

Main Office 2171 Jericho Turnpike, Suite 345 Commack, New York 11725 T (631) 462-5866 • F (631) 462-5877 NYC Office 1111 Fulton Street 2nd Fl. Brooklyn, New York 11238 T (718) 636-0800 • F (718) 636-0900

www.hydrotechenvironmental.com

FOCUSED SUBSURFACE INVESTIGATION REPORT

1299 1st Avenue New York, New York 10021

Prepared For:

Hudson Valley Bank 21 Scarsdale Road Yonkers, New York 10707

Prepared On:

September 23, 2008

Hydro Tech Job No. 080207

FOCUSED SUBSURFACE INVESTIGATION REPORT

1299 1st Avenue New York, New York 10021

September 23, 2008

Hydro Tech Environmental Corp. appreciates the opportunity to work for Hudson Valley Bank at the property located at 1299 1st Avenue in Manhattan, New York.

Should you require any additional information or have any comments regarding the contents of this report, please feel free to contact our office at your convenience.

Very Truly Yours,

Hydro Tech Environmental, Corp.

Yash Saha

Senior Chemical Engineer

Rachel Ataman

Vice President-Technical Services

Mark E. Robbins, C.P.G., C.E.I.

Senior Vice President

TABLE OF CONTENTS

	<u>Page Number</u>
1.0 Executive Summary	1
2.0 Introduction	
2.1 Site Description	
2.2 Site History	2
2.3 Environmental Setting	
2.4 Objective and Project Goals	3
3.0 Field Work	4
3.1 Introduction	4
3.2 Soil Probes	4
3.3 Monitoring Wells	5
3.4 Laboratory Analyticals	6
3.5 Decontamination Procedures & Quality Assurance/Quality Control	6
4.0 Analytical Results	7
4.1 Soil Quality	
4.2 Groundwater Quality	7
5.0 Discussion of Results	
6.0 Conclusions	11
7.0 Recommendations	12
8.0 References	13
9.0 Exclusions & Disclaimer	14

Figures

- 1. Site Plan
- Sampling Plan
 Groundwater Flow Diagram
- 4. Soil Contamination Diagram
- 5. Extent of Chlorinated Compounds in Soil
- 6. Groundwater Contamination Diagram

Tables

- 1. Soil Characterization Details
- 2. Monitoring Well Details
- 3. Soil Organic Analytical Results
- 4. Groundwater Organic Analytical Results

Appendices

- A. Historical Data
- B. Photographs
- C. Soil Probe Logs
- D. Monitoring Well Logs
- E. Laboratory Reports

1.0 EXECUTIVE SUMMARY

Hydro Tech Environmental Corp. (Hydro Tech) has performed a Focused Subsurface Investigation at the property located at 1299 1st Avenue in Manhattan, New York. The Focused Subsurface Investigation was performed on behalf of Hudson Valley Bank.

The Focused Subsurface Investigation is based upon our recent Phase II ESA and is intended to delineate the extent of Tetrachloroethene (aka PERC) in the soil and determine the presence, if any, of PERC in the groundwater. The scope of work included the installation and sampling of seven (7) soil probes and four (4) monitoring wells. During the investigation, select soil and groundwater samples were transported to a New York State certified laboratory and analyzed for petroleum range Volatile Organic Compounds (VOCs) in accordance with EPA Method 8260.

The results of the investigation indicate that the PERC present in the soil beneath the basement of the Site has migrated into the groundwater beneath the sidewalks along the Site. Additionally, breakdown products of PERC were detected in the soil in the northeastern portion of the basement and in the groundwater beneath the sidewalks along the Site. Gasoline compounds at concentrations less than their respective regulatory standards were detected in the soil beneath the western portion of the East 70th Street sidewalk. No gasoline compounds were detected in the groundwater. Two (2) concrete patches of unknown status were identified in the northwestern portion of the basement in the vicinity of the ASTs.

No effort has been made to perform any investigation beyond what is included in this report. The observations included herein summarize the results of the investigation up to the date of the fieldwork and the date of this report.

The following sections provide the details and specific information pertaining to the various components of the subsurface investigation.

2.0 INTRODUCTION

Hydro Tech Environmental Corp. (Hydro Tech) has been retained by Hudson Valley Bank to perform a Focused Subsurface Investigation at the property located at 1299 1st Avenue in Manhattan, New York (hereafter referred to as "the Site").

2.1 Site Description

The Site is situated west of the intersection between East 70th Street and 1st Avenue in the Borough of Manhattan, New York. The Site is located on the western side of 1st Avenue. The vicinity of the Site consists of residential and commercial properties. The Site is defined as 1299 1st Avenue and is also identified as Block 1444, Lot 30.

The Site is approximately 1,957 square feet in area and is developed with a 4-story commercial/residential building. The building is approximately 7,060 square feet in area. Currently, the first floor of the building is utilized as a convenience store. The basement is divided into two (2) sections. Both sections are used for storage. Two (2) above ground storage tanks (ASTs) were located in the western half of the basement. Two (2) concrete patches were identified in the northwestern portion of the basement, in the vicinity of the ASTs. The subsurface conditions of these patches are not known and will be discussed further in Section 3.2 of this report. The height of the basement is approximately 6 feet. The ground surface of the basement is mostly covered by shelves and boxes; therefore, the access inside the basement is limited. The main access to the Site is via the west along 1st Avenue.

The Site is connected to the New York City sewer system, water, electric and gas services. The utilities enter the property via 1st Avenue, east of the property. The topography of the Site and its vicinity is generally level. **Figure 1** provides a Site Plan.

2.2 Site History

A previous Phase I Environmental Site Assessment (ESA) Report performed by Merritt Engineering Consultants, P.C. dated September 7, 2006 identified the following Recognized Environmental Conditions (RECs):

• The historical utilization of the Site as a dry cleaning facility from 1976 to 1996.

Based upon the RECs, a Phase II Environmental Site Assessment (ESA) was performed by Hydro Tech in November 2007. The investigation consisted of the installation and sampling of three (3) soil probes designated as SP-1 through SP-3 in the basement of the Site. The results of the Phase II investigation indicated that the former utilization of the Site as a dry cleaner appeared to have impacted upon its environmental quality. Tetrachloroethene (aka PERC) was detected in the soil beneath the northern portion of the basement in SP-2 at a concentration of 12,000,000 μ g/kg, which exceeds its regulatory standard of 1,400 μ g/kg. PERC was also detected in the southeastern portion of the Site in SP-3 at a concentration of 91 μ g/kg, exceeding its laboratory method detection limit (MDL). No PERC was detected in the western portion of the basement or SP-1 at concentrations exceeding its MDL.

Appendix A provides a copy of the historical reports.

2.3 Environmental Setting

The Site is located in the Borough of Manhattan, New York. The elevation of the Site is approximately 50 feet above mean sea level (USGS $7\frac{1}{2}$ Minute, New York Quadrangle, 1969, Photorevised 1995).

The vicinity of the Site is characterized by metamorphosed sequences of bedrock known as the Manhattan Prong of the Hartland Formation. The Hartland Formation was formed during the late Cambrian to early Ordovician period and consists of undivided pelitic schist with gneiss and amphibolite. The formation is frequently cross cut by transverse and parallel faults. The area is overlain by Pleistocene aged glacial till deposits. Outcrops of bedrock are commonplace in the

Borough of Manhattan, as can be seen in Central Park.

The regional groundwater flow direction in the vicinity of the Site is toward the east-northeast in the direction of the East River. The depth to water in the vicinity of the Site is approximately 40 feet below grade.

2.4 Objective & Project Goals

The scope of work for this assessment was based upon a previous Phase II ESA performed by Hydro Tech Environmental, Corp. and was intended to delineate the extent of Tetrachloroethene (aka PERC) in the soil and determine the presence, if any, of PERC in the groundwater. This was accomplished through the installation and sampling of seven (7) soil probes and four (4) monitoring wells.

All related portions of the field portion of the Focused Subsurface Investigation were performed in accordance with acceptable industry standards. These acceptable industry standards include, but are not limited to, the ASTM Standard Guide for Subsurface Investigation (E 1903-97), the New York State Department of Environmental Conservation Bureau of Spill Prevention & Response Sampling Guidelines and Protocols, March 1991, and Draft DER-10 Technical Guidance for Site Investigation and Remediation, December 2002.

3.0 FIELDWORK

3.1 Introduction

The field portion of the investigation was performed on 19th, 20th, and 25th of August 2008 and consisted of the installation and sampling of seven (7) soil probes and four (4) groundwater monitoring wells. All fieldwork was performed under the direct guidance and oversight of a Hydro Tech Geologist and under the supervision of a Hydro Tech Project Manager.

Prior to the performance of the fieldwork, an NYC One-Call Public Utility mark-out was requested. Confirmation #82130920 was issued to the mark-out. Two (2) sidewalk permits were obtained for the borings to be installed in the sidewalks along 1st Avenue and East 70th Street. **Appendix B** contains photographs of the fieldwork.

3.2 Soil Probes

A total of seven (7) soil probes, designated SP-4 through SP-10 consecutively, were installed during the investigation. The purpose of the soil probes was to delineate the extent of PERC in the soil. No borings could be installed in the vicinity of the two (2) concrete patches in the northwestern portion of the basement due to access limited by the presence of shelves and boxes.

Soil probes SP-4 through SP-7 were installed in the basement utilizing Hydro Tech's remote-operated probing machine fitted with Geoprobe® tooling and sampling equipment. Soil probes SP-8 through SP-10 were installed in the sidewalks utilizing Hydro Tech's track-mounted 6620DT Geoprobe® unit. Both machines install soil probes utilizing direct-push technology. **Figure 2** provides the Sampling Plan.

Due to the shallow basement height of approximately 6 feet and the presence of shelves and boxes throughout the basement, the boring locations within the basement were limited to access. Soil probe SP-4 was installed in the southwestern portion of the basement to a depth of 6 feet below basement grade (bbg), at which bedrock was encountered. Soil probe SP-5 was installed in the northeastern portion of the basement to a depth of 8 feet bbg, at which bedrock was encountered. Soil probe SP-6 was installed in the southern portion of the basement to a depth of 12 feet bbg, at which refusal was encountered. Soil probe SP-7 was installed in the eastern portion of the basement to a depth of 8 feet bbg, at which bedrock was encountered. Based upon the field information, bedrock beneath the basement likely exists from approximately 6 feet bbg to approximately 12 feet bbg.

Soil probes SP-8 and SP-10 were installed in the sidewalk between East 70th Street and the Site to a depth of 16 feet below grade surface (bgs). Soil probe SP-9 was installed in the sidewalk between 1st Avenue and the Site to a depth of 16 feet below grade surface (bgs).

Soil samples were collected from each soil probe utilizing a four-foot long macro-core sampler fitted with dedicated acetate liners. Each sampler was installed with 1½-inch diameter drill rods. Separate aliquots of each soil sample were placed into 8-ounce jars and appropriately labeled. The Hydro Tech geologist then characterized each soil sample in the field. The soil characterization consisted of determining the soil classification utilizing the Unified Soil Classification System and screening each sample for organic vapors utilizing a Photoionization Detector (PID).

A PID makes use of the principle of photoionization for the detection and qualitative measurement of organic vapors. A PID does not respond to all compounds similarly, rather, each compound has its own response factor relative to its calibration. For this investigation, the PID was calibrated to the compound isobutylene, which is published by the manufacturer. The PID has a minimum detection limit of 0.1 parts per million (ppm). This meter measures the hydrocarbon concentrations in isolated portions of the secured samples.

Headspace analyses were conducted on each soil sample by partially filling a zip-loc bag and sealing it, thereby creating a void. This void is referred to as the sample headspace. To facilitate the detection of any hydrocarbons contained within the headspace, the container was agitated for

a period of 30 seconds. The probe of the PID was then placed within the headspace to measure the organic vapors present. Soil probe logs were then generated based upon the soil characterization, along with the PID field screening.

Table 1 provides the soil characterization details. As **Table 1** indicates, the general soil type beneath the Site consists of brown, medium grained sandy loam with pebbles. Visual/olfactory evidence of contamination and organic vapors in the range from 5.0 ppm to 7.4 ppm were detected in the 2 to 6 foot soil sample from SP-4. Visual/olfactory evidence of contamination and organic vapors in the range from 24.7 ppm to 25.1 ppm were detected in the 4 to 8 foot soil sample from SP-5. Visual/olfactory evidence of contamination and organic vapors in the range from 5.6 ppm to 4.4 ppm were detected in the 10 to 16 foot soil sample from SP-10. No visual/olfactory evidence of contamination or organic vapors was detected during the soil screening in SP-6, SP-7, SP-8 and SP-9. **Appendix C** provides copies of the soil probe logs.

The 2-foot interval sample with highest PID reading from soil probes SP-4, SP-5 and SP-10 was containerized for laboratory analysis. Since no significant PID readings were obtained from SP-6, SP-7, SP-8 and SP-9, the deepest dry soil sample was obtained from these soil probes. Based upon the infield screening results, the following samples were containerized for confirmatory analysis:

Soil Probe (SP)	Sample Depth (Feet)	PID Reading (ppm)	Olfactory Observation
SP-4	4 to 6 ft	7.4	Faint odor.
SP-5	6 to 8 ft	25.1	Chlorinated odor.
SP-6	10 to 12 ft	0.0	No odor.
SP-7	6 to 8 ft	0.0	No odor.
SP-8	14 to 16 ft	0.0	No odor.
SP-9	14 to 16 ft	0.0	No odor.
SP-10	10 to 12 ft	5.6	Faint petroleum odor.

3.3 Monitoring Wells

Four (4) of the soil probes were then converted into permanent 1-inch monitoring wells. Three (3) monitoring wells were installed in the sidewalks along the perimeter of the Site utilizing Hydro Tech's 6620DT Geoprobe® unit. One (1) monitoring well was installed in the basement utilizing Hydro Tech's remote-operated probing machine. Both machines install monitoring wells utilizing direct-push technology. Each well consists of a screen portion with a slot size of 0.020 inches and a solid PVC riser portion. The monitoring wells were assigned "MW" sampling designations. The purpose of the monitoring wells was to determine the presence of PERC in the groundwater. **Figure 2** also provides the monitoring well locations.

Monitoring well MW-1 was installed in the same location as SP-6 in the basement to a depth of 14 feet below basement grade, at which bedrock was encountered. Monitoring well MW-1 could not be installed in the vicinity of SP-4, SP-5, or SP-7 due to the presence of bedrock from 6 feet to 8 feet in those locations. The screened portion of MW-1 was installed from 4 feet to 14 feet below basement grade (bbg). The remaining portion of the well from 4 feet to basement grade consists of solid riser.

Monitoring well MW-2 was installed in the same location as SP-8 in the East 70^{th} Street sidewalk to a depth of 25 feet, at which refusal was encountered. The screened portion of MW-2 was installed from 15 feet to 25 feet below grade. The remaining portion of the well from 15 feet to grade consists of riser.

Monitoring well MW-3 was installed in the same location as SP-9 in the $1^{\rm st}$ Avenue sidewalk to a depth of 22 feet, at which refusal was encountered. The screened portion of MW-3 was installed from 12 feet to 22 feet below grade. The remaining portion of the well from 12 feet to grade consists of riser.

Monitoring well MW-4 was installed in the same location as SP-10 in the East 70th Street sidewalk to a depth of 23 feet. The screened portion of MW-4 was installed at a depth from 13 feet to 23 feet bgs. The remaining portion of the well from 13 feet to grade consists of riser.

All wells were installed with a sand pack and bentonite seal and finished at grade with a limited-access manhole cover. Well construction logs were generated and are provided as **Appendix D**.

All monitoring wells were monitored utilizing a Solinst 122 Oil/Water Interface Probe (Interface Probe). The casing elevation of each well was determined utilizing a David White LT8-300 Transit. The determination of the casing elevation allows for the calculation of the groundwater elevation beneath the Site, which therefore allows for the determination of the site-specific groundwater flow direction.

Table 2 provides the results of the groundwater monitoring and surveying details. None of the monitoring wells contained free product. The depth to water beneath the basement is 8.20 feet as observed in MW-1. The depth to water beneath the sidewalks ranges from 14.90 feet in MW-3 to 19.96 feet in MW-2. The groundwater elevation in the vicinity of the Site ranges from 5.92 feet in MW-2 to 17.76 feet in MW-1. The site specific groundwater flow direction is northeast. **Figure 3** provides a groundwater flow contour map.

Groundwater samples were obtained utilizing dedicated disposable polypropylene weighted bailers. Each groundwater sample was then placed into 2 pre-cleaned 40-milliliter (mL) vials and appropriately labeled.

3.4 Laboratory Analyticals

All soil and groundwater samples were placed in a cooler maintained at four (4) degrees Celsius and were transmitted under proper chain of custody procedures to a State-certified (ELAP) laboratory. All soil and groundwater samples were analyzed for volatile organic compounds (VOCs) including chlorinated solvents via EPA Method 8260. **Appendix E** provides copies of the laboratory reports.

3.5 Decontamination Procedures and Quality Assurance/Quality Control

Each piece of sampling or other down hole equipment was decontaminated prior to each use in order to ensure that cross-contamination between sampling locations did not occur. The following procedure was utilized in the decontamination process:

- Wipe clean and wash with Alconox®
- Potable water rinse
- Methanol rinse
- Deionized water rinse
- Air dry

All decontamination procedures were performed in an area segregated from any sampling areas. Any rinsate from the decontamination area was contained and removed from the Site.

All samples were properly handled and placed into the appropriately labeled containers. The samples were placed in a cooler filled with ice and maintained at a maximum of 4 degrees Celsius. All samples were transmitted under proper chain of custody procedures to a State-certified (ELAP) laboratory for confirmatory laboratory analyses. All holding times were met. The laboratory did not report any irregularities with respect to their internal Quality Assurance/Quality Control.

4.0 ANALYTICAL RESULTS

4.1 Soil Quality

Table 3 provides the analytical results for the organic compounds detected in all soil samples at concentrations exceeding their respective method detection limit (MDL). **Table 3** also provides a comparison of the analytical results to the Recommended Soil Cleanup Objective (RSCO) from NYSDEC Technical and Administrative Guidance Memorandum (TAGM) #4046. Concentrations reported in **Table 3** are in micrograms per kilogram (μ g/kg). **Figure 4** provides a Soil Contamination Diagram.

As **Table 3** indicates, the total VOC concentrations detected in the soil samples range from 28 μ g/kg in SP-7 to 1,004,600 μ g/kg in SP-5. The total VOC concentration in soil probe SP-5 exceeds the RSCO for total VOC concentration of 10,000 μ g/kg. No VOCs were detected in SP-6, SP-8 and SP-9 at concentrations exceeding their respective MDLs.

Table 3 further indicates that a total VOC concentration of 6,100 μ g/kg was detected in the 4 to 6 foot soil sample from SP-4. Tetrachloroethene (aka PERC) was detected at a concentration of 3,400 μ g/kg, exceeding its respective RSCO of 1,400 μ g/kg. No other VOCs were detected in SP-4 at concentrations exceeding their respective RSCO.

A total VOC concentration of 1,004,600 $\mu g/kg$ was detected in the 6 to 8 foot soil sample from SP-5. Trichloroethene (TCE) was detected at a concentration of 3,100 $\mu g/kg$ exceeding, its respective RSCO of 700 $\mu g/kg$. PERC was detected at a concentration of 1,000,000 $\mu g/kg$, exceeding its respective RSCO of 1,400 $\mu g/kg$. No other VOCs were detected in SP-5 at concentrations exceeding their respective RSCO.

A total VOC concentration of 28 $\mu g/kg$ was detected in the 6 to 8 foot soil sample from SP-7. PERC was detected at a concentration of 28 $\mu g/kg$ in SP-7, which less than its respective RSCP. No other VOCs were detected above their respective MDLs in SP-7.

A total VOC concentration of 4,360 μ g/kg was detected in the 10 to 12 foot soil sample from SP-10. Gasoline compounds consisting of 1,3,5-Trimethylbenzene (750 μ g/kg), 1,2,4-Trimethylbenzene (1,300 μ g/kg), sec-Butylbenzene (710 μ g/kg), n-Butylbenzene (900 μ g/kg) and Naphthalene (700 μ g/kg) were detected in SP-10 at concentrations less than their respective RSCO. No other VOCs were detected above their respective MDLs in SP-10.

4.2 Groundwater Quality

Table 4 provides the analytical results for the organic compounds detected in all groundwater samples at concentrations exceeding their respective method detection limit (MDL). **Table 4** also provides a comparison of the analytical results to each compound's Groundwater Quality Standard (GQS) from NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1. entitled <u>Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.</u> Concentrations reported in **Table 4** are in micrograms/liter (μ g/L).

Table 4 indicates VOCs were detected in groundwater samples from MW-2, MW-3 and MW-4 at concentrations exceeding their respective MDLs. No VOCs were detected in the groundwater sample from MW-1 at concentrations exceeding their respective MDLs.

A total VOC concentration of 5,970 $\mu g/L$ was detected in MW-2. Individual VOCs consisting of cis-1,2-dichloroethene (280 $\mu g/L$), TCE (190 $\mu g/L$) and PERC (5,500 $\mu g/L$) were detected in MW-2 at concentrations exceeding their respective GQS. No other VOCs were detected in MW-2 at concentrations exceeding their respective MDLs.

A total VOC concentration of 2,720 $\mu g/L$ was detected in MW-3. Individual VOCs consisting of Vinyl Chloride (1,200 $\mu g/L$), cis-1,2-dichloroethene (1,400 $\mu g/L$) and PERC (220 $\mu g/L$) were detected in MW-3 at concentrations exceeding their respective GQS. No other VOCs were detected in MW-3 at concentrations exceeding their respective MDLs.

A total VOC concentration of 77.3 $\mu g/L$ was detected in MW-4. Individual VOCs consisting of cis-1,2-dichloroethene (8.3 $\mu g/L$) and PERC (69 $\mu g/L$) were detected in MW-4 at concentrations exceeding their respective GQS. No other VOCs were detected in MW-4 at concentrations exceeding their respective MDLs.

5.0 DISCUSSION OF RESULTS

The results of the November 2007 investigation indicated that the former utilization of the Site as a drycleaner from 1976 to 1996 has impacted upon the soil quality beneath the Site. The purpose of the current investigation was to delineate the concentration of PERC in the soil and verify its presence in the groundwater beneath the Site.

The soil contamination beneath the Site consists of two types of contaminants, gasoline and chlorinated solvents. The groundwater contamination beneath the sidewalks adjoining the Site consists of chlorinated contaminants only.

Chlorinated Contaminants in Soil

The chlorinated solvents identified in the soil beneath the Site consist of Tetrachloroethene (aka PERC) and its breakdown product Trichloroethene (aka TCE). The highest concentrations of PERC are present in the soil beneath the northern and northeastern quadrants of the basement.

During the November 2007 investigation, PERC was detected at a concentration of $12,000,000 \, \mu g/kg$ beneath the northern quadrant of the basement as evidenced by the analytical results of SP-2. The vertical extent of the PERC contamination in SP-2 is from 0 to 6 feet as evidenced by elevated PID readings of 117 ppm at 0 to 2 feet, 9,999 ppm at 2 to 4 feet and 2,225 ppm at 4 to 6 feet. Bedrock was encountered at 6 feet in this quadrant of the Site.

The PERC beneath the northeastern quadrant of the basement has broken down to TCE as evidenced by the analytical results of SP-5. PERC was detected at a concentration of 1,000,000 μ g/kg and TCE was detected at a concentration of 3,100 μ g/kg in SP-5. The vertical extent of the PERC and TCE contamination in SP-5 is from 4 to 8 feet as evidenced by elevated PID readings of 24.7 ppm at 4 to 6 feet and 25.1 ppm at 6 to 8 feet. Bedrock was encountered at 8 feet in this quadrant of the Site.

The next highest concentration of PERC was detected in the southwestern quadrant of the Site at $3,400~\mu g/kg$ in SP-4. The vertical extent of the PERC contamination in SP-4 is from 2 to 6 feet as evidenced by elevated PID readings of 5.0 ppm at 2 to 4 feet and 7.4 ppm at 4 to 6 feet. Bedrock was encountered at 6 feet in this quadrant of the Site.

The lowest concentrations of PERC in the soil beneath the Site were detected in the southeastern and eastern quadrants of the basement. The concentration of PERC beneath the southeastern quadrant of the basement is 91 $\mu g/kg$ as evidenced by SP-3 and the concentration of PERC beneath the eastern quadrant of the basement is 28 $\mu g/kg$ as evidenced by SP-7. The vertical extent of the PERC contamination in the southeastern quadrant of the basement is from 2 to 8 feet, evidenced by elevated PID readings of 64.8 ppm at 2 to 4 feet, 79 ppm at 4 to 6 feet and 47.8 ppm at 6 to 8 feet. Since PID readings of 0.0 ppm and no olfactory/visual evidence of contamination was noted in any of the soil sampling intervals of SP-7, based upon the analytical results, the vertical extent of the PERC contamination in the eastern quadrant of the basement is likely from 6 to 8 feet. Bedrock was encountered at 8 feet below basement grade in the southeastern and eastern quadrants of the basement.

