

June 13, 2018

Ms. Kerry Maloney New York State Department of Environmental Conservation 625 Broadway, 12th Floor Albany, New York 12207

RE: First Quarter Performance Monitoring Report – March 2018 432 Rodney Street
Brooklyn, New York 11211
NYSDEC BCP Site No. C224216
Langan Project No.: 170357801

Dear Ms. Maloney:

In accordance with the Site Management Plan (SMP) dated December 14, 2017, Langan Engineering, Environmental, Surveying and Landscape Architecture, D.P.C. (Langan) conducted quarterly groundwater sampling at 432 Rodney Street (the Site) located in the Borough of Brooklyn, New York. Refer to Figure 1 for the Site location. This groundwater sampling event was performed in March 2018 and represents the first quarterly sampling event for this year. This is the first quarterly sampling event since the installation and subsequent operation of a network of pressurized injection wells, and the receipt of a New York State Department of Environmental Conservation (NYSDEC) Certificate of Completion for the Site (issued December 29, 2017).

Project Background

The Site, identified as Block 2374, Lots 1, 27, 28, and 31 on the New York City Tax Map, is situated on an approximately 27,160-square-foot (±0.6235 acre) area bound by a vacant lot and residential and commercial buildings followed by Ainslie Street to the north, Keap Street to the east, Hope Street to the south, and Rodney Street to the west. The Site was most recently occupied by a packaged food storage and refrigeration facility, and has historically been used by various commercial, automotive, and light industrial companies since around 1887.

In 2016, operations ceased and the Site was remediated in accordance with the NYSDEC-approved Interim Remedial Measures Work Plan (IRMWP), dated March 22, 2016, NYSDEC-

approved IRMWP Addenda #1 and #2, dated January 9, 2017, and NYSDEC-approved Remedial Action Work Plan (RAWP), dated March 23, 2017, and approved October 31, 2017,. Under these plans, a Track 2 remedy was implemented on Lots 1 and 31, and Lots 27 and 28 follow a Track 4 remedy.

A two-phase groundwater treatment system was chosen as the remedy to treat groundwater impacted with petroleum-related volatile organic compounds (VOCs) and chlorinated volatile organic compounds (CVOCs). The treatment design included a preliminary in-situ chemical oxidation (ISCO) direct-injection of base-activated sodium persulfate, followed by the application of PlumeStop®, a liquid activated carbon substrate, through a sub-slab network of pressurized injection wells.

About 11,800 pounds of sodium hydroxide-activated sodium persulfate was direct-injected within saturated soil in the southeast corner of Lot 31 between February 21 and March 2, 2017 to treat petroleum-related VOC-impacted groundwater. Following the persulfate injection, about 56,400 pounds of PlumeStop® was applied through the well network on Lots 1 and 31 between November 8 and December 6, 2017, and about 15,600 pounds of PlumeStop® was direct-injected on Lots 27 and 28 between November 27 and December 6, 2017.

As part of the Site Management Plan (SMP) prepared by Langan and approved by the NYSDEC in December 2017, five performance monitoring wells (PMW01, PMW02, PMW03, PMW04 and PMW05) were installed on Lots 1 and 31 and two performance monitoring wells (PMW06 and PMW07) were installed on Lots 27 and 28 to monitor post-injection groundwater quality. The monitoring plan summarized in the SMP includes 1) baseline sampling, which was conducted in June 2017 (Lots 1 and 31) and November 2017 (Lots 27 and 28), after sodium hydroxide-activated sodium persulfate injections and prior to PlumeStop® injections; 2) and post-injection sampling, which is required to be conducted quarterly during the first year following the injections and semi-annually during each subsequent year as needed.

First Quarter Performance Monitoring Scope of Work

Well Purging and Sampling

Each of the seven performance monitoring wells were sampled during the first quarter 2018 event. Monitoring well sampling was conducted in accordance with the NYSDEC-approved SMP on March 20 and 23, 2018.

Each well was purged prior to sampling using the low-flow method developed by the United States Environmental Protection Agency (USEPA) ("Low-Flow [Minimal Drawdown] Ground-Water Sampling Procedures," EPA/540/S-95/504, April 1996) and accepted by the NYSDEC. Purging was performed using a peristaltic pump fitted with dedicated tubing at all wells. During purging, the turbidity, pH, temperature, conductivity, redox potential, and dissolved oxygen of

the groundwater were monitored using a Horiba U-22 Water Quality Meter with a flow-through cell. Purging was considered complete after three well volumes were purged and all parameter readings stabilized for three successive readings within a reasonable time frame. The purged water was containerized in a 55-gallon drum and temporarily stored in a secured area pending proper off-site disposal. The monitored parameters were recorded on the Well Purging and Sampling Logs provided in Attachment A.

After purging the well, a groundwater sample was collected directly from the pump discharge line using USEPA low-flow techniques at each well. For quality assurance and quality control, one field blank and a duplicate sample were collected. A trip blank was also included in each shipment for quality control. All samples were analyzed for Target Compound List (TCL) VOCs at Alpha Analytical of Westborough, Massachusetts, a New York State Department of Health (NYSDOH) Environmental Laboratory Accreditation Program (ELAP)-accredited laboratory.

Data Validation

Upon receipt of final Analytical Services Protocol (ASP) Level B laboratory reports, copies of the reports were submitted to Langan's data validation department for review in accordance with the USEPA validation guidelines for organic and inorganic data review, and the data were found to be acceptable, with no issues. There were no data flagged as either estimated or unusable.

Data reduction, validation, and reporting procedures were completed in accordance with the Quality Assurance Project Plan (QAPP) provided in Appendix I of the SMP. Data Usability Reports (DUSRs) can be found in Attachment B of this document.

First Quarter Performance Monitoring Results

Analytical Results

The laboratory analytical results for this quarterly sampling event are summarized in Table 1 and on Figure 2. Laboratory analytical reports are provided as Attachment C. Groundwater sampling results were compared to NYSDEC Technical & Operations Guidance Series (TOGS) Ambient Water Quality Standards and Guidance Values (SGVs) for Class GA water.

Two VOCs, 2-butanone and acetone, were detected above the TOGS SGVs in monitoring well PMW07 located on Lot 27. Two CVOCs, cis-1,2-dichloroethene and tetrachloroethene (PCE), were detected above the TOGS SGVs in the four monitoring wells (PM01, PM02, PM03, and PM04) located within the building footprint on Lots 1 and 31.

Based on first quarter groundwater monitoring results, the extent of the petroleum-related VOC and CVOC-impacted groundwater has decreased relative to the baseline sampling following the implementation of the two-phase groundwater treatment program. Sampling results from the baseline to the first quarter indicate a decrease of the following CVOCs:

- 1,2-dichloroethane (100%),
- cis-1,2-Dichloroethene (between 65% and 99%),

- PCE¹ (between 44% and 100%)
- trichloroethene (TCE) (between 32% and 100%, and
- vinyl chloride (between 91% and 100%);

The following petroleum-related VOC concentrations decreased, relative to the baseline concentration:

- 1,2,4-trimethylbenzene (100%),
- Benzene (100%),
- Ethylbenzene (100%),
- Isopropylbenzene (100%),
- n-propylbenzene (100%),
- p/m-xylene (100%), and
- toluene (100%).

Table 2 compares the March 2018 first quarter analytical results to the baseline sampling results collected in June and November 2017.

Closure

In general, petroleum-related VOC and CVOC concentrations detected during the June 2017 baseline sampling event have decreased by one- to two-orders of magnitude in the first quarter sampling event. Post-remediation monitoring indicates that the two-phase groundwater remedy selected for this Site appears on track to meet the remedial objective of 90% contaminant mass reduction. We recommend continued monitoring of the sub-slab performance monitoring well network on a quarterly basis, as prescribed in the SMP.

Should you have any questions, please call the undersigned at 212-479-5413.

Sincerely,

Langan Engineering, Environmental, Surveying Landscape Architecture, and Geology, D.P.C.

Michael D. Burke, PG, CHMM Principal/Vice President

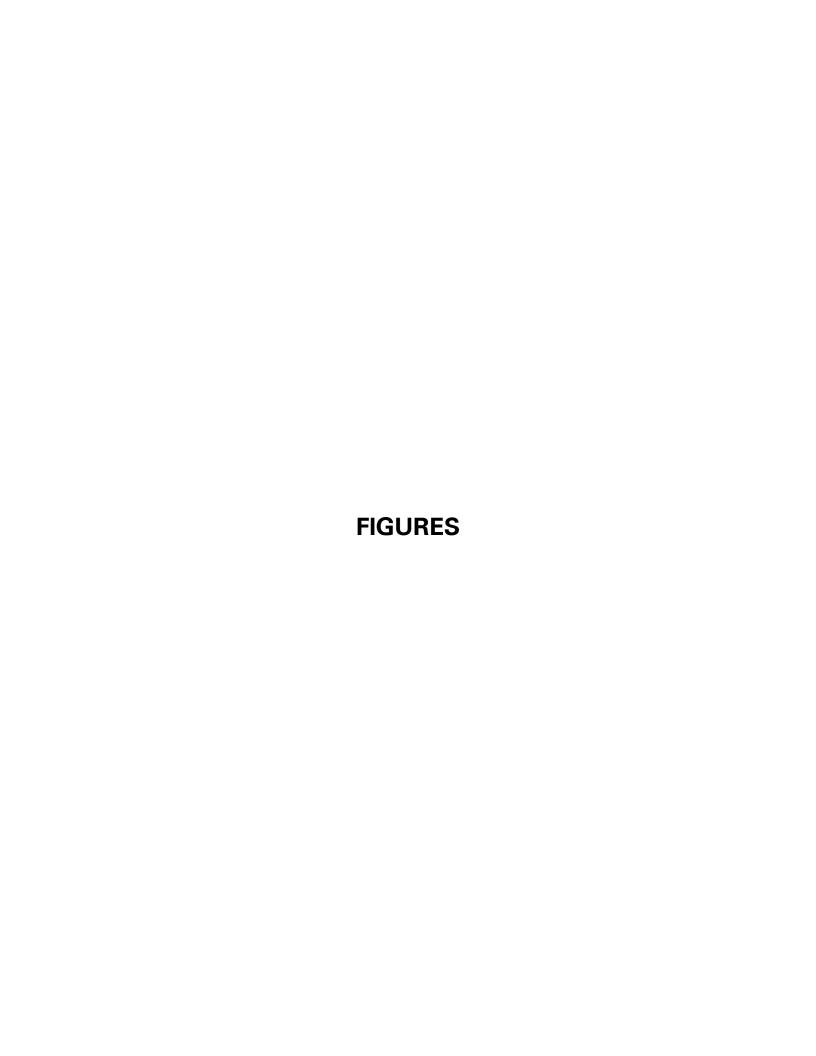
¹ The PCE concentration in groundwater in PMW02 remained relatively unchanged at 15 mg/L, compared to the baseline concentration of 10 mg/L.

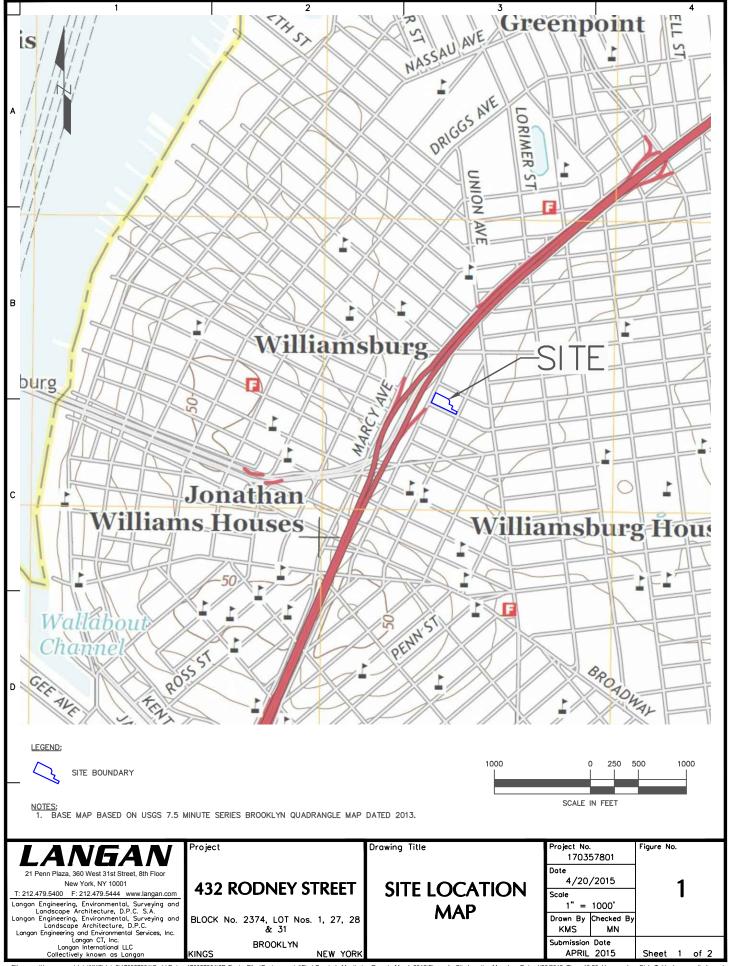
Enclosures:

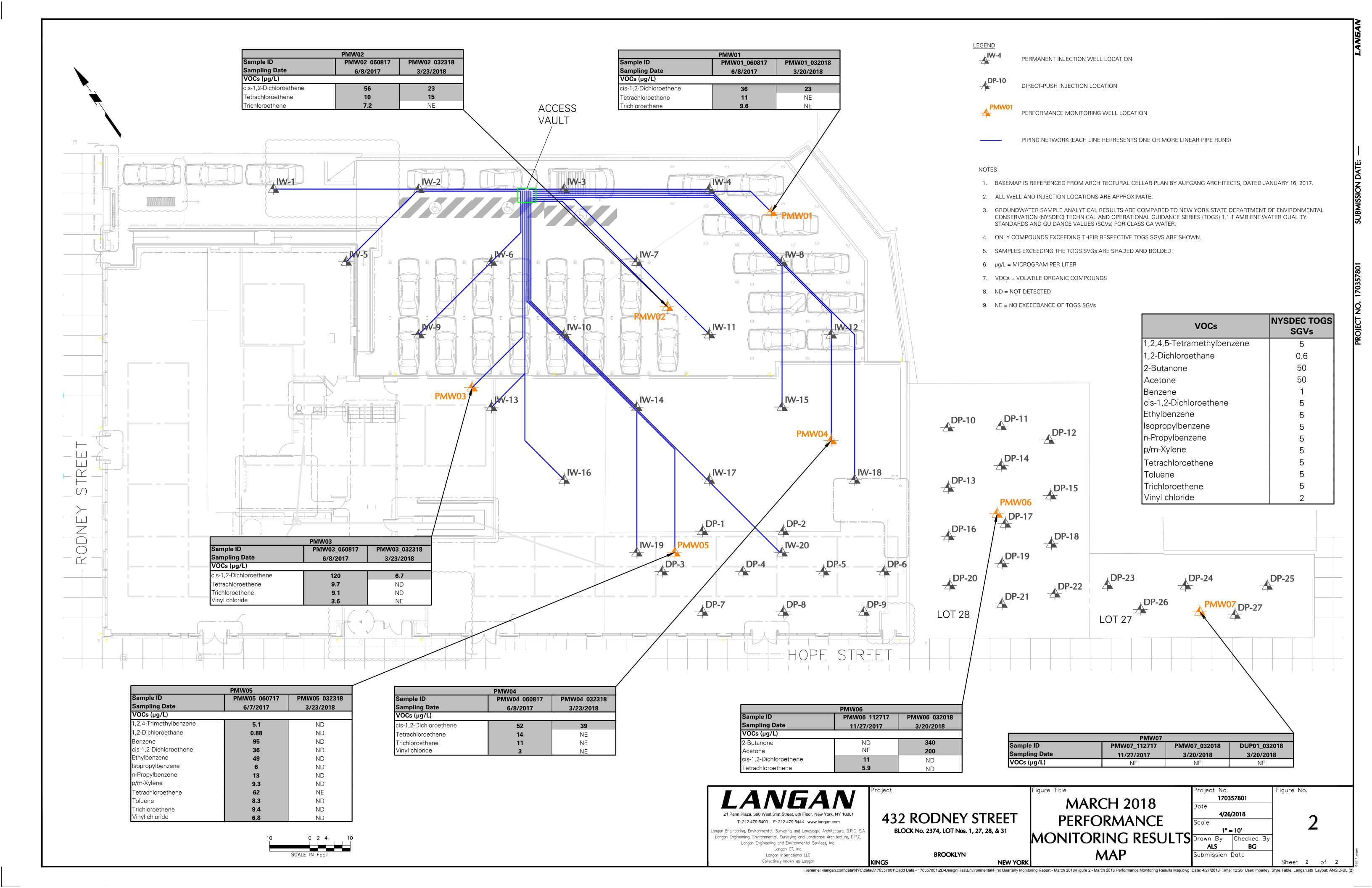
Figure 1 Site Location Map

Figure 2 Groundwater Sampling Results Map – First Quarter March 2018

Table 1 Quarterly Groundwater Sampling Results – First Quarter 2018


Table 2 Historical Performance Monitoring Analytical Results


Attachment A Well Purging and Sampling Logs


Attachment B Data Usability Reports

Attachment C Laboratory Analytical Reports

Table 1 - Quarterly Groundwater Sampling Results - First Quarter 2018 432 Rodney Street Brooklyn, New York Langan Project No. 170357801 BCP Site No. C224216

Sample ID Sampling Date Laboratory ID	NYSDEC TOGS SGVs	PMW01_03 3/20/20 L180958)18	PMW02_03 3/23/20 L1810069	18	PMW03_03 3/23/20 L1810069	18	PMW04_0 3/23/20 L181006)18	PMW05_0 3/23/20 L181006	018	PMW06_0 3/20/20 L180958	018	PMW07_ 3/20/2 L18095	2018	DUP01_03 3/20/20 L180958	018
VOCs (μg/L)																	
1,2-Dichloroethene	~	23		23		6.7		40	J	2.5	U	2.5	U	2.5	U	2.5	U
2-Butanone	50	5	\bigcup	5	\bigcup	2.3	J	31		8.7		340		5	\bigcup	5	\bigcup
Acetone	50	5	\bigcup	5	\bigcup	18		34		22		200		5	\bigcup	5	\bigcup
Benzene	1	0.5	\bigcup	0.5	\bigcup	0.5	\bigcup	0.37	J	0.5	\bigcup	0.5	U	0.5	\bigcup	0.5	\bigcup
Bromodichloromethane	50	0.5	\bigcup	0.5	\bigcup	0.5	\bigcup	0.5	\bigcup	0.5	\bigcup	0.5	\bigcup	0.2	J	0.19	J
Bromomethane	5	2.5	\bigcup	2.5	\bigcup	1.7	J	2.5	\bigcup	2.5	\bigcup	2.5	\bigcup	2.5	\bigcup	2.5	\bigcup
Chloroform	7	2.5	\bigcup	2.5	\bigcup	1.3	J	2.5	\bigcup	2.5	\bigcup	2.5	\bigcup	3.4		3.4	
cis-1,2-Dichloroethene	5	23		23		6.7		39		2.5	\bigcup	2.5	\bigcup	2.5	\bigcup	2.5	\bigcup
Tetrachloroethene	5	3.3		15		0.5	U	2.5		0.48	J	0.5	\bigcup	0.5	\bigcup	0.5	\bigcup
trans-1,2-Dichloroethene	5	2.5	\bigcup	2.5	U	2.5	\bigcup	0.77	J	2.5	\bigcup	2.5	\bigcup	2.5	\bigcup	2.5	\bigcup
Trichloroethene	5	2		3.4		0.5	\cup	1.6		0.5	\cup	0.5	\bigcup	0.5	\bigcup	0.5	\bigcup
Vinyl chloride	2	1	\bigcup	0.13	J	0.77	J	0.89	J	1	\bigcup	0.25	J	1	\bigcup	1	\bigcup

NOTES:

- 1. Groundwater sample analytical results are compared to New York State Department of Environmental Conservation (NYSDEC) Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values (SGVs) for Class GA water.
- 2. Concentrations exceeding NYSDEC TOGS SGVs are shaded and bold.
- 3. DUP01_032018 is a duplicate sample of PMW07_032018
- 4. μ g/L = Microgram per liter
- 5. VOCs = Volatile organic compounds
- 6. Only detected compounds are shown in the table.
- 7. \sim = Criterion does not exist.

