

HALEY & ALDRICH OF NEW YORK 237 West 35th Street 16th Floor New York, NY 10123 646.518.7735

5 June 2023 File No. 0202156

Via Email: Jolene.lozewski@dec.ny.gov New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, New York 12233

Attention: Jolene Lozewski

Subject: Project Status Report

Former Carter Spray Finishing Corp. - NYSDEC BCP Site C224218

65 Eckford Street Brooklyn, New York

Dear Jolene Lozewski:

Haley & Aldrich of New York is pleased to present this Project Status Report on behalf of 65-73 Eckford Realty, LLC for the above referenced Site. Copies of this Project Status Report have also been provided to Scarlett McLaughlin and Arunesh Ghosh of the New York State Department of Health. The Project Status Report is for 1 May 2023 to 1 June 2023. If you have any questions, please contact us at 646-277-5688.

Sincerely yours,
HALEY & ALDRICH OF NEW YORK

Mari Cate Conlon

Associate

CC:

Bob Corcoran (NYSDEC) Email: bob.corcoran@dec.ny.gov

Scarlett McLaughlin (NYSDOH) Email: scarlett.mclaughlin@health.ny.gov
Arunesh Ghosh (NYSDOH) Email: scarlett.mclaughlin@health.ny.gov

65-73 Eckford Realty, LLC Email: abe6991@gmail.com
Isaac Sofer (Prestige NY LLC) Email: isaac@prestigenyllc.com

Jon Schuyler Brooks (Abramson Brooks LLP) Email: jbrooks@abramsonbrooks.com

Former Carter Spray Finishing Corp. - BCP Site C224218 6 June 2023 Page 2

This status report summarizes activities conducted at the Former Carter Spray Finishing Corp. Site (the Site) located at 65 Eckford Street, Brooklyn, NY from 1 May 2023 to 1 June 2023. A Site plan showing the current Site conditions is included as Figure 1.

Remedial Measure Activities

Remedial activities during this reporting period included stockpiling in the central portion of the Site to facilitate support of excavation (SOE) and tie-back installation. Additionally, one truck was loaded with hazardous lead impacted soil for disposal and emerging contaminant evaluation at Clean Earth of New Jersey on 22 May 2023.

On 5 May 2023, Eastern Environmental Solutions, Inc. completed installation of two, two-inch sentinel wells offsite to the east of the Site. The sentinel wells are identified as OW-1 and OW-2 and were installed to 15 feet below sidewalk grade (bsg). On 8 May 2023, groundwater samples from both sentinel wells were collected using low-flow sampling techniques and were analyzed for Target Compounds List (TCL) volatile organic compounds (VOCs). The Pre-Dewatering Sentinel Well Sampling Summary Letter is provided in Attachment A.

Sampling Results and Other Data

Groundwater sampling results from the sentinel wells are provided in Attachment A.

Estimated Percentage of Project Completion

The remedial action phase is 5% complete.

Delays Encountered

Remedy implementation and soil excavation will continue once additional disposal facility approvals have been obtained.

Site Communication and Deliverable Submittals

Eight daily reports, a revised Water Withdrawal, Treatment & Discharge Plan, and a Pre-Dewatering Sentinel Well Sampling Summary Letter were submitted to New York State Department of Environmental Conservation (NYSDEC) and New York State Department of Health (NYSDOH) during this reporting period.

Anticipated Activities during Next Reporting Period(s)

Continued Site preparation, tie-back installation, soil excavation and load out of offsite disposal, sampling of offsite groundwater monitoring wells, dewatering system effluent sampling and restart of the dewatering system are anticipated during the next reporting period(s).

