Phase II Subsurface Investigation

For

1665 – 1673 Stillwell Avenue Brooklyn, NY 11223 Block 6618; Lot 48

OER Project Number: 19TMP1558K

E-Designation: E-145

CEQR Number: 05DCP055K

Bensonhurst Rezoning

Prepared for:

Mr. Sai Truong Refulgence LLC 8738 20th Avenue Brooklyn, NY 11214

Prepared by:

American Environmental Assessment & Solutions, Inc. 679 Lafayette Avenue, Brooklyn, NY 11216
Telephone: (718) 209-0653 ♦ Email: info@AEASinc.com

American Environmental Project 19-0115-II

July 19th, 2019

TABLE OF CONTENTS

TAB	LE OF	CONTENTS	III
1.0	E	XECUTIVE SUMMARY	1
	1.1	Summary of Proposed Redevelopment Plan	2
	1.2	Summary of Past Usage and Areas of Concern	2
	1.3	ENVIRONMENTAL PROFESSIONAL DECLARATIONS	8
2.0	I	NTRODUCTION	9
	2.1	Site Location and Current Usage	9
	2.2	Proposed Redevelopment Plan	10
	2.3	Description of Surrounding Property	11
	2.4	Previous Investigation(s)	11
	2.5	Phase I Summary	12
3.0	P	URPOSE AND SCOPE	13
4.0	P	HASE II ENVIRONMENTAL SITE INVESTIGATION	14
	4.1	Geophysical Survey	15
	4.2	Soil Investigation	16
	4.3	Field Characterization.	17
	4.4	Groundwater Investigation	19
	4.5	Soil Vapor Sampling	20
	4.6	Decontamination	21
	4.7	Laboratory Analytical	21
5.0	A	NALYTICAL RESULTS	23
	5.1	Results of Soil Samples	23
	5.2	Results of Groundwater Samples	25
	5.3	Results of Soil Vapor Samples	27
	5.4	Quality Assurance/Quality Control Procedures	28
6.0	C	ONCLUSIONS	29
7.0	R	ECOMMENDATIONS	33

FIGURES	. 34
SOIL ANALYTICAL RESULTS	. 35
GROUNDWATER ANALYTICAL RESULTS	. 36
SOIL VAPOR ANALYTICAL RESULTS	. 37
PHOTOGRAPHS	. 38
LABORATORY ANALYTICAL REPORT	. 39
SOIL BORING LOGS	. 40

FIGURES

- Site Map
- Site Location Map
- Sample Location Map
- Surrounding Land Use Map

TABLES

- Table 1: Soil Analytical Results Volatile Organic Compounds
- Table 2: Soil Analytical Results Semi-Volatile Organic Compounds
- Table 3: Soil Analytical Results Pesticides and PCBs
- Table 4: Soil Analytical Results TAL Metals
- Table 5: Groundwater Analytical Results Volatile Organic Compounds
- Table 6: Groundwater Analytical Results Semi-Volatile Organic Compounds
- Table 7: Groundwater Analytical Results Pesticides and PCBs
- Table 8: Groundwater Analytical Results TAL Metals
- Table 9: Soil Vapor Analytical Results
- Table 10: Groundwater Analytical Results PFAS and 1,4-dioxane
- Table 11: Soil Analytical Results PFAS and 1,4-dioxane

APPENDICES

- Photographs
- Laboratory Analytical Report
- Soil Boring Logs

LIST OF ACRONYMS

Acronym	Definition
AST	Aboveground Storage Tank
CAMP	Community Air Monitoring Plan
C&D	Construction & Demolition
CEQR	City Environmental Quality Review
CFR	Code of Federal Regulations
CHASP	Construction Health and Safety Plan
CO	Certificate of Occupancy
CPC	City Planning Commission
DSNY	Department of Sanitation
"E"	E-Designation
EAS	Environmental Assessment Statement
EIS	Environmental Impact Statement
ESA	Environmental Site Assessment
EC/IC	Engineering Control and Institutional Control
ELAP	Environmental Laboratory Accreditation Program
FDNY	New York City Fire Department
GPR	Ground Penetrating Radar
HASP	Health and Safety Plan
HAZWOPER	Hazardous Waste Operations Emergency Response
IDW	Investigation Derived Waste
Notice - NNO	Notice of No Objection
Notice - NTP	Notice To Proceed
Notice - NOS	Notice Of Satisfaction
Notice - FNOS	Final Notice of Satisfaction
NYC BSA	New York City Board of Standards and Appeals
NYC DCP	New York City Department of City Planning
NYC DEP	New York City Department of Environmental Protection
NYC DOB	New York City Department of Buildings
NYC DOF	New York City Department of Finance
NYC HPD	New York City Housing Preservation and Development
NYCRR	New York Codes Rules and Regulations
NYC OER	New York City Office of Environmental Remediation
NYS DEC	New York State Department of Environmental Conservation
NYS DEC DER	New York State Department of Environmental Conservation
N 15 DEC DEK	Division of Environmental Remediation
NYS DEC PBS	New York State Department of Environmental Conservation Petroleum Bulk Storage
NYS DOH	New York State Department of Health
NYS DOT	New York State Department of Transportation
1113 DOI	New Tork State Department of Transportation

Acronym	Definition
OSHA	United States Occupational Health and Safety Administration
PAHs	Polycyclic Aromatic Hydrocarbons
PCBs	Polychlorinated Biphenyls
PE	Professional Engineer
PID	Photo Ionization Detector
PM	Particulate Matter
QEP	Qualified Environmental Professional
RA	Register Architect
RAP	Remedial Action Plan
RCA	Recycled Concrete Aggregate
RCR	Remedial Closure Report
RD	Restrictive Declaration
RI	Remedial Investigation
SCOs	Soil Cleanup Objectives
SCG	Standards, Criteria and Guidance
SMP	Site Management Plan
SPDES	State Pollutant Discharge Elimination System
SSDS	Sub-Slab Depressurization System
SVOCs	Semi-Volatile Organic Compounds
USCS	Unified Soil Classification System
USGS	United States Geological Survey
UST	Underground Storage Tank
TAL	Target Analyte List
TCL	Target Compound List
TCO	Temporary Certificate of Occupancy
VB	Vapor Barrier
VOCs	Volatile Organic Compounds

1.0 EXECUTIVE SUMMARY

American Environmental Assessment and Solutions, Inc. (American Environmental) has performed Phase II Subsurface Investigation activities at the property located at 1665 – 1673 Stillwell Avenue in the Gravesend section of Brooklyn, NY (the "Site" or "Subject Property"). The purpose of the Phase II Subsurface Investigation was to characterize the subsurface soil and groundwater quality to comply with the E-Designation requirements set forth by New York City Department of City Planning (NYCDCP) for the Subject Property and for Site redevelopment. The Phase II Subsurface Investigation was performed in general accordance with the scope and limitations of the American Society for Testing and Materials (ASTM) Standards E 1903-97; the NYSDEC Remedial Program for Soil Cleanup, Subpart 375-6; the E-Designation Program protocol and the contract between American Environmental and the client.

The Subject Property consists of a rectangular-shaped lot containing a one story commercial building with no basement. The Subject Property is located on the eastern side of Stillwell Avenue between Kings Highway to the north and Quentin Road to the south. The Subject Property is enclosed by a one story building (Brooklyn Public Library) and a two story mixed-use building to the east, by a one story commercial building (garage) to the north, by a 2.5 story residential building to the south, and Stillwell Avenue to the west. The Subject Property is currently vacant pending demolition of the existing building for redevelopment of the Site. The previous occupant of the Site was identified as Ideal Cleaners. Access to the Subject Property was via Stillwell Avenue to the west.

The total area of the Subject Property is approximately 8,000 square feet. The footprint of the building is approximately 2,400 square feet in area. The Tax Map number for the Subject Property is Block 6618; Lot 48. The property is zoned as R6B; Residential District. The occupancy code with the New York City Department of Finance for the Subject

Property is listed as K1; Store Building. The Little "E" Restriction for the Subject Property is listed as "*Hazmat*". The E-Designation for "Hazardous Materials" (E-145) were placed on the Site by New York City Department of City Planning (NYCDCP) as part of the 07/27/2005, Bensonhurst Rezoning (CEQR 05DCP055K).

1.1 Summary of Proposed Redevelopment Plan

The proposed use of the Site will consists of the construction of a five story mixed-use building with a cellar. The building foundation will be at the depth of 10 feet, 4inches. The footprint of the building upon completion will be approximately 4,030 square feet. The cellar will contain the electric room, refuse room, bicycle parking, elevator, gas, and sprinkler room, common areas. The building will contain sixteen units for residential use and retail usage on the first floor. The eastern portion of the Subject Property will be a rear yard containing eight parking spaces. A driveway will be constructed on the southern part of the Site, providing access to the rear yard. A copy of Architectural drawings of the proposed Site development is presented in Appendix 1.

Redevelopment efforts of the Site included planning, and construction of a five story mixed-use building with a cellar and Site investigation in accordance with this work plan of selected areas of environmental concern. The current zoning designation is R6B; Residential District.

1.2 Summary of Past Usage and Areas of Concern

Past usage of the Subject Property included a dairy, thrift shop and drycleaners. Information obtained from City Directory for the Phase I Environmental Site Assessment listed previous occupant as Grandview Dairy from around year 1970 and 1973; 2) Stillwell Dairy in year 1976; 3) Wonder Hostess Thrift Shop around year 1985 and 1997; and then converted to a drycleaner in 1999 (NYCDOB job number 300846155), and occupied by

Ideal Cleaners from around 2000 through 2014. Information obtained from the NYCDOB records for the Subject Property indicated usage of the Site was "ice cream dispensing stand" at 1671-1673 Stillwell Avenue in 1955 (Certificate of Occupancy # 142477, dated 01/19/1955), and "food store, with one loading/unloading berth and twelve accessory auto parking in open space" at 1665-1673 Stillwell Avenue, lots 48 and 50 (Certificate of Occupancy # 195912, dated 11/09/1966).

Information obtained from the Phase II Subsurface Investigation identified the metal Lead in the surface soil where SB-4 was installed, exceeding its respective Restricted Use SCOs Part 375-6.8(b) Residential. This was the only hotspot area that contained levels above its SCO Residential. Other metals were detected, with a few exceeding track 1 only. VOCs and SVOCs were identified in the groundwater. The chlorinated related VOCs Tetrachloroethene (PCE) (ranging from 231μg/m³ to 3,730μg/m³) and Trichloroethene (TCE) (ranging from 1.93μg/m³ to 73.6μg/m³) were identified in all of the soil vapor samples exceeding the NYSDOH Air Guideline Value (AGV) and the NYSDOH Decision Matrix.

Summary of Work Performed under the Phase II Subsurface Investigation

Field activities consisted of a Ground penetrating Radar (GPR) survey and the installation and sampling of seven (7) soil borings, three (3) temporary monitoring wells and six (6) soil vapor probes.

All samples were transmitted to a New York State certified (Elap # 11301) laboratory and analyzed for Volatile Organic Compounds (VOCs) in accordance with United States Environmental Protection Agency (EPA) Method 8260, Semi-Volatile Organic Compounds (SVOCs) via EPA Method 8270, Pesticides and Poly Chlorinated Byphenyl (PCBs) via EPA Method 8081 and 8081, and Target Analyte List (TAL) metals. The soil vapor samples were analyzed for VOCs by USEPA Method TO-15.

All field activities were performed on June 19th, and 24th, 2019. The results of the investigation are contained in this report.

Field Investigation Findings:

• Ground Penetrating Radar (GPR) Survey:

 No significant anomaly indicative of tanks, drums or buried objects were identified during the GPR survey at the Subject Property.

In addition all utilities including sewer and drain pipes were marked out in the vicinity of the work area. All proposed boring locations were cleared and marked prior to field activities.

• Soil Quality:

- No *VOCs* were identified in any of the soil samples obtained from soil boring SB-1 through SB-7 exceeding their respective Restricted Use SCOs Part 375-6.8(b) Residential and /or Track 1, except for Acetone identified in soil boring SB-6, 0-2 feet at a level of 51 S exceeding Track 1; this is a laboratory solvent and may not be representative of contaminants at the subject Property. TetraChloroethene (detected at a max of 580 μ g/kg) was identified in four of the borings, but well below Track 1 UUSCOs. Soil boring SB-1 through SB-7 were installed throughout the Subject Property.
- No SVOCs were identified in any of the soil samples obtained from soil boring SB-1 through SB-7 exceeding their respective Restricted Use SCOs Part 375-6.8(b) Residential and /or Track 1.

- No Pesticides were detected in any of the soil samples obtained from soil boring SB-1 through SB-7 exceeding their respective Restricted Use SCOs Part 375-6.8(b) Residential and /or Track 1.
- No Polychlorinated Biphenyls (PCBs) were in any of the soil samples obtained from soil boring SB-1 through SB-7 exceeding their respective Restricted Use SCOs Part 375-6.8(b) Residential and /or Track 1.
- Target Analyte List (TAL) Metals were identified in the soil samples, obtained from soil boring SB-1 through SB-7. Only one TAL Metal (Lead in SB-4) was identified exceeding its Restricted Use SCOs Part 375-6.8(b) Residential at a level of 547 mg/kg (0-2 feet).
 - TAL Metals were identified in the soil samples exceeding Track 1 including Chromium, Copper, Lead, Nickel, Mercury and Zinc. Several other TAL Metals were detected in the soil samples at levels well below their respective Restricted Use SCOs Part 375-6.8(b) Residential and/or Track 1.
- The compound 1,4-dioxane was not detected in the soil sample. Per- and Polyfluoroalkyl Substances (PFASs) were not detected in the soil sample.

• Groundwater Quality:

o Four **VOCs** were identified in the groundwater samples obtained from monitoring well MW-1 and MW-3 exceeding their respective NYSDEC Ambient Groundwater Quality Standards (GQS). The VOCs identified above their respective GQS are 2-Isopropyltoluene identified in MW-1 at a maximum level of 9.5 μg/L and in MW-2 at a maximum level of 5.5μg/L; Isopropylbenzene identified in MW-1 and MW-2 at a maximum level of 12μg/L; n-Propylbenzene identified in MW-2 at a

maximum level of $19\mu g/L$; and sec-Butylbenzene identified in MW-1 at a maximum level of $21\mu g/L$.

- o Five **SVOCs** were identified in the groundwater samples obtained from MW-1 exceeding their respective NYSDEC Ambient Groundwater Quality Standards. The SVOCs identified in the groundwater sample from MW-1 exceeding their respective Groundwater Quality Standards are <u>Benzo (a) Anthracene</u> identified at a level of 0.07 μg/L; <u>Benzo (b) Fluoranthene</u> identified at a level of 0.07 μg/L; <u>Benzo (k) Fluoranthene</u> identified at a level of 0.06 μg/L; <u>Chrysene</u> identified at a level of 0.05 μg/L; and <u>Indo (1,2,3-cd) Pyrene</u> identified at a level of 0.03 μg/L.
- No Polychlorinated Biphenyls (PCBs) were detected in the groundwater samples obtained from MW-1 through MW-3.
- No **Pesticides** were detected in the groundwater samples obtained from MW-1 through MW-3.
- No TAL Metals were identified in any of the groundwater samples obtained from MW-1 through MW-3 exceeding their respective Groundwater Quality Standard.
- The compound 1,4-dioxane was not identified in the groundwater sample. Perand Polyfluoroalkyl Substances (PFASs) were identified in the groundwater sample obtained from MW-1 from a level of below method detection limit, to 69 ng/L, below the current Preliminary Remediation Goals (PRG).

• <u>Soil Vapor</u>:

O VOCs were identified in the soil vapor samples exceeding New York State Department of Health (NYSDOH) Final Guidance on Soil Vapor Intrusion (October 2006, updated May 2017) Guidance Values and Decision Matrix. Petroleum related VOCs detected include <u>Toluene</u> at concentrations ranging from

 $9.34\mu g/m^3$ to $39.9\mu g/m^3$ in all six soil vapor locations; <u>Benzene</u> was identified at a concentration ranging from $6.77~\mu g/m^3$ to $36.4~\mu g/m^3$; <u>Ethylbenzene</u> at concentrations ranging from $9.37~\mu g/m^3$ to $69.4~\mu g/m^3$; and <u>o-Xylene</u> at concentrations ranging from $7.2~\mu g/m^3$ to $72.5~\mu g/m^3$.

Chlorinated related VOCS identified include <u>Tetrachloroethene (PCE)</u> at concentrations ranging from $231\mu g/m^3$ to $3,730\mu g/m^3$; and <u>Trichloroethene (TCE)</u> at concentrations ranging from $1.93\mu g/m^3$ to $73.6\mu g/m^3$.

1.3 ENVIRONMENTAL PROFESSIONAL DECLARATIONS

Ms. Antoinette Ollivierre, Senior Geologist, gathered and compiled information contained in this report. Ms. Ollivierre performed all fieldwork for the Phase II field Investigation.

Antoinette Ollivierre, CEC, CEI Principal, Senior Geologist

I declare that, to the best of my professional knowledge and belief, I meet the definition of Environmental Professional as defined in §312.10 of 40 CFR 312.

I have the specific qualifications based on education, training and experience to assess a property of the nature, history and setting of the subject property. I have developed and performed all appropriate inquiries in conformance with the standards and practices set forth in 40 CFR 312.

This summary does not contain all of the information presented in the full report. The report should be read in its entirety to obtain a more complete understanding of the information provided and to aid in any decisions made or actions taken based on this information.

No effort has been made to perform any investigation beyond what is included in this report. The observations included herein summarize the results of the environmental activities up to the date of the fieldwork and the date of this report.

The following sections provide the details and specific information pertaining to the various components of the Phase II Subsurface Investigation.

2.0 INTRODUCTION

American Environmental Assessment & Solutions, Inc. has performed a Phase II Subsurface Investigation at the property located at 1665 – 1673 Stillwell Avenue in the Gravesend section of Brooklyn, NY (the Site). This Work Plan describes the proposed investigation that will comply with the E-Designation assigned to the Site and address the environmental concerns identified in the Phase I Environmental Site Assessment (ESA) report prepared by American Environmental Assessment & Solutions, Inc. (American Environmental) dated 05/09/2019 for the Site. The Phase II Subsurface Investigation was to comply with the E-Designation requirements assigned to the Subject Property. The Subject Property was included in the Bensonhurst Rezoning (CEQR 05DCP055K) dated 07/27/2005, when an E-Designation for Hazardous Materials (E-145) was placed on the Site by the New York City Department of City Planning (DCP).

2.1 Site Location and Current Usage

Summary					
Project Name	Commercial Building				
Property Address	1665 Stillwell Avenue				
Property Address (Alternate)	1665 - 1673 Stillwell Avenue				
City, County, State, ZIP Code	Brooklyn, (Kings County), NY 11223				
Site Area (acres)	0.0184				
No. Buildings/Units/Stories	1/1/1				
Area (sf)	Approximately 2,400				
Occupied Subgrade Spaces?	No				
Year(s), First Developed for	Approximately 1966				
Current Use					
Year(s), Additional Phases					
Year Significant Renovations					

The Subject Property consists of a rectangular-shaped lot containing a one story commercial building. The Subject Property is located on the eastern side of Stillwell Avenue between Kings Highway to the north and Quentin Road to the south. The Subject Property is enclosed by a one story building (Brooklyn Public Library) and a two story mixed-use building to the east, by a one story commercial building (garage) to the north, by a 2.5 story residential building to the south, and Stillwell Avenue to the west. The Subject Property is currently vacant, and pending demolition of the existing building for redevelopment of the Site. The previous occupant of the Site was identified as Ideal Cleaners. Access to the Subject Property was via Stillwell Avenue to the west.

The total area of the Subject Property is approximately 8,000 square feet. The footprint of the building is approximately 2,400 square feet in area. The Tax Map number for the Subject Property is Block 6618; Lot 48. The property is zoned as R6B; Residential District. The occupancy code with the New York City Department of Finance for the Subject Property is listed as K1; Store Building. The Little "E" Restriction for the Subject Property is listed as "Hazmat".

Figure 1 provides a Site Location Map.

2.2 Proposed Redevelopment Plan

The proposed use of the Site will consists of the construction of a five story mixed-use building with a cellar. The building foundation will be at the depth of 10 feet, 4inches. The footprint of the building upon completion will be approximately 4,030 square feet. The cellar will contain the electric room, refuse room, bicycle parking, elevator, gas, and sprinkler room, common areas. The building will contain sixteen units for residential use and retail usage on the first floor. The eastern portion of the Subject Property will be a rear yard containing eight parking spaces. A driveway will be constructed on the

southern part of the Site, providing access to the rear yard. A copy of Architectural drawings of the proposed Site development is presented in Appendix 1.

Redevelopment efforts of the Site included planning, and construction of a five story mixed-use building with a cellar and Site investigation in accordance with this work plan of selected areas of environmental concern. The current zoning designation is R6B; Residential District.

2.3 Description of Surrounding Property

The neighborhood surrounding the Site contains a variety of land uses including residential and commercial. Current use(s) of surrounding properties include the following:

Direction	Adjacent Properties	Surrounding Properties
North	1663 Stillwell Avenue / 126-136 Kings Hwy – 1 story commercial building (garage).	Mainly 2 to 3 story
South	1677 Stillwell Avenue – 2.5 story residential building.	buildings with some mixed-use buildings along
East	1672-1674 West 13 th Street - 2 story mixed-use building. 1664-1670 West 13 th Street - 1 story public building (Brooklyn public library-Highlawn branch).	Stillwell Avenue and Kings Highway and residential buildings in the
West	2271 78 th Street – 2 story residential building. 2273-2279 78 th Street – 2 story residential building.	surrounding areas.

2.4 Previous Investigation(s)

The following environmental reports were developed for the Site:

Phase I Environmental Site Assessment, May 9th, 2019, prepared by American Environmental.

A digital (PDF) copy of the above referenced environmental report is included as Appendix 2.

2.5 Phase I Summary

The Phase I ESA identified the following recognized environmental conditions (RECs) in connection with the Site:

- 1. The "E" restrictions (E-145) assigned to the Site constituting evidence of known or suspect environmental concern that may have impacted the Site.
- 2. Historical usage of the Subject Property for dry cleaning activities.

3. North Adjacent Property – 1663 Stillwell Avenue / 126-136 Kings Hwy:

Usage of the northern adjacent property identified on Fire Insurance maps included auto repair and a gasoline station. Four gasoline tanks were identified on the maps dated 1930 through 1981. Certificate of Occupancy dated 04/07/1926, identified in the NYCDOB records for this adjacent property listed the usage of the property as gasoline station. The historical usage of the northern adjacent property as a gasoline station and for auto repair may have impacted upon the environmental quality of the Subject Property and should be considered a concern.

The northern adjacent property was identified in the database report listed in the NY AST, and the NY E-Designation databases. Information obtained from the NY AST database listed a 275-gallon waste oil tank registered to Boris Auto Repair under PBS number 2-610727. The status of the tank is listed as closed / removed on 05/01/2010. The NY E-Designation for Hazmat was assigned to the property. The property was

identified as a garage during the Site reconnaissance of the Subject Property. Historical and current usage of the adjacent property for auto repair may have impacted upon the environmental quality of the Subject Property and should be considered a concern.

3.0 PURPOSE AND SCOPE

The purpose of the investigation was to characterize the subsurface soil and groundwater quality to comply with the requirements set forth for the E-Designation of the Site and for Site redevelopment.

The general scope of the Phase II Subsurface investigation consisted of the following:

- Historical research;
- A geophysical survey to identify the presence or absence of underground storage tanks (USTs) or buried drums in the subsurface of the Site and to clear locations of proposed boring from buried utilities;
- Advancing of seven borings;
- Installation of three temporary monitoring wells;
- Collection of two samples from each boring for laboratory analysis;
- Groundwater sampling;
- Installation of six soil vapor probes and sampling;
- Preparation of a Phase II Subsurface Investigation Report documenting all work, assessment, conclusion of findings and recommendations.

The scope and methods used for the various field activities are documented below.

All related portions of the fieldwork were performed, at a minimum in accordance with acceptable industry standards. These acceptable industry standards include, but not

limited to, the ASTM Standard Guide for Phase II Environmental Site Assessments (E 1903-97), the New York State Department of Environmental Conservation Remedial Program for Soil; Subpart 375-6, the New York State Department of Environmental Conservation Bureau of Spill Prevention & Response Sampling Guidelines and Protocols, March 1991 and the Draft DER-10 Technical Guidance for Site Investigation and Remediation, December 2002.

4.0 PHASE II ENVIRONMENTAL SITE INVESTIGATION

The purpose of this section is to document the details and protocols that were utilized to accomplish the project goals. Field investigation and sampling activities were conducted on June 19th and 24th, 2019, under the supervision of Ms. Antoinette Ollivierre, Senior Geologist for American Environmental. Prior to the field investigation, utilities were marked out by the respective utility companies where they entered or were located adjacent to the Site. Utility mark out confirmation number 191612258 was issued to the mark out.

The following environmental field activities were performed at the Site:

Soil, Groundwater and Soil Vapor

- Seven (7) borings were completed at the site to address historic fill conditions, past usage, the E-Designation and evenly spaced across the entire site.
- Borings SB-1 / MW-1 was installed in the northwestern portion of the Site to investigate soil and groundwater quality.
- Boring SB-2 / MW-2 was installed in the southwestern portion of the Site to investigate soil and groundwater quality.
- Boring SB-3 was installed in the western portion of the Site to investigate site conditions.

- Boring SB-4 was installed in the southern portion of the Site to investigate soil quality.
- Boring SB-5 was installed in the central portion of the Site and western portion of the proposed building location to investigate soil quality.
- Boring SB-6 was installed in the northern portion of the proposed building location to investigate soil conditions.
- Boring SB-7 / MW-3 was installed in the southeastern portion of the proposed building location to investigate soil and groundwater conditions.
- SG-1/SG-2/SG-3/SG-4/SG-5/SG-6 were installed in evenly spaced locations across the site and in the footprint of the proposed building to detect potential soil vapor impacts.

