

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION BROWNFIELD CLEANUP PROGRAM (BCP)

ECL ARTICLE 27 / TITLE 14

DEPARTMENT USE ONLY BCP SITE #:

08/2013			BCP SITE #					
Section I. Requestor Information								
NAME E & M Realty Corp.								
ADDRESS 335 Bond Street	ADDRESS 335 Bond Street							
CITY/TOWN Brooklyn		ZIP CODE 112	231					
PHONE 718-643-3900	FAX 718-625-27	777	E-MAIL eslinin@nyc2way.com					
Is the requestor authorized to conduct business in New York State (NYS)? See Attachment A -If the requestor is a Corporation, LLC, LLP or other entity requiring authorization from the NYS Department of State to conduct business in NYS, the requestor's name must appear, exactly as given above, in the NYS Department of State's Corporation & Business Entity Database. A print-out of entity information from the database must be submitted to DEC with the application, to document that the applicant is authorized to do business in NYS. -Individuals that will be certifying BCP documents, as well as their employers, meet the requirements of Section 1.5 of DER-10: Technical Guidance for Site Investigation and Remediation and New York State Education Law. Documents that are not properly certified will not be approved under the BCP.								
NAME OF REQUESTOR'S REPRESENTATIV	Eduard Slinin							
ADDRESS 335 Bond Street								
CITY/TOWN Brooklyn		ZIP CODE 112	231					
PHONE 718-228-1462	FAX 718-625-277	7	E-MAIL eslinin@nyc2way.com					
NAME OF REQUESTOR'S CONSULTANT La	ingan Engineering, I	Environmental, Surveyi	ng and Landscape Architecture, D.P.C.					
ADDRESS 21 Penn Plaza, 360 We	est 31st Street							
CITY/TOWN New York		ZIP CODE 100	001					
PHONE 212-479-5400	FAX 212-479-544	4	E-MAIL rmanderbach@langan.com					
NAME OF REQUESTOR'S ATTORNEY Davi	d Yudelson, Sive, P	aget & Riesel, P.C.						
ADDRESS 460 Park Avenue, 10th Floo	or							
CITY/TOWN New York		ZIP CODE 100	22					
PHONE 212-421-2150	FAX 212-421-1891		E-MAIL dyudelson@sprlaw.com					
THE REQUESTOR MUST CERTIFY THAT HE CHECKING ONE OF THE BOXES BELOW:	SHE IS EITHER A PART	ICIPANT OR VOLUNTEER IN	N ACCORDANCE WITH ECL 27-1405 (1) BY					
PARTICIPANT A requestor who either 1) was the owner of the disposal of hazardous waste or discharge of petro person responsible for the contamination, unless as a result of ownership, operation of, or in subsequent to the disposal of hazardous waste or	bleum or 2) is otherwise a the liability arises solely volvement with the site	subsequent to the disposal of hazardous waste or discharge of petroleum.						
Requestor Relationship to Property (check one): Previous Owner If current Owner Previous Owner Potential /Future Purchaser Other If requestor is not the site owner, requestor will have access to the property throughout the BCP project. Yes Proof of site access must be submitted for non-owners								

Section II. Property Information Check here if this application is to request significant changes to property set forth in an existing BCA:							
PROPERTY NAME 335 Bond Street							
ADDRESS/LOCATION 335 Bond Street CITY/TOWN	Brooklyn		ZIP CO	DDE 1123	1		
MUNICIPALITY(IF MORE THAN ONE, LIST ALL): Brooklyn							
COUNTY Kings SITE SIZE (ACRES) 0.36						
LATITUDE (degrees/minutes/seconds) 40 ° 40 ° 43.63 «	LONGITUDE	(degrees/minut	es/seconds) -	73 • 59	· 23.92 ··		
HORIZONTAL COLLECTION METHOD: SURVEY GPS MAP	HORIZONTA	L REFERENCI	e datum: V	VGS84			
COMPLETE TAX MAP INFORMATION FOR ALL TAX PARCELS INCLUDED W PER THE APPLICATION INSTRUCTIONS. Parcel Address	ITHIN THE PRO Parcel No.	OPERTY BOUN Section No.	NDARIES A	TTACH REQ	UIRED MAPS Acreage		
335 Bond Street			445	1	0.36		
 Do the property boundaries correspond to tax map metes and bounds? If no, please attach a metes and bounds description of the property. Is the required property map attached to the application? (application will not be processed without map) Is the property part of a designated En-zone pursuant to Tax Law § 21(b)(6)? For more information please see Empire State Development's website. If yes, identify area (name) Percentage of property in En-zone (check one): □ 0-49% □ 50-99% □ 100% Is this application one of multiple applications for a large development project, where the development □ Yes I No project spans more than 25 acres (see additional criteria in BCP application instructions)? If yes, identify name of 							
5. Property Description Narrative: See Attachment B							
6. List of Existing Easements (type here or attach information) Easement Holder Description See Attachment B							
 7. List of Permits issued by the NYSDEC or USEPA Relating to the Proposed Site (type here or attach information) <u>Type</u> <u>Issuing Agency</u> <u>Description</u> None 							
If any changes to Section II are required prior to application approval, a Initials of each Requestor:	a new page, ir	nitialed by ea	ich requesto	or, must be	submitted.		

Section III. Current Property C	Dwner/Operator Information						
OWNER'S NAME E & M Realty Corp.							
ADDRESS 335 Bond Street							
CITY/TOWN Brooklyn ZIP CODE 11231							
PHONE 718-643-3900	FAX 718-625-2777	E-MAIL eslinin@n	yc2way	.com			
OPERATOR'S NAME NYC Two Way	International c/o Corporate Trans	sportation Group					
ADDRESS 335 Bond Street							
CITY/TOWN Brooklyn	ZIP CODE 11	231					
PHONE 718-643-3900	FAX 718-625-2777	E-MAIL vzilbermar	n@nyc2v	vay.com			
Section IV. Requestor Eligibilit	y Information (Please refer to ECL §	27-1407)					
 Are any enforcement actions pending Is the requestor subject to an existing Is the requestor subject to an outstand Has the requestor been determined to Has the requestor previously been de Has the requestor been found in a civation act involving contaminants? Has the requestor been convicted of a theft, or offense against public admir Has the requestor knowingly falsified false statement in a matter before the Is the requestor an individual or entitied 	vil proceeding to have committed a negligent or a criminal offense that involves a violent felony histration? d or concealed material facts or knowingly subm	? intentionally tortious , fraud, bribery, perjury nitted or made use of a committed an act		 No 			
Section V. Property Eligibility	Information (Please refer to ECL § 27	-1405)					
 Is the property, or was any portion of the property, listed on the National Priorities List? If yes, please provide relevant information as an attachment. Is the property, or was any portion of the property, listed on the NYS Registry of Inactive Hazardous Waste Disposal Site: If yes, please provide: Site # Class # Yes Z Site # Yes Z Site property subject to a permit under ECL Article 27, Title 9, other than an Interim Status facility? Yes Z If yes, please provide: Permit type: EPA ID Number: Date permit issued: Permit expiration date: If yes, please provide: Order # Site the property subject to a state or federal enforcement action related to hazardous waste or petroleum? Yes Z If yes, please provide explanation as an attachment. 							
Section VI. Project Description							
 What stage is the project starting at? Please attach a description of the project Purpose and scope of the project Estimated project schedule 	✓ Investigation R t which includes the following components:	emediation	ŝ				

Section VII. Property's Environmental History

To the extent that existing information/studies/reports are available to the requestor, please attach the following:

1. Environmental Reports See Attachment D

A Phase I environmental site assessment report prepared in accordance with ASTM E 1527 (American Society for Testing and Materials: Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process), and all environmental reports related to contaminants on or emanating from the site.

If a final investigation report is included, indicate whether it meets the requirements of ECL Article 27-1415(2): Yes No

2. SAMPLING DATA: INDICATE KNOWN CONTAMINANTS AND THE MEDIA WHICH ARE KNOWN TO HAVE BEEN AFFECTED. LABORATORY REPORTS SHOULD BE REFERENCED AND COPIES INCLUDED. See Attachment D

Contaminant Category	Soil	Groundwater	Surface Water	Sediment	Soil Gas			
Petroleum								
Chlorinated Solvents	×	Х			х			
Other VOCs					х			
SVOCs	×							
Metals	x	Х						
Pesticides								
PCBs								
Other*								
*Please describe:								

3. SUSPECTED CONTAMINANTS: INDICATE SUSPECTED CONTAMINANTS AND THE MEDIA WHICH MAY HAVE BEEN AFFECTED. PROVIDE BASIS FOR ANSWER AS AN ATTACHMENT. See Attachment D

Contaminant Category	Soil	Groundwater	Surface Water	Sediment	Soil Gas
Petroleum	Х	Х			Х
Chlorinated Solvents	Х	Х			Х
Other VOCs	Х	X			Х
SVOCs	Х	Х			
Metals	Х	X			
Pesticides					
PCBs	Х	Х			
Other*					
*Please describe:					
4 INDICATE KNOWN O	P SUSPECTED S	DURCES OF CONTAMU	NANTS (CHECK ALL THA	T APPL V) PROVI	DE BASIS FOR

4. INDICATE KNOWN OR SUSPECTED SOURCES OF CONTAMINANTS (CHECK ALL THAT APPLY). PROVIDE BASIS ANSWER AS AN ATTACHMENT.

Drums or Storage Containers	Dumping or Burial of W Seepage Pit or Dry Well Industrial Accident	astes ☐ Septic tank/lateral f ☐ Foundry Sand ☑ Unknown	ne or Tank □Surface S ield ☑Adjacent □Electropla	Property
5. INDICATE PAST LAND USES (CHECK ALL THAT APPLY	<i>(</i>):		
□Coal Gas Manufacturing☑Manu □Pipeline ☑Servi Other: <u>on-site gasoline storage</u>	ufacturing Agricultura	l Co-op Dry Cleaner Tannery	Salvage Yard	Bulk Plant
6. PROVIDE A LIST OF PREVIOU ADDRESSES AND TELEPHONE RELATIONSHIP, IF ANY, TO EA	NUMBERS AS AN ATTAC	CHMENT. DESCRIBE REQ	UESTOR'S	See Attachment D

Section VIII. Contact List Information See Attachment E					
Please attach, at a minimum, the names and addresses of the following:					
1. The chief executive officer and planning board chairperson of each county, city, town and village in which located.	the property is				
2. Residents, owners, and occupants of the property and properties adjacent to the property.					
3. Local news media from which the community typically obtains information.					
4. The public water supplier which services the area in which the property is located.					
5. Any person who has requested to be placed on the contact list.					
6. The administrator of any school or day care facility located on or near the property.					
7. In cities with a population of one million or more, the local community board if the proposed site is located community board's boundaries (*note: per the 2010 census, New York City is the only city in NY with a population of the proposed site is located community board's boundaries (*note: per the 2010 census, New York City is the only city in NY with a population of the proposed site is located community board.					
8. The location of a document repository for the project (e.g., local library). In addition, attach a copy of a lett repository acknowledging that it agrees to act as the document repository for the property.	er sent to the				
Section IX. Land Use Factors (Please refer to ECL § 27-1415(3)) See Attachment F					
1. Current Use: Residential Commercial Industrial Vacant Recreational (check all that approvide summary of business operations as an attachment. (See Allachment F)	oly)				
2. Intended Use Post Remediation: □Unrestricted □Residential ☑Commercial □Industrial (check all t Provide specifics as an attachment.	hat apply)				
3. Do current historical and/or recent development patterns support the proposed use? (See #14 below re: discussion of area land uses)	ØYes □No				
4. Is the proposed use consistent with applicable zoning laws/maps?	ØYes □No				
5. Is the proposed use consistent with applicable comprehensive community master plans, local waterfront revitalization plans, designated Brownfield Opportunity Area plans, other adopted land use plans?	I Yes □No				
6. Are there any Environmental Justice Concerns? (See §27-1415(3)(p)).	□Yes ☑No				
7. Are there any federal or state land use designations relating to this site?	Yes No				
8. Do the population growth patterns and projections support the proposed use?	I Yes □No				
9. Is the property accessible to existing infrastructure?	✓Yes □No				
10. Are there important cultural resources, including federal or state historic or heritage sites or Native American religious sites within ½ mile? Image: Comparison of the state historic or heritage sites or Native Image: Comparison of the state historic or heritage sites or Native Image: Comparison of the state historic or heritage sites or Native Image: Comparison of the state historic or heritage sites or Native Image: Comparison of the state historic or heritage sites or Native Image: Comparison of the state historic or heritage sites or Native Image: Comparison of the state historic or heritage sites or Native Image: Comparison of the state historic or heritage sites or Native Image: Comparison of the state historic or heritage sites or Native Image: Comparison of the state historic or heritage sites or Native Image: Comparison of the state historic or heritage sites or Native Image: Comparison of the state historic or heritage sites or Native Image: Comparison of the state historic or heritage sites or Native Image: Comparison of the state historic or heritage sites or Native Image: Comparison of the state historic or heritage sites or Native Image: Comparison of the state historic or heritage sites or Native Image: Comparison of the state historic or heritage sites or Native Image: Comparison of the state historic or heritage sites or Native Image: Comparison of the state historic or heritage sites or Native Image: Comparison of the state historic or heritage sites or Native Image: Comparison of the state historic or heritage sites or Native Image: Comparison of the state historic or heritage sites or Native Image: Comparison of the state historic or heritage sites or Native Image: Comparison of the state historic or heritage sites or Native Image: Comparison of the state historic or heritage sites or Native Image: Comparison of the state historic or heritage sites or Native Image: Comparison of the state historic or heritage sites or Native Image: Compariso					
11. Are there important federal, state or local natural resources, including waterways, wildlife refuges, wetlands, or critical habitats of endangered or threatened species within ½ mile?					
12. Are there floodplains within ½ mile?					
13. Are there any institutional controls currently applicable to the property?					
14. Describe the proximity to real property currently used for residential use, and to urban, commercial, industrial, agricultural, and recreational areas in an attachment.					
15. Describe the potential vulnerability of groundwater to contamination that might migrate from the property, including proximity to wellhead protection and groundwater recharge areas in an attachment.					
16. Describe the geography and geology of the site in an attachment.					

Section X. Statement of Certification and Signatures
(By requestor who is an individual)
If this application is approved, I acknowledge and agree to the general terms and conditions set forth in DER-32 <i>Brownfield</i> <i>Cleanup Program Applications and Agreements</i> and to execute a Brownfield Cleanup Agreement (BCA) within 60 days of the date of DEC's approval letter. I also agree that in the event of a conflict between the general terms and conditions of participation set forth in DER-32 and the terms contained in a site-specific BCA, the terms in the BCA shall control. I hereby affirm that information provided on this form and its attachments is true and complete to the best of my knowledge and belief. I am aware that any false statement made herein is punishable as a Class A misdemeanor pursuant to section 210.45 of the Penal Law.
Date: Signature: Print Name:
(By an requestor other than an individual)
I hereby affirm that I am <u>COO</u> (title) of <u>HIGHIYGH</u> (entity); that I am authorized by that entity to make this application; that this application was prepared by me or under my supervision and direction. If this application is approved, I acknowledge and agree to the general terms and conditions set forth in DER-32 Brownfield Cleanup Program Applications and Agreements and to execute a Brownfield Cleanup Agreement (BCA) within 60 days of the date of DEC's approval letter. I also agree that in the event of a conflict between the general terms and conditions of participation set forth in DER-32 and the terms contained in a site-specific BCA, the terms in the BCA shall control. I hereby affirm that information provided on this form and its attachments is true and complete to the best of my knowledge and belief. I am aware that any false statement made herein is punishable as a Class A misdemeanor pursuant to Section 210.45 of the Penal Law.
SUBMITTAL INFORMATION:

Three (3) complete copies are required.

Two (2) copies, one paper copy with original signatures and one electronic copy in Portable Document Format (PDF) on a CD, must be sent to: •

Chief, Site Control Section New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, NY 12233-7020

One (1) paper copy must be sent to the DEC regional contact in the regional office covering the county in which the site is located. Please check our <u>website</u> for the address of our regional offices.

