REMEDIAL INVESTIGATION WORK PLAN

for

335 BOND STREET BROOKLYN, NEW YORK NYSDEC BCP Site No. C224225

Prepared For:

E & M Realty Corp. 335 Bond Street Brooklyn, New York 11231

Prepared By:

Langan Engineering, Environmental, Surveying and Landscape Architecture, D.P.C. 21 Penn Plaza 360 West 31st Street, 8th Floor New York, New York 10001

> January 11, 2015 Langan Project No. 170362501

LANGAN

21 Penn Plaza, 360 West 31st Street, 8th Floor New York, NY 10001 T: 212.479.5400 F: 212.479.5444 www.langan.com New Jersey • New York • Virginia • California • Pennsylvania • Connecticut • Florida • Abu Dhabi • Athens • Doha • Dubai • Istanbul

TABLE OF CONTENTS

CEF	ERTIFICATION						
1.0		INTRODUCTION					
2.0		SITE E	SITE BACKGROUND				
	2.1		Site Description	1			
	2.2		Surrounding Property Land Use	1			
	2.3		Site Physical Conditions	3			
		2.3.1	Topography	3			
		2.3.2	Geology	3			
		2.3.3	Hydrogeology	4			
		2.3.4	Wetlands	4			
	2.4		Environmental History	5			
	2.5		Summary of Previous Environmental Investigations	6			
	2.6		Areas of Concern	7			
3.0		SCOP	E OF WORK	8			
	3.1		Geophysical Survey1	1			
	3.2		Soil Investigation	1			
	3.3		Drainage Feature Sediment Investigation1	2			
	3.3		Groundwater Investigation1	2			
	3.4		Monitoring Well Survey 1	3			
	3.5		Soil Vapor Air Investigation1	3			
	3.6		Indoor Air Investigation1	4			
	3.7		Data Management and Validation1	4			
	3.8		Management of Investigation-Derived Waste1	5			
	3.9		Air Monitoring1	6			
	3.10	C	Qualitative Human Health Exposure Assessment	6			
4.0		REME	DIAL INVESTIGATION REPORT 1	6			
5.0		SCHE	DULE	17			

TABLES

Table 1Proposed Sample Summary

FIGURES

Figure 1	Site Location Map
Figure 2	Site Map
Figure 3	Subsurface Investigation Soil Sample Results Map
Figure 4	Subsurface Investigation Groundwater Sample Results Map
Figure 5	Subsurface Investigation Soil Vapor Sample Results Map
Figure 6	Proposed Investigation Sample Location Map

APPENDICES

Appendix A	Previous Environmental Reports
Appendix B	Health and Safety Plan
Appendix C	Quality Assurance Project Plan

CERTIFICATION

I, Michael Burke, certify that I am currently a Qualified Environmental Professional as defined in 6 New York Codes, Rules, and Regulations (NYCRR) Part 375 and that this Remedial Investigation Work Plan was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the Division of Environmental Remediation (DER) Technical Guidance for Site Investigation and Remediation (DER-10).

Michael D. Burke, CHMM

1.0 INTRODUCTION

This Remedial Investigation Work Plan (RIWP) was prepared on behalf of E & M Realty Corp. (the Volunteer) for the property located at 335 Bond Street in Brooklyn, New York (the Site). The Volunteer will implement the RIWP for Site No. C224225 under the New York State Brownfield Cleanup Program, pursuant to a Brownfield Cleanup Agreement (BCA) with the New York State Department of Environmental Conservation (NYSDEC), executed on August 25, 2015.

The Remedial Investigation (RI) will be conducted in accordance with 6NYCRR Part 375-3.8, New York State Department of Environmental Conservation (NYSDEC) DER-10, and applicable New York State Department of Health (NYSDOH) Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006. The objectives and goals of the RI will be to:

- Define the nature and extent of contamination in all media at or emanating from the site;
- Generate sufficient data to evaluate the remedial action alternatives; and
- Generate sufficient data to evaluate the actual and potential threats to human health and the environment.

2.0 SITE BACKGROUND

2.1 Site Description

The Site is located at 335 Bond Street in the Gowanus neighborhood of Brooklyn, New York and is identified as Block 445, Lot 1 on the New York City Tax Map. The Site has an area of approximately 0.36 acres, and is occupied by a one-story office building and garage operated by NYC Two Way International, a private car and limousine service. The building includes a partial cellar that houses an inactive aboveground storage tank (AST) in a concrete vault. A Site location map is provided as Figure 1 and the Site boundaries are shown on Figure 2.

2.2 Surrounding Property Land Use

The Site is located in an urban setting that is characterized by residential, commercial and industrial buildings. The Site is bordered by a two-story residential building and an industrial lot to the north; a two-story industrial and commercial building to the east; Carroll Street to the south; and Bond Street to the west. Surrounding properties are predominantly occupied by mixed-use industrial and commercial developments (north, east and south) and residential developments (west).

The nearest ecological receptor is the Gowanus Canal, which is located about 175 feet east of the Site. Sensitive receptors, as defined in DER-10, located within a half mile of the Site include those listed below:

Number	Name (Approximate distance from Site)	Address
1	New Horizons School (approximately 0.13 miles northwest)	317 Hoyt Street Brooklyn, NY 11231
2	P.S. 32 Samuels Mills Sprole School (approximately 0.14 miles northwest)	317 Hoyt Street Brooklyn, NY 11231
3	Rivendell School (approximately 0.25 miles east)	277 3rd Avenue Brooklyn, NY 11215
4	Bethel Day Care Center (approximately 0.30 miles northwest)	242 Hoyt Street Brooklyn, NY 11217
5	New Dawn Charter High School (approximately 0.30 miles northwest)	242 Hoyt Street Brooklyn, NY 11217
6	P.S. 372 The Children's School (approximately 0.30 miles east)	512 Carroll Street Brooklyn, NY 11215
7	Hannah Senesh Community School (approximately 0.30 miles west)	342 Smith Street Brooklyn, NY 11231
8	P.S. 58 The Carroll School (approximately 0.32 miles northwest)	330 Smith Street Brooklyn, NY 11231
9	The Olive Treehouse Group, LLP (approximately 0.33 miles southwest)	413 Smith Street Brooklyn, NY 11231
10	Al Madinah School (approximately 0.33 miles south)	383 3rd Avenue Brooklyn, NY 11215
11	Bumble Bee Daycare (approximately 0.35 miles southeast)	258 4th Avenue Brooklyn, NY 11218
12	Child's Play NY (approximately 0.37 miles west)	389 Court Street Brooklyn, NY 11231
13	Cobble Hill School of American Studies (approximately 0.42 miles north)	347 Baltic Street Brooklyn, NY 11201
14	Wyckoff Gardens Community Center (approximately 0.44 miles northeast)	272 Wyckoff Street Brooklyn, NY 11217
15	Bambi Childcare (approximately 0.45 miles west)	73 3rd Place Brooklyn, NY 11231
16	International School of Brooklyn (approximately 0.47 miles southwest)	477 Court Street Brooklyn, NY 11231

Number	Name (Approximate distance from Site)	Address	
17	Court Street AMICO Daycare (approximately 0.47 miles northwest)	292 Court Street Brooklyn, NY 11231	
18	Open House Nursery School (approximately 0.47 miles north)	381 Warren Street Brooklyn, NY 111201	
19	Strong Place for Hope Day Care Center (approximately 0.47 miles southeast)	333 2nd Street Brooklyn, NY 11215	
20	School for International Studies (approximately 0.48 miles northwest)	284 Baltic Street Brooklyn, NY 11201	
21	P.S. 133 William A Butler (approximately 0.49 miles northeast)	610 Baltic Street Brooklyn, New York 11217	
22	Natalie's Sunflower Academy LLC (approximately 0.50 miles east)	238 5th Avenue Brooklyn, NY 11215	
23	J.H.S. 051 William Alexander School (approximately 0.50 miles southeast)	350 5th Avenue Brooklyn, NY 11215	

Due to its urban nature, major infrastructure (storm drains, sewers, and underground utility lines) exist around the Site.

2.3 Site Physical Conditions

2.3.1 Topography

According to the United States Geological Survey (USGS) Brooklyn, N.Y. Quadrangle 7.5-minute Series Topographic Map, the Site sits at an elevation of approximately 10 feet above mean sea level (msl)¹. The topography of the Site is generally level, and the surrounding area slopes gently east toward the Gowanus Canal.

2.3.2 Geology

Soil and bedrock stratigraphy throughout Brooklyn typically consists of a layer of historic fill that overlies glacial till, decomposed unconsolidated bedrock, and bedrock. The USGS "Bedrock and Engineering Geologic Maps of New York County and Parts of Kings and Queens Counties, New York, and Parts of Bergen and Hudson Counties, New Jersey" indicates that the bedrock underlying the Site is part of the Hartland Formation. The Hartland Formation is comprised of mica schist and quartz-feldspar granulite, with localized intrusions of granite and pegmatite. Based on a geotechnical investigation completed by Langan in the vicinity of the Site, the minimum depth of bedrock is expected to be 100 feet below grade surface (bgs).

¹ Mean sea level as defined by the United States Geological Survey National Geodetic Vertical Datum of 1929 (USGS NGVD 1929) at Sandy Hook New Jersey.

According to previous environmental investigations conducted at the Site, the subsurface strata consists of fill material characterized by loose, brown, fine to coarse sand with some brick and concrete fragments, and trace coal ash. The fill layer extended to depths ranging from approximately 4 feet bgs to 8.5 feet bgs and was intersected by layers of degraded concrete and brick at varying depths. The fill layer was underlain by native soil characterized by sand and silty sand.

2.3.3 Hydrogeology

Groundwater flow is typically topographically influenced, as shallow groundwater tends to originate in areas of topographic highs and flows toward areas of topographic lows, such as rivers, stream valleys, ponds, and wetlands. A broader, interconnected hydrogeologic network often governs groundwater flow at depth or in the bedrock aquifer. Groundwater depth and flow direction are also subject to hydrogeologic and anthropogenic variables such as precipitation, evaporation, extent of vegetation cover, and coverage by impervious surfaces. Other factors influencing groundwater include depth to bedrock, the presence of artificial fill, and variability in local geology and groundwater sources or sinks.

According to previous environmental investigations conducted at the Site, the groundwater table is approximately 7 feet bgs. Groundwater is expected to flow east toward the Gowanus Canal.

The Brooklyn-Queens Aquifer is part of the United States Environmental Protection Agency (USEPA)-designated Sole Source Aquifer in Long Island, and has been used as a public water supply in the past, and may again in the future. Groundwater in the Gowanus section of Brooklyn is not used as a potable water source. Potable water provided to the City of New York is derived from surface impoundments in the Croton, Catskill, and Delaware watersheds.

2.3.4 Wetlands

Wetlands on or near the Site were evaluated by reviewing the National Wetlands Inventory and NYSDEC regulated wetlands map. There are no wetlands located on the Site; however, the Gowanus Canal, which is located about 175 feet east of the Site, is identified as an estuarine and marine deepwater wetland.

2.4 Environmental History

Langan reviewed Certified Sanborn Maps dating back to 1886. Findings of the Certified Sanborn Map review, as they relate to the Site, are as follows:

Certified Sanborn Map	Site	Adjacent Properties
1886	A lath and lumber yard operated by Loomis	North: Loomis lumber and lath yard East: John Morton & Sons Lime & Brick Shed w/ multiple stables South: Rankin & Ross Stone Yard West: residential
1904	Materials (i.e., sand) storage for Newton & Co. with a stable noted in the northeast corner of the property	North: Lubricating Oils facility, residences, and the remainder of Newton & Co's property East/South/West: same as above
1915	Lath storage with two sheds identified on the property. Operated by John Morton's Sons & Co. Masons Materials	North: poultry market and residences East: storage and stables for John Morton's Sons & Co. Masons Materials South: same as above West: residences, junk yard & paper storage
1928	Operated by B. Goetz & Bro. – actual operations are not noted, but a Certificate of Occupancy (included with this attachment) from July 25, 1925 notes the property as operating as a public garage	North/East: noted as B. Goetz & Bro. property South/West: no operations noted
1938	The Site footprint is occupied by a garage with two gasoline tanks and three hoses noted on the property.	North: poultry market East: storage and a vacant lot South: garage with three gas tanks noted West: residential and an electric bulb warehouse
1950	Operating as a crating for export. The building is noted as having steel beams and columns, masonry reinforcing columns in the walls, and concrete floors. The three hoses from the 1938 Sanborn are evident, but the gas tanks are no longer noted.	North: residences, iron works, and truck parking East: welding operations and warehouse South: Motor Frt. Sta. West: same as above
1969	The building is now noted as a commercial delivery service.	North: residences, truck parking and repair East: woodworking operations and warehouse South: same as above West: residences, storage warehouse
1981	The building is now noted as manufacturing.	North/East/South/West: same as above
2001	The building is now noted as a car service.	North/East/South/West: same as above

2.5 Summary of Previous Environmental Investigations

Previous environmental investigations at the Site are summarized below:

May 6, 2015 Subsurface Investigation Letter Report, prepared by Langan

The subsurface investigation was implemented on May 2, 2015 and included:

- A geophysical survey to locate potential underground storage tanks (USTs) and other subsurface structures;
- The advancement of five soil borings to depths of up to nine feet bgs and collection of five soil samples;
- Installation of one temporary groundwater monitoring well and collection of one groundwater sample; and,
- Installation of one temporary sub-slab soil vapor sampling point and collection of one soil vapor sample.

The observations, findings, and conclusions of the Subsurface Investigation are summarized below:

- <u>Subsurface Observations</u>:
 - <u>Chlorinated Solvent Impacts</u> Based on field observations and analytical results, soil, groundwater, and soil vapor has been impacted by chlorinated solvents including tetrachloroethene (PCE).
 - <u>Abandoned Aboveground Storage Tank (AST)</u> Langan observed an abandoned, approximately 1,000-gallon AST located within a concrete vault in the building basement. Upon observation, the AST was significantly corroded and approximately 3 to 4 inches of standing water was noted at the base of the vault. The fill line associated with the AST was observed to be cut, and evidence of fill port removal operations were observed (i.e., a concrete sidewalk patch) on the adjacent sidewalk along Carroll Street.
 - O Potential Drainage Features One approximately 14-inch by 14-inch perforated, steel plate covering a potential drainage feature was located in the central portion of the garage. Debris including a concrete block, bricks, and soil were observed beneath the steel plate. The top four inches of the potential drainage feature were exposed and appeared to be constructed of the existing concrete slab and brick. A second potential drainage feature was observed approximately 2 feet to the southwest and was covered by an approximately 24-inch by 24-inch solid, steel plate. The function of the potential drainage features is unknown.

- <u>Soil</u> Below the garage slab, the subsurface strata consists of fill material characterized by loose, brown, fine to coarse sand with some brick and concrete fragments, and trace coal ash. The fill layer extended to depths ranging from approximately 4 to 8.5 feet bgs and was intersected by layers of degraded concrete and brick at varying depths. Native sand and silty sand were observed beneath the fill layer at depth intervals ranging from approximately 4 to 9 feet bgs. A sweet, solvent-like odor was noted in one of the soil borings (SB03) at a depth interval of 5 to 6 feet bgs.
- Analytical Results:
 - <u>Soil</u> One volatile organic compound (VOC), PCE; three semivolatile organic compounds (SVOCs), benzo(a)anthracene, benzo(k)fluoranthene, chrysene; and five metals, arsenic, copper, lead, nickel, mercury and zinc were detected at concentrations exceeding Unrestricted Use and/or Restricted Use Residential Soil Cleanup Objectives (SCOs).
 - <u>Groundwater</u> One VOC, cis-1,2-dichloroethene; and five metals, aluminum, iron, manganese, selenium and sodium were detected at concentrations exceeding NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards (AWQS) for Class GA.
 - <u>Soil Vapor</u> Two VOCs, PCE and trichloroethene (TCE), were detected in soil vapor at concentrations exceeding New York State Department of Health (NYSDOH) Air Guidance Values (AGV).

Subsurface investigation soil, groundwater and soil vapor sample locations and analytical results are presented in Figures 3 through 5. Sample results are also summarized on Tables 1 through 3 of the Investigation Report, which is included in Appendix A.

2.6 Areas of Concern

The site development history and the observations and findings of the May 2015 Subsurface Investigation were used to determine the areas of concern (AOCs) to be further investigated by this RIWP. The AOCs are described below:

AOC 1: Historic Fill

AOC 1 represents a layer of historic fill of unknown origin identified between ground surface and about 4 to 8.5 feet bgs. Analytical data for soil samples collected from this material during the May 2015 Subsurface Investigation indicates the fill material contains VOC, SVOCs and metals in excess of Unrestricted Use and Restricted Use Residential SCOs. The nature and extent of historic fill impacts will be delineated and characterized during the RI.

AOC 2: Historic Site Use

AOC 2 represents historic site uses that included industrial, manufacturing and commercial properties. A parking garage is currently located on the property and historic records indicate the presence of gasoline storage tanks. Impacts related to historic site use will be investigated during the RI.

AOC 3: Potential Gasoline Storage Tanks

AOC 3 represents potential gasoline storage tanks located in the western portion of the Site. Certified Sanborn Maps identify the storage tanks in 1938. Impacts related to the potential gasoline storage tanks will be investigated during the RI.

AOC 4: Drainage Features

AOC 4 represents existing drainage features in the garage area of the Site building. Historic Site use included manufacturing and industrial activities. Chlorinated VOCs were detected in soil, groundwater and soil vapor samples in Langan's May 2015 Subsurface Investigation (SI) in the vicinity of drainage features. Impacts related to the drainage features will be further investigated during the RI to supplement environmental findings from the SI.

AOC 5: Existing On-Site AST

AOC 5 represents an inactive 1,000-gallon AST located in a concrete vault in the partial cellar. Impacts related to the AST will be investigated during the RI.

3.0 SCOPE OF WORK

The objective of this RIWP is the "investigation and characterization of the nature and extent of the contamination within the boundary of the Site", per Environmental Conservation Law Article 27, Title 14 (Brownfield Legislation).

The RI will be conducted in accordance with 6NYCRR Part 375-3.8, NYSDEC DER-10, and applicable NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006. The objectives and goals of the RI will be:

- Define the nature and extent of contamination in all media at or emanating from the Site;
- Generate sufficient data to evaluate the remedial action alternatives; and
- Generate sufficient data to evaluate the actual and potential threats to human health and the environment.

The field investigation will include the tasks listed below to supplement the data and findings of the May 2015 Subsurface Investigation. The rationale for each investigation point in relation to the AOCs is provided in Table 1 and in Section 3.2. These tasks are discussed in more detail in the following sections.

- Geophysical Survey
 - Completion of a geophysical survey to identify potential USTs and underground structures and to clear sample locations to avoid subsurface utilities.
- Soil Borings and Sampling
 - Advancement of nine soil borings to approximately 15 feet bgs.
 - Collection of at least two soil samples from each soil boring location for a total of 18 soil samples (plus quality assurance/quality control [ΩA/QC] sampling).
- Sediment Sampling
 - Collection of one sediment sample from each of the drainage features for a total of up to two sediment samples (plus quality assurance/quality control [QA/QC] sampling).
- Monitoring Well Installation and Sampling
 - Installation of five permanent monitoring wells co-located with five soil boring locations.
 - Collection of one groundwater sample from each monitoring well for a total of five groundwater samples (plus QA/QC sampling).
 - Survey and gauging of monitoring wells to evaluate flow direction.
- Sub-slab Vapor Points Installation and Sampling
 - Installation of two sub-slab soil vapor points.
 - Collection of one soil vapor sample from each sub-slab soil vapor point and one ambient air sample for a total of three samples (plus QA/QC sampling).
- Indoor Air Sampling
 - Completion of a product inventory of interior spaces prior to the soil vapor intrusion (SVI) evaluation to identify any chemicals currently used by tenants that may be detected during vapor sampling.

 Collection of two indoor air samples from common/ office areas of the Site building, paired with the sub-slab soil vapor sample locations, to determine the potential for SVI.

Modifications to this scope of work may be required: 1) due to Site operations, equipment or restrictions; 2) in the event that unexpected contamination is detected and additional analytical data is needed; and 3) to attempt to confirm that impacts are adequately characterized and delineated in compliance with the Brownfield Law, regulations and applicable investigation guidance documents (e.g., DER-10).

The field investigation work will be completed in accordance with the procedures specified in Langan's Health and Safety Plan (HASP) and Quality Assurance Project Plan (QAPP) provided in Appendices B and C, respectively. The investigation will be performed within the one-story office building and garage that occupy the Site; therefore, a community air monitoring program (CAMP) will not be implemented.

Names, contact information and roles of the principal personnel who will participate in the investigation including the project manager, contractor and subcontractor contacts are listed below.

Personnel	Investigation Role	Contact Information
Michael Burke, CHMM	Project Director	Phone – 212-479-5413
Langan Engineering		Email – mburke@langan.com
Jason Hayes, P.E.	Project Engineer	Phone – 212-479-5427
Langan Engineering	r roject Engineer	Email – jhayes@langan.com
Ryan Manderbach, CHMM	Project Manager	Phone – 212-479-5582
Langan Engineering	Froject Manager	Email – rmanderbach@langan.com
Tony Moffa, CHMM	Langan Health &	Phone – 215-491-6500
Langan Engineering	Safety Officer	Email – tmoffa@langan.com
Bill Bohrer		Phone – 410-984-3068
Langan Engineering	Field Safety Officer	Email – wbohrer@langan.com
Albert Tashji	Field Teams Loader	Phone – 212-549-5527
Langan Engineering	Field Team Leader	Email – atashji@langan.com
Nicole Rice	Quality Assurance	Phone – 212-479-5491
Langan Engineering	Officer	Email – nrice@langan.com
Steve Plofker		Dhana 621 526 5000
AARCO Environmental	Drilling Contractor	Phone – 631-586-5900
Services Corp.		Email –splofker@aarcoenvironmental.com
Rich August	Laboratory	Phone – 203-325-1371
York Analytical	Contractor	Email – raugust@yorklab.com
Emily Strake	Data) (alialatan	Phone – 215-491-6526
Langan Engineering	Data Validator	Email – estrake@langan.com

3.1 Geophysical Survey

A geophysical contractor will be retained to clear boring locations of potential subsurface utilities and structures across the site. The geophysical survey will be completed using a range of geophysical instruments, including electromagnetic and utility line locator instruments, and ground-penetrating radar (GPR). The results of the survey may necessitate relocation of boring locations.

3.2 Soil Investigation

An environmental drilling subcontractor will advance nine soil borings (designated SB06 through SB14). Limited access drilling equipment will be used to advance soil borings inside the building. Soil boring locations are shown on Figure 6. The purpose of these borings is to further investigate AOCs identified in Section 2.6 and supplement the Subsurface Investigation performed in May, 2015. The table below indicates which boring is associated with each AOC.

AOC	Associated Soil Boring	
AOC 1 – Historic Fill	SB08, SB10, SB12, SB14	
AOC 2 – Historic Site Use	SB06, SB07, SB09, SB11, SB13	
AOC 3 – Potential Gas Tanks	SB06	
AOC 4 – Drainage Features	SB07 and SB09	
AOC 5 – Existing On-Site AST	SB11 and SB13	

The soil borings will be advanced using direct-push drilling methodologies. A Langan engineer/scientist will document the work, screen the soil samples for environmental impacts, and collect environmental samples for laboratory analyses. Soil will be screened continuously to the boring termination depth for organic vapors with a PID equipped with a 11.7 electron volt (eV) bulb, and for visual and olfactory indications of environmental impacts (e.g., staining and odor). Soil descriptions will be recorded in a field log. Work will comply with the safety guidelines outlined in the HASP (Appendix B). Non-disposable, down-hole drilling equipment and sampling apparatus will be decontaminated between locations with Alconox[®] and water.

Two grab soil samples will be collected for laboratory analysis from each boring location to further investigate AOCs and to provide vertical and horizontal delineation of identified impacts. For AOC 1, samples will be collected from shallow fill (upper two feet of soil beneath the concrete slab) and from the bottom of historic fill. For AOCs 2 through 5, samples will be collected from the interval of the greatest observable impact (staining, odor, PID readings above background) and from the interval immediately beneath impacted soil that does not exhibit signs of contamination. Sampling will be biased toward intervals where visual, olfactory,

or instrumental evidence of a chemical or petroleum release are apparent. Additional samples may be collected based on field conditions. Non-disposable, down-hole drilling equipment and sampling apparatus will be decontaminated between locations with Alconox and water.

The samples will be collected in laboratory-supplied containers and will be sealed, labeled, and placed in a cooler containing ice (to maintain a temperature of approximately four degrees Celsius) for delivery to a NYSDOH Environmental Laboratory Approval Program (ELAP)-certified analytical laboratory. Soil samples will be analyzed for 6 NYCRR Part 375 List (Part 375)/Target Compound List (TCL) VOCs, SVOCs, PCBs, and pesticides, and Part 375/Target Analyte List (TAL) metals. If free product is encountered, representative samples of the product will be collected for laboratory fingerprint analysis. QA/QC procedures to be followed are described in the QAPP provided as Appendix C.

3.3 Drainage Feature Sediment Investigation

One grab sediment sample will be collected for laboratory analysis from each drainage feature to further investigate AOC 4. Following sample collection, debris within the drainage features, if any, will be removed to determine if they have concrete or soil bottoms, or if drain pipes are present. Drain pipes will be traced if observed.

The samples will be collected in laboratory-supplied containers and will be sealed, labeled, and placed in a cooler containing ice (to maintain a temperature of approximately four degrees Celsius) for delivery to a NYSDOH Environmental Laboratory Approval Program (ELAP)-certified analytical laboratory. Sediment samples will be analyzed for 6 NYCRR Part 375 List (Part 375)/Target Compound List (TCL) VOCs. QA/QC procedures to be followed are described in the QAPP provided as Appendix C.

3.3 Groundwater Investigation

Five of the proposed borings (SB06, SB09 through SB11, and SB14) will be converted into permanent groundwater monitoring wells (MW06, MW09 through MW11, and MW14, respectively). Proposed monitoring well locations are shown on Figure 6. All monitoring wells will be used to investigate AOC 2. Monitoring well MW06 will be installed to investigate AOC 3, MW09 and MW10 will be installed to investigate AOC 4, and MW11 will be installed to investigate AOC 5.

Soil conditions will be screened, logged and sampled as described in Section 3.2. The wells will be constructed using 2-inch diameter polyvinyl chloride (PVC) riser pipe with 0.02-inch slotted screens. Monitoring well screens will be set to straddle the observed groundwater table. The well annulus around the screen will be backfilled with No. 2 sand up to approximately 2 feet above the top of the screen. A minimum 1-foot bentonite seal will be

installed above the sand pack, and the borehole annulus will be grouted to the surface with bentonite/cement slurry. The wells will be finished with flush-mounted metal manhole covers.

Following installation, the wells will be developed by surging a weighted bailer across the well screen to agitate and remove fines. The bailer will be surged across the well screen in 2- to 3-foot increments for approximately 2 minutes per increment. After surging, the well will be purged via pumping until the water becomes clear (having turbidity less than 50 Nephelometric Turbidity Units [NTU]). The well will then be allowed to sit for a minimum of one week.

One groundwater sample will be collected from each of the five wells. Prior to sampling, the monitoring wells will be gauged for static water levels, each well will be purged, and physical and chemical parameters (e.g., temperature, dissolved oxygen, oxygen reduction potential, turbidity) will be allowed to stabilize to the ranges specified in the United States Environmental Protection Agency's (USEPA's) Low Stress Purging and Sampling Procedure for the Collection of Groundwater Samples From Monitoring Wells, Dated July 30, 1996 and Revised January 19, 2010. Samples will be collected with a submersible monsoon pump or equivalent and dedicated polyethylene tubing. The pump will be decontaminated with Alconox[®] and water between each sample location. Development and purge water will be containerized for off-Site disposal.

Groundwater samples will be analyzed for Part 375/TCL VOCs, SVOCs, PCBs, and pesticides, and Part 375/ TAL total and dissolved metals. QA/QC procedures are described in the QAPP provided as Appendix C.

3.4 Monitoring Well Survey

Langan will survey the location and elevation of the groundwater monitoring wells (top of casing elevations). This data will be used with the groundwater well gauging data to prepare a groundwater contour map and document the direction of groundwater flow. Vertical control will be established by surveying performed relative to the North American Vertical Datum of 1988 (NAVD88) by a New York State-licensed land surveyor. Elevations of the top of monitoring well casings and protective well casings will be surveyed to the nearest 0.01 foot.

3.5 Soil Vapor Air Investigation

A soil vapor investigation will be completed investigate soil gas immediately below the slab, consisting of the installation of two sub-slab soil vapor sampling points (designated SS01 and SS02). Proposed soil vapor sampling point locations are shown on Figure 6. All soil vapor points will be used to investigate AOCs 2 through 5. Soil vapor sampling will be conducted in accordance with the October 2006 Guidance for Evaluating Soil Vapor Intrusion in the State of New York. An environmental driller will install each point to a maximum depth of 6 inches

below the existing building slab. Each soil vapor sample location will consist of a new, dedicated stainless-steel screen implant connected to polyethylene or Teflon tubing. Clean sand filter pack will be placed around the screen implant. The remaining annular space will be backfilled to grade with hydrated bentonite. The seal on the vapor points will be checked with a helium tracer gas test both before and after sample collection.

Prior to sampling, three well volumes will be purged from the point using a MultiRAE multi-gas monitor at a rate of less than 0.2 liters per minute. The multi-gas monitor will also be used to screen the soil vapor for the presence of VOCs. Following purging, each soil vapor point will be sampled using laboratory-provided, 6-Liter air canisters equipped with 2-hour sample interval flow controllers. Soil vapor samples will be analyzed for VOCs by USEPA Method TO-15. QA/QC procedures to be followed are described in the QAPP provided as Appendix C, and include the collection of one outdoor ambient air sample.

3.6 Indoor Air Investigation

Indoor air sampling will be conducted in general accordance with the NYSDOH October 2006 Final Guidance for Evaluating Soil Vapor Intrusion in New York. Prior to sample collection, a NYSDOH Indoor Air Quality Questionnaire and Building Survey will be completed to document the potential presence of equipment or chemicals in the "Green Building" that could interfere with the laboratory analytical results. The building will be screened with a PID that can detect organic vapors at concentrations of parts per billion (ppb) during the survey.

Approximately 48 hours prior to sample collection, the building should be ventilated either with commercial grade fans, an increase in the heating, ventilation, and air conditioning (HVAC) system air exchange rate, or a combination of the two methods. Ventilation should be conducted for 24 hours, with a minimum 24-hour window between the termination of ventilation and sample collection. All windows and exterior doors will remain closed and the sample area should be sealed with limited usage during the 24-hour window and during sample collection.

The indoor air sample will be collected into individually certified-clean Summa canister that is calibrated for an 8-hour sampling period. The sample will be submitted to an NYSDOH Environmental Laboratory Approval Program certified laboratory for analysis of VOCs via EPA Method TO-15 with selective ion monitoring (SIM).

3.7 Data Management and Validation

All laboratory analyses of soil, groundwater, and soil vapor samples will be conducted by a NYSDOH ELAP-approved laboratory. Laboratory analyses will be conducted in accordance with USEPA SW-846 methods and NYSDEC Analytical Services Protocol (ASP) B deliverable format.

Environmental data will be reported electronically using the database software application EQuIS as part of NYSDEC's Environmental Information Management System (EIMS).

Table 1 summarizes the anticipated samples and analytes for laboratory analysis. We will follow the QA/QC procedures required by the NYSDEC ASP and SW-846 methods, including initial and continuing instrument calibrations, standard compound spikes, surrogate compound spikes, and analysis of other samples (blanks, laboratory control samples, and matrix spikes/matrix spike duplicates). The laboratory will provide sample bottles, which have been pre-cleaned and preserved in accordance with the SW-846 methods. Where there are differences in the SW-846 and NYSDEC ASP requirements, the NYSDEC ASP shall take precedence.

We will perform data validation in accordance with the USEPA validation guidelines for organic and inorganic data review. Validation will include the following:

- Verification of QC sample results (both qualitative and quantitative).
- Verification of sample results (both positive hits and non-detects).
- Recalculation of 10 percent of all investigative sample results.
- Preparation of Data Usability Summary Report (DUSR).

The DUSR will be prepared and reviewed by the Program Quality Assurance Monitor (PQAM) before issuance. The DUSR will present the results of data validation, including a summary assessment of laboratory data packages, sample preservation and Chain of Custody (COC) procedures, and a summary assessment of precision, accuracy, representativeness, comparability, and completeness for each analytical method. A detailed assessment of each sample delivery group (SDG) will follow. Additional details on the DUSR are provided in the QAPP in Appendix C.

3.8 Management of Investigation-Derived Waste

Soil cuttings and groundwater investigation-derived wastes (IDW) will be containerized and disposed properly at an off-Site facility. Soil to be disposed off-Site will be placed in 55-gallon, Department of Transportation (DOT) approved drums. Decontamination and well development/purging fluids will be placed in DOT-approved fluid drums with closed tops. All drums will be properly labeled, sealed, and waste characterized as necessary. The drums will be staged in a secure area on site, pending disposal to an appropriate disposal facility upon receipt of analytical results.

3.9 Air Monitoring

We will conduct air monitoring of the breathing zone periodically during all drilling and sampling activities to document health and safety protection for the work team². We will monitor VOCs with a PID, MultiRAE Plus PGM-50, or equivalent, in accordance with the HASP (Appendix B). If air monitoring during intrusive operations identifies the presence of VOCs, we will follow the guidelines outlined in the HASP, regarding action levels, permissible exposure, engineering controls, and personal protective equipment. If the VOCs action level is exceeded, work will cease and the work location will be evacuated. Monitoring will be continued until the levels drops to safe limits. At that time, work can resume with continued monitoring. If high levels persist, field activities will be halted and the work relocated to another area. If dust emissions are observed, work will stop and dust suppression measures will be used. Periodic air monitoring results and mitigation measures taken, if any, will be recorded in the field book during the investigation activities.

We will also conduct periodic monitoring for VOCs during non-intrusive activities such as the collection of groundwater samples. Periodic monitoring may include obtaining measurements upon arrival at a location, when opening a monitoring well cap, when bailing/purging a well, as well as upon departure from the location.

Since the proposed work is planned to be performed inside the building, CAMP will not be implemented.

3.10 Qualitative Human Health Exposure Assessment

A Qualitative Human Health Exposure Assessment will be conducted in accordance with Appendix 3B of the NYSDEC DER-10, Technical Guidance for Site Investigation and Remediation. The assessment will be submitted in the Remedial Investigation Report (RIR).

4.0 REMEDIAL INVESTIGATION REPORT

Following completion of the RI and receipt of analytical data, an RIR will be prepared. The report will include: 1) a summary of the Site history and previous investigations; 2) description of Site conditions and this remedial investigation; 3) evaluation of the results and findings; and 4) conclusions and recommendations. Additionally, the Standards, Criteria, and Guidance (SCGs) which pertain to the Site location and contaminants, as well as potential remedial action objectives, will be identified in the report. The soil boring and well and soil vapor point construction logs, sampling logs, and laboratory analytical reports will be appended to the report. Conclusions and recommendations will be provided that: 1) summarize the nature and

² Each Contractor and Subcontractor performing work on Site shall comply with its own Site-specific or task-specific HASP for its organization, that at a minimum complies with federal, state and local regulation and the HASP attached to the RIWP.

extent of potential impact for each areas of concern; 2) identify unacceptable exposure pathways (as determined through a Qualitative Human Health Exposure Assessment); and 3) recommend future work or remedial actions, as required.

The sampling results that exceed Unrestricted Use and Restricted Commercial Use SCOs, the groundwater standards or other applicable SCGs will be summarized in tables (organized by areas of concern). The tables will include sample location, media sampled, sample depth, field/laboratory identification numbers, analytical results and the applicable SCG for comparison. Scaled Site maps will be used to show the boring, monitoring well, and soil vapor point locations, SCG exceedances, groundwater elevation contours, groundwater flow direction, and, if appropriate, groundwater contaminant concentration contours.

5.0 SCHEDULE

The table below presents an estimated schedule for the proposed remedial investigation and reporting. If the schedule changes, it will be updated and submitted to NYSDEC.

Schedule Milestone	Weeks from Submittal of RIWP	Duration (weeks)
Prepare and Submit RIWP	0	-
DEC Preliminary Review/Revision of RIWP	0	4
RIWP 30-day Public Comment Period	4	4
Final RIWP Revisions and DEC Approval	8	2
Mobilization	10	2
Field Work (drilling, well installation, surveying, sampling)	12	2
Lab Analysis	14	2
Report Preparation	16	6
Report Submittal	22	-

TABLES

Table 1 Proposed Sample Summary Table 335 Bond Street Brooklyn, NY Langan Project No. 170632501 NYSDEC BCP No. C224225

No.	Sample Name	Boring Location	Sample Depth(feet bgs)	Rationale	Analysis	
		Looution		SOIL		
1	SB06_XX-XX		Greatest Observable Impact		Part 375/ TCL VOCs, SVOCs, PCBs, Pesticides	
2	SB06_XX-XX	SB06	Immediately Beneath Impacts	Investigate AOC 2, AOC 3 and Close Data Gap.	and Part 375/ TAL Total and Dissolved Metals	
3	SB07_XX-XX	0007	Greatest Observable Impact		Part 375/ TCL VOCs, SVOCs, PCBs, Pesticides	
4	SB07_XX-XX	SB07	Immediately Beneath Impacts	Investigate AOC 2, AOC4 and Close Data Gap.	and Part 375/ TAL Total and Dissolved Metals	
5	SB08_0-2	0000	Shallow Fill		Part 375/ TCL VOCs, SVOCs, PCBs, Pesticide	
6	SB08_XX-XX	SB08	Bottom of Fill	Investigate AOC 1 and Close Data Gap.	and Part 375/ TAL Total and Dissolved Metals	
7	SB09_XX-XX	6000	Greatest Observable Impact		Part 375/ TCL VOCs, SVOCs, PCBs, Pesticide	
8	SB09_XX-XX	SB09	Immediately Beneath Impacts	Investigate AOC 2, AOC4 and Close Data Gap.	and Part 375/ TAL Total and Dissolved Metal	
9	SB10_0-2	CD10	Shallow Fill	Investigate AOC 1 and Class Date Car	Part 375/ TCL VOCs, SVOCs, PCBs, Pesticide	
10	SB10_XX-XX	SB10	Bottom of Fill	Investigate AOC 1 and Close Data Gap.	and Part 375/ TAL Total and Dissolved Metals	
11	SB11_XX-XX	CD11	Greatest Observable Impact		Part 375/ TCL VOCs, SVOCs, PCBs, Pesticide	
12	SB11_XX-XX	SB11	Immediately Beneath Impacts	Investigate AOC 2, AOC 5 and Close Data Gap.	and Part 375/ TAL Total and Dissolved Metal	
13	SB12_0-2	CD10	Shallow Fill	Investigate AOC 1 and Class Date Car	Part 375/ TCL VOCs, SVOCs, PCBs, Pesticide	
14	SB12_XX-XX	SB12	Bottom of Fill	Investigate AOC 1 and Close Data Gap.	and Part 375/ TAL Total and Dissolved Metal	
15	SB13_XX-XX	CD10	Greatest Observable Impact		Part 375/ TCL VOCs, SVOCs, PCBs, Pesticide	
16	SB13_XX-XX	SB13	Immediately Beneath Impacts	Investigate AOC 2, AOC 5 and Close Data Gap.	and Part 375/ TAL Total and Dissolved Metals	
17	SB14_0-2	CD14	Shallow Fill	Investigate AOC 1 and Class Date Car	Part 375/ TCL VOCs, SVOCs, PCBs, Pesticide	
18	SB14_XX-XX	SB14	Bottom of Fill	Investigate AOC 1 and Close Data Gap.	and Part 375/ TAL Total and Dissolved Metal	
19	SBDUP01_date	TBD				
20	MS/MSD- SB01_date	TBD		24/22	Part 375/ TCL VOCs, SVOCs, PCBs, Pesticide and Part 375/ TAL Total and Dissolved Metal	
21	SBFB01_date	NA	-	QA/QC		
22	SBTB01_date	NA			Part 375/TCL VOCs	
				SEDIMENT		
1	SD01_XX-XX	NA	Greatest Observable Impact	Investigate AOC 4.	Part 375/ TCL VOCs	
2	SD02_XX-XX	NA	Greatest Observable Impact	Investigate AOC4.	Part 375/ TCL VOCs	
				GROUNDWATER	·	
1	MW06_date	MW06		Investigate AOC 2, AOC 3 and Close Data Gap.		
2	MW09_date	MW09		Investigate AOC 2, AOC4 and Close Data Gap.		
3	MW10_date	MW10	Straddle water table	Investigate AOC 2, AOC4 and Close Data Gap.	Part 375/ TCL VOCs, SVOCs, PCBs, Pesticide and Part 375/ TAL Total and Dissolved Metal	
4	MW11_date	MW11		Investigate AOC 2, AOC 5 and Close Data Gap.		
5	MW14_date	MW14		Investigate AOC 2 and Close Data Gap.		
6	GWDUP01_date	TBD				
7	MS/MSD-	TBD			Part 375/ TCL VOCs, SVOCs, PCBs, Pesticide	
8	GW01_date	NA	-	QA/QC	and Part 375/ TAL Total and Dissolved Metal	
-	GWFB01_date					
9	GWTB01_date	NA			TCL VOC	
				SUB-SLAB SOIL VAPOR		
1	SS01_date	SS01	Below basement slab	Investigate AOC 2, AOC 3, AOC 4, AOC 5 and Close Data Gap.	TO-15 VOCs	
2	SS02_date	SS02	Below basement slab	Investigate AOC 2, AOC 3, AOC 4, AOC 5 and Close Data Gap.	TO-15 VOCs	
3	SVDUP01_date	TBD	Below basement slab	QA/QC	TO-15 VOCs	
4	AA01_date	NA	Ambient Air		TO-15 VOCs	
				INDOOR AIR		

1	IA01_date	IA01	Indoor Air	Investigate Potential for Soil Vapor Intrusion	TO-15 VOCs
2	IA02_date	IA02	Indoor Air	Investigate Potential for Soil Vapor Intrusion	TO-15 VOCs

Notes:

1. Full list includes Part 375 Total Compound List (TCL) - list of VOCs, SVOCs and pesticides, and Part 375 Total Analyte List (TAL) metals.

2. All volatile soil samples will be collected using Encore or Terra Core sampler kits.

3. TO-15 - Compendium Method TO-15 used to determin toxic organic compounds in soil vapor and ambient air samples.

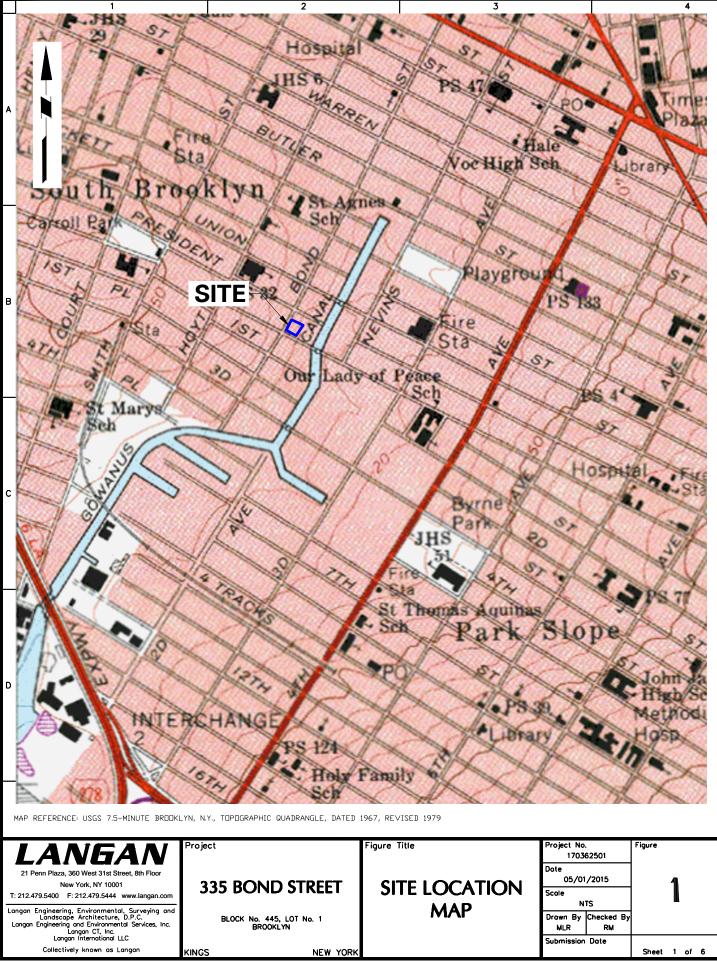
4. AOC - area of concern

5. VOCs- Volatile organic compounds

6. SVOCs- Semivolatile organic compounds

7. PCBs - Polychlorinated Biphenyls

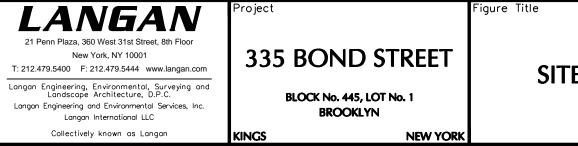
8. TCL- Target compound list


9. TAL - Target analyte list

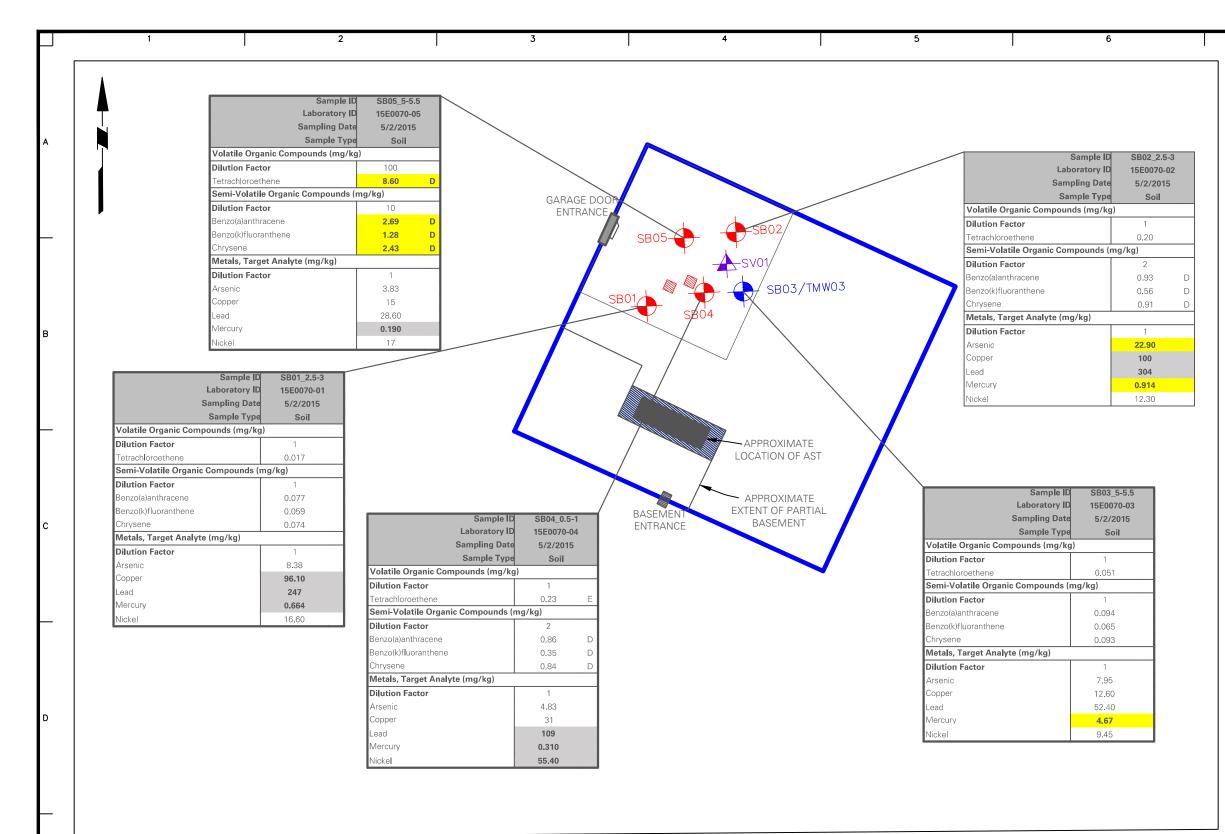
10. QA/QC- Quality assurance/quality control

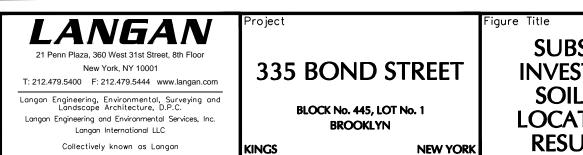
11. bgs - below grade surface

12. SBTB01-date* = one trip blank sample per each cooler containing samples being analyzed for Part 375/TCL VOCs.

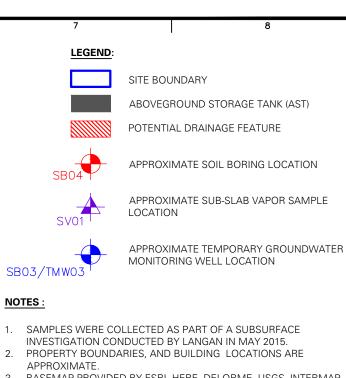

FIGURES

Filename: \langan.com\data\\Y\data5\170362501\Cadd Data - 170362501\2D-DesignFiles\BCP App\Figure 1 - Site Location Map.dwg Date: 9/28/2015 Time: 08:57 User: arosenblatt Style Table: Langan.stb Layou: ANSIA-BP

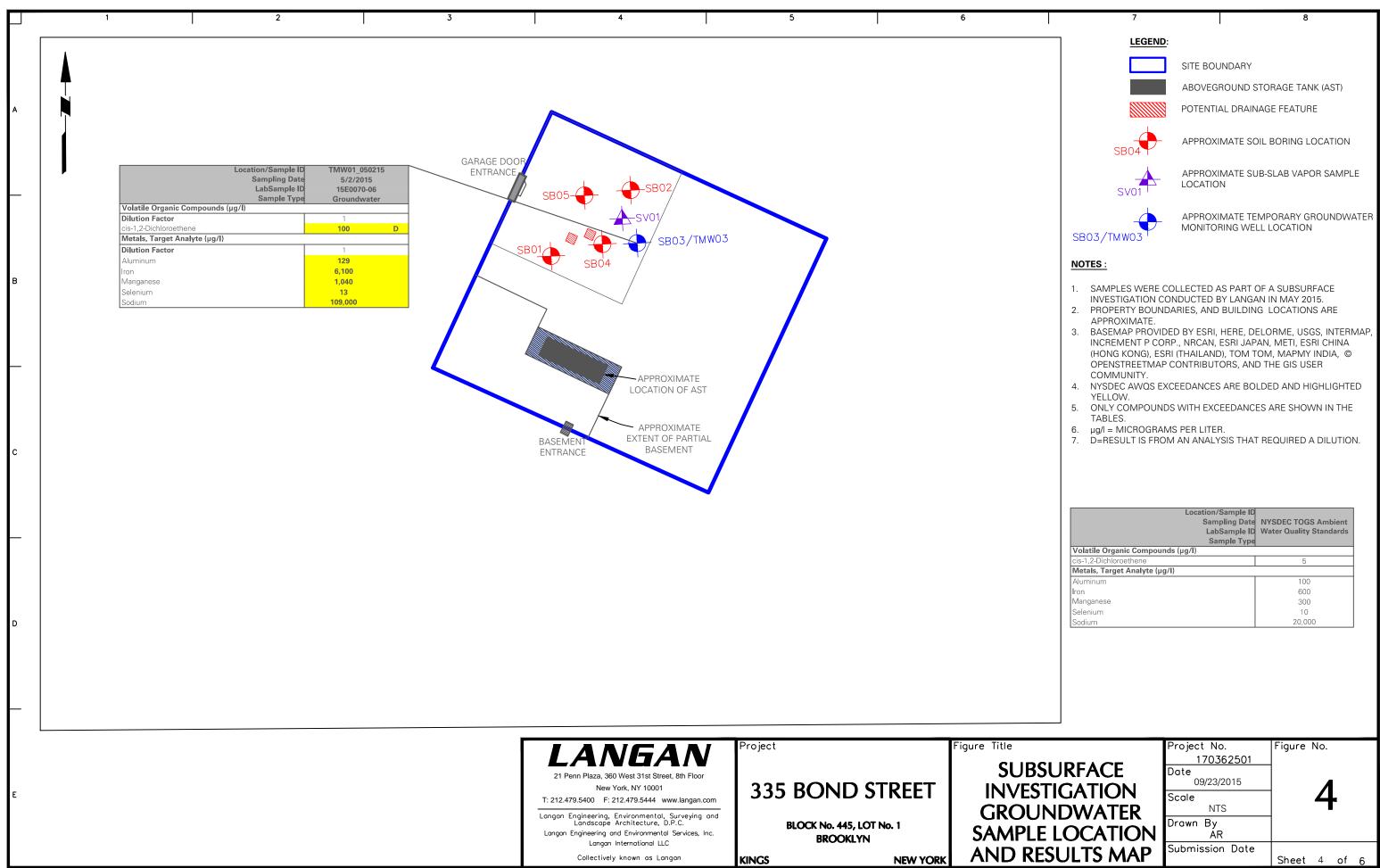

2

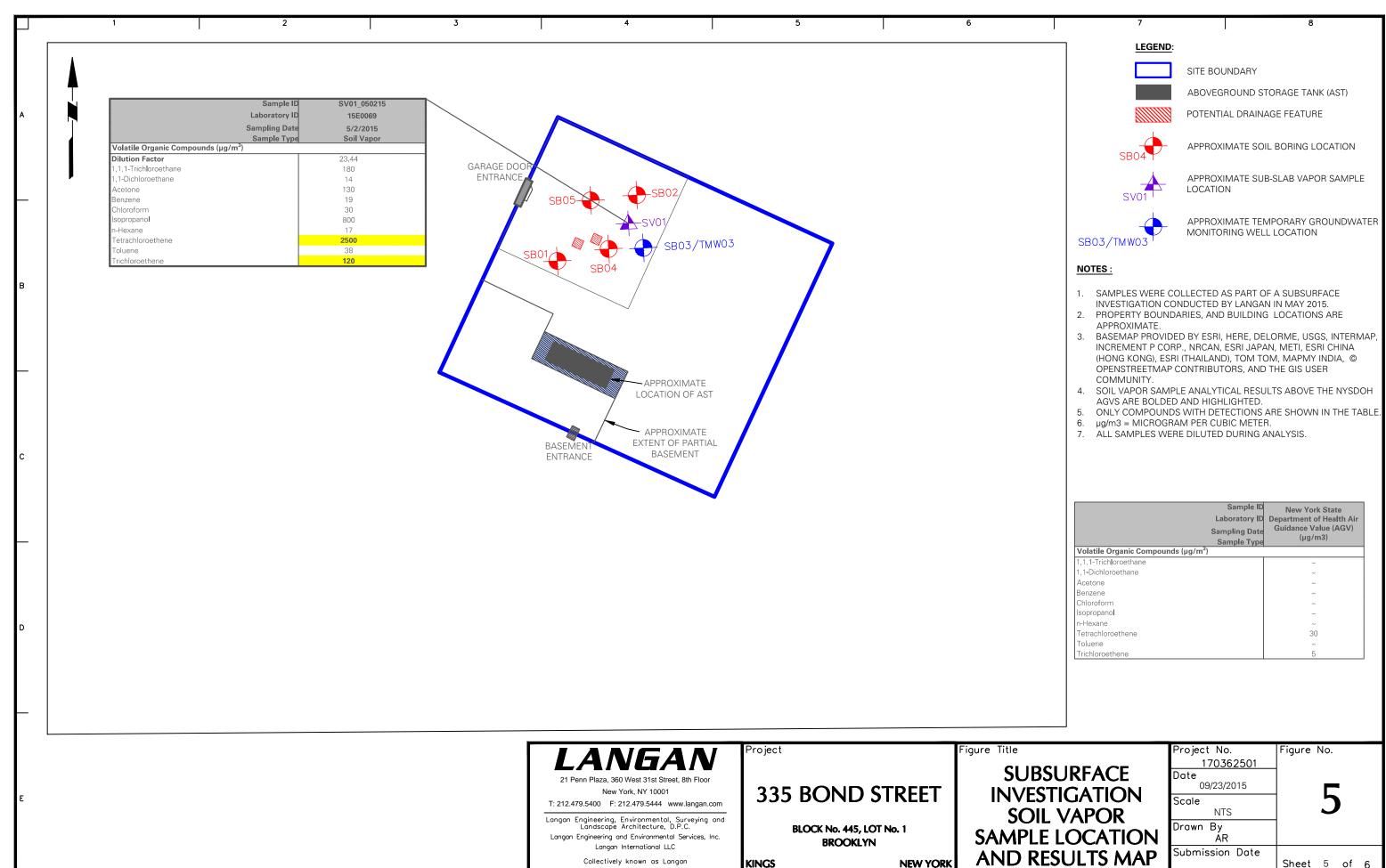


	7		8
 	/	I	o
		SITE BOUNDARY	
17	NOTES :		
	1. DATA, PRO LOCATIONS	PERTY BOUNDARIES, A S ARE APPROXIMATE.	AND BUILDING


6

	Project No.	Figure	No.			1
	170362501					
	Date	1				
	09/25/2015		-			
	Scale					
E MAP	NTS					
	Drawn By					
	AR					
	Submission Date					0100
		Sheet	2	of	6	c c


Filename: \\langan.com\data\NY\data5\170362501\Cadd Data - 170362501\2D-DesignFiles\Figure 3 - Subsurface Investigation Sample Location and Results Map.dwg Date: 9/28/2015 Time: 08:31 User: arosenblatt Style Table: Langan.stb Layout: ANSIB-BL


- 3. BASEMAP PROVIDED BY ESRI, HERE, DELORME, USGS, INTERMAP, INCREMENT P CORP., NRCAN, ESRI JAPAN, METI, ESRI CHINA (HONG KONG), ESRI (THAILAND), TOM TOM, MAPMY INDIA, © OPENSTREETMAP CONTRIBUTORS, AND THE GIS USER COMMUNITY.
- 4. NYSDEC PART 375 UNRESTRICTED USE SCO EXCEEDANCES ARE BOLDED AND HIGHLIGHTED GRAY.
- NYSDEC PART 375 RESTRICTED USE RESIDENTIAL SCO 5. EXCEEDANCES ARE BOLDED AND HIGHLIGHTED YELLOW.
- 6. ONLY COMPOUNDS WITH EXCEEDANCES ARE SHOWN IN THE TABLES.
- MG/KG = MICROGRAM PER KILOGRAM. 7
- 8. D=RESULT IS FROM AN ANALYSIS THAT REQUIRED A DILUTION.
- 9. E = RESULT IS ESTIMATED AND CANNOT BE ACCURATELY REPORTED DUE TO LEVELS ENCOUNTERED OR INTERFERENCES.

Sample ID Laboratory ID Sampling Date Sample Type		NYSDEC Part 375 Unrestricted Use Soil Cleanup Objectives	NYSDEC Part 375 Restricte Use Residential Soil Cleanup Objectives		
Volatile Organic Con	npounds (mg/kg)			
Dilution Factor					
Tetrachloroethene		1.3	5.5		
Semi-Volatile Organ	ic Compounds (n	ng/kg)			
Dilution Factor					
Benzo(a)anthracene		1	1		
Benzo(k)fluoranthene		0.8	1		
Chrysene		1	1		
Metals, Target Analy	te (mg/kg)				
Dilution Factor					
Arsenic		13	16		
Copper		50	270		
Lead		63	400		
Mercury		0.18	0.81		
Nickel		30	140		

	Project No.	Figure	No.		
	170362501				
SURFACE	Date				
TIGATION	09/23/2015		7		
	Scale				
. SAMPLE	NTS				
-	Drawn By				
TION AND	ÅR				
ILTS MAP	Submission Date				
		Sheet	3	of	6

ANSIB-BL

Filename: \\langan.com\data\NY\data5\170362501\Cadd Data - 170362501\2D-DesignFiles\Figure X - Subsurface Investigation Soil Vapor Sample Location and Results Map.dwg Date: 9/28/2015 Time: 08:28 User: arosenblatt Style Table: Langan.stb Layout: ANSIB-BL

2013 Langai

APPENDIX A Previous Environmental Reports

Technical Excellence Practical Experience Client Responsiveness

May 6, 2015

Mr. Eduard Slinin E&M Realty Corp. 335 Bond Street Brooklyn, NY 11231

Re: Subsurface Investigation Letter Report 335 Bond Street Brooklyn, New York 11231 Langan Project No.: 170362501

Dear Mr. Slinin:

Langan Engineering, Environmental, Surveying and Landscape Architecture, D.P.C. (Langan) conducted a subsurface investigation on behalf of E&M Realty Corp. for the property located at 335 Bond Street in Brooklyn, New York. The purpose of this investigation was to evaluate possible impacts to soil, soil vapor, and groundwater due to historical use of the site. This letter report provides a description of the site background, investigation methodologies, investigation results, and conclusions.

Site Background

The site is located at 335 Bond Street in the Gowanus neighborhood of Brooklyn, New York and is identified as Block 445, Lot 1 on the New York City Tax Map. The site has an area of approximately 0.36 acres, and is occupied by a one-story office building and garage operated by NYC Two Way International, a private car and limousine service. The building includes a partial cellar, which houses an abandoned aboveground storage tank (AST) in a concrete vault. The site is bound by a two-story residential building and an industrial lot to the north; a two-story industrial and commercial building to the east; Carroll Street to the south; and Bond Street to the west. Surrounding properties are predominantly occupied by mixed-use industrial and commercial developments (north, east and south) and residential developments (west).

Field Investigation

The subsurface investigation was implemented on May 2, 2015 and included:

- A geophysical survey to locate potential underground storage tanks (USTs) and other subsurface structures;
- The advancement of five soil borings to depths of up to 9 feet below grade surface (bgs) and collection of five soil samples;

- Installation of one temporary groundwater monitoring well and collection of one groundwater sample; and,
- Installation of one temporary sub-slab soil vapor sampling point and collection of one soil vapor sample.

<u>Geophysical Survey</u>

NOVA Geophysical Services (NOVA) conducted a geophysical survey under the supervision of a Langan field engineer to identify USTs and subsurface structures located beneath the basement slab. The survey included ground penetrating radar (GPR) and electromagnetic (EM) detectors.

Soil Investigation

Five soil borings were advanced in the building's garage by AARCO Environmental Services Corp. (AARCO). Langan field personnel documented drilling activities and collected samples. Soil boring locations are shown on Figure 1. The soil borings were advanced to depths up to 9 feet bgs, using a Geoprobe[®] 420M direct-push drill rig. Soil samples were inspected for visual and olfactory evidence of contamination and screened for organic vapors with a photoionization detector (PID). The five soil borings were advanced in the garage to evaluate the extent of potential impacts due to historic use. A total of five grab soil samples were collected for laboratory analysis. Where present, one sample was collected from the interval in each boring that exhibited the highest PID readings and/or visual and olfactory indications of contamination. Soil boring logs are provided in Attachment 1.

Samples were collected into laboratory-supplied containers and delivered via courier under standard chain-of-custody protocol to York Analytical, Inc. (York). York is a New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP)-certified laboratory. Samples were analyzed for volatile organic compounds (VOC), semivolatile organic compounds (SVOC), metals, toxicity characteristic leachate procedure (TCLP) metals, pesticides, and polychlorinated biphenyls (PCB).

Groundwater Investigation

One temporary groundwater monitoring well (TMW01) was installed in the eastern-most soil boring, SB03. TMW01 was constructed of a 1-inch diameter, 9-foot-long Schedule 40 polyvinyl chloride (PVC) screen comprised of machine-slotted 0.020-inch-wide slots. The temporary groundwater monitoring well location is shown on Figure 1.

Following installation, TMW01 was developed to remove fine-grained sediment from the filter pack and enhance the hydraulic efficiency of the surrounding formation. Well development of TMW01 was conducted using a peristaltic pump with dedicated polyethylene tubing.

Water levels were measured using a Solinst oil/water interface probe. TMW01 was purged using low-flow purge and sample techniques. The well was purged using clean, dedicated, polyethylene tubing attached to a peristaltic pump. During purging, groundwater was

monitored for dissolved oxygen, pH, temperature, turbidity, specific conductivity, and oxidation reduction potential using a Horiba U-52 water quality meter. Purging was considered complete after at least three well volumes were removed and all parameter readings were stabilized for three successive readings within a reasonable time frame. The monitored parameters were recorded on the well sampling logs provided in Attachment 2.

The groundwater samples were collected into laboratory-supplied containers and delivered via courier under standard chain-of-custody protocol to York. The groundwater samples were analyzed for VOCs, SVOCs, total metals, pesticides, and PCBs. One trip blank was analyzed for VOCs for quality assurance/quality control (QA/QC) purposes.

Soil Vapor Investigation

One sub-slab soil vapor point was installed in the eastern portion of the garage. The sub-slab soil vapor point was installed by AARCO and documented by Langan field personnel. The soil vapor point was installed to a depth of approximately 1- to 2-inches beneath the floor slab. At the sub-slab location, a 2-inch stainless steel probe attached to dedicated polyethylene tubing was inserted into a 1/2-inch diameter borehole. The annulus around the tubing was filled with #2 filter sand to just below the underside of the floor slab. Bentonite slurry was then used to seal the top of the sample point. The soil vapor point location is shown in Figure 1.

The soil vapor point was purged using a MultiRAE five-gas meter at an approximate rate of 0.05 liters per minute (L/min) to evacuate a minimum of three tubing/vapor point volumes prior to sample collection. The soil vapor sample was collected into a laboratory-supplied, batch-certified clean, 6-liter Summa[®] canister that was calibrated for a 2-hour sampling period. The sub-slab vapor sampling log is provided in Attachment 3.

The canisters were labeled and transported via courier under standard chain-of-custody protocol to York. The soil vapor sample was analyzed for VOCs via United States Environmental Protection Agency (USEPA) Method TO-15.

Observations and Results

Site Observations

Langan observed an abandoned, approximately 1,000-gallon AST within a concrete vault in the building basement. Upon observation, the AST was significantly corroded and approximately 3-to 4-inches of standing water was noted at the base of the vault. The fill line associated with the AST was observed to be cut, and evidence of fill port removal operations were observed (i.e., a concrete sidewalk patch) on the adjacent sidewalk along Carroll Street.

An approximately 14-inch by 14-inch, perforated, steel plate covering a potential drainage feature was located in the central portion of the garage. Debris including a concrete block, bricks, and soil were observed beneath the steel plate. The top four inches of the potential drainage feature were exposed and appeared to be constructed of the existing concrete slab and brick. A second potential drainage feature was observed approximately 2 feet to the

southwest and was covered by an approximately 24-inch by 24-inch, solid, steel plate. The function of the potential drainage features is unknown.

Geophysical Survey

The geophysical survey identified subsurface anomalies indicative of utilities and possible former utilities in the garage. Approximately 3- to 4-inches of standing water was observed in the building basement. Due to the high reflectance and interference of water, a geophysical survey could not be completed in this area of the site.

Soil Observations

Below the garage slab, the subsurface strata at the site consists of fill material characterized by loose, brown, fine to coarse sand with some brick and concrete fragments, and trace coal ash. The fill layer extended to depths ranging from approximately 4 to 8.5 feet bgs and was intersected by layers of degraded concrete and brick at varying depths. Native sands and silty sands were observed beneath the fill layer at depth intervals ranging from approximately 4 to 9 feet bgs. A sweet, solvent-like odor was noted in SB03 at a depth interval of 5 to 6 feet bgs.

Groundwater Observations

Groundwater was encountered in all five soil borings at depths ranging from 6 to 8.5 feet bgs. The site is located approximately 180 feet west of the Gowanus Canal, which is tidally influenced. Depth to groundwater was measured using a Solinst oil/water interface probe in TMW01, and was observed at 6.87 feet below the top of casing.

Soil Analytical Results

Several VOCs, SVOCs and metals were detected at concentrations exceeding Title 6 of the New York Codes, Rules and Regulations (6 NYCRR) Part 375 Unrestricted Use Soil Cleanup Objectives (SCOs). Tetrachloroethene (PCE), benzo(a)anthracene, arsenic, and mercury were detected at concentrations exceeding their respective Restricted Use Residential SCOs. Table 1 provides a summary of SCO exceedances. The laboratory analytical report is provided in Attachment 4.

Groundwater Analytical Results

One VOC, cis-1,2-dichloroethene, and several metals were detected at concentrations exceeding the New York State Department of Environmental Conservation (NYSDEC) Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards (AWQS) and Guidance Values for Class GA groundwater. Table 2 provides a summary of TOGS AWQS exceedances. The laboratory analytical report is provided in Attachment 4.

Sub-Slab Vapor Analytical Results

PCE and trichloroethene (TCE) were detected in soil vapor samples at concentrations exceeding their respective NYSDOH Air Guidance Values (AGV). It is important to note that in this capacity, the AGVs are used as reference comparisons only, as they are technically related to indoor air sample results. Per Matrix 1 of the NYSDOH October 2006 Final Guidance on Soil Vapor Intrusion, the TCE and 1,1,1-trichloroethane concentrations exceed the guideline for monitoring and/or mitigation depending on the indoor air concentration, which is unknown. Per Matrix 2, the PCE concentration exceeds the guideline for mitigation no matter what the indoor air concentration. Therefore, per the NYSDOH soil vapor intrusion guidance matrices, mitigation is recommended. Table 3 provides a summary of VOC detections. The laboratory analytical report is provided in Attachment 4.

Conclusions

Site soil was found to be impacted with PCE, several SVOCs and several metals at concentrations exceeding their 6 NYCRR Part 375 Restricted Use Residential SCOs. Groundwater was found to be impacted with cis-1,2-dichloroethene and several metals at concentrations exceeding the TOGS AWQS for Class GA groundwater. Site soil vapor was found to be impacted with PCE and TCE. Comparison of the sub-slab sample PCE concentration to Matrix 2 of the NYSDOH October 2006 Final Guidance on Soil Vapor Intrusion found that mitigation was recommended with regards to future on-site redevelopment.

Sincerely,

Langan Engineering, Environmental, Surveying and Landscape Architecture, D.P.C.

Ryan Manderbach, CHMM Senior Project Manager

Michael Burke, CHMM Senior Associate/Vice President

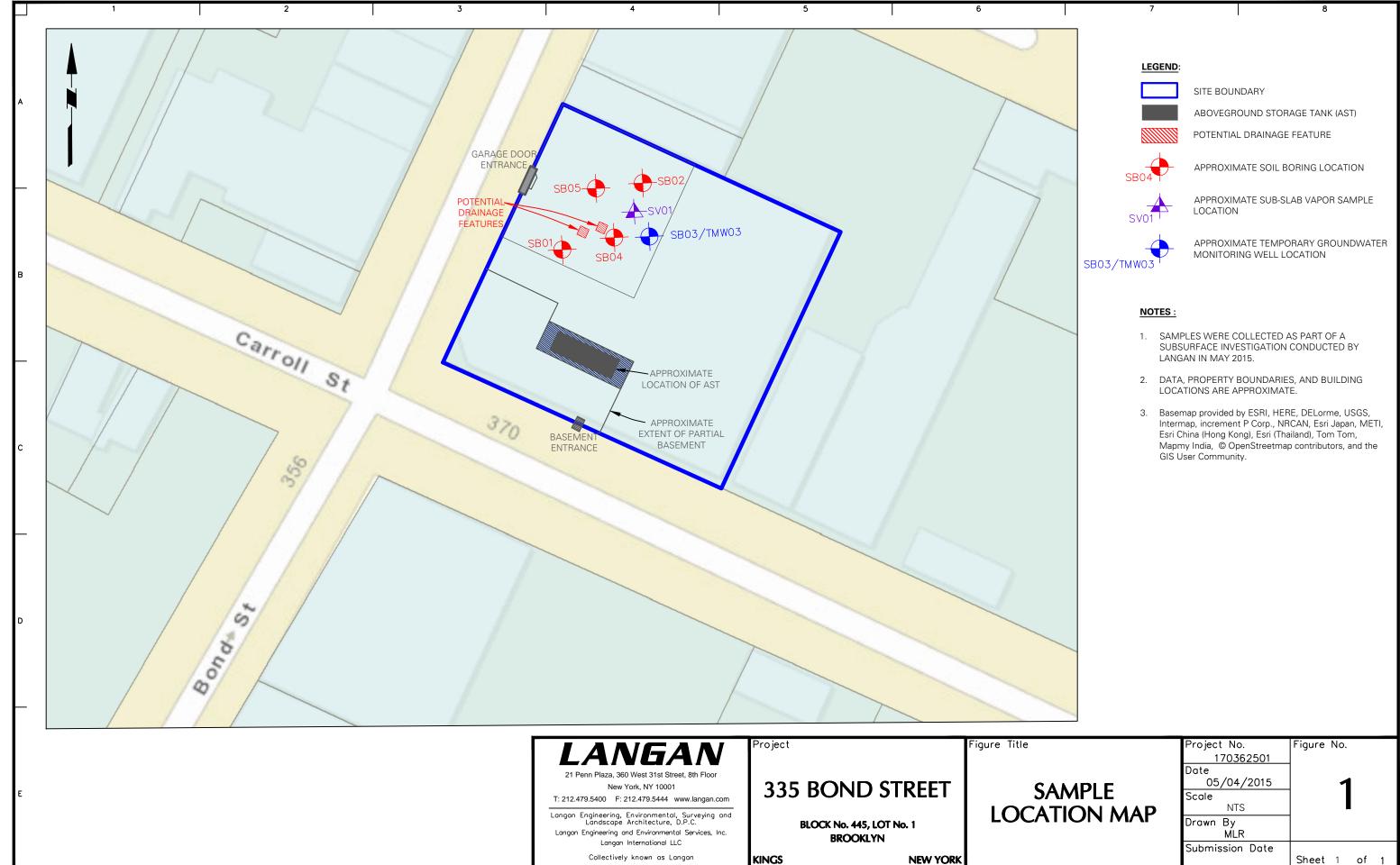

Enclosure(s): Figure 1 – Sample Location Map

Table 1 – Soil Sample Analysis Results SummaryTable 2 – Groundwater Sample Analysis Results SummaryTable 3 – Soil Vapor Analysis Results SummaryAttachment 1 – Soil Boring LogsAttachment 2 – Groundwater Sampling LogAttachment 3 – Sub-Slab Soil Vapor Sampling LogAttachment 4 – Laboratory Analytical Reports

\langan.com\data\NY\data5\170362501\Office Data\Reports\Environmental\Technical Report\2015-05-06 Subsurface Investigation Tech Report.docx

FIGURES

TABLES

Table 1 - Soil Sample Analysis Results Summary Subsurface Investigation Report 335 Bond Street Brooklyn, NY 11231 Langan Project No. 170362501

Sample ID		NYSDEC Part 375	SB01_2.5-3	3	SB02_2.5-3		SB03_5-5.		SB04_0.5	j-1	SB05_5-	5.5
Laboratory ID	NYSDEC Part 375 Unrestricted Use Soil	Restricted Use Soil	15E0070-0	1	15E0070-02	2	15E0070-0	-	15E0070-		15E0070	
Sampling Date Sample Type	Cleanup Objectives	Cleanup Objectives - Restricted Residential	5/2/2015 Soil		5/2/2015 Soil		5/2/2015 Soil		5/2/201 Soil	5	5/2/201 Soil	15
Volatile Organic Compounds (m			3011		301		3011		3011		3011	
Dilution Factor	5,		1		1		1		1		100	
1,1,1-Trichloroethane	0.68	~	0.0040	U	0.0030	U	0.0035	U	0.0057		0.29	U
2-Butanone	0.12	100	0.0040	U	0.0030	U	0.0043	J	0.0025	U	0.29	U
Acetone	0.05	100	0.018		0.012	J	0.049		0.013		0.59	U
Tetrachloroethylene	1.3	19	0.017		0.20		0.051		0.23	Е	8.60	D
Trichloroethylene	0.47	21	0.0040	U	0.0087		0.0035	U	0.018		0.43	JD
Semi-Volatile Organic Compoun	ds (mg/kg)											
Dilution Factor			1		2		1		2		10	
1,1'-Biphenyl	~	~	0.027	U	0.050	U	0.029	U	0.047	U	0.17	D
2-Methylnaphthalene	~	~	0.027	U	0.050	U	0.029	U	0.047	U	0.53	D
Acenaphthene	20	100	0.027	U	0.11	D	0.029	U U	0.087	JD	1.39	D
Acenaphthylene	100	100	0.027	U U	0.050	U	0.029 0.029	U	0.047	U D	0.075	JD
Anthracene Benzo(a)anthracene	100 1	100 1	0.027	0	0.23	D D	0.029	U	0.23 0.86	D	1.43 2.69	D
Benzo(a)pyrene	1	1	0.053	J	0.55	D	0.063		0.37	D	0.86	D
Benzo(b)fluoranthene	1	1	0.030	J	0.52	D	0.056	J	0.34	D	0.87	D
Benzo(g,h,i)perylene	100	10	0.047	U	0.15	D	0.029	U	0.12	D	0.48	D
Benzo(k)fluoranthene	0.8	3.9	0.059	5	0.56	D	0.065	Ŭ	0.35	D	1.28	D
Carbazole	~	~	0.027	U	0.081	JD	0.029	U	0.064	JD	0.93	D
Chrysene	1	3.9	0.074		0.91	D	0.093		0.84	D	2.43	D
Dibenzo(a,h)anthracene	0.33	0.33	0.027	U	0.079	JD	0.029	U	0.062	JD	0.18	D
Dibenzofuran	7	59	0.027	U	0.050	U	0.029	U	0.047	U	1.03	D
Fluoranthene	100	100	0.16		1.71	D	0.22		1.49	D	10.20	D
Fluorene	30	100	0.027	U	0.074	JD	0.029	U	0.065	JD	1.25	D
Indeno(1,2,3-cd)pyrene	0.5	0.5	0.027	U	0.16	D	0.029	U	0.13	D	0.43	D
Naphthalene	12	100	0.027	U	0.050	U	0.029	U	0.047	U	1.04	D
Phenanthrene	100	100	0.10		1.02	D	0.13		0.86	D	10.90	D
Pyrene	100	100	0.12		1.60	D	0.17		1.35	D	7.57	D
Pesticides (mg/kg)												
No Detections												
Polychlorinated Biphenyls (mg/l No Detections	(g)											
Metals, Target Analyte (mg/kg)	-											
Dilution Factor	1		1									
Aluminum	~	~			1		1		1		1	
Antimony	~		4,910		1 4,210		1 9,170		1 5,350		1 4,200	
Arsenic		~	4,910 1.86					U		U		U
	13	~ 16			4,210		9,170	U	5,350	U	4,200	U
Barium			1.86		4,210 1.31		9,170 0.68	U	5,350 0.56	U	4,200 0.57	U
Barium Calcium	13	16	1.86 8.38		4,210 1.31 22.90		9,170 0.68 7.95	U	5,350 0.56 4.83	U	4,200 0.57 3.83	U
	13	16 400	1.86 8.38 139		4,210 1.31 22.90 141		9,170 0.68 7.95 81	U	5,350 0.56 4.83 62.70	U	4,200 0.57 3.83 36	U
Calcium	13 350 ~	16 400 ~	1.86 8.38 139 7,710		4,210 1.31 22.90 141 44,900		9,170 0.68 7.95 81 130,000	U	5,350 0.56 4.83 62.70 16,400	U	4,200 0.57 3.83 36 56,800	U
Calcium Chromium Cobalt Copper	13 350 ~ ~	16 400 ~ 180	1.86 8.38 139 7,710 11 7.46 96.10		4,210 1.31 22.90 141 44,900 7.22 3.31 100		9,170 0.68 7.95 81 130,000 8.86 3.97 12.60	U	5,350 0.56 4.83 62.70 16,400 12.50 7.79 31	U	4,200 0.57 3.83 36 56,800 8 5.33 15	U
Calcium Chromium Cobalt Copper Iron	13 350 ~ ~ 50 ~	16 400 ~ 180 ~ 270 ~	1.86 8.38 139 7,710 11 7.46 96.10 7,700		4,210 1.31 22.90 141 44,900 7.22 3.31 100 11,500		9,170 0.68 7.95 81 130,000 8.86 3.97 12.60 10,000	U	5,350 0.56 4.83 62.70 16,400 12.50 7.79 31 12,300	U	4,200 0.57 3.83 36 56,800 8 5.33 15 9,510	U
Calcium Chromium Cobalt Copper Iron Lead	13 350 ~ ~ 50 ~ 63	16 400 ~ 180 ~ 270 ~ 400	1.86 8.38 139 7,710 11 7.46 96.10 7,700 247		4,210 1.31 22.90 141 44,900 7.22 3.31 100 11,500 304		9,170 0.68 7.95 81 130,000 8.86 3.97 12.60 10,000 52.40	U	5,350 0.56 4.83 62.70 16,400 12.50 7.79 31 12,300 109	U	4,200 0.57 3.83 36 56,800 8 5.33 15 9,510 28.60	U
Calcium Chromium Cobalt Copper Iron Lead Magnesium	13 350 ~ ~ 50 ~ 63 ~	16 400 ~ 180 ~ 270 ~ 400	1.86 8.38 139 7,710 11 7.46 96.10 7,700 247 769		4,210 1.31 22.90 141 44,900 7.22 3.31 100 11,500 304 4,010		9,170 0.68 7.95 81 130,000 8.86 3.97 12.60 10,000 52.40 10,500	U	5,350 0.56 4.83 62.70 16,400 12.50 7.79 31 12,300 109 5,830	U	4,200 0.57 3.83 36 56,800 8 5.33 15 9,510 28.60 2,960	U
Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese	13 350 ~ ~ 50 ~ 63 ~ 1600	16 400 ~ 180 ~ 270 ~ 400 ~ 2000	1.86 8.38 139 7,710 11 7.46 96.10 7,700 247 769 120		4,210 1,31 22,90 141 44,900 7,22 3,31 100 11,500 304 4,010 170		9,170 0.68 7.95 81 130,000 8.86 3.97 12.60 10,000 52.40 10,500 237	U	5,350 0.56 4.83 62.70 16,400 12.50 7.79 31 12,300 109 5,830 259	U	4,200 0.57 3.83 36 56,800 8 5.33 15 9,510 28.60 2,960 186	U
Calcium Chromium Cobalt Copper Iron Lead Magnesium Magnese Nickel	13 350 ~ ~ 50 ~ 63 ~ 1600 30	16 400 ~ 180 ~ 270 ~ 400 ~ 2000 310	1.86 8.38 139 7,710 11 7.46 96.10 7,700 247 769 120 16.60		4,210 1,31 22.90 141 44,900 7,22 3,31 100 11,500 304 4,010 170 12,30		9,170 0.68 7.95 81 130,000 8.86 3.97 12.60 10,000 52.40 10,500 237 9.45	U	5,350 0.56 4.83 62.70 16,400 12.50 7.79 31 12,300 109 5,830 259 55.40	U	4,200 0.57 3.83 36 56,800 8 5.33 15 9,510 28.60 2,960 186 17	U
Calcium Chromium Cobalt Copper Iron Lead Magnesium Maganese Nickel Potassium	13 350 ~ 50 ~ 63 ~ 1600 30 ~	16 400 ~ 180 ~ 270 ~ 400 ~ 2000 310 ~	1.86 8.38 139 7,710 11 7,46 96.10 7,700 247 769 120 16.60 841		4,210 1,31 22,90 141 44,900 7,22 3,31 100 11,500 304 4,010 170 12,30 980		9,170 0.68 7.95 81 130,000 8.86 3.97 12.60 10,000 52.40 10,500 237 9.45 1,380		5,350 0.56 4.83 62.70 16,400 12.50 7.79 31 12,300 109 5,830 259 55.40 1,100	U	4,200 0.57 3.83 36 56,800 8 5.33 15 9,510 28,60 2,960 186 17 1,410	
Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium	13 350 ~ ~ 50 ~ 63 ~ 1600 30	16 400 ~ 180 ~ 270 ~ 400 ~ 2000 310	1.86 8.38 139 7.710 11 7.46 96.10 7,700 247 769 120 16.60 841 3.26		4,210 1,31 22.90 141 44,900 7,22 3,31 100 11,500 304 4,010 170 12,30 980 1,20 	U	9,170 0.68 7.95 81 130,000 8.86 3.97 12.60 10,000 52.40 10,500 237 9.45 1,380 1.37	U	5,350 0.56 4.83 62.70 16,400 12.50 7.79 31 12,300 109 5,830 259 55.40 1,100 1,48	U	4,200 0.57 3.83 36 56,800 8 5.33 15 9,510 28,60 2,960 186 17 1,410 1.14	U
Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Sodium	13 350 ~ 50 ~ 63 ~ 1600 30 ~	16 400 ~ 180 ~ 270 ~ 400 ~ 2000 310 ~	1.86 8.38 139 7,710 11 7,46 96.10 7,700 247 769 120 16.60 841 3.26 1,170		4,210 1,31 22,90 141 44,900 7,22 3,31 100 11,500 304 4,010 170 12,30 980 1,20 588	U	9,170 0.68 7.95 81 130,000 8.86 3.97 12.60 10,000 52.40 10,500 237 9.45 1,380 1.37 533		5,350 0.56 4.83 62.70 16,400 12.50 7.79 31 12,300 109 5,830 259 55.40 1,100 1.48 597	U	4,200 0.57 3.83 36 56,800 8 5,33 15 9,510 28,60 2,960 186 17 1,410 1.14 303	
Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium	13 350 ~ ~ 50 ~ 63 ~ 1600 30 ~ 3.9 ~	16 400 ~ 180 ~ 270 ~ 400 ~ 2000 310 ~ 180 ~	1.86 8.38 139 7.710 11 7.46 96.10 7,700 247 769 120 16.60 841 3.26		4,210 1,31 22.90 141 44,900 7,22 3,31 100 11,500 304 4,010 170 12,30 980 1,20 	υ	9,170 0.68 7.95 81 130,000 8.86 3.97 12.60 10,000 52.40 10,500 237 9.45 1,380 1.37		5,350 0.56 4.83 62.70 16,400 12.50 7.79 31 12,300 109 5,830 259 55.40 1,100 1,48	U	4,200 0.57 3.83 36 56,800 8 5.33 15 9,510 28,60 2,960 186 17 1,410 1.14	
Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Selenium Sadium	13 350 ~ ~ 50 ~ 63 ~ 1600 30 ~ 3.9 ~ ~ ~	16 400 ~ 180 ~ 270 ~ 400 ~ 2000 310 ~ 180 ~ 7	1.86 8.38 139 7,710 11 7.46 96.10 7,700 247 769 120 16.60 841 3.26 1,170 18.60		4,210 1,31 22,90 141 44,900 7,22 3,31 100 11,500 304 4,010 170 12,30 980 1,20 588 14	U	9,170 0.68 7.95 81 130,000 8.86 3.97 12.60 10,000 52.40 10,500 237 9.45 1,380 1.37 533 21.20		5,350 0.56 4.83 62.70 16,400 12.50 7.79 31 12,300 109 5,830 259 55,40 1,100 1.48 597 16,90	U	4,200 0.57 3.83 36 56,800 8 5.33 15 9,510 28,60 2,960 186 17 1,410 1.14 303 15.70	
Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Sodium Zinc	13 350 ~ ~ 50 ~ 63 ~ 1600 30 ~ 3.9 ~ ~ ~	16 400 ~ 180 ~ 270 ~ 400 ~ 2000 310 ~ 180 ~ 7	1.86 8.38 139 7,710 11 7.46 96.10 7,700 247 769 120 16.60 841 3.26 1,170 18.60		4,210 1,31 22,90 141 44,900 7,22 3,31 100 11,500 304 4,010 170 12,30 980 1,20 588 14	υ	9,170 0.68 7.95 81 130,000 8.86 3.97 12.60 10,000 52.40 10,500 237 9.45 1,380 1.37 533 21.20		5,350 0.56 4.83 62.70 16,400 12.50 7.79 31 12,300 109 5,830 259 55,40 1,100 1.48 597 16,90	U	4,200 0.57 3.83 36 56,800 8 5.33 15 9,510 28,60 2,960 186 17 1,410 1.14 303 15.70	
Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Selenium Sodium Vanadium Zinc Metals, TCLP RCRA (mg/kg)	13 350 ~ ~ 50 ~ 63 ~ 1600 30 ~ 3.9 ~ ~ ~	16 400 ~ 180 ~ 270 ~ 400 ~ 2000 310 ~ 180 ~ 7	1.86 8.38 139 7.710 11 7.46 96.10 7,700 247 769 120 16.60 841 3.26 1,170 18.60 126		4,210 1,31 22.90 141 44,900 7,22 3,31 100 11,500 304 4,010 170 12,30 980 1,20 588 14 99,10	U	9,170 0.68 7.95 81 130,000 8.86 3.97 12.60 10,000 52.40 10,500 237 9.45 1,380 1.37 533 21.20 28.10		5,350 0.56 4.83 62.70 16,400 7.79 31 12,300 109 5,830 259 55.40 1,100 1.48 597 16,90 81,40	U	4,200 0.57 3.83 36 56,800 8 5,33 15 9,510 28,60 2,960 186 17 1,410 1.14 303 15,70 38,40	
Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Selenium Sodium Vanadium Zinc Metals, TCLP RCRA (mg/kg) Dilution Factor	13 350 ~ ~ 50 ~ 63 ~ 1600 30 ~ 3.9 ~ 3.9 ~ 109	16 400 ~ 180 ~ 270 ~ 400 ~ 2000 310 ~ 180 ~ 180 ~ 10000	1.86 8.38 139 7.710 11 7.46 96.10 7,700 247 769 120 16.60 841 3.26 1,170 18.60 126		4,210 1,31 22,90 141 44,900 7,22 3,31 100 11,500 304 4,010 170 12,30 980 1,20 588 14 99.10 304 1	U	9,170 0.68 7.95 81 130,000 8.86 3.97 12.60 10,000 52.40 10,500 237 9.45 1,380 1.37 533 21.20 28.10	U	5,350 0.56 4.83 62.70 16,400 12.50 7.79 31 12,300 109 5,830 259 55.40 1,100 1.48 597 16.90 81.40		4,200 0.57 3.83 36 56,800 8 5.33 15 9,510 28,60 2,960 186 17 1,410 1.14 303 15.70 38.40 1	U
Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Sodium Vanadium Zinc Metals, TCLP RCRA (mg/kg) Dilution Factor Arsenic	13 350 ~ ~ 50 ~ 63 ~ 1600 30 ~ 3.9 ~ ~ 109	16 400 ~ 180 ~ 270 ~ 400 ~ 2000 310 ~ 180 ~ 10000	1.86 8.38 139 7,710 11 7.46 96.10 7,700 247 769 120 16.60 841 3.26 1,170 18.60 126 126		4,210 1,31 22,90 141 44,900 7,22 3,31 100 11,500 304 4,010 170 12,30 980 1,20 588 14 99.10 1 0,04	U	9,170 0.68 7.95 81 130,000 8.86 3.97 12.60 10,000 52.40 10,500 237 9.45 1,380 1.37 533 21.20 28.10 28.10	U	5,350 0.56 4.83 62.70 16,400 12.50 7.79 31 12,300 109 5,830 259 55.40 1,100 1.48 597 16.90 81.40		4,200 0.57 3.83 36 56,800 8 5.33 15 9,510 28,60 2,960 186 17 1,410 303 15,70 38,40 1 1 0,00	U
Calcium Chromium Cobalt Copper Iron Lead Magnesium Maganese Nickel Potassium Selenium Selenium Sodium Vanadium Zinc Metals, TCLP RCRA (mg/kg) Dilution Factor Arsenic Barium Lead Selenium	13 350 ~ ~ 50 ~ 63 ~ 63 ~ 3.0 ~ 3.9 ~ ~ 109	16 400 ~ 180 ~ 270 ~ 400 ~ 2000 310 ~ 180 ~ 180 ~ 10000	1.86 8.38 139 7,710 11 7.46 96.10 7,700 247 769 120 16.60 841 3.26 1,170 18.60 126 1 10.022 0.243		4,210 1,31 22,90 141 44,900 7,22 3,31 100 11,500 304 4,010 170 12,30 980 1,20 588 14 99.10 	υ	9,170 0.68 7.95 81 130,000 8.86 3.97 12.60 10,000 52.40 10,500 237 9.45 1,380 1.37 533 21.20 28.10 1 0.00 0.14	U	5,350 0.56 4.83 62.70 16,400 12.50 7.79 31 12,200 109 5 ,830 259 55,40 1,100 1.48 597 16,90 81.40 1 0,00 0.49		4,200 0.57 3.83 36 56,800 8 5.33 15 9,510 28,60 2,960 186 17 1,410 1.14 303 15.70 38.40 1 0.00 0.22	U
Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Sodium Vanadium Zinc Metals, TCLP RCRA (mg/kg) Dilution Factor Arsenic Barium Lead Selenium Mercury (mg/kg)	13 350 ~ ~ 50 ~ 63 ~ 1600 30 ~ 3.9 ~ ~ 109	16 400 ~ 180 ~ 270 ~ 400 ~ 2000 310 ~ 180 ~ 180 ~ 10000	1.86 8.38 139 7,710 11 7.46 96.10 7,700 247 769 120 16.60 841 3.26 1,170 18.60 126 126 1 0.022 0.243 0.042 0.012		4,210 1,31 22,90 141 44,900 7,22 3,31 100 11,500 304 4,010 170 12,30 980 1,20 588 14 99,10 1 0,04 0,22 0,02 0,02	U	9,170 0.68 7.95 81 130,000 8.86 3.97 12.60 10,000 52.40 10,500 237 9.45 1,380 1.37 533 21.20 28.10 1 0.00 0.14 0.00 0.01	U	5,350 0.56 4.83 62.70 16,400 12.50 7.79 31 12,300 109 5,830 259 55.40 1,109 1.48 597 16.90 81.40 1 0.00 0.49 0.02		4,200 0.57 3.83 36 56,800 8 5.33 15 9,510 28.60 2,960 186 17 1,410 1.14 303 15.70 3840 1 0.00 0.22 0.00 0.01	U
Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Sodium Vanadium Zinc Metals, TCLP RCRA (mg/kg) Dilution Factor Arsenic Barium Lead Selenium Mercury (mg/kg) Dilution Factor	13 350 ~ ~ 50 ~ 63 ~ 1600 30 ~ ~ 3.9 ~ ~ 109 13 350 63 3.9	16 400 ~ 180 ~ 270 ~ 400 ~ 2000 310 ~ 180 ~ 10000 16 400 400 180	1.86 8.38 139 7,710 11 7.46 96.10 7,700 247 769 120 16.60 841 3.26 1,170 18.60 126 1,170 18.60 126 1 1 0.022 0.243 0.042 0.012		4,210 1,31 22,90 141 44,900 7,22 3,31 100 11,500 304 4,010 170 12,30 980 1,20 588 14 99.10 1 0,04 0,22 0,02 0,02 1	U	9,170 0.68 7.95 81 130,000 8.86 3.97 12.60 10,000 52.40 10,500 237 9.45 1,380 1.37 533 21.20 28.10 1 0.00 0.14 0.00 0.14 0.00 1.31	U	5,350 0.56 4.83 62.70 16,400 12.50 7.79 31 12,300 259 5,830 259 55,40 1,100 1.48 597 16.90 81.40 1 1 0.00 0.49 0.02 0.02 1		4,200 0.57 3.83 36 56,800 8 5.33 15 9,510 28,60 2,960 186 17 1,410 303 15,70 38.40 1 1 0.00 0.22 0.00 0.22 0.00 1 1	U
Calcium Chromium Cobalt Copper Iron Lead Maganesium Manganese Nickel Potassium Selenium Solenium Solium Yanadium Zinc Metals, TCLP RCRA (mg/kg) Dilution Factor Arsenic Barium Lead Selenium Mercury (mg/kg) Dilution Factor Mercury	13 350 ~ ~ 50 ~ 63 ~ 1600 30 ~ 3.9 ~ ~ 109	16 400 ~ 180 ~ 270 ~ 400 ~ 2000 310 ~ 180 ~ 180 ~ 10000	1.86 8.38 139 7,710 11 7.46 96.10 7,700 247 769 120 16.60 841 3.26 1,170 18.60 126 126 1 0.022 0.243 0.042 0.012		4,210 1,31 22,90 141 44,900 7,22 3,31 100 11,500 304 4,010 170 12,30 980 1,20 588 14 99,10 1 0,04 0,22 0,02 0,02	U	9,170 0.68 7.95 81 130,000 8.86 3.97 12.60 10,000 52.40 10,500 237 9.45 1,380 1.37 533 21.20 28.10 1 0.00 0.14 0.00 0.01	U	5,350 0.56 4.83 62.70 16,400 12.50 7.79 31 12,300 109 5,830 259 55.40 1,109 1.48 597 16.90 81.40 1 0.00 0.49 0.02		4,200 0.57 3.83 36 56,800 8 5.33 15 9,510 28.60 2,960 186 17 1,410 1.14 303 15.70 3840 1 0.00 0.22 0.00 0.01	U
Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Sodium Vanadium Zinc Metals, TCLP RCRA (mg/kg) Dilution Factor Arsenic Barium Lead Selenium Mercury (mg/kg) Dilution Factor	13 350 ~ ~ 50 ~ 63 ~ 1600 30 ~ ~ 3.9 ~ ~ 109 13 350 63 3.9	16 400 ~ 180 ~ 270 ~ 400 ~ 2000 310 ~ 180 ~ 10000 16 400 400 180	1.86 8.38 139 7,710 11 7.46 96.10 7,700 247 769 120 16.60 841 3.26 1,170 18.60 126 1,170 18.60 126 1 1 0.022 0.243 0.042 0.012		4,210 1,31 22,90 141 44,900 7,22 3,31 100 11,500 304 4,010 170 12,30 980 1,20 588 14 99.10 1 0,04 0,22 0,02 0,02 1	U	9,170 0.68 7.95 81 130,000 8.86 3.97 12.60 10,000 52.40 10,500 237 9.45 1,380 1.37 533 21.20 28.10 1 0.00 0.14 0.00 0.14 0.00 1.31	U	5,350 0.56 4.83 62.70 16,400 12.50 7.79 31 12,300 259 5,830 259 55,40 1,100 1.48 597 16.90 81.40 1 1 0.00 0.49 0.02 0.02 1		4,200 0.57 3.83 36 56,800 8 5.33 15 9,510 28,60 2,960 186 17 1,410 303 15,70 38.40 1 1 0.00 0.22 0.00 0.22 0.00 1 1	U

1. Soil sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the New York Codes, Rules and Regulations (6 NYCRR) Part 375 Unrestricted Use Soil Cleanup Objectives (SCO) and Restricted Use Restricted-Residential SCOs.

