

Haley & Aldrich of New York 237 West 35<sup>th</sup> Street 16<sup>th</sup> Floor New York, NY 10018 Tel: 646.518.7735

27 June 2023 File No. 0202156

- Attention: Jolene Lozewski New York State Department of Environmental Conservation Remedial Section A 625 Broadway Albany, New York 12233
- Subject: Effluent Discharge Sampling Results Summary Letter Former Carter Spray Finishing Site NYSDEC BCP Site C224218 65 Eckford Street, Brooklyn, New York

Dear Ms. Lozewski:

Haley & Aldrich of New York (Haley & Aldrich) is providing this letter summarizing the results of the effluent discharge sampling event completed by Haley & Aldrich on 12 June 2023 for the Former Carter Spraying Finishing Site (Brownfield Cleanup Program [BCP] Site C224218) located at 65-73 Eckford Street, Brooklyn, New York (the Site). The purpose of this sampling event was to provide effluent discharge data post-treatment prior to the re-commencement of discharge in conjunction with excavation and remediation of the Site.

On 12 June 2023, a groundwater sample was collected from the effluent of the granulated activated carbon (GAC) units at the Site. The groundwater sample was collected in laboratory provided containers and analyzed for the New York City Department of Environmental Protection (NYCDEP) Table A Parameters for discharge. Groundwater sample analytical data is summarized in Table 1.

### RESULTS

The groundwater sample results conformed to the parameters listed in the NYCDEP Table A parameters for discharge as shown in Table 1. The laboratory analytical report is provided in Attachment A. Haley & Aldrich will continue to collect groundwater samples pre (influent) and post treatment (effluent) on a monthly basis from the dewatering system for the duration of dewatering activities. Future sampling and analytical data will be presented and summarized in the monthly status update reports.

Should you have any questions or need additional information, please do not hesitate to contact us.

Sincerely yours, HALEY & ALDRICH OF NEW YORK

Mari Cate Coulon

Mari Cate Conlon, P.G. Associate

yoch Simmel

Zachary Simmel Senior Engineer

C: Bob Corcoran, NYSDEC (bob.corcoran@dec.ny.gov) Arunesh Ghosh, NYSDOH (Arunesh.Ghosh@health.ny.gov) Abraham Posner, 65-73 Eckford Realty LLC (abe6991@gmail.com) Isaac Sofer, Prestige Construction (isaac@prestigenyllc.com)

Attachments

Table 1 – Effluent Discharge Summary of Water Quality Data Attachment A – Laboratory Analytical Report



TABLE IEffluent Discharge Summary of Water Quality Data



#### TABLE I SUMMARY OF EFFLUENT DISCHARGE DATA 65-73 ECKFORD STREET BROOKLYN, NY FILE NO. 0202156

| Comula Nome                                                                                                                                                    |                           |         |                                           |          |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------|-------------------------------------------|----------|--|
| Sample Name                                                                                                                                                    |                           |         | 65 ECKFORD-EFFLUENT-20230612<br>6/12/2023 |          |  |
| Sampling Date                                                                                                                                                  |                           |         |                                           |          |  |
| Lab Sample ID                                                                                                                                                  |                           |         | L2332960-01                               |          |  |
| Sample Type                                                                                                                                                    |                           |         | GROUNDWATER                               |          |  |
|                                                                                                                                                                | NYCDEP SEWER<br>DISCHARGE | Units   | Results                                   | Qual     |  |
| General Chemistry                                                                                                                                              |                           |         | ÷                                         |          |  |
| CBOD, 5 day                                                                                                                                                    | NA                        | mg/l    | 2                                         | U        |  |
| Chloride                                                                                                                                                       | NA                        | mg/l    | 190                                       |          |  |
| Chromium, Hexavalent                                                                                                                                           | 5                         | mg/l    | 0.05                                      | U        |  |
| Flash Point                                                                                                                                                    | NA                        | deg F   | >150                                      |          |  |
| Nitrogen, Nitrate/Nitrite                                                                                                                                      | NA                        | mg/l    | 0.87                                      |          |  |
| Nitrogen, Total Kjeldahl                                                                                                                                       | NA                        | mg/l    | 11.5                                      |          |  |
| Non-Polar Material By EPA 1664                                                                                                                                 | NA                        | mg/l    | 1.89                                      | J        |  |
| рН (Н)                                                                                                                                                         | NA                        | SU      | 7.13                                      |          |  |
| Solids, Total                                                                                                                                                  | NA                        | mg/l    | 1100                                      |          |  |
| Solids, Total Suspended                                                                                                                                        | 350                       | mg/l    | 11                                        |          |  |
| Total Nitrogen                                                                                                                                                 | NA                        | mg/l    | 12                                        |          |  |
| Polychlorinated Biphenyls by GC                                                                                                                                |                           |         | · · · · · · · · · · · · · · · · · · ·     |          |  |
| Aroclor 1016                                                                                                                                                   | 0.001                     | mg/l    | 0.00005                                   | U        |  |
| Aroclor 1221                                                                                                                                                   | 0.001                     | mg/l    | 0.00005                                   | U        |  |
| Aroclor 1232                                                                                                                                                   | 0.001                     | mg/l    | 0.00005                                   | U        |  |
| Aroclor 1242                                                                                                                                                   | 0.001                     | mg/l    | 0.00005                                   | U        |  |
| Aroclor 1248                                                                                                                                                   | 0.001                     | mg/l    | 0.00005                                   | U        |  |
| Aroclor 1254                                                                                                                                                   | 0.001                     | mg/l    | 0.00005                                   | U        |  |
| Aroclor 1260                                                                                                                                                   | 0.001                     | mg/l    | 0.00005                                   | U        |  |
| PCBs, Total                                                                                                                                                    | 1                         | mg/l    | 0.00005                                   | U        |  |
| Semivolatile Organics by GC/MS                                                                                                                                 |                           | 0,      |                                           |          |  |
| 1,2,4-Trichlorobenzene                                                                                                                                         | NA                        | mg/l    | 0.005                                     | U        |  |
| Naphthalene                                                                                                                                                    | 0.047                     | mg/l    | 0.002                                     | U        |  |
| Phenol                                                                                                                                                         | NA                        | mg/l    | 0.005                                     | U        |  |
| Total Metals                                                                                                                                                   |                           |         |                                           |          |  |
| Cadmium, Total                                                                                                                                                 | 2                         | mg/l    | 0.005                                     | U        |  |
| Copper, Total                                                                                                                                                  | 5                         | mg/l    | 0.011                                     | 0        |  |
| Lead, Total                                                                                                                                                    | 2                         | mg/l    | 0.0035                                    | J        |  |
| Mercury, Total                                                                                                                                                 | 0.05                      | mg/l    | 0.0002                                    | Ŭ        |  |
| Nickel, Total                                                                                                                                                  | 3                         | mg/l    | 0.0104                                    | J        |  |
| Zinc, Total                                                                                                                                                    | 5                         | mg/l    | 0.0295                                    | 3        |  |
| Volatile Organics by GC/MS                                                                                                                                     | 5                         |         | 0.0255                                    |          |  |
| 1,1,1-Trichloroethane                                                                                                                                          | NA                        | mg/l    | 0.002                                     | U        |  |
| 1,4-Dichlorobenzene                                                                                                                                            | NA                        | mg/l    | 0.005                                     | <u> </u> |  |
| Benzene                                                                                                                                                        | 0.134                     | mg/l    | 0.001                                     | U        |  |
| Carbon tetrachloride                                                                                                                                           | NA                        | mg/l    | 0.001                                     | <u> </u> |  |
| Chloroform                                                                                                                                                     | NA                        | mg/l    | 0.001                                     | U        |  |
| Ethylbenzene                                                                                                                                                   | 0.38                      | mg/l    | 0.001                                     | U        |  |
| Methyl tert butyl Ether                                                                                                                                        | 0.05                      | mg/l    | 0.01                                      | U        |  |
| o-Xylene                                                                                                                                                       | NA                        | mg/l    | 0.001                                     | U        |  |
| p/m-Xylene                                                                                                                                                     | NA                        | mg/l    | 0.002                                     | U        |  |
| Tetrachloroethene                                                                                                                                              | 0.02                      | mg/l    | 0.001                                     | U        |  |
| Toluene                                                                                                                                                        | 0.074                     | mg/l    | 0.001                                     | U        |  |
| Xylenes, Total                                                                                                                                                 | 0.074                     | mg/l    | 0.001                                     | U        |  |
| ABBREVIATIONS AND NOTES:                                                                                                                                       | 0.074                     | ···6/ ' | 0.001                                     | ~        |  |
| mg/L: milligrams per liter<br>U: Not detected at the reported de<br>J: Estimated concentration<br>NA: No applicable standard<br>CBOD: Carbonaceous Biochemical |                           | sample  |                                           |          |  |

CBOD: Carbonaceous Biochemical Oxygen Demand Water analytical results are compared to the NYCDEP Table A Parameters for Discharge ATTACHMENT A Analytical Laboratory Report





### ANALYTICAL REPORT

| Lab Number:     | L2332960             |
|-----------------|----------------------|
| Client:         | Haley & Aldrich      |
|                 | 237 West 35th Street |
|                 | 16th Floor           |
|                 | New York, NY 10123   |
| ATTN:           | Mari Cate Conlon     |
| Phone:          | (347) 271-1521       |
| Project Name:   | 65 ECKFORD ST        |
| Project Number: | 0202156              |
| Report Date:    | 06/27/23             |
|                 |                      |

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com



Serial\_No:06272311:36

Project Name:65 ECKFORD STProject Number:0202156

 Lab Number:
 L2332960

 Report Date:
 06/27/23

| Alpha<br>Sample ID | Client ID                        | Matrix | Sample<br>Location          | Collection<br>Date/Time | Receive Date |
|--------------------|----------------------------------|--------|-----------------------------|-------------------------|--------------|
| L2332960-01        | 65 ECKFORD-EFFLUENT-<br>20230612 | WATER  | 65 ECKFORD ST, BROOKLYN, NY | 06/12/23 09:30          | 06/12/23     |
| L2332960-02        | TRIP BLANK                       | WATER  | 65 ECKFORD ST, BROOKLYN, NY | 06/12/23 00:00          | 06/12/23     |

Project Name: 65 ECKFORD ST Project Number: 0202156

Lab Number: L2332960 Report Date: 06/27/23

### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.



