NYSDEC BROWNFIELD CLEANUP PROGRAM APPLICATION

FORMER NUHART EAST SITE 22-32 CLAY STREET & 67-93 DUPONT STREET BLOCK 2487 LOTS 17, 18, 20, 21 AND 57 BROOKLYN, NEW YORK, 11222

PREPARED FOR DUPONT STREET 1 LLC 520 MADISON AVENUE, SUITE 3501 NEW YORK, NY 10022

Contents

BCP APPLICATION	7
ATTACHMENT A Section I: Requestor Information	
ATTACHMENT B Section II: Project Description	5
ATTACHMENT C Section III: Property's Environmental History	8
ATTACHMENT D Section IV: Property Information	18
ATTACHMENT E Section VI: Current Property Owner/Operator Information – if not a Requestor	23
ATTACHMENT F Section VII: Requestor Eligibility Information	25
ATTACHMENT G Section VII: Property Eligibility Information	27
ATTACHMENT H Section IX: Contact List Information and Acknowledgement from Repositories	29
ATTACHMENT I Section X: Land Use Factors	36
ATTACHMENT I Sunnlemental Questions Section: Sites Seeking Tangible Property Credits in NYC	30

BCP APPLICATION

BROWNFIELD CLEANUP PROGRAM (BCP) APPLICATION FORM

Brownfield Cleanup Agreement, or property that could affect an eligibil Such application must be submitted	uest major changes to the description on "BCA" (e.g., adding a significant amousity determination due to contamination d and processed in the same manner a ent period. Is this an application to an	nt of new property, or adding levels or intended land use). s the original application,	
Yes ✓ No	If yes, provide existing site r	number: C224287	
PART A (note: application is sepa	arated into Parts A and B for DEC rev		
Section I. Requestor Information See Attachment A	on - See Instructions for Further Gui	dance DEC USE ONLY BCP SITE #:	
NAME Dupont Street 1 LLC			
ADDRESS 520 Madison Aven	ue, Suite 3501		
CITY/TOWN New York	ZIP CODE 1	10022	
PHONE (646) 747-2235	FAX N/A	E-MAIL zkadden@madisonrealtycapital.com	
 Is the requestor authorized to conduct business in New York State (NYS)? ✓ Yes ☐ No If the requestor is a Corporation, LLC, LLP or other entity requiring authorization from the NYS Department of State to conduct business in NYS, the requestor's name must appear, exactly as given above, in the NYS Department of State's Corporation & Business Entity Database. A print-out of entity information from the database must be submitted to the New York State Department of Environmental Conservation (DEC) with the application to document that the requestor is authorized to do business in NYS. Please note: If the requestor is an LLC, the members/owners names need to be provided on a separate attachment. Do all individuals that will be certifying documents meet the requirements detailed below? ✓ Yes ☐ No Individuals that will be certifying BCP documents, as well as their employers, meet the requirements of Section 1.5 of DER-10: Technical Guidance for Site Investigation and Remediation and Article 145 of New York State Education Law. Documents that are not properly certified will be not approved under the BCP. 			
Section II. Project Description	See Attachment B		
1. What stage is the project starti	ing at? Investigation	Remediation	
at a minimum is required to be Analysis and Remedial Work	ed to start at the remediation stage, a Fe attached, resulting in a 30-day public Plan are also attached (see DER-10 / 7 n for further guidance) then a 45-day pu	comment period. If an Alternatives Fechnical Guidance for Site	
2. If a final RIR is included, pleas (ECL) Article 27-1415(2):	se verify it meets the requirements of E	nvironmental Conservation Law	
` ' _	ion of the overall development project,	including:	
the date that the remedial	program is to start; and	-	
the date the Certificate of	Completion is anticipated.		

Section III. Property's Environmental History See Attachment C			
All applications must include an Investigation Report (per ECL 27-1407(1)). The report must be sufficient to establish that the site requires remediation and contamination of environmental media on the site above applicable Standards, Criteria and Guidance (SCGs) based on the reasonably anticipated use of the property. To the extent that existing information/studies/reports are available to the requestor, please attach the following (<i>please submit the information requested in this section in electronic format only</i>): 1. Reports: an example of an Investigation Report is a Phase II Environmental Site Assessment report prepared in accordance with the latest American Society for Testing and Materials standard (ASTM E1903). Please submit a separate electronic copy of each report in Portable Document Format (PDF). Please do not submit paper copies of supporting documents.			
		ANTS AND THE MEDIA WHICH D BE REFERENCED AND COPI	
Contaminant Category	Soil	Groundwater	Soil Gas
Petroleum	X	X	Х
Chlorinated Solvents		X	X
Other VOCs			
SVOCs	X		
Metals	X		
Pesticides			
PCBs			
Other*			
*Please describe:			
3. FOR EACH IMPACTED MEDIUM INDICATED ABOVE, INCLUDE A SITE DRAWING INDICATING: SAMPLE LOCATION DATE OF SAMPLING EVENT KEY CONTAMINANTS AND CONCENTRATION DETECTED FOR SOIL, HIGHLIGHT IF ABOVE REASONABLY ANTICIPATED USE FOR GROUNDWATER, HIGHLIGHT EXCEEDANCES OF 6NYCRR PART 703.5 FOR SOIL GAS/ SOIL VAPOR/ INDOOR AIR, HIGHLIGHT IF ABOVE MITIGATE LEVELS ON THE NEW YORK STATE DEPARTMENT OF HEALTH MATRIX THESE DRAWINGS ARE TO BE REPRESENTATIVE OF ALL DATA BEING RELIED UPON TO MAKE THE CASE THAT THE SITE IS IN NEED OF REMEDIATION UNDER THE BCP. DRAWINGS SHOULD NOT BE BIGGER THAN 11" X 17". THESE DRAWINGS SHOULD BE PREPARED IN ACCORDANCE WITH ANY GUIDANCE PROVIDED. ARE THE REQUIRED MAPS INCLUDED WITH THE APPLICATION?* (*answering No will result in an incomplete application) 4. INDICATE PAST LAND USES (CHECK ALL THAT APPLY):			
☐ Coal Gas Manufacturing☐ Salvage Yard☐ Landfill☐	Bulk Plant Pip	ricultural Co-op Dry Clear peline Service S ectroplating Unknowr	Station

Other:_

Section IV. Property Information - See Instruction	s for Fu	rther Guida	nce See Atta	chment D	
PROPOSED SITE NAME Former NuHart East Site	Э				
ADDRESS/LOCATION 22-32 Clay Street and 67	-93 Du	pont Stree	t		
CITY/TOWN Brooklyn ZIP C	ODE 11	222			
MUNICIPALITY(IF MORE THAN ONE, LIST ALL): Brook	klyn				
COUNTY Kings	S	ITE SIZE (AC	RES) 1.124	ļ	
LATITUDE (degrees/minutes/seconds)	LONG	ITUDE (degre	es/minutes/se	econds)	
40 ° 44 ' 9.8 "	73	•	57		25.98
Complete tax map information for all tax parcels included proposed, please indicate as such by inserting "P/O" in finclude the acreage for that portion of the tax parcel in the PER THE APPLICATION INSTRUCTIONS.	ront of th	e lot number	in the approp	riate box belo	ow, and only
Parcel Address		Section No.	Block No.	Lot No.	Acreage
Multiple Lots - See Attachment D					
Do the proposed site boundaries correspond to ta If no, please attach an accurate map of the propse		etes and bo	unds?	√ Yes	No
2. Is the required property map attached to the application? (application will not be processed without map) ✓ Yes ✓ No					
3. Is the property within a designated Environmental Zone (En-zone) pursuant to Tax Law 21(b)(6)? (See DEC's website for more information) Yes ☐ No ✓					
If yes, identify census tract :					
Percentage of property in En-zone (check one):	V 0-49	%	50-99%	100%)
4. Is this application one of multiple applications for a large development project, where the development project spans more than 25 acres (see additional criteria in BCP application instructions)? ☐ Yes ✓ No					
If yes, identify name of properties (and site number applications:	ers if ava	ilable) in rela	ated BCP		
5. Is the contamination from groundwater or soil vapor subject to the present application?	or solely	emanating f	rom propert	y other than	
 Has the property previously been remediated purs ECL Article 56, or Article 12 of Navigation Law? If yes, attach relevant supporting documentation. 	suant to ⁻	Titles 9, 13, o	or 14 of ECL	Article 27, Type	
7. Are there any lands under water? If yes, these lands should be clearly delineated on	the site	map.		∐Y∈	es 🗸 No

Section IV. Property Information (continued)			
8.	Are there any easements or existing rights of way that would preclude remediation in these areas? If yes, identify here and attach appropriate information.		
	Easement/Right-of-way Holder Description		
9.	List of Permits issued by the DEC or USEPA Relating to the Proposed Site (type here or attach information)		
	<u>Type</u> <u>Issuing Agency</u> <u>Description</u>		
No	permits identified		
10.	Property Description and Environmental Assessment – please refer to application instructions for the proper format of <u>each</u> narrative requested.		
	Are the Property Description and Environmental Assessment narratives included in the prescribed format ?		
	Note: Questions 11 through 13 only pertain to sites located within the five counties comprising New York City		
11	Is the requestor seeking a determination that the site is eligible for tangible property tax Yes No credits?		
	If yes, requestor must answer questions on the supplement at the end of this form.		
12	Is the Requestor now, or will the Requestor in the future, seek a determination that the property is Upside Down?		
13	If you have answered Yes to Question 12, above, is an independent appraisal of the value of the property, as of the date of application, prepared under the hypothetical condition that the property is not contaminated, included with the application?		
p: a	OTE: If a tangible property tax credit determination is not being requested in the application to articipate in the BCP, the applicant may seek this determination at any time before issuance of certificate of completion by using the BCP Amendment Application, except for sites seeking ligibility under the underutilized category.		
If a	ny changes to Section IV are required prior to application approval, a new page, initialed by each requestor,		
mu	st be submitted.		
Initi	als of each Requestor:		

BCP application - PART B (note: application is separated into Parts A and B for DEC review purposes) Section V. Additional Requestor Information **BCP SITE NAME:** See Instructions for Further Guidance BCP SITE #: NAME OF REQUESTOR'S AUTHORIZED REPRESENTATIVE David Speiser ADDRESS 520 Madison Avenue, Suite 3501 CITY/TOWN New York **ZIP CODE 10022** FAX N/A PHONE (646) 747-2235 E-MAIL dspeiser@madisonrealtycapital.com NAME OF REQUESTOR'S CONSULTANT Haley & Aldrich of New York - James M. Bellew ADDRESS 235 West 35th Street, 16th Floor CITY/TOWN New York **ZIP CODE 10123** FAX N/A PHONE (646) 277-5686 E-MAIL jbellew@haleyaldrich.com NAME OF REQUESTOR'S ATTORNEY Gibbons P.C. - David J. Freeman ADDRESS One Pennsylvania Plaza, 37th Floor **ZIP CODE 10119** CITY/TOWN New York E-MAIL dfreeman@gibbonslaw.com PHONE (212) 613-2079 FAX Section VI. Current Property Owner/Operator Information – if not a Requestor See Attachment E OWNERSHIP START DATE: 5/19/2014 CURRENT OWNER'S NAME Dupont Street Developers LLC C/O: J Developments, 87-10 Queens Boulevard **ADDRESS** CITY/TOWN Elmhurst **ZIP CODE 11373** PHONE **917-273-8657** FAX N/A E-MAIL statedesignsny@gmail.com CURRENT OPERATOR'S NAME N/A **ADDRESS** CITY/TOWN ZIP CODE FAX E-MAIL **PHONE** PROVIDE A LIST OF PREVIOUS PROPERTY OWNERS AND OPERATORS WITH NAMES, LAST KNOWN ADDRESSES AND TELEPHONE NUMBERS AS AN ATTACHMENT. DESCRIBE REQUESTOR'S RELATIONSHIP. TO EACH PREVIOUS OWNER AND OPERATOR, INCLUDING ANY RELATIONSHIP BETWEEN REQUESTOR'S CORPORATE MEMBERS AND PREVIOUS OWNER AND OPERATOR. IF NO RELATIONSHIP, PUT "NONE". IF REQUESTOR IS NOT THE CURRENT OWNER, DESCRIBE REQUESTOR'S RELATIONSHIP TO THE CURRENT OWNER, INCLUDING ANY RELATIONSHIP BETWEEN REQUESTOR'S CORPORATE MEMBERS AND THE **CURRENT OWNER.** See Attachment F Section VII. Requestor Eligibility Information (Please refer to ECL § 27-1407) If answering "yes" to any of the following questions, please provide an explanation as an attachment. 1. Are any enforcement actions pending against the requestor regarding this site? 2. Is the requestor subject to an existing order for the investigation, removal or remediation of contamination at the site? 3. Is the requestor subject to an outstanding claim by the Spill Fund for this site? Any questions regarding whether a party is subject to a spill claim should be discussed with the Spill Fund Administrator. Yes No

Se	ction VII. Requestor Eligibility Information (conti	nued) See Attachment F
5. 6. 7. 8.	any provision of the ECL Article 27; ii) any order or of Title 14; or iv) any similar statute, regulation of the sexplanation on a separate attachment. Has the requestor previously been denied entry to the application, such as name, address, DEC assigned relevant information. Has the requestor been found in a civil proceeding that act involving the handling, storing, treating, disposing Has the requestor been convicted of a criminal offer or transporting of contaminants; or ii) that involves a against public administration (as that term is used in laws of any state? Has the requestor knowingly falsified statements or jurisdiction of DEC, or submitted a false statement or connection with any document or application submittle the requestor an individual or entity of the type se failed to act, and such act or failure to act could be the	tate or federal government? If so, provide an Yes ✓ No ne BCP? If so, include information relative to the site number, the reason for denial, and other Yes ✓ No o have committed a negligent or intentionally tortious g or transporting of contaminants? Yes ✓ No use i) involving the handling, storing, treating, disposing violent felony, fraud, bribery, perjury, theft, or offense Article 195 of the Penal Law) under federal law or the Yes ✓ No concealed material facts in any matter within the r made use of or made a false statement in ted to DEC? Yes ✓ No to forth in ECL 27-1407.9 (f) that committed an act or ne basis for denial of a BCP application? Yes ✓ No cogram under DEC's oversight terminated by DEC or agreement or order?
		HER A PARTICIPANT OR VOLUNTEER IN ACCORDANCE
	TH ECL 27-1405 (1) BY CHECKING ONE OF THE BOXE	
the dis res aris	PARTICIPANT requestor who either 1) was the owner of the site at the time of the disposal of hazardous waste or charge of petroleum or 2) is otherwise a person sponsible for the contamination, unless the liability ses solely as a result of ownership, operation of, or olvement with the site subsequent to the disposal hazardous waste or discharge of petroleum.	A requestor other than a participant, including a requestor whose liability arises solely as a result of ownership, operation of or involvement with the site subsequent to the disposal of hazardous waste or discharge of petroleum. NOTE: By checking this box, a requestor whose liability arises solely as a result of ownership, operation of or involvement with the site certifies that he/she has exercised appropriate care with respect to the hazardous waste found at the facility by taking reasonable steps to: i) stop any continuing discharge; ii) prevent any threatened future release; iii) prevent or limit human, environmental, or natural resource exposure to any previously released hazardous waste.
		If a requestor whose liability arises solely as a result of ownership, operation of or involvement with the site, submit a statement describing why you should be considered a volunteer – be specific as to the appropriate care taken.

Section VII. Requestor Eligibility Information (continued) See Attachment F
Requestor Relationship to Property (check one): ☐ Previous Owner ☐ Current Owner ☑ Potential /Future Purchaser ☐ Other
If requestor is not the current site owner, proof of site access sufficient to complete the remediation must be submitted . Proof must show that the requestor will have access to the property before signing the BCA and throughout the BCP project, including the ability to place an easement on the site Is this proof attached?
√Yes No
Note: a purchase contract does not suffice as proof of access.
Section VIII. Property Eligibility Information - See Instructions for Further Guidance See Attachment G
 Is / was the property, or any portion of the property, listed on the National Priorities List? If yes, please provide relevant information as an attachment. □ Yes ☑ No
2. Is / was the property, or any portion of the property, listed on the NYS Registry of Inactive Hazardous Waste Disposal Sites pursuant to ECL 27-1305? If yes, please provide: Site # Class #
3. Is / was the property subject to a permit under ECL Article 27, Title 9, other than an Interim Status facility? If yes, please provide: Permit type: EPA ID Number: Permit expiration date:
4. If the answer to question 2 or 3 above is yes, is the site owned by a volunteer as defined under ECL 27-1405(1)(b), or under contract to be transferred to a volunteer? Attach any information available to the requestor related to previous owners or operators of the facility or property and their financial viability, including any bankruptcy filing and corporate dissolution documentation.
5. Is the property subject to a cleanup order under Navigation Law Article 12 or ECL Article 17 Title 10? If yes, please provide: Order # ☐Yes ✓ No
6. Is the property subject to a state or federal enforcement action related to hazardous waste or petroleum? If yes, please provide explanation as an attachment. ✓ Yes No
Section IX. Contact List Information See Attachment H
 To be considered complete, the application must include the Brownfield Site Contact List in accordance with DER-23 / Citizen Participation Handbook for Remedial Programs. Please attach, at a minimum, the names and addresses of the following: The chief executive officer and planning board chairperson of each county, city, town and village in which the property is located. Residents, owners, and occupants of the property and properties adjacent to the property. Local news media from which the community typically obtains information. The public water supplier which services the area in which the property is located. Any person who has requested to be placed on the contact list. The administrator of any school or day care facility located on or near the property. The location of a document repository for the project (e.g., local library). If the site is located in a city with a population of one million or more, add the appropriate community board as an additional document repository. In addition, attach a copy of an acknowledgement from each repository indicating that it agrees to act as the document repository for the site.

Section X. Land Use Factors See Attachment I	
1. What is the current municipal zoning designation for the site? M1-2/R6A, MX-8 What uses are allowed by the current zoning? (Check boxes, below) ✓ Residential ✓ Commercial ☐ Industrial If zoning change is imminent, please provide documentation from the appropriate zoning	authority.
 Current Use: ☐ Residential ☐ Commercial ☐ Industrial ✓ Vacant ☐ Recreational (che apply) Attach a summary of current business operations or uses, with an emphasis on ide possible contaminant source areas. If operations or uses have ceased, provide the 	ntifying
3. Reasonably anticipated use Post Remediation: ✓ Residential ✓ Commercial ☐ Industrial that apply) Attach a statement detailing the specific proposed use.	al (check all
If residential, does it qualify as single family housing?	Yes √ No
4. Do current historical and/or recent development patterns support the proposed use?	✓ Yes No
Yes, current development in the area aligns with the anticipated redevelopment plan.	
5. Is the proposed use consistent with applicable zoning laws/maps? Briefly explain below, or attach additional information and documentation if necessary.	✓Yes No
Yes. The proposed development is residential with first floor commercial which is consistent with the property's R6B zoning. See supplemental information for further details.	
6. Is the proposed use consistent with applicable comprehensive community master plans, local waterfront revitalization plans, or other adopted land use plans? Briefly explain below, or attach additional information and documentation if necessary.	√ Yes No
Yes, the proposed redevelopment is consistent with the Greenpoint - Williamsburg Rezoning completed in 2005. See supplemental info for further details.	

XI. Statement of Certification and Signatures		
(By requestor who is an individual)		
If this application is approved, I hererby acknowledge and agree: (1) to execute a Brownfield Cleanup Agreement (BCA) within 60 days of the date of DEC's approval letter; (2) to the general terms and conditions set forth in the <i>DER-32</i> , <i>Brownfield Cleanup Program Applications and Agreements</i> ; and (3) that in the event of a conflict between the general terms and conditions of participation and the terms contained in a site-specific BCA, the terms in the site-specific BCA shall control. Further, I hereby affirm that information provided on this form and its attachments is true and complete to the best of my knowledge and belief. I am aware that any false statement made herein is punishable as a Class A misdemeanor pursuant to section 210.45 of the Penal Law.		
Date: Signature:		
Print Name:		
(By a requestor other than an individual)		
I hereby affirm that I am Authorized Signatory (title) of Dupont Street 1 LLC (entity); that I am authorized by that entity to make this application and execute the Brownfield Cleanup Agreement (BCA) and all subsequent amendments; that this application was prepared by me or under my supervision and direction. If this application is approved, I acknowledge and agree: (1) to execute a BCA within 60 days of the date of DEC's approval letter; (2) to the general terms and conditions set forth in the DER-32, Brownfield Cleanup Program Applications and Agreements; and (3) that in the event of a conflict between the general terms and conditions of participation and the terms contained in a site-specific BCA, the terms in the site-specific BCA shall control. Further, I hereby affirm that information provided on this form and its attachments is true and complete to the best of my knowledge and belief. I am aware that any false statement made herein is punishable as a Class of misdemeanor pursuant to Section 210.45 of the Penal Law. Date: 09.13.21 Signature: Print Name: David Speiser, Authorized Signatory		
Two (2) copies, one paper copy of the application form with original signatures and table of contents, and one complete electronic copy in final, non-fillable Portable Document Format (PDF), must be sent to: Chief, Site Control Section New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, NY 12233-7020		
PLEASE DO NOT SUBMIT PAPER COPIES OF SUPPORTING DOCUMENTS. Please provide a hard copy of ONLY the application form and a table of contents.		
FOR DEC USE ONLY BCP SITE T&A CODE: LEAD OFFICE:		

Supplemental Questions for Sites Seeking Tangible Property Credits in New York City ONLY. Sufficient information to demonstrate that the site meets one or more of the criteria identified in ECL 27 1407(1-a) must be submitted if requestor is seeking this determination.

BCP App Rev 11	Attachment J
----------------	--------------

BCF App Rev 11		
Property is in Bronx, Kings, New York, Queens, or Richmond counties.		✓ Yes □ No
Requestor seeks a determination that the site is eligible for the tangible brownfield redevelopment tax credit.	e property credit co	mponent of the ✓ Yes No
Please answer questions below and provide documentation necess	ary to support ans	swers.
1. Is at least 50% of the site area located within an environmental zone Please see <u>DEC's website</u> for more information.	pursuant to NYS Ta	ax Law 21(b)(6)? ☐ Yes ✓ No
2. Is the property upside down or underutilized as defined below?	Upside Down?	☐ Yes 🗸 No
From ECL 27-1405(31):	Underutilized?	☐ Yes 🗸 No
"Upside down" shall mean a property where the projected and incurred cost of the investigation and remediation which is protective for the anticipated use of the property equals or exceeds seventy-five percent of its independent appraised value, as of the date of submission of the application for participation in the brownfield cleanup program, developed under the hypothetical condition that the property is not contaminated.		
From 6 NYCRR 375-3.2(I) as of August 12, 2016: (Please note: Eligib underutilized category can only be made at the time of application)	ility determination f	or the
(I) "Underutilized" means, as of the date of application, real profifty percent of the permissible floor area of the building or buildings have been used under the applicable base zoning for at least three which zoning has been in effect for at least three years; and (1) the proposed use is at least 75 percent for industrial uses; or (2) at which: (i) the proposed use is at least 75 percent for commercial or commercial or commercial by the proposed development could not take place without substancertified by the municipality in which the site is located; and (iii) one or more of the following conditions exists, as certified by the (a) property tax payments have been in arrears for at least five year application; (b) a building is presently condemned, or presently exhibits docume certified by a professional engineer, which present a public health of (c) there are no structures. "Substantial government assistance" shall mean a substantial loan, land purchase cost exemption or waiver, or tax credit, or some compovernmental entity.	ercial and industrictial government a eapplicant: rs immediately pricented structural depressafety hazard; of grant, land purch	e applicant to application, all uses; ssistance, as for to the eficiencies, as or

Supplemental Questions for Sites Seeking Tangible Property Credits in New York City (continued)
3. If you are seeking a formal determination as to whether your project is eligible for Tangible Property Tax Credits based in whole or in part on its status as an affordable housing project (defined below), you mus attach the regulatory agreement with the appropriate housing agency (typically, these would be with the New York City Department of Housing, Preservation and Development, the New York State Housing Trust Fund Corporation; the New York State Department of Housing and Community Renewal; or the New York State Housing Finance Agency, though other entities may be acceptable pending Department review). Check appropriate box, below:
☐ Project is an Affordable Housing Project - Regulatory Agreement Attached;
Project is Planned as Affordable Housing, But Agreement is Not Yet Available* (*Checking this box will result in a "pending" status. The Regulatory Agreement will need to be provided to the Department and the Brownfield Cleanup Agreement will need to be amended prior to issuance of the CoC in order for a positive determination to be made.);
☐ This is Not an Affordable Housing Project.
From 6 NYCRR 375- 3.2(a) as of August 12, 2016:
(a) "Affordable housing project" means, for purposes of this part, title fourteen of article twenty seven of the environmental conservation law and section twenty-one of the tax law only, a project that is developed for residential use or mixed residential use that must include affordable residential rental units and/or affordable home ownership units.
(1) Affordable residential rental projects under this subdivision must be subject to a federal, state, or local government housing agency's affordable housing program, or a local government's regulatory agreement or legally binding restriction, which defines (i) a percentage of the residential rental units in the affordable housing project to be dedicated to (ii) tenants at a defined maximum percentage of the area median income based on the occupants' households annual gross income.
(2) Affordable home ownership projects under this subdivision must be subject to a federal, state, or local government housing agency's affordable housing program, or a local government's regulatory agreement or legally binding restriction, which sets affordable units aside for home owners at a defined maximum percentage of the area median income.
(3) "Area median income" means, for purposes of this subdivision, the area median income for the primary metropolitan statistical area, or for the county if located outside a metropolitan statistical area, as determined by the United States department of housing and urban development, or its successor, for a family of four, as adjusted for family size.

BCP Application Summary (for DEC use only)											
Site Name: Former NuHart East Site City: Brooklyn		Address: ²²⁻³ nty: Kings	32 Clay Street an	d 67-93 Dupont Street Zip: 11222							
Tax Block & Lot Section (if applicable):	Block:		Lot:								
Requestor Name: Dupont Street 1 L City: New York	LC	Request Zip: 100		520 Madison Avenue, Suite 3501 Email: zkadden@madisonrealtycapital.com							
Requestor's Representative (for billin Name: David Speiser ACity: New York	ng purposes) Address: 520 M		e, Suite 3501 10022	Email: dspeiser@madisonrealtycapital.com							
Requestor's Attorney Name: Gibbons P.C David J. Freeman A City: New York	Address: One F	•	aza, 37th Floor 10119	Email: dfreeman@gibbonslaw.com							
Requestor's Consultant Name: Haley & Aldrich of New York - James M. Bellew A City: New York Percentage claimed within an En-Zone DER Determination: Agree		Vest 35th Stre Zip: √ <50%		Email: jbellew@haleyaldrich.com							
Requestor's Requested Status:		Participar	nt								
DER/OGC Determination: Agr Notes:	ree 🗌 Disa	agree									
For NYC Sites, is the Requestor S	eeking Tangil	ole Property	Credits: 🗸	Yes 🔲 No							
Does Requestor Claim Property is DER/OGC Determination: Agree Notes:	-										
Does Requestor Claim Property in DER/OGC Determination: Agree Notes:											
Does Requestor Claim Affordable DER/OGC Determination: Ag Notes:			s								

BROWNFIELD CLEANUP PROGRAM (BCP) INSTRUCTIONS FOR COMPLETING A BCP APPLICATION

The New York State Department of Environmental Conservation (DEC) strongly encourages all applicants to schedule a pre-application meeting with DEC staff to review the benefits, requirements, and procedures for completing a project in the BCP. Contact your <u>Regional office</u> to schedule a meeting. To add a party to an existing BCP Agreement and/or Application, use the <u>BCP Agreement Amendment Application</u>. See guidance at the end of these instructions regarding the determination of a complete application.

SECTION I

REQUESTOR INFORMATION

Requestor Name

Provide the name of the person(s)/entity requesting participation in the BCP. (If more than one, attach additional sheets with requested information. If an LLC, the members/owners names need to be provided on a separate attachment). The requestor is the person or entity seeking DEC review and approval of the remedial program.

If the requestor is a Corporation, LLC, LLP or other entity requiring authorization from the NYS Department of State to conduct business in NYS, the requestor's name must appear exactly as given in the NYS, the requestor's name must appear exactly as given in the NYS. Department of State's Corporation & Business Entity Database. A print-out of entity information from the database must be submitted to DEC with the application, to document that the requestor is authorized to do business in NYS.

Address, etc.

Provide the requestor's mailing address, telephone number; fax number and e-mail address.

Document Certification

All documents, which are prepared in final form for submission to DEC for approval, are to be prepared and certified in accordance with Section 1.5 of <u>DER-10</u>. Persons preparing and certifying the various work plans and reports identified in Section 1.5 include:

- New York State licensed professional engineers (PEs), as defined at 6 NYCRR 375-1.2(aj) and paragraph 1.3(b)47. Engineering documents must be certified by a PE with current license and registration for work that was done by them or those under their direct supervision. The firm by which the PE is employed must also be authorized to practice engineering in New York State;
- qualified environmental professionals as defined at 6 NYCRR 375-1.2(ak) and DER-10 paragraph 1.3(b)49;
- remedial parties, as defined at 6 NYCRR 375-1.2(ao) and DER-10 paragraph 1.3(b)60; or
- site owners, which are the owners of the property comprising the site at the time of the certification.

SECTION II PROJECT DESCRIPTION

As a <u>separate attachment</u>, provide complete and detailed information about the project, including the purpose of the project, the date the remedial program is to start, and the date the Certificate of Completion is anticipated..

SECTION III PROPERTY'S ENVIRONMENTAL HISTORY

For all sites, an investigation report is required that is sufficient to demonstrate the site requires remediation in order to meet the requirements of the program, and that the site is a brownfield site at which contaminants are present at levels exceeding the soil cleanup objectives or other health-based or environmental standards, criteria or guidance adopted by DEC that are applicable based on the reasonably anticipated use of the property, in accordance with applicable regulations. Required data includes site drawings requested in Section III, #3 of the BCP application form.

SECTION IV PROPERTY INFORMATION

Proposed Site Name

Provide a name for the proposed site. The name could be an owner's name, current or historical operations (i.e. ABC Furniture) or the general location of the property. Consider whether the property is known by DEC by a particular name, and if so, use that name.

Site Address

Provide a street address, city/town, zip code, and each municipality and county in which the site is located. .

Site Size

Provide the approximate acreage of the site.

GIS Information

Provide the latitude and longitude for the approximate center of the property. Show the latitude and longitude in degrees, minutes and seconds.

Tax Parcel Information

Provide the tax parcel address/section/block/lot information and map. Tax map information may be obtained from the tax assessor's office for all tax parcels that are included in the property boundaries. Attach a county tax map with identifier numbers, along with any figures needed to show the location and boundaries of the property. Include a USGS 7.5 minute quad map on which the property appears and clearly indicate the proposed site's location.

1. Tax Map Boundaries

State whether the boundaries of the site correspond to the tax map boundaries. If no, a metes and bounds description of the property must be attached. The site boundary can occupy less than a tax lot or encompass portions of one or more tax lots and may be larger or smaller than the overall redevelopment/ reuse project area. A site survey with metes and bounds will be required to establish the site boundaries before the Certificate of Completion can be issued.

2. Map

Provide a property base map(s) of sufficient detail, clarity and accuracy to show the following: i) map scale, north arrow orientation, date, and location of the property with respect to adjacent streets and roadways; and ii) proposed brownfield property boundary lines, with adjacent property owners clearly identified.

SECTION IV (continued)

3. En-zone

Is any part of the property in an En-zone? If so, what percentage? For information on En-zones, please see DEC's website.

4. Multiple applications

Generally, only one application can be submitted, and one BCA executed, for a development project. In limited circumstances, the DEC may consider multiple applications/BCAs for a development project where 1) the development project spans more than 25 acres; 2) the approach does not negatively impact the remedial program, including timing, ability to appropriately address areas of concern, and management of off-site concerns; and 3) the approach is not advanced to increase the value of future tax credits (i.e., circumvent the tax credit caps provided under New York State Tax Law Section 21).

10. Property Description Narrative

Provide a property description in the format provided below. Each section should be no more than one paragraph long.

Location

Example: "The XYZ Site is located in an {urban, suburban, rural} area." {Add reference points if address is unspecific; e.g., "The site is approximately 3.5 miles east of the intersection of County Route 55 and Industrial Road."}

Site Features:

Example: "The main site features include several large abandoned buildings surrounded by former parking areas and roadways. About one quarter of the site area is wooded. Little Creek passes through the northwest corner."

<u>Current Zoning and Land Use</u>: (Ensure the current zoning is identified.)

Example: "The site is currently inactive, and is zoned for commercial use. The surrounding parcels are currently used for a combination of commercial, light industrial, and utility right-of-ways. The nearest residential area is 0.3 miles east on Route 55."

<u>Past Use of the Site:</u> include source(s) of contamination and remedial measures (site characterizations, investigations, Interim Remedial Measures, etc.) completed outside of the current remedial program (e.g., work under a petroleum spill incident).

Example: "Until 1992 the site was used for manufacturing wire and wire products (e.g., conduit, insulators) and warehousing. Prior uses that appear to have led to site contamination include metal plating, machining, disposal in a one-acre landfill north of Building 7, and releases of wastewater into a series of dry wells."

When describing the investigations/actions performed outside of the remedial program, include the major chronological remedial events that lead to the site entering a remedial program. The history should include the first involvement by government to address hazardous waste/petroleum disposal. Do not cite reports. Only include remedial activities which were implemented PRIOR to the BCA. Do not describe sampling information.

SECTION IV (continued)

Property Description Narrative (continued)

Site Geology and Hydrogeology:

As appropriate, provide a very brief summary of the main hydrogeological features of the site including depth to water, groundwater flow direction, etc.

Environmental Assessment

The goal of this section is to describe the nature and extent of contamination at the site. When describing the nature of contamination, identify just the primary contaminants of concern (i.e., those that will likely drive remedial decisions/ actions). If there are many contaminants present within a group of contaminants (i.e., volatile organic compounds, semivolatile organic compounds, metals), identify the group(s) and one or two representative contaminants within the group. When addressing the extent of contamination, identify the areas of concern at the site, contaminated media (i.e., soil, groundwater, etc.), relative concentration levels, and a broad-brush description of contaminated areas/depths.

The reader should be able to know if contamination is widespread or limited and if concentrations are marginally or greatly above Standards, Criteria and Guidance (SGCs) for the primary contaminants. If the extent is described qualitatively (e.g., low, medium, high), representative concentrations should be given and compared with appropriate SCGs. For soil contamination, the concentrations should be compared with the soil cleanup objectives (SCOs) for the intended use of the site.

A typical Environmental Assessment would look like the following:

Based upon investigations conducted to date, the primary contaminants of concern for the site include cadmium and trichloroethene (TCE).

Soil - Cadmium is found in shallow soil, mostly near a dry well at the northeast end of the property. TCE is found in deeper soil, predominantly at the north end of the site. Concentrations of cadmium found on site (approximately 5 ppm) slightly exceed the soil cleanup objective (SCO) for unrestricted use (2.5 ppm). Concentrations of TCE found on site (5 ppm to 300 ppm) significantly exceed the soil cleanup objectives for the protection of groundwater (0.47 ppm).

Groundwater - TCE and its associated degradation products are also found in groundwater at the north end of the site, moderately exceeding groundwater standards (typically 5 ppb), with a maximum concentration of 1500 ppb. A moderate amount of TCE from the site has migrated 300 feet down-gradient off-site. The primary contaminant of concern for the off-site area is TCE, which is present at a maximum concentration of 500 ppb, at 10 feet below the groundwater table near Avenue A.

Soil Vapor & Indoor Air - TCE was detected in soil vapor at elevated concentrations and was also detected in indoor air at concentrations up to 1,000 micrograms per cubic meter.

If any changes to Section IV are required prior to application approval, a new page, initialed by each requestor, must be submitted.

SECTION V

ADDITIONAL REQUESTOR INFORMATION

Representative Name, Address, etc.

Provide information for the requestor's authorized representative. This is the person to whom all correspondence, notices, etc. will be sent, and who will be listed as the contact person in the BCA. Invoices will be sent to the representative of Applications determined to be Participants unless another contact name and address is provided with the application.

Consultant and Attorney Name, Address, etc.

Provide requested information.

SECTION VI CURRENT PROPERTY OWNER/OPERATOR INFORMATION (IF NOT A REQUESTOR)

Owner Name, Address, etc.

Provide requested information of the current owner of the property. List <u>all</u> parties holding an interest in the Property and, if the Requestor is not the current owner, describe the Requestor's relationship to the current owner.

Operator Name, Address, etc.

Provide requested information of the current operator (if different from the requestor or owner).

Provide a list of previous property owners and operators with names, last known addresses, telephone numbers and the Requestor's relationship to each owner and operator as a separate attachment

SECTION VII REQUESTOR ELIGIBILITY INFORMATION

As a <u>separate attachment</u>, provide complete and detailed information in response to any eligibility questions answered in the affirmative. It is permissible to reference specific sections of existing property reports; however, it is requested that such information be summarized. For properties with multiple addresses or tax parcels, please include this information for each address or tax parcel.

SECTION VIII PROPERTY ELIGIBILITY INFORMATION

As a <u>separate attachment</u>, provide complete and detailed information in response to the following eligibility questions answered in the affirmative. It is permissible to reference specific sections of existing property reports; however, it is requested that that information be summarized.

1. CERCLA / NPL Listing

Has any portion of the property ever been listed on the National Priorities List (NPL) established under CERCLA? If so, provide relevant information.

2. Registry Listing

Has any portion of the property ever been listed on the New York State Registry of Inactive Hazardous Waste Disposal Sites established under ECL 27-1305? If so, please provide the site number and classification. See the Division of Environmental Remediation (DER) website for a database of sites with classifications.

3. RCRA Listing

Does the property have a Resource Conservation and Recovery Act (RCRA) TSDF Permit in accordance with the ECL 27-0900 *et seq*? If so, please provide the EPA Identification Number, the date the permit was issued, and its expiration date. Note: for purposes of this application, interim status facilities are not deemed to be subject to a RCRA permit.

4. Registry / RCRA sites owned by volunteers

If the answer to question 2 or 3 above is yes, is the site owned by a volunteer as defined under ECL 27-1405(1)(b), or under contract to be transferred to a volunteer? Attach any information available to the requestor related to previous owners or operators of the facility or property and their financial viability, including any bankruptcy filing and corporate dissolution documentation.

SECTION VIII (continued)

5. Existing Order

Is the property subject to an order for cleanup under Article 12 of the Navigation Law or Article 17 Title 10 of the ECL? If so, please provide information on an attachment. Note: if the property is subject to a stipulation agreement, relevant information should be provided; however, property will not be deemed ineligible solely on the basis of the stipulation agreement.

6. Enforcement Action Pending

Is the property subject to an enforcement action under Article 27, Titles 7 or 9 of the ECL or subject to any other ongoing state or federal enforcement action related to the contamination which is at or emanating from the property? If so, please provide information on an attachment.

SECTION IX CONTACT LIST INFORMATION

Provide the names and addresses of the parties on the Site Contact List (SCL) and a letter from the repository acknowledging agreement to act as the document repository for the proposed BCP project.

SECTION X LAND USE FACTORS

In addition to eligibility information, site history, and environmental data/reports, the application requires information regarding the current, intended and reasonably anticipated future land use.

- 1. This information consists of responses to the "land use" factors to be considered relative to the "Land Use" section of the BCP application. The information will be used to determine the appropriate land use in conjunction with the investigation data provided, in order to establish eligibility for the site based on the definition of a "brownfield site" pursuant to ECL 27-1405(2).
- 2. This land use information will be used by DEC, in addition to all other relevant information provided, to determine whether the proposed use is consistent with the currently identified, intended and reasonably anticipated future land use of the site at this stage. Further, this land use finding is subject to information regarding contamination at the site or other information which could result in the need for a change in this determination being borne out during the remedial investigation.

SECTION XI SIGNATURE PAGE

The Requestor must sign the application, or designate a representative who can sign. The requestor's consultant or attorney cannot sign the application. If there are multiple parties applying, then each must sign a signature page. If the requestor is a Corporation, LLC, LLP or other entity requiring authorization from the NYS Department of State to conduct business in NYS, the entity's name must appear exactly as given in the NYS Department of State's Corporation & Business Entity Database.

DETERMINATION OF A COMPLETE APPLICATION

- 1. The first step in the application review and approval process is an evaluation to determine if the application is complete. To help ensure that the application is determined complete, requestors should review the list of common application deficiencies and carefully read these instructions.
- 2. DEC will send a notification to the requestor within 30 calendar days of receiving the application, indicating whether such application is complete or incomplete.
- 3. An application must include the following information relative to the site identified by the application, necessary for making an eligibility determination, or it will be deemed incomplete. (**Please note:** the application *as a whole* requires more than the information outlined below to be determined complete). The application must include:
 - a. for all sites, an investigation report sufficient to demonstrate the site requires remediation in order to meet the requirements of the program, and that the site is a brownfield site at which contaminants are present at levels exceeding the soil cleanup objectives or other health-based or environmental standards, criteria or guidance adopted by DEC that are applicable based on the reasonably anticipated use of the property, in accordance with applicable regulations. Required data includes site drawings requested in Section III, #3 of the BCP application form.
 - b. for those sites described below, documentation relative to the volunteer status of all requestors, as well as information on previous owners or operators that may be considered responsible parties and their ability to fund remediation of the site. This documentation is required for:
 - i. real property listed in the registry of inactive hazardous waste disposal sites as a class 2 site, which may be eligible provided that DEC has not identified any responsible party for that property having the ability to pay for the investigation or cleanup of the property prior to the site being accepted into the BCP; or
 - ii. real property that was a hazardous waste treatment, storage or disposal facility having interim status pursuant to the Resource Conservation and Recovery Act (RCRA) program, which may be eligible provided that DEC has not identified any responsible party for that property having the ability to pay for the investigation or cleanup of the property prior to the site being accepted into the BCP.
 - c. for sites located within the five counties comprising New York City, in addition to (a) and if applicable (b) above, if the application is seeking a determination that the site is eligible for tangible property tax credits, sufficient information to demonstrate that the site meets one or more of the criteria identified in ECL 27 1407(1-a). If this determination is not being requested in the application to participate in the BCP, the applicant may seek this determination at any time before issuance of a certificate of completion, using the BCP Amendment Application, except for sites seeking eligibility under the underutilized category.
 - d. for sites previously remediated pursuant to Titles 9, 13, or 14 of ECL Article 27, Title 5 of ECL Article 56, or Article 12 of Navigation Law, relevant documentation of this remediation.

DETERMINATION OF A COMPLETE APPLICATION (continued)

- 4. If the application is found to be incomplete:
 - a. the requestor will be notified via email or phone call regarding minor deficiencies. The requestor must submit information correcting the deficiency to DEC within the 30-day review time frame; or
 - b. the requestor will receive a formal Letter of Incomplete Application (LOI) if an application is substantially deficient, if the information needed to make an eligibility determination identified in #4 above is missing or found to be incomplete, or if a response to a minor deficiency is not received within the 30-day period. The LOI will detail all of the missing information and request submission of the information. If the information is not submitted within 30 days from the date of the LOI, the application will be deemed withdrawn. In this case, the requestor may resubmit the application without prejudice.
- 5. If the application is determined to be complete, DEC will send a Letter of Complete Application (LOC) that includes the dates of the public comment period. The LOC will:
 - a. include an approved public notice to be sent to all parties on the Contact List included with the application;
 - b. provide instructions for publishing the public notice in the newspaper on the date specified in the letter, and instructions for mailing the notice to the Contact List;
 - c. identify the need for a certification of mailing form to be returned to DEC along with proof of publication documentation; and
 - d. specify the deadline for publication of the newspaper notice, which must coincide with, or occur before, the date of publication in the Environmental Notice Bulletin (ENB).
 - i. DEC will send a notice of the application to the ENB. As the ENB is only published on Wednesdays, DEC must submit the notice by the Wednesday before it is to appear in the ENB.
 - ii. The mailing to parties on the Contact List must be completed no later than the Tuesday prior to ENB publication. If the mailings, newspaper notice and ENB notice are not completed within the time-frames established by the LOC, the public comment period on the application will be extended to insure that there will be the required comment period.
 - iii. Marketing literature or brochures are prohibited from being included in mailings to the Contact List.

ATTACHMENT A

Section I: Requestor Information

SECTION I: REQUESTOR INFORMATION

The application requestor is Dupont Street 1 LLC. David Speiser is an authorized signatory for Dupont Street 1 LLC.

The Requestor is a secured creditor of the current owner and in cooperation with the current owner is taking steps to acquire the property and upon consummation of the contemplated transaction will be the owner of the real property located at 22-32 Clay Street & 67-93 Dupont Street, Block 2487, Lots 17, 18, 20, 21 and 57, Brooklyn, New York comprising the Site, and has full access to comply with the obligations of the Brownfield Cleanup Program (BCP). The current Owner is Dupont Street Developers LLC. The contact information for the Requestor and current owner is:

Requestor: Dupont Street 1 LLC

520 Madison Avenue, 3501 New York, New York 10022 Phone: 646-747-2235

Fax: N/A Contacts:

Brian Shatz (Manager) – <u>bshatz@madisonrealtycapital.com</u>
Joshua Zegen (Manager) – <u>izegen@madisonrealtycapital.com</u>
David Speiser (Authorized Signatory) - <u>dspeiser@madisonrealtycapital.com</u>
Zachary Kadden (Owner Representative) – <u>zkadden@madisonrealtycapital.com</u>

Owner: Dupont Street Developers LLC

87-10 Queens Boulevard Elmhurst, New York 11211 Phone: (917) 273-8657

Fax: N/A

Bo Jin Zhu (Owner) – bojinzhu@gmail.com

Richard Guishard (Owner's Representative) - statedesignsny@gmail.com

A printout of the entity information from the NYS Department of state's Corporation & Business Entity Database for Dupont Street 1 LLC is included in this attachment. Documentation for the sole managers and requestor's structure is also included in this attachment.

All documents will be certified by Haley & Aldrich of New York and/or Dupont Street 1 LLC in accordance with DER-10 Section 1.5.

6/23/2021 Public Inquiry

June 22, 2021 | 1:36 pm

Entity Details

ENTITY NAME:

DUPONT STREET 1 LLC

COVID-19 Updates

The COVID-19 vaccine is here. It is safe, effective and free. Walk in to get vaccinated at sites across the state.

Continue to mask up and stay distant where directed.

GET THE FACTS >

Department of State Division of Corporations

Entity Information

DOS ID:

5598483

Return to Results

Return to Search

	FICTITIOUS NAME:
ENTITY TYPE:	DURATION DATE/LATEST DATE OF DISSOLUTION:
FOREIGN LIMITED LIABILITY COMPANY	
SECTIONOF LAW:	ENTITY STATUS:
802 LLC - LIMITED LIABILITY COMPANY LAW	Active
DATE OF INITIAL DOS FILING: 08/05/2019	REASON FOR STATUS:
EFFECTIVE DATE INITIAL FILING: 08/05/2019	INACTIVE DATE:
FOREIGN FORMATION DATE: 07/20/2017	STATEMENT STATUS: CURRENT
COUNTY: New York	NEXT STATEMENT DUE DATE: 08/31/2021
JURISDICTION:	NFP CATEGORY:
Delaware, United States	NIF CATEGORI.
ENTITY DISPLAY NAME HISTORY FILING HIST	FORY MERGER HISTORY ASSUMED NAME HISTORY
Service of Process Name and Address	
Name: CTCORPORATION SYSTEM	
Address: 28 LIBERTY STREET, NEW YORK, NY, United States	- 4000F
	s, 10005
	s, 10005
Chief Executive Officer's Name and Address	s, 10005
	s, 10005
Chief Executive Officer's Name and Address Name:	s, 10005
	s, 10005
Name:	s, 10005
Name: Address:	s, 10005
Name:	s, 10005
Name: Address:	s, 10005
Name: Address: Principal Executive Office or Owner Name and Address	s, 10005
Name: Address: Principal Executive Office or Owner Name and Address Name:	s, 10005
Name: Address: Principal Executive Office or Owner Name and Address Name:	s, 10005
Name: Address: Principal Executive Office or Owner Name and Address Name: Address: Registered Agent Name and Address	s, 10005
Name: Address: Principal Executive Office or Owner Name and Address Name: Address:	s, 10005

6/23/2021 Public Inquiry

Name:		
Address:		
armcorpflag		
Is The Entity A Farm Co	rporation: No	
tock Information		

LIMITED LIABILITY COMPANY AGREEMENT OF DUPONT STREET 1 LLC

A Delaware Limited Liability Company

This LIMITED LIABILITY COMPANY AGREEMENT OF DUPONT STREET 1 LLC, a Delaware limited liability company (the "Company"), dated as of July 20, 2017 (this "Agreement"), is adopted, executed and agreed to by Madison Realty Capital Debt Fund III Holdings LLC, a Delaware limited liability company, as the sole member (the "Member") of the Company.

- **SECTION 1. Formation.** The Company has been organized as a Delaware limited liability company by the filing of a Certificate of Formation (the "<u>Certificate</u>") under and pursuant to the Delaware Limited Liability Company Act (the "<u>Act</u>"). To the extent that the rights or obligations of any Member are different by reason of any provision of this Agreement than they would be in the absence of such provision, this Agreement, to the extent permitted by the Act, shall control.
- **SECTION 2. Purpose and Powers.** The Company is formed for the object and purpose of, and the nature of the business to be conducted and promoted by the Company is, engaging in any lawful act or activity for which limited liability companies may be formed under the Act and engaging in any and all activities necessary, convenient, desirable or incidental to the foregoing. In furtherance of the foregoing, the Company is hereby authorized to form under the laws of the State of Delaware.
- **SECTION 3. Registered Office.** The registered office of the Company required by the Act to be maintained in the State of Delaware shall be the office of the initial registered agent named in the Certificate or such other office (which need not be a place of business of the Company) as the Member may designate from time to time in the manner provided by law. The principal office of the Company shall be at such place as the Member may designate from time to time, which need not be in the State of Delaware, and the Company shall maintain records there. The Company may have such other offices as the Member may designate from time to time.
- **SECTION 4. Registered Agent.** The registered agent of the Company for service of process on the Company in the State of Delaware shall be the initial registered agent named in the Certificate or such other natural person, partnership (whether general or limited), limited liability company, trust, estate, association, corporation, custodian, nominee or any other individual or entity in its own or any representative capacity as the Member may designate from time to time in the manner provided by law.
- **SECTION 5.** No State Law Partnership. The Member intends that the Company not be a partnership (including, without limitation, a limited partnership) or joint venture, and that no Member be a partner or joint venturer of any other Member, for any purposes other than, if applicable federal and state tax purposes, and this Agreement shall not be construed to suggest otherwise. It is the intention of the Member that the Company be disregarded for federal and all relevant state tax purposes and that the activities of the Company be deemed to be activities of the Member for such purposes. The Member acknowledges that if two or more persons or entities hold equity interests in the Company for federal income tax purposes then the Company will be treated as a "partnership" for federal and all relevant state tax purposes and shall make all available elections to be so treated. All provisions of the Company's Certificate of Formation and this Agreement are to be construed so as to preserve that tax status under those circumstances.
- **SECTION 6.** Admission of Member. Simultaneously with the execution and delivery of this Agreement and the filing of the Certificate of Formation with the Office of the Secretary of State of the State of Delaware, Madison Realty Capital Debt Fund III Holdings LLC is admitted as the sole Member of the Company in respect of the Interest (as hereinafter defined).

SECTION 7. Interest. The Company shall be authorized to issue a single class of Limited Liability Company Interest (as defined in the Act) (the "Interest") including any and all benefits to which the holder of such Interest may be entitled in this Agreement, together with all obligations of such person or entity to comply with the terms and provisions of this Agreement.

SECTION 8. Capital. The Member may contribute cash, other assets or property to the Company with respect to its Interests as it shall decide, from time to time.

SECTION 9. Management. The management of the Company shall be vested solely in the Member, who shall have all powers to control and manage the business and affairs of the Company and may exercise all powers of the Company. The Member will have the right to appoint the Manager from time to time. A Manager need not be a Member. The Member hereby appoints Brian Shatz and Joshua Zegen as the Managers of the Company until a successor is appointed and qualified or until such Manager's death, resignation or removal. In addition, Brian Shatz shall be an authorized person within the meaning of the Act to file the Company's Certificate of Formation.

The Company may have employees or agents who are denominated as officers or authorized signatories as the Managers may designate from time to time (the "Officers"). If appointed, the Officers shall be responsible for implementing the decisions of the Managers and for conducting the ordinary and usual business and affairs of the Company. The acts of the Officers shall bind the Company when within the scope of the authority of such Officers.

SECTION 10. Distributions. At such time as the Member shall determine, the Member shall cause the Company to distribute with respect to its Interests any cash, other assets or property held by it which is neither reasonably necessary for the operation of the Company nor otherwise in violation of Section 18-607 or Section 18-804 of the Act. Whenever the Company is to pay any sum to any Member, any amounts that such Member owes to the Company may be deducted from that sum before payment.

SECTION 11. Indemnification and Exculpation. Neither the Members, nor any Manager, employee or agent of the Company nor any employee, representative, agent or Affiliate of the Member (collectively, the "Covered Persons") will, to the fullest extent permitted by law, be liable to the Company or any other Person that is a party to or is otherwise bound by this Agreement for any loss, damage or claim incurred by reason of any act or omission performed or omitted by such Covered Person in good faith on behalf of the Company and in a manner reasonably believed to be within the scope of the authority conferred on such Covered Person by this Agreement, except that a Covered Person will be liable for any such loss, damage or claim incurred by reason of such Covered Person's gross negligence or willful misconduct.

To the fullest extent permitted by applicable law, a Covered Person will be entitled to indemnification from the Company for any loss, damage or claim incurred by such Covered Person by reason of any act or omission performed or omitted by such Covered Person in good faith on behalf of the Company and in a manner reasonably believed to be within the scope of the authority conferred on such Covered Person by this Agreement, except that no Covered Person will be entitled to be indemnified in respect of any loss, damage or claim incurred by such Covered Person by reason of such Covered Person's gross negligence or willful misconduct with respect to such acts or omissions; provided, however, that any indemnity under this Article by the Company will be provided out of and to the extent of Company assets only, and the Members will not have personal liability on account thereof.

SECTION 12. Assignments. The Member may assign all or any part of its Interest at any time (an assignee of such Interest is hereinafter referred to as a "Permitted Transferee"). A Permitted Transferee shall become a substituted Member automatically upon an assignment.

SECTION 13. Distributions Upon Dissolution. Upon the occurrence of an event set forth in Section 13 hereof, the Member shall be entitled to receive, after paying or making reasonable provision for all of the Company's creditors to the extent required by Section 18-804 of the Act, the remaining funds of the Company.

