

HALEY & ALDRICH OF NEW YORK 213 West 35th Street 7th Floor New York, NY 10123 646.518.7735

9 November 2023 File No. 0202156

Via Email: Jolene.lozewski@dec.ny.gov New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, New York 12233

Attention: Jolene Lozewski

Subject: Project Status Report Former Carter Spray Finishing Corp. - NYSDEC BCP Site C224218 65 Eckford Street Brooklyn, New York

Dear Jolene Lozewski:

Haley & Aldrich of New York is pleased to present this Project Status Report on behalf of 65-73 Eckford Realty, LLC for the above referenced Site. Copies of this Project Status Report have also been provided to Scarlett McLaughlin and Arunesh Ghosh of the New York State Department of Health. The Project Status Report is for 1 October 2023 to 1 November 2023. If you have any questions, please contact us at 646-277-5688.

Sincerely yours, HALEY & ALDRICH OF NEW YORK

Mari late Coulon

Mari Cate Conlon Associate

CC:

Bob Corcoran (NYSDEC) Scarlett McLaughlin (NYSDOH) Arunesh Ghosh (NYSDOH) 65-73 Eckford Realty, LLC Isaac Sofer (Prestige NY LLC) Jon Schuyler Brooks (Abramson Brooks LLP)

Zachary P. Simmel Assistant Project Manager

Email: bob.corcoran@dec.ny.gov Email: scarlett.mclaughlin@health.ny.gov Email: arunesh.ghosh@health.ny.gov Email: abe6991@gmail.com Email: isaac@prestigenyllc.com Email: jbrooks@abramsonbrooks.com

This status report summarizes activities conducted at the Former Carter Spray Finishing Corp. Site (the Site) located at 65 Eckford Street, Brooklyn, NY from 1 October 2023 to 1 November 2023. A Site plan showing the current Site conditions is included as Figure 1.

Remedial Measure Activities

Remedial activities during this reporting period included soil excavation and stockpiling in all regions of the Site to facilitate support-of-excavation (SOE) installation. A total of 30 trucks (approx. 600 cubic yards) were loaded with hazardous chromium-impacted soil for disposal at Clean Earth of North Jersey between 1 October 2023 and 1 November 2023.

Sampling Results and Other Data

One (1) endpoint was collected during this reporting period, EP-12, and data was submitted to NYDSEC on 24 October2023. On 18 October 2023, samples were collected from both offsite sentinel wells, OW-1 and OW-2, respectively, and influent and effluent samples were collected from the active dewatering system as per the NYSDEC approved Water Withdrawal, Treatment & Discharge Plan. Influent and effluent sampling results from the active dewatering system are provided in Attachment A. Sampling results for the offsite sentinel wells are provided in Attachment B.

Per request from the NYSDEC, in response to the Proposed Deviation to the Groundwater Remedy request, a groundwater sample from the over-excavation area in the northeastern corner of the Site was collected on 11 October 2023. Results were submitted to NYSDEC as part of the request on 13 October 2023.

Estimated Percentage of Project Completion

The remedial action phase is 100% complete.

Delays Encountered

None.

Site Communication and Deliverable Submittals

Eleven daily reports were submitted to New York State Department of Environmental Conservation (NYSDEC) and New York State Department of Health (NYSDOH) during this reporting period.

On 24 October 2023, an updated request for deviation to the groundwater remedy as included in the Decision Document for the Site was submitted to NYSDEC. Approval of the deviation is anticipated in the next reporting period.

Anticipated Activities during Next Reporting Period(s)

Continued tie-back installation, completion of soil excavation and load out of offsite disposal and installation of the cellar slab are anticipated during the next reporting period(s).

Anticipated Citizen Participation Activities

Current Period

None.

Anticipated Next Period

None.

Other Notable Items

None.

Figures

Figure 1 – Current Site Conditions Map

Attachments

Attachment A – Analytical Data for Influent and Effluent Dewatering Samples – October 2023

Attachment B – Analytical Data for Offsite Sentinel Wells – October 2023

FIGURES

LEGEND

SITE BOUNDARY

NOTES

1. ALL LOCATIONS ARE APPROXIMATE.

2. AERIAL IMAGERY SOURCE: NEARMAP, 12 MARCH 2021

20 SCALE IN FEET

65 ECKFORD STREET BROOKLYN, NEW YORK

CURRENT SITE CONDITIONS MAP

OCTOBER 2023

FIGURE 1

ATTACHMENT A Analytical Data for Influent and Effluent Dewatering Samples – October 2023

ANALYTICAL REPORT

Lab Number:	L2361905
Client:	Haley & Aldrich
	213 West 35th Street
	7th Floor
	New York, NY 10123
ATTN:	Mari Cate Conlon
Phone:	(347) 271-1521
Project Name:	65 ECKFORD
Project Number:	0202156
Report Date:	10/26/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:10262314:04

Project Name:65 ECKFORDProject Number:0202156

 Lab Number:
 L2361905

 Report Date:
 10/26/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2361905-01	EFFLUENT DW SAMPLE_20231018	WATER	65 ECKFORD ST, BROOKLYN, NY	10/18/23 09:00	10/18/23
L2361905-02	INFLUENT DW SAMPLE_20231018	WATER	65 ECKFORD ST, BROOKLYN, NY	10/18/23 09:30	10/18/23
L2361905-03	TRIP BLANK	WATER	65 ECKFORD ST, BROOKLYN, NY	10/18/23 00:00	10/18/23

Project Name: 65 ECKFORD Project Number: 0202156

Lab Number: L2361905 Report Date: 10/26/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:65 ECKFORDProject Number:0202156

 Lab Number:
 L2361905

 Report Date:
 10/26/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2361905-03: A sample identified as "TRIP BLANK" was received, but not listed on the Chain of Custody. At the client's request, this sample was analyzed.

Solids, Total

The Effluent (L2361905-01) results are greater than the Influent (L2361905-02) results. The sample containers were verified as being labeled correctly by the laboratory.

Nitrogen, Total Kjeldahl

The Effluent (L2361905-01) result is greater than the Influent (L2361905-02) result. The sample containers were verified as being labeled correctly by the laboratory, and the reported results were confirmed.

Chloride

The Effluent (L2361905-01) result is greater than the Influent (L2361905-02) result. The sample containers were verified as being labeled correctly by the laboratory.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Curlen Walker Cristin Walker

Title: Technical Director/Representative

Date: 10/26/23

ORGANICS

VOLATILES

		Serial_No	0:10262314:04
Project Name:	65 ECKFORD	Lab Number:	L2361905
Project Number:	0202156	Report Date:	10/26/23
	SAMPLE RESULTS		
Lab ID:	L2361905-01	Date Collected:	10/18/23 09:00
Client ID:	EFFLUENT DW SAMPLE_20231018	Date Received:	10/18/23
Sample Location:	65 ECKFORD ST, BROOKLYN, NY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water		
Analytical Method:	128,624.1		
Analytical Date:	10/23/23 12:49		

Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab							
ND		ug/l	1.0	0.38	1		
ND		ug/l	1.0	0.24	1		
ND		ug/l	1.0	0.26	1		
ND		ug/l	2.0	0.29	1		
ND		ug/l	1.0	0.38	1		
ND		ug/l	1.0	0.31	1		
ND		ug/l	1.0	0.28	1		
ND		ug/l	5.0	0.29	1		
ND		ug/l	2.0	0.30	1		
ND		ug/l	1.0	0.34	1		
ND		ug/l	1.0	0.30	1		
ND		ug/l	10	0.19	1		
	ugh Lab ND ND ND ND ND ND ND ND ND ND ND ND	ugh Lab ND	ND ug/l ND ug/l	ND ug/l 1.0 ND ug/l 5.0 ND ug/l 2.0 ND ug/l 1.0 ND ug/l 1.0	ND ug/l 1.0 0.38 ND ug/l 1.0 0.24 ND ug/l 1.0 0.24 ND ug/l 1.0 0.26 ND ug/l 1.0 0.26 ND ug/l 1.0 0.29 ND ug/l 1.0 0.38 ND ug/l 1.0 0.31 ND ug/l 1.0 0.28 ND ug/l 1.0 0.28 ND ug/l 1.0 0.28 ND ug/l 1.0 0.28 ND ug/l 1.0 0.29 ND ug/l 5.0 0.29 ND ug/l 1.0 0.30 ND ug/l 1.0 0.34 ND ug/l 1.0 0.30		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Pentafluorobenzene	114	60-140	
Fluorobenzene	93	60-140	
4-Bromofluorobenzene	80	60-140	

Analyst:

GMT

		Serial_No	o:10262314:04
Project Name:	65 ECKFORD	Lab Number:	L2361905
Project Number:	0202156	Report Date:	10/26/23
	SAMPLE RESULTS		
Lab ID:	L2361905-02	Date Collected:	10/18/23 09:30
Client ID:	INFLUENT DW SAMPLE_20231018	Date Received:	10/18/23
Sample Location:	65 ECKFORD ST, BROOKLYN, NY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water		
Analytical Method:	128,624.1		
Analytical Date:	10/23/23 13:22		

Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborough Lab						
ND		ug/l	1.0	0.38	1	
ND			1.0	0.24	1	
ND		ug/l	1.0	0.26	1	
ND		ug/l	2.0	0.29	1	
ND		ug/l	1.0	0.38	1	
ND		ug/l	1.0	0.31	1	
ND		ug/l	1.0	0.28	1	
ND		ug/l	5.0	0.29	1	
ND		ug/l	2.0	0.30	1	
ND		ug/l	1.0	0.34	1	
ND		ug/l	1.0	0.30	1	
ND		ug/l	10	0.19	1	
	ough Lab ND	ough Lab ND	ND ug/l ND ug/l	ND ug/l 1.0 ND ug/l 5.0 ND ug/l 1.0 ND ug/l 1.0 ND ug/l 1.0 ND ug/l 1.0 ND ug/l 1.0	ND ug/l 1.0 0.38 ND ug/l 1.0 0.24 ND ug/l 1.0 0.24 ND ug/l 1.0 0.26 ND ug/l 1.0 0.26 ND ug/l 1.0 0.29 ND ug/l 1.0 0.38 ND ug/l 1.0 0.31 ND ug/l 1.0 0.28 ND ug/l 1.0 0.28 ND ug/l 1.0 0.28 ND ug/l 1.0 0.28 ND ug/l 1.0 0.30 ND ug/l 1.0 0.34 ND ug/l 1.0 0.34 ND ug/l 1.0 0.30	

Surrogate	% Recovery	eptance riteria
Pentafluorobenzene	115	60-140
Fluorobenzene	93	60-140
4-Bromofluorobenzene	80	60-140

Analyst:

GMT

		Serial_No	p:10262314:04
Project Name:	65 ECKFORD	Lab Number:	L2361905
Project Number:	0202156	Report Date:	10/26/23
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2361905-03 TRIP BLANK 65 ECKFORD ST, BROOKLYN, NY	Date Collected: Date Received: Field Prep:	10/18/23 00:00 10/18/23 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 128,624.1 10/23/23 13:54 GMT		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Chloroform	ND		ug/l	1.0	0.38	1
Carbon tetrachloride	ND		ug/l	1.0	0.24	1
Tetrachloroethene	ND		ug/l	1.0	0.26	1
1,1,1-Trichloroethane	ND		ug/l	2.0	0.29	1
Benzene	ND		ug/l	1.0	0.38	1
Toluene	ND		ug/l	1.0	0.31	1
Ethylbenzene	ND		ug/l	1.0	0.28	1
1,4-Dichlorobenzene	ND		ug/l	5.0	0.29	1
p/m-Xylene	ND		ug/l	2.0	0.30	1
o-Xylene	ND		ug/l	1.0	0.34	1
Xylenes, Total	ND		ug/l	1.0	0.30	1
Methyl tert butyl Ether	ND		ug/l	10	0.19	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	114		60-140	
Fluorobenzene	93		60-140	
4-Bromofluorobenzene	79		60-140	

L2361905

10/26/23

Lab Number:

Report Date:

Project Name: 65 ECKFORD

Project Number: 0202156

Method Blank Analysis Batch Quality Control

Analytical Method:128,624.1Analytical Date:10/23/23 10:54Analyst:GMT

Parameter	Result Qu	alifier Units	RL	MDL
/olatile Organics by GC/MS - Wes	tborough Lab for	sample(s): 01-03	Batch:	WG1843638-4
Chloroform	ND	ug/l	1.0	0.38
Carbon tetrachloride	ND	ug/l	1.0	0.24
Tetrachloroethene	ND	ug/l	1.0	0.26
1,1,1-Trichloroethane	ND	ug/l	2.0	0.29
Benzene	ND	ug/l	1.0	0.38
Toluene	ND	ug/l	1.0	0.31
Ethylbenzene	ND	ug/l	1.0	0.28
1,4-Dichlorobenzene	ND	ug/l	5.0	0.29
p/m-Xylene	ND	ug/l	2.0	0.30
o-Xylene	ND	ug/l	1.0	0.34
Xylenes, Total	ND	ug/l	1.0	0.30
Methyl tert butyl Ether	ND	ug/l	10	0.19

		A	cceptance
Surrogate	%Recovery	Qualifier	Criteria
Destallusershamen	445		60.440
Pentafluorobenzene	115		60-140
Fluorobenzene	90		60-140
4-Bromofluorobenzene	79		60-140

Lab Control Sample Analysis Batch Quality Control

Project Name: 65 ECKFORD Project Number: 0202156

Lab Number: L2361905 Report Date: 10/26/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03 Batch:	WG1843638-3	3				
Chloroform	105		-		70-135	-		54	
Carbon tetrachloride	110		-		70-130	-		41	
Tetrachloroethene	110		-		70-130	-		39	
1,1,1-Trichloroethane	105		-		70-130	-		36	
Benzene	110		-		65-135	-		61	
Toluene	100		-		70-130	-		41	
Ethylbenzene	90		-		60-140	-		63	
1,4-Dichlorobenzene	90		-		65-135	-		57	
p/m-Xylene	82		-		60-140	-		30	
o-Xylene	80		-		60-140	-		30	
Methyl tert butyl Ether	105		-		60-140	-		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qua	Acceptance I Criteria
Pentafluorobenzene	122		60-140
Fluorobenzene	97		60-140
4-Bromofluorobenzene	83		60-140

SEMIVOLATILES

	Serial_No	0:10262314:04
65 ECKFORD	Lab Number:	L2361905
0202156	Report Date:	10/26/23
SAMPLE RESULTS		
L2361905-01	Date Collected:	10/18/23 09:00
EFFLUENT DW SAMPLE_20231018	Date Received:	10/18/23
65 ECKFORD ST, BROOKLYN, NY	Field Prep:	Not Specified
Water	Extraction Method	l: EPA 625.1
129,625.1	Extraction Date:	10/20/23 05:21
10/20/23 17:11		
ALS		
	0202156 SAMPLE RESULTS L2361905-01 EFFLUENT DW SAMPLE_20231018 65 ECKFORD ST, BROOKLYN, NY Water 129,625.1 10/20/23 17:11	65 ECKFORD Lab Number: 0202156 Report Date: L2361905-01 Date Collected: EFFLUENT DW SAMPLE_20231018 65 ECKFORD ST, BROOKLYN, NY Field Prep: Water 129,625.1 10/20/23 17:11

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS						
.	-					
1,2,4-Trichlorobenzene	ND		ug/l	5.00	1.49	1
Naphthalene	ND		ug/l	2.00	0.896	1
Phenol	ND		ug/l	5.00	0.262	1
Surrogate			% Recovery	Qualifier		ptance iteria
2-Fluorophenol			38		2	25-87
Phenol-d6			27			16-65
Nitrobenzene-d5			64		4	2-122

Nillopenzene-us	04	42-122
2-Fluorobiphenyl	69	46-121
2,4,6-Tribromophenol	73	45-128
4-Terphenyl-d14	64	47-138

		Serial_No	0:10262314:04
Project Name:	65 ECKFORD	Lab Number:	L2361905
Project Number:	0202156	Report Date:	10/26/23
	SAMPLE RESULTS		
Lab ID:	L2361905-02	Date Collected:	10/18/23 09:30
Client ID:	INFLUENT DW SAMPLE_20231018	Date Received:	10/18/23
Sample Location:	65 ECKFORD ST, BROOKLYN, NY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water	Extraction Method	d: EPA 625.1
Analytical Method:	129,625.1	Extraction Date:	10/20/23 05:21
Analytical Date:	10/20/23 16:27		
Analyst:	ALS		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - West	orough Lab					
1,2,4-Trichlorobenzene	ND		ug/l	5.00	1.49	1
Naphthalene	ND		ug/l	2.00	0.896	1
Phenol	ND		ug/l	5.00	0.262	1
Surrogate			% Recovery	Qualifier		ptance iteria
2-Fluorophenol			35		:	25-87

Phenol-d6	25	16-65
Nitrobenzene-d5	60	42-122
2-Fluorobiphenyl	64	46-121
2,4,6-Tribromophenol	72	45-128
4-Terphenyl-d14	61	47-138

Project Name:	65 ECKFORD		Lab Number:	L2361905
Project Number:	0202156		Report Date:	10/26/23
		Method Blank Analysis		

Method Blank Analysis Batch Quality Control

Analytical Method:	129,625.1	Extraction Method:	EPA 625.1
Analytical Date:	10/20/23 15:19	Extraction Date:	10/20/23 05:21
Analyst:	ALS		

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	01-02	Batch:	WG1842108-1
1,2,4-Trichlorobenzene	ND		ug/l	5.00		1.49
Naphthalene	ND		ug/l	2.00		0.896
Phenol	ND		ug/l	5.00		0.262

Surrogate	%Recovery Qual	Acceptance ifier Criteria
2-Fluorophenol	43	25-87
Phenol-d6	30	16-65
Nitrobenzene-d5	71	42-122
2-Fluorobiphenyl	85	46-121
2,4,6-Tribromophenol	95	45-128
4-Terphenyl-d14	84	47-138

Lab Control Sample Analysis Batch Quality Control

65 ECKFORD

Project Number: 0202156

Project Name:

 Lab Number:
 L2361905

 Report Date:
 10/26/23

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Semivolatile Organics by GC/MS - Westh	oorough Lab Associa	ated sample(s)	: 01-02 Batch:	WG184	2108-2				
1,2,4-Trichlorobenzene	67		-		57-130	-		50	
Naphthalene	69		-		36-120	-		65	
Phenol	36		-		17-120	-		64	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
		,	
2-Fluorophenol	47		25-87
Phenol-d6	38		16-65
Nitrobenzene-d5	83		42-122
2-Fluorobiphenyl	82		46-121
2,4,6-Tribromophenol	89		45-128
4-Terphenyl-d14	75		47-138

PCBS

		Serial_No	:10262314:04
Project Name:	65 ECKFORD	Lab Number:	L2361905
Project Number:	0202156	Report Date:	10/26/23
	SAMPLE RESULTS		
Lab ID:	L2361905-01	Date Collected:	10/18/23 09:00
Client ID:	EFFLUENT DW SAMPLE_20231018	Date Received:	10/18/23
Sample Location:	65 ECKFORD ST, BROOKLYN, NY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water	Extraction Method	: EPA 608.3
Analytical Method:	127,608.3	Extraction Date:	10/19/23 12:07
Analytical Date:	10/20/23 09:33	Cleanup Method:	EPA 3665A
Analyst:	ER	Cleanup Date:	10/19/23
,		Cleanup Method:	EPA 3660B
		Cleanup Date:	10/20/23

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column				
Polychlorinated Biphenyls by GC - Westborough Lab											
Aroclor 1016	ND		ug/l	0.050	0.008	1	А				
Aroclor 1221	ND		ug/l	0.050	0.011	1	А				
Aroclor 1232	ND		ug/l	0.050	0.023	1	А				
Aroclor 1242	ND		ug/l	0.050	0.018	1	А				
Aroclor 1248	ND		ug/l	0.050	0.023	1	А				
Aroclor 1254	ND		ug/l	0.050	0.008	1	А				
Aroclor 1260	ND		ug/l	0.050	0.017	1	А				
PCBs, Total	ND		ug/l	0.050	0.008	1	А				

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	71		37-123	А
Decachlorobiphenyl	71		38-114	А
2,4,5,6-Tetrachloro-m-xylene	76		37-123	В
Decachlorobiphenyl	81		38-114	В

		Serial_No	:10262314:04
Project Name:	65 ECKFORD	Lab Number:	L2361905
Project Number:	0202156	Report Date:	10/26/23
	SAMPLE RESULTS		
Lab ID:	L2361905-02	Date Collected:	10/18/23 09:30
Client ID:	INFLUENT DW SAMPLE_20231018	Date Received:	10/18/23
Sample Location:	65 ECKFORD ST, BROOKLYN, NY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water	Extraction Method	: EPA 608.3
Analytical Method:	127,608.3	Extraction Date:	10/19/23 12:07
Analytical Date:	10/20/23 09:42	Cleanup Method:	EPA 3665A
Analyst:	ER	Cleanup Date:	10/19/23
		Cleanup Method:	EPA 3660B
		Cleanup Date:	10/20/23

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column				
Polychlorinated Biphenyls by GC - Westborough Lab											
Aroclor 1016	ND		ug/l	0.050	0.008	1	А				
Aroclor 1221	ND		ug/l	0.050	0.011	1	А				
Aroclor 1232	ND		ug/l	0.050	0.023	1	А				
Aroclor 1242	ND		ug/l	0.050	0.018	1	А				
Aroclor 1248	ND		ug/l	0.050	0.023	1	А				
Aroclor 1254	ND		ug/l	0.050	0.008	1	А				
Aroclor 1260	ND		ug/l	0.050	0.017	1	А				
PCBs, Total	ND		ug/l	0.050	0.008	1	А				

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	55		37-123	А
Decachlorobiphenyl	55		38-114	А
2,4,5,6-Tetrachloro-m-xylene	58		37-123	В
Decachlorobiphenyl	61		38-114	В

L2361905

10/26/23

Lab Number:

Report Date:

Project Name: 65 ECKFORD Project Number: 0202156

Extraction Method:EPA 608.3Extraction Date:10/19/23 04:56Cleanup Method:EPA 3665ACleanup Date:10/19/23Cleanup Method:EPA 3660BCleanup Date:10/19/23

Column Result Qualifier RL MDL Parameter Units Polychlorinated Biphenyls by GC - Westborough Lab for sample(s): 01-02 Batch: WG1841584-1 0.008 Aroclor 1016 ND ug/l 0.050 А Aroclor 1221 ND ug/l 0.050 0.011 А ND 0.050 0.023 А Aroclor 1232 ug/l Aroclor 1242 ND ug/l 0.050 0.018 А Aroclor 1248 ND 0.050 0.023 А ug/l Aroclor 1254 ND 0.050 0.008 ug/l А Aroclor 1260 ND ug/l 0.050 0.017 А А PCBs, Total ND ug/l 0.050 800.0

Method Blank Analysis Batch Quality Control

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	67		37-123	А	
Decachlorobiphenyl	78		38-114	А	
2,4,5,6-Tetrachloro-m-xylene	71		37-123	В	
Decachlorobiphenyl	84		38-114	В	

Analytical Method: 1 Analytical Date: 1 Analyst: E

127,608.3 10/19/23 12:15 ER

Lab Control Sample Analysis Batch Quality Control

Lab Number:

L2361905 Report Date: 10/26/23

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - West	tborough Lab Associa	ted sample(s)	: 01-02 Batch:	WG1841	584-2				
Aroclor 1016	76		-		50-140	-		36	А
Aroclor 1260	69		-		8-140	-		38	А

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	64				37-123	А
Decachlorobiphenyl	75				38-114	А
2,4,5,6-Tetrachloro-m-xylene	66				37-123	В
Decachlorobiphenyl	83				38-114	В

Project Name:

Project Number: 0202156

65 ECKFORD

METALS

Serial_No:10262314:04

Project Name:	65 ECKFORD	Lab Number:	L2361905
Project Number:	0202156	Report Date:	10/26/23
	SAMPLE RESULTS		
Lab ID:	L2361905-01	Date Collected:	10/18/23 09:00
Client ID:	EFFLUENT DW SAMPLE_20231018	Date Received:	10/18/23
Sample Location:	65 ECKFORD ST, BROOKLYN, NY	Field Prep:	Not Specified

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Cadmium, Total	ND		mg/l	0.0050	0.0010	1	10/19/23 07:27	7 10/20/23 18:45	EPA 3005A	19,200.7	JTS
Copper, Total	0.0077	J	mg/l	0.0100	0.0022	1	10/19/23 07:27	7 10/20/23 18:45	EPA 3005A	19,200.7	JTS
Lead, Total	ND		mg/l	0.0100	0.0027	1	10/19/23 07:27	7 10/20/23 18:45	EPA 3005A	19,200.7	JTS
Mercury, Total	ND		mg/l	0.00020	0.00009	1	10/19/23 08:51	10/20/23 13:51	EPA 245.1	3,245.1	MJR
Nickel, Total	0.0061	J	mg/l	0.0250	0.0024	1	10/19/23 07:27	7 10/20/23 18:45	EPA 3005A	19,200.7	JTS
Zinc, Total	0.0081		mg/l	0.0050	0.0021	1	10/19/23 07:27	7 10/20/23 18:45	EPA 3005A	19,200.7	JTS

Serial_No:10262314:04

Project Name:	65 ECKFORD	Lab Number:	L2361905
Project Number:	0202156	Report Date:	10/26/23
	SAMPLE RESULTS		
Lab ID:	L2361905-02	Date Collected:	10/18/23 09:30
Client ID:	INFLUENT DW SAMPLE_20231018	Date Received:	10/18/23
Sample Location:	65 ECKFORD ST, BROOKLYN, NY	Field Prep:	Not Specified

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Cadmium, Total	ND		mg/l	0.0050	0.0010	1	10/19/23 07:27	10/20/23 18:48	EPA 3005A	19,200.7	JTS
Copper, Total	0.0303		mg/l	0.0100	0.0022	1	10/19/23 07:27	10/20/23 18:48	EPA 3005A	19,200.7	JTS
Lead, Total	0.0461		mg/l	0.0100	0.0027	1	10/19/23 07:27	10/20/23 18:48	EPA 3005A	19,200.7	JTS
Mercury, Total	0.00034		mg/l	0.00020	0.00009	1	10/19/23 08:51	10/20/23 13:54	EPA 245.1	3,245.1	MJR
Nickel, Total	0.0089	J	mg/l	0.0250	0.0024	1	10/19/23 07:27	10/20/23 18:48	EPA 3005A	19,200.7	JTS
Zinc, Total	0.0943		mg/l	0.0050	0.0021	1	10/19/23 07:27	10/20/23 18:48	EPA 3005A	19,200.7	JTS

