REMEDIAL INVESTIGATION REPORT

for

473 PRESIDENT STREET BROOKLYN, NEW YORK

NYSDEC BCP NO.: C224220

Prepared For:

MCP President Street LLC 550 Grand Street Brooklyn, New York 11211

Prepared By:

Langan Engineering, Environmental, Surveying Landscape Architecture and Geology, D.P.C. 21 Penn Plaza, 360 West 31st Street, 8th Floor New York, New York 10001

Michael D. Burke, PG, CHMM Principal/Vice President

August 16, 2019 Langan Project No. 170361301

TABLE OF CONTENTS

		itents iyms	
		· · · · · · · · · · · · · · · · · · ·	
1.0 2.0		duction Physical Characteristics	
2.1	Sit	e Description	3
2. 2.	1.1 1.2 1.3 1.4	Description of Surrounding Properties Topography Surface Water and Drainage Wetlands	6 6
2.2	Re	gional Geology and Hydrogeology	6
	2.1 2.2	Regional Geology Regional Hydrogeology	
3.0	Site E	Background	8
3.1 3.2 3.3 3.4	Pro Pre	storical Site Use oposed Redevelopment Plan evious Environmental Reports and Documents mmary of Areas of Concern	8 8
4.0	Field	Investigation	12
4.1 4.2		ophysical Investigation	
	2.1 2.2	Investigation Methodology Sampling Methodology	
4.3	Gr	oundwater Investigation	15
	3.1 3.2	Monitoring Well Installation and Development Methodology Groundwater Sampling	
4.4	So	il Vapor Investigation	17
	4.1 4.2	Sub-slab Soil Vapor Point Installation Sub-Slab Soil Vapor and Air Sampling and Analysis	
4.5 4.6 4.7	Qu	door Air Sampling Jality Control Sampling Ita Validation	18
4.	7.1 Da	ata Usability Summary Report Preparation	20
4.8 4.9		eld Equipment Decontamination	
5.0	Field	Observations and Analytical Results	22
5.1	Ge	ophysical Investigation Findings	22

5.	.2	Ge	ology and Hydrogeology	23
	5.2.2 5.2.2 5.2.3 5.2.4	2 3	Historic Fill Native Soil Layers Bedrock Hydrogeology	23 23
5	.3	Soi	il Findings	23
	5.3.1 5.3.2		Field Observations Analytical Results	
5	.4	Gro	oundwater Findings	28
	5.4.2 5.4.2	-	Field Observations Analytical Results	
5 5 5 5	.6 .7 .8	Ind Qu Da ⁻	il Vapor Findings door Air Findings ality Control Results ta Usability aluation of Potential Areas of Concern	32 32 33
	5.9.2 5.9.2 5.9.3 5.9.4 5.9.5 Grou	2 3 4 5	AOC-1: Historic Fill AOC-2: Petroleum Spill in the Southeastern Portion of the Site AOC-3: Potential UST – Northwestern Portion of the Site AOC-4: Potential UST – Southwestern Portion of the Site AOC-5: Chlorinated Volatile Organic Compound (CVOC) Impacts to water, and Sub-Slab Soil Vapor	35 36 38 Soil,
6.0	In	terii	m Remedial Measure Work Plan Implementation and Findings	41
	.2 .3 IRN	Qu NW	WWP Implementation Iality Control Sampling /P Indoor Air Documentation Sample Results Jsability	42 42
7.0	Q	ualit	tative Human Health Exposure Assessment	44
7. 7. 7. 7.	.2 .3	Prc Sui	rrent Conditions oposed Conditions mmary of Environmental Conditions nceptual Site Model	44
	7.4.2 7.4.2 7.4.3	2	Potential Sources of Contamination Exposure Media Receptor Populations	45
7.	.5	Pot	tential Exposure Pathways – On-Site	46
	7.5.2 7.5.2 7.5.3	2	Current Conditions Construction/Remediation Condition Proposed Future Conditions	47
7. 7.			tential Exposure Pathways – Off-Site aluation of Human Health Exposure	

7. 7.	7.2 7.3	Current Conditions	49 50
8.0	Nature	e and Extent of Contamination	52
8.1	Soil	l Contamination	52
8. 8.	1.2 1.3	Historic Fill Material Tar-like Material Petroleum-Impacted Material CVOC-Impacted Material	52 53
8.2	Gro	bundwater Contamination	53
8.	2.1 2.2 2.3	Petroleum-Contaminated Groundwater CVOC-Contaminated Groundwater	54
8.3	Sub	p-Slab Soil Vapor and Indoor Air Contamination	54
9.0 9.0		usions! ences	

FIGURES

- Figure 1 Site Location Map
- Figure 2 Site Layout Plan
- Figure 3 Surrounding Land Use and Sensitive Receptors
- Figure 4 Historical Site and Surrounding Property Usage
- Figure 5 AOC and Sample Location Plan
- Figure 6 Groundwater Contour Map
- Figure 7 Subsurface Profiles
- Figure 8 Soil Sample Analytical Results Map
- Figure 9A Groundwater Sample Analytical Results Map VOCs
- Figure 9B Groundwater Sample Analytical Results Map SVOCs, Pesticides, and Metals
- Figure 10 Sub-Slab Soil Vapor and Indoor Air Sample Analytical Results Map
- Figure 11 Indoor Air Documentation Sample Analytical Results Map

TABLES

- Table 1Sample Summary
- Table 2Groundwater Elevation Data Summary
- Table 3Soil Sample Analytical Detection Summary
- Table 4Soil Design Criteria Sample Analytical Results Summary
- Table 5Groundwater Sample Analytical Detection Summary
- Table 6Groundwater Design Criteria Sample Analytical Results Summary
- Table 7Sub-slab Soil Vapor and Air Sample Analytical Detection Summary
- Table 8Air Sample Analytical Results Summary
- Table 9
 Indoor Air Documentation Sample Analytical Results Summary
- Table 10
 QA/QC Sample Analytical Detection Results Summary

APPENDICES

- Appendix A Previous Reports and NYSDEC Correspondence
- Appendix B Geophysical Report
- Appendix C Soil Boring Logs
- Appendix D Monitoring Well Construction Logs
- Appendix E Groundwater Sampling Logs
- Appendix F Soil Vapor Construction and Sample Logs
- Appendix G Data Usability Summary Report
- Appendix H Laboratory Data Reports
- Appendix I Fish and Wildlife Resources Impact Analysis Decision Key

LIST OF ACRONYMS

Acronym Defi	nition			
AOC Area	of Concern			
AWQS Amb	Ambient Water Quality Standards and Guidance Values			
BCA Brow	Brownfield Cleanup Agreement			
BCP Brow	vnfield Cleanup Program			
BGS Belo	w Grade Surface			
CAMP Com	munity Air Monitoring Program			
Cells/mL Cells	s per Milliliter			
Cis-1,2-DCE cis-1	,2-dichloroethene			
COC Con	taminant of Concern			
CSM Con	ceptual Site Model			
CU Com	imercial Use			
DER Divis	sion of Environmental Remediation			
DNAPL Den	se Non-Aqueous Phase Liquid			
DO Diss	olved Oxygen			
DUSR Data	Usability Summary Report			
EDR Envi	ronmental Data Resources			
ELAP Envi	Environmental Laboratory Approval Program			
EPA Unit	United Stated Environmental Protection Agency			
ESA Envi	Environmental Site Assessment			
eV Elec	Electron Volt			
FEMA Fede	Federal Emergency Management Agency			
FWRIA Fish	and Wildlife Resources Impact Analysis			
GNL Geo	Geophysical Noise Level			
GPR Grou	Ind Penetrating Radar			
HASP Hea	Health and Safety Plan			
IDW Inve	Investigation Derived Waste			
IRMWP Inter	Interim Remedial Measures Work Plan			
µg/L Micr	ograms per Liter			
L/min Liter	s per minute			
MDL Met	hod Detection Limit			
µg/m³ Micr	ograms per cubic meter			
mg/kg Milli	Milligram per kilogram			
MGP Man	Manufactured Gas Plant			
MS/MSD Matrix Spike/Matrix Spike Duplicate				
MTBE Met	hyl tert-butyl ether			
NAVD88 Nort	h American Vertical Datum of 1988			
NYCRR New	VYork Codes, Rules, and Regulations			
NYSDOH New	York State Department of Health			
NYSDEC New	New York State Department of Environmental Conservation			

Acronym	Definition
NTU	Nephelometric Turbidity Units
ORP	Oxidation-Reduction Potential
PAH	Polycyclic Aromatic Hydrocarbon
PCE	Tetrachloroethene
PID	Photoionization Detector
PPE	Personal Protective Equipment
ppm	Parts per million
PVC	Polyvinyl Chloride
QA/QC	Quality Assurance/Quality Control
RAWP	Remedial Action Work Plan
RI	Remedial Investigation
RIR	Remedial Investigation Report
RIWP	Remedial Investigation Work Plan
RL	Reporting Limit
RRU	Restricted Residential Use
SCO	Soil Cleanup Objective
SGV	Standards and Guidance Values
SVOC	Semivolatile Organic Compound
TAL	Target Analyte List
TCE	Trichloroethene
TCL	Target Compound List
TCLP	Toxicity Characteristic Leaching Procedure
ТМВ	Trimethylbenzene
TOGS	Technical and Operational Guidance Series
UN/DOT	United Nations Department of Transportation
USGS	United States Geological Survey
UST	Underground Storage Tank
UU	Unrestricted Use
VC	Vinyl Chloride
VOC	Volatile Organic Compound

CERTIFICATION

I, Michael D. Burke, certify that I am currently a Qualified Environmental Professional as defined in 6 New York Codes, Rules and Regulations (NYCRR) Part 375 and that this Remedial Investigation Report (RIR) was prepared in accordance with applicable statutes and regulations, in substantial conformance with the Division of Environmental Remediation (DER) Technical Guidance for Site Investigation and Remediation (DER-10), and that all activities were performed in full accordance with the DER-approved work plan and any DER-approved modifications.

O. bruke

Michael D. Burke, PG, CHMM

1.0 INTRODUCTION

This Remedial Investigation Report (RIR) was prepared on behalf of MCP President Street LLC (the Volunteer) for the property located at 473 President Street in Brooklyn, New York (the site). A Site Location Map is provided as Figure 1. The Volunteer will remediate the site in conjunction with a new development project pursuant to a Brownfield Cleanup Agreement (BCA) with the New York State Department of Environmental Conservation (NYSDEC), dated August 20, 2015, for Brownfield Cleanup Program (BCP) Site No. C224220.

This RIR presents environmental data and findings from a remedial investigation (RI) that was implemented by Langan between March 6 and March 22, 2017, a supplemental investigation conducted between April 27 and May 6, 2017, and an indoor air investigation conducted on March 28, 2018., and subsequent indoor air documentation sampling events on August 17, September 7, and December 20, 2018. The indoor air documentation sampling events were conducted based on findings from the RI and indoor air investigation, which identified exposure concerns and resulted in the implementation of an Interim Remedial Measure Work Plan (IRMWP). Indoor documentation sampling events were performed on August 17, September 7, and December 20, 2018. The investigation was conducted in accordance with the NYSDEC-approved Remedial Investigation Work Plan (RIWP), dated November 23, 2015, which was prepared after the site's acceptance into the BCP. The supplemental investigation was performed in accordance with the proposed scope emailed to NYSDEC on April 25, 2017 and approved by NYSDEC in a letter dated April 27, 2017 (Appendix A). The indoor air investigation was performed in accordance with the proposed scope emailed to NYSDEC on February 14, 2018 and approved by NYSDEC in a letter dated February 20, 2018. The objective of the RI is to supplement the existing environmental data to determine, to the extent possible, the nature and extent of contamination in soil, soil vapor, and groundwater. Information presented in this RIR will be used to evaluate appropriate remedial action alternatives.

This RIR is organized as follows:

- Section 2.0 describes the site setting and the physical characteristics of the site.
- Section 3.0 describes the site background including results of previous investigations and identified areas of concern (AOCs).
- Section 4.0 presents the investigation .
- Section 5.0 describes the field observations and analytical results during the investigation.
- Section 6.0 describes the interim remedial measure work plan implementation and findings.
- Section 7.0 presents an assessment of the exposure risks of site contaminants to human, fish, and wildlife receptors.

- Section 8.0 presents the nature and extent of contamination in site media as determined through the field investigation and analysis of environmental samples.
- Section 9.0 summarizes the results of the investigation and presents conclusions based on field observations and analytical results.
- Section 10.0 presents the references used in preparation of this report.

2.0 SITE PHYSICAL CHARACTERISTICS

2.1 Site Description

The site is located at 473 President Street in the Gowanus neighborhood of Brooklyn, New York, and encompasses an area of about 20,000 square feet (0.46 acres) on the southern portion of New York City Tax Block 440, Lot 12. Block 440 is bound by Nevins Street to the west, Union Street to the north, 3rd Avenue to the east, and President Street to the south. The site is developed with a warehouse building occupying the entire footprint, and including a partial cellar at the eastern end of the site. The eastern portion of the warehouse building is used for storage by a bicycle tour company and the western portion of the site is vacant. The site building adjoins the building located on the northern half of Lot 12, which is occupied by the Royal Palms Shuffleboard Club.

The site has 200 feet of frontage along President Street, and is bound by Lot 1 to the west (electronic waste recycling warehouse); the northern portion of Lot 12 to the north (Royal Palms Shuffleboard Club); Lot 21 to the east (Pontone Bros. Corp.); and President Street to the south. The Gowanus Canal is located about 350 feet west of the site. A site layout plan is included as Figure 2.

The site is located in an M1-2 zoning district. M1 districts typically include light industrial uses, but offices, hotels, and most retail uses are also permitted. The proposed development will be consistent with current the current zoning.

2.1.1 Description of Surrounding Properties

The site is located in an urban setting that is characterized by residential, commercial and industrial buildings. The following is a summary of surrounding property usage:

Direction	Adjacent Properties				
	Block No.	Lot No.	Description	Surrounding Properties	
East	440	21	One- to two-story warehouse building (South Brooklyn Casket Co)		
North	440	12	One-story warehouse building (Royal Palms Shuffleboard Club)	Multiple-story manufacturing facilities, utility companies, and residential and	
West	440	1	Two-story warehouse building (Gowanus E-Waste Warehouse)	commercial buildings. The Gowanus Canal is located about 375 feet to the west.	

Direction	Adjacent Properties				
	Block No.	Lot No.	Description	Surrounding Properties	
South	447	7, 12, 13, 15, 16, 17, 18, 19	A one-story warehouse building (Crusader Candle Company; Lot 7), and six three-story residential buildings		

Land use within a half mile of the site is urbanized and includes industrial and mixed-use buildings, subway tunnels, park land, and school facilities. The nearest ecological receptor is the Gowanus Canal, a Federal Superfund site, located about 375 feet west of the site. Sensitive receptors, as defined in the NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation (May 2010), located within a half-mile of the site include those listed in the following table:

Number	Name (Approximate distance from Site)	Address	
1	Rivendell School (approximately 0.07 miles southeast)	277 3rd Avenue Brooklyn, NY 11215	
2	PS 372 The Children's School (approximately 0.16 miles southeast)	512 Carroll Street Brooklyn, NY 11215	
3	Bumble Bee Daycare (approximately 0.20 miles southeast)	258 4th Avenue Brooklyn, New York 11218	
4	Thomas Greene Playground (approximately 0.20 miles north)	225 Nevins Street Brooklyn, New York 11217	
5	PS 32 Samuel Mills Sprole School (approximately 0.25 miles northwest)	317 Hoyt Street Brooklyn, NY 11231	
6	P.S. 133 William A. Butler (approximately 0.35 miles northeast)	610 Baltic Street Brooklyn, New York 11217	
7	Sunflower Child Care (approximately 0.36 miles southeast)	238 5th Avenue Brooklyn, New York 11215	
8	Preschool of America, Inc (approximately 0.37 miles northwest)	378 Baltic Street Brooklyn, New York 11201	
9	Eladia's Kids (approximately 0.40 miles east)	147 5th Avenue Brooklyn, NY 11217	
10	Kumon Math and Reading Center of Carroll Gardens (approximately 0.40 miles northwest)	337 Smith Street Brooklyn, NY 11231	
11	Raindrops (approximately 0.41 miles southeast)	314 5th Street Brooklyn, NY 11215	
12	Language Laughter Studio (approximately 0.42 miles northeast)	137 Nevins Street Brooklyn, NY 11217	

Number	Name (Approximate distance from Site)	Address	
13	Hannah Senesh Community Day School (approximately 0.42 miles west)	342 Smith Street Brooklyn, NY 11231	
14	PS 58 The Carroll School (approximately 0.43 miles northwest)	330 Smith Street Brooklyn, NY 11231	
15	Cobble Hill School for American Studies (approximately 0.44 miles northwest)	347 Baltic Street Brooklyn, NY 11201	
16	John Jay HS Annex – School Garden (approximately 0.44 miles northwest)	347 Baltic Street Brooklyn, New York 11201	
17	Carroll Gardens – Hudson's House (approximately 0.44 miles west)	413 Smith Street Brooklyn, New York 11231	
18	St. John's Kidz (approximately 0.45 miles east)	34 Saint Johns Place Brooklyn, NY 11217	
19	Warren Street Center for Children and Families (approximately 0.46 miles northwest)	343 Warren Street Brooklyn, New York 11201	
20	Helen Owen Carey Child Day Center (approximately 0.47 miles east)	71 Lincoln Place Brooklyn, NY 11217	
21	Park Slope Christian Academy (approximately 0.48 miles northeast)	98 5th Avenue Brooklyn, New York 11217	
22	PS/MS 282 (approximately 0.48 miles east)	180 6th Avenue Brooklyn, NY 11217	
23	St. Thomas Aquinas School (0.48 miles southeast)	211 8th Street Brooklyn, NY 11215	
24	The Math and Science Exploratory School (approximately 0.48 miles northeast)	345 Dean Street Brooklyn, NY 11217	
25	Brooklyn High School of The Arts (approximately 0.48 miles northeast)	345 Dean Street Brooklyn, NY 11217	
26	Public School 38 (approximately 0.48 miles northeast)	450 Pacific Street Brooklyn, NY 11217	
27	Open House Nursery School (approximately 0.50 miles northwest)	Eileen Shannon, Director 318 Warren Street #A	

A map showing the surrounding land uses and the locations of the nearest sensitive receptors is included as Figure 3.

2.1.2 Topography

According to the Brooklyn, NY Quadrant 7.5 Minute Topographic Map, published by the United States Geological Survey (USGS), the surface elevation of the site is about 15 feet above mean sea level (msl). According to a site survey completed by Langan on March 15, 2017 and May 6, 2017, the surface elevation ranges from about el 11¹ (approximate sidewalk elevation) in the southwest to about el 13 (approximate site building first floor slab elevation) in the northwest. The topography of the surrounding area is generally flat, but gradually slopes down from east to west towards the Gowanus Canal.

2.1.3 Surface Water and Drainage

The site is covered by a relatively impervious surface consisting of the site building and the concrete first-floor slab. As such, precipitation that falls on the site does not have the potential to infiltrate to the water table. Runoff drains to city sewers, then to the Red Hook wastewater treatment plant that serves the area.

According to the National Flood Insurance Rate map for the City of New York published by the Federal Emergency Management (FEMA) (Community Panel No. 360497, Panel 0211 G, dated December 5, 2013), the site is located in Zone X, which is designated for areas of 0.2% annual chance flood and areas of 1% annual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile.

2.1.4 Wetlands

Potential wetlands on or near the site were evaluated by reviewing the National Wetlands Inventory and NYSDEC regulated wetlands. There are no mapped wetlands located on the site. The nearest wetland is the Gowanus Canal, located about 375 feet west of the site, and is identified as an estuarine and marine deepwater wetland.

2.2 Regional Geology and Hydrogeology

2.2.1 Regional Geology

The Gowanus neighborhood is a densely populated urban area improved with infrastructure including paved roads, walkways and buildings. The infrastructure is generally underlain with historic fill material used for construction and development since the mid 1800's. The area surrounding the Gowanus Canal, but not including the site, was originally part of the former Gowanus Creek and associated wetlands. In 1848, the State of New York authorized construction of the Gowanus Canal as well as the draining and filling of the wetlands of South

¹ Elevations herein are in feet and referenced to the North American Vertical Datum of 1988 (NAVD88).

Brooklyn (New York City Department of City Planning, 1985). By 1869, the Gowanus Canal was completed with the current street configuration (Fulton Municipal Works Former Manufactured Gas Plant Site Final RIR, GEI, 2012).

Soil and bedrock stratigraphy throughout Brooklyn typically consists of a layer of historic fill material that overlies glacial till, decomposed unconsolidated bedrock, and bedrock. The USGS "Bedrock and Engineering Geologic Maps of New York County and Parts of Kings and Queens Counties, New York, and Parts of Bergen and Hudson Counties, New Jersey" indicate the bedrock underlying the site is part of the Hartland Formation. The Hartland Formation is comprised of mica schist and quartz-feldspar granulite, with localized intrusions of granite and pegmatite.

2.2.2 Regional Hydrogeology

Groundwater flow is typically topographically influenced, as shallow groundwater tends to originate in areas of topographic highs and flows toward areas of topographic lows, such as rivers, stream valleys, ponds, and wetlands. A broader, interconnected hydrogeological network often governs groundwater flow at depth or in the bedrock aquifer. Groundwater depth and flow direction are also subject to hydrogeologic and anthropogenic variables such as precipitation, evaporation, extent of vegetation cover, and coverage by impervious surfaces. Other factors influencing groundwater include depth to bedrock, the presence of artificial fill, and variability in local geology and groundwater sources or sinks.

Site groundwater was encountered during the RI at elevations ranging from about el 3.1 to el 2.2, flowing towards the west-southwest. Depth to groundwater ranged from about 8.5 feet below grade surface (bgs) at sidewalk grade to about 10.7 feet bgs at the elevated site grade of the building. Groundwater in the New York City area is not used as a potable water source. Potable water is provided to the site by the City of New York and is derived from surface impoundments in the Croton, Catskill, and Delaware watersheds.

3.0 SITE BACKGROUND

This section describes historical site use and the proposed redevelopment, and provides discussion on the findings of previous environmental investigations. AOCs were developed based on a review of the previous reports and are summarized in Section 3.5.

3.1 Historical Site Use

Langan's review of historical documents revealed that the site and surrounding area have been developed for residential, commercial and industrial uses since at least 1886. Historical site uses include a sash and door factory (1886), a trim and planning mill (1904 to 1915), a soda bottling company (1938 to 1950), a die cutting facility (1959 to 2014), a metal manufacturing company (1969 to 1992), and a warehouse (1990s to present). Two gasoline underground storage tanks associated with the bottling plant were identified on Sanborn Maps (1938 and 1950). The site was listed in the NYSDEC Leaking Underground Storage Tanks database (Spill No. 9412605) because of an unregistered 3,500-gallon fuel oil tank, which failed a tank tightness test in 1994. A map showing the historical site and surrounding property usage is provided in Figure 4.

3.2 Proposed Redevelopment Plan

The proposed project will consist of an as-of-right development with a full cellar parking garage.

3.3 Previous Environmental Reports and Documents

Previous environmental reports were reviewed as part of this RIR. The environmental reports summarized below are included in Appendix A.

Phase I Environmental Site Assessment (ESA), dated July 24, 2014, performed by Carlin, Simpson & Associates (CSA)

Findings of the Phase I ESA as they relate to the site are as follows:

- The site was listed in the NYSDEC Leaking Underground Storage Tanks database (Spill No. 9412605) because of an unregistered 3,500-gallon fuel oil tank, which failed a tank tightness test in 1994. The previous owner stated that the tank was filled with sand and closed in-place but did not indicate any remedial actions taken, and no closure documentation was provided. The spill number remains open.
- The property has a history of industrial uses with limited information regarding waste management practices.
- Contaminated groundwater from off-site sources, including the Gowanus Canal and 318 Nevins Street (Verizon property), which was listed as a major oil storage facility with multiple reported spills, may have impacted the site.

Limited Subsurface Investigation, dated June 5, 2015 by Langan

The Limited Subsurface Investigation was conducted to investigate potential impacts from historical use of the site and the open NYSDEC Spill No. 9412605. The Limited Subsurface Investigation was implemented on May 28, 2015 and included a geophysical survey, completion of five soil borings, and collection and analysis of eight soil samples. The results are summarized below:

- <u>Geophysical Survey</u>: Anomalies consistent with USTs were identified near the northwestern and southwestern corners of the site. Anomalies identified near the northwestern corner of the site were consistent with the location of two gasoline USTs identified in the 1938 and 1950 Sanborn Maps.
- <u>Subsurface Observations</u>: Five soil borings were advanced in the vicinity of the geophysical anomalies. Samples collected from the borings were field screened with a photoionization detector (PID), and eight grab soil samples were collected for laboratory analysis. The following is a summary of field observations:
 - Historic fill was observed immediately below the concrete cap to depths ranging from about 6 to 8 feet bgs. The historic fill generally consisted of gray and dark brown fine- to coarse-grained sand with varying amounts of brick, gravel, glass, slag, and ash. The fill layer was underlain by fine- to medium-grained sand followed by clay. Groundwater-saturated soil was encountered at about 8.5 feet bgs in two soil borings.
 - Soil exhibiting mothball-like odors and PID readings up to 168.5 parts per million (ppm) was identified in three borings in the northwestern portion of the site at depths ranging from about 2 to 6 feet bgs.
- <u>Analytical Results</u>:
 - Four volatile organic compounds (VOCs) (acetone, 2-butanone, naphthalene, and total xylenes), 16 semivolatile organic compounds (SVOCs) (acenaphthene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, benzo(ghi)perylene, dibenzo(a,h)anthracene, dibenzofuran, fluoranthene, flourene, indeno(1,2,3-cd)pyrene, naphthalene, phenanthrene, and pyrene), one pesticide (4,4'-DDT) and five metals (arsenic, copper, lead, mercury, and zinc) were detected in soil at concentrations that exceed their respective Unrestricted Use (UU) Soil Cleanup Objective (SCO).
 - Ten SVOCs (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, flouranthene,

indeno(1,2,3-cd)pyrene, phenanthrene, and pyrene) and two metals (arsenic and mercury) exceeded Commercial Use (CU) SCOs.

3.4 Summary of Areas of Concern

The following AOCs represent portions of the site that were developed in the RIWP based on site observations, the site history, and the findings of the previous environmental reports. The AOCs are shown on Figure 5.

- <u>AOC 1 Historic Fill</u>: AOC 1 represents a layer of historic fill of unknown origin identified between the site-wide concrete slab and about 6 to 8 feet bgs throughout the site. Analytical data for soil samples collected from this material during the May 2015 Limited Subsurface Investigation indicate the fill material contains SVOCs and metals in excess of CU SCOs.
- 2. <u>AOC 2 Petroleum Spill in the Southeastern Portion of the Site</u>: AOC 2 represents the open petroleum spill in the southeastern portion of the site. The site was listed in the NYSDEC Leaking Underground Storage Tanks database (Spill No. 9412605) because of an unregistered 3,500-gallon fuel oil tank, which failed a tank tightness test in 1994. According to the previous owner, the tank was filled with sand and closed in-place; however, the petroleum release identified at the time was not remediated and the spill number remains open.
- 3. <u>AOC 3 Potential UST Northwestern Portion of the Site</u>: Sanborn Maps dated 1938 and 1950 identified two gasoline storage tanks of unknown capacity associated with the former Coca-Cola Bottling Co. near the northwestern corner of the site. During the May 2015 Limited Subsurface Investigation, a geophysical anomaly consistent with USTs was identified within the northwestern portion of the site. During the Limited Subsurface Investigation, soil from three borings advanced in the vicinity of the anomaly exhibited naphthalene-like odor and PID readings up to 168 ppm within the fill layer. Petroleum-like impacts were not observed in the borings.
- 4. <u>AOC 4 Potential UST Southwestern Portion of the Site</u>: During the May 2015 Limited Subsurface Investigation, anomalies consistent with USTs were identified in the southwestern portion of the site. No evidence of petroleum-like impacts was observed in two borings advanced in the vicinity of the anomaly during the Limited Subsurface Investigation.

A fifth AOC was identified during the RI in March 2017 and was investigated during the supplemental investigation conducted between April 27 and May 6, 2017:

 <u>AOC 5 – Chlorinated Volatile Organic Compound (CVOC) Impacts to Soil, Groundwater,</u> <u>and Soil Vapor</u>: CVOCs were detected at concentrations above applicable standards in soil samples (central and northwestern portions of the site), groundwater samples (northwestern portion of the site), and soil vapor samples (throughout the site) during the RI. Supplemental sampling was conducted to investigate this AOC.

4.0 FIELD INVESTIGATION

The RI included a geophysical survey, soil boring advancement, monitoring well installation, soil vapor probe installation, and collection of soil, groundwater, soil vapor, and ambient air samples. Based on preliminary soil and groundwater results, supplemental sampling was performed to further delineate the nature and extent of CVOCs in soil and groundwater. A summary of samples collected is provided in Table 1, and sample locations are shown on Figure 5.

The RI consisted of the following:

- Geophysical survey to identify subsurface anomalies consistent with utilities, structures, physical obstructions, or unidentified USTs, and to pre-clear soil boring, soil vapor, and monitoring well locations.
- Advancement of 18 soil borings (SB06, SB06D, SB07 through SB12, SB12D, SB13 through SB15, SB15D, SB16 through SB19, and SB20D) and collection of 48 soil samples, plus three duplicate samples.
- Installation of 12 permanent groundwater monitoring wells (MW06, MW6D, MW07, MW08, MW09, MW10, MW12, MW12D, MW15D, MW18, MW20S, and MW20D) and collection of 12 groundwater samples, plus two duplicate samples.
- Installation of five sub-slab soil vapor points (SV01 through SV05) and collection of five soil vapor samples, plus one duplicate sample, and collection of five indoor air samples (IA01 through IA05) and two ambient air samples (AA01 and AA02).

Langan conducted the RI in accordance with NYCRR Title 6 Part 375 (6 NYCRR Part 375), the NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation (May 2010), the NYSDEC Draft BCP Guide (May 2004), the New York State Department of Health (NYSDOH) Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006), the NYSDEC-approved RIWP, dated November 23, 2015.

4.1 Geophysical Investigation

Prior to commencement of intrusive RI field activities (i.e., soil borings, well installation and soil vapor sampling), NOVA Geophysical & Environmental, Inc. (NOVA) of Douglaston, New York, conducted a geophysical survey under the supervision of a Langan field engineer on March 6, 2017. The survey included ground-penetrating radar (GPR) to identify potential USTs and locate buried utilities in the vicinity of each boring location. Borings were relocated as necessary to avoid subsurface utilities and anomalies. Copies of the geophysical survey report presenting findings is included in Appendix B.

4.2 Soil Investigation

4.2.1 Investigation Methodology

March 2017 RI

Fourteen soil borings, SB06 through SB19, were completed by AARCO Environmental Services Corp. (AARCO) between March 6 and 10, 2017. Boring locations were selected to provide sufficient site coverage and to evaluate the AOCs listed in Section 3.4. Twelve borings were advanced using a direct-push Geoprobe[®] 6610 DT, and two borings were advanced using a DeWalt jackhammer with a MacroCore attachment due to access constraints. Boring locations are presented on Figure 5.

Borings depths are summarized as follows:

- Boring SB10 was advanced to 10 feet bgs
- Borings SB08 and SB13 were advanced to 12 feet bgs
- Borings SB06, SB09, SB11, SB12, SB14, SB15, SB16, and SB17 were advanced to 16 feet bgs
- Boring SB07 was advanced to 28 feet bgs
- Borings SB18 and SB19 were advanced to 24 feet bgs

Continuous soil samples were collected from the surface to the final depth of each boring. Samples were collected from the Geoprobe[®] 6610 DT or the DeWalt Jackhammer into 4-foot-long acetate liners. The soil was screened for visual, olfactory, and instrumental evidence of environmental impacts, and was visually classified for soil type, grain size, texture, and moisture content. Instrument screening for the presence of VOCs was performed with a photoionization detector (PID) equipped with a 10.6-electron volt (eV) lamp. Boring logs documenting these observations are included in Appendix C.

Following sample collection, all borings were backfilled with sand and uncontaminated boring material or converted to groundwater monitoring wells. Excess soil was containerized in United Nations/Department of Transportation (UN/DOT)-approved 55-gallon steel drums with sealed lids in preparation for off-site disposal.

April 2017 Supplemental Investigation

Four additional borings (SB06D, SB12D, SB15D, and SB20D) were advanced by AARCO on April 28 and 29, 2017 using a Geoprobe 7822DT drill rig. The supplemental investigation was conducted to further investigate and delineate CVOC impacts identified during the RI and to obtain data necessary to evaluate in-situ remediation alternatives. Supplemental investigation boring depths are summarized below:

• Borings SB06D and SB12D were advanced to 30 feet bgs;

- Boring SB15D was advanced to 40 feet bgs; and
- SB20D was advanced to 55 feet bgs.

Continuous soil samples were collected from the surface to the final depth of each environmental boring. Samples were collected from the Geoprobe[®] 7822 DT into either 4-foot or 5-foot-long acetate liners. Samples were screened for visual, olfactory, and instrumental evidence of environmental impacts, and were visually classified for soil type, grain size, texture, and moisture content. Instrumental screening for the presence of VOCs was performed with a PID equipped with an 11.7 eV lamp. Oil-in-Soil dye kits were used to gauge the potential presence of dense non-aqueous phase liquid (DNAPL). Boring logs documenting these observations are included in Appendix C.

Following sample collection, all supplemental investigation borings were converted to groundwater monitoring wells. Excess soil was containerized in UN/DOT-approved 55-gallon steel drums with sealed lids in preparation for off-site disposal.

4.2.2 Sampling Methodology

March 2017 RI

Thirty-eight (38) soil samples, including two field duplicate samples, were collected for laboratory analysis. Two to three grab soil samples were collected from each boring location. One sample was collected from the upper two feet of historic fill material, a second sample was collected from the top two feet of the native layer, and the third sample was collected from the interval exhibiting the greatest degree of impacts based on field screening (i.e., odors and PID readings above background) or from the groundwater interface. Soil samples collected from each soil boring were analyzed for NYSDEC Part 375 VOCs by United States Environmental Protection Agency (EPA) Method 8260C, SVOCs by EPA method 8270D, pesticides via method 8081B, metals (including hexavalent chromium) by EPA methods 6010C/7473/7196A, and total cyanide by EPA method 9010C/9012B. A sample summary is provided as Table 1.

The samples were relinquished to a courier for delivery to York Analytical Laboratories, Inc. (York), NYSDOH Environmental Laboratory Approval Program (ELAP)-certified laboratories in Stratford, Connecticut under standard chain-of-custody protocol.

April 2017 Supplemental Investigation

Thirteen soil samples, including one field duplicate sample, were collected for laboratory analysis. Unless impacts were observed, two samples were collected per boring, one grab sample from the boring termination depth, and one composite sample from the screened interval of the well for remedial design considerations. In boring SB20D, four grab samples were collected to characterize and delineate the vertical extent of impacted soil. Grab soil samples collected from borings SB06D, SB12D, SB15D, SB20D were analyzed for NYSDEC Part 375 VOCs by EPA method 8260 analysis. Composite soil samples were analyzed for grain size, biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic carbon (TOC), ammonia, nitrate, nitrite, total phosphate, sulfate, alkalinity, total iron, and total manganese. A sample summary is provided as Table 1.

Samples submitted for VOC analysis were collected directly from the acetate liner via laboratorysupplied TerraCore[®] soil samplers. For all other analyses, the sample volume was homogenized and placed in appropriate laboratory-supplied. The sample containers were labeled, placed in a laboratory-supplied cooler and packed on ice (to maintain a temperature of 4±2°C). The samples were relinquished to a courier for delivery to Alpha Analytical Laboratories (Alpha), NYSDOH Environmental Laboratory Approval Program (ELAP)-certified laboratories Westborough, Massachusetts under standard chain-of-custody protocol.

4.3 Groundwater Investigation

4.3.1 Monitoring Well Installation and Development Methodology

March 2017 RI

Seven monitoring wells were installed by AARCO between March 6 and 10, 2017. Seven soil borings (SB06, SB07, SB08, SB09, SB10, SB12, and SB18) were converted to permanent monitoring wells. Six monitoring wells (MW06, MW07, MW08, MW09, MW12, and MW18) were constructed by inserting 2-inch diameter pre-pack wells with an outer layer of stainless steel mesh screen and silica sand over 0.010-inch slotted screens (up to 10 feet in length). MW10, located in the cellar, was constructed by inserting 10 feet of 1-inch diameter 0.01-inch slotted schedule 40 PVC well screen. Monitoring wells MW06, MW08, MW09, MW12, and MW18 were screened to straddle the groundwater interface. MW07 was screened below the water table (about 10 feet bgs) at 19 to 24 feet bgs to evaluate the petroleum-like impacts observed in soil within the screened interval.

April 2017 Supplemental Investigation

Four soil borings (SB06D, SB12D, SB15D, SB20D) were converted into deep permanent groundwater monitoring wells by AARCO between April 28 and 29, 2017. One additional shallow well was constructed (MW20S) as part of a well couplet to evaluate the vertical distribution of VOC-impacted groundwater. Five permanent groundwater monitoring wells were constructed by inserting 2-inch diameter 0.020-inch slotted schedule 40 polyvinyl chloride (PVC) well screens, with attached risers, into the boreholes. The annulus of each well was filled with No. 2 sand to about two feet above the top of the screen. Hydrated bentonite well seals were installed above the filter sand. Visual, olfactory, and/or PID readings indicative of petroleum impacts were apparent in boring SB20D to about 30 feet bgs; therefore, MW20D was screened between 20 and 30 feet bgs. MW20S was screened to straddle the water table between 8 and 18 feet bgs.

Evidence of a chemical or petroleum release was not apparent in borings SB06D, SB12D, or SB15D; therefore, MW06D, MW12D, and MW15D were screened between 20 and 25 feet. The annulus of each well was filled with #2 filter sand to about two feet above the top of the screen. Hydrated bentonite well seals were installed above the filter sand.

Following installation, each well was developed using a surge block and a submersible whale pump. Development water was placed into labeled drums and stored on-site pending off-site disposal. Monitoring well locations are provided on Figure 5 and monitoring well construction logs are included in Appendix D.

A Langan field scientist completed synoptic groundwater gauging of newly-installed monitoring wells on March 22, 2017 and again on June 23, 2017. The top of casing in groundwater monitoring wells was surveyed by Langan on March 15, 2017 and May 6, 2017. Groundwater elevations are presented in Table 2. A groundwater contour map based on the June 23, 2017 groundwater gauging event is presented as Figure 6.

4.3.2 Groundwater Sampling

Monitoring wells were sampled one week after development. Wells were sampled in general accordance with the EPA's low-flow groundwater sampling procedure to allow for collection of a representative sample ("Low Stress [low flow] Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells", EQASOP-GW 001, January 19, 2010). Prior to sample collection, groundwater was purged from each well until either groundwater parameters (pH, conductivity, turbidity, dissolved oxygen [DO], temperature, and oxidation-reduction potential [ORP]) had stabilized and turbidity measurements were below 50 Nephelometric Turbidity Units (NTU) or one hour had lapsed. The monitoring wells were purged and groundwater samples were collected using a submersible pump, with the exception of monitoring wells MW09 and MW10. Monitoring well MW10 was collected using a peristaltic pump and MW09 was collected using a bailer. Groundwater sampling logs are included in Appendix E.

March 2017 RI

Eight groundwater samples, including one field duplicate sample, were collected into laboratorysupplied glassware and picked up and delivered via courier service to York for laboratory analysis. Groundwater samples were analyzed for TCL VOCs by EPA Method 8260C, TCL SVOCs by EPA method 8270D, pesticides by EPA method 8081Band Target Analyte List (TAL) metals (dissolved) by EPA methods 6010C/7470. A sample summary is provided as Table 1.

April 2017 Additional Investigation

Six groundwater samples, including one field duplicate sample, were collected into laboratorysupplied glassware and delivered via courier service to Alpha for laboratory analysis. Groundwater samples were analyzed for TCL VOCs by EPA Method 8260C, nitrate, sulfate, ammonia, phosphate, and dehalococcoides (DHC). A sample summary is provided as Table 1.

4.4 Soil Vapor Investigation

NYSDEC DER-10 requires an assessment of soil vapor for contaminated sites to evaluate the health risk associated with potential exposure to VOCs through vapor intrusion into occupied spaces. Five sub-slab soil vapor sample points (SV01 through SV05) and one duplicate soil vapor sample point (DUP01) were installed during the RI. One ambient air sample (AA01) was also collected. Sampling locations are presented on Figure 5.

4.4.1 Sub-slab Soil Vapor Point Installation

Sub-slab soil vapor points were installed by AARCO under the supervision of a Langan field scientist between March 6 and March 10, 2017. AARCO used a Geoprobe[®] 6610 DT to install sub-slab soil vapor points ranging from about 5 feet bgs (SV02 through SV04) to 6 feet bgs (SV01). SV05 was installed to 5 feet bgs using a DeWalt Jackhammer.

The sub-slab soil vapor probes were installed in accordance with the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006). The sub-slab soil vapor point consisted of a stainless steel screen implant threaded into polyethylene tubing. The soil vapor implants were ¼-inch in diameter and about 6 inches in length. A sand filter pack was installed around the screen implant by pouring #2 Filpro sand into the annulus. The sand filter pack was placed to about 6 inches above the implant at soil vapor sample locations and to the bottom of the slab at the sub-slab soil vapor probe location. A hydrated bentonite slurry seal was installed above the sand pack. Sub-slab soil vapor point construction logs are provided in Appendix F.

4.4.2 Sub-Slab Soil Vapor and Air Sampling and Analysis

As a QA/QC measure, an inert tracer gas (helium) was introduced into an above-grade sampling chamber to ensure that the sub-slab soil vapor sampling points were properly sealed above the target sampling depth, thereby preventing subsurface infiltration of ambient air. Direct readings of helium of less than 5 percent of the shroud concentration prior to sampling were considered sufficient to verify a tight seal. All sampling points had sufficiently tight seals.

Each sub-slab soil vapor point was purged using a MultiRAE meter at a rate of 0.15 liters per minute (L/min) to evacuate a minimum of three sample tubing volumes prior to sample collection. The purged soil vapor was also monitored for VOCs and the value was recorded. After purging was complete, soil vapor samples were collected into laboratory-supplied, batch-certified 6-liter Summa[®] canisters that were calibrated for a sampling rate of about 0.2 L/min for 120 minutes of sampling. One ambient air sample was collected in conjunction with sub-slab soil vapor samples SV01, SV02, and SV04. The ambient air sample was collected outside, from about 3 feet above

sidewalk grade, and submitted to the laboratory for analysis for QA/QC purposes. Indoor air sampling was not included in the investigation scope outlined in the NYSDEC-approved RIWP. Sub-slab soil vapor and ambient air sampling logs are provided in Appendix F.

The canisters were labeled and delivered by courier to York under standard chain-of-custody protocol. Soil vapor samples were analyzed for VOCs by EPA Method TO-15.

4.5 Indoor Air Sampling

March 2018 Indoor Air Investigation

Indoor air sampling was conducted on March 28, 2018 in accordance with the NYSDEC- and NYSDOH-approved indoor air sampling scope. Five indoor air samples and one ambient air sample were collected at about 3 to 4 feet above ground (i.e., breathing height) to investigate soil vapor intrusion potential within the building and to evaluate potential matrix interferences, and external influences on soil vapor quality, respectively. Sampling locations are presented on Figure 5.

Indoor air and ambient air sampling was conducted in general accordance with the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006). Prior to sample collection, a NYSDOH Indoor Air Quality Questionnaire and Building Survey was completed to document the potential presence of equipment or chemicals in the building that could interfere with the laboratory analytical results. The building was screened using a MiniRAE 3000 PID to identify potential sources of organic vapors that may interfere with sampling.

Indoor air and ambient air samples were collected into laboratory-supplied 2.7-liter Summa canisters with flow controllers calibrated for an 8-hour sampling period. The labeled samples were submitted to Alpha via courier service under standard chain-of-custody protocol. Air samples were analyzed for VOCs by EPA Method TO-15. Indoor air and outdoor ambient air sampling logs and results of the chemical product inventory are provided in Appendix F.

4.6 Quality Control Sampling

Field blanks, trip blanks, field duplicate samples, MS/MSD samples and an ambient air sample were collected and submitted for laboratory analysis. QA/QC samples are summarized in Table 1 and include the following matrix-specific QA/QC samples:

Soil QA/QC samples

- Three duplicate samples;
- Four MS/MSD sample;
- Two field blank samples; and

• Three trip blank samples.

Groundwater QA/QC samples

- Two duplicate samples;
- Two MS/MSD samples;
- Three field blank samples; and
- Two trip blank samples.

Sub-Slab Soil Vapor QA/QC Samples

- One duplicate sample; and
- Two ambient air samples.

Indoor Air QA/QC Samples

• One ambient air sample.

Indoor Air Documentation Samples QA/QC Samples

• Three ambient air samples.

Field blanks were collected to determine the effectiveness of the decontamination procedures for the groundwater sampling equipment and the cleanliness of unused neoprene gloves and acetate liners used to collect soil samples. Field blank samples consisted of deionized, distilled water provided by the laboratory that has passed through the sampling apparatus. Field blank samples were analyzed for the same list of analytes as the corresponding sampling event and sample matrix.

MS/MSD samples were collected to assess the effect of the sample matrix on the recovery of target compounds or target analytes.

The field duplicates were collected to assess the precision of the analytical methods relative to the sample matrix. Duplicates were collected from the same material as the primary sample by splitting the volume of homogenized sample collected in the field into two sample containers.

The ambient air samples were collected to assess ambient air conditions and determine whether conditions existed at the site during sub-slab soil vapor and indoor air sampling that could have potentially interfered with sampling results. The ambient air samples were analyzed for the same parameter list as the sub-slab soil vapor and indoor air samples.

The trip blank samples were collected to assess the potential for contamination of the sample containers and samples during the trip from the laboratory, to the field, and back to the laboratory for analysis. Trip blanks contained about 40 milliliters of acidic water (doped with hydrochloric acid) that were sealed by the laboratory when the empty sample containers were shipped to the

field, and unsealed and analyzed by the laboratory when the sample shipment was received from the field. The trip blank samples were analyzed for VOCs.

4.7 Data Validation

Data from the RI was validated by a Langan data validator in accordance with EPA and NYSDEC validation protocols. Copies of the data usability summary reports (DUSRs) and the data validator's credentials are provided in Appendix G.

4.7.1 Data Usability Summary Report Preparation

A DUSR was prepared for each sampling matrix. The DUSR presents the results of data validation, including a summary assessment of laboratory data packages, sample preservation and chain of custody procedures, and a summary assessment of precision, accuracy, representativeness, comparability, and completeness for each analytical method. For the soil and groundwater samples, the following items were assessed:

- Holding times
- Sample preservation
- Sample extraction and digestion
- Laboratory blanks
- Laboratory control samples
- System monitoring compounds
- MS/MSD recoveries
- Field duplicate, trip blanks, and field blanks sample results

For the air samples, the following items were assessed:

- Holding times
- Canister certification
- Laboratory blanks
- Laboratory control samples
- System monitoring compounds
- Target compound identification and qualification
- Field duplicate sample results

Based on the results of data validation, the following qualifiers were assigned to the data in accordance with EPA's guidelines and best professional judgment:

- "U" The analyte was analyzed for but was not detected at a level greater than or equal to the reporting limit (RL) or the sample concentration or the sample concentration for results impacted by blank contamination.
- "J" The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- "UJ" The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise.
- "R" The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.

After data validation activities were complete, validated data was used to prepare the tables and figures included in this report.

4.8 Field Equipment Decontamination

Decontamination of down-hole drilling equipment occurred between each boring location, and consisted of cleaning the rods. The decontamination wastewater was contained within a wash pan, and transferred to 55-gallon drums for disposal.

Handheld sampling equipment including the groundwater interface probe was decontaminated by hand using an Alconox-based solution, and triple rinsed with distilled water. All liquids were temporarily contained in 5-gallon buckets. Decontamination wastewater was drummed for disposal.

4.9 Investigation-Derived Waste Management

Investigation-derived wastes (IDW) generated during the RI consisted of excess soil from soil borings, purging and development water from groundwater monitoring wells, and water used for equipment decontamination. IDW was transferred to 55-gallon drums, which were staged in a secured area on-site. Two drums of liquid waste and one drum of solid waste were generated during the March 2017 portion of the investigation and were transported for off-site disposal under standard manifest protocol by AARCO on April 13, 2017 to Dale Transfer Corp in West Babylon, NY. Five drums of liquid waste were generated during the supplemental investigation. The waste was characterized as spent solvent hazardous waste from a non-specific source (F002) and was transported for off-site disposal under hazardous waste manifest protocol (EPA Generator ID No. NYR000232116) by Clean Harbors Environmental Services, Inc. on June 23, 2017 to Clean Harbors El Dorado LLC in El Dorado, AR. Four drums of non-hazardous solid waste were generated during the supplemental investigation and were transported for off-site disposal under standard manifest protocol by Clean Harbors on June 23, 2017 to Spring Grove Resource Recovery, Inc. in Cincinnati, OH.

5.0 FIELD OBSERVATIONS AND ANALYTICAL RESULTS

This section summarizes the field observations and laboratory analytical results from the RI. Soil analytical results are compared to the NYSDEC Part 375 UU SCOs and CU SCOs; groundwater analytical results are compared to the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values (SGVs) for Class GA water; and sub-slab soil vapor sample results are compared to the ambient air sample results and NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York Decision Matrices. The nature and extent of contamination is discussed in Section 7.0.

A description of the soil, groundwater, and sub-slab soil vapor samples collected during the RI is provided in Table 1. Copies of the laboratory analytical data reports for data generated during the RI are provided in Appendix H. Summaries of the soil, groundwater, sub-slab soil vapor, and QA/QC sample analytical results for samples collected during the RI are provided in the following tables:

- Table 3: Soil Sample Analytical Detection Summary
- Table 4: Soil Design Criteria Sample Results Summary
- Table 5: Groundwater Sample Analytical Results Summary
- Table 6: Groundwater Design Criteria Sample Results Summary
- Table 7: Soil Vapor and Air Sample Analytical Results Summary
- Table 8: Air Sample Analytical Results Summary
- Table 9: Indoor Air Documentation Sample Results Summary
- Table 10: QA/QC Sample Analytical Results Summary

The following sections describe the field observations and analytical data associated with the RI.

5.1 Geophysical Investigation Findings

The geophysical survey identified two anomalies that were determined to be consistent with USTs: one anomaly in the area of suspected gasoline USTs in the northwestern portion of the site and one anomaly in the area of suspected fuel oil USTs in the southwestern portion of the site. The reported closed-in-place UST in the southeastern portion of the site was not detected during the survey, but access in that area of the site was limited by tenant storage. Several electrical, gas, sewer and water lines were found on the eastern part of the site. A copy of the March 14, 2017 Geophysical Engineering Survey Report is included in Appendix B.

5.2 Geology and Hydrogeology

Geologic and hydrogeologic observations made during the RI are provided below. A groundwater contour map is provided as Figure 6, and subsurface profiles are shown on Figure 7. Soil boring logs are provided in Appendix C.

5.2.1 Historic Fill

A historic fill layer was encountered beneath the 6- to 36-inch-thick concrete slab to depths ranging from about 8 feet bgs in the northeastern portion of the site at borings SB12, SB14, and SB16 to about 10 to 14 feet bgs throughout the rest of the site. The fill generally consists of brown, medium to fine sand with varying amounts of gravel, brick, concrete, asphalt, coal fragments, coal ash, slag, and wood. An area of predominantly coal fragments was observed below the cellar slab to a depth of about 7 feet in boring SB10, located in the partial cellar in the southeastern portion of the site. Hardened coal tar was observed within the fill layer in boring SB11, located in the southeastern portion of the site.

5.2.2 Native Soil Layers

The fill layer was underlain mainly by brown fine sand with varying amounts of silt and clay. In borings, SB09, SB11, and SB14 the fine sand was underlain by a 2-foot-thick brown clayey silt layer.

5.2.3 Bedrock

The USGS "Bedrock and Engineering Geologic Maps of New York County and Parts Kings and Queens Counties, New York, and Parts of Bergen and Hudson Counties, New Jersey" indicates that the bedrock underlying the site is part of the Hartland Formation and is between el -100 and -200 feet. Bedrock was not encountered during the RI.

5.2.4 Hydrogeology

Synoptic groundwater level measurements were collected on May 22 and June 23, 2017. Groundwater was encountered at elevations ranging from about el 2.16 to 3.12 feet, which roughly correspond to depths of about 9 to 10.5 feet bgs. The regional groundwater table is relatively flat with a slight gradient to the west towards the Gowanus Canal. A groundwater contour map is shown as Figure 6.

5.3 Soil Findings

5.3.1 Field Observations

Petroleum-like impacts, evidenced by odors, staining and PID readings above background levels, were apparent in 4 of 18 borings. The depth intervals at which petroleum-like odors were

August 16, 2019 Page 24

apparent, and the highest recorded PID readings for these intervals, are provided in the following table:

Soil Boring ID	Observed Fill Interval (feet bgs)	Petroleum-like Impact Depth Interval (feet bgs)	Max PID Reading	Soil Boring Location
SB07	0 – 13	11 – 24	4195 ppm	AOC 3 – Northwestern USTs
SB18	0 – 8	11 – 20	1493 ppm	AOC 3 – Northwestern USTs
SB19	0 – 14.5	13.5 – 20	1276 ppm	AOC 3 – Northwestern USTs
SB20D	0 – 13.5	12 – 19.5	1121 ppm	AOC 3 – Northwestern USTs

Coal tar-like odors were apparent during the 2015 Supplemental Investigation within the fill layer in the northwestern portion of the site, and during the RI within the fill layer in the southeastern portion of the site (SB11). DNAPL was not identified during the RI or previous investigations.

5.3.2 Analytical Results

Thirty-eight soil samples, including two field duplicate samples, were collected and analyzed for VOCs, SVOCs, metals, pesticides, and total cyanide. Soil samples were not analyzed for PCBs during the RI; however, they will be analyzed as part of waste characterization sampling prior to site remediation. Eight additional soil samples, including one duplicate sample, were collected and analyzed for VOCs; and five additional soil samples were collected and analyzed for grain size, BOD, COD, TOC, ammonia, nitrate, nitrite, total phosphate, total iron, total manganese, sulfate, and alkalinity to evaluate remedial alternatives.

A summary of laboratory detections for soil samples collected during the RI with comparisons to UU and CU SCOs is provided in Table 3. A summary of laboratory results for the treatability samples is provided in Table 4. Full laboratory reports for the RI are included in Appendix H. Soil sample results that exceed SCOs for samples collected during the RI are shown on Figure 8. The following contaminants were detected at concentrations exceeding NYSDEC Part 375 CU and/or UU SCOs:

VOCs

Eight petroleum-related VOCs and two CVOCs were detected at concentrations above UU SCOs in soil samples collected at depths ranging from 1 to 24 feet bgs. VOC concentrations exceeding SCOs were identified in borings SB07, SB09, SB18, SB19, and SB20D. The list below provides a summary of each VOC that exceeded the UU SCO. The concentration ranges provided represent concentrations detected above the UU SCO (the UU SCO for each compound is shown in parentheses):

Petroleum-related VOCs

• 1,2,4-Trimethylbenzene (1,2,4-TMB): 52 milligrams per kilogram (mg/kg) in SB20D_17-19 to 100 mg/kg in SB07_23-24 (UU SCO of 3.6 mg/kg);

- 1,3,5-Trimethylbenzene (1,3,5-TMB): 18 mg/kg in SB20D_17-19 to 29 mg/kg in the duplicate of sample SB07_23-24 (UU SCO of 8.4 mg/kg);
- 2-Butanone: 0.19 mg/kg in SB20D_0-2 (UU SCO of 0.12 mg/kg);
- Benzene: 0.55 mg/kg in SB07_13-14 to 2.1 mg/kg in SB20D_17-19 (UU SCO of 0.06 mg/kg);
- Ethyl Benzene: 2.2 mg/kg in SB07_13-14 to 32 mg/kg in the duplicate of sample SB07_23-24 (UU SCO of 1 mg/kg);
- n-Propylbenzene: 6.9 mg/kg in SB20D_17-19 to 22 mg/kg in SB07_13-14 (UU SCO of 3.9 mg/kg);
- Toluene: 5.3 mg/kg in SB07_23-24 to 5.5 mg/kg in the duplicate of sample SB07_23-24 (UU SCO of 0.7 mg/kg);
- Total Xylenes: 40 mg/kg in SB20D_17-19 to 250 mg/kg in the duplicate of sample SB07_23-24 (UU SCO of 0.26 mg/kg).

<u>CVOCs</u>

- cis-1,2-Dichlorothene (cis-1,2-DCE): 0.57 mg/kg in the duplicate of sample SB07_23-24 to 3.7 mg/kg in SB07_23-24 (UU SCO of 0.25 mg/kg);
- Trichloroethylene (TCE): 2.3 mg/kg in the duplicate of sample SB19_20-21 to 5.1 mg/kg in SB09_1-2 (UU SCO of 0.47 mg/kg).

VOCs did not exceed CU SCOs in any sample.

SVOCs

Seven SVOCs were detected at concentrations above the UU and/or CU SCOs in soil samples collected from surface grade to 8 feet bgs. SVOC concentrations exceeding the UU SCOs were detected soil borings SB08, SB11, SB12, SB14, and SB17. In addition, SVOCs were detected during Langan's limited subsurface investigation in borings SB02 and SB04. The list below provides a summary of each SVOC that exceeded the UU SCO and/or CU SCO. The concentration ranges represent concentrations detected above the UU SCO and/or CU SCO (the UU and CU SCOs for each compound are shown in parentheses):

- Benzo(a)anthracene: 2.46 mg/kg in SB12_1-2 to 8.42 mg/kg in SB17_7-8 (UU of 1 mg/kg; CU SCO of 5.6 mg/kg);
- Benzo(a)pyrene: 2.21 mg/kg in SB12_1-2 to 12.5 mg/kg in SB11_2-4 (UU and CU SCO of 1 mg/kg);
- Benzo(b)fluoranthene: 2.39 mg/kg in SB12_1-2 to 9.66 mg/kg in SB11_2-4 (UU SCO of 1 mg/kg; CU SCO of 5.6 mg/kg)

- Benzo(k)fluoranthene: 1.97 mg/kg in SB12_1-2 to 11.3 mg/kg in SB11_2-4 (UU SCO of 0.8 mg/kg; CU SCO of 56 mg/kg)
- Chrysene: 2.76 mg/kg in SB12_1-2 to 8.82 mg/kg in SB17_7-8 (UU SCO of 1 mg/kg; CU SCO of 56 mg/kg)
- Dibenzo(a,h)anthracene: 0.596 mg/kg in SB12_1-2 to 2.12 mg/kg in SB17_7-8 (UU SCO of 0.33 mg/kg; CU SCO of 0.56 mg/kg)
- Indeno(1,2,3-cd)pyrene: 1.25 mg/kg in SB12_1-2 to 8.59 mg/kg in SB11_2-4 (UU SCO of 0.5 mg/kg; CU SCO of 5.6 mg/kg)

Other SVOCs were detected in soil samples, but at concentrations below UU SCOs.

Metals

Metals were detected at concentrations above UU and/or CU SCOs to depths of up to 11 feet bgs in 12 of 14 soil borings with samples analyzed for metals. The list below provides a summary of each metal that was detected at a concentration above the UU SCO and/or CU SCO. The concentration ranges provided represent concentrations detected above the UU SCO (the UU and CU SCOs for each compound are shown in parentheses).

- Arsenic:14.1 mg/kg in SB14_1-2 to 203 mg/kg in SB16_9-11 (UU SCO of 13 mg/kg; CU SCO of 16 mg/kg)
- Barium: 397 mg/kg in SB14_1-2 to 1,170 mg/kg in SB16_9-11 (UU SCO of 350; CU of 400 mg/kg)
- Cadmium: 6.48 in SB16_9-11 (UU SCO of 2.5 mg/kg; CU SCO of 4.3 mg/kg)
- Trivalent chromium: 69.14 mg/kg in SB13_1-2 (UU SCO of 30 mg/kg; CU SCO of 1500 mg/kg)
- Hexavalent chromium: 1.07 mg/kg in SB06_2-3 to 3.86 mg/kg in SB13_1-2 (UU SCO of 1 mg/kg; CU SCO of 400 mg/kg)
- Copper: 50.7 mg/kg in SB08_1-2 to 242 mg/kg in SB16_9-11 (UU SCO of 50 mg/kg; CU SCO of 270 mg/kg)
- Lead: 64.8 mg/kg in SB17_15-16 to 1080 mg/kg in SB16_9-11(UU SCO of 63 mg/kg; CU SCO of 1,000 mg/kg)
- Mercury: 0.194 mg/kg in SB06_2-3 to 2.96 mg/kg in SB17_1-2 (UU SCO of 0.18 mg/kg; CU SCO of 2.8 mg/kg)
- Nickel: 40.6 mg/kg in SB15_7-8 (UU SCO of 30 mg/kg; CU SCO of 310 mg/kg);
- Selenium: 5.09 mg/kg in SB15_7-8 to 63.1 mg/kg in SB16_9-11 (UU SCO of 3.9 mg/kg; CU SCO of 1,500 mg/kg)

 Zinc: 125 mg/kg in SB08_1-2 to 577 mg/kg in SB16_9-11 (UU SCO of 109 mg/kg; RRU and CU SCO of 10,000 mg/kg)

Pesticides

Pesticides were not detected at concentrations above the CU SCOs. Two pesticides were detected at concentrations above UU SCOs in boring SB13. The concentrations provided represent concentrations detected above the UU SCO (the UU SCOs for each compound are shown in parentheses).

- 4,4'-DDT: 0.00491 mg/kg in SB13_1-2 (UU SCO of 0.0033 mg/kg)
- alpha-Chlordane: 0.28 mg/kg in SB13_1-2 (UU SCO of 0.094 mg/kg)

Total Cyanide

Cyanide was not detected in any soil samples.

5.4 Groundwater Findings

5.4.1 Field Observations

Monitoring wells were gauged for free product with an oil-water interface probe. Free product was not detected in monitoring wells. Monitoring wells MW07, MW18, MW20S, and MW20D exhibited petroleum-like odors and PID headspace readings between 31.4 and 630 ppm (highest reading in MW20S) during sampling.

5.4.2 Analytical Results

Eight groundwater samples, including one duplicate sample, were collected during the RI and analyzed for VOCs, SVOCs, pesticides, and dissolved metals. Six additional groundwater samples, including one duplicate sample, were collected from monitoring wells MW06D, MW12D, MW15D, MW20S, and MW20D and analyzed for VOCs and groundwater treatability design criteria (ammonia, nitrate, phosphate, sulfate, and Dehalococcoides).

Full laboratory reports for the RI are included in Appendix H. A summary of the groundwater sample laboratory detections compared to the TOGS Class GA SGVs is presented in Table 5. Groundwater design criteria results are summarized in Table 6. Groundwater sample locations and results that exceed the TOGS Class GA SGVs are presented in Figures 9A and 9B. The following is a summary of the groundwater sample results that exceed the SGVs organized by analytical parameter.

VOCs

Groundwater samples collected from all wells except MW09, MW10, and MW12D, had detections of petroleum-related VOCs and/or CVOCs at concentrations above TOGS SGVs for

Class GA drinking water. The following concentration ranges represent concentrations detected above the SGVs (the SGV for each compound is shown in parentheses):

Petroleum-Related VOCs

- 1,2,4-TMB: 6.2 μg/L in MW15D_050617 to 1,600 μg/L in MW18_032217 and MW07_032217 (SGV of 5 μg/L);
- 1,2,4,5-Tetramethylbenzene: 57 μg/L in MW06_031617 to 73 μg/L in MW20S_050617 (SGV of 5 μg/L);
- 1,3,5-TMB: 250 μg/L MW20S_050617 to 470 μg/L in MW07_032217 (SGV of 5 μg/L);
- Acetone: 71 μg/L in MW20S_050617 to 120 μg/L in MW18_032217 and MW20D_050617 (SGV of 50 μg/L);
- Benzene: 70 μg/L in MW06_031617 to 3500 μg/L MW18_031217 (SGV of 1 μg/L);
- Ethyl benzene: μg/L 110 μg/L in MW20S_050617 to 2000 μg/L in MW07_032217 (SGV of 5 μg/L);
- Isopropylbenzene: 34 μg/L in MW20S_050617 to 160 μg/L in MW18_032217 (SGV of 5 μg/L);
- Naphthalene: 120 $\mu\text{g/L}$ in MW20S_050617 to 360 $\mu\text{g/L}$ in MW20D_050617 (SGV of 10 $\mu\text{g/L});$
- n-Butylbenzene: 8.3 μg/L in MW06_031617 to 62 μg/L in MW18_032217 (SGV of 5 μg/L);
- n-Propylbenzene: 32 μg/L in MW20S_050617 to 220 μg/L in MW18_032217 (SGV of 5 μg/L);
- *o*-Xylene: 31 μg/L in MW20S_050617 to 1300 μg/L in MW07_032217 (SGV of 5 μg/L);
- *p* & *m*-Xylenes: 5.8 μg/L in MW06_031617 to 5600 μg/L in MW07_032217 (SGV of 5 μg/L);
- *p*-Isopropyltoluene: 10 μg/L in MW20S_050617 to 24 μg/L in MW18_032217 (SGV of 5 μg/L);
- sec-Butylbenzene: 9.6 $\mu\text{g/L}$ in MW20S_050617 to 23 $\mu\text{g/L}$ in MW18_032217 (SGV of 5 $\mu\text{g/L});$
- Toluene: 9.8 μg/L in MW20S_050617 to 740 μg/L in MW07_032217 (AWQS of 5 μg/L);

<u>CVOCs</u>

1,2,3-Trichloropropane: 23 μg/L in MW20S_050617 to 34 μg/Lin MW20D_050617 (SGV of 0.04 μg/L);

- cis-1,2-DCE: 20 μg/L in MW15D_050617 to 4900 μg/L in MW07_032217 (SGV of 5 μg/L);
- Vinyl chloride (VC): 2.8 μg/L in MW15D_050617 to 190 μg/L in MW07_032217 (SGV of 2 μg/L);
- TCE: 5.4 µg/L in GWDUP01_031617 to 1300 µg/L in MW18_032217 to (SGV of 5 µg/L);

SVOCs

Groundwater samples collected from monitoring wells MW06, MW07, MW08, and MW18 had detections of one or more SVOC at concentrations above TOGS SGVs for Class GA drinking water. The following concentration ranges represent concentrations detected above the SGVs (the SGV for each compound is shown in parentheses):

- Benzo(a)anthracene: 0.123 $\mu g/L$ in the duplicate of sample MW08_031617 (SGV of 0.002 $\mu g/L)$
- Benzo(a)pyrene: 0.138 μg/L in the duplicate of sample MW08_031617 (SGV of nondetect)
- Benzo(b)fluoranthene: 0.108 µg/L in the duplicate of sample MW08_031617 (SGV of 0.002 µg/L)
- Benzo(k)fluoranthene: 0.138 µg/L in the duplicate of sample MW08_031617 (SGV of 0.002 µg/L)
- Chrysene: 0.131 µg/L in the duplicate of sample MW08_031617 (SGV of 0.002 µg/L)
- Indeno(1,2,3-cd)pyrene: 0.0462 μg/L in the duplicate of sample MW08_031617 (SGV of 0.002 μg/L)
- Naphthalene: 19.4 $\mu g/L$ in MW06_031617 to 427 $\mu g/L$ in MW18_032217 to (SGV of 10 $\mu g/L)$

Dissolved Metals

Groundwater samples collected from monitoring wells MW06, MW07, MW08, MW09, MW10, MW12, and MW18 were analyzed for dissolved metals. At least one metal was detected above the Class GA SGVs in all wells except MW09. The following concentration ranges were detected above SGVs (the SGV for each analyte is shown in parentheses):

- Antimony: 3.09 μg/L in MW07_032217 (SGV of 3 μg/L);
- Arsenic: 37.2 μg/L in MW07_032217 to 38.2 μg/L in MW07_032217 (SGV of 25 μg/L);
- Magnesium: 37600 μg/L in MW12_031617 to 54100 μg/L in MW18_032217 to (SGV of 35000 μg/L);
- Manganese: 413 μg/L in MW07_032217 to 882 μg/L in MW18_032217 (SGV of 300 μg/L);

- Selenium: 16.2 μg/L in the duplicate of sample MW08_031617 to 20 μg/L in MW12_031617 (SGV of 10 µg/L)
- Sodium: 37,700 μg/L in MW12_031617 to 197,000 μg/L in MW10_032217 (SGV of 20,000) $\mu q/L$)

Pesticides

Pesticides were not detected at concentrations above TOGS SGVs Class GA in any of the groundwater samples.

5.5 Soil Vapor Findings

Five sub-slab soil vapor samples, one duplicate sub-slab soil vapor sample, and one ambient air sample were collected during the RI and analyzed for VOCs. Sub-slab soil vapor sample results were compared to background concentrations detected in the ambient air sample and to the Decision Matrices included in the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York Soil Vapor.

Full laboratory reports for the RI are included in Appendix H. A summary of the sub-slab soil vapor sample laboratory detections compared to the background ambient air sample concentrations is presented in Table 7. Sub-slab soil vapor and air sample locations and results that exceed their respective background ambient air sample concentration are presented in Figure 10.

The total VOC concentration in the ambient air sample (AA01_070616) was 19.75 micrograms per cubic meter (µg/m³). The total VOC concentration in the sub-slab soil vapor samples ranged from 738 µg/m³ in SV01 to 39,807 µg/m³ in SV03.

Nineteen VOCs were detected in sub-slab soil vapor samples at concentrations greater than ambient air include:

- 1,2,4-TMB •
- 1,3,5-TMB •
- 1,4-Dichlorobenzene •
- 2-Butanone
- Acetone •
- Benzene •
- Carbon disulfide

- Chloroform
- cis-1,2-DCE Cyclohexane
- Ethyl benzene
- •
- n-Hexane
- o-Xylene •

Of the 19 compounds detected at concentrations greater than ambient air, NYSDOH Decision Matrices are provided for three, including cis-1,2-DCE, PCE, and TCE.

 cis-1,2-DCE was detected at concentrations ranging from 38 μg/m³ at SV03 to 95 μg/m³ at SV04. The NYSDOH Decision Matrix A recommends mitigation for sub-slab cis-1,2-DCE concentrations greater than 60 µg/m³.

- p- & m- Xylenes
- p-Ethyltoluene •
- Tetrachloroethylene (PCE)
- TCE
- Toluene

n-Heptane

- PCE was detected at concentrations ranging from 38 μg/m³ at SV01 to 440 μg/m³ at SV04. The NYSDOH Decision Matrix B recommends actions ranging from "no further action" to mitigation for sub-slab PCE concentrations between 100 and 1,000 μg/m³.
- TCE was detected at concentrations ranging from 450 μg/m³ at SV01 to 39,000 μg/m³ at SV03. The NYSDOH Decision Matrix A recommends mitigation for sub-slab TCE concentrations greater than 60 μg/m³.

5.6 Indoor Air Findings

Five indoor air samples and one ambient air sample were collected and analyzed for VOCs. Indoor air concentrations were compared to NYSDOH Air Guidance Values (AGV) for indoor air and to background concentrations detected in the outdoor ambient air sample.

Full laboratory reports for the RI are included in Appendix H. A summary of the indoor air sample laboratory detections compared to NYSDOH AGVs and background outdoor ambient air sample concentrations is presented in Table 8. Indoor air sample locations and results that exceed the comparison criteria are presented in Figure 10.

The total VOC concentration in the ambient air sample (AA02_032818) was 17.312 μ g/m³. The total VOC concentration in the indoor air samples ranged from 76.95 μ g/m³ in IA05 to 272.499 μ g/m³ in IA03.

Twenty-four VOCs were detected in the indoor air samples at concentrations greater than outdoor ambient air:

- 1,2,4-TMB
- 2,2,4-Trimethylpentane
- 2-Butanone
- Acetone
- Benzene
- Carbon tetrachloride
- Chloroform
- Chloromethane

- cis-1,2-DCE
- Cyclohexane
- Dichlorodifluoromethane
- Ethanol
- Ethyl Acetate
- Ethylbenzene
- n-Heptane
- Isopropanol

- n-Hexane
- o-Xylene
- p- & m-Xylene
- Styrene
- PCE
- Toluene
- TCE
- Trichlorofluoromethane

One compound, TCE, was detected in all indoor air samples at concentrations exceeding the NYSDOH AGV (2 μ g/m³) ranging from 2.9 μ g/m³ in IA05 to 23.9 μ g/m³ in IA03.

5.7 Quality Control Results

Duplicate, field blank, trip blank, and MS/MSD samples were collected during the RI and are listed in Table 1. The duplicate, field blank, and MS/MSD samples for soil and groundwater were collected at a frequency of 1 per 20 primary samples. Quality control sample results were

evaluated during data validation. The analytical results of field blanks and trip blank samples are summarized in Table 9.

5.8 Data Usability

Category B laboratory reports for the soil, groundwater, sub-slab soil vapor, indoor air and ambient air samples were provided by York and Alpha and were forwarded to Langan's data validator for all samples collected during the RI. Copies of the DUSRs are provided in Appendix G. The results of the data validation review are summarized below.

The data were determined to be mostly acceptable.

- Completeness for the groundwater laboratory report, defined as the percentage of analytical results that are judged to be valid, is 100%.
- Completeness for the soil laboratory report, defined as the percentage of analytical results that are judged to be valid, is 99%. The following major deficiency was noted: Sample SB10_1-2 displayed internal standard area counts less than the rejection threshold for chlorobenzene-d5 at 19% and 1,2-dichlorobenzene-d4 at 11%. The associated non-detect sample results were qualified as rejected and positive detections are qualified as estimated.
- Completeness for the sub-slab soil vapor laboratory report, defined as the percentage of analytical results that are judged to be valid, is 94%. The following major deficiency was noted: Sample SV02_030717 displayed an internal standard area count less than the lower control limit for bromochloromethane at 28%. The associated positive detections for compounds quantitated by bromochloromethane were qualified as "J" and non-detect results were rejected.
- Completeness for the indoor air laboratory report, define as the percentage of analytical results that are judged to be valid, is 100%

5.9 Evaluation of Potential Areas of Concern

This section discusses the results of the RI with respect to the five AOCs described in Section 3.4. A comparison to the UU SCOs and the CU SCOs was prepared to evaluate whether an unrestricted land use cleanup is practical. AOC locations are shown on Figure 5.

5.9.1 AOC-1: Historic Fill

AOC-1 represents a layer of historic fill material identified in all borings, ranging in depth from below the building slab to about 8 to 14 feet bgs. Contaminants typically associated with historic fill in soil and groundwater include SVOCs, pesticides, and metals.

A summary of the findings associated with AOC-1 is presented below:

AOC-1 Soil

Fill material generally consists of brown fine sand with varying amounts of medium sand, brick, coal, coal ash, concrete, and wood. Hardened tar-like material with a moth ball-like odor was encountered within historic fill material within the northwest and southeast portions of the site. Nineteen (19) samples were collected from the historic fill layer. Sample results from historic fill are summarized as follows:

- VOCs were not detected at concentrations exceeding CU SCOs. TCE was detected at concentrations above the UU SCO in samples SB09_1-2 and SB20D_0-2. The VOC 2-butanone was detected in sample SB20D_0-2 above the UU SCO. The TCE detection is likely related to the historical uses of the site, and not the condition of the historic fill.
- SVOCs, particularly the PAHs, were detected at concentrations exceeding the UU SCOs (benzo(k)fluoranthene and chrysene) and CU SCOs (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene) in five samples (SB08_1-2, SB11_2-4, SB12_1-2, SB14_1-2, and SB17_7-8). The highest PAH concentrations coincided with areas where hardened tar-like material was encountered.
- Metals were detected in historic fill at concentrations exceeding the UU SCOs (cadmium, copper, hexavalent chromium, nickel, selenium, trivalent chromium, and zinc) and CU SCOs (arsenic, barium, lead, and mercury) in 19 samples (SB06_2-3, SB07_4-5, SB08_1-2, SB08_7-8, SB10_6-7, SB10_9-10, SB11_2-4, SB12_1-2, SB13_1-2, SB13_9-10, SB14_1-2, SB15_1-2, SB15_7-8, SB16_1-2, SB16_9-11, SB17_1-2, SB17_7-8, SB17_15-16, SB19_10-11) collected from the site. Of the samples with metal concentrations exceeding UU SCOs, samples SB10_10-11, SB17_15-16, and SB19_10-11 were within the native soil layer.
- Two pesticides, 4,4'-DDT and alpha-chlordane, were detected at concentrations exceeding the UU SCOs in one sample, SB13_1-2.

AOC-1 Groundwater

Six SVOCs, including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene chrysene, and indeno(1,2,3-cd)pyrene, which were detected in soil samples at concentrations above UU SCOs, were detected at concentrations above TOGS Class GA SGVs in the sample collected from monitoring will MW08. Naphthalene, which was detected in historic fill samples in the northwestern and southwestern portions of the site, was detected in monitoring wells MW06, MW07, MW18, MW20S, and MW20D. The source of SVOCs is either historic fill material or tar-like material that was detected during the RI. Petroleum-related VOCs and CVOCs were detected at concentrations above TOGS Class GA SGVs in multiple groundwater samples, but are not related to the historic fill on the site.

Dissolved arsenic and selenium were detected at concentrations exceeding the TOGS Class GA SGV in groundwater samples. These metals were also detected in historic fill material. In addition, the metals antimony, magnesium, manganese, and sodium were detected in groundwater at concentrations above TOGS Class GA SGVs. The probable source of these metals is the Gowanus Canal, a brackish water body located about 350 feet to the west of the site.

AOC-1 Conclusions

- Historic fill material was identified from the surface to depths of up to 14 feet bgs and is ubiquitous across the site. Hardened, tar-like material was encountered within historic fill material at borings SB02 and SB11.
- Metals and SVOCs, typically polycyclic aromatic hydrocarbons (PAH), were detected at concentrations above CU SCOs throughout the historic fill layer and were generally within the concentration range typically found in historic fill material in New York City.
- PAH concentrations atypical of historic fill material were detected in samples from borings SB01 and SB02, advanced within the northwest portion of the site during the May 2015 investigation, and SB11 advanced within the southeast portion of the site during the RI, are associated with tar-like material observed in those borings.
- Several metals, including arsenic, barium, cadmium, copper, hexavalent chromium, lead, mercury nickel, selenium, trivalent chromium, and zinc, are constituents of historic fill material and were detected at concentrations greater than applicable standards. Dissolved arsenic and selenium were also detected in groundwater and historic fill material is a possible source.

5.9.2 AOC-2: Petroleum Spill in the Southeastern Portion of the Site

AOC-2 represents the open petroleum spill in the southeastern portion of the site. The site was listed in the NYSDEC Leaking Underground Storage Tanks database (Spill No. 9412605) because of an unregistered 3,500-gallon fuel oil tank, which failed a tank tightness test in 1994.

Soil borings SB10 and SB11, monitoring well MW10, and sub-slab soil vapor point SV05 were located in AOC-2. A summary of findings associated with AOC-2 is presented below:

AOC-2 Soil, Groundwater, and Sub-Slab Soil Vapor

The geophysical survey did not identify evidence of a UST in the southeastern portion of the site. Boring SB11 was located west of the suspected closed-in-place UST, and boring SB10 was located east of the suspected closed-in-place UST and within the partial cellar. The fill material in boring SB10 primarily consisted of coal, and hardened tars were identified within the fill layer in boring SB11. No evidence of petroleum-like impacts, such as staining or petroleum-like odor, were apparent in either soil boring. PID readings above background, up to 35 ppm, were identified in boring SB10 at 4 to 7 feet bgs. A mothball-like odor was identified in boring SB11 from 7 to 9 feet bgs.

No VOCs were detected in soil samples collected from SB10 and SB11 at concentrations above UU SCOs. Multiple SVOCs were detected in sample SB11_2-4 at concentrations above UU and/or CU SCOs, but the detected SVOCs were PAHs attributed to the quality of historic fill.

No VOCs or SVOCs were detected in monitoring well MW10 at concentrations above TOGS Class GA SGVs.

Multiple petroleum-related VOCs, including cyclohexane, ethyl benzene, n-heptane, xylenes, and toluene, were detected in sub-slab soil vapor sample SV05 at concentrations above the ambient air sample. In addition, 1,4-dichlorobenzene, which is associated with a mothball-like odor, was detected in SV05 at a concentration above the ambient air sample.

AOC-2 Conclusions

No evidence of a petroleum spill was apparent in AOC-2.

5.9.3 AOC-3: Potential UST – Northwestern Portion of the Site

AOC-3 represents the suspected USTs in the northwestern portion of the site. Sanborn Maps dated 1938 and 1950 identified two gasoline storage tanks of unknown capacity associated with the former Coca-Cola Bottling Co. near the northwestern corner of the site.

AOC-3 investigation locations include:

- May 2015 soil borings SB01, SB02, and SB03, and RI soil borings SB06, SB06D, SB07, SB18, SB19, and SB20D.
- Monitoring wells MW06, MW06D, MW07, MW18, MW20S, and MW20D.
- Sub-slab soil vapor point SV01

AOC-3 UST

The geophysical survey identified an anomaly consistent with one or more USTs in the northwestern portion of the site. The anomaly was about 16 feet long by 10 feet wide.

AOC-3 Soil

Petroleum-like impacts, including staining and/or odor, and PID readings up to 4,195 ppm, were apparent in soil borings SB07, SB18, SB19, and SB20D between about 10 and 24 feet bgs. Observations of staining were limited to about 10 to 15 feet bgs. A naphthalene-like odor and PID readings up to 168 ppm were apparent in borings SB01, SB02, and SB03, but these findings coincided with tar-like material within the historic fill layer (0 to 8 feet bgs).

Petroleum-related VOCs, including 1,2,4-TMB, 1,3,5-TMB, benzene, toluene, ethyl benzene, xylenes (BTEX), and n-propylbenzene, were detected at concentrations above UU SCOs in samples collected from boring SB07 between 13 and 24 feet bgs, and boring SB20D at 17 to 19 feet bgs. The CVOC cis-1,2-DCE was detected in samples SB07_23-24, SB18_23-24 at concentrations above the UU SCO, and the CVOC TCE was detected in sample SB19_20-21 at a concentration above the UU SCO.

Sixteen SVOCs were detected at concentrations above the UU and/or CU SCOs in sample SB02_5-6, where tar-like impacts were identified within historic fill.

AOC-3 Groundwater

Petroleum-related VOCs were detected in monitoring wells MW06, MW07, MW15, MW18, MW20S, and MW20D at concentrations above their respective TOGS Class GA SGVs. Total petroleum-related VOC concentrations are summarized in the below table.

		Total Petroleum-
	Screened Interval	Related VOCs
Well ID	(feet bgs)	(µg/l)
MW06	8-18	480.2
MW07	19-24	13,764
MW18	8-18	14,042
MW20S	8-18	1,678.2
MW20D	20-30	5,509

The petroleum-related VOC concentrations were highest in wells MW07 and MW18, which were located northeast of the suspected UST area. Petroleum-like impacts were not apparent in SB06D/MW-06D, SB-13, and SB-17; these boring locations define the extent of petroleum-impacted material.

CVOC concentrations in site groundwater were highest in AOC-3; specifically in monitoring wells MW07 and MW20D, which were screened below the groundwater table at 19 to 24 feet bgs and 20 to 30 feet bgs, respectively.

Naphthalene was detected in monitoring wells MW06, MW07, MW18, MW20S, and MW20D at concentrations above TOGS Class GA SGVs. The source of naphthalene in groundwater is historic fill material.

AOC-3 Sub-slab Soil Vapor

PCE, TCE and petroleum-related VOCs were detected in the sample collected from sub-slab soil vapor point SV01 at concentrations above ambient air sample concentrations.

AOC-3 Conclusions

Based on the results of the investigation within AOC-3, there was likely a release from the suspected UST(s) that impacted soil, groundwater, and sub-slab soil vapor in the northwestern portion of the site. The greatest degree of impacts was observed to the east of the UST area. The limits of AOC-3 are defined by SB-06D/MW-06D, SB-13, SB-12/MW-12, SB16, and SB-17.

5.9.4 AOC-4: Potential UST – Southwestern Portion of the Site

During the May 2015 Limited Subsurface Investigation, an anomaly consistent with USTs was identified in the southwestern portion of the site. AOC-4 investigation locations include May 2015 soil borings SB04 and SB05, RI soil boring SB08, monitoring well MW08, and sub-slab soil vapor point SV02.

AOC-4 Soil, Groundwater, and Sub- Slab Soil Vapor

A geophysical survey was conducted during the RI and identified the anomaly in the southwestern portion of the site. Borings SB04 and SB05 were advanced north and south of the anomaly, respectively, and boring SB08 was advanced west (downgradient) of the anomaly. No petroleum-like impacts were noted in any of the AOC-4 borings. Historic fill material consisting of fine sand with varying amounts of brick, coal, and coal ash was observed to about 6 to 8 feet bgs in all three borings.

SVOCs and metals were detected in soil samples at concentrations above the UU SCOs within the historic fill layer in all three borings. The concentrations were generally consistent with historic fill quality throughout the site.

No free product, sheen or odors were apparent in monitoring well MW08. TCE was detected in the groundwater sample collected from MW08 at a concentration above the TOGS Class GA SGV. Multiple SVOCs were detected in MW08 above the TOGS Class GA SGVs. Historic fill material is a possible source of the SVOC detections in groundwater; however, SVOCs in MW08 may have resulted from entrained sediment in the sample.

PCE, TCE and petroleum-related VOCs were detected in the sample collected from sub-slab soil vapor point SV02 at concentrations above ambient air sample concentrations.

AOC-4 Conclusions

Based on the results of the investigation within AOC-4, one or more USTs may be present in the southwestern portion of the site. No evidence of a petroleum release was identified in AOC-4.

5.9.5 AOC-5: Chlorinated Volatile Organic Compound (CVOC) Impacts to Soil, Groundwater, and Sub-Slab Soil Vapor

AOC-5 was added to the list of AOCs based on the results of the RI sampling conducted in March 2017. One or more CVOCs (1,2,3-trichloropropane, cis-1,2-DCE, TCE, PCE, and VC) were

detected in groundwater samples from monitoring wells MW07, MW08, MW12, and MW18 at concentrations above the TOGS Class GA SGVs during the March 2017 sampling event. In addition, CVOCs were detected in all five sub-slab soil vapor samples at concentrations exceeding the ambient air sample concentrations, and multiple CVOCs were detected in sub-slab soil vapor at concentrations at which mitigation is recommended based on the NYSDOH Decision Matrices.

The supplemental investigation included the following investigation locations:

- Soil borings SB06D, SB12D, SB15D, and SB20D
- Monitoring wells MW06D, MW12D, MW15D, MW20S, and MW20D

AOC-5 Soil

CVOCs were detected in shallow soil samples (0-2 feet bgs) and deep soil samples (20 to 24 feet bgs) at concentrations above the UU SCOs, as follows:

- TCE was detected at concentrations above the UU SCO in samples SB09_1-2, SB20D_0-2, and SB19_20-21
- cis-1,2-DCE was detected at concentrations above the UU SCO in samples SB07, 23-24 and SB18_23-24

During the supplemental investigation, oil-in-soil dye kits were used to gauge the potential presence of DNAPL; no indications of DNAPL were identified.