- **SECTION 14. Dissolution.** The Company shall dissolve, and its affairs shall be wound up, upon the earliest to occur of (a) the decision of the Member, or (b) an event of dissolution of the Company under the Act; provided, however, that ninety (90) days following any event terminating the continued membership of the Member, if the Personal Representative (as defined in the Act) of the Member agrees in writing to continue the Company and to admit itself or some other Person as a member of the Company effective as of the date of the occurrence of the event that terminated the continued membership of the Member, then the Company shall not be dissolved and its affairs shall not be wound up.
- **SECTION 15.** Limited Liability. The Member shall have no liability for the obligations of the Company, except to the extent required by the Act.
- **SECTION 16. Amendment.** This Agreement may be amended only in a writing signed by the Member.
- **SECTION 17. Governing Law.** THIS AGREEMENT SHALL BE GOVERNED BY AND CONSTRUED UNDER THE LAWS OF THE STATE OF DELAWARE, EXCLUDING ANY CONFLICTS OF LAWS, RULES OR PRINCIPLES THAT MIGHT REFER THE GOVERNANCE OR CONSTRUCTION OF THIS AGREEMENT TO THE LAW OF ANOTHER JURISDICTION.
- **SECTION 18.** Severability. Except as otherwise provided in the succeeding sentence, every term and provision of this Agreement is intended to be severable, and if any term or provision of this Agreement is illegal or invalid for any reason whatsoever, such illegality or invalidity shall not affect the legality or validity of the remainder of this Agreement. The preceding sentence shall be of no force or effect if the consequence of enforcing the remainder of this Agreement without such illegal or invalid term or provision would be to cause any party to lose the benefit of its economic bargain.
- **SECTION 19. Counterparts.** This Agreement may be executed in separate counterparts (including by manual telecopied signature pages), each of which shall be an original and all of which taken together shall constitute one and the same agreement.
- **SECTION 20. Further Assurances.** The parties shall execute and deliver all documents, provide all information, and take or refrain from taking such actions as may be reasonably necessary or appropriate to achieve the purposes of this Agreement.
- **SECTION 21. The Entire Agreement.** Except as otherwise expressly set forth herein, this Agreement embodies the complete agreement and understanding among the parties hereto with respect to the subject matter hereof and supersedes and preempts any prior understandings, agreements or representations by or among the parties, written or oral, which may have related to the subject matter hereof in any way.
- **SECTION 22. Successors and Assigns.** Except as otherwise provided herein, this Agreement shall bind and inure to the benefit of and be enforceable by the Company and its successors and assigns and the Member and any subsequent holders of Interests and the respective successors and assigns of each of them, so long as they hold any Interests.
- **SECTION 23. Delivery by Facsimile/Electronic Mail.** This Agreement and any amendments hereto, to the extent signed and delivered by means of a facsimile machine or by electronic mail, shall be treated in all manner and respects as an original contract and shall be considered to have the same binding legal effect as if it were the original signed version thereof delivered in person. At the request of any party hereto, each other party hereto shall re-execute original forms thereof and deliver them to all other parties. No party hereto shall raise the use of a facsimile machine or electronic mail to deliver a signature or the fact that any signature was transmitted or communicated through the use of facsimile machine or by electronic mail as a defense to the formation of a contract and each such party forever waives any such defense.

* * * *

IN WITNESS WHEREOF, the Member has executed this Agreement as of the date first set forth above.

MEMBER

MADISON REALTY CAPITAL DEBT FUND III HOLDINGS LLC

By: Madison Realty Capital Debt Fund III LP, its director

By: Madison Realty Capital Debt Fund III GP LLC, its General Partner

By:

Name:

Brian Shatz

Title:

Manager

UNANIMOUS WRITTEN CONSENT OF MANAGERS

The undersigned (the "Managers"), being the sole managers of Dupont Street 1 LLC, a Delaware limited liability company, (the "Company"), hereby consent to the following:

WHEREAS, the Managers on behalf of the Company, wish to appoint David Speiser as an Authorized Signatory of the Company;

NOW, THEREFORE, it is hereby:

RESOLVED, David Speiser is hereby appointed as an "Authorized Signatory" of the Company for purposes set forth herein, with full power to take such actions on behalf of the Company and to bind the Company (including by executing documents in such capacity or any other capacity as necessary) as he may deem necessary or appropriate for purposes set forth herein; and be it further

RESOLVED, that David Speiser be, and hereby is, authorized and directed to execute the Brownfield Cleanup Program Application Form attached hereto as <u>Exhibit A</u>, (the "<u>Document</u>") and any and all documents required to be executed in connection therewith, in his capacity as Authorized Signatory and to take such other action as deemed necessary, proper, and advisable in connection therewith; and be it further

RESOLVED, that any actions taken or documents executed by David Speiser on behalf of the Company prior to the date hereof for purposes set forth herein are hereby ratified and approved in all respects; and be it further

RESOLVED, that this Certificate of Written Consent may be executed in several counterparts, each of which shall be deemed an original, but all of which shall constitute one and the same document. A facsimile or .pdf copy of this Certificate of Written Consent shall have the same force and effect as an original.

[SIGNATURE PAGE FOLLOWS]

IN WITNESS WHEREOF, the undersigned have affixed their signatures to this Written Consent as of July 29, 2021.

BRIAN SHATZ

JOSHUA ZEGEN

ATTACHMENT B

Section II: Project Description

SECTION II: PROJECT DESCRIPTION

The Requestor seeks to enter the Brownfield Cleanup Program (BCP) of the New York State Department of Environmental Conservation (NYSDEC) at the remedial investigation stage for the Site located at 22-32 Clay Street & 67-93 Dupont Street, Brooklyn, NY. A Phase I Environmental Site Assessment (Phase I) was completed by Haley & Aldrich of New York in July 2021 for Dupont Street 1 LLC, and a Remedial Investigation Report was completed by Environmental Business Consultants (EBC) in December 2018 for Dupont Realty NY LLC/Dupont Cleanup LLC. The Remedial Investigation Report summarized investigation results from historical reports previously presented to the NYSDEC by Advanced Site Recovery, Ecosystems Strategies Inc., and GZA. The Phase I and Remedial Investigation Reports are included in electronic format.

Upon review of the analytical results of Remedial Investigation Report, the Requestor would like to enter the project into the NYSDEC BCP due to, among other things, elevated levels of chlorinated VOCs, metals, and polyaromatic hydrocarbons (PAHs) in soil. While the Remedial Investigation helped characterize the soil at the Site, no sampling was completed for emerging contaminates and soil vapor. Additionally, due to the presence of LNAPL in the subsurface and the potential of the Lot 17 LNAPL plume comingling with the existing plume on the Registry Site (Superfund Portion) Requestor is, therefore, also submitting for NYSDEC approval a Draft Interim Remedial Measure Work Plan/Remedial Investigation Work Plan along with this BCP Application.

Once NYSDEC approves requestor's BCP Application as being ready for public comment and Requestor's Draft Interim Remedial Measure Work Plan/Remedial Investigation Work Plan as being potentially sufficient to determine the nature and extent of contamination at the Site, Requestor asks that public comment be solicited upon the Draft Supplemental Remedial Investigation/Interim Remedial Measure Work Plan simultaneously with comment upon its BCP Application.

The proposed project also includes a remediation and redevelopment of the Site. While the development plans are conceptual at this time, the anticipated project will consist of an 8-story mixed use commercial retail/residential building containing 480 units with 144 of the units being affordable inclusionary, with a one-level cellar encompassing the entire Site footprint and extending approximately 12 feet below current grade.

Contamination at the Site requires remediation since contaminants exceed the restricted commercial soil cleanup objectives. The BCP will allow the applicant to satisfy this requirement as well as to limit its liability to on-site contamination by virtue of its status as a "Volunteer" under the BCP.

Project Schedule:

It is anticipated that once the Requestor is accepted into the BCP and the Remedial Investigation Work Plan is approved by the Department, the interim remedial measure work plan and remedial investigation will commence within 2-3 months. The design and implementation of the remedy would start within six to 12 months following acceptance of the Remedial Investigation Report by NYSDEC. It is anticipated that the remedial program will be completed by late 2022. A tentative projected schedule is below.

				2021							2022											
Task	Duration	Start	End	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	March	April	May	June	July	Aug	Sept	Oct	Nov	Dec	
Application Execution, Permitting, Interim Remedial Measure, Supplemental Investigation, Remedial																						
Design	240	7/1/2021	4/1/2022																			
Final Remedy Implementation	90	4/1/2022	7/1/2022																			
Preparation of FER and SMP	60	7/1/2022	11/1/2022																			
NYSDEC & NYSDOH Review of FER & SMP	45	9/1/2022	11/15/2022																			
NYSDEC Issues COC	30	11/15/2022	12/15/2022																			

ATTACHMENT C

Section III: Property's Environmental History

SECTION III - PROPERTY'S ENVIRONMENTAL HISTORY

SECTION III.1: Reports

The Phase I Environmental Site Assessment prepared Haley & Aldrich in July 2021 and the Remedial Investigation Report prepared by Environmental Business Consultants (EBC) in August 2018, are included herewith in electronic format in Section III.1.

As found during the Phase I Environmental Site Assessment, the Site was developed since at least 1887 and was used to 1950 for metalworking, manufacture of light fixtures, soap, and water-proofing materials. From 1950 until 2004 the Site and associated manufacturing buildings to the west were used by the NuHart company for the production, storage, and shipping of plastic and vinyl products. Operations ceased in 2004 and the Site buildings have not been used since that time. Today, the subject Site is vacant.

Section III.1: Enclosed Reports

July 2006 Underground Tank Closure Report (ASR), July 2007 Phase II Site Assessment (ASR), August 2007 Phase II Site Investigation (EBC), July 2015 Remedial Investigation Report (ESI), December 2016 Remedial Investigation Report – Lot 57 (GZA), August 2018 Remedial Investigation Report (EBC) and July 2021 Phase I Environmental Site Assessment (Haley & Aldrich)

(Separated reports included on USB)

SECTION III.2: Sampling Data

See Application Section III.2 for overview tables of the sampling data from the 2018 Remedial Investigation Report by EBC. The findings of the Remedial Investigation Report are as follows:

Investigations performed at the Site include the following:

- Underground Tank Closure Report (Advanced Site Restoration, July 2006)
- Phase II Site Assessment (Advanced Site Restoration, March 2007)
- Phase II Investigation (EBC August 2007)
- Remedial Investigation Report (Ecosystems Strategies July 2015)
- Remedial Investigation Report Lot 57 (GZA December 2016)

July 2006 – Underground Storage Tank Closure Report (ASR)

In this report, ASR documents the activities to close-in-place 17 underground storage tanks at the NuHart facility. Five (No. 1-5) of the 17 tanks are located on the proposed brownfield portion of the NuHart Site. The tank details are as follows:

Tank No.	Content	Capacity (gal)
1	No. 2 Fuel Oil	10,000
2	No. 2 Fuel Oil	10,000
3	No. 2 Fuel Oil	1,500
4	Methyl Tert Butyl Ketone	1,500
5	Acetone	1,500

According to the ASR report, all of the tanks were opened, emptied, cleaned, and filled with foam. Documentation is provided as to the disposal of sludge and sediment from the tank bottoms. A copy of the ASR Underground Tank Closure Report is provided in digital form in Section III.1.

March 2007 - Phase II Site Assessment (ASR)

ASR performed a series of investigations and remedial work in 2006 on the entire NuHart property. This work included the installation of 42 soil borings, 17 monitoring wells, and 10 product recovery wells. Of these, 15 borings, 3 monitoring wells, and 1 recovery well were located on the proposed Brownfield Site. Two additional monitoring wells were located in the south side of the Clay Street sidewalk just north of the proposed brownfield Site. Laboratory analysis of the soil samples included VOCs and SVOCs by EPA Method 8260 Stars and EPA Method 8270 Stars, respectively. Six of the monitoring wells contained floating product (liquid phthalate, Hecla oil or fuel oil) and were not sampled. The remaining 11 wells were sampled and analyzed for VOCs and SVOCs by EPA Method 8260 Stars and EPA Method 8270 Stars, respectively. The results from soil borings located on the proposed brownfield portion of the Site identified elevated levels of VOCs in soil in the boring located closest to two of the five fuel oil tanks (TK2, TK3) in this area of the property. Phthalates and/or VOCs and/or SVOCs were reported above groundwater standards in all of the monitoring wells located on-site. VOCs were reported above standards in one of the two off-site monitoring wells located in the sidewalk north of the building.

Free phase fuel oil was present in the recovery well located adjacent to Tanks TK2 and TK3. A copy of the Phase II Site Assessment Report prepared by ASR is provided in digital form in Section III.1.

August 2007 – Phase II Investigation (EBC)

In 2007 EBC performed a Phase II investigation of the entire NuHart Facility including lots which currently comprise the Class 2 portion (Lots 1, 10, 12, 72 and 78) of the NuHart Property and the lots proposed for the Brownfield Site (Lots 17, 18, 20, 21 and 57). The purpose of this investigation was to establish the environmental condition of the entire property under the due diligence period as established under a buyer's purchase agreement with the owner.

The investigation included the collection and analysis of 27 soil samples from 14 soil borings located on the property. Of these, 10 of the borings were located on the proposed Brownfield Site. On average two soil samples were retained for analysis from each boring including one sample from the 0-4 ft interval and a second sample from the 8-12 ft interval. Sample analysis included VOCs (EPA 8260), SVOCs (8270), pesticides/PCBs (EPA 8081/8082) and TAL metals. Although monitoring wells and soil gas implants were also installed during this investigation, they were not sampled as the agreement to purchase the property was terminated.

The report concluded that the results of the investigation identified fill materials with elevated levels of metals and SVOCs present in the upper 5 ft of soil beneath the proposed BCP portion of the property. The presence of metals above the unrestricted soil criteria has important implications for this project. A copy of the Phase II Subsurface Investigation Report prepared by EBC is provided in digital form in Section III.1

July 2015 – Remedial Investigation Report (Ecosystems Strategies)

The RI Investigation performed by Ecosystems on the entire NuHart Site included the installation of 55 soil borings, 22 monitoring wells, and 8 soil vapor implants. The portion of the investigation performed on the proposed Brownfield portion of the Site consisted of 6 soil borings, 2 monitoring wells, and three soil gas implants. Two additional soil borings and monitoring wells were located in the sidewalk just north of the building.

Soil Samples were retained from the 10-15 ft interval from 5 of the 6 soil borings and from both of the monitoring well locations. Soil samples were not submitted from the 6th soil boring. Laboratory analysis was limited to VOCs (all samples) and SVOCs (4 borings, 1 well). The results identified elevated levels (above GWP SCOS) of acetone in two samples and methylnaphthalene in one. The highest concentration of acetone was reported in the boring located closest to the former acetone UST.

Both groundwater samples were analyzed for VOCs, though only the sample from the easternmost location was analyzed for SVOCs. The results identified elevated concentrations of cis-DCE and TCE in the western monitoring well and an elevated level of phthalates in the eastern sample.

Elevated levels of chlorinated compounds including TCA, TCE, and PCE were reported in two of the three soil gas implants. A copy of the RI Report prepared by Ecosystems is provided in digital form in Section III.1.

December 2016 - Remedial Investigation Report Lot 57 (GZA)

In 2016, GZA summarized the data from a Remedial Investigation performed by Roux Associates under the oversight of the NYC Office of Environmental Remediation. The investigation included the collection of 21 soil samples from 8 soil borings, 5 groundwater samples, and 7 soil vapor samples. Laboratory

analysis for the soil and groundwater samples included VOCs (EPA 8260), SVOCs (EPA 8270), pesticides/PCBs (EPA 8081/8082), and TAL metals. Vapor samples were analyzed for VOCs (EPA TO15) The findings of the RI for Lot 57 were as follows: Fill material is present across most of the Site with a thickness that ranges from approximately 1 to 4 feet.

Soil/fill samples collected during the RI contained the SVOCs benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and indeno(1,2,3-c,d)pyrene at concentrations above their respective UUSCOs and RRSCOs in three of the soil borings at shallow levels; chrysene and dibenzo(a,h)anthracene were detected above their respective UUSCOs and RRSCOs from a shallow fill sample collected from 0 to 2 ft bgs; benzo(k)fluoranthene was detected above its UUSCO but below the RRSCO in two samples at 0 to 2 ft bgs; and chrysene was detected above its UUSCO, but below its RRSCO, in one sample at 0-2 ft bgs. The fill also contained elevated levels of metals including barium, lead, copper, mercury, and zinc. Barium and lead were detected above the RRSCOs.

There were no VOCs reported above standards in any of the groundwater samples. Low level detections of SVOCs and metals were reported. Low concentrations of petroleum VOCs and chlorinated solvents were reported in the soil vapor samples. A copy of the RI Report for Lot 57 as prepared by GZA is provided in digital form in Section III.1

See attached analytical results from the August 2018 EBC Remedial Investigation Report (Tables 1 through 12). Please also refer to the attached USB drive containing the full Phase II.

Section III.2: Sampling Data

Analytical Results from August 2018 Remedial Investigation Report (Tables 1 through 12 – extracted from the EBC RIR)

									ASF	R - Remed	ial Inve	estigation -	- May 2	006					
					SE	3-1			SI	3-2			SE	3-3		SB-	8	SB-	9
	NYSDEC Part 375.6	NYSDEC Part 375.6	NYDEC Part 375.6	5/2/20		5/2/20	06	5/2/20		5/2/20	006	5/2/20		5/2/20	006	6/9/20		6/9/20	
COMPOUND	Unrestricted Use Soil	Restricted Residential Soil	Restricted Commercial Cleanup	(0-5	5')	(8-12		(0-5	')	(8-12		(0-5	')	(8-12		(8-9	')	(8-9	')
	Cleanup Objectives*	Cleanup Objectives*	Objectives*	ualK		57 	,	ualK		t 18	a	ua/K	Lot		ia.	Lot 2 µg/K		Lot 2 µg/K	
				μg/K Result	Qual	μg/Kg Result	Qual	μg/K Result	Qual	μg/K Result	Qual	μg/K Result	Qual	μg/K Result	Qual	Result	Qual	Result	Qual
1,1,1-Trichloroethane 1,1,1,2-Tetrachlorothane	680	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2,2-Tetrachloroethane				-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethane	270	26,000	240,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethene 1,1-Dichloropropene	330	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,3-Trichlorobenzene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,3-Trichloropropane 1,2,4,5-Tetramethylbenzene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,4-Trichlorobenzene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	3,600	52,000	190,000	-	-	-	-	-	-	1700	-	-	-	-	-	-	-	-	-
1,2-Dibromomethane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichlorobenzene 1,2-Dichloroethane	1,100 20	100,000 3,100	100,000 3,100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dichloroethylenes	20	5,700	5,700	-	Ē	-	-	-	-	-	-	-	-	-	-	-		-	Ē
1,2-Dichloropropane 1,3,5-Trimethylbenzene	8,400	52,000	190,000	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
1,3-Dichlorobenzene	2,400	49,000	280,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichloropropane 1,4-Dichlorobenzene	1,800	13,000	130,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1.4-Diethyl Benzene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,4-Dioxane 2,2-Dichloropropane	100	13,000	130,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methyl Ethyl Ketone (2-Butanone)	120	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2-Chlorotoluene 2-Hexanone (Methyl Butyl Ketone)				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2-Isopropyltoluene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4-Chlorotoluene 4-Ethyltoluene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4-Methyl-2-Pentanone				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acetone Acrolein	50	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acrylonitrile				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzene Bromobenzene	60	4,800	44,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromochloromethane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane Bromoform				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromomethane Carbon Disulfide				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon tetrachloride	760	2,400	22,000		-	-	-	-	-	-	-	-	-		-	-	-	-	-
Chlorobenzene Chloroethane	1,100	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroform	370	49,000	350,000		-	-	-	-	-	-	-	-	-		-	-	-	-	-
Chloromethane cis-1,2-Dichloroethene	250	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cis-1,3-Dichloropropene	230	100,000	300,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cyclohexane Cymene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromomethane Dichlorodifluoromethane				-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
Diethyl Ether					-	-	-	-	-	-	-	-	-	-	-	-	-		-
Ethylbenzene Hexachlorobutadiene	1,000	41,000	390,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Isopropylbenzene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
m&p-Xylenes Methyl Acetate	260	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methyl t-butyl ether (MTBE)	930	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methylcyclohexane Methylene chloride	50	100,000	500,000		<u> </u>	-	_	-			_	-	_		_				<u> </u>
Naphthalene n-Butylbenzene	12,000	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
n-Propylbenzene	3,900	100,000	500,000	-		-	_				_		-	-					
o-Xylene p-Isopropyltoluene	260	100,000	500,000		-	-	-	-	-	-	- 1	-	-	-	- 1	-		-	-
sec-Butylbenzene	11,000	100,000	500,000		-	-	-	-	-	-	_	-	-	-	-	-			-
Styrene t-1,3-Dichloropropene					-	-	-	-	-	-	- 1	-	-	-	- 1	-		-	-
Tert-butyl alcohol					-	-	-			-		-	_						
tert-Butylbenzene tert-Buyl methyl ether	5,900	100,000	500,000		-	-	-	-	-	-	- 1	-		-	- 1	-		-	1
Tetrachloroethene	1,300	19,000	150,000			-	-	-		-	-	-	-		-				
Tetrahydrofuran (THF) Toluene	700	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	1
trans-1,2-Dichloroethene	190	100,000	500,000			-	-	-		-	-	-	-		-				
trans-1,3-Dichloropropene trabs-1,4-dichloro-2-butene				-	-	-		-	-	-		-		-	-	-	- 1	-	-
Trichloroethene	470	21,000	200,000		-	-	-	-		-	-	-	-	-	-	-		-	-
Trichlorofluoromethane Trichlorotrifluoroethane	<u> </u>			-	-	-		-	-	-	-	-	-	-	-	-	-	-	-
Vinyl Acetate				-	-	-	-	-		-	-	-	-	-	-	-		-	-
Vinyl Chloride Total VOCs Concentration	20	900	13,000	- 0	-	- 0	-	- 0	-	1,70	0	- 0	-	- 0	-	- 0	-	- 0	-
TOTAL VOCS CONCENTIATION				U		ı u		<u> </u>		1,70	v			U					

Notes:

**e NYCRF Part 375-6 Remedial Program Soil Cleanup Objectives
RL - Laboratory Reporting Limit, MDL=Minimum Detection Limit
Bold/highlighted- Indicated exceedance of the NYSDEC Bulsco Guidance Value
Bold/highlighted- Indicated exceedance of the NYSDEC Restricted Restidential SCO Guidance Value
Bold/highlighted- Indicated exceedance of the NYSDEC Commercial Guidance Value

- Qualifiers
 U The compound was not detected at the indicated concentration.

 J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

 B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

 P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

 *- For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

 NR Not analyzed

									ASF	R - Remed	lial Inve	estigation -	May 2	006					
				SB-1	0	SB-1	1	SB-1	2	SB-1	13	SB-1	4	SB-1	15	SB-	16	SB-1	17
	NYSDEC Part 375.6	NYSDEC Part 375.6	NYDEC Part 375.6	6/9/20	06	6/9/20		6/9/20		6/9/20		6/20/20		6/13/2		6/13/2	006	6/13/2	
COMPOUND	Unrestricted Use Soil	Restricted Residential Soil	Restricted Commercial Cleanup	(8')		(8')		(9-10)')	(9-10)')	(11-1:	2')						
	Cleanup Objectives*	Cleanup Objectives*	Objectives*	Lot 2		Lot 2 μg/Kg		Lot 2		Lot 1		Lot 2		Lot 2		Lot 1		Lot 1	
				μg/K Result	Qual	Result	Qual	Result	Qual	μg/K Result	g Qual	Result	Qual	Result	Qual	Result	g Qual	Result	Qual
1,1,1-Trichloroethane 1,1,1,2-Tetrachlorothane	680	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2,2-Tetrachloroethane				-	-	-	-	-	-		-	-	-	-	-	-	-	-	
1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethane	270	26,000	240,000		-	-	-	-	-	-	-	-	-		-	-	-	-	-
1,1-Dichloroethene 1,1-Dichloropropene	330	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,3-Trichlorobenzene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1,2,3-Trichloropropane 1,2,4,5-Tetramethylbenzene					-	-	-		-		-	-	-		-	-	-	-	-
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	3,600	52,000	190,000	-	-	-	-	-	-	-	-	11000	-	-	-	-	-	-	-
1,2-Dibromo-3-chloropropane	3,000	32,000	130,000		-		-		-		-	-	-		-		-	-	-
1,2-Dibromomethane 1,2-Dichlorobenzene	1,100	100,000	100,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloroethane	20	3,100	3,100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dichloroethylenes 1,2-Dichloropropane					-		_								_				Ė
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	8,400 2,400	52,000 49,000	190,000 280,000	-	-	-	-	-	-	-	-	2300	-	-	-	-	-	-	-
1,3-Dichloropropane				-	-	-	-	-	-			-	-		-	-	-	-	Ė
1,4-Dichlorobenzene 1.4-Diethyl Benzene	1,800	13,000	130,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,4-Dioxane	100	13,000	130,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2,2-Dichloropropane Methyl Ethyl Ketone (2-Butanone)	120	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2-Chlorotoluene 2-Hexanone (Methyl Butyl Ketone)				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2-Isopropyltoluene					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4-Chlorotoluene 4-Ethyltoluene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4-Methyl-2-Pentanone					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acetone Acrolein	50	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acrylonitrile				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Benzene Bromobenzene	60	4,800	44,000		-	-	-	-	-		-		-		-	-	-	-	-
Bromochloromethane Bromodichloromethane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromoform				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromomethane Carbon Disulfide				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon tetrachloride	760	2,400	22,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Chlorobenzene Chloroethane	1,100	100,000	500,000	-	-	-		-	-	-		-		-	-	-	-	-	
Chloroform Chloromethane	370	49,000	350,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethene	250	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cis-1,3-Dichloropropene Cyclohexane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cymene Dibromochloromethane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromomethane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dichlorodifluoromethane Diethyl Ether					-		-	-	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	1,000	41,000	390,000	-	-	-	-	-	-	-	-	860	-	-	-	-	-	-	Ι-
Hexachlorobutadiene Isopropylbenzene				-	-	-	-	-		-	-	660	-	-	-	-		-	
m&p-Xylenes Methyl Acetate	260	100,000	500,000	-	-	-	-	-	-	-	-	2300	-	-	-	-	-	-	-
Methyl t-butyl ether (MTBE)	930	100,000	500,000	-	-	-	-	-	-		-	-	-		-	-	-	-	-
Methylcyclohexane Methylene chloride	50	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	12,000	100,000	500,000	-	-	-	-	-	-	-	-	14000	-	-	-	-	-	-	-
n-Butylbenzene n-Propylbenzene	3,900	100,000	500,000		-		-		-		-	2600 1400		Ė	_		-		<u> </u>
o-Xylene p-Isopropyltoluene	260	100,000	500,000	-	-	-	-	-	-	-	-	650	-	-	-	-	-	-	-
sec-Butylbenzene	11,000	100,000	500,000	-	-	-	-	-	-		-	870	-	-	-	-	-	-	-
Styrene t-1,3-Dichloropropene				-	-	-	-	-	-	<u> </u>	-	-	-	-	-	-	-	-	-
Tert-butyl alcohol		400		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
tert-Butylbenzene tert-Buyl methyl ether	5,900	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tetrachloroethene Tetrahydrofuran (THF)	1,300	19,000	150,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	700	100,000	500,000	-	-	-	-	-	-		-		-	-	-	-	-	-	-
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	190	100,000	500,000	-		-		-	-	-	-	-	-	-	-	-	-	-	-
trabs-1,4-dichloro-2-butene					-	-	-	-	-	-	-		-	-	-	-	-	-	
Trichloroethene Trichlorofluoromethane	470	21,000	200,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichlorotrifluoroethane Vinyl Acetate				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl Chloride	20	900	13,000		-		-		-		-				-	-	-	-	_
Total VOCs Concentration		· · · · · · · · · · · · · · · · · · ·		0		0		0		0		36,64	10	0		0		0	

Notes:

**e NYCRF Part 375-6 Remedial Program Soil Cleanup Objectives
RL - Laboratory Reporting Limit, MDL=Minimum Detection Limit
Bold/highlighted- Indicated exceedance of the NYSDEC Bulsco Guidance Value
Bold/highlighted- Indicated exceedance of the NYSDEC Restricted Restidential SCO Guidance Value
Bold/highlighted- Indicated exceedance of the NYSDEC Commercial Guidance Value

- Oualifiers

 U The compound was not detected at the indicated concentration.

 J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

 B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

 P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

 **For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

 NR Not analyzed

								ASR	- Reme	edial Inves	tigatio	n - May 20	06				
				SB-1	18	SB-1	19	SB-2				V-9			MV	/-10	
	NYSDEC Part 375.6	NYSDEC Part 375.6	NYDEC Part 375.6	6/13/2		6/13/2		6/13/2		7/21/2		7/21/2	006	7/21/2		7/21/2	006
COMPOUND	Unrestricted Use Soil	Restricted Residential Soil	Restricted Commercial Cleanup	0/10/2	000	0/10/2	000	0/10/2	000	(5-10		(10-1		(0-5		(10-1	
	Cleanup Objectives*	Cleanup Objectives*	Objectives*	Lot 1		Lot 1		Lot 1				sidewalk)				idewalk)	
				μg/K Result	g Qual	μg/K Result	Qual										
1,1,1-Trichloroethane	680	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	
1,1,1,2-Tetrachlorothane 1,1,2,2-Tetrachloroethane				-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2-Trichloroethane				-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2-Trichlorotrifluoroethane 1,1-Dichloroethane	270	26,000	240,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethene	330	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloropropene 1,2,3-Trichlorobenzene				-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,3-Trichloropropane				-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,4,5-Tetramethylbenzene				-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	3,600	52,000	190,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dibromo-3-chloropropane	-1	3,0	,	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dibromomethane 1,2-Dichlorobenzene	1,100	100,000	100,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloroethane	20	3,100	3,100	-	-		-	-	-		-		-		-		-
Dichloroethylenes				-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloropropane 1,3,5-Trimethylbenzene	8,400	52,000	190,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichlorobenzene	2,400	49,000	280,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichloropropane 1,4-Dichlorobenzene	1,800	13,000	130,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1.4-Diethyl Benzene	1,000	13,000	130,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,4-Dioxane	100	13,000	130,000	-	-	-	-	-	-	-	-	-	-	-	-	-	\sqsubseteq
2,2-Dichloropropane Methyl Ethyl Ketone (2-Butanone)	120	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	\vdash
2-Chlorotoluene			,	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2-Hexanone (Methyl Butyl Ketone) 2-Isopropyltoluene				-	-	-	-	-	-	-	-	-	-	-	-	-	+-
4-Chlorotoluene				-	-		-	-	-		-	-	-	-	-		-
4-Ethyltoluene				-	-	-	-	-	-	-	-	-	-	-	-	-	-
4-Methyl-2-Pentanone Acetone	50	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acrolein			,	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acrylonitrile Benzene	60	4,800	44,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromobenzene	00	4,000	44,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromochloromethane Bromodichloromethane				-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromoform				-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromomethane				-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon Disulfide Carbon tetrachloride	760	2,400	22,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	1,100	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane Chloroform	370	49,000	350,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloromethane	370	49,000	330,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethene	250	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	
cis-1,3-Dichloropropene Cyclohexane				-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cymene				-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane Dibromomethane				-	-	-	-	-	-	-	-	-	-	-	 -	-	-
Dichlorodifluoromethane				-	-	-	-	-	-	-	-	-	-	-	-		-
Diethyl Ether Ethylbenzene	1,000	41,000	390,000	-	-	-	-	-	-	-	-	480	-	-	-	-	-
Hexachlorobutadiene	1,000	41,000	390,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Isopropylbenzene	200	400.000	500.000	-	-	-	-	-	-	-	-	620	-	-	-	-	-
m&p-Xylenes Methyl Acetate	260	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	\vdash
Methyl t-butyl ether (MTBE)	930	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methylcyclohexane Methylene chloride	50	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	⊢∺
Naphthalene	12,000	100,000	500,000	-			-	-		4,000	-	3,600		-	-	-	
n-Butylbenzene	3,900	100,000	500,000	-		-	-	-	-	1,100 850		1,100 1,100	-	-	-	-	$\vdash \exists$
n-Propylbenzene o-Xylene	3,900 260	100,000	500,000 500,000		-		-	-	-	- 050	-	- 1,100	-	-	-	-	-
p-Isopropyltoluene				-	-	-	-	-	-	-	-	-	-	-	-	-	-
sec-Butylbenzene Styrene	11,000	100,000	500,000	-	-	-	-	-	-	720	-	690	-	-	-	-	-
t-1,3-Dichloropropene				-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tert-butyl alcohol tert-Butylbenzene	5,900	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-		-	
tert-Buyl methyl ether	5,800	100,000	900,000		_										<u> </u>		
Tetrachloroethene	1,300	19,000	150,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tetrahydrofuran (THF) Toluene	700	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethene	190	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	
trans-1,3-Dichloropropene trabs-1,4-dichloro-2-butene	ļ			-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichloroethene	470	21,000	200,000	-		-	-	-	-	-	-	-	-	-	-	-	-
Trichlorofluoromethane				-	-		-	-	-	-	-	-	-	-	-	-	-
Trichlorotrifluoroethane Vinyl Acetate				-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl Chloride	20	900	13,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total VOCs Concentration				0		0		0		5,95	U	6,90	U	0		0	

Notes:
*-6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
RL - Laboratory Reporting Limit, MDL=Minimum Detection Limit
Boldhighlighted-Indicated exceedance of the NYSDEC UUSCO Guidance Value
Boldhighlighted-Indicated exceedance of the NYSDEC Restricted Restidential SCO Guidance Value
Boldhighlighted-Indicated exceedance of the NYSDEC Commercial Guidance Value

- Qualifiers
 U The compound was not detected at the indicated concentration.
 J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.
 B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
 P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
 *- For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
 NR Not analyzed

									E	BC - Rem	edial Ir	vestigatio	n - 200	7					
					E	1			E	2			E	3			E	4	
	NYSDEC Part 375.6	NYSDEC Part 375.6	NYDEC Part 375.6	8/16/2	007	8/16/20	007	8/16/2	007	8/16/2	007	8/16/2	007	8/16/2	007	8/16/2	007	8/16/2	007
COMPOUND	Unrestricted Use Soil	Restricted Residential Soil	Restricted Commercial Cleanup	(0-4		(8-12	2')	(0-4	')	(8-12		(0-4	')	(8-12		(0-4		(8-12	2')
	Cleanup Objectives*	Cleanup Objectives*	Objectives*	μg/K		t 57 μg/K	a	μg/K	Lot	. 57 μg/K	a	μg/K	Lot	: 17 μg/K	(a	μg/K	Lot	17 μg/K	ā
				Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
1,1,1-Trichloroethane 1,1,1,2-Tetrachlorothane	680	100,000	500,000	2.3	U -	2.6	U -	2.5	- -	2.5	U -	2.5	U -	2.5	U -	2.3	U -	2.6	- -
1,1,2,2-Tetrachloroethane				1.7	U	1.9	U	1.8	U	1.9	U	1.8	U	1.9	U	1.7	U	2.0	U
1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane				1.6	U	1.8 4.1	U	1.7 3.9	U	1.8 4.0	U	1.7 3.9	U	1.8 4.0	U	1.6 3.7	U	1.8 4.2	U
1,1-Dichloroethane	270	26,000	240,000	1.5	Ü	1.6	U	1.6	U	1.6	U	1.6	Ü	1.6	U	1.5	U	1.7	Ü
1,1-Dichloroethene 1,1-Dichloropropene	330	100,000	500,000	3.2	U -	3.5	U	3.4	U	3.4	U	3.4	U	3.4	U	3.2	U -	3.6	U
1,2,3-Trichlorobenzene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,3-Trichloropropane 1,2,4,5-Tetramethylbenzene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,4-Trichlorobenzene				3.8	U	4.2	U	4.0	U	4.1	U	4.0	U	4.1	U	3.8	U	4.3	U
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	3,600	52,000	190,000	5.3	- U	5.8	- 11	5.5	-	5.6	- U	5.6	- U	5.6	- 11	5.2	- 11	5.9	-
1,2-Dibromomethane				2.2	U	2.5	U	2.4	U	2.4	U	2.4	U	2.4	U	2.2	U	2.5	U
1,2-Dichlorobenzene 1,2-Dichloroethane	1,100 20	100,000 3,100	100,000 3,100	2.2	U	2.4 1.9	U	2.3	U	2.3	U	2.3	U	2.3	U	2.1	U	2.4	U
Dichloroethylenes	20	5,100	5,100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloropropane 1,3,5-Trimethylbenzene	8,400	52,000	190,000	2.2	U	2.4	U	2.3	U	2.4	U	2.3	U	2.4	U	2.2	U	2.5	U
1,3-Dichlorobenzene	8,400 2,400	52,000 49,000	280,000	3.1	U	3.4	U	3.3	U	3.3	U	3.3	U	3.3	U	3.1	U	3.5	U
1,3-Dichloropropane 1,4-Dichlorobenzene	1,800	13,000	130,000	3.0	- U	3.3	- 1	3.2	-	3.3	- U	3.2	- U	3.3	-	3.0	- U	3.4	- U
1.4-Diethyl Benzene		13,000		-	-	-	-	-	-	-	-	-	-	-	-	-	-	J.# -	-
1,4-Dioxane 2,2-Dichloropropane	100	13,000	130,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methyl Ethyl Ketone (2-Butanone)	120	100,000	500,000	16	U	17	U	17	U	17	- U	17	U	17	U	16	U	18	U
2-Chlorotoluene 2-Hexanone (Methyl Butyl Ketone)	ļ			20	- U	- 22	- U	21	- U	- 22	- U	21	- U	- 22	- U	20	- U	- 23	- U
2-legatione (Methyl Butyl Retone) 2-lsopropyltoluene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4-Chlorotoluene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4-Ethyltoluene 4-Methyl-2-Pentanone				- 11	U	12	U	12	- U	12	U	12	U	12	U	11	U	12	U
Acetone	50	100,000	500,000	19	U	21	U	72	J	20	U	20	U	20	U	19	U	21	U
Acrolein Acrylonitrile				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzene	60	4,800	44,000	2.2	U	2.4	U	2.3	U	2.4	U	2.4	U	2.4	U	2.2	U	2.5	U
Bromobenzene Bromochloromethane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane				1.9	U	2.1	U	2.0	U	2.0	U	2.0	U	2.0	U	1.8	U	2.1	U
Bromoform Bromomethane				1.7	U	1.9 12	U	1.8	U	1.9	U	1.8	U	1.9 12	U	1.7	U	1.9	U
Carbon Disulfide				2.1	U	2.3	U	2.2	U	2.2	U	2.2	U	2.2	U	2.0	U	2.3	U
Carbon tetrachloride Chlorobenzene	760 1,100	2,400 100,000	22,000 500,000	2.5	U	2.7	U	2.6	U	2.7	U	2.6	U	2.6	U	2.4	U	2.8	U
Chloroethane				12	U	13	U	13	U	13	U	13	U	13	U	12	U	13	U
Chloroform Chloromethane	370	49,000	350,000	1.9	U	2.1 5.2	U	2.0 5.0	U	2.1 5.1	U	2.1 5.0	U	2.1 5.1	U	1.9	U	5.4	U
cis-1,2-Dichloroethene	250	100,000	500,000	1.8	U	2.0	U	1.9	U	1.9	U	1.9	U	1.9	U	1.8	U	2.0	U
cis-1,3-Dichloropropene Cyclohexane				1.8	U	2.0	U	1.9	U	2.0 1.9	U	2.0 1.9	U	2.0 1.9	U	1.8	U	2.1	U
Cymene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane Dibromomethane	-			1.3	U -	1.4	U -	1.4	U -	1.4	U -	1.4	U -	1.4	U -	1.3	U -	1.4	U -
Dichlorodifluoromethane				4.8	U	5.2	U	5.0	U	5.1	U	5.1	U	5.1	U	4.7	U	5.4	U
Diethyl Ether Ethylbenzene	1,000	41,000	390,000	2.0	- U	2.2	- U	2.1	- U	2.1	- U	2.1	- U	2.1	- U	2.0	- U	2.2	- U
Hexachlorobutadiene	.,500	,000	,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Isopropylbenzene m&p-Xylenes	260	100,000	500,000	2.3 4.8	U	2.5 5.3	U	2.4 5.1	U	2.5 5.2	U	2.5 5.1	U	2.5 5.2	U	2.3 4.8	U	2.6 5.4	U
Methyl Acetate				4.8	U	5.3	U	5.1	U	5.2	U	5.1	U	5.2	U	4.8	U	5.4	U
Methyl t-butyl ether (MTBE) Methylcyclohexane	930	100,000	500,000	2.1	U	2.3	U	2.2	U	2.2	U	2.2	U	2.2	U	2.0	U	2.3	U
Methylene chloride	50	100,000	500,000	10	U	11	U	11	U	11	U	11	U	11	U	10	U	11	U
Naphthalene n-Butylbenzene	12,000	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
n-Propylbenzene	3,900	100,000	500,000	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
o-Xylene p-Isopropyltoluene	260	100,000	500,000	2.1	U -	2.4	U -	2.3	U -	2.3	U -	2.3	U -	2.3	U -	2.1	U -	2.4	U -
sec-Butylbenzene	11,000	100,000	500,000		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Styrene t-1,3-Dichloropropene	 			2.6	U	2.8	U	2.7	U	2.8	U	2.7	U	2.7	U	2.5	U	2.9	U
Tert-butyl alcohol				-	-	-	,	-	-	-	-		-	-	-	-	-	-	-
tert-Butylbenzene tert-Buyl methyl ether	5,900	100,000	500,000	-	-	-		-	-	-		-		-		-			
Tetrachloroethene	1,300	19,000	150,000	4.1	U	4.5	U	4.3	U	4.4	U	4.3	U	4.4	U	4.0	U	4.6	U
Tetrahydrofuran (THF) Toluene	700	100,000	500,000	2.3	- U	2.5	U	2.4	- U	2.4	- U	2.4	- U	2.4	- U	- 22	- U	2.5	- U
trans-1,2-Dichloroethene	190	100,000	500,000	3.6	U	3.9	U	3.8	U	3.8	U	3.8	U	3.8	U	2.2 3.5	U	4.0	U
trans-1,3-Dichloropropene trabs-1,4-dichloro-2-butene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichloroethene	470	21,000	200,000	1.7	- U	1.9	U	1.8	U	1.8	U	1.8	- U	1.8	U	1.7	U	1.9	U
Trichlorofluoromethane				7.0	U	7.6	U	7.3	U	7.5	U	7.4	U	7.5	U	6.9	U	7.8	U
Trichlorotrifluoroethane Vinyl Acetate		<u> </u>		-	-	-		-	_	-	_	-	-	-			-		-
Vinyl Chloride	20	900	13,000	4.6	U	5.0	U	4.8	U	4.9	U	4.9	U	4.9	U	4.5	U	5.2	U
Total VOCs Concentration	1		l .	0		0		72		0		0		0		0		0	

Notes:

**e NYCRF Part 375-6 Remedial Program Soil Cleanup Objectives
RL - Laboratory Reporting Limit, MDL=Minimum Detection Limit
Bold/highlighted- Indicated exceedance of the NYSDEC Bulsco Guidance Value
Bold/highlighted- Indicated exceedance of the NYSDEC Restricted Restidential SCO Guidance Value
Bold/highlighted- Indicated exceedance of the NYSDEC Commercial Guidance Value

- Qualifiers
 U The compound was not detected at the indicated concentration.

 J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

 B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

 P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

 *- For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

 NR Not analyzed

								EE	BC - Rei	medial Inv	estigat	ion - 2007					
					E	5			Е	:6		E7			E	12	
	NYSDEC Part 375.6	NYSDEC Part 375.6	NYDEC Part 375.6	8/16/2	007	8/16/2	007	8/16/2	007	8/16/2	007	8/17/2	007	8/17/2	007	8/17/2	.007
COMPOUND	Unrestricted Use Soil	Restricted Residential Soil	Restricted Commercial Cleanup	(0-4		(8-12	2')	(0-4	')	(8-12		(0-4	')	(0-4		(8-12	2')
	Cleanup Objectives*	Cleanup Objectives*	Objectives*	μg/K	Lot	: 21 μg/K	a	μg/K	Lot	18 µg/К	n	Lot 1 µg/K		μg/K	Lot	17 μg/K	ía
				Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
1,1,1-Trichloroethane 1,1,1,2-Tetrachlorothane	680	100,000	500,000	2.5	U	2.4	U -	2.2	U	2.4	U -	2.2	U -	4.6	U -	5.5	U -
1,1,2,2-Tetrachloroethane				1.8	U	1.8	U	1.7	U	1.8	U	1.6	U	4.6	U	5.4	U
1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane				1.7 3.9	U	1.7 3.8	U	1.6 3.5	U	1.7 3.8	U	1.5 3.4	U	4.4	U	5.3 13	U
1,1-Dichloroethane 1,1-Dichloroethene	270 330	26,000 100,000	240,000 500,000	1.6	U	1.5	U	1.4 3.1	U	1.5	U	1.4	U	11 6.7	U	14 8.0	U
1,1-Dichloropropene		,		-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane				-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,4,5-Tetramethylbenzene 1,2,4-Trichlorobenzene				4.0	- U	3.9	- U	3.6	- U	3.9	- U	3.5	- U	3.6	- U	4.2	- U
1,2,4-Trimethylbenzene	3,600	52,000	190,000	-	-	-	-	-	-		-	-	-	-	-	3.7	-
1,2-Dibromo-3-chloropropane 1,2-Dibromomethane				5.6 2.4	U	5.4 2.3	U	5.0 2.1	U	5.4 2.3	U	4.9 2.1	U	3.1 18	U	21	U
1,2-Dichlorobenzene 1,2-Dichloroethane	1,100 20	100,000 3,100	100,000 3,100	2.3	U	2.2	U	2.1	U	2.2	U	2.0	U	2.0	U	2.4	U
Dichloroethylenes		3,332	-,	-	-	-	-	-	-	-	-	-	-	-	-		
1,2-Dichloropropane 1,3,5-Trimethylbenzene	8,400	52,000	190,000	2.4	U -	2.3	U -	2.1	U -	2.3	U -	2.1	U -	4.7	U -	5.5	U -
1,3-Dichlorobenzene 1,3-Dichloropropane	2,400	49,000	280,000	3.3	U	3.2	U	3.0	U	3.2	U	2.9	U -	9.8	U	12	U -
1,4-Dichlorobenzene	1,800	13,000	130,000	3.2	U	3.1	U	2.9	U	3.1	U	2.8	U	3.4	U	4.1	U
1.4-Diethyl Benzene 1,4-Dioxane	100	13,000	130,000	-	-	-	-	-	-		-		-	-	-		-
2,2-Dichloropropane Methyl Ethyl Ketone (2-Butanone)	120	100,000	500,000	17	- U	16	- U	15	- U	16	- U	15	- U	1.4	- U	1.7	- U
2-Chlorotoluene		,		-	-	-	-	-	-	-	-	-	-	-	-	-	-
2-Hexanone (Methyl Butyl Ketone) 2-Isopropyltoluene				21	U -	21	- -	19	U -	21	- -	19	U -	1.7	U -	2.1	- -
4-Chlorotoluene 4-Ethyltoluene				-	-	-	-	-		-	-	-	-	-	-	-	-
4-Methyl-2-Pentanone				12	U	11	U	11	U	11	U	10	U	15	U	18	U
Acetone Acrolein	50	100,000	500,000	20	- -	19	- -	18	U -	19	U -	- 17	U -	2.4	- -	2.8	- -
Acrylonitrile Benzene	60	4,800	44,000	2.4	- U	2.3	- U	2.1	- U	2.3	- U	2.1	- U	1.7	- U	2.1	- U
Bromobenzene		4,000	44,000	-	-	-	-	-	-	-	-	-	-	-	-	-	_
Bromochloromethane Bromodichloromethane				2.0	U	1.9	U	1.8	U	1.9	U	1.7	U	1.9	U	2.2	U
Bromoform Bromomethane				1.8	U	1.8	U	1.7	U	1.8	U	1.6	U	2.2	U	2.7	U
Carbon Disulfide Carbon tetrachloride	760	2,400	22,000	2.2	U	2.1	U	2.0	U	2.1	U	1.9	U	2.1	U	2.5	U
Chlorobenzene	1,100	100,000	500,000	2.1	U	2.1	U	1.9	U	2.1	U	1.9	U	1.7	U	2.0	U
Chloroethane Chloroform	370	49,000	350,000	13 2.1	U	12 2.0	U	11	U	12 2.0	U	1.8	U	2.1	U	2.5	U
Chloromethane cis-1,2-Dichloroethene	250	100,000	500,000	5.0 1.9	U	4.9	U	4.5	U	4.9	U	4.4	U	11	U	13	U
cis-1,3-Dichloropropene	250	100,000	500,000	2.0	U	1.9	U	1.8	U	1.9	U	1.7	U	2.0	U	2.3	U
Cyclohexane Cymene				1.9	- -	1.9	- -	1.7	U -	1.9	- -	1.7	U -	1.8	- -	2.1	- -
Dibromochloromethane Dibromomethane				1.4	U	1.3	U	1.2	U	1.3	U	1.2	U	1.6	U	1.9	U
Dichlorodifluoromethane				5.1	U	4.9	U	4.6	U	4.9	U	4.4	U	19	U	23	U
Diethyl Ether Ethylbenzene	1,000	41,000	390,000	2.1	- U	2.0	- U	1.9	- U	2.0	- U	1.8	- U	1.2	- U	1.5	- U
Hexachlorobutadiene Isopropylbenzene				2.5	- U	2.4	- U	2.2	- U	2.4	- U	2.1	- U	2.2	- U	2.6	- U
m&p-Xylenes	260	100,000	500,000	5.1	U	4.9	U	4.6	U	5.0	U	4.5	U	3.9	U	4.7	U
Methyl Acetate Methyl t-butyl ether (MTBE)	930	100,000	500,000	5.1 2.2	U	4.9 2.1	U	4.6 2.0	U	5.0 2.1	U	4.5 1.9	U	1.9	U	2.3	U
Methylcyclohexane Methylene chloride	50	100,000	500,000	2.5 11	U	2.4	U	2.2 9.7	U	2.4	U	2.2 9.4	U	4.7 2.1	U	5.5 2.5	U
Naphthalene	12,000	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	
n-Butylbenzene n-Propylbenzene	3,900	100,000	500,000	-	-	-	-	-	-	-	-		-	-	-	-	-
o-Xylene p-Isopropyltoluene	260	100,000	500,000	2.3	U -	2.2	U -	2.0	U -	2.2	U -	2.0	U	2.5	U -	2.9	U -
sec-Butylbenzene	11,000	100,000	500,000	-	-	-	-	2.4	-	-	-	2.4	-	1.7	-	-	-
Styrene t-1,3-Dichloropropene				2.7	U	2.6 2.1	U	1.9	U	2.6 2.1	U	1.9	U	1.7 2.2	U	2.0	U
Tert-butyl alcohol tert-Butylbenzene	5,900	100,000	500,000	-	-	-	-	-	-		-	-	-	-	-	-	-
tert-Buyl methyl ether				-	-	-	-	-	-	-	-	-	-	-	-	-	
Tetrachloroethene Tetrahydrofuran (THF)	1,300	19,000	150,000	4.3	- -	4.2	- U	3.9	- -	4.2	U -	3.8	U -	1.7	U -	2.0	- -
Toluene trans-1,2-Dichloroethene	700 190	100,000 100,000	500,000 500,000	2.4	U	2.3 3.6	U	2.2 3.4	U	2.3	U	2.1 3.3	U	3.0 2.9	U	3.6 3.5	U
trans-1,3-Dichloropropene	130	100,000	300,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
trabs-1,4-dichloro-2-butene Trichloroethene	470	21,000	200,000	1.8	- U	1.8	- U	1.6	- U	1.8	- U	1.6	- U	2.1	- U	2.5	- U
Trichlorofluoromethane Trichlorotrifluoroethane				7.4	U	7.1	U	6.6	U -	7.2	U	6.4	U	5.1	U -	6.0	U
Vinyl Acetate				-	-	-	-	-	-	-	-		-	-	-	-	
Vinyl Chloride Total VOCs Concentration	20	900	13,000	4.9 0	U	4.7	U	4.4	U	4.7 0	U	4.3	U	3.7	U	4.4	U

Notes:
*-6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
RL - Laboratory Reporting Limit, MDL=Minimum Detection Limit
Boldhighlighted-Indicated exceedance of the NYSDEC UUSCO Guidance Value
Boldhighlighted-Indicated exceedance of the NYSDEC Restricted Restidential SCO Guidance Value
Boldhighlighted-Indicated exceedance of the NYSDEC Commercial Guidance Value

- Qualifiers
 U The compound was not detected at the indicated concentration.
 J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.
 B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
 P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
 *- For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
 NR Not analyzed

						EBC - Rem	edial Ir	vestigatio	on - 200)7		Ecosyst	ems St	rategie	s - Remed	dial Inv	estigati	on Repor	t - July	2015
						13				14			-MW-17			-MW-1	_		/W-19	
		NYSDEC Part 375.6	NYDEC Part 375.6	8/17/2		8/17/2	007	8/17/2		8/17/2	007		19/2012			19/2012			19/2012	
COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil	Restricted Residential Soil	Restricted Commercial Cleanup	(0-4		(8-12		(0-4		(8-12			12-16')			8-12')	-		8-12')	
	Cleanup Objectives*	Cleanup Objectives*	Objectives*			20				t 21		Sidewal		ay St	Sidewa		lay St		_ot 20	
				μg/K	g Qual	μg/K Result	g Qual	μg/K Result	Qual	μg/K Result	g Qual	Result	µg/Kg Flag	RL	Result	µg/Kg Flag	RL	Result	μg/Kg Flag	RL
1,1,1-Trichloroethane 1,1,1,2-Tetrachlorothane	680	100,000	500,000	4.9	U	5.4	U	4.8	-	5.2	U	ND ND	-	13	ND ND	-	560 560	ND ND	-	600
1,1,2,2-Tetrachlorothane				4.9	U	5.4	U	4.8	U	5.2	U	ND	-	13	ND	-	560	ND	-	600
1,1,2-Trichloroethane				4.8	U	5.2	U	4.6	U	5.0	U	ND	-	13	ND	-	560	ND	-	600
1,1,2-Trichlorotrifluoroethane 1,1-Dichloroethane	270	26,000	240,000	12	U	13	U	11	U	12 13	U	ND ND	-	13	ND ND	-	560 560	ND ND	-	600 600
1,1-Dichloroethene	330	100,000	500,000	7.2	U	7.8	U	7.0	U	7.6	U	ND	-	13	ND	-	560	ND	-	600
1,1-Dichloropropene 1,2,3-Trichlorobenzene				-	-	-	-	-	-	-	-	ND ND	-	13 25	ND ND	-	560 1 100	ND ND	-	600 1.200
1,2,3-Trichloropropane				-	-	-	-	-	-	-	-	ND	-	13	ND	-	560	ND	-	600
1,2,4,5-Tetramethylbenzene 1,2,4-Trichlorobenzene				3.8	- U	4.2	-	3.7	- U	4.1	- U	- ND	-	- 25	- ND	-	1 100	- ND	-	1.200
1,2,4-Trimethylbenzene	3,600	52,000	190,000	-	-	4.2	-	5.7	-	4.1	-	ND	-	13	ND	-	560	ND	-	600
1,2-Dibromo-3-chloropropane				3.3	U	3.6	U	3.2	U	3.5	U	ND	-	25	ND	-	1,100	ND	-	1,200
1,2-Dibromomethane 1,2-Dichlorobenzene	1,100	100,000	100,000	19	U	21	U	66 2.1	U	2.2	U	ND ND	-	13	ND ND	-	560 560	ND ND	-	600
1,2-Dichloroethane	20	3,100	3,100	2.1	U	2.3	U	2.1	Ü	2.2	U	ND	-	13	ND	-	560	ND	-	600
Dichloroethylenes 1,2-Dichloropropane				5.0	- U	5.4	- U	4.9	- U	- 5.3	- U	- ND	-	- 13	- ND	-	560	- ND	-	600
1,3,5-Trimethylbenzene	8,400	52,000	190,000	-	-	-	-	-	-	-	-	ND		13	ND	Ė	560	ND		600
1,3-Dichlorobenzene	2,400	49,000	280,000	11	U	11	U	10	U	11	U	ND	-	13	ND ND	-	560 560	ND ND	_	600
1,3-Dichloropropane 1,4-Dichlorobenzene	1,800	13,000	130,000	3.7	- U	4.0	- U	3.6	- U	3.9	- U	ND ND	-	13	ND ND	-	560 560	ND ND	-	600
1.4-Diethyl Benzene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,4-Dioxane 2,2-Dichloropropane	100	13,000	130,000	-	-	-	-	-	-	-	-	ND ND	-	130	ND ND	-	5,600 560	ND ND	R	6,000
Methyl Ethyl Ketone (2-Butanone)	120	100,000	500,000	1.6	U	1.7	U	1.5	U	1.6	U	ND	-	25	ND	-	1,100	ND	-	1,200
2-Chlorotoluene 2-Hexanone (Methyl Butyl Ketone)				1.9	- U	2.0	- U	1.8	- U	2.0	- U	ND NA		13	ND NA	-	560	ND NA	1	600
2-legariorie (Metriyi Butyi Retorie) 2-lsopropyltoluene				-	-		-	1.0	-	-	-	- NA	-	-	- INA	-	-	INA	-	
4-Chlorotoluene				-	-	-	-	-	-	-	-	ND	-	13	ND	-	560	ND	-	600
4-Ethyltoluene 4-Methyl-2-Pentanone				16	- U	- 18	- U	16	- U	17	- U	- NA	-	-	NA.	-	-	- NA	-	-
Acetone	50	100,000	500,000	2.6	U	2.8	U	2.5	U	2.7	U	49	В	25	16	B-dil, B	11	1,100	J	1,200
Acrolein Acrylonitrile				-	-	-	-	-	-	-	-	-	<u> </u>	-	-	-	-	-	-	<u> </u>
Benzene	60	4,800	44,000	1.9	U	2.0	U	1.8	U	2.0	U	ND	-	13	ND	-	560	ND	-	600
Bromobenzene Bromochloromethane				-	-	-	-	-	-	-	-	ND ND	-	13	ND ND	-	560 560	ND ND	-	600 600
Bromodichloromethane				2.0	U	2.2	U	2.0	U	2.1	U	ND	-	13	ND	-	560	ND	-	600
Bromoform				2.4	U	2.6 2.6	U	2.4	U	2.6	U	ND ND	-	13	ND 290	-	560 560	ND ND	-	600 600
Bromomethane Carbon Disulfide				2.4	U	2.5	U	2.4	U	2.4	U	NA NA	-	- 13	NA	-	- 500	NA NA	-	- 000
Carbon tetrachloride	760	2,400	22,000	1.8	U	1.9	U	1.7	U	1.9	U	ND	-	13	ND	-	560	ND	-	600
Chlorobenzene Chloroethane	1,100	100,000	500,000	250 2.3	- U	1.9 2.5	U	1.7	U	1.9	U	ND ND	-	13	ND ND	-	560 560	ND ND	-	600 600
Chloroform	370	49,000	350,000	1.9	U	2.1	U	1.9	U	2.0	U	ND	-	13	ND	-	560	ND	-	600
Chloromethane cis-1,2-Dichloroethene	250	100,000	500,000	11	U	12 2.5	U	11	U	12	U	ND ND	<u> </u>	13	ND ND	-	560 560	ND ND	-	600
cis-1,3-Dichloropropene	230	100,000	300,000	2.1	U	2.3	U	2.0	U	2.2	U	ND	-	13	ND	-	560	ND	-	600
Cyclohexane Cymene				1.9	U	2.1	U	1.9	U	2.0	U	-	-	-	-	-	-	-	-	-
Dibromochloromethane				1.7	U	1.8	U	1.7	U	1.8	U	ND	-	13	ND	-	560	ND	-	600
Dibromomethane Dichlorodifluoromethane				- 24	-	- 00	- U	- 20	- U	- 22	-	ND ND	-	13 13	ND ND	-	560 560	ND ND	-	600 600
Dichlorodifluoromethane Diethyl Ether				21	- -	23	-	20	-	- 22	- -	- ND	<u> </u>	-	- IND	<u> </u>	- 100	-	L-	-
Ethylbenzene	1,000	41,000	390,000	1.3	U	1.4	U	1.3	U	1.4	U	ND	-	13	ND	-	560	260	J	600
Hexachlorobutadiene Isopropylbenzene	1			2.3	- U	2.5	- U	2.3	- U	2.5	- U	ND ND	-	13	ND ND	-	560 560	250	J	600 600
m&p-Xylenes	260	100,000	500,000	4.2	U	4.6	U	4.1	U	4.5	U	ND	-	25	ND	-	1,100	ND	-	1,200
Methyl Acetate Methyl t-butyl ether (MTBE)	930	100,000	500,000	2.1	U	2.3	U	2.0	U	2.2	U	- ND	-	- 13	- ND	-	560	- ND	-	600
Methylcyclohexane				5.0	U	5.4	U	4.9	U	5.3	U	-	-	-	-	-	-	-	ļ	
Methylene chloride Naphthalene	50 12,000	100,000 100,000	500,000 500,000	2.2	U -	2.4	U -	2.2	U -	2.3	U -	23 ND	J,B	25 25	8.1 ND	B-dil, J,	1,100	2.3	B-DIL,J,E	1.200
n-Butylbenzene				-	-	-	-	-	-	-	-	ND	-	13	ND	-	560	450	J	600
n-Propylbenzene o-Xylene	3,900 260	100,000 100,000	500,000 500,000	2.7	- U	2.9	- U	2.6	- U	2.8	- U	ND ND	-	13 13	ND ND	-	560 560	440 130	J .I	600 600
p-Isopropyltoluene				-	-	-	-	-	-	-	-	ND		13	ND	Ė	560	ND	-	600
sec-Butylbenzene	11,000	100,000	500,000	1.8	- U	1.9	- U	1.7	- U	1.9	- U	ND ND	-	13 13	ND ND	-	560 560	330 ND	J	600 600
Styrene t-1,3-Dichloropropene				2.4	U	2.6	U	2.3	U	2.5	U	- ND	-	-	- IND	-	- 000	- IND	-	-
Tert-butyl alcohol				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
tert-Butylbenzene tert-Buyl methyl ether	5,900	100,000	500,000	-	-	-	-	-	-	-	-	ND -	-	13	ND -	-	560	ND -	-	600
Tetrachloroethene	1,300	19,000	150,000	1.8	U	2.0	U	1.7	U	1.9	U	ND	-	13	ND	-	560	ND	-	600
Tetrahydrofuran (THF) Toluene	700	100,000	500,000	3.2	- U	3.5	- U	3.1	- U	3.4	- U	- ND	-	- 13	- ND	-	- 560	- ND	-	600
trans-1,2-Dichloroethene	190	100,000	500,000	3.1	U	3.4	U	3.1	U	3.3	U	ND		13	ND		560	ND		600
trans-1,3-Dichloropropene trabs-1,4-dichloro-2-butene				-	-	-	-	-	1-	-	-	ND -	1	13	ND -	-	560	ND	1	600
Trichloroethene	470	21,000	200,000	2.2	U	2.4	U	2.2	U	2.4	- U	2.4	J	13	ND	Ė	560	ND		600
Trichlorofluoromethane				5.4	U	5.9	U	5.3	U	5.8	U	ND	-	13	ND	-	560	ND	-	600
Trichlorotrifluoroethane Vinyl Acetate				-	-	-	-	-	-	-	-	- NA	-	-	NA.	-	-	- NA	-	-
Vinyl Chloride	20	900	13,000	3.9	U	4.3	U	3.8	U	4.2	U	ND	-	13	ND	-	1,700	ND	-	1,800
Total VOCs Concentration				250)	0		2.1	l	0		<u> </u>	74.4		I	25.1		5,	862.30	

Notes:
-6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
RL - Laboratory Reporting Limit, MDL=Minimum Detection Limit
Bold/highlighted- Indicated exceedance of the NYSDEC UISCO Guidance Value
Bold/highlighted- Indicated exceedance of the NYSDEC Asstricted Restidential SCO Guidance Value
Bold/highlighted- Indicated exceedance of the NYSDEC Commercial Guidance Value

- U The compound was not detected at the indicated concentration.

