

BT Red Hook, LLC

HUMAN HEALTH EXPOSURE ASSESSMENT

Red Hook 4
NYSDEC Brownfield Site No. C224214
44 and 62 Ferris Street and 219 Sullivan Street
Brooklyn, Kings County, New York

June 2018

Lather Miles Held

Gretchen Miles Hubbard Staff Scientist

Hugh Devery

Vice President/Principal Geologist

Barbara Purt

Hush B D.

Barbara Pugh Senior Life Scientist

HUMAN HEALTH EXPOSURE ASSESSMENT

Red Hook 4 – NYSDEC Brownfield Site No. C224214 44 and 62 Ferris Street and 219 Sullivan Street Brooklyn, Kings County, New York

Prepared for:

BT Red Hook, LLC

Prepared by:

Arcadis of New York, Inc.

One Lincoln Center

110 West Fayette Street

Suite 300

Syracuse

New York 13202

Tel 315 446 9120

Fax 315 449 0017

Our Ref.:

B0038994.0000

Date:

June 2018

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

CONTENTS

Acr	onym	ns and Abbreviations	ii
1	Intro	oduction	1
	1.1	Site Location and Description	1
	1.2	Site Background	1
2	Data	a Evaluated in the Human Health Exposure Assessment	3
	2.1	Soil	3
		2.1.1 Surface Soil	4
		2.1.2 Subsurface Soil	5
	2.2	Groundwater	6
	2.3	Light and/or Dense non-Aqueous Phase Liquid (LNAPL/DNAPL)	8
	2.4	Soil Vapor	9
	2.5	Summary of Constituents of Potential Concern	10
3	Con	ntaminant Fate and Transport	11
4	Pote	ential Receptors and Exposure Pathways	18
5	Sum	nmary and Conclusions	20
6	Refe	erences	21
T/	ABI	LES	
Tab	ole 1	Subsurface Soil Analytical Results	
	ole 2		
	ole 3	•	
Tab	ole 4	Qualitative Exposure Assessment Summary	

FIGURES

Figure 1	Site Location Map
Figure 2	Site Map
Figure 2A	Site Map with Block/Lot Boundaries
Figure 3	Monitoring Well and Soil Boring Location Map
Figure 4	Occurrence of Visible DNAPL and LNAPL

APPENDICES

Appendix A Atlantic Environmental Solutions, Inc. Remedial Investigation Report Tables 1 through 4

ACRONYMS AND ABBREVIATIONS

AESI Atlantic Environmental Solutions, Inc.

Arcadis Arcadis of New York, Inc.

ATSDR Agency for Toxic Substances and Disease Registry

AWQS Ambient Water Quality Standards

bgs below ground surface

COPC constituent of potential concern

DER Division of Environmental Remediation

DNAPL dense non-aqueous phase liquid

HHEA Human Health Exposure Assessment

HSDB Hazardous Substances Database

LNAPL light non-aqueous phase liquid

μg/m³ micrograms per cubic meter

NYCDEP New York City Department of Environmental Protection

NYCRR New York Codes, Rules, and Regulations

NYS New York State

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

PAH polyaromatic hydrocarbon
PCB polychlorinated biphenyl

PCE tetrachloroethene

PID photoionization detector

PPE personal protective equipment
RIR Remedial Investigation Report

SCO Soil Cleanup Objective

SVOC semi-volatile organic compound

TCE trichloroethene

TOGS Technical and Operational Guidance Series

USEPA United States Environmental Protection Agency

UST underground storage tank

VISL Vapor Intrusion Screening Level

VOC volatile organic compound

1 INTRODUCTION

This Human Health Exposure Assessment (HHEA) was prepared on behalf of BT Red Hook, LLC. The HHEA is a qualitative assessment conducted in accordance with New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation (DER) requirements. The HHEA consists of an exposure assessment — an evaluation to determine the route, intensity, frequency, and duration of actual or potential exposures of humans to site-related contaminants (NYSDEC 2017). The HHEA characterizes the exposure setting including qualitative characterizations of the physical environment, the potentially exposed human populations, and associated exposure pathways at a site and surrounding areas. Potentially complete exposure pathways are defined for the constituents of potential concern (COPCs). In addition, contaminant fate and transport mechanisms are evaluated.

1.1 Site Location and Description

Red Hook 4 (NYSDEC Brownfield Cleanup Program Site No. C224214) is located along 44 and 62 Ferris Street and 219 Sullivan Street in Brooklyn, New York (collectively referred to as the "Site"). A site location map is provided as **Figure 1** and a site plan is provided as **Figure 2**, with block and lot boundaries shown on **Figure 2A**. The Site was most recently used as a large commercial parking lot for truck, trailer, and car parking. The entire Site is covered by impervious surfaces including pavement, asphalt, and/or concrete and is surrounded by a 6-foot-high fence and locked gates along Wolcott Street and Sullivan Street. There are no buildings or other structures located at the Site, which is currently vacant.