AOC-5 Groundwater

CVOCs were detected at concentrations above TOGS Class GA SGVs in samples collected from monitoring wells MW06D, MW07, MW08, MW12D, MW15D, MW18, MW20S, and MW20D. Total CVOC concentrations are summarized as follows:

Well ID	Screened Interval (feet bgs)	Total CVOCs (µg/l)
MW06D	20-25	7.3
MW07	19-24	6,390
MW08	8-18	8.52
MW12D	20-25	39.8
MW15D	20-25	39.75
MW18	8-18	33
MW20S	8-18	101.98
MW20D	20-30	867.9

CVOC concentrations in groundwater were higher in wells screened below the water table, and were highest in MW07 and MW20D, located in the northwestern and central portions of the site, respectively. TCE concentrations in groundwater at the downgradient extents of the site (MW08 and MW06D) were detected at concentrations marginally exceeding the Class GA SGV of 5 μ g/L, indicating that TCE impacts have not migrated off-site. The groundwater design criteria sample results did not indicate dechlorinating bacteria activity above the target threshold of 10⁴ cells per milliliter (cells/mL); however, the presence of PCE/TCE breakdown products cis-1,2-DCE and VC suggests that some breakdown has occurred over time.

AOC-5 Sub-Slab Soil Vapor

CVOCs were detected in all five sub-slab soil vapor samples at concentrations above the ambient air sample concentrations. TCE and cis-1,2-DCE were detected in soil vapor at concentrations at which the NYSDOH Decision Matrix A recommends mitigation regardless of indoor air concentrations.

Sample Vapor Point ID	Sample Depth (feet bgs)	Total CVOCs (µg/m³)
SV01	6	488
SV02	5	524
SV03	5	39,158
SV04	5	11,535
SV05	5	60

AOC-5 Indoor Air

CVOCs were detected in all eleven indoor air samples collected during the RI and IRM at concentrations above the outdoor ambient air sample concentrations. TCE was detected in all 11 indoor air samples at concentrations above its NYSDOH AGV ($2 \mu g/m^3$), ranging from $2.9 \mu g/m^3$ to $31.4 \mu g/m^3$. TCE concentrations were evaluated using the NYSDOH Decision Matrix A. Based on this evaluation, mitigation is recommended.

AOC-5 Conclusions

CVOCs impacts were detected in soil, groundwater, sub-slab soil vapor and indoor air. Based on the detections of CVOCs in shallow soil, the source of the CVOCs in groundwater is likely the historical uses of the site. Groundwater concentrations suggest a historical release near the northwestern and central portions of the site. CVOC-impacted groundwater is contained within the limits of the site. CVOCs are present in sub-slab soil vapor and indoor air at concentrations in which the NYSDOH Guidance recommends mitigation.

6.0 INTERIM REMEDIAL MEASURE WORK PLAN IMPLEMENTATION AND FINDINGS

Based on the findings of the RI, an IRM was implemented and included the installation of indoor air treatment units and post-installation documentation samples.

The IRM consisted of the following:

- Installation of eight indoor air treatment units in the previously-occupied portion of the warehouse
- Completion of three documentation sampling events, which included collection of two indoor air samples (IA06 and IA07) and one ambient air sample (AA02) per event (a total of six indoor air samples and three ambient air samples were collected over three sampling events)

Langan conducted the IRMWP in accordance with the NYCRR Title 6 Part 375 (6 NYCRR Part 375), the NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation (May 2010), the NYSDEC Draft BCP Guide (May 2004), the New York State Department of Health (NYSDOH) Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006), and the NYSDEC-approved IRMWP, dated July 19, 2018.

6.1 IRMWP Implementation

The IRMWP was implemented to address the elevated TCE concentrations in indoor air. Indoor air treatment units (AllerAir AirMedic Pro 5 MG Vocarb) were installed in the eastern portion of the building, which was occupied by a bicycle tour company, and a total of three indoor air documentation sampling events were conducted. Sampling locations are presented on Figure 5.

Five indoor air treatment units were installed on August 3, 2018. Based on the results of the first two post-installation indoor air sampling events, three additional units were installed on November 19, 2018.

Indoor air sampling events were conducted on August 17, September 7, and December 20, 2018. A total of six indoor air documentation samples and three ambient air samples were collected and analyzed for VOCs over the three documentation sampling events (two indoor air samples and one ambient air sample per event).

Indoor air and ambient air sampling was conducted in general accordance with the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006). Prior to sample collection, a NYSDOH Indoor Air Quality Questionnaire and Building Survey was completed to document the potential presence of equipment or chemicals in the building that could interfere with the laboratory analytical results. During each sampling event, two indoor air

samples and one ambient air sample were collected at about 3 to 4 feet above ground (i.e., breathing height) and to confirm the efficacy of the treatment system. The building was screened using a ppbRAE 3000 to identify potential sources of organic vapors that may interfere with sampling.

Indoor air and ambient air samples were collected into laboratory-supplied 6-liter Summa canisters with flow controllers calibrated for an 8-hour sampling period. The labeled samples were submitted to Alpha via courier service under standard chain-of-custody protocol. Air samples were analyzed for VOCs by EPA Method TO-15. Indoor air and outdoor ambient air sampling logs and results of the chemical product inventory are provided in Appendix F.

6.2 Quality Control Sampling

One ambient air sample was collected during each documentation sampling event and was submitted for laboratory analysis for QA/QC purposes. QA/QC samples are summarized in Table 1.

6.3 IRMWP Indoor Air Documentation Sample Results

Indoor air concentrations were compared to NYSDOH Air Guidance Values (AGV) for indoor air and to background concentrations detected in the outdoor ambient air samples. Full laboratory reports for the IRM sampling events are included in Appendix H. A summary of the indoor air sample laboratory detections compared to NYSDOH AGVs and background outdoor ambient air sample concentrations is presented in Table 9. Indoor air sample locations and results that exceed the comparison criteria are shown on Figure 11.

The total VOC concentration in the indoor air documentation samples ranged from 150.2 μ g/m³ in IA07_081718 to 716.029 μ g/m³ in IA07_122018. The total VOC concentration in the ambient air samples collected across three documentation sampling events ranged from 34.674 μ g/m³ to 71.976 μ g/m³.

Twenty-six VOCs were detected in the indoor air samples at concentrations greater than outdoor ambient air:

- 1,2,4-TMB
- 1,2,5-TMB (Mesitylene)
- 2,2,4-Trimethylpentane
- 2-Butanone
- Acetone
- Benzene
- Carbon disulfide

- Chloromethane
- cis-1,2-DCE
- Cyclohexane
- Dichlorodifluoromethane
- Ethanol
- Ethyl Acetate
- Ethylbenzene

- Isopropanol
- o-Xylene
- p- & m-Xylene
- Styrene
- PCE
- Toluene
- TCE

- Carbon tetrachloride
- n-Heptane

• Trichlorofluoromethane

Chloroform

- n-Hexane
- One compound, TCE, was detected in all indoor air samples at concentrations exceeding the NYSDOH AGV, (2 μ g/m³) ranging from 9.03 μ g/m³ in IA07_081718 to 31.4 μ g/m³ in IA06_081718. Based on the findings, the indoor air treatment units did not reduce the indoor air concentrations to below the NYSDOH AGVs. The owner informed the tenants that the building can only be used for storage and cannot be continuously occupied. The forthcoming RAWP will address potential exposure pathways.

6.4 Data Usability

Category B laboratory reports for the indoor air and ambient air samples were provided by Alpha and were forwarded to Langan's data validator for all samples collected during the RI. Copies of the DUSRs are provided in Appendix G. No major deficiencies where identified. Completeness for the indoor air documentation events, defined as the percentage of analytical results that are judged to be valid, is 100%

7.0 QUALITATIVE HUMAN HEALTH EXPOSURE ASSESSMENT

Human health exposure risk was evaluated for both current and future site and off-site conditions, in accordance with the May 2010 NYSDEC Final DER-10 Technical Guidance for Site Investigation and Remediation. The assessment includes an evaluation of potential sources and migration pathways of site contamination, potential receptors, exposure media, and receptor intake routes and exposure pathways.

In addition to the human health exposure assessment, NYSDEC DER-10 requires an on-site and off-site Fish and Wildlife Resources Impact Analysis (FWRIA) if certain criteria are met. A completed form of DER-10 Appendix 3C is enclosed in this addendum as Appendix I. Considering the Gowanus Canal is a Federal Superfund Site, the FWIRA was not considered necessary and was not completed. The Gowanus Canal remedial investigation and remediation is currently being undertaken by the EPA in accordance with the Superfund Program (Comprehensive Environmental Response, Compensation and Liability Act of 1980, as amended).

7.1 Current Conditions

The site is a 20,000-square-foot rectangular-shaped lot located at 473 President Street in the Gowanus neighborhood of Brooklyn, New York on the southern portion of Block 440, Lot 12. The site is developed with a warehouse building occupying the entire footprint, and including a partial cellar at the eastern end of the site. The eastern portion of the warehouse building is used for storage by a bicycle tour company and the western portion of the site is vacant. The site cover consists of a 6- to 36-inch-thick concrete slab. The site has 200 feet of frontage along President Street, and is bound by Lot 1 to the west (electronic waste recycling warehouse); the northern portion of Lot 12 to the north (Royal Palms Shuffleboard Club); Lot 21 to the east (Pontone Bros. Corp.); and President Street to the south. The Gowanus Canal is located about 350 feet west of the site.

7.2 **Proposed Conditions**

The purpose of the project is to develop an underutilized, contaminated parcel while implementing remedial measures that are protective of human health and the environment. The proposed redevelopment project is still in early planning stages and is subject to change. An asof-right development consisting of a commercial space with a cellar parking garage is contemplated. The cellar of the proposed building would occupy the entire site.

7.3 Summary of Environmental Conditions

Soil contaminants of concern (COC) include VOCs, SVOCs, pesticides, and metals. Analysis of soil samples revealed VOCs, SVOCs, pesticides and metals at concentrations that exceeded UU SCOs, and SVOCs and metals at concentrations that also exceed the CU SCOs.

Historic fill material is present across the site at depths ranging from the surface to about 8 to 14 feet bgs. Historic fill impacts include SVOCs, metals, and pesticides at concentrations above UU SCOs, and SVOCs and metals at concentrations above CU SCOs. Tar-like material was identified within historic fill material and coincided with the areas where SVOC concentrations were greatest. Petroleum-related impacts and CVOCs were also detected, primarily in the central and northwestern portions of the site.

Groundwater sample results exhibited concentrations of petroleum-related VOCs and CVOCs exceeding the TOGS Class GA SGVs.

CVOCs are present in sub-slab soil vapor and indoor air at concentrations that exceed the NYSDOH-recommended action levels for mitigation.

7.4 Conceptual Site Model

A conceptual site model (CSM) has been developed based on the findings of the RI. The purpose of the conceptual site model is to develop a simplified framework for understanding the distribution of impacted materials, potential migration pathways, and potentially complete exposure pathways, as discussed below.

7.4.1 Potential Sources of Contamination

Potential sources of contamination have been identified and include historic fill, potential USTs in the northwestern and southwestern portions of the site, a closed-in-place UST and open NYSDEC spill in the southeastern portion of the site, and petroleum-related VOC and CVOC-impacted soil, sub-slab soil vapor, and groundwater associated with historical site use. The ubiquitous historic fill has been established as a source of SVOCs, metals, and to a lesser extent pesticides in nearsurface soil. Historic petroleum storage has been established as a source of petroleum-related VOCs in soil, groundwater, and sub-slab soil vapor. The presence of CVOCs in shallow soil, groundwater, and sub-slab soil vapor suggests the presence of several on-site point sources, which aligns with potential contained releases of CVOCs in connection with historic site use as a machine shop, bottling plant, die cutting, and/or metal works. A distinct CVOC source location was not identified during the RI, and historical records do not indicate a large release event of CVOCs; however, the historical site use may have contributed to CVOC concentrations in groundwater and soil vapor. Furthermore, the presence of PCE/TCE breakdown products, including cis-1,2-DCE and VC, suggest historical releases have undergone some degree of natural attenuation. The RAWP will be designed to further investigate potential source areas through waste characterization sampling.

7.4.2 Exposure Media

The impacted media include soil, groundwater, and sub-slab soil vapor. Analytical data indicates that the historic fill material contains SVOCs, metals, and pesticides. Groundwater impacts

include VOCs, SVOCs, and metals. Sub-slab soil vapor is impacted by VOCs. The proposed development's cellar level is anticipated to occupy the entire site footprint and extend to the groundwater table, which would prevent the potential for impacted vapors to accumulate. The potential exists for accumulation of impacted vapors under adjoining buildings and intrusion through cellar sidewalls.

7.4.3 Receptor Populations

The eastern portion of the warehouse building is used for storage by a bicycle tour company and the western portion of the site is vacant. Access is limited to employees of the bicycle tour company and consultants investigating environmental conditions on the site. During site development, human receptors will be limited to construction and remediation workers, authorized guests visiting the site, and the public adjacent to the site. Under future conditions, receptors will include the new building tenants, workers, and visitors to the commercial properties.

7.5 Potential Exposure Pathways – On-Site

7.5.1 Current Conditions

The site is covered by a one-story warehouse building with a 6- to 36-inch-thick concrete floor slab; therefore, exposure to contaminated soil is only possible during subsurface investigation at the site. The potential exposure pathway for dermal absorption, inhalation, and ingestion during subsurface investigation is controlled through the implementation of the HASP.

Because groundwater in this area of New York City is not used as a potable water source, there is no complete exposure pathway under current site conditions. There is a potential exposure pathway through dermal absorption, inhalation, and ingestion during groundwater sampling associated with site investigation, but it is controlled through the implementation of the HASP.

There is potential for sub-slab soil vapor to accumulate below the building slab and within the enclosed warehouse building; however, the building is not used as a residence or for full-time workers. There is a potential exposure pathway to sub-slab soil vapor through inhalation during soil, sub-slab soil vapor and groundwater sampling associated with site investigation. This pathway is controlled through the implementation of the HASP.

TCE was detected in indoor air samples at concentrations above the NYSDOH AGV. In accordance with the approved IRMWP, indoor air treatment units were installed to mitigate soil vapor intrusion in the occupied portion of the warehouse. Based on post-installation indoor air documentation sample results that indicated CVOCs at concentrations greater than the TCE AGV, the treatment units were ineffective at reducing TCE concentrations in indoor air. NYSDEC and NYSDOH determined the building cannot be continuously occupied. The tenant was notified that using the space for bicycle storage is acceptable; however, continued use to repair bicycles is

not permitted. The presence of TCE in post-installation documentation sample results indicates a potential exposure pathway exists via the inhalation of contaminated indoor air; however, this exposure pathway is controlled through restricting human occupancy of the warehouse limiting use for storage purposes only.

7.5.2 Construction/Remediation Condition

Construction and remediation may result in potential exposures to site contaminants in the absence of a HASP and a Community Air Monitoring Plan (CAMP). Construction and remedial activities include demolition, the excavation and off-site disposal of impacted soil and construction of foundation components. In the absence of a HASP and CAMP, this scenario presents the potential for exposure of soil COCs to construction and remediation workers via dermal absorption, ingestion, and inhalation of vapors and particulate matter. This exposure pathway will be controlled through the implementation of the HASP, CAMP, and vapor and dust suppression techniques.

Groundwater may be encountered during excavation by workers, and there is potential for exposure to groundwater COCs, in the absence of a HASP, to construction workers via dermal absorption or ingestion. This exposure pathway will be marginalized through the implementation of the HASP, CAMP, and vapor and dust suppression techniques.

During site development, construction and remediation workers and the surrounding community could be exposed to sub-slab soil vapor COCs and contaminated soil via inhalation. Exposure to sub-slab soil vapor and dust will be limited through the implementation of a HASP, CAMP, and dust and vapor suppression techniques.

7.5.3 Proposed Future Conditions

The proposed development is anticipated to include commercial uses. Upon completion of the proposed new development, the entire site will be capped with a concrete building. This barrier will prevent direct human exposure to impacted soil and groundwater.

In the absence of engineering controls (e.g., vapor barrier and/or sub-membrane depressurization), the presence of VOCs in the groundwater and sub-slab soil vapor creates the potential for VOCs to accumulate in the proposed building, completing an inhalation exposure pathway for future users; however, this exposure pathway will be marginalized through the installation of a vapor barrier membrane.

There is no risk of ingesting groundwater COCs because the site and surrounding areas will continue to obtain their drinking water supply from surface water reservoirs located upstate and not from groundwater. In addition, the site will be capped with concrete.

7.6 Potential Exposure Pathways – Off-Site

In the absence of CAMP and a HASP, soil has the potential to be transported off-site by wind in the form of dust or on the tires of vehicles or equipment leaving the site during development and remediation activities and create an exposure risk to the public adjacent to the site. Groundwater is anticipated to flow to the west-southwest. The source of petroleum-related VOC and CVOC impacts to groundwater will be removed and/or treated during site remediation, and after source removal/treatment, potential residual groundwater contamination would be expected to naturally attenuate.

The potential off-site migration of site contaminants is not expected to result in a complete exposure pathway for current, construction and remediation, or future conditions for the following reasons:

- The site is located in an urban area and predominantly covered with continuous relatively impervious surface covering (i.e. building foundations and concrete and asphalt paving)
- During site redevelopment remediation and construction, the following protective measures will be implemented:
 - Air monitoring will be conducted for particulates (i.e., dust) and VOCs during all intrusive activities as part of a CAMP. Dust and/or vapor suppression techniques will be employed to limit potential for off-site migration of soil and vapors.
 - Vehicle tires and undercarriages will be washed as necessary prior to leaving the site to prevent tracking material off-site.
 - A soil erosion/sediment control plan will be implemented during construction to control off-site migration of soil.
- The planned redevelopment will include a vapor barrier to be installed beneath the slab. The site will also be covered by a continuous impervious surface.

Because contaminants of concern were detected in downgradient onsite wells, it is possible that a complete exposure pathway exists for the migration of site contaminants in groundwater and sub-slab soil vapor to migrate to off-site human receptors for current, construction phase, or future conditions. However, a short-term in-situ remedial technology, such as activated persulfate (chemical oxidation) or PlumeStop[®] (adsorption), will be implemented to address the groundwater impacts. In addition, groundwater in New York City is not used as a potable water source.

7.7 Evaluation of Human Health Exposure

Based upon the CSM and the review of environmental data, complete on-site exposure pathways appear to be present, in the absence of institutional and engineering controls, in current,

construction and remediation, and future conditions. The complete exposure pathways indicate there is a risk of exposure to humans from site contaminants via exposure to soil, groundwater, and sub-slab soil vapor if institutional and engineering controls are not implemented.

Complete exposure pathways have the following five elements: 1) a contaminant source; 2) a contaminant release and transport mechanism; 3) a point of exposure; 4) a route of exposure; and 5) a receptor population. A discussion of the five elements comprising a complete pathway as they pertain to the site is provided below.

7.7.1 Current Conditions

Contaminant sources include the historic fill with varying levels of SVOCs, metals, and pesticides; petroleum-impacted soil, groundwater and sub-slab soil vapor; and CVOC-impacted soil, groundwater, and sub-slab soil vapor.

Contaminant release and transport mechanisms include contaminated soil transported as dust, contaminated groundwater flow and volatilization of contaminants from the soil and groundwater matrices to the soil vapor phase, and transport of existing sub-slab soil vapor contaminants. Under current conditions, the likelihood of exposure to humans is limited, as site use is limited to storage space, the site is completely capped by a building with concrete foundation, potable water is obtained from an off-site source, and access is restricted to authorized workers and guests. Mitigation measures were implemented in accordance with the approved IRMWP. Based on post-installation indoor air documentation sample results, the treatment units were ineffective at reducing the TCE concentrations in indoor air. NYSDEC and NYSDOH determined the building cannot be continuously occupied. The tenant was notified that using the space for bicycle storage is acceptable; however, continued use to repair bicycles is not permitted. Under current conditions, the use restriction on the site limits the likely exposure and risk to human health.

7.7.2 Construction/Remediation Activities

During development and remediation, points of exposure include disturbed and exposed soil during excavation, dust and organic vapors generated during excavation, and contaminated groundwater that will be encountered during excavation and/or dewatering operations. Routes of exposure include ingestion and dermal absorption of contaminated soil and groundwater, inhalation of organic vapors arising from contaminated soil and groundwater, and inhalation of dust arising from contaminated soil. The receptor population includes construction and remediation workers and, to a lesser extent, the public adjacent to the site.

The potential for completed exposure pathways is present since all five elements exist; however, the risk can be avoided or minimized by applying appropriate health and safety measures during construction and remediation, such as monitoring the air for organic vapors and dust, using vapor and dust suppression measures, cleaning truck undercarriages before they leave the site to

prevent off-site soil tracking, maintaining site security, and wearing the appropriate personal protective equipment (PPE).

In accordance with the Remedial Action Work Plan (RAWP), which will include a HASP, a Soil/Materials Management Plan (SMMP), and a CAMP, measures such as conducting an airmonitoring program, donning PPE, covering soil stockpiles, altering work sequencing, maintaining a secure construction entrance, proper housekeeping, and applying vapor and dust suppression measures to prevent off-site migration of contaminants during construction will be implemented. Such measures will prevent completion of these potential migration pathways.

7.7.3 Proposed Future Conditions

For the proposed future conditions, residual contaminants may remain on-site, depending on the remedy, and would, to a lesser extent, include those listed under current conditions. Contaminant release and transport mechanisms include volatilization of contaminants from the groundwater matrix to the soil vapor phase or intrusion of soil vapor from off-site sources. If institutional and/or engineering controls are not implemented, points of exposure include potential cracks in the foundation or slab of the proposed development, and exposure during any future soil-disturbing activities. Routes of exposure may include inhalation of vapors entering the building. The receptor population includes the building occupants and employees, visitors, and maintenance workers. The possible routes of exposure can be avoided or mitigated by proper installation of soil vapor mitigation measures, construction and maintenance of a site capping system (i.e., concrete or at least two feet of clean soil) and implementation of a Site Management Plan if residual contamination is left in place.

7.7.4 Human Health Exposure Assessment Conclusions

- 1. Under current conditions, there is a marginal risk for exposure as the warehouse is not continuously occupied and only used for storage space. The primary exposure pathways are for dermal contact, ingestion and inhalation of soil, sub-slab soil vapor, or groundwater by employees of the on-site businesses and site investigation workers. The exposure risks can be avoided or minimized by following the appropriate health and safety and vapor and dust suppression measures outlined in the site-specific HASP during investigation activities.
- In the absence of institutional and engineering controls, there is a moderate risk of exposure during the construction and remediation activities. The primary exposure pathways are:
 - a. Dermal contact, ingestion and inhalation of contaminated soil, groundwater or sub-slab soil vapor by construction workers.
 - b. Dermal contact, ingestion and inhalation of soil (dust) and inhalation of subslab soil vapor by the community in the vicinity of the site.

These can be avoided or minimized by performing community air monitoring and by following the appropriate health and safety, vapor and dust suppression and site security measures.

- 3. The existence of a complete exposure pathway for site contaminants to human receptors during proposed future conditions is unlikely, as a large quantity of soil will be excavated and transported to an off-site disposal facility and whatever residual soil remains will be capped with an impermeable cover or two feet of clean soil. Regional groundwater is not used as a potable water source in New York City and the site cover will limit access to the subsurface so exposure to regional groundwater contaminants is unlikely. The potential pathway for soil vapor intrusion into the building would be addressed through the use of soil vapor mitigation measures, thereby minimizing the risk of exposure to soil vapor.
- 4. It is possible that a complete exposure pathway exists for the migration of site contaminants to off-site human receptors for current, construction phase, or future conditions. Monitoring and control measures would be used during investigation and construction to prevent completion of this pathway. Under future conditions, the site will be remediated and engineering controls can be implemented to prevent completion of this pathway; however, due to the presence of residual off-site contamination, the potential for impacted off-site soil vapor will remain after the site is redeveloped.

8.0 NATURE AND EXTENT OF CONTAMINATION

The site-wide historic fill layer extends from surface grade to depths ranging from about 8 to 14 feet bgs and contains varying concentrations of VOCs, SVOCs, metals, and pesticides. Naphthalene-like odors and hardened tar-like material were randomly observed within the historic fill layer throughout the site and SVOCs were detected at concentrations above typical historic fill concentrations. Petroleum- and CVOC-impacted soil was encountered at varying depths extending to a maximum depth of about 24 feet bgs. Petroleum-related VOCs and CVOCs were identified in both groundwater and sub-slab soil vapor across the site. The discussion is divided by the following contaminant classifications:

- 1. Historic fill material
- 2. Tar-like material
- 3. Petroleum-impacted material
- 4. CVOC-impacted material

8.1 Soil Contamination

8.1.1 Historic Fill Material

Contaminants related to historic fill material include SVOCs, pesticides, and metals. Historic fill exists across the site from surface grade to depths ranging from about 8 to 14 feet bgs. Sixteen soil samples collected from throughout the historic fill layer exhibited concentrations of SVOCs (including, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene), metals (including arsenic, barium, hexavalent and trivalent chromium, copper, lead, mercury, nickel, selenium, and zinc), and/or pesticides (4,4'-DDT and alpha-chlordane) exceeding UU and, in some cases, CU SCOs.

8.1.2 Tar-like Material

Observations of hardened tar and tar -like odors were apparent within the historic fill layer at about 4 to 8 feet bgs in borings SB01 through SB03, located within the northwestern portion of the site, and boring SB11, located within the southeastern portion of the site. Sixteen SVOCs (acenaphthene, fluoranthene, naphthalene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, anthracene, benzo(ghi)perylene, fluorene, phenanthrene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, pyrene, and dibenzofuran) were detected in sample SB02_5-6 at concentrations above UU SCOs and, in some cases, CU SCOs. Total SVOC concentrations in samples from borings SB01, SB02, SB03, and SB11 were one to two orders of magnitude higher than concentrations in other historic fill samples.

8.1.3 Petroleum-Impacted Material

Petroleum impacts to soil, including PID readings above background, odors, and staining, were apparent during the RI in borings SB07, SB18, SB19 and SB20D at depths ranging from 11 to 24 feet bgs. The maximum PID reading, 4,195 ppm, was recorded in SB07 from 22 to 23 feet bgs. Analytical results for soil samples collected from SB07 and SB20D exhibited concentrations of petroleum-related VOCs, including 1,2,4-TMB, 1,3,5-TMB, MTBE, benzene, ethylbenzene, n-propylbenzene, toluene, and total xylenes, exceeding UU SCOs both at and below the groundwater interface.

8.1.4 CVOC-Impacted Material

Concentrations of CVOCs in excess of UU SCOs were identified in surficial soil samples and samples collected from below the groundwater table from RI borings SB07, SB09, SB18, SB19, and SB20D. The shallow soil (0-2 feet bgs) samples exhibiting concentrations of TCE exceeding the UU SCO are in the central portion of the site (SB09 and SB20D); and the deep soil samples exhibiting concentrations of TCE and cis-1,2-DCE above UU SCOs are located in the northwestern portion of the site (SB07 and SB19).

8.2 Groundwater Contamination

Evaluation of the groundwater analytical results identified petroleum-related VOC and CVOC contaminants, and arsenic, at concentrations exceeding Class GA AWQS. The discussion is divided by the following contaminant classifications:

- 1. Petroleum-Contaminated Groundwater
- 2. CVOC-Contaminated Groundwater
- 3. Arsenic-Contaminated Groundwater
- 4. Historic Fill-Impacted Groundwater

8.2.1 Petroleum-Contaminated Groundwater

Petroleum impacts, including PID readings above background and odors, were apparent during the RI in monitoring wells MW07, MW18, MW20S, and MW20D. The maximum headspace PID reading, 630 ppm, was recorded in MW20S. Analytical results for samples collected from wells MW06, MW07, MW15D, MW18, MW20S, and MW20D exhibited concentrations of petroleum-related VOCs, including 1,2,4-TMB, 1,2,4,5-tetramethylbenzene, 1,3,5-TMB, benzene, ethyl benzene, isopropylbenzene, n-butylbenzene, n-propylbenzene, p-isopropyltoluene, secbutylbenzene, toluene, and xylenes, and one SVOC, naphthalene, exceeding Class GA SGVs.

8.2.2 CVOC-Contaminated Groundwater

Analytical results revealed CVOC impacts to groundwater. Concentrations of CVOCs, including TCE, cis-1,2-DCE, and VC exceeding Class GA SGVs, were found in samples collected from MW06D, MW07, MW08, MW12D, MW15D, MW18, MW20S, and MW20D. Sample MW07_032217 exhibited the maximum TCE concentration of 1,300 μ g/L, followed by MW20D_050617 with a concentration of 830 μ g/L.

8.2.3 Historic Fill-Impacted Groundwater

Historic fill was identified in all borings, ranging in depth from below the building slab to about 8 to 14 feet bgs. Dissolved arsenic and selenium were detected in groundwater samples at concentrations above the TOGS Class GA SGVs and were also detected in historic fill at concentrations above the UU SCOs. Arsenic concentrations in historic fill also exceeded CU SCOs. Additional metals with concentrations above the TOGS Class GA SGVs and were attributed to regional groundwater conditions.

Multiple PAHs detected at concentrations above CU SCOs in historic fill (benzo(a)anthracene, benzo(a)pyrene, benzo(k)fluoranthene, and chrysene), were detected above the TOGS Class GA SGV in the sample collected from monitoring well MW08. Additionally, naphthalene was detected at concentrations above UU SCOs in historic fill samples, and was detected in multiple groundwater samples at concentrations above the TOGS Class GA SGV.

8.3 Sub-Slab Soil Vapor and Indoor Air Contamination

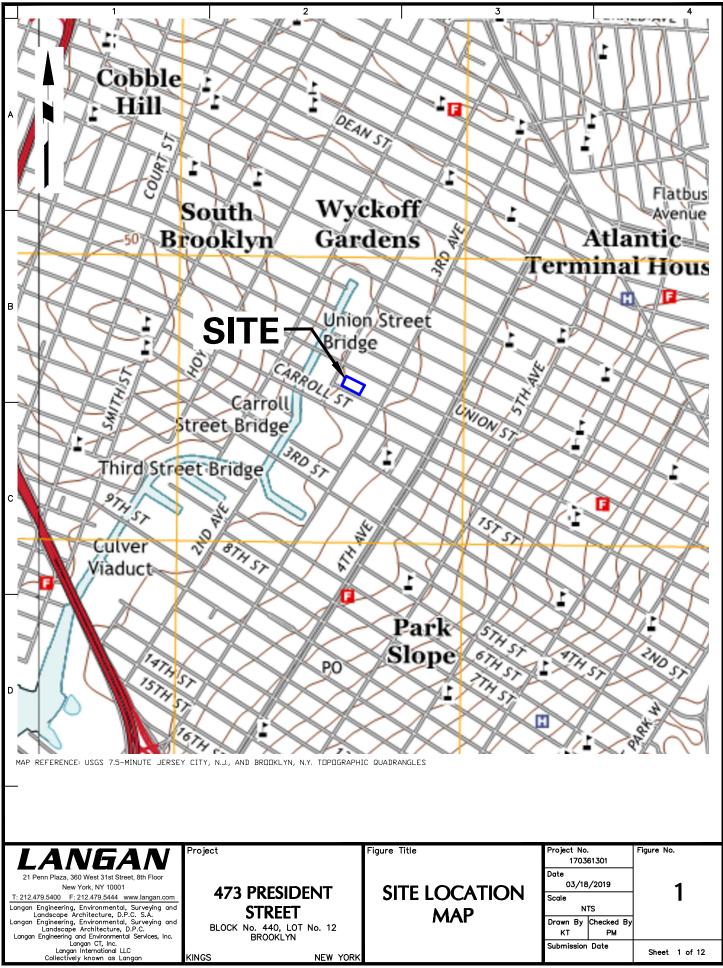
Total CVOC concentrations in sub-slab soil vapor samples ranged from 60 μ g/m³ in sample SV-5 to 39,158 μ g/m³ in sample SV-3. One CVOC, TCE, was detected in all indoor air samples at concentrations above its NYSDOH AGV. There are site-wide CVOC and petroleum-related VOC impacts to soil vapor and indoor air and, based on these the proposed development will require soil vapor intrusion mitigation.

9.0 CONCLUSIONS

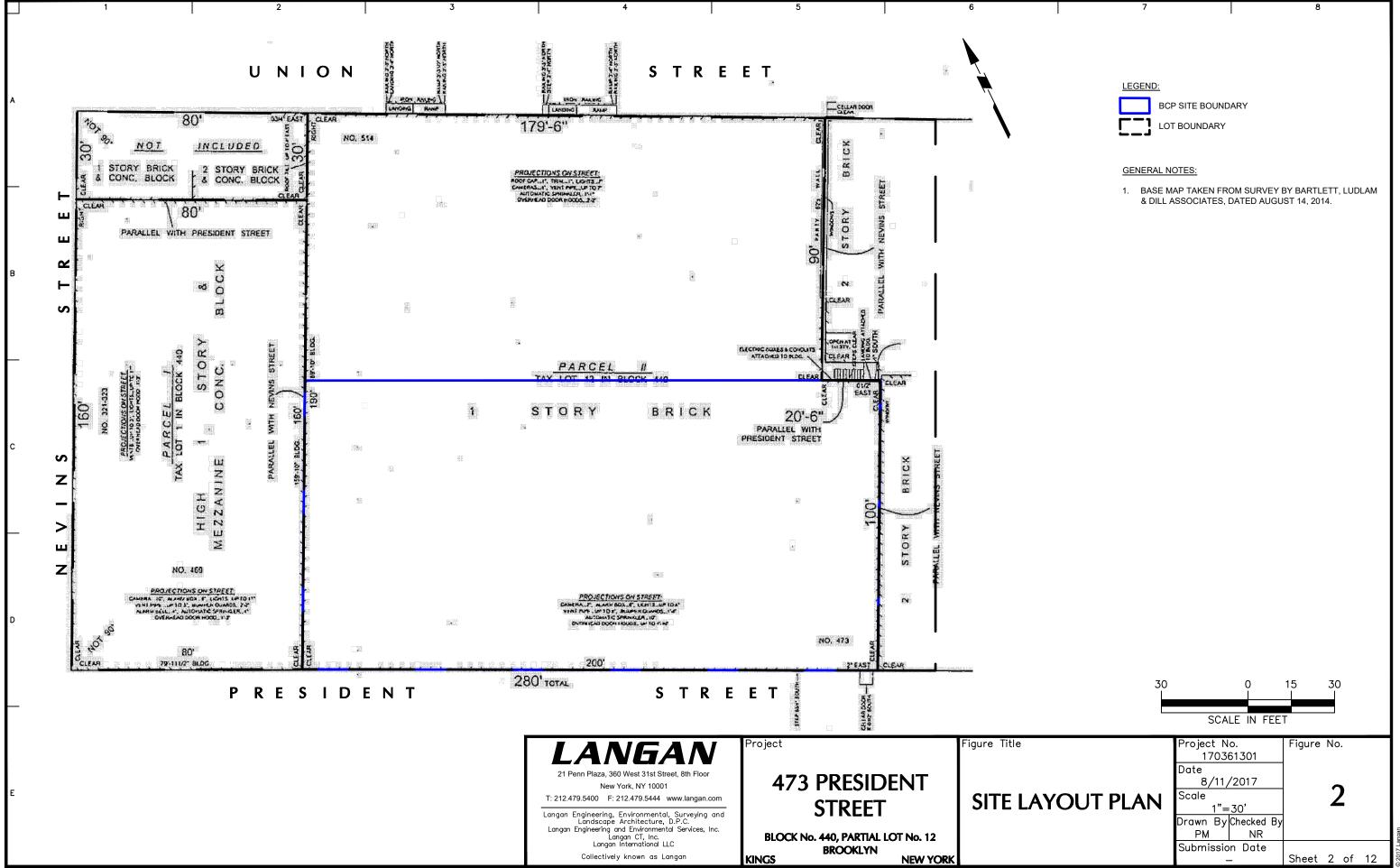
The conclusions presented are based on the results of the RI performed between March 6 and March 22, 2017, the supplemental investigation performed between April 27 and May 6, 2017, the indoor air investigation performed on March 28, 2018, and three subsequent indoor air documentation sampling events performed between August 17 and December 20, 2018. The RI was performed in accordance with an NYSDEC-approved RIWP and the supplemental investigation scope approved by the NYSDEC in a letter dated April 27, 2017. The indoor air investigation was performed in accordance with the proposed scope emailed to NYSDEC on February 14, 2018 and approved by NYSDEC in a letter dated February 20, 2018. The indoor documentation sampling events were performed in accordance with the NYSDEC-approved Interim Remedial Measures Work Plan (IRMWP) dated July 19, 2018. The RI and subsequent investigation findings summarized herein are based on qualitative data (field observations and instrumental readings) and laboratory analytical soil, groundwater, and soil vapor sample results. Findings and conclusions are as follows:

- 1. <u>Stratigraphy</u>: A historic fill layer was encountered from below the building foundation to depths ranging from about 8 feet bgs in SB08 to 14 feet bgs. The fill material generally consists of brown fine sand with varying amounts of medium sand, brick, coal, coal ash, concrete, and wood. The fill layer was underlain mainly by brown fine sand with varying amounts of silt and clay. In borings SB09, SB11, and SB14, a 2-foot-thick discontinuous brown clayey silt layer was observed within the native sand layer. Bedrock was not encountered in any of the soil borings.
- <u>Hydrogeology</u>: Groundwater was encountered at about 9 to 10.5 feet bgs across the site. The groundwater contours demonstrate a flow to the west-southwest. The regional groundwater table is relatively flat with a slight gradient to the west towards the Gowanus Canal.
- 3. <u>Historic Fill</u>: Fill material was identified below the surface cover to depths ranging from about 8 to 14 feet bgs. SVOCs, metals, and pesticides attributed to historic fill were detected at concentrations above UU and/or CU SCOs within this layer. The RI has characterized the historic fill layer and has also defined the native soil horizon beneath the fill. The detected contaminant concentrations are considered typical of historic fill found in New York City. Elevated SVOC concentrations were identified within the historic fill, but are associated with areas within the fill in the northwestern and southeastern portions of the site that contained hardened tar-like material and exhibited coal tar-like odors. VOCs were also identified within the historic fill, but are associated with potential historical CVOC and petroleum releases and are not related to historic fill quality.
- 4. <u>Historic Fill-Impacted Groundwater</u>: Metals and SVOCs that were detected historic fill at concentrations above their respective UU and/or CU SCOs were detected in groundwater

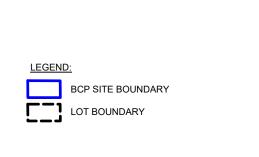
samples at concentrations above their respective TOGS Class GA SGVs. Dissolved arsenic and selenium, and multiple PAHs (benzo(a)anthracene, benzo(a)pyrene, benzo(k)fluoranthene, chrysene, and naphthalene) were detected in one or more groundwater samples at concentrations above the TOGS Class GA SGV

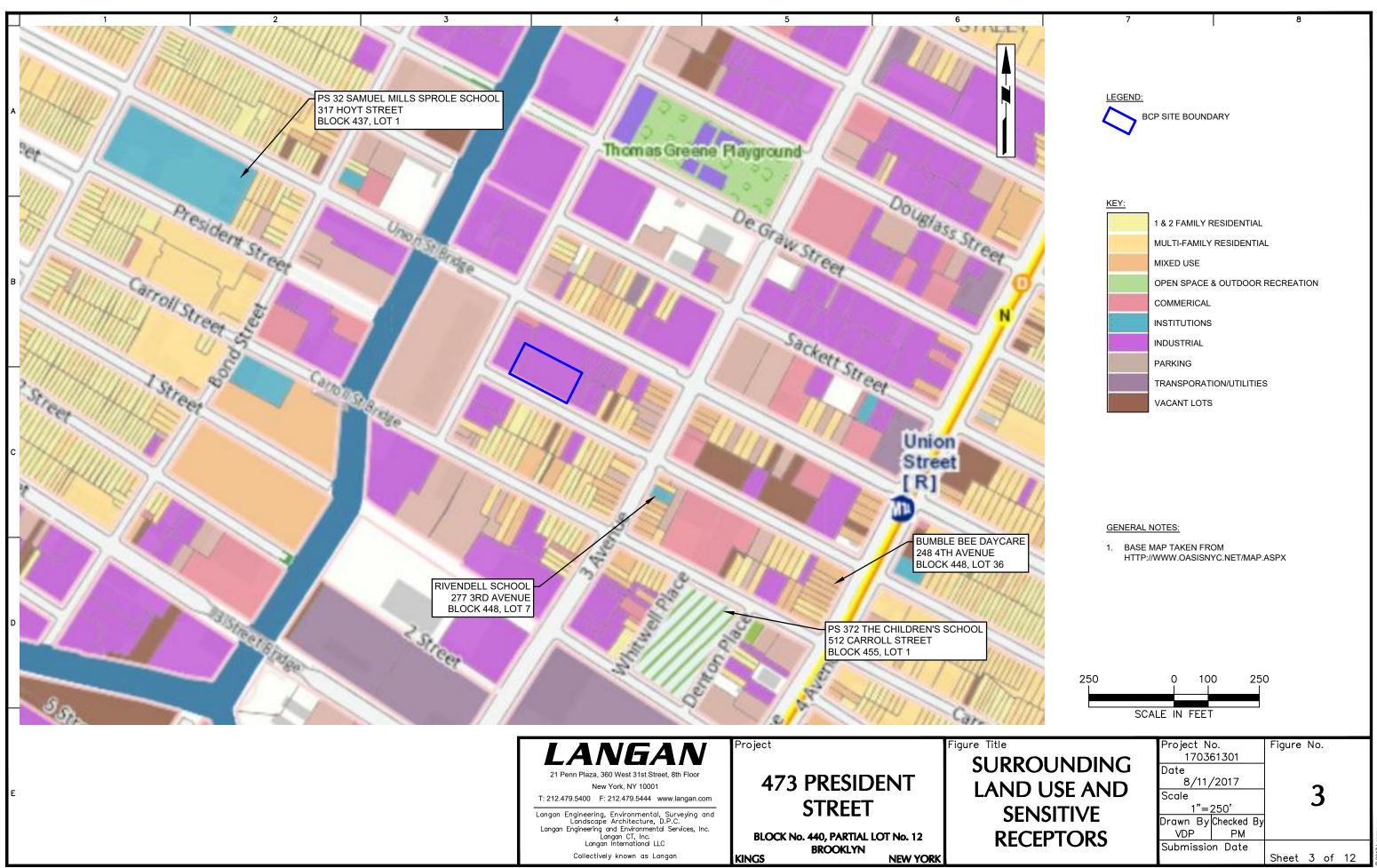

- 5. <u>Underground Storage Tanks</u>: The geophysical survey identified anomalies indicative of USTs in the northeastern and southwestern portions of the site. The closed-in-place UST associated with open NYSDEC Spill No. 9412605 was not located during the RI.
- 6. <u>Petroleum-Impacted Soil, Groundwater and Soil Vapor</u>: Petroleum impacts, evidenced by odors, staining, and/or PID readings above background levels, were apparent in soil to depths up to 24 feet bgs in the north-central/northwestern portion of the site. Based on the analytical results, petroleum-related constituents were detected at concentrations above UU SCOs in soil samples collected from depths between about 13 and 24 feet bgs. Dissolved petroleum-related VOCs were detected at concentrations exceeding Class GA SGVs in groundwater in the central and northwestern portions of the site, with the highest concentrations near the northwestern UST area. Petroleum impacts to soil vapor were identified above the ambient air sample concentrations in soil vapor samples across the site. The presence of petroleum-impacted VOCs in soil, groundwater, and soil vapor is attributed to historical releases associated with the suspected USTs in the northwestern portion of the site.
- 7. CVOC-Impacted Soil, Groundwater, Sub-Slab Soil Vapor, and Indoor Air: Analytical data revealed concentrations of CVOCs exceeding UU SCOs in shallow soil samples (0 to 2 feet bgs) and in deep samples collected from below the groundwater table (20 to 24 feet bgs). CVOCs were detected in groundwater samples collected from throughout the site at concentrations above the Class GA SGVs. CVOC concentrations in groundwater were highest in the north-central portion of the site, and were higher in samples collected form monitoring wells screened below 19 feet bgs. The groundwater design criteria sample results did not identify dechlorinating bacteria activity above the target threshold of 10⁴ cells/mL; however, the presence of PCE/TCE breakdown products cis-1,2-DCE and VC suggests that some breakdown has occurred over time. CVOC impacts to sub-slab soil vapor and indoor air were identified above outdoor ambient air sample concentrations in soil vapor and indoor air samples across the site. TCE was detected in all indoor air samples above the NYSDOH AGV. TCE and cis-1,2-DCE were detected in soil vapor at concentrations at which the NYSDOH Decision Matrix A recommends mitigation regardless of indoor air concentrations. The presence of CVOCs in soil, groundwater and soil vapor is attributed to historical releases associated with the former uses of the site for metals manufacturing, bottling, and/or die cutting.
- 8. Sufficient analytical data were gathered during the RI, together with previous studies, to establish soil cleanup levels and to develop a remedy for the site. The final remedy will

be detailed in the forthcoming RAWP to be prepared in accordance with NYS BCP guidelines. The remedy will need to address petroleum- and CVOC-impacted soil, groundwater and soil vapor; historic fill-impacted groundwater; historic fill impacted with metals, SVOCs and pesticides; measures for the removal and closure of known and unknown USTs; closure of NYSDEC spill number 9412605; and all potential exposure pathways. The excavation for the proposed development is expected to remove the majority of the source material on the site. Analytical results of the treatability samples will help inform selection of an in-situ remedy to treat residual groundwater contamination.

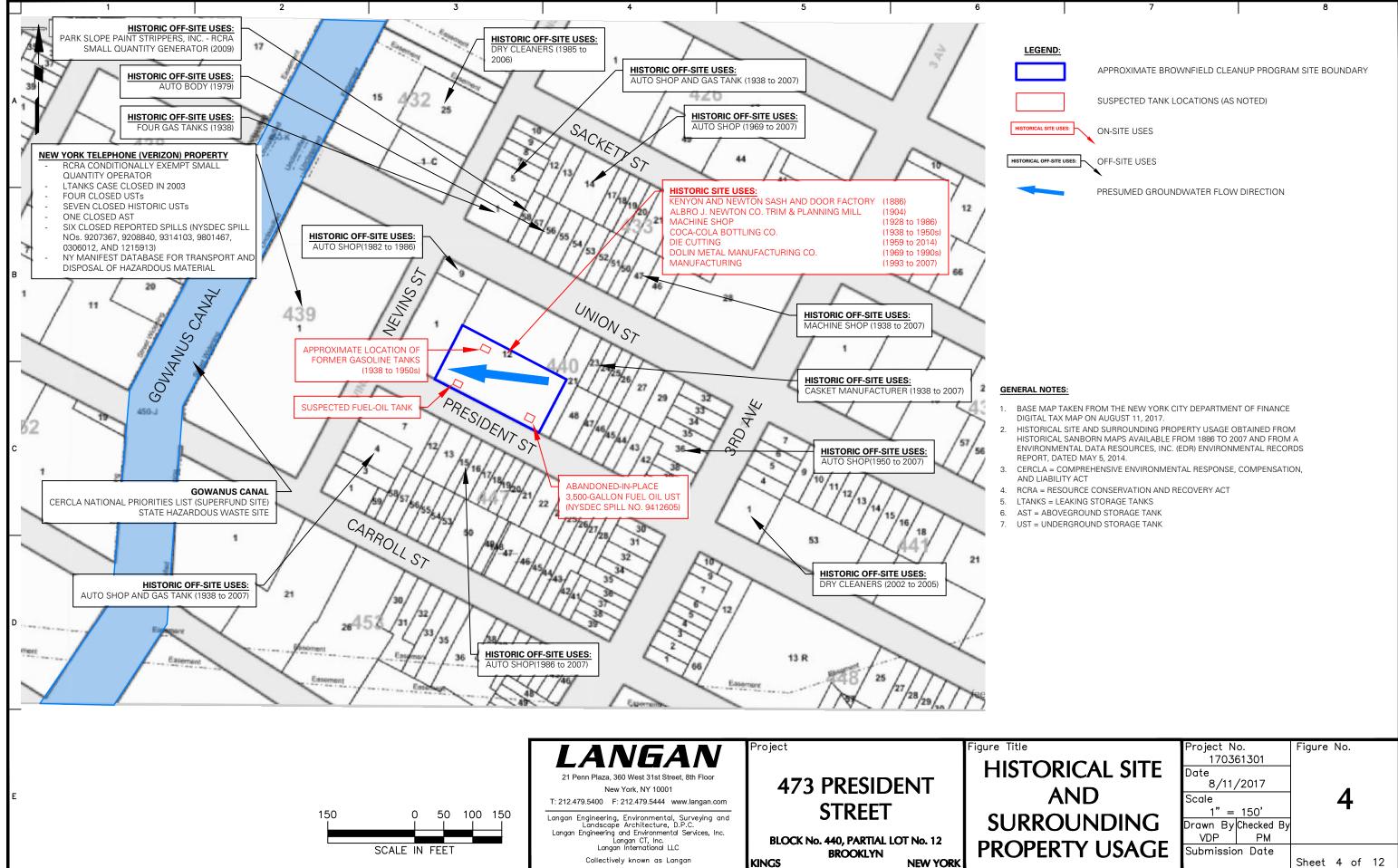

9.0 REFERENCES

- 1. Carlin Simpson and Associates, Phase I Environmental Site Assessment (ESA), dated July 24, 2014
- 2. Langan, Limited Subsurface Investigation, dated June 5, 2015
- 3. Langan, Interim Remedial Measures Work Plan, dated July 19, 2018
- 4. "Final Remedial Investigation Report (RIR), Fulton Former Manufactured Gas Plant", prepared by GEI Consultants (GEI), dated July 2012.
- 5. United States Environmental Protection Agency, Low Flow Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells, EQASOP-GW 001, January 19, 2010.
- 6. United States Geological Survey "Bedrock and Engineering Geologic Maps of New York County and Parts of Kings and Queens Counties, New York, and Parts of Bergen and Hudson Counties, New Jersey", dated 1994.
- 7. New York State Department of Health, Final Guidance for the Evaluation of Soil Vapor Intrusion in the State of New York, dated October 2006.
- 8. New York State Department of Environmental Conservation, Division of Environmental Remediation, Draft Brownfield Cleanup Program Guide, dated May 2004.
- 9. New York State Department of Environmental Conservation, DER-10 Technical Guidance for Site Investigation and Remediation, issued May 3, 2010; effective June 18, 2010.
- 10. New York State Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) dated June 1998.
- 11. New York State Department of Environmental Conservation, Part 375 of Title 6 of the New York Compilation of Codes, Rules, and Regulations, Effective December 14, 2006.

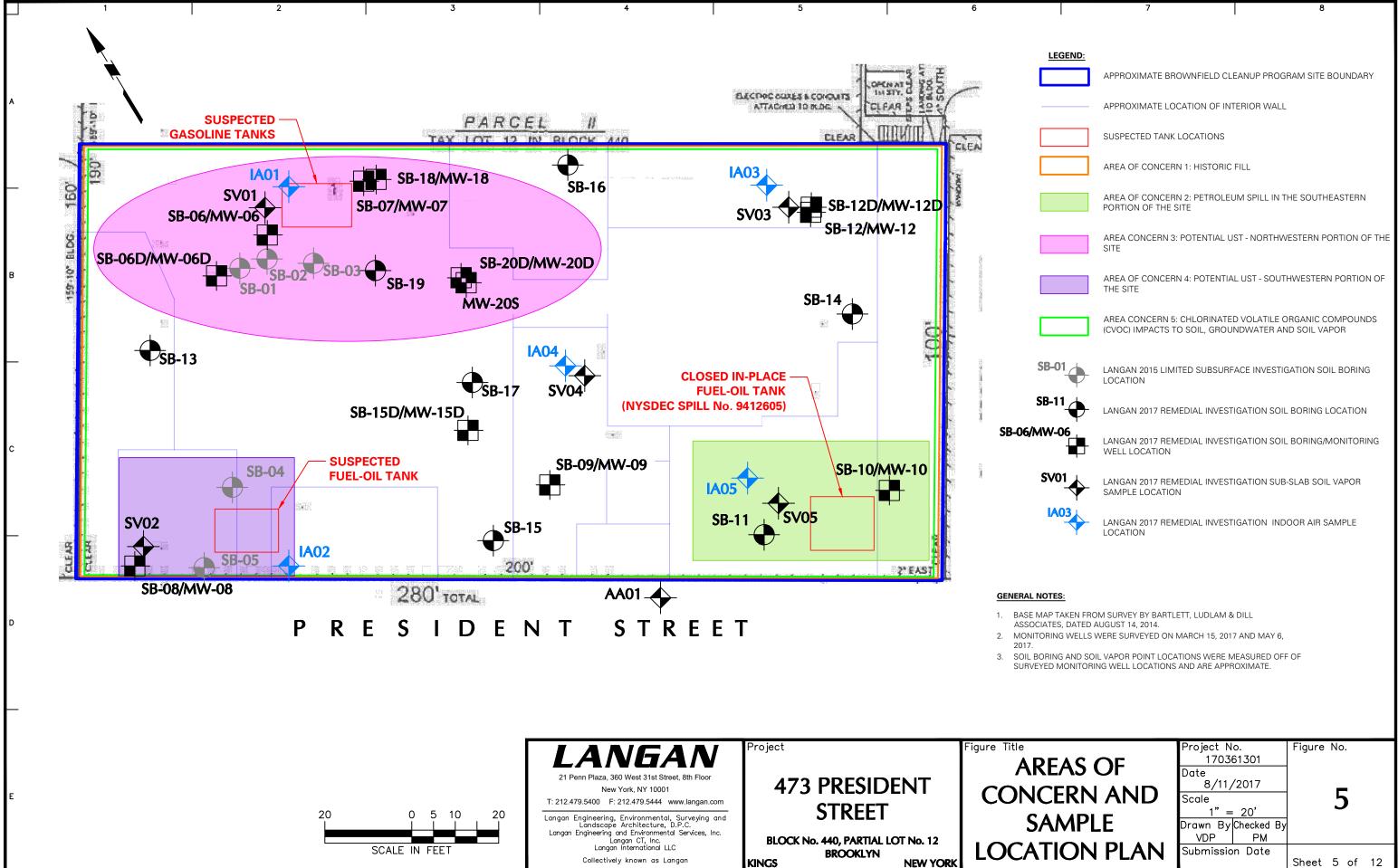

FIGURES



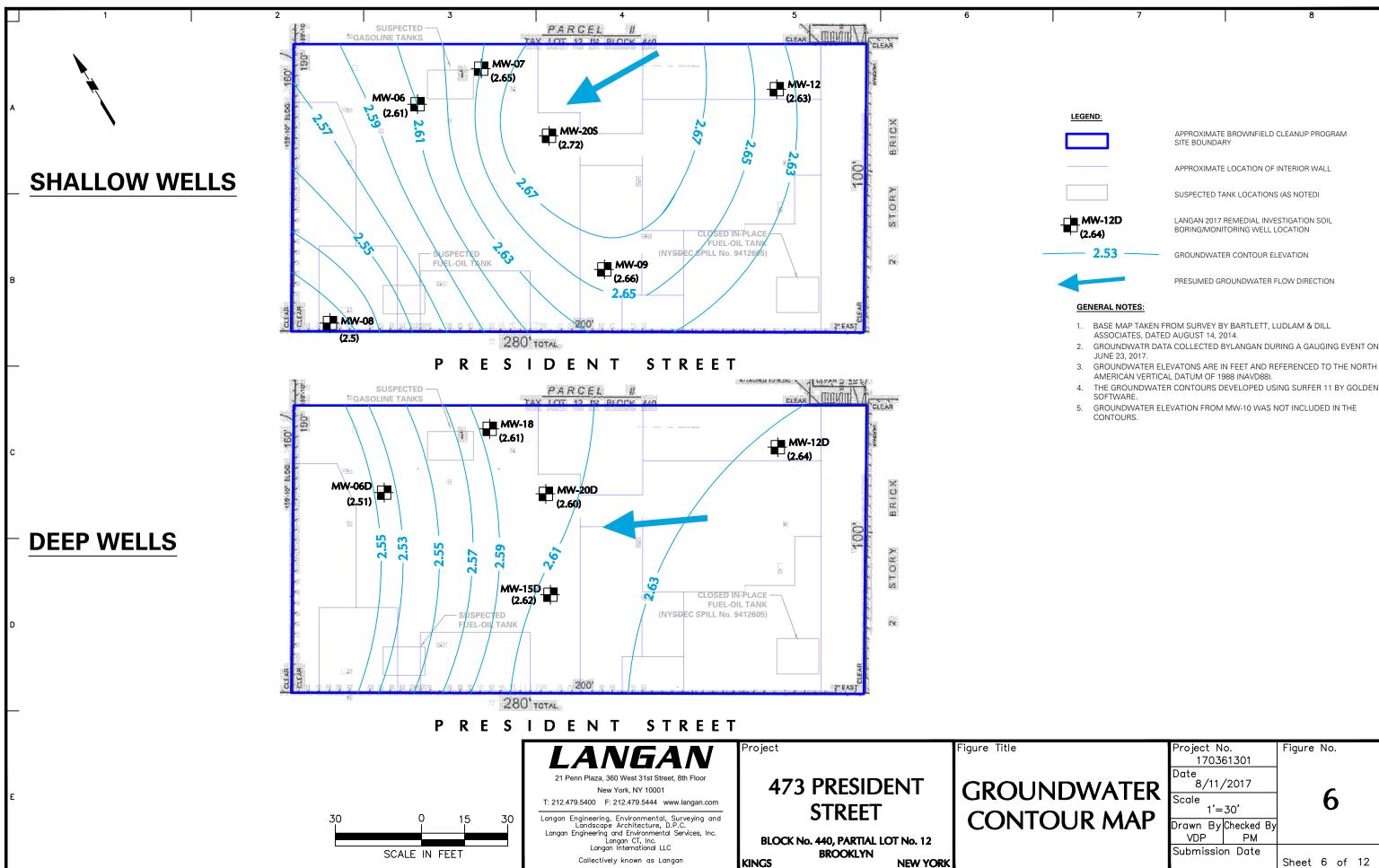
Filename: \Langan.com\data\NYC\data3\170361301\Cadd Data - 170361301\SheetFiles\EnvironmentalRIRIFigure 1 - Site Location Map.dwg Date: 5/16/2019 Time: 09:53 User: mtan Style Table: Langan.stb Layou: ANSIA-BP



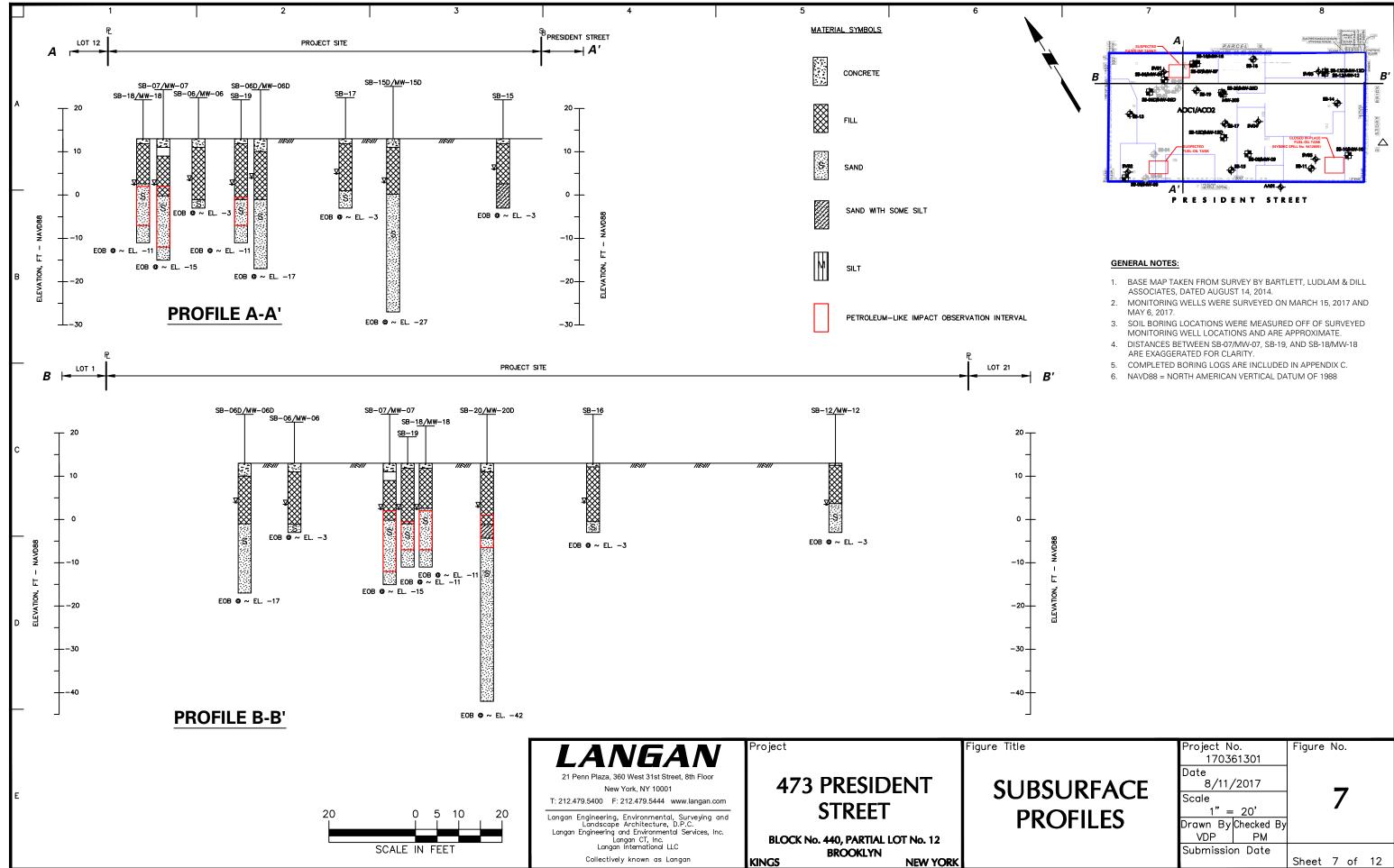
Filename: \\Langan.com\data\NYC\data3\170361301\Cadd Data - 170361301\SheetFiles\Environmental\RIR\Figure 2 - Site Layout Plan.dwg Date: 5/16/2019 Time: 09:58 User: mtan Style Table: Langan.stb Layout: Surrounding Uses



Filename: \\Langan.com\data\NYC\data3\170361301\Cadd Data - 170361301\SheetFiles\Environmental\RIR\Figure 3 - Surrounding Land Use and Sensitive Receptors.dwg Date: 5/16/2019 Time: 10:00 User: mtan Style Table: Langan.stb Layout: Surrounding Uses


Filename: \\Langan.com\data\NYC\data3\170361301\Cadd Data - 170361301\SheetFiles\Environmenta\RIR\Figure 4 - Historical Site and Surrounding Property Usage.dwg Date: 5/16/2019 Time: 10:02 User: mtan Style Table: Langan.stb Layout: ANSIB-BL

	Project N 1703	o. 61301	Figure	No.	
RICAL SITE	Date 8/11/2017			_	
AND	Scale 1" = 150'			4	
OUNDING		Checked By PM			
RTY USAGE	Submissio		Sheet	4 of	12


Filename: \\Langan.com\data\NYC\data3\170361301\Cadd Data - 170361301\SheetFiles\Environmental\RIR\Figure 5 - AOC and Sample Location Plan.dwg Date: 5/16/2019 Time: 10:04 User: mtan Style Table: Langan.stb Layout: ANSIB-BL

	Project N	0.	Figure	No.	
	170361301				
EAS OF	Date				
	8/11/2017			_	
CERN AND	Scale			5	
	1" = 20'				
AMPLE	Drawn By	Checked By			
	VDP	PM			
FION PLAN	Submission Date				
			Sheet	5 of	12

Filename: \\Langan.com\data\NYC\data3\170361301\Cadd Data - 170361301\SheetFiles\Environmental\RIR\Figure 6 - Groundwater Contour Map.dwg Date: 5/16/2019 Time: 10:06 User: mtan Style Table: Langan.stb Layout: ANSIB-BL

Date 8/11, Scale 1'=	61301	Figure	No.	
Submissic	n Date	Sheet	6 of	12

Filename: \\Langan.com\data\NYC\data3\170361301\Cadd Data - 170361301\SheetFiles\Environmental\RIR\Figure 7 - Subsurface Profiles.dwg Date: 5/16/2019 Time: 10:10 User: mtan Style Table: Langan.stb Layout: ANSIB-BL

	Project N 1703	lo. 61301	Figure	No.	
SURFACE	Date 8/11,	/2017		_	
	Scale 1" = 20'			7	
OFILES	Drawn By	Checked By			
	VDP	PM			
	Submissic	on Date			
			Sheet	7 of	12

Sample ID Sampling Date Sample Depth (feet bgs)	SB02_1.5-2.5 5/28/2015 1.5-2.5	SB02_5-6 5/28/2015 5-6
Sample Layer	Fill	Fill
PID Reading (ppm)	48.1	166.3
VOCs (mg/kg)		
2-Butanone	ND	0.67
	ND	0.51
Naphthalene	ND	50
Xylenes, Total	ND	0.26
SVOC (mg/kg) Acenaphthene		
	NE	110
Anthracene	NE	220
Benzo(a)anthracene	1.8	310
Benzo(a)pyrene	1.3	260
Benzo(b)fluoranthene	1.6	330
Benzo(ghi)perylene	NE	140
Benzo(k)fluoranthene	NE	120
Chrysene	1.9	300
Dibenzo(a,h)anthracene	NE	34
Dibenzofuran	NE	96
Fluoranthene	NE	750
	NE	130
Indeno(1,2,3-cd)Pyrene	0.74	160
Naphthalene	NE	160
Phenanthrene	NE	880
Pyrene Pesticides (mg/kg)	NE	650
Total Pesticides PCBs (mg/kg)	ND	ND
Total PCBs	ND	ND
Metals (mg/kg) Copper, Total		100
	NE	120
Lead, Total Mercury, Total	100	140
, .	0.55	2.7
Zinc, Total	NE	200

Sa

VO

2-B

Eth

Xyl

Sample ID Sampling Date Sample Depth (feet bgs) Sample Layer	SB01_4-5.5 5/28/2015 4-5.5 Fill	SB01_8-9 5/28/2015 8-9 Fill
PID Reading (ppm)	168.2	21.2
VOCs (mg/kg)		
Total VOCs	NE	NE
SVOC (mg/kg)		
Benzo(a)anthracene	34	NE
Benzo(a)pyrene	29	NE
Benzo(b)fluoranthene	35	NE
Benzo(k)fluoranthene	14	NE
Chrysene	33	NE
Dibenzo(a,h)anthracene	3.6	NE
Dibenzofuran	8.6	NE
Indeno(1,2,3-cd)Pyrene	17	NE
Pesticides (mg/kg)		
Total Pesticides	NE	NE
PCBs (mg/kg)		
Total PCBs	NE	NE
Metals (mg/kg)		
Copper, Total	52	NE
Lead, Total	100	NE
Mercury, Total	18	NE

Sample ID	SB13_1-2	SB13_9-10
Sampling Date	3/6/2017	3/6/2017
Sample Depth (feet bgs)	1-2	9-10
Sample Layer	Fill	Native
PID Reading (ppm)	0.025	0.0
VOCs (mg/kg)		•
Total VOCs	NE	NE
SVOC (mg/kg)		
Total SVOCs	NE	ND
Pesticides (mg/kg)		
4,4'-DDT	0.00491	ND
alpha-Chlordane	0.28	ND
Metals (mg/kg)		
Barium	885	NE
Chromium, Trivalent	69.14	NE
Chromium, Hexavalent	3.86	ND
Lead	808	126
Mercury	0.555	0.215
Zinc	177	NE

Sample ID	SB06D_23-25	SODUP01_042817
Sampling Date	4/28/2017	4/28/2017
Sample Depth (feet bgs)	23-25	23-25
Sample Layer	Native	Native
PID Reading (ppm)	0.0	0.0
VOCs (mg/kg)		
Total VOCs	NE	NE

Sample Depth (feet bgs) Sample Layer	23-25 Native	23-25 Native
PID Reading (ppm)	0.0	0.0
VOCs (mg/kg)		
Total VOCs	NE	NE

mple ID	SB20D_0-2	SB20D_17-19	SB20D_23-25	SB20D_30-32
mpling Date	4/27/2017	4/27/2017	4/27/2017	4/27/2017
mple Depth (feet bgs)	0-2	17-19	23-25	30-32
imple Layer	Fill	Native	Native	Native
D Reading (ppm)	0.0	1,121	17.2	0
DCs (mg/kg)				
2,4-Trimethylbenzene	NE	52	NE	NE
3,5-Trimethylbenzene	NE	18	NE	NE
Butanone	0.19	ND	ND	ND
enzene	ND	2.1	ND	ND
hyl Benzene	NE	18	ND	NE
Propylbenzene	ND	6.9	NE	ND
ichloroethylene	4.1	ND	ND	NE
lenes	NE	40	ND	NE

Sample ID	SB04_2-3	SB04_4-5.5
Sampling Date	5/28/2015	5/28/2015
Sample Depth (feet bgs)	2-3	4-5.5
Sample Layer	Fill	Fill
PID Reading (ppm)	5.7	14.0
VOCs (mg/kg)	•	
Total VOCs	NE	NE
SVOCs (mg/kg)		
Benzo(a)anthracene	16	NE
Benzo(a)pyrene	16	NE
Benzo(b)fluoranthene	17	NE
Benzo(k)fluoranthene	7.6	NE
Chrysene	15	NE
Dibenzo(a,h)anthracene	2.6	ND
Indeno(1,2,3-cd)Pyrene	9.4	NE
Pesticides (mg/kg)		
Total Pesticides	ND	ND
PCBs (mg/kg)		
Total PCBs	ND	NE
Metals (mg/kg)		
Copper, Total	81	NE
Lead, Total	460	92
Mercury, Total	13	10
Zinc, Total	170	NE

Sample ID	SB08_1-2	SB08_7-8	SB08_8-9
Sampling Date	3/6/2017	3/6/2017	3/6/2017
Sample Depth (feet bgs)	1-2	7-8	8-9
Sample Layer	Fill	Fill	Native
PID Reading (ppm)	0.0	0.025	0.025
VOCs (mg/kg)	•		
Total VOCs	NE	NE	ND
SVOC (mg/kg)	•		
Benzo(a)anthracene	5.9	ND	ND
Benzo(a)pyrene	7.05	ND	ND
Benzo(b)fluoranthene	4.89	ND	ND
Benzo(k)fluoranthene	5.71	ND	ND
Chrysene	6.28	ND	ND
Dibenzo(a,h)anthracene	1.96	ND	ND
Indeno(1,2,3-cd)pyrene	4.44	ND	ND
Pesticides (mg/kg)	•		
Total Pesticides	ND	ND	ND
Metals (mg/kg)	•	•	
Copper	50.7	NE	NE
Lead	274	89.1	NE
Mercury	1.91	0.414	ND
Zinc	125	NE	NE

Benzo(a)pyr Benzo(a)pyrer Benzo(b)fluora Chrysene Indeno(1,2,3-c **Pesticides (m** 4,4'-DDT **PCBs (mg/kg** Total PCBs **Metals (mg/k** Arsenic, Total Copper, Total Lead, Total Mercury, Total

Zinc, Total

710 1.4

160

Sample ID	SB06_2-3	SB06_9-10	SB06_14-15
Sampling Date	3/6/2017	3/6/2017	3/6/2017
Sample Depth (feet bgs)	2-3	9-10	14-15
Sample Layer	Fill	Fill	Native
PID Reading (ppm)	0.0	0.0	0.0
VOCs (mg/kg)		•	•
Total VOCs	NE	ND	NE
SVOC (mg/kg)			
Total SVOCs	NE	ND	ND
Pesticides (mg/kg)		·	
Total Pesticides	ND	ND	ND
Metals (mg/kg)		•	•
Chromium, Hexavalent	1.070	ND	ND
Mercury	0.194	NE	NE

SB03_4-5.5

5/28/2015

4-5.5

Fill

8.8

NE

NE

ND

ND

95

380

0.43

110

Sample ID

Sampling Date

PID Reading (ppm)

Sample Layer

VOCs (mg/kg)

Total SVOCs

SVOCs (mg/kg)

Pesticides (mg/kg)

Total Pesticides

PCBs (mg/kg)

Metals (mg/kg) Copper, Total

Fotal PCBs

Lead, Total

Zinc, Total

Mercury, Total

Sample Depth (feet bgs)

Sampling Date 3/7/2017 3/10/2017 3/10/2017 3/10/2017 3/10/2017 2/2.02.1 <th> </th> <th></th> <th>4</th> <th></th> <th> </th> <th></th> <th>5</th> <th>I</th> <th></th> <th>6</th> <th></th>			4				5	I		6	
1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1	Sample ID Sampling Date Sample Depth (feet bgs) Sample Layer PID Reading (ppm)	3/7/2017 4-5 Fill	3/7/2017 13-14 Native	3/7/2017 23-24 Native	3/7/2017 23-24 Native		Sampling Date Sample Depth (feet bgs) Sample Layer PID Reading (ppm)	3/10/2017 10-11 Fill	3/10/2017 17-18 Native	3/10/2017 20-21 Native	3/10/2017 20-21 Native
	1,2,4-Trimethylbenzene					-	Trichloroethylene	ND	ND	2.4	2.3
Number of a bit o	Benzene	ND	0.55	ND	ND		Total SVOCs	NE	ND	NE	ND
Number 10 10 10 10 10 10 10 Number control 10 10 10 10 10 10 Number control 10 10 10 10 10 </td <td>Ethyl Benzene</td> <td>ND</td> <td>2.2</td> <td>31</td> <td>32</td> <td></td> <td>Total Pesticides</td> <td>ND</td> <td>NT</td> <td>ND</td> <td>ND</td>	Ethyl Benzene	ND	2.2	31	32		Total Pesticides	ND	NT	ND	ND
	Toluene	ND	ND	5.3	5.5		Lead				
	SVOC (mg/kg)				1		Mercury	0.328	NT	ND	ND
$\frac{1}{3} \frac{1}{3} \frac{1}$	Pesticides (mg/kg)										
International biology Internatinternatinterenational biology International bio	Metals (mg/kg)	ND		ND	ND						
No. No. <td>Lead</td> <td>632</td> <td>NE</td> <td>NE</td> <td>NE</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Lead	632	NE	NE	NE						
$\frac{1}{2} \frac{1}{2} \frac{1}$	Selenium	5.32	NE	ND	ND						
Image: Section of the sectio	Zinc	133	NE	NE	NE		Sample Depth (feet bgs)	1-2	9-11	14-15	
Image: Description Image:							PID Reading (ppm)				
Bunch to be determined Both 29.54 Diric Line			te				Total VOCs	NE	ND	NE	
PF R_E S I D E N T Solo Solo <td></td> <td>Sample Dept</td> <td>h (feet bgs)</td> <td>10-1</td> <td>1 23-</td> <td>24</td> <td>Total VOCs</td> <td>NE</td> <td>ND</td> <td>NE</td> <td></td>		Sample Dept	h (feet bgs)	10-1	1 23-	24	Total VOCs	NE	ND	NE	
Image: Solution of the		PID Reading (ppm)				Total Pesticides	ND	ND	ND	
$\frac{1}{100} + \frac{1}{100} + \frac{1}$		cis-1,2-Dichlor	oethylene	ND	0.6	4	Arsenic				
$\frac{1}{100} + \frac{1}{100} + \frac{1}$		Total SVOCs		NE	N		/Cadmium	ND	6.48	ND	
$\frac{1}{24 \times 10^{10}} + \frac{1}{24 \times 10^{10}} + \frac{1}{24$		Total Pesticide	es	ND	NE		Lead	96.6	1,080	NE	
Выбестивание			g)	NE	N						
Number 100 PAR C EL Number 100 Number 10		, \		·	·	/		· ·	·		
$\frac{1}{10000000000000000000000000000000000$											/
Number of Name Part CE Number of Name Superior Superior Number of Name Superior Superi											
Выбестивание											
$\frac{1}{10000000000000000000000000000000000$,								
BAR DECIDING BAR DECIDING<								CINAT S	\$		
Половий <	SUS			ीर्घर-१२ इ.स.			ATTACKED 10 P	COG CLEAR S			
SB-06 SB-10 SB-10 SB-10 SB-12 SB-12 SB-12 SB-12 SB-12 SB-12 SB-12 SB-12 SB-12 SB-13 SB-14 SB-14 SB-14 SB-14 SB-14 SB-14 SB-14 SB-12 SB-12 SB-13 SB-14 SB-14 <th< td=""><td>GASOLINE</td><td>TANKS</td><td></td><td></td><td></td><td></td><td></td><td>CLEAR</td><td></td><td></td><td></td></th<>	GASOLINE	TANKS						CLEAR			
SR-80 SR-10 SR-10 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>											
NHONE SB-200 SB-10 SB-14 Image: SB-10 SB-10 SB-14 SB-14 Image: SB-10 SB-10 SB-14 SB-14 Image: SB-10 SB-10 SB-11 SB-14 Image: SB-10 SB-10 SB-11 SB-11 Image: SB-10 SB-11 SB-11 SB-11 SB-11 Image: SB-10 SB-11 SB-11 SB-11 SB-11 <td></td> <td></td> <td></td> <td></td> <td></td> <td>SB-16</td> <td></td> <td></td> <td></td> <td></td> <td></td>						SB-16					
SB-050 SB-100 SB-100<		8-06	SB-07	\$\$				-			
SB-10 SB-17 SB-16 SB-16 <th< td=""><td></td><td></td><td>,</td><td></td><td></td><td></td><td></td><td>30-12</td><td></td><td></td><td></td></th<>			,					30-12			
SB-10 SB-17 SB-16 SB-16 <th< td=""><td>SB-06D</td><td></td><td>SB-03-</td><td></td><td>SB-20D</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	SB-06D		SB-03-		SB-20D						
SB-13 CD SED NFPLCE CUL OL TAXK SB-15 SB-15 CD SED NFPLCE SB-10 SB-16 SB-17 SB-16 SB-17 SB-17 SB-08 SB-09 SB-10 SB-10 SB-10 SB-10 SB-08 SB-09 SB-10 SB-11 SB-10 SB-11 SB-10 SB-10 SB-10 SB-10 SB-10 SB-10 SB-10 SB-10 SB-10 SB-11		SB-01	1 3	bb-19			SI	B-14			
SB-13 SD-15 SD-16 SD-17 SD-16 SD-17 SD-17 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>											
SB-10 SB-10 <th< td=""><td>SB-13</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	SB-13										
SB-15D (WSDEC SPIL No. 94/265) SB-00 SB-15D SB-00 SB					CD 17						
$\frac{1}{32} + \frac{1}{32} $	# *			SR_15D	~3B-17	(NYSI		新 二 二 二 二 二 二 二 二 二 二 二 二 二			
SB-04 PUEL-OIL TAIK SB-15 SB-16 SB-17 SB-10 N SB-05 SB-06 P R S D SB-17 SB-11 P R SB-05 P R SB-05 P R S D SB-05 P R S D SB-10 P R S D S SB-05 P R S D S R R S D S SB-05 P R S D S R R S D S					F						
Ample ID S8-56 P R E S D N S <t< td=""><td></td><td></td><td></td><td></td><td>9</td><td>B-09</td><td>_</td><td>SR 10</td><td></td><td></td><td></td></t<>					9	B-09	_	SR 10			
$\frac{1}{28 + 36} + \frac{1}{28 + 36$		56-04	FUEL-OIL T								
SB-08 2800 rora P RESIDENT STREET Single D Single D </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>SB-11</td> <td></td> <td></td> <td></td> <td></td>							SB-11				
S8-06 280° torus P R E S I D E N T S T R E E T Simple 10 Simple Date (set 19:1) Simple Date (s					SB-15				XU		
SB-08 2800 more P R E S I D E N T S T R E E T Sample 10 Sa		B-05								<	
Sample ID Sample ID Sam	SB-08		29	280 ¹ 1014					n Britanian National Anna Anna Anna Anna Anna Anna Anna A		
Sample ID Sample ID Sample Date Sample Lyer SB15D_2325 42/28/2017 Sample Date Sample Lyer SB15D_2325 42/28/2017 Sample Date NE ample ID Sample Date NOCS (mg/kg) Total VOCS SB15D_2325 NE NE ample ID NOCS (mg/kg) Total VOCS SB15D_2325 NE SB15_1-2 NE SB15_1-2 SB15_1-2 SB15_1-2 NE SB15_1-2 SB15_1-2 SB15_1-2 NE SB15_1-2 SB15_1-2 SB15_1-2 NE SB15_1-2 SB15_1-2 SB15_1-2 SB15_1-2 NE SB15_1-2 SB15_1-2 SB15_1-2 NE SB15_1-2		P			\backslash	τ ς τ	REET				
Sample ID Sample Dath (rotal VOCs (mg/kg)) Sample ID Sample Layer Sample ID (rotal VOCs) Sam			K L	510							
Sample ID Sample Dath (rot lay CCs) Sample ID Sample Layer Sample ID (rot lay CCs) Sam											
Sample ID Sample Dath (rot lay CCs) Sample ID Sample Layer Sample ID (rot lay CCs) Sam		$\langle \rangle$	/								
Sample ID Sample Dath Sample ID (stable tayer Sample ID (stabl						,					
Sample Layer Native PO Reading (ppm) NE ample ID ample Dati maple Date S805.0.5-2 5/28/2015 NE Sample ID ample Date S805.0.5-2 5/28/2015 S815.1-2 5/28/2015 S815.1-2 3/8/2017 S815.1-2 3/8/2017 S815.1-1 3/8/2017 S815.1-1 3/8/2017 S809.1-2 3/8/2017 Sample Date sample Date sample Date sample Date sample Date splithiken Sample ID 5/28/2015 S815.1-2 3/8/2017 S815.1-1 3/8/2017 S815.1-1 3/8/2017 S809.1-2 3/8/2017 S809.1-2 3/8/2017 Sample Date sample Date	/	San	npling Date		4/28/2017						
Sample ID ample D ample Date ample Date ample Date ample Date big Stability of text bgs) ample Date for Backing (ppm) Sample ID Sample Date 5/28/2015 0.85/2015 0.85/2015 0.85/2015 0.85/2015 0.85/2015 0.85/2015 0.85/2015 0.85/2015 0.85/2015 0.85/2015 0.85/2015 0.85/2017 0.00 Sample ID Sample Date 3/8/2017 3/8/20 3/8/20 3/8/20 3/8/20 3/8/20 3/8/20 3/8/20 3/8/20 3/8/20 3/8/20 3/		San	nple Layer		Native						
Sample ID ample Date ample Date ample Date ample Date ample Date ample Date ample Date ample Date ample Date sample Date filet (feet bgs) SB05_05-2 5/28/2015 ample Date 3/8/2017 SB05_1-2 3/8/2017 SB05_10-11 3/8/2017 Date ample Date ample Date ample Date filet (feet bgs) 5 SB05_05-2 5/28/2015 SB05_1-2 3/8/2017 SB15_10-11 3/8/2017 Date ample Date ample Date ample Date filet system 5 SB05_01-2 3/8/2017 SB05_10-11 3/8/2017 Date ample Date ample Date ample Date ample Date filet system 5 SB05_10-11 3/8/2017 SB09_10-11 3/8/2017 Date ample Date ample Date ample Date filet system 1-2 SB05_01-2 SB09_10-11 3/8/2017 Date ample Date ample Date ample Date filet system SB05_01-2 SB09_10-11 3/8/2017 Date ample Date ample Date ample Date filet system SB05_01-12 SB05_01-12 Date ample Date ample Date filet system SB05_01-2 SB05_01-12 Date ample Date ample Date filet system SB05_01-2 SB05_01-11 Date ample Date ample Date filet system NE NE Date ample Date filet system NE NE Date ample Date filet system SB05_01-2 SB05_01-12 Date ample Date filet system SB05_01-12 SB05_01-12 Date ample Date filet system NE NE Date ample Date filet system NE Date filet system			Cs (mg/kg)								
Sample Date ample Depth (feet bgs) ample Layer 5/28/2015 0.5-2 Sample Depth (feet bgs) Sample Depth (feet bgs) 3/8/2017 1-2 3/8/2017 7.8 3/8/2017 10-11 Sample Depth (feet bgs) 3/8/2017 1-2 3/8/2017 10-11 D Reading (ppm) 3.5 OCS (mg/kg) Fill Native Native PID Reading (ppm) 0.0 0.0 VOCS (mg/kg)			al VOCs		NE]					<
Sample Date ample Depth (feet bgs) ample Layer 5/28/2015 0.5-2 sample Depth (feet bgs) Sample Depth (feet bgs) 3/8/2017 1-2 3/8/2017 7.8 3/8/2017 10-11 Sample Depth (feet bgs) 3/8/2017 1-2 3/8/2017 10-11 D Reading (ppm) 3.5 Sample Depth (feet bgs) 1.2 7.8 10-11 Sample Depth (feet bgs) 1.2 10-11 Sample Date (ppm) 3.5 VOCs (mg/kg) 0.0 0.0 0.0 VOCs (mg/kg) 0.0 0.0 0.0 0.0 VOCs (mg/kg) 0.0 0.0 0.0 VOCs (mg/kg) 0.0 0.0 VOCs (mg/kg) 0.0 0.0 0.0 VOCs (mg/kg)											\mathbf{i}
Sample Date ample Depth (feet bgs) ample Layer 5/28/2015 0.5-2 sample Depth (feet bgs) Sample Depth (feet bgs) 3/8/2017 1-2 3/8/2017 7.8 3/8/2017 10-11 Sample Depth (feet bgs) 3/8/2017 1-2 3/8/2017 10-11 D Reading (ppm) 3.5 Sample Depth (feet bgs) 1.2 7.8 10-11 Sample Depth (feet bgs) 1.2 10-11 Sample Date (ppm) 3.5 VOCs (mg/kg) 0.0 0.0 0.0 VOCs (mg/kg) 0.0 0.0 0.0 0.0 VOCs (mg/kg) 0.0 0.0 0.0 VOCs (mg/kg) 0.0 0.0 VOCs (mg/kg) 0.0 0.0 0.0 VOCs (mg/kg)		\setminus						\backslash			
Sample Date ample Depth (feet bgs) ample Layer 5/28/2015 0.5-2 Fill Sample Depth (feet bgs) 3/8/2017 1-2 3/8/2017 7.8 3/8/2017 10-11 Sample Depth (feet bgs) 3/8/2017 1-2 3/8/2017 10-11 D Reading (ppm) 3.5 Sample Depth (feet bgs) 1.2 7.8 10-11 Sample Depth (feet bgs) 1.2 10-11 Sample Dayer Fill Native PID Reading (ppm) 0.0		/	\backslash				\backslash				\backslash
Sample Date ample Depth (feet bgs) ample Layer 5/28/2015 0.5-2 Fill Sample Depth (feet bgs) 3/8/2017 1-2 3/8/2017 7.8 3/8/2017 10-11 Sample Depth (feet bgs) 3/8/2017 1-2 3/8/2017 10-11 D Reading (ppm) 3.5 Sample Depth (feet bgs) 1.2 7.8 10-11 Sample Depth (feet bgs) 1.2 10-11 Sample Dayer Fill Native PID Reading (ppm) 0.0							\backslash				\backslash
Sample Date ample Depth (feet bgs) ample Layer 5/28/2015 0.5-2 Fill Sample Depth (feet bgs) 3/8/2017 1-2 3/8/2017 7.8 3/8/2017 10-11 Sample Depth (feet bgs) 3/8/2017 1-2 3/8/2017 10-11 D Reading (ppm) 3.5 Sample Depth (feet bgs) 1.2 7.8 10-11 Sample Depth (feet bgs) 1.2 10-11 Sample Dayer Fill Native PID Reading (ppm) 0.0	ample ID	SB05_0.5.0	2	Sample ID		SB15 1-2	SB15 7.8 SB15 10 11	Sample ID		CR00 1	2 SR00 10 11
Sample Layer Fill Sample Layer Fill Native D Reading (ppm) 3.5 0.0 0.0 0.0 0.0 DGs (mg/kg)	imple Date	5/28/2015	S	Sampling Date	et has)	3/8/2017	3/8/2017 3/8/2017	Sampling I		3/8/201	7 3/8/2017
DCs (mg/kg) VOCs (mg/kg) iphthalene 51 /Ocs (mg/kg) Total VOCs NE ND NE //Cs (mg/kg) Total VOCs NE ND NE /rocs (mg/kg) Total VOCs NE ND NE /rocal province 1.6 SVOC (mg/kg) Total SVOCs NE ND inzo(a)pyrene 1.6 Pesticides (mg/kg) Total Pesticides ND ND ND inso(a)pyrene 1.6 Pesticides (mg/kg) Total Pesticides ND ND ND inso(a) pyrene 1.6 Metals (mg/kg) Total Pesticides ND ND ND inso(a) pyrene 1.6 Metals (mg/kg) Metals (mg/kg) Total SVOCs ND ND inso(a) pyrene 0.94 341 982 NE Metals (mg/kg) Metals (mg/kg) Metals (mg/kg) isticides (mg/kg) Total Pesticides ND 125 NE Metals NE NE Mercury 0.387 <	Imple Layer	Fill	S	Sample Layer	-	Fill	Fill Native	Sample La	yer	Fill	Native
SVOC (mg/kg) SVOC (mg/kg) nnzo(a)anthracene 1.6 nnzo(a)anthracene 1.6 nnzo(a)pyrene 1.6 nnzo(a)bfluoranthene 2.1 rysene 1.6 deno(1, 2, 3-cd)Pyrene 0.94 isticides (mg/kg) Total Pesticides (mg/kg) Total Pesticides (mg/kg) Total Support 4'-DDT 0.01 2Bs (mg/kg) ND 125 tal PCBs ND 125 setais (mg/kg) ND 125 senic, Total 19	DCs (mg/kg)			/OCs (mg/kg)	1)		ŀ	VOCs (mg/	′kg)		
Instruction I.6 Instructio	/OCs (mg/kg)		S	SVOC (mg/kg)				SVOC (mg	/kg)		
Introc(b)fluoranthene2.1Introc(b)fluoranthene1.6Intropycene0.94Introdemo(1,2,3-cd)Pyrene0.94Introdemo(1,2,3-cd)Pyrene0.94Introdemo(1,2,3-cd)Pyrene0.94Introdemo(1,2,3-cd)Pyrene0.94Introdemo(1,2,3-cd)Pyrene0.94Introdemo(1,2,3-cd)Pyrene0.94Introdemo(1,2,3-cd)Pyrene0.94Introdemo(1,2,3-cd)Pyrene0.94Introdemo(1,2,3-cd)Pyrene0.94Introdemo(1,2,3-cd)Pyrene0.94Introdemo(1,2,3-cd)Pyrene0.94Introdemo(1,2,3-cd)Pyrene0.94Introdemo(1,2,3-cd)Pyrene0.94Introdemo(1,2,3-cd)Pyrene0.94Introdemo(1,2,3-cd)Pyrene0.94Introdemo(1,2,3-cd)Pyrene0.94Introdemo(1,2,3-cd)Pyrene0.94Introdemo(1,2,3-cd)Pyrene0.01Introdemo(1,2,3-cd)Pyrene0.01Introdemo(1,2,3-cd)Pyrene0.01Introdemo(1,2,3-cd)PyreneNDIntrodemo(1,2,3-cd)PyreneNDIntrodemo(1,2,3-cd)PyreneNDIntrodemo(1,2,3-cd)PyreneNDIntrodemo(1,2,3-cd)PyreneNDIntrodemo(1,2,3-cd)PyreneNDIntrodemo(1,2,3-cd)PyreneNDIntrodemo(1,2,3-cd)PyreneNDIntrodemo(1,2,3-cd)PyreneNDIntrodemo(1,2,3-cd)PyreneNDIntrodemo(1,2,3-cd)PyreneNDIntrodemo(1,2,3-cd)PyreneNDIntrodemo(1,2,3-cd)PyreneNDIntrodemo(1,2,3-cd)PyreneNDIntrodemo(nzo(a)pyrene	1.6	P	esticides (mg/k	g)			Pesticides	(mg/kg)		
Ideno(1,2,3-cd)Pyrene 0.94 isticides (mg/kg) 1 4'-DDT 0.01 Bs (mg/kg) ND 40.6 Selenium ND 5.09 Ital PCBs ND ital PCBs ND etals (mg/kg) 0.387 senic, Total 19	irysene	2.1	Т	otal Pesticides		ND	ND ND	Total Pestic	ides	ND	ND
4'-DDT0.01CBs (mg/kg)NDDtal PCBsNDetals (mg/kg)NDrsenic, Total19	deno(1,2,3-cd)Pyrene			ead						NE	NE
NDMercury0.3870.981NEsenic, Total19	4'-DDT	0.01	S	Selenium		ND	5.09 NE				
senic, Total 19	tal PCBs	ND									
	senic, Total										

