CORRECTIVE MEASURES WORK PLAN

for

RIVER PLACE II WEST 42ND STREET **NEW YORK, NEW YORK NYSDEC BCP Site No. C231012**

Prepared For:

New York State Department of Environmental Conservation Division of Environmental Remediation Bureau of Technical Support, 11th Floor 625 Broadway **Albany, NY 12233**

Prepared By:

Langan Engineering, Environmental, Surveying and Landscape Architecture, D.P.C. 21 Penn Plaza 360 West 31st Street, 8th Floor New York, New York 10001

> Jason Hayes, P.E. **Senior Associate**

December 5, 2014 Langan Project No. 170040901

LANGAN

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	BACKGROUND	1
3.0	ENGINEERING CONTROL ASSESSMENT	2
4.0	POTENTIAL CORRECTIVE MEASURES	3
5.0	SCHEDULE	3

APPENDICES

Appendix A Photographs of Water Intrusion

Appendix B GCI Environmental Advisory, Inc. Indoor Air Quality Report

Corrective Measures Work Plan River Place II West 42nd Street New York, New York NYSDEC BCP Site No. C231012 Langan Project No. 170040901

1.0 INTRODUCTION

Langan Engineering, Environmental, Surveying and Landscape Architecture, D.P.C. (Langan) prepared this Corrective Measures Work Plan (CMWP) to address water intrusion observed in isolated areas of the sub-cellar at River Place II ("the site") in New York, New York. The site is owned by River Place II, LLC and is improved with a 59-story, high-rise residential apartment building with two cellar levels. The site was remediated under the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP Site C231012) and is managed under the July 2006 Site Management Plan (SMP). This CMWP has been completed in accordance with the requirements of the SMP and incorporates corrective measure discussions between Langan, NYSDEC, and River Place II, LLC in September and October 2014.

This CMWP provides a brief site background, a description of the observation of water intrusion in the sub-cellar, the proposed investigation, potential corrective measure, and a schedule for implementation of the potential corrective measure.

2.0 BACKGROUND

The site was historically utilized as a manufactured gas plant (MGP) between the 1860s and 1920s. The site was developed as a railroad yard in the 1930s and was converted into a parking lot by 1980. Consolidated Edison entered into a Brownfield Cleanup Agreement (BCA) with the NYSDEC for the site, and NYSDEC approved a remedial work plan in March 2005. Remediation was completed between August 2005 and February 2006 and included the removal and off-site disposal of approximately 79,000 tons of MGP-impacted soil, the placement of an engineered composite cover, and the installation of a vapor barrier/waterproofing membrane. The composite cover serves as a physical barrier between site occupants and residual soil and groundwater impacts remaining at the site and the vapor barrier/waterproofing membrane prevents intrusion of impacted groundwater and soil vapors from residual impacted groundwater and soil at the site. The composite cover and vapor barrier/waterproofing membrane serve as permanent engineering controls (EC) for the site. NYSDEC issued a Brownfield Cleanup Program (BCP) Certificate of Completion for remediation of the site on June 19, 2007.

The July 2006 SMP prepared by Dvirka and Batrilucci Consulting Engineers established an annual monitoring plan to inspect and certify the site ECs. Langan completed a Periodic

Corrective Measures Work Plan River Place II West 42nd Street New York, New York NYSDEC BCP Site No. C231012 Langan Project No. 170040901

Review Report (PRR) documenting the results of the 2014 annual inspection. The 2014 PRR is pending revision per completion of the potential corrective measures presented herein.

3.0 ENGINEERING CONTROL ASSESSMENT

Langan completed the annual site-wide inspection at River Place II on August 12, 2014. Cracks, evidence of liquid seepage and staining were observed on sub cellar walls. These observations may indicate water intrusion. The observed water intrusion may be the result of a domestic water source, such as a leaking water pipe, located within the building envelope. Photographs of sub-cellar water intrusion are provided as Appendix A.

Based on the observed seepage, River Place II, LLC retained GCI Environmental Advisory, Inc. (GCI) to perform an indoor air quality evaluation to determine if soil vapors were accumulating in the site building. On August 25, 2014, three indoor air samples were collected in the sub cellar area and three indoor air samples were collected from the cellar area. An outdoor air sample was collected from the 10th floor setback for quality assurance/quality control purposes. Samples were collected into laboratory certified, six-liter SUMMA canisters using calibrated regulators to allow for an eight-hour sampling duration.

Samples were transported to EMSL Analytical Laboratory of Cinnaminson, New Jersey; a New York State Department of Health (NYSDOH) environmental laboratory accreditation program (ELAP) certified laboratory. The samples were analyzed for volatile organic compounds (VOC) via the United States Environmental Protection Agency (USEPA) Standard Method TO15.

VOCs were detected in air samples collected from the cellar and sub cellar sampling locations. Several of the detected compounds, including freon, acetone, isopropanol and ethanol, are associated with the use of cleaning and refrigeration products. The other detected VOCs are found in the fuel oil that is used for space heating in the building. The concentrations detected are consistent with the NYSDOH Study of Volatile Organic Chemicals in Air of Fuel Oil Heated Homes, 2003 (NYSDOH 2003 Fuel Oil Study) of indoor air background data for fuel oil heated homes. All detections were below the NYSDOH 2003 Fuel Oil Study Upper Fence values for indoor air. The GCI indoor air quality evaluation report is provided as Appendix B.

The comparison with existing studies indicates e that VOCs detected in the indoor air samples are likely due to typical building operations (e.g., use of cleaning products, fuel oil storage, boiler operation).

4.0 POTENTIAL CORRECTIVE MEASURES

The following section presents the potential corrective measures for mitigating water intrusion. The mitigation plan will be implemented in two phases. Phase 1 will consist of investigation activities to determine the extent of water intrusion and potential mitigation options based on investigation findings. Phase 2 will include implementation of the selected method, as required based on the findings of Phase I.

Phase 1 will consist of the following tasks:

- Inspect and evaluate existing water intrusion conditions. Conduct interviews with building staff to determine duration and extent of water intrusion;
- Review of drawings, reports and photographs for previous subsurface work conducted at the site (i.e. street services/utilities and foundation construction);
- Preparation of three dimensional model mapping existing water intrusion conditions;
 and
- Preparation of a report that describes investigation activities and observations including identification of water intrusion areas and correlation with existing construction.
 Conclusions and recommendations will be provided for potential mitigation.

Phase 2 will consist of the following tasks, as required:

- Implementation of preferred mitigation plan;
- A performance evaluation of the repair; and
- Preparation of a report that summarizes observations made during implementation of the mitigation plan.

5.0 SCHEDULE

Phase 1 is anticipated to be completed prior to December 31, 2014 and Phase 2 is anticipated to begin in early 2015.

APPENDIX A PHOTOGRAPHS OF WATER INTRUSION

Photo 1: Walls of River Place II sub-cellar showing observed intrusion

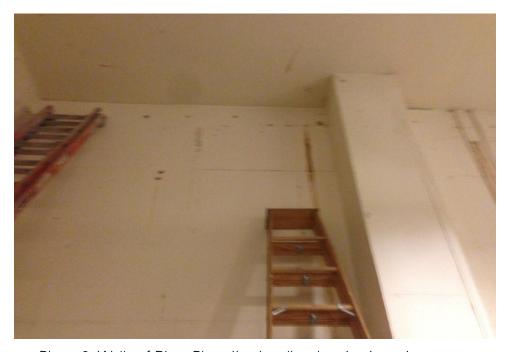


Photo 2: Walls of River Place II sub-cellar showing intrusion

PN: 170040901

Photo 3: Walls of River Place II sub-cellar showing intrusion.

APPENDIX B GCI ENVIRONMENTAL ADVISORY, INC. INDOOR AIR QUALITY REPORT

655 Third Avenue

New York, NY 10017

(212) 986-9460

Fax: (212) 986-9464

September 4, 2014

Mr. Bill Dacunto Silverstein Properties, Inc. 7 World Trade Center New York, NY 10007

RE: 620 West 42nd Street, NYC (a.k.a. Silver Towers)

Dear Mr. Adamski,

GCI Environmental Advisory, Inc.'s (GCI) Certified Industrial Hygienist, Mr. James Grond, MSPH, CIH, LEED AP conducted a limited visual inspection and collected Total Volatile Organic Compounds (TVOCs) air samples within and exterior to the above referenced building on August 27, 2014. Samples were placed into the following areas to measure TVOCs:

- Outside Air 10th floor setback
- Cellar Middle of Compactor Room
- Cellar East side Outside Gas Meter Room
- Cellar Southeast section Outside door to Sub-cellar Boiler Room
- Sub-cellar East side hallway North of Boiler Room entrance
- Sub-cellar Boiler Room Southeast section
- Sub-cellar Boiler Room Northwest section

The purpose of the sampling was to respond to the issues identified within the August 25, 2014 email correspondence from Mr. Daniel Carrus, PE, LEED AP regarding water intrusion noted within the Sub-cellar boiler room. Langan was concerned that Voatile Organic Compounds (VOC) were being released into the building as a result of this water seepage and the VOCs identified from their ground water sampling events. The standing water observed within the Sub-Cellar Boiler Room appeared clear with no visible organic stains or sheens noted. The areas chosen for sampling were based in or adjacent to areas of standing water in the Sub-cellar and areas located above or in proximity to the Sub-cellar samples. An outdoor air sample was collected from the 10th floor setback as a baseline sample.

Evacuated SUMMA Canisters were placed into each area approximately four (4) feet above floor level. A laboratory supplied, eight (8) hour calibrated regulator, was attached to each canister and the location, start time and initial pressure reading was recorded with a non-VOC emitting writing device. Upon completing the approximately eight (8) hour sampling event, the final pressure reading and stop times were recorded. A sample data sheet and Chain of Custody were prepared and the SUMMA Canisters, pressure regulators and paperwork were packaged and delivered via overnight carrier to EMSL Analytical Laboratory, a fully licensed and accredited laboratory.

The samples were analyzed for Total Volatile Organic Compounds (VOCs) utilizing Gas Chromatography for identification via the Environmental Protection Agency (EPA) Standard Method TO15.