FOR DEPARTMENT USE ONLY

BCP SITE T&A CODE:_____ LEAD OFFICE:____

ATTACHMENT A Section I: Requestor Information

• NYS Department of State's Corporation and Business Entity Database Entity Information for E & M Realty Corp.

ATTACHMENT A SECTION I: REQUESTOR INFORMATION

A copy of the entity information from the NYS Department of State's Corporation & Business Entity Database is included with this attachment.

Pursuant to ECL § 27-1405(1), E & M Realty Corp. is properly designated as a Volunteer because its liability arises solely from involvement with the site after the release/discharge and because it has taken appropriate care to stop any continuing release, to prevent any threatened future release, and to prevent or limit human, environmental or natural resource exposures to any previously released hazardous waste.

NYS Department of State

Division of Corporations

Entity Information

The information contained in this database is current through May 1, 2015.

Selected Entity Name: E & M REALTY CORP.
Selected Entity Status InformationCurrent Entity Name:E & M REALTY CORP.DOS ID #:1925992Initial DOS Filing Date:MAY 26, 1995County:KINGSJurisdiction:NEW YORKEntity Type:DOMESTIC BUSINESS CORPORATIONCurrent Entity Status:ACTIVE

Selected Entity Address Information

DOS Process (Address to which DOS will mail process if accepted on behalf of the entity) PIKE & PIKE, P.C. ATTN: ROBERTA C. PIKE 1921 BELLMORE AVENUE BELLMORE, NEW YORK, 11710

Registered Agent

NONE

This office does not record information regarding the names and addresses of officers, shareholders or directors of nonprofessional corporations except the chief executive officer, if provided, which would be listed above. Professional corporations must include the name(s) and address(es) of the initial officers, directors, and shareholders in the initial certificate of incorporation, however this information is not recorded and only available by <u>viewing the</u> <u>certificate.</u>

*Stock Information

of Shares Type of Stock \$ Value per Share

200 No Par Value

*Stock information is applicable to domestic business corporations.

Name History

Filing DateName TypeEntity NameMAY 26, 1995ActualE & M REALTY CORP.

A **Fictitious** name must be used when the **Actual** name of a foreign entity is unavailable for use in New York State. The entity must use the fictitious name when conducting its activities or business in New York State.

NOTE: New York State does not issue organizational identification numbers.

Search Results New Search

<u>Services/Programs</u> | <u>Privacy Policy</u> | <u>Accessibility Policy</u> | <u>Disclaimer</u> | <u>Return to DOS</u> <u>Homepage</u> | <u>Contact Us</u>

ATTACHMENT B Section II: Property Information

- Copy of Existing Easement
- Site Location Map
- Site Map with 1,000-foot Line from Property Boundary
- Adjacent Property and Surrounding Land Uses Map
- Tax Map Location Plan
- Environmental Conditions Plan

ATTACHMENT B SECTION II: PROPERTY INFORMATION

The Reference Point for the given latitude (40°40′43.63″) and longitude (-73°59′23.92″) is the approximate center of the site.

Figure 1 is a United States Geological Survey (USGS) 7.5 minute quadrangle map showing the location of the site.

Figure 2 provides a property base map that shows i) a distance of at least 1,000 feet around the site at a scale no smaller than one inch equal to 200 feet; and ii) map scale, north arrow orientation, date, and location of the property with respect to adjacent streets and roadways.

Figure 3 provides a property base map that shows i) site boundary lines, with adjacent property owners clearly identified; and ii) surrounding property land uses.

Figure 4 is a Digital Tax Map from the New York City Department of Finance showing the site boundary and its tax block and lot.

Figure 5 is a presentation of environmental conditions that were identified on historic records and documents, and during a subsurface investigation conducted by Langan in May 2015.

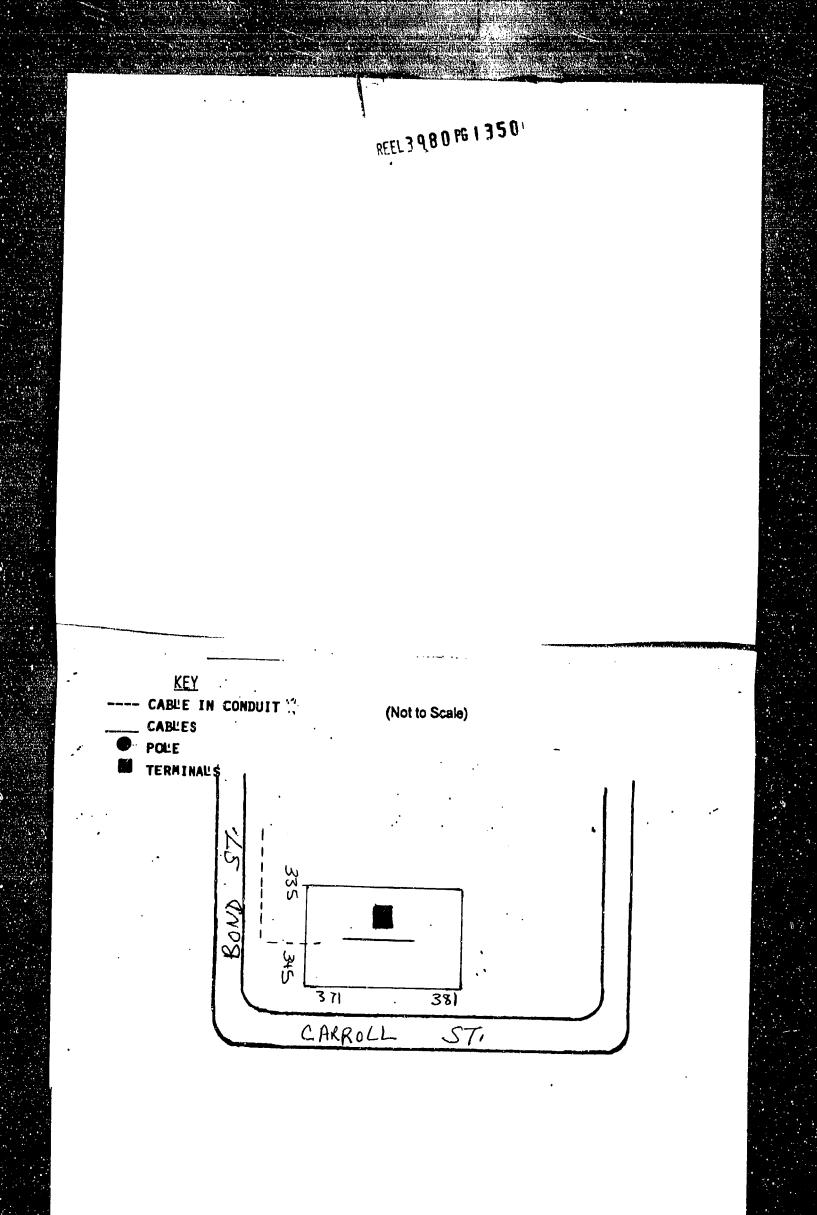
<u>Item 2 Response</u>

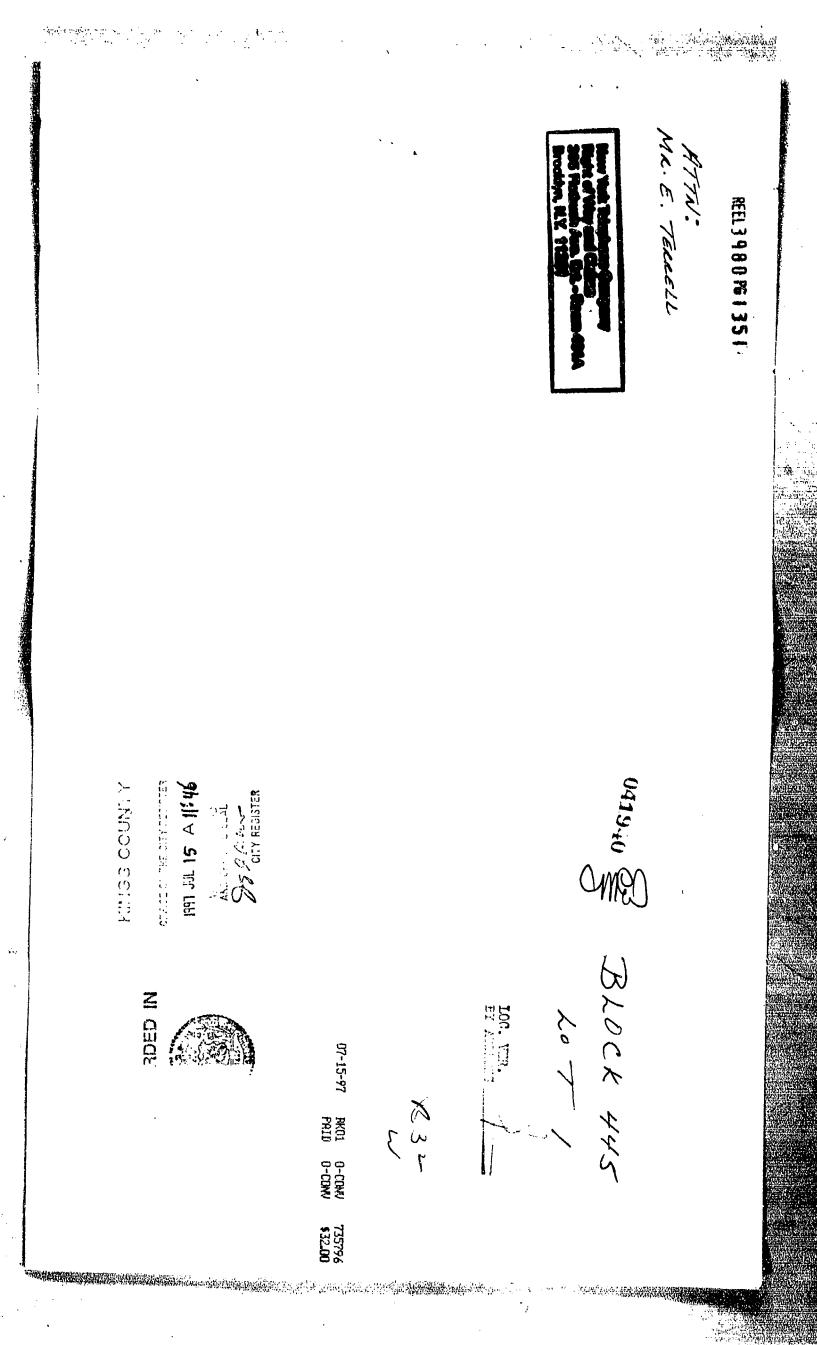
Figure 2 is the required property map.

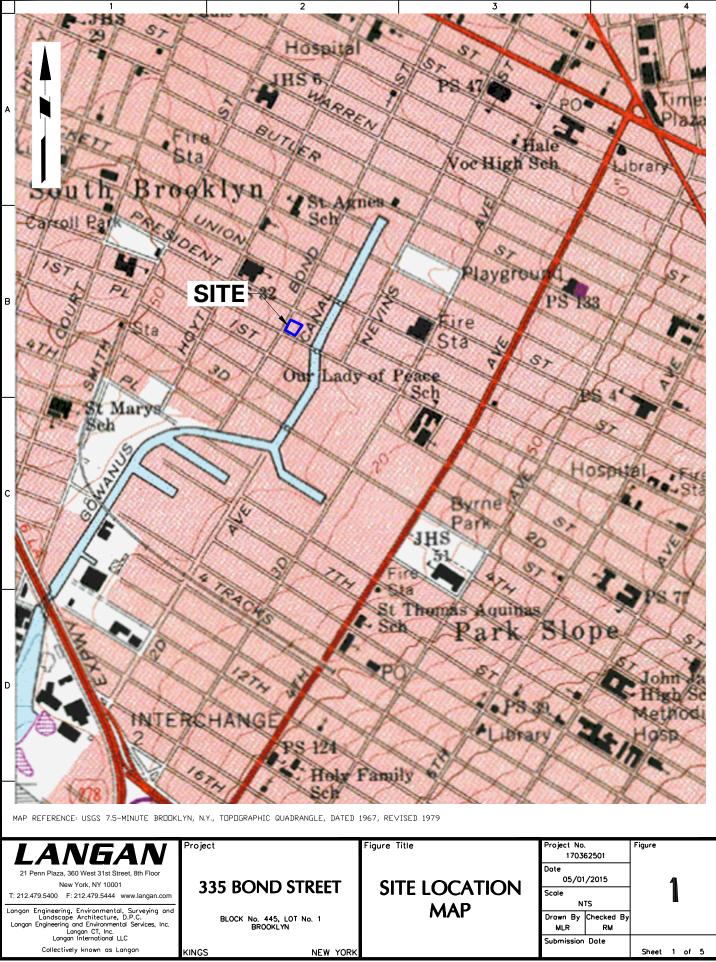
<u>Item 5 Response</u>

The site is located at 335 Bond Street in the Gowanus neighborhood of Brooklyn, New York and is identified as Block 445, Lot 1 on the New York City Tax Map. The site has an area of approximately 0.36 acres, and is occupied by a one-story office building and garage operated by NYC Two Way International, a private car and limousine service. The building includes a partial cellar, which houses an abandoned aboveground storage tank (AST) in a concrete vault. The site is bound by a two-story residential building and an industrial lot to the north; a two-story industrial and commercial building to the east; Carroll Street to the south; and Bond Street to the west. Surrounding properties are predominantly occupied by mixed-use industrial and commercial developments (north, east and south) and residential developments (west). According to the United States Geological Survey (USGS) Brooklyn, N.Y. Quadrangle 7.5-minute Series Topographic Map, the site sits at an elevation of approximately 10 feet above mean sea level (msl)¹. The topography of the site is generally level, and the surrounding area slopes gently east toward the Gowanus Canal.

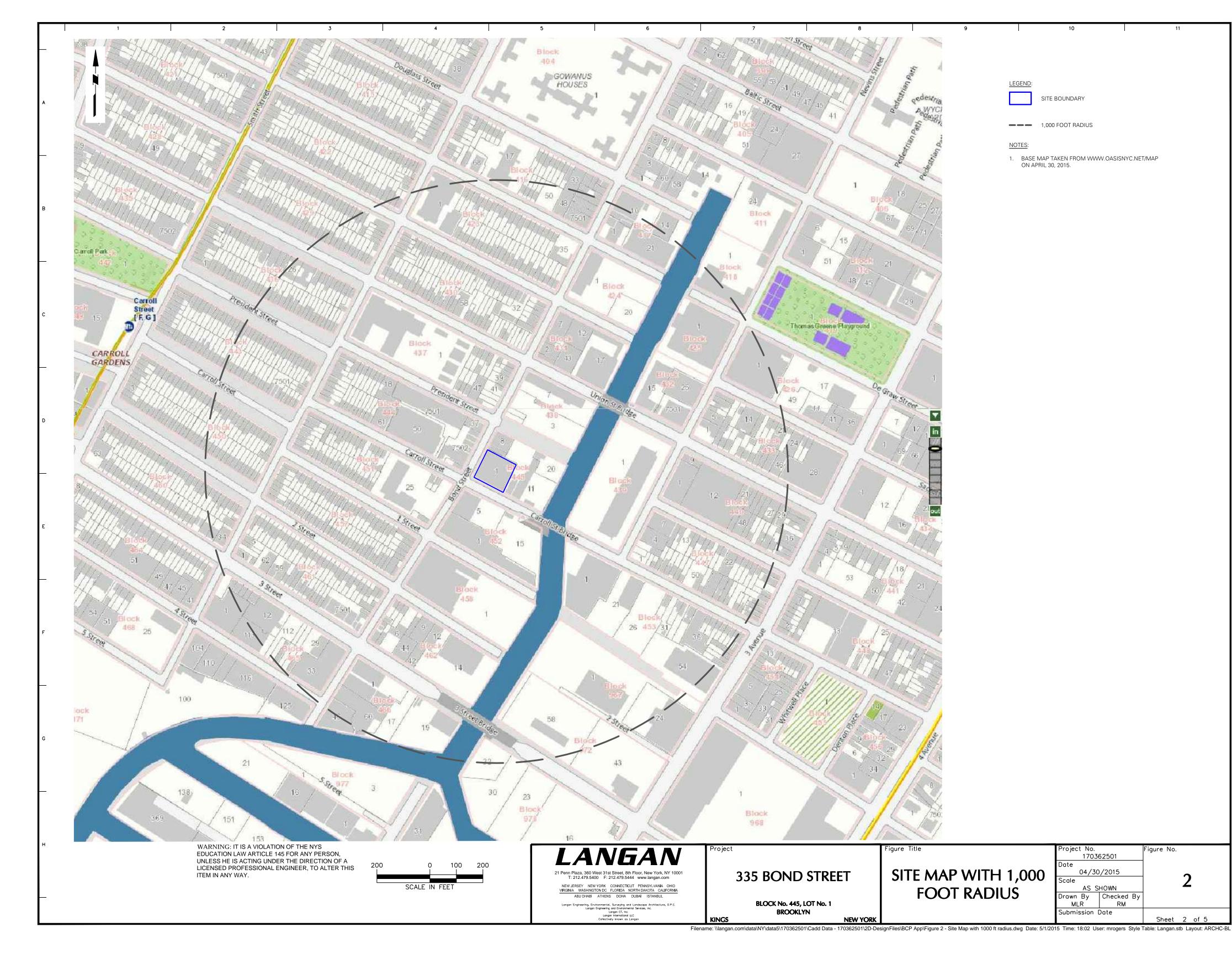
<u>Item 6 Response</u>


Easement Holder – New York Telephone Company


<u>Easement Description</u> – The property located at 335-345 Bond Street (also known as 371-381 Carroll Street) is identified as an easement on the New York City Department of Finance, Office of the City Registrar records. Under the easement, dated March 13, 1997, the New York Telephone Company has the right to reconstruct, relocate, replace, operate, repair and/or maintain a communications cable box terminal and associated cables and attachments located within the site building.