2. NYSDEC Part 375 Unrestricted Use SCO exceedances are bolded and highlighted gray.

3. NYSDEC Part 375 Restricted Use Restricted-Residential SCO exceedances are bolded and highlighted yellow.

4. Only compounds with detections are shown in the table.

mg/kg = microgram per kilogram.

Qualifiers:

Q=qualifier. D=result is from an analysis that required a dilution.

E = result is estimated and cannot be accurately reported due to levels encountered or interferences.

J = analyte detected at or above the MDL (method detection limit) but below the RL (reporting limit) - data is estimated.

 $\mathsf{U}=\mathsf{analyte}\ \mathsf{not}\ \mathsf{detected}\ \mathsf{at}\ \mathsf{or}\ \mathsf{above}\ \mathsf{the}\ \mathsf{level}\ \mathsf{indicated}.$

 \sim = regulatory limit has not been established for this analyte.

Table 2 - Groundwater Sample Analysis Results SummarySubsurface Investigation Report335 Bond StreetBrooklyn, New York 11231Langan Project No. 170362501

Location/Sample Sampling Da LabSample	Ambient Water Quality	TMW01_050 5/2/2015 15E0070-(5
Sample Ty		Groundwa	
Volatile Organic Compounds (µg/l)			
Dilution Factor		1	
1,1-Dichloroethane	5	0.93	
1,1-Dichloroethene	0.7	0.23	J
1,2,3-Trichlorobenzene	~	0.28	JB
1,2,4-Trichlorobenzene	~	0.24	JB
Benzene	1	0.61	
cis-1,2-Dichloroethene	5	100	D
Cyclohexane	~	0.29	J
Tetrachloroethene	0.7	0.34	J
trans-1,2-Dichloroethene	5	0.37	J
Trichloroethene	5	0.22	J
Semivolatile Organic Compounds (µg/l)			
Dilution Factor		1	
Acenaphthylene	20	0.21	
Bis(2-ethylhexyl)phthalate	5	1.13	В
Fluoranthene	50	0.10	
Fluorene	50	0.28	
Naphthalene	10	0.16	
Phenanthrene	50	0.060	
Pyrene	50	0.15	
Metals, Target Analyte (µg/l)			
Dilution Factor		1	
Aluminum	100	129	
Barium	1,000	133	
Calcium	~	127,000	
Copper	200	4	
Iron	600	6,100	
Lead	25	4	
Magnesium	35,000	26,400	
Manganese	300	1,040	
Potassium	~	21,400	
Selenium	10	13	
Sodium	20,000	109,000	
Zinc	2,000	12	

Notes:

1. Groundwater sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards (AWQS) and Guidance Values for Class GA groundwater.

2. NYSDEC AWQS exceedances are bolded and highlighted yellow.

3. μ g/l = micrograms per liter.

Qualifiers:

J = analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit). Result is an estimated concentration.

D = result is from an analysis that required a dilution.

B = analyte found in the analysis batch blank

 \sim = this indicates that no regulatory limit has been established for this analyte.

Table 3 - Soil Vapor Sample Analysis Results Summary Subsurface Investigation Report 335 Bond Street Brooklyn, New York 11231 Langan Project No. 70362501

	Sample ID	New York State	SV01_050215
	Laboratory ID	Department of Health Air	15E0069
	Sampling Date	Guidance Value (AGV)	5/2/2015
	Sample Type	(µg/m3)	Soil Vapor
Volatile Organic Compound	ds (µg∕m³)		
Dilution Factor			23.44
1,1,1-Trichloroethane		~	180
1,1-Dichloroethane		~	14
Acetone		~	130
Benzene		~	19
Chloroform		~	30
Isopropanol		~	800
n-Hexane		~	17
Tetrachloroethene		30	2500
Toluene		~	38
Trichloroethene		5	120

Notes:

1. Only compounds with detections are shown in the table.

2. All samples were diluted during analysis.

3. Soil vapor sample analytical results are compared to the New York State Department of Health (NYSDOH) Air Guidance Values (AGV).

4. Soil vapor sample analytical results above the NYSDOH AGVs are bolded and highlighted.

5. μ g/m³ = microgram per cubic meter

ATTACHMENT 1 – SOIL BORING LOGS

•

LOG OF BORING _______SHEET 1 OF _____

٢	PROJECT C	335 Bond St.				P	ROJ	ECT NO.	17	036	2501		
\mathbf{F}	LOCATION	entrana and a second second second	Na seco - r	1/1		EI	LEVA		D DATUM	n/c			
- 62	DRILLING AG		MO-	<u>N</u> 1	******	D	ATE	STARTE	5/2/15	T.		5/2/15	
		HABCO				10	омр	LETION			ROCK DEPTH		
L		Geoprobe 420m					10	SAMPLI	,		UNDIST n/a	CORE N/A	
\mathbf{F}	SIZE AND T	YPE OF BIT Direct PUSh, 2"	2011/06/2647			-		ERLEV		т G'	COMPL-M/C	24 HR. 17/02	
ł		MMER N/a WEIGHT N/a	DROP	nia		F	ORE	MAN	Tom	SIV			
Ŀ	SAMPLER	36" macrocore				+	NSP	ECTOR		iny snead			
\mathbf{F}	SAMPLER	HAMMER N/a WEIGHT N/a	DROP	nia	ę	SAM	IPL	ES	<u>Unit</u>	4 3			
		SAMPLE DESCRIPTION		DEPTH SCALE	NO.LOC.	TYPE	RECOV. FT.	PENETR. RESIST BL/6 in/.		(DRILLII CASING	REMARKS	OF CASING, .OSS, ETC.)	
1	С	6" Concrete State		= =		_	_	- 0	1		Ω	S Bond St DOKINA, NY	
		RIA: Loose, red-brown medium (0-8") Fine SAND, trace coarse (dry) (Fill) RIB: Loose, brown-black ((8"-14") SAND, brick fragmen black coal ash. (d. (Fill)	orse.		1-5	122000	00	0.0	BOND ST.	1	Boor (G	arage)	
		RZA: Loose, red-brown fine SA (0-12") trace (.sand, trace Silt (native Sand)	(dry)		G-3	MALA COLOCA	16" /36"	0 0 0		Begin Begin	CARPOL n coring Bon loco	LSt. Cement Sais Lecan Samplin	
	14y Sand	R2B: Loose dark brown weath (R-14") SCHIBT rock frogments, mica (dry) (native) R2C: Loose, red. brown medi (14-16") fine SAND, trace Silt (native Sand) R3: Loose, red-brown medi (0-23") fine SAND, some Sil (native Sand)	some sium to . (wet)		5-3	marrocore	23"/36"	0.0	1030	Com San dept obsi obsi obsi obsi obsi on	plete ma taling m m q bgs prived mu plect SBO ice.	crocore SCOI, final Water G'bg3. 1.2.5-3' N.P.ace	
		EOB Q q' bogs							1500	SB dr.	ten cene oi locati ii cottin <u>EOB</u> e	on Us as a neus a Grado,	

		LOG OF B	ORING		S	B	22		SH	EET 1	OF _	1
	PROJECT	335 Bond St.				PRC	JECT NC		1703	6250	10	
	LOCATION	335 Bond St. Brooklyn, N	И				ATION A		n	(A		
	DRILLING A	AARCO				DAT	E STARTE	^{ED} 5/2	115	DATE FINISH	5/2	/15
	DRILLING E					COM	PLETION	DEPTH	9.	ROCK DEPTH		10
I	SIZE AND	TYPEOFBIT Direct push, 2"				NO	SAMPL	.ES	dist. 3	UNDIST.		
	CASING	nla				WA	TERLE	VEL	FIRST 7.5	COMPL.	Va 24H	R. n/a
	CASING H		n1a		_	FOR	EMAN 👡	101	n Si	(α)		
	SAMPLER		10/0		-†	INS	PECTOR			Snead		
	SAMPLEN	HAMMER WA WEIGHT MAN DROP	n/a	1	SAI	MP	LES		med .	STRUC		
		SAMPLE DESCRIPTION	DEPTH SCALE	ų	TYPE				(DRILL CASIN	REMAI	PTH OF CA	SING, ETC.)
-	C	6" concrete Slab	E =					1			1	
	Fill	RIA: Loose, brown coarse to medium (0-12") SAND, trace brick fragments (dry) (Fill) RIB: Loose, light tan degraded (12-19") CONCRETE layer. (dry)		8-1	OLC FOCUTE	25"/ 30"	0.0 0.7 1.7 2.1	30 ND 34.	 ↓ ↓ ↓	aroge por	30nd S	€ 5802 € 20'4"
	F:II	RIC: Loose, black-brown Coarse to (19-25") medium SAND, trace gravet, brick fragments (dry) (fill)			racere ma	8		(1715)		Ercos	riyn, r	Wa\K→
	BRICK	RaB: Loose, red-brown degraded (8-16") BRICK Lower (Dr.D)	1 1 1 1 1 1 1 1 1 1	G. A	maci	30.1	1.9 0.4 0.9 0.2		30 - Be Sb 35 - Be	gin co gin se	<u></u>	cation :
	F:11	R3: LOOSE, brown fine SAND,		¹ ¹	Macrocere	.2"/3C"			o- Corri Sarr depi obs	mpling please m poling si th 9' bo arrued	acron 202. 15. Wa	final
	Sorra Sorra	(0-12,5") trate sith. (wet) (native sand) EOB @ 9' bgs	9	.я -	Marc	C)	0.0		Pade	t SBOD ple. Plo n Slavo n Rw	100 01 2002	< 100.
르르 배 영 드 드 해 있 - 드 해 해 피 드 - 상 및 - 는 는 원 와										EOBe		