4.1 Geophysical Survey

Prior to drilling activities a geophysical survey was performed at the Site on June 19th, 2019. The geophysical survey was performed to determine the presence or absence of tank(s) and any other buried containers such as drums and mark out all onsite utilities in the vicinity and surrounding the proposed drilling location.

The geophysical survey was performed across the entire site prior to investigative borings utilizing a Mala, model; easy locator. A series of GPR profiles will be completed along selected lines using a Control Unit. The survey was performed across the Site over a grid pattern. The GPR operator wheeled the antenna over the predetermined grid. The GPR equipment takes "scan" per set unit. The number of scans per unit is based upon the estimated size of targets. As each scan is performed, the antenna emits specific radar amplitude into the subsurface. The amplitude of the radar reflected back to the antenna is based upon the differences in the dielectric constants of the subsurface materials. The

difference in amplitude obtained during each scan is graphically displayed at the Control Unit, which will then interpreted by the GPR operator at the time of the survey.

The GPR survey did not identify any anomaly consistent with buried containers such as tanks or drums. All utility lines in the vicinity of the work area were mark-out. Proposed boring locations were cleared for drilling activities.

4.2 Soil Investigation

Protocol and Sampling Locations

A soil sampling program was conducted according to the American Environmental Assessment & Solutions, Inc.'s WP dated May 24th, revised June 11th, 2019. Soil samples were collected to assess the soil quality in the subsurface of the Site.

A total of seven (7) soil borings by direct-push technology was performed at the Site utilizing a Geoprobe® to install all boring locations. The soil borings were designated SB-1 through SB-7. Soil samples were collected in all borings at 2-foot intervals utilizing a 5-foot Macro Core sampler fitted with dedicated acetate liners. The Macro sampler allows for the collection of both continuous and discrete soil samples. Each sampler was installed with 1 ½ -inch diameter drill rods. Two soil samples were obtained from each boring for analysis.

The following provides the locations of soil borings SB-1 through SB-7 and sample intervals:

	Soil Borings Locations								
Soil Boring	Location(s) Installed	Total Depth (ft. bgs)	Sample Interval Depth (ft. bgs)	PID Readings (ppm)					
SB-1	Northwestern portion of the Site	5	0 - 2	0					
SB-2	Southwestern portion of the Site	5	3 - 5 0 - 2	0					

	Soil Borings Locations								
Soil Boring	Location(s) Installed	Total Depth (ft. bgs)	PID Readings (ppm)						
			3 – 5	0					
SB-3	Western portion of the Site	5	0 – 2	0					
3D-3	Western portion of the Site	5	3 – 5	0					
SB-4	Southern portion of the Site	5	0 - 2	0					
3D-4	Southern portion of the Site	5	3 – 5	0					
SB-5	Central portion of Site, and western	12	0 – 2	0					
portion of proposed building footprir		12	10 - 12	0					
SB-6	Northern portion of proposed building	12	0 - 2	0					
	footprint	12	10 - 12	0					
SB-7	Southeastern portion of proposed	12	0-2	0					
3D-7	building footprint	12	10 - 12	0					

Soil boring SB-1 through SB-7 were installed to a total depth of 5 and 15 feet below grade for sample collection. The borings were installed at the locations referenced in the table above and according to an approved sampling plan. The soil type identified in each boring consists mainly of brown, fine-grained silty to clayey soil, containing rocks. Groundwater was encountered at a depth of 16.89 to 17.25 feet below grade.

Upon completion of the investigation, borings were filled with soil cuttings and clean soil to ground surface.

Appendix C provides copies of the Soil Boring Logs Figure 3 provides a Sampling Location Map

4.3 Field Characterization

American Environmental professional Antoinette Ollivierre, Senior Geologist was onsite to characterize each soil sample in the field. The soil characterization consisted of determining the soil classification utilizing the Unified Soil Classification System; screening for organic vapors utilizing a Photoionization Detector (PID); and evaluation

for visual and olfactory indications of environmental impacts. Headspace analyses were conducted on each sample by partially filling the zip lock bag and sealing it, thereby creating a void. This void is referred to as the sample headspace. To facilitate the detection of any hydrocarbons contained within the headspace, the container was agitated for a period of 30 seconds. Each sample was then screened for organic vapors utilizing a Photoionization Detector (PID)

A PID makes use of the principle of photoionization for the detection and qualitative measurement of organic vapors. A PID does not respond to all compounds similarly, rather, each compound has its own response factor relative to its calibration. For this investigation, the PID was calibrated to the compound isobutylene, which is published by the manufacturer. The PID has a minimum detection limit of 0.1 parts per million (ppm). This meter measures the hydrocarbon concentrations in isolated portions of the secured samples.

Olfactory evidence of petroleum contamination was not identified during the field screening of the samples from the soil borings. Additional information for each sample field screened is provided as appendix C; boring logs.

Based upon the requirements set forth in the scope of work, two select soil samples from each boring were placed into 8-ounce laboratory provided jars and appropriately labeled. The samples were then placed in a cooler filled with ice maintained at a maximum 4 degrees Celsius to be transmitted under proper chain of custody to a New York State certified (ELAP # 11301) laboratory.

4.4 Groundwater Investigation

Three of the soil borings installed were converted to temporary monitoring wells for groundwater collection. Soil boring SB-1, SB-2 and SB-7 were converted to temporary monitoring wells by inserting a 1-inch diameter PVC well screen and riser into the open borehole. The monitoring wells were then gauged to obtained groundwater depth measurements using an oil/water interface probe. The oil/water interface probe contains a sensor attached to a measuring tape that is lowered down into the well until water is encountered. A buzzer sounds when the probe reaches groundwater and the depth is recorded.

Low-flow sampling techniques were utilized to purge the wells and obtain the groundwater samples. One representative groundwater sample was collected from each well with a peristaltic pump and dedicated Teflon tubing and placed into laboratory supplied glassware. The Sampling was conducted in accordance with NYSDEC Draft DER-10 Technical Guidance for Site Investigation and Remediation, dated December 2002, and Sampling Guidelines and Protocols, dated March 1991. Following sample collection, the boreholes were backfilled with soil cuttings and clean soil.

The following provides a summary of the temporary monitoring wells and groundwater collection points.

Soil Boring	Location(s) Installed	Depth to Groundwater (feet)	Total Depth (feet)	
SB-1/MW-1	Northwestern portion of the Site	17.22	30	
SB-2/MW-2	Southwestern portion of the Site	17.25	30	
SB-7 /MW-3	Southeastern portion of the Site	16.89	30	

4.5 Soil Vapor Sampling

Six (6) soil vapor probes were installed at selected locations on the Subject Property and within the footprint of the proposed new construction in accordance with the NYSDOH "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" dated October 2006. The soil vapor probes were installed by drilling a 2 ¼-inch hole to approximately 5 and 10 - 12 feet below grade using a Geoprobe drilling system. A vapor point comprised of a stainless steel screen was connected to ¼-inch stainless steel tubing advanced into the hole. The tubing was then connected with a sample fitting to allow for the collection of soil gas. The annular space around the stainless steel screen was packed with coarse sand to six-inches above the screen, creating a sampling zone. A bentonite seal was then be placed above the sampling zone to ground surface.

Six Samples were collected in pre-cleaned six liter Summa canisters which have been certified clean by the laboratory and analyzed by using USEPA Method TO-15. Flow rate of both purging and sampling did not exceed 0.2 L/min. Sampling occurred for duration of 2 hours. Prior to sample collection the soil vapor will be screened for the presence of VOCs using a PID. A sample log sheet was maintained summarizing sample identification, date and time of sample collection, sampling depth, identity of samplers, sampling methods and devices, soil vapor purge volumes, volume of the soil vapor extracted, vacuum of canisters before and after the samples are collected, apparent moisture content of the sampling zone, and chain of custody protocols.

As part of the vapor intrusion evaluation, a tracer gas was used in accordance with NYSDOH protocols to serve as a quality assurance/ quality control (QA/QC) device to verify the integrity of the soil vapor probe seal. Helium was used as the tracer gas and a box served to keep it in contact with the probe during testing. A portable monitoring device was used to analyze a sample of soil vapor from the tracer prior to sampling. If

the tracer sample results showed a significant presence of the tracer, the probe seals were adjusted to prevent infiltration. At the conclusion of the sampling round, tracer monitoring was performed a second time to confirm the integrity of the probe seals. All samples were collected in accordance with the Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York (NYSDOH October 2006).

4.6 Decontamination

Each piece of sampling or other down hole equipment was decontaminated prior to each use in order to ensure that cross-contamination between sampling locations does not occur. The following procedure was utilized in the decontamination process:

- Wipe clean and wash with Alconox®
- Potable water rinse
- Methanol rinse
- Deionized water rinse
- Air dry

All decontamination procedures were performed in an area segregated from any sampling areas. Any rinsate from the decontamination areas is contained and removed from the Site.

4.7 Laboratory Analytical

All samples were properly handled and placed into appropriate labeled laboratory supplied containers. The samples were placed in a cooler filled with ice and maintained at a maximum 4 degrees Celsius. All samples were transmitted under proper chain of custody procedures to Phoenix Environmental Laboratory, a NY State-certified (ELAP

No. 11301) laboratory for confirmatory laboratory analyses. PFOA/PFOS - Water (SOP-465 PFAS) was analyzed by NY certified lab #10899.

- Volatile Organic Compounds by EPA Method 8260;
- Semi-volatile organic compounds by EPA Method 8270;
- Pesticides/PCBs by EPA Method 8081/8082; and
- Target Analyte List metals by EPA Method 6010;
- 1,4-dioxane by EPA Method 8270DSIM;
- PFAS by EPA Method 537;
- Soil vapor samples were analyzed for VOCs by using USEPA Method TO-15.

All holding times were met. The laboratory did not report any irregularities with respect to their internal Quality Assurance / Quality Control.

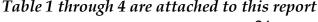
5.0 ANALYTICAL RESULTS

5.1 Results of Soil Samples

Table 1 through 4 provides the analytical results for the Volatile Organic Compounds (VOCs), Semi-Volatile Organic Compounds (SVOCs), Pesticides/PCBs and TAL Metals detected in soil samples SB-1 through SB-7. **Table 1 through 4** also provides a comparison of the analytical results to the Recommended Soil Cleanup Objectives (SCO) from the 6 NYCRR Part 375-6.8(b) Restricted Use Soil Cleanup Objectives, Commercial. The SCOs represent the concentration of a contaminant in soil which when achieved at the Site will require no use restrictions on the Site for the protection of public health, groundwater and ecological resources due to the presence of contaminants in soil.

• Soil Quality:

- No **VOCs** were identified in any of the soil samples obtained from soil boring SB-1 through SB-7 exceeding their respective Restricted Use SCOs Part 375-6.8(b) Residential and /or Track 1, except for Acetone identified in soil boring SB-6, 0-2 feet at a level of 51 S exceeding Track 1; this is a laboratory solvent and may not be representative of contaminants at the subject Property. TetraChloroethene (detected at a max of 580 μg/kg) was identified in four of the borings, but well below Track 1 UUSCOs. Soil boring SB-1 through SB-7 were installed throughout the Subject Property.
- No SVOCs were identified in any of the soil samples obtained from soil boring SB-1 through SB-7 exceeding their respective Restricted Use SCOs Part 375-6.8(b)
 Residential and /or Track 1.
- No **Pesticides** were detected in any of the soil samples obtained from soil boring SB-1 through SB-7 exceeding their respective Restricted Use SCOs Part 375-6.8(b)
 Residential and /or Track 1.


- No Polychlorinated Biphenyls (PCBs) were in any of the soil samples obtained from soil boring SB-1 through SB-7 exceeding their respective Restricted Use SCOs Part 375-6.8(b) Residential and /or Track 1.
- o **Target Analyte List (TAL) Metals** were identified in the soil samples, obtained from soil boring SB-1 through SB-7. Only one TAL Metal (Lead in SB-4) was identified exceeding its Restricted Use SCOs Part 375-6.8(b) Residential at a level of 547 mg/kg (0-2 feet).

TAL Metals were identified in the soil samples exceeding Track 1 including Chromium, Copper, Lead, Nickel, Mercury and Zinc. Several other TAL Metals were detected in the soil samples at levels well below their respective Restricted Use SCOs Part 375-6.8(b) Residential and/or Track 1.

The following summary table provides the TAL Metals identified in the soil samples exceeding their respective Restricted Use SCOs Residential and/or Track 1 Standard.

Sample Identification	SB	-2		SB-3		S	B-4	SE	i-5	SB-6	S	В-7	Track 1 Unrestricted	Restricted Use Soil
Sample Matrix	Sc	oil		Soil		S	oil	Sc	oil	Soil	9	Soil	Use Soil	Cleanup
Units	mg,	/kg		mg/kg		mg	g/kg	mg	/kg	mg/k g	m	g/kg	Cleanup Objectives	Objectives Part 375-
Sample Depth	0' - 2'	3' - 5'	0' - 2'	0' - 2' Dup	3' - 5'	0' - 2'	3' - 5'	0' - 2'	10' - 12'	10' - 12'	0' - 2'	10' - 12'	Part 375- 6.8(a)	6.8(b) Residential
		_	_		_	T	AL Me	als (mg	(kg)	_	_			
Chromium	30.2	21.7	19.0	25.0	18.8	26.1	22.9	16.1	16.3	17.1	26.5	30.5	30	36
Copper	23.7	26.3	52.3	34.9	17.6	40.5	11.8	12.7	27.8	12.4	74.1	54.9	50	270
Lead	35.3	58.9	286	92.8	38.9	547	6.24	6.29	3.88	5.45	163	9.19	63	400
Nickel	65.3	24.9	26	27.5	32.7	29.4	45.2	41.4	74.7	99.9	47.4	111	30	140
Zinc	53	48.5	279	131	82.7	219	23	24.2	26.3	24.4	433	74.9	109	2,200
Mercury	0.13	0.26	0.29	0.15	0.14	0.16	< 0.03	< 0.03	< 0.03	< 0.03	0.16	< 0.03	0.18	0.81

The compound 1,4-dioxane was not detected in the soil sample. Per- and Polyfluoroalkyl Substances (PFASs) were not detected in the soil sample.

5.2 Results of Groundwater Samples

Table 5 through 8 provides the analytical results for the Volatile Organic Compounds (VOCs); Semi-Volatile Organic Compounds (SVOCs); Pesticides/PCBs and TAL Metals detected in groundwater samples MW-1 through MW-3. **Table 5 through 8** also provides a comparison of the analytical results to the NYSDEC TOGS Ambient Groundwater Quality Standards.

• Groundwater Quality:

Three temporary monitoring wells were installed at the Site for groundwater collection.

Four **VOCs** were identified in the groundwater samples obtained from monitoring well MW-1 and MW-3 exceeding their respective NYSDEC Ambient Groundwater Quality Standards (GQS). The VOCs identified above their respective GQS are 2- Isopropyltoluene identified in MW-1 at a maximum level of 9.5 μg/L and in MW-2 at a maximum level of 5.5μg/L; Isopropylbenzene identified in MW-1 and MW-2 at a maximum level of 12μg/L; n-Propylbenzene identified in MW-2 at a maximum level of 19μg/L; and sec-Butylbenzene identified in MW-1 at a maximum level of 21μg/L. The following summary table provides the VOCs identified in the groundwater samples above GQS.

Sample Identification	MW-1	MW-2	MW-3	MW-3 Dup	NYSDEC Ambient		
Boring Number	SB-1	SB-3	SB-3	SB-5	Groundwater		
Depth to Groundwater	23.6'	23.76'	23.76'	23.29'	Quality Standards		
Units	μg/L	μg/L	μg/L	μg/L	(µg/L)		
Volatile Organic Compounds (μg/L)							
2-Isopropyltoluene	9.5	5.5	ND	ND	5		
Benzene	0.87	0.83	ND	ND	1		
Isopropylbenzene	12	12	ND	ND	5		
Methyl-Tert-Butyl-Ether (MTBE)	1.8	4.2	ND	ND	10		
n-Propylbenzene	2.9	19	ND	ND	5		
sec-Butylbenzene	21	4.6	ND	ND	5		

o Five **SVOCs** were identified in the groundwater samples obtained from MW-1 exceeding their respective GQS. The SVOCs identified in the groundwater sample from MW-1 exceeding their respective GQS are <u>Benzo (a) Anthracene</u> identified at a level of 0.07 μg/L; <u>Benzo (b) Fluoranthene</u> identified at a level of 0.07 μg/L; <u>Benzo (k) Fluoranthene</u> identified at a level of 0.06 μg/L; <u>Chrysene</u> identified at a level of 0.05 μg/L; and <u>Indo (1,2,3-cd) Pyrene</u> identified at a level of 0.03 μg/L. The following summary table provides the SVOCs identified in the groundwater samples above GQS.

Sample Identification	MW-1	MW-2	MW-2 Dup	MW-3	NYSDEC
Boring Number	SB-1	SB-3	SB-3	SB-5	Ambient
Depth to Groundwater	23.6'	23.76'	23.76'	23.29'	Groundwater Quality
Sample Matrix	GW	GW	GW	GW	Standards
Units	μg/L	μg/L	μg/L	μg/L	(µg/L)
Sea	mi-Volatile O	rganic Co	mpounds (µg	g/L)	
Acenaphthene	ND	0.55	ND	ND	20
Fluoranthene	0.6	ND	ND	ND	50
Naphthalene	0.56	ND	ND	ND	10
Acenaphthene	0.87	ND	ND	ND	20
Benzo (a) Anthracene	0.07	ND	ND	ND	0.002
Benzo (b) Fluoranthene	0.07	ND	ND	ND	0.002
Benzo (k) Fluoranthene	0.06	ND	ND	ND	0.002
Bis (2-ethylhexyl) Phthalate	1.2	ND	ND	ND	5
Chrysene	0.05	ND	ND	ND	0.002
Indeno (1,2,3-cd) Pyrene	0.03	ND	ND	ND	0.002

- No Polychlorinated Biphenyls (PCBs) were detected in the groundwater samples obtained from MW-1 through MW-3.
- No Pesticides were detected in the groundwater samples obtained from MW-1 through MW-3.
- No TAL Metals were identified in any of the groundwater samples obtained from MW-1 through MW-3 exceeding their respective Groundwater Quality Standard.

The compound 1,4-dioxane was not identified in the groundwater sample. Perand Polyfluoroalkyl Substances (PFASs) were identified in the groundwater sample obtained from MW-1 from a level of below method detection limit, to 69 ng/L, below the current Preliminary Remediation Goals (PRG).

Table 5 through 8 are attached to this report

Appendix B provides a copy of the soil and groundwater samples laboratory results

5.3 Results of Soil Vapor Samples

The soil vapor samples collected indicated concentrations of VOCS were identified in the soil vapor samples. VOCs were identified in the soil vapor samples exceeding New York State Department of Health (NYSDOH) Final Guidance on Soil Vapor Intrusion (October 2006, updated May 2017) Guidance Values and Decision Matrix.

Petroleum related VOCs detected include <u>Toluene</u> at concentrations ranging from $9.34\mu g/m^3$ to $39.9\mu g/m^3$ in all six soil vapor locations; <u>Benzene</u> was identified at a concentration ranging from $6.77~\mu g/m^3$ to $36.4~\mu g/m^3$; <u>Ethylbenzene</u> at concentrations ranging from $9.37~\mu g/m^3$ to $69.4~\mu g/m^3$; and <u>o-Xylene</u> at concentrations ranging from $7.2~\mu g/m^3$ to $72.5~\mu g/m^3$.

Petroleum related - Volatile Organic Compounds (µg/m3)

Sample Identification	NYSDOH		SV-1	SV-2	SV-3	SV-4	SV-5	SV-6			
Boring Number	Air	V.7. (CD CV.)	1	2	3	4	5	6			
Sample Matrix	Guideline Value	NYSDOH Decision	Air	Air	Air	Air	Air	Air			
Units	(AGV)	Matrix	μg/m3	μg/m3	μg/m3	μg/m3	μg/m3	μg/m3			
Volatile Organic Compounds (μg/m3)											
Benzene			9.5	8.97	8.21	11.3	36.4	6.77			
Ethylbenzene			52.1	61.2	50.3	69.4	9.37	21			
o-Xylene			53.8	64.2	63.8	72.5	7.2	24.9			
Toluene			25.9	39.9	21.7	29	31.7	9.34			

Chlorinated related VOCS identified include <u>Tetrachloroethene (PCE)</u> at concentrations ranging from $231\mu g/m^3$ to $3,730\mu g/m^3$; and <u>Trichloroethene (TCE)</u> at concentrations ranging from $1.93\mu g/m^3$ to $73.6\mu g/m$.

Chlorinated related - Volatile Organic Compounds (µg/m3)

Sample Identification	NYSDOH	Air Guideline NYSDOH	SV-1	SV-2	SV-3	SV-4	SV-5	SV-6			
Boring Number			1	2	3	4	5	6			
Sample Matrix			Air	Air	Air	Air	Air	Air			
Units			μg/m3	μg/m3	μg/m3	μg/m3	μg/m3	μg/m3			
Volatile Organic Compounds (μg/m3)											
Tetrachloroethene (PCE)	30	2	582	550	983	746	3,730	231			
Trichloroethene (TCE)	2	1	3.57	23	42.5	1.93	73.6	3.67			

5.4 Quality Assurance/Quality Control Procedures

QA/QC procedures was used to provide performance information with regard to accuracy, precision, sensitivity, representation, completeness, and comparability associated with the sampling and analysis for this investigation. Field QA/QC procedures was used (1) to document that samples are representative of actual conditions at the Site and (2) identify possible cross-contamination from field activities or sample transit. Laboratory QA/QC procedures and analyses was used to demonstrate whether analytical results have been biased either by interfering compounds in the sample matrix, or by laboratory techniques that may have introduced systematic or random errors to the analytical process. A summary of the field and laboratory QA/QC procedures are provided in the appendices.

6.0 CONCLUSIONS

American Environmental Assessment & Solutions, Inc. (American Environmental) has performed a Phase II Subsurface Investigation at the property located at 1665 – 1673 Stillwell Avenue in the Gravesend section of Brooklyn, NY. Based upon the findings of the Phase II Subsurface Investigation, the following conclusions are provided.

• The field portion of American Environmental investigation consisted of a geophysical survey to determine the presence or absence of any buried containers and to locate and mark out onsite utilities, the installation and sampling of seven (7) soil borings; the installation of three (3) temporary monitoring wells; and the installation of six (6) soil vapor probes. All fieldwork was performed in accordance with all applicable federal, state and local regulations. Select soil was collected based upon protocols set forth in the May 24th, revised June 11th, 2019 WP, infield screening and analyzed at a state-certified laboratory for VOCs via EPA Method 8260, SVOCs via EPA Method 8270, Pesticides and PCBs via EPA Method 8081 and 8081, TAL metals, 1,4-dioxane by EPA Method 8270DSIM, and PFAS by EPA Method 537. Soil vapor samples will be analyzed for VOCs by using USEPA Method TO-15.

• Ground Penetrating Radar (GPR) Survey:

 No significant anomaly indicative of tanks, drums or buried objects were identified during the GPR survey at the Subject Property.

In addition all utilities including sewer and drain pipes were marked out in the vicinity of the work area. All proposed boring locations were cleared and marked prior to field activities.

• Soil Quality:

- No *VOCs* were identified in any of the soil samples obtained from soil boring SB-1 through SB-7 exceeding their respective Restricted Use SCOs Part 375-6.8(b) Residential and /or Track 1, except for Acetone identified in soil boring SB-6, 0-2 feet at a level of 51 S exceeding Track 1; this is a laboratory solvent and may not be representative of contaminants at the subject Property. TetraChloroethene (detected at a max of 580 μg/kg) was identified in four of the borings, but well below Track 1 UUSCOs. Soil boring SB-1 through SB-7 were installed throughout the Subject Property.
- No SVOCs were identified in any of the soil samples obtained from soil boring SB-1 through SB-7 exceeding their respective Restricted Use SCOs Part 375-6.8(b)
 Residential and /or Track 1.
- No Pesticides were detected in any of the soil samples obtained from soil boring SB-1 through SB-7 exceeding their respective Restricted Use SCOs Part 375-6.8(b)
 Residential and /or Track 1.
- No Polychlorinated Biphenyls (PCBs) were in any of the soil samples obtained from soil boring SB-1 through SB-7 exceeding their respective Restricted Use SCOs Part 375-6.8(b) Residential and /or Track 1.
- Target Analyte List (TAL) Metals were identified in the soil samples, obtained from soil boring SB-1 through SB-7. Only one TAL Metal (Lead in SB-4) was identified exceeding its Restricted Use SCOs Part 375-6.8(b) Residential at a level of 547 mg/kg (0-2 feet).

TAL Metals were identified in the soil samples exceeding Track 1 including Chromium, Copper, Lead, Nickel, Mercury and Zinc. Several other TAL Metals

were detected in the soil samples at levels well below their respective Restricted Use SCOs Part 375-6.8(b) Residential and/or Track 1.

The compound 1,4-dioxane was not detected in the soil sample. Per- and Polyfluoroalkyl Substances (PFASs) were not detected in the soil sample.