1.2 Site Background

A comprehensive background of the Site is included in the Remedial Investigation Report (RIR) prepared by Atlantic Environmental Solutions, Inc (AESI) in October 2017. Environmental concerns associated with the Site include the following:

- Historical use as an oil refinery on Lot 40
- Open NYSDEC Spill #0303688 (lube oil) and Spill #1311899 (hydraulic oil)
- A former truck scale on Lot 1 near the corner of Ferris and Wolcott Streets that is believed to contain hydraulic fluid
- Five former underground storage tanks (USTs) located on Lot 40, and a possible UST on Lot 40 near the Wolcott Street gate
- Historical use of fill throughout the Site

The RIR concludes that petroleum- and tar-related constituents are the primary impacts at the Site. In addition, elevated levels of metals are present but are attributed to fill materials. Based on data collected for the RIR, soil and groundwater concentrations of select volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and metals exceed the New York State (NYS) Soil Cleanup Objectives (SCOs) and the Ambient Water Quality Standards (AWQS) (NYSDEC 1998, 2006).

HUMAN HEALTH EXPOSURE ASSESSMENT - RED HOOK 4

As previously noted, this HHEA was conducted in accordance with NYSDEC Technical Guidance (NYSDEC 2017). This report presents an evaluation of the data representing the various environmental media at the Site, an evaluation of the potential fate and transport of the constituents in the environmental media, and an evaluation of the potential for human exposure to the constituents at the Site.

2 DATA EVALUATED IN THE HUMAN HEALTH EXPOSURE ASSESSMENT

Other than two subsurface soil samples, A-RH4-DB1 (5-10') and A-RH4-DB2 (5-10'), collected by Arcadis of New York, Inc. (Arcadis) in June 2017 and presented in **Table 1**, surface and subsurface soil, groundwater, and soil vapor data presented in this HHEA were previously provided to NYSDEC in the AESI RIR (AESI 2017). Data summary tables from the AESI RIR are presented in **Appendix A**.

To reflect current site conditions, the data evaluated in this HHEA represent the soil and groundwater samples collected in 2017. The 2017 samples were analyzed for metals, VOCs, SVOCs, polychlorinated biphenyls (PCBs), pesticides, and herbicides. Soil and groundwater data presented in the RIR were compared to 6 New York Codes, Rules and Regulations (NYCRR) Part 375 SCOs and Technical and Operational Guidance Series (TOGS) 1.1.1 Standards for Class GA groundwater (AESI 2017).

Laboratory reports containing analytical data for soil vapor samples collected by AESI in May 2017 are presented in the RIR (AESI 2017) but are not discussed or evaluated in the RIR. Accordingly, the May and June 2017 soil vapor data are evaluated in this HHEA and are presented in **Table 2**.

The following subsections briefly discuss the analytical data representing each medium as well as the results relative to risk-based screening levels used to identify COPCs—defined as chemical constituents that exceed conservative screening levels protective of human health. The discussion includes the results of the comparisons presented in the 2017 RIR. Although the risk-based screening levels presented in the 2017 RIR have not changed, additional screening levels and guidance documents were consulted to evaluate groundwater and soil vapor for the purposes of this HHEA and are also discussed below.

2.1 Soil

The Residential and Restricted Residential SCOs (6 NYCRR Part 375 Table 375-6.8b) are presented along with the analytical soil data (surface and subsurface samples collected in May and June 2017) in RIR Tables 1 and 2 in Appendix A. Data for soil samples collected in February 2017 are presented in Appendix A Tables 2A, 2B, and 2C and compared against the Commercial SCOs. Locations of soil borings and monitoring wells are shown on **Figure 3**. Note that monitoring well IDs ("MW...") as shown on Figure 3 correspond numerically with soil sample IDs ("EB...") shown in Appendix A tables (e.g., MW-5 corresponds with EB05). The Restricted Residential SCOs are risk-based soil levels protective of potential exposures by adult and child residents via incidental ingestion, inhalation of particulates and vapors, and dermal contact with soils. The Restricted Residential SCOs are also protective of potential exposures associated with active recreational land uses, which are defined as general public uses with a reasonable potential for soil contact (NYSDEC and New York State Department of Health [NYSDOH] 2006). The Residential SCOs are risk-based soil levels similar to the Restricted Residential SCOs in that they include the same exposure scenarios, but also include a vegetable consumption pathway. The Residential SCOs are considered protective of a single-family residence, which is an unlikely future land use at the Site (NYSDEC and NYSDOH 2006). Given that this scenario is highly unlikely at the Site, the Residential SCO comparisons used in the RIR are not appropriate risk-based screening levels and are overly conservative, and therefore are not considered in this HHEA.