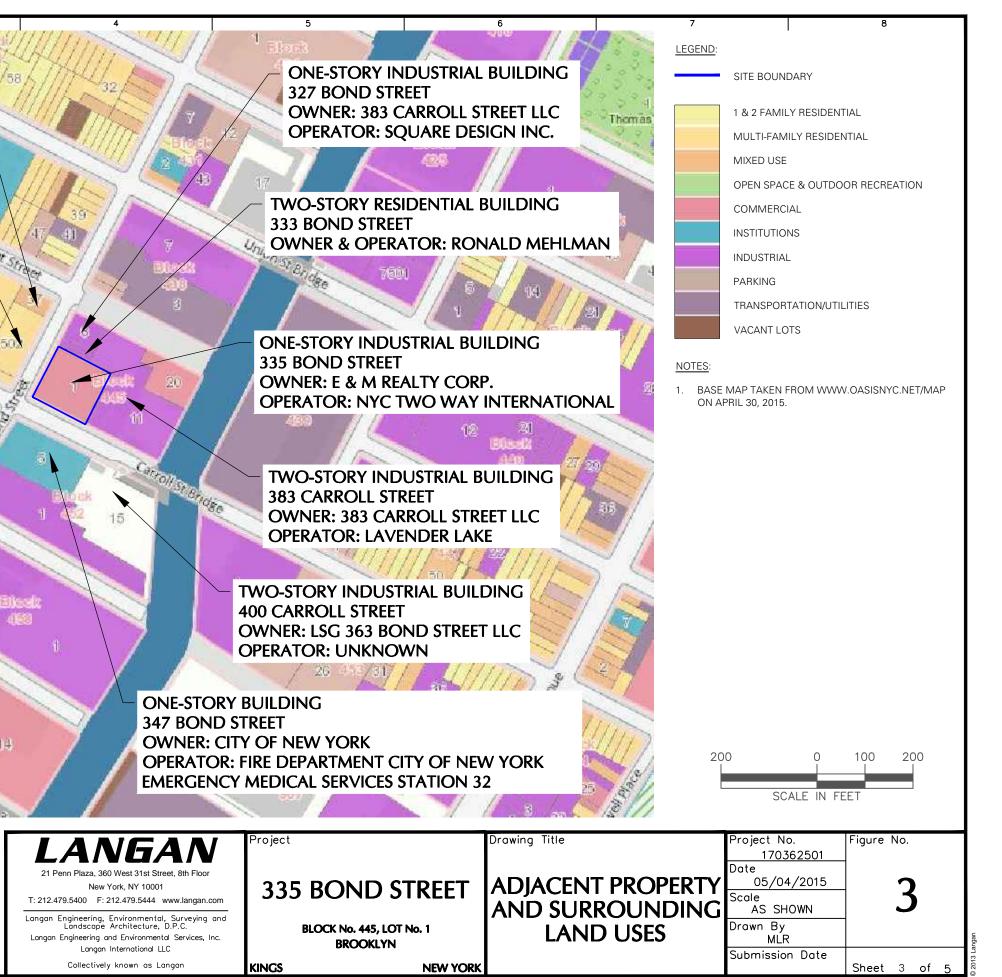

This easement will not preclude, presently or potentially, the imposition of the obligations under the Brownfield Cleanup Program to investigate and remediate the site. A copy of the easement is included in this attachment.

¹ Mean sea level as defined by the United States Geological Survey National Geodetic Vertical Datum of 1929 (USGS NGVD 1929) at Sandy Hook New Jersey.


REEL 3980 PG 1 349 LOT HENTRANCE !! RECEIVED FROM NEW YORK TELEPHONE COMPANY, One Dollar (\$1.00) in consideration of which the under-KECEIVED FROM NEW YORK IELEPHONE COMPANY, One Dollar (\$1.00) in consideration of which the under-signed hereby grants unto said Telephone Company, its successors and assigns, the right, privilege and authority to construct, signed hereby grains unto salu receptione company, its successors and assigns, the right, privilege and aution reconstruct, relocate, replace, operate, repair, maintain and at its pleasure remove the following facilities: 8V 445 conduct turning achti upon the property which the undersigned owns or in which the undersigned has an interest, situated **335 - 345** Bond Studet AKA 371-381 Carrier m celt of <u>Study life</u>, County of <u>Kings</u>, State of New York 2 tool in the It is upper soo WITNESS WHEREOF, the undersigned has duly executed this instrument this recen hundred as the try HA we wan Nutshall corrected f-(L.S.) (L.S.) 718-643-6053 101 Um 28 Uj(noss: 36 COUNTY OF KINGS ON THIS 13 DAY OF MARCH , IN THE YEAR OF 1997. BEFORE HE PERSONALLY CAME CHARLES HYMOWITZ TO ME KNOWN TO BE THE INDIVIDUAL DESCRIBED IN, AND WHO EXECUTED THE ANNEXED INSTRUMENT, AND ACKNOWLEDGED THAT HE EXECUTED THE SAME FOR HI WELLI'L THE PURPOSES THEREIN MENTIONED F.blic, State ASSAU COUR in Nes NOTARY PUREJC

Filename: \\\\angan.com\\data\\Y\\data5\170362501\Cadd Data - 170362501\2D-DesignFiles\BCP App\Figure 1 - Site Location Map.dwg Date: 5/4/2015 Time: 11:35 User: mrogers Style Table: Langan.stb Layout: ANSIA-BP

327 BOND STREET


TWO-STORY RESIDENTIAL BUILDING 333 BOND STREET

ONE-STORY INDUSTRIAL BUILDING 335 BOND STREET OWNER: E & M REALTY CORP.

383 CARROLL STREET OWNER: 383 CARROLL STREET LLC

TWO-STORY INDUSTRIAL BUILDING **400 CARROLL STREET OWNER: LSG 363 BOND STREET LLC OPERATOR: UNKNOWN**

ONE-STORY BUILDING 347 BOND STREET **OWNER: CITY OF NEW YORK EMERGENCY MEDICAL SERVICES STATION 32**

TWO-STORY MIXED-USE COMMERCIAL/RESIDENTIAL BUILDINGS **406 PRESIDENT STREET OWNER & OPERATOR: JOAN SALOME RODRIGUEZ**

TWO, THREE-STORY RESIDENTIAL BUILDINGS **342 BOND STREET** OWNER: 340 BOND, LLC **OPERATOR: UNKNOWN**

revident

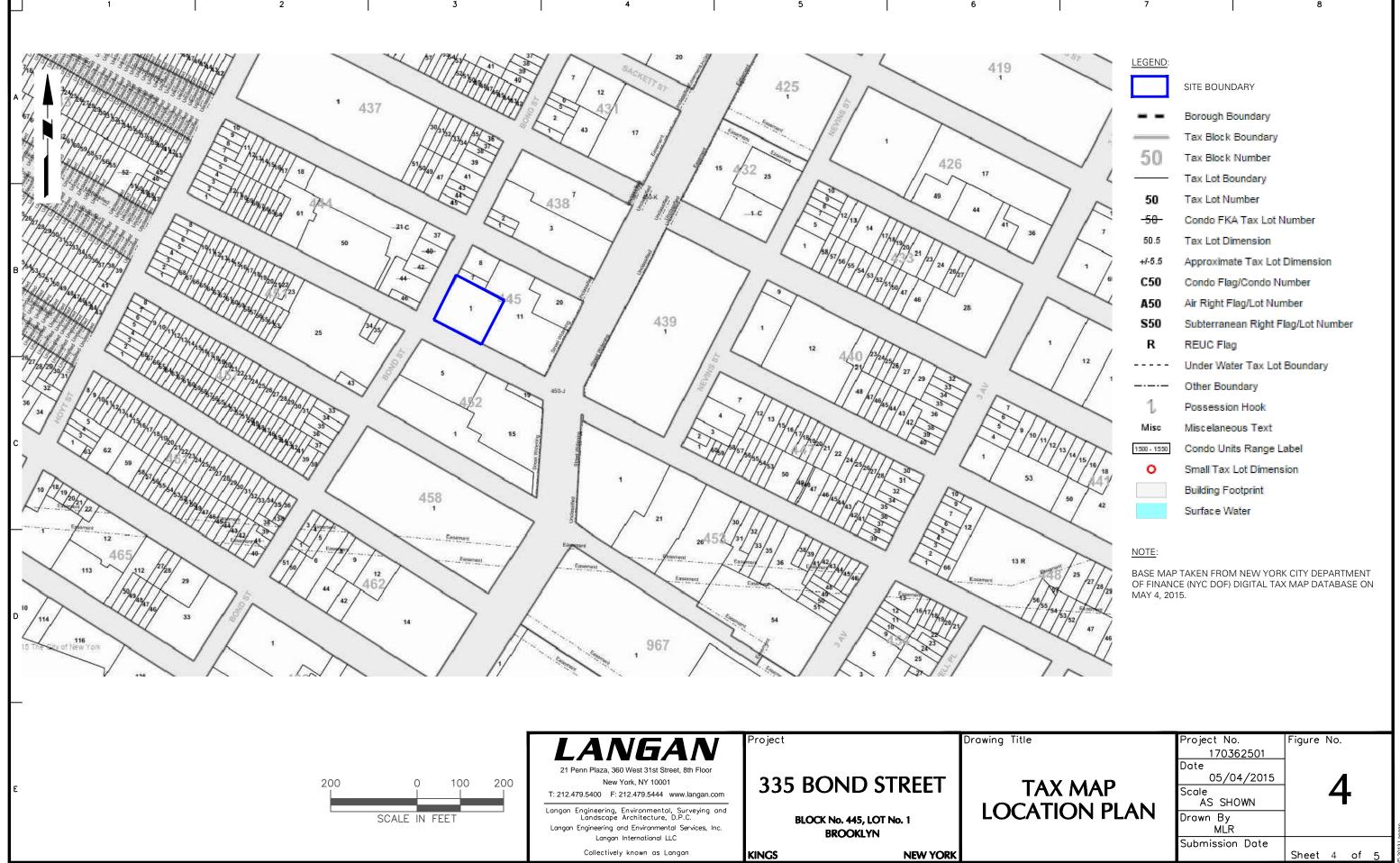
750

14

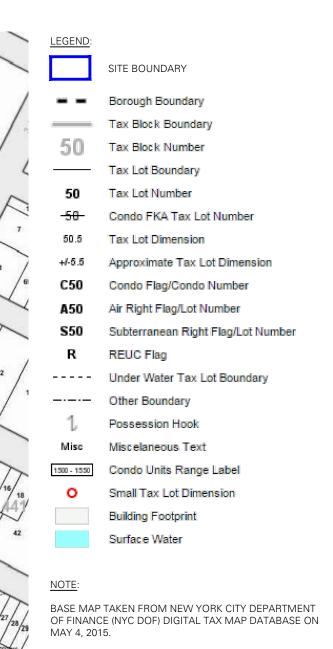
Carroli Street

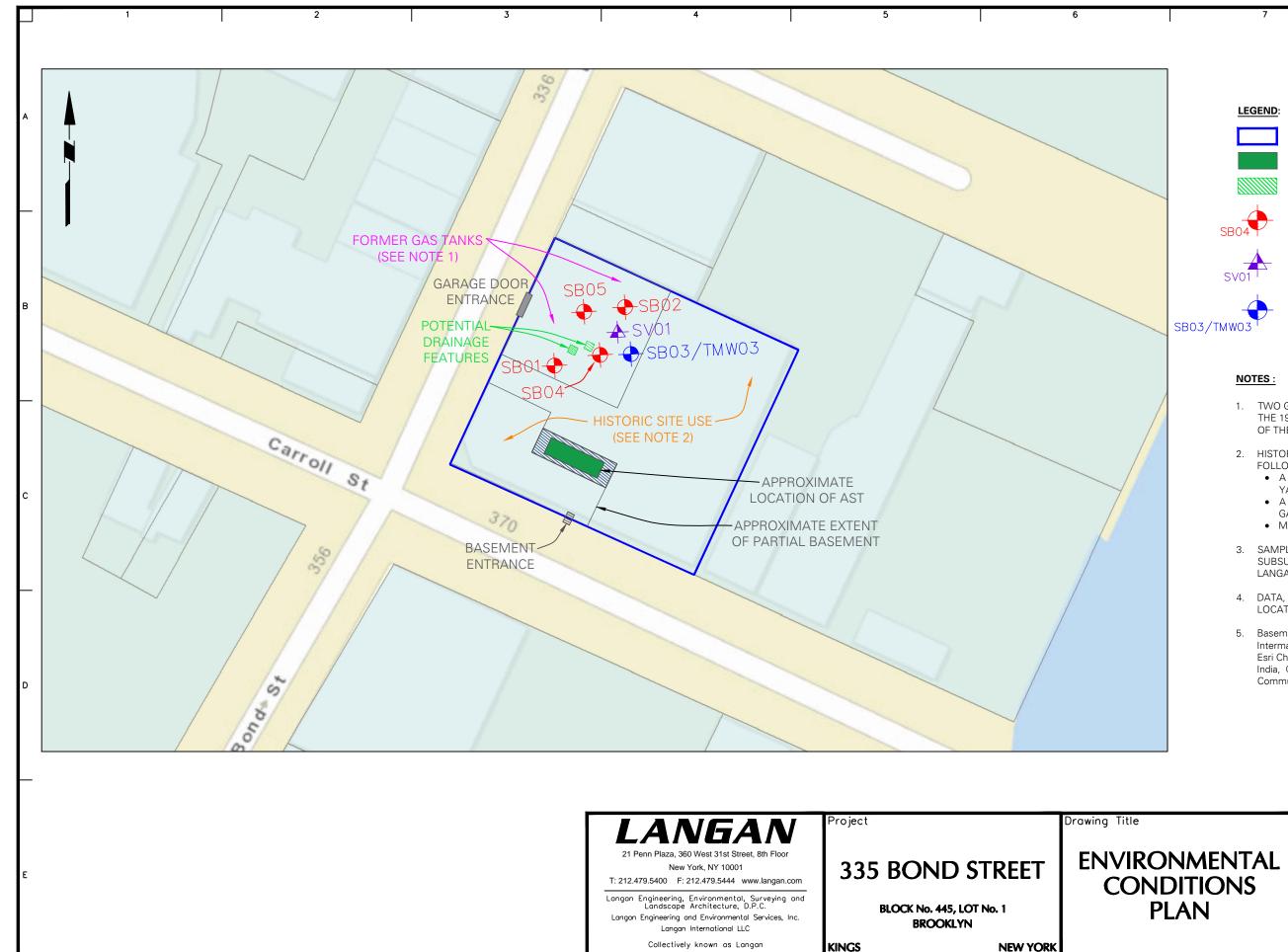
THREE-STORY RESIDENTIAL BUILDING **363 CARROLL STREET OWNER: 363 CARROLL STREET CORP OPERATOR: UNKNOWN**