Sample ID	SB12D_23-25
Sampling Date	4/29/2017
Sample Depth (feet bgs)	23-25
Sample Layer	Native
PID Reading (ppm)	0.0
VOCs (mg/kg)	
Total VOCs	ND
100011000	ND

Sample ID	SB12_1-2	SB12_9-10
Sampling Date	3/8/2017	3/8/2017
Sample Depth (feet bgs)	1-2	9-10
Sample Layer	Fill	Native
PID Reading (ppm)	0.1	0.1
VOCs (mg/kg)		
Total VOCs	NE	NE
SVOC (mg/kg)		
Benzo(a)anthracene	2.46	ND
Benzo(a)pyrene	2.21	ND
Benzo(b)fluoranthene	2.39	ND
Benzo(k)fluoranthene	1.97	ND
Chrysene	2.76	ND
Dibenzo(a,h)anthracene	0.596	ND
Indeno(1,2,3-cd)pyrene	1.25	ND
Pesticides (mg/kg)		
Total PCBs	ND	ND
Metals (mg/kg)		
Lead	99.6	NE
Mercury	0.466	ND

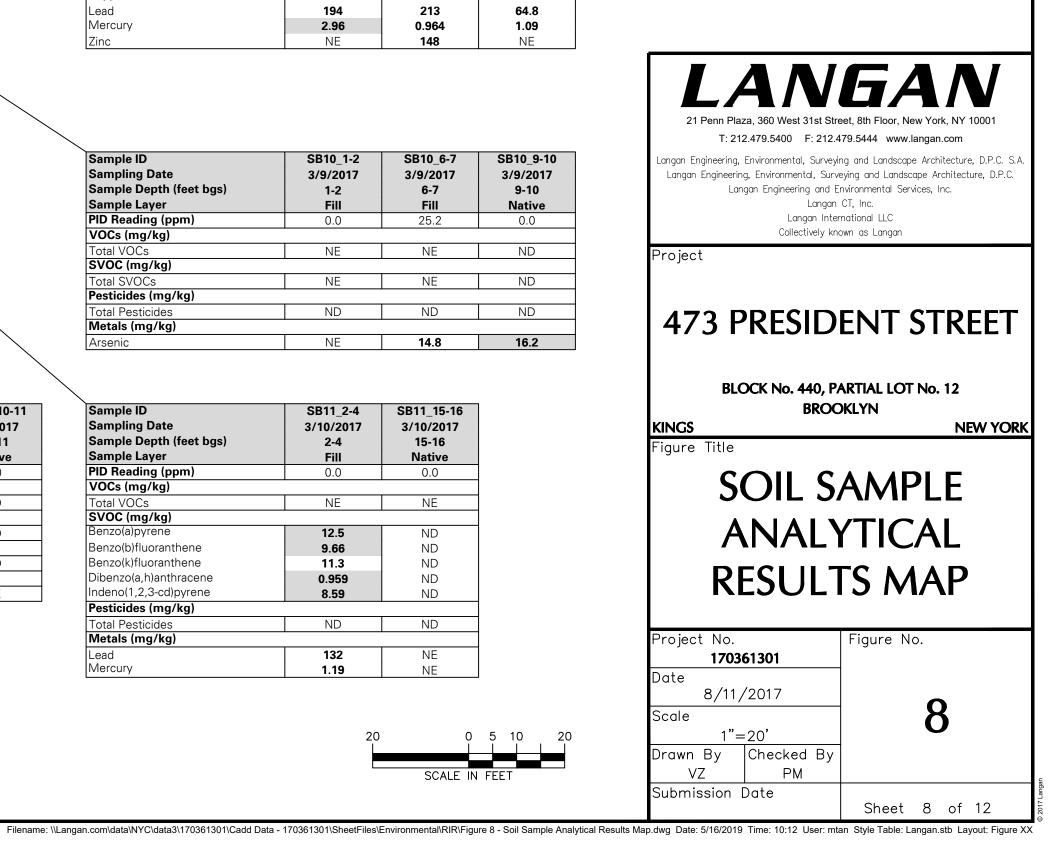
Sample ID	SB14_1-2	SB14_10-11
Sampling Date	3/8/2017	3/8/2017
Sample Depth (feet bgs)	1-2	10-11
Sample Layer	Fill	Native
PID Reading (ppm)	0.2	0.1
VOCs (mg/kg)		
Total VOCs	NE	ND
SVOC (mg/kg)		
Benzo(a)anthracene	6.09	ND
Benzo(a)pyrene	5.53	ND
Benzo(b)fluoranthene	4.98	ND
Benzo(k)fluoranthene	4.98	ND
Chrysene	6.54	ND
Dibenzo(a,h)anthracene	2.02	ND
Indeno(1,2,3-cd)pyrene	3.74	ND
Pesticides (mg/kg)		
Total Pesticides	ND	ND
Metals (mg/kg)		
Arsenic	14.1	NE
Barium	397	NE
Copper	53.4	NE
Lead	623	NE
Mercury	0.74	ND
Zinc	148	NE

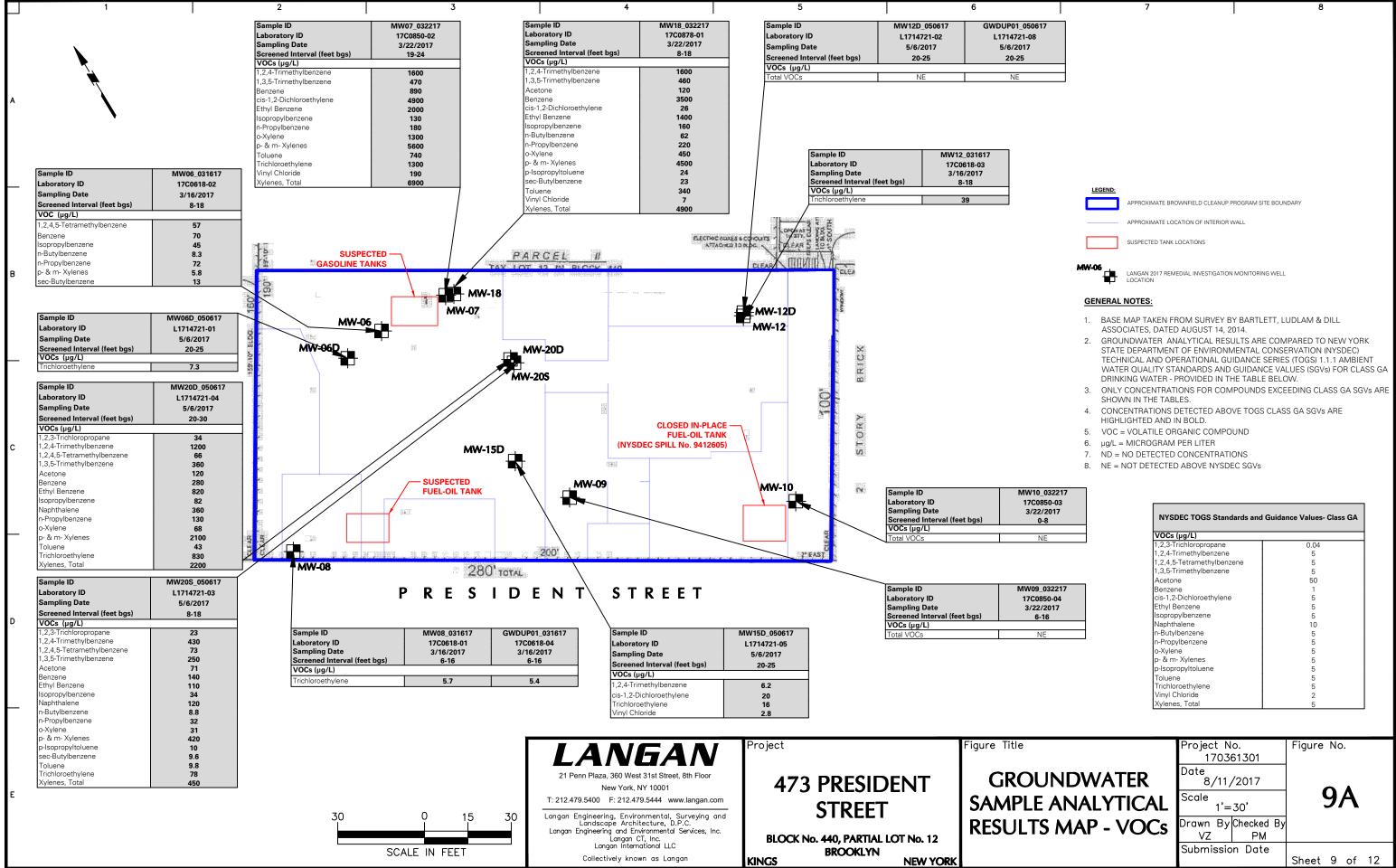
Sample ID	SB17_1-2	SB17_7-8	SB17_15-16
Sampling Date	3/8/2017	3/8/2017	3/8/2017
Sample Depth (feet bgs)	1-2	7-8	15-16
Sample Layer	Fill	Fill	Native
PID Reading (ppm)	0.1	0.2	0.0
VOCs (mg/kg)			
Total VOCs	NE	NE	NE
SVOC (mg/kg)			
Benzo(a)anthracene	ND	8.42	ND
Benzo(a)pyrene	ND	7.76	ND
Benzo(b)fluoranthene	ND	7.25	ND
Benzo(k)fluoranthene	ND	7.77	ND
Chrysene	ND	8.82	ND
Dibenzo(a,h)anthracene	ND	2.12	ND
Indeno(1,2,3-cd)pyrene	ND	5.88	ND
Pesticides (mg/kg)			
Total Pesticides	ND	ND	ND
Metals (mg/kg)			
Copper	54.6	NE	NE
Lead	194	213	64.8
Mercury	2.96	0.964	1.09
Zinc	NE	148	NE

Sample ID	SB10_1-2	SB10_6-7	SB10_9-10
Sampling Date	3/9/2017	3/9/2017	3/9/2017
Sample Depth (feet bgs)	1-2	6-7	9-10
Sample Layer	Fill	Fill	Native
PID Reading (ppm)	0.0	25.2	0.0
VOCs (mg/kg)			
Total VOCs	NE	NE	ND
SVOC (mg/kg)			
Total SVOCs	NE	NE	ND
Pesticides (mg/kg)			
Total Pesticides	ND	ND	ND
Metals (mg/kg)	*	*	*
Arsenic	NE	14.8	16.2

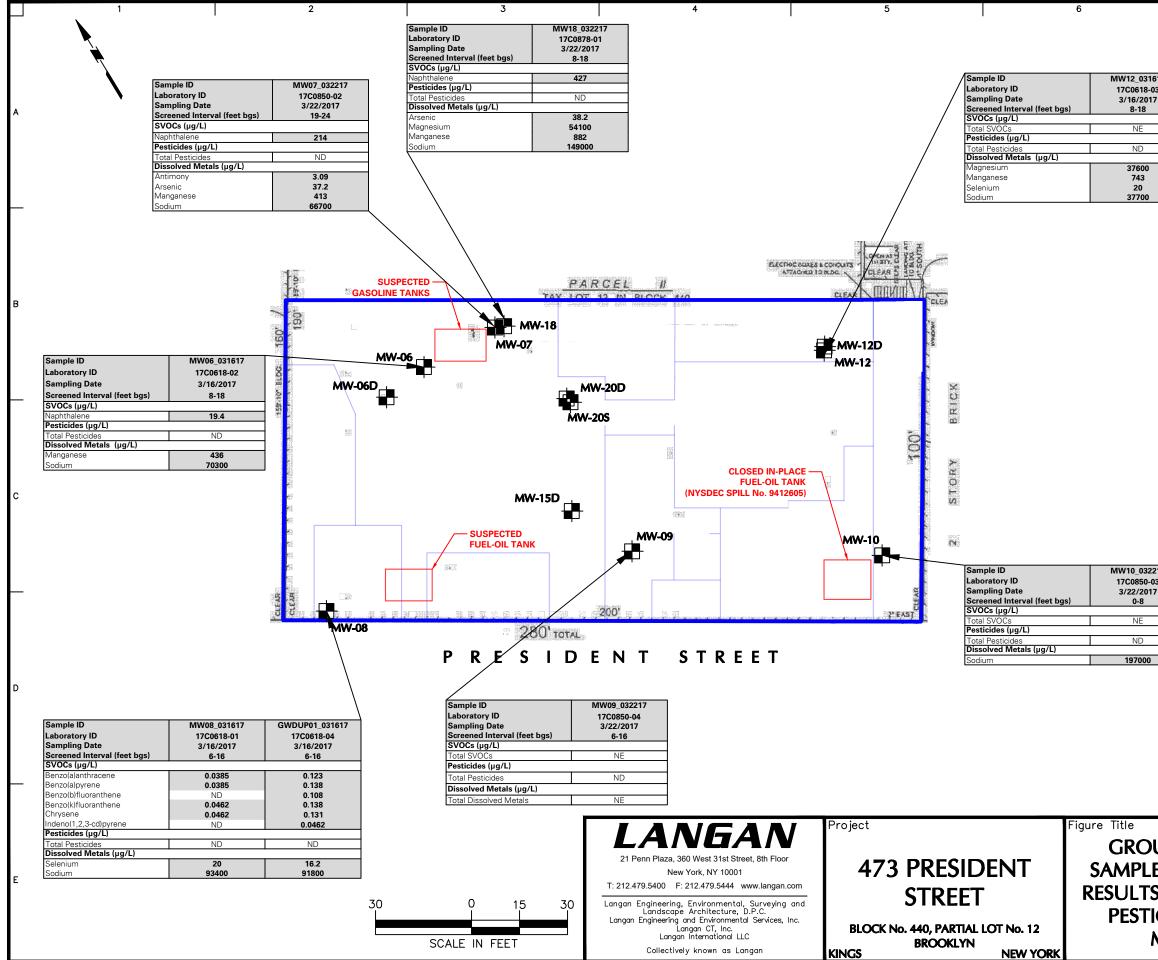
Sample ID	SB11_2-4	SB11_15-16
Sampling Date	3/10/2017	3/10/2017
Sample Depth (feet bgs)	2-4	15-16
Sample Layer	Fill	Native
PID Reading (ppm)	0.0	0.0
VOCs (mg/kg)		
Total VOCs	NE	NE
SVOC (mg/kg)		
Benzo(a)pyrene	12.5	ND
Benzo(b)fluoranthene	9.66	ND
Benzo(k)fluoranthene	11.3	ND
Dibenzo(a,h)anthracene	0.959	ND
Indeno(1,2,3-cd)pyrene	8.59	ND
Pesticides (mg/kg)	•	
Total Pesticides	ND	ND
Metals (mg/kg)	₩	*
Lead	132	NE
Mercury	1.19	NE

	APPROXIMATE BROWNFIELD CLEANUP PROGRAM SITE BOUNDARY
	APPROXIMATE LOCATION OF INTERIOR WALL
	SUSPECTED TANK LOCATIONS
SB-01	LANGAN 2015 LIMITED SUBSURFACE INVESTIGATION SOIL BORING LOCATION
SB-11	LANGAN 2017 REMEDIAL INVESTIGATION SOIL BORING LOCATION
SB-06	LANGAN 2017 REMEDIAL INVESTIGATION SOIL BORING/MONITORING WELL LOCATION
GENERAL	NOTES:


- BASE MAP TAKEN FROM SURVEY BY BARTLETT, LUDLAM & DILL ASSOCIATES, DATED AUGUST 14, 2014.
- 2. SOIL BORING LOCATIONS WERE MEASURED OFF SURVEYED MONITORING WELL LOCATIONS AND ARE APPROXIMATE
- SOIL ANALYTICAL RESULTS ARE COMPARED TO TITLE 6 OF THE NEW YORK CODES, RULES, AND REGULATIONS (6 NYCRR) PART 375 UNRESTRICTED USE
- AND RESTRICTED COMMERCIAL USE SOIL CLEANUP OBJECTIVES (SCOs). ONLY CONCENTRATIONS FOR COMPOUNDS EXCEEDING THE SCOs STATED IN NOTE 3 ARE SHOWN.
- 5. CONCENTRATIONS DETECTED ABOVE 6 NYCRR PART 375 UNRESTRICTED USE (UU) SOIL CLEANUP OBJECTIVES (SCOs) ARE BOLDED.
- 6. CONCENTRATIONS DETECTED ABOVE 6 NYCRR PART 375 RESTRICTED COMMERCIAL USE (CU) SCOs ARE HIGHLIGHTED AND BOLDED.
- 7. PART 375 UU AND CU SCOs ARE PRESENTED IN THE TABLE BELOW.
- 8. VOC = VOLATILE ORGANIC COMPOUND
- 9. SVOC = SEMIVOLATILE ORGANIC COMPOUND
- 10. mg/kg MILLIGRAM PER KILOGRAM
- 11. ND = NOT DETECTED


LEGEND:

SB-06


12. NE = NO DETECTED CONCENTRATIONS ABOVE PART 375 UU OR CU SOIL CLEANUP OBJECTIVES.

	NYSDEC Part 375 Unrestricted Use SCOs	NYSDEC Part 375 Restricted Commercial Use SCOs
VOCs (mg/kg)		
1,2,4-Trimethylbenzene	3.6	190
1,3,5-Trimethylbenzene	8.4	190
2-Butanone	0.12	500
Benzene	0.06	44
cis-1,2-Dichloroethylene	0.25	500
Ethyl Benzene	1	390
n-Propylbenzene	3.9	500
Toluene	0.7	500
Trichloroethylene	0.47	200
Xylenes, Total	0.26	500
SVOCs (mg/kg)		
Acenaphthene	20	500
Anthracene	100	500
Benzo(a)anthracene	1	5.6
Benzo(a)pyrene	1	1
Benzo(b)fluoranthene	1	5.6
Benzo(g,h,i)perylene	100	500
Benzo(k)fluoranthene	0.8	56
Chrysene	1	56
, Dibenzo(a,h)anthracene	0.33	0.56
Dibenzofuran	7	350
Fluoranthene	100	500
Fluorene	30	500
Indeno(1,2,3-cd)pyrene	0.5	5.6
Naphthalene	12	500
Phenanthrene	100	500
Pyrene	100	500
Pesticides (mg/kg)		
4,4'-DDT	0.0033	47
alpha-Chlordane	0.094	24
Metals (mg/kg)		
Arsenic	13	16
Barium	350	400
Chromium, Hexavalent	1	400
Copper	50	270
Lead	63	1000
Mercury	0.18	2.8
Nickel	30	310
Selenium	3.9	1500
Zinc	109	10000

2017 Langan

Filename: \\Langan.com\data\NYC\data3\170361301\Cadd Data - 170361301\SheetFiles\Environmental\RIR\Figure 9B - Groundwater Sample Analytical Results Map - SVOCs, Pesticides, and Metals.dwg Date: 5/16/2019 Time: 10:17 User: mtan Style Table:

LEEND:			/	I	8	
 APPROXIMATE BROWNFIELD CLEANUP PROGRAM SITE BOUNDARY APPROXIMATE LOCATION OF INTERIOR WALL SUSPECTED TANK LOCATIONS SUSPECTED TANK LOCATIONS LANGAN 2017 REMEDIAL INVESTIGATION MONITORING WELL LOCATION LANGAN 2017 REMEDIAL INVESTIGATION MONITORING WELL APPROXIMATE ANALYTICAL RESULTS ARE COMPARED TO NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) TECHNICAL AND OPERATIONAL GUIDANCE SERIES (TOGS) 1.1.1 AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES (SGVs) FOR CLASS DRINKING WATER - PROVIDED IN THE TABLE BELOW. ONLY CONCENTRATIONS FOR COMPOUNDS EXCEEDING CLASS GA SGVs ARE HIGHLIGHTED AND IN BOLD. µg/L - MICROGRAM PER LITER ND = NOT DETECTED 						
 APPROXIMATE BROWNFIELD CLEANUP PROGRAM SITE BOUNDARY APPROXIMATE LOCATION OF INTERIOR WALL SUSPECTED TANK LOCATIONS SUSPECTED TANK LOCATIONS LANGAN 2017 REMEDIAL INVESTIGATION MONITORING WELL LOCATION LANGAN 2017 REMEDIAL INVESTIGATION MONITORING WELL LOCATION BASE MAP TAKEN FROM SURVEY BY BARTLETT, LUDLAM & DILL ASSOCIATES, DATED AUGUST 14, 2014. RI = REMEDIAL INVESTIGATION GROUNDWATER ANALYTICAL RESULTS ARE COMPARED TO NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) TECHNICAL AND OPERATIONAL GUIDANCE SERIES (TOGS) 1.1.1 AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES (SGVs) FOR CLASS DRINKING WATER - PROVIDED IN THE TABLE BELOW. ONLY CONCENTRATIONS FOR COMPOUNDS EXCEEDING CLASS GA SGVs ARE HIGHLIGHTED AND IN BOLD. µg/L - MICROGRAM PER LITER ND = NOT DETECTED 						
 APPROXIMATE BROWNFIELD CLEANUP PROGRAM SITE BOUNDARY APPROXIMATE LOCATION OF INTERIOR WALL SUSPECTED TANK LOCATIONS SUSPECTED TANK LOCATIONS LANGAN 2017 REMEDIAL INVESTIGATION MONITORING WELL LOCATION LANGAN 2017 REMEDIAL INVESTIGATION MONITORING WELL APPROXIMATE ANALYTICAL RESULTS ARE COMPARED TO NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) TECHNICAL AND OPERATIONAL GUIDANCE SERIES (TOGS) 1.1.1 AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES (SGVs) FOR CLASS DRINKING WATER - PROVIDED IN THE TABLE BELOW. ONLY CONCENTRATIONS FOR COMPOUNDS EXCEEDING CLASS GA SGVs ARE HIGHLIGHTED AND IN BOLD. µg/L - MICROGRAM PER LITER ND = NOT DETECTED 						
 APPROXIMATE BROWNFIELD CLEANUP PROGRAM SITE BOUNDARY APPROXIMATE LOCATION OF INTERIOR WALL SUSPECTED TANK LOCATIONS SUSPECTED TANK LOCATIONS LANGAN 2017 REMEDIAL INVESTIGATION MONITORING WELL LOCATION LANGAN 2017 REMEDIAL INVESTIGATION MONITORING WELL APPROXIMATE ANALYTICAL RESULTS ARE COMPARED TO NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) TECHNICAL AND OPERATIONAL GUIDANCE SERIES (TOGS) 1.1.1 AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES (SGVs) FOR CLASS DRINKING WATER - PROVIDED IN THE TABLE BELOW. ONLY CONCENTRATIONS FOR COMPOUNDS EXCEEDING CLASS GA SGVs ARE HIGHLIGHTED AND IN BOLD. µg/L - MICROGRAM PER LITER ND = NOT DETECTED 						
APPROXIMATE BROWNFIELD CLEANUP PROGRAM SITE BOUNDARY APPROXIMATE LOCATION OF INTERIOR WALL SUSPECTED TANK LOCATIONS						
APPROXIMATE BROWNFIELD CLEANUP PROGRAM SITE BOUNDARY APPROXIMATE LOCATION OF INTERIOR WALL SUSPECTED TANK LOCATIONS SUSPECTED TANK LOCATIONS MW-OS LOCATION LOCATION LOCATION LOCATION AND AND TAKEN FROM SURVEY BY BARTLETT, LUDLAM & DILL ASSOCIATES, DATED AUGUST 14, 2014. RI = REMEDIAL INVESTIGATION GROUNDWATER ANALYTICAL RESULTS ARE COMPARED TO NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) TECHNICAL AND OPERATIONAL GUIDANCE SERIES (TOGS) 1.1.1 AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES (SGVs) FOR CLASS DRINKING WATER - PROVIDED IN THE TABLE BELOW. ONLY CONCENTRATIONS FOR COMPOUNDS EXCEEDING CLASS GA SGVs A SHOWN IN THE TABLES. CONCENTRATIONS DETECTED ABOVE TOGS CLASS GA SGVs ARE HIGHLIGHTED AND IN BOLD. µg/L - MICROGRAM PER LITER N D = NOT DETECTED						
APPROXIMATE BROWNFIELD CLEANUP PROGRAM SITE BOUNDARY APPROXIMATE LOCATION OF INTERIOR WALL SUSPECTED TANK LOCATIONS SUSPECTED TANK LOCATIONS MW-OS LOCATION LOCATION LOCATION LOCATION AND AND TAKEN FROM SURVEY BY BARTLETT, LUDLAM & DILL ASSOCIATES, DATED AUGUST 14, 2014. RI = REMEDIAL INVESTIGATION GROUNDWATER ANALYTICAL RESULTS ARE COMPARED TO NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) TECHNICAL AND OPERATIONAL GUIDANCE SERIES (TOGS) 1.1.1 AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES (SGVs) FOR CLASS DRINKING WATER - PROVIDED IN THE TABLE BELOW. ONLY CONCENTRATIONS FOR COMPOUNDS EXCEEDING CLASS GA SGVs A SHOWN IN THE TABLES. CONCENTRATIONS DETECTED ABOVE TOGS CLASS GA SGVs ARE HIGHLIGHTED AND IN BOLD. µg/L - MICROGRAM PER LITER N D = NOT DETECTED	_					
 APPROXIMATE BROWNFIELD CLEANUP PROGRAM SITE BOUNDARY APPROXIMATE LOCATION OF INTERIOR WALL SUSPECTED TANK LOCATIONS SUSPECTED TANK LOCATIONS LANGAN 2017 REMEDIAL INVESTIGATION MONITORING WELL LOCATION LANGAN 2017 REMEDIAL INVESTIGATION MONITORING WELL APPROXIMATE ANALYTICAL RESULTS ARE COMPARED TO NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) TECHNICAL AND OPERATIONAL GUIDANCE SERIES (TOGS) 1.1.1 AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES (SGVs) FOR CLASS DRINKING WATER - PROVIDED IN THE TABLE BELOW. ONLY CONCENTRATIONS FOR COMPOUNDS EXCEEDING CLASS GA SGVs ARE HIGHLIGHTED AND IN BOLD. µg/L - MICROGRAM PER LITER ND = NOT DETECTED 						
 APPROXIMATE BROWNFIELD CLEANUP PROGRAM SITE BOUNDARY APPROXIMATE LOCATION OF INTERIOR WALL SUSPECTED TANK LOCATIONS SUSPECTED TANK LOCATIONS LANGAN 2017 REMEDIAL INVESTIGATION MONITORING WELL LOCATION LANGAN 2017 REMEDIAL INVESTIGATION MONITORING WELL APPROXIMATE ANALYTICAL RESULTS ARE COMPARED TO NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) TECHNICAL AND OPERATIONAL GUIDANCE SERIES (TOGS) 1.1.1 AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES (SGVs) FOR CLASS DRINKING WATER - PROVIDED IN THE TABLE BELOW. ONLY CONCENTRATIONS FOR COMPOUNDS EXCEEDING CLASS GA SGVs ARE HIGHLIGHTED AND IN BOLD. µg/L - MICROGRAM PER LITER ND = NOT DETECTED 						
 APPROXIMATE BROWNFIELD CLEANUP PROGRAM SITE BOUNDARY APPROXIMATE LOCATION OF INTERIOR WALL SUSPECTED TANK LOCATIONS SUSPECTED TANK LOCATIONS LANGAN 2017 REMEDIAL INVESTIGATION MONITORING WELL LOCATION LANGAN 2017 REMEDIAL INVESTIGATION MONITORING WELL APPROXIMATE ANALYTICAL RESULTS ARE COMPARED TO NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) TECHNICAL AND OPERATIONAL GUIDANCE SERIES (TOGS) 1.1.1 AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES (SGVs) FOR CLASS DRINKING WATER - PROVIDED IN THE TABLE BELOW. ONLY CONCENTRATIONS FOR COMPOUNDS EXCEEDING CLASS GA SGVs ARE HIGHLIGHTED AND IN BOLD. µg/L - MICROGRAM PER LITER ND = NOT DETECTED 						
 APPROXIMATE LOCATION OF INTERIOR WALL SUSPECTED TANK LOCATIONS SUSPECTED TANK LOCATIONS LANGAN 2017 REMEDIAL INVESTIGATION MONITORING WELL LOCATION LANGAN 2017 REMEDIAL INVESTIGATION MONITORING WELL LOCATION BASE MAP TAKEN FROM SURVEY BY BARTLETT, LUDLAM & DILL ASSOCIATES, DATED AUGUST 14, 2014. RI = REMEDIAL INVESTIGATION GROUNDWATER ANALYTICAL RESULTS ARE COMPARED TO NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) TECHNICAL AND OPERATIONAL GUIDANCE SERIES (TOGS) 1.1.1 AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES (SGVs) FOR CLASS DRINKING WATER - PROVIDED IN THE TABLE BELOW. ONLY CONCENTRATIONS FOR COMPOUNDS EXCEEDING CLASS GA SGVs ARE HIGHLIGHTED AND IN BOLD. µg/L - MICROGRAM PER LITER ND = NOT DETECTED 		LEGEND:				
 SUSPECTED TANK LOCATIONS ENGAN 2017 REMEDIAL INVESTIGATION MONITORING WELL LOCATION ENGAN 2017 REMEDIAL INVESTIGATION MONITORING WELL LOCATION BASE MAP TAKEN FROM SURVEY BY BARTLETT, LUDLAM & DILL ASSOCIATES, DATED AUGUST 14, 2014. RI = REMEDIAL INVESTIGATION GROUNDWATER ANALYTICAL RESULTS ARE COMPARED TO NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) TECHNICAL AND OPERATIONAL GUIDANCE SERIES (TOGS) 1.1.1 AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES (SGVs) FOR CLASS DRINKING WATER - PROVIDED IN THE TABLE BELOW. ONLY CONCENTRATIONS FOR COMPOUNDS EXCEEDING CLASS GA SGVs ARE HIGHLIGHTED AND IN BOLD. µg/L - MICROGRAM PER LITER ND = NOT DETECTED 	— C		APPROXIMATE BROWNFIELD CL	EANUP PROGRAM S	TE BOUNDARY	
 SUSPECTED TANK LOCATIONS ENGAN 2017 REMEDIAL INVESTIGATION MONITORING WELL LOCATION ENGAN 2017 REMEDIAL INVESTIGATION MONITORING WELL LOCATION BASE MAP TAKEN FROM SURVEY BY BARTLETT, LUDLAM & DILL ASSOCIATES, DATED AUGUST 14, 2014. RI = REMEDIAL INVESTIGATION GROUNDWATER ANALYTICAL RESULTS ARE COMPARED TO NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) TECHNICAL AND OPERATIONAL GUIDANCE SERIES (TOGS) 1.1.1 AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES (SGVs) FOR CLASS DRINKING WATER - PROVIDED IN THE TABLE BELOW. ONLY CONCENTRATIONS FOR COMPOUNDS EXCEEDING CLASS GA SGVs ARE HIGHLIGHTED AND IN BOLD. µg/L - MICROGRAM PER LITER ND = NOT DETECTED 			APPROXIMATE LOCATION OF INT	TERIOR WALL		
 LANGAN 2017 REMEDIAL INVESTIGATION MONITORING WELL LOCATION GENERAL NOTES: BASE MAP TAKEN FROM SURVEY BY BARTLETT, LUDLAM & DILL ASSOCIATES, DATED AUGUST 14, 2014. RI = REMEDIAL INVESTIGATION GROUNDWATER ANALYTICAL RESULTS ARE COMPARED TO NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) TECHNICAL AND OPERATIONAL GUIDANCE SERIES (TOGS) 1.1.1 AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES (SGVs) FOR CLASS DRINKING WATER - PROVIDED IN THE TABLE BELOW. ONLY CONCENTRATIONS FOR COMPOUNDS EXCEEDING CLASS GA SGVs ARE HIGHLIGHTED AND IN BOLD. µg/L - MICROGRAM PER LITER ND = NOT DETECTED 	_					
 LANGAN 2017 REMEDIAL INVESTIGATION MONITORING WELL LOCATION GENERAL NOTES: BASE MAP TAKEN FROM SURVEY BY BARTLETT, LUDLAM & DILL ASSOCIATES, DATED AUGUST 14, 2014. RI = REMEDIAL INVESTIGATION GROUNDWATER ANALYTICAL RESULTS ARE COMPARED TO NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) TECHNICAL AND OPERATIONAL GUIDANCE SERIES (TOGS) 1.1.1 AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES (SGVs) FOR CLASS DRINKING WATER - PROVIDED IN THE TABLE BELOW. ONLY CONCENTRATIONS FOR COMPOUNDS EXCEEDING CLASS GA SGVs / SHOWN IN THE TABLES. CONCENTRATIONS DETECTED ABOVE TOGS CLASS GA SGVs ARE HIGHLIGHTED AND IN BOLD. µg/L - MICROGRAM PER LITER ND = NOT DETECTED 	L		SUSPECTED TANK LOCATIONS			
 LANGAN 2017 REMEDIAL INVESTIGATION MONITORING WELL LOCATION GENERAL NOTES: BASE MAP TAKEN FROM SURVEY BY BARTLETT, LUDLAM & DILL ASSOCIATES, DATED AUGUST 14, 2014. RI = REMEDIAL INVESTIGATION GROUNDWATER ANALYTICAL RESULTS ARE COMPARED TO NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) TECHNICAL AND OPERATIONAL GUIDANCE SERIES (TOGS) 1.1.1 AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES (SGVs) FOR CLASS DRINKING WATER - PROVIDED IN THE TABLE BELOW. ONLY CONCENTRATIONS FOR COMPOUNDS EXCEEDING CLASS GA SGVs / SHOWN IN THE TABLES. CONCENTRATIONS DETECTED ABOVE TOGS CLASS GA SGVs ARE HIGHLIGHTED AND IN BOLD. µg/L - MICROGRAM PER LITER ND = NOT DETECTED 						
 GENERAL NOTES: BASE MAP TAKEN FROM SURVEY BY BARTLETT, LUDLAM & DILL ASSOCIATES, DATED AUGUST 14, 2014. RI = REMEDIAL INVESTIGATION GROUNDWATER ANALYTICAL RESULTS ARE COMPARED TO NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) TECHNICAL AND OPERATIONAL GUIDANCE SERIES (TOGS) 1.1.1 AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES (SGVs) FOR CLASS DRINKING WATER - PROVIDED IN THE TABLE BELOW. ONLY CONCENTRATIONS FOR COMPOUNDS EXCEEDING CLASS GA SGVs A SHOWN IN THE TABLES. CONCENTRATIONS DETECTED ABOVE TOGS CLASS GA SGVs ARE HIGHLIGHTED AND IN BOLD. µg/L - MICROGRAM PER LITER ND = NOT DETECTED 	MM	/-06		TIGATION MONITOR	ING WELL	
 BASE MAP TAKEN FROM SURVEY BY BARTLETT, LUDLAM & DILL ASSOCIATES, DATED AUGUST 14, 2014. RI = REMEDIAL INVESTIGATION GROUNDWATER ANALYTICAL RESULTS ARE COMPARED TO NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) TECHNICAL AND OPERATIONAL GUIDANCE SERIES (TOGS) 1.1.1 AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES (SGVs) FOR CLASS DRINKING WATER - PROVIDED IN THE TABLE BELOW. ONLY CONCENTRATIONS FOR COMPOUNDS EXCEEDING CLASS GA SGVs / SHOWN IN THE TABLES. CONCENTRATIONS DETECTED ABOVE TOGS CLASS GA SGVs ARE HIGHLIGHTED AND IN BOLD. µg/L - MICROGRAM PER LITER ND = NOT DETECTED 			LUCATION			
 BASE MAP TAKEN FROM SURVEY BY BARTLETT, LUDLAM & DILL ASSOCIATES, DATED AUGUST 14, 2014. RI = REMEDIAL INVESTIGATION GROUNDWATER ANALYTICAL RESULTS ARE COMPARED TO NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) TECHNICAL AND OPERATIONAL GUIDANCE SERIES (TOGS) 1.1.1 AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES (SGVs) FOR CLASS DRINKING WATER - PROVIDED IN THE TABLE BELOW. ONLY CONCENTRATIONS FOR COMPOUNDS EXCEEDING CLASS GA SGVs / SHOWN IN THE TABLES. CONCENTRATIONS DETECTED ABOVE TOGS CLASS GA SGVs ARE HIGHLIGHTED AND IN BOLD. µg/L - MICROGRAM PER LITER ND = NOT DETECTED 						
 ASSOCIATES, DATED AUGUST 14, 2014. RI = REMEDIAL INVESTIGATION GROUNDWATER ANALYTICAL RESULTS ARE COMPARED TO NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) TECHNICAL AND OPERATIONAL GUIDANCE SERIES (TOGS) 1.1.1 AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES (SGVs) FOR CLASS DRINKING WATER - PROVIDED IN THE TABLE BELOW. ONLY CONCENTRATIONS FOR COMPOUNDS EXCEEDING CLASS GA SGVs , SHOWN IN THE TABLES. CONCENTRATIONS DETECTED ABOVE TOGS CLASS GA SGVs ARE HIGHLIGHTED AND IN BOLD. µg/L - MICROGRAM PER LITER ND = NOT DETECTED 	G	ENERAL	NOTES:			
 ASSOCIATES, DATED AUGUST 14, 2014. RI = REMEDIAL INVESTIGATION GROUNDWATER ANALYTICAL RESULTS ARE COMPARED TO NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) TECHNICAL AND OPERATIONAL GUIDANCE SERIES (TOGS) 1.1.1 AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES (SGVs) FOR CLASS DRINKING WATER - PROVIDED IN THE TABLE BELOW. ONLY CONCENTRATIONS FOR COMPOUNDS EXCEEDING CLASS GA SGVs , SHOWN IN THE TABLES. CONCENTRATIONS DETECTED ABOVE TOGS CLASS GA SGVs ARE HIGHLIGHTED AND IN BOLD. µg/L - MICROGRAM PER LITER ND = NOT DETECTED 	1	DACE				
 RI = REMEDIAL INVESTIGATION GROUNDWATER ANALYTICAL RESULTS ARE COMPARED TO NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) TECHNICAL AND OPERATIONAL GUIDANCE SERIES (TOGS) 1.1.1 AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES (SGVs) FOR CLASS DRINKING WATER - PROVIDED IN THE TABLE BELOW. ONLY CONCENTRATIONS FOR COMPOUNDS EXCEEDING CLASS GA SGVs A SHOWN IN THE TABLES. CONCENTRATIONS DETECTED ABOVE TOGS CLASS GA SGVs ARE HIGHLIGHTED AND IN BOLD. µg/L - MICROGRAM PER LITER ND = NOT DETECTED 	1.				ETT, LUDLAIVI & DI	LL
 STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) TECHNICAL AND OPERATIONAL GUIDANCE SERIES (TOGS) 1.1.1 AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES (SGVs) FOR CLASS DRINKING WATER - PROVIDED IN THE TABLE BELOW. 4. ONLY CONCENTRATIONS FOR COMPOUNDS EXCEEDING CLASS GA SGVs / SHOWN IN THE TABLES. 5. CONCENTRATIONS DETECTED ABOVE TOGS CLASS GA SGVs ARE HIGHLIGHTED AND IN BOLD. 6. µg/L - MICROGRAM PER LITER 7. ND = NOT DETECTED 	2.					
 TECHNICAL AND OPERATIONAL GUIDANCE SERIES (TOGS) 1.1.1 AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES (SGVs) FOR CLASS DRINKING WATER - PROVIDED IN THE TABLE BELOW. ONLY CONCENTRATIONS FOR COMPOUNDS EXCEEDING CLASS GA SGVs / SHOWN IN THE TABLES. CONCENTRATIONS DETECTED ABOVE TOGS CLASS GA SGVs ARE HIGHLIGHTED AND IN BOLD. µg/L - MICROGRAM PER LITER ND = NOT DETECTED 	3.					
 WATER QUALITY STANDARDS AND GUIDANCE VALUES (SGVs) FOR CLASS DRINKING WATER - PROVIDED IN THE TABLE BELOW. 4. ONLY CONCENTRATIONS FOR COMPOUNDS EXCEEDING CLASS GA SGVs / SHOWN IN THE TABLES. 5. CONCENTRATIONS DETECTED ABOVE TOGS CLASS GA SGVs ARE HIGHLIGHTED AND IN BOLD. 6. µg/L - MICROGRAM PER LITER 7. ND = NOT DETECTED 						
 ONLY CONCENTRATIONS FOR COMPOUNDS EXCEEDING CLASS GA SGVs , SHOWN IN THE TABLES. CONCENTRATIONS DETECTED ABOVE TOGS CLASS GA SGVs ARE HIGHLIGHTED AND IN BOLD. µg/L - MICROGRAM PER LITER ND = NOT DETECTED 		WATE	ER QUALITY STANDARDS	S AND GUIDAN	CE VALUES (SGVs)	
 SHOWN IN THE TABLES. CONCENTRATIONS DETECTED ABOVE TOGS CLASS GA SGVs ARE HIGHLIGHTED AND IN BOLD. µg/L - MICROGRAM PER LITER ND = NOT DETECTED 	1					
HIGHLIGHTED AND IN BOLD. 6. µg/L - MICROGRAM PER LITER 7. ND = NOT DETECTED	4.				S EXCEEDING CLAS	5 GA 5GVS /
 μg/L - MICROGRAM PER LITER ND = NOT DETECTED 	5.			ABOVE TOGS	CLASS GA SGVs A	RE
7. ND = NOT DETECTED	0					
				١		
				VYSDEC SGVs		
						1
7			NYSDEC TOGS Standar	rds and Guidan	ce Values- Class GA	
NYSDEC TOGS Standards and Guidance Values- Class GA			SVOCs (µg/L)			4
			Benzo(a)anthracene		0.002	1
SVOCs (µg/L) Benzo(a)anthracene 0.002					0	
SVOCs (µg/L) Benzo(a)anthracene 0.002 Benzo(a)pyrene 0	-		Benzo(k)fluoranthene		0.002	
SVOCs (µg/L) Benzo(a)anthracene 0.002 Benzo(a)pyrene 0 Benzo(b)fluoranthene 0.002			Chrysene		0.002	
SVOCs (µg/L) Benzo(a)anthracene 0.002 Benzo(a)pyrene 0 Benzo(b)fluoranthene 0.002 Benzo(k)fluoranthene 0.002 Chrysene 0.002						
SVOCs (µg/L) Benzo(a)anthracene 0.002 Benzo(a)pyrene 0 Benzo(b)fluoranthene 0.002 Benzo(k)fluoranthene 0.002 Chrysene 0.002 Indeno(1,2,3-cd)pyrene 0.002			Dissolved Metals (µg/L)			1
SVOCs (µg/L) Benzo(a)anthracene 0.002 Benzo(a)pyrene 0 Benzo(b)fluoranthene 0.002 Benzo(k)fluoranthene 0.002 Chrysene 0.002 Indeno(1,2,3-cd)pyrene 0.002 Naphthalene 10 Dissolved Metals (µg/L) 10			Antimony		3	
SVOCs (µg/L) Benzo(a)anthracene 0.002 Benzo(b)fluoranthene 0.002 Benzo(k)fluoranthene 0.002 Chrysene 0.002 Indeno(1,2,3-cd)pyrene 0.002 Naphthalene 10 Dissolved Metals (µg/L) 3			Arsenic		25	

8

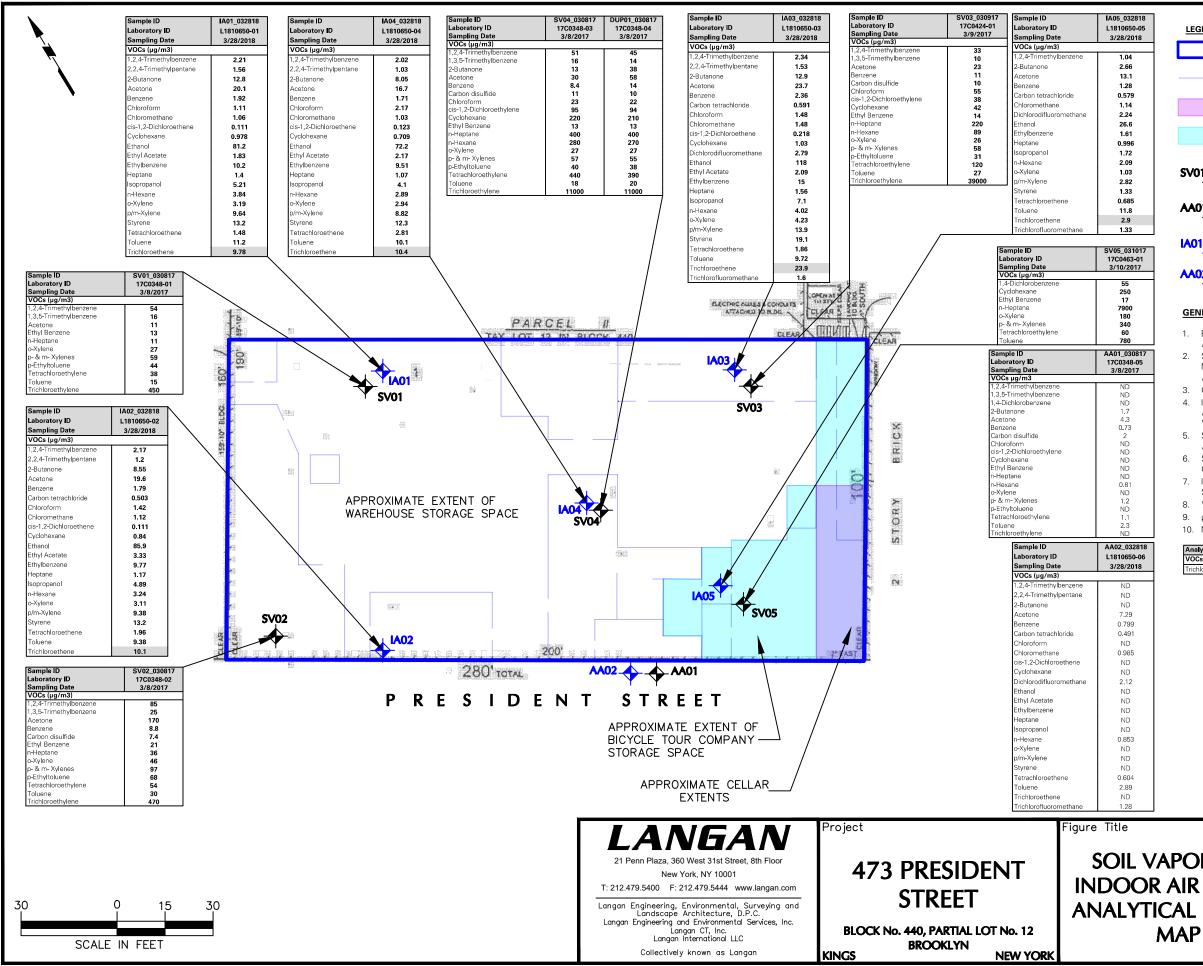
	Project N	0.	Figure	No.	
	1703	61301	-		
UNDWATER	Date				
E ANALYTICAL	8/11/	/2017			
	Scale		1	9 B	
5 MAP - SVOCs,	1'=	30'		50	
CIDES, AND	Drawn By	Checked By			
•	VZ	PM			
METALS	Submissio	n Date			
			Sheet	10 of	12

Magnesium

Manganese

Selenium

Sodium

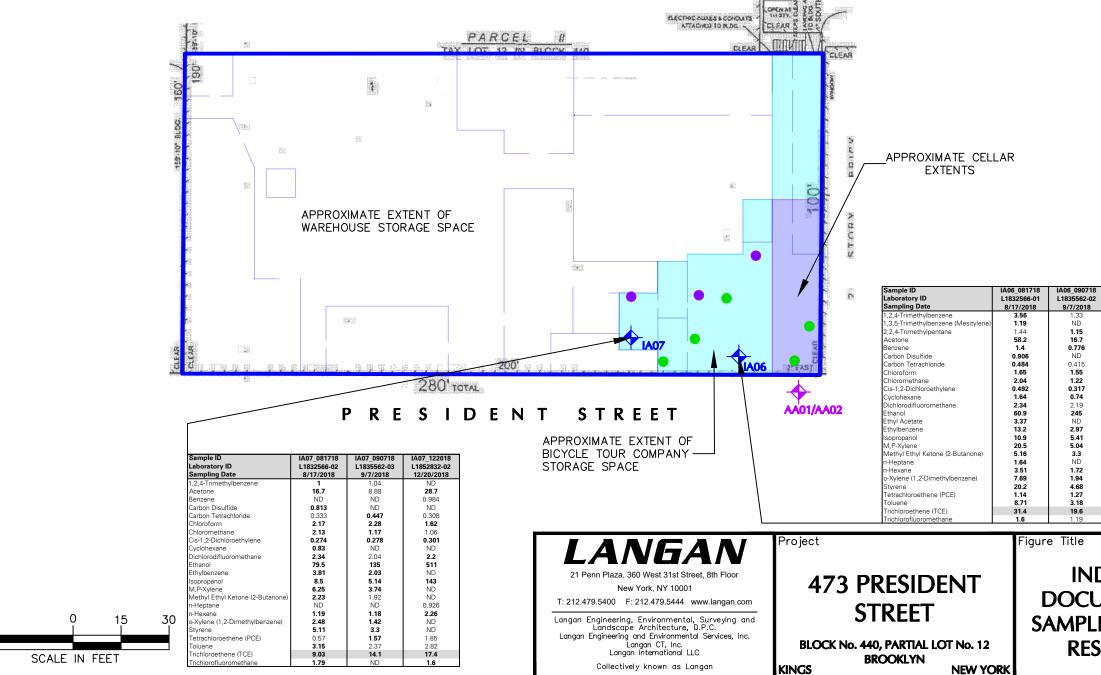

we wanter Style Table: s Map - SVOCs, Pesticides, and Metals.dwg Date: 5/16/2019 Time: 10:17 User: mtan Style Table: Langan.stb Layout: ANSIB-BL

35000

300

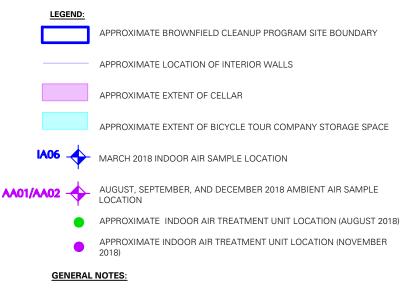
10

20000



Filename: \\Langan.com\data\NYC\data3\170361301\Cadd Data - 170361301\SheetFiles\Environmental\RIR\Figure 10 - Air Sample Analytical Results Map.dwg Date: 5/16/2019 Time: 09:40 User: mtan Style Table: Langan.stb Layout: ANSIB-BL

LEGEND: APPROX	KIMATE BROWNFIELD CLEANUP PROGRAM SITE BOUNDARY
APPRO>	KIMATE LOCATION OF INTERIOR WALL
APPROX	KIMATE EXTENT OF CELLAR
APPROX	KIMATE EXTENT OF BICYCLE REPAIR AND TOUR COMPANY
	N 2017 REMEDIAL INVESTIGATION SUB-SLAB SOIL VAPOR E LOCATION
	N 2017 REMEDIAL INVESTIGATION AMBIENT AIR SAMPLE ON
	2018 INDOOR AIR SAMPLE LOCATION
AA02 MARCH	2018 AMBIENT AIR SAMPLE LOCATION
T GENERAL NOTES:	
	N FROM SURVEY BY BARTLETT, LUDLAM & DILL
ASSOCIATES, DA 2. SOIL VAPOR POI	ATED AUGUST 14, 2014. INTS AND INDOOR AIR SAMPLE LOCATIONS WERE
APPROXIMATE.	OF SURVEYED MONITORING WELL LOCATIONS AND ARE
4. INDOOR AIR SAM	D VOC CONCENTRATIONS ARE SHOWN IN THE TABLES. MPLE ANALYTICAL RESULTS ARE COMPARED TO OUTDOOR AMPLE AA02 032818 AND THE NYSDOH AIR GUIDELINE
VALUES (AGVs).	-
AMBIENT AIR SA	AMPLE AA01_031817. D INDOOR AIR SAMPLE ANALYTICAL RESULTS ABOVE
OUTDOOR AMB	IENT CONCENTRATIONS ARE BOLDED. MPLE ANALYTICAL RESULTS ABOVE NYSDOH AGVS ARE
SHADED.	
	E ORGANIC COMPOUND RAM PER CUBIC METER
10. ND = NOT DETER	
Analyte VOCs (μg/m3) Tricklass scheme	NYSDOH AGV
Trichloroethene	2
	Project No. Figure No.
	170361301
APOR AND	01/10/2010
AIR SAMPL	E Scale 1'=30' 10
CAL RESUL	
MAP	KWT PM Submission Date
	• SUDTUSSION LINE


Sheet 11 of 12

Submission Date

-30

Filename: \\Langan.com\data\NYC\data3\170361301\Cadd Data - 170361301\SheetFiles\Environmental\RIR\Figure 11 - Indoor Air Confirmation Sample Analytical Results Map.dwg Date: 5/20/2019 Time: 12:36 User: vzuluaga Style Table: Langan.stb Layout: ANSIB-BI

- BASE MAP TAKEN FROM SURVEY BY BARTLETT, LUDLAM & DILL 1. ASSOCIATES, DATED AUGUST 14, 2014.
- INDOOR AIR SAMPLE LOCATIONS WERE MEASURED OFF OF SURVEYED 2. MONITORING WELL LOCATIONS AND ARE APPROXIMATE.
- 3. ONLY DETECTED VOC CONCENTRATIONS ARE SHOWN IN THE TABLES.
- INDOOR AIR SAMPLE ANALYTICAL RESULTS ARE COMPARED TO OUTDOOR 4. AMBIENT AIR SAMPLE AA02_081718, AA01_090718, AND AA02_122018, AND THE NYSDOH AIR GUIDELINE VALUES (AGVs).
- INDOOR AIR SAMPLE ANALYTICAL RESULTS ABOVE OUTDOOR AMBIENT 5 CONCENTRATIONS ARE BOLDED.
- INDOOR AIR SAMPLE ANALYTICAL RESULTS ABOVE NYSDOH AGVs ARE 6. SHADED.
- VOC = VOLATILE ORGANIC COMPOUND 7
- 8. µg/m3 - MICROGRAM PER CUBIC METER
- 9. ND = NOT DETECTED

18 Sample ID Laboratory ID	AA02_081718 L1832566-03	AA01_090718 L1835562-01	AA02_122018 L1852832-03
Sampling Date	8/17/2018	8/17/2018	12/20/2018
1,2,4-Trimethylbenzene	2.27	0.983	1.22
1,3,5-Trimethylbenzene (Mesitylene)	0.983	0.983	0.983
2,2,4-Trimethylpentane	0.934	1.51	1.6
Acetone	15.9	7.79	13.7
Benzene	0.732	0.786	2.38
Carbon Disulfide	0.623	0.623	0.623
Carbon Tetrachloride	0.428	0.459	0.516
Chloroform	0.977	0.977	0.977
Chloromethane	0.96	0.973	1.26
Cis-1,2-Dichloroethylene	0.079	0.079	0.079
Cyclohexane	0.688	0.688	0.85
Dichlorodifluoromethane	2.3	2.21	2.02
Ethanol	9.42	15.8	23.9
Ethyl Acetate	1.8	1.8	1.8
Ethylbenzene	0.869	0.869	0.93
Isopropanol	1.57	1.55	4.74
M,P-Xylene	1.94	1.74	3.09
Methyl Ethyl Ketone (2-Butanone)	2.37	1.47	1.47
n-Heptane	0.82	0.82	1.4
n-Hexane	0.93	1.02	1.88
o-Xylene (1,2-Dimethylbenzene)	0.869	0.869	1.04
Styrene	0.852	0.852	0.852
Tetrachloroethene (PCE)	0.576	0.678	3.19
Toluene	2.92	2.68	6.71
Trichloroethene (TCE)	0.548	1.11	0.107
Trichlorofluoromethane	1.23	1.17	1.55

170361301 **INDOOR AIR** Date 05/17/2019 11 DOCUMENTATION Scale 1'=30' SAMPLE ANALYTICAL Drawn ByChecked By РM VZ **RESULTS MAP** Submission Date Sheet 12 of 12

Table 1 Sample Summary 473 President Street Brooklyn, New York Langan Project No. 170361301 BCP ID No. C224220

Sample Location	Sample ID	Sampling Depth (feet bgs)	Sample Date	Area of Concern (AOC)/Rationale SOIL	Max. PID Reading (ppm)	Analysis
SPOG	SB06_2-3	2-3	3/6/2017	AOC-1	0.0	Part 375 VOCs, SVOCs, Metals, Pesticides, Hexavalent Chromium,
SB06 -	SB06_9-10 SB06_14-15	9-10 14-15	3/6/2017 3/6/2017	AOC-3	0.0	Cyanide
	SB06D_23-25	23-25	4/28/2017		0.0	Part 375/TCL VOCs
SB06D	SODUP01_042817	23-25	4/28/2017	AOC-5	0.0	Ammonia, Nitrate, Nitrite, Total Phosphate, Sulfate, Alkalinity, BOD,
	SB06D_20-25 	20-25 4-5	4/28/2017 3/7/2017	AOC-1	0.0	COD, Grain Size, Total Iron, Total Manganese, TOC
SB07 -	SB07_13-14	13-14	3/7/2017		1326	
-	SB07_23-24 SODUP01_042817	23-24 23-24	3/7/2017 3/7/2017	AOC-3	4195	
SB08	SB08_1-2 SB08_7-8	1-2 7-8	3/6/2017 3/6/2017	AOC-1/AOC-4	0.0	
	SB08_8-9	8-9	3/6/2017	AOC-4	0.025	
SB09	SB09_1-2 SB09_10-11	1-2 10-11	3/8/2017 3/8/2017	AOC-1	0.0	Part 375/TCL VOCs, SVOCs, Metals, Pesticides, Hexavalent Chromium, Cyanide
SB10	SB10_1-2 SB10_6-7	1-2 6-7	3/9/2017 3/9/2017	AOC-1/AOC-2	0.0 35	
	SB10_9-10	9-10	3/9/2017	AOC-2	0.0	
SB11	SB11_2-4 SB11_15-16	2-4 15-16	3/10/2017 3/10/2017	AOC-1/AOC-2 AOC-2	0.0	
SB12	SB12_1-2	1-2	3/8/2017	AOC-1	0.0	-
	SB12_9-10	9-10	3/8/2017		0.0	
SB12D	SB12D_23-25 SB12D_20-25	23-25 20-25	4/29/2017	AOC-5	0.0	Part 375/TCL VOCs Ammonia, Nitrate, Nitrite, Total Phosphate, Sulfate, Alkalinity, BOD,
	SB12D_20-23 SB13_1-2	1-2	3/6/2017		0.025	COD, Grain Size, Total Iron, Total Manganese, TOC
SB13 -	SB13_9-10	9-10	3/6/2017	AOC-1	0.0	-
SB14	SB14_1-2 SB14_10-11	1-2	3/8/2017 3/8/2017	AOC-1	0.2	Part 375/TCL VOCs, SVOCs, Metals, Pesticides, Hexavalent
	SB15_1-2	1-2	3/8/2017		0.0	Chromium, Cyanide
SB15	SB15_7-8 SB15_10-11	7-8 10-11	3/8/2017 3/8/3017	AOC-1	0.0	
	SB15D_23-25	23-25	4/28/2017		0.0	Part 375/TCL VOCs
SB15D	SB15D_20-25	20-25	4/28/2017	AOC-5	0.0	Ammonia, Nitrate, Nitrite, Total Phosphate, Sulfate, Alkalinity, BOD, COD, Grain Size, Total Iron, Total Manganese, TOC
SB16	SB16_1-2 SB16_9-11	1-2 9-11	3/9/2017 3/9/3017	AOC-1	0.0	-
	SB16_14-15	14-15	3/9/2017	AOC-1/AOC-3	0.0	
SB17	SB17_1-2 SB17_7-8	1-2 7-8	3/10/2017 3/10/2017	AOC-1	0.1	-
	SB17_15-16 SB18_10-11	15-16 10-11	3/10/2017 3/10/2017	-	0.0 475	
SB18 -	SB18_23-24	23-24	3/10/2017	AOC-3	98	Part 375/TCL VOCs, SVOCs, Metals, Pesticides, Hexavalent Chromium, Cyanide
SB19	SB19_10-11 SB19_17-18	10-11 17-18	3/10/2017 3/10/2017	AOC-3	7 1177	
	SB19_20-21 DUP02_031017	20-21 20-21	3/10/2017 3/10/2017		10.3	
-	SB20D_0-2 SB20D_17-19	0-2 17-19	4/27/2017 4/27/2017	- AOC-3/AOC-5	0.0	
SB20D	SB20D_23-25 SB20D_30-32	23-25 30-32	4/27/2017 4/27/2017	400-3/400-3	<u> </u>	
	SB20D_14-19 SB20D_20-30	14-19 20-30	4/27/2017 4/27/2017	AOC-3/AOC-5	1121 17.2	Ammonia, Nitrate, Nitrite, Total Phosphate, Sulfate, Alkalinity, BOD, COD, Grain Size, Total Iron, Total Manganese, TOC
	TB01_030617 SOFB01_030817		3/6/2017 3/8/2017			Part 375/TCL VOCs Part 375/TCL VOCs, SVOCs, Metals, Pesticides, Hexavalent
QA/QC	SOFB01_031017 SOTB01_031017	N/A	3/10/2017 3/10/2017	ΩΑ/ΩC	N/A	Chromium, Cyanide Part 375/TCL VOCs
	TB01_042717		4/27/2017	GROUNDWATER		Part 375/TCL VOCs
MW06	MW06_031617	8-18	3/16/2017	AOC-3	2.4	TCL VOC, TCL SVOC, TAL Metals (dissolved), Hexavalent Chromium, Pesticides
MW06D	MW06D_050617	20-25	5/6/2017	AOC-5	4.7	TCL VOC, DHC, ammonia, nitrate, total phosphate, sulfate TCL VOC, TCL SVOC, TAL Metals (dissolved), Hexavalent Chromium,
MW07	MW07_032217	19-24	3/22/2017	AOC-3	548	Pesticides
MW08	MW08_031617 GWDUP01_031617	6-16	3/16/2017 3/16/2017	ΑΟC-4 QΑ/QC	1.6	TCL VOC, TCL SVOC, TAL Metals (dissolved), Hexavalent Chromium, Pesticides
MW09	MW09_032217	6-16	3/22/2017	Site Coverage	0	TCL VOC, TCL SVOC, TAL Metals (dissolved), Hexavalent Chromium,
MW10 MW12	MW10_032217 MW12_031617	0-8 8-18	3/22/2017 3/16/2017	AOC-2 Site Coverage	0.1	Pesticides
MW12D -	MW12D_050617	20-25	5/6/2017	AOC-5	8.8	TCL VOC, DHC, ammonia, nitrate, total phosphate, sulfate
MW15D	GWDUP01_050617 MW15D_050617	20-25	5/6/2017 5/6/2017	QA/QC AOC-5	25.2	TCL VOC, DHC, ammonia, nitrate, total phosphate, surfate TCL VOC, TCL SVOC, TAL Metals (dissolved), Hexavalent Chromium,
MW18	MW18_032217	8-18	3/22/2017	AOC-3	31.4	Pesticides
MW20D MW20S	MW20D_050617 MW20S_050617 GWTB01_031617	20-30 8-18	5/6/2017 5/6/2017 3/16/2017	AOC-5 AOC-3/AOC-5	440 630	TCL VOC, DHC, ammonia, nitrate, total phosphate, sulfate TCL VOCs
	GWFB01_031617		3/16/2017		N1/0	TCL VOC, TCL SVOC, Pesticides
QA/QC	GWFB02_032217 GWFB01_050617	N/A	3/22/2017 5/6/2017	QA/QC	N/A	TAL Metals (dissolved) TCL VOCs
0\/04	GWTB01_050617		5/6/2017	SOIL VAPOR		
SV01 SV02	SV01_030817 SV02_030817	6 5	3/8/2017 3/8/2017	AOC-3/AOC-5 AOC-4/AOC-5	1.3 0.8	4
SV03 SV04 -	SV03_030917 SV04_030817	5 5	3/9/2017 3/8/2017	AOC-5/Site Coverage AOC-5/Site Coverage	19.8 0.0	TO-15 VOCs
SV05	DUP01_030817 SV05_031017	5 5	3/8/2017 3/10/2017	QA/QC AOC-2/AOC-5	0.1	4
AA01	AA01_030817	N/A	3/8/2017	Outdoor Ambient Air INDOOR AIR	0.0	
IA01 IA02	IA01_032818 IA02_032818		3/28/2018 3/28/2018	AOC 5 AOC 5		
IA03 IA04	IA03_032818 IA04_032818	N/A	3/28/2018 3/28/2018	AOC 5 AOC 5	0.0	TO-15 VOCs
IA05	IA05_032818		3/28/2018 INDO	AOC 5	SAMPLES	
IA06 IA07	IA06_081718 IA07_081718	N/A N/A	8/17/2018 8/17/2018	Confirmation Sampling Event #1		
IA06 IA07	IA06_090718 IA07_090718	N/A N/A	9/7/2018 9/7/2018	Confirmation Sampling Event #2	0.0	TO-15 VOCs
IA06 IA07	IA06_122018 IA07_122018	N/A N/A	12/20/2018 12/20/2018	Confirmation Sampling Event #3		
IAU7	1/10/_122U10	IN/A	12/20/2010		1	l

Notes:

1. TCL = Target Compound List

3. VOC = volatile organic compound

5. PCB = polychlorinated biphenyl6. TOC = total organic carbon

7. COD = chemical oxygen demand

8. BOD = biological oxygen demand

9. TCE = trichloroethylene10. bgs = below grade surface

4. SVOC = semivolatile organic compounds

2. TAL = Target Analyte List

- 12. ppm = parts per million
 - 13. DHC = Dehalococcoides

11. PID = photoionization detector

14. N/A = Not Applicable

15. QA/QC = Quality Assurance/Quality control

16. Dissolved metals were field filtered

17. Indoor air confirmation sampling events were conducted as part of the NYSDEC-approved Interim Remedial Measures Work Plan, dated July 19, 2018.

AOC-1: Historic Fill (Site-Wide) AOC-2: Petroleum Spill in the Southeastern Portion of the Site AOC-3: Potential UST - Northwestern Portion of the Site

AOC-4: Potential UST - Southwestern Portion of the Site

AOC-5: Chlorinated Volatile Organic Compound (CVOC) Impacts to Soil, Groundwater, Soil Vapor, and Indoor Air (Site-Wide)

TABLES

Table 2Groundwater Elevation Data Summary473 President StreetBrooklyn, NYLangan Project No.: 170361301BCP Site ID: C224220

Well ID	Date/Time	Depth to Water (feet bgs)	Top of Casing Elevation ⁽¹⁾ (feet)	Water Elevation ⁽¹⁾ (feet)
MW06	3/22/2017	10.56	12.97	2.41
1010000	6/23/2017	10.36	12.97	2.61
MW06D	3/22/2017	NI	12.79	NI
	6/23/2017	10.28	12.79	2.51
MW07	3/22/2017	10.34	13.02	2.68
1010007	6/23/2017	10.37	13.02	2.65
MW08	3/22/2017	8.84	11.00	2.16
1010008	6/23/2017	8.50	11.00	2.50
N 4\A/OO	3/22/2017	14.21	12.91	-1.30
MW09	6/23/2017	10.25	12.91	2.66
MW10	3/22/2017	2.91	6.03	3.12
	6/23/2017	NA	0.03	NA
MW12	3/22/2017	9.84	12.22	2.38
IVIVVIZ	6/23/2017	9.59	12.22	2.63
MW12D	3/22/2017	NI	12.12	NI
	6/23/2017	9.48	12.12	2.64
MW15D	3/22/2017	NI	12.77	NI
	6/23/2017	10.15	12.77	2.62
N 4\ A /1 O	3/22/2017	10.67	10.00	2.31
MW18	6/23/2017	10.37	12.98	2.61
N 4\\A/200C	3/22/2017	NI	10.07	NI
MW20S	6/23/2017	10.25	12.97	2.72
	3/22/2017	NI	10.00	NI
MW20D	6/23/2017	10.38	12.98	2.60

Notes:

1. Elevations are relative to the North American Vertical Datum of 1988 (NAVD88).

2. Water Elevation = Top of Casing Elevation - Depth to Water.

3. bgs = below grade surface.

4. NA = not accessible

5. NI = not installed

Table 3 Soil Sample Analytical Detection Summary 473 President Street Brooklyn, New York Langan Project No. 170361301 BCP Site ID: C224220

						DUF	LICATE	T		DUPI	LICATE								
Sample ID	NYSDEC Part 375	NYSDEC Part 375 Restricted	SB06_2-3	SB06_9-10	SB06_14-15	SB06D_23-25	SODUP01_042817	SB07_4-5	SB07_13-14	SB07_23-24	DUP01_030717	SB08_1-2	SB08_7-8	SB08_8-9	SB09_1-2	SB09_10-11	SB10_1-2	SB10_6-7	SB10_9-10
Laboratory ID	Unrestricted Use Soil	Use Soil Cleanup Objectives	17C0226-03	17C0226-04	17C0226-05	L1713775-03	L1713775-04	17C0278-01	17C0278-02	17C0278-03	17C0278-04	17C0226-06	17C0226-07	17C0226-08	17C0343-11	17C0343-10	17C0418-05	17C0418-01	17C0418-02
Sampling Date	Cleanup Objectives	Commercial	3/6/2017	3/6/2017	3/6/2017	4/28/2017	4/28/2017	3/7/2017	3/7/2017 13-14	3/7/2017	3/7/2017	3/6/2017	3/6/2017	3/6/2017	3/8/2017	3/8/2017	3/9/2017	3/9/2017	3/9/2017
Sample Depth (feet bgs)			2-3	9-10	14-15	23-25	23-25	4-5	13-14	23-24	23-24	1-2	7-8	8-9	1-2	10-11	1-2	6-7	9-10
Volatile Organic Compounds (mg/kg)	26	100	0.0044	0.0022	0.0010	0.0052	0.0048	0.0024	0.20	100	60 DI	0.002	0.002	0.0021	0.2	0.0012	0.0026 P	0.0044	0.0022
1,2,4-Trimethylbenzene 1,2,4,5-Tetramethylbenzene	3.6	190 ~	0.0044 U NA	0.0022 U NA	0.0019 U NA	0.0053 U 0.0042 U	0.0048 U 0.0038 U	0.0024 J NA	0.38 U NA	100 D NA	68 DE NA	E 0.003 U NA	0.002 U NA	0.0021 U NA	0.3 U NA	0.0013 U NA	0.0036 R NA	0.0044 U NA	0.0022 U NA
1,3,5-Trimethylbenzene	8.4	190	0.0044 U	0.0022 U	0.0019 U	0.0053 U	0.0048 U	0.0024 U	0.38 U	28 D	29 D		0.002 U	0.0021 U	0.3 U	0.0013 U	0.0036 R	0.0044 U	0.0022 U
2-Butanone	0.12	500	0.0044 U	0.0022 U	0.013	0.011 U	0.0096 U	0.0024 U	0.38 U	0.24 U	0.49 U		0.002 U	0.0021 U	0.3 U	0.0036	0.0036 U	0.0044 U	0.0022 U
4-Methyl-2-pentanone	~	~	0.0044 U	0.0022 U	0.0019 U	0.011 U	0.0096 U	0.0024 U	0.38 U	0.24 U	6.4 D		0.002 U	0.0021 U	0.3 U	0.0013 U	0.0036 U	0.0044 U	0.0022 U
Acetone	0.05	500	0.012 J	0.0045 U	0.05	0.003 J	0.0059 J	0.0067 J	0.76 U	0.47 U	0.98 U		0.0044 J	0.0042 U	0.6 U	0.019	0.035	0.043	0.0043 U
Benzene Carbon disulfide	0.06	44	0.0044 U 0.0044 U	0.0022 U 0.0022 U	0.0019 U 0.0019 U	0.0011 U 0.011 U	0.00096 U 0.0096 U	0.0024 U 0.0024 U	0.55 JD 0.38 U	0.24 U 0.24 U	0.49 U 0.49 U		0.002 U 0.002 U	0.0021 U 0.0021 U	0.3 U 0.3 U	0.0013 U 0.0013 U	0.0036 U 0.0036 U	0.0044 U 0.0044 U	0.0022 U 0.0022 U
Chloroform	0.37	350	0.0044 U	0.0022 U	0.0019 U	0.0016 U	0.0014 U	0.0024 U	0.38 U	0.24 U	0.49 U		0.002 U	0.0021 U	0.3 U	0.0013 U	0.0030 U 0.0071 J	0.0044 U	0.0022 U
cis-1,2-Dichloroethylene	0.25	500	0.0044 U	0.0022 U	0.0019 U	0.00067 J	0.00096 U	0.0024 U	0.38 U	3.7 D	0.57 JD		0.002 U	0.0021 U	0.3 U	0.0013 U	0.0036 U	0.0044 U	0.0022 U
Cyclohexane	~	~	0.0044 U	0.0022 U	0.011	NA	NA	0.0024 U	11 DE	11 DE	11 DE	E 0.003 U	0.002 U	0.0021 U	0.3 U	0.0013 U	0.0036 U	0.0044 U	0.0022 U
Ethyl Benzene	1	390	0.0044 U	0.0022 U	0.0019 U	0.0011 U	0.00096 U	0.0024 U	2.2 D	31 D	32 D		0.002 U	0.0021 U	0.3 U	0.0013 U	0.0036 R	0.0044 U	0.0022 U
Isopropylbenzene	~	~	0.0044 U	0.0022 U	0.0019 U	0.0011 U	0.00096 U	0.0024 U	14 D	8.7 D	9.6 D		0.002 U	0.0021 U	0.3 U	0.0013 U	0.0036 R	0.0044 U	0.0022 U
Methylcyclohexane	~ 12	~ 500	0.0044 U NA	0.0022 U NA	0.021 NA	NA 0.0053 U	NA 0.00036 J	0.0034 J NA	230 D NA	120 D NA	160 D NA	0.003 U NA	0.002 U NA	0.0021 U NA	0.3 U NA	0.0013 U NA	0.0036 R NA	0.01 NA	0.0022 U NA
Naphthalene n-Butylbenzene	12	500	0.0044 U	0.0022 U	0.0019 U	0.0011 U	0.00036 J	0.0024 U	11 D	10 D	11 D		0.002 U	0.0021 U	0.3 U	0.0013 U	0.0036 R	0.0044 U	0.0022 U
n-Propylbenzene	3.9	500	0.0044 U	0.0022 U	0.0019 U	0.0011 U	0.00096 U	0.0024 U	22 D	17 DE	17 D		0.002 U	0.0021 U	0.3 U	0.0013 U	0.0036 R	0.0044 U	0.0022 U
o-Xylene	~	~	0.0044 U	0.0022 U	0.0019 U	0.0021 U	0.0019 U	0.0024 U	0.38 U	29 D			0.002 U	0.0021 U	0.3 U	0.0013 U	0.0036 R	0.0044 U	0.0022 U
p- & m- Xylenes	~	~	0.0089 U	0.0045 U	0.0038 U	0.0021 U	0.0019 U	0.0047 U	0.76 U	140 D	200 D	0.006 U	0.0041 U	0.0042 U	0.6 U	0.0025 U	0.0072 R	0.0088 U	0.0043 U
p-Diethylbenzene	~	~	NA	NA	NA	0.0042 U	0.0038 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
p-Ethyltoluene	~	~	NA 0.0044 U	NA 0.0022 U	NA 0.0019 U	0.0042 U 0.0011 U	0.0038 U 0.00096 U	NA 0.0024 U	NA 0.38 U	NA 5 D	NA 5.2 D	NA 0.003 U	NA 0.002 U	NA 0.0021 U	NA 0.3 U	NA 0.0013 U	NA 0.0036 U	NA 0.0044 U	NA 0.0022 U
p-Isopropyltoluene sec-Butylbenzene	~ 11	~ 500	0.0044 U 0.0044 U	0.0022 U	0.0019 U 0.0019 U	0.0011 U	0.00096 U 0.00096 U	0.0024 U	0.38 U 5.8 D	3.4 D	5.2 D 4 D		0.002 U	0.0021 U	0.3 U 0.3 U	0.0013 U 0.0013 U	0.0036 U 0.0036 R	0.0044 U 0.0044 U	0.0022 U
tert-Butylbenzene	5.9	500	0.0044 U	0.0022 U	0.0019 U	0.0053 U	0.0048 U	0.0024 U	0.68 JD	0.24 U	0.49 U		0.002 U	0.0021 U	0.3 U	0.0013 U	0.0036 R	0.0044 U	0.0022 U
Tetrachloroethylene	1.3	150	0.0044 U	0.0022 U	0.0019 U	0.0011 U	0.00096 U	0.0024 U	0.38 U	0.24 U			0.002 U	0.0021 U	0.92 D	0.0013 U	0.0036 R	0.0044 U	0.0022 U
Toluene	0.7	500	0.0044 U	0.0022 U	0.0019 U	0.0016 U	0.00021 J	0.0024 U	0.38 U	5.3 D	5.5 D	0.003 U	0.002 U	0.0021 U	0.3 U	0.0013 U	0.0036 R	0.0044 U	0.0022 U
Trichloroethylene	0.47	200	0.0074 J	0.0022 U	0.0019 U	0.0086	0.0022	0.0047 J	0.38 U	0.24 U	0.49 U		0.0086	0.0021 U	5.1 D	0.0013 U	0.015 J	0.0044 U	0.0022 U
Vinyl Chloride	0.02	13	0.0044 U	0.0022 U	0.0019 U	0.0021 U	0.0019 U	0.0024 U	0.38 U	0.24 U	0.49 U		0.002 U	0.0021 U	0.3 U	0.0013 U	0.0036 U	0.0044 U	0.0022 U
Xylenes, Total	0.26	500	0.013 U	0.0067 U	0.0057 U	0.0021 U	0.0019 U	0.0071 U	1.1 U	170 D	250 D	0.009 U	0.0061 U	0.0063 U	0.89 U	0.0038 U	0.011 R	0.013 U	0.0065 U
Semivolatile Organic Compounds (mg/kg) 1,1-Biphenyl			0.0485 U	0.0471 U	0.0581 U	NA	NA	0.0479 U	0.0569 U	0.0489 U	0.0491 U	0.259 D	0.0492	0.0497 U	0.0471	0.0519	0.0453 U	0.0502	0.0487 U
2,4-Dimethylphenol	~	~	0.0485 U	0.0471 U	0.0581 U	NA	NA	0.0479 U	0.0569 U	0.0489 U	0.0491 U	0.358 D 0.149 D	0.0492 U 0.0492 U	0.0497 U	0.0471 U	0.0519 U 0.0519 U	0.0453 U	0.0502 U 0.0502 U	0.0487 U
2-Methylnaphthalene	~	~	0.0781 JD	0.0471 U	0.0581 U	NA	NA	0.0479 U	0.0569 U	0.487 D	0.647 D		0.0492 U	0.0497 U	0.0471 U	0.0519 U	0.204 D	0.126 D	0.0487 U
2-Methylphenol	0.33	500	0.0485 U	0.0471 U	0.0581 U	NA	NA	0.0479 U	0.0569 U	0.0489 U	0.0491 U			0.0497 U	0.0471 U	0.0519 U	0.0453 U	0.0502 U	0.0487 U
3- & 4-Methylphenols	~	~	0.0485 U	0.0471 U	0.0581 U	NA	NA	0.0479 U	0.0569 U	0.0489 U	0.0491 U		0.0492 U	0.0497 U	0.0471 U	0.0519 U	0.0453 U	0.0502 U	0.0487 U
Acenaphthene	20	500	0.177 D	0.0471 U	0.0581 U	NA	NA	0.0479 U	0.0569 U	0.0489 U	0.0491 U			0.0497 U	0.0471 U	0.0519 U	0.0453 U	0.0502 U	0.0487 U
Acenaphthylene	100	500	0.0485 U	0.0471 U	0.0581 U	NA	NA	0.0479 U	0.0569 U	0.0489 U	0.0491 U		0.0492 U	0.0497 U	0.0471 U	0.0519 U	0.0453 U	0.0502 U	0.0487 U
Anthracene Benzaldehyde	100	500	0.168 D 0.0485 U	0.0471 U 0.0471 U	0.0581 U 0.0581 U	NA NA	NA NA	0.0479 U 0.0479 U	0.0569 U 0.0569 U	0.0489 U 0.0489 U	0.0491 U 0.0491 U		0.0492 U 0.0492 U	0.0497 U 0.0497 U	0.0471 U 0.0471 U	0.0519 U 0.0519 U	0.0453 U 0.0453 U	0.0502 U 0.0502 U	0.0487 U 0.0487 U
Benzo(a)anthracene	1	5.6	0.511 D	0.0471 U	0.0581 U	NA	NA	0.0479 U	0.0569 U	0.0489 U	0.0491 U		0.0492 U	0.0497 U	0.0471 U	0.0519 U	0.0453 U	0.0502 U	0.0487 U
Benzo(a)pyrene	1	1	0.521 D	0.0471 U	0.0581 U	NA	NA	0.0479 U	0.0569 U	0.0489 U	0.0491 U		0.0492 U	0.0497 U	0.0471 U	0.0519 U	0.0453 U	0.0857 JD	0.0487 U
Benzo(b)fluoranthene	1	5.6	0.378 D	0.0471 U	0.0581 U	NA	NA	0.0479 U	0.0569 U	0.0489 U	0.0491 U		0.0492 U	0.0497 U	0.0471 U	0.0519 U	0.0453 U	0.0585 JD	0.0487 U
Benzo(g,h,i)perylene	100	500	0.446 D	0.0471 U	0.0581 U	NA	NA	0.0479 U	0.0569 U	0.0489 U	0.0491 U		0.0492 U	0.0497 U	0.0471 U	0.0519 U	0.0453 U	0.0502 U	0.0487 U
Benzo(k)fluoranthene	0.8	56	0.453 D	0.0471 U	0.0581 U	NA	NA	0.0479 U	0.0569 U	0.0489 U	0.0491 U		0.0492 U	0.0497 U	0.0471 U	0.0519 U	0.0453 U	0.0609 JD	0.0487 U
Bis(2-ethylhexyl)phthalate	~	~	0.0696 JD	0.0471 U	0.0581 U	NA	NA	0.0479 U	0.0569 U	0.0489 U	0.0491 U		0.0492 U	0.0497 U	0.0471 U	0.0519 U	0.0453 U	0.0502 U	0.0487 U
Carbazole Chrysene	~ 1	~ 56	0.239 D 0.597 D	0.0471 U 0.0471 U	0.0581 U 0.0581 U	NA NA	NA NA	0.0479 U 0.0479 U	0.0569 U 0.0569 U	0.0489 U 0.0489 U	0.0491 U 0.054 JE		0.0492 U 0.0492 U	0.0497 U 0.0497 U	0.0471 U 0.0471 U	0.0519 U 0.0519 U	0.0453 U 0.0982 D	0.0502 U 0.0502 U	0.0487 U 0.0487 U
Dibenzo(a,h)anthracene	0.33	0.56	0.172 D	0.0471 U	0.0581 U	NA	NA	0.0479 U	0.0569 U	0.0489 U	0.0491 U		0.0492 U	0.0497 U	0.0471 U	0.0519 U	0.0453 UJ	0.0502 U	0.0487 U
Dibenzofuran	7	350	0.0719 JD	0.0471 U	0.0581 U	NA	NA	0.0479 U	0.0569 U	0.0489 U	0.0491 U		0.0492 U	0.0497 U	0.0471 U	0.0519 U	0.0453 U	0.0502 U	0.0487 U
Fluoranthene	100	500	1.39 D	0.0471 U	0.0581 U	NA	NA	0.0479 U	0.0569 U	0.122 D	0.112 D		0.0492 U	0.0497 U	0.0471 U	0.0519 U	0.0453 U	0.238 D	0.0487 U
Fluorene	30	500	0.0843 JD	0.0471 U	0.0581 U	NA	NA	0.0479 U	0.0569 U	0.0489 U	0.0491 U	2.06 D	0.0492 U	0.0497 U	0.0471 U	0.0519 U	0.0453 U	0.0502 U	0.0487 U
Indeno(1,2,3-cd)pyrene	0.5	5.6	0.349 D	0.0471 U	0.0581 U	NA	NA	0.0479 U	0.0569 U	0.0489 U	0.0491 U		0.0492 U	0.0497 U	0.0471 U	0.0519 U	0.0453 UJ	0.0502 U	0.0487 U
Naphthalene	12	500	0.109 D 1.31 D	0.0471 U	0.0581 U	NA	NA	0.0479 U	0.232 D	1.68 D	2.29 D			0.0497 U	0.0471 U	0.0519 U	0.0542 JD	0.0502 U	0.0487 U
Phenanthrene Pyrene	100 100	500 500	1.31 D 1.07 D	0.0471 U 0.0471 U	0.0581 U 0.0581 U	NA NA	NA NA	0.0479 U 0.0479 U	0.0569 U 0.0569 U	0.099 D 0.0888 JD	0.129 D 0.103 D		0.0492 U 0.0492 U	0.0497 U 0.0497 U	0.0471 U 0.0471 U	0.0519 U 0.0519 U	0.163 D 0.112 D	0.0502 U 0.424 D	0.0487 U 0.0487 U
Pesticides (mg/kg)	100	300	1.07 D	0.0471 0	0.0301 0	INA	INA	0.0473 0	0.0303 0	0.0000 3D	0.105 D	14.0 DL	0.0432 0	0.0437 0	0.0471 0	0.0313 0	0.112 D	0.424 D	0.0407 0
4,4'-DDT	0.0033	47	0.00191 U	0.00186 U	0.00229 U	NA	NA	0.00189 U	0.00225 U	0.00193 U	0.00194 U	0.00192 U	0.00194 U	0.00196 U	0.00186 U	0.00205 U	0.00179 U	0.00198 U	0.00192 U
alpha-Chlordane	0.094	24	0.00191 U	0.00186 U	0.00229 U	NA	NA	0.00189 U	0.00225 U	0.00193 U	0.00194 U	0.00192 U	0.00194 U	0.00196 U	0.00186 U	0.00205 U	0.00179 U	0.00198 U	0.00192 U
Chlordane, total	~	~	0.0383 U	0.0372 U	0.0458 U	NA	NA	0.0378 U	0.045 U	0.0386 U	0.0387 U		0.0389 U	0.0393 U	0.0372 U	0.041 U	0.0357 U	0.0397 U	0.0384 U
gamma-Chlordane	~	~	0.00191 U	0.00186 U	0.00229 U	NA	NA	0.00189 U	0.00225 U	0.00193 U	0.00194 U		0.00194 U	0.00196 U	0.00186 U	0.00205 U	0.00179 U	0.00198 U	0.00192 U
Heptachlor Motolo (mg (kg)	0.042	15	0.00191 U	0.00186 U	0.00229 U	NA	NA	0.00189 U	0.00225 U	0.00193 U	0.00194 U	0.00192 U	0.00194 U	0.00196 U	0.00186 U	0.00205 U	0.00179 U	0.00198 U	0.00192 U
Metals (mg/kg)	1		5000 P	10100 P	17400 P	NA	NA	5600	12000	4790	1000	5400 D	7670 0	5100 P	1/90	9050	729	5200	5770
Aluminum Antimony	~	~	5990 B 0.58 U	10100 B 0.563 U	17400 B 0.694 U	NA	NA NA	5600 0.573 U	13000 0.681 U	4790 0.584 U	4990 0.587 U	5490 B 0.583 U	7670 B 0.589 U	5100 B 0.595 U	1480 0.563 U	9050 0.621 U	729 0.542 U	5200 0.601 U	5770 0.582 U
Arsenic	13	16	5.64	2.79	5.92	NA	NA	12.8	5.25	2.57	2.28	6.71	3.88	4.14	3.92	3.48	5.39	14.8	16.2
Barium	350	400	46.7	31.6	66.2	NA	NA	193	44.4	28.6	27.8	104	66	14.2	20.4	43.8	63.8	24.4	17.3
Beryllium	7.2	590	0.298	0.453	1.05	NA	NA	0.115 U	0.369	0.117 U	0.117 U		0.41	0.368	0.301	0.643	0.555	0.12 U	0.116 U
Cadmium	2.5	9.3	0.348 U	0.338 U	0.417 U	NA	NA	0.43	0.409 U	0.351 U	0.352 U	0.35 U	0.353 U	0.357 U	0.338 U	0.373 U		0.361 U	0.349 U
Calcium	~		61800	1680	1690	NA	NA	20600	1040	334	336	19500	1400	429	2620	897	1650	2270	493
Chromium, Hexavalent	1	400	1.07	0.563 U 18.7	0.694 U	NA NA	NA	1.79	0.681 U 13.8	0.584 U 7.86	0.587 U	0.583 U 24.7	0.589 U 11.6	0.595 U	0.563 U	0.621 U 11.7	0.542 U 1.58	0.601 U 10.9	0.582 U
Chromium, Trivalent Cobalt	30	1500 ~	11.73 4.34	18.7 6.12	16.9 7.27	NA NA	NA NA	10.41 5.69	13.8 6.89	7.86 3.53	7.55 3.46	6.3	5.12	8.61 5.46	4.31 4.13	5.77	1.58 4.59	5.23	10.4 4.9
Copper	~ 50	270	4.34 18.7	10.7	9.47	NA	NA	32.4	9.17	8.16	8.3	50.7	12	5.69	4.13	9.22	14.2	6.96	7.92
Iron	~	~	13900	14900	13200	NA	NA	40400 BD	11100	9350	9610	16200	14100	12100	3230	12200	3210	9340	9990
Lead	63	1000	24.5	5.99	8.2	NA	NA	632	16.9	3.24	3.3	274	89.1	4.77	13.7	16.8	3.75	7.79	6.78
Magnesium	~	~	2810	2680	2450	NA	NA	2140	1990	1500	1500	2380	1520	1370	254	1520	257	1630	1520
Manganese	1600	10000	192	278	101	NA	NA	230	105	127	125	292	244	284	26.3	275	16.8	103	106
Mercury	0.18	2.8	0.194	0.0624	0.044	NA	NA	0.338	0.0409 U	0.0351 U	0.0352 U		0.414	0.0357 U	0.0887	0.0396	0.0654	0.0828	0.0349 U
Nickel	30	310	16.5	19.8	18.7	NA	NA	19.9	14.2	11.7	11.7	21.2	13	9.27	12.3	13.3	5.56 122	16.6	13.3
Potassium	20	~ 1500	1580 1.16 U	960 1.13 U	983 1.39 U	NA	NA NA	715	807	673	715	1180	867	844	411	424	1.09	435	480 1.16 U
Selenium Sodium	3.9 ~	1500 ~	1.16 U 570	1.13 U 126	1.39 U 149	NA NA	NA	5.32 124	1.94 178	1.17 U 65	1.17 U 64.3	1.23 437	1.18 U 255	1.19 U 102	1.13 U 242	1.55 83.8	1.08 UJ 104	1.2 U 108	1.16 U 101
Vanadium	~ ~	~ ~	26	21.2	23.4	NA	NA	124	18.4	10.9	11.3	31.2	17	15.2	8.17	15.6	4.12	11.2	15.4
Zinc	109	10000	29.1	25.4	38.8	NA	NA	133	30.8	21.1	23.3	125	41.3	22	14.5	26.9	12	20.2	19.1
NOTES:																			

Zinc NOTES: 1. Soil sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the official compilation of New York Codes, Rules and Regulation (NYCRR) Part 375 Unrestricted Use Soil Cleanup Objective (SCOs) and Restricted Commercial Use SCOs 2. Only compounds with detections are shown in the table.