No chlorinated solvents were detected in the soil beneath the western and southern quadrants of the basement as evidenced by the analytical results of SP-1 and SP-6, respectively. No chlorinated solvents were detected in the soil beneath the sidewalks alongside the Site as evidenced by the analytical results of SP-8, SP-9 and SP-10.

In summary, chlorinated contaminants in the soil appears to be present in the northern, northeastern, southeastern and eastern quadrants of the Site at depths ranging from a minimum of 0 to 8 feet. Chlorinated solvents are dense non-aqueous phase liquids (DNAPLs) and are heavier than water. Therefore, it is likely that the PERC contamination may have extended into the bedrock. **Figure 5** provides the extent of chlorinated compounds in soil.

Gasoline Contaminants in Soil

Gasoline contaminants were identified in the soil beneath the western, southwestern and northeastern quadrants of the basement and beneath the western portion of the East 70th Street sidewalk adjoining the Site at concentrations less than their respective RSCO standards as evidenced by SP-1, SP-4, SP-5 and SP-10.

Groundwater Quality

The depth to water beneath the basement of the Site in MW-1 is 8.20 feet. The depth to water beneath the sidewalk along 1st Avenue in MW-3 is 14.90 feet and the depth to water in the sidewalks along E 70th Street ranges from 18.40 feet in MW-4 to 19.96 feet in MW-2. The groundwater elevation in the vicinity of the Site ranges from 5.92 feet in MW-2 beneath the sidewalk along East 70th Street to 17.76 feet in MW-1 in the basement. The site-specific groundwater flow direction is towards the northeast. The regional groundwater flow direction is east-northeast, towards the East River.

No levels of gasoline or chlorinated compounds were detected in the groundwater beneath the southern portion of the basement, upgradient of the soil contamination as evidenced by the analytical results of MW-1. Based on the analytical results of this groundwater sample and its upgradient location, it is difficult to say if the groundwater beneath other portions of the basement has been impacted with PERC since no groundwater samples could be obtained from the northern, northeastern and southwestern portions of the basement due to the presence of bedrock from approximately 6 feet to 8 feet below the basement.

No levels of gasoline compounds were detected in the groundwater beneath the sidewalks of the Site. However, the PERC in the soil beneath the basement has migrated into the groundwater beneath the sidewalks along the Site, which are relatively downgradient of the soil contamination beneath the basement. PERC and its breakdown products consisting of cis-1,2-dichloroethene, TCE and vinyl chloride were detected in the groundwater at concentrations exceeding their respective GQS. The total concentration of chlorinated contaminants detected in the groundwater beneath the East $70^{\rm th}$ Street sidewalk ranges from $77.3~\mu g/L$ to $5,970~\mu g/L$. The total concentration of chlorinated contaminants detected in the groundwater beneath the $1^{\rm st}$ Avenue sidewalk is $2,720~\mu g/L$. **Figure 6** provides a Groundwater Contamination Diagram.

6.0 CONCLUSIONS

Based on the information and data presented above, the following conclusions are provided:

The results of the investigation indicate that PERC present in the soil beneath the basement of the Site has migrated into the groundwater beneath the sidewalks along the Site, in the direction of the groundwater flow. The highest concentrations of PERC are present in the soil beneath the northern and northeastern quadrants of the basement.

Gasoline contaminants were identified in the soil beneath the western, southwestern and northeastern quadrants of the basement and in the soil beneath the western portion of the East 70th Street sidewalk adjoining the Site at concentrations less than their respective RSCO. No gasoline compounds were detected in the groundwater.

Two (2) concrete patches were identified in the northwestern portion of the basement, in the vicinity of the ASTs. No borings could be installed in its vicinity due to access limited by the presence of shelves and boxes.

7.0 RECOMMENDATIONS

Based on the information and data presented above, the following recommendations are provided:

A copy of this Report should be forwarded to the New York State Department of Environmental Conservation (NYSDEC) for review and comment.

A Feasibility Study is recommended to determine the best remedial technique for the contamination in the soil.

The PERC in the groundwater should be further delineated by installing monitoring wells in the northern and western sidewalks across the Site. Borings may be attempted in the northern, eastern and western sections of the basement and bedrock wells should be installed and sampled in these sections.

The presence of gasoline compounds at concentrations less than regulatory standards in the soil beneath the western portion of the East $70^{\rm th}$ Street sidewalk should be further investigated. This may include soil sampling at deeper depths and additional borings in the sidewalk. Additionally, the history of the Site and its surrounding properties should be reviewed for potential sources of petroleum.

An indoor air survey should be performed inside the basement to determine the presence, if any, of PERC in the air.

The two (2) concrete patches in the northwestern portion of the basement, in the vicinity of the ASTs should be investigated and accessed in order to ascertain the historic use of this area.

8.0 REFERENCES

- 1. <u>Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process, ASTM E 1527-00</u>, American Society for Testing and Materials, West Conshohocken, PA.
- 2. <u>Principals of Groundwater Engineering</u>, William C. Walton, Lewish Publishers, Inc, 1991.
- 3. <u>Soil Survey of Nassau County, New York</u>, Soil Conservation Service, United States Department of Agriculture in cooperation with Cornell University Agricultural Experiment Station, February 1987.
- 4. <u>The Long Island Ground Water Pollution Study,</u> New York State Department of Environmental Conservation, 1972
- 5. Geochemical traverse across Cameron's Line, Boro Hall Park, Bronx, New York, Cadmus, D., Hodgen, R., Gatto, L.M., and Puffer, J.H., Geology Department, Rutgers University, Newark, NJ.
- 6. Drainage History of the New York City Region, Sanders, John E., Geology Department, Hofstra University.
- 7. Draft DER-10 Technical Guidance for Site Investigation and Remediation, December 2002.
- 8. New York State Department of Environmental Conservation Technical and Administrative Guidance Memorandum #4046, Determination of Soil Cleanup Objectives and Cleanup Levels, January 24, 1994.
- 9. *Merritt Engineering Consultants, P.C.* Phase I Environmental Site Assessment, 1299 1st Avenue, New York, New York, *September 7, 2006*.
- 10. Hydro Tech Environmental, Corp., Phase II Environmental Site Assessment, 1299 1st Avenue, New York, New York, November 20, 2007.

9.0 EXCLUSIONS & DISCLAIMER

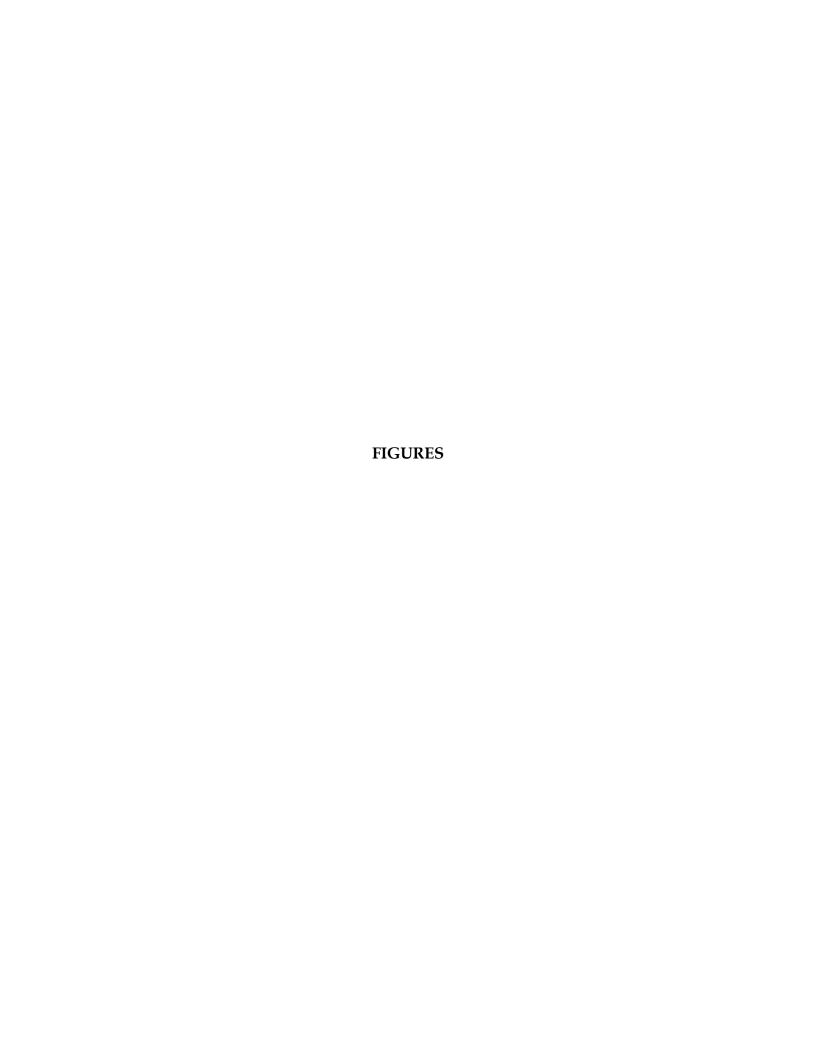
The observations described in this report were made under the conditions stated therein. The conclusions presented in the report were based solely upon the services described therein, and not on scientific tasks or procedures beyond the scope of described services or the time and budgetary constraints imposed by the Client

In preparing this report, **Hydro Tech Environmental, Corp.** may have relied on certain information provided by state and local officials and other parties referenced therein, and on information contained in the files of state and/or local agencies available to **Hydro Tech Environmental, Corp.** at the time of the subject property assessment. Although there may have been some degree of overlap in the information provided by these various sources, **Hydro Tech Environmental, Corp.** did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this subject property assessment.

Observations were made of the subject property and of structures on the subject property as indicated within the report. Where access to portions of the subject property or to structures on the subject property was unavailable or limited, **Hydro Tech Environmental, Corp.** renders no opinion as to the presence of non-hazardous or hazardous materials, or to the presence of indirect evidence relating to a non hazardous or hazardous materials, in that portion of the subject property or structure. In addition, **Hydro Tech Environmental, Corp.** renders no opinion as to the presence of hazardous materials, or the presence of indirect evidence relating to hazardous materials, where direct observation of the interior walls, floors, or ceiling of a structure on a subject property was obstructed by objects or coverings on or over these surfaces.

Hydro Tech Environmental, Corp. did not perform testing or analyses to determine the presence or concentration of asbestos at the subject property or in the environment of the subject property under the scope of the services performed.

The conclusions and recommendations contained in this report are based in part, where noted, upon the data obtained from a limited number of soil samples obtained from widely spaced subsurface explorations. The nature and extent of variations between these explorations may not become evident until further exploration. If variations or other latent conditions then appear evident, it will be necessary to reevaluate the conclusions and recommendations of this report.

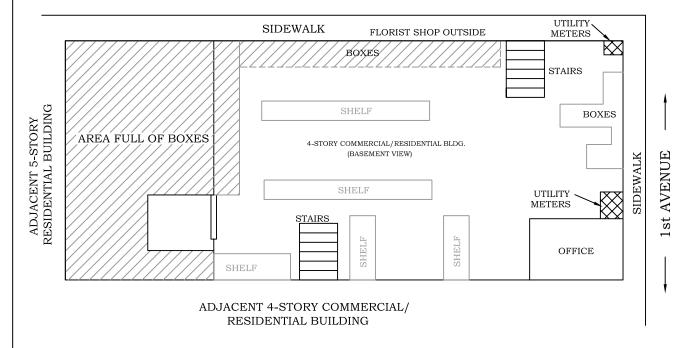

Any water level reading made in test pits, borings, and/or observation wells were made at the times and under the conditions stated in the report. However, it must be noted that fluctuations in the level of groundwater may occur due to variations in rainfall and other factors different from those prevailing at the time measurements were made.

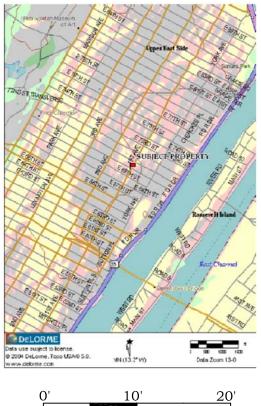
Except as noted within the text of the report, no qualitative laboratory testing was performed as part of the subject property assessment. Where such analyses have been conducted by an outside laboratory, **Hydro Tech Environmental, Corp.** has relied upon the data provided, and has not conducted an independent evaluation of the reliability of the data.

The conclusions and recommendations contained in this report are based in part, where noted, upon various types of chemical data and are contingent upon their validity. The data have been reviewed and interpretations were made in the report. As indicated within the report, some of the data may be preliminary "screening" level data, and should be confirmed with quantitative analyses if more specific information is necessary. Moreover, it should be noted that variations in the types and concentrations of contaminants and variations in their flow paths may occur due to seasonal water table fluctuations, past disposal practices, the passage of time, and other factors. Should additional chemical data become available in the future, the data should be reviewed, and the conclusions and recommendations presented herein modified accordingly.

Chemical analyses have been performed for specific constituents during the course of this subject property assessment, as descried in the text. However, it should be noted that additional chemical constituents not searched for during the current study may be present in soil and/or groundwater at the subject property.

Any GPR survey described above was performed in accordance with good commercial and customary practice and generally accepted protocols within the consulting industry. **Hydro Tech Environmental, Corp.** does not accept responsibility for survey limitations due to inherent technological limitations or site specific conditions, however, made appropriate effort to identify and notify the client of such limitations and conditions. In particular, please note that the survey described above does not represent a full utility clearance survey, and does not relieve any party of applicable legal obligations to notify a utility one-call service prior to excavating or drilling.

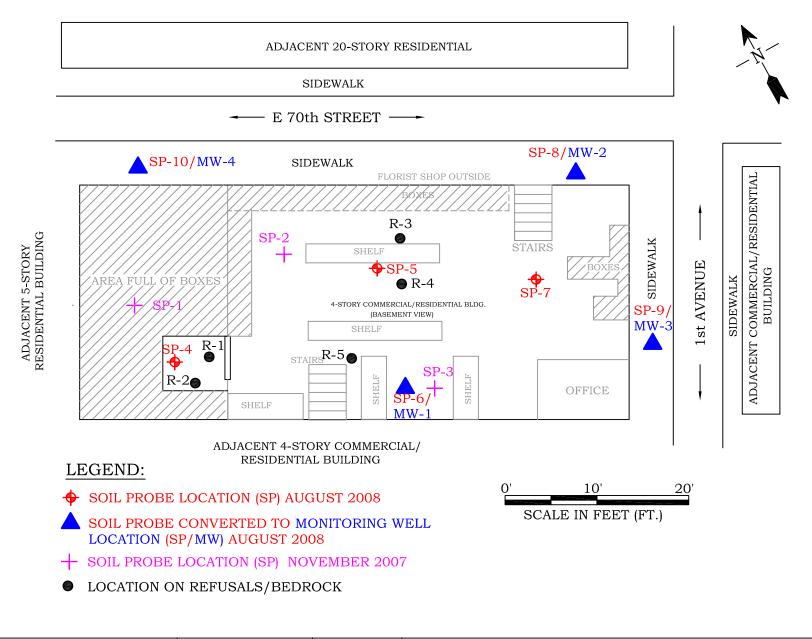




SIDEWALK

← E 70th STREET ←

HYDRO TECH ENVIRONMENTAL CORP.

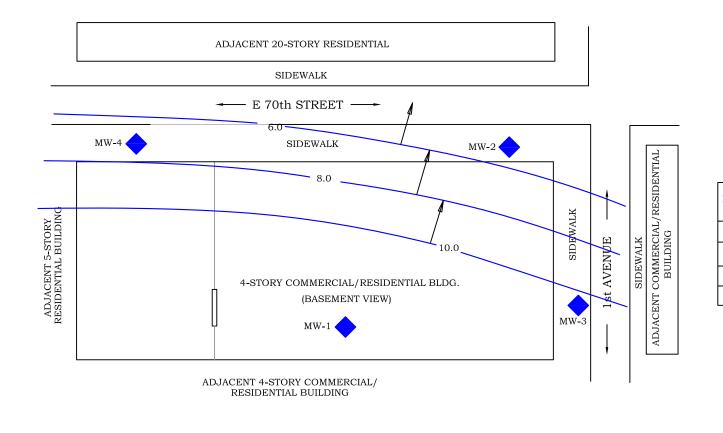

| MAIN_OFFICE: 2171 JERICHO TURNPIKE, SUITE 345 | 1111 Fulton Street, 2nd Floor COMMACK, NEW YORK 11725 | 1111 Fulton Street, 2nd Floor BROOKLYN, NEW YORK 11238 | T (718)636-0800 F (718)636-0900 | 1116 Fulton Street, 2nd Floor BROOKLYN, NEW YORK 11238 | T (718)636-0800 F (718)636-0900 | 1116 Fulton Street, 2nd Floor BROOKLYN, NEW YORK 11238 | T (718)636-0800 F (718)636-0900 | 1116 Fulton Street, 2nd Floor BROOKLYN, NEW YORK 11238 | T (718)636-0800 F (718)636-0900 | 1116 Fulton Street, 2nd Floor BROOKLYN, NEW YORK 11238 | T (718)636-0800 F (718)636-0900 | 1116 Fulton Street, 2nd Floor BROOKLYN, NEW YORK 11238 | T (718)636-0800 F (718)636-0900 | 1116 Fulton Street, 2nd Floor BROOKLYN, NEW YORK 11238 | T (718)636-0800 F (718)636-0900 | 1116 Fulton Street, 2nd Floor BROOKLYN, NEW YORK 11238 | T (718)636-0800 F (718)636-0900 | 1116 Fulton Street, 2nd Floor BROOKLYN, NEW YORK 11238 | T (718)636-0800 F (718)636-0900 | 1116 Fulton Street, 2nd Floor BROOKLYN, NEW YORK 11238 | T (718)636-0800 F (718)636-0900 | 1116 Fulton Street, 2nd Floor BROOKLYN, NEW YORK 11238 | T (718)636-0800 F (718)636-0900 | 1116 Fulton Street, 2nd Floor BROOKLYN, NEW YORK 11238 | T (718)636-0800 F (718)636-0900 | 1116 Fulton Street, 2nd Floor BROOKLYN, NEW YORK 11238 | T (718)636-0800 F (718)636-0900 | 1116 Fulton Street, 2nd Fulton Street, 2nd Floor BROOKLYN, NEW YORK 11238 | T (718)636-0800 F (718)636-0900 | 1116 Fulton Street, 2nd Fulton Street,

1299 1st Avenue New York, NY.
 Drawn By:
 K,P
 TITLE:

 Reviewed By:
 M.R.
 Approved By:
 M.S.

 Date:
 09/11/08
 Scale:
 Approved By:
 M.S.

FIGURE 1: SITE PLAN


HYDRO TECH ENVIRONMENTAL CORP.

MAIN OFFICE: NYC OFFICE: 2171 JERICHO TURNPIKE, SUITE 345 COMMACK, NEW YORK 11725 1111 Fulton Street, 2nd Floor BROOKLYN, NEW YORK 11238 T (631)462-5866 F (631)462-5877 T (718)636-0800 F (718)636-0900 www.hydrotechenvironmental.com

1299 1st Avenue New York, NY.

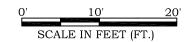

TITLE: Drawn By: K.P. Reviewed By: M.R Approved By: M.S 09/11/08 Date: Scale:

FIGURE 2: SAMPLING PLAN

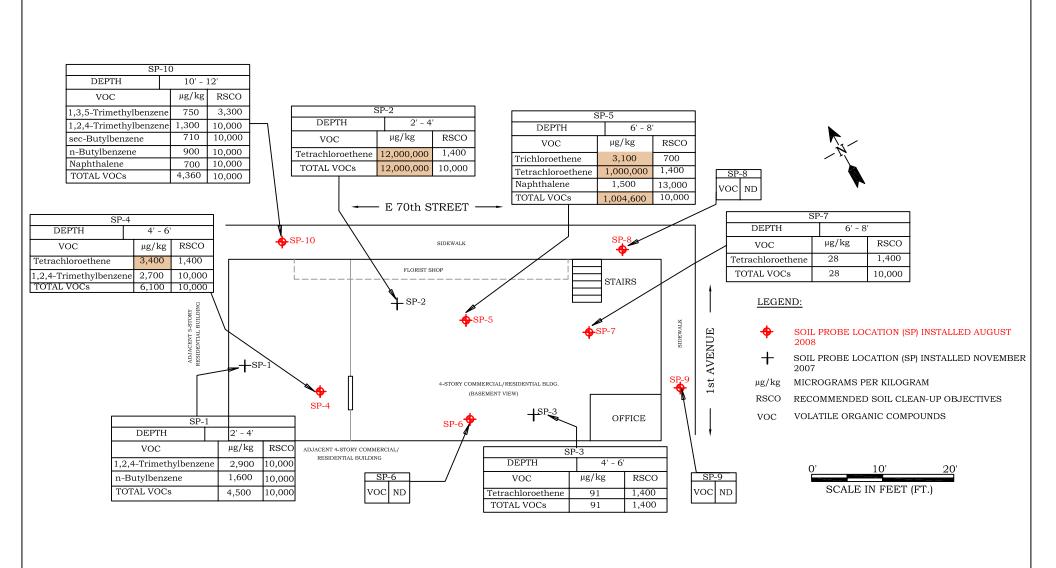
MONITORING WELL (MW)	GROUNDWATER ELEVATION
MW-1	17.76
MW-2	5.92
MW-3	11.21
MW-4	7.56

LEGEND:

MONITORING WELL LOCATION (MW)

HYDRO TECH ENVIRONMENTAL CORP.

2171 JERICHO TURNPIKE, SUITE 345 1111 Fulton Street, 2nd Floor COMMACK, NEW YORK 11725 T (631)462-5866 F (631)462-5877


www.hydrotechenvironmental.com

BROOKLYN, NEW YORK 11238 T (718)636-0800 F (718)636-0900 1299 1st Avenue New York, NY.

C.Q Reviewed By: M.R Approved By: M.S 09/11/08 AS NOTED Scale:

TITLE:

FIGURE 3: GROUNDWATER FLOW CONTOUR MAP-AUGUST 2008

HYDRO TECH ENVIRONMENTAL CORP.

www.hydrotechenvironmental.com

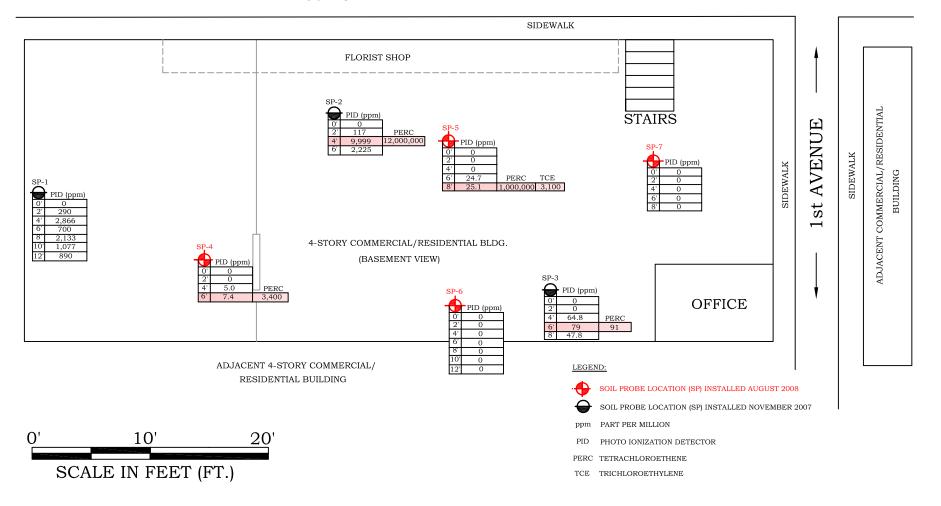
MAIN OFFICE: 2171 JERICHO TURNPIKE, SUITE 345 COMMACK, NEW YORK 11725 T (631)462-5866 F (631)462-5877

NYC OFFICE: 1111 Fulton Street, 2nd Floor BROOKLYN, NEW YORK 11238 T (718)636-0800 F (718)636-0900

1299 1st Avenue New York, NY.