Project Name:65 ECKFORDProject Number:0202156

 Lab Number:
 L2361905

 Report Date:
 10/26/23

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfiel	d Lab for sample(s):	01-02 B	atch: WC	G18416	01-1				
Cadmium, Total	ND	mg/l	0.0050	0.0010	1	10/19/23 07:27	10/19/23 12:52	19,200.7	AMW
Copper, Total	ND	mg/l	0.0100	0.0022	1	10/19/23 07:27	10/19/23 19:54	19,200.7	TAA
Lead, Total	ND	mg/l	0.0100	0.0027	1	10/19/23 07:27	10/19/23 12:52	19,200.7	AMW
Nickel, Total	ND	mg/l	0.0250	0.0024	1	10/19/23 07:27	10/19/23 12:52	19,200.7	AMW
Zinc, Total	ND	mg/l	0.0050	0.0021	1	10/19/23 07:27	10/19/23 12:52	19,200.7	AMW

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfie	Id Lab for sample(s):	01-02 E	Batch: WC	G184160	94-1				
Mercury, Total	ND	mg/l	0.00020	0.00009	1	10/19/23 08:51	10/20/23 12:50	3,245.1	MJR

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: 65 ECKFORD Project Number: 0202156

Lab Number: L2361905 Report Date: 10/26/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated samp	le(s): 01-02 Bat	ch: WG18	41601-2					
Cadmium, Total	98		-		85-115	-		
Copper, Total	104		-		85-115	-		
Lead, Total	101		-		85-115	-		
Nickel, Total	98		-		85-115	-		
Zinc, Total	98		-		85-115	-		
Total Metals - Mansfield Lab Associated samp	le(s): 01-02 Bat	ch: WG18	41604-2					
Mercury, Total	101		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 65 ECKFORD Project Number: 0202156

Lab Number: L2361905 **Report Date:** 10/26/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qu	Recovery al Limits	RPD Qual	RPD Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01-02	QC Bato	h ID: WG184	1601-3	QC Sam	ple: L2360400-01	Client ID: MS	Sample	
Cadmium, Total	ND	0.053	0.0553	104		-	-	75-125	-	20
Copper, Total	0.0027J	0.25	0.251	100		-	-	75-125	-	20
Lead, Total	ND	0.53	0.525	99		-	-	75-125	-	20
Nickel, Total	ND	0.5	0.523	105		-	-	75-125	-	20
Zinc, Total	0.0059	0.5	0.542	107		-	-	75-125	-	20
Total Metals - Mansfield Lab	Associated sam	nple(s): 01-02	QC Bato	h ID: WG184	1601-7	QC Sam	ple: L2360428-01	Client ID: MS	Sample	
Cadmium, Total	ND	0.053	0.0522	98		-	-	75-125	-	20
Copper, Total	0.007J	0.25	0.248	99		-	-	75-125	-	20
Lead, Total	ND	0.53	0.536	101		-	-	75-125	-	20
Nickel, Total	ND	0.5	0.484	97		-	-	75-125	-	20
Zinc, Total	0.014	0.5	0.507	98		-	-	75-125	-	20
Total Metals - Mansfield Lab	Associated sam	nple(s): 01-02	QC Bato	h ID: WG184	1604-3	QC Sam	ple: L2360724-01	Client ID: MS	Sample	
Mercury, Total	ND	0.005	0.00468	94		-	-	70-130	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01-02	QC Bato	h ID: WG184	1604-5	QC Sam	ple: L2361474-01	Client ID: MS	Sample	
Mercury, Total	0.00012J	0.005	0.00467	94		-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name:65 ECKFORDProject Number:0202156

Lab Number:

 Lab Number:
 L2361905

 Report Date:
 10/26/23

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual F	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-02	2 QC Batch ID:	WG1841601-4 QC Sample:	L2360400-01	Client ID:	DUP Sample	Э
Cadmium, Total	ND	ND	mg/l	NC		20
Copper, Total	0.0027J	0.0027J	mg/l	NC		20
Lead, Total	ND	ND	mg/l	NC		20
Nickel, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.0059	0.0054	mg/l	8		20
otal Metals - Mansfield Lab Associated sample(s): 01-02	2 QC Batch ID:	WG1841604-4 QC Sample:	L2360724-01	Client ID:	DUP Sample	Э
Mercury, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01-02	2 QC Batch ID:	WG1841604-6 QC Sample:	L2361474-01	Client ID:	DUP Sample	Э
Mercury, Total	0.00012J	0.00009J	mg/l	NC		20
			5			

INORGANICS & MISCELLANEOUS

Serial_No:10262314:04

Project Name: 65 ECKFORD

Project Number: 0202156

001101_11011020201110

Lab Number: L2361905 Report Date: 10/26/23

SAMPLE RESULTS

Lab ID:	L2361905-01	Date Collected:	10/18/23 09:00
Client ID:	EFFLUENT DW SAMPLE_20231018	Date Received:	10/18/23
Sample Location:	65 ECKFORD ST, BROOKLYN, NY	Field Prep:	Not Specified

Sample Depth: Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westbo	orough Lat)								
Solids, Total	1000		mg/l	13	NA	1.3	-	10/23/23 05:54	121,2540B	DEW
Solids, Total Suspended	7.0		mg/l	5.0	NA	1	-	10/19/23 08:11	121,2540D	MRS
Chloride	200		mg/l	10	8.9	10	-	10/19/23 15:39	121,4500CL-E	JER
рН (Н)	7.26		SU	-	NA	1	-	10/19/23 22:06	121,4500H+-B	AAS
Nitrogen, Nitrate/Nitrite	0.053	J	mg/l	0.10	0.046	1	-	10/21/23 07:26	44,353.2	KAF
Total Nitrogen	2.4		mg/l	0.30	0.30	1	-	10/24/23 14:05	107,-	MRM
Nitrogen, Total Kjeldahl	2.39		mg/l	0.300	0.066	1	10/25/23 18:44	10/26/23 11:06	121,4500NH3-H	KEP
CBOD, 5 day	ND		mg/l	2.0	NA	1	10/19/23 17:59	10/24/23 12:13	121,5210B	JRG
Non-Polar Material By EPA 1664	ND		mg/l	4.00	1.24	1	10/24/23 13:25	10/24/23 15:11	140,1664B	JGM
Flash Point	>150		deg F	70	NA	1	-	10/23/23 07:30	1,1010A	MRS
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	10/19/23 08:00	10/19/23 08:25	121,3500CR-B	JBB

Serial_No:10262314:04

Project Name: 65 ECKFORD

Project Number: 0202156

Lab Number: L2361905 Report Date: 10/26/23

SAMPLE RESULTS

Lab ID:	L2361905-02	Date Collected:	10/18/23 09:30
Client ID:	INFLUENT DW SAMPLE_20231018	Date Received:	10/18/23
Sample Location:	65 ECKFORD ST, BROOKLYN, NY	Field Prep:	Not Specified

Sample Depth: Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westb	orough Lat)								
Solids, Total	850		mg/l	13	NA	1.3	-	10/23/23 05:54	121,2540B	DEW
Solids, Total Suspended	120		mg/l	16	NA	3.3	-	10/19/23 08:11	121,2540D	MRS
Chloride	160		mg/l	10	8.9	10	-	10/19/23 15:41	121,4500CL-E	JER
рН (Н)	7.58		SU	-	NA	1	-	10/19/23 22:06	121,4500H+-B	AAS
Nitrogen, Nitrate/Nitrite	0.48		mg/l	0.10	0.046	1	-	10/21/23 07:27	44,353.2	KAF
Total Nitrogen	1.2		mg/l	0.30	0.30	1	-	10/24/23 14:05	107,-	MRM
Nitrogen, Total Kjeldahl	0.759		mg/l	0.300	0.066	1	10/25/23 18:44	10/26/23 11:09	121,4500NH3-H	KEP
CBOD, 5 day	ND		mg/l	2.0	NA	1	10/19/23 17:59	10/24/23 12:13	121,5210B	JRG
Non-Polar Material By EPA 1664	ND		mg/l	4.00	1.24	1	10/24/23 13:25	10/24/23 15:12	140,1664B	JGM
Flash Point	>150		deg F	70	NA	1	-	10/23/23 07:30	1,1010A	MRS
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	10/19/23 08:00	10/19/23 08:26	121,3500CR-B	JBB

Project Name:65 ECKFORDProject Number:0202156

 Lab Number:
 L2361905

 Report Date:
 10/26/23

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westh	orough Lab	for sam	ple(s): 01	I-02 Ba	tch: WG	G1841680-	1			
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	10/19/23 08:11	121,2540D	MRS
General Chemistry - Westh	orough Lab	for sam	ple(s): 01	I-02 Ba	tch: WG	G1841689-	1			
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	10/19/23 08:00	10/19/23 08:24	121,3500CR-E	B JBB
General Chemistry - Westh	orough Lab	for sam	ple(s): 01	I-02 Ba	tch: WG	G1841815-	1			
Chloride	ND		mg/l	1.0	0.89	1	-	10/19/23 14:37	121,4500CL-E	JER
General Chemistry - Westh	orough Lab	for sam	ple(s): 01	I-02 Ba	tch: WG	G1841997-	1			
CBOD, 5 day	ND		mg/l	2.0	NA	1	10/19/23 17:59	10/24/23 12:13	121,5210B	JRG
General Chemistry - Westh	orough Lab	for sam	ple(s): 01	I-02 Ba	tch: WG	61842565-	1			
Nitrogen, Nitrate/Nitrite	ND		mg/l	0.10	0.046	1	-	10/21/23 06:20	44,353.2	KAF
General Chemistry - Westh	orough Lab	for sam	ple(s): 01	I-02 Ba	tch: WG	G1842948-	1			
Solids, Total	ND		mg/l	10	NA	1	-	10/23/23 05:54	121,2540B	DEW
General Chemistry - Westh	orough Lab	for sam	ple(s): 01	I-02 Ba	tch: WG	G1843571-	1			
Non-Polar Material By EPA 1664	ND		mg/l	4.00	1.24	1	10/24/23 13:25	10/24/23 15:03	140,1664B	JGM
General Chemistry - Westh	orough Lab	for sam	ple(s): 01	I-02 Ba	tch: WG	G1844277-	1			
Nitrogen, Total Kjeldahl	0.160	J	mg/l	0.300	0.022	1	10/25/23 18:44	10/26/23 11:10	121,4500NH3-ł	H KEP

