

HALEY & ALDRICH OF NEW YORK 213 West 35th Street 7th Floor New York, NY 10123 646.518.7735

8 August 2023 File No. 0202156

Via Email: Jolene.lozewski@dec.ny.gov New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, New York 12233

Attention: Jolene Lozewski

Subject: Project Status Report

Former Carter Spray Finishing Corp. - NYSDEC BCP Site C224218

65 Eckford Street Brooklyn, New York

Dear Jolene Lozewski:

Haley & Aldrich of New York is pleased to present this Project Status Report on behalf of 65-73 Eckford Realty, LLC for the above referenced Site. Copies of this Project Status Report have also been provided to Scarlett McLaughlin and Arunesh Ghosh of the New York State Department of Health. The Project Status Report is for 1 July 2023 to 1 August 2023. If you have any questions, please contact us at 646-277-5688.

Sincerely yours,
HALEY & ALDRICH OF NEW YORK

Mari Cate Conlon

Associate

CC:

Bob Corcoran (NYSDEC) Email: bob.corcoran@dec.ny.gov

Scarlett McLaughlin (NYSDOH) Email: scarlett.mclaughlin@health.ny.gov
Arunesh Ghosh (NYSDOH) Email: scarlett.mclaughlin@health.ny.gov

65-73 Eckford Realty, LLC Email: abe6991@gmail.com
Isaac Sofer (Prestige NY LLC) Email: isaac@prestigenyllc.com

Jon Schuyler Brooks (Abramson Brooks LLP) Email: jbrooks@abramsonbrooks.com

This status report summarizes activities conducted at the Former Carter Spray Finishing Corp. Site (the Site) located at 65 Eckford Street, Brooklyn, NY from 1 July 2023 to 1 August 2023. A Site plan showing the current Site conditions is included as Figure 1.

Remedial Measure Activities

Remedial activities during this reporting period included soil excavation and stockpiling in all regions of the Site to facilitate tie-back installation. Additionally, a total of 56 trucks (approx. 1120 cubic yards) were loaded with hazardous lead-impacted soil for disposal at Cycle Chem Inc. between 1 July 2023 and 1 August 2023.

On 18 July 2023, samples were collected from both offsite sentinel wells, OW-1 and OW-2, respectively, and on 20 July 2023, influent and effluent samples were collected from the active dewatering system as per the NYSDEC approved Water Withdrawal, Treatment & Discharge Plan.

Sampling Results and Other Data

Influent and effluent sampling results from the active dewatering system are provided in Attachment A. Sampling results for the offsite sentinel wells are provided in Attachment B.

Estimated Percentage of Project Completion

The remedial action phase is 60% complete.

Delays Encountered

None.

Site Communication and Deliverable Submittals

Twenty-one daily reports and request to import forms were submitted to New York State Department of Environmental Conservation (NYSDEC) and New York State Department of Health (NYSDOH) during this reporting period.

Anticipated Activities during Next Reporting Period(s)

Continued Site preparation, tie-back installation, soil excavation and load out of offsite disposal, sampling of offsite groundwater monitoring wells, dewatering system effluent and influent sampling are anticipated during the next reporting period(s).

Anticipated Citizen Participation Activities

Current Period

None.

Anticipated Next Period

None.

Other Notable Items

None.

Figures

Figure 1 – Current Site Conditions Map

Attachments

Attachment A – Analytical Data for Influent and Effluent Dewatering Samples – July 2023

Attachment B – Analytical Data for Offsite Sentinel Wells – July 2023

FIGURES

ATTACHMENT A

Analytical Data for Influent and Effluent Dewatering Samples – July 2023

ANALYTICAL REPORT

Lab Number: L2341704

Client: Haley & Aldrich

237 West 35th Street

16th Floor

New York, NY 10123

ATTN: Mari Cate Conlon Phone: (347) 271-1521

Project Name: 65 ECKFORD STREET

Project Number: 0202156

Report Date: 08/02/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 65 ECKFORD STREET

Project Number: 0202156

Lab Number:

L2341704

Report Date:

08/02/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2341704-01	INFLUENT DW SAMPLE 20230720	WATER	65 ECKFORD ST, BROOKLYN, NY	07/20/23 10:15	07/20/23
L2341704-02	EFFLUENT DW SAMPLE 20230720	WATER	65 ECKFORD ST, BROOKLYN, NY	07/20/23 09:30	07/20/23
L2341704-03	TRIP BLANK	WATER	65 ECKFORD ST, BROOKLYN, NY	07/20/23 00:00	07/20/23

Lab Number:

Project Name: 65 ECKFORD STREET

Project Number: 0202156 Report Date: 08/02/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:65 ECKFORD STREETLab Number:L2341704Project Number:0202156Report Date:08/02/23

Case Narrative (continued)

Report Revision

August 02, 2023: The Volatile Organics analyte list has been amended on L2341704-01.

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2341704-03: A sample identified as "TRIP BLANK" was received, but not listed on the Chain of Custody. At the client's request, this sample was analyzed.

Chloride

The Effluent (L2341704-02) result is greater than the Influent (L2341704-01) result. The sample containers were verified as being labeled correctly by the laboratory, and the reported results were confirmed.

NON-POLAR MATERIAL BY EPA 1664

The WG1808166-4 MS recovery, performed on L2341704-02, is outside the acceptance criteria for non-polar material by epa 1664 (0%); however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 08/02/23

Custen Walker Cristin Walker

ORGANICS

VOLATILES

L2341704

08/02/23

Project Name: 65 ECKFORD STREET

L2341704-01

INFLUENT DW SAMPLE 20230720

65 ECKFORD ST, BROOKLYN, NY

Project Number: 0202156

SAMPLE RESULTS

Date Collected: 07/20/23 10:15

Lab Number:

Report Date:

Date Received: 07/20/23 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 07/22/23 15:02

Analyst: KJD

						Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab					
Methylene chloride	ND		ug/l	1.0	0.56	1
1,1-Dichloroethane	0.43	J	ug/l	1.5	0.40	1
Chloroform	ND		ug/l	1.0	0.38	1
Carbon tetrachloride	ND		ug/l	1.0	0.24	1
1,2-Dichloropropane	ND		ug/l	3.5	0.46	1
Dibromochloromethane	ND		ug/l	1.0	0.27	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.34	1
2-Chloroethylvinyl ether	ND		ug/l	10	0.35	1
Tetrachloroethene	ND		ug/l	1.0	0.26	1
Chlorobenzene	ND		ug/l	3.5	0.30	1
Trichlorofluoromethane	ND		ug/l	5.0	0.28	1
1,2-Dichloroethane	ND		ug/l	1.5	0.47	1
1,1,1-Trichloroethane	ND		ug/l	2.0	0.29	1
Bromodichloromethane	ND		ug/l	1.0	0.28	1
trans-1,3-Dichloropropene	ND		ug/l	1.5	0.31	1
cis-1,3-Dichloropropene	ND		ug/l	1.5	0.34	1
Bromoform	ND		ug/l	1.0	0.22	1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.20	1
Benzene	ND		ug/l	1.0	0.38	1
Toluene	ND		ug/l	1.0	0.31	1
Ethylbenzene	ND		ug/l	1.0	0.28	1
Chloromethane	ND		ug/l	5.0	1.0	1
Bromomethane	ND		ug/l	5.0	1.2	1
Vinyl chloride	ND		ug/l	1.0	0.38	1
Chloroethane	1.2	J	ug/l	2.0	0.37	1
1,1-Dichloroethene	ND		ug/l	1.0	0.31	1
trans-1,2-Dichloroethene	ND		ug/l	1.5	0.33	1
cis-1,2-Dichloroethene	0.19	J	ug/l	1.0	0.17	1

L2341704

Lab Number:

Project Name: 65 ECKFORD STREET

Project Number: 0202156 **Report Date:** 08/02/23

OAMBLE DECLUTO

SAMPLE RESULTS

Lab ID: L2341704-01 Date Collected: 07/20/23 10:15

Client ID: INFLUENT DW SAMPLE 20230720 Date Received: 07/20/23
Sample Location: 65 ECKFORD ST, BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
Trichloroethene	ND		ug/l	1.0	0.33	1
1,2-Dichlorobenzene	ND		ug/l	5.0	0.28	1
1,3-Dichlorobenzene	ND		ug/l	5.0	0.27	1
1,4-Dichlorobenzene	ND		ug/l	5.0	0.29	1
p/m-Xylene	1.2	J	ug/l	2.0	0.30	1
o-xylene	0.45	J	ug/l	1.0	0.34	1
Xylenes, Total	1.7	J	ug/l	1.0	0.30	1
Styrene	ND		ug/l	1.0	0.37	1
Acetone	18		ug/l	10	2.4	1
Carbon disulfide	ND		ug/l	5.0	0.28	1
2-Butanone	3.0	J	ug/l	10	1.0	1
Vinyl acetate	ND		ug/l	10	0.41	1
4-Methyl-2-pentanone	ND		ug/l	10	0.19	1
2-Hexanone	ND		ug/l	10	0.55	1
Acrolein	ND		ug/l	8.0	1.8	1
Acrylonitrile	ND		ug/l	10	0.33	1
Methyl tert butyl Ether	0.43	J	ug/l	10	0.19	1
Dibromomethane	ND		ug/l	1.0	0.23	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	96		60-140	
Fluorobenzene	94		60-140	
4-Bromofluorobenzene	98		60-140	

