 10:06 0.0213 0 7/11/2018 10:07 0.0213 0 7/11/2018 10:08 0.0218 0	
7/11/2018 10:06 0.0213 0 7/11/2018 10:07 0.0213 0 7/11/2018 10:08 0.0218 0	
7/11/2018 10:07 0.0213 0 7/11/2018 10:08 0.0218 0	
7/11/2018 10:08 0.0218 0	
, , , , , , , , , , , , , , , , , , , ,	
7/11/2018 10:10 0.0225 0	
7/11/2018 10:11 0.0224 0	
7/11/2018 10:12 0.0222 0	
7/11/2018 10:13 0.0223 0	
7/11/2018 10:14 0.0221 0	
7/11/2018 10:15 0.022 0	
7/11/2018 10:16 0.0221 0	
7/11/2018 10:17 0.0221 0	
7/11/2018 10:18 0.0221 0	
7/11/2018 10:19 0.0221 0	
7/11/2018 10:20 0.0221 0	
7/11/2018 10:21 0.0217 0	
7/11/2018 10:22 0.0217 0	
7/11/2018 10:23 0.0213 0	
7/11/2018 10:24 0.0206 0	
7/11/2018 10:25 0.0203 0	
7/11/2018 10:26 0.0203 0	
7/11/2018 10:27 0.0203 0	
7/11/2018 10:28 0.0203 0	
7/11/2018 10:29 0.0203 0	
7/11/2018 10:30 0.0203 0	
7/11/2018 10:31 0.0201 0	
7/11/2018 10:32 0.02 0	
7/11/2018 10:33 0.02 0	
7/11/2018 10:34 0.0201 0	
7/11/2018 10:35 0.0205 0	
7/11/2018 10:36 0.0206 0	
7/11/2018 10:37 0.0207 0	
7/11/2018 10:38 0.0206 0	
7/11/2018 10:39 0.0207 0	
7/11/2018 10:40 0.0207 0	
7/11/2018 10:41 0.0207 0	
7/11/2018 10:42 0.0208 0	
7/11/2018 10:43 0.0207 0	
7/11/2018 10:44 0.0207 0	
7/11/2018 10:45 0.0207 0	
7/11/2018 10:46 0.0209 0	
7/11/2018 10:47 0.0209 0	
7/11/2018 10:48 0.0209 0	
7/11/2018 10:49 0.0209 0	

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/11/2018 10:50	0.0205	0
7/11/2018 10:51	0.0205	0
7/11/2018 10:52	0.0204	0
7/11/2018 10:53	0.0204	0
7/11/2018 10:54	0.0204	0
7/11/2018 10:55	0.0202	0
7/11/2018 10:56	0.0203	0
7/11/2018 10:57	0.0203	0
7/11/2018 10:58	0.0216	0
7/11/2018 10:59	0.0225	0
7/11/2018 11:00	0.0227	0
7/11/2018 11:01	0.0227	0
7/11/2018 11:02	0.0228	0
7/11/2018 11:03	0.0229	0
7/11/2018 11:04	0.0229	0
7/11/2018 11:05	0.0229	0
7/11/2018 11:06	0.0231	0
7/11/2018 11:07	0.0231	0
7/11/2018 11:08	0.0231	0
7/11/2018 11:09	0.0232	0
7/11/2018 11:10	0.0233	0
7/11/2018 11:11	0.0233	0
7/11/2018 11:12	0.0234	0
7/11/2018 11:13	0.0222	0
7/11/2018 11:14	0.0215	0
7/11/2018 11:15	0.0213	0
7/11/2018 11:16	0.0215	0
7/11/2018 11:17	0.0215	0
7/11/2018 11:18	0.0214	0
7/11/2018 11:19	0.0213	0
7/11/2018 11:20	0.0214	0
7/11/2018 11:21	0.022	0
7/11/2018 11:22	0.0223	0
7/11/2018 11:23	0.0223	0
7/11/2018 11:24	0.0223	0
7/11/2018 11:25	0.0223	0
7/11/2018 11:26	0.0222	0
7/11/2018 11:27	0.0223	0
7/11/2018 11:28	0.0226	0
7/11/2018 11:29	0.0228	0
7/11/2018 11:30	0.0228	0
7/11/2018 11:31	0.0232	0
7/11/2018 11:32	0.0231	0
7/11/2018 11:33	0.0233	0
7/11/2018 11:34	0.0235	0
7/11/2018 11:35	0.0237	0