SIX-STORY RESIDENTIAL BUILDING **344 CARROLL STREET OWNER & OPERATOR: MARY STAR OF THE** SEA SENIOR HOUSING DEVELOPMENT


TWO-STORY RESIDENTIAL BUILDING 362 CARROLL STREET OWNER & OPERATOR: RICHARD T. BEAMAN Street

TWO-STORY RESIDENTIAL BUILDING **364 CARROLL STREET OWNER & OPERATOR: IOSEPH A. GAGLIARDO**


le fa


100

Filename: \\langan.com\data\NY\data5\170362501\Cadd Data - 170362501\2D-DesignFiles\BCP App\Figure 3 - Adjacent Property and Surrounding Land Uses.dwg Date: 5/4/2015 Time: 16:41 User: mrogers Style Table: Langan.stb Layout: ANS

Filename: \\langan.com\data\NY\data5\170362501\Cadd Data - 170362501\2D-DesignFiles\BCP App\Figure 4 - Tax Map.dwg Date: 5/4/2015 Time: 11:52 User: mrogers Style Table: Langan.stb Layout: ANSIB-BL

7	
LEGEND:	
	SITE BOUNDARY
	ABOVEGROUND STORAGE TANK (AST)
	POTENTIAL DRAINAGE FEATURE
SB04	APPROXIMATE SOIL BORING LOCATION
sv01	APPROXIMATE SUB-SLAB VAPOR SAMPLE LOCATION
SB03/TMW03	APPROXIMATE TEMPORARY GROUNDWATER MONITORING WELL LOCATION
<u>NOTES :</u>	
THE 1	GASOLINE STORAGE TANKS WERE NOTED ON 938 CERTIFIED SANBORN MAP IN THE VICINITY IE CURRENT GARAGE.
FOLL(• 4 • 7 • 4	DRIC USE OF THE SITE INCLUDES THE DWING: A MASONRY MATERIALS, LATH AND LUMBER (ARD FROM 1886 TO 1922; A GARAGE WITH POSSIBLE AUTO SERVICING AND GASOLINE STORAGE FROM 1925 TO 1938; AND MANUFACTURING FROM 1981 TO 1996.
SUBS	PLES WERE COLLECTED AS PART OF A URFACE INVESTIGATION CONDUCTED BY AN IN MAY 2015.
	, PROPERTY BOUNDARIES, AND BUILDING TIONS ARE APPROXIMATE.
Interm Esri C India,	nap provided by ESRI, HERE, DELorme, USGS, nap, increment P Corp., NRCAN, Esri Japan, METI, hina (Hong Kong), Esri (Thailand), Tom Tom, Mapmy © OpenStreetmap contributors, and the GIS User nunity.
-	
ONMENTAL	Project No. <u>170362501</u> Date 05/04/2015

	5	
Sheet	5	of

NTS

MLR

Submission Date

Scale

Drawn By

ATTACHMENT C Section VI: Project Description

- Project Description
- Schedule

ATTACHMENT C SECTION VI: PROJECT DESCRIPTION

Purpose and Scope of Project

The site is currently occupied by a one-story office building and garage operated by NYC Two Way International, a private car and limousine service. The building includes a partial cellar, which houses an abandoned aboveground storage tank (AST) in a concrete vault. The purpose of the project is to develop an underutilized, contaminated parcel, while implementing remedial measures that are protective of human health and the environment.

The proposed re-development project is still in the early planning stages and is subject to change as potential zoning changes materialize. Currently, the contemplated project includes the construction of a 2-story commercial building. It is proposed that Floor 1 would include offices, parking, and car sales and the second floor would include office space. Development would include renovation of the existing 1-story building including installation of new foundation elements to accommodate the second level. The Remediation would be completed in accordance with an approved Remedial Action Work Plan (RAWP) and Construction Health and Safety Plan (CHASP). The RAWP will be prepared to address potential impacts to human health and the environment as appropriate for the proposed use.

According to the New York City Planning Commission (NYCPC) Zoning Map 16c, dated September 24, 2013, the Subject Property is located in an M2-1 manufacturing district. The M2 districts occupy the middle ground between light and heavy industrial areas; however, based on the requirements listed in the City of New York Department of City Planning Zoning Resolution, Article IV: Manufacturing District Regulations, dated October 19, 2013, certain types of retail and office spaces are permitted in M2 Districts.

Estimated Project Schedule

The remediation will be coordinated with the redevelopment of the project, as detailed in the estimated, preliminary project schedule attached. The schedule includes three months for implementation of remedial activities and 12 months for the balance of redevelopment activities.

Attachment C

Brownfield Cleanup Program Application 335 Bond Street Brooklyn, NY

				20)15				20	16					20)17		
Item	Action	MAY	NUN	AUG	SEP	NOV	FEB MAR	APR		JUL AUG	SEP OCT	NOV DEC	JAN FEB	MAR APR	MAY JUN	JUL AUG	sep oct	NOV DEC
	335 Bond Street																	
1	BCP Application Preparation and Submittal																	
2	BCP Application NYSDEC Review/Completeness Determination																	
3	BCP Application Public Comment Period																	
4	BCP Agreement																	
5	RIWP Preparation/Submittal																	
6	RIWP NYSDEC Review																	
7	RIWP Public Comment Period																	
8	RI Implementation/RIR Preparation and Submittal																	
9	RIR NYSDEC Review and Approval																	
10	RAWP Preparation and Submittal																	
11	RAWP NYSDEC Review and Approval																	
12	RAWP Public Comment Period																	
13	Development Design and Permitting																	
14	Implement RAWP Concurrent with Construction																	
15	SMP/FER Preparation																	
16	SMP/FER Review and Approval																	
17	Certificate of Completion																	
18	Balance of Construction																	

Notes:

a) RIWP = Remedial Investigation Work Plan

b) RIR = Remedial Investigation Report

c) RAWP = Remedial Action Work Plan

d) RI = Remedial Investigation

e) BCP = Brownfield Cleanup Program

f) NYSDEC = New York State Department of Environmental Conservation

ATTACHMENT D Section VII: Property's Environmental History

- Previous Environmental Reports:
 - Certified Sanborn Map Summary
 - Subsurface Investigation Letter Report, 335 Bond Street, Brooklyn, New York, Prepared by Langan, dated May 6, 2015

ATTACHMENT D SECTION VII. ENVIRONMENTAL HISTORY

<u>Item 1 Response</u>

Environmental reports and related documents prepared for the site and summarized below include the following (copies are provided in this attachment):

Certified Sanborn Map Summary

Certified Sanborn Maps dating back to 1886 are included with this attachment. The following table summarizes the relevant findings.

Certified Sanborn Map	Subject Property	Adjacent Properties
1886	A lath and lumber yard operated by Loomis	North: Loomis lumber and lath yard East: John Morton & Sons Lime & Brick Shed w/ multiple stables South: Rankin & Ross Stone Yard West: residential
1904	Materials (i.e., sand) storage for Newton & Co. with a stable noted in the northeast corner of the property	North: Lubricating Oils facility, residences, and the remainder of Newton & Co's property East/South/West: same as above
1915	Lath storage with two sheds identified on the property. Operated by John Morton's Sons & Co. Masons Materials	North: poultry market and residences East: storage and stables for John Morton's Sons & Co. Masons Materials South: same as above West: residences, junk yard & paper storage
1928	Operated by B. Goetz & Bro. – actual operations are not noted, but a Certificate of Occupancy (included with this attachment) from July 25, 1925 notes the property as operating as a public garage	North/East: noted as B. Goetz & Bro. property South/West: no operations noted
1938	The site footprint is occupied by a garage with two gasoline tanks and three hoses noted on the property.	North: poultry market East: storage and a vacant lot South: garage with three gas tanks noted West: residential and an electric bulb warehouse
1950	Operating as a crating for export. The building is noted as having steel beams and columns, masonry reinforcing columns in the walls, and concrete floors. The three hoses from the 1938 Sanborn are evident, but the gas tanks are no longer noted.	North: residences, iron works, and truck parking East: welding operations and warehouse South: Motor Frt. Sta. West: same as above
1969	The building is now noted as a commercial delivery service.	North: residences, truck parking and repair East: woodworking operations and warehouse South: same as above West: residences, storage warehouse
1981	The building is now noted as manufacturing.	North/East/South/West: same as above
2001	The building is now noted as a car service.	North/East/South/West: same as above

May 6, 2015 Subsurface Investigation Letter Report, 335 Bond Street, Brooklyn, New York, <u>Prepared by Langan</u>

The subsurface investigation was implemented on May 2, 2015 and included:

- A geophysical survey to locate potential underground storage tanks (USTs) and other subsurface structures;
- The advancement of five soil borings to depths of up to 9 feet below grade surface (bgs) and collection of five soil samples;
- Installation of one temporary groundwater monitoring well and collection of one groundwater sample; and,
- Installation of one temporary sub-slab soil vapor sampling point and collection of one soil vapor sample.

Based on the subsurface investigation, the following conclusions and recommendations were made:

- <u>Chlorinated Solvent Impacts</u> Based on field observations and analytical results, soil, groundwater, and soil vapor has been impacted by chlorinated solvents including tetrachloroethene (PCE).
- <u>Abandoned Aboveground Storage Tank (AST)</u> Langan observed an abandoned, approximately 1,000-gallon AST located within a concrete vault in the building basement. Upon observation, the AST was significantly corroded and approximately 3to 4-inches of standing water was noted at the base of the vault. The fill line associated with the AST was observed to be cut, and evidence of fill port removal operations were observed (i.e., a concrete sidewalk patch) on the adjacent sidewalk along Carroll Street.
- <u>Potential Drainage Features</u> One, approximately 14-inch by 14-inch, perforated, steel plate covering a potential drainage feature was located in the central portion of the garage. Debris including a concrete block, bricks, and soil were observed beneath the steel plate. The top four inches of the potential drainage feature were exposed and appeared to be constructed of the existing concrete slab and brick. A second potential drainage feature was observed approximately 2 feet to the southwest and was covered by an approximately 24-inch by 24-inch, solid, steel plate. The function of the potential drainage features is unknown.
- <u>Soil</u> Below the garage slab, the subsurface strata at the site consists of fill material characterized by loose, brown, fine to coarse sand with some brick and concrete fragments, and trace coal ash. The fill layer extended to depths ranging from approximately 4 to 8.5 feet bgs and was intersected by layers of degraded concrete and

Brownfield Cleanup Program Application 335 Bond Street Brooklyn, NY

brick at varying depths. Native sands and silty sands were observed, beneath the fill layer, in depth intervals ranging from approximately 4 to 9 feet bgs. A sweet, solvent-like odor was noted in SB03 at a depth interval of 5 to 6 feet bgs.

The following constituents were detected in soil at concentrations that exceed their respective Unrestricted Use and/or Restricted Use Residential Soil Cleanup Objectives (SCO).

Volatile Organic Compounds (VOC): The following VOC was detected above its Unrestricted Use SCO and Restricted Use Residential SCO:

• PCE – 8.6 milligrams per kilogram (mg/kg) in SB05_5-5.5

Semivolatile Organic Compounds (SVOC): The following SVOCs were detected above their Unrestricted Use and Restricted Use Residential SCOs:

- Benzo(a)anthracene 2.69 mg/kg in SB05_5-5.5
- Benzo(k)fluoranthene 1.28 mg/kg in SB05_5-5.5
- Chrysene 2.43 mg/kg in SB05_5-5.5

Metals: The following metals were detected above their Unrestricted Use SCOs:

- Arsenic 22.9 mg/kg in SB02_2.5-3
- o Copper 96.1 mg/kg in SB01_2.5-3 to 100 mg/kg in SB02_2.5-3
- o Lead 109 mg/kg in SB04_0.5-1 to 304 mg/kg in SB02_2.5-3
- o Nickel 55.4 mg/kg in SB04_0.5-1
- Mercury 0.19 mg/kg in SB05_5-5.5 to 4.67 mg/kg in SB03_5-5.5

Arsenic and mercury were also detected at concentrations above their Restricted Use Residential SCOs.

 <u>Groundwater</u> - Groundwater was encountered in all five soil borings at depths ranging from 6 to 8.5 feet bgs. The site is located approximately 180 feet west of the Gowanus Canal, which is tidally influenced. Depth to groundwater was measured using a Solinst oil/water interface probe in TMW01, and was observed at 6.87 feet below the top of casing.

The following constituents were detected in groundwater at concentrations that exceed their respective NYS DEC Technical and Operational Guidance Series, Ambient Water Quality Standards (TOGS AWQS).

Brownfield Cleanup Program Application 335 Bond Street Brooklyn, NY

VOCs: The following VOC was detected above its TOGS AWQS in temporary monitoring well TMW01:

o cis-1,2-Dichloroethene – 100 micrograms per liter (ug/L)

Metals: The following metals were detected above their respective TOGS AWQS in temporary monitoring well TMW01:

- o Aluminum 129 ug/l
- Iron 6,100 ug/l
- Manganese 1,040 ug/l
- o Selenium 13 ug/l
- o Sodium 109,000 ug/l
- <u>Soil Vapor</u> For reference, the soil vapor results are compared to the New York State Department of Health (NYSDOH) Air Guidance Values (AGV); however, this is not a direct comparison standard. Trichloroethene (TCE) was detected at a concentration of 120 micrograms per cubic meter (µg/m³) in SV01, which exceeded its AGV of 5 µg/m³. Tetrachloroethene (PCE) was detected at a concentration of 2,500 µg/m³ in SV01, which exceeded its AGV of 30 µg/m³. Several other VOCs were detected in soil vapor samples.

<u>Item 2 Response</u>

Table 1 (included in this attachment) shows contaminant concentrations detected above applicable regulatory standards for each media tested in 2015. Sampling data are summarized below:

Soil

The following contaminants were detected at concentrations exceeding NYSDEC Part 375 Unrestricted Use SCOs (contaminants detected at concentrations above the Restricted Use Residential SCOs are in bold):

- <u>VOCs</u>: **Tetrachloroethene**
- <u>SVOCs</u>: Benzo(a)anthracene, benzo(a)pyrene, and chrysene
- <u>Metals</u>: **Arsenic**, copper, lead, nickel, and **mercury**

Groundwater

Contaminants detected at concentrations above their respective TOGS AWQS are summarized as follows:

- <u>VOCs</u>: cis-1,2-Dichloroethene
- Metals: Aluminum, iron, manganese, selenium, and sodium

Soil Vapor

PCE and TCE were detected at concentrations significantly above their respective NYSDOH AGVs in the sub-slab vapor sample. Comparison of the sub-slab sample to the NYSDOH soil vapor intrusion guidance matrix found that mitigation was recommended regardless of indoor air sample results. Additionally, solvent-related VOCs were detected throughout the site in soil and groundwater samples.

<u>Item 3 Response</u>

Chlorinated solvent, SVOC, and metals contamination identified on site have not been fully investigated and delineated. Additionally, Sanborn Maps reveal former manufacturing and industrial uses, and gasoline storage tanks. Further investigation and delineation of areas of concern and associated contamination will be completed as part of a remedial investigation.

<u>Item 4 Response</u>

The following sources of contaminants have been identified:

- Current and historical use of the site by various industrial, manufacturing and commercial properties. A parking garage is currently located on the property and historic records indicate the presence of gasoline tanks in the vicinity in 1938.
- Current and historical use of surrounding properties for various industrial purposes;
- Aboveground storage tank present in the basement;
- Two drainage features present in the main level parking garage; and
- Historic fill material.