Soil at the Site lies beneath pavement or asphalt and is therefore inaccessible. In addition to the Restricted Resident SCOs, Commercial SCOs are risk-based soil levels protective of potential exposures by adult workers and child visitors via incidental ingestion, inhalation of particulates and vapors, and dermal contact with soils. The Commercial SCOs are also protective of passive recreational land uses, which are defined as the general public uses but with a limited potential for soil contact (NYSDEC and NYSDOH 2006). In addition to the Restricted Resident SCOs, the Commercial SCOs are used in this HHEA to evaluate subsurface soil data.

2.1.1 Surface Soil

For the purposes of this HHEA, surface soil is defined as 0 to 2 feet below ground surface (bgs). However, the term "surface" is misleading in that soil samples were collected from beneath the impervious surface materials (asphalt and cement) currently present across the Site. The surface soil dataset presented in the **Appendix A** RIR tables includes 13 samples collected in 2017. The soil sampling locations are presented on **Figure 3**. Although **Appendix A** Table 1 includes both the SCOs protective of restricted residential and residential land use, only the Restricted Residential SCOs are used in this HHEA as described in Section 2.1. The Restricted Residential SCOs are used to identify COPCs in surface soil under a future residential use scenario. Given that future land use is most likely to be consistent with current commercial land use, Commercial SCOs are also used to identify COPCs in surface soil under a future commercial use scenario when the soil is accessible.

PCBs, pesticides, and herbicides were not detected in the surface soil samples analyzed, and VOCs were not detected at concentrations exceeding the Commercial SCOs. Detected concentrations of the following metals and polyaromatic hydrocarbons (PAHs) exceed the Commercial SCOs:

Analytes in Surface Soil Exceeding Commercial SCOs:

arsenic barium copper lead

mercury benzo(a)pyrene

benzo(k)fluoranthene dibenz(a,h)anthracene

Based on the assumption of future commercial land use involving accessible soil at the Site and exceedances of Commercial SCOs, the surface soil COPCs for a commercial use scenario include arsenic, barium, copper, lead, mercury, and the PAHs benzo(a)pyrene, benzo(k)fluoranthene, and dibenz(a,h)anthracene.

VOCs were not detected at concentrations exceeding the Restricted Residential SCOs. Detected concentrations of the following metals and PAHs exceed the Restricted Residential SCOs:

Analytes in Surface Soil Exceeding Restricted Residential SCOs:

arsenic barium copper lead

mercury benzo(a)anthracene benzo(a)pyrene benzo(b)fluoranthene

benzo(k)fluoranthene chrysene

dibenz(a,h)anthracene indeno(1,2,3-cd)pyrene

Based on a conservative assumption of future residential land use at the Site and exceedances of Restricted Residential SCOs, the surface soil COPCs for a residential use scenario include arsenic, barium, copper, lead, mercury, and the PAHs benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene.

The RIR (AESI 2017) states that contamination (e.g., PAHs and metals) consistent with historical fill has been identified in shallow soils across the Site. The layer of historical fill may extend to 10 to 15 feet bgs. The fill material was originally placed on the Site to raise the elevation prior to development. Contamination consistent with fill material has also been identified in groundwater sitewide (AESI 2017). Therefore, it is likely the COPCs (particularly arsenic, lead, and PAHs) identified in surface soil beneath the paved surface are related to the historical fill used at the Site and surrounding areas.

2.1.2 Subsurface Soil

For purposes of the HHEA, it is assumed that future development of the Site, and therefore potential exposure to soils, would not occur at depths greater than 15 feet bgs. Therefore, subsurface soils are defined as soil at depths ranging from 2 to 15 feet bgs. As previously noted for surface soil, soil samples were collected from beneath the existing impervious material (asphalt or concrete) covering the entire Site.

Data for a total of 32 subsurface soil samples (representing sample depth intervals of 2 to 15 feet bgs) are presented in RIR Tables 1, 2, 2A, 2B, and 2C in **Appendix A** and are evaluated in this HHEA. In addition to the data presented in the RIR, data for two subsurface soil samples collected by Arcadis in June 2017 are included in this HHEA (**Table 1**). Soil sample locations are shown on **Figure 3**. The RIR subsurface soil samples were collected in 2017 and analyzed for metals, VOCs, SVOCs (including PAHs), PCBs, pesticides, and herbicides. The detected levels of these analytes in subsurface soil were compared to SCOs protective of restricted residential land use as previously described. These SCOs were deemed to be conservatively appropriate based on current and potential future land use at or in the vicinity of the Site. Future land use is most likely to be consistent with current land use, which is commercial. For this HHEA, subsurface soil data are compared to both Restricted Residential and Commercial SCOs.