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/11/2018 11:36	0.0233	0
7/11/2018 11:37	0.0232	0
7/11/2018 11:38	0.0233	0
7/11/2018 11:39	0.0235	0
7/11/2018 11:40	0.0236	0
7/11/2018 11:41	0.0249	0
7/11/2018 11:42	0.0253	0
7/11/2018 11:43	0.025	0
7/11/2018 11:44	0.0249	0
7/11/2018 11:45	0.0249	0
7/11/2018 11:46	0.0243	0
7/11/2018 11:47	0.0244	0
7/11/2018 11:48	0.0244	0
7/11/2018 11:49	0.0241	0
7/11/2018 11:50	0.0238	0
7/11/2018 11:51	0.0237	0
7/11/2018 11:52	0.0235	0
7/11/2018 11:53	0.0233	0
7/11/2018 11:54	0.0231	0
7/11/2018 11:55	0.0231	0
7/11/2018 11:56	0.0219	0
7/11/2018 11:57	0.0215	0
7/11/2018 11:58	0.0217	0
7/11/2018 11:59	0.0216	0
7/11/2018 12:00	0.0215	0
7/11/2018 12:01	0.0214	0
7/11/2018 12:02	0.0213	0
7/11/2018 12:03	0.0211	0
7/11/2018 12:04	0.0211	0
7/11/2018 12:05	0.0211	0
7/11/2018 12:06	0.0209	0
7/11/2018 12:07	0.0208	0
7/11/2018 12:08	0.0209	0
7/11/2018 12:09	0.0209	0
7/11/2018 12:10	0.0209	0
7/11/2018 12:11	0.0207	0
7/11/2018 12:12	0.0205	0
7/11/2018 12:13	0.0203	0
7/11/2018 12:14	0.0201	0
7/11/2018 12:15	0.0202	0
7/11/2018 12:16	0.0203	0
7/11/2018 12:17	0.0204	0
7/11/2018 12:18	0.0205	0
7/11/2018 12:19	0.0211	0
7/11/2018 12:20	0.0211	0
7/11/2018 12:21	0.0214	0

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/11/2018 12:22	0.0218	0
7/11/2018 12:23	0.0218	0
7/11/2018 12:24	0.022	0
7/11/2018 12:25	0.0223	0
7/11/2018 12:26	0.0223	0
7/11/2018 12:27	0.0223	0
7/11/2018 12:28	0.0225	0
7/11/2018 12:29		0
7/11/2018 12:30	0.0237	0
7/11/2018 12:31	0.0239	0
7/11/2018 12:32	0.0239	0
7/11/2018 12:33	0.0243	0
7/11/2018 12:34	0.0247	0
7/11/2018 12:35	0.0248	0
7/11/2018 12:36	0.0246	0
7/11/2018 12:37	0.0248	0
7/11/2018 12:38	0.0306	0
7/11/2018 12:39	0.0344	0
7/11/2018 12:40	0.0363	0
7/11/2018 12:41	0.0388	0
7/11/2018 12:42	0.0392	0
7/11/2018 12:43	0.0393	0
7/11/2018 12:44	0.0381	0
7/11/2018 12:45	0.0373	0
7/11/2018 12:46	0.0373	0
7/11/2018 12:47	0.0373	0
7/11/2018 12:48	0.0377	0
7/11/2018 12:49	0.038	0
7/11/2018 12:50	0.0409	0
7/11/2018 12:51	0.0465	0
7/11/2018 12:52	0.0584	0
7/11/2018 12:53	0.056	0
7/11/2018 12:54	0.0524	0
7/11/2018 12:55	0.0515	0
7/11/2018 12:56	0.0494	0
7/11/2018 12:57	0.0493	0
7/11/2018 12:58	0.0493	0
7/11/2018 12:59	0.0493	0
7/11/2018 13:00	0.0492	0
7/11/2018 13:01	0.0492	0
7/11/2018 13:02	0.0492	0
7/11/2018 13:03	0.0486	0
7/11/2018 13:04	0.0474	0
7/11/2018 13:05	0.0446	0
7/11/2018 13:06	0.0389	0
7/11/2018 13:07	0.0267	0

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/11/2018 13:08	0.0238	0
7/11/2018 13:09	0.024	0
7/11/2018 13:10	0.0245	0
7/11/2018 13:11	0.0461	0
7/11/2018 13:12	0.0466	0
7/11/2018 13:13	0.0815	0
7/11/2018 13:14	0.0843	0
7/11/2018 13:15	0.0856	0
7/11/2018 13:16	0.0858	0
7/11/2018 13:17	0.0892	0
7/11/2018 13:18	0.0951	0
7/11/2018 13:19	0.0953	0
7/11/2018 13:20	0.0955	0
7/11/2018 13:21	0.0961	0
7/11/2018 13:22	0.0963	0
7/11/2018 13:23	0.0966	0
7/11/2018 13:24	0.0967	0
7/11/2018 13:25	0.0965	0
7/11/2018 13:26	0.0757	0
7/11/2018 13:27	0.0755	0
7/11/2018 13:28	0.0404	0
7/11/2018 13:29	0.0378	0
7/11/2018 13:30	0.0369	0
7/11/2018 13:31	0.037	0
7/11/2018 13:32	0.0338	0
7/11/2018 13:33	0.0279	0
7/11/2018 13:34	0.0278	0
7/11/2018 13:35	0.0276	0
7/11/2018 13:36	0.0272	0
7/11/2018 13:37	0.0271	0
7/11/2018 13:38	0.0269	0
7/11/2018 13:39	0.0267	0
7/11/2018 13:40	0.0256	0
7/11/2018 13:41	0.025	0
7/11/2018 13:42	0.0246	0
7/11/2018 13:43	0.0246	0
7/11/2018 13:44	0.0245	0
7/11/2018 13:45	0.0245	0
7/11/2018 13:46	0.0243	0
7/11/2018 13:47	0.0245	0
7/11/2018 13:48	0.0245	0
7/11/2018 13:49	0.0245	0
7/11/2018 13:50	0.0247	0
7/11/2018 13:51	0.0249	0
7/11/2018 13:52	0.0255	0
7/11/2018 13:53	0.0257	0