C.Q Drawn By: Reviewed By: M.R Approved By: M.S 09/11/08 Date: AS NOTED Scale:

TITLE:


FIGURE 4: SOIL CONTAMINATION DIAGRAM

ADJACENT 20-STORY RESIDENTIAL

SIDEWALK

E 70th STREET

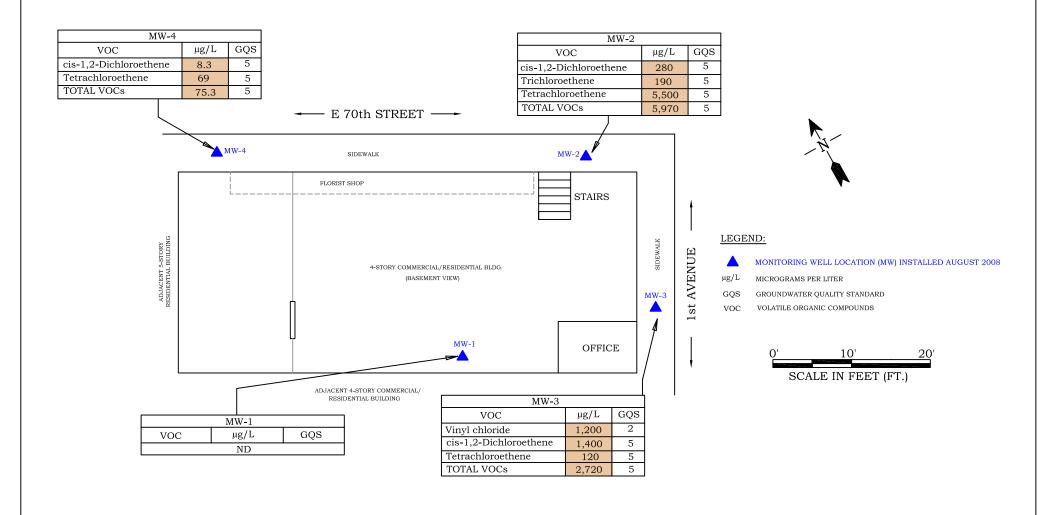
HYDRO TECH ENVIRONMENTAL CORP.

www.hydrotechenvironmental.com

MAIN OFFICE: 2171 JERICHO TURNPIKE, SUITE 345 COMMACK, NEW YORK 11725 T (631)462-5866 F (631)462-5877

NYC OFFICE: 1111 Fulton Street, 2nd Floor BROOKLYN, NEW YORK 11238 T (718)636-0800 F (718)636-0900

1299 1st Avenue New York, NY.


C.Q Drawn By: Reviewed By: M.R Approved By: M.S Date:

Scale:

TITLE:

09/11/08 AS NOTED

FIGURE 5: EXTENT OF CHLORINATED COMPOUNDS IN SOIL

HYDRO TECH ENVIRONMENTAL CORP.

www.hydrotechenvironmental.com

MAIN OFFICE: 2171 JERICHO TURNPIKE, SUITE 345 COMMACK, NEW YORK 11725 T (631)462-5866 F (631)462-5877

NYC OFFICE: 1111 Fulton Street, 2nd Floor BROOKLYN, NEW YORK 11238 T (718)636-0800 F (718)636-0900

1299 1st Avenue New York, NY.

C.Q Drawn By: Reviewed By: M.R Approved By: M.S

09/11/08 Date: AS NOTED Scale:

TITLE:

FIGURE 6: GROUNDWATER CONTAMINATION DIAGRAM

Table 1
Field Characterization Results of Soil Probes
1299 First Avenue, New York, NY

	1299 First Avenue, New York, NY								
Soil Probe	Sampling	PID Reading	Soil Characterization						
	Depths (ft)	(ppm)							
	0-1'	_	Concrete, brown medium grained matrix.						
	1'-2'		Sandy silt loam, faint odor.						
SP-4	2'-4'	5.0	Gray medium grained matrix, sandy silty loam, faint odor.						
	4'-6'	7.4	S.A.B.						
	0-1'		Concrete, brown medium grained matrix.						
	1'-2'		Sandy loam, no odor.						
SP-5	2'-4'		Brown medium grained matrix, sandy loam, chlorinated odor.						
	4'-6'	24.7	S.A.B.						
	6'-8'	25.1	S.A.B.						
	0-1'		Concrete, brown medium grained matrix.						
	1'-2'		Sandy loam, no odor.						
	2'-4'	_	Brown medium grained matrix, sandy loam with pebble clasts, no odor.						
SP-6	4'-6'		S.A.B.						
0. 0	6'-8'		S.A.B.						
	8'-10'	_	S.A.B.						
	10'-12'		S.A.B.						
	0-1'	_	Concrete, brown medium grained matrix.						
	1'-2'	_	Sandy loam, no odor.						
	2'-4'	_	Brown medium grained matrix, sandy loam with pebble clasts, no odor.						
SP-7	4'-6'	_	S.A.B.						
3F-1	6'-8'	_	S.A.B.						
		_							
	0-1'	_	Concrete, brown medium grained matrix.						
	1'-2'	_	Sandy loam with pebble clasts, no odor.						
CD 0	2'-4'	_	Brown medium grained matrix, sandy loam with pebble clasts, no odor.						
SP-8	4'-6'	_	S.A.B.						
	6'-8'	_	S.A.B.						
	8'-10' 10'-12'	_	S.A.B.						
	10-12	_	S.A.B.						
	14'-16'	_	S.A.B.						
		_							
	0-1'	_	Concrete, brown medium grained matrix.						
	1'-2'	_	Sandy loam with pebble clasts, no odor.						
CD C	2'-4'	_	Brown medium grained matrix, sandy loam with pebble clasts, no odor.						
SP-9	4'-6' 6'-8'	_	S.A.B.						
		_	S.A.B.						
	8'-10'		S.A.B.						
	10'-12'		S.A.B.						
	12'-14' 14'-16'	_	S.A.B.						
			S.A.B.						
	0-1'	_	Concrete, brown medium grained matrix.						
	1'-2'	_	Sandy loam with pebble clasts, no odor.						
05.45	2'-4'	_	Brown medium grained matrix, sandy loam with pebble clasts, no odor.						
SP-10	4'-6'	_	S.A.B.						
	6'-8'	_	S.A.B.						
	8'-10'	_	S.A.B.						
	10'-12'	5.6	Brown medium grained matrix, sandy loam with pebble clasts, faint petroleum odor.						
	12'-14'		S.A.B.						
	14'-16'	4.4	S.A.B.						

PPM...Parts per million

SAB...Same as before

Table 2 Groundwater Monitoring and Surveying Details 1299 1st Avenue, New York, NY

Monitoring Well (MW)	Depth to Product	Depth to Water (Feet)	Groundwater Elevation (Feet)
MW-1	ND	8.2	4.16
MW-2	ND	19.96	15.84
MW-3	ND	14.9	11.01
MW-4	ND	18.4	14.36

ND...None Detected

Table 3
Soil Samples Organic Analytical Results
1299 1st Avenue, New York, NY

Sample Identification	1	2	3	4	5	6	7	MADDO
Boring Number	SP-4	SP-5	SP-6	SP-7	SP-8	SP-9	SP-10	NYSDEC
Sample Depth	4'-6'	6'-8'	10'-12'	6'-8'	14'-16'	14'-16'	10'-12'	TAGM #4046 Recommended
Sample Date	8/25/2008	8/25/2008	8/25/2008	8/25/2008	8/20/2008	8/20/2008	8/20/2008	Soil Cleanup
Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Objectives
Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	- 3
	Volatile Organic Compounds (VOCs)							
Trichloroethene	ND	3,100	ND	ND	ND	ND	ND	700
Tetrachloroethene	3,400	1,000,000	ND	28	ND	ND	ND	1,400
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	750	3,300
1,2,4-Trimethylbenzene	2,700	ND	ND	ND	ND	ND	1,300	10,000
sec-Butylbenzene	ND	ND	ND	ND	ND	ND	710	10,000
n-Butylbenzene	ND	ND	ND	ND	ND	ND	900	10,000
Naphthalene	ND	1,500	ND	ND	ND	ND	700	13,000
Total VOCs	6,100	1,004,600	ND	28	ND	ND	4,360	10,000

NS...No Standard

ND...Not Detected

Shaded values represent concentration exceeding the RSCO

This Table Lists Only Compounds Detected At Concentrations Exceeding Their Respective Method Detection Limit.

Table 4
Water Samples Organic Analytical Results
1299 1st Avenue, New York, NY

Sample Identification	1	2	3	4	NYSDEC
Boring Number	MW-1	MW-2	MW-3	MW-4	TOGS 1.1.1
Sample Date	8/27/2008	8/27/2008	8/27/2008	8/27/2008	Groundwater
Sample Matrix	Water	Water	Water	Water	Quality
Units	ug/L	ug/L	ug/L	ug/L	Standard
	Volatile C	rganic Compou	nds (VOCs)		
Vinyl chloride	ND	ND	1,200	ND	2
cis-1,2-Dichloroethene	ND	280	1,400	8.3	5
Trichloroethene	ND	190	ND	ND	5
Tetrachloroethene	ND	5,500	120	69	5
Total VOCs	ND	5,970	2,720	77.3	NS

NS...No Standard

ug/L...micrograms per Liter

ND...not detected

Shaded values represent concentration exceeding the GQS

This Table Lists Only Compounds Detected At Concentrations Exceeding Their Respective Method Detection Limit.

APPENDIX AHISTORICAL DATA

APPENDIX CSOIL PROBE LOGS

Hydro Tech Environmental, Corp.

<u>Main Office</u> 2171 Jericho Turnpike, Suite 240 Commack, New York 11725

T (631) 462-5866 · F (631) 462-5877

NYC Office

1111 Fulton Street, 2nd Floor Brooklyn, New York 11238

T (718) 636-0800 ·F (718) 636-0900

Log

Soil Probe

www.hydrotechenvironmental.com

Job No: Date

1299 First Avenue

New York, NY

Boring No.: SP-4

Drilling Method: Direct push

Total Depth:

GM - Silty Gravel

GC - Clayey Gravel

Location:

6 Feet

Date: 8/18/2008 Page: 1 of 1

Sampling Interval: 2 Feet

Sampling Method: Grab

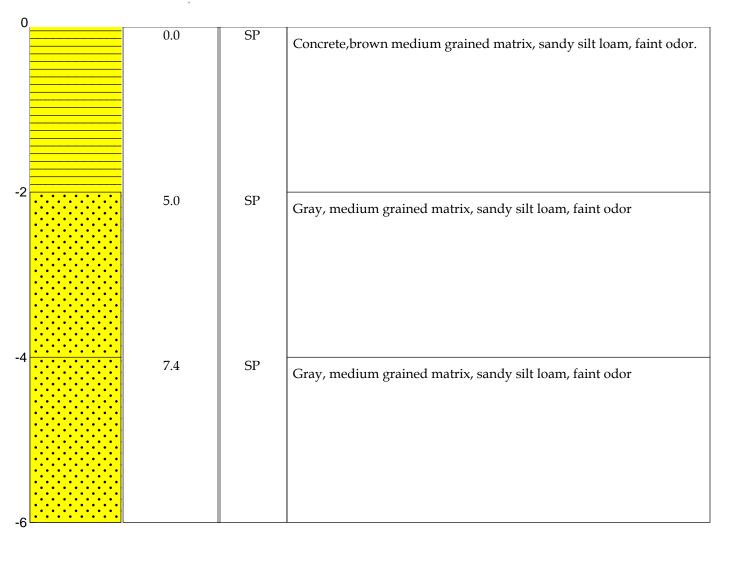
Driller: Cameron

Depth to Water: N/A

USCS SYMBOLS

GW - Well Graded Gravel SW - Well Graded Sand ML - Inorganic Silt / Sandy Silt CH - Inorganic Clay, High Plastic

GP - Poorly Graded Gravel SP - Poorly Graded Sand CL - Inorganic Clays/Sandy Clay


OH - Organic Silt / Clay

SM - Silty Sand OL - Inorganic Silts/Organic Silty Clay

SC - Clayey Sand MH- Elastic Silts

PT - Peat/High Organics

İ	Depth Below Grade and Lithology	PID Reading (ppm)	USCS	Soil Description
	Lithology			

Location:

Hydro Tech Environmental, Corp.

<u>Main Office</u> 2171 Jericho Turnpike, Suite 240

Commack, New York 11725

NYC Office

1111 Fulton Street, 2nd Floor Brooklyn, New York 11238

Log

Soil Probe

T (631) 462-5866 · F (631) 462-5877 T (718) 636-0800 · F (718) 636-0900 www.hydrotechenvironmental.com

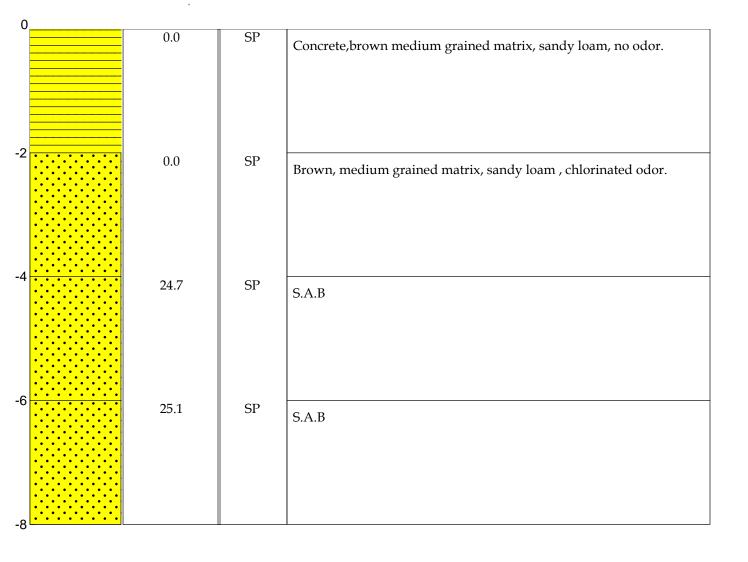
Job No: Date: 8/18/2008 Page: 1 of 1

1299 First Avenue Sampling Interval: 2 Feet
New York, NY Sampling Method: Grab

Boring No.: SP-5 Driller: Cameron

Drilling Method: Direct push Depth to Water: N/A

Total Depth: 8 Feet


USCS SYMBOLS

GW - Well Graded Gravel SW - Well Graded Sand ML - Inorganic Silt / Sandy Silt CH - Inorganic Clay, High Plastic

GP - Poorly Graded Gravel SP - Poorly Graded Sand CL - Inorganic Clays/Sandy Clay OH - Organic Silt / Clay GM - Silty Gravel SM - Silty Sand OL - Inorganic Silts/Organic Silty Clay PT - Peat/High Organics

GC - Clayey Gravel SC - Clayey Sand MH- Elastic Silts

, , ,	•	-	
Depth Below	PID Reading	USCS	Coil Decemention
Grade and	(ppm)		Soil Description
Lithology			

Job No:

Location:

Hydro Tech Environmental, Corp.

<u>Main Office</u> 2171 Jericho Turnpike, Suite 240 NYC Office

1111 Fulton Street, 2nd Floor Brooklyn, New York 11238

T (718) 636-0800 ·F (718) 636-0900

Log

Soil Probe

Commack, New York 11725 T (631) 462-5866 · F (631) 462-5877

www.hydrotechenvironmental.com

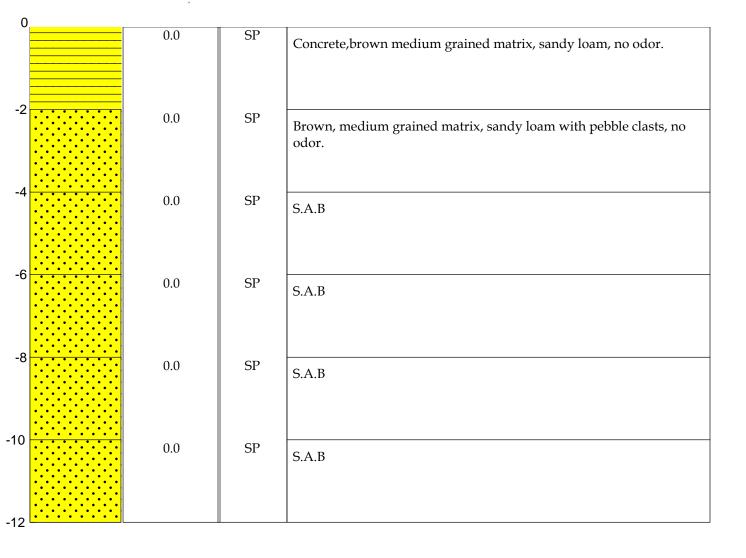
Date: 8/18/2008 Page: 1 of 1

1299 First Avenue Sampling Interval: 2 Feet
New York, NY Sampling Method: Grab

Boring No.: SP-6 Driller: Cameron

Drilling Method: Direct push Depth to Water: N/A

Total Depth: 12 Feet


USCS SYMBOLS

 $GW-Well\ Graded\ Gravel \qquad SW-Well\ Graded\ Sand \qquad ML-Inorganic\ Silt\ /\ Sandy\ Silt \qquad CH-Inorganic\ Clay,\ High\ Plastic$

GP - Poorly Graded Gravel SP - Poorly Graded Sand CL - Inorganic Clays/Sandy Clay OH - Organic Silt / Clay GM - Silty Gravel SM - Silty Sand OL - Inorganic Silts/Organic Silty Clay PT - Peat/High Organics

GC - Clayey Gravel SC - Clayey Sand MH- Elastic Silts

Depth Below Grade and Lithology	PID Reading (ppm)	USCS	Soil Description
Grade and Lithology	(ррш)		•

Hydro Tech Environmental, Corp.

Main Office 2171 Jericho Turnpike, Suite 240 Commack, New York 11725 NYC Office

1111 Fulton Street, 2nd Floor Brooklyn, New York 11238

Log

Soil Probe

T (631) 462-5866 · F (631) 462-5877 T (718) 636-0800 · F (718) 636-0900 www.hydrotechenvironmental.com

Job No:

1299 First Avenue

New York, NY

Boring No.: SP-7

Drilling Method: Direct push

Total Depth:

GM - Silty Gravel

GC - Clayey Gravel

Location:

8 Feet

Date: 8/18/2008 Page: 1 of 1

Sampling Interval: 2 Feet

Sampling Method: Grab

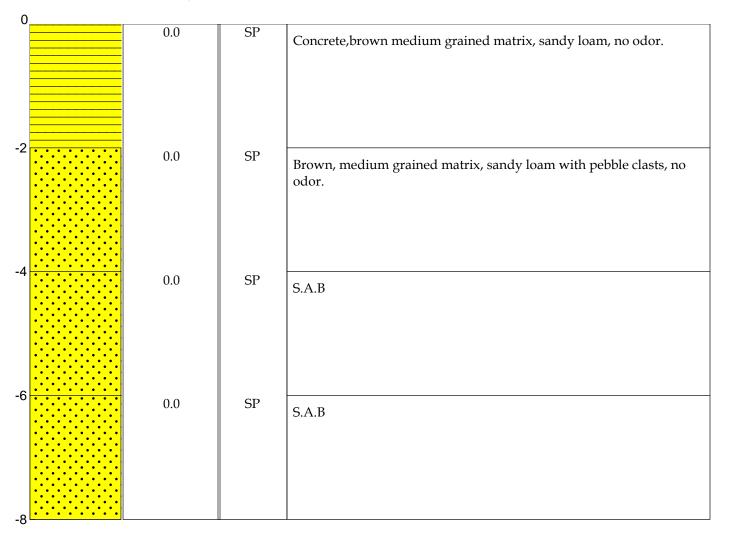
Driller: Cameron

Depth to Water: N/A

USCS SYMBOLS

GW - Well Graded Gravel SW - Well Graded Sand ML - Inorganic Silt / Sandy Silt CH - Inorganic Clay, High Plastic

 $\label{eq:GP-Poorly Graded Sand CL-Inorganic Clays/Sandy Clay} GP - Poorly Graded Sand CL - Inorganic Clays/Sandy Clay$


OH - Organic Silt / Clay

SM - Silty Sand OL - Inorganic Silts/Organic Silty Clay

SC - Clayey Sand MH- Elastic Silts

PT - Peat/High Organics

Depth Below Grade and	PID Reading (ppm)	USCS	Soil Description
Lithology			

Hydro Tech Environmental, Corp.

Main Office 2171 Jericho Turnpike, Suite 240 Commack, New York 11725

NYC Office

1111 Fulton Street, 2nd Floor Brooklyn, New York 11238

T (718) 636-0800 · F (718) 636-0900

Log

Soil Probe

www.hydrotechenvironmental.com

Date: 8/18/2008 Job No:

1299 First Avenue

New York, NY

Boring No.: SP-8

Drilling Method: Direct push

Total Depth:

GC - Clayey Gravel

Location:

16 Feet

Page: 1 of 1

Sampling Interval: 2 Feet

Sampling Method: Grab

Driller: Cameron

Depth to Water: N/A

USCS SYMBOLS

GW - Well Graded Gravel SW - Well Graded Sand ML - Inorganic Silt / Sandy Silt CH - Inorganic Clay, High Plastic

GP - Poorly Graded Gravel SP - Poorly Graded Sand CL - Inorganic Clays/Sandy Clay GM - Silty Gravel

OL - Inorganic Silts/Organic Silty Clay SM - Silty Sand SC - Clayey Sand MH- Elastic Silts

OH - Organic Silt / Clay

PT - Peat/High Organics

Depth Below Grade and	PID Reading (ppm)	USCS	Soil Description
Lithology			

	0.0	SP	Concrete, brown medium grained matrix, sandy loam with pebble clasts, no odor.
-2	0.0	SP	Brown, medium grained matrix, sandy loam with pebbles, no odor.
-4	0.0	SP	S.A.B
-6	0.0	SP	S.A.B
-8	0.0	SP	S.A.B
-10	0.0	SP	S.A.B
-12	0.0	CD	S.A.D
-14	0.0	SP	S.A.B
	0.0	SP	S.A.B
-16			

Hydro Tech Environmental, Corp.

Main Office 2171 Jericho Turnpike, Suite 240

Commack, New York 11725

NYC Office

1111 Fulton Street, 2nd Floor Brooklyn, New York 11238

T (718) 636-0800 ·F (718) 636-0900

Log

Soil Probe

www.hydrotechenvironmental.com

Job No:

1299 First Avenue

New York, NY

Boring No.: SP-9

Drilling Method: Direct push

Total Depth:

GM - Silty Gravel

GC - Clayey Gravel

Location:

16 Feet

Date: 8/18/2008 Page: 1 of 1

Sampling Interval: 2 Feet

Sampling Method: Grab

Driller: Cameron

Depth to Water:

N/A

CH - Inorganic Clay, High Plastic

USCS SYMBOLS

GW - Well Graded Gravel SW - Well Graded Sand ML - Inorganic Silt / Sandy Silt

GP - Poorly Graded Gravel SP - Poorly Graded Sand CL - Inorganic Clays/Sandy Clay

OH - Organic Silt / Clay PT - Peat/High Organics OL - Inorganic Silts/Organic Silty Clay

SM - Silty Sand

SC - Clayey Sand MH- Elastic Silts

Depth Below Grade and Lithology	PID Reading (ppm)	USCS	Soil Description
---------------------------------------	----------------------	------	------------------

	0.0	SP	Concrete, brown medium grained matrix, sandy loam with pebble clasts, no odor.
-2	0.0	SP	Brown, medium grained matrix, sandy loam with pebbles, no odor.
-4	0.0	SP	S.A.B
-6	0.0	SP	S.A.B
-8	0.0	SP	S.A.B
-10	0.0	SP	S.A.B
-12	0.0	SP	S.A.B
-14	0.0	SP	S.A.B
-16			

Hydro Tech Environmental, Corp.