L2341704

08/02/23

Project Name: 65 ECKFORD STREET

Project Number: 0202156

SAMPLE RESULTS

Date Collected: 07/20/23 09:30

Lab Number:

Report Date:

Lab ID: L2341704-02

EFFLUENT DW SAMPLE 20230720 65 ECKFORD ST, BROOKLYN, NY Date Received: 07/20/23
Field Prep: Not Specified

Sample Location:

Sample Depth:

Client ID:

Matrix: Water
Analytical Method: 128,624.1
Analytical Date: 07/22/23 15:36

Analyst: KJD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Chloroform	ND		ug/l	1.0	0.38	1
Carbon tetrachloride	ND		ug/l	1.0	0.24	1
Tetrachloroethene	ND		ug/l	1.0	0.26	1
1,1,1-Trichloroethane	ND		ug/l	2.0	0.29	1
Benzene	ND		ug/l	1.0	0.38	1
Toluene	ND		ug/l	1.0	0.31	1
Ethylbenzene	ND		ug/l	1.0	0.28	1
1,4-Dichlorobenzene	ND		ug/l	5.0	0.29	1
p/m-Xylene	ND		ug/l	2.0	0.30	1
o-Xylene	ND		ug/l	1.0	0.34	1
Xylenes, Total	ND		ug/l	1.0	0.30	1
Methyl tert butyl Ether	ND		ug/l	10	0.19	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	98		60-140	
Fluorobenzene	95		60-140	
4-Bromofluorobenzene	94		60-140	

L2341704

Project Name: 65 ECKFORD STREET

Project Number: 0202156

SAMPLE RESULTS

Report Date: 08/02/23

Lab Number:

Lab ID: L2341704-03 Date Collected: 07/20/23 00:00

Client ID: Date Received: 07/20/23 TRIP BLANK Field Prep: Sample Location: 65 ECKFORD ST, BROOKLYN, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 07/25/23 14:06

Analyst: GMT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Chloroform	ND		ug/l	1.0	0.38	1
Carbon tetrachloride	ND		ug/l	1.0	0.24	1
Tetrachloroethene	ND		ug/l	1.0	0.26	1
1,1,1-Trichloroethane	ND		ug/l	2.0	0.29	1
Benzene	ND		ug/l	1.0	0.38	1
Toluene	ND		ug/l	1.0	0.31	1
Ethylbenzene	ND		ug/l	1.0	0.28	1
1,4-Dichlorobenzene	ND		ug/l	5.0	0.29	1
p/m-Xylene	ND		ug/l	2.0	0.30	1
o-Xylene	ND		ug/l	1.0	0.34	1
Xylenes, Total	ND		ug/l	1.0	0.30	1
Methyl tert butyl Ether	ND		ug/l	10	0.19	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	95		60-140	
Fluorobenzene	99		60-140	
4-Bromofluorobenzene	101		60-140	

Project Name: 65 ECKFORD STREET Lab Number:

Project Number: 0202156 **Report Date:** 08/02/23

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 07/22/23 10:34

Analyst: LAC

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	· Westborough Lab	for sample(s):	01-02 Batch:	WG1806638-4
Methylene chloride	ND	ug/l	1.0	0.56
1,1-Dichloroethane	ND	ug/l	1.5	0.40
Chloroform	ND	ug/l	1.0	0.38
Carbon tetrachloride	ND	ug/l	1.0	0.24
1,2-Dichloropropane	ND	ug/l	3.5	0.46
Dibromochloromethane	ND	ug/l	1.0	0.27
1,1,2-Trichloroethane	ND	ug/l	1.5	0.34
2-Chloroethylvinyl ether	ND	ug/l	10	0.35
Tetrachloroethene	ND	ug/l	1.0	0.26
Chlorobenzene	ND	ug/l	3.5	0.30
Trichlorofluoromethane	ND	ug/l	5.0	0.28
1,2-Dichloroethane	ND	ug/l	1.5	0.47
1,1,1-Trichloroethane	ND	ug/l	2.0	0.29
Bromodichloromethane	ND	ug/l	1.0	0.28
trans-1,3-Dichloropropene	ND	ug/l	1.5	0.31
cis-1,3-Dichloropropene	ND	ug/l	1.5	0.34
Bromoform	ND	ug/l	1.0	0.22
1,1,2,2-Tetrachloroethane	ND	ug/l	1.0	0.20
Benzene	ND	ug/l	1.0	0.38
Toluene	ND	ug/l	1.0	0.31
Ethylbenzene	ND	ug/l	1.0	0.28
Chloromethane	ND	ug/l	5.0	1.0
Bromomethane	ND	ug/l	5.0	1.2
Vinyl chloride	ND	ug/l	1.0	0.38
Chloroethane	ND	ug/l	2.0	0.37
1,1-Dichloroethene	ND	ug/l	1.0	0.31
trans-1,2-Dichloroethene	ND	ug/l	1.5	0.33
cis-1,2-Dichloroethene	ND	ug/l	1.0	0.17
Trichloroethene	ND	ug/l	1.0	0.33

Lab Number:

Project Name: 65 ECKFORD STREET

Project Number: Report Date: 0202156 08/02/23

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 07/22/23 10:34

Analyst: LAC

Parameter	Result	Qualifier Units	s RL	MDL	
Volatile Organics by GC/MS - West	oorough Lab	for sample(s):	01-02 Batch:	WG1806638-4	
1,2-Dichlorobenzene	ND	ug/	5.0	0.28	
1,3-Dichlorobenzene	ND	ug/	5.0	0.27	
1,4-Dichlorobenzene	ND	ug/	5.0	0.29	
p/m-Xylene	ND	ug/	2.0	0.30	
o-Xylene	ND	ug/	1.0	0.34	
Xylenes, Total	ND	ug/	1.0	0.30	
Styrene	ND	ug/	1.0	0.37	
Acetone	ND	ug/	I 10	2.4	
Carbon disulfide	ND	ug/	5.0	0.28	
2-Butanone	ND	ug/	I 10	1.0	
Vinyl acetate	ND	ug/	I 10	0.41	
4-Methyl-2-pentanone	ND	ug/	l 10	0.19	
2-Hexanone	ND	ug/	l 10	0.55	
Acrolein	ND	ug/	8.0	1.8	
Acrylonitrile	ND	ug/	10	0.33	
Methyl tert butyl Ether	ND	ug/	l 10	0.19	
Dibromomethane	ND	ug/	1.0	0.23	

		Acceptance		
Surrogate	%Recove		Criteria	
Pentafluorobenzene	99		60-140	
Fluorobenzene	92		60-140	
4-Bromofluorobenzene	93		60-140	

Lab Number:

Project Name: 65 ECKFORD STREET

Project Number: Report Date:

0202156 08/02/23

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 07/25/23 13:15

Analyst: **GMT**

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS - West	borough Lab	for sampl	e(s): 03	Batch:	WG1807890-4
Chloroform	ND		ug/l	1.0	0.38
Carbon tetrachloride	ND		ug/l	1.0	0.24
Tetrachloroethene	ND		ug/l	1.0	0.26
1,1,1-Trichloroethane	ND		ug/l	2.0	0.29
Benzene	ND		ug/l	1.0	0.38
Toluene	ND		ug/l	1.0	0.31
Ethylbenzene	ND		ug/l	1.0	0.28
1,4-Dichlorobenzene	ND		ug/l	5.0	0.29
p/m-Xylene	ND		ug/l	2.0	0.30
o-Xylene	ND		ug/l	1.0	0.34
Xylenes, Total	ND		ug/l	1.0	0.30
Methyl tert butyl Ether	ND		ug/l	10	0.19

		Acceptance			
Surrogate	%Recovery	Qualifier Criteria			
Pentafluorobenzene	97	60-140			
Fluorobenzene	99	60-140			
4-Bromofluorobenzene	100	60-140			

Lab Control Sample Analysis Batch Quality Control

Project Name: 65 ECKFORD STREET

Project Number: 0202156

Lab Number: L2341704

Report Date: 08/02/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02 Batch:	WG1806638-3	3			
Methylene chloride	70		-		60-140	-	28	
1,1-Dichloroethane	80		-		50-150	-	49	
Chloroform	75		-		70-135	-	54	
Carbon tetrachloride	85		-		70-130	-	41	
1,2-Dichloropropane	75		-		35-165	-	55	
Dibromochloromethane	95		-		70-135	-	50	
1,1,2-Trichloroethane	90		-		70-130	-	45	
2-Chloroethylvinyl ether	90		-		1-225	-	71	
Tetrachloroethene	90		-		70-130	-	39	
Chlorobenzene	80		-		65-135	-	53	
Trichlorofluoromethane	70		-		50-150	-	84	
1,2-Dichloroethane	70		-		70-130	-	49	
1,1,1-Trichloroethane	80		-		70-130	-	36	
Bromodichloromethane	90		-		65-135	-	56	
trans-1,3-Dichloropropene	90		-		50-150	-	86	
cis-1,3-Dichloropropene	90		-		25-175	-	58	
Bromoform	90		-		70-130	-	42	
1,1,2,2-Tetrachloroethane	90		-		60-140	-	61	
Benzene	75		-		65-135	-	61	
Toluene	95		-		70-130	-	41	
Ethylbenzene	85		-		60-140	-	63	
Chloromethane	60		-		1-205	-	60	
Bromomethane	48		-		15-185	-	61	