Only compounds with detections are shown in the table.
 NYSDEC Part 375 Unrestricted Use SCO exceedances are bolded.
 NYSDEC Part 375 Restricted Commercial Use SCO exceedances are shaded and bolded
 Reporting limits for undetected results above NYSDEC Unrestricted Use SCOs are italicized
 mg/kg = milligrams per kilogram
 - e no regulatory limit has been established for this analyte
 DUP01_030717 is a duplicate sample of SB07_23-24
 DUP02_031017 is a duplicate sample of SB19_20-21
 SODUP01_042817 is a duplicate for SB6D_23-25
 bgs = below grade surface
 NA = not analyzed

 25.4
 38.8
 NA
 IVA
 IVA</

Table 3 Soil Sample Analytical Detection Summary 473 President Street Brooklyn, New York Langan Project No. 170361301 BCP Site ID: C224220

Sample ID Laboratory ID Sampling Date Sample Depth (feet bgs)	NYSDEC Part 375 Unrestricted Use Soil Cleanup Objectives	NYSDEC Part 375 Restricted Use Soil Cleanup Objectives Commercial	SB11_2-4 17C0464-04 3/10/2017 2-4	SB11_15-16 17C0464-03 3/10/2017 15-16	SB12_1-2 17C0343-12 3/8/2017 1-2	SB12_9-10 17C0343-13 3/8/2017 9-10	SB12D_23-25 L1713789-02 4/29/2017 23-25	SB13_1-2 17C0226-01 3/6/2017 1-2	SB13_9-10 17C0226-02 3/6/2017 9-10	SB14_1-2 17C0343-08 3/8/2017 1-2	SB14_10-11 17C0343-09 3/8/2017 10-11	SB15_1-2 17C0343-05 3/8/2017 1-2	SB15_7-8 17C0343-06 3/8/2017 7-8	SB15_10-11 17C0343-07 3/8/2017 10-11	SB15D_23-25 L1713775-01 4/28/2017 23-25	SB16_1-2 17C0418-03 3/9/2017 1-2	SB16_9-11 17C0418-04 3/9/2017 9-11	SB16_14-15 17C0418-06 3/9/2017 14-15
Volatile Organic Compounds (mg/kg)			Z-4	15-10	1-2	5-10	23-25	1-2	5-10	1-2	10-11	1-2	7-0	10-11	23-25	1-2	3-11	14-15
1,2,4-Trimethylbenzene	3.6	190	0.0022 U	0.002 U	0.003 U	0.0024 U	0.0048 U	0.0024 U	0.0017 U	0.0025 U	0.0019 U	0.0022 U	0.0018 U	0.0022 U	0.0052 U	0.0025 U	0.0032 U	0.0013
I,2,4,5-Tetramethylbenzene	~ .	100	NA	NA	NA	NA	0.0038 U	NA	NA	NA	NA	NA	NA	NA	0.0042 U	NA	NA	NA
,3,5-Trimethylbenzene -Butanone	8.4 0.12	190 500	0.0022 U 0.0022 U	0.002 U 0.002 U	0.003 U 0.003 U	0.0024 U 0.0024 U	0.0048 U 0.0096 U	0.0024 U 0.0024 U	0.0017 U 0.0017 U	0.0025 U 0.0025 U	0.0019 U 0.0019 U	0.0022 U 0.0022 U	0.0018 U 0.0018 U	0.0022 U 0.0022 U	0.0052 U 0.01 U	0.0025 U 0.0025 U	0.0032 U 0.0032 U	0.0013 0.0013
-Methyl-2-pentanone	~	~	0.0022 U	0.002 U	0.003 U	0.0024 U	0.0096 U	0.0024 U	0.0017 U	0.0025 U	0.0019 U	0.0022 U	0.0018 U	0.0022 U	0.01 U	0.0025 U	0.0032 U	0.0013
Acetone	0.05	500	0.0065 J	0.015	0.0061 U	0.0048 J	0.0096 U	0.0057 J	0.0057 J	0.005 U	0.0038 U	0.0081 J	0.0035 U	0.0047 J	0.0024 J	0.0053 J	0.0064 U	
Senzene Carbon disulfide	0.06	44	0.0022 U 0.0022 U	0.002 U 0.002 U	0.003 U 0.003 U	0.0024 U 0.0024 U	0.00096 U 0.0096 U	0.0024 U 0.0024 U	0.0017 U 0.0017 U	0.0025 U 0.0025 U	0.0019 U 0.0019 U	0.0022 U 0.0022 U	0.0018 U 0.0018 U	0.0022 U 0.0022 U	0.001 U 0.01 U	0.0025 U 0.0025 U	0.0032 U 0.0032 U	
Chloroform	0.37	350	0.0022 U	0.002 U	0.003 U	0.0024 U	0.0014 U	0.0024 U	0.0017 U	0.0025 U	0.0019 U	0.0022 U	0.0018 U	0.0022 U	0.0016 U	0.0025 U	0.0032 U	
is-1,2-Dichloroethylene	0.25	500	0.0022 U	0.002 U	0.003 U	0.0024 U	0.00096 U	0.0024 U	0.0017 U	0.0025 U	0.0019 U	0.0022 U	0.0018 U	0.0022 U		0.0025 U	0.0032 U	
Cyclohexane Ethyl Benzene	~ 1	~ 390	0.0022 U 0.0022 U	0.002 U 0.002 U	0.003 U 0.003 U	0.0024 U 0.0024 U	NA 0.00096 U	0.0024 U 0.0024 U	0.0017 U 0.0017 U	0.0025 U 0.0025 U	0.0019 U 0.0019 U	0.0022 U 0.0022 U	0.0018 U 0.0018 U	0.0022 U 0.0022 U	NA 0.001 U	0.0025 U 0.0025 U	0.0032 U 0.0032 U	
sopropylbenzene	~	~	0.0022 U	0.002 U	0.003 U	0.0024 U	0.00096 U	0.0024 U	0.0017 U	0.0025 U	0.0019 U	0.0022 U	0.0018 U	0.0022 U		0.0025 U	0.0032 U	
Vlethylcyclohexane	~	~	0.0022 U	0.002 U	0.003 U	0.0024 U	NA	0.0024 U	0.0017 U	0.0025 U	0.0019 U	0.0022 U	0.0018 U	0.0022 U	NA	0.0025 U	0.0032 U	0.0024
Naphthalene n-Butylbenzene	12	500 500	NA 0.0022 U	NA 0.002 U	NA 0.003 U	NA 0.0024 U	0.0048 U 0.00096 U	NA 0.0024 U	NA 0.0017 U	NA 0.0025 U	NA 0.0019 U	NA 0.0022 U	NA 0.0018 U	NA 0.0022 U	0.0052 U 0.001 U	NA 0.0025 U	NA 0.0032 U	NA 0.0013
n-Propylbenzene	3.9	500	0.0022 U	0.002 U	0.003 U	0.0024 U	0.00096 U	0.0024 U	0.0017 U	0.0025 U	0.0019 U	0.0022 U	0.0018 U	0.0022 U	0.001 U	0.0025 U	0.0032 U	
o-Xylene	~	~	0.0022 U	0.002 U	0.003 U	0.0024 U	0.0019 U	0.0024 U	0.0017 U	0.0025 U	0.0019 U	0.0022 U	0.0018 U	0.0022 U	0.0021 U	0.0025 U	0.0032 U	
- & m- Xylenes	~	~	0.0044 U NA	0.004 U NA	0.0061 U NA	0.0047 U NA	0.0019 U 0.0038 U	0.0047 U NA	0.0033 U NA	0.005 U NA	0.0038 U NA	0.0045 U NA	0.0035 U NA	0.0044 U NA	0.0021 U 0.0042 U	0.005 U NA	0.0064 U NA	0.0025 NA
p-Diethylbenzene p-Ethyltoluene	~	~	NA	NA	NA	NA	0.0038 U	NA	NA	NA	NA	NA	NA	NA	0.0042 U 0.0042 U	NA	NA	NA
o-Isopropyltoluene	~	~	0.0022 U	0.002 U	0.003 U	0.0024 U	0.00096 U	0.0024 U	0.0017 U	0.0025 U	0.0019 U	0.0022 U	0.0018 U	0.0022 U	0.001 U	0.0025 U	0.0032 U	
sec-Butylbenzene	11 5.9	500 500	0.0022 U 0.0022 U	0.002 U 0.002 U	0.003 U 0.003 U	0.0024 U 0.0024 U	0.00096 U 0.0048 U	0.0024 U 0.0024 U	0.0017 U 0.0017 U	0.0025 U 0.0025 U	0.0019 U 0.0019 U	0.0022 U 0.0022 U	0.0018 U 0.0018 U	0.0022 U 0.0022 U	0.001 U 0.0052 U	0.0025 U 0.0025 U	0.0032 U 0.0032 U	
ert-Butylbenzene Fetrachloroethylene	1.3	150	0.0022 U	0.002 U	0.003 U	0.0024 U	0.00048 U	0.0024 U	0.0017 U	0.0025 U	0.0019 U	0.0022 U	0.0018 U	0.0022 U	0.0032 0 0.001 U	0.0025 U	0.0032 U	
Toluene	0.7	500	0.0022 U	0.002 U	0.003 U	0.0024 U	0.0014 U	0.0024 U	0.0017 U	0.0025 U	0.0019 U	0.0022 U	0.0018 U	0.0022 U	0.0002 J	0.0025 U	0.0032 U	0.0013
Trichloroethylene	0.47	200	0.0029 J	0.002 U	0.1	0.0024 U	0.00096 U	0.0024 U	0.0017 U	0.08	0.0019 U	0.014	0.0018 U	0.0022 U		0.048	0.0032 U	
/inyl Chloride Kylenes, Total	0.02 0.26	13 500	0.0022 U 0.0066 U	0.002 U 0.0061 U	0.003 U 0.0091 U	0.0024 U 0.0071 U	0.0019 U 0.0019 U	0.0024 U 0.0071 U	0.0017 U 0.005 U	0.0025 U 0.0074 U	0.0019 U 0.0057 U	0.0022 U 0.0067 U	0.0018 U 0.0053 U	0.0022 U 0.0066 U	0.0021 U 0.0021 U	0.0025 U 0.0075 U	0.0032 U 0.0096 U	
Semivolatile Organic Compounds (mg/kg)	0.20	300	0.0000 0	0.0001 U	0.0001 0	0.00/1 0	0.0010 0	0.0071 0	0.000 U	0.00/4 0	0.0007 0	0.0007 U	0.0000 0	0.0000 0	0.0021 0	0.0070 0	0.0000 0	0.0000
1,1-Biphenyl	~	~	0.367 D	0.0504 U	0.0492 U	0.0478 U	NA	0.0439 U	0.0436 U	0.24 D	0.0499 U	0.0457 U	0.0745 U	0.05 U	NA	0.0466 U	0.0648 U	0.0506
2,4-Dimethylphenol	~	~	0.0461 U	0.0504 U	0.0492 U	0.0478 U	NA	0.0439 U	0.0436 U	0.0471 U	0.0499 U	0.0457 U	0.0745 U	0.05 U	NA	0.0466 U	0.0648 U	0.0506
2-Methylnaphthalene 2-Methylphenol	0.33	~ 500	1.38 D 0.0461 U	0.0504 U 0.0504 U	0.0492 U 0.0492 U	0.0478 U 0.0478 U	NA NA	0.0439 U 0.0439 U	0.0436 U 0.0436 U	0.953 D 0.0471 U	0.0499 U 0.0499 U	0.0457 U 0.0457 U	0.0745 U 0.0745 U	0.05 U 0.05 U	NA NA	0.0466 U 0.0466 U	0.0648 U 0.0648 U	0.0506 0.0506
3- & 4-Methylphenols	~	~	0.0461 U	0.0504 U	0.0492 U	0.0478 U	NA	0.0439 U	0.0436 U	0.0481 JD	0.0499 U	0.0457 U	0.0745 U	0.05 U	NA	0.0466 U	0.0648 U	0.0506
Acenaphthene	20	500	3.14 D	0.0504 U	0.381 D	0.0478 U	NA	0.0439 U	0.0436 U	2.69 D	0.0499 U	0.0457 U	0.0745 U	0.05 U	NA	0.0466 U	0.0648 U	0.0506
Acenaphthylene	100 100	500 500	0.726 D 8.34 D	0.0504 U 0.0504 U	0.143 D 0.722 D	0.0478 U 0.0478 U	NA NA	0.0439 U 0.0439 U	0.0436 U 0.0436 U	0.338 D 3.27 D	0.0499 U 0.0499 U	0.0457 U 0.0457 U	0.0745 U 0.0745 U	0.05 U 0.05 U	NA NA	0.0466 U 0.0466 U	0.0648 U 0.0648 U	
Inthracene Senzaldehyde	~	~	0.0461 U	0.0504 U	0.722 D 0.0492 U	0.0478 U	NA	0.0439 U	0.0436 U	0.0471 U	0.0499 U	0.0457 U	0.0745 U	0.05 U	NA	0.0466 U	0.0648 U	
Benzo(a)anthracene	1	5.6	0.0461 U	0.0504 U	2.46 D	0.0478 U	NA	0.1 D	0.0436 U	6.09 D	0.0499 U	0.0627 JD	0.0745 U	0.05 U	NA	0.0662 JD	0.0648 U	0.0506
Senzo(a)pyrene	1	1	12.5 D 9.66 D	0.0504 U	2.21 D 2.39 D	0.0478 U 0.0478 U	NA NA	0.134 D 0.0832 JD	0.0436 U 0.0436 U	5.53 D 4.98 D	0.0499 U 0.0499 U	0.0583 JD 0.0569 JD	0.0745 U 0.0745 U	0.05 U 0.05 U	NA NA	0.0565 JD	0.0648 U 0.0648 U	
Senzo(b)fluoranthene Senzo(g,h,i)perylene	100	5.6 500	8.72 D	0.0504 U 0.0504 U	2.39 D 1.36 D	0.0478 U 0.0478 U	NA	0.0832 JD 0.169 D	0.0436 U	4.52 D	0.0499 U	0.0569 JD 0.0457 U	0.0745 U 0.0745 U	0.05 U 0.05 U	NA	0.0572 JD 0.0468 JD	0.0648 U 0.0648 U	
Benzo(k)fluoranthene	0.8	56	11.3 D	0.0504 U	1.97 D	0.0478 U	NA	0.108 D	0.0436 U	4.98 D	0.0499 U	0.0605 JD	0.0745 U	0.05 U	NA	0.055 JD	0.0648 U	
Bis(2-ethylhexyl)phthalate	~	~	0.0461 U	0.0579 JD	0.0492 U	0.0478 U	NA	0.0756 JD	0.0436 U	0.0471 U	0.0499 U	0.0457 U	0.0745 U	0.05 U	NA	0.0466 U	0.0648 U	
Carbazole	~ 1	~ 56	4.66 D 0.0461 U	0.0504 U 0.0504 U	0.339 D 2.76 D	0.0478 U 0.0478 U	NA NA	0.0439 U 0.125 D	0.0436 U 0.0436 U	3 D 6.54 D	0.0499 U 0.0499 U	0.0457 U 0.0838 JD	0.0745 U 0.0745 U	0.05 U 0.05 U	NA NA	0.0466 U 0.0877 JD	0.0648 U 0.0648 U	
Chrysene Dibenzo(a,h)anthracene	0.33	0.56	0.959 D	0.0504 U	0.596 D	0.0478 U	NA	0.0567 JD		2.02 D	0.0499 U	0.0457 U	0.0745 U	0.05 U	NA	0.0466 U	0.0648 U	
Dibenzofuran	7	350	0.0461 U	0.0504 U	0.155 D	0.0478 U	NA	0.0439 U	0.0436 U	1.75 D	0.0499 U	0.0457 U	0.0745 U	0.05 U	NA	0.0466 U	0.0648 U	0.0506
Fluoranthene	100 30	500 500	49.3 D 2.77 D	0.0504 U	8.06 D	0.0478 U 0.0478 U	NA NA	0.178 D 0.0439 U		20.1 D	0.0499 U	0.142 D 0.0457 U	0.0832 JD 0.0745 U	0.05 U 0.05 U	NA NA	0.211 D 0.0466 U	0.0648 U	
Fluorene Indeno(1,2,3-cd)pyrene	0.5	5.6	2.77 D 8.59 D	0.0504 U 0.0504 U	0.23 D 1.25 D	0.0478 U	NA	0.0439 U 0.114 D		1.9 D 3.74 D	0.0499 U 0.0499 U	0.0457 U 0.0457 U	0.0745 U	0.05 U 0.05 U		0.0466 U 0.0466 U	0.0648 U 0.0648 U	
Naphthalene	12	500	3.56 D	0.0504 U	0.0492 U	0.0478 U	NA	0.0439 U	0.0436 U	2.18 D		0.0457 U	0.0745 U	0.05 U	NA	0.0466 U	0.0648 U	0.0506
Phenanthrene	100	500	40 D	0.0504 U	5.15 D	0.0478 U	NA	0.0993 D	0.0436 U	20.7 D	0.0499 U	0.0853 JD	0.0745 U	0.05 U		0.156 D	0.0648 U	
Pyrene Pesticides (mg/kg)	100	500	40.2 D	0.0504 U	6.78 D	0.0478 U	NA	0.178 D	0.0436 U	15.8 D	0.0499 U	0.132 D	0.0745 U	0.05 U	NA	0.178 D	0.0648 U	0.088 J
4,4'-DDT	0.0033	47	0.00182 U	0.00199 U	0.00194 U	0.00188 U	NA	0.00491 D	0.00172 U	0.00186 U	0.00197 U	0.0018 U	0.00196 U	0.00197 U	NA	0.00184 U	0.00256 U	0.002
alpha-Chlordane	0.094	24	0.00182 U	0.00199 U	0.00194 U	0.00188 U	NA	0.28 DP	0.00172 U	0.00186 U	0.00197 U	0.0018 U	0.00196 U	0.00197 U	NA	0.00184 U	0.00256 U	0.002
Chlordane, total	~	~	0.0364 U	0.0398 U	0.0388 U	0.0377 U 0.00188 U	NA NA	1.09 D 0.17 D	0.0344 U	0.0372 U 0.00186 U	0.0394 U 0.00197 U	0.0361 U 0.0018 U	0.0392 U 0.00196 U	0.0395 U 0.00197 U	NA NA	0.0368 U 0.00184 U	0.0512 U	
gamma-Chlordane Heptachlor	0.042	~ 15	0.00182 U 0.00182 U	0.00199 U 0.00199 U	0.00194 U 0.00194 U	0.00188 U	NA	0.0316 D	0.00172 U 0.00172 U	0.00186 U	0.00197 U 0.00197 U	0.0018 U 0.0018 U	0.00196 U 0.00196 U	0.00197 U 0.00197 U	NA	0.00184 U 0.00184 U	0.00256 U 0.00256 U	0.002
Metals (mg/kg)																		
Aluminum	~	~	4910	10400	2580	4260	NA	5110 B	6850 B	2970	8410	1670	13700	8770	NA	2090	13600	12000
Antimony	~ 12	~ 16	0.551 U 7.45	0.603 U 4.99	0.588 U 9.63	0.571 U 1.94	NA NA	0.525 U 4.01	0.521 U	0.563 U 14.1	0.597 U	0.547 U 4.8	0.594 U	0.598 U 3.11	NA NA	0.558 U 4.68	11.4 203	0.605
Arsenic Barium	13 350	400	7.45 63.5	4.99 22	9.63	13.8	NA	885	36.2	397	3.1 27.9	4.8 86.3	6.92 221	32.3	NA	4.68 57.3	1170	8.32 24.1
Beryllium	7.2	590	0.11 U	0.121 U	0.353	0.348	NA	0.317	0.382	0.35	0.539	0.231	0.157	0.599	NA	0.112 U	0.155 U	0.121
Cadmium	2.5	9.3	0.331 U	0.362 U	0.353 U	0.343 U 348	NA NA	0.315 U 14700	0.313 U 1480	0.338 U	0.358 U	0.328 U	0.357 U 77900	0.359 U	NA NA	0.335 U	6.48 42600	0.363 683
Calcium Chromium, Hexavalent	ĩ	~ 400	20100 0.551 U	721 0.603 U	15800 0.588 U	0.571 U	NA	3.86	0.521 U	9260 0.563 U	521 0.597 U	26100 0.962	0.856	627 0.598 U	NA	2620 0.558 U	42600 0.775 U	0.605
Chromium, Trivalent	30	1500	10.8	13.7	7.55	6.95	NA	69.14	8.57	19.8	10.7	4.378	25.844	12	NA	6.34	24.4	16.6
Cobalt	~	~	4.64	7.03	4.71	3.72	NA	5.21	4.09	5.17	5.29	3.64	11.6	5.9	NA	4.75	9.38	9.95
Copper ron	50 ~	270	23.2 8730	9.37 17500	28.3 8490	7.67 6970	NA NA	17.2 11400	12.8 9470	53.4 9630	5.95 12600	13.8 4370	41.5 20900 D	8.3 12400	NA NA	41.1 7410	242 16800	12.4 20600
ead	~ 63	1000	132	5.66	99.6	2.57	NA	808	126	623	9.44	341	982	14.4	NA	96.6	1080	9.61
/lagnesium	~	~	3550	1780	841	1560	NA	2850	1160	1230	1670	2580	13300	1550	NA	276	14300	2180
1anganese Aoroun	1600 0.18	10000 2.8	195 1.19	149 0.0372	98.2 0.466	172 0.0343 U	NA NA	196 0.555	165 0.215	170 0.74	387 0.0358 U	76.7 0.387	686 0.981	109 0.0431	NA NA	95.9 0.137	1360 0.0512 U	124 0.175
fercury lickel	30	2.8 310	1.19	12.7	12.8	0.0343 U 14.5	NA	17.5	10.3	20.9	10.9	9.99	40.6	12.5	NA	12.3	21.9	13.5
otassium	~	~	791	756	985	473	NA	1340	542	833	772	497	1430	442	NA	796	5050	1100
elenium	3.9	1500	1.17	1.82	1.46	1.14 U	NA	1.05 U		2.51	1.36	1.09 U	5.09	1.84	NA	1.24	63.1	1.71
Sodium Yanadium	~	~	227 14	127 21.2	402 14.4	65.6 11.1	NA NA	306 22.9	61.1 12.6	295 19.5	126 14.9	256 8.48	232 36.5	78.4 17.4	NA NA	499 11.4	2690 43.2	138 23.1
inc	~ 109	~ 10000	71.5	21.2	66.2	11.1	NA	177	40.7	19.5 148	24.2	8.48	36.5 125	27.2	NA	11.4	43.2 577	38.3
IOTES:	100	10000	71.0	20.0	QUALIFIERS:	10.0	100		40.7		27.2	01.0		27.2	110	107		00.0
. Soil sample analytical results are compared to the New NYSDEC) Title 6 of the official compilation of New York () Jes Soil Cleanub Obiective (SCOs) and Restricted Comm . Only compounds with detections are shown in the tab . NYSDEC Part 375 Unrestricted Use SCO exceedances . NYSDEC Part 375 Restricted Commercial Use SCO exc	Codes, Rules and Regulation (N hercial Use SCOs le. s are bolded. ceedances are shaded and bold	YCRR) Part 375 Unrestricted			U = analyte not det P = The Relative Pe	ected at or above the rcent Difference (RF s detected above the	e level indicated PD) between the res e reporting limit in th		e RL (Reporting Limit) exceeds the method- Is blank.		ated concentration							
. Reporting limits for undetected results above NYSDEC .mg/kg = milligrams per kilogram . = no regulatory limit has been established for this an .DUP01_030717 is a duplicate sample of SB07_23-24 .DUP02_031017 is a duplicate sample of SB19_20-21 .SCDUP01_042817 is a duplicate of SB6D_23-25		licized																
J. SODUPOI_042817 is a duplicate of SB6D_23-25 I. bgs = below grade surface 2. NA = not analyzed																		

Table 3 Soil Sample Analytical Detection Summary 473 President Street Brooklyn, New York Langan Project No. 170361301 BCP Site ID: C224220

Samala ID			CD17 1 0	CD17 7 0	CD17 45 40	CD10 40 44	CD10 00 04	CD10 40 44	CD10 47 40		LICATE	CD20D 0.2	CD20D 47 40	SB20D 23-25	S
Sample ID Laboratory ID	NYSDEC Part 375	NYSDEC Part 375 Restricted	SB17_1-2 17C0343-02	SB17_7-8 17C0343-04	SB17_15-16 17C0343-03	SB18_10-11 17C0464-05	SB18_23-24 17C0464-06	SB19_10-11 17C0464-01	SB19_17-18 17C0464-07	SB19_20-21 17C0464-02	DUP02_031017 17C0464-10	SB20D_0-2 L1713501-01	SB20D_17-19 L1713501-02	L1713501-03	
Sampling Date	Unrestricted Use Soil Cleanup Objectives	Use Soil Cleanup Objectives Commercial	3/8/2017	3/8/2017	3/8/2017	3/10/2017	3/10/2017	3/10/2017	3/10/2017	3/10/2017	3/10/2017	4/27/2017	4/27/2017	4/27/2017	
Sample Depth (feet bgs)	oleanap objectives	Commercial	1-2	7-8	15-16	10-11	23-24	10-11	17-18	20-21	20-21	0-2	17-19	23-25	
Volatile Organic Compounds (mg/kg)		100				0.0010	0.050 5				0.070	0.07		0.0005	
1,2,4-Trimethylbenzene 1,2,4,5-Tetramethylbenzene	3.6	190	0.002 U NA	0.0022 U NA	0.002 U NA	0.0018 U NA	0.056 E NA	0.0026 U NA	0.0019 U NA	0.22 U NA	0.076 NA	0.07 J 0.016 J	52 6.7	0.0005 J 0.021	0.0
1,3,5-Trimethylbenzene	8.4	190	0.002 U	0.0022 U	0.002 U	0.0018 U	0.022	0.0026 U	0.0019 U	0.22 U		0.022 J	18	0.00034 J	0.0
2-Butanone	0.12	500	0.002 U	0.0022 U	0.0026 J	0.002 J	0.0014 U	0.0026 U	0.0034 J	0.22 U		0.19 J	5.5 U	0.0097 U	0.
4-Methyl-2-pentanone	~ 0.05	~ 500	0.002 U 0.0065 J	0.0022 U 0.0051 J	0.002 U 0.015	0.0018 U 0.018		0.0026 U 0.012	0.0019 U 0.023	0.22 U 0.44 U		0.7 U 0.7 U	5.5 U 5.5 U	0.0097 U 0.035	0. 0
Acetone Benzene	0.05 0.06	44	0.0085 J	0.0051 J 0.0022 U	0.005 0.002 U	0.018	0.0038 J 0.0086	0.0026 U	0.0019 J	0.44 U 0.22 U		0.07 U	2.1	0.00097 U	0.0
Carbon disulfide	~	~	0.002 U	0.0022 U	0.002 U	0.0018 U	0.0014 U	0.0026 U	0.0019 U	0.22 U	0.0021 U	0.7 U	3.7 J	0.0097 U	0.
Chloroform	0.37	350	0.002 U	0.0022 U	0.002 U	0.0028 J	0.0014 U	0.0026 U	0.0019 U			0.1 U	0.82 U	0.0014 U	0.
cis-1,2-Dichloroethylene Cyclohexane	0.25	500 ~	0.002 U 0.002 U	0.0022 U 0.0022 U	0.002 U 0.002 U		0.64 D 0.063 E	0.0026 U 0.0026 U	0.0019 U 0.0019 U			0.052 J NA	0.55 U NA	0.004 NA	0.0
Ethyl Benzene	1	390	0.002 U	0.0022 U	0.002 U		0.031	0.0026 U	0.0019 U			0.018 J	18	0.00097 U	0.0
Isopropylbenzene	~	~	0.002 U	0.0022 U	0.002 U		0.0077	0.0026 U	0.0019 U	0.22 U		0.07 U	3.4	0.0024	0.0
Methylcyclohexane Naphthalene	~ 12	~ 500	0.002 U NA	0.0022 U NA	0.002 U NA	0.06 NA	0.099 E NA	0.0026 U NA	0.0019 U NA	0.32 JD NA	0.078 NA	NA 0.068 J	NA 8.5	NA 0.0018 J	0.
n-Butylbenzene	12	500	0.002 U	0.0022 U	0.002 U	0.0048	0.0046	0.0026 U	0.0019 U	0.22 U	0.01	0.008 J	2.6	0.0064	0.0
n-Propylbenzene	3.9	500	0.002 U	0.0022 U	0.002 U	0.022	0.01	0.0026 U	0.0019 U	0.22 U	0.015	0.07 U	6.9	0.0016	0.0
o-Xylene	~	~	0.002 U	0.0022 U	0.002 U		0.0096	0.0026 U	0.0019 U	0.22 U	0.014	0.14 U	0.5 J	0.0019 U	0.
p- & m- Xylenes p-Diethylbenzene	~	~	0.004 U NA	0.0044 U NA	0.004 U NA	0.0036 U NA	0.078 NA	0.0051 U NA	0.0038 U NA	0.44 U NA	0.055 NA	0.056 J 0.28 U	39 24	0.0019 U 0.008	0. 0.
p-Ethyltoluene	~	~	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.048 J	30	0.001 J	0.0
p-IsopropyItoluene	~		0.002 U	0.0022 U	0.002 U	0.0018 U	0.0054	0.0026 U	0.0019 U	0.22 U	0.0078	0.07 U	1.6	0.00097 U	0.0
sec-Butylbenzene tert-Butylbenzene	11 5.9	500 500	0.002 U 0.002 U	0.0022 U 0.0022 U	0.002 U 0.002 U	0.0041 0.0018 U	0.0025 J 0.0014 U	0.0026 U 0.0026 U	0.0019 U 0.0019 U	0.22 U 0.22 U	0.0036 J 0.0021 U	0.07 U 0.35 U	1.3 0.15 J	0.0081 0.0013 J	0.0
Tetrachloroethylene	1.3	150	0.002 U	0.0022 U	0.002 U	0.0018 U	0.0083	0.0026 U	0.0019 U	0.22 U	0.007	0.052 J	0.55 U	0.00097 U	0.0
Toluene	0.7	500	0.002 U	0.0022 U	0.002 U	0.0018 U	0.0033	0.0026 U	0.0019 U	0.22 U	0.0021 U	0.1 U	0.57 J	0.002	0.
Trichloroethylene	0.47	200	0.0099	0.0041 J 0.0022 U	0.002 U 0.002 U	0.0018 U 0.0018 U	0.47 D	0.0026 U	0.0019 U 0.0019 U	2.4 D 0.22 U	2.3 D 0.0021 U	4.1 0.14 U	0.55 U 1.1 U	0.00097 U 0.0019 U	0
Vinyl Chloride Xylenes, Total	0.02 0.26	13 500	0.002 U 0.006 U	0.0022 U 0.0066 U	0.002 U 0.0061 U	0.0018 U 0.0054 U	0.012 0.087	0.0026 U 0.0077 U	0.0019 U	0.22 U 0.67 U	0.0021 U 0.069	0.056 J	40 J	0.0019 U 0.0019 U	0.0
Semivolatile Organic Compounds (mg/kg)	0.20	500	0.000 0	0.0000 0	0.0001 0	0.0004 0	0.007	0.0077 0	0.0007 0	0.07 0	0.000	0.000 0		0.0010 0	0.
1,1-Biphenyl	~	~	0.0465 U	0.0486 U	0.0509 U	0.0459 U	0.0476 U	0.0489 U	0.0471 U	0.0505 U	0.0505 U	NA	NA	NA	
2,4-Dimethylphenol	~	~	0.0465 U	0.0486 U	0.0509 U	0.0459 U		0.0489 U	0.0471 U		0.0505 U	NA	NA	NA	
2-Methylnaphthalene 2-Methylphenol	0.33	500	0.0465 U 0.0465 U	0.0486 U 0.0486 U	0.0509 U 0.0509 U			0.0489 U 0.0489 U	0.0471 U 0.0471 U			NA NA	NA NA	NA NA	1
3- & 4-Methylphenols	~	~	0.0465 U	0.0486 U	0.0509 U			0.0489 U	0.0471 U			NA	NA	NA	i
Acenaphthene	20	500	0.0465 U	0.316 D	0.0509 U			0.0489 U	0.0471 U			NA	NA	NA	
Acenaphthylene	100	500 500	0.0465 U 0.0465 U	0.19 D 3.13 D	0.0509 U 0.0509 U			0.0489 U 0.0489 U	0.0471 U 0.0471 U	0.0505 U 0.0505 U		NA NA	NA NA	NA NA	
Anthracene Benzaldehyde	100 ~	~	0.0465 U	0.0486 U	0.0509 U		0.0476 U	0.0489 U	0.0471 U	0.0505 U		NA	NA	NA	1 i
Benzo(a)anthracene	1	5.6	0.0465 U	8.42 D	0.0509 U	0.0459 U		0.0827 JD	0.0471 U	0.0505 U	0.0505 U	NA	NA	NA	1
Benzo(a)pyrene	1	1	0.0465 U	7.76 D	0.0509 U		0.0476 U	0.0913 JD	0.0471 U	0.0505 U	0.0505 U	NA	NA	NA	1
Benzo(b)fluoranthene Benzo(g,h,i)perylene	1 100	5.6 500	0.0465 U 0.0465 U	7.25 D 6.95 D	0.0509 U 0.0509 U	0.0459 U 0.0459 U	0.0476 U 0.0476 U	0.0749 JD 0.0734 JD	0.0471 U 0.0471 U	0.0505 U 0.0505 U	0.0505 U 0.0505 U	NA NA	NA NA	NA NA	
Benzo(k)fluoranthene	0.8	56	0.0465 U	7.77 D	0.0509 U		0.0476 U	0.0976 JD	0.0471 U	0.0505 U		NA	NA	NA	
Bis(2-ethylhexyl)phthalate	~	~	0.0465 U	0.119 D	0.0509 U			0.0523 JD	0.0471 U	0.0998 JD		NA	NA	NA	
Carbazole	~	~	0.0465 U	1.43 D	0.0509 U	0.0459 U		0.0489 U	0.0471 U			NA	NA	NA	
Chrysene Dibenzo(a,h)anthracene	0.33	56 0.56	0.0465 U 0.0465 U	8.82 D 2.12 D	0.0509 U 0.0509 U	0.0459 U 0.0459 U	0.0476 U 0.0476 U	0.096 JD 0.0489 U	0.0471 U 0.0471 U	0.0505 U 0.0505 U		NA NA	NA NA	NA NA	1 8
Dibenzofuran	7	350	0.0465 U	0.305 D	0.0509 U	0.0459 U	0.0476 U	0.0489 U	0.0471 U	0.0505 U	0.0505 U	NA	NA	NA	l i
Fluoranthene	100	500	0.0465 U	24 D	0.0512 JD		0.0476 U	0.12 D	0.0471 U	0.0505 U	0.0505 U	NA	NA	NA	
Fluorene	30	500	0.0465 U	0.119 D 5.88 D	0.0509 U 0.0509 U	0.0459 U 0.0459 U	0.0476 U 0.0476 U	0.0489 U	0.0471 U 0.0471 U	0.0505 U 0.0505 U	0.0505 U 0.0505 U	NA	NA	NA	
Indeno(1,2,3-cd)pyrene Naphthalene	0.5 12	5.6 500	0.0465 U 0.0465 U	5.88 D 0.0486 U	0.0509 U 0.0509 U	0.0459 U 0.0622 JD		0.0609 JD 0.0489 U	0.0471 U 0.0471 U	0.0505 U 0.0505 U		NA NA	NA NA	NA NA	
Phenanthrene	100	500	0.0465 U	15.9 D	0.0509 U	0.0459 U	0.0476 U	0.0489 U	0.0471 U	0.0505 U	0.0505 U	NA	NA	NA	i
Pyrene	100	500	0.0465 U	20.2 D	0.0512 JD	0.0459 U	0.0476 U	0.0945 JD	0.0471 U	0.0505 U	0.0505 U	NA	NA	NA	
Pesticides (mg/kg)	0.0000	47	0.00100	0.00102	0.00201	0.00101	0.00100	0.00102	NT	0.00100	0.00100	NIA	NIA	NIA	
4,4'-DDT alpha-Chlordane	0.0033 0.094	47 24	0.00183 U 0.00183 U	0.00192 U 0.00192 U	0.00201 U 0.00201 U	0.00181 U 0.00181 U	0.00188 U 0.00188 U	0.00193 U 0.00193 U	NT NT	0.00199 U 0.00199 U	0.00199 U 0.00199 U	NA NA	NA NA	NA NA	1
Chlordane, total	~	~	0.0367 U	0.0384 U	0.0402 U	0.0362 U	0.0376 U	0.0386 U	NT	0.0399 U	0.0398 U	NA	NA	NA	i
gamma-Chlordane	~	~	0.00183 U	0.00192 U	0.00201 U	0.00181 U		0.00193 U	NT	0.00199 U		NA	NA	NA	
Heptachlor Metals (mg/kg)	0.042	15	0.00183 U	0.00192 U	0.00201 U	0.00181 U	0.00188 U	0.00193 U	NT	0.00199 U	0.00199 U	NA	NA	NA	
Metals (mg/kg) Aluminum	~	~	7100	3850	8290	4840	3160	4410	NA	5270	5420	NA	NA	NA	
Antimony	~	~	0.556 U	0.582 U	0.609 U	0.549 U	0.569 U	2.01	NA	0.604 U	0.604 U	NA	NA	NA	i
Arsenic	13	16	7.51	6.29	4.18	1.98	1.87	7.85	NA	2.15	2.21	NA	NA	NA	'
Barium Bondium	350 7.2	400 590	85.3 0.539	53.1 0.346	32.4 0.491	28.8 0.11 U	18.7 0.114 U	35.8 0.117 U	NA NA	35.2 0.121 U	37.9 0.121 U	NA NA	NA NA	NA NA	!
Beryllium Cadmium	2.5	9.3	0.334 U	0.346 0.349 U	0.366 U			0.351 U	NA	0.121 U 0.362 U		NA	NA	NA	1
Calcium	~	~	1990	36600	4170	940	485	10500	NA	722	735	NA	NA	NA	(i
Chromium, Hexavalent	1	400	0.556 U	0.582 U	0.609 U			0.585 U	NA	0.604 U		NA	NA	NA	1 !
Chromium, Trivalent Cobalt	30 ~	1500 ~	12.9 5.64	8.87 4.49	12.5 9.24	7.04 3.21	6.59 3.96	8.01 4.07	NA NA	11 5.66	11.8 5.66	NA NA	NA NA	NA NA	
Copper	~ 50	270	5.04 54.6	35.4	21.2	24.7	6.88	23.4	NA	9.39	9.66	NA	NA	NA	l i
Iron	~	~	13200	23300	11200	8510	7470	7350	NA	10900	10800	NA	NA	NA	[i
Lead	63	1000	194	213	64.8 1000	28.4	1.9	81.4	NA	3.14	3.11	NA	NA	NA	1 !
Magnesium Manganese	~ 1600	~ 10000	2570 287	5070 287	1990 106	954 76	1140 186	2170 144	NA NA	1830 297	1850 288	NA NA	NA NA	NA NA	1 3
Manganese Mercury	0.18	2.8	2.96	0.964	1.09	0.0654	0.0342 U	0.328	NA	0.0362 U		NA	NA	NA	i
Nickel	30	310	15.1	22.7	13.3	8.18	11.4	13.8	NA	15.1	15.5	NA	NA	NA	1
Potassium	~	~	1130	650	871	393	525	728	NA	920	967	NA	NA	NA	1 !
Selenium Sodium	3.9	1500 ~	2.08 622	2.21 394	1.22 U 209	1.1 U 115	1.14 U 70.2	1.17 U 169	NA NA	1.21 U 86.2	1.21 U 85.7	NA NA	NA NA	NA NA	
Vanadium	~	~	18.6	16.2	18.4	10.1	9.49	13	NA	13.8	14.9	NA	NA	NA	[i
Zinc	109	10000	101	148	42.8	25.1	17.4	34.2	NA	24	24.3	NA	NA	NA	
NOTES					OLIAL IEIEBS:										

 Zinc
 109
 1000

 NOTES:
 1. Soil sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the official compilation of New York Codes, Rules and Regulation (NYCRR) Part 375 Unrestricted Use Soil Cleanup Objective (SCOs) and Restricted Commercial Use SCOs 2. Only compounds with detections are shown in the table.

 2. NN/CDEC Dart 375 Unrestricted Use SCO exceedances are bolded.

Only compounds with detections are shown in the table.
 NYSDEC Part 375 Unrestricted Use SCO exceedances are bolded.
 NYSDEC Part 375 Restricted Commercial Use SCO exceedances are shaded and bolded
 Reporting limits for undetected results above NYSDEC Unrestricted Use SCOs are italicized
 mg/kg = milligrams per kilogram
 - e no regulatory limit has been established for this analyte
 DUP01_030717 is a duplicate sample of SB07_23-24
 DUP02_031017 is a duplicate sample of SB19_20-21
 SODUP01_042817 is a duplicate for SB6D_23-25
 bgs = below grade surface
 NA = not analyzed

42.8 25.1 17.4 34.2 NA 24 24.3 OUALIFERS: J = analyte detected at or above the MDL (method detection Limit) but below the RL (Reporting Limit). Result in an estimated concentration U = analyte not detected at or above the level indicated P = The Relative Percent Difference (RPD) between the results for two columns exceeds the method-specified criteric B = The analyte was detected above the reporting limit in the associated methods blank.

D = Result is from an analysis that required a dilution

SB20D_30 L1713501 4/27/201 30-32	-04
00 32	
0.00068 0.0038	J U
0.00027 0.0096 0.0096	U U U
0.033 0.00096	U
0.0096 0.0018 0.00062	IJ
NA 0.00035	J
0.00096 NA 0.0003	IJ
0.00096 0.00096	U U
0.0019 0.0011 0.0038	U J U
0.00052 0.00096	J U
0.00096 0.0048 0.00089	U U U
0.0032	
0.0019 0.0011	IJ
NA	
NA NA	
NA NA	
NA	
NA NA	
NA NA	
NA	
NA NA	
NA NA	
NA NA	
NA	
NA	

Table 4 Soil Design Criteria Sample Analytical Results Summary 473 President Street Brooklyn, New York Langan Project No. 170361301 BCP Site ID: C224220

LOCATION SAMPLING DATE LAB SAMPLE ID SAMPLE DEPTH (feet bgs)	SB06D_20 4/28/20 L1713775 20-25	17	SB12D_20-25 4/29/2017 L1713789-01 20-25		SB15D_20-25 4/28/2017 L1713775-02 20-25		SB20D_14 4/27/201 L1713501 14-19	7	SB20D_20-30 4/27/2017 L1713501-05 20-30	
General Chemistry (mg/kg)										
Solids, Total	85.6		77.6		87.1		84.7		85.7	
Nitrogen, Ammonia	9.3		5.3	J	11		16		20	
Nitrogen, Nitrite	1.1	U	1.3	U	1.1	U	1.1	U	1.1	U
Nitrogen, Nitrate	0.68	J	1.1	J	0.38	J	6.7		1.1	U
Phosphate, Total	860		370		950		850		960	
Sulfate	120	U	130	U	110	U	220		120	U
Alkalinity	29	U	33	U	32	U	320		29	U
Biological Oxygen Demand	70	U	79	U	77	U	340		70	U
Chemical Oxygen Demand	4100		1950		918	U	7680		6660	
Grain Size Analysis (%)										
Cobbles	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
% Coarse Gravel	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
% Fine Gravel	0.1	U	0.3		0.1	U	1.4		0.1	U
% Coarse Sand	0.2		2.2		0.5		2.8		1.8	
% Medium Sand	20.6		29.2		18.2		15.2		15.8	
% Fine Sand	60.6		58.7		63.3		47.3		50.6	
% Total Fines	18.6		9.6		18		33.3		31.8	
Total Metals (mg/kg)										
Iron, Total	7400		6300		6800		10000		7300	
Manganese, Total	94		78		69		77		80	
Total Organic Carbon (mg/kg)										
Total Organic Carbon (Rep1)	606		513		782		5580		573	
Total Organic Carbon (Rep2)	506		591		661		4620		620	

Notes and Qualifiers:

1. bgs = below grade surface

2. mg/kg = milligrams per kilogram

3. J = analyte detected at or above the MDL (method detection Limit) but below the RL (Reporting Limit). Result in an estimated

4. U = The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL.

Table 5 ndwater Sample Analytical Detection Summary 473 President Street Brooklyn, New York Langan Project No. 170361301 BCP Site ID: C224220 Grou

International and a standard a s						Dupl	cate	T			Du	olicate	T			
DescriptionDescriptic	Sample ID			_	MW07_032217			MW09_032217	MW10_032217	MW12_031617	MW12D_050617	GWDUP01_050617	-		—	_
	York ID															
		- Class GA														
Characteristic Control	Volatile Organic Compounds (VOC) (µg/L)													• ••		
bd bd bd bd bd <td>1,2,3-Trichloropropane</td> <td>0.04</td> <td>2 U</td> <td>2.5 U</td> <td>40 UJ</td> <td>0.2 U</td> <td>0.2 U</td> <td>0.2 UJ</td> <td>0.2 UJ</td> <td>0.2 U</td> <td>2.5 U</td> <td>2.5 U</td> <td>2.5 U</td> <td>5 U</td> <td>34 J</td> <td>23</td>	1,2,3-Trichloropropane	0.04	2 U	2.5 U	40 UJ	0.2 U	0.2 U	0.2 UJ	0.2 UJ	0.2 U	2.5 U	2.5 U	2.5 U	5 U	34 J	23
Scherwarden Scherwarden Scherwarden Scherwarden	1,2,4-Trimethylbenzene	5	2 U	2.5 U	1600 J	0.58	0.6	0.2 UJ	0.2 UJ	0.2 U	2.5 U	2.5 U	6.2	1600 D	1200	430
shale Shale <th< td=""><td>1,2,4,5-Tetramethylbenzene</td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td></th<>	1,2,4,5-Tetramethylbenzene	5									-	-				
Subit Subit <th< td=""><td></td><td>5</td><td>2 0</td><td>2.5 U</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		5	2 0	2.5 U												
inter111111111000<				5 U					0.2 U	0.2 0						
Intervention Improvention Improvention<	Benzene	1							0.2 U	0.2 U						
Charlen 2 2 2 2 <td>Bromomethane</td> <td>5</td> <td></td> <td>50 U</td> <td>12 U</td>	Bromomethane	5													50 U	12 U
intermanne intermanne interman	Carbon disulfide	~		5 U												
bit bit <td></td> <td>7</td> <td></td>		7														
Sintername Sintern		5												0 0		
Bit Algoring Bit Algoring<		~														
Mach Schwarz T D D D <th< td=""><td>Ethyl Benzene</td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2.5 U</td><td>2.5 U</td><td>2.1 J</td><td></td><td>820</td><td>110</td></th<>	Ethyl Benzene	5									2.5 U	2.5 U	2.1 J		820	110
black hole	Isopropylbenzene	5			130 D				0.2 U	0.2 U						-
Night Synthem Night Sy	Methylcyclohexane	~														
Productor 1		10														
Shole Shole <th< td=""><td></td><td>о 5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		о 5														
A.h. betwar A.s. betwar A.s. betwar B.s. betwar	o-Xylene	5														
	p- & m- Xylenes	5	5.8 JD												2100	
bit holdship No No No	p-lsopropyltoluene	5		2.5 U												
see of intername 5 73 0 6.3 0 6.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		~		2 U												
match is provide with the second se		~ 5		2 0												
optical-bases S <		5 ~														
There-howe/howe 5 2 U 2.5 U 2.5 U 0.65 U 0.55 U 0.55		5														
bits: 1 2 1 4 2 1 4 2 1 5 1 0 7.5 1 7.5	Tetrachloroethylene	5		0.5 U	40 U	0.92 J	0.76 J	0.2 U	0.2 U	0.36 J	0.5 U		0.95	5 UJ	3.9 J	0.98 J
Inducative 5 2 0 730 1300 0 62 </td <td>Toluene</td> <td>5</td> <td></td> <td>340 BD</td> <td></td> <td></td>	Toluene	5												340 BD		
1/m (P) (P) (P) 2 2 0 1 0 1 1 1 1 1 1 1 1 1 1 0 200 0 200 0		5												5 U		
hybeles, Total S <		5		1.3							3.8	3.5				78
Service High Organic Compound: BVOC (upr.L) - <td></td> <td>5</td> <td></td> <td>2.5 U</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2.5 U</td> <td>2.5 U</td> <td></td> <td>-</td> <td></td> <td>450</td>		5		2.5 U							2.5 U	2.5 U		-		450
Addefinition - 1.32 U NA 2.56 U 0.52 U 0.312 U 0.32 U 0.323	Semivolatile Organic Compounds (SVOC) (µg/L)															
Addengation 3.0 4.2 MA 0.05 U 0.058 U 0	2,4-Dimethylphenol	50				0.962 U	0.962 U	3.12 U	2.78 U	0.962 U	NA	NA	NA			
hearspanning - 0.023 NA 0.038 U 0.038 U 0.0285 U 0.038 U NA NA NA 2.34 U NA NA Brandbarding 0.02 0.038 U 0.038 U 0.038 U 0.038 U NA NA 2.34 U NA NA Brandbarding 0.02 0.0378 U NA 0.038 U 0.038 U NA NA NA NA NA </td <td>2-Methylnaphthalene</td> <td>~</td> <td></td>	2-Methylnaphthalene	~														
Multialeanine B0 0.032 0.04 NA 0.055 U 0.0555		20														
Benchlammanne 0.02 0.035 U NAA 0.05 U 0.0565 U 0.0355 U NAA NAA NAA NAA NAA NAA NAA Benchlammanne 0 0 0.0255 U <		~ 50														
Bency Difference 0.002 0.028 0 NA 0.005 0 0.0265 0 0.0365 0 NA	Benzo(a)anthracene															
Brand B	Benzo(a)pyrene	0	0.0385 U	NA	0.05 U	0.0385 J	0.138 J	0.0625 U	0.0556 U	0.0385 U	NA	NA	NA	2.94 U	NA	NA
Bene diffusionmènene 0.002 0.028 U NA 0.058 U 0.038 U 0.0385 U NA NA NA NA NA 2,04 U NA NA Cirrysene 0.002 0.0385 U NA 0.056 U 0.0482 U 0.0585 U 0.0585 U 0.0385 U NA NA NA NA <th< td=""><td>Benzo(b)fluoranthene</td><td>0.002</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Benzo(b)fluoranthene	0.002														
Big2		~														
Chrysen Obs		0.002														
Fluorente600.331NA0.110.46J0.323J0.0625U0.06670.0365U0.0365UNANANANANA2.94UNANANAInderof 1.3.cdDyrene0.0020.0235U0.0462U0.0655U0.0667U0.0365UNANANA2.94UNANANAPriorene0.0020.0235U0.0462U0.0667U0.0365U0.0365UNANANA2.94UNANANAPriorene0.0120.0120.025U0.0220.122U0.025U0.025UNANANANA2.94UNANANAPriorene0.014NA0.025U<		0.002														
Indenot123-collyorene Napothalence0.0020.00360.00560.00560.00560.003650.003	Fluoranthene															
Naphthalane 10 19.4 NA 214 D 0.0769 0.038 0.138 0.122 0.0385 NA NA NA 427 D NA NA Prene 50 0.154 NA 0.16 0.0769 0.015 0.0385 U 0.0385 U NA	Fluorene															
Phenanthrane 50 0.315 NA 0.052 0.0185 J 0.0625 U 0.0566 U 0.0385 U NA NA 2.4 U NA NA Perton 0 0.118 N 0.1088 J 0.0285 U 0.0385 U NA NA NA 2.3 U NA NA Perton	Indeno(1,2,3-cd)pyrene															
Pyrene500.154NA0.10.1080.3080.3120.036500.03850NANANA2.940NANAPesticies (µy/L)																
Perturbation ND NA ND																
Total Pestindes~NANDNDNDNDNDNDNDNDNA <td>Pesticides (µg/L)</td> <td></td> <td>0.101</td> <td></td> <td>0</td> <td>000 0</td> <td>0.000 0</td> <td>0.012</td> <td>0.0000 0</td> <td>0.0000 0</td> <td></td> <td></td> <td>1</td> <td>2.57 0</td> <td></td> <td></td>	Pesticides (µg/L)		0.101		0	000 0	0.000 0	0.012	0.0000 0	0.0000 0			1	2.57 0		
Antimony 3 2.22 U NA 3.09 D 2.22 U 3.34 D NA	Total Pesticides	~	ND	NA	ND	ND	ND	ND	ND	ND	NA	NA	NA	ND	NA	NA
Arsenic 25 3.04 D NA 37.2 D 2.22 U 3.24 D 5.53 D 2.22 U NA NA NA 38.2 D NA N	Dissolved Metals (µg/L)															
Barium 1000 18.6 NA 204 18.1 17.1 14.2 150 96.1 NA NA 89 NA NA NA Calcium ~ 76000 NA 34700 652200 35200 35200 75303 NA	Antimony															
Calcium ~ 76000 NA 34700 5200 50400 75300 NA																
Copper 200 15.5 J NA 0.00634 U 17.9 J 9.74 J 0.0015 U 15.3 J NA NA 34.6 J NA	Calcium															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Copper															
Magnesium 3500 25504 NA 20404 11600 11300 7630 15600 37600 NANANA 54100 NANANAMagnese 300 436 NA 413 66.6 63 2944 52.4 743 NANANA 882 NANANAMolydenum \sim 2.22 VNA 11.6 0 11.2 3.6 0 3.22 NANANA 882 NANANAPotassium \sim 1600 17000 10.6 0 1.22 0 3.22 NANANA 5.22 NANASelenium 000 2.22 0 $A2$ 20 2000 13000 13000 3700 NANANA 14900 NANASodium 000 70300 NA 66700 93400 91800 13800 19700 37700 NANANA 14900 NANA	Iron	~	1950	NA	16200	57.3	81.1	307	0.221 U	76.6	NA	NA	NA	20800	NA	
Maganese 300 436 NA 413 66.6 63 294 52.4 743 NA	Lead															
Molydenum ~ 2.22 U NA 10.4 D 11.8 D 10.6 D 3.6 D 3.22 D NA NA 5.82 D NA NA Potassium ~ 16000 NA 43500 17000 16500 13000 32000 NA NA NA Selenium NA	-															
Potassium ~ 16000 NA 43500 17000 16500 13000 32000 NA NA NA Same and																
Selenium 10 2.22 V NA 2.22 V 3.91 P 2.01 NA NA <td></td>																
Sodium 2000 70300 NA 66700 93400 93400 91800 13800 197000 NA NA NA NA NA NA NA	Selenium															
200 19.8 NA 0.0193 U 30.6 20.9 0.018 U 0.18 U 24.6 NA NA S6.8 NA NA	Sodium	20000	70300	NA	66700	93400	91800	13800	197000	37700	NA	NA	NA	149000	NA	NA
	Zinc	2000	19.8	NA	0.0193 U	30.6	20.9	0.0181 U	0.018 U	24.6	NA	NA	NA	36.8	NA	NA

Notes and Qualifiers:

1. Groundwater results are compared to the New York State Department of Environmental Conservation (NYSDEC) Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values (SGV) for Class GA water.

Only analytes with detections are shown in this table.
 Concentrations exceeding their NYSDEC TOGS 1.1.1 SGVs are shaded and bolded
 Reporting limits for undetected results above NYSDEC TOGS 1.1.1. SGVs are italicized

5. µg/L = micrograms per liter

6. ~ = Criterion does not exist

7. ND = No detections 8. NA = Not analyzed

9. The analyte was detected above the method detection limit (MDL), but below the Reporting Limit (RL); therefore, the result is an estimated concentration. 10. U = The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL. 11. D = The sample was diluted; the dilution factor is included in the laboratory data report.
 12. B = The analyte was found in the analysis batch blank.

13. UI = The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise. 14. J = The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample. 15. bgs = below grade surface

Table 6Groundwater Design Criteria Sample Analytical Results Summary473 President StreetBrooklyn, New YorkLangan Project No. 170361301BCP Site ID: C224220

LOCATION SAMPLING DATE LAB SAMPLE ID SCREEN INTERVAL (feet bgs)	5/6/2017	MW06D_050617 5/6/2017 L1714721-01 20-25		617)2	MW15D_050 5/6/2017 L1714721-0 20-25		MW20D_050 5/6/2017 L1714721-0 20-30	,	2 MW20S_0506 5/6/2017 L1714721-03 8-18		
General Chemistry (ug/L)											
Nitrogen, Ammonia	1010	J	117	J	882	J	930	J	748	J	
Nitrogen, Nitrate	100	U	6010		100	U	3430		3790		
Phosphate, Total	300	J	400	J	460	J	460	J	2400	J	
Sulfate	18000		29000		39000		68000		57000		
Dechlorinating Bacteria (cells/mL)											
DHC	9.15E+01		1.60E+00	U	1.50E+00	U	3.40E+00		9.10E+00	U	
						-					

Notes and Qualifiers:

1. DHC = Dehalococcoides

2. ug/L = micrograms per liter

3. cells/mL = cells per mililiter

4. bgs = below grade surface

5. U = The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL.

Table 7 Sub-Slab Soil Vapor and Air Sample Analytical Detection Summary 473 President Street Brooklyn, New York Langan Project No.: 170361301 BCP ID No.:C224220

										DUPL	ICATE			
Sample ID Sample Location	AA01_030817 SV01_030817 Outdoor Ambient SV01			SV02_030 SV02		SV03_030 SV03		SV04_0303 SV04	817	DUP01_03 SV04	0817	SV05_03101 SV05		
Laboratory ID	17C0348	-05	17C0348	8-01	17C0348	-02	17C0424-	-01	17C0348-	03	17C0348	-04	17C0463-	-01
Sampling Date	3/8/201	7	3/8/20	17	3/8/201	17	3/9/201	7	3/8/201	7	3/8/201	7	3/10/20	17
Volatile Organic Compounds (VOCs) μg/m ³														
1,2,4-Trimethylbenzene	0.66	U	54	D	85	D	33	D	51	D	45	D	20	U
1,3,5-Trimethylbenzene	0.66	U	16	D	25	D	10	D	16	D	14	D	20	U
1,4-Dichlorobenzene	0.81	U	12	U	12	U	13	U	12	U	12	U	55	D
2-Butanone	1.7	D	5.9	U	5.8	R	6.1	U	13	JD	38	JD	12	U
Acetone	4.3	D	11	D	170	JD	23	D	30	JD	58	JD	19	U
Benzene	0.73	D	6.4	U	8.8	JD	11	D	8.4	D	14	D	13	U
Carbon disulfide	2	D	6.3	U	7.4	JD	10	D	11	D	10	D	12	U
Chloroform	0.66	U	9.8	U	9.6	R	55	D	23	D	22	D	20	U
cis-1,2-Dichloroethylene	0.54	U	8	U	7.8	R	38	D	95	D	94	D	16	U
Cyclohexane	0.47	U	6.9	U	6.8	R	42	D	220	D	210	D	250	D
Ethyl Benzene	0.59	U	13	D	21	D	14	D	13	D	13	D	17	D
n-Heptane	0.55	U	11	D	36	D	220	D	400	D	400	D	7900	D
n-Hexane	0.81	D	7.1	U	7	U	89	D	280	D	270	D	14	U
o-Xylene	0.59	U	27	D	46	D	26	D	27	D	27	D	180	D
p- & m- Xylenes	1.2	D	59	D	97	D	58	D	57	D	55	D	340	D
p-Ethyltoluene	0.66	U	44	D	68	D	31	D	40	D	38	D	20	U
Tetrachloroethylene	1.1	D	38	D	54	D	120	D	440	D	390	D	60	D
Toluene	2.3	D	15	D	30	D	27	D	18	D	20	D	780	D
Trichloroethylene	0.18	Ū	450	D	470	D	39000	D	11000	D	11000	D	5.4	Ū
Total VOCs	19.75	-	738		1,118.2		39,807		12,742.4		12,718		9,582	

Notes and Qualifiers:

1. Sub-slab soil vapor sample analytical results are compared to outdoor ambient air sample AA01_030817.

2. Only compounds with detections are shown in this table.

3. Results above outdoor ambient concentrations are bolded.

4. DUP01_030817 is a duplicate sample of SV04_030817.

5. µg/m3 = microgram per cubic meter

6. U = The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

7. D = Result is from an analysis that required a dilution

8. R = The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample

9. UJ = The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise

10. J = The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample

Table 8 Alr Sample Analytical Results Summary 473 President Street Brooklyn, New York Langan Project No.: 170361301 BCP ID No.: C224220

Location Sample ID Laboratory ID	NYSDOH AGVs	L1810650-	AA02_032818 IA L1810650-06 L		18 01	IA02 IA02_0328 L1810650- 3/28/201	02	IA03 IA03_0328 L1810650-0 3/28/2018	03	IA04 IA04_0328 L1810650- 3/28/201	04	IA05 IA05_0328 L1810650 3/28/207	-05
Sample Date			0	3/28/201	0		0		0		o		18
Sample Type		AA		IA		IA		IA		IA		IA	
Volatile Organic Compounds (µg/m³) 1,2,4-Trimethylbenzene		0.983	U	2.21	J	2.17	J	2.34		2.02	J	1.04	1
1,3,5-Trimethylbenzene (Mesitylene)	~	0.983	U	0.983	U	0.983	U	0.983	U	0.983	U	0.983	J U
	~	0.983	U	0.983 1.56	0	0.983 1.2	0	1.53	0	1.03	0		U
2,2,4-Trimethylpentane	~	0.934 7.29	-	20.1		1.2 19.6		23.7		1.03		0.934	
Acetone	~		J		J		J		J		J	13.1	J
Benzene	~	0.799		1.92		1.79		2.36		1.71		1.28	
Carbon Disulfide	~	0.623	U	0.623	U	0.623	U	0.623	U	0.623	U	0.623	U
Carbon Tetrachloride	~	0.491		0.434		0.503		0.591		0.465		0.579	
Chloroform	~	0.977	U	1.11		1.42		1.48		2.17		0.977	U
Chloromethane	~	0.985		1.06		1.12		1.48		1.03		1.14	
Cis-1,2-Dichloroethene	~	0.079	UJ	0.111	J	0.111	J	0.218	J	0.123	J	0.079	UJ
Cyclohexane	~	0.688	U	0.978		0.84		1.03		0.709		0.688	U
Dichlorodifluoromethane	~	2.12		2.05		2.1		2.79		2.04		2.24	
Ethanol	~	9.42	U	81.2		85.9		118		72.2		26.6	
Ethyl Acetate	~	1.8	U	1.83		3.33		2.09		2.17		1.8	U
Ethylbenzene	~	0.869	U	10.2		9.77		15		9.51		1.61	
Isopropanol	~	1.23	UJ	5.21	J	4.89	J	7.1	J	4.1	J	1.72	J
M,P-Xylene	~	1.74	U	9.64		9.38		13.9		8.82		2.82	
Methyl Ethyl Ketone (2-Butanone)	~	1.47	U	12.8		8.55		12.9		8.05		2.66	
n-Heptane	~	0.82	U	1.4		1.17		1.56		1.07		0.996	
n-Hexane	~	0.853		3.84		3.24		4.02		2.89		2.09	
o-Xylene (1,2-Dimethylbenzene)	~	0.869	U	3.19		3.11		4.23		2.94		1.03	
Styrene	~	0.852	Ŭ	13.2		13.2		19.1		12.3		1.33	
Tetrachloroethene (PCE)	30	0.604	Ŭ	1.48		1.96		1.86		2.81		0.685	
	~	2.89		11.2		9.38		9.72		10.1		11.8	
Trichloroethene (TCE)	2	0.107	U	9.78		10.1		23.9		10.1		2.9	
Trichlorofluoromethane	~	1.28	0	1.19		1.2		1.6		1.17		1.33	
Total VOCs	~	17.312		197.693		196.034		272.499		176.527		76.95	
	~	17.312		197.093		190.034		272.499		1/0.52/		70.95	

Notes:

1. Indoor air sample analytical results are compared to the New York State Department of Health Air Guideline Values (AGVs) as set forth in the New York State Department of Health (NYSDOH) October 2006 Guidance for Evaluating Soil Vapor Intrusion in the State of New York and

subsequent updates (2013, 2015) and their respective ambient air sample AA02_032818

2. Only detected analytes are shown in the table.

- 3. Analytes detected with concentrations above the ambient air concentrations are bolded.
- 4. Analytes detected with concentrations above the minimum concentrations are shaded.

5. Analytical results with reporting limits (RL) above the minimum concentrations are italicized.

6. Sample AA02_032818 is background outdoor, ambient air sample.

7. \sim = Regulatory limit for this analyte does not exist

8. μ g/m³ = micrograms per cubic meter

9. IA = Indoor Air

10. AA = Ambient Air

Qualifiers:

J - The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

UJ – The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise.

U - The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

Location			Docu	mentation Sample	Event # 1			Docum	entation Sam	ple Ev	ent # 2			Docum	entation Sam	v3 ela	ent#3	
Sample ID	NYSDOH	AA02_0817	718	IA06_081718	IA07_0817		AA01_090		IA06_0907	18	IA07_0907		AA02_122		IA06_122)18	IA07_1220	
Laboratory ID	AGVs	L1832566-		L1832566-01	L1832566		L1835562-		L1835562-		L1835562-0		L1852832		L1852832		L1852832	
Sample Date	Advs	8/17/201	8	8/17/2018	8/17/201	18	9/7/2018	B	9/7/2018	3	9/7/2018		12/20/20	18	12/20/20	18	12/20/20	018
Sample Type		AA		IA	IA		AA		IA		IA		AA		IA		IA	
Volatile Organic Compounds (µg/m³)																		
1,2,4-Trimethylbenzene	~	2.27		3.56	1		0.983	U	1.33		1.04		1.22		0.983	C	0.983	U
1,3,5-Trimethylbenzene (Mesitylene)	~	0.983	U	1.19	0.983	U	0.983	U	0.983	U	0.983	U	0.983	U	0.983	U	0.983	U
2,2,4-Trimethylpentane	~	0.934	U	1.44	0.934	U	1.51		1.15		0.934	U	1.6		0.934	U	0.934	U
Acetone	~	15.9	J	58.2 J	16.7	J	7.79	J	16.7	J	8.88	J	13.7	J	28.5		28.7	
Benzene	~	0.732		1.4	0.639	U	0.786		0.776		0.639	U	2.38		1.01		0.984	
Carbon Disulfide	~	0.623	U	0.906	0.813		0.623	U	0.623	U	0.623	U	0.623	U	0.623	U	0.623	U
Carbon Tetrachloride	~	0.428		0.484	0.333		0.459		0.415		0.447		0.516		0.308		0.308	
Chloroform	~	0.977	U	1.65	2.17		0.977	U	1.55		2.28		0.977	U	1.16		1.62	
Chloromethane	~	0.96		2.04	2.13		0.973		1.22		1.17		1.26		1.14		1.06	
Cis-1,2-Dichloroethene	~	0.079	U	0.492	0.274		0.079	U	0.317		0.278		0.079	U	0.238		0.301	
Cyclohexane	~	0.688	U	1.64	0.83		0.688	U	0.74		0.688	U	0.85		0.688	U	0.688	U
Dichlorodifluoromethane	~	2.3		2.34	2.34		2.21		2.19		2.04		2.02		2.71	J	2.2	
Ethanol	~	9.42	U	60.9	79.5		15.8		245		135		23.9		437		511	
Ethyl Acetate	~	1.8	U	3.37	1.8	U	1.8	U	1.8	U	1.8	U	1.8	U	1.8	U	1.8	U
Ethylbenzene	~	0.869	U	13.2	3.81		0.869	U	2.97		2.03		0.93		0.869	U	0.869	U
Isopropanol	~	1.57		10.9	8.5		1.55		5.41		5.14		4.74		154		143	
M,P-Xylene	~	1.94		20.5	6.25		1.74	U	5.04		3.74		3.09		1.74	U	1.74	U
Methyl Ethyl Ketone (2-Butanone)	~	2.37		5.16	2.23		1.47	U	3.3		1.92		1.47	U	1.47	U	1.47	U
n-Heptane	~	0.82	U	1.64	0.82	U	0.82	U	0.82	U	0.82	U	1.4		0.951		0.926	
n-Hexane	~	0.93		3.51	1.19		1.02		1.72		1.18		1.88		2.57		2.26	
o-Xylene (1,2-Dimethylbenzene)	~	0.869	U	7.69	2.48		0.869	U	1.94		1.42		1.04		0.869	U	0.869	U
Styrene	~	0.852	U	20.2	5.11		0.852	U	4.68		3.3		0.852	U	0.852	U	0.852	U
Tetrachloroethene (PCE)	30	0.576		1.14	0.57		0.678		1.27		1.57		3.19		1.8		1.85	
Toluene	~	2.92		8.71	3.15		2.68		3.18		2.37		6.71		3.21		2.82	
Trichloroethene (TCE)	2	0.548		31.4	9.03		1.11		19.6		14.1		0.107	U	12.6		17.4	
Trichlorofluoromethane	~	1.23	-Γ	1.6	1.79		1.17		1.19		1.12	U	1.55		1.48		1.6	
Total VOCs	~	34.674		265.262	150.2		37.736		321.688		187.905		71.976		648.677		716.029	

Notes:

1. Indoor air sample analytical results are compared to the New York State Department of Health Air Guideline Values (AGVs) as set forth in the New York State Department of Health (NYSDOH) October 2006 Guidance for Evaluating Soil Vapor Intrusion in the State of New York and subsequent updates (2013, 2015) and their respective ambient air samples AA01_090718, AA02_081718, and AA02_122018

2. Only detected analytes are shown in the table.

3. Analytes detected with concentrations above the ambient air concentrations are bolded.

4. Analytes detected with concentrations above the minimum concentrations are shaded.

5. Samples AA01_090718, AA02_081718, and AA02_122018 are background outdoor, ambient air samples.

- 6. ~ = Regulatory limit for this analyte does not exist
- 7. μg/m³ = micrograms per cubic meter
- 8. IA = Indoor Air
- 9. AA = Ambient Air

Qualifiers:

J – The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

UJ – The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise.

U – The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

Table 10 QA/QC Sample Analytical Detection Summary 473 President Street Brooklyn, New York Langan Project No. 170361301 BCP Site ID: C224220

Sample ID York ID Sampling Date Sample Type	NYSDEC TOGS SGVs - Class GA	TB01_030617 17C0226-09 3/6/2017 Trip Blank (Soil)	SOFB01_030817 17C0343-01 3/8/2017 Field Blank (Soil)	SOTB01_031017 17C0464-08 3/10/2017 Trip Blank (Soil)	SOFB01_031017 17C0464-09 3/10/2017 Field Blank (Soil)	GWFB01_031617 17C0618-05 3/16/2017 Field Blank (Groundwater)	GWTB01_031617 17C0618-06 3/16/2017 Trip Blank (Groundwater)	GWFB02_032217 17C0850-01 3/22/2017 Field Blank (Groundwater)	GWFB01_050617 L1714721-07 5/6/2017 Field Blank (Groundwater)	GWTB01_050617 L1714721 5/6/2017 Trip Blank (Groundwater)	TB01_042717 L1713501 4/27/2017 Trip Blank (Soil)
Volatile Organic Compounds (VOC) (µg/L)											
1,2,4-Trimethylbenzene	5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	NA	0.82 J	2.5 U	2.5 U
Acetone	50	1.4 J	1.3 J	1 U	1.9 J	2.9	1 U	NA	5 U	5 U	5 U
Bromomethane	5	0.2 U	0.2 U	0.2 U	0.2 U	0.38 J	0.2 UJ	NA	2.5 U	2.5 U	2.5 U
p/m-Xylene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	0.74 J	2.5 U	2.5 U
Semivolatile Organic Compounds (SVOC) (µg/L)											
Total SVOCs	~	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA
Pesticides (µg/L)											
Total Pesticides	~	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA
Metals (µg/L)											
Calcium	~	NA	441	NA	243	NA	NA	58.2	NA	NA	NA
Chromium	50	NA	14	NA	6 U	NA	NA	5.56 U	NA	NA	NA
Copper	200	NA	21	NA	4	NA	NA	8.95 J	NA	NA	NA
Iron	~	NA	1,530	NA	65	NA	NA	29	NA	NA	NA
Magnesium	35000	NA	601	NA	56 U	NA	NA	55.6 U	NA	NA	NA
Manganese	300	NA	19	NA	6 U	NA	NA	5.56 U	NA	NA	NA
Nickel	100	NA	6 U	NA	8	NA	NA	5.56 U	NA	NA	NA
Potassium	~	NA	211	NA	56 U	NA	NA	55.6 U	NA	NA	NA
Sodium	20000	NA	5,590	NA	758	NA	NA	193	NA	NA	NA
Zinc	2000	NA	33	NA	54	NA	NA	20.5	NA	NA	NA

Notes and Qualifiers:

 Notes and Qualifiers:

 1. Groundwater results are compared to the New York State Department of Environmental Conservation (NYSDEC) Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values (SGV) for Class GA water.

 2. Only analytics with detections are shown in this table.

 3. ug/L = micrograms per liter

 4. ~= Criterion does not exist

 5. ND = No detections

 6. NA = Not analyzed

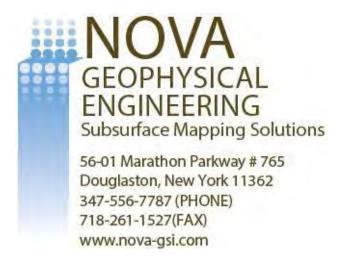
7. J = The analyte was detected above the method detection limit (MDL), but below the Reporting Limit (RL); therefore, the result is an estimated concentration.
 8. U = The analyte was analyzed for, but was not detected at a level greater than or equal to the RL, the value shown in the table is the RL.
 9. UJ = The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.

Appendix B Geophysical Report

GEOPHYSICAL ENGINEERING SURVEY REPORT

Commercial Property 473 President Street Brooklyn, New York 11215

NOVA PROJECT NUMBER


17-0087

DATED

March 14, 2017

PREPARED FOR: LANGAN & MCP PRESIDENT STREET, LLC 550 Grand Street Brooklyn, New York 11211

PREPARED BY:

NOVA GEOPHYSICAL SERVICES

SUBSURFACEMAPPING SOLUTIONS 56-01 Marathon Parkway, #765, Douglaston, New York 11362 Ph. 347-556-7787 Fax. 718-261-1527 www.nova-gsi.com

March 14, 2017

Ms. Cynthia Schlegel MCP President Street, LLC 550 Grand Street Brooklyn, New York 11211

Re: Geophysical Engineering Survey (GES) Report
Commercial Property
473 President Street
Brooklyn, New York 11215

Dear Ms. Schlegel:

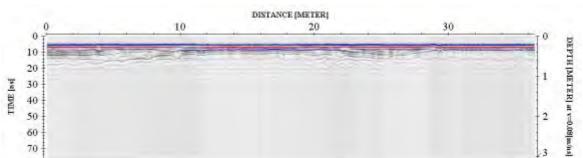
Nova Geophysical Services (NOVA) is pleased to provide findings of the geophysical engineering survey (GES) at the above referenced project site: Commercial Property, 473 President Street, Brooklyn, New York (the "Site"). Please see attached Site Location and Geophysical Survey maps for more details.

INTRODUCTION TO GEOPHYSICAL ENGINEERING SURVEY (GES)

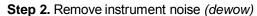
NOVA performed a Geophysical engineering surveys (GES) consisting of a Ground Penetrating Radar (GPR) survey at the site. The purpose of this survey is to locate and identify USTs, anomalies, utilities and other substructures and to clear and mark proposed environmental boring areas on March 6th, 2017.

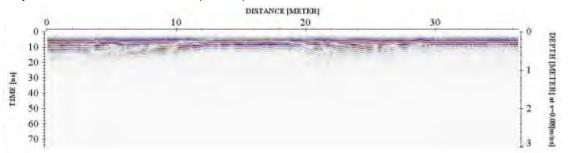
The equipment selected for this investigation was Noggin's 250 MHz ground penetrating radar (GPR) shielded antenna and 3M DYNATL.

A GPR system consists of a radar control unit, control cable and a transducer (antenna). The control unit transmits a trigger pulse at a normal repetition rate of 250 MHz. The trigger pulse is sent to the transmitter electronics in the transducer via the control cable. The transmitter electronics amplify the trigger pulses into bipolar pulses that are radiated to the surface. The transformed pulses vary in shape and frequency according to the transducer used. In the subsurface, variations of the signal occur at boundaries where there is a dielectric contrast (void, steel, soil type, etc.). Signal reflections travel back to the control unit and are represented as color graphic images for interpolation.

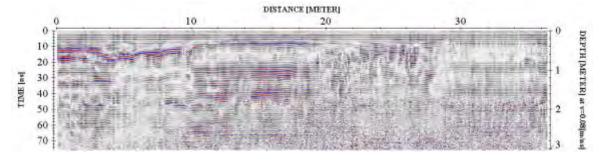

GEOPHYSICAL METHODS

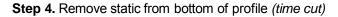
The project site was screened using the GPR to search the areas of interest and inspected for reflections, which could be indicative of major anomalies and substructures. Specific borehole locations were then individually cleared.

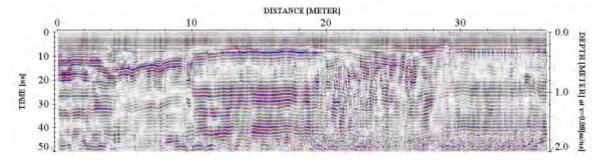

GPR data profiles were collected for the areas of the Site specified by the client. The surveyed areas consisted of concrete and tile surfaces.

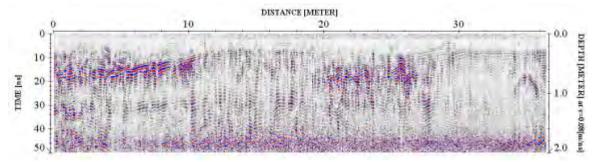

DATA PROCESSING

In order to improve the quality of the results and to better identify subsurface anomalies NOVA processed the collected data. The processes flow is briefly described at this section.









Step 3. Correct for attenuation losses (energy decay function)

Step 5. Mute horizontal ringing/noise (subtracting average)

The above example shows the significance of data processing. The last image (step 5) has higher resolution than the starting image (raw data – step 1) and describes the subsurface anomalies more accurately.

PHYSICAL SETTINGS

Nova observed following physical conditions at the time of the survey:

The weather: Clear skies

Temp: 45 Degrees (F).