QUALIFIERS:

- J = Detected above the Method Detection Limit (MDL) but below the Reporting Limit (RL); therefore, the result is an estimated concentration.
- U = The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL.

Table 2 - Historical Performance Monitoring Analytical Results

432 Rodney Street
Brooklyn, New York
Langan Project No. 170357801
BCP Site No. C224216

Sampling Location			PMW01			PMW02			PMW03			PMW04	
Sampling Event	NYSDEC TOGS Class GA SGVs	Baseline (2016)	Post-Source Removal (2017)	Quarter 1 (2018)	Baseline (2016)	Post-Source Removal (2017)	Quarter 1 (2018)	Baseline (2016)	Post-Source Removal (2017)	Quarter 1 (2018)	Baseline (2016)	Post-Source Removal (2017)	Quarter 1 (2018)
Sample ID		MW09_061616	PMW01_060817	PMW01_032018	MW08S_061716	PMW02_060817	PMW02_032318	MW18_070516	PMW03_060817	PMW03_032318	MW10_061516	PMW04_060817	PMW04_032318
VOCs (μg/L)								9	•	•			
1,1-Dichloroethane	5	2.6	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	<i>250</i> U	2.5 U	2.5 U	<i>250</i> U	2.5 U	2.5 U
1,1-Dichloroethene	5	0.5 U	0.2 J	0.5 U	0.5 U	0.33 J	0.5 U	<i>50</i> U	0.56	0.5 U	<i>50</i> U	0.24 J	0.5 U
1,2,4,5-Tetramethylbenzene	5	2 U	2 U	2 U	2 U	2 U	2 U	<i>200</i> U	2 U	2 U	<i>200</i> U	2 U	2 U
1,2,4-Trimethylbenzene	5	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	<i>250</i> U	2.5 U	2.5 U	<i>250</i> U	2.5 U	2.5 U
1,2-Dichlorobenzene	3	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	<i>250</i> U	2.5 U	2.5 U	<i>250</i> U	2.5 U	2.5 U
1,2-Dichloroethane	0.6	0.87	0.5 U	0.5 U	0.5 U	0.14 J	0.5 U	<i>50</i> U	0.18 J	0.5 U	20 J	0.13 J	0.5 U
1,2-Dichloroethene, Total	~	99	36	23	66	56	23	4100	120	6.7	6500	52	40 J
1,3,5-Trimethylbenzene	5	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	<i>250</i> U	2.5 U	2.5 U	<i>250</i> U	2.5 U	2.5 U
2-Butanone	50	5 U	4.7 J	5 U	5 U	27	5 U	<i>500</i> U	12	2.3 J	<i>500</i> U	5 U	31
Acetone	50	7.8	2.4 J	5 U	3 J	28	5 U	<i>500</i> U	22	18	150 J	3.4 J	34
Benzene	1	0.37 J	0.21 J	0.5 U	0.6	0.22 J	0.5 U	44 J	0.38 J	0.5 U	260	0.53	0.37 J
Bromodichloromethane	50	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	50 U	0.5 U	0.5 U	50 U	0.5 U	0.5 U
Bromomethane	5	2.5 U	2.5 U	2.5 U	2.5 U	1.4 J	2.5 U	<i>250</i> U	2.5 U	1.7 J	<i>250</i> U	2.5 U	2.5 U
Chlorobenzene	5	2.5 U	1.1 J	2.5 U	2.5 U	2.5 U	2.5 U	<i>250</i> U	2.5 U	2.5 U	<i>250</i> U	1.4 J	2.5 U
Chloroform	7	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	<i>250</i> U	2.5 U	1.3 J	<i>250</i> U	2.5 U	2.5 U
cis-1,2-Dichloroethene	5	99	36	23	66	56	23	4100	120	6.7	6500	52	39
Dichlorodifluoromethane	5	5 U	5 U	5 U	5 U	5 U	5 U	<i>500</i> U	5 U	5 U	<i>500</i> U	5 U	5 U
Ethylbenzene	5	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	<i>250</i> U	2.5 U	2.5 U	<i>250</i> U	2.5 U	2.5 U
Isopropylbenzene	5	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	<i>250</i> U	2.5 U	2.5 U	<i>250</i> U	2.5 U	2.5 U
Methyl tert butyl ether	10	0.71 J	1.1 J	2.5 U	1.9 J	4.5	2.5 U	<i>250</i> U	2.5 U	2.5 U	<i>250</i> U	7.8	2.5 U
Naphthalene	10	0.77 J	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	<i>250</i> U	0.71 J	2.5 U	<i>250</i> U	2.5 U	2.5 U
n-Butylbenzene	5	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	<i>250</i> U	2.5 U	2.5 U	<i>250</i> U	2.5 U	2.5 U
n-Propylbenzene	5	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	<i>250</i> U	2.5 U	2.5 U	<i>250</i> U		2.5 U
o-Xylene	5	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	<i>250</i> U	2.5 U	2.5 U	<i>250</i> U	2.5 U	2.5 U
p/m-Xylene	5	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	<i>250</i> U	2.5 U	2.5 U	<i>250</i> U	2.5 U	2.5 U
p-Diethylbenzene	~	2 U	2 U	2 U	2 U	2 U	2 U	200 U	2 U	2 U	200 U	2 U	2 U
p-Ethyltoluene	~	2 U	2 U	2 U	2 U	2 U	2 U	200 U	2 U	2 U	200 U	2 U	2 U
sec-Butylbenzene	5	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	<i>250</i> U	2.5 U	2.5 U	<i>250</i> U	2.5 U	2.5 U
Tetrachloroethene	5	48	11	3.3	27	10	15	500	9.7	0.5 U	1000	14	2.5
Toluene	5	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	<i>250</i> U	2.5 U	2.5 U	<i>250</i> U		2.5 U
trans-1,2-Dichloroethene	5	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	<i>250</i> U	2.5 U	2.5 U			0.77 J
Trichloroethene	5	13	9.6	2	5	7.2	3.4	130	9.1	0.5 U	210	11	1.6
Vinyl chloride	2	0.5 J	0.46 J	1 U	1.5	0.8 J	0.13 J	240	3.6	0.77 J	330	3	0.89 J
Xylenes, Total	~	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	250 U	2.5 U	2.5 U	250 U	2.5 U	2.5 U

Notes:

- 1. Groundwater sample analytical results are compared to New York State Department of Environmental Conservation (NYSDEC) Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values (SGVs) for Class GA drinking water.
- 2. Results exceeding the NYSDEC TOGS standards and guidance values are shaded and bolded.
- 3. Results exceeding the NYSDEC TOGS standards and guidance values but are not detected at or above the level indicated are italicized.
- 4. μg/L = micrograms per liter.
- 5. Baseline analytical results are from sampling performed in June and July 2016.
- 6. Post-source removal analytical results are from sampling performed in June and November 2017.
- 7. Quarter 1 analytical results are from sampling performed in March 2018.
- 8. VOCs = Volatile organic compounds.

Qualifiers:

- J = Analyte detected at or above the MDL (Method Detection Limit) but below the RL (Reporting Limit) data is estimated.
- U = Analyte not detected at or above the level indicated.

Table 2 - Historical Performance Monitoring Analytical Results

432 Rodney Street Brooklyn, New York Langan Project No. 170357801 BCP Site No. C224216

Sampling Location				PMW05	j		PMW06 PMW07											
Sampling Event	NYSDEC TOGS Class GA SGVs	Baseline (20	016)	Post-Sour Removal (2		Quarter 1 (2	2018)	Baseline (2016	5)	Post-Source Removal (2017)	Quarter 1 (2	2018)	Baseline (201	6)	Post-Source Removal (2017	')	Quarter 1	(2018)
Sample ID		MW15S_061	1716	PMW05_060	0717	PMW05_032	2318	MW12_061716	3	PMW06_112717	PMW06_03	2018	MW13_06171	16	PMW07_11271	7	PMW07_03	32018
VOCs (μg/L)	-						;											
1,1-Dichloroethane	5	100	U	1	J	2.5	U	12	\bigcup	2.5 U	2.5	U	2.5	\bigcup	2.5	U	2.5	U
1,1-Dichloroethene	5	20	\bigcup	0.5	\bigcup	0.5	\bigcup	2.5	\cup	0.5 U	0.5	\bigcup	0.33	J	0.5	\cup	0.5	\bigcup
1,2,4,5-Tetramethylbenzene	5	76	J	1.9	J	2	\bigcup	13		2 U	2	\bigcup	2	\bigcup	2	\cup	2	\cup
1,2,4-Trimethylbenzene	5	2000		5.1		2.5	\bigcup	53		2.5 U	2.5	\bigcup	2.5	\bigcup	2.5	\cup	2.5	\cup
1,2-Dichlorobenzene	3	100	U	0.78	J	2.5	\bigcup	12	\bigcup	2.5 U	2.5	\bigcup	2.5	\bigcup	2.5	\cup	2.5	\cup
1,2-Dichloroethane	0.6	20	\bigcup	0.88		0.5	\bigcup	2.5	\bigcup	0.5 U	0.5	\bigcup	0.5	\bigcup	0.5	\cup	0.5	\cup
1,2-Dichloroethene, Total	~	100	\bigcup	37	J	2.5	\bigcup	21		11	2.5	\bigcup	46		2.5	\cup	2.5	\cup
1,3,5-Trimethylbenzene	5	580		2.5	\bigcup	2.5	\bigcup	17		2.5 U	2.5	\bigcup	2.5	\bigcup	2.5	\cup	2.5	\cup
2-Butanone	50	200	U	5	\bigcup	8.7		25	\bigcup	5 U	340		5	\bigcup	5	\cup	5	\cup
Acetone	50	240		42		22		25	\cup	5 U	200		4.5	J	5	\cup	5	\cup
Benzene	1	260		95		0.5	\bigcup	41		0.69	0.5	U	0.35	J	0.5	\cup	0.5	\bigcup
Bromodichloromethane	50	20	U	0.5	U	0.5	\bigcup	2.5	\cup	0.5 U	0.5	\bigcup	0.5	\bigcup	0.5	\cup	0.2	J
Bromomethane	5	100	\bigcup	2.5	\bigcup	2.5	\bigcup	12	\cup	2.5 U	2.5	\bigcup	2.5	\bigcup	2.5	\cup	2.5	\cup
Chlorobenzene	5	100	\bigcup	2.5	\bigcup	2.5	\bigcup	12	\cup	1 J	2.5	\bigcup	3.6		2.5	\cup	2.5	\cup
Chloroform	7	100	\bigcup	2.5	\bigcup	2.5	\bigcup	12	U	2.5 U	2.5	\bigcup	2.5	\bigcup	3.5		3.4	
cis-1,2-Dichloroethene	5	100	\bigcup	36		2.5	\bigcup	21	- 1	11	2.5	\bigcup	46		2.5	\cup	2.5	\cup
Dichlorodifluoromethane	5	200	\bigcup	5	U	5	\bigcup	25	U	5 U	5	\bigcup	17		5	U	5	\bigcup
Ethylbenzene	5	1500		49		2.5	\bigcup	120		2.5 U	2.5	\bigcup	2.5	\bigcup	2.5	U	2.5	\bigcup
Isopropylbenzene	5	110		6		2.5	\bigcup	20		2.5 U	2.5	\bigcup	2.5	\bigcup	2.5	U	2.5	\bigcup
Methyl tert butyl ether	10	100	U	1.4	J	2.5	\bigcup	12	\cup	2.5 U	2.5	\bigcup	1.6	J	2.5	U	2.5	U
Naphthalene	10	75	J	3.8		2.5	\bigcup	8.5	J	2.5 U	2.5	\bigcup	2.5	\bigcup	2.5	U	2.5	U
n-Butylbenzene	5	44	J	2	J	2.5	\bigcup	11	J	2.5 U	2.5	\bigcup	2.5	\bigcup	2.5	U	2.5	U
n-Propylbenzene	5	410		13		2.5	\bigcup	38		2.5 U	2.5	\bigcup	2.5	\bigcup	2.5	U	2.5	U
o-Xylene	5	2300		2.3	J	2.5	\bigcup	16		2.5 U	2.5	\bigcup	2.5	\bigcup	2.5	U	2.5	U
p/m-Xylene	5	5500		9.3		2.5	\bigcup	120		2.5 U	2.5	U	2.5	\bigcup	2.5	U	2.5	U
p-Diethylbenzene	~	240		0.83	J	2	\bigcup	15		2 U	2	U	2	\bigcup	2	U	2	U
p-Ethyltoluene	~	1900		2		2	\bigcup	36		2 U	2	U	2	\bigcup	2	U	2	U
sec-Butylbenzene	5	100	U	3		2.5	\bigcup	9.1	J	0.74 J	2.5	U	1.2	J	2.5	U	2.5	U
Tetrachloroethene	5	20	U	62		0.48	J	1.8	J	5.9	0.5	\bigcup	67		0.96		0.5	U
Toluene	5	2300		8.3		2.5	U		J	2.5 U	2.5	U	2.5	\bigcup		U	2.5	U
trans-1,2-Dichloroethene	5	100	U	0.82	J	2.5	U		U	2.5 U	2.5	U	2.5	\bigcup		U	2.5	U
Trichloroethene	5	20	U	9.4		0.5	U			2.9	0.5	U	8		0.2	J	0.5	U
Vinyl chloride	2	40	U	6.8		1	U			1.4	0.25	J	12			U	1	U
Xylenes, Total	~	7800		12	J	2.5	\bigcup	140		2.5 U	2.5	\bigcup	2.5	U	2.5	U	2.5	U

Notes:

- 1. Groundwater sample analytical results are compared to New York State Department of Environmental Conservation (NYSDEC) Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values (SGVs) for Class GA drinking water.
- 2. Results exceeding the NYSDEC TOGS standards and guidance values are shaded and bolded.
- 3. Results exceeding the NYSDEC TOGS standards and guidance values but are not detected at or above the level indicated are italicized.
- 4. μ g/L = micrograms per liter.
- 5. Baseline analytical results are from sampling performed in June and July 2016.
- 6. Post-source removal analytical results are from sampling performed in June and November 2017.
- 7. Quarter 1 analytical results are from sampling performed in March 2018.
- 8. VOCs = Volatile organic compounds.

Qualifiers:

- J = Analyte detected at or above the MDL (Method Detection Limit) but below the RL (Reporting Limit) data is estimated.
- U = Analyte not detected at or above the level indicated.

ATTACHMENT A WELL PURGING AND SAMPLING LOGS

GROUND WATER SAMPLE FIELD INFORMATION FORM MW-1 123 Hove St Well#/Location: Job No. 170357801 03/20/18 Date: Weather: Sunny. 505 Sampling Personnel: U Kim Well Information **Purging Information** Sample ID PMW 01 - 0320 18 Low ADW Purging Method Well Depth (ft.) NIA Purging Rate (I/m; gpm) 11/14 Screened Interval (ft.) 1020 Start Purge Time NIA Casing Elevation (msl) End Purge Time 1045 2" Casing Diameter (in) Volume Purged (gal) 4.50 Depth to Water (ft.) NIA Water Elevation (msl) NIA Sampling Information Casing Volume (gal) Low Flow NIA Sampling Method 1050 PID/FID Reading (ppm) 0.0 Start Sampling Time 1055 End Sampling Time NA Depth Before Sampling (ft.) Number Bottles Collected Viale **Parameters** Dissolved Depth to рΗ Turbidity Conductivity Temp ORP **Purged Volume** Sample Time Oxygen Water (mS/cm) (NTU) (·C) (mV) (gallons) (mg/L) (ft.) 1025 7. 40 121 1.893 1.18 7:27 6.86 2.1 1.02 129 1030 D.891 7.85 10 35 6.75 0.891 0.93 130 1.7 8.05 2.75 6.68 0.892 1.7 0.83 8-22 1040 125 4.00 6.70 1045 0.892 0.62 8.05 123 4.50 Notes/Remarks Stability PH-± 0.1 unit Specific Conductance - ± 3% Temperature - ± 3% Dissolved Oxygen - ± 10% above 0.5 mg/L Turtidity - ± 10% above 5 NTU CRP/Eh-±10 millivalts Maximumflow rate - < 0.5 L/mor 0.13 gpm Maximumdrawdown-< 0.33 feet

	GRO	UND WAT	ER SAMP	PLE FIELD II	NFORMA [*]	TION FOR	М	+
Site: 432 Koc	ney	Well#/Locatio	n: MW 2		Job No.			
Date: 3/23/	18		30 5-40	s. (lear	Sampling Per	sonnel:	. Nayo	tku
Well Information Sample ID Well Depth (ft) Screened interval (ft)	MAZ-C	82318		Purging Informa	ation Purging Method Rate (I/m; gpm) tart Purge Time	(W.FOW -	- Deri	
Casing Elevation (msl)					End Purge Time			-
Casing Diameter (in)	4 40			Volu	me Purged (gal)			J
Depth to Water (ft)	4 54							
Water Elevation (msl)				Sampling Inform		128 1 P176	11 = O9W	1
Casing Volume (gal)	4. 5		5		mpling Method			
PID/FID Reading (ppm)	U.U				Sampling Time	1450		-
					Sampling Time			-
					re Sampling (ft)			-
				Number B	ottles Collected	3 viais		J
				Dane				
Sample Time	Temp (∘C)	рН	ORP (mV)	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Depth to Water (ft)	Purged Volume (gallons)
1350	6.38	10.35	-27	(1.000	4.7	2.25	-	0.5
1355	6.58	9,21	-14	0.1076	3.1	145		7
1400	(0.57	813	1	0.1076	200	1185		1,25
1405	6,53	7.59	-1.1	0.683	0.8	1.8		1,75
1410	6.78	7.30	21	0,650	0.4	1.72		2,125
1415	6.01	1.12	0.2	7,681	Cil	1:605		2.325
14 80	7.04	2.02	42	0.088	0.0	1,65	()	7. 75
1425	7.12	(0.96	61	0.690	0.1	1.64		3.0
1420	7 05	6.92	100	0,690	0.0	1,70		3.625
1435	7.12	6.89	108	0.686	010	1.7		4.35
1490	7. 253	6.87	75	0.694	00	1.78		4.625
u us	7 47	12,85	82	0.703	1.0	1,72		5 00
1450	7.46	6,35	39	0 697	0.0	1,73		5.325
. 100		6 / 2 /		C.W.	0 10	111/		
	,							
			No	tes/Remarks				
Stability PH-± 0.1 unit Specific Conductance-± 3% Temperature-± 3% Dissolved Oxygen-±10% above 0.5 mg/L Turbicity-± 10% above 5 NTU ORP/Eh-±10 millivolts			1					
Maximum flow rate - < 0.5 L/	mar 0.13 gam							
Maximum drawdown - < 0.33							~	

Langan Engineering, Environmental, Surveying and Landscape Architecture, D.P.C.