Project Name: 65 ECKFORD ST Project Number: 0202156

 Lab Number:
 L2332960

 Report Date:
 06/27/23

### **Case Narrative (continued)**

### **Report Revision**

June 27, 2023: The Client ID was amended on L2332960-01.

### **Report Submission**

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

### Sample Receipt

L2332960-02: Headspace was noted in the sample containers submitted for Volatile Organics - EPA 624.1 NY DEP List. The analysis was performed at the client's request.

### Hexavalent Chromium

L2332960-01: The sample has an elevated detection limit due to the dilution required by the sample matrix.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Curlen Walker Cristin Walker

Title: Technical Director/Representative

Date: 06/27/23



# ORGANICS



# VOLATILES



|                                                                                |                                                                            | Serial_No                                        | 0:06272311:36                               |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|
| Project Name:                                                                  | 65 ECKFORD ST                                                              | Lab Number:                                      | L2332960                                    |
| Project Number:                                                                | 0202156                                                                    | Report Date:                                     | 06/27/23                                    |
|                                                                                | SAMPLE RESULTS                                                             |                                                  |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:                                      | L2332960-01<br>65 ECKFORD-EFFLUENT-20230612<br>65 ECKFORD ST, BROOKLYN, NY | Date Collected:<br>Date Received:<br>Field Prep: | 06/12/23 09:30<br>06/12/23<br>Not Specified |
| Sample Depth:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | Water<br>128,624.1<br>06/13/23 16:02<br>GMT                                |                                                  |                                             |

| Result                                       | Qualifier                                                                               | Units                                            | RL                                                                                                                                                                                                                                                                                                                                                                                                                                           | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dilution Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|----------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Volatile Organics by GC/MS - Westborough Lab |                                                                                         |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| ND                                           |                                                                                         | ug/l                                             | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| ND                                           |                                                                                         | ug/l                                             | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| ND                                           |                                                                                         | ug/l                                             | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| ND                                           |                                                                                         | ug/l                                             | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| ND                                           |                                                                                         | ug/l                                             | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| ND                                           |                                                                                         | ug/l                                             | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| ND                                           |                                                                                         | ug/l                                             | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| ND                                           |                                                                                         | ug/l                                             | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| ND                                           |                                                                                         | ug/l                                             | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| ND                                           |                                                                                         | ug/l                                             | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| ND                                           |                                                                                         | ug/l                                             | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| ND                                           |                                                                                         | ug/l                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                              | rough Lab<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | rough Lab ND | rough Lab          ND       ug/l         ND       ug/l | ND         ug/l         1.0           ND         ug/l         5.0           ND         ug/l         1.0           ND         ug/l         1.0           ND         ug/l         1.0           ND         ug/l         1.0           ND         ug/l         1.0 | ND         ug/l         1.0         0.38           ND         ug/l         1.0         0.24           ND         ug/l         1.0         0.24           ND         ug/l         1.0         0.26           ND         ug/l         1.0         0.26           ND         ug/l         1.0         0.29           ND         ug/l         1.0         0.38           ND         ug/l         1.0         0.31           ND         ug/l         1.0         0.28           ND         ug/l         1.0         0.28           ND         ug/l         1.0         0.28           ND         ug/l         1.0         0.29           ND         ug/l         1.0         0.30           ND         ug/l         1.0         0.34           ND         ug/l         1.0         0.34           ND         ug/l         1.0         0.30 |  |  |

| Surrogate            | % Recovery | Acceptance<br>Qualifier Criteria |  |
|----------------------|------------|----------------------------------|--|
| Pentafluorobenzene   | 98         | 60-140                           |  |
| Fluorobenzene        | 103        | 60-140                           |  |
| 4-Bromofluorobenzene | 89         | 60-140                           |  |



|                                                                                |                                                          | Serial_No                                        | 0:06272311:36                               |
|--------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|---------------------------------------------|
| Project Name:                                                                  | 65 ECKFORD ST                                            | Lab Number:                                      | L2332960                                    |
| Project Number:                                                                | 0202156                                                  | Report Date:                                     | 06/27/23                                    |
|                                                                                | SAMPLE RESULTS                                           |                                                  |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:                                      | L2332960-02<br>TRIP BLANK<br>65 ECKFORD ST, BROOKLYN, NY | Date Collected:<br>Date Received:<br>Field Prep: | 06/12/23 00:00<br>06/12/23<br>Not Specified |
| Sample Depth:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | Water<br>128,624.1<br>06/13/23 13:08<br>GMT              |                                                  |                                             |

| Parameter                                    | Result | Qualifier | Units | RL  | MDL  | Dilution Factor |  |
|----------------------------------------------|--------|-----------|-------|-----|------|-----------------|--|
| Volatile Organics by GC/MS - Westborough Lab |        |           |       |     |      |                 |  |
| Chloroform                                   | ND     |           | ug/l  | 1.0 | 0.38 | 1               |  |
| Carbon tetrachloride                         | ND     |           | ug/l  | 1.0 | 0.24 | 1               |  |
| Tetrachloroethene                            | ND     |           | ug/l  | 1.0 | 0.26 | 1               |  |
| 1,1,1-Trichloroethane                        | ND     |           | ug/l  | 2.0 | 0.29 | 1               |  |
| Benzene                                      | ND     |           | ug/l  | 1.0 | 0.38 | 1               |  |
| Toluene                                      | ND     |           | ug/l  | 1.0 | 0.31 | 1               |  |
| Ethylbenzene                                 | ND     |           | ug/l  | 1.0 | 0.28 | 1               |  |
| 1,4-Dichlorobenzene                          | ND     |           | ug/l  | 5.0 | 0.29 | 1               |  |
| p/m-Xylene                                   | ND     |           | ug/l  | 2.0 | 0.30 | 1               |  |
| o-Xylene                                     | ND     |           | ug/l  | 1.0 | 0.34 | 1               |  |
| Xylenes, Total                               | ND     |           | ug/l  | 1.0 | 0.30 | 1               |  |
| Methyl tert butyl Ether                      | ND     |           | ug/l  | 10  | 0.19 | 1               |  |

| Surrogate            | % Recovery | Accepta<br>Qualifier Criter |    |
|----------------------|------------|-----------------------------|----|
| Pentafluorobenzene   | 100        | 60-1                        | 40 |
| Fluorobenzene        | 103        | 60-1                        | 40 |
| 4-Bromofluorobenzene | 92         | 60-1                        | 40 |



L2332960

06/27/23

Lab Number:

**Report Date:** 

Project Name: 65 ECKFORD ST

Project Number: 0202156

Method Blank Analysis Batch Quality Control

Analytical Method:128,624.1Analytical Date:06/13/23 12:31Analyst:GMT

/st: GMT

| arameter                  | Result Qua              | lifier Units   | RL       | MDL         |
|---------------------------|-------------------------|----------------|----------|-------------|
| olatile Organics by GC/MS | - Westborough Lab for s | ample(s): 01-0 | 2 Batch: | WG1791331-4 |
| Chloroform                | ND                      | ug/l           | 1.0      | 0.38        |
| Carbon tetrachloride      | ND                      | ug/l           | 1.0      | 0.24        |
| Tetrachloroethene         | ND                      | ug/l           | 1.0      | 0.26        |
| 1,1,1-Trichloroethane     | ND                      | ug/l           | 2.0      | 0.29        |
| Benzene                   | ND                      | ug/l           | 1.0      | 0.38        |
| Toluene                   | ND                      | ug/l           | 1.0      | 0.31        |
| Ethylbenzene              | ND                      | ug/l           | 1.0      | 0.28        |
| 1,4-Dichlorobenzene       | ND                      | ug/l           | 5.0      | 0.29        |
| p/m-Xylene                | ND                      | ug/l           | 2.0      | 0.30        |
| o-Xylene                  | ND                      | ug/l           | 1.0      | 0.34        |
| Xylenes, Total            | ND                      | ug/l           | 1.0      | 0.30        |
| Methyl tert butyl Ether   | ND                      | ug/l           | 10       | 0.19        |

|                      |           | А         | cceptance |
|----------------------|-----------|-----------|-----------|
| Surrogate            | %Recovery | Qualifier | Criteria  |
| Destelluserekesses   | 00        |           | CO 110    |
| Pentafluorobenzene   | 98        |           | 60-140    |
| Fluorobenzene        | 101       |           | 60-140    |
| 4-Bromofluorobenzene | 89        |           | 60-140    |