Laboratory analysis detected n-Butane, Ethanol, Isopropyl Alcohol, Acetone and Chlorform at extremely low levels (parts per billion) which are well current Occupational Safety and Health Administrations (OSHA) Permissible Exposure Levels (PELs). The following tables indicate the volatile organic compounds levels detected in concentrations greater than 10 micrograms per cubic meter of collected air (10 µg/m³) for each area and the detected levels in the outside air:

PARAMETER	OUTSIDE AIR	Cellar - Middle of Compactor Room (µg/m³)	Cellar - East side - Outside Gas Meter Room (µg/m³)	Cellar - Southeast section - Outside door to Sub-cellar Boiler Room (µg/m³)
n-Butane	10 μg/m³	32 μg/m³	43 μg/m³	34 μg/m³
Ethanol	19 µg/m³	460 µg/m³	420 μg/m³	450 μg/m³
Isopropyl Alcohol	<10 µg/m³	130 μg/m³	87 μg/m³	78 μg/m³
Acetone	18 μg/m³	35 μg/m³	39 μg/m³	37 μg/m³
Chloroform	<10 µg/m³	10 μg/m³	<10 µg/m³	<10 μg/m³
Xylene	ND	<10 µg/m³	<10 μg/m³	<10 µg/m³

PARAMETER	AIR side hallway - North of Boiler Room entrance (µg/m³)		Sub-cellar - Boiler Room - Southeast section (µg/m³)	Sub-cellar - Boiler Room - Northwest section (µg/m³)
n-Butane	10 μg/m³	25 μg/m³	12 μg/m³	11 μg/m³
Ethanol	19 μg/m³	190 μg/m³	38 μg/m³	43 μg/m³
Isopropyl Alcohol	<10 μg/m³	28 μg/m³	24 μg/m³	19 μg/m³
Acetone	18 μg/m³	23 μg/m³	24 μg/m³	20 μg/m³
Chloroform	<10 µg/m³	<10 µg/m³	<10 µg/m³	<10 μg/m³
Xylene	ND	10 μg/m³	<10 µg/m³	<10 µg/m³

μg/m³ - micrograms per cubic meter of collected air ND - Non-Detected

In reviewing the analytical data, the airborne levels detected within the Cellar level were most likely due to the presence of typical consumer products and the impact of the Compactor Room on the samples. The relatively low readings within the Sub-cellar Boiler Room and adjacent hallways seem to indicate that the water intrusion is not creating a pathway for volatile organic compounds to enter the building and impact the living and habitable spaces of the building envelope.

The observed water intrusion, based upon visible observations and lack of any detectable smells or odors, would indicate a domestic water source such as a leaking water main and it is recommended that the water be tested for Fluoride and Chlorine.

I have attached a copy of the laboratory analysis for each area for your review and should you require additional information please contact me at (212) 986-9460.

Sincerely,

James Grond, MSPH, CIH, LEED AP

President

GCI Environmental Advisory, Inc.

att.

JFG/gj

APPENDIX A OUTSIDE AIR - 10th FLOOR SETBACK

200 Route 130 North, Cinnaminson, NJ 08077 Phone/Fax: (856)858-4800 / (856)858-4571 http://www.EMSL.com to15lab@EMSL.com

EMSL Order #: 491400791
EMSL Sample #: 491400791-1
Customer ID: GCIE50
Customer PO: Not Available

Attn: James Grond

GCI Environmental Advisory, Inc.

655 Third Ave New York, NY 10017 Phone: 212-986-9460
Fax: 212-986-9464
Collected: 08/27/2014
Received: 08/28/2014

Project: Silver Tower

Sample ID: ST-1

Analysis Initial Analysis Date 09/02/2014 Analyst Init. MTH Lab File ID M6064.D Canister ID E0492 Sample Vol. 250 cc Dil. Factor

Target Compounds	CAS#	MW	Result ppbv	RL ppbv	Q	Result ug/m3	RL ug/m3	Comments
Propylene	115-07-1	42.08	ND	1.0		ND	1.7	
Freon 12(Dichlorodifluoromethane)	75-71-8	120.9	0.56	0.50		2.8	2.5	
Freon 114(1,2-Dichlorotetrafluoroethan	76-14-2	170.9	ND	0.50		ND	3.5	
Chloromethane	74-87-3	50.49	0.69	0.50		1.4	1.0	
n-Butane	106-97-8	58.12	4.3	0.50		10	1.2	
Vinyl chloride	75-01-4	62.50	ND	0.50		ND	1.3	100000
1,3-Butadiene	106-99-0	54.09	ND	0.50		ND	1.1	
Bromomethane	74-83-9	94.94	ND	0.50		ND	1.9	1000
Chloroethane	75-00-3	64.52	ND	0.50		ND	1.3	
Ethanol	64-17-5	46.07	10	0.50		19	0.94	
Bromoethene(Vinyl bromide)	593-60-2	106.9	ND	0.50		ND	2.2	
Freon 11(Trichlorofluoromethane)	75-69-4	137.4	ND	0.50		ND	2.8	
Isopropyl alcohol(2-Propanol)	67-63-0	60.10	2.8	0.50		6.9	1.2	
Freon 113(1,1,2-Trichlorotrifluoroethan	76-13-1	187.4	ND	0.50		ND	3.8	
Acetone	67-64-1	58.08	7.5	0.50		18	1.2	
1,1-Dichloroethene	75-35-4	96.94	ND	0.50		ND	2.0	55
Acetonitrile	75-05-8	41.00	ND	0.50		ND	0.84	
Tertiary butyl alcohol(TBA)	75-65-0	74.12	ND	0.50		ND	1.5	
Bromoethane(Ethyl bromide)	74-96-4	108.0	ND	0.50		ND	2.2	
3-Chloropropene(Allyl chloride)	107-05-1	76.53	ND	0.50		ND	1.6	
Carbon disulfide	75-15-0	76.14	ND	0.50		ND	1.6	
Methylene chloride	75-09-2	84.94	ND	0.50		ND	1.7	
Acrylonitrile	107-13-1	53.00	ND	0.50		ND	1.1	
Methyl-tert-butyl ether(MTBE)	1634-04-4	88.15	ND	0.50		ND	1.8	7.00
trans-1,2-Dichloroethene	156-60-5	96.94	ND	0.50		ND	2.0	
n-Hexane	110-54-3	86.17	ND	0.50		ND	1.8	
1,1-Dichloroethane	75-34-3	98.96	ND	0.50		ND	2.0	
Vinyl acetate	108-05-4	86.00	ND	0.50		ND	1.8	
2-Butanone(MEK)	78-93-3	72.10	0.81	0.50		2.4	1.5	
cis-1,2-Dichloroethene	156-59-2	96.94	ND	0.50		ND	2.0	
Ethyl acetate	141-78-6	88.10	0.81	0.50		2.9	1.8	
Chloroform	67-66-3	119.4	ND	0.50		ND	2.4	
Tetrahydrofuran	109-99-9	72.11	ND	0.50		ND	1.5	
1,1,1-Trichloroethane	71-55-6	133.4	ND	0.50		ND	2.7	
Cyclohexane	110-82-7	84.16	ND	0.50		ND	1.7	
2,2,4-Trimethylpentane(Isooctane)	540-84-1	114.2	ND	0.50		ND	2.3	
Carbon tetrachloride	56-23-5	153.8	ND	0.50		ND	3.1	
n-Heptane	142-82-5	100.2	ND	0.50		ND	2.0	
,2-Dichloroethane	107-06-2	98.96	ND	0.50		ND	2.0	
Benzene	71-43-2	78.11	ND	0.50		ND	1.6	
richloroethene	79-01-6	131.4	ND	0.50		ND	2.7	
,2-Dichloropropane	78-87-5	113.0	ND	0.50		ND	2.3	
Methyl Methacrylate	80-62-6	100.12	ND	0.50		ND	2.0	10 10
Bromodichloromethane	75-27-4	163.8	ND	0.50		ND	3.3	
,4-Dioxane	123-91-1	88.12	ND	0.50		ND	1.8	
-Methyl-2-pentanone(MIBK)	108-10-1	100.2	ND	0.50		ND	2.0	

200 Route 130 North, Cinnaminson, NJ 08077 Phone/Fax: (856)858-4800 / (856)858-4571 http://www.EMSL.com_to15lab@EMSL.com

EMSL Order #: 491400791 EMSL Sample #: 491400791-1 Customer ID: GCIE50 Customer PO: Not Available

Attn: James Grond

GCI Environmental Advisory, Inc.

655 Third Ave New York, NY 10017

Phone: 212-986-9460 Fax: 212-986-9464 Collected: 08/27/2014 Received: 08/28/2014

Project: Silver Tower

Sample ID: ST-1

Analysis Initial

Analysis Date 09/02/2014

Analyst Init. MTH

Lab File ID M6064.D

Canister ID E0492

Sample Vol. 250 cc

Dil. Factor

Target Compound Results Summary

Target Compounds	CAS#	MW	Result ppbv	RL ppbv	Q	Result ug/m3	RL ugim2	C
	10061-01-5		The state of the s		U		ug/m3	Comments
cis-1,3-Dichloropropene Toluene		111.0	ND	0.50	-	ND	2.3	
	108-88-3	92.14	0.69	0.50		2.6	1.9	
trans-1,3-Dichloropropene	10061-02-6	111.0	ND	0.50		ND	2.3	
1,1,2-Trichloroethane	79-00-5	133.4	ND	0.50		ND	2.7	
2-Hexanone(MBK)	591-78-6	100.1	ND	0.50		ND	2.0	
Tetrachloroethene	127-18-4	165.8	ND	0.50		ND	3.4	
Dibromochloromethane	124-48-1	208.3	ND	0.50		ND	4.3	
1,2-Dibromoethane	106-93-4	187.8	ND	0.50		ND	3.8	
Chlorobenzene	108-90-7	112.6	ND	0.50		ND	2.3	
Ethylbenzene	100-41-4	106.2	ND	0.50		ND	2.2	
Xylene (p,m)	1330-20-7	106.2	ND	1.0		ND	4.3	
Xylene (Ortho)	95-47-6	106.2	ND	0.50		ND	2.2	
Styrene	100-42-5	104.1	ND	0.50		ND	2.1	
sopropylbenzene (cumene)	98-82-8	120.19	ND	0.50		ND	2.5	
Bromoform	75-25-2	252.8	ND	0.50		ND	5.2	
1,1,2,2-Tetrachloroethane	79-34-5	167.9	ND	0.50		ND	3.4	
4-Ethyltoluene	622-96-8	120.2	ND	0.50		ND	2.5	
1,3,5-Trimethylbenzene	108-67-8	120.2	ND	0.50		ND	2.5	
2-Chlorotoluene	95-49-8	126.6	ND	0.50		ND	2.6	
1,2,4-Trimethylbenzene	95-63-6	120.2	ND	0.50		ND	2.5	
1,3-Dichlorobenzene	541-73-1	147.0	ND	0.50		ND	3.0	
1,4-Dichlorobenzene	106-46-7	147.0	ND	0.50	\Box	ND	3.0	
Benzyl chloride	100-44-7	126.0	ND	0.50	\vdash	ND	2.6	
1,2-Dichlorobenzene	95-50-1	147.0	ND	0.50	\vdash	ND	3.0	
1,2,4-Trichlorobenzene	120-82-1	181.5	ND	0.50	\Box	ND	3.7	
Hexachloro-1,3-butadiene	87-68-3	260.8	ND	0.50		ND	5.3	
Naphthalene	91-20-3	128.17	ND	0.50		ND	2.6	
Total Target Compound Concent	rations:		28	ppbv		66	ug/m3	-

Surrogate 4-Bromofluorobenzene Result 6.4

Spike 10

Recovery 64%

Qualifier Definitions

ND = Non Detect

B = Compound also found in method blank.