Anticipated Citizen Participation Activities

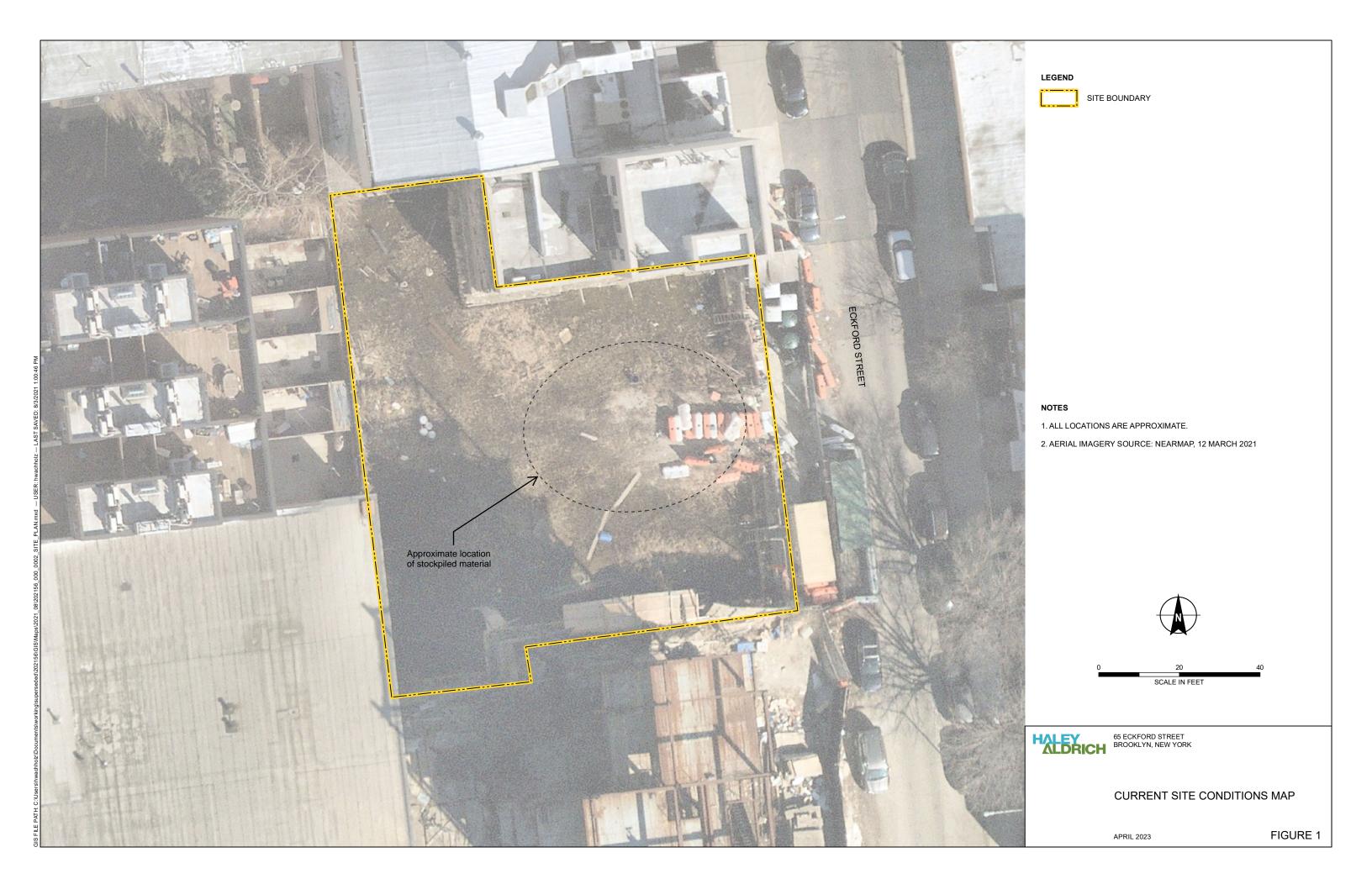
Current Period

Former Carter Spray Finishing Corp BCP Site C224218 6 June 2023
Page 3
None.
Anticipated Next Period
None.
Other Notable Items
None.

Figures

Figure 1 – Current Site Conditions Map

Attachments


Attachment A – Pre-Dewatering Sentinel Well Sampling Summary Letter

Former Carter Spray Finishing Corp. - BCP Site C224218 6 June 2023 Page 4

FIGURES

Former Carter Spray Finishing Corp. - BCP Site C224218 6 June 2023 Page 5

ATTACHMENT A
Pre-Dewatering Sentinel Well Sampling Summary Letter

HALEY & ALDRICH OF NEW YORK 237 W 35th Street 16th Floor New York, NY 10123 646.277.5685

25 May 2023 File No. 0202156

Attention: Jolene Lozewski

New York State Department of Environmental Conservation

Remedial Section A 625 Broadway

Albany, New York 12233

Subject: Pre-Dewatering Sentinel Well Sampling Summary Letter

Former Carter Spray Finishing Site

NYSDEC BCP Site C224218

65-73 Eckford Street, Brooklyn, New York

Dear Ms. Lozewski:

Haley & Aldrich of New York (Haley & Aldrich) is providing this letter summarizing the results of the predewatering sentinel well sampling event completed by Haley & Aldrich on 8 May 2023 for the Former Carter Spray Finishing Site (Brownfield Cleanup Program [BCP] Site C224218) located at 65-73 Eckford Street, Brooklyn, New York. The purpose of this sampling event was to provide offsite groundwater data prior to restarting the onsite dewatering system as described in the revised Water Withdrawal, Treatment & Discharge Plan submitted to the NYSDEC on 19 May 2023.

BACKGROUND

The Site, identified as Block 2698, Lot 26 on the New York City tax map, is 10,200-square feet and is bound to the north by a four-story residential building, to the east by Eckford followed by residential apartment buildings, to the south by a residential apartment building currently in construction (enrolled in the NYSDEC BCP Program as Site Number C224218), and to the west by a four-story residential building and a one-story industrial building. The Site was formerly occupied by the Carter Spray Finishing Corporation from 1960 to 2008 which used the building for metal finishing and spraying and was razed in 2015.

GROUNDWATER SAMPLING

On 5 May 2023 Eastern Environmental Solutions, Inc. (Eastern) mobilized a GeoprobeTM 7822DT to the Site to install two two-inch sentinel wells offsite to the east of the Site. The sentinel wells are identified as OW-1, located offsite to the northeast of the Site, and OW-2, located offsite to the east of the Site, and were installed to 15 feet below sidewalk grade (ft bsg). The monitoring wells were installed so that the well screen straddles the observed water table. The wells were finished with a flush-mounted metal manhole cover set in concrete. The sentinel monitoring wells were developed by surging a pump in the well several times to pull fine-grained material from the well. Development was completed until the water turbidity is 50 nephelometric turbidity units (NTU) or less or 10 well volumes were removed.

Depth to groundwater measurements ranged from 9.43 feet below top of casing (ft btoc) in OW-2 to 9.48 ft btoc in OW-1.

On 8 May 2023, groundwater samples were collected using low-flow sampling techniques which minimizes disturbance of the well to obtain a representative groundwater sample. The wells were sampled using a GeoPump peristaltic pump, with dedicated low-density polyethylene (LDPE) tubing and dedicated silicone tubing. Water quality parameters (pH, conductivity, temperature, dissolved oxygen (DO), oxygen reduction potential (ORP), and turbidity) were recorded every 5 minutes during well purging using a Horiba water quality meter. Figure 1 shows the location of the monitoring wells. Groundwater sample analytical data is summarized in Table 1. Low-flow purge logs are included in Attachment A.

Groundwater samples were collected in laboratory provided container and following low-flow purging from OW-1 and OW-2 and analyzed for the following:

Target Compounds List (TCL) Volatile Organic Compounds (VOCs) by Method 8260B

The groundwater samples were placed on ice in a cooler and transported under chain of custody protocols to Alpha Analytical Laboratories, Inc. (Alpha).

RESULTS

Vinyl Chloride was detected in OW-1 at a concentration of 6.7 micrograms per liter (μ g/L) exceeding the 6NYCRR Part 703.5 NYSDEC Technical and Operational Guidance Series 1.1.1 Ambient Water Quality Standards (AWQS). Several other VOCs were detected above laboratory detection limits, but below the AWQS, at OW-1 including 1,2-dichloroethene (2.6 μ g/L), cis-1,2-dichloroethene (2.7 μ g/L), and trichloroethene (0.21 μ g/L). A copy of the laboratory analytical report is included as Attachment B.

CLOSING

Both sentinel wells will continue to be sampled once per month for VOCs by EPA method 8260B to determine if dewatering activities are pulling in offsite contamination and analytical data will be presented in the monthly status update reports. Should you have any questions regarding the findings, please do not hesitate to contact us.