Suspect sources of contamination have not been fully investigated and potential impacts have not been delineated. It is anticipated that further investigation and delineation will be completed during a remedial investigation.

<u>Item 5 Response</u>

Past land uses associated with the site include the following:

- A masonry materials, lath and lumber yard from 1886 to 1922;
- A garage with possible auto servicing and gasoline storage from 1925 to 1938;
- Commercial delivery service from 1969 to 1980;
- Manufacturing from 1981 to 1996; and
- A commercial car/livery service from at least 2002 to the present.

<u>Item 6 Response</u>

The table below summarizes site ownership history as determined through a review of available records including a title report, New York City Department of Building records, tax maps, and Environmental Database Resource (EDR) reports including Sanborn Fire Insurance Maps. Additional records were not identified.

Deed Date	Grantor Address and Phone Number	Grantee Address and Phone Number	Grantee Relationship to Applicant	Lot No(s).
6/4/1984	Daric Realty Corporation 335 Bond Street, Brooklyn, New York 11231 Unknown Phone Number	Cosmos Forms LTD 87-35 [.] Street, Brooklyn, New York 11232 Unknown Phone Number	None	1
12/23/1986	Cosmos Forms LTD 335 Bond Street, Brooklyn, New York 11231 Unknown Phone Number	335 Realty Associates, Inc. 335 Bond Street, Brooklyn, New York 11231 Unknown Phone Number	None	1
12/18/1995	335 Realty Associates, Inc. 335 Bond Street, Brooklyn, New York 11231 Unknown Phone Number	E&M Realty Corp. 259 Columbus Street, Brooklyn, New York 11231 (718) 643-3900	Applicant	1

Previous Owners

Ownership records for the site were provided at <u>www.nyc.gov</u>. The New York City Department of Finance – Office of the City Register

Previous Operators

Name	Relationship to Property	Address and Phone Number	Relationship to Applicant	Former Address
Loomis Lumber & Lath Yard	Operator (1886)	Unknown*	None	345-372 Bond Street
Newton & Co.	Operator (1904)	Unknown*	None	335 Bond Street
John Morton Sons & Co. Masons Materials	Operator (1915, 1922)	Unknown*	None	345-335 Bond Street
B. Goetz & Bro.	Operator (1928)	Unknown*	None	345-335 Bond Street
Garage Operator Name Unknown	Operator (1938)	Unknown*	None	345-335 Bond Street
Crating for Export Operator Name Unknown	Operator (1950)	Unknown*	None	345-335 Bond Street
Commercial Delivery Service Operator Name Unknown	Operator (1969 to 1980)	Unknown*	None	345-335 Bond Street
Manufacturing Operator Name Unknown	Operator (1981 to 1996)	Unknown*	None	335 Bond Street

*Data gathered from Environmental Data Resources Sanborn Fire Insurance Maps; names and/or addresses not given.

				Soil Samples			Restricted Use Residential	
Sample Date	Sample ID	Compound	Compound Group	Result Concentr (mg/kg)	ation	Unrestricted Use SCO (mg/kg)	SCO (mg/kg)	Source
		Acetone		0.018		0.05	100	
		Tetrachloroethylene	VOCs	0.017		1.3	5.5	
		Benzo(a)anthracene	-	0.077		1	1	
		Benzo(a)pyrene		0.053	J	1	1	
		Benzo(b)fluoranthene		0.047	J	1	1	
		Benzo(k)fluoranthene	SVOCs	0.059		0.8	1	
		Chrysene		0.074		1	1	
		Fluoranthene		0.16		100	100	
		Phenanthrene	_	0.1		100	100	
	=	Pyrene	_	0.12		100	100	
		Aluminum		4,910		~	~	
	=	Antimony	_	1.86		~	~	
		Arsenic		8.38		13	16	
		Barium		139		350	350	
		Calcium	-	7,710		~	~	
	-	Chromium	-	11		~	36	
	SB01_2.5-3	Cobalt	_	7.46		~	~	
	0001_2.0 0	Copper		96.10		50	270	
		Iron		7,700		~	~	
		Lead	Metals	247		63	400	
	-	Magnesium	Ivietais	769		~	~	
	-		-	120			2,000	
	-	Manganese				1,600		
		Mercury	_	0.664		0.18	0.81	
	-	Nickel	_	16.6		30	140	
	_	Potassium	_	841		~	~	
	_	Selenium	_	3.26		3.9	36	
	_	Sodium		1,170		~	~	
	_	Vanadium		18.6		~	~	
		Zinc		126		109	2,200	
		Arsenic		0.022		13	16	
		Barium	Metals, TCLP	0.243		350	350	
		Lead	Wieldis, TCLP	0.042		63	400	
		Selenium		0.012		3.9	36	
		Acetone		0.012	J	0.05	100	
	-	Tetrachloroethylene	VOCs	0.2		1.3	5.5	
		Trichloroethylene	-	0.0087		0.47	10	Langan May 20
5/2/2015		Acenapthene		0.11	D	20	100	Subsurface
		Anthracene		0.23	D	100	100	Investigation
	-	Benzo(a)anthracene		0.93	D	1	1	
	-	Benzo(a)pyrene	_	0.55	D	1	1	
	-	Benzo(b)fluoranthene	-	0.55	D	1	1	
	-		-	0.32	D	100	100	
	-	Benzo(g,h,i)perylene	-					
		Benzo(k)fluoranthene	SVOCs	0.56	D	0.8	1 ~	
		Carbazole	SVOCS	0.081	JD			
	_	Chrysene	_	0.91	D	1	1	
		Dibenzo(a,h)anthracene	_	0.079	JD	0.33	0.33	
	_	Fluoranthene	_	1.71	D	100	100	
		Fluorene	_	0.074	JD	30	100	
		Indeno(1,2,3-c,d)pyrene		0.16	D	0.5	0.5	
		Phenanthrene	_	1.02	D	100	100	
		Pyrene		1.60	D	100	100	
		Aluminum		4,210		~	~	
	SB02_2.5-3	Antimony		1.31		~	~	
	5502_2.5-5	Arsenic		22.9		13	16	
		Barium		141		350	350	
		Calcium		44,900		~	~	
		Chromium		7.22		~	36	
		Cobalt	1	3.31		~	~	
		Copper		100		50	270	1
	F	Iron		11,500		~	~	
		Lead	Metals	304		63	400	-
	F	Magnesium	-	4,010		~	~	
		Manganese		170		1,600	2,000	_
	F	Mercury		0.914		0.18	0.81	
	-		-					
		Nickel	-	12.3		30	140 ~	
		Potassium	-	980				
		Sodium	-	5.88		~	~	
		Vanadium	_	14		~	~	
		Zinc		99.1		109	2,200	
		Arsenic		0.04		13	16	
		Barium	Motol- TOLO	0.22		350	350	
		Lead	Metals, TCLP	0.02		63	400	
	-	Selenium	1	0.02		3.9	36	

				Soil Samples			Restricted Use Residential	
Sample Date	Sample ID	Compound	Compound Group	Result Concentrat (mg/kg)	ion	Unrestricted Use SCO (mg/kg)	SCO	Source
		2 Butanana		0.0043		0.12	(mg/kg) 100	
	-	2-Butanone Acetone	VOCs	0.043	J	0.12	100	
	-	Tetrachloroethylene	VOCS	0.051		1.3	5.5	
		Benzo(a)anthracene	-	0.094		1	1	
	-	Benzo(a)pyrene	-	0.063		1	1	
	-	Benzo(b)fluoranthene	-	0.056	J	1	1	
	-	Benzo(k)fluoranthene	SVOCs	0.065		0.8	1	
		Chrysene		0.093		1	1	
	_	Fluoranthene		0.22		100	100	
		Phenanthrene		0.13		100	100	
	_	Pyrene		0.17		100	100	
		Aluminum	_	9,170		~	~	
		Arsenic		7.95		13	16	
		Barium		81		350	350	
	6000 5 5 5 5	Calcium		130,000		~	~	
	SB03_5-5.5	Chromium		8.86		2	36	
	-	Cobalt	-	3.97		~	~	
	-	Copper	-	12.6		50	270	
	-	Iron	1	10,000		~	~	
	F	Lead	Metals	52.4		63	400	
	F	Magnesium		10,500		~	~	
	F	Magnesium	1	237		1,600	2,000	
			-			0.18		
	-	Mercury	-	4.67			0.81	
	-	Nickel	-	9.45		30	140 ~	
	-	Potassium	-	1,380				
	-	Sodium	_	533		~	~	
		Vanadium	_	21.2		~	~	
		Zinc		28.1		109	2,200	
	_	Barium	Metals, TCLP	0.14		350	350	
		Selenium		0.01		3.9	36	
	-	1,1,1-Trichloroethane		0.0057		0.68	~	
		Acetone	- VOCs	0.013		0.05	100	
		Tetrachloroethylene		0.23	Е	1.3	5.5	
		Trichloroethylene		0.018		0.47	10	
- /2 /2015		Acenapthene	1	0.087	JD	20	100	Langan May 20
5/2/2015		Anthracene		0.23	D	100	100	Subsurface Investigation
	-	Benzo(a)anthracene		0.86	D	1	1	
		Benzo(a)pyrene	-	0.37	D	1	1	
	-	Benzo(b)fluoranthene	1	0.34	D	1	1	-
	-	Benzo(g,h,i)perylene	1	0.12	D	100	100	
	-	Benzo(k)fluoranthene	-	0.35	D	0.8	1	
	-	Carbazole	SVOCs	0.065	JD	~	~	
	-		30003	0.84	D	1	1	-
	-	Chrysene	-					
	-	Dibenzo(a,h)anthracene	-	0.062	JD	0.33	0.33	
	ŀ	Fluoranthene	4	1.49	D	100	100	
	-	Fluorene	4	0.065	JD	30	100	
	ļ	Indeno(1,2,3-c,d)pyrene	4	0.13	D	0.5	0.5	
		Phenanthrene	4	0.86	D	100	100	
	ļ	Pyrene		1.35	D	100	100	
	SB04_0.5-1	Aluminum	4	5,350		~	~	
		Arsenic	4	4.83		13	16	
		Barium		62.7		350	350	
		Calcium		16,400		~	~	
		Chromium	1	12.5		~	36	
		Cobalt		7.79		~	~	
		Copper	-	31		50	270	
		Iron		12,300		2	~	
		Lead	1	109		63	400	
	F	Magnesium	Metals	5,830		~	~	
	F	Manganese	1	259		1,600	2,000	
		Mercury	-	0.31		0.18	0.81	
	F	Nickel	-	55.40		30	140	
	ŀ		1	1,100		30	~	
		Potassium	-					
	F	Selenium	4	1.48		3.9	36	
	ŀ	Sodium	4	597			~	
		Vanadium	4	16.9		~	~	
		Zinc		81.4		109	2,200	
		Barium	1	0.49		350	350	
		Lead	Metals, TCLP	0.02		63	400	
		Selenium	1	0.02		3.9	36	