Main Office 2171 Jericho Turnpike, Suite 240

Commack, New York 11725

NYC Office

1111 Fulton Street, 2nd Floor Brooklyn, New York 11238

T (718) 636-0800 · F (718) 636-0900

Log

Soil Probe

www.hydrotechenvironmental.com

Job No: Location:

16 Feet

1299 First Avenue

New York, NY

Boring No.: SP-10

Drilling Method: Direct push

Total Depth:

GM - Silty Gravel

GC - Clayey Gravel

Date: 8/18/2008 Page: 1 of 1

Sampling Interval: 2 Feet

Sampling Method: Grab

Driller: Cameron

Depth to Water: N/A

USCS SYMBOLS

GW - Well Graded Gravel SW - Well Graded Sand ML - Inorganic Silt / Sandy Silt

GP - Poorly Graded Gravel SP - Poorly Graded Sand CL - Inorganic Clays/Sandy Clay

OL - Inorganic Silts/Organic Silty Clay SM - Silty Sand

SC - Clayey Sand MH- Elastic Silts CH - Inorganic Clay, High Plastic

OH - Organic Silt / Clay

PT - Peat/High Organics

Depth Below Grade and Lithology	PID Reading (ppm)	USCS	Soil Description
---------------------------------------	-------------------	------	------------------

		0.0	SP	Concrete, brown medium grained matrix, sandy loam with pebble clasts, no odor.
-2		0.0	SP	Brown, medium grained matrix, sandy loam with pebble clasts, no odor.
-4		0.0	SP	Brown, medium grained matrix, sandy loam with pebble clasts, no odor.
-6		0.0	SP	Brown, medium grained matrix, sandy silt loam with pebble clasts, no odor.
-8		0.0	SP	Brown, medium grained matrix, sandy loam with pebble clasts, no odor.
-10		0.0	SP	Brown, medium grained matrix, sandy loam with pebble clasts, faint petroleum odor.
-12		5.6	SP	Brown, medium grained matrix, sandy loam with pebble clasts, faint petroleum odor.
-14		4.4	SP	Brown, medium grained matrix, sandy loam with pebble clasts, faint petroleum odor.
-16	• • • • • • •			

APPENDIX DMONITORING WELL LOGS

MAIN OFFICE: 2171 JERICHO TURNPIKE, SUITE 345 COMMACK, NEW YORK 11725

NYC OFFICE:

1111 FULTON STREET, SECOND FLOOR BROOKLYN, NEW YORK 11238 WELL CONSTRUCTION LOG

PHONE: (631) 462-5866 FAX: (631) 462-5877

080207 Page: <u>1 OF 1</u> Date: <u>08-25-08</u> Job No:

1299 FIRST AVENUE, NEW YORK, NY Location:

MW-10.010" Well Number: Screen Size:

Drilling Method: DIRECT PUSH Screen Interval: 10.00'

1" 14.00' Total Depth: Diameter:

Depth to Water: 8.20' 4.00' Riser Length:

Manholo Sizo Sand Size #2

Manhole S	Size: 5"		Sand Size: <u>#2</u>
Depth Below Grade (ft.)	Sample Interval (ft.)	ell Construction	Description
2	SOIL		5" Manhole Cover.
4	NATIVE		0'-1.00' — Native Soil.
6		SAND 	1.00'-2.00' - Bentonite Seal.
8		#2 %	2'-14.00' - #2 Sand.
10			
12			
14			
16			
18			
20			
22			
24			
26			
28			
30			
32			
34			
36			

MAIN OFFICE: 2171 JERICHO TURNPIKE, SUITE 345 COMMACK, NEW YORK 11725

NYC OFFICE:

PHONE: (631) 462-5866 FAX: (631) 462-5877

1111 FULTON STREET, SECOND FLOOR BROOKLYN, NEW YORK 11238 WELL CONSTRUCTION LOG

080207 Page: 1 OF 1 Date: <u>08-25-08</u> Job No:

1299 FIRST AVENUE, NEW YORK, NY Location:

MW-20.010" Well Number: Screen Size:

Drilling Method: DIRECT PUSH Screen Interval: 10.00'

25.00' 1" Total Depth: Diameter:

Depth to Water: 19.96' <u>15.00'</u> Riser Length:

Manholo Sizo: Sand Size #2

Manhole S	Size: <u>5</u>		Sand Size: <u>#2</u>
Depth Below Grade (ft.)	Sample Interval (ft.)	Well Construction	Description
2			5" Manhole Cover.
4		NATIVE NOTICE Se	0'-1.00' — Native Soil.
6		SAND SAND SAND Bentonii	1.00'-2.00' - Bentonite Seal.
8		#2	2'—25.00' — #2 Sand.
10			
12			
14			
16			
18		rreening	
20			
22			
24			
26			
28			
30			
32			
34			
36			

MAIN OFFICE: 2171 JERICHO TURNPIKE, SUITE 345 COMMACK, NEW YORK 11725

Job No:

080207

NYC OFFICE:

PHONE: (631) 462-5866 FAX: (631) 462-5877

1111 FULTON STREET, SECOND FLOOR BROOKLYN, NEW YORK 11238 WELL CONSTRUCTION LOG

Page: 1 OF 1 Date: 08-25-08

1299 FIRST AVENUE, NEW YORK, NY Location:

MW-3<u>0.010</u>" Well Number: Screen Size:

Drilling Method: DIRECT PUSH Screen Interval: 10.00'

22.00' 1" Total Depth: Diameter:

Depth to Water: 14.90' <u>12.00</u> Riser Length:

5" **#**つ

Manhole S	Size: <u>5"</u>		Sand Size: <u>#2</u>
Depth Below Grade (ft.)	Sample Interval (ft.)	Well Construction	Description
2		VE SOIL—	5" Manhole Cover. 0'—1.00' — Native Soil.
		SAND SAND SAND SAND SAND SENTONITE SE	1.00'-2.00' - Bentonite Seal.
6		#2 SAND	2'—22.00' — #2 Sand.
8			
10			
12			
14			
16		Screen- 	
18			
20			
22			
24			
26			
28			
30			
32			
34			
36			

MAIN OFFICE: 2171 JERICHO TURNPIKE, SUITE 345 COMMACK, NEW YORK 11725

NYC OFFICE:

1111 FULTON STREET, SECOND FLOOR BROOKLYN, NEW YORK 11238 WELL CONSTRUCTION LOG

PHONE: (631) 462-5866 FAX: (631) 462-5877

Job No:	080207	Date: <u>08-25-08</u>	Page: <u>1 OF 1</u>
	1200 FIRST AVENUE NEW YORK	NV	

1299 FIRST AVENUE, NEW YORK, NY Location:

MW-40.010" Screen Size: Well Number:

Drilling Method: DIRECT PUSH Screen Interval: 10.00'

1" 23.00' Total Depth: Diameter:

Depth to Water: 18.40' Riser Length: <u>13.00'</u>

5" #2

Manhole S	Size: <u>5"</u>		Sand Size: <u>#2</u>
Depth Below Grade (ft.)	Sample Interval (ft.)	Well Construction	Description
2		SOIL	5" Manhole Cover.
4		NATIVE Notice Se	0'-1.00' - Native Soil.
6		SAND SAND SAND Bentonit	1.00'-2.00' - Bentonite Seal.
8		#2 \$	2'—23.00' — #2 Sand.
10			
12			
14			
16			
18			
20			
22			
24		777	
26			
28			
30			
32			
34			
36			

APPENDIX ELABORATORY REPORTS

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

September 04, 2008

FOR: Attn: Mr Timothy Lo

HydroTech Environmental Corp. 1111 Fulton Street 2nd Floor

Brooklyn, NY 11238

Sample InformationCustody InformationDateTimeMatrix:SOLIDCollected by:08/25/0810:00Location Code:HYDROBROReceived by:SW08/26/0816:30

Rush Request: Analyzed by: see "By" below

P.O.#: 2927

Laboratory Data

SDG I.D.: GAQ70962 Phoenix I.D.: AQ70962

Client ID: 1299 1ST AVE SP-4 (6')

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	84		%	08/26/08		I-JL	E160.3
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,1,1-Trichloroethane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,1,2,2-Tetrachloroethane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,1,2-Trichloroethane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,1-Dichloroethane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,1-Dichloroethene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,1-Dichloropropene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,2,3-Trichlorobenzene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,2,3-Trichloropropane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,2,4-Trichlorobenzene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,2,4-Trimethylbenzene	2700	1300	ug/Kg	08/29/08		H/J	SW8260
1,2-Dibromo-3-chloropropane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,2-Dichlorobenzene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,2-Dichloroethane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,2-Dichloropropane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,3,5-Trimethylbenzene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,3-Dichlorobenzene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,3-Dichloropropane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,4-Dichlorobenzene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
2,2-Dichloropropane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
2-Chlorotoluene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
2-Hexanone	ND	6300	ug/Kg	08/29/08		H/J	SW8260
2-Isopropyltoluene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
4-Chlorotoluene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
4-Methyl-2-pentanone	ND	6300	ug/Kg	08/29/08		H/J	SW8260
Acetone	ND	25000	ug/Kg	08/29/08		H/J	SW8260
Acrylonitrile	ND	2500	ug/Kg	08/29/08		H/J	SW8260
Benzene	ND	1300	ug/Kg	08/29/08		H/J	SW8260

Client ID: 1299 1ST AVE SP-	4 (6')				Р	hoenix	(I.D.: AQ70962
Parameter	Result	RL	Units	Date	Time	Ву	Reference
Bromobenzene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Bromochloromethane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Bromodichloromethane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Bromoform	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Bromomethane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Carbon Disulfide	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Carbon tetrachloride	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Chlorobenzene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Chloroethane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Chloroform	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Chloromethane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
cis-1,2-Dichloroethene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
cis-1,3-Dichloropropene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Dibromochloromethane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Dibromoethane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Dibromomethane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Dichlorodifluoromethane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Ethylbenzene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Hexachlorobutadiene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Isopropylbenzene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
m&p-Xylene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Methyl Ethyl Ketone	ND	7500	ug/Kg	08/29/08		H/J	SW8260
Methyl t-butyl ether (MTBE)	ND	2500	ug/Kg	08/29/08		H/J	SW8260
Methylene chloride	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Naphthalene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
n-Butylbenzene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
n-Propylbenzene	ND	1300	ug/Kg ug/Kg	08/29/08		H/J	SW8260
o-Xylene	ND	1300	ug/Kg ug/Kg	08/29/08		H/J	SW8260
p-Isopropyltoluene	ND	1300	ug/Kg ug/Kg	08/29/08		H/J	SW8260
sec-Butylbenzene	ND	1300	ug/Kg ug/Kg	08/29/08		H/J	SW8260
Styrene	ND	1300	ug/Kg ug/Kg	08/29/08		H/J	SW8260
tert-Butylbenzene	ND	1300		08/29/08		H/J	SW8260
Tetrachloroethene	3400	1300	ug/Kg	08/29/08		H/J	SW8260
	ND	2500	ug/Kg	08/29/08		H/J	SW8260
Tetrahydrofuran (THF)	ND	1300	ug/Kg	08/29/08			SW8260
Toluene Total Yylonos	ND	1300	ug/Kg	08/29/08		H/J	
Total Xylenes	ND	1300	ug/Kg	08/29/08		H/J	SW8260 SW8260
trans-1,2-Dichloroethene	ND	1300	ug/Kg	08/29/08			
trans-1,3-Dichloropropene	ND	2500	ug/Kg	08/29/08		H/J	SW8260
trans-1,4-dichloro-2-butene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Trichloroethene	ND		ug/Kg	08/29/08		H/J	SW8260
Trichlorofluoromethane		1300	ug/Kg			H/J	SW8260
Trichlorotrifluoroethane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Vinyl chloride	ND	1300	ug/Kg	08/29/08		H/J	SW8260
QA/QC Surrogates	400		2:	00/00/22			0111007
% 1,2-dichlorobenzene-d4	103		%	08/29/08		H/J	SW8260
% Bromofluorobenzene	101		%	08/29/08		H/J	SW8260
% Dibromofluoromethane	95		%	08/29/08		H/J	SW8260
% Toluene-d8	100		%	08/29/08		H/J	SW8260

Client ID: 1299 1ST AVE SP-4 (6')

Parameter Result RL Units Date Time By Reference

Comments:

Elevated reporting limits for volatiles due to the presence of non-target compounds.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis/Shiller, Laboratory Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

September 04, 2008

FOR: Attn: Mr Timothy Lo

HydroTech Environmental Corp. 1111 Fulton Street 2nd Floor

Brooklyn, NY 11238

Sample InformationCustody InformationDateTimeMatrix:SOLIDCollected by:08/25/0812:30Location Code:HYDROBROReceived by:SW08/26/0816:30

Rush Request: Analyzed by: see "By" below

P.O.#: 2927

Laboratory Data

SDG I.D.: GAQ70962 Phoenix I.D.: AQ70963

Client ID: 1299 1ST AVE SP-5 (8')

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	88		%	08/26/08		I-JL	E160.3
Volatiles							
1,1,1,2-Tetrachloroethane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,1,1-Trichloroethane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,1,2,2-Tetrachloroethane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,1,2-Trichloroethane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,1-Dichloroethane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,1-Dichloroethene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,1-Dichloropropene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,2,3-Trichlorobenzene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,2,3-Trichloropropane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,2,4-Trichlorobenzene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,2,4-Trimethylbenzene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,2-Dibromo-3-chloropropane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,2-Dichlorobenzene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,2-Dichloroethane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,2-Dichloropropane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,3,5-Trimethylbenzene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,3-Dichlorobenzene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,3-Dichloropropane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
1,4-Dichlorobenzene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
2,2-Dichloropropane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
2-Chlorotoluene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
2-Hexanone	ND	6300	ug/Kg	08/29/08		H/J	SW8260
2-Isopropyltoluene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
4-Chlorotoluene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
4-Methyl-2-pentanone	ND	6300	ug/Kg	08/29/08		H/J	SW8260
Acetone	ND	25000	ug/Kg	08/29/08		H/J	SW8260
Acrylonitrile	ND	2500	ug/Kg	08/29/08		H/J	SW8260
Benzene	ND	1300	ug/Kg	08/29/08		H/J	SW8260

Client ID: 1299 1ST AVE SP-5	(8')				P	hoenix	(I.D.: AQ70963
Parameter	Result	RL	Units	Date	Time	Ву	Reference
Bromobenzene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Bromochloromethane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Bromodichloromethane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Bromoform	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Bromomethane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Carbon Disulfide	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Carbon tetrachloride	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Chlorobenzene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Chloroethane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Chloroform	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Chloromethane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
cis-1,2-Dichloroethene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
cis-1,3-Dichloropropene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Dibromochloromethane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Dibromoethane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Dibromomethane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Dichlorodifluoromethane	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Ethylbenzene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Hexachlorobutadiene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Isopropylbenzene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
m&p-Xylene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
Methyl Ethyl Ketone	ND	7500	ug/Kg	08/29/08		H/J	SW8260
Methyl t-butyl ether (MTBE)	ND	2500	ug/Kg	08/29/08		H/J	SW8260
Methylene chloride	ND	1300	ug/Kg ug/Kg	08/29/08		H/J	SW8260
Naphthalene	1500	1300	ug/Kg	08/29/08		H/J	SW8260
n-Butylbenzene	ND	1300	ug/Kg	08/29/08		H/J	SW8260
n-Propylbenzene	ND	1300	ug/Kg ug/Kg	08/29/08		H/J	SW8260
o-Xylene	ND	1300	ug/Kg ug/Kg	08/29/08		H/J	SW8260
p-Isopropyltoluene	ND	1300	ug/Kg ug/Kg	08/29/08		H/J	SW8260
sec-Butylbenzene	ND	1300	ug/Kg ug/Kg	08/29/08		H/J	SW8260
Styrene	ND	1300	ug/Kg ug/Kg	08/29/08		H/J	SW8260
tert-Butylbenzene	ND	1300	ug/Kg ug/Kg	08/29/08		H/J	SW8260
Tetrachloroethene	1000000	52000	ug/Kg ug/Kg	08/29/08		H/J	SW8260
Tetrahydrofuran (THF)	ND	2500	ug/Kg ug/Kg	08/29/08		H/J	SW8260
Toluene	ND	1300	ug/Kg ug/Kg	08/29/08		H/J	SW8260
Total Xylenes	ND	1300	ug/Kg ug/Kg	08/29/08		H/J	SW8260
trans-1,2-Dichloroethene	ND	1300	ug/Kg ug/Kg	08/29/08		H/J	SW8260
trans-1,3-Dichloropropene	ND	1300	ug/Kg ug/Kg	08/29/08		H/J	SW8260
trans-1,4-dichloro-2-butene	ND	2500	ug/Kg ug/Kg	08/29/08		H/J	SW8260
Trichloroethene	3100	1300	ug/Kg ug/Kg	08/29/08		H/J	SW8260
Trichlorofluoromethane	ND	1300	ug/Kg ug/Kg	08/29/08		H/J	SW8260
Trichlorotrifluoroethane	ND	1300	ug/Kg ug/Kg	08/29/08		H/J	SW8260
	ND	1300		08/29/08		H/J	SW8260
Vinyl chloride	IND	1300	ug/Kg	00127100		ПΩ	J V V U Z U U
QA/QC Surrogates	101		%	08/29/08		шл	SW0240
% 1,2-dichlorobenzene-d4						H/J	SW8260
% Bromofluorobenzene	107 98		% %	08/29/08		H/J	SW8260
% Dibromofluoromethane	98 101		%	08/29/08 08/29/08		H/J	SW8260
% Toluene-d8	101		/0	00/27/00		H/J	SW8260

Client ID: 1299 1ST AVE SP-5 (8')

Parameter Result RL Units Date Time By Reference

Comments:

Elevated reporting limits for volatiles due to the presence of non-target compounds.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis/Shiller, Laboratory Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

September 04, 2008

FOR: Attn: Mr Timothy Lo

HydroTech Environmental Corp. 1111 Fulton Street 2nd Floor

Brooklyn, NY 11238

Sample InformationCustody InformationDateTimeMatrix:SOLIDCollected by:08/25/0811:00Location Code:HYDROBROReceived by:SW08/26/0816:30

Rush Request: Analyzed by: see "By" below

P.O.#: 2927

Laboratory Data

SDG I.D.: GAQ70962 Phoenix I.D.: AQ70964

Client ID: 1299 1ST AVE SP-6 (12')

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	89		%	08/26/08		I-JL	E160.3
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,1,1-Trichloroethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,1,2,2-Tetrachloroethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,1,2-Trichloroethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,1-Dichloroethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,1-Dichloroethene	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,1-Dichloropropene	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,2,3-Trichlorobenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,2,3-Trichloropropane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,2,4-Trichlorobenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,2,4-Trimethylbenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,2-Dibromo-3-chloropropane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,2-Dichlorobenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,2-Dichloroethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,2-Dichloropropane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,3,5-Trimethylbenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,3-Dichlorobenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,3-Dichloropropane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,4-Dichlorobenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
2,2-Dichloropropane	ND	5	ug/Kg	08/29/08		R/J	SW8260
2-Chlorotoluene	ND	5	ug/Kg	08/29/08		R/J	SW8260
2-Hexanone	ND	25	ug/Kg	08/29/08		R/J	SW8260
2-Isopropyltoluene	ND	5	ug/Kg	08/29/08		R/J	SW8260
4-Chlorotoluene	ND	5	ug/Kg	08/29/08		R/J	SW8260
4-Methyl-2-pentanone	ND	25	ug/Kg	08/29/08		R/J	SW8260
Acetone	ND	100	ug/Kg	08/29/08		R/J	SW8260
Acrylonitrile	ND	10	ug/Kg	08/29/08		R/J	SW8260
Benzene	ND	5	ug/Kg	08/29/08		R/J	SW8260

Client ID: 1299 1ST AVE SP-6	(12')				Р	hoenix	(I.D.: AQ/0964
Parameter	Result	RL	Units	Date	Time	Ву	Reference
Bromobenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
Bromochloromethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
Bromodichloromethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
Bromoform	ND	5	ug/Kg	08/29/08		R/J	SW8260
Bromomethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
Carbon Disulfide	ND	5	ug/Kg	08/29/08		R/J	SW8260
Carbon tetrachloride	ND	5	ug/Kg	08/29/08		R/J	SW8260
Chlorobenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
Chloroethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
Chloroform	ND	5	ug/Kg	08/29/08		R/J	SW8260
Chloromethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
cis-1,2-Dichloroethene	ND	5	ug/Kg	08/29/08		R/J	SW8260
cis-1,3-Dichloropropene	ND	5	ug/Kg	08/29/08		R/J	SW8260
Dibromochloromethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
Dibromoethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
Dibromomethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
Dichlorodifluoromethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
Ethylbenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
Hexachlorobutadiene	ND	5	ug/Kg	08/29/08		R/J	SW8260
Isopropylbenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
m&p-Xylene	ND	5	ug/Kg	08/29/08		R/J	SW8260
Methyl Ethyl Ketone	ND	30	ug/Kg	08/29/08		R/J	SW8260
Methyl t-butyl ether (MTBE)	ND	10	ug/Kg	08/29/08		R/J	SW8260
Methylene chloride	ND	5	ug/Kg	08/29/08		R/J	SW8260
Naphthalene	ND	5	ug/Kg	08/29/08		R/J	SW8260
n-Butylbenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
n-Propylbenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
o-Xylene	ND	5	ug/Kg	08/29/08		R/J	SW8260
p-Isopropyltoluene	ND	5	ug/Kg	08/29/08		R/J	SW8260
sec-Butylbenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
Styrene	ND	5	ug/Kg	08/29/08		R/J	SW8260
tert-Butylbenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
Tetrachloroethene	ND	5	ug/Kg	08/29/08		R/J	SW8260
Tetrahydrofuran (THF)	ND	10	ug/Kg	08/29/08		R/J	SW8260
Toluene	ND	5	ug/Kg	08/29/08		R/J	SW8260
Total Xylenes	ND	5	ug/Kg	08/29/08		R/J	SW8260
trans-1,2-Dichloroethene	ND	5	ug/Kg	08/29/08		R/J	SW8260
trans-1,3-Dichloropropene	ND	5	ug/Kg	08/29/08		R/J	SW8260
trans-1,4-dichloro-2-butene	ND	10	ug/Kg	08/29/08		R/J	SW8260
Trichloroethene	ND	5	ug/Kg	08/29/08		R/J	SW8260
Trichlorofluoromethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
Trichlorotrifluoroethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
Vinyl chloride	ND	5	ug/Kg	08/29/08		R/J	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	111		%	08/29/08		R/J	SW8260
% Bromofluorobenzene	87		%	08/29/08		R/J	SW8260
% Dibromofluoromethane	108		%	08/29/08		R/J	SW8260
% Toluene-d8	97		%	08/29/08		R/J	SW8260

Client ID: 1299 1ST AVE SP-6 (12')

Phoenix I.D.: AQ70964

Parameter Result RL Units Date Time By Reference

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis/Shiller, Laboratory Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

September 04, 2008

FOR: Attn: Mr Timothy Lo

HydroTech Environmental Corp. 1111 Fulton Street 2nd Floor

Brooklyn, NY 11238

Sample InformationCustody InformationDateTimeMatrix:SOLIDCollected by:08/25/0814:30Location Code:HYDROBROReceived by:SW08/26/0816:30

Rush Request: Analyzed by: see "By" below

P.O.#: 2927

Laboratory Data

SDG I.D.: GAQ70962 Phoenix I.D.: AQ70965

Client ID: 1299 1ST AVE SP-7 (8')

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	93		%	08/26/08		I-JL	E160.3
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,1,1-Trichloroethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,1,2,2-Tetrachloroethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,1,2-Trichloroethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,1-Dichloroethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,1-Dichloroethene	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,1-Dichloropropene	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,2,3-Trichlorobenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,2,3-Trichloropropane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,2,4-Trichlorobenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,2,4-Trimethylbenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,2-Dibromo-3-chloropropane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,2-Dichlorobenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,2-Dichloroethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,2-Dichloropropane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,3,5-Trimethylbenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,3-Dichlorobenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,3-Dichloropropane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,4-Dichlorobenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
2,2-Dichloropropane	ND	5	ug/Kg	08/29/08		R/J	SW8260
2-Chlorotoluene	ND	5	ug/Kg	08/29/08		R/J	SW8260
2-Hexanone	ND	25	ug/Kg	08/29/08		R/J	SW8260
2-Isopropyltoluene	ND	5	ug/Kg	08/29/08		R/J	SW8260
4-Chlorotoluene	ND	5	ug/Kg	08/29/08		R/J	SW8260
4-Methyl-2-pentanone	ND	25	ug/Kg	08/29/08		R/J	SW8260
Acetone	ND	100	ug/Kg	08/29/08		R/J	SW8260
Acrylonitrile	ND	10	ug/Kg	08/29/08		R/J	SW8260
Benzene	ND	5	ug/Kg	08/29/08		R/J	SW8260