LOG OF BORING $\underline{SB03}$ Sheet 1 of $\underline{1}$

PROJECT	2011			Т	PRC	JECT NO) \	7.00		- mai	
	335 Bond St.			_			<u> </u>		360	2501	
LOCATIO	335 Bund St. Brooklyn,	M				ATION A			n/0		
DRILLING	AGENCY AABCO				DAT	ESTARTI	™5/z	115		DATE FINISHED	5/2/15
DRILLING	EQUIPMENT GROPPODE 420M			-		IPLETION				ROCK DEPTH	n/a
SIZE AND	DIYPEOFBIT Direct push, 2"		_		NO	SAMPL	.ES	DIST.			CORE M/a
CASING	n/a			_		TERLE	VEL	FIRST	8.5	COMPL N/C	24 HR. n/a
	~~~	nra			FOR	EMAN	10	m	Si	KOL	
SAMPLE		5 (6)		-	INS	PECTOR				prosur	1
Unit LL	RHAMMER N/OL WEIGHT N/OL DROP	nia		SAI	MP	LES			4	21100-0-	
	SAMPLE DESCRIPTION	DEPTH SCALE	ġ	TYPE	RECOV. FT.	PENETR. RESIST BL/6 in/.				REMARK NG FLUID, DEPTH B BLOWS, FLUID	OF CASING,
C	6" Concrete Slab	= =		_			1		8	335 Bong	15+
(int	RIA: Loose, red-brown medium += (0-9") coarse SAND, brick (0-9") frogments. (dry) (Pill) RIB: Loose, gray. brown roacse (9-18") SAND, trace gravel (dry) (fill) RIC: Loose, medium to fine SAND, (13-22") trace c. Sand. (dri) (Fill)		1-8	re monorate	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0		Pond St.			5vol 4 23'
Or Creek Brick	R2A: LOOSE, reddish ton mottled (0-101) degraded CONCRETE langer. (dry) (concrete) R2B: Loose, red-brown degraded (0-161) BRICK layer (dry) (Brick),		6-2	Tracroco	16" /36"	0.1	5.3	- C - C - C	ivre t Hab Boz	Increase In Seos Moctor	nomerete 10002-1019 2019 Sometro
Sand	R.3: Loose, brown fine SAND, some (0-6") c. Sand, trace sitt. (wet)		Q-3	Macrocori	6" /36 *	0.0		SUTEN	803 0040 0000 0000 0000 0000 0000	· Final observed all TMW ing sands heralla.	depth(q)bgs dat 7.5'bgs ol + o q' s, (annot)
	EOB Cq'bgs						N	0-0	at soliec soil s polo in si Cuni	5-6' bgs + Sorrapio	2 SB03.5-5.5 Place on ire etc state the main

LOG OF BORING ______ SHEET 1 OF _____

1	PROJECT	335 Band St.			Τ	PRO	JECT NO	170	360	2501
	LOCATION		V		T	ELEV	ATION A	ND DATUM	n(	<i>ί</i> ολ
	DRILLING A				T	DATE	STARTE	··· 5/2/1	5	DATE FINISHED 5/2/15
	DRILLING E				-		PLETION		9'	ROCK DEPTH NO
	SIZE AND	TYPE OF BIT Dicect push, 2"				NO.	SAMPL		st. 3	UNDIST M/A CORE M/A
	CASING				_		TER LE	/EL FIR	st G'	COMPL. 1 / a 24 HR. 1 /a
	CASING H		n/a		-	FUR	EMAN	Ton	18	sikol
		36" Macallare HAMMER D/A WEIGHT D/A DROP	nla		-	INS	PECTOR	Em	Mity	Snead
		SAMPLE DESCRIPTION	DEPTH SCALE	NO.LOC.	SAI LYPE	RECOV. FT. AN	PENETR. H RESIST SUICE SIN.		(DRILLI CASIN	REMARKS ING FLUID, DEPTH OF CASING, IG BLOWS, FLUID LOSS, ETC.)
-	С	4.5" Concrete Slab			-			1		335 BONKSH NY
	Fill -	RIA: COSEd brown medium to fire (0-17") SAND, Some (Sand, brick Ereaments. (dry 2(Fill) RZA: Loose, reddish-tan mottled (17-20") degraded CONCRETE Lover (dry) (Concrete		1-13	more acer	20/33.5"	3.7	Bondst.		D7' D SBOH SBOH S'3"
	Brick	R2A: Loose, red-brown Coarse to (0-8") medium SAND, brick fragments, trace gravel (moist) (Fiv) R2B: Loose, red-brown degraded (8-13") BRICK layer (wet) (Fill)		6-9	macrocore	13 /36"	1.6	1332	Begin Stab Beg Sarr	- Sidewarks Carroll St. Carroll St. Noring Concrete in SB04 location in Macrocore pling SB04
	sand	R3: Loose, brown fine SAND, (0-10") trace (. Sand (wet) (native sand) EOB @ 91 bgs		8-3 2	Malrocore	10/36"	0.0	1450 ;	Sam dept : Olosse SBC on parto	sbow withers
		Υ.								orete. DB @ 9' bays



undu retroutreation fronteau

LOG OF BORING SB05 SHEET 1 OF PROJECT NO. PROJECT 35 Bond St. 70362501 ELEVATION AND DATUM LOCATION 335 BOND St. Brooklyn, NN nla DATE STARTED 5/2/15 DATE FINISHED 5/2/15 DRILLING AGENCY AARCO BOCK DEPTH DRILLING EQUIPMENT COMPLETION DEPTH q' n/a Geoporbe 420M 3 CORE n/a NO. SAMPLES DIST. UNDIST. M/CL SIZE AND TYPE OF BIT Direct PUSh 2" 24 HR. n/a WATER LEVEL FIRST 8.5 COMPL N/a CASING n/a n/a WEIGHT FOREMAN CASING HAMMER nia DROP m10 Iom Sikol SAMPLER 36" macrocore INSPECTOR inead Emil DROP nia SAMPLER HAMMER n/0- WEIGHT na SAMPLES DEPTH REMARKS RECOV. FT. PENETR. RESIST BL/6 in/. NO.LOC. TYPE SAMPLE DESCRIPTION (DRILLING FLUID, DEPTH OF CASING, CASING BLOWS, FLUID LOSS, ETC.) SCALE Ĉ 6" concrete Slab 20' 8" A SBOS RIA: LOOSE, brown medium to 5.0 N 20 12'10" (0-15") fine SAMD. Brick fragmashs Fill 0.0 in S 00 0,010 432 glass and gravel. (dry) Band 0.0 Jool -CA:11)- ź, 335 Bond 94 concret 2 23 J 0.0 RIB: Loose, light tan degraded Brooklyn M SC-1.0 R (15-22") CONCRETE. (dr.) (Concrete) 3 RIC: Loose, red - brown degraded Sidewalk-> Ci-Brick (22-24) BRICK Layer (dry) (brick) CS IN (NTS) Corroll St. 9 RaA: Loose, tan-brown coarse to CU 60 5-2-15 0.4 (0) 2 (0-121) medium SAND, concrete + ű. Gravel (dry) (Fill) 3 1320 - Begin Colling Concrete 0.6 5 000 X Fill slab in seos lostion 0.1 R2 B: LOOSE, black-brown COAL ASH 0.8 1350- Bogin macrocore (12-18") some r. sand (dr-1) (E:11) 6 Sampling SB05 Brick Rac: LOOSE red-brown BRICK macrocore 1405 - complete maiorocore (18-19") langer (drup) (Brick) sampling SB05. Final 0 /3 G RaD: Loose, black-brawn coarse depth 97 bogs . water Fill (19-21") to medium SAND, concrete observed at N8.5 bas C fragment (dr.1) (Fill) 8 10 1500 - Collect Soil Sample R3: Loose brown course to Sand 0.0 SB05-5-5.5' (0-5") medium SAND (wet) 9 patch concrete slab (native sand) with news concrete. 10 EOB@ 9. 695 EOB @ 9'bgs 11 12 13

### ATTACHMENT 2 – GROUNDWATER SAMPLING LOG

#### **GROUND WATER SAMPLE FIELD INFORMATION FORM**

site:335 Bond	ST
Date: 5-2-2015	

Well#/Location: TMW O| Weather: Clorr, GG °F

Well Informat	ion
Sample ID	TW01-050215
Well Depth (ft)	91
Screened Interval (ft)	0-9'
Casing Elevation (msl)	n/a
Casing Diameter (in)	2."
Depth to Water (ft)	6.87
Water Elevation (msl)	n/2
Casing Volume (gal)	n/a
PID/FID Reading (ppm)	2.4ppm

Purging Information	
Purging Method	Las-Flaw
Purging Rate (I/m; gpm)	200 mulmin
Start Purge Time	1305
End Purge Time	1400
Volume Purged (gal)	3.6 gal

Sampling Personnel:

Job No. 🐔

170362501

read

#### Sampling Information

Sampling Method	hoflaw prishetic
Start Sampling Time	1400
End Sampling Time	14/15
Depth Before Sampling (ft)	n/a
Number Bottles Collected	L4

				Parameter	s			
Sample Time	рН	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temp (∘C)	ORP (mV)	Depth to Water (ft)	Purged Volume (gallons)
1305	6.7.8	1.46	70	1.86	17.56	-67	6.87	0.0
1310	4.36	1.42	44.3	1-12	17.56	-98	-	0.75
1315	4.71	1.40	29.5	0.93	17.56		-	0.00
1320	4.89	1.39	29.5	0.89	17.56	-113		1.5
1325	4.98	1.38	23.0	0.81	17.56	-115	-	1.67
1330	5.04	1.38	33.2	0.98	17.57	-117	-	1.80
1335	5.07	1.36	14.9	0.93	17.59	-118	-	<b>ට.</b> ණ
1340	5.04	1.37	17.9	1.06	17.59	-119	دتنتى.	2.30
1345	5.07	1.36	22.5	0.89	17.6	-110	-	3.75
1350	510	1.35	11.9	0.61	17.59	-120	-	2.90
1355	5.10	1.35	10.5	0.58	17.58	-110		3.30
1400	5.10	1.35	9.8	0.58	17.59	-120	-	3.60
	6	λ.						
15	5		Notes/Re	terin excerne er				
Stablility	$\sim$	Caliborne	huriba (	01251 -	64UA			
PH - ± 0.1 unit	/	P4 = 3.9		LIPIL Som	In O Parts		00000	Sands
Specific Conductance	e - ± 3%	ns/cm=4.	ЦО	well the	CULKUR		nable	to log
Femperature - ± 3%		NTU = 0.						
Dissolved Oxygen - ±	10% above 0.5 m	g/L DO = 10G			14	$\sim - $		Sample
furbidity - ± 10% abov	e 5 NTU	Initiae pu	merate=		1-(		Unec	- sur ing
ORP/Eh - ±10 millivolt	s	Lim (	15 sec P	er 37.81		T	mw	01-0502
/laximum flow rate - <	:0.5 L/m or 0.13 g	ipm - Thirt	i a sea t					
aximum drawdown -	<0.33 feet							

Remember: Battery Connections - RED is POSITIVE and BLACK is NEGATIVE

\\langan.com\data\\Y\other\environmental.group\Forms\Low-Flow Spreadsheet\Low-Flow Sampling Spreadsheet_V2.0

Langan Engineering, Environmental, Surveying and Landscape Architecture, D.P.C.

### ATTACHMENT 3 – SUB-SLAB SOIL VAPOR SAMPLING LOG

#### SOIL VAPOR SAMPLING LOG SHEET

Sample Number:	2101
• 2000.0200000	

PROJECT: 335 BON	d St.	PROJECT NO.	170	362	2501	
	~	SURFACE ELE	VATION AND D	DATUM:		
335 Bond	St. Brooklyn, M				nla	
DRILLING FIRM OR LANGAN INSTALL	AARCO	INSTALLATIO	N DATE START		DATE F	INISHED: 5/2/15
	1 Sikol	SAMPLE DATI	STARTED:	5/21	DATE F	INISHED: 5/2./(5
INSTALLATION EQUIPMENT:		TYPE OF SAM	PLING DEVICE:		-	
	nmes Drill			60,	Suma	conster
INSPECTOR: EMIN S	neard	SAMPLER:	2" Stair	JUN	Steel Pr	obe
POTENTIAL SAMPLE INTERFERENCES		WEATHER CO	NDITIONS (PRE	CIP., TEMP	, PRESS., WIND SPEED AN	ND DIR.):
		Inst	alled in	2 10	gar Jara	.ge
None		weath	er: cle	Der, E	51-66°F,	78% humidity
100110					ensure =	
METHOD OF INSTALLATION AND PUR	GING:					
1100 000 1011		. 1	/			
Hammerdrill, A	nultificae set to 6	200m/   1	nin Cle	500 5	setting) p	rgerate.
TUBING TYPE/DIAMETER:	. 1. <i>1</i>	TYPE OF MAT	ERIAL ABOVE			
Tefion 3/16	"10, 1/4"OD				ete slab S	urface
IMPLANT SCREEN TYPE/LENGTH/DIA		SEAL MATER	<u> </u>		Modeling Clay, etc.):	
BOREHOLE DIAMETER:	, 1/4" Diameter	EN TER PACK	MATERIAL (Sai		e Clay	
	nches	HEILINIAGA	NO.3			
PURGE VOLUME (L):	400 ml	IMPLAN	T/PROBE DETA		DEPTH	NOTES
PURGE FLOW RATE (ML/MIN):	200mi/minute	(SEA	L, FILTER, ETC.)		(FEET FROM	
PID AFTER PURGE (PPM):	0.8 ppm	SURFACE	SURFACE		SURFACE)	
HELIUM TEST IN BUCKET(%):	35%					
HELIUM TEST IN TUBE (PPM):	0.0990	1				
SAMPLE START DATE/TIME:	5/2/15 12:26	1				
SAMPLE STOP DATE/TIME:	5/2/15 14:18	1				
TOTAL SAMPLE TIME (MIN):	112 min					
FLOW RATE (L/MIN):	0.05 4/min		Тор	of Seal	0.0"	Bentonite
VOLUME OF SAMPLE (LITERS):	GLiters					CLONY
PID AFTER SAMPLE (PPM):	1.200m	4				
SAMPLE MOISTURE CONTENT:	n/a				1.5"	
CAN SERIAL NUMBER:	17351	4  -		of Pack	( ° )	NO.2Sand
REGULATOR SERIAL NUMBER:	TIB	-				POLCK
CAN START VACUUM PRESS. (" HG): CAN STOP VACUUM PRESS. (" HG):	-30" HG	-	H I			
SAMPLE LOCATION		- 1	8			
0/111/22/2007/1101		-	₽			
	· / ·				4"	2" Stainers Steel Probe
335 Bond					NOTES	FIOSE
St. Brookh	th.NY (>		-			
F _	<b>A</b> = 1					
5) D Garage 2 Door 0 12 10 10 10 10 10 10 10 10 10 10	T #					
0 Garage	SVOI					
0						
M.	27'					
			÷			
NTS CARPA	JUL ST.					
	ineering, Environmental, Su	rveying an	d Landscap	e Arch	itecture, D.P.C.	
	aza, 360 West 31st Street, 8					7

### ATTACHMENT 4 – LABORATORY ANALYTICAL REPORTS



## **Technical Report**

prepared for:

Langan Engineering & Environmental Services (NYC)

21 Penn Plaza, 360 West 31st Street New York NY, 10001 Attention: Ryan Manderbach

Report Date: 05/04/2015 Client Project ID: 170362501 York Project (SDG) No.: 15E0070

CT Cert. No. PH-0723

New Jersey Cert. No. CT-005



New York Cert. No. 10854

PA Cert. No. 68-04440

120 RESEARCH DRIVE

STRATFORD, CT 06615

(203) 325-1371

FAX (203) 357-0166

#### Report Date: 05/04/2015 Client Project ID: 170362501 York Project (SDG) No.: 15E0070

#### Langan Engineering & Environmental Services (NYC)

21 Penn Plaza, 360 West 31st Street New York NY, 10001 Attention: Ryan Manderbach

#### **Purpose and Results**

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on May 02, 2015 and listed below. The project was identified as your project: **170362501**.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the attachment to this report, and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
15E0070-01	SB01_2.5-3	Soil	05/02/2015	05/02/2015
15E0070-02	SB02_2.5-3	Soil	05/02/2015	05/02/2015
15E0070-03	SB03_5-5.5	Soil	05/02/2015	05/02/2015
15E0070-04	SB045-1	Soil	05/02/2015	05/02/2015
15E0070-05	SB05_5-5.5	Soil	05/02/2015	05/02/2015
15E0070-06	TMW01_050215	Water	05/02/2015	05/02/2015
15E0070-07	Trip Blank	Water	05/02/2015	05/02/2015

#### General Notes for York Project (SDG) No.: 15E0070

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All samples were received in proper condition for analysis with proper documentation, unless otherwise noted.
- 6. All analyses conducted met method or Laboratory SOP requirements. See the Qualifiers and/or Narrative sections for further information.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 8. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

**Approved By:** 

**Date:** 05/04/2015

Benjamin Gulizia Laboratory Director





<b>Client Sample ID:</b>	SB01 2.5-3

Client Sample ID: SB01_2.5-3			York Sample ID:	15E0070-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 10:30 am	05/02/2015

Volatile Or	rganics, NJDEP/TCL/Part 375	<u>List</u>			Log-in	Notes:		Sample Notes:					
Sample Prepared	d by Method: EPA 5035A Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst	
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09 EP	BK	
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09 EP,PADEP	ВК	
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09 EP,PADEP	BK	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09 EP	BK	
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09 EP,PADEP	BK	
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09 EP,PADEP	ВК	
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09 EP,PADEP	ВК	
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 /10854,NJDEP	05/04/2015 11:09	BK	
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 /10854,NJDEP	05/04/2015 11:09	BK	
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 /10854,NJDEP	05/04/2015 11:09	BK	
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09 EP	BK	
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09	BK	
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09	BK	
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09 EP,PADEP	BK	
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:		05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09	BK	
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09 EP	BK	
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09 EP	BK	
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09 EP.PADEP	BK	
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE		BK	
123-91-1	1,4-Dioxane	ND		ug/kg dry	80	160	1	EPA 8260C Certifications:		05/04/2015 07:53 /10854,NJDEP	05/04/2015 11:09	BK	
78-93-3	2-Butanone	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:		05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09 EP	BK	
591-78-6	2-Hexanone	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:		05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09	BK	
108-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:		05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09	ВК	
							000) 005 4	certifications.	erbon,m	EAX (000) 055			



Client Sample ID:	SB01 2.5-3

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 10:30 am	05/02/2015

<u>Volatile O</u>	Organics, NJDEP/T	<u> CL/Part 375</u>	<u>5 List</u>			Log-in ]	Notes:		Sam	ple Note	<u>s:</u>		
Sample Prepar CAS N	red by Method: EPA 5035A	ameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone		18	CCV-E, SCAL- E	ug/kg dry	8.0	16	1	EPA 8260C Certifications:	CTDOH,N	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 11:09 EP	ВК
107-02-8	Acrolein		ND		ug/kg dry	8.0	16	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09 P	ВК
107-13-1	Acrylonitrile		ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09 P	BK
71-43-2	Benzene		ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09 P,PADEP	ВК
74-97-5	Bromochloromethane		ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	NELAC-N	05/04/2015 07:53 Y10854,NJDEP	05/04/2015 11:09	ВК
75-27-4	Bromodichloromethar	ne	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09 P,PADEP	ВК
75-25-2	Bromoform		ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09 P,PADEP	ВК
74-83-9	Bromomethane		ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09 P,PADEP	ВК
75-15-0	Carbon disulfide		ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09 P	BK
56-23-5	Carbon tetrachloride		ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09 P,PADEP	BK
108-90-7	Chlorobenzene		ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09 P,PADEP	BK
75-00-3	Chloroethane		ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09 P,PADEP	BK
67-66-3	Chloroform		ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09 P,PADEP	BK
74-87-3	Chloromethane		ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09 P,PADEP	BK
156-59-2	cis-1,2-Dichloroethyle	ene	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09	BK
10061-01-5	cis-1,3-Dichloropropy	lene	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09 P,PADEP	ВК
110-82-7	Cyclohexane		ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	NELAC-N	05/04/2015 07:53 ¥10854,NJDEP	05/04/2015 11:09	ВК
124-48-1	Dibromochloromethar	ne	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	NELAC-N	05/04/2015 07:53 ¥10854,NJDEP,PADEF	05/04/2015 11:09	ВК
74-95-3	Dibromomethane		ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	NELAC-N	05/04/2015 07:53 Y10854,NJDEP	05/04/2015 11:09	ВК
75-71-8	Dichlorodifluorometh	ane	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	NELAC-N	05/04/2015 07:53 Y10854,NJDEP	05/04/2015 11:09	ВК
100-41-4	Ethyl Benzene		ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:		05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09 P,PADEP	BK
87-68-3	Hexachlorobutadiene		ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:		05/04/2015 07:53 Y10854,NJDEP	05/04/2015 11:09	BK
98-82-8	Isopropylbenzene		ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:		05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:09	ВК

York Sample ID:



Client Sample ID:	SB01 2.5-3

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 10:30 am	05/02/2015

Volatile Organics, NJDEP/TCL/Part 375 List					<u>Log-in Notes:</u>			<u>Sample Notes:</u>				
CAS No	d by Method: EPA 5035A <b>Parameter</b>	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analys
9-20-9	Methyl acetate	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 10854,NJDEP	05/04/2015 11:09	BK
634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDH	05/04/2015 11:09 EP	ВК
08-87-2	Methylcyclohexane	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 10854,NJDEP	05/04/2015 11:09	BK
75-09-2	Methylene chloride	ND		ug/kg dry	8.0	16	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDF	05/04/2015 11:09 EP,PADEP	BK
04-51-8	n-Butylbenzene	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDF	05/04/2015 11:09 EP	ВК
03-65-1	n-Propylbenzene	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDF	05/04/2015 11:09 EP	BK
95-47-6	o-Xylene	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854	05/04/2015 11:09	BK
79601-23-1	p- & m- Xylenes	ND		ug/kg dry	8.0	16	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854	05/04/2015 11:09	BK
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDF	05/04/2015 11:09 EP	BK
35-98-8	sec-Butylbenzene	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDF	05/04/2015 11:09 EP	BK
00-42-5	Styrene	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDF	05/04/2015 11:09 EP	BK
5-65-0	tert-Butyl alcohol (TBA)	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 10854,NJDEP	05/04/2015 11:09	BK
8-06-6	tert-Butylbenzene	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDF	05/04/2015 11:09 EP	ВК
27-18-4	Tetrachloroethylene	17	CCV-E	ug/kg dry	4.0	8.0	1	EPA 8260C		05/04/2015 07:53	05/04/2015 11:09	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
08-88-3	Toluene	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDF	05/04/2015 11:09 EP,PADEP	BK
56-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDF	05/04/2015 11:09 EP	BK
0061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDF	05/04/2015 11:09 EP,PADEP	ВК
9-01-6	Trichloroethylene	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDF	05/04/2015 11:09 EP,PADEP	BK
5-69-4	Trichlorofluoromethane	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDF	05/04/2015 11:09 EP,PADEP	BK
5-01-4	Vinyl Chloride	ND		ug/kg dry	4.0	8.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDH	05/04/2015 11:09 EP,PADEP	ВК
330-20-7	Xylenes, Total	ND		ug/kg dry	12	24	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDF	05/04/2015 11:09 EP,PADEP	ВК
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
7060-07-0	Surrogate: 1,2-Dichloroethane-d4	98.2 %			77-125							
037-26-5	Surrogate: Toluene-d8	97.5 %			85-120							
	Surrogate: p-Bromofluorobenzene				-							

York Sample ID:



<b>Client Sample ID:</b>	SB01 2.5-3	
	-	

Client Sample ID: SB01_2.5-3			York Sample ID:	15E0070-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 10:30 am	05/02/2015

Page 7 of 117

Semi-Volatiles, NJDEP/TCL/Part 375 List			Log-in Notes:		<u>Sample Notes:</u>							
Sample Prepa	red by Method: EPA 3550C				Reported to					Date/Time	Date/Time	
CAS N	No. Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 17:53 P,PADEP	КН
208-96-8	Acenaphthylene	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 17:53 P,PADEP	КН
98-86-2	Acetophenone	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 /10854,NJDEP	05/03/2015 17:53	КН
62-53-3	Aniline	ND		ug/kg dry	106	212	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 /10854,NJDEP,PADEF	05/03/2015 17:53	КН
120-12-7	Anthracene	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NH	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 17:53 P,PADEP	КН
1912-24-9	Atrazine	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 /10854,NJDEP	05/03/2015 17:53	КН
100-52-7	Benzaldehyde	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 (10854,NJDEP	05/03/2015 17:53	КН
92-87-5	Benzidine	ND		ug/kg dry	106	212	1	EPA 8270D Certifications:		05/03/2015 13:15 ELAC-NY10854	05/03/2015 17:53	КН
56-55-3	Benzo(a)anthracene	77.0		ug/kg dry	26.5	53.0	1	EPA 8270D	,	05/03/2015 13:15	05/03/2015 17:53	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
50-32-8	Benzo(a)pyrene	52.5	J	ug/kg dry	26.5	53.0	1	EPA 8270D		05/03/2015 13:15	05/03/2015 17:53	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
205-99-2	Benzo(b)fluoranthene	46.6	J	ug/kg dry	26.5	53.0	1	EPA 8270D		05/03/2015 13:15	05/03/2015 17:53	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
191-24-2	Benzo(g,h,i)perylene	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 17:53 P,PADEP	КН
65-85-0	Benzoic acid	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 /10854,NJDEP	05/03/2015 17:53	КН
207-08-9	Benzo(k)fluoranthene	58.8		ug/kg dry	26.5	53.0	1	EPA 8270D		05/03/2015 13:15	05/03/2015 17:53	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
100-51-6	Benzyl alcohol	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 /10854,NJDEP,PADEF	05/03/2015 17:53	КН
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 17:53 P,PADEP	КН
92-52-4	1,1'-Biphenyl	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 (10854,NJDEP	05/03/2015 17:53	КН
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 17:53 P,PADEP	КН
105-60-2	Caprolactam	ND		ug/kg dry	53.0	106	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 /10854,NJDEP	05/03/2015 17:53	КН
86-74-8	Carbazole	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 17:53 P,PADEP	КН
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 17:53 P,PADEP	КН
106-47-8	4-Chloroaniline	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 17:53 P,PADEP	КН
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:		05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 17:53	КН



<u>Client Sample ID:</u> SB01_2.5-3			York Sample ID:	15E0070-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 10:30 am	05/02/2015

	tiles, NJDEP/TCL/Part 375 I d by Method: EPA 3550C	<u>_1st</u>			Log-in ]	Log in Hotes.			ple Note:	<u>s:</u>		
CAS No		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analys
11-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDH	05/03/2015 17:53 EP,PADEP	КН
08-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 17:53 EP,PADEP	КН
1-58-7	2-Chloronaphthalene	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 17:53 EP,PADEP	КН
5-57-8	2-Chlorophenol	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 17:53 EP,PADEP	КН
005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 17:53 EP,PADEP	КН
18-01-9	Chrysene	73.7		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,N	05/03/2015 13:15 ELAC-NY10854,NJD	05/03/2015 17:53 EP,PADEP	КН
3-70-3	Dibenzo(a,h)anthracene	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 17:53 EP,PADEP	КН
32-64-9	Dibenzofuran	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 17:53 EP	КН
4-74-2	Di-n-butyl phthalate	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 17:53 EP,PADEP	КН
5-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 10854	05/03/2015 17:53	КН
41-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 10854	05/03/2015 17:53	КН
06-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 710854	05/03/2015 17:53	КН
1-94-1	3,3'-Dichlorobenzidine	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 10854,NJDEP,PADE	05/03/2015 17:53 P	КН
20-83-2	2,4-Dichlorophenol	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 17:53 EP,PADEP	КН
4-66-2	Diethyl phthalate	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 17:53 EP,PADEP	КН
05-67-9	2,4-Dimethylphenol	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 17:53 EP,PADEP	КН
31-11-3	Dimethyl phthalate	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 17:53 EP,PADEP	КН
34-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	53.0	106	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 17:53 EP	КН
1-28-5	2,4-Dinitrophenol	ND		ug/kg dry	53.0	106	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 17:53 EP,PADEP	КН
21-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 17:53 EP,PADEP	КН
06-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 17:53 EP,PADEP	КН
17-84-0	Di-n-octyl phthalate	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 17:53 EP,PADEP	КН
22-66-7	1,2-Diphenylhydrazine (as Azobenzene)	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 710854,NJDEP	05/03/2015 17:53	КН
17-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 17:53 EP,PADEP	КН
120	RESEARCH DRIVE	STRATFORD, 0	CT 066	515		(2	203) 325-1	1371		FAX (203) 357	7-0166 Page 8 c	



<u>Client Sample ID:</u> SB01_2.5-3			York Sample ID:	15E0070-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 10:30 am	05/02/2015

	atiles, NJDEP/TCL/Part 375 L	<u>ASt</u>			<u>Log-in Notes:</u>			<u>Sample Notes:</u>				
Sample Prepared by Method: EPA 3550C CAS No. Parameter		Result	Result Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Referenc	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
206-44-0	Fluoranthene	161		ug/kg dry	26.5	53.0	1	EPA 8270D		05/03/2015 13:15	05/03/2015 17:53	КН
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
36-73-7	Fluorene	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 (10854,NJDEP,PADE	05/03/2015 17:53	КН
118-74-1	Hexachlorobenzene	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 17:53 EP,PADEP	КН
37-68-3	Hexachlorobutadiene	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 17:53 EP,PADEP	KH
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 17:53 EP,PADEP	KH
57-72-1	Hexachloroethane	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 17:53 EP,PADEP	KH
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 17:53 EP,PADEP	KH
78-59-1	Isophorone	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 17:53 EP,PADEP	KH
91-57-6	2-Methylnaphthalene	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 17:53 EP	KH
95-48-7	2-Methylphenol	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 17:53 EP,PADEP	KH
55794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 17:53 EP	КН
91-20-3	Naphthalene	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 17:53 EP	KH
100-01-6	4-Nitroaniline	ND		ug/kg dry	53.0	106	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 17:53 EP,PADEP	KH
38-74-4	2-Nitroaniline	ND		ug/kg dry	53.0	106	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 17:53 EP,PADEP	КН
99-09-2	3-Nitroaniline	ND		ug/kg dry	53.0	106	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 17:53 EP,PADEP	КН
98-95-3	Nitrobenzene	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 17:53 EP,PADEP	КН
38-75-5	2-Nitrophenol	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 17:53 EP,PADEP	КН
100-02-7	4-Nitrophenol	ND		ug/kg dry	53.0	106	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 17:53 EP,PADEP	КН
521-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 17:53 EP,PADEP	KH
52-75-9	N-Nitrosodimethylamine	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 17:53 EP	KH
36-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 17:53 EP	KH
37-86-5	Pentachlorophenol	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 17:53 EP,PADEP	KH
35-01-8	Phenanthrene	103		ug/kg dry	26.5	53.0	1	EPA 8270D		05/03/2015 13:15	05/03/2015 17:53	KH



<b>Client Sam</b>	ple ID:	SB01	2.5-3

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 10:30 am	05/02/2015

<u>Semi-Vol</u>	atiles, NJDEP/TCL/Part 375 List				Log-in	Notes:		Sam	<u>iple Note</u>	s:		
Sample Prepa	ared by Method: EPA 3550C											
CAS	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-95-2	Phenol	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 17:53 EP,PADEP	KH
129-00-0	Pyrene	120		ug/kg dry	26.5	53.0	1	EPA 8270D		05/03/2015 13:15	05/03/2015 17:53	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/kg dry	53.0	106	1	EPA 8270D Certifications:	NELAC-N	05/03/2015 13:15 Y10854,NJDEP	05/03/2015 17:53	KH
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/kg dry	53.0	106	1	EPA 8270D Certifications:	NELAC-N	05/03/2015 13:15 Y10854,NJDEP	05/03/2015 17:53	KH
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDH	05/03/2015 17:53 EP,PADEP	КН
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 17:53 EP,PADEP	KH
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	26.5	53.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 17:53 EP	KH
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
367-12-4	Surrogate: 2-Fluorophenol	29.8 %			10-95							
4165-62-2	Surrogate: Phenol-d5	33.1 %			10-107							
4165-60-0	Surrogate: Nitrobenzene-d5	36.8 %			10-95							
321-60-8	Surrogate: 2-Fluorobiphenyl	30.4 %			10-97							
118-79-6	Surrogate: 2,4,6-Tribromophenol	46.2 %			10-103							
1718-51-0	Surrogate: Terphenyl-d14	34.9 %			19-99							

#### Pesticides, NJDEP/TCL/Part 375 List

CAS N	o. Parameter	Result	Flag	Units	LOD/MDL	Reported to	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
309-00-2	Aldrin	ND		ug/kg dry	2.10	2.10	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDE	05/04/2015 10:51 EP,PADEP	JW
319-84-6	alpha-BHC	ND		ug/kg dry	2.10	2.10	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDE	05/04/2015 10:51 EP,PADEP	JW
319-85-7	beta-BHC	ND		ug/kg dry	2.10	2.10	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDE	05/04/2015 10:51 EP,PADEP	JW
319-86-8	delta-BHC	ND		ug/kg dry	2.10	2.10	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDE	05/04/2015 10:51 EP,PADEP	JW
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	2.10	2.10	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDE	05/04/2015 10:51 EP,PADEP	JW
5103-74-2	gamma-Chlordane	ND		ug/kg dry	2.10	2.10	5	EPA 8081B Certifications:	NELAC-N	05/03/2015 13:18 Y10854,NJDEP	05/04/2015 10:51	JW
5103-71-9	alpha-Chlordane	ND		ug/kg dry	2.10	2.10	5	EPA 8081B Certifications:	NELAC-N	05/03/2015 13:18 Y10854,NJDEP	05/04/2015 10:51	JW
57-74-9	Chlordane, total	ND		ug/kg dry	8.38	8.38	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDE	05/04/2015 10:51 EP,PADEP	JW
72-54-8	4,4'-DDD	ND		ug/kg dry	2.10	2.10	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDE	05/04/2015 10:51 P.PADEP	JW

Log-in Notes:

Sample Notes:

York Sample ID:



<u>Client Sample ID:</u> SB	01_2.5-3		
York Project (SDG) No.	Client Project ID	<u>Matrix</u> <u>C</u>	ol

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 10:30 am	05/02/2015

	s, NJDEP/TCL/Part 375 List red by Method: EPA 3550C				<u>Log-in</u>	Notes:		San	<u>iple Note</u>	<u>es:</u>		
CAS N		Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Referenc	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-55-9	4,4'-DDE	ND		ug/kg dry	2.10	2.10	5	EPA 8081B Certifications:	CTDOH,N	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 10:51 EP,PADEP	JW
50-29-3	4,4'-DDT	ND		ug/kg dry	2.10	2.10	5	EPA 8081B Certifications:	CTDOH,N	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 10:51 EP,PADEP	JW
60-57-1	Dieldrin	ND		ug/kg dry	2.10	2.10	5	EPA 8081B Certifications:	CTDOH,N	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 10:51 EP,PADEP	JW
959-98-8	Endosulfan I	ND		ug/kg dry	2.10	2.10	5	EPA 8081B Certifications:	CTDOH,N	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 10:51 EP,PADEP	JW
33213-65-9	Endosulfan II	ND		ug/kg dry	2.10	2.10	5	EPA 8081B Certifications:	CTDOH,N	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 10:51 EP,PADEP	JW
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	2.10	2.10	5	EPA 8081B Certifications:	CTDOH,N	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 10:51 EP,PADEP	JW
72-20-8	Endrin	ND		ug/kg dry	2.10	2.10	5	EPA 8081B Certifications:	CTDOH,N	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 10:51 EP,PADEP	JW
7421-93-4	Endrin aldehyde	ND		ug/kg dry	2.10	2.10	5	EPA 8081B Certifications:	CTDOH,N	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 10:51 EP,PADEP	JW
53494-70-5	Endrin ketone	ND		ug/kg dry	2.10	2.10	5	EPA 8081B Certifications:	CTDOH,N	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 10:51 EP	JW
76-44-8	Heptachlor	ND		ug/kg dry	2.10	2.10	5	EPA 8081B Certifications:	CTDOH,N	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 10:51 EP,PADEP	JW
1024-57-3	Heptachlor epoxide	ND		ug/kg dry	2.10	2.10	5	EPA 8081B Certifications:	CTDOH,N	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 10:51 EP,PADEP	JW
72-43-5	Methoxychlor	ND		ug/kg dry	10.5	10.5	5	EPA 8081B Certifications:	CTDOH,N	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 10:51 EP,PADEP	JW
8001-35-2	Toxaphene	ND		ug/kg dry	106	106	5	EPA 8081B Certifications:	CTDOH,N	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 10:51 EP	JW
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
2051-24-3	Surrogate: Decachlorobiphenyl	66.7 %			30-140							
877-09-8	Surrogate: Tetrachloro-m-xylene	65.7 %			30-140							

#### Polychlorinated Biphenyls (PCB)

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

York Sample ID:

15E0070-01

CAS N	0.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
12674-11-2	Aroclor 1016		ND		mg/kg dry	0.0212	0.0212	1	EPA 8082A Certifications:	NELAC-NY	05/03/2015 13:18 10854,CTDOH,NJDE	05/04/2015 11:26 EP,PADEP	AMC
11104-28-2	Aroclor 1221		ND		mg/kg dry	0.0212	0.0212	1	EPA 8082A Certifications:	NELAC-NY	05/03/2015 13:18 (10854,CTDOH,NJDE	05/04/2015 11:26 EP,PADEP	AMC
11141-16-5	Aroclor 1232		ND		mg/kg dry	0.0212	0.0212	1	EPA 8082A Certifications:	NELAC-NY	05/03/2015 13:18 10854,CTDOH,NJDE	05/04/2015 11:26 EP,PADEP	AMC
53469-21-9	Aroclor 1242		ND		mg/kg dry	0.0212	0.0212	1	EPA 8082A Certifications:	NELAC-NY	05/03/2015 13:18 (10854,CTDOH,NJDE	05/04/2015 11:26 EP,PADEP	AMC
12672-29-6	Aroclor 1248		ND		mg/kg dry	0.0212	0.0212	1	EPA 8082A Certifications:	NELAC-NY	05/03/2015 13:18 (10854,CTDOH,NJDE	05/04/2015 11:26 EP,PADEP	AMC
11097-69-1	Aroclor 1254		ND		mg/kg dry	0.0212	0.0212	1	EPA 8082A Certifications:	NELAC-NY	05/03/2015 13:18 /10854,CTDOH,NJDE	05/04/2015 11:26 EP,PADEP	AMC
120	) RESEARCH DR	IVE	STRATFOR	D, CT 066	615		(2	203) 325-1	371		FAX (203) 357	-0166	



<u>Client Sample ID:</u> SB01_2.5-3			York Sample ID:	15E0070-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 10:30 am	05/02/2015

Polychlor	rinated Biphenyls (PCB)				<u>Log-in</u>	Notes:		Sample Not	es:		
Sample Prepar	red by Method: EPA 3550C										
CAS N	o. Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
11096-82-5	Aroclor 1260	ND		mg/kg dry	0.0212	0.0212	1	EPA 8082A Certifications: NELAC-N	05/03/2015 13:18 IY10854,CTDOH,NJD	05/04/2015 11:26 EP,PADEP	AMC
1336-36-3	* Total PCBs	ND		mg/kg dry	0.0212	0.0212	1	EPA 8082A Certifications:	05/03/2015 13:18	05/04/2015 11:26	AMC
	Surrogate Recoveries	Result		Accep	ptance Rang	je					
877-09-8	Surrogate: Tetrachloro-m-xylene	55.2 %			30-140						
2051-24-3	Surrogate: Decachlorobiphenyl	52.7 %			30-140						

Log-in Notes:

Sample Notes:

#### Metals, Target Analyte

Sample Prepared by Method: EPA 3050B

CAS N	lo. Pa	rameter Res	sult Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7429-90-5	Aluminum	4910	)	mg/kg dry	6.35	6.35	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:00	MW
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
7440-36-0	Antimony	1.86		mg/kg dry	0.635	0.635	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:00	MW
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
7440-38-2	Arsenic	8.38		mg/kg dry	1.27	1.27	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:00	MW
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
7440-39-3	Barium	139		mg/kg dry	1.27	1.27	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:00	MW
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
7440-41-7	Beryllium	ND		mg/kg dry	0.127	0.127	1	EPA 6010C Certifications:	CTDOH,NI	05/04/2015 08:09 ELAC-NY10854,NJDE	05/04/2015 11:00 EP	MW
7440-43-9	Cadmium	ND		mg/kg dry	0.381	0.381	1	EPA 6010C Certifications:	CTDOH,NI	05/04/2015 08:09 ELAC-NY10854,NJDE	05/04/2015 11:00 EP,PADEP	MW
7440-70-2	Calcium	7710	)	mg/kg dry	0.635	6.35	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:00	MW
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
7440-47-3	Chromium	11.0		mg/kg dry	0.635	0.635	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:00	MW
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
7440-48-4	Cobalt	7.46		mg/kg dry	0.635	0.635	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:00	MW
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
7440-50-8	Copper	96.1		mg/kg dry	0.635	0.635	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:00	MW
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
7439-89-6	Iron	7700	)	mg/kg dry	2.54	2.54	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:00	MW
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
7439-92-1	Lead	247		mg/kg dry	0.381	0.381	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:00	MW
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
7439-95-4	Magnesium	769		mg/kg dry	6.35	6.35	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:00	MW
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
7439-96-5	Manganese	120		mg/kg dry	0.635	0.635	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:00	MW
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
7440-02-0	Nickel	16.6		mg/kg dry	0.635	0.635	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:00	MW
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	



Client Sample ID:	SB01 2.5-3

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 10:30 am	05/02/2015

-	Carget Analyte	-				<u>Log-in</u>	<u>Notes:</u>		<u>Sam</u>	ple Note	<u>s:</u>		
CAS N	lo.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-09-7	Potassium		841		mg/kg dry	6.35	6.35	1	EPA 6010C Certifications:	CTDOH,N	05/04/2015 08:09 ELAC-NY10854,NJDI	05/04/2015 11:00 EP	MW
7782-49-2	Selenium		3.26		mg/kg dry	1.27	1.27	1	EPA 6010C Certifications:	CTDOH,N	05/04/2015 08:09 ELAC-NY10854,NJDI	05/04/2015 11:00 EP,PADEP	MW
7440-22-4	Silver		ND		mg/kg dry	0.635	0.635	1	EPA 6010C Certifications:	CTDOH,NE	05/04/2015 08:09 ELAC-NY10854,NJDE	05/04/2015 11:00 P,PADEP	MW
7440-23-5	Sodium		1170		mg/kg dry	12.7	12.7	1	EPA 6010C Certifications:	CTDOH,N	05/04/2015 08:09 ELAC-NY10854,NJDI	05/04/2015 11:00 EP	MW
7440-28-0	Thallium		ND		mg/kg dry	1.27	1.27	1	EPA 6010C Certifications:	CTDOH,NI	05/04/2015 08:09 ELAC-NY10854,NJDE	05/04/2015 11:00 P	MW
7440-62-2	Vanadium		18.6		mg/kg dry	1.27	1.27	1	EPA 6010C Certifications:	CTDOH,N	05/04/2015 08:09 ELAC-NY10854,NJDI	05/04/2015 11:00 EP	MW
7440-66-6	Zinc		126		mg/kg dry	1.27	1.27	1	EPA 6010C Certifications:	CTDOH,N	05/04/2015 08:09 ELAC-NY10854,NJDI	05/04/2015 11:00 EP	MW

#### Metals, TCLP RCRA

Sample Prepared by Method: EPA 3010A/1311

CAS N	lo.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	<b>Reference Method</b>	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic		0.022		mg/L	0.004	0.004	1	EPA 6010C/1311	05/04/2015 08:15	05/04/2015 13:11	MW
7440-39-3	Barium		0.243		mg/L	0.010	0.010	1	Certifications: CTDOH,N EPA 6010C/1311	ELAC-NY10854,NJD 05/04/2015 08:15	EP,PADEP 05/04/2015 13:11	MW
									Certifications: CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
7440-43-9	Cadmium		ND		mg/L	0.003	0.003	1	EPA 6010C/1311 Certifications: CTDOH,NI	05/04/2015 08:15 ELAC-NY10854,NJDF	05/04/2015 13:11 EP,PADEP	MW
7440-47-3	Chromium		ND		mg/L	0.005	0.005	1	EPA 6010C/1311 Certifications: CTDOH,N	05/04/2015 08:15 ELAC-NY10854,NJDF	05/04/2015 13:11 EP,PADEP	MW
7439-92-1	Lead		0.042		mg/L	0.003	0.003	1	EPA 6010C/1311 Certifications: CTDOH,N	05/04/2015 08:15 ELAC-NY10854,NJD	05/04/2015 13:11 EP,PADEP	MW
7782-49-2	Selenium		0.012	M-SeT C	mg/L	0.010	0.010	1	EPA 6010C/1311 Certifications: CTDOH,N	05/04/2015 08:15 ELAC-NY10854,NJD	05/04/2015 13:11 EP	MW
7440-22-4	Silver		ND		mg/L	0.005	0.005	1	EPA 6010C/1311 Certifications: CTDOH,NI	05/04/2015 08:15 ELAC-NY10854,NJDH	05/04/2015 13:11 EP,PADEP	MW

Log-in Notes:

Mercury by 7473

Log-in Notes:

Sample Notes:

Sample Notes:

York Sample ID:

CAS No.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	<b>Reference Method</b>	Date/Time Prepared	Date/Time Analyzed	Analyst
439-97-6 Mercur	y	0.664		mg/kg dry	0.0381	0.0381	1	EPA 7473	05/03/2015 07:58	05/03/2015 12:26	ALD
								Certifications: CTDOH,	NJDEP,NELAC-NY108	354,PADEP	
Mercury TCLP b	<u>v 7473</u>				Log-in	Notes:		Sample Note	25:		
Sample Prepared by Metho	od: EPA 7473 water										
CAS No.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
		STRATFOR		615		(*	203) 325-1	1371	FAX (203) 35	7-0166	
120 RESEAF		SINATION	D, CI 00	010		14	2001 020-1		1700 (200) 00		



<u>Client Sample ID:</u> S	SB01_2.5-3									<u>York Sample</u>	<u>ID:</u> 15	E0070-01
York Project (SDG) No.			Project II	<u>D</u>				<u>atrix</u>		ction Date/Time		e Receive
15E0070		1703	362501				S	oil	May 2	, 2015 10:30 am	ı (	05/02/20
<b>1ercury TCLP by 747</b>	<u>73</u>				Log-in	Notes:		<u>Sam</u>	ple Note	<u>es:</u>		
ample Prepared by Method: EPA	A 7473 water					Description 14				Date/Time	Date/Time	
CAS No.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analys
439-97-6 Mercury		ND		mg/L	0.0000390	0.000200	1	EPA 7473/1311 Certifications:	CTDOH,N.	05/04/2015 06:51 JDEP,PADEP,NELAC-	05/04/2015 12:07 NY10854	ALD
Total Solids					Log-in	Notes:		<u>Sam</u>	ple Note	<u>es:</u>		
ample Prepared by Method: % S	Solids Prep									Date/Time	Date/Time	
CAS No.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analys
olids * % Solids		78.7		%	0.100	0.100	1	SM 2540G Certifications:	CTDOH	05/04/2015 10:12	05/04/2015 14:24	SCA
CLP Extraction for N					<u>Log-in</u>	<u>Notes:</u>		<u>Sam</u>	ple Note	<u>es:</u> EXT-Temp		
CAS No.	A SW 846-1311 TCLP ext. for t	Result	Flag	Units		Reported to	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
		itesuit	1 145	Omts	LOD/MDL	LUQ	Dilution	Reference	inteniou	Trepareu	. inaly zeu	7 that y s
TCLP Extracti		Completed		N/A	1.00	1.00	1	EPA 1311 Certifications:	NELAC-N	05/02/2015 16:29 Y10854,CTDOH,NJDE	05/04/2015 12:59 EP,PADEP	SCA
		Completed			1.00 Informa		1		NELAC-N'			SCA
TCLP Extracti		Completed					1		NELAC-N		P,PADEP	
TCLP Extracti	ion 5 <b>B02_2.5-3</b>	·	Project II	Sample			-			Y10854,CTDOH,NJDE	<u>ppadep</u> <u>1D:</u> 151	E0070-0
TCLP Extracti	ion 5 <b>B02_2.5-3</b>	<u>Client 1</u>		Sample			Ma	Certifications:	Colle	Y10854,CTDOH,NJDE <u>York Sample</u>	::ррадер <u>: ID:</u> 151 <u>Date</u>	SCA E <b>0070-0</b> e <u>Receive</u> 05/02/201
TCLP Extracti <u>Client Sample ID:</u> S <u>York Project (SDG) No.</u> 15E0070	ion 5 <b>B02_2.5-3</b>	<u>Client 1</u> 1703	Project II	Sample	Informa	ition	Ma	Certifications: atrix oil	<u>Colle</u> May 2	Y10854,CTDOH,NJDE <u>York Sample</u> <u>ction Date/Time</u> 2, 2015 11:20 am	::ррадер <u>: ID:</u> 151 <u>Date</u>	E <b>0070-0</b> e Receive
TCLP Extracti <u>Client Sample ID:</u> S <u>York Project (SDG) No.</u> 15E0070 Volatile Organics, NJI	ion 5B02_2.5-3 	<u>Client 1</u> 1703	Project II	Sample		ition	Ma	Certifications: atrix oil	Colle	Y10854,CTDOH,NJDE <u>York Sample</u> <u>ction Date/Time</u> 2, 2015 11:20 am	::ррадер <u>: ID:</u> 151 <u>Date</u>	E <b>0070-0</b> e Receive
TCLP Extracti <u>Client Sample ID:</u> S <u>York Project (SDG) No.</u> 15E0070 <u>Yolatile Organics, NJI</u>	ion 5B02_2.5-3 	<u>Client 1</u> 1703	Project II 362501	Sample	Informa Log-in	ntion	<u>Ma</u> S	Certifications: atrix oil	<u>Colle</u> May 2 ple Note	Y10854,CTDOH,NJDE <u>York Sample</u> <u>ction Date/Time</u> 2, 2015 11:20 am	::ррадер <u>: ID:</u> 151 <u>Date</u>	E <b>0070-0</b> e Receive
TCLP Extracti <u>Client Sample ID:</u> S <u>York Project (SDG) No.</u> 15E0070 <u>Yolatile Organics, NJI</u> ample Prepared by Method: EPA <u>CAS No.</u>	ion 5B02_2.5-3 <u> DEP/TCL/Part 375 I</u> A 5035A Parameter	<u>Client 1</u> 1703 List	Project II	Sample	Informa <u>Log-in</u>	ition	Ma	Certifications: <u>atrix</u> oil <u>Sam</u> <u>Reference</u> EPA 8260C	Coller May 2 ple Note	Y10854,CTDOH,NJDE <u>Vork Sample</u> ction Date/Time c, 2015 11:20 am cs: Date/Time Prepared 05/04/2015 07:53	E. ID:       151         Date	E <b>0070-0</b> e Receive 05/02/20
TCLP Extracti  Client Sample ID: S  York Project (SDG) No. 15E0070  /olatile Organics, NJI ample Prepared by Method: EP4 CAS No. 30-20-6 1,1,1,2-Tetracl	ion 5B02_2.5-3 <u>DEP/TCL/Part 375 I</u> A 5035A <u>Parameter</u> hloroethane	<u>Client 1</u> 1703 List Result	Project II 362501	Sample	Informa Log-in Reported to LOD/MDL	Notes:	<u>Ma</u> S Dilution	Certifications: a <u>trix</u> oil <u>Sam</u> Reference	Colley May 2 ple Note Method	Y10854,CTDOH,NJDE <u>York Sample</u> ction Date/Time 2, 2015 11:20 am 2 <u>S:</u> Date/Time Prepared	EP.PADEP <b>10:</b> 151 <u>Date</u> <u>Date/Time</u> <u>Analyzed</u> 05/04/2015 11:45 05/04/2015 11:45	E0070-0 e Receive 05/02/20 Analys
TCLP Extracti         Client Sample ID: S         York Project (SDG) No.       15E0070         Volatile Organics, NJI         ample Prepared by Method: EP4         CAS No.         30-20-6       1,1,1,2-Tetracl         1-55-6       1,1,1-Trichlored	ion 5B02_2.5-3 <u>DEP/TCL/Part 375 I</u> A 5035A <u>Parameter</u> hloroethane oethane	<u>Client 1</u> 1703 List Result ND	Project II 362501	Sample D Units ug/kg dry	Informa Log-in Reported to LOD/MDL 3.0	Notes: LOQ 5.9	<u>Ma</u> S Dilution	Certifications: atrix oil Sam Reference EPA 8260C Certifications: EPA 8260C	Colley May 2 ple Note Method CTDOH,NI CTDOH,NI	Y10854,CTDOH,NJDE <u>York Sample</u> <u>ction Date/Time</u> 2, 2015 11:20 am 25: <u>Date/Time</u> <u>Prepared</u> 05/04/2015 07:53 ELAC-NY10854,NJDE 05/04/2015 07:53	EID: 151 Date/Time Analyzed 05/04/2015 11:45 EP 05/04/2015 11:45 EP 05/04/2015 11:45	E0070-0 e Receive 05/02/20 Analys BK
TCLP Extracti         Client Sample ID: S         York Project (SDG) No. 15E0070         Volatile Organics, NJI ample Prepared by Method: EPA CAS No.         30-20-6       1,1,1,2-Tetracl         1-55-6       1,1,1-Trichlore         9-34-5       1,1,2,2-Tetracl	ion 5B02_2.5-3 <u>DEP/TCL/Part 375 I</u> A 5035A <u>Parameter</u> hloroethane oethane	<u>Client 1</u> 1703 List ND ND	Project II 362501	Sample D Units ug/kg dry ug/kg dry	Informa Log-in Reported to LOD/MDL 3.0 3.0	Notes: LOQ 5.9 5.9	Ma S Dilution 1	Certifications: atrix oil Sam Reference EPA 8260C Certifications: EPA 8260C Certifications: EPA 8260C Certifications:	Colle May 2 ple Note Method CTDOH,NI CTDOH,NI	Y10854,CTDOH,NJDE <u>York Sample</u> <u>ction Date/Time</u> 2, 2015 11:20 am 25: Date/Time Prepared 05/04/2015 07:53 ELAC-NY10854,NJDE 05/04/2015 07:53 ELAC-NY10854,NJDE 05/04/2015 07:53	EPPADEP EID: 151 Date Date/Time Analyzed 05/04/2015 11:45 EPPADEP 05/04/2015 11:45 EPPADEP 05/04/2015 11:45	E0070-0 e Receive 05/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/02/200 5/00 5/
TCLP Extracti         Client Sample ID: S         York Project (SDG) No. 15E0070         Volatile Organics, NJI ample Prepared by Method: EPA CAS No.         30-20-6       1,1,1,2-Tetracl         1-55-6       1,1,1-Trichlord         9-34-5       1,1,2-Tetracl         6-13-1       1,1,2-Trichlord	ion SB02_2.5-3 DEP/TCL/Part 375 I A 5035A Parameter hloroethane oethane hloroethane oothane oothane	<u>Client 1</u> 1703 List ND ND ND	Project II 362501	Sample D Units ug/kg dry ug/kg dry ug/kg dry	Informa Log-in Reported to LOD/MDL 3.0 3.0 3.0 3.0	Notes: LOQ 5.9 5.9 5.9 5.9	<u>Ma</u> S Dilution 1 1	Certifications: atrix oil Sam Reference EPA 8260C Certifications: EPA 8260C Certifications: EPA 8260C Certifications: EPA 8260C Certifications: EPA 8260C	Colley May 2 ple Note Method CTDOH,NI CTDOH,NI CTDOH,NI	Y10854,CTDOH,NJDE <u>York Sample</u> <u>ction Date/Time</u> 2, 2015 11:20 am 25: Date/Time Prepared 05/04/2015 07:53 ELAC-NY10854,NJDE 05/04/2015 07:53 ELAC-NY10854,NJDE 05/04/2015 07:53 ELAC-NY10854,NJDE 05/04/2015 07:53	EP,PADEP ED: 151 Date Date/Time Analyzed 05/04/2015 11:45 EP,PADEP 05/04/2015 11:45 EP,PADEP 05/04/2015 11:45 EP,PADEP 05/04/2015 11:45 EP,PADEP	E0070-0 e Receive 05/02/20 Analys BK BK BK
TCLP Extracti         Client Sample ID:       S         York Project (SDG) No.       15E0070         Volatile Organics, NJI       ample Prepared by Method: EPA         CAS No.       30-20-6       1,1,1,2-Tetracl         1-55-6       1,1,1-Trichlord         9-34-5       1,1,2,2-Tetracl         6-13-1       1,1,2-Trichlord         (Freon 113)       11	ion SB02_2.5-3 DEP/TCL/Part 375 I A 5035A Parameter hloroethane oethane oothane oothane oothane oothane	List ND ND ND ND ND	Project II 362501	Sample D Units ug/kg dry ug/kg dry ug/kg dry ug/kg dry	Informa Log-in Reported to LOD/MDL 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Notes: Log 5.9 5.9 5.9 5.9 5.9	Ma S Dilution 1 1 1 1	Certifications: atrix oil Sam Reference EPA 8260C Certifications: EPA 8260C Certifications: EPA 8260C Certifications: EPA 8260C Certifications: EPA 8260C Certifications: EPA 8260C Certifications: EPA 8260C	Colley May 2 May 2 Method CTDOH,NI CTDOH,NI CTDOH,NI CTDOH,NI	Y10854,CTDOH,NJDE <u>York Sample</u> <u>ction Date/Time</u> 2, 2015 11:20 am 25: <u>Date/Time</u> <u>Prepared</u> 05/04/2015 07:53 ELAC-NY10854,NJDE 05/04/2015 07:53 ELAC-NY10854,NJDE 05/04/2015 07:53 ELAC-NY10854,NJDE 05/04/2015 07:53	EP,PADEP ED: 151 Date Date/Time Analyzed 05/04/2015 11:45 EP,PADEP 05/04/2015 11:45 EP,PADEP 05/04/2015 11:45 EP,PADEP 05/04/2015 11:45 EP,PADEP 05/04/2015 11:45	E0070-0 e Receive D5/02/20 Analys BK BK BK BK



Client Sample ID: SB02_2.5-3			<u>York Sample ID:</u>	15E0070-02
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 11:20 am	05/02/2015

	rganics, NJDEP/TCL/Part 37	<u>5 List</u>			<u>Log-in</u>	Notes:		<u>Sam</u>	ple Note	<u>s:</u>		
CAS No	d by Method: EPA 5035A Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analys
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 10854,NJDEP	05/04/2015 11:45	BK
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 710854,NJDEP	05/04/2015 11:45	BK
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 10854,NJDEP	05/04/2015 11:45	BK
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:45 EP	BK
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:45 EP	BK
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:45 EP	BK
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:45 EP,PADEP	BK
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:45 EP,PADEP	BK
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:45 EP	BK
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:45 EP	BK
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:45 EP,PADEP	BK
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:45 EP,PADEP	BK
123-91-1	1,4-Dioxane	ND		ug/kg dry	59	120	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 10854,NJDEP	05/04/2015 11:45	BK
78-93-3	2-Butanone	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:45 EP	BK
591-78-6	2-Hexanone	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:45 EP	BK
108-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:45 EP	BK
67-64-1	Acetone	12	CCV-E, SCAL- E, J	ug/kg dry	5.9	12	1	EPA 8260C Certifications:	CTDOH,N	05/04/2015 07:53 ELAC-NY10854,NJD	05/04/2015 11:45 EP	BK
107-02-8	Acrolein	ND		ug/kg dry	5.9	12	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:45 EP	ВК
107-13-1	Acrylonitrile	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE		BK
71-43-2	Benzene	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:45 EP,PADEP	BK
74-97-5	Bromochloromethane	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 10854,NJDEP	05/04/2015 11:45	BK
75-27-4	Bromodichloromethane	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:45 EP,PADEP	ВК
75-25-2	Bromoform	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 11:45 EP,PADEP	BK



Client Sample ID: SB02_2.5-3			York Sample ID:	15E0070-02
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 11:20 am	05/02/2015

	rganics, NJDEP/TCL/Part 375 ed by Method: EPA 5035A	List			Log-in	Notes:		<u>Sample Notes:</u>				
CAS No	о С	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analys
74-83-9	Bromomethane	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 11:45 EP,PADEP	BK
75-15-0	Carbon disulfide	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 11:45 EP	BK
56-23-5	Carbon tetrachloride	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 11:45 EP,PADEP	ВК
108-90-7	Chlorobenzene	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 11:45 EP,PADEP	ВК
75-00-3	Chloroethane	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 11:45 EP,PADEP	ВК
67-66-3	Chloroform	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 11:45 EP,PADEP	ВК
74-87-3	Chloromethane	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 11:45 EP,PADEP	ВК
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 11:45 EP	ВК
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 11:45 EP,PADEP	ВК
110-82-7	Cyclohexane	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 (10854,NJDEP	05/04/2015 11:45	ВК
124-48-1	Dibromochloromethane	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 (10854,NJDEP,PADE	05/04/2015 11:45 P	ВК
74-95-3	Dibromomethane	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 (10854,NJDEP	05/04/2015 11:45	ВК
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 (10854,NJDEP	05/04/2015 11:45	ВК
100-41-4	Ethyl Benzene	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 11:45 EP,PADEP	ВК
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 (10854,NJDEP	05/04/2015 11:45	ВК
98-82-8	Isopropylbenzene	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 11:45 EP	ВК
79-20-9	Methyl acetate	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 (10854,NJDEP	05/04/2015 11:45	ВК
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 11:45 EP	ВК
108-87-2	Methylcyclohexane	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 (10854,NJDEP	05/04/2015 11:45	ВК
75-09-2	Methylene chloride	ND		ug/kg dry	5.9	12	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 11:45 EP,PADEP	ВК
104-51-8	n-Butylbenzene	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 11:45 EP	ВК
103-65-1	n-Propylbenzene	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 11:45 EP	BK
95-47-6	o-Xylene	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854	05/04/2015 11:45	BK
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	5.9	12	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854	05/04/2015 11:45	BK
120	RESEARCH DRIVE	STRATFOR	D, CT 06	615		(	203) 325-1	371		FAX (203) 35	7-0166	

Page 16 of 117



Client Sample ID: SB02_2.5-3			York Sample ID:	15E0070-02
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 11:20 am	05/02/2015

	rganics, NJDEP/TCL/Part 375 I ed by Method: EPA 5035A	List			Log-in ]	Notes:		<u>Sam</u>	ple Note	<u>s:</u>		
CAS No		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 11:45 EP	ВК
135-98-8	sec-Butylbenzene	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 11:45 EP	BK
100-42-5	Styrene	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 11:45 EP	BK
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 Y10854,NJDEP	05/04/2015 11:45	BK
98-06-6	tert-Butylbenzene	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 11:45 EP	BK
127-18-4	Tetrachloroethylene	200	CCV-E	ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,N	05/04/2015 07:53 ELAC-NY10854,NJD	05/04/2015 11:45 DEP,PADEP	BK
108-88-3	Toluene	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 11:45 EP,PADEP	BK
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 11:45 EP	BK
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 11:45 EP,PADEP	BK
79-01-6	Trichloroethylene	8.7		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,N	05/04/2015 07:53 ELAC-NY10854,NJD	05/04/2015 11:45 EP,PADEP	BK
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 11:45 EP,PADEP	BK
75-01-4	Vinyl Chloride	ND		ug/kg dry	3.0	5.9	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 11:45 EP,PADEP	BK
1330-20-7	Xylenes, Total	ND		ug/kg dry	8.9	18	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 11:45 EP,PADEP	BK
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	95.1 %			77-125							
2037-26-5	Surrogate: Toluene-d8	99.1 %			85-120							
460-00-4	Surrogate: p-Bromofluorobenzene	105 %			76-130							

#### Semi-Volatiles, NJDEP/TCL/Part 375 List

Sample Prepared by Method: EPA 3550C

CAS No	o. Pa	arameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference I	Date/Time Method Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene		111		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	05/03/2015 13:15 CTDOH,NELAC-NY10854,NJDH	05/03/2015 18:59 EP,PADEP	КН
208-96-8	Acenaphthylene		ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	05/03/2015 13:15 CTDOH,NELAC-NY10854,NJDE	05/03/2015 18:59 P,PADEP	КН
98-86-2	Acetophenone		ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	05/03/2015 13:15 NELAC-NY10854,NJDEP	05/03/2015 18:59	KH
62-53-3	Aniline		ND		ug/kg dry	201	402	2	EPA 8270D Certifications:	05/03/2015 13:15 NELAC-NY10854,NJDEP,PADEP	05/03/2015 18:59	КН
120-12-7	Anthracene		226		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	05/03/2015 13:15 CTDOH,NELAC-NY10854,NJDH	05/03/2015 18:59 EP,PADEP	КН

Log-in Notes:

STRATFORD, CT 06615

Sample Notes:

Page 17 of 117



<u>Client Sample ID:</u> SB02_2.5-3			York Sample ID:	15E0070-02
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 11:20 am	05/02/2015

	ntiles, NJDEP/TCL/Part 375 I	<u>list</u>			Log-in ]	Notes:		<u>Sam</u>	ple Note	<u>s:</u>		
Sample Prepare CAS No	ed by Method: EPA 3550C o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analys
1912-24-9	Atrazine	ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 10854,NJDEP	05/03/2015 18:59	КН
100-52-7	Benzaldehyde	ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 710854,NJDEP	05/03/2015 18:59	КН
92-87-5	Benzidine	ND		ug/kg dry	201	402	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854	05/03/2015 18:59	КН
56-55-3	Benzo(a)anthracene	932		ug/kg dry	50.4	100	2	EPA 8270D		05/03/2015 13:15	05/03/2015 18:59	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
50-32-8	Benzo(a)pyrene	545		ug/kg dry	50.4	100	2	EPA 8270D		05/03/2015 13:15	05/03/2015 18:59	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
205-99-2	Benzo(b)fluoranthene	522		ug/kg dry	50.4	100	2	EPA 8270D		05/03/2015 13:15	05/03/2015 18:59	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
191-24-2	Benzo(g,h,i)perylene	149	CCV-E	ug/kg dry	50.4	100	2	EPA 8270D		05/03/2015 13:15	05/03/2015 18:59	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
65-85-0	Benzoic acid	ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 10854,NJDEP	05/03/2015 18:59	КН
207-08-9	Benzo(k)fluoranthene	557		ug/kg dry	50.4	100	2	EPA 8270D		05/03/2015 13:15	05/03/2015 18:59	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	ep,padep	
100-51-6	Benzyl alcohol	ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 10854,NJDEP,PADEI	05/03/2015 18:59	КН
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 18:59 EP,PADEP	КН
92-52-4	1,1'-Biphenyl	ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 10854,NJDEP	05/03/2015 18:59	КН
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 18:59 EP,PADEP	КН
105-60-2	Caprolactam	ND		ug/kg dry	100	201	2	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 10854,NJDEP	05/03/2015 18:59	КН
86-74-8	Carbazole	81.1	J	ug/kg dry	50.4	100	2	EPA 8270D		05/03/2015 13:15	05/03/2015 18:59	КН
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 18:59 EP,PADEP	КН
106-47-8	4-Chloroaniline	ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 18:59 EP,PADEP	КН
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 18:59 EP,PADEP	KH
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 18:59 EP,PADEP	KH
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 18:59 EP,PADEP	KH
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 18:59 EP,PADEP	KH
95-57-8	2-Chlorophenol	ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 18:59 EP,PADEP	КН
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	50.4	100	2	EPA 8270D		05/03/2015 13:15	05/03/2015 18:59	KH



Client Sample ID: SB02_2.5-3			York Sample ID:	15E0070-02
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 11:20 am	05/02/2015

	atiles, NJDEP/TCL/Part 375 I	<u>list</u>			Log-in ]	Notes:		Sample Notes:				
Sample Prepa	red by Method: EPA 3550C No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
218-01-9	Chrysene	912		ug/kg dry	50.4	100	2	EPA 8270D		05/03/2015 13:15	05/03/2015 18:59	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
53-70-3	Dibenzo(a,h)anthracene	78.7	CCV-E, J	ug/kg dry	50.4	100	2	EPA 8270D Certifications:	CTDOH,N	05/03/2015 13:15 ELAC-NY10854,NJD	05/03/2015 18:59 EP,PADEP	KH
132-64-9	Dibenzofuran	ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 18:59 EP	КН
84-74-2	Di-n-butyl phthalate	ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 18:59 EP,PADEP	KH
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	NELAC-N	05/03/2015 13:15 710854	05/03/2015 18:59	KH
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	NELAC-N	05/03/2015 13:15 710854	05/03/2015 18:59	KH
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	NELAC-N	05/03/2015 13:15 710854	05/03/2015 18:59	KH
91-94-1	3,3'-Dichlorobenzidine	ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	NELAC-N	05/03/2015 13:15 (10854,NJDEP,PADE)	05/03/2015 18:59 P	KH
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 18:59 EP,PADEP	KH
84-66-2	Diethyl phthalate	ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 18:59 EP,PADEP	KH
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 18:59 EP,PADEP	KH
131-11-3	Dimethyl phthalate	ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 18:59 EP,PADEP	KH
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	100	201	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 18:59 EP	KH
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	100	201	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 18:59 EP,PADEP	KH
121-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 18:59 EP,PADEP	KH
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 18:59 EP,PADEP	KH
117-84-0	Di-n-octyl phthalate	ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 18:59 EP,PADEP	KH
122-66-7	1,2-Diphenylhydrazine (as Azobenzene)	ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	NELAC-N	05/03/2015 13:15 (10854,NJDEP	05/03/2015 18:59	KH
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDH	05/03/2015 18:59 EP,PADEP	КН
206-44-0	Fluoranthene	1710		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	CTDOH.N	05/03/2015 13:15 ELAC-NY10854,NJD	05/03/2015 18:59 EP,PADEP	KH
36-73-7	Fluorene	73.9	J	ug/kg dry	50.4	100	2	EPA 8270D Certifications:			05/03/2015 18:59	КН
118-74-1	Hexachlorobenzene	ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:		05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 18:59	КН
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	50.4	100	2	EPA 8270D	C1D011,NI	05/03/2015 13:15	05/03/2015 18:59	KH



<u>Client Sample ID:</u> SB02_2.5-3			York Sample ID:	15E0070-02
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 11:20 am	05/02/2015

eference Method Date/Time Date/Time Prepared Analyzed Analyst 270D 05/03/2015 13:15 05/03/2015 18:59 KH cations: CTDOH,NELAC-NY10854,NJDEP,PADEP
270D 05/03/2015 13:15 05/03/2015 18:59 KH cations: CTDOH,NELAC-NY10854,NJDEP,PADEP
270D 05/03/2015 13:15 05/03/2015 18:59 KH
cations: CTDOH,NELAC-NY10854,NJDEP,PADEP
270D 05/03/2015 13:15 05/03/2015 18:59 KH cations: CTDOH,NELAC-NY10854,NJDEP,PADEP
270D 05/03/2015 13:15 05/03/2015 18:59 KH cations: CTDOH,NELAC-NY10854,NJDEP
270D 05/03/2015 13:15 05/03/2015 18:59 KH cations: CTDOH,NELAC-NY10854,NJDEP,PADEP
270D 05/03/2015 13:15 05/03/2015 18:59 KH cations: CTDOH,NELAC-NY10854,NJDEP
270D 05/03/2015 13:15 05/03/2015 18:59 KH cations: CTDOH,NELAC-NY10854,NJDEP
270D 05/03/2015 13:15 05/03/2015 18:59 KH cations: CTDOH,NELAC-NY10854,NJDEP,PADEP
270D 05/03/2015 13:15 05/03/2015 18:59 KH cations: CTDOH,NELAC-NY10854,NJDEP,PADEP
270D 05/03/2015 13:15 05/03/2015 18:59 KH cations: CTDOH,NELAC-NY10854,NJDEP,PADEP
270D 05/03/2015 13:15 05/03/2015 18:59 KH cations: CTDOH,NELAC-NY10854,NJDEP,PADEP
270D 05/03/2015 13:15 05/03/2015 18:59 KH cations: CTDOH,NELAC-NY10854,NJDEP,PADEP
270D 05/03/2015 13:15 05/03/2015 18:59 KH cations: CTDOH,NELAC-NY10854,NJDEP,PADEP
270D 05/03/2015 13:15 05/03/2015 18:59 KH cations: CTDOH,NELAC-NY10854,NJDEP,PADEP
270D 05/03/2015 13:15 05/03/2015 18:59 KH cations: CTDOH,NELAC-NY10854,NJDEP
270D 05/03/2015 13:15 05/03/2015 18:59 KH cations: CTDOH,NELAC-NY10854,NJDEP
270D 05/03/2015 13:15 05/03/2015 18:59 KH cations: CTDOH,NELAC-NY10854,NJDEP,PADEP
270D 05/03/2015 13:15 05/03/2015 18:59 KH
cations: CTDOH,NELAC-NY10854,NJDEP,PADEP
270D 05/03/2015 13:15 05/03/2015 18:59 KH cations: CTDOH,NELAC-NY10854,NJDEP,PADEP
270D 05/03/2015 13:15 05/03/2015 18:59 KH cations: CTDOH,NELAC-NY10854,NJDEP,PADEP
270D 05/03/2015 12:15 05/02/2015 19:50 1/11
270D         05/03/2015 13:15         05/03/2015 18:59         KH           cations:         NELAC-NY10854,NJDEP           270D         05/03/2015 13:15         05/03/2015 18:59         KH



Client Sample ID: SB02_2.5-3			York Sample ID:	15E0070-02
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 11:20 am	05/02/2015

<u>Semi-Vol</u>	atiles, NJDEP/TCL/Part 375 List				<u>Log-in</u>	Notes:		<u>San</u>	ple Note	<u>es:</u>		
Sample Prepar	red by Method: EPA 3550C	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	CTDOH,N	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 18:59 EP,PADEP	КН
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	CTDOH,N	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 18:59 EP,PADEP	КН
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	50.4	100	2	EPA 8270D Certifications:	CTDOH,N	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 18:59 EP	КН
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
367-12-4	Surrogate: 2-Fluorophenol	27.3 %			10-95							
4165-62-2	Surrogate: Phenol-d5	33.0 %			10-107							
4165-60-0	Surrogate: Nitrobenzene-d5	36.8 %			10-95							
321-60-8	Surrogate: 2-Fluorobiphenyl	35.3 %			10-97							
118-79-6	Surrogate: 2,4,6-Tribromophenol	48.2 %			10-103							
1718-51-0	Surrogate: Terphenyl-d14	43.3 %			19-99							

Log-in Notes:

Sample Notes:

# Pesticides, NJDEP/TCL/Part 375 List

Sample Prepared by Method: EPA 3550C

CAS No	o. Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
309-00-2	Aldrin	ND		ug/kg dry	1.99	1.99	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDE	05/04/2015 11:06 EP,PADEP	JW
319-84-6	alpha-BHC	ND		ug/kg dry	1.99	1.99	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDE	05/04/2015 11:06 EP,PADEP	JW
319-85-7	beta-BHC	ND		ug/kg dry	1.99	1.99	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDE	05/04/2015 11:06 EP,PADEP	JW
319-86-8	delta-BHC	ND		ug/kg dry	1.99	1.99	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDE	05/04/2015 11:06 EP,PADEP	JW
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.99	1.99	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDE	05/04/2015 11:06 EP,PADEP	JW
5103-74-2	gamma-Chlordane	ND		ug/kg dry	1.99	1.99	5	EPA 8081B Certifications:	NELAC-N	05/03/2015 13:18 Y10854,NJDEP	05/04/2015 11:06	JW
5103-71-9	alpha-Chlordane	ND		ug/kg dry	1.99	1.99	5	EPA 8081B Certifications:	NELAC-N	05/03/2015 13:18 Y10854,NJDEP	05/04/2015 11:06	JW
57-74-9	Chlordane, total	ND		ug/kg dry	7.95	7.95	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDE	05/04/2015 11:06 EP,PADEP	JW
72-54-8	4,4'-DDD	ND		ug/kg dry	1.99	1.99	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDE	05/04/2015 11:06 EP,PADEP	JW
72-55-9	4,4'-DDE	ND		ug/kg dry	1.99	1.99	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDE	05/04/2015 11:06 EP,PADEP	JW
50-29-3	4,4'-DDT	ND		ug/kg dry	1.99	1.99	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDE	05/04/2015 11:06 EP,PADEP	JW
60-57-1	Dieldrin	ND		ug/kg dry	1.99	1.99	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDE	05/04/2015 11:06 EP,PADEP	JW
959-98-8	Endosulfan I	ND		ug/kg dry	1.99	1.99	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDE	05/04/2015 11:06 EP,PADEP	JW



Client Sample ID:	SB02_2.5-3	

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 11:20 am	05/02/2015

Pesticides	Pesticides, NJDEP/TCL/Part 375 List					Log-in Notes: <u>Sample Notes:</u>						
Sample Prepa	red by Method: EPA 3550C											
CAS N	No. Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
33213-65-9	Endosulfan II	ND		ug/kg dry	1.99	1.99	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 11:06 EP,PADEP	JW
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.99	1.99	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 11:06 EP,PADEP	JW
72-20-8	Endrin	ND		ug/kg dry	1.99	1.99	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 11:06 EP,PADEP	JW
7421-93-4	Endrin aldehyde	ND		ug/kg dry	1.99	1.99	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 11:06 EP,PADEP	JW
53494-70-5	Endrin ketone	ND		ug/kg dry	1.99	1.99	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 11:06 EP	JW
76-44-8	Heptachlor	ND		ug/kg dry	1.99	1.99	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 11:06 EP,PADEP	JW
1024-57-3	Heptachlor epoxide	ND		ug/kg dry	1.99	1.99	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 11:06 EP,PADEP	JW
72-43-5	Methoxychlor	ND		ug/kg dry	9.94	9.94	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 11:06 EP,PADEP	JW
8001-35-2	Toxaphene	ND		ug/kg dry	101	101	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 11:06 EP	JW
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
2051-24-3	Surrogate: Decachlorobiphenyl	53.0 %			30-140							
877-09-8	Surrogate: Tetrachloro-m-xylene	46.7 %			30-140							

#### Polychlorinated Biphenyls (PCB)

Sample Prepared by Method: EPA 3550C

Date/Time Date/Time Reported to CAS No. Parameter Result Flag **Reference Method** Analyzed Units Dilution LOD/MDL Prepared Analyst LOQ 12674-11-2 0.0201 EPA 8082A 05/03/2015 13:18 05/04/2015 11:55 Aroclor 1016 ND mg/kg dry 0.0201 AMC 1 NELAC-NY10854,CTDOH,NJDEP,PADEP Certifications: 11104-28-2 Aroclor 1221 ND mg/kg dry 0.0201 0.0201 1 EPA 8082A 05/03/2015 13:18 05/04/2015 11:55 AMC Certifications NELAC-NY10854,CTDOH,NJDEP,PADEP 11141-16-5 Aroclor 1232 ND mg/kg dry 0.0201 0.0201 1 EPA 8082A 05/03/2015 13:18 05/04/2015 11:55 AMC NELAC-NY10854,CTDOH,NJDEP,PADEP Certifications 53469-21-9 0.0201 0.0201 EPA 8082A 05/03/2015 13:18 05/04/2015 11:55 Aroclor 1242 ND mg/kg dry 1 AMC NELAC-NY10854,CTDOH,NJDEP,PADEP Certifications: 12672-29-6 mg/kg dry 0.0201 05/03/2015 13:18 05/04/2015 11:55 Aroclor 1248 ND 0.0201 EPA 8082A AMC 1 NELAC-NY10854,CTDOH,NJDEP,PADEP Certifications: 11097-69-1 0.0201 05/03/2015 13:18 05/04/2015 11:55 0.0201 EPA 8082A Aroclor 1254 ND mg/kg dry AMC 1 NELAC-NY10854.CTDOH.NJDEP.PADEP Certifications: 05/03/2015 13:18 05/04/2015 11:55 11096-82-5 0.0201 0.0201 EPA 8082A Aroclor 1260 ND mg/kg dry 1 AMC Certifications NELAC-NY10854,CTDOH,NJDEP,PADEP 0.0201 0.0201 05/03/2015 13:18 05/04/2015 11:55 1336-36-3 * Total PCBs ND mg/kg dry 1 EPA 8082A AMC Certifications **Surrogate Recoveries** Result Acceptance Range 877-09-8 Surrogate: Tetrachloro-m-xylene 44.3 % 30-140 2051-24-3 Surrogate: Decachlorobiphenyl 43.8 % 30-140

Log-in Notes:

**Sample Notes:** 

15E0070-02

York Sample ID:



<b>Client Samp</b>	ole ID:	SB02 2.5-3

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 11:20 am	05/02/2015

	arget Analyte	_				<u>Log-in</u>	Notes:		<u>Sam</u>	ple Note	<u>s:</u>		
CAS No	ed by Method: EPA	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analys
429-90-5	Aluminum		4210		mg/kg dry	6.02	6.02	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:04	MW
									Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
440-36-0	Antimony		1.31		mg/kg dry	0.602	0.602	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:04	MW
									Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
440-38-2	Arsenic		22.9		mg/kg dry	1.20	1.20	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:04	MW
									Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
440-39-3	Barium		141		mg/kg dry	1.20	1.20	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:04	MW
									Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
440-41-7	Beryllium		ND		mg/kg dry	0.120	0.120	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:04	MW
									Certifications:	CTDOH,NI	ELAC-NY10854,NJDI	EP	
440-43-9	Cadmium		ND		mg/kg dry	0.361	0.361	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:04	MW
	<i>.</i>								Certifications:	CTDOH,NI	ELAC-NY10854,NJDI		
440-70-2	Calcium		44900		mg/kg dry	0.602	6.02	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:04	MW
	~ .								Certifications:	CTDOH,N	ELAC-NY10854,NJD		
440-47-3	Chromium		7.22		mg/kg dry	0.602	0.602	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:04	MW
									Certifications:	CTDOH,N	ELAC-NY10854,NJD		
440-48-4	Cobalt		3.31		mg/kg dry	0.602	0.602	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:04	MW
									Certifications:	CTDOH,N	ELAC-NY10854,NJD		
440-50-8	Copper		100		mg/kg dry	0.602	0.602	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:04	MW
									Certifications:	CTDOH,N	ELAC-NY10854,NJD		
439-89-6	Iron		11500		mg/kg dry	2.41	2.41	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:04	MW
									Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
439-92-1	Lead		304		mg/kg dry	0.361	0.361	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:04	MW
									Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
439-95-4	Magnesium		4010		mg/kg dry	6.02	6.02	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:04	MW
									Certifications:	CTDOH,N	ELAC-NY10854,NJD		
439-96-5	Manganese		170		mg/kg dry	0.602	0.602	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:04	MW
									Certifications:	CTDOH,N	ELAC-NY10854,NJD		
440-02-0	Nickel		12.3		mg/kg dry	0.602	0.602	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:04	MW
									Certifications:	CTDOH,N	ELAC-NY10854,NJD		
440-09-7	Potassium		980		mg/kg dry	6.02	6.02	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:04	MW
									Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
782-49-2	Selenium		ND		mg/kg dry	1.20	1.20	1	EPA 6010C	CTDOUN	05/04/2015 08:09	05/04/2015 11:04	MW
									Certifications:	CIDOH,NI	ELAC-NY10854,NJDI		
440-22-4	Silver		ND		mg/kg dry	0.602	0.602	1	EPA 6010C Certifications:	CTDOH NI	05/04/2015 08:09 ELAC-NY10854,NJDF	05/04/2015 11:04 EP PADEP	MW
440-23-5	Sodium		200		ma/ka dru	12.0	12.0	1	EPA 6010C	erbon, a	05/04/2015 08:09	05/04/2015 11:04	MW
440-23-5	Soutum		588		mg/kg dry	12.0	12.0	1	Certifications:	CTDOH N	ELAC-NY10854,NJD		IVI VV
440.28.0	TI 11.		ND			1.20	1.20	1		erbon,r		05/04/2015 11:04	MW
440-28-0	Thallium		ND		mg/kg dry	1.20	1.20	1	EPA 6010C Certifications:	CTDOH,NI	05/04/2015 08:09 ELAC-NY10854,NJDF		MW
440-62-2	Vanadium		14.0		mg/kg dry	1.20	1.20	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:04	MW
			- •••		0 0 - 1			-	Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
440-66-6	Zinc		99.1		mg/kg dry	1.20	1.20	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:04	MW
	-				0.000				Certifications:	CTDOH.N	ELAC-NY10854,NJD		
										. ,	,		

15E0070-02

York Sample ID:



Client Sample ID: SB02_2.5-3			York Sample ID:	15E0070-02
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 11:20 am	05/02/2015

	CLP RCRA red by Method: EPA 3010A/1.	<u>Log-i</u>	<u>n Notes:</u>		Sample Note					
CAS N	lo. Para	nmeter Result	Flag	Units LOD/MD	Reported to L LOQ	Dilution	<b>Reference Method</b>	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	0.037	n	ng/L 0.004	0.004	1	EPA 6010C/1311 Certifications: CTDOH,N	05/04/2015 08:15 ELAC-NY10854,NJD	05/04/2015 13:31 EP,PADEP	MW
7440-39-3	Barium	0.221	n	ng/L 0.010	0.010	1	EPA 6010C/1311 Certifications: CTDOH,N	05/04/2015 08:15 ELAC-NY10854,NJD	05/04/2015 13:31 EP,PADEP	MW
7440-43-9	Cadmium	ND	n	ng/L 0.003	0.003	1	EPA 6010C/1311 Certifications: CTDOH,NI	05/04/2015 08:15 ELAC-NY10854,NJDE	05/04/2015 13:31 EP,PADEP	MW
7440-47-3	Chromium	ND	n	ng/L 0.005	0.005	1	EPA 6010C/1311 Certifications: CTDOH,NI	05/04/2015 08:15 ELAC-NY10854,NJDE	05/04/2015 13:31 EP,PADEP	MW
7439-92-1	Lead	0.015	n	ng/L 0.003	0.003	1	EPA 6010C/1311 Certifications: CTDOH,N	05/04/2015 08:15 ELAC-NY10854,NJD	05/04/2015 13:31 EP,PADEP	MW
7782-49-2	Selenium	0.017	M-SeT n C	ng/L 0.010	0.010	1	EPA 6010C/1311 Certifications: CTDOH,N	05/04/2015 08:15 ELAC-NY10854,NJD	05/04/2015 13:31 EP	MW
7440-22-4	Silver	ND	n	ng/L 0.005	0.005	1	EPA 6010C/1311 Certifications: CTDOH,N	05/04/2015 08:15 ELAC-NY10854,NJDE	05/04/2015 13:31 EP,PADEP	MW

#### Mercury by 7473

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 7473 soil

CAS No.		Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	<b>Reference Method</b>	Date/Time Prepared	Date/Time Analyzed	Analyst
439-97-6 N	Mercury		0.914		mg/kg dry	0.0361	0.0361	1	EPA 7473	05/03/2015 07:58	05/03/2015 12:38	ALD
									Certifications: CTDOH,N	JDEP,NELAC-NY108	54,PADEP	
Mercury TC	CLP by 747.	<u>3</u>				<u>Log-in</u>	Notes:		Sample Note	<u>:s:</u>		
ample Prepared b	by Method: EPA	7473 water										
CAS No.		Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	<b>Reference Method</b>	Date/Time Prepared	Date/Time Analyzed	Analyst
439-97-6 N	Mercury		ND		mg/L	0.0000390	0.000200	) 1	EPA 7473/1311 Certifications: CTDOH,N.	05/04/2015 06:51 IDEP,PADEP,NELAC-	05/04/2015 12:07 NY10854	ALD
Fotal Solids	av Method: % So	lids Pren				<u>Log-in</u>	Notes:		Sample Note	<u>:s:</u>		
CAS No.	sy method. 70 50	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
olids *	* % Solids		83.0		%	0.100	0.100	1	SM 2540G Certifications: CTDOH	05/04/2015 10:12	05/04/2015 14:24	SCA
		IETALS EPA 1311				<u>Log-in</u>	Notes:		Sample Note	<u>s:</u> EXT-Temp		
Sample Prepared b	by Method: EPA	SW 846-1311 TCLP ext. for me	etals							Date/Time	Date/Time	
CAS No.		Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	<b>Reference Method</b>	Prepared	Analyzed	Analyst
]	TCLP Extraction	n	Completed		N/A	1.00	1.00	1	EPA 1311 Certifications: NELAC-N	05/02/2015 16:29 Y10854,CTDOH,NJDF	05/04/2015 12:59 EP,PADEP	SCA



Client Sample ID: SB03_5-5.5			York Sample ID:	15E0070-03
<u>York Project (SDG) No.</u> 15E0070	Client Project ID 170362501	<u>Matrix</u> Soil	<u>Collection Date/Time</u> May 2, 2015 11:50 am	Date Received 05/02/2015
1320070	170302301	5011	May 2, 2013 11.50 alli	03/02/2013

	Organics, NJDEP/TCL/Part 375 L	<u>AIST</u>			<u>Log-in Notes:</u>			<u>Sample Notes:</u>					
Sample Prepar CAS N	ed by Method: EPA 5035A o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analys	
530-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDI	05/04/2015 12:21 EP	BK	
1-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDI	05/04/2015 12:21 EP,PADEP	BK	
9-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDI	05/04/2015 12:21 EP,PADEP	BK	
6-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDI	05/04/2015 12:21 EP	ВК	
9-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDI	05/04/2015 12:21 EP,PADEP	ВК	
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDI	05/04/2015 12:21 EP,PADEP	ВК	
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDI	05/04/2015 12:21 EP,PADEP	BK	
37-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 10854,NJDEP	05/04/2015 12:21	BK	
6-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 10854,NJDEP	05/04/2015 12:21	ВК	
20-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 10854,NJDEP	05/04/2015 12:21	BK	
5-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDI	05/04/2015 12:21 EP	ВК	
6-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDI	05/04/2015 12:21 EP	ВК	
06-93-4	1,2-Dibromoethane	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDI	05/04/2015 12:21 EP	ВК	
5-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDI	05/04/2015 12:21 EP,PADEP	ВК	
07-06-2	1,2-Dichloroethane	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDI	05/04/2015 12:21 EP,PADEP	BK	
8-87-5	1,2-Dichloropropane	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDI	05/04/2015 12:21 EP	ВК	
08-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDI	05/04/2015 12:21 EP	BK	
41-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDI	05/04/2015 12:21 EP,PADEP	ВК	
06-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDI	05/04/2015 12:21 EP,PADEP	ВК	
23-91-1	1,4-Dioxane	ND		ug/kg dry	71	140	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 10854,NJDEP	05/04/2015 12:21	BK	
8-93-3	2-Butanone	4.3	J	ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJD	05/04/2015 12:21 EP	BK	
91-78-6	2-Hexanone	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDI	05/04/2015 12:21 EP	BK	
08-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH NE	05/04/2015 07:53 LAC-NY10854,NJDI	05/04/2015 12:21	BK	



Client Sample ID:	SB03 5-5.5

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 11:50 am	05/02/2015

	Organics, NJDEP/TCL/Part 37	<u>'5 List</u>			Log-in	Notes:		<u>Sam</u>	ple Note	<u>s:</u>		
Sample Prepa	red by Method: EPA 5035A No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analys
67-64-1	Acetone	49	CCV-E, SCAL- E		7.1	14	1	EPA 8260C Certifications:	CTDOH,N	05/04/2015 07:53 ELAC-NY10854,NJE	05/04/2015 12:21 DEP	ВК
107-02-8	Acrolein	ND		ug/kg dry	7.1	14	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJD	05/04/2015 12:21 EP	BK
107-13-1	Acrylonitrile	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJD	05/04/2015 12:21 EP	BK
71-43-2	Benzene	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJD	05/04/2015 12:21 EP,PADEP	BK
74-97-5	Bromochloromethane	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	NELAC-N	05/04/2015 07:53 Y10854,NJDEP	05/04/2015 12:21	BK
75-27-4	Bromodichloromethane	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJD	05/04/2015 12:21 EP,PADEP	BK
75-25-2	Bromoform	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJD	05/04/2015 12:21 EP,PADEP	ВК
74-83-9	Bromomethane	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJD	05/04/2015 12:21 EP,PADEP	ВК
75-15-0	Carbon disulfide	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJD	05/04/2015 12:21 EP	BK
56-23-5	Carbon tetrachloride	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJD	05/04/2015 12:21 EP,PADEP	ВК
108-90-7	Chlorobenzene	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJD	05/04/2015 12:21 EP,PADEP	ВК
75-00-3	Chloroethane	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJD	05/04/2015 12:21 EP,PADEP	BK
67-66-3	Chloroform	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJD	05/04/2015 12:21 EP,PADEP	ВК
74-87-3	Chloromethane	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJD	05/04/2015 12:21 EP,PADEP	ВК
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJD	05/04/2015 12:21 EP	ВК
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJD	05/04/2015 12:21 EP,PADEP	ВК
110-82-7	Cyclohexane	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	NELAC-N	05/04/2015 07:53 Y10854,NJDEP	05/04/2015 12:21	BK
124-48-1	Dibromochloromethane	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	NELAC-N	05/04/2015 07:53 Y10854,NJDEP,PADE	05/04/2015 12:21 P	BK
74-95-3	Dibromomethane	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	NELAC-N	05/04/2015 07:53 Y10854,NJDEP	05/04/2015 12:21	BK
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	NELAC-N	05/04/2015 07:53 Y10854,NJDEP	05/04/2015 12:21	ВК
100-41-4	Ethyl Benzene	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJD	05/04/2015 12:21 EP,PADEP	BK
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	NELAC-N	05/04/2015 07:53 Y10854,NJDEP	05/04/2015 12:21	BK
98-82-8	Isopropylbenzene	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJD	05/04/2015 12:21 EP	BK

York Sample ID:



Client Sample ID:	SB03_5-5.5	

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 11:50 am	05/02/2015

	rganics, NJDEP/TCL/Part 375	<u>List</u>			Log-in ]	Notes:		Sample Notes:					
CAS No	ed by Method: EPA 5035A D. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analys	
79-20-9	Methyl acetate	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 10854,NJDEP	05/04/2015 12:21	BK	
634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDH	05/04/2015 12:21 EP	BK	
08-87-2	Methylcyclohexane	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 10854,NJDEP	05/04/2015 12:21	BK	
75-09-2	Methylene chloride	ND		ug/kg dry	7.1	14	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDH	05/04/2015 12:21 EP,PADEP	BK	
104-51-8	n-Butylbenzene	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDF	05/04/2015 12:21 EP	BK	
103-65-1	n-Propylbenzene	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDH	05/04/2015 12:21 EP	ВК	
95-47-6	o-Xylene	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854	05/04/2015 12:21	ВК	
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	7.1	14	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854	05/04/2015 12:21	BK	
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDF	05/04/2015 12:21 EP	BK	
135-98-8	sec-Butylbenzene	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDE	05/04/2015 12:21 EP	BK	
100-42-5	Styrene	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDF	05/04/2015 12:21 EP	BK	
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 10854,NJDEP	05/04/2015 12:21	BK	
98-06-6	tert-Butylbenzene	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDF	05/04/2015 12:21 EP	BK	
27-18-4	Tetrachloroethylene	51	CCV-E	ug/kg dry	3.5	7.1	1	EPA 8260C		05/04/2015 07:53	05/04/2015 12:21	BK	
								Certifications:	CTDOH,NI	ELAC-NY10854,NJD	EP,PADEP		
108-88-3	Toluene	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDF	05/04/2015 12:21 EP,PADEP	BK	
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDF	05/04/2015 12:21 EP	BK	
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDF	05/04/2015 12:21 EP,PADEP	BK	
79-01-6	Trichloroethylene	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDF	05/04/2015 12:21 EP,PADEP	BK	
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDF	05/04/2015 12:21 EP,PADEP	BK	
75-01-4	Vinyl Chloride	ND		ug/kg dry	3.5	7.1	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDH	05/04/2015 12:21 EP,PADEP	BK	
1330-20-7	Xylenes, Total	ND		ug/kg dry	11	21	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 LAC-NY10854,NJDH	05/04/2015 12:21 EP,PADEP	BK	
	Surrogate Recoveries	Result		Acce	ptance Rang	e							
7060-07-0	Surrogate: 1,2-Dichloroethane-d4	96.9 %			77-125								
2037-26-5	Surrogate: Toluene-d8	99.2 %			85-120								
	5												

York Sample ID:



15E0070-03
Date Received

05/02/2015

Page 28 of 117

Client Sample ID: SB03_5-5.5			York Sample ID:
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time
15E0070	170362501	Soil	May 2, 2015 11:50 am

	atiles, NJDEP/TCL/Part 375 L	<u>Ast</u>		<u>Log-in l</u>	Notes:		<u>Sample Notes:</u>					
Sample Prepare CAS No	red by Method: EPA 3550C	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
33-32-9	Acenaphthene	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 18:26 EP,PADEP	KH
208-96-8	Acenaphthylene	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 18:26 EP,PADEP	KH
98-86-2	Acetophenone	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 10854,NJDEP	05/03/2015 18:26	КН
52-53-3	Aniline	ND		ug/kg dry	114	228	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 10854,NJDEP,PADE	05/03/2015 18:26 P	КН
20-12-7	Anthracene	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 18:26 EP,PADEP	KH
912-24-9	Atrazine	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 710854,NJDEP	05/03/2015 18:26	KH
00-52-7	Benzaldehyde	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 10854,NJDEP	05/03/2015 18:26	КН
92-87-5	Benzidine	ND		ug/kg dry	114	228	1	EPA 8270D Certifications:	CTDOH,NF	05/03/2015 13:15 ELAC-NY10854	05/03/2015 18:26	КН
6-55-3	Benzo(a)anthracene	93.8		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOUN	05/03/2015 13:15	05/03/2015 18:26	КН
0-32-8	Benzo(a)pyrene	63.3		ug/kg dry	28.6	57.0	1	EPA 8270D	CIDOR,INI	ELAC-NY10854,NJD 05/03/2015 13:15	05/03/2015 18:26	КН
0-52 0	Denzo(u)pjrene	05.5		ug/ ng un j	20.0	57.0	1	Certifications:	CTDOH,NI	ELAC-NY10854,NJD		1
05-99-2	Benzo(b)fluoranthene	56.0	J	ug/kg dry	28.6	57.0	1	EPA 8270D		05/03/2015 13:15	05/03/2015 18:26	KH
								Certifications:	CTDOH,NI	ELAC-NY10854,NJD	EP,PADEP	
91-24-2	Benzo(g,h,i)perylene	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 18:26 EP,PADEP	KH
55-85-0	Benzoic acid	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 10854,NJDEP	05/03/2015 18:26	КН
07-08-9	Benzo(k)fluoranthene	65.1		ug/kg dry	28.6	57.0	1	EPA 8270D		05/03/2015 13:15	05/03/2015 18:26	KH
								Certifications:	CTDOH,NI	ELAC-NY10854,NJD	EP,PADEP	
00-51-6	Benzyl alcohol	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 10854,NJDEP,PADE	05/03/2015 18:26 P	КН
35-68-7	Benzyl butyl phthalate	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 18:26 EP,PADEP	КН
92-52-4	1,1'-Biphenyl	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 10854,NJDEP	05/03/2015 18:26	КН