	1			Soil Samples			Restricted Use Residential	
Sample Date	Sample ID	Compound	Compound Group	Result Concen (mg/kg		Unrestricted Use SCO (mg/kg)	SCO (mg/kg)	Source
		Tetrachloroethylene		8.6	D	1.3	5.5	
		Trichloroethylene	VOCs	0.43	JD	0.47	10	
		1,1'-Biphenyl	-	0.17	D	~	~	
		2-Methylnaphthalene		0.53	D	~	~	
		Acenapthene		1.39	D	20	100	
	-	Acenaphthylene	_	0.075	JD	100	100	
		Anthracene	_	1.43	D	100	100	
	_	Benzo(a)anthracene	_	2.69	D	1	1	
	-	Benzo(a)pyrene	-	0.86	D	1	1	
	-	Benzo(b)fluoranthene		0.87	D	1	1	
		Benzo(g,h,i)perylene		0.48	D	0.8	100	
	-	Benzo(k)fluoranthene Carbazole	SVOCs	0.93	D	~	~	
		Chrysene		2.43	D	1	1	
	-	Dibenzo(a,h)anthracene	-	0.18	D	0.33	0.33	
	-	Dibenzofuran	-	1.03	D	7	59	
	-	Fluoranthene	-	10.2	D	100	100	
	-	Fluorene	-	1.25	D	30	100	
	-	Indeno(1,2,3-c,d)pyrene		0.43	D	0.5	0.5	
	-	Naphthalene		1.04	D	12	100	Langan May 2015
5/2/2015	SB05_5-5.5	Phenanthrene	1	10.9	D	100	100	Subsurface
	l t	Pyrene	1	7.57	D	100	100	Investigation
		Aluminum		4,200		~	~	
	-	Arsenic		3.83		13	16	
		Barium		36		350	350	
		Calcium		56,800		~	~	
		Chromium		8		~	36	
	-	Cobalt	_	5.33		~	~	
		Copper	_	15		50	270	
	-	Iron	_	9,510		~	~	
		Lead	Metals	28.6		63	400	
		Magnesium	-	2,960		~	~	
		Manganese		186		1,600	2,000	
		Mercury	-	0.19		0.18	0.81	
		Nickel	-	17 1,410		30	~	
		Potassium Sodium	-	303		~	~	
	-	Vanadium	-	15.7		~	~	
	-							
	_	Zinc		38.4		109	2.200	
	-	Zinc Barium		38.4 0.22		109 350	2,200	
	-	Zinc Barium Selenium	– Metals, TCLP	38.4 0.22 0.01		109 350 3.9	2,200 350 36	
		Barium		0.22	les	350	350	
Sample Date	Sample ID	Barium		0.22		350 3.9 NYSDEC TOGS A	350	Source
Sample Date	Sample ID	Barium Selenium	Gr Compound	0.22 0.01 oundwater Samp Result Concen		350 3.9 NYSDEC TOGS A (H	350 36 WQS for Class GA	Source
Sample Date	Sample ID	Barium Selenium Compound	Gr Compound	0.22 0.01 oundwater Samp Result Concen (µg/L)		350 3.9 NYSDEC TOGS A (P	350 36 WQS for Class GA Ig/L)	Source
Sample Date	Sample ID	Barium Selenium Compound 1,1-Dichloroethane	Gr Compound	0.22 0.01 oundwater Samp Result Concen (µg/L) 0.93	tration	350 3.9 NYSDEC TOGS A (µ	350 36 WQS for Class GA (g/L) 5 0.7 ~	Source
Sample Date	Sample ID	Barium Selenium Compound 1,1-Dichloroethane 1,1-Dichloroethane	Gr Compound	0.22 0.01 oundwater Samp Result Concen (με/ι) 0.93 0.23	tration J	350 3.9 NYSDEC TOGS A (µ	350 36 WQS for Class GA (g/L) 5 0.7	Source
Sample Date	Sample ID	Barium Selenium Compound 1,1-Dichloroethane 1,2-3-Trichlorobenzene 1,2,2-Trichlorobenzene 1,2,4-Trichlorobenzene Benzene	Gr Compound Group	0.22 0.01 oundwater Samp Result Concen (με/ι) 0.93 0.23 0.28 0.24 0.61	J JB JB	350 3.9 NYSDEC TOGS & (µ	350 36 WQS for Class GA g/L) 5 5. 0.7 ~ 1	Source
Sample Date	Sample ID	Barium Selenium Compound 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene Benzene cis-1,2-Dichloroethene	Gr Compound	0.22 0.01 Result Concern (με/ι) 0.93 0.23 0.28 0.24 0.61 100	J JB JB D	350 3.9 NYSDEC TOGS A (µ	350 36 WQS for Class GA g(l) 5 5. 7 ~ 1 5	Source
Sample Date	Sample ID	Barium Selenium Compound 1,1-Dichloroethane 1,2-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene Benzene cis-1,2-Dichloroethene Cyclohexane	Gr Compound Group	0.22 0.01 000000000000000000000000000000	J JB JB JB JB	350 3.9 NYSDEC TOGS A (µ	350 36 WQS for Class GA g/t) 5 5 0.7 ~ 1 5 5 ~	Source
Sample Date	Sample ID	Barium Selenium Compound 1,1-Dichloroethane 1,2-J-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene Benzene cis-1,2-Dichloroethene Cyclohexane Tetrachloroethylene	Gr Compound Group	0.22 0.01 oundwater Samp Result Concen (µg/L) 0.93 0.23 0.28 0.24 0.61 100 0.29 0.34	Tration J JB JB JB J J J J J J	350 3.9 NYSDEC TOGS A (µ	350 36 WQS for Class GA g/L) 5 5. .7 ~ 1 5 5 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7	Source
Sample Date	Sample ID	Barium Selenium Compound 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene Benzene cis-1,2-Dichloroethene Cyclohexane Tetrachloroethylene trans-1,2-Dichloroethene	Gr Compound Group	0.22 0.01 oundwater Samp Result Concent (με/ι) 0.93 0.23 0.23 0.24 0.24 0.61 100 0.29 0.34 0.37	J JB JB JB J J J J J J J J	350 3.9 NYSDEC TOGS A (µ	350 36 WQS for Class GA (g/L) 5 	Source
Sample Date	Sample ID	Barium Selenium Compound 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene Benzene Cis-1,2-Dichloroethene Cyclohexane Tetrachloroethylene trans-1,2-Dichloroethene Trichloroethylene	Gr Compound Group	0.22 0.01 oundwater Samp Result Concen (με/ι) 0.93 0.23 0.23 0.24 0.24 0.61 100 0.29 0.34 0.37 0.22	Tration J JB JB JB J J J J J J	350 3.9 NYSDEC TOGS & (µ	350 36 WQS for Class GA (g/L) 5 5 0.7 ~ 7 1 5 5 	Source
Sample Date	Sample ID	Barium Selenium Compound 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene Benzene Cis-1,2-Dichloroethene Tetrachloroethylene trans-1,2-Dichloroethene Trichloroethylene Acenaphthylene	Gr Compound Group	0.22 0.01 oundwater Samp Result Concer (με/ι) 0.23 0.23 0.23 0.24 0.61 100 0.29 0.34 0.37 0.22 0.21	J JB JB JB J J J J J J J J J J J	350 3.9 NYSDEC TOGS & (µ	350 36 WQS for Class GA g/L) 5 5 0.7 ~ 1 5 5 0.7 5 5 20	Source
Sample Date	Sample ID	Barium Selenium Compound 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene Benzene Cis-1,2-Dichloroethene Tetrachloroethylene trans-1,2-Dichloroethene Trichloroethylene Acenaphthylene Bis(2-ethylhexyl)phthalate	Gr Compound Group	0.22 0.01 oundwater Samp Result Concer (με/ι) 0.93 0.23 0.28 0.24 0.61 100 0.29 0.34 0.37 0.37 0.22 0.21 1.13	J JB JB JB J J J J J J J J	350 3.9 NYSDEC TOGS & (µ	350 36 WQS for Class GA gr(1) 5 5 0.7 ~ 1 5 5 0.7 5 5 20 5	Source
Sample Date	Sample ID	Barium Selenium Compound 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene Benzene Cis-1,2-Dichloroethene Cyclohexane Tetrachloroethylene trans-1,2-Dichloroethylene Trichloroethylene Acenaphthylene Bis(2-ethylhexyl)phthalate Fluoranthene	Gr Compound Group VOCs	0.22 0.01 000000000000000000000000000000	J JB JB JB J J J J J J J J J J J	350 3.9 NYSDEC TOGS A (µ	350 36 WQS for Class GA g/L) 5 5 0.7 ~ 1 5 5 0.7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
		Barium Selenium Compound 1,1-Dichloroethane 1,2-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene Benzene Cis-1,2-Dichloroethene Cyclohexane Tetrachloroethylene trans-1,2-Dichloroethene Trichloroethylene Bis(2-ethylhexyl)phthalate Fluoranthene Fluorene	Gr Compound Group	0.22 0.01 oundwater Samp Result Concern (µg/i) 0.93 0.23 0.23 0.24 0.61 100 0.29 0.34 0.37 0.22 0.34 0.37 0.22 0.21 1.13 0.1 0.28	J JB JB JB J J J J J J J J J J J	350 3.9 NYSDEC TOGS A (µ	350 36 WQS for Class GA g/L) 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5 5 7 7 7 5 5 20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Langan May 2015
Sample Date	Sample ID	Barium Selenium Compound 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene Benzene Cis-1,2-Dichloroethene Cyclohexane Tetrachloroethylene trans-1,2-Dichloroethene Trichloroethylene Acenaphthylene Bis(2-ethylhexyl)phtalate Fluoranthene Fluorane Naphthalene	Gr Compound Group VOCs	0.22 0.01 oundwater Samp Result Concern (με/ι) 0.93 0.23 0.23 0.24 0.24 0.61 100 0.29 0.34 0.37 0.22 0.34 0.37 0.22 0.21 1.13 0.1 0.28 0.16	J JB JB JB J J J J J J J J J J J	350 3.9 NYSDEC TOGS A (µ	350 36 WQS for Class GA (g/L) 5 5 7 7 7 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Langan May 2015 Subsurface
		Barium Selenium Compound 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene Cyclohexane Cyclohexane Tetrachloroethylene trans-1,2-Dichloroethene Trichloroethylene Bis(2-ethylhexyl)phthalate Fluoranthene Fluorante Naphthalene Phenanthrene	Gr Compound Group VOCs	0.22 0.01 oundwater Samp Result Concer (με/ι) 0.93 0.23 0.23 0.24 0.61 100 0.29 0.34 0.37 0.22 0.34 0.37 0.22 0.21 1.13 0.1 0.28 0.16 0.060	J JB JB JB J J J J J J J J J J J	350 3.9 NYSDEC TOGS & (µ	350 36 WQS for Class GA (g/L) 5 5 0.7 ~ 7 1 5 5 5 5 5 5 5 5 5 5 5 5 5	Langan May 2015
		Barium Selenium Compound 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene Benzene Cis-1,2-Dichloroethene Tetrachloroethylene trans-1,2-Dichloroethene Trichloroethylene Bis(2-ethylhexyl)phthalate Fluoranthene Naphthalene Naphthalene Phenanthrene Pyrene	Gr Compound Group VOCs	0.22 0.01 0undwater Samp Result Concer (με/ι) 0.23 0.23 0.23 0.24 0.61 100 0.29 0.34 0.34 0.37 0.22 0.21 1.13 0.1 0.28 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21	J JB JB JB J J J J J J J J J J J	350 3.9 NYSDEC TOGS & (µ	350 36 WQS for Class GA gr/l) 5 5 0.7 ~ 1 5 5 7 7 7 1 5 5 5 5 5 5 5 5 5 5 5 5 5	Langan May 2015 Subsurface
		Barium Selenium Compound 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene Cyclohexane Cyclohexane Tetrachloroethylene trans-1,2-Dichloroethene Trichloroethylene Bis(2-ethylhexyl)phthalate Fluoranthene Fluorantene Naphthalene Phenanthrene	Gr Compound Group VOCs	0.22 0.01 oundwater Samp Result Concer (με/ι) 0.93 0.23 0.23 0.24 0.61 100 0.29 0.34 0.37 0.22 0.34 0.37 0.22 0.21 1.13 0.1 0.28 0.16 0.060	J JB JB JB J J J J J J J J J J J	350 3.9 NYSDEC TOGS # (µ	350 36 WQS for Class GA (g/L) 5 5 0.7 ~ 7 1 5 7 7 1 5 5 5 5 5 5 5 5 5 5 5 5 5	Langan May 2015 Subsurface
		Barium Selenium Compound 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene Benzene Cis-1,2-Dichloroethene Tetrachloroethylene trans-1,2-Dichloroethene Trichloroethylene Bis(2-ethylhexyl)phthalate Fluoranthene Fluoranthene Fluoranthene Naphthalene Phenanthrene Pyrene Aluminum	Gr Compound Group VOCs	0.22 0.01 0000dwater Samp Result Concer (με/ι) 0.23 0.23 0.28 0.24 0.61 100 0.29 0.34 0.61 100 0.29 0.34 0.21 0.37 0.22 0.21 1.13 0.1 0.28 0.21 0.21 0.21 0.21 0.21 0.37 0.22 0.21 0.37 0.22 0.21 0.37 0.22 0.34 0.37 0.22 0.34 0.37 0.22 0.34 0.37 0.23 0.37 0.29 0.34 0.37 0.29 0.34 0.37 0.29 0.34 0.37 0.22 0.34 0.37 0.22 0.34 0.37 0.22 0.34 0.37 0.22 0.34 0.37 0.22 0.34 0.37 0.22 0.34 0.37 0.22 0.34 0.37 0.22 0.34 0.37 0.22 0.34 0.37 0.22 0.31 0.22 0.34 0.22 0.31 0.22 0.21 0.31 0.22 0.21 0.37 0.22 0.21 0.21 0.37 0.22 0.21 0.37 0.22 0.21 0.31 0.28 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21	J JB JB JB J J J J J J J J J J J	350 3.9 NYSDEC TOGS A (µ	350 36 WQS for Class GA gr/L) 5 5 0.7 ~ 1 5 7 0.7 5 5 20 5 5 20 5 5 20 5 5 20 5 5 20 5 5 20 5 5 20 5 5 20 5 5 20 5 5 20 5 5 20 5 5 5 5 5 20 5 5 5 5 5 5 5 5 5 5 5 5 5	Langan May 2015 Subsurface
		Barium Selenium Compound 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene Benzene Cis-1,2-Dichloroethene Tetrachloroethylene trans-1,2-Dichloroethylene trans-1,2-Dichloroethylene Bis(2-ethylhexyl)phthalate Fluoranthene Fluoranthene Phenanthrene Phenanthrene Pyrene Aluminum Barium	Gr Compound Group VOCs	0.22 0.01 oundwater Samp Result Concern (με/ι) 0.93 0.23 0.23 0.23 0.23 0.24 0.61 100 0.29 0.34 0.61 100 0.29 0.34 0.37 0.22 0.21 1.13 0.1 0.28 0.16 0.060 0.05 129 133	J JB JB JB J J J J J J J J J J J	350 3.9 NYSDEC TOGS A (µ	350 36 WQS for Class GA (g/L) 5 5 0.7 ~ ~ 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Langan May 2015 Subsurface
		Barium Selenium Compound 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene Benzene cis-1,2-Dichloroethene Cyclohexane Tetrachloroethylene trans-1,2-Dichloroethene Trichloroethylene Acenaphthylene Bis(2-ethylhexyl)phthalate Fluorene Naphthalene Phenanthrene Pyrene Aluminum Barium Calcium	Gr Compound Group VOCs	0.22 0.01 oundwater Samp Result Concent (με/ι) 0.93 0.23 0.23 0.24 0.24 0.24 0.24 0.29 0.34 0.29 0.34 0.29 0.34 0.29 0.34 0.29 0.34 0.22 0.21 1.13 0.1 0.28 0.16 0.28 0.16 0.29 0.34 1.13 0.1 0.28 0.15 129 133 127,000	J JB JB JB J J J J J J J J J J J	350 3.9 NYSDEC TOGS A (µ	350 36 WQS for Class GA (g/L) 5 5 7 7 7 7 1 5 7 7 7 7 7 7 7 7 7 7 7 7 7	Langan May 2015 Subsurface
		Barium Selenium Compound 1,1-Dichloroethane 1,2-3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene Benzene Cyclohexane Tetrachloroethylene trans-1,2-Dichloroethene Trichloroethylene Acenaphthylene Bis(2-ethylhexyl)phthalate Fluorene Naphthalene Phenanthrene Pyrene Aluminum Barium Calcium Copper	Gr Compound Group VOCs SVOCs	0.22 0.01 oundwater Samp Result Concent (με/ι) 0.93 0.23 0.23 0.23 0.24 0.61 100 0.29 0.34 0.37 0.22 0.31 0.37 0.22 0.34 0.37 0.22 0.31 0.31 0.37 0.22 0.34 0.37 0.22 0.31 0.31 0.31 0.31 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.31 0.32 0.31 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.35 0.35 0.35 0.35 0.36 0.46 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.37 0.32 0.33 127,000 4	J JB JB JB J J J J J J J J J J J	350 3.9 NYSDEC TOGS & (µ	350 36 WQS for Class GA (g/L) 5 5 7 7 1 5 5 5 5 5 5 5 5 5 5 5 5 5	Langan May 2015 Subsurface
		Barium Selenium Compound 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene Cyclohexane Cyclohexane Cyclohexane Tetrachloroethylene trans-1,2-Dichloroethene Trichloroethylene Bis(2-ethylhexyl)phthalate Fluoranthene Fluoranthene Fluoranthene Phenanthrene Pyrene Aluminum Barium Calcium Copper Iron	Gr Compound Group VOCs	0.22 0.01 oundwater Samp Result Concer (με/ι) 0.93 0.23 0.23 0.24 0.61 100 0.29 0.34 0.34 0.37 0.22 0.21 1.13 0.1 0.28 0.16 0.060 0.15 129 133 127,000 4 6,100	J JB JB JB J J J J J J J J J J J	350 3.9 NYSDEC TOGS & (µ	350 36 WQS for Class GA (g/L) 5 5 0.7 ~ 7 1 5 5 5 5 5 5 5 5 5 5 5 5 5	Langan May 2015 Subsurface
		Barium Selenium Compound 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene Benzene Cis-1,2-Dichloroethene Tretrachloroethylene trans-1,2-Dichloroethene Trichloroethylene Bis(2-ethylhexyl)phthalate Fluoranthene Fluoranthene Fluoranthene Naphthalene Phenanthrene Pyrene Aluminum Barium Calcium Copper Iron Lead	Gr Compound Group VOCs SVOCs	0.22 0.01 0.01 Result Concer (με/ι) 0.93 0.23 0.23 0.23 0.24 0.61 100 0.29 0.34 0.34 0.37 0.22 0.21 1.13 0.1 0.28 0.34 0.37 0.22 0.21 1.13 0.1 1.3 0.1 0.28 0.16 0.060 0.15 129 133 127,000 4 6,100 4	J JB JB JB J J J J J J J J J J J	350 3.9 NYSDEC TOGS & (µ	350 36 WQS for Class GA gr/L) 5 5 0.7 ~ 1 5 - 20 5 5 5 5 5 5 5 5 5 5 5 5 5	Langan May 2015 Subsurface
		Barium Selenium Compound 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene Benzene Cyclohexane Tetrachloroethylene trans-1,2-Dichloroethene Trichloroethylene Bis(2-ethylhexyl)phthalate Fluoranthene Fluorene Naphthalene Phenanthrene Phenanthrene Phenanthrene Barium Calcium Calcium Copper Iron Lead Magnesium	Gr Compound Group VOCs SVOCs	0.22 0.01 oundwater Samp Result Concer (με/ι) 0.93 0.23 0.23 0.23 0.24 0.61 100 0.29 0.34 0.61 100 0.29 0.34 0.37 0.22 0.21 1.13 0.1 0.28 0.21 1.13 0.1 0.28 0.21 1.13 0.1 0.28 0.21 1.13 0.1 0.28 0.21 1.13 0.1 0.28 0.24 0.61 1.00 0.37 0.22 0.34 0.37 0.22 0.34 0.37 0.22 0.34 0.51 1.13 0.1 0.28 0.24 0.51 1.13 0.16 0.66 0.55 1.29 1.33 1.27,000 4 4 6,100 4 4 26,400 4 26,400 4 26,400 1.00 0.15 1.00 0.15 1.00 0.15 1.00 0.15 1.00 0.15 1.00 0.15 1.00 0.15 1.00 0.15 1.00 0.15 1.00 0.15 1.00 0.15 1.00 0.44 0.16 0.060 0.15 1.00 0.44 0.16 0.060 0.15 1.00 0.44 0.16 0.060 0.15 1.00 0.44 0.16 0.060 0.15 1.03 1.03 1.00 0.15 1.03 1.00 0.15 1.00 0.44 0.16 0.060 0.15 1.00 0.44 1.00 0.15 1.00 0.44 1.00 0.15 1.00 0.44 1.00 0.15 1.00 0.44 1.00 0.15 1.00 0.44 1.00 0.44 1.00 0.15 1.00 0.44 1.00 0.44 1.00 0.44 1.00 0.44 1.00 0.44 1.00 0.44 1.00 1.00 1.00 1.00 1.00 1.5 1.00 1	J JB JB JB J J J J J J J J J J J	350 3.9 NYSDEC TOGS A (µ	350 36 WQS for Class GA gr/L) 5 5 0.7 ~ 1 5 7 0.7 5 5 20 5 5 20 5 5 5 5 5 5 5 5 5 5 5 5 5	Langan May 2015 Subsurface
		Barium Selenium Compound 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene Cyclohexane Cyclohexane Tetrachloroethylene trans-1,2-Dichloroethylene trans-1,2-Dichloroethylene Trichloroethylene Bis(2-ethylhexyl)phthalate Fluorenthene Fluorene Naphthalene Phenanthrene Phenanthrene Phenanthrene Aluminum Barium Calcium Copper Iron Lead Magnesium	Gr Compound Group VOCs SVOCs	0.22 0.01 oundwater Samp Result Concent (με/ι) 0.93 0.23 0.23 0.24 0.24 0.61 100 0.29 0.34 0.29 0.34 0.37 0.22 0.21 1.13 0.1 0.28 0.16 0.060 0.15 129 133 127,000 4 6,100 4 26,400 1,040	J JB JB JB J J J J J J J J J J J	350 3.9 NYSDEC TOGS A (µ	350 36 WQS for Class GA (g/L) 5 5 7 7 7 1 5 7 7 7 7 7 7 7 7 7 7 7 7 7	Langan May 2015 Subsurface
		Barium Selenium Compound 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene Benzene Cis-1,2-Dichloroethene Tritachloroethylene trans-1,2-Dichloroethene Tritachloroethylene Acenaphthylene Bis(2-ethylhexyl)phthalate Fluorene Naphthalene Phenanthrene Pyrene Aluminum Barium Calcium Copper Iron Lead Magnesium Manganese Potassium	Gr Compound Group VOCs SVOCs	0.22 0.01 oundwater Samp Result Concent (με/ι) 0.93 0.23 0.23 0.23 0.24 0.61 100 0.29 0.34 0.37 0.22 0.21 1.13 0.1 0.28 0.16 0.060 0.15 129 133 127,000 4 6,100 4 26,400 1,040 21,400	J JB JB JB J J J J J J J J J J J	350 3.9 NYSDEC TOGS & (µ	350 36 WQS for Class GA (g/L) 5 5 7 7 7 1 5 5 7 7 5 5 7 7 5 5 7 7 5 5 7 7 5 5 7 7 5 5 7 7 5 5 7 7 7 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7	Langan May 2015 Subsurface