PCBs, pesticides, and herbicides were not detected in subsurface soil samples collected from 2 to 15 feet bgs. Results for the soil samples collected by Arcadis in 2017 did not exceed the Commercial or Restricted Residential SCOs (**Table 1**). Detected concentrations of the following metals and PAHs exceed the Commercial SCOs:

Analytes in Subsurface Soil Exceeding Commercial SCOs:

arsenic lead mercury nickel

acenaphthylene benzo(a)anthracene benzo(a)pyrene benzo(k)fluoranthene chrysene dibenzo(a,h)anthracene fluoranthene indeno(1,2.3-cd)pyrene

naphthalene phenanthrene

pyrene

Based on the assumption of future commercial land use involving intrusive activities and accessible subsurface soil at the Site and exceedances of Commercial SCOs, the subsurface soil COPCs for a commercial use scenario include arsenic, lead, mercury, and the PAHs acenaphthylene, benzo(a)anthracene, benzo(a)pyrene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, indeno(1,2,3-cd)pyrene, naphthalene, phenanthrene, and pyrene. As noted previously, it is likely the COPCs (particularly arsenic, lead, and PAHs) identified in subsurface soil beneath the paved surface are related to the historical fill used at the Site and surrounding areas.

Detected concentrations of the following metals and PAHs exceed the Restricted Residential SCOs:

Analytes in Subsurface Soil Exceeding Restricted Residential SCOs:

arsenic cadmium lead manganese mercury nickel

acenaphthene acenaphthylene
anthracene benzo(a)pyrene benzo(b)fluoranthene

benzo(k)fluoranthene chrysene
dibenzo(a,h)anthracene dibenzofuran
fluoranthene fluorene
indeno(1,2,3-cd)pyrene phenanthrene pyrene
benzene dibenzofuran

Based on Restricted Residential SCO exceedances, the subsurface soil COPCs are arsenic, cadmium, lead, manganese, mercury, nickel, dibenzofuran (pesticide), benzene (VOC), and the PAHs acenaphthene, acenaphthylene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, naphthalene, phenanthrene, and pyrene. As noted previously, it is likely the COPCs (particularly arsenic, lead, and PAHs) identified in subsurface soil beneath the paved surface are related to the historical fill used at the Site and surrounding areas.

2.2 Groundwater

NYSDEC TOGS 1.1.1 Class GA Ambient Water Quality Standards and guidance values (NYSDEC 1998) were compared to groundwater data as presented in Table 3 of the 2017 RIR (**Appendix A**). The Class GA Standards are promulgated standards protective of drinking water sources. The guidance values are used for constituents that lack promulgated standards. The use of these values as risk-based screening levels in this HHEA is not appropriate given that groundwater on the Site is not used as a potable source under either the current or future use scenarios; therefore, these values are not used to identify groundwater COPCs in this HHEA.

Although no building currently exists at the Site, the United States Environmental Protection Agency (USEPA) residential Vapor Intrusion Screening Levels (VISLs; USEPA 2018) may be appropriate to evaluate the potential for vapor migration to indoor air in a future building (commercial or residential). The groundwater VISLs were obtained from USEPA's online VISL Calculator and are protective of indoor air

in a commercial building and a residential building. For each analyte, the groundwater VISL represents the lower of a risk-based screening level protective of noncarcinogenic health effects at a target hazard limit of 0.1 and/or a screening level protective of cancer risks at a one in one million (1E-06) target cancer risk limit. As discussed below, the evaluation consists of comparing the USEPA VISLs protective of future commercial and residential buildings to the groundwater data presented in RIR Table 3 in **Appendix A**.

Based on gauging and groundwater contour data prepared by Arcadis, groundwater intercepted by shallow-screened wells flows toward the south and is generally encountered at a depth of 3 to 6 feet bgs. Groundwater in the deeper-screened wells is indicated to flow toward the northeast. Bedrock has not been encountered at any depth, with borings completed at the Site at depths up to 95 feet bgs.

The RIR includes the analytical laboratory reports for each groundwater sample and presents the full set of analytical data representing groundwater at the Site (Tables 3 and 3B in **Appendix A**). Groundwater samples were analyzed for VOCs, SVOCs (including PAHs), PCBs, pesticides, and herbicides. To identify the COPCs in groundwater, risk-based groundwater levels protective of the vapor intrusion indoor air pathway were compared to the detected groundwater analytes. As previously discussed, USEPA groundwater VISLs protective of indoor air in a commercial building and residential building (USEPA 2018) are used to identify COPCs under a future worker scenario and a future residential scenario, respectively.