E= Estimated concentration exceeding upper calibration range.

D= Result reported from diluted analysis.

Method Reference

USEPA: Compendium Method TO-15, "Determination of Volatile Organic Compounds (VOCs) in Air..." Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), January 1999, (EPA/625/R-96/010b).

APPENDIX B CELLAR - MIDDLE OF COMPACTOR ROOM

200 Route 130 North, Cinnaminson, NJ 08077 Phone/Fax: (856)858-4800 / (856)858-4571 http://www.EMSL.com to15lab@EMSL.com

EMSL Order #: 491400791
EMSL Sample #: 491400791-7
Customer ID: GCIE50
Customer PO: Not Available

Attn: James Grond
GCI Environmental Advisory, Inc.

655 Third Ave New York, NY 10017 Phone: 212-986-9460
Fax: 212-986-9464
Collected: 08/27/2014
Received: 08/28/2014

Project: Silver Tower

Sample ID: ST-2

Analysis Initial Analysis Date 09/03/2014 Analyst Init. MTH Lab File ID M6071.D Canister ID E15629 Sample Vol. 522 cc Dil. Factor

cellar - middle of compactor room

	14.3								
Target Compounds	CAS#	MW	Result ppbv	RL ppbv	Q	Result ug/m3	RL ug/m3	Comments	
Propylene	115-07-1	42.08	ND	1.0		ND	1.7	- Солиновие	
Freon 12(Dichlorodifluoromethane)	75-71-8	120.9	0.51	0.50		2.5	2.5		
Freon 114(1,2-Dichlorotetrafluoroethan	76-14-2	170.9	ND	0.50		ND	3.5		
Chloromethane	74-87-3	50.49	0.79	0.50		1.6	1.0		
n-Butane	106-97-8	58.12	14	0.50		32	1.2		
Vinyl chloride	75-01-4	62.50	ND	0.50		ND	1.3		
1,3-Butadiene	106-99-0	54.09	ND	0.50		ND	1.1		
Bromomethane	74-83-9	94.94	ND	0.50		ND	1.9		
Chloroethane	75-00-3	64.52	ND	0.50		ND	1.3		
Ethanol	64-17-5	46.07	240	0.50	E	460	0.94		
Bromoethene(Vinyl bromide)	593-60-2	106.9	ND	0.50		ND	2.2		
Freon 11(Trichlorofluoromethane)	75-69-4	137.4	ND	0.50		ND	2.8		
Isopropyl alcohol(2-Propanol)	67-63-0	60.10	51	0.50	Е	130	1.2		
Freon 113(1,1,2-Trichlorotrifluoroethan	76-13-1	187.4	ND	0.50		ND	3.8		
Acetone	67-64-1	58.08	15	0.50		35	1.2		
1,1-Dichloroethene	75-35-4	96.94	ND	0.50		ND	2.0		
Acetonitrile	75-05-8	41.00	ND	0.50		ND	0.84		
Tertiary butyl alcohol(TBA)	75-65-0	74.12	ND	0.50		ND	1.5		
Bromoethane(Ethyl bromide)	74-96-4	108.0	ND	0.50		ND	2.2		
3-Chloropropene(Allyl chloride)	107-05-1	76.53	ND	0.50		ND	1.6		
Carbon disulfide	75-15-0	76.14	ND	0.50		ND	1.6		
Methylene chloride	75-09-2	84.94	ND	0.50		ND	1.7		
Acrylonitrile	107-13-1	53.00	ND	0.50		ND	1.1		
Methyl-tert-butyl ether(MTBE)	1634-04-4	88.15	ND	0.50		ND	1.8		
rans-1,2-Dichloroethene	156-60-5	96.94	ND	0.50		ND	2.0		
n-Hexane	110-54-3	86.17	0.92	0.50		3.2	1.8		
1,1-Dichloroethane	75-34-3	98.96	ND	0.50		ND	2.0		
Vinyl acetate	108-05-4	86.00	ND	0.50		ND	1.8		
2-Butanone(MEK)	78-93-3	72.10	1.1	0.50		3.2	1.5		
cis-1,2-Dichloroethene	156-59-2	96.94	ND	0.50		ND	2.0		
Ethyl acetate	141-78-6	88.10	2.8	0.50		10	1.8		
Chloroform	67-66-3	119.4	0.73	0.50		3.6	2.4		
Tetrahydrofuran	109-99-9	72.11	ND	0.50		ND	1.5		
1,1,1-Trichloroethane	71-55-6	133.4	ND	0.50		ND	2.7		
Cyclohexane	110-82-7	84.16	ND	0.50	1001000	ND	1.7		
2,2,4-Trimethylpentane(Isooctane)	540-84-1	114.2	1.4	0.50		6.6	2.3		
Carbon tetrachloride	56-23-5	153.8	ND	0.50		ND	3.1	****	
n-Heptane	142-82-5	100.2	ND	0.50		ND	2.0		
,2-Dichloroethane	107-06-2	98.96	ND	0.50		ND	2.0		
Benzene	71-43-2	78.11	0.98	0.50		3.1	1.6		
richloroethene	79-01-6	131.4	ND	0.50		ND	2.7		
,2-Dichloropropane	78-87-5	113.0	ND	0.50		ND	2.3		
Methyl Methacrylate	80-62-6	100.12	ND	0.50		ND	2.0		
Bromodichloromethane	75-27-4	163.8	ND	0.50		ND	3.3		
,4-Dioxane	123-91-1	88.12	ND	0.50		ND	1.8		
I-Methyl-2-pentanone(MIBK)	108-10-1	100.2	ND	0.50		ND	2.0		

200 Route 130 North, Cinnaminson, NJ 08077 Phone/Fax: (856)858-4800 / (856)858-4571 http://www.EMSL.com to15lab@EMSL.com EMSL Order #: 491400791
EMSL Sample #: 491400791-7
Customer ID: GCIE50
Customer PO: Not Available

Attn: James Grond

GCI Environmental Advisory, Inc.

655 Third Ave New York, NY 10017 Phone: 212-986-9460
Fax: 212-986-9464
Collected: 08/27/2014
Received: 08/28/2014

Project: Silver Tower

Sample ID: ST-2

Analysis Initial Analysis Date 09/03/2014 Analyst Init. MTH Lab File ID M6071.D Canister ID E15629 Sample Vol. 522 cc Dil. Factor 1

Target Compound Results Summary

Target Compounds	CAS#	MW	Result ppbv	RL ppbv	Q	Result ug/m3	RL ug/m3	Comments
cis-1,3-Dichloropropene	10061-01-5	111.0	ND	0.50		ND	2.3	Comments
Toluene	108-88-3	92.14	2.5	0.50		9.3	1.9	
trans-1,3-Dichloropropene	10061-02-6	111.0	ND	0.50	_	ND	2.3	
1,1,2-Trichloroethane	79-00-5	133.4	ND	0.50		ND	2.7	
2-Hexanone(MBK)	591-78-6	100.1	ND	0.50		ND	2.0	
Tetrachloroethene	127-18-4	165.8	ND	0.50		ND	3.4	
Dibromochloromethane	124-48-1	208.3	ND	0.50		ND	4.3	
1,2-Dibromoethane	106-93-4	187.8	ND	0.50		ND	3.8	
Chlorobenzene	108-90-7	112.6	ND	0.50		ND	2.3	
Ethylbenzene	100-41-4	106.2	0.72	0.50		3.1	2.2	
Xylene (p,m)	1330-20-7	106.2	2.0	1.0		8.5	4.3	
Xylene (Ortho)	95-47-6	106.2	0.76	0.50		3.3	2.2	
Styrene	100-42-5	104.1	ND	0.50		ND	2.1	
Isopropylbenzene (cumene)	98-82-8	120.19	ND	0.50		ND	2.5	
Bromoform	75-25-2	252.8	ND	0.50		ND	5.2	
1,1,2,2-Tetrachloroethane	79-34-5	167.9	ND	0.50		ND	3.4	
4-Ethyltoluene	622-96-8	120.2	0.63	0.50		3.1	2.5	
1,3,5-Trimethylbenzene	108-67-8	120.2	ND	0.50		ND	2.5	***************************************
2-Chlorotoluene	95-49-8	126.6	ND	0.50		ND	2.6	
1,2,4-Trimethylbenzene	95-63-6	120.2	0.65	0.50		3.2	2.5	
1,3-Dichlorobenzene	541-73-1	147.0	ND	0.50		ND	3.0	
1,4-Dichlorobenzene	106-46-7	147.0	ND	0.50		ND	3.0	
Benzyl chloride	100-44-7	126.0	ND	0.50		ND	2.6	
1,2-Dichlorobenzene	95-50-1	147.0	ND	0.50		ND	3.0	
1,2,4-Trichlorobenzene	120-82-1	181.5	ND	0.50		ND	3.7	
Hexachloro-1,3-butadiene	87-68-3	260.8	ND	0.50		ND	5.3	
Naphthalene	91-20-3	128.17	ND	0.50		ND	2.6	
Total Target Compound Concent	rations:		340	ppbv		720	ug/m3	

rotal ranget compound concentrations.

 Surrogate
 Result
 Spike
 Recovery

 4-Bromofluorobenzene
 7.2
 10
 72%

Qualifier Definitions

ND = Non Detect

B = Compound also found in method blank.

E= Estimated concentration exceeding upper calibration range.

D= Result reported from diluted analysis.

Method Reference

USEPA: Compendium Method TO-15, "Determination of Volatile Organic Compounds (VOCs) in Air..." Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), January 1999, (EPA/625/R-96/010b).