Sincerely yours,

HALEY & ALDRICH OF NEW YORK

James Bellew Mari Cate Conlon, P.G. Principal

Associate

Senior Engineer

C: Bob Corcoran, NYSDEC (bob.corcoran@dec.ny.gov)

Arunesh Ghosh, NYSDOH (<u>Arunesh.Ghosh@health.ny.gov</u>)

Abraham Posner, 65-73 Eckford Realty LLC (abe6991@gmail.com)

Mari Cate Coulon

Isaac Sofer, Prestige Construction (isaac@prestigenyllc.com)

Attachments

Table 1 – Sentinel Well Summary of Water Quality Data

Figure 1 – Sentinel Monitoring Well Location Map

Attachment A – Low Flow Purge Logs

Attachment B – Laboratory Analytical Report

TABLES

TABLE 1
SENTINEL WELL SUMMARY OF WATER QUALITY DATA
65-73 ECKFORD STREET
BROOKLYN, NY
FILE NO. 0202156

FILE NO. 0202156	Action Lovel					
Location Name	Action Level	OW-1		OW-2	I	
Sample Name	New York TOGS 111	OW-1		OW-2		
Sample Date	Ambient Water Quality	5/8/2023		5/8/2023		
Lab Sample ID	Standards	L2325211-01		L2325211-02		
·	NY-AWQS	Results	Qual	Results	Qual	
Volatile Organic Compounds (ug/L)					ı	
1,1,1,2-Tetrachloroethane	5	2.5	U	2.5	U	
1,1,1-Trichloroethane	5	2.5	U	2.5	U	
1,1,2,2-Tetrachloroethane	5	0.5	U	0.5	U	
1,1,2-Trichloroethane	1	1.5	U	1.5	U	
1,1-Dichloroethane	5	1.7	J	2.5	U	
1,1-Dichloroethene	5	0.5	U	0.5	U	
1,1-Dichloropropene	5	2.5	U	2.5	U	
1,2,3-Trichlorobenzene	5	2.5	U	2.5	U	
1,2,3-Trichloropropane	0.04	2.5	U	2.5	U	
1,2,4,5-Tetramethylbenzene	5	2	U	2	U	
1,2,4-Trichlorobenzene	5	2.5	U	2.5	U	
1,2,4-Trimethylbenzene	5	2.5	U	2.5	U	
1,2-Dibromo-3-chloropropane 1.2-Dibromoethane	0.04	2.5	U	2.5	U	
1,2-Dibromoethane 1,2-Dichlorobenzene	0.0006	2.5	U	2 2.5	U	
1.2-Dichloroethane	0.6	0.5	U	0.5	U	
1,2-Dichloroethane 1,2-Dichloroethene, Total	0.6	2.6	U	2.5	U	
1,2-Dichloropropane	1	2.6	U	2.5	U	
1,3,5-Trimethylbenzene	5	2.5	U	2.5	U	
1,3-Dichlorobenzene	3	2.5	U	2.5	U	
1,3-Dichloropropane	5	2.5	U	2.5	U	
1,3-Dichloropropene, Total	3	0.5	U	0.5	U	
1.4-Dichlorobenzene	3	2.5	U	2.5	U	
1,4-Dioxane	3	250	U	250	U	
2,2-Dichloropropane	5	2.5	U	2.5	U	
2-Butanone	50	5	U	5	U	
2-Hexanone	50	5	U	5	U	
4-Methyl-2-pentanone		5	U	5	U	
Acetone	50	5	U	5	U	
Acrylonitrile	5	5	U	5	U	
Benzene	1	0.5	U	0.5	U	
Bromobenzene	5	2.5	U	2.5	U	
Bromochloromethane	5	2.5	U	2.5	U	
Bromodichloromethane	50	0.5	U	0.5	U	
Bromoform	50	2	U	2	U	
Bromomethane	5	2.5	U	2.5	U	
Carbon disulfide	60	5	U	5	U	
Carbon tetrachloride	5	0.5	U	0.5	U	
Chlorobenzene	5	2.5	U	2.5	U	
Chloroethane	5	2.5	U	2.5	U	
Chloroform	7	2.5	U	2.5	U	
Chloromethane		2.5	U	2.5	U	
cis-1,2-Dichloroethene	5	2.6		2.5	U	
cis-1,3-Dichloropropene	0.4	0.5	U	0.5	U	
Dibromochloromethane	50	0.5	U	0.5	U	
Dibromomethane	5	5	U	5	U	
Dichlorodifluoromethane	5	5	U	5	U	
Ethyl ether		2.5	U	2.5	U	
Ethylbenzene	5	2.5	U	2.5	U	
Hexachlorobutadiene	0.5	2.5	U	2.5	U	
Isopropylbenzene Methyl test butyl other	5	2.5	U	2.5	U	
Methylono chlorido	10	2.7	11	1.2	J	
Methylene chloride	5	2.5 2.5	U	2.5 2.5	U	
n-Butylbenzene n-Propylbenzene	5	2.5	U	2.5	U	
Naphthalene	10	2.5	U	2.5	U	
o-Chlorotoluene	5	2.5	U	2.5	U	
o-Xylene	5	2.5	U	2.5	U	
p-Chlorotoluene	5	2.5	U	2.5	U	
p-Diethylbenzene	3	2.5	U	2.5	U	
p-Ethyltoluene		2	U	2	U	
p-Isopropyltoluene	5	2.5	U	2.5	U	
p/m-Xylene	5	2.5	U	2.5	U	
sec-Butylbenzene	5	1	J	2.5	U	
Styrene	5	2.5	U	2.5	U	
tert-Butylbenzene	5	1.5	J	1.9	J	
Tetrachloroethene	5	0.5	U	0.5	U	
Toluene	5	2.5	U	2.5	U	
trans-1,2-Dichloroethene	5	2.5	U	2.5	U	
trans-1,3-Dichloropropene	0.4	0.5	U	0.5	U	
trans-1,4-Dichloro-2-butene	5	2.5	U	2.5	U	
Trichloroethene	5	0.21	J	0.5	U	
Trichlorofluoromethane	5	2.5	U	2.5	U	
Vinyl acetate		5	U	5	U	
Vinyl chloride	2	6.7		1	U	
Xylenes, Total		2.5	U	2.5	U	
ABBREVIATIONS AND NOTES:	ı					

ABBREVIATIONS AND NOTES: μg/L: micrograms per liter

J: Value is estimated.

U: Not detected at the reported detection limit for the sample.

⁻ Water analytical results are compared to the New York TOGS 111 Ambient Water Quality Standards.

⁻ Bold indicates an exceedance of AWQS criteria.