Lab Control Sample Analysis

Batch Quality Control

 Lab Number:
 L2361905

 Report Date:
 10/26/23

LCS LCSD %Recovery %Recovery %Recovery Limits RPD **RPD Limits** Qual Parameter Qual Qual General Chemistry - Westborough Lab Associated sample(s): 01-02 Batch: WG1841680-2 Solids, Total Suspended 100 -80-120 General Chemistry - Westborough Lab Associated sample(s): 01-02 Batch: WG1841689-2 Chromium, Hexavalent 105 85-115 20 General Chemistry - Westborough Lab Associated sample(s): 01-02 Batch: WG1841815-2 Chloride 100 90-110 -General Chemistry - Westborough Lab Associated sample(s): 01-02 Batch: WG1841997-2 CBOD, 5 day 96 -41-119 49 General Chemistry - Westborough Lab Associated sample(s): 01-02 Batch: WG1842040-1 pН 101 99-101 5 General Chemistry - Westborough Lab Associated sample(s): 01-02 Batch: WG1842565-2 Nitrogen, Nitrate/Nitrite 90-110 96 -General Chemistry - Westborough Lab Associated sample(s): 01-02 Batch: WG1842948-2 Solids, Total 92 -80-120

Project Name:

Project Number:

65 ECKFORD

0202156

Lab Control Sample Analysis

Batch Quality Control

Lab Number: L2361905 Report Date: 10/26/23

LCS LCSD %Recovery %Recovery Limits Parameter %Recovery RPD **RPD** Limits General Chemistry - Westborough Lab Associated sample(s): 01-02 Batch: WG1842988-1 100 Flash Point -96-104 General Chemistry - Westborough Lab Associated sample(s): 01-02 Batch: WG1843571-2 64-132 Non-Polar Material By EPA 1664 128 34 -General Chemistry - Westborough Lab Associated sample(s): 01-02 Batch: WG1844277-2 Nitrogen, Total Kjeldahl 108 78-122 --

Project Name:

Project Number:

65 ECKFORD

0202156

Matrix Spike Analysis Batch Quality Control

Project Name: 65 ECKFORD Project Number: 0202156

Lab Number: L2361905 **Report Date:** 10/26/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborou SAMPLE_20231018	ugh Lab Asso	ciated samp	le(s): 01-02	QC Batch II	D: WG1	841689-4	QC Sample:	L23619	005-02 CI	ient ID:	INFLUE	ENT DW
Chromium, Hexavalent	ND	0.1	0.098	98		-	-		85-115	-		20
General Chemistry - Westboro	ugh Lab Asso	ciated samp	le(s): 01-02	QC Batch I	D: WG1	841815-4	QC Sample:	L23605	511-03 CI	ient ID:	MS Sar	nple
Chloride	27.	20	47	100		-	-		58-140	-		7
General Chemistry - Westboro	ugh Lab Asso	ciated samp	le(s): 01-02	QC Batch I	D: WG1	841997-4	QC Sample:	L23617	'85-01 CI	ient ID:	MS Sar	nple
CBOD, 5 day	ND	100	79	79		-	-		36-125	-		49
General Chemistry - Westboro	ugh Lab Asso	ciated samp	le(s): 01-02	QC Batch I	D: WG1	842565-4	QC Sample:	L23580	92-01 CI	ient ID:	MS Sar	nple
Nitrogen, Nitrate/Nitrite	0.11	4	4.0	97		-	-		80-120	-		20
General Chemistry - Westboro	ugh Lab Asso	ciated samp	le(s): 01-02	QC Batch I	D: WG1	843571-4	QC Sample:	L23553	45-96 CI	ient ID:	MS Sar	nple
Non-Polar Material By EPA 1664	3.00J	20	9.80	49	Q	-	-		64-132	-		34
General Chemistry - Westborou SAMPLE_20231018	ugh Lab Asso	ciated samp	le(s): 01-02	QC Batch II	D: WG1	844277-4	QC Sample:	L23619	005-01 CI	ient ID:	EFFLU	ENT DW
Nitrogen, Total Kjeldahl	2.39	8	11.2	110		-	-		77-111	-		24

Lab Duplicate Analysis Batch Quality Control

Project Name:65 ECKFORDProject Number:0202156

Lab Number:

 Lab Number:
 L2361905

 Report Date:
 10/26/23

Parameter	Nati	ve Sam	ple D	uplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01-02	QC Batch ID:	WG1841680-3	QC Sample:	L2361820-02	Client ID:	DUP Sample
Solids, Total Suspended		35.		40	mg/l	13		32
General Chemistry - Westborough Lab SAMPLE_20231018	Associated sample(s):	01-02	QC Batch ID:	WG1841680-4	QC Sample:	L2361905-02	Client ID:	INFLUENT DW
Solids, Total Suspended		120		130	mg/l	8		32
General Chemistry - Westborough Lab SAMPLE_20231018	Associated sample(s):	01-02	QC Batch ID:	WG1841689-3	QC Sample:	L2361905-01	Client ID:	EFFLUENT DW
Chromium, Hexavalent		ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01-02	QC Batch ID:	WG1841815-3	QC Sample:	L2360511-03	Client ID:	DUP Sample
Chloride		27.		27	mg/l	0		7
General Chemistry - Westborough Lab	Associated sample(s):	01-02	QC Batch ID:	WG1841997-3	QC Sample:	L2361785-01	Client ID:	DUP Sample
CBOD, 5 day		ND		ND	mg/l	NC		49
General Chemistry - Westborough Lab	Associated sample(s):	01-02	QC Batch ID:	WG1842040-2	QC Sample:	L2361250-01	Client ID:	DUP Sample
рН		5.01		4.76	SU	5		5
General Chemistry - Westborough Lab	Associated sample(s):	01-02	QC Batch ID:	WG1842565-3	QC Sample:	L2358092-01	Client ID:	DUP Sample
Nitrogen, Nitrate/Nitrite		0.11		0.096J	mg/l	NC		20
General Chemistry - Westborough Lab SAMPLE_20231018	Associated sample(s):	01-02	QC Batch ID:	WG1842948-3	QC Sample:	L2361905-01	Client ID:	EFFLUENT DW
Solids, Total		1000		1000	mg/l	0		16

Lab Duplicate Analysis Batch Quality Control

Project Name:65 ECKFORDProject Number:0202156

 Lab Number:
 L2361905

 Report Date:
 10/26/23

Parameter	Native Sam	ple D	uplicate Sample	Units	RPD		RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-02	QC Batch ID:	WG1842988-3	QC Sample:	L2361396-02	Client ID:	DUP Sample
Flash Point	95.4		98.4	deg F	3		
General Chemistry - Westborough Lab	Associated sample(s): 01-02	QC Batch ID:	WG1842988-4	QC Sample:	L2362396-01	Client ID:	DUP Sample
Flash Point	125		128	deg F	2		
General Chemistry - Westborough Lab	Associated sample(s): 01-02	QC Batch ID:	WG1843571-3	QC Sample:	L2355345-95	Client ID:	DUP Sample
Non-Polar Material By EPA 1664	3.50J		ND	mg/l	NC		34
General Chemistry - Westborough Lab A SAMPLE_20231018	Associated sample(s): 01-02	QC Batch ID:	WG1844277-3	QC Sample:	L2361905-01	Client ID:	EFFLUENT DW
Nitrogen, Total Kjeldahl	2.39		2.85	mg/l	18		24