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/11/2018 13:54	0.0258	0
7/11/2018 13:55	0.0257	0
7/11/2018 13:56	0.0257	0
7/11/2018 13:57	0.0258	0
7/11/2018 13:58	0.026	0
7/11/2018 13:59	0.0261	0
7/11/2018 14:00	0.026	0
7/11/2018 14:01	0.0261	0
7/11/2018 14:02	0.0258	0
7/11/2018 14:03	0.0259	0
7/11/2018 14:04	0.026	0
7/11/2018 14:05	0.0262	0
7/11/2018 14:06	0.026	0
7/11/2018 14:07	0.0254	0
7/11/2018 14:08	0.025	0
7/11/2018 14:09	0.0249	0
7/11/2018 14:10	0.0249	0
7/11/2018 14:11	0.0256	0
7/11/2018 14:12	0.0273	0
7/11/2018 14:13	0.0272	0
7/11/2018 14:14	0.0272	0
7/11/2018 14:15	0.0283	0
7/11/2018 14:16	0.0285	0
7/11/2018 14:17	0.0286	0
7/11/2018 14:18	0.0293	0
7/11/2018 14:19	0.0291	0
7/11/2018 14:20	0.0289	0
7/11/2018 14:21	0.029	0
7/11/2018 14:22	0.0291	0
7/11/2018 14:23	0.0295	0
7/11/2018 14:24	0.0296	0
7/11/2018 14:25	0.0298	0
7/11/2018 14:26	0.0292	0
7/11/2018 14:27	0.0275	0
7/11/2018 14:28	0.0277	0
7/11/2018 14:29	0.0282	0
7/11/2018 14:30	0.0273	0
7/11/2018 14:31	0.0273	0
7/11/2018 14:32	0.0275	0
7/11/2018 14:33	0.0271	0
7/11/2018 14:35	0.0272	0
7/11/2018 14:36	0.0279	0
7/11/2018 14:37	0.0281	0
7/11/2018 14:38	0.0281	0
7/11/2018 14:39	0.0386	0
7/11/2018 14:40	0.0389	0

Timestamp (America/New_York)	Mass Conc. Total (mg/m³)	VOC (ppm)
7/11/2018 14:41	0.0387	0
7/11/2018 14:42	0.0389	0
7/11/2018 14:43	0.0391	0
7/11/2018 14:44	0.0398	0
7/11/2018 14:45	0.0402	0
7/11/2018 14:46	0.0406	0
7/11/2018 14:47	0.0406	0
7/11/2018 14:48	0.0403	0
7/11/2018 14:49	0.0397	0
7/11/2018 14:50	0.0399	0
7/11/2018 14:51	0.0393	0
7/11/2018 14:52	0.039	0
7/11/2018 14:53	0.0392	0
7/11/2018 14:54	0.0295	0
7/11/2018 14:55	0.0305	0
7/11/2018 14:56	0.0311	0.0349
7/11/2018 14:57	0.0312	0.0349
7/11/2018 14:58	0.0319	0.0349
7/11/2018 14:59	0.0309	0.0349
7/11/2018 15:00	0.0306	0.0349
7/11/2018 15:01	0.0306	0.0349
7/11/2018 15:02	0.0307	0.0349
7/11/2018 15:03	0.0309	0.0349
7/11/2018 15:04	0.0313	0.0349
7/11/2018 15:05	0.0315	0.0349
7/11/2018 15:06	0.0319	0.0349
7/11/2018 15:07	0.0321	0.0349
7/11/2018 15:08	0.0317	0.0349
7/11/2018 15:09	0.0316	0.0349
7/11/2018 15:10	0.0315	0.0349
7/11/2018 15:11	0.0313	0
7/11/2018 15:12	0.031	0
7/11/2018 15:13	0.0303	0
7/11/2018 15:14	0.0302	0
7/11/2018 15:15	0.0306	0
7/11/2018 15:16	0.0297	0.017
7/11/2018 15:17	0.0315	0.017
7/11/2018 15:18	0.0316	0.017
7/11/2018 15:19	0.0308	0.017
7/11/2018 15:20	0.0304	0.017
7/11/2018 15:21	0.0299	0.017
7/11/2018 15:22	0.0295	0.017
7/11/2018 15:23	0.0294	0.017
7/11/2018 15:24	0.0297	0.017
7/11/2018 15:25	0.0283	0.017
7/11/2018 15:26	0.0279	0.017