## Lab Control Sample Analysis

Batch Quality Control

Lab Number: L2332960 Report Date: 06/27/23

LCS LCSD %Recovery RPD %Recovery Parameter %Recovery Qual Limits RPD Qual Limits Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-02 Batch: WG1791331-3 Chloroform 100 70-135 54 --120 Carbon tetrachloride 70-130 41 --Tetrachloroethene 105 70-130 39 --1,1,1-Trichloroethane 110 70-130 36 --Benzene 105 65-135 61 --Toluene 70-130 41 95 --Ethylbenzene 95 60-140 63 --57 1,4-Dichlorobenzene 80 65-135 -p/m-Xylene 88 60-140 -30 o-Xylene 80 60-140 30 --Methyl tert butyl Ether 75 60-140 30 --

| Surrogate            | LCS<br>%Recovery Qual | LCSD<br>%Recovery Qua | Acceptance<br>I Criteria |
|----------------------|-----------------------|-----------------------|--------------------------|
| Pentafluorobenzene   | 102                   |                       | 60-140                   |
| Fluorobenzene        | 106                   |                       | 60-140                   |
| 4-Bromofluorobenzene | 89                    |                       | 60-140                   |



# SEMIVOLATILES



|                    |                              | Serial_No         | 06272311:36    |
|--------------------|------------------------------|-------------------|----------------|
| Project Name:      | 65 ECKFORD ST                | Lab Number:       | L2332960       |
| Project Number:    | 0202156                      | Report Date:      | 06/27/23       |
|                    | SAMPLE RESULTS               |                   |                |
| Lab ID:            | L2332960-01                  | Date Collected:   | 06/12/23 09:30 |
| Client ID:         | 65 ECKFORD-EFFLUENT-20230612 | Date Received:    | 06/12/23       |
| Sample Location:   | 65 ECKFORD ST, BROOKLYN, NY  | Field Prep:       | Not Specified  |
| Sample Depth:      |                              |                   |                |
| Matrix:            | Water                        | Extraction Method | l: EPA 625.1   |
| Analytical Method: | 129,625.1                    | Extraction Date:  | 06/19/23 18:58 |
| Analytical Date:   | 06/20/23 10:42               |                   |                |
| Analyst:           | SZ                           |                   |                |
|                    |                              |                   |                |

| Parameter                            | Result       | Qualifier | Units      | RL        | MDL   | Dilution Factor |
|--------------------------------------|--------------|-----------|------------|-----------|-------|-----------------|
| Semivolatile Organics by GC/MS - Wes | tborough Lab |           |            |           |       |                 |
| 1,2,4-Trichlorobenzene               | ND           |           | ug/l       | 5.00      | 1.49  | 1               |
| Naphthalene                          | ND           |           | ug/l       | 2.00      | 0.896 | 1               |
| Phenol                               | ND           |           | ug/l       | 5.00      | 0.262 | 1               |
| Surrogate                            |              |           | % Recovery | Qualifier |       | otance<br>teria |
| 2-Fluorophenol                       |              |           | 41         |           | 2     | 5-87            |

|                      | 41 | 25-07  |
|----------------------|----|--------|
| Phenol-d6            | 24 | 16-65  |
| Nitrobenzene-d5      | 61 | 42-122 |
| 2-Fluorobiphenyl     | 66 | 46-121 |
| 2,4,6-Tribromophenol | 74 | 45-128 |
| 4-Terphenyl-d14      | 77 | 47-138 |



| Project Name:   | 65 ECKFORD ST |                       | Lab Number:  | L2332960 |
|-----------------|---------------|-----------------------|--------------|----------|
| Project Number: | 0202156       |                       | Report Date: | 06/27/23 |
|                 |               | Method Blank Analysis |              |          |

# **Batch Quality Control**

| Analytical Method: | 129,625.1      | Extraction Method: | EPA 625.1      |
|--------------------|----------------|--------------------|----------------|
| Analytical Date:   | 06/20/23 10:16 | Extraction Date:   | 06/19/23 18:58 |
| Analyst:           | SZ             |                    |                |

| Parameter                      | Result        | Qualifier Units | s RL            | MDL         |
|--------------------------------|---------------|-----------------|-----------------|-------------|
| Semivolatile Organics by GC/MS | - Westborough | Lab for sample  | e(s): 01 Batch: | WG1793378-1 |
| 1,2,4-Trichlorobenzene         | ND            | ug/             | 5.00            | 1.49        |
| Naphthalene                    | ND            | ug/             | 2.00            | 0.896       |
| Phenol                         | ND            | ug/             | 5.00            | 0.262       |

| %Recovery Q | ualifier Criteria          |
|-------------|----------------------------|
| 47          | 25-87                      |
| 29          | 16-65                      |
| 68          | 42-122                     |
| 72          | 46-121                     |
| 75          | 45-128                     |
| 80          | 47-138                     |
|             | 47<br>29<br>68<br>72<br>75 |



## Lab Control Sample Analysis

Batch Quality Control

Lab Number: L2332960 Report Date: 06/27/23

**Project Name: Project Number:** 0202156

65 ECKFORD ST

LCS LCSD %Recovery RPD %Recovery %Recovery Parameter Qual Qual Limits RPD Qual Limits Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1793378-3 57-130 1,2,4-Trichlorobenzene 57 50 --62 36-120 65 Naphthalene --17-120 Phenol 30 64 --

| Surrogate            | LCS<br>%Recovery Qual | LCSD<br>%Recovery Qual | Acceptance<br>Criteria |
|----------------------|-----------------------|------------------------|------------------------|
|                      |                       |                        |                        |
| 2-Fluorophenol       | 45                    |                        | 25-87                  |
| Phenol-d6            | 29                    |                        | 16-65                  |
| Nitrobenzene-d5      | 64                    |                        | 42-122                 |
| 2-Fluorobiphenyl     | 67                    |                        | 46-121                 |
| 2,4,6-Tribromophenol | 73                    |                        | 45-128                 |
| 4-Terphenyl-d14      | 72                    |                        | 47-138                 |



# PCBS



|                    |                              | Serial_No         | :06272311:36   |
|--------------------|------------------------------|-------------------|----------------|
| Project Name:      | 65 ECKFORD ST                | Lab Number:       | L2332960       |
| Project Number:    | 0202156                      | Report Date:      | 06/27/23       |
|                    | SAMPLE RESULTS               |                   |                |
| Lab ID:            | L2332960-01                  | Date Collected:   | 06/12/23 09:30 |
| Client ID:         | 65 ECKFORD-EFFLUENT-20230612 | Date Received:    | 06/12/23       |
| Sample Location:   | 65 ECKFORD ST, BROOKLYN, NY  | Field Prep:       | Not Specified  |
| Sample Depth:      |                              |                   |                |
| Matrix:            | Water                        | Extraction Method | : EPA 608.3    |
| Analytical Method: | 127,608.3                    | Extraction Date:  | 06/15/23 12:05 |
| Analytical Date:   | 06/16/23 08:26               | Cleanup Method:   | EPA 3665A      |
| Analyst:           | ER                           | Cleanup Date:     | 06/16/23       |
|                    |                              | Cleanup Method:   | EPA 3660B      |
|                    |                              | Cleanup Date:     | 06/16/23       |
|                    |                              |                   |                |

| Parameter                                         | Result | Qualifier | Units | RL    | MDL   | <b>Dilution Factor</b> | Column |  |
|---------------------------------------------------|--------|-----------|-------|-------|-------|------------------------|--------|--|
| Polychlorinated Biphenyls by GC - Westborough Lab |        |           |       |       |       |                        |        |  |
| Aroclor 1016                                      | ND     |           | ug/l  | 0.050 | 0.008 | 1                      | А      |  |
| Aroclor 1221                                      | ND     |           | ug/l  | 0.050 | 0.011 | 1                      | А      |  |
| Aroclor 1232                                      | ND     |           | ug/l  | 0.050 | 0.023 | 1                      | А      |  |
| Aroclor 1242                                      | ND     |           | ug/l  | 0.050 | 0.018 | 1                      | А      |  |
| Aroclor 1248                                      | ND     |           | ug/l  | 0.050 | 0.023 | 1                      | А      |  |
| Aroclor 1254                                      | ND     |           | ug/l  | 0.050 | 0.008 | 1                      | А      |  |
| Aroclor 1260                                      | ND     |           | ug/l  | 0.050 | 0.017 | 1                      | А      |  |
| PCBs, Total                                       | ND     |           | ug/l  | 0.050 | 0.008 | 1                      | А      |  |

| Surrogate                    | % Recovery | Qualifier | Acceptance<br>Criteria | Column |
|------------------------------|------------|-----------|------------------------|--------|
| 2,4,5,6-Tetrachloro-m-xylene | 73         |           | 37-123                 | А      |
| Decachlorobiphenyl           | 62         |           | 38-114                 | А      |
| 2,4,5,6-Tetrachloro-m-xylene | 66         |           | 37-123                 | В      |
| Decachlorobiphenyl           | 62         |           | 38-114                 | В      |



| Project Name:   | 65 ECKFORD ST | Lab Number:  | L2332960 |
|-----------------|---------------|--------------|----------|
| Project Number: | 0202156       | Report Date: | 06/27/23 |