Under a future residential use scenario whereby a residential building is constructed and occupied at the Site, the following groundwater analytes are identified as COPCs:

Analytes in Groundwater Exceeding Residential VISLs:

1,1'-biphenylbenzenebenzo(a)anthracenechloroformethylbenzenenaphthalenestyrenetoluenevinyl chloridetotal xylenes

Under a future commercial use scenario whereby a commercial building is constructed and occupied at the Site, the following groundwater analytes are identified as COPCs:

Analytes in Groundwater Exceeding Commercial VISLs:

1,1'-biphenylbenzeneethylbenzenenaphthalenetoluenevinyl chloride

total xylenes

Based on this conservative evaluation, the following volatile compounds are groundwater COPCs at the Site: 1,1-biphenyl, benzene, chloroform, ethylbenzene, styrene, toluene, total xylenes, vinyl chloride, benzo(a)anthracene, and naphthalene. Although vinyl chloride was detected in groundwater at a level about the commercial and residential VISL COPC, it is based on a single detection in a groundwater sample collected in June 2017 from MW-11D, a deep monitoring well. Vinyl chloride was not detected in a paired groundwater sample collected at the same time from MW-11S reflecting a shallower groundwater depth interval. Furthermore, vinyl chloride was not detected above laboratory reporting limits in any soil vapor sample collected in June 2017 at the Site (AESI, 2017). Therefore, based on this evaluation, it is

unlikely that vinyl chloride would be present in indoor air from a groundwater source at this Site. As noted for soil, the presence of PAHs is likely related to use of historical fill at the Site (AESI 2017).

2.3 Light and/or Dense non-Aqueous Phase Liquid (LNAPL/DNAPL)

Information provided in the RIR (AESI 2017) indicates that several areas at the Site have been impacted historically with LNAPL and DNAPL. The information includes the following:

- Characterization activities conducted by AESI in 2014 identified petroleum contamination as evidenced by staining, odors, and elevated photoionization detector (PID) readings in the following areas of the Site: the corner of Ferris and Sullivan Streets (associated with petroleum spills); an area associated with a former truck scale presumably containing hydraulic oil along the corner of Ferris and Wolcott Streets; and an area in the northeastern portion of the Site associated with five former USTs that were previously removed from the Site. Qualitative fingerprint analyses of subsequent soil samples collected from the areas of elevated PID readings indicated chemical signatures resembling diesel range petroleum #2 heating, motor, and lubricating oil.
- LNAPL, reported to be hydraulic oil was observed in 2017 at depths of 7 to 10 feet bgs in soil borings SB17-A and SB17-A1 in the northwestern portion of the Site.
- During a June 3, 2017 gauging event, AESI observed non-aqueous phase liquid on the water level indicator probe at monitoring wells MW-4 (LNAPL), MW-14 (DNAPL), and MW-15 (DNAPL), although no measurable product thickness was noted.
- During a June 16, 2017 gauging event, AESI observed LNAPL in MW-4 at a thickness of 0.15 feet, DNAPL in MW-14 at a thickness of 0.45 feet, and DNAPL in MW-15 at a thickness of 0.32 feet.
 Monitoring well MW-15 was reportedly located at the extreme southeast corner of the Site at the EB-15 location shown on Figure 3 but was later reported as destroyed.

Groundwater samples collected from monitoring well MW-4, with noted LNAPL, did not contain VOC or SVOC impacts consistent with petroleum discharges.

Borings conducted by Arcadis in 2017 indicated that DNAPL impacts were present at depths of 50 to 75 feet bgs over the southeast section of the Site. The DNAPL thicknesses are consistent with measurements obtained by Arcadis in June 2017. Forensic analyses of DNAPL collected by Arcadis in 2017 indicated that the DNAPL resembles petroleum tar. **Figure 4** shows borings and monitoring wells with free-phase DNAPL or LNAPL as observed by Arcadis and AESI. During a gauging event on April 27, 2018, Arcadis measured DNAPL in monitoring well MW-10D at a thickness of 20.01 feet and in monitoring well MW-14 at a thickness of 9.09 feet. LNAPL was measured in monitoring wells MW-Q3, MW-4, and MW-17 at a thickness of 0.50 feet, 0.03 feet, and 0.01 feet, respectively. LNAPL was also observed in monitoring well MW-3, but the thickness could not be adequately measured due to the viscosity of the LNAPL. LNAPL is present in the northern and north-central portion of the Site, with additional impacts found near the southeastern border of the Site along Sullivan Street. Based on well gauging and borings conducted by Arcadis and others, LNAPL impacts are present at depths of 5 to 20 feet bgs. Forensic analyses of LNAPL collected from monitoring well MW-4 by Arcadis in 2017 indicated that LNAPL resembled weathered crude or Bunker C oil. An LNAPL-impacted soil sample from boring A-RH4-DB12 (**Figure 3** and **4**) was analyzed and found to be similar to weathered diesel and mineral oil.