 J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

 B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

 P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

 *- For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

 NR Not analyzed

							Ecosyst	tems St	trategie	s - Remed	lial Inve	estigat	ion Report	t - July	2015			\neg
						MV	V-40			SI	B-77A		s	B-78A		2	2SB-7	
	NYSDEC Part 375.6	NYSDEC Part 375.6	NYDEC Part 375.6	9/2	4/2014		9/2	24/2014		4/1	9/2012		4/1	19/2012	!	8/	1/2013	
COMPOUND	Unrestricted Use Soil Cleanup Objectives*	Restricted Residential Soil	Restricted Commercial Cleanup	(0-5')	l e	t 40	15-20')			3-12') ot 17			8-12') ot 17			10-15') _ot 17	
		Cleanup Objectives*	Objectives*		ug/Kg	LO		μg/Kg			ug/Kg			μg/Kg			μg/Kg	
				Result	Flag	RL	Result	Flag		Result	Flag	RL	Result	Flag	RL	MDL	Result	RL
1,1,1-Trichloroethane 1,1,1,2-Tetrachlorothane	680	100,000	500,000	ND NA	-	6.2	ND NA	-	15	ND ND	-	13 13	ND ND	-	12 12	ND ND	-	5
1,1,2,2-Tetrachloroethane				ND	-	6.2	ND	-	15	ND	-	13	ND	-	12	ND	-	5
1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane				ND ND	-	6.2	ND ND	-	15 15	ND ND	-	13 13	ND ND	-	12 12	ND ND	-	5 5
1,1-Dichloroethane	270	26,000	240,000	ND	-	6.2	ND	-	15	ND	-	13	ND	-	12	ND	-	5
1,1-Dichloroethene 1,1-Dichloropropene	330	100,000	500,000	ND NA	-	6.2	ND NA	-	15	ND ND	-	13	ND ND	-	12 12	ND ND	-	5
1,2,3-Trichlorobenzene				NA NA	-	-	NA NA	-	-	ND ND	-	26 13	ND ND	-	24	ND ND	-	5
1,2,3-Trichloropropane 1,2,4,5-Tetramethylbenzene				NA -	-	-	NA -	-	-	ND -	-	- 13	ND -	-	- 12	ND -	-	-
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	3,600	52,000	190,000	ND ND	-	6.2	ND ND	-	15 15	ND ND	-	26 13	ND ND	-	24 12	ND ND	-	5
1,2-Dibromo-3-chloropropane	3,600	52,000	190,000	ND	-	6.2	ND ND	-	15	ND ND	-	26	ND ND	-	24	ND	-	5
1,2-Dibromomethane 1,2-Dichlorobenzene	1,100	100,000	100,000	ND NA	-	6.2	ND NA	-	15	ND	-	13	ND	-	12	ND	-	5
1,2-Dichloroethane	20	3,100	3,100	ND	-	6.2	ND ND	-	15	ND	-	13	ND	-	12	ND	-	5
Dichloroethylenes 1,2-Dichloropropane	 			- ND	-	6.2	- ND	-	- 15	- ND	-	- 13	- ND	-	- 12	- ND	-	- 5
1,3,5-Trimethylbenzene	8,400	52,000	190,000	ND	Ė	6.2	ND	Ė	15	ND	-	13	ND	Ė	12	ND	Ė	5
1,3-Dichlorobenzene 1,3-Dichloropropane	2,400	49,000	280,000	NA NA	-	-	NA NA	-	-	ND ND	-	13	ND ND	-	12 12	ND ND	-	5
1,4-Dichlorobenzene	1,800	13,000	130,000	NA	-	ļ -	NA	-	-	ND	-	13	ND	-	12	ND	-	5
1.4-Diethyl Benzene 1,4-Dioxane	100	13,000	130,000	- NA	-	-	- NA	-	-	- ND	-	130	- ND	-	120	- ND	-	100
2,2-Dichloropropane				NA	-	-	NA	-	-	ND	-	13	ND	-	12	ND	-	5
Methyl Ethyl Ketone (2-Butanone) 2-Chlorotoluene	120	100,000	500,000	ND NA	-	6.2	ND NA	-	15	ND ND	-	26 13	ND ND	-	24 12	ND ND	-	5
2-Hexanone (Methyl Butyl Ketone)				ND	-	6.2	ND	-	15	NA	-	-	NA	-	-	NA	-	-
2-Isopropyltoluene 4-Chlorotoluene				NA	-	-	- NA	-	-	- ND	-	13	- ND	-	12	- ND	-	5
4-Ethyltoluene				- ND	-	-	- ND	-	-	- NA	-	-	- NA	-	-	- NA	-	-
4-Methyl-2-Pentanone Acetone	50	100,000	500,000	24	CCV-E	6.2	140	-	15 31	25	J,B	26	22	J,B	24	2.6	J,B	10
Acrolein Acrylonitrile				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzene	60	4,800	44,000	ND	-	6.2	ND.	-	15	ND	-	13	ND	-	12	ND	-	5
Bromobenzene Bromochloromethane				NA ND	-	6.2	NA ND	-	- 15	ND ND	-	13 13	ND ND	-	12 12	ND ND	-	5
Bromodichloromethane				ND	-	6.2	ND	-	15	ND	-	13	ND	-	12	ND	-	5
Bromoform Bromomethane				ND ND	-	6.2	ND ND	-	15 15	ND ND	-	13 13	ND ND	-	12 12	ND ND	-	5
Carbon Disulfide				-	-	-	-	-	-	NA	-	-	NA	-	-	NA	-	-
Carbon tetrachloride Chlorobenzene	760 1,100	2,400 100,000	22,000 500,000	ND ND	-	6.2	ND ND	-	15 15	ND ND	-	13 13	ND ND	-	12 12	ND ND	-	5
Chloroethane				ND	-	6.2	ND	-	15	ND	-	13	ND	-	12	ND	-	5
Chloroform Chloromethane	370	49,000	350,000	ND ND	-	6.2	ND ND	-	15 15	ND ND	-	13 13	ND ND	-	12 12	ND ND	-	5
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	250	100,000	500,000	ND ND	-	6.2	ND ND	-	15 15	ND ND		13	ND ND	-	12 12	ND ND	-	5
Cyclohexane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cymene Dibromochloromethane				- ND	-	6.2	- ND	-	- 15	- ND	-	- 13	- ND	-	- 12	- ND	-	- 5
Dibromomethane				NA	-	-	NA	-	-	ND	-	13	ND	-	12	ND	-	5
Dichlorodifluoromethane Diethyl Ether				ND -	-	6.2	ND -	-	15	ND ND	-	13 13	ND ND	 -	12 12	ND ND	-	5
Ethylbenzene	1,000	41,000	390,000	ND	-	6.2	ND	-	15	ND	-	13	ND	-	12	ND	-	5
Hexachlorobutadiene Isopropylbenzene				NA NA	-	-	NA NA	-	-	ND ND	-	13	ND ND	-	12 12	ND ND	-	5
m&p-Xylenes	260	100,000	500,000	ND	-	12	ND	-	31	ND	-	26	ND	-	24	ND	-	10
Methyl Acetate Methyl t-butyl ether (MTBE)	930	100,000	500,000	- ND		6.2	- ND		15	- ND	-	13	- ND	_	12	- ND	_	5
Methylcyclohexane Methylene chloride	50	100,000	500,000	- ND	-	12	- ND	-	31	22	J.B	- 26	20	J,B	- 24	- ND	-	- 10
Naphthalene	12,000	100,000	500,000	ND		12	ND		31	ND	- J.D	26	ND	-	24	ND		10
n-Butylbenzene n-Propylbenzene	3,900	100,000	500,000	ND ND	-	6.2	ND ND	-	15 15	ND ND	-	13	ND ND	-	12 12	ND ND	-	5
o-Xylene	260	100,000	500,000	ND	Ė	6.2	ND	Ė	15	ND	-	13	ND	Ė	12	ND	<u> </u>	5
p-Isopropyltoluene sec-Butylbenzene	11,000	100,000	500,000	NA ND	-	6.2	NA ND	-	- 15	ND ND	-	13	ND ND	-	12 12	ND ND	-	5
Styrene	,000	,000	,000	ND	-	6.2	ND	-	15	ND	-	13	ND	-	12	ND	-	5
t-1,3-Dichloropropene Tert-butyl alcohol				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
tert-Butylbenzene	5,900	100,000	500,000	ND	-	6.2	ND	-	15	ND	-	13	ND	-	12	ND	-	5
tert-Buyl methyl ether Tetrachloroethene	1,300	19,000	150,000	- ND	Ė	6.2	- ND	Ŀ	15	- ND	_	13	- ND	<u> </u>	12	- ND	<u> </u>	5
Tetrahydrofuran (THF) Toluene		100,000	500,000	- ND	-	6.2	- ND	-	- 15	- ND	-	- 13	- ND	-	- 12	- ND	-	-
trans-1,2-Dichloroethene	700 190	100,000	500,000 500,000	ND		6.2	ND		15	ND	-	13	ND		12	ND		5
trans-1,3-Dichloropropene trabs-1,4-dichloro-2-butene		· · · · · · · · · · · · · · · · · · ·		ND -	-	6.2	ND	-	15	ND	-	13	ND	-	12	ND	-	5
Trichloroethene	470	21,000	200,000	7.6		6.2	56		15	ND.	-	13	ND		12	4.1	J	5
Trichlorofluoromethane Trichlorotrifluoroethane				ND -	-	6.2	ND -	-	15	ND -	-	13	ND -	-	12	ND -	-	5
Vinyl Acetate				NA	Ė	-	NA	Ė	Ė	NA	-	-	NA	-	-	ND	Ė	5
Vinyl Chloride Total VOCs Concentration	20	900	13,000	ND	31.6	6.2	ND	196	15	ND	47	13	ND	42	12	ND	6.7	5
1000 concentration					.		1			U	**		U			Ü	V.1	

Notes:
- 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
RL - Laboratory Reporting Limit, MDL=Minimum Detection Limit
Bold/highlighted-Indicated exceedance of the NYSDEC BulScO Guidance Value
Bold/highlighted-Indicated exceedance of the NYSDEC Stricted Restidential SCO Guidance Value
Bold/highlighted-Indicated exceedance of the NYSDEC Commercial Guidance Value

- Qualifiers
 U The compound was not detected at the indicated concentration.
 J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.
 B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
 P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
 *- For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
 NR Not analyzed

				Ecosy	stems :	Strateg	ies - RIR -	July 2	015		G	oldbera Z	oino &	Associate	s - Ren	nedial Inve	stigatio	on - Decer	nber 20	16	
					2SB-8			SB-11				SB-1						SB-1			
	NYSDEC Part 375.6	NYSDEC Part 375.6	NYDEC Part 375.6		1/2013			1/2013				2/12/2						2/12/2			
COMPOUND	Unrestricted Use Soil	Restricted Residential Soil	Restricted Commercial Cleanup	(1	10-15')		(1	0-15')		(0-2	.")	(5-7	")	(10-1	2')	(0-2	2')	(5-7	7')	(10-1	12')
	Cleanup Objectives*	Cleanup Objectives*	Objectives*	L	_ot 17			ot 17				Lot !						Lot			
				MDL	μg/Kg Result	RL	MDL	µg/Kg Result	RL	Result	Qual	μg/k Result	Qual	Result	Qual	Result	RL	μg/l Result	RL	Result	RL
1,1,1-Trichloroethane	680	100,000	500,000	ND	-	6.4	ND	-	5	1.2	U	- 1	U	1.1	U	1.2	U	1.1	U	1.1	U
1,1,1,2-Tetrachlorothane 1,1,2,2-Tetrachloroethane				ND ND	-	6.4	ND ND	-	5	1.2	U	1	U	1.1	U	1.2	U	1.1	U	1.1	U
1,1,2-Trichloroethane				ND	-	6.4	ND	-	5	1.7	Ü	1.6	Ü	1.7	Ü	1.8	Ü	1.7	Ü	1.7	U
1,1,2-Trichlorotrifluoroethane 1,1-Dichloroethane	270	26.000	240,000	ND ND	-	6.4	ND ND	-	5	1.7	- U	1.6	- U	1.7	- U	1.8	- U	1.7	- U	1.7	- U
1,1-Dichloroethene	330	100,000	500,000	ND	-	6.4	ND	-	5	1.2	U	1	U	1.1	U	1.2	U	1.1	Ü	1.1	U
1,1-Dichloropropene 1,2,3-Trichlorobenzene				ND ND	-	6.4	ND ND	-	5	5.8 5.8	U	5.2 5.2	U	5.6 5.6	U	6	U	5.6 5.6	U	5.6 5.6	U
1,2,3-Trichloropropane				ND	-	6.4	ND	-	5	12	Ü	10	U	11	U	12	U	11	U	11	U
1,2,4,5-Tetramethylbenzene 1,2,4-Trichlorobenzene				- ND	-	6.4	- ND	-	- 5	4.6 5.8	U	4.2 5.2	U	4.5 5.6	U	4.8	U	4.5 5.6	U	4.5 5.6	U
1,2,4-Trimethylbenzene	3,600	52,000	190,000	ND	-	6.4	ND	-	5	5.8	Ü	5.2	U	5.6	U	6	U	5.6	U	5.6	U
1,2-Dibromo-3-chloropropane 1,2-Dibromomethane				ND ND	-	6.4	ND ND	-	5	5.8	U	5.2	U	5.6 4.5	U	6 4.8	U	5.6	U	5.6 4.5	U
1,2-Dichlorobenzene	1,100	100,000	100,000	-	-	-	-	-	-	5.8	U	5.2	U	5.6	U	6	U	5.6	U	5.6	U
1,2-Dichloroethane Dichloroethylenes	20	3,100	3,100	ND -	-	6.4	ND -	-	5	1.2	U	1	U	1.1	U	1.2	U	1.1	U	1.1	U
1,2-Dichloropropane				ND		6.4	ND.	_	5	4	U	3.7	U	3.9	U	4.2	U	3.9	Ü	4	U
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	8,400	52,000	190,000	ND ND	1	6.4	ND ND	-	5	5.8	U	5.2 5.2	U	5.6 5.6	U	6.0	U	5.6 5.6	U	5.6 5.6	U
1,3-Dichloropropane	2,400	49,000	280,000	ND		6.4	ND		5	5.8	U	5.2	U	5.6	U	6.0	U	5.6	U	5.6	U
1,4-Dichlorobenzene	1,800	13,000	130,000	ND	-	6.4	ND	-	5	5.8	U	5.2	U	5.6	U	6.0	U	5.6	U	5.6	U
1.4-Diethyl Benzene 1,4-Dioxane	100	13,000	130,000	ND.	Ė	130	ND	<u> </u>	100	4.6 120	U	4.2 100	U	4.5 110	U	4.8 120	U	4.5 110	U	4.5 110	U
2,2-Dichloropropane				ND	-	6.4	ND	-	5	5.8	U	5.2	U	5.6	U	6	U	5.6	U	5.6	U
Methyl Ethyl Ketone (2-Butanone) 2-Chlorotoluene	120	100,000	500,000	ND ND	-	6.4	ND ND	-	5	12 5.8	U	10 5.2	U	11	U	12 6	U	11 5.6	U	11 5.6	U
2-Hexanone (Methyl Butyl Ketone)				NA	-	-	NA	-	-	12	U	10	U	-	U	12	U	11	U	11	U
2-Isopropyltoluene 4-Chlorotoluene				- ND	-	6.4	- ND	-	- 5	5.8	- U	5.2	- U	5.6	- U	- 6	- U	5.6	- U	5.6	- U
4-Ethyltoluene					-	-	-	-	-	4.6	U	4.2	U	4.5	U	4.8	U	4.5	U	4.5	U
4-Methyl-2-Pentanone Acetone	50	100,000	500,000	NA ND	-	- 13	NA ND	-	10	12 3.6	U	10 5.2	U	11 16	U	12 2.7	U J	11 2.2	U	11 3.4	U J
Acrolein	30	100,000	300,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acrylonitrile Benzene	60	4,800	44,000	- ND	-	6.4	- ND	-	- 5	12	U	10	U	11	U	12	U	11	U	11	U
Bromobenzene	60	4,000	44,000	ND		6.4	ND		5	5.8	U	5.2	U	5.6	U	6	U	5.6	U	5.6	U
Bromochloromethane Bromodichloromethane				ND ND	-	6.4	ND ND	-	5	5.8	U	5.2	U	5.6	U	6	U	5.6	U	5.6	U
Bromoform				ND	-	6.4	ND	-	5	4.6	U	4.2	U	4.5	U	4.8	U	4.5	U	4.5	U
Bromomethane Carbon Disulfide				ND NA	-	6.4	ND NA	-	5	2.3	U	2.1	U	2.2	U	2.4	U	2.2	U	2.3	U
Carbon tetrachloride	760	2,400	22,000	ND	-	6.4	ND	-	5	1.2	U	10	U	1.1	U	1.2	U	1.1	U	1.1	U
Chlorobenzene	1,100	100,000	500,000	ND ND	-	6.4	ND ND	-	5	1.2	U	1 21	U	1.1	U	1.2	U	1.1	U	1.1	U
Chloroethane Chloroform	370	49,000	350,000	ND	-	6.4	ND	-	5	1.7	U	1.6	U	1.7	U	1.8	U	1.7	U	1.7	U
Chloromethane	050	400.000	500.000	ND ND	-	6.4	ND ND	-	5	5.8	U	5.2	U	5.6	U	6	U	5.6	U	5.6	U
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	250	100,000	500,000	ND	-	6.4	ND	-	5	1.2	U	1	U	1.1	U	1.2	U	1.1	U	1.1	U
Cyclohexane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cymene Dibromochloromethane				- ND	-	6.4	ND.	-	5	1.2	U	1	U	1.1	U	1.2	U	1.1	U	1.1	U
Dibromomethane				ND	-	6.4	ND	-	5	12	U	10	U	- 11	U	12	U	11	U	11	U
Dichlorodifluoromethane Diethyl Ether	1			ND ND	-	6.4	ND ND	-	5	12 5.8	U	10 5.2	U	11 5.6	U	12 6	U	11 5.6	U	11 5.6	U
Ethylbenzene	1,000	41,000	390,000	ND	-	6.4	ND	-	5	1.2	U	1	U	1.1	U	1.2	U	1.1	U	1.1	U
Hexachlorobutadiene Isopropylbenzene	1			ND ND	-	6.4	ND ND	-	5	5.8 1.2	U	5.2 1	U	5.6 1.1	U	6 1.2	U	5.6 1.1	U	5.6 1.1	U
m&p-Xylenes	260	100,000	500,000	ND	-	13	ND	-	10	2.3	U	2.1	U	2.2	U	2.4	U	2.2	U	2.3	U
Methyl Acetate Methyl t-butyl ether (MTBE)	930	100,000	500,000	- ND	-	6.4	- ND	-	- 5	-	-	-	-	-	+-	-	-	-	-	-	-
Methylcyclohexane					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methylene chloride Naphthalene	50 12,000	100,000 100,000	500,000 500,000	ND ND	-	13	ND ND	-	10 10	12 5.8	U	10 5.2	U	11 5.6	U	12 6	U	11 5.6	U	11 5.6	U
n-Butylbenzene				ND	-	6.4	ND	-	5	1.2	U	1	U	1.1	U	1.2	U	1.1	U	1.1	U
n-Propylbenzene o-Xylene	3,900 260	100,000 100,000	500,000 500,000	ND ND	-	6.4	ND ND	-	5	1.2 2.3	U	2.1	U	1.1	U	1.2	U	1.1	U	1.1	U
p-Isopropyltoluene				ND	-	6.4	ND	-	5	-	-	-	-	-	-	-	-	-		-	-
sec-Butylbenzene Styrene	11,000	100,000	500,000	ND ND	-	6.4	ND ND	-	5 5	1.2 2.3	U	2.1	U	1.1	U	1.2 2.4	U	1.1	U	1.1	U
t-1,3-Dichloropropene				-	-	-	-	-	-	-	-		Ĭ-	-	-	-	-	-	Ĕ	-	-
Tert-butyl alcohol tert-Butylbenzene	5,900	100,000	500,000	- ND	-	6.4	- ND	-	- 5	5.8	- U	5.2	- U	5.6	- U	- 6	- U	5.6	- U	5.6	- U
tert-Buyl methyl ether				-	-	-		-	-	2.3	U	2.1	U	2.2	U	2.4	U	2.2	U	2.3	U
Tetrachloroethene Tetrahydrofuran (THF)	1,300	19,000	150,000	ND -	-	6.4	ND -	-	5	1.2	U -	1 -	U -	1.1	U -	1.2	U	1.1	U -	1.1	U
Toluene	700	100,000	500,000	- ND		6.4	ND		5	1.7	U	0.22	J	1.7	U	1.8	U	1.7	U	1.7	U
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	190	100,000	500,000	ND ND	1	6.4	ND ND		5	1.7	U	1.6	U	1.7	U	1.8	U	1.7	U	1.7	U
trabs-1,4-dichloro-2-butene				-		-			-	1.2 5.8	U	5.2	U	1.1 5.6	U	1.2 6	U	1.1 5.6	U	1.1 5.6	U
Trichloroethene Trichlorofluoromethane	470	21,000	200,000	ND ND	-	6.4	5.5 ND	-	5	1.2	U	1	U	1.1	U	1.2	U	1.1	U	1.1	U
Trichlorofluoromethane Trichlorotrifluoroethane	<u></u>			ND -	-	-	- 14D	-	-	5.8	-	5.2	-	5.6	-	-	-	5.6	-	5.6	-
Vinyl Acetate	20	000	12.000	ND	-	6.4	ND	-	5	12	U	10	U	11	U	12	U	11	U	11	U
Vinyl Chloride Total VOCs Concentration	20	900	13,000	ND	0	6.4	ND	8.1	5	2.3	U	2.1 5.2	U	2.2	U	2.4	U	2.2	U	2.3 0	U

Notes:
*-6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
RL - Laboratory Reporting Limit, MDL=Minimum Detection Limit
Boldhighlighted- Indicated exceedance of the NYSDEC UISCO Guidance Value
Boldhighlighted- Indicated exceedance of the NYSDEC Asstricted Restidential SCO Guidance Value
Boldhighlighted- Indicated exceedance of the NYSDEC Commercial Guidance Value

- Oualifiers
 U The compound was not detected at the indicated concentration.
 J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.
 B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
 P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
 *- For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
 NR Not analyzed

							G	oldberg Zo	oino &	Associates	s - Rem	edial Inve	stigatio	on - Decen	nber 20	16			
						SB-1	03					SB-1	04				SB	-105	
	NYSDEC Part 375.6	NYSDEC Part 375.6	NYDEC Part 375.6			2/12/2	016					2/11/2	016				2/11	/2016	
COMPOUND	Unrestricted Use Soil	Restricted Residential Soil	Restricted Commercial Cleanup	(0-2	")	(4-6)	')	(10-1	2')	(0-2	')	(5-7	")	(10-1	2')	(0-2	•	(10-1	12')
	Cleanup Objectives*	Cleanup Objectives*	Objectives*			Lot 5						Lot 5 µg/K						t 57 /Kg	
				Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
1,1,1-Trichloroethane 1,1,1,2-Tetrachlorothane	680	100,000	500,000	1.2	U	1.1	U	4.4	U	1.1	U	1	U	1.1	U	1.2	U	1	U
1,1,2,2-Tetrachloroethane				1.2	U	1.1	U	4.4	U	1.1	U	1	U	1.1	U	1.2	U	1	U
1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane				1.7	- U	1.6	- -	6.6	- -	1.7	- U	1.5	- -	1.7	- U	1.8	- -	1.6	U -
1,1-Dichloroethane 1,1-Dichloroethene	270 330	26,000 100,000	240,000 500,000	1.7	U	1.6	U	6.6	U	1.7	U	1.5	U	1.7	U	1.8	U	1.6	U
1,1-Dichloropropene	330	100,000	300,000	1.2 5.8	U	1.1 5.5	U	4.4 22	U	1.1 5.6	U	5	U	1.1 5.6	U	1.2	U	5.2	U
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane				5.8 12	U	5.5 11	U	22 44	U	5.6 11	U	5 10	U	5.6 11	U	6 12	U	5.2 10	U
1,2,4,5-Tetramethylbenzene				4.6	U	4.4	U	18	U	4.5	U	4	U	4.5	U	4.8	U	4.1	U
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	3,600	52,000	190,000	5.8 5.8	U	5.5 5.5	U	22 22	U	5.6 5.6	U	5	U	5.6 5.6	U	6	U	5.2 5.2	U
1,2-Dibromo-3-chloropropane 1,2-Dibromomethane				5.8 4.6	U	5.5 4.4	U	22 18	U	5.6 4.5	U	5	U	5.6 4.5	U	6 4.8	U	5.2 4.1	U
1,2-Dichlorobenzene	1,100	100,000	100,000	5.8	U	5.5	U	22	Ü	5.6	U	5	U	5.6	U	6	U	5.2	U
1,2-Dichloroethane Dichloroethylenes	20	3,100	3,100	1.2	U	1.1	U	4.4	U	1.1	U	1	U	1.1	U	1.2	U	1	U
1,2-Dichloropropane	0.400	F0.00C	400.000	4 5.8	U	3.8	U	15 22	U	3.9	U	3.5	U	4	U	4.2	U	3.6	U
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	8,400 2,400	52,000 49,000	190,000 280,000	5.8	U	5.5	U	22	U	5.6	U	5	U	5.6 5.6	U	6	U	5.2	U
1,3-Dichloropropane 1,4-Dichlorobenzene	1,800	13,000	130,000	5.8 5.8	U	5.5 5.5	U	22	U	5.6 5.6	U	5	U	5.6 5.6	U	6	U	5.2 5.2	U
1.4-Diethyl Benzene				4.6	U	4.4	U	18	U	4.5	U	4	U	4.5	U	4.8	U	4.1	U
1,4-Dioxane 2,2-Dichloropropane	100	13,000	130,000	120 5.8	U	110 5.5	U	440 22	U	110 5.6	U	100 5.	U	110 5.6	U	120 6	U	100 5.2	U
Methyl Ethyl Ketone (2-Butanone) 2-Chlorotoluene	120	100,000	500,000	12 5.8	U	11 5.5	U	44 22	U	11 5.6	U	10 5	U	11 5.6	U	3.5	U	10 5.2	U
2-Hexanone (Methyl Butyl Ketone)				12	U	11	U	44	U	11	U	10	U	11	U	12	U	10	U
2-Isopropyltoluene 4-Chlorotoluene				5.8	- U	5.5	- U	- 22	- U	5.6	- U	5	- U	5.6	- U	- 6	- U	5.2	- U
4-Ethyltoluene 4-Methyl-2-Pentanone				4.6	U	4.4	U	18 44	U	4.5	U	4	U	4.5	U	4.8	U	4.1	U
Acetone	50	100,000	500,000	12 18	U	13	U	22	J	11 2.8	U	10 3.1	U	11 10	U	12 36	U	10 4.4	J
Acrolein Acrylonitrile				- 12	- U	- 11	- U	- 44	- 11	- 11	- U	10	- U	- 11	- U	12	- U	- 10	- U
Benzene	60	4,800	44,000	1.2	U	1.1	U	4.4	U	1.1	U	1	U	1.1	U	1.2	U	1	U
Bromobenzene Bromochloromethane				5.8 5.8	U	5.5 5.5	U	22 22	U	5.6 5.6	U	5	U	5.6 5.6	U	6	U	5.2 5.2	U
Bromodichloromethane Bromoform				1.2 4.6	U	1.1 4.4	U	4.4 18	U	1.1	U	1 4	U	1.1 4.5	U	1.2 4.8	U	1 4.1	U
Bromomethane				2.3	U	2.2	U	8.8	U	2.2	U	2	U	2.3	U	2.4	U	2.4	U
Carbon Disulfide Carbon tetrachloride	760	2,400	22,000	1.2	U	1.1	U	44 4.4	U	1.1	U	10	U	1.1	U	1.2	U	10	U
Chlorobenzene Chloroethane	1,100	100,000	500,000	1.2	U	1.1	U	4.4 8.8	U	1.1	U	1	U	1.1	U	1.2	U	1 2 4	U
Chloroform	370	49,000	350,000	1.7	U	1.6	U	6.6	U	1.7	U	1.5	U	1.5	U	1.8	U	1.6	U
Chloromethane cis-1,2-Dichloroethene	250	100,000	500,000	5.8 1.2	U	5.5 1.1	U	22 4.4	U	5.6 1.1	U	5. 1	U	5.6 1.1	U	6 1.2	U	5.2 1	U
cis-1,3-Dichloropropene Cyclohexane				1.2	U	1.1	U	4.4	U	1.1	U	1	U	1.1	U	1.2	U	1	U
Cymene				1.2	U	1.1	U	4.4	U	1.1	U	1	U	1.1	U	1.2	U	1	U
Dibromochloromethane Dibromomethane				1.2	U	1.1	U	4.4	U	1.1	U	10	U	1.1	U	1.2	U	1 10	U
Dichlorodifluoromethane				12	U	11	U	44	U	11	U	10	U	11	U	12	U	10	U
Diethyl Ether Ethylbenzene	1,000	41,000	390,000	5.8 1.2	U	5.5 1.1	U	22 4.4	U	5.6 1.1	U	5. 1	U	5.6 1.1	U	1.2	U	5.2	U
Hexachlorobutadiene Isopropylbenzene				5.8 1.2	U	5.5 1.1	U	22 4.4	U	5.6 1.1	U	5. 1	U	5.6 1.1	U	6 1.2	U	5.2 1	U
m&p-Xylenes	260	100,000	500,000	2.3	Ü	2.2	U	2.2	U	2.2	Ü	2	Ü	2.3	U	2.4	U	2.1	U
Methyl Acetate Methyl t-butyl ether (MTBE)	930	100,000	500,000					-					-	-	-			-	+
Methylcyclohexane Methylene chloride	50	100,000	500,000	- 12	- U	- 11	- 11	- 44	- 11	- 11	- U	- 10	- U	- 11	- U	- 12	- 11	- 10	- 11
Naphthalene	12,000	100,000	500,000	5.8	U	0.29	J	22	U	5.6	U	5	U	5.6	U	6	U	5.2	U
n-Butylbenzene n-Propylbenzene	3,900	100,000	500,000	1.2	U	1.1	U	4.4 4.4	U	1.1	U	1	U	1.1	U	1.2	U	1	U
o-Xylene p-Isopropyltoluene	260	100,000	500,000	2.3	U -	2.2	U	1.1	J	2.2	U	2	U	2.3	U -	2.4	U	2.1	U
sec-Butylbenzene	11,000	100,000	500,000	1.2	U	1.1	U	4.4	U	1.1	U	1	U	1.1	U	1.2	U	1	U
Styrene t-1,3-Dichloropropene				2.3	U -	2.2	- -	8.8	U -	2.2	U -	2	U -	2.3	U -	2.4	U -	2.1	U -
Tert-butyl alcohol	5,000	400.000	500.000	5.8	- U	5.5	- U	- 22	- U	5.6	-	-	-	-	- 17	- 0	- 12	-	- U
tert-Butylbenzene tert-Buyl methyl ether	5,900	100,000	500,000	2.3	U	5.5	U	22 8.8	U	5.6 2.2	U	2	U	5.6 2.3	U	2.4	U	5.2 2.1	U
Tetrachloroethene Tetrahydrofuran (THF)	1,300	19,000	150,000	1.2	U -	1.1	U -	4.4	U -	1.1	U -	5	U -	1.1	U -	1.2	U -	1 -	U -
Toluene	700	100,000	500,000	0.23	U	0.36	U	1.1	U	0.24	U	0.25	U	0.60	U	1.8	U	1.6	U
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	190	100,000	500,000	1.7	U	1.6	U	6.6 4.4	U	1.7	U	1.5	U	1.7	U	1.8	U	1.6	U
trabs-1,4-dichloro-2-butene Trichloroethene	470	21,000	200,000	5.8 1.2	U	5.5 1.1	U	22 4.4	U	5.6 1.1	U	5 1	U	5.6 1.1	U	6 1.2	U	5.2	U
Trichlorofluoromethane	-770	21,000	200,000	5.8	U	5.5	U	22	U	5.6	U	5	U	5.6	U	6	U	5.2	U
Trichlorotrifluoroethane Vinyl Acetate				12	- U	- 11	- U	- 44	- U	- 11	- U	10	- U	- 11	- U	12	- U	10	- U
Vinyl Chloride	20	900	13,000	2.3	U	2.2	U	8.8	U	2.2	U	2	U	2.3	U	2.4	U	2.1	U
Total VOCs Concentration		<u>I</u>	l .	0		13		23.		0		40		0		0		4.4	<u>•</u>

Notes:

**e NYCRF Part 375-6 Remedial Program Soil Cleanup Objectives
RL - Laboratory Reporting Limit, MDL=Minimum Detection Limit
Bold/highlighted- Indicated exceedance of the NYSDEC Bulsco Guidance Value
Bold/highlighted- Indicated exceedance of the NYSDEC Restricted Restidential SCO Guidance Value
Bold/highlighted- Indicated exceedance of the NYSDEC Commercial Guidance Value

- Qualifiers
 U The compound was not detected at the indicated concentration.

 J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

 B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

 P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

 *- For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

 NR Not analyzed

						Gol	dberg 2	Zoino & As	ssociat	es - Reme	dial Inv	estigation	- Dece	ember 2010	3		
					SB	-106			SB-	107				SB-1	08		
	NYSDEC Part 375.6	NYSDEC Part 375.6 Restricted	NYDEC Part 375.6 Restricted			/2016			2/11/					2/11/2			
COMPOUND	Unrestricted Use Soil Cleanup Objectives*	Residential Soil Cleanup Objectives*	Commercial Cleanup	(0-2	') Lo	(10-1	2')	(0-2	') Lot	(10-1	2')	(0-2	()	(4-6 Lot 5		(10-1	12')
		Cleanup Objectives	Objectives*			/Kg			µg/					μg/K			
1,1,1-Trichloroethane	680	100,000	500,000	Result	RL	Result	RL U	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
1,1,1,2-Tetrachlorothane	000	100,000	300,000	1.2	U	1.2	U	1.1	U	1.1	U	1.1	U	1.1	U	1.1	U
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane				1.2	U	1.2	U	1.1	U	1.1	U	1.1	U	1.1	U	1.1	U
1,1,2-Trichlorotrifluoroethane				-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethane 1,1-Dichloroethene	270 330	26,000 100,000	240,000 500,000	1.7	U	1.9	U	1.6	U	1.6	U	1.7	U	1.6	U	1.6	U
1,1-Dichloropropene		,	,	5.8	U	6.2	U	5.5	U	5.4	U	5.7	U	5.4	U	5.5	U
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane				5.8 12	U	6.2 12	U	5.5 11	U	5.4	U	5.7	U	5.4 11	U	5.5	U
1,2,4,5-Tetramethylbenzene				4.7	U	5	U	4.4	U	4.3	U	4.5	U	4.3	U	4.4	Ü
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	3,600	52,000	190,000	5.8 5.8	U	6.2	U	5.5 5.5	U	5.4	U	5.7 5.7	U	5.4 5.4	U	5.5 5.5	U
1,2-Dibromo-3-chloropropane	-,		,	5.8	U	6.2	U	5.5	U	5.4	U	5.7	U	5.4	U	5.5	Ü
1,2-Dibromomethane 1,2-Dichlorobenzene	1,100	100,000	100,000	4.7 5.8	U	5 6.2	U	4.4 5.5	U	4.3 5.4	U	4.5 5.7	U	4.3 5.4	U	4.4 5.5	U
1,2-Dichloroethane	20	3,100	3,100	1.2	U	1.2	U	1.1	U	1.1	U	1.1	U	1.1	U	1.1	U
Dichloroethylenes 1,2-Dichloropropane				1.2 4.1	U	1.2 4.3	U	1.1	U	1.1	U	1.1	U	1.1 3.8	U	1.1	U
1,3,5-Trimethylbenzene	8,400	52,000	190,000	5.8	U	6.2	U	5.5	U	5.4	U	5.7	U	5.4	U	5.5	U
1,3-Dichlorobenzene 1,3-Dichloropropane	2,400	49,000	280,000	5.8 5.8	U	6.2	U	5.5 5.5	U	5.4 5.4	U	5.7 5.7	U	5.4 5.4	U	5.5 5.5	U
1,4-Dichlorobenzene	1,800	13,000	130,000	5.8	U	6.2	U	5.5	U	5.4	U	5.7	U	5.4	U	5.5	U
1.4-Diethyl Benzene 1,4-Dioxane	100	13,000	130,000	4.7 120	U	5 120	U	4.4 110	U	4.3 110	U	4.5 110	U	4.3 110	U	4.4 110	U
2,2-Dichloropropane				5.8	U	6.2	U	5.5	U	5.4	U	5.7	U	5.4	U	5.5	U
Methyl Ethyl Ketone (2-Butanone) 2-Chlorotoluene	120	100,000	500,000	12 5.8	U	12 6.2	U	11 5.5	U	11 5.4	U	5.7	U	11 5.4	U	11 5.5	U
2-Hexanone (Methyl Butyl Ketone)				12	U	12	U	11	U	11	U	11	U	11	U	11	U
2-Isopropyltoluene 4-Chlorotoluene				5.8	- U	6.2	- U	5.5	- U	5.4	- U	5.7	- U	5.4	- U	5.5	U
4-Ethyltoluene				4.7	U	5	U	4.4	U	4.3	U	4.5	U	4.3	U	4.4	U
4-Methyl-2-Pentanone Acetone	50	100,000	500,000	12 8.1	J	12 2.7	J	11	U	11	U	3.8	U	4.3	J	1.4	U
Acrolein				-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acrylonitrile Benzene	60	4,800	44,000	1.2	U	1.2	U	1.1	U	1.1	U	1.1	U	11	U	1.1	U
Bromobenzene				5.8	U	6.2	U	5.5 5.5	U	5.4	U	5.7 5.7	U	5.4	U	5.5	U
Bromochloromethane Bromodichloromethane				1.2	U	1.2	U	1.1	U	5.4 1.1	U	1.1	U	1.1	U	5.5 1.1	U
Bromoform Bromomethane				4.7 2.3	U	5 2.5	U	4.4	U	4.3	U	4.5	U	4.3	U	4.4	U
Carbon Disulfide				12	U	12	U	11	U	11	U	11	U	2.1	U	11	U
Carbon tetrachloride	760	2,400	22,000	1.2	U	1.2	U	1.1	U	1.1	U	1.1	U	1.1	U	1.1	U
Chlorobenzene Chloroethane	1,100	100,000	500,000	2.3	U	2.5	U	2.2	U	2.2	U	2.3	U	2.1	U	2.2	U
Chloroform Chloromethane	370	49,000	350,000	1.7	U	1.9	U	1.6	U	1.6	U	1.7	U	1.6	U	1.6	U
cis-1,2-Dichloroethene	250	100,000	500,000	1.2	U	1.2	U	1.1	U	1.1	U	1.1	U	1.1	U	1.1	U
cis-1,3-Dichloropropene Cyclohexane				1.2	U	1.2	U	1.1	U	1.1	U	1.1	U	1.1	U	1.1	U
Cymene				1.2	U	1.2	U	1.1	U	1.1	U	1.1	U	1.1	U	1.1	U
Dibromochloromethane Dibromomethane				1.2	U	1.2	U	1.1	U	1.1	U	1.1	U	1.1	U	1.1	U
Dichlorodifluoromethane				12	U	12	U	11	U	11	U	11	U	11	U	11	U
Diethyl Ether Ethylbenzene	1,000	41,000	390,000	5.8 1.2	U	6.2 1.2	U	5.5	U	5.4 1.1	U	5.7 1.1	U	5.4 1.1	U	5.5 1.1	U
Hexachlorobutadiene	1,000	41,000	000,000	5.8	U	6.2	U	5.5	U	5.4	U	5.7	U	5.4	U	5.5	U
Isopropylbenzene m&p-Xylenes	260	100,000	500,000	1.2	U	1.2	U	1.1	U	1.1	U	1.1	U	1.1 2.1	U	1.1	U
Methyl Acetate				-	-	-	-	-	-	-	-	-	-	-	-	-	Į.
Methyl t-butyl ether (MTBE) Methylcyclohexane	930	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	1 -
Methylene chloride	50	100,000	500,000	12	U	12	U	11	U	11	U	11	U	11	U	11	U
Naphthalene n-Butylbenzene	12,000	100,000	500,000	5.8 1.2	U	1.3 1.2	J	5.5 1.1	U	5.4 1.1	U	5.7 1.1	U	5.4 1.1	U	5.5 1.1	U
n-Propylbenzene	3,900	100,000	500,000	1.2	U	1.2	U	1.1	U	1.1	U	1.1	U	1.1	U	1.1	U
o-Xylene p-Isopropyltoluene	260	100,000	500,000	2.3	U -	2.5	U -	2.2	U -	2.2	U -	2.3	U -	2.1	U -	2.2	- -
sec-Butylbenzene	11,000	100,000	500,000	1.2	U	1.2	U	1.1	U	1.1	U	1.1	U	1.1	U	1.1	U
Styrene t-1,3-Dichloropropene		<u> </u>		2.3	U .	2.5	U -	2.2	U -	2.2	U -	2.3	U -	2.2	U -	2.1	-
Tert-butyl alcohol	F.000	400 000	F00 ***	-	-	12	- 1	-	- 1	-	-	-	-	-	-	-	-
tert-Butylbenzene tert-Buyl methyl ether	5,900	100,000	500,000	5.8 2.3	U	1.3 2.5	J	5.5 2.2	U	5.4 2.2	U	5.7 2.3	U	5.4 2.2	U	5.5 2.1	U
Tetrachloroethene Tetrahydrofuran (THF)	1,300	19,000	150,000	1.2	U	1.2	U	1.1	U	1.1	U	1.1	U	1.1	U	1.1	U
Toluene	700	100,000	500,000	1.7	- U	0.32	J	0.26	J	1.6	- U	0.25	J	0.22	- J	0.26	J
trans-1,2-Dichloroethene	190	100,000	500,000	1.7	U	1.9	U	1.6	U	1.6	U	1.7	U	1.6	U	1.6	U
trans-1,3-Dichloropropene trabs-1,4-dichloro-2-butene				1.2 5.8	U	1.2 1.3	J	1.1 5.5	U	1.1 5.4	U	1.1 5.7	U	1.1 5.4	U	1.1 5.5	U
Trichloroethene	470	21,000	200,000	1.2	U	1.2	U	1.1	U	1.1	U	1.1	U	1.1	U	1.1	U
Trichlorofluoromethane Trichlorotrifluoroethane		<u> </u>		5.8	- -	1.3	J -	5.5	- -	5.4	- -	5.7	U -	5.4	- -	5.5	U -
Thenorounidoroemane																	
Vinyl Acetate Vinyl Chloride	20	900	13,000	12	-	12 2.5	U	11	U	11	U	11	U	11 2.1	U	11	U

Notes:
*-6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
RL - Laboratory Reporting Limit, MDL=Minimum Detection Limit
Boldhighlighted-Indicated exceedance of the NYSDEC UUSCO Guidance Value
Boldhighlighted-Indicated exceedance of the NYSDEC Restricted Restidential SCO Guidance Value
Boldhighlighted-Indicated exceedance of the NYSDEC Commercial Guidance Value

- Qualifiers
 U The compound was not detected at the indicated concentration.
 J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.
 B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
 P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
 *- For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
 NR Not analyzed

									AS	R - Phase	II Inve	stigation -	May 20	006					
					SE	B-1			SI	3-2			SI	3-3		SB-	8	SB-	.9
	NYSDEC Part 375.6	NYSDEC Part 375.6	NYDEC Part 375.6	5/2/20		5/2/20		5/2/20		5/2/20		5/2/20		5/2/20		6/9/20		6/9/20	
COMPOUND	Unrestricted Use Soil Cleanup Objectives*	Restricted Residential Soil Cleanup Objectives*	Commercial Soil Cleanup Objectives*	(0-5		(8-12 t 57	2')	(0-5		(8-12 t 18	!')	(0-5'		(8-12 t 21	2')	(8-9 Lot 2		(8-9 Lot 2	
				μg/K		μg/K	g	μg/K		μg/K _i	,	μg/Kg		μg/K	g	μg/K		μg/K	
44.8%				Result				Result		Result		Result				Result		Result	
1,1-Biphenyl 2,2-oxybis(1-Chloropropoane)				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,4,5-Tetrachlorobenzene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,4-Trichlorobenzene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichlorobenzene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Diphenylhydrazine					-		-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichlorobenzene 1,4-Dichlorobenzene					-	-	-		-	-	-	-	-	-	-	-	-	-	-
2,4,5-Trichlorophenol				-	-	-	-	-	-	-	-	-		-	-	-	-		-
2,4,6-Trichlorophenol				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2,4-Dichlorophenol				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2,4-Dimethylphenol 2,4-Dinitrophenol				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2,4-Dinitrotoluene							-			-	-	-	-	-	-	-	-		
2,6-Dinitrotoluene					-	-	-		-	-	-	-	-	-	-	-	-		-
2-Chloronaphthalene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2-Chlorophenol				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2-Methylnaphthalene 2-Methylphenol (o-cresol)	330	100,000	500,000	-	-	-	-	-		-		-		-	-	-		-	\vdash
2-Metnyipnenoi (o-cresoi) 2-Nitroaniline	330	100,000	300,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2-Nitrophenol				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3,3'-Dichlorobenzidine				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\Box
3&4-Methylphenol (m&p-cresol)	330	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3-Nitroaniline 4,6-Dinitro-2-methylphenol					-	-		-	-	-		-	-	-	-	-	-	-	+-
4-Bromophenyl phenyl ether				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4-Chloro-3-methylphenol				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4-Chloroaniline				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>
4-Chlorophenyl phenyl ether				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4-Nitroaniline				-		-	-	-		-	-	-	-	-	-	-	-	-	-
4-Nitrophenol Acenaphthene	20,000	100,000	500,000				-			-	-	-	-	-	-	-	-		
Acenaphthylene	100,000	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acetophenone					-		-		-	-	-	-	-		-	-	-		-
Aniline				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Anthracene Atrazine	100,000	100,000	500,000		1		-	-	1	-		-	-	-	H	-	H :	<u> </u>	-
Benzaldehyde				-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
Benz(a)anthracene	1,000	1,000	5,600	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzidine				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(a)pyrene	1,000	1,000	1,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(b)fluoranthene Benzo(ghi)perylene	1,000	1,000 100,000	5,600 500,000	-	-	-	-	-	-	-	-		-	-	-	-	-		-
Benzo(k)fluoranthene	800	3,900	56,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzoic acid				-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
Benzyl Alcohol				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Biphenyl				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzyl butyl phthalate Bis(2-chloroethoxy)methane					-	-	-	-	-	-	-	-	-		-	-	-	-	-
Bis(2-chloroethyl)ether				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bis(2-chloroisopropyl)ether				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bis(2-ethylhexyl)phthalate				-	-	-	-	-	-	-	-	-	-	190	-	280	-	170	-
Carporale				-	-	-	-		-	-	-	-	-	-	-	-	-	-	H
Carbazole Chrysene	1,000	3,900	56,000		-		-		-	-	-		-	-	-		-		
Dibenz(a,h)anthracene	330	330	560	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibenzofuran	7,000	59,000	350,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Diethyl phthalate				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	⊢⊢
Dimethylphthalate Di-n-butylphthalate				-	-	-	-	-	-	-		-	-	-	-	-		-	+-
Di-n-outylphthalate				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	 -
Fluoranthene	100,000	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluorene	30,000	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-		-	<u> </u>
Hexachlorobenzene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>
Hexachlorobutadiene Hexachlorocyclopentadiene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hexachloroethane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Indeno(1,2,3-cd)pyrene	500	500	5,600	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Isophorone				-	-	-	-	-	-	-	-		-	-	-	-	-		-
Naphthalene	12,000	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nitrobenzene	1			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\vdash
N-Nitrosodi-n-propylamine N-Nitrosodimethylamine					-	-	-	-	-	-	-	-	-	-	-	-	-		
N-Nitrosodiphenylamine				_	-	-	-	-	Ŀ	-	_	-		-	Ŀ	-	L-	-	
Pentachloronitrobenzene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pentachlorophenol	800	6,700	6,700	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>
Phenanthrene	100,000	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+
Phenol Pyrene	330 100,000	100,000	500,000 500,000				-	-		-	-	-	-	-	-	-	-		H
Pyridine	100,000	.00,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
					Qualifi														

- Notes:

 * 6 NYCRR Part 375-6 Remedial Program Soil Clearup Objectives
 RL Laboratory Reporting Limit, MDL +Minimum Detection Limit
 Boldhighlighted-indicated exceedance of the NYSDEC UNSCO Guidance Value
 Boldhighlighted-indicated exceedance of the NYSDEC Restdential SCO Guidance Value
 Boldhighlighted-indicated exceedance of the NYSDEC RRSCO Guidance Value

- Qualifiers
 U The compound was not detected at the indicated concentration.
 J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.
 B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
 P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
 *- For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
 NR Not analyzed

									AS	R - Phase	II Inve	stigation -	May 20	006					
				SB-	10	SB-1	11	SB-1	12	SB-1	3	SB-1	4	SB-1	15	SB-	16	SB-	17
	NYSDEC Part 375.6	NYSDEC Part 375.6	NYDEC Part 375.6	6/9/20		6/9/20		6/9/20		6/9/20		6/20/20		6/13/2	006	6/13/2	006	6/13/2	006
COMPOUND	Unrestricted Use Soil Cleanup Objectives*	Restricted Residential Soil Cleanup Objectives*	Commercial Soil Cleanup Objectives*	(8") Lot 2		(8') Lot 2		(9-10 Lot 2		(9-10 Lot 1		(11-1: Lot 2		Lot 2	20	Lot '	18	Lot '	18
				µg/К	g	μg/K	g	μg/K	9	μg/Kį	9	μg/K _i	9	μg/K	g	μg/F	(g	μg/K	ίg
1,1-Biphenyl				Result	Qual -	Result -	Qual -	Result -	Qual -	Result -	Qual -	Result	Qual -	Result	Qual -	Result -	Qual -	Result	Qual -
2,2-oxybis(1-Chloropropoane)				-	-	-	-	-		-			-		-	-	-	-	-
1,2,4,5-Tetrachlorobenzene				-	-	-	-	-	-			-	-	-	-	-	-	-	-
1,2,4-Trichlorobenzene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichlorobenzene 1,2-Diphenylhydrazine					-	-	-	-	-	-	-	-	-	-	-	-	-		-
1,3-Dichlorobenzene				-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
1,4-Dichlorobenzene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol					-		-	-	-		-		-	-	-	-	-	-	-
2,4-Dichlorophenol				-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
2,4-Dimethylphenol				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2,4-Dinitrophenol 2,4-Dinitrotoluene				-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
2,6-Dinitrotoluene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2-Chloronaphthalene				-	-	-	-	-	-			-	-	-	-	-	-	-	-
2-Chlorophenol				-	-	-	-	-	-	-	-	-	-	-	-	-		-	
2-Methylnaphthalene 2-Methylphenol (o-cresol)	330	100,000	500,000	-	-	-	-		Ŀ		-		_	-		-			<u> </u>
2-Nitroaniline				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2-Nitrophenol				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>
3,3'-Dichlorobenzidine 3&4-Methylphenol (m&p-cresol)	330	100,000	500,000		-		-			-	-		-	-	-			-	-
3-Nitroaniline		,	,,	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4,6-Dinitro-2-methylphenol				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol				-	-	-	-		-	-	-	-	-	-	-	-		-	-
4-Chloroaniline				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4-Chlorophenyl phenyl ether				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4-Nitroaniline				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4-Nitrophenol Acenaphthene	20,000	100,000	500,000		-		-	-	-	-	-	-	-		-	-	-	580	-
Acenaphthylene	100,000	100,000	500,000	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
Acetophenone				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aniline Anthracene	100,000	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	390	-
Atrazine	100,000	100,000	000,000	-	-	-	-			-	-		-		-	-	-	-	-
Benzaldehyde				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benz(a)anthracene Benzidine	1,000	1,000	5,600	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(a)pyrene	1,000	1,000	1,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(b)fluoranthene	1,000	1,000	5,600	-	-	-	-	-		-	-	-	-		-	-	-	-	-
Benzo(ghi)perylene	100,000	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(k)fluoranthene Benzoic acid	800	3,900	56,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzyl Alcohol				-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
Biphenyl				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzyl butyl phthalate Bis(2-chloroethoxy)methane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bis(2-chloroethyl)ether				-	-	-	-			-	-		-		-	-	-	-	-
Bis(2-chloroisopropyl)ether				-	-	-	<u> </u>	-		-	-	-	ĿĪ	-	-			-	<u> </u>
Bis(2-ethylhexyl)phthalate Caprolactam					-	260	-	-	-	370	-		-	-	-	-		300	-
Carbazole				-	-	-	-	_		-	-	-	-	-	-	_	-	-	-
Chrysene	1,000	3,900	56,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibenz(a,h)anthracene Dibenzofuran	330 7,000	330 59,000	560 350,000	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
Diethyl phthalate	7,000	ວອ,ບບປ	აის,სსს	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
Dimethylphthalate				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Di-n-butylphthalate				-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
Di-n-octylphthalate Fluoranthene	100,000	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-		340	-
Fluorene	30,000	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	270	-
Hexachlorobenzene				-	-	-		-	-	-	-	-	-	-	-	-	-		-
Hexachlorobutadiene Hexachlorocyclopentadiene				-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
Hexachloroethane				-	-	-	-		L	-	-		Ŀ		L-	-	_		L-
Indeno(1,2,3-cd)pyrene	500	500	5,600	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Isophorone Nanhthalene	12.000	100.000	500.000	-	-	-	-	-	-	-	-	-	-	-	-	-		1,500	-
Naphthalene Nitrobenzene	12,000	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-,000	-
N-Nitrosodi-n-propylamine				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
N-Nitrosodimethylamine				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
N-Nitrosodiphenylamine Pentachloronitrobenzene				-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
Pentachlorophenol	800	6,700	6,700		-	-	-	-	-	-	-		-		-	-		-	-
Phenanthrene	100,000	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	710	-
Phenol	330	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	500	-
Pyrene Pyridine	100,000	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-			-	-
,					Qualifi						_					n.	. —		

- Notes:

 * 6 NYCRR Part 375-6 Remedial Program Soil Clearup Objectives
 RL Laboratory Reporting Limit, MDL +Minimum Detection Limit
 Boldhighlighted-indicated exceedance of the NYSDEC UNSCO Guidance Value
 Boldhighlighted-indicated exceedance of the NYSDEC Restdential SCO Guidance Value
 Boldhighlighted-indicated exceedance of the NYSDEC RRSCO Guidance Value

- Qualifiers
 U The compound was not detected at the indicated concentration.
 J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.
 B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
 P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
 *- For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
 NR Not analyzed

								ASR	- Pha	se II Invest	igatior	n - May 200	16				
				SB-	18	SB-1	19	SB-2	20		M	W-9			MV	V-10	
	NYSDEC Part 375.6	NYSDEC Part 375.6	NYDEC Part 375.6	6/13/2	006	6/13/2	006	6/13/2	006	7/21/2		7/21/2		7/21/2		7/21/2	
COMPOUND	Unrestricted Use Soil Cleanup Objectives*	Restricted Residential Soil Cleanup Objectives*	Commercial Soil Cleanup Objectives*	Lot '	17	Lot 1	17	Lot 1	17	(5-10 L		(10-1 sidewalk)	5')	(0-5		(10-1 sidewalk)	5')
				µg/К	g	μg/K	g	μg/K	g	μg/K	9	μg/K		μg/K	g	μg/K	
1,1-Biphenyl				Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
2,2-oxybis(1-Chloropropoane)				-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,4,5-Tetrachlorobenzene				-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,4-Trichlorobenzene				-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichlorobenzene				-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Diphenylhydrazine 1,3-Dichlorobenzene					-		-		-	-	-	-	-		-	-	-
1,4-Dichlorobenzene				-	-	-	-	-	-	-	-	-	-	-	-	-	-
2,4,5-Trichlorophenol					-		-			-	-	-	-		-		-
2,4,6-Trichlorophenol				-	-	-	-	-	-	-	-	-	-	-	-	-	-
2,4-Dichlorophenol 2,4-Dimethylphenol				-	-		-	-	-	-	-	-	-	-	-	-	-
2,4-Dinitrophenol					-	-	-	-	-	-	-	-	-	-	-	-	-
2,4-Dinitrotoluene				-	-		-		-	-	-	-	-		-	-	-
2,6-Dinitrotoluene				-	-	-	-	-	-	-	-	-	-	-	-	-	-
2-Chloronaphthalene				-	-	-	-	-	-	-	-	-	-	-	-	-	-
2-Chlorophenol 2-Methylnaphthalene				-	-	-	-	-	-		-	-	-	-	-	-	-
2-Methylphenol (o-cresol)	330	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2-Nitroaniline				-	-	-	-	-	-	-	-	-	-	-	-	-	-
2-Nitrophenol				-	-	-	-	-	-	-	-	-	-	-	-	-	-
3,3'-Dichlorobenzidine 3&4-Methylphenol (m&p-cresol)	330	100,000	500,000		-		-		-		-		-		-	-	
3-Nitroaniline		100,000	500,000		-	_	Ŀ	_	Ŀ	-	Ŀ	-	_	_	Ŀ		Ŀ
4,6-Dinitro-2-methylphenol				-	-	-	-	-	-	-	-	-	-	-	-	-	-
4-Bromophenyl phenyl ether				-	-	-	-	-	-	-	-	-	-	-	-	-	-
4-Chloro-3-methylphenol					-	-	-	-	-	-	-	-	-	-	-	-	-
4-Chloroaniline 4-Chlorophenyl phenyl ether					-	-	-	-	-	-	-	-	-	-	-	-	
4-Nitroaniline				-	-		-		-	-	-	-	-		-	-	-
4-Nitrophenol				-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acenaphthene	20,000	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acenaphthylene Acetophenone	100,000	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aniline				-	-	-	-	-	-	-	-	-	-	-	-	-	-
Anthracene	100,000	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Atrazine				-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzaldehyde	1.000	4.000	5.000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benz(a)anthracene Benzidine	1,000	1,000	5,600		-		-	-	-	-	-	-	-		-	-	-
Benzo(a)pyrene	1,000	1,000	1,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(b)fluoranthene	1,000	1,000	5,600		-		-			-	-	-	-		-		-
Benzo(ghi)perylene	100,000	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(k)fluoranthene Benzoic acid	800	3,900	56,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzyl Alcohol				-	-	-	-	-	-	-	-	-	-	-	-	-	-
Biphenyl				-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzyl butyl phthalate				-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bis(2-chloroethoxy)methane					-	-	-	-	-	-	-	-	-	-	-	-	-
Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether					-	-	-	-	-	-	-	-	-		-	-	
Bis(2-ethylhexyl)phthalate				-	-	-	-	-	-	-	-	59,000	-	-	-	6,300	-
Caprolactam				-	-		-		-	-	-	-	-	-	-	-	-
Carbazole				-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chrysene	1,000 330	3,900 330	56,000 560		-	-	-	-	-	-	-	-	-		-	-	-
Dibenz(a,h)anthracene Dibenzofuran	7,000	59,000	350,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Diethyl phthalate	,	,	,	-	-	-	-	-		-	-	-	-	-	-	-	-
Dimethylphthalate				-	-	-	-	-	-	-	-	-	-	-	-	-	
Di-n-butylphthalate		 		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Di-n-octylphthalate Fluoranthene	100,000	100,000	500,000		-	-		-	<u> </u>	-	-	-	-	-	-	-	-
Fluorene	30,000	100,000	500,000	-	-	-	L-	-	Ŀ	-	-	-	-	-	-	-	-
Hexachlorobenzene				-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hexachlorobutadiene				-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hexachlorocyclopentadiene				-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hexachloroethane Indeno(1,2,3-cd)pyrene	500	500	5,600	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Isophorone			0,000		-	-	_	-	_	-	_	-	Ŀ	-	_	-	-
Naphthalene	12,000	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nitrobenzene				-	-	-	-	-	-	-	-	-	-	-	-	-	-
N-Nitrosodi-n-propylamine		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
N-Nitrosodimethylamine N-Nitrosodiphenylamine				-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pentachloronitrobenzene				-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pentachlorophenol	800	6,700	6,700	-	-	-	_	-	_	-	-	-	-	-	-	-	-
Phenanthrene	100,000	100,000	500,000	-	-	-	-	-	-	5,600	-	17,000	-	-	-	-	-
Phenol Pyrene	330 100,000	100,000 100,000	500,000 500,000		-	-	-	-	-	-	-	-	-	-	-	-	-
Pyridine	100,000	100,000	555,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
•					Qualifi					-	•		•		•		

Notes:

* - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
RL - Laboratory Reporting Limit, MDL-wilnimum Detection Limit
Boldhighlighted-indicated exceedance of the NYSDEC UISCO Guidance Value
Boldhighlighted-indicated exceedance of the NYSDEC Restdential SCO Guidance Value
Boldhighlighted-indicated exceedance of the NYSDEC RRSCO Guidance Value

- Qualifiers
 U The compound was not detected at the indicated concentration.
 J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.
 B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
 P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
 *- For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
 NR Not analyzed

										BC - Rem	edial Ir	rvestigatio	n - 200	7					
					Е	1			E	2			E	3			E	4	
	NYSDEC Part 375.6	NYSDEC Part 375.6	NYDEC Part 375.6	8/16/2		8/16/2	007	8/16/2		8/16/20		8/16/20		8/16/2		8/16/2		8/16/2	
COMPOUND	Unrestricted Use Soil Cleanup Objectives*	Restricted Residential Soil Cleanup Objectives*	Commercial Soil Cleanup Objectives*	(0-4		(8-1) t 57	2')	(0-4	') Lot	(8-12	!')	(0-4	') Lot	17	2')	(0-4	') Lot	17	2')
				μg/K		μg/K	g	μg/K		μg/K ₁	3	μg/K _l		μg/K	g	μg/K		μg/K	(g
44804				Result 62	Qual	Result 68	Qual	Result 64	Qual	Result 67	Qual	Result 65	Qual	Result 66	Qual	Result 62	Qual	Result 70	Qual
1,1-Biphenyl 2,2-oxybis(1-Chloropropoane)				61	U	66	U	63	U	65	U	64	U	65	U	61	U	68	U
1,2,4,5-Tetrachlorobenzene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	† -
1,2,4-Trichlorobenzene				,	-	·	-		,	-		-		-	-		-	-	-
1,2-Dichlorobenzene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Diphenylhydrazine 1,3-Dichlorobenzene				-	-	-	-	-	-	-	-	-	-	-	-		-		+
1,4-Dichlorobenzene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2,4,5-Trichlorophenol				58	U	63	U	59	U	62	U	61	U	62	U	57	U	65	U
2,4,6-Trichlorophenol				56	U	60	U	57	U	59	U	58	U	59	U	55	U	62	U
2,4-Dichlorophenol				70 60	U	76 65	U	72 62	U	75 64	U	73 63	U	75 64	U	70 60	U	78 67	U
2,4-Dimethylphenol 2,4-Dinitrophenol				320	U	350	U	330	U	350	U	340	U	340	U	320	U	360	U
2,4-Dinitrotoluene				56	U	60	U	57	U	59	U	58	U	59	U	55	U	62	U
2,6-Dinitrotoluene				54	U	58	U	55	U	57	U	56	U	57	U	53	U	60	U
2-Chloronaphthalene				63	U	68	U	64	U	67	U	66	U	67	U	62	U	70	U
2-Chlorophenol				60	U	65 69	U	62 65	U	65 68	U	63 66	U	64	U	60	U	68 71	U
2-Methylnaphthalene 2-Methylphenol (o-cresol)	330	100,000	500,000	63	U	68	U	65	U	67	U	66	U	67	U	62	U	70	U
2-Nitroaniline			,	48	U	52	U	49	U	51	U	50	U	51	U	48	U	54	U
2-Nitrophenol				58	U	63	U	60	U	62	U	61	U	62	U	58	U	65	U
3,3'-Dichlorobenzidine				65	U	70	U	66	U	69	U	68	U	69	U	64	U	72	U
3&4-Methylphenol (m&p-cresol)	330	100,000	500,000	60 49	U	65 53	U	61 51	U	64 53	U	62 52	U	64 52	U	59 49	U	67 55	U
3-Nitroaniline 4,6-Dinitro-2-methylphenol				73	U	80	U	75	U	78	U	77	U	78	U	73	U	82	U
4-Bromophenyl phenyl ether				56	U	61	U	58	U	60	U	59	U	60	U	56	U	63	U
4-Chloro-3-methylphenol				52	U	57	U	54	U	56	U	55	U	56	U	52	U	59	U
4-Chloroaniline				45 60	U	49	U	46	U	48 64	U	47 63	U	48	U	45 59	U	50	U
4-Chlorophenyl phenyl ether 4-Nitroaniline				65	U	65 70	U	61	U	69	U	68	U	64	U	64	U	67 72	U
4-Nitroaniline 4-Nitrophenol				47	U	51	U	48	U	50	U	49	U	50	U	47	U	53	U
Acenaphthene	20,000	100,000	500,000	67	U	73	U	69	U	72	U	70	U	72	U	67	U	75	U
Acenaphthylene	100,000	100,000	500,000	61	U	67	U	63	U	66	U	64	U	65	U	61	U	69	U
Acetophenone				55	U	60	U	57	U	59	U	58	U	59	U	55	U	62	U
Aniline	400.000	100.000	500.000	57	- U	62	- U	59	- U	61	- U	60	- U	61	- 11	- 57	- U	64	- U
Anthracene Atrazine	100,000	100,000	500,000	58	U	63	U	59	U	62	U	61	U	62	U	58	U	65	U
Benzaldehyde				78	U	84	U	80	U	83	U	81	U	83	U	77	U	87	U
Benz(a)anthracene	1,000	1,000	5,600	53	U	57	U	54	U	57	U	55	U	56	U	53	U	59	U
Benzidine				-	- U	-	- U	-	- U	-	- U	-	- U	- 64	- U	- 60	- U	-	- U
Benzo(a)pyrene Benzo(b)fluoranthene	1,000	1,000 1,000	1,000 5,600	61 42	U	66 45	U	62 43	U	65 44	U	63 44	U	44	U	53	J	68 47	U
Benzo(ghi)perylene	100,000	100,000	500,000	63	U	68	U	64	U	67	U	65	U	67	U	62	U	70	U
Benzo(k)fluoranthene	800	3,900	56,000	83	U	90	U	85	U	89	U	87	U	89	U	83	U	93	U
Benzoic acid				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzyl Alcohol				-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
Biphenyl Benzyl butyl phthalate				61	U	66	U	63	U	65	U	64	U	65	U	61	U	69	U
Bis(2-chloroethoxy)methane				62	U	67	U	64	U	66	U	65	U	66	U	62	U	70	U
Bis(2-chloroethyl)ether				60	U	65	U	61	U	64	U	63	U	64	U	59	U	67	U
Bis(2-chloroisopropyl)ether				80	J	79	U	75	U	78	U	110	J	160	J	72	U	81	U
Bis(2-ethylhexyl)phthalate				- 61	- U	- 66	- U	- 62	- U	- 65	- U	64	- U	- 65	- U	- 60	- U	- 68	- U
Caprolactam Carbazole				58	U	63	U	59	U	62	U	60	U	62	U	57	U	65	U
Chrysene	1,000	3,900	56,000	68	U	74	U	70	U	73	U	71	U	72	U	67	U	76	U
Dibenz(a,h)anthracene	330	330	560	47	U	51	U	49	U	51	U	50	U	51	U	47	U	53	U
Dibenzofuran	7,000	59,000	350,000	63	U	68	U	64	U	67	U	65	U	67	U	62	U	70	U
Diethyl phthalate Dimethylphthalate				65 61	U	71 66	U	67	U	70 65	U	68	U	70 65	U	65 60	U	73 68	U
Di-n-butylphthalate Di-n-butylphthalate				58	U	62	U	59	U	62	U	60	U	61	U	57	U	65	U
Di-n-octylphthalate				64	U	70	U	66	U	69	U	67	U	69	U	64	U	72	U
Fluoranthene	100,000	100,000	500,000	56	U	61	U	58	U	60	U	59	U	60	U	88	J	63	U
Fluorene	30,000	100,000	500,000	64	U	69	U	65	U	68	U	67	U	68	U	63	U	71	U
Hexachlorobenzene Hexachlorobutadiene				61 58	U	66 63	U	62	U	65 62	U	63	U	64	U	60 58	U	68 65	U
Hexachlorobutadiene Hexachlorocyclopentadiene				60	U	65	U	62	U	65	U	63	U	64	U	60	U	68	U
Hexachloroethane				64	U	70	U	66	U	69	U	67	U	68	U	64	U	72	U
Indeno(1,2,3-cd)pyrene	500	500	5,600	48	U	52	U	49	U	51	U	50	U	51	U	48	U	54	U
Isophorone				57	U	62	U	58	U	61	U	59	U	61	U	56	U	64	U
Naphthalene Nitrohenzene	12,000	100,000	500,000	65 83	U	70 89	U	66 85	U	69 88	U	68 86	U	69 88	U	64 82	U	72 92	U
Nitrobenzene N-Nitrosodi-n-propylamine	1			63	U	68	U	64	U	67	U	66	U	67	U	62	U	70	U
N-Nitrosodimethylamine					L-	_	Ŀ		Ŀ	-	_		Ŀ	-	Ŀ	_	Ŀ	-	LI
N-Nitrosodiphenylamine			-	62	U	68	U	64	U	67	U	65	U	66	U	62	U	70	U
Pentachloronitrobenzene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>
Pentachlorophenol	800	6,700	6,700	88 60	U	95 65	U	90 62	U	94	U	92 63	U	93 64	U	87 60	U	98 67	U
Phenanthrene Phenol	100,000 330	100,000	500,000	57	U	62	U	59	U	61	U	60	U	61	U	57	U	64	U
Pyrene	100,000	100,000	500,000	67	U	72	U	69	U	72	U	70	U	71	U	110	J	75	U
Pyridine				-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
<u>-</u>					Qualifi														

- Notes:

 * 6 NYCRR Part 375-6 Remedial Program Soil Clearup Objectives
 RL Laboratory Reporting Limit, MDL-wilnimum Detection Limit
 Boldhighlighted-indicated exceedance of the NYSDEC UNSCO Guidance Value
 Boldhighlighted-indicated exceedance of the NYSDEC Restdential SCO Guidance Value
 Boldhighlighted-indicated exceedance of the NYSDEC RRSCO Guidance Value

- Qualifiers
 U The compound was not detected at the indicated concentration.
 J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.
 B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
 P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
 *- For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
 NR Not analyzed

								EE	BC - Re	medial Inv	estigat	tion - 2007					ŀ
					Е	5			Е	:6		E7			E1	12	
	NYSDEC Part 375.6	NYSDEC Part 375.6	NYDEC Part 375.6	8/16/2	007	8/16/2	007	8/16/2	007	8/16/2	007	8/17/2	007	8/17/2	2007	8/17/2	007
COMPOUND	Unrestricted Use Soil	Restricted Residential	Commercial Soil	(0-4	')	(8-12		(0-4	')	(8-12		(0-4	-')	(0-4	l')	(8-1	
	Cleanup Objectives*	Soil Cleanup Objectives*	Cleanup Objectives*	=///	Lot				Lot		_	Lot 1			Lot		
				μg/K Result		μg/K Result	Qual	μg/K Result	Qual	μg/K Result	Qual	μg/K Result	Qual	μg/k Result	Qual	μg/k Result	Qual
1,1-Biphenyl				66	U	64	U	58	U	63	U	57	U	59	U	71	U
2,2-oxybis(1-Chloropropoane)				65	U	62	U	57	U	62	U	56	U	57	U	70	U
1,2,4,5-Tetrachlorobenzene				-	-	-	-	-	-	-	-	-	-	-	-	-	╙
1,2,4-Trichlorobenzene					-	-	-		-	-	-	-					H
1,2-Dichlorobenzene 1,2-Diphenylhydrazine				-	-		-	-		-	-	-	-	-			
1,3-Dichlorobenzene				-	-	-	-	-	-	-	-	-	-	-	-	-	T -
1,4-Dichlorobenzene				-	-	-	-	-	-	-	-	-	-	-	-	-	-
2,4,5-Trichlorophenol				61	U	59	U	54	U	58	U	53	U	54	U	66	U
2,4,6-Trichlorophenol				59	U	57	U	52	U	56	U	51	U	52	U	63	U
2,4-Dichlorophenol				74 64	U	71 61	U	65 56	U	71 61	U	65 55	U	66 56	U	80 69	U
2,4-Dimethylphenol 2,4-Dinitrophenol				340	U	330	U	300	U	330	U	300	U	300	U	370	U
2,4-Dinitrotoluene				59	U	57	U	52	U	56	U	51	U	52	U	63	U
2,6-Dinitrotoluene				57	U	55	U	50	U	54	U	49	U	50	U	61	U
2-Chloronaphthalene				67	U	64	U	59	U	63	U	58	U	59	U	72	U
2-Chlorophenol				64	U	62	U	56	U	61	U	56	U	57	U	69	U
2-Methylnaphthalene	200	400.000	F00 00°	67 67	U	65 64	U	59 59	U	64	U	58 58	U	59 59	U	72 72	U
2-Methylphenol (o-cresol) 2-Nitroaniline	330	100,000	500,000	51	U	49	U	59 45	U	49	U	58 44	U	59 45	U	72 55	U
2-Nitrophenol				62	U	59	U	54	U	59	U	54	U	55	U	66	U
3,3'-Dichlorobenzidine				69	U	66	U	61	U	65	U	60	U	61	U	74	U
3&4-Methylphenol (m&p-cresol)	330	100,000	500,000	63	U	61	U	56	U	60	U	55	U	56	U	68	U
3-Nitroaniline				52	U	50	U	46	U	50	U	45	U	46	U	56	U
4,6-Dinitro-2-methylphenol				78	U	75	U	69	U	74	U	68	U	69	U	84	U
4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol				60 55	U	58 53	U	53 49	U	57 53	U	52 48	U	53 49	U	65 60	U
4-Chloroaniline				48	U	46	U	42	U	46	U	42	U	42	U	51	U
4-Chlorophenyl phenyl ether				63	U	61	U	56	U	60	U	55	U	56	U	68	U
4-Nitroaniline				68	U	66	U	60	U	65	U	60	U	61	U	74	U
4-Nitrophenol				50	U	48	U	44	U	47	U	43	U	44	U	54	U
Acenaphthene	20,000	100,000	500,000	71	U	69	U	63	U	68	U	110	J	63	U	77	U
Acenaphthylene	100,000	100,000	500,000	65	U	63	U	57	U	62	U	57	U	58	U	70	U
Acetophenone				59	U	56	U	52	U	56	U	51	U	52	U	63	U
Aniline Anthracene	100,000	100,000	500,000	60	U	58	U	53	U	58	U	200	J	54	U	65	U
Atrazine	100,000	100,000	000,000	61	U	59	U	54	U	59	U	53	U	54	U	66	U
Benzaldehyde				82	U	79	U	73	U	78	U	72	U	73	U	89	U
Benz(a)anthracene	1,000	1,000	5,600	56	U	54	U	50	U	53	U	450	-	50	U	60	U
Benzidine				-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(a)pyrene	1,000	1,000	1,000	64 44	U	62 42	U	57 39	U	61 42	U	340 500	J	57 47	U	69 48	U
Benzo(b)fluoranthene Benzo(ghi)perylene	1,000 100,000	1,000 100,000	5,600 500,000	66	U	64	U	59	U	63	U	130	J	59	U	71	U
Benzo(k)fluoranthene	800	3,900	56,000	88	U	85	U	78	U	84	U	140	J	78	U	95	U
Benzoic acid				-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzyl Alcohol				-	-	-	-	-	-	-	-	-	-	-	-	-	-
Biphenyl				-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzyl butyl phthalate				65 66	U	62 63	U	57 58	U	62	U	56 57	U	58 58	U	70 71	U
Bis(2-chloroethoxy)methane				63	U	61	U	56	U	60	U	55	U	56	U	68	U
Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether				77	U	74	U	68	U	73	U	390	T-	68	U	83	U
Bis(2-ethylhexyl)phthalate		<u> </u>					L-	-			L-		L-		L-	_	Ε-
Caprolactam				64	U	62	U	57	U	61	U	56	U	57	U	69	U
Carbazole				61	U	59	U	54	U	58	U	110	J	54	U	66	U
Chrysene	1,000	3,900	56,000	72 50	U	69 48	U	64 44	U	69 48	U	450	- U	64 45	U	78 54	U
Dibenz(a,h)anthracene Dibenzofuran	330	330	560 350,000	50 66	U	48 64	U	59	U	63	U	79	J	45 59	U	71	U
Dibenzoturan Diethyl phthalate	7,000	59,000	330,000	69	U	67	U	61	U	66	U	60	U	61	U	75	U
Dimethylphthalate				64	U	62	U	57	U	61	U	56	U	57	U	69	U
Di-n-butylphthalate				61	U	59	U	54	U	58	U	53	U	54	U	66	U
Di-n-octylphthalate				68	U	66	U	60	U	65	U	59	U	61	U	74	U
Fluoranthene	100,000	100,000	500,000	60	U	57	U	53	U	57	U	1000	-	53	U	64	U
Fluorene	30,000	100,000	500,000	68 64	U	65 62	U	60 57	U	64	U	82 56	J	60 57	U	73 69	U
Hexachlorobenzene Hexachlorobutadiene				62	U	59	U	54	U	59	U	54	U	57	U	66	U
Hexachlorocyclopentadiene				64	U	62	U	56	U	61	U	56	U	57	U	69	U
Hexachloroethane				68	U	66	U	60	U	65	U	59	U	60	U	73	U
Indeno(1,2,3-cd)pyrene	500	500	5,600	51	U	49	U	45	U	49	U	94	J	45	U	55	U
Isophorone				60	U	58	U	53	U	57	U	52	U	53	U	65	U
Naphthalene	12,000	100,000	500,000	68	U	66	U	60	U	65	U	100	J	61	U	74	U
Nitrobenzene				88 66	U	84 64	U	77 59	U	83 63	U	76 58	U	78 59	U	94 72	U
N-Nitrosodi-n-propylamine N-Nitrosodimethylamine				-	-	-	-	-	-	-	-	-	-	-	-	-	-
N-Nitrosodiphenylamine				66	U	64	U	58	U	63	U	57	U	59	U	71	U
Pentachloronitrobenzene				-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pentachlorophenol	800	6,700	6,700	93	U	89	U	82	U	88	U	81	U	82	U	100	U
Phenanthrene	100,000	100,000	500,000	64	U	61	U	56	U	61	U	1200	-	57	U	69	U
Phenol	330	100,000	500,000	61 71	U	58 68	U	54 63	U	58 68	U	53 1200	U	54 63	U	65 76	U
Pyrene Pyridine	100,000	100,000	500,000	- ''	-	96	-	- 03	-	- 00	-	1200		- 03	-	76	-
r ynullie		ı				_				_					لتا	_	

Notes:

*-6 NVPCRP Part 375-6 Remedial Program Soil Cleanup Objectives
RL - Laboratory Reporting Limit, MDL-Minimum Detection Limit
Bioldhighitighted-Indicated exceedance of the NYSDEC UUSCO Guidance Value
Boldhighighted-Indicated exceedance of the NYSDEC Residential SCO Guidance Value
Boldhighighted-Indicated exceedance of the NYSDEC RESIDENTIAL SCO Guidance Value

- Qualifiers
 U The compound was not detected at the indicated concentration.
 J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.
 B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
 P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
 *- For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
 NR Not analyzed

					ı	EBC - Rem	edial Ir	nvestigatio	n - 200	7		Ecos	ystems	Strateg	ies - RIR	July 201	15
					Е	13			Е	14		N	IW-17		N	IW-18	
	NYSDEC Part 375.6	NYSDEC Part 375.6	NYDEC Part 375.6	8/17/2		8/17/2		8/17/2		8/17/2			15/2112			15/2012	2
COMPOUND	Unrestricted Use Soil Cleanup Objectives*	Restricted Residential Soil Cleanup Objectives*	Commercial Soil Cleanup Objectives*	(0-4	') Lot	(8-12	2')	(0-4		(8-1)	2')	Clay Str	(14')	awalk	Clay Str	(15')	lowalk
				μg/K		μg/K	g	μg/K		μg/K	ig .		μg/Kg	CWaik	_	μg/Kg	CWEIK
44.8:1				Result 65	Qual	Result 70	Qual	Result 62	Qual	Result 67	Qual	Result	Flag	RL	Result	Flag	RL
1,1-Biphenyl 2,2-oxybis(1-Chloropropoane)				63	U	68	U	60	U	65	U		-	-			
1,2,4,5-Tetrachlorobenzene				-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,4-Trichlorobenzene				-	-	-	-	-	-	-	-	ND	-	215	ND	-	198
1,2-Dichlorobenzene				-	-	-	-	-	-	-	-	ND	-	215	ND	<u> </u>	198
1,2-Diphenylhydrazine 1,3-Dichlorobenzene					-	-	-	-	-	-	-	ND	-	215	ND ND	-	198
1,4-Dichlorobenzene				-	-	-	-	-	-	-	-	ND	-	215	ND	-	198
2,4,5-Trichlorophenol				60	U	65	U	57	U	62	U	NA	-	-	-	-	-
2,4,6-Trichlorophenol				58	U	62	U	55	U	60	U	NA	-	-	-	<u> </u>	-
2,4-Dichlorophenol				73 62	U	78 67	U	69 59	U	75 64	U	NA NA	-	-	-	-	-
2,4-Dimethylphenol 2,4-Dinitrophenol				340	U	360	U	320	U	350	U	NA NA	-	-			<u> </u>
2,4-Dinitrotoluene				58	U	62	U	55	U	60	U	ND	-	215	ND	-	198
2,6-Dinitrotoluene				56	U	60	U	53	U	57	U	ND	-	215	ND	-	198
2-Chloronaphthalene				65	U	70	U	62	U	67	U	ND	-	215	ND	<u> </u>	198
2-Chlorophenol				63 66	U	68 71	U	60	U	65 68	U	NA ND	-	215	- ND	<u> </u>	198
2-Methylnaphthalene 2-Methylphenol (o-cresol)	330	100,000	500,000	65	U	70	U	62	U	68	U	NA NA	-	- 10	- 1412	Ė	-
2-Nitroaniline		,		50	U	54	U	48	U	52	U	NA	Ŀ	Ŀ	_	Ŀ	Ŀ
2-Nitrophenol			-	60	U	65	U	58	U	63	U	NA	-	-	-	_	-
3,3'-Dichlorobenzidine				67	U	72	U	64	U	70	U	ND	-	215	ND	Ŀ	198
3&4-Methylphenol (m&p-cresol)	330	100,000	500,000	62 51	U	67 55	U	59 49	U	64 53	U	NA ND	-	215	- ND	-	198
3-Nitroaniline 4,6-Dinitro-2-methylphenol				76	U	82	U	73	U	79	U	NA NA		- 213	NA NA	H	- 180
4-Bromophenyl phenyl ether				59	U	63	U	56	U	61	U	ND	-	215	ND	t-	198
4-Chloro-3-methylphenol				54	U	58	U	52	U	56	U	ND	-	215	ND	Ŀ	198
4-Chloroaniline				47	U	50	U	45	U	48	U	ND	-	215	ND	<u> </u>	198
4-Chlorophenyl phenyl ether				62 67	U	67 72	U	59 64	U	64 69	U	ND ND	-	215 215	ND ND	-	198 198
4-Nitroaniline 4-Nitrophenol				49	U	52	U	46	U	50	U	NA NA		215	NA NA	H	190
Acenaphthene	20,000	100,000	500,000	70	U	75	U	67	U	72	U	ND	-	215	ND	-	198
Acenaphthylene	100,000	100,000	500,000	64	U	69	U	61	U	66	U	ND	-	215	ND	-	198
Acetophenone				57	U	62	U	55	U	59	U	-	-	-	-	-	-
Aniline				-	-	- 64	-	- 56	-	-	-	ND	-	215	ND	<u> </u>	198 198
Anthracene Atrazine	100,000	100,000	500,000	59 60	U	65	U	57	U	61 62	U	ND -	-	215	ND -	-	198
Benzaldehyde				81	U	87	U	77	U	83	U	-	-	-	-	-	-
Benz(a)anthracene	1,000	1,000	5,600	250	J	59	U	84	J	57	U	ND	-	215	ND	-	198
Benzidine				-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(a)pyrene	1,000	1,000	1,000	200 270	J	68 47	U	60 88	U	65 45	U	ND ND	-	215 215	53 ND	J	198 198
Benzo(b)fluoranthene Benzo(ghi)perylene	1,000	1,000	5,600 500,000	83	J	70	U	62	U	67	U	ND	-	215	ND		198
Benzo(k)fluoranthene	800	3,900	56,000	94	J	93	U	82	U	89	U	ND	-	215	ND	-	198
Benzoic acid				-	-	-	-	-	-	-	-	NA	-	-	NA	-	-
Benzyl Alcohol				-	-	-	-	-	-	-	-	NA	-	-	NA	<u> </u>	-
Biphenyl				- 63	- U	- 68	- U	61	- U	- 66	- U	- ND	-	215	- ND	-	198
Benzyl butyl phthalate Bis(2-chloroethoxy)methane				65	U	70	U	62	U	67	U	ND	-	215	ND		198
Bis(2-chloroethyl)ether				62	U	67	U	59	U	64	U	ND	-	215	ND	-	198
Bis(2-chloroisopropyl)ether				75	U	110	J	110	J	78	U	ND	-	215	ND	-	198
Bis(2-ethylhexyl)phthalate				-	-	-	-	-	-	-	-	1,400	-	215	440	<u> </u>	198
Caprolactam				63 60	U	68 65	U	60 57	U	65 62	U	- ND	-	215	- ND	-	198
Carbazole Chrysene	1,000	3,900	56,000	250	J	76	U	94	J	73	U	ND ND	-	215	ND ND	+	198
Dibenz(a,h)anthracene	330	3,900	560	49	U	53	U	47	U	51	U	ND	L-	215	ND	Ŀ	198
Dibenzofuran	7,000	59,000	350,000	65	U	70	U	62	U	67	U	ND	-	215	ND	-	198
Diethyl phthalate				68	U	73	U	65	U	70	U	ND	-	215	ND	Ŀ	198
Dimethylphthalate				63 60	U	68 64	U	60 57	U	65 62	U	ND ND	-	215 215	ND ND	H	198 198
Di-n-butylphthalate Di-n-octylphthalate				67	U	72	U	64	U	69	U	350	-	215	ND	<u> </u>	198
Fluoranthene	100,000	100,000	500,000	490		63	U	180	J	60	U	ND	-	215	ND	Ι-	198
Fluorene	30,000	100,000	500,000	66	U	71	U	63	U	69	U	ND	-	215	ND	-	198
Hexachlorobenzene				63	U	68	U	60	U	65	U	ND	-	215	ND	Ŀ	198
Hexachlorobutadiene				60	U	65 68	U	58 60	U	63 65	U	ND ND	-	215 215	ND ND	<u> </u>	198 198
Hexachlorocyclopentadiene Hexachloroethane				67	U	72	U	64	U	69	U	ND ND	-	215	ND ND	H	198
Indeno(1,2,3-cd)pyrene	500	500	5,600	56	J	54	U	48	U	52	U	ND	-	215	ND	<u> </u>	198
Isophorone				59	U	64	U	56	U	61	U	ND	-	215	ND	Ŀ	198
Naphthalene	12,000	100,000	500,000	67	U	72	U	64	U	69	U	ND	-	215	ND	Ŀ	198
Nitrobenzene				86 65	U	92	U	82	U	89 67	U	ND ND	-	215	ND	<u> </u>	198
N-Nitrosodi-n-propylamine				65	-	70	U -	62	-	- 67	U -	ND ND	- R	215 215	ND ND	-	198 198
N-Nitrosodimethylamine N-Nitrosodiphenylamine				65	U	70	U	62	U	67	U	ND	-	215	ND	<u> </u>	198
Pentachloronitrobenzene				_	_	-	_		_	-	-		_	-		Ŀ	_
Pentachlorophenol	800	6,700	6,700	91	U	98	U	87	U	94	U	NA	-	- 1	NA	ட	
Phenanthrene	100,000	100,000	500,000	410	- U	70	J	150 57	J	65 62	U	ND NA	-	215	ND NA	Ŀ	198
Phenol Pyrene	330 100,000	100,000	500,000 500,000	59 640	-	64 84	U	220	J	62 72	U	NA ND	-	215	76.4	J	198
Pyridine	100,000	100,000	300,000	-	-	-	-		-	-	-	ND	-	215	ND	R	198
					Oualifi		•		•		•		•	•			

- Notes:

 *-6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
 R-Laboratory Reporting Limit, MDL-Minimum Detection Limit
 Bold/highlighted-Indicated exceedance of the NYSDEC UUSCO Guidance Value Bold/highlighted- Indicated exceedance of the NYSDEC Restidential SCO Guidance Value Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

- Cualifiers
 U The compound was not detected at the indicated concentration.
 J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.
 B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
 P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
 *- For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
 NR Not analyzed

							Ecosyst	tems S	trategio	es - Remed	dial Inve	estigati	ion Report	- July	2015			
				N	IW-19		S	B-77A		S	B-78A		2	SB-7		:	SB-8	
	NYSDEC Part 375.6	NYSDEC Part 375.6	NYDEC Part 375.6		2/2012		2/	1/2012		2/	1/2012			1/2013			1/2013	
COMPOUND	Unrestricted Use Soil Cleanup Objectives*	Restricted Residential Soil Cleanup Objectives*	Commercial Soil Cleanup Objectives*		10-12') ot 20			ot 20			ot 20			0-15') ot 20			0-15') ot 20	
					μg/Kg			μg/Kg			μg/Kg			µg/Kg			μg/Kg	
				Result	Flag	RL	Result	Flag	RL	Result	RL	Qual	MDL	Result	RL	Qual	MDL	Result
1,1-Biphenyl 2,2-oxybis(1-Chloropropoane)				-	-	-	-	-	-	-	-	-		-	-		-	-
1,2,4,5-Tetrachlorobenzene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,4-Trichlorobenzene				ND	-	4,030	ND	-	4,020	ND	-	328	ND	-	309	ND	-	307
1,2-Dichlorobenzene				ND	-	4,030	ND	-	4,020	ND	-	328	ND	-	309	ND	-	307
1,2-Diphenylhydrazine 1,3-Dichlorobenzene				ND	-	4,030	ND		4,020	ND	-	328	ND	-	309	ND	-	307
1,4-Dichlorobenzene				ND	-	4,030	ND	-	4,020	ND	-	328	ND	-	309	ND	-	307
2,4,5-Trichlorophenol				ND	-	4,030	ND	-	4,020	ND	-	328	ND	-	309	ND	-	307
2,4,6-Trichlorophenol				ND	-	4,030	ND	-	4,020	ND	-	328 328	ND	-	309	ND	-	307 307
2,4-Dichlorophenol 2,4-Dimethylphenol				ND ND	-	4,030	ND ND	-	4,020	ND ND	-	328	ND ND	-	309	ND ND	-	307
2,4-Dinitrophenol				ND	-	4,030	ND	-	8,040	ND	R	655	ND	R	617	ND	R	615
2,4-Dinitrotoluene				ND	-	4,030	ND	-	4,020	ND	-	328	ND	-	309	ND	-	307
2,6-Dinitrotoluene				ND	-	4,030	ND	-	4,020	ND	-	328	ND	-	309	ND	-	307
2-Chloronaphthalene				ND ND	-	4,030	ND ND	-	4,020	ND ND	-	328 328	ND ND	-	309 309	ND ND	-	307
2-Chlorophenol 2-Methylnaphthalene				132,000	-	4,030	ND	-	4,020	ND	-	328	ND	-	309	ND	-	307
2-Methylphenol (o-cresol)	330	100,000	500,000	ND	-	4,030	ND	-	4,020	ND	-	328	ND	-	309	ND	-	307
2-Nitroaniline				ND	<u> </u>	4,030	ND	<u> </u>	4,020	ND	-	328	ND	_	309	ND	Ŀ	307
2-Nitrophenol				ND ND	-	4,030	ND	-	4,020	ND	-	328	ND	-	309	ND	-	307
3,3'-Dichlorobenzidine 3&4-Methylphenol (m&p-cresol)	330	100,000	500,000	ND ND	<u> </u>	4,030	ND		4,020	ND	-	328	ND	-	309	ND		307
3-Nitroaniline	500	100,000	000,000	ND	-	4,030	ND	-	4,020	ND	-	328	ND	-	309	ND	-	307
4,6-Dinitro-2-methylphenol	-		· · · · · · · · · · · · · · · · · · ·	ND	-	4,030	ND	-	4,020	ND	-	655	ND	-	617	ND	-	615
4-Bromophenyl phenyl ether				ND	-	4,030	ND	-	4,020	ND	-	328	ND	-	309	ND	-	307
4-Chloro-3-methylphenol				ND ND	-	4,030	ND ND	-	4,020	ND ND	-	328 328	ND ND	-	309	ND ND	-	307 307
4-Chloroaniline 4-Chlorophenyl phenyl ether				ND	-	4,030	ND	-	4,020	ND	-	328	ND	-	309	ND	-	307
4-Nitroaniline				ND	-	4,030	ND	-	4,020	ND	-	328	ND	-	309	ND	-	307
4-Nitrophenol				ND	-	4,030	ND	-	4,020	ND	-	328	ND	-	309	ND	-	307
Acenaphthene	20,000	100,000	500,000	ND	-	4,030	ND	-	4,020	ND	-	328	ND	-	309	ND	-	307
Acenaphthylene Acetophenone	100,000	100,000	500,000	ND -	-	4,030	ND -	-	4,020	ND -	-	328	ND -	-	309	ND -	-	307
Aniline				ND	-	4,030	ND	-	4,020	ND	-	328	ND	-	309	ND	-	307
Anthracene	100,000	100,000	500,000	1,400	J	4,030	ND	-	4,020	ND	-	328	ND	-	309	ND	-	307
Atrazine				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzaldehyde Renz(a)anthracena	1,000	1,000	5,600	ND	-	4,030	- ND	-	4,020	- ND	-	328	ND	-	309	ND	-	307
Benz(a)anthracene Benzidine	1,000	1,000	5,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(a)pyrene	1,000	1,000	1,000	ND	-	4,030	ND	-	4,020	ND	-	328	ND	-	309	ND	-	307
Benzo(b)fluoranthene	1,000	1,000	5,600	ND	-	4,030	ND	-	4,020	ND	-	328	ND	-	309	ND	-	307
Benzo(ghi)perylene	100,000	100,000	500,000	ND ND	-	4,030	ND ND	-	4,020	ND ND	-	328 328	ND ND		309	ND ND	-	307
Benzo(k)fluoranthene Benzoic acid	800	3,900	56,000	NA NA		-	NA NA		- 4,020	NA NA		-	NA NA		-	NA.		-
Benzyl Alcohol				ND	-	4,030	ND	-	4,020	ND	-	328	ND	-	309	ND	-	307
Biphenyl				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzyl butyl phthalate				10,100	-	4,030	ND ND	-	4,020	ND ND	-	328 328	ND ND	-	309 309	ND ND	-	307 307
Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether				ND		4,030	ND	-	4,020	ND	-	328	ND	-	309	ND		307
Bis(2-chloroisopropyl)ether				ND		4,030	ND	-	4,020	ND	-	328	ND	-	309	ND	-	307
Bis(2-ethylhexyl)phthalate				4,330	<u> </u>	4,030	ND	E	4,020	223	-	328	ND	-	309	ND	Ŀ	307
Caprolactam				- NA	<u> </u>	-	- NA	-	-	- NA	-	-	- NA	-	-	- NA	-	-
Carbazole Chrysene	1,000	3,900	56,000	NA ND	 	4,030	NA ND	 	4,020	NA ND	-	328	NA ND		309	NA ND	-	307
Dibenz(a,h)anthracene	330	330	560	ND	Ŀ	4,030	ND	Ŀ	4,020	ND	Ŀ	328	ND	Ŀ	309	ND	Ŀ	307
Dibenzofuran	7,000	59,000	350,000	ND	-	4,030	ND	-	4,020	ND	-	328	ND	-	309	ND	-	307
Diethyl phthalate				ND	<u> </u>	4,030	ND	<u> -</u>	4,020	ND	-	328	ND	-	309	ND	-	307
Dimethylphthalate Di-n-butylphthalate				ND ND	-	4,030	ND ND	-	4,020	ND ND	-	328 328	ND ND	-	309 309	ND ND	-	307 307
Di-n-octylphthalate				ND	-	4,030	ND	-	4,020	ND	-	328	ND	-	309	ND	-	307
Fluoranthene	100,000	100,000	500,000	ND	-	4,030	ND	-	4,020	ND	-	328	ND	-	309	ND	-	307
Fluorene	30,000	100,000	500,000	1,850	-	4,030	ND	<u> </u>	4,020	ND	-	328	ND	_	309	ND	<u> </u>	307
Hexachlorobenzene				ND ND		4,030	ND ND	-	4,020	ND ND	-	328 328	ND ND	-	309	ND ND	-	307 307
Hexachlorobutadiene Hexachlorocyclopentadiene				ND	-	4,030	ND	-	4,020	ND	-	328	ND	-	309	ND	-	307
Hexachloroethane				ND	-	4,030	ND	-	4,020	ND	-	328	ND	-	309	ND	-	307
Indeno(1,2,3-cd)pyrene	500	500	5,600	ND	-	4,030	ND	-	4,020	ND	-	328	ND	-	309	ND	-	307
Isophorone	40	400 ***	500	ND 3 000	J	4,030 4,030	ND ND	-	4,020	149 ND	J	328 328	ND ND	-	309	ND ND	-	307 307
Naphthalene Nitrobenzene	12,000	100,000	500,000	2,000	J -	4,030	ND ND	-	4,020	ND ND	-	328 328	ND ND	-	309 309	ND ND	-	307
N-Nitrosodi-n-propylamine	1			ND	-	4,030	ND	-	4,020	ND	-	328	ND	-	309	ND	-	307
N-Nitrosodimethylamine				ND	-	4,030	ND	-	4,020	ND	-	328	ND	-	309	ND	-	307
N-Nitrosodiphenylamine				ND	-	4,030	ND	-	4,020	ND	-	328	ND	-	309	ND	-	307
Pentachloronitrobenzene Pentachlorophenol	800	6,700	6,700	- ND	+-	4,030	- ND	H	4,020	- ND	-	328	- ND	-	309	ND	H	307
Pentacnioropnenoi Phenanthrene	100,000	100,000	500,000	6,650	١.	4,030	ND	-	4,020	ND	-	328	ND	-	309	ND	-	307
Phenol	330	100,000	500,000	ND	-	4,030	ND	-	4,020	ND	-	328	ND	-	309	ND	-	307
Pyrene	100,000	100,000	500,000	3,360	<u> </u>	4,030	ND	<u> </u>	4,020	ND	-	328	ND	-	309	ND	<u> </u>	307
Pyridine				ND	R	4,030	ND	ļ -	4,020	ND	R	328	ND	R	309	ND	R	307

Notes:

*-6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
RL - Laboratory Reporting Limit, MDL + Minimum Detection Limit
Boldhighlightet- Indicated exceedance of the NYSDEC UNSCO Guidance Value
Boldhighlighted- Indicated exceedance of the NYSDEC Restidential SCO Guidance Value
Boldhighlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

- Qualifiers
 U The compound was not detected at the indicated concentration.
 J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.
 B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
 P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
 *- For dual column analysis, the lowest quantitated concentration is being reported due to coeluling interference.
 NR Not analyzed

								Gol	ldberg	Zoino & A	ssociat	es - Reme	dial Inv	restigation	ı - Dece	ember 2010	6				
						SB-1	01					SB-1	02					SB-1	03		
	NYSDEC Part 375.6	NYSDEC Part 375.6	NYDEC Part 375.6			2/12/2						2/12/2						2/12/2			
COMPOUND	Unrestricted Use Soil Cleanup Objectives*	Restricted Residential Soil Cleanup Objectives*	Commercial Soil Cleanup Objectives*	(0-2	")	(5-7 Lot 5		(10-1	2')	(0-2	")	(5-7 Lot 1		(10-1	2')	(0-2	!')	(4-6 Lot 5		(10-1	2')
						µg/К	(g					μg/K	9					μg/K	g		
1,1-Biphenyl				Result	Qual	Result	Qual	Result	Qual	Result	Qual -	Result	Qual -	Result	Qual -	Result	Qual -	Result	Qual	Result	Qual
2,2-oxybis(1-Chloropropoane)				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,4,5-Tetrachlorobenzene				200	U	200	U	200	U	190	U	190	U	200	U	210	U	200	U	200	U
1,2,4-Trichlorobenzene				200	U	200	U	200	U	190	U	190	U	200	U	210	U	200	U	200	U
1,2-Dichlorobenzene				200	U	200	U .	200	U .	190	U	190	U	200	U -	210	U	200	U	200	-
1,2-Diphenylhydrazine 1,3-Dichlorobenzene				200	U	200	U	200	U	190	U	190	U	200	U	210	U	200	U	200	U
1,4-Dichlorobenzene				200	U	200	U	200	U	190	U	190	U	200	U	210	U	200	U	200	U
2,4,5-Trichlorophenol				200	U	200	U	200	U	190	U	190	U	200	U	210	U	200	U	200	U
2,4,6-Trichlorophenol				120 180	U	120 180	U	120 180	U	120 180	U	120 170	U	120 180	U	130 190	U	120 180	U	120 180	U
2,4-Dichlorophenol 2,4-Dimethylphenol				200	U	200	U	200	U	190	U	190	U	200	U	210	U	200	U	200	U
2,4-Dinitrophenol				980	U	960	U	950	U	930	U	930	U	990	U	1,000	U	980	U	970	U
2,4-Dinitrotoluene				200	U	200	U	200	U	190	U	190	U	200	U	210	U	200	U	200	U
2,6-Dinitrotoluene				200	U	200	U	200	U	190	U	190	U	200	U	210	U	200	U	200	U
2-Chloronaphthalene				200	U	200 200	U	200 200	U	190 190	U	190 190	U	200	U	210 210	U	200	U	200	U
2-Chlorophenol 2-Methylnaphthalene				240	U	240	U	240	U	230	U	230	U	250	U	200	J	240	U	240	U
2-Methylphenol (o-cresol)	330	100,000	500,000	200	U	200	U	200	U	190	U	190	U	200	U	210	U	200	U	200	U
2-Nitroaniline				200	U	200	U	200	U	190	U	190	U	200	U	210	U	200	U	200	U
2-Nitrophenol				440 200	U	430 200	U	430 200	U	420 190	U	420 190	U	440 200	U	460 210	U	440 200	U	440 200	U
3,3'-Dichlorobenzidine 3&4-Methylphenol (m&p-cresol)	330	100,000	500,000	200	U	200	U	200	U	190 280	U	190 280	U	300	U	300	U	200	U	200	U
3-Nitroaniline	330	100,000	300,000	200	U	200	U	200	U	190	U	190	U	200	U	210	U	200	U	200	U
4,6-Dinitro-2-methylphenol				530	U	520	U	510	U	510	U	500	U	530	U	550	U	530	U	530	U
4-Bromophenyl phenyl ether				200	U	200	U	200	U	190	U	190	U	200	U	210	U	200	U	200	U
4-Chloro-3-methylphenol 4-Chloroaniline				200	U	200	U	200	U	190 190	U	190 190	U	200	U	210 210	U	200	U	200	U
4-Chlorophenyl phenyl ether				200	U	200	U	200	U	190	U	190	U	200	U	210	U	200	U	200	U
4-Nitroaniline				200	U	200	U	200	U	190	U	190	U	200	U	210	U	200	U	200	U
4-Nitrophenol				280	U	280	U	280	U	270	U	270	U	290	U	300	U	290	U	280	U
Acenaphthene	20,000	100,000	500,000	160	U	160	U	160	U	160	U	150	U	160	U	710	-	160	U	160	U
Acenaphthylene Acetophenone	100,000	100,000	500,000	160 200	U	160 200	U	160 200	U	160 190	U	150 190	U	160 200	U	870 210	- U	160 200	U	160 200	U
Aniline				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Anthracene	100,000	100,000	500,000	120	U	120	U	120	U	120	U	120	U	120	U	2,600	-	120	-	120	U
Atrazine				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzaldehyde	4.000	4.000	F 600	120	- U	120	- U	120	- U	120	- U	35	J	120	- U	9,200		37	J	28	-
Benz(a)anthracene Benzidine	1,000	1,000	5,600	-	-	-	-	-	-	-	-		-	-	-	- 5,200		-	-		-
Benzo(a)pyrene	1,000	1,000	1,000	160	U	160	U	160	U	160	U	150	U	160	U	8,400	-	160	-	160	U
Benzo(b)fluoranthene	1,000	1,000	5,600	120	U	120	U	120	U	120	U	120	U	40	J	11,000	-	44	J	120	U
Benzo(ghi)perylene	100,000	100,000	500,000	160	U	160	U	160	U	160	U	150	U	29	J	5,200	-	160	-	160	U
Benzo(k)fluoranthene Benzoic acid	800	3,900	56,000	120 660	U	120 650	U	120 640	U	120 630	U	120 630	U	120 670	U	3,400 680	-	120 660	-	120 660	U
Benzyl Alcohol				200	U	200	U	200	U	190	U	190	U	200	U	210	-	200	-	200	U
Biphenyl				460	U	450	U	450	U	440	U	440	U	470	U	82	J	470	-	460	U
Benzyl butyl phthalate				200	U	200	U	200	U	190	U	190	U	200	U	210	<u> </u>	200	-	200	U
Bis(2-chloroethoxy)methane				220 180	U	220 180	U	210 180	U	210 180	U	210 170	U	220 180	U	230 190	1	220 180	-	220 180	U
Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether				240	U	240	U	240	U	230	U	230	U	250	U	250		240		240	U
Bis(2-ethylhexyl)phthalate				1,500		390	L-	2,000		190	U	190	U	200	U	210	L-	200	_	240	U
Caprolactam				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbazole				200 120	U	200 120	U	200 120	U	190 120	U	190	U	200	U	1,300	-	200	-	200 26	U
Chrysene Dibenz/a h\anthracene	1,000 330	3,900 330	56,000 560	120	U	120	U	120	U	120	U	120 120	U	33	J	9,800	-	36	J -	26 120	U
Dibenz(a,h)anthracene Dibenzofuran	7,000	330 59,000	560 350,000	200	U	200	U	200	U	190	U	190	U	200	U	660		200	-	200	U
Diethyl phthalate	,	,	/	200	U	200	U	200	U	190	U	190	U	200	U	210	-	200	-	200	U
Dimethylphthalate				200	U	200	U	200	U	190	U	190	U	200	U	210	-	200	-	200	U
Di-n-butylphthalate				200	U	200	U	200	U	190 190	U	190 190	U	200	U	210 210	-	200	-	200	U
Di-n-octylphthalate Fluoranthene	100,000	100,000	500,000	200 120	U	120	U	200 120	U	190	U	190	U	200 68	J	210 22,000		200 54	J	200 79	J
Fluorene	30,000	100,000	500,000	200	U	200	U	200	U	190	U	190	U	200	U	770	Ŀ	200	L-	200	U
Hexachlorobenzene				120	U	120	U	120	U	120	U	120	U	120	U	130	-	120	-	120	U
Hexachlorobutadiene				200	U	200	U	200	U	190	U	190	U	200	U	210	<u> </u>	200	-]	200	U
Hexachlorocyclopentadiene				580 160	- U	570 160	- U	570 160	- U	560 160	- U	550 150	- U	590 160	U	600 170	-	580 160		580 160	U
Hexachloroethane Indeno(1,2,3-cd)pyrene	500	500	5,600	160	U	160	U	160	U	160	U	150	U	160	U	5,600	Ė	160	-	160	U
Isophorone			0,000	180	U	180	U	180	U	180	U	170	U	180	U	190		180		180	U
Naphthalene	12,000	100,000	500,000	200	U	200	U	200	U	190	U	190	U	200	U	570	-	200	-	200	U
Nitrobenzene	<u> </u>			180	U	180	U	180	U	180	U	170	U	180	U	190	-	180	-	180	U
N-Nitrosodi-n-propylamine	I			200	U -	200	U .	200	U -	190	U .	190	U .	200	U -	210	-	200	-	200	U -
N-Nitrosodimethylamine N-Nitrosodiphenylamine				160	U	160	U	160	U	160	U	150	U	160	U	170	-	160	-	160	U
Pentachloronitrobenzene				-	-	-	<u> </u>	-	-	-	-	-	-	-	Ŀ	-	Ŀ	-	-	-	Ŀ
Pentachlorophenol	800	6,700	6,700	160	U	160	U	160	U	160	U	150	U	160	U	170	-	160	-	160	U
Phenanthrene	100,000	100,000	500,000	120 200	U	120 200	U	120 200	U	120 190	U	120 190	U	52	J	16,000	-	37 200	J	66	J
Phenol Pyrene	330 100,000	100,000 100,000	500,000 500,000	120	U	120	U	120	U	190	U	190	U	200 56	J	21,000	-	52	- J	75	J
Pyridine	100,000	100,000	300,000	-	-	-	<u> </u>	-	-		-	-	-	-	-	-,,,,,,,	U	-	-	-	-
•	•				•		•	•	•				•		_	-	_				

- Notes:
 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
 RL Laboratory Reporting Limit, MDL=Minimum Detection Limit
 Bold/highilighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value

Bold/highlighted-Indicated exceedance of the NYSDEC Restidential SCO Guidance Value Bold/highlighted-Indicated exceedance of the NYSDEC RRSCO Guidance Value

- Oualifiers

 U The compound was not detected at the indicated concentration.