01-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 18:26 EP,PADEP	КН
05-60-2	Caprolactam	ND		ug/kg dry	57.0	114	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 10854,NJDEP	05/03/2015 18:26	КН
36-74-8	Carbazole	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NF	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 18:26 EP,PADEP	КН
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NF	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 18:26 EP,PADEP	КН
06-47-8	4-Chloroaniline	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 18:26 EP,PADEP	КН
11-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NF	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 18:26 EP,PADEP	КН



<u>Client Sample ID:</u> SB03_5-5.5			York Sample ID:	15E0070-03
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 11:50 am	05/02/2015

	tiles, NJDEP/TCL/Part 375 I d by Method: EPA 3550C	<u>list</u>			<u>Log-in l</u>	<u>notes:</u>		Sample Notes:				
CAS No.	. Parameter	Result I	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
11-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP,PADEP	КН
08-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP,PADEP	KH
01-58-7	2-Chloronaphthalene	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP,PADEP	KH
95-57-8	2-Chlorophenol	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP,PADEP	КН
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP,PADEP	КН
18-01-9	Chrysene	92.5		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,N	05/03/2015 13:15 ELAC-NY10854,NJD	05/03/2015 18:26 EP,PADEP	KH
53-70-3	Dibenzo(a,h)anthracene	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP,PADEP	КН
32-64-9	Dibenzofuran	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP	KH
34-74-2	Di-n-butyl phthalate	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP,PADEP	КН
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 /10854	05/03/2015 18:26	КН
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 710854	05/03/2015 18:26	КН
06-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 /10854	05/03/2015 18:26	KH
01-94-1	3,3'-Dichlorobenzidine	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 /10854,NJDEP,PADE	05/03/2015 18:26	KH
20-83-2	2,4-Dichlorophenol	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP,PADEP	КН
34-66-2	Diethyl phthalate	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP,PADEP	KH
05-67-9	2,4-Dimethylphenol	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP,PADEP	KH
31-11-3	Dimethyl phthalate	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP,PADEP	КН
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	57.0	114	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP	КН
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	57.0	114	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP,PADEP	KH
21-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP,PADEP	KH
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP,PADEP	KH
17-84-0	Di-n-octyl phthalate	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP,PADEP	KH
22-66-7	1,2-Diphenylhydrazine (as Azobenzene)	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 (10854,NJDEP	05/03/2015 18:26	KH
17-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP,PADEP	KH
120	RESEARCH DRIVE	STRATFORD, C	CT 066	15		(	203) 325-1	1371		FAX (203) 35	7-0166 Page 29	of 117



<u>Client Sample ID:</u> SB03_5-5.5			York Sample ID:	15E0070-03
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 11:50 am	05/02/2015

	atiles, NJDEP/TCL/Part 375 L	<u>list</u>			Log-in Notes:			Sample Notes:				
Sample Prepar CAS N	red by Method: EPA 3550C	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Referenc	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
206-44-0	Fluoranthene	215		ug/kg dry	28.6	57.0	1	EPA 8270D		05/03/2015 13:15	05/03/2015 18:26	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD		
86-73-7	Fluorene	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 (10854,NJDEP,PADE	05/03/2015 18:26 P	KH
118-74-1	Hexachlorobenzene	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP,PADEP	KH
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP,PADEP	KH
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP,PADEP	KH
67-72-1	Hexachloroethane	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP,PADEP	KH
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP,PADEP	KH
78-59-1	Isophorone	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP,PADEP	KH
91-57-6	2-Methylnaphthalene	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP	KH
95-48-7	2-Methylphenol	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP,PADEP	KH
65794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP	KH
91-20-3	Naphthalene	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP	KH
100-01-6	4-Nitroaniline	ND		ug/kg dry	57.0	114	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP,PADEP	KH
88-74-4	2-Nitroaniline	ND		ug/kg dry	57.0	114	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP,PADEP	KH
99-09-2	3-Nitroaniline	ND		ug/kg dry	57.0	114	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP,PADEP	KH
98-95-3	Nitrobenzene	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP,PADEP	KH
88-75-5	2-Nitrophenol	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP,PADEP	KH
100-02-7	4-Nitrophenol	ND		ug/kg dry	57.0	114	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP,PADEP	KH
621-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP,PADEP	KH
62-75-9	N-Nitrosodimethylamine	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP	KH
86-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP	KH
87-86-5	Pentachlorophenol	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 18:26 EP,PADEP	KH
85-01-8	Phenanthrene	133		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,N	05/03/2015 13:15 ELAC-NY10854,NJD	05/03/2015 18:26 EP,PADEP	KH



Client Sample ID:	SB03 5-5.5

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 11:50 am	05/02/2015

Semi-Vol	atiles, NJDEP/TCL/Part 375 List				Log-in Notes:			Sample Notes:				
Sample Prepa	red by Method: EPA 3550C											
CAS	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-95-2	Phenol	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 18:26 EP,PADEP	КН
129-00-0	Pyrene	168		ug/kg dry	28.6	57.0	1	EPA 8270D		05/03/2015 13:15	05/03/2015 18:26	КН
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/kg dry	57.0	114	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 ¥10854,NJDEP	05/03/2015 18:26	КН
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/kg dry	57.0	114	1	EPA 8270D Certifications:	NELAC-N	05/03/2015 13:15 Y 10854,NJDEP	05/03/2015 18:26	КН
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 18:26 EP,PADEP	KH
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 18:26 EP,PADEP	КН
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	28.6	57.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 18:26 EP	KH
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
367-12-4	Surrogate: 2-Fluorophenol	1.53 %	S-01		10-95							
4165-62-2	Surrogate: Phenol-d5	8.47 %	S-01		10-107							
4165-60-0	Surrogate: Nitrobenzene-d5	43.9 %			10-95							
321-60-8	Surrogate: 2-Fluorobiphenyl	34.6 %			10-97							
118-79-6	Surrogate: 2,4,6-Tribromophenol	1.29 %	S-01		10-103							
1718-51-0	Surrogate: Terphenyl-d14	35.6 %			19-99							

#### Pesticides, NJDEP/TCL/Part 375 List

Sample Prepared by Method: EPA 3550C

CAS No	o. Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
309-00-2	Aldrin	ND		ug/kg dry	2.26	2.26	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDF	05/04/2015 11:20 EP,PADEP	JW
319-84-6	alpha-BHC	ND		ug/kg dry	2.26	2.26	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDF	05/04/2015 11:20 EP,PADEP	JW
319-85-7	beta-BHC	ND		ug/kg dry	2.26	2.26	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDF	05/04/2015 11:20 EP,PADEP	JW
319-86-8	delta-BHC	ND		ug/kg dry	2.26	2.26	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDF	05/04/2015 11:20 EP,PADEP	JW
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	2.26	2.26	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDF	05/04/2015 11:20 EP,PADEP	JW
5103-74-2	gamma-Chlordane	ND		ug/kg dry	2.26	2.26	5	EPA 8081B Certifications:	NELAC-N	05/03/2015 13:18 Y10854,NJDEP	05/04/2015 11:20	JW
5103-71-9	alpha-Chlordane	ND		ug/kg dry	2.26	2.26	5	EPA 8081B Certifications:	NELAC-N	05/03/2015 13:18 Y10854,NJDEP	05/04/2015 11:20	JW
57-74-9	Chlordane, total	ND		ug/kg dry	9.02	9.02	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDF	05/04/2015 11:20 EP,PADEP	JW
72-54-8	4,4'-DDD	ND		ug/kg dry	2.26	2.26	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDF	05/04/2015 11:20 EP,PADEP	JW

Log-in Notes:

Sample Notes:

York Sample ID:



Client Sample ID: SB03_5-5.5			York Sample ID:	15E0070-03
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 11:50 am	05/02/2015

	, NJDEP/TCL/Part 375 List ed by Method: EPA 3550C			<u>Log-in Notes:</u>				Sample Notes:				
CAS No		Result	Flag	Units	LOD/MDL	Reported to LOD/MDL LOQ		Reference Method		Date/Time Prepared	Date/Time Analyzed	Analyst
72-55-9	4,4'-DDE	ND		ug/kg dry	2.26	2.26	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 11:20 EP,PADEP	JW
50-29-3	4,4'-DDT	ND		ug/kg dry	2.26	2.26	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 11:20 EP,PADEP	JW
60-57-1	Dieldrin	ND		ug/kg dry	2.26	2.26	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 11:20 EP,PADEP	JW
959-98-8	Endosulfan I	ND		ug/kg dry	2.26	2.26	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 11:20 EP,PADEP	JW
33213-65-9	Endosulfan II	ND		ug/kg dry	2.26	2.26	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 11:20 EP,PADEP	JW
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	2.26	2.26	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 11:20 EP,PADEP	JW
72-20-8	Endrin	ND		ug/kg dry	2.26	2.26	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 11:20 EP,PADEP	JW
7421-93-4	Endrin aldehyde	ND		ug/kg dry	2.26	2.26	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 11:20 EP,PADEP	JW
53494-70-5	Endrin ketone	ND		ug/kg dry	2.26	2.26	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 11:20 EP	JW
76-44-8	Heptachlor	ND		ug/kg dry	2.26	2.26	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 11:20 EP,PADEP	JW
1024-57-3	Heptachlor epoxide	ND		ug/kg dry	2.26	2.26	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 11:20 EP,PADEP	JW
72-43-5	Methoxychlor	ND		ug/kg dry	11.3	11.3	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 11:20 EP,PADEP	JW
8001-35-2	Toxaphene	ND		ug/kg dry	114	114	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 11:20 EP	JW
	Surrogate Recoveries	Result		Acce	ptance Rang	ge						
2051-24-3	Surrogate: Decachlorobiphenyl	67.4 %			30-140							
877-09-8	Surrogate: Tetrachloro-m-xylene	66.9 %			30-140							

# Polychlorinated Biphenyls (PCB)

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS N	No.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
12674-11-2	Aroclor 1016		ND		mg/kg dry	0.0228	0.0228	1	EPA 8082A Certifications:	NELAC-N	05/03/2015 13:18 Y10854,CTDOH,NJDH	05/04/2015 12:20 EP,PADEP	AMC
11104-28-2	Aroclor 1221		ND		mg/kg dry	0.0228	0.0228	1	EPA 8082A Certifications:				AMC
11141-16-5	Aroclor 1232		ND		mg/kg dry	0.0228	0.0228	1	EPA 8082A Certifications:	NELAC-N	05/03/2015 13:18 Y 10854,CTDOH,NJDH	05/04/2015 12:20 EP,PADEP	AMC
53469-21-9	Aroclor 1242		ND		mg/kg dry	0.0228	0.0228	1	EPA 8082A Certifications:	NELAC-N	05/03/2015 13:18 Y 10854,CTDOH,NJDH	05/04/2015 12:20 EP,PADEP	AMC
12672-29-6	Aroclor 1248		ND		mg/kg dry	0.0228	0.0228	1	EPA 8082A Certifications:	NELAC-N	05/03/2015 13:18 Y 10854,CTDOH,NJDH	05/04/2015 12:20 EP,PADEP	AMC
11097-69-1	Aroclor 1254		ND		mg/kg dry	0.0228	0.0228	1	EPA 8082A Certifications:	NELAC-N	05/03/2015 13:18 Y10854,CTDOH,NJDH	05/04/2015 12:20 EP,PADEP	AMC
120	0 RESEARCH DRI	VE	STRATFOR	D, CT 06	615		(2	203) 325-1	1371		FAX (203) 35	7-0166	



<u>Client Sample ID:</u> SB03_5-5.5			York Sample ID:	15E0070-03
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 11:50 am	05/02/2015

<b>Polychlor</b>	Polychlorinated Biphenyls (PCB)					Log-in Notes:		Sample Notes:			
Sample Prepar	red by Method: EPA 3550C										
CAS N	o. Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
11096-82-5	Aroclor 1260	ND		mg/kg dry	0.0228	0.0228	1	EPA 8082A Certifications: NELAC-	05/03/2015 13:18 NY10854,CTDOH,NJD	05/04/2015 12:20 EP,PADEP	AMC
1336-36-3	* Total PCBs	ND		mg/kg dry	0.0228	0.0228	1	EPA 8082A Certifications:	05/03/2015 13:18	05/04/2015 12:20	AMC
	Surrogate Recoveries	Result		Accep	ptance Rang	e					
877-09-8	Surrogate: Tetrachloro-m-xylene	59.6 %			30-140						
2051-24-3	Surrogate: Decachlorobiphenyl	59.7 %			30-140						

Log-in Notes:

Sample Notes:

#### Metals, Target Analyte

Sample Prepared by Method: EPA 3050B

CAS N	No. Para	meter Result	Flag Units	LOD/MDI	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
429-90-5	Aluminum	9170	mg/kg dry	6.83	6.83	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:09	MW
							Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
7440-36-0	Antimony	ND	mg/kg dry	0.683	0.683	1	EPA 6010C Certifications:	CTDOH,N	05/04/2015 08:09 ELAC-NY10854,NJDI	05/04/2015 11:09 EP,PADEP	MW
440-38-2	Arsenic	7.95	mg/kg dry	1.37	1.37	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:09	MW
							Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
440-39-3	Barium	81.2	mg/kg dry	1.37	1.37	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:09	MW
							Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
7440-41-7	Beryllium	ND	mg/kg dry	0.137	0.137	1	EPA 6010C Certifications:	CTDOH,N	05/04/2015 08:09 ELAC-NY10854,NJDI	05/04/2015 11:09 EP	MW
7440-43-9	Cadmium	ND	mg/kg dry	0.410	0.410	1	EPA 6010C Certifications:	CTDOH,N	05/04/2015 08:09 ELAC-NY10854,NJDI	05/04/2015 11:09 EP,PADEP	MW
440-70-2	Calcium	130000	mg/kg dry	0.683	6.83	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:09	MW
							Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
440-47-3	Chromium	8.86	mg/kg dry	0.683	0.683	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:09	MW
							Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
440-48-4	Cobalt	3.97	mg/kg dry	0.683	0.683	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:09	MW
							Certifications:	CTDOH,N	IELAC-NY10854,NJD	EP	
440-50-8	Copper	12.6	mg/kg dry	0.683	0.683	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:09	MW
							Certifications:	CTDOH,N	IELAC-NY10854,NJD	EP	
439-89-6	Iron	10000	mg/kg dry	2.73	2.73	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:09	MW
							Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
439-92-1	Lead	52.4	mg/kg dry	0.410	0.410	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:09	MW
							Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
439-95-4	Magnesium	10500	mg/kg dry	6.83	6.83	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:09	MW
							Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
439-96-5	Manganese	237	mg/kg dry	0.683	0.683	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:09	MW
							Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
440-02-0	Nickel	9.45	mg/kg dry	0.683	0.683	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:09	MW
							Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
440-09-7	Potassium	1380	mg/kg dry	6.83	6.83	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:09	MW
							Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
120 RESEARCH DRIVE STRATFORD, CT 06615				(203) 325-1371 FAX (203) 357-0166			7-0166				
12		onvin one,	01 00010		(4	200) 020-1	157 1		1707 (200) 00	Page 33	



Client Sample ID:	SB03 5-5.5

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 11:50 am	05/02/2015

	<b>Metals, Target Analyte</b> ample Prepared by Method: EPA 3050B					<u>Log-in Notes:</u>			Sam	Sample Notes:			
CAS N	No.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7782-49-2	Selenium		ND		mg/kg dry	1.37	1.37	1	EPA 6010C Certifications:	CTDOH,NE	05/04/2015 08:09 LAC-NY10854,NJDE	05/04/2015 11:09 EP,PADEP	MW
7440-22-4	Silver		ND		mg/kg dry	0.683	0.683	1	EPA 6010C Certifications:	CTDOH,NEI	05/04/2015 08:09 LAC-NY10854,NJDE	05/04/2015 11:09 EP,PADEP	MW
7440-23-5	Sodium		533		mg/kg dry	13.7	13.7	1	EPA 6010C Certifications:	CTDOH,NE	05/04/2015 08:09 ELAC-NY10854,NJD	05/04/2015 11:09 EP	MW
7440-28-0	Thallium		ND		mg/kg dry	1.37	1.37	1	EPA 6010C Certifications:	CTDOH,NEI	05/04/2015 08:09 LAC-NY10854,NJDE	05/04/2015 11:09 EP	MW
7440-62-2	Vanadium		21.2		mg/kg dry	1.37	1.37	1	EPA 6010C Certifications:	CTDOH NE	05/04/2015 08:09 ELAC-NY10854,NJD	05/04/2015 11:09	MW
7440-66-6	Zinc		28.1		mg/kg dry	1.37	1.37	1	EPA 6010C Certifications:		05/04/2015 08:09 ELAC-NY10854,NJD	05/04/2015 11:09	MW

Log-in Notes:

#### Metals, TCLP RCRA

Sample Prepared by Method: EPA 3010A/1311

CAS N	0.	Parameter	Result I	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	Ν	١D		mg/L	0.004	0.004	1	EPA 6010C/1311 Certifications: CTDOH,NE	05/04/2015 08:15 LAC-NY10854,NJDE	05/04/2015 13:36 P,PADEP	MW
7440-39-3	Barium	0	.136		mg/L	0.010	0.010	1	EPA 6010C/1311 Certifications: CTDOH,N	05/04/2015 08:15 ELAC-NY10854,NJDF	05/04/2015 13:36 EP,PADEP	MW
7440-43-9	Cadmium	Ν	١D		mg/L	0.003	0.003	1	EPA 6010C/1311 Certifications: CTDOH,NE	05/04/2015 08:15 LAC-NY10854,NJDE	05/04/2015 13:36 P,PADEP	MW
7440-47-3	Chromium	Ν	١D		mg/L	0.005	0.005	1	EPA 6010C/1311 Certifications: CTDOH,NE	05/04/2015 08:15 LAC-NY10854,NJDE	05/04/2015 13:36 P,PADEP	MW
7439-92-1	Lead	Ν	١D		mg/L	0.003	0.003	1	EPA 6010C/1311 Certifications: CTDOH,NE	05/04/2015 08:15 LAC-NY10854,NJDE	05/04/2015 13:36 P,PADEP	MW
7782-49-2	Selenium	0	.011	M-SeT C	mg/L	0.010	0.010	1	EPA 6010C/1311 Certifications: CTDOH,N	05/04/2015 08:15 ELAC-NY10854,NJDF	05/04/2015 13:36 EP	MW
7440-22-4	Silver	Ν	١D		mg/L	0.005	0.005	1	EPA 6010C/1311 Certifications: CTDOH,NE	05/04/2015 08:15 LAC-NY10854,NJDE	05/04/2015 13:36 P,PADEP	MW

Mercury by 7473

Log-in Notes:

Sample Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	<b>Reference Method</b>	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6 Mercury	7	4.67		mg/kg dry	0.0410	0.0410	1	EPA 7473 Certifications: CTDOH,N	05/03/2015 07:58 IJDEP,NELAC-NY108	05/03/2015 12:50 854,PADEP	ALD
Mercurv TCLP by	. 7473				Login	Natara					
					<u>Log-in</u>	notes:		<u>Sample Note</u>	<u>es:</u>		
Sample Prepared by Method CAS No.		Result	Flag	Units		Reported to LOQ	Dilution	Sample Note	Date/Time Prepared	Date/Time Analyzed	Analyst

York Sample ID:



Client Sample ID: SB03_5-5.5			York Sample ID:	15E0070-03
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 11:50 am	05/02/2015

<b>Total Solids</b>					<u>Log-in</u>	Notes:		Sample Note	<u>s:</u>		
Sample Prepared by Metho	od: % Solids Prep										
CAS No.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids * % Sol	lids	73.2		%	0.100	0.100	1	SM 2540G Certifications: CTDOH	05/04/2015 10:12	05/04/2015 14:24	SCA
TCLP Extraction	for METALS EPA 1311				Login	N - 4		Samula Nata			
Sample Prepared by Metho	od: EPA SW 846-1311 TCLP ext. for	netals			<u>Log-III</u>	<u>Notes:</u>		Sample Note	<u>s:</u> EXT-Temp		
Sample Prepared by Metho CAS No.		metals Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Sample Note Reference Method	S: EA 1- 1emp Date/Time Prepared	Date/Time Analyzed	Analyst

Client Sample ID: SB045-1			York Sample ID:	15E0070-04
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 2:50 pm	05/02/2015

	Drganics, NJDEP/TCL/Part 375 I ared by Method: EPA 5035A	<u>Alst</u>			<u>Log-in Notes:</u>			<u>Sample Notes:</u>				
CASI	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 12:58 EP	BK
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 12:58 EP,PADEP	BK
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 12:58 EP,PADEP	BK
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 12:58 EP	BK
79-00-5	1,1,2-Trichloroethane	5.7		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,N	05/04/2015 07:53 IELAC-NY10854,NJD	05/04/2015 12:58 EP,PADEP	BK
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 12:58 EP,PADEP	BK
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 12:58 EP,PADEP	BK
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	NELAC-N	05/04/2015 07:53 Y10854,NJDEP	05/04/2015 12:58	BK
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	NELAC-N	05/04/2015 07:53 Y10854,NJDEP	05/04/2015 12:58	BK
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	NELAC-N	05/04/2015 07:53 Y10854,NJDEP	05/04/2015 12:58	BK



<b>Client Sample I</b>	D: SB	04 .5-1

Client Sample ID: SB045-1			York Sample ID:	15E0070-04
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 2:50 pm	05/02/2015

Volatile Organics, NJDEP/TCL/Part 375 List			Log-in ]	Log-in Notes: Sample Notes:								
Sample Prepare CAS No	ed by Method: EPA 5035A o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDF	05/04/2015 12:58 EP	BK
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDH	05/04/2015 12:58 EP	BK
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDF	05/04/2015 12:58 EP	ВК
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDF	05/04/2015 12:58 EP,PADEP	BK
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDF	05/04/2015 12:58 EP,PADEP	BK
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDF	05/04/2015 12:58 EP	BK
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDF	05/04/2015 12:58 EP	BK
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDF	05/04/2015 12:58 EP,PADEP	BK
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDF	05/04/2015 12:58 EP,PADEP	BK
123-91-1	1,4-Dioxane	ND		ug/kg dry	50	100	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 10854,NJDEP	05/04/2015 12:58	BK
78-93-3	2-Butanone	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDF	05/04/2015 12:58 EP	BK
591-78-6	2-Hexanone	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDF	05/04/2015 12:58 EP	ВК
108-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 12:58 EP	ВК
57-64-1	Acetone	13	CCV-E,	ug/kg dry	5.0	10	1	EPA 8260C		05/04/2015 07:53	05/04/2015 12:58	ВК
			SCAL- E					Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
107-02-8	Acrolein	ND		ug/kg dry	5.0	10	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDF	05/04/2015 12:58 EP	ВК
107-13-1	Acrylonitrile	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDF	05/04/2015 12:58 EP	ВК
71-43-2	Benzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDF	05/04/2015 12:58 EP,PADEP	ВК
74-97-5	Bromochloromethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 10854,NJDEP	05/04/2015 12:58	BK
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 12:58 EP,PADEP	ВК
75-25-2	Bromoform	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 12:58 EP,PADEP	ВК
74-83-9	Bromomethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDH	05/04/2015 12:58 EP,PADEP	BK
75-15-0	Carbon disulfide	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDH	05/04/2015 12:58 EP	BK
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH NE	05/04/2015 07:53 ELAC-NY10854,NJDF	05/04/2015 12:58	ВК



<b>Client Sample ID:</b>	SB04 .5-1

Client Sample ID: SB045-1			York Sample ID:	15E0070-04
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 2:50 pm	05/02/2015

Volatile Organics, NJDEP/TCL/Part 375 List Sample Prepared by Method: EPA 5035A					Log-in Notes: Sample Notes:								
CAS No	5	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst	
108-90-7	Chlorobenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDF	05/04/2015 12:58 EP,PADEP	BK	
75-00-3	Chloroethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 12:58 EP,PADEP	BK	
67-66-3	Chloroform	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDF	05/04/2015 12:58 EP,PADEP	BK	
74-87-3	Chloromethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 12:58 EP,PADEP	ВК	
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDF	05/04/2015 12:58 EP	ВК	
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 12:58 EP,PADEP	BK	
110-82-7	Cyclohexane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 /10854,NJDEP	05/04/2015 12:58	BK	
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 710854,NJDEP,PADE	05/04/2015 12:58	BK	
74-95-3	Dibromomethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 /10854,NJDEP	05/04/2015 12:58	BK	
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 (10854,NJDEP	05/04/2015 12:58	BK	
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDF	05/04/2015 12:58 EP,PADEP	BK	
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 /10854,NJDEP	05/04/2015 12:58	BK	
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDF	05/04/2015 12:58 EP	BK	
79-20-9	Methyl acetate	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 /10854,NJDEP	05/04/2015 12:58	BK	
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDF	05/04/2015 12:58	BK	
108-87-2	Methylcyclohexane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 /10854,NJDEP	05/04/2015 12:58	BK	
75-09-2	Methylene chloride	ND		ug/kg dry	5.0	10	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDF	05/04/2015 12:58 EP,PADEP	BK	
104-51-8	n-Butylbenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDF	05/04/2015 12:58 EP	BK	
103-65-1	n-Propylbenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDF	05/04/2015 12:58	BK	
95-47-6	o-Xylene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854	05/04/2015 12:58	BK	
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	5.0	10	1	EPA 8260C Certifications:		05/04/2015 07:53 ELAC-NY10854	05/04/2015 12:58	BK	
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:		05/04/2015 07:53 ELAC-NY10854,NJDF	05/04/2015 12:58 EP	BK	
135-98-8	sec-Butylbenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:		05/04/2015 07:53 ELAC-NY10854,NJDF	05/04/2015 12:58	BK	
100-42-5	Styrene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:		05/04/2015 07:53 ELAC-NY10854,NJDF	05/04/2015 12:58	BK	
120	RESEARCH DRIVE	STRATFOR	D, CT 06	615		(	203) 325-1	1371		FAX (203) 35	7-0166		



Client Sample ID: S	B04 .5-1
---------------------	----------

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 2:50 pm	05/02/2015

Volatile Organics, NJDEP/TCL/Part 375 List Sample Prepared by Method: EPA 5035A				<u>Log-in </u> ]	Notes:		<u>Sam</u>	Sample Notes:				
CAS N		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 Y10854,NJDEP	05/04/2015 12:58	BK
98-06-6	tert-Butylbenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDF	05/04/2015 12:58 EP	ВК
127-18-4	Tetrachloroethylene	230	CCV-E, E	ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,N	05/04/2015 07:53 ELAC-NY10854,NJD	05/04/2015 12:58 EP,PADEP	BK
108-88-3	Toluene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NH	05/04/2015 07:53 ELAC-NY10854,NJDF	05/04/2015 12:58 EP,PADEP	ВК
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDH	05/04/2015 12:58 EP	BK
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDF	05/04/2015 12:58 EP,PADEP	BK
79-01-6	Trichloroethylene	18		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,N	05/04/2015 07:53 ELAC-NY10854,NJD	05/04/2015 12:58 EP,PADEP	ВК
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDF	05/04/2015 12:58 EP,PADEP	ВК
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDF	05/04/2015 12:58 EP,PADEP	ВК
1330-20-7	Xylenes, Total	ND		ug/kg dry	7.5	15	1	EPA 8260C Certifications:	CTDOH,NH	05/04/2015 07:53 ELAC-NY10854,NJDF	05/04/2015 12:58 EP,PADEP	ВК
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	97.2 %			77-125							
2037-26-5	Surrogate: Toluene-d8	98.6 %			85-120							
460-00-4	Surrogate: p-Bromofluorobenzene	109 %			76-130							

Log-in Notes:

Sample Notes:

Sample Prepa	ared by Method: EPA 3550C											
CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	86.8	J	ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,N	05/03/2015 13:15 ELAC-NY10854,NJD	05/03/2015 19:32 EP,PADEP	КН
208-96-8	Acenaphthylene	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NH	05/03/2015 13:15 ELAC-NY10854,NJDF	05/03/2015 19:32 EP,PADEP	КН
98-86-2	Acetophenone	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 /10854,NJDEP	05/03/2015 19:32	KH
62-53-3	Aniline	ND		ug/kg dry	186	372	2	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 /10854,NJDEP,PADE	05/03/2015 19:32 P	KH
120-12-7	Anthracene	226		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,N	05/03/2015 13:15 ELAC-NY10854,NJD	05/03/2015 19:32 EP,PADEP	KH
1912-24-9	Atrazine	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 (10854,NJDEP	05/03/2015 19:32	KH
100-52-7	Benzaldehyde	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 /10854,NJDEP	05/03/2015 19:32	KH
92-87-5	Benzidine	ND		ug/kg dry	186	372	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854	05/03/2015 19:32	KH

15E0070-04

York Sample ID:



<b>Client Sample ID:</b>	SB04 .5-1

Client Sample ID: SB045-1			York Sample ID:	15E0070-04
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 2:50 pm	05/02/2015

	ntiles, NJDEP/TCL/Part 375 L	<u>list</u>			Log-in	Notes:		Sam	ple Note	<u>s:</u>		
Sample Prepare CAS No	ed by Method: EPA 3550C 0. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
56-55-3	Benzo(a)anthracene	859		ug/kg dry	46.5	92.8	2	EPA 8270D		05/03/2015 13:15	05/03/2015 19:32	КН
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
50-32-8	Benzo(a)pyrene	370		ug/kg dry	46.5	92.8	2	EPA 8270D		05/03/2015 13:15	05/03/2015 19:32	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD		
205-99-2	Benzo(b)fluoranthene	342		ug/kg dry	46.5	92.8	2	EPA 8270D	CTDOUN	05/03/2015 13:15	05/03/2015 19:32	KH
191-24-2	Benzo(g,h,i)perylene	122	CCVE	na/ka dru	A ( 5	02.9	2	Certifications: EPA 8270D	CIDOH,N	ELAC-NY10854,NJD 05/03/2015 13:15	05/03/2015 19:32	КН
191-24-2	Benzo(g,n,i)per yiene	122	CC V-E	ug/kg dry	46.5	92.8	2	Certifications:	CTDOH.N	ELAC-NY10854,NJD		KII
65-85-0	Benzoic acid	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:		05/03/2015 13:15 Y10854,NJDEP	05/03/2015 19:32	КН
207-08-9	Benzo(k)fluoranthene	350		ug/kg dry	46.5	92.8	2	EPA 8270D		05/03/2015 13:15	05/03/2015 19:32	КН
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
100-51-6	Benzyl alcohol	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	NELAC-N	05/03/2015 13:15 Y10854,NJDEP,PADE	05/03/2015 19:32 P	KH
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 19:32 EP,PADEP	КН
92-52-4	1,1'-Biphenyl	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	NELAC-N	05/03/2015 13:15 Y10854,NJDEP	05/03/2015 19:32	KH
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 19:32 EP,PADEP	KH
105-60-2	Caprolactam	ND		ug/kg dry	92.8	185	2	EPA 8270D Certifications:	NELAC-N	05/03/2015 13:15 Y10854,NJDEP	05/03/2015 19:32	KH
86-74-8	Carbazole	63.8	J	ug/kg dry	46.5	92.8	2	EPA 8270D		05/03/2015 13:15	05/03/2015 19:32	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 19:32 EP,PADEP	KH
106-47-8	4-Chloroaniline	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 19:32 EP,PADEP	КН
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 19:32 EP,PADEP	KH
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 19:32 EP,PADEP	КН
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 19:32 EP,PADEP	KH
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI		KH
95-57-8	2-Chlorophenol	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 19:32 EP,PADEP	KH
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 19:32 EP,PADEP	КН
218-01-9	Chrysene	836		ug/kg dry	46.5	92.8	2	EPA 8270D		05/03/2015 13:15	05/03/2015 19:32	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
53-70-3	Dibenzo(a,h)anthracene	61.6	,	ug/kg dry	46.5	92.8	2	EPA 8270D			05/03/2015 19:32	KH
			J					Certifications:	CTDOH,N	ELAC-NY10854,NJD		
132-64-9	Dibenzofuran	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI		КН



Client Sample ID:	SB04 .5-1	

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 2:50 pm	05/02/2015

	tiles, NJDEP/TCL/Part 375 Lis	<u>st</u>			<u>Log-in 1</u>	Notes:		<u>Sam</u>	ple Note	<u>s:</u>		
Sample Prepare CAS No	ed by Method: EPA 3550C D. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
84-74-2	Di-n-butyl phthalate	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 19:32 EP.PADEP	KH
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 (10854	05/03/2015 19:32	КН
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 /10854	05/03/2015 19:32	KH
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 /10854	05/03/2015 19:32	KH
91-94-1	3,3'-Dichlorobenzidine	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 /10854,NJDEP,PADEI	05/03/2015 19:32	KH
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 19:32 EP,PADEP	KH
84-66-2	Diethyl phthalate	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 19:32 EP,PADEP	KH
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 19:32 EP,PADEP	KH
131-11-3	Dimethyl phthalate	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 19:32 EP,PADEP	KH
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	92.8	185	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 19:32 EP	KH
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	92.8	185	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 19:32 EP,PADEP	KH
121-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 19:32 EP,PADEP	KH
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 19:32 EP,PADEP	KH
117-84-0	Di-n-octyl phthalate	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 19:32 EP,PADEP	KH
122-66-7	1,2-Diphenylhydrazine (as Azobenzene)	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 (10854,NJDEP	05/03/2015 19:32	KH
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH NF	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 19:32	KH
206-44-0	Fluoranthene	1490		ug/kg dry	46.5	92.8	2	EPA 8270D	, .	05/03/2015 13:15	05/03/2015 19:32	КН
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
86-73-7	Fluorene	64.6	J	ug/kg dry	46.5	92.8	2	EPA 8270D		05/03/2015 13:15	05/03/2015 19:32	KH
								Certifications:	NELAC-N	Y10854,NJDEP,PADE	Р	
118-74-1	Hexachlorobenzene	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 19:32 EP,PADEP	KH
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 19:32 EP,PADEP	KH
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 19:32 EP,PADEP	KH
67-72-1	Hexachloroethane	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 19:32 EP,PADEP	KH

15E0070-04

York Sample ID:



<u>Client Sample ID:</u> SB045-1			<u>York Sample I</u>
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time
15E0070	170362501	Soil	May 2, 2015 2:50 pm

	tiles, NJDEP/TCL/Part 375 Li	<u>st</u>			Log-in ]	Notes:		<u>Sam</u>	ple Note	<u>s:</u>		
CAS No	d by Method: EPA 3550C Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
78-59-1	Isophorone	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 19:32 EP,PADEP	КН
91-57-6	2-Methylnaphthalene	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 19:32 EP	КН
95-48-7	2-Methylphenol	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 19:32 EP,PADEP	KH
55794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 19:32 EP	KH
91-20-3	Naphthalene	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 19:32 EP	KH
00-01-6	4-Nitroaniline	ND		ug/kg dry	92.8	185	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 19:32 EP,PADEP	KH
38-74-4	2-Nitroaniline	ND		ug/kg dry	92.8	185	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 19:32 EP,PADEP	KH
99-09-2	3-Nitroaniline	ND		ug/kg dry	92.8	185	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 19:32 EP,PADEP	KH
98-95-3	Nitrobenzene	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 19:32 EP,PADEP	KH
38-75-5	2-Nitrophenol	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 19:32 EP,PADEP	KH
00-02-7	4-Nitrophenol	ND		ug/kg dry	92.8	185	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 19:32 EP,PADEP	KH
521-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 19:32 EP,PADEP	KH
52-75-9	N-Nitrosodimethylamine	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 19:32 EP	KH
36-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 19:32 EP	KH
37-86-5	Pentachlorophenol	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 19:32 EP,PADEP	KH
5-01-8	Phenanthrene	861		ug/kg dry	46.5	92.8	2	EPA 8270D		05/03/2015 13:15	05/03/2015 19:32	КН
								Certifications:	CTDOH,N	ELAC-NY10854,NJD		
08-95-2	Phenol	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 19:32 EP,PADEP	КН
29-00-0	Pyrene	1350		ug/kg dry	46.5	92.8	2	EPA 8270D		05/03/2015 13:15	05/03/2015 19:32	KH
						105		Certifications:	CTDOH,N	ELAC-NY10854,NJD	,	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/kg dry	92.8	185	2	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 (10854,NJDEP	05/03/2015 19:32	КН
8-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/kg dry	92.8	185	2	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 (10854,NJDEP	05/03/2015 19:32	КН
20-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 19:32 EP,PADEP	KH
38-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 19:32 EP,PADEP	КН
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	46.5	92.8	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI		KH
	Surrogate Recoveries	Result		Acce	ptance Rang	e						

York Sample ID:

15E0070-04 Date Received

05/02/2015



<u>Client Sample ID:</u> SB045-1			York Sample ID:	15E0070-04
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 2:50 pm	05/02/2015

Semi-Vol	atiles, NJDEP/TCL/Part 375 List				Log-in Notes:		Sample Notes	<u>:</u>		
Sample Prepa	red by Method: EPA 3550C									
CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
367-12-4	Surrogate: 2-Fluorophenol	37.3 %			10-95					
4165-62-2	Surrogate: Phenol-d5	45.9 %			10-107					
4165-60-0	Surrogate: Nitrobenzene-d5	54.7 %			10-95					
321-60-8	Surrogate: 2-Fluorobiphenyl	47.8 %			10-97					
118-79-6	Surrogate: 2,4,6-Tribromophenol	62.3 %			10-103					
1718-51-0	Surrogate: Terphenyl-d14	55.1 %			19-99					

Log-in Notes:

Sample Notes:

## Pesticides, NJDEP/TCL/Part 375 List

Sample Prepa	red by Method: EPA 3550C									D-4- /T'	D-4-/T'	
CAS N	No. Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analys
309-00-2	Aldrin	ND		ug/kg dry	1.84	1.84	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDF	05/04/2015 11:49 EP,PADEP	JW
319-84-6	alpha-BHC	ND		ug/kg dry	1.84	1.84	5	EPA 8081B Certifications:	CTDOH,NE	05/03/2015 13:18 ELAC-NY10854,NJDF	05/04/2015 11:49 EP,PADEP	JW
319-85-7	beta-BHC	ND		ug/kg dry	1.84	1.84	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDF	05/04/2015 11:49 EP,PADEP	JW
319-86-8	delta-BHC	ND		ug/kg dry	1.84	1.84	5	EPA 8081B Certifications:	CTDOH,NE	05/03/2015 13:18 ELAC-NY10854,NJDF	05/04/2015 11:49 EP,PADEP	JW
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.84	1.84	5	EPA 8081B Certifications:	CTDOH,NE	05/03/2015 13:18 ELAC-NY10854,NJDF	05/04/2015 11:49 EP,PADEP	JW
5103-74-2	gamma-Chlordane	ND		ug/kg dry	1.84	1.84	5	EPA 8081B Certifications:	NELAC-NY	05/03/2015 13:18 (10854,NJDEP	05/04/2015 11:49	JW
5103-71-9	alpha-Chlordane	ND		ug/kg dry	1.84	1.84	5	EPA 8081B Certifications:	NELAC-NY	05/03/2015 13:18 (10854,NJDEP	05/04/2015 11:49	JW
57-74-9	Chlordane, total	ND		ug/kg dry	7.35	7.35	5	EPA 8081B Certifications:	CTDOH,NE	05/03/2015 13:18 ELAC-NY10854,NJDF	05/04/2015 11:49 EP,PADEP	JW
72-54-8	4,4'-DDD	ND		ug/kg dry	1.84	1.84	5	EPA 8081B Certifications:	CTDOH,NH	05/03/2015 13:18 ELAC-NY10854,NJDF	05/04/2015 11:49 EP,PADEP	JW
72-55-9	4,4'-DDE	ND		ug/kg dry	1.84	1.84	5	EPA 8081B Certifications:	CTDOH,NE	05/03/2015 13:18 ELAC-NY10854,NJDF	05/04/2015 11:49 EP,PADEP	JW
50-29-3	4,4'-DDT	ND		ug/kg dry	1.84	1.84	5	EPA 8081B Certifications:	CTDOH,NH	05/03/2015 13:18 ELAC-NY10854,NJDF	05/04/2015 11:49 EP,PADEP	JW
60-57-1	Dieldrin	ND		ug/kg dry	1.84	1.84	5	EPA 8081B Certifications:	CTDOH,NH	05/03/2015 13:18 ELAC-NY10854,NJDF	05/04/2015 11:49 EP,PADEP	JW
959-98-8	Endosulfan I	ND		ug/kg dry	1.84	1.84	5	EPA 8081B Certifications:	CTDOH,NH	05/03/2015 13:18 ELAC-NY10854,NJDF	05/04/2015 11:49 EP,PADEP	JW
33213-65-9	Endosulfan II	ND		ug/kg dry	1.84	1.84	5	EPA 8081B Certifications:	CTDOH,NE	05/03/2015 13:18 ELAC-NY10854,NJDF	05/04/2015 11:49 EP,PADEP	JW
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.84	1.84	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDF	05/04/2015 11:49 EP,PADEP	JW
72-20-8	Endrin	ND		ug/kg dry	1.84	1.84	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDF	05/04/2015 11:49 EP,PADEP	JW
7421-93-4	Endrin aldehyde	ND		ug/kg dry	1.84	1.84	5	EPA 8081B Certifications:	CTDOH,NH	05/03/2015 13:18 ELAC-NY10854,NJDF	05/04/2015 11:49 EP,PADEP	JW



Client Sample ID: SB04	.5-1
------------------------	------

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 2:50 pm	05/02/2015

Pesticides	s, NJDEP/TCL/Part 375 List				<u>Log-in</u>	Notes:		<u>San</u>	<u>iple Note</u>	<u>s:</u>		
Sample Prepar	red by Method: EPA 3550C											
CAS N	o. Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Referenc	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
53494-70-5	Endrin ketone	ND		ug/kg dry	1.84	1.84	5	EPA 8081B Certifications:	CTDOH,N	05/03/2015 13:18 ELAC-NY10854,NJDH	05/04/2015 11:49 EP	JW
76-44-8	Heptachlor	ND		ug/kg dry	1.84	1.84	5	EPA 8081B Certifications:	CTDOH,N	05/03/2015 13:18 ELAC-NY10854,NJDF	05/04/2015 11:49 EP,PADEP	JW
1024-57-3	Heptachlor epoxide	ND		ug/kg dry	1.84	1.84	5	EPA 8081B Certifications:	CTDOH,N	05/03/2015 13:18 ELAC-NY10854,NJDF	05/04/2015 11:49 EP,PADEP	JW
72-43-5	Methoxychlor	ND		ug/kg dry	9.18	9.18	5	EPA 8081B Certifications:	CTDOH,N	05/03/2015 13:18 ELAC-NY10854,NJDH	05/04/2015 11:49 EP,PADEP	JW
8001-35-2	Toxaphene	ND		ug/kg dry	93.0	93.0	5	EPA 8081B Certifications:	CTDOH,N	05/03/2015 13:18 ELAC-NY10854,NJDH	05/04/2015 11:49 EP	JW
	Surrogate Recoveries	Result		Acce	ptance Rang	ge						
2051-24-3	Surrogate: Decachlorobiphenyl	69.9 %			30-140							
877-09-8	Surrogate: Tetrachloro-m-xylene	62.6 %			30-140							

Log-in Notes:

Sample Notes:

#### **Polychlorinated Biphenyls (PCB)**

Sample Prepared by Method: EPA 3550C

CAS N	lo. Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
12674-11-2	Aroclor 1016	ND		mg/kg dry	0.0185	0.0185	1	EPA 8082A Certifications:	NELAC-N	05/03/2015 13:18 Y10854,CTDOH,NJDH	05/04/2015 12:08 EP,PADEP	AMC
11104-28-2	Aroclor 1221	ND		mg/kg dry	0.0185	0.0185	1	EPA 8082A Certifications:	NELAC-N	05/03/2015 13:18 Y 10854,CTDOH,NJDH	05/04/2015 12:08 EP,PADEP	AMC
11141-16-5	Aroclor 1232	ND		mg/kg dry	0.0185	0.0185	1	EPA 8082A Certifications:	NELAC-N	05/03/2015 13:18 Y 10854,CTDOH,NJDH	05/04/2015 12:08 EP,PADEP	AMC
53469-21-9	Aroclor 1242	ND		mg/kg dry	0.0185	0.0185	1	EPA 8082A Certifications:	NELAC-N	05/03/2015 13:18 Y 10854,CTDOH,NJDH	05/04/2015 12:08 EP,PADEP	AMC
12672-29-6	Aroclor 1248	ND		mg/kg dry	0.0185	0.0185	1	EPA 8082A Certifications:	NELAC-N	05/03/2015 13:18 Y 10854,CTDOH,NJDH	05/04/2015 12:08 EP,PADEP	AMC
11097-69-1	Aroclor 1254	ND		mg/kg dry	0.0185	0.0185	1	EPA 8082A Certifications:	NELAC-N	05/03/2015 13:18 Y 10854,CTDOH,NJDF	05/04/2015 12:08 EP,PADEP	AMC
11096-82-5	Aroclor 1260	ND		mg/kg dry	0.0185	0.0185	1	EPA 8082A Certifications:	NELAC-N	05/03/2015 13:18 Y 10854,CTDOH,NJDH	05/04/2015 12:08 EP,PADEP	AMC
1336-36-3	* Total PCBs	ND		mg/kg dry	0.0185	0.0185	1	EPA 8082A Certifications:		05/03/2015 13:18	05/04/2015 12:08	AMC
	Surrogate Recoveries	Result		Accep	otance Rang	e						
877-09-8	Surrogate: Tetrachloro-m-xylene	75.9 %			30-140							
2051-24-3	Surrogate: Decachlorobiphenyl	86.1 %			30-140							

	Metals, Target Analyte Sample Prepared by Method: EPA 3050B							<u>Sample</u>	Notes:			
CAS No.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	^o Dilution	Reference Me	thod	Date/Time Prepared	Date/Time Analyzed	Analyst
7429-90-5 Aluminur	n	5350		mg/kg dry	5.57	5.57	1	EPA 6010C Certifications: CT	0	5/04/2015 08:09	05/04/2015 11:14	MW

120 RESEARCH DRIVE

(203) 325-1371

York Sample ID:



#### Client Sample ID: SB04_.5-1

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 2:50 pm	05/02/2015

Metals, Target Analyte				<u>Log-in Notes:</u>			<u>Sample Notes:</u>					
Sample Prepare CAS No	ed by Method: EPA 3050B	ameter Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-36-0	Antimony	ND		mg/kg dry	0.557	0.557	1	EPA 6010C Certifications:	CTDOH,NI	05/04/2015 08:09 ELAC-NY10854,NJDF	05/04/2015 11:14 EP,PADEP	MW
7440-38-2	Arsenic	4.83		mg/kg dry	1.11	1.11	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:14	MW
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
7440-39-3	Barium	62.7		mg/kg dry	1.11	1.11	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:14	MW
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
7440-41-7	Beryllium	ND		mg/kg dry	0.111	0.111	1	EPA 6010C Certifications:	CTDOH,NI	05/04/2015 08:09 ELAC-NY10854,NJDF	05/04/2015 11:14 EP	MW
7440-43-9	Cadmium	ND		mg/kg dry	0.334	0.334	1	EPA 6010C Certifications:	CTDOH,NI	05/04/2015 08:09 ELAC-NY10854,NJDF	05/04/2015 11:14 EP,PADEP	MW
7440-70-2	Calcium	16400		mg/kg dry	0.557	5.57	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:14	MW
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
7440-47-3	Chromium	12.5		mg/kg dry	0.557	0.557	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:14	MW
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
7440-48-4	Cobalt	7.79		mg/kg dry	0.557	0.557	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:14	MW
	_							Certifications:	CTDOH,N	ELAC-NY10854,NJD		
7440-50-8	Copper	31.3		mg/kg dry	0.557	0.557	1	EPA 6010C	OTDOUN	05/04/2015 08:09	05/04/2015 11:14	MW
7420.00 (	Turn			a 1				Certifications:	CIDOH,N	ELAC-NY10854,NJD		
7439-89-6	Iron	12300		mg/kg dry	2.23	2.23	1	EPA 6010C Certifications:	CTDOH N	05/04/2015 08:09 ELAC-NY10854,NJD	05/04/2015 11:14 FP	MW
7439-92-1	Lead	109		mg/kg dry	0.334	0.334	1	EPA 6010C	CIDOII,IV	05/04/2015 08:09	05/04/2015 11:14	MW
137 72 1	Leuu	105		ing/kg ury	0.554	0.554	1	Certifications:	CTDOH.N	ELAC-NY10854,NJD		
7439-95-4	Magnesium	5830		mg/kg dry	5.57	5.57	1	EPA 6010C	,	05/04/2015 08:09	05/04/2015 11:14	MW
	5			000				Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
7439-96-5	Manganese	259		mg/kg dry	0.557	0.557	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:14	MW
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
7440-02-0	Nickel	55.4		mg/kg dry	0.557	0.557	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:14	MW
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
7440-09-7	Potassium	1100		mg/kg dry	5.57	5.57	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:14	MW
	~							Certifications:	CTDOH,N	ELAC-NY10854,NJD		
7782-49-2	Selenium	1.48		mg/kg dry	1.11	1.11	1	EPA 6010C	OTDOUN	05/04/2015 08:09	05/04/2015 11:14	MW
					0.555			Certifications:	CTDOH,N	ELAC-NY10854,NJD	<i>.</i>	
7440-22-4	Silver	ND		mg/kg dry	0.557	0.557	1	EPA 6010C Certifications:	CTDOH,NI	05/04/2015 08:09 ELAC-NY10854,NJDF	05/04/2015 11:14 EP,PADEP	MW
7440-23-5	Sodium	597		mg/kg dry	11.1	11.1	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:14	MW
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
7440-28-0	Thallium	ND		mg/kg dry	1.11	1.11	1	EPA 6010C Certifications:	CTDOH,NE	05/04/2015 08:09 ELAC-NY10854,NJDF	05/04/2015 11:14 EP	MW
7440-62-2	Vanadium	16.9		mg/kg dry	1.11	1.11	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:14	MW
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
7440-66-6	Zinc	81.4		mg/kg dry	1.11	1.11	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:14	MW
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	

Metals, TCLP RCRA

<u>Log-in Notes:</u>

Sample Notes:

York Sample ID:



York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 2:50 pm	05/02/2015

Sample Prepared by Method: EPA 3010A/1311

CAS N	o. P	arameter Result	t Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	ND		mg/L	0.004	0.004	1	EPA 6010C/1311 Certifications: CTDOH,NI	05/04/2015 08:15 ELAC-NY10854,NJDE	05/04/2015 13:41 P,PADEP	MW
7440-39-3	Barium	0.490		mg/L	0.010	0.010	1	EPA 6010C/1311 Certifications: CTDOH,N	05/04/2015 08:15 ELAC-NY10854,NJDI	05/04/2015 13:41 EP,PADEP	MW
7440-43-9	Cadmium	ND		mg/L	0.003	0.003	1	EPA 6010C/1311 Certifications: CTDOH,NE	05/04/2015 08:15 ELAC-NY10854,NJDE	05/04/2015 13:41 P,PADEP	MW
7440-47-3	Chromium	ND		mg/L	0.005	0.005	1	EPA 6010C/1311 Certifications: CTDOH,NE	05/04/2015 08:15 ELAC-NY10854,NJDE	05/04/2015 13:41 P,PADEP	MW
7439-92-1	Lead	0.017		mg/L	0.003	0.003	1	EPA 6010C/1311 Certifications: CTDOH,N	05/04/2015 08:15 ELAC-NY10854,NJDI	05/04/2015 13:41 EP,PADEP	MW
7782-49-2	Selenium	0.018	M-SeT C	mg/L	0.010	0.010	1	EPA 6010C/1311 Certifications: CTDOH,N	05/04/2015 08:15 ELAC-NY10854,NJDI	05/04/2015 13:41 EP	MW
7440-22-4	Silver	ND		mg/L	0.005	0.005	1	EPA 6010C/1311 Certifications: CTDOH,NE	05/04/2015 08:15 ELAC-NY10854,NJDE	05/04/2015 13:41 P,PADEP	MW

Mercury	by 747 <u>3</u>					Log-in	Notes:		Sam	ole Note	<u>s:</u>		
Sample Prepar	ed by Method: EP	A 7473 soil											
CAS N	0.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury		0.310		mg/kg dry	0.0334	0.0334	1	EPA 7473		05/03/2015 07:58	05/03/2015 13:02	ALD

Mercury 7	Mercury TCLP by 7473						Notes:		Sample Not	es:		
Sample Prepare	ed by Method: EF	A 7473 water										
CAS No	0.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury		ND		mg/L	0.0000390	0.000200	1	EPA 7473/1311 Certifications: CTDOH,	05/04/2015 06:51 NJDEP,PADEP,NELAC-	05/04/2015 12:07 NY10854	ALD

<u>Total Solids</u> Sample Prepared by Method	Sotal Solids ample Prepared by Method: % Solids Prep					<u>Log-in Notes:</u>			Sample Notes:				
CAS No.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst	
solids * % Solid	ds	89.8		%	0.100	0.100	1	SM 2540G Certifications:	CTDOH	05/04/2015 10:12	05/04/2015 14:24	SCA	
	for METALS EPA 131 I: EPA SW 846-1311 TCLP ext. f				<u>Log-in</u>	<u>Notes:</u>		<u>Sam</u>	ple Note	e <u>s:</u> EXT-Temp			

						Reported to	0			Date/Time	Date/Time	
CAS No.	Parameter	Result	Flag	Units	LOD/MDL	ĹOQ	Dilution	Reference N	Aethod	Prepared	Analyzed	Analyst
TCLP F	Extraction	Completed		N/A	1.00	1.00	1	EPA 1311 Certifications:	NELAC-NY	05/02/2015 16:29 ¥10854,CTDOH,NJDE	05/04/2015 12:59 EP,PADEP	SCA

York Sample ID:



Client Sample ID: SB05_5-5.5			York Sample I
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time
15E0070	170362501	Soil	May 2, 2015 3:00 pm

Volatile O	rganics, NJDEP/TCL/Part 375 I	<u>list</u>			Log-in	Notes:		<u>Sample Notes:</u>					
Sample Prepare CAS No	ed by Method: EPA 5035A o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analys	
530-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 15:23 EP	ВК	
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 15:23 EP,PADEP	ВК	
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 15:23 EP,PADEP	BK	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 15:23 EP	BK	
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 15:23 EP,PADEP	BK	
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 15:23 EP,PADEP	BK	
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 15:23 EP,PADEP	BK	
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	NELAC-N	05/04/2015 07:53 Y 10854,NJDEP	05/04/2015 15:23	BK	
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	NELAC-N	05/04/2015 07:53 Y10854,NJDEP	05/04/2015 15:23	BK	
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	NELAC-N	05/04/2015 07:53 Y10854,NJDEP	05/04/2015 15:23	BK	
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 15:23 EP	BK	
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 15:23 EP	BK	
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 15:23 EP	BK	
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 15:23 EP,PADEP	BK	
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 15:23 EP,PADEP	BK	
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 15:23 EP	BK	
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 15:23 P	BK	
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 15:23 EP,PADEP	BK	
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 15:23 EP,PADEP	BK	
123-91-1	1,4-Dioxane	ND		ug/kg dry	5900	12000	100	EPA 8260C Certifications:	NELAC-N	05/04/2015 07:53 Y10854,NJDEP	05/04/2015 15:23	BK	
78-93-3	2-Butanone	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 15:23 EP	BK	
591-78-6	2-Hexanone	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 15:23 EP	BK	
108-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:		05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 15:23	BK	

York Sample ID:

15E0070-05 Date Received

05/02/2015



<u>Client Sample ID:</u> SB05_5-5.5			York Sample ID:	15E0070-05
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 3:00 pm	05/02/2015

Volatile Organics, NJDEP/TCL/Part 375 List				<u>Log-in 1</u>	Notes:	Sample Notes:						
Sample Prepa	red by Method: EPA 5035A	er Result	Flag	Units	Reported to LOD/MDL	LOO	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone	ND	SCAL- E	ug/kg dry	590	1200	100	EPA 8260C Certifications:		05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 15:23	BK
107-02-8	Acrolein	ND		ug/kg dry	590	1200	100	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 15:23 P	BK
107-13-1	Acrylonitrile	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 15:23 P	ВК
71-43-2	Benzene	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 15:23 P,PADEP	ВК
74-97-5	Bromochloromethane	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 /10854,NJDEP	05/04/2015 15:23	ВК
75-27-4	Bromodichloromethane	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 15:23 P,PADEP	ВК
75-25-2	Bromoform	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 15:23 P,PADEP	ВК
74-83-9	Bromomethane	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 15:23 P,PADEP	ВК
75-15-0	Carbon disulfide	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 15:23 P	ВК
56-23-5	Carbon tetrachloride	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 15:23 P,PADEP	ВК
108-90-7	Chlorobenzene	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 15:23 P,PADEP	ВК
75-00-3	Chloroethane	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 15:23 P,PADEP	ВК
67-66-3	Chloroform	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 15:23 P,PADEP	ВК
74-87-3	Chloromethane	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 15:23 P,PADEP	ВК
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 15:23 P	ВК
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 15:23 P,PADEP	ВК
110-82-7	Cyclohexane	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 /10854,NJDEP	05/04/2015 15:23	ВК
124-48-1	Dibromochloromethane	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 (10854,NJDEP,PADEF	05/04/2015 15:23	ВК
74-95-3	Dibromomethane	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 /10854,NJDEP	05/04/2015 15:23	ВК
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 (10854,NJDEP	05/04/2015 15:23	ВК
100-41-4	Ethyl Benzene	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:		05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 15:23 P,PADEP	ВК
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 (10854,NJDEP	05/04/2015 15:23	BK
98-82-8	Isopropylbenzene	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:		05/04/2015 07:53 ELAC-NY10854,NJDE	05/04/2015 15:23 P	BK



Client Sample ID:	SB05_5-5.5		

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 3:00 pm	05/02/2015

	Prganics, NJDEP/TCL/Part 375	<u>List</u>			<u>Log-in Notes:</u>			Sample Notes:				
Sample Prepare CAS No	ed by Method: EPA 5035A o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analys
79-20-9	Methyl acetate	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 /10854,NJDEP	05/04/2015 15:23	BK
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 15:23 EP	ВК
108-87-2	Methylcyclohexane	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 /10854,NJDEP	05/04/2015 15:23	BK
75-09-2	Methylene chloride	ND		ug/kg dry	590	1200	100	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 15:23 EP,PADEP	BK
104-51-8	n-Butylbenzene	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 15:23 EP	BK
103-65-1	n-Propylbenzene	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 15:23 EP	BK
95-47-6	o-Xylene	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854	05/04/2015 15:23	BK
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	590	1200	100	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854	05/04/2015 15:23	BK
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 15:23 EP	BK
35-98-8	sec-Butylbenzene	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 15:23 EP	BK
00-42-5	Styrene	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 15:23 EP	BK
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:53 (10854,NJDEP	05/04/2015 15:23	BK
98-06-6	tert-Butylbenzene	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 15:23 EP	BK
27-18-4	Tetrachloroethylene	8600	CCV-E	ug/kg dry	290	590	100	EPA 8260C		05/04/2015 07:53	05/04/2015 15:23	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
08-88-3	Toluene	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 15:23 EP,PADEP	BK
56-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 15:23 EP	ВК
0061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 15:23 EP,PADEP	BK
9-01-6	Trichloroethylene	430	J	ug/kg dry	290	590	100	EPA 8260C		05/04/2015 07:53	05/04/2015 15:23	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
5-69-4	Trichlorofluoromethane	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 15:23 EP,PADEP	BK
/5-01-4	Vinyl Chloride	ND		ug/kg dry	290	590	100	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 15:23 EP,PADEP	BK
330-20-7	Xylenes, Total	ND		ug/kg dry	880	1800	100	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:53 ELAC-NY10854,NJDI	05/04/2015 15:23 EP,PADEP	BK
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
7060-07-0	Surrogate: 1,2-Dichloroethane-d4	92.8 %			77-125							
2037-26-5	Surrogate: Toluene-d8	96.3 %			85-120							
460-00-4	Surrogate: p-Bromofluorobenzene	104 %			76-130							
	Sanogute. p-bromojnuorobenzene	107 /0			/0-150							

York Sample ID:



Client Sample ID:	SB05 5-5.5

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 3:00 pm	05/02/2015

<u>Semi-Vola</u>	tiles, NJDEP/TCL/Part 3	<u>75 List</u>			Log-in ]	Notes:		<u>Sam</u>	ple Note	<u>s:</u>		
Sample Prepare	ed by Method: EPA 3550C <b>Parameter</b>	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	1390		ug/kg dry	47.8	95.4	2	EPA 8270D		05/03/2015 13:15	05/03/2015 20:05	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
208-96-8	Acenaphthylene	74.7	J	ug/kg dry	47.8	95.4	2	EPA 8270D		05/03/2015 13:15	05/03/2015 20:05	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
98-86-2	Acetophenone	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	NELAC-N	05/03/2015 13:15 Y10854,NJDEP	05/03/2015 20:05	КН
62-53-3	Aniline	ND		ug/kg dry	191	382	2	EPA 8270D Certifications:	NELAC-N	05/03/2015 13:15 Y 10854,NJDEP,PADE	05/03/2015 20:05 P	КН
120-12-7	Anthracene	1430		ug/kg dry	47.8	95.4	2	EPA 8270D		05/03/2015 13:15	05/03/2015 20:05	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
1912-24-9	Atrazine	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	NELAC-N	05/03/2015 13:15 Y10854,NJDEP	05/03/2015 20:05	КН
100-52-7	Benzaldehyde	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	NELAC-N	05/03/2015 13:15 Y10854,NJDEP	05/03/2015 20:05	КН
92-87-5	Benzidine	ND		ug/kg dry	191	382	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854	05/03/2015 20:05	КН
56-55-3	Benzo(a)anthracene	2690		ug/kg dry	47.8	95.4	2	EPA 8270D		05/03/2015 13:15	05/03/2015 20:05	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
50-32-8	Benzo(a)pyrene	861		ug/kg dry	47.8	95.4	2	EPA 8270D		05/03/2015 13:15	05/03/2015 20:05	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
205-99-2	Benzo(b)fluoranthene	874		ug/kg dry	47.8	95.4	2	EPA 8270D		05/03/2015 13:15	05/03/2015 20:05	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
191-24-2	Benzo(g,h,i)perylene	477	CCV-E	ug/kg dry	47.8	95.4	2	EPA 8270D		05/03/2015 13:15	05/03/2015 20:05	КН
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
65-85-0	Benzoic acid	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	NELAC-N	05/03/2015 13:15 ¥10854,NJDEP	05/03/2015 20:05	КН
207-08-9	Benzo(k)fluoranthene	1280		ug/kg dry	47.8	95.4	2	EPA 8270D		05/03/2015 13:15	05/03/2015 20:05	КН
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
100-51-6	Benzyl alcohol	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	NELAC-N	05/03/2015 13:15 ¥10854,NJDEP,PADE	05/03/2015 20:05 P	КН
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 20:05 EP,PADEP	КН
92-52-4	1,1'-Biphenyl	172		ug/kg dry	47.8	95.4	2	EPA 8270D		05/03/2015 13:15	05/03/2015 20:05	КН
								Certifications:	NELAC-N	Y10854,NJDEP		
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 20:05 EP,PADEP	КН
105-60-2	Caprolactam	ND		ug/kg dry	95.4	190	2	EPA 8270D Certifications:	NELAC-N	05/03/2015 13:15 ¥10854,NJDEP	05/03/2015 20:05	КН
86-74-8	Carbazole	934		ug/kg dry	47.8	95.4	2	EPA 8270D		05/03/2015 13:15	05/03/2015 20:05	КН
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	47.8	95.4	2	EPA 8270D		05/03/2015 13:15	05/03/2015 20:05	КН
	- emoro-5-memyiphenor	ND					-	Certifications:	CTDOH,NI	ELAC-NY10854,NJD		
106-47-8	4-Chloroaniline	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 20:05 EP,PADEP	КН

15E0070-05

York Sample ID:



<u>Client Sample ID:</u> SB05_5-5.5			York Sample ID:	15E0070-05
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 3:00 pm	05/02/2015

<u>Semi-Vola</u>	tiles, NJDEP/TCL/Part 375 L	list			Log-in ]	Notes:		<u>Sam</u>	ple Note	<u>s:</u>		
Sample Prepare CAS No	ed by Method: EPA 3550C o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 20:05 EP,PADEP	KH
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:		05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 20:05	КН
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 20:05 EP,PADEP	KH
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 20:05 EP,PADEP	KH
95-57-8	2-Chlorophenol	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 20:05 EP,PADEP	KH
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 20:05 EP,PADEP	KH
218-01-9	Chrysene	2430		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH N	05/03/2015 13:15 ELAC-NY10854,NJD	05/03/2015 20:05	KH
53-70-3	Dibenzo(a,h)anthracene	176	CCV-E	ug/kg dry	47.8	95.4	2	EPA 8270D	erboli,it	05/03/2015 13:15	05/03/2015 20:05	KH
122 (4.0	Dihangafunan	1020			17.0	05.4		Certifications:	CTDOH,N	ELAC-NY10854,NJD		VII
132-64-9	Dibenzofuran	1030		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,N	05/03/2015 13:15 ELAC-NY10854,NJD	05/03/2015 20:05 EP	KH
84-74-2	Di-n-butyl phthalate	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 20:05 EP,PADEP	КН
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 710854	05/03/2015 20:05	КН
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 710854	05/03/2015 20:05	KH
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 710854	05/03/2015 20:05	KH
91-94-1	3,3'-Dichlorobenzidine	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 (10854,NJDEP,PADE	05/03/2015 20:05 P	KH
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 20:05 EP,PADEP	KH
84-66-2	Diethyl phthalate	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 20:05 EP,PADEP	KH
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 20:05 EP,PADEP	КН
131-11-3	Dimethyl phthalate	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 20:05 EP,PADEP	KH
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	95.4	190	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 20:05 EP	KH
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	95.4	190	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 20:05 EP,PADEP	КН
121-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 20:05 EP,PADEP	КН
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 20:05 EP,PADEP	КН
117-84-0	Di-n-octyl phthalate	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDI	05/03/2015 20:05 EP,PADEP	КН



<u>Client Sample ID:</u> SB05_5-5.5			York Sample ID:	15E0070-05
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 3:00 pm	05/02/2015

	tiles, NJDEP/TCL/Part 375 L	<u>list</u>			Log-in ]	Notes:		<u>Sam</u>	ple Note	<u>s:</u>		
Sample Prepare	ed by Method: EPA 3550C <b>D. Parameter</b>	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
122-66-7	1,2-Diphenylhydrazine (as Azobenzene)	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 10854,NJDEP	05/03/2015 20:05	КН
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 LAC-NY10854,NJDF	05/03/2015 20:05 EP,PADEP	KH
206-44-0	Fluoranthene	10200		ug/kg dry	239	477	10	EPA 8270D Certifications:	CTDOH,N	05/03/2015 13:15 ELAC-NY10854,NJD	05/04/2015 10:05 EP,PADEP	KH
86-73-7	Fluorene	1250		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	NELAC-N	05/03/2015 13:15 Y10854,NJDEP,PADE	05/03/2015 20:05 P	KH
118-74-1	Hexachlorobenzene	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 LAC-NY10854,NJDI	05/03/2015 20:05 EP,PADEP	KH
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 LAC-NY10854,NJDH	05/03/2015 20:05 EP,PADEP	KH
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 LAC-NY10854,NJDF	05/03/2015 20:05 EP,PADEP	KH
57-72-1	Hexachloroethane	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 LAC-NY10854,NJDF	05/03/2015 20:05 EP,PADEP	KH
93-39-5	Indeno(1,2,3-cd)pyrene	427	CCV-E	ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,N	05/03/2015 13:15 ELAC-NY10854,NJD	05/03/2015 20:05 EP,PADEP	KH
78-59-1	Isophorone	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 LAC-NY10854,NJDF	05/03/2015 20:05 EP,PADEP	KH
91-57-6	2-Methylnaphthalene	528		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,N	05/03/2015 13:15 ELAC-NY10854,NJD	05/03/2015 20:05 EP	KH
95-48-7	2-Methylphenol	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 LAC-NY10854,NJDF	05/03/2015 20:05 EP,PADEP	KH
55794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 LAC-NY10854,NJDF	05/03/2015 20:05 EP	КН
01-20-3	Naphthalene	1040		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,N	05/03/2015 13:15 ELAC-NY10854,NJD	05/03/2015 20:05 EP	KH
100-01-6	4-Nitroaniline	ND		ug/kg dry	95.4	190	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 LAC-NY10854,NJDF	05/03/2015 20:05 EP,PADEP	KH
38-74-4	2-Nitroaniline	ND		ug/kg dry	95.4	190	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 LAC-NY10854,NJDF	05/03/2015 20:05 EP,PADEP	КН
99-09-2	3-Nitroaniline	ND		ug/kg dry	95.4	190	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 LAC-NY10854,NJDF	05/03/2015 20:05 EP,PADEP	KH
98-95-3	Nitrobenzene	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 LAC-NY10854,NJDF	05/03/2015 20:05 EP,PADEP	KH
38-75-5	2-Nitrophenol	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 LAC-NY10854,NJDF		KH
100-02-7	4-Nitrophenol	ND		ug/kg dry	95.4	190	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 LAC-NY10854,NJDF		KH
521-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 LAC-NY10854,NJDF		КН
52-75-9	N-Nitrosodimethylamine	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 LAC-NY10854,NJDF		КН
36-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:15 LAC-NY10854,NJDF	05/03/2015 20:05 EP	КН



Client Sample ID: SB05_5-	-5.5		York Sample ID:	15E0070-05
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 3:00 pm	05/02/2015

	tiles, NJDEP/TCL/Part 375 List				Log-in ]	Notes:		<u>Sam</u>	iple Note	<u>s:</u>		
CAS No	). Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
87-86-5	Pentachlorophenol	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 20:05 EP,PADEP	КН
85-01-8	Phenanthrene	10900		ug/kg dry	239	477	10	EPA 8270D Certifications:	CTDOH,N	05/03/2015 13:15 ELAC-NY10854,NJD	05/04/2015 10:05 EP,PADEP	КН
108-95-2	Phenol	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 20:05 EP,PADEP	КН
129-00-0	Pyrene	7570		ug/kg dry	239	477	10	EPA 8270D Certifications:	CTDOH,N	05/03/2015 13:15 ELAC-NY10854,NJD	05/04/2015 10:05 EP,PADEP	КН
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/kg dry	95.4	190	2	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 Y 10854,NJDEP	05/03/2015 20:05	КН
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/kg dry	95.4	190	2	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:15 Y10854,NJDEP	05/03/2015 20:05	КН
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 20:05 EP,PADEP	КН
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 20:05 EP,PADEP	КН
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	47.8	95.4	2	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:15 ELAC-NY10854,NJDE	05/03/2015 20:05 EP	КН
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
367-12-4	Surrogate: 2-Fluorophenol	37.8 %			10-95							
4165-62-2	Surrogate: Phenol-d5	44.8 %			10-107							
4165-60-0	Surrogate: Nitrobenzene-d5	54.0 %			10-95							
321-60-8	Surrogate: 2-Fluorobiphenyl	49.7 %			10-97							
118-79-6	Surrogate: 2,4,6-Tribromophenol	56.8 %			10-103							
1718-51-0	Surrogate: Terphenyl-d14	66.0 %			19-99							

#### Pesticides, NJDEP/TCL/Part 375 List

Sample Prepared by Method: EPA 3550C

Date/Time Reported to LOQ Date/Time CAS No. Parameter Result Flag Units Dilution **Reference Method** Analyzed LOD/MDL Prepared Analyst 1.89 05/03/2015 13:18 05/04/2015 12:04 309-00-2 1.89 5 EPA 8081B Aldrin ND ug/kg dry JW Certifications CTDOH,NELAC-NY10854,NJDEP,PADEP 319-84-6 alpha-BHC ND ug/kg dry 1.89 1.89 5 EPA 8081B 05/03/2015 13:18 05/04/2015 12:04 JW Certifications CTDOH,NELAC-NY10854,NJDEP,PADEP 319-85-7 beta-BHC ND ug/kg dry 1.89 1.89 5 EPA 8081B 05/03/2015 13:18 05/04/2015 12:04 JW Certifications CTDOH,NELAC-NY10854,NJDEP,PADEP 319-86-8 delta-BHC 1.89 EPA 8081B 05/03/2015 13:18 05/04/2015 12:04 JW ND ug/kg dry 1.89 5 CTDOH,NELAC-NY10854,NJDEP,PADEP Certifications: 05/03/2015 13:18 05/04/2015 12:04 1.89 1.89 EPA 8081B 58-89-9 gamma-BHC (Lindane) 5 JW ND ug/kg dry CTDOH,NELAC-NY10854,NJDEP,PADEP Certifications: 05/03/2015 13:18 05/04/2015 12:04 1.89 1.89 5 EPA 8081B 5103-74-2 gamma-Chlordane ND ug/kg dry JW Certifications NELAC-NY10854,NJDEP 05/03/2015 13:18 05/04/2015 12:04 5103-71-9 alpha-Chlordane ND ug/kg dry 1.89 1.89 5 EPA 8081B JW Certifications: NELAC-NY10854,NJDEP

Log-in Notes:

Sample Notes:



Client Sample ID: SB05_5-5.5			York Sample ID:	15E0070-05
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 3:00 pm	05/02/2015

	, NJDEP/TCL/Part 375 List				Log-in	Notes:		Sam	ple Note	<u>s:</u>		
Sample Prepar	ed by Method: EPA 3550C o. Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	e Method	Date/Time Date/Time d Prepared Analyzed		Analyst
57-74-9	Chlordane, total	ND		ug/kg dry	7.55	7.55	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 12:04 EP,PADEP	JW
72-54-8	4,4'-DDD	ND		ug/kg dry	1.89	1.89	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 12:04 EP,PADEP	JW
72-55-9	4,4'-DDE	ND		ug/kg dry	1.89	1.89	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 12:04 EP,PADEP	JW
50-29-3	4,4'-DDT	ND		ug/kg dry	1.89	1.89	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 12:04 EP,PADEP	JW
60-57-1	Dieldrin	ND		ug/kg dry	1.89	1.89	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 12:04 EP,PADEP	JW
959-98-8	Endosulfan I	ND		ug/kg dry	1.89	1.89	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 12:04 EP,PADEP	JW
33213-65-9	Endosulfan II	ND		ug/kg dry	1.89	1.89	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 12:04 EP,PADEP	JW
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.89	1.89	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 12:04 EP,PADEP	JW
72-20-8	Endrin	ND		ug/kg dry	1.89	1.89	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 12:04 EP,PADEP	JW
7421-93-4	Endrin aldehyde	ND		ug/kg dry	1.89	1.89	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 12:04 EP,PADEP	JW
53494-70-5	Endrin ketone	ND		ug/kg dry	1.89	1.89	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 12:04 EP	JW
76-44-8	Heptachlor	ND		ug/kg dry	1.89	1.89	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 12:04 EP,PADEP	JW
1024-57-3	Heptachlor epoxide	ND		ug/kg dry	1.89	1.89	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 12:04 EP,PADEP	JW
72-43-5	Methoxychlor	ND		ug/kg dry	9.43	9.43	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 12:04 EP,PADEP	JW
8001-35-2	Toxaphene	ND		ug/kg dry	95.5	95.5	5	EPA 8081B Certifications:	CTDOH,NI	05/03/2015 13:18 ELAC-NY10854,NJDI	05/04/2015 12:04 EP	JW
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
2051-24-3	Surrogate: Decachlorobiphenyl	91.1 %			30-140							
877-09-8	Surrogate: Tetrachloro-m-xylene	75.4 %			30-140							

#### **Polychlorinated Biphenyls (PCB)**

Sample Prepared by Method: EPA 3550C

CAS N	0.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
12674-11-2	Aroclor 1016		ND		mg/kg dry	0.0190	0.0190	1	EPA 8082A Certifications:	NELAC-N	05/03/2015 13:18 Y10854,CTDOH,NJDI	05/04/2015 12:26 EP,PADEP	AMC
11104-28-2	Aroclor 1221		ND		mg/kg dry	0.0190	0.0190	1	EPA 8082A Certifications:	NELAC-N	05/03/2015 13:18 Y10854,CTDOH,NJDI	05/04/2015 12:26 EP,PADEP	AMC
11141-16-5	Aroclor 1232		ND		mg/kg dry	0.0190	0.0190	1	EPA 8082A Certifications:	NELAC-N	05/03/2015 13:18 Y10854,CTDOH,NJDI	05/04/2015 12:26 EP,PADEP	AMC
53469-21-9	Aroclor 1242		ND		mg/kg dry	0.0190	0.0190	1	EPA 8082A Certifications:	NELAC-N	05/03/2015 13:18 Y 10854,CTDOH,NJDI	05/04/2015 12:26 EP,PADEP	AMC
120	) RESEARCH DRI	IVE	STRATFOR	D, CT 0661	15		(2	203) 325-1	371		FAX (203) 35	7-0166	

Log-in Notes:

Sample Notes:

Page 53 of 117



Client Sample ID:	SB05 5-5.5

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 3:00 pm	05/02/2015

	inated Biphenyls (PCB) ed by Method: EPA 3550C		<u>Log-in Notes:</u>			Sample Notes:						
CAS N	o. Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference M	lethod	Date/Time Prepared	Date/Time Analyzed	Analyst
12672-29-6	Aroclor 1248	ND		mg/kg dry	0.0190	0.0190	1	EPA 8082A Certifications: N	JELAC-NY	05/03/2015 13:18 10854,CTDOH,NJDE	05/04/2015 12:26 EP,PADEP	AMC
11097-69-1	Aroclor 1254	ND		mg/kg dry	0.0190	0.0190	1	EPA 8082A Certifications: N	VELAC-NY	05/03/2015 13:18 10854,CTDOH,NJDE	05/04/2015 12:26 EP,PADEP	AMC
11096-82-5	Aroclor 1260	ND		mg/kg dry	0.0190	0.0190	1	EPA 8082A Certifications: N	VELAC-NY	05/03/2015 13:18 10854,CTDOH,NJDE	05/04/2015 12:26 EP,PADEP	AMC
1336-36-3	* Total PCBs	ND		mg/kg dry	0.0190	0.0190	1	EPA 8082A Certifications:		05/03/2015 13:18	05/04/2015 12:26	AMC
	Surrogate Recoveries	Result		Accep	otance Rang	e						
877-09-8	Surrogate: Tetrachloro-m-xylene	87.7 %			30-140							
2051-24-3	Surrogate: Decachlorobiphenyl	96.0 %			30-140							

#### Metals, Target Analyte

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

York Sample ID:

15E0070-05

CAS N	No.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
29-90-5	Aluminum		4200		mg/kg dry	5.72	5.72	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:44	MW
									Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
440-36-0	Antimony		ND		mg/kg dry	0.572	0.572	1	EPA 6010C Certifications:	CTDOH,NI	05/04/2015 08:09 ELAC-NY10854,NJDE	05/04/2015 11:44 EP,PADEP	MW
40-38-2	Arsenic		3.83		mg/kg dry	1.14	1.14	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:44	MW
									Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
40-39-3	Barium		36.0		mg/kg dry	1.14	1.14	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:44	MW
									Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
440-41-7	Beryllium		ND		mg/kg dry	0.114	0.114	1	EPA 6010C Certifications:	CTDOH,NI	05/04/2015 08:09 ELAC-NY10854,NJDE	05/04/2015 11:44 EP	MW
440-43-9	Cadmium		ND		mg/kg dry	0.343	0.343	1	EPA 6010C Certifications:	CTDOH,NI	05/04/2015 08:09 ELAC-NY10854,NJDE	05/04/2015 11:44 EP,PADEP	MW
40-70-2	Calcium		56800		mg/kg dry	0.572	5.72	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:44	MW
									Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
40-47-3	Chromium		8.13		mg/kg dry	0.572	0.572	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:44	MW
									Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
40-48-4	Cobalt		5.33		mg/kg dry	0.572	0.572	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:44	MW
									Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
40-50-8	Copper		15.0		mg/kg dry	0.572	0.572	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:44	MW
									Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
39-89-6	Iron		9510		mg/kg dry	2.29	2.29	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:44	MW
									Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
39-92-1	Lead		28.6		mg/kg dry	0.343	0.343	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:44	MW
									Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
39-95-4	Magnesium		2960		mg/kg dry	5.72	5.72	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:44	MW
									Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
39-96-5	Manganese		186		mg/kg dry	0.572	0.572	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:44	MW
									Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	

(203) 325-1371



Client Sample ID: SB05 5-5.5
------------------------------

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Soil	May 2, 2015 3:00 pm	05/02/2015

Metals, Target Analyte Sample Prepared by Method: EPA 3050B						<u>Log-in Notes:</u>			Sample Notes:				
CASI		Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-02-0	Nickel		16.8		mg/kg dry	0.572	0.572	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:44	MW
									Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
7440-09-7	Potassium		1410		mg/kg dry	5.72	5.72	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:44	MW
									Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
7782-49-2	Selenium		ND		mg/kg dry	1.14	1.14	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:44	MW
									Certifications:	CTDOH,NI	ELAC-NY10854,NJDI	EP,PADEP	
7440-22-4	Silver		ND		mg/kg dry	0.572	0.572	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:44	MW
									Certifications:	CTDOH,NI	ELAC-NY10854,NJDI	EP,PADEP	
7440-23-5	Sodium		303		mg/kg dry	11.4	11.4	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:44	MW
									Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
7440-28-0	Thallium		ND		mg/kg dry	1.14	1.14	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:44	MW
									Certifications:	CTDOH,NI	ELAC-NY10854,NJDI	ΕP	
7440-62-2	Vanadium		15.7		mg/kg dry	1.14	1.14	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:44	MW
									Certifications:	Certifications: CTDOH,NELAC-NY10854,NJD		EP	
7440-66-6	Zinc		38.4		mg/kg dry	1.14	1.14	1	EPA 6010C		05/04/2015 08:09	05/04/2015 11:44	MW
									Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	

#### Metals, TCLP RCRA

Sample Prepared by Method: EPA 3010A/1311

Log-in Notes:

Sample Notes:

York Sample ID:

CAS N	lo.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic		ND		mg/L	0.004	0.004	1	EPA 6010C/1311 Certifications: CTDOH,NE	05/04/2015 08:15 ELAC-NY10854,NJDE	05/04/2015 13:47 EP,PADEP	MW
7440-39-3	Barium		0.218		mg/L	0.010	0.010	1	EPA 6010C/1311 Certifications: CTDOH,N	05/04/2015 08:15 ELAC-NY10854,NJD	05/04/2015 13:47 EP,PADEP	MW
7440-43-9	Cadmium		ND		mg/L	0.003	0.003	1	EPA 6010C/1311 Certifications: CTDOH,NE	05/04/2015 08:15 ELAC-NY10854,NJDE	05/04/2015 13:47 EP,PADEP	MW
7440-47-3	Chromium		ND		mg/L	0.005	0.005	1	EPA 6010C/1311 Certifications: CTDOH,NE	05/04/2015 08:15 ELAC-NY10854,NJDE	05/04/2015 13:47 EP,PADEP	MW
7439-92-1	Lead		ND		mg/L	0.003	0.003	1	EPA 6010C/1311 Certifications: CTDOH,NE	05/04/2015 08:15 ELAC-NY10854,NJDE	05/04/2015 13:47 EP,PADEP	MW
7782-49-2	Selenium		0.011	M-SeT C	mg/L	0.010	0.010	1	EPA 6010C/1311 Certifications: CTDOH,N	05/04/2015 08:15 ELAC-NY10854,NJD	05/04/2015 13:47 EP	MW
7440-22-4	Silver		ND		mg/L	0.005	0.005	1	EPA 6010C/1311 Certifications: CTDOH,NE	05/04/2015 08:15 ELAC-NY10854,NJDE	05/04/2015 13:47 EP,PADEP	MW

Mercury by 7473 Sample Prepared by Method: I		<u>Log-in Notes:</u>				Sample Notes:						
CAS No.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6 <b>Mercury</b>		0.190		mg/kg dry	0.0343	0.0343	1	EPA 7473 Certifications:	CTDOH,N	05/03/2015 07:58 IJDEP,NELAC-NY108	05/03/2015 13:11 54,PADEP	ALD
Mercury TCLP by 7473					<u>Log-in</u>	Notes:		<u>Samı</u>	ole Note	<u>es:</u>		



York Project (SDG) No.		Client I	Project II	D			Ma	ıtrix	Colle	ction Date/Time	Date	Received
15E0070			362501	<u>D</u>				oil		, 2015 3:00 pm		5/02/201
ample Prepared by Method: EPA	4 7473 water									Date/Time	Date/Time	
CAS No.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
39-97-6 Mercury		ND		mg/L	0.0000390	0.000200	1	EPA 7473/1311 Certifications:		05/04/2015 06:51 IDEP,PADEP,NELAC-	05/04/2015 12:07 NY10854	ALD
					<u>Log-in</u>	Notes:		Sam	ple Note	<u>s:</u>		
	olids Prep Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
ample Prepared by Method: % S CAS No.	*	Result 87.5	Flag	Units %	LOD/MDL 0.100		<b>Dilution</b>	Reference SM 2540G Certifications:	e Method			Analyst SCA
olids * % Solids	Parameter METALS EPA 1311	87.5	Flag			LOQ 0.100		SM 2540G Certifications:	CTDOH	Prepared	Analyzed	
ample Prepared by Method: % S CAS No. blids * % Solids	Parameter METALS EPA 1311	87.5	Flag		0.100	LOQ 0.100		SM 2540G Certifications:	стдон ple Note	Prepared 05/04/2015 10:12	Analyzed	SCA
ample Prepared by Method: % S CAS No. blids * % Solids CCLP Extraction for 1 ample Prepared by Method: EPA	Parameter METALS EPA 1311 SW 846-1311 TCLP ext. for Parameter	87.5 metals		%	0.100 <u>Log-in</u>	LOQ 0.100 Notes: Reported to	1	SM 2540G Certifications: <u>Sam</u>	стдон ple Note Method	Prepared 05/04/2015 10:12 <u>s:</u> EXT-Temp Date/Time	Analyzed 05/04/2015 14:24 Date/Time Analyzed 05/04/2015 12:59	SCA
ample Prepared by Method: % S CAS No. lids * % Solids CLP Extraction for M ample Prepared by Method: EPA CAS No.	Parameter METALS EPA 1311 SW 846-1311 TCLP ext. for Parameter	87.5 metals Result	Flag	% Units N/A	0.100 Log-in Lod/MDL	LOQ 0.100 Notes: Reported to LOQ 1.00	1 Dilution	SM 2540G Certifications: Sam Reference EPA 1311	стдон ple Note Method	Prepared           05/04/2015 10:12           s: EXT-Temp           Date/Time Prepared           05/02/2015 16:29	Analyzed 05/04/2015 14:24 Date/Time Analyzed 05/04/2015 12:59	SCA
ample Prepared by Method: % S CAS No. lids * % Solids CLP Extraction for I ample Prepared by Method: EPA CAS No. TCLP Extracti	Parameter METALS EPA 1311 SW 846-1311 TCLP ext. for Parameter	87.5 metals Result	Flag	% Units N/A	0.100 Log-in LOD/MDL 1.00	LOQ 0.100 Notes: Reported to LOQ 1.00	1 Dilution	SM 2540G Certifications: Sam Reference EPA 1311	стдон ple Note Method	Prepared           05/04/2015 10:12           s: EXT-Temp           Date/Time Prepared           05/02/2015 16:29	Analyzed 05/04/2015 14:24 Date/Time Analyzed 05/04/2015 12:59 EP,PADEP	SCA Analyst SCA
ample Prepared by Method: % S CAS No. lids * % Solids CLP Extraction for I ample Prepared by Method: EPA CAS No. TCLP Extracti	Parameter METALS EPA 1311 SW 846-1311 TCLP ext. for Parameter on	87.5 metals Result Completed	Flag	% Units N/A Sample	0.100 Log-in LOD/MDL 1.00	LOQ 0.100 Notes: Reported to LOQ 1.00	1 Dilution	SM 2540G Certifications: Sam Reference EPA 1311	CTDOH ple Note Method NELAC-N [*]	Prepared 05/04/2015 10:12 <u>s:</u> EXT-Temp Date/Time Prepared 05/02/2015 16:29 v10854,CTDOH,NJDH	Analyzed           05/04/2015 14:24           Date/Time Analyzed           05/04/2015 12:59           EP,PADEP           e IID:         15E	SCA

CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Ti Method Prepa	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	05/04/2015 ( CTDOH,NELAC-NY1085	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	05/04/2015 ( CTDOH,NELAC-NY1085	 SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	05/04/2015 ( CTDOH,NELAC-NY1085	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	05/04/2015 ( CTDOH,NELAC-NY1085	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	05/04/2015 ( CTDOH,NELAC-NY1085	SS
75-34-3	1,1-Dichloroethane	0.93		ug/L	0.20	0.50	1	EPA 8260C Certifications:	05/04/2015 ( CTDOH,NELAC-NY108	SS
75-35-4	1,1-Dichloroethylene	0.23	J	ug/L	0.20	0.50	1	EPA 8260C Certifications:	05/04/2015 ( CTDOH,NELAC-NY108	SS



Client Sample ID: TMW01 050215
--------------------------------

Client Sample ID: TMW01_05	0215		York Sample ID:	15E0070-06
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Water	May 2, 2015 2:00 pm	05/02/2015

Volatile O	rganics, NJDEP/TCL/Part 37	<u>5 List</u>			Log-in 1	Notes:		Sam	ple Note	<u>s:</u>		
Sample Prepare	d by Method: EPA 5030B											
CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
74-97-5	Bromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:51 /10854,NJDEP	05/04/2015 13:05	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:51 (10854,NJDEP	05/04/2015 13:05	SS
120-82-1	1,2,4-Trichlorobenzene	0.24	J, B	ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	05/04/2015 07:51 Y10854,NJDEP	05/04/2015 13:05	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDE	05/04/2015 13:05 EP	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.80	2.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDE	05/04/2015 13:05 EP	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDE	05/04/2015 13:05 EP	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDE	05/04/2015 13:05 EP	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDE	05/04/2015 13:05 EP	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDE	05/04/2015 13:05 EP	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDE	05/04/2015 13:05 P	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDE	05/04/2015 13:05 EP	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDE	05/04/2015 13:05 EP	SS
123-91-1	1,4-Dioxane	ND		ug/L	40	80	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:51 /10854,NJDEP	05/04/2015 13:05	SS
110-82-7	Cyclohexane	0.29	J	ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	05/04/2015 07:51 Y10854,NJDEP	05/04/2015 13:05	SS
78-93-3	2-Butanone	ND		ug/L	0.80	2.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDE	05/04/2015 13:05 P	SS
591-78-6	2-Hexanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDE	05/04/2015 13:05 EP	SS
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDE	05/04/2015 13:05 EP	SS
67-64-1	Acetone	ND	SCAL- E	ug/L	1.0	2.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDE	05/04/2015 13:05 EP	SS
107-02-8	Acrolein	ND		ug/L	0.80	2.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDE	05/04/2015 13:05 P	SS
107-13-1	Acrylonitrile	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDE	05/04/2015 13:05 P	SS
71-43-2	Benzene	0.61		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	05/04/2015 07:51 ELAC-NY10854,NJD	05/04/2015 13:05 EP	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		05/04/2015 07:51 ELAC-NY10854,NJDE	05/04/2015 13:05	SS
75-25-2	Bromoform	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		05/04/2015 07:51 ELAC-NY10854,NJDE	05/04/2015 13:05	SS
									-			



Client Sample ID: TMW01 050215
--------------------------------

		N		
York Project (SDG) No.	<u>Client Project ID</u>	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Water	May 2, 2015 2:00 pm	05/02/2015

<u>Volatile O</u>	Organics, NJDEP/TCL/Part 375	5 List			<u>Log-in Notes:</u>			<u>Sam</u>	ple Note	<u>s:</u>		
Sample Prepar CAS N	ed by Method: EPA 5030B	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
74-83-9	Bromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJD	05/04/2015 13:05 EP	SS
75-15-0	Carbon disulfide	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		05/04/2015 07:51 ELAC-NY10854,NJD	05/04/2015 13:05	SS
56-23-5	Carbon tetrachloride	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJD	05/04/2015 13:05 EP	SS
108-90-7	Chlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJD	05/04/2015 13:05 EP	SS
75-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJD	05/04/2015 13:05 EP	SS
67-66-3	Chloroform	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJD	05/04/2015 13:05 EP	SS
74-87-3	Chloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJD	05/04/2015 13:05 EP	SS
156-59-2	cis-1,2-Dichloroethylene	100		ug/L	2.0	5.0	10	EPA 8260C Certifications:	CTDOH,N	05/04/2015 07:51 ELAC-NY10854,NJE	05/04/2015 15:53 DEP	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJD	05/04/2015 13:05 EP	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJD	05/04/2015 13:05 EP	SS
74-95-3	Dibromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:51 /10854,NJDEP	05/04/2015 13:05	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:51 (10854,NJDEP	05/04/2015 13:05	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJD	05/04/2015 13:05 EP	SS
108-87-2	Methylcyclohexane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:51 (10854,NJDEP	05/04/2015 13:05	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:51 (10854,NJDEP	05/04/2015 13:05	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJD	05/04/2015 13:05 EP	SS
79-20-9	Methyl acetate	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:51 (10854,NJDEP	05/04/2015 13:05	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJD	05/04/2015 13:05 EP	SS
75-09-2	Methylene chloride	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJD	05/04/2015 13:05 EP	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJD	05/04/2015 13:05 EP	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJD	05/04/2015 13:05 EP	SS
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:51 (10854	05/04/2015 13:05	SS
87-61-6	1,2,3-Trichlorobenzene	0.28	B, J	ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	05/04/2015 07:51 Y10854,NJDEP	05/04/2015 13:05	SS

York Sample ID:



Client Sample ID: TMW01 050215	5
--------------------------------	---

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Water	May 2, 2015 2:00 pm	05/02/2015

	Prganics, NJDEP/TCL/Part 375 I ed by Method: EPA 5030B	<u>list</u>			<u>Log-in</u>	Notes:		<u>San</u>	<u>iple Note</u>	<u>s:</u>		
CAS N		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Referenc	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