• Groundwater Quality:

- Four **VOCs** were identified in the groundwater samples obtained from monitoring well MW-1 and MW-3 exceeding their respective NYSDEC Ambient Groundwater Quality Standards (GQS). The VOCs identified above their respective GQS are 2-Isopropyltoluene identified in MW-1 at a maximum level of 9.5 μ g/L and in MW-2 at a maximum level of 5.5 μ g/L; Isopropylbenzene identified in MW-1 and MW-2 at a maximum level of 19 μ g/L; and sec-Butylbenzene identified in MW-1 at a maximum level of 21 μ g/L.
- Five **SVOCs** were identified in the groundwater samples obtained from MW-1 exceeding their respective NYSDEC Ambient Groundwater Quality Standards. The SVOCs identified in the groundwater sample from MW-1 exceeding their respective Groundwater Quality Standards are <u>Benzo (a) Anthracene</u> identified at a level of 0.07 μg/L; <u>Benzo (b) Fluoranthene</u> identified at a level of 0.07 μg/L; <u>Benzo (k) Fluoranthene</u> identified at a level of 0.06 μg/L; <u>Chrysene</u> identified at a level of 0.05 μg/L; and <u>Indo (1,2,3-cd) Pyrene</u> identified at a level of 0.03 μg/L.
- No Polychlorinated Biphenyls (PCBs) were detected in the groundwater samples obtained from MW-1 through MW-3.
- No **Pesticides** were detected in the groundwater samples obtained from MW-1 through MW-3.

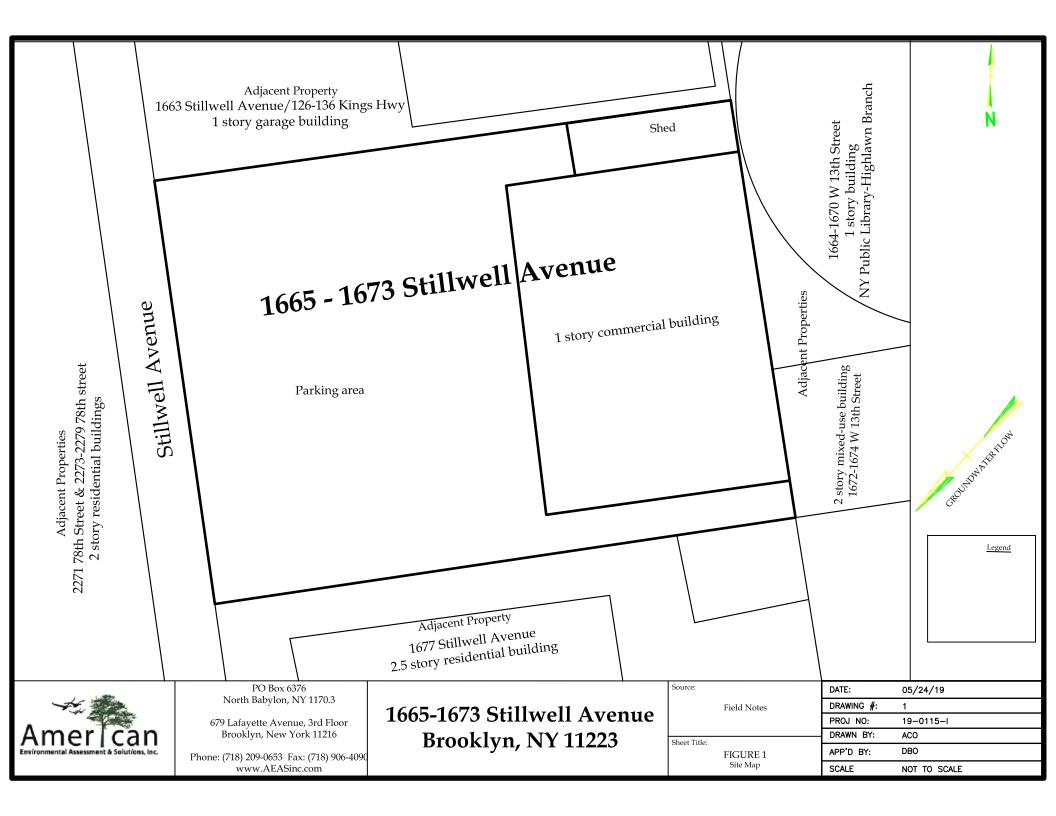
- No TAL Metals were identified in any of the groundwater samples obtained from MW-1 through MW-3 exceeding their respective Groundwater Quality Standard.
- The compound 1,4-dioxane was not identified in the groundwater sample. Perand Polyfluoroalkyl Substances (PFASs) were identified in the groundwater sample obtained from MW-1 from a level of below method detection limit, to 69 ng/L, below the current Preliminary Remediation Goals (PRG).

• Soil Vapor:

OCCs were identified in the soil vapor samples exceeding New York State Department of Health (NYSDOH) Final Guidance on Soil Vapor Intrusion (October 2006, updated May 2017) Guidance Values and Decision Matrix. Petroleum related VOCs detected include <u>Toluene</u> at concentrations ranging from 9.34μg/m³ to 39.9μg/m³ in all six soil vapor locations; <u>Benzene</u> was identified at a concentration ranging from 6.77 μg/m³ to 36.4 μg/m³; <u>Ethylbenzene</u> at concentrations ranging from 9.37 μg/m³ to 69.4 μg/m³; and <u>o-Xylene</u> at concentrations ranging from 7.2 μg/m³ to 72.5 μg/m³.

Chlorinated related VOCS identified include <u>Tetrachloroethene (PCE)</u> at concentrations ranging from $231\mu g/m^3$ to $3,730\mu g/m^3$; and <u>Trichloroethene (TCE)</u> at concentrations ranging from $1.93\mu g/m^3$ to $73.6\mu g/m^3$.

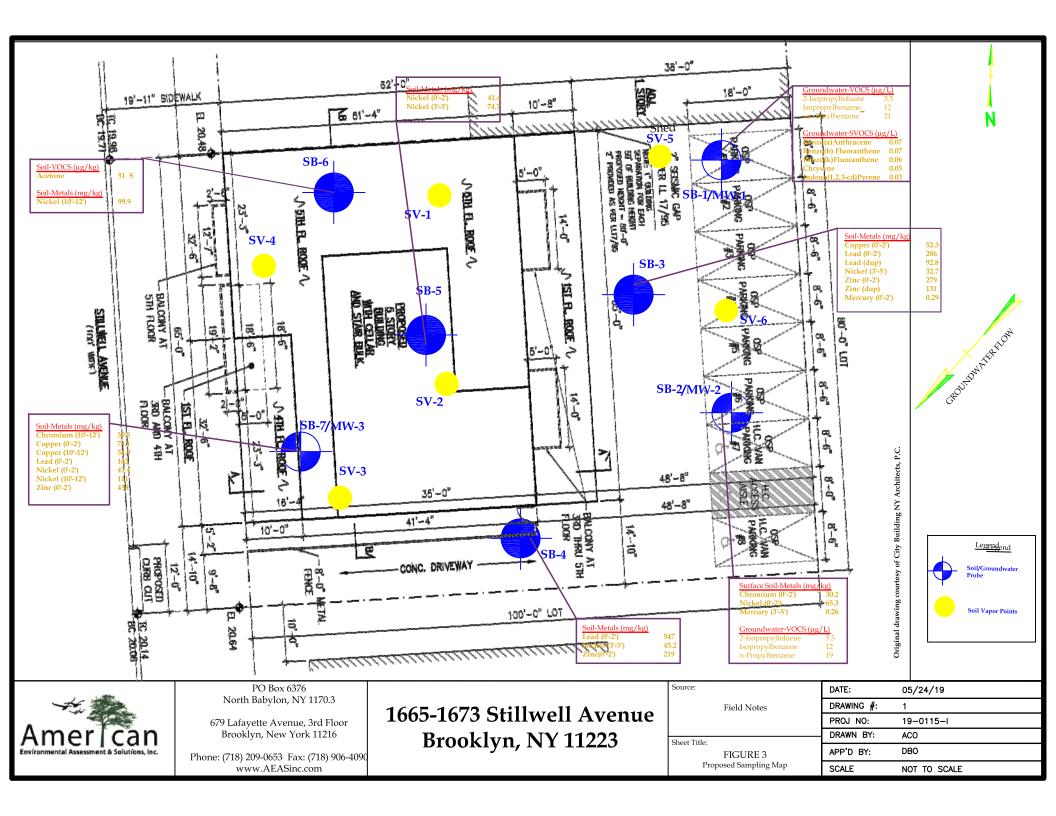
7.0 RECOMMENDATIONS

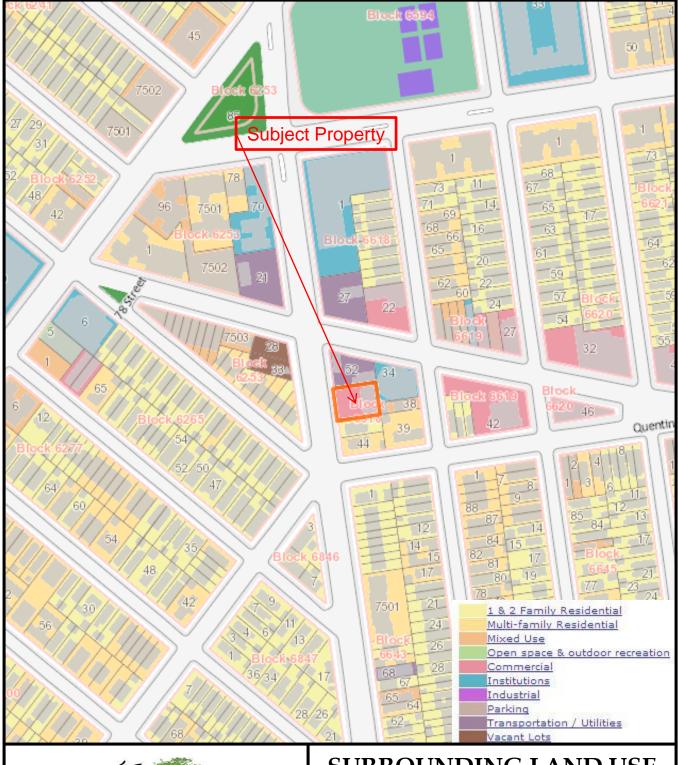

Based upon the findings of the Phase II Subsurface Investigation presented above, American Environmental provides the following recommendations:

A Remedial Action Plan (RAP) and a Construction Health and Safety Plan (CHASP)
to address hotspot areas and soil vapor should be prepared. The RAP and CHASP
should be submitted to the NYCOER for review, comment and approval.

Figures

USGS Topographic Map 7.5 Minute Series, Central Park, NY Quadrangle, dated 2013


SITE LOCATION MAP


Site Name: STILLWELL AVENUE

Address: 1665 - 1673 Stillwell Avenue

Brooklyn, NY 11223

Project No.: 19-0115-II

679 Lafayette Avenue, 3rd Floor Brooklyn, NY 11216 Tel: 718-209-0653/Fax: 718-906-4090 www.AEASinc.com

SURROUNDING LAND USE

Site Name: STILLWELL AVENUE

Address: 1665 - 1673 Stillwell Avenue

Brooklyn, NY 11223

Project No.: 19-0115-I

Soil Analytical Results

Table 1 Soil Samples Analytical Results 1665 Stillwell Avenue, Brooklyn, NY

	Sample Identification	SE	3-1	SE	3-2		SB-3		SI	3-4	Sl	B-5	SI	3-6	S	B-7	Track 1	Restricted Use
Sample 10 10 10 10 10 10 10 1	Boring Number		1	2	2		3		4	1		5		6		7	Unrestricted	
Sample Markix	Sample Date	6/24	/2019	6/24/	/2019		6/24/2019		6/24	/2019	6/24	/2019	6/24	/2019	6/24	/2019	Use Soil	
Units	Sample Matrix	So	oil	Sc	oil		Soil		S	oil	S	oil	S	oil	S	oil	Cleanup	,
Sample Depth	Units	μg	/kg	μg,	/kg		μg/kg		μg	/kg	μg	/kg	μg	/kg	μд	/kg		` '
1.1.1.2-friednoroethane	Sample Depth					0' - 2'		3' - 5'	0' - 2'	3' - 5'							375-6.8(a)	Residential
1.1.1.2-friednoroethane							Volatil	e Orga	nic Con	npound	ls (ug/k	g)						
1.12.2-Trichloroethane	1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND					1: 0	O,	ND	ND	ND	ND	NS	NS
1.1.2.2-triachforoethane	1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	680	100,000
1,1,2-17chloroethane	1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,1-Dichloroethene	1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,1-Dicklotropropene	1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	270	26,000
12,3-Trichlorobenzene	1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	330	100,000
1,2,3-1 Trichtorobenzene	1,1-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
1,2,3-Trichloropropane	1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	
12,4-1Frindhorobenzene	1,2,3-Trichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	
1,2-Dibfromo-3-chloropropane	1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	
1,2-Dichromoethane	1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3,600	52,000
1,2-Dichlorobenzene	1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
1,2-Dichloroethane	1,2-Dibromoethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
1,2-Dichloropropane	1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,100	100,000
1,3,5-Trimethylbenzene ND ND ND ND ND ND ND N	1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	20	3,100
1,3-Dichlorobenzene ND ND <td>1,2-Dichloropropane</td> <td>ND</td> <td>NS</td> <td></td>	1,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	
1,3-Dichloropropane	1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	8,400	52,000
1,4-Dichlorobenzene	1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	2,400	4,900
2,2-Dichloropropane	1,3-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
2-Chlorotoluene	1,4-Dichlorobenzene	ND	ND			-		-		-	-		-				1,800	13,000
2-Hexanone	2,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	NS	NS
ND ND ND ND ND ND ND ND	2-Chlorotoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	
4-Chlorotoluene	2-Hexanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
4-Methyl-2-pentanone	2-Isopropyltoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	
Acetone	4-Chlorotoluene	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	
Acrylonitrile	4-Methyl-2-pentanone	ND	ND														NS	NS
Renzene	Acetone	ND	ND	ND	ND	ND	35 S	35 S		ND	ND	ND	51 S	ND	ND	ND	50	100,000
Bromobenzene ND	Acrylonitrile	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Bromochloromethane ND	Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	60	4,800
Bromodichloromethane ND	Bromobenzene	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	NS	
Bromoform ND	Bromochloromethane	ND	ND		ND			ND				ND			ND		NS	
Bromomethane ND	Bromodichloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	
	Bromoform	ND	ND	ND	ND	ND		ND		ND	ND	ND	ND	ND	ND	ND	NS	
Carbon Disulfide ND	Bromomethane							-			-		-				NS	
	Carbon Disulfide	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS

NS...No Standard

ND..Not Detected

Table 1 Continued......

Soil Samples Analytical Results 1665 Stillwell Avenue, Brooklyn, NY

Sample Identification	SE	3-1	SE	3-2		SB-3		SI	3-4	Sl	B-5	SI	3-6	S	B-7	Track 1	Restricted Use
Boring Number	1	1	2	2		3		4	4		5	(6		7	Unrestricted	Soil Cleanup
Sample Date	6/24/	/2019	6/24/	/2019		6/24/2019		6/24	/2019	6/24	/2019	6/24	/2019	6/24	1/2019	Use Soil	Objectives Part
Sample Matrix	Sc	oil	Sc	oil		Soil		S	oil	S	oil	S	oil	S	Soil	Cleanup	375-6.8(b)
Units	μg	/kg	μg,	/kg		μg/kg		μд	/kg	μд	/kg	μg	/kg	μд	g/kg	Objectives Part	Residential
Sample Depth	0' - 2'	3' - 5'	0' - 2'	3' - 5'	0' - 2'	0' - 2' Dup	3' - 5'	0' - 2'	3' - 5'	0' - 2'	10' - 12'		10' - 12'	0' - 2'	10' - 12'	375-6.8(a)	(μg/kg)
						Volati	le Orga	nic Cor	npound	ls (μg/k	g)						
Carbon tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	760	2,400
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,100	100,000
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	370	49,000
Chloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	250	100,000
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Dibromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Dibromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,000	41,000
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Isopropylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
m + p-Xylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	260	100,000
Methyl Ethyl Ketone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	120	100,000
Methyl-Tert-Butyl-Ether (MTBE)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	930	100,000
Methylene chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50	100,000
Naphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	12,000	100,000
n-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	12,000	100,000
n-Propylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3,900	100,000
o-Xylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	260	100,000
p-Isopropyltoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
sec-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	11,000	100,000
Styrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
tert-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5,900	100,000
Tetrachloroethene	210	400	ND	200	ND	ND	ND	ND	ND	ND	ND	ND	6.0	580	ND	1,300	19,000
Tetrahydrofuran (THF)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	700	100,000
Total Xylenes	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	260	100,000
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	190	100,000
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
trans-1,4-dichloro-2-butene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Trichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	470	21,000
Trichlorofluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Trichlorotrifluoroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Vinyl chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	20	900
Total VOCs	210	400	0	200	0	35 S	35 S	0	0	0	0	51 S	6.0	580	0		

NS...No Standard

ND..Not Detected

Table 2 Soil Samples Analytical Results 1665 Stillwell Avenue, Brooklyn, NY

C 1 II CC C	CI	SB-1 SB-2 SB-3								, .		CI	2 (C	D 7	Track 1	Restricted Use
Sample Identification	SB)-1 -						SE	5-4		3-5		3-6	5	B-7		
Boring Number	1	1	2	-		3		4	1		5		5		7	Unrestricted	Soil Cleanup
Sample Date	6/24/	,	6/24,			6/24/2019		, ,	/2019		/2019		/2019		/2019	Use Soil	Objectives Part
Sample Matrix	Sc	oil	Sc			Soil		So	oil		oil	S			oil	Cleanup	375-6.8(b)
Units	μg/	/kg	μg	/kg		μg/kg		μg	/kg		/kg		/kg	μд	/kg	Objectives Part	Residential
Sample Depth	0' - 2'	3' - 5'	0' - 2'	3' - 5'	0' - 2'	0' - 2' Dup	3' - 5'	0' - 2'	3' - 5'	0' - 2'	10' - 12'	0' - 2'	10' - 12'	0' - 2'	10' - 12'	375-6.8(a)	(ug/kg)
					(Semi-Vol	atile Oı	ganic (Compou	ınds (µ	g/kg)						
1,2,4,5-Tetrachlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,100	100,000
1,2-Diphenylhydrazine	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2,400	280,000
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,800	130,000
2,4,5-Trichlorophenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
2,4,6-Trichlorophenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
2,4-Dichlorophenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
2,4-Dimethylphenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
2,4-Dinitrophenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
2,4-Dinitrotoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
2,6-Dinitrotoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
2-Chloronaphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
2-Chlorophenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
2-Methylnaphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
2-Methylphenol (o-cresol)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	330	100,000
2-Nitroaniline	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
2-Nitrophenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
3&4-Methylphenol (m&p-cresol)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	330	100,000
3,3'-Dichlorobenzidine	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
3-Nitroaniline	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
4-Bromophenyl phenyl ether	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
4-Chloro-3-methylphenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
4-Chloroaniline	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
4-Chlorophenyl phenyl ether	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
4-Nitroaniline	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
4-Nitrophenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Acenaphthene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	20,000	100,000
Acenaphthylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	100,000	100,000
Acetophenone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Aniline	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Anthracene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	100,000	100,000
Benzo (a) Anthracene	ND	ND	ND	ND	430	ND	ND	ND	ND	ND	ND	ND	ND	600	ND	1,000	1,000
Benzidine	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
NC N Ct 1 1	D 11 C C	21 1 1 1	•			1' 11		111 000	D '1								

NS...No Standard Bold & Shaded values represent concentration exceeding the Restricted Use SCOs Residential Bold values represent concentration exceeding Track 1 SCOs

Table 2 Continued...

Soil Samples Analytical Results 1665 Stillwell Avenue, Brooklyn, NY

Sample Identification	SE	B-1	SB	3-2		SB-3		SI	3-4	SI	B-5	SI	3-6	Si	B-7	Track 1	Restricted Use
Boring Number	-	1	2	2		3		4	4		5		6		7	Unrestricted	Soil Cleanup
Sample Date	6/24	/2019	6/24/	/2019		6/24/2019		6/24	/2019	6/24	/2019	6/24	/2019	6/24	/2019	Use Soil	Objectives Part
Sample Matrix	Sc		Sc			Soil		_ ′ ′	oil		oil		oil		oil	Cleanup	375-6.8(b)
Units	μg		μg/			μg/kg			/kg		/kg		/kg		/kg	Objectives Part	
Sample Depth	0' - 2'	3' - 5'	0' - 2'	3' - 5'	0' - 2'	0' - 2' Dup	3' - 5'	0' - 2'	3' - 5'	0' - 2'	10' - 12'			0' - 2'	10' - 12'	375-6.8(a)	(µg/kg)
Запри Вериг	0 - 2	3 - 3	0 - 2	3 - 3		Semi-Vol						0 - 2	10 - 12	0 - 2	10 - 12	373-0.0(a)	(μg/ kg)
Paragraphy (a) Paragraphy	NID	NID	ND	ND	440	ND	ND	ND	ND	ND	ND	ND	ND	540	ND	1,000	1 ()(()
Benzo (a) Pyrene Benzo (b) Fluoranthene	ND ND	ND ND	ND ND	ND	360	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	500	ND ND	1,000	1,000 1,000
Benzo (g,h,I) Perylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	330	ND	100,000	100,000
Benzo (k) Fluoranthene	ND	ND	ND	ND	380	ND	ND	ND	ND	ND	ND	ND	ND	450	ND	800	3,900
Benzoic acid	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Benzyl butyl phthalate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Bis(2-chloroethoxy)methane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Bis(2-chloroethyl)ether	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Bis(2-chloroisopropyl)ether	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Bis(2-ethylhexyl)phthalate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Carbazole	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Chrysene	ND	ND	ND	ND	430	ND	ND	ND	ND	ND	ND	ND	ND	620	ND	1,000	3,900
Dibenzo(a,h)anthracene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	330	330
Dibenzofuran	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7,000	350,000
Diethyl phthalate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Dimethylphthalate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Di-n-butylphthalate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Di-n-octylphthalate	ND	ND	260	ND	ND	ND	ND	ND	ND	ND	ND	280	ND	ND	ND	NS	NS
Fluoranthene	ND	ND	280	ND	870	ND	ND	ND	ND	ND	ND	ND	ND	1,100	ND	100,000	100,000
Fluorene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	30,000	100,000
Hexachlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	330	6,000
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Hexachlorocyclopentadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Hexachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Indeno (1,2,3-cd) Pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	370	ND	500	500
Isophorone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Naphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	370	ND	ND	12,000	100,000
Nitrobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
N-Nitrosodimethylamine	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
N-Nitrosodi-n-propylamine	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
N-Nitrosodiphenylamine	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Pentachloronitrobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Pentachlorophenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	800	6,700
Phenanthrene	ND	ND	ND	ND	510	ND	ND	ND	ND	ND	ND	ND	ND	1,000	ND	100,000	100,000
Phenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	330	100,000
Pyrene	ND	ND	280	ND	790	ND	ND	ND	ND	ND	ND	ND	ND	1,000	ND	100,000	100,000
Pyridine	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
4-Nitroaniline	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Benzyl alcohol Total SVOCs	ND 0	ND 0	ND 820	ND 0	ND 3,030	ND 0	ND 0	ND 0	ND 0	ND 0	ND 0	ND 280	ND 370	ND 6 510	ND 0	NS 100,000	NS 100,000
NS No Standard						v acadina tha					U	200	3/0	6,510	U	100,000	ND Not Detected

NS...No Standard Bold & Shaded values represent concentration exceeding the Restricted Use SCOs Residential

Table 3 Soil Samples Analytical Results 1665 Stillwell Avenue, Brooklyn, NY

Sample Identification	SE	B-1	SE	3-2		SB-3	tillwei		3-4		3-5	SE	3-6	Sl	B-7		
Boring Number	1	L	2	2		3		4	1		5	(6		7	Track 1	Restricted Use
Sample Date	6/24/	/2019	6/24/	/2019		6/24/2019	1	6/24	/2019	6/24	/2019	6/24	/2019	6/24	/2019	Unrestricted Use	Soil Cleanup
Sample Matrix	Sc	oil	Sc	oil		Soil		Sc	oil	S	oil	So	oil	S	oil	Soil Cleanup Objectives Part	Objectives Part 375-6.8(b)
Units	μg,	/kg	μg/	/kg		μg/kg		μg	/kg	μg	/kg	μg	/kg	μg	/kg	375-6.8(a)	Residential
Sample Depth	0' - 2'	3' - 5'	0' - 2'	3' - 5'	0' - 2'	0' - 2' Dup	3' - 5'	0' - 2'	3' - 5'		10' - 12'		10' - 12'		10' - 12'	010 010 (11)	
							Pes	ticides	(μg/kg	g)							
4,4' - DDD	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.3	2,600
4,4' - DDE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.3	1,800
4,4' - DDT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.3	1,700
a-BHC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	20	97
Alachlor	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Aldrin	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5	19
b-BHC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	36	72
Chlordane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	94	910
d-BHC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	40	100,000
Dieldrin	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5	39
Endosulfan I	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2,400	4,800
Endosulfan II	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2,400	4,800
Endosulfan sulfate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2,400	4,800
Endrin	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	14	2,200
Endrin aldehyde	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Endrin ketone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
g-BHC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	100	280
Heptachlor	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	42	420
Heptachlor epoxide	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Methoxychlor	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
Toxaphene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS
							P	CBs (µ	g/kg)								
PCB-1016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,000	1,000
PCB-1221	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,000	1,000
PCB-1232	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,000	1,000
PCB-1242	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,000	1,000
PCB-1248	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,000	1,000
PCB-1254	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,000	1,000
PCB-1260	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,000	1,000
PCB-1262	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,000	
PCB-1268	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,000	1,000