Client ID: 1299 1ST AVE SP-7 (•						(I.D.: AQ/0965
Parameter	Result	RL	Units	Date	Time	Ву	Reference
Bromobenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
Bromochloromethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
Bromodichloromethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
Bromoform	ND	5	ug/Kg	08/29/08		R/J	SW8260
Bromomethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
Carbon Disulfide	ND	5	ug/Kg	08/29/08		R/J	SW8260
Carbon tetrachloride	ND	5	ug/Kg	08/29/08		R/J	SW8260
Chlorobenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
Chloroethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
Chloroform	ND	5	ug/Kg	08/29/08		R/J	SW8260
Chloromethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
cis-1,2-Dichloroethene	ND	5	ug/Kg	08/29/08		R/J	SW8260
cis-1,3-Dichloropropene	ND	5	ug/Kg	08/29/08		R/J	SW8260
Dibromochloromethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
Dibromoethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
Dibromomethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
Dichlorodifluoromethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
Ethylbenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
Hexachlorobutadiene	ND	5	ug/Kg	08/29/08		R/J	SW8260
Isopropylbenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
m&p-Xylene	ND	5	ug/Kg	08/29/08		R/J	SW8260
Methyl Ethyl Ketone	ND	30	ug/Kg	08/29/08		R/J	SW8260
Methyl t-butyl ether (MTBE)	ND	10	ug/Kg	08/29/08		R/J	SW8260
Methylene chloride	ND	5	ug/Kg	08/29/08		R/J	SW8260
Naphthalene	ND	5	ug/Kg	08/29/08		R/J	SW8260
n-Butylbenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
n-Propylbenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
o-Xylene	ND	5	ug/Kg	08/29/08		R/J	SW8260
p-Isopropyltoluene	ND	5	ug/Kg	08/29/08		R/J	SW8260
sec-Butylbenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
Styrene	ND	5	ug/Kg	08/29/08		R/J	SW8260
tert-Butylbenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
Tetrachloroethene	28	5	ug/Kg	08/29/08		R/J	SW8260
Tetrahydrofuran (THF)	ND	10	ug/Kg	08/29/08		R/J	SW8260
Toluene	ND	5	ug/Kg	08/29/08		R/J	SW8260
Total Xylenes	ND	5	ug/Kg	08/29/08		R/J	SW8260
trans-1,2-Dichloroethene	ND	5	ug/Kg	08/29/08		R/J	SW8260
trans-1,3-Dichloropropene	ND	5	ug/Kg	08/29/08		R/J	SW8260
trans-1,4-dichloro-2-butene	ND	10	ug/Kg	08/29/08		R/J	SW8260
Trichloroethene	ND	5	ug/Kg	08/29/08		R/J	SW8260
Trichlorofluoromethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
Trichlorotrifluoroethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
Vinyl chloride	ND	5	ug/Kg	08/29/08		R/J	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	110		%	08/29/08		R/J	SW8260
% Bromofluorobenzene	84		%	08/29/08		R/J	SW8260
% Dibromofluoromethane	104		%	08/29/08		R/J	SW8260
% Toluene-d8	99		%	08/29/08		R/J	SW8260
-							

Client ID: 1299 1ST AVE SP-7 (8')

Phoenix I.D.: AQ70965

Parameter Result RL Units Date Time By Reference

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

September 04, 2008

FOR: Attn: Mr Timothy Lo

HydroTech Environmental Corp. 1111 Fulton Street 2nd Floor

Brooklyn, NY 11238

Sample InformationCustody InformationDateTimeMatrix:SOLIDCollected by:08/25/0811:00Location Code:HYDROBROReceived by:SW08/26/0816:30

Rush Request: Analyzed by: see "By" below

P.O.#: 2927

Laboratory Data

SDG I.D.: GAQ70962 Phoenix I.D.: AQ70966

Client ID: 1299 1ST AVE SP-8 (14'-16')

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	92		%	08/26/08		I-JL	E160.3
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,1,1-Trichloroethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,1,2,2-Tetrachloroethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,1,2-Trichloroethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,1-Dichloroethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,1-Dichloroethene	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,1-Dichloropropene	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,2,3-Trichlorobenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,2,3-Trichloropropane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,2,4-Trichlorobenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,2,4-Trimethylbenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,2-Dibromo-3-chloropropane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,2-Dichlorobenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,2-Dichloroethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,2-Dichloropropane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,3,5-Trimethylbenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,3-Dichlorobenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,3-Dichloropropane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,4-Dichlorobenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
2,2-Dichloropropane	ND	5	ug/Kg	08/29/08		R/J	SW8260
2-Chlorotoluene	ND	5	ug/Kg	08/29/08		R/J	SW8260
2-Hexanone	ND	25	ug/Kg	08/29/08		R/J	SW8260
2-Isopropyltoluene	ND	5	ug/Kg	08/29/08		R/J	SW8260
4-Chlorotoluene	ND	5	ug/Kg	08/29/08		R/J	SW8260
4-Methyl-2-pentanone	ND	25	ug/Kg	08/29/08		R/J	SW8260
Acetone	ND	100	ug/Kg	08/29/08		R/J	SW8260
Acrylonitrile	ND	10	ug/Kg	08/29/08		R/J	SW8260
Benzene	ND	5	ug/Kg	08/29/08		R/J	SW8260

Client ID: 1299 1ST AVE SP-	,	RL	Linite	Data	Timo	Dv	Doforonco
Parameter	Result		Units	Date	Time	Ву	Reference
Bromobenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
Bromochloromethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
Bromodichloromethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
Bromoform	ND	5	ug/Kg	08/29/08		R/J	SW8260
Bromomethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
Carbon Disulfide	ND	5	ug/Kg	08/29/08		R/J	SW8260
Carbon tetrachloride	ND	5	ug/Kg	08/29/08		R/J	SW8260
Chlorobenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
Chloroethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
Chloroform	ND	5	ug/Kg	08/29/08		R/J	SW8260
Chloromethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
cis-1,2-Dichloroethene	ND	5	ug/Kg	08/29/08		R/J	SW8260
cis-1,3-Dichloropropene	ND	5	ug/Kg	08/29/08		R/J	SW8260
Dibromochloromethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
Dibromoethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
Dibromomethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
Dichlorodifluoromethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
Ethylbenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
Hexachlorobutadiene	ND	5	ug/Kg	08/29/08		R/J	SW8260
Isopropylbenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
m&p-Xylene	ND	5	ug/Kg	08/29/08		R/J	SW8260
Methyl Ethyl Ketone	ND	30	ug/Kg	08/29/08		R/J	SW8260
Methyl t-butyl ether (MTBE)	ND	10	ug/Kg	08/29/08		R/J	SW8260
Methylene chloride	ND	5	ug/Kg	08/29/08		R/J	SW8260
Naphthalene	ND	5	ug/Kg	08/29/08		R/J	SW8260
n-Butylbenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
n-Propylbenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
o-Xylene	ND	5	ug/Kg	08/29/08		R/J	SW8260
p-Isopropyltoluene	ND	5	ug/Kg	08/29/08		R/J	SW8260
sec-Butylbenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
Styrene	ND	5	ug/Kg	08/29/08		R/J	SW8260
tert-Butylbenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
Tetrachloroethene	ND	5	ug/Kg	08/29/08		R/J	SW8260
Tetrahydrofuran (THF)	ND	10	ug/Kg	08/29/08		R/J	SW8260
Toluene	ND	5	ug/Kg	08/29/08		R/J	SW8260
Total Xylenes	ND	5	ug/Kg	08/29/08		R/J	SW8260
trans-1,2-Dichloroethene	ND	5	ug/Kg	08/29/08		R/J	SW8260
trans-1,3-Dichloropropene	ND	5	ug/Kg ug/Kg	08/29/08		R/J	SW8260
trans-1,4-dichloro-2-butene	ND	10	ug/Kg ug/Kg	08/29/08		R/J	SW8260
Trichloroethene	ND	5	ug/Kg ug/Kg	08/29/08		R/J	SW8260
Trichlorofluoromethane	ND	5	ug/Kg ug/Kg	08/29/08		R/J	SW8260
Trichlorotrifluoroethane	ND	5		08/29/08		R/J	SW8260
	ND	5	ug/Kg	08/29/08			
Vinyl chloride	ואט	ວ	ug/Kg	00/27/00		R/J	SW8260
QA/QC Surrogates	111		0/	00/20/00		D./ !	CMOOLO
% 1,2-dichlorobenzene-d4	111		%	08/29/08		R/J	SW8260
% Bromofluorobenzene	91		%	08/29/08		R/J	SW8260
% Dibromofluoromethane	89		%	08/29/08		R/J	SW8260
% Toluene-d8	99		%	08/29/08		R/J	SW8260

Client ID: 1299 1ST AVE SP-8 (14'-16')

Phoenix I.D.: AQ70966

Parameter Result RL Units Date Time By Reference

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

September 04, 2008

FOR: Attn: Mr Timothy Lo

HydroTech Environmental Corp. 1111 Fulton Street 2nd Floor

Brooklyn, NY 11238

Sample InformationCustody InformationDateTimeMatrix:SOLIDCollected by:08/25/0812:00Location Code:HYDROBROReceived by:SW08/26/0816:30

Rush Request: Analyzed by: see "By" below

P.O.#: 2927

Laboratory Data

SDG I.D.: GAQ70962 Phoenix I.D.: AQ70967

Client ID: 1299 1ST AVE SP-9 (14'-16')

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	85		%	08/26/08		I-JL	E160.3
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,1,1-Trichloroethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,1,2,2-Tetrachloroethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,1,2-Trichloroethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,1-Dichloroethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,1-Dichloroethene	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,1-Dichloropropene	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,2,3-Trichlorobenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,2,3-Trichloropropane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,2,4-Trichlorobenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,2,4-Trimethylbenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,2-Dibromo-3-chloropropane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,2-Dichlorobenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,2-Dichloroethane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,2-Dichloropropane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,3,5-Trimethylbenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,3-Dichlorobenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,3-Dichloropropane	ND	5	ug/Kg	08/29/08		R/J	SW8260
1,4-Dichlorobenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260
2,2-Dichloropropane	ND	5	ug/Kg	08/29/08		R/J	SW8260
2-Chlorotoluene	ND	5	ug/Kg	08/29/08		R/J	SW8260
2-Hexanone	ND	25	ug/Kg	08/29/08		R/J	SW8260
2-Isopropyltoluene	ND	5	ug/Kg	08/29/08		R/J	SW8260
4-Chlorotoluene	ND	5	ug/Kg	08/29/08		R/J	SW8260
4-Methyl-2-pentanone	ND	25	ug/Kg	08/29/08		R/J	SW8260
Acetone	ND	100	ug/Kg	08/29/08		R/J	SW8260
Acrylonitrile	ND	10	ug/Kg	08/29/08		R/J	SW8260
Benzene	ND	5	ug/Kg	08/29/08		R/J	SW8260

Client ID: 1299 1ST AVE SP-	9 (14'-16')			Phoenix I.D.: AQ70967				
Parameter	Result	RL	Units	Date	Time	Ву	Reference	
Bromobenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260	
Bromochloromethane	ND	5	ug/Kg	08/29/08		R/J	SW8260	
Bromodichloromethane	ND	5	ug/Kg	08/29/08		R/J	SW8260	
Bromoform	ND	5	ug/Kg	08/29/08		R/J	SW8260	
Bromomethane	ND	5	ug/Kg	08/29/08		R/J	SW8260	
Carbon Disulfide	ND	5	ug/Kg	08/29/08		R/J	SW8260	
Carbon tetrachloride	ND	5	ug/Kg	08/29/08		R/J	SW8260	
Chlorobenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260	
Chloroethane	ND	5	ug/Kg	08/29/08		R/J	SW8260	
Chloroform	ND	5	ug/Kg	08/29/08		R/J	SW8260	
Chloromethane	ND	5	ug/Kg	08/29/08		R/J	SW8260	
cis-1,2-Dichloroethene	ND	5	ug/Kg	08/29/08		R/J	SW8260	
cis-1,3-Dichloropropene	ND	5	ug/Kg	08/29/08		R/J	SW8260	
Dibromochloromethane	ND	5	ug/Kg	08/29/08		R/J	SW8260	
Dibromoethane	ND	5	ug/Kg	08/29/08		R/J	SW8260	
Dibromomethane	ND	5	ug/Kg	08/29/08		R/J	SW8260	
Dichlorodifluoromethane	ND	5	ug/Kg	08/29/08		R/J	SW8260	
Ethylbenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260	
Hexachlorobutadiene	ND	5	ug/Kg	08/29/08		R/J	SW8260	
Isopropylbenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260	
m&p-Xylene	ND	5	ug/Kg	08/29/08		R/J	SW8260	
Methyl Ethyl Ketone	ND	30	ug/Kg	08/29/08		R/J	SW8260	
Methyl t-butyl ether (MTBE)	ND	10	ug/Kg	08/29/08		R/J	SW8260	
Methylene chloride	ND	5	ug/Kg	08/29/08		R/J	SW8260	
Naphthalene	ND	5	ug/Kg	08/29/08		R/J	SW8260	
n-Butylbenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260	
n-Propylbenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260	
o-Xylene	ND	5	ug/Kg	08/29/08		R/J	SW8260	
p-Isopropyltoluene	ND	5	ug/Kg	08/29/08		R/J	SW8260	
sec-Butylbenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260	
Styrene	ND	5	ug/Kg	08/29/08		R/J	SW8260	
tert-Butylbenzene	ND	5	ug/Kg	08/29/08		R/J	SW8260	
Tetrachloroethene	ND	5	ug/Kg	08/29/08		R/J	SW8260	
Tetrahydrofuran (THF)	ND	10	ug/Kg	08/29/08		R/J	SW8260	
Toluene	ND	5	ug/Kg	08/29/08		R/J	SW8260	
Total Xylenes	ND	5	ug/Kg	08/29/08		R/J	SW8260	
trans-1,2-Dichloroethene	ND	5	ug/Kg	08/29/08		R/J	SW8260	
trans-1,3-Dichloropropene	ND	5	ug/Kg	08/29/08		R/J	SW8260	
trans-1,4-dichloro-2-butene	ND	10	ug/Kg	08/29/08		R/J	SW8260	
Trichloroethene	ND	5	ug/Kg	08/29/08		R/J	SW8260	
Trichlorofluoromethane	ND	5	ug/Kg	08/29/08		R/J	SW8260	
Trichlorotrifluoroethane	ND	5	ug/Kg	08/29/08		R/J	SW8260	
Vinyl chloride	ND	5	ug/Kg	08/29/08		R/J	SW8260	
QA/QC Surrogates			~3' '`9					
% 1,2-dichlorobenzene-d4	107		%	08/29/08		R/J	SW8260	
% Bromofluorobenzene	84		%	08/29/08		R/J	SW8260	
% Dibromofluoromethane	112		%	08/29/08		R/J	SW8260	
% Toluene-d8	102		%	08/29/08		R/J	SW8260	
.5 . 5.461.6 46						, •		

Client ID: 1299 1ST AVE SP-9 (14'-16')

Phoenix I.D.: AQ70967

Parameter Result RL Units Date Time By Reference

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

September 04, 2008

FOR: Attn: Mr Timothy Lo

HydroTech Environmental Corp. 1111 Fulton Street 2nd Floor

Brooklyn, NY 11238

Sample InformationCustody InformationDateTimeMatrix:SOLIDCollected by:08/25/0810:00Location Code:HYDROBROReceived by:SW08/26/0816:30

Rush Request: Analyzed by: see "By" below

P.O.#: 2927

Laboratory Data

SDG I.D.: GAQ70962 Phoenix I.D.: AQ70968

Client ID: 1299 1ST AVE SP-10 (10'-12')

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	92		%	08/26/08		I-JL	E160.3
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	500	ug/Kg	08/29/08		H/J	SW8260
1,1,1-Trichloroethane	ND	500	ug/Kg	08/29/08		H/J	SW8260
1,1,2,2-Tetrachloroethane	ND	500	ug/Kg	08/29/08		H/J	SW8260
1,1,2-Trichloroethane	ND	500	ug/Kg	08/29/08		H/J	SW8260
1,1-Dichloroethane	ND	500	ug/Kg	08/29/08		H/J	SW8260
1,1-Dichloroethene	ND	500	ug/Kg	08/29/08		H/J	SW8260
1,1-Dichloropropene	ND	500	ug/Kg	08/29/08		H/J	SW8260
1,2,3-Trichlorobenzene	ND	500	ug/Kg	08/29/08		H/J	SW8260
1,2,3-Trichloropropane	ND	500	ug/Kg	08/29/08		H/J	SW8260
1,2,4-Trichlorobenzene	ND	500	ug/Kg	08/29/08		H/J	SW8260
1,2,4-Trimethylbenzene	1300	500	ug/Kg	08/29/08		H/J	SW8260
1,2-Dibromo-3-chloropropane	ND	500	ug/Kg	08/29/08		H/J	SW8260
1,2-Dichlorobenzene	ND	500	ug/Kg	08/29/08		H/J	SW8260
1,2-Dichloroethane	ND	500	ug/Kg	08/29/08		H/J	SW8260
1,2-Dichloropropane	ND	500	ug/Kg	08/29/08		H/J	SW8260
1,3,5-Trimethylbenzene	750	500	ug/Kg	08/29/08		H/J	SW8260
1,3-Dichlorobenzene	ND	500	ug/Kg	08/29/08		H/J	SW8260
1,3-Dichloropropane	ND	500	ug/Kg	08/29/08		H/J	SW8260
1,4-Dichlorobenzene	ND	500	ug/Kg	08/29/08		H/J	SW8260
2,2-Dichloropropane	ND	500	ug/Kg	08/29/08		H/J	SW8260
2-Chlorotoluene	ND	500	ug/Kg	08/29/08		H/J	SW8260
2-Hexanone	ND	2500	ug/Kg	08/29/08		H/J	SW8260
2-Isopropyltoluene	ND	500	ug/Kg	08/29/08		H/J	SW8260
4-Chlorotoluene	ND	500	ug/Kg	08/29/08		H/J	SW8260
4-Methyl-2-pentanone	ND	2500	ug/Kg	08/29/08		H/J	SW8260
Acetone	ND	10000	ug/Kg	08/29/08		H/J	SW8260
Acrylonitrile	ND	1000	ug/Kg	08/29/08		H/J	SW8260
Benzene	ND	500	ug/Kg	08/29/08		H/J	SW8260

Client ID: 1299 1ST AVE SP-	10 (10'-12')				Р	hoeni	(I.D.: AQ70968
Parameter	Result	RL	Units	Date	Time	Ву	Reference
Bromobenzene	ND	500	ug/Kg	08/29/08		H/J	SW8260
Bromochloromethane	ND	500	ug/Kg	08/29/08		H/J	SW8260
Bromodichloromethane	ND	500	ug/Kg	08/29/08		H/J	SW8260
Bromoform	ND	500	ug/Kg	08/29/08		H/J	SW8260
Bromomethane	ND	500	ug/Kg	08/29/08		H/J	SW8260
Carbon Disulfide	ND	500	ug/Kg	08/29/08		H/J	SW8260
Carbon tetrachloride	ND	500	ug/Kg	08/29/08		H/J	SW8260
Chlorobenzene	ND	500	ug/Kg	08/29/08		H/J	SW8260
Chloroethane	ND	500	ug/Kg	08/29/08		H/J	SW8260
Chloroform	ND	500	ug/Kg	08/29/08		H/J	SW8260
Chloromethane	ND	500	ug/Kg	08/29/08		H/J	SW8260
cis-1,2-Dichloroethene	ND	500	ug/Kg	08/29/08		H/J	SW8260
cis-1,3-Dichloropropene	ND	500	ug/Kg	08/29/08		H/J	SW8260
Dibromochloromethane	ND	500	ug/Kg	08/29/08		H/J	SW8260
Dibromoethane	ND	500	ug/Kg	08/29/08		H/J	SW8260
Dibromomethane	ND	500	ug/Kg	08/29/08		H/J	SW8260
Dichlorodifluoromethane	ND	500	ug/Kg	08/29/08		H/J	SW8260
Ethylbenzene	ND	500	ug/Kg	08/29/08		H/J	SW8260
Hexachlorobutadiene	ND	500	ug/Kg	08/29/08		H/J	SW8260
Isopropylbenzene	ND	500	ug/Kg	08/29/08		H/J	SW8260
m&p-Xylene	ND	500	ug/Kg	08/29/08		H/J	SW8260
Methyl Ethyl Ketone	ND	3000	ug/Kg	08/29/08		H/J	SW8260
Methyl t-butyl ether (MTBE)	ND	1000	ug/Kg	08/29/08		H/J	SW8260
Methylene chloride	ND	500	ug/Kg	08/29/08		H/J	SW8260
Naphthalene	700	500	ug/Kg	08/29/08		H/J	SW8260
n-Butylbenzene	900	500	ug/Kg	08/29/08		H/J	SW8260
n-Propylbenzene	ND	500	ug/Kg	08/29/08		H/J	SW8260
o-Xylene	ND	500	ug/Kg	08/29/08		H/J	SW8260
p-Isopropyltoluene	ND	500	ug/Kg	08/29/08		H/J	SW8260
sec-Butylbenzene	710	500	ug/Kg	08/29/08		H/J	SW8260
Styrene	ND	500	ug/Kg	08/29/08		H/J	SW8260
tert-Butylbenzene	ND	500	ug/Kg	08/29/08		H/J	SW8260
Tetrachloroethene	ND	500	ug/Kg	08/29/08		H/J	SW8260
Tetrahydrofuran (THF)	ND	1000	ug/Kg	08/29/08		H/J	SW8260
Toluene	ND	500	ug/Kg	08/29/08		H/J	SW8260
Total Xylenes	ND	500	ug/Kg	08/29/08		H/J	SW8260
trans-1,2-Dichloroethene	ND	500	ug/Kg	08/29/08		H/J	SW8260
trans-1,3-Dichloropropene	ND	500	ug/Kg	08/29/08		H/J	SW8260
trans-1,4-dichloro-2-butene	ND	1000	ug/Kg	08/29/08		H/J	SW8260
Trichloroethene	ND	500	ug/Kg	08/29/08		H/J	SW8260
Trichlorofluoromethane	ND	500	ug/Kg	08/29/08		H/J	SW8260
Trichlorotrifluoroethane	ND	500	ug/Kg	08/29/08		H/J	SW8260
Vinyl chloride	ND	500	ug/Kg	08/29/08		H/J	SW8260
QA/QC Surrogates			ug/itg	00/2//00		11/3	3440200
% 1,2-dichlorobenzene-d4	101		%	08/29/08		H/J	SW8260
% 1,2-dictilorobenzene-u4 % Bromofluorobenzene	111		%	08/29/08		H/J	SW8260
% Dibromofluoromethane	95		%	08/29/08		H/J	SW8260
% Toluene-d8	100		%	08/29/08		H/J	SW8260
70 TOIUCHC-UU	.55		,,	55.27.55		1113	340200

Client ID: 1299 1ST AVE SP-10 (10'-12')

Phoenix I.D.: AQ70968

Parameter Result RL Units Date Time By Reference

Comments:

Elevated reporting limits for volatiles due to the presence of non-target compounds.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis/Shiller, Laboratory Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

September 04, 2008	<u>Q</u> A/C	OC Data			SDG I	0962	
Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
QA/QC Batch 108956, QC Sample No:	AQ71609 (AQ70964	, AQ70965, AC	270966, AC	70967)			
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	102	104	1.9	103	103	0.0
1,1,1-Trichloroethane	ND	100	93	7.3	102	107	4.8
1,1,2,2-Tetrachloroethane	ND	89	94	5.5	86	78	9.8
1,1,2-Trichloroethane	ND	99	99	0.0	110	97	12.6
1,1-Dichloroethane	ND	102	96	6.1	105	106	0.9
1,1-Dichloroethene	ND	105	97	7.9	98	104	5.9
1,1-Dichloropropene	ND	105	99	5.9	92	101	9.3
1,2,3-Trichlorobenzene	ND	104	109	4.7	103	81	23.9
1,2,3-Trichloropropane	ND	111	109	1.8	112	97	14.4
1,2,4-Trichlorobenzene	ND	101	103	2.0	80	75	6.5
1,2,4-Trimethylbenzene	ND	102	95	7.1	86	99	14.1
1,2-Dibromo-3-chloropropane	ND	105	124	16.6	124	102	19.5
1,2-Dichlorobenzene	ND	97	96	1.0	91	89	2.2
1,2-Dichloroethane	ND	100	98	2.0	111	95	15.5
1,2-Dichloropropane	ND	102	99	3.0	105	100	4.9
1,3,5-Trimethylbenzene	ND	103	98	5.0	88	99	11.8
1,3-Dichlorobenzene	ND	101	100	1.0	82	88	7.1
1,3-Dichloropropane	ND	102	103	1.0	116	100	14.8
1,4-Dichlorobenzene	ND	97	95	2.1	79	84	6.1
2,2-Dichloropropane	ND	92	91	1.1	90	91	1.1
2-Chlorotoluene	ND	100	97	3.0	89	98	9.6
2-Hexanone	ND	<70	74	NC	71	67	5.8
2-Isopropyltoluene	ND	105	102	2.9	93	105	12.1
4-Chlorotoluene	ND	101	99	2.0	84	92	9.1
4-Methyl-2-pentanone	ND	100	101	1.0	116	92	23.1
Acetone	ND	< 70	<70	NC	77	64	18.4
Acrolein	ND	101	103	2.0	121	96	23.0
Acrylonitrile	ND	104	108	3.8	134	102	27.1
Benzene	ND	103	96	7.0	101	100	1.0
Bromobenzene	ND	98	97	1.0	95	95	0.0
Bromochloromethane	ND	98	97	1.0	112	103	8.4
Bromodichloromethane	ND	104	101	2.9	100	103	3.0
Bromoform	ND	104	112	7.4	117	101	14.7
Bromomethane	ND	94	107	12.9	88	95	7.7
Carbon Disulfide	ND	105	98	6.9	90	99	9.5
Carbon tetrachloride	ND	102	94	8.2	90	101	11.5
Chlorobenzene	ND	101	100	1.0	95	97	2.1
Chloroethane	ND	104	97	7.0	99	112	12.3