 J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

 B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

 P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

 * For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

 NR Not analyzed

						Gol	ldberg	Zoino & A	ssociat	es - Reme	dial Inv	vestigation	ı - Dece	ember 201	6		
						SB-1	04				SB	-105			SB	-106	
	NYSDEC Part 375.6	NYSDEC Part 375.6	NYDEC Part 375.6	(0.0		2/11/2		(40.4	OI)	(0.0)		/2016	101)	(0.0		/2016	100
COMPOUND	Unrestricted Use Soil Cleanup Objectives*	Restricted Residential Soil Cleanup Objectives*	Commercial Soil Cleanup Objectives*	(0-2	")	(5-7 Lot 5		(10-1	2')	(0-2		(10-1 t 57	12')	(0-2		(10-1 t 57	2')
						μg/K	g				μg	/Kg			μς	/Kg	
1,1-Biphenyl				Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
2,2-oxybis(1-Chloropropoane)				-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,4,5-Tetrachlorobenzene				200	U	190	U	210	U	200	U	200	U	200	U	210	U
1,2,4-Trichlorobenzene				200	U	190 190	U	210 210	U	200	U	200	U	200	U	210 210	U
1,2-Dichlorobenzene 1,2-Diphenylhydrazine				200	-	190	-	210	-	200	-	200	-	200	-	210	-
1,3-Dichlorobenzene				200	U	190	U	210	U	200	U	200	U	200	U	210	U
1,4-Dichlorobenzene				200	U	190	U	210	U	200	U	200	U	200	U	210	U
2,4,5-Trichlorophenol				200 130	U	190	U	210	U	200 120	U	200 120	U	200 120	U	210 130	U
2,4,6-Trichlorophenol 2,4-Dichlorophenol				180	U	120 170	U	120 190	U	180	U	180	U	180	U	190	U
2,4-Dimethylphenol				200	U	190	U	210	U	200	U	200	U	200	U	210	U
2,4-Dinitrophenol				960	U	920	U	1,000	U	940	U	940	U	960	U	1,000	U
2,4-Dinitrotoluene				200 200	U	190 190	U	210 210	U	200	U	200	U	200 200	U	210 210	U
2,6-Dinitrotoluene 2-Chloronaphthalene				200	U	190	U	210	U	200	U	200	U	200	U	210	U
2-Chlorophenol				200	U	190	U	210	U	200	U	200	U	200	U	210	U
2-Methylnaphthalene				240	U	230	U	260	U	210	J	240	U	240	U	260	U
2-Methylphenol (o-cresol)	330	100,000	500,000	200 200	U	190 190	U	210 210	U	200	U	200 200	U	200 200	U	210 210	U
2-Nitroaniline 2-Nitrophenol				430	U	420	U	460	U	420	U	420	U	430	U	460	U
3,3'-Dichlorobenzidine				200	U	190	U	210	U	200	U	200	U	200	U	210	U
3&4-Methylphenol (m&p-cresol)	330	100,000	500,000	290	U	280	U	310	U	42	J	280	U	290	U	310	U
3-Nitroaniline				200 520	U	190 500	U	210 560	U	200 510	U	200 510	U	200 520	U	210 550	U
4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether				200	U	190	U	210	U	200	U	200	U	200	U	210	U
4-Chloro-3-methylphenol				200	U	190	U	210	U	200	U	200	U	200	U	210	U
4-Chloroaniline				200	U	190	U	210	U	200	U	200	U	200	U	210	U
4-Chlorophenyl phenyl ether				200	U	190 190	U	210 210	U	200	U	200	U	200	U	210 210	U
4-Nitroaniline 4-Nitrophenol				200	U	270	U	300	U	200	U	200	U	200	U	300	U
Acenaphthene	20,000	100,000	500,000	160	U	150	U	170	U	600	U	160	U	160	U	170	U
Acenaphthylene	100,000	100,000	500,000	160	U	150	U	170	U	650	U	160	U	160	U	170	U
Acetophenone				200	U	190	U	210	U	200	U	200	U	200	U	210	U
Aniline	100.000	100.000	500,000	120	- U	120	- U	130	- U	1,900	- U	120	- U	120	- U	130	- U
Anthracene Atrazine	100,000	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzaldehyde				-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benz(a)anthracene	1,000	1,000	5,600	120	U	120	U	130	U	4,500	-	120	U	120	U	130	U
Benzidine Benzidan	1,000	1,000	1,000	160	- U	150	- U	170	- U	3,900	-	160	- U	160	- U	170	- U
Benzo(a)pyrene Benzo(b)fluoranthene	1,000	1,000	5,600	120	U	120	U	130	U	5,000	-	120	U	120	U	130	U
Benzo(ghi)perylene	100,000	100,000	500,000	160	U	150	U	170	U	2,000	-	160	U	160	U	170	U
Benzo(k)fluoranthene	800	3,900	56,000	120	U	120	U	130	U	2,000	-	120	U	120	U	130	U
Benzoic acid Benzyl Alcohol				650 200	U	620 190	U	690 210	U	640 200	U	640 200	U	650 200	U	690 210	U
Biphenyl				460	U	440	U	490	U	71	J	450	U	460	U	490	U
Benzyl butyl phthalate				200	U	190	U	210	U	200	U	200	U	200	U	210	U
Bis(2-chloroethoxy)methane				220	U	210	U	230	U	210	U	210	U	220	U	230	U
Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether				180 240	U	170 230	U	190 260	U	180 240	U	180 240	U	180 240	U	190 260	U
Bis(2-ethylhexyl)phthalate				1,300	-	380	-	300	-	190	J	200	-	200	-	210	+
Caprolactam				-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbazole				200 120	U	190 120	U	210 130	U	640	-	200 120	U	200 120	U	210 130	U
Chrysene Dibenz(a,h)anthracene	1,000 330	3,900 330	56,000 560	120	U	120	U	130	U	4,600 500		120	U	120	U	130	U
Dibenzofuran	7,000	59,000	350,000	200	U	190	U	210	U	450	_	200	U	200	U	210	U
Diethyl phthalate				200	U	190	U	210	U	200	U	200	U	200	U	210	U
Dimethylphthalate				200 200	U	190 190	U	210 210	U	200	U	200 200	U	200 200	U	210 210	U
Di-n-butylphthalate Di-n-octylphthalate				200	U	190	U	210	U	200	U	200	U	200	U	210	U
Fluoranthene	100,000	100,000	500,000	120	U	120	U	130	U	10,000	-	120	U	120	U	130	U
Fluorene	30,000	100,000	500,000	200	U	190	U	210	U	670	-	200	U	200	U	210	U
Hexachlorobenzene				120 200	U	120 190	U	130 210	U	120 200	U	120 200	U	120 200	U	130 210	U
Hexachlorobutadiene Hexachlorocyclopentadiene				570	U	550	U	610	U	560	U	560	U	570	U	610	U
Hexachloroethane				160	U	150	U	170	U	160	U	160	U	160	U	170	U
Indeno(1,2,3-cd)pyrene	500	500	5,600	160	U	150	U	170	U	2,200	-	160	U	160	U	170	U
Isophorone	40.000	400.000	500.000	180 200	U	170 190	U	190 210	U	180 370	U	180 200	U	180 200	U	190 210	U
Naphthalene Nitrobenzene	12,000	100,000	500,000	180	U	190	U	170	U	180	U	180	U	180	U	190	U
N-Nitrosodi-n-propylamine				200	U	190	U	210	U	200	U	200	U	200	U	210	U
N-Nitrosodimethylamine				-	-	-	-	-	-		-		-		-		1
N-Nitrosodiphenylamine				160	U	150	U .	170	U	160	U	160	U .	160	U	170	U
Pentachloronitrobenzene Pentachlorophenol	800	6,700	6,700	160	U	150	U	170	U	160	U	160	U	160	U	170	U
Phenanthrene	100,000	100,000	500,000	120	U	120	U	130	U	8,600	-	120	U	120	U	130	U
Phenol	330	100,000	500,000	200	U	190	U	210	U	200	U	200	U	200	U	210	U
Pyrene	100,000	100,000	500,000	120	U .	120	U .	130	U	9,600	-	120	U .	120	U	130	U
Pyridine	l					ı -											لنب

Notes:

*-6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
RL - Laboratory Reporting Limit, MDL-wilnimum Detection Limit
Boldhighlighted-indicated exceedance of the NYSDEC UISCO Guidance Value
Boldhighlighted-indicated exceedance of the NYSDEC Restidential SCO Guidance Value
Boldhighlighted-indicated exceedance of the NYSDEC RRSCO Guidance Value

- Qualifiers
 U The compound was not detected at the indicated concentration.
 J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.
 B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
 P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
 *- For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
 NR Not analyzed

			Volatile Organic Compo			Goldberg	Zoino	& Associa	es - Ri	- Decemb	er 2016		
					SB-					SB-1			
	NYSDEC Part 375.6	NYSDEC Part 375.6	NYDEC Part 375.6			2016				2/11/2			
COMPOUND	Unrestricted Use Soil Cleanup Objectives*	Restricted Residential Soil Cleanup Objectives*	Commercial Soil Cleanup Objectives*	(0-2	')	(10-1	2')	(0-2	')	(4-6	')	(10-1	2')
	Cleanup Objectives	Son Gleanup Objectives	Gleanup Objectives		Lot µg					Lot 5 µg/K			
				Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
1,1-Biphenyl 2,2-oxybis(1-Chloropropoane)				-	-	-	-	-	-	-	-	-	-
1,2,4,5-Tetrachlorobenzene				180	U	200	U	190	U	200	U	200	U
1,2,4-Trichlorobenzene				180 180	U	200	U	190 190	U	200	U	200	U
1,2-Dichlorobenzene 1,2-Diphenylhydrazine				-	-	-	-	- 180	-	-	-	-	-
1,3-Dichlorobenzene				180	U	200	U	190	U	200	U	200	U
1,4-Dichlorobenzene				180 180	U	200	U	190 190	U	200	U	200	U
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol				110	U	120	U	120	U	120	U	120	U
2,4-Dichlorophenol				170	U	180	U	170	U	180	U	180	U
2,4-Dimethylphenol				180 890	U	200 960	U	190 930	U	200 950	U	200 940	U
2,4-Dinitrophenol 2,4-Dinitrotoluene				180	U	200	U	190	U	200	U	200	U
2,6-Dinitrotoluene				180	U	200	U	190	U	200	U	200	U
2-Chloronaphthalene				180 180	U	200	U	190 190	U	200	U	200	U
2-Chlorophenol 2-Methylnaphthalene	<u> </u>			220	U	240	U	140	J	240	U	240	U
2-Methylphenol (o-cresol)	330	100,000	500,000	180	U	200	U	35	J	200	U	200	U
2-Nitroaniline 2-Nitrophenol	1			180 400	U	200 430	U	190 420	U	200 420	U	200 420	U
2-Nitropnenoi 3,3'-Dichlorobenzidine	<u> </u>			180	U	200	U	190	U	200	U	200	U
3&4-Methylphenol (m&p-cresol)	330	100,000	500,000	260	U	290	U	280	U	280	U	280	U
3-Nitroaniline				180 480	U	200 520	U	190 500	U	200 510	U	200 510	U
4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether	<u> </u>			180	U	200	U	190	U	200	U	200	U
4-Chloro-3-methylphenol				180	U	200	U	190	U	200	U	200	U
4-Chloroaniline				180 180	U	200	U	190 190	U	200	U	200	U
4-Chlorophenyl phenyl ether 4-Nitroaniline				180	U	200	U	190	U	200	U	200	U
4-Nitrophenol				260	U	280	U	270	U	280	U	270	U
Acenaphthene	20,000	100,000	500,000	150 150	U	160 160	U	120 71	J	160 160	U	160 160	U
Acenaphthylene Acetophenone	100,000	100,000	500,000	180	U	200	U	190	U	200	U	200	U
Aniline				-	-	-	-		-	-	-	-	-
Anthracene	100,000	100,000	500,000	110	U	120	U	220	U	120	U	120	U
Atrazine Benzaldehyde				-	-	-	-	-	-	-	-	-	-
Benz(a)anthracene	1,000	1,000	5,600	110	U	120	U	1,100	-	120	U	26	J
Benzidine Benzidine	1,000	1,000	1,000	150	- U	160	- U	1,000	-	160	- U	160	- U
Benzo(a)pyrene Benzo(b)fluoranthene	1,000	1,000	5,600	110	U	120	U	1,500	-	120	U	120	U
Benzo(ghi)perylene	100,000	100,000	500,000	150	U	160	U	630	-	160	U	160	U
Benzo(k)fluoranthene Benzoic acid	800	3,900	56,000	110 600	U	120 650	U	570	- U	120 640	U	120 640	U
Benzyl Alcohol				180	U	200	U	190	U	200	U	200	U
Biphenyl				420	U	460	U	440	U	450	U	450	U
Benzyl butyl phthalate Bis(2-chloroethoxy)methane				180 200	U	200 220	U	190 210	U	200	U	200	U
Bis(2-chloroethyl)ether				170	U	180	U	170	U	180	U	180	U
Bis(2-chloroisopropyl)ether				220	U	240	U	230	U	240	U	240	U
Bis(2-ethylhexyl)phthalate Caprolactam	1			180	-	200	-	900	U -	200	-	200	U -
Carbazole				180	U	200	U	240	U	200	U	200	U
Chrysene	1,000	3,900	56,000	110	U	120	U	1,200	U	26	J	120	U
Dibenz(a,h)anthracene Dibenzofuran	7,000	330 59,000	560 350,000	110 180	U	120 200	U	160 130	J	120 200	U	120 200	U
Diethyl phthalate	.,	,	,,	180	U	200	U	190	U	200	U	200	U
Dimethylphthalate				180 180	U	200 200	U	190 190	U	200 200	U	200 200	U
Di-n-butylphthalate Di-n-octylphthalate				180	U	200	U	190	U	200	U	200	U
Fluoranthene	100,000	100,000	500,000	110	U	120	U	3,000	-	65	J	120	U
Fluorene	30,000	100,000	500,000	180 110	U	200 120	U	130 120	U	200 120	U	200 120	U
Hexachlorobenzene Hexachlorobutadiene				180	U	200	U	190	U	200	U	200	U
Hexachlorocyclopentadiene				530	U	570	U	550	U	560	U	560	U
Hexachloroethane Indeno(1,2,3-cd)pyrene	500	500	5,600	150 150	U	160 160	U	160 690	U -	160 160	U	160 160	U
Indeno(1,2,3-cd)pyrene Isophorone	500	500	0,000	170	U	180	U	170	U	180	U	180	U
Naphthalene	12,000	100,000	500,000	180	U	200	U	130	J	200	U	200	U
Nitrobenzene	1			170 180	U	180 200	U	170 190	U	180 200	U	180 200	U
N-Nitrosodi-n-propylamine N-Nitrosodimethylamine				-	-	-	-	-	-	-	-	-	-
N-Nitrosodiphenylamine				150	U	160	U	160	U	160	U	160	U
Pentachloronitrobenzene	900	6 700	6 700	150	- U	160	- U	160	- U	160	- U	160	- U
Pentachlorophenol Phenanthrene	800 100,000	6,700 100,000	6,700 500,000	110	U	120	U	2,200	U	120	U	49	J
Phenol	330	100,000	500,000	180	U	200	U	190	U	200	U	200	U
Pyrene Pyridine	100,000	100,000	500,000	110	U -	120	U -	2,600	U -	120	U -	54	J -
Pyridine	1	L											

- Notes:

 *-6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
 RL Laboratory Reporting Limit, MDL-Milnimum Detection Limit
 Boldhijshijhiteth-indicated exceedance of the NYSDEC UISCO Guidance Value
 Boldhighijhitet-indicated exceedance of the NYSDEC Restidential SCO Guidance Value
 Boldhighijhighted-indicated exceedance of the NYSDEC RRSCO Guidance Value

- The compound was not detected at the indicated concentration.
 To Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.
- B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
 P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
 For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
 NR Not analyzed

										EBC - Rem	edial Ir	vesitgatio	n - 200	7					
					E	≣1			E	2			E	3			E	E4	
COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil	NYSDEC Part 375.6 Restricted Residential Soil	NYDEC Part 375.6 Commercial Soil Cleanup	8/16/2		8/16/2		8/16/2		8/16/2		8/16/2		8/16/2		8/16/2		8/16/2	
	Cleanup Objectives*	Cleanup Objectives*	Objectives*	,	Lo	t 57		,	Lot	57		,	Lot	17			Lot	t 17	
				μg/k Result	Qual	μg/K Result	Qual	μg/K Result	g Qual	μg/K Result	g Qual	μg/K Result	g Qual	μg/K Result	g Qual	μg/k Result	Qual	μg/K Result	Kg Qual
4,4' -DDD	3.3	13,000	92,000	0.79	U	0.87	U	0.82	U	0.85	U	0.83	U	0.85	U	0.79	U	0.89	U
4,4' -DDE	3.3	8,900	62,000	0.89	U	0.98	U	0.92	U	0.95	U	0.93	U	0.96	U	0.89	U	1.0	U
4,4' -DDT	3.3	7,900	47,000	0.82	U	0.89	U	0.84	U	0.87	U	0.85	U	0.88	U	0.82	U	0.92	U
a-BHC	20	480	3,400	0.72	U	0.79	U	0.75	U	0.77	U	0.76	U	0.78	U	0.72	U	0.81	U
a-Chlordane	94	4,200	24,000	0.95	U	1.0	U	0.98	U	1.0	U	0.99	U	1.0	U	0.95	U	1.1	U
Aldrin	5	97	680	1.4	U	1.5	U	1.4	U	1.5	U	1.5	U	1.5	U	1.4	U	1.6	U
b-BHC	36	360	3,000	0.99	U	1.1	U	1.0	U	1.1	U	1.0	U	1.1	U	0.99	U	1.1	U
Chlordane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
d-BHC	40	100,000	500,000	1.8	U	2.0	U	1.9	U	2.0	U	1.9	U	2.0	U	1.8	U	2.1	U
Dieldrin	5	200	1,400	0.94	U	1.0	U	0.97	U	1.0	U	0.98	U	1.0	U	0.93	U	1.0	U
Endosulfan I	2,400	24,000	200,000	1.0	U	1.1	U	1.0	U	1.1	U	1.0	U	1.1	U	1.0	U	1.1	U
Endosulfan II	2,400	24,000	200,000	1.1	U	1.2	U	1.1	U	1.1	U	1.1	U	1.2	U	1.1	U	1.2	U
Endosulfan sulfate	2,400	24,000	200,000	1.2	U	1.3	U	1.3	U	1.3	U	1.3	U	1.3	U	1.2	U	1.4	U
Endrin	14	11,000	89,000	0.96	U	1.1	U	1.0	U	1.0	U	1.0	U	1.0	U	0.96	U	1.1	U
Endrin aldehyde				1.1	U	1.2	U	1.2	U	1.2	U	1.2	U	1.2	U	1.1	U	1.3	U
Endrin ketone				0.93	U	1.0	U	0.96	U	1.0	U	0.98	U	1.0	U	0.93	U	1.0	U
g-BHC				0.81	U	0.89	U	0.84	U	0.87	U	0.85	U	0.87	U	0.81	U	0.91	U
g-Chlordane				0.99	U	1.1	U	1.0	U	1.1	U	1.0	U	1.1	U	0.99	U	1.1	U
Heptachlor	42	2,100	15,000	1.1	U	1.2	U	1.1	U	1.1	U	1.1	U	1.1	U	1.1	U	1.2	U
Heptachlor epoxide				1.2	U	1.3	U	1.2	U	1.3	U	1.3	U	1.3	U	1.2	U	1.3	U
Methoxychlor				0.97	U	1.1	U	1.0	U	1.0	U	1.0	U	1.0	U	0.97	U	1.1	U
Toxaphene				4.1	U	4.4	U	4.2	U	4.3	U	4.2	U	4.4	U	4.0	U	4.6	U
PCB-1016	100	100,000	500,000	2.9	U	3.1	U	3.0	U	3.1	U	3.1	U	3.1	U	2.8	U	3.2	U
PCB-1221	100	100,000	500,000	4.5	U	4.9	U	4.6	U	4.8	U	4.7	U	4.8	U	4.4	U	5.0	U
PCB-1232	100	100,000	500,000	6.7	U	7.3	U	6.9	U	7.2	U	7.1	U	7.1	U	6.6	U	7.5	U
PCB-1242	100	100,000	500,000	5.9	U	6.5	U	6.1	U	6.4	U	6.3	U	6.3	U	5.9	U	6.7	U
PCB-1248	100	100,000	500,000	2.9	U	3.2	U	3.0	U	3.1	U	3.1	U	3.1	U	2.9	U	3.3	U
PCB-1254	100	100,000	500,000	1.9	U	2.1	U	1.9	U	2.0	U	2.0	U	2.0	U	1.9	U	2.1	U
PCB-1260	100	100,000	500,000	4.8	U	5.2	U	4.9	U	5.2	U	5.1	U	5.1	U	4.7	U	5.4	U
PCB-1262	100	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PCB-1268	100	100,000	500,000	-	-	-	-	-	-		-	-	-	-	-	-	-	-	

- * 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
- RL Laboratory Reporting Limit, MDL=Minimum Detection Limit

Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value Bold/highlighted-Indicated exceedance of the NYSDEC Restidential SCO Guidance Value Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

- U The compound was not detected at the indicated concentration.
- Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.
- B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
- P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
 For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
- NR Not analyzed

								EB	C - Re	medial Inv	esitgat	ion - 2007					
					Е	5			Е	:6		E7	•		Е	12	
	NYSDEC Part 375.6	NYSDEC Part 375.6	NYDEC Part 375.6	8/16/2	007	8/16/2	007	8/16/20	007	8/16/2	007	8/17/2	007	8/17/2	007	8/17/2	007
COMPOUND	Unrestricted Use Soil Cleanup Objectives*	Restricted Residential Soil Cleanup Objectives*	Commercial Soil Cleanup Objectives*	(0-4		(8-12	2')	(0-4		(8-12	2')	(0-4		(0-4		(8-12	2')
	Oleanap Objectives	Oleanap Objectives	Objectives	μg/K	Lo ^r	: 21 μg/K	g	μg/K	Lot g	18 μg/K	g	Lot 1 µg/k		μg/K	Lot g	17 μg/K	(g
				Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
4,4' -DDD	3.3	13,000	92,000	0.85	U	0.82	U	0.75	U	0.80	U	0.74	U	0.76	U	0.91	U
4,4' -DDE	3.3	8,900	62,000	0.95	U	0.92	U	0.84	U	0.90	U	0.82	U	0.85	U	1.0	U
4,4' -DDT	3.3	7,900	47,000	0.87	U	0.84	U	0.77	U	0.82	U	0.75	U	0.78	U	0.94	U
a-BHC	20	480	3,400	0.77	U	0.74	U	0.68	U	0.73	U	0.67	U	0.69	U	0.83	U
a-Chlordane	94	4,200	24,000	1.0	U	0.97	U	0.89	U	0.95	U	0.88	U	0.91	U	1.1	U
Aldrin	5	97	680	1.5	U	1.4	U	1.3	U	1.4	U	1.3	U	1.3	U	1.6	U
b-BHC	36	360	3,000	1.1	U	1.0	U	0.93	U	1.0	U	0.92	U	0.95	U	1.1	U
Chlordane				-	-	-	-	-	-	-	-	-	-				
d-BHC	40	100,000	500,000	2.0	U	1.9	U	1.7	U	1.9	U	1.7	U	1.8	U	2.1	U
Dieldrin	5	200	1,400	1.0	U	0.96	U	0.88	U	0.94	U	0.86	U	0.89	U	1.1	U
Endosulfan I Endosulfan II	2,400	24,000	200,000	1.1	U	1.0	U	0.94	U	1.0	U	0.92	U	0.95	U	1.1	U
Endosulfan II	2,400	24,000	200,000	1.1	U	1.1	U	1.0	U	1.1	U	0.99	U	1.0	U	1.2	U
Endosulfan sulfate	2,400	24,000	200,000	1.3	U	1.3	U	1.1	U	1.2	U	1.1	U	1.2	U	1.4	U
Endrin	14	11,000	89,000	1.0	U	0.99	U	0.91	U	0.97	U	0.89	U	0.92	U	1.1	U
Endrin aldehyde				1.2	U	1.2	U	1.1	U	1.1	U	1.1	U	1.1	U	1.3	U
Endrin ketone				0.99	U	0.96	U	0.88	U	0.94	U	0.86	U	0.89	U	1.1	U
g-BHC				0.87	U	0.84	U	0.77	U	0.82	U	0.75	U	0.78	U	0.94	U
g-Chlordane				1.1	U	1.0	U	0.93	U	0.99	U	0.91	U	0.95	U	1.1	U
Heptachlor	42	2,100	15,000	1.1	U	1.1	U	0.99	U	1.1	U	0.97	U	1.0	U	1.2	U
Heptachlor epoxide				1.3	U	1.2	U	1.1	U	1.2	U	1.1	U	1.1	U	1.4	U
Methoxychlor				1.0	U	1.0	U	0.92	U	0.98	U	0.90	U	0.93	U	1.1	U
Toxaphene				4.3	U	4.2	U	3.8	U	4.1	U	3.7	U	3.9	U	4.7	U
PCB-1016	100	100,000	500,000	3.1	U	3.0	U	2.7	U	2.9	U	2.7	U	2.7	U	3.3	U
PCB-1221	100	100,000	500,000	4.8	U	4.6	U	4.2	U	4.5	U	4.2	U	4.2	U	5.1	U
PCB-1232	100	100,000	500,000	7.1	U	6.9	U	6.2	U	6.8	U	6.3	U	6.4	U	7.6	U
PCB-1242	100	100,000	500,000	6.3	U	6.1	U	5.5	U	6.0	U	5.6	U	5.6	U	6.8	U
PCB-1248	100	100,000	500,000	3.1	U	3.0	U	2.7	U	2.9	U	2.7	U	2.7	U	3.3	U
PCB-1254	100	100,000	500,000	2.0	U	1.9	U	1.8	U	1.9	U	1.8	U	1.8	U	2.1	U
PCB-1260	100	100,000	500,000	5.1	U	4.9	U	4.5	U	4.8	U	38	-	4.5	U	5.4	U
PCB-1262	100	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PCB-1268	100	100,000	500,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-

- * 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
- RL Laboratory Reporting Limit, MDL=Minimum Detection Limit

Bold/highlighted-Indicated exceedance of the NYSDEC UUSCO Guidance Value Bold/highlighted-Indicated exceedance of the NYSDEC Restidential SCO Guidance Value Bold/highlighted-Indicated exceedance of the NYSDEC RRSCO Guidance Value

- U The compound was not detected at the indicated concentration.
- J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.
- B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
- P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
- For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
- NR Not analyzed

					E	BC - Rem	edial Ir	rvesitgatio	n - 200	7		Gol	dberg 2	Zoino & As	so R	I - Dec 201	6
					E	13			E	14				SB-1	01		
	NYSDEC Part 375.6	NYSDEC Part 375.6	NYDEC Part 375.6	8/17/2	007	8/17/2	007	8/17/20	007	8/17/2	007			2/12/2	016		
COMPOUND	Unrestricted Use Soil Cleanup Objectives*	Restricted Residential Soil Cleanup Objectives*	Commercial Soil Cleanup Objectives*	(0-4		(8-12	2')	(0-4		(8-12	2')	(0-2	!')	(5-7		(10-1	2')
	Sidanap Sajodaros	Cisanap Objectives	0.0,000.100	μg/K	Lot g	20 μg/K	g	μg/K		.21 μg/K	g			Lot :			
				Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
4,4' -DDD	3.3	13,000	92,000	0.82	U	0.89	U	0.80	U	0.86	U	1.91	U	1.93	U	1.88	U
4,4' -DDE	3.3	8,900	62,000	0.92	U	1.0	U	0.89	U	0.96	U	0.854	J	3.54	U	0.894	J
4,4' -DDT	3.3	7,900	47,000	0.85	U	0.92	U	0.82	U	0.88	U	3.59	U	3.61	U	3.52	U
a-BHC	20	480	3,400	0.75	U	0.81	U	0.73	U	0.78	U	0.798	U	0.803	U	0.781	U
a-Chlordane	94	4,200	24,000	0.98	U	1.1	U	0.95	U	1.0	U	2.39	U	2.41	U	2.34	U
Aldrin	5	97	680	1.4	U	1.6	U	1.4	U	1.5	U	1.91	U	1.93	U	1.88	U
b-BHC	36	360	3,000	1.0	U	1.1	U	0.99	U	1.1	U	1.91	U	1.93	U	1.88	U
Chlordane												1.56	U	15.7	U	1.52	U
d-BHC	40	100,000	500,000	1.9	U	2.1	U	1.8	U	2.0	U	1.91	U	1.93	U	1.88	U
Dieldrin	5	200	1,400	0.97	U	1.0	U	0.94	U	1.0	U	1.2	U	1.81	PI	0.906	J
Endosulfan I	2,400	24,000	200,000	1.0	U	1.1	U	1.0	U	1.1	U	1.91	U	1.93	U	1.88	U
Endosulfan II	2,400	24,000	200,000	1.1	U	1.2	U	1.1	U	1.2	U	1.91	U	1.93	U	1.88	U
Endosulfan sulfate	2,400	24,000	200,000	1.3	U	1.4	U	1.2	U	1.3	U	0.798	U	0.803	U	0.781	U
Endrin	14	11,000	89,000	1.0	U	1.1	U	0.97	U	1.0	U	0.798	U	0.803	U	0.781	U
Endrin aldehyde				1.2	U	1.3	U	1.1	U	1.2	U	2.39	U	2.41	U	2.34	U
Endrin ketone				0.97	U	1.0	U	0.93	U	1.0	U	1.91	U	1.93	U	1.88	U
g-BHC				0.84	U	0.91	U	0.82	U	0.88	U	0.798	U	0.803	U	0.781	U
g-Chlordane				1.0	U	1.1	U	0.99	U	1.1	U	2.39	U	2.41	U	2.34	U
Heptachlor	42	2,100	15,000	1.1	U	1.2	U	1.1	U	1.1	U	0.957	U	0.964	U	0.938	U
Heptachlor epoxide				1.2	U	1.3	U	1.2	\supset	1.3	U	3.59	U	3.61	U	3.52	U
Methoxychlor				1.0	U	1.1	U	0.98	\supset	1.1	U	3.59	U	3.61	U	3.52	U
Toxaphene				4.2	U	4.6	U	4.1	\supset	4.4	U	35.9	U	36.1	U	35.2	U
PCB-1016	100	100,000	500,000	3.0	U	3.2	U	2.8	U	3.1	U	39.4	U	38.4	U	38.3	U
PCB-1221	100	100,000	500,000	4.6	U	5.0	U	4.4	U	4.8	U	39.4	U	38.4	U	38.3	U
PCB-1232	100	100,000	500,000	6.9	U	7.4	U	6.6	U	7.2	U	39.4	U	38.4	U	38.3	U
PCB-1242	100	100,000	500,000	6.1	U	6.6	U	5.9	U	6.4	U	39.4	U	38.4	U	38.3	U
PCB-1248	100	100,000	500,000	3.0	U	3.2	U	2.9	U	3.1	U	39.4	U	38.4	U	38.3	U
PCB-1254	100	100,000	500,000	1.9	U	2.1	U	1.9	U	2.0	U	39.4	U	38.4	U	38.3	U
PCB-1260	100	100,000	500,000	4.9	U	5.3	U	4.7	U	5.1	U	26.1	J	12.8	J	26.4	J
PCB-1262	100	100,000	500,000	-	-	-	-	-	-	-	-	39.4	U	38.4	U	38.3	U
PCB-1268	100	100,000	500,000	-	-	-	-	-	-	-	-	39.4	U	38.4	U	38.3	U

- * 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
- RL Laboratory Reporting Limit, MDL=Minimum Detection Limit

Bold/highlighted-Indicated exceedance of the NYSDEC UUSCO Guidance Value Bold/highlighted-Indicated exceedance of the NYSDEC Restidential SCO Guidance Value Bold/highlighted-Indicated exceedance of the NYSDEC RRSCO Guidance Value

- U The compound was not detected at the indicated concentration.
- J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.
- B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
- P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
- For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
- NR Not analyzed

									Gol	dberg	Zoino & A	ssociat	es - Reme	dial Inv	estigation/	ı - Dece	mber 201	6				
ſ							SB-1	02					SB-1	03					SB-1	04		
		NYSDEC Part 375.6	NYSDEC Part 375.6	NYDEC Part 375.6			2/12/2	016					2/12/2	016					2/11/2	016		
	COMPOUND	Unrestricted Use Soil Cleanup Objectives*	Restricted Residential Soil Cleanup Objectives*	Commercial Soil Cleanup Objectives*	(0-2	?')	(5-7		(10-1	2')	(0-2	')	(4-6	')	(10-1	2')	(0-2	!')	(5-7	')	(10-1	12')
		Cleanup Objectives	Cleanup Objectives	Objectives			Lot 1 µg/K						Lot 5 µg/K						Lot 5			
					Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual		Qual	Result	Qual
	4,4' -DDD	3.3	13,000	92,000	1.9	U	1.84	U	1.95	U	2.02	U	1.92	U	1.88	U	1.89	U	1.78	U	1.97	U
	4,4' -DDE	3.3	8,900	62,000	1.9	U	1.84	U	1.95	U	2.02	U	1.92	U	1.88	U	0.542	J	1.78	U	1.97	U
	4,4' -DDT	3.3	7,900	47,000	3.56	U	3.44	U	3.65	U	3.79	U	3.61	U	3.53	U	3.55	U	3.33	U	3.69	U
	a-BHC	20	480	3,400	0.791	U	0.764	U	0.812	U	0.843	U	0.802	U	0.785	U	0.789	U	0.74	U	0.82	U
ı	a-Chlordane	94	4,200	24,000	2.37	U	2.29	U	2.44	U	2.53	U	2.4	U	2.36	U	0.8	J	1.02	U	2.46	U
	Aldrin	5	97	680	1.9	U	1.84	U	1.95	U	2.02	U	1.92	U	1.88	U	1.89	U	1.78	U	1.97	U
Į.	b-BHC	36	360	3,000	1.9	U	1.84	U	1.95	U	2.02	U	1.92	U	1.88	U	1.89	U	1.78	U	1.97	U
	Chlordane				15.4	U	14.9	U	15.8	U	16.4	U	15.6	U	15.3	U	15.4	U	14.4	U	16	U
Į.	d-BHC	40	100,000	500,000	1.9	U	1.84	U	1.95	U	2.02	U	1.92	U	1.88	U	1.89	U	1.78	U	1.97	U
တ္	Dieldrin	5	200	1,400	1.19	U	1.15	U	1.22	U	1.26	U	1.2	U	1.18	U	0.649	J	1.11	U	1.23	U
Pesticides	Endosulfan I	2,400	24,000	200,000	1.9	U	1.84	U	1.95	U	2.02	U	1.92	U	1.88	U	1.89	U	1.78	U	1.97	U
esti	Endosulfan II	2,400	24,000	200,000	1.9	U	1.84	U	1.95	U	2.02	U	1.92	U	1.88	U	1.89	U	1.78	U	1.97	U
-	Endosulfan sulfate	2,400	24,000	200,000	0.791	U	0.764	U	0.812	U	0.843	U	0.802	U	0.785	U	0.789	U	0.74	U	0.82	U
	Endrin	14	11,000	89,000	0.791	U	0.764	U	0.812	U	0.843	U	0.802	U	0.785	U	0.789	U	0.74	U	0.82	U
	Endrin aldehyde				2.37	U	2.29	U	2.44	U	2.53	U	1.08		2.36	U	2.37	U	2.22	U	2.46	U
	Endrin ketone				1.9	U	1.84	U	1.95	U	2.02	U	1.92	U	1.88	U	1.89	U	1.78	U	1.97	U
	g-BHC				0.791	U	0.764	U	0.812	U	0.843	U	0.802	U	0.785	U	0.789	U	0.74	U	0.82	U
	g-Chlordane				2.37	U	2.29	U	2.44	U	2.53	U	2.4	U	2.36		0.847	JPI	2.22	U	2.04	J
	Heptachlor	42	2,100	15,000	0.949	U	0.918	U	0.974	U	1.01	U	0.962	U	0.942	U	0.947	U	0.888	U	0.984	U
	Heptachlor epoxide				3.56	U	3.44	U	3.65	U	2.54	J	3.61	U	3.53	U	3.55	U	3.33	U	3.69	U
ſ	Methoxychlor				3.56	U	3.44	U	3.65	U	3.79	U	3.61	U	3.53	U	3.55	U	3.33	U	3.69	U
	Toxaphene				35.6	U	34.4	U	36.5	U	37.9	U	36.1	U	35.3	U	35.5	U	33.3	U	36.9	U
	PCB-1016	100	100,000	500,000	38.8	U	38.5	U	40.4	U	41	U	39.7	U	39.4	U	39.2	U	37.7	U	40.5	U
ı	PCB-1221	100	100,000	500,000	38.8	U	38.5	U	40.4	U	41	U	39.7	U	39.4	U	39.2	U	37.7	U	40.5	U
ı	PCB-1232	100	100,000	500,000	38.8	U	38.5	U	40.4	U	41	U	39.7	U	39.4	U	39.2	U	37.7	U	40.5	U
ĺ	PCB-1242	100	100,000	500,000	38.8	U	38.5	U	40.4	U	41	U	39.7	U	39.4	U	39.2	U	37.7	U	40.5	U
ĺ	PCB-1248	100	100,000	500,000	38.8	U	38.5	U	40.4	U	41	U	39.7	U	39.4	U	39.2	U	37.7	U	40.5	U
j	PCB-1254	100	100,000	500,000	38.8	U	38.5	U	40.4	U	41	U	39.7	U	39.4	U	39.2	U	37.7	U	40.5	U
j	PCB-1260	100	100,000	500,000	38.8	U	38.5	U	40.4	U	41	U	39.7	U	39.4	U	13.2	J	13.2	J	40.5	U
j	PCB-1262	100	100,000	500,000	38.8	U	38.5	U	40.4	U	41	U	39.7	U	39.4	U	39.2	U	37.7	U	40.5	U
ľ	PCB-1268	100	100,000	500,000	38.8	U	38.5	U	40.4	U	41	U	39.7	U	39.4	U	39.2	U	37.7	U	40.5	U

RL - Laboratory Reporting Limit, MDL=Minimum Detection Limit

Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value Bold/highlighted- Indicated exceedance of the NYSDEC Restidential SCO Guidance Value Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

- U The compound was not detected at the indicated concentration.
- Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.
- B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
- P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is
- greater than 40%.
 For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
- NR Not analyzed

^{* - 6} NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

									Gol	dberg	Zoino & A	ssociat	es - Reme	dial In	estigation/	n - Dece	ember 201	6				
						SB-	105			SB	-106			SB	-107				SB-1	08		
		NYSDEC Part 375.6	NYSDEC Part 375.6	NYDEC Part 375.6		2/11/	2016			2/11	/2016			2/11	/2016				2/11/2	016		
	COMPOUND	Unrestricted Use Soil Cleanup Objectives*	Restricted Residential Soil Cleanup Objectives*	Commercial Soil Cleanup Objectives*	(0-2	') Lot	(10-1	2')	(0-2		(10-1 t 57	12')	(0-2		(10-1 t 57	12')	(0-2	2')	(4-6 Lot 5		(10-1	2')
		,,	,			μg	/Kg			μg	/Kg			μς	/Kg				μg/K	g		
					Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual		Qual	Result	RL
	4,4' -DDD	3.3	13,000	92,000	1.87	U	1.82	U	1.96	U	2.02	U	1.77	U	1.9	U	1.89	U	1.85	U	1.85	U
	4,4' -DDE	3.3	8,900	62,000	17.9	U	1.82	U	1.96	U	2.02	U	1.77	U	1.9	U	2.2	U	1.85	U	1.85	U
	4,4' -DDT	3.3	7,900	47,000	77	U	3.41	U	3.68	U	3.79	U	3.31	U	3.57	U	1.9	JPI	3.47	U	3.47	U
	a-BHC	20	480	3,400	0.78	U	0.757	U	0.817	U	0.842	U	0.736	U	0.793	U	0.789	U	0.772	U	0.77	U
	a-Chlordane	94	4,200	24,000	2.34	U	2.27	U	1.46	J	1.52	J	1.83	J	1.52	JPI	1.71	JPI	2.32	U	1.77	J
	Aldrin	5	97	680	1.87	U	1.82	U	1.96	U	2.02	U	1.77	U	1.9	U	1.89	U	1.85	U	1.85	U
	b-BHC	36	360	3,000	1.87	U	1.82	U	1.96	U	2.02	U	1.77	U	1.9	U	1.89	U	1.85	U	1.85	U
	Chlordane				15.2	U	14.8	U	15.9	U	16.4	U	14.3	U	15.5	U	15.4	U	15	U	15	U
	d-BHC	40	100,000	500,000	1.87	U	1.82	U	1.96	U	2.02	U	1.77	U	1.9	U	1.89	U	1.85	U	1.85	U
Pesticides	Dieldrin	5	200	1,400	1.17	U	1.14	U	1.22	U	1.26	U	1.1	U	1.19	U	1.18	U	1.16	U	1.16	U
	Endosulfan I	2,400	24,000	200,000	1.87	U	1.82	U	1.96	U	2.02	U	1.77	U	1.9	U	1.89	U	1.85	U	1.85	U
	Endosulfan II	2,400	24,000	200,000	1.87	U	1.82	U	1.96	U	2.02	U	1.77	U	1.9	U	1.89	U	1.85	U	1.85	U
	Endosulfan sulfate	2,400	24,000	200,000	0.78	U	0.757	U	0.817	U	0.842	U	0.736	U	0.793	U	0.789	U	0.772	U	0.77	U
	Endrin	14	11,000	89,000	0.78	U	0.757	U	0.817	U	0.842	U	0.736	U	0.793	U	0.789	U	0.772	U	0.77	U
	Endrin aldehyde				2.34	U	2.27	U	2.45	U	2.53	U	2.21	U	2.38	U	2.37	U	2.32	U	2.31	U
	Endrin ketone				1.87	U	1.82	U	1.96	U	2.02	U	1.77	U	1.9	U	1.89	U	1.85	U	1.85	U
	g-BHC				0.78	U	0.757	U	0.817	U	0.842	U	0.736	U	0.793	U	0.789	U	0.772	U	0.77	U
	g-Chlordane				2.02	JPI	0.72	JPI	1.46	J	1.13	JPI	2	J	3.24	U	1.47	JPI	0.97	JPI	0.888	JPI
	Heptachlor	42	2,100	15,000	0.936	U	0.909	U	0.98	U	1.01	U	0.883	U	0.952	U	0.947	U	0.926	U	0.924	U
	Heptachlor epoxide				3.51	U	3.41	U	3.68	U	3.79	U	3.31	U	3.57	U	3.55	U	3.47	U	3.47	U
	Methoxychlor				3.51	U	3.41	U	3.68	U	3.79	U	3.31	U	3.57	U	3.55	U	3.47	U	3.47	U
	Toxaphene				35.1	U	34.1	U	36.8	U	37.9	U	33.1	U	35.7	U	35.5	U	34.7	U	34.7	U
	PCB-1016	100	100,000	500,000	38.7	U	39	U	39.4	U	41	U	36	U	39.5	U	39.5	U	38.3	U	37.7	U
	PCB-1221	100	100,000	500,000	38.7	U	39	U	39.4	U	41	U	36	U	39.5	U	39.5	U	38.3	U	37.7	U
	PCB-1232	100	100,000	500,000	38.7	U	39	U	39.4	U	41	U	36	U	39.5	U	39.5	U	38.3	U	37.7	U
	PCB-1242	100	100,000	500,000	38.7	U	39	U	39.4	U	41	U	36	U	39.5	U	39.5	U	38.3	U	37.7	U
	PCB-1248	100	100,000	500,000	38.7	U	39	U	39.4	U	41	U	36	U	39.5	U	39.5	U	38.3	U	37.7	U
	PCB-1254	100	100,000	500,000	38.7	U	39	U	39.4	U	41	U	36	U	39.5	U	39.5	U	38.3	U	37.7	U
	PCB-1260	100	100,000	500,000	13	J	39	U	39.4	U	41	U	36	U	39.5	U	39.5	U	38.3	U	37.7	U
	PCB-1262	100	100,000	500,000	38.7	U	39	U	39.4	U	41	U	36	U	39.5	U	39.5	U	38.3	U	37.7	U
	PCB-1268	100	100,000	500,000	38.7	U	39	U	39.4	U	41	U	36	U	39.5	U	39.5	U	38.3	U	37.7	U

Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value Bold/highlighted- Indicated exceedance of the NYSDEC Restidential SCO Guidance Value Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

- U The compound was not detected at the indicated concentration.
- J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.
- B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
- P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is
- NR Not analyzed

^{* - 6} NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

RL - Laboratory Reporting Limit, MDL=Minimum Detection Limit

							EBC - Remedial Investigation - 2007													
				E	1			E	2			E	3			E	4			
	NYSDEC Part 375.6	NYSDEC Part 375.6	NYDEC Part 375.6	8/16/20	007	8/16/2	007	8/16/2	007	8/16/2	007	8/16/20	007	8/16/2	007	8/16/2	007	8/16/2	007	
COMPOUND	Unrestricted Use Soil	Restricted Residential Soil	Commercial Soil Cleanup Objectives*	(0-4		(8-12	2')	(0-4		(8-12	2')	(0-4)		(8-12	2')	(0-4		(8-12	2')	
	Cleanup Objectives*	Cleanup Objectives*	Objectives			t 57			Lot				Lot				Lot			
				mg/K Result	g Qual	mg/k Result	Qual	mg/K Result	.g Qual	mg/K Result	g Qual	mg/K Result	g Qual	mg/k Result	Qual	mg/k Result	Qual	mg/K Result	Qual	
Aluminum				12000	-	8060	-	14500	-	7430	-	15800	-	6250	-	8630	-	17800	-	
Antimony				0.259	U	0.283	U	0.267	U	0.278	U	0.271	U	0.276	U	0.258	U	0.291	U	
Arsenic	13	16	16	3.080	-	1.160	-	3.540	-	1.470	-	3.330	-	5.960	-	6.050	-	1.380	-	
Barium	350	400	400	23.2	-	34.6	-	38.4	-	40.8	-	61.4	-	18.6	-	60.2	-	145	-	
Beryllium	7.2	72	590	0.486	-	0.423	-	0.575	-	0.476	-	0.577	-	0.576	-	0.479	-	1.010	-	
Cadmium	2.5	4.3	9.3	0.652	J	0.154	J	0.790	-	0.346	J	0.565	J	0.340	J	0.300	J	0.803	J	
Calcium				815	-	1210	-	1170	-	3260	-	1040	-	993	-	2120	-	2130	-	
Chromium	30	180	400	14.3	-	16.0	-	18.8	-	18.4	-	21.5	-	13.1	-	13.3	-	43.4	-	
Cobalt				8.400	-	5.550	-	14.4	-	8.640	-	12.2	-	11.3	-	8.440	-	19.3	-	
Copper	50	270	270	23.6	-	10.0	-	24.3	-	15.6	-	19.5	-	10.9	-	17.2	-	32.8	-	
Iron				21400	-	11700	-	23200	-	16200	-	23200	-	17900	-	19800	-	34000	-	
Lead	63	400	1,000	9.000	-	6.690	-	25.8	-	8.920	-	18.2	-	8.190	-	80.0	-	11.6	-	
Magnesium				3900	-	2670	-	3900	-	3270	-	4140	-	2020	-	3100	-	8670	-	
Manganese	1,600	2,000	10,000	555	-	107	-	620	-	175	-	229	-	175	-	477	-	837	-	
Mercury	0.18	0.81	2.8	0.012	-	0.005	J	0.029	-	0.012	J	0.048	-	0.015	-	0.004	U	0.249	-	
Nickel	30	310	310	19.9	-	14.7	-	21.4	-	17.1	-	20.9	-	13.8	-	14.8	-	37.7	-	
Potassium				885	-	1120	-	945	-	1440	-	1150	-	665	-	912	-	4820	-	
Selenium	3.9	180	1,500	0.137	U	0.150	U	0.142	U	0.147	U	0.143	U	0.146	U	0.137	U	0.154	U	
Silver	2	180	1,500	0.423	-	0.150	U	0.445	-	0.160	J	0.535	-	0.430	-	0.867	-	1.720	-	
Sodium				124	-	38.3	J	154	-	104	-	76.5	J	23.5	U	22.0	U	113	-	
Thallium				1.440	U	1.570	U	1.490	U	1.550	U	1.510	U	1.540	U	1.440	U	1.620	U	
Vanadium				20.8	-	16.8	-	25.1	-	24.1	-	26.4	-	17.9	-	21.3	-	49.3	-	
Zinc	109	10,000	10,000	169	-	48.0	-	164	-	60.2	-	87.3	-	61.9	-	83.7	-	125	-	

* - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

RL - Laboratory Reporting Limit, MDL=Minimum Detection Limit

Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value

Bold/hightighted- Indicated exceedance of the NYSDEC Restidential SCO Guidance Value Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

- U The compound was not detected at the indicated concentration.
- J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.
- B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
- P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
- * For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
- NR Not analyzed