	Soil Vapor Samples										
Sample Date	Sample ID	Compound	Compound Group	Result Concentration (µg/m³)	NYSDOH AGVs (µg/m3)	Source					
		1,1,1-Trichloroethane		180	~	Langan May 2015 Subsurface Investigation					
	SV-02_042815	1,1-Dichloroethane	VOCs	14	~						
		Acetone		130	~						
		Benzene		19	~						
5/2/2015		Chloroform		30	~						
5/2/2015		Isopropanol		800	~						
		n-Hexane		17	~						
		Tetrachloroethylene		2,500	30						
		Toluene		38	~						
		Trichloroethylene		120	5						

Notes: 1. Soil sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the official compilation of New York Codes, Rules, and Regulations (6 NYCRR) Part 375 Unrestricted Use Soil Cleanup Objectives (SCO) and Restricted Use Residential SCOs.

Soil sample results are presented in milligrams per kilogram (mg/kg).
 Soil sample analytical results above the Unrestricted Use SCO are highlighted orange.

Soii sample analytical results above the Unrestricted Use SCO are highlighted orange.
 Soii sample analytical results above the Restricted Use Residential SCO are highlighted orange and bold.
 Groundwater sample analytical results are compared to the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards (AWQS) and Guidance Values for Class GA - Drinking Water.
 Groundwater results are presented in micrograms per liter (µg/L).
 Soii vapor results are presented in micrograms per cubic meter (µg/m⁸).

Qualifiers: U = Analyte included in the analysis, but not detected J = Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration

 $D^{\#}$ = Results for a diluted sample, # indicates the dilution factor

VOCs = Volatile organic compounds. SVOCs = Semivolatile organic compounds.

ATTACHMENT E Section VIII: Contact List Information

• Document Repository Acknowledgement Letter

ATTACHMENT E SECTION VIII: CONTACT LIST

Item 1 Response

Chief Executive Officer

Mayor Bill de Blasio City Hall 260 Broadway Avenue New York, New York 10007

New York City Planning Commission

Carl Weisbrod, Chair Department of City Planning 22 Reade Street New York, NY 10007-1216

Borough of Brooklyn, Borough President

Eric L. Adams 209 Joralemon Street Brooklyn, NY 11201

Borough of Brooklyn, Department of Planning and Development

Winston Von Engel 16 Court Street, 7th Floor Brooklyn, NY 11241

<u>Item 2 Response</u>

Residents, owners, and occupants of the site and properties adjacent to the site:

There are no residents at the proposed brownfield site, which has been purchased by E&M Realty Corp. (E&M Realty Corp. as its sole member, the BCP Program Applicant). The site is currently occupied by NYC Two Way International – Corporate Transportation Group, a limousine/ livery service company and its associated dispatch and administrative offices.

The contact information for the current owner of the site is:

Eduard Slinin E&M Realty Corp. 335 Bond Street Brooklyn, NY 11231 (718) 643-3900

The contact information for the current operator of the site is:

Vadim Zilberman Chief Financial Officer Corporate Transportation Group 335 Bond Street Brooklyn, NY 11231 (718) 228-1462

Current owners and operators for adjacent properties are provided below.

Block	Lot	Owner	Occupants
445	7	Ronald Mehlman 333 Bond Street, Brooklyn, NY 11231 Unknown Phone Number	Ronald Mehlman 333 Bond Street, Brooklyn, NY 11231 Unknown Phone Number
	8	383 Carroll Street LLC 15 Cold Spring Court, Staten Island, NY 10304 Unknown Phone Number	Square Design Inc. 327 Bond Street, Brooklyn, NY 11231 (718) 522-7576
	11	383 Carroll Street LLC 15 Cold Spring Court, Staten Island, NY 10304 Unknown Phone Number	Lavender Lake 383 Carroll Street, Brooklyn, NY 11231 (347) 799-2154
452	5	City of New York Fire Department 9 Metrotech Centre Brooklyn, NY 11201 (718) 999-2000	Fire Department City of New York Emergency Medical Services Station 32 400 Carroll Street, Brooklyn, NY 11231 (718) 999-2770
	15	LSG 363 Bond Street LLC 400 Carroll Street, Brooklyn, NY 11231 Unknown Phone Number	400 Carroll Street, Brooklyn, NY 11231 Occupant contact information unknown.
451	25	Mary Star of the Sea Senior Housing Development 344 Carroll Street, Brooklyn, NY 11231 (718) 722-6000	Mary Star of the Sea Senior Housing Development 344 Carroll Street, Brooklyn, NY 11231 (718) 722-6000
451	34	Richard T. Beaman 362 Carroll Street, Brooklyn, NY 11231 Unknown Phone Number	Richard T. Beaman 362 Carroll Street, Brooklyn, NY 11231 Unknown Phone Number
	35	Joseph A. Gagliardo 364 Carroll Street, Brooklyn, NY 11231 Unknown Phone Number	Joseph A. Gagliardo 364 Carroll Street, Brooklyn, NY 11231 Unknown Phone Number

Block	Lot	Owner	Occupants
444	46	363 Carroll Street Corp. 906 President Street, Brooklyn, NY 11215 Unknown Phone Number	363 Carroll Street, Brooklyn, NY 11231 Occupant contact information unknown.
	7502	340 Bond LLC 1975 Linden Blvd., Suite 207, Elmont New York 11003 Unknown Phone Number	342 Bond Street, Brooklyn, NY 11231 Occupant contact information unknown.
	37	Joan Salome Rodriguez 406 President Street, Brooklyn, NY 11231 Unknown Phone Number	Joan Salome Rodriguez 406 President Street, Brooklyn, NY 11231 Unknown Phone Number

<u>Item 3 Response</u>

Local news media from which the community typically obtains information:

The Brooklyn Paper One Metrotech Center, Suite 1001 Brooklyn, NY 11201

<u>Item 4 Response</u>

The public water supplier which services the area in which the property is located:

The responsibility for supplying water in New York City is shared between the NYC Department of Environmental Protection (NYCDEP), the Municipal Water Finance Authority, and the New York City Water Board:

NYCDEP Emily Lloyd, Commissioner 59-17 Junction Boulevard Flushing, NY 11373

New York City Municipal Water Finance Authority 255 Greenwich Street, 6th Floor New York, NY 10007

New York City Water Board Department of Environmental Protection 59-17 Junction Boulevard, 8th Floor Flushing, NY 11373

Item 5 Response

Any person who has requested to be placed on the contact list:

We are unaware of any requests for inclusion on the contact list.

<u>Item 6 Response</u>

The administrator of any school or day care facility located on or near the Site:

There are no schools or day care facilities located on the site. The following are schools or day care facilities located within ½ mile of the site:

New Horizons School (approximately 0.13 miles northwest) 317 Hoyt Street Brooklyn, NY 11231 Deanna Sinito, Principal (718) 222-6420

Rivendell School (approximately 0.25 miles east) 277 3rd Avenue Brooklyn, NY 11215 Katy Hill, Executive Director (718) 499-5667

New Dawn Charter High School (approximately 0.30 miles northwest) 242 Hoyt Street Brooklyn, NY 11217 Dr. Sara M. Asmussen, Executive Director (347) 505-9191

Hannah Senesh Community School (approximately 0.30 miles west) 342 Smith Street Brooklyn, NY 11231 Nicole Nash, Head of School (718) 858-8663 P.S. 32 Samuels Mills Sprole School (approximately 0.14 miles northwest) 317 Hoyt Street Brooklyn, NY 11231 Deborah Florio, Principal (718) 222-6400

Bethel Day Care Center (approximately 0.30 miles northwest) 242 Hoyt Street Brooklyn, NY 11217 Venessa Edness, Executive Director (718) 834-9292

P.S. 372 The Children's School (approximately 0.30 miles east) 512 Carroll Street Brooklyn, NY 11215 Arthur Mattia, Principal (718) 624-5271

P.S. 58 The Carroll School
(approximately 0.32 miles northwest)
330 Smith Street
Brooklyn, NY 11231
Katie Dello Stritto, Interim Acting Principal
(718) 330-9322

The Olive Treehouse Group, LLP (approximately 0.33 miles southwest) 413 Smith Street Brooklyn, NY 11231 Deborah Capone, Executive Director (718) 522-2301

Bumble Bee Daycare (approximately 0.35 miles southeast) 258 4th Avenue Brooklyn, NY 11218 Ms. Eunice, Owner (347) 422-0998

Cobble Hill School of American Studies (approximately 0.42 miles north) 347 Baltic Street Brooklyn, NY 11201 Anna Maria Mule, Principal (718) 403-9544

Bambi Childcare (approximately 0.45 miles west) 73 3rd Place Brooklyn, NY 11231 Oksana Magomedova, Branch Manager (718) 802-1016

Court Street AMICO Daycare (approximately 0.47 miles northwest) 292 Court Street Brooklyn, NY 11231 Jerry Chiappetta, Executive Director (718) 855-1778 Al Madinah School (approximately 0.33 miles south) 383 3rd Avenue Brooklyn, NY 11215 Sr. Rabab Mosalamn, Supervisor (718) 222-4986

Child's Play NY (approximately 0.37 miles west) 389 Court Street Brooklyn, NY 11231 Jocelyn Greene, Founder, Executive Director (347) 406-2177

Wyckoff Gardens Community Center (approximately 0.44 miles northeast) 272 Wyckoff Street Brooklyn, NY 11217 Sandra McCoy, Program Director (718) 834-8595

International School of Brooklyn (approximately 0.47 miles southwest) 477 Court Street Brooklyn, NY 11231 Rebecca Skinner, Head of School (718) 369-3023

Open House Nursery School (approximately 0.47 miles north) 381 Warren Street Brooklyn, NY 111201 Eileen Shannon, Director (718) 625-5252

Strong Place for Hope Day Care Center (approximately 0.47 miles southeast) 333 2nd Street Brooklyn, NY 11215 Sarah Pabst, Principal (718) 499-0747

P.S. 133 William A Butler
(approximately 0.49 miles northeast)
610 Baltic Street
Brooklyn, New York 11217
Heather Foster Mann, Principal
(718) 398-5320

J.H.S. 051 William Alexander School (approximately 0.50 miles southeast) 350 5th Avenue Brooklyn, NY 11215 Lenore DiLeo Berner, Principal (718) 369-7603

Item 7 Response

The local community board is Brooklyn Community Board 6.

Brooklyn Community Board 6

Craig R. Hammerman, District Manager 250 Baltic Street Brooklyn, New York 11201 Phone: (718) 643-3027

<u>Item 8 Response</u>

The location of a document repository for the project (e.g. local library):

Carroll Gardens Branch Library 396 Clinton Street Brooklyn, NY 11231 718-596-6972

A letter sent to the repository acknowledging that it agrees to act as a document repository for the project is included in this attachment.

School for International Studies (approximately 0.48 miles northwest) 284 Baltic Street Brooklyn, NY 11201 Jillian Juman, Principal (718) 330-9390

Natalie's Sunflower Academy LLC (approximately 0.50 miles east) 238 5th Avenue Brooklyn, NY 11215 Natalie Baechko, Owner (718) 783-0738

Technical Excellence Practical Experience Client Responsiveness

May 6, 2015

Carroll Gardens Branch Library 396 Clinton Street Brooklyn, New York 11231

Re: Brownfield Cleanup Program Application E&M Realty Corp. Site Name: 335 Bond Street Site Address: 335 Bond Street, Brooklyn, New York

Dear Head Librarian

We represent E&M Realty Corp., in their anticipated New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) application for the above-referenced site at 335 Bond Street in Brooklyn. It is a NYSDEC requirement that we supply them a letter certifying that the local library is willing and able to serve as a public repository for all documents pertaining to the cleanup of this property. Please sign below and return if you are able to certify that your library would be willing and able to act as the temporary public repository for this BCP project.

Sincerely, Langan Engineering, Environmental, Surveying and Landscape Architecture, D.P.C.

Emily Snead Senior Staff Scientist

Yes, the Carroll Gardens Branch Library is willing and able to act as a public repository on behalf of E&M Realty Corp. in their cleanup of 335 Bond Street under the NYSDEC BCP.

ye Powell 5/6/15 (Date) ry Information Superivision (Title)

ATTACHMENT F Section IX: Land Use Factors

- FEMA Flood Insurance Rate Map
- City of New York Department of City Planning, Zoning Map 16c
- Copy of the City of New York Department of City Planning, Draft Zoning Proposal: Gowanus Canal Corridor Framework

ATTACHMENT F SECTION IX: LAND USE FACTORS

<u>Item 1 Response</u>

Current Use

The site is currently occupied by a one-story office building and garage operated by NYC Two Way International, a private car and limousine service. The building includes a partial cellar, which houses an abandoned aboveground storage tank (AST) in a concrete vault.

<u>Item 2 Response</u>

Intended Use Post Remediation

The proposed re-development project is still in the early planning stages and is subject to change as potential zoning changes materialize. Currently, the contemplated project includes the construction of a 2-story commercial building. It is proposed that Floor 1 would include offices, parking, and car sales and; the second floor would include office space. Development would include demolition of the existing 1-story building including installation of new foundation elements to accommodate the second level.