NS...No Standard

Bold values represent concentration exceeding Track 1 SCOs

Table 4 Soil Samples Analytical Results 1665 Stillwell Avenue, Brooklyn, NY

Sample Identification	SE	B - 1	SE	3-2		SB-3		SE	3-4	SI	3-5	SE	B-6	SE	3-7	Track 1	
Boring Number	-	1	2	2		3		4	4	ļ	5	(5	7	7	Unrestricted	Restricted Use
Sample Date	6/24,	/2019	6/24	/2019		6/24/2019		6/24,	/2019	6/24	/2019	6/24	/2019	6/24	/2019	Use Soil	Soil Cleanup Objectives Part
Sample Matrix	So	oil	Sc	oil		Soil		Sc	oil	So	oil	So	oil	So	oil	Cleanup	375-6.8(b)
Units	mg	/kg	mg	/kg		mg/kg		mg	/kg	mg	/kg	mg	/kg	mg	/kg	Objectives Part	Residential
Sample Depth	0' - 2'	3' - 5'	0' - 2'	3' - 5'	0' - 2'	0' - 2' Dup	3' - 5'	0' - 2'	3' - 5'	0' - 2'	10' - 12'	0' - 2'	10' - 12'	0' - 2'	10' - 12'	375-6.8(a)	
	TAL Metals (mg/kg)																
Aluminum	13,400	14,400	14,300	17,100	7,520	16,400	11,100	17,300	7,810	7,180	4,730	12,800	4,230	11,700	5,590	NS	NS
Antimony	<3.8	<3.9	<3.8	<3.6	<4.0	<4.3	<4.3	<4.1	<3.5	<3.6	<3.6	<3.4	<3.7	<3.6	<3.3	NS	NS
Arsenic	5.34	5.99	7.03	8.12	6.79	8.7	4.03	9.44	2.24	2.68	1.92	6.44	1.81	5.91	3.04	13	16
Barium	38.8	48.3	77.6	88	313	135	51	238	25.1	23.3	32.6	47.9	25.7	104	43.9	350	350
Beryllium	0.62	0.56	0.71	0.8	0.41	0.9	0.45	0.88	0.5	0.38	0.34	0.51	< 0.29	0.75	0.51	7.20	14
Cadmium	< 0.38	< 0.39	<0.38	< 0.36	1.34	0.71	0.6	0.58	< 0.35	< 0.36	< 0.36	< 0.34	< 0.37	0.8	0.39	2.5	2.5
Calcium	1,030	1,110	3,090	2,070	38,400	4,180	1,240	2,930	658	803	1,020	2,750	1,140	13,600	2,290	NS	NS
Chromium	22.4	20.3	30.2	21.7	19.0	25.0	18.8	26.1	22.9	16.1	16.3	19.1	17.1	26.5	30.5	30	36
Cobalt	10.3	8.94	13.6	8.23	9.38	9.63	9.55	9.69	7.64	7.01	10.3	7.5	8.53	12.3	18.3	NS	NS
Copper	13.5	15.2	23.7	26.3	52.3	34.9	17.6	40.5	11.8	12.7	27.8	13.3	12.4	74.1	54.9	50	270
Iron	19,500	18,400	21,400	19,900	21,600	21,200	18,900	21,300	15,800	14,100	10,600	16,400	11,100	19,400	20,800	NS	NS
Lead	10.8	24	35.3	58.9	286	92.8	38.9	547	6.24	6.29	3.88	25.4	5.45	163	9.19	63	400
Magnesium	3,450	2,580	3,820	2,460	17,800	3,380	3,230	2,670	2,890	2,490	3,380	3,170	7,800	4,880	3,500	NS	NS
Manganese	358	295	429	446	359	398	321	511	359	230	310	303	450	291	536	1600	2,000
Nickel	28.3	23.1	65.3	24.9	26	27.5	32.7	29.4	45.2	41.4	74.7	23.1	99.9	47.4	111	30	140
Potassium	1,080	964	1,260	806	1,090	1,030	754	911	724	674	802	802	830	1,100	1,340	NS	NS
Selenium	<1.5	<1.5	<1.5	<1.5	<1.6	<1.7	<1.7	<1.6	<1.4	<1.5	<1.4	<1.4	<1.5	<1.4	<1.3	3.9	36
Silver	< 0.38	< 0.39	< 0.38	< 0.36	< 0.40	< 0.43	< 0.43	< 0.41	< 0.35	< 0.36	< 0.36	< 0.34	< 0.37	< 0.36	< 0.33	2	36
Sodium	86.7	76.9	104	<i>7</i> 5.5	121	141	58.2	192	79.4	119	199	156.0	337	347	298	NS	NS
Thallium	<3.4	<3.5	<3.5	<3.3	<3.6	<3.9	<3.8	<3.7	<3.2	<3.3	<3.2	<3.0	<3.3	<3.2	<3.0	NS	NS
Vanadium	32.5	29.6	34.2	32	25.7	35.2	24.7	36.4	28.2	23.5	16.1	26.2	16	31.3	38.6	NS	NS
Zinc	30.4	36.5	53	48.5	279	131	82.7	219	23	24.2	26.3	36.2	24.4	433	74.9	109	2,200
Mercury	0.04	0.05	0.13	0.26	0.29	0.15	0.14	0.16	< 0.03	< 0.03	<0.03	0.11	< 0.03	0.16	<0.03	0.18	0.81

NS...No Standard Bold & Shaded values represent concentration exceeding the Restricted Use SCOs Residential Bold values represent concentration exceeding Track 1 SCOs

Table 11 Soil Samples Analytical Results 1665 Stillwell Avenue, Brooklyn, NY

Sample Identification	SB-5		Track 1 Unrestricted	Restricted Use Soil
Sample Depth	10' - 12'	Reporting		Cleanup Objectives
Sample Date	6/24/2019	Limit	Objectives Part 375-	Part 375-6.8(b)
Sample Matrix	Soil		6.8(a)	Residential
	PFAS in Soi	l (μg/kg)		
Perfluorobutanesulfonic acid (PFBS)	ND	0.91	NS	NS
Perfluorohexanoic acid (PFHxA)	ND	0.91	NS	NS
Perfluoroheptanoic acid (PFHpA)	ND	0.91	NS	NS
Perfluorobutanoic acid (PFBA)	ND	0.91	NS	NS
Perfluorodecanesulfonic acid (PFDS)	ND	0.91	NS	NS
Perfluoroheptanesulfonic acid (PFHpS)	ND	0.91	NS	NS
Perfluorooctanesulfonamide (FOSA)	ND	0.91	NS	NS
Perfluoropentanoic acid (PFPeA)	ND	0.91	NS	Ns
6:2 Fluorotelomersulfonate (6:2 FTS)	ND	0.91	NS	NS
8:2 Fluorotelomersulfonate (8:2 FTS)	ND	0.91	NS	NS
Perfluorohexanesulfonic acid (PFHxS)	ND	0.91	NS	NS
Perfluorooctanoic acid (PFOA)	ND	0.91	NS	NS
Perfluorooctanesulfonic acid (PFOS)	ND	0.91	NS	NS
Perfluorononanoic acid (PFNA)	ND	0.91	NS	NS
Perfluorodecanoic acid (PFDA)	ND	0.91	NS	NS
N-MeFOSAA	ND	0.91	NS	NS
Perfluoroundecanoic acid (PFUnA)	ND	0.91	NS	NS
N-EtFOSAA	ND	0.91	NS	NS
Perfluorododecanoic acid (PFDoA)	ND	0.91	NS	
Perfluorotridecanoic acid (PFTrDA)	ND	0.91	NS	NS
Perfluorotetradecanoic acid (PFTA)	ND	0.91	NS	
	1,4-Dioxane	(µg/kg)		
1,4-Dioxane	ND	68	NS	NS

Groundwater analytical Results

Table 5 Groundwater Samples Analytical Results 1665 Stillwell Avenue, Brooklyn, NY

		ell Avenue, Brook			
Sample Identification	MW-1	MW-2	MW-3	MW-3 Dup	
Boring Number	SB-1	SB-3	SB-3	SB-5	NYSDEC Ambient
Depth to Groundwater	23.6'	23.76'	23.76'	23.29'	Groundwater
Sample Date	6/24/2019 GW	6/24/2019 GW	6/24/2019 GW	6/24/2019 GW	Quality Standards
Sample Matrix Units	μg/L	μg/L	μg/L	μg/L	(μg/L)
O'III.O		ganic Compoun		F6/ L	
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	5
1,1,1-Trichloroethane	ND	ND	ND	ND	5
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	5
1,1,2-Trichloroethane	ND	ND	ND	ND	1
1,1-Dichloroethane	ND ND	ND ND	ND ND	ND ND	5 5
1,1-Dichloroethene 1,1-Dichloropropene	ND	ND ND	ND ND	ND ND	5
1,2,3-Trichlorobenzene	ND	ND	ND	ND	5
1,2,3-Trichloropropane	ND	ND	ND	ND	0.04
1,2,4-Trichlorobenzene	ND	ND	ND	ND	5
1,2,4-Trimethylbenzene	ND	ND	ND	ND	5
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	ND ND	ND ND	ND ND	ND ND	0.04 5
1,2-Disconoentane 1,2-Dichlorobenzene	ND	ND ND	ND ND	ND	3
1,2-Dichloroethane	ND	ND	ND	ND	0.6
1,2-Dichloropropane	ND	ND	ND	ND	1
1,3,5-Trimethylbenzene	ND	ND	ND	ND	5
1,3-Dichlorobenzene	ND	ND	ND	ND	3
1,3-Dichloropropane 1,4-Dichlorobenzene	ND ND	ND ND	ND ND	ND ND	5 3
2,2-Dichloropropane	ND	ND ND	ND ND	ND	5
2-Chlorotoluene	ND	ND	ND	ND	5
2-Hexanone	ND	ND	ND	ND	50
2-Isopropyltoluene	9.5	5.5	ND	ND	5
4-Chlorotoluene	ND	ND	ND	ND	5
4-Methyl-2-pentanone Acetone	ND ND	ND ND	ND ND	ND ND	NS 50
Acrylonitrile	ND	ND ND	ND	ND	5
Benzene	0.87	0.83	ND	ND	1
Bromobenzene	ND	ND	ND	ND	5
Bromochloromethane	ND	ND	ND	ND	5
Bromodichloromethane	ND	ND	ND	ND	50
Bromoform Bromomethane	ND ND	ND ND	ND ND	ND ND	50 5
Carbon Disulfide	ND	ND	ND	ND	60
Carbon tetrachloride	ND	ND	ND	ND	5
Chlorobenzene	ND	ND	ND	ND	5
Chloroethane	ND	ND	ND	ND	5
Chloroform Chloromethane	ND ND	ND ND	ND 2	ND ND	7 60
cis-1,2-Dichloroethene	ND	ND	ND	ND	5
cis-1,3-Dichloropropene	ND	ND	ND	ND	0.4
Dibromochloromethane	ND	ND	ND	ND	50
Dibromomethane	ND	ND	ND	ND	5
Dichlorodifluoromethane Ethylbenzene	ND ND	ND ND	ND ND	ND ND	5 5
Hexachlorobutadiene	ND	ND ND	ND ND	ND	0.5
Isopropylbenzene	12	12	ND	ND	5
m + p-Xylene	ND	ND	ND	ND	5
Methyl Ethyl Ketone	ND	ND	ND	ND	50
Methyl-Tert-Butyl-Ether (MTBE)	1.8	4.2	ND	ND	10
Methylene chloride	ND ND	ND ND	ND ND	ND ND	5 10
Naphthalene n-Butylbenzene	4.8	ND 1.5	ND ND	ND ND	5
n-Propylbenzene	2.9	19	ND	ND	5
o-Xylene	ND	ND	ND	ND	5
p-Isopropyltoluene	ND	ND	ND	ND	5
sec-Butylbenzene	21	4.6	ND	ND	5
Styrene	ND 2.6	ND	ND	ND	5
tert-Butylbenzene Tetrachloroethene	2.6 ND	1.6 ND	ND ND	ND ND	5 5
Tetrahydrofuran (THF)	ND	ND ND	ND	ND	50
Toluene	ND	ND	ND	ND	5
Total Xylenes	ND	ND	ND	ND	5
trans-1,2-Dichloroethene	ND	ND	ND	ND	5
trans-1,3-Dichloropropene	ND ND	ND ND	ND ND	ND ND	5
trans-1,4-dichloro-2-butene Trichloroethene	ND ND	ND ND	ND ND	ND ND	5 5
Trichlorofluoromethane	ND	ND ND	ND ND	ND	5
Trichlorotrifluoroethane	ND	ND	ND	ND	NS
Trichiorourinuoroeulane	IND	IND	110		

NS...No Standard

ND...Not Detected

Shaded & bold values represent concentration exceeding the NYSDEC Ambient Groundwater Quality Standards

Table 6 Groundwater Samples Analytical Results 1665 Stillwell Avenue, Brooklyn. NY

Sample Identification	MW-1	ell Avenue, Brook MW-2	MW-2 Dup	MW-3	
Boring Number	SB-1	SB-3	SB-3	SB-5	NYSDEC Ambier
Depth to Groundwater	23.6'	23.76'	23.76'	23.29'	Groundwater
Sample Date	6/24/2019	6/24/2019	6/24/2019	6/24/2019	Quality Standard
Sample Matrix	GW	GW	GW	GW	(μg/L)
Units	μg/L	μg/L	μg/L	μg/L	(μg/ L)
Dilits				μg/ L	<u> </u>
		Organic Compo		1	_
1,2,4-Trichlorobenzene	ND	ND	ND	ND	5
1,2-Dichlorobenzene	ND	ND	ND	ND	3
1,2-Diphenylhydrazine	ND	ND	ND	ND	0.05
1,3-Dichlorobenzene	ND	ND	ND	ND	3
1,4-Dichlorobenzene	ND	ND	ND	ND	3
2,4,5-Trichlorophenol	ND	ND	ND	ND	1
2,4,6-Trichlorophenol	ND	ND	ND	ND	1
2,4-Dichlorophenol	ND	ND	ND	ND	1
2,4-Dimethylphenol	ND	ND	ND	ND	1
2,4-Dinitrophenol	ND	ND	ND	ND	1
2,4-Dinitrotoluene	ND	ND	ND	ND	5
2,6-Dinitrotoluene	ND	ND	ND	ND	5
2-Chloronaphthalene	ND	ND	ND	ND	10
2-Chlorophenol	ND	ND 1.2	ND	ND	NS
2-Methylnaphthalene	ND	1.2	ND	ND	NS NC
2-Methylphenol (o-cresol)	ND	ND	ND	ND	NS
2-Nitroaniline	ND	ND	ND	ND	5
2-Nitrophenol	ND	ND	ND	ND	NS NC
3&4-Methylphenol (m&p-cresol)	ND	ND	ND	ND	NS
3,3'-Dichlorobenzidine	ND	ND	ND	ND	5
3-Nitroaniline	ND	ND	ND	ND	5
l,6-Dinitro-2-methylphenol	ND	ND	ND	ND	NS
l-Bromophenyl phenyl ether	ND	ND	ND	ND	NS NG
-Chloro-3-methylphenol	ND	ND	ND	ND	NS
I-Chloroaniline	ND	ND	ND	ND	5
I-Chlorophenyl phenyl ether	ND	ND	ND	ND	NS
I-Nitroaniline	ND	ND	ND	ND	5
l-Nitrophenol	ND	ND	ND	ND	NS
Acenaphthene	ND	0.55	ND	ND	20
Aniline	ND	ND	ND	ND	5
Anthracene	ND	ND	ND	ND	50
Benzidine	ND	ND	ND	ND	5
Benzoic acid	ND	ND	ND	ND	NS
Benzyl butyl phthalate	ND	ND	ND	ND	50
Bis(2-chloroethoxy)methane	ND	ND	ND	ND	5
3is(2-chloroethyl)ether	ND	ND	ND	ND	1
Bis(2-chloroisopropyl)ether	ND	ND	ND	ND	1
Carbazole	ND	ND	ND	ND	NS
Dibenzofuran	ND	ND	ND	ND	NS
Diethyl phthalate	ND	ND	ND	ND	50
Dimethylphthalate	ND	ND	ND	ND	50
Di-n-butylphthalate	ND	ND	ND	ND	50
Di-n-octylphthalate	ND	ND	ND	ND	50
Fluoranthene	0.6	ND	ND	ND	50
Fluorene	ND	ND	ND	ND	50
Hexachlorobutadiene	ND	ND	ND	ND	0.5
Hexachlorocyclopentadiene	ND	ND	ND	ND	5
sophorone	ND	ND	ND	ND	50
Naphthalene	0.56	ND	ND	ND	10
Vitrobenzene	ND	ND	ND	ND	0.4
N-Nitrosodimethylamine	ND	ND	ND	ND	NS
N-Nitrosodi-n-propylamine	ND	ND	ND	ND	NS
N-Nitrosodiphenylamine	ND	ND	ND	ND	50
Phenol	ND	ND	ND	ND	1
Pyrene	ND	ND	ND	ND	50
.,2,4,5-Tetrachlorobenzene	ND	ND	ND	ND	5
Acenaphthene	0.87	ND	ND	ND	20
Acenaphthylene	ND	ND	ND	ND	NS
Benzo (a) Anthracene	0.07	ND	ND	ND	0.002
Benzo (a) Pyrene	ND	ND	ND	ND	0.002
Benzo (b) Fluoranthene	0.07	ND	ND	ND	0.002
Benzo (g,h,I) Perylene	ND	ND	ND	ND	5
Benzo (k) Fluoranthene	0.06	ND	ND	ND	0.002
Bis (2-ethylhexyl) Phthalate	1.2	ND	ND	ND	5
Chrysene	0.05	ND	ND	ND	0.002
Dibenz(a,h) Anthracene	ND	ND	ND	ND	50
Hexachlorobenzene	ND	ND	ND	ND	0.04
Texachloroethane	ND	ND ND	ND ND	ND ND	0.04
	0.03	ND	ND	ND ND	0.002
ndeno (1,2,3-cd) Pyrene					
Pentachloronitrobenzene	ND ND	ND	ND ND	ND	NS 1
Pentachlorophenol	ND	ND	ND	ND	1
Phenanthrene	ND	ND	ND	ND	50
Pyridine	ND	ND	ND	ND	50

Ns. .No Standard

Shaded & bold values represent concentration exceeding the NYSDEC Ambient Groundwater Quality Standards

Table 7 Groundwater Samples Analytical Results 1665 Stillwell Avenue, Brooklyn, NY

Sample Identification	MW-1	MW-2	MW-3	MW-3 Dup	
Boring Number	SB-1	SB-2	SB-3	SB-5	NYSDEC Ambient
Sample Depth	23.6'	23.76'	23.76'	23.29'	Groundwater
Sample Date	6/24/2019	6/24/2019	6/24/2019	6/24/2019	Quality Standards
Sample Matrix	GW	ĞW	GW	GW	(μg/L)
Units	μg/L	μg/L	μg/L	μg/L	(F-6/ —)
		esticides (µg/		. 0,	
4,4' -DDD	ND	ND ND	ND	ND	0.3
4,4' -DDE	ND	ND	ND	ND	0.2
4,4' -DDT	ND	ND	ND	ND	0.11
а-ВНС	ND	ND	ND	ND	0.94
Alachlor	ND	ND	ND	ND	NS
Aldrin	ND	ND	ND	ND	19
b-BHC	ND	ND	ND	ND	0.04
Chlordane	ND	ND	ND	ND	0.5
d-BHC	ND	ND	ND	ND	0.05
Dieldrin	ND	ND	ND	ND	0.004
Endosulfan I	ND	ND	ND	ND	0.009
Endosulfan II	ND	ND	ND	ND	0.009
Endosulfan sulfate	ND	ND	ND	ND	NS
Endrin	ND	ND	ND	ND	0.2
Endrin aldehyde	ND	ND	ND	ND	5
Endrin ketone	ND	ND	ND	ND	NS
g-BHC	ND	ND	ND	ND	0.05
Heptachlor	ND	ND	ND	ND	0.04
Heptachlor epoxide	ND	ND	ND	ND	0.03
Methoxychlor	ND	ND	ND	ND	35
Toxaphene	ND	ND	ND	ND	NS
		PCBs (µg/L)			
PCB-1016	ND	ND	ND	ND	0.09
PCB-1221	ND	ND	ND	ND	0.09
PCB-1232	ND	ND	ND	ND	0.09
PCB-1242	ND	ND	ND	ND	0.09
PCB-1248	ND	ND	ND	ND	0.09
PCB-1254	ND	ND	ND	ND	0.09
PCB-1260	ND	ND	ND	ND	0.09
PCB-1262	ND	ND	ND	ND	0.09
PCB-1268	ND	ND	ND	ND	0.09
NO N. O. 1. 1	ND NOT				

NS...No Standard

Table 8 Groundwater Samples Analytical Results 1665 Stillwell Avenue, Brooklyn, NY

Sample Identification	MW	<i>V</i> -1	M	W-2	MW-2	2 Dup	MV	N-3	NYSDEC Ambient
Boring Number	SB-	-1	S	B-2	SE	3-2	SI	3-7	Groundwater
Sample Depth	23.	6'	23	.76'	23.	.76'	23.	.29'	
Sample Date	6/24/	2019	6/24	/2019	6/24,	/2019	6/24	/2019	Quality Standards
Sample Matrix	GW	dissolved	GW	dissolved	GW	dissolved	GW	dissolved	(mg/L)
				TAL Met	als (mg/L)				
Aluminum	1.47	0.064	0.633	0.053	0.331	0.056	0.424	0.052	200
Antimony	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	3
Arsenic	< 0.004	< 0.004	< 0.004	< 0.004	0.01	0.005	0.01	< 0.004	25
Barium	0.248	0.179	0.271	0.177	0.236	0.204	0.244	0.205	1000
Beryllium	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	3
Cadmium	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	5
Calcium	87.7	84	74.5	74.4	49.4	50.1	50.7	50.7	NS
Chromium	0.008	< 0.001	0.006	< 0.001	0.002	< 0.001	0.002	< 0.001	50
Cobalt	0.004	0.002	0.003	0.001	< 0.002	< 0.001	< 0.002	< 0.001	NS
Copper	0.019	< 0.005	0.006	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	200
Iron	10.9	< 0.011	29.9	0.292	10.1	< 0.011	10.6	<0.011	300
Lead	0.018	0.008	0.004	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	25
Magnesium	60.4	57.7	26.3	25.4	23.3	22.6	23.9	22.6	35,000
Manganese	3.08	2.81	6.6	5.8	3.68	3.6	3.81	3.55	300
Nickel	0.048	0.025	0.018	0.007	0.011	0.006	0.013	0.006	100
Potassium	9.2	8.2	6.6	5.7	6.3	5.7	6.4	5.7	NS
Selenium	< 0.010	< 0.011	< 0.011	< 0.011	< 0.010	< 0.011	< 0.010	<0.011	10
Silver	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	50
Sodium	133	140	121	112	211	217	224	213	20,000
Thallium	<0.0005	< 0.002	< 0.0005	< 0.002	< 0.0005	< 0.002	< 0.0005	< 0.002	0.5
Vanadium	0.004	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.003	< 0.002	NS
Zinc	0.032	0.007	0.015	0.004	0.007	< 0.002	0.008	0.003	2,000
Mercury	<0.0002	< 0.0002	< 0.002	< 0.0002	< 0.0002	<0.0002	< 0.0002	<0.0002	0.7

NS...No Standard

Table 10 Groundwater Samples Analytical Results 1665 Stillwell Avenue, Brooklyn, NY

Sample Identification	MW-1	-		
Boring Number	SB-1	Preliminary		NYSDEC Ambient
Sample Depth	23.6'	Remediation	Reporting	
Sample Date	6/24/2019	Goals (PRG)	Limit	Quality Standards
Sample Matrix	GW			(ng/L)
PFA	AS in Water	(ng/L)		
Perfluorobutanesultonic acid (PFBS)	11	70	2.0	NS
Perfluorohexanoic acid (PFHxA)	12	70	2.0	NS
Perfluoroheptanoic acid (PFHpA)	10	70	2.0	NS
Perfluorobutanoic acid (PFBA)	7.2	70	2.0	NS
Perfluorodecanesulfonic acid (PFDS)	<2.0	70	2.0	NS
Perfluoroheptanesulfonic acid (PFHpS)	<2.0	70	2.0	NS
Perfluorooctanesulfonamide (FOSA)	<2.0	70	2.0	NS
Perfluoropentanoic acid (PFPeA)	11	70	2.0	NS
6:2 Fluorotelomersulfonate (6:2 FTS)	8.3	70	2.0	NS
8:2 Fluorotelomersulfonate (8:2 FTS)	<2.0	70	2.0	NS
Perfluorohexanesulfonic acid (PFHxS)	18	70	2.0	NS
Perfluorooctanoic acid (PFOA)	69	70	2.0	NS
Perfluorooctanesulfonic acid (PFOS)	8.6	70	2.0	NS
Perfluorononanoic acid (PFNA)	<2.0	70	2.0	NS
Perfluorodecanoic acid (PFDA)	<2.0	70	2.0	NS
N-MeFOSAA	<2.0	70	2.0	NS
Perfluoroundecanoic acid (PFUnA)	<2.0	70	2.0	NS
N-EtFOSAA	<2.0	70	2.0	NS
Perfluorododecanoic acid (PFDoA)	<2.0	70	2.0	NS
Perfluorotridecanoic acid (PFTrDA)	<2.0	70	2.0	NS
Perfluorotetradecanoic acid (PFTA)	<2.0	70	2.0	NS
1,4	4-Dioxane (µ	ιg/L)		
1,4-Dioxane	ND	70	0.20	NS

Soil Vapor Analytical Results

Table 9 Soil Vapor Samples Analytical Results 1665 Stillwell Avenue, Brooklyn, NY

Sample Identification			SV-1	SV-2	SV-3	SV-4	SV-5	SV-6			
Boring Number			1	2	3	4	5	6	ASTM E 2600	NYSDOH Fuel	USEPA Base
Sample Date	NYSDOH Air	NYSDOH	6/24/2019	_	_	_			Concentration	Oil 2003 Upper	Data 90th %
Sample Matrix	Guideline	Decision	Air	Air	Air	Air	Air	Air			Value ⁽²⁾
Units	Value (AGV)	Matrix	μg/m3	μg/m3	μg/m3	μg/m3	μg/m3	μg/m3	U	(Indoor)	(Indoor)
Citto	varae (110 v)	Matin				unds (ug/		μ6/ 110	residences	(Indoor)	(Indoor)
1,1,1,2-Tetrachloroethane		2	ND	ND	ND	ND	ND	ND		2.5	
1,1,1-Trichloroethane (TCA)	100		ND	ND	ND	ND	ND	ND	6.9	2.5	20.6
1,1,2,2-Tetrachloroethane			ND	ND	ND	ND	ND	ND	<0.25	0.4	<0.25
1,1,2-Trichloroethane			ND	ND	ND	ND	ND	ND	<0.25	0.4	<1.5
1,1-Dichloroethane			ND	ND	ND	ND	ND	ND	<0.25	0.4	<0.7
1,1-Dichloroethene			ND	ND	ND	ND	ND	ND	0.7	0.4	<1.4
1,2,4-Trichlorobenzene			ND	ND	ND	ND	ND	ND	6.3	0.5	<8.2
1,2,4-Trimethylbenzene			14.6	18.4	17.3	17.4	9.6	10.3	18.0	9.8	9.5
1,2-Dibromoethane(EDB)			ND	ND	ND	ND	ND	ND		0.4	<1.5
1,2-Dichlorobenzene			ND	ND	ND	ND	ND	ND	1.0	0.5	0.7
1,2-Dichloroethane			ND	ND	ND	ND	ND	ND	<0.25	0.4	<0.9
1,2-dichloropropane			ND	ND	ND	ND	ND	ND	<0.25	0.4	<1.6
1,2-Dichlorotetrafluoroethane			ND	ND	ND	ND	ND	ND	1.2	0.4	0.5
1,3,5-Trimethylbenzene			ND	ND	11	ND	ND	1.7	6.5	3.9	3.6
1,3-Butadiene			ND	12.7	11.2	17.9	15.6	4.44			
1,3-Dichlorobenzene			ND	ND	ND	ND	ND	ND	0.9	0.5	0.6
1,4-Dichlorobenzene			ND	ND	ND	ND	ND	ND	2.6	1.2	1.3
1,4-Dioxane			ND	ND	ND	ND	ND	ND			
2-Hexanone(MBK)			ND	409	160	426	ND	37.7			
4-Ethyltoluene			11.4	14.3	15.3	14.3	7.91	7.91			3.6
4-Isopropyltoluene			ND	ND	ND	ND	ND	1.78			
4-Methyl-2-pentanone(MIBK)			ND	ND	ND	ND	ND	4.18			
Acetone			420	997	316	1,080	285	74.3	140.0	115.0	98.9
Acrylonitrile			ND	ND	ND	ND	ND	ND			
Benzene			9.5	8.97	8.21	11.3	36.4	6.77	13	13.0	9.4
Benzyl chloride			ND	ND	ND	ND	ND	ND			<6.8
Bromodichloromethane			ND	ND	ND	ND	ND	8.24			
Bromoform			ND	ND	ND	ND	ND	ND			
Bromomethane			ND	ND	ND	ND	ND	ND	1	0.5	<6.8
Carbon Disulfide			9.24	ND	ND	ND	50.7	20.9			4.2
Carbon Tetrachloride	5	1	ND	ND	ND	ND	ND	0.53	1	1.3	<1.3
Chlorobenzene			ND	ND	ND	ND	ND	ND	<0.25	0.4	<0.9
Chloroethane			ND	ND	ND	ND	ND	ND	0.6	0.4	<1.1
Chloroform			ND	6.78	ND	ND	14.5	117	4.6	1.2	1.4
Chloromethane			ND	ND	ND	ND	ND	2.08	5.2	4.2	3.3

ND...Not Detected

AGV....Air Guideline Value

-- = Not Available

⁽⁺⁾ - From ASTM E 2600-08 :Standard Practice for Assessment of Vapor Intrusion into Structures on Property involved in Real Estate Transactions"

^{&#}x27;-' - Per Appendix C of the Final NYSDOH Guidance

Table 9 Continued......