							EBC - Remedial Investigation - 2007													
					E	5			E	6		E7			E	12				
	NYSDEC Part 375.6	NYSDEC Part 375.6	NYDEC Part 375.6	8/16/2	007	8/16/2	007	8/16/2	007	8/16/20	007	8/17/20	007	8/17/20	007	8/17/20	007			
COMPOUND	Unrestricted Use Soil Cleanup Objectives*	Restricted Residential Soil Cleanup Objectives*	Commercial Soil Cleanup Objectives*	(0-4		(8-12	2')	(0-4		(8-12	2')	(0-4		(0-4')		(8-12	2')			
	Cleanup Objectives	Cleanup Objectives	Objectives	mg/K	Lot	: 21 mg/K	· c	mg/K	Lot	18 mg/K	a	Lot 17 mg/Kg		mg/Kg		17 mg/K	ď			
				Result	Qual	Result	Qual	Result			Result Qual		Qual	Result	Qual	Result	Qual			
Aluminum				13000	-	4740	-	5650	-	12200	-	8550	-	9340	-	25200	-			
Antimony				0.274	U	0.268	U	0.244	U	0.263	U	0.242	U	0.244	U	0.299	U			
Arsenic	13	16	16	4.140	-	3.400	-	4.970	-	0.457	J	2.440	-	4.770	-	0.967	-			
Barium	350	400	400	35.8	-	17.0	-	21.2	-	99.9	-	72.7	-	82.2	-	221	-			
Beryllium	7.2	72	590	0.550	-	0.357	-	0.457	-	0.604	-	0.591	-	0.490	-	1.380	-			
Cadmium	2.5	4.3	9.3	0.691	J	0.066	J	0.318	J	1.060	-	0.804	-	1.900	-	1.670	-			
Calcium				537	-	463	-	487	-	826	-	5810	-	1570	-	1720	-			
Chromium	30	180	400	16.9	-	10.0	-	10.9	-	31.6	-	21.7	-	25.3	-	77.0	-			
Cobalt				11.7	-	5.520	-	6.850	-	8.800	-	11.9	-	8.240	-	27.1	-			
Copper	50	270	270	30.5	-	5.740	-	8.830	-	27.8	-	69.1	-	78.9	-	53.8	-			
Iron				25400	-	7730	-	15700	-	31900	-	22800	-	34300	-	44300	-			
Lead	63	400	1,000	26.0	-	5.220	-	6.280	-	8.230	-	58.1	-	380	-	14.9	-			
Magnesium				4450	-	1870	-	1940	-	6600	-	4440	-	4720	-	11600	-			
Manganese	1,600	2,000	10,000	620	-	111	-	360	-	203	-	641	-	258	-	921	-			
Mercury	0.18	0.81	2.8	0.019	-	0.004	U	0.008	J	0.009	J	0.041	-	0.004	J	1.8	-			
Nickel	30	310	310	21.3	-	9.270	-	11.3	-	21.7	-	19.3	-	16.8	-	51.5	-			
Potassium				969	-	877	-	718	-	3940	-	2620	-	2700	-	9023.8	OR			
Selenium	3.9	180	1,500	0.145	U	0.142	U	0.129	U	0.139	U	0.128	U	0.129	U	0.158	U			
Silver	2	180	1,500	0.753	-	0.142	U	0.307	J	0.506	-	1.070	-	1.860	-	2.260	-			
Sodium				23.2	U	42.8	J	20.7	U	22.3	U	112	-	178	-	274	-			
Thallium				1.520	U	1.490	U	1.350	U	1.460	U	1.340	U	1.350	U	1.660	U			
Vanadium				24.2	-	17.2	-	18.3	-	45.6	-	27.9	-	33.0	-	73.0	-			
Zinc	109	10,000	10,000	91.2	-	49.3	-	40.0	-	135	-	184	-	542	-	279	-			

* - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

RL - Laboratory Reporting Limit, MDL=Minimum Detection Limit

Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value Bold/highlighted- Indicated exceedance of the NYSDEC Restidential SCO Guidance Value Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

- U The compound was not detected at the indicated concentration.
- J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.
- B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
- P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
- * For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
- NR Not analyzed

				E	EBC - Rem	edial Ir	vestigatio		Goldberg Zoino & Assoc RI - Dec 2016									
					E	13			E	14				SB-1	01			
	NYSDEC Part 375.6	NYSDEC Part 375.6	NYDEC Part 375.6	8/17/2	007	8/17/2	007	8/17/2	007	8/17/20	007			2/12/2	016			
COMPOUND	Unrestricted Use Soil Cleanup Objectives*	Restricted Residential Soil Cleanup Objectives*	Commercial Soil Cleanup Objectives*	(0-4		(8-12	2')	(0-4		(8-12	2')	(0-2	')	(5-7		(10-1	2')	
	Oleanup Objectives	Oleanup Objectives	Objectives	mg/K	Lot	20 mg/k	(n	mg/K	Lot	: 21 mg/K	n			Lot 5				
				Result	Qual	Result			Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	
Aluminum				12600	-	8150	-	14500	-	14300	-	6,700	-	3,500	-	7,300	-	
Antimony				0.270	U	0.290	U	8.090	-	0.279	U	4.8	U	4.7	U	4.8	U	
Arsenic	13	16	16	7.810	-	5.090	-	3.940	-	0.413	J	3	-	2.5	-	2.5	-	
Barium	350	400	400	40.0	-	45.6	-	86.3	-	116	-	22	-	13	-	34	-	
Beryllium	7.2	72	590	0.614	-	0.536	-	0.993	-	0.930	-	0.29	J	0.27	J	0.32	J	
Cadmium	2.5	4.3	9.3	0.669	J	0.607	J	1.080	-	0.858	-	0.96	-	0.94	-	0.95	-	
Calcium				1120	-	2330	-	1850	-	1220	-	1,900	-	3,600	-	620	-	
Chromium	30	180	400	17.4	-	16.0	-	24.4	-	34.8	-	11	-	7.7	-	9	-	
Cobalt				10.9	-	10.0	-	18.0	-	20.4	-	6.6	-	2.9	-	4.3	-	
Copper	50	270	270	23.0	-	15.9	-	30.4	-	31.4	-	11	-	4.7	-	8.2	-	
Iron				25200	-	20800	-	29600	-	34200	-	14,000	-	7400	-	12000	-	
Lead	63	400	1,000	23.6	-	19.8	-	52.3	-	9.800	-	4.8	-	2.9	J	14	-	
Magnesium				3790	-	2950	-	5330	-	7370	-	1,900	-	1300	-	2100	-	
Manganese	1,600	2,000	10,000	593	-	720	-	838	-	733	-	430	-	74	-	240	-	
Mercury	0.18	0.81	2.8	0.038	-	0.007	J	0.010	J	0.004	U	0.05	J	0.03	J	0.08	J	
Nickel	30	310	310	16.9	-	18.7	-	26.0	-	31.4	-	10	-	5.5	-	9	-	
Potassium				1260	-	1220	-	2270	-	4830	-	400	-	460	-	490	-	
Selenium	3.9	180	1,500	0.143	U	0.153	U	0.137	U	0.148	U	1.9	U	1.9	U	1.9	U	
Silver	2	180	1,500	0.618	-	0.298	J	0.697	-	1.530	-	0.96	U	0.94	U	0.95	U	
Sodium				119	-	106	-	76.0	-	23.7	U	56	J	48	J	85	J	
Thallium				1.500	U	1.610	U	1.430	U	1.550	U	1.9	U	1.9	U	1.9	U	
Vanadium				26.8	-	24.8	-	38.9	-	49.8	-	13	-	12	-	11	-	
Zinc	109	10,000	10,000	82.0	-	140	-	239	-	132	-	39	-	18	-	31	-	

* - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

RL - Laboratory Reporting Limit, MDL=Minimum Detection Limit

Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value Bold/highlighted- Indicated exceedance of the NYSDEC Restidential SCO Guidance Value Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

- U The compound was not detected at the indicated concentration.
- J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.
- B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
- P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
- * For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
- NR Not analyzed

TABLE 4 Laboratory Results - Soil TAL Metals

								Gol	oldberg Zoino & Associates - Remedial Investigation - December 2016												
						SB-1	02					SB-1	03					SB-1	04		
	NYSDEC Part 375.6	NYSDEC Part 375.6	NYDEC Part 375.6			2/12/2	016					2/12/2	016					2/11/2	016		
COMPOUND	Unrestricted Use Soil Cleanup Objectives*	Restricted Residential Soil Cleanup Objectives*	Commercial Soil Cleanup Objectives*	(0-2	')	(5-7		(10-1	2')	(0-2	2')	(4-6		(10-1	2')	(0-2	')	(5-7		(10-1	12')
	Oldanap Objectives	Gicanap Objectives	02,000.100			Lot 1						Lot s						Lot :			
				Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Aluminum				6,900	-	4,400	-	15,000	-	6,000	-	9,200	-	5,800	-	10,000	-	7400	-	6200	-
Antimony				4.7	U	4.7	U	5	U	4.9	U	5	U	4.9	U	1.1	J	0.9	J	4.9	-
Arsenic	13	16	16	4.7	-	4.2	-	12	-	3	-	5.1	-	2.4	-	3.3	-	2.7	-	2.9	-
Barium	350	400	400	31	-	20	-	65	-	68	-	9.1	-	23	-	26	-	20	-	23	-
Beryllium	7.2	72	590	0.26	J	0.77	-	0.23	J	0.25	J	0.29	J	0.22	J	0.33	J	0.31	J	0.31	J
Cadmium	2.5	4.3	9.3	0.93	-	0.93	-	0.81	J	0.98	-	0.99	-	0.97	-	0.92	-	0.93	-	0.98	-
Calcium				940	-	6,100	-	16,000	-	2,400	-	330	-	4,000	-	2,000	-	1,200	-	730	-
Chromium	30	180	400	9.1	-	11	-	27	-	10	-	22	-	10	-	14	-	16	-	11	-
Cobalt				4.9	-	3.2	-	7.9	-	2.4	-	5.2	-	3.6	-	6.7	-	6.9	-	5.1	-
Copper	50	270	270	10	-	8.6	-	67	-	19	-	18	-	11	-	15	-	14	-	11	-
Iron				14000	-	11000	-	19000	-	7700	-	20000	-	9600	-	18000	-	14000	-	11000	-
Lead	63	400	1,000	4.8	-	10	-	200	-	160	-	15	-	12	-	4.6	-	4.7	-	4.9	-
Magnesium				2100	-	1400	-	5300	-	1200	-	2400	-	2600	-	2900	-	2400	-	2000	-
Manganese	1,600	2,000	10,000	110	-	1200	-	340	-	130	-	210	-	110	-	290	-	380	-	110	-
Mercury	0.18	0.81	2.8	0.09	J	0.02	J	0.09	U	0.27	-	0.22	-	0.14	-	0.05	J	0.02	J	0.08	U
Nickel	30	310	310	9.4	-	6.2	-	26	-	5.8	-	12	-	8.3	-	13	-	11	-	10	-
Potassium				320	-	460	-	2700	-	300	-	520	-	370	-	470	-	760	-	450	-
Selenium	3.9	180	1,500	1.9	U	1.9	U	0.38	J	0.51	J	0.43	J	1.9	U	1.8	U	1.9	U	2	U
Silver	2	180	1,500	0.93	U	0.93	U	1	U	0.34	J	0.99	U	0.97	U	0.92	U	0.93	U	0.98	U
Sodium				33	J	90	J	220	-	75	J	56	J	55	J	78	J	55	J	52	J
Thallium				1.9	U	1.9	U	2	U	2	U	2	U	1.9	U	1.8	U	1.9	U	2	U
Vanadium				12	-	15	-	27	-	10	-	20	-	10	-	18	-	15	-	14	-
Zinc	109	10,000	10,000	40	-	23	-	230	-	56	-	34	-	29	-	110	-	68	-	43	-

Notes:

* - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

RL - Laboratory Reporting Limit, MDL=Minimum Detection Limit

Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value
Bold/highlighted- Indicated exceedance of the NYSDEC Restidential SCO Guidance Value

Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

- U The compound was not detected at the indicated concentration.
- J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.
- B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
- P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater
- *- For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
- NR Not analyzed

Table 4 Laboratory Results - Soil TAL Metals

				Goldberg Zoino & Associates - Remedial Investigation - December 2016																	
					SB-	-105			SB	-106			SB-	-107				SB-1	08		
	NYSDEC Part 375.6	NYSDEC Part 375.6	NYDEC Part 375.6		2/11/	/2016			2/11/	/2016			2/11/	/2016				2/11/2	016		
COMPOUND	Unrestricted Use Soil Cleanup Objectives*	Restricted Residential Soil Cleanup Objectives*	Commercial Soil Cleanup Objectives*	(0-2		(10-1	2')	(0-2		(10-1	2')	(0-2		(10-1	2')	(0-2	')	(4-6		(10-1	12')
	Cleanup Objectives	Cleanup Objectives	Objectives		Lot	t 57 /Kg			Lot	t 57 /Kg			Lot	t 57 /Kg				Lot 5			
				Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	RL
Aluminum				6,500	-	5000	-	8,200	-	3400	-	5,400	-	11,000	-	9000	-	6400	-	8,000	-
Antimony				1.5	J	4.8	U	4.7	U	5.1	U	4.3	U	4.6	U	1.6	J	1	J	0.94	J
Arsenic	13	16	16	8.5	-	3.9	-	3.4	-	0.98	J	5.1	-	2.3	-	4.2	-	5	-	3.2	-
Barium	350	400	400	490	-	26	-	23	-	12	-	16	-	110	-	300	-	23	-	35	-
Beryllium	7.2	72	590	0.33	J	0.3	J	0.24	J	0.2	J	0.42	J	0.45	J	0.33	J	0.62	-	0.34	J
Cadmium	2.5	4.3	9.3	0.94	-	0.95	-	0.93	-	1	-	0.86	-	0.93	-	0.94	-	0.9	-	0.94	-
Calcium				16,000	-	510	-	2,000	-	480	-	450	-	12,000	-	9,000	-	680	-	10,000	-
Chromium	30	180	400	23	-	10	-	18	-	7.6	-	9.6	-	27	-	17	-	17	-	15	-
Cobalt				6	-	6.1	-	5.9	-	2.6	-	4.7	-	9.3	-	8.2	-	5.1	-	5.8	-
Copper	50	270	270	38	-	8.9	-	16	-	5.4	-	13	-	23	-	44	-	13	-	16	-
Iron				15000	-	12000	-	15000	-	7300	-	15000	-	22000	-	20000	-	21000	-	16000	-
Lead	63	400	1,000	2500	-	1.7	J	6.2	-	5.1	-	4.3	-	0.86	J	230	-	45	-	11	-
Magnesium				2900	-	1500	-	2600	-	1100	-	1300	-	9200	-	4300	-	1800	-	5400	-
Manganese	1,600	2,000	10,000	240	-	180	-	160	-	45	-	220	-	380	-	310	-	160	-	340	-
Mercury	0.18	0.81	2.8	0.7	-	0.05	-	0.076	J	0.08	U	0.02	J	0.02	J	0.28	-	0.08	U	0.03	J
Nickel	30	310	310	13	-	11	-	11	-	6.3	-	6.7	-	22	-	13	-	10	-	11	-
Potassium				760	-	630	-	510	-	420	-	720	-	4100	-	640	-	500	-	580	-
Selenium	3.9	180	1,500	0.47	J	1.9	U	1.9	U	2	U	1.7	U	0.36	J	1.9	U	1.8	U	1.9	U
Silver	2	180	1,500	0.94	U	0.95	U	0.93	U	1	U	0.86	U	0.93	U	0.94	U	0.9	U	0.94	U
Sodium				150	J	190	U	140	J	41	J	28	J	180	-	110	J	64	J	88	J
Thallium				1.9	U	1.9	U	1.9	U	2	U	1.7	U	1.8	U	1.9	U	1.8	U	1.9	U
Vanadium				26	-	17	-	15	-	10	-	19	-	31	-	21	-	22	-	16	-
Zinc	109	10,000	10,000	380	-	30	-	240	-	64	_	39	-	58	-	220	-	37	-	44	-

Notes

* - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

RL - Laboratory Reporting Limit, MDL=Minimum Detection Limit

Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value

Bold/highlighted- Indicated exceedance of the NYSDEC Restidential SCO Guidance Value Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

Qualifiers

- U The compound was not detected at the indicated concentration.
- J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.
- B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
- P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
- *- For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
- NR Not analyzed

		AS	R - Remedia	al Investiga	tion - May 2	006			EE	C - Re	medial Inv	estigat	ion - 2007			
		MW1	MW2	MW3	MW9	MW10	E5		E6		E7		E13	3	E14	4
0	NYSDEC Ambient Water Quality Standards	7/24/2006	7/24/2006	7/24/2006	7/24/2006	7/24/2006	11/27/2	007	11/27/2	007	11/27/2	007	11/27/2	2007	11/27/2	2007
Compound	(AWQS)	Lot 18	Lot 17	Lot 17	Lot 18	Lot 21	Lot 2		Lot 1		Lot 1	7	Lot 2		Lot 2	
	(µg/L)	μg/L Results	μg/L Results	μg/L Results	μg/L Results	μg/L Results	(µg/L Results	Qual	(μg/L Results	Qual	(μg/L Results	Qual	(μg/L Results	Qual	(μg/l Results	Qual
1,1,1,2-Tetrachlorothane	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1-Trichloroethane	5	-	-	-	-	-	0.32	U	6.5	U	0.32	U	0.32	U	0.32	U
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	5 1	-	-	-	-	-	0.30	U	8.1	U	0.30	U	0.30	U	0.41	U
1,1,2-Trichlorotrifluoroethane	·	-	-	-	-	-	1.3	U	26	U	1.3	U	1.3	U	1.3	U
1,1-Dichloroethane	5	-	-	-	-	-	0.38	U	7.6	U	0.38	U	0.38	U	0.38	U
1,1-Dichloroethene 1,1-Dichloropropene	5		-	-	-	-	0.42	U	8.3	U	0.42	U	0.42	U	0.42	U
1,2,3-Trichlorobenzene		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,3-Trichloropropane	0.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,4,5-Tetramethylbenzene 1,2,4-Trichlorobenzene		-	-	-	-	-	0.46	- U	9.2	- U	0.46	- U	0.46	- U	0.46	- U
1,2,4-Trichloroberizerie	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dibromo-3-chloropropane	0.04	-	-	-	-	-	0.38	U	7.5	U	0.38	U	0.38	U	0.38	U
1,2-Dibromoethane	-	-	-	-	-	-	0.32	U	6.5 8.7	U	0.32	U	0.32	U	0.32	U
1,2-Dichlorobenzene 1,2-Dichloroethane	5 0.6	-	-	-	-	-	0.44	U	6.8	U	0.44	U	0.44	U	0.44	U
Dichloroethylenes		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloropropane	0.94	-	-	-	-	-	0.40	U	8.1	U	0.40	U	0.40	U	0.40	U
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	5	-	-	-	-	-	0.50	- U	9.9	- U	0.50	- U	0.50	- U	0.50	- U
1,3-Dichloropropane	5	_		_	_	_	-				-		-	_	_	
1,4-Dichlorobenzene	5	-	-	-	-	-	0.54	U	11	U	0.54	U	0.54	U	0.54	U
1,4-Diethyl Benzene 1,4-Dioxane		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2,2-Dichloropropane	5	-	-	-	-	-		-						-		-
2-Chlorotoluene	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
2-Hexanone (Methyl Butyl Ketone)	-	-	-	-	-	-	1.7	U	34	U	1.7	U	1.7	U	1.7	U
2-Isopropyltoluene 4-Chlorotoluene	5 5	-		-	-	-	-	-	-		-	-	-	-	-	-
4-Ethyltoluene	Ů	-	-	-	-	-										
4-Methyl-2-Pentanone		-	-	-	-	-	6.7	J	11000	D	1.6	U	100	-	1.6	U
Acetone Acrolein	50	-	-	-	-	-	2.3	U -	45	U -	2.3	U -	2.3	U -	2.3	U -
Acrylonitrile	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzene	1	-	-	-	-	-	0.39	U	7.7	U	0.39	U	0.39	U	0.39	U
Bromobenzene Bromochloromethane	5 5	-	-	-	-	-	0.33	- U	6.7	- U	0.33	- U	0.33	- U	0.33	- U
Bromodichloromethane	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromoform		-	-	-	-	-	0.32	U	6.3	U	0.32	U	0.32	U	0.32	U
Bromomethane	5 60	-	-	-	-	-	0.41	U	8.2	U	0.41	U	0.41	U	0.41	U
Carbon Disulfide Carbon tetrachloride	5	-	-	-	-	-	1.1	U	23	U	1.1	U	1.1	U	1.1	U
Chlorobenzene	5	-	-	-	-	-	0.47	U	9.3	U	0.47	U	0.47	U	0.47	-
Chloroethane	5 7	-	-	-	-	-	0.83	U	17 6.7	U	0.83	U	0.83 2.0	U	0.83	U
Chloroform Chloromethane	60		-	-		-	0.33	U	6.9	U	0.34	U	0.34	U	0.34	U
cis-1,2-Dichloroethene	5	-	-	-	-	-	0.29	U	5.8	U	0.29	U	0.29	U	0.29	U
cis-1,3-Dichloropropene		-	-	-	-	-	0.36	U	7.2	U	0.36	U	0.36	U	0.36	U
Cyclohexane Cymene		-	-	-	-	-	0.36	U	7.3	U	0.36	U	0.36	U	0.36	U
Dibromochloromethane		-	-	-	-	-	0.26	U	5.3	U	0.26	U	0.26	U	0.26	U
Dibromomethane	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dichlorodifluoromethane Diethyl Ether	5	-	-	-	-	-	0.17	U	3.4	U	0.17	U	0.17	U	0.17	U
Ethylbenzene	5	-		-	11	-	0.45	U	9.1	U	0.45	U	0.45	U	0.45	U
Hexachlorobutadiene	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Isopropylbenzene m&p-Xylenes	5 5	5	-	-	8 11	-	0.44 1.2	U	8.8 24	U	0.44 1.2	U	0.44 1.2	U	0.44	U
Methyl Acetate	υ 	-	-	-	-	-	0.20	U	4.0	U	0.20	U	0.20	U	0.20	U
Methyl Ethyl Ketone (2-Butanone)		-	-	-	-	-	1.1	U	23	U	1.1	U	1.1	U	1.1	U
Methyl t-butyl ether (MTBE)	10	-	-	-	-	-	0.28	U	5.6	U	0.99	J	0.28	U	0.28	U
Methylcyclohexane Methylene chloride	5	-	-	-	-	-	0.34	U	6.8	U JD	0.34	U	0.34	U	0.34	U
Naphthalene	10	75	-	-	71	-		-		-	-	-	-	-		-
n-Butylbenzene	5	6	-	-	6	-		-	-	-	-			-	-	
n-Propylbenzene o-Xylene	5 5	7	-	-	10	-	0.46	- U	9.1	- U	0.46	- U	0.46	- U	0.46	- U
p-Isopropyltoluene		-	-	-	-	-			-			_	-	-	-	
sec-Butylbenzene	5	9	-	-	-	-	-	- 1	-	-	-	-]	-	- 1	-	
Styrene t-1,3-Dichloropropene	5	-	-	-	-	-	0.41	U	8.2 6.3	U	0.41	U	0.41	U	0.41	U
tert-Butylbenzene	5	-	-	-	-	-	- 0.32	-	-	-	-	-	- 0.32	-	-	-
Tetrachloroethene	5	-	-	-	-	-	0.48	U	9.6	U	0.48	U	0.48	U	0.48	U
Tetrahydrofuran (THF)	-	-	-	-	-	-		-	- 70	-	- 0.00	-	- 0.00	-		-
Toluene trans-1,2-Dichloroethene	5 5	-	-	-	-	-	0.36	U	7.3 8.0	U	0.36	U	0.36	U	0.36	U
trans-1,3-Dichloropropene	0.4	-	-	-	-	-	-	-	-	-	-	-	-	-		-
trans-1,4-dichloro-2-butene	5	-	-	-	-	-	-	-		-	-	-	-	-	-	-
Trichloroethene Trichlorofluoromethane	5 5	-	-	-	-	-	0.46	U	23 4.4	JD U	3.5 0.22	J	16 0.22	- U	5.1 0.22	U
Trichlorotrifluoroethane	<u> </u>	-		-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl Acetate		-	-	-	-	-		-	-	-	-	-	-	-	-	-
Vinyl Chloride	2	-	-	-	-	-	0.33	U	6.6	U	0.33	U	0.33	U	0.33	U

							Ecosys	stems Stra	itegies -	Remedi	al Investig	ation Re	port - Ju	uly 2015					
						MW-3					_		MV	V-10				MW-17	
	NYSDEC Ambient Water Quality Standards	2/	15/2010		I 4	/25/2012		11	1/25/201:	3	2	/15/2010	141 4		/16/2012			/19/2012	
Compound	(AWQS)		Lot 17		4	Lot 17			Lot 17	3	Sidewall		Street		k on Clay			k on Clay	Street
			μg/L			μg/L			μg/L			μg/L			μg/L			μg/L	
4.4.4.2 Tetra ablassath and	(μg/L)	Result ND	Flag	RL 5	Result ND	Flag	RL 5	Result NA	Flag	RL	Result ND	Flag	RL 5	Result ND	Flag	RL 5	Result NA	Flag	RL
1,1,1,2-Tetrachlorothane 1,1,1-Trichloroethane	5 5	2.4	J	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5
1,1,2,2-Tetrachloroethane	5	ND	-	5	ND	-	5	NA	-	-	ND	-	5	ND	-	5	ND	-	5
1,1,2-Trichloroethane	1	ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5
1,1,2-Trichlorotrifluoroethane	_	ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5
1,1-Dichloroethane 1,1-Dichloroethene	5 5	ND ND	-	5	ND ND	-	5	ND ND	-	5	ND ND	-	5	ND ND	-	5	ND ND	-	5
1,1-Dichloropropene	3	ND	-	5	ND	-	5	NA	-	-	ND	-	5	ND	-	5	NA NA	-	-
1,2,3-Trichlorobenzene		ND	-	5	ND	-	5	NA	-	-	ND	-	5	ND	-	10	ND	-	10
1,2,3-Trichloropropane	0.04	ND	-	5	ND	-	5	NA	-	-	ND	-	5	ND	-	5	NA	-	-
1,2,4,5-Tetramethylbenzene		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	5	ND 1.1		5	ND ND	-	5	ND ND	-	10 5	ND ND	-	5	ND ND	-	10 5	ND NA	-	10
1,2-Dibromo-3-chloropropane	0.04	ND	-	5	ND	-	5	ND	-	10	ND	-	5	ND	-	10	ND	-	10
1,2-Dibromoethane	0.01	ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5
1,2-Dichlorobenzene	5	ND	-	5	ND	-	5	NA	-	-	ND	-	5	ND	-	5	ND	-	5
1,2-Dichloroethane	0.6	ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5
Dichloroethylenes	0.01	- NP	-	-	- NID	-	-	- NID	-	-	- NID	-	-	- NID	-	-	- NID	-	-
1,2-Dichloropropane 1,3,5-Trimethylbenzene	0.94 5	ND ND	-	5	ND ND	-	5	ND ND	-	5	ND ND	-	5	ND ND	-	5	ND NA	-	5
1,3-Dichlorobenzene	· ·	ND	-	5	ND	-	5	NA NA	-	-	ND	-	5	ND	-	5	ND	-	5
1,3-Dichloropropane	5	ND		5	ND	-	5	NA	-	L-	ND	-	5	ND	-	5	NA	-	_
1,4-Dichlorobenzene	5	ND	-	5	ND	-	5	NA	-	-	NA	-	-	NA	-	-	ND	-	5
1,4-Diethyl Benzene		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,4-Dioxane	-	NA ND	-	5	NA ND	-	- 5	NA NA	-	-	ND ND	-	5	ND ND	-	5	NA NA	-	5
2,2-Dichloropropane 2-Chlorotoluene	5 5	ND	-	5	ND ND	-	5	NA NA	-	-	ND ND	-	5	ND ND	-	5	NA NA	-	
2-Hexanone (Methyl Butyl Ketone)	Ť	NA	-	-	NA	-	-	ND	-	5	ND	-	5	NA	-		NA	-	-
2-Isopropyltoluene	5	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4-Chlorotoluene	5	ND	-	5	ND	-	5	NA	-	-	ND	-	5	ND	-	5	NA	-	-
4-Ethyltoluene		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4-Methyl-2-Pentanone Acetone	50	ND NA	-	5	ND 3.1	J,B	5 10	ND ND	-	10 10	NA ND	-	5	NA ND	-	- 5	NA ND	-	10
Acrolein	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acrylonitrile	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzene	1	ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5
Bromobenzene	5	ND	-	5	ND	-	5	NA	-	-	ND	-	5	ND	-	5	NA	-	-
Bromochloromethane	5	ND	-	5	ND	-	5	NA ND	-	-	ND ND	-	5	ND	-	5	ND ND	-	5
Bromodichloromethane Bromoform		ND ND	-	5	ND ND	-	5	ND ND		5	ND ND	-	5	ND ND	-	5	ND	-	5
Bromomethane	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5
Carbon Disulfide	60	NA	-	-	NA	-	-	ND	-	5	ND	-	5	NA	-	-	NA	-	-
Carbon tetrachloride	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5
Chlorobenzene	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5
Chloroethane Chloroform	5 7	ND ND	-	5	ND ND	-	5	ND ND	-	5	ND ND	-	5	ND ND	-	5	ND ND	-	5
Chloromethane	60	ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5
cis-1,2-Dichloroethene	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5	2.5	J	5
cis-1,3-Dichloropropene		ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5
Cyclohexane		NA	-	-	NA	-	-	NA	-	-	NA	-	-	NA	-	-	NA	-	-
Cymene		- ND	-	- 5	- ND	-	- 5	- ND	-	5	- ND	-	5	- ND	-	- 5	- ND	-	5
Dibromochloromethane Dibromomethane	5	ND	-	5	ND	-	5	NA NA		-	ND ND	-	5	ND	-	5	NA NA	-	-
Dichlorodifluoromethane	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5
Diethyl Ether		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5
Hexachlorobutadiene	0.5	ND ND	-	5	ND ND	-	5	NA ND	-	- 5	ND ND	-	5	ND ND	-	5	ND NA	-	5
Isopropylbenzene m&p-Xylenes	5 5	ND	-	10	ND ND	-	10	ND ND	-	10	ND ND	-	10	ND ND		10	ND ND	-	10
Methyl Acetate	<u> </u>	NA		-	NA	-	-	NA	-	<u> </u>	NA		-	NA			NA	-	_
Methyl Ethyl Ketone (2-Butanone)		ND	-	5	ND	-	5	ND	-	10	ND	-	5	ND	-	5	ND	-	10
Methyl t-butyl ether (MTBE)	10	ND		5	ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5
Methylcyclohexane	_	NA 3.4	-	- 10	NA C E	-	- 10	NA ND	-	- 40	NA 3.4	-	- 10	NA E.C	- B I	- 10	NA E 2	-	- 40
Methylene chloride Naphthalene	5 10	3.4 ND	B,J	10 5	6.5 ND	J,B -	10 10	ND ND	-	10 10	3.4 ND	B,J	10 5	5.6 ND	B,J	10 5	5.3 NA	J,B	10
n-Butylbenzene	5	ND	-	5	ND	-	5	ND	-	5	ND ND	-	5	ND	-	5	NA NA	-	-
n-Propylbenzene	5	ND	L-	5	ND	-	5	ND	L-	5	ND	_	5	ND	_	5	NA	-	
o-Xylene	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5
p-Isopropyltoluene		ND	-	5	ND	-	5	NA	-	-	-	-	-	-	-	-	NA	-	-
sec-Butylbenzene	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5	NA ND	-	-
Styrene t-1,3-Dichloropropene	5	ND -	-	5	ND -	-	- 5	ND -	-	5	ND -	-	5	ND -	-	5	- ND	-	5
tert-Butylbenzene	5	ND	-	5	ND	-	5	ND .	-	5	ND	-	5	ND	-	5	NA.	-	-
Tetrachloroethene	5	ND	L-	5	ND	-	5	ND	-	5	ND	_	5	ND	-	5	ND	-	5
Tetrahydrofuran (THF)		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	5	ND		5	ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5
trans-1,2-Dichloroethene	5	ND ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND ND	-	5
trans-1,3-Dichloropropene trans-1,4-dichloro-2-butene	0.4 5	- ND	-	5	ND -	-	5	ND -	-	5	ND -	-	5	ND -	-	5	- ND	-	5
trans-1,4-dichloro-2-butene Trichloroethene	5	- ND		5	- ND	-	5	- ND	-	5	1.1	J	5	0.86	J	5	7	-	5
Trichlorofluoromethane	5	ND		5	ND	-	5	ND	-	5	ND	_	5	ND	_	5	ND	-	5
Trichlorotrifluoroethane		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl Acetate		NA	-	-	NA	-	-	NA	-	-	ND	-	5	ND	-	5	NA	-	-
Vinyl Chloride	2	ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5	ND	-	5

				E	cosystem	s Strateg	jies - Rer	nedial Inve	estigation I	Report - Ju	ly 2015		
				M\	N-18				MW-19			MW-40	
	NYSDEC Ambient Water Quality Standards	3	/16/2012			0/8/2014			4/19/2012			10/8/2014	
Compound	(AWQS)		k on Clay			k on Clay			Lot 20			Lot 17	
	(uall.)	Result	µg/L	RL	Result	µg/L	RL	Result	μg/L Elea	RL	Result	μg/L Elog	RL
1,1,1,2-Tetrachlorothane	(μg/L) 5	110	Flag	- KL	NA	Flag -	- KL	ND	Flag	- FL - 5	NA	Flag -	- RL
1,1,1-Trichloroethane	5	ND	-	5	ND	-	0.5	ND	-	5	ND	-	50
1,1,2,2-Tetrachloroethane	5	ND	-	5	ND	-	0.5	ND	-	5	ND	-	50
1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane	1	ND ND	-	5	ND ND	-	0.5	ND ND	-	5	ND ND		50 50
1,1-Dichloroethane	5	ND	-	5	ND	-	0.5	ND	-	5	ND	-	50
1,1-Dichloroethene	5	ND	-	5	ND	-	0.5	ND	-	5	ND	-	50
1,1-Dichloropropene 1,2,3-Trichlorobenzene		110 ND	-	10	NA ND	-	0.5	ND ND	-	5 10	NA ND	-	50
1,2,3-Trichloropenzene	0.04	110	-	-	NA NA	-	-	ND	-	5	NA	-	-
1,2,4,5-Tetramethylbenzene		-	-	-	-	-	-	-	-	-	-	-	-
1,2,4-Trichlorobenzene	_	ND	-	10	ND	-	0.5	ND	-	10	ND	-	50
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	5 0.04	110 ND	-	10	NA ND	-	0.5	ND ND	-	5 10	NA ND	-	50
1,2-Dibromoethane	0.04	ND	-	5	ND	-	0.5	ND	-	5	ND	-	50
1,2-Dichlorobenzene	5	ND	-	5	ND	-	0.5	ND	-	5	ND	-	50
1,2-Dichloroethane	0.6	ND	-	5	ND	-	0.5	ND	-	5	ND	-	50
Dichloroethylenes 1,2-Dichloropropane	0.94	- ND	-	5	- ND	-	0.5	ND	-	5	- ND	-	50
1,3,5-Trimethylbenzene	5	110	-	-	NA		-	ND	-	5	NA	-	-
1,3-Dichlorobenzene		ND		5	ND	-	0.5	ND	-	5	ND	-	50
1,3-Dichloropropane 1,4-Dichlorobenzene	5 5	110 ND	-	- 5	NA ND	-	0.5	ND ND	-	5	NA ND	-	50
1,4-Diethyl Benzene	υ	- ND	-	-	-	-	-	-	-	-	- ND	-	-
1,4-Dioxane		110	-	-	NA	-	-	ND	-	5	NA	-	-
2,2-Dichloropropane	5	110	-	-	NA NA	-	-	ND	-	5	NA	-	-
2-Chlorotoluene 2-Hexanone (Methyl Butyl Ketone)	5	110 NA	-	-	NA ND	-	0.5	ND NA	-	5	NA ND	-	50
2-Isopropyltoluene	5	_	<u>L-</u> -		-			-	-			-	-
4-Chlorotoluene	5	110	-	-	NA	-	-	ND	-	5	NA	-	-
4-Ethyltoluene		- NA	-	-	- ND	-	0.5	- NA	-	-	- ND	-	50
4-Methyl-2-Pentanone Acetone	50	ND	-	10	ND ND	-	2	ND ND	-	5	ND ND		200
Acrolein	00	-	-	-	-	-	-	-	-	-	-	-	-
Acrylonitrile	5	-	-	-	-	-	-	-	-	-	-	-	-
Benzene	5	ND 110	-	5	0.94	-	0.5	ND ND	-	5	ND NA	-	50
Bromobenzene Bromochloromethane	5	ND	-	5	ND	-	0.5	ND	-	5	ND ND		50
Bromodichloromethane	-	ND	-	5	ND	-	0.5	ND	-	5	ND	-	50
Bromoform		ND	-	5	ND	-	0.5	ND	-	5	ND	-	50
Bromomethane Carbon Disulfide	5 60	ND NA	-	5	ND -	-	0.5	ND NA	-	5	ND ND		50 50
Carbon tetrachloride	5	ND	-	5	ND	-	0.5	ND	-	5	ND	-	50
Chlorobenzene	5	ND	-	5	0.8	-	0.5	ND	-	5	ND	-	50
Chloroethane	5	ND	-	5	ND ND	-	0.5	ND ND	-	5	ND ND	-	50
Chloroform Chloromethane	7 60	ND ND	-	5	ND ND	-	0.5	ND ND	-	5	ND ND	-	50 50
cis-1,2-Dichloroethene	5	1.5	J	5	4.5	-	0.5	1.8	J	5	530	-	50
cis-1,3-Dichloropropene		ND	-	5	ND	-	0.5	ND	-	5	ND	-	50
Cyclohexane		NA	-	-	ND	-	0.5	NA	-	-	ND	-	50
Cymene Dibromochloromethane		ND		5	ND	-	0.5	ND .	-	5	ND.		50
Dibromomethane	5	110	-	-	NA	-	-	ND	-	5	NA	-	-
Dichlorodifluoromethane	5	ND		5	ND	-	0.5	ND	-	5	ND	-	50
Diethyl Ether Ethylbenzene	5	- ND	-	- 5	- ND	-	0.5	1.4	- J	- 5	- ND	-	- 50
Hexachlorobutadiene	0.5	ND	-	5	0.29	J	0.5	ND	-	5	ND	-	50
Isopropylbenzene	5	110	-	-	NA	-	-	ND	-	5	NA	-	-
m&p-Xylenes	5	ND	-	10	ND	-	1	ND	-	10	ND	-	100
Methyl Acetate Methyl Ethyl Ketone (2-Butanone)	+	- ND	-	10	- ND	-	0.5	NA ND	-	10	ND NA	-	50
Methyl t-butyl ether (MTBE)	10	0.81	J	5	1.2	-	0.5	ND	-	5	ND	-	50
Methylcyclohexane		NA	-	-	ND	-	0.5	NA	-	-	ND	-	50
Methylene chloride	5	5.8 110	J,B	10	ND NA	-	2	5.8	B,J	10	ND NA	-	200
Naphthalene n-Butylbenzene	10 5	110	-	-	NA NA	-	-	ND ND	-	5	NA NA	-	-
n-Propylbenzene	5	110		-	NA	-	-	ND	-	5	NA	-	-
o-Xylene	5	ND	-	5	ND	-	0.5	0.92	-	5	ND	-	50
p-Isopropyltoluene	E	110 110	-	-	NA NA	-	-	- ND	-	- 5	NA NA	-	-
sec-Butylbenzene Styrene	5 5	ND ND	-	5	NA ND	-	0.5	ND	-	5	NA ND	-	50
t-1,3-Dichloropropene		-	-	-	-	-	-	-	-	-	-	-	-
tert-Butylbenzene	5	110	-	-	NA	-	-	ND	-	5	NA	-	-
Tetrachloroethene	5	ND -	-	5	ND -	-	0.5	ND -	-	5	ND -	-	50
Tetrahydrofuran (THF) Toluene	5	ND		5	ND	-	0.5	ND	-	5	ND	-	50
trans-1,2-Dichloroethene	5	ND	-	5	ND	-	0.5	ND	-	5	25	J	50
trans-1,3-Dichloropropene	0.4	ND	-	5	ND	-	0.5	ND	-	5	ND	-	50
trans-1,4-dichloro-2-butene	5 5	3	- J	- 5	16	- В	0.5	1.5	- J	- 5	7,400	-	120
Trichloroethene Trichlorofluoromethane	5	ND ND	-	5	ND ND	-	0.5	ND	-	5	7,400 ND	-	50
Trichlorotrifluoroethane		-	-	-	-	-	-	-	-	-	-	-	-
Vinyl Acetate	_	110	-	-	NA 0.44	-	-	ND	-	5	NA	-	-
Vinyl Chloride	2	ND	-	5	0.41	J	0.5	ND	-	5	ND	-	50

15.1 Tenderwordstane				Goldbe	rg Zoino &	Associa	ites - Reme	dial Inve	estigation -	Decemb	er 2016	
Compound Color C		NACE OF THE PARTY	MW-1	101	MW-1	02	MW-1	03	MW-1	04	MW-1	05
Column C	0		2/19/2	016	2/19/2	016	2/19/2	016	2/18/2	016	2/19/2	016
	Compound	(AWQS)										
15.1.2 Freenoment		(ug/L)						_		_		_
1.1.2.2.Prentprocedure	1,1,1,2-Tetrachlorothane				-				_			
11.5.2-Friedroscorbane												
1,1,3,711-16-16-16-16-16-16-16-16-16-16-16-16-1												
15.Delicrosthane		1	1.5	-	1.5	-	1.5	-	1.5	-	1.5	-
		5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1.2.3 Tribuloscorposes	1,1-Dichloroethene	5	0.5	U	0.5		0.5				0.5	U
1.2.3-Trients/percence	1,1-Dichloropropene											
12.4.5 France properties 0	1.1.	0.04										
1.2.4-Trientyberusene		0.04		-		-		-				-
1.2 Distromoscheriosepage	1,2,4-Trichlorobenzene			U	2.5	U	2.5	U		U	2.5	U
1.2.Discriorombenementes	1,2,4-Trimethylbenzene											
1.2.Dichloroberbanes		0.04										
		5										
13.0Elefosoprograme	1,2-Dichloroethane											
1.3.5	Dichloroethylenes		2.5		2.5		2.5		2.5		2.5	
3.5 Dictoropropries 2.5	1,2-Dichloropropane											
1.3. Dichleropropagner S		5										
1.46.Delnicobervanee		5										
J. Diethy Berzene												
2.2. Dichtoriopropage 5	1,4-Diethyl Benzene			_		-						
Scheroscholume	1					-						
Page												
Selegopoptibulene		5										
Chlorotobuene		5	-	-	-	-	-	-	-	_	-	-
Material Care	4-Chlorotoluene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Accidence				_		-		-		-		-
According		50										
Accystolative		50										
Stromobenzene	Acrylonitrile	5		U		U	5					U
Semochidoromethane	Benzene	1	0.5	U	0.5	U	0.5	U	0.5		0.5	U
Scromodichicromethane	Bromobenzene											
Semonform		5										
Semonstane				_								
Carbon tetrachloride	Bromomethane	5	2.5				2.5					
Chlorobenzene	Carbon Disulfide	60										
Chioroethane S	Carbon tetrachloride			_								
Chloroform										_		
Chloromethane 60				_								
Symbol S	Chloromethane		2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Cyclohexane 2.5 U 0.5 U 2.5 U	cis-1,2-Dichloroethene	5		_								
25	cis-1,3-Dichloropropene		0.5	U		U	0.5	U	0.5	U	0.5	U
Dibromochloromethane			2.5	- 11		-	2.5	-	2.5	-	2.5	-
Dibromomethane						U		U		U		U
Diethyl Ether	Dibromomethane	5										
Ethylbenzene	Dichlorodifluoromethane	5	5	U	5	U	5	U	5		5	U
Hexachlorobutadiene	Diethyl Ether	-										
Sepropylbenzene 5				_								
Magb-Xylenes 5 2.5 U 2.5	Isopropylbenzene											
Methyl Ethyl Ketone (2-Butanone)	m&p-Xylenes		2.5	U	2.5	U	2.5	U	2.5		2.5	U
Methyl Ebutyl ether (NTBE) 10 25 U 25	Methyl Acetate			-	-	-		-	-		-	-
Methylcyclohexane .		10										
Methylene chloride 5 2.5 U 2.5		10										
Naphthalene	Methylene chloride	5		_								
### 1.5	Naphthalene	10		_								
5-Xylene 5 2.5 U 2.5 <	n-Butylbenzene											
Description of the properties				_								
Sec-Butylbenzene		Ü		-	-	-		-			-	-
Styrene	sec-Butylbenzene	5	2.5	U	2.5	U	2.5	U	2.5		2.5	U
Eart-Butylbenzene	Styrene		2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Tetrachloroethene			-	-	-	-	-	-	-	-	-	-
Tetrahydrofuran (THF)												
Trichlorofulgerent		5		_								
Trans-1,2-Dichloroethene 5	Toluene	5										
Trichlorothane 5 25 U	trans-1,2-Dichloroethene		2.5	_	2.5	U	2.5		2.5	U	2.5	
Trichloroethene 5	trans-1,3-Dichloropropene											
Trichlorofluoromethane												
Trichlorotrifluoroethane - <td></td>												
Vinyl Acetate 5 U 5 U 5 U 5 U 5 U												
Vinyl Chloride 2 1 U 1 U 1 U 1 U 1 U 1 U	Vinyl Acetate											
	Vinyl Chloride	2	1	U	1	U	1	U	1	U	1	U

		AS	R - Remedi	al Investigat	tion - May 2	006
	NYSDEC Ambient	MW1	MW2	MW3	MW9	MW10
Compound	Water Quality Standards (AWQS)	7/24/2006 Lot 18	7/24/2006 Lot 17	7/24/2006 Lot 17	7/24/2006 Lot 18	7/24/2006 Lot 21
	, in the second	μg/L	μg/L	μg/L	μg/L	µg/L
	(µg/L)	Results	Results	Results	Results	Results
1,2,4-Trichlorobenzene		-	-	-	-	-
1,2-Dichlorobenzene		-	-	-	-	-
1,2-Diphenylhydrazine		-	-	-	-	-
1,3-Dichlorobenzene 1,4-Dichlorobenzene	3 3	-	-	-	-	-
2,4,5-Trichlorophenol	1	-	-	-	-	-
2,4,6-Trichlorophenol	1	-	-	-	-	-
2,4-Dichlorophenol		-	-	-	-	-
2,4-Dimethylphenol	_	-	-	-	-	-
2,4-Dinitrophenol 2,4-Dinitrotoluene	5 5	-	-	-	-	-
2,6-Dinitrotoluene	5	-	-			
2-Chloronaphthalene	10	-	-	-	-	-
2-Chlorophenol	1	-	-	-	-	-
2-Methylnaphthalene		-	-	-	-	-
2-Methylphenol (o-cresol)	1 -	-	-	-	-	-
2-Nitroaniline 2-Nitrophenol	5 1	-	-	-	-	-
2-Nitropnenoi 3&4-Methylphenol (m&p-cresol)	<u>'</u>	1	-	-	-	-
3,3'-Dichlorobenzidine	5	-	-	-	-	-
3-Nitroaniline	5	-	-	-	-	-
4,6-Dinitro-2-methylphenol	1	-	-	-	-	-
4-Bromophenyl phenyl ether		-	-	-	-	-
4-Chloro-3-methylphenol 4-Chloroaniline	5	-	-	-	-	-
4-Chlorophenyl phenyl ether	3		-		-	-
4-Nitroaniline	5	-	-	-	-	-
4-Nitrophenol		-	-	-	-	-
Acetophenone		-	-	-	-	-
Aniline	5	-	-	-	-	-
Anthracene Benzidine	50 5	-	-	-	-	-
Benzoic acid	5		-		-	-
Benzyl alcohol		-	-	-	-	-
Benzyl butyl phthalate	50	-	-	-	-	-
Biphenyl		-	-	-	-	-
Bis(2-chloroethoxy)methane	5	-	-	-	-	-
Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether	1	-	-	-	-	-
Carbazole						
Dibenzofuran		-	-	-	-	-
Diethyl phthalate	50	-	-	-	-	-
Dimethylphthalate	50	-	-	-	-	-
Di-n-butylphthalate	50	-	-	-	-	-
Di-n-octylphthalate Fluoranthene	50 50	75	-	-	-	-
Fluorene	50	-	-	-	-	-
Hexachlorobutadiene	0.5	-	-	-	-	-
Hexachlorocyclopentadiene	5	-	-	-	-	-
Isophorone	50	99	-	-	-	-
Naphthalene	10	-	-	-	-	-
Nitrobenzene N-Nitrosodimethylamine	0.4	-	-	-	-	-
N-Nitrosodi-n-propylamine		-	-	-	-	-
N-Nitrosodiphenylamine	50	-	-	-	-	-
Phenol	1	-	-	-	-	-
Pyrene	50	-	-	-	-	-
1,2,4,5-Tetrachlorobenzene	00	-	-	-	-	-
Acenaphthene Acenaphthylene	20	-	-	-	-	-
Benz(a)anthracene	0.002	-	-	-	-	-
Benzo(a)pyrene	0.002	-	-	-	-	-
Benzo(b)fluoranthene	0.002	-	-	-	-	-
Benzo(ghi)perylene		-	-	-	-	-
Benzo(k)fluoranthene	0.002	-	60	31	-	-
Bis(2-ethylhexyl)phthalate Chrysene	5 0.002	-	- 60	31	-	- 6
Dibenz(a,h)anthracene	0.002	-	-	-	-	-
Hexachlorobenzene	0.04	-	-	-	-	-
Hexachloroethane	5	-	-	-	-	-
Indeno(1,2,3-cd)pyrene	0.002	-	-	-	-	-
Pentachloronitrobenzene Pentachloronhonel	1	-	-	-	-	-
Pentachlorophenol Phenanthrene	50	110	-	-	-	-
Pyridine	50	-	-	-	-	-
		-				

Compound	NYSDEC Ambient															
Compound						1W-3								<i>I-</i> 10		
	Water Quality Standards (AWQS)		5/2010 ot 17			5/2012 ot 17			25/2013 ot 17	1	2/1 Sidewal	5/2010 k on Cla		3/1 Sidewal	6/2012 k on Cla	
	(Result	µg/Kg Flag	RL	Result	ıg/Kg Flag	RL	Result	ug/Kg Flag	RL	Result	µg/Kg Flag	RL	Result	µg/Kg Flag	RL
1,2,4-Trichlorobenzene	(µg/L)	ND	- riag	5.13	ND	riag -	5	ND	riag -	5.13	ND	riag -	5.13	ND	- riag	5.26
1,2-Dichlorobenzene		ND	-	5.13	ND	-	5	ND	-	5.13	ND	-	5.13	ND	-	5.26
1,2-Diphenylhydrazine	2	- ND	-	5.13	- ND	-	- 5	- ND	-	5.13	- ND	-	5.13	- ND	-	5.26
1,3-Dichlorobenzene 1,4-Dichlorobenzene	3	ND		5.13	ND		5	ND ND	-	5.13	ND		5.13	ND		5.26
2,4,5-Trichlorophenol	1	ND	-	5.13	ND	-	5	ND	-	5.13	ND	-	5.13	NA	-	-
2,4,6-Trichlorophenol	1	ND	-	5.13	ND	-	5	ND	-	5.13	ND	-	5.13	NA	-	-
2,4-Dichlorophenol 2,4-Dimethylphenol		ND ND	-	5.13 5.13	ND ND	-	5	ND ND	-	5.13 5.13	ND ND	-	5.13 5.13	NA NA	-	-
2,4-Dinitrophenol	5	ND	-	10.3	ND	-	10	ND	-	10.3	ND	-	10.3	NA	-	-
2,4-Dinitrotoluene	5	ND	-	5.13	ND	-	5	ND	-	5.13	ND	-	5.13	ND	-	5.26
2,6-Dinitrotoluene	5	ND	-	5.13	ND	-	5	ND	-	5.13	ND	-	5.13	ND	-	5.26
2-Chloronaphthalene 2-Chlorophenol	10	ND ND	-	5.13 5.13	ND ND	-	5	ND ND	-	5.13 5.13	ND ND	-	5.13 5.13	ND NA	-	5.26
2-Methylnaphthalene	'	ND	-	5.13	ND	-	5	ND ND	-	5.13	ND	-	5.13	ND	-	5.26
2-Methylphenol (o-cresol)	1	ND	-	5.13	ND	-	5	ND	-	5.13	ND	-	5.13	NA	-	-
2-Nitrophonal	5	ND ND	-	5.13	ND	-	5	ND ND	-	5.13	ND	-	5.13	ND	-	5.26
2-Nitrophenol 3&4-Methylphenol (m&p-cresol)	1	ND NA	-	5.13	ND ND	-	5	ND ND	-	5.13 5.13	ND NA	-	5.13	NA NA	-	-
3,3'-Dichlorobenzidine	5	ND	-	5.13	ND	-	5	ND	-	5.13	ND	-	5.13	ND	-	5.26
3-Nitroaniline	5	ND	-	5.13	ND	-	5	ND	-	5.13	ND	-	5.13	ND	-	5.26
4,6-Dinitro-2-methylphenol	1	ND	-	10.3	ND	-	10	ND	-	10.3	ND	-	10.3	NA	-	-
4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol	1	ND ND	-	5.13 5.13	ND ND	-	5	ND ND	-	5.13 5.13	ND ND	-	5.13 5.13	ND NA	-	5.26
4-Chloroaniline	5	ND	-	5.13	ND	-	5	ND	-	5.13	ND	-	5.13	ND	-	5.26
4-Chlorophenyl phenyl ether		ND	-	5.13	ND	-	5	ND	-	5.13	ND	-	5.13	ND	-	5.26
4-Nitroaniline	5	ND	-	5.13	ND	-	5	ND	-	5.13	ND	-	5.13	NA	-	-
4-Nitrophenol Acetophenone		ND	-	5.13	ND -	-	5	ND -	-	5.13	ND -	-	5.13	ND -	-	5.26
Aniline	5	ND	-	5.13	ND		5	NA	-		ND		5.13	ND		5.26
Anthracene	50	ND	-	5.13	ND	-	5	ND	-	5.13	ND	-	5.13	ND	-	5.26
Benzidine	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzoic acid		ND ND	-	5.13 5.13	NA ND	-	5	ND ND	-	5.13 5.13	ND ND	-	5.13 5.13	NA NA	-	-
Benzyl alcohol Benzyl butyl phthalate	50	ND ND	-	5.13	ND ND		5	ND ND	-	5.13	ND	-	5.13	ND ND	-	5.26
Biphenyl		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bis(2-chloroethoxy)methane	5	ND	-	5.13	ND	-	5	ND	-	5.13	ND	-	5.13	ND	-	5.26
Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether	1	ND ND	-	5.13 5.13	ND ND	-	5	ND ND	-	5.13 5.13	ND ND	-	5.13 5.13	ND ND	-	5.26 5.26
Carbazole		-		5.15	-		-	-	-	5.15	-	-	-	-		5.20
Dibenzofuran		ND	-	5.13	ND	-	5	ND	-	5.13	ND	-	5.13	ND	-	5.26
Diethyl phthalate	50	ND	-	5.13	ND	-	5	ND	-	5.13	ND	-	5.13	ND	-	5.26
Dimethylphthalate Di-n-butylphthalate	50 50	ND ND	-	5.13 5.13	ND ND	-	5	ND ND	-	5.13 5.13	ND ND	-	5.13 5.13	ND ND	-	5.26 5.26
Di-n-octylphthalate	50	ND	-	5.13	ND		5	ND	-	5.13	ND		5.13	ND		5.26
Fluoranthene	50	ND	-	5.13	ND	-	5	ND	-	5.13	ND	-	5.13	ND	-	5.26
Fluorene	50	ND	-	5.13	ND	-	5	ND	-	5.13	ND	-	5.13	ND	-	5.26
Hexachlorobutadiene Hexachlorocyclopentadiene	0.5 5	ND ND	-	5.13	ND ND	-	5	ND ND	-	5.13	ND ND	-	5.13 5.13	ND ND	-	5.26
Isophorone	50	ND ND	-	5.13	ND	-	5	ND ND	-	5.13	ND	-	5.13	ND	-	5.26
Naphthalene	10	ND	-	5.13	ND	-	5	ND	-	5.13	ND	-	5.13	ND	-	5.26
Nitrobenzene	0.4	ND	-	5.13	ND	-	5	ND	-	5.13	ND	-	5.13	ND	-	5.26
N-Nitrosodimethylamine N-Nitrosodi-n-propylamine		ND ND	-	5.13 5.13	ND ND	-	5	NA ND	-	5.13	ND ND	-	5.13 5.13	ND ND	-	5.26 5.26
N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine	50	ND	-	5.13	ND	-	5	ND ND	-	5.13	ND	-	5.13	ND	-	5.26
Phenol	1	ND	-	5.13	ND	-	5	ND	-	5.13	ND	-	5.13	ND	-	5.26
Pyrene	50	ND	-	5.13	ND	-	5	ND	-	5.13	ND	-	5.13	ND	-	5.26
1,2,4,5-Tetrachlorobenzene Acenaphthene	20	- ND	-	5.13	- ND	-	- 5	- ND	-	5.13	- ND	-	5.13	- ND	-	5.26
Acenaphthylene	20	ND	-	5.13	ND	-	5	ND ND	-	5.13	ND	-	5.13	ND	-	5.26
Benz(a)anthracene	0.002	ND	-	5.13	ND	-	5	ND	-	5.13	ND	-	5.13	ND	-	5.26
Benzo(a)pyrene	0.002	ND	-	5.13	ND	-	5	ND	-	5.13	ND	-	5.13	ND	-	5.26
Benzo(b)fluoranthene	0.002	ND ND	-	5.13 5.13	ND ND	-	5	ND ND	-	5.13 5.13	ND ND	-	5.13 5.13	ND ND	-	5.26 5.26
Benzo(ghi)perylene Benzo(k)fluoranthene	0.002	ND ND	-	5.13	ND	-	5	ND ND	-	5.13	ND	-	5.13	ND	-	5.26
Bis(2-ethylhexyl)phthalate	5	ND	-	5.13	5.1	-	5	ND	-	5.13	ND	-	5.13	12.5	-	5.26
Chrysene	0.002	ND	-	5.13	ND	-	5	ND	-	5.13	ND	-	5.13	ND	-	5.26
Dibenz(a,h)anthracene	0.04	ND ND	-	5.13 5.13	ND ND	-	5	ND ND	-	5.13 5.13	ND ND	-	5.13 5.13	ND ND	-	5.26 5.26
Hexachlorobenzene Hexachloroethane	0.04	ND ND	-	5.13	ND ND	-	5	ND ND	-	5.13	ND	-	5.13	ND		5.26
Indeno(1,2,3-cd)pyrene	0.002	ND	L-	5.13	ND	-	5	ND	-	5.13	ND	-	5.13	ND	-	5.26
Pentachloronitrobenzene		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pentachlorophenol	1	ND ND	-	5.13	ND ND	-	5	ND ND	-	5.13	ND ND	-	5.13	ND ND	-	5.26 5.26
Phenanthrene Pyridine	50 50	ND ND	-	5.13 5.13	ND ND	-	5	NA NA	-	5.13	ND ND	-	5.13 5.13	ND ND	-	5.26