NJDEP Certification #: 03036

APPENDIX C CELLAR - EAST SIDE OUTSIDE GAS METER ROOM

200 Route 130 North, Cinnaminson, NJ 08077 Phone/Fax: (856)858-4800 / (856)858-4571 http://www.EMSL.com to15lab@EMSL.com

EMSL Order #: 491400791
EMSL Sample #: 491400791-2
Customer ID: GCIE50
Customer PO: Not Available

Attn: James Grond GCI Environmental Advisory, Inc. 655 Third Ave New York, NY 10017

Phone: 212-986-9460
Fax: 212-986-9464
Collected: 08/27/2014
Received: 08/28/2014

Project: Silver Tower

Sample ID: ST-3

Analysis Initial Analysis Date 09/02/2014 Analyst Init. MTH Lab File ID M6065.D Canister ID E0444 Sample Vol. 250 cc Dil. Factor

cellar - east side - outside gas meter room

Target Compounds	CAS#	MW	Result ppbv	RL ppbv	Q	Result ug/m3	RL ug/m3	Comments
Propylene	115-07-1	42.08	ND	1.0		ND	1.7	
Freon 12(Dichlorodifluoromethane)	75-71-8	120.9	0.53	0.50		2.6	2.5	
Freon 114(1,2-Dichlorotetrafluoroethan	76-14-2	170.9	ND	0.50		ND	3.5	
Chloromethane	74-87-3	50.49	0.77	0.50		1.6	1.0	
n-Butane	106-97-8	58.12	18	0.50		43	1.2	
Vinyl chloride	75-01-4	62.50	ND	0.50		ND	1.3	
1,3-Butadiene	106-99-0	54.09	ND	0.50		ND	1.1	
Bromomethane	74-83-9	94.94	ND	0.50		ND	1.9	
Chloroethane	75-00-3	64.52	ND	0.50		ND	1.3	
Ethanol	64-17-5	46.07	220	0.50	E	420	0.94	
Bromoethene(Vinyl bromide)	593-60-2	106.9	ND	0.50		ND	2.2	
Freon 11(Trichlorofluoromethane)	75-69-4	137.4	ND	0.50		ND	2.8	
Isopropyl alcohol(2-Propanol)	67-63-0	60.10	36	0.50		87	1.2	
Freon 113(1,1,2-Trichlorotrifluoroethan	76-13-1	187.4	ND	0.50		ND	3.8	
Acetone	67-64-1	58.08	16	0.50		39	1.2	
1,1-Dichloroethene	75-35-4	96.94	ND .	0.50		ND	2.0	
Acetonitrile	75-05-8	41.00	ND	0.50		ND	0.84	- 11040
Tertiary butyl alcohol(TBA)	75-65-0	74.12	ND	0.50		ND	1.5	
Bromoethane(Ethyl bromide)	74-96-4	108.0	ND	0.50		ND	2.2	
3-Chloropropene(Allyl chloride)	107-05-1	76.53	ND	0.50		ND	1.6	
Carbon disulfide	75-15-0	76.14	ND	0.50	\vdash	ND	1.6	
Methylene chloride	75-09-2	84.94	ND	0.50	1	ND	1.7	
Acrylonitrile	107-13-1	53.00	ND	0.50		ND	1.1	
Methyl-tert-butyl ether(MTBE)	1634-04-4	88.15	ND	0.50	\vdash	ND	1.8	
rans-1,2-Dichloroethene	156-60-5	96.94	ND	0.50	\vdash	ND	2.0	
n-Hexane	110-54-3	86.17	0.73	0.50	 	2.6		
1,1-Dichloroethane	75-34-3	98.96	ND	0.50	-	ND	1:8	
/inyl acetate	108-05-4	86.00	ND	0.50	-	ND	2.0	
2-Butanone(MEK)	78-93-3	72.10	1.3	0.50			1.8	
cis-1,2-Dichloroethene	156-59-2	96.94	ND			3.8	1.5	
Ethyl acetate	141-78-6	88.10	2.4	0.50		ND	2.0	
Chloroform	67-66-3	119.4		0.50		8.7	1.8	
			0.67	0.50		3.3	2.4	
Fetrahydrofuran I,1,1-Trichloroethane	109-99-9 71-55-6	72.11	ND	0.50	\vdash	ND	1.5	
		133.4	ND	0.50		ND	2.7	
Cyclohexane	110-82-7	84.16	ND	0.50		ND	1.7	
2,2,4-Trimethylpentane(Isooctane)	540-84-1	114.2	0.76	0.50		3.5	2.3	
Carbon tetrachloride	56-23-5	153.8	ND	0.50		ND	3.1	
n-Heptane	142-82-5	100.2	ND	0.50		ND	2.0	
,2-Dichloroethane	107-06-2	98.96	ND	0.50		ND	2.0	
Benzene	71-43-2	78.11	0.61	0.50		1.9	1.6	
richloroethene	79-01-6	131.4	ND	0.50	\rightarrow	ND	2.7	
,2-Dichloropropane	78-87-5	113.0	ND	0.50		ND	2.3	
Methyl Methacrylate	80-62-6	100.12	ND	0.50		ND	2.0	
Bromodichloromethane	75-27-4	163.8	ND	0.50		ND	3.3	
,4-Dioxane	123-91-1	88.12	ND	0.50		ND	1.8	
-Methyl-2-pentanone(MIBK)	108-10-1	100.2	ND	0.50		ND	2.0	

200 Route 130 North, Cinnaminson, NJ 08077 Phone/Fax: (856)858-4800 / (856)858-4571 http://www.EMSL.com_to15lab@EMSL.com

EMSL Order #: 491400791 EMSL Sample #: 491400791-2 Customer ID: GCIE50 Customer PO: Not Available

James Grond

GCI Environmental Advisory, Inc.

655 Third Ave New York, NY 10017

Phone: 212-986-9460 Fax: 212-986-9464 Collected: 08/27/2014 Received: 08/28/2014

Project: Silver Tower

Sample ID: ST-3

<u>Analysis</u> Initial

Analysis Date 09/02/2014

Analyst Init. MTH

Lab File ID M6065.D

Canister ID E0444

Sample Vol. 250 cc

Dil. Factor 1

Target Compound Results Summary

Target Compounds	CAS#	MW	Result ppbv	RL ppbv	Q	Result ug/m3	RL ug/m3	Comments
cis-1,3-Dichloropropene	10061-01-5	111.0	ND	0.50		ND	2.3	
Toluene	108-88-3	92.14	1.9	0.50		7.0	1.9	
trans-1,3-Dichloropropene	10061-02-6	111.0	ND	0.50		ND	2.3	
1,1,2-Trichloroethane	79-00-5	133.4	ND	0.50		ND	2.7	
2-Hexanone(MBK)	591-78-6	100.1	ND	0.50		ND	2.0	
Tetrachloroethene	127-18-4	165.8	ND	0.50		ND	3.4	
Dibromochloromethane	124-48-1	208.3	ND	0.50		ND	4.3	
1,2-Dibromoethane	106-93-4	187.8	ND	0.50		ND	3.8	
Chlorobenzene	108-90-7	112.6	ND	0.50		ND	2.3	
Ethylbenzene	100-41-4	106.2	0.68	0.50		3.0	2.2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Xylene (p,m)	1330-20-7	106.2	1.8	1.0		7.8	4.3	
Xylene (Ortho)	95-47-6	106.2	0.62	0.50		2.7	2.2	
Styrene	100-42-5	104.1	ND	0.50		ND	2.1	
Isopropylbenzene (cumene)	98-82-8	120.19	ND	0.50		ND	2.5	
Bromoform	75-25-2	252.8	ND	0.50		ND	5.2	
1,1,2,2-Tetrachloroethane	79-34-5	167.9	ND	0.50		ND	3.4	
4-Ethyltoluene	622-96-8	120.2	ND	0.50		ND	2.5	
1,3,5-Trimethylbenzene	108-67-8	120.2	ND	0.50		ND	2.5	
2-Chlorotoluene	95-49-8	126.6	ND	0.50		ND	2.6	
1,2,4-Trimethylbenzene	95-63-6	120.2	ND	0.50		ND	2.5	
1,3-Dichlorobenzene	541-73-1	147.0	ND	0.50		ND	3.0	
1,4-Dichlorobenzene	106-46-7	147.0	ND	0.50		ND	3.0	
Benzyl chloride	100-44-7	126.0	ND	0.50		ND	2.6	
1,2-Dichlorobenzene	95-50-1	147.0	ND	0.50		ND	3.0	
1,2,4-Trichlorobenzene	120-82-1	181.5	ND	0.50		ND	3.7	
lexachloro-1,3-butadiene	87-68-3	260.8	ND	0.50		ND	5.3	
Naphthalene	91-20-3	128.17	ND	0.50		ND	2.6	
Total Target Compound Concent	rations:		300	ppbv		640	ug/m3	

Surrogate 4-Bromofluorobenzene Result 7.1

Spike 10

Recovery 71%

Qualifier Definitions

ND = Non Detect

B = Compound also found in method blank.

E= Estimated concentration exceeding upper calibration range.

D= Result reported from diluted analysis.

Method Reference

USEPA: Compendium Method TO-15, "Determination of Volatile Organic Compounds (VOCs) in Air..." Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), January 1999, (EPA/625/R-96/010b).

APPENDIX D CELLAR - SOUTHEAST SECTION OUTSIDE DOOR TO BOILER ROOM

200 Route 130 North, Cinnaminson, NJ 08077 Phone/Fax: (856)858-4800 / (856)858-4571 http://www.EMSL.com to15lab@EMSL.com

EMSL Order #: 491400791
EMSL Sample #: 491400791-6
Customer ID: GCIE50
Customer PO: Not Available

Attn: James Grond
GCI Environmental Advisory, Inc.
655 Third Ave
New York, NY 10017

Fax: 212-986-9464
Collected: 08/27/2014
Received: 08/28/2014

Phone: 212-986-9460

Project: Silver Tower

Sample ID: ST-4

Analysis Initial Analysis Date 09/02/2014 Analyst Init.