SDG I.D.: GAQ70962

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD	
Chloroform	ND	97	93	4.2	105	104	1.0	
Chloromethane	ND	108	99	8.7	96	100	4.1	
cis-1,2-Dichloroethene	ND	105	102	2.9	105	106	0.9	
cis-1,3-Dichloropropene	ND	100	98	2.0	98	96	2.1	
Dibromochloromethane	ND	101	106	4.8	113	100	12.2	
Dibromoethane	ND	107	111	3.7	121	101	18.0	
Dibromomethane	ND	101	100	1.0	113	99	13.2	
Dichlorodifluoromethane	ND	118	110	7.0	84	89	5.8	
Ethylbenzene	ND	106	102	3.8	98	103	5.0	
Hexachlorobutadiene	ND	100	95	5.1	82	86	4.8	
Isopropylbenzene	ND	101	97	4.0	92	105	13.2	
m&p-Xylene	ND	108	106	1.9	97	104	7.0	
Methyl ethyl ketone	ND	<70	72	NC	81	72	11.8	
Methyl t-butyl ether (MTBE)	ND	99	100	1.0	110	96	13.6	
Methylene chloride	ND	96	92	4.3	103	102	1.0	
Naphthalene	ND	120	>130	NC	158	98	46.9	3
n-Butylbenzene	ND	104	98	5.9	79	91	14.1	
n-Propylbenzene	ND	105	100	4.9	88	101	13.8	
o-Xylene	ND	107	102	4.8	98	105	6.9	
p-Isopropyltoluene	ND	105	100	4.9	85	98	14.2	
sec-Butylbenzene	ND	101	96	5.1	90	98	8.5	
Styrene	ND	109	107	1.9	98	101	3.0	
tert-Butylbenzene	ND	103	99	4.0	94	106	12.0	
Tetrachloroethene	ND	105	99	5.9	90	104	14.4	
Tetrahydrofuran (THF)	ND	95	98	3.1	123	94	26.7	
Toluene	ND	102	96	6.1	95	97	2.1	
trans-1,2-Dichloroethene	ND	101	98	3.0	97	99	2.0	
trans-1,3-Dichloropropene	ND	105	109	3.7	101	97	4.0	
trans-1,4-dichloro-2-butene	ND	82	102	21.7	82	70	15.8	
Trichloroethene	ND	104	98	5.9	109	182	50.2	3
Trichlorofluoromethane	ND	104	96	8.0	91	101	10.4	
Trichlorotrifluoroethane	ND	105	98	6.9	94	101	7.2	
Vinyl chloride	ND	109	98	10.6	91	105	14.3	
% 1,2-dichlorobenzene-d4	105	100	99	1.0	106	99	6.8	
% Bromofluorobenzene	85	99	105	5.9	104	98	5.9	
% Dibromofluoromethane	94	98	101	3.0	113	106	6.4	
% Toluene-d8	98	104	100	3.9	97	100	3.0	
QA/QC Batch 108953, QC Sample	e No: AQ71611 (AQ70962,	AQ70963, AC	270968)					
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	97	109	11.7	96	80	18.2	
1,1,1-Trichloroethane	ND	92	108	16.0	99	84	16.4	
1,1,2,2-Tetrachloroethane	ND	83	99	17.6	88	68	25.6	
1,1,2-Trichloroethane	ND	93	101	8.2	95	76	22.2	
1,1-Dichloroethane	ND	91	104	13.3	94	79	17.3	
1,1-Dichloroethene	ND	92	105	13.2	91	81	11.6	
1,1-Dichloropropene	ND	89	99	10.6	92	79	15.2	
1,2,3-Trichlorobenzene	ND	91	106	15.2	70	52	29.5	
1,2,3-Trichloropropane	ND	106	109	2.8	87	77	12.2	

1/2/1 1110111010201120110		00	• • •		00	٠.	=
1,2,4-Trimethylbenzene	ND	88	102	14.7	61	50	19.8
1,2-Dibromo-3-chloropropane	ND	102	116	12.8	98	74	27.9
1,2-Dichlorobenzene	ND	91	102	11.4	79	63	22.5
1,2-Dichloroethane	ND	95	102	7.1	94	78	18.6
1,2-Dichloropropane	ND	92	100	8.3	96	78	20.7
1,3,5-Trimethylbenzene	ND	89	101	12.6	86	74	15.0
1,3-Dichlorobenzene	ND	89	101	12.6	76	62	20.3
1,3-Dichloropropane	ND	95	105	10.0	95	77	20.9
1,4-Dichlorobenzene	ND	87	96	9.8	72	58	21.5
2,2-Dichloropropane	ND	82	93	12.6	84	76	10.0
2-Chlorotoluene	ND	88	101	13.8	84	70	18.2
2-Hexanone	ND	<70	70	NC	65	51	24.1
2-Isopropyltoluene	ND	90	105	15.4	89	75	17.1
4-Chlorotoluene	ND	88	100	12.8	75	64	15.8
4-Methyl-2-pentanone	ND	95	100	5.1	97	76	24.3
Acetone	ND	<70	<70	NC	47	40	16.1
Acrolein	ND	<70	>130	NC	122	42	97.6
Acrylonitrile	ND	91	101	10.4	87	69	23.1
Benzene	ND	88	99	11.8	92	78	16.5
Bromobenzene	ND	91	105	14.3	83	66	22.8
Bromochloromethane	ND	92	104	12.2	91	74	20.6
Bromodichloromethane	ND	95	106	10.9	95	77	20.9
Bromoform	ND	100	110	9.5	92	75	20.4
Bromomethane	ND	95	78	19.7	69	83	18.4
Carbon Disulfide	ND	92	105	13.2	84	73	14.0
Carbon tetrachloride	ND	92	104	12.2	98	84	15.4
Chlorobenzene	ND	93	102	9.2	88	74	17.3
Chloroethane	ND	92	99	7.3	88	81	8.3
Chloroform	ND	89	101	12.6	92	78	16.5
Chloromethane	ND	92	106	14.1	84	74	12.7
cis-1,2-Dichloroethene	ND	92	106	14.1	92	74	21.7
cis-1,3-Dichloropropene	ND	89	96	7.6	88	71	21.4
Dibromochloromethane	ND	96	107	10.8	95	76	22.2
Dibromoethane	ND	94	102	8.2	93	72	25.5
Dibromomethane	ND	94	102	8.2	93	74	22.8
Dichlorodifluoromethane	ND	105	118	11.7	78	71	9.4
Ethylbenzene	ND	93	102	9.2	91	80	12.9
Hexachlorobutadiene	ND	87	103	16.8	75	65	14.3
Isopropylbenzene	ND	87	101	14.9	91	76	18.0
m&p-Xylene	ND	94	102	8.2	75	69	8.3
Methyl ethyl ketone	ND	<70	<70	NC	57	46	21.4
Methyl t-butyl ether (MTBE)	ND	98	105	6.9	101	83	19.6
Methylene chloride	ND	88	98	10.8	88	75	16.0
Naphthalene	ND	90	119	27.8	87	53	48.6
n-Butylbenzene	ND	85	98	14.2	76	67	12.6
n-Propylbenzene	ND	91	104	13.3	86	74	15.0
o-Xylene	ND	95	102	7.1	92	80	14.0
p-Isopropyltoluene	ND	91	104	13.3	84	74	12.7
i		, .			= .		

	QA/QC Data			SDG I.D.: GAQ70962				
Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD	
sec-Butylbenzene	ND	88	101	13.8	85	73	15.2	
Styrene	ND	97	103	6.0	85	73	15.2	
tert-Butylbenzene	ND	91	104	13.3	93	78	17.5	
Tetrachloroethene	ND	95	101	6.1	87	82	5.9	
Tetrahydrofuran (THF)	ND	91	108	17.1	98	79	21.5	
Toluene	ND	90	98	8.5	89	76	15.8	
trans-1,2-Dichloroethene	ND	90	105	15.4	89	77	14.5	
trans-1,3-Dichloropropene	ND	92	97	5.3	84	67	22.5	
trans-1,4-dichloro-2-butene	ND	91	98	7.4	74	59	22.6	
Trichloroethene	ND	94	103	9.1	94	82	13.6	
Trichlorofluoromethane	ND	93	109	15.8	88	78	12.0	
Trichlorotrifluoroethane	ND	96	110	13.6	89	84	5.8	
Vinyl chloride	ND	92	106	14.1	88	78	12.0	
% 1,2-dichlorobenzene-d4	99	103	101	2.0	103	102	1.0	
% Bromofluorobenzene	95	102	98	4.0	102	105	2.9	
% Dibromofluoromethane	97	101	104	2.9	100	98	2.0	
% Toluene-d8	98	99	97	2.0	100	100	0.0	
QA/QC Batch 109068, QC Sample	e No: AQ72797 (aq70963)							
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	99	101	2.0	120	96	22.2	
1,1,1-Trichloroethane	ND	96	103	7.0	127	102	21.8	
1,1,2,2-Tetrachloroethane	ND	86	86	0.0	88	79	10.8	
1,1,2-Trichloroethane	ND	96	98	2.1	109	89	20.2	
1,1-Dichloroethane	ND	96	101	5.1	120	94	24.3	
1,1-Dichloroethene	ND	95	104	9.0	129	103	22.4	
1,1-Dichloropropene	ND	100	107	6.8	127	97	26.8	
1,2,3-Trichlorobenzene	ND	110	109	0.9	71	65	8.8	
1,2,3-Trichloropropane	ND	103	109	5.7	98	86	13.0	
1,2,4-Trichlorobenzene	ND	107	109	1.9	65	59	9.7	
1,2,4-Trimethylbenzene	ND	97	103	6.0	72	<70	NC	
1,2-Dibromo-3-chloropropane	ND	111	118	6.1	90	89	1.1	
1,2-Dichlorobenzene	ND	95	99	4.1	87	71	20.3	
1,2-Dichloroethane	ND	100	102	2.0	117	93	22.9	
1,2-Dichloropropane	ND	96	100	4.1	114	93	20.3	
1,3,5-Trimethylbenzene	ND	96	103	7.0	109	86	23.6	
1,3-Dichlorobenzene	ND	99	104	4.9	89	71	22.5	
1,3-Dichloropropane	ND	101	98	3.0	106	87	19.7	
1,4-Dichlorobenzene	ND	96	98	2.1	84	68	21.1	
2,2-Dichloropropane	ND	99	102	3.0	118	95	21.6	
2-Chlorotoluene	ND	93	99	6.3	105	81	25.8	
2-Hexanone	ND	96	96	0.0	73	63	14.7	
2-Isopropyltoluene	ND	96	106	9.9	113	90	22.7	
4-Chlorotoluene	ND	97	100	3.0	91	61	39.5	
4-Methyl-2-pentanone	ND	102	105	2.9	100	86	15.1	
Acetone	ND	90	94	4.3	85	71	17.9	
Acrolein	ND	100	103	3.0	104	91	13.3	
Acrylonitrile	ND	103	100	3.0	101	88	13.8	
Ponzono	ND	06	100	5.0	101	0.4	75.0	

96

101

5.1

121

94

25.1

ND

Benzene

SDG I.D.: GAQ70962

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD	
Bromobenzene	ND	96	98	2.1	95	78	19.7	
Bromochloromethane	ND	97	98	1.0	109	93	15.8	
Bromodichloromethane	ND	102	105	2.9	120	96	22.2	
Bromoform	ND	110	103	6.6	104	91	13.3	
Bromomethane	ND	109	92	16.9	123	115	6.7	
Carbon Disulfide	ND	96	105	9.0	127	97	26.8	
Carbon tetrachloride	ND	98	107	8.8	132	102	25.6	
Chlorobenzene	ND	97	101	4.0	105	83	23.4	
Chloroethane	ND	94	101	7.2	129	102	23.4	
Chloroform	ND	93	97	4.2	116	94	21.0	
Chloromethane	ND	95	107	11.9	129	102	23.4	
cis-1,2-Dichloroethene	ND	100	104	3.9	114	90	23.5	
cis-1,3-Dichloropropene	ND	105	107	1.9	105	87	18.8	
Dibromochloromethane	ND	104	105	1.0	110	93	16.7	
Dibromoethane	ND	108	108	0.0	111	89	22.0	
Dibromomethane	ND	99	101	2.0	107	90	17.3	
Dichlorodifluoromethane	ND	104	109	4.7	158	120	27.3	3
Ethylbenzene	ND	101	105	3.9	117	89	27.2	
Hexachlorobutadiene	ND	97	105	7.9	91	78	15.4	
Isopropylbenzene	ND	92	99	7.3	112	90	21.8	
m&p-Xylene	ND	102	110	7.5	103	42	84.1	3
Methyl ethyl ketone	ND	96	91	5.3	85	74	13.8	
Methyl t-butyl ether (MTBE)	ND	98	100	2.0	117	102	13.7	
Methylene chloride	ND	89	97	8.6	123	98	22.6	
Naphthalene	ND	>130	124	NC	51	73	35.5	
n-Butylbenzene	ND	97	104	7.0	95	77	20.9	
n-Propylbenzene	ND	98	104	5.9	107	86	21.8	
o-Xylene	ND	100	107	6.8	119	91	26.7	
p-Isopropyltoluene	ND	100	107	6.8	104	83	22.5	
sec-Butylbenzene	ND	92	101	9.3	107	85	22.9	
Styrene	ND	104	108	3.8	110	85	25.6	
tert-Butylbenzene	ND	95	104	9.0	115	94	20.1	
Tetrachloroethene	ND	101	106	4.8	119	91	26.7	
Tetrahydrofuran (THF)	ND	93	94	1.1	87	82	5.9	
Toluene	ND	99	105	5.9	115	86	28.9	
trans-1,2-Dichloroethene	ND	96	102	6.1	120	95	23.3	
trans-1,3-Dichloropropene	ND	116	113	2.6	100	87	13.9	
trans-1,4-dichloro-2-butene	ND	108	91	17.1	62	64	3.2	
Trichloroethene	ND	97	102	5.0	117	92	23.9	
Trichlorofluoromethane	ND	95	107	11.9	142	108	27.2	
Trichlorotrifluoroethane	ND	96	106	9.9	130	107	19.4	
Vinyl chloride	ND	94	107	12.9	137	102	29.3	
% 1,2-dichlorobenzene-d4	104	100	99	1.0	103	101	2.0	
% Bromofluorobenzene	81	101	101	0.0	105	101	3.9	
% Dibromofluoromethane	103	100	103	3.0	102	102	0.0	
% Toluene-d8	97	100	101	1.0	101	102	1.0	

QA/QC Data

SDG I.D.: GAQ70962

LCS **LCSD** LCS MS MS Dup **RPD** Rec % Blank % % Rec % Parameter

3 = This parameter is outside laboratory ms/msd specified limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Phyllis Shiller, Laboratory Director

RPD

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

NY Temperature Narration

September 04, 2008

SDG I.D.: GAQ70962

The samples in this delivery group were received at 4C. (Note acceptance criteria is above freezing up to 6C)

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

September 05, 2008

FOR: Attn: Mr. Timothy Lo

Hydrotechnology Consultants Inc

2500 Plaza 5

Jersey City NJ 07311

Sample InformationCustody InformationDateTimeMatrix:GROUND WATERCollected by:08/27/0810:00Location Code:HYDROCONReceived by:LB08/28/0817:00

Rush Request: RUSH Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG I.D.: GAQ72061 Phoenix I.D.: AQ72061

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Volatiles							
1,1,1,2-Tetrachloroethane	ND	5	ug/L	08/28/08		H/J	SW8260
1,1,1-Trichloroethane	ND	5	ug/L	08/28/08		H/J	SW8260
1,1,2,2-Tetrachloroethane	ND	5	ug/L	08/28/08		H/J	SW8260
1,1,2-Trichloroethane	ND	5	ug/L	08/28/08		H/J	SW8260
1,1-Dichloroethane	ND	5	ug/L	08/28/08		H/J	SW8260
1,1-Dichloroethene	ND	5	ug/L	08/28/08		H/J	SW8260
1,1-Dichloropropene	ND	5	ug/L	08/28/08		H/J	SW8260
1,2,3-Trichlorobenzene	ND	5	ug/L	08/28/08		H/J	SW8260
1,2,3-Trichloropropane	ND	5	ug/L	08/28/08		H/J	SW8260
1,2,4-Trichlorobenzene	ND	5	ug/L	08/28/08		H/J	SW8260
1,2,4-Trimethylbenzene	ND	5	ug/L	08/28/08		H/J	SW8260
1,2-Dibromo-3-chloropropane	ND	5	ug/L	08/28/08		H/J	SW8260
1,2-Dichlorobenzene	ND	5	ug/L	08/28/08		H/J	SW8260
1,2-Dichloroethane	ND	5	ug/L	08/28/08		H/J	SW8260
1,2-Dichloropropane	ND	5	ug/L	08/28/08		H/J	SW8260
1,3,5-Trimethylbenzene	ND	5	ug/L	08/28/08		H/J	SW8260
1,3-Dichlorobenzene	ND	5	ug/L	08/28/08		H/J	SW8260
1,3-Dichloropropane	ND	5	ug/L	08/28/08		H/J	SW8260
1,4-Dichlorobenzene	ND	5	ug/L	08/28/08		H/J	SW8260
2,2-Dichloropropane	ND	5	ug/L	08/28/08		H/J	SW8260
2-Chlorotoluene	ND	5	ug/L	08/28/08		H/J	SW8260
2-Hexanone	ND	25	ug/L	08/28/08		H/J	SW8260
2-Isopropyltoluene	ND	5	ug/L	08/28/08		H/J	SW8260
4-Chlorotoluene	ND	5	ug/L	08/28/08		H/J	SW8260
4-Methyl-2-pentanone	ND	25	ug/L	08/28/08		H/J	SW8260
Acetone	ND	50	ug/L	08/28/08		H/J	SW8260
Acrylonitrile	ND	10	ug/L	08/28/08		H/J	SW8260
Benzene	ND	5	ug/L	08/28/08		H/J	SW8260
Bromobenzene	ND	5	ug/L	08/28/08		H/J	SW8260

Client ID: 1299 1ST AVE. MW-1					Р	hoenix	(I.D.: AQ72061
Parameter	Result	RL	Units	Date	Time	Ву	Reference
Bromochloromethane	ND	5	ug/L	08/28/08		H/J	SW8260
Bromodichloromethane	ND	5	ug/L	08/28/08		H/J	SW8260
Bromoform	ND	5	ug/L	08/28/08		H/J	SW8260
Bromomethane	ND	5	ug/L	08/28/08		H/J	SW8260
Carbon Disulfide	ND	5	ug/L	08/28/08		H/J	SW8260
Carbon tetrachloride	ND	5	ug/L	08/28/08		H/J	SW8260
Chlorobenzene	ND	5	ug/L	08/28/08		H/J	SW8260
Chloroethane	ND	5	ug/L	08/28/08		H/J	SW8260
Chloroform	ND	5	ug/L	08/28/08		H/J	SW8260
Chloromethane	ND	5	ug/L	08/28/08		H/J	SW8260
cis-1,2-Dichloroethene	ND	5	ug/L	08/28/08		H/J	SW8260
cis-1,3-Dichloropropene	ND	5	ug/L	08/28/08		H/J	SW8260
Dibromochloromethane	ND	5	ug/L	08/28/08		H/J	SW8260
Dibromoethane	ND	5	ug/L	08/28/08		H/J	SW8260
Dibromomethane	ND	5	ug/L	08/28/08		H/J	SW8260
Dichlorodifluoromethane	ND	5	ug/L	08/28/08		H/J	SW8260
Ethylbenzene	ND	5	ug/L	08/28/08		H/J	SW8260
Hexachlorobutadiene	ND	5	ug/L	08/28/08		H/J	SW8260
Isopropylbenzene	ND	5	ug/L	08/28/08		H/J	SW8260
m&p-Xylene	ND	5	ug/L	08/28/08		H/J	SW8260
Methyl Ethyl Ketone	ND	60	ug/L	08/28/08		H/J	SW8260
Methyl t-butyl ether (MTBE)	ND	10	ug/L	08/28/08		H/J	SW8260
Methylene chloride	ND	5	ug/L	08/28/08		H/J	SW8260
Naphthalene	ND	5	ug/L	08/28/08		H/J	SW8260
n-Butylbenzene	ND	5	ug/L	08/28/08		H/J	SW8260
n-Propylbenzene	ND	5	ug/L	08/28/08		H/J	SW8260
o-Xylene	ND	5	ug/L	08/28/08		H/J	SW8260
p-Isopropyltoluene	ND	5	ug/L	08/28/08		H/J	SW8260
sec-Butylbenzene	ND	5	ug/L	08/28/08		H/J	SW8260
Styrene	ND	5	ug/L	08/28/08		H/J	SW8260
tert-Butylbenzene	ND	5	ug/L	08/28/08		H/J	SW8260
Tetrachloroethene	ND	5	ug/L	08/28/08		H/J	SW8260
Tetrahydrofuran (THF)	ND	10	ug/L	08/28/08		H/J	SW8260
Toluene	ND	5	ug/L	08/28/08		H/J	SW8260
Total Xylenes	ND	5	ug/L	08/28/08		H/J	SW8260
trans-1,2-Dichloroethene	ND	5	ug/L	08/28/08		H/J	SW8260
trans-1,3-Dichloropropene	ND	5	ug/L	08/28/08		H/J	SW8260
trans-1,4-dichloro-2-butene	ND	10	ug/L	08/28/08		H/J	SW8260
Trichloroethene	ND	5	ug/L	08/28/08		H/J	SW8260
Trichlorofluoromethane	ND	5	ug/L	08/28/08		H/J	SW8260
Trichlorotrifluoroethane	ND	5	ug/L	08/28/08		H/J	SW8260
Vinyl chloride	ND	5	ug/L	08/28/08		H/J	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	104		%	08/28/08		H/J	SW8260
% Bromofluorobenzene	94		%	08/28/08		H/J	SW8260
% Dibromofluoromethane	100		%	08/28/08		H/J	SW8260
% Toluene-d8	98		%	08/28/08		H/J	SW8260

Client ID: 1299 1ST AVE. MW-1 Phoenix I.D.: AQ72061

Parameter Result RL Units Date Time By Reference

Comments:

TRIP BLANK INCLUDED

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis/Shiller, Laboratory Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

September 05, 2008

FOR: Attn: Mr. Timothy Lo

Hydrotechnology Consultants Inc

2500 Plaza 5

Jersey City NJ 07311

Sample InformationCustody InformationDateTimeMatrix:GROUND WATERCollected by:08/27/0810:00Location Code:HYDROCONReceived by:LB08/28/0817:00

Rush Request: RUSH Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG I.D.: GAQ72061 Phoenix I.D.: AQ72062

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Volatiles							
1,1,1,2-Tetrachloroethane	ND	5	ug/L	08/28/08		H/J	SW8260
1,1,1-Trichloroethane	ND	5	ug/L	08/28/08		H/J	SW8260
1,1,2,2-Tetrachloroethane	ND	5	ug/L	08/28/08		H/J	SW8260
1,1,2-Trichloroethane	ND	5	ug/L	08/28/08		H/J	SW8260
1,1-Dichloroethane	ND	5	ug/L	08/28/08		H/J	SW8260
1,1-Dichloroethene	ND	5	ug/L	08/28/08		H/J	SW8260
1,1-Dichloropropene	ND	5	ug/L	08/28/08		H/J	SW8260
1,2,3-Trichlorobenzene	ND	5	ug/L	08/28/08		H/J	SW8260
1,2,3-Trichloropropane	ND	5	ug/L	08/28/08		H/J	SW8260
1,2,4-Trichlorobenzene	ND	5	ug/L	08/28/08		H/J	SW8260
1,2,4-Trimethylbenzene	ND	5	ug/L	08/28/08		H/J	SW8260
1,2-Dibromo-3-chloropropane	ND	5	ug/L	08/28/08		H/J	SW8260
1,2-Dichlorobenzene	ND	5	ug/L	08/28/08		H/J	SW8260
1,2-Dichloroethane	ND	5	ug/L	08/28/08		H/J	SW8260
1,2-Dichloropropane	ND	5	ug/L	08/28/08		H/J	SW8260
1,3,5-Trimethylbenzene	ND	5	ug/L	08/28/08		H/J	SW8260
1,3-Dichlorobenzene	ND	5	ug/L	08/28/08		H/J	SW8260
1,3-Dichloropropane	ND	5	ug/L	08/28/08		H/J	SW8260
1,4-Dichlorobenzene	ND	5	ug/L	08/28/08		H/J	SW8260
2,2-Dichloropropane	ND	5	ug/L	08/28/08		H/J	SW8260
2-Chlorotoluene	ND	5	ug/L	08/28/08		H/J	SW8260
2-Hexanone	ND	25	ug/L	08/28/08		H/J	SW8260
2-Isopropyltoluene	ND	5	ug/L	08/28/08		H/J	SW8260
4-Chlorotoluene	ND	5	ug/L	08/28/08		H/J	SW8260
4-Methyl-2-pentanone	ND	25	ug/L	08/28/08		H/J	SW8260
Acetone	ND	50	ug/L	08/28/08		H/J	SW8260
Acrylonitrile	ND	10	ug/L	08/28/08		H/J	SW8260
Benzene	ND	5	ug/L	08/28/08		H/J	SW8260
Bromobenzene	ND	5	ug/L	08/28/08		H/J	SW8260