### Method Blank Analysis Batch Quality Control

| Analytical Method: | 127,608.3      |
|--------------------|----------------|
| Analytical Date:   | 06/14/23 21:11 |
| Analyst:           | ER             |

Extraction Method:EPA 608.3Extraction Date:06/14/23 13:29Cleanup Method:EPA 3665ACleanup Date:06/14/23Cleanup Method:EPA 3660BCleanup Date:06/14/23

| arameter                 | Result              | Qualifier Units    | RL        | MDL      | Column |
|--------------------------|---------------------|--------------------|-----------|----------|--------|
| olychlorinated Biphenyls | by GC - Westborough | Lab for sample(s): | 01 Batch: | WG179129 | 96-1   |
| Aroclor 1016             | ND                  | ug/l               | 0.050     | 0.008    | А      |
| Aroclor 1221             | ND                  | ug/l               | 0.050     | 0.011    | А      |
| Aroclor 1232             | ND                  | ug/l               | 0.050     | 0.023    | А      |
| Aroclor 1242             | ND                  | ug/l               | 0.050     | 0.018    | А      |
| Aroclor 1248             | ND                  | ug/l               | 0.050     | 0.023    | А      |
| Aroclor 1254             | ND                  | ug/l               | 0.050     | 0.008    | А      |
| Aroclor 1260             | ND                  | ug/l               | 0.050     | 0.017    | А      |
| PCBs, Total              | ND                  | ug/l               | 0.050     | 0.008    | А      |

|                              |           | Acceptance |          |        |  |  |
|------------------------------|-----------|------------|----------|--------|--|--|
| Surrogate                    | %Recovery | Qualifier  | Criteria | Column |  |  |
| 2,4,5,6-Tetrachloro-m-xylene | 69        |            | 37-123   | А      |  |  |
| Decachlorobiphenyl           | 63        |            | 38-114   | А      |  |  |
| 2,4,5,6-Tetrachloro-m-xylene | 63        |            | 37-123   | В      |  |  |
| Decachlorobiphenyl           | 63        |            | 38-114   | В      |  |  |



# Lab Control Sample Analysis Batch Quality Control

**Project Name:** 65 ECKFORD ST

Project Number: 0202156

|                                       | LCS                   |               | LCSD        |           | %Recovery |     |      | RPD    |        |
|---------------------------------------|-----------------------|---------------|-------------|-----------|-----------|-----|------|--------|--------|
| Parameter                             | %Recovery             | Qual          | %Recovery   | Qual      | Limits    | RPD | Qual | Limits | Column |
| Polychlorinated Biphenyls by GC - Wes | stborough Lab Associa | ted sample(s) | : 01 Batch: | WG1791296 | -2        |     |      |        |        |
| Aroclor 1016                          | 69                    |               | -           |           | 50-140    | -   |      | 36     | А      |
| Aroclor 1260                          | 64                    |               | -           |           | 8-140     | -   |      | 38     | А      |

|                              | LCS       | LCSD           |      | Acceptance |        |  |
|------------------------------|-----------|----------------|------|------------|--------|--|
| Surrogate                    | %Recovery | Qual %Recovery | Qual | Criteria   | Column |  |
| 2,4,5,6-Tetrachloro-m-xylene | 70        |                |      | 37-123     | А      |  |
| Decachlorobiphenyl           | 66        |                |      | 38-114     | А      |  |
| 2,4,5,6-Tetrachloro-m-xylene | 63        |                |      | 37-123     | В      |  |
| Decachlorobiphenyl           | 67        |                |      | 38-114     | В      |  |



# METALS



Serial\_No:06272311:36

| Project Name:    | 65 ECKFORD ST                | Lab Number:     | L2332960       |
|------------------|------------------------------|-----------------|----------------|
| Project Number:  | 0202156                      | Report Date:    | 06/27/23       |
|                  | SAMPLE RESULTS               |                 |                |
| Lab ID:          | L2332960-01                  | Date Collected: | 06/12/23 09:30 |
| Client ID:       | 65 ECKFORD-EFFLUENT-20230612 | Date Received:  | 06/12/23       |
| Sample Location: | 65 ECKFORD ST, BROOKLYN, NY  | Field Prep:     | Not Specified  |

### Sample Depth:

Matrix:

Water

| Parameter         | Result      | Qualifier | Units | RL      | MDL     | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Prep<br>Method | Analytical<br>Method | Analyst |
|-------------------|-------------|-----------|-------|---------|---------|--------------------|------------------|------------------|----------------|----------------------|---------|
| Total Metals - Ma | nsfield Lab |           |       |         |         |                    |                  |                  |                |                      |         |
| Cadmium, Total    | ND          |           | mg/l  | 0.0050  | 0.0010  | 1                  | 06/15/23 02:0    | 06/19/23 17:28   | EPA 3005A      | 19,200.7             | AMW     |
| Copper, Total     | 0.0110      |           | mg/l  | 0.0100  | 0.0022  | 1                  | 06/15/23 02:0    | 06/19/23 17:28   | EPA 3005A      | 19,200.7             | AMW     |
| Lead, Total       | 0.0035      | J         | mg/l  | 0.0100  | 0.0027  | 1                  | 06/15/23 02:0    | 06/19/23 17:28   | EPA 3005A      | 19,200.7             | AMW     |
| Mercury, Total    | ND          |           | mg/l  | 0.00020 | 0.00009 | 1                  | 06/15/23 03:3    | 0 06/16/23 13:04 | EPA 245.1      | 3,245.1              | DMB     |
| Nickel, Total     | 0.0104      | J         | mg/l  | 0.0250  | 0.0024  | 1                  | 06/15/23 02:0    | 06/19/23 17:28   | EPA 3005A      | 19,200.7             | AMW     |
| Zinc, Total       | 0.0295      |           | mg/l  | 0.0050  | 0.0021  | 1                  | 06/15/23 02:0    | 06/19/23 17:28   | EPA 3005A      | 19,200.7             | AMW     |



Project Name:65 ECKFORD STProject Number:0202156

 Lab Number:
 L2332960

 Report Date:
 06/27/23

## Method Blank Analysis Batch Quality Control

| Parameter                | Result Qı   | ualifier | Units    | RL      | MDL                  | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|-------------|----------|----------|---------|----------------------|--------------------|------------------|------------------|----------------------|---------|
| Total Metals - Mansfield | Lab for san | nple(s): | 01 Batch | n: WG17 | '90839- <sup>.</sup> | 1                  |                  |                  |                      |         |
| Cadmium, Total           | ND          |          | mg/l     | 0.0050  | 0.0010               | 1                  | 06/15/23 02:00   | 06/18/23 11:31   | 19,200.7             | DHL     |
| Copper, Total            | ND          |          | mg/l     | 0.0100  | 0.0022               | 1                  | 06/15/23 02:00   | 06/18/23 11:31   | 19,200.7             | DHL     |
| Lead, Total              | ND          |          | mg/l     | 0.0100  | 0.0027               | 1                  | 06/15/23 02:00   | 06/18/23 11:31   | 19,200.7             | DHL     |
| Nickel, Total            | 0.0041      | J        | mg/l     | 0.0250  | 0.0024               | 1                  | 06/15/23 02:00   | 06/18/23 11:31   | 19,200.7             | DHL     |
| Zinc, Total              | ND          |          | mg/l     | 0.0050  | 0.0021               | 1                  | 06/15/23 02:00   | 06/18/23 11:31   | 19,200.7             | DHL     |

### **Prep Information**

Digestion Method: EPA 3005A

| Parameter                | Result Qualifier     | Units   | RL      | MDL              | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytica<br>Method |     |
|--------------------------|----------------------|---------|---------|------------------|--------------------|------------------|------------------|---------------------|-----|
| Total Metals - Mansfield | d Lab for sample(s): | 01 Batc | h: WG17 | ′90844- <i>′</i> | 1                  |                  |                  |                     |     |
| Mercury, Total           | ND                   | mg/l    | 0.00020 | 0.00009          | ) 1                | 06/15/23 03:30   | 06/15/23 14:33   | 3,245.1             | DMB |