Surface: Concrete and tile surfaces

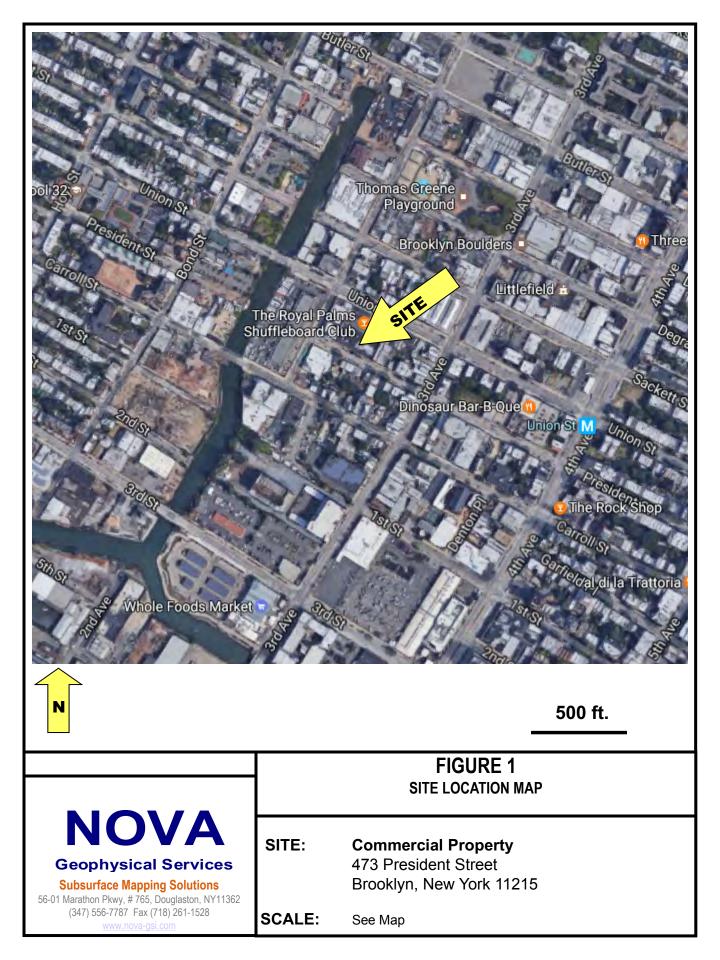
Geophysical Noise Level (GNL): Geophysical Noise Level (GNL) was medium to high at the site. The noise was a result of the site being located in a heavily urbanized area and the thick concrete floor slab.

RESULTS

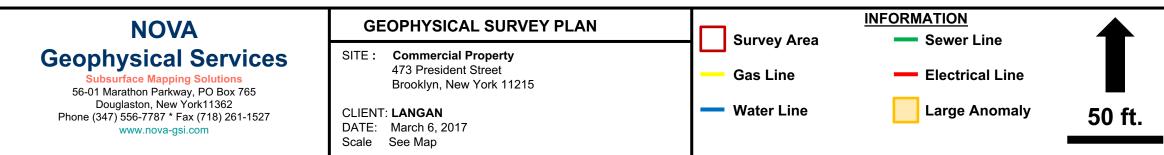
The results of the geophysical engineering survey (GES) identified following at the project Site:

- GES survey identified scattered anomalies located throughout the project site. Based on their rates and proximity, these anomalies were inconsistent with any USTs. These areas were indicated on the on-site markout.
- Two large anomalies, potentially consistent with USTs, were located on the site. These are indicated both on the onsite markout and on the survey map.
- Several utilities (sewer, water, gas and electrical) were located on the site. These utilities were indicated on the survey map.
- Geophysical Survey Plan portrays the areas investigated during the geophysical survey.

If you have any questions, please do not hesitate to contact the undersigned. Sincerely,

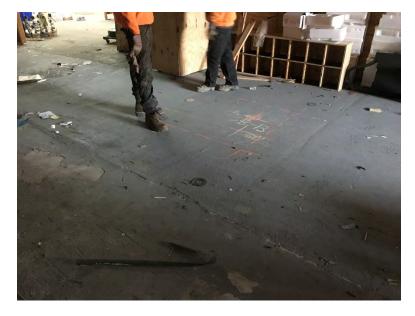

NOVA Geophysical Services


alual Gard


Levent Eskicakit, P.G., E.P. Project Engineer

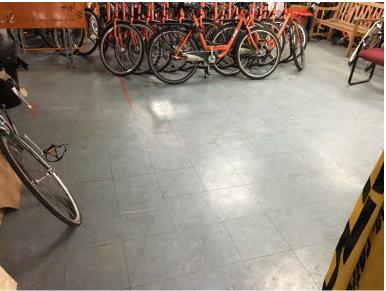
Attachments: Figure 1 Site Location Map Geophysical Survey Plan Geophysical Images





1- All anomalies were marked in the field.

GEOPHYSICAL IMAGES Commercial Property 473 President Street Brooklyn, New York 11215 March 6, 2017



GEOPHYSICAL IMAGES Commercial Property 473 President Street Brooklyn, New York 11215 March 6, 2017

Appendix C Soil Boring Logs

Project		Proj	ect No.									
	473 President Street	Fla				1703	361301	1				
ocation	Development AN/	Elev	ation ar	nd Da	atum	40.4	-					
Drilling Co	Brooklyn, NY mpany	Date	e Starte	d		13.1	7 NAV		ate F	inished		
0	AARCO Environmental Services Corp.						3/6/17				3/6/17	
Drilling Eq		Con	npletion	Dep	th			R	ock	Depth		
	Geoprobe 6610 DT	_				D : (16 ft				NA	
size and I	ype of Bit 2" Macrocore Cutting Shoe	Nun	nber of	Sam	oles	Dist	urbed	3	Un	disturbed NA	Core	NA
Casing Dia	ameter (in) Casing Depth (ft)	Wat	ter Leve	-1 (ft)		First				mpletion	24 HR.	
Casing Ha	NA Weight (lbs) Drop (in)		ling Fore	• •		$ \nabla$		9.5		NA	Ī	NA
Casing Ha Sampler	MA Weight (ibs) NA Diop (in) NA			onnai		irea F	reese					
	2" diameter 4' steel macrocore	Fiel	d Engin	eer		logi	10000					
Sampler H	lammer NA Weight (lbs) NA Drop (in) NA				V		ca Zuli					
OL			Depth				mple Da			Rer	narks	
MATERIAL SYMBOL	Sample Description		Scale	Number	Type	ecov (in)	Penetr. resist BL/6in	PID Readir		(Drilling Fluid, Fluid Loss, Drilli		asing,
≥ °°	04 inch concrete eleb		- 0 -	ź		Ř	<u>م - ب</u>	(ppm)		iy itesistan	
4.4	24-inch concrete slab	Ē	-	1								
4. A A		È	- 1 -		ω		NA					
4 4 P 4		F	-		MACROCORE	.						
		-	- 2 -	2	CRO	6"/48"		0.0				
	R1 (0-6") loose, brown, fine SAND, coal, coal ash (dry) [FILL]	E			MAG	-						
		Ē	- 3 -	-						11:45 Collec	ted SB06	_2-3
		È	- 4 -									
		F	4									
		Ē	- 5 -				NA					
		Ē			RE	۰.						
		F	- 6 -	22	MACROCORE	24"/48"						
	R2 (0-24") medium dense, brown, fine SAND, coal, coal ash (dry)	Ē		-	ACF	24		0.0				
	[FILL]	Ē	- 7 -		2			0.0		12:10 Collec	ted WCS	B06 7-
		E	-					0.0 0.0				_
		F	- 8 -	-				0.0				
	R3a (0-18") medium dense, brown, fine SAND, coal, coal ash (dry)	E	-				NA	0.0				
	(FILL)	¥	- 9 -		况			0.0		11:55 Collec	ted SB06	_9-10
			10	R	MACROCORE	42"/48"		0.0				
		E	- 10 -	<u> </u>	CRO	42"/		0.0				
	R3b (18-42") medium dense, brown, fine SAND, trace silt (moist),	Ē	- 11 -		MA	-		0.0				
	[FILL]	Ē						0.0				
		F	- 12 -	-				0.0				
		E	-				NA					
		Ē	- 13 -	-	ш		IN/A	0.0				
	R4a (0-15") medium dense, brown, fine SAND, coal, coal ash, brick (moist) [FILL]	κ, <u> </u>	-	-	COR	18"		0.0				
	R4b (15-22") medium dense, gray-brown fine SAND, trace clay,	<u> </u>	- 14 -	Ъ 42	MACROCORE	38"/48"		0.0				
	trace silt (wet)	F	45	1	MA((1)		1.0				
	R4c (22-31") medium dense, gray-brown fine SAND, some silt, trace clay (wet)	F	- 15 -	-				1.2				
	R4d (31-38") medium dense, gray-brown, fine SAND, trace silt,	F	- 16 -	1				0.0				
	trace clay (wet)	_/										
	E.O.B. at 16' below grade surface (bgs). Permanent monitoring well installed, screened from 8 to 18 feet bgs. See contruction log for		- 17 -	1								
	details.	Ē	-	1								
		F	- 18 -									
		F	-	1								
		E	- 19 -	-								

Project					Pr	oject No.										
	473 President	Street						. 4		361301						
ocation	Brooklyn, NY				E	evation ar	10 Da	atum		9 NAV	000					
Drilling Co					Da	ate Starte	d		13.0	9 INAV		ate F	inished			
		nmental Services Corp.							4	/28/17					4/28/17	
Drilling Eq					Co	ompletion	Dep	th			R	ock [Depth			
Size and T	Geoprobe 7822 Type of Bit	2 DT							Dict	30 ft urbed		Unc	disturbed		NA Core	
	2" Macrocore C	utting Shoe			Νι	umber of s	Sam	oles	Dist	libeu	6		ilistui beu	NA		NA
Casing Dia	ameter (in) 4 25 inch diam	eter Hollow Stem Auger	Ca	asing Depth (ft) 25'	w	ater Leve	l (ft.)		First		9	Cor	npletion	NA	24 HR.	NA
Casing Ha		Weight (lbs)	NA	Drop (in) NA	Dr	illing Fore	emar	۱	<u> </u>		3	<u>_</u>			<u> </u>	
Sampler			INA	NA	L			Т	im Ke	elly						
Sampler H	2" diameter 5' r	Weight (lbs)		Drop (in)	Fie	eld Engin	eer									
	N	A	NA	NA			1	V		ca Zulu nple Da						
MATERIAL SYMBOL		Sample Description	on			Depth	Der	ø			PID		(Deillie		narks	!
SYN			011			Scale	Number	Type	Rec(Penetr. resist BL/6in	Readin (ppm)		Fluid Los	s, Drillir	Depth of Ca ng Resistan	ce, etc.)
8 4 P V	36" Concrete slab					- 0 -	-				,					
6 A P										NA						
2 2 9 8 2 8							1									
9 4 9 9 2 4 5						- 2 -	1	끮	-							
8 4 19 8 A 19 8							돈	000	20"/48"							
						- 3 -		MACROCORE	20"		0.0					
	R1 (0-20") loose, o ash (dry) [FILL]	lark brown fine SAND, co	oncrete, l	brick, coal, coal			1	Σ			0.0					
						- 4 -	1				0.0					
						- 5 -	-									
						= :	1			NA						
						- 6 -	-									
							1	щ								
						- 7 -		MACROCORE	"09							
	R2 (0-24") mediur	n dense, brown fine SAN	ID, concr	ete, brick, coal,			8	CRO	24"/60"							
	coal ash (moist) [F	ILL]				- 8 -		MA			0.0					
					∇	- - 9 -	-				0.0					
					-		1				0.0					
						- 10 -	1				0.0					
							1									
						- 11 -	1			NA						
							1									
						- 12 -	1	ORE	5							
							ß	MACROCORI	12"/60"							
						- 13 -	1	MAC	1							
							1									
	R3 (0-12") mediur	n dense, brown, silty fine	SAND, t	trace clay (moist)	- 14 -	1				0.0					
		-					1				0.0					
						- 15 -										
						- 16 -	1			NA						
							1									
						- 17 -	1	ORE								
							R 4	1000	2"/60"							
						- 18 -	1	MACROCORE	5							
							1	Σ								
	P4 (0.2") modium	dense, brown fine SAND) some c	silt (moist)		- 19 -	1									

LA	NG	AN
Destant		

10/5/2017 11:02:11 AM ... Report: Log - LANGAN

ILANGAN. COMIDATAINY CIDATA3170361301/ENGINEERING DATA/ENVIRONMENTAL/GINTLOGS/GINT LOGS 2017-03-23.GPJ ...

SB-06D/MW-06D Log of Boring Sheet 2 of 2 Project No. Project 473 President Street 170361301 Location Elevation and Datum Brooklyn, NY 13.09 NAVD88 Sample Data MATERIAL SYMBOL Remarks Depth Scale PID Reading (ppm) Number Recov. (in) Penetr. resist BL/6in Sample Description Type (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) 20 R5 (0-48") medium dense, brown fine SAND, trace silt (wet) 13:50 Collected SB06D_20-25 NA 21 0.0 0.0 MACROCORE 22 0.0 13:30 48"/60" R5 Collected SB06D 23-25 0.0 Collected Duplicate & MS/MSD 23 0.0 0.0 24 0.0 0.0 25 NA 26 R6 (0-36") medium dense, brown fine SAND, trace silt (wet) NACROCORE 27 0.0 36"/60" RG 0.0 28 0.0 13:40 Collected SB06D 28-30 0.0 29 0.0 0.0 30 E.O.B at 30' Monitoring well installed. See construction log for details. 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Project		Pr	oject No.									
	473 President Street	Ļ	und' -		-1 -		36130	1				
ocation	Brooklyn, NY	E	evation a	ם Da	atum		23 NAV	/D88				
Prilling Co		Da	te Starte	d		13.2	.5 NAV		ate	Finished		
	AARCO Environmental Services Corp.						3/7/17				3/7/17	
Drilling Eq		Co	mpletion	Dep	th		20.4		ock	Depth	NIA	
Size and T	Geoprobe 6610 DT ype of Bit		mber of	Com		Dist	28 ft urbed		Un	disturbed	NA Core	
Seing Dia	2" Macrocore Cutting Shoe ameter (in) Casing Depth (ft)		mber or	Sam	pies	Firs	+	7	Co	NA mpletion	24 HR.	NA
	NA		ater Leve	• •		\square		10.5		<u>NA</u>	<u> </u>	NA
Casing Ha	MA Weight (lbs) NA Drop (in) NA	Dr	Iling For	emar								
Sampler	2" diameter 4' steel macrocore	Fi	eld Engin	eer	Ģ	sreg i	reese					
Sampler H	lammer NA Weight (lbs) NA Drop (in) NA		-	_	V		ica Zul					
SIAL			Depth	5			mple D			Ren	narks	
MATERIAL SYMBOL	Sample Description		Scale	Number	Type	(in)	Penetr. resist BL/6in	PID Readin (ppm)		(Drilling Fluid, I Fluid Loss, Drillin		sing, ;e. etc.)
- 	24-inch concrete slab		_ 0 _	z		Ľ.	<u> </u>	(ppm)			5	
4.4.4 4.4.P				1			NA					
4. 9. 9 4. 9 4. 9 7 7			- 1 -	1	RE							
	Di se		2 -	ž	MACROCORE	0"/48"						
	R1 no recovery			1	IACR	0				No recovery		
			- 3 -	1	2							
			- 4 -									
			- 5 -				NA			Collect SB07	_4-5	
					ORE	5						
			6 -	22	MACROCORE	14"/48"						
					MAC	÷						
	R2 (0-14") medium dense, brown fine SAND, trace silt, brick,		- 7 -	1				0.0				
	concrete, coal, coal ash (dry) [FILL]		- 8 -	-				58				
			- 9 -	1	ш		NA					
	R3a (0-20") medium dense, brown fine SAND, trace silt, brick,			- -	MACROCORE	48"		17				
	concrete, coal, coal ash (moist) [FILL]	∇	- 10 -	R	CRO	32"/48"		23				
		-	- 11 -	1	MA			112		Staining and	petroleum	1-like
	R3b (20-32") medium dense, fine SAND, some silt, trace clay (moist) [FILL]			1				1562		odors observe	ed	-
	R4a (0-14") medium dense, brown medium SAND, trace silt, brick,		- 12 -	-	+			3280 338		smear (shake	a (CSI)	
	concrete, coal, coal ash (moist) [FILL]		40	-			NA	1326				
	R4b (14-27") medium dense, gray fine SAND, some clay, trace silt	Γ	- 13 -		JRE			805		Collect SB07 MC-open poir		
	(wet) P4c (27,48") modium donce, brown fine SAND, some day, trace sill	_/ +	- 14 -	R	MACROCORE	48"/48"		1550				
	R4c (27-48") medium dense, brown fine SAND, some clay, trace silt (moist)	ι]	MACF	48		3333				
			- 15 -					2489 3580				
			16					1587				
			- 16 -							Petroleum-lik	e odor	
			- 17 -				NA					
					CORE	÷.		2024				
	R5 (0-29") medium dense, brown fine SAND, trace silt, trace		- 18 -	R5	MACROCORE	29"/48"		3931 3945				
	medium sand (moist)		40		MAC	2		2612				
			- 19 -	-	1 1		I.	1		1		

LA	NG	AN
Destant		

	473 President Street	Project No.			170	361301					
ocation		Elevation a	nd Da	atum	1						
Brooklyn, NY			13.23 NAVD88 Sample Data								
30L 30L		Depth	5		Remarks						
MATERIAL SYMBOL	Sample Description	Scale	Number	Type	(in)	Penetr. resist BL/6in	PID Reading (ppm)	(Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.)			
		20 -	-			_					
		- 21 -				NA					
		Ę	-	ORE							
	R6 (0-27") medium dense, grayish brown fine SAND, trace silt (wet)	- 22 -	R6	MACROCORE	27"/48"		3423				
		- 23 -		MAG	2		4195				
		- 20					4183	Collect SB07_23-24 and DUP01_030717			
		- 24 -	-				3636 254				
		_ 25 -				NA	313				
	R7 (0-48") dense to medium, brown fine SAND, trace silt (wet)	- 20		ORE			263				
		- 26 -	24	MACROCORE	48"/48"		194 135				
		- 27 -		MAG	ч		100				
							48				
····			-				48				
	E.O.B. at 28 feet below grade surface (bgs). Permanent monitoring well installed, screened from 20 to 25 feet bgs. See construction log	- 29 -									
	for details										
		- 30 -									
		- 31 -									
		- 32 -	-								
		- 33 -									
			-								
		- 34 -									
		- 35 -									
		-									
		- 36 -									
		- 37 -									
		-									
		- 38 -									
		- 39 -									
		-	-								
		- 40 -									
		41 -									
		-									
		- 42 -									
		43 -									
		- 44 -	1	1	1						