FIGURES

ATTACHMENT A LOW FLOW PURGE LOGS

HAL	EY	
ΛL	DR	ICH

LOW-FLOW GROUNDWATER SAMPLING RECORD

PROJECT	Sentinel Monitoring Well Sampling - 65 Eckford Str	el Monitoring Well Sampling - 65 Eckford Street H&A FILE NO.		0202156				
LOCATION 65	65 Eckford Street, Brooklyn, NY		PROJECT MGR.	M. Conlon				
CLIENT	65-73 Eckford Realty LLC		FIELD REP	Z.Simmel & E. Nunez				
CONTRACTOR	N/A		DATE	5/8/2023				
GROUNDWATER SAMPLING INFORMATION								
Well ID:	OW-1	Well Volume:	0.95 gal	Start Time:	1205			

OW-1 0.95 gal

Well Depth: 15.31' Equipment: Peristaltic Pump; Horiba Sample Time: 1240

Depth to Water: 9.48' Purge Rate: 315 mL/min

Time	Volume purged, gallons	Temp, C (+/-3%)	Conductivity, us/cm	Dissolved Oxygen, mg/L (+/- 10%)	pH (+/-0.1)	ORP/eH, mv (+/-10mv)	Turbidity, NTU (<5 NTU)	Depth to Water (ft)
1210	0	20.03	1.91	0.76		-111	43.5	9.48
1215	0.42	19.38	1.92	0.21	6.84	-114	36.7	9.48
1220	0.84	19.09	1.94	0.09		-113	33.9	9.48
1225	1.26	18.98	1.95	0.04	6.79	-113	32.2	9.48
1230	1.68	18.85	1.96	0.02	6.78	-112	32.1	9.48
1235	2.1	18.87	1.96	0.0	6.78	-112	27.6	9.48
1240	2.5	18.84	1.97	0.0	6.79	-111	19.1	9.48

HAL	EY
ΛL	DRICH

ALDR	LOW-FLOW GROUNDWATER SAMPLING RECORD									
PROJECT	Sentinel Monitoring Well Sampling - 65 Eckford Street		Sentinel Monitoring Well Sampling - 65 Eckfo		eet	H&A FILE NO.	0202156			
LOCATION	65 Eckford Street, Bro	ooklyn, NY		PROJECT MGR.	M. Conlon					
CLIENT	65-73 Eckford Realty	LLC		FIELD REP	Z.Simmel & E. Nunez		_			
CONTRACTOR	N/A			DATE	5/8/2023					
			GROUNDWATE	R SAMPLING INFORM	ATION					
Well ID:	OW-2	-	Well Volume:	1.01 gal		Start Time:	1115			
Well Depth:	9.43'	_	Equipment:	Peristaltic Pump; Horiba		Sample Time:	1150			
Depth to Water:	15.6'	-	Purge Rate:	315 mL/min						
Time	Volume purged, gallons	Temp, C (+/-3%)	Conductivity, us/cm (+/- 3%)	Dissolved Oxygen, mg/L (+/- 10%)	pH (+/-0.1)	ORP/eH, mv (+/-10mv)	Turbidity, NTU (<5 NTU)	Depth to Water (ft)		
1120	0	18.25	2.78	1.26	7	-81	14.3	9.43		
1125	0.42	17.35	2.56	0.65	6.95	-88	7.2	9.43		
1130	0.84	17.25	2.28	0.52	6.95	-92	3.6	9.43		
1135	1.26	17.24	2.21	0.48	6.94	-97	2.2	9.43		
1140	1.68	17.29	2.20	0.38	6.94	-102	1.7	9.43		
1145	2.1	17.31	2.18	0.31	6.99	-106	1.4	9.43		
1150	2.5	17.32	2.18	0.05	6.95	-109	1.1	9.43		
	I	1								

ATTACHMENT B LABORATORY ANALYTICAL REPORT

ANALYTICAL REPORT

Lab Number: L2325211

Client: Haley & Aldrich

237 West 35th Street

16th Floor

New York, NY 10123

ATTN: Mari Cate Conlon Phone: (347) 271-1521

Project Name: 65 ECKFORD ST

Project Number: 0202156 Report Date: 05/15/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 65 ECKFORD ST

Project Number: 0202156

Lab Number:

L2325211

Report Date:

05/15/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2325211-01	OW-1	WATER	65 ECKFORD ST, BROOKLYN, NY	05/08/23 12:40	05/08/23
L2325211-02	OW-2	WATER	65 ECKFORD ST, BROOKLYN, NY	05/08/23 11:50	05/08/23
L2325211-03	TRIP BLANK_20230508	WATER	65 ECKFORD ST, BROOKLYN, NY	05/08/23 13:02	05/08/23

L2325211

Project Name: 65 ECKFORD ST

Lab Number:

Project Number: 0202156 Report Date: 05/15/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: 65 ECKFORD ST Lab Number: L2325211

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Lelly Well Kelly O'Neill

Authorized Signature:

Title: Technical Director/Representative

Date: 05/15/23

ORGANICS

VOLATILES

05/08/23 12:40

Not Specified

05/08/23

Project Name: 65 ECKFORD ST

Project Number: 0202156

SAMPLE RESULTS

Lab Number: L2325211

Report Date: 05/15/23

Date Collected:

Date Received:

Field Prep:

Lab ID: L2325211-01

Client ID: OW-1

Sample Location: 65 ECKFORD ST, BROOKLYN, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 05/12/23 18:30

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
Methylene chloride	ND		ug/l	2.5	0.70	1			
1,1-Dichloroethane	1.7	J	ug/l	2.5	0.70	1			
Chloroform	ND		ug/l	2.5	0.70	1			
Carbon tetrachloride	ND		ug/l	0.50	0.13	1			
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1			
Dibromochloromethane	ND		ug/l	0.50	0.15	1			
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1			
Tetrachloroethene	ND		ug/l	0.50	0.18	1			
Chlorobenzene	ND		ug/l	2.5	0.70	1			
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1			
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1			
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1			
Bromodichloromethane	ND		ug/l	0.50	0.19	1			
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1			
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1			
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1			
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1			
Bromoform	ND		ug/l	2.0	0.65	1			
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1			
Benzene	ND		ug/l	0.50	0.16	1			
Toluene	ND		ug/l	2.5	0.70	1			
Ethylbenzene	ND		ug/l	2.5	0.70	1			
Chloromethane	ND		ug/l	2.5	0.70	1			
Bromomethane	ND		ug/l	2.5	0.70	1			
Vinyl chloride	6.7		ug/l	1.0	0.07	1			
Chloroethane	ND		ug/l	2.5	0.70	1			
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1			
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1			