**Prep Information** 

Digestion Method: EPA 245.1



# Lab Control Sample Analysis Batch Quality Control

**Project Name:** 65 ECKFORD ST

Project Number: 0202156

| Parameter                                                                | LCS<br>%Recovery   | LCSD<br>Qual %Recovery | %Recovery<br>Qual Limits | RPD | Qual | RPD Limits |  |  |  |
|--------------------------------------------------------------------------|--------------------|------------------------|--------------------------|-----|------|------------|--|--|--|
| Total Metals - Mansfield Lab Associated samp                             | le(s): 01 Batch: \ | WG1790839-2            |                          |     |      |            |  |  |  |
| Cadmium, Total                                                           | 100                | -                      | 85-115                   | -   |      |            |  |  |  |
| Copper, Total                                                            | 100                | -                      | 85-115                   | -   |      |            |  |  |  |
| Lead, Total                                                              | 105                | -                      | 85-115                   | -   |      |            |  |  |  |
| Nickel, Total                                                            | 97                 | -                      | 85-115                   | -   |      |            |  |  |  |
| Zinc, Total                                                              | 92                 | -                      | 85-115                   | -   |      |            |  |  |  |
| Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1790844-2 |                    |                        |                          |     |      |            |  |  |  |
| Mercury, Total                                                           | 100                | -                      | 85-115                   | -   |      |            |  |  |  |



# Matrix Spike Analysis Batch Quality Control

Project Name: 65 ECKFORD ST

Project Number: 0202156

| Parameter                    | Native<br>Sample | MS<br>Added | MS<br>Found | MS<br>%Recovery Qu | MSD<br><sub>Ial</sub> Found | MSD<br>%Recovery | Recovery<br>Qual Limits | RPD   | RPD<br>Qual Limits |
|------------------------------|------------------|-------------|-------------|--------------------|-----------------------------|------------------|-------------------------|-------|--------------------|
| Total Metals - Mansfield Lab | Associated sam   | ple(s): 01  | QC Batch I  | D: WG1790839-3     | QC Sample                   | : L2330985-01    | Client ID: MS Sa        | ample |                    |
| Cadmium, Total               | ND               | 0.053       | 0.0539      | 102                | -                           | -                | 75-125                  | -     | 20                 |
| Copper, Total                | ND               | 0.25        | 0.263       | 105                | -                           | -                | 75-125                  | -     | 20                 |
| Lead, Total                  | ND               | 0.53        | 0.558       | 105                | -                           | -                | 75-125                  | -     | 20                 |
| Nickel, Total                | 0.003J           | 0.5         | 0.494       | 99                 | -                           | -                | 75-125                  | -     | 20                 |
| Zinc, Total                  | ND               | 0.5         | 0.466       | 93                 | -                           | -                | 75-125                  | -     | 20                 |
| Total Metals - Mansfield Lab | Associated sam   | ple(s): 01  | QC Batch II | D: WG1790839-7     | QC Sample                   | : L2330985-02    | Client ID: MS Sa        | ample |                    |
| Cadmium, Total               | ND               | 0.053       | 0.0573      | 108                | -                           | -                | 75-125                  | -     | 20                 |
| Copper, Total                | 0.004J           | 0.25        | 0.282       | 113                | -                           | -                | 75-125                  | -     | 20                 |
| Lead, Total                  | 0.003J           | 0.53        | 0.580       | 109                | -                           | -                | 75-125                  | -     | 20                 |
| Nickel, Total                | 0.003J           | 0.5         | 0.524       | 105                | -                           | -                | 75-125                  | -     | 20                 |
| Zinc, Total                  | 0.011            | 0.5         | 0.531       | 104                | -                           | -                | 75-125                  | -     | 20                 |
| Total Metals - Mansfield Lab | Associated sam   | ple(s): 01  | QC Batch II | D: WG1790844-3     | QC Sample                   | : L2332391-01    | Client ID: MS Sa        | ample |                    |
| Mercury, Total               | ND               | 0.005       | 0.00516     | 103                | -                           | -                | 70-130                  | -     | 20                 |
| Total Metals - Mansfield Lab | Associated sam   | ple(s): 01  | QC Batch II | D: WG1790844-5     | QC Sample                   | : L2333239-01    | Client ID: MS Sa        | ample |                    |
| Mercury, Total               | ND               | 0.005       | 0.00490     | 98                 | -                           | -                | 70-130                  | -     | 20                 |



| Project Name:   | 65 ECKFORD ST | L             | ab Duplicate Analy<br>Batch Quality Control | La    | ab Numbe | <i>r:</i> L2332960 |             |
|-----------------|---------------|---------------|---------------------------------------------|-------|----------|--------------------|-------------|
| Project Number: | 0202156       |               |                                             |       | R        | eport Date         | e: 06/27/23 |
| ameter          |               | Native Sample | Dunlicate Sample                            | Units | RPD      | Qual               | RPD Limits  |

| Parameter                                             | Native Sample D        | uplicate Sample | licate Sample Units |            | Qual       | RPD Limits |
|-------------------------------------------------------|------------------------|-----------------|---------------------|------------|------------|------------|
| Total Metals - Mansfield Lab Associated sample(s): 01 | QC Batch ID: WG1790844 | -4 QC Sample:   | L2332391-01         | Client ID: | DUP Sample |            |
| Mercury, Total                                        | ND                     | ND              | mg/l                | NC         |            | 20         |
| Total Metals - Mansfield Lab Associated sample(s): 01 | QC Batch ID: WG1790844 | -6 QC Sample:   | L2333239-01         | Client ID: | DUP Sample |            |
| Mercury, Total                                        | ND                     | ND              | mg/l                | NC         |            | 20         |



# INORGANICS & MISCELLANEOUS



Serial\_No:06272311:36

Project Name: 65 ECKFORD ST

Project Number: 0202156

# Lab Number: L2332960

**Report Date:** 06/27/23

### SAMPLE RESULTS

| Lab ID:          | L2332960-01                  | Date Collected: | 06/12/23 09:30 |
|------------------|------------------------------|-----------------|----------------|
| Client ID:       | 65 ECKFORD-EFFLUENT-20230612 | Date Received:  | 06/12/23       |
| Sample Location: | 65 ECKFORD ST, BROOKLYN, NY  | Field Prep:     | Not Specified  |

Sample Depth: Matrix:

Water

| Parameter                      | Result     | Qualifier | Units | RL    | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analys |
|--------------------------------|------------|-----------|-------|-------|-------|--------------------|------------------|------------------|----------------------|--------|
| General Chemistry - Westb      | orough Lat | )         |       |       |       |                    |                  |                  |                      |        |
| Solids, Total                  | 1100       |           | mg/l  | 13    | NA    | 1.3                | -                | 06/14/23 04:04   | 121,2540B            | DEW    |
| Solids, Total Suspended        | 11.        |           | mg/l  | 6.5   | NA    | 1.3                | -                | 06/13/23 10:14   | 121,2540D            | NGS    |
| Chloride                       | 190        |           | mg/l  | 10    | 8.9   | 10                 | -                | 06/15/23 21:41   | 121,4500CL-E         | TLH    |
| рН (Н)                         | 7.13       |           | SU    | -     | NA    | 1                  | -                | 06/15/23 21:58   | 121,4500H+-B         | AAS    |
| Nitrogen, Nitrate/Nitrite      | 0.87       |           | mg/l  | 0.10  | 0.046 | 1                  | -                | 06/15/23 05:51   | 44,353.2             | KAF    |
| Total Nitrogen                 | 12.        |           | mg/l  | 0.30  | 0.30  | 1                  | -                | 06/19/23 18:30   | 107,-                | MRM    |
| Nitrogen, Total Kjeldahl       | 11.5       |           | mg/l  | 0.300 | 0.066 | 1                  | 06/18/23 21:10   | 06/19/23 09:34   | 121,4500NH3-H        | I KEP  |
| CBOD, 5 day                    | ND         |           | mg/l  | 2.0   | NA    | 1                  | 06/13/23 11:45   | 06/18/23 13:08   | 121,5210B            | MKT    |
| Non-Polar Material By EPA 1664 | 1.89       | J         | mg/l  | 4.00  | 1.24  | 1                  | 06/15/23 14:28   | 06/15/23 18:00   | 140,1664B            | JGM    |
| Flash Point                    | >150       |           | deg F | 70    | NA    | 1                  | -                | 06/15/23 23:10   | 1,1010A              | MRM    |
| Chromium, Hexavalent           | ND         |           | mg/l  | 0.050 | 0.015 | 5                  | 06/13/23 05:30   | 06/13/23 06:48   | 121,3500CR-B         | OCF    |
|                                |            |           |       |       |       |                    |                  |                  |                      |        |