Lab Control Sample Analysis Batch Quality Control

Project Name: 65 ECKFORD STREET

Project Number: 0202156

Lab Number: L2341704

Report Date: 08/02/23

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02 Batch: \	NG1806638-	-3				
Vinyl chloride	65		-		5-195	-		66	
Chloroethane	80		-		40-160	-		78	
1,1-Dichloroethene	75		-		50-150	-		32	
trans-1,2-Dichloroethene	80		-		70-130	-		45	
cis-1,2-Dichloroethene	75		-		60-140	-		30	
Trichloroethene	80		-		65-135	-		48	
1,2-Dichlorobenzene	85		-		65-135	-		57	
1,3-Dichlorobenzene	80		-		70-130	-		43	
1,4-Dichlorobenzene	85		-		65-135	-		57	
p/m-Xylene	78		-		60-140	-		30	
o-Xylene	80		-		60-140	-		30	
Styrene	80		-		60-140	-		30	
Acetone	74		-		40-160	-		30	
Carbon disulfide	60		-		60-140	-		30	
2-Butanone	84		-		60-140	-		30	
Vinyl acetate	98		-		60-140	-		30	
4-Methyl-2-pentanone	88		-		60-140	-		30	
2-Hexanone	96		-		60-140	-		30	
Acrolein	105		-		60-140	-		30	
Acrylonitrile	78		-		60-140	-		60	
Methyl tert butyl Ether	70		-		60-140	-		30	
Dibromomethane	75		-		70-130	-		30	

Lab Control Sample Analysis

65 ECKFORD STREET

Batch Quality Control

Lab Number: L2341704

Project Number: 0202156 Report Date

Report Date: 08/02/23

LCS LCSD %Recovery RPD
Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-02 Batch: WG1806638-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Acceptance Qual Criteria	•
Pentafluorobenzene	98		60-140	_
Fluorobenzene	94		60-140	
4-Bromofluorobenzene	90		60-140	

Project Name:

Lab Control Sample Analysis Batch Quality Control

Project Name: 65 ECKFORD STREET

Project Number: 0202156

Lab Number:

L2341704

Report Date:

08/02/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s): 03	Batch: WG1	807890-3				
Chloroform	115		-		70-135	-		54
Carbon tetrachloride	120		-		70-130	-		41
Tetrachloroethene	110		-		70-130	-		39
1,1,1-Trichloroethane	120		-		70-130	-		36
Benzene	115		-		65-135	-		61
Toluene	110		-		70-130	-		41
Ethylbenzene	110		-		60-140	-		63
1,4-Dichlorobenzene	105		-		65-135	-		57
p/m-Xylene	108		-		60-140	-		30
o-Xylene	110		-		60-140	-		30
Methyl tert butyl Ether	100		-		60-140	-		30

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Pentafluorobenzene	99		60-140
Fluorobenzene	102		60-140
4-Bromofluorobenzene	101		60-140

SEMIVOLATILES

Project Name: 65 ECKFORD STREET L2341704

Project Number: 0202156 **Report Date:** 08/02/23

SAMPLE RESULTS

Lab ID: L2341704-01 Date Collected: 07/20/23 10:15

Client ID: INFLUENT DW SAMPLE 20230720 Date Received: 07/20/23
Sample Location: 65 ECKFORD ST, BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129,625.1 Extraction Date: 07/26/23 07:24

Analyst: ALS

07/26/23 21:37

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westborough Lab							
1,2,4-Trichlorobenzene	ND		ug/l	5.00	1.49	1	
Naphthalene	ND		ug/l	2.00	0.896	1	
Phenol	ND		ug/l	5.00	0.262	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	52	25-87
Phenol-d6	38	16-65
Nitrobenzene-d5	96	42-122
2-Fluorobiphenyl	82	46-121
2,4,6-Tribromophenol	86	45-128
4-Terphenyl-d14	80	47-138

Project Name: 65 ECKFORD STREET L2341704

Project Number: 0202156 **Report Date:** 08/02/23

SAMPLE RESULTS

Lab ID: L2341704-02 Date Collected: 07/20/23 09:30

Client ID: EFFLUENT DW SAMPLE 20230720 Date Received: 07/20/23
Sample Location: 65 ECKFORD ST, BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129,625.1 Extraction Date: 07/26/23 07:24

Analyst: ALS

07/26/23 22:00

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westborough Lab							
1,2,4-Trichlorobenzene	ND		ug/l	5.00	1.49	1	
Naphthalene	ND		ug/l	2.00	0.896	1	
Phenol	ND		ug/l	5.00	0.262	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	53	25-87
Phenol-d6	37	16-65
Nitrobenzene-d5	88	42-122
2-Fluorobiphenyl	79	46-121
2,4,6-Tribromophenol	72	45-128
4-Terphenyl-d14	77	47-138

Lab Number:

Project Name: 65 ECKFORD STREET

Report Date: **Project Number:** 0202156 08/02/23

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1

Extraction Method: EPA 625.1 Analytical Date: 07/26/23 20:29 07/26/23 07:24 **Extraction Date:** Analyst: ALS

Parameter	Result	Qualifier	Units	RL		MDL	
Semivolatile Organics by GC/MS -	Westborough	Lab for	sample(s):	01-02	Batch:	WG1807794-1	
1,2,4-Trichlorobenzene	ND		ug/l	5.00		1.49	
Naphthalene	ND		ug/l	2.00		0.896	
Phenol	ND		ug/l	5.00		0.262	

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	33	25-87
Phenol-d6	24	16-65
Nitrobenzene-d5	55	42-122
2-Fluorobiphenyl	51	46-121
2,4,6-Tribromophenol	49	45-128
4-Terphenyl-d14	53	47-138

Lab Control Sample Analysis Batch Quality Control

Project Name: 65 ECKFORD STREET Lab Number:

L2341704

Project Number: 0202156 Report Date:

Report Date:	08/02/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westbo	orough Lab Associat	ted sample(s):	01-02 Batch:	WG18077	94-3				
1,2,4-Trichlorobenzene	66		-		57-130	-		50	
Naphthalene	70		-		36-120	-		65	
Phenol	41		-		17-120	-		64	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	49		25-87
Phenol-d6	42		16-65
Nitrobenzene-d5	85		42-122
2-Fluorobiphenyl	75		46-121
2,4,6-Tribromophenol	76		45-128
4-Terphenyl-d14	70		47-138

PCBS

Project Name: 65 ECKFORD STREET L2341704

Project Number: 0202156 **Report Date:** 08/02/23

SAMPLE RESULTS

Lab ID: L2341704-01 Date Collected: 07/20/23 10:15

Client ID: INFLUENT DW SAMPLE 20230720 Date Received: 07/20/23
Sample Location: 65 ECKFORD ST, BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 07/25/23 10:27
Analytical Date: 07/26/23 01:49 Cleanup Method: EPA 3665A

Analyst: KB Cleanup Date: 07/25/23 Cleanup Method: EPA 3660B

Cleanup Date: 07/25/23

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column					
Polychlorinated Biphenyls by GC - Westborough Lab												
Aroclor 1016	ND		ug/l	0.050	0.008	1	А					
Aroclor 1221	ND		ug/l	0.050	0.011	1	Α					
Aroclor 1232	ND		ug/l	0.050	0.023	1	А					
Aroclor 1242	ND		ug/l	0.050	0.018	1	Α					
Aroclor 1248	ND		ug/l	0.050	0.023	1	Α					
Aroclor 1254	ND		ug/l	0.050	0.008	1	А					
Aroclor 1260	ND		ug/l	0.050	0.017	1	Α					
PCBs, Total	ND		ug/l	0.050	0.008	1	А					

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	56		37-123	Α
Decachlorobiphenyl	46		38-114	Α
2,4,5,6-Tetrachloro-m-xylene	50		37-123	В
Decachlorobiphenyl	45		38-114	В

Project Name: 65 ECKFORD STREET L2341704

Project Number: 0202156 **Report Date:** 08/02/23

SAMPLE RESULTS

Lab ID: L2341704-02 Date Collected: 07/20/23 09:30

Client ID: EFFLUENT DW SAMPLE 20230720 Date Received: 07/20/23
Sample Location: 65 ECKFORD ST, BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 07/25/23 10:27
Analytical Date: 07/26/23 01:57 Cleanup Method: EPA 3665A

Analyst: KB Cleanup Date: 07/25/23

Cleanup Method: EPA 3660B Cleanup Date: 07/25/23

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.050	0.008	1	А
Aroclor 1221	ND		ug/l	0.050	0.011	1	Α
Aroclor 1232	ND		ug/l	0.050	0.023	1	Α
Aroclor 1242	ND		ug/l	0.050	0.018	1	Α
Aroclor 1248	ND		ug/l	0.050	0.023	1	Α
Aroclor 1254	ND		ug/l	0.050	0.008	1	Α
Aroclor 1260	ND		ug/l	0.050	0.017	1	Α
PCBs, Total	ND		ua/l	0.050	0.008	1	Α

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	63		37-123	Α
Decachlorobiphenyl	62		38-114	Α
2,4,5,6-Tetrachloro-m-xylene	56		37-123	В
Decachlorobiphenyl	59		38-114	В

Lab Number:

Project Name: 65 ECKFORD STREET

Report Date: **Project Number:** 0202156

08/02/23

Method Blank Analysis Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 07/25/23 14:59