Project Name: 65 ECKFORD ST **Lab Number:** L2325211

Project Number: 0202156 **Report Date:** 05/15/23

SAMPLE RESULTS

Lab ID: L2325211-01 Date Collected: 05/08/23 12:40

Client ID: OW-1 Date Received: 05/08/23

Sample Location: 65 ECKFORD ST, BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
Trichloroethene	0.21	J	ug/l	0.50	0.18	1			
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
Methyl tert butyl ether	2.7		ug/l	2.5	0.70	1			
p/m-Xylene	ND		ug/l	2.5	0.70	1			
o-Xylene	ND		ug/l	2.5	0.70	1			
Xylenes, Total	ND		ug/l	2.5	0.70	1			
cis-1,2-Dichloroethene	2.6		ug/l	2.5	0.70	1			
1,2-Dichloroethene, Total	2.6		ug/l	2.5	0.70	1			
Dibromomethane	ND		ug/l	5.0	1.0	1			
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1			
Acrylonitrile	ND		ug/l	5.0	1.5	1			
Styrene	ND		ug/l	2.5	0.70	1			
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1			
Acetone	ND		ug/l	5.0	1.5	1			
Carbon disulfide	ND		ug/l	5.0	1.0	1			
2-Butanone	ND		ug/l	5.0	1.9	1			
Vinyl acetate	ND		ug/l	5.0	1.0	1			
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1			
2-Hexanone	ND		ug/l	5.0	1.0	1			
Bromochloromethane	ND		ug/l	2.5	0.70	1			
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1			
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1			
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1			
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1			
Bromobenzene	ND		ug/l	2.5	0.70	1			
n-Butylbenzene	ND		ug/l	2.5	0.70	1			
sec-Butylbenzene	1.0	J	ug/l	2.5	0.70	1			
tert-Butylbenzene	1.5	J	ug/l	2.5	0.70	1			
o-Chlorotoluene	ND		ug/l	2.5	0.70	1			
p-Chlorotoluene	ND		ug/l	2.5	0.70	1			
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1			
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1			
Isopropylbenzene	ND		ug/l	2.5	0.70	1			
p-lsopropyltoluene	ND		ug/l	2.5	0.70	1			
Naphthalene	ND		ug/l	2.5	0.70	1			
			-						

Project Name: Lab Number: 65 ECKFORD ST L2325211

Project Number: Report Date: 0202156 05/15/23

SAMPLE RESULTS

Lab ID: L2325211-01 Date Collected: 05/08/23 12:40

Client ID: Date Received: 05/08/23 OW-1 Field Prep: Not Specified

Sample Location: 65 ECKFORD ST, BROOKLYN, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
n-Propylbenzene	ND		ug/l	2.5	0.70	1			
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1			
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1			
1,4-Dioxane	ND		ug/l	250	61.	1			
p-Diethylbenzene	ND		ug/l	2.0	0.70	1			
p-Ethyltoluene	ND		ug/l	2.0	0.70	1			
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1			
Ethyl ether	ND		ug/l	2.5	0.70	1			
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	110		70-130	
Toluene-d8	94		70-130	
4-Bromofluorobenzene	95		70-130	
Dibromofluoromethane	112		70-130	

Project Name: 65 ECKFORD ST

L2325211-02

65 ECKFORD ST, BROOKLYN, NY

OW-2

Project Number: 0202156

SAMPLE RESULTS

Report Date:

Lab Number:

05/15/23

L2325211

Date Collected: 05/08/23 11:50 Date Received: 05/08/23 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 05/12/23 18:56

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
Methylene chloride	ND		ug/l	2.5	0.70	1			
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1			
Chloroform	ND		ug/l	2.5	0.70	1			
Carbon tetrachloride	ND		ug/l	0.50	0.13	1			
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1			
Dibromochloromethane	ND		ug/l	0.50	0.15	1			
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1			
Tetrachloroethene	ND		ug/l	0.50	0.18	1			
Chlorobenzene	ND		ug/l	2.5	0.70	1			
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1			
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1			
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1			
Bromodichloromethane	ND		ug/l	0.50	0.19	1			
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1			
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1			
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1			
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1			
Bromoform	ND		ug/l	2.0	0.65	1			
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1			
Benzene	ND		ug/l	0.50	0.16	1			
Toluene	ND		ug/l	2.5	0.70	1			
Ethylbenzene	ND		ug/l	2.5	0.70	1			
Chloromethane	ND		ug/l	2.5	0.70	1			
Bromomethane	ND		ug/l	2.5	0.70	1			
Vinyl chloride	ND		ug/l	1.0	0.07	1			
Chloroethane	ND		ug/l	2.5	0.70	1			
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1			
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1			

Project Name: Lab Number: 65 ECKFORD ST L2325211

Project Number: Report Date: 0202156 05/15/23

SAMPLE RESULTS

Lab ID: L2325211-02 Date Collected: 05/08/23 11:50

Client ID: Date Received: 05/08/23 OW-2

Sample Location: 65 ECKFORD ST, BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	ıgh Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	1.2	J	ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	1.9	J	ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 65 ECKFORD ST **Lab Number:** L2325211

Project Number: 0202156 **Report Date:** 05/15/23

SAMPLE RESULTS

Lab ID: L2325211-02 Date Collected: 05/08/23 11:50

Client ID: OW-2 Date Received: 05/08/23 Sample Location: 65 ECKFORD ST, BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westl	oorough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	113	70-130	

L2325211

05/08/23 13:02

Not Specified

05/08/23

Project Name: 65 ECKFORD ST

Project Number: 0202156

SAMPLE RESULTS

(15/23)

Report Date: 05/15/23

Lab Number:

Date Collected:

Date Received:

Field Prep:

OAIIII EE REGO

Lab ID: L2325211-03

Client ID: TRIP BLANK_20230508

Sample Location: 65 ECKFORD ST, BROOKLYN, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 05/10/23 10:23

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

Project Name: 65 ECKFORD ST **Lab Number:** L2325211

Project Number: 0202156 **Report Date:** 05/15/23

SAMPLE RESULTS

Lab ID: L2325211-03 Date Collected: 05/08/23 13:02

Client ID: TRIP BLANK_20230508 Date Received: 05/08/23

Sample Location: 65 ECKFORD ST, BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - V	Vestborough Lab					
Trichloroothono	ND		//	0.50	0.10	4
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	<u> </u>
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 65 ECKFORD ST **Lab Number:** L2325211

Project Number: 0202156 **Report Date:** 05/15/23

SAMPLE RESULTS

Lab ID: L2325211-03 Date Collected: 05/08/23 13:02

Client ID: TRIP BLANK_20230508 Date Received: 05/08/23 Sample Location: 65 ECKFORD ST, BROOKLYN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbor	ough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	90	70-130	
Dibromofluoromethane	112	70-130	

L2325211

Lab Number:

Project Name: 65 ECKFORD ST

Project Number: 0202156 **Report Date:** 05/15/23

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 05/10/23 09:31

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - W	estborough Lab	for sample(s): 03	Batch:	WG1777689-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