	GRO	JND WAT	ER SAMP	LE FIELD I	NFORMA	TION FOR	М	
Site:		Well#/Locatio	n: WW3	100	Job No.			
Date: 3/23	118	Weather: 🕚	05-403	Clear	Sampling Per	sonnel: K	· · Virgo	1/0
							J	
Well Informa	rtion			Purging Informa		Na.c.i.	F //3 c	1
Sample ID					Purging Method	MAN ABIA	1- FEV)	
Well Depth (ft)					Rate (I/m; gpm)	11.70		4
Screened interval (ft)					Start Purge Time	1 4 4		-
Casing Elevation (msl)					End Purge Time		<u> </u>	-
Casing Diameter (in)				Volu	me Purged (gal)			_
Depth to Water (ft)					enter a state of the state of t			
Water Elevation (msl)				Sampling Infor		12/11/11 / 1 A 11	17.	1
Casing Volume (gal)					empling Method	1. 1. 2	- H/11	-
PID/FID Reading (ppm)	0.0				t Sampling Time		5	-
					Sampling Time			-
					ore Sampling (ft)			1
				Number B	otties Collected	2 AMI		1
				Para	meters			
	Temp	pH	ORP	Conductivity	Turbidity	Dissolved	Depth to	Purged Volume
Sample Time	(∘C)		(mV)	(mS/cm)	(NTU)	Oxygen (mg/L)	Water (ft)	(gallons)
1239	6.39	11,97	116	3,43	5.0	2113		1.5
1243	6.39	12,38	20	4,04	4.3	1,78		1.75
1248	5.48	12.51	-20	4,67	3,0	2.74		2.00
1253	5.85	12.59	-30	4.21	2.6	5.33		2.5
1258	5.93	12.61	-47	4.34	2.7	5.14		2.35
1303	10.01	12.64	-50	4.20	コチ	4.61		3
1308	3.95	12.69	- 58	4.35	3.4	413		3.5
1313	5.93	12.77	-67	4.40	2.5	2.54		43.75
1315	5.96	12,73	-73	4.35	2.7	3.31		4
1333	5.78	12.74	-75	4.40	2.3	3.22		4,25
1328	586	12.77	- 80	4. 25	218	3.39		4.375
13.50	5.93	12.77	-82	4.36	24	2,19		4,75
1338	648	12,76	105	4.44	0.4	2,07		5.125
					-			
				-				
			No	tes/Remarks	L			L
Chaldille.			INO	ites/Remarks				
Stablility PH-± 0.1 unit								
Specific Conductance - ± 3%								
Temperature - ± 3% Dissolved Oxygen - ± 10% abo	an () 5 mm ⁴							
Turbidity - ± 10% above 5 NT								
ORP/En-±10 millivolts	•							
A.1	mæ 0 12 ~~~							
Azvimumflow rate -< 0.5 L/mor 0.13 gpm Azvimum drawdown -< 0.33 feet								

Langan Engineering, Environmental, Surveying and Landscape Architecture, D.P.C.

Site:		Well#/Location	FWM :no		Job No.			
Date: 3/23/2	018		- 4 4 4	s, Clear	Sampling Pe	rsonnel: 🗸	Nagotk	0
							7	
Well Informa				Purging Inform	ation	·		_
Sample ID	MWH	_052318	1		Purging Method	d		
Well Depth (ft)			1	Purging	Rate (I/m; gpm)	1.	
Screened Interval (ft)				s	tart Purge Time	11.70		
Casing Elevation (msl)					End Purge Time	12:20)	
Casing Diameter (in)				Volu	me Purged (gal)		
Depth to Water (ft)								
Water Elevation (msl)				Sampling Inform	mation	1-1		_
Casing Volume (gal)				Sa	ampling Method	1	14	
PID/FID Reading (ppm)	1.0			Start	Sampling Time	12:20		
	2			End	Sampling Time			
1.				Depth Befo	re Sampling (ft)		
(a)			Number B	ottles Collected	d]
-								
				Para	meters			
Sample Time	Temp (∘C)	рН	ORP (mV)	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Depth to Water (ft)	Purged Volum (gallons)
1120	7.05	11,85	50	0. 937	27.6	10.09		0.5
1125	6.41	12.01	22	0,701	11,7	10,22		1,125
1130	6.45	11,57	21	0,584	31.9	8.91		250
1135	6.54	9.98	Si	0.590	41.1	8.04		2,75
1140	6.72	8.44	80	0.687	19,9	7:37		3 50
145	6.103	7,70	100	12.7110	15,3	10.94		4.00
1150	10.39	7.46	117	0, 721	12.6	6.57		11.25
1155	6.7	7,27	122	0.130	9,8	10 11		4 625
1200	6 01	7,18	127	1) 723	811	5,810		5.0
1205	5.99	7.09	132	0.744	1018	5,201		675
1211)	5.97	7,01	125	0.754	5.7	5.33		5.5
1315	5.90	6.95	136	0.766	51	5.01		5.75
1220	5.91	6.91	136		4.2	4,85		6.00
1	× :-			C. 121		7,07		<i>(i</i> , <i>i</i> ,
	1							
				-				
Stablility			Nc	tes/Remarks				
H - ± 0.1 unit								
pecific Conductance - ± 3%	93							
emperature - ± 3%								
issolved Oxygen - ± 10% abov	o 0 5 m="							
urbidity - ± 10% above 5 NTU								
ORP/Eh - ± 10 millivolts	8					2		
Maximum flow rate - < 0.5 L/m	ar 0 12							
laximum flow rate · < 0.5 L/m								

	GRO	UND WAT	ER SAMP	PLE FIELD II	NFORMA	TION FOR	M	
Site:		Well#/Location	- Miv/S	N. I	Job No.			
Date: 5/23/	18	Weather: 3		SICIERY	Sampling Per	rsonnel:	K. Na.	act ko
				/			N	J
Well Informa			-	Purging Informa		-		-
Sample ID		032318	1		Purging Method			
Well Depth (ft)	1		1 '		Rate (I/m; gpm)			
Screened Interval (ft)	+		4 /		Start Purge Time	1		_
Casing Elevation (msl)			4 '		End Purge Time		O	
Casing Diameter (in)			4 /	Volur	ime Purged (gal)	1		
Depth to Water (ft)			4					
Water Elevation (msi)	7		4	Sampling Inform		-		7
Casing Volume (gal)	7. 1		4 !		mpling Method	1 1 1 1 1		4
PID/FID Reading (ppm)	<u> </u>	1	1 1		t Sampling Time		<u>) </u>	_
			!		Sampling Time			_
			,		ore Sampling (ft)			
			,	Number Bo	ottles Collected		>	_
				Para	meters		9)	
Sample Time	Temp	рН	ORP	Conductivity	Turbidity	Dissolved	Depth to	Purged Volume
Sample Time	(∘C)		(mV)	(mS/cm)	(NTU)	Oxygen (mg/L)	Water (ft)	(gallons)
1500	t-22	7.10	1113	0.15	1.8	2.40		0.75
1505	6.15	7.10	102	0.469	139	5.38		1
1510	5.88	7.82	96	0.344	139	9.23		1.5
1515	5,80	8,57	95	0.327	120	8,59		1.625
1520	5,92	8.77	98	0.327	112	8.31		1.875
1525	5,85	8,84	101	0.375	128	8.18		2,75
1530	5,97	8.85	103	0,324	118	7.84		2,50
15.35	6.14	8.90	107	6.321	117	7.107		13.875
755AD 1540	6,11	8,91	104	0.319	114	7.45		2.75
TEAS MAD								
唐受) 1560								
1								
	L		للسلب					
	L							
	L							
	'							
				:.				
			لا					
Stablility			Not	tes/Remarks				
Statementy PH-± 0.1 unit	0.1	light by	200	and die	A			
PH-E 0.1 unit Specific Conductance-± 3%	1	HALL DA	NWW III	ntial disc	harose.			
Specific Conductance - ± 3% Temperature - ± 3%	1	N.	The state of the s		Ú			
_	25							
Dissolved Oxygen - ± 10% abo Turbidity - ± 10% above 5 NTL	-							
Turbicity - ± 10% above 5 NTC CRP/En - ± 10 millivolts	, e l	1						
Maximumflowrate-< 0.5 L/r								
Maximum drawdown -< 0.33								
		4						

 $\textbf{Langan} \ \, \textbf{Engineering, Environmental, Surveying and Landscape Architecture, D.P.C.}$

GROUND WATER SAMPLE FIELD INFORMATION FORM 441 Keap St Site: Well#/Location: MW06 Job No. 170 357 802 Date: 03/20/18 Weather: Indoors Sampling Personnel: W. Kim **Well Information Purging Information** Sample ID PMW 06-032016 Purging Method Low Flow Well Depth (ft.) Purging Rate (I/m; gpm) NIA Screened Interval (ft.) 5-15 Start Purge Time 1320 Casing Elevation (msl) NIA End Purge Time 1405 2" Casing Diameter (in) Volume Purged (gal) Depth to Water (ft.) 10.39 Water Elevation (msl) NIA Sampling Information NIA Casing Volume (gal) Sampling Method LOW Flow PID/FID Reading (ppm) 0.0 Start Sampling Time 1410 1415 **End Sampling Time** Depth Before Sampling (ft.) NIA Number Bottles Collected 3 vials **Parameters** Dissolved Depth to рΗ Conductivity Turbidity Temp ORP Sample Time Purged Volume Oxygen Water (mS/cm) (NTU) (°C) (mV) (gallons) (mg/L) (ft.) 1325 5.50 4.17 3 281 2.88 14.03 -46 0.5 1330 59 276 4,26 3.15 13.96 -57 0.75 1335 5.77 3.55 -72 230 3.72 13.96 .00 1340 3.33 5.82 3.87 209 13.60 -76 .25 1345 7.51 6.04 138 3.15 -92 13.49 . 50 1350 6.06 2.46 142 3.03 14.84 -94 1.75 1355 6.12 3.88 121 99 2.81 14.12 3-0 1400 6.23 2.38 135 291 1410 -95 2.5 6.21 1405 2.38 2.91 14,18 3.0 128 Notes/Remarks Stability PH-± 0.1 unit PMW06_032018 (1410) Specific Conductance - ± 3% Temperature - ± 3%

Remember: Battery Connections - RED is POSITIVE and BLACK is NEGATIVE

Dissolved Oxygan - ±10% above 0.5 mg/L Turbidity - ±10% above 5 NTU CRP/En - ±10 millivolts

Maximumflow rate - < 0.5 L/mor 0.13 gpm Maximumdrawdown - < 0.33 feet

GROUND WATER SAMPLE FIELD INFORMATION FORM 441 Keap Site: St Well#/Location: MWOT Job No. 170357802 03/20/18 Indoors Date: Weather: Sampling Personnel: W. Kim **Well Information Purging Information** Sample ID PMW07_032018 Low flow Purging Method Well Depth (ft.) 15 Purging Rate (I/m; gpm) Screened Interval (ft.) 5-15 1210 Start Purge Time Casing Elevation (msl) NIA End Purge Time 1300 2 Casing Diameter (in) Volume Purged (gal) 3.75 Depth to Water (ft.) 10.45 Water Elevation (msl) NIA Sampling Information Casing Volume (gal) LOW Flow Sampling Method PID/FID Reading (ppm) 0.0 Start Sampling Time 1305 1310 End Sampling Time Depth Before Sampling (ft.) N/A Number Bottles Collected 3 rials **Parameters** Dissolved Depth to рΗ Conductivity Turbidity Temp ORP Purged Volume Sample Time Oxygen Water (mS/cm) (NTU) (·C) (mV) (gallons) (mg/L) (ft.) 1215 6.67 0.888 177 2.58 11.56 148 0.25 1220 6.53 0.857 979 1.87 13.01 145 0.50 1225 6.51 0.852 71.0 1.60 143 13.27 0.75 1230 54.2 6.49 0.852 1.41 13.45 14 5 0.80 1235 6.48 41.2 1.27 0.850 13.56 142 1.00 6.47 1240 0.846 17.9 1.06 13.74 141 1.25 1245 6.45 0.845 8.5 0.84 14.04 140 1.50 6.45 1250 0.843 5.4 0.76 140 14.09 2.25 1255 4.7 6.44 0.838 0.76 140 14.04 3.00 1300 6.44 0.839 4.1 0.77 14.09 140 3.75 Notes/Remarks Stability PMW07-032018 (1300) PH-± 0.1 unit Dupo1 -03 20 18 Specific Conductance - ± 3% collected Temperature - ± 3% Dissolved Oxygen - ± 10% above 0.5 mg/L Turbidity - ± 10% above 5 NTU ORP/Eh-±10 millivolts Maximumflow rate - < 0.5 L/mor 0.13 gpm

Maximum drawdown - < 0.33 feet

ATTACHMENT B DATA USABILITY REPORTS

2700 Kelly Road, Suite 200 Warrington, PA 18976 T: 215.491.6500 F: 215.491.6501 Mailing Address: P.O. Box 1569 Doylestown, PA 18901

To: Anna Schmiedicke, Langan Senior Staff Engineer

From: Emily Strake, Langan Senior Project Chemist/Risk Assessor

Date: April 18, 2018

Re: Data Usability Summary Report

For 432 Rodney Street Brooklyn, New York

Groundwater Samples Collected March 2018

Langan Project No.: 170357801

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of groundwater samples collected March 20, 2018 by Langan Engineering and Environmental Services ("Langan") at 432 Rodney Street located in Brooklyn, New York. The samples were analyzed by Alpha Analytical Laboratories, Inc. located in Westborough, Massachusetts (NYSDOH ELAP registration # 11148) for volatile organic compounds (VOCs) using the analytical methods specified below.

VOCs by SW-846 Method 8260C

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

TABLE 1: SAMPLE SUMMARY

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
L1809583	L1809583-01	PMW06_032018	3/20/2018	VOCs
L1809583	L1809583-02	PMW07_032018	3/20/2018	VOCs
L1809583	L1809583-03	DUP01_032018	3/20/2018	VOCs
L1809584	L1809584-01	PMW01_032018	3/20/2018	VOCs
L1809584	L1809584-02	TB01_032018	3/20/2018	VOCs
L1809584	L1809584-03	FB01_032018	3/20/2018	VOCs
L1810069	L1810069-01	PMW02_032318	3/23/2018	VOCs
L1810069	L1810069-02	PMW03_032318	3/23/2018	VOCs
L1810069	L1810069-03	PMW04_032318	3/23/2018	VOCs
L1810069	L1810069-04	PMW05_032318	3/23/2018	VOCs
L1810069	L1810069-05	TB02_032318	3/23/2018	VOCs

Data Usability Summary Report For 432 Rodney Street Brooklyn, New York Langan Project No.: 170357801 April 18, 2018 Page 2 of 7

VALIDATION OVERVIEW

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-33A, "Low/Medium Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-34A, "Trace Volatile Data Validation" (September 2016, Revision 1), the USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (USEPA-540-R-2017-002, January 2017) and the specifics of the methods employed.

Validation includes evaluation of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, sample preservation, instrument tuning, instrument calibration, laboratory blanks, laboratory control samples, system monitoring compounds, internal standard area counts, trip blanks, field blanks, field duplicates, target compound identification and quantification, chromatograms, and overall system performance.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- **R** The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- **U** The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned these qualifiers supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items subject to review. Data that is qualified as "R" are not sufficiently valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

Data Usability Summary Report For 432 Rodney Street Brooklyn, New York Langan Project No.: 170357801 April 18, 2018 Page 3 of 7

TABLE 2: VALIDATOR-APPLIED QUALIFICATION

Project Sample ID	Analysis	Analyte	CAS No.	Validator Qualifier
PMW06_032018	SW8260C	1,4-Dioxane (P-Dioxane)	123-91-1	UJ
PMW06_032018	SW8260C	Bromomethane	74-83-9	UJ
PMW06_032018	SW8260C	Chloroethane	75-00-3	UJ
PMW06_032018	SW8260C	Chloromethane	74-87-3	UJ
PMW06_032018	SW8260C	Dichlorodifluoromethane	75-71-8	UJ
PMW06_032018	SW8260C	Hexachlorobutadiene	87-68-3	UJ
PMW06_032018	SW8260C	Vinyl Chloride	75-01-4	J
PMW07_032018	SW8260C	1,4-Dioxane (P-Dioxane)	123-91-1	UJ
PMW07_032018	SW8260C	Bromomethane	74-83-9	UJ
PMW07_032018	SW8260C	Chloroethane	75-00-3	UJ
PMW07_032018	SW8260C	Chloromethane	74-87-3	UJ
PMW07_032018	SW8260C	Dichlorodifluoromethane	75-71-8	UJ
PMW07_032018	SW8260C	Hexachlorobutadiene	87-68-3	UJ
PMW07_032018	SW8260C	Vinyl Chloride	75-01-4	UJ
DUP01_032018	SW8260C	1,4-Dioxane (P-Dioxane)	123-91-1	UJ
DUP01_032018	SW8260C	Bromomethane	74-83-9	UJ
DUP01_032018	SW8260C	Chloroethane	75-00-3	UJ
DUP01_032018	SW8260C	Chloromethane	74-87-3	UJ
DUP01_032018	SW8260C	Dichlorodifluoromethane	75-71-8	UJ
DUP01_032018	SW8260C	Hexachlorobutadiene	87-68-3	UJ
DUP01_032018	SW8260C	Vinyl Chloride	75-01-4	UJ
PMW01_032018	SW8260C	1,4-Dioxane (P-Dioxane)	123-91-1	UJ
PMW01_032018	SW8260C	Bromomethane	74-83-9	UJ
PMW01_032018	SW8260C	Chloroethane	75-00-3	UJ
PMW01_032018	SW8260C	Chloromethane	74-87-3	UJ
PMW01_032018	SW8260C	Dichlorodifluoromethane	75-71-8	UJ
PMW01_032018	SW8260C	Hexachlorobutadiene	87-68-3	UJ
PMW01_032018	SW8260C	Vinyl Chloride	75-01-4	UJ
TB01_032018	SW8260C	1,4-Dioxane (P-Dioxane)	123-91-1	UJ
TB01_032018	SW8260C	Bromomethane	74-83-9	UJ
TB01_032018	SW8260C	Chloroethane	75-00-3	UJ

Data Usability Summary Report For 432 Rodney Street Brooklyn, New York Langan Project No.: 170357801 April 18, 2018 Page 4 of 7

Project Sample ID	Analysis	Analyte	CAS No.	Validator Qualifier
TB01_032018	SW8260C	Chloromethane	74-87-3	UJ
TB01_032018	SW8260C	Dichlorodifluoromethane	75-71-8	UJ
TB01_032018	SW8260C	Hexachlorobutadiene	87-68-3	UJ
TB01_032018	SW8260C	Vinyl Chloride	75-01-4	UJ
FB01_032018	SW8260C	1,4-Dioxane (P-Dioxane)	123-91-1	UJ
FB01_032018	SW8260C	Bromomethane	74-83-9	UJ
FB01_032018	SW8260C	Chloroethane	75-00-3	UJ
FB01_032018	SW8260C	Chloromethane	74-87-3	UJ
FB01_032018	SW8260C	Dichlorodifluoromethane	75-71-8	UJ
FB01_032018	SW8260C	Hexachlorobutadiene	87-68-3	UJ
FB01_032018	SW8260C	Vinyl Chloride	75-01-4	UJ
PMW02_032318	SW8260C	1,4-Dioxane (P-Dioxane)	123-91-1	UJ
PMW02_032318	SW8260C	Bromochloromethane	74-97-5	UJ
PMW02_032318	SW8260C	Bromomethane	74-83-9	UJ
PMW02_032318	SW8260C	Chloroform	67-66-3	UJ
PMW02_032318	SW8260C	Dichlorodifluoromethane	75-71-8	UJ
PMW02_032318	SW8260C	Trichloroethylene (TCE)	79-01-6	J
PMW02_032318	SW8260C	Trans-1,3-Dichloropropene	10061-02-6	UJ
PMW03_032318	SW8260C	1,4-Dioxane (P-Dioxane)	123-91-1	UJ
PMW03_032318	SW8260C	Bromochloromethane	74-97-5	UJ
PMW03_032318	SW8260C	Bromomethane	74-83-9	J
PMW03_032318	SW8260C	Chloroform	67-66-3	J
PMW03_032318	SW8260C	Dichlorodifluoromethane	75-71-8	UJ
PMW03_032318	SW8260C	Trichloroethylene (TCE)	79-01-6	UJ
PMW03_032318	SW8260C	Trans-1,3-Dichloropropene	10061-02-6	UJ
PMW04_032318	SW8260C	1,4-Dioxane (P-Dioxane)	123-91-1	UJ
PMW04_032318	SW8260C	Bromochloromethane	74-97-5	UJ
PMW04_032318	SW8260C	Bromomethane	74-83-9	UJ
PMW04_032318	SW8260C	Chloroform	67-66-3	UJ
PMW04_032318	SW8260C	Dichlorodifluoromethane	75-71-8	UJ
PMW04_032318	SW8260C	Trichloroethylene (TCE)	79-01-6	J
PMW04_032318	SW8260C	Trans-1,3-Dichloropropene	10061-02-6	UJ

Data Usability Summary Report For 432 Rodney Street Brooklyn, New York Langan Project No.: 170357801 April 18, 2018 Page 5 of 7

Project Sample ID	Analysis	Analyte	CAS No.	Validator Qualifier
PMW05_032318	SW8260C	1,4-Dioxane (P-Dioxane)	123-91-1	UJ
PMW05_032318	SW8260C	Bromochloromethane	74-97-5	UJ
PMW05_032318	SW8260C	Bromomethane	74-83-9	UJ
PMW05_032318	SW8260C	Chloroform	67-66-3	UJ
PMW05_032318	SW8260C	Dichlorodifluoromethane	75-71-8	UJ
PMW05_032318	SW8260C	Trichloroethylene (TCE)	79-01-6	UJ
PMW05_032318	SW8260C	Trans-1,3-Dichloropropene	10061-02-6	UJ
TB02_032318	SW8260C	1,4-Dioxane (P-Dioxane)	123-91-1	UJ
TB02_032318	SW8260C	Bromochloromethane	74-97-5	UJ
TB02_032318	SW8260C	Bromomethane	74-83-9	UJ
TB02_032318	SW8260C	Chloroform	67-66-3	UJ
TB02_032318	SW8260C	Dichlorodifluoromethane	75-71-8	UJ
TB02_032318	SW8260C	Trichloroethylene (TCE)	79-01-6	UJ
TB02_032318	SW8260C	Trans-1,3-Dichloropropene	10061-02-6	UJ

MAJOR DEFICIENCIES:

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

VOCs by USEPA Method 8260C:

The initial calibration (ICAL) analyzed for instrument VOA101 exhibited a low average response factor (RF) for 1,4-dioxane (0.001). The associated results in samples DUP01_032018, PMW06_032018, PMW07_032018, TB01_032018, FB01_032018 and PMW01_032018 are qualified as "UJ".