Analyst: **RMP**

Extraction Method: EPA 608.3 07/25/23 07:37 **Extraction Date:** Cleanup Method: EPA 3665A Cleanup Date: 07/25/23 Cleanup Method: EPA 3660B Cleanup Date: 07/25/23

Result	Qualifier	Units	RL		MDL	Column
Westborough	Lab for s	ample(s):	01-02	Batch:	WG18	07415-1
ND		ug/l	0.050		0.008	А
ND		ug/l	0.050		0.011	Α
ND		ug/l	0.050		0.023	Α
ND		ug/l	0.050		0.018	Α
ND		ug/l	0.050		0.023	Α
ND		ug/l	0.050		0.008	Α
ND		ug/l	0.050		0.017	Α
ND		ug/l	0.050		0.008	Α
	Westborough ND ND ND ND ND ND ND ND ND N	Westborough Lab for so	Westborough Lab for sample(s): ND ug/l ND ug/l	ND ug/l 0.050 ND ug/l 0.050	ND ug/l 0.050 ND ug/l 0.050	ND ug/l 0.050 0.008 ND ug/l 0.050 0.011 ND ug/l 0.050 0.011 ND ug/l 0.050 0.023 ND ug/l 0.050 0.018 ND ug/l 0.050 0.023 ND ug/l 0.050 0.008 ND ug/l 0.050 0.008 ND ug/l 0.050 0.017

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	58		37-123	Α	
Decachlorobiphenyl	49		38-114	Α	
2,4,5,6-Tetrachloro-m-xylene	52		37-123	В	
Decachlorobiphenyl	50		38-114	В	

Lab Control Sample Analysis Batch Quality Control

Project Name: 65 ECKFORD STREET

Lab Number:

L2341704

Project Number: 0202156 Report Date:

08/02/23

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - We	estborough Lab Associa	ted sample(s): 01-02 Batch:	WG18074	15-2				
Aroclor 1016	73		-		50-140	-		36	Α
Aroclor 1260	67		-		8-140	-		38	А

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	68		37-123	Α
Decachlorobiphenyl	59		38-114	Α
2,4,5,6-Tetrachloro-m-xylene	62		37-123	В
Decachlorobiphenyl	58		38-114	В

METALS

Project Name: Lab Number: 65 ECKFORD STREET L2341704

Project Number: Report Date: 0202156

08/02/23

SAMPLE RESULTS

Lab ID: L2341704-01

Date Collected: 07/20/23 10:15 INFLUENT DW SAMPLE 20230720 Date Received: 07/20/23 Not Specified

65 ECKFORD ST, BROOKLYN, NY Field Prep: Sample Location:

Sample Depth:

Client ID:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Total Metals - Mails	illeiu Lab										
Cadmium, Total	ND		mg/l	0.0050	0.0010	1	07/23/23 03:1	5 07/27/23 10:44	EPA 3005A	19,200.7	DMB
Copper, Total	0.0076	J	mg/l	0.0100	0.0022	1	07/23/23 03:1:	5 07/27/23 10:44	EPA 3005A	19,200.7	DMB
Lead, Total	0.0554		mg/l	0.0100	0.0027	1	07/23/23 03:1	5 07/27/23 10:44	EPA 3005A	19,200.7	DMB
Mercury, Total	ND		mg/l	0.00020	0.00009	1	07/23/23 04:1	5 07/28/23 16:46	EPA 245.1	3,245.1	MJR
Nickel, Total	0.0087	J	mg/l	0.0250	0.0024	1	07/23/23 03:1	5 07/27/23 10:44	EPA 3005A	19,200.7	DMB
Zinc, Total	0.0415		mg/l	0.0050	0.0021	1	07/23/23 03:1	5 07/27/23 18:28	EPA 3005A	19,200.7	CEY

Project Name: Lab Number: 65 ECKFORD STREET L2341704 08/02/23

Project Number: 0202156

Report Date:

SAMPLE RESULTS Lab ID:

L2341704-02

Date Collected:

07/20/23 09:30

Client ID: Sample Location:

EFFLUENT DW SAMPLE 20230720 65 ECKFORD ST, BROOKLYN, NY

Date Received: Field Prep:

07/20/23 Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansfield Lab											
Total Metals - Maris	sileid Lab										
Cadmium, Total	ND		mg/l	0.0050	0.0010	1	07/23/23 03:1	5 07/27/23 10:49	EPA 3005A	19,200.7	DMB
Copper, Total	0.0023	J	mg/l	0.0100	0.0022	1	07/23/23 03:1:	5 07/27/23 10:49	EPA 3005A	19,200.7	DMB
Lead, Total	0.0051	J	mg/l	0.0100	0.0027	1	07/23/23 03:1:	5 07/27/23 10:49	EPA 3005A	19,200.7	DMB
Mercury, Total	ND		mg/l	0.00020	0.00009	1	07/23/23 04:1	5 07/28/23 16:12	EPA 245.1	3,245.1	MJR
Nickel, Total	0.0080	J	mg/l	0.0250	0.0024	1	07/23/23 03:1	5 07/27/23 10:49	EPA 3005A	19,200.7	DMB
Zinc, Total	0.0065		mg/l	0.0050	0.0021	1	07/23/23 03:1	5 07/27/23 18:31	EPA 3005A	19,200.7	CEY

Serial_No:08022312:25

Project Name: 65 ECKFORD STREET

Project Number: 0202156

Lab Number: **Report Date:**

L2341704

08/02/23

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfie	eld Lab for sample(s):	01-02 I	Batch: W0	G18061	20-1				
Cadmium, Total	ND	mg/l	0.0050	0.0010	1	07/23/23 03:15	07/27/23 10:36	19,200.7	DMB
Copper, Total	ND	mg/l	0.0100	0.0022	1	07/23/23 03:15	07/27/23 10:36	19,200.7	DMB
Lead, Total	ND	mg/l	0.0100	0.0027	1	07/23/23 03:15	07/27/23 10:36	19,200.7	DMB
Nickel, Total	ND	mg/l	0.0250	0.0024	1	07/23/23 03:15	07/27/23 10:36	19,200.7	DMB
Zinc, Total	ND	mg/l	0.0050	0.0021	1	07/23/23 03:15	07/27/23 18:21	19,200.7	CEY

Prep Information

EPA 3005A Digestion Method:

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mans	field Lab for sample(s):	01-02 E	Batch: WO	G18061	23-1				
Mercury, Total	ND	mg/l	0.00020	0.00009) 1	07/23/23 04:15	07/28/23 13:44	3,245.1	MJR

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: 65 ECKFORD STREET

Project Number: 0202156

Lab Number: L2341704

Parameter	LCS %Recovery (LCSD Qual %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated s	ample(s): 01-02 Batch:	: WG1806120-2					
Cadmium, Total	102	-		85-115	-		
Copper, Total	104	-		85-115	-		
Lead, Total	99	-		85-115	-		
Nickel, Total	97	-		85-115	-		
Zinc, Total	104	-		85-115	-		
Total Metals - Mansfield Lab Associated s	ample(s): 01-02 Batch:	: WG1806123-2					
Mercury, Total	85	-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 65 ECKFORD STREET

Project Number: 0202156

Lab Number:

L2341704

Report Date:

08/02/23

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qu	Recovery ual Limits	RPD Qual	RPD Limits
Гotal Metals - Mansfield Lab	Associated sam	nple(s): 01-02	QC Bat	ch ID: WG180	6120-3	QC Sam	nple: L2341276-01	Client ID: MS	Sample	
Cadmium, Total	ND	0.053	0.0555	105		-	-	75-125	-	20
Copper, Total	ND	0.25	0.264	106		-	-	75-125	-	20
Lead, Total	ND	0.53	0.534	101		-	-	75-125	-	20
Nickel, Total	ND	0.5	0.496	99		-	-	75-125	-	20
Zinc, Total	0.0026J	0.5	0.548	110		-	-	75-125	-	20
Гotal Metals - Mansfield Lab	Associated sam	nple(s): 01-02	QC Bat	ch ID: WG180	6123-3	QC Sam	nple: L2341353-01	Client ID: MS	Sample	
Mercury, Total	ND	0.005	0.00428	86		-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 65 ECKFORD STREET

Project Number: 0202156

Lab Number:

L2341704

Report Date:

08/02/23

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual R	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-0	2 QC Batch ID:	WG1806120-4 QC Sample:	L2341276-01	Client ID:	DUP Sample	e
Zinc, Total	0.0026J	0.0034J	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01-0	2 QC Batch ID:	WG1806123-4 QC Sample:	L2341353-01	Client ID:	DUP Sample)
Mercury, Total	ND	ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Serial_No:08022312:25

Project Name: Lab Number: 65 ECKFORD STREET

L2341704 **Project Number: Report Date:** 08/02/23 0202156

SAMPLE RESULTS

Lab ID: Date Collected: L2341704-01 07/20/23 10:15

Client ID: INFLUENT DW SAMPLE 20230720 Date Received: 07/20/23 Not Specified Sample Location: 65 ECKFORD ST, BROOKLYN, NY Field Prep:

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westb	orough Lab)								
Solids, Total	1500		mg/l	13	NA	1.3	-	07/25/23 21:59	121,2540B	REM
Solids, Total Suspended	81.		mg/l	10	NA	2	-	07/22/23 17:30	121,2540D	REM
Chloride	160		mg/l	10	8.9	10	-	07/25/23 22:33	121,4500CL-E	TLH
pH (H)	7.08		SU	-	NA	1	-	07/24/23 23:49	121,4500H+-B	AAS
Nitrogen, Nitrate/Nitrite	0.048	J	mg/l	0.10	0.046	1	-	07/22/23 05:13	44,353.2	KAF
Total Nitrogen	9.0		mg/l	0.30	0.30	1	-	07/27/23 19:28	107,-	JRO
Nitrogen, Total Kjeldahl	8.96		mg/l	0.300	0.066	1	07/23/23 21:30	07/25/23 22:10	121,4500NH3-H	AVT
CBOD, 5 day	4.9		mg/l	2.0	NA	1	07/22/23 00:40	07/26/23 19:15	121,5210B	JRG
Non-Polar Material By EPA 1664	ND		mg/l	4.00	1.24	1	07/26/23 18:36	07/27/23 02:20	140,1664B	QJM
Flash Point	>150		deg F	70	NA	1	-	07/23/23 12:35	1,1010A	GEF
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	07/21/23 09:00	07/21/23 09:21	121,3500CR-B	OCF

Serial_No:08022312:25

Project Name: 65 ECKFORD STREET Lab Number: L2341704

Project Number: 0202156 Report Date: 08/02/23

SAMPLE RESULTS

Lab ID: L2341704-02 Date Collected: 07/20/23 09:30

Client ID: EFFLUENT DW SAMPLE 20230720 Date Received: 07/20/23 Sample Location: 65 ECKFORD ST, BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westb	orough Lab)								
Solids, Total	1200		mg/l	13	NA	1.3	-	07/25/23 21:59	121,2540B	REM
Solids, Total Suspended	ND		mg/l	6.5	NA	1.3	-	07/22/23 17:30	121,2540D	REM
Chloride	220		mg/l	10	8.9	10	-	07/25/23 22:35	121,4500CL-E	TLH
pH (H)	7.10		SU	-	NA	1	-	07/24/23 23:49	121,4500H+-B	AAS
Nitrogen, Nitrate/Nitrite	0.22		mg/l	0.10	0.046	1	-	07/22/23 05:04	44,353.2	KAF
Total Nitrogen	6.9		mg/l	0.30	0.30	1	-	07/27/23 19:28	107,-	JRO
Nitrogen, Total Kjeldahl	6.65		mg/l	0.300	0.066	1	07/23/23 21:45	07/26/23 21:48	121,4500NH3-H	AVT
CBOD, 5 day	ND		mg/l	2.0	NA	1	07/22/23 00:40	07/26/23 19:15	121,5210B	JRG
Non-Polar Material By EPA 1664	ND		mg/l	4.00	1.24	1	07/26/23 18:36	07/27/23 02:21	140,1664B	QJM
Flash Point	>150		deg F	70	NA	1	-	07/23/23 12:35	1,1010A	GEF
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	07/21/23 09:00	07/21/23 09:22	121,3500CR-B	OCF

L2341704

Lab Number:

Project Name: 65 ECKFORD STREET

Method Blank Analysis Batch Quality Control

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westl	oorough La	b for sam	ple(s): 01	-02 Bat	tch: WG	31805989-	1			
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	07/21/23 09:00	07/21/23 09:18	121,3500CR-E	OCF
General Chemistry - Westl	oorough Lal	b for sam	ple(s): 01	-02 Bat	tch: WG	31806337-	1			
CBOD, 5 day	ND		mg/l	2.0	NA	1	07/22/23 00:40	07/26/23 19:15	121,5210B	JRG
General Chemistry - Westl	oorough La	b for sam	ple(s): 01	-02 Bat	tch: WG	31806349-	1			
Nitrogen, Nitrate/Nitrite	ND		mg/l	0.10	0.046	1	-	07/22/23 02:30	44,353.2	KAF
General Chemistry - Westl	oorough La	b for sam	ple(s): 01	-02 Bat	tch: WG	31806536-	1			
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	07/22/23 17:30	121,2540D	REM
General Chemistry - Westl	oorough La	b for sam	ple(s): 01	Batch:	WG18	06675-1				
Nitrogen, Total Kjeldahl	0.088	J	mg/l	0.300	0.022	1	07/23/23 21:30	07/25/23 22:05	121,4500NH3-I	H AVT
General Chemistry - Westl	oorough La	b for sam	ple(s): 02	Batch:	WG18	06677-1				
Nitrogen, Total Kjeldahl	0.208	J	mg/l	0.300	0.022	1	07/23/23 21:45	07/26/23 21:35	121,4500NH3-l	H AVT
General Chemistry - Westl	oorough La	b for sam	ple(s): 01	-02 Bat	tch: WG	31807581-	1			
Chloride	ND		mg/l	1.0	0.89	1	-	07/25/23 20:18	121,4500CL-E	TLH
General Chemistry - Westl	oorough La	b for sam	ple(s): 01	-02 Bat	tch: WG	G1807639-	1			
Solids, Total	ND		mg/l	10	NA	1	-	07/25/23 21:59	121,2540B	REM
General Chemistry - Westl	oorough La	b for sam	ple(s): 01	-02 Bat	tch: WG	G1808166-	1			
Non-Polar Material By EPA 1664	ND		mg/l	4.00	1.24	1	07/26/23 18:36	07/27/23 02:20	140,1664B	QJM

Lab Control Sample Analysis Batch Quality Control

Project Name: 65 ECKFORD STREET

Project Number: 0202156

Lab Number:

L2341704

Report Date:

08/02/23

Parameter	LCS %Recovery Qua	LCSD %Recovery Qua	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-0	2 Batch: WG1805989-2				
Chromium, Hexavalent	92	-	85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01-0	2 Batch: WG1806337-2				
CBOD, 5 day	92	-	41-119	-		49
General Chemistry - Westborough Lab	Associated sample(s): 01-0	2 Batch: WG1806349-2				
Nitrogen, Nitrate/Nitrite	102	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-0	2 Batch: WG1806536-2				
Solids, Total Suspended	93		80-120	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-0	2 Batch: WG1806614-1				
Flash Point	99	-	96-104	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1806675-2				
Nitrogen, Total Kjeldahl	89	-	78-122	-		
General Chemistry - Westborough Lab	Associated sample(s): 02	Batch: WG1806677-2				
Nitrogen, Total Kjeldahl	85	-	78-122	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: 65 ECKFORD STREET

Project Number: 0202156

Lab Number:

L2341704

Report Date:

08/02/23

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1807147-1			
рН	100	-	99-101	-	5
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1807581-2			
Chloride	100	-	90-110	-	
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1807639-2			
Solids, Total	99	-	80-120	-	
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1808166-2			
Non-Polar Material By EPA 1664	64	-	64-132	-	34

Matrix Spike Analysis Batch Quality Control

Project Name: 65 ECKFORD STREET

Project Number: 0202156

Lab Number: L2341704

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recov Qual Limit	•	RPD Qual Limits
General Chemistry - Westborou SAMPLE 20230720	ugh Lab Assoc	iated samp	ole(s): 01-02	QC Batch II	D: WG18	805989-4	QC Sample: I	_2341704-02	Client ID:	EFFLUENT DW
Chromium, Hexavalent	ND	0.1	0.092	92		-	-	85-118	5 -	20
General Chemistry - Westborou SAMPLE 20230720	ugh Lab Assoc	iated samp	ole(s): 01-02	QC Batch II	D: WG18	806337-4	QC Sample: I	_2341704-02	Client ID:	EFFLUENT DW
CBOD, 5 day	ND	100	89	89		-	-	36-125	-	49
General Chemistry - Westborou	ugh Lab Assoc	iated samp	ole(s): 01-02	QC Batch II	D: WG1	806349-4	QC Sample: I	_2339748-01	Client ID:	MS Sample
Nitrogen, Nitrate/Nitrite	0.35	4	4.5	104		-	-	80-120	-	20
General Chemistry - Westborou	ugh Lab Assoc	iated samp	ole(s): 01 C	C Batch ID: \	NG1806	675-4	QC Sample: L23	40325-02 CI	ient ID: M	S Sample
Nitrogen, Total Kjeldahl	0.166J	8	0.092J	0	Q	-	-	77-11	-	24
General Chemistry - Westborou	ugh Lab Assoc	iated samp	ole(s): 02 C	C Batch ID: \	NG1806	677-4	QC Sample: L23	40460-01 CI	ient ID: M	S Sample
Nitrogen, Total Kjeldahl	0.566	8	5.90	67	Q	-	-	77-11	-	24
General Chemistry - Westborou	ugh Lab Assoc	iated samp	ole(s): 01-02	QC Batch II	D: WG1	807581-4	QC Sample: L	_2340178-01	Client ID:	MS Sample
Chloride	6.9	20	29	110		-	-	58-140	-	7
General Chemistry - Westborou SAMPLE 20230720	ugh Lab Assoc	iated samp	ole(s): 01-02	QC Batch II	D: WG1	308166-4	QC Sample: I	_2341704-02	Client ID:	EFFLUENT DW
Non-Polar Material By EPA 1664	ND	19	ND	0	Q	-	-	64-132	2 -	34

Lab Duplicate Analysis Batch Quality Control

Project Name: 65 ECKFORD STREET

Project Number: 0202156

Lab Number:

L2341704

Parameter	Nativ	/e Samı	ple D	uplicate Samp	le Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab As SAMPLE 20230720	ssociated sample(s):	01-02	QC Batch ID:	WG1805989-3	QC Sample:	L2341704-01	Client ID:	INFLUENT DW
Chromium, Hexavalent		ND		0.003J	mg/l	NC		20
General Chemistry - Westborough Lab As SAMPLE 20230720	ssociated sample(s):	01-02	QC Batch ID:	WG1806337-3	QC Sample:	L2341704-02	Client ID:	EFFLUENT DW
CBOD, 5 day		ND		ND	mg/l	NC		49
General Chemistry - Westborough Lab As	ssociated sample(s):	01-02	QC Batch ID:	WG1806349-3	QC Sample:	L2339748-01	Client ID:	DUP Sample
Nitrogen, Nitrate/Nitrite		0.35		0.34	mg/l	3		20
General Chemistry - Westborough Lab As SAMPLE 20230720	ssociated sample(s):	01-02	QC Batch ID:	WG1806536-3	QC Sample:	L2341704-01	Client ID:	INFLUENT DW
Solids, Total Suspended		81.		88	mg/l	8		32
General Chemistry - Westborough Lab As	ssociated sample(s):	01-02	QC Batch ID:	WG1806536-4	QC Sample:	L2341776-02	Client ID:	DUP Sample
Solids, Total Suspended		51.		53	mg/l	4		32
General Chemistry - Westborough Lab As	ssociated sample(s):	01 QC	Batch ID: Wo	G1806675-3 (QC Sample: L2	340325-02 CI	ient ID: Dl	JP Sample
Nitrogen, Total Kjeldahl		0.166J		0.121J	mg/l	NC		24
General Chemistry - Westborough Lab As	ssociated sample(s):	02 QC	Batch ID: Wo	G1806677-3 (QC Sample: L2	340460-01 CI	ient ID: Dl	JP Sample
Nitrogen, Total Kjeldahl		0.566		0.678	mg/l	18		24
General Chemistry - Westborough Lab As	ssociated sample(s):	01-02	QC Batch ID:	WG1807147-2	QC Sample:	L2340096-01	Client ID:	DUP Sample
рН		7.98		8.01	SU	0		5

Lab Duplicate Analysis Batch Quality Control

Project Name: 65 ECKFORD STREET

Project Number: 0202156

Lab Number:

L2341704

Parameter	Native Sam	ple D	ouplicate Sample	Units	RPD		RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-02	QC Batch ID:	WG1807581-3	QC Sample:	L2340178-01	Client ID:	DUP Sample
Chloride	6.9		7.0	mg/l	1		7
General Chemistry - Westborough Lab SAMPLE 20230720	Associated sample(s): 01-02	QC Batch ID:	WG1807639-3	QC Sample:	L2341704-01	Client ID:	INFLUENT DW
Solids, Total	1500		1500	mg/l	0		16
General Chemistry - Westborough Lab SAMPLE 20230720	Associated sample(s): 01-02	QC Batch ID:	WG1808166-3	QC Sample:	L2341704-01	Client ID:	INFLUENT DW
Non-Polar Material By EPA 1664	ND		ND	mg/l	NC		34

Serial_No:08022312:25

Project Name: 65 ECKFORD STREET

Project Number: 0202156

Lab Number: L2341704 **Report Date:** 08/02/23

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler

Α Absent В Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН		Pres	Seal	Date/Time	Analysis(*)
L2341704-01A	Vial Na2S2O3 preserved	Α	NA		5.2	Υ	Absent		624-NYDEP(3)
L2341704-01B	Vial Na2S2O3 preserved	Α	NA		5.2	Υ	Absent		624-NYDEP(3)
L2341704-01C	Vial Na2S2O3 preserved	Α	NA		5.2	Υ	Absent		624-NYDEP(3)
L2341704-01D	Plastic 250ml HNO3 preserved	Α	<2	<2	5.2	Υ	Absent		NI-UI(180),ZN-UI(180),HG-U(28),CD- UI(180),CU-UI(180),PB-UI(180)
L2341704-01E	Plastic 250ml H2SO4 preserved	Α	<2	<2	5.2	Υ	Absent		TKN-4500(28),NO3/NO2- 353(28),TNITROGEN(28)
L2341704-01F	Amber 250ml unpreserved	Α	7	7	5.2	Υ	Absent		FLASH()
L2341704-01G	Plastic 950ml unpreserved	Α	7	7	5.2	Y	Absent		TSC-2540(7),HEXCR-3500(1),CL- 4500(28),CBOD5(2),PH-4500(.01)
L2341704-01H	Plastic 950ml unpreserved	Α	7	7	5.2	Υ	Absent		TSC-2540(7),HEXCR-3500(1),CL- 4500(28),CBOD5(2),PH-4500(.01)
L2341704-01I	Plastic 950ml unpreserved	Α	7	7	5.2	Υ	Absent		TSS-2540(7)
L2341704-01J	Amber 1000ml Na2S2O3	Α	7	7	5.2	Υ	Absent		625-NYDEP(7)
L2341704-01K	Amber 1000ml Na2S2O3	Α	7	7	5.2	Υ	Absent		625-NYDEP(7)
L2341704-01L	Amber 1000ml Na2S2O3	Α	7	7	5.2	Υ	Absent		NYPCB-608-2L(365)
L2341704-01M	Amber 1000ml Na2S2O3	Α	7	7	5.2	Υ	Absent		NYPCB-608-2L(365)
L2341704-01N	Amber 1000ml Na2S2O3	Α	7	7	5.2	Υ	Absent		NYPCB-608-2L(365)
L2341704-01O	Amber 1000ml Na2S2O3	Α	7	7	5.2	Υ	Absent		NYPCB-608-2L(365)
L2341704-01P	Amber 1000ml HCI preserved	Α	NA		5.2	Υ	Absent		NYTPH-1664(28)
L2341704-01Q	Amber 1000ml HCl preserved	Α	NA		5.2	Υ	Absent		NYTPH-1664(28)
L2341704-02A	Vial Na2S2O3 preserved	Α	NA		5.2	Υ	Absent		624-NYDEP(7)
L2341704-02B	Vial Na2S2O3 preserved	Α	NA		5.2	Υ	Absent		624-NYDEP(7)
L2341704-02C	Vial Na2S2O3 preserved	Α	NA		5.2	Υ	Absent		624-NYDEP(7)

Serial_No:08022312:25

Lab Number: L2341704

Report Date: 08/02/23

Project Name: 65 ECKFORD STREET

Project Number: 0202156

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2341704-02D	Plastic 250ml HNO3 preserved	Α	<2	<2	5.2	Υ	Absent		NI-UI(180),ZN-UI(180),HG-U(28),CD- UI(180),CU-UI(180),PB-UI(180)
L2341704-02E	Plastic 250ml H2SO4 preserved	Α	<2	<2	5.2	Υ	Absent		TKN-4500(28),NO3/NO2- 353(28),TNITROGEN(28)
L2341704-02F	Amber 250ml unpreserved	Α	7	7	5.2	Υ	Absent		FLASH()
L2341704-02G	Plastic 950ml unpreserved	Α	7	7	5.2	Υ	Absent		TSC-2540(7),HEXCR-3500(1),CL- 4500(28),CBOD5(2),PH-4500(.01)
L2341704-02H	Plastic 950ml unpreserved	Α	7	7	5.2	Υ	Absent		TSC-2540(7),HEXCR-3500(1),CL- 4500(28),CBOD5(2),PH-4500(.01)
L2341704-02I	Plastic 950ml unpreserved	Α	7	7	5.2	Υ	Absent		TSS-2540(7)
L2341704-02J	Amber 1000ml Na2S2O3	Α	7	7	5.2	Υ	Absent		625-NYDEP(7)
L2341704-02K	Amber 1000ml Na2S2O3	Α	7	7	5.2	Υ	Absent		625-NYDEP(7)
L2341704-02L	Amber 1000ml Na2S2O3	Α	7	7	5.2	Υ	Absent		NYPCB-608-2L(365)
L2341704-02M	Amber 1000ml Na2S2O3	Α	7	7	5.2	Υ	Absent		NYPCB-608-2L(365)
L2341704-02N	Amber 1000ml Na2S2O3	Α	7	7	5.2	Υ	Absent		NYPCB-608-2L(365)
L2341704-02O	Amber 1000ml Na2S2O3	Α	7	7	5.2	Υ	Absent		NYPCB-608-2L(365)
L2341704-02P	Amber 1000ml HCl preserved	Α	NA		5.2	Υ	Absent		NYTPH-1664(28)
L2341704-02Q	Amber 1000ml HCl preserved	Α	NA		5.2	Υ	Absent		NYTPH-1664(28)
L2341704-03A	Vial Na2S2O3 preserved	Α	NA		5.2	Υ	Absent		624-NYDEP(7)
L2341704-03B	Vial Na2S2O3 preserved	Α	NA		5.2	Υ	Absent		624-NYDEP(7)

Project Name: Lab Number: 65 ECKFORD STREET L2341704 **Report Date: Project Number:** 0202156 08/02/23

GLOSSARY

Acronyms

EDL

LCSD

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA** Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

 Laboratory Control Sample Duplicate: Refer to LCS. LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:65 ECKFORD STREETLab Number:L2341704Project Number:0202156Report Date:08/02/23

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benzo(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:65 ECKFORD STREETLab Number:L2341704Project Number:0202156Report Date:08/02/23