179601-23-1	p- & m- Xylenes	ND		ug/L	2.0	4.0	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:51 /10854	05/04/2015 13:05	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:05 EP	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:05 EP	SS
100-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:05 EP	SS
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	0.80	2.0	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:51 /10854,NJDEP	05/04/2015 13:05	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:05 EP	SS
127-18-4	Tetrachloroethylene	0.34	J	ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	05/04/2015 07:51 ELAC-NY10854,NJD	05/04/2015 13:05 EP	SS
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:05 EP	SS
156-60-5	trans-1,2-Dichloroethylene	0.37	J	ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	05/04/2015 07:51 ELAC-NY10854,NJD	05/04/2015 13:05 EP	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:05 EP	SS
79-01-6	Trichloroethylene	0.22	J	ug/L	0.20	0.50	1	EPA 8260C		05/04/2015 07:51	05/04/2015 13:05	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	Certifications: EPA 8260C Certifications:	,	ELAC-NY10854,NJD 05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:05	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:05 EP	SS
1330-20-7	* Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C Certifications:	CTDOH,NJ	05/04/2015 07:51 DEP	05/04/2015 13:05	SS
	Surrogate Recoveries	Result		Acce	eptance Rang	e						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	103 %			69-130							
460-00-4	Surrogate: p-Bromofluorobenzene	95.9 %			79-122							
2037-26-5	Surrogate: Toluene-d8	104 %			81-117							

#### Semi-Volatiles, NJDEP/TCL/Part 375 List

Log-in Notes:

Sample Notes:

York Sample ID:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference N	Date/Time Aethod Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	05/03/2015 13:12 CTDOH,NELAC-NY10854,NJDI	05/03/2015 18:36 EP	KH
208-96-8	Acenaphthylene	0.210		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	05/03/2015 13:12 CTDOH,NELAC-NY10854,NJD	05/03/2015 18:36 EP	КН
98-86-2	Acetophenone	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/03/2015 13:12 NELAC-NY10854,NJDEP	05/03/2015 19:07	SR
62-53-3	Aniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/03/2015 13:12 NELAC-NY10854,NJDEP	05/03/2015 19:07	SR



Client Sample ID:	TMW01_050215
-------------------	--------------

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Water	May 2, 2015 2:00 pm	05/02/2015

	tiles, NJDEP/TCL/Part 375 ed by Method: EPA 3510C	<u>List</u>		<u>Log-in</u>	Notes:		<u>San</u>	<u>iple Note</u>	<u>s:</u>		
CAS No		Result Fla	ag Units	Reported to LOD/MDL	LOQ	Dilution	Referenc	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
120-12-7	Anthracene	ND	ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 18:36 P	KH
1912-24-9	Atrazine	ND	ug/L	0.500	0.500	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:12 Y10854,NJDEP	05/03/2015 19:07	SR
100-52-7	Benzaldehyde	ND	ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:12 Y10854,NJDEP	05/03/2015 19:07	SR
92-87-5	Benzidine	ND	ug/L	10.0	20.0	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 19:07 P	SR
56-55-3	Benzo(a)anthracene	ND	ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 18:36 P	KH
50-32-8	Benzo(a)pyrene	ND	ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 18:36 P	KH
205-99-2	Benzo(b)fluoranthene	ND	ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 18:36 P	KH
191-24-2	Benzo(g,h,i)perylene	ND	ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 18:36 P	КН
65-85-0	Benzoic acid	ND	ug/L	25.0	50.0	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:12 Y10854,NJDEP	05/03/2015 19:07	SR
207-08-9	Benzo(k)fluoranthene	ND	ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 18:36 P	KH
100-51-6	Benzyl alcohol	ND	ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:12 Y10854,NJDEP	05/03/2015 19:07	SR
85-68-7	Benzyl butyl phthalate	ND	ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 19:07 P	SR
92-52-4	1,1'-Biphenyl	ND	ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:12 Y 10854,NJDEP	05/03/2015 19:07	SR
101-55-3	4-Bromophenyl phenyl ether	ND	ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 19:07 P	SR
105-60-2	Caprolactam	ND	ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:12 Y 10854,NJDEP	05/03/2015 19:07	SR
86-74-8	Carbazole	ND	ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 19:07 P	SR
59-50-7	4-Chloro-3-methylphenol	ND	ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 19:07 P	SR
106-47-8	4-Chloroaniline	ND	ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 19:07 P	SR
111-91-1	Bis(2-chloroethoxy)methane	ND	ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 19:07 P	SR
111-44-4	Bis(2-chloroethyl)ether	ND	ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 19:07 P	SR
108-60-1	Bis(2-chloroisopropyl)ether	ND	ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 19:07 P	SR
91-58-7	2-Chloronaphthalene	ND	ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 19:07 P	SR
95-57-8	2-Chlorophenol	ND	ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 19:07 P	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND	ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 19:07 P	SR
120	RESEARCH DRIVE	STRATFORD, C1	06615		(	203) 325-1	1371		FAX (203) 35 <u>7</u>	2-0166	

15E0070-06

York Sample ID:



Client Sample ID: TMW01 050215
--------------------------------

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Water	May 2, 2015 2:00 pm	05/02/2015

<u>Semi-Vola</u>		Log-in Notes:			Sample Notes:							
Sample Prepare	ed by Method: EPA 3510C									D ( /T)	D ( /T)	
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
218-01-9	Chrysene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:12 LAC-NY10854,NJDE	05/03/2015 18:36 P	КН
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:12 LAC-NY10854,NJDE	05/03/2015 18:36 P	КН
132-64-9	Dibenzofuran	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:12 LAC-NY10854,NJDE	05/03/2015 19:07 P	SR
84-74-2	Di-n-butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:12 LAC-NY10854,NJDE	05/03/2015 19:07 P	SR
106-46-7	1,4-Dichlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:12 10854	05/03/2015 19:07	SR
95-50-1	1,2-Dichlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:12 10854	05/03/2015 19:07	SR
541-73-1	1,3-Dichlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	05/03/2015 13:12 10854	05/03/2015 19:07	SR
91-94-1	3,3'-Dichlorobenzidine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:12 LAC-NY10854,NJDE	05/03/2015 19:07 P	SR
120-83-2	2,4-Dichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:12 LAC-NY10854,NJDE	05/03/2015 19:07 P	SR
84-66-2	Diethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:12 LAC-NY10854,NJDE	05/03/2015 19:07 P	SR
105-67-9	2,4-Dimethylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/03/2015 13:12 LAC-NY10854,NJDE	05/03/2015 19:07	SR
131-11-3	Dimethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/03/2015 13:12 LAC-NY10854,NJDE	05/03/2015 19:07	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:12 LAC-NY10854,NJDE	05/03/2015 19:07 P	SR
51-28-5	2,4-Dinitrophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:12 LAC-NY10854,NJDE	05/03/2015 19:07 P	SR
121-14-2	2,4-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/03/2015 13:12 LAC-NY10854,NJDE	05/03/2015 19:07	SR
606-20-2	2,6-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/03/2015 13:12 LAC-NY10854,NJDE	05/03/2015 19:07	SR
117-84-0	Di-n-octyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/03/2015 13:12 LAC-NY10854,NJDE	05/03/2015 19:07	SR
122-66-7	1,2-Diphenylhydrazine (as Azobenzene)	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/03/2015 13:12 10854,NJDEP	05/03/2015 19:07	SR
117-81-7	Bis(2-ethylhexyl)phthalate	1.13	В	ug/L	0.500	0.500	1	EPA 8270D		05/03/2015 13:12	05/03/2015 18:36	КН
206-44-0	Fluoranthene	0.100		ug/L	0.0500	0.0500	1	Certifications: EPA 8270D	CIDOH,NE	ELAC-NY10854,NJDI 05/03/2015 13:12	05/03/2015 18:36	КН
200 11 0		0.100		ug/12	0.0500	0.0500	1	Certifications:	CTDOH,NE	ELAC-NY10854,NJDI		
86-73-7	Fluorene	0.280		ug/L	0.0500	0.0500	1	EPA 8270D		05/03/2015 13:12	05/03/2015 18:36	KH
								Certifications:	NELAC-NY	Y10854,NJDEP		
118-74-1	Hexachlorobenzene	ND		ug/L	0.0200	0.0200	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:12 LAC-NY10854,NJDE	05/03/2015 18:36 P	КН
87-68-3	Hexachlorobutadiene	ND		ug/L	0.500	0.500	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:12 LAC-NY10854,NJDE	05/03/2015 19:07 P	SR

15E0070-06

York Sample ID:



<b>Client Sample ID:</b>	TMW01 050215

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Water	May 2, 2015 2:00 pm	05/02/2015

Semi-Vola	atiles, NJDEP/TCL/Part 375 L	list			<u>Log-in Notes:</u>			Sample Notes:				
Sample Prepar CAS N	red by Method: EPA 3510C	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 19:07 P	SR
67-72-1	Hexachloroethane	ND		ug/L	0.500	0.500	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 19:07 P	SR
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 18:36 P	KH
78-59-1	Isophorone	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 19:07 P	SR
91-57-6	2-Methylnaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 19:07 P	SR
95-48-7	2-Methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 19:07 P	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 19:07 P	SR
91-20-3	Naphthalene	0.160		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH,N	05/03/2015 13:12 ELAC-NY10854,NJD	05/03/2015 18:36 EP	КН
99-09-2	3-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 19:07 P	SR
100-01-6	4-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 19:07 P	SR
88-74-4	2-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 19:07 P	SR
98-95-3	Nitrobenzene	ND		ug/L	0.250	0.250	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 19:07 P	SR
100-02-7	4-Nitrophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 19:07 P	SR
88-75-5	2-Nitrophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 19:07 P	SR
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 19:07 P	SR
62-75-9	N-Nitrosodimethylamine	ND		ug/L	0.500	0.500	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 18:36 P	KH
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 19:07 P	SR
87-86-5	Pentachlorophenol	ND		ug/L	0.250	0.250	1	EPA 8270D Certifications:	CTDOH,NE	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 18:36 P	KH
85-01-8	Phenanthrene	0.0600		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:	CTDOH,N	05/03/2015 13:12 ELAC-NY10854,NJD	05/03/2015 18:36 EP	КН
108-95-2	Phenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 19:07	SR
129-00-0	Pyrene	0.150		ug/L	0.0500	0.0500	1	EPA 8270D Certifications:		05/03/2015 13:12 ELAC-NY10854.NJD	05/03/2015 18:36	KH
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270D	,	05/03/2015 13:12	05/03/2015 19:07	SR
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	2.50	5.00	1	Certifications: EPA 8270D	NELAC-NY	10854,NJDEP 05/03/2015 13:12	05/03/2015 19:07	SR

York Sample ID:



<u>Client Sample ID:</u> TMW01_050215			York Sample ID:	15E0070-06
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Water	May 2, 2015 2:00 pm	05/02/2015

Semi-Vola	atiles, NJDEP/TCL/Part 375 List				Log-in	Notes:		Sam	ple Note	<u>s:</u>		
Sample Prepar	red by Method: EPA 3510C											
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 19:07 P	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 19:07 P	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	05/03/2015 13:12 ELAC-NY10854,NJDE	05/03/2015 19:07 P	SR
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
367-12-4	Surrogate: 2-Fluorophenol	13.4 %			10-65							
4165-62-2	Surrogate: Phenol-d5	7.87 %	S-08		10-49							
4165-60-0	Surrogate: Nitrobenzene-d5	35.7 %			10-96							
321-60-8	Surrogate: 2-Fluorobiphenyl	38.0 %			10-93							
118-79-6	Surrogate: 2,4,6-Tribromophenol	47.9 %			10-128							
1718-51-0	Surrogate: Terphenyl-d14	61.5 %			10-100							

Log-in Notes:

Sample Notes:

### Pesticides, NJDEP/TCL/Part 375 List

Sample Prepared by Method: EPA SW846-3510C Low Level

CAS N	o. Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
309-00-2	Aldrin	ND		ug/L	0.00421	0.00421	1	EPA 8081B Certifications:	CTDOH,NI	05/04/2015 07:15 ELAC-NY10854,NJDF	05/04/2015 13:04 EP	JW
319-84-6	alpha-BHC	ND		ug/L	0.00421	0.00421	1	EPA 8081B Certifications:	CTDOH,NI	05/04/2015 07:15 ELAC-NY10854,NJDF	05/04/2015 13:04 EP	JW
319-85-7	beta-BHC	ND		ug/L	0.00421	0.00421	1	EPA 8081B Certifications:	CTDOH,NI	05/04/2015 07:15 ELAC-NY10854,NJDF	05/04/2015 13:04 EP	JW
319-86-8	delta-BHC	ND		ug/L	0.00421	0.00421	1	EPA 8081B Certifications:	CTDOH,NI	05/04/2015 07:15 ELAC-NY10854,NJDF	05/04/2015 13:04 EP	JW
58-89-9	gamma-BHC (Lindane)	ND		ug/L	0.00421	0.00421	1	EPA 8081B Certifications:	CTDOH,NI	05/04/2015 07:15 ELAC-NY10854,NJDF	05/04/2015 13:04 EP	JW
5103-74-2	gamma-Chlordane	ND		ug/L	0.0105	0.0105	1	EPA 8081B Certifications:	CTDOH,NI	05/04/2015 07:15 ELAC-NY10854,NJDF	05/04/2015 13:04 EP	JW
5103-71-9	alpha-Chlordane	ND		ug/L	0.00421	0.00421	1	EPA 8081B Certifications:	CTDOH,NI	05/04/2015 07:15 ELAC-NY10854,NJDH	05/04/2015 13:04 EP	JW
57-74-9	Chlordane, total	ND		ug/L	0.0421	0.0421	1	EPA 8081B Certifications:	CTDOH,NI	05/04/2015 07:15 ELAC-NY10854,NJDF	05/04/2015 13:04 EP	JW
72-54-8	4,4'-DDD	ND		ug/L	0.00421	0.00421	1	EPA 8081B Certifications:	CTDOH,NI	05/04/2015 07:15 ELAC-NY10854,NJDF	05/04/2015 13:04 P	JW
72-55-9	4,4'-DDE	ND		ug/L	0.00421	0.00421	1	EPA 8081B Certifications:	CTDOH,NI	05/04/2015 07:15 ELAC-NY10854,NJDF	05/04/2015 13:04 EP	JW
50-29-3	4,4'-DDT	ND		ug/L	0.00421	0.00421	1	EPA 8081B Certifications:	CTDOH,NI	05/04/2015 07:15 ELAC-NY10854,NJDH	05/04/2015 13:04 EP	JW
60-57-1	Dieldrin	ND		ug/L	0.00211	0.00211	1	EPA 8081B Certifications:	CTDOH,NI	05/04/2015 07:15 ELAC-NY10854,NJDF	05/04/2015 13:04 P	JW
959-98-8	Endosulfan I	ND		ug/L	0.00421	0.00421	1	EPA 8081B Certifications:	CTDOH,NI	05/04/2015 07:15 ELAC-NY10854,NJDF	05/04/2015 13:04 EP	JW



Client Sample ID: TMW01 0502	15
------------------------------	----

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Water	May 2, 2015 2:00 pm	05/02/2015

	ed by Method: EPA SW846-3510C Low Level				<u>Log-in Notes:</u>			Sample Notes:				
CAS N	-	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
33213-65-9	Endosulfan II	ND		ug/L	0.00421	0.00421	1	EPA 8081B Certifications:	CTDOH,NI	05/04/2015 07:15 ELAC-NY10854,NJDE	05/04/2015 13:04 EP	JW
1031-07-8	Endosulfan sulfate	ND		ug/L	0.00421	0.00421	1	EPA 8081B Certifications:	CTDOH,NI	05/04/2015 07:15 ELAC-NY10854,NJDE	05/04/2015 13:04 EP	JW
72-20-8	Endrin	ND		ug/L	0.00421	0.00421	1	EPA 8081B Certifications:	CTDOH,NI	05/04/2015 07:15 ELAC-NY10854,NJDE	05/04/2015 13:04 EP	JW
7421-93-4	Endrin aldehyde	ND		ug/L	0.0105	0.0105	1	EPA 8081B Certifications:	CTDOH,NI	05/04/2015 07:15 ELAC-NY10854,NJDE	05/04/2015 13:04 EP	JW
53494-70-5	Endrin ketone	ND		ug/L	0.0105	0.0105	1	EPA 8081B Certifications:	CTDOH,NI	05/04/2015 07:15 ELAC-NY10854,NJDE	05/04/2015 13:04 EP	JW
76-44-8	Heptachlor	ND		ug/L	0.00421	0.00421	1	EPA 8081B Certifications:	CTDOH,NI	05/04/2015 07:15 ELAC-NY10854,NJDE	05/04/2015 13:04 EP	JW
1024-57-3	Heptachlor epoxide	ND		ug/L	0.00421	0.00421	1	EPA 8081B Certifications:	CTDOH,NI	05/04/2015 07:15 ELAC-NY10854,NJDE	05/04/2015 13:04 EP	JW
72-43-5	Methoxychlor	ND		ug/L	0.00421	0.00421	1	EPA 8081B Certifications:	CTDOH,NI	05/04/2015 07:15 ELAC-NY10854,NJDE	05/04/2015 13:04 EP	JW
8001-35-2	Toxaphene	ND		ug/L	0.105	0.105	1	EPA 8081B Certifications:	CTDOH,NI	05/04/2015 07:15 ELAC-NY10854,NJDE	05/04/2015 13:04 EP	JW
	Surrogate Recoveries	Result		Acce	eptance Rang	ge						
2051-24-3	Surrogate: Decachlorobiphenyl	39.2 %			30-120							
877-09-8	Surrogate: Tetrachloro-m-xylene	39.3 %			30-120							

#### Polychlorinated Biphenyls (PCB)

#### Sample Prepared by Method: EPA SW846-3510C Low Level

CAS N	lo. Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analys
12674-11-2	Aroclor 1016	ND		ug/L	0.0526	0.0526	1	EPA 8082A Certifications:	NELAC-N	05/04/2015 07:15 Y10854,CTDOH,NJDH	05/04/2015 11:51 EP	AMC
11104-28-2	Aroclor 1221	ND		ug/L	0.0526	0.0526	1	EPA 8082A Certifications:	NELAC-N	05/04/2015 07:15 Y10854,CTDOH,NJDH	05/04/2015 11:51 EP	AMC
11141-16-5	Aroclor 1232	ND		ug/L	0.0526	0.0526	1	EPA 8082A Certifications:	NELAC-N	05/04/2015 07:15 Y10854,CTDOH,NJDH	05/04/2015 11:51 EP	AMC
53469-21-9	Aroclor 1242	ND		ug/L	0.0526	0.0526	1	EPA 8082A Certifications:	NELAC-N	05/04/2015 07:15 Y10854,CTDOH,NJDH	05/04/2015 11:51 EP	AMC
12672-29-6	Aroclor 1248	ND		ug/L	0.0526	0.0526	1	EPA 8082A Certifications:	NELAC-N	05/04/2015 07:15 Y10854,CTDOH,NJDH	05/04/2015 11:51 EP	AMC
11097-69-1	Aroclor 1254	ND		ug/L	0.0526	0.0526	1	EPA 8082A Certifications:	NELAC-N	05/04/2015 07:15 Y10854,CTDOH,NJDH	05/04/2015 11:51 EP	AMC
11096-82-5	Aroclor 1260	ND		ug/L	0.0526	0.0526	1	EPA 8082A Certifications:	NELAC-N	05/04/2015 07:15 ¥10854,CTDOH,NJDH	05/04/2015 11:51 EP	AMC
1336-36-3	* Total PCBs	ND		ug/L	0.0526	0.0526	1	EPA 8082A Certifications:		05/04/2015 07:15	05/04/2015 11:51	AMC
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
877-09-8	Surrogate: Tetrachloro-m-xylene	51.7%			30-120							
2051-24-3	Surrogate: Decachlorobiphenyl	75.6 %			30-120							

Log-in Notes:

Sample Notes:

York Sample ID:



Client Sample ID:	TMW01	050215

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Water	May 2, 2015 2:00 pm	05/02/2015

<u>Metals, T</u>	arget Analyt	<u>e</u>				<u>Log-in</u>	Notes:		<u>Sam</u>	ple Note	<u>s:</u>		
Sample Prepar	red by Method: EP4	A 3010A Parameter	Result	Flag	Units	LOD/MDL	Reported to	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7429-90-5	Aluminum		0.129	8	mg/L	0.050	0.050	1	EPA 6010C		05/04/2015 08:32	05/04/2015 12:12	MW
142)-90-5	Tunnun		0.129		iiig/L	0.050	0.050	1	Certifications:	CTDOH,N	ELAC-NY10854,NJD		101 00
7440-36-0	Antimony		ND		mg/L	0.005	0.005	1	EPA 6010C Certifications:		05/04/2015 08:32 ELAC-NY10854,NJDF	05/04/2015 12:12	MW
7440-38-2	Arsenic		ND		mg/L	0.004	0.004	1	EPA 6010C Certifications:	CTDOH,NE	05/04/2015 08:32 ELAC-NY10854,NJDF	05/04/2015 12:12 EP	MW
7440-39-3	Barium		0.133		mg/L	0.010	0.010	1	EPA 6010C Certifications:	CTDOH,N	05/04/2015 08:32 ELAC-NY10854,NJD	05/04/2015 12:12 EP	MW
7440-41-7	Beryllium		ND		mg/L	0.001	0.001	1	EPA 6010C Certifications:	CTDOH,NE	05/04/2015 08:32 ELAC-NY10854,NJDF	05/04/2015 12:12 EP	MW
7440-43-9	Cadmium		ND		mg/L	0.003	0.003	1	EPA 6010C Certifications:	CTDOH,NE	05/04/2015 08:32 ELAC-NY10854,NJDF	05/04/2015 12:12 EP	MW
7440-70-2	Calcium		127		mg/L	0.050	0.050	1	EPA 6010C Certifications:	CTDOH,N	05/04/2015 08:32 ELAC-NY10854,NJD	05/04/2015 12:12 EP	MW
7440-47-3	Chromium		ND		mg/L	0.005	0.005	1	EPA 6010C Certifications:	CTDOH,NE	05/04/2015 08:32 ELAC-NY10854,NJDF	05/04/2015 12:12 EP	MW
7440-48-4	Cobalt		ND		mg/L	0.005	0.005	1	EPA 6010C Certifications:	CTDOH,NE	05/04/2015 08:32 ELAC-NY10854,NJDF	05/04/2015 12:12 EP	MW
7440-50-8	Copper		0.004		mg/L	0.003	0.003	1	EPA 6010C Certifications:	CTDOH,N	05/04/2015 08:32 ELAC-NY10854,NJD	05/04/2015 12:12 EP	MW
7439-89-6	Iron		6.10		mg/L	0.020	0.020	1	EPA 6010C Certifications:	CTDOH,N	05/04/2015 08:32 ELAC-NY10854,NJD	05/04/2015 12:12 EP	MW
7439-92-1	Lead		0.004		mg/L	0.003	0.003	1	EPA 6010C Certifications:	CTDOH,N	05/04/2015 08:32 ELAC-NY10854,NJD	05/04/2015 12:12 EP	MW
7439-95-4	Magnesium		26.4		mg/L	0.050	0.050	1	EPA 6010C Certifications:	CTDOH.N	05/04/2015 08:32 ELAC-NY10854,NJD	05/04/2015 12:12 EP	MW
7439-96-5	Manganese		1.04		mg/L	0.005	0.005	1	EPA 6010C Certifications:	CTDOH,N	05/04/2015 08:32 ELAC-NY10854,NJD	05/04/2015 12:12 EP	MW
7440-02-0	Nickel		ND		mg/L	0.005	0.005	1	EPA 6010C Certifications:		05/04/2015 08:32 ELAC-NY10854,NJDH	05/04/2015 12:12	MW
7440-09-7	Potassium		21.4		mg/L	0.050	0.050	1	EPA 6010C Certifications:	CTDOH,N	05/04/2015 08:32 ELAC-NY10854,NJD	05/04/2015 12:12 EP	MW
7782-49-2	Selenium		0.013		mg/L	0.010	0.010	1	EPA 6010C Certifications:		05/04/2015 08:32 ELAC-NY10854,NJD	05/04/2015 12:12	MW
7440-22-4	Silver		ND		mg/L	0.005	0.005	1	EPA 6010C Certifications:		05/04/2015 08:32 ELAC-NY10854,NJDF	05/04/2015 12:12	MW
7440-23-5	Sodium		109		mg/L	0.100	0.100	1	EPA 6010C Certifications:		05/04/2015 08:32 ELAC-NY10854,NJD	05/04/2015 12:12	MW
7440-28-0	Thallium		ND		mg/L	0.005	0.005	1	EPA 6010C Certifications:		05/04/2015 08:32 ELAC-NY10854,NJDF	05/04/2015 12:12	MW
7440-62-2	Vanadium		ND		mg/L	0.010	0.010	1	EPA 6010C Certifications:		05/04/2015 08:32 ELAC-NY10854,NJDF	05/04/2015 12:12	MW
7440-66-6	Zinc		0.012		mg/L	0.010	0.010	1	EPA 6010C Certifications:	CTDOH N	05/04/2015 08:32 ELAC-NY10854,NJD	05/04/2015 12:12	MW

15E0070-06

York Sample ID:



<u>Client Sample ID:</u> TMW01_05021	5		York Sample ID:	15E0070-06
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Water	May 2, 2015 2:00 pm	05/02/2015

Mercury h	by 747 <u>3</u>					Log-in	Notes:		Sam	ple Note	<u>s:</u>		
Sample Prepare	ed by Method: El	PA 7473 water											
CAS No	0.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury		ND		mg/L	0.00020	0.00020	1	EPA 7473 Certifications:	CTDOH,NI	05/04/2015 06:50 ELAC-NY10854,NJDF	05/04/2015 12:06 EP,PADEP	ALD

	Sample Inform	nation		
<u>Client Sample ID:</u> Trip Blank			York Sample ID:	15E0070-07
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Water	May 2, 2015 3:00 pm	05/02/2015

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Meth	Date/Time od Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTD	05/04/2015 07:51 DH,NELAC-NY10854,NJD	05/04/2015 13:38 EP	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTD	05/04/2015 07:51 DH,NELAC-NY10854,NJD	05/04/2015 13:38 EP	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTD0	05/04/2015 07:51 DH,NELAC-NY10854,NJD	05/04/2015 13:38 EP	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTD0	05/04/2015 07:51 DH,NELAC-NY10854,NJD	05/04/2015 13:38 EP	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTD	05/04/2015 07:51 DH,NELAC-NY10854,NJD	05/04/2015 13:38 EP	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTD	05/04/2015 07:51 DH,NELAC-NY10854,NJD	05/04/2015 13:38 EP	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTD	05/04/2015 07:51 DH,NELAC-NY10854,NJD	05/04/2015 13:38 EP	SS
74-97-5	Bromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: NELA	05/04/2015 07:51 AC-NY10854,NJDEP	05/04/2015 13:38	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: NELA	05/04/2015 07:51 AC-NY10854,NJDEP	05/04/2015 13:38	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: NELA	05/04/2015 07:51 AC-NY10854,NJDEP	05/04/2015 13:38	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTD	05/04/2015 07:51 DH,NELAC-NY10854,NJD	05/04/2015 13:38 EP	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.80	2.0	1	EPA 8260C Certifications: CTD	05/04/2015 07:51 DH,NELAC-NY10854,NJD	05/04/2015 13:38 EP	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTD	05/04/2015 07:51 DH,NELAC-NY10854,NJD	05/04/2015 13:38 EP	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTD	05/04/2015 07:51 DH,NELAC-NY10854,NJD	05/04/2015 13:38 EP	SS



<u>Client Sample ID:</u> Trip Blank			<u>York Sample ID:</u>	15E0070-07
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Water	May 2, 2015 3:00 pm	05/02/2015

	Organics, NJDEP/TCL/Part 37	'5 List			<u>Log-in</u> ]	Notes:		<u>Sam</u>	ple Note	<u>s:</u>		
Sample Prepar	ed by Method: EPA 5030B O. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
107-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
123-91-1	1,4-Dioxane	ND		ug/L	40	80	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:51 (10854,NJDEP	05/04/2015 13:38	SS
110-82-7	Cyclohexane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:51 (10854,NJDEP	05/04/2015 13:38	SS
78-93-3	2-Butanone	ND		ug/L	0.80	2.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
591-78-6	2-Hexanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
67-64-1	Acetone	1.5	SCAL- E, B, J	ug/L	1.0	2.0	1	EPA 8260C Certifications:	CTDOH,N	05/04/2015 07:51 ELAC-NY10854,NJD	05/04/2015 13:38 DEP	SS
107-02-8	Acrolein	ND		ug/L	0.80	2.0	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
107-13-1	Acrylonitrile	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
75-25-2	Bromoform	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
74-83-9	Bromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
75-15-0	Carbon disulfide	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
56-23-5	Carbon tetrachloride	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
108-90-7	Chlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
75-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
67-66-3	Chloroform	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38	SS
74-87-3	Chloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38	SS



<u>Client Sample ID:</u> Trip Blank			York Sample ID:	15E0070-07
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Water	May 2, 2015 3:00 pm	05/02/2015

	Drganics, NJDEP/TCL/Part 375	<u>5 List</u>			<u>Log-in</u>	Notes:		<u>San</u>	nple Note	<u>s:</u>		
Sample Prepar CAS N	red by Method: EPA 5030B	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Referenc	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
156-59-2	cis-1,2-Dichloroethylene	0.24	J	ug/L	0.20	0.50	1	EPA 8260C		05/04/2015 07:51	05/04/2015 13:38	SS
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
74-95-3	Dibromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	05/04/2015 07:51 Y 10854,NJDEP	05/04/2015 13:38	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	05/04/2015 07:51 Y 10854,NJDEP	05/04/2015 13:38	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
108-87-2	Methylcyclohexane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:51 ¥10854,NJDEP	05/04/2015 13:38	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:51 Y10854,NJDEP	05/04/2015 13:38	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
79-20-9	Methyl acetate	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:51 Y10854,NJDEP	05/04/2015 13:38	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
75-09-2	Methylene chloride	1.6	J	ug/L	1.0	2.0	1	EPA 8260C	CTDOUN	05/04/2015 07:51	05/04/2015 13:38	SS
104 51 9		ND		/T	0.20	0.50	1	Certifications:	CTDOH,N	ELAC-NY10854,NJD		
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	05/04/2015 07:51 ¥10854	05/04/2015 13:38	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	05/04/2015 07:51 Y 10854,NJDEP	05/04/2015 13:38	SS
179601-23-1	p- & m- Xylenes	ND		ug/L	2.0	4.0	1	EPA 8260C Certifications:	NELAC-N	05/04/2015 07:51 ¥10854	05/04/2015 13:38	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
100-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	0.80	2.0	1	EPA 8260C Certifications:	NELAC-N	05/04/2015 07:51 ¥10854,NJDEP	05/04/2015 13:38	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS



<u>Chene Sample ID.</u> IIIp Diank	<b>Client Sau</b>	nple ID:	Trip Blank
------------------------------------	-------------------	----------	------------

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0070	170362501	Water	May 2, 2015 3:00 pm	05/02/2015

Volatile O	Organics, NJDEP/TCL/Part 375 I	list			Log-in	Notes:		Sam	ple Note	<u>s:</u>		
Sample Prepar	ed by Method: EPA 5030B o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
79-01-6	Trichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/04/2015 07:51 ELAC-NY10854,NJDI	05/04/2015 13:38 EP	SS
1330-20-7	* Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C Certifications:	CTDOH,NJ	05/04/2015 07:51 DEP	05/04/2015 13:38	SS
	Surrogate Recoveries	Result		Acco	eptance Rang	e						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	100 %			69-130							
460-00-4	Surrogate: p-Bromofluorobenzene	98.9 %			79-122							
2037-26-5	Surrogate: Toluene-d8	102 %			81-117							

15E0070-07

York Sample ID:



# Analytical Batch Summary

Batch ID: BE50079	Preparation Method:	EPA SW 846-1311 TCLP ext. for meta	Prepared By:	AA
YORK Sample ID	Client Sample ID	Preparation Date		
15E0070-01	SB01_2.5-3	05/02/15		
15E0070-02	SB01_2.5-3	05/02/15		
15E0070-03	SB03_5-5.5	05/02/15		
15E0070-04	SB05_5 5.5 SB04 .5-1	05/02/15		
15E0070-05	SB05_5-5.5	05/02/15		
BE50079-BLK1	Blank	05/02/15		
Batch ID: BE50080	Preparation Method:	EPA 7473 soil	Prepared By:	ALD
YORK Sample ID	Client Sample ID	Preparation Date		
15E0070-01	SB01_2.5-3	05/03/15		
15E0070-02	SB02 2.5-3	05/03/15		
15E0070-03	SB03_5-5.5	05/03/15		
15E0070-04	SB045-1	05/03/15		
15E0070-05	SB05_5-5.5	05/03/15		
BE50080-BLK1	Blank	05/03/15		
BE50080-SRM1	Reference	05/03/15		
Batch ID: BE50083	Preparation Method:	EPA 3510C	Prepared By:	KAT
YORK Sample ID	Client Sample ID	Preparation Date		
15E0070-06	TMW01_050215	05/03/15		
BE50083-BLK1	Blank	05/03/15		
BE50083-BS1	LCS	05/03/15		
BE50083-BS2	LCS	05/03/15		
BE50083-BSD1	LCS Dup	05/03/15		
Batch ID: BE50084	Preparation Method:	EPA 3550C	Prepared By:	KAT
YORK Sample ID	Client Sample ID	Preparation Date		
15E0070-01	SB01_2.5-3	05/03/15		
15E0070-02	SB02_2.5-3	05/03/15		
15E0070-03	SB03_5-5.5	05/03/15		
15E0070-04	SB045-1	05/03/15		
15E0070-05	SB05_5-5.5	05/03/15		
BE50084-BLK1	Blank	05/03/15		
BE50084-BS1	LCS	05/03/15		
BE50084-BSD1	LCS Dup	05/03/15		
BE50084-MS1	Matrix Spike	05/03/15		
Batch ID: BE50085	Preparation Method:	EPA 3550C	Prepared By:	KAT
YORK Sample ID	Client Sample ID	Preparation Date		
120 RESEARCH DRIVE	STRATFORD, CT 06615	(203) 325-1371	FAX (2	203) 35 <u>7-0166</u>
120 RECEARCH DRIVE	611AH 010, 01 00015	(203) 323-1371	1 77 (2	Bage 70 of 117

Page 70 of 117

YORK

120 RESEARCH DRIVE	STRATEORD CT 06615	(203) 325-1371	EAY (2	203) 357-0166
Batch ID: BE50101	Preparation Method:	EPA 3050B	Prepared By:	MW
BE50097-BSD2	LCS Dup	05/04/15		
3E50097-BSD1	LCS Dup	05/04/15		
BE50097-BS2	LCS	05/04/15		
BE50097-BS1	LCS	05/04/15		
BE50097-BLK1	Blank	05/04/15		
BE50097-BLK1	Blank	05/04/15		
5E0070-06	TMW01_050215	05/04/15		
5E0070-06	TMW01_050215	05/04/15		
ORK Sample ID	Client Sample ID	Preparation Date		
Batch ID: BE50097	Preparation Method:	EPA SW846-3510C Low Level	Prepared By:	KAT
SECOND DIAM	Keleinee	00/07/10		
BE50095-SRM1	Reference	05/04/15		
3E50095-BLK1	SB05_5-5.5 Blank	05/04/15		
5E0070-04 5E0070-05	SB045-1	05/04/15		
5E0070-03 5E0070-04	SB03_5-5.5	05/04/15 05/04/15		
5E0070-02	SB02_2.5-3	05/04/15		
5E0070-01	SB01_2.5-3	05/04/15		
-		-		
ORK Sample ID	Client Sample ID	Preparation Date	· · · · · · · · · · · · · · · · · · ·	
Batch ID: BE50095	Preparation Method:	EPA 7473 water	Prepared By:	ALD
3E50094-SRM1	Reference	05/04/15		
BE50094-BLK1	Blank	05/04/15		
5E0070-06	TMW01_050215	05/04/15		
ORK Sample ID	Client Sample ID	Preparation Date		
Batch ID: BE50094	Preparation Method:	EPA 7473 water	Prepared By:	ALD
	<b>•</b> • • • • •		<b>D</b>	
BE50085-MS1	Matrix Spike	05/03/15		
BE50085-BSD1	LCS Dup	05/03/15		
BE50085-BS2	LCS	05/03/15		
BE50085-BS1	LCS	05/03/15		
BE50085-BLK1	Blank	05/03/15		
3E50085-BLK1	Blank	05/03/15		
5E0070-05	SB05_5-5.5	05/03/15		
5E0070-05	SB05_5-5.5	05/03/15		
5E0070-04	SB045-1	05/03/15		
5E0070-04	SB045-1	05/03/15		
5E0070-03	SB03_5-5.5	05/03/15		
5E0070-03	SB03_5-5.5	05/03/15		
5E0070-02	SB02_2.5-3	05/03/15		
5E0070-02	SB02_2.5-3	05/03/15		
5E0070-01	SB01_2.5-3	05/03/15		
15E0070-01	SB01_2.5-3	05/03/15		
		ANALYTICAL LABORATORIES INC		



		ANALYTICAL LABORATORIES INC		
YORK Sample ID	Client Sample ID	Preparation Date		
15E0070-01	SB01_2.5-3	05/04/15		
15E0070-02	SB02_2.5-3	05/04/15		
15E0070-03	SB03_5-5.5	05/04/15		
15E0070-04	SB045-1	05/04/15		
15E0070-05	SB05_5-5.5	05/04/15		
BE50101-BLK1	Blank	05/04/15		
BE50101-DUP1	Duplicate	05/04/15		
BE50101-MS1	Matrix Spike	05/04/15		
BE50101-SRM1	Reference	05/04/15		
DE50101-SKWI	Kelelelice	03/04/13		
Batch ID: BE50103	Preparation Method:	EPA 3010A/1311	Prepared By:	MW
YORK Sample ID	Client Sample ID	Preparation Date		
15E0070-01	SB01_2.5-3	05/04/15		
15E0070-02	SB02_2.5-3	05/04/15		
15E0070-03	SB03_2.5 5 SB03_5-5.5	05/04/15		
15E0070-04	SB045-1	05/04/15		
15E0070-05	SB05_5-5.5	05/04/15		
BE50103-BLK1	Blank	05/04/15		
BE50103-BLK2	Blank	05/04/15		
BE50103-DUP1	Duplicate	05/04/15		
BE50103-MS1	Matrix Spike	05/04/15		
BE50103-SRM1	Reference	05/04/15		
DE50105-SRM1	Reference	05/04/15		
Batch ID: BE50108	Preparation Method:	EPA 3010A	Prepared By:	MW
YORK Sample ID	Client Sample ID	Preparation Date		
15E0070-06	TMW01_050215	05/04/15		
BE50108-BLK1	Blank	05/04/15		
BE50108-DUP1	Duplicate	05/04/15		
BE50108-MS1	Matrix Spike	05/04/15		
BE50108-SRM1	Reference	05/04/15		
				202
Batch ID: BE50111	Preparation Method:	EPA 5030B	Prepared By:	BGS
YORK Sample ID	Client Sample ID	Preparation Date		
15E0070-06	TMW01_050215	05/04/15		
15E0070-06RE1	TMW01_050215	05/04/15		
15E0070-07	Trip Blank	05/04/15		
BE50111-BLK1	Blank	05/04/15		
BE50111-BS1	LCS	05/04/15		
BE50111-BSD1	LCS Dup	05/04/15		
Batch ID: BE50113	Preparation Method:	EPA 5035A	Prepared By:	BGS
YORK Sample ID	Client Sample ID	Preparation Date		
15E0070-01	SB01 2.5-3	05/04/15		
15E0070-02	SB01_2.5-3 SB02_2.5-3	05/04/15		
		(000) 005 4074	EAV (2	203) 357-0166
120 RESEARCH DRIVE	STRATFORD, CT 06615	(203) 325-1371	FAX (2	Page 72 of 117



15E0070-03	SB03_5-5.5	05/04/15
15E0070-04	SB045-1	05/04/15
15E0070-04RE1	SB045-1	05/04/15
15E0070-05	SB05 5-5.5	05/04/15
BE50113-BLK1	Blank	05/04/15
BE50113-BS1	LCS	05/04/15
BE50113-BSD1	LCS Dup	05/04/15

Batch ID: BE50118	Preparation Method:	% Solids Prep	Prepared By:	SCA
YORK Sample ID	Client Sample ID	Preparation Date		
15E0070-01	SB01 2.5-3	05/04/15		
15E0070-02	SB02_2.5-3	05/04/15		
15E0070-03	SB03_5-5.5	05/04/15		
15E0070-04	SB045-1	05/04/15		
15E0070-05	SB05_5-5.5	05/04/15		
BE50118-DUP1	Duplicate	05/04/15		



## York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE50111 - EPA 5030B											
Blank (BE50111-BLK1)							Prepa	ared & Anal	yzed: 05/04/	2015	
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L								
1,1,1-Trichloroethane	ND	0.50	"								
1,1,2,2-Tetrachloroethane	ND	0.50	"								
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.50	"								
,1,2-Trichloroethane	ND	0.50	"								
,1-Dichloroethane	ND	0.50	"								
1,1-Dichloroethylene	ND	0.50	"								
Bromochloromethane	ND	0.50	"								
,2,3-Trichloropropane	ND	0.50	"								
,2,4-Trichlorobenzene	0.92	0.50	"								
,2,4-Trimethylbenzene	ND	0.50	"								
,2-Dibromo-3-chloropropane	ND	0.50	"								
,2-Dibromoethane	ND	0.50	"								
,2-Dichlorobenzene	ND	0.50	"								
,2-Dichloroethane	ND	0.50	"								
,2-Dichloropropane	ND	0.50	"								
,3,5-Trimethylbenzene	ND	0.50	"								
,3-Dichlorobenzene	0.22	0.50									
,4-Dichlorobenzene	0.27	0.50									
,4-Dioxane	ND	80									
Dyclohexane	ND	0.50									
-Butanone -Hexanone	ND	0.50									
	ND ND	0.50									
-Methyl-2-pentanone Acetone	ND 1.5	0.50 2.0									
crolein	ND	0.50									
Acrylonitrile	ND	0.50									
Benzene	ND	0.50									
Bromodichloromethane	ND	0.50									
Bromoform	ND	0.50									
Bromomethane	ND	0.50									
Carbon disulfide	1.4	0.50									
Carbon tetrachloride	ND	0.50	"								
Chlorobenzene	ND	0.50									
Chloroethane	ND	0.50	"								
Chloroform	ND	0.50	"								
Chloromethane	ND	0.50	"								
is-1,2-Dichloroethylene	ND	0.50	"								
is-1,3-Dichloropropylene	ND	0.50	"								
Dibromochloromethane	ND	0.50	"								
Dibromomethane	ND	0.50	"								
Dichlorodifluoromethane	ND	0.50	"								
Ethyl Benzene	ND	0.50	"								
Aethylcyclohexane	ND	0.50	"								
Hexachlorobutadiene	0.63	0.50	"								
sopropylbenzene	ND	0.50	"								
Aethyl acetate	ND	0.50	"								
Aethyl tert-butyl ether (MTBE)	ND	0.50	"								
Methylene chloride	ND	2.0	"								
Butylbenzene	ND	0.50	"								
Propylbenzene	ND	0.50	"								

120 RESEARCH DRIVE

STRATFORD, CT 06615



Analyte	Result	Reporting Limit	Units	Spike Level	Source* Result	%REC	%REC Limits	Flag	RPD	RPD Limit	Flag
Batch BE50111 - EPA 5030B											
Blank (BE50111-BLK1)							Prep	oared & Anal	yzed: 05/04/	2015	
-Xylene	ND	0.50	ug/L								
2,3-Trichlorobenzene	1.4	0.50	"								
& m- Xylenes	ND	1.0	"								
Isopropyltoluene	ND	0.50	"								
c-Butylbenzene	ND	0.50	"								
yrene	ND	0.50	"								
rt-Butyl alcohol (TBA)	ND	1.0	"								
rt-Butylbenzene	ND	0.50	"								
etrachloroethylene	ND	0.50	"								
bluene	ND	0.50	"								
ans-1,2-Dichloroethylene	ND	0.50	"								
ans-1,3-Dichloropropylene	ND	0.50	"								
richloroethylene	ND	0.50	"								
richlorofluoromethane	ND	0.50	"								
inyl Chloride	ND	0.50	"								
ylenes, Total	ND	1.5	"								
urrogate: 1,2-Dichloroethane-d4	9.91		"	10.0		99.1	69-130				
urrogate: p-Bromofluorobenzene	9.89		"	10.0		98.9	79-122				
urrogate: Toluene-d8	10.2		"	10.0		102	81-117				
-	10.2			10.0		102		arad & Anal	wzod: 05/04/	2015	
CS (BE50111-BS1) 1,1,2-Tetrachloroethane	11		/T	10.0		109	82-126	bared & Anal	yzeu. 05/04/	2013	
1,1-Trichloroethane	11 11		ug/L "	10.0		109	82-126 78-136				
1,2,2-Tetrachloroethane	11		"	10.0		103	76-129				
1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	10 9.9										
1,2-Trichloroethane				10.0		99.0 07.5	54-165				
1-Dichloroethane	9.8		"	10.0		97.5	82-123				
1-Dichloroethylene	11 10		"	10.0 10.0		107 102	82-129 68-138				
romochloromethane	10			10.0		102	77-128				
2,3-Trichloropropane	11			10.0		105	77-128				
2,4-Trichlorobenzene	11			10.0		105	76-137				
2,4-Trimethylbenzene	11		"	10.0		10	82-132				
2-Dibromo-3-chloropropane	8.4		"	10.0		83.9	82-132 45-147				
2-Dibromoethane	10		"	10.0		105	83-124				
2-Dichlorobenzene	10		"	10.0		105	79-123				
2-Dichloroethane	10		"	10.0		104	73-132				
2-Dichloropropane	10		"	10.0		104	73-132				
3,5-Trimethylbenzene	10		"	10.0		104	80-131				
3-Dichlorobenzene	11		"	10.0		111	86-122				
4-Dichlorobenzene	11		"	10.0		114	80-122 85-124				
4-Dioxane	220		"	200		114	10-349				
yclohexane	220		"	10.0		209	63-149	High Bias			
Butanone	9.4		"	10.0		209 94.5	49-152	ingii Dias			
Hexanone	9.4 9.6		"	10.0		94.5 96.0	49-132 51-146				
Methyl-2-pentanone	9.0 14		"	10.0		136	57-145				
cetone			"								
crolein	7.6 8.2			10.0 10.0		75.7 82.0	14-150 10-153				
crylonitrile	8.2 9.3		"	10.0		82.0 93.3	10-153 51-150				
enzene											
romodichloromethane	10			10.0		104	85-126				
romoform	10			10.0		104	79-128				
romonethane	11 8.6			10.0 10.0		113 86.4	78-133 43-168				
onionionano	8.0			10.0		00.4	43-108				



		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE50111 - EPA 5030B											
LCS (BE50111-BS1)							Prepa	ared & Analy	yzed: 05/04	/2015	
Carbon disulfide	9.2		ug/L	10.0		92.3	68-146				
Carbon tetrachloride	11		"	10.0		105	77-141				
Chlorobenzene	10		"	10.0		104	88-120				
Chloroethane	9.6		"	10.0		95.6	65-136				
Chloroform	10		"	10.0		102	82-128				
Chloromethane	8.6		"	10.0		85.5	43-155				
cis-1,2-Dichloroethylene	11		"	10.0		112	83-129				
cis-1,3-Dichloropropylene	10		"	10.0		102	80-131				
Dibromochloromethane	11		"	10.0		107	80-130				
Dibromomethane	10		"	10.0		103	72-134				
Dichlorodifluoromethane	7.3		"	10.0		72.6	44-144				
Ethyl Benzene	10		"	10.0		105	80-131				
Methylcyclohexane	10		"	10.0		103	72-143				
Iexachlorobutadiene	12		"	10.0		118	67-146				
sopropylbenzene	11		"	10.0		114	76-140				
Methyl acetate	9.7		"	10.0		97.3	51-139				
Methyl tert-butyl ether (MTBE)	7.8		"	10.0		78.4	76-135				
Methylene chloride	10		"	10.0		105	55-137				
n-Butylbenzene	11		"	10.0		107	79-132				
n-Propylbenzene	11		"	10.0		113	78-133				
o-Xylene	11		"	10.0		105	78-130				
,2,3-Trichlorobenzene	11		"	10.0		108	76-136				
- & m- Xylenes	21		"	20.0		105	77-133				
o-Isopropyltoluene	11		"	10.0		107	81-136				
sec-Butylbenzene	11		"	10.0		108	79-137				
Styrene	11		"	10.0		107	67-132				
ert-Butyl alcohol (TBA)	8.8		"	10.0		88.5	25-162				
ert-Butylbenzene	11		"	10.0		111	77-138				
Fetrachloroethylene	12		"	10.0		118	82-131				
Foluene	11			10.0		109	80-127				
rans-1,2-Dichloroethylene	11		"	10.0		107	80-132				
rans-1,3-Dichloropropylene	9.5			10.0		95.2	78-131				
Frichloroethylene	11			10.0		106	82-128				
Frichlorofluoromethane	10			10.0		100	67-139				
Vinyl Chloride	8.9			10.0		89.2	58-145				
Surrogate: 1,2-Dichloroethane-d4	9.72		"	10.0		97.2	69-130				
Surrogate: p-Bromofluorobenzene	11.2		"	10.0		112	79-122				
Surrogate: Toluene-d8	10.6		"	10.0		106	81-117				



		Reporting	Spike	Source*		%REC			RPD	
Analyte	Result	Limit Ur	its Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
atch BE50111 - EPA 5030B										
CS Dup (BE50111-BSD1)						Prep	oared & Analy	zed: 05/04/	2015	
1,1,2-Tetrachloroethane	11	ug	/L 10.0		114	82-126		4.85	30	
,1,1-Trichloroethane	11		10.0		108	78-136		2.35	30	
1,2,2-Tetrachloroethane	10		10.0		105	76-129		3.40	30	
1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	10		10.0		102	54-165		3.08	30	
1,2-Trichloroethane	9.7		10.0		96.9	82-123		0.617	30	
1-Dichloroethane	11		10.0		109	82-129		1.48	30	
1-Dichloroethylene	11		10.0		108	68-138		5.64	30	
romochloromethane	11		10.0		113	77-128		2.06	30	
2,3-Trichloropropane	11		10.0		110	77-128		4.46	30	
2,4-Trichlorobenzene	11		10.0		113	76-137		2.60	30	
2,4-Trimethylbenzene	11		10.0		106	82-132		1.77	30	
2-Dibromo-3-chloropropane	8.6		10.0		86.4	45-147		2.94	30	
2-Dibromoethane	11				107	83-124		1.98	30	
2-Dichlorobenzene	11				115	79-123		3.64	30	
2-Dichloroethane	11				107	73-132		2.56	30	
2-Dichloropropane	10				105	78-126		1.05	30	
3,5-Trimethylbenzene	11		10.0		107	80-131		3.39	30	
3-Dichlorobenzene	12				116	86-122		2.18	30	
4-Dichlorobenzene	11	,			114	85-124		0.175	30	
4-Dioxane	190	,			96.7	10-349		12.9	30	
zelohexane	22				224	63-149	High Bias	7.11	30	
Butanone	8.6		10.0		85.6	49-152	ingii Dius	9.88	30	
Hexanone	9.8				98.3	51-146		2.37	30	
Methyl-2-pentanone	15				147	57-145	High Bias	7.55	30	
cetone	6.8				67.9	14-150	Ingii Dias	10.9	30	
crolein						14-150		5.90	30	
crylonitrile	7.7				77.3			7.33	30	
enzene	10		10.0		100	51-150		0.480	30	
romodichloromethane	10		10.0		104	85-126		1.24		
	11		10.0		105	79-128			30	
romoform	12		10.0		121	78-133		6.57	30	
romomethane	9.6		10.0		96.0	43-168		10.5	30	
arbon disulfide	9.7		10.0		97.0	68-146		4.97	30	
arbon tetrachloride	11		10.0		108	77-141		2.16	30	
hlorobenzene	11		10.0		109	88-120		4.03	30	
hloroethane	10		10.0		101	65-136		5.49	30	
hloroform	10		10.0		102	82-128		0.0979	30	
hloromethane	8.9		10.0		88.8	43-155		3.79	30	
s-1,2-Dichloroethylene	11		10.0		111	83-129		0.537	30	
s-1,3-Dichloropropylene	10		10.0		102	80-131		0.195	30	
ibromochloromethane	11		10.0		107	80-130		0.281	30	
ibromomethane	11		10.0		110	72-134		6.56	30	
chlorodifluoromethane	7.6		10.0		76.0	44-144		4.58	30	
hyl Benzene	11		10.0		106	80-131		0.948	30	
ethylcyclohexane	10		10.0		105	72-143		1.93	30	
exachlorobutadiene	12		10.0		116	67-146		0.940	30	
ppropylbenzene	11		10.0		114	76-140		0.263	30	
ethyl acetate	9.9		10.0		99.1	51-139		1.83	30	
ethyl tert-butyl ether (MTBE)	8.0		10.0		80.3	76-135		2.39	30	
ethylene chloride	11				107	55-137		1.51	30	
Butylbenzene	11				106	79-132		0.470	30	
Propylbenzene	11				112	78-133		1.42	30	



## York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE50111 - EPA 5030B											
LCS Dup (BE50111-BSD1)							Prepa	ared & Analy	zed: 05/04/2	2015	
o-Xylene	10		ug/L	10.0		105	78-130		0.285	30	
1,2,3-Trichlorobenzene	11		"	10.0		113	76-136		4.88	30	
p- & m- Xylenes	21		"	20.0		105	77-133		0.0476	30	
p-Isopropyltoluene	11		"	10.0		110	81-136		2.21	30	
sec-Butylbenzene	11		"	10.0		110	79-137		1.93	30	
Styrene	10		"	10.0		103	67-132		3.53	30	
tert-Butyl alcohol (TBA)	9.2		"	10.0		91.9	25-162		3.77	30	
tert-Butylbenzene	11		"	10.0		108	77-138		3.19	30	
Tetrachloroethylene	11		"	10.0		114	82-131		3.43	30	
Toluene	11		"	10.0		110	80-127		0.824	30	
trans-1,2-Dichloroethylene	11		"	10.0		109	80-132		1.66	30	
trans-1,3-Dichloropropylene	10		"	10.0		99.5	78-131		4.42	30	
Trichloroethylene	11		"	10.0		107	82-128		1.03	30	
Trichlorofluoromethane	11		"	10.0		106	67-139		1.90	30	
Vinyl Chloride	9.1		"	10.0		91.2	58-145		2.22	30	
Surrogate: 1,2-Dichloroethane-d4	9.50		"	10.0		95.0	69-130				
Surrogate: p-Bromofluorobenzene	11.0		"	10.0		110	79-122				
Surrogate: Toluene-d8	10.1		"	10.0		101	81-117				

### Batch BE50113 - EPA 5035A

Blank (BE50113-BLK1)				Prepared & Analyzed: 05/04/2015
1,1,1,2-Tetrachloroethane	ND	5.0	ug/kg wet	
1,1,1-Trichloroethane	ND	5.0	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	5.0	"	
1,1,2-Trichloroethane	ND	5.0	"	
1,1-Dichloroethane	ND	5.0	"	
1,1-Dichloroethylene	ND	5.0	"	
1,2,3-Trichlorobenzene	ND	5.0	"	
1,2,3-Trichloropropane	ND	5.0	"	
1,2,4-Trichlorobenzene	ND	5.0	"	
1,2,4-Trimethylbenzene	ND	5.0	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	
1,2-Dibromoethane	ND	5.0	"	
1,2-Dichlorobenzene	ND	5.0	"	
1,2-Dichloroethane	ND	5.0	"	
1,2-Dichloropropane	ND	5.0	"	
1,3,5-Trimethylbenzene	ND	5.0	"	
1,3-Dichlorobenzene	ND	5.0	"	
1,4-Dichlorobenzene	ND	5.0	"	
1,4-Dioxane	ND	100	"	
2-Butanone	ND	5.0	"	
2-Hexanone	ND	5.0	"	
4-Methyl-2-pentanone	ND	5.0	"	
Acetone	ND	10	"	
Acrolein	ND	10	"	
Acrylonitrile	ND	5.0	"	
Benzene	ND	5.0	"	
Bromochloromethane	ND	5.0	"	
Bromodichloromethane	ND	5.0	"	
Bromoform	ND	5.0	"	



		Reporting		Spike	Source*		%REC		n	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE50113 - EPA 5035A											
Blank (BE50113-BLK1)							Prep	ared & Anal	yzed: 05/04/	2015	
Bromomethane	ND	5.0	ug/kg wet								
Carbon disulfide	ND	5.0	"								
Carbon tetrachloride	ND	5.0	"								
Chlorobenzene	ND	5.0	"								
Chloroethane	ND	5.0	"								
Chloroform	ND	5.0	"								
Chloromethane	ND	5.0	"								
cis-1,2-Dichloroethylene	ND	5.0	"								
cis-1,3-Dichloropropylene	ND	5.0	"								
Cyclohexane	ND	5.0	"								
Dibromochloromethane	ND	5.0	"								
Dibromomethane	ND	5.0	"								
Dichlorodifluoromethane	ND	5.0	"								
Ethyl Benzene	ND	5.0	"								
Hexachlorobutadiene	ND	5.0	"								
sopropylbenzene	ND	5.0	"								
Methyl acetate	ND	5.0	"								
Methyl tert-butyl ether (MTBE)	ND	5.0	"								
Methylcyclohexane	ND	5.0	"								
Methylene chloride	ND	10	"								
n-Butylbenzene	ND	5.0	"								
n-Propylbenzene	ND	5.0	"								
p-Xylene	ND	5.0	"								
o- & m- Xylenes	ND	10	"								
o-Isopropyltoluene	ND	5.0	"								
sec-Butylbenzene	ND	5.0	"								
Styrene	ND	5.0	"								
ert-Butyl alcohol (TBA)	ND	5.0	"								
ert-Butylbenzene	ND	5.0	"								
[etrachloroethylene	ND	5.0									
Foluene	ND	5.0									
rans-1,2-Dichloroethylene	ND	5.0									
rans-1,3-Dichloropropylene	ND	5.0	"								
Frichloroethylene	ND	5.0									
Frichlorofluoromethane	ND	5.0									
Vinyl Chloride	ND	5.0									
Xylenes, Total	ND	15									
Surrogate: 1,2-Dichloroethane-d4	48.0		ug/L	50.0		96.1	77-125				
Surrogate: Toluene-d8	49.1		"	50.0		98.2	85-120				
Surrogate: p-Bromofluorobenzene	51.4		"	50.0		103	76-130				



		Reporting	Spike	Source*	%REC			RPD	
Analyte	Result	Limit Units	Level	Result %REC		Flag	RPD	Limit	Flag
Batch BE50113 - EPA 5035A									
LCS (BE50113-BS1)					Pre	pared & Analy	zed: 05/04/	2015	
1,1,1,2-Tetrachloroethane	52	ug/L	50.0	103	75-129				
1,1,1-Trichloroethane	54	" "	50.0	105	71-137				
1,1,2,2-Tetrachloroethane	36	"	50.0	71.3	79-129	Low Bias			
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	52		50.0	104	58-146	Low Dias			
1,1,2-Trichloroethane	50		50.0	99.6	83-123				
1,1-Dichloroethane	51	"	50.0	102	75-130				
1,1-Dichloroethylene	48	"	50.0	95.9	64-137				
1,2,3-Trichlorobenzene	67		50.0	134	81-140				
1,2,3-Trichloropropane	48		50.0	96.3	81-146				
1,2,4-Trichlorobenzene	48 68	"	50.0	136	80-141				
1,2,4-Trimethylbenzene	48	"	50.0	96.8	84-125				
1,2-Dibromo-3-chloropropane	48	"	50.0	91.6	74-142				
1,2-Dibromoethane	40 52	"	50.0	103	74-142 86-123				
1,2-Dichlorobenzene	52 52		50.0	103	86-123 85-122				
1.2-Dichloroethane	52 49		50.0	97.3	85-122 71-133				
1,2-Dichloropropane	49 45		50.0	97.3 89.5	81-122				
1,3,5-Trimethylbenzene	43		50.0	96.1	81-122				
1,3-Dichlorobenzene	48 52	"	50.0	90.1 103	82-120 84-124				
1,4-Dichlorobenzene	53	"	50.0	103	84-124 84-124				
1,4-Dioxane	53 1100								
2-Butanone	49		1000 50.0	114 97.7	10-228 58-147				
2-Hexanone	49 44	"		87.4	70-139				
4-Methyl-2-pentanone	44 42	"	50.0 50.0	87.4					
Acetone		"			72-132				
Acrolein	52 28		50.0	104	36-155				
Acrylonitrile		"	50.0	55.1	10-238				
Benzene	52		50.0	105	66-141				
Bromochloromethane	55		50.0	109	77-127				
Bromodichloromethane	48		50.0	95.9	74-129				
Bromoform	48		50.0	96.8	81-124				
Bromomethane	56		50.0	111	80-136				
Carbon disulfide	44	"	50.0	88.2	32-177				
Carbon tetrachloride	48		50.0	95.0	10-136				
Chlorobenzene	55		50.0	111	66-143				
	52		50.0	103	86-120				
Chloroethane	46		50.0	92.8	51-142				
Chloroform	56		50.0	112	76-131				
Chloromethane cis-1,2-Dichloroethylene	38		50.0	76.7	49-132				
	59		50.0	117	74-132				
cis-1,3-Dichloropropylene	49		50.0	98.9	81-129				
Cyclohexane	47	"	50.0	93.9	70-130				
Dibromochloromethane	52		50.0	105	10-200				
Dibromomethane	50		50.0	99.9	83-124				
Dichlorodifluoromethane	39		50.0	78.4	28-158				
Ethyl Benzene	49	"	50.0	98.9	84-125				
Hexachlorobutadiene	57		50.0	114	83-133				
Isopropylbenzene	48	"	50.0	96.4	81-127				
Methyl acetate	47	"	50.0	94.8	41-143				
Methyl tert-butyl ether (MTBE)	56	"	50.0	112	74-131				
Methylcyclohexane	49	"	50.0	97.3	70-130				
Methylene chloride	48	"	50.0	96.6	57-141				
n-Butylbenzene	49	"	50.0	98.2	80-130				



		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit U	Jnits	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE50113 - EPA 5035A											
LCS (BE50113-BS1)							Prep	pared & Analy	zed: 05/04/	2015	
n-Propylbenzene	47	ι	ug/L	50.0		94.8	74-136				
o-Xylene	49		"	50.0		97.5	83-123				
p- & m- Xylenes	98		"	100		97.8	82-128				
p-Isopropyltoluene	49		"	50.0		97.7	85-125				
sec-Butylbenzene	48		"	50.0		96.5	83-125				
Styrene	52		"	50.0		103	86-126				
tert-Butyl alcohol (TBA)	60		"	50.0		120	70-130				
tert-Butylbenzene	49		"	50.0		97.1	80-127				
Tetrachloroethylene	80		"	50.0		159	80-129	High Bias			
Toluene	49		"	50.0		98.7	85-121				
trans-1,2-Dichloroethylene	49		"	50.0		98.6	72-132				
trans-1,3-Dichloropropylene	48		"	50.0		95.6	78-132				
Trichloroethylene	57		"	50.0		113	84-123				
Trichlorofluoromethane	52		"	50.0		105	62-140				
Vinyl Chloride	47		"	50.0		94.5	52-130				
Surrogate: 1,2-Dichloroethane-d4	47.2		"	50.0		94.3	77-125				
Surrogate: Toluene-d8	48.6		"	50.0		97.2	85-120				
Surrogate: p-Bromofluorobenzene	48.0 54.0		"	50.0		108	76-130				
	54.0			50.0		108		10 4 1	1.05/04/	2015	
LCS Dup (BE50113-BSD1)								pared & Analy			
1,1,2-Tetrachloroethane	51	ι	ug/L "	50.0		103	75-129		0.486	30	
1,1,1-Trichloroethane	55			50.0		110	71-137	. D.	1.32	30	
1,1,2,2-Tetrachloroethane	34			50.0		67.7	79-129	Low Bias	5.15	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	50			50.0		101	58-146		2.64	30	
1,1,2-Trichloroethane	48			50.0		96.0	83-123		3.62	30	
1,1-Dichloroethane	50			50.0		101	75-130		1.01	30	
1,1-Dichloroethylene	47		"	50.0		93.1	64-137		2.98	30	
1,2,3-Trichlorobenzene	66			50.0		131	81-140		2.51	30	
1,2,3-Trichloropropane	45			50.0		89.4	81-126		7.52	30	
1,2,4-Trichlorobenzene	65			50.0		131	80-141		3.89	30	
1,2,4-Trimethylbenzene	47			50.0		94.0	84-125		2.98	30	
1,2-Dibromo-3-chloropropane	42			50.0		83.4	74-142		9.42	30	
1,2-Dibromoethane	51			50.0		102	86-123		1.58	30	
1,2-Dichlorobenzene	50			50.0		101	85-122		2.00	30	
1,2-Dichloroethane	48		"	50.0		95.4	71-133		1.97	30	
1,2-Dichloropropane	45			50.0		90.8	81-122		1.44	30	
1,3,5-Trimethylbenzene	47		"	50.0		94.0	82-126		2.21	30	
1,3-Dichlorobenzene	50			50.0		99.9	84-124		3.17	30	
1,4-Dichlorobenzene	51			50.0		102	84-124		3.49	30	
1,4-Dioxane	990			1000		99.1	10-228		14.1	30	
2-Butanone	38			50.0		76.1	58-147		24.8	30	
2-Hexanone	38			50.0		76.5	70-139		13.3	30	
4-Methyl-2-pentanone	39			50.0		77.1	72-132		7.99	30	
Acetone	36			50.0		71.3	36-155		37.1	30	Non-dir
Acrolein	29			50.0		58.5	10-238		5.88	30	
Acrylonitrile	48			50.0		95.3	66-141		9.36	30	
Benzene	54			50.0		108	77-127		1.09	30	
Bromochloromethane	47			50.0		94.8	74-129		1.15	30	
Bromodichloromethane	49			50.0		97.5	81-124		0.700	30	
Bromoform	53			50.0		106	80-136		5.07	30	
Bromomethane	46			50.0		92.5	32-177		4.76	30	
Carbon disulfide	47		"	50.0		93.1	10-136		1.98	30	
120 RESEARCH DRIVE	STRATFORD,				203) 325-13			FAX (203)			



		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE50113 - EPA 5035A											
LCS Dup (BE50113-BSD1)							Prep	ared & Analy	zed: 05/04/	2015	
Carbon tetrachloride	54		ug/L	50.0		108	66-143		2.27	30	
Chlorobenzene	51		"	50.0		102	86-120		1.05	30	
Chloroethane	48		"	50.0		96.3	51-142		3.66	30	
Chloroform	55		"	50.0		109	76-131		2.04	30	
Chloromethane	38		"	50.0		76.0	49-132		0.891	30	
cis-1,2-Dichloroethylene	58		"	50.0		117	74-132		0.445	30	
cis-1,3-Dichloropropylene	48		"	50.0		96.7	81-129		2.27	30	
Cyclohexane	47		"	50.0		94.9	70-130		1.06	30	
Dibromochloromethane	52		"	50.0		103	10-200		1.38	30	
Dibromomethane	49		"	50.0		97.9	83-124		2.06	30	
Dichlorodifluoromethane	37		"	50.0		74.5	28-158		5.21	30	
Ethyl Benzene	49		"	50.0		98.7	84-125		0.243	30	
Hexachlorobutadiene	57		"	50.0		114	83-133		0.667	30	
sopropylbenzene	48		"	50.0		95.6	81-127		0.812	30	
Methyl acetate	50		"	50.0		100	41-143		5.66	30	
Methyl tert-butyl ether (MTBE)	54		"	50.0		107	74-131		4.63	30	
Methylcyclohexane	49		"	50.0		97.6	70-130		0.246	30	
Methylene chloride	49		"	50.0		97.2	57-141		0.619	30	
-Butylbenzene	49		"	50.0		98.1	80-130		0.102	30	
n-Propylbenzene	47		"	50.0		94.1	74-136		0.699	30	
p-Xylene	49		"	50.0		97.8	83-123		0.287	30	
o- & m- Xylenes	98		"	100		98.0	82-128		0.266	30	
o-Isopropyltoluene	48		"	50.0		96.2	85-125		1.57	30	
ec-Butylbenzene	48		"	50.0		95.5	83-125		1.00	30	
Styrene	51		"	50.0		102	86-126		1.03	30	
ert-Butyl alcohol (TBA)	53		"	50.0		105	70-130		12.9	30	
ert-Butylbenzene	48		"	50.0		95.9	80-127		1.26	30	
fetrachloroethylene	77		"	50.0		154	80-129	High Bias	3.68	30	
Foluene	49			50.0		98.6	85-121		0.0811	30	
rans-1,2-Dichloroethylene	49			50.0		97.5	72-132		1.12	30	
rans-1,3-Dichloropropylene	47			50.0		93.3	78-132		2.37	30	
Frichloroethylene	56			50.0		112	84-123		0.957	30	
Frichlorofluoromethane	52		"	50.0		104	62-140		0.268	30	
Vinyl Chloride	46		"	50.0		93.0	52-130		1.60	30	
Surrogate: 1,2-Dichloroethane-d4	47.3		"	50.0		94.6	77-125				
Surrogate: Toluene-d8	49.2		"	50.0		98.5	85-120				
Surrogate: p-Bromofluorobenzene	53.3		"	50.0		107	76-130				



Analyte	Result	Reporting Limit	Units	Spike Level	Source* Result	%REC	%REC Limits	Flag	RPD	RPD Limit	Flag
Batch BE50083 - EPA 3510C											
Blank (BE50083-BLK1)							Prepa	ared & Anal	yzed: 05/03/2	2015	
Acenaphthene	ND	0.0500	ug/L								
Acenaphthylene	ND	0.0500									
Acetophenone	ND	5.00	"								
Aniline	ND	5.00	"								
Anthracene	ND	0.0500	"								
Atrazine	ND	0.500									
Benzaldehyde	ND	5.00									
Benzidine	ND	20.0									
Benzo(a)anthracene	ND	0.0500	"								
Benzo(a)pyrene	ND	0.0500	"								
Benzo(b)fluoranthene	ND	0.0500	"								
Benzo(g,h,i)perylene	ND	0.0500	"								
Benzoic acid	ND	50.0	"								
Benzo(k)fluoranthene	ND	0.0500	"								
Benzyl alcohol	ND	5.00	"								
Benzyl butyl phthalate	ND	5.00	"								
,1'-Biphenyl	ND	5.00	"								
-Bromophenyl phenyl ether	ND	5.00	"								
Caprolactam	ND	5.00	"								
Carbazole	ND	5.00	"								
-Chloro-3-methylphenol	ND	5.00	"								
-Chloroaniline	ND	5.00	"								
Bis(2-chloroethoxy)methane	ND	5.00	"								
Bis(2-chloroethyl)ether	ND	5.00	"								
Bis(2-chloroisopropyl)ether	ND	5.00	"								
2-Chloronaphthalene	ND	5.00	"								
2-Chlorophenol	ND	5.00	"								
4-Chlorophenyl phenyl ether	ND	5.00	"								
Chrysene	ND	0.0500	"								
Dibenzo(a,h)anthracene	ND	0.0500	"								
Dibenzofuran	ND	5.00	"								
Di-n-butyl phthalate	ND	5.00	"								
1,4-Dichlorobenzene	ND	5.00	"								
1,2-Dichlorobenzene	ND	5.00	"								
,3-Dichlorobenzene	ND	5.00	"								
3,3'-Dichlorobenzidine	ND	5.00	"								
2,4-Dichlorophenol	ND	5.00	"								
Diethyl phthalate	ND	5.00	"								
2,4-Dimethylphenol	ND	5.00	"								
Dimethyl phthalate	ND	5.00	"								
,6-Dinitro-2-methylphenol	ND	5.00	"								
2,4-Dinitrophenol	ND	5.00	"								
2,4-Dinitrotoluene	ND	5.00	"								
2,6-Dinitrotoluene	ND	5.00	"								
Di-n-octyl phthalate	ND	5.00	"								
,2-Diphenylhydrazine (as Azobenzene)	ND	5.00	"								
Bis(2-ethylhexyl)phthalate	1.67	0.500	"								
Fluoranthene	ND	0.0500	"								
luorene	ND	0.0500	"								
Iexachlorobenzene	ND	0.0200	"								
Hexachlorobutadiene	ND	0.500	"								



		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE50083 - EPA 3510C											
Blank (BE50083-BLK1)							Prepa	ared & Analy	/zed: 05/03/	2015	
Hexachlorocyclopentadiene	ND	5.00	ug/L								
Hexachloroethane	ND	0.500	"								
Indeno(1,2,3-cd)pyrene	ND	0.0500	"								
Isophorone	ND	5.00	"								
2-Methylnaphthalene	ND	5.00	"								
2-Methylphenol	ND	5.00	"								
3- & 4-Methylphenols	ND	5.00	"								
Naphthalene	ND	0.0500	"								
3-Nitroaniline	ND	5.00	"								
4-Nitroaniline	ND	5.00	"								
2-Nitroaniline	ND	5.00	"								
Nitrobenzene	ND	0.250	"								
4-Nitrophenol	ND	5.00	"								
2-Nitrophenol	ND	5.00	"								
N-nitroso-di-n-propylamine	ND	5.00	"								
N-Nitrosodimethylamine	ND	0.500	"								
N-Nitrosodiphenylamine	ND	5.00	"								
Pentachlorophenol	ND	0.250	"								
Phenanthrene	ND	0.0500	"								
Phenol	ND	5.00	"								
Pyrene	ND	0.0500	"								
1,2,4,5-Tetrachlorobenzene	ND	5.00	"								
2,3,4,6-Tetrachlorophenol	ND	5.00	"								
1,2,4-Trichlorobenzene	ND	5.00	"								
2,4,6-Trichlorophenol	ND	5.00	"								
2,4,5-Trichlorophenol	ND	5.00	"								
Surrogate: 2-Fluorophenol	13.9		"	75.1		18.5	10-65				
Surrogate: Phenol-d5	9.05		"	75.0		12.1	10-49				
Surrogate: Nitrobenzene-d5	23.4		"	50.2		46.7	10-96				
Surrogate: 2-Fluorobiphenyl	25.3		"	50.0		50.6	10-93				
Surrogate: 2,4,6-Tribromophenol	39.2		"	75.2		52.2	10-128				
Surrogate: Terphenyl-d14	38.6		"	50.1		77.1	10-100				



		Reporting		Spike	Source*		%REC		_	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE50083 - EPA 3510C											
LCS (BE50083-BS1)							Pre	pared & Analy	zed: 05/03/	2015	
Acenaphthene	31.7	0.0500	ug/L	50.0		63.3	24-114				
Acenaphthylene	29.7	0.0500	"	50.0		59.5	26-112				
Acetophenone	23.7	5.00	"	50.0		47.3	47-92				
Aniline	18.6	5.00	"	50.0		37.2	10-107				
Anthracene	32.5	0.0500	"	50.0		65.1	35-114				
Atrazine	28.8	0.500	"	50.0		57.7	43-101				
Benzaldehyde	20.6	5.00	"	50.0		41.2	17-117				
Benzo(a)anthracene	32.0	0.0500	"	50.0		64.0	38-127				
Benzo(a)pyrene	33.2	0.0500	"	50.0		66.5	30-146				
Benzo(b)fluoranthene	34.2	0.0500	"	50.0		68.5	36-145				
Benzo(g,h,i)perylene	34.7	0.0500	"	50.0		69.4	10-163				
Benzoic acid	ND	50.0	"	50.0			30-130	Low Bias			
Benzo(k)fluoranthene	28.3	0.0500	"	50.0		56.5	16-149				
Benzyl alcohol	15.1	5.00	"	50.0		30.2	18-75				
Benzyl butyl phthalate	24.5	5.00	"	50.0		49.1	28-129				
1,1'-Biphenyl	25.2	5.00	"				21-102				
4-Bromophenyl phenyl ether	31.2	5.00	"	50.0		62.4	38-116				
Caprolactam	4.50	5.00		50.0		9.00	10-29	Low Bias			
Carbazole	37.6	5.00	"	50.0		75.1	49-116				
4-Chloro-3-methylphenol	24.9	5.00		50.0		49.7	28-101				
4-Chloroaniline	37.2	5.00		50.0		74.4	10-154				
Bis(2-chloroethoxy)methane	27.6	5.00		50.0		55.2	27-112				
Bis(2-chloroethyl)ether	20.9	5.00		50.0		41.8	24-112				
Bis(2-chloroisopropyl)ether	24.3	5.00	"	50.0		48.5	21-124				
2-Chloronaphthalene	24.3						40-96				
2-Chlorophenol		5.00		50.0 50.0		55.8	40-96 35-84				
4-Chlorophenyl phenyl ether	17.5	5.00				35.0					
	29.2	5.00		50.0		58.3	34-112				
Chrysene Dihawa (a h) anthan ann	30.9	0.0500		50.0		61.8	33-120				
Dibenzo(a,h)anthracene	36.0	0.0500		50.0		72.0	10-149				
Dibenzofuran	31.0	5.00		50.0		61.9	42-105				
Di-n-butyl phthalate	28.1	5.00		50.0		56.2	36-110	r D.			
1,4-Dichlorobenzene	17.8	5.00	"	50.0		35.6	42-82	Low Bias			
1,2-Dichlorobenzene	19.3	5.00	"	50.0		38.7	42-85	Low Bias			
1,3-Dichlorobenzene	20.1	5.00	"	50.0		40.1	45-80	Low Bias			
3,3'-Dichlorobenzidine	43.4	5.00	"	50.0		86.7	25-155				
2,4-Dichlorophenol	27.2	5.00	"	50.0		54.5	43-92				
Diethyl phthalate	26.8	5.00	"	50.0		53.6	38-112				
2,4-Dimethylphenol	24.3	5.00	"	50.0		48.6	25-92				
Dimethyl phthalate	27.7	5.00	"	50.0		55.4	49-106				
4,6-Dinitro-2-methylphenol	39.8	5.00	"	50.0		79.6	10-135				
2,4-Dinitrophenol	21.6	5.00	"	50.0		43.3	10-149				
2,4-Dinitrotoluene	35.1	5.00	"	50.0		70.1	41-114				
2,6-Dinitrotoluene	31.4	5.00	"	50.0		62.9	49-106				
Di-n-octyl phthalate	27.3	5.00	"	50.0		54.7	12-149				
1,2-Diphenylhydrazine (as Azobenzene)	27.0	5.00	"	50.0		53.9	16-137				
Bis(2-ethylhexyl)phthalate	29.0	0.500	"	50.0		58.1	10-171				
Fluoranthene	31.2	0.0500	"	50.0		62.3	33-126				
Fluorene	31.8	0.0500	"	50.0		63.6	28-117				
Hexachlorobenzene	24.8	0.0200	"	50.0		49.5	27-120				
Hexachlorobutadiene	21.2	0.500	"	50.0		42.4	25-106				
Hexachlorocyclopentadiene	6.89	5.00		50.0		13.8	10-99				



	D I	Reporting	TT '4	Spike	Source*	WINEC	%REC	Flog	<b>DDD</b>	RPD	Elec
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE50083 - EPA 3510C											
LCS (BE50083-BS1)							Prej	pared & Analy	zed: 05/03/	2015	
Hexachloroethane	15.9	0.500	ug/L	50.0		31.8	33-84	Low Bias			
Indeno(1,2,3-cd)pyrene	33.8	0.0500	"	50.0		67.5	10-150				
Isophorone	24.9	5.00	"	50.0		49.8	29-115				
2-Methylnaphthalene	24.8	5.00	"	50.0		49.5	33-101				
2-Methylphenol	14.7	5.00	"	50.0		29.4	10-90				
3- & 4-Methylphenols	12.8	5.00	"	50.0		25.6	10-101				
Naphthalene	25.0	0.0500	"	50.0		50.0	30-99				
3-Nitroaniline	38.4	5.00	"	50.0		76.9	29-128				
4-Nitroaniline	47.3	5.00	"	50.0		94.6	15-143				
2-Nitroaniline	35.1	5.00	"	50.0		70.1	31-122				
Nitrobenzene	22.6	0.250	"	50.0		45.1	32-113				
4-Nitrophenol	20.3	5.00	"	50.0		40.5	10-112				
2-Nitrophenol	26.4	5.00	"	50.0		52.8	37-97				
N-nitroso-di-n-propylamine	21.0	5.00	"	50.0		42.1	36-118				
N-Nitrosodimethylamine	7.70	0.500	"	50.0		15.4	10-63				
N-Nitrosodiphenylamine	41.0	5.00	"	50.0		82.0	27-145				
Pentachlorophenol	26.9	0.250	"	50.0		53.8	19-127				
Phenanthrene	34.6	0.0500	"	50.0		69.3	31-112				
Phenol	7.63	5.00	"	50.0		15.3	10-37				
Pyrene	27.8	0.0500	"	50.0		55.5	42-125				
1,2,4,5-Tetrachlorobenzene	23.9	5.00	"	50.0		47.8	28-105				
2,3,4,6-Tetrachlorophenol	49.1	5.00	"	50.0		98.3	30-130				
1,2,4-Trichlorobenzene	23.5	5.00	"	50.0		47.0	35-91				
2,4,6-Trichlorophenol	29.2	5.00	"	50.0		58.3	41-107				
2,4,5-Trichlorophenol	27.8	5.00	"	50.0		55.5	36-112				
Surrogate: 2-Fluorophenol	14.9		"	75.1		19.8	10-65				
Surrogate: Phenol-d5	10.1		"	75.0		13.5	10-49				
Surrogate: Nitrobenzene-d5	23.0		"	50.2		45.8	10-96				
Surrogate: 2-Fluorobiphenyl	28.4		"	50.0		56.8	10-93				
Surrogate: 2,4,6-Tribromophenol	48.3		"	75.2		64.2	10-128				
Surrogate: Terphenyl-d14	32.5		"	50.1		64.9	10-100				



## York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE50083 - EPA 3510C											
LCS (BE50083-BS2)							Prepa	ared & Anal	yzed: 05/03/	2015	
Acenaphthene	0.450	0.0500	ug/L	1.00		45.0	24-114				
Acenaphthylene	0.470	0.0500	"	1.00		47.0	26-112				
Acetophenone	ND	5.00	"				47-92				
Aniline	ND	5.00	"				10-107				
Anthracene	0.540	0.0500	"	1.00		54.0	35-114				
Atrazine	ND	0.500	"				43-101				
Benzaldehyde	ND	5.00	"				17-117				
Benzo(a)anthracene	0.510	0.0500	"	1.00		51.0	38-127				
Benzo(a)pyrene	0.570	0.0500	"	1.00		57.0	30-146				
Benzo(b)fluoranthene	0.440	0.0500	"	1.00		44.0	36-145				
Benzo(g,h,i)perylene	0.540	0.0500	"	1.00		54.0	10-163				
Benzoic acid	ND	50.0	"				30-130				
Benzo(k)fluoranthene	0.740	0.0500	"	1.00		74.0	16-149				
Benzyl alcohol	ND	5.00	"				18-75				
Benzyl butyl phthalate	ND	5.00	"				28-129				
1,1'-Biphenyl	ND	5.00	"				21-102				
4-Bromophenyl phenyl ether	ND	5.00	"				38-116				
Caprolactam	ND	5.00					10-29				
Carbazole	ND	5.00					49-116				
4-Chloro-3-methylphenol	ND	5.00					28-101				
4-Chloroaniline	ND	5.00	"				10-154				
Bis(2-chloroethoxy)methane	ND	5.00	"				27-112				
Bis(2-chloroethyl)ether	ND	5.00					27-112				
Bis(2-chloroisopropyl)ether											
	ND	5.00					21-124				
2-Chloronaphthalene 2-Chlorophenol	ND	5.00					40-96				
•	ND	5.00					35-84				
4-Chlorophenyl phenyl ether	ND	5.00		1.00		(2.0	34-112				
Chrysene	0.620	0.0500		1.00		62.0	33-120				
Dibenzo(a,h)anthracene	0.570	0.0500	"	1.00		57.0	10-149				
Dibenzofuran	ND	5.00	"				42-105				
Di-n-butyl phthalate	ND	5.00	"				36-110				
1,4-Dichlorobenzene	ND	5.00	"				42-82				
1,2-Dichlorobenzene	ND	5.00	"				42-85				
1,3-Dichlorobenzene	ND	5.00	"				45-80				
3,3'-Dichlorobenzidine	ND	5.00	"				25-155				
2,4-Dichlorophenol	ND	5.00	"				43-92				
Diethyl phthalate	ND	5.00	"				38-112				
2,4-Dimethylphenol	ND	5.00	"				25-92				
Dimethyl phthalate	ND	5.00	"				49-106				
4,6-Dinitro-2-methylphenol	ND	5.00	"				10-135				
2,4-Dinitrophenol	ND	5.00	"				10-149				
2,4-Dinitrotoluene	ND	5.00	"				41-114				
2,6-Dinitrotoluene	ND	5.00	"				49-106				
Di-n-octyl phthalate	ND	5.00	"				12-149				
1,2-Diphenylhydrazine (as Azobenzene)	ND	5.00	"				16-137				
Bis(2-ethylhexyl)phthalate	1.19	0.500	"				10-171				
Fluoranthene	0.570	0.0500	"	1.00		57.0	33-126				
Fluorene	0.460	0.0500	"	1.00		46.0	28-117				
Hexachlorobenzene	ND	0.0200	"				27-120				
Hexachlorobutadiene	ND	0.500	"				25-106				
Hexachlorocyclopentadiene	ND	5.00	"				10-99				

120 RESEARCH DRIVE

STRATFORD, CT 06615



		Reporting	<b>T</b> T	Spike	Source*	WDEC	%REC	<b>F</b> 1	DDD	RPD	<b>F</b> 1
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE50083 - EPA 3510C											
LCS (BE50083-BS2)							Prep	ared & Anal	yzed: 05/03/	2015	
Hexachloroethane	ND	0.500	ug/L				33-84				
Indeno(1,2,3-cd)pyrene	0.570	0.0500	"	1.00		57.0	10-150				
Isophorone	ND	5.00	"				29-115				
2-Methylnaphthalene	ND	5.00	"				33-101				
2-Methylphenol	ND	5.00	"				10-90				
3- & 4-Methylphenols	ND	5.00	"				10-101				
Naphthalene	0.450	0.0500	"	1.00		45.0	30-99				
3-Nitroaniline	ND	5.00	"				29-128				
4-Nitroaniline	ND	5.00	"				15-143				
2-Nitroaniline	ND	5.00	"				31-122				
Nitrobenzene	ND	0.250	"				32-113				
4-Nitrophenol	ND	5.00	"				10-112				
2-Nitrophenol	ND	5.00	"				37-97				
N-nitroso-di-n-propylamine	ND	5.00	"				36-118				
N-Nitrosodimethylamine	ND	0.500	"				10-63				
N-Nitrosodiphenylamine	ND	5.00	"				27-145				
Pentachlorophenol	ND	0.250	"				19-127				
Phenanthrene	0.410	0.0500	"	1.00		41.0	31-112				
Phenol	ND	5.00	"				10-37				
Pyrene	0.580	0.0500	"	1.00		58.0	42-125				
1,2,4,5-Tetrachlorobenzene	ND	5.00	"				28-105				
2,3,4,6-Tetrachlorophenol	ND	5.00	"				30-130				
1,2,4-Trichlorobenzene	ND	5.00	"				35-91				
2,4,6-Trichlorophenol	ND	5.00	"				41-107				
2,4,5-Trichlorophenol	ND	5.00	"				36-112				
Surrogate: 2-Fluorophenol	0.00		"	75.1			10-65				
Surrogate: Phenol-d5	0.00		"	75.0			10-49				
Surrogate: Nitrobenzene-d5	0.00		"	50.2			10-96				
Surrogate: 2-Fluorobiphenyl	0.00		"	50.0			10-93				
Surrogate: 2,4,6-Tribromophenol	0.00		"	75.2			10-128				
Surrogate: Terphenyl-d14	0.00		"	50.1			10-100				



		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE50083 - EPA 3510C											
LCS Dup (BE50083-BSD1)							Prep	pared & Analy	zed: 05/03/2	2015	
Acenaphthene	34.7	0.0500	ug/L	50.0		69.3	24-114		9.02	20	
Acenaphthylene	32.1	0.0500	"	50.0		64.1	26-112		7.54	20	
Acetophenone	26.7	5.00	"	50.0		53.4	47-92		12.0	20	
Aniline	20.3	5.00	"	50.0		40.6	10-107		8.68	20	
Anthracene	34.3	0.0500	"	50.0		68.7	35-114		5.38	20	
Atrazine	30.5	0.500	"	50.0		61.0	43-101		5.59	20	
Benzaldehyde	23.5	5.00		50.0		47.0	17-117		13.3	20	
Benzo(a)anthracene	32.0	0.0500	"	50.0		64.1	38-127		0.0937	20	
Benzo(a)pyrene	34.3	0.0500		50.0		68.7	30-146		3.26	20	
Benzo(b)fluoranthene	33.8	0.0500		50.0		67.6	36-145		1.29	20	
Benzo(g,h,i)perylene	37.3	0.0500		50.0		74.5	10-163		7.17	20	
Benzoic acid	ND	50.0		50.0		71.0	30-130	Low Bias		20	
Benzo(k)fluoranthene	27.6	0.0500		50.0		55.2	16-149		2.36	20	
Benzyl alcohol	17.0	5.00		50.0		34.0	18-75		11.9	20	
Benzyl butyl phthalate	24.5	5.00		50.0		49.0	28-129		0.163	20	
1,1'-Biphenyl	24.3 27.6	5.00		50.0		79.0	28-129		9.13	20	
4-Bromophenyl phenyl ether	33.4	5.00		50.0		66.9	38-116		6.99	20	
Caprolactam	4.94	5.00		50.0		9.88	10-29	Low Bias	9.32	20	
Carbazole								LOW DId5	4.81	20	
4-Chloro-3-methylphenol	39.4	5.00		50.0		78.8	49-116		8.81	20	
I-Chloroaniline	27.2	5.00		50.0		54.3	28-101		9.40	20	
	40.9	5.00		50.0		81.8	10-154				
Bis(2-chloroethoxy)methane	31.7	5.00		50.0		63.3	27-112		13.7	20	
Bis(2-chloroethyl)ether	24.3	5.00		50.0		48.5	24-114		15.0	20	
Bis(2-chloroisopropyl)ether	27.8	5.00		50.0		55.7	21-124		13.7	20	
2-Chloronaphthalene	29.9	5.00	"	50.0		59.8	40-96		6.96	20	
2-Chlorophenol	20.2	5.00	"	50.0		40.4	35-84		14.2	20	
4-Chlorophenyl phenyl ether	32.7	5.00	"	50.0		65.3	34-112		11.4	20	
Chrysene	31.6	0.0500	"	50.0		63.1	33-120		2.08	20	
Dibenzo(a,h)anthracene	40.6	0.0500	"	50.0		81.1	10-149		12.0	20	
Dibenzofuran	33.3	5.00	"	50.0		66.6	42-105		7.34	20	
Di-n-butyl phthalate	29.8	5.00	"	50.0		59.6	36-110		5.87	20	
1,4-Dichlorobenzene	21.1	5.00	"	50.0		42.2	42-82		16.8	20	
1,2-Dichlorobenzene	22.4	5.00	"	50.0		44.8	42-85		14.6	20	
1,3-Dichlorobenzene	22.6	5.00	"	50.0		45.2	45-80		12.0	20	
3,3'-Dichlorobenzidine	44.6	5.00	"	50.0		89.3	25-155		2.91	20	
2,4-Dichlorophenol	30.8	5.00	"	50.0		61.5	43-92		12.1	20	
Diethyl phthalate	29.0	5.00	"	50.0		58.0	38-112		7.81	20	
2,4-Dimethylphenol	27.0	5.00	"	50.0		54.0	25-92		10.6	20	
Dimethyl phthalate	29.2	5.00	"	50.0		58.4	49-106		5.41	20	
4,6-Dinitro-2-methylphenol	44.8	5.00	"	50.0		89.5	10-135		11.8	20	
2,4-Dinitrophenol	24.1	5.00	"	50.0		48.3	10-149		11.0	20	
2,4-Dinitrotoluene	37.7	5.00		50.0		75.5	41-114		7.34	20	
2,6-Dinitrotoluene	33.7	5.00	"	50.0		67.3	49-106		6.85	20	
Di-n-octyl phthalate	27.5	5.00	"	50.0		54.9	12-149		0.438	20	
,2-Diphenylhydrazine (as Azobenzene)	28.7	5.00	"	50.0		57.3	16-137		6.08	20	
Bis(2-ethylhexyl)phthalate	58.4	0.500		50.0		117	10-171		67.2	20	Non-o
Fluoranthene	34.3	0.0500	"	50.0		68.5	33-126		9.51	20	
Fluorene	34.7	0.0500		50.0		69.3	28-117		8.57	20	
Hexachlorobenzene	25.9	0.0200		50.0		51.8	27-120		4.42	20	
Hexachlorobutadiene	23.3	0.500		50.0		46.5	25-106		9.31	20	
Hexachlorocyclopentadiene	9.91	5.00		50.0		19.8	10-99		36.0	20	Non-c



		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE50083 - EPA 3510C											
LCS Dup (BE50083-BSD1)							Prep	oared & Analy	zed: 05/03/	2015	
Hexachloroethane	18.4	0.500	ug/L	50.0		36.8	33-84		14.7	20	
Indeno(1,2,3-cd)pyrene	37.3	0.0500	"	50.0		74.6	10-150		9.88	20	
Isophorone	27.5	5.00	"	50.0		55.0	29-115		9.85	20	
2-Methylnaphthalene	27.5	5.00	"	50.0		54.9	33-101		10.3	20	
2-Methylphenol	17.1	5.00	"	50.0		34.1	10-90		15.0	20	
3- & 4-Methylphenols	14.9	5.00	"	50.0		29.7	10-101		14.8	20	
Naphthalene	27.6	0.0500	"	50.0		55.3	30-99		10.1	20	
3-Nitroaniline	40.6	5.00	"	50.0		81.2	29-128		5.54	20	
4-Nitroaniline	49.4	5.00	"	50.0		98.8	15-143		4.39	20	
2-Nitroaniline	38.4	5.00	"	50.0		76.9	31-122		9.19	20	
Nitrobenzene	25.6	0.250	"	50.0		51.3	32-113		12.7	20	
4-Nitrophenol	ND	5.00	"	50.0			10-112	Low Bias		20	
2-Nitrophenol	29.0	5.00	"	50.0		57.9	37-97		9.21	20	
N-nitroso-di-n-propylamine	23.8	5.00	"	50.0		47.7	36-118		12.5	20	
N-Nitrosodimethylamine	8.44	0.500	"	50.0		16.9	10-63		9.17	20	
N-Nitrosodiphenylamine	44.5	5.00	"	50.0		89.0	27-145		8.19	20	
Pentachlorophenol	27.8	0.250	"	50.0		55.7	19-127		3.32	20	
Phenanthrene	36.8	0.0500	"	50.0		73.6	31-112		6.07	20	
Phenol	8.89	5.00	"	50.0		17.8	10-37		15.3	20	
Pyrene	28.8	0.0500	"	50.0		57.5	42-125		3.47	20	
1,2,4,5-Tetrachlorobenzene	25.9	5.00	"	50.0		51.8	28-105		8.07	20	
2,3,4,6-Tetrachlorophenol	52.9	5.00	"	50.0		106	30-130		7.31	20	
1,2,4-Trichlorobenzene	25.8	5.00	"	50.0		51.6	35-91		9.33	20	
2,4,6-Trichlorophenol	32.2	5.00	"	50.0		64.4	41-107		9.88	20	
2,4,5-Trichlorophenol	30.6	5.00		50.0		61.3	36-112		9.90	20	
Surrogate: 2-Fluorophenol	19.6		"	75.1		26.2	10-65				
Surrogate: Phenol-d5	11.2		"	75.0		14.9	10-49				
Surrogate: Nitrobenzene-d5	24.3		"	50.2		48.4	10-96				
Surrogate: 2-Fluorobiphenyl	30.5		"	50.0		61.0	10-93				
Surrogate: 2,4,6-Tribromophenol	48.1		"	75.2		64.0	10-128				
Surrogate: Terphenyl-d14	31.0		"	50.1		61.8	10-100				



Analyte	Result	Reporting Limit	Units	Spike Level	Source* Result	%REC	%REC Limits	Flag	RPD	RPD Limit	Flag
Batch BE50084 - EPA 3550C											
Blank (BE50084-BLK1)							Prepa	ared & Anal	yzed: 05/03/	2015	
Acenaphthene	ND	41.7	ug/kg wet								
Acenaphthylene	ND	41.7	"								
Acetophenone	ND	41.7	"								
Aniline	ND	167	"								
Anthracene	ND	41.7	"								
Atrazine	ND	41.7	"								
Benzaldehyde	ND	41.7	"								
Benzidine	ND	167	"								
Benzo(a)anthracene	ND	41.7	"								
Benzo(a)pyrene	ND	41.7	"								
Benzo(b)fluoranthene	ND	41.7	"								
Benzo(g,h,i)perylene	ND	41.7	"								
Benzoic acid	ND	41.7	"								
Benzo(k)fluoranthene	ND	41.7	"								
Benzyl alcohol	ND	41.7	"								
Benzyl butyl phthalate	ND	41.7	"								
1,1'-Biphenyl	ND	41.7	"								
4-Bromophenyl phenyl ether	ND	41.7									
Caprolactam	ND	83.3									
Carbazole	ND	41.7									
4-Chloro-3-methylphenol	ND	41.7									
4-Chloroaniline	ND										
Bis(2-chloroethoxy)methane		41.7									
Bis(2-chloroethyl)ether	ND	41.7									
	ND	41.7									
Bis(2-chloroisopropyl)ether	ND	41.7									
2-Chloronaphthalene	ND	41.7									
2-Chlorophenol	ND	41.7									
4-Chlorophenyl phenyl ether	ND	41.7	"								
Chrysene	ND	41.7	"								
Dibenzo(a,h)anthracene	ND	41.7	"								
Dibenzofuran	ND	41.7	"								
Di-n-butyl phthalate	ND	41.7	"								
1,2-Dichlorobenzene	ND	41.7	"								
1,3-Dichlorobenzene	ND	41.7	"								
1,4-Dichlorobenzene	ND	41.7	"								
3,3'-Dichlorobenzidine	ND	41.7	"								
2,4-Dichlorophenol	ND	41.7	"								
Diethyl phthalate	ND	41.7	"								
2,4-Dimethylphenol	ND	41.7	"								
Dimethyl phthalate	ND	41.7	"								
4,6-Dinitro-2-methylphenol	ND	83.3	"								
2,4-Dinitrophenol	ND	83.3	"								
2,4-Dinitrotoluene	ND	41.7	"								
2,6-Dinitrotoluene	ND	41.7	"								
Di-n-octyl phthalate	ND	41.7	"								
1,2-Diphenylhydrazine (as Azobenzene)	ND	41.7	"								
Bis(2-ethylhexyl)phthalate	ND	41.7	"								
Fluoranthene	ND	41.7	"								
Fluorene	ND	41.7	"								
Hexachlorobenzene	ND	41.7	"								
Hexachlorobutadiene	ND	41.7	"								



		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE50084 - EPA 3550C											
Blank (BE50084-BLK1)							Prep	ared & Analy	yzed: 05/03/	2015	
Hexachlorocyclopentadiene	ND	41.7	ug/kg wet								
Hexachloroethane	ND	41.7	"								
Indeno(1,2,3-cd)pyrene	ND	41.7	"								
Isophorone	ND	41.7	"								
2-Methylnaphthalene	ND	41.7	"								
2-Methylphenol	ND	41.7	"								
3- & 4-Methylphenols	ND	41.7	"								
Naphthalene	ND	41.7	"								
4-Nitroaniline	ND	83.3	"								
2-Nitroaniline	ND	83.3	"								
3-Nitroaniline	ND	83.3	"								
Nitrobenzene	ND	41.7	"								
2-Nitrophenol	ND	41.7	"								
4-Nitrophenol	ND	83.3	"								
N-nitroso-di-n-propylamine	ND	41.7	"								
N-Nitrosodimethylamine	ND	41.7	"								
N-Nitrosodiphenylamine	ND	41.7	"								
Pentachlorophenol	ND	41.7	"								
Phenanthrene	ND	41.7	"								
Phenol	ND	41.7	"								
Pyrene	ND	41.7	"								
1,2,4,5-Tetrachlorobenzene	ND	83.3	"								
2,3,4,6-Tetrachlorophenol	ND	83.3	"								
1,2,4-Trichlorobenzene	ND	41.7	"								
2,4,6-Trichlorophenol	ND	41.7	"								
2,4,5-Trichlorophenol	ND	41.7	"								
Surrogate: 2-Fluorophenol	1260		"	2500		50.5	10-95				
Surrogate: Phenol-d5	1300		"	2500		52.1	10-107				
Surrogate: Nitrobenzene-d5	961		"	1670		57.5	10-95				
Surrogate: 2-Fluorobiphenyl	765		"	1670		45.9	10-97				
Surrogate: 2,4,6-Tribromophenol	1770		"	2510		70.5	10-103				
Surrogate: Terphenyl-d14	842		"	1670		50.4	19-99				



## York Analytical Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source* Result	%REC	%REC Limits	Flag	RPD	RPD Limit	Flag
Batch BE50084 - EPA 3550C											
LCS (BE50084-BS1)							Pre	pared & Analy	zed: 05/03/	2015	
Acenaphthene	1130	41.7	ug/kg wet	1670		67.7	17-124				
Acenaphthylene	1110	41.7	"	1670		66.6	16-124				
Acetophenone	1410	41.7	"	1670		84.6	28-105				
Aniline	1440	167	"	1670		86.6	10-111				
Anthracene	1010	41.7	"	1670		60.7	24-124				
Atrazine	1200	41.7	"	1670		72.2	22-120				
Benzaldehyde	1310	41.7	"	1670		78.4	21-100				
Benzo(a)anthracene	1340	41.7	"	1670		80.2	25-134				
Benzo(a)pyrene	1740	41.7	"	1670		104	29-144				
Benzo(b)fluoranthene	1400	41.7	"	1670		84.2	20-151				
Benzo(g,h,i)perylene	359	41.7	"	1670		21.6	10-153				
Benzoic acid	68.7	41.7	"	1670		4.12	10-116	Low Bias			
Benzo(k)fluoranthene	1230	41.7	"	1670		73.6	10-148				
Benzyl alcohol	1300	41.7	"	1670		77.8	17-128				
Benzyl butyl phthalate	1540	41.7	"	1670		92.4	10-132				
1,1'-Biphenyl	1060	41.7	"				22-103				
4-Bromophenyl phenyl ether	1180	41.7	"	1670		70.9	30-138				
Caprolactam	1380	83.3	"	1670		82.6	10-123				
Carbazole	1190	41.7	"	1670		71.4	31-120				
4-Chloro-3-methylphenol	1340	41.7	"	1670		80.2	16-138				
4-Chloroaniline	1490	41.7	"	1670		89.2	10-117				
Bis(2-chloroethoxy)methane	1410	41.7	"	1670		84.5	10-129				
Bis(2-chloroethyl)ether	1420	41.7	"	1670		85.4	14-125				
Bis(2-chloroisopropyl)ether	1470	41.7	"	1670		88.4	14-122				
2-Chloronaphthalene	1090	41.7	"	1670		65.3	22-115				
2-Chlorophenol	1240	41.7	"	1670		74.5	25-121				
4-Chlorophenyl phenyl ether	1020	41.7	"	1670		61.0	18-132				
Chrysene	1480	41.7	"	1670		88.6	24-116				
Dibenzo(a,h)anthracene	491	41.7	"	1670		29.5	17-147				
Dibenzofuran	1030	41.7	"	1670		61.9	23-123				
Di-n-butyl phthalate	1100	41.7	"	1670		66.2	19-123				
1,2-Dichlorobenzene	1180	41.7	"	1670		70.5	26-113				
1,3-Dichlorobenzene	1200	41.7	"	1670		72.0	32-113				
1,4-Dichlorobenzene	1200	41.7		1670		72.2	28-111				
3,3'-Dichlorobenzidine	1740	41.7		1670		105	10-147				
2,4-Dichlorophenol	1030	41.7	"	1670		61.7	23-133				
Diethyl phthalate	1260	41.7		1670		75.3	23-122				
2,4-Dimethylphenol	1090	41.7		1670		65.5	15-131				
Dimethyl phthalate	1370	41.7	"	1670		82.2	28-127				
4,6-Dinitro-2-methylphenol	1400	83.3	"	1670		83.8	10-149				
2,4-Dinitrophenol	2500	83.3		1670		150	10-149	High Bias			
2,4-Dinitrotoluene	1560	41.7		1670		93.5	30-123	÷			
2,6-Dinitrotoluene	1420	41.7	"	1670		85.4	30-125				
Di-n-octyl phthalate	1180	41.7	"	1670		70.6	10-132				
1,2-Diphenylhydrazine (as Azobenzene)	1350	41.7	"	1670		80.9	10-140				
Bis(2-ethylhexyl)phthalate	1340	41.7	"	1670		80.5	10-141				
Fluoranthene	1130	41.7		1670		67.8	36-125				
Fluorene	1060	41.7		1670		63.3	16-130				
Hexachlorobenzene	1150	41.7		1670		69.3	10-130				
Hexachlorobutadiene	1090	41.7		1670		65.1	22-153				
Hexachlorocyclopentadiene	896	41.7		1670		53.8	10-134				
	090	41./		10/0		55.8	10-134				

STRATFORD, CT 06615



		Reporting		Spike	Source*		%REC		DDD	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE50084 - EPA 3550C											
LCS (BE50084-BS1)							Prep	pared & Analy	zed: 05/03/	2015	
Hexachloroethane	1260	41.7	ug/kg wet	1670		75.7	20-112				
Indeno(1,2,3-cd)pyrene	465	41.7	"	1670		27.9	10-155				
Isophorone	1420	41.7	"	1670		85.0	14-131				
2-Methylnaphthalene	1000	41.7	"	1670		60.3	16-127				
2-Methylphenol	1140	41.7	"	1670		68.2	10-146				
3- & 4-Methylphenols	1160	41.7	"	1670		69.6	20-109				
Naphthalene	1080	41.7	"	1670		65.0	20-121				
4-Nitroaniline	63.0	83.3	"	1670		3.78	14-125	Low Bias			
2-Nitroaniline	1380	83.3	"	1670		83.1	24-126				
3-Nitroaniline	1410	83.3	"	1670		84.9	23-123				
Nitrobenzene	1340	41.7	"	1670		80.5	20-121				
2-Nitrophenol	1130	41.7	"	1670		68.0	17-129				
4-Nitrophenol	1520	83.3	"	1670		91.0	10-136				
N-nitroso-di-n-propylamine	1520	41.7	"	1670		91.3	21-119				
N-Nitrosodimethylamine	985	41.7	"	1670		59.1	10-124				
N-Nitrosodiphenylamine	1070	41.7	"	1670		64.5	10-163				
Pentachlorophenol	1540	41.7	"	1670		92.3	10-143				
Phenanthrene	1120	41.7	"	1670		67.4	24-123				
Phenol	1220	41.7	"	1670		73.2	15-123				
Pyrene	1460	41.7	"	1670		87.8	24-132				
1,2,4,5-Tetrachlorobenzene	1120	83.3	"	1670		67.1	10-144				
2,3,4,6-Tetrachlorophenol	1310	83.3	"	1670		78.7	30-130				
1,2,4-Trichlorobenzene	1050	41.7	"	1670		62.9	23-130				
2,4,6-Trichlorophenol	1140	41.7	"	1670		68.5	27-122				
2,4,5-Trichlorophenol	1180	41.7	"	1670		70.9	14-138				
Surrogate: 2-Fluorophenol	1650		"	2500		65.8	10-95				
Surrogate: Phenol-d5	1540		"	2500		61.8	10-107				
Surrogate: Nitrobenzene-d5	1210		"	1670		72.2	10-95				
Surrogate: 2-Fluorobiphenyl	860		"	1670		51.6	10-97				
Surrogate: 2,4,6-Tribromophenol	2060		"	2510		82.4	30-130				
Surrogate: Terphenyl-d14	1340		"	1670		80.3	19-99				



## York Analytical Laboratories, Inc.

Poult	Reporting Limit	Unite	Spike Level	Source*	%DEC	%REC	Flag	RPD	RPD Limit	Flag
Kesun	Liiiit	Units	Level	Kesuit	/0KEU	LIIIIIIS	1 105	NI D	Lunu	1 145
						•	pared & Analy			
										Non-dir
										Non-dir
										Non-dir
1140	41.7	"	1670		68.4	25-134				
1100	41.7	"	1670		66.1	29-144				Non-dir
1100	41.7		1670		66.0	20-151				
332	41.7	"	1670		19.9	10-153				
55.7	41.7	"	1670		3.34	10-116	Low Bias	20.9	30	
1210	41.7	"	1670		72.5	10-148		1.45	30	
935	41.7	"	1670		56.1	17-128		32.4	30	Non-dir
1270	41.7	"	1670		76.2	10-132		19.1	30	
827	41.7	"				22-103		25.2	30	
971	41.7	"	1670		58.3	30-138		19.5	30	
1150	83.3	"	1670		68.9	10-123		18.0	30	
1030	41.7	"	1670		61.7	31-120		14.5	30	
994	41.7	"	1670		59.7	16-138		29.4	30	
1240	41.7	"	1670		74.2	10-117		18.3	30	
1010	41.7	"	1670		60.4	10-129		33.2	30	Non-dir
1000	41.7	"	1670		60.2	14-125		34.7	30	Non-dir
1030	41.7	"	1670		61.5	14-122		35.8	30	Non-dir
857	41.7	"	1670		51.4	22-115		23.8	30	
875	41.7	"	1670		52.5	25-121		34.7	30	Non-dir
867	41.7	"	1670		52.0	18-132		15.9	30	
1280	41.7	"	1670		76.8	24-116		14.3	30	
432	41.7	"	1670		25.9	17-147		12.9	30	
827	41.7	"	1670		49.6	23-123		22.1	30	
974	41.7	"	1670		58.4	19-123		12.5	30	
859		"						31.1	30	Non-dir
		"						33.9	30	Non-dir
		"						36.9	30	Non-dir
		"						11.9	30	
		"						23.8	30	
		"								
834	41.7		1670		50.0	22-153		20.3	30	
	1100 332 55.7 1210 935 1270 827 971 1150 1030 994 1240 1010 1000 1030 857 875 867 1280 432 827 974 859 852 828 1550 810 1080 816 1120 1250 2120 1320 1140 1000 1040 816 1120 1250 2120 1320 1140 1080 816 1120 1250 2120 1320 1140 1080 816 1120 1250 2120 1320 1140 1080 816 1120 1250 2120 1320 1140 1080 816 1120 1250 2120 1320 1140 1080 816 1120 1250 2120 1320 1140 1080 816 1120 1250 2120 1320 1140 1080 816 1120 1080 816 1120 1250 2120 1320 1140 1080 816 1120 1250 2120 1320 1140 1080 816 1120 1250 2120 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 1340 134	Result         Limit           881         41.7           855         41.7           998         41.7           1020         167           883         41.7           1020         167           883         41.7           1070         41.7           926         41.7           1100         41.7           1100         41.7           1100         41.7           332         41.7           1210         41.7           935         41.7           1210         41.7           935         41.7           1210         41.7           935         41.7           935         41.7           1270         41.7           971         41.7           150         83.3           1030         41.7           1040         41.7           1050         41.7           1050         41.7           857         41.7           857         41.7           857         41.7           857         41.7           859         41	Result         Limit         Units           881         41.7         ug/kg wet           855         41.7         "           998         41.7         "           998         41.7         "           1020         167         "           883         41.7         "           1070         41.7         "           926         41.7         "           1100         41.7         "           1100         41.7         "           1100         41.7         "           1100         41.7         "           1210         41.7         "           1210         41.7         "           935         41.7         "           935         41.7         "           1210         41.7         "           1210         41.7         "           935         41.7         "           1210         41.7         "           1210         41.7         "           1210         41.7         "           130         41.7         "           1240         41.7         "	Result         Limit         Units         Level           881         41.7         ug/kg wet         1670           855         41.7         "         1670           998         41.7         "         1670           1020         167         "         1670           1020         167         "         1670           1020         167         "         1670           1020         41.7         "         1670           926         41.7         "         1670           1140         41.7         "         1670           1100         41.7         "         1670           1100         41.7         "         1670           1210         41.7         "         1670           1210         41.7         "         1670           1210         41.7         "         1670           1210         41.7         "         1670           1210         41.7         "         1670           1210         41.7         "         1670           1210         41.7         "         1670           1240         41.7	Result         Limit         Units         Level         Result           881         41.7         ug/kg wet         1670           855         41.7         "         1670           998         41.7         "         1670           1020         167         "         1670           1070         41.7         "         1670           1070         41.7         "         1670           1070         41.7         "         1670           1100         41.7         "         1670           1100         41.7         "         1670           1100         41.7         "         1670           1210         41.7         "         1670           1210         41.7         "         1670           1210         41.7         "         1670           1250         83.3         "         1670           1250         83.3         "         1670           1250         41.7         "         1670           1260         41.7         "         1670           1030         41.7         "         1670           1555	Result         Limit         Units         Level         Result         %REC           881         41.7         ug/kg wet         1670         52.8           8855         41.7         "         1670         51.3           998         41.7         "         1670         53.9           1020         167         "         1670         53.0           1070         41.7         "         1670         64.0           926         41.7         "         1670         66.1           1100         41.7         "         1670         66.1           1100         41.7         "         1670         66.1           1100         41.7         "         1670         72.5           332         41.7         "         1670         72.5           935         41.7         "         1670         56.1           1270         41.7         "         1670         58.3           1150         83.3         "         1670         58.4           994         41.7         "         1670         51.4           1240         41.7         "         1670         52.5     <	Result         Limit         Units         Level         Result         %REC         Limits           Result         41.7         ug/kg wet         1670         52.8         17.124           855         41.7         "         1670         51.3         16-124           998         41.7         "         1670         59.9         28-105           1020         167         "         1670         53.0         24-124           1070         41.7         "         1670         64.0         22-120           926         41.7         "         1670         66.4         25-134           1100         41.7         "         1670         66.1         29-144           1100         41.7         "         1670         66.1         29-144           1100         41.7         "         1670         3.34         10-16           1210         41.7         "         1670         7.2         10-132           332         41.7         "         1670         58.3         30-138           1150         83.3         1670         66.2         1-122           1270         41.7         "	ResultLimitUnitsLevelResult%RECLimitsFlag88141.7ug/kg wet167052.817-1288541.7*167051.316-12498841.7*167059.928-1051020167*167053.024-12498841.7*167066.121-12092641.7*167066.129-144114041.7*167066.129-144114041.7*167066.129-144110041.7*167072.510-148110041.7*167072.510-148110041.7*167072.510-132121041.7*167076.210-132121041.7*167068.910-123121041.7*167068.910-123121041.7*167064.410-129121041.7*167064.110-129121041.7*167051.422-103121041.7*167064.211-128121041.7*167064.410-129121041.7*167051.422-13121041.7*167052.014-122121041.7*167052.014-12212253.7	Result         Limit         Units         Level         Result         %REC         Limits         Flag         RPD           Prepared & Analyzzit         Description           881         41.7         "         1670         52.8         17.124         24.6           988         41.7         "         1670         51.3         16.12         10-111         34.3           1020         167         "         1670         61.2         10-111         34.3           1030         41.7         "         1670         66.0         22-124         12.0           998         41.7         "         1670         66.1         29-144         44.9           1040         41.7         "         1670         66.1         29-144         44.9           1100         41.7         "         1670         33.4         10-116         Low Bias         20.9           1210         41.7         "         1670         76.2         10-13         8.01           55.7         41.7         "         1670         58.3         10-13         2.9           1210         41.7         "         1670         58.3	Result         Limit         Level         Result         %AREC         Limits         Flag         RPD         Limit           Result         Limits         Value         Limits         Value         Limits         Flag         RPD         Limits           Result         Linits         Value         Linits         Value         Solution         Solution