Project Name:65 ECKFORD STProject Number:0202156

 Lab Number:
 L2332960

 Report Date:
 06/27/23

### Method Blank Analysis Batch Quality Control

| Parameter                 | Result Q        | ualifier | Units      | RL     | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|---------------------------|-----------------|----------|------------|--------|-------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry -       | Westborough Lab | for sam  | ple(s): 01 | Batch: | WG17  | 90411-1            |                  |                  |                      |         |
| Chromium, Hexavalent      | ND              |          | mg/l       | 0.010  | 0.003 | 1                  | 06/13/23 05:30   | 06/13/23 05:59   | 121,3500CR-B         | OCF     |
| General Chemistry -       | Westborough Lab | for sam  | ple(s): 01 | Batch: | WG17  | 90618-1            |                  |                  |                      |         |
| Solids, Total Suspended   | ND              |          | mg/l       | 5.0    | NA    | 1                  | -                | 06/13/23 10:14   | 121,2540D            | NGS     |
| General Chemistry -       | Westborough Lab | for sam  | ple(s): 01 | Batch: | WG17  | 90661-1            |                  |                  |                      |         |
| CBOD, 5 day               | ND              |          | mg/l       | 2.0    | NA    | 1                  | 06/13/23 11:45   | 06/18/23 13:08   | 121,5210B            | MKT     |
| General Chemistry -       | Westborough Lab | for sam  | ple(s): 01 | Batch: | WG17  | 90946-1            |                  |                  |                      |         |
| Solids, Total             | ND              |          | mg/l       | 10     | NA    | 1                  | -                | 06/14/23 04:04   | 121,2540B            | DEW     |
| General Chemistry -       | Westborough Lab | for sam  | ple(s): 01 | Batch: | WG17  | 91391-1            |                  |                  |                      |         |
| Chloride                  | ND              |          | mg/l       | 1.0    | 0.89  | 1                  | -                | 06/15/23 20:55   | 121,4500CL-E         | TLH     |
| General Chemistry -       | Westborough Lab | for sam  | ple(s): 01 | Batch: | WG17  | 91475-1            |                  |                  |                      |         |
| Nitrogen, Nitrate/Nitrite | ND              |          | mg/l       | 0.10   | 0.046 | 1                  | -                | 06/15/23 03:03   | 44,353.2             | KAF     |
| General Chemistry -       | Westborough Lab | for sam  | ple(s): 01 | Batch: | WG17  | 91761-1            |                  |                  |                      |         |
| Non-Polar Material By EPA | 1664 1.80       | J        | mg/l       | 4.00   | 1.24  | 1                  | 06/15/23 14:28   | 06/15/23 17:51   | 140,1664B            | JGM     |
| General Chemistry -       | Westborough Lab | for sam  | ple(s): 01 | Batch: | WG17  | 92754-1            |                  |                  |                      |         |
| Nitrogen, Total Kjeldahl  | 0.093           | J        | mg/l       | 0.300  | 0.022 | 1                  | 06/18/23 21:10   | 06/19/23 09:01   | 121,4500NH3-H        | H KEP   |



# Lab Control Sample Analysis Batch Quality Control

**Project Name:** 65 ECKFORD ST Project Number: 0202156

| Parameter                           | LCS<br>%Recovery (      | LCSD<br>Qual %Recovery |      | overy<br>nits RPD | Qual RPD Limi | ts |
|-------------------------------------|-------------------------|------------------------|------|-------------------|---------------|----|
| General Chemistry - Westborough Lab | Associated sample(s): ( | D1 Batch: WG1790411    | -2   |                   |               |    |
| Chromium, Hexavalent                | 100                     |                        | 85-1 | - 15              | 20            |    |
| General Chemistry - Westborough Lab | Associated sample(s): ( | D1 Batch: WG1790618    | -2   |                   |               |    |
| Solids, Total Suspended             | 96                      | -                      | 80-1 |                   |               |    |
| General Chemistry - Westborough Lab | Associated sample(s): ( | 01 Batch: WG1790661    | -2   |                   |               |    |
| CBOD, 5 day                         | 86                      | -                      | 41-1 | - 19              | 49            |    |
| General Chemistry - Westborough Lab | Associated sample(s):   | D1 Batch: WG1790946    | -2   |                   |               |    |
| Solids, Total                       | 106                     | -                      | 80-* |                   |               |    |
| General Chemistry - Westborough Lab | Associated sample(s):   | D1 Batch: WG1791391    | -2   |                   |               |    |
| Chloride                            | 97                      | -                      | 90-1 | - 10              |               |    |
| General Chemistry - Westborough Lab | Associated sample(s):   | 01 Batch: WG1791475    | -2   |                   |               |    |
| Nitrogen, Nitrate/Nitrite           | 94                      | -                      | 90-1 | -                 |               |    |
| General Chemistry - Westborough Lab | Associated sample(s): ( | 01 Batch: WG1791761    | 2    |                   |               |    |
| Non-Polar Material By EPA 1664      | 112                     | -                      | 64-1 | - 132             | 34            |    |



# Lab Control Sample Analysis Batch Quality Control

**Project Name:** 65 ECKFORD ST Project Number: 0202156

| Parameter                           | LCS<br>%Recovery         | LCSD<br>%Recovery  | %Recovery<br>Limits | RPD | RPD Limits |
|-------------------------------------|--------------------------|--------------------|---------------------|-----|------------|
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1791956-1 |                     |     |            |
| рН                                  | 100                      | -                  | 99-101              | -   | 5          |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1791973-1 |                     |     |            |
| Flash Point                         | 101                      | -                  | 96-104              | -   |            |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1792754-2 |                     |     |            |
| Nitrogen, Total Kjeldahl            | 96                       | -                  | 78-122              | -   |            |



# Matrix Spike Analysis Batch Quality Control

Project Name: 65 ECKFORD ST Project Number: 0202156

| Parameter                                          | Native<br>Sample | MS<br>Added | MS<br>Found | MS<br>%Recovery | MSD<br>Qual Found | MSD<br>%Recovery Qual | Recovery<br>Limits R | RP<br>PD Qual Lim |    |
|----------------------------------------------------|------------------|-------------|-------------|-----------------|-------------------|-----------------------|----------------------|-------------------|----|
| General Chemistry - Westborot<br>EFFLUENT-20230612 | ugh Lab Assoc    | iated samp  | le(s): 01   | QC Batch ID: V  | VG1790411-4       | QC Sample: L2332960   | -01 Client ID:       | 65 ECKFORD        | -  |
| Chromium, Hexavalent                               | ND               | 0.5         | 0.470       | 94              | -                 | -                     | 85-115               | - 2               | 20 |
| General Chemistry - Westborou<br>EFFLUENT-20230612 | ugh Lab Assoc    | iated samp  | le(s): 01   | QC Batch ID: V  | VG1790661-4       | QC Sample: L2332960   | -01 Client ID:       | 65 ECKFORD        | -  |
| CBOD, 5 day                                        | ND               | 100         | 97          | 97              | -                 | -                     | 36-125               | - 4               | 19 |
| General Chemistry - Westboro                       | ugh Lab Assoc    | iated samp  | le(s): 01   | QC Batch ID: W  | VG1791391-4       | QC Sample: L2331499   | -01 Client ID:       | MS Sample         |    |
| Chloride                                           | 37.              | 20          | 55          | 90              | -                 | -                     | 58-140               | -                 | 7  |
| General Chemistry - Westborou<br>EFFLUENT-20230612 | ugh Lab Assoc    | iated samp  | le(s): 01   | QC Batch ID: V  | NG1791475-4       | QC Sample: L2332960   | -01 Client ID:       | 65 ECKFORD        | -  |
| Nitrogen, Nitrate/Nitrite                          | 0.87             | 4           | 4.7         | 96              | -                 | -                     | 80-120               | - 2               | 20 |
| General Chemistry - Westboro                       | ugh Lab Assoc    | iated samp  | le(s): 01   | QC Batch ID: W  | VG1791761-4       | QC Sample: L2329286   | -66 Client ID:       | MS Sample         |    |
| Non-Polar Material By EPA 1664                     | ND               | 20          | 18.8        | 94              | -                 | -                     | 64-132               | - 3               | 34 |
| General Chemistry - Westboro                       | ugh Lab Assoc    | iated samp  | le(s): 01   | QC Batch ID: W  | VG1792754-4       | QC Sample: L2331303   | -03 Client ID:       | MS Sample         |    |
| Nitrogen, Total Kjeldahl                           | 0.535            | 8           | 8.14        | 95              | -                 | -                     | 77-111               | - 2               | 24 |