2.4 Soil Vapor

As previously noted, soil gas data are included in an appendix of the RIR (AEIS 2017). For evaluating the soil gas data in this HHEA, it was assumed a future building could be constructed at the Site for either commercial/industrial use or restricted residential use. USEPA has developed soil gas VISLs protective of commercial and residential exposures. In addition, NYSDOH has prepared a soil vapor/indoor air decision matrix for eight volatile compounds (NYSDOH 2017). Although the decision matrix requires a comparison of both sub-slab vapor (soil gas) and indoor air thresholds, the existing dataset for the Site includes only soil gas sampling results (given there is no building currently at the Site). Thus, the decision matrix was adapted for use in this HHEA by considering only the sub-slab vapor thresholds for the eight volatile compounds as follows:

- Trichloroethene (TCE), cis-2,3-dichloroethene, 1,1-dichloroethene, and carbon tetrachloride:
 - If the soil gas concentration is less than 6 micrograms per cubic meter (μg/m³), no further action is required.
 - $_{\odot}$ If the soil gas concentration is greater than 6 μ g/m³ but less than the USEPA soil gas VISL, no further action is required.
 - \circ If the soil gas concentration exceeds the VISL or 60 $\mu g/m^3$, a potential exists for future risk from exposure.
- Tetrachloroethene (PCE), 1,1,1-trichloroethane, and methylene chloride:
 - o If the soil gas concentration is less than 100 μg/m³, no further action is required.
 - $_{\odot}$ If the soil gas concentration is greater than 100 μ g/m³ but less than the USEPA soil gas VISL, no further action is required.
 - o If the soil gas concentration exceeds the VISL or 1,000 μ g/m³, a potential exists for future risk from exposure.
- Vinyl chloride:
 - $_{\odot}$ If the soil gas concentration is less than 6 μg/m³ and less than the USEPA soil gas VISL, no further action is required.
 - $_{\odot}$ If the soil gas concentration is greater than 6 μ g/m³ but less than the USEPA soil gas VISL, no further action is required.
 - o If the soil gas concentration exceeds the VISL or $60 \mu g/m^3$, a potential exists for future risk from exposure.

The 2017 soil vapor analytical data included in the RIR are presented in **Table 2** (only detected values are presented). As previously described, for the purpose of this HHEA, the data for select compounds were compared to NYSDOH sub-slab thresholds and USEPA's soil gas VISLs protective of residential indoor air and commercial indoor air. Benzene and TCE were detected in soil gas samples at concentrations exceeding the residential risk-based levels and are identified as COPCs should a future residential building be constructed at the Site. Although the detected concentrations of TCE exceed the NYSDOH lower matrix threshold, the detected concentrations do not exceed the NYSDOH upper limit or

USEPA's commercial indoor air VISL (see **Table 2**). No COPC in soil vapor was identified under a future commercial scenario should a commercial building be constructed at the Site.

Based on the evaluation of soil gas data, should a future residential building be constructed at the Site, a soil vapor intrusion assessment should be conducted to evaluate the need for engineering controls to mitigate potential vapor migration into indoor air (e.g., installation of soil vapor mitigation system and/or vapor barrier).

2.5 Summary of Constituents of Potential Concern

A summary of site COPCs identified for potential future residential and commercial use scenarios is presented in **Table 3**. COPCs are identified for each exposure medium: surface soil, subsurface soil, groundwater, and soil vapor (via potential future indoor air). COPCs were identified by comparison of sample results to risk-based screening levels protective of human health.

3 CONTAMINANT FATE AND TRANSPORT

This section presents the general environmental fate and transport characteristics for site COPCs based on information obtained from toxicological profiles developed by the Agency for Toxic Substances and Disease Registry (ATSDR) and from information provided in the Hazardous Substances Data Bank (HSDB).

Arsenic

Arsenic is identified as a COPC in surface and subsurface soils. According to ATSDR, arsenic is a naturally occurring element widely distributed in the earth's crust. Anthropogenic sources of arsenic include non-ferrous mining and smelting wastes, pesticide applications, wood combustion, and waste incineration. In the environment, arsenic is combined with oxygen, chlorine, and sulfur to form inorganic arsenic compounds. Arsenic in animals and plants combines with carbon and hydrogen to form organic arsenic compounds. Arsenic in soil may be transported by wind and runoff or may leach into subsurface soil. In sediments, arsenic may be sorbed to iron and manganese oxides and may be released under reducing conditions. Transport and partitioning of arsenic in water depends upon its chemical form (i.e., oxidation state) and other materials present. Arsenic may be present in soluble form in the water column or adsorbed onto sediments or soils. Groundwater arsenic concentrations are generally controlled by adsorption rather than mineral precipitation. Bioconcentration of arsenic occurs in aquatic organisms, primarily in algae and lower invertebrates, although biomagnification in aquatic food chains does not appear to be significant (ATSDR 2007a).

Barium

Barium is identified as a COPC in surface soils. Barium is a naturally occurring element often associated with minerals where it is released during normal weathering processes. Anthropogenic sources include industrial processes (e.g., mining, refining barium). Barium released to the atmosphere is most likely to be present in particulate form and will be removed by wet and/or dry deposition to ground or water surfaces. In soils, barium is typically either bioconcentrated by plants or transported through soil with precipitation, although it is not very mobile in most soil systems because it forms water-insoluble barium salts. In aquatic systems, barium is most likely to precipitate out of the solution as an insoluble salt, which may settle into sediment. Barium is bioconcentrated by aquatic plants and also bioaccumulates in higher level biota (ATSDR 2007b).