Lab File ID M6069.D Canister ID E0644 Sample Vol. 250 cc Dil. Factor

		Result RL				Result	RL	
Target Compounds	CAS#	MW	ppbv	ppbv	Q	ug/m3	ug/m3	Comments
Propylene	115-07-1	42.08	ND	1.0		ND	1.7	
Freon 12(Dichlorodifluoromethane)	75-71-8	120.9	0.59	0.50		2.9	2.5	
Freon 114(1,2-Dichlorotetrafluoroethan	76-14-2	170.9	ND	0.50		ND	3.5	
Chloromethane	74-87-3	50.49	0.76	0.50		1.6	1.0	
n-Butane	106-97-8	58.12	14	0.50		34	1.2	7
Vinyl chloride	75-01-4	62.50	ND	0.50		ND	1.3	
1,3-Butadiene	106-99-0	54.09	ND	0.50		ND	1.1	
Bromomethane	74-83-9	94.94	ND	0.50		ND	1.9	************
Chloroethane	75-00-3	64.52	ND	0.50		ND	1.3	
Ethanol	64-17-5	46.07	240	0.50	Ε	450	0.94	
Bromoethene(Vinyl bromide)	593-60-2	106.9	ND	0.50		ND	2.2	
Freon 11(Trichlorofluoromethane)	75-69-4	137.4	ND	0.50		ND	2.8	
Isopropyl alcohol(2-Propanol)	67-63-0	60.10	32	0.50	1	78	1.2	
Freon 113(1,1,2-Trichlorotrifluoroethan	76-13-1	187.4	ND	0.50		ND	3.8	
Acetone	67-64-1	58.08	16	0.50		37	1.2	27 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -
1,1-Dichloroethene	75-35-4	96.94	ND	0.50		ND	2.0	
Acetonitrile	75-05-8	41.00	ND	0.50		ND	0.84	
Tertiary butyl alcohol(TBA)	75-65-0	74.12	ND	0.50		ND	1.5	
Bromoethane(Ethyl bromide)	74-96-4	108.0	ND	0.50		ND	2.2	
3-Chloropropene(Allyl chloride)	107-05-1	76.53	ND	0.50		ND	1.6	
Carbon disulfide	75-15-0	76.14	ND	0.50		ND	1.6	
Methylene chloride	75-09-2	84.94	ND	0.50		ND	1.7	
Acrylonitrile	107-13-1	53.00	ND	0.50		ND	1.1	
Methyl-tert-butyl ether(MTBE)	1634-04-4	88.15	ND	0.50		ND	1.8	
trans-1,2-Dichloroethene	156-60-5	96.94	ND	0.50		ND	2.0	
n-Hexane	110-54-3	86.17	0.64	0.50		2.2	1.8	
1,1-Dichloroethane	75-34-3	98.96	ND	0.50		ND	2.0	
Vinyl acetate	108-05-4	86.00	ND .	0.50		ND	1.8	
2-Butanone(MEK)	78-93-3	72.10	1.2	0.50		3.6	1.5	
cis-1,2-Dichloroethene	156-59-2	96.94	ND	0.50		ND	2.0	
Ethyl acetate	141-78-6	88.10	2.4	0.50		8.8	1.8	
Chloroform	67-66-3	119.4	0.54	0.50		2.7	2.4	
Tetrahydrofuran	109-99-9	72.11	ND	0.50		ND	1.5	
1,1,1-Trichloroethane	71-55-6	133.4	ND	0.50		ND	2.7	
Cyclohexane	110-82-7	84.16	ND	0.50		ND	1.7	
2,2,4-Trimethylpentane(Isooctane)	540-84-1	114.2	0.56	0.50		2.6	2.3	
Carbon tetrachloride	56-23-5	153.8	ND	0.50		ND	3.1	
n-Heptane	142-82-5	100.2	ND	0.50		ND	2.0	
1,2-Dichloroethane	107-06-2	98.96	ND	0.50		ND	2.0	
Benzene	71-43-2	78.11	0.55	0.50		1.7	1.6	
Frichloroethene	79-01-6	131.4	ND	0.50		ND	2.7	
1,2-Dichloropropane	78-87-5	113.0	ND	0.50		ND	2.3	
Methyl Methacrylate	80-62-6	100.12	ND	0.50		ND	2.0	
Bromodichloromethane	75-27-4	163.8	ND	0.50		ND	3.3	
1,4-Dioxane	123-91-1	88.12	ND	0.50		ND	1.8	
4-Methyl-2-pentanone(MIBK)	108-10-1	100.2	ND	0.50		ND	2.0	

200 Route 130 North, Cinnaminson, NJ 08077 Phone/Fax: (856)858-4800 / (856)858-4571 http://www.EMSL.com to15lab@EMSL.com

EMSL Order #: 491400791
EMSL Sample #: 491400791-6
Customer ID: GCIE50
Customer PO: Not Available

Attn: James Grond

GCI Environmental Advisory, Inc.

655 Third Ave New York, NY 10017 Phone: 212-986-9460
Fax: 212-986-9464
Collected: 08/27/2014
Received: 08/28/2014

Project: Silver Tower

Sample ID: ST-4

Analysis Initial Analysis Date 09/02/2014 Analyst Init. MTH Lab File ID M6069.D Canister ID E0644 Sample Vol. 250 cc Dil. Factor

Target Compound Results Summary

Target Compounds	CAS#	MW	Result ppbv	RL ppbv	Q	Result ug/m3	RL ug/m3	Comments
cis-1,3-Dichloropropene	10061-01-5	111.0	ND	0.50		ND	2.3	
Toluene	108-88-3	92.14	1.5	0.50		5.8	1.9	
trans-1,3-Dichloropropene	10061-02-6	111.0	ND	0.50		ND	2.3	
1,1,2-Trichloroethane	79-00-5	133.4	ND	0.50		ND	2.7	
2-Hexanone(MBK)	591-78-6	100.1	ND	0.50		ND	2.0	
Tetrachloroethene	127-18-4	165.8	ND	0.50		ND	3.4	
Dibromochloromethane	124-48-1	208.3	ND	0.50		ND	4.3	
1,2-Dibromoethane	106-93-4	187.8	ND	0.50		ND	3.8	
Chlorobenzene	108-90-7	112.6	ND	0.50		ND	2.3	
Ethylbenzene	100-41-4	106.2	ND	0.50		ND	2.2	31 30 80 80 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Xylene (p,m)	1330-20-7	106.2	ND	1.0		ND	4.3	-
Xylene (Ortho)	95-47-6	106.2	ND	0.50		ND	2.2	
Styrene	100-42-5	104.1	ND	0.50		ND	2.1	
Isopropylbenzene (cumene)	98-82-8	120.19	ND	0.50		ND	2.5	
Bromoform	75-25-2	252.8	ND	0.50		ND	5.2	
1,1,2,2-Tetrachloroethane	79-34-5	167.9	ND	0.50		ND	3.4	
4-Ethyltoluene	622-96-8	120.2	ND	0.50		ND	2.5	
1,3,5-Trimethylbenzene	108-67-8	120.2	ND	0.50		ND	2.5	
2-Chlorotoluene	95-49-8	126.6	ND	0.50		ND	2.6	
1,2,4-Trimethylbenzene	95-63-6	120.2	ND	0.50		ND	2.5	
1,3-Dichlorobenzene	541-73-1	147.0	ND	0.50		ND	3.0	
1,4-Dichlorobenzene	106-46-7	147.0	ND	0.50		ND	3.0	
Benzyl chloride	100-44-7	126.0	ND	0.50		ND	2.6	
1,2-Dichlorobenzene	95-50-1	147.0	ND	0.50		ND	3.0	
1,2,4-Trichlorobenzene	120-82-1	181.5	ND	0.50		ND	3.7	
Hexachloro-1,3-butadiene	87-68-3	260.8	ND	0.50		ND	5.3	
Naphthalene	91-20-3	128.17	ND	0.50		ND	2.6	
Total Target Compound Concent	rations:		310	ppbv		630	ug/m3	

Surrogate
4-Bromofluorobenzene

Result 7.1 Spike 10 Recovery 71%

Qualifier Definitions

ND = Non Detect

B = Compound also found in method blank.

E= Estimated concentration exceeding upper calibration range.

D= Result reported from diluted analysis.

Method Reference

USEPA: Compendium Method TO-15, "Determination of Volatile Organic Compounds (VOCs) in Air..." Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), January 1999, (EPA/625/R-96/010b).

APPENDIX E SUB-CELLAR - EAST SIDE HALLWAY NORTH OF BOILER ROOM ENTRANCE

200 Route 130 North, Cinnaminson, NJ 08077 Phone/Fax: (856)858-4800 / (856)858-4571 http://www.EMSL.com to15lab@EMSL.com

EMSL Order #: 491400791
EMSL Sample #: 491400791-4
Customer ID: GCIE50
Customer PO: Not Available

Attn: James Grond GCI Environmental Advisory, Inc. 655 Third Ave New York, NY 10017

Phone: 212-986-9460
Fax: 212-986-9464
Collected: 08/27/2014
Received: 08/28/2014

Project: Silver Tower

Sample ID: ST-5

Analysis Initial Analysis Date 09/02/2014 Analyst Init. MTH Lab File ID M6067.D Canister ID E0452 Sample Vol. 250 cc Dil. Factor 1

Page 1 of 2

			Result	RL		Result	RL	
Target Compounds	CAS#	MW	ppbv	ppbv	Q	ug/m3	ug/m3	Comments
Propylene	115-07-1	42.08	ND	1.0		ND	1.7	
Freon 12(Dichlorodifluoromethane)	75-71-8	120.9	0.53	0.50		2.6	2.5	
Freon 114(1,2-Dichlorotetrafluoroethan	76-14-2	170.9	ND	0.50		ND	3.5	
Chloromethane	74-87-3	50.49	0.76	0.50	1	1.6	1.0	
n-Butane	106-97-8	58.12	10	0.50		25	1.2	
Vinyl chloride	75-01-4	62.50	ND	0.50	-	ND	1.3	
1,3-Butadiene	106-99-0	54.09	ND	0.50		ND	1.1	
Bromomethane	74-83-9	94.94	ND	0.50		ND	1.9	
Chloroethane	75-00-3	64.52	ND	0.50		ND	1.3	
Ethanol	64-17-5	46.07	100	0.50	E	190	0.94	
Bromoethene(Vinyl bromide)	593-60-2	106.9	ND	0.50		ND	2.2	
Freon 11(Trichlorofluoromethane)	75-69-4	137.4	ND	0.50		ND	2.8	
Isopropyl alcohol(2-Propanol)	67-63-0	60.10	11	0.50		28	1.2	
Freon 113(1,1,2-Trichlorotrifluoroethan	76-13-1	187.4	ND	0.50		ND	3.8	
Acetone	67-64-1	58.08	9.9	0.50		23	1.2	
1,1-Dichloroethene	75-35-4	96.94	ND	0.50		ND	2.0	341
Acetonitrile	75-05-8	41.00	ND	0.50		ND	0.84	
Tertiary butyl alcohol(TBA)	75-65-0	74.12	ND	0.50		ND	1.5	
Bromoethane(Ethyl bromide)	74-96-4	108.0	ND	0.50		ND	2.2	
3-Chloropropene(Allyl chloride)	107-05-1	76.53	ND	0.50		ND	1.6	
Carbon disulfide	75-15-0	76.14	ND	0.50		ND	1.6	
Methylene chloride	75-09-2	84.94	0.66	0.50		2.3	1.7	
Acrylonitrile	107-13-1	53.00	ND	0.50		ND	1.1	
Methyl-tert-butyl ether(MTBE)	1634-04-4	88.15	ND	0.50		ND	1.8	
trans-1,2-Dichloroethene	156-60-5	96.94	ND	0.50		ND	2.0	
n-Hexane	110-54-3	86.17	0.56	0.50		2.0	1.8	
1,1-Dichloroethane	75-34-3	98.96	ND	0.50		ND	2.0	
Vinyl acetate	108-05-4	86.00	ND	0.50		ND	1.8	
2-Butanone(MEK)	78-93-3	72.10	0.93	0.50		2.8	1.5	
cis-1,2-Dichloroethene	156-59-2	96.94	ND	0.50		ND	2.0	
Ethyl acetate	141-78-6	88.10	1.3	0.50		4.6	1.8	
Chloroform	67-66-3	119.4	ND	0.50		ND	2.4	
Tetrahydrofuran	109-99-9	72.11	ND	0.50		ND	1.5	
1,1,1-Trichloroethane	71-55-6	133.4	ND	0.50		ND	2.7	
Cyclohexane	110-82-7	84.16	ND	0.50		ND	1.7	
2,2,4-Trimethylpentane(Isooctane)	540-84-1	114.2	ND	0.50		ND	2.3	
Carbon tetrachloride	56-23-5	153.8	ND	0.50		ND	3.1	
n-Heptane	142-82-5	100.2	ND	0.50		ND	2.0	
1,2-Dichloroethane	107-06-2	98.96	ND	0.50		ND	2.0	
Benzene	71-43-2	78.11	ND	0.50		ND	1.6	
Frichloroethene Trichloroethene	79-01-6	131.4	ND	0.50		ND	2.7	
,2-Dichloropropane	78-87-5	113.0	ND	0.50		ND	2.3	
Methyl Methacrylate	80-62-6	100.12	ND	0.50		ND	2.0	
Bromodichloromethane	75-27-4	163.8	ND	0.50		ND	3.3	
,4-Dioxane	123-91-1	88.12	ND	0.50		ND	1.8	
-Methyl-2-pentanone(MIBK)	108-10-1	100.2	ND	0.50		ND	2.0	