Soil Vapor Samples Analytical Results 1665 Stillwell Avenue, Brooklyn, NY

Sample Identification			SV-1	SV-2	SV-3	SV-4	SV-5	SV-6			
Boring Number			1	2	3	4	5	6		NYSDOH Fuel	USEPA Base
Sample Date	NYSDOH Air	NYSDOH	6/24/2019	6/24/2019	6/24/2019	6/24/2019	6/24/2019	6/24/2019		1 1	Data 90th %
Sample Matrix	Guideline	Decision	Air	Air	Air	Air	Air	Air		Fence Limit (2)	Value ⁽²⁾
Units	Value (AGV)	Matrix	μg/m3	μg/m3	μg/m3	μg/m3	μg/m3	μg/m3	Residences (1)	(Indoor)	(Indoor)
			Vola	tile Orgar	ic Compo	unds (ug/	m3)				
Cis-1,2-Dichloroethene		2	ND	ND	ND	ND	24.8	ND	1.2	0.4	<1.9
cis-1,3-Dichloropropene			ND	ND	ND	ND	ND	ND	< 0.25	0.4	< 0.25
Cyclohexane			8.7	10.6	10.2	11.5	10	10.4	1.9	6.3	8
Dibromochloromethane			ND	ND	ND	ND	ND	ND			
Dichlorodifluoromethane			ND	ND	ND	ND	27.4	2	2.6	10.0	15.0
Ethanol			61.6	154	68.2	130	29.2	15.1			210.0
Ethyl acetate			ND	ND	ND	ND	ND	ND			5.4
Ethylbenzene			52.1	61.2	50.3	69.4	9.37	21	13.0	6.4	5.7
Heptane			15.4	39.4	18.8	22	56.5	9.7			
Hexachlorobutadiene			ND	ND	ND	ND	ND	ND	14.0	0.5	6.5
Hexane			ND	ND	ND	16.6	30.8	8.38			
Isopropylalcohol			5.67	5.43	6.07	13.1	ND	2.63			
Isopropylbenzene			128	144	116	174	160	50.1	1.3	0.8	0.9
m,p-Xylene			108	134.0	105.0	144.0	20.25	45.6	22	11.0	12.0
Methyl Ethyl Ketone			1,540	2,810	955	2,920	88.4	84.90		16.0	16.0
Methyl tert-butyl ether(MTBE)			ND	ND	ND	ND	ND	ND		14	11.5
Methylene Chloride	60		ND	ND	ND	ND	ND	ND		16	10.0
n-Butylbenzene			ND	ND	ND	ND	ND	ND	2	1.1	1.2
o-Xylene			53.8	64.2	63.8	72.5	7.2	24.9	6.9	7.1	7.6
Propylene			186	232	118	246	177	30.4			
sec-Butylbenzene			ND	ND	9.22	ND	ND	ND	1.7	1.2	1.2
Styrene			167	167	135	197	12.77	58.7	2.3	1.4	1.3
Tetrachloroethene (PCE)	30	2	582	550	983	746	3,730	231	4.1	2.5	15.9
Tetrahydrofuran			ND	ND	ND	ND	923	ND	9.4	0.8	3.3
Toluene			25.9	39.9	21.7	29	31.7	9.34	29-49	57	43
Trans-1,2-Dichloroethene			ND	ND	ND	ND	ND	ND		<0.25	< 0.25
trans-1,3-Dichloropropene			ND	ND	ND	ND	ND	ND		NC	<1.3
Trichloroethene (TCE)	2	1	3.57	23	42.5	1.93	73.6	3.67	0.8	0.5	0.5
Trichlorofluoromethane			ND	ND	ND	ND	ND	ND	30	12.0	17.0
Trichlorotrifluoroethane			ND	ND	ND	ND	ND	ND			4
Vinyl Chloride		1	ND	ND	ND	ND	ND	1.19	<0.25	0.4	<0.25
NDNot Detected			AGVAir G	uideline Valu	e				= Not Available		

above upper fence residential background concentration indoor (NYSDOH, 2006)

^{(1) -} From ASTM E 2600-08 :Standard Practice for Assessment of Vapor Intrusion into Structures on Property involved in Real Estate Transactions"

 $^{^{\}mbox{\tiny (2)}}$ - Per Appendix C of the Final NYSDOH Guidance

Photographs

Subject Property (1665 - 1673 Stillwell Avenue)

GPR Survey - Northwestern Area of Site

Installing Soil Boring SB-3

Laboratory Analytical Report

Friday, July 05, 2019

Attn: Ms. Antoinette Ollivierre

American Env. Assessment & Solutions Inc

679 Lafayette Ave.

3rd Floor

Brooklyn, NY 11216

Project ID: 1665 STILLWELL AVENUE

SDG ID: GCD42045

Sample ID#s: CD42045 - CD42050

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301

CT Lab Registration #PH-0618

MA Lab Registration #M-CT007

ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003

NY Lab Registration #11301 PA Lab Registration #68-03530

RI Lab Registration #63

UT Lab Registration #CT00007

VT Lab Registration #VT11301

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

July 05, 2019

SDG I.D.: GCD42045

Project ID: 1665 STILLWELL AVENUE

Client Id	Lab Id	Matrix
SV-1	CD42045	AIR
SV-2	CD42046	AIR
SV-3	CD42047	AIR
SV-4	CD42048	AIR
SV-5	CD42049	AIR
SV-6	CD42050	AIR

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 05, 2019

FOR: Attn: Ms. Antoinette Ollivierre

American Env. Assessment & Solutions Inc

679 Lafayette Ave.

3rd Floor

ua/m3

Brooklyn, NY 11216

Sample Information Custody Information Date <u>Time</u> AIR Collected by: AO 06/24/19 12:45 Matrix: Received by: Location Code: **AEAS-INC** В 06/25/19 17:26 Rush Request: 72 Hour Analyzed by: see "By" below

ua/m3

P.O.#:

Canister Id: 28580 Laboratory Data

nnhv

nnhv

SDG ID: GCD42045

Phoenix ID: CD42045

Project ID: 1665 STILLWELL AVENUE

Client ID: SV-1

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Volatiles (TO15)								
1,1,1,2-Tetrachloroethane	ND	0.729	ND	5.00	06/28/19	KCA	5	1
1,1,1-Trichloroethane	ND	0.917	ND	5.00	06/28/19	KCA	5	
1,1,2,2-Tetrachloroethane	ND	0.729	ND	5.00	06/28/19	KCA	5	
1,1,2-Trichloroethane	ND	0.917	ND	5.00	06/28/19	KCA	5	
1,1-Dichloroethane	ND	1.24	ND	5.02	06/28/19	KCA	5	
1,1-Dichloroethene	ND	0.252	ND	1.00	06/28/19	KCA	5	
1,2,4-Trichlorobenzene	ND	0.674	ND	5.00	06/28/19	KCA	5	
1,2,4-Trimethylbenzene	2.98	1.02	14.6	5.01	06/28/19	KCA	5	
1,2-Dibromoethane(EDB)	ND	0.651	ND	5.00	06/28/19	KCA	5	
1,2-Dichlorobenzene	ND	0.832	ND	5.00	06/28/19	KCA	5	
1,2-Dichloroethane	ND	1.24	ND	5.02	06/28/19	KCA	5	
1,2-dichloropropane	ND	1.08	ND	4.99	06/28/19	KCA	5	
1,2-Dichlorotetrafluoroethane	ND	0.716	ND	5.00	06/28/19	KCA	5	
1,3,5-Trimethylbenzene	ND	1.02	ND	5.01	06/28/19	KCA	5	
1,3-Butadiene	ND	2.26	ND	5.00	06/28/19	KCA	5	
1,3-Dichlorobenzene	ND	0.832	ND	5.00	06/28/19	KCA	5	
1,4-Dichlorobenzene	ND	0.832	ND	5.00	06/28/19	KCA	5	
1,4-Dioxane	ND	1.39	ND	5.01	06/28/19	KCA	5	
2-Hexanone(MBK)	ND	1.22	ND	4.99	06/28/19	KCA	5	1
4-Ethyltoluene	2.32	1.02	11.4	5.01	06/28/19	KCA	5	1
4-Isopropyltoluene	ND	0.911	ND	5.00	06/28/19	KCA	5	1
4-Methyl-2-pentanone(MIBK)	ND	1.22	ND	4.99	06/28/19	KCA	5	
Acetone	177	2.11	420	5.01	06/28/19	KCA	5	
Acrylonitrile	ND	2.31	ND	5.01	06/28/19	KCA	5	
Benzene	2.99	1.57	9.5	5.01	06/28/19	KCA	5	
Benzyl chloride	ND	0.966	ND	5.00	06/28/19	KCA	5	

Client ID: SV-1

Bromodichloromethane	Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Bromomethane	Bromodichloromethane	ND	0.747	ND	5.00	06/28/19	KCA	5	
Carbon Disulfide	Bromoform	ND	0.484	ND	5.00	06/28/19	KCA	5	
Carbon Tetrachloride	Bromomethane	ND	1.29	ND	5.01	06/28/19	KCA	5	
Chlorobenzene	Carbon Disulfide	2.97	1.61	9.24	5.01	06/28/19	KCA	5	
Chloroethane	Carbon Tetrachloride	ND	0.159	ND	1.00	06/28/19	KCA	5	
Chloroform	Chlorobenzene	ND	1.09	ND	5.01	06/28/19	KCA	5	
Chloromethane	Chloroethane	ND	1.90	ND	5.01	06/28/19	KCA	5	
Cis-1,2-Dichloroethene	Chloroform	ND	1.02	ND	4.98	06/28/19	KCA	5	
cis-1,3-Dichloropropene ND 1.10 ND 4.99 06/28/19 KCA 5 Cyclohexane 2.53 1.45 8.70 4.99 06/28/19 KCA 5 Dibromochloromethane ND 0.6387 ND 5.00 06/28/19 KCA 5 Dichlorodifluoromethane ND 1.01 ND 4.99 06/28/19 KCA 5 Ethanol 32.7 2.66 61.6 5.01 06/28/19 KCA 5 1 Ethyla cetate ND 1.15 52.1 4.99 06/28/19 KCA 5 1 Heptane 3.76 1.22 15.4 5.00 06/28/19 KCA 5 Hexachlorobutadiene ND 0.469 ND 5.00 06/28/19 KCA 5 Isopropylalcohol 2.31 2.04 5.67 5.01 06/28/19 KCA 5 Isopropylalcohol 2.31 1.02 128 5.01 06/28/19	Chloromethane	ND	2.42	ND	4.99	06/28/19	KCA	5	
Cyclohexane	Cis-1,2-Dichloroethene	ND	0.252	ND	1.00	06/28/19	KCA	5	
Dibromochloromethane ND 0.587 ND 5.00 06/28/19 KCA 5	cis-1,3-Dichloropropene	ND	1.10	ND	4.99	06/28/19	KCA	5	
Dibromochloromethane ND 0.587 ND 5.00 06/28/19 KCA 5 Dichlorodifluoromethane ND 1.01 ND 4.99 06/28/19 KCA 5 Ethyl acetate ND 1.39 ND 5.01 06/28/19 KCA 5 Ethyl acetate ND 1.39 ND 5.01 06/28/19 KCA 5 Ethyl benzene 12.0 1.15 52.1 4.99 06/28/19 KCA 5 Heptane 3.76 1.22 15.4 5.00 06/28/19 KCA 5 Heyathorobutadiene ND 0.469 ND 5.00 06/28/19 KCA 5 Hexane ND 1.42 ND 5.00 06/28/19 KCA 5 Hexane ND 1.42 ND 5.00 06/28/19 KCA 5 Isopropylalcohol 2.31 2.04 5.67 5.01 06/28/19 KCA 5 Isopropylbenzene 25.0 1.15 108 4.99 06/28/19 KCA 5 Methyl Ethyl Ketone 521 10.2 1540 30.1 07/01/19 KCA 30 Methyl tert-butyl ether(MTBE) ND 1.39 ND 5.01 06/28/19 KCA 5 Nethylene Chloride ND 4.32 ND 5.00 06/28/19 KCA 5 Nethylene Chloride ND 0.911 ND 5.00 06/28/19 KCA 5 Nethylene Chloride ND 0.911 ND 5.00 06/28/19 KCA 5 Nethylene 12.4 1.15 53.8 4.99 06/28/19 KCA 5 Nethylene 39.3 1.17 167 4.98 06/28/19 KCA 5 Netrolorothene 85.9 0.184 582 1.25 06/28/19 KCA 5 Tetrachlorothene 88.1 1.33 2.59 5.01 06/28/19 KCA 5 Tetrachlorothene ND 1.70 ND 5.00 06/28/19 KCA 5 Tetrachlorothene ND 1.70 ND 5.01 06/28/19 KCA 5 Tetrahydrofuran ND 1.70 ND 5.01 06/28/19 KCA 5 Tetrahydrofuran ND 1.70 ND 5.01 06/28/19 KCA 5 Tetrahydrofuran ND 1.70 ND 5.00 06/28/19 KCA 5 Tetrahydrofuran ND 0.911 ND 5.00 06/28/19 KCA 5 Tetrahydrofuran ND 0.916 ND 4.99 06/28/19 KCA 5 Tetrahydrofuran ND 0.891 ND 5.00 06/28/19 KCA 5 Tetrahydrofuran ND 0.891 ND 5.00 06/28/19 KCA 5 Trichlorothene ND 0.891 ND 5.00 06/28/19 KCA 5 Trichlorothene ND 0.891 ND 5.00 06/28/19 KCA 5 Trichlorothene ND 0.891 ND 5.00 06/2	Cyclohexane	2.53	1.45	8.70	4.99	06/28/19	KCA	5	
Ethanol	-	ND	0.587	ND	5.00	06/28/19	KCA	5	
Ethanol 32.7 2.66 61.6 5.01 06/28/19 KCA 5 1 1 1 1 1 1 1 1 1	Dichlorodifluoromethane	ND	1.01	ND	4.99	06/28/19	KCA	5	
Ethylbenzene		32.7	2.66	61.6	5.01	06/28/19	KCA	5	1
Ethylbenzene 12.0 1.15 52.1 4.99 06/28/19 KCA 5 Heptane 3.76 1.22 15.4 5.00 06/28/19 KCA 5 Hexachlorobutadiene ND 0.469 ND 5.00 06/28/19 KCA 5 Hexachlorobutadiene ND 1.42 ND 5.00 06/28/19 KCA 5 Isopropylalcohol 2.31 2.04 5.67 5.01 06/28/19 KCA 5 Isopropylbenzene 26.1 1.02 128 5.01 06/28/19 KCA 5 Isopropylbenzene 25.0 1.15 108 4.99 06/28/19 KCA 5 Methyl Ethyl Ketone 521 10.2 1540 30.1 07/01/19 KCA 30 Methyl tert-butyl ether(MTBE) ND 1.39 ND 5.01 06/28/19 KCA 5 Methylbenzene ND 0.911 ND 5.00 06/28/19 KCA 5 Methylbenzene ND 0.911 ND 5.00 06/28/19 KCA 5 1 0.50/28/19	Ethyl acetate	ND	1.39	ND	5.01	06/28/19	KCA	5	1
Heptane	-	12.0	1.15	52.1	4.99	06/28/19	KCA	5	
Hexachlorobutadiene	•	3.76	1.22	15.4	5.00	06/28/19	KCA	5	
Hexane		ND	0.469	ND	5.00	06/28/19	KCA	5	
Sopropy benzene 26.1 1.02 128 5.01 06/28/19 KCA 5 m,p-Xylene 25.0 1.15 108 4.99 06/28/19 KCA 5 Methyl Ethyl Ketone 521 10.2 1540 30.1 07/01/19 KCA 30 Methyl tert-butyl ether(MTBE) ND 1.39 ND 5.01 06/28/19 KCA 5 Methylene Chloride ND 4.32 ND 15.0 06/28/19 KCA 5 Methylene Chloride ND 0.911 ND 5.00 06/28/19 KCA 5 Methylene Chloride ND 0.911 ND 5.00 06/28/19 KCA 5 Methylene Chloride ND 0.911 ND 5.00 06/28/19 KCA 5 Methylene Chloride 11.4 1.15 53.8 4.99 06/28/19 KCA 5 Methylene 108 2.91 186 5.01 06/28/19 KCA 5 Methylene 108 1.17 167 4.98 06/28/19 KCA 5 Methylene 108 1.17 167 4.98 06/28/19 KCA 5 Methylene 1.17 1.17 167 4.98 06/28/19 KCA 5 Methylene 1.17 1.17 1.18		ND	1.42	ND	5.00	06/28/19	KCA	5	
Sepropylbenzene 26.1 1.02 128 5.01 06/28/19 KCA 5 m,p-Xylene 25.0 1.15 108 4.99 06/28/19 KCA 5 Methyl Ethyl Ketone 521 10.2 1540 30.1 07/01/19 KCA 30 Methyl tert-butyl ether(MTBE) ND 1.39 ND 5.01 06/28/19 KCA 5 Methylene Chloride ND 4.32 ND 15.0 06/28/19 KCA 5 Methylene Chloride ND 0.911 ND 5.00 06/28/19 KCA 5 Methylene Chloride 12.4 1.15 53.8 4.99 06/28/19 KCA 5 Methylene Chloride 108 2.91 186 5.01 06/28/19 KCA 5 Methylene Chloride ND 0.911 ND 5.00 06/28/19 KCA 5 Methylene Chloride ND 0.911 ND 5.00 06/28/19 KCA 5 Methylene Chloride ND 0.911 ND 5.00 06/28/19 KCA 5 Methylene 108 2.91 186 5.01 06/28/19 KCA 5 Methylene 108 1.17 167 4.98 06/28/19 KCA 5 Methylene 1.17 167 4.98 06/28/19 KCA 5 Methylene 1.17 1.17 167 4.98 06/28/19 KCA 5 Methylene 1.17 1.17 1.18 1.1		2.31	2.04	5.67		06/28/19	KCA	5	
m,p-Xylene 25.0 1.15 108 4.99 06/28/19 KCA 5 Methyl Ethyl Ketone 521 10.2 1540 30.1 07/01/19 KCA 30 Methyl tert-butyl ether(MTBE) ND 1.39 ND 5.01 06/28/19 KCA 5 Methylene Chloride ND 4.32 ND 15.0 06/28/19 KCA 5 n-Butylbenzene ND 0.911 ND 5.00 06/28/19 KCA 5 n-Butylbenzene 12.4 1.15 53.8 4.99 06/28/19 KCA 5 Propylene 108 2.91 186 5.01 06/28/19 KCA 5 Propylene 108 2.91 186 5.01 06/28/19 KCA 5 Propylene 108 2.91 186 5.01 06/28/19 KCA 5 Styrene 39.3 1.17 167 4.98 06/28/19 KCA 5		26.1		128		06/28/19	KCA	5	
Methyl Ethyl Ketone 521 10.2 1540 30.1 07/01/19 KCA 30 Methyl tert-butyl ether(MTBE) ND 1.39 ND 5.01 06/28/19 KCA 5 Methylene Chloride ND 4.32 ND 15.0 06/28/19 KCA 5 n-Butylbenzene ND 0.911 ND 5.00 06/28/19 KCA 5 0-Xylene 12.4 1.15 53.8 4.99 06/28/19 KCA 5 Propylene 108 2.91 186 5.01 06/28/19 KCA 5 1 sec-Butylbenzene ND 0.911 ND 5.00 06/28/19 KCA 5 1 sec-Butylbenzene 85.9 0.184 582 1.25 06/28/19 KCA 5 1 Styrene 85.9 0.184 582 1.25 06/28/19 KCA 5 1 Tetrachlorotethene 85.9 0.184 582 1.25 </td <td></td> <td>25.0</td> <td>1.15</td> <td>108</td> <td>4.99</td> <td>06/28/19</td> <td>KCA</td> <td>5</td> <td></td>		25.0	1.15	108	4.99	06/28/19	KCA	5	
Methyl tert-butyl ether(MTBE) ND 1.39 ND 5.01 06/28/19 KCA 5 Methylene Chloride ND 4.32 ND 15.0 06/28/19 KCA 5 n-Butylbenzene ND 0.911 ND 5.00 06/28/19 KCA 5 1 o-Xylene 12.4 1.15 53.8 4.99 06/28/19 KCA 5 1 Propylene 108 2.91 186 5.01 06/28/19 KCA 5 1 sec-Butylbenzene ND 0.911 ND 5.00 06/28/19 KCA 5 1 sec-Butylbenzene 39.3 1.17 167 4.98 06/28/19 KCA 5 1 Styrene 39.3 1.17 167 4.98 06/28/19 KCA 5 1 Tetrachloroethene 85.9 0.184 582 1.25 06/28/19 KCA 5 1 Toluene 6.88 1.33 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>30</td> <td></td>								30	
Methylene Chloride ND 4.32 ND 15.0 06/28/19 KCA 5 n-Butylbenzene ND 0.911 ND 5.00 06/28/19 KCA 5 1 o-Xylene 12.4 1.15 53.8 4.99 06/28/19 KCA 5 Propylene 108 2.91 186 5.01 06/28/19 KCA 5 sec-Butylbenzene ND 0.911 ND 5.00 06/28/19 KCA 5 1 sec-Butylbenzene 39.3 1.17 167 4.98 06/28/19 KCA 5 1 Styrene 39.3 1.17 167 4.98 06/28/19 KCA 5 Tetrachloroethene 85.9 0.184 582 1.25 06/28/19 KCA 5 Tetrahydrofuran ND 1.70 ND 5.01 06/28/19 KCA 5 Toluene 6.88 1.33 25.9 5.01 06/28/19 KCA <td>-</td> <td></td> <td></td> <td>ND</td> <td></td> <td>06/28/19</td> <td></td> <td>5</td> <td></td>	-			ND		06/28/19		5	
n-Butylbenzene ND 0.911 ND 5.00 06/28/19 KCA 5 1 o-Xylene 12.4 1.15 53.8 4.99 06/28/19 KCA 5 Propylene 108 2.91 186 5.01 06/28/19 KCA 5 1 sec-Butylbenzene ND 0.911 ND 5.00 06/28/19 KCA 5 1 Styrene 39.3 1.17 167 4.98 06/28/19 KCA 5 Tetrachloroethene 85.9 0.184 582 1.25 06/28/19 KCA 5 Tetrahydrofuran ND 1.70 ND 5.01 06/28/19 KCA 5 Toluene 6.88 1.33 25.9 5.01 06/28/19 KCA 5 Trans-1,2-Dichloroethene ND 1.26 ND 4.99 06/28/19 KCA 5 Trichlorothene ND 0.665 0.186 3.57 1.00 06/28								5	
o-Xylene 12.4 1.15 53.8 4.99 06/28/19 KCA 5 Propylene 108 2.91 186 5.01 06/28/19 KCA 5 1 sec-Butylbenzene ND 0.911 ND 5.00 06/28/19 KCA 5 1 Styrene 39.3 1.17 167 4.98 06/28/19 KCA 5 Tetrachloroethene 85.9 0.184 582 1.25 06/28/19 KCA 5 Tetrahydrofuran ND 1.70 ND 5.01 06/28/19 KCA 5 Toluene 6.88 1.33 25.9 5.01 06/28/19 KCA 5 Trans-1,2-Dichloroethene ND 1.26 ND 4.99 06/28/19 KCA 5 Trichloroethene 0.665 0.186 3.57 1.00 06/28/19 KCA 5 Trichlorotrifluoroethane ND 0.653 ND 5.00 06/28/19 KCA <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5</td> <td>1</td>								5	1
Propylene 108 2.91 186 5.01 06/28/19 KCA 5 1 sec-Butylbenzene ND 0.911 ND 5.00 06/28/19 KCA 5 1 Styrene 39.3 1.17 167 4.98 06/28/19 KCA 5 Tetrachloroethene 85.9 0.184 582 1.25 06/28/19 KCA 5 Tetrahydrofuran ND 1.70 ND 5.01 06/28/19 KCA 5 Toluene 6.88 1.33 25.9 5.01 06/28/19 KCA 5 Trans-1,2-Dichloroethene ND 1.26 ND 4.99 06/28/19 KCA 5 trans-1,3-Dichloropropene ND 1.10 ND 4.99 06/28/19 KCA 5 Trichloroethene 0.665 0.186 3.57 1.00 06/28/19 KCA 5 Trichlorotifluoroethane ND 0.891 ND 5.00 06/28/19	-							5	
sec-Butylbenzene ND 0.911 ND 5.00 06/28/19 KCA 5 1 Styrene 39.3 1.17 167 4.98 06/28/19 KCA 5 Tetrachloroethene 85.9 0.184 582 1.25 06/28/19 KCA 5 Tetrahydrofuran ND 1.70 ND 5.01 06/28/19 KCA 5 Toluene 6.88 1.33 25.9 5.01 06/28/19 KCA 5 Trans-1,2-Dichloroethene ND 1.26 ND 4.99 06/28/19 KCA 5 trans-1,3-Dichloropropene ND 1.10 ND 4.99 06/28/19 KCA 5 Trichloroethene 0.665 0.186 3.57 1.00 06/28/19 KCA 5 Trichlorotrifluoroethane ND 0.891 ND 5.00 06/28/19 KCA 5 Vinyl Chloride ND 0.391 ND 1.00 06/28/19 KCA	-							5	1
Styrene 39.3 1.17 167 4.98 06/28/19 KCA 5 Tetrachloroethene 85.9 0.184 582 1.25 06/28/19 KCA 5 Tetrahydrofuran ND 1.70 ND 5.01 06/28/19 KCA 5 1 Toluene 6.88 1.33 25.9 5.01 06/28/19 KCA 5 Trans-1,2-Dichloroethene ND 1.26 ND 4.99 06/28/19 KCA 5 trans-1,3-Dichloropropene ND 1.10 ND 4.99 06/28/19 KCA 5 Trichloroethene 0.665 0.186 3.57 1.00 06/28/19 KCA 5 Trichlorofluoromethane ND 0.891 ND 5.00 06/28/19 KCA 5 Trichlorotrifluoroethane ND 0.391 ND 1.00 06/28/19 KCA 5 Vinyl Chloride ND 0.391 ND 1.00 06/28/19 KCA								5	1
Tetrachloroethene 85.9 0.184 582 1.25 06/28/19 KCA 5 Tetrahydrofuran ND 1.70 ND 5.01 06/28/19 KCA 5 1 Toluene 6.88 1.33 25.9 5.01 06/28/19 KCA 5 Trans-1,2-Dichloroethene ND 1.26 ND 4.99 06/28/19 KCA 5 trans-1,3-Dichloropropene ND 1.10 ND 4.99 06/28/19 KCA 5 Trichloroethene 0.665 0.186 3.57 1.00 06/28/19 KCA 5 Trichlorofluoromethane ND 0.891 ND 5.00 06/28/19 KCA 5 Trichlorotrifluoroethane ND 0.653 ND 5.00 06/28/19 KCA 5 Vinyl Chloride ND 0.391 ND 1.00 06/28/19 KCA 5 QA/QC Surrogates/Internals 86 % 86 % 06/28/19		39.3	1.17	167				5	
Tetrahydrofuran ND 1.70 ND 5.01 06/28/19 KCA 5 1 Toluene 6.88 1.33 25.9 5.01 06/28/19 KCA 5 Trans-1,2-Dichloroethene ND 1.26 ND 4.99 06/28/19 KCA 5 trans-1,3-Dichloropropene ND 1.10 ND 4.99 06/28/19 KCA 5 Trichloroethene 0.665 0.186 3.57 1.00 06/28/19 KCA 5 Trichlorofluoromethane ND 0.891 ND 5.00 06/28/19 KCA 5 Trichlorotrifluoroethane ND 0.653 ND 5.00 06/28/19 KCA 5 Vinyl Chloride ND 0.391 ND 1.00 06/28/19 KCA 5 QA/QC Surrogates/Internals 86 % 97 % 06/28/19 KCA 5 % IS-1,4-Difluorobenzene (5x) 86 % 86 % 06/28/19				582		06/28/19		5	
Toluene 6.88 1.33 25.9 5.01 06/28/19 KCA 5 Trans-1,2-Dichloroethene ND 1.26 ND 4.99 06/28/19 KCA 5 trans-1,3-Dichloropropene ND 1.10 ND 4.99 06/28/19 KCA 5 Trichloroethene 0.665 0.186 3.57 1.00 06/28/19 KCA 5 Trichlorofluoromethane ND 0.891 ND 5.00 06/28/19 KCA 5 Trichlorottrifluoroethane ND 0.653 ND 5.00 06/28/19 KCA 5 Vinyl Chloride ND 0.391 ND 1.00 06/28/19 KCA 5 QA/QC Surrogates/Internals Surrogates/Internals Surrogates/Internals KCA 5 % IS-1,4-Difluorobenzene (5x) 86 % 86 % 06/28/19 KCA 5 % IS-Bromochloromethane (5x) 88 % 88 % 06/28/19 KCA 5		ND	1.70	ND		06/28/19		5	1
Trans-1,2-Dichloroethene ND 1.26 ND 4.99 06/28/19 KCA 5 trans-1,3-Dichloropropene ND 1.10 ND 4.99 06/28/19 KCA 5 Trichloroethene 0.665 0.186 3.57 1.00 06/28/19 KCA 5 Trichlorofluoromethane ND 0.891 ND 5.00 06/28/19 KCA 5 Trichlorotrifluoroethane ND 0.653 ND 5.00 06/28/19 KCA 5 Vinyl Chloride ND 0.391 ND 1.00 06/28/19 KCA 5 QA/QC Surrogates/Internals S 8 97 % 06/28/19 KCA 5 % IS-1,4-Difluorobenzene (5x) 86 % 86 % 06/28/19 KCA 5 % IS-Bromochloromethane (5x) 88 % 88 % 06/28/19 KCA 5									
trans-1,3-Dichloropropene ND 1.10 ND 4.99 06/28/19 KCA 5 Trichloroethene 0.665 0.186 3.57 1.00 06/28/19 KCA 5 Trichlorofluoromethane ND 0.891 ND 5.00 06/28/19 KCA 5 Trichlorotrifluoroethane ND 0.653 ND 5.00 06/28/19 KCA 5 Vinyl Chloride ND 0.391 ND 1.00 06/28/19 KCA 5 QA/QC Surrogates/Internals S S 97 % 97 % 06/28/19 KCA 5 % IS-1,4-Difluorobenzene (5x) 86 % 86 % 06/28/19 KCA 5 % IS-Bromochloromethane (5x) 88 % 88 % 06/28/19 KCA 5									
Trichloroethene 0.665 0.186 3.57 1.00 06/28/19 KCA 5 Trichlorofluoromethane ND 0.891 ND 5.00 06/28/19 KCA 5 Trichlorotrifluoroethane ND 0.653 ND 5.00 06/28/19 KCA 5 Vinyl Chloride ND 0.391 ND 1.00 06/28/19 KCA 5 QA/QC Surrogates/Internals S S 97 % 97 % 06/28/19 KCA 5 % IS-1,4-Difluorobenzene (5x) 86 % 86 % 06/28/19 KCA 5 % IS-Bromochloromethane (5x) 88 % 88 % 06/28/19 KCA 5	·								
Trichlorofluoromethane ND 0.891 ND 5.00 06/28/19 KCA 5 Trichlorotrifluoroethane ND 0.653 ND 5.00 06/28/19 KCA 5 Vinyl Chloride ND 0.391 ND 1.00 06/28/19 KCA 5 QA/QC Surrogates/Internals Septembliorobenzene (5x) 97 % 97 % 06/28/19 KCA 5 % IS-1,4-Difluorobenzene (5x) 86 % 86 % 06/28/19 KCA 5 % IS-Bromochloromethane (5x) 88 % 88 % 06/28/19 KCA 5						06/28/19		5	
Trichlorotrifluoroethane ND 0.653 ND 5.00 06/28/19 KCA 5 Vinyl Chloride ND 0.391 ND 1.00 06/28/19 KCA 5 QA/QC Surrogates/Internals Surrogates/Internals Surrogates/Internals Surrogates/Internals KCA 5 % IS-1,4-Difluorobenzene (5x) 97 % 97 % 06/28/19 KCA 5 % IS-Bromochloromethane (5x) 88 % 88 % 06/28/19 KCA 5									
Vinyl Chloride ND 0.391 ND 1.00 06/28/19 KCA 5 QA/QC Surrogates/Internals Surrogates/Internals Surrogates/Internals Surrogates/Internals Surrogates/Internals Surrogates/Internals KCA 5 % IS-1,4-Difluorobenzene (5x) 86 % 86 % 06/28/19 KCA 5 % IS-Bromochloromethane (5x) 88 % 88 % 06/28/19 KCA 5						06/28/19			
QA/QC Surrogates/Internals % Bromofluorobenzene (5x) 97 % 97 % 06/28/19 KCA 5 % IS-1,4-Difluorobenzene (5x) 86 % 86 % 06/28/19 KCA 5 % IS-Bromochloromethane (5x) 88 % 06/28/19 KCA 5									
% Bromofluorobenzene (5x) 97 % 97 % 06/28/19 KCA 5 % IS-1,4-Difluorobenzene (5x) 86 % 86 % 06/28/19 KCA 5 % IS-Bromochloromethane (5x) 88 % 06/28/19 KCA 5	•								
% IS-1,4-Difluorobenzene (5x) 86 % 86 % 06/28/19 KCA 5 % IS-Bromochloromethane (5x) 88 % 88 % 06/28/19 KCA 5		97	%	97	%	06/28/19	KCA	5	
% IS-Bromochloromethane (5x) 88 % 88 % 06/28/19 KCA 5									
% IS-Chlorobenzene-d5 (5x) 78 % 78 % 06/28/19 KCA 5	% IS-Chlorobenzene-d5 (5x)	78		78		06/28/19	KCA		
% Bromofluorobenzene (30x) 99 % 99 % 07/01/19 KCA 30	* *								
% IS-1,4-Difluorobenzene (30x) 101 % 101 % 07/01/19 KCA 30	* ,								
% IS-Bromochloromethane (30x) 102 % 102 % 07/01/19 KCA 30									
% IS-Chlorobenzene-d5 (30x) 93 % 93 % 07/01/19 KCA 30									