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Bromochloromethane	ND	5	ug/L	08/28/08		H/J	SW8260
Bromodichloromethane	ND	5	ug/L	08/28/08		H/J	SW8260
Bromoform	ND	5	ug/L	08/28/08		H/J	SW8260
Bromomethane	ND	5	ug/L	08/28/08		H/J	SW8260
Carbon Disulfide	ND	5	ug/L	08/28/08		H/J	SW8260
Carbon tetrachloride	ND	5	ug/L	08/28/08		H/J	SW8260
Chlorobenzene	ND	5	ug/L	08/28/08		H/J	SW8260
Chloroethane	ND	5	ug/L	08/28/08		H/J	SW8260
Chloroform	ND	5	ug/L	08/28/08		H/J	SW8260
Chloromethane	ND	5	ug/L	08/28/08		H/J	SW8260
cis-1,2-Dichloroethene	280	5	ug/L	08/28/08		H/J	SW8260
cis-1,3-Dichloropropene	ND	5	ug/L	08/28/08		H/J	SW8260
Dibromochloromethane	ND	5	ug/L	08/28/08		H/J	SW8260
Dibromoethane	ND	5	ug/L	08/28/08		H/J	SW8260
Dibromomethane	ND	5	ug/L	08/28/08		H/J	SW8260
Dichlorodifluoromethane	ND	5	ug/L	08/28/08		H/J	SW8260
Ethylbenzene	ND	5	ug/L	08/28/08		H/J	SW8260
Hexachlorobutadiene	ND	5	ug/L	08/28/08		H/J	SW8260
Isopropylbenzene	ND	5	ug/L	08/28/08		H/J	SW8260
m&p-Xylene	ND	5	ug/L	08/28/08		H/J	SW8260
Methyl Ethyl Ketone	ND	60	ug/L	08/28/08		H/J	SW8260
Methyl t-butyl ether (MTBE)	ND	10	ug/L	08/28/08		H/J	SW8260
Methylene chloride	ND	5	ug/L	08/28/08		H/J	SW8260
Naphthalene	ND	5	ug/L	08/28/08		H/J	SW8260
n-Butylbenzene	ND	5	ug/L	08/28/08		H/J	SW8260
n-Propylbenzene	ND	5	ug/L	08/28/08		H/J	SW8260
o-Xylene	ND	5	ug/L	08/28/08		H/J	SW8260
p-Isopropyltoluene	ND	5	ug/L	08/28/08		H/J	SW8260
sec-Butylbenzene	ND	5	ug/L	08/28/08		H/J	SW8260
Styrene	ND	5	ug/L	08/28/08		H/J	SW8260
tert-Butylbenzene	ND	5	ug/L	08/28/08		H/J	SW8260
Tetrachloroethene	5500	5	ug/L	08/28/08		H/J	SW8260
Tetrahydrofuran (THF)	ND	10	ug/L	08/28/08		H/J	SW8260
Toluene	ND	5	ug/L	08/28/08		H/J	SW8260
Total Xylenes	ND	5	ug/L	08/28/08		H/J	SW8260
trans-1,2-Dichloroethene	ND	5	ug/L	08/28/08		H/J	SW8260
trans-1,3-Dichloropropene	ND	5	ug/L	08/28/08		H/J	SW8260
trans-1,4-dichloro-2-butene	ND	10	ug/L	08/28/08		H/J	SW8260
Trichloroethene	190	5	ug/L	08/28/08		H/J	SW8260
Trichlorofluoromethane	ND	5	ug/L	08/28/08		H/J	SW8260
Trichlorotrifluoroethane	ND	5	ug/L	08/28/08		H/J	SW8260
Vinyl chloride	ND	5	ug/L	08/28/08		H/J	SW8260
QA/QC Surrogates			<i>3</i> .				
% 1,2-dichlorobenzene-d4	99		%	08/28/08		H/J	SW8260
% Bromofluorobenzene	92		%	08/28/08		H/J	SW8260
% Dibromofluoromethane	94		%	08/28/08		H/J	SW8260
% Toluene-d8	100		%	08/28/08		H/J	SW8260
						•	-

Client ID: 1299 1ST AVE. MW-2

Parameter

Result

RL

Units

Date

Time

By

Reference

Comments:

TRIP BLANK INCLUDED

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis/Shiller, Laboratory Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

September 05, 2008

FOR: Attn: Mr. Timothy Lo

Hydrotechnology Consultants Inc

2500 Plaza 5

Jersey City NJ 07311

Sample InformationCustody InformationDateTimeMatrix:GROUND WATERCollected by:08/27/0810:00Location Code:HYDROCONReceived by:LB08/28/0817:00

Rush Request: RUSH Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG I.D.: GAQ72061 Phoenix I.D.: AQ72063

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Volatiles							
1,1,1,2-Tetrachloroethane	ND	100	ug/L	08/28/08		H/J	SW8260
1,1,1-Trichloroethane	ND	100	ug/L	08/28/08		H/J	SW8260
1,1,2,2-Tetrachloroethane	ND	100	ug/L	08/28/08		H/J	SW8260
1,1,2-Trichloroethane	ND	100	ug/L	08/28/08		H/J	SW8260
1,1-Dichloroethane	ND	100	ug/L	08/28/08		H/J	SW8260
1,1-Dichloroethene	ND	100	ug/L	08/28/08		H/J	SW8260
1,1-Dichloropropene	ND	100	ug/L	08/28/08		H/J	SW8260
1,2,3-Trichlorobenzene	ND	100	ug/L	08/28/08		H/J	SW8260
1,2,3-Trichloropropane	ND	100	ug/L	08/28/08		H/J	SW8260
1,2,4-Trichlorobenzene	ND	100	ug/L	08/28/08		H/J	SW8260
1,2,4-Trimethylbenzene	ND	100	ug/L	08/28/08		H/J	SW8260
1,2-Dibromo-3-chloropropane	ND	100	ug/L	08/28/08		H/J	SW8260
1,2-Dichlorobenzene	ND	100	ug/L	08/28/08		H/J	SW8260
1,2-Dichloroethane	ND	100	ug/L	08/28/08		H/J	SW8260
1,2-Dichloropropane	ND	100	ug/L	08/28/08		H/J	SW8260
1,3,5-Trimethylbenzene	ND	100	ug/L	08/28/08		H/J	SW8260
1,3-Dichlorobenzene	ND	100	ug/L	08/28/08		H/J	SW8260
1,3-Dichloropropane	ND	100	ug/L	08/28/08		H/J	SW8260
1,4-Dichlorobenzene	ND	100	ug/L	08/28/08		H/J	SW8260
2,2-Dichloropropane	ND	100	ug/L	08/28/08		H/J	SW8260
2-Chlorotoluene	ND	100	ug/L	08/28/08		H/J	SW8260
2-Hexanone	ND	500	ug/L	08/28/08		H/J	SW8260
2-Isopropyltoluene	ND	100	ug/L	08/28/08		H/J	SW8260
4-Chlorotoluene	ND	100	ug/L	08/28/08		H/J	SW8260
4-Methyl-2-pentanone	ND	500	ug/L	08/28/08		H/J	SW8260
Acetone	ND	1000	ug/L	08/28/08		H/J	SW8260
Acrylonitrile	ND	200	ug/L	08/28/08		H/J	SW8260
Benzene	ND	100	ug/L	08/28/08		H/J	SW8260
Bromobenzene	ND	100	ug/L	08/28/08		H/J	SW8260

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Bromochloromethane	ND	100	ug/L	08/28/08		H/J	SW8260
Bromodichloromethane	ND	100	ug/L	08/28/08		H/J	SW8260
Bromoform	ND	100	ug/L	08/28/08		H/J	SW8260
Bromomethane	ND	100	ug/L	08/28/08		H/J	SW8260
Carbon Disulfide	ND	100	ug/L	08/28/08		H/J	SW8260
Carbon tetrachloride	ND	100	ug/L	08/28/08		H/J	SW8260
Chlorobenzene	ND	100	ug/L	08/28/08		H/J	SW8260
Chloroethane	ND	100	ug/L	08/28/08		H/J	SW8260
Chloroform	ND	100	ug/L	08/28/08		H/J	SW8260
Chloromethane	ND	100	ug/L	08/28/08		H/J	SW8260
cis-1,2-Dichloroethene	1400	100	ug/L	08/28/08		H/J	SW8260
cis-1,3-Dichloropropene	ND	100	ug/L	08/28/08		H/J	SW8260
Dibromochloromethane	ND	100	ug/L	08/28/08		H/J	SW8260
Dibromoethane	ND	100	ug/L	08/28/08		H/J	SW8260
Dibromomethane	ND	100	ug/L	08/28/08		H/J	SW8260
Dichlorodifluoromethane	ND	100	ug/L	08/28/08		H/J	SW8260
Ethylbenzene	ND	100	ug/L	08/28/08		H/J	SW8260
Hexachlorobutadiene	ND	100	ug/L	08/28/08		H/J	SW8260
Isopropylbenzene	ND	100	ug/L	08/28/08		H/J	SW8260
m&p-Xylene	ND	100	ug/L	08/28/08		H/J	SW8260
Methyl Ethyl Ketone	ND	1200	ug/L	08/28/08		H/J	SW8260
Methyl t-butyl ether (MTBE)	ND	200	ug/L	08/28/08		H/J	SW8260
Methylene chloride	ND	100	ug/L	08/28/08		H/J	SW8260
Naphthalene	ND	100	ug/L	08/28/08		H/J	SW8260
n-Butylbenzene	ND	100	ug/L	08/28/08		H/J	SW8260
n-Propylbenzene	ND	100	ug/L	08/28/08		H/J	SW8260
o-Xylene	ND	100	ug/L	08/28/08		H/J	SW8260
p-Isopropyltoluene	ND	100	ug/L	08/28/08		H/J	SW8260
sec-Butylbenzene	ND	100	ug/L	08/28/08		H/J	SW8260
Styrene	ND	100	ug/L	08/28/08		H/J	SW8260
tert-Butylbenzene	ND	100	ug/L	08/28/08		H/J	SW8260
Tetrachloroethene	120	100	ug/L	08/28/08		H/J	SW8260
Tetrahydrofuran (THF)	ND	200	ug/L	08/28/08		H/J	SW8260
Toluene	ND	100	ug/L	08/28/08		H/J	SW8260
Total Xylenes	ND	100	ug/L	08/28/08		H/J	SW8260
trans-1,2-Dichloroethene	ND	100	ug/L	08/28/08		H/J	SW8260
trans-1,3-Dichloropropene	ND	100	ug/L	08/28/08		H/J	SW8260
trans-1,4-dichloro-2-butene	ND	200	ug/L	08/28/08		H/J	SW8260
Trichloroethene	ND	100	ug/L	08/28/08		H/J	SW8260
Trichlorofluoromethane	ND	100	ug/L	08/28/08		H/J	SW8260
Trichlorotrifluoroethane	ND	100	ug/L	08/28/08		H/J	SW8260
Vinyl chloride	1200	100	ug/L	08/28/08		H/J	SW8260
QA/QC Surrogates			=				
% 1,2-dichlorobenzene-d4	103		%	08/28/08		H/J	SW8260
% Bromofluorobenzene	95		%	08/28/08		H/J	SW8260
% Dibromofluoromethane	100		%	08/28/08		H/J	SW8260
% Toluene-d8	99		%	08/28/08		H/J	SW8260

Client ID: 1299 1ST AVE. MW-3

Parameter

Result

RL

Units

Date

Time

By

Reference

Comments:

TRIP BLANK INCLUDED

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis/Shiller, Laboratory Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

September 05, 2008

FOR: Attn: Mr. Timothy Lo

Hydrotechnology Consultants Inc

2500 Plaza 5

Jersey City NJ 07311

Sample InformationCustody InformationDateTimeMatrix:GROUND WATERCollected by:08/27/0810:00Location Code:HYDROCONReceived by:LB08/28/0817:00

Rush Request: RUSH Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG I.D.: GAQ72061 Phoenix I.D.: AQ72064

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Volatiles							
1,1,1,2-Tetrachloroethane	ND	5	ug/L	08/30/08		H/J	SW8260
1,1,1-Trichloroethane	ND	5	ug/L	08/30/08		H/J	SW8260
1,1,2,2-Tetrachloroethane	ND	5	ug/L	08/30/08		H/J	SW8260
1,1,2-Trichloroethane	ND	5	ug/L	08/30/08		H/J	SW8260
1,1-Dichloroethane	ND	5	ug/L	08/30/08		H/J	SW8260
1,1-Dichloroethene	ND	5	ug/L	08/30/08		H/J	SW8260
1,1-Dichloropropene	ND	5	ug/L	08/30/08		H/J	SW8260
1,2,3-Trichlorobenzene	ND	5	ug/L	08/30/08		H/J	SW8260
1,2,3-Trichloropropane	ND	5	ug/L	08/30/08		H/J	SW8260
1,2,4-Trichlorobenzene	ND	5	ug/L	08/30/08		H/J	SW8260
1,2,4-Trimethylbenzene	ND	5	ug/L	08/30/08		H/J	SW8260
1,2-Dibromo-3-chloropropane	ND	5	ug/L	08/30/08		H/J	SW8260
1,2-Dichlorobenzene	ND	5	ug/L	08/30/08		H/J	SW8260
1,2-Dichloroethane	ND	5	ug/L	08/30/08		H/J	SW8260
1,2-Dichloropropane	ND	5	ug/L	08/30/08		H/J	SW8260
1,3,5-Trimethylbenzene	ND	5	ug/L	08/30/08		H/J	SW8260
1,3-Dichlorobenzene	ND	5	ug/L	08/30/08		H/J	SW8260
1,3-Dichloropropane	ND	5	ug/L	08/30/08		H/J	SW8260
1,4-Dichlorobenzene	ND	5	ug/L	08/30/08		H/J	SW8260
2,2-Dichloropropane	ND	5	ug/L	08/30/08		H/J	SW8260
2-Chlorotoluene	ND	5	ug/L	08/30/08		H/J	SW8260
2-Hexanone	ND	25	ug/L	08/30/08		H/J	SW8260
2-Isopropyltoluene	ND	5	ug/L	08/30/08		H/J	SW8260
4-Chlorotoluene	ND	5	ug/L	08/30/08		H/J	SW8260
4-Methyl-2-pentanone	ND	25	ug/L	08/30/08		H/J	SW8260
Acetone	ND	50	ug/L	08/30/08		H/J	SW8260
Acrylonitrile	ND	10	ug/L	08/30/08		H/J	SW8260
Benzene	ND	5	ug/L	08/30/08		H/J	SW8260
Bromobenzene	ND	5	ug/L	08/30/08		H/J	SW8260

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Bromochloromethane	ND	5	ug/L	08/30/08		H/J	SW8260
Bromodichloromethane	ND	5	ug/L	08/30/08		H/J	SW8260
Bromoform	ND	5	ug/L	08/30/08		H/J	SW8260
Bromomethane	ND	5	ug/L	08/30/08		H/J	SW8260
Carbon Disulfide	ND	5	ug/L	08/30/08		H/J	SW8260
Carbon tetrachloride	ND	5	ug/L	08/30/08		H/J	SW8260
Chlorobenzene	ND	5	ug/L	08/30/08		H/J	SW8260
Chloroethane	ND	5	ug/L	08/30/08		H/J	SW8260
Chloroform	ND	5	ug/L	08/30/08		H/J	SW8260
Chloromethane	ND	5	ug/L	08/30/08		H/J	SW8260
cis-1,2-Dichloroethene	8.3	5	ug/L	08/30/08		H/J	SW8260
cis-1,3-Dichloropropene	ND	5	ug/L	08/30/08		H/J	SW8260
Dibromochloromethane	ND	5	ug/L	08/30/08		H/J	SW8260
Dibromoethane	ND	5	ug/L	08/30/08		H/J	SW8260
Dibromomethane	ND	5	ug/L	08/30/08		H/J	SW8260
Dichlorodifluoromethane	ND	5	ug/L	08/30/08		H/J	SW8260
Ethylbenzene	ND	5	ug/L	08/30/08		H/J	SW8260
Hexachlorobutadiene	ND	5	ug/L	08/30/08		H/J	SW8260
Isopropylbenzene	ND	5	ug/L	08/30/08		H/J	SW8260
m&p-Xylene	ND	5	ug/L	08/30/08		H/J	SW8260
Methyl Ethyl Ketone	ND	60	ug/L	08/30/08		H/J	SW8260
Methyl t-butyl ether (MTBE)	ND	10	ug/L	08/30/08		H/J	SW8260
Methylene chloride	ND	5	ug/L	08/30/08		H/J	SW8260
Naphthalene	ND	5	ug/L	08/30/08		H/J	SW8260
n-Butylbenzene	ND	5	ug/L	08/30/08		H/J	SW8260
n-Propylbenzene	ND	5	ug/L	08/30/08		H/J	SW8260
o-Xylene	ND	5	ug/L	08/30/08		H/J	SW8260
p-Isopropyltoluene	ND	5	ug/L	08/30/08		H/J	SW8260
sec-Butylbenzene	ND	5	ug/L	08/30/08		H/J	SW8260
Styrene	ND	5	ug/L	08/30/08		H/J	SW8260
tert-Butylbenzene	ND	5	ug/L	08/30/08		H/J	SW8260
Tetrachloroethene	69	5	ug/L	08/30/08		H/J	SW8260
Tetrahydrofuran (THF)	ND	10	ug/L	08/30/08		H/J	SW8260
Toluene	ND	5	ug/L	08/30/08		H/J	SW8260
Total Xylenes	ND	5	ug/L	08/30/08		H/J	SW8260
trans-1,2-Dichloroethene	ND	5	ug/L	08/30/08		H/J	SW8260
trans-1,3-Dichloropropene	ND	5	ug/L	08/30/08		H/J	SW8260
trans-1,4-dichloro-2-butene	ND	10	ug/L	08/30/08		H/J	SW8260
Trichloroethene	ND	5	ug/L	08/30/08		H/J	SW8260
Trichlorofluoromethane	ND	5	ug/L	08/30/08		H/J	SW8260
Trichlorotrifluoroethane	ND	5	ug/L	08/30/08		H/J	SW8260
Vinyl chloride	ND	5	ug/L	08/30/08		H/J	SW8260
QA/QC Surrogates			g. -			. =	-
% 1,2-dichlorobenzene-d4	101		%	08/30/08		H/J	SW8260
% Bromofluorobenzene	95		%	08/30/08		H/J	SW8260
% Dibromofluoromethane	103		%	08/30/08		H/J	SW8260
% Toluene-d8	98		%	08/30/08		H/J	SW8260
70 TOTACHC-GO	,,		70	33,30,00		1113	J 4 V U Z U U

Client ID: 1299 1ST AVE. MW-4

Parameter

Result

RL Units

Date Time By Reference

Comments:

TRIP BLANK INCLUDED

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis/Shiller, Laboratory Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

September 05, 2008	<u>Q</u> A/0	OC Data				D.: GAQ72	2061
Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
QA/QC Batch 108878, QC Sample No: A	Q70499 (AQ72061	, AQ72062, AQ	72063)				
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	95	101	6.1	106	105	0.9
1,1,1-Trichloroethane	ND	91	96	5.3	106	103	2.9
1,1,2,2-Tetrachloroethane	ND	81	88	8.3	100	98	2.0
1,1,2-Trichloroethane	ND	92	92	0.0	107	103	3.8
1,1-Dichloroethane	ND	94	95	1.1	102	99	3.0
1,1-Dichloroethene	ND	96	97	1.0	106	103	2.9
1,1-Dichloropropene	ND	91	95	4.3	107	102	4.8
1,2,3-Trichlorobenzene	ND	83	88	5.8	98	102	4.0
1,2,3-Trichloropropane	ND	108	96	11.8	112	95	16.4
1,2,4-Trichlorobenzene	ND	75	82	8.9	93	95	2.1
1,2,4-Trimethylbenzene	ND	86	93	7.8	100	98	2.0
1,2-Dibromo-3-chloropropane	ND	101	101	0.0	109	106	2.8
1,2-Dichlorobenzene	ND	88	90	2.2	97	96	1.0
1,2-Dichloroethane	ND	94	96	2.1	108	103	4.7
1,2-Dichloropropane	ND	93	96	3.2	108	103	4.7
1,3,5-Trimethylbenzene	ND	88	92	4.4	100	99	1.0
1,3-Dichlorobenzene	ND	85	90	5.7	97	97	0.0
1,3-Dichloropropane	ND	95	98	3.1	106	103	2.9
1,4-Dichlorobenzene	ND	80	87	8.4	93	93	0.0
2,2-Dichloropropane	ND	81	81	0.0	94	87	7.7
2-Chlorotoluene	ND	86	91	5.6	97	96	1.0
2-Hexanone	ND	< 70	<70	NC	72	64	11.8
2-Isopropyltoluene	ND	92	95	3.2	100	100	0.0
4-Chlorotoluene	ND	88	92	4.4	96	98	2.1
4-Methyl-2-pentanone	ND	96	90	6.5	109	102	6.6
Acetone	ND	< 70	<70	NC	46	44	4.4
Acrolein	ND	<70	116	NC	96	87	9.8
Acrylonitrile	ND	93	88	5.5	102	96	6.1
Benzene	ND	92	94	2.2	105	102	2.9
Bromobenzene	ND	89	95	6.5	100	98	2.0
Bromochloromethane	ND	92	94	2.2	103	97	6.0
Bromodichloromethane	ND	96	99	3.1	109	105	3.7
Bromoform	ND	98	101	3.0	107	105	1.9
Bromomethane	ND	94	<70	NC	105	69	41.4
Carbon Disulfide	ND	96	98	2.1	100	99	1.0
Carbon tetrachloride	ND	92	98	6.3	108	106	1.9
Chlorobenzene	ND	90	94	4.3	102	100	2.0
Chloroethane	ND	94	92	2.2	104	98	5.9

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD	
Chloroform	ND	90	93	3.3	102	99	3.0	
Chloromethane	ND	99	100	1.0	96	93	3.2	
cis-1,2-Dichloroethene	ND	99	97	2.0	968	958	1.0	3
cis-1,3-Dichloropropene	ND	87	88	1.1	102	99	3.0	
Dibromochloromethane	ND	96	99	3.1	103	103	0.0	
Dibromoethane	ND	96	95	1.0	108	103	4.7	
Dibromomethane	ND	94	95	1.1	109	104	4.7	
Dichlorodifluoromethane	ND	110	112	1.8	102	95	7.1	
Ethylbenzene	ND	92	93	1.1	104	101	2.9	
Hexachlorobutadiene	ND	85	87	2.3	97	96	1.0	
Isopropylbenzene	ND	85	92	7.9	99	100	1.0	
m&p-Xylene	ND	92	97	5.3	105	102	2.9	
Methyl ethyl ketone	ND	< 70	< 70	NC	60	58	3.4	
Methyl t-butyl ether (MTBE)	ND	98	96	2.1	114	107	6.3	
Methylene chloride	ND	94	90	4.3	97	94	3.1	
Naphthalene	ND	86	98	13.0	110	113	2.7	
n-Butylbenzene	ND	80	87	8.4	93	93	0.0	
n-Propylbenzene	ND	88	97	9.7	100	99	1.0	
o-Xylene	ND	94	96	2.1	105	101	3.9	
p-Isopropyltoluene	ND	88	94	6.6	98	98	0.0	
sec-Butylbenzene	ND	87	92	5.6	98	98	0.0	
Styrene	ND	95	95	0.0	107	102	4.8	
tert-Butylbenzene	ND	90	96	6.5	103	101	2.0	
Tetrachloroethene	ND	91	95	4.3	103	101	2.0	
Tetrahydrofuran (THF)	ND	90	93	3.3	102	101	1.0	
Toluene	ND	91	94	3.2	106	103	2.9	
trans-1,2-Dichloroethene	ND	96	93	3.2	119	115	3.4	
trans-1,3-Dichloropropene	ND	88	87	1.1	103	99	4.0	
trans-1,4-dichloro-2-butene	ND	82	80	2.5	88	82	7.1	
Trichloroethene	ND	97	98	1.0	608	604	0.7	3
Trichlorofluoromethane	ND	100	102	2.0	101	96	5.1	
Trichlorotrifluoroethane	ND	97	99	2.0	105	104	1.0	
Vinyl chloride	ND	99	99	0.0	102	98	4.0	
% 1,2-dichlorobenzene-d4	102	102	101	1.0	100	99	1.0	
% Bromofluorobenzene	91	101	100	1.0	102	101	1.0	
% Dibromofluoromethane	96	98	99	1.0	102	100	2.0	
% Toluene-d8	97	101	101	0.0	104	102	1.9	
QA/QC Batch 108879, QC Samp	le No: AQ71767 (aq72063)							
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	95	101	6.1	88	90	2.2	
1,1,1-Trichloroethane	ND	91	96	5.3	89	91	2.2	
1,1,2,2-Tetrachloroethane	ND	81	88	8.3	78	87	10.9	
1,1,2-Trichloroethane	ND	92	92	0.0	89	93	4.4	
1,1-Dichloroethane	ND	94	95	1.1	89	88	1.1	
1,1-Dichloroethene	ND	96	97	1.0	88	88	0.0	
1,1-Dichloropropene	ND	91	95	4.3	85	89	4.6	
1,2,3-Trichlorobenzene	ND	83	88	5.8	51	55	7.5	
1,2,3-Trichloropropane	ND	108	96	11.8	89	82	8.2	