Project Name: 65 ECKFORD ST

Project Number: 0202156

Lab Number: L2325211

Report Date: 05/15/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 05/10/23 09:31

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s): 03	Batch:	WG1777689-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Project Name: 65 ECKFORD ST

Project Number: 0202156

Lab Number: L2325211

Report Date: 05/15/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 05/10/23 09:31

Parameter	Result Q	ualifier Units	RL	MDL
Volatile Organics by GC/MS - W	estborough Lab fo	or sample(s): 03	Batch:	WG1777689-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

	Acceptance			
Surrogate	%Recovery Qua	alifier Criteria		
1,2-Dichloroethane-d4	107	70-130		
Toluene-d8	99	70-130		
4-Bromofluorobenzene	91	70-130		
Dibromofluoromethane	110	70-130		

L2325211

Lab Number:

Project Name: 65 ECKFORD ST

Project Number: Report Date:

0202156 05/15/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 05/12/23 11:31

Analyst: MJV

arameter	Result	Qualifier Un	its	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab	for sample(s)	: 01-02	Batch:	WG1778668-5
Methylene chloride	ND	u	g/I	2.5	0.70
1,1-Dichloroethane	ND	u	g/l	2.5	0.70
Chloroform	ND	u	g/l	2.5	0.70
Carbon tetrachloride	ND	u	g/l	0.50	0.13
1,2-Dichloropropane	ND	u	g/l	1.0	0.14
Dibromochloromethane	ND	u	g/l	0.50	0.15
1,1,2-Trichloroethane	ND	u	g/l	1.5	0.50
Tetrachloroethene	ND	u	g/l	0.50	0.18
Chlorobenzene	ND	u	g/l	2.5	0.70
Trichlorofluoromethane	ND	u	g/l	2.5	0.70
1,2-Dichloroethane	ND	u	g/l	0.50	0.13
1,1,1-Trichloroethane	ND	u	g/l	2.5	0.70
Bromodichloromethane	ND	u	g/l	0.50	0.19
trans-1,3-Dichloropropene	ND	u	g/l	0.50	0.16
cis-1,3-Dichloropropene	ND	u	g/l	0.50	0.14
1,3-Dichloropropene, Total	ND	u	g/l	0.50	0.14
1,1-Dichloropropene	ND	u	g/l	2.5	0.70
Bromoform	ND	u	g/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	u	g/l	0.50	0.17
Benzene	ND	u	g/l	0.50	0.16
Toluene	ND	u	g/l	2.5	0.70
Ethylbenzene	ND	u	g/l	2.5	0.70
Chloromethane	ND	u	g/l	2.5	0.70
Bromomethane	ND	u	g/l	2.5	0.70
Vinyl chloride	ND	u	g/l	1.0	0.07
Chloroethane	ND	u	g/l	2.5	0.70
1,1-Dichloroethene	ND	u	g/l	0.50	0.17
trans-1,2-Dichloroethene	ND	u	g/l	2.5	0.70
Trichloroethene	ND	u	g/l	0.50	0.18

L2325211

Project Name: 65 ECKFORD ST

Project Number: 0202156

Report Date: 05/15/23

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 05/12/23 11:31

Analyst: MJV

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	01-02 Batch:	WG1778668-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Project Name: 65 ECKFORD ST

Project Number: 0202156

Lab Number: L2325211

Report Date: 05/15/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 05/12/23 11:31

Analyst: MJV

Parameter	Result	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS -	Westborough Lab	for sample(s): 01-0)2 Batch:	WG1778668-5	
o-Chlorotoluene	ND	ug/l	2.5	0.70	
p-Chlorotoluene	ND	ug/l	2.5	0.70	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Hexachlorobutadiene	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
p-Isopropyltoluene	ND	ug/l	2.5	0.70	
Naphthalene	ND	ug/l	2.5	0.70	
n-Propylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,4-Dioxane	ND	ug/l	250	61.	
p-Diethylbenzene	ND	ug/l	2.0	0.70	
p-Ethyltoluene	ND	ug/l	2.0	0.70	
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54	
Ethyl ether	ND	ug/l	2.5	0.70	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	

		Acceptance
Surrogate	%Recovery Qu	alifier Criteria
1,2-Dichloroethane-d4	111	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	92	70-130
Dibromofluoromethane	112	70-130

Project Name: 65 ECKFORD ST

Project Number: 0202156

Lab Number: L2325211

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westb	orough Lab Associated	sample(s): 0	3 Batch: WG1	1777689-3	WG1777689-4			
Methylene chloride	96		97		70-130	1	20	
1,1-Dichloroethane	100		110		70-130	10	20	
Chloroform	99		100		70-130	1	20	
Carbon tetrachloride	100		110		63-132	10	20	
1,2-Dichloropropane	100		100		70-130	0	20	
Dibromochloromethane	91		93		63-130	2	20	
1,1,2-Trichloroethane	90		92		70-130	2	20	
Tetrachloroethene	100		100		70-130	0	20	
Chlorobenzene	94		96		75-130	2	20	
Trichlorofluoromethane	110		110		62-150	0	20	
1,2-Dichloroethane	99		100		70-130	1	20	
1,1,1-Trichloroethane	100		100		67-130	0	20	
Bromodichloromethane	95		98		67-130	3	20	
trans-1,3-Dichloropropene	88		88		70-130	0	20	
cis-1,3-Dichloropropene	95		97		70-130	2	20	
1,1-Dichloropropene	99		100		70-130	1	20	
Bromoform	84		87		54-136	4	20	
1,1,2,2-Tetrachloroethane	90		93		67-130	3	20	
Benzene	100		100		70-130	0	20	
Toluene	96		95		70-130	1	20	
Ethylbenzene	94		94		70-130	0	20	
Chloromethane	90		93		64-130	3	20	
Bromomethane	97		98		39-139	1	20	