Project ID: 1665 STILLWELL AVENUE Phoenix I.D.: CD42045

Client ID: SV-1

	ppbv	ppbv	ug/m3	ug/m3			
Parameter	Result	RL	Result	RL	Date/Time	Ву	Dilution

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

The canister was received under no vacuum, therefore sample results may not be representative.

An elevated reporting level was reported for TO15 due to a matrix interference of non target compounds.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

July 05, 2019

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 05, 2019

FOR: Attn: Ms. Antoinette Ollivierre

American Env. Assessment & Solutions Inc

679 Lafayette Ave.

3rd Floor

Brooklyn, NY 11216

Sample Information Custody Information Date <u>Time</u> AIR Collected by: AO 06/24/19 12:48 Matrix: Received by: Location Code: **AEAS-INC** В 06/25/19 17:26 Rush Request: 72 Hour Analyzed by: see "By" below

Canister Id:

P.O.#:

_aboratory Data

SDG ID: GCD42045

Phoenix ID: CD42046

1665 STILLWELL AVENUE Project ID:

23342

Client ID: SV-2

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Volatiles (TO15)								
1,1,1,2-Tetrachloroethane	ND	0.729	ND	5.00	06/28/19	KCA	5	1
1,1,1-Trichloroethane	ND	0.917	ND	5.00	06/28/19	KCA	5	
1,1,2,2-Tetrachloroethane	ND	0.729	ND	5.00	06/28/19	KCA	5	
1,1,2-Trichloroethane	ND	0.917	ND	5.00	06/28/19	KCA	5	
1,1-Dichloroethane	ND	1.24	ND	5.02	06/28/19	KCA	5	
1,1-Dichloroethene	ND	0.252	ND	1.00	06/28/19	KCA	5	
1,2,4-Trichlorobenzene	ND	0.674	ND	5.00	06/28/19	KCA	5	
1,2,4-Trimethylbenzene	3.75	1.02	18.4	5.01	06/28/19	KCA	5	
1,2-Dibromoethane(EDB)	ND	0.651	ND	5.00	06/28/19	KCA	5	
1,2-Dichlorobenzene	ND	0.832	ND	5.00	06/28/19	KCA	5	
1,2-Dichloroethane	ND	1.24	ND	5.02	06/28/19	KCA	5	
1,2-dichloropropane	ND	1.08	ND	4.99	06/28/19	KCA	5	
1,2-Dichlorotetrafluoroethane	ND	0.716	ND	5.00	06/28/19	KCA	5	
1,3,5-Trimethylbenzene	ND	1.02	ND	5.01	06/28/19	KCA	5	
1,3-Butadiene	5.76	2.26	12.7	5.00	06/28/19	KCA	5	
1,3-Dichlorobenzene	ND	0.832	ND	5.00	06/28/19	KCA	5	
1,4-Dichlorobenzene	ND	0.832	ND	5.00	06/28/19	KCA	5	
1,4-Dioxane	ND	1.39	ND	5.01	06/28/19	KCA	5	
2-Hexanone(MBK)	99.9	1.22	409	4.99	06/28/19	KCA	5	1
4-Ethyltoluene	2.92	1.02	14.3	5.01	06/28/19	KCA	5	1
4-Isopropyltoluene	ND	0.911	ND	5.00	06/28/19	KCA	5	1
4-Methyl-2-pentanone(MIBK)	ND	1.22	ND	4.99	06/28/19	KCA	5	
Acetone	420	12.6	997	29.9	07/03/19	KCA	30	
Acrylonitrile	ND	2.31	ND	5.01	06/28/19	KCA	5	
Benzene	2.81	1.57	8.97	5.01	06/28/19	KCA	5	
Benzyl chloride	ND	0.966	ND	5.00	06/28/19	KCA	5	

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.747	ND	5.00	06/28/19	KCA	5	
Bromoform	ND	0.484	ND	5.00	06/28/19	KCA	5	
Bromomethane	ND	1.29	ND	5.01	06/28/19	KCA	5	
Carbon Disulfide	ND	1.61	ND	5.01	06/28/19	KCA	5	
Carbon Tetrachloride	ND	0.159	ND	1.00	06/28/19	KCA	5	
Chlorobenzene	ND	1.09	ND	5.01	06/28/19	KCA	5	
Chloroethane	ND	1.90	ND	5.01	06/28/19	KCA	5	
Chloroform	1.39	1.02	6.78	4.98	06/28/19	KCA	5	
Chloromethane	ND	2.42	ND	4.99	06/28/19	KCA	5	
Cis-1,2-Dichloroethene	ND	0.252	ND	1.00	06/28/19	KCA	5	
cis-1,3-Dichloropropene	ND	1.10	ND	4.99	06/28/19	KCA	5	
Cyclohexane	3.07	1.45	10.6	4.99	06/28/19	KCA	5	
Dibromochloromethane	ND	0.587	ND	5.00	06/28/19	KCA	5	
Dichlorodifluoromethane	ND	1.01	ND	4.99	06/28/19	KCA	5	
Ethanol	82.0	2.66	154	5.01	06/28/19	KCA	5	1
Ethyl acetate	ND	1.39	ND	5.01	06/28/19	KCA	5	1
Ethylbenzene	14.1	1.15	61.2	4.99	06/28/19	KCA	5	
Heptane	9.61	1.22	39.4	5.00	06/28/19	KCA	5	
Hexachlorobutadiene	ND	0.469	ND	5.00	06/28/19	KCA	5	
Hexane	ND	1.42	ND	5.00	06/28/19	KCA	5	
Isopropylalcohol	2.21	2.04	5.43	5.01	06/28/19	KCA	5	
Isopropylbenzene	29.3	1.02	144	5.01	06/28/19	KCA	5	
m,p-Xylene	30.8	1.15	134	4.99	06/28/19	KCA	5	
Methyl Ethyl Ketone	954	10.2	2810	30.1	07/03/19	KCA	30	
Methyl tert-butyl ether(MTBE)	ND	1.39	ND	5.01	06/28/19	KCA	5	
Methylene Chloride	ND	4.32	ND	15.0	06/28/19	KCA	5	
n-Butylbenzene	ND	0.911	ND	5.00	06/28/19	KCA	5	1
o-Xylene	14.8	1.15	64.2	4.99	06/28/19	KCA	5	
Propylene	135	2.91	232	5.01	06/28/19	KCA	5	1
sec-Butylbenzene	ND	0.911	ND	5.00	06/28/19	KCA	5	1
Styrene	39.3	1.17	167	4.98	06/28/19	KCA	5	
Tetrachloroethene	81.2	0.184	550	1.25	06/28/19	KCA	5	
Tetrahydrofuran	ND	1.70	ND	5.01	06/28/19	KCA	5	1
Toluene	10.6	1.33	39.9	5.01	06/28/19	KCA	5	
Trans-1,2-Dichloroethene	ND	1.26	ND	4.99	06/28/19	KCA	5	
trans-1,3-Dichloropropene	ND	1.10	ND	4.99	06/28/19	KCA	5	
Trichloroethene	4.29	0.186	23.0	1.00	06/28/19	KCA	5	
Trichlorofluoromethane	ND	0.891	ND	5.00	06/28/19	KCA	5	
Trichlorotrifluoroethane	ND	0.653	ND	5.00	06/28/19	KCA	5	
Vinyl Chloride	ND	0.391	ND	1.00	06/28/19	KCA	5	
QA/QC Surrogates/Internals								
% Bromofluorobenzene (5x)	97	%	97	%	06/28/19	KCA	5	
% IS-1,4-Difluorobenzene (5x)	88	%	88	%	06/28/19	KCA	5	
% IS-Bromochloromethane (5x)	90	%	90	%	06/28/19	KCA	5	
% IS-Chlorobenzene-d5 (5x)	78	%	78	%	06/28/19	KCA	5	
% Bromofluorobenzene (30x)	100	%	100	%	07/03/19	KCA	30	
% IS-1,4-Difluorobenzene (30x)	100	%	100	%	07/03/19	KCA	30	
% IS-Bromochloromethane (30x)	100	%	100	%	07/03/19	KCA	30	
% IS-Chlorobenzene-d5 (30x)	94	%	94	%	07/03/19	KCA	30	
` ,								

Project ID: 1665 STILLWELL AVENUE Phoenix I.D.: CD42046

Client ID: SV-2

	ppbv	ppbv	ug/m3	ug/m3			
Parameter	Result	RL	Result	RL	Date/Time	Ву	Dilution

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

An elevated reporting level was reported for TO15 due to a matrix interference of non target compounds.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

July 05, 2019

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 05, 2019

FOR: Attn: Ms. Antoinette Ollivierre

American Env. Assessment & Solutions Inc

679 Lafayette Ave.

3rd Floor

Brooklyn, NY 11216

Sample Information Custody Information Date <u>Time</u> AIR Collected by: AO 06/24/19 12:47 Matrix: Received by: Location Code: **AEAS-INC** В 06/25/19 17:26

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

_aboratory Data SDG ID: GCD42045 Canister Id: 28575 Phoenix ID: CD42047

1665 STILLWELL AVENUE Project ID:

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Volatiles (TO15)								
1,1,1,2-Tetrachloroethane	ND	0.729	ND	5.00	06/28/19	KCA	5	1
1,1,1-Trichloroethane	ND	0.917	ND	5.00	06/28/19	KCA	5	
1,1,2,2-Tetrachloroethane	ND	0.729	ND	5.00	06/28/19	KCA	5	
1,1,2-Trichloroethane	ND	0.917	ND	5.00	06/28/19	KCA	5	
1,1-Dichloroethane	ND	1.24	ND	5.02	06/28/19	KCA	5	
1,1-Dichloroethene	ND	0.252	ND	1.00	06/28/19	KCA	5	
1,2,4-Trichlorobenzene	ND	0.674	ND	5.00	06/28/19	KCA	5	
1,2,4-Trimethylbenzene	3.52	1.02	17.3	5.01	06/28/19	KCA	5	
1,2-Dibromoethane(EDB)	ND	0.651	ND	5.00	06/28/19	KCA	5	
1,2-Dichlorobenzene	ND	0.832	ND	5.00	06/28/19	KCA	5	
1,2-Dichloroethane	ND	1.24	ND	5.02	06/28/19	KCA	5	
1,2-dichloropropane	ND	1.08	ND	4.99	06/28/19	KCA	5	
1,2-Dichlorotetrafluoroethane	ND	0.716	ND	5.00	06/28/19	KCA	5	
1,3,5-Trimethylbenzene	2.23	1.02	11.0	5.01	06/28/19	KCA	5	
1,3-Butadiene	5.06	2.26	11.2	5.00	06/28/19	KCA	5	
1,3-Dichlorobenzene	ND	0.832	ND	5.00	06/28/19	KCA	5	
1,4-Dichlorobenzene	ND	0.832	ND	5.00	06/28/19	KCA	5	
1,4-Dioxane	ND	1.39	ND	5.01	06/28/19	KCA	5	
2-Hexanone(MBK)	39.2	1.22	160	4.99	06/28/19	KCA	5	1
4-Ethyltoluene	3.12	1.02	15.3	5.01	06/28/19	KCA	5	1
4-Isopropyltoluene	ND	0.911	ND	5.00	06/28/19	KCA	5	1
4-Methyl-2-pentanone(MIBK)	ND	1.22	ND	4.99	06/28/19	KCA	5	
Acetone	133	2.11	316	5.01	06/28/19	KCA	5	
Acrylonitrile	ND	2.31	ND	5.01	06/28/19	KCA	5	
Benzene	2.57	1.57	8.21	5.01	06/28/19	KCA	5	
Benzyl chloride	ND	0.966	ND	5.00	06/28/19	KCA	5	