STRATFORD, CT 06615



		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE50084 - EPA 3550C											
LCS Dup (BE50084-BSD1)							Prepa	ared & Analy	/zed: 05/03/	2015	
Hexachloroethane	914	41.7	ug/kg wet	1670		54.9	20-112		31.9	30	Non-dir.
Indeno(1,2,3-cd)pyrene	433	41.7	"	1670		26.0	10-155		7.05	30	
Isophorone	1010	41.7	"	1670		60.7	14-131		33.3	30	Non-dir.
2-Methylnaphthalene	795	41.7	"	1670		47.7	16-127		23.3	30	
2-Methylphenol	796	41.7	"	1670		47.8	10-146		35.3	30	Non-dir.
3- & 4-Methylphenols	824	41.7	"	1670		49.5	20-109		33.9	30	Non-dir.
Naphthalene	792	41.7	"	1670		47.5	20-121		31.1	30	Non-dir.
4-Nitroaniline	1070	83.3	"	1670		64.4	14-125		178	30	Non-dir.
2-Nitroaniline	1070	83.3	"	1670		64.1	24-126		25.8	30	
3-Nitroaniline	1180	83.3	"	1670		71.0	23-123		17.8	30	
Nitrobenzene	984	41.7	"	1670		59.1	20-121		30.8	30	Non-dir.
2-Nitrophenol	847	41.7	"	1670		50.8	17-129		28.9	30	
4-Nitrophenol	1340	83.3	"	1670		80.3	10-136		12.5	30	
N-nitroso-di-n-propylamine	1080	41.7	"	1670		64.7	21-119		34.0	30	Non-dir.
N-Nitrosodimethylamine	617	41.7	"	1670		37.0	10-124		45.9	30	Non-dir.
N-Nitrosodiphenylamine	887	41.7	"	1670		53.2	10-163		19.2	30	
Pentachlorophenol	1270	41.7	"	1670		76.4	10-143		18.8	30	
Phenanthrene	928	41.7	"	1670		55.7	24-123		19.1	30	
Phenol	869	41.7	"	1670		52.2	15-123		33.5	30	Non-dir.
Pyrene	1230	41.7	"	1670		73.8	24-132		17.3	30	
1,2,4,5-Tetrachlorobenzene	883	83.3	"	1670		53.0	10-144		23.6	30	
2,3,4,6-Tetrachlorophenol	1980	83.3	"	1670		119	30-130		40.5	30	Non-dir.
1,2,4-Trichlorobenzene	777	41.7	"	1670		46.6	23-130		29.6	30	
2,4,6-Trichlorophenol	914	41.7	"	1670		54.8	27-122		22.1	30	
2,4,5-Trichlorophenol	945	41.7	"	1670		56.7	14-138		22.2	30	
Surrogate: 2-Fluorophenol	1160		"	2500		46.3	10-95				
Surrogate: Phenol-d5	1140		"	2500		45.8	10-107				
Surrogate: Nitrobenzene-d5	901		"	1670		53.9	10-95				
Surrogate: 2-Fluorobiphenyl	673		"	1670		40.4	10-97				
Surrogate: 2,4,6-Tribromophenol	1680		"	2510		66.9	30-130				
Surrogate: Terphenyl-d14	1110		"	1670		66.6	19-99				



## York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE50084 - EPA 3550C											
Matrix Spike (BE50084-MS1)	*Source sample: 15	5 <u>E0070-04 (</u> S	B045-1)				Prep	pared & Analy	zed: 05/03/	/2015	
Acenaphthene	1180	92.8	ug/kg dry	1860	86.8	58.9	13-133				
Acenaphthylene	1120	92.8	"	1860	ND	60.2	25-125				
Acetophenone	1170	92.8	"	1860	ND	63.0	25-105				
Aniline	1070	372	"	1860	ND	57.7	10-112				
Anthracene	1110	92.8	"	1860	226	47.6	27-128				
Atrazine	1140	92.8	"	1860	ND	61.6	10-139				
Benzaldehyde	1030	92.8	"	1860	ND	55.4	24-96				
Benzo(a)anthracene	1660	92.8	"	1860	859	43.1	20-147				
Benzo(a)pyrene	746	92.8	"	1860	370	20.3	18-153				
Benzo(b)fluoranthene	858	92.8	"	1860	342	27.8	10-163				
Benzo(g,h,i)perylene	404	92.8	"	1860	122	15.2	10-157				
Benzoic acid	ND	92.8	"	1860	ND		10-130	Low Bias			
Benzo(k)fluoranthene	923	92.8	"	1860	350	30.9	10-157				
Benzyl alcohol	1070	92.8	"	1860	ND	57.4	20-122				
Benzyl butyl phthalate	1200	92.8	"	1860	ND	64.8	10-129				
1,1'-Biphenyl	1110	92.8	"		ND		24-112				
4-Bromophenyl phenyl ether	1190	92.8	"	1860	ND	64.1	32-148	I D'			
Caprolactam	ND	185		1860	ND		10-100	Low Bias			
Carbazole	1160	92.8		1860	63.8	58.9	24-139				
4-Chloro-3-methylphenol 4-Chloroaniline	1260	92.8		1860	ND	68.0	14-138				
	1690	92.8		1860	ND	91.2	10-124				
Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether	1260	92.8		1860	ND	67.7	12-128				
Bis(2-chloroisopropyl)ether	1110 1330	92.8 92.8		1860 1860	ND ND	59.8 71.5	18-113 10-130				
2-Chloronaphthalene	1330	92.8 92.8		1860	ND	59.6	31-116				
2-Chlorophenol	997	92.8 92.8		1860	ND	53.7	28-114				
4-Chlorophenyl phenyl ether	1190	92.8 92.8		1860	ND	64.2	10-153				
Chrysene	1620	92.8		1860	836	42.4	18-133				
Dibenzo(a,h)anthracene	406	92.8		1860	61.6	18.6	10-146				
Dibenzofuran	1160	92.8		1860	ND	62.3	26-134				
Di-n-butyl phthalate	1050	92.8	"	1860	ND	56.6	20-128				
1,2-Dichlorobenzene	1040	92.8	"	1860	ND	55.9	29-106				
1,3-Dichlorobenzene	974	92.8		1860	ND	52.5	34-100				
1,4-Dichlorobenzene	957	92.8	"	1860	ND	51.6	26-107				
3,3'-Dichlorobenzidine	1090	92.8	"	1860	ND	59.0	10-134				
2,4-Dichlorophenol	1100	92.8	"	1860	ND	59.0	16-144				
Diethyl phthalate	1220	92.8	"	1860	ND	65.6	30-119				
2,4-Dimethylphenol	1020	92.8	"	1860	ND	54.9	11-133				
Dimethyl phthalate	1230	92.8	"	1860	ND	66.0	34-120				
4,6-Dinitro-2-methylphenol	1370	185	"	1860	ND	73.7	10-149				
2,4-Dinitrophenol	873	185	"	1860	ND	47.0	10-132				
2,4-Dinitrotoluene	1360	92.8	"	1860	ND	73.5	42-113				
2,6-Dinitrotoluene	1260	92.8	"	1860	ND	67.8	36-124				
Di-n-octyl phthalate	852	92.8	"	1860	ND	45.9	10-133				
1,2-Diphenylhydrazine (as Azobenzene)	1220	92.8	"	1860	ND	65.6	10-135				
Bis(2-ethylhexyl)phthalate	1110	92.8	"	1860	ND	59.9	10-138				
Fluoranthene	1890	92.8	"	1860	1490	22.0	10-155				
Fluorene	1170	92.8	"	1860	64.6	59.5	12-150				
Hexachlorobenzene	1180	92.8	"	1860	ND	63.4	16-142				
Hexachlorobutadiene	1150	92.8	"	1860	ND	62.0	11-150				
Hexachlorocyclopentadiene	305	92.8	"	1860	ND	16.4	10-115				

STRATFORD, CT 06615



#### York Analytical Laboratories, Inc.

		•			,						
		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE50084 - EPA 3550C											
Matrix Spike (BE50084-MS1)	*Source sample: 1	5E0070-04 (S	B045-1)				Prep	ared & Anal	yzed: 05/03/	2015	
Hexachloroethane	1080	92.8	ug/kg dry	1860	ND	58.4	14-106				
ndeno(1,2,3-cd)pyrene	469	92.8	"	1860	128	18.4	10-155				
sophorone	1160	92.8	"	1860	ND	62.6	14-127				
2-Methylnaphthalene	1100	92.8	"	1860	ND	59.4	10-143				
-Methylphenol	977	92.8	"	1860	ND	52.6	10-160				
- & 4-Methylphenols	970	92.8	"	1860	ND	52.3	16-115				
Japhthalene	1030	92.8	"	1860	ND	55.6	15-132				
-Nitroaniline	1090	185	"	1860	ND	59.0	10-151				
-Nitroaniline	1130	185	"	1860	ND	61.1	33-122				
-Nitroaniline	986	185	"	1860	ND	53.2	24-128				
Vitrobenzene	1120	92.8	"	1860	ND	60.6	18-125				
2-Nitrophenol	1040	92.8	"	1860	ND	56.1	12-127				
I-Nitrophenol	1270	185	"	1860	ND	68.6	10-141				
N-nitroso-di-n-propylamine	1250	92.8	"	1860	ND	67.2	23-115				
N-Nitrosodimethylamine	650	92.8	"	1860	ND	35.0	10-123				
N-Nitrosodiphenylamine	1160	92.8	"	1860	ND	62.4	16-166				
Pentachlorophenol	1130	92.8	"	1860	ND	60.7	10-160				
Phenanthrene	1630	92.8	"	1860	861	41.6	10-151				
Phenol	1010	92.8	"	1860	ND	54.4	11-124				
Pyrene	2200	92.8	"	1860	1350	46.2	13-148				
,2,4,5-Tetrachlorobenzene	1250	185	"	1860	ND	67.2	18-152				
3,4,6-Tetrachlorophenol	2280	185	"	1860	ND	123	30-130				

..

"

..

"

"

"

"

"

"

1860

1860

1860

2790

2780

1860

1860

2790

1860

ND

ND

ND

92.8

92.8

92.8

1070

1140

1180

1230

1300

1040

930

1790

1230

1,2,4-Trichlorobenzene

2,4,6-Trichlorophenol

2,4,5-Trichlorophenol

Surrogate: Phenol-d5

Surrogate: 2-Fluorophenol

Surrogate: Nitrobenzene-d5

Surrogate: 2-Fluorobiphenyl

Surrogate: Terphenyl-d14

Surrogate: 2,4,6-Tribromophenol

15-139

12-138

10-148

10-95

10-107

10-95

10-97

30-130

19-99

57.6

61.2

63.6

44.1

46.6

55.9

50.1

64.1

66.0



		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE50085 - EPA 3550C											
Blank (BE50085-BLK1)							Prep	ared: 05/03/2	2015 Analyz	ed: 05/04/2	2015
ldrin	ND	0.330	ug/kg wet								
lpha-BHC	ND	0.330	"								
eta-BHC	ND	0.330	"								
elta-BHC	ND	0.330	"								
amma-BHC (Lindane)	ND	0.330	"								
amma-Chlordane	ND	0.330	"								
pha-Chlordane	ND	0.330	"								
hlordane, total	ND	1.32	"								
4'-DDD	ND	0.330	"								
4'-DDE	ND	0.330	"								
4'-DDT	ND	0.330	"								
ieldrin	ND	0.330	"								
ndosulfan I	ND	0.330	"								
ndosulfan II	ND	0.330	"								
ndosulfan sulfate	ND	0.330									
ndrin	ND	0.330	"								
ndrin aldehyde	ND	0.330	"								
ndrin ketone	ND	0.330	"								
eptachlor	ND	0.330	"								
eptachlor epoxide	ND	0.330									
lethoxychlor	ND	1.65	"								
oxaphene	ND	16.7	"								
urrogate: Decachlorobiphenyl	49.3		"	67.0		73.6	30-140				
urrogate: Tetrachloro-m-xylene	45.4		"	67.7		67.2	30-140				
CS (BE50085-BS1)							Prep	ared: 05/03/2	2015 Analyz	ed: 05/04/2	2015
ldrin	21.6	0.330	ug/kg wet	33.3		64.7	40-140				
pha-BHC	23.1	0.330	"	33.3		69.3	40-140				
eta-BHC	21.8	0.330	"	33.3		65.3	40-140				
elta-BHC	21.4	0.330	"	33.3		64.2	40-140				
amma-BHC (Lindane)	22.1	0.330	"	33.3		66.2	40-140				
amma-Chlordane	21.5	0.330	"	33.3		64.4	40-140				
pha-Chlordane	21.7	0.330	"	33.3		65.2	40-140				
4'-DDD	19.5	0.330	"	33.3		58.5	40-140				
4'-DDE	24.1	0.330	"	33.3		72.2	40-140				
4'-DDT	22.8	0.330	"	33.3		68.5	40-140				
ieldrin	21.4	0.330	"	33.3		64.2	40-140				
ndosulfan I	22.0	0.330	"	33.3		66.0	40-140				
ndosulfan II	20.0	0.330	"	33.3		59.9	40-140				
ndosulfan sulfate	18.7	0.330	"	33.3		56.1	40-140				
ndrin	20.9	0.330	"	33.3		62.6	40-140				
ndrin aldehyde	16.0	0.330	"	33.3		48.1	40-140				
ndrin ketone	18.7	0.330	"	33.3		56.1	40-140				
eptachlor	18.8	0.330	"	33.3		56.4	40-140				
leptachlor epoxide	20.7	0.330	"	33.3		62.0	40-140				
Iethoxychlor	19.3	1.65		33.3		58.0	40-140				
urrogate: Decachlorobiphenyl	48.3		"	67.0		72.1	30-140				



		Reporting		Spike	Source*		%REC			RPD	
analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Fla
atch BE50085 - EPA 3550C											
CS Dup (BE50085-BSD1)							Prep	ared: 05/03/	2015 Analyz	ed: 05/04/2	2015
ldrin	21.6	0.330	ug/kg wet	33.3		64.9	40-140		0.313	30	
pha-BHC	22.9	0.330	"	33.3		68.8	40-140		0.672	30	
eta-BHC	21.8	0.330	"	33.3		65.3	40-140		0.127	30	
elta-BHC	21.5	0.330	"	33.3		64.6	40-140		0.688	30	
amma-BHC (Lindane)	21.9	0.330	"	33.3		65.8	40-140		0.542	30	
amma-Chlordane	21.7	0.330	"	33.3		65.2	40-140		1.20	30	
pha-Chlordane	22.0	0.330	"	33.3		65.9	40-140		1.10	30	
- 4'-DDD	19.8	0.330	"	33.3		59.3	40-140		1.23	30	
4'-DDE	24.2	0.330	"	33.3		72.7	40-140		0.703	30	
4'-DDT	23.4	0.330	"	33.3		70.1	40-140		2.31	30	
ieldrin	21.7	0.330	"	33.3		65.0	40-140		1.29	30	
ndosulfan I	22.4	0.330	"	33.3		67.3	40-140		1.94	30	
ndosulfan II	20.1	0.330	"	33.3		60.4	40-140		0.964	30	
ndosulfan sulfate	19.0	0.330	"	33.3		56.9	40-140		1.33	30	
ndrin	21.2	0.330	"	33.3		63.5	40-140		1.43	30	
ndrin aldehyde	16.1	0.330	"	33.3		48.4	40-140		0.692	30	
ndrin ketone	18.8	0.330	"	33.3		56.4	40-140		0.515	30	
eptachlor	18.8	0.330	"	33.3		56.4	40-140		0.0745	30	
eptachlor epoxide	20.8	0.330	"	33.3		62.5	40-140		0.769	30	
ethoxychlor	18.9	1.65	"	33.3		56.8	40-140		2.15	30	
-			"								
urrogate: Decachlorobiphenyl	48.6			67.0		72.6	30-140				
	17.0		"	(77		70.0	20 1 10				
ırrogate: Tetrachloro-m-xylene	47.9		"	67.7		70.8	30-140				
urrogate: Tetrachloro-m-xylene Iatrix Spike (BE50085-MS1)	47.9 *Source sample: 1	5E0070-03 (S		67.7		70.8		ared: 05/03/	2015 Analyz	ed: 05/04/2	2015
latrix Spike (BE50085-MS1)		5E0070-03 (S 2.26	B03_5-5.5) ug/kg dry	67.7 45.6	ND	63.7		ared: 05/03/	2015 Analyz	ed: 05/04/2	2015
latrix Spike (BE50085-MS1) Idrin pha-BHC	*Source sample: 1	``````````````````````````````````````	B03_5-5.5) ug/kg dry "		ND ND		Prepa	ared: 05/03/	2015 Analyz	ed: 05/04/2	2015
latrix Spike (BE50085-MS1) Idrin pha-BHC eta-BHC	*Source sample: 1: 29.0	2.26	B03_5-5.5) ug/kg dry	45.6		63.7	Prep: 30-150	ared: 05/03/	2015 Analyz	ed: 05/04/2	2015
latrix Spike (BE50085-MS1) Idrin pha-BHC ta-BHC	*Source sample: 1: 29.0 33.2	2.26 2.26	B03_5-5.5) ug/kg dry "	45.6 45.6	ND	63.7 73.0	Prep: 30-150 30-150	ared: 05/03/	2015 Analyz	ed: 05/04/2	2015
Iatrix Spike (BE50085-MS1) Idrin pha-BHC eta-BHC elta-BHC	*Source sample: 1: 29.0 33.2 36.2	2.26 2.26 2.26	B03_5-5.5) ug/kg dry "	45.6 45.6 45.6	ND ND	63.7 73.0 79.4	Prep: 30-150 30-150 30-150	ared: 05/03/	2015 Analyz	ed: 05/04/2	2015
Iatrix Spike (BE50085-MS1) Idrin pha-BHC eta-BHC elta-BHC amma-BHC (Lindane) amma-Chlordane	*Source sample: 1: 29.0 33.2 36.2 28.6	2.26 2.26 2.26 2.26 2.26	B03_5-5.5) ug/kg dry "	45.6 45.6 45.6 45.6	ND ND ND	63.7 73.0 79.4 62.7	Prepa 30-150 30-150 30-150 30-150	ared: 05/03/	2015 Analyz	ed: 05/04/2	2015
Iatrix Spike (BE50085-MS1) Idrin pha-BHC eta-BHC elta-BHC amma-BHC (Lindane) amma-Chlordane pha-Chlordane	*Source sample: 1: 29.0 33.2 36.2 28.6 33.9	2.26 2.26 2.26 2.26 2.26 2.26	B03_5-5.5) ug/kg dry " "	45.6 45.6 45.6 45.6 45.6	ND ND ND ND	63.7 73.0 79.4 62.7 74.3	Prepa 30-150 30-150 30-150 30-150 30-150	ared: 05/03/	2015 Analyz	ed: 05/04/2	2015
	*Source sample: 1: 29.0 33.2 36.2 28.6 33.9 30.2	2.26 2.26 2.26 2.26 2.26 2.26 2.26	B03_5-5.5) ug/kg dry " " "	45.6 45.6 45.6 45.6 45.6 45.6	ND ND ND ND	63.7 73.0 79.4 62.7 74.3 66.2	Prepa 30-150 30-150 30-150 30-150 30-150 30-150	ared: 05/03/	2015 Analyz	ed: 05/04/2	2015
Iatrix Spike (BE50085-MS1) Idrin pha-BHC eta-BHC eta-BHC amma-BHC (Lindane) amma-Chlordane pha-Chlordane 4'-DDD	*Source sample: 1: 29.0 33.2 36.2 28.6 33.9 30.2 31.0	2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26	B03_5-5.5) ug/kg dry " " "	45.6 45.6 45.6 45.6 45.6 45.6 45.6	ND ND ND ND ND	63.7 73.0 79.4 62.7 74.3 66.2 68.0	Prepa 30-150 30-150 30-150 30-150 30-150 30-150 30-150	ared: 05/03/	2015 Analyz	ed: 05/04/2	2015
Iatrix Spike (BE50085-MS1) Idrin pha-BHC eta-BHC eta-BHC amma-BHC (Lindane) amma-Chlordane pha-Chlordane 4'-DDD 4'-DDE	*Source sample: 1: 29.0 33.2 36.2 28.6 33.9 30.2 31.0 30.1	2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26	B03_5-5.5) ug/kg dry " " " "	45.6 45.6 45.6 45.6 45.6 45.6 45.6 45.6	ND ND ND ND ND ND	63.7 73.0 79.4 62.7 74.3 66.2 68.0 66.1	Prepr 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150	ared: 05/03/	2015 Analyz	ed: 05/04/2	2015
Iatrix Spike (BE50085-MS1) Idrin pha-BHC eta-BHC eta-BHC elta-BHC (Lindane) amma-Chlordane pha-Chlordane 4'-DDD 4'-DDD 4'-DDT ieldrin	*Source sample: 1: 29.0 33.2 36.2 28.6 33.9 30.2 31.0 30.1 30.1 30.4	2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26	B03_5-5.5) ug/kg dry " " " " "	45.6 45.6 45.6 45.6 45.6 45.6 45.6 45.6	ND ND ND ND ND ND ND	63.7 73.0 79.4 62.7 74.3 66.2 68.0 66.1 66.8	Prepr 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150	ared: 05/03/	2015 Analyz	ed: 05/04/2	2015
Iatrix Spike (BE50085-MS1) Idrin pha-BHC eta-BHC eta-BHC elta-BHC (Lindane) amma-Chlordane pha-Chlordane 4'-DDD 4'-DDD 4'-DDT ieldrin	*Source sample: 1: 29.0 33.2 36.2 28.6 33.9 30.2 31.0 30.1 30.4 32.4	2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26	B03_5-5.5) ug/kg dry " " " " " "	45.6 45.6 45.6 45.6 45.6 45.6 45.6 45.6	ND ND ND ND ND ND ND ND	63.7 73.0 79.4 62.7 74.3 66.2 68.0 66.1 66.8 71.2	Prep. 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150	ared: 05/03/	2015 Analyz	ed: 05/04/2	2015
Iatrix Spike (BE50085-MS1) Idrin pha-BHC eta-BHC eta-BHC eta-BHC (Lindane) amma-Chlordane pha-Chlordane 4'-DDD 4'-DDE 4'-DDT ieldrin ndosulfan I	*Source sample: 1: 29.0 33.2 36.2 28.6 33.9 30.2 31.0 30.1 30.4 32.4 32.3	2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26	B03_5-5.5) ug/kg dry " " " " " "	45.6 45.6 45.6 45.6 45.6 45.6 45.6 45.6	ND ND ND ND ND ND ND ND ND	63.7 73.0 79.4 62.7 74.3 66.2 68.0 66.1 66.8 71.2 70.8	Prepr 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150	ared: 05/03/	2015 Analyz	ed: 05/04/2	2015
Iatrix Spike (BE50085-MS1) Idrin pha-BHC eta-BHC eta-BHC (Lindane) umma-Chlordane pha-Chlordane 4'-DDD 4'-DDD 4'-DDE 4'-DDT ieldrin ndosulfan I ndosulfan II	*Source sample: 1: 29.0 33.2 36.2 28.6 33.9 30.2 31.0 30.1 30.1 30.4 32.4 32.3 27.4	2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26	B03_5-5.5) ug/kg dry " " " " " " " " " "	45.6 45.6 45.6 45.6 45.6 45.6 45.6 45.6	ND ND ND ND ND ND ND ND ND ND	63.7 73.0 79.4 62.7 74.3 66.2 68.0 66.1 66.8 71.2 70.8 60.2	Prep. 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150	ared: 05/03/	2015 Analyz	ed: 05/04/2	2015
Iatrix Spike (BE50085-MS1) Idrin pha-BHC eta-BHC eta-BHC (Lindane) mma-Chlordane pha-Chlordane 4'-DDD 4'-DDE 4'-DDT ieldrin ndosulfan I ndosulfan II ndosulfan sulfate	*Source sample: 1: 29.0 33.2 36.2 28.6 33.9 30.2 31.0 30.1 30.4 32.4 32.3 27.4 27.8	2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26	B03_5-5.5) ug/kg dry " " " " " " " " " " "	45.6 45.6 45.6 45.6 45.6 45.6 45.6 45.6	ND ND ND ND ND ND ND ND ND ND ND	63.7 73.0 79.4 62.7 74.3 66.2 68.0 66.1 66.8 71.2 70.8 60.2 61.0	Prep. 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150	ared: 05/03/	2015 Analyz	ed: 05/04/2	2015
Iatrix Spike (BE50085-MS1) Idrin pha-BHC eta-BHC eta-BHC (Lindane) mma-Chlordane pha-Chlordane 4'-DDD 4'-DDE 4'-DDT ieldrin ndosulfan I ndosulfan II ndosulfan sulfate ndrin	*Source sample: 1: 29.0 33.2 36.2 28.6 33.9 30.2 31.0 30.1 30.1 30.4 32.4 32.3 27.4 27.8 29.6	2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26	B03_5-5.5) ug/kg dry " " " " " " " " " " "	$\begin{array}{c} 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\end{array}$	ND ND ND ND ND ND ND ND ND ND ND ND	63.7 73.0 79.4 62.7 74.3 66.2 68.0 66.1 66.8 71.2 70.8 60.2 61.0 65.1	Prep. 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150	ared: 05/03/	2015 Analyz	ed: 05/04/2	2015
Iatrix Spike (BE50085-MS1) Idrin pha-BHC eta-BHC eta-BHC eta-BHC (Lindane) amma-Chlordane pha-Chlordane 4'-DDD 4'-DDE 4'-DDT ieldrin ndosulfan I ndosulfan II ndosulfan sulfate ndrin ndrin aldehyde	*Source sample: 1: 29.0 33.2 36.2 28.6 33.9 30.2 31.0 30.1 30.4 32.4 32.3 27.4 27.8 29.6 32.2	2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26	B03_5-5.5) ug/kg dry " " " " " " " " " " "	$\begin{array}{c} 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\end{array}$	ND ND ND ND ND ND ND ND ND ND ND ND	63.7 73.0 79.4 62.7 74.3 66.2 68.0 66.1 66.8 71.2 70.8 60.2 61.0 65.1 70.8	Prepr 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150	ared: 05/03/	2015 Analyz	ed: 05/04/2	2015
Iatrix Spike (BE50085-MS1) Idrin pha-BHC eta-BHC eta-BHC eta-BHC (Lindane) amma-Chlordane pha-Chlordane 4'-DDD 4'-DDE 4'-DDT ieldrin ndosulfan I ndosulfan II ndosulfan sulfate ndrin ndrin aldehyde ndrin ketone	*Source sample: 1: 29.0 33.2 36.2 28.6 33.9 30.2 31.0 30.1 30.4 32.4 32.3 27.4 27.8 29.6 32.2 26.9	2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26	B03_5-5.5) ug/kg dry " " " " " " " " " " " " "	$\begin{array}{c} 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\$	ND ND ND ND ND ND ND ND ND ND ND ND ND N	63.7 73.0 79.4 62.7 74.3 66.2 68.0 66.1 66.8 71.2 70.8 60.2 61.0 65.1 70.8 59.0	Prepr 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150	ared: 05/03/	2015 Analyz	ed: 05/04/2	2015
Iatrix Spike (BE50085-MS1) Idrin pha-BHC eta-BHC eta-BHC eta-BHC (Lindane) amma-Chlordane pha-Chlordane 4'-DDD 4'-DDE 4'-DDT ieldrin ndosulfan I ndosulfan I ndosulfan Sulfate ndrin ndrin aldehyde ndrin ketone eptachlor	*Source sample: 1: 29.0 33.2 36.2 28.6 33.9 30.2 31.0 30.1 30.4 32.4 32.3 27.4 27.8 29.6 32.2 26.9 31.9	2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26	B03_5-5.5) ug/kg dry " " " " " " " " " " " " " " " " " "	$\begin{array}{c} 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\$	ND ND ND ND ND ND ND ND ND ND ND ND ND N	63.7 73.0 79.4 62.7 74.3 66.2 68.0 66.1 66.8 71.2 70.8 60.2 61.0 65.1 70.8 59.0 70.1	Prepr 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150	ared: 05/03/	2015 Analyz	ed: 05/04/2	2015
Iatrix Spike (BE50085-MS1) Idrin pha-BHC tra-BHC tra-BHC umma-BHC (Lindane) umma-Chlordane pha-Chlordane 4'-DDD 4'-DDE 4'-DDT ieldrin ndosulfan I ndosulfan I ndosulfan II ndosulfan sulfate ndrin ndrin aldehyde ndrin ketone eptachlor eptachlor epoxide	*Source sample: 1: 29.0 33.2 36.2 28.6 33.9 30.2 31.0 30.1 30.4 32.4 32.3 27.4 27.8 29.6 32.2 26.9 31.9 30.0	2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26	B03_5-5.5) ug/kg dry " " " " " " " " " " " " " " " " " " "	$\begin{array}{c} 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\$	ND ND ND ND ND ND ND ND ND ND ND ND ND N	63.7 73.0 79.4 62.7 74.3 66.2 68.0 66.1 66.8 71.2 70.8 60.2 61.0 65.1 70.8 59.0 70.1 65.9	Prepr 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150	ared: 05/03/	2015 Analyz	ed: 05/04/2	2015
Iatrix Spike (BE50085-MS1) Idrin pha-BHC eta-BHC elta-BHC amma-BHC (Lindane) amma-Chlordane pha-Chlordane	*Source sample: 1: 29.0 33.2 36.2 28.6 33.9 30.2 31.0 30.1 30.4 32.4 32.3 27.4 27.8 29.6 32.2 26.9 31.9 30.0 32.9	2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26	B03_5-5.5) ug/kg dry " " " " " " " " " " " " " " " " " " "	$\begin{array}{c} 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\ 45.6\\$	ND ND ND ND ND ND ND ND ND ND ND ND ND N	63.7 73.0 79.4 62.7 74.3 66.2 68.0 66.1 66.8 71.2 70.8 60.2 61.0 65.1 70.8 59.0 70.1 65.9 72.1	Prepr 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150 30-150	ared: 05/03/	2015 Analyz	ed: 05/04/2	2015



Analyte	Result	Reporting Limit	Units	Spike Level	Source* Result	%REC	%REC Limits	Flag	RPD	RPD Limit	Flag
Batch BE50097 - EPA SW846-3510C											
							Pren	ared & Analy	vzed: 05/04/	2015	
Blank (BE50097-BLK1)	ND	0.00400	/I				1100		,200. 00/01/	2010	
lpha-BHC		0.00400	ug/L "								
•	ND	0.00400									
eta-BHC elta-BHC	ND	0.00400									
	ND	0.00400									
amma-BHC (Lindane)	ND	0.00400									
amma-Chlordane	ND	0.0100									
lpha-Chlordane	ND	0.00400									
chlordane, total	ND	0.0400									
4'-DDD	ND	0.00400									
,4'-DDE	ND	0.00400	"								
,4'-DDT	ND	0.00400									
Dieldrin	ND	0.00200									
ndosulfan I	ND	0.00400	"								
ndosulfan II	ND	0.00400	"								
ndosulfan sulfate	ND	0.00400	"								
ndrin	ND	0.00400	"								
ndrin aldehyde	ND	0.0100	"								
ndrin ketone	ND	0.0100	"								
eptachlor	ND	0.00400	"								
eptachlor epoxide	ND	0.00400	"								
fethoxychlor	ND	0.00400	"								
oxaphene	ND	0.100	"								
urrogate: Decachlorobiphenyl	0.138		"	0.201		68.6	30-120				
urrogate: Tetrachloro-m-xylene	0.116		"	0.203		57.0	30-120				
LCS (BE50097-BS1)							Prep	ared & Analy	yzed: 05/04/	2015	
Aldrin	0.0660	0.00400	ug/L	0.100		66.0	40-120				
lpha-BHC	0.0687	0.00400	"	0.100		68.7	40-120				
eta-BHC	0.0671	0.00400	"	0.100		67.1	40-120				
elta-BHC	0.0481	0.00400	"	0.100		48.1	40-120				
amma-BHC (Lindane)	0.0647	0.00400	"	0.100		64.7	40-120				
amma-Chlordane	0.0612	0.0100	"	0.100		61.2	40-120				
lpha-Chlordane	0.0640	0.00400	"	0.100		64.0	40-120				
,4'-DDD	0.0586	0.00400	"	0.100		58.6	40-120				
,4'-DDE	0.0738	0.00400	"	0.100		73.8	40-120				
,4'-DDT	0.0719	0.00400	"	0.100		71.9	40-120				
Vieldrin	0.0626	0.00200	"	0.100		62.6	40-120				
ndosulfan I	0.0680	0.00400	"	0.100		68.0	40-120				
ndosulfan II	0.0568	0.00400	"	0.100		56.8	40-120				
ndosulfan sulfate	0.0560	0.00400	"	0.100		56.0	40-120				
ndrin	0.0621	0.00400	"	0.100		62.1	40-120				
ndrin aldehyde	0.0585	0.0100	"	0.100		58.5	40-120				
ndrin ketone	0.0672	0.0100	"	0.100		67.2	40-120				
leptachlor	0.0515	0.00400	"	0.100		51.5	40-120				
leptachlor epoxide	0.0608	0.00400	"	0.100		60.8	40-120				
Iethoxychlor	0.0652	0.00400	"	0.100		65.2	40-120				
urrogate: Decachlorobiphenyl	0.119		"	0.201		59.4	30-120				



		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE50097 - EPA SW846-35100	C Low Level										
LCS Dup (BE50097-BSD1)							Prepa	ared & Anal	yzed: 05/04/2	2015	
Aldrin	0.0753	0.00400	ug/L	0.100		75.3	40-120		13.2	30	
alpha-BHC	0.0803	0.00400	"	0.100		80.3	40-120		15.5	30	
beta-BHC	0.0769	0.00400	"	0.100		76.9	40-120		13.7	30	
delta-BHC	0.0562	0.00400	"	0.100		56.2	40-120		15.6	30	
gamma-BHC (Lindane)	0.0747	0.00400	"	0.100		74.7	40-120		14.3	30	
gamma-Chlordane	0.0690	0.0100	"	0.100		69.0	40-120		12.1	30	
alpha-Chlordane	0.0724	0.00400	"	0.100		72.4	40-120		12.3	30	
4,4'-DDD	0.0654	0.00400	"	0.100		65.4	40-120		11.0	30	
4,4'-DDE	0.0836	0.00400	"	0.100		83.6	40-120		12.4	30	
4,4'-DDT	0.0810	0.00400	"	0.100		81.0	40-120		11.9	30	
Dieldrin	0.0707	0.00200	"	0.100		70.7	40-120		12.2	30	
Endosulfan I	0.0773	0.00400	"	0.100		77.3	40-120		12.9	30	
Endosulfan II	0.0633	0.00400	"	0.100		63.3	40-120		10.8	30	
Endosulfan sulfate	0.0624	0.00400	"	0.100		62.4	40-120		10.8	30	
Endrin	0.0692	0.00400	"	0.100		69.2	40-120		10.8	30	
Endrin aldehyde	0.0657	0.0100	"	0.100		65.7	40-120		11.6	30	
Endrin ketone	0.0749	0.0100	"	0.100		74.9	40-120		10.9	30	
Heptachlor	0.0583	0.00400	"	0.100		58.3	40-120		12.4	30	
Heptachlor epoxide	0.0686	0.00400	"	0.100		68.6	40-120		12.1	30	
Methoxychlor	0.0722	0.00400	"	0.100		72.2	40-120		10.2	30	
Surrogate: Decachlorobiphenyl	0.135		"	0.201		66.9	30-120				
Surrogate: Tetrachloro-m-xylene	0.127		"	0.203		62.6	30-120				



#### Polychlorinated Biphenyls by GC/ECD - Quality Control Data

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE50085 - EPA 3550C											
Blank (BE50085-BLK1)							Prep	ared: 05/03/2	2015 Analyz	zed: 05/04/2	2015
Aroclor 1016	ND	0.0167	mg/kg wet								
Aroclor 1221	ND	0.0167	"								
Aroclor 1232	ND	0.0167	"								
Aroclor 1242	ND	0.0167	"								
Aroclor 1248	ND	0.0167	"								
Aroclor 1254	ND	0.0167	"								
Aroclor 1260	ND	0.0167	"								
Total PCBs	ND	0.0167	"								
Surrogate: Tetrachloro-m-xylene	0.0437		"	0.0677		64.5	30-140				
Surrogate: Decachlorobiphenyl	0.0443		"	0.0670		66.2	30-140				
LCS (BE50085-BS2)							Prep	ared: 05/03/2	2015 Analyz	zed: 05/04/2	2015
Aroclor 1016	0.273	0.0167	mg/kg wet	0.333		82.0	40-130				
Aroclor 1260	0.281	0.0167	"	0.333		84.4	40-130				
Surrogate: Tetrachloro-m-xylene	0.0477		"	0.0677		70.4	30-140				
Surrogate: Decachlorobiphenyl	0.0477		"	0.0670		71.1	30-140				
Batch BE50097 - EPA SW846-3510C Lo	ow Level										
Blank (BE50097-BLK1)							Prep	ared & Anal	yzed: 05/04/	/2015	
Aroclor 1016	ND	0.0500	ug/L								
Aroclor 1221	ND	0.0500	"								
Aroclor 1232	ND	0.0500	"								
Aroclor 1242	ND	0.0500	"								
Aroclor 1248	ND	0.0500	"								
Aroclor 1254	ND	0.0500	"								
Aroclor 1260	ND	0.0500	"								
Total PCBs	ND	0.0500	"								
Surrogate: Tetrachloro-m-xylene	0.134		"	0.203		66.0	30-120				
Surrogate: Decachlorobiphenyl	0.144		"	0.201		71.6	30-120				



## Polychlorinated Biphenyls by GC/ECD - Quality Control Data

Analyte	Result	Reporting Limit	Units	Spike Level	Source* Result	%REC	%REC Limits	Flag	RPD	RPD Limit	Flag
Batch BE50097 - EPA SW846-3510C	Low Level										
LCS (BE50097-BS2)							Prep	ared & Anal	yzed: 05/04/	2015	
Aroclor 1016	0.752	0.0500	ug/L	1.00		75.2	40-120				
Aroclor 1260	0.905	0.0500	"	1.00		90.5	40-120				
Surrogate: Tetrachloro-m-xylene	0.162		"	0.203		79.8	30-120				
Surrogate: Decachlorobiphenyl	0.165		"	0.201		82.1	30-120				
LCS Dup (BE50097-BSD2)							Prep	ared & Anal	yzed: 05/04/	2015	
Aroclor 1016	0.758	0.0500	ug/L	1.00		75.8	40-120		0.874	30	
Aroclor 1260	0.888	0.0500	"	1.00		88.8	40-120		1.87	30	
Surrogate: Tetrachloro-m-xylene	0.161		"	0.203		79.3	30-120				
Surrogate: Decachlorobiphenyl	0.163		"	0.201		81.1	30-120				



		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE50101 - EPA 3050B											
Blank (BE50101-BLK1)							Prep	ared & Analy	/zed: 05/04/	2015	
Aluminum	ND	5.00	mg/kg wet								
Antimony	ND	0.500	"								
Arsenic	ND	1.00	"								
Barium	ND	1.00	"								
Beryllium	ND	0.100	"								
Cadmium	ND	0.300	"								
Calcium	ND	5.00	"								
Chromium	ND	0.500	"								
Cobalt	ND	0.500	"								
Copper	ND	0.500	"								
Iron	ND	2.00	"								
Lead	ND	0.300	"								
Magnesium	ND	5.00	"								
Manganese	ND	0.500	"								
Nickel	ND	0.500	"								
Potassium	ND	5.00	"								
Selenium	ND	1.00	"								
Silver	ND	0.500	"								
Sodium	ND	10.0	"								
Thallium	ND	1.00	"								
Vanadium	ND	1.00	"								
Zinc	ND	1.00	"								
Duplicate (BE50101-DUP1)	*Source sample: 15	E0070-04 (S	B04 .5-1)				Prepa	ared & Analy	zed: 05/04/2	2015	
Aluminum	5320	5.57	mg/kg dry		5350				0.540	35	
Antimony	ND	0.557	"		ND					35	
Arsenic	4.51	1.11	"		4.83				6.85	35	
Barium	62.3	1.11	"		62.7				0.679	35	
Beryllium	ND	0.111	"		ND					35	
Cadmium	ND	0.334	"		ND					35	
Calcium	16400	5.57	"		16400				0.111	35	
Chromium										35	
Chiolinum	12.4	0.557	"		12.5				0.924	55	
Cobalt	12.4 7.80	0.557 0.557			12.5 7.79				0.924 0.0836	35	
Cobalt		0.557									
Cobalt Copper	7.80	0.557 0.557	"		7.79				0.0836	35	
Cobalt Copper Iron	7.80 31.1	0.557			7.79 31.3				0.0836 0.646	35 35	
Cobalt Copper Iron Lead	7.80 31.1 12300 109	0.557 0.557 2.23 0.334			7.79 31.3 12300 109				0.0836 0.646 0.321 0.0808	35 35 35	
Cobalt Copper Iron Lead Magnesium	7.80 31.1 12300 109 5840	0.557 0.557 2.23 0.334 5.57	""		7.79 31.3 12300 109 5830				0.0836 0.646 0.321	35 35 35 35	
Cobalt Copper Iron Lead Magnesium Manganese	7.80 31.1 12300 109 5840 260	0.557 0.557 2.23 0.334 5.57 0.557	" " " "		7.79 31.3 12300 109 5830 259				0.0836 0.646 0.321 0.0808 0.227	35 35 35 35 35	
Cobalt Copper Iron Lead Magnesium Manganese Nickel	7.80 31.1 12300 109 5840 260 54.7	0.557 0.557 2.23 0.334 5.57 0.557 0.557	" " "		7.79 31.3 12300 109 5830 259 55.4				0.0836 0.646 0.321 0.0808 0.227 0.595	35 35 35 35 35 35 35 35	
Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium	7.80 31.1 12300 109 5840 260 54.7 1090	0.557 0.557 2.23 0.334 5.57 0.557 0.557 5.57	" " " "		7.79 31.3 12300 109 5830 259 55.4 1100				0.0836 0.646 0.321 0.0808 0.227 0.595 1.21 0.399	35 35 35 35 35 35 35 35 35	
Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium	7.80 31.1 12300 109 5840 260 54.7 1090 1.85	0.557 0.557 2.23 0.334 5.57 0.557 0.557 5.57 1.11	   		7.79 31.3 12300 109 5830 259 55.4 1100 1.48				0.0836 0.646 0.321 0.0808 0.227 0.595 1.21	35 35 35 35 35 35 35 35 35 35	
Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver	7.80 31.1 12300 109 5840 260 54.7 1090 1.85 ND	0.557 0.557 2.23 0.334 5.57 0.557 0.557 5.57 1.11 0.557			7.79 31.3 12300 109 5830 259 55.4 1100 1.48 ND				0.0836 0.646 0.321 0.0808 0.227 0.595 1.21 0.399 22.3	35 35 35 35 35 35 35 35 35 35 35	
Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium	7.80 31.1 12300 109 5840 260 54.7 1090 1.85 ND 595	0.557 0.557 2.23 0.334 5.57 0.557 0.557 5.57 1.11 0.557 11.1			7.79 31.3 12300 109 5830 259 55.4 1100 1.48 ND 597				0.0836 0.646 0.321 0.0808 0.227 0.595 1.21 0.399	35 35 35 35 35 35 35 35 35 35 35 35	
	7.80 31.1 12300 109 5840 260 54.7 1090 1.85 ND	0.557 0.557 2.23 0.334 5.57 0.557 0.557 5.57 1.11 0.557			7.79 31.3 12300 109 5830 259 55.4 1100 1.48 ND				0.0836 0.646 0.321 0.0808 0.227 0.595 1.21 0.399 22.3	35 35 35 35 35 35 35 35 35 35 35	



## York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
						,		0			
Batch BE50101 - EPA 3050B											
Matrix Spike (BE50101-MS1)	*Source sample: 1	5E0070-04 (S	B045-1)				Pre	pared & Analy	yzed: 05/04	/2015	
Aluminum	5540	5.57	mg/kg dry	223	5350	83.0	75-125				
Antimony	27.6	0.557	"	27.8	ND	99.1	75-125				
Arsenic	220	1.11	"	223	4.83	96.8	75-125				
Barium	293	1.11	"	223	62.7	104	75-125				
Beryllium	4.66	0.111	"	5.57	ND	83.8	75-125				
Cadmium	5.43	0.334	"	5.57	ND	97.5	75-125				
Chromium	33.6	0.557	"	22.3	12.5	94.6	75-125				
Cobalt	62.7	0.557	"	55.7	7.79	98.6	75-125				
Copper	60.7	0.557	"	27.8	31.3	106	75-125				
Iron	12200	2.23	"	111	12300	NR	75-125	Low Bias			
Lead	162	0.334	"	55.7	109	94.8	75-125				
Magnesium	5790	5.57	"		5830		75-125				
Manganese	314	0.557	"	55.7	259	99.5	75-125				
Nickel	113	0.557	"	55.7	55.4	104	75-125				
Potassium	1090	5.57	"		1100		75-125				
Selenium	221	1.11	"	223	1.48	98.6	75-125				
Silver	3.57	0.557	"	5.57	ND	64.2	75-125	Low Bias			
Sodium	594	11.1	"		597		75-125				
Thallium	216	1.11	"	223	ND	97.1	75-125				
Vanadium	72.2	1.11	"	55.7	16.9	99.4	75-125				
Zinc	131	1.11	"	55.7	81.4	89.5	75-125				
Reference (BE50101-SRM1)							Pre	pared & Analy	yzed: 05/04	/2015	
Aluminum	6610	5.00	mg/kg wet	8740		75.6	41.6-158				
Antimony	154	0.500	"	108		143	23-255				
Arsenic	145	1.00	"	151		96.3	70.9-130				
Barium	257	1.00	"	262		98.1	73.7-126				
Beryllium	130	0.100	"	133		98.0	75.1-125				
Cadmium	142	0.300	"	152		93.7	73-126				
Calcium	6120	5.00	"	6400		95.6	73.9-126				
Chromium	110	0.500	"	117		93.6	69.7-130				
Cobalt	70.0	0.500	"	68.7		102	74.4-126				
Copper	70.0	0.500	"	68.6		102	73.2-129				
Iron	10900	2.00	"	12300		88.7	30.5-170				
Lead	238	0.300	"	254		93.6	75.6-125				
Magnesium	3240	5.00	"	3600		90.1	68.3-132				
Manganese	548	0.500	"	563		97.3	77.4-123				
Nickel	315	0.500	"	315		99.9	74.3-127				
Potassium	2730	5.00	"	3040		89.8	62.5-137				
Selenium	159	1.00	"	162		98.0	67.3-132				
Silver	40.0	0.500	"	44.3		90.4	66.4-124				
Sodium	698	10.0	"	746		93.6	56.8-143				
Thallium	247	1.00	"	259		95.5	69.5-131				
Vanadium	111	1.00	"	116		95.6	67.5-132				
7	201	1.00		201		00 (	<b>71</b> 0 100				

Zinc

286

1.00

"

306

93.6

71.9-133



	D I	Reporting	TT '4	Spike	Source*	NARC	%REC	Elag	DDD	RPD Limit	Elag
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE50103 - EPA 3010A/1311											
Blank (BE50103-BLK1)							Prep	ared & Analy	yzed: 05/04/	2015	
Arsenic	ND	0.004	mg/L								
Barium	ND	0.010	"								
Cadmium	ND	0.003	"								
Chromium	ND	0.005	"								
Lead	ND	0.003	"								
Selenium	ND	0.010	"								
Silver	ND	0.005	"								
Blank (BE50103-BLK2)							Prep	ared & Analy	yzed: 05/04/	2015	
Arsenic	ND	0.004	mg/L								
Barium	ND	0.010	"								
Cadmium	ND	0.003									
Chromium	ND	0.005									
Lead	ND	0.003									
Selenium	ND	0.010	"								
Silver	ND	0.005	"								
Duplicate (BE50103-DUP1)	*Source sample: 1:	5E0070-01 (SE	301 2.5-3)				Prep	ared & Analy	yzed: 05/04/	2015	
Arsenic	0.020	0.004	mg/L		0.022				11.5	20	
Barium	0.242	0.010	"		0.243				0.414	20	
Cadmium	ND	0.003	"		ND					20	
Chromium	ND	0.005	"		ND					20	
Lead	0.040	0.003	"		0.042				4.48	20	
Selenium	ND	0.010	"		0.012					20	
Silver	ND	0.005	"		ND					20	
Matrix Spike (BE50103-MS1)	*Source sample: 1:	5E0070-01 (SE	301_2.5-3)				Prep	ared & Analy	yzed: 05/04/	2015	
Arsenic	1.98	0.004	mg/L	2.00	0.022	98.1	75-125				
Barium	1.99	0.010	"	2.00	0.243	87.2	75-125				
Cadmium	0.044	0.003	"	0.0500	ND	88.6	75-125				
Chromium	0.175	0.005	"	0.200	ND	87.3	75-125				
Lead	0.452	0.003	"	0.500	0.042	81.9	75-125				
Selenium	2.17	0.010	"	2.00	0.012	108	75-125				
Silver	0.044	0.005		0.0500	ND	87.9	75-125				



		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE50103 - EPA 3010A/1311											
Reference (BE50103-SRM1)							Prep	ared & Anal	yzed: 05/04/	2015	
Arsenic	0.647	0.004	mg/L	0.681		95.1	84.4-114				
Barium	0.534	0.010	"	0.487		110	85-115				
Cadmium	0.299	0.003	"	0.293		102	85-115				
Chromium	0.123	0.005	"	0.123		100	85.4-115				
Lead	0.380	0.003	"	0.362		105	85.1-115				
Selenium	0.351	0.010	"	0.364		96.5	84.9-115				
Silver	0.223	0.005	"	0.215		104	85.1-115				
Batch BE50108 - EPA 3010A											
Blank (BE50108-BLK1)							Prep	ared & Anal	yzed: 05/04/	2015	
Aluminum	ND	0.050	mg/L								
Antimony	ND	0.005	"								
Arsenic	ND	0.004	"								
Barium	ND	0.010	"								
Beryllium	ND	0.001	"								
Cadmium	ND	0.003	"								
Calcium	ND	0.050	"								
Chromium	ND	0.005	"								
Cobalt	ND	0.005	"								
Copper	ND	0.003	"								
Iron	ND	0.020	"								
Lead	ND	0.003	"								
Magnesium	ND	0.050	"								
Manganese	ND	0.005	"								
Nickel	ND	0.005	"								
Potassium	ND	0.050	"								
Selenium	ND	0.010	"								
Silver	ND	0.005	"								
Sodium	ND	0.100	"								
Thallium	ND	0.005	"								
Vanadium	ND	0.010	"								
Zinc	ND	0.010	"								



## York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

#### Batch BE50108 - EPA 3010A

Duplicate (BE50108-DUP1)	*Source sample: 15E	E0070-06 (TN	MW01_05	0215)			Prepared	& Analyzed: 05/04/2	015
Aluminum	0.133	0.050	mg/L		0.129			3.33	20
Antimony	ND	0.005	"		ND				20
Arsenic	ND	0.004	"		ND				20
Barium	0.133	0.010	"		0.133			0.448	20
Beryllium	ND	0.001	"		ND				20
Cadmium	ND	0.003	"		ND				20
Calcium	127	0.050	"		127			0.0729	20
Chromium	ND	0.005	"		ND				20
Cobalt	ND	0.005	"		ND				20
Copper	0.003	0.003	"		0.004			6.08	20
Iron	5.97	0.020	"		6.10			2.13	20
Lead	0.005	0.003	"		0.004			7.41	20
Magnesium	25.9	0.050	"		26.4			1.93	20
Manganese	1.04	0.005	"		1.04			0.502	20
Nickel	ND	0.005	"		ND				20
Potassium	21.1	0.050	"		21.4			1.79	20
Selenium	0.013	0.010	"		0.013			3.74	20
Silver	ND	0.005	"		ND				20
Sodium	108	0.100	"		109			0.308	20
Thallium	ND	0.005	"		ND				20
Vanadium	ND	0.010	"		ND				20
Zinc	0.012	0.010	"		0.012			0.939	20
Matrix Spike (BE50108-MS1)	*Source sample: 15E	E0070-06 (TN	AW01_050	0215)			Prepared	& Analyzed: 05/04/2	015
Antimony	0.249	0.005	mg/L	0.250	ND	99.4	75-125		
Arsenic	2.18	0.004	"	2.00	ND	109	75-125		
Barium	2.24	0.010	"	2.00	0.133	105	75-125		
Beryllium	0.053	0.001	"	0.0500	ND	106	75-125		
Cadmium	0.051	0.003	"	0.0500	ND	103	75-125		
Chromium	0.199	0.005	"	0.200	ND	99.4	75-125		
Cobalt	0.515	0.005	"	0.500	ND	103	75-125		
Copper	0.262	0.003	"	0.250	0.004	103	75-125		
Iron	7.10	0.020	"	1.00	6.10	101	75-125		
Lead	0.493	0.003	"	0.500	0.004	97.7	75-125		
Manganese	1.57	0.005	"	0.500	1.04	105	75-125		
Nickel	0.516	0.005	"	0.500	ND	103	75-125		
Selenium	2.43	0.010	"	2.00	0.013	121	75-125		
Silver	0.044	0.005	"	0.0500	ND	88.5	75-125		
Thallium	1.96	0.005	"	2.00	ND	98.2	75-125		
Vanadium	0.511	0.010	"	0.500	ND	102	75-125		
Zinc	0.545	0.010	"	0.500	0.012	107	75-125		



		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE50108 - EPA 3010A											
Reference (BE50108-SRM1)							Prepa	ared & Analy	yzed: 05/04/	2015	
Aluminum	1.79	0.050	mg/L	1.80		99.3	82.8-115				
Antimony	0.397	0.005	"	0.415		95.6	79.8-117				
Arsenic	0.640	0.004	"	0.681		94.0	84.4-114				
Barium	0.528	0.010	"	0.487		108	85-115				
Beryllium	0.278	0.001	"	0.277		100	84.8-115				
Cadmium	0.294	0.003	"	0.293		100	85-115				
Chromium	0.121	0.005	"	0.123		98.5	85.4-115				
Cobalt	0.517	0.005	"	0.485		107	84.9-115				
Copper	0.388	0.003	"	0.378		103	84.9-115				
Iron	1.40	0.020	"	1.32		106	84.8-115				
Lead	0.377	0.003	"	0.362		104	85.1-115				
Manganese	0.325	0.005	"	0.308		105	85.1-115				
Nickel	0.513	0.005	"	0.526		97.5	87.3-114				
Selenium	0.343	0.010	"	0.364		94.3	84.9-115				
Silver	0.220	0.005	"	0.215		102	85.1-115				
Thallium	0.644	0.005	"	0.606		106	82.3-116				
Vanadium	0.752	0.010	"	0.784		95.9	84.9-115				
Zinc	0.711	0.010	"	0.715		99.5	85-115				



#### Mercury by EPA 7000/200 Series Methods - Quality Control Data

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE50080 - EPA 7473 soil											
Blank (BE50080-BLK1)							Prep	ared & Anal	yzed: 05/03/	2015	
Mercury	ND	0.0300	mg/kg wet								
Reference (BE50080-SRM1)							Prep	ared & Anal	yzed: 05/03/	2015	
Mercury	6.4474		mg/kg	5.76		112	71.2-129				
Batch BE50094 - EPA 7473 water											
Blank (BE50094-BLK1)							Prep	ared & Anal	yzed: 05/04/	2015	
Mercury	ND	0.00020	mg/L								
Reference (BE50094-SRM1)							Prep	ared & Anal	yzed: 05/04/	2015	
Mercury	0.00199		mg/kg	0.00230		86.6	61.3-135				
Batch BE50095 - EPA 7473 water											
Blank (BE50095-BLK1)							Prep	ared & Anal	yzed: 05/04/	2015	
Mercury	ND	0.000200	mg/L								
Reference (BE50095-SRM1)							Prep	ared & Anal	yzed: 05/04/	2015	
Mercury	0.00186		mg/L	0.00230		80.7	61.3-135				



#### **Miscellaneous Physical Parameters - Quality Control Data**

Analyte	Result	Reporting Limit	Units	Spike Level	Source* Result	%REC	%REC Limits	Flag	RPD	RPD Limit	Flag
Batch BE50118 - % Solids Prep											
Duplicate (BE50118-DUP1)	*Source sample: 151	E0070-05 (SE	805_5-5.5)				Prep	ared & Anal	yzed: 05/04/2	2015	
% Solids	86.8	0.100	%		87.5				0.755	20	



## Wet Chemistry Parameters - Quality Control Data

## York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE50079 - EPA SW 846-1311	TCLP ext. for metals										
Blank (BE50079-BLK1)							D	ared: 05/02/2	015 Analyz	ad: 05/04/2	015

N/A

TCLP Extraction

Completed

1.00



## Volatile Analysis Sample Containers

Lab ID	Client Sample ID	Volatile Sample Container
15E0070-01	SB01 2.5-3	40mL Vial with Stir Bar-Cool 4° C
15E0070-02	SB02 2.5-3	40mL Vial with Stir Bar-Cool 4° C
15E0070-03	SB03 5-5.5	40mL Vial with Stir Bar-Cool 4° C
15E0070-04	SB045-1	40mL Vial with Stir Bar-Cool 4° C
15E0070-05	SB05_5-5.5	40mL Vial with Stir Bar-Cool 4° C
15E0070-06	TMW01_050215	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
15E0070-07	Trip Blank	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C



#### **Notes and Definitions**

- M-SeTC It is noted that a known interference with selenium at the analytical line for analysis by ICP is caused by carbon emission from the TCLP or high organics matrix. The data user may subtract the matrix blank value from the data if needed.
- CCV-E The value reported is ESTIMATED. The value is estimated due to its behavior during continuing calibration verification (>20% Difference for average Rf or >20% Drift for quadratic fit).
- E The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is considered an estimate.

EXT-COMP Completed

EXT-Temp Extraction temperture slightly exceeded acceptance range.

- J Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL/LOD) or in the case of a TIC, the result is an estimated concentration.
- B Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants. Data users should consider anything <10x the blank value as artifact.
- M-MISpk The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The SRM was within acceptance limits, therefore data are acceptable.
- SCAL-E The value reported is ESTIMATED. The value is estimated due to its behavior during initial calibration (average Rf>20%).
- QL-02 This LCS analyte is outside Laboratory Recovery limits due the analyte behavior using the referenced method. The reference method has certain limitations with respect to analytes of this nature.
- QL-03 This LCS analyte recovered outside of acceptance limits. The LCS contains approximately 70 compounds, a limited number of which may be outside acceptance windows.
- QM-01 The spike recovery for this QC sample is outside of established control limits due to sample matrix interference.
- QR-02 The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.
- S-01 The surrogate recovery for this sample may not be available due to sample dilution required from high analyte concentration and/or matrix interferences.
- S-08 The recovery of this surrogate was outside of QC limits.

M-HCSpk Sample conc. >10 X spike conc.

*	Analyte is not certified or the state of the	samples origination does not offer certification for the An	alyte.	
ND	NOT DETECTED - the analyte is not dete	ected at the Reported to level (LOQ/RL or LOD/MDL)		
RL	REPORTING LIMIT - the minimum repo	rtable value based upon the lowest point in the analyte ca	alibration curve.	
LOQ		um concentration of a target analyte that can be reported e that has been subjected to all steps of the processing/an pplies to all analyses.	1 0	
LOD		nate of the minimum concentration of a substance in a giv Standards and applies to all analyses conducted under the	5 1	eliably
MDL		stically derived estimate of the minimum amount of a sub the substance is greater than zero. This is based upon 40	5 5 5	
Reported to		analysis is reported to either the LOD/MDL, or the LOQ this and the LOQ represents an estimated value which is	•	
NR	Not reported			
RPD	Relative Percent Difference			
120 R	ESEARCH DRIVE	STRATFORD, CT 06615	(203) 325-1371	FAX (203) 35 <u>7-0166</u> Paç

Page 115 of 11



Wet The data has been reported on an as-received (wet weight) basis

- Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
- High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
- Non-Dir. Non-dir. flag (Non-Directional Bias ) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

		_			_				-													
Page of	t No. 56 0070	Report Type	Summary Report X Summary W/ QA Summary	CT RCP Package CTRCP DQA/DUE Pkg	NT ASF A Fackage NY ASP B Package	Electronic Data Deliverables (EDD)	Simple Excel X NYSDEC EQuIS EQuIS (std) EZ-EDD (FOUIS)	NJDEP SRP HazSite EDD GIS/KEY (std)	York Regulatory Comparison	EXACT SpreadSneet Compare to the following Rogs (please fill in):	Container	(S	HUPINGANS (JAW)	mote (b)	wotow	Monto D	Totalmeters not vity	Qhuyo	- 2	 Temperature	538	113 N. C. L.C.
Record	its document. Itses requested and your York Project No. DE	ject ID Turn-Around Time		er No. RUSH - Two Day	RUSH - Four Day	tandard(5-7 Days)	Is         Mise. Org.         Full Lists         Mise.           TPH GRO         Pri.Poll.         Comesivity           TPH DRO         TCL Ogenis         Reactivity           CT ETPH         TAL MeCo.         Ignitability	CT15 list NY 310-13 Full TCLP FlashPoint TAGM list TPH 1664 Full App. IX Sieve-Anal. NJDEP list Air TO14A Part300Paorine Heterotophs	Air TO15 Part360-Breefine TOX lved Air STARS Part360-Breefine BTU/Ib.	r TOC	Helium TAGM Silka		L' NUCITIVALU, VENTRE , ME		ALD A	100	Ciden DC Re			Other H ₂ SO, NaOH	15:38 Ko & Y JULL 5 2 11- 1	B by
Field Chain-of-Custody Record	<b>NOTE:</b> York's Std. Terms & Conditions are listed on the back side of this document. This document serves as your written authorization to York to proceed with the analyses requested and your signature binds you to York's Std. Terms & Conditions.	Invoice To: YOUR Project ID	Company: E+M Realty COTP	15	Juard Slinin	ss: Samples from: CT	Volatiles         Semi-Vols.         Pest/PCB/Herh           full         TICs         8270 & 625         8082PCB         R0           stite Spec.         STARS list         8081Pest         Pt           RS list         Nassau Co.         BN Only         8151Herb         TV	BTEX Suffolk Co. Acids Only CT RCP CTI MTBE Ketones PAH list App. IX TAC TCL list Oxygenates TAGM list Site Spec. NJD	TAGM list TCLP list CT RCP list SPLP or TCLP Total CT RCP list 524.2 TCL list TCLP Pest Disso	Arom. only 502.2 NJDEP list TCLP Herb SPU Halog.only NJDEP list App. IX Chlordane Ind App.IX list SPUP.orTCLP INA 608 Pest LIST	SPLPOTULP 608 PCB DSP Analyses Needed from			TCU/TAU, ROA375 GUILTA VOC SNOC		CU/TH. ODG3755 FUILGAVIOL SUDC. MATER BALERAN	HTAL RASTS FULLY VOC. SIGN Total metal Participan DCR.	OCs		Trozen HCI X MeOH	1 5/2/15	Samples Relinquished By Date/Time
Field Cha	NOTE: York's Std. Te document serves as your writ signatur		1		Conde Accondition: Ed	E-Mail Address:		H A H	<ul> <li>specify(oil, etc.)</li> <li>wastewater</li> </ul>	ater water ir	Air-SV - soil vapor Samble Matrix	1.00		P F	F Lig	Soil T	Geo 1	>		Check those Applicable	su 🗆	Lab to Futer
YORK ANALYTIDAL LABDRATORIES 120 RESEARCH DR. GTOATTORD DT TILGE 15		Report To:	Company: LANCAN		Attention: Ryann	D Landed Mail Address:	w. All Information 1 ogged in and the 1	to more to find	ized By (Signature)	Sinced	Date/Time Sampled	ELLE INIZA	-	02:11 51/2/2	m	M	5/15 14 :00	1			KUSH	
	YORK FAX	YOUR Information	Company: LANGAN	New YOR, NY	Contact Person: Ryan Mandorback Attention: Ryan monder Activation: Educed	E-Mail Address: Cmeun dechochol	Print Clearly and Legibly. All Information must be complete. Samples will NOT be logged in and the turn-around time clock will not heain until div auestions by York are resolved	Y	Samples Collected/Authorized By (Signature)	RM, W SM	Sample Identification	SAN DEZ		14	Soc-1-5-1	5605-5-5.5	TMW01-050315	Trip Blank		age	LY-H	51/4/12



# **Technical Report**

prepared for:

Langan Engineering & Environmental Services (NYC)

21 Penn Plaza, 360 West 31st Street New York NY, 10001 Attention: Ryan Manderbach

Report Date: 05/04/2015 Client Project ID: 170362501 York Project (SDG) No.: 15E0069

CT Cert. No. PH-0723

New Jersey Cert. No. CT-005



New York Cert. No. 10854

PA Cert. No. 68-04440

120 RESEARCH DRIVE

STRATFORD, CT 06615

(203) 325-1371

FAX (203) 357-0166

# Report Date: 05/04/2015 Client Project ID: 170362501 York Project (SDG) No.: 15E0069

## Langan Engineering & Environmental Services (NYC)

21 Penn Plaza, 360 West 31st Street New York NY, 10001 Attention: Ryan Manderbach

#### **Purpose and Results**

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on May 02, 2015 and listed below. The project was identified as your project: **170362501**.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the attachment to this report, and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	<u>Client Sample ID</u>	Matrix	<b>Date Collected</b>	Date Received
15E0069-01	SV01-050215	Soil Vapor	05/02/2015	05/02/2015

## General Notes for York Project (SDG) No.: 15E0069

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All samples were received in proper condition for analysis with proper documentation, unless otherwise noted.
- 6. All analyses conducted met method or Laboratory SOP requirements. See the Qualifiers and/or Narrative sections for further information.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 8. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

**Approved By:** 

**Date:** 05/04/2015



Benjamin Gulizia Laboratory Director



Client Sample ID: SV01-050215			York Sample ID:	15E0069-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0069	170362501	Soil Vapor	May 2, 2015 3:00 pm	05/02/2015

	ganics, EPA TO15 Full List											
CAS No.	by Method: EPA TO15 PREP Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analys
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	8.0	16	23.44	EPA TO-15 Certifications:		05/03/2015 06:13	05/03/2015 06:13	ALD
71-55-6	1,1,1-Trichloroethane	180		ug/m³	13	13	23.44	EPA TO-15 Certifications:	NELAC-N	05/03/2015 06:13 /10854,NJDEP	05/03/2015 06:13	ALD
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	16	16	23.44	EPA TO-15 Certifications:	NELAC-NY	05/03/2015 06:13 /10854,NJDEP	05/03/2015 06:13	ALD
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	18	18	23.44	EPA TO-15 Certifications:	NELAC-NY	05/03/2015 06:13 /10854,NJDEP	05/03/2015 06:13	ALD
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	13	13	23.44	EPA TO-15 Certifications:	NELAC-NY	05/03/2015 06:13 /10854,NJDEP	05/03/2015 06:13	ALD
75-34-3	1,1-Dichloroethane	14		ug/m³	9.5	9.5	23.44	EPA TO-15 Certifications:	NELAC-N	05/03/2015 06:13 (10854,NJDEP	05/03/2015 06:13	ALD
75-35-4	1,1-Dichloroethylene	ND		ug/m³	9.3	9.3	23.44	EPA TO-15 Certifications:	NELAC-N	05/03/2015 06:13 /10854,NJDEP	05/03/2015 06:13	ALD
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	17	17	23.44	EPA TO-15 Certifications:	NELAC-N	05/03/2015 06:13 /10854,NJDEP	05/03/2015 06:13	ALD
95-63-6	1,2,4-Trimethylbenzene	ND		ug/m³	12	12	23.44	EPA TO-15 Certifications:	NELAC-N	05/03/2015 06:13 /10854,NJDEP	05/03/2015 06:13	ALD
106-93-4	1,2-Dibromoethane	ND		ug/m³	18	18	23.44	EPA TO-15 Certifications:	NELAC-NY	05/03/2015 06:13 /10854,NJDEP	05/03/2015 06:13	ALD
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	14	14	23.44	EPA TO-15 Certifications:	NELAC-N	05/03/2015 06:13 (10854,NJDEP	05/03/2015 06:13	ALD
107-06-2	1,2-Dichloroethane	ND		ug/m³	9.5	9.5	23.44	EPA TO-15 Certifications:	NELAC-NY	05/03/2015 06:13 (10854,NJDEP	05/03/2015 06:13	ALD
78-87-5	1,2-Dichloropropane	ND		ug/m³	11	11	23.44	EPA TO-15 Certifications:	NELAC-N	05/03/2015 06:13 (10854,NJDEP	05/03/2015 06:13	ALD
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	16	16	23.44	EPA TO-15 Certifications:	NELAC-N	05/03/2015 06:13 (10854,NJDEP	05/03/2015 06:13	ALD
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	12	12	23.44	EPA TO-15 Certifications:		05/03/2015 06:13 (10854,NJDEP	05/03/2015 06:13	ALD
106-99-0	1,3-Butadiene	ND		ug/m³	10	10	23.44	EPA TO-15 Certifications:		05/03/2015 06:13 (10854,NJDEP	05/03/2015 06:13	ALD
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	14	14	23.44	EPA TO-15 Certifications:		05/03/2015 06:13 (10854,NJDEP	05/03/2015 06:13	ALD
42-28-9	* 1,3-Dichloropropane	ND		ug/m³	11	11	23.44	EPA TO-15 Certifications:		05/03/2015 06:13	05/03/2015 06:13	ALD
06-46-7	1,4-Dichlorobenzene	ND		ug/m³	14	14	23.44	EPA TO-15 Certifications:	NELAC-N	05/03/2015 06:13 (10854,NJDEP	05/03/2015 06:13	ALD
23-91-1	1,4-Dioxane	ND		ug/m³	8.4	8.4	23.44	EPA TO-15 Certifications:		05/03/2015 06:13 (10854,NJDEP	05/03/2015 06:13	ALD
78-93-3	2-Butanone	ND		ug/m³	6.9	6.9	23.44	EPA TO-15 Certifications:		05/03/2015 06:13 (10854,NJDEP	05/03/2015 06:13	ALD



<u>Client Sample ID:</u> SV01-050215			York Sample ID:	15E0069-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0069	170362501	Soil Vapor	May 2, 2015 3:00 pm	05/02/2015

	Volatile Organics, EPA TO15 Full List ample Prepared by Method: EPA TO15 PREP				<u>Log-ir</u>	<u>1 Notes:</u>		<u>Sam</u>				
Sample Prepare		Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
591-78-6	* 2-Hexanone	ND		ug/m³	19	19	23.44	EPA TO-15 Certifications:		05/03/2015 06:13	05/03/2015 06:13	ALD
107-05-1	* 3-Chloropropene	ND		ug/m³	7.3	7.3	23.44	EPA TO-15 Certifications:		05/03/2015 06:13	05/03/2015 06:13	ALD
108-10-1	4-Methyl-2-pentanone	ND		ug/m³	9.6	9.6	23.44	EPA TO-15 Certifications:	NELAC-N	05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD
67-64-1	Acetone	130		ug/m³	5.6	5.6	23.44	EPA TO-15 Certifications:	NELAC-N	05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD
107-13-1	* Acrylonitrile	ND		ug/m³	5.1	5.1	23.44	EPA TO-15 Certifications:		05/03/2015 06:13	05/03/2015 06:13	ALD
71-43-2	Benzene	19		ug/m³	7.5	7.5	23.44	EPA TO-15 Certifications:	NELAC-N	05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD
100-44-7	Benzyl chloride	ND		ug/m³	12	12	23.44	EPA TO-15 Certifications:	NELAC-N	05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD
75-27-4	Bromodichloromethane	ND		ug/m³	15	15	23.44	EPA TO-15 Certifications:	NELAC-N	05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD
75-25-2	Bromoform	ND		ug/m³	24	24	23.44	EPA TO-15 Certifications:	NELAC-N	05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD
74-83-9	Bromomethane	ND		ug/m³	9.1	9.1	23.44	EPA TO-15 Certifications:	NELAC-N	05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD
75-15-0	Carbon disulfide	ND		ug/m³	7.3	7.3	23.44	EPA TO-15 Certifications:	NELAC-N	05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD
56-23-5	Carbon tetrachloride	ND		ug/m³	3.7	3.7	23.44	EPA TO-15 Certifications:	NELAC-N	05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD
108-90-7	Chlorobenzene	ND		ug/m³	11	11	23.44	EPA TO-15 Certifications:	NELAC-N	05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD
75-00-3	Chloroethane	ND		ug/m³	6.2	6.2	23.44	EPA TO-15 Certifications:	NELAC-N	05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD
67-66-3	Chloroform	30		ug/m³	11	11	23.44	EPA TO-15 Certifications:	NELAC-N	05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD
74-87-3	Chloromethane	ND		ug/m³	4.8	4.8	23.44	EPA TO-15 Certifications:	NELAC-N	05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD
156-59-2	cis-1,2-Dichloroethylene	ND		ug/m³	9.3	9.3	23.44	EPA TO-15 Certifications:	NELAC-N	05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/m³	11	11	23.44	EPA TO-15 Certifications:	NELAC-N	05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD
110-82-7	Cyclohexane	ND		ug/m³	8.1	8.1	23.44	EPA TO-15 Certifications:		05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD
124-48-1	Dibromochloromethane	ND		ug/m³	19	19	23.44	EPA TO-15 Certifications:		05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD
75-71-8	Dichlorodifluoromethane	ND		ug/m³	12	12	23.44	EPA TO-15 Certifications:		05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD
141-78-6	* Ethyl acetate	ND		ug/m³	17	17	23.44	EPA TO-15 Certifications:	NELAC-N	05/03/2015 06:13	05/03/2015 06:13	ALD



<u>Client Sample ID:</u> SV01-050215			<u>York Sample ID:</u>	15E0069-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
15E0069	170362501	Soil Vapor	May 2, 2015 3:00 pm	05/02/2015

	ganics, EPA TO15 Full List		Log-in Notes: <u>Sample Notes:</u>										
Sample Prepared	d by Method: EPA TO15 PREP . Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst	
100-41-4	Ethyl Benzene	ND		ug/m³	10	10	23.44	EPA TO-15 Certifications:	NEL AC N	05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD	
87-68-3	Hexachlorobutadiene	ND		ug/m³	25	25	23.44	EPA TO-15 Certifications:		05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD	
67-63-0	Isopropanol	800		ug/m³	12	12	23.44	EPA TO-15 Certifications:	NELAC-N	05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD	
80-62-6	Methyl Methacrylate	ND		ug/m³	9.6	9.6	23.44	EPA TO-15 Certifications:	NELAC-N	05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD	
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	8.4	8.4	23.44	EPA TO-15 Certifications:		05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD	
75-09-2	Methylene chloride	ND		ug/m³	16	16	23.44	EPA TO-15 Certifications:		05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD	
142-82-5	n-Heptane	ND		ug/m³	9.6	9.6	23.44	EPA TO-15 Certifications:		05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD	
110-54-3	n-Hexane	17		ug/m³	8.3	8.3	23.44	EPA TO-15 Certifications:		05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD	
95-47-6	o-Xylene	ND		ug/m³	10	10	23.44	EPA TO-15 Certifications:	NELAC-N	05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD	
179601-23-1	p- & m- Xylenes	ND		ug/m³	20	20	23.44	EPA TO-15 Certifications:	NELAC-N	05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD	
622-96-8	* p-Ethyltoluene	ND		ug/m³	12	12	23.44	EPA TO-15 Certifications:		05/03/2015 06:13	05/03/2015 06:13	ALD	
115-07-1	* Propylene	ND		ug/m³	4.0	4.0	23.44	EPA TO-15 Certifications:		05/03/2015 06:13	05/03/2015 06:13	ALD	
100-42-5	Styrene	ND		ug/m³	10	10	23.44	EPA TO-15 Certifications:	NELAC-N	05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD	
127-18-4	Tetrachloroethylene	2500		ug/m³	4.0	4.0	23.44	EPA TO-15 Certifications:		05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD	
109-99-9	* Tetrahydrofuran	ND		ug/m³	6.9	6.9	23.44	EPA TO-15 Certifications:		05/03/2015 06:13	05/03/2015 06:13	ALD	
108-88-3	Toluene	38		ug/m³	8.8	8.8	23.44	EPA TO-15 Certifications:	NELAC-N	05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD	
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	9.3	9.3	23.44	EPA TO-15 Certifications:		05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD	
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	11	11	23.44	EPA TO-15 Certifications:		05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD	
79-01-6	Trichloroethylene	120		ug/m³	3.1	3.1	23.44	EPA TO-15 Certifications:		05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD	
75-69-4	Trichlorofluoromethane (Freon 11)	ND		ug/m³	13	13	23.44	EPA TO-15 Certifications:		05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD	
108-05-4	Vinyl acetate	ND		ug/m³	8.3	8.3	23.44	EPA TO-15 Certifications:		05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD	
593-60-2	Vinyl bromide	ND		ug/m³	10	10	23.44	EPA TO-15 Certifications:		05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD	
								certifications.	NELAC-N	110034,INJDEP			



Client Sample ID: SV01-050215		<u>York Sample ID:</u>	15E0069-01
York Project (SDG) No. Client Project ID	Matrix	Collection Date/Time	Date Received
15E0069 170362501	Soil Vapor	May 2, 2015 3:00 pm	05/02/2015

<u>Volatile O</u>	Volatile Organics, EPA TO15 Full List				<u>Log-in</u>	Notes:		San	nple Note			
Sample Prepared by Method: EPA TO15 PREP CAS No. Parameter R			Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference Method		Date/Time Prepared	Date/Time Analyzed	Analyst
75-01-4	Vinyl Chloride	ND		ug/m³	1.5	1.5	23.44	EPA TO-15 Certifications:	NELAC-N	05/03/2015 06:13 Y10854,NJDEP	05/03/2015 06:13	ALD
	Surrogate Recoveries	Result		Acc	eptance Ran	ge						
460-00-4	Surrogate: p-Bromofluorobenzene	93.5 %			72-118							



#### **Notes and Definitions**

*	Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
ND	NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
LOQ	LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.
LOD	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
MDL	METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.
Reported to	This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.
NR	Not reported
RPD	Relative Percent Difference
Wet	The data has been reported on an as-received (wet weight) basis
Low Bias	Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
High Bias	High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
Non-Dir.	Non-dir. flag (Non-Directional Bias ) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.
and cannot b	46 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet e separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. on, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as ine.
	s are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and are non-target aroclors for some regulatory lists.
2-chloroethy should take r	lvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

Field Chain-of-Custody Record - AIR	NOTE: York's Std. Terms & Conditions are listed on the back side of this document. This document serves as your written authorization to York to proceed with the analyses requested and your signature binds you to York's Std. Terms & Conditions unless superseded by written contract.	Report To: Invoice To: YOUR Project ID Turn-Around Time	Company: LANGAN 8th Fl. Address: 240 W345 54 8th Realty COP 170362501	Developments and Address Order No. Bring Purchase Order No. RUSH-TWO Day	Attention: Ayon Merchanen Eduard Slinin	Jan (EMAN Address: Qmandar tooch @ brown	Print Clearly and Legibly. All Information must be completeAdditional Notes:Detection Limits RequiredRegulatory Comparison ExcelSamples will NOT be logged in and the turn-around timeclock will not begin until any questions by York are resolved.	A	AI- INDOOR Ambient Air AO- OUTDOOR Amb. Air AE- Vapor Extraction Well/ Please enter the following Field Data	AS- SOIL Vapor/Sub-Slab	ication Date Sampled AIR Matrix Canister Vacuum Canister Vacuum Canister ID Flow Cont.ID ANALYSES REQUESTED Sampling Media	5/3/15 PS -30	6 Liter canister	6 Liter canister	6 Liter canister7	6 Liter canister7	6 Liter canister	6 Liter canister	Tediar Bag	0 Liter canster Tedara Bag	0 Liter canister	3	NO. 17346 Controluct TID NO. 17346 Controluct TID Samples Received By Date/Time Samples Received By Date/Time Samples Relinquished By Date/Time	0111 a
	AORK Marine	YOUR Information	Ι.	0	Byan Munderbach	E-Mail Address: Rmanderbache langen (EM	Print Clearly and Legibly. All Samples will NOT be logged clock will not begin until any c		Samples Collected/Authorized By (Signature)	Name (printed)	Sample Identification	SVO1-050215										Com	John In Low Part	f 8

APPENDIX B Health and Safety Plan

## HEALTH AND SAFETY PLAN 335 Bond Street BROOKLYN, NEW YORK

Prepared For:

## E&M Realty Corp.

335 Bond Street Brooklyn, NY 11231

Prepared By:

## Langan Engineering, Environmental, Surveying and Landscape Architecture, D.P.C. 21 Penn Plaza, 360 West 31st Street, 8th Floor

New York, New York 10001

October 2015

# **TABLE OF CONTENTS**

SECTION 1.0	SUMMARY	1
SECTION 2.0		7
2.1 Pupo	se and Policy	7
2.2 Site I	Description	7
2.3 Scop	e of Work	7
	an Project Team Organization	
<b>SECTION 3</b>	RISK ANALYSIS	
3.1 Chen	nical Hazards	11
3.2 Radia	ation Hazards	11
3.3 Biolo	gical Hazards	11
3.3.1	Animals	11
	nsects	
	ical Hazards	
	Explosion	
	Heat Stress Cold-Related Illness	
	Voise	
	Hand and Power Tools	
	Slips, Trips and Fall Hazards	
3.4.7 (	Jtilities (Electrocution and Fire Hazards)	21
3.5 Task	Hazard Analysis	21
3.5.1 \$	Soil Sampling	21
<b>SECTION 4</b>	PERSONNEL PROTECTION AND MONITORING	22
4.1 OSH/	A Training	22
4.2 Site-	Specific Training	22
4.3 Moni	toring Requirements	23
4.4 Sum	mary of Action levels and Restrictions	
	Level D and Modified Level D	
	_evel C	
	Level B (Retreat)	
4.4.4 (	OSHA Requirements for Personal Protective Equipment	25

<b>SECTION 5</b>	WORK ZONES AND DECONTAMINATION	26
<b>5.1 Site</b> 5.1.1 5.1.2	Work Zones Hot Zone Warm Zone	26
5.1.3	Cold Zone	26
5.2 Dec	ontamination	26
5.2.1	Decontamination of Personnel	
5.2.2 5.2.3	Decontamination of Field Equipment Vehicle Cleaning Area/Stabilized Construction Entrances	
	nedial Activity-Derived Waste	
<b>J.</b> 3 NEII	redial Activity-Derived Waste	21
<b>SECTION 6</b>	ACCIDENT PREVENTION AND CONTINGENCY PLAN	28
6.1 Acc	ident Prevention	28
6.1.1	Site-Specific Training	28
6.1.2	Vehicles and Heavy Equipment	28
6.2 Spil	I Control Plan	29
6.3 Con	tingency Plan	29
6.3.1	Emergency Procedures	
6.3.2	Chemical Exposure	
6.3.3 6.3.4	Personal Injury Evacuation Procedures	
6.3.5	Procedures Implemented in the Event of a Major Fire, Explosion, c	
Emergency		
6.4 Odd	r, Vapor and Dust Monitoring and Response	31
6.4.1	Periodic Monitoring	
6.4.2	Vapor Emission Response Plan	
6.4.3 6.4.4	Major Vapor Emission Major Vapor Emission Response Plan	
0.4.4		32

# LIST OF TABLES

TABLE 1	EMERGENCY CONTACTS	5
TABLE 2	SUMMARY OF ACTION LEVELS AND RESTRICTIONS	6
TABLE 3	ON-SITE PERSONNEL AND RESPONSIBILITIES	9
[GASOLINE, [	RELEVANT PROPERTIES OF VOLATILES (PETROLEUM DIESEL, ETC.]), METALS, SEMIVOLATILES, AND PESTICIDES SUSPECTED AT THE SITE	12
TABLE 5 MONITORING	SUGGESTED FREQUENCY OF PHYSIOLOGICAL G FOR FIT AND ACCLIMATED WORKERS	15
TABLE 6	HEAT INDEX	16

# LIST OF FIGURES

FIGURE 1	MAP/ROUTE TO HOSPITAL
----------	-----------------------

# LIST OF ATTACHMENTS

- **ATTACHMENT A** AIR MONITORING EQUIPMENT CALIBRATION AND MAINTENANCE
- **ATTACHMENT B** FORMS FOR HEALTH AND SAFETY RELATED ACTIVITIES
- **ATTACHMENT C** SAFETY DATA SHEETS
- **ATTACHMENT D** STANDARD SAFE WORK PRACTICES

#### **SECTION 1.0 SUMMARY**

#### Emergency Contacts

Emergency contacts are listed on Table 1.

#### **Emergency Procedures**

Emergency procedures are described in Section 6. The route to the hospital is provided as Figure 1.

#### Site-Specific Hazards and Training

Site-specific hazards are described in Section 3.

The Field Safety Officer (FSO) will be responsible for providing site-specific training to all personnel that work at the site. This training will cover the following topics:

- Names of personnel responsible for site safety and health.
- Hazards potentially present at the site.
- Proper use of personal protective equipment.
- Work practices by which the employee can minimize risk from hazards.
- Acute effects of compounds at the site.
- Decontamination procedures.

Personnel will be required to sign and date the Site-Specific Training Form provided in Attachment B prior to working on-site.

#### **General Health and Safety Requirements**

Personnel will be required to sign and date the Health and Safety Plan and Work Plan Acceptance Form provided in Attachment B prior to working on-site.

#### Personnel Protective Equipment

Level D protection will be worn for initial entry on-site and for all activities except as noted in Section 4. Level D protection will consist of:

- Standard work clothes
- Steel-toe safety boots

- Safety glasses or goggles must be worn when splash hazard is present
- Hard hat

Modified Level D protection may be required under conditions where potential contact of the skin or clothes with significant contamination occurs. Modified Level D is the same as Level D but includes Tyvek coveralls and disposable polyethylene overboots.

Level C protection, unless otherwise specified in Section 4, will consist of Level D equipment and the following additional equipment:

- Full-face or half-mask air-purifying respirator (APR)
- Combination dust/organic vapor cartridges
- Tyvek coveralls if particulate hazard present
- PE-Coated Tyvek coverall if liquid contamination present
- PVC or nitrile inner and nitrile outer gloves
- 5-minute escape SCBA

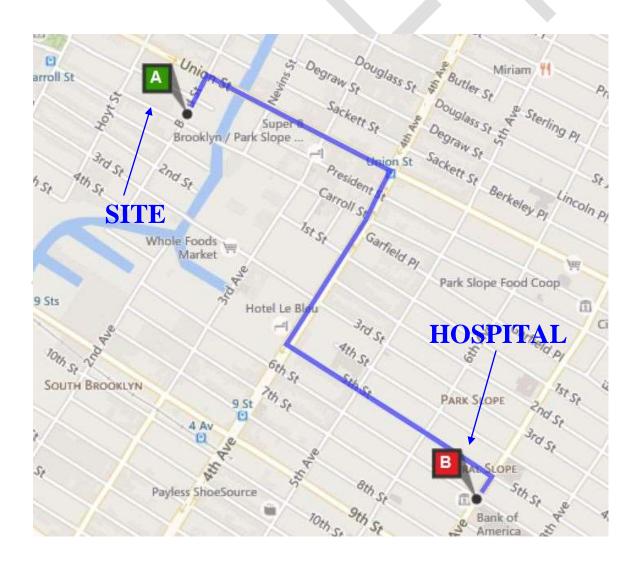
Level B protection, unless otherwise specified in Section 4, will consist of Level D equipment and the following additional equipment:

- Hard hat
- Positive Pressure SCBA or positive pressure air line and respirator with escape SCBA
- PE-Coated Tyvek coverall
- Nitrile outer and PVC or nitrile inner gloves
- Nitrile boot covers

#### <u>Air Monitoring</u>

A summary of the action levels and restrictions is presented on Table 2.

FIGURE 1-HOSPITAL ROUTE PLAN (New York Methodist Hospital)


Site Location: 335 Bond Street

Brooklyn, NY 11231

Hospital Location: 506 6- Street

Brooklyn, NY 11215

Information Line (718) 780-3000



#### **Route to Hospital**

# From 335 Bond Street, Brooklyn, New York to New York Methodist Hospital, located at 506 6⁻ Street, Brooklyn, New York.

- 1. Depart Bond Street toward President Street (NORTH)
- 2. Turn RIGHT onto Union Street
- **3.** Turn RIGHT onto 4th Avenue
- **4.** Turn LEFT onto 5th Street
- **5.** Turn RICGHT onto 7th Avenue
- 6. Arrive at Destination on the LEFT

Total Est. Time: 7 minutes Total Est. Distance: 1.3 miles

#### TABLE 1

#### **EMERGENCY CONTACTS**

In the event of any situation or unplanned occurrence requiring assistance, the appropriate contact(s) should be made from the list below. For emergency situations, contact should first be made with the Field Team Leader (or designee) and the Site Safety Officer, who will notify emergency personnel who will then contact the appropriate response teams. This emergency contacts list must be in an easily accessible location at the site.

Emergency Contacts	Phone Number			
Fire Department:	911			
Police:	911			
New York City One Call Center: (48-hour notice required for utility mark-outs)	811			
Poison Control Center:	(800) 222-122	22		
Pollution Toxic Chemical Oil Spills:	(800) 424-880	)2		
Medical Emergency				
Ambulance Service:	911			
Hospital Name:	New York Methodist	: Hospital		
Hospital Telephone Number:	(718) 780-300	00		
Hospital Address:	506 6≞ Stree Brooklyn, N			
Route to Hospital:	See Page 3 and	d 4		
Travel Time From Site:	7 minutes			
<u>Langan Contacts</u>				
Principal/Associate:	Michael Burke, CHMM	(212) 479-5413		
Program Manager:	Ryan Manderbach	(212) 479-5582		
Health & Safety Officer:	Tony Moffa	(215) 756-2523		
Field Safety Officer	Bill Bohrer	(212) 479-5533		
Field Team Leader	Albert Tashji	(508) 918-5527		
Quality Assurance Officer	Nicole Rice	(212) 479-5491		

# TABLE 2 SUMMARY OF ACTION LEVELS AND RESTRICTIONS

#### Conditions for Level D:

All areas

- PID readings < 25 ppm and benzene < 1 ppm
- No visible fugitive dust emissions from site activities

# **Conditions for Level C:**

All areas

- Where PID readings > 25 ppm (sustained for 15 minutes in the breathing zone) to 200 ppm and benzene < 5ppm, and/or</li>
- Any visible fugitive dust emissions from site activities that disturb contaminated soil.

# Conditions for Level B (or retreat):

All areas

- Where PID readings > 500 ppm or benzene > 25 ppm,
- Visible fugitive dust emissions from site activities cloud the surrounding air.

#### **SECTION 2.0 INTRODUCTION**

#### 2.1 PUPOSE AND POLICY

The purpose of this Health and Safety Plan (HASP) is to establish personnel protection standards and mandatory safety practices and procedures for potential encounters with non-hazardous soil or groundwater during investigation and construction at the Site. This plan assigns responsibilities, establishes standard operating procedures, and provides for contingencies that may arise while operations are being conducted during investigation.

The provisions of the plan are mandatory for all on-site personnel. Supplemental HASP plans shall be developed and used by contractors and subcontractors that shall conform to this plan at a minimum. All personnel who engage in project activities must be familiar with this plan, comply with its requirements, and sign the Plan Acceptance Form (Attachment B), page number B-5, prior to working on the site. The Plan Acceptance Form must be submitted to the Langan Health and Safety Officer (HSO). In addition to this plan, all work shall be performed in accordance with all applicable federal, state and local regulations.

#### 2.2 SITE DESCRIPTION

The Site is located at 335 Bond Street, Brooklyn, New York, and occupied by an office and garage. The Site encompasses approximately 15,480 square feet. The proposed development at the Site consists of mixed commercial and residential use.

# 2.3 SCOPE OF WORK

The scope of work for the Site is a geophysical survey, soil borings, and collection and analysis of soil samples from five soil borings, collection of one groundwater sample from one soil boring, collection of one sub-slab soil vapor sample, and collection of one ambient air sample. Additional discussion on the proposed investigation is provided below.

<u>Geophysical Survey</u>: A geophysical survey, including ground penetrating radar (GPR), will be performed at the Site to locate utilities, possible USTs and subsurface structures or anomalies. Proposed boring locations will be screened for obstructions and utilities. Based on the findings of the geophysical survey, boring locations may be adjusted and test pits may be recommended.

<u>Soil Boring Investigation:</u> Nine soil borings will be advanced with a Geoprobe® direct-push drill rig. Borings will be advanced approximately 15 feet below ground surface (bgs). Soil cuttings will be collected continuously into four-foot Macrocore barrels fitted with dedicated acetate sleeves.

A Langan field engineer will classify the extracted soil and screen the soil cuttings for visual and olfactory indicators of contamination. A photoionization detector (PID) will be used to screen the soil cuttings for the presence of volatile organic compounds. One grab soil sample will be collected from the 0-2 ft bgs interval and one sample will be collected

from the interval exhibiting the most field contamination (soil that exhibits staining, odors and/or elevated PID readings).

<u>Groundwater Investigation:</u> Nine permanent groundwater monitoring wells will be advanced, one into each of the soil borings. The wells will be developed using a peristaltic pump, and groundwater samples will be collected. A Langan field engineer will collect groundwater quality parameters during low-flow sampling using a Horiba U-52.

<u>Soil Vapor and Ambient Air Sampling:</u> Two sub-slab soil vapor samples will be collected in the site basement, using 6-L summa canisters. In addition, one ambient air sample will be collected on the sidewalk adjoining the site entrance using a 6-L summa canister.

Sampling procedures for this investigation will be performed in accordance with the NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation. Each soil boring location will be accurately measured to fixed benchmarks (i.e., property lines, adjacent structures, etc.) or by a precision Global Positioning System (GPS) that is capable of coordinating a fixed point within one foot.

# 2.4 LANGAN PROJECT TEAM ORGANIZATION

Table 3 describes the responsibilities of Langan personnel associated with this project. The names of principal personnel associated with this project are:

Principal/Associate:	Michael Burke, CHMM	(212) 479-5413
Program Manager:	Ryan Manderbach	(212) 479-5582
Health & Safety Officer:	Tony Moffa	(215) 756-2523
Field Safety Officer	Bill Bohrer	(212) 479-5533
Field Team Leader	Albert Tashji	(212) 549-5527
Quality Assurance Officer	Nicole Rice	(212) 479-5491

All Langan personnel have been appropriately trained in first aid and hazardous waste safety procedures, including the operating and fitting of personal protective equipment, and are experienced with the field operations planned for this site.

 TABLE 3

 ON-SITE PERSONNEL AND RESPONSIBILITIES

**PROJECT MANAGER** - Assumes control over site activities. Reports to upper-level management. Has authority to direct response operations.

#### **Responsibilities:**

- Prepares and organizes the background review of the situation, the Work Plan, the Site Health and Safety Plan, and the field team.
- Obtains permission for site access and coordinates activities with appropriate officials.
- Ensures that the Work Plan is executed and on schedule.
- Briefs the field team on their specific assignments.
- Coordinates with the site Health and Safety Officer (HSO) to ensure that health and safety requirements are met.
- Prepares the final report and support files on the response activities.
- Serves as the liaison with public officials.

**FIELD SAFETY OFFICER (FSO)** - Advises the HSO and Project Manager on all aspects of health and safety on site. Stops work if any operation threatens worker or public health or safety.

#### **Responsibilities**:

- Ensures that all necessary Health and Safety Equipment is available on-site. Ensures that all equipment is functional.
- Periodically inspects protective clothing and equipment.
- Ensures that protective clothing and equipment are properly stored and maintained.
- Controls entry and exit at the Access Control Points.
- Coordinates health and safety program activities with the Project HSO.
- Confirms each team member's suitability for work based on a physician's recommendation.
- Monitors the work parties for signs of stress, such as cold exposure, heat stress, and fatigue.
- Implements the Site Health and Safety Plan.
- Conducts periodic inspections to determine if the Site Health and Safety Plan is being followed.
- Enforces the "buddy" system.

#### TABLE 3 - CONTINUED ON-SITE PERSONNEL AND RESPONSIBILITIES

#### Field Safety Officer Responsibilities (continued)

- Knows emergency procedures, evacuation routes, and the telephone numbers of the ambulance, local hospital, poison control center, fire department, and police department.
- Notifies, when necessary, local public emergency officials.
- Coordinates emergency medical care.
- Sets up decontamination lines and the decontamination solutions appropriate for the type of chemical contamination on the site.
- Controls the decontamination of all equipment, personnel, and samples from the contaminated areas.
- Assures proper disposal of contaminated clothing and materials.
- Ensures that all required equipment is available.
- Advises medical personnel of potential exposures and consequences.
- Notifies emergency response personnel by telephone or radio in the event of an emergency.

**FIELD TEAM LEADER -** Advises the Project Manager on all aspects of health and safety on site. Stops work if any operation threatens worker or public health or safety. Is directly responsible for the field team and the safety of site operations.

#### Responsibilities:

- Manages field operations.
- Executes the Work Plan and schedule.
- Enforces safety procedures.
- Coordinates with the Site Safety Officer in determining protection level.
- Enforces site control.
- Documents field activities and sample collection.
- Serves as a liaison with public officials.

**WORK TEAM** – Operators, laborers, samplers. The work party must consist of at least two people.

#### **Responsibilities**:

- Safely completes the on-site tasks required to fulfill the Work Plan.
- Complies with Site Safety Plan.
- Notifies Site Safety Officer or supervisor of suspected unsafe condition

#### SECTION 3 RISK ANALYSIS

# 3.1 CHEMICAL HAZARDS

Despite the lack of previous environmental studies, volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), pesticides, and metals may exist on site. Other compounds that may be encountered are site equipment fuels (gasoline, diesel, etc.) that contain volatile components. Relevant properties of select compounds are outlined in Table 4, and complete Safety Data Sheets (SDS) are included as Attachment C.

A PID will be used to screen soils and monitor for volatile compounds.

In addition to existing suspected compounds on site, some solvents used in decontamination of equipment are potentially hazardous to human health if they are not used properly. SDS for detected soil contaminants as well as decontamination solvents that will be used on site are included in Attachment C.

# 3.2 RADIATION HAZARDS

No radiation hazards are known or expected at the site.

# 3.3 BIOLOGICAL HAZARDS

# 3.3.1 Animals

Animals, such as dogs, pigeons, sea gulls, mice, and rats may be encountered during construction activities. Workers shall use discretion and avoid all contact with animals. Bites and scratches from dogs can be painful and can lead to the worker contracting the rabies virus if the dog is rabid. Contact with rat and mice droppings may lead to the worker contracting hantavirus. Inhalation of dried pigeon droppings may lead to the worker contracting psittacosis; crytococcosis and histoplasmosis are also diseases associated with exposure to dried bird droppings, but these diseases are less likely to occur in a construction-type occupational setting.

#### TABLE 4 RELEVANT PROPERTIES OF VOLATILES (PETROLEUM [GASOLINE, DIESEL, ETC.]), METALS, SEMIVOLATILES, AND PESTICIDES KNOWN OR SUSPECTED AT THE SITE

Compound (Synonym)	OSHA PEL ⁽¹⁾ (ppm)	IDLH (ppm)	LEL (%)	Odor Threshold ⁽²⁾ (ppm)	Odor Character	Vapor Pressure (mm Hg)	Physical State	Detectable w/ 10.6 eV lamp PID (I.P. eV)
Tetrachlorethene	25	150	NA	NA	Sweet	14	NonCombustible Liquid	Yes
Trichloroethene	50	1000	8	NA	Sweet	58	Combustible Liquid	Yes
Benzene	1	500	1.2	NA	Aromatic	75	Flammable Liquid	Yes
Mercury(Hg)	0.01 mg/m3	10 mg/m3	NA	NA	Odorless	0.0012	Noncombustible Liquid	NA
Arsenic	NA	5 mg/m3 (CA)	NA	NA	Odorless	0 (approx.)	Noncombustible Solid	NA
Lead (Pb)	0.05 mg/m3	100 mg/m3	NA	NA	Odorless	0 (approx.)	Noncombustible Solid	NA
Nickel	1 mg/m3	10 mg/m3 (Ca)	NA	NA	Odorless	0 (approx.)	Noncombustible Solid	NA
Copper	1 mg/m3	100 mg/m3	NA	NA	NA	NA	Solid	NA
Antimony	0.5 mg/m3	50 mg/m3	NA	NA	NA	0 (approx.)	Noncombustible Solid	NA
Iron	NA	NA	NA	NA	NA	0 (approx.)	Noncombustible Solid	NA
Manganese	5 mg/m3	500 mg/m3	NA	NA	NA	0 (approx.)	Combustible Solid	NA
Sodium	NA	NA	NA	NA	NA	NA	Combustible Solid	NA

#### TABLE 4 RELEVANT PROPERTIES OF VOLATILES (PETROLEUM [GASOLINE, DIESEL, ETC.]), METALS, SEMIVOLATILES, AND PESTICIDES KNOWN OR SUSPECTED AT THE SITE

Compound (Synonym)	OSHA PEL ⁽¹⁾ (ppm)	IDLH (ppm)	LEL (%)	Odor Threshold (ppm)	Odor Character	Vapor Pressure (mm Hg)	Physical State	Detectable w/ 10.6 eV lamp PID (I.P. eV)
Zinc	NA	NA	NA	NA	NA	NA	Noncombustible Solid	NA
Dibenz(a,h)anthracene	0.2 mg/m3	NA (CA)	NA	NA	NA	0 (approx.)	Combustible Solid	NA
Indeno(1,2,3-cd)pyrene	NA	NA	NA	NA	Odorless	0 (approx.)	Combustible Solid	NA
Chrysene	0.2 mg/m3	NA (CA)	NA	NA	Odorless	0 (approx.)	Noncombustible Solid	NA
Benzo(a)anthracene	0.2 mg/m3	NA (CA)	NA	NA	Odorless	0 (approx.)	Noncombustible	NA
Benzo(a)pyrene	0.2 mg/m3	80 (CA)	NA	NA	NA	0 (approx.)	Combustible Solid	NA
Benzo(b)fluoranthene	0.2 mg/m3	NA (CA)	NA	NA	Odorless	0 (approx.)	Combustible Solid	NA
Benzo(k)fluoranthene	NA	NA (CA)	NA	NA	NA	0 (approx.)	Solid	NA
4-4'-DDD	NA	NA	NA	NA	NA	0 (approx.)	Solid	NA
4-4'-DDT	1 mg/m3	500 mg/m3	NA	NA	Aromatic	0 (approx.)	Solid	NA

(1) 29 CFR 1910, June 30, 1993 (8-hour Time weighted average unless otherwise specified.)

[IDLH] Immediately dangerous to life or health

[CA] Suspect carcinogen - Minimize all possible exposures

#### 3.3.2 Insects

Insects, including bees, wasps, hornets, mosquitoes, and spiders, may be encountered during construction activities. Individuals allergic to insect bites or stings may succumb to anaphylactic shock, which is a life-threatening condition and may result in death. In addition, mosquito bites may lead to a worker contracting West Nile encephalitis or other contagious diseases known to be carried by a mosquito host. Personnel bitten or stung by an insect should notify the HSO immediately. The following is a list of preventive measures related to insect bites or stings:

- Apply insect repellent prior to work and or as often as needed throughout the work shift;
- Wear protective clothing (work boots, socks and light colored pants);
- When walking in wooded areas, to the extent possible avoid contact with bushes, tall grass, or brush; and
- Field personnel who are allergic to insects or are otherwise susceptible to insect bites and stings should notify the HSO prior to commencing work and shall be responsible for supplying allergy medication for their own use throughout the work shift.
- The HSO or FSO will instruct the project personnel in the recognition and procedures for encountering potentially hazardous insects at the site.

#### Lyme Disease

Lyme disease is caused by infection from a deer tick that carries <u>Borrelia</u> <u>burgdorferi</u>, *B. garinii*, or *B. afzelii*, all spirochaete bacteria. Lyme disease is a flu-like illness most commonly observed in patients between May and October when ticks are the most active. Symptoms of lyme disease may include a stiff neck, chills, fever, sore throat, headache, fatigue, and joint pain. Early signs of an infection may include the characteristic circular and bulls-eye-shaped skin rash (<u>erythema chronicum migrans</u>) and joint pain. Lyme disease can cause serious nerve or heart problems as well as a disabling arthritis if left untreated. If a worker feels sick or exhibits any of the symptoms identified above, he or she should notify the HSO immediately.

This site-specific HASP recommends personnel check themselves when working and after working in areas that could harbor deer ticks and wear light-colored clothing. If a worker finds a tick on his or her body, he or she should notify the HSO immediately. The tick can be removed by pulling gently at the tick's head with tweezers. The affected area should then be disinfected with an antiseptic wipe.

# 3.4 PHYSICAL HAZARDS

# 3.4.1 Explosion

No explosion hazards are expected for the scope of work at this site.

# 3.4.2 Heat Stress

The use of Level C protective equipment, or greater, may create heat stress. Monitoring of personnel wearing personal protective clothing should commence when the ambient temperature is 72°F or above. Table 5 presents the suggested frequency for such monitoring. Monitoring frequency should increase as ambient temperature increases or as slow recovery rates are observed. Refer to the Table 6 below to assist in assessing when the risk for heat related illness is likely. To use this table, the ambient temperature and relative humidity must be obtained (a regional weather report should suffice). Heat stress monitoring should be performed by the Field Safety Officer, who shall be able to recognize symptoms related to heat stress.

# Table 5Suggested Frequency of Physiological MonitoringFor Fit and Acclimated Workers^a

Adjusted	Normal Work	Impermeable
Temperature ^b	Ensemble ^c	Ensemble
90°F or above	After each 45 min.	After each 15 min.
(32.2°C) or above	of work	of work
87.5°F	After each 60 min.	After each 30 min.
(30.8°-32.2°C)	of work	of work
82.5°-87.5°F	After each 90 min.	After each 60 min.
(28.1°-30.8°C)	of work	of work
77.5°-82.5°F	After each 120 min.	After each 90 min.
(25.3°-28.1°C)	of work	of work
72.5°-77.5°F	After each 150 min.	After each 120 min.
(22.5°-25.3°C)	of work	of work

- a For work levels of 250 kilocalories/hour.
- b Calculate the adjusted air temperature (ta adj) by using this equation: ta adj  $^{O}F =$  ta  $^{O}F + (13 \times \% \text{ sunshine})$ . Measure air temperature (ta) with a standard mercury-in-glass thermometer, with the bulb shielded from radiant heat. Estimate percent sunshine by judging what percent time the sun is not covered by clouds that are thick enough to produce a shadow. (100 percent sunshine = no cloud cover and a sharp, distinct shadow; 0 percent sunshine = no shadows.)
- c A normal work ensemble consists of cotton coveralls or other cotton clothing with long sleeves and pants.

# Table 6 - HEAT INDEX

			ENVI	RONMENT	AL TEMPE	RATURE (F	ahrenheit)				
	70	75	80	85	90	95	100	105	110	115	120
RELATIVE HUMIDITY					APPARE		RATURE*				_
0%	64	69	73	78	83	87	91	95	99	103	107
10%	65	70	75	80	85	90	95	100	105	111	116
20%	66	72	77	82	87	93	99	105	112	120	130
30%	67	73	78	84	90	96	104	113	123	135	148
40%	68	74	79	86	93	101	110	123	137	151	
50%	69	75	81	88	96	107	120	135	150		
60%	70	76	82	90	100	114	132	149			
70%	70	77	85	93	106	124	144				
80%	71	78	86	97	113	136					
90%	71	79	88	102	122						
100%	72	80	91	108							

*Combined Index of Heat and Humidity...what it "feels like" to the body Source: National Oceanic and Atmospheric Administration

How to use Heat Index:

- 1. Across top locate Environmental Temperature
- 2. Down left side locate Relative Humidity
- 3. Follow across and down to find Apparent Temperature
- 4. Determine Heat Stress Risk on chart at right

Note: Exposure to full sunshine can increase Heat Index values

	Heat Stress Risk with Physical
Temperature	Activity and/or Prolonged
	Exposure
90-105	Heat Cramps or Heat
	Exhaustion Possible
105-130	Heat Cramps or Heat Exhaustion
	Likely, Heat Stroke Possible

To monitor the workers, be familiar with the following heat-related disorders and their symptoms:

- **Prickly Heat** (Heat rash)
  - Painful, itchy red rash. Occurs during sweating, on skin covered by clothing.
- Heat Cramps
  - Painful spasm of arm, leg or abdominal muscles, during or after work.
- Heat Exhaustion
  - Headache, nausea, dizziness. Cool, clammy, moist skin. Heavy sweating. Weak, fast pulse. Shallow respiration, normal temperature.
- Heat Fatigue
  - Weariness, irritability, loss of skill for fine or precision work. Decreased ability to concentrate. No loss of temperature control.
- Heat Syncope (Heat Collapse)
  - Fainting while standing in a hot environment.
- Heat Stroke
  - Headache, nausea, weakness, hot dry skin, fever, rapid strong pulse, rapid deep respirations, loss of consciousness, convulsions, coma. **This is a life threatening condition.**

<u>Do not permit a worker to wear a semi-permeable or impermeable garment</u> when they are showing signs or symptoms of heat-related illness.