Cadmium

Cadmium is identified as a COPC in subsurface soils. According to ATSDR, cadmium is a naturally occurring element often associated with minerals where it is released during normal weathering processes. Anthropogenic sources include industrial processes (e.g., manufacture, use, and disposal of products intentionally utilizing cadmium), or from the presence of cadmium as a natural but not functional impurity in non-cadmium-containing products (fertilizers, cement, alloys of zinc, lead, and copper). Cadmium is expected to partition to soil when released to the environment. Cadmium emitted to the atmosphere condenses onto very small particulates that are in the respirable range and are subject to long-range transport. Particulate and vapor cadmium may be released to the air but will eventually deposit onto soils. Cadmium-containing particulates may dissolve in atmospheric water droplets and be removed from air by wet deposition. Cadmium is more mobile in aquatic environments than most other

heavy metals. In unpolluted natural waters, most cadmium transported in the water column will exist in the dissolved state. In polluted or organic-rich waters, adsorption of cadmium by humic substances and other organic complexing agents plays a dominant role in transport, partitioning, and remobilization of cadmium. The cadmium concentration in water is inversely related to the pH and the concentration of organic material in the water. Cadmium has a relatively long residence time in aquatic systems. Cadmium is not known to form volatile compounds in the aquatic environment; therefore, partitioning from water to the atmosphere does not occur. Precipitation and sorption to mineral surfaces, hydrous metal oxides, and organic materials are the most important processes for removal of cadmium to bed sediments. Humic acid is the major component of sediment responsible for adsorption. Sorption increases as the pH increases. In soils, pH, oxidation-reduction reactions, and formation of complexes are important factors affecting the mobility of cadmium. Cadmium in soils may leach into water, especially under acidic conditions. Cadmium is taken up efficiently by plants and, therefore, enters the food chain for humans and other animals. Aquatic and terrestrial organisms bioaccumulate cadmium and cadmium bioaccumulates in all levels of the food chain (ATSDR 2012a).

Copper

Copper is identified as a COPC in surface soils. According to ATSDR, copper is a naturally occurring element. Anthropogenic sources include industrial processes (mining operations, agriculture, sludge from publicly owned treatment works [POTWs], and municipal and industrial solid waste). Copper is released to the atmosphere in the form of particulate matter or adsorbed to particulate matter. It is removed by gravitational settling (bulk deposition), dry deposition, in-cloud scavenging (attachment of particles by droplets within clouds), and washout. The importance of wet to dry deposition generally increases with decreasing particle size. Much of the copper discharged into waterways is in particulate matter and settles out. In the water column and in sediments, copper adsorbs to organic matter, hydrous iron and manganese oxides, and clay. Most copper deposited on soil is adsorbed with greater concentrations in the upper 5 to 10 centimeters of soil except in sandy soils where the lability of bound copper is greater. Copper's movement in soil is determined by the soil components. In general, copper will adsorb to organic matter, carbonate minerals, clay minerals, or hydrous iron and manganese oxides. Sandy soils with low pH have the greatest potential for leaching. Soil microorganisms also affect the absorption of copper in soils due to the uptake and assimilation of the metal by these microorganisms. Copper binds strongly to soils with high organic content (ATSDR 2004).

Lead

Lead is identified as a COPC in surface and subsurface soils. Lead is an element. According to ATSDR, anthropogenic sources of lead include mining and smelting of ore, manufacture of lead-containing products, combustion of coal and oil, and waste incineration. Because lead does not degrade, the historical uses of lead (including in gasoline, paint, solder [food cans], pesticides, etc.) result in elevated concentrations in the environment and particularly in urban environments. In the atmosphere, non-organic compounds of lead exist primarily in the particulate form. Upon release to the atmosphere, lead particles are dispersed and ultimately removed from the atmosphere by wet or dry deposition. Wet deposition is more important than dry deposition for removing lead from the atmosphere. The amount of soluble lead in surface waters depends upon the pH of the water and the dissolved salt content. A significant fraction of lead carried by river water is expected to be in an undissolved form, which can consist of colloidal particles or larger undissolved particles of lead carbonate, lead oxide, lead hydroxide, or other lead