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:65 ECKFORD STREETLab Number:L2341704Project Number:0202156Report Date:08/02/23

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I VI, 2018.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.
- Method 1664,Revision B: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-10-001, February 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:08022312:25

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 20

Page 1 of 1

Published Date: 6/16/2023 4:52:28 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 4-Ethyltoluene, Az

EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

Page 50 of 51

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

	CHAIN OF C	THE PERSON NAMED IN	ODY	SECTION OF SECTION	OF 1		SSUA	e Rec	and the last		The state of the s	CONTRA	-	2	200 1 450	LPW	A Joi) #:	123417	0
Westborough, 874 EL: 508-686-8220 AXC 508-888-5189	HonePolis ma			chtord St	veet		П	FAX ADEX		li lorg (g	Į	EMA Addi	JL.		À	A1 .	ne as C		- Contract of the last of the	
Hent: Haley ?	Aldrich of NY	Project Local	aitan:65 [_	htoras 181	TO WANY		Stat	e/Fod	Progr		iren	entsif	el, ol	t Llim		iteria				
ddress: 237 1	Nest 35th St Floor 16, F	roject Man LPHA Quo	agar, Hqr	Cate Co	nlon		NYC	P PR	ery ar	id Con MPU 図 N	IVE C	ERT	UNTY	CT I	EAS	C-SE ONA	WER	co.	FIDENCE PROTO	ÇOL
ona:			ld Tjatë j		2682554	g per	ПΥ			⊠ N	-								ocole) Required?	
c		Stendard		Carl Burnanan		- 2	ANA	LVS	18											No.
	Cholevalling con			Rush (ONLY IF P	RE-APPROVED	7		T T 1000											SAMPLE HANDLING Hitration Done	
er ProjedSp	ecific Requirements/Comments/Det d IIst, must be 65ppt. See attached list,			e:			VOC 624 (See Attached List)	Total Wetals (See Attached List)	3BOD, Total Sollds	ended Solids	1	Polar Material - 1684	NO2	ABN 625 (See Attached List)	PCB 608 - Must acheve 85ppt R1				☐ Not Readed ☐ Lab to do Presurvation ☐ Lab to do Presso spacify ballon)	war - a ba
Use Orly)	Sample ID	Date	Time	Sample Matrix	Sampler's Intifets		VOC 624 (Total Meta	Chloride, CBOD,	Total Suspended	рН, Нехсплот	Non Polar I	TKN, NO3/NO2	ABN 625 (S	CB 608 - I	Flash Point			Sumple Specific	
02	nfluent DWSAMPLE 2018920 Effluent DWSAMPLE 201878	7/2/23	10:15	Water	EN	IX	1 1	2	X	N	N		X	X	N	N	\vdash	10	Comments	18
	- 1 TURNE VIU SAMVIE 20237	7/20/23	9:30	Water	EN	K		d l	N)	X	Ø		X	Ø	囡	N	旨	H		1
						10	1] [T
	W HELD LINE		-			빌	L	111	4											
-						님	L	11	4	Ш										
			-			무	L	11	4	Ш										
			-			片	L	11	1	Ш	Ш									
		-	-				15	111	1											
		\rightarrow		-			1	11] []										
NSWER QUE:	STIONS ABOVE!					Ц	IL	IL	1 [7										
					alner Type eservative	И	P	P	P	-	-	-	-		-	A	-	-	Observated denotes to dish	
CP or	ROJECT CTRCP?	FALL N.	Redinque	lahed By:		7ho	23 2723	ne	F	MP		ceived i		W.L.)	Da	ta/Time	3100	Please print clearly, legible and completely. Samples not be logged in and binarrand time clock visionaring amples with the large and subject to be subject	net
		04		N. S. C. C.		718	210	1220	14	01	-	~ Y	50			120	1 21		Alsha's Payment Terms.	_
Page 51 of			35	2		12		30	_	-	-		9			611	123			-

Former Carter Spray Finishing Corp. - BCP Site C224218 8 August 2023 Page 6

ATTACHMENT B
Analytical Data for Offsite Sentinel Wells – July 2023

ANALYTICAL REPORT

Lab Number: L2340970

Client: Haley & Aldrich

237 West 35th Street

16th Floor

New York, NY 10123

ATTN: Mari Cate Conlon Phone: (347) 271-1521

Project Name: 65 ECKFORD STREET

Project Number: 0202156 Report Date: 07/25/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 65 ECKFORD STREET

Project Number: 0202156

Lab Number:

L2340970

Report Date: 07/25/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2340970-01	OW-2_20230718	WATER	65 ECKFORD ST, BROOKLYN, NY	07/18/23 09:10	07/18/23
L2340970-02	OW-1_20230718	WATER	65 ECKFORD ST, BROOKLYN, NY	07/18/23 09:30	07/18/23

L2340970

Lab Number:

Project Name: 65 ECKFORD STREET

Project Number: 0202156 Report Date: 07/25/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: 65 ECKFORD STREET Lab Number: L2340970

Project Number: 0202156 Report Date: 07/25/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2340970-01: The sample identified as "OW-1_20230718" on the chain of custody was identified as "OW-2_20230718" on the container label. At the client's request, the sample is reported as "OW-2_20230718". L2340970-02: The sample identified as "OW-2_20230718" on the chain of custody was identified as "OW-1_20230718" on the container label. At the client's request, the sample is reported as "OW-1_20230718".

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Willelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 07/25/23

ORGANICS

VOLATILES

L2340970

07/18/23 09:10

Not Specified

07/18/23

Project Name: 65 ECKFORD STREET

Project Number: 0202156

SAMPLE RESULTS

Report Date: 07/25/23

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L2340970-01 Client ID: OW-2_20230718

Sample Location: 65 ECKFORD ST, BROOKLYN, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 07/20/23 02:20

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2340970

07/25/23

Project Name: 65 ECKFORD STREET

L2340970-01

OW-2_20230718

65 ECKFORD ST, BROOKLYN, NY

Project Number: 0202156

SAMPLE RESULTS

Date Collected: 07/18/23 09:10

Date Received: 07/18/23

Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	ough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	0.87	J	ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 65 ECKFORD STREET **Lab Number:** L2340970

Project Number: 0202156 **Report Date:** 07/25/23

SAMPLE RESULTS

Lab ID: L2340970-01 Date Collected: 07/18/23 09:10

Client ID: OW-2_20230718 Date Received: 07/18/23
Sample Location: 65 ECKFORD ST, BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Volatile Organics by GC/MS - Westborough Lab n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1 trans-1,4-Dichloro-2-butene ND ug/l 2.5 0.70 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	Volatile Organics by GC/MS - Wes	tborough Lab						
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,4-Dioxane	ND		ug/l	250	61.	1	
1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
Ethyl ether ND ug/l 2.5 0.70 1	p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
	1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
trans-1,4-Dichloro-2-butene ND ug/l 2.5 0.70 1	Ethyl ether	ND		ug/l	2.5	0.70	1	
	trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	124	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	106	70-130	
Dibromofluoromethane	106	70-130	

L2340970

07/25/23

Not Specified

07/18/23

Project Name: 65 ECKFORD STREET

Project Number: 0202156

SAMPLE RESULTS

07/18/23 09:30

Lab Number:

Report Date:

Date Received:

Field Prep:

Lab ID: L2340970-02 Date Collected:

Client ID: OW-1_20230718

Sample Location: 65 ECKFORD ST, BROOKLYN, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 07/20/23 02:43

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westl	oorough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	1.1	J	ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	4.4		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: 65 ECKFORD STREET L2340970

Project Number: Report Date: 0202156 07/25/23

SAMPLE RESULTS

Lab ID: L2340970-02 Date Collected: 07/18/23 09:30

OW-1_20230718 Client ID: Date Received: 07/18/23 Not Specified

Sample Location: Field Prep: 65 ECKFORD ST, BROOKLYN, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	1.4	J	ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	1.4	J	ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 65 ECKFORD STREET **Lab Number:** L2340970

Project Number: 0202156 **Report Date:** 07/25/23

SAMPLE RESULTS

Lab ID: L2340970-02 Date Collected: 07/18/23 09:30

Client ID: OW-1_20230718 Date Received: 07/18/23
Sample Location: 65 ECKFORD ST, BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	121		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	102		70-130	

L2340970

Lab Number:

Project Name: 65 ECKFORD STREET

Project Number: 0202156 **Report Date:** 07/25/23

Method Blank Analysis Batch Quality Control

Batch Quality Control

1,8260D

07/19/23 20:34

Analyst: LAC

Analytical Method:

Analytical Date:

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-02 Batch:	WG1805497-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

L2340970

Lab Number:

Project Name: 65 ECKFORD STREET

Project Number: 0202156 **Report Date:** 07/25/23

roject Number: 0202 156 Report Date.