To monitor the worker, measure:

- Heart rate. Count the radial pulse during a 30-second period as early as possible in the rest period.
  - If the heart rate exceeds 100 beats per minute at the beginning of the rest period, shorten the next work cycle by one-third and keep the rest period the same.
  - If the heart rate still exceeds 100 beats per minute at the next rest period, shorten the following work cycle by one-third. A worker cannot return to work after a rest period until their heart rate is below 100 beats per minute.
- Oral temperature. Use a clinical thermometer (3 minutes under the tongue) or similar device to measure the oral temperature at the end of the work period (before drinking).

- If oral temperature exceeds 99.6°F (37.6°C), shorten the next work cycle by one-third without changing the rest period. A worker cannot return to work after a rest period until their oral temperature is below 99.6°F.
- If oral temperature still exceeds 99.6°F (37.6°C) at the beginning of the next rest period, shorten the following cycle by one-third.
- Do <u>not</u> permit a worker to wear a semi-permeable or impermeable garment when oral temperature exceeds 100.6°F (38.1°C).

**Prevention of Heat Stress** - Proper training and preventative measures will aid in averting loss of worker productivity and serious illness. Heat stress prevention is particularly important because once a person suffers from heat stroke or heat exhaustion, that person may be predisposed to additional heat related illness. To avoid heat stress the following steps should be taken:

- Adjust work schedules.
- Mandate work slowdowns as needed.
- Perform work during cooler hours of the day if possible or at night if adequate lighting can be provided.
- Provide shelter (air-conditioned, if possible) or shaded areas to protect personnel during rest periods.
- Maintain worker's body fluids at normal levels. This is necessary to ensure that the cardiovascular system functions adequately. Daily fluid intake must approximately equal the amount of water lost in sweat, id., eight fluid ounces (0.23 liters) of water must be ingested for approximately every eight ounces (0.23 kg) of weight lost. The normal thirst mechanism is not sensitive enough to ensure that enough water will be drunk to replace lost sweat. When heavy sweating occurs, encourage the worker to drink more. The following strategies may be useful:
  - Maintain water temperature 50^o to 60^oF (10^o to 16.6^oC).
  - Provide small disposal cups that hold about four ounces (0.1 liter).
  - Have workers drink 16 ounces (0.5 liters) of fluid (preferably water or dilute drinks) before beginning work.
  - Urge workers to drink a cup or two every 15 to 20 minutes, or at each monitoring break. A total of 1 to 1.6 gallons (4 to 6 liters) of fluid per day are recommended, but more may be necessary to maintain body weight.
  - Train workers to recognize the symptoms of heat related illness.

# 3.4.3 Cold-Related Illness

If work on this project begins in the winter months, thermal injury due to cold exposure can become a problem for field personnel. Systemic cold exposure is referred to as hypothermia. Local cold exposure is generally called frostbite.

**Hypothermia** - Hypothermia is defined as a decrease in the patient core temperature below 96°F. The body temperature is normally maintained by a combination of central (brain and spinal cord) and peripheral (skin and muscle) activity. Interference with any of these mechanisms can result in hypothermia, even in the absence of what normally is considered a "cold" ambient temperature. Symptoms of hypothermia include: shivering, apathy, listlessness, sleepiness, and unconsciousness.

**Frostbite** - Frostbite is both a general and medical term given to areas of local cold injury. Unlike systemic hypothermia, frostbite rarely occurs unless the ambient temperatures are less than freezing and usually less than 20^oF. Symptoms of frostbite are: a sudden blanching or whitening of the skin; the skin has a waxy or white appearance and is firm to the touch; tissues are cold, pale, and solid.

Prevention of Cold-Related Illness - To prevent cold-related illness:

- Educate workers to recognize the symptoms of frostbite and hypothermia
- Identify and limit known risk factors:
- Assure the availability of enclosed, heated environment on or adjacent to the site.
- Assure the availability of dry changes of clothing.
- Assure the availability of warm drinks.
- Start (oral) temperature recording at the job site:
  - At the FSO or Field Team Leader's discretion when suspicion is based on changes in a worker's performance or mental status.
  - At a worker's request.
  - As a screening measure, two times per shift, under unusually hazardous conditions (e.g., wind-chill less than 20^oF, or wind-chill less than 30^oF with precipitation).
  - As a screening measure whenever any one worker on the site develops hypothermia.

Any person developing moderate hypothermia (a core temperature of 92°F) cannot return to work for 48 hours.

# 3.4.4 Noise

Work activities during the proposed investigation activities may be conducted at locations with high noise levels from the operation of equipment. Hearing protection will be used as necessary.

# 3.4.5 Hand and Power Tools

In order to complete the various tasks for the project, personnel will utilize hand and power tools. The use of hand and power tools can present a variety of hazards, including physical harm from being struck by flying objects, being cut or struck by the tool, fire, and electrocution. Ground Fault Circuit Interrupters (GFCIs) are required for all portable tools.

# 3.4.6 Slips, Trips and Fall Hazards

Care should be exercised when walking at the site, especially when carrying equipment. The presence of surface debris, uneven surfaces, pits, facility equipment, and soil piles contribute to tripping hazards and fall hazards. To the extent possible, all hazards should be identified and marked on the Site, with hazards communicated to all workers in the area.

# **3.4.7 Utilities (Electrocution and Fire Hazards)**

The possibility of encountering underground utilities poses fire, explosion, and electrocution hazards. All excavation work will be preceded by review of available utility drawings and by notification of the subsurface work to the N.Y. One Call Center. Potential adverse effects of electrical hazards include burns and electrocution, which could result in death.

# 3.5 TASK HAZARD ANALYSIS

# 3.5.1 Soil Sampling

Soil borings will be advanced with a Geoprobe® direct-push drill rig. Soil cuttings will be collected continuously into four-foot Macrocore barrels fitted with dedicated acetate sleeves and sampled.

Drilling and soil sampling activities are inherently dangerous. Special attention should be given to establishing the location of any underground utilities prior to excavating.

Chemical exposure may occur as these activities progress across the site, where workers may be exposed to contaminants in the excavated soils, encountered groundwater, or products used on-site including gasoline, diesel, and motor oil. Also, sampling of both in-situ and stockpiled soils presents similar potential exposure hazard. Activities will be conducted initially in Level D but may be upgraded to Modified Level

D. Although not anticipated, there will be a Level C and B contingency should pockets of contaminants be brought to the surface and breathing zone air becomes contaminated.

If evidence of historic or unknown contamination is encountered during investigation activities or other contaminated materials, such as oily materials, high PID readings, etc., the FSO will make a determination of the appropriate level of personnel protection.

# SECTION 4 PERSONNEL PROTECTION AND MONITORING

# 4.1 OSHA TRAINING

All on-site personnel who will be actively involved in drilling and investigative activities that involve potentially encountering hazardous waste must have completed hazardous waste operations-related training, as required by OSHA Regulations 29 CFR 1910.120. Personnel who completed this training more than 12 months prior to the start of the project must have completed an 8-hour refresher course within the past 12 months. Documentation of OSHA training for project personnel must be provided to Langan prior to starting work.

# 4.2 SITE-SPECIFIC TRAINING

The Site Safety Officer will be responsible for developing a site-specific occupational hazard training program and providing training to all personnel that are to work at the site. This training will be conducted prior to starting field work and will consist of the following topics:

- Names of personnel responsible for site safety and health.
- Hazards potentially present at the site.
- Proper use of personal protective equipment.
- Requirements of this HASP.
- Work practices by which the employee can minimize risk from hazards. This may include a specific review of heavy equipment safety, safety during inclement weather, changes in common escape rendezvous point, site security measures, or other site-specific issues that need to be addressed before work begins.
- Safe use of engineering controls and equipment on the site.
- Acute effects of compounds present at the site.
- Decontamination procedures.

Upon completion of site-specific training, workers will sign the Site-Specific-Training Form provided in Attachment B. A copy of the completed Site-Specific Training Form will be included in the project files for future reference.

#### 4.3 MONITORING REQUIREMENTS

Based on the existing site data, it is possible that organic vapors will be encountered during the site work. Soil and groundwater will be screened with a PID during ground intrusive work (as described in Section 6.4).

Fugitive dust generation that could affect site workers, site occupants, or the public will be visually monitored.

VOCs will be monitored with a PID (MiniRAE 2000 or equivalent) in accordance with the HASP with an action level of 25 ppm in the absence of benzene. If the action level is exceeded and adequate ventilation cannot be provided, work will cease and the potential affected portion of the work area will be evacuated until adequate mechanical ventilation can be set up to control the hazard. Level C respiratory protection may be donned in accordance with the HASP if untrained personnel are not present and the action level is exceeded.

A PID will be used to monitor for organic vapors in the breathing zone and to screen soil samples. Air monitoring results will be recorded in the field book during investigation activities and made available for review.

# 4.4 SUMMARY OF ACTION LEVELS AND RESTRICTIONS

A PID, equipped with a 10.6 eV lamp shall be used to screen for total VOCs. All readings pertain to sustained readings for 15 minutes in the worker breathing zone. The following conditions shall apply to each level of protection.

#### Conditions for Level D:

All areas where PID readings < 25 ppm and Benzene < 1 ppm

#### **Conditions for Level C:**

All areas where PID readings > 25 ppm or Benzene > 1 ppm (sustained for 15 minutes in the breathing zone) to 200 ppm

#### Conditions for Level B (or retreat):

All areas where PID readings > 500 ppm or Benzene > 20 ppm

#### 4.4.1 Level D and Modified Level D

Level D protection will be worn for initial entry on-site and initially for all activities. Level D protection will consist of:

- Standard work clothes
- Steel-toe safety boots
- Safety glasses (goggles must be worn when splash hazard is present)
- Nitrile gloves must be worn during all activities requiring contact with grosslycontaminated soils.
- Hard hat (must be worn during all site activities)

Modified Level D is the same as Level D but includes Tyvek coveralls and disposable polyethylene overboots to contact with the skin or clothes if significant contamination is present in subsurface materials.

# 4.4.2 Level C

The level of personal protection will be upgraded to Level C if the concentration of volatile organic compounds which can be detected with a photoionization detector (PID) in the breathing zone equals or exceeds the specified action limits and the contaminants of concern have characteristic warning properties appropriate for air purifying respirators (e.g. taste, odor). Level C protection will consist of the following equipment:

- Full-face or half-mask air-purifying respirator (APR) or powered air purifier (PAPR), depending on presence and abundance of airborne toxic constituents of concern
- Combination HEPA filter/organic vapor cartridges
- Tyvek coveralls must be worn if particulate hazard present
- PE-coated Tyvek coveralls if liquid contamination present
- Steel-toe safety boots
- Nitrile outer gloves must be worn during all activities requiring contact with saturated soil.
- Hard hat (must be worn during all site activities)

Cartridges will be disposed at the end of each day's use.

# 4.4.3 Level B (Retreat)

If the concentration of volatile organics which can be detected with a PID equals or exceeds the specified action levels, all field personnel associated with the project will immediately retreat to a location up-wind of the source of contamination. At this point the Site Safety Officer must consult with the Langan HSO to discuss appropriate actions.

# 4.4.4 OSHA Requirements for Personal Protective Equipment

All personal protective equipment used during the course of this field investigation must meet the following OSHA standards:

Type of Protection	Regulation	Source
Eye and Face	29 CFR 1910.133	ANSI Z87.1-1968
	29 CFR 1926.102	
Respiratory	29 CFR 1910.134	ANSI Z88.1-1980
	29 CFR 1926.103	
Head	29 CFR 1910.135	ANSI Z89.1-1969
	29 CFR 1926.100	
Foot	29 CFR 1910.136	ANSI Z41.1-1967
	29 CFR 1926.96	

ANSI = American National Standards Institute

Both the respirator and cartridges specified for use in Level C protection must be fit-tested prior to use in accordance with OSHA regulations (29 CFR 1910.1025; 29 CFR 1910.134).

Based on performance criteria of air purifying respirators, they cannot be worn under the following conditions:

- Oxygen deficiency;
- Immediately Dangerous to Life or Health (IDLH) concentrations;
- High relative humidity; and
- If contaminant levels exceed designated use concentrations.

#### SECTION 5 WORK ZONES AND DECONTAMINATION

# 5.1 SITE WORK ZONES

To reduce the spread of hazardous materials by workers from potentially contaminated areas to the clean areas, work zones will be delineated at the site, as required. The flow of personnel between the zones should be controlled. The establishment of the work zones will help ensure that personnel are properly protected against the hazards present where they are working, and ensure that work activities and contamination are confined to the appropriate areas. The work zones described below may be modified in the field depending on field conditions.

# 5.1.1 Hot Zone

Hot zones will be established within a 25 foot radius around drilling and sampling activities involving hazardous materials, where applicable and feasible. All personnel within the hot zone must don the appropriate levels of personal protection as set forth by the FSO. It is not anticipated that Level C or higher will be required for this site.

All personnel within the hot zone will be required to use the specified level of protection. No food, drink, or smoking will be allowed in the hot or warm zones.

# 5.1.2 Warm Zone

If PID action levels are exceeded or obvious indications of contamination (by sight or odor) are encountered, a warm zone will be established and utilized during the field activities. This zone will be established between the hot zone and the cold zone (discussed below), and will include the personnel and equipment necessary for decontamination of equipment and personnel exiting the hot zone. Personnel and equipment in the hot zone must pass through this zone before entering the cold zone. This zone should always be located upwind of the hot zone.

# 5.1.3 Cold Zone

The cold zone will include the remaining areas of the job site. Break areas and support facilities (include equipment storage and maintenance areas) will be located in this zone. No equipment or personnel will be permitted to enter the cold zone from the hot zone without passing through the decontamination station in the warm zone (if necessitated). Eating, smoking, and drinking will be allowed only in this area.

# 5.2 DECONTAMINATION

Any water used in decontamination procedures will be placed in containers, temporarily stored on-site, and properly characterized and disposed.

# 5.2.1 Decontamination of Personnel

Decontamination of personnel will be necessary for all Site workers in contact with contaminated material. All Site workers shall pass through a cleaning procedure when exiting the active work areas in the contaminated material; including washing their hands and removing any loose material from their clothing and boots. This will be accomplished in the designated Site Worker Cleaning Area to be located adjacent to active work areas in the contaminated material. A field wash station for Site Workers, equipment, and PPE shall be set up and maintained by the Contractor. This will include a gross wash and rinse for boots worn in contaminated material areas and, as necessary, equipment and facilities for Site Workers to wash their hands, arms, neck, and face after exiting areas of contaminated material.

# 5.2.2 Decontamination of Field Equipment

Decontamination of field equipment will be necessary for all equipment in contact with contaminated material. Decontamination activities shall be performed in the Vehicle Cleaning Area. Equipment to be decontaminated includes, but is not limited to, excavators and pumping equipment, and shall be cleaned prior to 1) crossing into areas of the Site where no contaminated material is present; 2) handling non-contaminated material/topsoil; and 3) leaving the Site.

# 5.2.3 Vehicle Cleaning Area/Stabilized Construction Entrances

If required during soil handling, one or more temporary vehicle cleaning areas will be constructed to clean disposal trucks and other vehicles and equipment prior to leaving the Site. This area will reduce the amount of contaminated material that disposal trucks and other vehicles spread onto the public roadway. The vehicle cleaning area will be constructed of gravel and will be of sufficient size to prevent vehicles from spreading contaminated material into the public roads and/or previously excavated areas of the Site where all contaminated material has been removed. Before any disposal truck or other vehicle leaves the Site, the sides and wheels will be inspected. If any contaminated materials are observed on the wheels or body of the truck, they will be removed and collected for disposal using a shovel, broom, and/or other hand tools in the designated cleaning area. The vehicle cleaning area may be upgraded to include wet vehicle cleaning procedures (i.e., power washing), if deemed necessary by the FSO.

# 5.3 REMEDIAL ACTIVITY-DERIVED WASTE

All PPE related remedial activity-derived waste materials (PPE, decontamination waste) will be placed in labeled containers and appropriately disposed. Contaminated soil will be kept moist, properly characterized and disposed off-site. Stockpiling of contaminated materials will only occur temporarily and if adequate space exists.

# SECTION 6 ACCIDENT PREVENTION AND CONTINGENCY PLAN

# 6.1 ACCIDENT PREVENTION

# 6.1.1 Site-Specific Training

All field personnel will receive health and safety training prior to the initiation of any site activities. The site-specific training form provided in Attachment B must be signed, dated, and returned to the Langan Field Safety Officer. On a day-to-day basis, individual personnel should be constantly alert for indicators of potentially hazardous situations and for signs and symptoms in themselves and others that warn of hazardous conditions and exposures. Rapid recognition of dangerous situations can avert an emergency. Before daily work assignments, a regular meeting should be held. Discussion should include:

- Tasks to be performed;
- Time constraints (e.g., rest breaks, cartridge changes);
- Hazards that may be encountered, including their effects, how to recognize symptoms or monitor them, concentration limits, or other danger signals; and
- Emergency procedures.

# 6.1.2 Vehicles and Heavy Equipment

Working with large motor vehicles and heavy equipment could be a major hazard at this site. Injuries can result from equipment hitting or running over personnel, impacts from flying objects, or overturning of vehicles. Vehicle and heavy equipment design and operation will be in accordance with 29 CFR, Subpart O, 1926.600 through 1926.602. In particular, the following precautions will be utilized to help prevent injuries/accidents.

- Brakes, hydraulic lines, light signals, fire extinguishers, fluid levels, steering, tires, horn, and other safety devices will be checked at the beginning of each shift.
- Large construction or drilling motor vehicles will not be backed up unless:
  - The vehicle has a reverse signal alarm audible above the surrounding noise level; or
  - The vehicle is backed up only when an observer signals that it is safe to do so.
- Heavy equipment or motor vehicle cable will be kept free of all nonessential items, and all loose items will be secured.
- Large construction or drilling motor vehicles and heavy equipment will be provided with necessary safety equipment (such as seat belts, roll-over protection, emergency shut-off in case of roll-over, backup warning lights and audible alarms).

• Blades and buckets will be lowered to the ground and parking brakes will be set before shutting off any heavy equipment or vehicles.

# 6.2 SPILL CONTROL PLAN

All personnel must take every precaution to minimize the potential for spills during site operations. Any spill shall be reported immediately to the FSO. Spill control apparatus (sorbent materials) will be located on-site. All materials used for the cleanup of spills will be containerized and labeled separately from other wastes, as required.

# 6.3 CONTINGENCY PLAN

# 6.3.1 Emergency Procedures

In the event that an emergency develops on site, the procedures delineated herein are to be immediately followed. Emergency conditions are considered to exist if:

- Any member of the field crew is involved in an accident or experiences any adverse effects or symptoms of exposure while on site.
- A condition is discovered that suggests the existence of a situation more hazardous than anticipated.

General emergency procedures, and specific procedures for personal injury, chemical exposure and radiation exposure, are described below.

# 6.3.2 Chemical Exposure

If a member of the field crew demonstrates symptoms of chemical exposure the procedures outlined below should be followed:

- Another team member (buddy) should remove the individual from the immediate area of contamination. The buddy should communicate to the Field Team Leader (via voice and hand signals) of the chemical exposure. The Field Team Leader should contact the appropriate emergency response agency.
- Precautions should be taken to avoid exposure of other individuals to the chemical.
- If the chemical is on the individual's clothing, the chemical should be neutralized or removed if it is safe to do so.
- If the chemical has contacted the skin, the skin should be washed with copious amounts of water.
- In case of eye contact, an emergency eye wash should be used. Eyes should be washed for at least 15 minutes.
- All chemical exposure incidents must be reported in writing to the Langan Health and Safety Officer. The Field Safety Officer or Field Team Leader is responsible for completing the accident report.

# 6.3.3 Personal Injury

In case of personal injury at the site, the following procedures should be followed:

- Another team member (buddy) should signal the Field Team Leader that an injury has occurred.
- A field team member trained in first aid can administer treatment to an injured worker.
- The victim should then be transported to the nearest hospital or medical center. If necessary, an ambulance should be called to transport the victim.
- For less severe cases, the individual can be taken to the site dispensary.
- The Field Team Leader or Field Safety Officer is responsible for making certain that an Accident Report Form is completed. This form is to be submitted to the Langan Health and Safety Officer. Follow-up action should be taken to correct the situation that caused the accident.
- Any incident (near miss, property damage, first aid, medical treatment, etc.) must be reported.

A first-aid kit and blood-born pathogens kit will be kept on-site during the field activities.

# 6.3.4 Evacuation Procedures

- The Field Team Leader will initiate evacuation procedures by signaling to leave the site.
- All personnel in the work area should evacuate the area and meet in the common designated area.
- All personnel suspected to be in or near the contract work area should be accounted for and the whereabouts or missing persons determined immediately.
- The Field Team Leader will then give further instruction.

# 6.3.5 Procedures Implemented in the Event of a Major Fire, Explosion, or Emergency

- Notify the paramedics and/or fire department, as necessary;
- Signal the evacuation procedure previously outlined and implement the entire procedure;
- Isolate the area;
- Stay upwind of any fire;
- Keep the area surrounding the problem source clear after the incident occurs;
- Complete accident report for and distribute to appropriate personnel.

# 6.4 ODOR, VAPOR AND DUST MONITORING AND RESPONSE

# 6.4.1 Periodic Monitoring

Periodic monitoring for VOCs will be performed during the collection of soil and groundwater samples. Periodic monitoring during sample collection, for instance, will consist of taking a reading upon arrival at a sample location, monitoring while opening a well cap or overturning soil, monitoring during well baling/purging, and taking a reading prior to leaving a sample location. Depending upon the proximity of potentially exposed individuals, continuous monitoring may be performed during sampling activities. Examples of such situations include groundwater sampling at wells on the curb of a busy urban street, adjacent to a public park, or adjacent to a residence. Exceedances of action levels observed during periodic monitoring of VOCs will be reported to the Project Manager and included in the Investigation Report.

# VOC Monitoring, Response Levels, and Actions

VOCs will be monitored during investigative drilling work. The monitoring work will be performed using equipment appropriate to measure the types of contaminants known or suspected to be present. The equipment will be calibrated at least daily for the contaminant(s) of concern or for an appropriate surrogate.

- If the ambient air concentration of total organic vapors at the downwind perimeter exceeds 5 parts per million (ppm) above background for the 15minute average, work activities will be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities will resume with continued monitoring.
- If total organic vapor levels at the downwind perimeter persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities will be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities will resume provided that the total organic vapor level 200 feet downwind or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less but in no case less than 20 feet, is below 5 ppm over background for the 15-minute average.
- If the organic vapor level is above 25 ppm at the perimeter of the work area, activities will be shutdown.

# Particulate Monitoring, Response Levels, and Actions

Particulate concentrations will be visually monitored during ground intrusive work. If dust is identified, the Contractor will implement dust suppression techniques.

# 6.4.2 Vapor Emission Response Plan

If the ambient air concentration of organic vapors exceeds 5 ppm above background at the perimeter of the hot zone, work activities will be halted or odor controls will be employed, and monitoring continued. If the organic vapor level decreases below 5 ppm above background, work activities can resume, provided:

- The organic vapor level outside the hot zone is below 1 ppm over background, and
- More frequent intervals of monitoring, as directed by the Site Health and Safety Officer, are conducted.

If the organic vapor level is greater than 5 ppm above background at the perimeter of the hot zone, work activities must be shut down or odor controls must be employed. When work shut-down occurs, downwind air monitoring as directed by the Site Health and Safety Officer will be implemented to ensure that vapor emission does not impact the nearest residential or commercial structure at levels exceeding those specified in the Major Vapor Emission section.

# 6.4.3 Major Vapor Emission

If any organic levels greater than 5 ppm over background are identified 200 feet downwind from the work site, or half the distance to the nearest residential or commercial property, whichever is less, all work activities must be halted or odor controls must be implemented.

If, following the cessation of the work activities, or as the result of an emergency, organic levels persist above 5 ppm above background 200 feet downwind or half the distance to the nearest residential or commercial property from the hot zone, then the air quality must be monitored within 20 feet of the perimeter of the nearest residential or commercial structure (20 Foot Zone).

If either of the following criteria is exceeded in the 20 Foot Zone, then the Major Vapor Emission Response Plan shall automatically be implemented.

- Sustained organic vapor levels approaching 5 ppm above background for a period of more than 30 minutes, or
- Organic vapor levels greater than 5 ppm above background for any time period.

# 6.4.4 Major Vapor Emission Response Plan

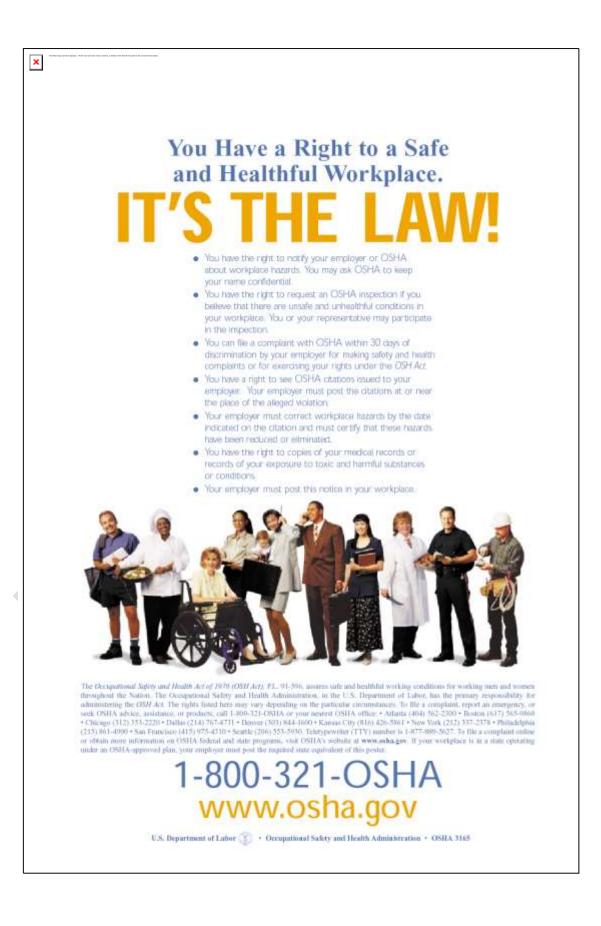
Upon activation, the following activities will be undertaken:

1. The local police authorities will immediately be contacted by the Site Health and Safety Officer and advised of the situation;

 Frequent air monitoring will be conducted at 30-minute intervals within the 20 Foot Zone. If two successive readings below action levels are measured, air monitoring may be halted or modified by the Site Health and Safety Officer; and

All Emergency contacts will go into effect as appropriate.

# ATTACHMENT A


## Air Monitoring Equipment Calibration and Maintenance

All monitoring instruments must be calibrated and maintained periodically. Calibration and on-site maintenance records will be kept in the field log book. The operator must understand the limitations and possible sources of errors for each instrument. It is important that the operator checks that the instrument responds properly to the substances it was designed to monitor. Portable air quality monitoring equipment that measures total ionizables present such as the RaeSystems MiniRae 2000 (or equivalent) photoionization detector (PID) must be calibrated at least once each day. DusTRAK aerosol monitors must be calibrated daily. The specific instructions for calibration and maintenance provided for each instrument should be followed.

# ATTACHMENT B

## Forms for Health and Safety Related Activity

Note: The OSHA Job Safety and Health Protection Poster must be posted prominently during field activities. The following page is an example of the poster to be used in the field. The actual poster must be an 11 inch by 17 inch size version of this page. The OSHA 300 Log of injuries and illnesses is maintained in the home office of each Langan employee.



# **ACCIDENT REPORT FORM**

	(Page 1 of 2)
Project Name:	
Injured or III Employee	
1. Name Social Security #	
(First) (Middle) (Last)	
2. Home Address (City on Tayon)	(Otata and Zia)
(No. and Street) (City or Town) 3. Age 4. Sex: Male ( ) Female ( )	(State and Zip)
5. Occupation(Specific job title, <u>not</u> the specific activity employee	was performing at
time of injury)	
6. Department	
(Enter name of department in which injured person	is employed, even
though they may have been temporarily working in another depa	artment at the time of
injury)	
<u>Employer</u>	
7 Nama	
<ol> <li>Name</li></ol>	
	(State and Zip)
9. Location (if different from mailing address):	-
The Accident or Exposure to Occupational Illness	
The Accident of Exposure to Occupational Inness	
10 Diace of accident or everyone	
10. Place of accident or exposure(No. and Street) (City or Town	(State and Zin)
11. Was place of accident or exposure on employer's premises?	
12. What was the employee doing when injured?	
(Be specific - was employee using tools or equipment or handling r	material?)
13. How did the accident occur?	
(Describe fully the events that	t resulted in the iniurv
or	,
occupational illness. Tell what happened and how. Name obj	ects and substances
involved.	
Give details on all factors that led to accident. Use separate sheet	if needed)
14. Time of accident:	,
15 Date of injuny or initial diagnosis of occupational illness	

Date of injury or initial diagnosis of occupational illness _

(Page 2 of 2)

			(Page 2 C
16. WITNESS TO ACCIDENT	(Name)	(Affiliation)	(Phone No.)
	(Name)	(Affiliation)	(Phone No.)
	(Name)	(Affiliation)	(Phone No.)
Occupational Injury o	r Occupational Illness		
17. Describe the inju	ry or illness in detail; indic	ate part of body affe	ected.
chemical or radi the object the er	mployee was lifting, pullin		· · ·
the object the er 19. Did the accident 20. Number of lost w or illness?		g, etc.) ? (Yes or	No)
the object the er 19. Did the accident 20. Number of lost w or illness? Dther	mployee was lifting, pullin result in employee fatality orkdays/restricted w	g, etc.) ? (Yes or vorkdays resu	No) Iting from injury
the object the er 19. Did the accident 20. Number of lost w or illness? Dther 21. Did you see a phy	mployee was lifting, pullin	g, etc.) ? (Yes or /orkdays resu	No) Iting from injury (Date)
<ul> <li>the object the er</li> <li>19. Did the accident in 20. Number of lost we or illness?</li> <li><b>Dther</b></li> <li>21. Did you see a phy 22. Name and address (No. and Street)</li> </ul>	nployee was lifting, pullin result in employee fatality vorkdays/restricted w	g, etc.) ? (Yes or /orkdays resu	No) Iting from injury (Date) (State and Zip)
<ul> <li>the object the er</li> <li>19. Did the accident in 20. Number of lost we or illness?</li> <li><b>Dther</b></li> <li>21. Did you see a phy 22. Name and address (No. and Street)</li> </ul>	nployee was lifting, pullin result in employee fatality vorkdays/restricted w ss of physician (City or Town)	g, etc.) ? (Yes or vorkdays resu	No) Iting from injury (Date) (State and Zip)
<ul> <li>the object the er</li> <li>19. Did the accident in 20. Number of lost we or illness?</li> <li><b>Dther</b></li> <li>21. Did you see a phy 22. Name and address (No. and Street)</li> <li>23. If hospitalized, name (No. and Street)</li> <li>(No. and Street)</li> </ul>	nployee was lifting, pullin result in employee fatality vorkdays/restricted w ss of physician (City or Town) ame and address of hospit (City or Town)	g, etc.) ? (Yes or vorkdays resu	No) Iting from injury (Date) (State and Zip)

## Project Health and Safety Plan and Work plan Acceptance Form

## (For Langan employees only)

I have read and agree to abide by the contents of the Work Plan and Health and Safety Plan for the following project:

(Project Title)

(Project Number)

Furthermore, I have read and am familiar with the work plan or proposal that describes the field work to be conducted and the procedures to be utilized in the conduct of this work.

Name (print)	Signature	Date

Place in project Health and Safety File as soon as possible

#### Site-Specific Health and Safety Training

(For all Langan and subcontract employees on site)

I hereby confirm that site-specific health and safety training has been conducted by the site health and safety officer that included:

- Names of personnel responsible for site safety and health
- Safety, health, and other hazards at the site
- Proper use of personal protective equipment
- Work practices by which the employee can minimize risk from hazards
- Safe use of engineering controls and equipment on the site
- Acute effects of compounds at the site
- Decontamination procedures

For the following project:

(Project Title)		(Project	Number)
Name (print)	Signature		Date
		· -	
		· -	
		· -	

Place in project Health and Safety File as soon as possible

# **ATTACHMENT C**

# **Safety Data Sheets**

- Acetone
- Methylene chloride
- Vinyl Chloride
- Cis-1,2-dichloroethene
- Tetrachloroethene
- 1,4-dioxane
- 1,1 dichloroethane
- 1-1-dichloroethene
- Trans-1,2-dichloroethene
- 1,1,1-trichloroethane,
- Chloroethane
- 1,2,4-trimethylbenzene
- MTBE
- Benzene
- Ethylbenzene
- Toluene
- Xylenes
- Trichloroethene
- Phenanthrene
- Benzo(a)anthracene
- Benzo(a)pyrene
- Dibenzo(a,h)anthracene
- Pyrene
- Benzo(b)fluoranthene
- Benzo(k)fluoranthene
- Chrysene
- Fluoranthene
- Ideno(1,2,3-cd)pyrene
- Naphthalene
- Phenol
- Bis(2-ethylhexyl)phthalate
- Fluorine
- Acenapthene
- Dibenzofuran
- Aluminum
- Antimony
- Arsenic
- Barium

- Cadmium
- Chromium
- Copper
- Iron
- Lead
- Magnesium
- Manganese
- Mercury
- Nickel
- Sodium
- Silver
- Zinc
- PCBs
- 4,4'-DDE
- 4,4'DDD
- 4,4'DDT
- Dieldrin
- Unleaded Gasoline
- Diesel Fuel
- Motor Oil, 10W-40
- Isobutylene Gas in Air,
  - 100 ppm
- Compressed Air

# ATTACHMENT D

# **Standard Safe Work Practices**

- 1) Eating, drinking, chewing tobacco, smoking and carrying matches or lighters is prohibited in a contaminated or potentially contaminated area or where the possibility for the transfer of contamination exists.
- Avoid contact with potentially contaminated substances. Do not walk through puddles, pools, mud, etc. Avoid, whenever possible, kneeling on the ground, leaning or sitting on equipment or ground. Do not place monitoring equipment on potentially contaminated surfaces (i.e., ground, etc.).
- 3) All field crew members should make use of their senses to alert them to potentially dangerous situations in which they should not become involved; i.e., presence of strong and irritating or nauseating odors.
- 4) Prevent, to the extent possible, spills. In the event that a spillage occurs, contain liquid if possible.
- 5) Field crew members shall be familiar with the physical characteristics of investigations, including:
  - Communication
  - Hot zone (areas of known or suspected contamination)
  - Site access
  - Nearest water sources
- 6) All wastes generated during activities on-site should be disposed of as directed by the project manager or his on-site representative.
- 7) Employees shall follow procedures to avoid at-risk behaviors that could result in an incident.

# **APPENDIX C** Quality Assurance Project Plan

# **Quality Assurance Project Plan**

Remedial Investigation 335 BOND STREET Brooklyn, New York NYSDEC BCP Site No. C224225

**Prepared For:** 

E & M Realty Corp. 335 Bond Street Brooklyn, New York 11231

**Prepared By:** 

Langan Engineering, Environmental, Surveying and Landscape Architecture, D.P.C. 21 Penn Plaza 360 West 31st Street, 8th Floor New York, New York 10001

> January 11, 2016 Langan Project No. 170362501



21 Penn Plaza, 360 West 31st Street, 8th Floor New York, NY 10001 T: 212.479.5400 F: 212.479.5444 www.langan.com New Jersey - New York - Virginia - California - Pennsylvania - Connecticut - Florida - Abu Dhabi - Athens - Doha - Dubai - Istanbul

# TABLE OF CONTENTS

## PAGE

1.0		PROJE	ECT DESCRIPTION	1
	1.1		Introduction	1
	1.2		Project Objectives	1
	1.3		Scope of Work	1
2.0		DATA	QUALITY OBJECTIVES AND PROCESS	2
3.0		PROJE	ECT ORGANIZATION	4
4.0		QUAL	ITY ASSURANCE OBJECTIVES FOR COLLECTION OF DATA	5
	4.1		Precision	5
	4.2		Accuracy	5
	4.3		Completeness	6
	4.4		Representativeness	6
	4.5		Comparability	7
	4.6		Sensitivity	
5.0		SAMP	LE COLLECTION AND FIELD DATA ACQUISITION PROCEDURES	9
	5.1		Field Documentation Procedures	9
		5.1.1	Field Data and Notes	9
		5.1.2	Sample Labeling	10
	5.2		Equipment Calibration and Preventative Maintenance	11
	5.3		Sample Collection	12
	5.4		Sample Containers and Handling	14
	5.5		Sample Preservation	15
	5.6		Sample Shipment	15
		5.6.1	Packaging	15
		5.6.2	Shipping	15
	5.7		Decontamination Procedures	15
	5.8		Residuals Management	16
	5.9		Chain of Custody Procedures	16
	5.10	)	Laboratory Sample Storage Procedures	21
6.0		DATA	REDUCTION, VALIDATION, AND REPORTING	22
	6.1		Introduction	22
	6.2		Data Reduction	22
	6.3		Data Validation	23
7.0		QUAL	ITY ASSURANCE PERFORMANCE AUDITS AND SYSTEM AUDITS	25
	7.1		Introduction	25
	7.2		System Audits	25
	7.3		Performance Audits	25

7	'.4	Formal Audits	25
8.0		CORRECTIVE ACTION	27
8	3.1	Introduction	27
8	3.2	Procedure Description	27
9.0		REFERENCES	30

## ATTACHMENTS

Attachment A:	Resumes
Attachment B:	Laboratory Reporting Limits and Method Detection Limits
Attachment C:	Analytical Methods/Quality Assurance Summary Table
Attachment D:	Sample Nomenclature

## 1.0 **PROJECT DESCRIPTION**

## 1.1 INTRODUCTION

This Quality Assurance Project Plan (QAPP) was prepared on behalf of E & M Realty Corp. (the Volunteer) for the property at 335 Bond Street (Block 445, Lot 1), in Brooklyn, New York (the Site). The Site was accepted into the New York State Brownfield Cleanup Program (BCP) as a Volunteer and a Brownfield Cleanup Agreement (BCA) was executed on August 25, 2015. Additional Site information including Site maps and data collected previously by Langan and others is provided in the Remedial Investigation Work Plan (RIWP).

This QAPP specifies analytical methods to be used to ensure that data collected during the remedial investigation are precise, accurate, representative, comparable, complete, and meet the sensitivity requirements of the project.

## 1.2 **PROJECT OBJECTIVES**

The objective of the RIWP is to investigate and characterize the nature and extent of onsite environmental impacts associated with potential areas of concern (AOC) and the historical usage of the Site. This QAPP addresses sampling and analytical methods that may be necessary in support of the RIWP. These objectives have been established in order to meet standards that will protect public health and the environment for the Site.

## 1.3 SCOPE OF WORK

The scope of work covered in this QAPP is detailed in the RIWP. In general, the RIWP proposes soil boring installation and sampling, sediment sampling, groundwater monitoring well installation and sampling, and sub-slab and soil vapor sampling.

## 2.0 DATA QUALITY OBJECTIVES AND PROCESS

Data Quality Objectives (DQOs) are qualitative and quantitative statements to help ensure that data of known and appropriate quality are obtained during the project. The overall project objective is to investigate subsurface conditions associated with AOCs for the Site. The sampling program will provide for collection of soil, soil vapor, indoor air, and groundwater samples. DQOs for sampling activities are determined by evaluating five factors:

- Data needs and uses: The types of data required and how the data will be used after it is obtained.
- Parameters of Interest: The types of chemical or physical parameters required for the intended use.
- Level of Concern: Levels of constituents, which may require remedial actions or further investigations.
- Required Analytical Level: The level of data quality, data precision, and QA/QC documentation required for chemical analysis.
- Required Detection Limits: The detection limits necessary based on the above information.

The quality assurance and quality control objectives for all measurement data include:

- **Precision** an expression of the reproducibility of measurements of the same parameter under a given set of conditions. Field sampling precision will be determined by analyzing coded duplicate samples and analytical precision will be determined by analyzing internal QC duplicates and/or matrix spike duplicates.
- Accuracy a measure of the degree of agreement of a measured value with the true or expected value of the quantity of concern. For soil and groundwater samples, accuracy will be determined through the assessment of the analytical results of equipment blanks and trip blanks for each sample set. Analytical accuracy will be assessed by examining the percent recoveries of surrogate compounds that are added to each sample (organic analyses only), internal standards, laboratory method blanks, instrument calibration, and the percent recoveries of matrix spike compounds added to selected samples and laboratory blanks. For soil vapor or air samples, analytical accuracy will be assessed by examining the percent recoveries that are added to each sample, internal standards, laboratory method blanks, and instrument calibration.

- **Representativeness** expresses the degree to which sample data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is dependent upon the adequate design of the sampling program and will be satisfied by ensuring that the scope of work is followed and that specified sampling and analysis techniques are used. Representativeness in the laboratory is ensured by compliance to nationally-recognized analytical methods, meeting sample holding times, and maintaining sample integrity while the samples are in the laboratory's possession. This is accomplished by following all applicable methods, laboratory-issued standard operating procedures (SOPs), the laboratory's Quality Assurance Manual, and this QAPP. The laboratory is required to be properly certified and accredited.
- Completeness the percentage of measurements made which are judged to be valid. Completeness will be assessed through data validation. The QC objective for completeness is generation of valid data for at least 90 percent of the analyses requested.
- Comparability expresses the degree of confidence with which one data set can be compared to another. The comparability of all data collected for this project will be ensured using several procedures, including standard methods for sampling and analysis as documented in the QAPP, using standard reporting units and reporting formats, and data validation.
- **Sensitivity** the ability of the instrument or method to detect target analytes at the levels of interest. The project manager will select, with input from the laboratory and QA personnel, sampling and analytical procedures that achieve the required levels of detection.

## 3.0 PROJECT ORGANIZATION

All work included with implementing the NYSDEC-approved RIWP will be overseen by Langan, on behalf of E & M Realty Corp.. Langan will collect media samples and will subcontract with a qualified driller and an ELAP-certified laboratory. Data validation services will be performed by an approved data validator.

For the scope of work described in the RIWP, sampling will be conducted by Langan, the analytical services will be performed by York Analytical Laboratories Inc. of Stratford, Connecticut (NYSDOH ELAP certification number 10854). Data validation services will be performed by Emily Strake. Resumes for key personnel are attached (Attachment A).

Key contacts for this project are as follows:

Е	&	Μ	Realty	Corp.:
---	---	---	--------	--------

Langan Project Manager:

Langan Quality Assurance Officer (QAO):

Program Quality Assurance Monitor:

Data Validator:

Laboratory Representative:

Mr. Albert Tashji, PE Telephone: (212) 479-5508

Telephone: (212) 479-5432

Mr. Eduard Slinin

Ms. Emily Snead

Telephone: (718) 643-3900

Mr. Ryan Manderbach Telephone: (212) 479-5582

Ms. Emily Strake Telephone: (215) 491-6526

York Analytical Rich August Telephone: (203) 325-1371

## 4.0 QUALITY ASSURANCE OBJECTIVES FOR COLLECTION OF DATA

The overall quality assurance objective is to develop and implement procedures for sampling, laboratory analysis, field measurements, and reporting that will provide data of sufficient quality for the remedial investigation at the Site. The sample set, chemical analysis results, and interpretations must be based on data that meet or exceed quality assurance objectives established for the Site. Quality assurance objectives are usually expressed in terms of accuracy or bias, sensitivity, completeness, representativeness, comparability, and sensitivity of analysis. Variances from the quality assurance objectives at any stage of the investigation will result in the implementation of appropriate corrective measures and an assessment of the impact of corrective measures on the usability of the data.

#### 4.1 PRECISION

Precision is a measure of the degree to which two or more measurements are in agreement. Field precision is assessed through the collection and measurement of field duplicates. Laboratory precision and sample heterogeneity also contribute to the uncertainty of field duplicate measurements. This uncertainty is taken into account during the data assessment process. For field duplicates, results less than 2x the reporting limit (RL) meet the precision criteria if the absolute difference is less than  $\pm 2x$  the RL and acceptable based on professional judgement. For results greater than 2x the RL, the acceptance criteria is a relative percent difference (RPD) of  $\leq$ 50% (soil and air), <30% (water). RLs and method detection limits (MDL) are provided in Attachment B.

## 4.2 ACCURACY

Accuracy is the measurement of the reproducibility of the sampling and analytical methodology. It should be noted that precise data may not be accurate data. For the purpose of this QAPP, bias is defined as the constant or systematic distortion of a measurement process, which manifests itself as a persistent positive or negative deviation from the known or true value. This may be due to (but not limited to) improper sample collection, sample matrix, poorly calibrated analytical or sampling equipment, or limitations or errors in analytical methods and techniques.

Accuracy in the field is assessed through the use of equipment blanks and through compliance to all sample handling, preservation, and holding time requirements. All equipment blanks should be non-detect when analyzed by the laboratory. Any contaminant detected in an associated equipment blank will be evaluated against laboratory blanks (preparation or method) and evaluated against field samples collected on the same day to determine potential for bias. Trip blanks are not required for nonaqueous matrices but are planned for non-aqueous matrices where high concentrations of VOCs are anticipated.

Laboratory accuracy is assessed by evaluating the percent recoveries of matrix spike/matrix spike duplicate (MS/MSD) samples, laboratory control samples (LCS), surrogate compound recoveries, and the results of method preparation blanks. MS/MSD, LCS, and surrogate percent recoveries will be compared to either method-specific control limits or laboratory-derived control limits. Sample volume permitting, samples displaying outliers should be reanalyzed. All associated method blanks should be non-detect when analyzed by the laboratory.

## 4.3 COMPLETENESS

Laboratory completeness is the ratio of total number of samples analyzed and verified as acceptable compared to the number of samples submitted to the fixed-base laboratory for analysis, expressed as a percent. Three measures of completeness are defined:

- Sampling completeness, defined as the number of valid samples collected relative to the number of samples planned for collection;
- Analytical completeness, defined as the number of valid sample measurements relative to the number of valid samples collected; and
- Overall completeness, defined as the number of valid sample measurements relative to the number of samples planned for collection.

Air, soil vapor, soil, and groundwater data will meet a 90% completeness criterion. If the criterion is not met, sample results will be evaluated for trends in rejected and unusable data. The effect of unusable data required for a determination of compliance will also be evaluated.

## 4.4 **REPRESENTATIVENESS**

Representativeness expresses the degree to which data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, a process condition, or an environmental condition within a defined spatial and/or temporal boundary. Representativeness is dependent upon the adequate design of the

sampling program and will be satisfied by ensuring that the scope of work is followed and that specified sampling and analysis techniques are used. This is performed by following applicable standard operating procedures (SOPs) and this QAPP. All field technicians will be given copies of appropriate documents prior to sampling events and are required to read, understand, and follow each document as it pertains to the tasks at hand.

Representativeness in the laboratory is ensured by compliance to nationally-recognized analytical methods, meeting sample holding times, and maintaining sample integrity while the samples are in the laboratory's possession. This is performed by following all applicable EPA methods, laboratory-issued SOPs, the laboratory's Quality Assurance Manual, and this QAPP. The laboratory is required to be properly certified and accredited.

## 4.5 COMPARABILITY

Comparability is an expression of the confidence with which one data set can be compared to another. Comparability is dependent upon the proper design of the sampling program and will be satisfied by ensuring that the sampling plan is followed and that sampling is performed according to the SOPs or other project-specific procedures. Analytical data will be comparable when similar sampling and analytical methods are used as documented in the QAPP. Comparability will be controlled by requiring the use of specific nationally-recognized analytical methods and requiring consistent method performance criteria. Comparability is also dependent on similar quality assurance objectives. Previously collected data will be evaluated to determine whether they may be combined with contemporary data sets.

## 4.6 SENSITIVITY

Sensitivity is the ability of the instrument or method to detect target analytes at the levels of interest. The project director will select, with input from the laboratory and QA personnel, sampling and analytical procedures that achieve the required levels of detection and QC acceptance limits that meet established performance criteria. Concurrently, the project director will select the level of data assessment to ensure that only data meeting the project DQOs are used in decision-making.

Field equipment will be used that can achieve the required levels of detection for analytical measurements in the field. In addition, the field sampling staff will collect and submit full volumes of samples as required by the laboratory for analysis, whenever possible. Full volume aliquots will help ensure achievement of the required limits of detection and allow for reanalysis if necessary. The concentration of the lowest level check standard in a multi-point calibration curve will represent the reporting limit.

Analytical methods and quality assurance parameters associated with the sampling program are presented in Attachment C. The frequency of associated equipment blanks and duplicate samples will be based on the recommendations listed in DER-10, and as described in Section 5.3.

Site-specific MS and MSD samples will be prepared and analyzed by the analytical laboratory by spiking an aliquot of submitted sample volume with analytes of interest. Additional sample volume is not required by the laboratory for this purpose. An MS/MSD analysis will be analyzed at a rate of 1 out of every 20 samples, or one per analytical batch. MS/MSD samples are only required for soil and groundwater samples.

## 5.0 SAMPLE COLLECTION AND FIELD DATA ACQUISITION PROCEDURES

Soil, sediment and groundwater sampling, if necessary, will be conducted in accordance with the established NYSDEC protocols contained in DER-10/Technical Guidance for Site Investigation and Remediation (May 2010). Air sampling will be conducted in accordance with the established New York State Department of Health (NYSDOH) protocols contained in the Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006). The following sections describe procedures to be followed for specific tasks.

## 5.1 FIELD DOCUMENTATION PROCEDURES

Field documentation procedures will include summarizing field observations in field books, logging soil borings and monitoring well construction, completing forms for sediment, groundwater and soil vapor sampling, and proper sample labeling. These procedures are described in the following sections.

## 5.1.1 Field Data and Notes

Field notebooks contain the documentary evidence regarding procedures conducted by field personnel. Hard cover, bound field notebooks will be used because of their compact size, durability, and secure page binding. The pages of the notebook will not be removed.

Entries will be made in waterproof, permanent blue or black ink. No erasures will be allowed. If an incorrect entry is made, the information will be crossed out with a single strike mark and the change initialed and dated by the team member making the change. Each entry will be dated. Entries will be legible and contain accurate and complete documentation of the individual or sampling team's activities or observations made. The level of detail will be sufficient to explain and reconstruct the activity conducted. Each entry will be signed by the person(s) making the entry.

The following types of information will be provided for each sampling task, as appropriate:

- Project name and number
- Reasons for being on-site or taking the sample
- Date and time of activity

- Sample identification numbers
- Geographical location of sampling points with references to the site, other facilities or a map coordinate system. Sketches will be made in the field logbook when appropriate
- Physical location of sampling locations such as depth below ground surface
- Description of the method of sampling including procedures followed, equipment used and any departure from the specified procedures
- Description of the sample including physical characteristics, odor, etc.
- Readings obtained from health and safety equipment
- Weather conditions at the time of sampling and previous meteorological events that may affect the representative nature of a sample
- Photographic information including a brief description of what was photographed, the date and time, the compass direction of the picture and the number of the picture on the camera
- Other pertinent observations such as the presence of other persons on the site, actions by others that may affect performance of site tasks, etc.
- Names of sampling personnel and signature of persons making entries

Field records will also be collected on field data sheets including boring logs, which will be used for geologic and drilling data during soil boring activities. Field data sheets will include the project-specific number and stored in the field project files when not in use. At the completion of the field activities, the field data sheets will be maintained in the central project file.

## 5.1.2 Sample Labeling

Each sample collected will be assigned a unique identification number in accordance with the sample nomenclature guidance included in Attachment D, and placed in an appropriate sample container. Each sample container will have a sample label affixed to the outside with the date and time of sample collection and project name. In addition,

the label will contain the sample identification number, analysis required and chemical preservatives added, if any. All documentation will be completed in waterproof ink.

## 5.2 EQUIPMENT CALIBRATION AND PREVENTATIVE MAINTENANCE

A photoionization detector (PID) will be used during the sampling activities to evaluate work zone action levels, collect pre- and post-sample readings for air samples, screen soil samples, and collect monitoring well headspace readings. Field calibration and/or field checking of the PID will be the responsibility of the field team leader and the site HSO, and will be accomplished by following the procedures outlined in the operating manual for the instrument. At a minimum, field calibration and/or field equipment checking will be performed once daily, prior to use. Field calibration will be documented in the field notebook. Entries made into the logbook regarding the status of field equipment will include the following information:

- Date and time of calibration
- Type of equipment serviced and identification number (such as serial number)
- Reference standard used for calibration
- Calibration and/or maintenance procedure used
- Other pertinent information

A water quality meter (Horiba U-52 or similar) will be used during purging of groundwater to measure pH, specific conductance, temperature, dissolved oxygen, turbidity and oxidation-reduction-potential (ORP), every five minutes. Water-quality meters should be calibrated and the results documented before use each day using standardized field calibration procedures and calibration checks.

Equipment that fails calibration or becomes inoperable during use will be removed from service and segregated to prevent inadvertent utilization. The equipment will be properly tagged to indicate that it is out of calibration. Such equipment will be repaired and recalibrated to the manufacturer's specifications by qualified personnel. Equipment that cannot be repaired will be replaced.

Off-site calibration and maintenance of field instruments will be conducted as appropriate throughout the duration of project activities. All field instrumentation, sampling equipment and accessories will be maintained in accordance with the manufacturer's recommendations and specifications and established field equipment practice. Off-site calibration and maintenance will be performed by qualified personnel. A logbook will be kept to document that established calibration and maintenance procedures have been followed. Documentation will include both scheduled and unscheduled maintenance.

## 5.3 SAMPLE COLLECTION

## Soil and Sediment Samples

Soil and sediment samples will be visually classified and field screened using a PID to assess potential impacts from VOCs and for health and safety monitoring. Soil and sediment samples collected for analysis of VOCs will be collected using either EnCore[®] or Terra Core[®] sampling equipment. For analysis of non-volatile parameters, samples will be homogenized and placed into glass jars. After collection, all sample jars will be capped and securely tightened, and placed in iced coolers and maintained at 4°C ±2°C until they are transferred to the laboratory for analysis, in accordance with the procedures outlined in Section 5.4. Analysis and/or extraction and digestion of collected soil and sediment samples will meet the holding times required for each analyte as specified in Attachment C. In addition, analysis of collected soil sample will meet all quality assurance criteria set forth by this QAPP and DER-10.

## Groundwater Samples

Groundwater sampling will be conducted using low-flow sampling procedures following USEPA guidance ("Low Stress [low flow] Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells", EQASOP-GW 001, January 19, 2010).

During purging, field parameters should be measured, including: water level drawdown, purge rate, pH, specific conductance, temperature, dissolved oxygen, turbidity and oxidation-reduction-potential (ORP), every five minutes using a water quality meter (Horiba U-52 or similar) and a depth-to-water interface probe that should be decontaminated between wells. Samples should generally not be collected until the field parameters have stabilized. Field parameters will be considered stable once three sets of measurements are within  $\pm 0.1$  standard units for pH,  $\pm 3\%$  for conductivity and temperature,  $\pm 10$  millivolts for ORP, and  $\pm 10\%$  for turbidity and dissolved oxygen. Purge rates should be adjusted to keep the drawdown in the well to less than 0.3 feet, as practical. Additionally, an attempt should be made to achieve a stable turbidity

reading of less than 10 Nephelometric Turbidity Units (NTU) prior to sampling. If the turbidity reading does not stabilize at reading of less than 10 NTU for a given well, then both filtered and unfiltered samples should be collected from that well. If necessary, field filtration should be performed using a 0.45 micron disposable in-line filter. Groundwater samples should be collected after parameters have stabilized as noted above or the readings are within the precision of the meter. Deviations from the stabilization and drawdown criteria, if any, should be noted on the sampling logs.

Samples should be collected directly into laboratory-supplied jars. After collection, all sample jars will be capped and securely tightened, and placed in iced coolers and maintained at 4°C ±2°C until they are transferred to the laboratory for analysis, in accordance with the procedures outlined in Section 5.4. Analysis and/or extraction and digestion of collected groundwater samples will meet the holding times required for each analyte as specified in Attachment C. In addition, analysis of collected groundwater samples will meet all quality assurance criteria set forth by this QAPP and DER-10.

## Air samples

Prior to sample collection, a pre-sampling inspection will be conducted to document chemicals and potential subsurface pathways at the Site. The pre-sampling inspection will assess the potential for interference from chemical storage nearby or within the building. Soil vapor samples will be collected into laboratory-supplied, batch certified-clean Summa® canisters calibrated for a sampling rate of two hours. Indoor air samples will be collected into laboratory-supplied, batch certified-clean Summa® canisters calibrated for a sampling rate of two hours. Indoor air samples will be collected into laboratory-supplied, batch certified-clean Summa® canisters calibrated for a sampling rate of eight hours. The pressure gauges on each calibrated flow controller should be monitored throughout sample collection. Sample collection should be stopped when the pressure reading reaches -4 mmHg.

## Sample Equipment Blanks and Duplicates

Equipment blanks will be collected for quality assurance purposes at a rate of one per 20 investigative samples per matrix (soil and groundwater only). Equipment blanks will be obtained by pouring laboratory-demonstrated analyte-free water on or through a decontaminated sampling device following use and implementation of decontamination protocols. The water will be collected off of the sampling device into a laboratory-provided sample container for analysis. Equipment blank samples will be analyzed for the complete list of analytes on the day of sampling. Trip blanks will be collected at a rate of one per day if soil samples are analyzed for VOCs during that day.

Duplicate samples will be collected and analyzed for quality assurance purposes. Duplicate samples will be collected at a frequency of 1 per 20 investigative samples per matrix (soil and groundwater only) and will be submitted to the laboratory as "blind" samples. If less than 20 samples are collected during a particular sampling event, one duplicate sample will be collected.

## Matrix Spikes/Matrix Spike Duplicates

Matrix spike/matrix spike duplicate (MS/MSD) samples will be collected and analyzed for quality assurance purposes. MS/MSD samples will be collected at a frequency of 1 per 20 investigative samples per matrix (soil and groundwater only). If less than 20 samples are collected during a particular sampling event, one MS/MSD sample will be collected.

## 5.4 SAMPLE CONTAINERS AND HANDLING

Certified, commercially clean sample containers will be obtained from the analytical laboratory. For soil and groundwater samples, the laboratory will also prepare and supply the required trip blanks and equipment blank sample containers and reagent preservatives. Sample bottle containers, including the equipment blank containers, will be placed into plastic coolers by the laboratory. These coolers will be received by the field sampling team within 24 hours of their preparation in the laboratory. Prior to the commencement of field work, Langan field personnel will fill the plastic coolers with ice in Ziploc® bags (or equivalent) to maintain a temperature of  $4^{\circ} \pm 2^{\circ}$  C.

Soil, sediment and groundwater samples collected in the field for laboratory analysis will be placed directly into the laboratory-supplied sample containers. Samples will then be placed and stored on-ice in laboratory provided coolers until shipment to the laboratory. The temperature in the coolers containing samples and associated equipment blanks will be maintained at a temperature of 4°±2°C while on-site and during sample shipment to the analytical laboratory.

Possession of samples collected in the field will be traceable from the time of collection until they are analyzed by the analytical laboratory or are properly disposed. Chain-of-custody procedures, described in Section 5.9, will be followed to maintain and document sample possession. Samples will be packaged and shipped as described in Section 5.6.

## 5.5 SAMPLE PRESERVATION

Sample preservation measures will be used in an attempt to prevent sample decomposition by contamination, degradation, biological transformation, chemical interactions and other factors during the time between sample collection and analysis. Preservation will commence at the time of sample collection and will continue until analyses are performed. Should chemical preservation be required, the analytical laboratory will add the preservatives to the appropriate sample containers before shipment to the office or field. Samples will be preserved according to the requirements of the specific analytical method selected, as shown in Attachment C.

## 5.6 SAMPLE SHIPMENT

## 5.6.1 Packaging

Air samples canisters can be stored and transported without additional packaging. Soil and groundwater sample containers will be placed in plastic coolers. Ice in Ziploc[®] bags (or equivalent) will be placed around sample containers. Cushioning material will be added around the sample containers if necessary. Chains-of-custody and other paperwork will be placed in a Ziploc[®] bag (or equivalent) and placed inside the cooler. The cooler will be taped closed and custody seals will be affixed to one side of the cooler at a minimum. If the samples are being shipped by an express delivery company (e.g. FedEx) then laboratory address labels will be placed on top of the cooler.

## 5.6.2 Shipping

Standard procedures to be followed for shipping environmental samples to the analytical laboratory are outlined below.

- All environmental samples will be transported to the laboratory by a laboratoryprovided courier under the chain-of-custody protocols described in Section 5.9.
- Prior notice will be provided to the laboratory regarding when to expect shipped samples. If the number, type or date of shipment changes due to site constraints or program changes, the laboratory will be informed.

## 5.7 DECONTAMINATION PROCEDURES

Decontamination procedures will be used for non-dedicated sampling equipment. Decontamination of field personnel is discussed in the site-specific sample Health and Safety Plan (HASP) included in Appendix B of the RIWP. Field sampling equipment that is to be reused will be decontaminated in the field in accordance with the following procedures:

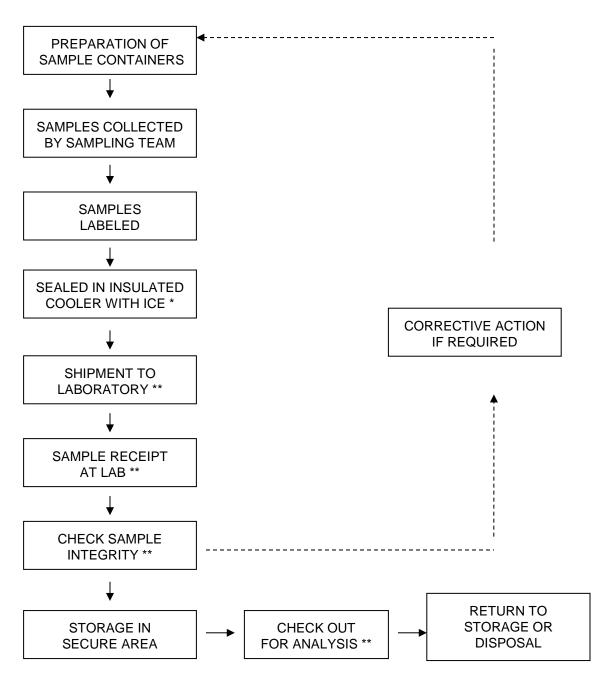
- 1. Laboratory-grade glassware detergent and tap water scrub to remove visual contamination
- 2. Generous tap water rinse
- 3. Distilled/de-ionized water rinse

## 5.8 RESIDUALS MANAGEMENT

Debris (e.g., paper, plastic and disposable PPE) will be collected in plastic garbage bags and disposed of as non-hazardous industrial waste. Debris is expected to be transported to a local municipal landfill for disposal. If applicable, residual solids (e.g., leftover soil cuttings) will be placed back in the borehole from which it was sampled. If gross contamination is observed, soil will be collected and stored in Department of Transportation (DOT)-approved 55-gallon drums in a designated storage area at the Site. The residual materials stored in a designated storage area at the site for further characterization, treatment or disposal.

Residual fluids (such as purge water) will be collected and stored in DOT-approved (or equivalent) 55-gallon drums in a designated storage area at the site. The residual fluids will be analyzed, characterized and disposed off-site in accordance with applicable federal and state regulations. Residual fluids such as decontamination water may be discharged to the ground surface, however, if gross contamination is observed, the residual fluids will be collected, stored, and transported similar purge water or other residual fluids.

## 5.9 CHAIN OF CUSTODY PROCEDURES


A chain-of-custody protocol has been established for collected samples that will be followed during sample handling activities in both field and laboratory operations. The primary purpose of the chain-of-custody procedures is to document the possession of the samples from collection through shipping, storage and analysis to data reporting and disposal. Chain-of-custody refers to actual possession of the samples. Samples are considered to be in custody if they are within sight of the individual responsible for their security or locked in a secure location. Each person who takes possession of the samples, except the shipping courier, is responsible for sample integrity and safe keeping. Chain-of-custody procedures are provided below:

- Chain-of-custody will be initiated by the laboratory supplying the pre-cleaned and prepared sample containers. Chain-of-custody forms will accompany the sample containers.
- Following sample collection, the chain-of-custody form will be completed for the sample collected. The sample identification number, date and time of sample collection, analysis requested and other pertinent information (e.g., preservatives) will be recorded on the form. All entries will be made in waterproof, permanent blue or black ink.
- Langan field personnel will be responsible for the care and custody of the samples collected until the samples are transferred to another party, dispatched to the laboratory, or disposed. The sampling team leader will be responsible for enforcing chain-of-custody procedures during field work.
- When the form is full or when all samples have been collected that will fit in a single cooler, the sampling team leader will check the form for possible errors and sign the chain-of-custody form. Any necessary corrections will be made to the record with a single strike mark, dated, and initialed.

Sample coolers will be accompanied by the chain-of-custody form, sealed in a Ziploc[®] bag (or equivalent) and placed on top of the samples or taped to the inside of the cooler lid. If applicable, a shipping bill will be completed for each cooler and the shipping bill number recorded on the chain-of-custody form.

Samples will be packaged for shipment to the laboratory with the appropriate chain-ofcustody form. A copy of the form will be retained by the sampling team for the project file and the original will be sent to the laboratory with the samples. Bills of lading will also be retained as part of the documentation for the chain-of-custody records, if applicable. When transferring custody of the samples, the individuals relinquishing and receiving custody of the samples will verify sample numbers and condition and will document the sample acquisition and transfer by signing and dating the chain-ofcustody form. This process documents sample custody transfer from the sampler to the analytical laboratory. A flow chart showing a sample custody process is included as Figure 1.1. Blank chain-of-custody forms from York are included as Figures 1.2 and 1.3.





*SUMMA CANISTERS SHOULD NOT BE ICED ** REQUIRES SIGN-OFF ON CHAIN-OF-CUSTODY FORM

YORK	NC.	Field Ch	Field Chain-of-Custody Record - AIR	ustody F	Record	d - AIR	Page of
120 RESEARCH DR. STRATFDRO, 0T 06815 (203) 325-1371 FAX (203) 357-0166	U	NOTE: York's S document serves as you sumature backs you to	NOTE: York's Sid. Terms & Conditions are haided on the back side of this document connect serves as your written authorization to York to proceed with the analyzes requested a senature back you to York's Sid. Terms & Conditions raties unserveded by written contact	hoted on the back side of the state of the s	this document dynes requested at v written continect	NOTE: York's Set Terms & Conditions are lasted on the back side of this document. This document serves a your written authorization to York to proceed with the analyses requested and your isonahare hands you to York's Set Terms & Conditions indees inserveded by written contact	No.
YOUR Information	Report To:	To:	Invoice To:	YOUR Project ID	oject ID		Time Report Type/Deliverables
Company	Company	Company	9	7/		RUSH - Same Day	Stemmary w/ QA Summy
Address:	Address	Address					CT RCP Package
	:			<ul> <li>Purchase Order No.</li> </ul>	rder No.		NY ASP BICLP Pkg
Control Phone	A boundaries	Distant of				RUSH - Four Day	Decremic Deliverables
				Samples from CT	NA AN	Standard(5-7 Days)	EDD (Specify Type)
a-putati woodiniti	T-oran women	trained meno-r	- trainer			[	Standard Excel
Print Clearly and Legibly. All Information must be complete. Samples will NOT be logged in and the turn-around time PATO-151at clock will not begin until any questions by York are resolved. NYSDECVI to	all Information of the and the sections by the section of the sect	nust be complete turn-around tim fork are resolved	EPA TO-15 Las	1015 Volatiles and Other Gas Analyses 5 List EPA TO-14A List VI list Tentatively Identit	her Gas Analyzes EPA TO-14A List Teotstively Identified Compounds	Detection Limit: Required ≤ 1 ug/m ²	Special Instructions
	A	Air Matrix Codes	NYSDEC STARS List	Aur VPH		NYSDEC VI Lanats	
Samples Collected/Authorized By (Signature)			NIDEP Target List Methan	Methane		Routine Survey	
Name (printed)	45	SUIL Vapor/Seb-Stab	CIDEP RCP Target List	OTHER			
Sample Identification	Date Sampled	AIR Matrix	Camister Vacuum Before Sampling (m. Hg)	Canister Vacuum After Sampling (m. Hg)	Choose Analyses New	Choose Analysis Needed from the Mean Above and Enter Sales	
							6 Liter Sourna causter Tedha Bag 6 Liter Sourna causter
							6 Lifer Summa canoder
							6 Liter Summa consider
							6 Lifer Summa canister
							6 Lifer Statutes
							Tedlar Bag
							Tedim Bog
							6 Lifer Samma cantiter Tedlar Bog
							b Liter Sterante camster Tedlar Bas
						c	6 Lifer Summa counter Tedlar Bag
Comments							
			Samples Relinquished By	ed By Date/Time		Samples Received By	Date/Time
			Samples Relinquished By	ed By Date/Time	1	Simples Received in LAB by	by Date/Time

Figure 1.2 Sample Chain-of-Custody Form – Air Sample

YOUR Information         Report To:         Invoice To:         YOUR Project ID         Turn-Acound Time         Report Type           Same	Date/Time on Receipt	Samples Received By Dat	Samples Received By	Date/Time	quished By	Samples Relinquished By			
Invoice To:         YOUR Project ID         Turn-Around Time           Purchase Order No.         RUSH - Same Day	Temperat		HNO	Alcorbic Acid	ZnA		Preserration Check thore Applicable		Comments
Invoice To:     YOUR Project ID     Turn-Around Time       Purchase Order No.     RUSH - Same Day     RUSH - Same Day     RUSH - Non Day       Image:     Purchase Order No.     RUSH - Two Day     RUSH - Two Day     RUSH - Two Day       Image:     Samples from: CTNYNI     Standard(5-7 DayN)     RUSH - Four Day     RUSH - Four Day       Image:     Samples from: CTNYNI     Standard(5-7 DayN)     RUSH - Four Day     RUSH - Four Day       Intra:     Samples from: CT_NYNI     Standard(5-7 DayN)     RUSH - Four Day     RUSH - Four Day       Intra:     Samples from: CT_NYNI     Standard(5-7 DayN)     RUSH - Four Day     RUSH - Four Day       Intra:     Samples from: CT_NYNI     Standard(5-7 DayN)     RUSH - Four Day     RUSH - Four Day       Intra:     Samples from: CT_NPNI     Standard RUSH - Four Day     RUSH - Four Day     RUSH - Four Day       Intra:     Samples from: RUSH - Four Day     RUSH - Four Day     RUSH - Four Day     RUSH - Four Day       Intra:     Samples from: RUSH - Four Day     RUSH - Four Day     RUSH - Four Day     RUSH - Four Day       RUSH - Same     RUSH - Four Day       RUSH - RUSH									
Invoice To:         YOUR Project ID         Turn-Around Time           Purchase Order No.         RUSH - Same Day         RUSH - Same Day         RUSH - Neat Day									
Invoice To:         YOUR Project ID         Turn-Around Time           RUSH - Same Day	Constainer Description(s)		Menu Ab	ded from the	nalyses Nee	Choose A	Sample Matrix		Sample Identification
Invoice To:         YOUR Project ID         Turn-Around Time           RUSH - Same Day         RUSH - Same Day         RUSH - New Day <td></td> <td></td> <td></td> <td>102</td> <td>ADDATICE BOA</td> <td>1.00</td> <td>Au-SV - and super</td> <td>d)</td> <td>Name (printex</td>				102	ADDATICE BOA	1.00	Au-SV - and super	d)	Name (printex
Invoice To:         YOUR Project ID         Turn-Around Time           RUSH - Same Day         RUSH - Same Day         RUSH - Same Day         RUSH - Next Day	York Regulatory Comparison Excel Spreadsheet Junpue to infolloning Jugs (plane kling)	Per 200 per 100 Per 200 per 20	NUP AFTER	中華市長	in I	CTIACP Int Arom. only Halog only	WW- watewates GW- groundwater DW- druking water	ed By (Signature)	Samples Collected/Authorize
Invoice To:         YOUR Project ID         Turn-Around Time           RUSH - Same Day         RUSH - Two	GIS/KEY (std)	Full App UV Serve Anni, Par XXVDoutine Menucocycles Par VXVDoutine TTTY		App DX TAGM	t Ø	Ŧ	Matrix Codes soil		
B Information       Report To:       Invoice To:       YOUR Project ID       Turn-Around Time         Company       Company       Company       Company       RUSH - Same Day       SUSH - Same Day	NYSDEC EQuIS EQUIS (sof) EZ-EDD (EQUIS) NIDEP SRP HarSine EDD	Ph.Ped. Caronady TCL Ognor Saurinay TAL MarOV Iganolody Full TCLP Plack Pour		SOUPER SUUPER SUSIEmb CTRCP		8040 AAD 404 STARS Int BITEX	n-around time k are resolved.	ged in and the tur ny questions by Yor	amples will NOT be log lock will not begin until a
B Information       Report To:       Invoice To:       YOUR Project ID       Turn-Around Time         Company       Company       Company       Company       RUSH - Same Day       S         Address       Address       Address       Address       RUSH - Next Day       S       S         Planes No       Planes No       Planes No       RUSH - Next Day       S       S       S         Attention       Attention       Attention       Maximum       Standard(5-7 Days)       Standard(5-7 Days)       N       Standard(5-7 Days)       N	Sample Excel	FullLets Mise.	Mix. 0	PearCallers Met	Semt-Vols	and an	of he executed	All Information man	beint Classic and I southly
SUR Information         Report To:         Invoice To:         YOUR Project ID         Turn-Around Time           Company:         Company:         Company:         Company:         RUSH - Same Day         RUSH - Same Day         RUSH - Next Day         RUSH - Next Day         RUSH - Next Day         RUSH - Two	NJDEP Red. Deliv. Electronic Data Deliverables (ED		M	tes from CT N	Samp		Attestion	American .	outart Perseu
OUR Information         Report To:         Invoice To:         YOUR Project ID         Turn-Around Time           Computer         Computer         Computer         RUSH - Same Day         RUSH - Same Day         RUSH - Net Day         RUSH -	NY ASP B Package		er No.	urchase Ord			Phone No	Phene No	hone Ne.
DUR Information         Report To:         Invoice To:         YOUR Project ID         Turn-Around Time           Company         Company         Company         Company         Statute	CT RCP Padage	][			,		Address	Addeeu	diben:
Report To: Invoice To: YOUR Project ID Turn-Around Time	Summary Report						Company	Company	innhao
	Report Type			YOUR Proje		Invoice To		Report T	YOUR Information
		2	ecor	Odv R	Cust	ain-of-	Field Chain-of-Custody Record	1	100 H A

Figure 1.3 Sample Chain-of-Custody Form – Soil and Groundwater

Laboratory chain-of-custody will be maintained throughout the analytical processes as described in the laboratory's Quality Assurance Manual. The analytical laboratory will provide a copy of the chain-of-custody in the analytical data deliverable package. The chain-of-custody becomes the permanent record of sample handling and shipment.

## 5.10 LABORATORY SAMPLE STORAGE PROCEDURES

The subcontracted laboratory will use a laboratory information management system (LIMS) to track and schedule samples upon receipt by the analytical laboratories. Any sample anomalies identified during sample log-in must be evaluated on individual merit for the impact upon the results and the data quality objectives of the project. When irregularities do exist, the environmental consultant must be notified to discuss recommended courses of action and documentation of the issue must be included in the project file.

For samples requiring thermal preservation, the temperature of each cooler will be immediately recorded. Each sample and container will be will be assigned a unique laboratory identification number and secured within the custody room walk-in coolers designated for new samples. Samples will be, as soon as practical, disbursed in a manner that is functional for the operational team. The temperature of all coolers and freezers will be monitored and recorded using a certified temperature sensor. Any temperature excursions outside of acceptance criteria (i.e., below 2°C or above 6°C) will initiate an investigation to determine whether any samples may have been affected. Samples for VOCs will be maintained in satellite storage areas within the VOC laboratory. Following analysis, the laboratory's specific procedures for retention and disposal will be followed as specified in the laboratory's SOPs and/or QA manual.

## 6.0 DATA REDUCTION, VALIDATION, AND REPORTING

## 6.1 INTRODUCTION

Data collected during the field investigation will be reduced and reviewed by the laboratory QA personnel, and a report on the findings will be tabulated in a standard format. The criteria used to identify and quantify the analytes will be those specified for the applicable methods in the USEPA SW-846 and subsequent updates. The data package provided by the laboratory will contain all items specified in the USEPA SW-846 appropriate for the analyses to be performed, and be reported in standard format.

The completed copies of the chain-of-custody records (both external and internal) accompanying each sample from time of initial bottle preparation to completion of analysis shall be attached to the analytical reports.

## 6.2 DATA REDUCTION

The Analytical Services Protocol (ASP) Category B data packages and an electronic data deliverable (EDD) will be provided by the laboratory after receipt of a complete sample delivery group. The Project Manager will immediately arrange for archiving the results and preparation of result tables. These tables will form the database for assessment of the site contamination condition.

Each EDD deliverable must be formatted using a Microsoft Windows operating system and the NYSDEC data deliverable format for EQuIS. To avoid transcription errors, data will be loaded directly into the ASCII format from the laboratory information management system (LIMS). If this cannot be accomplished, the consultant should be notified via letter of transmittal indicating that manual entry of data is required for a particular method of analysis. All EDDs must also undergo a QC check by the laboratory before delivery. The original data, tabulations, and electronic media are stored in a secure and retrievable fashion.

The Project Manager or Task Manager will maintain close contact with the QA reviewer to ensure all non-conformance issues are acted upon prior to data manipulation and assessment routines. Once the QA review has been completed, the Project Manager may direct the Team Leaders or others to initiate and finalize the analytical data assessment.

## 6.3 DATA VALIDATION

Data validation will be performed in accordance with the USEPA validation guidelines for organic and inorganic data review. Validation will include the following:

- Verification of the QC sample results,