		Ecosys	tems S	trategi	es - Reme	dial Inv	estigat	ion Repor	t - July	2015
	NYSDEC Ambient Water Quality		1W-17 19/2012			IW-18			IW-19 16/2012	
Compound	Standards (AWQS)	Sidewa			Sidewa				ot 20	
	(µg/L)	Result	μg/Kg Flag	RL	Result	μg/Kg Flag	RL	Result	μg/Kg Flag	RL
1,2,4-Trichlorobenzene	(49-2)	ND	-	5.13	ND	-	5.41	ND	-	5.13
1,2-Dichlorobenzene		ND	-	5.13	ND	-	5.41	ND	-	5.13
1,2-Diphenylhydrazine 1,3-Dichlorobenzene	3	- ND	-	5.13	- ND	-	5.41	- ND	-	5.13
1,4-Dichlorobenzene	3	ND	-	5.13	ND	-	5.41	ND	-	5.13
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	1	ND ND	-	5.13 5.13	NA NA	-	-	NA NA	-	-
2,4-Dichlorophenol	l	ND	-	5.13	NA NA	-	-	NA NA	-	-
2,4-Dimethylphenol		ND	-	5.13	NA	-	-	NA	-	-
2,4-Dinitrophenol 2,4-Dinitrotoluene	5 5	ND ND	-	10.3 5.13	NA ND	-	5.41	NA ND	-	5.13
2,6-Dinitrotoluene	5	ND	-	5.13	ND	-	5.41	ND	-	5.13
2-Chloronaphthalene	10	ND	-	5.13	ND	-	5.41	ND	-	5.13
2-Chlorophenol 2-Methylnaphthalene	1	ND ND	-	5.13 5.13	NA ND	-	5.41	NA ND	-	5.13
2-Methylphenol (o-cresol)	1	ND	-	5.13	NA	-	-	NA	-	-
2-Nitroaniline	5	ND	-	5.13	ND	-	5.41	ND	-	5.13
2-Nitrophenol 3&4-Methylphenol (m&p-cresol)	1	ND NA	-	5.13	NA NA	-	-	NA NA	-	-
3,3'-Dichlorobenzidine	5	ND	-	5.13	ND	-	5.41	ND	-	5.13
3-Nitroaniline	5	ND	<u> </u>	5.13 10.3	ND NA	-	5.41	ND NA	-	5.13
4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether	1	ND ND	-	10.3 5.13	NA ND	-	5.41	NA ND	-	5.13
4-Chloro-3-methylphenol	1	ND	-	5.13	NA	-	-	NA	-	-
4-Chlorophonyl phonyl other	5	ND ND	-	5.13 5.13	ND ND	-	5.41 5.41	ND ND	-	5.13 5.13
4-Chlorophenyl phenyl ether 4-Nitroaniline	5	ND	-	5.13	NA NA		5.41	NA NA	-	5.15
4-Nitrophenol		ND	-	5.13	ND	-	5.41	ND	-	5.13
Acetophenone	-	- ND	-	5.13	- ND	-	5.41	- ND	-	5.13
Aniline Anthracene	5 50	ND ND	-	5.13	ND ND		5.41	ND	-	5.13
Benzidine	5	-	-	-	-	-	-	-	-	-
Benzoic acid Benzyl alcohol		ND ND	-	5.13 5.13	NA NA	-	-	NA NA	-	-
Benzyl butyl phthalate	50	ND	-	5.13	ND	-	5.41	ND	-	5.13
Biphenyl		-	-	-	-	-	-	-	-	-
Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether	5 1	ND ND	-	5.13 5.13	ND ND	-	5.41 5.41	ND ND	-	5.13 5.13
Bis(2-chloroisopropyl)ether		ND	-	5.13	ND	-	5.41	ND	-	5.13
Carbazole		-	-	-	-	-	-	-	-	-
Dibenzofuran Diethyl phthalate	50	ND ND	-	5.13 5.13	ND ND	-	5.41 5.41	ND ND	-	5.13 5.13
Dimethylphthalate	50	ND	-	5.13	ND	-	5.41	ND	-	5.13
Di-n-butylphthalate	50	ND	-	5.13 5.13	ND	-	5.41	ND	-	5.13
Di-n-octylphthalate Fluoranthene	50 50	ND ND	-	5.13	ND ND	-	5.41 5.41	ND ND	-	5.13 5.13
Fluorene	50	ND	-	5.13	ND	-	5.41	ND	-	5.13
Hexachlorobutadiene	0.5 5	ND ND	-	5.13 5.13	ND ND	-	5.41 5.41	ND ND	-	5.13 5.13
Hexachlorocyclopentadiene Isophorone	50	ND	-	5.13	ND		5.41	ND	-	5.13
Naphthalene	10	ND	-	5.13	ND	-	5.41	ND	-	5.13
Nitrobenzene N-Nitrosodimethylamine	0.4	ND ND	-	5.13 5.13	ND ND	-	5.41 5.41	ND ND	-	5.13 5.13
N-Nitrosodi-n-propylamine		ND	-	5.13	ND	-	5.41	ND	<u> </u>	5.13
N-Nitrosodiphenylamine	50	ND	-	5.13	DIN	-	5.41	ND	-	5.13
Phenol Pyrene	1 50	ND ND	-	5.13 5.13	ND ND	-	5.41 5.41	ND ND	-	5.13 5.13
1,2,4,5-Tetrachlorobenzene	55	-	-	-	-	-	-	-	-	-
Acenaphthylone	20	ND	-	5.13	ND ND	-	5.41	ND ND	-	5.13
Acenaphthylene Benz(a)anthracene	0.002	ND ND	-	5.13 5.13	ND ND	-	5.41 5.41	ND ND	-	5.13 5.13
Benzo(a)pyrene	0.002	ND	-	5.13	ND	-	5.41	ND	-	5.13
Benzo(b)fluoranthene	0.002	ND ND	-	5.13 5.13	ND ND	-	5.41 5.41	ND ND	-	5.13 5.13
Benzo(ghi)perylene Benzo(k)fluoranthene	0.002	ND	-	5.13	ND	-	5.41	ND	-	5.13
Bis(2-ethylhexyl)phthalate	5	10.8	-	5.13	ND	-	5.41	39.6	-	5.13
Chrysene Dihenz(a h)anthracene	0.002	ND ND	-	5.13 5.13	ND ND	-	5.41 5.41	ND ND	-	5.13 5.13
Dibenz(a,h)anthracene Hexachlorobenzene	0.04	ND	-	5.13	ND	-	5.41	ND	-	5.13
Hexachloroethane	5	ND	-	5.13	ND	-	5.41	ND	-	5.13
Indeno(1,2,3-cd)pyrene Pentachloronitrobenzene	0.002	ND -	-	5.13	ND -	-	5.41	ND -	-	5.13
Pentachlorophenol	1	- ND	-	5.13	ND	L-	5.41	ND	L-	5.13
Phenanthrene	50	ND	-	5.13	ND	-	5.41	ND	-	5.13
Pyridine	50	ND	-	5.13	ND	-	5.41	ND	-	5.13

			Goldbe	rg Zoino &	Associa	ites - Reme	dial Inve	estigation -	Decemb	er 2016	
	NYSDEC Ambient	MW-1	01	MW-1	02	MW-1	03	MW-1	104	MW-1	.05
	Water Quality	2/19/2	016	2/19/2	016	2/19/2	016	2/18/2	016	2/19/20	016
Compound	Standards (AWQS)	Lot 5		Lot 1		Lot 5	57	Lot 5		Lot 5	
		(µg/l		(µg/L		(µg/l		(µg/l	_	(µg/L	
	(μg/L)	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene		5	U	5	U	5	U	5	U	5	U
1,2-Diphenylhydrazine		-	-	-	-	-	-	-	-	-	-
1,3-Dichlorobenzene	3	2	U	2	U	2	U	2	U	2	U
1,4-Dichlorobenzene	3	2	U	2	U	2	U	2	U	2	U
2,4,5-Trichlorophenol	1	5 5	U	5	U	5 5	U	5	U	5 5	U
2,4,6-Trichlorophenol 2,4-Dichlorophenol	1	5	U	5	U	5	U	5	U	5	U
2,4-Dimethylphenol		5	U	5	U	5	U	5	U	5	U
2,4-Dinitrophenol	5	20	U	20	U	20	U	20	U	20	U
2,4-Dinitrotoluene	5	5	U	5	U	5	U	5	U	5	U
2,6-Dinitrotoluene	5	5 0.2	U	5 0.2	U	5 0.2	U	5 0.2	U	5 0.2	U
2-Chloronaphthalene 2-Chlorophenol	10	2	U	2	U	2	U	2	U	2	U
2-Methylnaphthalene	·	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U
2-Methylphenol (o-cresol)	1	5	U	5	U	5	U	5	U	5	U
2-Nitroaniline	5	5	U	5	U	5	U	5	U	5	U
2-Nitrophenol	1	10 5	U	10 5	U	10 5	U	10 5	U	10 5	U
3&4-Methylphenol (m&p-cresol) 3,3'-Dichlorobenzidine	5	5	U	5	U	5	U	5	U	5	U
3-Nitroaniline	5	5	U	5	U	5	U	5	U	5	U
4,6-Dinitro-2-methylphenol	1	10	U	10	U	10	U	10	U	10	U
4-Bromophenyl phenyl ether		2	U	2	U	2	U	2	U	2	U
4-Chloro-3-methylphenol	1	2 5	U	2 5	U	2 5	U	2 5	U	2 5	U
4-Chloroaniline 4-Chlorophenyl phenyl ether	5	2	U	2	U	2	U	2	U	2	U
4-Nitroaniline	5	5	U	5	U	5	U	5	U	5	U
4-Nitrophenol		10	U	10	U	10	U	4.2	J	10	U
Acetophenone		5	U	5	U	5	U	5	U	5	U
Aniline	5	0.2	- U	0.2	- U	0.2	- U	-	- U	0.2	- U
Anthracene Benzidine	50 5	0.2	-	0.2	-	0.2	-	0.2	-	0.2	-
Benzoic acid	J	50	U	50	U	50	U	17	J	50	U
Benzyl alcohol		2	U	2	U	2	U	2	U	2	U
Benzyl butyl phthalate	50	5	U	5	U	5	U	5	U	5	U
Biphenyl		2 5	U	2 5	U	2 5	U	2 5	U	2 5	U
Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether	5 1	2	U	2	U	2	U	2	U	2	U
Bis(2-chloroisopropyl)ether	·	2	U	2	U	2	U	2	U	2	U
Carbazole		2	U	2	U	2	U	2	U	2	U
Dibenzofuran		2	U	2	U	2	U	2	U	2	U
Diethyl phthalate Dimethylphthalate	50	5 5	U	5	U	5 5	U	5	U	5 5	U
Di-n-butylphthalate	50 50	5	U	5	U	5	U	5	U	5	U
Di-n-octylphthalate	50	5	U	5	U	5	U	5	U	5	U
Fluoranthene	50	0.2	U	0.17	J	0.2	U	0.2	U	0.2	U
Fluorene	50	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U
Hexachlorobutadiene Hexachlorocyclopentadiene	0.5	0.5 20	U	0.5	U	0.5	U	0.5 20	U	0.5	U
Isophorone	50	5	U	5	U	5	U	5	U	5	U
Naphthalene	10	0.2	U	0.06	J	0.2	U	0.2	U	0.2	U
Nitrobenzene	0.4	2	U	2	U	2	U	2	U	2	U
N-Nitrosodimethylamine		-	-	-	-	-	-	-	-	-	-
N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine	50	5 2	U	5	U	5	U	5	U	5 2	U
Phenol	1	5	U	5	U	5	U	3.5	J	5	U
Pyrene	50	0.2	U	0.16	J	0.2	U	0.2	U	0.2	U
1,2,4,5-Tetrachlorobenzene		10	U	10	U	10	U	10	U	10	U
Acenaphthene	20	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U
Acenaphthylene Benz(a)anthracene	0.002	0.2	U	0.2 0.11	U	0.2	U	0.2	U	0.2	U
Benzo(a)pyrene	0.002	0.2	U	0.11	J	0.2	U	0.2	U	0.2	U
Benzo(b)fluoranthene	0.002	0.2	U	0.15	J	0.2	U	0.2	U	0.2	U
Benzo(ghi)perylene		0.02	U	0.07	U	0.02	U	0.02	U	0.02	U
Benzo(k)fluoranthene	0.002	0.02	U	0.06	J	0.02	U	0.02	U	0.02	U
Bis(2-ethylhexyl)phthalate Chrysene	5 0.002	0.2	U	3 0.1	U	3.9 0.2	- U	4.7 0.2	- U	0.2	U
Dibenz(a,h)anthracene	0.002	0.2	U	0.1	U	0.2	U	0.2	U	0.2	U
Hexachlorobenzene	0.04	0.8	U	0.8	U	0.8	U	0.8	U	0.8	U
Hexachloroethane	5	0.8	U	0.8	U	0.8	U	0.8	U	8.0	U
Indeno(1,2,3-cd)pyrene	0.002	0.2	U	0.08	J	0.2	U	0.2	U	0.2	U
Pentachloronitrobenzene Pentachlorophenol	1	0.8	- U	0.8	- U	0.8	- U	0.8	- U	0.8	- U
Phenanthrene	50	0.2	U	0.08	J	0.2	U	0.2	U	0.2	U
Pyridine	50	-	-		-	-	l -	-	١.		T -

Table 7 Laboratory Results - Groundwater Pesticides/PCBS

			Gol	dberg Zoino	& Associ	iates - Reme	dial Inves	stigation - De	cember	2016	
	NYSDEC Ambient Water	MW-1 2/19/2		MW-1		MW-1 2/19/2		MW-1		MW-1 2/19/2	
Compound	Quality Standards (AQWS)	Lot 5		Lot 1		Lot 5		Lot 5		Lot 5	
		(µg/l	1	(µg/L		(µg/l	1	(µg/L	_	(µg/l	i -
		Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual
PCB-1016	0.09	0.83	U	0.115	U	0.83	U	0.83	U	0.83	U
PCB-1221	0.09	0.83	U	0.115	U	0.83	U	0.83	U	0.83	U
PCB-1232	0.09	0.83	U	0.115	U	0.83	U	0.83	U	0.83	U
PCB-1242	0.09	0.83	U	0.115	U	0.83	U	0.83	U	0.83	U
PCB-1248	0.09	0.83	U	0.115	U	0.83	U	0.83	U	0.83	U
PCB-1254	0.09	0.83	U	0.115	U	0.83	U	0.83	U	0.83	U
PCB-1260	0.09	0.83	U	0.115	U	0.83	U	0.83	U	0.83	U
PCB-1262	0.09	0.83	U	0.115	U	0.83	U	0.83	U	0.83	U
PCB-1268	0.09	0.83	U	0.115	U	0.83	U	0.83	U	0.83	U
4,4-DDD	0.3	0.04	U	0.04	U	0.04	U	0.04	U	0.04	U
4,4-DDE	0.2	0.04	U	0.04	U	0.04	U	0.04	U	0.04	U
4,4-DDT	0.11	0.04	U	0.018	J	0.04	U	0.04	U	0.04	U
a-BHC	0.94	0.02	U	0.02	U	0.02	U	0.02	U	0.02	U
a-Chlordane		0.02	U	0.02	U	0.02	U	0.02	U	0.02	U
Alachlor		-	-	-	-	-	-	-	-	-	-
Aldrin		0.02	U	0.02	U	0.02	U	0.02	U	0.02	U
b-BHC	0.04	0.02	U	0.02	U	0.02	U	0.02	U	0.02	U
Chlordane	0.05	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U
d-BHC	0.04	0.02	U	0.02	U	0.02	U	0.02	U	0.02	U
Dieldrin	0.004	0.04	U	0.04	U	0.04	U	0.04	U	0.04	U
Endosulfan I		0.02	U	0.02	U	0.02	U	0.02	U	0.02	U
Endosulfan II		0.04	U	0.04	U	0.04	U	0.04	U	0.04	U
Endosulfan Sulfate		0.04	U	0.04	U	0.04	U	0.04	U	0.04	U
Endrin		0.04	U	0.04	U	0.04	U	0.04	U	0.04	U
Endrin aldehyde	5	0.04	U	0.04	U	0.04	U	0.04	U	0.04	U
Endrin ketone		0.04	U	0.04	U	0.04	U	0.04	U	0.04	U
gamma-BHC	0.05	0.02	U	0.02	U	0.02	U	0.02	U	0.02	U
g-Chlordane		0.02	U	0.02	U	0.02	U	0.02	U	0.02	U
Heptachlor	0.04	0.02	U	0.02	U	0.02	U	0.02	U	0.02	U
Heptachlor epoxide	0.03	0.02	U	0.02	U	0.02	U	0.02	U	0.02	U
Methoxychlor	35	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U
Toxaphene		0.2	U	0.2	U	0.2	U	0.2	U	0.2	U

RL - Laboratory Reporting Limit, MDL=Minimum Detection Limit

Bold/highlighted- Indicated exceedance of the NYSDEC Groundwater Standard

U The compound was anlayzed for but not detected at or above the MDL.

The number immediately preceding the "U" represents the PQL reporting level corrected for percent solids, weight and/or volume calculations, and dilution factors.

- J The value is estimated. This flag is used
- a) on form 1 when the compound is reported above the MDL, but below the PQL, and
- b) on the Tentatively Identified Compounds (TIC) form for all compounds identified.
- N The concentration is based on the response to the nearest internal. This flag is used on the TIC form for all compounds identified.
- S This compound is a solvent that is used in the laboratory. Laboratory contamination is suspected if concentration is less than five times the reporting level.
- D The reported concentration is the result of a diluted analysis. (*) See report for comment.

Table 8 Laboratory Results - Groundwater Total Metals

		Ecosystems	s Strateg		medial Invest 2015	tigation I	Report -		Gol	dberg Zoino 8	& Assoc	iates - Remed	dial Inve	stigation - De	cember :	2016	
		N	1W-3		М	W-18		MW-1	01	MW-1	02	MW-1	03	MW-1	04	MW-10	05
0	NYSDEC Ambient Water	11/2	25/2013	}	3/1	6/2012		2/19/20)16	2/19/20	016	2/19/20	016	2/18/20)16	2/19/20)16
Compound	Quality Standards (AWQS)	L	ot 17		Clay Stre	eet Side	walk	Lot 5	7	Lot 1	7	Lot 5	7	Lot 5	7	Lot 57	7
			mg/L)			mg/L)		(mg/L		(mg/L		(mg/L		(mg/L		(mg/L)	•
	(mg/L)	Results ND	Flag	RL 0.01	Results 3.43	Flag	RL 0.01	Results 6.87	Qual	Qual 25.2	Qual	Results 2.5	Qual	Qual 0.116	Qual	Results 6.56	Qual
Aluminum	0.1					-					-		-		-		
Antimony	0.003	ND	-	0.005	ND	-	0.005	0.00172	J	0.00229	J	0.00378	-	0.00197	J	0.0021	J
Arsenic	0.025	ND	-	0.004	ND	-	0.01	0.01191	-	0.05676	-	0.00195	-	0.00085	-	0.00493	-
Barium	1	0.033	-	0.01	0.25	-	0.01	0.07804	-	0.7764	-	0.03904	-	0.01147	-	0.09051	-
Beryllium	0.003	ND	-	0.001	ND	-	0.001	0.00079	-	0.00253	-	0.0005	U	0.0005	U	0.00042	J
Cadmium	0.005	ND	-	0.003	ND	-	0.003	0.00021	-	0.00185	-	0.00023	-	0.0002	U	0.00017	J
Calcium	NS	93.3	-	0.05	113	-	0.02	80.4	-	204	-	185	-	86.6	-	214	-
Chromium	0.05	0.025	-	0.005	0.019	-	0.005	0.01849	-	0.0727	-	0.00501	-	0.00155	-	0.01469	-
Cobalt	NS	ND	-	0.005	0.005	-	0.005	0.00979	-	0.03115	-	0.00418	-	0.00047	-	0.0082	-
Copper	0.2	ND	-	0.003	0.034	-	0.005	0.01909	-	0.1008	-	0.00958	-	0.0013	-	0.01752	-
Iron	0.5	ND	-	0.02	9.93	В	0.01	15	-	439	-	3.34	-	0.181	-	11	-
Lead	0.025	ND	-	0.003	0.005	-	0.003	0.01395	-	1.901	-	0.00348	-	0.001	U	0.01454	-
Magnesium	35	39.4	-	0.05	46.3	-	0.02	9.8	-	41.9	-	32.3	-	7.68	-	37.9	-
Manganese	0.3	0.038	-	0.005	1.62	-	0.005	0.3354	-	1.084	-	0.1512	-	0.08462	-	0.6146	-
Mercury	0.0007	ND	-	0.0002	ND	-	0.0002	0.0002	U	0.00175	1	0.0002	\supset	0.0002	U	0.0002	U
Nickel	0.1	ND	-	0.005	0.013	-	0.005	0.0147	-	0.05251	-	0.01278	-	0.00271	-	0.01717	-
Potassium	NS	5.55	-	0.05	8.48	-	0.05	15.1	-	12.6	-	10.7	-	11.7	-	13.4	-
Selenium	0.01	ND	-	0.01	ND	-	0.01	0.0306	-	0.0103	-	0.0437	-	0.00669	-	0.0226	-
Silver	0.05	ND	-	0.005	ND	-	0.005	0.0004	U	0.00033	J	0.0004	U	0.0004	U	0.0004	U
Sodium	20	41.2	-	0.1	80.6	-	0.1	57.5	-	43.7	-	64	-	24	-	26.8	-
Thallium	0.0005	ND	-	0.005	ND	-	0.01	0.00006	J	0.00056	-	0.0005	U	0.0005	U	0.0005	U
Vanadium	NS	ND	-	0.01	ND	-	0.01	0.03199	-	0.1167	-	0.00614	-	0.00157	J	0.01871	-
Zinc	5	ND	-	0.01	0.06	-	0.02	0.06507	-	0.6424	-	0.05378	-	0.00289	J	0.07757	-

Notes:

RL - Laboratory Reporting Limit, MDL=Minimum Detection Limit

ND = Non-detect

Bold/highlighted- Indicated exceedance of the NYSDEC Groundwater Standard

Bold = Result detected above detection limit

Table 9 Laboratory Results - Groundwater Results Dissolved Metals

			Gol	dberg Zoino	& Assoc	iates - Remed	dial Inves	stigation - De	cember :	2016	
		MW-1	01	MW-1	02	MW-1	03	MW-1	04	MW-1	05
Compound	NYSDEC Ambient Water Quality Standards	2/19/20	016	2/19/2	016	2/19/20	016	2/18/2	016	2/19/20	016
Compound	(AWQS)	Lot 5		Lot 1	•	Lot 5		Lot 5		Lot 5	
	(, 45)	(mg/l	í e	(mg/l	í –	(mg/L	í –	(mg/l	r e	(mg/l	<u>′</u>
		Results	Qual	Qual	Qual	Results	Qual	Qual	Qual	Results	Qual
Aluminum	0.1	0.005	J	0.003	J	0.01	U	0.013	-	0.004	J
Antimony	0.003	0.0014	J	0.0009	J	0.0036	-	0.0031	-	0.0019	J
Arsenic	0.025	0.0015	-	0.0021	-	0.0012	-	0.0009	-	0.0014	-
Barium	1	0.0298	-	0.0327	-	0.0241	-	0.0108	-	0.0361	-
Beryllium	0.003	0.0005	U	0.0005	U	0.0005	U	0.0005	U	0.0005	U
Cadmium	0.005	0.0002	U	0.0005	-	0.00017	J	0.0002	U	0.0002	U
Calcium	NS	73.5	-	156	-	163	-	64.6	-	180	-
Chromium	0.05	0.0009	J	0.0019	-	0.0018	-	0.0015	-	0.002	-
Cobalt	NS	0.0018	-	0.0018	-	0.0026	-	0.0004	J	0.0005	-
Copper	0.2	0.0017	-	0.003	-	0.0019	-	0.001	-	0.0039	-
Iron	0.5	0.05	U	0.05	U	0.05	U	0.05	U	0.05	U
Lead	0.025	0.0002	J	0.0255	-	0.002	U	0.002	U	0.002	U
Magnesium	35	7.92	-	37.5	-	32.1	-	7.64	-	36.5	-
Manganese	0.3	0.2002	-	0.3949	-	0.115	-	0.083	-	0.135	-
Mercury	0.0007	0.0002	U	0.0002	U	0.0002	U	0.0002	U	0.0002	U
Nickel	0.1	0.0021	-	0.0039	-	0.0087	-	0.0026	-	0.003	-
Potassium	NS	15.4	-	11.8	-	11.1	-	11	-	13.6	-
Selenium	0.01	0.029	-	0.008	-	0.043	-	0.006	-	0.02	-
Silver	0.05	0.0004	U	0.0004	U	0.0004	U	0.0004	U	0.0004	U
Sodium	20	56.1	-	46.9	-	56.6	-	23.8	-	27	-
Thallium	0.0005	0.0005	U	0.0005	U	0.0005	U	0.0005	U	0.0005	U
Vanadium	NS	0.0006	J	0.0026	J	0.0016	J	0.0009	J	0.001	J
Zinc	5	0.0079	J	0.0267	-	0.0292	-	0.0142	-	0.014	-

Notes:

RL - Laboratory Reporting Limit, MDL=Minimum Detection Limit

ND = Non-detect

Bold/highlighted- Indicated exceedance of the NYSDEC Groundwater Standard

Bold = Result detected above detection limit

J The value is estimated. This flag is used

U The compound was anlayzed for but not detected at or above the MDL.

The number immediately preceding the "U" represents the PQL reporting level corrected for percent solids, weight and/or volume calculations, and dilution factors.

		Volatile Organic Compour		3C - Re	medial Inv	estigat	ion - 2007		FPM C Supplemen	Group - Ital RI - May I15
COMPOUNDS	NYSDOH Maximum Sub-Slab Value	NYSDOH Soil Vapor Outdoor Background Levels	SG1 1/11/20 Lot 5	008 57	1/11/20 Lot 1	008 17	1/11/2 Lot 2	008 20	SV-1 4/24/2015 Clay St	SV-3 4/24/2015 Clay St
	Value	Duckground Levels	(μg/m Results		(µg/m: Results		(μg/m Results		(µg/m3) Results	(µg/m3) Results
1,1,1,2-Tetrachloroethane			- Results	- Quai	- Nesulis	- Quai	Results	- Quai	- Results	- Nesuits
1,1,1-Trichloroethane	100	<2.0-2.8	16.37	J	42.56	-	818.4	D	ND	ND
1,1,2,2-Tetrachloroethane		<1.5	1.03	U	0.76	U	1.79	U	-	-
1,1,2-Trichloroethane		<1.0	1.47	U	1.09	U	2.62	U		-
1,1,2-Trichlorotrifluoroethane			1.23	U	0.92	U	2.15	U		-
1,1-Dichloroethane		<1.0	0.61	U	0.45	U	1.05	U		
1,1-Dichloroethene		<1.0	0.59	U JB	0.44	U	1.07	U JDB		-
1,2,4-Trichlorobenzene		NA <1.0	17.82 6.39	J	11.13 5.41	JB J	31.18 9.34	JD	9.8	9.8
1,2,4-Trimethylbenzene 1,2-Dibromoethane		<1.5	6.22	U	4.53	U	10.76	U	-	
1,2-Dibromoetnane 1,2-Dichlorobenzene		<2.0	4.21	JB	3.01	JB	8.42	JDB		
1,2-Dichloroethane		<1.0	1.25	U	0.93	U	2.23	U		-
1,2-Dichloropropane			1.39	U	1.02	U	2.45	U	-	-
1,2-Dichlorotetrafluoroethane			0.91	U	0.68	U	1.68	U	-	-
1,3,5-Trimethylbenzene		<1.0	1.08	U	0.79	U	1.87	U	2.3	2.3
1,3-Butadiene		NA	0.51	U	0.35	U	0.88	U	-	-
1,3-Dichlorobenzene		<2.0	0.60	U	0.46	U	1.08	U	-	-
1,4-Dichlorobenzene		NA	3.61	J	3.01	J	7.21	JD	ND	ND
1,4-Dioxane			1.58	U	1.14	U	2.77	U	-	
2,2,4-Trimethylpentane			0.70	U	0.51	U	1.26	U	38	8.9
2-Butanone			5.01	J	4.13	J	9.73	JD	-	-
2-Chlorotoluene			1.24	U	0.88	U	2.17	U		-
2-Hexanone	ļ	L	<u> </u>	<u> </u>				-		
4-Ethyltoluene	ļ	NA	0.46	U	0.33	U	0.79	U	3.7	5.9
4-Isopropyltoluene				-		-		-		
4-Methyl-2-pentanone			3.69 23.75	J	3.28	J	12.7 33.26	JD D	100	510
Acetone		NA	_	-	26.13	U				510
Allyl Chloride			1.19	U	088	U	2.1	U	-	
Acrylonitrile		<1.6-4.7	1.92	J	1.92	J	3.51	JD	1,600	11
Benzene		NA	1.92	-	1.92	-	3.51	30	1,000	- "
Benzyl Chloride Bromodichloromethane		<5.0	2.08	U	1.54	U	3.68	U	ND	ND
Bromodicnioromethane		<1.0	0.98	U	0.71	U	1.76	U	-	
Bromomethane		<1.0	0.58	U	0.43	U	1.01	U		
Bromomethene			0.66	U	0.48	U	1.14	U		
Carbon Disulfide		NA	0.30	U	0.21	U	0.53	U	0.84	8.7
Carbon Tetrachloride	5	<3.1	0.63	U	0.48	U	1.13	U	ND	ND
Chlorobenzene		<2.0	0.74	U	0.55	U	1.29	U		
Chloroethane		NA	0.26	U	0.2	U	0.47	U	-	-
Chloroform		<2.4	0.93	U	4.88	J	1.66	U	ND	ND
Chloromethane		<1.0-1.4	1.24	J	0.23	U	0.56	U	ND	0.85
cis-1,2-Dichloroethene		<1.0	3.17	J	1.98	J	1.51	U	11	ND
cis-1,3-Dichloropropene		NA	1.41	U	1	U	2.45	U	-	-
Cyclohexane		NA	0.25	U	0.19	U	0.45	U	38	3.6
Dibromochloromethane		<5.0	1.36	U	1.02	U	2.39	U		-
Dichlorodifluromethane		NA	0.49	U	0.38	U	0.89	U	ND	2.9
Ethanol				-		-		-		
Ethyl Acetate		NA	-	-	-	_		-	6.8 J	120
Ethylbenzene		<4.3	0.48	U	0.35	U	1.07	U	11	14
Heptane		NA NA	24.53	JB	2.05 17.07	JB	46.93	JDB	25	20
Hexachlorobutadiene		NA <1.5	0.56	n n	0.42	n n	0.99	JDB	74	- ND
Hexane		NA NA	0.56	-	0.42		0.99		ND	49
Isopropylalcohol Isopropylbenzene		140		\vdash		\vdash				
Xylene (m&p)		<4.3	5.21	J	4.34	J	6.95	JD	37	42
Methyl Ethyl Ketone			1.60	U	1.15	U	2.83	U	ND ND	55
Methyl Methacrylate				-		-		-		-
MTBE		NA	0.36	U	0.27	U	0.65	U	ND	9.4 J
Methyl Isobutyl Ketone				-		-		-	-	-
Methylene Chloride		<3.4	3.13	J	3.13	J	4.86	JD	ND	3.8
n-Butylbenzene			<u> </u>	-		-		-	-	
Xylene (o)		<4.3	0.65	U	2.17	J	1.13	U	11	12
Propylene		NA	-		-					
sec-Butylbenzene			-		-			-	-	
Styrene		<1.0	1.66	U	1.19	U	2.9	U	-	-
t-1,3-Dichloropropene			1.59	U	1.18	U	2.86	U	-	-
tert-butyl alcohol			3.33	J	11.22	⊢⊢	6.06	JD		-
tert-butyl methyl ether		ļ		<u> </u>		H	-	-		
Tetrachloroethene	30	ļ	6.10	J	4.07	J	3.53	U	8.7	0.88 J
Tetrahydrofuran		NA 1061	3.28	U	2.39	U	5.79	U		
Toluene		1.0-6.1	19.22	-	16.96	-	22.23	D	60	80
trans-1,2-Dichloroethene		NA NA	0.75	U	0.56	U	1.35	U	-	-
trans-1,3-Dichloropropene	2	NA <1.7	3,65	H	5.32	H	112.86	- D	140	0.81
Trichloroethene Trichlorofluoromethane		<1.7 NA	1.01	·	0.73	U	1.74	U	140 ND	1.6
Trichlorotrifluoroethane		- 150	- 1.01	-	0.73	-		-	ND ND	ND
Vinyl Acetate			-	-	-	-	-	-	-	-
					. –	. –				
Vinyl Bromide						_		-		
Vinyl Chloride		<1.0	0.38	U	0.28	U	0.66	U	ND 0.8	ND 9.7
		<1.0	0.38 18.9 5.2	94	0.28 44.4 4.31	4	0.66 822 . 9.3	.9	0.8 1600	8.7 131

NA = No guidance value or standard available

(a) = NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, February 2005, Summary of Background Levels for Selected Compounds (NYSDOH Database, Outdoor values)

RL = Laboratory detection limit **Bold** = Result detected above detection limit VOCs = Volatile Organic Compounds

CVOCs = Chlorinated Volatile Organic Compounds

BTEX = Benzene, Toluene, Ethylbenzene, and Xylenes

U - The compound was not detected at the indicated concentration.

J. Detection indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greated, and the properties of the pro

Goldberg Zoino & Associates - Remedial Investigation - December 2016

MALFORMERSON 189	COMPOUNDS	NYSDOH Maximum Sub-Slab Value	NYSDOH Soil Vapor Outdoor Background Levels	2/18/2 2/18/2 Lot 5 (µg/m	016 57 (3)	2/18/20 Lot 5 (µg/m Results	016 57 (3)	OA-3 2/18/2 Lot 1 (µg/m Results	016 7 3)	SV-20 2/18/20 Lot 2 (µg/m Results	016 0 3)	2/18/20 2/18/20 Lot 57 (µg/m3 Results	16 7	2/18/20 2/18/20 Lot 1 (µg/m) Results	016 7 3)	SV-20 2/18/20 Lot 2 (µg/m:	016 0 3)	2/18/20 Lot 5 (µg/m	016 7 3)	2/18/20 Lot 1 (µg/m Results	016 7 3)	2/18/2 2/18/2 Lot 1 (µg/m	016 17 3)
14.15 Selections	1,1,1,2-Tetrachloroethane								-			-											
Column	1,1,1-Trichloroethane	100			U		U		U								U		U		U		U
All Content content					U		-		_		U		_						_		_		U
Column			<1.0		U						U								_				U
Control Cont	, ,		<10				U														_		U
3.4. Control services					U		U				U						U		_		U		U
1.05 1.05					U		U		U		U		U		U		U		U		U		U
Company Comp					U		U		U		U		U		U		-	1.29			U		U
Communication Column Col			<1.5	1.54	U	1.54	U	1.54	U	1.54	U	1.54	U	1.54	U	1.54	U		U	1.54	U	1.54	U
1.5 1.5			<2.0	1.2	U	1.2	U	1.2	U	1.2	U	1.2	U	1.2	U	1.2	U	1.2	U	1.2	U	1.2	U
1. 1. 1. 1. 1. 1. 1. 1.	1,2-Dichloroethane		<1.0		U		U	0.809	U					0.809	U		U		٥	0.809	U		U
3.5 Montherson							U				U								U		U		U
Administration	'				U		-		-		U		U		-		U				U		U
Acheronament					U						U		U				U				U		U
Machine Mach	,,				U		U		U		0		-		U		U		0		0		U
Actions 1.00					U		U		U.		-						II.		11				
23-1 Personagement			· MD										U		U						U		U
Selection of the select	'				U				U		U		U		U		U		U		U		U
Controlled				-					-	-			-	-	-	-	-	-		-	-	-	-
Standard				-	-		-		-	-	-	-		-	-	-	-	-	-		-		-
Interpreparation of the company of t				0.82	U	0.82	U	0.82	U	0.82	U	0.82	U	0.82	U	0.82	U	0.82	U	0.82	U	0.82	U
March Marc	4-Ethyltoluene		NA	0.983	U	0.983	U	0.983	U	0.983	U	0.983	U	0.983	U	0.983	U	0.983	U	0.983	U	0.983	U
Asher-September 190 191				-	-		-		-	-	-	-	-	-	-	-	-	-	-		-		-
Modelscheider 1.00					U		U		U		- 1		-		U		-		U		U		U
Scheller 1.54.7 2.5	Acetone		NA		-		-		- 1		-		-		-		-		-		-		-
				0.626	U	0.626	U	0.626	U	0.626	U	0.626	U	0.626	U	0.626	U	0.626	U	0.626	U	0.626	U
Macrostotises	Acrylonitrile			-	-	<u> </u>	-	<u> </u>	-	-				-	-	-	-	-			-		٠.
Monethineshine 1.50					U		U		U		-		-		U		U		-		-		-
Second S													-						U		U		U
Monomathum Mon							-				0		-								0		U
Commonwhelmen											0								0				U
Sales Desirables NA Sele U Sele U			<1.0	0.777	U	0.777	U	0.777	U	0.777	U	0.777	U	0.777	U	0.777	U	0.777	U	0.777	U	0.777	U
Same interactions			NΔ	0.632	-	0.632	-	0.632	-	5.17		12.1	-	0.797	_	54.4	_	3 24		7 32		9.69	H
Calcinomename		5									-		-		- 11		- 11		-		-		- 0
Chancelmen					U		U		U		U				U				U		U		U
Calculation				0.528	U	0.528	U	0.528	U	0.528	U	0.528	U	0.528	U	0.528	U	0.528	U	0.528	U	0.528	U
14.10-14-14 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.					U		U	0.977	U		-	2.61	-	10.8	-		U	0.977	U	0.977	U		U
## 1-10			<1.0-1.4	1.02	-	0.927	-	0.964		0.597		0.431	U	0.431	U	0.417		0.431	U	0.431	U	0.431	U
Subsecuring NA			<1.0	0.079	U	0.079	U	0.079	U	0.793	U	0.793	U	0.793	U	0.793	U	0.793	U	0.793	U	0.793	U
Second processor Second proc			NA	0.908	U	0.908	U	0.908	U	0.908	U	0.908	U	0.908	U	0.908	U	0.908	U	0.908	U	0.908	U
NA 2.55 1.48 1.49 1.	Cyclohexane		NA	0.688	U	0.688	U	0.688	U	0.85		0.688	U	0.688	U	0.688	U	0.688	٥	0.688	U	0.688	U
Ensend	Dibromochloromethane				U		U		U		U		-		U				U		U		U
Ethylectories NA	Dichlorodifluromethane		NA		-		-		-		-				-		U						-
Emplementene NA 4.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0					U		-				U		U		U		-				U		U
Method NA 062 U 062 U 082 U 08					U						U		U		U		-		U		U		U
Machine NA							-				-		-				-		-		-		-
March Marc											-		-		U		U		0		-		-
Segregophaleched NA 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.					- 11		- 11		- 11		-		-		- 11								
Soprophenizere				0.700	-	0.700	-	0.700	-	0.700	-	00	-	0.700	-	- 0.307			÷		Ė	-	÷
Sylane (nSp)									-	-				-	-	-	-	-			-		-
Methyl Ethyl Katone 167 U 147 U 147 U 147 U 2.78 U 2.4 U 1.83 U 3.42 U 2.73 U 2.73 U 1.47			<4.3	1.74	U	1.74	U	1.74	U	3.51	-	8.86	-	1.94	-	6.3	-	7.56	-	2.83	-	5.08	Ι.
Methyl Methacrylate NA NA NA NA NA NA NA NA NA N					U		U		U		-				-		-		-		-		U
Methyl skobuly Ketone Max	Methyl Methacrylate			-	-		-		-	-	-	-		_		_		-					-
Methylene Chloride Sulylbenzene -	MTBE		NA	-	-		-		-	-	-	-	-	-	-	-	-	-	-		-		-
-Bulythenzene	Methyl Isobutyl Ketone			-	-		-		-	-	-	-	-	-	-	-	-	-	-		-	-	
Xylene (o)			<3.4	1.74	U	1.74	U	1.74	U	1.74	U	1.74	U	1.74	U	1.74	U	1.74	U	1.74	U	1.74	U
Propylene NA				-	-		-	<u> </u>	-	-				-	-	-	-	-		-	-	-	٠.
Styrene	Xylene (o)			0.869	U	0.869	U	0.869	U	1.74	-	4.07	-	969	-	2.47	-	3.12	-	1.56	-	2.89	Ŀ
Shyrene	Propylene		NA NA	-	-	<u> </u>	-	<u> </u>	-	-	H			-	-	-	-	-	L-	-	_	-	<u>.</u>
L1_3-Dichloropropane L1_3-Dich			<10	0.052	-	0.862	-	0.852		0.852		0.852	- 1	0.852	-	0.852	-	0.852		0.852		0.052	U
Instituty flacehole 1.52 U 1.52 U 1.52 U 2.45 U 2.45 U 2.45 U 1.52 U 0.771 U 0.			×1.0	0.802		0.602		0.802		0.002		0.802		0.002		0.002		0.002	-	0.852		0.802	-
Early Depth of the composition 1.0				1.52		1.52		1.52		2.45	Ė	1.52	- 11	1.62	- 1	6.43		3.76	H	1.52		1.52	U
Tetrachioroethene 30							11				-		-				Ü		-				U
Tetrahydrofuran NA 1.87 U 1.87		30			-		-		-		U												U
Toluene 10-6.1 0.754 U 0.758 U 0.758 U 0.758 U 0.758 U 0.759 U			NA		U		U		U				U		U		U		U		U		U
Trans-1.2-Dichtoroethene NA 0.763 U 0.					U		U		U		-		-		U		-		-		-		-
NA 0.808 U			NA	0.793	U	0.793	U	0.793	U		U		U	0.793	U		U		U		U		U
Trichioroethene 2 <1.7 107 U 1	trans-1,3-Dichloropropene				U		U		U		U		U		U		U		U		U		U
Titchisordiusomethane		2	<1.7	1.07	U	1.07	U	1.07	U	1.07	U	1.07	U	1.07	U	1.07	U	1.07	U	1.07	U	1.07	U
Viryl Acotate	Trichlorofluoromethane		NA	1.24	-	1.21	-	1.24	-	1.12	U	1.12	U	1.24		1.24		1.12	U	1.25	-	1.12	U
Vinyl Bromide 0.874 U 0.874				-	-	<u> </u>	-	<u> </u>	-	-	-	-		-	-	-	-	-	<u> </u>	-	-	-	
Vinyl Chloride <1.0 0.511 U				0.874	U	0.874	U	0.874	U	0.874	U	0.874	U	0.874	- U	0.874	- U	0.874	U	0.874	U	0.874	U
Total CVOCs 5.27 5.27 5.27 6.58 5.27 5.27 5.27 0.00 5.27 5.27 BTEX 2.646 2.646 2.646 3.525 7.738 970.777 4.708 1.94 3.402 5.158	Vinyl Chloride		<1.0		U		U		U		U		U		U		U		U		U		U
	Total CVOCs																						
Total VOCs 67.40 66.79 66.18 105.89 107.42 1,051.11 168.15 115.60 96.65 91.76	BTEX																						

Notes:

NA = No guidance value or standard available

(a) = NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, February 2005, Summary of Background Levels for Selected Compounds (NYSDOH Database, Outdoor values)

RL = Laboratory detection limit **Bold** = Result detected above detection limit

VOCs = Volatile Organic Compounds

CVOCs = Chlorinated Volatile Organic Compounds

BTEX = Benzene, Toluene, Ethylbenzene, and Xylenes

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater.

D - The reported value is form a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.

Table 10 Laboratory Results - Soil Gas Volatile Organic Compounds

Ecosystems Strategies, INC - TCE Investigat
July 2012 Contombox 2014

				July 2	2013 - Sep	tember	2014			
			2SB-		2SB-		2SB-10 7/31/2013			
COMPOUNDS	NYSDOH Maximum Sub-Slab	NYSDOH Soil Vapor Outdoor	7/31/20 Lot		7/31/2 Lot		7/31/2 Lot			
	Value	Background Levels	(µg/m		(µg/m		(µg/m			
			Results	RL	Results	RL	Results	RL		
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	100	<2.0-2.8	1,000	9.3	430	220	ND	10		
1,1,2,2-Tetrachloroethane		<1.5	ND	12	ND	280	ND	13		
1,1,2-Trichloroethane		<1.0	ND	9.3	ND	220	ND	11		
1,1,2-Trichlorotrifluoroethane			ND	13	ND	320	ND	15		
1,1-Dichloroethane		<1.0	34	6.9	ND	170	ND	7.9		
1,1-Dichloroethene		<1.0	ND	6.8	ND	160	ND	7.7		
1,2,4-Trichlorobenzene		NA	ND	13	ND	310	ND	14		
1,2,4-Trimethylbenzene		<1.0 <1.5	30 ND	8.4	770 ND	200 320	ND ND	9.6 15		
1,2-Dibromoethane		<2.0	ND ND	10	ND	250	ND	12		
1,2-Dichlorobenzene 1,2-Dichloroethane		<1.0	ND	6.9	ND	170	ND	7.9		
1,2-Dichloropropane			ND	7.9	ND	190	ND	9		
1,2-Dichlorotetrafluoroethane			ND	12	ND	290	ND	14		
1,3,5-Trimethylbenzene		<1.0	ND	8.4	240	200	ND	9.6		
1,3-Butadiene		NA	ND	7.4	ND	180	ND	8.4		
1,3-Dichlorobenzene		<2.0	ND	10	ND	250	ND	12		
1,4-Dichlorobenzene		NA	ND	10	ND	250	ND	12		
1,4-Dioxane			ND	6.2	ND	150	ND	7		
2,2,4-Trimethylpentane			- 12	-	400	400	NO.			
2-Butanone			13	5	400	120	ND .	5.7		
2-Chlorotoluene 2-Hexanone			ND	7	ND	170	ND.	8		
4-Ethyltoluene		NA	ND	42	ND	1,000	ND	48		
4-Isopropyltoluene				-		-		-		
4-Methyl-2-pentanone			ND	7	ND	170	11	8		
Acetone		NA	29	4.1	280	98	20	4.6		
Allyl Chloride			-	-	-	-	-			
Acrylonitrile			-	-	-	-	-			
Benzene		<1.6-4.7	ND	5.5	250	130	ND	6.2		
Benzyl Chloride		NA	ND	8.8	ND	210	ND	10		
Bromodichloromethane		<5.0 <1.0	ND ND	11	ND ND	260 430	ND ND	12 20		
Bromoform Bromomethane		<1.0	ND	6.6	ND	160	ND	7.6		
Bromomethene		~1.0	ND .	0.0	ND .	100	110	- 1.0		
Carbon Disulfide		NA	ND	5.3	ND	130	13	6.1		
Carbon Tetrachloride	5	<3.1	ND	5.4	410	130	ND	6.1		
Chlorobenzene		<2.0	ND	7.9	340	190	ND	9		
Chloroethane		NA	ND	4.5	ND	110	ND	5.1		
Chloroform		<2.4	38	8.3	440	200	ND	9.5		
Chloromethane		<1.0-1.4	ND	3.5	ND	85	ND	4		
cis-1,2-Dichloroethene		<1.0	570	6.8	650	160	ND	7.7		
cis-1,3-Dichloropropene		NA	ND	7.8	ND	190	ND	8.8		
Cyclohexane		NA SE 0	ND ND	5.9 14	260 ND	140 330	ND ND	6.7		
Dibromochloromethane		<5.0 NA	ND ND	8.4	ND ND	200	ND ND	16 9.6		
Dichlorodifluromethane Ethanol		INA	ND .	0.4	ND .	200	ND .	5.0		
Ethyl Acetate		NA	ND	6.2	ND	150	ND	7		
Ethylbenzene		<4.3	25	7.4	300	180	14	8.5		
Heptane		NA	ND	7	290	170	ND	8		
Hexachlorobutadiene		NA	ND	18	ND	440	ND	21		
Hexane		<1.5	6.6	6	ND	150	9.6	6.9		
Isopropylalcohol		NA	ND	4.2	ND	100	ND	4.8		
Isopropylbenzene		, .		-	-	-		-		
Xylene (m&p)		<4.3	110	150	590	360	44	17		
Methyl Ethyl Ketone			- ND	7	- ND	170	- ND	-		
Methyl Methacrylate MTBE		NA NA	ND ND	6.1	ND ND	170	ND ND	8 7		
Methyl Isobutyl Ketone			-				-			
Methylene Chloride		<3.4	7.7	5.9	ND	140	11	6.8		
n-Butylbenzene								-		
Xylene (o)		<4.3	38	7.4	500	180	11	8.5		
Propylene		NA	ND	2.9	ND	71	60	3.4		
sec-Butylbenzene			-	- 1	-	- 1	-	-		
Styrene		<1.0	ND	7.3	490	180	ND	8.3		
t-1,3-Dichloropropene			-	-	-	-		-		
tert-butyl alcohol			-	-	-	-	-	-		
tert-butyl methyl ether Tetrachloroethene	30		850	12	700	280	- ND	13		
Tetrachioroethene Tetrahydrofuran		NA NA	ND ND	5	ND ND	120	ND	5.7		
Toluene		1.0-6.1	10	6.4	340	160	18	7.3		
trans-1,2-Dichloroethene		NA	13	6.8	ND.	160	ND	7.7		
trans-1,3-Dichloropropene		NA	ND	7.8	ND	190	ND	8.8		
Trichloroethene	2	<1.7	5,600	92	14,000	110	ND	5.2		
Trichlorofluoromethane		NA	ND	9.6	ND	230	ND	11		
Trichlorotrifluoroethane Vinyl Acetate			- ND	- 6	- ND	140	- ND	6.9		
Vinyl Bromide				É				-		
Vinyl Chloride		<1.0	ND	4.4	190	110	ND	5		
Total CVOCs BTEX			0.00		920.0		11.0			
Total VOCs			8,374.		21,870		151.			

NA = No guidance value or standard available

(a) = NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, February 2005, Summary of Background Levels for Selected Compounds (NYSDOH Database, Outdoor values)

RL = Laboratory detection limit **Bold** = Result detected above detection limit

VOCs = Volatile Organic Compounds

CVOCs = Chlorinated Volatile Organic Compounds

BTEX = Benzene, Toluene, Ethylbenzene, and Xylenes

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater.

D - The reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.