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 07/19/23 20:34

Analyst: LAC

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-02 Batch:	WG1805497-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Project Name: 65 ECKFORD STREET

Project Number: 0202156

Lab Number: L2340970

Report Date: 07/25/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 07/19/23 20:34

Analyst: LAC

Parameter	Result	Qualifier Units	s RL	MDL	
Volatile Organics by GC/MS - We	stborough Lab	for sample(s):	01-02 Batch:	WG1805497-5	
o-Chlorotoluene	ND	ug/l	2.5	0.70	
p-Chlorotoluene	ND	ug/l	2.5	0.70	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Hexachlorobutadiene	ND	ug/l	1 2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
p-Isopropyltoluene	ND	ug/l	2.5	0.70	
Naphthalene	ND	ug/l	2.5	0.70	
n-Propylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,4-Dioxane	ND	ug/l	250	61.	
p-Diethylbenzene	ND	ug/l	2.0	0.70	
p-Ethyltoluene	ND	ug/l	2.0	0.70	
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54	
Ethyl ether	ND	ug/l	2.5	0.70	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	124		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	103		70-130	

Project Name: 65 ECKFORD STREET

Project Number: 0202156

Lab Number: L2340970

Report Date: 07/25/23

Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane	94 100 110 110 96	sample(s):	01-02 Batch: 96 100 110	WG1805497-3	WG1805497-4 70-130 70-130	2	99
1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane	100 110 110 96		100			2	00
Chloroform Carbon tetrachloride 1,2-Dichloropropane	110 110 96				70-130		20
Carbon tetrachloride 1,2-Dichloropropane	110 96		110		70 100	0	20
1,2-Dichloropropane	96				70-130	0	20
			110		63-132	0	20
			100		70-130	4	20
Dibromochloromethane	100		100		63-130	0	20
1,1,2-Trichloroethane	97		99		70-130	2	20
Tetrachloroethene	100		100		70-130	0	20
Chlorobenzene	95		96		75-130	1	20
Trichlorofluoromethane	110		120		62-150	9	20
1,2-Dichloroethane	110		110		70-130	0	20
1,1,1-Trichloroethane	110		110		67-130	0	20
Bromodichloromethane	100		100		67-130	0	20
trans-1,3-Dichloropropene	100		100		70-130	0	20
cis-1,3-Dichloropropene	92		96		70-130	4	20
1,1-Dichloropropene	100		100		70-130	0	20
Bromoform	89		93		54-136	4	20
1,1,2,2-Tetrachloroethane	94		98		67-130	4	20
Benzene	96		98		70-130	2	20
Toluene	96		96		70-130	0	20
Ethylbenzene	99		99		70-130	0	20
Chloromethane	98		95		64-130	3	20
Bromomethane	76		81		39-139	6	20

Project Name: 65 ECKFORD STREET

Project Number: 0202156

Lab Number: L2340970

Report Date: 07/25/23

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Wes	stborough Lab Associated	sample(s):	01-02 Batch: W	/G1805497-3	WG1805497-4				
Vinyl chloride	96		97		55-140	1		20	
Chloroethane	100		94		55-138	6		20	
1,1-Dichloroethene	92		97		61-145	5		20	
trans-1,2-Dichloroethene	94		94		70-130	0		20	
Trichloroethene	84		89		70-130	6		20	
1,2-Dichlorobenzene	91		93		70-130	2		20	
1,3-Dichlorobenzene	93		94		70-130	1		20	
1,4-Dichlorobenzene	90		93		70-130	3		20	
Methyl tert butyl ether	95		100		63-130	5		20	
p/m-Xylene	100		100		70-130	0		20	
o-Xylene	100		100		70-130	0		20	
cis-1,2-Dichloroethene	95		94		70-130	1		20	
Dibromomethane	96		100		70-130	4		20	
1,2,3-Trichloropropane	87		90		64-130	3		20	
Acrylonitrile	94		99		70-130	5		20	
Styrene	100		100		70-130	0		20	
Dichlorodifluoromethane	100		110		36-147	10		20	
Acetone	79		74		58-148	7		20	
Carbon disulfide	93		94		51-130 1			20	
2-Butanone	79		83		63-138 5			20	
Vinyl acetate	160	Q	160	Q	70-130	0		20	
4-Methyl-2-pentanone	98		92		59-130	6		20	
2-Hexanone	93		99		57-130	6		20	

Project Name: 65 ECKFORD STREET

Project Number: 0202156

Lab Number: L2340970

Report Date: 07/25/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02 Batch: W0	G1805497-3 WG1805497-4		
Bromochloromethane	95		100	70-130	5	20
2,2-Dichloropropane	110		110	63-133	0	20
1,2-Dibromoethane	96		99	70-130	3	20
1,3-Dichloropropane	100		100	70-130	0	20
1,1,1,2-Tetrachloroethane	100		100	64-130	0	20
Bromobenzene	91		93	70-130	2	20
n-Butylbenzene	94		97	53-136	3	20
sec-Butylbenzene	95		95	70-130	0	20
tert-Butylbenzene	90		92	70-130	2	20
o-Chlorotoluene	90		91	70-130	1	20
p-Chlorotoluene	92		91	70-130	1	20
1,2-Dibromo-3-chloropropane	90		92	41-144	2	20
Hexachlorobutadiene	110		110	63-130	0	20
Isopropylbenzene	92		94	70-130	2	20
p-Isopropyltoluene	92		93	70-130	1	20
Naphthalene	88		92	70-130	4	20
n-Propylbenzene	91		92	69-130	1	20
1,2,3-Trichlorobenzene	100		100	70-130	0	20
1,2,4-Trichlorobenzene	96		99	70-130	3	20
1,3,5-Trimethylbenzene	94		95	64-130	1	20
1,2,4-Trimethylbenzene	94		95	70-130	1	20
1,4-Dioxane	100		96	56-162	4	20
p-Diethylbenzene	90		94	70-130	4	20

Project Name: 65 ECKFORD STREET

Project Number: 0202156

Lab Number:

L2340970

Report Date:

07/25/23

Parameter	LCS %Recovery	Qual		CSD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-02 E	Batch:	WG1805497-3	WG1805497-4				
p-Ethyltoluene	92			93		70-130	1		20	
1,2,4,5-Tetramethylbenzene	92			94		70-130	2		20	
Ethyl ether	94			100		59-134	6		20	
trans-1,4-Dichloro-2-butene	81			82		70-130	1		20	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	124	124	70-130
Toluene-d8	104	104	70-130
4-Bromofluorobenzene	95	95	70-130
Dibromofluoromethane	99	101	70-130

Serial_No:07252313:12

Project Name: 65 ECKFORD STREET

Lab Number: L2340970

Project Number: 0202156 **Report Date:** 07/25/23

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	rmation		Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)	
L2340970-01A	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260(14)	
L2340970-01B	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260(14)	
L2340970-01C	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260(14)	
L2340970-02A	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260(14)	
L2340970-02B	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260(14)	
L2340970-02C	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260(14)	

Project Name: Lab Number: 65 ECKFORD STREET L2340970 **Report Date: Project Number:** 0202156 07/25/23

GLOSSARY

Acronyms

EDL

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:65 ECKFORD STREETLab Number:L2340970Project Number:0202156Report Date:07/25/23

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:65 ECKFORD STREETLab Number:L2340970Project Number:0202156Report Date:07/25/23

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Serial_No:07252313:12

Project Name:65 ECKFORD STREETLab Number:L2340970Project Number:0202156Report Date:07/25/23

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:07252313:12

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 20

Published Date: 6/16/2023 4:52:28 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 4-Ethyltoluene, Az

EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Nay poper Ave, Suite 10	Street	Page	1	Deliver	ate Rec' in Lab rables	'd 7	18 XA	23 SP-B		ALPHA Job # L2340970 Billing Information Same as Client Info		
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: 65	Echtord	SI- Broo	KLANY			EQuIS (1 I	File)	☐ E	QuIS (4 I	File)	PO#		
Client Information		Project # 02021	56		C/P			Other							
Client: Haley SAIdad	Let NY	(Use Project name as P					THE PERSON NAMED IN	tory Requ	uirement			-08	Disposal Site Information		
Address: 257 West		Project Manager: Na	ri Cate	Conton				Y TOGS		C-13-	Part 375	5	Please identify below location of applicable disposal facilities.		
Floor 16 New York	LNY 10/23	ALPHAQuote #:				-	-	WQ Stand			CP-51				
Phone:	- Tr. 18	Turn-Around Time	C#				1 =	IY Restricte		Ot	her		Disposal Facility:		
Fax:		Standard	1000	Due Date			N	IY Unrestric	cted Use				NJ NY		
Email: Mconlon Cho	loyaldrichicon	Rush (only if pre approved	0	# of Days:				IYC Sewer	Discharg	9			Other:		
These samples have be	en previously analyze	ed by Alpha					ANAL	YSIS					Sample Filtration		
Other project specific Please specify Metals		ents:					Vacs						Done Lab to do Preservation Lab to do (Please Specify below)		
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	Colle	ection Time	Sample Matrix	Sampler's Initials							Sample Specific Comments		
40970-01	Gwl	-1-20230718	7/18/25	9:10	(+W)	EN	20								
-07		2 _ 20230718	7/18/23		GW	EN	X								
				TIDE CONTRACTOR											
						5.5									
								- 0							
TRANSPORT															
									\Box						
A = None F B = HCI A C = HNO ₃ V D = H ₂ SO ₄ G	/ = Vial 3 = Glass	Westboro: Certification N Mansfield: Certification N				tainer Type	J B	\$		+			Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not		
F = MeOH C G = NaHSO ₄ C H = Na ₂ S ₂ O ₃ E	B = Bacteria Cup C = Cube D = Other E = Encore D = BOD Bottle Sept-2013)	Relinquished Paul May	My WAGE	Date/ 03/18/20		Have	Receive Paul	Mag	9L rele	18/1	ate/Time	TAS	start until any ambiguities are resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)		