The initial calibration verification (ICV) analyzed on 3/16/2018 at 1:14 a.m. exhibited percent differences (%Ds) greater than the control limit for dichlorodifluoromethane (69.2%), chloromethane (49.3%), vinyl chloride (44.9%), bromomethane (39.8%), chloroethane (31.3%)

Data Usability Summary Report For 432 Rodney Street Brooklyn, New York

Langan Project No.: 170357801 April 18, 2018 Page 6 of 7

and 1,4-dioxane (22.7%). The associated results in samples DUP01_032018, PMW06_032018,

PMW07_032018, TB01_032018, FB01_032018 and PMW01_032018 are qualified as "J" or

"UJ" based on potential indeterminate bias.

The continuing calibration verification (CCV) analyzed on 3/25/2018 at 9:36 exhibited %Ds

greater than the control limit for 1,4-dioxane (39.4%) and hexachlorobutadiene (22.4%). The

associated results in samples DUP01_032018, PMW06_032018, PMW07_032018,

TB01_032018, FB01_032018 and PMW01_032018 are qualified as "UJ" based on potential

indeterminate bias.

The laboratory control sample/laboratory control sample duplicate (LCS/LCSD) for batch

WG1101340 exhibited a relative percent difference (RPD) greater than the control limit for 1,4-

dioxane (24%); the associated results in samples PMW02_032318, PMW03_032318.

PMW04_03218, PMW05_032318 and TB02_032318 are qualified as "UJ" based on potential

indeterminate bias.

The ICAL analyzed for instrument GONZO exhibited a low average RF for 1,4-dioxane (0.001);

the associated results in samples PMW02_032318, PMW03_032318. PMW04_03218,

PMW05_032318 and TB02_032318 are qualified as "UJ".

The ICV analyzed on 2/15/2018 at 5:16 exhibited %Ds greater than the control limit for

dichlorodifluoromethane (45.1%), bromochloromethane (-20.2%), chloroform (-20.5%),

trichloroethene (-21.9%) and trans-1,3-dichloropropene (-20.9%); the associated results in

samples PMW02_032318, PMW03_032318. PMW04_03218, PMW05_032318 and

TB02_032318 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 3/28/2018 at 8:34 exhibited %Ds greater than the control limit for

bromomethane (-49.1%) and bromochloromethane (-22.8%); the associated results in samples

PMW02_032318, PMW03_032318. PMW04_03218, PMW05_032318 and TB02_032318 are

qualified as "J" or "UJ" based on potential indeterminate bias.

OTHER DEFICIENCIES:

Other deficiencies include anomalies that do not directly impact data quality and do not

necessitate qualification. The section below describes the other deficiencies that were

identified.

I ANGAN

Data Usability Summary Report For 432 Rodney Street Brooklyn, New York Langan Project No.: 170357801

April 18, 2018 Page 7 of 7

VOCs by USEPA Method 8260C:

The CCV analyzed on 3/26/2018 at 8:36 exhibited %Ds greater than the control limit for chloromethane (-36.3%), 1,1-dichloroethene (-21.6%), and 1,4-dioxane (37.9%). The associated

results were reported from the initial analysis of the sample; no qualification is necessary.

COMMENTS:

One field duplicate and parent sample pair (PMW07_032018 & DUP01_032018) was collected

and analyzed for all parameters. For results less than 5X the RL, analytes meet the precision

criteria if the absolute difference is less than ±1X the RL. For results greater than 5X the RL,

analytes meet the precision criteria if the RPD is less than or equal to 30%. All parameters met

the precision criteria.

On the basis of this evaluation, the laboratory appears to have followed the specified analytical

methods with the exception of errors discussed above. If a given fraction is not mentioned

above, that means that all specified criteria were met for that parameter. All laboratory data

packages met ASP Category B requirements and all sample holding times were met.

All data are considered usable, as qualified. In addition, completeness, defined as the

percentage of analytical results that are judged to be valid, is 100%.

Signed:

Emily Strake, CEP

Senior Project Chemist/Risk Assessor

ATTACHMENT C LABORATORY ANALYTICAL REPORTS

ANALYTICAL REPORT

Lab Number: L1809583

Client: Langan Engineering & Environmental

21 Penn Plaza

360 W. 31st Street, 8th Floor New York, NY 10001-2727

ATTN: Brian Gochenaur Phone: (212) 479-5590

Project Name: 441 KEAP STREET

Project Number: 170357802

Report Date: 03/28/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

03/20/18

Project Name: 441 KEAP STREET

DUP01_032018

Project Number: 170357802

L1809583-03

 Lab Number:
 L1809583

 Report Date:
 03/28/18

03/20/18 00:00

Collection Alpha Sample Sample ID Date/Time **Receive Date** Location Client ID Matrix 03/20/18 14:10 WATER BROOKLYN, NEW YORK 03/20/18 L1809583-01 PMW06_032018 WATER BROOKLYN, NEW YORK 03/20/18 13:00 03/20/18 L1809583-02 PMW07_032018

BROOKLYN, NEW YORK

WATER

L1809583

Lab Number:

Project Name: 441 KEAP STREET

Project Number: 170357802 **Report Date:** 03/28/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please	contact	Client	Services	at 800-	-624-9220	with a	nv c	nuestions
loase	Contact	Olicit	OCI VICCO	at ooo	02- 0220	with a	ıy c	_f ucsiloris.

Serial_No:03281812:33

L1809583

Lab Number:

Project Name: 441 KEAP STREET

Project Number: 170357802 **Report Date:** 03/28/18

Case Narrative (continued)

Report Revision

March 28, 2018: This report includes the results of the sample "DUP01_032018".

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 03/28/18

Custen Walker Cristin Walker

ORGANICS

VOLATILES

Serial_No:03281812:33

Project Name: 441 KEAP STREET

Project Number: 170357802

SAMPLE RESULTS

Lab Number: L1809583

Report Date: 03/28/18

OANII EE NEOOI

Lab ID: L1809583-01 Client ID: PMW06_032018

Sample Location: BROOKLYN, NEW YORK

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 03/25/18 16:08

Analyst: AD

Date Collected:	03/20/18 14:10
Date Received:	03/20/18
Field Pren:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.25	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: 441 KEAP STREET

Project Number: 170357802

SAMPLE RESULTS

Lab Number: L1809583

Report Date: 03/28/18

Lab ID: L1809583-01

PMW06_032018 Client ID:

Sample Location: BROOKLYN, NEW YORK Date Collected: 03/20/18 14:10

Date Received: 03/20/18

Field Prep: Not Specified

Sample Depth:

Volatile Organics by GC/MS - Westborough	h Lab					
Trichloroothono						
	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	 1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	 1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	 1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	200		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	330	E	ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: 441 KEAP STREET L1809583

Project Number: Report Date: 170357802 03/28/18

SAMPLE RESULTS

Lab ID: L1809583-01 Date Collected: 03/20/18 14:10

Client ID: Date Received: 03/20/18 PMW06_032018

Sample Location: Field Prep: Not Specified BROOKLYN, NEW YORK

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westh	orough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	106	70-130	
Dibromofluoromethane	98	70-130	

03/20/18 14:10

Project Name: 441 KEAP STREET

Project Number: 170357802

Lab Number: L1809583

Report Date: 03/28/18

SAMPLE RESULTS

Lab ID: L1809583-01 D

Client ID: PMW06_032018

Sample Location: BROOKLYN, NEW YORK Date Received: 03/20/18 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 03/26/18 10:56

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborou	gh Lab						
2-Butanone	340		ug/l	25	9.7	5	

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	105		70-130
Toluene-d8	104		70-130
4-Bromofluorobenzene	103		70-130
Dibromofluoromethane	98		70-130

Project Name: 441 KEAP STREET

Project Number: 170357802

SAMPLE RESULTS

Lab Number: L1809583

Report Date: 03/28/18

Lab ID: L1809583-02

Client ID: PMW07_032018

Sample Location: BROOKLYN, NEW YORK

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 03/25/18 16:37

Analyst: ΑD

Date Collected:	03/20/18 13:00
Date Received:	03/20/18
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	3.4		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	0.20	J	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: 441 KEAP STREET

Project Number: 170357802

SAMPLE RESULTS

Report Date: 03/28/18

Lab ID: L1809583-02

PMW07_032018 Client ID: Sample Location: BROOKLYN, NEW YORK Date Received: Field Prep:

03/20/18 13:00 03/20/18

L1809583

Date Collected:

Lab Number:

Not Specified

Sample Depth:

Volatile Organics by GC/MS - Westborough Lab Viol ughl 0.50 0.18 1 1.2-Olchiorobexone ND ughl 2.5 0.70 1 1.4-Olchiorobexone ND ughl 2.5 0.70 1 1.4-Olchiorobexone ND ughl 2.5 0.70 1 Methyl feet Luyl ether ND ughl 2.5 0.70 1 PmXylene ND ughl 2.5 0.70 1 Vylene, Total ND ughl 2.5 0.70 1 Vylene, Total ND ughl 2.5 0.70 1 Vylene, Total ND ughl 2.5 0.70 1 Jest-(2-Olchoroethene ND ughl 2.5 0.70 1 Jest-(2-Olchoroethene, Total ND ughl 2.5 0.70 1 Dibroordeflere ND ughl 2.5 0.70 1 Als-(2-Olchoroethene ND ughl 2.5 <	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
1.2 Dichlorobenzene	Volatile Organics by GC/MS - Westborough Lab								
1,2-Dichlorobenzene ND ugil 2,5 0,70 1 1,3-Dichlorobenzene ND ugil 2,5 0,70 1 1,3-Dichlorobenzene ND ugil 2,5 0,70 1 Methyl terb tuyl ether ND ugil 2,5 0,70 1 o-Xylene ND ugil 2,5 0,70 1 o-Xylene ND ugil 2,5 0,70 1 dis-1,2-Dichloroethene ND ugil 2,5 0,70 1 1,2-Dichloroethene, Total ND ugil 2,5 0,70 1 Dibromomethane ND ugil 2,5 0,70 1 1,2-Dichloroethene, Total ND ugil 2,5 0,70 1 Dibromomethane ND ugil 2,5 0,70 1 Actychirline ND ugil 2,5 0,70 1 Syrene ND ugil 2,5 0,70 1 <td>Trichloroethene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>0.18</td> <td>1</td>	Trichloroethene	ND		ug/l	0.50	0.18	1		
1,3-Dichlorobenzene ND ugl 2,5 0,70 1 1,4-Dichlorobenzene ND ugl 2,5 0,70 1 Methyl tert buryl ether ND ugl 2,5 0,70 1 o-Sylene ND ugl 2,5 0,70 1 o-Sylene ND ugl 2,5 0,70 1 xylenes, Total ND ugl 2,5 0,70 1 1,2-Dichloroethene ND ugl 2,5 0,70 1 1,2-Dichloroethene, Total ND ugl 2,5 0,70 1 1,2-Dichloroethene, Total ND ugl 2,0 1,0 1 1,2-Dichloroethene, Total ND ugl 2,0 1,0 1 1,2-Dichloroethene, Total ND ugl 2,0 1,0 1 2,2-Dichloroethene, Total ND ugl 2,0 1,0 1 Styrene ND ugl 2,0 1,0 1 <td>1,2-Dichlorobenzene</td> <td>ND</td> <td></td> <td>_</td> <td>2.5</td> <td>0.70</td> <td>1</td>	1,2-Dichlorobenzene	ND		_	2.5	0.70	1		
Methyl tert budyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 o-Xylenes ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 Dibromemsthane ND ug/l 5.0 1.0 1 Acrylonkride ND ug/l 5.0 1.0 1 Acrylonkride ND ug/l 5.0 1.0 1 Styrene ND ug/l 5.0 1.0 1 Styrene ND ug/l 5.0 1.0 1 Obchtorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Vilyi acetate	1,3-Dichlorobenzene	ND			2.5	0.70	1		
ND	1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1		
o-Xylene ND ug1 2.5 0.70 1 Xylenes, Total ND ug1 2.5 0.70 1 cis-1,2-Dichloroethene, Total ND ug1 2.5 0.70 1 Dibromomethane ND ug1 2.5 0.70 1 Dibromomethane ND ug1 2.5 0.70 1 Acrylontrile ND ug1 2.5 0.70 1 Acrylontrile ND ug1 2.5 0.70 1 Styrene ND ug1 5.0 1.5 1 Acetone ND ug1 5.0 1.5 1 Acetone ND ug1 5.0 1.0 1 Carbon disulfide ND<	Methyl tert butyl ether	ND		ug/l	2.5	0.70	1		
Xylenes, Total ND ug/l 2.5 0.70 1 cis-1,2-Dichlorcethene ND ug/l 2.5 0.70 1 cis-1,2-Dichlorcethene, Total ND ug/l 2.5 0.70 1 Dichloromethane ND ug/l 2.5 0.70 1 L;2-Dichloroptopane ND ug/l 2.5 0.70 1 Acytonitrile ND ug/l 5.0 1.5 1 Syrene ND ug/l 5.0 1.5 1 Dichlorodfluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0 1	p/m-Xylene	ND		ug/l	2.5	0.70	1		
cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 1,2-Trichloropropane ND ug/l 5.0 0.70 1 Acrylontrile ND ug/l 5.0 0.70 1 Styrene ND ug/l 5.0 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Styria acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Hexthyl-2-pentanone ND ug/l 2.5 0.70 1	o-Xylene	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethene, Total ND ug/l 2,5 0,70 1	Xylenes, Total	ND		ug/l	2.5	0.70	1		
Dibromomethane ND ug/l 5.0 1.0 1 1.2.3-Trichloropropane ND ug/l 2.5 0.70 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.5 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Viryl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,3-Dichropropane ND ug/l 2.5 0.70 1 1,1,1,2-T	cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		
1,2,3-Trichioropropane ND ug/l 2,5 0,70 1	1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1		
Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 1-ynyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromochlane ND ug/l 2.5 0.70 1 1,1-1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 1,1	Dibromomethane	ND		ug/l	5.0	1.0	1		
Syrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 8-Methyl-2-pentanone ND ug/l 5.0 1.0 1 8-Pothachoromethane ND ug/l 2.5 0.70 1 1,2-Distromethane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1	1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1		
Dichlorodiffluoromethane ND ug/l 5.0 1.0 1 1 1 1 1 1 1 1 1	Acrylonitrile	ND		ug/l	5.0	1.5	1		
Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 -Butylbenzene ND ug/l 2.5 0.70 1 <	Styrene	ND		ug/l	2.5	0.70	1		
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 <t< td=""><td>Dichlorodifluoromethane</td><td>ND</td><td></td><td>ug/l</td><td>5.0</td><td>1.0</td><td>1</td></t<>	Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1		
2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1	Acetone	ND		ug/l	5.0	1.5	1		
Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tetr-Butylbenzene ND ug/l 2.5 0.70 1 tetr-Butylbenzene ND ug/l 2.5 0.70 1 <td>Carbon disulfide</td> <td>ND</td> <td></td> <td>ug/l</td> <td>5.0</td> <td>1.0</td> <td>1</td>	Carbon disulfide	ND		ug/l	5.0	1.0	1		
4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 c-Chlorotoluene ND ug/l 2.5 0.70 1	2-Butanone	ND		ug/l	5.0	1.9	1		
2-Hexanone ND ug/l 5.0 1.0 1	Vinyl acetate	ND		ug/l	5.0	1.0	1		
Bromochloromethane ND	4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1		
2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70	2-Hexanone	ND		ug/l	5.0	1.0	1		
1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropyltoluene ND ug/l 2.5 0.70 1	Bromochloromethane	ND		ug/l	2.5	0.70	1		
1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 c-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropyltenue ND ug/l 2.5 0.70 1	2,2-Dichloropropane	ND		ug/l	2.5	0.70	1		
1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	1,2-Dibromoethane	ND		ug/l	2.0	0.65	1		
Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	1,3-Dichloropropane	ND		ug/l	2.5	0.70	1		
n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1		
sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	Bromobenzene	ND		ug/l	2.5	0.70	1		
tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 sopropylbenzene ND ug/l 2.5 0.70 1 ug/l 2.5 0.70 1 ug/l 2.5 0.70 1	n-Butylbenzene	ND		ug/l	2.5	0.70	1		
o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	sec-Butylbenzene	ND		ug/l	2.5	0.70	1		
p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	tert-Butylbenzene	ND		ug/l	2.5	0.70	1		
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	o-Chlorotoluene	ND		ug/l	2.5	0.70	1		
Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	p-Chlorotoluene	ND		ug/l	2.5	0.70	1		
Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1		
p-Isopropyltoluene ND ug/l 2.5 0.70 1	Hexachlorobutadiene	ND		ug/l	2.5	0.70	1		
	Isopropylbenzene	ND		ug/l	2.5	0.70	1		
Naphthalene ND ug/l 2.5 0.70 1	p-Isopropyltoluene	ND		ug/l	2.5	0.70	1		
	Naphthalene	ND		ug/l	2.5	0.70	1		

Project Name: Lab Number: 441 KEAP STREET L1809583

Project Number: Report Date: 170357802 03/28/18

SAMPLE RESULTS

Lab ID: L1809583-02 Date Collected: 03/20/18 13:00

Client ID: Date Received: 03/20/18 PMW07_032018

Sample Location: Field Prep: BROOKLYN, NEW YORK Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	jh Lab					
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	61.	1
p-Diethylbenzene	ND		ug/l	2.0	0.70	1
p-Ethyltoluene	ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	104	70-130	
Dibromofluoromethane	97	70-130	