Project					Pro	oject No										
ocation	473 President Stre	eet			Ele	vation a	nd D	otur		36130	1					
Jucation	Brooklyn, NY					valion		atun		8 NA\	/D88					
Drilling Co					Da	te Start	ed			0.0.0		Date	Finished			
Vrilling Er	AARCO Environm	ental Services Corp				mpletio		th		3/6/17		Dook	Depth	3	8/6/17	
	Geoprobe 6610 D	г				mpiello	n Deh	JUI		12 ft		RUCK	Deptin		NA	
Size and	Type of Bit				Nu	mber of	Sam	ples	Dist	urbed		Un	disturbed	C	Core	
Casing Di	2" Macrocore Cutti iameter (in)	ing Shoe		Casing Depth (ft)	_				Firs		3	Co	NA		4 HR.	NA
Secing H	NA	Weight (lbs)		Drop (in)		ater Lev Iling Fo	• •		$ \underline{\nabla}$		7.5		L NA		Ţ	NA
Sampler	^{ammer} NA		NA	NA		ling i o	- Cinici		Greg I	reese						
Sampler H	2" diameter 4' stee	Weight (lbs)		Drop (in)	Fie	ld Engi	neer									
	NA		NA	NA				١		ica Zul mple D			1			
MATERIAL SYMBOL		Sample Descrip	otion			Depth Scale		Type		Penetr. resist BL/6in		ling	(Drilling Flui Fluid Loss, Dr	ema d, Dep Iling F		ising, ce. etc.)
-	11-inch concrete slab					_ 0 -	- Z		ш.		(ppi	,				
4 4 4 4 4 P							-			NA	0.0					
	R1 (0-14") loose, brov (dry) [FILL]	wn, fine SAND, coa	l, coal as	sh, concrete, brick		_	-	ORE	-		0.0)	14:00 Colle	ected	SB08_	_1-2
						_ 2	<u>-</u> 2	MACROCORE	14"/48"							
						_	-	MAC	1							
						- 3	-									
						- 4	-									
							-			NA						
						_ 5	-	ш								
							22	MACROCORE	24"/48"							
	R2a (0-6") loose, blac	k, fine SAND, coal,	coal as	h, brick (dry) [FILL]]	6	- <u>~</u>	ACRO	24"/		.02	5				
	R2b (6-24") medium o	dense brown fine S	AND tr	ace silt trace clav	_	_ 7	-	M			.02		14:10 Colle	ected	SB08	6-7
	trace coal (moist) [FIL	L]	, u D , u	add ont, trade day,	Ŷ	-	-				.02				-	
~~~~						8	-					0				
						9	-			NA						
	R3 (0-40") medium de (wet)	ense, brown fine SA	ND, tra	ce silt, trace clay			-	ORE	<u>م</u>		.02					
						10	- 22	MACROCORE	40"/48"		.02 .02		14:20 Colle	ected	SB08	_8-9
						- - - 44	-	MAC	4		.02					
						- 11 ·					.02	5				
						12	-				.02	5				
	E.O.B. at 12 feet belo	w grade surface (b	gs). Perr	manent monitoring		_										
	well installed, screene details.	ed from 6-16 feet be	s. See o	construction log for		- 13	-									
	2012					- 14	-									
							-									
						15	-									
						- 16	-									
						17	-									
							-									
						- 18	-									
						_ 19 ·	-									
							-			1	1		1			

Project		G/			- 5		oring				/MW-C			Sheet	1	of	1
lojoot	473 Presid	ent Street					,,			170	361301						
ocation						Ele	vation	and D	atum								
Drilling Co	Brooklyn, N ompany	IY				Da	te Start	ed		13.1	12 NAV		Date	Finished			
5 -		vironment	tal Services Corp	).							3/8/17					3/8/17	
Drilling Ed	quipment					Co	mpletic	n Dep	oth			1	Rock	Depth			
Size and ⁻	Geoprobe 6 Type of Bit	610 DT								Dist	16 ft urbed		Ur	disturbed		NA Core	
	2" Macroco	re Cutting	Shoe		Casing Depth (ft)	Nu	mber o	f Sam	ples	Firs	4	4		N Pompletion	A	24 HR.	NA
	iameter (in) NA			C	<b>U</b> ,		ater Lev	•				7			ΙA	24 RR.	NA
Casing Ha	^{ammer} NA		Weight (lbs)	NA	Drop (in) NA	Dri	lling Fo	orema			_						
Sampler	2" diameter	- 4' steel m				Fie	ld Engi	neer	G	Sreg I	Freese						
Sampler H	Hammer	NA	Weight (Ibs)	NA	Drop (in) NA				ĸ	(yle T	wombly	/					
SOL							Depth	۱ <u>–</u>			mple Da	ata PID		-	Rem	narks	
MATERIAL SYMBOL		S	Sample Descrip	otion			Scale		Type	Recov	Penetr. resist BL/6in	Read (ppn	ing	(Drilling Fluid Loss,	Fluid, Drilling	Depth of C g Resistar	asing, ice, etc.)
- -	14-inch concre	ete slab					_ 0	- 2		-		(551)	,				
a a a a a p							1			1	NA						
								3	ORE	=.		0.0	)	Collector		0 1 0	
	R1 (0-19") loo	se brown	fine SAND con	crete coa	Il ash (dry) [FILL]		_ 2	- <u> </u> 2-	MACROCORE	19"/48"		0.0		Collected	u SBU	J9_1-2	
	111 (0-10 ) 100	3C, DIOWII,					_		MACI	5		0.0	)				
							- 3	-									
							4	-									
								-									
							5	-	ш		NA						
							-		MACROCORE	<b>1</b> 8"							
							6		<b>NCRO</b>	22"/48"							
	R2 (0-22") me sand_concrete	dium dens brick co	se, gray-brown, f al ash (moist) [F	ine SAND	, trace medium	$\nabla$	- 7	_	MA			0.0	)				
		,,		,			-	-				0.0 0.0					
							8					0.0	)				
-~~ ~~							9	-			NA	0.0	)				
							_ 9		ORE	5		0.0					
	R3 (0-44") me	dium dens	se, dark gray, silt	v fine SAN	ND trace clav		10	-  X	MACROCORE	44"/48"		0.0					
	(wet)		oo, aan gray, on	,	12, 1.200 0.29		-		MAC	4		0.0 0.0		Collected	d SB0	09_10-1	1
							- 11 -	-				0.0					
							- - 12	-		I		0.0	)				
							_				NA						
							13		ЗE								
							- 14	R4	MACROCORE	26"/48"							
		ار جمیدالہ			UT has f		14	-  <b>~</b>	ACR	26"		0.0					
	R4 (0-26") me sand (wet)	aium dens	se, grayish browr	i clayey Sl	ILI, trace fine		15	-	Σ			0.0					
							-					0.0 0.0					
							— 16 	-				0.0					
	E.O.B. at 16'						- 17	1									
							,										
							18	-									
							- 19		1	1	1			1			

Project						Pro	oject No.								
_ocation	473 Presider	nt Street				FI	evation ar	d Da	atum	170361301					
	Brooklyn, NY	,					valion a			4.82 NAVD	88				
Drilling Cor	mpany					Da	te Starteo	ł		0.00.00		Date I	Finished		
Drilling Equ		ironmenta	al Services Corp.			Co	mpletion	Dep	th	3/9/16		Rock	Depth	3/9/16	
	DeWalt Jack	hammer								10 ft			diaturbad	NA	
Size and T	2" Macrocore	e Cutting	Shoe			Nu	mber of S	Samp	oles	Disturbed	3		disturbed NA	Core	NA
Casing Dia	NÀ			(	Casing Depth (ft)	w	ater Leve	(ft.)		First ∑	4	Co	mpletion NA	24 HR. V	NA
Casing Har	^{mmer} NA		Weight (lbs)	NA	Drop (in) NA	Dri	lling Fore	emar					-	_	
Sampler	2" diameter 4	l' steel ma				Fie	eld Engine	er	G	reg Freese					
Sampler Ha	ammer	NA	Weight (Ibs)	NA	Drop (in) NA			1	K	yle Twombly Sample Da	/		r		
MATERIAL SYMBOL		S	ample Descrip	tion			Depth	ber	φ		PI			narks	
SYN		0					Scale	Number	Type	Recov. (in) Penetr. resist BL/6in	Read (pp		(Drilling Fluid, Fluid Loss, Drillin	ig Resistan	ce, etc.)
	6-inch Slab						0		GER	=					
	R1 (0-24") medi	um dense	e, diack COAL (\	vet) [FIL	L]		- 1 -	ž	HAND AUGER	24/"24"					
							- 2 -		HAN	Ň	0.	0			
							- 3 -		ш						
						$\nabla$	- 4 -	R2	OCOF	14"/48"					
									MACROCORE	14"	19	.0	Well Graded	Coal	
	R2 (0-14") medi	um dense	e, black COAL (\	vet) [FIL	L]		- 5 -		2		3	5		000	
							- 6 -				30				
	R3a(0-11") med			wet) [FIL	.L]						25				
××××	R3b(11"-13") C0	JNCRET	E (wet) [FILL]				_ 7 _		щ		0. 0.				
	R3c(13"-48") bro	own fine :	SAND, some me	edium sa	nd, trace silt (wet)		- 8 -	R3	MACROCORE	48"/48"	0.	0			
							8		MACR	48'	0.				
							- 9 -		_		0. 0.				
							- 10 -				0.	0			
	E.O.B at 10 feet	below ar	ade surface (bos	s). Monit	orina well										
	installed, screen details.	ed from (	to 8 feet bgs. S	See const	truction log for		- 11 -								
							- 12 -								
							- 13 -								
							- 14 -								
							- 15 -								
							_ 16 _								
							_ 17 _								
							18								
							_ 19 _	1							

			Boring			SB	8-11			Sheet	1	of	1
Project	473 President Street	Pro	oject No.			170	361301	1					
ocation		Ele	evation ar	nd Da	atum		50150	•					
Drilling Co	Brooklyn, NY	De	te Starte	h		NA			Date	Finished			
	AARCO Environmental Services Corp.			u		3	3/10/17		Date	maneu		3/10/17	
Drilling Ec	quipment	Co	mpletion	Dep	th				Rock	Depth			
Size and	DeWalt Jackhammer Type of Bit					Dist	16 ft turbed		Un	disturbed		NA Core	
	2" Macrocore Cutting Shoe iameter (in) Casing Depth (ft)	Nu	mber of	Sam	oles			4			NA	24 HR.	NA
-	NA		ater Leve	• •		Firs		14.5		mpletion	NA	24 HR. <u> </u>	NA
	amme _{NA} Weight (Ibs) NA Drop (in) NA	Dri	Illing Fore	emar			<b>-</b>						
Sampler	2" diameter 4' steel macrocore	Fie	eld Engin	eer	Ģ	sreg	Freese						
Sampler H	Hammer NA Weight (Ibs) NA Drop (in) NA			1	V		ica Zuli			r			
MATERIAL SYMBOL	Comple Description		Depth	ė	e o		imple Da	ata Pil	D	-		narks	
SYM	Sample Description		Scale	Number	Type	Reco	Penetr. resist BL/6in	Read (ppr	ling	(Drillin Fluid Los	ig Fluid, ss, Drillin	Depth of C ng Resistar	asing, ice, etc.)
3 A 4 2	2-foot concrete slab		- 0 -										
2 4 4 P			- 1 -	1									
2 4 P 0					CORE	م							
	R1 (0-13") loose, brown, fine SAND, concrete, brick, coal, coal ash,		2 -	Ε	MACROCORE	13"/48"		0.0	0				
	coal tar (dry) [FILL]		- 3 -		MA			0.0	0				
										0820 (	Collect	ed SB11	2-4
			4 -	-	+								*
			- 5 -		JRE	τ.							
			6 -	22	MACROCORE	21"/48"							
	R2 (0-21") loose, brown, fine SAND, concrete, brick, coal, coal ash,				MACH	21		0.0	0				
	coal tar (dry) [FILL]		- 7 -					0.0					
			- 8 -	1				0.0	U	Mothb	all-like	odor	
			9 -										
			- 10 -	R3	OCO	14"/48"							
	R3 (0-14") loose, brown, fine SAND, concrete, brick, coal, coal ash,				MACROCORE	4							
	coal tar (dry) [FILL]		- 11 -		2			0.0	0				
			- 12 -					0.0	0				
				-									
	R4a(0-16") medium dense, fine SAND, concrete, brick, coal, coal		- 13 -		ш			0.0	0				
	ash (dry) [FILL]			4	COR	48"		0.0					
ŤŤŤŤ		$\nabla$	- 14 -	Ъ	MACROCORE	34"/48"		0.0 0.0					
	R4b(16"-26") medium dense to dense, brown, low plasticity, clayey SILT, trace fine sand, (moist) [SILT]	_	- 15 -		Ŵ			0.0		0840 0	Collecte	ed SB11	_11-15
	R4c(26"-34") medium dense, brown, fine SAND, some low plasticity							0.0	0				
	clay, trace silt (wet)		- 16 -										
	E.O.B at 30'		- 17 -										
	Backfilled with #2 sand. Patched with concrete.												
			- 18 -										
			- 19 -										
			- 61										
			20 -	1									

Project						Pr	oject No	).									
ocation	473 Presid	ent Street				Elé	evation	and D	atum		361301						
	Brooklyn, N	NY									6 NAV						
Drilling Co						Da	ite Starl	ed			2/0/47	[	Date F	Finished	d	2/0/47	
Drilling Ed	quipment	ivironmenta	al Services Corp.			Co	mpletic	n Dep	oth		3/8/17	F	Rock	Depth		3/8/17	
Size and .	Geoprobe	6610 DT								Dist	16 ft urbed		Un	disturbe	ed.	NA Core	
	2" Macroco	ore Cutting	Shoe			Νι	imber o	f Sam	ples			4			NA		NA
	iameter (in) NA				Casing Depth (ft)		ater Lev	•		First	t	9.5		mpletio	n NA	24 HR. 	NA
	^{ammer} NA		Weight (Ibs)	NA	Drop (in) NA	Dr	illing Fo	rema		rog [	- reese						
Sampler	2" diamete	r 4' steel ma			Dron (in)	Fie	eld Engi	neer	Ċ	neg r	16626						
	Hammer	NA	Weight (Ibs)	NA	Drop (in) NA			_	۷		i <mark>ca Zulı</mark> mple Da			r			
MATERIAL SYMBOL		Sa	ample Descript	tion			Depth Scale		Type		Penetr. resist BL/6in	PID Readi (ppm	ing	(Dri Fluid I	Rer illing Fluid, Loss, Drillir	narks Depth of C ng Resistar	asing, nce, etc.)
- 8 2 10 10	6" thick concre	ete slab					_ 0			<u> </u>		(phi	•,			· · ·	,
							- - - 1	_			NA	0.0	)	10.1	<b>F O</b> - <b>#</b> -		
	R1 (0-24") me coal ash (dry)	dium dense [FILL]	e, brown fine SA	ND, con	crete, brick, coal,			-	ORE	÷.		0.0		13:1	5 Collec	( SB12_	1-2
							- 2	<u> </u>	MACROCORE	24"/48"		0.1 0.0					
							- 3	_	MA								
							-	-									
							- 4										
							- 5	_			NA						
	R2 (0-26") me coal, coal ash			ND, con	crete, brick, glass,			-	ORE	Ξœ							
							6		MACROCORE	26"/48"		0.0	1				
							- 7	_	MA			0.0	1				
								-				0.1 0.0					
							8	-				0.0					
							- 9	-			NA			12.2		+ CD12 (	0.10
	R3 (0-32") me (moist)	edium dense	e, brown fine SA	ND, trac	e medium sand	$\overline{\Delta}$	E	-	CORE	φ		0.1		13.2	25 Collec	1 30 12_3	9-10
							- 10	R3	MACROCORE	32"/48"		0.1					
							- 11	1	MA			0.1					
												0.1 0.1					
							- 12	+				0.1					
	DA (0 44") ~~	dium dono	e, brown fine SAI		e medium cond		- 13	1		Í	NA	0.0					
	trace silt (wet)		e, brown nne SAI	า⊔, แลс	e meulum sanu,		-		CORE	18"		0.0 0.0					
							- 14	- <b>4</b>	MACROCORE	44"/48"		0.0					
							- 15	-	M/			0.0					
							-			Í		0.0 0.0					
				、 <b>-</b>			- 16	-				2.0					
	well installed,	eet below g screened fr	rade surface (bg om 8 to 18 feet b	s). Perm ogs. See	e construction log		- 17	-									
	for details.				Ũ		- - 	-									
							- 18	-									
							- 19	-									
							F	+						1			

Projec	t				Pr	oject No.									
ocatio	473 President Street				FI	evation ar	nd De			361301	l				
Jean	Brooklyn, NY					svation a				13 NAV	D88				
rilling	g Company				Da	te Starte	d					Date F	inished		
	AARCO Environmenta	al Services Corp.					Dee	44-	4	/29/17			Dereth	4/29/1	7
riiiing	g Equipment Geoprobe 7822 DT					ompletion	Dep	th		30 ft		KOCK L	Depth	N	^
ze a	nd Type of Bit				NI	Imber of S	Sami		Dist	urbed		Unc	disturbed	Core	
asino	2" direct push dual tub g Diameter (in)	be	Cas	sing Depth (ft)					Firs	t	6	Cor	NA mpletion	24 HR	NA
	3.75-inch-diameter St			25'		ater Leve			$  \underline{\nabla}$		9.5				NA
	g HammerNA	Weight (Ibs)	NA	Drop (in) NA	Dr	illing Fore	emar		C	Nadial					
ampl	er 1.75-inch-diameter, 5-				Fie	eld Engine	eer	10	om s	Sieckel					
ampl	er Hammer NA	Weight (lbs)	NA	Drop (in) NA		-		V		ica Zulı					
OL						Depth	-	1		mple Da			R	emarks	
MATERIAL SYMBOL	Sa	ample Description	Ì			Scale	Number	Type	(in)	Penetr. resist BL/6in	PID Readi	ng	(Drilling Flu Fluid Loss, Di		Casing, ance. etc.)
-	7" Concrete slab					_ 0 _	Ż	·		<u>а</u> – ш	(ppm	7		<u></u>	, 5.0.)
4. * XXX	R1 (0-10") loose, brown,	fine SAND CD (con	crete h	rick) coal coal											
$\bigotimes$	ash (dry) [FILL]		, D								0.0				
$\bigotimes$	$\otimes$					2 -		JBE							
	×						ž	2" DUAL TUBE	10"/60"						
	×					- 3 -		DU.	10						
>>>	×							2							
***	×					- 4 -									
>>>	$\otimes$														
	×					- 5 -									
>>>	$\otimes$					6 -	1								
$\bigotimes$	×														
$\bigotimes$	×					- 7 -	1	TUBE	.0		0.0				
>>	R2a (0-32") medium den	se, gray-brown fine S	SAND, d	coal, coal ash,			22	2" DUAL TUBE	38"/60"		0.0				
>>>	CD (brick) (dry) [FILL]					- 8 -	1	2" D	۳ ۳		0.0				
$\bigotimes$	×					- <u> </u>					0.0				
$\bigotimes$				0	$\overline{\nabla}$						0.0				
	R2b (32"-38") medium de	ense, brown, fine SA	ND (we	et)		- 10 -	-		<u> </u>		0.0				
	· · · · · · · · · · · · · · · · · · ·					- 11 -					0.0				
								BE			0.0				
	R3 (0-40") medium dense	e, brown, fine SAND	(wet)			- 12 -	R3	2" DUAL TUBE	40"/60"		0.0				
· · · · ·						- 13 -		DUA	40		0.0				
								2"			0.0				
						- 14 -					0.0 0.0				
											0.0				
						- 15 -									
						- 16 -									
	D4 (0.40!!)	a brown firs OAND	40								0.0				
	R4 (0-48") medium dense	e, prown, tine SAND	, trace s	siit (wet)		- 17 -		2" DUAL TUBE	<b>.</b>		0.0				
						E =	Ъ		48"/60"		0.0				
						- 18 -		2" D(	4		0.0 0.0				
											0.0				
						- 19 -					0.0				
						E 20 -	1		1		0.0				

roject		of Boring Project No.						Sheet 2 of
action	473 President Street				17	0361301		
ocation	Brooklyn, NY	Elevation a	10 Da	atum		43 NAV	D88	
					S	ample Da	ata	
MATERIAL SYMBOL	Sample Description	Depth Scale	Number	Type	Recov.	Penetr. resist BL/6in	PID Reading (ppm)	(Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.)
		20 -						
	R5 (0-40") medium dense, brown fine SAND, trace silt (wet)	- 21 -		ш				
		- 22 -	R5	IL TUB	40"/60"		0.0	00:20
		- 23 -		2" DUAL TUBE	40		0.0 0.0	09:30 Collected SB12D_23-25
		- 24 -					0.0	09:40
							0.0 0.0	Collected SB12D_20-25
		- 25 -						
		_ 26 -						
		- 27 -		.UBE	5			
			RG	2" DUAL TUBE	10"/60"			
		- 28 -		2"[				
	R6 (0-10") medium dense, brown fine SAND, trace coarse sand, trace silt (wet)	- 29 -	-				0.0 0.0	10:10 Collected SB12D_28-30
·····	E.O.B. at 30' Monitoring well installed. See construction log for details.	- 30 -					0.0	
		- 31 -						
		- 32 -	-					
		- 33 -	-					
		- 34 -	-					
		- 35 -	-					
		- 36 -						
		- 37 -						
		- 38 -						
		- 39 -						
		40 -						
		- 41 -	-					
		42 -	-					
		- 36 - 37 - 38 - 39 - 40 - 41 - 42 - 42 - 43 	-					
		- 44 -	1					
		45	1					

#### — .

Project							oring ject No.										
	473 Pres	sident Stree	et			-			- 1		361301	1					
ocation	Brooklyn					Ele	vation ar	nd Da	atum	NA							
Drilling Co		, 111				Dat	e Starte	d					Date	Finished			
)rilling Ec	AARCO quipment	Environme	ntal Services Corp			Co	npletion	Den	th		3/6/17		Rock	Depth		3/6/17	
		e 6610 DT					Inpiction	Бер	ui		12 ft		NOCK	Depti		NA	
Size and T	Type of Bit 2" Macro	ocore Cuttin	ng Shoe			Nu	mber of s	Sam	ples	Dist	urbed	3	Ur	ndisturbec	NA	Core	NA
Casing Di	iameter (in)		ig once	(	Casing Depth (ft)	Wa	iter Leve	l (ft.)		First				mpletion		24 HR.	
Casing Ha	NA ^{ammer} NA		Weight (Ibs)	NIA	Drop (in) NA		ling Fore	• •		$  \underline{\nabla}$		8			NA	Ţ	NA
Sampler		tor 1' stool	macrocore	NA	NA				G	Greg F	reese						
Sampler H		NA	Weight (lbs)	NA	Drop (in) NA	_ ⊦ie	ld Engine	eer	V	/eroni	ca Zuli	uana					
Ч Г						-			v		mple Da				Dom	arks	
MATERIAL SYMBOL			Sample Descrip	tion			Depth Scale	Number	Type	Recov. (in)	Penetr. resist BL/6in	Pli Read (ppi	ding	(Drilli Fluid Lo		Depth of Ca Resistan	asing, ce, etc.)
A P P	5-inch conc	rete slab					- 0 -										
	R1a (0-12")	medium de	ense, gray-brown f	ine SANE	D, trace medium		- 1 -				NA	0.		9:15 (	Collect S	B13 1-2	2
	sand, concr	ete, tile, dri	ck (dry) [FILL]					_	MACROCORE	¹⁸		0.0					
	R1b (12-16	") insulation	n material, dry wall	(dry) [FIL	_L]		- 2 -	Ε	ACRO	16"/48"							
						-	- 3 -		M/								
							- 4 -										
			<i></i>				- 5 -				NA						
	R2a (0-16") gravel, conc	rete (dry) [l	ense, gray fine SAI FILL]	ND, trace	e silt, trace fine	-			ORE	Ξœ			~-				
	0		-				6 -	2	MACROCORE	33"/48"		0.0					
	R2b (16-24	") CONCRE	ETE (dry) [FILL]			-	_ 7 _		MAC	с С		0.0					
	D0- (04.00)		na a fina a sud (ma		,	-						0.0					
	R2C (24-33	) BRICK, ti	race fine sand (mo	ist) [FILL	.]	$\nabla$	8 -	-				0.0	25				
						-					NA						
							- 9 -		RE	-				9:25 (	Collect S	B13_9-	10 erved
	P3 (0_30") (	medium der	nse, brown, low pla	eticity cl	lavev fine SAND		- 10 -	RS	MACROCORE	30"/48"		0.			anning o		0.100
	trace silt (w		ise, brown, iow pie	asticity, ci	layey lille OAND,				MACF	30		0. 0.					
							- 11 -					0.					
							- 12 -					0.	0				
	E.O.B. at 12	2 feet below	v grade surface. Ba	ackfilled v	with #2 sand and	-								E.O.E	8. at 12'		
	patched wit		0 · · · · · · · · · · · · · · · · ·				- 13 -									atch w/ c	concrete
							- 14 -										
							- 15 -										
							- 16 -										
							- 16 -										
						-	17 -										
							- 18 -										
						-	- 19 -										
								4									

		of Borin				SB	-14			Sheet	1	of	
Project		Project I	No.										
ocation	473 President Street	Elevatio	n and	Da		1703	361301	1					
	Brooklyn, NY			20		NA							
orilling Co	ompany	Date Sta	arted						Date I	Finished			
rilling Ec	AARCO Environmental Services Corp.	Complet	tion [	Dent	h		3/8/17		Rock	Depth		3/8/17	
, ming EC	Geoprobe 6610 DT	Compice		Jopu			16 ft			Dopti		NA	
Size and T	Type of Bit	Number	of Sa	amp	les	Dist	urbed		Un	disturbec		Core	
Casing Di	2" Macrocore Cutting Shoe ameter (in) Casing Depth (ft)					First		4	Co	mpletion	NA	24 HR.	NA
2	NA Weight (lbs) Drop (in)	Water L		• •		$\overline{\Delta}$		10.5			NA	$\bar{\mathbf{\Lambda}}$	NA
Sampler	NA NA NA			nan		rea F	reese						
	2" diameter 4' steel macrocore Hammer Weight (lbs) Drop (in)	Field En	gine	er									
Sampler H	NA NA NA				Ve		ca Zuli nple Da			r			
MATERIAL SYMBOL	Sample Description	Dep		Jer	φ		1	PI		1		narks	
SYN	Sample Description	Sca		Number	Type	Rec( (in)	Penetr. resist BL/6in	Read (ppi		Fluid Lc	ng Fluid, oss, Drillir	Depth of C ng Resistan	asing, ce, etc.)
A. W. A.	6-inch concrete slab	0	ーキ										
		- 1	1				NA	0.2		11.00			2
	R1 (0-25") medium dense, grayish brown fine SAND, concrete, brick, coal, coal ash (dry) [FILL]	Ē	Ţ		MACROCORE			0.2		11.30	Collect	t SB14_1	-2
		- 2	: -]	Я	CROC	25"/48"		0.2 0.2					
		Ē			MAC	2		0	-				
		- 3	1										
		4	. –										
		-	=				NA						
		- 5			щ								
	R2 (0-29") medium dense, grayish brown fine SAND, brick,	Ē		R2	DCOF	29"/48"							
	concrete, coal, coal ash (dry) [FILL]	- 6	' -	£	MACROCORE	29"/		0.2	2				
		- 7	· -]		Ŵ			0.2					
		-	-					0.2 0.2					
		- 8	; +					0.1	-				
		- 9	, E				NA						
					ORE	5							
		10	Σ−	R3	MACROCOR	24"/48"		0	1	Appro	ox water	table de	pth
		¥ ₽	. =		MAC	5		0. ⁻ 0		11:40	Collect	t SB14_1	0-11
	R3 (0-24") dense-medium dense, brown clayey SILT, trace fine sand, trace till (moist) [SILT]	- <b>1</b> 1						0.					
ΠŤŤ			2 –					0.					
	R4 (0-48") medium dense, brown fine SAND (wet)	F	=				NA	0.1					
		- 13	3 –		щ		INA	0. ⁻ 0					
		Ē		4	MACROCORE	48"/48"		0.1					
		- 14 E	* -	R4	ACRC	48"/		0.	1				
		- 15	5 -]		Σ			0.1					
		E	-					0. ⁻ 0					
			3 <u>+</u>					0.	•				
	E.O.B. at 16 feet below grade surface. Backfilled with #2 sand and patched with concrete.	- 17	, =										
	patoneu with concrete.		' =										
		- 18	3 –										
		- 19	9 ┤										
		20	-										

		of Boring	SE	8-15		She	et 1	of	
Project		Project No.							
ocation	473 President Street	Elevation and Date		361301					
	Brooklyn, NY		NA						
orilling Co		Date Started	1		D	ate Finish	ed		
rilling Er	AARCO Environmental Services Corp. quipment	Completion Depth		3/8/17	D	ock Depth	1	3/8/17	
	Geoprobe 6610 DT	Completion Deptin		16 ft		ook Deptil	I.	NA	
Size and	Type of Bit	Number of Sample	es Dis	turbed		Undistur		Core	
Casing Di	2" Macrocore Cutting Shoe iameter (in) Casing Depth (ft)	· ·	Firs	st	4	Complet	NA ion	24 HR.	NA
	NA	Water Level (ft.) Drilling Foreman	<u> </u>	/	7	<u> </u>	NA	Ī	NA
Sampler	NA NA NA		Grea	Freese					
Sampler I	2" diameter 4' steel macrocore Hammer Weight (lbs) Drop (in)	Field Engineer	0						
	NA NA NA		Kyle S	Twombly ample Da	/				
MATERIAL SYMBOL	Sample Description	Depth b		1	PID			marks	00100
SYN			Type Recov	Penetr. resist BL/6in	Readin (ppm)	g (L Fluid	Drilling Fluid d Loss, Drilli	ing Resistar	asing, ice, etc.)
	14-inch concrete slab								
4. 17 P				NA					
	R1 (0-18") light brown fine SAND, concrete, coal ash (dry) [FILL]		B8		0.0	Co	llect SB1	5 1-2	
		2 - 2	18"/48"		0.0				
			L L		0.0				
		- 3 -							
	R2a (0-9") loose, concrete, coal ash, trace brick (dry) [FILL]	4							
				NA					
		5 -	ĥ						
	R2b (9-20") light brown fine SAND, trace medium sand, trace	82	20"/48"						
	concrete, trace gravel (moist) [FILL]		20"/						
			ž		0.0				
					0.0 0.0	Co	llect SB1	5_7-8	
	R3a (0-10") gravish brown fine SAND, trace silty sand, coal ash	8			0.0				
XXX	(moist) [FILL]			NA					
	R3b (10-29") grayish brown clayey fine SAND, trace silt (wet)								
			29"/48"		0.0				
			3		0.0 0.0	Co	llect SB1	5_10-11	
		- 11 -			0.0				
////	D4 (0.30") gravies brown down fing CAND trace all (wet)	12			0.0				
	R4 (0-30") grayish brown clayey fine SAND, trace silt (wet)			NA					
		13 -	Ļ						
			30"/48"		0.0				
			30"/		0.0				
		15	Σ		0.0				
////					0.0 0.0				
- / . /. • / .		16			0.0				
	E.O.B. at 16 feet below grade surface. Backfilled with #2 sand and patched with concrete.	- 17 -							
	ירו אינויז טווטיכוב.								
		18 -							
		- 19 -							

roject					Pro	ject No.										
	473 President Street									361301						
ocation					Ele	vation a	nd Da	atum								
rilling Co	Brooklyn, NY				Dat	e Starte	d		13.2	1 NAV		ato F	inished			
	AARCO Environment	tal Services Corn					u		л	/28/17		alei	maneu		4/28/17	
rilling Ec	quipment	lai Seivices Corp.			Cor	npletion	Dep	th	4	120/17	F	lock I	Depth		4/20/17	
	Geoprobe 7822 DT									40 ft					NA	
ize and 7	Type of Bit 2" Macrocore Cutting	Shoo			Nur	mber of	Samp	oles	Dist	urbed	8	Un	disturbed	NA	Core	NA
asing Di	ameter (in)	51108	С	asing Depth (ft)					First	:	0	Co	mpletion	INA	24 HR.	INA
	4.25" Hollow Stem A	uger		25'		ter Leve	• • •		$  \nabla$		10		<u>/</u>	NA	Ī	NA
	ammer NA	Weight (lbs)	NA	Drop (in) NA		ling For	emar									
ampler	2" diameter 5' steel n	nacrocore			Fie	ld Engin	eer		ïm Ke	eny						
ampler H	Hammer NA	Weight (Ibs)	NA	Drop (in) NA		Ū		٧	/eroni	ca Zulı	Jaga					
J. F.								1	Sa	mple Da				Por	narks	
MATERIAL SYMBOL	S	ample Descriptio	on			Depth Scale	Number	Type	in) čo	Penetr. resist BL/6in	PID Readir	ng	Drilling		Depth of Ca g Resistan	asing,
≨∾						- 0 -	ľ	F	Ee E	Pe BL	(ppm		Fluid Los	s, Drillin	g Resistan	ce, etc.)
4 4 4 4 4	24-inch Concrete slab				þ		-									
4 4 P					F	- 1 -	4			NA						
5 5 P.					Ē		-				0.0					
	R1 (0-24") loose, brown	fine SAND concre	ete bric	k coal coal ash	-	- 2 -	-	MACROCORE	.0		0.0					
	(dry) [FILL]		, 5110		Ē		5	ROC	24"/60"		0.0					
						- 3 -	-	MAC	Ň.		0.0					
						-	-						08:15	<i>.</i>		
					Ē	- 4 -	-						First ru	n finis	hed	
						5	-									
						- 5 -	-									
					Ē	- 6 -	-			NA						
					Ē											
	R2a (0-5") CONCRETE				E	- 7 -	-	ORE	-							
	RZa (0-5) CONCRETE	(019) [FILL]			F		22	MACROCORE	29"/60"		0.0					
						8 -	-	MACI	3		0.0 0.0					
	R2c (5"-12") loose, brow	n, fine SAND, coal	ash (dr	y) [FILL]			1	-			0.0					
	R2c (12"-29") BRICK (d			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		- 9 -	-				0.0					
					$\overline{\Delta}$	- 10	-				0.0		08:20 \$	Second	d run finis	shed
					-	- 10 -	-									
			_		Ē	- 11 -	1			NA						
	R3a (0-10") medium der [FILL]	nse, dark brown fine	e SAND	, coal ash (moist)			1									
	[]				F	- 12 -	4	ORE			0.0					
	R3b (10"-18") medium d	lense grav-brown f	fine SAM	ND trace silt	F		R3	MACROCORE	36"/60"		0.0					
	(wet)				Ē	- 13 -	-	MACI	36		0.0					
	R3c (18"-24") medium d	ense, gray, fine SAI	ND, sor	me silt, trace clav	E	_	1				0.0 0.0					
	(moist)				F	- 14 -	1				0.0					
	R3d (24"-36") medum de	ense , gray, silty, fin	ne SANI	D, trace clay	F	45	-				0.0		08:35			
	(moist)				Ē	- 15 -	-						Third ru	un finis	shed	
					Ē	- 16 -	-			NA						
					þ		1				0.0					
	R4a (0-26") medium der	nse, gray, silty fine S	SAND, s	some clay (wet)	F	- 17 -	4	ORE			0.0					
					þ		<b>4</b>	300	48"/60"		0.0					
					Ē	- 18 -	1	MACROCORE	48		0.0					
	R4b (26"-48") medium d	lense, brown fine S	SAND s	ome medium	F		1	2			0.0					
	SAND (wet)	,			F	- 19 -	4				0.0					
					ŀ	- ·	-	1			0.0					

oject	473 President Street	Project No.			170	361301		
cation	Brooklyn, NY	Elevation a	nd Da	atum		1 NAV	D88	
t -				1	1	mple Da		Remarks
SYMBOL	Sample Description	Depth Scale	Number	Type	Recov. (in)	Penetr. resist BL/6in	PID Reading (ppm)	(Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.
		- 20	-			NA		
		- 21 -					0.0	11:00 Collected SB15D_20-25
	R5 (0-48") medium dense, brown, fine SAND, trace silt (wet)	22 -		CORE	20"		0.0 0.0	Design Criteria
		- 23 -	R5	MACROCORE	48"/60"		0.0	09:30
		-		Σ			0.0 0.0	Collected SB15D_23-25
		- 24 -					0.0 0.0	
		- 25 -					0.0	
	R6 (0-46") medium dense, brown, fine SAND, trace silt (wet)	_ 26 -				NA		
		_ 27 -		ORE	.0		0.0	
		- 28 -	R6	MACROCORE	46"/60"		0.0 0.0	
				M₽			0.0 0.0	
		- 29 -					0.0	
	R7 (0-60") medium dense, brown, fine SAND, trace silt (wet)	- 30 -					0.0 2.0	10:20
		- 31 -				NA	0.4	Collected SB15D_31-33
		- 32 -		RE			1.2 0.0	
			R7	MACROCORE	.09/.09		0.0 0.0	
		- 33 -		MAG	9		0.0	
		- 34 -					0.0 0.0	
		- 35 -					0.0	
		- 36 -				NA		
	R8 (0-42") medium dense, gray-brown, fine SAND, trace silt (wet)	Ē		ЗE			0.0	
		- 37 -	R8	MACROCORE	42"/60"		0.0	
		- 38 -	-	MAC	4		0.0 0.0	10:30 Collected SB15D_37-39
		- 39 -					0.0 0.0	10:25 Eighth run finished
	E.O.B. at 40'	<u> </u>	-				0.0	
	Monitoring well installed. See construction log for details. MD-15D screened from 20'-25'	- 41 -						
		- 42 -						
		- 43 -						
		- 44 -	-					

L/			Boring			SB	-16			Sheet	1	of	- 1
Project		Pr	oject No.										
ocation	473 President Street	Ele	evation a	nd Da	atum		36130 ⁻	1					
	Brooklyn, NY					NA							
Drilling Co	ompany	Da	te Starte	d				[	Date I	Finished			
)rilling Eq	AARCO Environmental Services Corp.		mpletion	Den	th		3/9/17		Pock	Depth		3/9/17	
	Geoprobe 6610 DT		inpletion	Бер	ui		16 ft		NUCK	Deptil		NA	
Size and	Type of Bit	Νι	mber of	Sam	oles	Dist	urbed		Un	disturbed		Core	
Casing Di	2" Macrocore Cutting Shoe iameter (in) Casing Depth (ft)					Firs	t	4	Co	mpletion	NA	24 HR.	NA
	NA Weight (lbs) Drop (in)		ater Leve	• •		$  \nabla$		9		L	NA	Ā	NA
Sampler	ammerNA Weight (Ibs) NA Drop (in) NA		ining i on	emai		Grea I	- reese						
	2" diameter 4' steel macrocore	Fie	eld Engin	eer		Jiegi	10000						
Sampler I	Hammer NA Weight (Ibs) NA Drop (in) NA				K		wombl			r			
BOL			Depth	e			mple D	ata PIC	)	-		narks	
MATERIAL SYMBOL	Sample Description		Scale	Number	Type	(in)	Penetr. resist BL/6in	Read (ppn	ing	(Drillir Fluid Lo	ng Fluid, ss, Drillir	Depth of C Ig Resista	asing, nce, etc.)
	10-inch Concrete Slab		_ 0 _			-			,				
	R1 (0-14") loose, dark brown,fine SAND, coal, coal ash, slag (dry) [FILL]			-	RE	-		0.0 0.0		0.11.	10040	4.0	
	[ייבב]		- 2 -	۶	SOCO	14"/48"		0.0		Collec	t SB16	_1-2	
				-	MACROCORE	4							
			- 3 -		2								
	R2a(0-7") loose, red BRICK, fine coal, coal ash, slag (dry) [FILL]		- 4 -	-									
			- 5 -	-									
				-	ORE	™							
	R2b (7"-11") loose, brown fine SAND, coal ash (moist) [FILL]		6 -	2	MACROCORE	8"/48"							
					MAC	-		0.0	1				
	R2b(11"-18") loose red BRICK, fine coal, coal ash, slag (dry) [FILL]		- 7 -	1				0.0	1				
			- 8 -	1				0.0	1				
	R3 (0-30") medium dense, dark gray, fine SAND, trace medium			-									
	sand, trace sily, coal ash, red brick (moist) [FILL]	¥	9 -	-	щ								
				- -	COR	48"		0.0	1				
			- 10 -	8	MACROCOR	30"/48"		0.0	1	Collec	t SB16	_9-11	
			- 11 -	1	M			0.0	1				
				1				0.0					
	R4a(0-18") medium dense, dark gray, fine SAND, trace medium		- 12 -	-	+			0.0 0.0					
	sand, trace silt, coal ash, red brick (moist) [FILL]			-				0.0					
*****	R4b(18"-24") medium dense, grayish brown, fine SAND, some clay,		- 13 -	1	RE			0.0					
	trace silt (moist)		- 14 -	R4	MACROCORE	48"/48"		0.0					
				1	AACF	48		0.0		Collec	t SB16	_14-15	
	R4c(24"-48") medium dense, brown, fine SAND, trace silt (moist)		15 -	1				0.0 0.0					
				1				0.0					
			- 16 -										
	E.O.B. at 16 feet below grade surface. Backfilled and patched with concrete		- - 17 -	1									
				1									
			- 18 -	1									
				1									
			- 19 -	1									
			E :	1									

			Boring			SB	-17			Sheet	1	of	1
Project	473 President Street	Pr	oject No.			170	36130 ⁻	1					
ocation		El	evation ar	nd Da	atum		50150	1					
Drilling Co	Brooklyn, NY	D	ate Starte	4		NA			)ato F	inished			
	AARCO Environmental Services Corp.			u			3/8/17		alei	moneu		3/8/17	
rilling Ec	quipment	Co	ompletion	Dep	th			F	Rock [	Depth		0.0.1	
Size and T	Geoprobe 6610 DT Type of Bit	_				Dist	16 ft urbed		Und	disturbed		NA Core	
	2" Macrocore Cutting Shoe	Νι	umber of S	Sam	ples			4		N	A		NA
•	iameter (in) Casing Depth (ft) NA	w	ater Leve	l (ft.)		Firs		8	Cor	mpletion		24 HR.	NA
Casing Ha	amme NA Weight (lbs) NA Drop (in) NA	Dr	illing Fore	emar			_						
Sampler	2" diameter 4' steel macrocore	Fie	eld Engine	eer	(	Sreg I	reese						
Sampler H	Hammer NA Weight (Ibs) NA Drop (in) NA			-	٧		ica Zul						
RIAL 30L			Depth	2			mple Da	ata PID			Rem		
MATERIAL SYMBOL	Sample Description		Scale	Number	Type	(in)	Penetr. resist BL/6in	Readir (ppm	ng	(Drilling F Fluid Loss, [	luid, Do Drilling	epth of Ca Resistan	sing, ce, etc.)
N. A. P.	14-inch concrete slab		- 0 -	2			<u> </u>	(pp	,				
4 4 P 4 7 V			- 1 -				NA						_
	R1a (0-6") BRICK, concrete (dry) [FILL]				ORE			0.1		8:15 Coll	ect SI	B17_1-2	2
	R1b (6"-18") medium dense, brown fine SAND, coal, coal ash, trac	е	2 -	۳	MACROCORE	8"/48"		0.1 0.1					
	silt (dry) [FILL]				MAC	÷		0.1					
			- 3 -										
			- 4 -										
							NA						
			- 5 -		ЯË								
			6 -	22	MACROCORE	22"/48"							
					<b>IACR</b>	22"							
	R2 (0-22") medium dense, brown fine SAND, brick, concrete, coal,		- 7 -		2			0.2 0.1		8:15 Coll	ect Sl	B17_7-8	3
	coal ash (moist) [FILL]	$\nabla$						0.0					
			- 8 -										
			- 9 -				NA						
			E		CORE	<u>ه</u>							
			- 10 -	8	MACROCORI	6"/48"							
			- 11 -		MA								
	R3 (0-6") medium dense, brown fine SAND, coal, coal ash (moist) [FILL]		È :										
			- 12 -	-				0.1					
							NA						
			- 13 -		ORE								
			- 14 -	8	MACROCORI	12"/48"							
	R4 (0-12") medium dense, brown fine SAND, trace silt (wet)				MAC	1							
			- 15 -					0.0		8:35 Coll	ect SI	B17_15	-16
			- 16 -	1		-		0.0					
	E.O.B. at 16 feet below grade surface. Backfilled and patched with		Ē										
	concrete		- 17 -										
			- 19 -										
			- 18 -										
			- 19 -										
			E :	1									

Project						Pro	ject No.									
ocation	473 Pre	sident Stree	t			Fle	vation a	nd Da	atum		361301					
oouton	Brooklyr	ı, NY					i allori a				2 NAV	D88				
Drilling Co						Da	te Starte	d					Date	Finished		
Drilling Eq	AARCO	Environmer	ntal Services Corp	•		Co	mpletior	Dep	th	3	/10/17		Rock	Depth	3/10/17	
Juning Eq		be 6610 DT					npiotioi	Dop			24 ft		rtoon	Dopui	NA	
Size and T	Type of Bit	ocore Cuttin	a Shoo			Nu	mber of	Sam	oles	Dist	urbed	6	Un	ndisturbed NA	Core	NA
Casing Dia	ameter (in)		g Shee	C	Casing Depth (ft)	Wa	ater Leve	۱ (ft )		First	t			mpletion	24 HR.	
Casing Ha	NA ^{ammer} NA		Weight (lbs)		Drop (in)		lling For	• •		$  \underline{\nabla}$		10.5		NA	Ā	NA
Sampler				NA	NA	-	Ū			Greg F	reese					
Sampler H		eter 4' steel i	Weight (lbs)		Drop (in)	Fie	ld Engin	eer								
•		NA		NA	NA			1	V		ca Zuli mple Da			Ì		
MATERIAL SYMBOL		:	Sample Descrip	tion			Depth Scale	Number	Type		Penetr. resist BL/6in	Pll Read (ppi	ling	(Drilling Fluid Fluid Loss, Drill	marks , Depth of Ca ing Resistan	asing, ice, etc.)
4.4 P.	14" Concre	te slab					_ 0 -	-								
4 4 P							_ 1 -									
	R1 (0-5") C	ONCRETE	(dry) [FILL]					-	MACROCORE							
							- 2 -	Ε	CROC	16"/48"						
							- 3 -		MA(	-						
												0.0 0.0				
							_ 4 -	_				0	-			
							-									
	R2 (0-20")	loose, browr	n, fine SAND, con	crete, brid	ck, coal, coal ash		- 5 -	1	щ							
	(dry) [FILĹ]	- 6 -	22	ocol	20"/48"		0.0	<b>`</b>								
								8	MACROCORE	20"		0.0	J			
							- 7 -	1	2			0.0	D			
								-				0.0	)			
							- 8 -	-								
							- 9 -					56	4			
							-		CORE	φ		16.	5			
			ete, brick, coal, co			$\nabla$	- 10 -	R R	MACROCORE	27"/48"		29.		1230 Collec	ted SB18_	_10-11
	R3b (8"-27 clay (moist)		ense, dark gray, fi	ne SAND	, some silt, trace	-	- - 11 -	1	MA			22 47				
							- ''					47 96		Staining and oder presen		n-IIKe
							- 12 -	-	+							
							-					-	_			
	R4 (0-34") clay (wet)	medium den	ise to dense, brow	n, silty, fi	ne SAND, trace		- 13 -		JRE	-		64 82				
	Gay (WEL)						_ 14 -	2 2	MACROCORE	34"/48"		93				
							-		MACF	34		97				
							- 15 -					133		Petroleum-li	ke odor pr	resent
							- 16 -					27	2			
							10					139	90			
	R5 (0-45")	medium den	ise, brown, fine SA	AND trac	e silt (wet)		17 -		μ			149				
			,				-	1,0	MACROCORE	<b>18</b>		139	95			
							- 18 -	R5	CRO	45"/48"		138				
							- 19 -	1	MA	7		99 110		Petroleum-li		

Project	473 President Street	Project No.			17	036130	1	
ocation		Elevation a	nd Da	atun	n			
	Brooklyn, NY					22 NA		
MATERIAL SYMBOL	Sample Description	Depth Scale	Number	Tvpe	1	BL/6in D	1	Remarks (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.)
	R6 (0-18") medium dense, brown fine SAND, trace silt (wet)	20		щ				
		- 22 -	R6	MACROCORE	18"/48"			
		23 -		2			98	
	E.O.B. at 24 feet below grade surface (bgs). Permanent monitoring well installed screened from 8 to 18 feet. See construction log for details.	24 -						1250 Collected SB18_23-24
		- 26 -						
		- 27 -						
		- 28 -						
		- 30 -						
		- 31 -						
		- 32 -						
		- 24 -						
			-					
		- 36 -						
		- 37 -						
		- 39 -						
		40 -						
		- 35 - 36 - 37 - 38 - 39 - 40 - 41 - 42 - 43 - 43 - 41						
		- 43 -						
		- 44 -						

		of Boring		SB-19		Sheet	1	of
Project		Project No.						
ocation	473 President Street	Elevation and Da		17036130	01			
.0001011	Brooklyn, NY			NA				
Drilling Co	ompany	Date Started			Da	te Finished		
<u> </u>	AARCO Environmental Services Corp.			3/10/1			3/10/	17
Drilling Ec		Completion Dep	th	044		ck Depth		14
Size and ⁻	Geoprobe 6610 DT Type of Bit			24 Disturbed		Undisturbed	Core	NA 9
	2" Macrocore Cutting Shoe ameter (in) Casing Depth (ft)	Number of Samp		First	6	NA Completion	24 ⊢	NA
	NA	Water Level (ft.)			10.5	NA		
Casing Ha	amme NA Weight (Ibs) NA Drop (in) NA	Drilling Foremar		_				
Sampler	2" diameter 4' steel macrocore	Field Engineer	G	reg Frees	9			
Sampler H			K١	yle Twomb	bly			
J'AL				Sample I	Data	p	emarks	
MATERIAL SYMBOL	Sample Description	Depth back Scale En	Type	Recov. (in) Penetr. resist	PID Reading	(5.11)		
≥°°	14-inch concrete slab			ਕੂ ਸੂ _ਨ ਕੂ	i (ppm)		ming Resis	stance, etc.)
4 4 4 4 4								
	R1a(0-12") CONCRETE (dry) [FILL]	1	щ					
			MACROCORE	24"/48"				
		2 2	ACRO	24"/				
	R1b(12"-24") medium dense, brown, fine SAND, concrete, brick, coal, coal ash (dry) [FILL]	- 3 -	M/		9.5			
		E I			9.5			
		4			-			
		- 5 -	띮	_				
		6 2	MACROCORE	22"/48"				
			ACR	22"	15.7			
	R2 (0-22") medium dense, brown, fine SAND, coal, coal ash, concrete, brick (dry) [FILL]	- 7 -	Z		13.5			
					19.5			
		8			-			
		Ē						
		- 9 -	RE	-				
	D2 (0.10") modium donce brown fine CAND concrete brief	10	MACROCORI	19"/48"		Collected S	SB10 10	L11
	R3 (0-19") medium dense, brown, fine SAND, concrete, brick (moist) [FILL]	₽ 1	AACF	19	7	Concerca c		
		- 11 -	2		5.5			
					3.5			
		- 12			]			
	Dia (0.17") madium danas kraum fina OAND anal analar	- 13 -						
	R4a (0-17") medium dense, brown, fine SAND, coal, coal ash, concrete, brick, wood (moist) [FILL]		ORE	<b>.</b>	659			
*****	R4b (14"-31") medium dense, gravish-brown, silty SAND, trace clay	14 - 22	MACROCORE	31"/48"	1042			
	(wet)		MAC	ε	1276			
		- 15 -			789			
		- 16			740			
	(0-48") medium dense, grayish-brown, fine SAND, trace silt (wet)				983	Some stair	nina nres	ent
		- 17 -	ш		1500			
			COR	18"	1177			
		- 18 - ¹ 2	MACROCORE	48"/48"	1105			
		- 19 -	MA		39.0 39.0			
·····					12.1			
		E <u>20</u>						

Project		Project No.					
ocation	473 President Street	Elevation a	nd Da	atum	17036130 ⁻	1	
	Brooklyn, NY				NA		
IN SIAL		Depth	-	1	Sample D	ata PID	Remarks
MATERIAL SYMBOL	Sample Description	Scale	Number	Type	Recov. (in) Penetr. resist BL/6in	Reading (ppm)	(Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.)
		20 -				10.3	Collected SB19_20-22
	(0-24") medium dense, brown, fine SAND (wet)	- 21 -		ORE			MS/MSD DUPLICATE
		22 -	R6	MACROCC		10	Liner was stuck in the
		23 -		MAG			macrocone. Soil was collecte into bag.
		24 -					
	E.O.B. at 24 feet below grade surface. Backfilled with #2 sand and patched with concrete.	E					
		- 25 -					
		- 26 -					
		- 27 -					
		_ 28 -					
		_ 29 -					
		- 30 -					
		E					
		- 31 -					
		- 32 -					
		- 33 -					
		- 34 -					
		- 35 -					
		- 36 -					
		- 37 -					
		- 38 -					
		- 39 -					
		- 40 -					
		41 -					
		42 -	-				
		43 -					
		E					
		- 44 -	1				

Project				Pro	oject No.									
	473 President Street							1703	361301	1				
ocation	Dreath - AN(			Ele	evation a	nd Da	atum	10.0		000				
Drilling Co	Brooklyn, NY			Da	te Starte	d		13.2	7 NAV		Date F	Finished		
	AARCO Environmenta	l Services Corp.							/27/17				4/27/17	
Drilling Eq	uipment			Co	mpletion	on Depth		7/2////			Rock	Depth		
	Geoprobe 7822 DT								55 ft				NA	
lize and I	Type of Bit 2" direct push dual tub	e		Nu	Number of Samples Disturbed Undistur					disturbed NA	Core	NA		
Casing Dia	ameter (in)		Casing Depth (ft)	w	ater Leve	l (ft )		First	t			mpletion	24 HR.	
Casing Ha	4.25" Hollow Stem Aug	Weight (lbs)	25' Drop (in)		illing For	• •		$\overline{\Delta}$		10		NA	Ī	NA
Sampler		NA	NA		0			im Ke	elly					
-	1.75-inch-diameter, 5-	foot dual tube sampler Weight (lbs)	Drop (in)	Fie	eld Engin	eer			,					
ampler H	lammer NA	NA NA	NA			-	V		ca Zuli			. <u></u>		
30L					Depth	5			mple Da	ata PID			marks	
MATERIAL SYMBOL	Sa	mple Description			Scale	Number	Type	(in)	Penetr. resist BL/6in	Readi (ppm	ng	(Drilling Fluid Fluid Loss, Drilli	Depth of Canal Depth	asing, ice, etc.)
- 84.58	24" Concrete Slab				_ 0 _	2		-	<u> </u>	(pp)	')		-	
4. 4. 4 4. 4. P						1			NA			Collected SE	320D_0-2	VOCs
4.0.0						1						Only		
4. 10. 1 12. 12. 12. 13. 14. 12.					2 -		ᇤ							
	R1 (0-4") medium dense,	gray-brown, fine SAND,	, brick, coal ash			ž	2" DUAL TUBE	4"/60"		0.0				
	(dry) [FILL]				- 3 -		DUA	4"/		0.0				
						1	7"							
					- 4 -									
					- 5 -	-								
						1			NA					
					6 -	1								
					- <u> </u>		Ш							
						R2	2" DUAL TUBE	22"/60"						
					- 8 -	1 CC	DUA	22"						
						1	7"							
	R2 (0-22") medium dense coal ash (moist) [FILL]	, brown, fine SAND, cor	ncrete, drick, coal,		- 9 -	1				0.4				
				-						0.8				
				Ţ	- 10 -	-	-	$\left  \right $		1.2				
					E . :	1			NA					
					- 11 -	1								
	R3a (0-18") medium dens	e. grav. fine SAND coa	l (moist) [FII I 1		- 12 -	1	JBE							
					<b>'</b>	R3	2" DUAL TUBE	36"/60"		907		Petroleum-li	ke odor	
	R3b (18"-26") medium de [FILL]	nse, silty fine SAND, tra	ice clay (moist)		- 13 -	1	nd.	36		851				
	,				E :	1	2			749				
	R3c (26"-36") medium de	nse grav fine SAND s	ome silt trace clav	,	- 14 -	1				117		Staining & o	dors pres	ent
	(wet)				E	1				667 967				-
					- 15 -	+	-			907		15:15		
					Ē	1			NA			Collected SE	320_14-19	9
					- 16 -	1								
	R4a (0-10") medium dens	e, grav fine SAND som	e silt (wet)		- 17	1	JBE			856	;			
					- 17 -	R4	2" DUAL TUBE	42"/60"		112	1	40.00		
	D46 (40, 40%)				- 18 -		DUA	42"		109	5	13:00 Collected SE	320 17-19	9
	R4b (10-42") medium der	ise, gray, tine SAND, tra	ace siit (wet)		Ē	1	Ν.			320			·	
					- 19 -	1				471				
					1 ⁻	1	1	i		398		1		

Project		of Boring Project No.				/IW-2		Sheet 2 of
ocation	473 President Street	Elevation a		tum	170	361301		
ocation	Brooklyn, NY	Elevation a	nu Da		13.2	7 NAV	D88	
<b></b>						mple Da		
MATERIAL SYMBOL	Sample Description	Depth Scale 20 -	Number	Type	Recov. (in)	Penetr. resist BL/6in	PID Reading (ppm)	Control (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.)
	R5 (0-60") medium dense, brown fine SAND, trace medium sand	20						
	(moist)	- 21 -				NA	8.4 6.4	
		_ 22 -		DUAL TUBE	.0		3.1 0.2	
		- 23 -	R5	DUAL	60"/60"		2.4	
				2"			17.2 2.5	13:40
		- 24 -					5.6	Collected SB20_23-25
		_ 25 -	-				0.8	15:05
		- 26 -				NA		Collected SB20_20-30
	R6 (0-47") medium dense, brown, fine SAND, trace silt (moist)			щ				
		- 27 -	R6	DUAL TUBE	47"/60			
		- 28 -		2" DU/	47			
		- 29 -					295	
							3.9 0.8	
		- 30 -						14:00 Collected SB20_30-32
	R7 (0-52") medium dense, brown, fine SAND (wet)	- 31 -				NA	0.0	
		- 32 -		IUBE	.0		0.0	
		- 22	5	DUAL TUBE	52"/60"		0.0 0.0	
		- 33 -		2"[			0.0	
		- 34 -					0.0 0.0	
		35 -	-				0.0	
		- 36 -				NA		
	R8 (0-46") medium dense, brown, fine SAND, trace medium sand (wet)	E		щ			0.0	
		- 37 -	R8	2" DUAL TUBE	46"/60		0.0	
		- 38 -		2" DU	46		0.0 0.0	
		- 39 -					0.0	
		- 10					0.0 0.0	
	R9 (0-50") medium dense, brown, fine SAND, trace medium sand (wet)	- 40 - -				NA		
		- 41 -				NA	0.0	
		_ 42 -		TUBE	.0		0.0	
		- 43 -	Rg	2" DUAL TUBE	50"/60"		0.0 0.0	
		43 - - -		2"			0.0	
		- 44 -	-				0.0 0.0	

oject		Project No.						
	473 President Street			4	170	361301		
ocation	Brooklyn, NY	Elevation a	iu Da	ະເບກ		27 NAV	D88	
.	2.000,0,00		1			mple Da		
MATERIAL SYMBOL	Sample Description	Depth Scale	Number	Type	1	Penetr. resist BL/6in	PID Reading (ppm)	Control (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.)
	R10 (0-49") medium dense, brown fine SAND, trace medium sand (wet)	46 -				NA	0.0	
		47 -	R10	2" DUAL TUBE	49"/60"		0.0 0.0 0.0	
		- 48 -	-	2" DI	4		0.0	
		- 49 -					0.0 0.0	
		- 51 -				NA	0.0	
	R11a (0-50") medium dense, brown fine SAND, medium SAND,	- 52 -		DUAL TUBE	30"		0.0 0.0 0.0	
	trace silt (wet) R11b (50"-55") medium dense, brown, medium SAND, trace fine	- 53 -	R15	2" DUAL	55"/60"		0.0 0.0	
	sand (wet)	- 54 -					0.0 0.0	
····	E.O.B. at 55'	- 55 -	-				0.0	
	Monitoring well installed. See construction log for details.	- 56 -	-					
		- 57 -	-					
		- 58 -	-					
		- 59 -	-					
		- 60 - - 61 -	-					
		61 -						
		63 -	-					
		64 -						
		65 -	-					
		66 -						
		67 -						
		68 -						
		- 69 -	1					

## Appendix D Monitoring Well Construction Logs

LANGAN	WELL CONSTR <u>473 President Stre</u> M				
PROJECT		PROJECT	NO.		
473 President Street			170361301		
LOCATION		ELEVATI	ON AND DATUM		
Brooklyn, New York			13.17 ft NA	AVD88	
DRILLING AGENCY		DATE ST	ARTED	DATE FINISHED	
AARCO Environmental Serv	rices Corp.		3/7/2017	3/7/2017	
DRILLING EQUIPMENT		DRILLER			
Geoprobe 6610DT			Greg Frees	e	

INSPECTORS

Veronica Zuluaga

#### 3-3/4-inch diameter steel casing METHOD OF INSTALLATION

SIZE AND TYPE OF BIT

AARCO used a 6-inch diameter steel core barrel to remove the concrete slab cover. A 2-inch diameter steel macrocore sampler was used to recover soil samples, followed by advancement of 3-3/4-inch diameter steel casing fitted with an expendable point to support a borehole opening for installation of the PVC well. The casing was advanced to about 18 feet below grade surface (bgs) and the well was installed in the open annulus and the point was pushed out of the bottom of the casing The well was constructed of 10 feet of 2-inch diameter pre-pack well constructed of an outer layer of 65 mesh stainless steel screen, 20 x 40 silica sand over a 0.01-slot screen set from 8 to 18 feet bgs and 8 feet of solid PVC riser set from 0.2 feet bgs to 8 feet bgs. FilPro #2 sand was used to backfill the annulus around the well between 6 to 18 feet bgs and the depth of the pack was measured during backfilling to ensure correct depth placement. A bentonite grout slurry was backfilled between 2 to 6 feet bgs to seal the well annulus. Filpro #2 sand was backfilled between 1 to 2 feet bgs and the well was capped with a removable J-plug and finished within a bolt-down flush-mount manhole cover set in concrete.

#### METHOD OF WELL DEVELOPMENT

uispusai.								
TYPE OF CASING		DIAMETER		TYPE OF	BACKFILL	MATERIAL		
Sch 40 PVC		2-inch			FilPro	#2 Sand		
TYPE OF SCREEN		DIAMETER		TYPE OF	SEAL MAT			
Sch 40 PVC		2-inch			Cetco	Powdered	d Bentonite Grout	
BOREHOLE DIAMETE	R			TYPE OF	FILTER MA			
3-3/4-inch					FilPro	#2 Sand		
TOP OF CASING	ELEVATION (ft) ⁽³	B) DEP	TH (ft)		WELL DET	AILS	SUMMARY SOIL	DEPTH
	12.97	0.2					CLASSIFICATION ⁽¹⁾ , NOTES	(FT) ⁽²⁾
TOP OF SEAL		DEP	TH (ft)	Manhole C	over		Ground Surface	0.0
	10.97	2			*			0.23
TOP OF FILTER		DEP	TH (ft)	Solid		FilPro #1		1.0
	6.97	6		Riser -	▶	Sand fill		2.0
TOP OF SCREEN		DEP	TH (ft)					
	4.97	8				Bentonite Grout		
BOTTOM OF WELL	-	DEP	TH (ft)					
	-5.03	18				← I		
SCREEN LENGTH		LEN	GTH (ft)					
		10					Top of filter pack	6.0
SLOT SIZE								
	0.01-inch						Top of screen	8.0
GROUN	IDWATER ELI	EVATIONS						
ELEVATION	DATE	DEPTH TO WATER (ft)	3)					
2.41	3/22/2017		10.56					
ELEVATION	DATE	DEPTH TO WATER (ft)	3)	Screen -				
2.61	6/23/2017		10.36					
ELEVATION	DATE	DEPTH TO WATER (ft)	3)			FilPro #2	2	
						Sand	1	
ELEVATION	DATE	DEPTH TO WATER (ft)	3)			Pack		
ELEVATION	DATE	DEPTH TO WATER (ft)	3)					
								18.0
ELEVATION	DATE	DEPTH TO WATER (ft)	3)	1			E	ОВ
					<u>Forder of the second se</u>	<u></u>		
LANGAN Engi	neering, Enviro	onmental, Survey	ing, and	Lands	cape Arc	hitecture.	D.P.C.	<b>I</b>
		aza, 360 West 31						
<u> </u>				.,				



## WELL CONSTRUCTION SUMMARY 473 President Street (BCP Site C224220)

	MW-6D
PROJECT	PROJECT NO.
473 President Street	170361301
LOCATION	ELEVATION AND DATUM
Brooklyn, New York	13.09 ft NAVD88
DRILLING AGENCY	DATE STARTED DATE FINISHED
AARCO Environmental Services Corp.	4/28/2017 4/28/2017
DRILLING EQUIPMENT	DRILLER
Geoprobe 7822DT	Tim Kelly
SIZE AND TYPE OF BIT	INSPECTORS
3-1/4-inch steel dual tube	Veronica Zuluaga

#### METHOD OF INSTALLATION

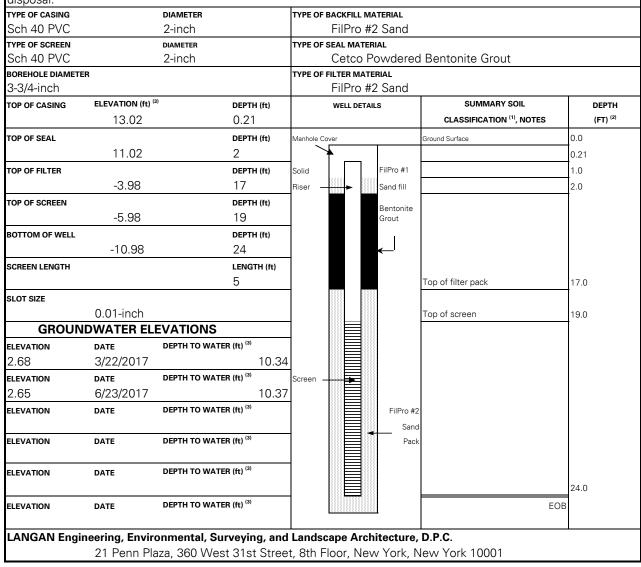
AARCO used a 9-inch steel core barrel to remove concrete slab. A 3.25-inch diameter steel macrocore sampler was used to recover soil samples follow by advancement of 4-1/4-inch diameter steel hollow steel augers fitted with an expendable point to support a borehole opening for installation of the PVC well. The augers were advanced to about 25 below grade surface (bgs) and the well was installed in the open annulus and the point was pushed out of the bottom of the augers. The well was constructed of 5 feet of 0.01-slot screen set from 20 to 25 feet bgs and 20 feet of solid PVC riser from 0.5 to 13 feet bgs. FilPro #2 sand was used to backfill the annulus around the well between 18 and 25 feet and the depth of the pack was measured during backfilling to ensure correct depth placement. Bentonite grout was backfilled between 2 and 18 ft bgs. FilPro #2 sand was backfilled between 1 and 2 feet bgs and the well was capped with a removable J-plug and finished with a bolt-down flush-mount manhole cover set in concrete.

#### METHOD OF WELL DEVELOPMENT

TYPE OF CASING		DIAMETER		TYPE OF	BACKFILI		FERIAL			
Sch 40 PVC		2-inch		FilPro #2 Sand						
TYPE OF SCREEN		DIAMETER		TYPE OF SEAL MATERIAL						
Sch 40 PVC		2-inch		Cetco Powdered Bentonite Grout						
BOREHOLE DIAMETE	R			TYPE OF						
4-1/4-inch				FilPro #2 Sand						
TOP OF CASING	ELEVATION (ft) ⁽³	DEPTH	l (ft)		WELL DI	ETAILS	3	SUMMARY SOIL		DEPTH
	12.79	0.3						CLASSIFICATION (1), NOT	res	(FT) ⁽²⁾
TOP OF SEAL		DEPTH	l (ft)	Manhole Co	over			Ground Surface		0.0
	10.79	2								0.30
TOP OF FILTER		DEPTH	l (ft)	Solid		]	FilPro #1			1.0
	-5.21	18		Riser -	►		Sand fill			2.0
TOP OF SCREEN		DEPTH	l (ft)		0.000.000	0.00000000	Bentonite			
	-7.21	20					Grout			
BOTTOM OF WELL		DEPTH	l (ft)							
	-12.21	25					←l			
SCREEN LENGTH		LENG	FH (ft)							
		5						Top of filter pack		18.0
SLOT SIZE										
	0.01-inch							Top of screen		20.0
GROUN	DWATER ELI	EVATIONS								
ELEVATION	DATE	DEPTH TO WATER (ft) (3)								
2.51	6/23/2017		10.28							
ELEVATION	DATE	DEPTH TO WATER (ft) (3)		Screen -						
ELEVATION	DATE	DEPTH TO WATER (ft) (3)					FilPro #2			
							Sand			
ELEVATION	DATE	DEPTH TO WATER (ft) (3)				•	Pack			
ELEVATION	DATE	DEPTH TO WATER (ft) ⁽³⁾								
										25.0
ELEVATION	DATE	DEPTH TO WATER (ft) (3)		1					EOB	
					<u></u>	1.101010101010				
LANGAN Engir	neering, Enviro	onmental, Surveyin	g, and	Landsc	ape Ar	chit	ecture,	D.P.C.		
	-	aza, 360 West 31st	-							
1	-			•						

LANGAN	WELL CONSTRUCTION SUMMARY <u>473 President Street (BCP Site C224220)</u> MW-07								
PROJECT			PROJECT NO.						
473 President Street			170361301						
LOCATION		ELEVATIO	ELEVATION AND DATUM						
Brooklyn, New York			13.23 ft NAV	D88					
DRILLING AGENCY		DATE ST	ARTED	DATE FINISHED					
AARCO Environmental Ser	vices Corp.		3/10/2017	3/10/2017					
DRILLING EQUIPMENT		DRILLER							
Geoprobe 6610DT			Greg Freese						

INSPECTORS


Veronica Zuluaga

size and түре ог віт 3-3/4-inch diameter steel casing

#### METHOD OF INSTALLATION

AARCO used a 6-inch diameter steel core barrel to remove the concrete slab cover. A 2-inch diameter steel macrocore sampler was used to recover soil samples, followed by advancement of 3-3/4–inch diameter steel casing fitted with an expendable point to support a borehole opening for installation of the PVC well. The casing was advanced to about 24 feet below grade surface (bgs) and the well was installed in the open annulus and the point was pushed out of the bottom of the casing The well was constructed of 5 feet of 2-inch diameter pre-pack well constructed of an outer layer of 65 mesh stainless steel screen, 20 x 40 silica sand over a 0.01-slot screen set from 19 to 24 feet bgs and 8 feet of solid PVC riser set from 0.2 feet bgs to 8 feet bgs. FilPro #2 sand was used to backfill the annulus around the well between 17 to 24 feet bgs and the depth of the pack was measured during backfilling to ensure correct depth placement. A bentonite grout slurry was backfilled between 2 to 17 feet bgs to seal the well annulus. Filpro #2 sand was backfilled between 1 to 2 feet bgs and the well was capped with a removable J-plug and finished within a bolt-down flush-mount manhole cover set in concrete.

#### METHOD OF WELL DEVELOPMENT



LANGAN	WELL CONSTRUCTION SUMMARY <u>473 President Street (BCP Site C224220)</u> MW-08							
PROJECT		PROJECT	NO.					
473 President Street			170361301					
LOCATION		ELEVATIO	N AND DATUM					
Brooklyn, New York			11.18 ft NAV	/D88				
DRILLING AGENCY		DATE ST	ARTED	DATE FINISHED				
AARCO Environmental Serv	ices Corp.		3/7/2017	3/7/2017				
DRILLING EQUIPMENT		DRILLER						
Geoprobe 6610DT			Grea Freese					

INSPECTORS

Veronica Zuluaga

size AND TYPE OF BIT 3-3/4-inch diameter steel casing

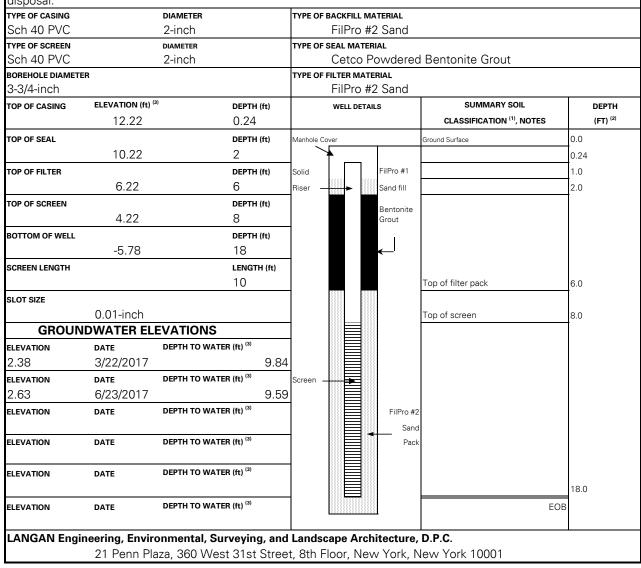
#### METHOD OF INSTALLATION

AARCO used a 6-inch diameter steel core barrel to remove the concrete slab cover. A 2-inch diameter steel macrocore sampler was used to recover soil samples, followed by advancement of 3-3/4--inch diameter steel casing fitted with an expendable point to support a borehole opening for installation of the PVC well. The casing was advanced to about 16 feet below grade surface (bgs) and the well was installed in the open annulus and the point was pushed out of the bottom of the casing The well was constructed of 10 feet of 2-inch diameter pre-pack well constructed of an outer layer of 65 mesh stainless steel screen, 20 x 40 silica sand over a 0.01-slot screen set from 6 to 16 feet bgs and about 6 feet of solid PVC riser set from 0.2 feet bgs to 6 feet bgs. FilPro #2 sand was used to backfill the annulus around the well between 4 to 16 feet bgs and the depth of the pack was measured during backfilling to ensure correct depth placement. A bentonite grout slurry was backfilled between 2 to 4 feet bgs to seal the well annulus. Filpro #2 sand was backfilled between 1 to 2 feet bgs and the well was capped with a removable J-plug and finished within a bolt-down flush-mount manhole cover set in concrete.

#### METHOD OF WELL DEVELOPMENT

disposal.									
TYPE OF CASING		DIAMETER	·	TYPE OF BACKFILL MATERIAL					
Sch 40 PVC		2-inch			FilPro	o #2	Sand		
TYPE OF SCREEN		DIAMETER	·	TYPE OF S					
Sch 40 PVC		2-inch		Cetco Powdered Bentonite Grout					
BOREHOLE DIAMETEI	R		·	TYPE OF I					
3-3/4-inch					FilPro	c #2	Sand	1	
TOP OF CASING	ELEVATION (ft) ^{(;}	ft) ⁽³⁾ DEPTH (ft)		WELL DETAILS			S	SUMMARY SOIL	DEP
	11.00	0.18						CLASSIFICATION ⁽¹⁾ , NOTES	(FT
TOP OF SEAL		DEPTH (ft)	)	Manhole Co	ver			Ground Surface	0.0
	9.00	2			•				0.18
TOP OF FILTER		DEPTH (ft)	)	Solid			FilPro #1		1.0
	7.00	4		Riser —	►		Sand fill		2.0
TOP OF SCREEN		DEPTH (ft)	)			0404040404	Bentonite		
	5.00	6					Grout		
BOTTOM OF WELL		DEPTH (ft)	)						
	-5.00	16					<b>←</b>		
SCREEN LENGTH		LENGTH (	ft)						
		10						Top of filter pack	4.0
SLOT SIZE									
	0.01-inch							Top of screen	6.0
GROUN	DWATER EL	EVATIONS							
ELEVATION	DATE	DEPTH TO WATER (ft) (3)				=			
2.16	3/22/2017	8	3.84						
ELEVATION	DATE	DEPTH TO WATER (ft) ⁽³⁾		Screen 🗕					
2.5	6/23/2017		3.50						
ELEVATION	DATE	DEPTH TO WATER (ft) (3)					FilPro #2		
							Sand		
ELEVATION	DATE	DEPTH TO WATER (ft) ⁽³⁾					Pack		
							. 200		
ELEVATION	DATE	DEPTH TO WATER (ft) (3)							
									16.0
ELEVATION	DATE	DEPTH TO WATER (ft) (3)							OB
LLEVATION	DATE								.00

	<b>FAN</b>	<u>4/3 Pres</u>		<u>et (BCP Site</u> W-09	<u>CZZ4ZZU)</u>		
PROJECT				PROJECT NO.			
473 President	t Street				361301		
LOCATION				ELEVATION AND			
Brooklyn, Nev	w York				12 ft NAVD8		
	onmental Serv	icos Corp		DATE STARTED	2017	DATE FINISHED	
		nces corp.		JRILLER	2017	3/7/2017	
Geoprobe 661					g Freese		
!				INSPECTORS	0		
3-3/4-inch dia: METHOD OF INSTAL	meter steel ca	ising		Vero	onica Zuluaga	a	
core sampler with an exper about 16 feet pushed out of constructed o to 16 feet bgs backfill the an backfilling to e seal the well a removable J-p	was used to re- ndable point to below grade s f the bottom o of an outer laye and about 6 f anulus around ensure correct annulus. Filpro blug and finish	ecover soil s o support a b surface (bgs) of the casing er of 65 mesil feet of solid i the well betw t depth place o #2 sand wa ed within a b pailer across	amples, follor orehole ope ) and the we The well we h stainless s PVC riser se ween 4 to 16 ement. A be as backfilled polt-down flu	owed by adv ning for insta II was install as constructo steel screen, it from 0.2 fe 6 feet bgs an intonite grou I between 1 f ush-mount m	ancement of allation of the ed in the ope ed of 10 feet 20 x 40 silica et bgs to 6 f ad the depth t slurry was l to 2 feet bgs nanhole cove	o cover. A 2-inch diamete 5-3/4inch diameter stee PVC well. The casing we en annulus and the woode of 2-inch diameter pre-para a sand over a 0.01-slot scre- eet bgs. FilPro #2 sand we of the pack was measure backfilled between 2 to 4 and the well was capped r set in concrete.	el casing fitter as advanced en plug was ack well reen set from vas used to d during feet bgs to I with a
	t. The well wa	as purged un	itii the water	r was clear.	Purge water	was placed in a 55-gallon	arum for
disposal.				TYPE OF BACKE			
TYPE OF CASING		DIAMETER 2-inch		TYPE OF BACKF FilP			
		diameter 2-inch diameter			ro #2 Sand		
TYPE OF CASING Sch 40 PVC		2-inch		FilP <b>type of seal n</b>	ro #2 Sand	Bentonite Grout	
type of casing Sch 40 PVC type of screen Sch 40 PVC borehole diamet	ER	2-inch Diameter		FilP Type of seal M Cete Type of filter	ro #2 Sand naterial co Powderec material	Bentonite Grout	
type of casing Sch 40 PVC type of screen Sch 40 PVC borehole diamet 3-3/4-inch		2-inch DIAMETER 2-inch		FilP TYPE OF SEAL N Cetu TYPE OF FILTER FilP	ro #2 Sand MATERIAL co Powderec MATERIAL ro #2 Sand		
type of casing Sch 40 PVC type of screen Sch 40 PVC borehole diamet 3-3/4-inch	ELEVATION (ft)	2-inch DIAMETER 2-inch	DEPTH (ft)	FilP TYPE OF SEAL N Cetu TYPE OF FILTER FilP	ro #2 Sand naterial co Powderec material	SUMMARY SOIL	DEPTH
TYPE OF CASING Sch 40 PVC TYPE OF SCREEN Sch 40 PVC BOREHOLE DIAMET 3-3/4-inch TOP OF CASING		2-inch DIAMETER 2-inch	0.21	FilP TYPE OF SEAL N Cetr TYPE OF FILTER FilP WELL	ro #2 Sand MATERIAL co Powderec MATERIAL ro #2 Sand	SUMMARY SOIL CLASSIFICATION ⁽¹⁾ , NOTES	(FT) ⁽²⁾
TYPE OF CASING Sch 40 PVC TYPE OF SCREEN Sch 40 PVC BOREHOLE DIAMET 3-3/4-inch TOP OF CASING	<b>ELEVATION (ft)</b> ^{(†}	2-inch DIAMETER 2-inch	0.21 DEPTH (ft)	FilP TYPE OF SEAL N Cetu TYPE OF FILTER FilP	ro #2 Sand MATERIAL co Powderec MATERIAL ro #2 Sand	SUMMARY SOIL	(FT) ⁽²⁾
TYPE OF CASING Sch 40 PVC TYPE OF SCREEN Sch 40 PVC BOREHOLE DIAMET 3-3/4-inch TOP OF CASING	ELEVATION (ft)	2-inch DIAMETER 2-inch	0.21 <b>depth (ft)</b> 2	FilP TYPE OF SEAL N Cetu TYPE OF FILTER FilP WELL	ro #2 Sand MATERIAL CO POWDEREC MATERIAL ro #2 Sand DETAILS	SUMMARY SOIL CLASSIFICATION ⁽¹⁾ , NOTES	(FT) ⁽²⁾ 0.0 0.21
TYPE OF CASING Sch 40 PVC TYPE OF SCREEN Sch 40 PVC BOREHOLE DIAMET 3-3/4-inch	<b>ELEVATION (ft)</b> ^(ft)	2-inch DIAMETER 2-inch	0.21 DEPTH (ft) 2 DEPTH (ft)	FiIP TYPE OF SEAL N Cetu TYPE OF FILTER FiIP WELL Manhole Cover Solid	ro #2 Sand MATERIAL CO POWDE rec MATERIAL ro #2 Sand DETAILS FilPro #1	SUMMARY SOIL CLASSIFICATION ⁽¹⁾ , NOTES	(FT) ⁽²⁾ 0.0 0.21 1.0
TYPE OF CASING Sch 40 PVC TYPE OF SCREEN Sch 40 PVC BOREHOLE DIAMET 3-3/4-inch TOP OF CASING TOP OF SEAL	<b>ELEVATION (ft)</b> ^{(†}	2-inch DIAMETER 2-inch	0.21 DEPTH (ft) 2 DEPTH (ft) 4	FilP TYPE OF SEAL N Cetu TYPE OF FILTER FilP WELL	ro #2 Sand MATERIAL CO POVVDE rec MATERIAL ro #2 Sand DETAILS FilPro #1 Sand fill	SUMMARY SOIL CLASSIFICATION ⁽¹⁾ , NOTES	(FT) ⁽²⁾ 0.0 0.21
TYPE OF CASING Sch 40 PVC TYPE OF SCREEN Sch 40 PVC BOREHOLE DIAMET 3-3/4-inch TOP OF CASING TOP OF SEAL	<b>ELEVATION (ft)</b> ^(ft)	2-inch DIAMETER 2-inch	0.21 DEPTH (ft) 2 DEPTH (ft)	FiIP TYPE OF SEAL N Cetu TYPE OF FILTER FiIP WELL	ro #2 Sand MATERIAL CO POWDE rec MATERIAL ro #2 Sand DETAILS FilPro #1	SUMMARY SOIL CLASSIFICATION ⁽¹⁾ , NOTES	(FT) ⁽²⁾ 0.0 0.21 1.0
TYPE OF CASING Sch 40 PVC TYPE OF SCREEN Sch 40 PVC BOREHOLE DIAMET 3-3/4-inch TOP OF CASING TOP OF SEAL TOP OF FILTER TOP OF SCREEN	ELEVATION (ft) ^(ft) 12.91 10.91 8.91	2-inch DIAMETER 2-inch	0.21 DEPTH (ft) 2 DEPTH (ft) 4 DEPTH (ft)	FiIP TYPE OF SEAL N Cetu TYPE OF FILTER FiIP WELL	ro #2 Sand MATERIAL CO POVVDE rec MATERIAL ro #2 Sand DETAILS FilPro #1 Sand fill Bentonite	SUMMARY SOIL CLASSIFICATION ⁽¹⁾ , NOTES	(FT) ⁽²⁾ 0.0 0.21 1.0
TYPE OF CASING Sch 40 PVC TYPE OF SCREEN Sch 40 PVC BOREHOLE DIAMET 3-3/4-inch TOP OF CASING	ELEVATION (ft) ^(ft) 12.91 10.91 8.91	2-inch DIAMETER 2-inch	0.21 DEPTH (ft) 2 DEPTH (ft) 4 DEPTH (ft) 6	FiIP TYPE OF SEAL N Cetu TYPE OF FILTER FiIP WELL	ro #2 Sand MATERIAL CO POVVDE rec MATERIAL ro #2 Sand DETAILS FilPro #1 Sand fill Bentonite	SUMMARY SOIL CLASSIFICATION ⁽¹⁾ , NOTES	(FT) ⁽²⁾ 0.0 0.21 1.0
TYPE OF CASING Sch 40 PVC TYPE OF SCREEN Sch 40 PVC BOREHOLE DIAMET 3-3/4-inch TOP OF CASING TOP OF SEAL TOP OF FILTER TOP OF SCREEN BOTTOM OF WELL	ELEVATION (ft) ⁶ 12.91 10.91 8.91 6.91	2-inch DIAMETER 2-inch	0.21 DEPTH (ft) 2 DEPTH (ft) 4 DEPTH (ft) 6 DEPTH (ft)	FiIP TYPE OF SEAL N Cetu TYPE OF FILTER FiIP WELL	ro #2 Sand MATERIAL CO POVVDE rec MATERIAL ro #2 Sand DETAILS FilPro #1 Sand fill Bentonite	SUMMARY SOIL CLASSIFICATION ⁽¹⁾ , NOTES	(FT) ⁽²⁾ 0.0 0.21 1.0
TYPE OF CASING Sch 40 PVC TYPE OF SCREEN Sch 40 PVC BOREHOLE DIAMET 3-3/4-inch TOP OF CASING TOP OF SEAL TOP OF FILTER TOP OF SCREEN BOTTOM OF WELL	ELEVATION (ft) ⁶ 12.91 10.91 8.91 6.91	2-inch DIAMETER 2-inch	0.21 DEPTH (ft) 2 DEPTH (ft) 4 DEPTH (ft) 6 DEPTH (ft) 16	FiIP TYPE OF SEAL N Cetu TYPE OF FILTER FiIP WELL	ro #2 Sand MATERIAL CO POVVDE rec MATERIAL ro #2 Sand DETAILS FilPro #1 Sand fill Bentonite	SUMMARY SOIL CLASSIFICATION ⁽¹⁾ , NOTES	(FT) ⁽²⁾ 0.0 0.21 1.0
TYPE OF CASING Sch 40 PVC TYPE OF SCREEN Sch 40 PVC BOREHOLE DIAMET 3-3/4-inch TOP OF CASING TOP OF SEAL TOP OF FILTER TOP OF SCREEN BOTTOM OF WELL SCREEN LENGTH	ELEVATION (ft) ^(ft) 12.91 10.91 8.91 6.91 -3.09	2-inch DIAMETER 2-inch	0.21 DEPTH (ft) 2 DEPTH (ft) 4 DEPTH (ft) 6 DEPTH (ft) 16 LENGTH (ft)	FiIP TYPE OF SEAL N Cetu TYPE OF FILTER FiIP WELL	ro #2 Sand MATERIAL CO POVVDE rec MATERIAL ro #2 Sand DETAILS FilPro #1 Sand fill Bentonite	SUMMARY SOIL CLASSIFICATION ⁽¹⁾ , NOTES Ground Surface	(FT) ⁽²⁾ 0.0 0.21 1.0 2.0
TYPE OF CASING Sch 40 PVC TYPE OF SCREEN Sch 40 PVC BOREHOLE DIAMET 3-3/4-inch TOP OF CASING TOP OF SEAL TOP OF FILTER TOP OF FILTER BOTTOM OF WELL SCREEN LENGTH SLOT SIZE	ELEVATION (ft) ^(ft) 12.91 10.91 8.91 6.91 -3.09 0.01-inch	2-inch DIAMETER 2-inch	0.21 DEPTH (ft) 2 DEPTH (ft) 4 DEPTH (ft) 6 DEPTH (ft) 16 LENGTH (ft)	FiIP TYPE OF SEAL N Cetu TYPE OF FILTER FiIP WELL	ro #2 Sand MATERIAL CO POVVDE rec MATERIAL ro #2 Sand DETAILS FilPro #1 Sand fill Bentonite	SUMMARY SOIL CLASSIFICATION ⁽¹⁾ , NOTES Ground Surface	(FT) ⁽²⁾ 0.0 0.21 1.0 2.0
TYPE OF CASING Sch 40 PVC TYPE OF SCREEN Sch 40 PVC 30REHOLE DIAMET 3-3/4-inch TOP OF CASING TOP OF SEAL TOP OF SEAL TOP OF FILTER TOP OF SCREEN SOTTOM OF WELL SCREEN LENGTH SLOT SIZE GROUN	ELEVATION (ft) ^(ft) 12.91 10.91 8.91 6.91 -3.09 0.01-inch IDWATER EL	2-inch DIAMETER 2-inch	0.21 DEPTH (ft) 2 DEPTH (ft) 4 DEPTH (ft) 16 LENGTH (ft) 10	FiIP TYPE OF SEAL N Cetu TYPE OF FILTER FiIP WELL	ro #2 Sand MATERIAL CO POVVDE rec MATERIAL ro #2 Sand DETAILS FilPro #1 Sand fill Bentonite	SUMMARY SOIL CLASSIFICATION ⁽¹⁾ , NOTES Ground Surface	(FT) ⁽²⁾ 0.0 0.21 1.0 2.0 4.0
TYPE OF CASING Sch 40 PVC TYPE OF SCREEN Sch 40 PVC 30REHOLE DIAMET 3-3/4-inch TOP OF CASING TOP OF SEAL TOP OF SEAL TOP OF FILTER TOP OF SCREEN SOTTOM OF WELL SCREEN LENGTH SLOT SIZE GROUN ELEVATION	ELEVATION (ft) ^(ft) 12.91 10.91 8.91 6.91 -3.09 0.01-inch IDWATER EL DATE	2-inch DIAMETER 2-inch	0.21 DEPTH (ft) 2 DEPTH (ft) 4 DEPTH (ft) 16 LENGTH (ft) 10 TER (ft) ⁽³⁾	FiIP TYPE OF SEAL N Cetu TYPE OF FILTER FiIP WELL Manhole Cover Solid Riser	ro #2 Sand MATERIAL CO POVVDE rec MATERIAL ro #2 Sand DETAILS FilPro #1 Sand fill Bentonite	SUMMARY SOIL CLASSIFICATION ⁽¹⁾ , NOTES Ground Surface	(FT) ⁽²⁾ 0.0 0.21 1.0 2.0 4.0
TYPE OF CASING Sch 40 PVC TYPE OF SCREEN Sch 40 PVC BOREHOLE DIAMET 3-3/4-inch TOP OF CASING TOP OF SEAL TOP OF SEAL TOP OF FILTER TOP OF SCREEN BOTTOM OF WELL SCREEN LENGTH SLOT SIZE <b>GROUN</b> ELEVATION -1.30	ELEVATION (ft) ⁽¹⁾ 12.91 10.91 8.91 6.91 -3.09 0.01-inch NDWATER EL JATE 3/22/2017	2-inch DIAMETER 2-inch	0.21 DEPTH (ft) 2 DEPTH (ft) 4 DEPTH (ft) 16 LENGTH (ft) 10 TER (ft) ⁽³⁾ 14.2 ²	FiIP TYPE OF SEAL N Cetu TYPE OF FILTER FiIP WELL Manhole Cover Solid Riser	ro #2 Sand MATERIAL CO POVVDE rec MATERIAL ro #2 Sand DETAILS FilPro #1 Sand fill Bentonite	SUMMARY SOIL CLASSIFICATION ⁽¹⁾ , NOTES Ground Surface	(FT) ⁽²⁾ 0.0 0.21 1.0 2.0 4.0
TYPE OF CASING Sch 40 PVC TYPE OF SCREEN Sch 40 PVC BOREHOLE DIAMET 3-3/4-inch TOP OF CASING TOP OF SEAL TOP OF SEAL TOP OF FILTER TOP OF SCREEN BOTTOM OF WELL SCREEN LENGTH SLOT SIZE GROUN ELEVATION ELEVATION	ELEVATION (ft) ⁽¹⁾ 12.91 10.91 8.91 6.91 -3.09 0.01-inch IDWATER EL JATE 3/22/2017 DATE	2-inch DIAMETER 2-inch	0.21 DEPTH (ft) 2 DEPTH (ft) 4 DEPTH (ft) 16 LENGTH (ft) 10 TER (ft) ⁽³⁾ 14.2 ²	FiIP TYPE OF SEAL N Cetu TYPE OF FILTER FiIP WELL Manhole Cover Solid Riser	ro #2 Sand MATERIAL CO POVVDE rec MATERIAL ro #2 Sand DETAILS FilPro #1 Sand fill Bentonite	SUMMARY SOIL CLASSIFICATION ⁽¹⁾ , NOTES Ground Surface	(FT) ⁽²⁾ 0.0 0.21 1.0 2.0 4.0
TYPE OF CASING Sch 40 PVC TYPE OF SCREEN Sch 40 PVC BOREHOLE DIAMET 3-3/4-inch TOP OF CASING TOP OF SEAL TOP OF FILTER TOP OF FILTER BOTTOM OF WELL SCREEN LENGTH SLOT SIZE <b>GROUN</b> ELEVATION -1.30 ELEVATION 2.66	ELEVATION (ft) ⁽¹⁾ 12.91 10.91 8.91 6.91 -3.09 0.01-inch IDWATER ELL DATE 3/22/2017 DATE 6/23/2017	2-inch DIAMETER 2-inch 31 31 31 31 31 31 31 31 31 31 31 31 31	0.21 DEPTH (ft) 2 DEPTH (ft) 4 DEPTH (ft) 16 LENGTH (ft) 10 TER (ft) ⁽³⁾ 14.2 ² TER (ft) ⁽³⁾	FiIP TYPE OF SEAL N Cetu TYPE OF FILTER FiIP WELL Manhole Cover Solid Riser	ro #2 Sand MATERIAL CO POWDE rec MATERIAL ro #2 Sand DETAILS FIIPro #1 Sand fill Bentonite Grout	SUMMARY SOIL CLASSIFICATION ⁽¹⁾ , NOTES Ground Surface	(FT) ⁽²⁾ 0.0 0.21 1.0 2.0 4.0
TYPE OF CASING Sch 40 PVC TYPE OF SCREEN Sch 40 PVC BOREHOLE DIAMET 3-3/4-inch TOP OF CASING TOP OF SEAL TOP OF FILTER TOP OF FILTER TOP OF SCREEN BOTTOM OF WELL SCREEN LENGTH SLOT SIZE <b>GROUN</b> ELEVATION -1.30 ELEVATION 2.66	ELEVATION (ft) ⁽¹⁾ 12.91 10.91 8.91 6.91 -3.09 0.01-inch IDWATER EL JATE 3/22/2017 DATE	2-inch DIAMETER 2-inch	0.21 DEPTH (ft) 2 DEPTH (ft) 4 DEPTH (ft) 16 LENGTH (ft) 10 TER (ft) ⁽³⁾ 14.2 ² TER (ft) ⁽³⁾	FiIP TYPE OF SEAL N Cetu TYPE OF FILTER FiIP WELL Manhole Cover Solid Riser	ro #2 Sand MATERIAL co Powdered MATERIAL ro #2 Sand DETAILS FIIPro #1 Sand fill Bentonite Grout FIIPro #2	SUMMARY SOIL CLASSIFICATION ⁽¹⁾ , NOTES Ground Surface	(FT) ⁽²⁾ 0.0 0.21 1.0 2.0 4.0
TYPE OF CASING Sch 40 PVC TYPE OF SCREEN Sch 40 PVC BOREHOLE DIAMET 3-3/4-inch TOP OF CASING TOP OF SEAL TOP OF FILTER TOP OF FILTER BOTTOM OF WELL SCREEN LENGTH SLOT SIZE GROUN ELEVATION -1.30 ELEVATION 2.66 ELEVATION	ELEVATION (ft) ⁽¹⁾ 12.91 10.91 8.91 6.91 -3.09 0.01-inch IDWATER ELL DATE 3/22/2017 DATE 6/23/2017	2-inch DIAMETER 2-inch 31 31 31 31 31 31 31 31 31 31 31 31 31	0.21 DEPTH (ft) 2 DEPTH (ft) 4 DEPTH (ft) 16 LENGTH (ft) 10 TER (ft) ⁽³⁾ 14.2 ⁻ TER (ft) ⁽³⁾ 10.25 TER (ft) ⁽³⁾	FiIP TYPE OF SEAL N Cetu TYPE OF FILTER FiIP WELL Manhole Cover Solid Riser	ro #2 Sand MATERIAL co Powderect MATERIAL ro #2 Sand DETAILS FilPro #1 Sand fill Bentonite Grout FilPro #2 Sance FilPro #2	SUMMARY SOIL CLASSIFICATION ⁽¹⁾ , NOTES Ground Surface	(FT) ⁽²⁾ 0.0 0.21 1.0 2.0 4.0
TYPE OF CASING Sch 40 PVC TYPE OF SCREEN Sch 40 PVC BOREHOLE DIAMET 3-3/4-inch TOP OF CASING TOP OF SEAL TOP OF FILTER TOP OF FILTER BOTTOM OF WELL SCREEN LENGTH SLOT SIZE GROUN ELEVATION -1.30 ELEVATION 2.66 ELEVATION	ELEVATION (ft) ⁽¹⁾ 12.91 10.91 8.91 6.91 -3.09 0.01-inch NDWATER ELI DATE 3/22/2017 DATE 6/23/2017 DATE	2-inch DIAMETER 2-inch 3) 3) EVATIONS DEPTH TO WAT DEPTH TO WAT	0.21 DEPTH (ft) 2 DEPTH (ft) 4 DEPTH (ft) 16 LENGTH (ft) 10 TER (ft) ⁽³⁾ 14.2 ⁻ TER (ft) ⁽³⁾ 10.25 TER (ft) ⁽³⁾	FiIP TYPE OF SEAL N Cetu TYPE OF FILTER FiIP WELL Manhole Cover Solid Riser	ro #2 Sand MATERIAL co Powdered MATERIAL ro #2 Sand DETAILS FIIPro #1 Sand fill Bentonite Grout FIIPro #2	SUMMARY SOIL CLASSIFICATION ⁽¹⁾ , NOTES Ground Surface	(FT) ⁽²⁾ 0.0 0.21 1.0 2.0 4.0
TYPE OF CASING Sch 40 PVC TYPE OF SCREEN Sch 40 PVC BOREHOLE DIAMET 3-3/4-inch TOP OF CASING TOP OF SEAL TOP OF SEAL TOP OF FILTER TOP OF SCREEN BOTTOM OF WELL SCREEN LENGTH SLOT SIZE	ELEVATION (ft) ⁽¹⁾ 12.91 10.91 8.91 6.91 -3.09 0.01-inch NDWATER ELI DATE 3/22/2017 DATE 6/23/2017 DATE	2-inch DIAMETER 2-inch 3) 3) EVATIONS DEPTH TO WAT DEPTH TO WAT	0.21 DEPTH (ft) 2 DEPTH (ft) 4 DEPTH (ft) 16 LENGTH (ft) 10 TER (ft) ⁽³⁾ 14.2 ² TER (ft) ⁽³⁾ 10.25 TER (ft) ⁽³⁾	FiIP TYPE OF SEAL N Cetu TYPE OF FILTER FiIP WELL Manhole Cover Solid Riser	ro #2 Sand MATERIAL co Powderect MATERIAL ro #2 Sand DETAILS FilPro #1 Sand fill Bentonite Grout FilPro #2 Sance FilPro #2	SUMMARY SOIL CLASSIFICATION ⁽¹⁾ , NOTES Ground Surface	(FT) ⁽²⁾ 0.0 0.21 1.0 2.0 4.0
TYPE OF CASING Sch 40 PVC TYPE OF SCREEN Sch 40 PVC BOREHOLE DIAMET 3-3/4-inch TOP OF CASING TOP OF SEAL TOP OF SEAL TOP OF FILTER TOP OF SCREEN BOTTOM OF WELL SCREEN LENGTH SLOT SIZE <b>GROUN</b> ELEVATION 2.66 ELEVATION ELEVATION ELEVATION	ELEVATION (ft) ⁽¹⁾ 12.91 10.91 8.91 6.91 -3.09 0.01-inch JDWATER ELL DATE 3/22/2017 DATE 6/23/2017 DATE 6/23/2017 DATE DATE	2-inch DIAMETER 2-inch 3) BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BINDED BIND	0.21 DEPTH (ft) 2 DEPTH (ft) 4 DEPTH (ft) 16 LENGTH (ft) 10 TER (ft) ⁽³⁾ 14.2 ² TER (ft) ⁽³⁾ 10.25 TER (ft) ⁽³⁾	FiIP TYPE OF SEAL N Cetu TYPE OF FILTER FiIP WELL Manhole Cover Solid Riser	ro #2 Sand MATERIAL co Powderect MATERIAL ro #2 Sand DETAILS FilPro #1 Sand fill Bentonite Grout FilPro #2 Sance FilPro #2	SUMMARY SOIL CLASSIFICATION ⁽¹⁾ , NOTES Ground Surface	(FT) ⁽²⁾ 0.0 0.21 1.0 2.0 4.0


21 Penn Plaza, 360 West 31st Street, 8th Floor, New York, New York 10001

	<b>AN</b>	<u>473 President Stre</u> N	<u>eet (BCP S</u> /IW-10	Site C22	<u>4220)</u>					
PROJECT			PROJECT N	NO.						
473 President	Street			170361301						
			ELEVATIO	N AND DATU	JM					
Brooklyn, Nev	v York			4.82 ft N	IAVD88					
DRILLING AGENCY			DATE STA			DATE FINISHED				
	onmental Serv	vices Corn	_	3/7/2017	,	3/7/2017				
		1003 001 p.	DRILLER	5///2017		5///2017				
Geoprobe 661				Greg Fre						
SIZE AND TYPE OF			INSPECTO		5636					
		aina			Zuluago					
3-3/4-inch diar		Sing		Veronica	i Zuluaya					
						cover. A 2-inch diameter				
					•	e well was installed in th	•			
						3 feet bgs. FilPro #2 sand	was used to			
backfill the an	nulus to surfa	ce grade. The well was	capped v	vith a rer	novable	J-plug.				
METHOD OF WELL D	DEVELOPMENT									
Langan surge	d a 1.75-inch b	ailer across the well sc	reen in 2-	to 3-foot	increme	entes for approximately ty	wo minutes p			
• •						placed in a 55-gallon drur				
TYPE OF CASING		DIAMETER	TYPE OF B	ACKFILL MA	TERIAL					
Sch 40 PVC		2-inch	_	FilPro #2						
TYPE OF SCREEN		DIAMETER								
Sch 40 PVC		2-inch		NA						
BOREHOLE DIAMETI		2 111611								
3-3/4-inch	ER		_	FilPro #2						
	ELEVATION (ft)	3)								
TOP OF CASING				WELL DETAIL	.S	SUMMARY SOIL	DEPTH			
	4.82	1.20				CLASSIFICATION ⁽¹⁾ , NOTES	(FT) ⁽²⁾			
TOP OF SEAL		DEPTH (ft)	_		_					
	NA	na								
TOP OF FILTER		DEPTH (ft)		目		Top of Riser/Top of Screen	1.2			
	4.82	0								
			-			Ground Surface	0.0			
	4.02	DEDTU (()								
TOP OF SCREEN		DEPTH (ft)					0.0			
TOP OF SCREEN	4.82	<b>DEPTH (ft)</b> 1.19					0.0			
							0.0			
		1.19					0.0			
TOP OF SCREEN BOTTOM OF WELL SCREEN LENGTH	4.82	1.19 <b>Depth (ft)</b>					0.0			
BOTTOM OF WELL	4.82	1.19 DEPTH (ft) 8.8 LENGTH (ft)	-							
BOTTOM OF WELL SCREEN LENGTH	4.82	1.19 <b>DEPTH (ft)</b> 8.8	_			Top of filter pack	4.0			
BOTTOM OF WELL SCREEN LENGTH	4.82 -3.98	1.19 DEPTH (ft) 8.8 LENGTH (ft)	-			Top of filter pack	4.0			
BOTTOM OF WELL SCREEN LENGTH SLOT SIZE	4.82 -3.98 0.01-inch	1.19 <b>depth (ft)</b> 8.8 <b>length (ft)</b> 10								
BOTTOM OF WELL SCREEN LENGTH SLOT SIZE	4.82 -3.98	1.19 DEPTH (ft) 8.8 LENGTH (ft) 10 EVATIONS				Top of filter pack	4.0			
BOTTOM OF WELL SCREEN LENGTH SLOT SIZE GROUN ELEVATION	4.82 -3.98 0.01-inch	1.19 DEPTH (ft) 8.8 LENGTH (ft) 10 EVATIONS DEPTH TO WATER (ft) ⁽³⁾				Top of filter pack	4.0			
BOTTOM OF WELL SCREEN LENGTH SLOT SIZE GROUN ELEVATION	4.82 -3.98 0.01-inch <b>JDWATER EL</b>	1.19 DEPTH (ft) 8.8 LENGTH (ft) 10 EVATIONS DEPTH TO WATER (ft) ⁽³⁾				Top of filter pack	4.0			
BOTTOM OF WELL SCREEN LENGTH SLOT SIZE GROUN	4.82 -3.98 0.01-inch IDWATER EL DATE	1.19 DEPTH (ft) 8.8 LENGTH (ft) 10 EVATIONS DEPTH TO WATER (ft) ⁽³⁾	91 PVC Screen			Top of filter pack	4.0			
BOTTOM OF WELL SCREEN LENGTH SLOT SIZE GROUN ELEVATION 3.12 ELEVATION	4.82 -3.98 0.01-inch <b>IDWATER EL</b> 3/22/2017	1.19 DEPTH (ft) 8.8 LENGTH (ft) 10 EVATIONS DEPTH TO WATER (ft) ⁽³⁾ 2.5			FilPro #2	Top of filter pack	4.0			
BOTTOM OF WELL SCREEN LENGTH SLOT SIZE GROUN ELEVATION 3.12 ELEVATION	4.82 -3.98 0.01-inch JDWATER EL DATE 3/22/2017 DATE	1.19 DEPTH (ft) 8.8 LENGTH (ft) 10 EVATIONS DEPTH TO WATER (ft) ⁽³⁾ 2.5 DEPTH TO WATER (ft) ⁽³⁾			FilPro #2 Sand	Top of filter pack	4.0			
BOTTOM OF WELL SCREEN LENGTH SLOT SIZE GROUN ELEVATION 3.12	4.82 -3.98 0.01-inch JDWATER EL DATE 3/22/2017 DATE	1.19 DEPTH (ft) 8.8 LENGTH (ft) 10 EVATIONS DEPTH TO WATER (ft) ⁽³⁾ 2.5 DEPTH TO WATER (ft) ⁽³⁾				Top of filter pack	4.0			
BOTTOM OF WELL SCREEN LENGTH SLOT SIZE GROUN ELEVATION 3.12 ELEVATION ELEVATION	4.82 -3.98 0.01-inch <b>NDWATER EL</b> 3/22/2017 DATE DATE DATE	1.19           DEPTH (ft)           8.8           LENGTH (ft)           10   EVATIONS DEPTH TO WATER (ft) ⁽³⁾ 2.0 DEPTH TO WATER (ft) ⁽³⁾ DEPTH TO WATER (ft) ⁽³⁾			Sand	Top of filter pack	4.0			

LANGAN WELL CONSTRUCTION SUMMARY <u>473 President Street (BCP Site C224220)</u> MW-12								
PROJECT		PROJECT NO.						
473 President Street		170361301	1					
LOCATION		ELEVATION AND DATUM						
Brooklyn, New York		12.46 ft NA	12.46 ft NAVD88					
DRILLING AGENCY		DATE STARTED	DATE FINISHED					
AARCO Environmental Servi	ces Corp.	3/7/2017	3/7/2017					
DRILLING EQUIPMENT		DRILLER						
Geoprobe 6610DT		Greg Frees	Se					
SIZE AND TYPE OF BIT		INSPECTORS						
3-3/4-inch diameter steel cas	sing	Veronica Z	uluaga					
METHOD OF INSTALLATION								
AARCO used a 6-inch diame	ter steel core bar	rel to remove the concret	e slab cover. A 2-inch diameter steel macro-					
		,	ent of 3-3/4inch diameter steel casing fitted of the PVC well. The casing was advanced to					

core sampler was used to recover soil samples, followed by advancement of 3-3/4–inch diameter steel casing fitted with an expendable point to support a borehole opening for installation of the PVC well. The casing was advanced to about 16 feet below grade surface (bgs) and the well was installed in the open annulus and the point was pushed out of the bottom of the casing. The well was constructed of 10 feet of 2-inch diameter pre-pack well constructed of an outer layer of 65 mesh stainless steel screen, 20 x 40 silica sand over a 0.01-slot screen set from 8 to 18 feet bgs and about 8 feet of solid PVC riser set from 0.24 feet bgs to 8 feet bgs. FilPro #2 sand was used to backfill the annulus around the well between 4 to 16 feet bgs and the depth of the pack was measured during backfilling to ensure correct depth placement. A bentonite grout slurry was backfilled between 2 to 6 feet bgs to seal the well annulus. Filpro #2 sand was backfilled between 1 to 2 feet bgs and the well was capped with a removable J-plug and finished within a bolt-down flush-mount manhole cover set in concrete.

#### METHOD OF WELL DEVELOPMENT





## WELL CONSTRUCTION SUMMARY 473 President Street (BCP Site C224220)

MW-12D

PROJECT	PROJECT NO.					
473 President Street	170361301	170361301				
LOCATION	ELEVATION AND DATUM	ELEVATION AND DATUM				
Brooklyn, New York	12.43 ft NAVE	12.43 ft NAVD88				
DRILLING AGENCY	DATE STARTED	DATE FINISHED				
AARCO Environmental Services Corp.	4/29/2017	4/29/2017				
DRILLING EQUIPMENT	DRILLER					
Geoprobe 6610DT	Greg Freese	Greg Freese				
SIZE AND TYPE OF BIT	INSPECTORS					
3-3/4-inch diameter steel casing	Veronica Zulu	aga				

#### METHOD OF INSTALLATION

AARCO used a 6-inch diameter steel core barrel to remove the concrete slab cover. A 2-inch diameter steel dual tube sampler was used to recover soil samples, followed by advancement of 3-3/4--inch diameter steel casing fitted with an expendable point to support a borehole opening for installation of the PVC well. The casing was advanced to about 25 feet below grade surface (bgs) and the well was installed in the open annulus and the point was pushed out of the bottom of the casing. The well was constructed of 5 foot-long 0.01-slot screen set from 20 to 25 feet bgs and about 20 feet of solid PVC riser from 0.31 to 20 feet bgs. FilPro #2 sand was used to backfill the annulus around the well between 18 to 25 feet bgs and the depth of the pack was measured during backfilling to ensure correct depth placement. A bentonite grout slurry was backfilled between 2 to 18 feet bgs to seal the well annulus. Filpro #2 sand was backfilled between 1 to 2 feet bgs and the well was capped with a removable J-plug and finished within a boltdown flush-mount manhole cover set in concrete.

#### METHOD OF WELL DEVELOPMENT

alepeean										
TYPE OF CASING		DIAMETER		TYPE OF BACKFILL MATERIAL						
Sch 40 PVC		2-inch			FilPro	#2	Sand			
TYPE OF SCREEN		DIAMETER		TYPE OF	SEAL MAT	reri.	AL			
Sch 40 PVC		2-inch		Cetco Powdered Bentonite Grout						
BOREHOLE DIAMETE	R			TYPE OF	FILTER MA	<b>\TEF</b>	RIAL			
3-3/4-inch					FilPro	#2	Sand			
TOP OF CASING	ELEVATION (ft) ⁽³⁾ DEPTH (ft)		WELL DETAILS				SUMMARY SOIL		DEPTH	
	12.12	(	).31					CLASSIFICATION ⁽¹⁾ , NOTES		(FT) ⁽²⁾
TOP OF SEAL		C	EPTH (ft)	Manhole C	over			Ground Surface	0.0	
	10.12	2	2		*				0.31	
TOP OF FILTER		C	EPTH (ft)	Solid			FilPro #1		1.0	
	-5.88		18	Riser -			Sand fill		2.0	
TOP OF SCREEN		C	DEPTH (ft)	1			Bentonite			
	-7.88	4	20				Grout			
BOTTOM OF WELL		C	EPTH (ft)				1			
	-12.88		25				← ^I			
SCREEN LENGTH		L	ENGTH (ft)							
		Ę	5					Top of filter pack	18.0	
SLOT SIZE				1						
	0.01-inch							Top of screen	20.0	
GROUN	DWATER ELI	EVATIONS								
ELEVATION	DATE	DEPTH TO WATER (	ft) ⁽³⁾							
2.64	6/23/2017		9.48							
ELEVATION	DATE	DEPTH TO WATER (	ft) ⁽³⁾	Screen -						
ELEVATION	DATE	DEPTH TO WATER (	ft) ⁽³⁾				FilPro #2 Sand			
ELEVATION	DATE	DEPTH TO WATER (	ft) ⁽³⁾			+	Pack			
ELEVATION	DATE	DEPTH TO WATER (	ft) ⁽³⁾	-					25.0	
ELEVATION	DATE	DEPTH TO WATER (	ft) ⁽³⁾					EO	-	
LANGAN Engir										
	21 Penn Pla	iza, 360 West 3	31st Stree	<u>t, 8</u> th F	loor, N	ew	<u>York, N</u>	lew York 10001		



#### WELL CONSTRUCTION SUMMARY 473 President Street (BCP Site C224220) MW/ 15D

MW-15D							
PROJECT	PROJECT NO.						
473 President Street	170361301						
LOCATION	ELEVATION AND DATUM						
Brooklyn, New York	13.21 ft NAVD88						
DRILLING AGENCY	DATE STARTED DATE FINISHED						
AARCO Environmental Services Corp.	4/28/2017 4/28/2017						
DRILLING EQUIPMENT	DRILLER						
Geoprobe 7822DT	Tim Kelly						
SIZE AND TYPE OF BIT	INSPECTORS						
3-1/4-inch steel dual tube	Veronica Zuluaga						

#### METHOD OF INSTALLATION

AARCO used a 9-inch steel core barrel to remove concrete slab. A 3.25-inch diameter steel macrocore sampler was used to recover soil samples follow by advancement of 4-1/4-inch diameter steel hollow steel augers fitted with an expendable point to support a borehole opening for installation of the PVC well. The augers were advanced to about 25 below grade surface (bgs) and the well was installed in the open annulus and the point was pushed out of the bottom of the augers. The well was constructed of 5 feet of 0.01-slot screen set from 20 to 25 feet bgs and 20 feet of solid PVC riser from 0.5 to 13 feet bgs. FilPro #2 sand was used to backfill the annulus around the well between 18 and 25 feet and the depth of the pack was measured during backfilling to ensure correct depth placement. Bentonite grout was backfilled between 2 and 18 ft bgs. FilPro #2 sand was backfilled between 1 and 2 feet bgs and the well was capped with a removable J-plug and finished with a bolt-down flush-mount manhole cover set in concrete.

#### METHOD OF WELL DEVELOPMENT

TYPE OF CASING		DIAMETER		TYPE OF	BACKFILL	МАТ	ERIAL			
Sch 40 PVC		2-inch		FilPro #2 Sand						
TYPE OF SCREEN		DIAMETER		TYPE OF SEAL MATERIAL						
Sch 40 PVC		2-inch		Cetco Powdered Bentonite Grout						
BOREHOLE DIAMETE	R			TYPE OF	FILTER MA	ATER	IAL			
4-1/4-inch				FilPro #2 Sand						
TOP OF CASING	ELEVATION (ft) ⁽³⁾ DEPTH (ft)		WELL DETAILS				SUMMARY SOIL	DEPTH		
	12.77	0.4	.4					CLASSIFICATION ⁽¹⁾ , NOTES	(FT) ⁽²⁾	
TOP OF SEAL		DEP	TH (ft)	Manhole Co	ver			Ground Surface	0.0	
	10.77	2			•				0.44	
TOP OF FILTER		DEP	TH (ft)	Solid		F	FilPro #1		1.0	
	-5.23	18		Riser —		ę	Sand fill		2.0	
TOP OF SCREEN		DEP	TH (ft)	1			Bentonite			
	-7.23	20					Grout			
BOTTOM OF WELL		DEP	TH (ft)	1						
	-12.23	25					_I			
SCREEN LENGTH		LEN	GTH (ft)	1						
		5						Top of filter pack	18.0	
SLOT SIZE				1						
	0.01-inch							Top of screen	20.0	
GROUN	DWATER ELE	VATIONS		1						
ELEVATION	DATE	DEPTH TO WATER (ft)	3)	1						
2.62	6/23/2017		10.15							
ELEVATION	DATE	DEPTH TO WATER (ft)	3)	Screen –	×					
ELEVATION	DATE	DEPTH TO WATER (ft) ^{(;}	3)				FilPro #2			
ELEVATION	DATE	DEPTH TO WATER (ft) ^{(;}	8)				Sand Pack			
ELEVATION	DATE	DEPTH TO WATER (ft) ^{(;}	3)						25.0	
ELEVATION	DATE	DEPTH TO WATER (ft) ^{(;}	8)					E	ЮВ	
LANGAN Engir	-	n <b>mental, Surveyi</b> za, 360 West 31s	-							



#### WELL CONSTRUCTION SUMMARY <u>473 President Street (BCP Site C224220)</u> MW/ 20S

MW-20S							
PROJECT	PROJECT NO.						
473 President Street	170361301						
LOCATION	ELEVATION AND DATUM						
Brooklyn, New York	13.27 ft NAVD88						
DRILLING AGENCY	DATE STARTED DATE FINISHED						
AARCO Environmental Services Corp.	4/27/2017 4/27/2017						
DRILLING EQUIPMENT	DRILLER						
Geoprobe 7822DT	Tim Kelly						
SIZE AND TYPE OF BIT	INSPECTORS						
3-1/4-inch steel macrocore	Veronica Zuluaga						

#### METHOD OF INSTALLATION

AARCO used a 9-inch steel core barrel to remove concrete slab. A 3.25-inch diameter steel dual-tube sampler was used to recover soil samples follow by advancement of 4-1/4-inch diameter steel hollow steel augers fitted with an expendable point to support a borehole opening for installation of the PVC well. The augers were advanced to about 18 below grade surface (bgs) and the well was installed in the open annulus and the point was pushed out of the bottom of the augers. The well was constructed of 10-feet of 0.01-slot screen set from 8 to 18 feet bgs and about 8 feet of solid PVC riser from 0.29 to 18 feet bgs. FilPro #2 sand was used to backfill the annulus around the well between 6 and 18 feet and the depth of the pack was measured during backfilling to ensure correct depth placement. Bentonite grout was backfilled between 2 and 6 ft bgs. FilPro #2 sand was backfilled between 1 and 2 feet bgs and the well was capped with a removable J-plug and finished with a bolt-down flush-mount manhole cover set in concrete.

#### METHOD OF WELL DEVELOPMENT

TYPE OF CASING	DIAMETER		TYPE OF BACKFILL MATERIAL							
Sch 40 PVC		2-inch		FilPro #2 Sand						
TYPE OF SCREEN		DIAMETER		TYPE OF	SEAL MA	TERI	AL			
Sch 40 PVC 2-inch				Cetco	<u>Po</u>	wdered	Bentonite Grout			
BOREHOLE DIAMETE	R			TYPE OF	FILTER M	ATEF	RIAL			
4-1/4-inch					FilPro	) #2	Sand			
TOP OF CASING	ELEVATION (ft) ^{(;}	B) DEP'	TH (ft)		WELL DE	ETAILS	6	SUMMARY SOIL		DEPTH
	12.98	0.2	9					CLASSIFICATION ⁽¹⁾ , NOTES		(FT) ⁽²⁾
TOP OF SEAL		DEP'	TH (ft)	Manhole Co	over			Ground Surface	0.0	
	10.98	2							0.2	3
TOP OF FILTER		DEP'	TH (ft)	Solid		1	FilPro #1		1.0	1
	6.98	6		Riser —	-		Sand fill		2.0	1
TOP OF SCREEN		DEP'	TH (ft)	1			Bentonite			
	4.98	8					Grout			
BOTTOM OF WELL		DEP"	TH (ft)	1			i			
	-5.02	18					$\leftarrow$			
SCREEN LENGTH		LEN	GTH (ft)	1						
		10						Top of filter pack	6.0	1
SLOT SIZE				1						
	0.01-inch							Top of screen	8.0	1
GROUN	DWATER EL	EVATIONS		1						
ELEVATION	DATE	DEPTH TO WATER (ft)	3)	1						
2.72	6/23/2017		2.6							
ELEVATION	DATE	DEPTH TO WATER (ft) ⁽³	3)	Screen -						
ELEVATION	DATE	DEPTH TO WATER (ft) ⁽³	3)				FilPro #2			
							Sand			
ELEVATION	DATE	DEPTH TO WATER (ft) ⁽³	3)	1			Pack			
ELEVATION	DATE	DEPTH TO WATER (ft) ⁽³	3)							
									18.	0
ELEVATION	DATE	DEPTH TO WATER (ft) ⁽³	3)						EOB	
LANGAN Engir	-	onmental, Surveyi	-							
	21 Penn Pla	aza, 360 West 31s	st Street	:, 8th F	loor, N	ew	York, N	ew York 10001		



#### WELL CONSTRUCTION SUMMARY 473 President Street (BCP Site C224220) MW 20D

MW-20D				
PROJECT	PROJECT NO.			
473 President Street	170361301			
LOCATION	ELEVATION AND DATUM			
Brooklyn, New York	13.27 ft NAVD88			
DRILLING AGENCY	DATE STARTED DATE FINISHED			
AARCO Environmental Services Corp.	4/27/2017 4/27/2017			
DRILLING EQUIPMENT	DRILLER			
Geoprobe 7822DT	Tim Kelly			
SIZE AND TYPE OF BIT	INSPECTORS			
3-1/4-inch steel dual tube	Veronica Zuluaga			

#### METHOD OF INSTALLATION

AARCO used a 9-inch steel core barrel to remove concrete slab. A 3.25-inch diameter steel dual-tube sampler was used to recover soil samples follow by advancement of 4-1/4-inch diameter steel hollow steel augers fitted with an expendable point to support a borehole opening for installation of the PVC well. The augers were advanced to about 30 below grade surface (bgs) and the well was installed in the open annulus and the point was pushed out of the bottom of the augers. The well was constructed of 10-feet of 0.01-slot screen set from 20 to 30 feet bgs and about 20 feet of solid PVC riser from 0.3 to 20 feet bgs. FilPro #2 sand was used to backfill the annulus around the well between 18 and 30 feet and the depth of the pack was measured during backfilling to ensure correct depth placement. Bentonite grout was backfilled between 2 and 18 ft bgs. FilPro #2 sand was backfilled between 1 and 2 feet bgs and the well was capped with a removable J-plug and finished with a bolt-down flush-mount manhole cover set in concrete.

#### METHOD OF WELL DEVELOPMENT

TYPE OF CASING	DIAMETER		TYPE OF BACKFILL MATERIAL				
Sch 40 PVC		2-inch	FilPro #2 Sand				
TYPE OF SCREEN		DIAMETER	TYPE OF SEAL MATERIAL				
Sch 40 PVC		2-inch	Cetco Powdere	d Bentonite Grout			
BOREHOLE DIAMETE	R		TYPE OF FILTER MATERIAL				
4-1/4-inch			FilPro #2 Sand				
TOP OF CASING	ELEVATION (ft) ⁽³	DEPTH (ft)	WELL DETAILS	SUMMARY SOIL	DEPTH		
	12.97	0.30		CLASSIFICATION ⁽¹⁾ , NOTES	(FT) ⁽²⁾		
TOP OF SEAL		DEPTH (ft)	Manhole Cover	Ground Surface	0.0		
	10.97	2			0.23		
TOP OF FILTER		DEPTH (ft)	Solid FilPro #1		1.0		
	-5.03	18	Riser 🚽 🕨 Sand fill		2.0		
TOP OF SCREEN		DEPTH (ft)	Bentonite				
	-7.03	20	Grout				
BOTTOM OF WELL		DEPTH (ft)					
	-17.03	30					