- Verification of the identification of sample results (both positive hits and nondetects),
- Recalculation of 10% of all investigative sample results, and
- Preparation of Data Usability Summary Reports (DUSR).

A DUSR will be prepared and reviewed by the QAO before issuance. The DUSR will present the results of data validation, including a summary assessment of laboratory data packages, sample preservation and COC procedures, and a summary assessment of precision, accuracy, representativeness, comparability, and completeness for each analytical method. The DUSR will also include copies of the Category B data package Form 1s that have been changed during data validation. A detailed assessment of each SDG will follow. For each of the organic analytical methods, the following will be assessed:

- Holding times;
- Instrument tuning;
- Instrument calibrations;
- Blank results;
- System monitoring compounds or surrogate recovery compounds (as applicable);
- Internal standard recovery results;
- MS and MSD results;
- Target compound identification;
- Chromatogram quality;
- Pesticide cleanup (if applicable);
- Compound quantitation and reported detection limits;
- System performance; and

• Results verification.

For each of the inorganic compounds, the following will be assessed:

- Holding times;
- Calibrations;
- Blank results;
- Interference check sample;
- Laboratory check samples;
- Duplicates;
- Matrix Spike;
- Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) QC;
- ICP serial dilutions; and
- Results verification and reported detection limits.

Based on the results of data validation, the validated analytical results reported by the laboratory will be assigned one of the following usability flags:

- "U" Not detected. The associated number indicates the approximate sample concentration necessary to be detected significantly greater than the level of the highest associated blank;
- "UJ" Not detected. Quantitation limit may be inaccurate or imprecise;
- "J" Analyte is present. Reported value may be associated with a higher level of uncertainty than is normally expected with the analytical method
- "N" Tentative identification. Analyte is considered present in the sample;
- "R" Unreliable result; data is rejected or unusable. Analyte may or may not be present in the sample; and
- No Flag Result accepted without qualification.

# 7.0 QUALITY ASSURANCE PERFORMANCE AUDITS AND SYSTEM AUDITS

# 7.1 INTRODUCTION

Quality assurance audits may be performed by the project quality assurance group under the direction and approval of the QAO. These audits will be implemented to evaluate the capability and performance of project and subcontractor personnel, items, activities, and documentation of the measurement system(s). Functioning as an independent body and reporting directly to corporate quality assurance management, the QAO may plan, schedule, and approve system and performance audits based upon procedures customized to the project requirements. At times, the QAO may request additional personnel with specific expertise from company and/or project groups to assist in conducting performance audits. However, these personnel will not have responsibility for the project work associated with the performance audit.

# 7.2 SYSTEM AUDITS

System audits may be performed by the QAO or designated auditors, and encompass a qualitative evaluation of measurement system components to ascertain their appropriate selection and application. In addition, field and laboratory quality control procedures and associated documentation may be system audited. These audits may be performed once during the performance of the project. However, if conditions adverse to quality are detected or if the Project Manager requests, additional audits may be performed.

# 7.3 PERFORMANCE AUDITS

The laboratory may be required to conduct an analysis of Performance Evaluation samples or provide proof that Performance Evaluation samples submitted by USEPA or a state agency have been analyzed within the past twelve months.

# 7.4 FORMAL AUDITS

Formal audits refer to any system or performance audit that is documented and implemented by the QA group. These audits encompass documented activities performed by qualified lead auditors to a written procedure or checklists to objectively verify that quality assurance requirements have been developed, documented, and instituted in accordance with contractual and project criteria. Formal audits may be performed on project and subcontractor work at various locations.

Audit reports will be written by auditors who have performed the site audit after gathering and evaluating all data. Items, activities, and documents determined by lead auditors to be in noncompliance shall be identified at exit interviews conducted with the involved management. Non-compliances will be logged, and documented through audit findings, which are attached to and are a part of the integral audit report. These audit-finding forms are directed to management to satisfactorily resolve the noncompliance in a specified and timely manner.

The Project Manager has overall responsibility to ensure that all corrective actions necessary to resolve audit findings are acted upon promptly and satisfactorily. Audit reports must be submitted to the Project Manager within fifteen days of completion of the audit. Serious deficiencies will be reported to the Project Manager within 24 hours. All audit checklists, audit reports, audit findings, and acceptable resolutions are approved by the QAO prior to issue. Verification of acceptable resolutions may be determined by re-audit or documented surveillance of the item or activity. Upon verification acceptance, the QAO will close out the audit report and findings.

# 8.0 CORRECTIVE ACTION

# 8.1 INTRODUCTION

The following procedures have been established to ensure that conditions adverse to quality, such as malfunctions, deficiencies, deviations, and errors, are promptly investigated, documented, evaluated, and corrected.

# 8.2 **PROCEDURE DESCRIPTION**

When a significant condition adverse to quality is noted at site, laboratory, or subcontractor location, the cause of the condition will be determined and corrective action will be taken to preclude repetition. Condition identification, cause, reference documents, and corrective action planned to be taken will be documented and reported to the QAO, Project Manager, Field Team Leader and involved contractor management, at a minimum. Implementation of corrective action is verified by documented follow-up action.

All project personnel have the responsibility, as part of the normal work duties, to promptly identify, solicit approved correction, and report conditions adverse to quality. Corrective actions will be initiated as follows:

- When predetermined acceptance standards are not attained;
- When procedure or data compiled are determined to be deficient;
- When equipment or instrumentation is found to be faulty;
- When samples and analytical test results are not clearly traceable;
- When quality assurance requirements have been violated;
- When designated approvals have been circumvented;
- As a result of system and performance audits;
- As a result of a management assessment;
- As a result of laboratory/field comparison studies; and
- As required by USEPA SW-846, and subsequent updates, or by the NYSDEC ASP.

Project management and staff, such as field investigation teams, remedial response planning personnel, and laboratory groups, monitor on-going work performance in the

normal course of daily responsibilities. Work may be audited at the sites, laboratories, or contractor locations. Activities, or documents ascertained to be noncompliant with quality assurance requirements will be documented. Corrective actions will be mandated through audit finding sheets attached to the audit report. Audit findings are logged, maintained, and controlled by the Task Manager.

Personnel assigned to quality assurance functions will have the responsibility to issue and control Corrective Action Request (CAR) Forms (see next page). The CAR identifies the out-of-compliance condition, reference document(s), and recommended corrective action(s) to be administered. The CAR is issued to the personnel responsible for the affected item or activity. A copy is also submitted to the Project Manager. The individual to whom the CAR is addressed returns the requested response promptly to the QA personnel, affixing his/her signature and date to the corrective action block, after stating the cause of the conditions and corrective action to be taken. The QA personnel maintain the log for status of CARs, confirms the adequacy of the intended corrective action, and verifies its implementation. CARs will be retained in the project file for the records.

Any project personnel may identify noncompliance issues; however, the designated QA personnel are responsible for documenting, numbering, logging, and verifying the close out action. The Project Manager will be responsible for ensuring that all recommended corrective actions are implemented, documented, and approved.

CORRECTIV	E ACTION REQUEST	
Number:	Date:	_
ТО:		
You are hereby requested to tal otherwise determined by you to (a) from recurring. Your written resp assurance manager by	resolve the noted condition an ponse is to be returned to t	nd (b) to prevent it
CONDITION:		
REFERENCE DOCUMENTS:		
RECOMMENDED CORRECTIVE ACTION	NS:	
Originator Date Approval E	Date Approval	Date
RESPONSE		
CAUSE OF CONDITION		
CORRECTIVE ACTION		
(A) RESOLUTION		
(B) PREVENTION		
(C) AFFECTED DOCUMENTS		
C.A. FOLLOWUP:		
CORRECTIVE ACTION VERIFIED	D BY:	

# 9.0 **REFERENCES**

- USEPA. Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry. SOP No. HW-24, Revision 4, dated October 2014. USEPA Region II.
- USEPA. Analysis of Volatile Organic Compounds in Air Contained in Canisters by Method TO-15. SOP No. HW-31, Revision 6, dated June 2014. USEPA Region II.
- USEPA. Polychlorinated Biphenyl (PCB) Aroclor Data Validation. SOP No. HW-37, Revision 3, dated May 2013. USEPA Region II.
- USEPA. Pesticide Data Validation. SOP No. HW-36, Revision 4, dated May 2013. USEPA Region II.
- USEPA. Semivolatile Data Validation. SOP No. HW-35, Revision 2, dated March 2013. USEPA Region II.
- USEPA. Tetro-through Octa-chlorinated Dioxins and Furans by Isotope Dilution (HRGC/HRMS). SOP For EPA Method 1613, Revision B, dated December 2010. USEPA Region II.
- USEPA. PCDDs/PCDFs using HRGC/HRMS. SOP for SW-846 Method 8290 HW-19, Revision 1.1, dated December 2010. USEPA Region II.
- USEPA, Polychlorinated Dibenzodioxins/Polychlorinated Dibenzofurans. SW-846 Method 8280 HW-11, Revision 3, dated December 2010. USEPA Region II.
- USEPA. Low/Medium Volatile Data Validation. SOP No. HW-33, Revision 3, dated March 2013. USEPA Region II.
- USEPA. ICP-AES Data Validation. SOP No. HW-2a, Revision 15, dated December 2012. USEPA Region II.
- USEPA. ICP-MS Data Validation. SOP No. HW-2b, Revision 15, dated December 2012. USEPA Region II.
- USEPA. Mercury and Cyanide Data Validation. SOP No. HW-2c, Revision 15, dated December 2012, USEPA Region II.
- USEPA. Trace Volatile Data Validation. SOP No. HW-34, Revision 3, dated February 2013, USEPA Region II.

RESUMES

# **Emily G. Strake**

Project Chemist/ Risk Assessor Human Health Risk Assessment Chemical Data Validation

### 15 years in the industry ~ 2 years with Langan

Ms. Strake has fifteen years of environmental chemistry, risk assessment, auditing, and quality assurance experience. Most recently, she has focused her efforts on human health risk assessment, and has been the primary author or key contributor of risk assessment reports and screening evaluations for projects governed under RCRA, CERCLA, SWRCB, DTSC, DNREC, PADEP, NJDEP, CTDEEP, ODEQ, NYSDEC and MDE. She has experience in site-specific strategy development, which has enabled her to perform assessments to focus areas of investigation and identify risk-based alternatives for reducing remediation costs. Ms. Strake is a member of the Interstate Technology and Regulatory Council Risk Assessment Team responsible for the development and review of organizational risk assessment guidance documents and serves as a National Trainer in risk assessment for the organization.

Ms. Strake has over nine years of experience assessing potential adverse health effect to humans from exposure to hazardous contaminants in soil, sediment, groundwater, surface water, ambient and indoor air, and various types of animal, fish, and plant materials. She understands and applies environmental cleanup guidance and policies associated with multiple federal and state agencies. Additionally, she has broad experience in the development of preliminary remediation goals and site-specific action levels. She is proficient with the USEPA and Cal/EPA Johnson and Ettinger Model for Subsurface Vapor Intrusion into Buildings, USEPA's Adult Lead Methodology, DTSC's Leadspread 7 and 8, and statistical evaluation of data using USEPA's ProUCL software.

Ms. Strake has extensive experience in environmental data validation, focused on ensuring laboratory deliverables follow specific guidelines as described by regulatory agencies and the analytical methods employed. In addition, she has experience in EQuIS chemical database management. She also has a broad range of environmental field experience and maintains current OSHA HAZWOPER certification.

Ms. Strake is experienced in auditing laboratory and field-sampling activities for compliance with Quality Assurance Project Plans (QAPPs), the National Environmental Laboratory Accreditation Conference Standards Quality Systems manual, and applicable USEPA Guidance. Ms. Strake has also audited on-site laboratories in support of groundwater treatment operations and implemented corrective actions. Her responsibilities include writing reports on the value of laboratory work, writing/editing QAPPs for clients and project-specific sites, peer reviewing colleague's work, and mentoring staff within the office. She has also served as the Quality Assurance officer for several long-term projects, responsible for the achievement of all forms of Quality Control/Quality Assurance by onsite personnel relating to sampling, analysis, and data evaluation.

Ms. Strake has several years' experience analyzing investigative samples, writing laboratory Standard Operating Procedures (SOPs), and managing all



#### Education

M.B.A., Business Administration The University of Scranton

B.S., Chemistry Cedar Crest College

#### Memberships

Interstate Technology and Regulatory Council

Society for Risk Analysis

#### Training

Candidate, Certified Industrial Environmental Toxicologist. National Registry of Environmental Professionals.

40 hr. OSHA HAZWOPER Training/Nov 2002

8 hr. HAZWOPER Supervisor/June 2004

8 hr. OSHA HAZWOPER Refresher/Oct 2012

American Red Cross First Aid & CPR certified

#### **Publications/Presentations**

Decision Making at Contaminated Sites: Issues and Options in Human Health Risk Assessment. Interstate Technology and Regulatory Council

Alternate Approaches for Act 2 Risk Assessments Using Site-Specific Information. Pennsylvania Brownfields Conference

Tools from NJDEP's Attainment Guidance to Support Site Closure LSRP Summit V

EPA Region IX Vapor Intrusion Policy for Silicon Valley 2014 Environmental Workshop



aspects of procedures and analyses for Optical Emission Spectrometry, X-Ray Fluorescence, Ignition analysis, and Atomic Absorption. Her experience also includes operating and performing routine instrument maintenance for GC/MS and IR. Ms. Strake has worked extensively on developing rapid soil characterization programs for PCB and pesticide analyses utilizing enzymelinked immunosorbent assays, and was also involved in efforts to develop new instrumentation to quantify microbial nitrification of ammonium.

### Selected Project Experience

Human Health Risk Assessment

- Major League Soccer's San Jose Earthquakes Stadium Utilized the Johnson and Ettinger advanced soil gas model to calculate risk and hazard associated with inhalation of chlorinated solvents for the redevelopment of a public soccer stadium. Soil gas data was modeled assuming three soil stratum and site-specific soil, building, and exposure parameters. The Earthquakes' stadium is set to open in 2015.
- Exelon Developed a human health risk assessment for a utilityowned former Manufactured Gas Plant (MGP) site in Pennsylvania, under Pennsylvania's Act 2 Program. Used ProUCL 4.0 statistical software to determine upper limits for full data sets and non-detect data. Conducted vapor intrusion modeling (via the Johnson & Ettinger model) and prepared vapor intrusion reports showing that risks to volatile organic compounds in soils and groundwater were not impacting indoor air quality.
- Texas Instruments Participated in a collaboration with Robert Ettinger and Geosyntec Consulting to develop comments to USEPA Region IX and the San Francisco Regional Water Quality Control Board regarding vapor intrusion at South Bay Superfund Sites. The focus of the response was to outline scientific and policy objections to EPA's recommended TCE interim short-term indoor air response action levels and guidelines, and to clarify the use of California-modified indoor air screening levels for assessing and responding to TCE and PCE subsurface vapor intrusion into indoor air.
- DuPont Worked as a key participant in the human health risk evaluation of mercury associated with legacy contamination of the South River located in Waynesboro, Virginia.
- Veteran's Affairs Completed a human health risk evaluation of the potential future risk associated with inhalation of indoor air for the Veteran's Administration. Soil, soil gas, and groundwater samples were collected as part of the site characterization. Achieved DTSC approval of the risk assessment approach and conclusions.
- Santa Clara Landfill Developed a human health risk assessment to characterize risk associated with exposure to landfill gas at the Santa Clara All Purpose Landfill. The risk assessment evaluated specific compounds in landfill gas, their concentrations, spatial patterns, and extent throughout the site, and assessed the potential for vapor intrusion associated with a proposed future redevelopment.
- Avon Completed a human health risk assessment in accordance with NYSDEC guidance for a redevelopment property located in Rye, New York. The objective of the evaluation was to characterize the risks associated with potential future human

LANGAN

exposures to soil and groundwater affected by a release from the Site's former No. 2 fuel oil UST. The intended future use of the Site was a playground to be utilized by the general public for open play on commercial recreational equipment.

- Golden Gate National Parks Conservancy Peer reviewed a Preliminary Endangerment Assessment Report for the Battery East Trail. The assessment included a human health risk evaluation that estimated carcinogenic risk from exposure to PAHs and dioxin/furans in soil using toxic equivalency to benzo(a)pyrene and 2,3,7,8-TCDD.
- Sunoco Refineries Derived site-specific soil PRGs for lead using the EPA's adult lead model for two former Sunoco refineries. Completed receptor evaluations in accordance with USEPA risk assessment guidance to develop exposure parameters under current and reasonably anticipated future land use scenarios.
- Honeywell Completed a focused human health risk evaluation of PAH contaminants for under NJDEP's Site Remediation Program. Applied a blended approach of qualitative risk characterization and quantitative risk calculation to propose closure of AOCs following the remedial investigation.
- Delaware City Refinery Performed comprehensive human health risk assessment for a petroleum refinery in Delaware City, Delaware. The risk assessment was the basis for a thorough characterization and assessment of potential risks posed by sitespecific conditions. Developed various human exposure scenarios by using both Federal and State-Specific guidance for soil, groundwater, and surface water exposure.
- Occidental Chemical Completed multiple AOC-specific risk assessments utilizing and applying the guidance set forth by the DTSC's Human Health Risk Assessment Note 1 (Default Exposure Factors for Use in Risk Assessment), Note 3 (Recommended Methodology for Use of USEPA Regional Screening Levels, and Note 4 (Screening Level Human Health Risk Assessments).
- Floreffe Terminal Performed human health risk assessment for contamination resulting from a 3.9 million gallon diesel oil tank collapse along the Monongahela River. Evaluated potential impacts to human health via exposure to soil, groundwater, and surface water. Calculated site-specific standards for soil remediation.
- DOW Chemical Calculated Medium Specific Concentrations (MSCs) for unregulated contaminants using the PADEP protocols to assist in the clean-up of a monomer tank explosion in Bristol, Pennsylvania. Selected appropriate surrogate toxicity data and evaluated novel on-site constituents by analogy.
- Ryder Developed Alternative Direct Exposure Criteria for PAHimpacted fill material at a commercial facility. Site-specific soil screening levels for incidental ingestion of soil were calculated following a forward risk evaluation for current on-site receptors.
- Rohm and Haas Prepared an Act 2 site-specific human health risk assessment for the oldest industrial facility in the United States, located in southeast Philadelphia. The objective of the risk assessment was to determine achievable possible future land-use options under Pennsylvania's Land Recycling Program. The risk assessment included evolution of multiple site-COPCs and constituent suites: VOCs, SVOCs, PCBs, pesticides, and metals

IANGAN

(including lead). Evaluated the potential for indoor air inhalation through J&E modeling of soil gas and groundwater.

• Regency - Conducted vapor intrusion modeling for a dry cleaning facility in the Philadelphia area. Predictive modeling using the Johnson and Ettinger approach indicated that estimated contaminant levels would not adversely affect human receptors.

Chemical Data Quality

- Audited multiple accredited laboratories in New Jersey and Pennsylvania on behalf of clients using USEPA Guidance on Technical Audits and Related Assessments for Environmental Data Operations. The audits included full-suite USEPA and SW-846 methodology; and included reviewing staff experience and training records, equipment and facilities, policies, practices, procedures, and documentation for sample receipt, analysis, instrument maintenance, standard preparation, calibration and traceability, control charting, corrective actions, data reduction and review, report generation, and waste disposal.
- Reviewed and validated data packages for RCRA Facilities Investigation at a Philadelphia-area chemical site; issued data validation reports to project personnel and regulatory agencies. The reviews included evaluation of quarterly groundwater, soil, and soil vapor matrices. Participated in RCRA groundwater sampling, developed and executed the investigation's QAPP, and coordinated with the laboratory to schedule and perform fieldsampling events.
- Completed Data Usability Summary Reports in accordance with NYSDEC DER-10 guidance for soil, groundwater, sediment surface water, soil gas, ambient air and indoor air analytical results.
- Acted as the Quality Assurance Officer for several long-term projects in Pennsylvania, Maryland, and New Jersey, Delaware, responsible for the achievement of all forms of QA/QC as it related to sampling, analysis, and data evaluation.
- Participated in a CERCLA site investigation; assessed the usability of sample results for numerous matrices including dust, sediment, soils, and various aqueous matrices for a remedial investigation under the Contract Laboratory Program. Implemented an on-site pesticide immunoassay program to delineate soil contamination in real-time.
- EQuIS data manager for database migration of historical groundwater results associated with remediation activities; assisted with natural attenuation data evaluation and gained experience in geochemical trends associated with intrinsic biodegradation.
- Coordinated the collection of fish tissue samples and determined the validity of the analytical results associated with CERCLA and RCRA site characterizations. Assessed duck blood analytical results for the Connecticut Department of Energy and Environmental Protection Bureau of Natural Resources.

IANGAN

# Stuart Knoop, PG, LEED AP

Senior Project Manager Remedial and Geological Investigations

## 14 years in the industry

Mr. Knoop is a geologist with experience at sites in New York, Connecticut, North Carolina, South Carolina, and Georgia. He has managed high profile, multi-disciplinary projects and worked extensively on projects under City and State regulatory oversight in New York City. Mr. Knoop has developed remedial action and waste management plans and executed remedial investigations, remedial actions, closures at brownfield sites, and former MGP and commercial development sites throughout New York City. He has conducted numerous Phase I and Phase II Environmental Site Assessments, and coordinated remedial action programs at commercial, residential, industrial, telecommunication, and undeveloped sites. He has also coordinated an on-call environmental contract with the New York City School Construction Authority and managed sites under the New York State Brownfield Cleanup Program, and the New York City Voluntary Cleanup Program.

Mr. Knoop's experience includes coordination of free product recovery, development of soil vapor mitigation systems, and implementation of soil and groundwater remediation programs utilizing soil vapor extraction, air sparging, chemical injection, and contaminant removal. He has also supervised the assessment and removal of petroleum underground storage tanks in accordance with state regulatory standards. Additional experience includes extensive geologic mapping, stable isotope reaction and transport modeling, geotechnical analysis of soil and rock for highway, and utility construction projects.

### **Selected Projects**

Queens Plaza Park, Long Island City, NY Red Hook Development Sites, Brooklyn, NY 173-177 Harrison Avenue, Brooklyn, NY Gotham West Development (Studio City), New York, NY NYCHA, On-Call Environmental Contract, New York, NY Kingsbridge Armory Redevelopment, Bronx, NY 54 Rutledge Street Property, Brooklyn, NY Peter Cooper Village/Stuyvesant Town Utility Replacement Project, New York, NY Former Linen Cleaning Facility, Bronx, NY New York Sports Complex and Convention Center, New York, NY West Side Site, New York, NY Rikers Island Correctional Facility, East Elmhurst, NY Macon County School Bus Garage, Franklin, NC Skyland Distributing Facility, Asheville, NC Rental Uniform Facilities, Various Locations, Nationwide Interstate Brands Corporation, Winston-Salem, NC



### Education

M.S., Geology University of British Columbia

B.A., Economics and Environmental Oberlin College

Hydrogeology and Geology Coursework University of Texas

#### **Professional Registration**

Professional Geologist (PG) in NC

LEED Accredited Professional (LEED AP)

#### Affiliations

Geological Society of America

Geological Association of New Jersey



### **Selected Publications, Reports, and Presentations**

<u>"Small Site, Big Challenges: Negotiating Overlapping Regulatory</u> <u>Commitments for a Private School Development in Emergent, Post-</u> <u>Industrial Brooklyn, NY</u>", Poster Session, 2012 Langan Environmental Workshop, New Brunswick, NJ.

<u>An Introduction to Phase I Environmental Site Assessments</u>, Co-Presenter for Langan Training Webinar, November 2011.

"New Evidence for Syn-Tectonic Fluid Migration across the Hinterland-Foreland Transition of the Canadian Cordillera", Journal of Geophysical Research, v. 107, Knoop, S., Kennedy, L., and Dipple, G. 2002.

"Were the Hinterland and Foreland Hydrologically Coupled during Mesozoic Contraction?", Abstracts with Programs, Geological Society of America, Annual Meeting, Knoop, S., Kennedy, L., and Dipple, G. 1999. Presented at October 1999 meeting in Denver, CO.

"New Evidence for the Flow of Hinterland-Derived Fluids Into the Canadian Rockies During Mesozoic Contraction.", Abstracts with Programs, Geological Association of Canada, Annual Meeting, 2000. Presented as poster at May 2000 meeting in Calgary, AB. Knoop, S., Kennedy, L., and Dipple, G.

LANGAN

# Ryan Manderbach, CHMM

# Senior Project Manager Environmental Engineering & Site Assessments

### 14 years in the industry

Mr. Manderbach has extensive experience in New York, New Jersey, Massachusetts, Maine, Rhode Island, New Hampshire, and Connecticut. His recent experience includes New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup, Voluntary Cleanup and Spill Programs, and New York City Office of Environmental Remediation (OER) Edesignated site investigation, and remediation. He has managed and performed Phase I and II Environmental Site Assessments; Underground Storage Tank (UST) removals and closures; soil vapor intrusion investigations; and site investigations and remediation. He also has extensive experience with Hazard Ranking System (HRS) evaluations, site assessments, removal actions, and emergency response activities under the EPA Regions I and II Superfund program.

### **Selected Projects**

Columbia University, Manhattanville Development, New York, NY Riverside Center – Parcels 1 through 5 The Shops at Atlas Park, Queens, NY 520 West 41st Street, New York, NY Shore Parkway, Brooklyn, NY 100 West 125th Street, NY 11 North Moore Street, NY 290 West Street, NY City University of New York (CUNY), John Jay College Expansion, New York, NY Queens West Development, Long Island City, Queens, NY United Nations Capital Master Plan, New York, NY Former Air Products and Chemicals, Inc. Facility, Middlesex, NJ Lower Manhattan Indoor Dust Test and Clean Program, New York, NY Former Buckbee-Mears Facility, Cortland, NY Old Landfill, Norton, MA Boulter Farm Area, Cumberland, RI Hollingsworth & Vose Co., Walpole, MA Chlor-Alkali Facility (Former), Berlin, NH Limerick Mill Complex, Limerick, ME Danielson Pike Chlorinated Solvent Sites, Scituate, RI Tiogue Lake Sediment Contamination Site, Coventry, RI Atlas Copco Sites, Holyoke, MA Fisherville Mill, Grafton MA Hurricane Katrina Federal Disaster Response, New Orleans, LA Hurricane Ike Federal Disaster Response, Pasadena, TX

### Education

B.A., Environmental Analysis and Policy Boston University

#### **Professional Registration**

Certified Hazardous Materials Manager (CHMM)

OSHA 29 CFR 1910.120 Certification (HAZWOPER)



LABORATORY REPORTING LIMITS AND METHOD DETECTION LIMITS

#### SOIL/SEDIMENT SAMPLES LABORATORY REPORTING LIMITS AND METHOD DETECTION LIMITS

Method	Matrix	Analyte	RL	MDL	Units
-		Volatile Organic Compounds			
EPA 8260C/5035	Soil	1,1,1,2-Tetrachloroethane	0.001	0.000318	mg/kg
EPA 8260C/5035	Soil	1,1,1-Trichloroethane	0.001	0.0001108	mg/kg
EPA 8260C/5035	Soil	1,1,2,2-Tetrachloroethane	0.001	0.0001008	mg/kg
EPA 8260C/5035	Soil	1,1,2-Trichloro-1,2,2-Trifluoroethane	0.02	0.000274	mg/kg
EPA 8260C/5035	Soil	1,1,2-Trichloroethane	0.0015	0.000304	mg/kg
EPA 8260C/5035	Soil	1,1-Dichloroethane	0.0015	0.0000856	mg/kg
EPA 8260C/5035 EPA 8260C/5035	Soil Soil	1,1-Dichloroethene	0.001	0.000262 0.0001414	mg/kg
EPA 8260C/5035 EPA 8260C/5035	Soil	1,1-Dichloropropene 1,2,3-Trichlorobenzene	0.005	0.0001414	mg/kg mg/kg
EPA 8260C/5035	Soil	1,2,3-Trichloropropane	0.005	0.0001626	mg/kg
EPA 8260C/5035	Soil	1,2,4,5-Tetramethylbenzene	0.004	0.0001302	mg/kg
EPA 8260C/5035	Soil	1,2,4-Trichlorobenzene	0.005	0.0001818	mg/kg
EPA 8260C/5035	Soil	1,2,4-Trimethylbenzene	0.005	0.0001414	mg/kg
EPA 8260C/5035	Soil	1,2-Dibromo-3-chloropropane	0.005	0.000396	mg/kg
EPA 8260C/5035	Soil	1,2-Dibromoethane	0.004	0.0001744	mg/kg
EPA 8260C/5035	Soil	1,2-Dichlorobenzene	0.005	0.0001532	mg/kg
EPA 8260C/5035	Soil	1,2-Dichloroethane	0.001	0.0001134	mg/kg
EPA 8260C/5035	Soil	1,2-Dichloropropane	0.0035	0.000228	mg/kg
EPA 8260C/5035	Soil	1,3,5-Trimethylbenzene	0.005	0.0001434	mg/kg
EPA 8260C/5035	Soil	1,3-Dichlorobenzene	0.005	0.000135	mg/kg
EPA 8260C/5035	Soil	1,3-Dichloropropane	0.005	0.0001452	mg/kg
EPA 8260C/5035	Soil	1,4-Dichlorobenzene	0.005	0.0001384	mg/kg
EPA 8260C/5035	Soil	1,4-Diethylbenzene	0.004	0.0001598	mg/kg
EPA 8260C/5035	Soil	1,4-Dioxane	0.1	0.01442	mg/kg
EPA 8260C/5035	Soil	2,2-Dichloropropane	0.005	0.000226	mg/kg
EPA 8260C/5035	Soil	2-Butanone	0.01	0.000272	mg/kg
EPA 8260C/5035	Soil	2-Hexanone	0.01	0.000666	mg/kg
EPA 8260C/5035	Soil	4-Ethyltoluene	0.004	0.000124	mg/kg
EPA 8260C/5035	Soil	4-Methyl-2-pentanone	0.01	0.000244	mg/kg
EPA 8260C/5035	Soil	Acetone	0.01	0.001036	mg/kg
EPA 8260C/5035	Soil	Acrolein	0.025	0.00806	mg/kg
EPA 8260C/5035	Soil	Acrylonitrile	0.01	0.000514	mg/kg
EPA 8260C/5035	Soil	Benzene	0.001	0.000118	mg/kg
EPA 8260C/5035	Soil	Bromobenzene	0.005	0.000208	mg/kg
EPA 8260C/5035	Soil	Bromochloromethane	0.005	0.000276	mg/kg
EPA 8260C/5035	Soil	Bromodichloromethane	0.001	0.0001732	mg/kg
EPA 8260C/5035	Soil	Bromoform	0.004	0.000236	mg/kg
EPA 8260C/5035	Soil	Bromomethane	0.002	0.000338	mg/kg
EPA 8260C/5035	Soil	Carbon disulfide	0.01	0.001102 0.00021	mg/kg
EPA 8260C/5035 EPA 8260C/5035	Soil Soil	Carbon tetrachloride Chlorobenzene	0.001	0.00021	mg/kg mg/kg
EPA 8260C/5035	Soil	Chloroethane	0.001	0.000348	mg/kg
EPA 8260C/5035	Soil	Chloroform	0.0015	0.000370	mg/kg
EPA 8260C/5035	Soil	Chloromethane	0.005	0.000294	mg/kg
EPA 8260C/5035	Soil	cis-1,2-Dichloroethene	0.003	0.0001428	mg/kg
EPA 8260C/5035	Soil	cis-1,3-Dichloropropene	0.001	0.0001120	mg/kg
EPA 8260C/5035	Soil	Cyclohexane	0.02	0.000146	mg/kg
EPA 8260C/5035	Soil	Dibromochloromethane	0.001	0.0001536	mg/kg
EPA 8260C/5035	Soil	Dibromomethane	0.01	0.0001636	mg/kg
EPA 8260C/5035	Soil	Dichlorodifluoromethane	0.01	0.0001908	mg/kg
EPA 8260C/5035	Soil	Ethyl ether	0.005	0.00026	mg/kg
EPA 8260C/5035	Soil	Ethylbenzene	0.001	0.0001274	mg/kg
EPA 8260C/5035	Soil	Hexachlorobutadiene	0.005	0.000228	mg/kg
EPA 8260C/5035	Soil	Isopropylbenzene	0.001	0.0001038	mg/kg
EPA 8260C/5035	Soil	Methyl Acetate	0.02	0.00027	mg/kg
EPA 8260C/5035	Soil	Methyl cyclohexane	0.004	0.0001546	mg/kg
EPA 8260C/5035	Soil	Methyl tert butyl ether	0.002	0.0000844	mg/kg
EPA 8260C/5035	Soil	Methylene chloride	0.01	0.001104	mg/kg
EPA 8260C/5035	Soil	Naphthalene	0.005	0.0001384	mg/kg
EPA 8260C/5035	Soil	n-Butylbenzene	0.001	0.0001148	mg/kg
EPA 8260C/5035	Soil	n-Propylbenzene	0.001	0.0001092	mg/kg
EPA 8260C/5035	Soil	o-Chlorotoluene	0.005	0.0001598	mg/kg
EPA 8260C/5035	Soil	o-Xylene	0.002	0.0001718	mg/kg
EPA 8260C/5035	Soil	p/m-Xylene	0.002	0.0001978	mg/kg
EPA 8260C/5035	Soil	p-Chlorotoluene	0.005	0.0001328	mg/kg
EPA 8260C/5035	Soil	p-Isopropyltoluene	0.001	0.000125	mg/kg
EPA 8260C/5035	Soil	sec-Butylbenzene	0.001	0.000122	mg/kg
EPA 8260C/5035	Soil	Styrene	0.002	0.000402	mg/kg
EPA 8260C/5035	Soil	tert-Butyl Alcohol	0.06	0.00292	mg/kg
EPA 8260C/5035	Soil	tert-Butylbenzene	0.005	0.0001354	mg/kg
EPA 8260C/5035	Soil	Tetrachloroethene	0.001	0.0001402	mg/kg
EPA 8260C/5035	Soil	Toluene	0.0015	0.0001948	mg/kg
EPA 8260C/5035	Soil	trans-1,2-Dichloroethene	0.0015	0.000212	mg/kg
EPA 8260C/5035	Soil	trans-1,3-Dichloropropene	0.001	0.0001208	mg/kg
EPA 8260C/5035	Soil	trans-1,4-Dichloro-2-butene	0.005	0.000392	mg/kg
EPA 8260C/5035	Soil	Trichloroethene	0.001	0.000125	mg/kg
EPA 8260C/5035	Soil	Trichlorofluoromethane	0.005	0.000388	mg/kg
EPA 8260C/5035	Soil Soil	Vinyl acetate	0.01	0.0001322	mg/kg
EPA 8260C/5035 EPA 8260C/5035	Soil	Vinyl chloride		0.0001174	mg/kg
	2011	Xylenes, Total	0.002	0.0001978	mg/kg

#### SOIL SAMPLES LABORATORY REPORTING LIMITS AND METHOD DETECTION LIMITS

Method	Matrix	Analyte	RL	MDL	Units
initia		Semivolatile Organic Compounds			Cinto
EPA 8270D	Soil	1,2,4,5-Tetrachlorobenzene	0.1665	0.0515817	mg/kg
EPA 8270D	Soil	1,2,4-Trichlorobenzene	0.1665	0.0545787	mg/kg
EPA 8270D	Soil	1,2-Dichlorobenzene	0.1665	0.0546453	mg/kg
EPA 8270D	Soil	1,3-Dichlorobenzene	0.1665	0.0524808	mg/kg
EPA 8270D	Soil	1,4-Dichlorobenzene	0.1665	0.050616	mg/kg
EPA 8270D	Soil	2,3,4,6-Tetrachlorophenol	0.1665	0.028305	mg/kg
EPA 8270D	Soil	2,4,5-Trichlorophenol	0.1665	0.053946	mg/kg
EPA 8270D	Soil	2,4,6-Trichlorophenol	0.0999	0.0314019	mg/kg
EPA 8270D	Soil	2,4-Dichlorophenol	0.14985	0.053946	mg/kg
EPA 8270D	Soil	2,4-Dimethylphenol	0.1665	0.049617	mg/kg
EPA 8270D	Soil	2,4-Dinitrophenol	0.7992	0.227772	mg/kg
EPA 8270D	Soil	2,4-Dinitrotoluene	0.1665	0.0359307	mg/kg
EPA 8270D	Soil	2,6-Dinitrotoluene	0.1665	0.042624	mg/kg
EPA 8270D	Soil	2-Chloronaphthalene	0.1665	0.054279	mg/kg
EPA 8270D	Soil	2-Chlorophenol	0.1665	0.050283	mg/kg
EPA 8270D	Soil	2-Methylnaphthalene	0.1998	0.0531801	mg/kg
EPA 8270D	Soil	2-Methylphenol	0.1665	0.053613	mg/kg
EPA 8270D	Soil	2-Nitroaniline	0.1665	0.046953	mg/kg
EPA 8270D	Soil	2-Nitrophenol	0.35964	0.051948	mg/kg
EPA 8270D	Soil	3,3'-Dichlorobenzidine	0.1665	0.044289	mg/kg
EPA 8270D	Soil	3-Methylphenol/4-Methylphenol	0.23976	0.054612	mg/kg
EPA 8270D	Soil	3-Nitroaniline	0.1665	0.045954	mg/kg
EPA 8270D	Soil	4,6-Dinitro-o-cresol	0.4329	0.060939	mg/kg
EPA 8270D	Soil	4-Bromophenyl phenyl ether	0.1665	0.038295	mg/kg
EPA 8270D	Soil	4-Chloroaniline	0.1665	0.043956	mg/kg
EPA 8270D	Soil	4-Chlorophenyl phenyl ether	0.1665	0.0506493	mg/kg
EPA 8270D	Soil	4-Nitroaniline	0.1665	0.044955	mg/kg
EPA 8270D	Soil	4-Nitrophenol	0.2331	0.053946	mg/kg
EPA 8270D	Soil	Acenaphthene	0.1332	0.034299	mg/kg
EPA 8270D	Soil	Acenaphthylene	0.1332	0.0311355	mg/kg
EPA 8270D	Soil	Acetophenone	0.1665	0.051615	mg/kg
EPA 8270D	Soil	Anthracene	0.0999	0.0277056	mg/kg
EPA 8270D	Soil	Atrazine	0.1332	0.0377289	mg/kg
EPA 8270D	Soil	Azobenzene	0.1665	0.044622	mg/kg
EPA 8270D	Soil	Benzaldehyde	0.21978	0.067266	mg/kg
EPA 8270D	Soil	Benzidine	0.54945	0.130203	mg/kg
EPA 8270D	Soil	Benzo(a)anthracene	0.0999	0.0326007	mg/kg
EPA 8270D	Soil	Benzo(a)pyrene	0.1332	0.0407259	mg/kg
EPA 8270D	Soil	Benzo(b)fluoranthene	0.0999	0.033633	mg/kg
EPA 8270D	Soil	Benzo(ghi)perylene	0.1332	0.034632	mg/kg
EPA 8270D	Soil	Benzo(k)fluoranthene	0.0999	0.0317682	mg/kg
EPA 8270D	Soil	Benzoic Acid	0.53946	0.168498	mg/kg
EPA 8270D	Soil	Benzyl Alcohol	0.1665	0.051282	mg/kg
EPA 8270D	Soil	Biphenyl	0.37962	0.0549117	mg/kg
EPA 8270D	Soil	Bis(2-chloroethoxy)methane	0.17982	0.0504162	mg/kg
EPA 8270D	Soil	Bis(2-chloroethyl)ether	0.14985	0.0466866	mg/kg
EPA 8270D	Soil	Bis(2-chloroisopropyl)ether	0.1998	0.058608	mg/kg
EPA 8270D	Soil	Bis(2-Ethylhexyl)phthalate	0.1665	0.043623	mg/kg
EPA 8270D		Bis(2-Ethylitexy)primate Butyl benzyl phthalate	0.1665	0.0325341	0. 0
	Soil				mg/kg
EPA 8270D	Soil	Caprolactam Carbazole	0.1665	0.045954	mg/kg
EPA 8270D	Soil Soil		0.1665	0.0357975 0.0327006	mg/kg
EPA 8270D		Chrysene			mg/kg
EPA 8270D	Soil	Dibenzo(a,h)anthracene	0.0999	0.0322344	mg/kg ma/ka
EPA 8270D	Soil	Dibenzofuran Diathul phthalata	0.1665	0.0555777	5,5
EPA 8270D	Soil	Diethyl phthalate	0.1665	0.0351981 0.042291	mg/kg
EPA 8270D	Soil	Dimethyl phthalate	0.1665		mg/kg
EPA 8270D	Soil	Di-n-butylphthalate	0.1665	0.0321345	mg/kg
EPA 8270D	Soil	Di-n-octylphthalate	0.1665	0.040959	mg/kg
EPA 8270D	Soil	Fluoranthene	0.0999	0.0305694	mg/kg
EPA 8270D	Soil	Fluorene	0.1665	0.0477189	mg/kg
EPA 8270D	Soil	Hexachlorobenzene	0.0999	0.0310356	mg/kg
EPA 8270D	Soil	Hexachlorobutadiene	0.1665	0.046953	mg/kg
EPA 8270D	Soil	Hexachlorocyclopentadiene	0.47619	0.106893	mg/kg
EPA 8270D	Soil	Hexachloroethane	0.1332	0.0302697	mg/kg
EPA 8270D	Soil	Indeno(1,2,3-cd)Pyrene	0.1332	0.036963	mg/kg
EPA 8270D	Soil	Isophorone	0.14985	0.044289	mg/kg
EPA 8270D	Soil	Naphthalene	0.1665	0.055278	mg/kg
EPA 8270D	Soil	Nitrobenzene	0.14985	0.039627	mg/kg
EPA 8270D	Soil	NitrosoDiPhenylAmine(NDPA)/DPA	0.1332	0.034965	mg/kg
EPA 8270D	Soil	n-Nitrosodimethylamine	0.333	0.0539127	mg/kg
EPA 8270D	Soil	n-Nitrosodi-n-propylamine	0.1665	0.049617	mg/kg
EPA 8270D	Soil	P-Chloro-M-Cresol	0.1665	0.048285	mg/kg
EPA 8270D	Soil	Pentachlorophenol	0.1332	0.035631	mg/kg
EPA 8270D	Soil	Phenanthrene	0.0999	0.0325674	mg/kg
EPA 8270D	Soil	Phenol	0.1665	0.049284	mg/kg
LIA 02/00					

#### SOIL SAMPLES LABORATORY REPORTING LIMITS AND METHOD DETECTION LIMITS

Method	Matrix	Analyte	RL	MDL	Units
EPA 8081B	Cail	Pesticides	0.007992	0.00205040	~~// <i>c</i>
EPA 8081B EPA 8081B	Soil Soil	4,4'-DDD 4.4'-DDE	0.007992	0.00285048	mg/kg mg/kg
EPA 8081B	Soil	4,4'-DDT	0.014985	0.0064269	mg/kg
EPA 8081B	Soil	Aldrin	0.007992	0.00281385	mg/kg
EPA 8081B	Soil	Alpha-BHC	0.00333	0.00094572	mg/kg
EPA 8081B	Soil	Beta-BHC	0.007992	0.0030303	mg/kg
EPA 8081B	Soil	Chlordane	0.064935	0.0264735	mg/kg
EPA 8081B	Soil	cis-Chlordane	0.00999	0.00278388	mg/kg
EPA 8081B	Soil	Delta-BHC	0.007992	0.0015651	mg/kg
EPA 8081B	Soil	Dieldrin	0.004995	0.0024975	mg/kg
EPA 8081B	Soil	Endosulfan I	0.007992	0.00188811	mg/kg
EPA 8081B	Soil	Endosulfan II	0.007992	0.00267066	mg/kg
EPA 8081B	Soil	Endosulfan sulfate	0.00333	0.00158508	mg/kg
EPA 8081B	Soil	Endrin	0.00333	0.0013653	mg/kg
EPA 8081B	Soil	Endrin aldehyde	0.00999	0.0034965	mg/kg
EPA 8081B	Soil	Endrin ketone	0.007992	0.00205794	mg/kg
EPA 8081B	Soil	Heptachlor	0.003996	0.00179154	mg/kg
EPA 8081B	Soil	Heptachlor epoxide	0.014985	0.0044955	mg/kg
EPA 8081B	Soil	Lindane	0.00333	0.00148851	mg/kg
EPA 8081B	Soil	Methoxychlor	0.014985	0.004662	mg/kg
EPA 8081B	Soil	Toxaphene	0.14985	0.041958	mg/kg
EPA 8081B	Soil	trans-Chlordane	0.00999	0.00263736	mg/kg
EPA 8082A	Soil	Polychlorinated Biphenyls Aroclor 1016	0.0225	0.0026465	malka
EPA 8082A	Soil	Aroclor 1221	0.0335	0.0026465	mg/kg
EPA 8082A	Soil	Aroclor 1221 Aroclor 1232	0.0335	0.0030887	mg/kg mg/kg
EPA 8082A	Soil	Aroclor 1232 Aroclor 1242	0.0335	0.0041004	mg/kg
EPA 8082A	Soil	Aroclor 1242 Aroclor 1248	0.0335	0.0028274	mg/kg
EPA 8082A	Soil	Aroclor 1240 Aroclor 1254	0.0335	0.0027537	mg/kg
EPA 8082A	Soil	Aroclor 1260	0.0335	0.0025527	mg/kg
EPA 8082A	Soil	Aroclor 1262	0.0335	0.0016616	mg/kg
EPA 8082A	Soil	Aroclor 1268	0.0335	0.0048575	mg/kg
EPA 8082A	Soil	Total PCBs	0.0335	0.0016616	mg/kg
		Herbicides			5, 5
EPA 8151A	Soil	2,4-D	0.1665	0.0051615	mg/kg
EPA 8151A	Soil	2,4,5-TP (Silvex)	0.1665	0.0044289	mg/kg
EPA 8151A	Soil	2,4,5-T	0.1665	0.0104895	mg/kg
		Metals		<u> </u>	
EPA 6010C	Soil	Aluminum	4	0.8	mg/kg
EPA 6010C	Soil	Antimony	2	0.32	mg/kg
EPA 6010C	Soil	Arsenic	0.4	0.08	mg/kg
EPA 6010C	Soil	Barium	0.4	0.12	mg/kg
EPA 6010C	Soil	Beryllium	0.2	0.04	mg/kg
EPA 6010C	Soil	Cadmium	0.4	0.028	mg/kg
EPA 6010C	Soil	Calcium	4	1.2	mg/kg
EPA 6010C EPA 7196A	Soil Soil	Chromium Hexvalent Chromium	0.4	0.08 0.16	mg/kg
EPA 7196A EPA 6010C	Soil	Cobalt	0.8	0.16	mg/kg mg/kg
EPA 6010C	3011	Gobait		0.2	iiig/kg
	Soil	Conner		0.08	ma/ka
EPA 6010C	Soil	Copper	0.4	0.08	mg/kg
EPA 6010C EPA 6010C	Soil	Iron	0.4	0.8	mg/kg
EPA 6010C	Soil Soil	Iron Lead	0.4	0.8 0.08	mg/kg mg/kg
EPA 6010C EPA 6010C	Soil Soil Soil	Iron Lead Magnesium	0.4 2 2 4	0.8 0.08 0.4	mg/kg mg/kg mg/kg
EPA 6010C EPA 6010C EPA 6010C	Soil Soil Soil Soil	Iron Lead Magnesium Manganese	0.4 2 2 4 0.4	0.8 0.08 0.4 0.08	mg/kg mg/kg mg/kg mg/kg
EPA 6010C EPA 6010C	Soil Soil Soil	Iron Lead Magnesium	0.4 2 2 4	0.8 0.08 0.4	mg/kg mg/kg mg/kg
EPA 6010C EPA 6010C EPA 6010C EPA 7473	Soil Soil Soil Soil Soil	Iron Lead Magnesium Manganese Mercury	0.4 2 2 4 0.4 0.08	0.8 0.08 0.4 0.08 0.016896	mg/kg mg/kg mg/kg mg/kg mg/kg
EPA 6010C EPA 6010C EPA 6010C EPA 7473 EPA 6010C	Soil Soil Soil Soil Soil Soil	Iron Lead Magnesium Manganese Mercury Nickel	0.4 2 4 0.4 0.08 1	0.8 0.08 0.4 0.08 0.016896 0.16	mg/kg mg/kg mg/kg mg/kg mg/kg
EPA 6010C EPA 6010C EPA 6010C EPA 7473 EPA 6010C EPA 6010C	Soil Soil Soil Soil Soil Soil Soil	Iron Lead Magnesium Manganese Mercury Nickel Potassium	0.4 2 4 0.4 0.08 1 100	0.8 0.08 0.4 0.08 0.016896 0.16 16	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg
EPA 6010C EPA 6010C EPA 6010C EPA 7473 EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C	Soil Soil Soil Soil Soil Soil Soil Soil	Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium	0.4 2 4 0.4 0.08 1 100 0.8	0.8 0.08 0.4 0.08 0.016896 0.16 16 0.12	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg
EPA 6010C EPA 6010C EPA 6010C EPA 7473 EPA 6010C EPA 6010C EPA 6010C EPA 6010C	Soil Soil Soil Soil Soil Soil Soil Soil	Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver	0.4 2 4 0.4 0.8 1 100 0.8 0.4	0.8 0.08 0.4 0.08 0.016896 0.16 16 0.12 0.08	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg
EPA 6010C EPA 6010C EPA 6010C EPA 7473 EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C	Soil Soil Soil Soil Soil Soil Soil Soil	Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium	0.4 2 4 0.4 0.8 1 0.8 0.8 0.4 80	0.8 0.08 0.4 0.08 0.016896 0.16 16 0.12 0.08 12	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg
EPA 6010C EPA 6010C EPA 6010C EPA 7473 EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C	Soil Soil Soil Soil Soil Soil Soil Soil	Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium	0.4 2 4 0.4 0.08 1 100 0.8 0.4 80 0.8	0.8 0.08 0.4 0.08 0.016896 0.16 16 0.12 0.08 12 0.16	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg
EPA 6010C EPA 6010C EPA 6010C EPA 7473 EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C	Soil Soil Soil Soil Soil Soil Soil Soil	Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium	0.4 2 4 0.4 0.08 1 100 0.8 0.4 80 0.8 0.4	0.8 0.08 0.16 0.016896 0.16 16 0.12 0.08 12 0.16 0.16 0.04	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg
EPA 6010C EPA 6010C EPA 6010C EPA 7473 EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C	Soil Soil Soil Soil Soil Soil Soil Soil	Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	0.4 2 4 0.4 0.08 1 100 0.8 0.4 80 0.8 0.4	0.8 0.08 0.16 0.016896 0.16 16 0.12 0.08 12 0.16 0.16 0.04	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg
EPA 6010C EPA 6010C	Soil Soil Soil Soil Soil Soil Soil Soil	Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc <b>Other</b>	0.4 2 4 0.4 0.08 1 100 0.8 0.4 80 0.4 2	0.8 0.08 0.4 0.08 0.016896 0.16 16 0.12 0.08 12 0.16 0.04 0.28 10.8 2.61	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg
EPA 6010C EPA 6010C EPA 6010C EPA 7473 EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 9010C/9012A	Soil Soil Soil Soil Soil Soil Soil Soil	Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Other Sulfate Nitrogen, Nitrate Cyanide, Total	0.4 2 4 0.4 0.8 1 100 0.8 0.4 80 0.4 2 100 10 10 1	0.8 0.08 0.4 0.08 0.016896 0.16 16 0.12 0.08 12 0.16 0.04 0.28 10.8 2.61 0.2339	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg
EPA 6010C EPA 9038 SM4500NO3-F EPA 900C/9012A EPA 9060	Soil Soil Soil Soil Soil Soil Soil Soil	Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc <b>Other</b> Sulfate Nitrogen, Nitrate Cyanide, Total Total Organic Carbon	0.4           2           4           0.4           0.08           1           000           0.8           0.4           2           100           0.8           0.4           2           100           101           100           10           10           500	0.8 0.08 0.4 0.08 0.016896 0.16 16 0.12 0.08 12 0.16 0.04 0.28 10.8 2.61 0.2339 500	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg
EPA 6010C EPA 6010C EPA 6010C EPA 7473 EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 9010C/9012A	Soil Soil Soil Soil Soil Soil Soil Soil	Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Other Sulfate Nitrogen, Nitrate Cyanide, Total	0.4 2 4 0.4 0.8 1 100 0.8 0.4 80 0.4 2 100 10 10 1	0.8 0.08 0.4 0.08 0.016896 0.16 16 0.12 0.08 12 0.16 0.04 0.28 10.8 2.61 0.2339	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg

#### GROUNDWATER SAMPLES LABORATORY REPORTING LIMITS AND METHOD DETECTION LIMITS

Method	Matrix	Analyte	RL	MDL	Units
EPA 8260C	Groundwater	Volatile Organic Compounds 1,1,1,2-Tetrachloroethane	0.5	0.164	ug/L
EPA 8260C	Groundwater	1,1,1,1-Trichloroethane	0.5	0.158	ug/L
EPA 8260C	Groundwater	1.1.2.2-Tetrachloroethane	0.5	0.144	ug/L
EPA 8260C	Groundwater	1,1,2-Trichloro-1,2,2-Trifluoroethane	10	0.148	ug/L
EPA 8260C	Groundwater	1,1,2-Trichloroethane	0.75	0.144	ug/L
EPA 8260C	Groundwater	1.1-Dichloroethane	0.75	0.21	ug/L
EPA 8260C	Groundwater	1,1-Dichloroethene	0.5	0.142	ug/L
EPA 8260C	Groundwater	1,1-Dichloropropene	2.5	0.173	ug/L
EPA 8260C	Groundwater	1,2,3-Trichlorobenzene	2.5	0.234	ug/L
EPA 8260C	Groundwater	1,2,3-Trichloropropane	5	0.176	ug/L
EPA 8260C	Groundwater	1,2,4,5-Tetramethylbenzene	2	0.542	ug/L
EPA 8260C	Groundwater	1,2,4-Trichlorobenzene	2.5	0.22	ug/L
EPA 8260C	Groundwater	1,2,4-Trimethylbenzene	2.5	0.191	ug/L
EPA 8260C	Groundwater	1,2-Dibromo-3-chloropropane	2.5	0.327	ug/L
EPA 8260C	Groundwater	1,2-Dibromoethane	2	0.193	ug/L
EPA 8260C	Groundwater	1,2-Dichlorobenzene	2.5	0.184	ug/L
EPA 8260C	Groundwater	1,2-Dichloroethane	0.5	0.132	ug/L
EPA 8260C	Groundwater	1,2-Dichloropropane	1.75	0.133	ug/L
EPA 8260C	Groundwater	1,3,5-Trimethylbenzene	2.5	0.174	ug/L
EPA 8260C	Groundwater	1,3-Dichlorobenzene	2.5	0.186	ug/L
EPA 8260C	Groundwater	1,3-Dichloropropane	2.5	0.212	ug/L
EPA 8260C	Groundwater	1,4-Dichlorobenzene	2.5	0.187	ug/L
EPA 8260C	Groundwater	1,4-Diethylbenzene	2	0.392	ug/L
EPA 8260C	Groundwater	1,4-Dioxane	250	41.1	ug/L
EPA 8260C	Groundwater	2,2-Dichloropropane	2.5	0.204	ug/L
EPA 8260C	Groundwater	2-Butanone	5	1.94	ug/L
EPA 8260C	Groundwater	2-Hexanone	5	0.515	ug/L
EPA 8260C	Groundwater	4-Ethyltoluene 4-Methyl-2-pentanone	2	0.34	ug/L
EPA 8260C	Groundwater		5	0.416	ug/L
EPA 8260C	Groundwater	Acetone	5	1.46	ug/L
EPA 8260C EPA 8260C	Groundwater	Acrolein	5	0.633	ug/L
EPA 8260C	Groundwater	Acrylonitrile	0.5	0.43 0.159	ug/L
EPA 8260C	Groundwater Groundwater	Benzene Bromobenzene	2.5	0.159	ug/L
EPA 8260C	Groundwater	Bromochloromethane	2.5	0.132	ug/L ug/L
EPA 8260C	Groundwater	Bromodichloromethane	0.5	0.138	ug/L
EPA 8260C	Groundwater	Bromoform	2	0.192	ug/L
EPA 8260C	Groundwater	Bromomethane	1	0.248	ug/L
EPA 8260C	Groundwater	Carbon disulfide	5	0.299	ug/L
EPA 8260C	Groundwater	Carbon tetrachloride	0.5	0.134	ug/L
EPA 8260C	Groundwater	Chlorobenzene	0.5	0.178	ug/L
EPA 8260C	Groundwater	Chloroethane	1	0.134	ug/L
EPA 8260C	Groundwater	Chloroform	0.75	0.162	ug/L
EPA 8260C	Groundwater	Chloromethane	2.5	0.176	ug/L
EPA 8260C	Groundwater	cis-1,2-Dichloroethene	0.5	0.187	ug/L
EPA 8260C	Groundwater	cis-1,3-Dichloropropene	0.5	0.144	ug/L
EPA 8260C	Groundwater	Cyclohexane	10	0.271	ug/L
EPA 8260C	Groundwater	Dibromochloromethane	0.5	0.149	ug/L
EPA 8260C	Groundwater	Dibromomethane	5	0.363	ug/L
EPA 8260C	Groundwater	Dichlorodifluoromethane	5	0.245	ug/L
EPA 8260C	Groundwater	Ethyl ether	2.5	0.15	ug/L
EPA 8260C	Groundwater	Ethylbenzene	0.5	0.168	ug/L
EPA 8260C	Groundwater	Hexachlorobutadiene	0.5	0.217	ug/L
EPA 8260C	Groundwater	Isopropylbenzene	0.5	0.187	ug/L
EPA 8260C	Groundwater	Methyl Acetate	10	0.234	ug/L
EPA 8260C	Groundwater	Methyl cyclohexane	10	0.396	ug/L
EPA 8260C	Groundwater	Methyl tert butyl ether	1	0.16	ug/L
EPA 8260C	Groundwater	Methylene chloride	3	0.289	ug/L
EPA 8260C	Groundwater	Naphthalene	2.5	0.216	ug/L
EPA 8260C	Groundwater	n-Butylbenzene	0.5	0.192	ug/L
EPA 8260C	Groundwater	n-Propylbenzene	0.5	0.173	ug/L
EPA 8260C	Groundwater	o-Chlorotoluene	2.5	0.17	ug/L
EPA 8260C	Groundwater	o-Xylene	1	0.33	ug/L
EPA 8260C	Groundwater	p/m-Xylene	1	0.332	ug/L
EPA 8260C	Groundwater	p-Chlorotoluene	2.5	0.185	ug/L
EPA 8260C	Groundwater	p-Isopropyltoluene	U.5	0.188	ug/L
EPA 8260C	Groundwater	sec-Butylbenzene	0.5	0.181	ug/L
EPA 8260C	Groundwater	Styrene	1	0.359	ug/L
EPA 8260C	Groundwater	tert-Butyl Alcohol	10	0.899	ug/L
EPA 8260C	Groundwater	tert-Butylbenzene	2.5	0.185	ug/L
EPA 8260C	Groundwater	Tetrachloroethene	0.5	0.181	ug/L
EPA 8260C	Groundwater	Toluene	0.75	0.161	ug/L
EDA 00000	Groundwater Groundwater	trans-1,2-Dichloroethene	0.75	0.163	ug/L
EPA 8260C		trans-1,3-Dichloropropene trans-1,4-Dichloro-2-butene	0.5	0.164 0.173	ug/L ug/L
EPA 8260C					uu/L
EPA 8260C EPA 8260C	Groundwater		2.5		
EPA 8260C EPA 8260C EPA 8260C	Groundwater Groundwater	Trichloroethene	0.5	0.175	ug/L
EPA 8260C EPA 8260C EPA 8260C EPA 8260C	Groundwater Groundwater Groundwater	Trichloroethene Trichlorofluoromethane	0.5 2.5	0.175 0.161	ug/L ug/L
EPA 8260C EPA 8260C EPA 8260C	Groundwater Groundwater	Trichloroethene	0.5	0.175	ug/L

#### GROUNDWATER SAMPLES LABORATORY REPORTING LIMITS AND METHOD DETECTION LIMITS

Method	Matrix	Analyte Semivolatile Organic Compounds	RL	MDL	Units
EPA 8270D	Groundwater	1,2,4,5-Tetrachlorobenzene	10	0.357	ug/L
EPA 8270D	Groundwater	1,2,4-Trichlorobenzene	5	0.21	ug/L
EPA 8270D EPA 8270D	Groundwater Groundwater	1,2-Dichlorobenzene 1,3-Dichlorobenzene	2	0.302 0.35	ug/L ug/L
EPA 8270D	Groundwater	1,4-Dichlorobenzene	2	0.323	ug/L
EPA 8270D EPA 8270D	Groundwater Groundwater	2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol	5	0.59 0.748	ug/L ug/L
EPA 8270D	Groundwater	2,4,6-Trichlorophenol	5	0.775	ug/L
EPA 8270D EPA 8270D	Groundwater Groundwater	2,4-Dichlorophenol 2,4-Dimethylphenol	5	0.564 0.578	ug/L ug/L
EPA 8270D	Groundwater	2,4-Dinitrophenol	20	1.4081	ug/L
EPA 8270D	Groundwater	2,4-Dinitrotoluene	5	1.05	ug/L
EPA 8270D EPA 8270D	Groundwater Groundwater	2,6-Dinitrotoluene 2-Chloronaphthalene	5	0.89 0.455	ug/L ug/L
EPA 8270D	Groundwater	2-Chlorophenol	2	0.58	ug/L
EPA 8270D EPA 8270D	Groundwater Groundwater	2-Methylnaphthalene 2-Methylphenol	2 5	0.355 0.703	ug/L ug/L
EPA 8270D	Groundwater	2-Nitroaniline	5	0.956	ug/L
EPA 8270D	Groundwater	2-Nitrophenol	10	1.05	ug/L
EPA 8270D EPA 8270D	Groundwater Groundwater	3,3'-Dichlorobenzidine 3-Methylphenol/4-Methylphenol	5	0.478	ug/L ug/L
EPA 8270D	Groundwater	3-Nitroaniline	5	0.668	ug/L
EPA 8270D	Groundwater Groundwater	4,6-Dinitro-o-cresol	10	1.36	ug/L
EPA 8270D EPA 8270D	Groundwater	4-Bromophenyl phenyl ether 4-Chloroaniline	5	0.428 0.835	ug/L ug/L
EPA 8270D	Groundwater	4-Chlorophenyl phenyl ether	2	0.355	ug/L
EPA 8270D EPA 8270D	Groundwater Groundwater	4-Nitroaniline 4-Nitrophenol	5 10	0.83	ug/L ug/L
EPA 8270D	Groundwater	Acenaphthene	2	0.284	ug/L
EPA 8270D	Groundwater	Acenaphthylene	2	0.372	ug/L
EPA 8270D EPA 8270D	Groundwater Groundwater	Acetophenone Anthracene	5	0.428	ug/L ug/L
EPA 8270D	Groundwater	Atrazine	10	0.794	ug/L
EPA 8270D	Groundwater	Azobenzene	2	0.537 0.986	ug/L
EPA 8270D EPA 8270D	Groundwater Groundwater	Benzaldehyde Benzidine	20	5.24	ug/L ug/L
EPA 8270D	Groundwater	Benzo(a)anthracene	2	0.323	ug/L
EPA 8270D EPA 8270D	Groundwater Groundwater	Benzo(a)pyrene Benzo(b)fluoranthene	2	0.658 0.371	ug/L ug/L
EPA 8270D	Groundwater	Benzo(ghi)perylene	2	0.574	ug/L
EPA 8270D EPA 8270D	Groundwater	Benzo(k)fluoranthene	2 50	0.3	ug/L
EPA 8270D	Groundwater Groundwater	Benzoic Acid Benzyl Alcohol	2	0.677	ug/L ug/L
EPA 8270D	Groundwater	Biphenyl	2	0.237	ug/L
EPA 8270D EPA 8270D	Groundwater Groundwater	Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether	5	0.596	ug/L ug/L
EPA 8270D	Groundwater	Bis(2-chloroisopropyl)ether	2	0.597	ug/L
EPA 8270D	Groundwater	Bis(2-Ethylhexyl)phthalate	3	0.928	ug/L
EPA 8270D EPA 8270D	Groundwater Groundwater	Butyl benzyl phthalate Caprolactam	10	1.13 0.3895	ug/L ug/L
EPA 8270D	Groundwater	Carbazole	2	0.374	ug/L
EPA 8270D EPA 8270D	Groundwater Groundwater	Chrysene Dibenzo(a,h)anthracene	2	0.304 0.438	ug/L ug/L
EPA 8270D	Groundwater	Dibenzofuran	2	0.218	ug/L
EPA 8270D	Groundwater	Diethyl phthalate	5	0.393	ug/L
EPA 8270D EPA 8270D	Groundwater Groundwater	Dimethyl phthalate Di-n-butylphthalate	5	0.333 0.768	ug/L ug/L
EPA 8270D	Groundwater	Di-n-octylphthalate	5	1.2	ug/L
EPA 8270D EPA 8270D	Groundwater Groundwater	Fluoranthene Fluorene	2	0.401 0.32	ug/L ug/L
EPA 8270D	Groundwater	Hexachlorobenzene	2	0.396	ug/L
EPA 8270D	Groundwater	Hexachlorobutadiene	2	0.417	ug/L
EPA 8270D EPA 8270D	Groundwater Groundwater	Hexachlorocyclopentadiene Hexachloroethane	20	0.585 0.298	ug/L ug/L
EPA 8270D	Groundwater	Indeno(1,2,3-cd)Pyrene	2	0.433	ug/L
EPA 8270D EPA 8270D	Groundwater	Isophorone Naphthalene	5	0.787 0.332	ug/L ug/L
EPA 8270D EPA 8270D	Groundwater Groundwater	Nitrobenzene	2	0.401	ug/L ug/L
EPA 8270D	Groundwater	NitrosoDiPhenylAmine(NDPA)/DPA	2	0.34	ug/L
EPA 8270D EPA 8270D	Groundwater Groundwater	n-Nitrosodimethylamine n-Nitrosodi-n-propylamine	2 5	0.498	ug/L ug/L
EPA 8270D	Groundwater	P-Chloro-M-Cresol	2	0.543	ug/L
EPA 8270D	Groundwater	Pentachlorophenol	10	3.22	ug/L
EPA 8270D EPA 8270D	Groundwater Groundwater	Phenanthrene Phenol	5	0.23 0.27	ug/L ug/L
EPA 8270D	Groundwater	Pyrene	2	0.524	ug/L
EPA 8270D-SIM EPA 8270D-SIM	Groundwater Groundwater	2-Chloronaphthalene 2-Methylnaphthalene	0.2	0.035 0.045	ug/L ug/L
EPA 8270D-SIM	Groundwater	Acenaphthene	0.2	0.035	ug/L
EPA 8270D-SIM	Groundwater	Acenaphthylene	0.2	0.035	ug/L
EPA 8270D-SIM EPA 8270D-SIM	Groundwater Groundwater	Anthracene Benzo(a)anthracene	0.2	0.035 0.016	ug/L ug/L
EPA 8270D-SIM	Groundwater	Benzo(a)pyrene	0.2	0.039	ug/L
EPA 8270D-SIM EPA 8270D-SIM	Groundwater Groundwater	Benzo(b)fluoranthene Benzo(ghi)perylene	0.2	0.016 0.042	ug/L ug/L
EPA 8270D-SIM	Groundwater	Benzo(k)fluoranthene	0.2	0.042	ug/L ug/L
EPA 8270D-SIM		Chrysene	0.2	0.038	ug/L
EPA 8270D-SIM	Groundwater				ug/L
	Groundwater	Dibenzo(a,h)anthracene Fluoranthene	0.2	0.039	
EPA 8270D-SIM EPA 8270D-SIM	Groundwater Groundwater Groundwater	Fluoranthene Fluorene	0.2 0.2	0.038 0.037	ug/L ug/L
EPA 8270D-SIM EPA 8270D-SIM EPA 8270D-SIM	Groundwater Groundwater Groundwater Groundwater	Fluoranthene Fluorene Hexachlorobenzene	0.2 0.2 0.8	0.038 0.037 0.032	ug/L ug/L ug/L
EPA 8270D-SIM EPA 8270D-SIM EPA 8270D-SIM EPA 8270D-SIM	Groundwater Groundwater Groundwater Groundwater Groundwater	Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene	0.2 0.2 0.8 0.5	0.038 0.037 0.032 0.036	ug/L ug/L ug/L ug/L
EPA 8270D-SIM EPA 8270D-SIM EPA 8270D-SIM EPA 8270D-SIM EPA 8270D-SIM EPA 8270D-SIM	Groundwater Groundwater Groundwater Groundwater Groundwater Groundwater	Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorobutadiene Indeno(1,2,3-cd)Pyrene	0.2 0.2 0.8 0.5 0.8 0.2	0.038 0.037 0.032 0.036 0.03 0.03 0.04	ug/L ug/L ug/L ug/L ug/L ug/L
EPA 8270D-SIM EPA 8270D-SIM EPA 8270D-SIM EPA 8270D-SIM EPA 8270D-SIM EPA 8270D-SIM EPA 8270D-SIM	Groundwater Groundwater Groundwater Groundwater Groundwater Groundwater Groundwater	Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane Indeno(1,2,3-cd)Pyrene Naphthalene	0.2 0.2 0.8 0.5 0.8 0.2 0.2	0.038 0.037 0.032 0.036 0.03 0.04 0.043	ug/L ug/L ug/L ug/L ug/L ug/L ug/L
EPA 8270D-SIM EPA 8270D-SIM EPA 8270D-SIM EPA 8270D-SIM EPA 8270D-SIM EPA 8270D-SIM	Groundwater Groundwater Groundwater Groundwater Groundwater Groundwater	Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorobutadiene Indeno(1,2,3-cd)Pyrene	0.2 0.2 0.8 0.5 0.8 0.2	0.038 0.037 0.032 0.036 0.03 0.03 0.04	ug/L ug/L ug/L ug/L ug/L ug/L

#### GROUNDWATER SAMPLES LABORATORY REPORTING LIMITS AND METHOD DETECTION LIMITS

EPA 8081B Groundwater 4,4'-DDD	e RL	MDL	Units
	0.04	0.00464	110/1
EPA 8081B Groundwater 4,4'-DDE	0.04	0.00381	ug/L ug/L
EPA 8081B Groundwater 4,4-5DE	0.04	0.00432	ug/L
EPA 8081B Groundwater Aldrin	0.02	0.00216	ug/L
EPA 8081B Groundwater Alpha-BHC	0.02	0.00439	ug/L
EPA 8081B Groundwater Beta-BHC	0.02	0.0056	ug/L
EPA 8081B Groundwater Chlordane	0.2	0.0463	ug/L
EPA 8081B Groundwater cis-Chlordane	0.02	0.00666	ug/L
EPA 8081B Groundwater Delta-BHC	0.02	0.00467	ug/L
EPA 8081B Groundwater Dieldrin	0.04	0.00429	ug/L
EPA 8081B Groundwater Endosulfan I	0.02	0.00345	ug/L
EPA 8081B Groundwater Endosulfan II	0.04	0.00519	ug/L
EPA 8081B Groundwater Endosulfan sulfate	0.04	0.00481	ug/L
EPA 8081B Groundwater Endrin	0.04	0.00429	ug/L
EPA 8081B Groundwater Endrin aldehyde	0.04	0.0081	ug/L
EPA 8081B Groundwater Endrin ketone	0.04	0.00477	ug/L
EPA 8081B Groundwater Heptachlor	0.02	0.0031	ug/L
EPA 8081B Groundwater Heptachlor epoxide	0.02	0.00415	ug/L
EPA 8081B Groundwater Lindane	0.02	0.00434	ug/L
EPA 8081B Groundwater Methoxychlor	0.2	0.00684	ug/L
EPA 8081B Groundwater Toxaphene EPA 8081B Groundwater trans-Chlordane	0.2	0.0627 0.00627	ug/L
	ted Biphenyls	0.00027	ug/L
EPA 8082A Groundwater Aroclor 1016	0.083	0.05478	ug/L
EPA 8082A Groundwater Aroclor 1221	0.083	0.05312	ug/L
EPA 8082A Groundwater Aroclor 1232	0.083	0.03071	ug/L
EPA 8082A Groundwater Aroclor 1242	0.083	0.05976	ug/L
EPA 8082A Groundwater Aroclor 1248	0.083	0.05063	ug/L
EPA 8082A Groundwater Aroclor 1254	0.083	0.03403	ug/L
EPA 8082A Groundwater Aroclor 1260	0.083	0.03154	ug/L
EPA 8082A Groundwater Aroclor 1262	0.083	0.02905	ug/L
EPA 8082A Groundwater Aroclor 1268	0.083	0.03735	ug/L
EPA 8082A Groundwater PCBs, Total	0.083	0.02905	ug/L
	icides		
EPA 8151A Groundwater 2,4,5-T	2	0.531	ug/L
EPA 8151A Groundwater 2,4,5-TP (Silvex)	2	0.539	ug/L
EPA 8151A Groundwater 2,4-D	10	0.498	ug/L
	tals	0.00100	
EPA 6010A Groundwater Aluminum, Dissolved	0.01	0.00169	mg/L
EPA 6010A Groundwater Aluminum, Total	0.01	0.00169	mg/L
EPA 6010A Groundwater Antimony, Dissolved	0.0005	0.0000699	mg/L
EPA 6010A Groundwater Antimony, Total	0.0005	0.0000699	mg/L
EPA 6010A Groundwater Arsenic, Dissolved	0.0005	0.000123	mg/L
EPA 6010A Groundwater Arsenic, Total	0.0005	0.000123	mg/L
EPA 6010A Groundwater Barium, Dissolved	0.0005	0.0000625	mg/L
EPA 6010A Groundwater Barium, Total	0.0005	0.0000625	mg/L
EPA 6010A Groundwater Beryllium, Dissolved	0.0005	0.00015	mg/L
EPA 6010A Groundwater Beryllium, Total	0.0005	0.00015	mg/L
EPA 6010A Groundwater Cadmium, Dissolved		0.00005	mg/L
EPA 6010A Groundwater Cadmium, Total	0.0002	0.00005	mg/L
EPA 6010A Groundwater Calcium, Dissolved	0.1	0.032	mg/L
EPA 6010A Groundwater Calcium, Total EPA 6010A Groundwater Chromium, Dissolved	0.001	0.000253	mg/L mg/L
EPA 6010A Groundwater Chromium, Dissolved	0.001	0.000253	mg/L
EPA 7196A Groundwater Chromium, Hexavalent, Dissolver		#REF!	mg/L
EPA 7196A Groundwater Chromium, Hexavalent, Dissover	#REF!	#REF!	mg/L
EPA 6010A Groundwater Cobalt, Dissolved	0.0002	0.0000621	mg/L
EPA 6010A Groundwater Cobalt, Disserved	0.0002	0.0000621	mg/L
EPA 6010A Groundwater Copper, Dissolved	0.001	0.000262	mg/L
EPA 6010A Groundwater Copper, Total	0.001	0.000262	mg/L
EPA 6010A Groundwater Iron, Dissolved	0.05	0.000202	mg/L
EPA 6010A Groundwater Iron, Total	0.05	0.012	mg/L
EPA 6010A Groundwater Lead, Dissolved	0.001	0.000129	mg/L
EPA 6010A Groundwater Lead, Total	0.001	0.000129	mg/L
EPA 6010A Groundwater Magnesium, Dissolved	0.07	0.0223	mg/L
EPA 6010A Groundwater Magnesium, Total	0.07	0.0223	mg/L
EPA 6010A Groundwater Manganese, Dissolved	0.001	0.000302	mg/L
EPA 6010A Groundwater Manganese, Total	0.001	0.000302	mg/L
EPA 7470A Groundwater Mercury, Dissolved	0.0002	0.000066	mg/L
EPA 7470A Groundwater Mercury, Total	0.0002	0.000066	mg/L
EPA 6010A Groundwater Nickel, Dissolved	0.0005	0.0000865	mg/L
EPA 6010A Groundwater Nickel, Total	0.0005	0.0000865	mg/L
EPA 6010A Groundwater Potassium, Dissolved	0.1	0.0193	mg/L
EPA 6010A Groundwater Potassium, Total	0.1	0.0193	mg/L
EPA 6010A Groundwater Selenium, Dissolved	0.005	0.001	mg/L
EPA 6010A Groundwater Selenium, Total	0.005	0.001	mg/L
	0.00025	0.0000779	mg/L
EPA 6010A Groundwater Silver, Dissolved	0.00025	0.0000779	mg/L
EPA 6010A Groundwater Silver, Dissolved EPA 6010A Groundwater Silver, Total	0.1	0.0161	mg/L
EPA 6010A         Groundwater         Silver, Dissolved           EPA 6010A         Groundwater         Silver, Total           EPA 6010A         Groundwater         Sodium, Dissolved	0.1	0.0161	mg/L
EPA 6010A Groundwater Silver, Dissolved EPA 6010A Groundwater Silver, Total EPA 6010A Groundwater Sodium, Dissolved EPA 6010A Groundwater Sodium, Total			
EPA 6010A         Groundwater         Silver, Dissolved           EPA 6010A         Groundwater         Silver, Total           EPA 6010A         Groundwater         Sodium, Dissolved           EPA 6010A         Groundwater         Sodium, Total           EPA 6010A         Groundwater         Sodium, Total           EPA 6010A         Groundwater         Thallium, Dissolved	0.0002	0.0000566	mg/L
EPA 6010A Groundwater Silver, Dissolved EPA 6010A Groundwater Soliver, Total EPA 6010A Groundwater Sodium, Dissolved EPA 6010A Groundwater Sodium, Total EPA 6010A Groundwater Thallium, Dissolved EPA 6010A Groundwater Thallium, Total	0.0002	0.0000566	mg/L
EPA 6010A     Groundwater     Silver, Dissolved       EPA 6010A     Groundwater     Silver, Total       EPA 6010A     Groundwater     Sodium, Dissolved       EPA 6010A     Groundwater     Sodium, Total       EPA 6010A     Groundwater     Thallium, Dissolved       EPA 6010A     Groundwater     Thallium, Total       EPA 6010A     Groundwater     Vanadium, Total       EPA 6010A     Groundwater     Vanadium, Dissolved	0.0002 0.005	0.0000566	mg/L mg/L
EPA 6010A     Groundwater     Silver, Dissolved       EPA 6010A     Groundwater     Silver, Total       EPA 6010A     Groundwater     Sodium, Dissolved       EPA 6010A     Groundwater     Sodium, Total       EPA 6010A     Groundwater     Thallium, Dissolved       EPA 6010A     Groundwater     Thallium, Total       EPA 6010A     Groundwater     Thallium, Total       EPA 6010A     Groundwater     Vanadium, Dissolved       EPA 6010A     Groundwater     Vanadium, Dissolved	0.0002 0.005 0.005	0.0000566 0.000551 0.000551	mg/L mg/L mg/L
EPA 6010A     Groundwater     Silver, Dissolved       EPA 6010A     Groundwater     Solium, Total       EPA 6010A     Groundwater     Sodium, Dissolved       EPA 6010A     Groundwater     Sodium, Total       EPA 6010A     Groundwater     Thallium, Dissolved       EPA 6010A     Groundwater     Thallium, Dissolved       EPA 6010A     Groundwater     Thallium, Total       EPA 6010A     Groundwater     Vanadium, Dissolved       EPA 6010A     Groundwater     Vanadium, Total       EPA 6010A     Groundwater     Zinc, Dissolved	0.0002 0.005 0.005 0.01	0.0000566 0.000551 0.000551 0.00256	mg/L mg/L mg/L mg/L
EPA 6010A     Groundwater     Silver, Dissolved       EPA 6010A     Groundwater     Silver, Total       EPA 6010A     Groundwater     Sodium, Dissolved       EPA 6010A     Groundwater     Sodium, Total       EPA 6010A     Groundwater     Thalium, Dissolved       EPA 6010A     Groundwater     Thalium, Total       EPA 6010A     Groundwater     Thalium, Dissolved       EPA 6010A     Groundwater     Vanadium, Total       EPA 6010A     Groundwater     Zinc, Dissolved	0.0002 0.005 0.005 0.01 0.01	0.0000566 0.000551 0.000551	mg/L mg/L mg/L
EPA 6010A       Groundwater       Silver, Dissolved         EPA 6010A       Groundwater       Silver, Total         EPA 6010A       Groundwater       Sodium, Dissolved         EPA 6010A       Groundwater       Sodium, Total         EPA 6010A       Groundwater       Thallium, Dissolved         EPA 6010A       Groundwater       Thallium, Total         EPA 6010A       Groundwater       Vanadium, Dissolved         EPA 6010A       Groundwater       Zinc, Dissolved         EPA 6010A       Groundwater       Zinc, Total	0.0002 0.005 0.005 0.01 0.01 her	0.0000566 0.000551 0.000551 0.00256 0.00256	mg/L mg/L mg/L mg/L mg/L
EPA 6010A     Groundwater     Silver, Dissolved       EPA 6010A     Groundwater     Solium, Total       EPA 6010A     Groundwater     Sodium, Dissolved       EPA 6010A     Groundwater     Sodium, Total       EPA 6010A     Groundwater     Thallium, Dissolved       EPA 6010A     Groundwater     Thallium, Dissolved       EPA 6010A     Groundwater     Thallium, Total       EPA 6010A     Groundwater     Vanadium, Dissolved       EPA 6010A     Groundwater     Vanadium, Total       EPA 6010A     Groundwater     Zinc, Dissolved       EPA 6010A     Groundwater     Zinc, Total       EPA 6010A     Groundwater     Zinc, Total       EPA 6010A     Groundwater     Zinc, Total       EPA 9251     Groundwater     Chloride	0.0002 0.005 0.005 0.01 0.01 her 1	0.0000566 0.000551 0.000551 0.00256	mg/L mg/L mg/L mg/L mg/L
EPA 6010A       Groundwater       Silver, Dissolved         EPA 6010A       Groundwater       Solium, Total         EPA 6010A       Groundwater       Sodium, Dissolved         EPA 6010A       Groundwater       Sodium, Total         EPA 6010A       Groundwater       Thallium, Dissolved         EPA 6010A       Groundwater       Thallium, Dissolved         EPA 6010A       Groundwater       Thallium, Dissolved         EPA 6010A       Groundwater       Vanadium, Dissolved         EPA 6010A       Groundwater       Vanadium, Dissolved         EPA 6010A       Groundwater       Zinc, Dissolved         EPA 9251       Groundwater       Chloride         EPA 3230B       Groundwater       Alkalinity, Total	0.0002 0.005 0.005 0.01 0.01 her	0.0000566 0.000551 0.000551 0.00256 0.00256	mg/L mg/L mg/L mg/L mg/L
EPA 6010A       Groundwater       Silver, Dissolved         EPA 6010A       Groundwater       Solium, Total         EPA 6010A       Groundwater       Sodium, Dissolved         EPA 6010A       Groundwater       Sodium, Total         EPA 6010A       Groundwater       Thallium, Dissolved         EPA 6010A       Groundwater       Thallium, Total         EPA 6010A       Groundwater       Thallium, Total         EPA 6010A       Groundwater       Vanadium, Dissolved         EPA 6010A       Groundwater       Zinc, Dissolved         EPA 6010A       Groundwater       Zinc, Total         EPA 6010A       Groundwater       Chioride         EPA 6010A       Groundwater       Chioride         EPA 6010A       Groundwater       Chioride         EPA 2320B       Groundwater       Nikalinity, Total         EPA 9038       Groundwater       Sulfate	0.0002 0.005 0.005 0.01 0.01 ther 2 10	0.0000566 0.000551 0.00256 0.00256 0.00256 0.256 - - 3.1	mg/L mg/L mg/L mg/L mg/L mg/L mg/l
EPA 6010A       Groundwater       Silver, Dissolved         EPA 6010A       Groundwater       Sodium, Total         EPA 6010A       Groundwater       Sodium, Dissolved         EPA 6010A       Groundwater       Sodium, Total         EPA 6010A       Groundwater       Thallium, Dissolved         EPA 6010A       Groundwater       Thallium, Dissolved         EPA 6010A       Groundwater       Thallium, Total         EPA 6010A       Groundwater       Vanadium, Total         EPA 6010A       Groundwater       Vanadium, Total         EPA 6010A       Groundwater       Vanadium, Total         EPA 6010A       Groundwater       Zinc, Dissolved         EPA 8010A       Groundwater       Chloride         EPA 9251       Groundwater       Chloride         EPA 903B       Groundwater       Sulfate         EPA 2540C       Groundwater       Solids, Total Dissolved	0.0002 0.005 0.005 0.01 0.01 her 1 2 10 10	0.0000566 0.000551 0.00256 0.00256 0.00256 0.2 - 3.1 3.561	mg/L mg/L mg/L mg/L mg/L mg/l mg CaCO ₃ /L
EPA 6010A     Groundwater     Silver, Dissolved       EPA 6010A     Groundwater     Solium, Total       EPA 6010A     Groundwater     Sodium, Dissolved       EPA 6010A     Groundwater     Sodium, Total       EPA 6010A     Groundwater     Thallium, Dissolved       EPA 6010A     Groundwater     Thallium, Dissolved       EPA 6010A     Groundwater     Thallium, Dissolved       EPA 6010A     Groundwater     Vanadium, Dissolved       EPA 6010A     Groundwater     Vanadium, Dissolved       EPA 6010A     Groundwater     Zinc, Dissolved       EPA 6010A     Groundwater     Zinc, Dissolved       EPA 6010A     Groundwater     Zinc, Dissolved       EPA 6010A     Groundwater     Chloride       EPA 9251     Groundwater     Chloride       EPA 9258     Groundwater     Solids, Total       EPA 9038     Groundwater     Solids, Total Dissolved       SM4500NO3-F     Groundwater     Nitrogen, Nitrate	0.0002 0.005 0.005 0.01 0.01 her 1 2 10 10 0.1	0.0000566 0.000551 0.00256 0.00256 0.00256 0.2 - - 3.1 3.561 0.0188	mg/L mg/L mg/L mg/L mg/L mg/L mg/l
EPA 6010A       Groundwater       Silver, Dissolved         EPA 6010A       Groundwater       Sodium, Total         EPA 6010A       Groundwater       Sodium, Dissolved         EPA 6010A       Groundwater       Sodium, Total         EPA 6010A       Groundwater       Thallium, Dissolved         EPA 6010A       Groundwater       Thallium, Dissolved         EPA 6010A       Groundwater       Thallium, Total         EPA 6010A       Groundwater       Vanadium, Total         EPA 6010A       Groundwater       Vanadium, Total         EPA 6010A       Groundwater       Vanadium, Total         EPA 6010A       Groundwater       Zinc, Dissolved         EPA 8010A       Groundwater       Chloride         EPA 9251       Groundwater       Chloride         EPA 903B       Groundwater       Sulfate         EPA 2540C       Groundwater       Solids, Total Dissolved	0.0002 0.005 0.005 0.01 0.01 her 1 2 10 10	0.0000566 0.000551 0.00256 0.00256 0.00256 0.2 - 3.1 3.561	mg/L mg/L mg/L mg/L mg/L mg/L mg/l mg/l

#### AIR SAMPLES LABORATORY REPORTING LIMITS AND METHOD DETECTION LIMITS

EPA TO-15 EPA TO-15 EPA TO-15 EPA TO-15 EPA TO-15 EPA TO-15 EPA TO-15	Air Air Air	Analyte Volatile Organie 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	1.37	0.38	/ 3		·	
EPA TO-15 EPA TO-15 EPA TO-15 EPA TO-15 EPA TO-15	Air		1.37	0.38	1 3			
EPA TO-15 EPA TO-15 EPA TO-15 EPA TO-15		1.1.1-Trichloroethane		0.00	ug/m ³	0.2	0.0547	ppbV
EPA TO-15 EPA TO-15 EPA TO-15	Air	1,1,1-Inchloroethane	1.09	0.31	ug/m ³	0.2	0.057	ppbV
EPA TO-15 EPA TO-15		1,1,2,2-Tetrachloroethane	1.37	0.38	ug/m ³	0.2	0.0548	ppbV
EPA TO-15	Air	1,1,2-Trichloro-1,2,2-Trifluoroethane	1.53	0.39	ug/m ³	0.2	0.0511	ppbV
	Air	1,1,2-Trichloroethane	1.09	0.36	ug/m ³	0.2	0.0667	ppbV
FPA TO-15	Air	1,1-Dichloroethane	0.81	0.31	ug/m ³	0.2	0.0771	ppbV
	Air	1,1-Dichloroethene	0.79	0.22	ug/m ³	0.2	0.0566	ppbV
EPA TO-15	Air	1,1-Dichloropropene	0.91	0.32	ug/m ³	0.2	0.0715	ppbV
EPA TO-15	Air	1,2,3-Trichlorobenzene	1.48	0.32	ug/m ³	0.2	0.0436	ppbV
EPA TO-15	Air	1,2,3-Trichloropropane	1.21	0.46	ug/m ³	0.2	0.0767	ppbV
EPA TO-15	Air	1,2,3-Trimethylbenzene	0.98	0.37	ug/m ³	0.2	0.0751	ppbV
EPA TO-15	Air	1,2,4,5-Tetramethylbenzene	1.1	0.44	ug/m ³	0.2	0.0795	ppbV
EPA TO-15	Air	1,2,4-Trichlorobenzene	1.48	0.45	ug/m ³	0.2	0.0611	ppbV
EPA TO-15	Air	1,2,4-Trimethylbenzene	0.98	0.34	ug/m ³	0.2	0.0694	ppbV
EPA TO-15	Air	1,2-Dibromo-3-chloropropane	1.93	0.72	ug/m ³	0.2	0.0744	ppbV
EPA TO-15	Air	1,2-Dibromoethane	1.54	0.6	ug/m ³	0.2	0.0779	ppbV
EPA TO-15	Air	1,2-Dichloro-1,1,2,2-tetrafluoroethane	1.4	0.29	ug/m ³	0.2	0.0419	ppbV
EPA TO-15	Air	1,2-Dichlorobenzene	1.2	0.37	ug/m ³	0.2	0.0614	ppbV
EPA TO-15	Air	1,2-Dichloroethane	0.81	0.22	ug/m ³	0.2	0.0552	ppbV
EPA TO-15	Air	1,2-Dichloroethene (total)	0.79	0.23	ug/m ³	0.2	0.0587	ppbV
EPA TO-15	Air	1,2-Dichloropropane	0.92	0.32	ug/m ³	0.2	0.0697	ppbV
EPA TO-15	Air	1,3,5-Trimethylbenzene	0.98	0.29	ug/m ³	0.2	0.0584	ppbV
EPA TO-15	Air	1,3-Butadiene	0.44	0.18	ug/m ³	0.2	0.0799	ppbV
EPA TO-15	Air	1,3-Dichlorobenzene	1.2	0.38	ug/m ³	0.2	0.0637	ppbV
EPA TO-15	Air	1,3-Dichloropropane	0.92	0.36	ug/m ³	0.2	0.0776	ppbV
EPA TO-15	Air	1,3-Dichloropropene, Total	0.91	0.31	ug/m ³	0.2	0.0693	ppbV
EPA TO-15	Air	1,4-Dichlorobenzene	1.2	0.25	ug/m ³	0.2	0.0418	ppbV
EPA TO-15	Air	1,4-Dioxane	0.72	0.28	ug/m ³	0.2	0.078	ppbV
EPA TO-15	Air	1-Methylnaphthalene	5.82	1.66	ug/m ³	1	0.286	ppbV
EPA TO-15	Air	2,2,4-Trimethylpentane	0.93	0.31	ug/m ³	0.2	0.0659	ppbV
EPA TO-15	Air	2,2-Dichloropropane	0.92	0.27	ug/m ³	0.2	0.0581	ppbV
EPA TO-15	Air	2-Butanone	1.47	0.15	ug/m ³	0.5	0.0522	ppbV
EPA TO-15	Air	2-Ethylthiophene	0.92	0.26	ug/m ³	0.2	0.0571	ppbV
EPA TO-15	Air	2-Hexanone	0.82	0.25	ug/m ³	0.2	0.0604	ppbV
EPA TO-15	Air	2-Methylnaphthalene	5.82	0.16	ug/m ³	1	0.0273	ppbV
EPA TO-15	Air	2-Methylthiophene	0.8	0.32	ug/m ³	0.2	0.0789	ppbV
EPA TO-15 EPA TO-15	Air Air	3-Chloropropene	0.63	0.25	ug/m ³	0.2	0.0812	ppbV
EPA TO-15 EPA TO-15	Air	3-Methylthiophene	0.8	0.27	ug/m ³	0.2	0.0669	ppbV
EPA TO-15 EPA TO-15	Air	4-Ethyltoluene 4-Methyl-2-pentanone	2.05	0.38	ug/m ³	0.2	0.0607	ppbV
EPA TO-15 EPA TO-15	Air	4-metnyl-z-pentanone Acetaldehyde	4.5	0.25	ug/m ³	2.5	0.0607	ppbV
EPA TO-15 EPA TO-15	Air	Acetone	2.38	0.99	ug/m ³ ug/m ³	2.5	0.547	ppbV ppbV
EPA TO-15 EPA TO-15	Air		0.34	0.64		0.2	0.269	
EPA TO-15 EPA TO-15	Air	Acetonitrile	1.15	0.13	ug/m ³	0.2	0.0761	ppbV ppbV
EPA TO-15 EPA TO-15	Air	Acrolein	1.15	0.26	ug/m ³	0.5	0.114	ppbv ppbV
EPA TO-15 EPA TO-15	Air	Benzene	0.64	0.17	ug/m ³ ug/m ³	0.5	0.079	ppbv ppbV
EPA TO-15	Air	Benzothiophene	2.74	0.17	ug/m ³	0.2	0.0468	ppbV
EPA TO-15 EPA TO-15	Air	Benzyl chloride	1.04	0.26	ug/m ³	0.5	0.0468	ppbv
EPA TO-15 EPA TO-15	Air	Bromobenzene	0.79	0.33	ug/m ⁻ ug/m ³	0.2	0.0645	ppbv
EPA TO-15	Air	Bromodichloromethane	1.34	0.44	ug/m ³	0.2	0.0656	Vaqq Vaqq
EPA TO-15	Air	Bromoform	2.07	0.44	ug/m ug/m ³	0.2	0.0523	Vaqq Vaqq
EPA TO-15	Air	Bromomethane	0.78	0.54	ug/m ³	0.2	0.0696	ppbv
EPA TO-15 EPA TO-15	Air	Butane	0.78	0.27	ug/m ³	0.2	0.0696	ppbv
EPA TO-15 EPA TO-15	Air	Butyl Acetate	2.38	0.11	ug/m ⁻	0.2	0.0442	ppbv
EPA TO-15 EPA TO-15	Air	Carbon disulfide	0.62	0.54	ug/m ³	0.5	0.0345	ppbv
EPA TO-15 EPA TO-15	Air	Carbon disunde Carbon tetrachloride	1.26	0.11	ug/m ⁻	0.2	0.0345	ppbv
	Air	Carbon tetrachioride Chlorobenzene	0.92	0.36	ů.	0.2	0.0471	ppbv ppbV
EPA TO-15	Air	Chlorodifluoromethane	0.92	0.36	ug/m ³ ug/m ³	0.2	0.0789	ppbv ppbV

#### AIR SAMPLES LABORATORY REPORTING LIMITS AND METHOD DETECTION LIMITS

Method	Matrix	Analyte	RL	MDL	Units	RL	MDL	Units
EPA TO-15	Air	Chloroethane	0.53	0.2	ug/m ³	0.2	0.0767	ppbV
EPA TO-15	Air	Chloroform	0.98	0.22	ug/m ³	0.2	0.0452	ppbV
EPA TO-15	Air	Chloromethane	0.41	0.2	ug/m ³	0.2	0.0958	ppbV
EPA TO-15	Air	cis-1,2-Dichloroethene	0.79	0.23	ug/m ³	0.2	0.0587	ppbV
EPA TO-15	Air	cis-1,3-Dichloropropene	0.91	0.34	ug/m ³	0.2	0.0745	ppbV
EPA TO-15	Air	Cyclohexane	0.69	0.23	ug/m ³	0.2	0.0656	ppbV
EPA TO-15	Air	Decane (C10)	1.16	0.28	ug/m ³	0.2	0.0484	ppbV
EPA TO-15	Air	Dibromochloromethane	1.7	0.64	ug/m ³	0.2	0.0747	ppbV
EPA TO-15	Air	Dibromomethane	1.42	0.34	ug/m ³	0.2	0.0476	ppbV
EPA TO-15	Air	Dichlorodifluoromethane	0.99	0.23	ug/m ³	0.2	0.0466	ppbV
EPA TO-15	Air	Dichlorofluoromethane	0.84	0.24	ua/m ³	0.2	0.0572	ppbV
EPA TO-15	Air	Dodecane (C12)	1.39	0.39	ug/m ³	0.2	0.0564	ppbV
EPA TO-15	Air	Ethyl Acetate	1.8	0.47	ug/m ³	0.5	0.131	ppbV
EPA TO-15	Air	Ethyl Alcohol	4.71	1.02	ug/m ³	2.5	0.542	ppbV
EPA TO-15	Air	Ethyl ether	0.61	0.18	ug/m ³	0.2	0.0591	ppbV
EPA TO-15	Air	Ethylbenzene	0.87	0.24	ug/m ³	0.2	0.0555	ppbV
EPA TO-15	Air	Ethyl-Tert-Butyl-Ether	0.84	0.22	ug/m ³	0.2	0.0515	ppbV
EPA TO-15	Air	Heptane	0.82	0.23	ug/m ³	0.2	0.0553	ppbV
EPA TO-15	Air	Hexachlorobutadiene	2.13	0.78	ug/m ³	0.2	0.0732	ppbV
EPA TO-15	Air	Indane	0.97	0.38	ug/m ³	0.2	0.0795	ppbV
EPA TO-15	Air	Indene	0.95	0.29	ug/m ³	0.2	0.0608	ppbV
EPA TO-16	Air	iso-Propyl Alcohol	1.23	0.28	ug/m ³	0.5	0.114	ppbV
EPA TO-17	Air	Isopropyl Ether	0.84	0.27	ug/m ³	0.2	0.0656	ppbV
EPA TO-18	Air	Isopropylbenzene	0.98	0.21	ug/m ³	0.2	0.043	ppbV
EPA TO-19	Air	Methanol	6.55	0.96	ug/m ³	5	0.736	ppbV
EPA TO-20	Air	Methyl Methacrylate	2.05	0.61	ug/m ³	0.5	0.148	ppbV
EPA TO-21	Air	Methyl tert butyl ether	0.72	0.16	ug/m ³	0.2	0.0452	ppbV
EPA TO-22	Air	Methylene chloride	1.74	0.65	ug/m ³	0.5	0.188	ppbV
EPA TO-23	Air	Naphthalene	1.05	0.23	ug/m ³	0.2	0.0432	ppbV
EPA TO-24	Air	n-Butylbenzene	1.1	0.35	ug/m ³	0.2	0.0639	ppbV
EPA TO-25	Air	n-Heptane	0.82	0.23	ug/m ³	0.2	0.0553	ppbV
EPA TO-26	Air	n-Hexane	0.7	0.18	ug/m ³	0.2	0.0518	ppbV
EPA TO-27	Air	Nonane (C9)	1.05	0.34	ug/m ³	0.2	0.0644	ppbV
EPA TO-28	Air	n-Propylbenzene	0.98	0.27	ug/m ³	0.2	0.0559	ppbV
EPA TO-29	Air	o-Chlorotoluene	1.04	0.25	ug/m ³	0.2	0.0487	ppbV
EPA TO-30	Air	Octane	0.93	0.2	ug/m ³	0.2	0.0421	ppbV
EPA TO-31	Air	o-Xylene	0.87	0.27	ug/m ³	0.2	0.0631	ppbV
EPA TO-32	Air	p/m-Xylene	1.74	0.6	ug/m ³	0.4	0.139	ppbV
EPA TO-33 EPA TO-34	Air Air	p-Chlorotoluene	1.04 0.59	0.4	ug/m ³	0.2	0.0764	ppbV
EPA TO-34 EPA TO-35	Air	Pentane		0.14	ug/m ³	0.2	0.0475	ppbV
EPA TO-35 EPA TO-36	Air	p-Isopropyltoluene Propane	1.1 0.9	0.33	ug/m ³	0.2	0.0608	ppbV
EPA TO-36 EPA TO-37	Air		0.86	0.21	ug/m ³	0.5	0.0929	ppbV
EPA TO-37 EPA TO-38	Air	Propylene sec-Butylbenzene	1.1	0.16	ug/m ³	0.5	0.0929	ppbV ppbV
EPA TO-38 EPA TO-39	Air	sec-Butylbenzene Styrene	0.85	0.4	ug/m ³	0.2	0.0731	
EPA TO-39 EPA TO-40	Air	tert-Butyl Alcohol	0.85	0.34	ug/m ³	0.2	0.0799	ppbV ppbV
EPA TO-40 EPA TO-41	Air	tert-Butyl Alconol tert-Butylbenzene	1.52	0.18	ug/m ³	0.5	0.0599	vaqq Vaqq
EPA TO-41 EPA TO-42	Air	Tertiary-Amyl Methyl Ether	0.84	0.22	ug/m ³ ug/m ³	0.2	0.0402	ppbV ppbV
EPA TO-42 EPA TO-43	Air	Tetrachloroethene	1.36	0.53	ug/m ⁻ ug/m ³	0.2	0.0795	ppbV ppbV
EPA TO-43 EPA TO-44	Air	Tetrahydrofuran	1.30	0.51	ug/m ³	0.2	0.0758	ppbV ppbV
EPA TO-44 EPA TO-45	Air	Thiophene	0.69	0.18	ug/m ³	0.5	0.0528	ppbV
EPA TO-45 EPA TO-46	Air	Toluene	0.05	0.18	ug/m ³	0.2	0.0628	Vdqq
EPA TO-40 EPA TO-47	Air	Total HC As Hexane	39.34	0.24	ug/m ug/m ³	10	0.0518	ppbV
EPA TO-47 EPA TO-48	Air	Total VOCs As Toluene	37.69	0.24	ug/m ³	10	0.0628	ppbV
EPA TO-48 EPA TO-49	Air	trans-1,2-Dichloroethene	0.79	0.24	ug/m ug/m ³	0.2	0.0028	ppbV
EPA TO-50	Air	trans-1,3-Dichloropropene	0.91	0.23	ug/m ³	0.2	0.0693	ppbV
EPA TO-51	Air	Trichloroethene	1.07	0.38	ug/m ³	0.2	0.0000	Vaqq
EPA TO-52	Air	Trichlorofluoromethane	1.12	0.23	ug/m ³	0.2	0.0416	ppbV
EPA TO-53	Air	Undecane	1.28	0.34	ug/m ³	0.2	0.0528	ppbV
EPA TO-54	Air	Vinyl acetate	3.52	0.2	ug/m ³	1	0.0567	ppbV
EPA TO-55	Air	Vinyl bromide	0.87	0.31	ug/m ³	0.2	0.0699	ppbV
EPA TO-56	Air	Vinyl chloride	0.51	0.14	ug/m ³	0.2	0.0533	ppbV
EPA TO-57	Air	Xylene (Total)	0.87	0.27	ug/m ³	0.2	0.0631	ppbV
2.7.1007			0.07	0.27	ug/III	0.2	0.0001	ppo -

ANALYTICAL METHODS/QUALITY ASSURANCE SUMMARY TABLE

				Analytical Method	s/ Quality Assurance Summary	Table													
Matrix Type	Field Parameters	Laboratory Parameters	Analytical Methods	Sample Preservation	Sample Container Volume and Type	Sample Hold Time	Field Duplicate Samples	Equipment Blank Samples	Trip Blank Samples	Ambient Air Samples	MS/MSD								
		Part 375 + TCL VOCs+TICs	EPA 8260C	Cool to 4°C; HCl to pH <2;no headspace	Three 40-mL VOC vials with Teflon [®] -lined cap	Analyze within 14 days of Part 375 + TCL VOCs+TICs													
		Part 375 + TCL SVOCs+TICs	EPA 8270D	Cool to 4°C	Two 1-Liter Amber Glass	7 days to extract, 40 days after extraction to analysis													
	Temperature,					6 months, except Mercury	1 per 20	1 per 20	1 per shipment										
Groundwater	Turbidity, pH, ORP,	Part 375 + TAL Metals	EPA 6010C, EPA 7473	HNO3	250 mL plastic	28 days	samples	samples	of VOC	NA	1 per 20 samples								
	Conductivity	Hexavalent Chromium	EPA 7196A	Cool to 4°C	250 ml plastic	24 hours	(minimum 1)	(minimum 1)	samples		samples								
		Cyanide	9014/9010C	NaOH plus 0.6g ascorbic acid	250 ml plastic	14 days													
		Part 375 + TCL Pesticides	EPA 8081B	Cool to 4°C	Two 1-Liter Amber for Pesticides/PCB	7 days to extract, 40 days after extraction to analysis													
		PCBs	EPA 8082A	Cool to 4°C	Two 1-Liter Amber for Pesticides/PCB	7 days to extract, 40 days after extraction to analysis													
		Part 375 + TCL VOCs+TICs	EPA 8260C	Cool to 4°C	Two 40-ml VOC vials with 5 ml H2O, one with MeOH or 3 Encore Samplers (separate container for % solids)														
		Part 375 + TCL SVOCs+TICs	EPA 8270D	Cool to 4°C	4 oz. jar*	14 days to extract, 40 days after extraction to analysis													
Soil/ Sediment	Total VOCs via PID	Part 375 + TAL Metals	EPA 6010C, EPA 7473 EPA 9014/9010C	Cool to 4°C	2 oz. jar*	6 months, except Mercury 28 days	1 per 20 samples (minimum 1)	1 per 20 samples (minimum 1)	1 per shipment of VOC samples	NA	1 per 20 samples								
		Hexavalent Chromium	EPA 7196A	Cool to 4°C	2 oz. jar*	30 days to extract, 24 hours after extraction to analysis													
		Part 375 + TCL PCBs	EPA 8081A	Cool to 4°C	4 oz. jar*	14 days extract, 40 days after extraction to analysis													
		Part 375 + TCL Pesticides	EPA 8081B	Cool to 4°C	4 oz. jar*	14 days extract, 40 days after extraction to analysis													
Soil Gas	Total VOCs via PID	TO-15 Listed VOCs	TO-15	Ambient Temperature	6-Liter Summa Canister	Analyze within 30 days of collection	1 per 20 samples (minimum 1)	1 per 20 samples (minimum 1)	NA	1 per 10 samples	NA								
Indoor Air	Total VOCs via PID	TO-15 Listed VOCs	TO-15	Ambient Temperature	6-Liter Summa Canister	Analyze within 30 days of collection	1 per 20 samples (minimum 1)	1 per 20 samples (minimum 1)	NA	1 per 10 samples	NA								

Attachment C Analytical Methods/ Quality Assurance Summary Table

Notes:

* can be combined in one or more 8 oz. jars

SAMPLE NOMENCLATURE



# SAMPLE NOMENCLATURE

The sample nomenclature outlined below provides consistency between sample events and projects but, most importantly, establish unique sample IDs that will avoid confusion months or years after the sample has been collected. Furthermore, unique sample IDs are required for any data submitted to the NYSDEC in EDD format or being uploaded to an EQUIS database.

### **1.0 INVESTIGATION LOCATION CODES**

- SB Soil Boring
- WC Waste Characterization Boring
- TP Test Pit
- EPSW Endpoint Location (Sidewall)
- EPB Endpoint Location (Bottom)
- MW Monitoring Well
- TMW Temporary Monitoring Well
- SW Surface Water

- SV Soil Vapor Point
- IA Indoor Air
- AA Ambient Air
- SVE Vapor Extraction Well
- DS Drum
- IDW Investigation Derived Waste

Sampling Interval (y-y)

- SL Sludge
- FP Free Product

### 2.0 SAMPLE NOMENCLATURE

Each sample at a site must have a unique value.

• Soil/Sediment Samples:

SBxx_y-y

Sample Location Code + Number (two digits minimum)

Sampling Sample Location Depth or Interval Sample Type Sample Name Code (feet bgs or approx. elevation) Phase II/Remedial Investigation SB01 2 to 4 SB01_2-4 Grab Soil Sample SB02 4 SB02_4 Waste Characterization WC01 WC01 2-4 2 to 4 Grab Soil Sample WC02 WC02_4 4 Composite Soil Sample COMP01 or 0 to 10 from one or more COMP01_0-10 COMP02 + COMP03 (Fill) locations

1

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)



Sample Type	Sample Location Code	Sampling Depth or Interval (feet bgs or approx. elevation)	Sample Name
Endpoint Sampling			
	EPSW01_N	5	EPSW01_N_5
	EPSW01_S	5	EPSW01_S_5
Grab Soil Sample	EPSW01_E	5	EPSW01_E_5
	EPSW01_W	5	EPSW01_W_5
	EPB01	6	EPB01_6

### Groundwater/Surface Water Samples:

MWxx_MMDDYY >1

Sampling Date (MMDDYY)

Sample Location Code + Number (two digits minimum)

Sample Type	Sample Location Code	Sampling Date	Sample Name
Groundwater Sample	MW01	02/21/2013	MW01_022113

### • <u>Air/Soil Vapor Samples:</u>

IAxx_MMDDYY

Sampling Date (MMDDYY)

Sample Location Code + Number (two digits minimum)

Sample Type	Sample Location Code	Date	Sample Name
Air Sample	IA01	02/21/2013	IA01_022113
Soil Vapor Sample	SV01	02/21/2013	SV01_022113
Vapor Extraction Well	SVE01		SVE01_IN_022113
Sample	(INLET/MIDPOINT/OUTLET) 02/21/2	02/21/2013	SVE01_ MID_022113
			SVE01_ OUT_022113

### <u>QA/QC Samples:</u>

Sample Matrix Codes

SO	Soil	AS	Air
SE	Sediment	SV	Soil Vapor
GW	Groundwater	SL	Sludge
SW	Surface Water	FP	Free Product

2



o Duplicates Samples

Sample Matrix Code Sample Type + Sampling Date (MMDDYY) Number (two digits minimum)

Sample Type	Parent Sample Code	Date	Sample Name
Groundwater Duplicate Sample (DUP)	MW01_022113	02/21/2013	GWDUP01_022113
Soil boring Duplicate Sample (DUP)	SBP01_022113	02/21/2013	SODUP01_022113
Grab Waste Characterization	WC01	02/21/2013	WCDUP01_022113
Composite Waste Characterization	COMP01	02/21/2013	COMPDUP01_022113

o Field Blanks and Trip Blanks



Sample Type	Date	Sample Name
Groundwater Field Blank (FB)	02/21/2013	GWFB01_022113
Groundwater Trip Blank (TB)	02/21/2013	GWTB01_022113
Soil Field Blank	02/21/2013	SOFB01_022113
Soil Trip Blank	02/21/2013	SOTB01_022113

• Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Parent Sample Name_MS or MSD

Sample Type	Sample Location	Parent Sample Name	Sample Name
Matrix Spike Soil (MS)	SB01	SB01_2-4	SB01_2-4_MS
Matrix Spike Soil Duplicate (MSD)	SB01	SB01_2-4	SB01_2-4_MSD
Matrix Spike GW (MS)	MW01	MW01	MW01_MS
Matrix Spike GW Duplicate (MSD)	MW01	MW01	MW01_MSD

### 3.0 NOTES

- 1. The sample location code should not exceed 20 characters and the sample name should not exceed 40 characters.
- 2. Sample location code (**SB01**, **MW01**, **etc.**) is a sequential number (starting with 01) and should be a minimum of two digits.
- 3. Sample Interval (SB01_0-5) is separated from the sample location code with an underscore, and the top and bottom interval with a dash. Soil and sediment sample intervals should always be in

SOP: Sample Nomenclature_v02 | 03/06/2013



feet. Soil and sediment sample intervals should contain no "/" or "()" or unit.

- 4. Sample date (MW01_022113) is separated from the sample location code with an underscore and should be provided in MMDDYY format [the date should contain no "/" or "-"].
- 5. If groundwater samples are collected from multiple intervals within one well, you may assign a letter designation (in lower case) to the well ID to differentiate between intervals (i.e., MW01a_022113, MW01b_022113, and MW01c_022113). The letter "a" would indicate the shallowest interval and "c" the deepest. The actual depth intervals should be documented in the project field book or field sheets and the letter designations should be used consistently between sampling events.
- 6. According to USEPA's Contract Laboratory Program (CLP) Guidance for Field Samplers (January 2011), field duplicate samples should remain "blind" to the laboratory (i.e., they should have separate CLP Sample numbers). Assign two separate (unique) CLP sample numbers (i.e., one number to the field sample and one to the duplicate). Submit blind to the laboratory. (http://www.epa.gov/superfund/programs/clp/download/sampler/CLPSamp-01-2011.pdf)