Project Name: 441 KEAP STREET

Project Number: 170357802

Lab Number: L1809583

Report Date: 03/28/18

SAMPLE RESULTS

Lab ID: L1809583-03 Date Collected: 03/20/18 00:00

Client ID: Date Received: 03/20/18 DUP01_032018 Sample Location: Field Prep: BROOKLYN, NEW YORK Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 03/25/18 15:40

Analyst: ΑD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	3.4		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	0.19	J	ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

Project Name: 441 KEAP STREET

Project Number: 170357802

SAMPLE RESULTS

Lab Number: L1809583

Report Date: 03/28/18

Lab ID: L1809583-03

Client ID: DUP01_032018

Sample Location: BROOKLYN, NEW YORK Date Collected: Date Received:

Field Prep:

03/20/18 00:00 03/20/18

Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - V	Vestborough Lab					
Trichloroothono	ND		//	0.50	0.10	4
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	<u> </u>
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 441 KEAP STREET Lab Number: L1809583

Project Number: 170357802 **Report Date:** 03/28/18

SAMPLE RESULTS

Lab ID: L1809583-03 Date Collected: 03/20/18 00:00

Client ID: DUP01_032018 Date Received: 03/20/18
Sample Location: BROOKLYN NEW YORK Field Prep: Not Specifie

Sample Location: BROOKLYN, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
n-Propylbenzene	ND		ug/l	2.5	0.70	1			
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1			
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1			
1,4-Dioxane	ND		ug/l	250	61.	1			
p-Diethylbenzene	ND		ug/l	2.0	0.70	1			
p-Ethyltoluene	ND		ug/l	2.0	0.70	1			
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1			
Ethyl ether	ND		ug/l	2.5	0.70	1			
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	97	70-130	

Project Number: 170357802

Lab Number: L1809583

Report Date: 03/28/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/26/18 10:00

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s): 01	Batch:	WG1100368-12
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

Project Number: 170357802

Lab Number: L1809583

Report Date: 03/28/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/26/18 10:00

Parameter	Result	Qualifier Units	RL	MDL
/olatile Organics by GC/MS	- Westborough Lab	for sample(s): 01	Batch:	WG1100368-12
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Project Number: 170357802

Lab Number: L1809583

Report Date: 03/28/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/26/18 10:00

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - W	estborough La	b for sample(s): 01	Batch:	WG1100368-12
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

	Acceptance				
Surrogate	%Recovery	Qualifier Criteria			
1,2-Dichloroethane-d4	103	70-130			
Toluene-d8	105	70-130			
4-Bromofluorobenzene	105	70-130			
Dibromofluoromethane	97	70-130			

Project Number: 170357802

Lab Number: L1809583

Report Date: 03/28/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/25/18 11:00

Parameter	Result	Qualifier Units	RL	MDL	
olatile Organics by GC/MS	- Westborough Lab	for sample(s): 0	1-03 Batch:	WG1100368-5	
Methylene chloride	ND	ug/l	2.5	0.70	
1,1-Dichloroethane	ND	ug/l	2.5	0.70	
Chloroform	ND	ug/l	2.5	0.70	
Carbon tetrachloride	ND	ug/l	0.50	0.13	
1,2-Dichloropropane	ND	ug/l	1.0	0.14	
Dibromochloromethane	ND	ug/l	0.50	0.15	
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	
Tetrachloroethene	ND	ug/l	0.50	0.18	
Chlorobenzene	ND	ug/l	2.5	0.70	
Trichlorofluoromethane	ND	ug/l	2.5	0.70	
1,2-Dichloroethane	ND	ug/l	0.50	0.13	
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	
Bromodichloromethane	ND	ug/l	0.50	0.19	
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14	
1,1-Dichloropropene	ND	ug/l	2.5	0.70	
Bromoform	ND	ug/l	2.0	0.65	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	
Benzene	ND	ug/l	0.50	0.16	
Toluene	ND	ug/l	2.5	0.70	
Ethylbenzene	ND	ug/l	2.5	0.70	
Chloromethane	ND	ug/l	2.5	0.70	
Bromomethane	ND	ug/l	2.5	0.70	
Vinyl chloride	ND	ug/l	1.0	0.07	
Chloroethane	ND	ug/l	2.5	0.70	
1,1-Dichloroethene	ND	ug/l	0.50	0.17	
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Trichloroethene	ND	ug/l	0.50	0.18	

Project Number: 170357802

Lab Number: L1809583

Report Date: 03/28/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/25/18 11:00

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	· Westborough Lab	for sample(s): 01-03	Batch:	WG1100368-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Project Number: 170357802

Lab Number: L1809583

Report Date: 03/28/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/25/18 11:00

Parameter	Result	Qualifier Units	s RL	MDL
Volatile Organics by GC/MS - V	Vestborough Lab	for sample(s):	01-03 Batch:	WG1100368-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l		0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

		Acceptance			
Surrogate	%Recovery	Qualifier Criteria			
1,2-Dichloroethane-d4	101	70-130			
Toluene-d8	104	70-130			
4-Bromofluorobenzene	104	70-130			
Dibromofluoromethane	98	70-130			

Project Name: 441 KEAP STREET

Project Number: 170357802

Lab Number: L1809583

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG1	100368-10 WG1100368-11		
Methylene chloride	83		88	70-130	6	20
1,1-Dichloroethane	87		93	70-130	7	20
Chloroform	89		94	70-130	5	20
Carbon tetrachloride	85		91	63-132	7	20
1,2-Dichloropropane	91		97	70-130	6	20
Dibromochloromethane	96		100	63-130	4	20
1,1,2-Trichloroethane	97		100	70-130	3	20
Tetrachloroethene	95		99	70-130	4	20
Chlorobenzene	97		100	75-130	3	20
Trichlorofluoromethane	78		86	62-150	10	20
1,2-Dichloroethane	89		96	70-130	8	20
1,1,1-Trichloroethane	86		94	67-130	9	20
Bromodichloromethane	92		99	67-130	7	20
trans-1,3-Dichloropropene	98		100	70-130	2	20
cis-1,3-Dichloropropene	92		98	70-130	6	20
1,1-Dichloropropene	88		94	70-130	7	20
Bromoform	88		96	54-136	9	20
1,1,2,2-Tetrachloroethane	98		110	67-130	12	20
Benzene	87		92	70-130	6	20
Toluene	95		100	70-130	5	20
Ethylbenzene	97		100	70-130	3	20
Chloromethane	64		68	64-130	6	20
Bromomethane	86		88	39-139	2	20

Project Name: 441 KEAP STREET

Project Number: 170357802

Lab Number: L1809583

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 0	1 Batch: WG1	100368-10	WG1100368-11			
Vinyl chloride	76		84		55-140	10		20
Chloroethane	86		92		55-138	7		20
1,1-Dichloroethene	78		85		61-145	9		20
trans-1,2-Dichloroethene	83		89		70-130	7		20
Trichloroethene	87		92		70-130	6		20
1,2-Dichlorobenzene	100		100		70-130	0		20
1,3-Dichlorobenzene	100		100		70-130	0		20
1,4-Dichlorobenzene	100		100		70-130	0		20
Methyl tert butyl ether	85		94		63-130	10		20
p/m-Xylene	95		100		70-130	5		20
o-Xylene	95		100		70-130	5		20
cis-1,2-Dichloroethene	86		92		70-130	7		20
Dibromomethane	90		99		70-130	10		20
1,2,3-Trichloropropane	100		110		64-130	10		20
Acrylonitrile	86		95		70-130	10		20
Styrene	95		100		70-130	5		20
Dichlorodifluoromethane	70		79		36-147	12		20
Acetone	90		94		58-148	4		20
Carbon disulfide	77		81		51-130	5		20
2-Butanone	80		90		63-138	12		20
Vinyl acetate	82		89		70-130	8		20
4-Methyl-2-pentanone	93		100		59-130	7		20
2-Hexanone	97		110		57-130	13		20

Project Name: 441 KEAP STREET

Project Number: 170357802

Lab Number: L1809583

Parameter	LCS %Recovery	Qual	LCSD %Recovery		covery mits RPD		PD nits
Volatile Organics by GC/MS - Westboroug	h Lab Associated	sample(s): 0	1 Batch: WG1	100368-10 WG11	00368-11		
Bromochloromethane	88		94	70	-130 7	:	20
2,2-Dichloropropane	89		94	63	-133 5		20
1,2-Dibromoethane	97		110	70	-130 13		20
1,3-Dichloropropane	97		100	70	-130 3		20
1,1,1,2-Tetrachloroethane	96		100	64	-130 4		20
Bromobenzene	99		100	70	-130 1		20
n-Butylbenzene	110		110	53	-136 0	:	20
sec-Butylbenzene	110		100	70	-130 10	-	20
tert-Butylbenzene	110		100	70	-130 10	:	20
o-Chlorotoluene	98		99	70	-130 1	-	20
p-Chlorotoluene	100		100	70	-130 0	- :	20
1,2-Dibromo-3-chloropropane	93		100	41	-144 7		20
Hexachlorobutadiene	120		120	63	-130 0	:	20
Isopropylbenzene	100		100	70	-130 0	:	20
p-lsopropyltoluene	110		100	70	-130 10		20
Naphthalene	99		110	70	-130 11		20
n-Propylbenzene	100		100	69	-130 0		20
1,2,3-Trichlorobenzene	100		110	70	-130 10	:	20
1,2,4-Trichlorobenzene	100		110	70	-130 10	:	20
1,3,5-Trimethylbenzene	100		100	64	-130 0	:	20
1,2,4-Trimethylbenzene	100		100	70	-130 0	:	20
1,4-Dioxane	136		144	56	-162 6	:	20
p-Diethylbenzene	110		110	70	-130 0	:	20

Project Name: 441 KEAP STREET

Project Number: 170357802

Lab Number:

L1809583

Report Date:

03/28/18

<u>Parameter</u>	LCS %Recovery	Qual	LCSD %Recovery	' Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s): 0)1 Batch: W	G1100368-10	WG1100368-11				
p-Ethyltoluene	100		100		70-130	0		20	
1,2,4,5-Tetramethylbenzene	100		100		70-130	0		20	
Ethyl ether	82		90		59-134	9		20	
trans-1,4-Dichloro-2-butene	94		100		70-130	6		20	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	103	104	70-130
Toluene-d8	104	103	70-130
4-Bromofluorobenzene	102	102	70-130
Dibromofluoromethane	99	99	70-130

Project Name: 441 KEAP STREET

Project Number: 170357802

Lab Number: L1809583

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-03 Batch: W	G1100368-3 WG1100368-4		
Methylene chloride	89		86	70-130	3	20
1,1-Dichloroethane	93		89	70-130	4	20
Chloroform	95		91	70-130	4	20
Carbon tetrachloride	86		84	63-132	2	20
1,2-Dichloropropane	97		94	70-130	3	20
Dibromochloromethane	100		99	63-130	1	20
1,1,2-Trichloroethane	100		98	70-130	2	20
Tetrachloroethene	97		94	70-130	3	20
Chlorobenzene	100		98	75-130	2	20
Trichlorofluoromethane	77		76	62-150	1	20
1,2-Dichloroethane	93		91	70-130	2	20
1,1,1-Trichloroethane	90		87	67-130	3	20
Bromodichloromethane	96		92	67-130	4	20
trans-1,3-Dichloropropene	100		100	70-130	0	20
cis-1,3-Dichloropropene	98		94	70-130	4	20
1,1-Dichloropropene	89		87	70-130	2	20
Bromoform	95		90	54-136	5	20
1,1,2,2-Tetrachloroethane	100		100	67-130	0	20
Benzene	93		89	70-130	4	20
Toluene	100		97	70-130	3	20
Ethylbenzene	100		97	70-130	3	20
Chloromethane	71		69	64-130	3	20
Bromomethane	88		90	39-139	2	20

Project Name: 441 KEAP STREET

Project Number: 170357802

Lab Number: L1809583

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	01-03 Batch: W	/G1100368-3	WG1100368-4			
Vinyl chloride	79		78		55-140	1	20	
Chloroethane	90		88		55-138	2	20	
1,1-Dichloroethene	80		78		61-145	3	20	
trans-1,2-Dichloroethene	88		84		70-130	5	20	
Trichloroethene	92		88		70-130	4	20	
1,2-Dichlorobenzene	100		100		70-130	0	20	
1,3-Dichlorobenzene	110		100		70-130	10	20	
1,4-Dichlorobenzene	100		100		70-130	0	20	
Methyl tert butyl ether	90		88		63-130	2	20	
p/m-Xylene	100		95		70-130	5	20	
o-Xylene	100		95		70-130	5	20	
cis-1,2-Dichloroethene	93		89		70-130	4	20	
Dibromomethane	94		92		70-130	2	20	
1,2,3-Trichloropropane	100		100		64-130	0	20	
Acrylonitrile	91		83		70-130	9	20	
Styrene	100		95		70-130	5	20	
Dichlorodifluoromethane	69		70		36-147	1	20	
Acetone	100		85		58-148	16	20	
Carbon disulfide	82		76		51-130	8	20	
2-Butanone	88		76		63-138	15	20	
Vinyl acetate	86		83		70-130	4	20	
4-Methyl-2-pentanone	96		91		59-130	5	20	
2-Hexanone	100		97		57-130	3	20	

Project Name: 441 KEAP STREET

Project Number: 170357802

Lab Number: L1809583

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborou	igh Lab Associated	sample(s):	01-03 Batch: W	G1100368-3 WG1100368-4		
Bromochloromethane	92		89	70-130	3	20
2,2-Dichloropropane	94		90	63-133	4	20
1,2-Dibromoethane	100		99	70-130	1	20
1,3-Dichloropropane	100		99	70-130	1	20
1,1,1,2-Tetrachloroethane	100		99	64-130	1	20
Bromobenzene	100		100	70-130	0	20
n-Butylbenzene	120		100	53-136	18	20
sec-Butylbenzene	110		100	70-130	10	20
tert-Butylbenzene	110		100	70-130	10	20
o-Chlorotoluene	110		98	70-130	12	20
p-Chlorotoluene	110		100	70-130	10	20
1,2-Dibromo-3-chloropropane	99		95	41-144	4	20
Hexachlorobutadiene	120		120	63-130	0	20
Isopropylbenzene	110		100	70-130	10	20
p-Isopropyltoluene	110		100	70-130	10	20
Naphthalene	100		99	70-130	1	20
n-Propylbenzene	110		100	69-130	10	20
1,2,3-Trichlorobenzene	100		100	70-130	0	20
1,2,4-Trichlorobenzene	110		100	70-130	10	20
1,3,5-Trimethylbenzene	110		99	64-130	11	20
1,2,4-Trimethylbenzene	110		100	70-130	10	20
1,4-Dioxane	138		144	56-162	4	20
p-Diethylbenzene	120		100	70-130	18	20

Project Name: 441 KEAP STREET

Project Number: 170357802

Lab Number:

L1809583

03/28/18

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recover		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03 Batch:	WG1100368-3	WG1100368-4				
p-Ethyltoluene	110		100		70-130	10		20	
1,2,4,5-Tetramethylbenzene	110		100		70-130	10		20	
Ethyl ether	87		83		59-134	5		20	
trans-1,4-Dichloro-2-butene	100		92		70-130	8		20	

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qua	l %Recovery Qual	Criteria	_
1,2-Dichloroethane-d4	102	101	70-130	
Toluene-d8	104	105	70-130	
4-Bromofluorobenzene	101	101	70-130	
Dibromofluoromethane	99	99	70-130	

Project Name: 441 KEAP STREET

Lab Number: L1809583

Project Number: 170357802 **Report Date:** 03/28/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1809583-01A	Vial HCl preserved	Α	NA		5.8	Υ	Absent		NYTCL-8260(14)
L1809583-01B	Vial HCl preserved	Α	NA		5.8	Υ	Absent		NYTCL-8260(14)
L1809583-01C	Vial HCl preserved	Α	NA		5.8	Υ	Absent		NYTCL-8260(14)
L1809583-02A	Vial HCl preserved	Α	NA		5.8	Υ	Absent		NYTCL-8260(14)
L1809583-02B	Vial HCl preserved	Α	NA		5.8	Υ	Absent		NYTCL-8260(14)
L1809583-02C	Vial HCl preserved	Α	NA		5.8	Υ	Absent		NYTCL-8260(14)
L1809583-03A	Vial HCl preserved	Α	NA		5.8	Υ	Absent		NYTCL-8260(14)
L1809583-03B	Vial HCl preserved	Α	NA		5.8	Υ	Absent		NYTCL-8260(14)
L1809583-03C	Vial HCl preserved	Α	NA		5.8	Υ	Absent		NYTCL-8260(14)

Project Name: 441 KEAP STREET Lab Number: L1809583

Project Number: 170357802 **Report Date:** 03/28/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: DU Report with 'J' Qualifiers

Project Name:441 KEAP STREETLab Number:L1809583Project Number:170357802Report Date:03/28/18

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:441 KEAP STREETLab Number:L1809583Project Number:170357802Report Date:03/28/18

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 11

Published Date: 1/8/2018 4:15:49 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: <u>DW:</u> Bromide EPA 6860: <u>SCM:</u> Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

ΔLPHA	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430; 35 Whitne Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Vay	05	Pag	e i	D	ate Rec'd in Lab	31	2/18		ALPHA JOB# L1809583	
Westbarough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information			***		Deliver					Billing Information	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288		Keup.				- 550	SP-A	means a	ASP-		Same as Client Info	
1250-000-000-000-00-00-00-00-00-00-00-00-0	Waster and Control of the Control of	Project Location: Bro	oklyn,	New York	<		E	QuIS (1 Fi	le) [EQui	S (4 File)	PO#	
Client Information		Project # 170357	1802					ther					
Client: Langan	Engineering	(Use Project name as Pr	roject#)				Regula	tory Requir	ement			Disposal Site Information	
Address: 368 U	lest 3 lst St	Project Manager: Brice	in Goch	enaur				Y TOGS	1	NY Pa	art 375	Please identify below location of	f
New York	K, NY 16001	ALPHAQuote #:		•			_ A	WQ Standar	ds [NY CF	2-51	applicable disposal facilities.	
Phone: 312- 47		Turn-Around Time						Y Restricted	Use [Other		Disposal Facility:	
Fax: aschmied	iche @ longon.com	Standard		Due Date	¢.			Y Unrestricte	d Use			□ NJ □ NY	
	ur@lunean.ww			# of Days	Č.			YC Sewer D	scharge			Other:	
	been previously analyza						ANALY	SIS				Sample Filtration	T
Other project specifi	ic requirements/comm	nents:										Done	0
Please specify Metal	s or TAL.						100					Lab to do Preservation Lab to do	a I
							1 4	1 1				(Please Specify below)	0
ALPHA Lab ID	90	imple ID	Coll	ection	Sample	Sampler's	12	1 1		1			1
(Lab Use Only)	58	imple to	Date	Time	Matrix	Initials	8.0					Sample Specific Comments	
09553-01	PMWO6-C	32018	3/20/18	1410	UW	WK	Х						-
02	PMW07-0	32018	4	1300	Y	1	X						\vdash
	4001 - 03		V	1114	V		X						\vdash
-03	DUP01_0320	18	3/20/18				X		-				
										=			
Preservative Code: A = None B = HCI C = HNO ₃	Container Code P = Plastic A = Amber Glass V = Vial	Westboro: Certification N Mansfield: Certification N				tainer Type						Please print clearly, legibly and completely. Samples of not be logged in and	*
D = H ₂ SO ₄ E = NaOH	G = Glass B = Bacteria Cup		1		P	reservative						turneround time clock will r	
F = MeOH	C = Cube	Aelinquished	50	Date/	Time		Received	Bv.	\neg	, Date/	Time	start until any ambiguities a resolved. BY EXECUTING	250-11009
G = NaHSO ₄	O = Other E = Encore	111/11		3/20/18	1707	Romeik		MAL	12	20 /		THIS COC, THE CLIENT	Si .
$H = Na_2S_2O_3$ K/E = Zn Ac/NaOH O = Other	D = BOD Bottle		21	3/20 8	1203		2	ico.	7	20	γ	HAS READ AND AGREES TO BE BOUND BY ALPHA TERMS & CONDITIONS.	G190
Form No: 01-25 HC (rev. 3	0-Sent-2013)	JIN	-/-	ULL	,	Jeans	16.16	resource to	- 13/	MILY	cice	(See reverse side.)	
00 - 107	- Copi co ioj					55817) ASSESSED ASSESS CHARGO POTRICE	