SCREEN LENGTH		LENGTH (ft)					
		10		Top of filter pack	18.0		
SLOT SIZE							
	0.01-inch			Top of screen	20.0		
GROUN	DWATER ELE	VATIONS					
ELEVATION	DATE	DEPTH TO WATER (ft) ⁽³⁾					
ELEVATION	DATE	DEPTH TO WATER (ft) ⁽³⁾	Screen				
ELEVATION	DATE	DEPTH TO WATER (ft) ⁽³⁾	FilPro #				
ELEVATION	DATE	DEPTH TO WATER (ft) ⁽³⁾	Pad	sk			
ELEVATION	DATE	DEPTH TO WATER (ft) ⁽³⁾			30.0		
ELEVATION	DATE	DEPTH TO WATER (ft) ⁽³⁾		EO	В		
LANGAN Engir	-		<b>d Landscape Architecture</b> , et, 8th Floor, New York, I		1		

# Appendix E Groundwater Sampling Logs

## **GROUND WATER SAMPLE FIELD INFORMATION FORM**

Site:	473 President Street	Well#/Location:	MW-06	Job No.	170361301
Date:	3/16/2017	Weather:	34 F Clear	Sampling Personnel:	Veronica Zuluaga

Purging Information

Well Information				
Sample ID	MW06_031617			
Well Depth (ft)	18.51			
Screened Interval (ft)	8-18			
Casing Elevation (NAVD88)	12.97			
Casing Diameter (in)	2			
Depth to Water (ft)	11.05			
Water Elevation (msl)	NA			
Casing Volume (gal)	1.32			
PID/FID Reading (ppm)	2.4			

Purging Method	Low Flow					
Purging Rate (gpm)	0.06					
Start Purge Time	13:55					
End Purge Time	14:59					
Volume Purged (gal)	4					

Sampling Information					
Sampling Method	Low-flow				
Start Sampling Time	15:35				
End Sampling Time	15:50				
Depth Before Sampling (ft)	11.95				
Number Bottles Collected	10				

	Parameters									
Sample Time	Temp (∘C)	рН	ORP (mV)	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Depth to Water (ft)	Purged Volume (gallons)		
13:55	19.31	7.18	-131.00	0.927	206.00	2.20	11.95	0.5		
14:00	19.46	7.24	-142.00	0.916	38.50	2.11	11.64	1.00		
14:05	19.44	7.25	-146.00	0.912	37.00	2.09	11.63	1.45		
14:10	19.52	7.25	-148.00	0.914	36.90	2.10	11.39	1.60		
14:15	19.49	7.26	-151.00	0.912	25.80	2.14	11.16	1.75		
14:22	19.27	7.25	-150.00	0.906	28.70	2.11	11.11	1.80		
14:28	19.39	7.26	-151.00	0.910	32.50	2.11	11.10	1.95		
14:33	19.32	7.26	-151.00	0.912	28.70	2.07	11.11	2.00		
14:38	19.42	7.27	-152.00	0.913	31.10	2.06	11.10	2.00		
14:49	19.96	7.26	-141.00	0.924	28.30	2.16	12.18	3.00		
14:59	19.65	7.28	-149.00	0.915	4.50	2.05	11.95	4.00		

Stablility

Notes/Remarks

PH - ± 0.1 unit

Specific Conductance - ± 3%

Temperature - ± 3%

Dissolved Oxygen - ±10% above 0.5 mg/L

Turbidity - ± 10% above 5 NTU

ORP/Eh - ±10 millivolts

Maximum flow rate - <0.5 L/m or 0.13 gpm Maximum drawdown - <0.33 feet

Remember: Battery Connections - **RED** is **POSITIVE** and **BLACK** is **NEGATIVE** 

Langan Engineering, Environmental, Surveying and Landscape Architecture, D.P.C.

## **GROUND WATER SAMPLE FIELD INFORMATION FORM**

Site:	473 President Street	Well#/Location:	MW-06D	Job No.	170361301
Date:	3/16/2017	Weather:	65 F, Partly Cloudy	Sampling Personnel:	Taylor Morgan

Purging Information

Well Information					
Sample ID	MW06D_050617				
Well Depth (ft)	25				
Screened Interval (ft)	20-25				
Casing Elevation (NAVD88)	12.79				
Casing Diameter (in)	2				
Depth to Water (ft)	9.98				
Water Elevation (msl)	NA				
Casing Volume (gal)	2.64				
PID/FID Reading (ppm)	4.7				

Furging mormation						
Purging Method	Low Flow					
Purging Rate (gpm)	0.07					
Start Purge Time	14:20					
End Purge Time	15:20					
Volume Purged (gal)	3.65					

Sampling Information						
Sampling Method	Low-flow					
Start Sampling Time	15:25					
End Sampling Time	15:35					
Depth Before Sampling (ft)	10.06					
Number Bottles Collected	5					

Sample Time	Parameters							
	Temp (∘C)	рН	ORP (mV)	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Depth to Water (ft)	Purged Volume (gallons)
14:20	17.04	7.51	23	0.409	387	2.81	10.02	0.0
14:25	16.89	7.32	5	0.404	800	1.74	9.98	0.1
14:30	16.44	7.08	-21	0.423	616	1.22	10.05	0.5
14:35	16.55	7.05	-27	0.444	357	1.12	10.05	0.65
14:40	16.77	7.11	-23	0.448	282	0.95	10.10	0.75
14:45	16.51	7.07	-34	0.456	86.9	0.93	10.03	1.0
14:50	16.59	7.06	-38	0.462	56.4	1.00	10.02	1.2
14:55	16.62	7.04	-41	0.476	29.2	0.90	10.04	1.75
15:00	16.65	7.04	-43	0.488	20.8	0.78	10.05	2.0
15:05	16.55	7.02	-43	0.489	18.0	0.85	10.04	2.4
15:10	16.59	7.03	-44	0.497	14.8	0.80	10.08	2.75
15:15	16.55	7.01	-44	0.499	11.7	0.77	10.09	3.25
15:20	16.48	7.01	-44	0.506	14.7	0.77	10.06	3.65

Stablility

PH - ± 0.1 unit

Specific Conductance - ± 3%

Temperature - ± 3%

Dissolved Oxygen - ±10% above 0.5 mg/L

Turbidity - ± 10% above 5 NTU

ORP/Eh - ±10 millivolts

Maximum flow rate - <0.5 L/m or 0.13 gpm Maximum drawdown - <0.33 feet Notes/Remarks

Remember: Battery Connections -  $\ensuremath{\mathsf{RED}}$  is  $\ensuremath{\mathsf{POSITIVE}}$  and  $\ensuremath{\mathsf{BLACK}}$  is  $\ensuremath{\mathsf{NEGATIVE}}$ 

Langan Engineering, Environmental, Surveying and Landscape Architecture, D.P.C.

Site:	473 President Street	Well#/Location:	MW-07	Job No.	170361301
Date:	3/22/2017	Weather:	38 F Clear	Sampling Personnel:	Veronica Zuluaga

Well Information					
Sample ID	MW07_032217				
Well Depth (ft)	23.14				
Screened Interval (ft)	19-24				
Casing Elevation (NAVD88)	13.02				
Casing Diameter (in)	2				
Depth to Water (ft)	10.72				
Water Elevation (msl)	NA				
Casing Volume (gal)	2.16				
PID/FID Reading (ppm)	548				

Purging Information	
Purging Method	Low Flow
Purging Rate (gpm)	0.135
Start Purge Time	13:55
End Purge Time	15:35
Volume Purged (gal)	11

Low Flow
13:15
13:30
14.85
10

			Parameters					
Sample Time	Temp (∘C)	рН	ORP (mV)	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Depth to Water (ft)	Purged Volume (gallons)
11:51	19.75	6.80	-252.00	0.812	62.20	1.20	14.29	5.0
11:56	19.73	6.79	-209.00	0.812	55.60	1.35	14.78	5.4
12:01	19.69	6.78	-237.00	0.820	70.80	1.26	13.35	5.5
12:06	19.73	6.76	-181.00	0.810	76.00	1.80	15.40	6.5
12:11	19.64	6.78	-192.00	0.810	60.20	1.66	15.70	7.0
12:16	19.56	6.79	-214.00	0.818	63.60	1.44	15.30	7.5
12:21	19.72	6.81	-236.00	0.808	42.50	1.41	15.77	8.0
12:22	19.56	6.80	-238.00	0.815	59.40	1.44	15.80	8.5
12:27	19.65	6.79	-247.00	0.801	63.90	1.44	15.62	9.0
12:33	19.60	6.78	-250.00	0.811	43.80	1.54	16.02	9.2
12:40	19.61	6.77	-254.00	0.805	43.20	1.43	15.78	10.0
12:48	19.61	6.77	-254	0.81	43.20	1.4	15.8	10.0
12:56	19.61	6.78	-256	0.81	32.50	1.48	15.51	10.7
13:02	19.6	6.77	-254	0.81	10.75	1.40	14.91	10.9
13:11	19.77	6.75	-264	0.81	13.2	1.39	14.85	11.0
Notes/Remarks								
Stablility								
PH - ± 0.1 unit								
ecific Conductance - ± 3%			11:00					
emperature - ± 3%	mperature - ± 3%							
)issolved Oxygen - ±10% abov	ve 0.5 mg/L							
urbidity - ± 10% above 5 NTU								
DRP/Eh - ±10 millivolts								
laximum flow rate - <0.5 L/m c	or 0.13 gpm							
/laximum drawdown - <0.33 fee	et							

Remember: Battery Connections - **RED** is **POSITIVE** and **BLACK** is **NEGATIVE** 

Site:	473 President Street	Well#/Location:	MW-08	Job No.	170361301
Date:	3/16/2017	Weather:	34 F Clear	Sampling Personnel:	Veronica Zuluaga

Well Information					
Sample ID	MW08_031617				
Well Depth (ft)	16.3				
Screened Interval (ft)	6-16				
Casing Elevation (NAVD88)	11.00				
Casing Diameter (in)	2				
Depth to Water (ft)	9.21				
Water Elevation (msl)	NA				
Casing Volume (gal)	1.24				
PID/FID Reading (ppm)	1.6				

Purging Information					
Purging Method	Low Flow				
Purging Rate (gpm)	0.05				
Start Purge Time	12:08				
End Purge Time	12:30				
Volume Purged (gal)	2.8				

low flow
12:00
12:55
10.04
20

	Parameters							
Sample Time	Temp (∘C)	рН	ORP (mV)	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Depth to Water (ft)	Purged Volume (gallons)
11:01	16.50	7.98	94.00	1.020	380.00	2.25	11.04	0.50
11:06	16.79	8.21	10.00	0.986	511.00	2.24	10.85	0.75
11:11	17.32	7.65	-103.00	0.910	420.00	2.16	10.89	1.00
11:16	17.14	7.44	271.00	0.860	222.00	2.23	10.64	1.25
11:21	17.25	7.20	-117.00	0.804	136.00	2.20	10.09	1.50
11:26	16.92	7.20	-110.00	0.756	62.10	2.29	10.04	1.75
11:31	17.05	7.15	-112.00	0.745	42.30	2.26	9.93	1.85
11:36	16.95	7.13	-110.00	0.733	37.80	2.85	9.79	1.95
11:41	16.79	7.12	-108.00	0.719	26.90	2.28	9.76	2.05
11:46	16.67	7.09	-103.00	0.712	23.70	2.35	9.88	2.15
11:51	17.30	7.07	-99.00	0.774	22.50	2.51	9.90	2.30
11:58	17.28	7.07	-97	0.78	21.5	2.5	NA	2.5
12:03	17.32	7.07	-100	0.76	20.5	2.37	10.04	2.8
			Notes/F	lemarks				
Stablility PH - ± 0.1 unit			GWDUP01_031	1617 collected				

Specific Conductance - ± 3%

Temperature - ± 3%

Dissolved Oxygen - ±10% above 0.5 mg/L

Turbidity - ± 10% above 5 NTU

ORP/Eh - ±10 millivolts

Maximum flow rate - <0.5 L/m or 0.13 gpm

Maximum drawdown - <0.33 feet

Remember: Battery Connections - **RED** is **POSITIVE** and **BLACK** is **NEGATIVE** 

Date: 3/16/2017 Weather: 34 F Clear Sampling Personnel:	Veronica Zuluaga

Well Information					
Sample ID	MW09_032217				
Well Depth (ft)	16.22				
Screened Interval (ft)	6-16				
Casing Elevation (NAVD88)	12.91				
Casing Diameter (in)	2				
Depth to Water (ft)	10.34				
Water Elevation (msl)	NA				
Casing Volume (gal)	1.02				
PID/FID Reading (ppm)	0.7				

Purging Information					
Purging Method	Low Flow				
Purging Rate (gpm)	NA				
Start Purge Time	12:08				
End Purge Time	12:30				
	2.8				

#### Sampling Information

Sampling Method	1.75-inch bailer
Start Sampling Time	15:45
End Sampling Time	17:45
Depth Before Sampling (ft)	14.21
Number Bottles Collected	10

	Parameters							
Sample Time	Temp (∘C)	рН	ORP (mV)	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Depth to Water (ft)	Purged Volume (gallons)
9:30	16.70	8.74	-16.00	0.376	693	3.20	16.00	0.20

Due to poor recharge, well was purged dry and sampled on 3/22 using at 1.75-inch poly bailer

 Notes/Remarks

 Stability

 PH - ± 0.1 unit

 Specific Conductance - ± 3%

 Temperature - ± 3%

 Dissolved Oxygen - ±10% above 0.5 mg/L

 Turbidity - ± 10% above 5 NTU

 ORP/Eh - ±10 millivolts

 Maximum flow rate - <0.5 L/m or 0.13 gpm</td>

 Maximum drawdown - <0.33 feet</td>

Remember: Battery Connections - RED is POSITIVE and BLACK is NEGATIVE

Site:	473 President Street	Well#/Location:	MW	/-10 <b>Job No</b> .	170361301
Date:	3/22/2017	Weather:	38 F Clear	Sampling Personnel:	Veronica Zuluaga

Well Information			
Sample ID	MW10_032217		
Well Depth (ft)	16.3		
Screened Interval (ft)	0-8		
Casing Elevation (NAVD88)	6.03		
Casing Diameter (in)	1		
Depth to Water (ft)	2.4		
Water Elevation (msl)	NA		
Casing Volume (gal)	1.15		
PID/FID Reading (ppm)	0		

Purging Information					
Purging Method	Low Flow				
Purging Rate (gpm)	0.06				
Start Purge Time	13:00				
End Purge Time	14:05				
Volume Purged (gal)	4.15				

Sampling Information	
Sampling Method	Low-flow
Start Sampling Time	14:10
End Sampling Time	14:30
Depth Before Sampling (ft)	2.43
Number Bottles Collected	10

	Parameters							
Sample Time	Temp (∘C)	рН	ORP (mV)	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Depth to Water (ft)	Purged Volun (gallons)
13:00	14.71	6.59	75.00	1.06	112.00	0.54	2.40	0.
*13:05	14.63	7.20	15.00	1.060	0.20	0.00	2.40	0.
13:24	14.28	7.70	33.00	1.050	0.00	10.74	2.40	1.
13:29	14.47	7.72	15.00	1.400	0.00	10.71	2.40	1.
13:35	14.50	7.78	1.00	1.400	0.00	9.69	2.42	2.
13:40	14.49	7.82	-14.00	1.390	0.00	9.18	2.42	2.
13:45	14.46	7.84	-22.00	1.390	0.00	8.72	2.41	2.
13:50	14.45	7.85	-28.00	1.350	0.00	8.27	2.41	3.
13:55	14.44	7.86	-34.00	1.380	0.00	7.75	2.41	3.
14:00	14.41	7.89	0.00	1.370	0.00	7.64	2.43	4.
14:05	14.40	7.90	-43.00	1.370	0.00	7.10	2.43	4.
			Notes/Re	emarks				
Stablility		* 1		pumping, cleaned	d sensors on Ho	riba U-52, begai	n pumping at 1	3:24
± 0.1 unit				1 1 3, 1 1		,	, , , , , , , , , , , , , , , , , , , ,	
cific Conductance - ± 3%								
perature - ± 3%								
olved Oxygen - ±10% above	e 0.5 mg/L							
idity - ± 10% above 5 NTU	,							
Eh - ±10 millivolts								
mum flow rate - <0.5 L/m or	0 12 anm							
	o.io ypiii							

Maximum drawdown - <0.33 feet

Site:	473 President Street	Well#/Location:	MW-12	Job No.	170361301
Date:	3/16/2017	Weather:	34 F Clear	Sampling Personnel:	Veronica Zuluaga

Well Information				
Sample ID	MW12_031617			
Well Depth (ft)	17.65			
Screened Interval (ft)	8-18			
Casing Elevation (NAVD88)	12.22			
Casing Diameter (in)	2			
Depth to Water (ft)	10.22			
Water Elevation (msl)	NA			
Casing Volume (gal)	1.34			
PID/FID Reading (ppm)	0.7			

Purging Information					
Purging Method	Low Flow				
Purging Rate (gpm)	0.09				
Start Purge Time	13:30				
End Purge Time	18:43				
Volume Purged (gal)	4.5				

#### Sampling Information

Sampling Method	Low Flow
Start Sampling Time	18:50
End Sampling Time	19:00
Depth Before Sampling (ft)	10.15
Number Bottles Collected	10

				Paramete				
Sample Time	Temp (∘C)	рН	ORP (mV)	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Depth to Water (ft)	Purged Volume (gallons)
17:54	18.32	6.52	105.00	0.977	740.00	3.58	11.29	0.7
18:01	19.02	6.90	34.00	0.955	158.00	2.45	10.93	1.6
18:06	19.04	6.85	19.00	0.959	73.00	2.36	10.80	2.1
18:11	19.14	6.83	17.00	0.934	32.30	2.42	10.53	2.5
18:17	19.15	6.81	19.00	0.934	19.90	2.48	10.53	3.0
18:21	19.21	6.80	19.00	0.924	14.40	2.74	10.57	3.8
18:26	19.25	6.80	21.00	0.936	10.50	2.74	10.57	3.5
18:31	19.28	6.79	18.00	0.935	9.30	2.54	10.53	3.8
18:37	19.25	6.74	18.00	0.930	7.60	2.52	10.53	4.5
18:43	19.18	6.79	18.00	0.928	7.40	2.53	10.15	4.5
			Notes/R	lemarks	•			
Stablility								
- H - ± 0.1 unit								
pecific Conductance - ± 3%								
emperature - ± 3%								
issolved Oxygen - ±10% abov	ve 0.5 mg/L							
urbidity - ± 10% above 5 NTU								
RP/Eh - ±10 millivolts								
laximum flow rate - <0.5 L/m o	or 0.13 gpm							
laximum drawdown - <0.33 fe								

Remember: Battery Connections - **RED** is **POSITIVE** and **BLACK** is **NEGATIVE** 

Site:	473 President Street	Well#/Location:	MW-12D	Job No.	170361301
Date:	3/16/2017	Weather:	65 F, Partly Cloudy	Sampling Personnel:	Taylor Morgan

Purging Information						
Purging Method	Low Flow					
Purging Rate (gpm)	0.09					
Start Purge Time	9:35					
End Purge Time	10:40					
Volume Purged (gal)	6					

Sampling Information						
Sampling Method	Low-flow					
Start Sampling Time	10:45					
End Sampling Time	10:55					
Depth Before Sampling (ft)	9.37					
Number Bottles Collected	11					

	Parameters									
Sample Time	Temp (∘C)	рН	ORP (mV)	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Depth to Water (ft)	Purged Volume (gallons)		
9:40	17.02	6.87	43	0.619	278	1.60	9.38	0.5		
9:45	17.02	6.96	-11	0.605	100	1.17	9.42	1		
9:50	17.02	6.95	-37	0.579	35.9	1.08	9.37	1.50		
9:55	17.06	6.92	-53	0.569	18.9	1.01	9.36	2		
10:00	17.12	6.91	-67	0.546	14.9	0.94	9.25	2.75		
10:05	17.21	6.90	-77	0.565	13.5	1.00	9.34	3		
10:10	17.26	6.91	-84	0.557	15.7	0.90	9.33	3.5		
10:15	17.26	6.89	-89	0.555	12.2	0.86	9.30	3.75		
10:20	17.28	6.88	-88	0.556	10.8	0.84	9.35	4.25		
10:25	17.27	6.88	-91	0.554	10.5	0.82	9.31	4.75		
10:30	17.24	6.87	-92	0.554	8.7	0.80	9.32	5		
10:35	17.25	6.86	-90	0.556	8.3	0.83	9.36	5.5		
10:40	17.20	6.85	-89	0.552	7.1	0.78	9.37	6		

Stablility

Notes/Remarks

PH - ± 0.1 unit

Specific Conductance - ± 3%

Temperature - ± 3%

Dissolved Oxygen - ±10% above 0.5 mg/L

Turbidity - ± 10% above 5 NTU

ORP/Eh - ±10 millivolts

Maximum flow rate - <0.5 L/m or 0.13 gpm Maximum drawdown - <0.33 feet

Remember: Battery Connections - **RED** is **POSITIVE** and **BLACK** is **NEGATIVE** 

Site:	473 President Street	Well#/Location:	MW-15D	Job No.	170361301
Date:	3/16/2017	Weather:	65 F, Partly Cloudy	Sampling Personnel:	Taylor Morgan

Purging Information						
Purging Method	Low Flow					
Purging Rate (gpm)	0.09					
Start Purge Time	15:40					
End Purge Time	16:45					
Volume Purged (gal)	6					

Sampling Information						
Sampling Method	Low-flow					
Start Sampling Time	16:50					
End Sampling Time	17:00					
Depth Before Sampling (ft)	9.98					
Number Bottles Collected	5					

	Parameters							
Sample Time	Temp (∘C)	рН	ORP (mV)	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Depth to Water (ft)	Purged Volume (gallons)
15:45	18.30	7.29	-13	0.871	220	3.54	10.00	0.5
15:50	18.22	7.23	-74	0.883	58.1	1.48	10.10	1.4
15:55	18.39	7.23	-87	0.886	54.2	1.31	9.98	1.65
16:00	18.46	7.27	-105	0.886	44.7	1.14	9.90	2.1
16:05	18.58	7.28	-111	0.883	37.1	1.08	9.81	2.25
16:10	18.62	7.28	-111	0.884	43.8	1.06	9.88	2
16:15	18.68	7.20	-114	0.883	47.9	1.55	10.00	2.6
16:20	18.56	7.27	-119	0.885	32.0	1.06	10.12	3.25
16:25	18.46	7.22	-120	0.889	24.0	0.99	10.06	3.75
16:30	18.38	7.18	-121	0.883	19.6	0.95	10.07	4.5
16:35	18.31	7.17	-123	0.877	25.0	0.91	9.95	5.1
16:40	18.37	7.15	-123	0.884	21.0	0.91	10.00	5.7
16:45	18.52	7.16	-129	0.880	26.4	0.89	9.98	6

 Notes/Remarks

 Stability

 PH - ± 0.1 unit

 Specific Conductance - ± 3%

 Temperature - ± 3%

 Dissolved Oxygen - ±10% above 0.5 mg/L

 Turbidity - ± 10% above 5 MTU

 ORP/Eh - ±10 millivolts

 Maximum flow rate - <0.5 L/m or 0.13 gpm</td>

 Maximum drawdown - <0.33 feet</td>

Remember: Battery Connections - RED is POSITIVE and BLACK is NEGATIVE

Site:	473 President Street	Well#/Location:	MW-18	Job No.	170361301
Date:	3/22/2017	Weather:	38 F Clear	Sampling Personnel:	Veronica Zuluaga

Well Information				
Sample ID	MW18_032217			
Well Depth (ft)	17.65			
Screened Interval (ft)	8-18			
Casing Elevation (NAVD88)	12.98			
Casing Diameter (in)	2			
Depth to Water (ft)	10.67			
Water Elevation (msl)	NA			
Casing Volume (gal)	1.22			
PID/FID Reading (ppm)	201			

Purging Information					
Purging Method	Low Flow				
Purging Rate (gpm)	0.05				
Start Purge Time	15:04				
End Purge Time	18:09				
Volume Purged (gal)	3.44				

Sampling Information	
Sampling Method	Low Flow
Start Sampling Time	18:30
End Sampling Time	19:20
Depth Before Sampling (ft)	12.25
Number Bottles Collected	10

	Parameters							
Sample Time	Temp (∘C)	рН	ORP (mV)	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Depth to Water (ft)	Purged Volume (gallons)
15:04	19.44	6.57	-116.00	1.89	803.00	2.45	13.20	0.50
15:12	19.96	6.56	-125.00	1.91	573.00	2.23	13.72	0.75
15:19	20.09	6.56	-129.00	1.95	499.00	2.18	14.08	1.10
15:25	20.27	6.59	-134.00	1.97	455.00	2.18	14.20	1.25
15:29	20.22	6.58	-137.00	1.96	456.00	2.33	14.52	14.52
15:36	20.45	6.55	-137.00	1.93	486.00	2.26	15.30	2.00
15:43	20.34	6.53	-135.00	1.85	*NA	NA	NA	NA
17:41	19.46	6.63	-105.00	1.67	690.00	3.92	12.27	2.60
17:50	19.49	6.62	-105.00	1.67	532.00	3.69	12.44	2.75
18:04	19.62	6.60	-103.00	1.67	411.00	2.98	12.43	2.80
18:09	19.82	6.60	-99.000	1.69	312.00	2.90	12.25	3.44
I			Notes/Re	emarks				
Stablility				· · · · · · · · · · · · · · · · · · ·				
PH - ± 0.1 unit Specific Conductance - ± 3% Temperature - ± 3% Dissolved Oxygen - ±10% above Turbidity - ± 10% above 5 NTU ORP/Eh - ±10 millivolts		•	* Battery died,	stopped pumping	and started at	17:41		
Maximum flow rate - <0.5 L/m or								
Maximum drawdown - <0.33 fee	t							

Remember: Battery Connections - RED is POSITIVE and BLACK is NEGATIVE

Site:	473 President Street	Well#/Location:	MW-20S	Job No.	170361301
Date:	5/6/2017	Weather:	65 F, Partly Cloudy	Sampling Personnel:	Taylor Morgan

ation
MW20S_050617
16.25
8-18
12.97
2
9.72
NA
1.14
630

Purging Information					
Purging Method	Low Flow				
Purging Rate (gpm)	0.04				
Start Purge Time	11:25				
End Purge Time	12:25				
Volume Purged (gal)	2.25				

Sampling Information	
Sampling Method	Low-flow
Start Sampling Time	12:30
End Sampling Time	12:40
Depth Before Sampling (ft)	9.95
Number Bottles Collected	5

				Paramete	ers			
Sample Time	Temp (∘C)	рН	ORP (mV)	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Depth to Water (ft)	Purged Volume (gallons)
11:25	17.37	7.13	-101	0.798	800	2.57	10.45	0.25
11:30	17.46	7.12	-94	0.823	800	1.62	10.00	0.5
11:35	17.81	7.11	-100	0.843	777	1.40	9.99	0.75
11:40	18.02	7.12	-107	0.864	746	1.09	10.03	1
11:45	18.09	7.13	-112	0.912	541	1.06	9.89	1.15
11:50	18.16	7.11	-109	0.932	318	1.02	9.94	1.25
11:55	18.28	7.10	-106	0.942	122	1.29	10.02	1.5
12:00	18.30	7.10	-102	0.932	77.8	1.18	9.98	1.65
12:05	18.34	7.10	-99	0.920	55.8	1.26	10.00	1.75
12:10	18.36	7.11	-96	0.916	46.5	1.21	9.85	1.85
12:15	18.42	7.11	-94	0.915	44.6	1.25	9.87	2
12:20	18.35	7.10	-95	0.916	33.9	1.22	9.95	2.1
12:25	18.40	7.10	-94	0.912	28.3	1.34	9.95	2.25

Stablility

Notes/Remarks

PH - ± 0.1 unit

Specific Conductance - ± 3%

Temperature - ± 3%

Dissolved Oxygen - ±10% above 0.5 mg/L

Turbidity - ± 10% above 5 NTU

ORP/Eh - ±10 millivolts

Maximum flow rate - <0.5 L/m or 0.13 gpm Maximum drawdown - <0.33 feet

Remember: Battery Connections - **RED** is **POSITIVE** and **BLACK** is **NEGATIVE** 

Site:	473 President Street	Well#/Location:	MW-20D	Job No.	170361301
Date:	3/16/2017	Weather:	65 F, Partly Cloudy	Sampling Personnel:	Taylor Morgan

Well Information					
MW20D_050617					
24.95					
20-25					
12.98					
2					
9.98					
NA					
2.61					
440					

Purging Information					
Purging Method	Low Flow				
Purging Rate (gpm)	0.07				
Start Purge Time	12:50				
End Purge Time	13:55				
Volume Purged (gal)	4.4				

Sampling Information					
Sampling Method	Low-flow				
Start Sampling Time	13:57				
End Sampling Time	14:05				
Depth Before Sampling (ft)	10.07				
Number Bottles Collected	5				

	Parameters								
Sample Time	Temp (∘C)	рН	ORP (mV)	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Depth to Water (ft)	Purged Volume (gallons)	
12:55	17.74	7.18	-72	0.864	467.00	0.94	10.05	0.75	
13:00	17.87	7.18	-80	0.876	248.00	0.75	10.06	1.00	
13:05	17.99	7.17	-84	0.877	82.90	0.72	10.00	1.25	
13:10	18.15	7.17	-85	0.876	77.50	0.76	10.00	1.45	
13:15	18.17	7.17	-86	0.877	36.40	0.76	10.04	1.60	
13:20	18.18	7.17	-89	0.877	16.60	0.72	10.08	2.00	
13:25	18.05	7.17	-92	0.876	14.60	1.00	10.09	2.45	
13:30	18.06	7.16	-93	0.876	14.00	0.75	10.07	2.60	
13:35	18.00	7.16	-95	0.877	11.60	0.70	10.06	3.10	
13:40	18.01	7.16	-96	0.876	19.10	0.68	10.09	3.40	
13:45	18.06	7.15	-97	0.877	14.20	0.68	10.05	3.75	
13:50	18.06	7.15	-98	0.877	9.30	0.66	10.18	4.15	
13:55	18.06	7.18	-100	0.877	11.10	0.77	10.07	4.40	

Stablility

Notes/Remarks

PH - ± 0.1 unit

Specific Conductance - ± 3%

Temperature - ± 3%

Dissolved Oxygen - ±10% above 0.5 mg/L

Turbidity - ± 10% above 5 NTU

ORP/Eh - ±10 millivolts

Maximum flow rate - <0.5 L/m or 0.13 gpm Maximum drawdown - <0.33 feet

Remember: Battery Connections - **RED** is **POSITIVE** and **BLACK** is **NEGATIVE** 

# Appendix F Soil Vapor Construction and Sample Logs

AMBIENT AIR SAMPLING LOG SHEET Sample Number: AA01					
<b>PROJECT</b> : 473 President Street	<b>PROJECT NO.:</b> 170361301				
<mark>Lосатіол</mark> : Brooklyn, NY	SURFACE ELEVATION AND DATUM: NA				
INSPECTOR: Veronica Zuluaga	SAMPLE DATE STARTED: 3/8/2017	<b>DATE FINISHED</b> : 3/8/2017			
<b>sampler:</b> Kyle Twombly	<b>TYPE OF SAMPLING DEVICE</b> : 6-Liter Summa Canister				
POTENTIAL SAMPLE INTERFERENCES: NA	<b>WEATHER CONDITIONS:</b> Temperature: 49-61 ° F Wind: 5-10 mph NW Barometer: 29.95 Precipitation: 0				

Sample AA01, a 6L Summa Canister fitted with a 2-hour flow control valve, was placed outside about 3 feet above sidewalk grade. The flow controller was zeroed and the valve was opened to initiate the 2-hour sample collection. The sample and flow controller were checked periodically during sampling to ensure proper operation. Cannister vacuum readings were collected every 30 minutes.

SAMPLE	DETAILS	SAMPLE LOCATION SKETCH
PID BEFORE SAMPLE (PPM):	0.0	See Figure 5.
SAMPLE START DATE/TIME:	3/8/2017 12:13	
SAMPLE STOP DATE/TIME:	3/8/2017 14:13	
TOTAL SAMPLE TIME (MIN):	120	
FLOW RATE (L/MIN):	0.05	
VOLUME OF SAMPLE (LITERS):	6	
PID AFTER SAMPLE (PPM):	0.0	
CAN SERIAL NUMBER:	15529	
REGULATOR SERIAL NUMBER:	4240	
CAN START VACUUM PRESS. (" HG):	-29.31	
CAN STOP VACUUM PRESS. (" HG):	-8.68	
Notes [.]	-	

Notes:

Sample Number: SV-01

PROJECT:	PROJECT NO.:				
473 President Street	170361301				
LOCATION:	SURFACE ELEVATION AND DATUM:	SURFACE ELEVATION AND DATUM:			
Brooklyn, NY	NA	NA			
<b>DRILLING FIRM OR LANGAN INSTALLER:</b> AARCO Environmental Services Corp.	INSTALLATION DATE STARTED:	DATE FINISHED:			
INSTALLATION FOREMAN:	SAMPLE DATE STARTED:	DATE FINISHED:			
Greg Freese	3/8/2017	3/8/2017			
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:				
Geoprobe 6610DT	6-Liter summa canister				
INSPECTOR:	SAMPLER:	SAMPLER:			
Veronica Zuluaga	Kyle Twombly				
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PR	ESS., WIND SPEED AND DIR.):			
None Observed	Temperature: 49-61 ° F				
	Wind: 5-10 mph NW				
	Barometer: 29.95				
	Precipitation: 0				

#### METHOD OF INSTALLATION AND PURGING:

3/16" x 1/4" (ID X OD) Teflon lined H         IMPLANT SCREEN TYPE/LENGTH/DIAMETER:         6-inch stainless steel point         BOREHOLE DIAMETER:         2-inch         PURGE VOLUME (L):         PURGE FLOW RATE (ML/MIN):         PID AFTER PURGE (PPM):         HELIUM TEST IN BUCKET(%):         HELIUM TEST IN TUBE (PPM):         SAMPLE START DATE/TIME:	0.0008 0.4 0.7 22% 0 3/8/2017 11:30	Bentonite Filter pack m Filpro #2 S IMPLAN	AL (Bentonite, Beeswax, IATERIAL (Sand or Glass and /PROBE DETAILS ., FILTER, ETC.) SURFACE	-	NOTES		
6-inch stainless steel point BOREHOLE DIAMETER: 2-inch PURGE VOLUME (L): PURGE FLOW RATE (ML/MIN): PID AFTER PURGE (PPM): HELIUM TEST IN BUCKET(%): HELIUM TEST IN TUBE (PPM): SAMPLE START DATE/TIME:	0.4 0.7 22% 0 3/8/2017 11:30	Bentonite FILTER PACK M Filpro #2 S IMPLAN (SEA	IATERIAL (Sand or Glass and "/PROBE DETAILS ., FILTER, ETC.)	Beads): DEPTH (FEET FROM	NOTES		
BOREHOLE DIAMETER: 2-inch PURGE VOLUME (L): PURGE FLOW RATE (ML/MIN): PID AFTER PURGE (PPM): HELIUM TEST IN BUCKET(%): HELIUM TEST IN TUBE (PPM): SAMPLE START DATE/TIME:	0.4 0.7 22% 0 3/8/2017 11:30	FILTER PACK M Filpro #2 S IMPLAN (sea	and /PROBE DETAILS ., FILTER, ETC.)	DEPTH (FEET FROM	NOTES		
2-inch PURGE VOLUME (L): PURGE FLOW RATE (ML/MIN): PID AFTER PURGE (PPM): HELIUM TEST IN BUCKET(%): HELIUM TEST IN TUBE (PPM): SAMPLE START DATE/TIME:	0.4 0.7 22% 0 3/8/2017 11:30	Filpro #2 S IMPLAN (sea	and /PROBE DETAILS ., FILTER, ETC.)	DEPTH (FEET FROM	NOTES		
PURGE VOLUME (L): PURGE FLOW RATE (ML/MIN): PID AFTER PURGE (PPM): HELIUM TEST IN BUCKET(%): HELIUM TEST IN TUBE (PPM): SAMPLE START DATE/TIME:	0.4 0.7 22% 0 3/8/2017 11:30	IMPLAN (SEA	/PROBE DETAILS ., FILTER, ETC.)	(FEET FROM	NOTES		
PURGE FLOW RATE (ML/MIN): PID AFTER PURGE (PPM): HELIUM TEST IN BUCKET(%): HELIUM TEST IN TUBE (PPM): SAMPLE START DATE/TIME:	0.4 0.7 22% 0 3/8/2017 11:30	(SEA	., FILTER, ETC.)	(FEET FROM	NUTES		
PID AFTER PURGE (PPM): HELIUM TEST IN BUCKET(%): HELIUM TEST IN TUBE (PPM): SAMPLE START DATE/TIME:	0.7 22% 0 3/8/2017 11:30			-			
HELIUM TEST IN BUCKET(%): HELIUM TEST IN TUBE (PPM): SAMPLE START DATE/TIME:	22% 0 3/8/2017 11:30	SURFACE	SURFACE	SURFACE)			
HELIUM TEST IN TUBE (PPM): SAMPLE START DATE/TIME:	0 3/8/2017 11:30						
SAMPLE START DATE/TIME:	3/8/2017 11:30			0			
SAMPLE STOP DATE/TIME:							
	3/8/2017 13:20						
TOTAL SAMPLE TIME (MIN):	110						
FLOW RATE (L/MIN):	0.05		Top of Pack	5.5			
VOLUME OF SAMPLE (LITERS):	6						
PID AFTER SAMPLE (PPM):	1.3						
SAMPLE MOISTURE CONTENT:	NA						
CAN SERIAL NUMBER:	18296						
REGULATOR SERIAL NUMBER:	3542						
CAN START VACUUM PRESS. (" HG):	-29.35						
CAN STOP VACUUM PRESS. (" HG):	-4.98						
SAMPLE LOCATION SKE	ТСН		目				
See Figure 5.			₽	6			
				ũ			
		NOTES					
		-					
		purge for 2	minutes				

Sample Number: SV-02

PROJECT:	PROJECT NO.:				
473 President Street	170361301				
LOCATION:	SURFACE ELEVATION AND DATUM:	SURFACE ELEVATION AND DATUM:			
Brooklyn, NY	NA	NA			
<b>DRILLING FIRM OR LANGAN INSTALLER:</b> AARCO Environmental Services Corp.	INSTALLATION DATE STARTED:	DATE FINISHED:			
INSTALLATION FOREMAN:	SAMPLE DATE STARTED:	DATE FINISHED:			
Greg Freese	3/8/2017	3/8/2017			
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:				
Geoprobe 6610DT	6-Liter summa canister				
INSPECTOR:	SAMPLER:	SAMPLER:			
Veronica Zuluaga	Kyle Twombly				
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PR	ESS., WIND SPEED AND DIR.):			
None Observed	Temperature: 49-61 ° F				
	Wind: 5-10 mph NW				
	Barometer: 29.95				
	Precipitation: 0				

#### METHOD OF INSTALLATION AND PURGING:

TUBING TYPE/DIAMETER:		TYPE OF MATERIAL ABOVE SEAL:					
3/16" x 1/4" (ID X OD) Teflon line	d HDPE tubing	Bentonite					
IMPLANT SCREEN TYPE/LENGTH/DIAMET	R:	SEAL MATERIAL (Bentonite, Beeswax, Modeling Clay, etc.):					
6-inch stainless steel point		Bentonite					
BOREHOLE DIAMETER:			MATERIAL (Sand or Glas	s Beads):			
2-inch		Filpro #2 Sand					
PURGE VOLUME (L):	0.0008	IMPLAN'	T/PROBE DETAILS	DEPTH	NOTES		
PURGE FLOW RATE (ML/MIN):	0.4	(SEAL, FILTER, ETC.)		(FEET FROM			
PID AFTER PURGE (PPM):	0.8	SURFACE	SURFACE	SURFACE)			
HELIUM TEST IN BUCKET(%):	25.6%			0			
HELIUM TEST IN TUBE (PPM):	0						
SAMPLE START DATE/TIME:	3/8/2017 12:00						
SAMPLE STOP DATE/TIME:	3/8/2017 13:52						
TOTAL SAMPLE TIME (MIN):	112						
FLOW RATE (L/MIN):	0.05		Top of Pack	4.5			
VOLUME OF SAMPLE (LITERS):	6						
PID AFTER SAMPLE (PPM):	0						
SAMPLE MOISTURE CONTENT:	NA						
CAN SERIAL NUMBER:	16141						
REGULATOR SERIAL NUMBER:	7268						
CAN START VACUUM PRESS. (" HG):	-29.03						
CAN STOP VACUUM PRESS. (" HG):	-4.62						
SAMPLE LOCATION SI	KETCH						
See Figure 5.				5			
5							
		NOTES					
		Purge for 2	2 minutes				

Sample Number: SV-03

PROJECT:	PROJECT NO.:				
473 President Street	170361301				
LOCATION:	SURFACE ELEVATION AND DATUM:				
Brooklyn, NY	NA	NA			
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED:	DATE FINISHED:			
AARCO Environmental Services Corp.	3/8/2017	3/8/2017			
INSTALLATION FOREMAN:	SAMPLE DATE STARTED:	DATE FINISHED:			
Greg Freese	3/9/2017 3/9/2017				
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:				
Geoprobe 6610DT	6-Liter summa canister				
INSPECTOR:	SAMPLER:				
Veronica Zuluaga	Kyle Twombly				
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRI	ESS., WIND SPEED AND DIR.):			
None Observed	Temperature: 50-65 ° F				
	Wind: 11-19 mph NW				
	Barometer: 29.92				
	Precipitation: 0				

#### METHOD OF INSTALLATION AND PURGING:

3/16" x 1/4" (ID X OD) Teflon lined MPLANT SCREEN TYPE/LENGTH/DIAMETER 6-inch stainless steel point	I HDPE tubing		TYPE OF MATERIAL ABOVE SEAL:					
			Bentonite					
B-inch stainless steel point		SEAL MATERIAL (Bentonite, Beeswax, Modeling Clay, etc.):						
		Bentonite FILTER PACK MATERIAL (Sand or Glass Beads):						
BOREHOLE DIAMETER:								
2-inch		Filpro #2 Sand						
PURGE VOLUME (L):	0.0008	IMPLAN	I/PROBE DETAILS	DEPTH	NOTES			
PURGE FLOW RATE (ML/MIN):	0.4	(SEAL, FILTER, ETC.)		(FEET FROM				
PID AFTER PURGE (PPM):	14.5	SURFACE	SURFACE	SURFACE)				
HELIUM TEST IN BUCKET(%):	19.7%			0				
HELIUM TEST IN TUBE (PPM):	0							
SAMPLE START DATE/TIME:	3/9/2017 7:36							
SAMPLE STOP DATE/TIME:	3/9/2017 9:05							
TOTAL SAMPLE TIME (MIN):	89							
FLOW RATE (L/MIN):	0.06		Top of Pack	4.5				
VOLUME OF SAMPLE (LITERS):	6							
PID AFTER SAMPLE (PPM):	19.8							
SAMPLE MOISTURE CONTENT:	NA							
CAN SERIAL NUMBER:	19529							
REGULATOR SERIAL NUMBER:	Y23							
CAN START VACUUM PRESS. (" HG):	-23.2							
CAN STOP VACUUM PRESS. (" HG):	-4.73							
SAMPLE LOCATION SK	ETCH							
See Figure 5.				5				
C C			<u> </u>					
		NOTES						
		Purge for 2	: minutes					
		-						
	de a Frankrau de la		1 d					
	ring, Environmental, 3 360 West 31st Street		-					

Sample Number: SV-04/SVDUP01

PROJECT:	PROJECT NO.:				
473 President Street	170361301	170361301			
LOCATION:	SURFACE ELEVATION AND DATUM:	SURFACE ELEVATION AND DATUM:			
Brooklyn, NY	NA				
<b>DRILLING FIRM OR LANGAN INSTALLER:</b> AARCO Environmental Services Corp.	INSTALLATION DATE STARTED:	DATE FINISHED:			
INSTALLATION FOREMAN:	SAMPLE DATE STARTED:	DATE FINISHED:			
Greg Freese	3/8/2017 3/8/2017				
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:				
Geoprobe 6610DT	6-Liter summa canister				
INSPECTOR:	SAMPLER:				
Veronica Zuluaga	Kyle Twombly				
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PR	RESS., WIND SPEED AND DIR.):			
None Observed	Temperature: 49-61 ° F				
	Wind: 5-10 mph NW				
	Barometer: 29.95				
	Precipitation: 0				

#### METHOD OF INSTALLATION AND PURGING:

TUBING TYPE/DIAMETER:			TYPE OF MATER	IAL ABOVE SEAL:			
3/16" x 1/4" (ID X OD) Teflon line	ed HDPE tubir	g	Bentonite				
IMPLANT SCREEN TYPE/LENGTH/DIAMET	TER:			(Bentonite, Beeswax,	Modeling Clay, etc.):		
6-inch stainless steel point			Bentonite				
BOREHOLE DIAMETER:				TERIAL (Sand or Glas	s Beads):		
2-inch		Filpro #2 Sar	nd				
	SVDUP01	SV-04					
PURGE VOLUME (L):	0.0			PROBE DETAILS	DEPTH	NOTES	
PURGE FLOW RATE (ML/MIN):	0.		-1 -	FILTER, ETC.)	(FEET FROM		
PID AFTER PURGE (PPM):	5.6	2	SURFACE	SURFACE	SURFACE)		
HELIUM TEST IN BUCKET(%):	19%	18.6%			0		
HELIUM TEST IN TUBE (PPM):	5.6	2					
SAMPLE START DATE/TIME:	3/8/201	7 12:50	] []				
SAMPLE STOP DATE/TIME:	3/8/201	7 14:50	7				
TOTAL SAMPLE TIME (MIN):	12	20	] ] ]				
FLOW RATE (L/MIN):	0.0	)5		Top of Pack	4.5		
VOLUME OF SAMPLE (LITERS):	6	6	1				
PID AFTER SAMPLE (PPM):	0	0	] ] ]				
SAMPLE MOISTURE CONTENT:	N	A	] ] ]				
CAN SERIAL NUMBER:	18300	462	2				
REGULATOR SERIAL NUMBER:	7416	7360					
CAN START VACUUM PRESS. (" HG):	-29.13	-29.18	3				
CAN STOP VACUUM PRESS. (" HG):	-5.3	-5.42	2				
SAMPLE LOCATION S	КЕТСН		1				
See Figure 5.			┫   ┦		5		
See Figure 5.					5		
					NOTES		
			Purge for 2 r	minuton			
			Purge for 2 r	minutes			
Langan Engine	ering, Enviro	nmental, Sur	veving and L	andscape Archi	tecture, D.P.C.		
	-			v York, New Yo			

Sample Number: SV-05

PROJECT:	PROJECT NO.:	
473 President Street	170361301	
LOCATION:	SURFACE ELEVATION AND DATUM:	
Brooklyn, NY	NA	
<b>DRILLING FIRM OR LANGAN INSTALLER:</b> AARCO Environmental Services Corp.	INSTALLATION DATE STARTED:	DATE FINISHED:
INSTALLATION FOREMAN:	SAMPLE DATE STARTED:	DATE FINISHED:
Greg Freese	3/10/2017	3/10/2017
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:	
Geoprobe 6610DT	6-Liter summa canister	
INSPECTOR:	SAMPLER:	
Veronica Zuluaga	Kyle Twombly	
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PR	iess., wind speed and dir.):
None Observed	Temperature: 25-50 ° F	
	Wind:0-10 mph ESE	
	Barometer: 29.95	
	Precipitation: 0.19	

#### METHOD OF INSTALLATION AND PURGING:

TUBING TYPE/DIAMETER:		TYPE OF MATERIAL ABOVE SEAL:			
3/16" x 1/4" (ID X OD) Teflon lined HDPE tubing		Bentonite			
IMPLANT SCREEN TYPE/LENGTH/DIAMETER:			AL (Bentonite, Beeswax,	Modeling Clay, etc.):	
6-inch stainless steel point		Bentonite			
BOREHOLE DIAMETER:			MATERIAL (Sand or Glas	s Beads):	
2-inch		Filpro #2 S			
PURGE VOLUME (L):	0.0008	IMPLAN'	T/PROBE DETAILS	DEPTH	NOTES
PURGE FLOW RATE (ML/MIN):	0.4		L, FILTER, ETC.)	(FEET FROM	
PID AFTER PURGE (PPM):	0.1	SURFACE	SURFACE	SURFACE)	
HELIUM TEST IN BUCKET(%):	16.4%			0	
HELIUM TEST IN TUBE (PPM):	0				
SAMPLE START DATE/TIME:	3/10/2017 10:00				
SAMPLE STOP DATE/TIME:	3/10/2017 11:42				
TOTAL SAMPLE TIME (MIN):	102				
FLOW RATE (L/MIN):	0.06		Top of Pack	4.5	
VOLUME OF SAMPLE (LITERS):	6				
PID AFTER SAMPLE (PPM):	0				
SAMPLE MOISTURE CONTENT:	NA				
CAN SERIAL NUMBER:	18316				
REGULATOR SERIAL NUMBER:	Y48				
CAN START VACUUM PRESS. (" HG):	-26.5				
CAN STOP VACUUM PRESS. (" HG):	-4.81				
SAMPLE LOCATION S	KETCH				
See Figure 5.				5	
C C					
				NOTES	
		Purge for 2	2 minutes		

AMBIENT AIR SAMPLING LOG SHEET Sample Number: AA02		
<b>PROJECT</b> : 473 President Street	<b>PROJECT NO</b> .: 170361301	
<mark>Lосатіол</mark> : Brooklyn, NY	SURFACE ELEVATION AND DATUM: NA	
<b>імspector</b> : Kyle Twombly	SAMPLE DATE STARTED: 3/28/2018	DATE FINISHED: 3/28/2018
<b>sampler:</b> Kyle Twombly	<b>TYPE OF SAMPLING DEVICE</b> : 2.7-Liter Summa Canister	
POTENTIAL SAMPLE INTERFERENCES: NA	<b>WEATHER CONDITIONS:</b> Temperature: 35-40 ° F Wind: 5-10 mph SW Barometer: 30.08 in Precipitation: 0.03 in	

Sample AA02, a 2.7-L Summa Canister fitted with a 8-hour flow control valve, was placed outside about 3 feet above sidewalk grade. The flow controller was zeroed and the valve was opened to initiate the 8-hour sample collection. The sample and flow controller were checked periodically during sampling to ensure proper operation. Cannister vacuum readings were collected about every 60 minutes.

SAMPLE	DETAILS	SAMPLE LOCATION SKETCH
PID BEFORE SAMPLE (PPM):	0.0	See Figure 5.
SAMPLE START DATE/TIME:	3/28/2018 8:20	
SAMPLE STOP DATE/TIME:	3/28/2018 16:20	
TOTAL SAMPLE TIME (MIN):	480	
FLOW RATE (L/MIN):	0.005	
VOLUME OF SAMPLE (LITERS):	2.7	
PID AFTER SAMPLE (PPM):	0.0	
CAN SERIAL NUMBER:	2339	
REGULATOR SERIAL NUMBER:	0645	
CAN START VACUUM PRESS. (" HG):	-30.10	
CAN STOP VACUUM PRESS. (" HG):	-9.22	
Notes [.]		

Notes:

AMBIENT AIR SAMPLING LOG SHEET Sample Number: IA01		
<b>PROJECT</b> : 473 President Street	<b>PROJECT NO</b> .: 170361301	
<b>location</b> : Brooklyn, NY	SURFACE ELEVATION AND DATUM: NA	
<b>імspector</b> : Kyle Twombly	SAMPLE DATE STARTED: 3/28/2018	DATE FINISHED: 3/28/2018
<b>sampler</b> : Kyle Twombly	<b>TYPE OF SAMPLING DEVICE</b> : 2.7-Liter Summa Canister	
POTENTIAL SAMPLE INTERFERENCES: NA	<b>WEATHER CONDITIONS:</b> Temperature: 35-40 ° F Wind: 5-10 mph SW Barometer: 30.08 in Precipitation: 0.03 in	

Sample IA01, a 2.7-L Summa Canister fitted with a 8-hour flow control valve, was placed indoors about 3 feet above grade. The flow controller was zeroed and the valve was opened to initiate the 8-hour sample collection. The sample and flow controller were checked periodically during sampling to ensure proper operation. Cannister vacuum readings were collected about every 60 minutes.

SAMPLE	DETAILS	SAMPLE LOCATION SKETCH
PID BEFORE SAMPLE (PPM):	0.0	See Figure 5.
SAMPLE START DATE/TIME:	3/28/2018 8:15	
SAMPLE STOP DATE/TIME:	3/28/2018 16:15	
TOTAL SAMPLE TIME (MIN):	480	
FLOW RATE (L/MIN):	0.005	
VOLUME OF SAMPLE (LITERS):	2.7	
PID AFTER SAMPLE (PPM):	0.0	
CAN SERIAL NUMBER:	515	
REGULATOR SERIAL NUMBER:	0400	
CAN START VACUUM PRESS. (" HG):	-30.27	
CAN STOP VACUUM PRESS. (" HG):	-4.84	
Notes [.]		

Notes:

AMBIENT AIR SAMPLING LOG SHEET Sample Number: IA02		
<b>PROJECT</b> : 473 President Street	<b>PROJECT NO</b> .: 170361301	
<b>location</b> : Brooklyn, NY	SURFACE ELEVATION AND DATUM: NA	
<b>імspector</b> : Kyle Twombly	SAMPLE DATE STARTED: 3/28/2018	DATE FINISHED: 3/28/2018
<b>sampler</b> : Kyle Twombly	<b>TYPE OF SAMPLING DEVICE</b> : 2.7-Liter Summa Canister	
POTENTIAL SAMPLE INTERFERENCES: NA	<b>WEATHER CONDITIONS:</b> Temperature: 35-40 ° F Wind: 5-10 mph SW Barometer: 30.08 in Precipitation: 0.03 in	

Sample IA02, a 2.7-L Summa Canister fitted with a 8-hour flow control valve, was placed indoors about 3 feet above grade. The flow controller was zeroed and the valve was opened to initiate the 8-hour sample collection. The sample and flow controller were checked periodically during sampling to ensure proper operation. Cannister vacuum readings were collected about every 60 minutes.

SAMPLE	DETAILS	SAMPLE LOCATION SKETCH
PID BEFORE SAMPLE (PPM):	0.0	See Figure 5.
SAMPLE START DATE/TIME:	3/28/2018 8:12	
SAMPLE STOP DATE/TIME:	3/28/2018 16:17	
TOTAL SAMPLE TIME (MIN):	485	
FLOW RATE (L/MIN):	0.005	
VOLUME OF SAMPLE (LITERS):	2.7	
PID AFTER SAMPLE (PPM):	0.0	
CAN SERIAL NUMBER:	134	
REGULATOR SERIAL NUMBER:	0398	
CAN START VACUUM PRESS. (" HG):	-30.13	
CAN STOP VACUUM PRESS. (" HG):	-7.83	
Notes [.]		

Notes:

AMBIENT AIR SAMPLING LOG SHEET Sample Number: IA03		
<b>PROJECT</b> : 473 President Street	<b>PROJECT NO</b> .: 170361301	
<b>location</b> : Brooklyn, NY	SURFACE ELEVATION AND DATUM: NA	
<b>імspector</b> : Kyle Twombly	SAMPLE DATE STARTED: 3/28/2018	<b>DATE FINISHED</b> : 3/28/2018
<b>sampler</b> : Kyle Twombly	<b>TYPE OF SAMPLING DEVICE</b> : 2.7-Liter Summa Canister	
POTENTIAL SAMPLE INTERFERENCES: NA	<b>WEATHER CONDITIONS:</b> Temperature: 35-40 ° F Wind: 5-10 mph SW Barometer: 30.08 in Precipitation: 0.03 in	

Sample IA03, a 2.7-L Summa Canister fitted with a 8-hour flow control valve, was placed indoors about 3 feet above grade. The flow controller was zeroed and the valve was opened to initiate the 8-hour sample collection. The sample and flow controller were checked periodically during sampling to ensure proper operation. Cannister vacuum readings were collected about every 60 minutes.

SAMPLE	DETAILS	SAMPLE LOCATION SKETCH
PID BEFORE SAMPLE (PPM):	0.0	See Figure 5.
SAMPLE START DATE/TIME:	3/28/2018 8:09	
SAMPLE STOP DATE/TIME:	3/28/2018 16:10	
TOTAL SAMPLE TIME (MIN):	481	
FLOW RATE (L/MIN):	0.005	
VOLUME OF SAMPLE (LITERS):	2.7	
PID AFTER SAMPLE (PPM):	0.0	
CAN SERIAL NUMBER:	505	
REGULATOR SERIAL NUMBER:	0038	
CAN START VACUUM PRESS. (" HG):	-30.06	
CAN STOP VACUUM PRESS. (" HG):	-4.7	
Notes:		

Notes:

AMBIENT AIR SAMPLING LOG SHEET Sample Number: IA04		
<b>PROJECT</b> : 473 President Street	<b>PROJECT NO</b> .: 170361301	
<mark>Lосатіол</mark> : Brooklyn, NY	SURFACE ELEVATION AND DATUM: NA	
<b>імspector</b> : Kyle Twombly	SAMPLE DATE STARTED: 3/28/2018	DATE FINISHED: 3/28/2018
<b>sampler</b> : Kyle Twombly	<b>TYPE OF SAMPLING DEVICE</b> : 2.7-Liter Summa Canister	
POTENTIAL SAMPLE INTERFERENCES: NA	<b>WEATHER CONDITIONS:</b> Temperature: 35-40 ° F Wind: 5-10 mph SW Barometer: 30.08 in Precipitation: 0.03 in	

Sample IA04, a 2.7-L Summa Canister fitted with a 8-hour flow control valve, was placed indoors about 3 feet above grade. The flow controller was zeroed and the valve was opened to initiate the 8-hour sample collection. The sample and flow controller were checked periodically during sampling to ensure proper operation. Cannister vacuum readings were collected about every 60 minutes.

SAMPLE	DETAILS	SAMPLE LOCATION SKETCH
PID BEFORE SAMPLE (PPM):	0.0	See Figure 5.
SAMPLE START DATE/TIME:	3/28/2018 8:10	
SAMPLE STOP DATE/TIME:	3/28/2018 16:12	
TOTAL SAMPLE TIME (MIN):	482	
FLOW RATE (L/MIN):	0.005	
VOLUME OF SAMPLE (LITERS):	2.7	
PID AFTER SAMPLE (PPM):	0.0	
CAN SERIAL NUMBER:	1745	
REGULATOR SERIAL NUMBER:	0410	
CAN START VACUUM PRESS. (" HG):	-30.28	
CAN STOP VACUUM PRESS. (" HG):	-7.35	
Notes [.]		

Notes:

AMBIENT AIR SAMPLING LOG SHEET Sample Number: IA05				
<b>PROJECT</b> : 473 President Street	<b>PROJECT NO</b> .: 170361301			
<b>location</b> : Brooklyn, NY	SURFACE ELEVATION AND DATUM: NA			
<b>імspector</b> : Kyle Twombly	SAMPLE DATE STARTED: 3/28/2018	DATE FINISHED: 3/28/2018		
<b>sampler</b> : Kyle Twombly	<b>TYPE OF SAMPLING DEVICE</b> : 2.7-Liter Summa Canister			
POTENTIAL SAMPLE INTERFERENCES: NA	<b>WEATHER CONDITIONS:</b> Temperature: 35-40 ° F Wind: 5-10 mph SW Barometer: 30.08 in Precipitation: 0.03 in			

Sample IA05, a 2.7-L Summa Canister fitted with a 8-hour flow control valve, was placed indoors about 3 feet above grade. The flow controller was zeroed and the valve was opened to initiate the 8-hour sample collection. The sample and flow controller were checked periodically during sampling to ensure proper operation. Cannister vacuum readings were collected about every 60 minutes.

SAMPLE	DETAILS	SAMPLE LOCATION SKETCH
PID BEFORE SAMPLE (PPM):	0.0	See Figure 5.
SAMPLE START DATE/TIME:	3/28/2018 8:10	
SAMPLE STOP DATE/TIME:	3/28/2018 16:12	
TOTAL SAMPLE TIME (MIN):	482	
FLOW RATE (L/MIN):	0.005	
VOLUME OF SAMPLE (LITERS):	2.7	
PID AFTER SAMPLE (PPM):	0.0	
CAN SERIAL NUMBER:	1745	
REGULATOR SERIAL NUMBER:	0410	
CAN START VACUUM PRESS. (" HG):	-30.28	
CAN STOP VACUUM PRESS. (" HG):	-7.35	
Notes [.]		

Notes:

# Appendix G Data Usability Summary Reports



#### 2700 Kelly Road, Suite 200 Warrington, PA 18976 T: 215.491.6500 F: 215.491.6501 Mailing Address: P.O. Box 1569 Doylestown, PA 18901

To: Paul McMahon, Langan Project Engineer

From: Emily Strake, Langan Senior Project Chemist/Risk Assessor

**Date:** May 16, 2017

Re: Data Usability Summary Report For 473 President Street Groundwater Samples Collected March 2017 Langan Project No.: 170361301

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of groundwater samples collected in March 2017 by Langan Engineering and Environmental Services ("Langan") at the 473 President Street site ("the Site"). The samples were analyzed by York Analytical (NYSDOH ELAP registration # 10854) for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), pesticides, metals and mercury (Hg), cyanide (CN) and hexavalent chromium (CrVI) by the methods specified below.

- VOCs by SW-846 Method 8260C
- SVOCs by SW-846 Method 8270D and 8270D with SIM
- Pesticides by SW-846 Method 8081B
- Dissolved Metals by Methods SW-846 6010C and 6020A
- Mercury by SW-846 Method 7473
- Cyanide by SW-846 Method 9010
- Hexavalent Chromium by SW-846 Method 7196A

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
17C0878	17C0878-01	MW18_032217 18:30	03/22/2017	VOCs, SVOCs, Pesticides, Metals, Hg, CN
17C0878	17C0878-02	MW18_032217 19:20	03/22/2017	CrVI
17C0618	17C0618-01	MW08_031617	03/16/2017	VOCs, SVOCs, Pesticides, Metals, Hg, CN, CrVI
17C0618	17C0618-02	MW06_031617	03/16/2017	VOCs, SVOCs, Pesticides, Metals, Hg, CN, CrVI

## TABLE 1: SAMPLE SUMMARY

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
17C0618	17C0618-03	MW12_031617	03/16/2017	VOCs, SVOCs, Pesticides, Metals, Hg, CN, CrVI
17C0618	17C0618-04	GWDUP01_031617	03/16/2017	VOCs, SVOCs, Pesticides, Metals, Hg, CN, CrVI
17C0618	17C0618-05	GWFB01_031617	03/16/2017	VOCs, SVOCs, Pesticides
17C0618	17C0618-06	GWTB01_031617	03/16/2017	VOCs
17C0850	17C0850-01	GWFB02_032217	03/22/2017	Metals, Hg, CN, CrVI
17C0850	17C0850-02	MW07_032217	03/22/2017	VOCs, SVOCs, Pesticides, Metals, Hg, CN, CrVI
17C0850	17C0850-03	MW10_032217	03/22/2017	VOCs, SVOCs, Pesticides, Metals, Hg, CN, CrVI
17C0850	17C0850-04	MW09_032217	03/22/2017	VOCs, SVOCs, Pesticides, Metals, Hg, CN, CrVI

### Validation Overview

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-34A, "Trace Volatile Data Validation" (September 2016, Rev 1), USEPA Region II SOP #HW-35A, "Semivolatile Data Validation" (September 2016, Rev 1), USEPA Region II SOP #HW-36A, "Pesticide Data Validation" (October 2016, Rev 1), USEPA Region II SOP #HW-3b, "ICP-MS Data Validation" (September 2016, Rev 1), USEPA Region II SOP #HW-3b, "ICP-MS Data Validation" (September 2016, Rev 1), USEPA Region II SOP #HW-3c, "Mercury and Cyanide Data Validation," (September 2016, Rev 1), the USEPA Contract Laboratory Program "National Functional Guidelines for Superfund Organic Methods Data Review" (USEPA-540R-2016-002, September 2016), and the "National Functional Guidelines for Inorganic Superfund Data Review" (USEPA-540R-2016).

Validation includes review of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, sample preservation, sample extraction and digestion, instrument tuning, instrument calibration, laboratory blanks, laboratory control samples, system monitoring compounds, internal standard area counts, matrix spike/spike duplicate recoveries, target compound identification and quantification, chromatograms, overall system performance, serial dilutions, dual column performance, field duplicate, field blank and trip blank sample results.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:



- **R** The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are not sufficiently valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

Client Sample ID	Analysis	Analyte	CAS #	Validator Qualifier
MW18_032217 18:30	SW6010B	LEAD	7439-92-1	J
MW18_032217 18:30	SW6010B	COPPER	7440-50-8	J
MW18_032217 18:30	SW6020	ANTIMONY	7440-36-0	UJ
MW18_032217 18:30	SW6020	SELENIUM	7782-49-2	UJ
MW18_032217 18:30	SW8260B	1,4-DIOXANE (P-DIOXANE)	123-91-1	UJ
MW18_032217 18:30	SW8260B	TETRACHLOROETHYLENE(P CE)	127-18-4	UJ
MW18_032217 18:30	SW8260B	BROMOMETHANE	74-83-9	UJ
MW18_032217 18:30	SW8260B	CHLOROETHANE	75-00-3	UJ
MW18_032217 18:30	SW8260B	VINYL CHLORIDE	75-01-4	J
MW18_032217 18:30	SW8260B	TRICHLOROFLUOROMETHA NE	75-69-4	UJ
MW18_032217 18:30	SW8260B	DICHLORODIFLUOROMETH ANE	75-71-8	UJ



Client Sample ID	Analysis	Analyte	CAS #	Validator Qualifier
MW18_032217 18:30	SW8260B	1,2,3-TRICHLOROBENZENE	87-61-6	UJ
MW18_032217 18:30	SW8260B	HEXACHLOROBUTADIENE	87-68-3	UJ
MW18_032217 18:30	SW8270C	4-NITROPHENOL	100-02-7	UJ
MW18_032217 18:30	SW8270C	BENZALDEHYDE	100-52-7	UJ
MW18_032217 18:30	SW8270C	PHENOL	108-95-2	UJ
MW18_032217 18:30	SW8270C	BIS(2-CHLOROETHOXY) METHANE	111-91-1	UJ
MW18_032217 18:30	SW8270C	2,4-DINITROPHENOL	51-28-5	UJ
MW18_032217 18:30	SW8270C	N-NITROSODI-N- PROPYLAMINE	621-64-7	UJ
MW18_032217 18:30	SW8270C	BENZOIC ACID	65-85-0	UJ
MW18_032217 18:30	SW8270C	HEXACHLOROCYCLOPENTA DIENE	77-47-4	UJ
MW18_032217 18:30	SW8270C	2-METHYLPHENOL (O- CRESOL)	95-48-7	UJ
MW18_032217 18:30	SW8270C	ACETOPHENONE	98-86-2	UJ
MW18_032217 18:30	SW8270C	3- AND 4- METHYLPHENOL (TOTAL)	MEPH3MEP H4	UJ
GWDUP01_031617	SW6010B	Copper	7440-50-8	J
GWDUP01_031617	SW7196A	Chromium, Hexavalent	18540-29-9	UJ
GWDUP01_031617	SW8260B	1,4-Dioxane (P-Dioxane)	123-91-1	UJ
GWDUP01_031617	SW8260B	Tetrachloroethylene (PCE)	127-18-4	J
GWDUP01_031617	SW8260B	Acetone	67-64-1	U (2.9)
GWDUP01_031617	SW8260B	Bromomethane	74-83-9	U (0.5)
GWDUP01_031617	SW8260B	Chloromethane	74-87-3	UJ
GWDUP01_031617	SW8270C	Benzaldehyde	100-52-7	UJ
GWDUP01_031617	SW8270C	Benzoic Acid	65-85-0	UJ
GWFB01_031617	SW8260B	1,4-Dioxane (P-Dioxane)	123-91-1	UJ
GWFB01_031617	SW8260B	Tetrachloroethylene (PCE)	127-18-4	UJ
GWFB01_031617	SW8260B	Bromomethane	74-83-9	J
GWFB01_031617	SW8260B	Chloromethane	74-87-3	UJ
GWFB01_031617	SW8270C	Benzaldehyde	100-52-7	UJ
GWFB01_031617	SW8270C	Benzoic Acid	65-85-0	UJ
GWTB01_031617	SW8260B	1,4-Dioxane (P-Dioxane)	123-91-1	UJ



Client Sample ID	Analysis	Analyte	CAS #	Validator Qualifier
GWTB01_031617	SW8260B	Tetrachloroethylene (PCE)	127-18-4	UJ
GWTB01_031617	SW8260B	Bromomethane	74-83-9	UJ
GWTB01_031617	SW8260B	Chloromethane	74-87-3	UJ
MW06_031617	SW6010B	Copper	7440-50-8	J
MW06_031617	SW8260B	1,4-Dioxane (P-Dioxane)	123-91-1	UJ
MW06_031617	SW8260B	Tetrachloroethylene (PCE)	127-18-4	UJ
MW06_031617	SW8260B	Bromomethane	74-83-9	UJ
MW06_031617	SW8260B	Chloromethane	74-87-3	UJ
MW06_031617	SW8270C	Benzaldehyde	100-52-7	UJ
MW06_031617	SW8270C	Benzoic Acid	65-85-0	UJ
MW08_031617	SW6010B	Copper	7440-50-8	J
MW08_031617	SW8260B	1,4-Dioxane (P-Dioxane)	123-91-1	UJ
MW08_031617	SW8260B	Tetrachloroethylene (PCE)	127-18-4	J
MW08_031617	SW8260B	Acetone	67-64-1	U (2.4)
MW08_031617	SW8260B	Bromomethane	74-83-9	U (0.5)
MW08_031617	SW8260B	Chloromethane	74-87-3	J
MW08_031617	SW8270C	Benzaldehyde	100-52-7	UJ
MW08_031617	SW8270C	Benzoic Acid	65-85-0	UJ
MW12_031617	SW6010B	Copper	7440-50-8	J
MW12_031617	SW8260B	1,4-Dioxane (P-Dioxane)	123-91-1	UJ
MW12_031617	SW8260B	Tetrachloroethylene (PCE)	127-18-4	J
MW12_031617	SW8260B	Bromomethane	74-83-9	U (0.5)
MW12_031617	SW8260B	Chloromethane	74-87-3	UJ
MW12_031617	SW8270C	Benzaldehyde	100-52-7	UJ
MW12_031617	SW8270C	Benzoic Acid	65-85-0	UJ
GWDUP01_031617	SW8270C	Pyrene	129-00-0	J
GWDUP01_031617	SW8270C	Benzo(G,H,I)Perylene	191-24-2	J
GWDUP01_031617	SW8270C	Indeno(1,2,3-C,D)Pyrene	193-39-5	J
GWDUP01_031617	SW8270C	Benzo(B)Fluoranthene	205-99-2	J
GWDUP01_031617	SW8270C	Fluoranthene	206-44-0	J
GWDUP01_031617	SW8270C	Benzo(K)Fluoranthene	207-08-9	J
GWDUP01_031617	SW8270C	Chrysene	218-01-9	J



Client Sample ID	Analysis	Analyte	CAS #	Validator Qualifier
GWDUP01_031617	SW8270C	Benzo(A)Pyrene	50-32-8	J
GWDUP01_031617	SW8270C	Benzo(A)Anthracene	56-55-3	J
GWDUP01_031617	SW8270C	Acenaphthene	83-32-9	UJ
GWDUP01_031617	SW8270C	Phenanthrene	85-01-8	J
MW08_031617	SW8270C	Pyrene	129-00-0	J
MW08_031617	SW8270C	Benzo(G,H,I)Perylene	191-24-2	UJ
MW08_031617	SW8270C	Indeno(1,2,3-C,D)Pyrene	193-39-5	UJ
MW08_031617	SW8270C	Benzo(B)Fluoranthene	205-99-2	UJ
MW08_031617	SW8270C	Fluoranthene	206-44-0	J
MW08_031617	SW8270C	Benzo(K)Fluoranthene	207-08-9	J
MW08_031617	SW8270C	Chrysene	218-01-9	J
MW08_031617	SW8270C	Benzo(A)Pyrene	50-32-8	J
MW08_031617	SW8270C	Benzo(A)Anthracene	56-55-3	J
MW08_031617	SW8270C	Acenaphthene	83-32-9	J
MW08_031617	SW8270C	Phenanthrene	85-01-8	J
GWFB02_032217	SW6010B	Copper	7440-50-8	J
MW07_032217	SW6010B	Copper	7440-50-8	U (0.00634)
MW07_032217	SW6010B	Zinc	7440-66-6	U (0.0193)
MW07_032217	SW8081B	Heptachlor Epoxide	1024-57-3	UJ
MW07_032217	SW8081B	Aldrin	309-00-2	UJ
MW07_032217	SW8081B	Alpha Bhc (Alpha Hexachlorocyclohexane)	319-84-6	UJ
MW07_032217	SW8081B	Beta Bhc (Beta Hexachlorocyclohexane)	319-85-7	UJ
MW07_032217	SW8081B	Delta BHC (Delta Hexachlorocyclohexane)	319-86-8	UJ
MW07_032217	SW8081B	cis-Chlordane	5103-71-9	UJ
MW07_032217	SW8081B	gamma-Chlordane	5566-34-7	UJ
MW07_032217	SW8081B	Chlordane	57-74-9	UJ
MW07_032217	SW8081B	Gamma Bhc (Lindane)	58-89-9	UJ
MW07_032217	SW8081B	Heptachlor	76-44-8	UJ
MW07_032217	SW8260B	1,2,4-Trichlorobenzene	120-82-1	UJ
MW07_032217	SW8260B	Bromomethane	74-83-9	UJ

LANGAN

Client Sample ID	Analysis	Analyte	CAS #	Validator Qualifier
MW07_032217	SW8260B	Dichlorodifluoromethane	75-71-8	UJ
MW07_032217	SW8260B	1,2,3-Trichlorobenzene	87-61-6	UJ
MW07_032217	SW8260B	1,2,4-Trimethylbenzene	95-63-6	J
MW07_032217	SW8260B	1,2,3-Trichloropropane	96-18-4	UJ
MW07_032217	SW8270C	4-Nitrophenol	100-02-7	UJ
MW07_032217	SW8270C	Benzaldehyde	100-52-7	UJ
MW07_032217	SW8270C	Bis(2-Chloroisopropyl) Ether	108-60-1	UJ
MW07_032217	SW8270C	Phenol	108-95-2	UJ
MW07_032217	SW8270C	Benzoic Acid	65-85-0	UJ
MW07_032217	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
MW07_032217	SW8270C	N-Nitrosodiphenylamine	86-30-6	UJ
MW07_032217	SW8270C	3,3'-Dichlorobenzidine	91-94-1	UJ
MW07_032217	SW8270C	2-Methylphenol (O-Cresol)	95-48-7	UJ
MW07_032217	SW8270C	Acetophenone	98-86-2	UJ
MW07_032217	SW8270C	3- And 4- Methylphenol (Total)	MEPH3MEP H4	UJ
MW07_032217	SW8270C	N-Nitrosodimethylamine	62-75-9	UJ
MW09_032217	SW6010B	Copper	7440-50-8	U (0.00959)
MW09_032217	SW6010B	Zinc	7440-66-6	U (0.0181)
MW09_032217	SW8081B	Heptachlor Epoxide	1024-57-3	UJ
MW09_032217	SW8081B	Aldrin	309-00-2	UJ
MW09_032217	SW8081B	Alpha Bhc (Alpha Hexachlorocyclohexane)	319-84-6	UJ
MW09_032217	SW8081B	Beta Bhc (Beta Hexachlorocyclohexane)	319-85-7	UJ
MW09_032217	SW8081B	Delta BHC (Delta Hexachlorocyclohexane)	319-86-8	UJ
MW09_032217	SW8081B	cis-Chlordane	5103-71-9	UJ
MW09_032217	SW8081B	gamma-Chlordane	5566-34-7	UJ
MW09_032217	SW8081B	Chlordane	57-74-9	UJ
MW09_032217	SW8081B	Gamma Bhc (Lindane)	58-89-9	UJ
MW09_032217	SW8081B	Heptachlor	76-44-8	UJ
MW09_032217	SW8260B	1,2,4-Trichlorobenzene	120-82-1	UJ
MW09_032217	SW8260B	Bromomethane	74-83-9	UJ



Client Sample ID	Analysis	Analyte	CAS #	Validator Qualifier
MW09_032217	SW8260B	Dichlorodifluoromethane	75-71-8	UJ
MW09_032217	SW8260B	1,2,3-Trichlorobenzene	87-61-6	UJ
MW09_032217	SW8260B	1,2,4-Trimethylbenzene	95-63-6	UJ
MW09_032217	SW8260B	1,2,3-Trichloropropane	96-18-4	UJ
MW09_032217	SW8270C	4-Nitrophenol	100-02-7	UJ
MW09_032217	SW8270C	Benzaldehyde	100-52-7	UJ
MW09_032217	SW8270C	Bis(2-Chloroisopropyl) Ether	108-60-1	UJ
MW09_032217	SW8270C	Phenol	108-95-2	UJ
MW09_032217	SW8270C	Benzoic Acid	65-85-0	UJ
MW09_032217	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
MW09_032217	SW8270C	N-Nitrosodiphenylamine	86-30-6	UJ
MW09_032217	SW8270C	3,3'-Dichlorobenzidine	91-94-1	UJ
MW09_032217	SW8270C	2-Methylphenol (O-Cresol)	95-48-7	UJ
MW09_032217	SW8270C	Acetophenone	98-86-2	UJ
MW09_032217	SW8270C	3- And 4- Methylphenol (Total)	MEPH3MEP H4	UJ
MW09_032217	SW8270C	N-Nitrosodimethylamine	62-75-9	UJ
MW10_032217	SW6010B	Iron	7439-89-6	U (0.221)
MW10_032217	SW6010B	Copper	7440-50-8	U (0.0105)
MW10_032217	SW6010B	Zinc	7440-66-6	U (0.0180)
MW10_032217	SW8260B	1,2,4-Trichlorobenzene	120-82-1	UJ
MW10_032217	SW8260B	Bromomethane	74-83-9	UJ
MW10_032217	SW8260B	Dichlorodifluoromethane	75-71-8	UJ
MW10_032217	SW8260B	1,2,3-Trichlorobenzene	87-61-6	UJ
MW10_032217	SW8260B	1,2,4-Trimethylbenzene	95-63-6	UJ
MW10_032217	SW8260B	1,2,3-Trichloropropane	96-18-4	UJ
MW10_032217	SW8270C	4-Nitrophenol	100-02-7	UJ
MW10_032217	SW8270C	Benzaldehyde	100-52-7	UJ
MW10_032217	SW8270C	Bis(2-Chloroisopropyl) Ether	108-60-1	UJ
MW10_032217	SW8270C	Phenol	108-95-2	UJ
MW10_032217	SW8270C	Benzoic Acid	65-85-0	UJ
MW10_032217	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
MW10_032217	SW8270C	N-Nitrosodiphenylamine	86-30-6	UJ



Client Sample ID	Analysis	Analyte	CAS #	Validator Qualifier
MW10_032217	SW8270C	3,3'-Dichlorobenzidine	91-94-1	UJ
MW10_032217	SW8270C	2-Methylphenol (O-Cresol)	95-48-7	UJ
MW10_032217	SW8270C	Acetophenone	98-86-2	UJ
MW10_032217	SW8270C	3- And 4- Methylphenol (Total)	MEPH3MEP H4	UJ
MW10_032217	SW8270C	N-Nitrosodimethylamine	62-75-9	UJ

### **MAJOR DEFICIENCIES:**

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

### MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

### VOCs by SW-846 Method 8260C:

LCS/LCSD BC71342 displayed recoveries outside of control limits for bromomethane (25.9% and 30.3%), chloroethane (161% and 157%), and vinyl chloride (171% and 155%). The associated sample results are qualified as estimated.

Second-source calibration verification Y7C2913 displayed a %D greater than the control limit for dichlorodifluoromethane at 32.6%. The associated sample result is qualified as "UJ."

The continuing calibration analyzed on 3/30/17 at 04:47 displayed %Ds greater than the control limit for 1,2,3-trichlorobenzene (33.5%), 1,4-dioxane, (45.8%), bromomethane (84.6%), chloroethane (47.1%), dichlorodifluoromethane (30.3%), hexachlorobutadiene (23.7%), PCE (32.9%), trichlorofluoromethane (26.3%) and vinyl chloride (56.4%). The associated sample results are qualified as estimated.

Field blank sample GWFB01_031617 displayed positive detections for acetone (2.9 ug/L) and bromomethane (0.38 ug/L). The associated sample results are qualified as "U" at the higher of the sample concentration and the reporting limit.

LCS/LCSD BC70988 displayed recoveries less than the lower control limit for bromomethane at 22.8% and 27.6%. The associated sample results are qualified as estimated.



The initial calibration analyzed on VOA No. 8 displayed a RSD greater than the control limit for PCE. The associated sample results are qualified as estimated.

The continuing calibration analyzed on 3/22/17 at 21:04 displayed %Ds greater than the control limit for 1,4-dioxane at 49.5%, bromomethane at 85.3%, and chloromethane at 43.8%. The associated sample results are qualified as estimated.

Second source calibration verification sample Y7C2913 displayed a %D greater than the control limit for dichlorodifluoromethane at 32.6%. The associated sample results are qualified as "UJ."

The continuing calibration analyzed on 3/28/17 at 16:53 displayed %Ds greater than the control limit for bromomethane at 33%, dichlorodifluoromethane at 35.3%, 1,2,3-trichlorobenzene at 37.6%, 1,2,3-trichloropropane at 43.8%, 1,2,4-trichlorobenzene at 25.5%, and 1,2,4-trimethylbenzene at 22.2%. The associated sample results are qualified as estimated.

## SVOCs by SW-846 Method 8270D and 8720D with SIM:

The continuing calibration analyzed on 3/30/17 at 7:33 displayed %Ds greater than the control limit for 2,4-dinitrophenol (21.5%), 2-methylphenol (26.2%), 3&4-methylphenols (24.5%), 4-nitrophenol (46.3%), acetophenone (32.3%), benzaldehyde (49.3%), bis(2-chloroethoxy)methane (27.4%), hexachlorocyclopentadiene (53.3%), n-nitroso-di-n-propylamine (33.7%) and phenol (28.6%). The associated sample results are qualified as estimated.

LCS/LCSD BC70952 did not recover (i.e., 0%) for benzaldehyde and benzoic acid. The associated sample results are qualified as estimated. In addition, the recovery of 2,3,4,6-tetrachlorophenol was greater than the upper control limit at 193%. The associated sample results were non-detect; qualification is not necessary.

LCS/LCSD BC71312 did not recover for benzoic acid and displayed a recovery less than the control limit for acetophenone at 39.4%. The associated sample results are qualified as "UJ." In addition, the LCS/LCSD displayed recoveries and RPDs greater than the control limit for 4-nitrophenol, benzaldehyde, caprolactam, biphenyl and 2,3,4,6-tetrachlorophenol. The associated sample results were non-detect; qualification is not necessary.

The continuing calibration analyzed on 3/30/17 at 07:33 displayed %Ds greater than the control limit for 2-methylphenol at 26%, 3&4-methylphenols at 25.3%, 3,3'-dichlorobenzidine at 28.2%, 4-nitrophenol at 46.3%, acetophenone at 32.2%, benzaldehyde at 49.3%, benzoic acid at 36.6%, bis(2-chloroisopropyl)ether at 32.5%, hexachlorocyclopentadiene at 57.2%, n-



nitrosodimethylamine at 31.4%, n-nitrosodiphenylamine at 33.6% and phenol at 28.5%. The associated sample results are qualified as estimated.

### Pesticides by SW-846 Method 8081B:

Samples MW07_032217 and MW09_032217 displayed recoveries less thant he lower control limit for TCMX on the primary and secondary chromatography columns. The associated sample results for early-eluting compounds are qualified as "UJ."

### Metals by SW-846 Methods 6010C and 6020A:

CRDL standard Y7C3002-CRL1 displayed recoveries greater than the upper control limit for dissolved copper and lead at 149% and 145%, respectively. The associated sample results are qualified as estimated.

The initial and continuing calibration verifications analyzed in conjunction with sequence Y7E0911 displayed recoveries less than the lower control limit for dissolved selenium and antimony. The associated sample results were non-detect and are qualified as "UJ."

CRDL standard Y7C2201-CRL1 displayed a recovery greater than the upper control limit for dissolved copper at 142%. The associated sample results are qualified as estimated.

Field blank sample GWFB02_032217 displayed positive detections for dissolved calcium (0.0582 mg/L), copper (0.00895 mg/L), iron (0.0287 mg/L), sodium (0.193 mg/L) and zinc (0.0205 mg/L). The associated positive detections are qualified as non-detect.

CRDL standard Y7C2501-CRL1 displayed a recovery greater than the upper control limit for dissolved copper at 150%. The associated sample results are qualified as estimated.

### Hexavalent Chromium by SW-846 Method 7196A:

Sample GWDUP01_031617 was analyzed 12 hours outside of the holding time window. The associated sample result is qualified as "UJ."

### **OTHER DEFICIENCIES:**

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified.

## LANGAN

#### VOCs by SW-846 Method 8260C:

Method blank sample BC71342 displayed positive detections for 1,2,3-trichlorobenzene, acetone and toluene. The associated sample results were either non-detect or orders of magnitude greater than the blank amount; qualification is not necessary.

MS sample MW06_031617 displayed recoveries less than the lower control limit for bromomethane at 28.1% and greater than the upper control limit for methyl acetate at 668%/679%, acrolein at 199%. Data is not qualified on the basis of MS/SD recoveries alone.

The initial calibration analyzed on VOA No. 8 displayed a response factor less than the lower control limit for 1,4-dioxane. 1,4-Dioxane is considered a poor-performer; on the basis of professional judgment, qualification is not necessary.

Method blank sample BC71235 displayed a positive detection for 1,2,3-trichlorobenzene. The associated sample results were either non-detect or orders of magnitude greater than the blank amount; qualification is not necessary.

#### SVOCs by SW-846 Method 8270D and 8720D with SIM:

Sample MW18_032217 did not recover for surrogate phenol-d5. The sample was analyzed at a 20X dilution and the surrogate was diluted out; qualification is not necessary.

Sample MW06_031617 displayed recoveries greater than the control limit for 2-fluorobiphenyl and 2,4,6-tribromophenol. The remaining four acid and base-neutral extractable surrogates recovered within control; qualification is not necessary.

Sample MW12_031617 displayed recoveries greater than the control limit for 2-fluorobiphenyl and 2,4,6-tribromophenol. The remaining four acid and base-neutral extractable surrogates recovered within control; qualification is not necessary.

Sample GWFB01_031617 displayed a recovery greater than the control limit for 2,4,6-tribromophenol. The remaining two acid extractable surrogates recovered within control; qualification is not necessary.

MS/SD sample MW06_031617 displayed recoveries less than the lower control limit for caprolactam at 16.8%/19.5%, naphthalene at 22.7%/23.1%, and recoveries greater than the upper control limit for n-nitrosodiphenylamine at 121%/131% and benzyl butyl phthalate at 130%. In addition, the MS/SD RPDs for phenol and benzyl alcohol were greater than the control limit. Data is not qualified on the basis of MS/SD recoveries or RPDs alone.



Sample MW07_032217 did not recover for surrogate phenol-d5 in the reanalysis. Only naphthalene was reported which is not affected by acid-extractable surrogate recoveries; gualification is not necessary.

Method blank sample BC71312 displayed a positive detection for bis(2-ethylhexyl)phthalate at 0.61 ug/L. The associated positive detection is greater than the RL; qualification is not necessary.

### Pesticides by SW-846 Method 8081B:

LCS/LCSD BC71312 displayed recoveries greater than the control limit for 2,3,4,6-tetrachlorophenol and did not recover (i.e., 0%) for benzoic acid. The LCSD recovery for acetophenone was less than the lower control limit at 39.4%. In addition, the LCS/LCSD RPDs for 4-nitrphenol and benzaldehyde were greater than the control limit. The associated sample results for benzoic acid, caprolactam, and acetophenone are qualified as "UJ."

Samples MW06_031617 and GWDUP01_031617 displayed surrogate retention time shift greater than the control limit for TCMX on the primary and secondary chromatography columns. On the basis of professional judgment, qualification is not required.

Sample MW08_031617 displayed surrogate retention time shift greater than the control limit for DCB on the primary and secondary chromatography columns. On the basis of professional judgment, qualification is not required.

MS sample MW06_031617 displayed recoveries greater than the upper control limit for gamma-chlordane. In addition, the majority of RPDs were greater than the control limit (i.e., 20%). Data is not qualified on the basis of MS recoveries alone.

#### Metals by SW-846 Methods 6010C and 6020A:

ICP interference check sample Y7E0911 displayed a recovery less than the lower control limit for dissolved selenium at 70.3%. The associated sample result was previously qualified; no further action is necessary.

### COMMENTS:

One field duplicate and parent sample pair was collected and analyzed for all parameters. For results less than 5X the RL, analytes meet the precision criteria if the absolute difference is less than  $\pm 1X$  the RL. For results greater than 5X the RL, analytes meet the precision criteria if the RPD is less than or equal to 35%. The following constituents did not meet the precision criteria:



• MW08_031617 and GWDUP01_031617: (pyrene, benzo(g,h,i)perylene, indeno(1,2,3-cd)pyrene, benzo(b)fluoranthene, fluoranthene, benzo(k)fluoranthene, chrysene, benzo(a)pyrene, benzo(a)anthracene, acenaphthene, phenanthrene).

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All of the sample hold times were met and data packages met ASP Category B requirements.

All data are considered usable, as qualified. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 100%.

Signed:

Emily Strake, CEP Senior Project Chemist/Risk Assessor



#### 2700 Kelly Road, Suite 200 Warrington, PA 18976 T: 215.491.6500 F: 215.491.6501 Mailing Address: P.O. Box 1569 Doylestown, PA 18901

To: Paul McMahon, Langan Project Engineer

From: Emily Strake, Langan Senior Project Chemist/Risk Assessor

**Date:** May 23, 2017

Re: Data Usability Summary Report For 473 President Street Groundwater Samples Collected May 2017 Langan Project No.: 170361301

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of groundwater samples collected in May 2017 by Langan Engineering and Environmental Services ("Langan") at the 473 President Street site ("the Site"). The samples were analyzed by Alpha Analytical (NYSDOH ELAP registration # 11148) for volatile organic compounds (VOCs), sulfate, ammonia, nitrate, and phosphorus by the methods specified below.

- VOCs by SW-846 Method 8260C
- Sulfate by SW-846 Method 9038
- Ammonia, Nitrogen by SM 4500NH3-BH
- Nitrite, Nitrite Nitrogen by SM 4500 NO3-F
- Phosphorus by SM 4500P-E

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
L1714721	L1714721-01	MW06D_050617	05/06/17	VOCs, Phosphorus, Nitrate, Sulfate, Ammonia
L1714721	L1714721-02	MW12D_050617	05/06/17	VOCs, Phosphorus, Nitrate, Sulfate, Ammonia
L1714721	L1714721-03	MW20S_050617	05/06/17	VOCs, Phosphorus, Nitrate, Sulfate, Ammonia
L1714721	L1714721-04	MW20D_050617	05/06/17	VOCs, Phosphorus, Nitrate, Sulfate, Ammonia
L1714721	L1714721-05	MW15D_050617	05/06/17	VOCs, Phosphorus, Nitrate, Sulfate, Ammonia
L1714721	L1714721-06	GWTB01_050617	05/06/17	VOCs

### TABLE 1: SAMPLE SUMMARY

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
L1714721	L1714721-07	GWFB01_050617	05/06/17	VOCs
L1714721	L1714721-08	GWDUP01_050617	05/06/17	VOCs

### Validation Overview

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-34A, "Trace Volatile Data Validation" (September 2016, Rev 1), and the USEPA Contract Laboratory Program "National Functional Guidelines for Superfund Organic Methods Data Review" (USEPA-540R-2016-002, September 2016).

Validation includes review of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, sample preservation, sample preparation, instrument tuning, instrument calibration, laboratory blanks, laboratory control samples, system monitoring compounds, internal standard area counts, matrix spike/spike duplicate recoveries, target compound identification and quantification, chromatograms, field duplicate, field blank and trip blank sample results and overall system performance,.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- **R** The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

# LANGAN

If any validation qualifiers are assigned these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are not sufficiently valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

Client Sample ID	Analysis	Analyte	CAS #	Validator Qualifier
MW06D_050617	SW8260C	Chloromethane	74-87-3	UJ
MW06D_050617	SW8260C	Dichlorodifluoromethane	75-71-8	UJ
MW06D_050617	SW8260C	Xylenes	1330-20-7	U (2.5)
MW06D_050617	SW8260C	m,p-Xylene	179601-23-1	U (2.5)
MW06D_050617	SM4500-NH3H	Nitrogen, Ammonia (As N)	7664-41-7	J
MW06D_050617	SM4500-P-E	Phosphorus	7723-14-0	J
MW12D_050617	SW8260C	Chloromethane	74-87-3	UJ
MW12D_050617	SW8260C	Dichlorodifluoromethane	75-71-8	UJ
MW12D_050617	SW8260C	Vinyl Chloride	75-01-4	UJ
MW12D_050617	SM4500-NH3H	Nitrogen, Ammonia (As N)	7664-41-7	J
MW12D_050617	SM4500-P-E	Phosphorus	7723-14-0	J
MW20S_050617	SW8260C	Trans-1,4-Dichloro-2-Butene	110-57-6	UJ
MW20S_050617	SM4500-NH3H	Nitrogen, Ammonia (As N)	7664-41-7	J
MW20S_050617	SM4500-P-E	Phosphorus	7723-14-0	J
MW20D_050617	SW8260C	Trans-1,4-Dichloro-2-Butene	110-57-6	UJ
MW20D_050617	SM4500-NH3H	Nitrogen, Ammonia (As N)	7664-41-7	J
MW20D_050617	SM4500-P-E	Phosphorus	7723-14-0	J
MW15D_050617	SW8260C	Trans-1,4-Dichloro-2-Butene	110-57-6	UJ
MW15D_050617	SM4500-NH3H	Nitrogen, Ammonia (As N)	7664-41-7	J
MW15D_050617	SM4500-P-E	Phosphorus	7723-14-0	J
GWTB01_050617	SW8260C	Chloromethane	74-87-3	UJ
GWTB01_050617	SW8260C	Dichlorodifluoromethane	75-71-8	UJ
GWTB01_050617	SW8260C	Vinyl Chloride	75-01-4	UJ
GWFB01_050617	SW8260C	Chloromethane	74-87-3	UJ
GWFB01_050617	SW8260C	Dichlorodifluoromethane	75-71-8	UJ
GWFB01_050617	SW8260C	Vinyl Chloride	75-01-4	UJ

### **TABLE 2: VALIDATOR-APPLIED QUALIFICATION**



Client Sample ID	Analysis	Analyte	CAS #	Validator Qualifier
GWDUP01_050617	SW8260C	Chloromethane	74-87-3	UJ
GWDUP01_050617	SW8260C	Dichlorodifluoromethane	75-71-8	UJ
GWDUP01_050617	SW8260C	Vinyl Chloride	75-01-4	UJ

### **MAJOR DEFICIENCIES:**

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

#### MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

### VOCs by SW-846 Method 8260C:

Field blank sample GWFB01_050617 displayed positive detections for 1,2,4-trimethylbenzene at 0.82 ug/L and m,p-xylenes at 0.74 ug/L. The associated positive detections are qualified as "U" at the reporting limit.

LCS/LCSD WG1003008 displayed recoveries less than the lower control limit for chloromethane at 60% and dichlorodifluoromethane at 35% and 31%. The associated sample results were non-detect and area qualified as "UJ."

LCS/LCSD WG1003414 displayed a recovery less than the lower control limit for trans-1,4dichloro-2-butene at 68%. The associated sample results were non-detect and are qualified as "UJ."

The continuing calibration analyzed on 5/12/17 at 09:58 displayed %Ds greater than the control limit for dichlorodifluoromethane at 52.9%, chloromethane at 66.5% and vinyl chloride at 38.9%. The associated sample results are qualified as estimated.

#### Ammonia by SM4500-NH3H:

Laboratory duplicate sample MW12D_050617 displayed a RPD greater than the control limit at 28%. The associated positive sample results are qualified as estimated.

#### Phosphate by Method SM4500-P-E:

Laboratory duplicate sample MW06D_050617 displayed a RPD greater than the control limit at 18%. The associated sample results are qualified as estimated.

### **OTHER DEFICIENCIES:**

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified.

### VOCs by SW-846 Method 8260C:

LCS/LCSD WG1003071 displayed recoveries greater than the upper control limit for chloromethane, vinyl chloride, dichlorodifluoromethane, and a RPD greater than the control limit for carbon disulfide. The associated sample results were non-detect; qualification is not necessary.

MS/SD sample MW12D_050617 displayed recoveries and RPDs greater than the control limit for methylene chloride, chloroform, bromodichloromethane, 1,1,2,2-tetrachloroethane, chloromethane, bromomethane, vinyl chloride, 1,2,3-trichloropropane, acrylonitrile, dichlorodifluoromethane, vinyl acetate, 4-methyl-2-pentanone, hexachlorobutadiene, naphthalene, 1,4-dioxane, ethyl ether, and trans-1,4-dichloro-2-butene. In addition, the recovery of tert-butylbenzene was less than the lower control limit at 68%. Data is not qualified on the basis of MS/SD recoveries or RPDs alone.

The continuing calibration analyzed on 5/12/17 at 08:12 displayed %Ds greater than the control limit for dichlorodifluoromethane at 65.1%, and chloromethane at 34.9%. The associated sample results were previously qualified; no further action is necessary.

#### Phosphate by Method SM4500-P-E:

Method blank sample WG1001958 displayed a positive detection for phosphate at 0.009 mg/L. The associated sample results were orders of magnitude greater than the blank amount; qualification is not required.

#### COMMENTS:

One field duplicate and parent sample pair was collected and analyzed for all parameters. For results less than 5X the RL, analytes meet the precision criteria if the absolute difference is less than  $\pm 1X$  the RL. For results greater than 5X the RL, analytes meet the precision criteria if the RPD is less than or equal to 35%. The following constituents did not meet the precision criteria:



• MW12D_050617 and GWDUP01_050617: none.

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All of the sample hold times were met and data packages met ASP Category B requirements.

All data are considered usable, as qualified. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 100%.

Signed:

**Emily Strake, CEP** Senior Project Chemist/Risk Assessor



#### 2700 Kelly Road, Suite 200 Warrington, PA 18976 T: 215.491.6500 F: 215.491.6501 Mailing Address: P.O. Box 1569 Doylestown, PA 18901

To: Paul McMahon, Langan Project Engineer

From: Emily Strake, Langan Senior Project Chemist/Risk Assessor

Date: May 16, 2017

Re: Data Usability Summary Report For 473 President Street Soil Samples Collected March 2017 Langan Project No.: 170361301

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of soil samples collected in March 2017 by Langan Engineering and Environmental Services ("Langan") at the 473 President Street site ("the Site"). The samples were analyzed by York Analytical (NYSDOH ELAP registration # 10854) for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), pesticides, metals including mercury (Hg), cyanide (CN) and hexavalent chromium (CrVI) by the methods specified below.

- VOCs by SW-846 Method 8260C
- SVOCs by SW-846 Method 8270D
- Pesticides by SW-846 Method 8081B
- Total Metals by Method SW-846 6010C
- Mercury by SW-846 Method 7473 and 7471A
- Cyanide by SW-846 Method 9012B
- Hexavalent Chromium by SW-846 Method 7196A
- Percent Moisture by SM2540G

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

### TABLE 1: SAMPLE SUMMARY

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
17C0418	17C0418-01	SB10_6-7	03/09/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0418	17C0418-02	SB10_9-10	03/09/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0418	17C0418-03	SB16_1-2	03/09/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0418	17C0418-04	SB16_9-11	03/09/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0418	17C0418-05	SB10_1-2	03/09/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0418	17C0418-06	SB16_14-15	03/09/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0278	17C0278-01	SB07_4-5	03/07/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0278	17C0278-02	SB07_13-14	03/07/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0278	17C0278-03	SB07_23-24	03/07/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0278	17C0278-04	DUP01_030717	03/07/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0226	17C0226-01	SB13_1-2	03/06/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0226	17C0226-02	SB13_9-10	03/06/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0226	17C0226-03	SB06_2-3	03/06/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0226	17C0226-04	SB06_9-10	03/06/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0226	17C0226-05	SB06_14-15	03/06/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0226	17C0226-06	SB08_1-2	03/06/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0226	17C0226-07	SB08_7-8	03/06/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0226	17C0226-08	SB08_8-9	03/06/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0226	17C0226-09	TB01_030617	03/06/2017	VOCs
17C0343	17C0343-01		03/08/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI



SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
17C0343	17C0343-02	SB17_1-2	03/08/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0343	17C0343-03	SB17_15-16	03/08/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0343	17C0343-04	SB17_7-8	03/08/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0343	17C0343-05	SB15_1-2	03/08/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0343	17C0343-06	SB15_7-8	03/08/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0343	17C0343-07	SB15_10-11	03/08/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0343	17C0343-08	SB14_1-2	03/08/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0343	17C0343-09	SB14_10-11	03/08/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0343	17C0343-10	SB09_10-11	03/08/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0343	17C0343-11	SB09_1-2	03/08/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0343	17C0343-12	SB12_1-2	03/08/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0343	17C0343-13	SB12_9-10	03/08/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0464	17C0464-01	SB19_10-11	03/10/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0464	17C0464-02	SB19_20-21	03/10/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0464	17C0464-03	SB11_15-16	03/10/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0464	17C0464-04	SB11_2-4	03/10/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0464	17C0464-05	SB18_10-11	03/10/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0464	17C0464-06	SB18_23-24	03/10/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0464	17C0464-07	SB19_17-18	03/10/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M
17C0464	17C0464-08	SOTB01_03101 7	03/10/2017	VOCs

LANGAN

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
17C0464	17C0464-9	/		VOCs, SVOCs, Pesticides, Metals, CN, CrVI
17C0464	17C0464-10	DUP02_031017	03/10/2017	VOCs, SVOCs, Pesticides, Metals, CN, CrVI, %M

### Validation Overview

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-34A, "Trace Volatile Data Validation" (September 2016, Rev 1), USEPA Region II SOP #HW-35A, "Semivolatile Data Validation" (September 2016, Rev 1), USEPA Region II SOP #HW-37A, "Pesticide Data Validation" (October 2016, Rev 1), USEPA Region II SOP #HW-3a, "ICP-AES Data Validation" (September 2016, Rev 1), USEPA Region II SOP #HW-3a, "ICP-AES Data Validation" (September 2016, Rev 1), USEPA Region II SOP #HW-3a, "ICP-AES Data Validation" (September 2016, Rev 1), USEPA Region II SOP #HW3c, "Mercury and Cyanide Data Validation," (September 2016, Rev 1), the USEPA Contract Laboratory Program "National Functional Guidelines for Superfund Organic Methods Data Review" (USEPA-540R-2016-002, September 2016), and the "National Functional Guidelines for Inorganic Superfund Data Review" (USEPA-540R-2016-001, September 2016).

Validation includes review of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, sample preservation, sample extraction and digestion, instrument tuning, instrument calibration, laboratory blanks, laboratory control samples, system monitoring compounds, internal standard area counts, matrix spike/spike duplicate recoveries, target compound identification and quantification, chromatograms, overall system performance, serial dilutions, dual column performance, field duplicate, field blank and trip blank sample results.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- **R** The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.



- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are not sufficiently valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

Client Sample ID	Analysis	Analyte	CAS #	Validator Qualifier
DUP01_030717	SW6010B	Silver	7440-22-4	UJ
DUP01_030717	SW8260B	Methyl Isobutyl Ketone (4- Methyl-2-Pentanone)	108-10-1	J
DUP01_030717	SW8260B	Cyclohexane	110-82-7	J
DUP01_030717	SW8260B	Cis-1,2-Dichloroethylene	156-59-2	J
DUP01_030717	SW8260B	1,2,4-Trimethylbenzene	95-63-6	J
DUP01_030717	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB07_13-14	SW6010B	Silver	7440-22-4	UJ
SB07_13-14	SW8260B	Cyclohexane	110-82-7	J
SB07_13-14	SW8260B	Benzene	71-43-2	J
SB07_13-14	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB07_23-24	SW6010B	Manganese	7439-96-5	J
SB07_23-24	SW6010B	Silver	7440-22-4	UJ
SB07_23-24	SW7196A	Chromium, Hexavalent	18540-29-9	UJ
SB07_23-24	SW8260B	N-Propylbenzene	103-65-1	J
SB07_23-24	SW8260B	1,2-Dichloroethane	107-06-2	UJ
SB07_23-24	SW8260B	Methyl Isobutyl Ketone (4- Methyl-2-Pentanone)	108-10-1	UJ

### TABLE 2: VALIDATOR-APPLIED QUALIFICATION



Client Sample ID	Analysis	Analyte	CAS #	Validator Qualifier
SB07_23-24	SW8260B	Cis-1,2-Dichloroethylene	156-59-2	J
SB07_23-24	SW8260B	1,1,1-Trichloroethane	71-55-6	UJ
SB07_23-24	SW8260B	Cyclohexane	110-82-7	J
SB07_23-24	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB07_4-5	SW6010B	Silver	7440-22-4	UJ
SB07_4-5	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB06_14-15	SW8081B	Endosulfan Sulfate	1031-07-8	UJ
SB06_14-15	SW8081B	Beta Endosulfan	33213-65-9	UJ
SB06_14-15	SW8081B	P,P'-DDT	50-29-3	UJ
SB06_14-15	SW8081B	Endrin Ketone	53494-70-5	UJ
SB06_14-15	SW8081B	Dieldrin	60-57-1	UJ
SB06_14-15	SW8081B	Endrin	72-20-8	UJ
SB06_14-15	SW8081B	Methoxychlor	72-43-5	UJ
SB06_14-15	SW8081B	P,P'-DDD	72-54-8	UJ
SB06_14-15	SW8081B	P,P'-DDE	72-55-9	UJ
SB06_14-15	SW8081B	Endrin Aldehyde	7421-93-4	UJ
SB06_14-15	SW8081B	Alpha Endosulfan	959-98-8	UJ
SB06_14-15	SW8270C	Benzo(G,H,I)Perylene	191-24-2	UJ
SB06_14-15	SW8270C	Indeno(1,2,3-C,D)Pyrene	193-39-5	UJ
SB06_14-15	SW8270C	2,4-Dinitrophenol	51-28-5	UJ
SB06_14-15	SW8270C	4,6-Dinitro-2-Methylphenol	534-52-1	UJ
SB06_14-15	SW8270C	Dibenz(A,H)Anthracene	53-70-3	UJ
SB06_14-15	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB06_2-3	SW8260B	Acetone	67-64-1	U (0.018)
SB06_2-3	SW8270C	Benzo(G,H,I)Perylene	191-24-2	J
SB06_2-3	SW8270C	Indeno(1,2,3-C,D)Pyrene	193-39-5	J
SB06_2-3	SW8270C	2,4-Dinitrophenol	51-28-5	UJ
SB06_2-3	SW8270C	4,6-Dinitro-2-Methylphenol	534-52-1	UJ
SB06_2-3	SW8270C	Dibenz(A,H)Anthracene	53-70-3	J
SB06_2-3	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB06_2-3	SW8270C	Carbazole	86-74-8	J
SB06_9-10	SW8270C	Benzo(G,H,I)Perylene	191-24-2	UJ



Client Sample ID	Analysis	Analyte	CAS #	Validator Qualifier
SB06_9-10	SW8270C	Indeno(1,2,3-C,D)Pyrene	193-39-5	UJ
SB06_9-10	SW8270C	2,4-Dinitrophenol	51-28-5	UJ
SB06_9-10	SW8270C	4,6-Dinitro-2-Methylphenol	534-52-1	UJ
SB06_9-10	SW8270C	Dibenz(A,H)Anthracene	53-70-3	UJ
SB06_9-10	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB08_1-2	SW6010B	Selenium	7782-49-2	J
SB08_1-2	SW8260B	Dibromochloromethane	124-48-1	UJ
SB08_1-2	SW8260B	Tetrachloroethylene (PCE)	127-18-4	UJ
SB08_1-2	SW8260B	Cis-1,2-Dichloroethylene	156-59-2	UJ
SB08_1-2	SW8260B	Trans-1,2-Dichloroethene	156-60-5	UJ
SB08_1-2	SW8260B	Chloroform	67-66-3	UJ
SB08_1-2	SW8260B	1,1,1-Trichloroethane	71-55-6	UJ
SB08_1-2	SW8260B	1,1-Dichloroethene	75-35-4	UJ
SB08_1-2	SW8260B	Dichlorodifluoromethane	75-71-8	UJ
SB08_1-2	SW8260B	Methyl Ethyl Ketone (2- Butanone)	78-93-3	UJ
SB08_1-2	SW8270C	2,4-Dinitrophenol	51-28-5	UJ
SB08_1-2	SW8270C	4,6-Dinitro-2-Methylphenol	534-52-1	UJ
SB08_1-2	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB08_1-2	SW8270C	Benzo(G,H,I)Perylene	191-24-2	J
SB08_1-2	SW8270C	Indeno(1,2,3-C,D)Pyrene	193-39-5	J
SB08_1-2	SW8270C	Dibenz(A,H)Anthracene	53-70-3	J
SB08_1-2	SW8270C	Carbazole	86-74-8	J
SB08_7-8	SW8260B	Acetone	67-64-1	U (0.0082)
SB08_7-8	SW8270C	Benzo(G,H,I)Perylene	191-24-2	UJ
SB08_7-8	SW8270C	Indeno(1,2,3-C,D)Pyrene	193-39-5	UJ
SB08_7-8	SW8270C	2,4-Dinitrophenol	51-28-5	UJ
SB08_7-8	SW8270C	4,6-Dinitro-2-Methylphenol	534-52-1	UJ
SB08_7-8	SW8270C	Dibenz(A,H)Anthracene	53-70-3	UJ
SB08_7-8	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB08_8-9	SW6010B	Copper	7440-50-8	J
SB08_8-9	SW8270C	Benzo(G,H,I)Perylene	191-24-2	UJ
SB08_8-9	SW8270C	Indeno(1,2,3-C,D)Pyrene	193-39-5	UJ



Client Sample ID	Analysis	Analyte	CAS #	Validator Qualifier
SB08_8-9	SW8270C	2,4-Dinitrophenol	51-28-5	UJ
SB08_8-9	SW8270C	4,6-Dinitro-2-Methylphenol	534-52-1	UJ
SB08_8-9	SW8270C	Dibenz(A,H)Anthracene	53-70-3	UJ