Project Name: 65 ECKFORD ST

Project Number: 0202156

Lab Number: L2325211

rameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
latile Organics by GC/MS - Westborougl	h Lab Associated	sample(s): 0	3 Batch: WG1	777689-3	WG1777689-4			
Vinyl chloride	73		76		55-140	4		20
Chloroethane	100		100		55-138	0		20
1,1-Dichloroethene	92		100		61-145	8		20
trans-1,2-Dichloroethene	100		100		70-130	0		20
Trichloroethene	98		100		70-130	2		20
1,2-Dichlorobenzene	94		96		70-130	2		20
1,3-Dichlorobenzene	93		95		70-130	2		20
1,4-Dichlorobenzene	93		95		70-130	2		20
Methyl tert butyl ether	91		93		63-130	2		20
p/m-Xylene	95		95		70-130	0		20
o-Xylene	95		95		70-130	0		20
cis-1,2-Dichloroethene	100		100		70-130	0		20
Dibromomethane	95		100		70-130	5		20
1,2,3-Trichloropropane	77		78		64-130	1		20
Acrylonitrile	97		110		70-130	13		20
Styrene	90		95		70-130	5		20
Dichlorodifluoromethane	81		83		36-147	2		20
Acetone	83		94		58-148	12		20
Carbon disulfide	93		97		51-130	4		20
2-Butanone	90		97		63-138	7		20
Vinyl acetate	120		120		70-130	0		20
4-Methyl-2-pentanone	77		83		59-130	8		20
2-Hexanone	73		73		57-130	0		20

Project Name: 65 ECKFORD ST

Project Number: 0202156

Lab Number: L2325211

arameter	LCS %Recovery	Qual	LCSD %Recove		%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 03	3 Batch:	WG1777689-	3 WG1777689-4			
Bromochloromethane	100		110		70-130	10		20
2,2-Dichloropropane	100		110		63-133	10		20
1,2-Dibromoethane	89		92		70-130	3		20
1,3-Dichloropropane	92		93		70-130	1		20
1,1,1,2-Tetrachloroethane	94		96		64-130	2		20
Bromobenzene	94		95		70-130	1		20
n-Butylbenzene	91		91		53-136	0		20
sec-Butylbenzene	91		93		70-130	2		20
tert-Butylbenzene	92		93		70-130	1		20
o-Chlorotoluene	89		91		70-130	2		20
p-Chlorotoluene	90		91		70-130	1		20
1,2-Dibromo-3-chloropropane	80		83		41-144	4		20
Hexachlorobutadiene	96		98		63-130	2		20
Isopropylbenzene	90		92		70-130	2		20
p-Isopropyltoluene	91		93		70-130	2		20
Naphthalene	81		85		70-130	5		20
n-Propylbenzene	91		93		69-130	2		20
1,2,3-Trichlorobenzene	92		96		70-130	4		20
1,2,4-Trichlorobenzene	91		93		70-130	2		20
1,3,5-Trimethylbenzene	90		92		64-130	2		20
1,2,4-Trimethylbenzene	90		93		70-130	3		20
1,4-Dioxane	74		80		56-162	8		20
p-Diethylbenzene	90		91		70-130	1		20

Project Name: 65 ECKFORD ST

Project Number: 0202156

Lab Number: L2325211

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by GC/MS - Westborough La	ab Associated	sample(s): 03	Batch: WG	1777689-3	WG1777689-4			
p-Ethyltoluene	91		93		70-130	2		20
1,2,4,5-Tetramethylbenzene	86		87		70-130	1		20
Ethyl ether	93		96		59-134	3		20
trans-1,4-Dichloro-2-butene	80		80		70-130	0		20

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	MRecovery Qual	Criteria	
1,2-Dichloroethane-d4	103	104	70-130	
Toluene-d8	99	98	70-130	
4-Bromofluorobenzene	90	91	70-130	
Dibromofluoromethane	108	108	70-130	

Project Name: 65 ECKFORD ST

Project Number: 0202156

Lab Number: L2325211

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westb	orough Lab Associated	sample(s):	01-02 Batch: W	/G1778668-3	WG1778668-4				
Methylene chloride	100		98		70-130	2		20	
1,1-Dichloroethane	110		100		70-130	10		20	
Chloroform	100		97		70-130	3		20	
Carbon tetrachloride	110		100		63-132	10		20	
1,2-Dichloropropane	100		99		70-130	1		20	
Dibromochloromethane	92		92		63-130	0		20	
1,1,2-Trichloroethane	88		86		70-130	2		20	
Tetrachloroethene	100		92		70-130	8		20	
Chlorobenzene	94		90		75-130	4		20	
Trichlorofluoromethane	120		110		62-150	9		20	
1,2-Dichloroethane	100		100		70-130	0		20	
1,1,1-Trichloroethane	110		100		67-130	10		20	
Bromodichloromethane	100		94		67-130	6		20	
trans-1,3-Dichloropropene	87		84		70-130	4		20	
cis-1,3-Dichloropropene	97		92		70-130	5		20	
1,1-Dichloropropene	100		93		70-130	7		20	
Bromoform	84		87		54-136	4		20	
1,1,2,2-Tetrachloroethane	83		88		67-130	6		20	
Benzene	100		97		70-130	3		20	
Toluene	94		88		70-130	7		20	
Ethylbenzene	92		86		70-130	7		20	
Chloromethane	93		88		64-130	6		20	
Bromomethane	66		58		39-139	13		20	

Project Name: 65 ECKFORD ST

Project Number: 0202156

Lab Number: L2325211

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - W	estborough Lab Associated	sample(s):	01-02 Batch: V	WG1778668-3	WG1778668-4				
Vinyl chloride	87		85		55-140	2		20	
Chloroethane	100		96		55-138	4		20	
1,1-Dichloroethene	100		92		61-145	8		20	
trans-1,2-Dichloroethene	100		94		70-130	6		20	
Trichloroethene	100		94		70-130	6		20	
1,2-Dichlorobenzene	92		88		70-130	4		20	
1,3-Dichlorobenzene	92		87		70-130	6		20	
1,4-Dichlorobenzene	91		87		70-130	4		20	
Methyl tert butyl ether	95		94		63-130	1		20	
p/m-Xylene	95		90		70-130	5		20	
o-Xylene	95		90		70-130	5		20	
cis-1,2-Dichloroethene	100		95		70-130	5		20	
Dibromomethane	100		99		70-130	1		20	
1,2,3-Trichloropropane	75		76		64-130	1		20	
Acrylonitrile	110		110		70-130	0		20	
Styrene	90		85		70-130	6		20	
Dichlorodifluoromethane	79		72		36-147	9		20	
Acetone	97		100		58-148	3		20	
Carbon disulfide	100		92		51-130	8		20	
2-Butanone	96		94		63-138	2		20	
Vinyl acetate	110		120		70-130	9		20	
4-Methyl-2-pentanone	78		79		59-130	1		20	
2-Hexanone	74		77		57-130	4		20	