Дърна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitm Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 C	Way	105	Pag	e i		Date F	lec'd -	361	8	ALPHA JOB# L1809583
Westborough, MA 01581 8 Walkup Dr.	320 Forbes Blvd	Project Information	-				Deliv	erables				Billing Information
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: 441		Street				ASP-A		X		Same as Client Info
57-59-400-10-00-40-10-00-0-1-0-1-0-1-0-1-0-1-	19-25-28-24 (000 W) (000 U)	Project Location: B	wklyn,	New York	k		1 📙		(1 File)		QuIS (4 File)	PO#
Client Information		Project # 17035						Other	5000010100000000			The second secon
Client: Langan	Engineering	(Use Project name as F					Regu	The second second	Requireme	Allen and		Disposal Site Information
	lest 3 bt St	The Children beneat the Children Control of the Children	an Goch	enqu				NY TOO		-	Y Part 375	Please identify below location of
	K, NY ILUGI	ALPHAQuote #:						AWQ S	tandards		Y CP-51	applicable disposal facilities.
Phone: 312- 47		Turn-Around Time						NY Res	tricted Use	_ 0	ther	Disposal Facility:
	iche @ langun.con			Due Date					estricted Us			□ NJ □ NY
Email: backens	ur@lungan.102	Rush (only if pre approve	d) 🗌	# of Days	9;			NYC Se	wer Discha	irge		Other:
	been previously analyz	parameter de la constantidad de					ANA	LYSIS				Sample Filtration
Please specify Metal	ic requirements/comr	nents:					L 10C6					Done I all all all all all all all all all a
ALPHA Lab ID		AND DESCRIPTION OF THE PROPERTY.	Coll	ection	Sample	Sampler's	12					(Frease specify below)
(Lab Use Only)	Sa	ample ID	Date	Time	Matrix	Initials	1-					Sample Specific Comments
09883-01	PMWO6-6	122010	3/20/18	1410	aw	WK	'X		_			dample opecine comments
62	PMW07-0	33016	1	1300	V	1	X		+	 		
- 404	TOC1 _ 03			1111			X	-	_	1		
Preservative Code:	Container Code	Westboro: Certification	L- MAGOS									
A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH F = MeOH	P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube	Mansfield: Certification N	No: MA015		Р	reservative						Please print clearly, legibly and completely. Samples can not be logged in and turneround time clock will not start until any ambiguitles are
$F = MeOH$ $G = NaHSO_4$ $H = Na_2S_2O_3$ $K/E = Zn Ac/NaOH$ $O = Other$ Form No: 01-25 HC (rev. 3	O = Other E = Encore D = BOD Bottle	# Allinguished	121	3/20/18 3/20/18 0/70/2		Komeik	hik.	ed By:	2	3/20	1707 Serice	resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)

ANALYTICAL REPORT

Lab Number: L1809584

Client: Langan Engineering & Environmental

21 Penn Plaza

360 W. 31st Street, 8th Floor New York, NY 10001-2727

Brian Gochenaur

Phone: (212) 479-5590

Project Name: 123 HOPE STREET

Project Number: 170357801

Report Date: 03/28/18

ATTN:

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 123 HOPE STREET

Project Number: 170357801

Lab Number:

L1809584

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1809584-01	PMW01_032018	WATER	BROOKLYN, NEW YORK	03/20/18 10:50	03/20/18
L1809584-02	TB01_032018	WATER	BROOKLYN, NEW YORK	03/20/18 11:11	03/20/18
L1809584-03	FB01_032018	WATER	BROOKLYN, NEW YORK	03/20/18 11:11	03/20/18

L1809584

Lab Number:

Project Name: 123 HOPE STREET

Project Number: 170357801 **Report Date:** 03/28/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact (Client Services at	800-624-9220 v	with anv c	uestions.

Project Name: 123 HOPE STREET Lab Number: L1809584

Project Number: 170357801 **Report Date:** 03/28/18

Case Narrative (continued)

Report Revision

March 28, 2018: At the client's request, the results of the sample "DUP01_032018" was removed from this report and have been issued under separate cover.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Amita Naik

Authorized Signature:

Title: Technical Director/Representative Date: 03/28/18

Nails

ORGANICS

VOLATILES

Project Name: 123 HOPE STREET

Project Number: 170357801

SAMPLE RESULTS

Lab Number: L1809584

Report Date: 03/28/18

Lab ID: L1809584-01 Date Collected: 03/20/18 10:50

PMW01_032018 Client ID: Date Received: 03/20/18 Sample Location: Field Prep: BROOKLYN, NEW YORK Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 03/25/18 15:12

Analyst: ΑD

		Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	3.3		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L1809584

03/28/18

Project Name: 123 HOPE STREET

L1809584-01

Project Number: 170357801

SAMPLE RESULTS

Date Collected: 03/20/18 10:50

Lab Number:

Report Date:

Date Received: 03/20/18

PMW01_032018 Sample Location: Field Prep: Not Specified BROOKLYN, NEW YORK

Sample Depth:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
Trichloroethene	2.0		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	23		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	23		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 123 HOPE STREET **Lab Number:** L1809584

Project Number: 170357801 **Report Date:** 03/28/18

SAMPLE RESULTS

Lab ID: L1809584-01 Date Collected: 03/20/18 10:50

Client ID: PMW01_032018 Date Received: 03/20/18
Sample Location: BROOKLYN, NEW YORK Field Prep: Not Specified

Volatile Organics by GC/MS - Westborough Lab n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1 trans-1,4-Dichloro-2-butene ND ug/l 2.5 0.70 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	Volatile Organics by GC/MS - Wes	tborough Lab						
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,4-Dioxane	ND		ug/l	250	61.	1	
1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
Ethyl ether ND ug/l 2.5 0.70 1	p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
	1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
trans-1,4-Dichloro-2-butene ND ug/l 2.5 0.70 1	Ethyl ether	ND		ug/l	2.5	0.70	1	
	trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	105		70-130	
4-Bromofluorobenzene	105		70-130	
Dibromofluoromethane	97		70-130	

Project Name: 123 HOPE STREET

Project Number: 170357801

SAMPLE RESULTS

Lab Number: L1809584

Report Date: 03/28/18

Result

Lab ID: L1809584-02

Client ID: TB01_032018

Sample Location: BROOKLYN, NEW YORK

Sample Depth:

Parameter

Matrix: Water Analytical Method: 1,8260C Analytical Date: 03/25/18 14:17

Analyst: AD

Date Collected:	03/20/18 11:11
Date Received:	03/20/18
Field Prep:	Not Specified

MDL

Dilution Factor

- uramotor					
Volatile Organics by GC/MS - Wes	stborough Lab				
Methylene chloride	ND	ug/l	2.5	0.70	1
1,1-Dichloroethane	ND	ug/l	2.5	0.70	1
Chloroform	ND	ug/l	2.5	0.70	1
Carbon tetrachloride	ND	ug/l	0.50	0.13	1
1,2-Dichloropropane	ND	ug/l	1.0	0.14	1
Dibromochloromethane	ND	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	1
Tetrachloroethene	ND	ug/l	0.50	0.18	1
Chlorobenzene	ND	ug/l	2.5	0.70	1
Trichlorofluoromethane	ND	ug/l	2.5	0.70	1
1,2-Dichloroethane	ND	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	1
Bromodichloromethane	ND	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14	1
1,1-Dichloropropene	ND	ug/l	2.5	0.70	1
Bromoform	ND	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	1
Benzene	ND	ug/l	0.50	0.16	1
Toluene	ND	ug/l	2.5	0.70	1
Ethylbenzene	ND	ug/l	2.5	0.70	1
Chloromethane	ND	ug/l	2.5	0.70	1
Bromomethane	ND	ug/l	2.5	0.70	1
Vinyl chloride	ND	ug/l	1.0	0.07	1
Chloroethane	ND	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1

Qualifier

Units

RL

L1809584

03/28/18

Project Name: 123 HOPE STREET

Project Number: 170357801

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L1809584-02 Date Collected: 03/20/18 11:11

Client ID: Date Received: 03/20/18 TB01_032018

Sample Location: Field Prep: Not Specified BROOKLYN, NEW YORK

Volatile Organics by GC/MS - Westborough Lab Viol ughl 0.50 0.18 1 1.2-Olchiorobexone ND ughl 2.5 0.70 1 1.4-Olchiorobexone ND ughl 2.5 0.70 1 1.4-Olchiorobexone ND ughl 2.5 0.70 1 Methyl feet Luyl ether ND ughl 2.5 0.70 1 PmXylene ND ughl 2.5 0.70 1 Vylene, Total ND ughl 2.5 0.70 1 Vylene, Total ND ughl 2.5 0.70 1 Vylene, Total ND ughl 2.5 0.70 1 Jest-(2-Olchoroethene ND ughl 2.5 0.70 1 Jest-(2-Olchoroethene, Total ND ughl 2.5 0.70 1 Dibroordeflere ND ughl 2.5 0.70 1 Als-(2-Olchoroethene ND ughl 2.5 <	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1.2 Dichlorobenzene	Volatile Organics by GC/MS - Westbor	ough Lab					
1,2-Dichlorobenzene ND ugil 2,5 0,70 1 1,3-Dichlorobenzene ND ugil 2,5 0,70 1 1,3-Dichlorobenzene ND ugil 2,5 0,70 1 Methyl terb tuyl ether ND ugil 2,5 0,70 1 o-Xylene ND ugil 2,5 0,70 1 o-Xylene ND ugil 2,5 0,70 1 dis-1,2-Dichloroethene ND ugil 2,5 0,70 1 1,2-Dichloroethene, Total ND ugil 2,5 0,70 1 Dibromomethane ND ugil 2,5 0,70 1 Actychirline ND ugil 2,5 0,70 1 Actychirline ND ugil 5,0 1,0 1 Actychirline ND ugil 5,0 1,0 1 Actychirline ND ugil 5,0 1,0 1	Trichloroethene	ND		ug/l	0.50	0.18	1
1,3-Dichlorobenzene ND ugl 2,5 0,70 1 1,4-Dichlorobenzene ND ugl 2,5 0,70 1 Methyl tert buryl ether ND ugl 2,5 0,70 1 o-Sylene ND ugl 2,5 0,70 1 o-Sylene ND ugl 2,5 0,70 1 xylenes, Total ND ugl 2,5 0,70 1 1,2-Dichloroethene ND ugl 2,5 0,70 1 1,2-Dichloroethene, Total ND ugl 2,5 0,70 1 1,2-Dichloroethene, Total ND ugl 2,0 1,0 1 1,2-Dichloroethene, Total ND ugl 2,0 1,0 1 1,2-Dichloroethene, Total ND ugl 2,0 1,0 1 2,2-Dichloroethene, Total ND ugl 2,0 1,0 1 Styrene ND ugl 2,0 1,0 1 <td>1,2-Dichlorobenzene</td> <td>ND</td> <td></td> <td></td> <td>2.5</td> <td>0.70</td> <td>1</td>	1,2-Dichlorobenzene	ND			2.5	0.70	1
Methyl tert budyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 o-Xylenes ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 Dibromemsthane ND ug/l 5.0 1.0 1 Acrylonkride ND ug/l 5.0 1.0 1 Acrylonkride ND ug/l 5.0 1.0 1 Styrene ND ug/l 5.0 1.0 1 Styrene ND ug/l 5.0 1.0 1 Obchtorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Vilyi acetate	1,3-Dichlorobenzene	ND			2.5	0.70	1
ND	1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
o-Xylene ND ug1 2.5 0.70 1 Xylenes, Total ND ug1 2.5 0.70 1 cis-1,2-Dichloroethene, Total ND ug1 2.5 0.70 1 Dibromomethane ND ug1 2.5 0.70 1 Dibromomethane ND ug1 2.5 0.70 1 Acrylontrile ND ug1 2.5 0.70 1 Acrylontrile ND ug1 2.5 0.70 1 Styrene ND ug1 5.0 1.5 1 Acetone ND ug1 5.0 1.5 1 Acetone ND ug1 5.0 1.0 1 Carbon disulfide ND<	Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
Xylenes, Total ND ug/l 2.5 0.70 1 cis-1,2-Dichlorcethene ND ug/l 2.5 0.70 1 cis-1,2-Dichlorcethene, Total ND ug/l 2.5 0.70 1 Dichloromethane ND ug/l 2.5 0.70 1 L;2-Dichloroptopane ND ug/l 2.5 0.70 1 Acytonitrile ND ug/l 5.0 1.5 1 Syrene ND ug/l 5.0 1.5 1 Dichlorodfluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0 1	p/m-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 1,2-Trichloropropane ND ug/l 5.0 0.70 1 Acrylontrile ND ug/l 5.0 0.70 1 Styrene ND ug/l 5.0 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Styria acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Hexthyl-2-pentanone ND ug/l 2.5 0.70 1	o-Xylene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total ND ug/l 2,5 0,70 1	Xylenes, Total	ND		ug/l	2.5	0.70	1
Dibromomethane ND ug/l 5.0 1.0 1 1.2.3-Trichloropropane ND ug/l 2.5 0.70 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.5 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Viryl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,3-Dichropropane ND ug/l 2.5 0.70 1 1,1,1,2-T	cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2,3-Trichioropropane ND ug/l 2,5 0,70 1	1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 1-ynyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromochlane ND ug/l 2.5 0.70 1 1,1-1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 1,1	Dibromomethane	ND		ug/l	5.0	1.0	1
Syrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 8-Methyl-2-pentanone ND ug/l 5.0 1.0 1 8-Pothachoromethane ND ug/l 2.5 0.70 1 1,2-Distromethane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1	1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Dichlorodiffluoromethane ND ug/l 5.0 1.0 1 1 1 1 1 1 1 1 1	Acrylonitrile	ND		ug/l	5.0	1.5	1
Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 -Butylbenzene ND ug/l 2.5 0.70 1 <	Styrene	ND		ug/l	2.5	0.70	1
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 <t< td=""><td>Dichlorodifluoromethane</td><td>ND</td><td></td><td>ug/l</td><td>5.0</td><td>1.0</td><td>1</td></t<>	Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1	Acetone	ND		ug/l	5.0	1.5	1
Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tetr-Butylbenzene ND ug/l 2.5 0.70 1 tetr-Butylbenzene ND ug/l 2.5 0.70 1 <td>Carbon disulfide</td> <td>ND</td> <td></td> <td>ug/l</td> <td>5.0</td> <td>1.0</td> <td>1</td>	Carbon disulfide	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 c-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 </td <td>2-Butanone</td> <td>ND</td> <td></td> <td>ug/l</td> <td>5.0</td> <td>1.9</td> <td>1</td>	2-Butanone	ND		ug/l	5.0	1.9	1
2-Hexanone ND ug/l 5.0 1.0 1	Vinyl acetate	ND		ug/l	5.0	1.0	1
Bromochloromethane ND	4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70	2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropyltoluene ND ug/l 2.5 0.70 1	Bromochloromethane	ND		ug/l	2.5	0.70	1
1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 c-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropyltenue ND ug/l 2.5 0.70 1	2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	Bromobenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 sopropylbenzene ND ug/l 2.5 0.70 1 ug/l 2.5 0.70 1 ug/l 2.5 0.70 1	n-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	sec-Butylbenzene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	o-Chlorotoluene	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	p-Chlorotoluene	ND		ug/l	2.5	0.70	1
Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene ND ug/l 2.5 0.70 1	Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
	Isopropylbenzene	ND		ug/l	2.5	0.70	1
Naphthalene ND ug/l 2.5 0.70 1	p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
	Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: 123 HOPE STREET L1809584

Project Number: Report Date: 170357801 03/28/18

SAMPLE RESULTS

Lab ID: L1809584-02 Date Collected: 03/20/18 11:11

Client ID: Date Received: 03/20/18 TB01_032018 Field Prep: Not Specified

Sample Location: BROOKLYN, NEW YORK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	97	70-130	

03/20/18 11:11

Project Name: 123 HOPE STREET

Project Number: 170357801

SAMPLE RESULTS

Lab Number: L1809584

Report Date: 03/28/18

Lab ID: L1809584-03 Date Collected:

Client ID: Date Received: 03/20/18 FB01_032018 Sample Location: Field Prep: BROOKLYN, NEW YORK Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 03/25/18 14:45

Analyst: ΑD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: 123 HOPE STREET

Project Number: 170357801

SAMPLE RESULTS

Report Date: 03/28/18

Lab ID: L1809584-03 Client ID: FB01_032018

Sample Location: BROOKLYN, NEW YORK Date Received: 03/20/18

03/20/18 11:11

L1809584

Field Prep:

Lab Number:

Date Collected:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 123 HOPE STREET Lab Number: L1809584

Project Number: 170357801 **Report Date:** 03/28/18

SAMPLE RESULTS

Lab ID: L1809584-03 Date Collected: 03/20/18 11:11

Client ID: FB01_032018 Date Received: 03/20/18
Sample Location: BROOKLYN, NEW YORK Field Prep: Not Specified

Ditoonerry, NEW Torric

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	96	70-130	

Project Number: 170357801

Lab Number: L1809584

Report Date: 03/28/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/25/18 11:00

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL	
olatile Organics by GC/MS	- Westborough Lab	for sample(s): 0	1-03 Batch:	WG1100368-5	
Methylene chloride	ND	ug/l	2.5	0.70	
1,1-Dichloroethane	ND	ug/l	2.5	0.70	
Chloroform	ND	ug/l	2.5	0.70	
Carbon tetrachloride	ND	ug/l	0.50	0.13	
1,2-Dichloropropane	ND	ug/l	1.0	0.14	
Dibromochloromethane	ND	ug/l	0.50	0.15	
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	
Tetrachloroethene	ND	ug/l	0.50	0.18	
Chlorobenzene	ND	ug/l	2.5	0.70	
Trichlorofluoromethane	ND	ug/l	2.5	0.70	
1,2-Dichloroethane	ND	ug/l	0.50	0.13	
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	
Bromodichloromethane	ND	ug/l	0.50	0.19	
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14	
1,1-Dichloropropene	ND	ug/l	2.5	0.70	
Bromoform	ND	ug/l	2.0	0.65	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	
Benzene	ND	ug/l	0.50	0.16	
Toluene	ND	ug/l	2.5	0.70	
Ethylbenzene	ND	ug/l	2.5	0.70	
Chloromethane	ND	ug/l	2.5	0.70	
Bromomethane	ND	ug/l	2.5	0.70	
Vinyl chloride	ND	ug/l	1.0	0.07	
Chloroethane	ND	ug/l	2.5	0.70	
1,1-Dichloroethene	ND	ug/l	0.50	0.17	
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Trichloroethene	ND	ug/l	0.50	0.18	

Project Number: 170357801

Lab Number: L1809584

Report Date: 03/28/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/25/18 11:00

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	· Westborough Lab	for sample(s): 01-03	Batch:	WG1100368-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Project Number: 170357801

Lab Number: L1809584

Report Date: 03/28/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/25/18 11:00

Analyst: PD

arameter	Result	Qualifier Units	s RL	MDL
olatile Organics by GC/MS -	Westborough Lat	o for sample(s):	01-03 Batch:	WG1100368-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	98		70-130	