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.747	ND	5.00	06/28/19	KCA	5	
Bromoform	ND	0.484	ND	5.00	06/28/19	KCA	5	
Bromomethane	ND	1.29	ND	5.01	06/28/19	KCA	5	
Carbon Disulfide	ND	1.61	ND	5.01	06/28/19	KCA	5	
Carbon Tetrachloride	ND	0.159	ND	1.00	06/28/19	KCA	5	
Chlorobenzene	ND	1.09	ND	5.01	06/28/19	KCA	5	
Chloroethane	ND	1.90	ND	5.01	06/28/19	KCA	5	
Chloroform	ND	1.02	ND	4.98	06/28/19	KCA	5	
Chloromethane	ND	2.42	ND	4.99	06/28/19	KCA	5	
Cis-1,2-Dichloroethene	ND	0.252	ND	1.00	06/28/19	KCA	5	
cis-1,3-Dichloropropene	ND	1.10	ND	4.99	06/28/19	KCA	5	
Cyclohexane	2.97	1.45	10.2	4.99	06/28/19	KCA	5	
Dibromochloromethane	ND	0.587	ND	5.00	06/28/19	KCA	5	
Dichlorodifluoromethane	ND	1.01	ND	4.99	06/28/19	KCA	5	
Ethanol	36.2	2.66	68.2	5.01	06/28/19	KCA	5	1
Ethyl acetate	ND	1.39	ND	5.01	06/28/19	KCA	5	1
Ethylbenzene	11.6	1.15	50.3	4.99	06/28/19	KCA	5	
Heptane	4.59	1.22	18.8	5.00	06/28/19	KCA	5	
Hexachlorobutadiene	ND	0.469	ND	5.00	06/28/19	KCA	5	
Hexane	ND	1.42	ND	5.00	06/28/19	KCA	5	
Isopropylalcohol	2.47	2.04	6.07	5.01	06/28/19	KCA	5	
Isopropylbenzene	23.7	1.02	116	5.01	06/28/19	KCA	5	
m,p-Xylene	24.1	1.15	105	4.99	06/28/19	KCA	5	
Methyl Ethyl Ketone	324	5.09	955	15.0	07/03/19	KCA	15	
Methyl tert-butyl ether(MTBE)	ND	1.39	ND	5.01	06/28/19	KCA	5	
Methylene Chloride	ND	4.32	ND	15.0	06/28/19	KCA	5	
n-Butylbenzene	ND	0.911	ND	5.00	06/28/19	KCA	5	1
o-Xylene	14.7	1.15	63.8	4.99	06/28/19	KCA	5	
Propylene	68.8	2.91	118	5.01	06/28/19	KCA	5	1
sec-Butylbenzene	1.68	0.911	9.22	5.00	06/28/19	KCA	5	1
Styrene	31.8	1.17	135	4.98	06/28/19	KCA	5	
Tetrachloroethene	145	0.184	983	1.25	06/28/19	KCA	5	
Tetrahydrofuran	ND	1.70	ND	5.01	06/28/19	KCA	5	1
Toluene	5.77	1.33	21.7	5.01	06/28/19	KCA	5	
Trans-1,2-Dichloroethene	ND	1.26	ND	4.99	06/28/19	KCA	5	
trans-1,3-Dichloropropene	ND	1.10	ND	4.99	06/28/19	KCA	5	
Trichloroethene	7.92	0.186	42.5	1.00	06/28/19	KCA	5	
Trichlorofluoromethane	ND	0.891	ND	5.00	06/28/19	KCA	5	
Trichlorotrifluoroethane	ND	0.653	ND	5.00	06/28/19	KCA	5	
Vinyl Chloride	ND	0.391	ND	1.00	06/28/19	KCA	5	
QA/QC Surrogates/Internals								
% Bromofluorobenzene (5x)	98	%	98	%	06/28/19	KCA	5	
% IS-1,4-Difluorobenzene (5x)	93	%	93	%	06/28/19	KCA	5	
% IS-Bromochloromethane (5x)	98	%	98	%	06/28/19	KCA	5	
% IS-Chlorobenzene-d5 (5x)	80	%	80	%	06/28/19	KCA	5	
% Bromofluorobenzene (15x)	100	%	100	%	07/03/19	KCA	15	
% IS-1,4-Difluorobenzene (15x)	101	%	101	%	07/03/19	KCA	15	
% IS-Bromochloromethane (15x)	104	%	104	%	07/03/19	KCA	15	
% IS-Chlorobenzene-d5 (15x)	92	%	92	%	07/03/19	KCA	15	

Project ID: 1665 STILLWELL AVENUE Phoenix I.D.: CD42047

Client ID: SV-3

	ppbv	ppbv	ug/m3	ug/m3			
Parameter	Result	RL	Result	RL	Date/Time	Ву	Dilution

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

An elevated reporting level was reported for TO15 due to a matrix interference of non target compounds.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

July 05, 2019

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 05, 2019

FOR: Attn: Ms. Antoinette Ollivierre

American Env. Assessment & Solutions Inc

679 Lafayette Ave.

3rd Floor

Brooklyn, NY 11216

Sample Information Custody Information Date <u>Time</u> AIR Collected by: AO 06/24/19 12:52 Matrix: Received by: Location Code: **AEAS-INC** В 06/25/19 17:26

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

Canister Id: 23346 Laboratory Data SDG ID: GCD42045
Phoenix ID: CD42048

Project ID: 1665 STILLWELL AVENUE

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Volatiles (TO15)								
1,1,1,2-Tetrachloroethane	ND	0.729	ND	5.00	06/28/19	KCA	5	1
1,1,1-Trichloroethane	ND	0.917	ND	5.00	06/28/19	KCA	5	
1,1,2,2-Tetrachloroethane	ND	0.729	ND	5.00	06/28/19	KCA	5	
1,1,2-Trichloroethane	ND	0.917	ND	5.00	06/28/19	KCA	5	
1,1-Dichloroethane	ND	1.24	ND	5.02	06/28/19	KCA	5	
1,1-Dichloroethene	ND	0.252	ND	1.00	06/28/19	KCA	5	
1,2,4-Trichlorobenzene	ND	0.674	ND	5.00	06/28/19	KCA	5	
1,2,4-Trimethylbenzene	3.55	1.02	17.4	5.01	06/28/19	KCA	5	
1,2-Dibromoethane(EDB)	ND	0.651	ND	5.00	06/28/19	KCA	5	
1,2-Dichlorobenzene	ND	0.832	ND	5.00	06/28/19	KCA	5	
1,2-Dichloroethane	ND	1.24	ND	5.02	06/28/19	KCA	5	
1,2-dichloropropane	ND	1.08	ND	4.99	06/28/19	KCA	5	
1,2-Dichlorotetrafluoroethane	ND	0.716	ND	5.00	06/28/19	KCA	5	
1,3,5-Trimethylbenzene	ND	1.02	ND	5.01	06/28/19	KCA	5	
1,3-Butadiene	8.08	2.26	17.9	5.00	06/28/19	KCA	5	
1,3-Dichlorobenzene	ND	0.832	ND	5.00	06/28/19	KCA	5	
1,4-Dichlorobenzene	ND	0.832	ND	5.00	06/28/19	KCA	5	
1,4-Dioxane	ND	1.39	ND	5.01	06/28/19	KCA	5	
2-Hexanone(MBK)	104	1.22	426	4.99	06/28/19	KCA	5	1
4-Ethyltoluene	2.91	1.02	14.3	5.01	06/28/19	KCA	5	1
4-Isopropyltoluene	ND	0.911	ND	5.00	06/28/19	KCA	5	1
4-Methyl-2-pentanone(MIBK)	ND	1.22	ND	4.99	06/28/19	KCA	5	
Acetone	455	12.6	1080	29.9	07/03/19	KCA	30	
Acrylonitrile	ND	2.31	ND	5.01	06/28/19	KCA	5	
Benzene	3.55	1.57	11.3	5.01	06/28/19	KCA	5	
Benzyl chloride	ND	0.966	ND	5.00	06/28/19	KCA	5	

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.747	ND	5.00	06/28/19	KCA	5	
Bromoform	ND	0.484	ND	5.00	06/28/19	KCA	5	
Bromomethane	ND	1.29	ND	5.01	06/28/19	KCA	5	
Carbon Disulfide	ND	1.61	ND	5.01	06/28/19	KCA	5	
Carbon Tetrachloride	ND	0.159	ND	1.00	06/28/19	KCA	5	
Chlorobenzene	ND	1.09	ND	5.01	06/28/19	KCA	5	
Chloroethane	ND	1.90	ND	5.01	06/28/19	KCA	5	
Chloroform	ND	1.02	ND	4.98	06/28/19	KCA	5	
Chloromethane	ND	2.42	ND	4.99	06/28/19	KCA	5	
Cis-1,2-Dichloroethene	ND	0.252	ND	1.00	06/28/19	KCA	5	
cis-1,3-Dichloropropene	ND	1.10	ND	4.99	06/28/19	KCA	5	
Cyclohexane	3.33	1.45	11.5	4.99	06/28/19	KCA	5	
Dibromochloromethane	ND	0.587	ND	5.00	06/28/19	KCA	5	
Dichlorodifluoromethane	ND	1.01	ND	4.99	06/28/19	KCA	5	
Ethanol	69.0	2.66	130	5.01	06/28/19	KCA	5	1
Ethyl acetate	ND	1.39	ND	5.01	06/28/19	KCA	5	1
Ethylbenzene	16.0	1.15	69.4	4.99	06/28/19	KCA	5	
Heptane	5.37	1.22	22.0	5.00	06/28/19	KCA	5	
Hexachlorobutadiene	ND	0.469	ND	5.00	06/28/19	KCA	5	
Hexane	4.70	1.42	16.6	5.00	06/28/19	KCA	5	
Isopropylalcohol	5.35	2.04	13.1	5.01	06/28/19	KCA	5	
Isopropylbenzene	35.4	1.02	174	5.01	06/28/19	KCA	5	
m,p-Xylene	33.2	1.15	144	4.99	06/28/19	KCA	5	
Methyl Ethyl Ketone	992	10.2	2920	30.1	07/03/19	KCA	30	
Methyl tert-butyl ether(MTBE)	ND	1.39	ND	5.01	06/28/19	KCA	5	
Methylene Chloride	ND	4.32	ND	15.0	06/28/19	KCA	5	
n-Butylbenzene	ND	0.911	ND	5.00	06/28/19	KCA	5	1
o-Xylene	16.7	1.15	72.5	4.99	06/28/19	KCA	5	
Propylene	143	2.91	246	5.01	06/28/19	KCA	5	1
sec-Butylbenzene	ND	0.911	ND	5.00	06/28/19	KCA	5	1
Styrene	46.2	1.17	197	4.98	06/28/19	KCA	5	
Tetrachloroethene	110	0.184	746	1.25	06/28/19	KCA	5	
Tetrahydrofuran	ND	1.70	ND	5.01	06/28/19	KCA	5	1
Toluene	7.71	1.33	29.0	5.01	06/28/19	KCA	5	
Trans-1,2-Dichloroethene	ND	1.26	ND	4.99	06/28/19	KCA	5	
trans-1,3-Dichloropropene	ND	1.10	ND	4.99	06/28/19	KCA	5	
Trichloroethene	0.360	0.186	1.93	1.00	06/28/19	KCA	5	
Trichlorofluoromethane	ND	0.891	ND	5.00	06/28/19	KCA	5	
Trichlorotrifluoroethane	ND	0.653	ND	5.00	06/28/19	KCA	5	
Vinyl Chloride	ND	0.391	ND	1.00	06/28/19	KCA	5	
QA/QC Surrogates/Internals	ND	0.007	ND	7.00	00/20/10	110/1	o o	
% Bromofluorobenzene (5x)	97	%	97	%	06/28/19	KCA	5	
% IS-1,4-Difluorobenzene (5x)	94	%	94	%	06/28/19	KCA	5	
	95	%	95	%	06/28/19	KCA	5	
% IS-Bromochloromethane (5x)	95 80	% %	95 80	%	06/28/19	KCA	5 5	
% IS-Chlorobenzene-d5 (5x)	104		104		07/03/19	KCA	30	
% Bromofluorobenzene (30x)		%	104	%	07/03/19	KCA	30	
% IS-1,4-Difluorobenzene (30x)	108	%		%				
% IS-Bromochloromethane (30x) % IS-Chlorobenzene-d5 (30x)	109	%	109	%	07/03/19	KCA	30	
% IS-Unioronenzene-d5 (30X)	98	%	98	%	07/03/19	KCA	30	

Project ID: 1665 STILLWELL AVENUE Phoenix I.D.: CD42048

Client ID: SV-4

	ppbv	ppbv	ug/m3	ug/m3			
Parameter	Result	RL	Result	RL	Date/Time	Ву	Dilution

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

The canister was received under no vacuum, therefore sample results may not be representative.

An elevated reporting level was reported for TO15 due to a matrix interference of non target compounds.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

July 05, 2019

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 05, 2019

FOR: Attn: Ms. Antoinette Ollivierre

American Env. Assessment & Solutions Inc

679 Lafayette Ave.

3rd Floor

Brooklyn, NY 11216

Sample Information Custody Information Date <u>Time</u> AIR Collected by: AO 06/24/19 12:58 Matrix: Received by: Location Code: **AEAS-INC** В 06/25/19 17:26

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

Canister Id: 218 Laboratory Data SDG ID: GCD42045
Phoenix ID: CD42049

Project ID: 1665 STILLWELL AVENUE

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Volatiles (TO15)								
1,1,1,2-Tetrachloroethane	ND	0.729	ND	5.00	06/28/19	KCA	5	1
1,1,1-Trichloroethane	ND	0.917	ND	5.00	06/28/19	KCA	5	
1,1,2,2-Tetrachloroethane	ND	0.729	ND	5.00	06/28/19	KCA	5	
1,1,2-Trichloroethane	ND	0.917	ND	5.00	06/28/19	KCA	5	
1,1-Dichloroethane	ND	1.24	ND	5.02	06/28/19	KCA	5	
1,1-Dichloroethene	ND	0.252	ND	1.00	06/28/19	KCA	5	
1,2,4-Trichlorobenzene	ND	0.674	ND	5.00	06/28/19	KCA	5	
1,2,4-Trimethylbenzene	1.96	1.02	9.6	5.01	06/28/19	KCA	5	
1,2-Dibromoethane(EDB)	ND	0.651	ND	5.00	06/28/19	KCA	5	
1,2-Dichlorobenzene	ND	0.832	ND	5.00	06/28/19	KCA	5	
1,2-Dichloroethane	ND	1.24	ND	5.02	06/28/19	KCA	5	
1,2-dichloropropane	ND	1.08	ND	4.99	06/28/19	KCA	5	
1,2-Dichlorotetrafluoroethane	ND	0.716	ND	5.00	06/28/19	KCA	5	
1,3,5-Trimethylbenzene	ND	1.02	ND	5.01	06/28/19	KCA	5	
1,3-Butadiene	7.05	2.26	15.6	5.00	06/28/19	KCA	5	
1,3-Dichlorobenzene	ND	0.832	ND	5.00	06/28/19	KCA	5	
1,4-Dichlorobenzene	ND	0.832	ND	5.00	06/28/19	KCA	5	
1,4-Dioxane	ND	1.39	ND	5.01	06/28/19	KCA	5	
2-Hexanone(MBK)	ND	1.22	ND	4.99	06/28/19	KCA	5	1
4-Ethyltoluene	1.61	1.02	7.91	5.01	06/28/19	KCA	5	1
4-Isopropyltoluene	ND	0.911	ND	5.00	06/28/19	KCA	5	1
4-Methyl-2-pentanone(MIBK)	ND	1.22	ND	4.99	06/28/19	KCA	5	
Acetone	120	6.32	285	15.0	07/03/19	KCA	15	
Acrylonitrile	ND	2.31	ND	5.01	06/28/19	KCA	5	
Benzene	11.4	1.57	36.4	5.01	06/28/19	KCA	5	
Benzyl chloride	ND	0.966	ND	5.00	06/28/19	KCA	5	

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.747	ND	5.00	06/28/19	KCA	5	
Bromoform	ND	0.484	ND	5.00	06/28/19	KCA	5	
Bromomethane	ND	1.29	ND	5.01	06/28/19	KCA	5	
Carbon Disulfide	16.3	1.61	50.7	5.01	06/28/19	KCA	5	
Carbon Tetrachloride	ND	0.159	ND	1.00	06/28/19	KCA	5	
Chlorobenzene	ND	1.09	ND	5.01	06/28/19	KCA	5	
Chloroethane	ND	1.90	ND	5.01	06/28/19	KCA	5	
Chloroform	2.97	1.02	14.5	4.98	06/28/19	KCA	5	
Chloromethane	ND	2.42	ND	4.99	06/28/19	KCA	5	
Cis-1,2-Dichloroethene	6.26	0.252	24.8	1.00	06/28/19	KCA	5	
cis-1,3-Dichloropropene	ND	1.10	ND	4.99	06/28/19	KCA	5	
Cyclohexane	2.90	1.45	10.0	4.99	06/28/19	KCA	5	
Dibromochloromethane	ND	0.587	ND	5.00	06/28/19	KCA	5	
Dichlorodifluoromethane	5.55	1.01	27.4	4.99	06/28/19	KCA	5	
Ethanol	15.5	2.66	29.2	5.01	06/28/19	KCA	5	1
Ethyl acetate	ND	1.39	ND	5.01	06/28/19	KCA	5	1
Ethylbenzene	2.16	1.15	9.37	4.99	06/28/19	KCA	5	
Heptane	13.8	1.22	56.5	5.00	06/28/19	KCA	5	
Hexachlorobutadiene	ND	0.469	ND	5.00	06/28/19	KCA	5	
Hexane	8.75	1.42	30.8	5.00	06/28/19	KCA	5	
Isopropylalcohol	ND	2.04	ND	5.01	06/28/19	KCA	5	
Isopropylbenzene	32.6	1.02	160	5.01	06/28/19	KCA	5	
m,p-Xylene	4.66	1.15	20.2	4.99	06/28/19	KCA	5	
Methyl Ethyl Ketone	30.0	1.70	88.4	5.01	06/28/19	KCA	5	
Methyl tert-butyl ether(MTBE)	ND	1.39	ND	5.01	06/28/19	KCA	5	
Methylene Chloride	ND	4.32	ND	15.0	06/28/19	KCA	5	
n-Butylbenzene	ND	0.911	ND	5.00	06/28/19	KCA	5	1
o-Xylene	1.66	1.15	7.20	4.99	06/28/19	KCA	5	
Propylene	103	2.91	177	5.01	06/28/19	KCA	5	1
sec-Butylbenzene	ND	0.911	ND	5.00	06/28/19	KCA	5	1
Styrene	2.98	1.17	12.7	4.98	06/28/19	KCA	5	
Tetrachloroethene	550	0.553	3730	3.75	07/03/19	KCA	15	
Tetrahydrofuran	313	5.09	923	15.0	07/03/19	KCA	15	1
Toluene	8.43	1.33	31.7	5.01	06/28/19	KCA	5	
Trans-1,2-Dichloroethene	ND	1.26	ND	4.99	06/28/19	KCA	5	
trans-1,3-Dichloropropene	ND	1.10	ND	4.99	06/28/19	KCA	5	
Trichloroethene	13.7	0.186	73.6	1.00	06/28/19	KCA	5	
Trichlorofluoromethane	ND	0.891	ND	5.00	06/28/19	KCA	5	
Trichlorotrifluoroethane	ND	0.653	ND	5.00	06/28/19	KCA	5	
Vinyl Chloride	0.650	0.391	1.66	1.00	06/28/19	KCA	5	
QA/QC Surrogates/Internals								
% Bromofluorobenzene (5x)	97	%	97	%	06/28/19	KCA	5	
% IS-1,4-Difluorobenzene (5x)	94	%	94	%	06/28/19	KCA	5	
% IS-Bromochloromethane (5x)	97	%	97	%	06/28/19	KCA	5	
% IS-Chlorobenzene-d5 (5x)	82	%	82	%	06/28/19	KCA	5	
% Bromofluorobenzene (15x)	102	%	102	%	07/03/19	KCA	15	
% IS-1,4-Difluorobenzene (15x)	108	%	108	%	07/03/19	KCA	15	
% IS-Bromochloromethane (15x)	111	%	111	%	07/03/19	KCA	15	
% IS-Chlorobenzene-d5 (15x)	97	%	97	%	07/03/19	KCA	15	

Project ID: 1665 STILLWELL AVENUE Phoenix I.D.: CD42049

Client ID: SV-5

	ppbv	ppbv	ug/m3	ug/m3			
Parameter	Result	RL	Result	RL	Date/Time	Ву	Dilution

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

The canister was received under no vacuum, therefore sample results may not be representative.

An elevated reporting level was reported for TO15 due to a matrix interference of non target compounds.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

July 05, 2019

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 05, 2019

FOR: Attn: Ms. Antoinette Ollivierre

American Env. Assessment & Solutions Inc

679 Lafayette Ave.

3rd Floor

Brooklyn, NY 11216

Sample Information Custody Information Date <u>Time</u> AIR Collected by: AO 06/24/19 Matrix: 13:00 Received by: Location Code: **AEAS-INC** В 06/25/19 17:26

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

_aboratory Data SDG ID: GCD42045 Canister Id: 21356 Phoenix ID: CD42050

1665 STILLWELL AVENUE Project ID:

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Volatiles (TO15)								
1,1,1,2-Tetrachloroethane	ND	0.146	ND	1.00	06/28/19	KCA	1	1
1,1,1-Trichloroethane	ND	0.183	ND	1.00	06/28/19	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	ND	1.00	06/28/19	KCA	1	
1,1,2-Trichloroethane	ND	0.183	ND	1.00	06/28/19	KCA	1	
1,1-Dichloroethane	ND	0.247	ND	1.00	06/28/19	KCA	1	
1,1-Dichloroethene	ND	0.051	ND	0.20	06/28/19	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	ND	1.00	06/28/19	KCA	1	
1,2,4-Trimethylbenzene	2.09	0.204	10.3	1.00	06/28/19	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	ND	1.00	06/28/19	KCA	1	
1,2-Dichlorobenzene	ND	0.166	ND	1.00	06/28/19	KCA	1	
1,2-Dichloroethane	ND	0.247	ND	1.00	06/28/19	KCA	1	
1,2-dichloropropane	ND	0.217	ND	1.00	06/28/19	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	ND	1.00	06/28/19	KCA	1	
1,3,5-Trimethylbenzene	0.346	0.204	1.70	1.00	06/28/19	KCA	1	
1,3-Butadiene	2.01	0.452	4.44	1.00	06/28/19	KCA	1	
1,3-Dichlorobenzene	ND	0.166	ND	1.00	06/28/19	KCA	1	
1,4-Dichlorobenzene	ND	0.166	ND	1.00	06/28/19	KCA	1	
1,4-Dioxane	ND	0.278	ND	1.00	06/28/19	KCA	1	
2-Hexanone(MBK)	9.20	0.244	37.7	1.00	06/28/19	KCA	1	1
4-Ethyltoluene	1.61	0.204	7.91	1.00	06/28/19	KCA	1	1
4-Isopropyltoluene	0.325	0.182	1.78	1.00	06/28/19	KCA	1	1
4-Methyl-2-pentanone(MIBK)	1.02	0.244	4.18	1.00	06/28/19	KCA	1	
Acetone	31.3	0.421	74.3	1.00	06/28/19	KCA	1	
Acrylonitrile	ND	0.461	ND	1.00	06/28/19	KCA	1	
Benzene	2.12	0.313	6.77	1.00	06/28/19	KCA	1	
Benzyl chloride	ND	0.193	ND	1.00	06/28/19	KCA	1	

Client ID: SV-6

ppbv ppbv ug/m3 ug/m3 Parameter Result RL Result RL Date/Time Dilution Ву KCA Bromodichloromethane 1.23 0.149 8.24 1.00 06/28/19 1 ND KCA ND 0.097 1.00 06/28/19 1 **Bromoform** Bromomethane ND 0.258 ND 1.00 06/28/19 **KCA** 1 Carbon Disulfide 6.73 0.321 20.9 1.00 06/28/19 **KCA** 1 0.085 0.53 0.20 06/28/19 **KCA** Carbon Tetrachloride 0.032 Chlorobenzene ND 0.217 ND 1.00 06/28/19 **KCA** 1 ND ND 1.00 06/28/19 **KCA** Chloroethane 0.379 1 KCA Chloroform 23.9 0.205 117 1.00 06/28/19 1.01 0.485 2.08 1.00 06/28/19 **KCA** Chloromethane 1 KCA Cis-1,2-Dichloroethene ND 0.051 ND 0.20 06/28/19 cis-1,3-Dichloropropene ND ND 1.00 06/28/19 **KCA** 0.221 **KCA** Cvclohexane 3.02 0.291 10.4 1.00 06/28/19 1 KCA Dibromochloromethane ND 0.118 ND 1.00 06/28/19 0.404 0.202 2.00 1.00 06/28/19 **KCA** 1 Dichlorodifluoromethane 8.02 0.531 15.1 1.00 06/28/19 **KCA** 1 Ethanol Ethyl acetate ND 0.278 ND 1.00 06/28/19 KCA 1 4.83 0.230 21.0 1.00 06/28/19 **KCA** 1 Ethylbenzene Heptane 2.36 0.244 9.7 1.00 06/28/19 **KCA** ND 0.094 ND 1.00 **KCA** Hexachlorobutadiene 06/28/19 1 KCA 2.38 0.284 8.38 1.00 06/28/19 1 Hexane 1.07 0.407 2.63 1.00 06/28/19 **KCA** 1 Isopropylalcohol Isopropylbenzene 10.2 0.204 50.1 1.00 06/28/19 **KCA** m,p-Xylene 10.5 0.230 45.6 1.00 06/28/19 **KCA** Methyl Ethyl Ketone 28.8 0.339 84.9 1.00 06/28/19 **KCA** 1 Methyl tert-butyl ether(MTBE) ND 0.278 ND 1.00 06/28/19 **KCA** 1 ND 0.864 ND 3.00 06/28/19 **KCA** 1 Methylene Chloride ND 0.182 ND 1.00 06/28/19 KCA 1 n-Butylbenzene o-Xylene 5.74 0.230 24.9 1.00 06/28/19 **KCA** 1 17.7 0.581 30.4 1.00 06/28/19 **KCA** Propylene 1 sec-Butvlbenzene ND 0.182 ND 1.00 06/28/19 **KCA** 1.00 Styrene 13.8 0.235 58.7 06/28/19 **KCA** 1 34.1 231 0.25 KCA 0.037 06/28/19 1 Tetrachloroethene Tetrahydrofuran ND 0.339 ND 1.00 06/28/19 KCA 1 KCA Toluene 2.48 0.266 9.34 1.00 06/28/19 1 Trans-1,2-Dichloroethene ND 0.252 ND 1.00 06/28/19 **KCA** ND ND trans-1.3-Dichloropropene 0.221 1.00 06/28/19 **KCA** 1 0.683 3.67 0.20 KCA 0.037 06/28/19 Trichloroethene ND ND 1.00 Trichlorofluoromethane 0.178 06/28/19 KCA 1 ND 0.131 ND 1.00 06/28/19 KCA 1 Trichlorotrifluoroethane 0.467 0.078 06/28/19 KCA Vinyl Chloride 1.19 0.20 1 **QA/QC Surrogates/Internals** 96 96 06/28/19 **KCA** % Bromofluorobenzene % % 94 94 06/28/19 KCA % IS-1,4-Difluorobenzene % % 1 93 93 06/28/19 KCA 1 % IS-Bromochloromethane % % 79 79 06/28/19 KCA % IS-Chlorobenzene-d5 % %

1

Phoenix I.D.: CD42050

Project ID: 1665 STILLWELL AVENUE Phoenix I.D.: CD42050

Client ID: SV-6

	ppbv	ppbv	ug/m3	ug/m3			
Parameter	Result	RL	Result	RL	Date/Time	Ву	Dilution

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

Comments:

The canister was received under no vacuum, therefore sample results may not be representative.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

July 05, 2019

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Canister Sampling Information

July 05, 2019

FOR: Attn: Ms. Antoinette Ollivierre

American Env. Assessment & Solutions Inc

679 Lafayette Ave.

3rd Floor

Brooklyn, NY 11216

Location Code: AEAS-INC

AS-INC SDG I.D.: GCD42045

Project ID: 1665 STILLWELL AVENUE

							L	aborato	ry				Field	
		Canis		Reg.	Chk Out	Out	In	Out	In	Flow	Start	End	Sampling	Sampling
Client Id	Lab Id	ld	Type	ld	Date	Hg	Hg	Flow	Flow	RPD	Hg	Hg	Start Date	End Date
SV-1	CD42045	28580	6.0L	7043	06/18/19	-30	0	43	42	2.4	-28	0	06/24/19 10:08	06/24/19 12:45
SV-2	CD42046	23342	6.0L	2938	06/18/19	-30	-2	43	42	2.4	-29	-1	06/24/19 10:21	06/24/19 12:48
SV-3	CD42047	28575	6.0L	2966	06/18/19	-30	-1	43	43	0.0	-30	-1	06/24/19 10:01	06/24/19 12:47
SV-4	CD42048	23346	6.0L	3220	06/18/19	-30	0	43	43	0.0	-30	-2	06/24/19 10:21	06/24/19 12:52
SV-5	CD42049	218	6.0L	4959	06/18/19	-30	0	43	44	2.3	-29	0	06/24/19 10:25	06/24/19 12:58
SV-6	CD42050	21356	6.0L	5403	06/18/19	-30	0	43	42	2.4	-30	-1	06/24/19 10:30	06/24/19 1:00

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

QA/QC Data

July 05, 2019				QA/QC D	<u>ata</u>				SDG I	.D.: 0	GCD420)45
Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits
QA/QC Batch 485833 (ppbv), C (5X), CD42050)	C Sam	ole No: C	D42050	(CD42045 (5X)	, CD4	2046 (5)	() , CD	42047 (5X) , C[042048	3 (5X) , (CD42049
Volatiles												
1,1,1,2-Tetrachloroethane	ND	0.150	ND	1.03	97	ND	ND	ND	ND	NC	70 - 130	25
1,1,1-Trichloroethane	ND	0.180	ND	0.98	97	ND	ND	ND	ND	NC	70 - 130	25
1,1,2,2-Tetrachloroethane	ND	0.150	ND	1.03	94	ND	ND	ND	ND	NC	70 - 130	25
1,1,2-Trichloroethane	ND	0.180	ND	0.98	95	ND	ND	ND	ND	NC	70 - 130	25
1,1-Dichloroethane	ND	0.250	ND	1.01	103	ND	ND	ND	ND	NC	70 - 130	25
1,1-Dichloroethene	ND	0.050	ND	0.20	95	ND	ND	ND	ND	NC	70 - 130	25
1,2,4-Trichlorobenzene	ND	0.130	ND	0.96	108	ND	ND	ND	ND	NC	70 - 130	25
1,2,4-Trimethylbenzene	ND	0.200	ND	0.98	96	10.3	10.2	2.09	2.07	1.0	70 - 130	25
1,2-Dibromoethane(EDB)	ND	0.130	ND	1.00	99	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichlorobenzene	ND	0.170	ND	1.02	100	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichloroethane	ND	0.250	ND	1.01	101	ND	ND	ND	ND	NC	70 - 130	25
1,2-dichloropropane	ND	0.220	ND	1.02	106	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichlorotetrafluoroethane	ND	0.140	ND	0.98	101	ND	ND	ND	ND	NC	70 - 130	25
1,3,5-Trimethylbenzene	ND	0.200	ND	0.98	93	1.70	1.70	0.346	0.346	NC	70 - 130	25
1,3-Butadiene	ND	0.450	ND	0.99	90	4.44	4.16	2.01	1.88	NC	70 - 130	25
1,3-Dichlorobenzene	ND	0.170	ND	1.02	94	ND	ND	ND	ND	NC	70 - 130	25
1,4-Dichlorobenzene	ND	0.170	ND	1.02	98	ND	ND	ND	ND	NC	70 - 130	25
1,4-Dioxane	ND	0.280	ND	1.01	105	ND	ND	ND	ND	NC	70 - 130	25
2-Hexanone(MBK)	ND	0.240	ND	0.98	102	37.7	37.3	9.20	9.12	0.9	70 - 130	25
4-Ethyltoluene	ND	0.200	ND	0.98	89	7.91	7.66	1.61	1.56	3.2	70 - 130	25
4-Isopropyltoluene	ND	0.180	ND	0.99	93	1.78	1.70	0.325	0.309	NC	70 - 130	25
4-Methyl-2-pentanone(MIBK)	ND	0.240	ND	0.98	93	4.18	3.98	1.02	0.971	NC	70 - 130	25
Acetone	ND	0.420	ND	1.00	93	74.3	71.5	31.3	30.1	3.9	70 - 130	25
Acrylonitrile	ND	0.460	ND	1.00	92	ND	ND	ND	ND	NC	70 - 130	25
Benzene	ND	0.310	ND	0.99	96	6.77	6.80	2.12	2.13	0.5	70 - 130	25
Benzyl chloride	ND	0.190	ND	0.98	106	ND	ND	ND	ND	NC	70 - 130	25
Bromodichloromethane	ND	0.150	ND	1.00	109	8.24	7.23	1.23	1.08	13.0	70 - 130	25
Bromoform	ND	0.097	ND	1.00	113	ND	ND	ND	ND	NC	70 - 130	25
Bromomethane	ND	0.260	ND	1.01	91	ND	ND	ND	ND	NC	70 - 130	25
Carbon Disulfide	ND	0.320	ND	1.00	91	20.9	20.0	6.73	6.43	4.6	70 - 130	25
Carbon Tetrachloride	ND	0.032	ND	0.20	107	0.53	0.54	0.085	0.086	NC	70 - 130	25
Chlorobenzene	ND	0.220	ND	1.01	101	ND	ND	ND	ND	NC	70 - 130	25
Chloroethane	ND	0.380	ND	1.00	93	ND	ND	ND	ND	NC	70 - 130	25
Chloroform	ND	0.200	ND	0.98	104	117	113	23.9	23.1	3.4	70 - 130	25
Chloromethane	ND	0.480	ND	0.99	93	2.08	2.05	1.01	0.992	NC	70 - 130	25
Cis-1,2-Dichloroethene	ND	0.256	ND	1.01	106	ND	ND	ND	ND	NC	70 - 130	25
cis-1,3-Dichloropropene	ND	0.220	ND	1.00	98	ND	ND	ND	ND	NC	70 - 130	25
Cyclohexane	ND	0.290	ND	1.00	99	10.4	10.1	3.02	2.94	2.7	70 - 130	25
Dibromochloromethane	ND	0.120	ND	1.02	108	ND	ND	ND	ND	NC	70 - 130	25
Dichlorodifluoromethane	ND	0.200	ND	0.99	99	2.00	1.89	0.404	0.383	NC	70 - 130	25
2.5. nor ounidor of following	.40	0.200		J.,,	, ,	2.00	,	J. 107	0.000		, 5 150	20

QA/QC Data

SDG I.D.: GCD42045

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits
Ethanol	ND	0.530	ND	1.00	97	15.1	14.0	8.02	7.44	7.5	70 - 130	25
Ethyl acetate	ND	0.280	ND	1.01	104	ND	ND	ND	ND	NC	70 - 130	25
Ethylbenzene	ND	0.230	ND	1.00	93	21.0	20.7	4.83	4.77	1.3	70 - 130	25
Heptane	ND	0.240	ND	0.98	93	9.7	9.6	2.36	2.35	0.4	70 - 130	25
Hexachlorobutadiene	ND	0.094	ND	1.00	94	ND	ND	ND	ND	NC	70 - 130	25
Hexane	ND	0.280	ND	0.99	114	8.38	8.21	2.38	2.33	2.1	70 - 130	25
Isopropylalcohol	ND	0.410	ND	1.01	84	2.63	2.51	1.07	1.02	NC	70 - 130	25
Isopropylbenzene	ND	0.200	ND	0.98	95	50.1	49.1	10.2	9.99	2.1	70 - 130	25
m,p-Xylene	ND	0.230	ND	1.00	96	45.6	44.3	10.5	10.2	2.9	70 - 130	25
Methyl Ethyl Ketone	ND	0.340	ND	1.00	97	84.9	82.5	28.8	28.0	2.8	70 - 130	25
Methyl tert-butyl ether(MTBE)	ND	0.280	ND	1.01	94	ND	ND	ND	ND	NC	70 - 130	25
Methylene Chloride	ND	0.860	ND	2.99	104	ND	ND	ND	ND	NC	70 - 130	25
n-Butylbenzene	ND	0.180	ND	0.99	96	ND	ND	ND	ND	NC	70 - 130	25
o-Xylene	ND	0.230	ND	1.00	99	24.9	24.5	5.74	5.64	1.8	70 - 130	25
Propylene	ND	0.580	ND	1.00	108	30.4	29.9	17.7	17.4	1.7	70 - 130	25
sec-Butylbenzene	ND	0.180	ND	0.99	94	ND	ND	ND	ND	NC	70 - 130	25
Styrene	ND	0.230	ND	0.98	94	58.7	58.7	13.8	13.8	0.0	70 - 130	25
Tetrachloroethene	ND	0.037	ND	0.25	99	231	232	34.1	34.3	0.6	70 - 130	25
Tetrahydrofuran	ND	0.340	ND	1.00	94	ND	ND	ND	ND	NC	70 - 130	25
Toluene	ND	0.270	ND	1.02	97	9.34	9.38	2.48	2.49	0.4	70 - 130	25
Trans-1,2-Dichloroethene	ND	0.250	ND	0.99	96	ND	ND	ND	ND	NC	70 - 130	25
trans-1,3-Dichloropropene	ND	0.220	ND	1.00	95	ND	ND	ND	ND	NC	70 - 130	25
Trichloroethene	ND	0.037	ND	0.20	100	3.67	3.53	0.683	0.658	3.7	70 - 130	25
Trichlorofluoromethane	ND	0.180	ND	1.01	94	ND	ND	ND	ND	NC	70 - 130	25
Trichlorotrifluoroethane	ND	0.130	ND	1.00	92	ND	ND	ND	ND	NC	70 - 130	25
Vinyl Chloride	ND	0.078	ND	0.20	92	1.19	1.00	0.467	0.390	18.0	70 - 130	25
% Bromofluorobenzene	92	%	92	%	101	96	95	96	95	NC	70 - 130	25
% IS-1,4-Difluorobenzene	109	%	109	%	83	94	96	94	96	NC	60 - 140	25
% IS-Bromochloromethane	114	%	114	%	77	93	97	93	97	NC	60 - 140	25
% IS-Chlorobenzene-d5	106	%	106	%	83	79	82	79	82	NC	60 - 140	25
QA/QC Batch 485901 (ppbv), Q	C Sami	nle No: (:D45250	(CD42045	(30X))							
Volatiles	.c Janı	oic ivo. c	D40200	(0042043	(307)							
Methyl Ethyl Ketone	ND	0.500	ND	1.47	101	34.2	32.7	11.6	11.1	4.4	70 - 130	25
% Bromofluorobenzene	93	%	93	%	100	102	103	102	103	NC	70 - 130	25
% IS-1,4-Difluorobenzene	111	%	111	%	84	90	96	90	96	NC	60 - 140	25
% IS-Bromochloromethane	112	%	112	%	76	90	97	90	97	NC	60 - 140	25
% IS-Chlorobenzene-d5	109	%	109	%	86	91	95	91	95	NC	60 - 140	25
QA/QC Batch 486440 (ppbv), Q	C Sam	ole No: C	CD49566	(CD42046	(30X) , CD ⁴	12047 (1	15X) , C	D4204	8 (30X)	, CD42	2049 (15	5X))
<u>Volatiles</u>												
Acetone	ND	0.420	ND	1.00	85	131	119	55.0	50.0	9.5	70 - 130	25
Methyl Ethyl Ketone	ND	0.340	ND	1.00	79	21.2	17.1	7.20	5.79	21.7	70 - 130	25
Tetrachloroethene	ND	0.037	ND	0.25	106	5.87	5.50	0.866	0.811	6.6	70 - 130	25
Tetrahydrofuran	ND	0.340	ND	1.00	93	4.95	4.60	1.68	1.56	NC	70 - 130	25
% Bromofluorobenzene	93	%	93	%	102	91	90	91	90	NC	70 - 130	25
% IS-1,4-Difluorobenzene	122	%	122	%	92	100	107	100	107	NC	60 - 140	25
% IS-Bromochloromethane	126	%	126	%	83	98	107	98	107	NC	60 - 140	25
% IS-Chlorobenzene-d5	118	%	118	%	92	80	83	80	83	NC	60 - 140	25

QA/QC Data

Blk RL % RPD Blk % Sample Sample Sample Blk RLBlk LCS DUP Rec Result . Dup Result Dup ppbv ppbv ppbv ug/m3 ug/m3 % ug/m3 ug/m3 ppbv RPD Limits Limits Parameter

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

SDG I.D.: GCD42045

July 05, 2019

Friday, July 05, 2019

Sample Criteria Exceedances Report
GCD42045 - AEAS-INC

Criteria: None State: NY

RL Analysis SampNo Acode Phoenix Analyte Criteria Units

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

^{***} No Data to Display ***

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Comments

July 05, 2019 SDG I.D.: GCD42045

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.

CHAIN OF CUSTODY RECORD

ot nto Oggosing Com Data Delivery: 718-906-4080 K Email: P.O.#

Standard Standard received in good working condition and agree to the terms and conditions as listed on the BA attest that all media released by Phoenix Environmental Laboratories, Inc. have been IO-12 ¤ (D) estisoqmoD(D) derD □ 72 Hour Other Pressure a Project Name: Stilled 11 April & End ("Hg) Canister d 0 0 NJ Deliverables ī Pressure at Start (" Hg) □ 48 Hour ASP CAT B Canister 8 28 80 29 Equis 10,00 12.456/24/19 706 Turnaround Time: State where samples collected: 10:21/12:48/644/d Sample Start Date (0:2512:566419 10:30 1:00 42419 10.2 112:52 6EVIU 10:01 12:47 64y back of this document: Requested Deliverable: RCP Data Format: Excel □ 24 Hour Sampling Sampling Start Time End Time ☐ MCP 1921 Time: Flow Controller (mL/min) Setting email: greg@phoenixlabs.com 4 Invoice to: A Merican Environmental **AIR ANALYSES** 7043 Regulator 9960 3938 # [] 320 4959 Requested Criteria 800-827-5426 **8**8 THIS SECTION FOR LAB USE ONLY Quote Number: Pressure Canister ("Hg) Ø Po Box 6376 North Bapylon trationette 1 Outgoing Canister Pressure (" Hg) જ Canister Size (L) Q LATORY INFORMATION: (6)(6 B)(24P) Sampled by: Canister ID # 28515 Accepted by 93346 93349 O8580 31356 918 American Car. Associated 679 lapour te trueme STORKIN, NY (IZK Client Sample ID 587 East Middle Turnpike, P.O. Box 370, Manchester, CT 06040 Telephone: 860.645, 1102 • Fax 860.645, 0823 5 51-15 50-4 21-75 9-75 500 SPECIAL INSTRUCTIONS, OC REQUIREME Arbirth 1 15 hosely Relinquighed b aggth 3000 Shoch Lhoch 49Ch Phoenix ID # 640Ch Customer: Report to: Address:

Soil boring Logs

PO Box 6376 679 Lafayette Avenue, 3rd Floor

North Babylon, NY 11703 Brooklyn, NY 11216

Telephone: (718) 209-0653 \bullet Fax: (718) 906-4090

Email: info@AEASinc.com www.AEASinc.com

SOIL BORING LOG

JOB #: 19-0115-II PAGE: 1 of 7

LOCATION: 1665 Stillwell Avenue DATE: 6/24/2019

Brooklyn, NY SAMPLING INTERVAL: 5 Feet

BORING #: SB-1 SAMPLING METHOD: Split Spoon DRILLING METHOD: Geoprobe DRILLER: AARCO

TOTAL DEPTH (ft.): 5 DEPTH TO WATER (ft.): 17.22

USCS SYMBOLS

GW - Well Graded Gravel SW - Well Graded Sand CH - Inorganic Clay, High Plastic

GP - Poorly Graded Gravel SP - Poorly Graded Sand OH - Organic Silt / Clay
GM - Silty Gravel SM - Silty Sand PT - Peat / High Organics

GC - Clayey Gravel	SC - C	Clayey Sa	nd
DEPTH BELOW GRADE AND LITHOLOGY	PID READING (ppm)	USCS	SOIL DESCRIPTION
-2	0.0	SM	Approximately 4 inches concret. Brown fine grained silty soil. Brown fine grained silty soil, moist. End of boring

PO Box 6376 679 Lafayette Avenue, 3rd Floor

North Babylon, NY 11703 Brooklyn, NY 11216

Telephone: (718) 209-0653 ♦ Fax: (718) 906-4090

Email: info@AEASinc.com www.AEASinc.com

SOIL BORING LOG

JOB #: 19-0115-II PAGE: 2 of 7

LOCATION: 1665 Stillwell Avenue DATE: 6/24/2019

Brooklyn, NY SAMPLING INTERVAL: 5 Feet

BORING #: SB-2 SAMPLING METHOD: Split Spoon
DRILLING METHOD: Geoprobe DRILLER: AARCO

TOTAL DEPTH (ft): 5 DEPTH TO WATER (ft.): 17.25

USCS SYMBOLS

GW - Well Graded Gravel SW - Well Graded Sand CH - Inorganic Clay, High Plastic

GP - Poorly Graded Gravel SP - Poorly Graded Sand OH - Organic Silt / Clay
GM - Silty Gravel SM - Silty Sand PT - Peat / High Organics

GC - Clayey Gravel		Clayey Sa	nd
DEPTH BELOW	PID		
GRADE AND	READING	USCS	SOIL DESCRIPTION
LITHOLOGY	(ppm)		
0			
47/1/1/1/	0.0	SM	Approximately 4 inches concret. Brown fine grained silty soil, with rocks.
4 1.5 1.7 1.5			
171111111	0.0	SM	Brown fine grained silty soil, with rocks.
-6			End of boring
-8			
10			
-10			
-12			
-14			
-14			
-16			
-18			
-20			
-22			
24			
-24			
-26			
-28			
-30			
-32			
-34			
-36			

BORING #:

Mailing: Business:

PO Box 6376 679 Lafayette Avenue, 3rd Floor

North Babylon, NY 11703 Brooklyn, NY 11216

Telephone: (718) 209-0653 ◆ Fax: (718) 906-4090 Email: info@AEASinc.com www.AEASinc.com SOIL BORING LOG

JOB #: 19-0115-II PAGE: 3 of 7

LOCATION: 1665 Stillwell Avenue DATE: 6/24/2019

Brooklyn, NY SAMPLING INTERVAL: 5 Feet SB-3 SAMPLING METHOD: Split Spoon

DRILLING METHOD: Geoprobe DRILLER: AARCO
TOTAL DEPTH (ft): 5 DEPTH TO WATER (ft.): NA

USCS SYMBOLS

GW - Well Graded Gravel SW - Well Graded Sand CH - Inorganic Clay, High Plastic

GP - Poorly Graded Gravel SP - Poorly Graded Sand OH - Organic Silt / Clay GM - Silty Gravel SM - Silty Sand PT - Peat / High Organics

GRADE AND REA		JSCS	SOIL DESCRIPTION
GRADE AND REA	(ppm) US	SM SM	Approximately 2 inches asphalt. Brown fine grained silty soil. Brown fine grained silty soil. End of boring

PO Box 6376 679 Lafayette Avenue, 3rd Floor

North Babylon, NY 11703 Brooklyn, NY 11216

Telephone: (718) 209-0653 ♦ Fax: (718) 906-4090

Email: info@AEASinc.com www.AEASinc.com

SOIL BORING LOG

IOB #: 19-0115-II PAGE: 4 of 7

LOCATION: 1665 Stillwell Avenue DATE: 6/24/2019

> Brooklyn, NY SAMPLING INTERVAL: 5 Feet

BORING #: SB-4 SAMPLING METHOD: Split Spoon DRILLING METHOD: AARCO Geoprobe DRILLER: TOTAL DEPTH (ft):

DEPTH TO WATER (ft.): NA

USCS SYMBOLS

GW - Well Graded Gravel SW - Well Graded Sand CH - Inorganic Clay, High Plastic

GP - Poorly Graded Gravel SP - Poorly Graded Sand OH - Organic Silt / Clay GM - Silty Gravel SM - Silty Sand PT - Peat / High Organics

DEPTH BELOW	PID	Jayey 3a	
GRADE AND	READING	USCS	SOIL DESCRIPTION
LITHOLOGY	(ppm)		
0			
(J.C.C.C.A.J.)			
² ///////	0.0	SM	Approximately 2 inches asphalt. Brown fine grained silty soil.
4 4 4 4 4 4 4 4 4 4			
17/1/1/1/	0.0	SM	Brown fine grained silty soil.
-6			End of boring
-8			
-10			
-12			
-14			
-16			
-18			
-20			
-22			
-24			
-26			
-28			
-30			
-32			
-34			
-36			

PO Box 6376 679 Lafayette Avenue, 3rd Floor

North Babylon, NY 11703 Brooklyn, NY 11216

Telephone: (718) 209-0653 ♦ Fax: (718) 906-4090

Email: info@AEASinc.com www.AEASinc.com

SOIL BORING LOG

JOB #: 19-0115-II PAGE: 5 of 7

LOCATION: 1665 Stillwell Avenue DATE: 6/24/2019

Brooklyn, NY SAMPLING INTERVAL: 5 Feet

BORING #: SB-5 SAMPLING METHOD: Split Spoon
DRILLING METHOD: Geoprobe DRILLER: AARCO

TOTAL DEPTH (ft): 12 DEPTH TO WATER (ft.): NA

USCS SYMBOLS

GW - Well Graded Gravel SW - Well Graded Sand CH - Inorganic Clay, High Plastic

GP - Poorly Graded Gravel SP - Poorly Graded Sand OH - Organic Silt / Clay GM - Silty Gravel SM - Silty Sand PT - Peat / High Organics

GC - Clayey Gravel		Jayey Sa	IIIU
DEPTH BELOW GRADE AND LITHOLOGY	PID READING (ppm)	USCS	SOIL DESCRIPTION
GRADE AND	READING	SM SM	Approximately 2 inches asphalt. Brown fine grained silty soil with rocks. Brown fine grained silty soil with rocks. Brown fine grained silty soil with rocks. End of boring
-32 -34 -36			

PO Box 6376 679 Lafayette Avenue, 3rd Floor

North Babylon, NY 11703 Brooklyn, NY 11216

Telephone: (718) 209-0653 ♦ Fax: (718) 906-4090

Email: info@AEASinc.com www.AEASinc.com

SOIL BORING LOG

JOB #: 19-0115-II PAGE: 6 of 7

LOCATION: 1665 Stillwell Avenue DATE: 6/24/2019

Brooklyn, NY SAMPLING INTERVAL: 5 Feet

BORING #: SB-6 SAMPLING METHOD: Split Spoon DRILLING METHOD: Geoprobe DRILLER: AARCO

TOTAL DEPTH (ft): 12 DEPTH TO WATER (ft): NA

USCS SYMBOLS

GW - Well Graded Gravel SW - Well Graded Sand CH - Inorganic Clay, High Plastic

GP - Poorly Graded Gravel SP - Poorly Graded Sand OH - Organic Silt / Clay
GM - Silty Gravel SM - Silty Sand PT - Peat / High Organics

DEPTH BELOW	PID		
GRADE AND	READING	USCS	SOIL DESCRIPTION
LITHOLOGY	(ppm)		
0			
-2 -4	0.0		Approximately 2 inches asphalt. Brown fine grained silty soil with rocks.
6 ///// 8	0.0	SM	Brown fine grained silty soil with rocks.
-10 ////////////////////////////////////	1.7	SM	Brown fine grained silty soil with rocks.
-14			End of boring
-16			
-18			
-20			
-22			
-24			
-26			
-28			
-30			
-32			
-34			
-36			
			II.

PO Box 6376 679 Lafayette Avenue, 3rd Floor

North Babylon, NY 11703 Brooklyn, NY 11216

Telephone: (718) 209-0653 ♦ Fax: (718) 906-4090

Email: info@AEASinc.com www.AEASinc.com

SOIL BORING LOG

JOB #: 19-0115-II PAGE: 7 of 7

LOCATION: 1665 Stillwell Avenue DATE: 6/24/2019

Brooklyn, NY SAMPLING INTERVAL: 5 Feet

BORING #: SB-7 SAMPLING METHOD: Split Spoon
DRILLING METHOD: Geoprobe DRILLER: AARCO
TOTAL DEPTH (ft): 12 DEPTH TO WATER (ft): 16.89

USCS SYMBOLS

GW - Well Graded Gravel SW - Well Graded Sand CH - Inorganic Clay, High Plastic

GP - Poorly Graded Gravel SP - Poorly Graded Sand OH - Organic Silt / Clay
GM - Silty Gravel SM - Silty Sand PT - Peat / High Organics

DEPTH BELOW	PID		
GRADE AND	READING	USCS	SOIL DESCRIPTION
LITHOLOGY	(ppm)		
0			
-2 -4	0.0		Approximately 2 inches asphalt. Brown fine grained silty soil with rocks.
	0.0	SM	Brown fine grained silty soil with rocks.
-10 -12	1.7	SM	Brown fine grained silty soil with rocks.
-14			End of boring
-16			
-18			
-20			
-22			
-24			
-26			
-28			
-30			
-32			
-34			