Project Name: 65 ECKFORD Project Number: 0202156

Serial_No:10262314:04 Lab Number: L2361905 *Report Date:* 10/26/23

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
A	Absent
В	Absent

Containar Info matic

Container Information			Initial					Frozen	
Container ID	Container Type	Cooler	pН	pН	Temp deg C	Pres	Seal	Date/Time	Analysis(*)
L2361905-01A	Vial Na2S2O3 preserved	А	NA		4.2	Y	Absent		624-NYDEP(7)
L2361905-01B	Vial Na2S2O3 preserved	А	NA		4.2	Y	Absent		624-NYDEP(7)
L2361905-01C	Vial Na2S2O3 preserved	А	NA		4.2	Y	Absent		624-NYDEP(7)
L2361905-01D	Plastic 250ml HNO3 preserved	А	<2	<2	4.2	Y	Absent		NI-UI(180),ZN-UI(180),HG-U(28),CD- UI(180),CU-UI(180),PB-UI(180)
L2361905-01E	Plastic 250ml H2SO4 preserved	А	<2	<2	4.2	Y	Absent		TKN-4500(28),NO3/NO2- 353(28),TNITROGEN(28)
L2361905-01F	Plastic 950ml unpreserved	А	7	7	4.2	Y	Absent		TSC-2540(7),CL-4500(28),HEXCR-3500(1),PH- 4500(.01)
L2361905-01G	Plastic 950ml unpreserved	А	7	7	4.2	Y	Absent		CBOD5(2)
L2361905-01H	Plastic 950ml unpreserved	А	7	7	4.2	Υ	Absent		TSS-2540(7)
L2361905-01J	Amber 250ml unpreserved	А	7	7	4.2	Υ	Absent		FLASH()
L2361905-01K	Amber 1000ml Na2S2O3	A	7	7	4.2	Υ	Absent		625-NYDEP(7)
L2361905-01L	Amber 1000ml Na2S2O3	А	7	7	4.2	Υ	Absent		625-NYDEP(7)
L2361905-01M	Amber 1000ml Na2S2O3	A	7	7	4.2	Υ	Absent		625-NYDEP(7)
L2361905-01N	Amber 1000ml Na2S2O3	A	7	7	4.2	Υ	Absent		NYPCB-608-2L(365)
L2361905-01P	Amber 1000ml Na2S2O3	A	7	7	4.2	Υ	Absent		NYPCB-608-2L(365)
L2361905-01Q	Amber 1000ml Na2S2O3	A	7	7	4.2	Y	Absent		NYPCB-608-2L(365)
L2361905-01R	Amber 1000ml HCI preserved	A	NA		4.2	Y	Absent		NYTPH-1664(28)
L2361905-01S	Amber 1000ml HCI preserved	A	NA		4.2	Y	Absent		NYTPH-1664(28)
L2361905-02A	Vial Na2S2O3 preserved	В	NA		2.2	Y	Absent		624-NYDEP(7)
L2361905-02B	Vial Na2S2O3 preserved	В	NA		2.2	Y	Absent		624-NYDEP(7)
L2361905-02C	Vial Na2S2O3 preserved	В	NA		2.2	Y	Absent		624-NYDEP(7)
L2361905-02D	Plastic 250ml HNO3 preserved	В	<2	<2	2.2	Y	Absent		NI-UI(180),ZN-UI(180),HG-U(28),CD- UI(180),CU-UI(180),PB-UI(180)

Project Name:65 ECKFORDProject Number:0202156

Serial_No:10262314:04 *Lab Number:* L2361905 *Report Date:* 10/26/23

Container Information			Initial	Final	Temp			Frozen		
	Container ID	Container Type	Cooler	pН	pН		Pres	Seal	Date/Time	Analysis(*)
	L2361905-02E	Plastic 250ml H2SO4 preserved	В	<2	<2	2.2	Y	Absent		TKN-4500(28),NO3/NO2- 353(28),TNITROGEN(28)
	L2361905-02F	Plastic 950ml unpreserved	В	7	7	2.2	Y	Absent		TSC-2540(7),HEXCR-3500(1),CL-4500(28),PH- 4500(.01)
	L2361905-02G	Plastic 950ml unpreserved	В	7	7	2.2	Y	Absent		CBOD5(2)
	L2361905-02H	Plastic 950ml unpreserved	В	7	7	2.2	Y	Absent		TSS-2540(7)
	L2361905-02J	Amber 250ml unpreserved	В	7	7	2.2	Y	Absent		FLASH()
	L2361905-02K	Amber 1000ml Na2S2O3	В	7	7	2.2	Y	Absent		625-NYDEP(7)
	L2361905-02L	Amber 1000ml Na2S2O3	В	7	7	2.2	Y	Absent		625-NYDEP(7)
	L2361905-02M	Amber 1000ml Na2S2O3	В	7	7	2.2	Y	Absent		625-NYDEP(7)
	L2361905-02N	Amber 1000ml Na2S2O3	В	7	7	2.2	Y	Absent		NYPCB-608-2L(365)
	L2361905-02P	Amber 1000ml Na2S2O3	В	7	7	2.2	Y	Absent		NYPCB-608-2L(365)
	L2361905-02Q	Amber 1000ml Na2S2O3	В	7	7	2.2	Y	Absent		NYPCB-608-2L(365)
	L2361905-02R	Amber 1000ml HCl preserved	В	NA		2.2	Y	Absent		NYTPH-1664(28)
	L2361905-02S	Amber 1000ml HCl preserved	В	NA	NA	2.2	Y	Absent		ARCHIVE()
	L2361905-03A	Vial HCI preserved	В	NA	NA	2.2	Y	Absent		624-NYDEP(14),ARCHIVE()
	L2361905-03B	Vial HCI preserved	В	NA	NA	2.2	Y	Absent		624-NYDEP(14),ARCHIVE()

Container Comments

L2361905-02S Container Received Empty.

Project Number: 0202156

Lab Number: L2361905

Report Date: 10/26/23

GLOSSARY

Acronyms

Acronyms	
DL	 Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	 Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Number: 0202156

Lab Number: L2361905 Report Date: 10/26/23

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Serial_No:10262314:04

Project Name:	65 ECKFORD	Lab Number:	L2361905
Project Number:	0202156	Report Date:	10/26/23

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Project Name:65 ECKFORDProject Number:0202156

 Lab Number:
 L2361905

 Report Date:
 10/26/23

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.
- 3 Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 44 Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 127 Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- 129 Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.
- 140 Method 1664, Revision B: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-10-001, February 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethvltoluene.

EPA 8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H, B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: AI, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: AI, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	CHAIN OF	CUSTO	DY	PAGE 1 OF	1	Dat	e Rec'd	in Lab	10	119	18	3		ALF	РНА Ј	lob #:	L	3361905	5
ALPH	AL	Project Infor	mation					nforn	natior	Data	Design of the	verab	oles		ing In Same a			PO#	
Westborough, MA	Mansfield, MA TEL: 508-822-9300	Project Name:	65 F	. 4 ford			FAX ADEx			- 10 - 10 - 10 - 10	email Add'i Di	eliverab	les		same a	s Cilen	t into	F0 #.	
	FAX: 508-822-3288					Re	gulato	orv R	eauire	ement	s/Re	port L	.imits		niwa.			annou per second	100
Client Informati		Project Locatio	n: 65 Ech	.terd SI			e/Fed F							Criter	ria		_		
Client: Halaj Chld	Inchot Now York	Project #: CZ				and the second se	NAME AND ADDRESS OF TAXABLE PARTY.	of the local division of the local divisione	And in case of the second s	ned Sew	COLUMN TWO IS NOT	and the second second		and the second second	SEWE	In the second			
Address: 210 W	est 35th st Flour 7	Project Manage	r. Maria	Cate Conla	~		_	_		E CE			_		NABL ods Rec			ENCE PROTOCO	DLS
New York, N.		ALPHA Quote #:						No No		-				-	-		s) Required?		
Phone:		Turn-Around	Time			_	ALYS	IS											TOT
Fax:		Standard	Ru	ish (ONLY IF PRE	-APPROVED													SAMPLE HANDLING Filtration	T A L
Email: MConla	a Chalogaldrich.com												R				Done Done	-	
	/ been Previously analyzed by Alpha	Due Date:	Due Date: Time:				List	g					Ŧ	65ppt F				Not Needed Lab to do	B
Other Project Sp	ecific Requirements/Comments	sty analyzed by Alpha Due Date: Time: (ist) Jure Collection Limits: 55ppt. See attached list. Sample ID Collection Collection Sample Matrix Initials (See Attrached Collics CBOD) 1 total Smooth Alpha Matrix Initials (See Attrached Collics CBOD) 1 total Smooth Alpha Matrix Initials (See Attrached CBOD) 1 to		d Lis	ched	Solid	60		1664		d Lis					Preservation	Ŷ		
Please see attache					1.1		iche	acheve				Lab to do (Please specify	L						
PCB reporting limit	must be 65ppt. See attached list.				Atta BD, T Atta		D, T ed S 2		below)			below)	L E S						
						(See	als (5	BO	pued	Tron	Polar Material	NO3/NO2	See	Mu	Ŧ		2 = 8		
ALPHA Lab ID	Sample ID	Coll	ection	Sample	Sampler's	524	Meta	de,	Sus	exC	olar	NOS	325	808	Point				13.00
(Lab Use Only)		Date	Time	Matrix	Initials	VOC 624	otal	hlori	Total Suspended	pH, HexChrom	Non F	TKN,	ABN 625 (See Attached List)	PCB 608 - Must	Flash			Sample Specific Comments	
10 3 5 - 1			01.0		161	-	1	-	1									Comorte	16
21905-01	Ettluent PW SANRE-20 In Xluent PW SANFLE-2	1231015 10/18/23	9.00	Water	EN				X						Ø	븜	H		
-00	Influent IN SAPITE -2	CISBO 10/18/25	9.30	whator	EN							2 D	R			H			-
					-	H	믐	H	님	님	님	H	님	늼	H	H	H		-
							H	H	H	H	님	H	H	님	H	H			
						H	H	H	H	H	H	H	H	H	Ē	Ē			
1					-	1 n	Ē		Ē		Ē								
PLEASE ANSWER O	UESTIONS ABOVE!			Con	tainer Type	V	Р	Ρ	Р	Р	A	P	A	A	Α	•	•	STR.	
				Р	reservative	н	С	A	A	A	В	D	н	н	2	2	-	Please print clearly, legib and completely. Sample	
S YOUR PROJECT			Pa	ite/Time	•	_		Receiv	ed By:			D	ate/Tim	e	not be logged in and turnaround time clock will start until any ambiguities				
	or CT RCP?	Feddy	Nuan	Epu	X	10/18/	25/	5526	W	ng	15	ins	ale		10/	161	23/18	pesolved. All samples	die
*DRM NO: 01-01(1) rev. 30-JUE-07)		Mic.	Jerefr	botton	0	10/1	1/33	(8))	YC	~	20		NO	0/1	19	9:0	Alpha's Payment Terms.		
		C	P		C.	10/1	8/0	3	4	-		_	-0	AC	(0/	18	00	100	
Page 45 of 45	÷	1	2		41	10/10	10	2Cic	5	~			-	10	1192	5 0	00		