# Lab Duplicate Analysis Batch Quality Control

Project Name: 65 ECKFORD ST Project Number: 0202156

| Parameter                                                | Nati                  | ve Sa | ample        | Duplicate Sam | nple Unit  | s RPD       | Qual       | RPD Limits  |
|----------------------------------------------------------|-----------------------|-------|--------------|---------------|------------|-------------|------------|-------------|
| General Chemistry - Westborough Lab<br>EFFLUENT-20230612 | Associated sample(s): | 01    | QC Batch ID: | WG1790411-3   | QC Sample: | L2332960-01 | Client ID: | 65 ECKFORD- |
| Chromium, Hexavalent                                     |                       | ND    |              | ND            | mg/l       | NC          |            | 20          |
| General Chemistry - Westborough Lab                      | Associated sample(s): | 01    | QC Batch ID: | WG1790618-3   | QC Sample: | L2332921-01 | Client ID: | DUP Sample  |
| Solids, Total Suspended                                  |                       | 460   | I            | 500           | mg/l       | 8           |            | 32          |
| General Chemistry - Westborough Lab<br>EFFLUENT-20230612 | Associated sample(s): | 01    | QC Batch ID: | WG1790661-3   | QC Sample: | L2332960-01 | Client ID: | 65 ECKFORD- |
| CBOD, 5 day                                              |                       | ND    |              | ND            | mg/l       | NC          |            | 49          |
| General Chemistry - Westborough Lab                      | Associated sample(s): | 01    | QC Batch ID: | WG1790946-3   | QC Sample: | L2332302-01 | Client ID: | DUP Sample  |
| Solids, Total                                            |                       | 880   | 1            | 930           | mg/l       | 6           |            | 16          |
| General Chemistry - Westborough Lab                      | Associated sample(s): | 01    | QC Batch ID: | WG1791391-3   | QC Sample: | L2331499-01 | Client ID: | DUP Sample  |
| Chloride                                                 |                       | 37.   |              | 36            | mg/l       | 3           |            | 7           |
| General Chemistry - Westborough Lab<br>EFFLUENT-20230612 | Associated sample(s): | 01    | QC Batch ID: | WG1791475-3   | QC Sample: | L2332960-01 | Client ID: | 65 ECKFORD- |
| Nitrogen, Nitrate/Nitrite                                |                       | 0.87  | 7            | 0.86          | mg/l       | 1           |            | 20          |
| General Chemistry - Westborough Lab                      | Associated sample(s): | 01    | QC Batch ID: | WG1791761-3   | QC Sample: | L2329286-66 | Client ID: | DUP Sample  |
| Non-Polar Material By EPA 1664                           |                       | ND    |              | 1.99J         | mg/l       | NC          |            | 34          |
| General Chemistry - Westborough Lab                      | Associated sample(s): | 01    | QC Batch ID: | WG1791956-2   | QC Sample: | L2331342-01 | Client ID: | DUP Sample  |
| рН                                                       |                       | 7.15  | 5            | 7.06          | SU         | 1           |            | 5           |



| Lab Du | plicate   | Analy | ysis |
|--------|-----------|-------|------|
|        | n Quality |       |      |

Project Name:65 ECKFORD STProject Number:0202156

 Lab Number:
 L2332960

 Report Date:
 06/27/23

| Parameter                                | Native Sample                      | Duplicate Sample | e Units          | RPD      | RPD Limits          |
|------------------------------------------|------------------------------------|------------------|------------------|----------|---------------------|
| General Chemistry - Westborough Lab Asso | ociated sample(s): 01 QC Batch ID: | WG1791973-2 Q    | C Sample: L23338 | 89-01 CI | ient ID: DUP Sample |
| Flash Point                              | <70                                | <70              | deg F            | NC       |                     |
| General Chemistry - Westborough Lab Asso | ociated sample(s): 01 QC Batch ID: | WG1792754-3 Q    | C Sample: L23313 | 03-03 CI | ient ID: DUP Sample |
| Nitrogen, Total Kjeldahl                 | 0.535                              | 0.728            | mg/l             | 31       | Q 24                |



# Project Name:65 ECKFORD STProject Number:0202156

Serial\_No:06272311:36 *Lab Number:* L2332960 *Report Date:* 06/27/23

### Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

### **Cooler Information**

| Cooler | Custody Seal |  |  |  |  |
|--------|--------------|--|--|--|--|
| A      | Absent       |  |  |  |  |

| Container Information |                               |        |    | itial Final | Temp |      |        | Frozen    |                                                                     |
|-----------------------|-------------------------------|--------|----|-------------|------|------|--------|-----------|---------------------------------------------------------------------|
| Container ID          | Container Type                | Cooler | рН | pН          |      | Pres | Seal   | Date/Time | Analysis(*)                                                         |
| L2332960-01A          | Vial Na2S2O3 preserved        | A      | NA |             | 3.8  | Y    | Absent |           | 624-NYDEP(7)                                                        |
| L2332960-01B          | Vial Na2S2O3 preserved        | А      | NA |             | 3.8  | Y    | Absent |           | 624-NYDEP(7)                                                        |
| L2332960-01C          | Vial Na2S2O3 preserved        | А      | NA |             | 3.8  | Y    | Absent |           | 624-NYDEP(7)                                                        |
| L2332960-01D          | Amber 250ml unpreserved       | А      | 7  | 7           | 3.8  | Y    | Absent |           | FLASH()                                                             |
| L2332960-01E          | Plastic 250ml H2SO4 preserved | А      | <2 | <2          | 3.8  | Y    | Absent |           | TKN-4500(28),NO3/NO2-<br>353(28),TNITROGEN(28)                      |
| L2332960-01F          | Plastic 250ml HNO3 preserved  | А      | <2 | <2          | 3.8  | Y    | Absent |           | NI-UI(180),ZN-UI(180),HG-U(28),CD-<br>UI(180),CU-UI(180),PB-UI(180) |
| L2332960-01G          | Plastic 950ml unpreserved     | А      | 7  | 7           | 3.8  | Y    | Absent |           | TSC-2540(7),HEXCR-3500(1),CL-4500(28),PH-<br>4500(.01)              |
| L2332960-01H          | Plastic 950ml unpreserved     | А      | 7  | 7           | 3.8  | Y    | Absent |           | CBOD5(2)                                                            |
| L2332960-01J          | Plastic 950ml unpreserved     | А      | 7  | 7           | 3.8  | Y    | Absent |           | TSS-2540(7)                                                         |
| L2332960-01K          | Amber 1000ml Na2S2O3          | А      | 7  | 7           | 3.8  | Y    | Absent |           | 625-NYDEP(7)                                                        |
| L2332960-01L          | Amber 1000ml Na2S2O3          | А      | 7  | 7           | 3.8  | Y    | Absent |           | 625-NYDEP(7)                                                        |
| L2332960-01M          | Amber 1000ml Na2S2O3          | A      | 7  | 7           | 3.8  | Y    | Absent |           | NYPCB-608-2L(365)                                                   |
| L2332960-01N          | Amber 1000ml Na2S2O3          | A      | 7  | 7           | 3.8  | Y    | Absent |           | NYPCB-608-2L(365)                                                   |
| L2332960-01O          | Amber 1000ml Na2S2O3          | A      | 7  | 7           | 3.8  | Y    | Absent |           | NYPCB-608-2L(365)                                                   |
| L2332960-01P          | Amber 1000ml Na2S2O3          | А      | 7  | 7           | 3.8  | Y    | Absent |           | NYPCB-608-2L(365)                                                   |
| L2332960-01Q          | Amber 1000ml HCI preserved    | А      | NA |             | 3.8  | Y    | Absent |           | NYTPH-1664(28)                                                      |
| L2332960-01R          | Amber 1000ml HCI preserved    | А      | NA |             | 3.8  | Y    | Absent |           | NYTPH-1664(28)                                                      |
| L2332960-02A          | Vial Na2S2O3 preserved        | А      | NA |             | 3.8  | Y    | Absent |           | 624-NYDEP(7)                                                        |
| L2332960-02B          | Vial Na2S2O3 preserved        | A      | NA |             | 3.8  | Y    | Absent |           | 624-NYDEP(7)                                                        |
|                       |                               |        |    |             |      |      |        |           |                                                                     |



### Project Name: 65 ECKFORD ST

Project Number: 0202156

### Lab Number: L2332960

**Report Date:** 06/27/23

### GLOSSARY

### Acronyms

| Acronyms |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DL       | - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)                                                                                               |
| EDL      | - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).                        |
| EMPC     | - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.                                                                                                                                                              |
| EPA      | - Environmental Protection Agency.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LCS      | - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.                                                                                                                                                                                                                                                         |
| LCSD     | - Laboratory Control Sample Duplicate: Refer to LCS.                                                                                                                                                                                                                                                                                                                                                                                                      |
| LFB      | - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.                                                                                                                                                                                                                                                        |
| LOD      | - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)                                                                                                                                              |
| LOQ      | - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)                                                                                                                                                                                                |
|          | Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)                                                                                                                                                                                                  |
| MDL      | - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.                                                                                                                         |
| MS       | <ul> <li>Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for<br/>which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated<br/>using the native concentration, including estimated values.</li> </ul>                                                                                                         |
| MSD      | - Matrix Spike Sample Duplicate: Refer to MS.                                                                                                                                                                                                                                                                                                                                                                                                             |
| NA       | - Not Applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NC       | - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.                                                                                                                                                                                                                                                                                                          |
| NDPA/DPA | - N-Nitrosodiphenylamine/Diphenylamine.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NI       | - Not Ignitable.                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NP       | - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.                                                                                                                                                                                                                                                                                                                                                                             |
| NR       | - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.                                                                                                                                                                                                                                                                                                   |
| RL       | - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.                                                                                                                                                                                                                                  |
| RPD      | - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. |
| SRM      | - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.                                                                                                                                                                                                                                                                                                    |
| STLP     | - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.                                                                                                                                                                                                                                                                                                                                                                                               |
| TEF      | - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.                                                                                                                                                                                                                                                                                                                            |
| TEQ      | - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.                                                                                                                                                                                                                                                                                       |
| TIC      | - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.                                                                                                                                                                                                     |

Report Format: DU Report with 'J' Qualifiers



### Project Name: 65 ECKFORD ST

Project Number: 0202156

### Lab Number: L2332960 Report Date: 06/27/23

#### Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

#### Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

#### Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, (flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers



### Serial\_No:06272311:36

Project Name: 65 ECKFORD ST

Project Number: 0202156

Lab Number: L2332960

**Report Date:** 06/27/23

#### Data Qualifiers

Identified Compounds (TICs).

M - Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

ND - Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers



 Lab Number:
 L2332960

 Report Date:
 06/27/23

### REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.
- 3 Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 44 Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 127 Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- 129 Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.
- 140 Method 1664, Revision B: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-10-001, February 2010.

### LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



### Certification Information

#### The following analytes are not included in our Primary NELAP Scope of Accreditation:

#### Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethvltoluene.

EPA 8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

### Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

#### The following analytes are included in our Massachusetts DEP Scope of Accreditation

#### Westborough Facility:

#### Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

#### Non-Potable Water

SM4500H, B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

#### Mansfield Facility:

#### Drinking Water

EPA 200.7: AI, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: AI, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

#### Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

| 1.5                                  | CHAIN OF C                                                                      | INCTA                              | VAC                      |                                           |                         |                             | in the second                    |                    | - 1             | 1            | . 1                           | -                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                      |             |         |         |                                                                                  |                |
|--------------------------------------|---------------------------------------------------------------------------------|------------------------------------|--------------------------|-------------------------------------------|-------------------------|-----------------------------|----------------------------------|--------------------|-----------------|--------------|-------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------|---------|---------|----------------------------------------------------------------------------------|----------------|
|                                      |                                                                                 | COLUMN STATES                      | States and states in the | PAGE 1                                    | OF 1                    | 235                         | -                                | c'd in i           | CONTRACTOR OF   | Service.     | 21                            | Distance of             | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AL                     | PWA         | dol /   | 禁:      | -2332e                                                                           | 16             |
|                                      |                                                                                 | Project Infe                       | onnation                 |                                           |                         |                             |                                  |                    | phali           |              |                               |                         | ubles:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |             |         |         |                                                                                  |                |
| Veetborough, MA<br>TEL: 508-890-8220 |                                                                                 | Project Name:<br>65 ECN ADA Street |                          |                                           |                         |                             |                                  |                    |                 |              |                               |                         | Same as Client Info PO #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |             |         |         |                                                                                  |                |
| AVC 608-898-9183                     | FAX: 608-822-1218                                                               |                                    |                          |                                           | ADEX Addit Deliverables |                             |                                  |                    |                 |              |                               |                         | Contraction of the local division of the loc |                        |             |         |         |                                                                                  |                |
| lient hifonra                        | of New York                                                                     | Project Local                      | on: 65 6                 | Ch Fordes                                 | Arect BA                | a Alth                      | CCLU                             | atory              | Reciki          | irente       | ints/P                        | ej;orl                  | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |             | Titer o | Suma.r  |                                                                                  |                |
|                                      | Project #: 0202/56<br>Project Manager: Mit Yi Cate Conton<br>ALPHA Quote #:     |                                    |                          | NYC Sanitary and Combined Sever Discharge |                         |                             |                                  |                    |                 |              |                               | Criterta .<br>NYC-SEWER |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |             |         |         |                                                                                  |                |
| WY: N.Y. W Wooll A                   |                                                                                 |                                    |                          | MOP PRESUMPTIVE CERTAINTY-CT              |                         |                             |                                  |                    |                 | CTR          | REASONABLE CONFIDENCE PROTOCO |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |             |         |         |                                                                                  |                |
|                                      |                                                                                 |                                    |                          | 70                                        | Yes                     |                             | I No Are NCP Analytic            |                    |                 |              |                               | al Met                  | hods F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Require                | nd?         |         |         |                                                                                  |                |
| ona:                                 |                                                                                 | urn Arount                         | d Tinta 🕂                |                                           |                         |                             | Yes                              | 010                | X N             | 0            | Are                           | CTR                     | P (Rea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sonab                  | la Con      | rildanc | a Proto | cols) Requirad?                                                                  | 周              |
| c WI Conton                          | analet allowing com                                                             | Clandard                           | 12000                    |                                           | RE-APPROVED             | _ PO11                      | BALV                             | 313                | 1               | T            | 1                             | T                       | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T -                    | T           | -       | -       | SAMPLE HANDLING                                                                  | 12             |
|                                      | rela halet a lorkh - com                                                        |                                    |                          | terrer II. P                              | NEW PROVED              | 1                           |                                  |                    |                 |              |                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |             |         | 1       | Filiration                                                                       | and the second |
| Théao compleshave                    | been Previously analyzed by Alpha Di                                            | ue Data;                           | Time                     | :                                         |                         | -                           | T                                |                    |                 |              | +                             | +-                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t.R.                   | +-          | +-      | -+      | Done Done                                                                        |                |
| 3 reporting limit r                  | coffic Requirements/Comments/De<br>I list.<br>nust be 65ppt. See attached list. | lection Limit                      | 5:                       |                                           |                         | VOC 624 (See Attached List) | Total Metals (See Attached 1 lev | CBOD, Total Solide | Solid           | rom          | Metarlai - 1664               | NO2                     | ABN 625 (See Attached List)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - Must acheve 65ppt R1 |             |         |         | Lab to do<br>Presarvailon<br>Lab to do<br>(Please spacify<br>bolop)              |                |
| IA Lab ID<br>b Use Only)             | Sample ID                                                                       | Colle<br>Date                      | Time                     | Stimple<br>Matrix                         | Sampler's<br>Initials   | /OC 624 (                   | fotal Meta                       | Chloride, C        | Total Suspanded | pH, HexChrom | Non Polar Metarial            | TKN, NO3/NO2            | BN 625 (5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PCB 608-               | Flash Point |         |         | Bomple Opcelfic<br>Comments                                                      | STUDIES STORES |
| 180-016                              | ScikAre-effinent- our                                                           | 6/17/2                             | 620                      | Water                                     | NM                      | -                           | X                                |                    | N               | -            | 8                             |                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |             | 1-      | 1-      | Comments                                                                         |                |
| -02-                                 | MP Kank                                                                         | 5/23/23                            | 430                      | VValvar                                   | 10001                   | X                           | T                                |                    | A               |              |                               | 8                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |             | H       | 분       |                                                                                  | 10             |
|                                      |                                                                                 |                                    |                          |                                           | 1                       | <b></b>                     | Ē                                | h                  | H               | 늵            | 計                             | H                       | ដ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 늼                      | 片           | 님       | H       |                                                                                  | +              |
|                                      |                                                                                 |                                    |                          |                                           |                         |                             | Ō                                | Ō                  | Ē               | <u> </u>     | 허                             | H.                      | Ħ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ħ                      | H           | H       | H       |                                                                                  | ⊢              |
|                                      |                                                                                 |                                    |                          |                                           |                         |                             |                                  |                    |                 |              | 司                             | <u></u>                 | <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>               | H           | F       | 后       |                                                                                  | 1              |
| 1 m 1                                |                                                                                 |                                    |                          |                                           |                         |                             |                                  | U                  |                 |              |                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |             | Ū       |         |                                                                                  | t              |
| ·                                    |                                                                                 |                                    |                          |                                           |                         |                             |                                  |                    | THE             |              | TT                            |                         | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        | 100         |         |         | 1                                                                                | +-             |
|                                      |                                                                                 |                                    |                          |                                           |                         |                             |                                  |                    | Ц               | 11           |                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 1           |         |         |                                                                                  |                |
|                                      |                                                                                 |                                    |                          |                                           |                         |                             |                                  |                    | 님               | 바            |                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |             |         |         |                                                                                  | $\vdash$       |
|                                      |                                                                                 |                                    |                          |                                           |                         |                             |                                  |                    |                 |              |                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |             |         |         |                                                                                  | E              |
| AVSWER QUES                          | STIONS ABOVEL                                                                   |                                    |                          |                                           |                         |                             |                                  |                    |                 |              |                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |             |         |         |                                                                                  |                |
| MISWER QUE:                          | STIONS ABOVE!                                                                   |                                    |                          |                                           | anior 13ps              | -                           |                                  | -                  | -               | -            |                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                      |             |         |         |                                                                                  |                |
|                                      |                                                                                 |                                    | Faller                   | P                                         |                         | н                           | 0                                | -                  | -               | A B          | вр                            |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                      |             |         |         | Plasse print clearly, legibl<br>and completely. Samples<br>not in locard in send | 0 00 11        |
| DUR PI                               | ROJECT                                                                          |                                    | , Relingui               |                                           |                         | H Date                      | c<br>/Time                       | A                  | -               | A B          | _                             |                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                      |             |         |         | and completely. Samples<br>not be logged in and<br>honorough from clock with     | res n          |
| our Pi                               |                                                                                 |                                    | Ralingui                 | P                                         |                         | н                           | c<br>/Time                       | A                  | -               | A B          | B D<br>eceived                | By:<br>A                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                      |             |         |         | and completely, Samples                                                          | res n          |

t