SB08_8-9	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB13_1-2	SW8260B	Acetone	67-64-1	U (0.0095)
SB13_1-2	SW8270C	Benzo(G,H,I)Perylene	191-24-2	J
SB13_1-2	SW8270C	Indeno(1,2,3-C,D)Pyrene	193-39-5	J
SB13_1-2	SW8270C	2,4-Dinitrophenol	51-28-5	UJ
SB13_1-2	SW8270C	4,6-Dinitro-2-Methylphenol	534-52-1	UJ
SB13_1-2	SW8270C	Dibenz(A,H)Anthracene	53-70-3	J
SB13_1-2	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB13_9-10	SW8260B	Acetone	67-64-1	U (0.0067)
SB13_9-10	SW8270C	Benzo(G,H,I)Perylene	191-24-2	UJ
SB13_9-10	SW8270C	Indeno(1,2,3-C,D)Pyrene	193-39-5	UJ
SB13_9-10	SW8270C	2,4-Dinitrophenol	51-28-5	UJ
SB13_9-10	SW8270C	4,6-Dinitro-2-Methylphenol	534-52-1	UJ
SB13_9-10	SW8270C	Dibenz(A,H)Anthracene	53-70-3	UJ
SB13_9-10	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
TB01_030617	SW8260B	Bromomethane	74-83-9	UJ
TB01_030617	SW8260B	Chloromethane	74-87-3	UJ
TB01_030617	SW8260B	Hexachlorobutadiene	87-68-3	UJ
SB10_1-2	SW6010B	Silver	7440-22-4	UJ
SB10_1-2	SW6010B	Selenium	7782-49-2	UJ
SB10_1-2	SW8260B	Ethylbenzene	100-41-4	R
SB10_1-2	SW8260B	Styrene	100-42-5	R
SB10_1-2	SW8260B	Cis-1,3-Dichloropropene	10061-01-5	R
SB10_1-2	SW8260B	Trans-1,3-Dichloropropene	10061-02-6	R
SB10_1-2	SW8260B	N-Propylbenzene	103-65-1	R
SB10_1-2	SW8260B	N-Butylbenzene	104-51-8	R
SB10_1-2	SW8260B	1,4-Dichlorobenzene	106-46-7	R
SB10_1-2	SW8260B	1,2-Dibromoethane (Ethylene Dibromide)	106-93-4	R

Client Sample ID	Analysis	Analyte	CAS #	Validator Qualifier
SB10_1-2	SW8260B	Methyl Isobutyl Ketone (4- Methyl-2-Pentanone)	108-10-1	R
SB10_1-2	SW8260B	1,3,5-Trimethylbenzene (Mesitylene)	108-67-8	R
SB10_1-2	SW8260B	Methylcyclohexane	108-87-2	R
SB10_1-2	SW8260B	Toluene	108-88-3	R
SB10_1-2	SW8260B	Chlorobenzene	108-90-7	R
SB10_1-2	SW8260B	1,2,4-Trichlorobenzene	120-82-1	R
SB10_1-2	SW8260B	1,4-Dioxane (P-Dioxane)	123-91-1	R
SB10_1-2	SW8260B	Dibromochloromethane	124-48-1	R
SB10_1-2	SW8260B	Tetrachloroethylene (PCE)	127-18-4	R
SB10_1-2	SW8260B	Sec-Butylbenzene	135-98-8	R
SB10_1-2	SW8260B	m,p-Xylene	179601-23-1	R
SB10_1-2	SW8260B	1,3-Dichlorobenzene	541-73-1	R
SB10_1-2	SW8260B	2-Hexanone	591-78-6	R
SB10_1-2	SW8260B	1,1,1,2-Tetrachloroethane	630-20-6	R
SB10_1-2	SW8260B	Bromoform	75-25-2	R
SB10_1-2	SW8260B	Bromodichloromethane	75-27-4	R
SB10_1-2	SW8260B	1,2-Dichloropropane	78-87-5	R
SB10_1-2	SW8260B	1,1,2-Trichloroethane	79-00-5	R
SB10_1-2	SW8260B	Trichloroethylene (TCE)	79-01-6	J
SB10_1-2	SW8260B	1,1,2,2-Tetrachloroethane	79-34-5	R
SB10_1-2	SW8260B	1,2,3-Trichlorobenzene	87-61-6	R
SB10_1-2	SW8260B	Hexachlorobutadiene	87-68-3	R
SB10_1-2	SW8260B	O-Xylene (1,2- Dimethylbenzene)	95-47-6	R
SB10_1-2	SW8260B	1,2-Dichlorobenzene	95-50-1	R
SB10_1-2	SW8260B	1,2,4-Trimethylbenzene	95-63-6	R
SB10_1-2	SW8260B	1,2-Dibromo-3- Chloropropane	96-12-8	R
SB10_1-2	SW8260B	1,2,3-Trichloropropane	96-18-4	R
SB10_1-2	SW8260B	T-Butylbenzene	98-06-6	R
SB10_1-2	SW8260B	Isopropylbenzene (Cumene)	98-82-8	R

LANGAN

Data Usability Summary Report For 473 President Street 2017 Soil Samples Langan Project No.: 170361301 May 16, 2017 Page 10 of 30

Client Sample ID	Analysis	Analyte	CAS #	Validator Qualifier
SB10_1-2	SW8260B	P-Cymene (P- Isopropyltoluene)	CYMP	R
SB10_1-2	SW8260B	Xylenes, Total	XYLENES	R
SB10_1-2	SW8270C	4-Chloroaniline	106-47-8	UJ
SB10_1-2	SW8270C	Indeno(1,2,3-C,D)Pyrene	193-39-5	UJ
SB10_1-2	SW8270C	2,4-Dinitrophenol	51-28-5	UJ
SB10_1-2	SW8270C	4,6-Dinitro-2-Methylphenol	534-52-1	UJ
SB10_1-2	SW8270C	Dibenz(A,H)Anthracene	53-70-3	UJ
SB10_1-2	SW8270C	Benzoic Acid	65-85-0	UJ
SB10_1-2	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB10_6-7	SW6010B	Silver	7440-22-4	UJ
SB10_6-7	SW6010B	Selenium	7782-49-2	UJ
SB10_6-7	SW8260B	Ethylbenzene	100-41-4	UJ
SB10_6-7	SW8260B	Styrene	100-42-5	UJ
SB10_6-7	SW8260B	Cis-1,3-Dichloropropene	10061-01-5	UJ
SB10_6-7	SW8260B	Trans-1,3-Dichloropropene	10061-02-6	UJ
SB10_6-7	SW8260B	N-Propylbenzene	103-65-1	UJ
SB10_6-7	SW8260B	N-Butylbenzene	104-51-8	UJ
SB10_6-7	SW8260B	1,4-Dichlorobenzene	106-46-7	UJ
SB10_6-7	SW8260B	1,2-Dibromoethane (Ethylene Dibromide)	106-93-4	UJ
SB10_6-7	SW8260B	Methyl Isobutyl Ketone (4- Methyl-2-Pentanone)	108-10-1	UJ
SB10_6-7	SW8260B	1,3,5-Trimethylbenzene (Mesitylene)	108-67-8	UJ
SB10_6-7	SW8260B	Methylcyclohexane	108-87-2	J
SB10_6-7	SW8260B	Toluene	108-88-3	UJ
SB10_6-7	SW8260B	Chlorobenzene	108-90-7	UJ
SB10_6-7	SW8260B	1,2,4-Trichlorobenzene	120-82-1	UJ
SB10_6-7	SW8260B	1,4-Dioxane (P-Dioxane)	123-91-1	UJ
SB10_6-7	SW8260B	Dibromochloromethane	124-48-1	UJ
SB10_6-7	SW8260B	Tetrachloroethylene (PCE)	127-18-4	UJ
SB10_6-7	SW8260B	Sec-Butylbenzene	135-98-8	UJ
SB10_6-7	SW8260B	m,p-Xylene	179601-23-1	UJ



Client Sample ID	Analysis	Analyte	CAS #	Validator Qualifier
SB10_6-7	SW8260B	1,3-Dichlorobenzene	541-73-1	UJ
SB10_6-7	SW8260B	2-Hexanone	591-78-6	UJ
SB10_6-7	SW8260B	1,1,1,2-Tetrachloroethane	630-20-6	UJ
SB10_6-7	SW8260B	Bromoform	75-25-2	UJ
SB10_6-7	SW8260B	Bromodichloromethane	75-27-4	UJ
SB10_6-7	SW8260B	1,2-Dichloropropane	78-87-5	UJ
SB10_6-7	SW8260B	1,1,2-Trichloroethane	79-00-5	UJ
SB10_6-7	SW8260B	Trichloroethylene (TCE)	79-01-6	UJ
SB10_6-7	SW8260B	Methyl Acetate	79-20-9	UJ
SB10_6-7	SW8260B	1,1,2,2-Tetrachloroethane	79-34-5	UJ
SB10_6-7	SW8260B	1,2,3-Trichlorobenzene	87-61-6	UJ
SB10_6-7	SW8260B	Hexachlorobutadiene	87-68-3	UJ
SB10_6-7	SW8260B	O-Xylene (1,2- Dimethylbenzene)	95-47-6	UJ
SB10_6-7	SW8260B	1,2-Dichlorobenzene	95-50-1	UJ
SB10_6-7	SW8260B	1,2,4-Trimethylbenzene	95-63-6	UJ
SB10_6-7	SW8260B	1,2-Dibromo-3- Chloropropane	96-12-8	UJ
SB10_6-7	SW8260B	1,2,3-Trichloropropane	96-18-4	UJ
SB10_6-7	SW8260B	T-Butylbenzene	98-06-6	UJ
SB10_6-7	SW8260B	Isopropylbenzene (Cumene)	98-82-8	UJ
SB10_6-7	SW8260B	P-Cymene (P- Isopropyltoluene)	CYMP	UJ
SB10_6-7	SW8260B	Xylenes, Total	XYLENES	UJ
SB10_6-7	SW8270C	Benzaldehyde	100-52-7	UJ
SB10_6-7	SW8270C	4-Chloroaniline	106-47-8	UJ
SB10_6-7	SW8270C	Benzo(G,H,I)Perylene	191-24-2	UJ
SB10_6-7	SW8270C	Indeno(1,2,3-C,D)Pyrene	193-39-5	UJ
SB10_6-7	SW8270C	2,4-Dinitrophenol	51-28-5	UJ
SB10_6-7	SW8270C	4,6-Dinitro-2-Methylphenol	534-52-1	UJ
SB10_6-7	SW8270C	Dibenz(A,H)Anthracene	53-70-3	UJ
SB10_6-7	SW8270C	Benzoic Acid	65-85-0	UJ
SB10_6-7	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ



Data Usability Summary Report For 473 President Street 2017 Soil Samples Langan Project No.: 170361301 May 16, 2017 Page 12 of 30

Client Sample ID	Analysis	Analyte	CAS #	Validator Qualifier
SB10_6-7	SW8270C	Benzidine	92-87-5	UJ
SB10_6-7	SW8270C	3-Nitroaniline	99-09-2	UJ
SB10_9-10	SW6010B	Silver	7440-22-4	UJ
SB10_9-10	SW6010B	Selenium	7782-49-2	UJ
SB10_9-10	SW8270C	4-Chloroaniline	106-47-8	UJ
SB10_9-10	SW8270C	Indeno(1,2,3-C,D)Pyrene	193-39-5	UJ
SB10_9-10	SW8270C	2,4-Dinitrophenol	51-28-5	UJ
SB10_9-10	SW8270C	4,6-Dinitro-2-Methylphenol	534-52-1	UJ
SB10_9-10	SW8270C	Dibenz(A,H)Anthracene	53-70-3	UJ
SB10_9-10	SW8270C	Benzoic Acid	65-85-0	UJ
SB10_9-10	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB16_1-2	SW6010B	Silver	7440-22-4	UJ
SB16_1-2	SW6010B	Selenium	7782-49-2	J
SB16_1-2	SW8270C	4-Chloroaniline	106-47-8	UJ
SB16_1-2	SW8270C	Indeno(1,2,3-C,D)Pyrene	193-39-5	UJ
SB16_1-2	SW8270C	2,4-Dinitrophenol	51-28-5	UJ
SB16_1-2	SW8270C	4,6-Dinitro-2-Methylphenol	534-52-1	UJ
SB16_1-2	SW8270C	Dibenz(A,H)Anthracene	53-70-3	UJ
SB16_1-2	SW8270C	Benzoic Acid	65-85-0	UJ
SB16_1-2	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB16_14-15	SW6010B	Silver	7440-22-4	UJ
SB16_14-15	SW6010B	Selenium	7782-49-2	J
SB16_14-15	SW8270C	4-Chloroaniline	106-47-8	UJ
SB16_14-15	SW8270C	Indeno(1,2,3-C,D)Pyrene	193-39-5	UJ
SB16_14-15	SW8270C	2,4-Dinitrophenol	51-28-5	UJ
SB16_14-15	SW8270C	4,6-Dinitro-2-Methylphenol	534-52-1	UJ
SB16_14-15	SW8270C	Dibenz(A,H)Anthracene	53-70-3	UJ
SB16_14-15	SW8270C	Benzoic Acid	65-85-0	UJ
SB16_14-15	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB16_9-11	SW6010B	Silver	7440-22-4	UJ
SB16_9-11	SW8270C	4-Chloroaniline	106-47-8	UJ
SB16_9-11	SW8270C	Indeno(1,2,3-C,D)Pyrene	193-39-5	UJ



Client Sample ID	Analysis	Analyte	CAS #	Validator Qualifier
SB16_9-11	SW8270C	2,4-Dinitrophenol	51-28-5	UJ
SB16_9-11	SW8270C	4,6-Dinitro-2-Methylphenol	534-52-1	UJ
SB16_9-11	SW8270C	Dibenz(A,H)Anthracene	53-70-3	UJ
SB16_9-11	SW8270C	Benzoic Acid	65-85-0	UJ
SB16_9-11	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB09_10-11	SW8270C	4-Chloroaniline	106-47-8	UJ
SB09_10-11	SW8270C	Benzo(G,H,I)Perylene	191-24-2	UJ
SB09_10-11	SW8270C	Indeno(1,2,3-C,D)Pyrene	193-39-5	UJ
SB09_10-11	SW8270C	2,4-Dinitrophenol	51-28-5	UJ
SB09_10-11	SW8270C	4,6-Dinitro-2-Methylphenol	534-52-1	UJ
SB09_10-11	SW8270C	Dibenz(A,H)Anthracene	53-70-3	UJ
SB09_10-11	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB09_10-11	SW8270C	Benzidine	92-87-5	UJ
SB09_10-11	SW8270C	3-Nitroaniline	99-09-2	UJ
SB09_1-2	SW8270C	4-Chloroaniline	106-47-8	UJ
SB09_1-2	SW8270C	Benzo(G,H,I)Perylene	191-24-2	UJ
SB09_1-2	SW8270C	Indeno(1,2,3-C,D)Pyrene	193-39-5	UJ
SB09_1-2	SW8270C	2,4-Dinitrophenol	51-28-5	UJ
SB09_1-2	SW8270C	4,6-Dinitro-2-Methylphenol	534-52-1	UJ
SB09_1-2	SW8270C	Dibenz(A,H)Anthracene	53-70-3	UJ
SB09_1-2	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB09_1-2	SW8270C	Benzidine	92-87-5	UJ
SB09_1-2	SW8270C	3-Nitroaniline	99-09-2	UJ
SB12_1-2	SW8270C	4-Chloroaniline	106-47-8	UJ
SB12_1-2	SW8270C	Benzo(G,H,I)Perylene	191-24-2	J
SB12_1-2	SW8270C	Indeno(1,2,3-C,D)Pyrene	193-39-5	J
SB12_1-2	SW8270C	2,4-Dinitrophenol	51-28-5	UJ
SB12_1-2	SW8270C	4,6-Dinitro-2-Methylphenol	534-52-1	UJ
SB12_1-2	SW8270C	Dibenz(A,H)Anthracene	53-70-3	J
SB12_1-2	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB12_1-2	SW8270C	Carbazole	86-74-8	J
SB12_1-2	SW8270C	Benzidine	92-87-5	UJ



Data Usability Summary Report For 473 President Street 2017 Soil Samples Langan Project No.: 170361301 May 16, 2017 Page 14 of 30

Client Sample ID	Analysis	Analyte	CAS #	Validator Qualifier
SB12_1-2	SW8270C	3-Nitroaniline	99-09-2	UJ
SB12_9-10	SW8260B	Acetone	67-64-1	U (0.0094)
SB12_9-10	SW8270C	4-Chloroaniline	106-47-8	UJ
SB12_9-10	SW8270C	Benzo(G,H,I)Perylene	191-24-2	UJ
SB12_9-10	SW8270C	Indeno(1,2,3-C,D)Pyrene	193-39-5	UJ
SB12_9-10	SW8270C	2,4-Dinitrophenol	51-28-5	UJ
SB12_9-10	SW8270C	4,6-Dinitro-2-Methylphenol	534-52-1	UJ
SB12_9-10	SW8270C	Dibenz(A,H)Anthracene	53-70-3	UJ
SB12_9-10	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB12_9-10	SW8270C	Benzidine	92-87-5	UJ
SB12_9-10	SW8270C	3-Nitroaniline	99-09-2	UJ
SB14_10-11	SW8270C	4-Chloroaniline	106-47-8	UJ
SB14_10-11	SW8270C	Benzo(G,H,I)Perylene	191-24-2	UJ
SB14_10-11	SW8270C	Indeno(1,2,3-C,D)Pyrene	193-39-5	UJ
SB14_10-11	SW8270C	2,4-Dinitrophenol	51-28-5	UJ
SB14_10-11	SW8270C	4,6-Dinitro-2-Methylphenol	534-52-1	UJ
SB14_10-11	SW8270C	Dibenz(A,H)Anthracene	53-70-3	UJ
SB14_10-11	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB14_10-11	SW8270C	Benzidine	92-87-5	UJ
SB14_10-11	SW8270C	3-Nitroaniline	99-09-2	UJ
SB14_1-2	SW8270C	4-Chloroaniline	106-47-8	UJ
SB14_1-2	SW8270C	2,4-Dinitrophenol	51-28-5	UJ
SB14_1-2	SW8270C	4,6-Dinitro-2-Methylphenol	534-52-1	UJ
SB14_1-2	SW8270C	Dibenz(A,H)Anthracene	53-70-3	J
SB14_1-2	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB14_1-2	SW8270C	Benzidine	92-87-5	UJ
SB14_1-2	SW8270C	3-Nitroaniline	99-09-2	UJ
SB14_1-2	SW8270C	Indeno(1,2,3-C,D)Pyrene	193-39-5	J
SB14_1-2	SW8270C	Carbazole	86-74-8	J
SB15_10-11	SW7196A	Chromium, Hexavalent	18540-29-9	UJ
SB15_10-11	SW8260B	Acetone	67-64-1	U (0.0089)
SB15_10-11	SW8270C	4-Chloroaniline	106-47-8	UJ

LANGAN

Client Sample ID	Analysis	Analyte	CAS #	Validator Qualifier
SB15_10-11	SW8270C	Benzo(G,H,I)Perylene	191-24-2	UJ
SB15_10-11	SW8270C	Indeno(1,2,3-C,D)Pyrene	193-39-5	UJ
SB15_10-11	SW8270C	2,4-Dinitrophenol	51-28-5	UJ
SB15_10-11	SW8270C	4,6-Dinitro-2-Methylphenol	534-52-1	UJ
SB15_10-11	SW8270C	Dibenz(A,H)Anthracene	53-70-3	UJ
SB15_10-11	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB15_10-11	SW8270C	Benzidine	92-87-5	UJ
SB15_10-11	SW8270C	3-Nitroaniline	99-09-2	UJ
SB15_1-2	SW8260B	Acetone	67-64-1	U (0.0089)
SB15_1-2	SW8270C	4-Chloroaniline	106-47-8	UJ
SB15_1-2	SW8270C	Benzo(G,H,I)Perylene	191-24-2	UJ
SB15_1-2	SW8270C	Indeno(1,2,3-C,D)Pyrene	193-39-5	UJ
SB15_1-2	SW8270C	2,4-Dinitrophenol	51-28-5	UJ
SB15_1-2	SW8270C	4,6-Dinitro-2-Methylphenol	534-52-1	UJ
SB15_1-2	SW8270C	Dibenz(A,H)Anthracene	53-70-3	UJ
SB15_1-2	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB15_1-2	SW8270C	Benzidine	92-87-5	UJ
SB15_1-2	SW8270C	3-Nitroaniline	99-09-2	UJ
SB15_7-8	SW8270C	4-Chloroaniline	106-47-8	UJ
SB15_7-8	SW8270C	Indeno(1,2,3-C,D)Pyrene	193-39-5	UJ
SB15_7-8	SW8270C	2,4-Dinitrophenol	51-28-5	UJ
SB15_7-8	SW8270C	4,6-Dinitro-2-Methylphenol	534-52-1	UJ
SB15_7-8	SW8270C	Dibenz(A,H)Anthracene	53-70-3	UJ
SB15_7-8	SW8270C	Benzoic Acid	65-85-0	UJ
SB15_7-8	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB15_7-8	SW8270C	Benzidine	92-87-5	UJ
SB15_7-8	SW8270C	3-Nitroaniline	99-09-2	UJ
SB17_1-2	SW8260B	Acetone	67-64-1	U (0.008)
SB17_1-2	SW8270C	4-Chloroaniline	106-47-8	UJ
SB17_1-2	SW8270C	Benzo(G,H,I)Perylene	191-24-2	UJ
SB17_1-2	SW8270C	Indeno(1,2,3-C,D)Pyrene	193-39-5	UJ
SB17_1-2	SW8270C	2,4-Dinitrophenol	51-28-5	UJ



Client Sample ID	Analysis	Analyte	CAS #	Validator Qualifier
SB17_1-2	SW8270C	4,6-Dinitro-2-Methylphenol	534-52-1	UJ
SB17_1-2	SW8270C	Dibenz(A,H)Anthracene	53-70-3	UJ
SB17_1-2	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB17_1-2	SW8270C	Benzidine	92-87-5	UJ
SB17_1-2	SW8270C	3-Nitroaniline	99-09-2	UJ
SB17_15-16	SW8270C	4-Chloroaniline	106-47-8	UJ
SB17_15-16	SW8270C	Benzo(G,H,I)Perylene	191-24-2	UJ
SB17_15-16	SW8270C	Indeno(1,2,3-C,D)Pyrene	193-39-5	UJ
SB17_15-16	SW8270C	2,4-Dinitrophenol	51-28-5	UJ
SB17_15-16	SW8270C	4,6-Dinitro-2-Methylphenol	534-52-1	UJ
SB17_15-16	SW8270C	Dibenz(A,H)Anthracene	53-70-3	UJ
SB17_15-16	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB17_15-16	SW8270C	Benzidine	92-87-5	UJ
SB17_15-16	SW8270C	3-Nitroaniline	99-09-2	UJ
SB17_7-8	SW8260B	Acetone	67-64-1	U (0.0088)
SB17_7-8	SW8270C	4-Chloroaniline	106-47-8	UJ
SB17_7-8	SW8270C	2,4-Dinitrophenol	51-28-5	UJ
SB17_7-8	SW8270C	4,6-Dinitro-2-Methylphenol	534-52-1	UJ
SB17_7-8	SW8270C	Dibenz(A,H)Anthracene	53-70-3	J
SB17_7-8	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB17_7-8	SW8270C	Carbazole	86-74-8	J
SB17_7-8	SW8270C	Benzidine	92-87-5	UJ
SB17_7-8	SW8270C	3-Nitroaniline	99-09-2	UJ
SB17_7-8	SW8270C	Indeno(1,2,3-C,D)Pyrene	193-39-5	J
SOFB01_030817	SW6010B	Aluminum	7429-90-5	UJ
SOFB01_030817	SW6010B	Copper	7440-50-8	J
SOFB01_030817	SW8260B	1,2-Dichloroethane	107-06-2	UJ
SOFB01_030817	SW8270C	Pentachlorophenol	87-86-5	UJ
DUP02_031017	SW6010B	Silver	7440-22-4	UJ
DUP02_031017	SW8260B	Ethylbenzene	100-41-4	J
DUP02_031017	SW8260B	1,3,5-Trimethylbenzene (Mesitylene)	108-67-8	J
DUP02_031017	SW8260B	Methylcyclohexane	108-87-2	J



Client Sample ID	Analysis	Analyte	CAS #	Validator Qualifier
DUP02_031017	SW8260B	Cyclohexane	110-82-7	J
DUP02_031017	SW8260B	Tetrachloroethylene (PCE)	127-18-4	J
DUP02_031017	SW8260B	m,p-Xylene	179601-23-1	J
DUP02_031017	SW8260B	Acetone	67-64-1	U (0.0086)
DUP02_031017	SW8260B	O-Xylene (1,2- Dimethylbenzene)	95-47-6	J
DUP02_031017	SW8260B	1,2,4-Trimethylbenzene	95-63-6	J
DUP02_031017	SW8260B	Isopropylbenzene (Cumene)	98-82-8	J
DUP02_031017	SW8260B	P-Cymene (P- Isopropyltoluene)	CYMP	J
DUP02_031017	SW8260B	Xylenes, Total	XYLENES	J
DUP02_031017	SW8270C	Benzaldehyde	100-52-7	UJ
DUP02_031017	SW8270C	Bis(2-Chloroisopropyl) Ether	108-60-1	UJ
DUP02_031017	SW8270C	Phenol	108-95-2	UJ
DUP02_031017	SW8270C	Aniline	62-53-3	UJ
DUP02_031017	SW8270C	Hexachloroethane	67-72-1	UJ
DUP02_031017	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
DUP02_031017	SW8270C	Pentachlorophenol	87-86-5	UJ
DUP02_031017	SW8270C	1,2,4,5-Tetrachlorobenzene	95-94-3	UJ
SB11_15-16	SW6010B	Silver	7440-22-4	UJ
SB11_15-16	SW8270C	Benzaldehyde	100-52-7	UJ
SB11_15-16	SW8270C	Bis(2-Chloroisopropyl) Ether	108-60-1	UJ
SB11_15-16	SW8270C	Phenol	108-95-2	UJ
SB11_15-16	SW8270C	Aniline	62-53-3	UJ
SB11_15-16	SW8270C	Hexachloroethane	67-72-1	UJ
SB11_15-16	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB11_15-16	SW8270C	Pentachlorophenol	87-86-5	UJ
SB11_15-16	SW8270C	1,2,4,5-Tetrachlorobenzene	95-94-3	UJ
SB11_2-4	SW6010B	Silver	7440-22-4	UJ
SB11_2-4	SW8260B	Acetone	67-64-1	U (0.0088)
SB11_2-4	SW8270C	Carbazole	86-74-8	J
SB11_2-4	SW8270C	Benzaldehyde	100-52-7	UJ
SB11_2-4	SW8270C	Hexachloroethane	67-72-1	UJ

LANGAN

Client Sample ID	Analysis	Analyte	CAS #	Validator Qualifier
SB11_2-4	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB11_2-4	SW8270C	Pentachlorophenol	87-86-5	UJ
SB18_10-11	SW6010B	Silver	7440-22-4	UJ
SB18_10-11	SW8270C	Benzaldehyde	100-52-7	UJ
SB18_10-11	SW8270C	Bis(2-Chloroisopropyl) Ether	108-60-1	UJ
SB18_10-11	SW8270C	Phenol	108-95-2	UJ
SB18_10-11	SW8270C	Aniline	62-53-3	UJ
SB18_10-11	SW8270C	Hexachloroethane	67-72-1	UJ
SB18_10-11	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB18_10-11	SW8270C	Pentachlorophenol	87-86-5	UJ
SB18_10-11	SW8270C	1,2,4,5-Tetrachlorobenzene	95-94-3	UJ
SB18_23-24	SW6010B	Silver	7440-22-4	UJ
SB18_23-24	SW8260B	Acetone	67-64-1	U (0.0055)
SB18_23-24	SW8270C	Benzaldehyde	100-52-7	UJ
SB18_23-24	SW8270C	Bis(2-Chloroisopropyl) Ether	108-60-1	UJ
SB18_23-24	SW8270C	Phenol	108-95-2	UJ
SB18_23-24	SW8270C	Aniline	62-53-3	UJ
SB18_23-24	SW8270C	Hexachloroethane	67-72-1	UJ
SB18_23-24	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB18_23-24	SW8270C	Pentachlorophenol	87-86-5	UJ
SB18_23-24	SW8270C	1,2,4,5-Tetrachlorobenzene	95-94-3	UJ
SB19_10-11	SW6010B	Silver	7440-22-4	UJ
SB19_10-11	SW8270C	Benzaldehyde	100-52-7	UJ
SB19_10-11	SW8270C	Bis(2-Chloroisopropyl) Ether	108-60-1	UJ
SB19_10-11	SW8270C	Phenol	108-95-2	UJ
SB19_10-11	SW8270C	Aniline	62-53-3	UJ
SB19_10-11	SW8270C	Hexachloroethane	67-72-1	UJ
SB19_10-11	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB19_10-11	SW8270C	Pentachlorophenol	87-86-5	UJ
SB19_10-11	SW8270C	1,2,4,5-Tetrachlorobenzene	95-94-3	UJ
SB19_17-18	SW8270C	Benzaldehyde	100-52-7	UJ
SB19_17-18	SW8270C	Bis(2-Chloroisopropyl) Ether	108-60-1	UJ



Data Usability Summary Report For 473 President Street 2017 Soil Samples Langan Project No.: 170361301 May 16, 2017 Page 19 of 30

Client Sample ID	Analysis	Analyte	CAS #	Validator Qualifier
SB19_17-18	SW8270C	Phenol	108-95-2	UJ
SB19_17-18	SW8270C	Aniline	62-53-3	UJ
SB19_17-18	SW8270C	Hexachloroethane	67-72-1	UJ
SB19_17-18	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB19_17-18	SW8270C	Pentachlorophenol	87-86-5	UJ
SB19_17-18	SW8270C	1,2,4,5-Tetrachlorobenzene	95-94-3	UJ
SB19_20-21	SW6010B	Silver	7440-22-4	UJ
SB19_20-21	SW8260B	Methylcyclohexane	108-87-2	J
SB19_20-21	SW8270C	Benzaldehyde	100-52-7	UJ
SB19_20-21	SW8270C	Bis(2-Chloroisopropyl) Ether	108-60-1	UJ
SB19_20-21	SW8270C	Phenol	108-95-2	UJ
SB19_20-21	SW8270C	Aniline	62-53-3	UJ
SB19_20-21	SW8270C	Hexachloroethane	67-72-1	UJ
SB19_20-21	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SB19_20-21	SW8270C	Pentachlorophenol	87-86-5	UJ
SB19_20-21	SW8270C	1,2,4,5-Tetrachlorobenzene	95-94-3	UJ
SOFB01_031017	SW6010B	Zinc	7440-66-6	J
SOFB01_031017	SW6010B	Calcium	7440-70-2	J
SOFB01_031017	SW8260B	1,2,4-Trichlorobenzene	120-82-1	UJ
SOFB01_031017	SW8260B	1,4-Dioxane (P-Dioxane)	123-91-1	UJ
SOFB01_031017	SW8260B	1,2,3-Trichlorobenzene	87-61-6	UJ
SOFB01_031017	SW8270C	Hexachloroethane	67-72-1	UJ
SOFB01_031017	SW8270C	Pentachlorophenol	87-86-5	UJ
SOFB01_031017	SW8270C	Bis(2-Chloroisopropyl) Ether	108-60-1	UJ
SOFB01_031017	SW8270C	Phenol	108-95-2	UJ
SOFB01_031017	SW8270C	Aniline	62-53-3	UJ
SOFB01_031017	SW8270C	Benzoic Acid	65-85-0	UJ
SOFB01_031017	SW8270C	Hexachlorocyclopentadiene	77-47-4	UJ
SOFB01_031017	SW8270C	1,2,4,5-Tetrachlorobenzene	95-94-3	UJ
SOTB01_031017	SW8260B	1,2,4-Trichlorobenzene	120-82-1	UJ
SOTB01_031017	SW8260B	1,4-Dioxane (P-Dioxane)	123-91-1	UJ
SOTB01_031017	SW8260B	1,2,3-Trichlorobenzene	87-61-6	UJ



#### **MAJOR DEFICIENCIES:**

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. The following major deficiencies were identified.

### VOCs by SW-846 Method 8260C:

Sample SB10_1-2 displayed internal standard area counts less than the rejection threshold for chlorobenzene-d5 at 19% and 1,2-dichlorobenzene-d4 at 11%. The associated non-detect sample results are qualified as rejected and positive detections are qualified as estimated.

### MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

### VOCs by SW-846 Method 8260C:

Sample SB07_13-14 displayed an internal standard area count greater than the upper control limit for fluorobenzene at 624%. The associated positive detections are qualified as "J-".

Sample SB07_23-24 displayed an internal standard area count greater than the upper control limit for fluorobenzene at 562%. The reanalysis recovered at 211%. The associated positive detections are qualified as "J-".

Sample DUP-01 displayed an internal standard area count greater than the upper control limit for fluorobenzene at 595%. The reanalysis recovered within control. The associated positive detections are qualified as "J-".

The continuing calibration analyzed on 3/9/17 at 10:13 displayed %Ds greater than the control limit for 1,1,1-trichloroethane at 20.4% and 1,2-dichloroethane at 25.7%. The associated sample results are qualified as estimated.

Samples DUP01_030717 and SB07_23-24 displayed concentrations greater than the range of the instrument calibration for 1,2,4-trimethylbenzene and n-propylbenzene, respectively. The associated sample results are qualified as "J".

Acetone was detected in trip blank sample TB01_030617 at a concentration of 1.4 ug/L. The associated positive detections are qualified as "U" at the reporting limit.

The initial calibration analyzed on VOA No. 8 displayed a RSD greater than the control limit for hexachlorobutadiene at 27.17%. The associated sample result is qualified as estimated.



LANGAN

The continuing calibration analyzed on 3/9/17 at 08:27 displayed %Ds greater than the control limit for bromomethane at 36.7% and chloromethane at 55.8%. The associated sample results are qualified as estimated.

The continuing calibration analyzed on 3/9/17 at 09:03 displayed %Ds greater than the control limit for 1,1,1-trichloroethane at 29.3%, 1,1-dichloroethane at 22.5%, 2-butanone at 43.1%, chloroform at 26.1%, cis-1,2-dichloroethene at 29%, dibromochloromethane at 26.9%, dichlorodifluoromethane at 47.3%, PCE at 41.3% and trans-1,2-dichloroethene at 25.1%. The associated sample results are qualified as estimated.

Sample SB10_6-7 displayed a surrogate recovery greater than the upper control limit for toluene-d8 at 139% and a recovery less than the lower control limit for p-bromofluorobenzene at 46.2%. The associated sample results are qualified as estimated.

Sample SB10_6-7 displayed an internal standard area count less than lower control limit for chlorobenzene-d5 at 36%. The associated sample results are qualified as estimated.

Field blank sample SOFB01_030817 displayed a positive detection for acetone at 1.3 ug/L. The associated positive detections are qualified as "U" at the reporting limit.

Method blank sample BC70534 displayed a positive detection for bromomethane at 0.78 mg/kg. The associated sample results were non-detect; qualification is not necessary.

The continuing calibration analyzed on 3/13/17 at 11:20 displayed a %D greater than the control limit for 1,2-dichloroethane at 25.1%. The associated field blank sample result is qualified a "UJ."

Field blank sample SOFB01_031017 displayed a positive detection for acetone at 1.9 ug/L. The associated positive detections are qualified as "U" at the reporting limit.

The continuing calibration analyzed on 3/17/17 at 14:33 displayed %Ds greater than the control limit for 1,2,4-trichlorobenzene (39.4%), 1,4-dioxane (70.4%) and 1,2,3-trichlorobenzene (68.4%). The associated sample results are qualified as estimated.

### SVOCs by SW-846 Method 8270D and 8270D with SIM:

The initial calibration analyzed on instrument BNA#6 displayed a RSD greater than the control limit for hexachlorocyclopentadiene at 57.9%. The associated sample results are qualified as "UJ."

LCS/LCSD BC70405 displayed recoveries greater than the control limit for 3-nitroanilne (130%, 132%), carbazole (228%, 201%), dibenz(a,h)anthracene (162%, 149%), and hexachlorocyclopentadiene (135%). The associated positive sample results are qualified as "J."

The continuing calibration analyzed on 3/9/17 at 16:06 displayed %Ds greater than the control limit for 2,4-dinitrophenol at 185%, 4,6-dinitro-2-methylphenol at 176%, benzo(g,h,i)perylene at 44.8%, dibenz(a,h)anthracene at 64.8%, hexachlorocyclopentadiene at 134%, and indeno(1,2,3-cd)pyrene at 57.8%. The associated sample results are qualified as estimated.

The continuing calibration analyzed on 3/17/17 at 08:46 displayed %Ds greater than the control limit for 2,4-dinitrophenol at 82.6%, 3-nitroaniline at 31.2%, 4,6-dinitro-2-methylphenol at 156%, 4-chloroaniline at 44.6%, benzidine at 46.8%, benzo(g,h,i)perylene at 23.8%, dibenz(a,h)anthracene at 62.6%, hexachlorocyclopentadiene at 53.9%, and indeno(1,2,3-cd)pyrene at 52.3%. The associated sample results are qualified as estimated.

The continuing calibration analyzed on 3/16/17 at 14:54 displayed %Ds greater than the control limit for 2,4-dinitrophenol at 143%, 4,6-dinitro-2-methylphenol at 188%, 4-chloroaniline at 38.3%, benzaldehyde at 38.4%, benzidine at 54.9%, benzo(g,h,i)perylene at 37.3%, benzoic acid at 37.8%, dibenz(a,h)anthracene at 66%, hexachlorocyclopentadiene at 89%, and indeno(1,2,3-cd)pyrene at 56.9%. The associated sample results are qualified as estimated.

The continuing calibration analyzed on 3/17/17 at 15:39 displayed %Ds greater than the control limit for 2,4-dinitrophenol at 121%, 4,6-dinitro-2-methylphenol at 171%, 4-chloroaniline at 43.7%, benzoic acid at 34.4%, dibenz(a,h)anthracene at 54.3%, hexachlorocyclopentadiene at 74.4%, and indeno(1,2,3-cd)pyrene at 44.5%. The associated sample results are qualified as estimated.

LCS BC70597 displayed recoveries greater than the upper control limit for 4,6-dinitro-2methylphenol at 221% and 229%, and carbazole at 180% and 186%. The associated positive detections are qualified as "J."

The continuing calibration analyzed on 3/15/17 at 16:24 displayed %Ds greater than the control limit for 2,4-dinitrophenol at 158%, 3-nitroaniline at 36.8%, 4,6-dinitro-2-methylphenol at 174%, 4-chloroaniline at 49%, benzidine at 35.4%, benzo(g,h,i)perylene at 32.2%, dibenz(a,h)anthracene at 65.9%, hexachlorocyclopentadiene at 112%, and indeno(1,2,3-cd)pyrene at 56.9%. The associated sample results are qualified as estimated.

The continuing calibration analyzed on 3/15/17 at 16:24 displayed %Ds greater than the control limit for 2,4-dinitrophenol at 82.6%, 3-nitroaniline at 31.2%, 4,6-dinitro-2-methylphenol at 156%,



LANGAN

4-chloroaniline at 44.6%, benzidine at 46.8%, benzoic acid at 44.1%, dibenz(a,h)anthracene at 62.6%, hexachlorocyclopentadiene at 53.9%, and indeno(1,2,3-cd)pyrene at 52.3%. The associated sample results are qualified as estimated.

The continuing calibration analyzed on 3/16/17 at 8:45 displayed a %D greater than the control limit for pentachlorophenol at 44.4%. The associated sample result is qualified as "UJ."

LCS/LCSD BC70798 did not recover for benzaldehyde. The associated sample results are qualified as "UJ."

Second source calibration verification Y17B035 displayed a %D greater than the control limit with a positive bias for carbazole. The associated positive detection is qualified as "J." In addition, the %Ds for hexachlorocyclopentadiene and pentachlorophenol were greater than the control limit with a negative bias. The associated sample results are qualified as "UJ."

The continuing calibration analyzed on 3/17/17 at 08:17 displayed %Ds greater than the control limit for hexachlorocyclopentadiene (62.2%), hexachloroethane (66.6%), pentachlorophenol (41.9%), and carbazole (47%). The associated sample results are qualified as estimated.

The continuing calibration analyzed on 3/20/17 at 14:28 displayed %Ds greater than the control limit for bis(2-chloroisopropyl)ether at 45.3% and phenol at 33.9%. The associated sample results are qualified as estimated.

The continuing calibration analyzed on 3/21/17 at 08:42 displayed %Ds greater than the control limit for hexachlorobutadiene at 36.8%, hexachlorocyclopentadiene at 63.7%, pentachlorophenol at 43.5%, bis(2-chloroisopropyl)ether at 66.4%, aniline at 57.9%, and 1,2,4,5-tetrachlorobenzene at 40%. The associated sample results are qualified as estimated.

LCS/LCSD BC70684 did not recover for benzoic acid. The associated field blank sample results are qualified as "UJ."

### Pesticides by SW-846 Method 8081B:

Sample SB08_1-2 displayed surrogate recoveries less than the lower control limit for TCMX at 29.1% and 22.2% on the primary and secondary chromatography columns, respectively. The associated sample results for early-eluters are qualified as estimated.

Sample SB06_14-15 displayed surrogate recoveries less than the lower control limit for DCB at 29.7% and 25.5% on the primary and secondary chromatography columns, respectively. The associated sample results for late eluters are qualified as estimated.

#### Hexavalent Chromium by SW-846 7196A:

MS sample SB07_23-24 displayed a recovery less than the lower control limit at 66%. The associated sample result is qualified as "UJ."

MS sample SB15_10-11 did not recover (i.e., 0%). The associated sample result is qualified as "UJ."

#### Metals by SW-846 Method 6010C:

MS/SD sample SB07_23-24 displayed recoveries outside of control limits for manganese and silver. The associated sample results are qualified as estimated.

SRM BC70369 displayed a recovery less than the lower control limit for silver at 6.21%. The associated sample results are qualified as "UJ."

CRDL standard Y7C0805 displayed recoveries greater than the control limit for copper and selenium, and recoveries less than the lower control limit for zinc and aluminum. The associated sample results reported near or at the reporting limit are qualified as estimated.

SRM BC70497 displayed a recovery less than the lower control limit for silver at 31%. The associated sample results are qualified as "UJ."

CRDL standard Y7C1302 displayed a recovery greater than the control limit for copper recoveries less than the lower control limit for selenium and aluminum. The associated sample results reported near or at the reporting limit are qualified as estimated.

CRDL standard Y7C1009 displayed recoveries greater than the control limit for copper and lead and a recovery less than the lower control limit for aluminum. The associated sample results reported near or at the reporting limit are qualified as estimated.

MS sample SB19_20-21 displayed a recovery less than the lower control limit for silver at 46.3%. The associated sample results are qualified as "UJ."

Laboratory duplicate sample FB01_031017 displayed RPDs greater than the control limit for calcium at 41.3% and zinc at 28.6%. The associated sample result is qualified as "J."

SRM BC70705 displayed a recovery less than the lower control limit for silver at 62%. The associated sample results are qualified as "UJ."

### LANGAN

#### **OTHER DEFICIENCIES:**

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified.

#### VOCs by SW-846 Method 8260C:

MS/SD sample SB07_23-24 displayed recoveries outside of control limits for 1,1,2trichloroethane, 1,2,3-trichloropropane, 2-hexanone, 4-methyl-2-pentanone, bromodichloromethane, cyclohexane, methyl acetate, methylcyclohexane, o-xylene, TBA, 1,2,4trichlorobenzene, 1,2,4-trimethylbenzene, 1,2-dibromo-3-chloropropane, and 1,3,5trimethylbenzene. In addition, the MS/SD RPDs were greater than the control limit for 1,2,3trichloropropane, 1,2,4-trichlorobenzene, 1,2-dibromo-3-chloropropane, chloroethane, and cyclohexane. Data is not qualified on the basis of MS/SD recoveries or RPDs alone.

Method blank sample BC70483 displayed a positive detection for 1,2,3-trichlorobenzene at 0.0031 mg/kg. The associated sample result was non-detect; qualification is not necessary.

Method blank sample BC70534 displayed a positive detection for bromomethane at 0.78 mg/kg. The associated sample results were non-detect; qualification is not necessary.

Sample SB07_13-14 displayed surrogate recoveries outside of control limits for 1,2dichloroethane-d4 (17.1%) and toluene-d8 (166%). The sample was analyzed at a 200X dilution; qualification is not necessary. The reanalysis for methylcyclohexane performed at a 2,000X dilution also recovered below the lower control limit for 1,2-dichloroethane-d4; qualification is not necessary.

Sample SB07_23-24 displayed surrogate recoveries outside of control limits for 1,2dichloroethane-d4 (18.2%) and toluene-d8 (138%). The sample was analyzed at a 100X dilution; qualification is not necessary. The reanalysis for reanalysis performed at a 200X and 1,000X dilutions also recovered outside of control limits for 1,2-dichloroethane-d4 and toluene-d8; qualification is not necessary.

Sample DUP01_030717 displayed surrogate recoveries outside of control limits for 1,2dichloroethane-d4 (18.4%) and toluene-d8 (138%). The sample was analyzed at a 200X dilution; qualification is not necessary.

LCS/LCSD BC70338 displayed a recovery greater than the upper control limit for 1,2,3-trichloropropane. The associated sample results were non-detect; qualification is not necessary.



LCS/LCSD BC70415 displayed a recovery greater than the upper control limit for cis-1,2dichloroethene. The associated sample results were non-detect; qualification is not necessary.

LCS/LCSD BC70418 displayed a recovery greater than the upper control limit for 1,2,3-trichloropropane. The associated sample results were non-detect; qualification is not necessary.

Method blank sample BC70338 displayed a positive detection for 1,2,3-trichlorobenzene. The associated sample results were non-detect; qualification is not necessary.

Method blank sample BC70418 displayed a positive detection for bromomethane. The associated sample results were non-detect; qualification is not necessary.

Second source calibration verification Y7C0203 displayed a %D greater than the control limit with a positive bias for bromomethane at 41.8%. The associated sample results were non-detect; qualification is not required.

Sample SB10_1-2 displayed a surrogate recovery greater than the upper control limit for toluene-d8 at 156%. The remaining two volatile surrogates recovered within control. On the basis of professional judgment, qualification is not necessary.

LCS/LCSD BC70677 displayed a recovery greater than the upper control limit for TBA. The associated sample results were non-detect; qualification is not necessary.

MS/SD sample SB19_20-21 displayed recoveries outside of control limits for 1,1,1trichloroethane, 1,1-dichloroethane, 1,1-dichlrooethene, 1,2,4-trimethylbenzene, 1,3,5trimethylbenzene, 1,2-dichloroethane, benzene, bromochloromethane, bromodichloromethane, carbon tetrachloride, chloroform, cis-1,2-dichloroethene, dichlorodifluoromethane, MTBE, methylcyclohexane, TCE and trichlorofluoromethane. In addition, the majority of MS/SD RPDs were greater than the control limit. Data is not qualified on the basis of MS/SD recoveries or RPDs alone.

LCS/LCSD BC70877 displayed a RPD greater than the control limit for 1,4-dioxane. The associated field and trip blank sample results were non-detect; qualification is not necessary.

Method blank sample BC70821 displayed a positive detection for 1,2,3-trichlorobenzene. The associated sample results were non-detect; qualification is not necessary.

Method blank sample BC70877 displayed positive detections for 1,2,3-trichlorobenzene, hexachlorobutadiene and 1,2,4-trichlorobenzene. The associated sample results were non-detect; qualification is not necessary.

# LANGAN

Second-source calibration verification standard Y17A097 displayed a %D greater than the control limit with a positive bias for acetone. The associated sample results were previously qualified; no further action is necessary.

Second-source calibration verification standard Y17B141 displayed a %D greater than the control limit with a positive bias for bromomethane. The associated sample results were non-detect; qualification is not necessary.

### SVOCs by SW-846 Method 8270D and 8270D with SIM:

LCS/LCSD BC70598 displayed a recovery greater than the control limit for 2,3,4,6-tetrachlorophenol at 200%. The associated sample results were non-detect; qualification is not necessary.

Sample DUP01_030717 displayed a surrogate recovery greater than the upper control limit for nitrobenzene-d5. The remaining two BN surrogates recovered within control; on the basis of professional judgment, qualification is not necessary.

MS/SD sample SB07_23-24 displayed recoveries outside of control limits for 2,4-dinitrotoluene, 2-methylphenol, acetophenone, benzaldehyde, bis(2-chloroethoxy)methane, hexachlorocyclopentadiene, hexachloroethane and naphthalene. In addition, the MS/SD RPDs for 2,4,5-trichlorophenol, 2-chlorophenol, benzoic acid, and n-nitroso-di-n-propylamine were greater than the control limit. Data is not qualified on the basis of MS/SD recoveries or RPDs alone.

MS sample SB13_1-2 displayed recoveries outside of control limits for 2,3,4,6-tetrachlorophenol, 2,4,6-trichlorophenol, 2,4-dinitrophenol, 3-nitroaniline, 4,6-dinitro-2-methylphenol, benzoic acid, carbazole, and pentachlorophenol. Data is not qualified on the basis of MS recoveries alone.

Second source calibration verification Y17A029 displayed %Ds greater than the control limit with positive biases for 3-nitroaniline, 4,6-dinitro-2-methylphenol, 4-chloroaniline, aniline, and carbazole. The associated sample results were either non-detect or previously qualified; no further action is necessary.

LCS/LCSD BC70691 displayed recoveries greater than the upper control limit for 4,6-dinitro-2methylphenol and carbazole. In addition, the LCS/LCSD RPD for aniline and 4-chloroaniline were greater than the control limit. The associated sample results were non-detect; qualification is not necessary.



Second source calibration verification Y7C0708 displayed %Ds greater than the control limit with positive biases for 3-nitroaniline, 4,6-dinitro-2-methylphenol, 4-chloroaniline, aniline, and carbazole. The associated sample results were non-detect; qualification is not necessary.

LCS/LCSD BC70712 displayed recoveries greater than the upper control limit for 4,6-dinitro-2methylphenol at 249% and carbazole at 191%. The associated sample results were non-detect; qualification is not necessary.

Sample SOFB01_030817 displayed a surrogate recovery greater than the upper control limit for 2,4,6-tribromophenol. The associated sample results were non-detect; qualification is not required.

Second source calibration verification Y17A029 displayed %Ds greater than the control limit with positive biases for 3-nitroaniline, 4,6-dinitrophenol, 4-chloroaniline, aniline, and carbazole. The associated sample results were either previously qualified or were non-detect; no further action is necessary.

Sample SB19_10-11 displayed a surrogate recovery greater than the upper control limit for 2,4,6-tribromophenol at 111%. The remaining two acid extractable surrogates recovered within control. On the basis of professional judgment, qualification is not necessary.

Sample SB11_2-4 displayed a surrogate recovery greater than the upper control limit for Nitrobenzene-d5 at 116%. The remaining two base/neutral extractable surrogates recovered within control. On the basis of professional judgment, qualification is not necessary.

MS/SD sample SB19_20-21 displayed recoveries greater than the upper control limit for 2,3,4,6-tetrachlorphenol. In addition, LCS/LCSD BC70798 recovered above the control limit for 2,3,4,6-tetrachlorphenol. The associated sample results were non-detect; qualification is not necessary.

### Pesticides by SW-846 Method 8081B:

MS/SD sample SB07_23-24 displayed recoveries less than the lower control limits for 4,4'-DDT and methoxychlor on the primary and secondary chromatography columns. Data is not qualified on the basis of MS/SD recoveries alone.

The instrument performance check sample (Y7D2013-PEM1) displayed an endrin breakdown greater than 20 % at 20.49%. The associated sample results were non-detect for endrin, endrin aldehyde and endrin ketone.

Sample SB06_2-3 displayed a recovery less than the lower control limit for DCB at 2.5%. The associated sample results were reported from the primary column; qualification is not necessary.

MS/SD sample DUP02_031017 displayed RPDs greater than the control limit for 4,4'-DDE, aldrin, alpha-BHC, gamma-BHC, gamma-chlordane, heptachlor and delta-BHC. Data is not qualified on the basis of MS/SD recoveries alone.

#### Metals by SW-846 Method 6010C:

ICP serial dilution sample SB07_23-24 displayed %Ds greater than the control limit for copper, nickel and sodium. The sample concentrations were less than 50X the MDL; qualification is not necessary.

Preparation blank sample BC70434-BLK1 displayed positive detections for aluminum and iron. The associated sample results were orders of magnitude greater than the blank amount; qualification is not necessary.

Preparation blank sample Y7C0805 displayed a positive detection for aluminum at 5.16 mg/kg. The associated sample results were orders of magnitude greater than the blank amount; qualification is not necessary.

Field blank sample SOFB01_030817 displayed positive detections for iron, magnesium, manganese, potassium, sodium, chromium, copper, zinc and calcium. The associated sample results were orders of magnitude greater than the blank amount; qualification is not necessary.

Continuing calibration blanks associated with sequences Y7C1004 and Y7C1009 displayed low level positive detections for copper, antimony, and sodium. The associated sample results were orders of magnitude greater than the blanks mount or not bracketed by the blank; qualification is not necessary.

CRDL Standard Y7C1004 displayed recoveries outside of control imits for copper, lead and aluminum. The associated sample results were orders of magnitude greater than the reporting limit; qualification is not necessary.

Field blank sample SOFB01_030817 displayed positive detections for iron, sodium, nickel, copper, zinc and calcium. The associated sample results were orders of magnitude greater than the blank amount; qualification is not necessary.

Field blank sample SOFB01_031017 was used as a batch MS. Field blank volume is not used to interpret matrix effects.



ICP serial dilution sample SOFB01_031017 displayed %Ds greater than the control limit for calcium, iron, nickel, zinc and sodium. The initial sample concentrations were less than 50X the MDL; qualification is not necessary.

ICP serial dilution sample SB19_20-21 displayed %Ds greater than the control limit for copper, nickel, sodium and zinc. The initial sample concentrations were less than 50X the MDL; qualification is not necessary.

#### COMMENTS:

Two field duplicate and parent sample pairs were collected and analyzed for all parameters. For results less than 5X the RL, analytes meet the precision criteria if the absolute difference is less than  $\pm 2X$  the RL. For results greater than 5X the RL, analytes meet the precision criteria if the RPD is less than or equal to 50%. The following constituents did not meet the precision criteria:

- DUP01_030717 and SB07_23-24: 4-methyl-2-pentanone and cis-1,2-dichloroethene
- DUP02_031017 and SB19_20-21: ethylbenzene, 1,3,5-trimethylbenzene, methylcyclohexane, cyclohexane, PCE, m,p-xylenes, o-xylenes, total xylenes, cymene, cumene, and 1,2,4-trimethylbenzene.

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All of the sample hold times were met and data packages met ASP Category B requirements.

All data are considered usable, as qualified. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 99%.

Signed:

Emily Strake, CEP Senior Project Chemist/Risk Assessor



#### 2700 Kelly Road, Suite 200 Warrington, PA 18976 T: 215.491.6500 F: 215.491.6501 Mailing Address: P.O. Box 1569 Doylestown, PA 18901

To: Paul McMahon, Langan Project Engineer

From: Emily Strake, Langan Senior Project Chemist/Risk Assessor

Date: May 22, 2017

Re: Data Usability Summary Report For 473 President Street Soil Samples Collected April 2017 Langan Project No.: 170361301

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of soil samples collected in April 2017 by Langan Engineering and Environmental Services ("Langan") at the 473 President Street site ("the Site"). The samples were analyzed by Alpha Analytical (NYSDOH ELAP registration # 11148) for volatile organic compounds (VOCs), metals, ammonia, nitrate, nitrite, chemical oxygen demand (COD), total organic carbon (TOC), sulfate, phosphorus, alkalinity, biological oxygen demand (BOD), grain size and percent moisture by the methods specified below. Biological oxygen demand (BOD) and alkalinity were subcontracted to EnviroTest Laboratories Inc. of Newburgh, New York.

- VOCs by SW-846 Method 8260C
- Total Metals by Method SW-846 6010C
- Ammonia, Nitrogen by SM 4500NH3-BH
- Nitrite, Nitrite Nitrogen by SM 4500 NO3-F
- Chemical Oxygen Demand by SM 5220D(M)
- Total Organic Carbon by Lloyd Kahn
- Sulfate by SW-846 Method 9038
- Phosphorus by SM4500P-E(M)
- Alkalinity by SM2320B-97
- BOD by SM20 SM 5210B-01
- Grain Size by ASTM D422
- Percent Moisture by SM2540G

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

#### TABLE 1: SAMPLE SUMMARY

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
L1713789	L1713789-01	SB12D_20-25	04/29/17	Alkalinity, Phosphate, TOC, BOD, COD, Manganese, Nitrate, Nitrite, Ammonia, Iron, Grain Size, %M
L1713789	L1713789-02	SB12D_23-25	04/29/17	VOCs, %M
L1713775	L1713775-01	SB15D_23-25	04/28/17	VOCs, %M
L1713775	L1713775-02	SB15D_20-25	04/28/17	Alkalinity, Phosphate, TOC, BOD, COD, Manganese, Nitrate, Nitrite, Ammonia, Iron, Grain Size, %M
L1713775	L1713775-03	SB06D_23-25	04/28/17	VOCs, %M
L1713775	L1713775-04	SODUP01_042817	04/28/17	VOCs, %M
L1713775	L1713775-05	SB06D_20-25	04/28/17	Alkalinity, Phosphate, TOC, BOD, COD, Manganese, Nitrate, Nitrite, Ammonia, Iron, Grain Size, %M
L1713501	L1713501-01	SB20D_0-2	04/27/17	VOCs, %M
L1713501	L1713501-02	SB20D_17-19	04/27/17	VOCs, %M
L1713501	L1713501-03	SB20D_23-25	04/27/17	VOCs, %M
L1713501	L1713501-04	SB20D_30-32	04/27/17	VOCs, %M
L1713501	L1713501-05	SB20D_20-30	04/27/17	Alkalinity, Phosphate, TOC, BOD, COD, Manganese, Nitrate, Nitrite, Ammonia, Iron, Grain Size, %M
L1713501	L1713501-06	SB20D_14-19	04/27/17	Alkalinity, Phosphate, TOC, BOD, COD, Manganese, Nitrate, Nitrite, Ammonia, Iron, Grain Size, %M
L1713501	L1713501-07	TB01_042717	04/27/17	VOCs

#### Validation Overview

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-34A, "Trace Volatile Data Validation" (September 2016, Rev 1), USEPA Region II SOP #HW-3a, "ICP-AES Data Validation" (September 2016, Rev 1), the USEPA Contract Laboratory Program "National Functional Guidelines for Superfund Organic Methods Data Review" (USEPA-540R-2016-002, September 2016), and the "National Functional Guidelines for Inorganic Superfund Data Review" (USEPA-540R-2016-001, September 2016).

Validation includes review of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, sample preservation, sample extraction and digestion, instrument tuning, instrument calibration,



laboratory blanks, laboratory control samples, system monitoring compounds, internal standard area counts, matrix spike/spike duplicate recoveries, target compound identification and quantification, chromatograms, overall system performance, serial dilutions, field duplicate, and trip blank sample results.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- R The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are not sufficiently valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

Client Sample ID	Analysis	Analyte	CAS #	Validator Qualifier
SB12D_20-25	NH3	Nitrogen, Ammonia	7664-41-7	U (9.4)
SB20D_30-32	SW8260C	Bromomethane	74-83-9	U (110)
SB20D_20-30	6010C	Iron	7439-89-6	J
SB20D_20-30	6010C	Manganese	7439-96-5	J
SB20D_20-30	D422	Coarse Sand	COARSESAND	J
SB20D_20-30	SM4500- NH3H	Nitrogen, Ammonia (As N)	7664-41-7	J

TABLE 2: VALIDATOR-APPLIED QUALIFICATION



Client Sample ID	Analysis	Analyte	CAS #	Validator Qualifier
SB20D_14-19	6010C	Iron	7439-89-6	J
SB20D_14-19	6010C	Manganese	7439-96-5	J
SB20D_14-19	D422	Coarse Sand	COARSESAND	J
SB20D_14-19	SM4500- NH3H	Nitrogen, Ammonia (As N)	7664-41-7	J
TB01_042717	SW8260C	Bromomethane	74-83-9	UJ
TB01_042717	SW8260C	Trans-1,4-Dichloro-2-Butene	110-57-6	UJ
SB06D_23-25	SW8260C	Trichloroethylene (TCE)	79-01-6	J
SODUP01_042817	SW8260C	Trichloroethylene (TCE)	79-01-6	J

#### **MAJOR DEFICIENCIES:**

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

#### MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

#### VOCs by SW-846 Method 8260C:

LCS/LCSD WG1000777 displayed recoveries less than the lower control limit for trans-1,4dichloro-2-butene at 36% and 33%, respectively. The associated trip blank sample result is qualified as "UJ."

Method blank sample WG1000201-5 displayed a positive detection for bromomethane at19 ug/kg. The associated sample result is qualified as "U" at the reporting limit.

The continuing calibration analyzed on 5/5/17 at 08:12 displayed a %D greater than the control limit for bromomethane at 45.8%. The associated trip blank sample result is qualified as "UJ."

### Nitrogen, Ammonia by SM 4500NH3-BH:

Method blank sample WG999803 displayed a positive detection at 2.2 mg/kg. The associated positive detection is qualified as "U" at the reporting limit.

Laboratory duplicate sample SB20D-20-30 displayed a RPD greater than the control limit at 42%. The associated sample results are qualified as "J."

#### Metals by SW-846 Method 6010C:

ICP serial dilution sample SB20D_20-30 displayed %Ds greater than the control limit for total iron and manganese at 29% and 25%, respectively. The associated sample results are qualified as "J."

#### Grain Size by ASTM D422:

Laboratory duplicate sample SB20D_20-30 displayed a RPD greater than the control limit for coarse sand at 40%. The associated sample results are qualified as "J."

#### **OTHER DEFICIENCIES:**

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified.

#### VOCs by SW-846 Method 8260C:

LCS/LCSD WG1001182 displayed a recovery and RPD greater than the control limit for carbon disulfide. The associated sample results were non-detect; qualification is not necessary.

MS/SD sample SB06D_23-25 displayed a recovery greater than the upper control limit for carbon tetrachloride at 133%. The associated sample results were non-detect; qualification is not necessary.

Sample SB20D_23-25 displayed a surrogate recovery greater than the upper control limit for 4bromofluorobenzene at 208%. The remaining three volatile surrogates recovered within control. On the basis of professional judgment, qualification is not necessary.

Method blank sample WG1000200-5 displayed a positive detection for bromomethane. The associated sample results were non-detect; qualification is not necessary.

Method blank sample WG1000201-5 displayed a positive detection for bromomethane. The associated sample results were non-detect; qualification is not necessary.

#### Metals by SW-846 Method 6010C:

CRI check standard R963639 displayed recoveries greater than the upper control limit for iron and manganese. The associated sample concentrations were orders of magnitude greater than the reporting limits; qualification is not necessary.

Continuing calibration blank R963639-25 and R963639-33 displayed positive detections for total iron at 0.0094 mg/L and 0.0366 mg/L, respectively. The associated concentration was orders of magnitude greater than the blank amount; qualification is not necessary.

MS sample WG999655-3 displayed a recovery greater than the upper control limit for total iron at 2,040%. The sample concentration was greater than 4X the spiked amount; qualification is not necessary.

Total manganese was detected in preparation blank sample WG999647 at a concentration of 0.13 mg/kg. The associated sample results were orders of magnitude greater than the blank amount; qualification is not necessary.

CRI check standard R963599 displayed recoveries greater than the upper control limit for iron and manganese. The associated sample concentrations were orders of magnitude greater than the reporting limits; qualification is not necessary.

CRI check standard R963228 displayed recoveries greater than the upper control limit for iron and manganese. The associated sample concentrations were orders of magnitude greater than the reporting limits; qualification is not necessary.

MS sample WG999647-3 displayed a recovery less than the lower control limit for manganese at 26%. The spiked volume did not originate from the site; qualification is not necessary.

Laboratory duplicate sample WG999647-4 displayed a RPD greater than the control limit for manganese at 39%. The duplicate volume did not originate from the site; qualification is not necessary.

Method blank sample WG999506 displayed positive detections for total iron and manganese. The associated sample results were orders of magnitude greater than the blank amounts; qualification is not necessary.

### Grain Size by ASTM D422:

The laboratory duplicate sample displayed a RPD greater than the control limit for coarse sand at 86%. The associated sample results were within  $\pm$  5X the RL. On the basis of professional judgment, qualification is not necessary.

### COMMENTS:

One field duplicate and parent sample pair was collected and analyzed for VOCs. For results less than 5X the RL, analytes meet the precision criteria if the absolute difference is less than



 $\pm 2X$  the RL. For results greater than 5X the RL, analytes meet the precision criteria if the RPD is less than or equal to 50%. The following constituents did not meet the precision criteria:

• SODUP01_042817 and SB06D_23-25: trichloroethene

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All of the sample hold times were met and data packages met ASP Category B requirements.

All data are considered usable, as qualified. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 100%.

Signed:

**Emily Strake, CEP** Senior Project Chemist/Risk Assessor





2700 Kelly Road, Suite 200 Warrington, PA 18976 T: 215.491.6500 F: 215.491.6501 Mailing Address: P.O. Box 1569 Doylestown, PA 18901

To: Paul McMahon, Langan Project Engineer
From: Emily Strake, Langan Senior Project Chemist/Risk Assessor
Date: May 16, 2017
Re: Data Usability Summary Report For 473 President Street Ambient Air and Soil Gas Samples Collected March 2017 Langan Project No.: 170361301

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of ambient air and soil gas samples collected in March 2017 by Langan Engineering and Environmental Services ("Langan") at 473 President Street site ("the Site"). The samples were analyzed by York Analytical (NYSDOH ELAP registration # 10854) for volatile organic compounds (VOCs) using the analytical method specified below.

• Full List VOCs by EPA Compendium Method TO-15 (1/1999)

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
17C0424	17C0424-01	SV03-030917	03/09/2017	VOCs
17C0463	17C0463-01	SV05_031017	03/10/2017	VOCs
17C0348	17C0348-01	SV01_030817	03/08/2017	VOCs
17C0348	17C0348-02	SV02_030817	03/08/2017	VOCs
17C0348	17C0348-03	SV04_030817	03/08/2017	VOCs
17C0348	17C0348-04	DUP01_030817	03/08/2017	VOCs
17C0348	17C0348-05	AA01_030817	03/08/2017	VOCs

### TABLE 1: SAMPLE SUMMARY

### VALIDATION OVERVIEW

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-31, "Validating Volatile Organic Analysis of Ambient Air in Canister by Method TO-15" (September 2016, Revision 6) and the specifics of the method.

Validation includes reconstruction of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the

originator. Items subject to review in this memorandum include holding times, canister certification, canister pressure, instrument tuning, instrument calibration, laboratory blanks, laboratory control samples, internal standard area counts, target compound identification and quantification, and overall system performance.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- **R** The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are not sufficiently valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

Client Sample ID	Analysis	Analyte	CAS #	Validator Qualifier
AA01_030817	TO15	Propylene	115-07-1	UJ
DUP01_030817	TO15	Propylene	115-07-1	UJ
DUP01_030817	TO15	Acetone	67-64-1	J
DUP01_030817	TO15	Methyl Ethyl Ketone (2- Butanone)	78-93-3	J
SV01_030817	TO15	Propylene	115-07-1	UJ

### TABLE 2: VALIDATOR-APPLIED QUALIFICATION



Client Sample ID	Analysis	Analyte	CAS #	Validator Qualifier
SV02_030817	TO15	1,3-Butadiene	106-99-0	R
SV02_030817	TO15	1,2-Dichloroethane	107-06-2	R
SV02_030817	TO15	Acrylonitrile	107-13-1	R
SV02_030817	TO15	Vinyl Acetate	108-05-4	R
SV02_030817	TO15	Tetrahydrofuran	109-99-9	R
SV02_030817	TO15	Cyclohexane	110-82-7	R
SV02_030817	TO15	Propylene	115-07-1	R
SV02_030817	TO15	Ethyl Acetate	141-78-6	R
SV02_030817	TO15	Cis-1,2-Dichloroethylene	156-59-2	R
SV02_030817	TO15	Trans-1,2-Dichloroethene	156-60-5	R
SV02_030817	TO15	Carbon Tetrachloride	56-23-5	R
SV02_030817	TO15	Vinyl Bromide	593-60-2	R
SV02_030817	TO15	Isopropanol	67-63-0	R
SV02_030817	TO15	Acetone	67-64-1	J
SV02_030817	TO15	Chloroform	67-66-3	R
SV02_030817	TO15	Benzene	71-43-2	J
SV02_030817	TO15	1,1,1-Trichloroethane	71-55-6	R
SV02_030817	TO15	Bromomethane	74-83-9	R
SV02_030817	TO15	Chloromethane	74-87-3	R
SV02_030817	TO15	Chloroethane	75-00-3	R
SV02_030817	TO15	Vinyl Chloride	75-01-4	R
SV02_030817	TO15	Methylene Chloride	75-09-2	R
SV02_030817	TO15	Carbon Disulfide	75-15-0	J
SV02_030817	TO15	1,1-Dichloroethane	75-34-3	R
SV02_030817	TO15	1,1-Dichloroethene	75-35-4	R
SV02_030817	TO15	Trichlorofluoromethane	75-69-4	R
SV02_030817	TO15	Dichlorodifluoromethane	75-71-8	R
SV02_030817	TO15	1,1,2-Trichloro-1,2,2- Trifluoroethane	76-13-1	R
SV02_030817	TO15	1,2- Dichlorotetrafluoroethane	76-14-2	R
SV02_030817	TO15	Methyl Ethyl Ketone (2- Butanone)	78-93-3	R

Client Sample ID	Analysis	Analyte	CAS #	Validator Qualifier
SV04_030817	TO15	Propylene	115-07-1	UJ
SV04_030817	TO15	Acetone	67-64-1	J
SV04_030817	TO15	Methyl Ethyl Ketone (2- Butanone)	78-93-3	J

#### **MAJOR DEFICIENCIES:**

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. The section below describes the major deficiencies that were identified.

### VOCs by USEPA TO-15:

Sample SV02_030817 displayed an internal standard area count less than the lower control limit for bromochloromethane at 28%. The associated positive detections for compounds quantitated by bromochloromethane are qualified as "J" and non-detect results are rejected.

#### MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

### VOCs by USEPA TO-15:

The continuing calibration verification analyzed on 3/9/17 at 11:00 displayed %Ds greater than the control limit with positive biases for 1,3-butadiene (33.2%) and chloromethane (46.7%). The associated positive detection for chloromethane is qualified as "J." In addition, the calibration verification displayed a %D greater than the control limit with a negative bias for propylene at 38.4%. The associated sample results are qualified as estimated.

### **OTHER DEFICIENCIES:**

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified.

### VOCs by USEPA TO-15:

The continuing calibration verification analyzed on 3/13/17 at 15:01 displayed a %D greater than the control limit with a positive bias for vinyl acetate at 31.2%. The associated sample result was non-detect; qualification is not necessary.



The continuing calibration verification analyzed on 3/15/17 at 10:54 displayed %Ds greater than the control limit with positive biases for 1,2-dichlorotetrafluoroethane, 1,3-butadiene, and chloromethane. Only trichloroethene was reported from the associated analysis; qualification is not necessary.

#### COMMENTS:

One field duplicate and parent sample pair was collected and analyzed for VOCs. For results less than 5X the RL, analytes meet the precision criteria if the absolute difference is less than  $\pm$ 1X the RL. For results greater than 5X the RL, analytes meet the precision criteria if the RPD is less than or equal to 35%. The following constituents did not meet the precision criteria:

• DUP01_030817 and SV04_030817: acetone, 2-butanone

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All sample hold times were met and the data packages met ASP Category B requirements.

All data are considered usable, as qualified. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 94%.

Signed:

Emily Strake, CEP Senior Project Chemist/Risk Assessor



2700 Kelly Road, Suite 200 Warrington, PA 18976 T: 215.491.6500 F: 215.491.6501 Mailing Address: P.O. Box 1569 Doylestown, PA 18901

**To:** Paul McMahon, Langan Project Engineer, P.E.

From: Emily Strake, Langan Senior Project Chemist/Risk Assessor

**Date:** April 17, 2018

Re: Data Usability Summary Report For 473 President Street Brooklyn, New York Air Samples Collected March 2018 Langan Project No.: 170361301

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of canister air samples collected March 28, 2018 by Langan Engineering and Environmental Services ("Langan") at 473 President Street located in Brooklyn, New York. The samples were analyzed by Alpha Analytical Laboratories, Inc. located in Westborough, Massachusetts (NYSDOH ELAP registration # 11148) for volatile organic compounds (VOCs) using the analytical methods specified below.

• VOCs by USEPA Method TO-15 and TO-15 Selective Ion Monitoring (SIM)

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
L1810650	L1810650-01	IA01_032818	3/28/2018	VOCs
L1810650	L1810650-02	IA02_032818	3/28/2018	VOCs
L1810650	L1810650-03	IA03_032818	3/28/2018	VOCs
L1810650	L1810650-04	IA04_032818	3/28/2018	VOCs
L1810650	L1810650-05	IA05_032818	3/28/2018	VOCs
L1810650	L1810650-06	AA02_032818	3/28/2018	VOCs
L1810650	L1810650-07	UNUSED CAN #513	NA	Not Analyzed

### TABLE 1: SAMPLE SUMMARY

### VALIDATION OVERVIEW

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-31, "Analysis of Volatile Organic Compounds in Air Contained in Canisters by Method TO-15" (September 2016, Revision 6), the USEPA Contract Laboratory

Program "National Functional Guidelines for Organic Superfund Methods Data Review" (USEPA-540-R-2017-002, January 2017) and the specifics of the methods employed.

Validation includes evaluation of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, instrument tuning, instrument calibration, laboratory blanks, laboratory control samples, system monitoring compounds, internal standard area counts, laboratory duplicates, target compound identification and quantification, chromatograms, and overall system performance.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- **R** The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned these qualifiers supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items subject to review. Data that is qualified as "R" are not sufficiently valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

Project Sample ID	Analysis	Analyte	CAS No.	Validator Qualifier
IA01_032818	TO15	1,2,4-Trimethylbenzene	95-63-6	J
IA01_032818	TO15	Acetone	67-64-1	J
IA01_032818	TO15	Benzyl Chloride	100-44-7	UJ
IA01_032818	TO15	Bromoform	75-25-2	UJ

### TABLE 2: VALIDATOR-APPLIED QUALIFICATION



Data Usability Summary Report For 473 President Street Brooklyn, New York Langan Project No.: 170361301 April 17, 2018 Page 3 of 6

Project Sample ID	Analysis	Analyte	CAS No.	Validator Qualifier
IA01_032818	TO15	Dibromochloromethane	124-48-1	UJ
IA01_032818	TO15	Isopropanol	67-63-0	J
IA01_032818	TO15 SIM	Cis-1,2-Dichloroethylene	156-59-2	J
IA02_032818	TO15	1,2,4-Trimethylbenzene	95-63-6	J
IA02_032818	TO15	Acetone	67-64-1	J
IA02_032818	TO15	Benzyl Chloride	100-44-7	UJ
IA02_032818	TO15	Bromoform	75-25-2	UJ
IA02_032818	TO15	Dibromochloromethane	124-48-1	UJ
IA02_032818	TO15	Isopropanol	67-63-0	J
IA02_032818	TO15 SIM	Cis-1,2-Dichloroethylene	156-59-2	J
IA03_032818	TO15	Acetone	67-64-1	J
IA03_032818	TO15	Bromoform	75-25-2	UJ
IA03_032818	TO15	Dibromochloromethane	124-48-1	UJ
IA03_032818	TO15	Isopropanol	67-63-0	J
IA03_032818	TO15 SIM	Cis-1,2-Dichloroethylene	156-59-2	J
IA04_032818	TO15	1,2,4-Trimethylbenzene	95-63-6	J
IA04_032818	TO15	Acetone	67-64-1	J
IA04_032818	TO15	Benzyl Chloride	100-44-7	UJ
IA04_032818	TO15	Bromoform	75-25-2	UJ
IA04_032818	TO15	Dibromochloromethane	124-48-1	UJ
IA04_032818	TO15	Isopropanol	67-63-0	J
IA04_032818	TO15 SIM	Cis-1,2-Dichloroethylene	156-59-2	J
IA05_032818	TO15	1,2,4-Trimethylbenzene	95-63-6	J
IA05_032818	TO15	Acetone	67-64-1	J
IA05_032818	TO15	Benzyl Chloride	100-44-7	UJ
IA05_032818	TO15	Bromoform	75-25-2	UJ
IA05_032818	TO15	Dibromochloromethane	124-48-1	UJ
IA05_032818	TO15	Isopropanol	67-63-0	J
IA05_032818	TO15 SIM	Cis-1,2-Dichloroethylene	156-59-2	UJ
AA02_032818	TO15	Acetone	67-64-1	J
AA02_032818	TO15	Benzyl Chloride	100-44-7	UJ
AA02_032818	TO15	Bromoform	75-25-2	UJ



Project Sample ID	Analysis	Analyte	CAS No.	Validator Qualifier
AA02_032818	TO15	Dibromochloromethane	124-48-1	UJ
AA02_032818	TO15	Isopropanol	67-63-0	UJ
AA02_032818	TO15 SIM	Cis-1,2-Dichloroethylene	156-59-2	UJ

#### MAJOR DEFICIENCIES:

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

#### MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

#### VOCs by USEPA Method TO-15:

The peaks for acetone in samples IA01_032818, IA02_032818, IA03_032818, IA04_032818, IA05_032818 and AA02_032818 co-eluted with a non-target peak. The associated results are qualified as "J" based on potential indeterminate bias.

The initial calibration (ICAL) analyzed for instrument AIRLAB17 exhibited a relative standard deviation (RSD) greater than the upper control limit (i.e. 30%) for isopropyl alcohol (32.82%). The associated results in samples IA01_032818, IA02_032818, IA03_032818, IA04_032818, IA05_032818 and AA02_032818 are qualified as "J" or "UJ" based on potential indeterminate bias.

### VOCs by USEPA Method TO-15 (SIM)

The initial calibration verification (ICV) analyzed on 3/3/2018 at 12:51 p.m. exhibited a percent difference (%D) greater than the control limit for cis-1,2-dichloroethene (-38.3%). The associated results in samples IA01_032818, IA02_032818, IA03_032818, IA04_032818, IA05_032818 and AA02_032818 are qualified as "J" or "UJ" based on potential indeterminate bias.

The continuing calibration verification (CCV) analyzed on 4/2/2018 at 12:42 exhibited %Ds greater than the control limit for dibromochloromethane (35.5%), bromoform (41%) and benzyl

chloride (30.4%). The associated results in samples IA01_032818, IA02_032818, IA04_032818, IA05_032818 and AA02_032818 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 4/3/2018 at 13:24 exhibited %Ds greater than the control limit for dibromochloromethane (33.1%) and bromoform (36%). The associated results in sample IA03_032818 are qualified as "UJ" based on potential indeterminate bias.

The laboratory control sample (LCS) for batch WG1102773 exhibited percent recoveries greater than the upper control limit for 1,2,4-trimethylbenzene. The associated results in samples IA01_032818, IA02_032818, IA04_032818 and IA05_032818 are qualified as "J" based on potential high bias.

#### **OTHER DEFICIENCIES:**

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified.

#### VOCs by USEPA Method TO-15:

The ICAL analyzed for instrument AIRLAB17 exhibited an RSD greater than the upper control limit for isopropyl alcohol (30.62%). This compound was not reported for SIM analysis; no qualification is necessary.

The CCV analyzed on 4/2/2018 at 13:18 exhibited %Ds greater than the control limit for dibromochloromethane (45.6%), bromoform (47.8%), 4-ethyltoluene (35.1%), 1,2,4-trimethylbenzene (32.1%) and benzyl chloride (38.2%). These compounds were not reported for SIM analysis; no qualification is necessary.

The CCV analyzed on 4/3/2018 at 14:00 exhibited %Ds greater than the control limit for t-butyl alcohol (-30.5%), dibromochloromethane (41.4%), bromoform (44.9%), 4-ethyltoluene (34.7%), 1,2,4-trimethylbenzene (30.1%) and benzyl chloride (33.8%). These compounds were not reported for SIM analysis; no qualification is necessary.

The LCS for batch WG1102770 exhibited percent recoveries greater than the upper control limit for dibromochloromethane (136%) and bromoform (141%). The associated results are non-detections; no qualification is necessary.



The LCS for batch WG1103162 exhibited percent recoveries greater than the upper control limit for dibromochloromethane (133%) and bromoform (136%). The associated results are non-detections; no qualification is necessary.

The LCS for batch WG1102773 exhibited percent recoveries greater than the upper control limit for dibromochloromethane, bromoform, 4-ethyltoluene and benzyl chloride. The associated results are non-detections; no qualification is necessary.

The LCS for batch WG1103163 exhibited percent recoveries greater than the upper control limit for dibromochloromethane, bromoform, 4-ethyltoluene and benzyl chloride. The associated results are non-detections; no qualification is necessary.

#### COMMENTS:

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All laboratory data packages met ASP Category B requirements and all sample holding times were met.

All data are considered usable, as qualified. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 100%.

Signed:

Emily Strake, CEP Senior Project Chemist/Risk Assessor



2700 Kelly Road, Suite 200 Warrington, PA 18976 T: 215.491.6500 F: 215.491.6501 Mailing Address: P.O. Box 1569 Doylestown, PA 18901

**To:** Paul McMahon, Langan Project Engineer, P.E.

From: Emily Strake, Langan Senior Project Chemist/Risk Assessor

Date: April 25, 2018

Re: Data Usability Summary Report For 473 President Street Brooklyn, New York Air Samples Collected March 2018 Langan Project No.: 170361301

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of canister air samples collected March 28, 2018 by Langan Engineering and Environmental Services ("Langan") at 473 President Street located in Brooklyn, New York. The samples were analyzed by Alpha Analytical Laboratories, Inc. located in Westborough, Massachusetts (NYSDOH ELAP registration # 11148) for volatile organic compounds (VOCs) using the analytical methods specified below.

• VOCs by USEPA Method TO-15 and TO-15 Selective Ion Monitoring (SIM)

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
L1810650	L1810650-01	IA01_032818	3/28/2018	VOCs
L1810650	L1810650-02	IA02_032818	3/28/2018	VOCs
L1810650	L1810650-03	IA03_032818	3/28/2018	VOCs
L1810650	L1810650-04	IA04_032818	3/28/2018	VOCs
L1810650	L1810650-05	IA05_032818	3/28/2018	VOCs
L1810650	L1810650-06	AA02_032818	3/28/2018	VOCs
L1810650	L1810650-07	UNUSED CAN #513	NA	Not Analyzed

### TABLE 1: SAMPLE SUMMARY

### VALIDATION OVERVIEW

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-31, "Analysis of Volatile Organic Compounds in Air Contained in Canisters by Method TO-15" (September 2016, Revision 6), the USEPA Contract Laboratory

Program "National Functional Guidelines for Organic Superfund Methods Data Review" (USEPA-540-R-2017-002, January 2017) and the specifics of the methods employed.

Validation includes evaluation of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, instrument tuning, instrument calibration, laboratory blanks, laboratory control samples, system monitoring compounds, internal standard area counts, laboratory duplicates, target compound identification and quantification, chromatograms, and overall system performance.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- **R** The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned these qualifiers supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items subject to review. Data that is qualified as "R" are not sufficiently valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

Project Sample ID	Analysis	Analyte	CAS No.	Validator Qualifier
IA01_032818	TO15	1,2,4-Trimethylbenzene	95-63-6	J
IA01_032818	TO15	Acetone	67-64-1	J
IA01_032818	TO15	Benzyl Chloride	100-44-7	UJ
IA01_032818	TO15	Bromoform	75-25-2	UJ

### TABLE 2: VALIDATOR-APPLIED QUALIFICATION



Data Usability Summary Report For 473 President Street Brooklyn, New York Langan Project No.: 170361301 April 25, 2018 Page 3 of 6

Project Sample ID	Analysis	Analyte	CAS No.	Validator Qualifier
IA01_032818	TO15	Dibromochloromethane	124-48-1	UJ
IA01_032818	TO15	lsopropanol	67-63-0	J
IA01_032818	TO15 SIM	Cis-1,2-Dichloroethylene	156-59-2	J
IA02_032818	TO15	1,2,4-Trimethylbenzene	95-63-6	J
IA02_032818	TO15	Acetone	67-64-1	J
IA02_032818	TO15	Benzyl Chloride	100-44-7	UJ
IA02_032818	TO15	Bromoform	75-25-2	UJ
IA02_032818	TO15	Dibromochloromethane	124-48-1	UJ
IA02_032818	TO15	lsopropanol	67-63-0	J
IA02_032818	TO15 SIM	Cis-1,2-Dichloroethylene	156-59-2	J
IA03_032818	TO15	Acetone	67-64-1	J
IA03_032818	TO15	Bromoform	75-25-2	UJ
IA03_032818	TO15	Dibromochloromethane	124-48-1	UJ
IA03_032818	TO15	lsopropanol	67-63-0	J
IA03_032818	TO15 SIM	Cis-1,2-Dichloroethylene	156-59-2	J
IA04_032818	TO15	1,2,4-Trimethylbenzene	95-63-6	J
IA04_032818	TO15	Acetone	67-64-1	J
IA04_032818	TO15	Benzyl Chloride	100-44-7	UJ
IA04_032818	TO15	Bromoform	75-25-2	UJ
IA04_032818	TO15	Dibromochloromethane	124-48-1	UJ
IA04_032818	TO15	lsopropanol	67-63-0	J
IA04_032818	TO15 SIM	Cis-1,2-Dichloroethylene	156-59-2	J
IA05_032818	TO15	1,2,4-Trimethylbenzene	95-63-6	J
IA05_032818	TO15	Acetone	67-64-1	J
IA05_032818	TO15	Benzyl Chloride	100-44-7	UJ
IA05_032818	TO15	Bromoform	75-25-2	UJ
IA05_032818	TO15	Dibromochloromethane	124-48-1	UJ
IA05_032818	TO15	lsopropanol	67-63-0	J
IA05_032818	TO15 SIM	Cis-1,2-Dichloroethylene	156-59-2	UJ
AA02_032818	TO15	Acetone	67-64-1	J
AA02_032818	TO15	Benzyl Chloride	100-44-7	UJ
AA02_032818	TO15	Bromoform	75-25-2	UJ



Project Sample ID	Analysis	Analyte	CAS No.	Validator Qualifier
AA02_032818	TO15	Dibromochloromethane	124-48-1	UJ
AA02_032818	TO15	Isopropanol	67-63-0	UJ
AA02_032818	TO15 SIM	Cis-1,2-Dichloroethylene	156-59-2	UJ

#### MAJOR DEFICIENCIES:

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

#### MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

#### VOCs by USEPA Method TO-15:

The peaks for acetone in samples IA01_032818, IA02_032818, IA03_032818, IA04_032818, IA05_032818 and AA02_032818 co-eluted with a non-target peak. The associated results are qualified as "J" based on potential indeterminate bias.

The initial calibration (ICAL) analyzed for instrument AIRLAB17 exhibited a relative standard deviation (RSD) greater than the upper control limit (i.e. 30%) for isopropyl alcohol (32.82%). The associated results in samples IA01_032818, IA02_032818, IA03_032818, IA04_032818, IA05_032818 and AA02_032818 are qualified as "J" or "UJ" based on potential indeterminate bias.

### VOCs by USEPA Method TO-15 (SIM)

The initial calibration verification (ICV) analyzed on 3/3/2018 at 12:51 p.m. exhibited a percent difference (%D) greater than the control limit for cis-1,2-dichloroethene (-38.3%). The associated results in samples IA01_032818, IA02_032818, IA03_032818, IA04_032818, IA05_032818 and AA02_032818 are qualified as "J" or "UJ" based on potential indeterminate bias.

The continuing calibration verification (CCV) analyzed on 4/2/2018 at 12:42 exhibited %Ds greater than the control limit for dibromochloromethane (35.5%), bromoform (41%) and benzyl

chloride (30.4%). The associated results in samples IA01_032818, IA02_032818, IA04_032818, IA05_032818 and AA02_032818 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 4/3/2018 at 13:24 exhibited %Ds greater than the control limit for dibromochloromethane (33.1%) and bromoform (36%). The associated results in sample IA03_032818 are qualified as "UJ" based on potential indeterminate bias.

The laboratory control sample (LCS) for batch WG1102773 exhibited percent recoveries greater than the upper control limit for 1,2,4-trimethylbenzene. The associated results in samples IA01_032818, IA02_032818, IA04_032818 and IA05_032818 are qualified as "J" based on potential high bias.

### **OTHER DEFICIENCIES:**

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified.

#### VOCs by USEPA Method TO-15:

The ICAL analyzed for instrument AIRLAB17 exhibited an RSD greater than the upper control limit for isopropyl alcohol (30.62%). This compound was not reported for SIM analysis; no qualification is necessary.

The CCV analyzed on 4/2/2018 at 13:18 exhibited %Ds greater than the control limit for dibromochloromethane (45.6%), bromoform (47.8%), 4-ethyltoluene (35.1%), 1,2,4-trimethylbenzene (32.1%) and benzyl chloride (38.2%). These compounds were not reported for SIM analysis; no qualification is necessary.

The CCV analyzed on 4/3/2018 at 14:00 exhibited %Ds greater than the control limit for t-butyl alcohol (-30.5%), dibromochloromethane (41.4%), bromoform (44.9%), 4-ethyltoluene (34.7%), 1,2,4-trimethylbenzene (30.1%) and benzyl chloride (33.8%). These compounds were not reported for SIM analysis; no qualification is necessary.

The LCS for batch WG1102770 exhibited percent recoveries greater than the upper control limit for dibromochloromethane (136%) and bromoform (141%). The associated results are non-detections; no qualification is necessary.

The LCS for batch WG1103162 exhibited percent recoveries greater than the upper control limit for dibromochloromethane (133%) and bromoform (136%). The associated results are non-detections; no qualification is necessary.

The LCS for batch WG1102773 exhibited percent recoveries greater than the upper control limit for dibromochloromethane, bromoform, 4-ethyltoluene and benzyl chloride. The associated results are non-detections; no qualification is necessary.

The LCS for batch WG1103163 exhibited percent recoveries greater than the upper control limit for dibromochloromethane, bromoform, 4-ethyltoluene and benzyl chloride. The associated results are non-detections; no qualification is necessary.

#### COMMENTS:

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All laboratory data packages met ASP Category B requirements and all sample holding times were met.

All data are considered usable, as qualified. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 100%.

Signed:

Emily Strake, CEP Senior Project Chemist/Risk Assessor



2700 Kelly Road, Suite 200 Warrington, PA 18976 T: 215.491.6500 F: 215.491.6501 Mailing Address: P.O. Box 1569 Doylestown, PA 18901

To: Veronica Zuluaga, Langan Senior Staff Engineer
From: Emily Strake, Langan Senior Project Chemist
Date: March 7, 2019
Re: Data Usability Summary Report For 473 President Street Air Samples Collected in August through December 2018 Langan Project No.: 170519402

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of air samples collected in August through December 2018 by Langan Engineering and Environmental Services ("Langan") at the 473 President Street site ("the Site"). The samples were analyzed by Alpha Analytical Laboratories (NYSDOH NELAC registration # 11148) for volatile organic compounds (VOCs) by the methods specified below.

• VOCs by USEPA Method TO-15 and TO-15 SIM

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
L1832566	L1832566-01	IA06_081718	8/17/2018	VOCs
L1832566	L1832566-02	IA07_081718	8/17/2018	VOCs
L1832566	L1832566-03	AA02_081718	8/17/2018	VOCs
L1835562	L1835562-01	AA01_090718	9/7/2018	VOCs
L1835562	L1835562-02	IA06_090718	9/7/2018	VOCs
L1835562	L1835562-03	IA07_090718	9/7/2018	VOCs
L1852832	L1852832-01	IA06_122018	12/20/2018	VOCs
L1852832	L1852832-02	IA07_122018	12/20/2018	VOCs
L1852832	L1852832-03	AA02_122018	12/20/2018	VOCs

### TABLE 1: SAMPLE SUMMARY

#### Validation Overview

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-31, "Analysis of Volatile Organic Compounds in Air Contained in Canisters by Method TO-15" (September 2016, Revision 6), and the USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA-540-R-2017-002, January 2017) and the specifics of the methods employed.

Validation includes review of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, sample preservation, instrument tuning, instrument calibration, laboratory blanks, laboratory control samples, internal standard area counts, target compound identification and quantification, chromatograms, and overall system performance.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- **R** The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- **U** The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are not sufficiently valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
AA01_090718	TO15	67-64-1	ACETONE	J
AA02_081718	TO15	67-64-1	ACETONE	J
AA02_122018	TO15	120-82-1	1,2,4-TRICHLOROBENZENE	UJ
AA02_122018	TO15	67-64-1	ACETONE	J
AA02_122018	TO15	87-68-3	HEXACHLOROBUTADIENE	UJ
IA06_081718	TO15	67-64-1	ACETONE	J
IA06_090718	TO15	67-64-1	ACETONE	J
IA06_122018	TO15	120-82-1	1,2,4-TRICHLOROBENZENE	UJ
IA06_122018	TO15	75-71-8	DICHLORODIFLUOROMETHANE	J
IA06_122018	TO15	87-68-3	HEXACHLOROBUTADIENE	UJ
IA07_081718	TO15	67-64-1	ACETONE	J
IA07_090718	TO15	67-64-1	ACETONE	J
IA07_122018	TO15	120-82-1	1,2,4-TRICHLOROBENZENE	UJ
IA07_122018	TO15	87-68-3	HEXACHLOROBUTADIENE	UJ

#### TABLE 2: VALIDATOR-APPLIED QUALIFICATION

#### **MAJOR DEFICIENCIES:**

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

#### **MINOR DEFICIENCIES:**

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

#### VOCs by USEPA Methods TO-15 and TO-15 SIM:

#### <u>L1832566</u>

Samples IA06_081718, IA07_081718, AA02_081718 exhibited co-elution of a non-target peak with acetone. The associated results are qualified as "J" based on potential indeterminate bias.

#### L1835562

Samples AA01_090718, IA06_090718, and IA07_090718 exhibited co-elution of a non-target peak with acetone. The associated results are qualified as "J" based on potential indeterminate bias.

#### <u>L1852832</u>

The laboratory duplicate and parent sample (IA06_122018) exhibited a RPD above the control limit for dichlorodifluoromethane (35%). The associated results are qualified as "J" based on potential indeterminate bias.

The CCV analyzed on 12/28/2018 at 13:56 exhibited a %D above the control limit for 1,2,4-trichlorobenzene (-38.9%) and hexachlorobutadiene (-38%). The associated results in sample IA06_122018, IA07_122018, and AA02_122018 are qualified as "UJ" based on potential indeterminate bias.

Sample AA02_122018 exhibited co-elution of a non-target peak with acetone. The associated result is qualified as "J" based on potential indeterminate bias.

#### **OTHER DEFICIENCIES:**

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified.

#### VOCs by USEPA Methods TO-15 and TO-15 SIM:

#### L1852832

The LCS for batch WG1193664 exhibited a percent recovery above the UCL for 1,2,4-trichlorobenzene (139%) and hexachlorobutadiene (138%). The associated results are non-detections. No qualification is necessary.

#### COMMENTS:

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All of the data packages met ASP Category B requirements.

All data are considered usable, as qualified. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 100%.

Data Usability Summary Report For 473 President Street Air Samples Collected in August – December 2018 Langan Project No.: 170519402 March 7, 2019 Page 5 of 5

Signed:

Emily Strake, CEP Senior Project Chemist

Appendix I Fish and Wildlife Resources Impact Analysis and Decision Key

	Appendix 3C Fish and Wildlife Resources Impact Analysis Decision Key	If YES Go to:	If NO Go to:
1.	Is the site or area of concern a discharge or spill event?	13	2
2.	Is the site or area of concern a point source of contamination to the groundwater which will be prevented from discharging to surface water? Soil contamination is not widespread, or if widespread, is confined under buildings and paved areas.	13	3
3.	Is the site and all adjacent property a developed area with buildings, paved surfaces and little or no vegetation?	4	9
4.	Does the site contain habitat of an endangered, threatened or special concern species?	Section 3.10.1	5
5.	Has the contamination gone off-site?	6	14
6.	Is there any discharge or erosion of contamination to surface water or the potential for discharge or erosion of contamination?	7	14
7.	Are the site contaminants PCBs, pesticides or other persistent, bioaccumulable substances?	Section 3.10.1	8
8.	Does contamination exist at concentrations that could exceed ecological impact SCGs or be toxic to aquatic life if discharged to surface water?	Section 3.10.1	14
9.	Does the site or any adjacent or downgradient property contain any of the following resources?i.Any endangered, threatened or special concern species or rare plants or their habitatii.Any DEC designated significant habitats or rare NYS Ecological Communitiesiii.Tidal or freshwater wetlandsiv.Stream, creek or riverv.Pond, lake, lagoonvi.Drainage ditch or channelvii.Other surface water featureviii.Other marine or freshwater habitatix.Forestx.Grassland or grassy fieldxi.Parkland or woodlandxii.Shrubby areaxiii.Urban wildlife habitatxiv.Other terrestrial habitat	11	10
10.	Is the lack of resources due to the contamination?	3.10.1	14
11.	Is the contamination a localized source which has not migrated and will not migrate from the source to impact any on-site or off-site resources?	14	12
12.	Does the site have widespread surface soil contamination that is not confined under and around buildings or paved areas?	Section 3.10.1	12
13.	Does the contamination at the site or area of concern have the potential to migrate to, erode into or otherwise impact any on-site or off-site habitat of endangered, threatened or special concern species or other fish and wildlife resource? (See #9 for list of potential resources. Contact DEC for information regarding endangered species.)	Section 3.10.1	14
14.	No Fish and Wildlife Resources Impact Analysis needed.		