Project Name: 65 ECKFORD ST

Project Number: 0202156

Lab Number: L2325211

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westbor	ough Lab Associated	sample(s):	01-02 Batch: V	VG1778668-3	WG1778668-4				
Bromochloromethane	110		100		70-130	10		20	
2,2-Dichloropropane	110		96		63-133	14		20	
1,2-Dibromoethane	88		92		70-130	4		20	
1,3-Dichloropropane	90		88		70-130	2		20	
1,1,1,2-Tetrachloroethane	96		90		64-130	6		20	
Bromobenzene	91		88		70-130	3		20	
n-Butylbenzene	86		80		53-136	7		20	
sec-Butylbenzene	86		81		70-130	6		20	
tert-Butylbenzene	88		83		70-130	6		20	
o-Chlorotoluene	86		81		70-130	6		20	
p-Chlorotoluene	87		82		70-130	6		20	
1,2-Dibromo-3-chloropropane	76		82		41-144	8		20	
Hexachlorobutadiene	92		88		63-130	4		20	
Isopropylbenzene	88		82		70-130	7		20	
p-Isopropyltoluene	87		82		70-130	6		20	
Naphthalene	77		84		70-130	9		20	
n-Propylbenzene	86		81		69-130	6		20	
1,2,3-Trichlorobenzene	88		88		70-130	0		20	
1,2,4-Trichlorobenzene	86		85		70-130	1		20	
1,3,5-Trimethylbenzene	87		83		64-130	5		20	
1,2,4-Trimethylbenzene	88		83		70-130	6		20	
1,4-Dioxane	72		78		56-162	8		20	
p-Diethylbenzene	86		80		70-130	7		20	

Project Name: 65 ECKFORD ST

Project Number: 0202156

Lab Number: L2325211

Parameter	LCS %Recovery	Qual	LCSD %Recovery	' Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-02 Batch:	WG1778668-3	WG1778668-4				
p-Ethyltoluene	88		82		70-130	7		20	
1,2,4,5-Tetramethylbenzene	83		78		70-130	6		20	
Ethyl ether	98		97		59-134	1		20	
trans-1,4-Dichloro-2-butene	78		80		70-130	3		20	

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	
1,2-Dichloroethane-d4	107	109	70-130	
Toluene-d8	98	97	70-130	
4-Bromofluorobenzene	89	90	70-130	
Dibromofluoromethane	111	110	70-130	

Serial_No:05152312:04

Project Name: 65 ECKFORD ST

Project Number: 0202156 **Report Date:** 05/15/23

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Information			Initial	Final	Temp			Frozen		
	Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
	L2325211-01A	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)
	L2325211-01B	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)
	L2325211-01C	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)
	L2325211-02A	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)
	L2325211-02B	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)
	L2325211-02C	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)
	L2325211-03A	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)
	L2325211-03B	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)

Project Name: Lab Number: 65 ECKFORD ST L2325211

Report Date: Project Number: 0202156 05/15/23

GLOSSARY

Acronyms

LOD

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:65 ECKFORD STLab Number:L2325211Project Number:0202156Report Date:05/15/23

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benzo(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:65 ECKFORD STLab Number:L2325211Project Number:0202156Report Date:05/15/23

Data Qualifiers

Identified Compounds (TICs).

- $\label{eq:main_eq} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
 (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Serial_No:05152312:04

Project Name:65 ECKFORD STLab Number:L2325211Project Number:0202156Report Date:05/15/23

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:05152312:04

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Дірна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 Co	Way	05	Pag	e of (100	-	Rec'd ab	5/8	3/2	3	ALPHA Job# L2325211	
Westborough, MA 01581 Mansfield, MA 02048 8 Walkup Dr. 320 Forbes Blvd TEL: 508-898-9220 TEL: 508-822-9300 FAX: 508-888-9193 FAX: 508-822-3288		Project Information Project Name: G.S. Eckford Street					Deliverables ASP-A ASP-B						Billing Information Same as Client Info	
2.000 No. 000 No. 00 No		Project Location: 65	Eckford &	it, Brook	dyn, N	/			(1 File)		EQuis	S (4 File)	PO#	
Client Information Project # 0202/56						The real Property lies	Other			-				
Client: Haley & Ale	dnich of NY	(Use Project name as P					A CONTRACTOR OF THE PERSON NAMED IN	STREET,	Requirem	77.076			Disposal Site Information	
Address: 237 Wes	+35m St.	Project Manager: Man	ri Cate Co	0100				NY TO		-	NY Pa		Please identify below location of	
Floo- 16, New 1	lork, NY 10123	ALPHAQuote #:		1500				AWQ S	tandards		NY CP	-51	applicable disposal facilities.	
Phone:		Turn-Around Time						NY Restricted Use Other					Disposal Facility:	
Fax:		Standar	d Æ	Due Date):			NY Unn	estricted U	se			□ NJ □ NY	
Email: Mconloneth	alevaldich, com	Rush (only if pre approve	Rush (only if pre approved) # of Days:					NYC Sewer Discharge					Other:	
These samples have t	been previously analyze	ed by Alpha					ANAL	YSIS					Sample Filtration	
Please specify Metal	c requirements/comm					200	10cs						□ Done □ Lab to do Preservation □ Lab to do (Please Specify below)	
ALPHA Lab ID (Lab Use Only)		Coll		ection	Sample	Sampler's	1 >							
		mple ID	Date	Time	Matrix	Initials	1 1						Sample Specific Comments	
25211-01	OW-1		5-8-23	1240	GW	ZS	X							
02	0W-2		5-8-23	1150	GW	25	×							
03	Trip Blank :	20230508	5-8-23	1302	TB		X							
Preservative Code: Container Code A = None P = Plastic B = HCI A = Amber Glass C = HNO3 V = Vial D = H ₂ SO ₄ G = Glass F = NaOH B = Bacteria Cup		Westboro: Certification No: MA935 Mansfield: Certification No: MA015			Container Type Preservative		v B						Please print clearly, legibly and completely. Samples car not be logged in and turnaround time clock will not start until any ambiguities are	
E = NaOH F = MeOH	C = Cube	Relinquished By: Date/Time					Received By:			Date/Time			resolved. BY EXECUTING	
G = NaHSO ₄	O = Other E = Encore	much 82	11110	AIDHA BLUB			13:05.5/6722			THIS COC, THE CLIENT				
$H = Na_2S_2O_3$ K/E = Zn Ac/NaOH O = Other	D = BOD Bottle	M2N AISHA 9/8/12/20 M 28 AISH 5/8/23					18:2	5/3/20 18:30			HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS.			
Form No: 01-25 HC (rev. 3)	0-Sept-2013)	Dan 1	Ac	0/8/23	23130	Inis?	Tan		as	-	123		(See reverse side.)	