200 Route 130 North, Cinnaminson, NJ 08077 Phone/Fax: (856)858-4800 / (856)858-4571 http://www.EMSL.com to15lab@EMSL.com

EMSL Order #: 491400791
EMSL Sample #: 491400791-4
Customer ID: GCIE50
Customer PO: Not Available

Attn: James Grond

GCI Environmental Advisory, Inc.

655 Third Ave New York, NY 10017 Phone: 212-986-9460 Fax: 212-986-9464 Collected: 08/27/2014

Received: 08/27/2014

Project: Silver Tower

Sample ID: ST-5

Analysis Initial Analysis Date 09/02/2014 Analyst Init.

Lab File ID M6067.D Canister ID E0452 Sample Vol. 250 cc Dil. Factor

Target Compound Results Summary

Target Compounds	CAS#	MW	Result ppbv	RL ppbv	Q	Result ug/m3	RL ug/m3	Comments
cis-1,3-Dichloropropene	10061-01-5	111.0	ND	0.50		ND	2.3	
Toluene	108-88-3	92.14	1.1	0.50		4.1	1.9	***************************************
trans-1,3-Dichloropropene	10061-02-6	111.0	ND	0.50		ND	2.3	
1,1,2-Trichloroethane	79-00-5	133.4	ND	0.50		ND	2.7	
2-Hexanone(MBK)	591-78-6	100.1	ND	0.50		ND	2.0	
Tetrachloroethene	127-18-4	165.8	ND	0.50		ND	3.4	
Dibromochloromethane	124-48-1	208.3	ND	0.50		ND	4.3	
1,2-Dibromoethane	106-93-4	187.8	ND	0.50		ND	3.8	
Chlorobenzene	108-90-7	112.6	ND	0.50		ND	2.3	The state of the s
Ethylbenzene	100-41-4	106.2	0.80	0.50		3.5	2.2	***************************************
Xylene (p,m)	1330-20-7	106.2	2.2	1.0		10	4.3	
Xylene (Ortho)	95-47-6	106.2	0.72	0.50		3.1	2.2	-
Styrene	100-42-5	104.1	ND	0.50		ND	2.1	
Isopropylbenzene (cumene)	98-82-8	120.19	ND	0.50		ND	2.5	
Bromoform	75-25-2	252.8	ND	0.50		ND	5.2	
1,1,2,2-Tetrachloroethane	79-34-5	167.9	ND	0.50		ND	3.4	
4-Ethyltoluene	622-96-8	120.2	0.62	0.50		3.1	2.5	
1,3,5-Trimethylbenzene	108-67-8	120.2	ND	0.50		ND	2.5	AND THE STATE OF T
2-Chlorotoluene	95-49-8	126.6	ND	0.50		ND	2.6	
1,2,4-Trimethylbenzene	95-63-6	120.2	0.56	0.50		2.7	2.5	
1,3-Dichlorobenzene	541-73-1	147.0	ND	0.50		ND	3.0	
1,4-Dichlorobenzene	106-46-7	147.0	ND	0.50		ND	3.0	
Benzyl chloride	100-44-7	126.0	ND	0.50		ND	2.6	
1,2-Dichlorobenzene	95-50-1	147.0	0.76	0.50		4.6	3.0	
1,2,4-Trichlorobenzene	120-82-1	181.5	ND	0.50		ND	3.7	
Hexachloro-1,3-butadiene	87-68-3	260.8	ND	0.50		ND	5.3	
Naphthalene	91-20-3	128.17	ND	0.50		ND	2.6	
Total Target Compound Concent	rations:		140	ppbv		310	ug/m3	

<u>Surrogate</u> 4-Bromofluorobenzene Result 6.9 Spike 10 Recovery 69%

Qualifier Definitions

ND = Non Detect

B = Compound also found in method blank.

E= Estimated concentration exceeding upper calibration range.

D= Result reported from diluted analysis.

Method Reference

USEPA: Compendium Method TO-15, "Determination of Volatile Organic Compounds (VOCs) in Air..." Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), January 1999, (EPA/625/R-96/010b).

NJDEP Certification #: 03036

APPENDIX F SUB-CELLAR - BOILER ROOM SOUTHEAST SECTION

200 Route 130 North, Cinnaminson, NJ 08077 Phone/Fax: (856)858-4800 / (856)858-4571 http://www.EMSL.com to15lab@EMSL.com

EMSL Order #: 491400791
EMSL Sample #: 491400791-3
Customer ID: GCIE50
Customer PO: Not Available

Attn: James Grond

GCI Environmental Advisory, Inc.

655 Third Ave New York, NY 10017 Phone: 212-986-9460
Fax: 212-986-9464
Collected: 08/27/2014
Received: 08/28/2014

Project: Silver Tower

Sample ID: ST-6

Analysis Initial Analysis Date 09/02/2014

Analyst Init. MTH Lab File ID M6066.D

Canister ID E0261 Sample Vol. 250 cc Dil. Factor

Target Compounds	CAS#	MW	Result ppbv	RL ppbv	a	Result ug/m3	RL ug/m3	Comments
Propylene	115-07-1	42.08	ND	1.0		ND	1.7	Comments
Freon 12(Dichlorodifluoromethane)	75-71-8	120.9	0.58	0.50		2.9	2.5	
Freon 114(1,2-Dichlorotetrafluoroethan	76-14-2	170.9	ND	0.50		ND	3.5	
Chloromethane	74-87-3	50.49	0.75	0.50		1.5	1.0	
n-Butane	106-97-8	58.12	5.0	0.50		12	1.2	
Vinyl chloride	75-01-4	62.50	ND	0.50		ND	1.3	
1,3-Butadiene	106-99-0	54.09	ND	0.50	\vdash	ND	1.1	
Bromomethane	74-83-9	94.94	ND	0.50	\vdash	ND	1.9	
Chloroethane	75-00-3	64.52	ND	0.50		ND	1.3	
Ethanol	64-17-5	46.07	20	0.50		38	0.94	
Bromoethene(Vinyl bromide)	593-60-2	106.9	ND	0.50		ND	2.2	
Freon 11(Trichlorofluoromethane)	75-69-4	137.4	ND	0.50	\vdash	ND	2.8	
Isopropyl alcohol(2-Propanol)	67-63-0	60.10	2.6	0.50		6.3	1.2	
Freon 113(1,1,2-Trichlorotrifluoroethan	76-13-1	187.4	ND	0.50		ND	3.8	
Acetone	67-64-1	58.08	9.9	0.50		24	1.2	
1,1-Dichloroethene	75-35-4	96.94	ND	0.50		ND	2.0	
Acetonitrile	75-05-8	41.00	ND	0.50		ND	0.84	
Fertiary butyl alcohol(TBA)	75-65-0	74.12	ND	0.50		ND	1.5	
Bromoethane(Ethyl bromide)	74-96-4	108.0	ND	0.50	\vdash	ND	2.2	
3-Chloropropene(Allyl chloride)	107-05-1	76.53	ND	0.50		ND	1.6	
Carbon disulfide	75-15-0	76.14	ND	0.50		ND	1.6	
Methylene chloride	75-09-2	84.94	ND	0.50		ND	1.7	
Acrylonitrile	107-13-1	53.00	ND	0.50		ND	1.1	
Methyl-tert-butyl ether(MTBE)	1634-04-4	88.15	ND	0.50		ND	1.8	
rans-1,2-Dichloroethene	156-60-5	96.94	ND	0.50		ND	2.0	
n-Hexane	110-54-3	86.17	0.65	0.50		2.3	1.8	
,1-Dichloroethane	75-34-3	98.96	ND	0.50		ND	2.0	
/inyl acetate	108-05-4	86.00	ND	0.50		ND	1.8	
P-Butanone(MEK)	78-93-3	72.10	1.1	0.50		3.3	1.5	
sis-1,2-Dichloroethene	156-59-2	96.94	ND	0.50		ND	2.0	
Ethyl acetate	141-78-6	88.10	1.7	0.50		6.2	1.8	
Chloroform	67-66-3	119.4	ND	0.50		ND	2.4	
etrahydrofuran	109-99-9	72.11	ND	0.50		ND	1.5	
,1,1-Trichloroethane	71-55-6	133.4	ND	0.50		ND	2.7	
yclohexane	110-82-7	84.16	ND	0.50		ND	1.7	
,2,4-Trimethylpentane(Isooctane)	540-84-1	114.2	1.2	0.50		5.5	2.3	
Carbon tetrachloride	56-23-5	153.8	ND	0.50		ND	3.1	
-Heptane	142-82-5	100.2	ND	0.50		ND	2.0	
2-Dichloroethane	107-06-2	98.96	ND	0.50		ND	2.0	
enzene	71-43-2	78.11	0.58	0.50		1.9	1.6	
richloroethene	79-01-6	131.4	ND	0.50		ND	2.7	
,2-Dichloropropane	78-87-5	113.0	ND	0.50		ND	2.3	
lethyl Methacrylate	80-62-6	100.12	ND	0.50		ND	2.0	
romodichloromethane	75-27-4	163.8	ND	0.50		ND	3.3	
4-Dioxane	123-91-1	88.12	ND	0.50		ND	1.8	
-Methyl-2-pentanone(MIBK)	108-10-1	100.2	ND	0.50		ND	2.0	

200 Route 130 North, Cinnaminson, NJ 08077 Phone/Fax: (856)858-4800 / (856)858-4571 http://www.EMSL.com to15lab@EMSL.com

EMSL Order #: 491400791
EMSL Sample #: 491400791-3
Customer ID: GCIE50
Customer PO: Not Available

Attn: James Grond GCI Environmental Advisory, Inc.