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
1,2,4-Trichlorobenzene	ND	75	82	8.9	49	56	13.3
1,2,4-Trimethylbenzene	ND	86	93	7.8	65	72	10.2
1,2-Dibromo-3-chloropropane	ND	101	101	0.0	87	92	5.6
1,2-Dichlorobenzene	ND	88	90	2.2	63	67	6.2
1,2-Dichloroethane	ND	94	96	2.1	90	94	4.3
1,2-Dichloropropane	ND	93	96	3.2	92	94	2.2
1,3,5-Trimethylbenzene	ND	88	92	4.4	70	73	4.2
1,3-Dichlorobenzene	ND	85	90	5.7	65	70	7.4
1,3-Dichloropropane	ND	95	98	3.1	92	92	0.0
1,4-Dichlorobenzene	ND	80	87	8.4	64	67	4.6
2,2-Dichloropropane	ND	81	81	0.0	90	86	4.5
2-Chlorotoluene	ND	86	91	5.6	69	72	4.3
2-Hexanone	ND	<70	<70	NC	38	41	7.6
2-Isopropyltoluene	ND	92	95	3.2	69	74	7.0
4-Chlorotoluene	ND	88	92	4.4	69	72	4.3
4-Methyl-2-pentanone	ND	96	90	6.5	82	86	4.8
Acetone	ND	<70	<70	NC	41	40	2.5
Acrolein	ND	<70	116	NC	55	119	73.6
Acrylonitrile	ND	93	88	5.5	79	82	3.7
Benzene	ND	92	94	2.2	87	89	2.3
Bromobenzene	ND	89	95	6.5	73	78	6.6
Bromochloromethane	ND	92	94	2.2	89	89	0.0
Bromodichloromethane	ND	96	99	3.1	91	95	4.3
Bromoform	ND	98	101	3.0	91	91	0.0
Bromomethane	ND	94	<70	NC	85	62	31.3
Carbon Disulfide	ND	94 96	< 70 98	2.1	84	85	1.2
	ND						
Carbon tetrachloride		92	98	6.3	90	93	3.3
Chlorosthoro	ND	90	94	4.3	83	82	1.2
Chloroethane	ND	94	92	2.2	92	83	10.3
Chloroform	ND	90	93	3.3	89	88	1.1
Chloromethane	ND	99	100	1.0	84	81	3.6
cis-1,2-Dichloroethene	ND	99	97	2.0	91	87	4.5
cis-1,3-Dichloropropene	ND	87	88	1.1	86	92	6.7
Dibromochloromethane	ND	96	99	3.1	91	94	3.2
Dibromoethane	ND	96	95	1.0	90	91	1.1
Dibromomethane	ND	94	95	1.1	90	94	4.3
Dichlorodifluoromethane	ND	110	112	1.8	77	77	0.0
Ethylbenzene	ND	92	93	1.1	83	83	0.0
Hexachlorobutadiene	ND	85	87	2.3	40	50	22.2
Isopropylbenzene	ND	85	92	7.9	73	77	5.3
m&p-Xylene	ND	92	97	5.3	81	82	1.2
Methyl ethyl ketone	ND	< 70	< 70	NC	46	51	10.3
Methyl t-butyl ether (MTBE)	ND	98	96	2.1	98	104	5.9
Methylene chloride	ND	94	90	4.3	87	86	1.2
Naphthalene	ND	86	98	13.0	33	39	16.7
n-Butylbenzene	ND	80	87	8.4	56	62	10.2
n-Propylbenzene	ND	88	97	9.7	71	74	4.1
o-Xylene	ND	94	96	2.1	83	84	1.2
p-Isopropyltoluene	ND	88	94	6.6	64	70	9.0

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
sec-Butylbenzene	ND	87	92	5.6	63	69	9.1
Styrene	ND	95	95	0.0	78	78	0.0
tert-Butylbenzene	ND	90	96	6.5	71	77	8.1
Tetrachloroethene	ND	91	95	4.3	82	83	1.2
Tetrahydrofuran (THF)	ND	90	93	3.3	91	99	8.4
Toluene	ND	91	94	3.2	85	87	2.3
trans-1,2-Dichloroethene	ND	96	93	3.2	90	89	1.1
trans-1,3-Dichloropropene	ND	88	87	1.1	89	90	1.1
trans-1,4-dichloro-2-butene	ND	82	80	2.5	82	83	1.2
Trichloroethene	ND	97	98	1.0	88	90	2.2
Trichlorofluoromethane	ND	100	102	2.0	85	84	1.2
Trichlorotrifluoroethane	ND	97	99	2.0	84	92	9.1
Vinyl chloride	ND	99	99	0.0	88	86	2.3
% 1,2-dichlorobenzene-d4	102	102	101	1.0	99	101	2.0
% Bromofluorobenzene	91	101	100	1.0	103	102	1.0
% Dibromofluoromethane	96	98	99	1.0	102	103	1.0
% Toluene-d8	97	101	101	0.0	101	101	0.0
QA/QC Batch 108968, QC Sample N		101	101	0.0	101	101	0.0
Volatiles	10. AQ12033 (AQ12004)						
1,1,1,2-Tetrachloroethane	ND	104	94	10.1	107	92	15.1
1,1,1-Trichloroethane	ND	103	92	11.3	102	87	15.9
1,1,2,2-Tetrachloroethane	ND	95	88	7.7	98	84	15.4
1,1,2-Trichloroethane	ND	100	95	5.1	105	88	17.6
1,1-Dichloroethane	ND	99	89	10.6	98	84	15.4
1,1-Dichloroethene	ND	99	93	6.3	105	90	15.4
1,1-Dichloropropene	ND	98	89	9.6	108	89	19.3
1,2,3-Trichlorobenzene	ND	103	95	8.1	101	91	10.4
1,2,3-Trichloropropane	ND	102	102	0.0	101	82	20.8
1,2,4-Trichlorobenzene	ND	100	94	6.2	99	87	12.9
1,2,4-Trimethylbenzene	ND	100	91	9.4	100	88	12.8
1,2-Dibromo-3-chloropropane	ND	112	110	1.8	104	90	14.4
1,2-Dichlorobenzene	ND	97	90	7.5	101	86	16.0
1,2-Dichloroethane	ND	103	95	8.1	107	89	18.4
1,2-Dichloropropane	ND	100	93	7.3	104	88	16.7
1,3,5-Trimethylbenzene	ND	99	89	10.6	102	86	17.0
1,3-Dichlorobenzene	ND	99	90	9.5	102	86	16.0
1,3-Dichloropropane	ND	101	94	7.2	106	89	17.4
1,4-Dichlorobenzene	ND ND	95	87	8.8	98	84	15.4
2,2-Dichloropropane	ND	99	92	7.3	101	84	18.4
2-Chlorotoluene	ND ND	96	92 88	7.3 8.7	99		15.2
						85	
2-Hexanone	ND ND	71 100	87 89	20.3 11.6	66 104	56 oo	16.4 16.7
2-Isopropyltoluene						88	
4-Chlorotoluene	ND	99	89	10.6	101	84	18.4
4-Methyl-2-pentanone	ND	101	103	2.0	103	87	16.8
Acetone	ND	<70	83	NC	46	35	27.2
Acrolein	ND	130	<70	NC	104	84	21.3
Acrylonitrile	ND	95	94	1.1	98	82	17.8
Benzene	ND	99	90	9.5	104	87	17.8

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
Bromobenzene	ND	101	90	11.5	103	87	16.8
Bromochloromethane	ND	96	89	7.6	100	86	15.1
Bromodichloromethane	ND	106	99	6.8	108	91	17.1
Bromoform	ND	108	102	5.7	113	96	16.3
Bromomethane	ND	76	98	25.3	113	74	41.7
Carbon Disulfide	ND	100	92	8.3	110	92	17.8
Carbon tetrachloride	ND	103	95	8.1	112	94	17.5
Chlorobenzene	ND	98	93	5.2	104	87	17.8
Chloroethane	ND	95	90	5.4	109	86	23.6
Chloroform	ND	97	89	8.6	99	84	16.4
Chloromethane	ND	100	90	10.5	106	87	19.7
cis-1,2-Dichloroethene	ND	101	92	9.3	101	86	16.0
cis-1,3-Dichloropropene	ND	101	95	6.1	104	90	14.4
Dibromochloromethane	ND	104	97	7.0	111	92	18.7
Dibromoethane	ND	102	98	4.0	108	90	18.2
Dibromomethane	ND	102	95	7.1	106	89	17.4
Dichlorodifluoromethane	ND	110	101	8.5	121	100	19.0
Ethylbenzene	ND	99	92	7.3	106	88	18.6
Hexachlorobutadiene	ND	103	91	12.4	103	88	15.7
Isopropylbenzene	ND	95	86	9.9	102	87	15.9
m&p-Xylene	ND	102	94	8.2	109	90	19.1
Methyl ethyl ketone	ND	<70	82	NC	57	45	23.5
Methyl t-butyl ether (MTBE)	ND	103	98	5.0	113	93	19.4
Methylene chloride	ND	95	92	3.2	102	82	21.7
Naphthalene	ND	115	96	18.0	100	96	4.1
n-Butylbenzene	ND	97	87	10.9	97	84	14.4
n-Propylbenzene	ND	100	91	9.4	103	86	18.0
o-Xylene	ND	101	95	6.1	110	88	22.2
p-Isopropyltoluene	ND	102	92	10.3	103	87	16.8
sec-Butylbenzene	ND	97	87	10.9	100	84	17.4
Styrene	ND	101	97	4.0	111	90	20.9
tert-Butylbenzene	ND	101	90	11.5	104	87	17.8
Tetrachloroethene	ND	101	94	7.2	104	89	15.5
Tetrahydrofuran (THF)	ND	96	95	1.0	97	86	12.0
Toluene	ND	99	90	9.5	106	87	19.7
trans-1,2-Dichloroethene	ND	100	93	7.3	105	88	17.6
trans-1,3-Dichloropropene	ND	103	99	4.0	108	90	18.2
trans-1,4-dichloro-2-butene	ND	107	109	1.9	109	86	23.6
Trichloroethene	ND	101	93	8.2	106	89	17.4
Trichlorofluoromethane	ND	100	92	8.3	105	89	16.5
Trichlorotrifluoroethane	ND	101	92	9.3	109	92	16.9
Vinyl chloride	ND	100	93	7.3	108	90	18.2
% 1,2-dichlorobenzene-d4	103	100	99	1.0	100	101	1.0
% Bromofluorobenzene	96	102	103	1.0	103	100	3.0
% Dibromofluoromethane	95	103	95	8.1	101	98	3.0
% Toluene-d8	101	101	100	1.0	101	101	0.0

QA/QC Data

LCS LCSD LCS MS MS Dup
Parameter Blank % % RPD Rec % Rec % RPD

3 = This parameter is outside laboratory ms/msd specified limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Phyllis Shiller, Laboratory Director

SDG I.D.: GAQ72061

Po of		- Follow washing to the	2927	626-0820			140001 / 140001 / 1000	The Office of the State of the	BIBORD TO THE STATE OF THE STAT			A CONTRACTOR OF THE CONTRACTOR			The series of				Data Format	Excel	ia D	GIS/Key	Other	Data Package	ASP-A US Reduced Deliv.*	N. Hazale EDD Phoenix Std Report Other	
Temp	Fax#:	☑ Email: 1	Project P.O. 29	Phone #: 718-634	Fax #:	Str.	Sittle .	Solution Sol	9/20			And the second s							NA NA	MCP Cert	GW-1	GW-2		Z Z		ollected: N	
Y RECORD	0, Manchester, CT 06040	Fax (860) 545-0823	. Are	40	Mars															Turnaround: Clirki	2 Davs* GW Protect.	3 Days* GA Mobility	Standard	Joiner Res. Vol.	* SURCHARGE Res. Criteria APPLIES Other	State where samples were collected:	
CHAIN OF CUSTODY RECORD	587 East Middle Turnpike, P.O. Box 370, Manchester, CT 06040	Email: service@phoenixlabs.com Fax (860) 54: Client Services (860) 645-8726	Project: (293 (1)4	Report to: Titus Clist	Millima	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Analysis Request												-	IIIIE:	11.30					3.C.	
5	587 East N	Email:	4.		vil		Date 8/25 Rec		Date Time	XIII	メ る。 。 。	1	2:30PM K		E CM X	X 1r 21				Date	50963					and the first participation of the control of the c	
		Inc.	Englishmental Con	24.3 Floor	0	lentification	Date	olid 0=other	Sample Date Matrix Samples	*****	228 N	N N N	2 865	2 2/20	5 865	S				Accepted by	(7)					on and one of comband demonstrate (Galabana)	
		Environmental Laboratories,		ال	4	Client Sample - Information - Identification	7	WW=wastewater S=soil/solid SL=sludge A=air	Customer Sample Identification	(C2)			()	(M-1C)	(.3)-1)	(15'-12')					M		\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Comments, Special Requirements or Regulations:	Lo.	en e	
		nmental Li	トッラエ	7	5	Client Samp	Trump			7.35	いさ	26.0	**	36.8	<u>で</u>	26-10	and a first terminal and a second a second and a second and a second and a second and a second a	ener to		Relinguished by:				pecial Requireme		de de de de la facilitat de la	
		Enviro	Customer:	Address:			Sampler's Signature	Matrix Code: DW=drinking water GW=groundwater	Phoenix Sample #								enterior establishment of the second of the			Rel				Comments, S			

PHOENIX Environmental Laboratories. Inc.	d.	28	į	
		. "		
			ļ	
	81		i	
)			
	P.			
	*			
	\$			
	1			
	-	arn.	A	
		WI	3	S
	€:	1111	Ш	2
			W	I
	31	£.	×	
		110	M	S
	-2	WW.	M	1
		.		7
			4	t
				2
			N	5
			ч	2
			ς.	12
PHOE				Ţ
PHOE Environmental			Н	
PHO!			٦	6
PHO Environment	, ,	150-100	4	1
PHC	影学		Ψ.	2
HH Empiroum	1		7	2
PH Environ			1	7
PE		-		u
Emoil	.			0
D I		The state of the s	ч	-
	1	7	7	2
		L		2
	¥		٦!	H

CHAIN OF CUSTODY RECORD

7 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Email: service@phoenixlabs.o

Fax (000) 045-0025	645-8726
Ę	9 (098)
pnoenixiaos.	Services
service@	Client

Data Delih	(er	1	'					
Email:	† #	-	Ö	0				
	tothe international date to come	t City	8	uth	3	4	3	
		•		-				

8

8

Temp

213 Floor Ó Š Ehriconmagneta 82211 ナが大 FULTON Hydro Tech A+13cm Customer: _

Address:

3 ن د د No. Charling. (भाउनी कि 5 Report to: Invoice to: _ Project:

Project P.O:	Phone #:	-ax #:
1227	18-631	
-		
- 1	1 1	- 1

Client Sample - Information - Identification Sampler's Signature

<u>Matrix Code:</u> DW=drinking water

WW=waster SL=sludge GW=groundwater

0=other	
S=soil/solid	A=sir
water	

Sampled Sampled

Date

Sample

Customer Sample Identification

Phoenix Sample #

MEG

177

3 Matrix

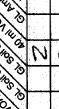
> アルゴ ナーユン

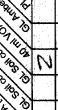
MW-Z

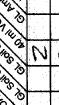
HW-I

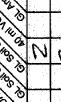
		Le LIGHT	100 100 100 100 100 100 100 100 100 100
			18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
' '	` \		1

(Start of	196	14	
	TOL TOLE	ALO TO TO	1
	Story.	10 10 10 10 10 10 10 10 10 10 10 10 10 1	
		(9)	
		1/3	

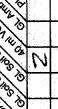

SUE S	1 10 10 10 10 10 10 10 10 10 10 10 10 10	
elien.	7,110 00 100 100 100 100 100 100 100 100	N
	10 10 10 10 10 10 10 10 10 10 10 10 10 1	
	27/85	

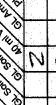

74	Χ		
207	⊘	4.4	7
$\mathcal{N}^{\langle q \rangle}$	〉		<u>.</u>
20 1 10 10 10 10 10 10	~	1	J
0 10 10 10 10 10 10 10 10 10 10 10 10 10	ঠ	H	
**\\	/	Ĺ	
(4)	(©		
7	<u>~</u>		

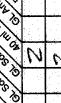

~\		
\\ \bar{b}		
	44.7	
~\		L
\ G		
8 8 2 8	IN	ı
2.7	* *	
		١.
% ∖		Ľ
2.7	i	Ĺ
O /.		
2.∖ા		e.
		L
1 10		

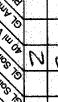

7.9		۲
1/4		
100	2	
18 B		
10,9		۲
9,0		ŀ

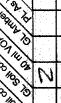
	·		
\times_{\S}	}		
4	L		
140 00 NO	1	V	
<u>`</u> `{	十		
18 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			

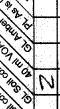


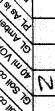


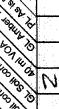

BULL OF		
7140		
\ Q		١
8	N	
105 10 105 10 105 10	N	

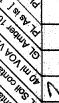


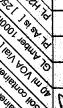


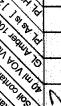


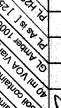



N 1









Tudge / Judges / Adsed to

lungs Hogy h

S. M. S. S.

Analysis Request

\$ 2.7

Date

00,00

☐ MCP Cert.

GW-1 GW-2

GW Protect GA Mobility RCP Cert.

2 Days*

1 Day*

Turnaround:

Time:

Relinguished by:

Data Format

GIS/Key

E COMIS

S.2 S.2 S.3 S.3

GB Mability SW Protect. Res. Vol.

Standard 3 Days*

Officer

Comments, Special Requirements or Regulations:

Data Package ASP-A

MWRA eSMART

Res. Criteria Other

SURCHARGE

APPLIES

Ind. Vol.

NJ Reduced Deliv.

Phoenix Std Report

State where samples were collected:__

EXECUTIVE SUMMARY

Merritt Engineering Consultants, P.C., was retained by Hudson Valley Bank to conduct a Phase I Environmental Site Assessment (ESA) at 1299 1st Avenue, AKA 340 East 70th Street, New York, New York 10021.

The on site investigation was conducted on August 29, 2006.

Based on our site reconnaissance, database review and historical investigation, the following Recognized Environmental Condition (REC) was noted at the time of our inspection.

A Recognized Environmental Condition means the presence or likely presence of any hazardous substances or petroleum products on a property under conditions that indicate an existing release, a past release, or a material threat of a release of any hazardous substance or petroleum products into structures on the property or into the ground, groundwater, or surface water of the property. The term includes hazardous substances or petroleum products even under compliance with laws.

Sanborn Maps for the years 1976-1996 show a dry cleaner on site. Our database review also indicates the presence of a small quantity generator for a Dry Cleaner (Nu Brite Cleaners). Nu Brite Cleaners is no longer an active facility on site. The current drycleaner (Marie Jeanne) is only used as a drop point and no dry cleaning is done on the premises. Since dry cleaning was conducted on site, a Phase II Investigation including soil borings is recommended (Approximate Cost \$5,000-\$6,000).

In addition, no de minimis conditions were noted.

A de minimis condition is one that generally does not present a material risk of harm to public health or the environment and that generally would not be subject of an enforcement action if brought to the attention of appropriate governmental agencies (excluding local asbestos & lead situations).

No Historical Recognized Environmental Conditions (HRECs) were reported. In addition no evidence of HRECs were observed during our on-site inspection/ identified in our database search/historical review.

Resource Conservation Recovery Act (RCRA) Treatment Storage Disposal (TSD) facilities - those facilities on which treatment, storage, and/or disposal of hazardous wastes takes place, as defined and regulated by RCRA. Inclusion on the RCRA TSD list does not imply contamination has occurred at the site.

Findings: No sites located within a ½-mile radius.

Resource Conservation Recovery Act (RCRA) generators list - list kept by EPA of those persons or entities that generate hazardous wastes as defined and regulated by RCRA. Inclusion on the RCRA list does not imply contamination has occurred at the site.

Findings: 1 generator listed at property.

Nu Brite Cleaners 1299 1st Avenue

Small Quantity Generator, EPA ID: NYD981075039 No violations found

Facility is listed in EPA's index system-Facility Index System (FINDS)

Nu Brite Cleaners is no longer an active facility on site. The current drycleaner (Marie Jeanne) is only used as a drop point and no dry cleaning is done on the premises. Since dry cleaning was conducted on site, a Phase II Investigation including soil borings is recommended.

38 generators listed within a 1/4-mile radius.

Emergency Response Notification System (ERNS) list - list of reported CERCLA hazardous substance releases or spills in quantities greater than the reportable quantity, as maintained at the National Response Center. Notification requirements for such releases or spills are codified in 40 CFR Parts 302 & 355.

Findings: Site not listed.

Department of Environmental Conservation (DEC) lists the contaminated sites throughout the State and classifies the degree of contamination. Number 1 being highly contaminated; number 5 being the least hazardous to the public.

code:

- 1. Causing or presenting an imminent danger of causing irreversible or irreparable damage to the public health or environment immediate action required;
- 2. Significant threat to the public health or environment action required;
- 2a. Temporary classification assigned to sites that have inadequate and/or insufficient data for inclusion in any of the other classifications;
- 3. Does not present a significant threat to the public health or the environment action may be deferred:

10

4. Site is properly closed - requires continued management;

5.11 HISTORICAL USE INFORMATION ON THE PROPERTIES

A. Sanborn Fire Insurance maps of the site and immediate area were available for the years 1892, 1907, 1951, 1976, 1979, 1980, 1982, 1985, 1987, 1988, 1991, 1992, 1993, 1994, 1995 and 1996. The maps indicate the following information:

1892 Sub-divided lot 1907-1951 Store/Dwelling 1976-1996 Dry Cleaning/Store/Dwelling

Sanborn Maps for the years 1976-1996 show a dry cleaner on site. Our database review also indicates the presence of a small quantity generator for a Dry Cleaner (Nu Brite Cleaners). Nu Brite Cleaners is no longer an active facility on site. The current drycleaner (Marie Jeanne) is only used as a drop point and no dry cleaning is done on the premises. Since dry cleaning was conducted on site, a Phase II Investigation including soil borings is recommended.

B. Aerial Photographs of the site and immediate area were available for the years 1954, 1966, 1975, 1984 and 1994. The photos indicate the following information:

This section of Manhattan has been developed with residential and commercial buildings from 1954 through the latest aerial photo available (1994).

5.12 HISTORICAL USE INFORMATION ON ADJOINING PROPERTIES

The Sanborn Fire Insurance Maps and Aerial Photos reviewed by Merritt Engineering Consultants cover the adjoining properties on the north, south, east & west. No recognized environmental conditions were noted. (gas tanks, filling station etc.)

5.11 HISTORICAL USE INFORMATION ON THE PROPERTIES

A. Sanborn Fire Insurance maps of the site and immediate area were available for the years 1892, 1907, 1951, 1976, 1979, 1980, 1982, 1985, 1987, 1988, 1991, 1992, 1993, 1994, 1995 and 1996. The maps indicate the following information:

1892 Sub-divided lot 1907-1951 Store/Dwelling 1976-1996 Dry Cleaning/Store/Dwelling

Sanborn Maps for the years 1976-1996 show a dry cleaner on site. Our database review also indicates the presence of a small quantity generator for a Dry Cleaner (Nu Brite Cleaners). Nu Brite Cleaners is no longer an active facility on site. The current drycleaner (Marie Jeanne) is only used as a drop point and no dry cleaning is done on the premises. Since dry cleaning was conducted on site, a Phase II Investigation including soil borings is recommended.

B. Aerial Photographs of the site and immediate area were available for the years 1954, 1966, 1975, 1984 and 1994. The photos indicate the following information:

This section of Manhattan has been developed with residential and commercial buildings from 1954 through the latest aerial photo available (1994).

5.12 HISTORICAL USE INFORMATION ON ADJOINING PROPERTIES

The Sanborn Fire Insurance Maps and Aerial Photos reviewed by Merritt Engineering Consultants cover the adjoining properties on the north, south, east & west. No recognized environmental conditions were noted. (gas tanks, filling station etc.)