Table 11 Parameters Detected Above Track 1 Soil Cleanup Objectives

			SB14	E1	E2		≣ 4	E6	E7	Е	12	E13	E	14	MW-19	MW-40	SB-101	SB-102	SB	-103	SB-104	SB-105	SB-106	SB-108
COMPOUND	Range in Exceedances	Frequency of Detection	6/13/2006	8/16/2007	8/16/2007	8/16	/2007	8/16/2007	8/17/2007	8/17/	/2007	8/17/2007	8/17	/2007	4/19/2012	9/24/2014	2/12/2016	2/12/2016	2/12	/2016	2/11/2016	2/11/2016	2/11/2016	2/11/2016
				(0-4')	(0-4')	(0-4')	(8-12')	(8-12')	(0-4')	(0-4')	(8-12')	(8-12')	(0-4')	(8-12')	(8-12')	(15-20')	(5-7')	(10-12')	(0-2')	(4-6')	(0-2')	(0-2')	(0-2')	(10-12')
Sample Results in ug/kg		ļ.					!				!										!			
1,2,4-Trimethylbenzene	11,000	1	11,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acetone	140-1,100	2	-	-	-	-	-	-	-	-	-	-	-	-	1,100	140	-	-	-	-	-	-	-	-
m&p Xylenes	2,300	1	2,300	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	14,000	1	14,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
o-Xylene	650	1	650	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sample Results in ug/kg																								
Benz(a)anthracene	1,100-9,200	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9,200	-	-	4,500	-	1,100
Benzo(a)anthracene	1,000-8,400	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8,400	-	-	3,900	-	1,000
Benzo(b)fluoranthene	1,500-11,000	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	11,000	-	-	5,000	-	1,500
Benzo (k)fluoranthene	2,000-3,400	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3,400	-	-	2,000	-	-
Chrysene	1,200-9,800	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9,800	-	-	4,600	-	1,200
Dibenz(a,h)anthracene	500-1,300	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1,300	-	-	500	-	-
Indeno(1,2,3-cd)pyrene	690-5,600	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5,600	-	-	2,200	-	690
Sample Results in ug/kg																								
4,4'-DDE	3.54-173.9	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3.54	-	-	-	-	17.9	-	-
Sample Results in mg/kg																								
Barium	490	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	490	-	-
Chromium	31.6-77	4	-	-	-	-	43.4	31.6	-	-	77	-	-	34.8	-	-	-	-	-	-	-	-	-	-
Copper	53.8-78.9	4	-	-	-	-	-	-	69.1	78.9	53.8	-	-	-	-	-	-	670	-	-	-	-	-	-
Lead	80-2,500	6	-	-	-	80	-	-	-	380	-	-	-	-	-	-	-	200	160	-	-	2,500	-	230
Mercury	0.22-1.8	5	-	-	-	-	0.249	-	-	-	1.8	-	-	-	-	-	-	-	0.27	0.22	-	-	-	0.28
Nickel	31.4-51.5	3	-	-	-	-	37.7	-	-	-	51.5	-	-	31.4	-	-	-	-	-	-	-	-	-	-
Silver	2.26	1	-	-	-	-	-	-	-	-	2.26	-	-	-	-	-	-	-	-	-	-	-	-	-
Zinc	110-542	15	-	169	164	-	125	135	184	542	279	140	239	132	-	-	-	230	-	-	110	380	240	220

Notes:

* - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

- o NYCKR Part 3/3-6 Remedial Program Soil Clearup Opiciaries
RL - Laborator Reporting Limit
Bold/highlighted- Indicated exceedance of the NYSDEC Unrestricted Use SCO Guidance Value
Bold/highlighted- Indicated exceedance of the NYSDEC Restricted Residential Guidance Value
Bold/highlighted- Indicated exceedance of the NYSDEC Commercial Guidance Value

COMPOUND	Range in	Frequency of	MW1	MW2	MW3	MW9	MW10	E6	E13	M	W3	MW10	MW17	MV	V18	MW19	MW40	MW-101	MW-102	MW-103	MW-104	MW-105
	Exceedances	Detection	7/24/2006	7/24/2006	7/24/2006	7/24/2006	7/24/2006	11/27/2006	11/27/2007	4/25/2012	11/25/2013	3/16/2012	4/19/2012	3/16/2012	10/8/2014	4/19/2012	10/8/2014	2/16/2016	2/19/2016	2/19/2016	2/18/2016	2/19/2016
Sample Results in ug/L				_	-							_		110		_	-	_	-		_	-
1,1,1,2-Tetrachlorothane	110	1	-	-	-	-	-	-	-		-	-		110	-	-	-	-	-	-	-	
1,2,3-Trichloropropane	110	1	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
1,2,4-Trimethylbenzene	110	1	-	-	-	-	-	-	-	-	-	-	-	110	-	-	-	-	-	-	-	-
1,3,5-Trimethylbenzene	110	1	-	-	-	-	-	-	-	-	-	-	-	110	-	-	•	-	-	-	-	-
1,3-Dichloropropane	110	1	-	-	-	-	-	-	-	-	-	-	-	110	-	-	-	-	-	-	-	-
2,2-Dichloropropane	110	1	-	-	-	-	-	-	-	-	-	-	-	110	-	-	-	-	-	-	-	-
2-Chlorotoluene	110	1	-	-	-	-	-	-	-	-	-	-	-	110	-	-	-	-	-	-	-	-
4-Chlorotoluene	110	1	-	-	-	-	-	-	-	-	-	-	-	110	-	-	-	-	-	-	-	-
Bromobenzene	110	1	-	-	-	-	-	-	-	-	-	-	-	110	-	-	-	-	-	-	-	-
cis-1-2-Dichloromethane	530	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	530	-	-	-	-	-
Dibromomethane	110	1	-	-	-	-	-	-	-	-	-	-	-	110	-	-	-	-	-	-	-	-
Ethylbenzene	11	1	-	-	-	11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Isopropylbenzene	5 - 110	3	5	-	-	8	-	-	-	-	-	-	-	110	-	-	-	-	-	-	-	-
m&p Xylenes	11	1	-	-	-	11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
methylene chloride	5.3 - 6.5	5	-	-	-	-	-	-	-	6.5	-	5.6	5.3	5.8	-	5.8	-	-	-	-	-	-
Naphthalene	71 - 110	3	75	-	-	71	-	-	-	-	-	-	-	110	-	-	-	-	-	-	-	-
n-Butylbenzene	6 - 110	3	6	-	-	6	-	-	-	-	-	-	-	110	-	-	-	-	-	-	-	-
n-Propylbenzene	7 - 110	3	7	-	-	10	-	-	-	-	-	-	-	110	-	-	-	-	-	-	-	-
sec-Butylbenzene	9 - 110	2	9	-	-	-	-	-	-	-	_	-	-	110	-	-	-	-	-	-	-	
trans1-1,2-dichloromethane	25	1		-	-	-	-	-	-	-	-	-	-	-	-	-	25	-	-	-	-	
	110	1	_					_			_		_	110			-					-
tert-butylbenzene Trichloroethene	7 - 7,400	5						23	16				7	110	16		7,400					-
Sample Results in ug/L	7 - 7,400	5						23	10						10		7,400					
Benz(a)anthracene	0.11	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.11	-	-	
Benzo(a)pyrene	0.11	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.11	-	-	-
Benzo(b)fluoranthene	0.15	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.15	-	-	
Benzo(k)fluoranthene	0.15	1	_	_	_	_		_	-	_	_	_	_	_	_	_	_		0.06	-	_	
Bis(2-ethylhexyl)phthalate	6 - 60	6	_	60	31	_	6	_	-	_	_	12.5	10.8			39.6			-	_	_	
	0.1	1	_	-	-	_	-	_	-	_	_	.2.0	-			-			0.1	_	_	
Chrysene		1	75					_			_		_						-	_	_	-
Fluorene	75		70																0.08			-
Indeno(1,2.3-cd)pyrene	0.08	1	99																0.00			\vdash
Isophorone	99	1		-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	\vdash
Phenanthrene	110	1	110	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Phenol Sample Results in ug/L	3.5	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3.5	
			_									_								0.0036	0.0031	-
Antimony (dissolved)	0.0031 - 0.0036	2			_						_								0.0255	0.0000	0.0001	-
Lead (dissolved)	0.0255	1	-								_		_	-			<u> </u>		37.5			36.5
Magnesium (dissolved)	36.5 - 37.5	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-			0.3949	-	-	30.5
Manganese (dissolved)	0.3949	1	-	-	-	-	-	-	-		-	-		-	-	-	-	0.000	0.3949		-	
Selenium (dissolved)	0.02 - 0.043	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.029	10.0	0.043		0.02
Sodium (dissolved) Sample Results in mg/L	23.8 - 56.6	5	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	56.1	46.9	56.6	23.8	27
														3.43			.	6.87	25.2	2.5	0.116	6.56
Aluminum (total)	0.116 - 25.2	6	_					_			_		_					0.01		0.00378	0.1.10	
Antimony (total)	0.00378	1												 		 		H .	0.05676	0.00010		-
Arsenic (total)	0.05676	1		<u> </u>		-					-	-		ļ	-	ļ -	<u> </u>	<u> </u>	0.03676			\vdash
Chromium (total)	0.0727	1	-	<u> </u>	l -	<u> </u>	<u> </u>			-	-	-		0.02		ļ	- -	15		2 24	-	- 11
Iron (total)	3.34 - 439	5				-		-			-			9.93	-	-		15	439	3.34	-	11
Lead (total)	1.901	1	-	-	-	-	-	-	-	-		-	-		-	-	-	-	1.901	-	-	07.0
Magnesium (total)	37.9 - 46.3	4	-	-	-	-	-	-	-	-	39.4	-	-	46.3	-	-	-	-	41.9	-	-	37.9
Manganese (total)	0.3354 - 1.62	4	-	-	-	-	-	-	-	-	-	-	-	1.62	-	-	-	0.3354	1.084	-	-	0.6146
Mercury (total)	0.00175	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.00175	-	-	
Selenium (total)	0.0103 - 0.0306	4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0306	0.0103	0.0437	-	0.0226
Sodium (total)	24 - 80.6	7	-	-	-	-	-	-	-	-	41.2	-	-	80.6	-	-	-	57.5	43.7	64	24	26.8
Thallium (total)	0.00056	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.00056	-	-	-

Notes:
RL - Laboratory Reporting Limit, MDL=Minimum Detection Limit
ND = Non-detect

Bold/highlighted- Indicated exceedance of the NYSDEC Groundwater Standard Bold = Result detected above detection limit

SECTION III.3: Sampling Data

For the impacted soil above, see the attached Figures below from the August 2018 Remedial Investigation Report by EBC which include detailed information requested in Application Section III.3.

Figures from August 2018 Remedial Investigation Report which includes all information requested in Application Section III.3 (Figures 1-3 extracted from the EBC RIR)

SECTION III.4: Past Land Uses

The Site was developed since at least 1887 and was used to 1950 for metalworking, manufacture of light fixtures, soap, and water-proofing materials. From 1950 until 2004 the Site and associated manufacturing buildings to the west were used by the NuHart company for the production, storage, and shipping of plastic and vinyl products. Operations ceased in 2004 and the Site buildings have not been used since that time. Today, the subject Site is vacant.

ATTACHMENT D

Section IV: Property Information

Section IV: PROPERTY DESCRIPTION NARRATIVE

Proposed Site Name

The Site name for this project will be the "Former NuHart East Site"

Site Location

The Site's address is 22-32 Clay Street and 67-93 Dupont Street, Brooklyn, NY 11222. The Site is comprised of five tax parcels in Kings County, New York and is identified as Kings Block 2487 Lots 17, 18, 20, 21, and 57. The Site is located in a mixed use residential/commercial area of the Greenpoint neighborhood of Brooklyn, NY on the eastern side of Franklin Street between Clay Street and Dupont Street and approximately 750 ft east of the East River. The legal description is as follows:

BEGINNING at the corner formed by the intersection of the eastern side of Franklin Street with the northerly side of Dupont Street;

RUNNING THENCE northerly along the easterly side of Franklin Street, 191 feet 10-3/4 inches to the southerly side of Commercial Street;

THENCE northeasterly along the southerly side of Commercial Street, 17 feet 0-1/4 inches to the southerly side of Clay Street;

THENCE easterly along the southern side of Clay Street, 410 feet;

THENCE southerly parallel with Manhattan Avenue, 100 feet;

THENCE easterly parallel with Dupont Street, 130 feet;

THENCE southerly parallel with Manhattan Avenue, 100 feet to the northerly side of Dupont Street;

THENCE westerly along the northerly side of Dupont Street, 555 feet to the corner the point or place of BEGINNING.

The memorandum of lease recorded on 22 May 2014 is attached below. A site location map is included in the **Figure 4**. A tax map of the Site and surrounding properties is included as **Figure 5**. A Site Plan is included as **Figure 6**. An aerial photograph of the Site is included in **Figure 7**. A surrounding land use map is provided as **Figure 8** and a map showing adjoining property owners is included as **Figure 9**.

Site Size

The Site is or 1.120 acres in size.

Site Features

The Site is currently a vacant industrial building which was the eastern portion of the NuHart manufacturing facility. The western portion of the NuHart facility is listed on the NYS DEC Inactive Hazardous Waste Registry as a Class 2 Site (Site No. 224136). Historically, the NuHart facility was used for the manufacturing of plastic and vinyl products.

Past Land Use

The Site was developed since at least 1887 and was used to 1950 for metalworking, manufacture of light fixtures, soap, and water-proofing materials. From 1950 until 2004 the Site and associated manufacturing buildings to the west were used by the NuHart company for the production, storage, and shipping of plastic and vinyl products. Operations ceased in 2004 and the Site buildings have not been used since that time. Today, the subject Site is vacant.

Current Zoning and Land Use

All five lots are within an MX-8 Special Mixed-Use District and currently zoned M1-2/R6A. The Special Mixed-Use District (MX) was established in 1997 to encourage investment in, and enhance the vitality of, existing neighborhoods with mixed residential and industrial uses in close proximity and create expanded opportunities for new mixed-use communities. New residential and nonresidential uses (commercial, community facility and light industrial) can be developed as-of right and be located side by-side or within the same building. Pairing an M1 district with an R3 through R10 district (e.g. M1-2/R6) ensures a balanced variety of uses.

Residential uses are generally subject to the bulk controls of the governing residence district; commercial, industrial, and community facility uses are subject to the M1 district bulk controls, except that community facilities are subject to residential FAR limits. Most light industrial uses are permitted in each MX district as-of-right; others are subject to restrictions and Use Group 18 uses are excluded altogether, except for small breweries.

R6A districts are contextual zoning districts that permit a maximum floor area ratio (FAR) of 3.0, a maximum building height of 70 feet, and a maximum street wall base height of 60 feet. Typical buildings are six to seven stories. M1 districts are often buffers between M2 or M3 districts and adjacent residential or commercial districts. M1 districts typically include light industrial uses, such as woodworking shops, repair shops, and wholesale service and storage facilities. Nearly all industrial uses are allowed in M1 districts if they meet the stringent M1 performance standards. Offices, hotels, and most retail uses are also permitted. Certain community facilities, such as hospitals, are allowed in M1 districts only by special permit, but houses of worship are allowed as-of-right.

Surrounding land use (**Figures 8 and 9**) includes the NYC commercial and industrial properties to the north, the Former NuHart Inactive Hazardous Waste Site to the west and residential properties (single and multifamily) to the south. There are no schools or daycare facilities identified within 1,000 feet of the project Site. The nearest schools are The NY League for Early Learning - The Greenpoint School located at 725 Leonard Street approximately 2,700 feet to the southeast, P.S. 31 Samuel F. Dupont – Elementary School, located at 75 Meserole Avenue approximately 3,400 ft southwest and, P.S. 34 Oliver H Perry - Elementary School located at 131 Norman Avenue approximately 4,100 feet to the south (see **Figure 10**). There were no nursing homes or hospitals identified within 1,000 feet of the Site. The Dupont Street Senior housing complex is located just south of the Site at 80 Dupont Street

Site Geology and Hydrogeology

Subsurface soils at the Site consist of historic fill materials to a depth of approximately 5 feet below the surface followed by native silty-sand and clay. Petroleum impacts in the form of stained soil, elevated VOC concentrations, and free product are present in the vicinity of the underground storage tanks. According to the USGS topographic map for the area (Central Park Quadrangle), the elevation of the property is approximately 18 feet above the National Geodetic Vertical Datum (NGVD). The area gradually slopes to

the north and northeast toward Newtown Creek. Groundwater occurs beneath the Site at a depth of approximately 11-12 feet below grade under water table conditions. Based on regional and site-specific flow maps, groundwater flow is generally west toward the East River. As shown on **Figure 11**, the Site is not located within a designated flood zone area.

Section IV.3: En-zone

The Site is located in Census Tract 563, which is not an En-Zone. The subject Site is within a potential Environmental Justice Area as shown in **Figure 12**.

Section IV.5: Environmental Assessment

Based on the findings of the August 2018 summarized Remedial Investigation Report, the primary contaminants of concern for the Site are chlorinated VOCs, SVOCs (polyaromatic hydrocarbons), and metals.

Soil:

Several petroleum related VOCs were detected above New York State Department of Environmental Conservation (NYSDEC) 6NYCRR Part 375 Groundwater Use Soil Cleanup Objectives including 1,2,4-trimethylbenzene (11,000 μ g/kg), m&p xylene (2,300 μ g/kg), and naphthalene (14,000 μ g/kg) in SB-14 proximal to the former tanks. Additionally, in this boring o-xylene were detected above the NYSDEC 6NYCRR Part 375 Unrestricted Use Soil Cleanup Objectives (UUSCOs) at 650 μ g/kg. Petroleum-related VOCs were not detected in any other soil borings on the NuHart East Site. The VOC Acetone was detected above UUSCOs at a maximum concentration of 1,100 μ g/kg in soil sample MW-19 (10-12') proximal to the location of the former acetone UST.

Several SVOCs including PAHs were detected above both UUSCOs, NYSDEC 6NYCRR Part 375 Restricted Residential Use Soil Cleanup Objectives (RRSCOs), and NYSDEC 6NYCRR Part 375 Commercial Use SCOs (CSCOs). The phthalate, bis(2-ethylexyl)phthalate was detected in soil sample MW-9 (10-15') just north of the Site in the sidewalk adjacent to Clay Street at a concentration of 59,000 μ g/kg above RRSCOs. Several PAHs were detected in multiple soil borings on Lot 57 with the highest concentrations in shallow soil in boring SB-103 (0-2'). This included benzo(a)anthracene (9,200 μ g/kg), benzo(a)pyrene (8,400 μ g/kg), benzo(b)fluoranthene (11,000 μ g/kg), chrysene (9,800 μ g/kg), dibenzo(a,h)anthracene (1,300 μ g/kg), and indeno(1,2,3-cd)pyrene (5,600 μ g/kg) above CSCOs, and benzo(b)fluoranthene (3,400 μ g/kg) detected above RRSCOs.

Multiple metals were detected in soil borings across the entire NuHart East Site above standards. Lead (maximum 2,500 mg/kg) and barium (maximum 490 mg/kg) were detected above CSCOs in SB-105 (0-2'). Mercury (maximum 1.8 mg/kg) was detected in E12 (8-12') above RRSCOs and in several other borings above UUSCOs. Several metals including copper (maximum 78.9 mg/kg), chromium (maximum 77 mg/kg), nickel (maximum 542 mg/kg), silver (maximum 2.26 mg/kg), and zinc (maximum 380 mg/kg) were detected above UUSCOs.

One pesticide, 4,4-DDE was detected above UUSCOs in SB-101 (5-7') at 3.54 μg/kg.

Groundwater:

Groundwater results were compared to NYSDEC 6NYCRR Part 703.5 Class GA Ambient Water Quality Standards (AWQS). Several petroleum VOCs were detected above the AWQS in off-site wells in the sidewalk adjacent to Clay Street. Petroleum-related VOCs were detected above AWQS in one on-site well, MW-1, including isopropylbenzene (5 μ g/L), naphthalene (75 μ g/L), n-butylbenzene (6 μ g/L), n-propylbenzene (7 μ g/L), and sec-butylbenzene (9 μ g/L). Several CVOCs were detected above the AWQS in wells located in the western portion of the NuHart East Site including methylene chloride (maximum 6.5 μ g/L), trichloroethene (7,400 μ g/L), cis-1,2-dichloroethene (530 μ g/L), and trans-1,2-dichloroethene (25 μ g/L).

SVOCs including fluorene (75 μ g/L), naphthalene (99 μ g/L), and phenanthrene (110 μ g/L) were detected above the AWQS in MW-1. Additionally, phenol was detected at 3.5 μ g/L in MW-104. Several PAHs were detected above AWQS in MW-102 including benzo(a)anthracene (11 μ g/L), benzo(a)pyrene (8 μ g/L), benzo(b)fluoranthene (11 μ g/L), benzo(k)fluoranthene (71 μ g/L), chrysene (6 μ g/L), and indeno(1,2,3-cd)pyrene (10 μ g/L). The phthalate, bis(2-ethylhexyl)phthalate was detected in wells MW-2, MW-3, and MW-19 at a maximum concentration of 60 μ g/L.

Total metals including aluminum (maximum 25.2 mg/L), antimony (0.043 mg/L), chromium (0.0727 mg/L), iron (maximum 439 mg/L), magnesium (maximum 41.9 mg/L), manganese (maximum 1.084 mg/L), mercury (0.00175 mg/L), selenium (maximum 3.34 mg/L), sodium (maximum 56.1 mg/L), and thallium (0.00056 mg/L) were detected above the AWQS in the eastern portion of the Site on lot 57. Dissolved metals magnesium, antimony, selenium, sodium, lead, and manganese were also detected in several groundwater samples above AWQS in lot 57.

Soil Vapor

Soil vapor results were compared to NYSDOH Maximum Sub-Slab Values and NYSDOH Soil Vapor Outdoor Background Levels. Several CVOCs were detected above standards including 1,1,1-trichloroethane at a maximum concentration of 818.4 $\mu g/m^3$ in SG-3, trichloroethene at a maximum concentration of 14,000 $\mu g/m^3$ in 2SB-8, and tetrachloroethene at a maximum concentration of 850 $\mu g/m^3$ in 2SB-7. Additionally, carbon tetrachloride was detected at a maximum concentration of 410 $\mu g/m^3$ in 2SB-8. Concentrations of CVOCs in soil vapor were shown to be elevated in the western portion of the Site and decreased moving eastward. Many other VOCs including petroleum-related VOCs were detected in soil vapor across the entire NuHart East Site but did not exceed standards.

Metals, SVOCs, and pesticides identified in shallow soils are consistent with urban fill found throughout the New York City area. Phthalates detected in groundwater and CVOCs detected in soil vapor and groundwater are most likely related to the former plastic manufacturing operations at the neighboring Class 2 portion of the NuHart Site. Summaries of the analytical data are demonstrated in **Table 1 through Table 12** provided in Attachment C. Sample locations and map of soil chemistry are shown on **Figures 1-3** provided in Attachment C. Based on the analytes detected in the soil, groundwater, and soil vapor at the Site during previous remedial investigations at elevated concentrations above UUSCOs, RRSCOs, and CSCOs, the contamination must be addressed for the proposed residential use to proceed.

FORMER NUHART EAST SITE TAX PARCEL INFORMATION

Address	Section	Block	Lot	Area (sf)	Acreage
67-69 Dupont Street	2	2487	17	23,000	0.528
26 Clay Street	2	2487	18	5,000	0.115
30 Clay Street	2	2487	20	2,500	0.057
32 Clay Street	2	2487	21	5,500	0.126
93 Dupont Street	2	2487	57	13,000	0.298
TOTAL				49,000	1.124

BC

ENVIRONMENTAL BUSINESS CONSULTANTS
1808 MIDDLE COUNTRY ROAD, RIDGE, NY 11961

Phone 631.504.6000 Fax 631.924.2780 22-32 CLAY STREET AND 67-93 DUPONT STREET, BROOKLYN, NY

FIGURE 5 NYC TAX MAP

FORMER NUHART EAST

Phone 631.504.6000
Fax 631.924.2870

ENVIRONMENTAL BUSINESS CONSULTANTS

Figure No.

Site Name: FORMER NUHART EAST

Site Address: 22-32 CLAY STREET AND 67-93 DUPONT STREET, BROOKLYN, NY

Drawing Title: ADJACENT PROPERTIES

No Schools Within One Quarter Mile of the Property

FIGURE NO.

Site Name: FORMER NUHART EAST

Site Address: 22-32 CLAY STREET AND 67-93 DUPONT STREET, BROOKLYN, NY

Drawing Title: SCHOOL LOCATION MAP

Environmental Business Consultants

1808 MIDDLE COUNTRY ROAD. RIDGE. NY 11961

Phone: 631.504.6000 Fax: 631.924.2780 FORMER NUHART EAST

22-32 CLAY STREET AND 67-93 DUPONT STREET, BROOKLYN, NY

FIGURE 11

FEMA FLOOD ZONE MAP

BC

Phone 631.504.6000 Fax 631.924.2870

ENVIRONMENTAL BUSINESS CONSULTANTS

FORMER NUHART EAST

22-32 CLAY STREET AND 67-93 DUPONT STREET, BROOKLYN, NY

FIGURE 12

POTENTIAL ENVIRONMENTAL JUSTICE AREAS

ATTACHMENT E

Section VI: Current Property Owner/Operator Information – if not a Requestor

Section VI: Additional Information Where Requestor is Not Property Owner

Section VI: Current Owner and Operator

The current owner is Dupont Street Developers LLC. The requestor, Dupont Street 1 LLC, is a secured creditor of the current owner and in cooperation with the current owner is taking steps to acquire the property and seeks to remediate and redevelop the Site for residential purposes. The Site is currently developed and contains a vacant industrial building encompassing the entire lot part of the former NuHart Plastics Manufacturing Facility.

Section VI: Previous Owners and Operators

List of Previous Owners and Operators (All Lots).

Date(s)	Owner per Deed	Owner Address	Relationship to Requestor	Operators (as per city directories)	Operator Address
Pending	Dupont Street 1 LLC	520 Madison Avenue, Suite 3501 New York, New York 10022	N/A	Vacant	N/A
5/19/2014- Present	Dupont Street Developers LLC	89-10 Queens Blvd. Elmhurst, NY 11373	Potential Vendor	Vacant	N/A
09/19/1983- 5/22/2014	Dupont Realty Corp.	160 Broadway, New York, New York	None	Harte and Co. Chemical Fabrics/Plastic Film (1951-2006)	22-32 Clay Street, 67-93 Dupont Street, Brooklyn, NY 11222
	Dynamit Nobel-Harte Inc.		None	Glencove Machine Company (1887-1905)	26-32 Clay Street, Brooklyn, NY 11222
Pre 1983- 09/19/1983		· · · · · · · · · · · · · · · · · · ·		Manufacturer Gas and Electric Fixtures (1905)	22-24 Clay Street, Brooklyn, NY 11222
				Recooperage (1916- 1942)	26-36 Clay Street, Brooklyn, NY 11222
				Harte and Co. Chemical Fabrics/Plastic Film (1951-2006)	22-32 Clay Street, 67-93 Dupont Street, Brooklyn, NY 11222

Long Term Remedial Access and License Agreement

This Access Agreement ensures Requestor's access to the site to implement a BCP cleanup through site management.

Dupont Street Developers, LLC C/o Robinson Brog Leinwand Greene Genovese & Gluck 875 Third Avenue New York NY 10022

April 26, 2021

New York State Department of Environmental Conservation 625 Broadway Albany, NY 12561

Re: 280 Franklin Street

10, 14, 22, 26 30 and 32 Clay Street 93, 57 and 55 Dupont Street

Brooklyn, New York 11222 (collectively, the "Site")

To Whom It May Concern:

We are writing to confirm that Dupont Street Developers, LLC, the owner of the abovereferenced properties collectively comprising the Site, will provide full access to the Site to Dupont Street 1 LLC to enable it to fulfill all of the requirements of the New York State Department of Environmental Conservation and the various programs associated with the Site, including but not limited to access and the ability to place an easement on the Site.

Very truly yours,

Dupont Street Developers, LLC

By:

{01101006.DOCX;1 }

2891267.1 111917-85824

ATTACHMENT F

Section VII: Requestor Eligibility Information

Section VII – REQUESTOR ELIGIBILITY INFORMATION

The Requestor qualifies as a Volunteer because (i) it performed all appropriate inquiries related to available environmental reports and documents associated with the Site, (ii) all disposals/releases of hazardous substances occurred prior to the time of ownership and (iii) the Requestor does not have affiliation with Potentially Responsible Parties. The Requestor is a secured creditor of the current owner and in cooperation with the current owner is taking steps to acquire the property but does not currently hold an ownership interest. The Requestor is exercising appropriate care by applying to the BCP to address the releases of hazardous substances that occurred prior to the Requestor acquiring title. In addition, there have not been any ongoing releases and there have not been any new or threatened releases during Requestor's ownership of the Property.

Upon taking Ownership of the Site, Requestor will take the necessary steps to secure the property and prevent any threatened future release, and prevent and limit human, environmental or natural resource exposure to any previously released contamination at the Site. As such, the Requestor qualifies as a Volunteer as designed in ECL 27-1405(1)(b).

ATTACHMENT G

Section VII: Property Eligibility Information

Section VIII - PROPERTY ELIGIBILITY INFORMATION

There is currently an open spill case on Lot 20 (NYSDEC Spill 06-01852) under Stipulation R2-20110105-5 and R2-20140204-113. Stipulation R2-20110105-5 was executed by 49 Dupont Realty Corp. by Joseph Folkman on 05 January 2011 and countersigned by the NYSDEC on 07 January 2011. Stipulation R2-20140204-113 was executed by Dupont Street Developers LLC. by Joseph Brunner on 10 September 2013 and countersigned by the NYSDEC on 04 February 2014. The Stipulations noted above indicate that the respondents agree to clean up and remove the discharge of petroleum from an unknown date and would take the appropriate steps as per the issued Corrective Action Plan.

The Requestor intends to complete the remedial action on this lot to satisfy the Stipulation and pursue a no further action letter with the NYSDEC.

STIPULATION PURSUANT TO SECTION 17-0303 OF THE ENVIRONMENTAL CONSERVATION LAW AND SECTION 176 OF THE NAVIGATION LAW BY: NYSDEC Spill No. 0601852

49 Dupont Realty Corp., Respondent.

- 1. The New York State Department of Environmental Conservation is responsible for the cleanup and removal of discharges of petroleum pursuant to Article 12 of the Navigation Law and Article 17 of the Environmental Conservation Law.
- 2. The Respondent has agreed to clean up and remove a discharge of petroleum, which occurred on an unknown date (reported to the Department on May 2006 and assigned Spill No. 0601852) at 49-55 Dupont Street, Brooklyn, New York 11222 (the "Site"), by taking the steps and according to the conditions set forth in the attached Corrective Action Plan.
- 3. This Stipulation does not affect the Department's right to pursue any claims that the Department may have against the Respondent, including but not limited to claims for violation of the Navigation Law and/or the Environmental Conservation Law. This Stipulation does not affect any defenses that the Respondent may have to any such claims.
- 4. The Respondent, without admitting liability, consents to the issuance of this Stipulation, waives the right to notice and hearing with respect to the issuance and entry of this Stipulation as provided by law, and agrees to be bound by the terms of this Stipulation, including any attachments hereto.
- 5. This Stipulation is equivalent to an order pursuant to ECL §17-0303 and a directive pursuant to NL §176 and is enforceable as such.
- 6. The Corrective Action Plan (CAP) may be modified in writing as may be agreed between the parties. The CAP may be modified by the Department in the same manner as a Department permit. In the event of a conflict between the terms of this Stipulation and any CAP submitted pursuant to this Stipulation, the terms of this Stipulation shall control over the terms of the Corrective Action Plan.
- 7. The effective date of this Stipulation is the date it is signed by the Department. This Stipulation shall terminate when the Department issues a written determination that no further remedial activities are required with respect to the petroleum discharge at the Site (the "Termination Date").

8. The Respondent and its employees, servants, agents, lessees, sublessees, successors, and assigns hereby waive any right to pursue reimbursement of monies expended by the Respondent prior to the Termination Date as against the State of New York or the New York Environmental Protection and Spill Compensation Fund (the "Spill Fund"), and agree to indemnify and hold harmless the Spill Fund from any and all legal or equitable claims, suits, causes of action, or demands whatsoever with respect to the Site that any of same has or may have as a result of the Respondent's entering into or fulfilling the terms of this Stipulation with respect to the Site.

1/5/11

49 Dupont Realty Corp.

Signature of respondent or, if a corporation,

authorized corporate representative

Print name and title

1/7/2011 Date

Suzanne Mattei Regional Director, NYSDEC Region 2

CORRECTIVE ACTION PLAN SPILL NUMBER: 06101852

- 1. Within 30 days of the effective date of this Stipulation, the Respondent shall submit for Department approval a Remedial Investigation Work Plan detailing the scope of work proposed to investigate the nature and full extent of the contamination caused by the spill, both on- and off-site (the "RIWP"). The RIWP must include an implementation schedule for performing the investigation and submitting a Remedial Investigation Report summarizing the information gathered during the investigation (the "RIR").
- 2. Upon receiving Department approval of the RIWP, the Respondent shall complete the investigation and submit the RIR for Department approval, in accordance with the implementation schedule set forth in the RIWP.
- 3. Within 60 days of receiving Department approval of the RIR, the Respondent shall submit for Department approval a Remedial Action Work Plan detailing the work proposed to fully remediate the contamination caused by the spill (the "RAWP"). The RAWP must include an implementation schedule.
- 4. Upon receiving Department approval of the RAWP, the Respondent shall implement the RAWP in accordance with the implementation schedule set forth therein.
- 5. All approved submittals shall be an enforceable part of this Stipulation. If a submittal is disapproved, the Department shall specify any deficiencies and required modifications in writing. Within 15 days of receipt of the Department's disapproval notice, the Respondent shall submit a revised submittal which addresses the Department's comments, correcting all deficiencies identified in the disapproval notice.
- 6. Any modifications to this Corrective Action Plan must be approved in advance in writing by the Department.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

STIPULATION PURSUANT TO SECTION 17-0303 OF THE ENVIRONMENTAL CONSERVATION LAW AND SECTION 176 OF THE NAVIGATION LAW BY: NYSDEC Spill No. 0601852

Dupont Street Developers LLC

Respondent.

R2-20140204-113

- 1. The New York State Department of Environmental Conservation is responsible for the cleanup and removal of discharges of petroleum pursuant to Article 12 of the Navigation Law and Article 17 of the Environmental Conservation Law.
- 2. The Respondent has agreed to clean up and remove a discharge of petroleum, which occurred on an unknown date (reported to the Department on May 19, 2006 and assigned Spill No. 0601852) at 49-55 Dupont Street, Brooklyn, new York 11222 (the "Site"), by taking the steps and according to the conditions set forth in the Corrective Action Plan below.
- 3. This Stipulation does not affect the Department's right to pursue any claims that the Department may have against the Respondent, including but not limited to claims for violation of the Navigation Law and/or the Environmental Conservation Law. This Stipulation does not affect any defenses that the Respondent may have to any such claims.
- 4. The Respondent, without admitting liability, consents to the issuance of this Stipulation, waives the right to notice and hearing with respect to the issuance and entry of this Stipulation as provided by law, and agrees to be bound by the terms of this Stipulation, including any attachments hereto.
- 5. This Stipulation is equivalent to an order pursuant to ECL ' 17-0303 and a directive pursuant to NL ' 176 and is enforceable as such.
- 6. The Corrective Action Plan may be modified in writing as may be agreed between the parties. The Corrective Action Plan may be modified by the Department in the same manner as a Department permit. In the event of a conflict between the terms of this Stipulation and any Corrective Action Plan submitted pursuant to this Stipulation, the terms of this Stipulation shall control over the terms of the Corrective Action Plan.
- 7. This Stipulation shall terminate when the Department issues a written determination that no further remedial activities are required with respect to the petroleum discharge at the Site (the "Termination Date").
- 8. The Respondent and its employees, servants, agents, lessees, sublessees, successors, and

assigns hereby waive any right to pursue reimbursement of monies expended by the Respondent prior to the Termination Date as against the State of New York or the New York Environmental Protection and Spill Compensation Fund (the "Spill Fund"), and agree to indemnify and hold harmless the Spill Fund from any and all legal or equitable claims, suits, causes of action, or demands whatsoever with respect to the Site that any of same has or may have as a result of the Respondent's entering into or fulfilling the terms of this Stipulation with respect to the Site.

9 | 0 | 13 Date

2.4.14 Date **Dupont Street Developers LLC**

BY:
Signature of authorized representative

Print name and title

Venetia A. Hannen Regional Director, NYSDEC Region 2

CORRECTIVE ACTION PLAN SPILL NUMBER 06101852

1. Within 30 days of the effective date of this Stipulation, the Respondent shall submit for Department approval a Remedial Investigation Work Plan detailing the scope of work proposed to investigate the nature and full extent of the contamination caused by the spills, both on- and off-site (the "RIWP"). The RIWP must include an implementation schedule for performing the investigation and submitting a Remedial Investigation Report summarizing the information gathered during the investigation (the "RIR").

- 2. Upon receiving Department approval of the RIWP, the Respondent shall complete the investigation and submit the RIR for Department approval, within the implementation schedule set forth in the RIWP.
- 3. Within 60 days of receiving Department approval of the RIR, the Respondent shall submit for Department approval a Remedial Action Work Plan detailing the work proposed to fully remediate the contamination caused by the spill (the "RAWP"). The RAWP must include an implementation schedule.
- 4. Upon receiving Department approval of the RAWP, the Respondent shall implement the RAWP within the implementation schedule set forth therein.
- 5. All approved submittals are an enforceable part of this Stipulation. If a submittal is disapproved, the Department shall specify any deficiencies and required modifications in writing. Within 15 days of receipt of a disapproval notice, the Respondent shall submit a revised submittal which addresses the Department's comments, correcting all deficiencies identified in the disapproval notice.
- 6. Any modifications to this Corrective Action Plan must be approved in advance in writing by the Department. The Department reserves the right to require additional investigation and/or remedial action due to environmental conditions related to the subject site and/or spill which were unknown to the Department.

ATTACHMENT H

Section IX: Contact List Information and Acknowledgement from Repositories

Section IX – CONTACT LIST INFORMATION

SITE CONTACT LISTS

Executive:

Role	Name	Phone	Mailing Address	Email
NYC Mayor	Mayor William De Blasio	212-NEW-YORK	City Hall New York, NY 10007	https://www1.nyc.gov/office-of-the- mayor/mayor-contact.page
NYC Department of City Planning Chairperson	Marisa Lago	212-720-3300	120 Broadway 31st Floor New York. NY 10271	https://www1.nyc.gov/site/planning/about/email- the-director.page
Brooklyn Borough President	Eric Adams	718-802-3700	Brooklyn Borough Hall 209 Joralemon Street Brooklyn, NY 11201	askeric@brooklynbo.nyc.gov
Brooklyn Community Board 1 District Manager	Dealice Fuller	718-389-0009	435 Graham Avenue Brooklyn, NY 11211	bk01@cb.nyc.gov
New York City Council District 33	Stephen T. Levin	718-875-5200	410 Atlantic Avenue Brooklyn, NY 11217	slevin@council.nyc.gov
NY Senate District 18 Senator	Julia Salazar	718-875-1517	212 Evergreen Avenue Brooklyn, NY 11221	salazar@nysenate.gov
NY State Assembly District 050 Member	Emily Gallagher	718-383-7474	685A Manhattan Ave Brooklyn, NY 11222	gallaghere@nyassembly.gov

Owners, Residents, Occupants:

The Site is currently vacant.

Owner	Contact Name	Phone	Mailing Address	Email
Dupont Street 1 LLC (Future)	Zachary Kadden	(646) 747-2235	520 Madison Avenue, Suite 3501 New York, New York 10022	zkadden@madisonrealtycapital.com
Dupont Street Developers LLC (Current)	Bo Jin Zhu	(917) 273-8657	390 Berry Street, Suite 200 Brooklyn, NY 11249	statedesignsny@gmail.com

Adjacent Properties:

Below is a list of the adjoining properties which are also detailed on **Figure 9**.

Owner/Entity Name	Contact Name	Site Use	Property Address	Owner Mailing Address
Greenpoint Court Management LLC	Unknown	Multi-family walk-up building	95 Dupont Street	991 Metropolitan Avenue, Brooklyn, NY 11222
Agosto, Angelina	Angelina Agosto	Multi-family walk-up building	38 Clay Street	38 Clay Street, Brooklyn, NY 11222
42 Clay Street LLC	Unknown	One- & Two-family building	42 Clay Street	42 Clay Street, Brooklyn, NY 11222
	Stanislawa Natkaniec			44 Clay Street, Brooklyn, NY 11222

Stanizlawa, Natkaniec		Multi-family walk-up building	44 Clay Street	
K Matyszczyk	Krzysztof Matyszczyk	Multi-family walk-up building	46 Clay Street	716 Humboldt Street, Brooklyn, NY
Miah, Faruque	Faruque Miah	Mixed residential and commercial building	48 Clay Street	1020 Manhattan Ave, Brooklyn, NY 11222
Pakala, Swetha	Swetha Pakala	One- & Two-family building	50 Clay Street	535 E 70 th Street, New York, NY 10021
92 Dupont Street LLC	Unknown	Multi-family walk-up building	92 Dupont Street	926 Sunrise Terrace, Indian River Shores, Fl 32963
Pitynski Andrzej	Andrzej Pitynski	Multi-family walk-up building	90 Dupont Street	90 Dupont Street, Brooklyn, NY 11222
Dupont St Senior Housing Division	Unknown	Public facilities and institutions	80 Dupont Street	80 Dupont Street, Brooklyn, NY 11222
Gabrys, Stanislaw	Stanislaw Gabrys	One- & two-family buildings	66 Dupont Street	66 Dupont Street, Brooklyn, NY 11222
Nicole Associates LLC	Unknown	Industrial and manufacturing	19 Clay Street	41 Box Street, Brooklyn, NY 11222
Greenpoint Development Group LLC	Unknown	Industrial and manufacturing	15 Clay Street	112-45 Roosevelt Ave, Corona, NY 11368
Rimani Realty LLC	Unknown	Miscellaneous	40 Commercial Street	101 Malba Drive, Malba, NY 11357
Dupont Street Developers LLC	Bo Jin Zhu	Industrial and manufacturing	14 Clay Street	390 Berry Street, Suite 200 Brooklyn, NY 11249
Dupont Street Developers LLC	Bo Jin Zhu	Industrial and manufacturing	57 Dupont Street	390 Berry Street, Suite 200 Brooklyn, NY 11249

Local News and Media:

Owner/Entity Name	Туре	Address	Phone	Website
The Brooklyn Eagle	Print	16 Court Street Brooklyn, NY 11241	718-422-7413	www.brooklyneagle.om
Greenpoint Gazette	Online	597 Manhattan Avenue Brooklyn, New York 11211	718-643-9099	https://greenpointers.com/2008/06/17/greenpoint- gazette-welcome-to-the-21st-century/
Spectrum 1 News	Television	75 Ninth Avenue New York, NY 10011	212-691-6397	https://www.ny1.com/nyc/all-boroughs/about- us/contact-us

Public Water Supply:

Public water supply is a shared responsibility between the New York City Department of Environmental Protection (NYCDEP) and the Municipal Water Finance Authority.

	Owner/Entity Name	Contact	Address	Phone	Email
	NYCDEP	Vincent Sapienza - Commissioner	59-17 Junction Blvd. Flushing, NY 11373	718-595-6565	ltcp@dep.nyc.gov
Ī	NYC Municipal Water Finance Authority	Olga Chernat- Executive Director	255 Greenwich Street 6th Floor New York, NY 10007	212-788-5889	N/A

Additional Requests:

We are unaware of any requests to be included on the contact list for the former NuHart East Site.

School or Day Care located on or proximal to the site:

There are no schools or daycares located on the Site. The following schools or day care facilities are located within ½-mile radius to the site:

	Approximate distance from Site in feet and			
School/Day Care Name	(directional)	Administrator	Phone	Address
NY League for Early Learning – The Greenpoint School	2250' (east)	Marie Gallagher	347-472-4792	725 Leonard Street, Brooklyn, NY 11222
P.S. 31 - Samuel F. Dupont	3300' (south)	Mary Scarlato	718-383-8998	75 Meserole Avenue, Brooklyn, NY 11222
P.S. 34 – Oliver H Perry	3800' (southeast)	Carmen Asselta	718-389-5842	131 Normal Avenue, Brooklyn, NY 11211
Greenpoint Montessori	1056' (northeast)	Kat Walker	262-732-2359	288 McGuinness Boulevard, Brooklyn, NY 11211
Lightbridge Academy	1625' (southwest)	N/A	718-369-6300	23 India Street, Brooklyn, NY 11222
Building Blocks of Greenpoint	1950' (southwest)	N/A	718-383-0208	44 Kent Street, Brooklyn, NY 11211

Document Repository:

Brooklyn Community Board 1 and the Brooklyn Public Library – Williamsburg Branch were notified in July 2018 via email by EBC regarding utilizing their space as document repositories. Documentation of the confirmation is attached below. The repository information is detailed below:

Owner/Entity Name	Contact	Address	Phone	Email
Brooklyn Public Library – Williamsburg Branch	Catherine Skryzpek	718-302-3485	240 Division Avenue Brooklyn, NY 11211	c.skrzpek@brooklynpubliclibrary.org
Brooklyn Public Library – Greenpoint Branch	Alexa Orr	718- 389-4394	107 Norman Ave. Brooklyn, NY 11222	a.orr@brooklynpubliclibrary.org

Community Board:

Owner/Entity Name	Contact	Address	Phone	Email
Brooklyn Community Board 1 District Manager	Dealice Fuller	718-389-0009	435 Graham Avenue Brooklyn, NY 11211	bk01@cb.nyc.gov

<u>Acknowledgement From Brooklyn Public Library – Williamsburg</u> <u>Branch Agreeing to Act as Document Repository</u>

July 10, 2018

Brooklyn Public Library Williamsburg Branch 240 Division Avenue Brooklyn, NY 11207

Re: NYS Brownfield Cleanup Program Application

Former NuHart Facility East 22-32 Clay Street and 67-93 Dupont Street

In compliance with the requirements of the NYSDEC Brownfield Clean-up Program, the Brooklyn Public Library, Williamsburg Branch, located at 240 Division Avenue, Brooklyn, NY 11207 agrees to serve as a designated repository for the above referenced project to facilitate citizen access to project documents such as Work Plans, Technical Specifications and Investigative Reports.

Please sign below and return the original copy to our office at the address shown below.

Accepted by:

: Date 5/6/2018 for Brooklyn Public Library - Williamsburg Branch

Conlon, Mari

From: Skrzypek, Catherine <cskrzypek@bklynlibrary.org>

Sent: Friday, September 10, 2021 1:34 PM

To: Conlon, Mari
Cc: Bellew, James

Subject: Re: Confirmation of Brownfield Cleanup Program Site Document Repository

CAUTION: External Email

Hi--

Thanks for reaching out. Yes, you can continue to send your depository material to the Williamsburgh Library. Have a good weekend.

Catherine

Catherine Skrzypek | Neighborhood Library Supervisor, Williamsburgh Branch Brooklyn Public Library 718.302.3485
bklynlibrary.org

From: Conlon, Mari < MConlon@haleyaldrich.com>

Sent: Friday, September 10, 2021 1:20 PM

To: Skrzypek, Catherine <cskrzypek@bklynlibrary.org>

Cc: Bellew, James < JBellew@haleyaldrich.com>

Subject: RE: Confirmation of Brownfield Cleanup Program Site Document Repository

Good afternoon,

Can you please advise on the below and confirm the willingness of the Williamsburg Brooklyn Public Library Branch to continue to serve as a designated repository for the Former NuHart East Site located at 22-32 Clay Street and 67-93 Dupont Street.

Thank you,

Mari Cate Conlon

Project Manager

Haley & Aldrich of New York

237 West 35th Street, 16th Floor New York, NY 10123

T: 646-277-5688 M: 347-271-1521

www.halevaldrich.com

From: Conlon, Mari

Sent: Wednesday, September 8, 2021 11:05 AM

To: cskrzypek@bklynlibrary.org

Cc: Bellew, James < JBellew@haleyaldrich.com>

Subject: Confirmation of Brownfield Cleanup Program Site Document Repository

Good morning,

This email is to ask that you can confirm the willingness of the Williamsburg Brooklyn Public Library Branch to continue to serve as a designated repository for the Former NuHart East Site located at 22-32 Clay Street and 67-93 Dupont Street. The repository will facilitate citizen access to project documents such as Work Plans, Technical Specifications and Investigation Reports. The initial signed acceptance to become a repository for this Site is attached to this email.

Can you please kindly respond confirming your ability to continue as a repository for this Site?

Thank you,

Mari Cate Conlon

Project Manager

Haley & Aldrich of New York

237 West 35th Street, 16th Floor New York, NY 10123

T: 646-277-5688 M: 347-271-1521

www.haleyaldrich.com

<u>Acknowledgement From Brooklyn Public Library – Greenpoint Branch</u> <u>Agreeing to Act as Document Repository</u>

HALEY & ALDRICH OF NEW YORK 237 W 35th Street 16th Floor New York, NY 10123 Tel: 646.277.5685

13 September 2021 File No. 0201891

Brooklyn Public Library - Greenpoint Branch 107 Norman Avenue Brooklyn, NY 11222 Via email: athompson@bklynlibrary.org

Attn: Rebecca Cowley

Subject:

Brownfield Cleanup Program Application - Request for Repository Use

Former Nuhart East Site

22-23 Clay Street & 67-93 Dupont Street

Brooklyn, New York 11222

Dear Ms. Cowley,

Haley & Aldrich of New York (Haley & Aldrich), on behalf of Dupont Street 1 LLC, is requesting use of the Brooklyn Public Library – Greenpoint Branch as a document repository for the anticipated project located at 22-23 Clay Street & 67-93 Dupont Street, Brooklyn, NY. The New York State Department of Environmental Conservation (NYSDEC) requires a letter certifying that the proposed document repository is able to serve as a public repository for all documents pertaining to the environmental cleanup at the Site. Please sign below denoting that your library would be amenable to serving as a temporary public repository.

Should you have any questions, please do not hesitate to give me a call at (646) 277-5686.

Thank you, HALEY & ALDRICH OF NEW YORK

James M. Bellew Senior Associate

The Brooklyn Public Library - Greenpoint Branch is willing to act as a public document repository holding and making available of all provided environmental related to the 22-23 Clay Street & 67-93 Dupont Street, Brooklyn, NY Brownfield Cleanup Project.

9 13 21 Date

teacia Thompson Name Environmental Justice Coordinator

Acknowledgement From Brooklyn Community Board 1 Agreeing to Act as Document Repository

(Previously signed repository confirmation included herein. Confirmation from Community
Board 1 to continue to act as a repository has been requested multiple times via email as well
as by Ms. Mari Conlon of Haley & Aldrich via phone call and in person on 13 September 2021.
Upon inquiry, Community Board 1 personnel informed Haley & Aldrich of a policy change in
which they will not sign or confirm repository status pro forma but will sign documentation
of receipt once documents are submitted via USB.)

July 10, 2018

Gerald A. Esposito Brooklyn Community Board 1 435 Graham Avenue Brooklyn, NY 11211

Re: NYS Brownfield Cleanup Program Application

Former NuHart Faility East

22-32 Clay Street and 67-93 Dupont Street

In compliance with the requirements of the NYSDEC Brownfield Clean-up Program, Brooklyn Community Board 1, located at 435 Graham Avenue, Brooklyn, NY 11211 agrees to serve as a designated repository for the above referenced project to facilitate citizen access to project documents such as Work Plans, Technical Specifications and Investigative Reports.

Please sign below and return the original copy, to our office at the address shown below.

Accepted by: OFF

OFFICE OF THE DISTRICT MANAGER
GERALD A. ESPOSITO
435 GRAHAM AVENUE
yn Companyity Braidyprk 11211

Date

18 AUG 6 2:22 PM

Conlon, Mari

From: Conlon, Mari

Sent: Friday, September 10, 2021 1:22 PM

To: BK01 (CB) **Cc:** Bellew, James

Subject: RE: Confirmation of Brownfield Cleanup Program Site Document Repository

Importance: High

Good afternoon,

Can you please advise on the below and confirm the willingness of the Community Board 1 to continue to serve as a designated repository for the Former NuHart East Site located at 22-32 Clay Street and 67-93 Dupont Street.

Thank you,

Mari Cate Conlon

Project Manager

Haley & Aldrich of New York

237 West 35th Street, 16th Floor New York, NY 10123

T: 646-277-5688 M: 347-271-1521

www.haleyaldrich.com

From: Conlon, Mari

Sent: Wednesday, September 8, 2021 11:05 AM

To: BK01 (CB) <bk01@cb.nyc.gov>

Cc: Bellew, James < JBellew@haleyaldrich.com>

Subject: Confirmation of Brownfield Cleanup Program Site Document Repository

Good morning,

This email is to ask that you can confirm the willingness of the Community Board 1 to continue to serve as a designated repository for the Former NuHart East Site located at 22-32 Clay Street and 67-93 Dupont Street. The repository will facilitate citizen access to project documents such as Work Plans, Technical Specifications and Investigation Reports. The initial signed acceptance to become a repository for this Site is attached to this email.

Can you please kindly respond confirming your ability to continue as a repository for this Site?

Thank you,

Mari Cate Conlon

Project Manager

Haley & Aldrich of New York

237 West 35th Street, 16th Floor

New York, NY 10123

T: 646-277-5688 M: 347-271-1521

www.haleyaldrich.com

ATTACHMENT I

Section X: Land Use Factors

Section X – LAND USE FACTORS

All of the lots are currently vacant and unoccupied. The exact date when operations ceased at the Site is unknown; however, it is believed that the NuHart company vacated the building sometime in 2005.

The Requestor intends to redevelop the property with a new 8-story mixed-use commercial retail and residential building. The proposed redevelopment will contain 480 residential units, with 144 of these being inclusionary affordable units. One hundred percent of the lot would be excavated to a depth of approximately 12 feet for the cellar level of the proposed building.

All five lots are within an MX-8 Special Mixed-Use District and are currently zoned M1-2/R6A. The Special Mixed-Use District (MX) was established in 1997 to encourage investment in, and enhance the vitality of, existing neighborhoods with mixed residential and industrial uses in close proximity and create expanded opportunities for new mixed-use communities. The proposed project, which includes residential apartments on the upper floors with retail/community space on the first floor, is compatible with the surrounding land use and will be in compliance with the current zoning.

On May 11, 2005, the City Council approved the Greenpoint - Williamsburg Land Use and Waterfront Plan (CEQR No. 04DCP003K) covering nearly 200 blocks in the Greenpoint and Williamsburg neighborhoods of Brooklyn. According to the NYC Department of City Planning Website: "In its Greenpoint-Williamsburg Rezoning, the Department of City Planning proposed zoning changes to allow for housing and open spaces, in tandem with light industry and commercial uses, along two miles of Brooklyn's East River waterfront and upland neighborhoods. Greenpoint and Williamsburg developed more than 100 years ago during Brooklyn's great industrial age, when both sides of the East River were dominated by large factories, oil refineries, and shipyards. The neighborhoods adjoining the waterfront housed the workers and, within these areas, homes and factories intermingled, setting a pattern of mixed use that still shapes the neighborhoods today. Over the years, these neighborhoods have grown and adapted to changing economic conditions. The refineries and shipbuilders have gone, and new generations of businesses, entrepreneurs and residents have emerged. The waterfront, however, remains largely derelict, dominated by empty lots and crumbling structures, and almost entirely inaccessible to the public.

"The proposal was designed to create opportunities for thousands of new housing units, including affordable housing in areas that have been mostly vacant and derelict for years. In recognition of the mixed-use character of these neighborhoods, the proposal would permit light industrial and residential uses to coexist in specified areas, and it would retain manufacturing zoning for critical concentrations of industry. The proposal also included a plan for a continuous publicly accessible esplanade and new public open spaces along the waterfront".

The objectives of the rezoning were to:

- Reflect changing conditions. Enact comprehensive zoning changes to address the dramatic changes that have taken place in recent decades, and to prepare the communities for the twentyfirst century.
- Promote housing opportunities. Capitalize on vacant and underused land for new housing development, addressing both local and citywide needs.
- Fulfill the city's commitment to affordable housing.
- Address neighborhood context. New development should fit in with its surroundings, building on the strong character of the existing neighborhoods.

- Protect important concentrations of industrial activity. While industry in the area has been declining sharply for decades, manufacturing zones should be retained where important concentrations of industrial activity and employment exist.
- Create a continuous waterfront walkway and maximize public access to the waterfront. Establish a blueprint for a revitalized, publicly accessible East River waterfront.
- Facilitate development that will reconnect the neighborhood to the waterfront. Taking into account the difficulties of waterfront redevelopment, shape new development so that it connects the inland neighborhoods to the waterfront.

The proposed project will be in compliance with the current land use plans as identified in the Greenpoint - Williamsburg Land Use and Waterfront Plan (CEQR No. 04DCP003K) adopted by the City on May 11, 2005.

ZONING MAP

THE NEW YORK CITY PLANNING COMMISSION

Major Zoning Classifications:

The number(s) and/or letter(s) that follows an R, C or M District designation indicates use, bulk and other controls as described in the text of the Zoning Resolution.

R - RESIDENTIAL DISTRICT

C - COMMERCIAL DISTRICT

M - MANUFACTURING DISTRICT

SPECIAL PURPOSE DISTRICT The letter(s) within the shaded area designates the special purpose district as described in the text of the Zoning Resolution.

AREA(S) REZONED

Effective Date(s) of Rezoning:

05-27-2021 C 210138 ZMK

Special Requirements:

For a list of lots subject to CEQR environmental requirements, see APPENDIX C.

For a list of lots subject to "D" restrictive declarations, see APPENDIX D.

For Inclusionary Housing designated areas and Mandatory Inclusionary Housing areas on this map, see APPENDIX F.

MAP KEY		Ö		
8b	8d	9b		
12a	12c	13a		
12b	12d	13b		
© Copyrighted by the City of New York				

 $\underline{\text{NOTE:}}$ Zoning information as shown on this map is subject to change. For the most up-to-date zoning information for this map, visit the Zoning section of the Department of City Planning website: www.nyc.gov/planning or contact the Zoning Information Desk at (212) 720-3291.

NOTE: Where no dimensions for zoning district boundaries appear on the zoning maps, such dimensions are determined in Article VII, Chapter 6 (Location of District Boundaries) of the Zoning Resolution.

ATTACHMENT J

Supplemental Questions Section: Sites Seeking Tangible Property Credits in NYC

<u>Supplemental Questions – Site Seeking Tangible Credit</u>

The development is planned to include affordable housing; however, an agreement is not available. The Regulatory Agreement will be provided to the NYSDEC with a subsequent amendment to the BCP Application.