Item 4 Response

Applicable Zoning Laws/Maps

The site is located in a M2-1 manufacturing district with a floor area ratio (FAR) of 2.0. The M2 districts occupy the middle ground between light and heavy industrial areas; however, based on the requirements listed in the City of New York Department of City Planning Zoning Resolution, Article IV: Manufacturing District Regulations, dated October 19, 2013, certain types of retail and office spaces are permitted in M2 Districts. Thus, the proposed use is consistent with applicable zoning laws/maps. The applicable zoning map is included in this attachment.

<u>Item 5 Response</u>

Comprehensive Plans

The proposed use is consistent with local and area plans per the New York City Department of City Planning draft zoning proposal for the Gowanus Canal Corridor Framework. The draft zoning proposal map is included in this attachment.

<u>Item 9 Response</u>

Existing Infrastructure

The property is served by NYC water and sewer utilities and Consolidated Edison electric. The property is also nearby New York City subway and bus routes.

<u>Item 10 Response</u>

Cultural Resources

There are several City Landmarks and National Register listed sites within ½-mile of the proposed brownfield site. The below table lists City Landmarks (L) and Properties listed on the National Register (NR) of Historic Places within approximately ½-mile of the proposed brownfield site:

Property/Site	Status	Address
Carroll Street Bridge	L	Carroll Street Bridge Over the Gowanus Canal
Public Bath No. 7	L, NR	227 4th Avenue
New York and Long Island Coignet Stone Company Building	L	360 3rd Avenue
271 Ninth Street House	L	271 9th Street
Carroll Gardens Historic District	NR	Carroll and President Streets between Smith and Hoyt Streets
The Old Stone House of Brooklyn	NR	Washington Park at 3rd Street at 5th Avenue
South Congregational Church, Chapel, Ladies Parlor, and Rectory	NR	358 Court Street
The John Rankin House at 440 Clinton Street House	NR	440 Clinton Street

<u>Item 11 Response</u>

Federal, State, or Local Natural Resources

The Gowanus Canal, which is an estuarine and marine deep-water wetland, is approximately 180 feet east of the property.

<u>Item 12 Response</u>

Flood Plains

According to the National Flood Insurance Rate Maps (FIRM) for the City of New York published by the Federal Emergency Management Agency (FEMA) (Community Panel No. 3604970 211 F, dated September 5, 2007), the site is located within Zone AE, the 1 percent

annual chance floodplain boundary. The applicable FEMA FIRM is included with this attachment.

<u>Item 14 Response</u>

Proximity to Residential, Urban, Commercial, Industrial, Agricultural, and Recreational Areas

A map showing surrounding property use is provided in Attachment B. The nearest residential property shares an approximately 75-foot long border with the northern extent of the Site, and three additional residential properties are located directly west of the Site, across Bond Street. Other adjoining properties include a restaurant, Lavender Lake, and an industrial lot, which appears to be used mostly for parking. The Mary Star of the Sea Senior Housing Development and two additional residential properties are located 100 feet southwest of the Site. The Fire Department City of New York (FDNY) Emergency Medical Services (EMS) Station 32 is located directly south of the Site, across Carroll Street. The nearest open space and/or outdoor recreational areas are Carroll Park, located approximately 1,400 feet west of the Site, and Thomas Greene Playground, located approximately 1,100 feet northeast of the Site.

<u>Item 15 Response</u>

Vulnerability of Groundwater to Contamination

Groundwater at the site was found to be impacted with volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and metals. As the water supply for this section of Brooklyn is derived from watersheds in the Catskills, contaminated groundwater at the site is not expected to impact the drinking water supply.

Based on the mobility of contaminants detected in groundwater, there is a potential for groundwater at the site to migrate off-site. Groundwater beneath the site is expected to flow east toward the Gowanus Canal. Thus, the Gowanus Canal represents a potential receptor for off-site migration of contaminated groundwater. The migration of groundwater contaminants off-site will be evaluated during a remedial investigation.

<u>Item 16 Response</u>

Geography and Geology of the Site

The site is located at 335 Bond Street in Brooklyn, New York (Block 445, Lot 1), and is bound by a two-story residential building and an industrial lot to the north; a two-story industrial and commercial building to the east; Carroll Street to the south; and Bond Street to the west. The site is rectangular and encompasses an area of approximately 0.36 acres.

According to the USGS Brooklyn, N.Y. Quadrangle 7.5-minute Series Topographic Map, the site sits at an elevation of approximately 10 feet above mean sea level (msl)¹. The topography of the site is generally level, and the surrounding area slopes gently east toward the Gowanus Canal.

Predominant geological surface features were not observed on the site. The United States Geological Survey (USGS) "Bedrock and Engineering Geologic Maps of New York County and Parts of Kings and Queens Counties, New York, and Parts of Bergen and Hudson Counties, New Jersey" indicates that the bedrock underlying the site is part of the Hartland Formation.

Based on the May 2, 2015, subsurface investigation, the subsurface strata at the site consists of fill material characterized by loose, brown, fine to coarse sand with some brick and concrete fragments, and trace coal ash. The fill layer extended to depths ranging from approximately 4 feet below grade surface (bgs) to 8.5 feet bgs and was intersected by layers of degraded concrete and brick at varying depths. The fill layer was underlain by native soil characterized by sands and silty sands. Bedrock was not encountered during the May 2015 subsurface investigation conducted by Langan. Groundwater was encountered at depths ranging from approximately 6 to 8.5 feet bgs.

¹ Mean sea level as defined by the United States Geologic Survey (USGS NGVD 1929) at Sandy Hook New Jersey.

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The **community map repository** should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where **Base Flood Elevations** (BFEs) and/or: **floodway**, base been determined users are ancouraged to consult the Flood Profiles and Floodway Data and/or Summary of Sillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodpian management.

Coastal Base Flood Elevations (BFEs) shown on this map apply only landward of 0.0' National Geodetic Vertical Datum of 1929 (NGVD 29). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations tables in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations tables should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements for the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by **flood** control structures. Refer to Section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

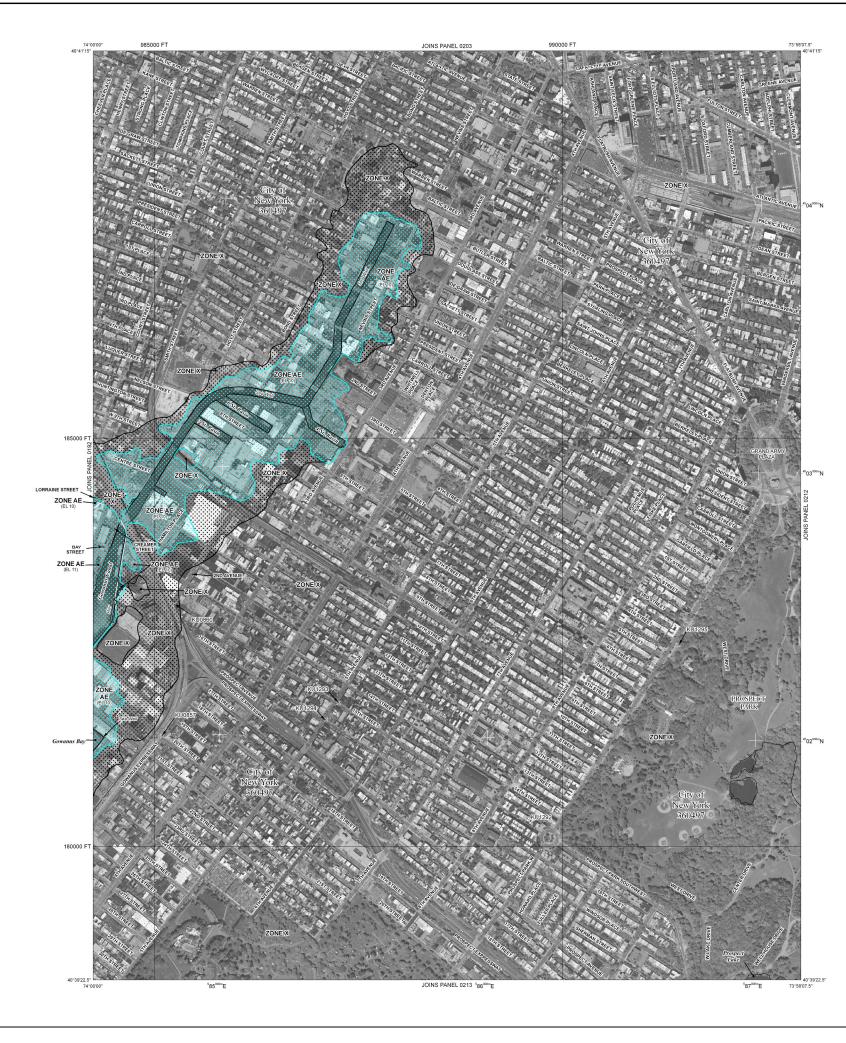
The projection used in the preparation of this map was New York State Plane FIPSZONE 3104. The horizontal datum was NAD 83. GRS80 spheroid Offerences in datum, spheroid projection or State Plane zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

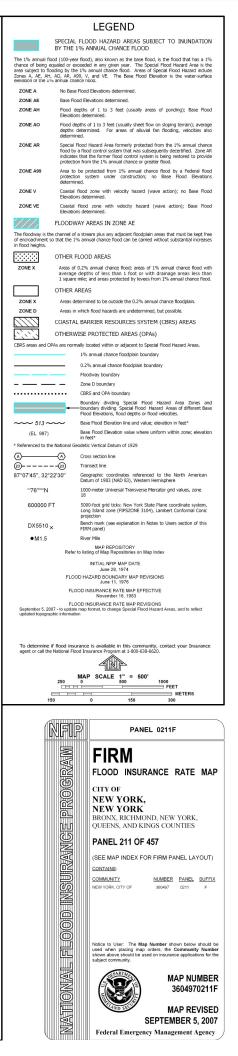
Flood elevations on this map are referenced to the National Geodetic Vertical Datum of 1929. These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1986, visit the National Geodetic Survey at the following address.

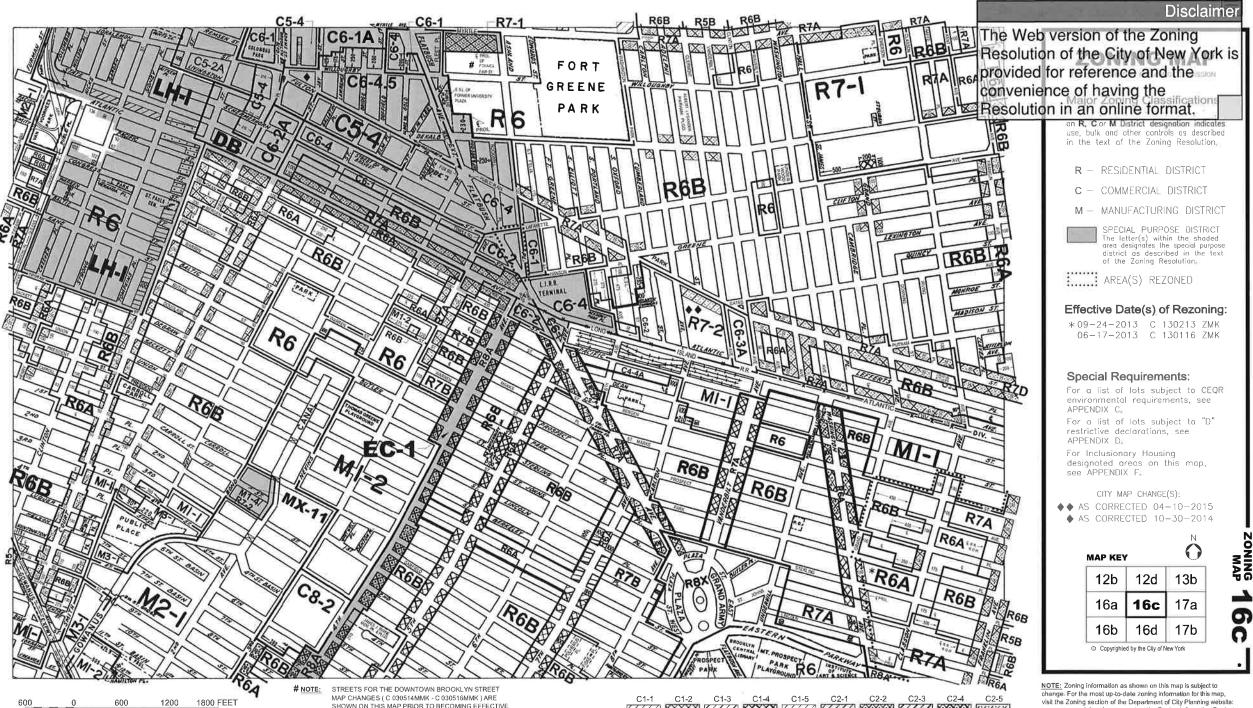
NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, Maryland 20910-3182 (301) 713-3242

To obtain current elevation, description, and/or location information for **bench** marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242, or visit its website at <u>http://www.nss.noaa.gov.</u>

Base map information shown on this FIRM was provided in digital format by the Department of Information Technology and Telecommunication, City of New York. This information was derived from digital orthophotos produced at a scale of 1:1,200 with 2-foot pixel resolution from photography dated 2004.

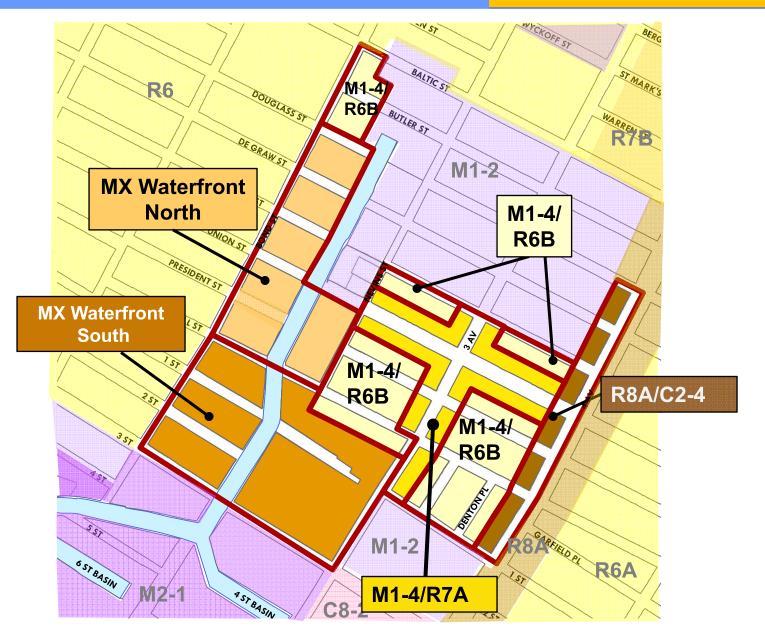

Based on updated topographic information, this map reflects more detailed and up-to-date **stream channel configurations and floodplain delineations** than those shown on the previous FIRM for this jurisdiction. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. Also, the road to floodplain relationships for unrevised streams may differ from what is shown on previous maps.


Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.


Please refer to the separately printed **Map Index** for an overview map showing the layout of map panels for this jurisdiction.

Contact the FEMA Map Service Center at 1-800-358-9616 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study report, and/or digital versions of this map. The FEMA Map Service Center may also be reached by Fax at 1-800-358-9620 and its website at http://msc.fema.gov.

If you have **questions about this map** or questions concerning the National Flood Insurance Program in general, please call **1-877-FEMA MAP** (1-877-336-2627) or visit the FEMA website at <u>http://www.fema.gov.</u>


NOVE ON THIS MAP PRIOR TO BECOMING EFFECTIVE CITE IN ORDER TO LOCATE ZONING DISTRICT BOUNDARIES.

 MOTE:
 Where no dimensions for zoning district boundaries appear on the zoning maps, such dimensions are determined in Article VII, Chapter 6 (Location of District Boundaries) of the Zoning Resolution.

www.nyc.gov/planning or contact the Zoning Information Desk at

(212) 720-3291

DRAFT ZONING PROPOSAL

GOWANUS CANAL