Project Name: 123 HOPE STREET

Project Number: 170357801

Lab Number: L1809584

Report Date: 03/28/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-03 Batch: W	G1100368-3 WG1100368-4		
Methylene chloride	89		86	70-130	3	20
1,1-Dichloroethane	93		89	70-130	4	20
Chloroform	95		91	70-130	4	20
Carbon tetrachloride	86		84	63-132	2	20
1,2-Dichloropropane	97		94	70-130	3	20
Dibromochloromethane	100		99	63-130	1	20
1,1,2-Trichloroethane	100		98	70-130	2	20
Tetrachloroethene	97		94	70-130	3	20
Chlorobenzene	100		98	75-130	2	20
Trichlorofluoromethane	77		76	62-150	1	20
1,2-Dichloroethane	93		91	70-130	2	20
1,1,1-Trichloroethane	90		87	67-130	3	20
Bromodichloromethane	96		92	67-130	4	20
trans-1,3-Dichloropropene	100		100	70-130	0	20
cis-1,3-Dichloropropene	98		94	70-130	4	20
1,1-Dichloropropene	89		87	70-130	2	20
Bromoform	95		90	54-136	5	20
1,1,2,2-Tetrachloroethane	100		100	67-130	0	20
Benzene	93		89	70-130	4	20
Toluene	100		97	70-130	3	20
Ethylbenzene	100		97	70-130	3	20
Chloromethane	71		69	64-130	3	20
Bromomethane	88		90	39-139	2	20

Project Name: 123 HOPE STREET

Project Number: 170357801

Lab Number: L1809584

Report Date: 03/28/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	n Lab Associated	sample(s):	01-03 Batch: W	G1100368-3 WG1100368-4		
Vinyl chloride	79		78	55-140	1	20
Chloroethane	90		88	55-138	2	20
1,1-Dichloroethene	80		78	61-145	3	20
trans-1,2-Dichloroethene	88		84	70-130	5	20
Trichloroethene	92		88	70-130	4	20
1,2-Dichlorobenzene	100		100	70-130	0	20
1,3-Dichlorobenzene	110		100	70-130	10	20
1,4-Dichlorobenzene	100		100	70-130	0	20
Methyl tert butyl ether	90		88	63-130	2	20
p/m-Xylene	100		95	70-130	5	20
o-Xylene	100		95	70-130	5	20
cis-1,2-Dichloroethene	93		89	70-130	4	20
Dibromomethane	94		92	70-130	2	20
1,2,3-Trichloropropane	100		100	64-130	0	20
Acrylonitrile	91		83	70-130	9	20
Styrene	100		95	70-130	5	20
Dichlorodifluoromethane	69		70	36-147	1	20
Acetone	100		85	58-148	16	20
Carbon disulfide	82		76	51-130	8	20
2-Butanone	88		76	63-138	15	20
Vinyl acetate	86		83	70-130	4	20
4-Methyl-2-pentanone	96		91	59-130	5	20
2-Hexanone	100		97	57-130	3	20

Project Name: 123 HOPE STREET

Project Number: 170357801

Lab Number: L1809584

Report Date: 03/28/18

arameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westboroug	h Lab Associated	sample(s):	01-03 Batch:	WG1100368-3	WG1100368-4			
Bromochloromethane	92		89		70-130	3	20	
2,2-Dichloropropane	94		90		63-133	4	20	
1,2-Dibromoethane	100		99		70-130	1	20	
1,3-Dichloropropane	100		99		70-130	1	20	
1,1,1,2-Tetrachloroethane	100		99		64-130	1	20	
Bromobenzene	100		100		70-130	0	20	
n-Butylbenzene	120		100		53-136	18	20	
sec-Butylbenzene	110		100		70-130	10	20	
tert-Butylbenzene	110		100		70-130	10	20	
o-Chlorotoluene	110		98		70-130	12	20	
p-Chlorotoluene	110		100		70-130	10	20	
1,2-Dibromo-3-chloropropane	99		95		41-144	4	20	
Hexachlorobutadiene	120		120		63-130	0	20	
Isopropylbenzene	110		100		70-130	10	20	
p-Isopropyltoluene	110		100		70-130	10	20	
Naphthalene	100		99		70-130	1	20	
n-Propylbenzene	110		100		69-130	10	20	
1,2,3-Trichlorobenzene	100		100		70-130	0	20	
1,2,4-Trichlorobenzene	110		100		70-130	10	20	
1,3,5-Trimethylbenzene	110		99		64-130	11	20	
1,2,4-Trimethylbenzene	110		100		70-130	10	20	
1,4-Dioxane	138		144		56-162	4	20	
p-Diethylbenzene	120		100		70-130	18	20	

Project Name: 123 HOPE STREET

Project Number: 170357801 Lab Number:

L1809584 Report Date: 03/28/18

arameter	LCS %Recovery	Qual	LCSD Qual %Recovery		%Recovery Qual Limits		Qual	RPD Limits
olatile Organics by GC/MS - Wes	stborough Lab Associated s	sample(s): 0	01-03 Batch:	WG1100368-3	WG1100368-4			
p-Ethyltoluene	110		100		70-130	10		20
1,2,4,5-Tetramethylbenzene	110		100		70-130	10		20
Ethyl ether	87		83		59-134	5		20
trans-1,4-Dichloro-2-butene	100		92		70-130	8		20

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	
1,2-Dichloroethane-d4	102	101	70-130	
Toluene-d8	104	105	70-130	
4-Bromofluorobenzene	101	101	70-130	
Dibromofluoromethane	99	99	70-130	

Serial_No:03281815:44 *Lab Number:* L1809584

Project Name: 123 HOPE STREET

Project Number: 170357801 **Report Date:** 03/28/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1809584-01A	Vial HCl preserved	Α	NA		5.8	Υ	Absent		NYTCL-8260(14)
L1809584-01B	Vial HCl preserved	Α	NA		5.8	Υ	Absent		NYTCL-8260(14)
L1809584-01C	Vial HCl preserved	Α	NA		5.8	Υ	Absent		NYTCL-8260(14)
L1809584-02A	Vial HCl preserved	Α	NA		5.8	Υ	Absent		NYTCL-8260(14)
L1809584-02B	Vial HCl preserved	Α	NA		5.8	Υ	Absent		NYTCL-8260(14)
L1809584-02C	Vial HCl preserved	Α	NA		5.8	Υ	Absent		NYTCL-8260(14)
L1809584-02D	Vial HCl preserved	Α	NA		5.8	Υ	Absent		NYTCL-8260(14)
L1809584-03A	Vial HCl preserved	Α	NA		5.8	Υ	Absent		NYTCL-8260(14)
L1809584-03B	Vial HCl preserved	Α	NA		5.8	Υ	Absent		NYTCL-8260(14)
L1809584-03C	Vial HCl preserved	Α	NA		5.8	Υ	Absent		NYTCL-8260(14)
L1809584-04A	Vial HCl preserved	Α	NA		5.8	Υ	Absent		-
L1809584-04B	Vial HCl preserved	Α	NA		5.8	Υ	Absent		-
L1809584-04C	Vial HCl preserved	Α	NA		5.8	Υ	Absent		-

Project Name:123 HOPE STREETLab Number:L1809584Project Number:170357801Report Date:03/28/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: DU Report with 'J' Qualifiers

В

Project Name:123 HOPE STREETLab Number:L1809584Project Number:170357801Report Date:03/28/18

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 123 HOPE STREET
 Lab Number:
 L1809584

 Project Number:
 170357801
 Report Date:
 03/28/18

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 11

Page 1 of 1

Published Date: 1/8/2018 4:15:49 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: <u>DW:</u> Bromide EPA 6860: <u>SCM:</u> Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

100	NEW YORK	Service Centers			_		_					
ΔLPHA	NEW YORK CHAIN OF	Mahwah, NJ 07430: 35 Whitn	ey Rd, Suite 5		Pag		D	ate Rec	'd		-	
ALPHA	CUSTODY	Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 0		105		of \		in Lab	3/	RIPE		1_Y8095841
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information		THE			Deliver	ables	31	7.410		Billing Information
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: 123	Hope S	tient				SP-A		X ASF	P-B	Same as Client Info
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: Big	cklya N	OLD YOU	k			QuIS (1	File)	Annual Property of the Parket	ulS (4 File)	PO#
Client Information		Project # \ 7 0 3	57201	ew lon			_	ther			10 (41 110)	
Client: Longan	Engineering	(Use Project name as F					-	tory Requ	iirement			Disposal Site Information
	ies 1 3157 SI	Project Manager: 3,	The state of the s	hancur			- Personnella	Y TOGS	distribution de la constitución de	NYP	art 375	
	Teck. NY 16001	ALPHAQuote #:	111-1	111-161-			4 =	WQ Stand	ards	□ NY C		Please identify below location of applicable disposal facilities.
	79-5400	Turn-Around Time						Y Restricte		Othe		Disposal Facility:
	ke Gilnyin um	Standar	rd X	Due Date	a.			Y Unrestric			c.	
Email: backena	ur @ lances com	Rush (only if pre approve		# of Days			-		Discharge			
	been previously analyz	ed by Alpha			-		ANALY		Discharge			Other:
	ic requirements/comn						1		T		1 1	Sample Filtration
							1					☐ Done☐ Lab to do
							1 3					Preservation
Please specify Metals	s or TAL.						1 8			1		Lab to do
							>					(Please Specify below)
ALPHA Lab ID	90	mple ID	Colle	ection	Sample	Sampler's	3	- 1	1 1	1		i rease opeany belowy
(Lab Use Only)	Sa	mple ID	Date	Time	Matrix	Initials	12					Sample Specific Comments
10-18890	PMWO1-03	2018	3/20/18	lese	GW	wk	X			_		amorto opecine connients
03	TB01_032	018	1	1/11	1	1	1			+		
03	FB01 _ ()321		1	11.11	1	1	X			+	 -	
				11.11			\rightarrow	+	-	+		
								+	-	_		
					_			+	-	+		
								_	_	+		
								+	-	-		
						_	-	+-	-	_		
								-	_	+		
reservative Code:	Container Code	Westboro: Certification N	la: MAD2E				-	+	_	-	_	
= None i = HCl	P = Plastic A = Amber Glass	Mansfield: Certification N			Con	tainer Type						Please print clearly, legibly
HNO ₃ V = Vial			IO: MAU15				_	-		+		and completely. Samples car
H ₂ SO ₄ G = Glass					Р	reservative		1 1				not be logged in and turnaround time clock will no
	B = Bacteria Cup C = Cube	77										start until any ambiguities are
= NaHSO ₄ 0 = Other Bellinguished By Date/Time							Rebeived			, Date/	Time	resolved, BY EXECUTING
11020203	E = Encore D = 80D Bottle	190	-		17:10	Kimek	Arcks.	n Aft	3	20 1	707	THIS COC, THE CLIENT
/E = Zn Ac/NaOH = Other	- SOD Dollie	1			1260	/	53	120		772	0	HAS READ AND AGREES TO BE BOUND BY ALPHA'S
		-7	3/21	ou		Organi	F.0	wa (A)	3		02:00	TERMS & CONDITIONS.
orm No: 01-25 HC (rev. 30	0-Sept-2013)					9 9	U		10			(See reverse side.)

ANALYTICAL REPORT

Lab Number: L1810069

Client: Langan Engineering & Environmental

21 Penn Plaza

360 W. 31st Street, 8th Floor New York, NY 10001-2727

ATTN: Brian Gochenaur Phone: (212) 479-5590

Project Name: 123 HOPE STREET

Project Number: 170357801 Report Date: 03/29/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Number: 170357801

Lab Number: L1810069 **Report Date:** 03/29/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1810069-01	PMW02_032318	WATER	BROOKLYN, NY	03/23/18 14:50	03/23/18
L1810069-02	PMW03_032318	WATER	BROOKLYN, NY	03/23/18 13:38	03/23/18
L1810069-03	PMW04_032318	WATER	BROOKLYN, NY	03/23/18 12:20	03/23/18
L1810069-04	PMW05_032318	WATER	BROOKLYN, NY	03/23/18 15:40	03/23/18
L1810069-05	TB02_032318	WATER	BROOKLYN, NY	03/23/18 00:00	03/23/18

L1810069

Lab Number:

Project Name: 123 HOPE STREET

Project Number: 170357801 **Report Date:** 03/29/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please	contact	Client	Services	at 800-	-624-9220	with a	nv c	nuestions
loase	Contact	Olicit	OCI VICCO	at ooo	02- 0220	with a	ıy c	_f ucsiloris.

L1810069

Project Name: 123 HOPE STREET

Project Number: 170357801 **Report Date:** 03/29/18

Lab Number:

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 03/29/18

ORGANICS

VOLATILES

03/23/18 14:50

Project Name: 123 HOPE STREET

Project Number: 170357801

SAMPLE RESULTS

Lab Number: L1810069

Report Date: 03/29/18

Date Collected:

Lab ID: L1810069-01

Client ID: PMW02_032318 Sample Location: BROOKLYN, NY Date Received: 03/23/18 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 03/28/18 12:21

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	ıh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	15		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.13	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

03/23/18 14:50

Project Name: 123 HOPE STREET

Project Number: 170357801

SAMPLE RESULTS

Lab Number: L1810069

Report Date: 03/29/18

Lab ID: L1810069-01 Date Collected:

PMW02_032318

BROOKLYN, NY

Date Received: 03/23/18

Field Prep: Not Specified

Sample Depth:

Sample Location:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
Trichloroethene	3.4		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	23		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	23		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 123 HOPE STREET Lab Number: L1810069

Project Number: 170357801 **Report Date:** 03/29/18

SAMPLE RESULTS

Lab ID: L1810069-01 Date Collected: 03/23/18 14:50

Client ID: PMW02_032318 Date Received: 03/23/18 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	106	70-130	
4-Bromofluorobenzene	113	70-130	
Dibromofluoromethane	93	70-130	

Project Name: 123 HOPE STREET

Project Number: 170357801

SAMPLE RESULTS

Lab Number: L1810069

Report Date: 03/29/18

Date Collected:

Lab ID: L1810069-02

Client ID: PMW03_032318 Sample Location: BROOKLYN, NY Date Received: 03/23/18 Field Prep: Not Specified

03/23/18 13:38

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 03/28/18 12:46

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Chloroform	1.3	J	ug/l	2.5	0.70	1		
Carbon tetrachloride	ND		ug/l	0.50	0.13	1		
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1		
Dibromochloromethane	ND		ug/l	0.50	0.15	1		
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1		
Tetrachloroethene	ND		ug/l	0.50	0.18	1		
Chlorobenzene	ND		ug/l	2.5	0.70	1		
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Bromodichloromethane	ND		ug/l	0.50	0.19	1		
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1		
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1		
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1		
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1		
Bromoform	ND		ug/l	2.0	0.65	1		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1		
Benzene	ND		ug/l	0.50	0.16	1		
Toluene	ND		ug/l	2.5	0.70	1		
Ethylbenzene	ND		ug/l	2.5	0.70	1		
Chloromethane	ND		ug/l	2.5	0.70	1		
Bromomethane	1.7	J	ug/l	2.5	0.70	1		
Vinyl chloride	0.77	J	ug/l	1.0	0.07	1		
Chloroethane	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1		
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		

L1810069

Project Name: 123 HOPE STREET Lab Number:

Project Number: 170357801 **Report Date:** 03/29/18

SAMPLE RESULTS

Lab ID: L1810069-02 Date Collected: 03/23/18 13:38

Client ID: PMW03_032318 Date Received: 03/23/18 Sample Location: BROOKLYN, NY Field Prep: Not Specified

1,2,3-Trichloropropane ND ug/l 2.5 0.70 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,2-Dichlorobenzene ND ugil 2,5 0,70 1 1,3-Dichlorobenzene ND ugil 2,5 0,70 1 1,4-Dichlorobenzene R-Total ND ugil 2,5 0,70 1 1,4-Dichlorobenzene R-Total R-Tot	Volatile Organics by GC/MS - W	estborough Lab					
1,2-Dichlorobenzene ND ugil 2,5 0,70 1 1,3-Dichlorobenzene ND ugil 2,5 0,70 1 1,4-Dichlorobenzene R-Total ND ugil 2,5 0,70 1 1,4-Dichlorobenzene R-Total R-Tot	Trichloroothono	ND		ua/l	0.50	0.18	1
1,3-Dichlorobenzone ND ug/l 2,5 0,70 1 1,4-Bichlorobenzene ND ug/l 2,5 0,70 1 1,4-Bichlorobenzen							
1,4-Dichlorobenzene ND Ug/l 2,5 0,70 1							
Methyl tert butyl other ND ug/l 2.5 0.70 1 prim-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 o-Xylenes ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene 6.7 ug/l 2.5 0.70 1 1,2-Dichloroethene, Total 6.7 ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 Dibromomethane ND ug/l 5.0 1.0 1 1,2,3-Trichloropropane ND ug/l 5.0 1.0 1 Styrene ND ug/l 5.0 1.0 1 Styrene ND ug/l 5.0 1.0 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 18 ug/l 5.0 1.0 1 Vir							
p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 xylenes, Total ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene 6.7 ug/l 2.5 0.70 1 1,2-Dichloroethene, Total 6.7 ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrone ND ug/l 2.5 0.70 1 Acetone 18 ug/l 5.0 1.0 1 Styrone ND ug/l 5.0 1.0 1							
o-Xylene ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene 6.7 ug/l 2.5 0.70 1 1,2-Dichloroethene, Total 6.7 ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 1,2-Dichloroethene, Total ND ug/l 5.0 1.0 1 1,2-S-Trichloropropane ND ug/l 5.0 1.5 1 Actyclontifile ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 1.0 1 Actione 18 ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1							
Xylenes, Total ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene 6.7 ug/l 2.5 0.70 1 1,2-Dichloroethene, Total 6.7 ug/l 2.5 0.70 1 Dibromomethane ND ug/l 2.5 0.70 1 Acrylonitrile ND ug/l 2.5 0.70 1 Styrene ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 1.0 1 Dichloroffluoromethane ND ug/l 5.0 1.0 1 Acetone 18 ug/l 5.0 1.0 1 Acetone 18 ug/l 5.0 1.0 1 Viryl acetata ND ug/l 5.0 1.0 1 Viryl acetata ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Pethylacet	<u> </u>						
Cis-1,2-Dichloroethene 6.7 ug/l 2.5 0.70 1							
1,2-Dichloroethene, Total 6.7 ug/l 2.5 0.70 1	·						
Dibromomethane ND ug/l 5.0 1.0 1 1 1 1 1 1 1 1 1							
1,2,3-Trichloropropane ND ug/l 2,5 0,70 1	Dibromomethane						1
Actylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodiflurormethane ND ug/l 5.0 1.0 1 Acetone 18 ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone 2.3 J ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 2.5 0.70 1 2-Hexanone ND ug/l 2.5 0.70 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 <td>1,2,3-Trichloropropane</td> <td>ND</td> <td></td> <td></td> <td>2.5</td> <td>0.70</td> <td>1</td>	1,2,3-Trichloropropane	ND			2.5	0.70	1
Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 18 ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone 2.3 J ug/l 5.0 1.0 1 Viryl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2-Polichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,1,1-E-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1	Acrylonitrile	ND			5.0	1.5	1
ND	Styrene	ND			2.5	0.70	1
Actione 18 ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone 2.3 J ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1	Dichlorodifluoromethane	ND			5.0	1.0	1
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone 2.3 J ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 tetr-Butylbenzene ND ug/l 2.5 0.70 1 </td <td>Acetone</td> <td>18</td> <td></td> <td></td> <td>5.0</td> <td>1.5</td> <td>1</td>	Acetone	18			5.0	1.5	1
2-Butanone 2.3 J ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tetr-Butylbenzene ND ug/l 2.5 0.70 1<	Carbon disulfide	ND			5.0	1.0	1
4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1	2-Butanone	2.3	J		5.0	1.9	1
ND	Vinyl acetate	ND			5.0	1.0	1
Bromochloromethane ND	4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 tetr-Butylbenzene ND ug/l 2.5 0.70 1 l-2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 tetr-Butylbenzene ND ug/l 2.5 0.70 1 tetr-Butylbenzene ND ug/l 2.5 0.70 1 tetr-Butylbenzene ND ug/l 2.5 0.70 1	2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	Bromochloromethane	ND		ug/l	2.5	0.70	1
1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
ND	Bromobenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	n-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	sec-Butylbenzene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	o-Chlorotoluene	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	p-Chlorotoluene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene ND ug/l 2.5 0.70 1	Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
·	Isopropylbenzene	ND		ug/l	2.5	0.70	1
Naphthalene ND ug/l 2.5 0.70 1	p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
	Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 123 HOPE STREET Lab Number: L1810069