655 Third Ave New York, NY 10017 Phone: 212-986-9460
Fax: 212-986-9464
Collected: 08/27/2014
Received: 08/28/2014

Project: Silver Tower

Sample ID: ST-6

Analysis Initial Analysis Date 09/02/2014 Analyst Init. MTH Lab File ID M6066.D Canister ID E0261 Sample Vol. 250 cc Dil. Factor

Target Compound Results Summary

				_	_			
Target Compounds	CAS#	MW	Result ppbv	RL ppbv	Q	Result ug/m3	RL ug/m3	Comments
cis-1,3-Dichloropropene	10061-01-5	111.0	ND	0.50		ND	2.3	
Toluene	108-88-3	92.14	1.4	0.50		5.1	1.9	
trans-1,3-Dichloropropene	10061-02-6	111.0	ND	0.50		ND	2.3	
1,1,2-Trichloroethane	79-00-5	133.4	ND	0.50		ND	2.7	
2-Hexanone(MBK)	591-78-6	100.1	ND	0.50		ND	2.0	
Tetrachloroethene	127-18-4	165.8	ND	0.50		ND	3.4	
Dibromochloromethane	124-48-1	208.3	ND	0.50		ND	4.3	
1,2-Dibromoethane	106-93-4	187.8	ND	0.50		ND	3.8	
Chlorobenzene	108-90-7	112.6	ND	0.50		ND	2.3	
Ethylbenzene	100-41-4	106.2	0.50	0.50		2.2	2.2	***************************************
Xylene (p,m)	1330-20-7	106.2	1.4	1.0		6.2	4.3	-
Xylene (Ortho)	95-47-6	106.2	0.55	0.50		2.4	2.2	
Styrene	100-42-5	104.1	ND	0.50		ND	2.1	
Isopropylbenzene (cumene)	98-82-8	120.19	ND	0.50		ND	2.5	
Bromoform	75-25-2	252.8	ND	0.50		ND	5.2	
1,1,2,2-Tetrachloroethane	79-34-5	167.9	ND	0.50		ND	3.4	
4-Ethyltoluene	622-96-8	120.2	ND	0.50		ND	2.5	
1,3,5-Trimethylbenzene	108-67-8	120.2	ND	0.50		ND	2.5	27.00
2-Chlorotoluene	95-49-8	126.6	ND	0.50		ND	2.6	
1,2,4-Trimethylbenzene	95-63-6	120.2	ND	0.50		ND	2.5	
1,3-Dichlorobenzene	541-73-1	147.0	ND	0.50		ND	3.0	
1,4-Dichlorobenzene	106-46-7	147.0	ND	0.50		ND	3.0	
Benzyl chloride	100-44-7	126.0	ND	0.50		ND	2.6	
1,2-Dichlorobenzene	95-50-1	147.0	ND	0.50		ND	3.0	
1,2,4-Trichlorobenzene	120-82-1	181.5	ND	0.50		ND	3.7	
Hexachloro-1,3-butadiene	87-68-3	260.8	ND	0.50		ND	5.3	
Naphthalene	91-20-3	128.17	ND	0.50		ND	2.6	
Total Target Compound Concent	trations:		48	ppbv		120	ug/m3	

Surrogate 4-Bromofluorobenzene

Result 6.7 Spike 10 Recovery 67%

Qualifier Definitions

ND = Non Detect

B = Compound also found in method blank.

E= Estimated concentration exceeding upper calibration range.

D= Result reported from diluted analysis.

Method Reference

USEPA: Compendium Method TO-15, "Determination of Volatile Organic Compounds (VOCs) in Air..." Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), January 1999, (EPA/625/R-96/010b).

APPENDIX G SUB-CELLAR - BOILER ROOM NORTHWEST SECTION

200 Route 130 North, Cinnaminson, NJ 08077 Phone/Fax: (856)858-4800 / (856)858-4571 http://www.EMSL.com to15lab@EMSL.com

EMSL Order #: 491400791
EMSL Sample #: 491400791-5
Customer ID: GCIE50
Customer PO: Not Available

Attn: James Grond GCI Environmental Advisory, Inc. 655 Third Ave New York, NY 10017 Phone: 212-986-9460
Fax: 212-986-9464
Collected: 08/27/2014
Received: 08/28/2014

Project: Silver Tower

Sample ID: ST-7

Analysis Initial Analysis Date 09/02/2014 Analyst Init.

Lab File ID M6068.D Canister ID E15330 Sample Vol. 250 cc Dil. Factor

Target Compounds	CAS#	MW	Result ppbv	RL ppbv		Result ug/m3	RL ug/m3	Comments
Propylene	115-07-1	42.08	ND	1.0	u	ND	1.7	Comments
Freon 12(Dichlorodifluoromethane)	75-71-8	120.9	0.55	0.50	+	2.7	2.5	
Freon 114(1,2-Dichlorotetrafluoroethan	76-14-2	170.9	ND	0.50	-	ND	3.5	
Chloromethane	74-87-3	50.49	0.79	0.50		1.6	1.0	
n-Butane	106-97-8	58.12	4.4	0.50	1	11	1.0	
Vinyl chloride	75-01-4	62.50	ND	0.50		ND	1.3	
1,3-Butadiene	106-99-0	54.09	ND	0.50		ND	1.3	
Bromomethane	74-83-9	94.94	ND	0.50		ND	1.9	
Chloroethane	75-00-3	64.52	ND	0.50		ND	1.3	
Ethanol	64-17-5	46.07	23	0.50		43	0.94	
Bromoethene(Vinyl bromide)	593-60-2	106.9	ND	0.50		ND	2.2	
Freon 11(Trichlorofluoromethane)	75-69-4	137.4	ND	0.50		ND	2.8	
Isopropyl alcohol(2-Propanol)	67-63-0	60.10	7.6	0.50		19	1.2	
Freon 113(1,1,2-Trichlorotrifluoroethan	76-13-1	187.4	ND	0.50		ND	3.8	
Acetone	67-64-1	58.08	8.6	0.50		20	1.2	
1,1-Dichloroethene	75-35-4	96.94	ND	0.50		ND	2.0	
Acetonitrile	75-05-8	41.00	ND	0.50		ND	0.84	
Tertiary butyl alcohol(TBA)	75-65-0	74.12	ND	0.50		ND	1.5	
Bromoethane(Ethyl bromide)	74-96-4	108.0	ND	0.50		ND	2.2	
3-Chloropropene(Allyl chloride)	107-05-1	76.53	ND	0.50		ND	1.6	
Carbon disulfide	75-15-0	76.14	ND	0.50		ND	1.6	
Methylene chloride	75-09-2	84.94	0.90	0.50		3.1	1.7	
Acrylonitrile	107-13-1	53.00	ND	0.50		ND	1.1	
Methyl-tert-butyl ether(MTBE)	1634-04-4	88.15	ND	0.50		ND	1.8	
trans-1,2-Dichloroethene	156-60-5	96.94	ND	0.50		ND	2.0	
n-Hexane	110-54-3	86.17	0.54	0.50		1.9	1.8	
1,1-Dichloroethane	75-34-3	98.96	ND	0.50		ND	2.0	
Vinyl acetate	108-05-4	86.00	ND	0.50		ND	1.8	******
2-Butanone(MEK)	78-93-3	72.10	0.84	0.50		2.5	1.5	
cis-1,2-Dichloroethene	156-59-2	96.94	ND	0.50		ND	2.0	-
Ethyl acetate	141-78-6	88.10	1.9	0.50		7.0	1.8	
Chloroform	67-66-3	119.4	ND	0.50		ND	2.4	
Tetrahydrofuran	109-99-9	72.11	ND	0.50		ND	1.5	
1,1,1-Trichloroethane	71-55-6	133.4	ND	0.50		ND	2.7	
Cyclohexane	110-82-7	84.16	ND	0.50		ND	1.7	
2,2,4-Trimethylpentane(Isooctane)	540-84-1	114.2	ND	0.50		ND	2.3	
Carbon tetrachloride	56-23-5	153.8	ND	0.50		ND	3.1	100
n-Heptane	142-82-5	100.2	ND	0.50		ND	2.0	
,2-Dichloroethane	107-06-2	98.96	ND	0.50		ND	2.0	
Benzene	71-43-2	78.11	ND	0.50		ND	1.6	
richloroethene	79-01-6	131.4	ND	0.50		ND	2.7	
,2-Dichloropropane	78-87-5	113.0	ND	0.50		ND	2.3	
Methyl Methacrylate	80-62-6	100.12	ND	0.50		ND	2.0	
Bromodichloromethane	75-27-4	163.8	ND	0.50	\neg	ND	3.3	
.4-Dioxane	123-91-1	88.12	ND	0.50		ND	1.8	
-Methyl-2-pentanone(MIBK)	108-10-1	100.2	ND	0.50	-+	ND	2.0	

200 Route 130 North, Cinnaminson, NJ 08077 Phone/Fax: (856)858-4800 / (856)858-4571 http://www.EMSL.com to15lab@EMSL.com

EMSL Order #: 491400791 EMSL Sample #: Customer ID: Customer PO:

491400791-5 GCIE50 **Not Available**

James Grond

GCI Environmental Advisory, Inc.