Former Carter Spray Finishing Corp. - BCP Site C224218 2 November 2023 Page 6

ATTACHMENT B Analytical Data for Offsite Sentinel Wells – October 2023

ANALYTICAL REPORT

Lab Number:	L2361904
Client:	Haley & Aldrich
	213 West 35th Street
	7th Floor
	New York, NY 10123
ATTN:	Mari Cate Conlon
Phone:	(347) 271-1521
Project Name:	65 ECKFORD
Project Number:	0202156
Report Date:	10/24/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:10242316:45

Project Name:65 ECKFORDProject Number:0202156

 Lab Number:
 L2361904

 Report Date:
 10/24/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2361904-01	OW-1_20231018	WATER	65 ECKFORD ST, BROOKLYN, NY	10/18/23 12:50	10/18/23
L2361904-02	OW-2_20231018	WATER	65 ECKFORD ST, BROOKLYN, NY	10/18/23 14:20	10/18/23

Project Name: 65 ECKFORD Project Number: 0202156

 Lab Number:
 L2361904

 Report Date:
 10/24/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:65 ECKFORDProject Number:0202156

 Lab Number:
 L2361904

 Report Date:
 10/24/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Jufani Morrissey - Tiffani Morrissey

Title: Technical Director/Representative

Date: 10/24/23

ORGANICS

VOLATILES

		Serial_N	0:10242316:45
Project Name:	65 ECKFORD	Lab Number:	L2361904
Project Number:	0202156	Report Date:	10/24/23
	SAMPLE RESULTS		
Lab ID:	L2361904-01	Date Collected:	10/18/23 12:50
Client ID:	OW-1_20231018	Date Received:	10/18/23
Sample Location:	65 ECKFORD ST, BROOKLYN, NY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water		
Analytical Method:	1,8260D		
Analytical Date:	10/21/23 10:18		
Analyst:	PID		
-			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	2.0	J	ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	5.2		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name:	65 ECKFORD				Lab Nu		:10242316:45 L2361904
Project Number:	0202156			_	Report	Date:	10/24/23
Lab ID: Client ID: Sample Location:	L2361904-01 OW-1_20231018 65 ECKFORD ST, B	-	LE RESULT:	5	Date Col Date Rec Field Pre	ceived:	10/18/23 12:50 10/18/23 Not Specified
Sample Depth: Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
	by GC/MS - Westboroug		Quanner	Units	RL		Dilution ractor
Volatile Organics i							
Trichloroethene		ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl tert butyl ether		2.0	J	ug/l	2.5	0.70	1
p/m-Xylene		ND		ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
Xylenes, Total		ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		2.3	J	ug/l	2.5	0.70	1
1,2-Dichloroethene, Tota	l	2.3	J	ug/l	2.5	0.70	1
Dibromomethane		ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1
Acrylonitrile		ND		ug/l	5.0	1.5	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
Acetone		ND		ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
Vinyl acetate		ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethan	e	ND		ug/l	2.5	0.70	1
Bromobenzene		ND		ug/l	2.5	0.70	1
n-Butylbenzene		ND		ug/l	2.5	0.70	1
sec-Butylbenzene		ND		ug/l	2.5	0.70	1
tert-Butylbenzene		1.2	J	ug/l	2.5	0.70	1

ND

ND

ND

ND

ND

ND

ND

1

1

1

1

1

1

1

2.5

2.5

2.5

2.5

2.5

2.5

2.5

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

0.70

0.70

0.70

0.70

0.70

0.70

0.70

o-Chlorotoluene

p-Chlorotoluene

Hexachlorobutadiene

Isopropylbenzene

p-Isopropyltoluene

Naphthalene

1,2-Dibromo-3-chloropropane

	Serial_No:10242316:45					
Project Name:	65 ECKFORD	Lab Number:	L2361904			
Project Number:	0202156	Report Date:	10/24/23			
	SAMPLE RESULTS					
Lab ID:	L2361904-01	Date Collected:	10/18/23 12:50			
Client ID:	OW-1_20231018	Date Received:	10/18/23			
Sample Location:	65 ECKFORD ST, BROOKLYN, NY	Field Prep:	Not Specified			

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	61.	1
p-Diethylbenzene	ND		ug/l	2.0	0.70	1
p-Ethyltoluene	ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	107	70-130	
4-Bromofluorobenzene	113	70-130	
Dibromofluoromethane	98	70-130	

		Serial_N	0:10242316:45
Project Name:	65 ECKFORD	Lab Number:	L2361904
Project Number:	0202156	Report Date:	10/24/23
	SAMPLE RESULTS		
Lab ID:	L2361904-02	Date Collected:	10/18/23 14:20
Client ID:	OW-2_20231018	Date Received:	10/18/23
Sample Location:	65 ECKFORD ST, BROOKLYN, NY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water		
Analytical Method:	1,8260D		
Analytical Date:	10/21/23 10:43		
Analyst:	PID		
-			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.21	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

					Serial_No:10242316:45				
Project Name:	65 ECKFORD				Lab Nun	nber:	L2361904		
Project Number:	0202156		Report D	Date:	10/24/23				
		SAMPLE	E RESULTS						
Lab ID:	L2361904-02				Date Colle	ected:	10/18/23 14:20		
Client ID:	OW-2_20231018				Date Rece	eived:	10/18/23		
Sample Location:	65 ECKFORD ST, BRC	OKLYN, NY	,		Field Prep):	Not Specified		
Sample Depth:									
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics b	y GC/MS - Westborough L	ab							

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	0.98	J	ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
			-			

		Serial_No	0:10242316:45
Project Name:	65 ECKFORD	Lab Number:	L2361904
Project Number:	0202156	Report Date:	10/24/23
	SAMPLE RESULTS		
Lab ID:	L2361904-02	Date Collected:	10/18/23 14:20
Client ID:	OW-2_20231018	Date Received:	10/18/23
Sample Location:	65 ECKFORD ST, BROOKLYN, NY	Field Prep:	Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	61.	1
p-Diethylbenzene	ND		ug/l	2.0	0.70	1
p-Ethyltoluene	ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	107	70-130	
4-Bromofluorobenzene	109	70-130	
Dibromofluoromethane	98	70-130	

Project Number: 0202156

 Lab Number:
 L2361904

 Report Date:
 10/24/23

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:10/21/23 09:52Analyst:LAC

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab f	or sample(s): 01-02	Batch:	WG1842889-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

Project Number: 0202156

 Lab Number:
 L2361904

 Report Date:
 10/24/23

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:10/21/23 09:52Analyst:LAC

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s): 01-0	02 Batch:	WG1842889-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Project Number: 0202156

Lab Number: L2361904 Report Date: 10/24/23

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:10/21/23 09:52Analyst:LAC

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - W	/estborough Lab	for sample(s): 0	1-02 Batch:	WG1842889-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

_		A	cceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	100		70-130
Toluene-d8	110		70-130
4-Bromofluorobenzene	108		70-130
Dibromofluoromethane	99		70-130

Lab Number: L2361904

Report Date: 10/24/23

arameter	LCS %Recovery	Qual		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02	Batch:	WG1842889-3	WG1842889-4			
Methylene chloride	84			85		70-130	1		20
1,1-Dichloroethane	87			89		70-130	2		20
Chloroform	83			86		70-130	4		20
Carbon tetrachloride	80			82		63-132	2		20
1,2-Dichloropropane	85			89		70-130	5		20
Dibromochloromethane	82			84		63-130	2		20
1,1,2-Trichloroethane	86			88		70-130	2		20
Tetrachloroethene	83			82		70-130	1		20
Chlorobenzene	86			86		75-130	0		20
Trichlorofluoromethane	110			120		62-150	9		20
1,2-Dichloroethane	83			88		70-130	6		20
1,1,1-Trichloroethane	82			84		67-130	2		20
Bromodichloromethane	81			84		67-130	4		20
trans-1,3-Dichloropropene	90			92		70-130	2		20
cis-1,3-Dichloropropene	83			85		70-130	2		20
1,1-Dichloropropene	79			81		70-130	3		20
Bromoform	77			79		54-136	3		20
1,1,2,2-Tetrachloroethane	91			94		67-130	3		20
Benzene	87			89		70-130	2		20
Toluene	91			92		70-130	1		20
Ethylbenzene	86			87		70-130	1		20
Chloromethane	86			87		64-130	1		20
Bromomethane	130			140	Q	39-139	7		20