Project Number: 170357801 **Report Date:** 03/29/18

SAMPLE RESULTS

Lab ID: L1810069-02 Date Collected: 03/23/18 13:38

Client ID: PMW03_032318 Date Received: 03/23/18 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	95		70-130	
Toluene-d8	106		70-130	
4-Bromofluorobenzene	114		70-130	
Dibromofluoromethane	91		70-130	

Project Name: 123 HOPE STREET

Project Number: 170357801

SAMPLE RESULTS

Lab Number: L1810069

Report Date: 03/29/18

Lab ID: L1810069-03 Date Collected: 03/23/18 12:20

Client ID: Date Received: 03/23/18 PMW04_032318 Sample Location: Field Prep: BROOKLYN, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 03/28/18 13:12

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Chloroform	ND		ug/l	2.5	0.70	1		
Carbon tetrachloride	ND		ug/l	0.50	0.13	1		
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1		
Dibromochloromethane	ND		ug/l	0.50	0.15	1		
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1		
Tetrachloroethene	2.5		ug/l	0.50	0.18	1		
Chlorobenzene	ND		ug/l	2.5	0.70	1		
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Bromodichloromethane	ND		ug/l	0.50	0.19	1		
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1		
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1		
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1		
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1		
Bromoform	ND		ug/l	2.0	0.65	1		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1		
Benzene	0.37	J	ug/l	0.50	0.16	1		
Toluene	ND		ug/l	2.5	0.70	1		
Ethylbenzene	ND		ug/l	2.5	0.70	1		
Chloromethane	ND		ug/l	2.5	0.70	1		
Bromomethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	0.89	J	ug/l	1.0	0.07	1		
Chloroethane	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1		
trans-1,2-Dichloroethene	0.77	J	ug/l	2.5	0.70	1		

L1810069

Project Name: 123 HOPE STREET

Project Number: 170357801

SAMPLE RESULTS

Report Date: 03/29/18

Lab Number:

Lab ID: L1810069-03

PMW04_032318 Client ID: Sample Location: BROOKLYN, NY Date Collected: 03/23/18 12:20

Date Received: 03/23/18 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Trichloroethene	1.6		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	39		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	40	J	ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	34		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	31		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 123 HOPE STREET Lab Number: L1810069

Project Number: 170357801 **Report Date:** 03/29/18

SAMPLE RESULTS

Lab ID: L1810069-03 Date Collected: 03/23/18 12:20

Client ID: PMW04_032318 Date Received: 03/23/18 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	106	70-130	
4-Bromofluorobenzene	113	70-130	
Dibromofluoromethane	96	70-130	

03/23/18 15:40

Project Name: 123 HOPE STREET

Project Number: 170357801

SAMPLE RESULTS

Lab Number: L1810069

Report Date: 03/29/18

Lab ID: L1810069-04 Date Collected:

PMW05_032318 Client ID: Date Received: 03/23/18 Sample Location: Field Prep: BROOKLYN, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 03/28/18 13:37

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	0.48	J	ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: 123 HOPE STREET

Project Number: 170357801

SAMPLE RESULTS

L1810069

Lab Number:

Report Date: 03/29/18

Lab ID: L1810069-04

PMW05_032318 Client ID: Sample Location: BROOKLYN, NY Date Collected: 03/23/18 15:40

Date Received: 03/23/18 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	tborough Lab					
Trichloroethene	ND		/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	 1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND			2.5	0.70	1
o-Xylene	ND		ug/l ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	 1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND			5.0	1.5	1
Styrene	ND		ug/l ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND			5.0	1.0	1
Acetone	22		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	8.7		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND			2.0	0.65	1
1,3-Dichloropropane	ND		ug/l ug/l	2.5	0.03	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND			2.5	0.70	
sec-Butylbenzene	ND		ug/l ug/l	2.5	0.70	1 1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND			2.5	0.70	1
Naphulalelle	ואט		ug/l	2.0	0.70	I

Project Name: 123 HOPE STREET Lab Number: L1810069

Project Number: 170357801 **Report Date:** 03/29/18

SAMPLE RESULTS

Lab ID: L1810069-04 Date Collected: 03/23/18 15:40

Client ID: PMW05_032318 Date Received: 03/23/18 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	107	70-130	
4-Bromofluorobenzene	113	70-130	
Dibromofluoromethane	92	70-130	

Project Name: 123 HOPE STREET

Project Number: 170357801

SAMPLE RESULTS

Lab Number: L1810069

Report Date: 03/29/18

Lab ID: L1810069-05 Date Collected: 03/23/18 00:00

Client ID: Date Received: 03/23/18 TB02_032318 Sample Location: Field Prep: BROOKLYN, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 03/28/18 14:02

Analyst: NLK

	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L1810069

03/23/18 00:00

Project Name: 123 HOPE STREET

Project Number: 170357801

SAMPLE RESULTS

Lab Number:

Report Date: 03/29/18

Lab ID: L1810069-05 Date Collected:

Client ID: Date Received: 03/23/18 TB02_032318 Sample Location: Field Prep: Not Specified BROOKLYN, NY

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	2.6	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 123 HOPE STREET Lab Number: L1810069

Project Number: 170357801 **Report Date:** 03/29/18

SAMPLE RESULTS

Lab ID: L1810069-05 Date Collected: 03/23/18 00:00

Client ID: TB02_032318 Date Received: 03/23/18 Sample Location: BROOKLYN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
						,
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	61.	1
p-Diethylbenzene	ND		ug/l	2.0	0.70	1
p-Ethyltoluene	ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	107	70-130	
4-Bromofluorobenzene	114	70-130	
Dibromofluoromethane	92	70-130	

Project Name: 123 HOPE STREET

Project Number: 170357801

Lab Number: L1810069

03/29/18

Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/28/18 09:49

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL	
olatile Organics by GC/MS	- Westborough Lab	for sample(s): 0	1-05 Batch:	WG1101340-5	
Methylene chloride	ND	ug/l	2.5	0.70	
1,1-Dichloroethane	ND	ug/l	2.5	0.70	
Chloroform	ND	ug/l	2.5	0.70	
Carbon tetrachloride	ND	ug/l	0.50	0.13	
1,2-Dichloropropane	ND	ug/l	1.0	0.14	
Dibromochloromethane	ND	ug/l	0.50	0.15	
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	
Tetrachloroethene	ND	ug/l	0.50	0.18	
Chlorobenzene	ND	ug/l	2.5	0.70	
Trichlorofluoromethane	ND	ug/l	2.5	0.70	
1,2-Dichloroethane	ND	ug/l	0.50	0.13	
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	
Bromodichloromethane	ND	ug/l	0.50	0.19	
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14	
1,1-Dichloropropene	ND	ug/l	2.5	0.70	
Bromoform	ND	ug/l	2.0	0.65	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	
Benzene	ND	ug/l	0.50	0.16	
Toluene	ND	ug/l	2.5	0.70	
Ethylbenzene	ND	ug/l	2.5	0.70	
Chloromethane	ND	ug/l	2.5	0.70	
Bromomethane	ND	ug/l	2.5	0.70	
Vinyl chloride	ND	ug/l	1.0	0.07	
Chloroethane	ND	ug/l	2.5	0.70	
1,1-Dichloroethene	ND	ug/l	0.50	0.17	
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Trichloroethene	ND	ug/l	0.50	0.18	

Project Name: 123 HOPE STREET

Project Number: 170357801

Lab Number: L1810069

Report Date: 03/29/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/28/18 09:49

Analyst: PD

arameter	Result	Qualifier Units	s RL	MDL
olatile Organics by GC/MS -	Westborough La	b for sample(s):	01-05 Batch:	WG1101340-5
1,2-Dichlorobenzene	ND	ug/	l 2.5	0.70
1,3-Dichlorobenzene	ND	ug/	l 2.5	0.70
1,4-Dichlorobenzene	ND	ug/	1 2.5	0.70
Methyl tert butyl ether	ND	ug/	1 2.5	0.70
p/m-Xylene	ND	ug/	1 2.5	0.70
o-Xylene	ND	ug/	l 2.5	0.70
Xylenes, Total	ND	ug/	1 2.5	0.70
cis-1,2-Dichloroethene	ND	ug/	1 2.5	0.70
1,2-Dichloroethene, Total	ND	ug/	1 2.5	0.70
Dibromomethane	ND	ug/	J 5.0	1.0
1,2,3-Trichloropropane	ND	ug/	1 2.5	0.70
Acrylonitrile	ND	ug/	J 5.0	1.5
Styrene	ND	ug/	1 2.5	0.70
Dichlorodifluoromethane	ND	ug/	5.0	1.0
Acetone	ND	ug/	J 5.0	1.5
Carbon disulfide	ND	ug/	J 5.0	1.0
2-Butanone	ND	ug/	J 5.0	1.9
Vinyl acetate	ND	ug/	J 5.0	1.0
4-Methyl-2-pentanone	ND	ug/	J 5.0	1.0
2-Hexanone	ND	ug/	J 5.0	1.0
Bromochloromethane	ND	ug/	1 2.5	0.70
2,2-Dichloropropane	ND	ug/	1 2.5	0.70
1,2-Dibromoethane	ND	ug/	1 2.0	0.65
1,3-Dichloropropane	ND	ug/	1 2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/	l 2.5	0.70
Bromobenzene	ND	ug/	l 2.5	0.70
n-Butylbenzene	ND	ug/	l 2.5	0.70
sec-Butylbenzene	ND	ug/	l 2.5	0.70
tert-Butylbenzene	ND	ug/	1 2.5	0.70

Project Name: 123 HOPE STREET

Project Number: 170357801

Lab Number: L1810069

Report Date: 03/29/18

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/28/18 09:49

Analyst: PD

Parameter	Result	Qualifier Units	s RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	01-05 Batch:	WG1101340-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/l

L1810069

Project Name: 123 HOPE STREET

Project Number: Report Date: 170357801 03/29/18

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/28/18 09:49

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - West	borough La	b for sampl	e(s): 01-05	Batch:	WG1101340-5	

	Acceptance							
Surrogate	%Recovery Qu	ualifier Criteria						
1,2-Dichloroethane-d4	96	70-130						
Toluene-d8	106	70-130						
4-Bromofluorobenzene	116	70-130						
Dibromofluoromethane	89	70-130						

Project Name: 123 HOPE STREET

Project Number: 170357801

Lab Number: L1810069

Report Date: 03/29/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-05 Batch: W	G1101340-3 WG1101340-4		
Methylene chloride	81		82	70-130	1	20
1,1-Dichloroethane	89		90	70-130	1	20
Chloroform	84		84	70-130	0	20
Carbon tetrachloride	99		99	63-132	0	20
1,2-Dichloropropane	85		84	70-130	1	20
Dibromochloromethane	82		82	63-130	0	20
1,1,2-Trichloroethane	84		84	70-130	0	20
Tetrachloroethene	90		88	70-130	2	20
Chlorobenzene	87		85	75-130	2	20
Trichlorofluoromethane	100		100	62-150	0	20
1,2-Dichloroethane	82		82	70-130	0	20
1,1,1-Trichloroethane	96		94	67-130	2	20
Bromodichloromethane	81		83	67-130	2	20
trans-1,3-Dichloropropene	94		93	70-130	1	20
cis-1,3-Dichloropropene	84		85	70-130	1	20
1,1-Dichloropropene	97		96	70-130	1	20
Bromoform	79		79	54-136	0	20
1,1,2,2-Tetrachloroethane	86		90	67-130	5	20
Benzene	87		87	70-130	0	20
Toluene	90		90	70-130	0	20
Ethylbenzene	95		94	70-130	1	20
Chloromethane	94		94	64-130	0	20
Bromomethane	51		51	39-139	0	20

Project Name: 123 HOPE STREET

Project Number: 170357801

Lab Number: L1810069

Report Date: 03/29/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - W	estborough Lab Associated	sample(s): 01-	-05 Batch: W	G1101340-3	WG1101340-4			
Vinyl chloride	98		97		55-140	1	20	
Chloroethane	100		100		55-138	0	20	
1,1-Dichloroethene	91		93		61-145	2	20	
trans-1,2-Dichloroethene	89		88		70-130	1	20	
Trichloroethene	83		84		70-130	1	20	
1,2-Dichlorobenzene	83		82		70-130	1	20	
1,3-Dichlorobenzene	87		87		70-130	0	20	
1,4-Dichlorobenzene	85		86		70-130	1	20	
Methyl tert butyl ether	85		87		63-130	2	20	
p/m-Xylene	90		90		70-130	0	20	
o-Xylene	90		90		70-130	0	20	
cis-1,2-Dichloroethene	83		82		70-130	1	20	
Dibromomethane	76		79		70-130	4	20	
1,2,3-Trichloropropane	84		92		64-130	9	20	
Acrylonitrile	82		82		70-130	0	20	
Styrene	85		85		70-130	0	20	
Dichlorodifluoromethane	130		120		36-147	8	20	
Acetone	100		110		58-148	10	20	
Carbon disulfide	92		92		51-130	0	20	
2-Butanone	91		86		63-138	6	20	
Vinyl acetate	83		83		70-130	0	20	
4-Methyl-2-pentanone	83		84		59-130	1	20	
2-Hexanone	92		92		57-130	0	20	

Project Name: 123 HOPE STREET

Project Number: 170357801

Lab Number: L1810069

Report Date: 03/29/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - W	estborough Lab Associated	sample(s):	01-05 Batch:	WG1101340-3	WG1101340-4				
Bromochloromethane	77		73		70-130	5		20	
2,2-Dichloropropane	100		100		63-133	0		20	
1,2-Dibromoethane	83		83		70-130	0		20	
1,3-Dichloropropane	85		86		70-130	1		20	
1,1,1,2-Tetrachloroethane	89		87		64-130	2		20	
Bromobenzene	83		84		70-130	1		20	
n-Butylbenzene	120		120		53-136	0		20	
sec-Butylbenzene	110		110		70-130	0		20	
tert-Butylbenzene	88		89		70-130	1		20	
o-Chlorotoluene	93		94		70-130	1		20	
p-Chlorotoluene	95		96		70-130	1		20	
1,2-Dibromo-3-chloropropane	77		81		41-144	5		20	
Hexachlorobutadiene	120		110		63-130	9		20	
Isopropylbenzene	100		100		70-130	0		20	
p-Isopropyltoluene	110		110		70-130	0		20	
Naphthalene	90		90		70-130	0		20	
n-Propylbenzene	100		100		69-130	0		20	
1,2,3-Trichlorobenzene	80		81		70-130	1		20	
1,2,4-Trichlorobenzene	83		83		70-130	0		20	
1,3,5-Trimethylbenzene	98		98		64-130	0		20	
1,2,4-Trimethylbenzene	100		99		70-130	1		20	
1,4-Dioxane	110		140		56-162	24	Q	20	
p-Diethylbenzene	100		100		70-130	0		20	

Project Name: 123 HOPE STREET

Project Number: 170357801

Lab Number:

L1810069

Report Date:

03/29/18

<u>Parameter</u>	LCS %Recovery	Qual		.CSD ecovery		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-05	Batch:	WG1101340-3	WG1101340-4				
p-Ethyltoluene	100			100		70-130	0		20	
1,2,4,5-Tetramethylbenzene	96			96		70-130	0		20	
Ethyl ether	82			86		59-134	5		20	
trans-1,4-Dichloro-2-butene	90			90		70-130	0		20	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	98	98	70-130
Toluene-d8	106	106	70-130
4-Bromofluorobenzene	110	111	70-130
Dibromofluoromethane	91	91	70-130

Project Name: 123 HOPE STREET **Lab Number:** L1810069 Project Number: 170357801

YES

Report Date: 03/29/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1810069-01A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260(14)
L1810069-01B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260(14)
L1810069-01C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260(14)
L1810069-02A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260(14)
L1810069-02B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260(14)
L1810069-02C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260(14)
L1810069-03A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260(14)
L1810069-03B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260(14)
L1810069-03C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260(14)
L1810069-04A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260(14)
L1810069-04B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260(14)
L1810069-04C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260(14)
L1810069-05A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260(14)
L1810069-05B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260(14)

Project Name:123 HOPE STREETLab Number:L1810069Project Number:170357801Report Date:03/29/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: DU Report with 'J' Qualifiers

В

Project Name:123 HOPE STREETLab Number:L1810069Project Number:170357801Report Date:03/29/18

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 123 HOPE STREET
 Lab Number:
 L1810069

 Project Number:
 170357801
 Report Date:
 03/29/18

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873**

Revision 11 Published Date: 1/8/2018 4:15:49 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: <u>DW:</u> Bromide EPA 6860: <u>SCM:</u> Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

ДІРНА	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Vay	05	Page			ate Rec'd in Lab	3/2	4/18	3	ALPHA Job# LIS 10 049
Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 506-898-9193	Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Project Information Project Name: 25	My M					ASP-A EQuIS (1 Fil		ASP-	-B IS (4 File)	Same as Client Info
Client Information		Project # 1703578					Townson or other Designation of the London	Other	- 27			Disposal Site Information
Client: INOCAY	1 2 (t 1) - an 1	(Use Project name as P					Company of the last	itory Requir	ement	T NV D	art 375	Water the second of the second
Address: 2100 WV		Project Manager: RI iUV	DUNANU	W			-	WQ Standard	4n F	NYC		Please identify below location of applicable disposal facilities.
	VIVY TOOK	ALPHAQuote #:	-				-	Y Restricted	-	Other		Disposal Facility:
Phone: 212-479-5	0040	Turn-Around Time	, SEE				Accord.	Y Unrestricte	-	_ Onles		
Fax:	161	Standard	A STORY OF THE PARTY OF THE PAR	Due Date			Local					NJ YNY
Email: BECCHEN AU		Rush (only if pre approved	0 🗆	# of Days				VYC Sewer Di	scharge			Other:
These samples have b							ANAL'	1919	-	_		Sample Filtration
Other project specific	MIN: ASCHMIE	DICKE @ LUWGAN. CON	٨				100.5					☐ Done ☐ Lab to do Preservation ☐ Lab to do
												(Please Specify below)
ALPHA Lab ID		Collection			Sample	Sampler's	1-1					
(Lab Use Only)	Sa	imple ID	Date	Time	Matrix Initia		F					Sample Specific Comments
10069 -01	PMWM2 _ 032	214	3/23/14	1450	GW	VN	P					
92		2318	1	338		1	P					
03	and the state of t	उंशि		1220		-	O					
04	DUVINOZ OS	12319		1540	1		S					
05	TB02-152319		+	-	DIWARY	4	P					
	11002-03-010	,	NV.		Divide							
							\vdash					
										+		
A = None		Westboro: Certification No: MA935 Mansfield: Certification No: MA015			Container Type Preservative		✓					Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not
E = NaOH F = MeOH $G = NaHSO_4$ $H = Na_2S_2O_3$ K/E = Zn Ac/NaOH O = Other Form No: 01-25 HC (rev. 3	C = Cube O = Other E = Encore D = BOD Bottle	Relinquished	By: /44/	3/2' 3/25/18	71me 3/18 21/18	Reg	Receive	d Byy DAA DZ3	31	133/	Time (6)	start until any ambiguities are resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)