655 Third Ave New York, NY 10017

Received: 08/28/2014

Fax: 212-986-9464 Collected: 08/27/2014

Phone: 212-986-9460

Project: Silver Tower

Sample ID: ST-7

Analysis Initial

Analysis Date 09/02/2014

Analyst Init. MTH

Lab File ID M6068.D

Canister ID E15330

Sample Vol. 250 cc

Dil. Factor 1

Target Compound Results Summary

Target Compounds	CAS#	MW	Result	RL		Result	RL	
We place the second			ppbv	ppbv	Q	ug/m3	ug/m3	Comments
cis-1,3-Dichloropropene	10061-01-5	111.0	ND	0.50		ND	2.3	
Toluene	108-88-3	92.14	0.77	0.50		2.9	1.9	
trans-1,3-Dichloropropene	10061-02-6	111.0	ND	0.50		ND	2.3	
1,1,2-Trichloroethane	79-00-5	133.4	ND	0.50		ND	2.7	
2-Hexanone(MBK)	591-78-6	100.1	ND	0.50		ND	2.0	
Tetrachloroethene	127-18-4	165.8	ND	0.50		ND	3.4	
Dibromochloromethane	124-48-1	208.3	ND	0.50		ND	4.3	
1,2-Dibromoethane	106-93-4	187.8	ND	0.50		ND	3.8	
Chlorobenzene	108-90-7	112.6	ND	0.50		ND	2.3	
Ethylbenzene	100-41-4	106.2	ND	0.50		ND	2.2	
Xylene (p,m)	1330-20-7	106.2	ND	1.0		ND	4.3	
Xylene (Ortho)	95-47-6	106.2	ND	0.50		ND	2.2	
Styrene	100-42-5	104.1	ND	0.50		ND	2.1	
sopropylbenzene (cumene)	98-82-8	120.19	ND	0.50		ND	2.5	
Bromoform	75-25-2	252.8	ND	0.50		ND	5.2	
1,1,2,2-Tetrachloroethane	79-34-5	167.9	ND	0.50		ND	3.4	
4-Ethyltoluene	622-96-8	120.2	ND	0.50		ND	2.5	
1,3,5-Trimethylbenzene	108-67-8	120.2	ND	0.50		ND	2.5	0
2-Chlorotoluene	95-49-8	126.6	ND	0.50		ND	2.6	
1,2,4-Trimethylbenzene	95-63-6	120.2	ND	0.50		ND	2.5	
1,3-Dichlorobenzene	541-73-1	147.0	ND	0.50		ND	3.0	
,4-Dichlorobenzene	106-46-7	147.0	ND	0.50		ND	3.0	
Benzyl chloride	100-44-7	126.0	ND	0.50		ND	2.6	
,2-Dichlorobenzene	95-50-1	147.0	ND	0.50		ND	3.0	
,2,4-Trichlorobenzene	120-82-1	181.5	ND	0.50		ND	3.7	
lexachloro-1,3-butadiene	87-68-3	260.8	ND	0.50		ND	5.3	
Naphthalene	91-20-3	128.17	ND	0.50		ND	2.6	
Total Target Compound Concent	trations:	-	50	ppbv		110	ug/m3	

Surrogate

Result 6.7

Spike 10

Recovery 67%

Qualifier Definitions

4-Bromofluorobenzene

ND = Non Detect

B = Compound also found in method blank.

E= Estimated concentration exceeding upper calibration range.

D= Result reported from diluted analysis.

Method Reference

USEPA: Compendium Method TO-15, "Determination of Volatile Organic Compounds (VOCs) in Air..." Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), January 1999, (EPA/625/R-96/010b).

USEPA TO-15

EMSL			Exte	ernai	Chain		SEP/ susto	•	-15 ield Te:	st I	Data :	Sheet	t		200 Ro Cinna	Analyticoute 130 minson	Nord , NJ (th		Orgerin
EMBL ANALYTICAL, INC.	IBL ANALYTICAL, INC. FACI Codes November (Left Lie Colt.)						THE LEGISTICS OF THE STATE OF T						Ph. (800) 220-3675 Fax (856) 786-0327							
Report To Contac	t Name: 🗸	CMC	3 G	ہدیں	40.25	BIII To	Comp	any:	7 15 15 15 15 15 15 15 1			A STATE		Sampled	By (Sig	şn)̈́:		X 2.	ماد المثالة ماد المثالة	
Company Name:	GCT	266	NOA	Mari		_	ion To:			13.19				Sampled	By (Na	me):		wes	B	ع رم ع
Address 1:	655	16/2	少女	œ.c.	ALS: 10	Addre	ss 1:			(9).	逐變	感染		Total # of	Samp	les:		1.00	()	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Address 2:	KINE		Today Brisses	4.2.3		<u>A</u> ddre	ss 2:			1				Date Ship	ped:		18/2	习损失		
Phone No.: 2	12-986	-146	Þax:			Phone	No.:				Fax:		記學語	Sample C	ollecti	on Zip	Code	ə: 🔣	W.S.	5四
Email Results To:	JIM C	lvon	dov	erizo	m. wer	Proj	ect Na	ame:	RES	3.1	VEZUT	Buch	思想	Purchase	Order	:				
Turnaround Time	(in Busine	ss Day	s): [] 10 Day	Standard	er e K. J J. Land	PARTY.	Repor	ting Format	:	Results	Ορί <mark>ν (Sta</mark> nd	lànd Làb Re	port)		_	naly	eie .	Γ,	Matrix
□ 5 Day -	Marin Total AL	4 Day 🧷 🚆	27 - Y Y 1		IX3 Day				eliverables (Surch	irge m	iay apply) -					L			<u> </u>	
□2 pav		l Day	7 75.464: 0 7 31	A GO GO	Other			Other	20.8301	K.	120.00	Arris Sala	2.3 27 A			2	힏	Other	Į₹I	
X72682340 13763	1				Required	3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				4.	½La	b.Use C)nly 🐉		Mark.	5 2	SEARCH	Specify)	Ambient	<u> </u>
	Sampli			ation	Samplir				Ž, C:			41			-4-11	본의	S }		틹	Vent
Client Field	Barometric	Pres. (Canister	Interior	Barometric	Pres. (Cenister	Interior		INIST	er Infort	Outgoing	Incoming	Flow Co	ntoller	절립	뜵	اخ		Gas
Sample Identification	Start Date	Time (24 hr clock)	Pressure	Temp. (F)	Stop Date	Time (24 hr clock)		Temp. (F)	Canister ID	Size (L)	Can Cert Batch ID	Pressure	Pressure ("Hg)	Reg. ID	Cel Flow (ml/mln)	USEPA TO-15 NJDEP LLTO-1	ANIBINA.	CINH	(Hdoor/	Soil Gas Landfill/
ST-1	19/27/14	0,12	30	35	8/27/14	15 ⁵²	4	85	E049/	6	C297J	-30.0		3678	104	X	6 7	3	CE	
STE STA	8/27/14	800	30		8/27/14	(2 25.)	2	250	E0444			1		3520	10.5	X	8	350	13	
355-6	427/14	242	30	02	8/27/19	1600	2	絚	E0262	上				3283	11.0	X.	>	1	0.	
57-5	8/27/1	10747	30	30	2/27/14	1605	٧	80	E0452					3715	10.8	4	==		\Box	
57-7	2/22/14	7 4/2	29	650	9/29/14	1610	0	35°	E15330	\perp				3696	//.0	4	C		Ш	
57-4	3/27/14	802	30	80	921/19	1461	7	30	E0644	\perp				3654	105	X.			Ц	\perp
57-2	8/27/14	800	32	830	4/11/19	7526	18	20	55629)	4	4		3737	10-5	14_		11	Ш	\square
	<u> </u>		<u> </u>			<u> </u>	<u> </u>				<u> </u>				<u> </u>				$\downarrow \downarrow \downarrow$	
		<u> </u>	<u> </u>		,	<u> </u>	<u> </u>	<u> </u>				<u> </u>			<u> </u>		igspace	1	\coprod	
R.	/ ann	80.09.00 To	. N. I. 107.11				Standards 3													
Comments:		ម្រាស់ ស្រែក មិ			301 2	ا رجي ا		ウィ	2				Territorial substitution of the second secon	Lab Caniste						
Relinguished			FX.							رماني نشا ات	ing something the solution of	ing Spanis Regentation	(§ . %). (•	Analyst Sig				anan Libela	2027	r. Ostober 188
A	HOY: SELECT	1 7	ate/ _s Tir			receive	d by	年最级	∑ Date/	áidi	ID COM	Affixed	- 4317.7, N			10.20.20.				priate)
). 6		8/25	://4	<u> 1630</u>	212				26/14	773	<u> </u>	<u> </u>	, 6			Receiving			her.	Teyn G
Polita no	2/7/K	192	<u> 7 /14</u>	1	MAN	MYR	JY.	<u>) </u>	8/28	11	$\mathcal{O}(\mathcal{O})$	<u> </u>		Shipping		Receiving			ther.	
	KP.	12	8 9	30	20	<u>~~~</u>	<u>'</u> '			 -	7 / ``	<u> </u>	5/5/ /	Shipping	Courier	Receiving	Samp		ther: §	
12/11/11/12	(121)	6/2		\mathcal{L}		1	PR		828	7.	1)		8/21/14 101-	Shipping	Couner	Receiving	Sami	pling O	her.	7 A A
J	, ,	'	*:	_			,	'				1 7 ⁻		Shipping	Courier	Receiving	Sam	oling Of	her: [~]	2

491400791

TO-15 Sample Information

Please fill out this worksheet in addition to the Chain of Custody form. This information helps us to best analyze your samples and achieve requested TAT

Company: GCI Env	roima	enter/	Ado	1,501/ j		٠	
Contact Person:			_	/		_	
Name: Jim GRan	d]	
E-mall: Jim, Sno.	nd @	vence	2011	NET		-	
Additional E-mails:	<u> </u>			<u>-</u>	<u> </u>	_	
Telephone #: 22-586-9	1460		Fax #: 2	12-986-9	464		
Do you want your results emailed?	•	[≮(į ẎES,	[]NO	·			
Library Search requested:		[]YES	[]NO	٠٠,			
A library search will identify up to 20 of 74 compounds. If you are performing if you will need help interpreting your Sample Type:	an Indoor Air	· Quality or o	dor invest	igation the library sea	indard TO-15 list of arch is recommended.		
Indoor Air Quality (Home/C	office)	[]Vent ☞[]Othe] Soil Gas	 &.		
Description of sample (important for	or the lab to a	schieve you	r request	ed turnaround time)	****. •		. –
	•						
Are there any special detection lim report?	its, specific s	et of compo	ounds, or	any other specifics	you need in your	J.	
[] OSHA/NIOSH RELS			ı	1 Possible Source	s of Contaminants		
[] EPA PELS - Circle one: [] NJ DEP - Circle one:	Residential	Industrial Soil Gas	ī	TVOC		,	
[] NC DNER - Circle one:	Residential	Industrial	[·›] Other (Please lis	t or attach separate s	sheet)	_
[] PA DEP - Circle one:	Residential	Industrial	ľ] NONE		2014	
Do you need any additional analys Draeger CMS Analyzer:	ŀ			•	charges will apply)	AUG 28	A MINS
[]CO; []CO ₂ ; []SO ₂ ; []NO ₂ ; []NOx; []O ₂ ;					Phosphene	<u>></u>	26
US EPA TO-3 (choose one be [] C ₁ -C ₆ hydrocarbons [] Methane only	elow):		[]Sul	05504 (choose on fur Scan (H₂S, COS s only	e below): , MeSH, EtSH, DMS)	H: 01	, kun u
Sample Retention Policy: All canis Please review your results prompt retained for a longer period of time customer account representative of	ly to ensure to but arranger	hat your proments to ho	oject scor	oe is fully addresse	d. Cans may be		

C:\Users\pcountryman\AppData\Local\Microsoft\Windows\Temporary Internet Files\OLKD345\TO-15 Sample Information 2013-11