Lab Number: L2361904 Report Date: 10/24/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD .imits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-02 Batch:	WG1842889-3	WG1842889-4		
Vinyl chloride	84		87		55-140	4	20
Chloroethane	110		110		55-138	0	20
1,1-Dichloroethene	110		120		61-145	9	20
trans-1,2-Dichloroethene	84		88		70-130	5	20
Trichloroethene	79		82		70-130	4	20
1,2-Dichlorobenzene	87		89		70-130	2	20
1,3-Dichlorobenzene	88		89		70-130	1	20
1,4-Dichlorobenzene	87		90		70-130	3	20
Methyl tert butyl ether	82		87		63-130	6	20
p/m-Xylene	85		85		70-130	0	20
o-Xylene	85		85		70-130	0	20
cis-1,2-Dichloroethene	84		87		70-130	4	20
Dibromomethane	81		85		70-130	5	20
1,2,3-Trichloropropane	91		96		64-130	5	20
Acrylonitrile	77		83		70-130	8	20
Styrene	80		85		70-130	6	20
Dichlorodifluoromethane	76		80		36-147	5	20
Acetone	73		70		58-148	4	20
Carbon disulfide	110		120		51-130	9	20
2-Butanone	66		77		63-138	15	20
Vinyl acetate	97		96		70-130	1	20
4-Methyl-2-pentanone	80		87		59-130	8	20
2-Hexanone	88		93		57-130	6	20

Lab Number: L2361904 Report Date: 10/24/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD		PD nits
Volatile Organics by GC/MS - Westborough I	Lab Associated	sample(s):	01-02 Batch:	WG1842889-3	WG1842889-4			
Bromochloromethane	82		85		70-130	4	2	20
2,2-Dichloropropane	92		92		63-133	0	2	20
1,2-Dibromoethane	89		92		70-130	3	2	20
1,3-Dichloropropane	94		96		70-130	2	2	20
1,1,1,2-Tetrachloroethane	82		82		64-130	0	2	20
Bromobenzene	89		90		70-130	1	2	20
n-Butylbenzene	98		98		53-136	0	2	20
sec-Butylbenzene	94		95		70-130	1	2	20
tert-Butylbenzene	91		91		70-130	0	2	20
o-Chlorotoluene	94		95		70-130	1	2	20
p-Chlorotoluene	94		95		70-130	1	2	20
1,2-Dibromo-3-chloropropane	76		78		41-144	3	2	20
Hexachlorobutadiene	80		80		63-130	0	2	20
Isopropylbenzene	95		95		70-130	0	2	20
p-Isopropyltoluene	91		92		70-130	1	2	20
Naphthalene	83		85		70-130	2	2	20
n-Propylbenzene	98		98		69-130	0	2	20
1,2,3-Trichlorobenzene	84		82		70-130	2	2	20
1,2,4-Trichlorobenzene	84		84		70-130	0	2	20
1,3,5-Trimethylbenzene	92		92		64-130	0	2	20
1,2,4-Trimethylbenzene	92		93		70-130	1	2	20
1,4-Dioxane	84		88		56-162	5	2	20
p-Diethylbenzene	90		90		70-130	0		20

Project Name:65 ECKFORDProject Number:0202156

 Lab Number:
 L2361904

 Report Date:
 10/24/23

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02 Batch:	WG1842889-3	WG1842889-4				
p-Ethyltoluene	95		95		70-130	0		20	
1,2,4,5-Tetramethylbenzene	84		80		70-130	5		20	
Ethyl ether	100		110		59-134	10		20	
trans-1,4-Dichloro-2-butene	100		100		70-130	0		20	

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	100	103	70-130
Toluene-d8	109	108	70-130
4-Bromofluorobenzene	108	107	70-130
Dibromofluoromethane	92	94	70-130

Project Name: 65 ECKFORD Project Number: 0202156

Serial_No:10242316:45 Lab Number: L2361904 *Report Date:* 10/24/23

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
A	Absent
В	Absent

Container Information

Container Information			Initial	Final	Temp			Frozen			
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)		
L2361904-01A	Vial HCI preserved	А	NA		4.2	Y	Absent		NYTCL-8260(14)		
L2361904-01B	Vial HCI preserved	А	NA		4.2	Υ	Absent		NYTCL-8260(14)		
L2361904-01C	Vial HCI preserved	А	NA		4.2	Υ	Absent		NYTCL-8260(14)		
L2361904-02A	Vial HCI preserved	А	NA		4.2	Y	Absent		NYTCL-8260(14)		
L2361904-02B	Vial HCI preserved	А	NA		4.2	Y	Absent		NYTCL-8260(14)		
L2361904-02C	Vial HCI preserved	А	NA		4.2	Y	Absent		NYTCL-8260(14)		

YES

Project Number: 0202156

Lab Number: L2361904

Report Date: 10/24/23

GLOSSARY

Acronyms

Acronyms	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Number: 0202156

Lab Number: L2361904 Report Date: 10/24/23

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, (flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Serial_No:10242316:45

Project Name:	65 ECKFORD	Lab Number:	L2361904
Project Number:	0202156	Report Date:	10/24/23

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Project Name:65 ECKFORDProject Number:0202156

 Lab Number:
 L2361904

 Report Date:
 10/24/23

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethvltoluene.

EPA 8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H, B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: AI, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: AI, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:10242316:45

Асрна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitr Albany, NY 12205: 14 Walke Tonawanda, NY 14150: 275 (r Way	05	Pag	je / of /			Rec'd Lab	0/19	103	3	ALPHA, JOB # LO361904
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information	A NAME OF THE	Contraction of the			Deliv	erable	and the second second				Billing Information
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: 65	Kchford,					ASP-		1	ASP-B		Same as Client Info
COME IN ADDRESS OF THE OWNER		Project Location: 65	Echtord	St, Bro	oblyn	4		EQui	S (1 File)] EQuIS	(4 File)	PO #
Client Information		Project # 02021	56					Other	_		-	-	
Client: Halay & Aldr	KI FNY	(Use Project name as I	and the second	1.000	_		Regu	ilatory	Requirer	Carl and a local state			Disposal Site Information
Address: 213 Wast		Project Manager: Ma	vi Cato	Conton				NY TO	GS	X	NY Part	375	Please identify below location of
New York, NY 10	123	ALPHAQuote #:					K	AWQ S	Standards		NY CP-5	51	applicable disposal facilities.
Phone:		Turn-Around Time						NY Re	stricted U:	e	Other		Disposal Facility:
Fax:		Standa		Due Date:				NY Un	restricted	Jse			🗌 NJ 🗌 NY
Email: MConton (1	naleyaldrich.con	Rush (only if pre approve	əd) 🗌	# of Days:		_		NYC S	ewer Disc	harge			Other:
These samples have be							ANAL	LYSIS					Sample Filtration
Other project specific	requirements/comm	ents:				100							Done
					45				1.12				Lab to do Preservation
Please specify Metals	or TAL.		+				14		11				Lab to do
							Voes						(Please Specify below)
ALPHA Lab ID	Sau	mple ID	Colle	ection	Sample	Sampler's				1.			
(Lab Use Only)	Sai	mple ID	Date	Time	Matrix	Initials		27					Sample Specific Comments
61904 -06	OW-1- 20	1231018	10/18/23	12:50	Gw	EN	N						
-02-		2310 19	10/18/23	2:20	GW	EN	X						
and production by the state													
												_	
										-			
								-				-	
										1			
A = None F B = HCI A	= Plastic = Amber Glass	Westboro: Certification N Mansfield: Certification N			Con	tainer Type	J						Please print clearly, legibly and completely. Samples car
E = NaOH B = Bacteria Cup		Preservative		В	B	В	>				not be logged in and turnaround time clock will no start until any ambiguities are		
THE SET OF	= Cube	Relinquished	By:	Date/T	ime	and the second se	Received By: Date/Time				ne	resolved. BY EXECUTING	
I = Na ₃ S ₂ O ₃ E	= Encore	Eddy Numer Sa	w	10/15/23	16028	(mp	Danjel			10/12/02/16/			HAS READ AND AGREES
/E = Zn Ac/NaOH D = Other	= BOD Bottle	mon Dank		Jollyn	31830	6	1 9 10/18 19:0.				TO BE BOUND BY ALPHA'S		
- otner		in p.	2	10/15/0	20	1	2	_1	JAC	K	182	D.CC	TERMS & CONDITIONS.
orm No: 01-25 HC (rev. 30-5 Page 26 of 26	Sept-2013)	1/12	JAC		020		-	-		101/	9/23	and and a state of the	(See reverse side.)