compounds incorporated in other components of surface particulate matters from runoff. Lead may occur either as sorbed ions or surface coatings on sediment mineral particles, or it may be carried as a part of suspended living or nonliving organic matter in water. The fate of lead in soil is affected by the adsorption at mineral interfaces, the precipitation of sparingly soluble solid forms of the compound, and the formation of relatively stable organic-metal complexes or chelates with soil organic matter. These processes are dependent on factors such as soil pH, soil type, particle size, organic matter content of soil, the presence of inorganic colloids and iron oxides, cation exchange capacity, and the amount of lead in soil. The mobility of lead increases in environments having low pH due to the enhanced solubility of lead under acidic conditions. The accumulation of lead in most soils is primarily a function of the rate of deposition from the atmosphere. Most lead is retained strongly in soil, and very little is transported through runoff to surface water or leaching to groundwater except under acidic conditions. Lead is strongly sorbed to organic matter in soil, and although not subject to leaching, it may enter surface waters as a result of erosion of lead-containing soil particulates. Lead may be taken up in edible plants from the soil via the root system, by direct foliar uptake and translocation within the plant, and by surface deposition of particulate matter. Uptake of lead in animals may occur as a result of inhalation of contaminated ambient air or ingestion of contaminated plants. However, lead is not biomagnified in aquatic or terrestrial food chains. Plants and animals may bioconcentrate lead, but biomagnification is not expected (ATSDR 2007d).

Manganese

Manganese is identified as a COPC in subsurface soils. According to ATSDR, manganese is widely distributed in the environment from both natural and anthropogenic sources. Anthropogenic sources include industrial processes (e.g., iron and steel production facilities, power plants, coke ovens, use as a gasoline additive). Manganese compounds have negligible vapor pressures but may exist in air as suspended particulate matter. Manganese-containing particles are mainly removed from the atmosphere by gravitational settling, with large particles tending to fall out faster than small particles. The transport and partitioning of manganese in water are controlled by the solubility of the specific chemical form present, which is in turn determined by pH, oxidation-reduction potential, and characteristics of the available anions. Manganese is generally transported in rivers as suspended sediments. Manganese in water may be significantly bioconcentrated at lower trophic levels. The ability of soluble manganese compounds to adsorb to soils and sediments depends largely on the cation exchange capacity and organic composition of the soil (ATSDR 2012b).

Mercury

Mercury is identified as a COPC in surface and subsurface soils. According to ATSDR, natural sources of mercury include volcanic eruptions and emissions from the ocean. Anthropogenic sources include emissions from fuels or raw materials, or from uses in products or industrial processes. Some of the mercury circulating through today's environment was released years ago. The natural global biogeochemical cycling of mercury is characterized by degassing of the element from soils and surface waters, followed by atmospheric transport, deposition of mercury back to land and surface waters, and sorption of the compound to soil or sediment particulates. Mercury deposited on land and open water is in part re-volatilized back into the atmosphere. Mercury has three valence states. The specific state and form in which the compound is found in an environmental medium are dependent upon a number of factors, including the oxidation-reduction potential and pH of the medium. Metallic mercury released in

vapor form to the atmosphere can be transported long distances before it is converted to other forms of mercury, and wet and dry deposition processes return it to land and water surfaces. In soils and surface waters, mercury can exist in the mercuric (Hg⁺²) and mercurous (Hg⁺¹) states as a number of complex ions with varying water solubilities. Mercuric mercury, present as complexes and chelates with ligands, is likely the predominant form of mercury present in surface waters. The transport and partitioning of mercury in surface waters and soils are influenced by the particular form of the compound. Volatile forms (e.g., metallic mercury and dimethylmercury) are expected to evaporate to the atmosphere, whereas solid forms partition to particulates in the soil or water column and are transported downward in the water column to the sediments. The dominant process controlling the distribution of mercury compounds in the environment appears to be the sorption of nonvolatile forms to soil and sediment particulates, with little resuspension from the sediments back into the water column. The sorption process has been found to be related to the organic matter content of the soil or sediment. The most common organic form of mercury, methylmercury, is soluble, mobile, and quickly enters the aquatic food chain. This form of mercury will bioaccumulate in aquatic and terrestrial food chains (ATSDR 1999).

Nickel

Nickel is identified as a COPC in subsurface soil. Nickel is released to the atmosphere in the form of particulate matter or adsorbed to particulate matter. It is dispersed by wind and removed by gravitational settling (sedimentation), dry deposition, washout by rain, and rainout. Gravitational settling governs the removal of large particles (greater than 5 micrometers), whereas smaller particles are removed by other forms of dry and wet deposition. The importance of wet deposition relative to dry deposition generally increases with decreasing particle size. The fate of heavy metals in aquatic systems depends on partitioning between soluble and particulate solid phases. Adsorption of nickel onto suspended particles in water is one of the main removal mechanisms of nickel from the water column. Much of the nickel released into waterways as runoff is associated with particulate matter; it is transported and settles out in areas of active sedimentation such as the mouth of a river. Nickel is strongly adsorbed at mineral surfaces such as oxides and hydrous oxides of iron, manganese, and aluminum. Such adsorption plays an important role in controlling the concentration of nickel in natural waters. Nickel is strongly adsorbed by soil. Soil properties such as texture, bulk density, pH, organic matter, the type and amount of clay minerals, and certain hydroxides, as well as the extent of groundwater flow, influence the retention and release of metals by soil. Nickel is not accumulated in significant amounts by aquatic organisms. Uptake and accumulation of nickel into various plant species is known to occur (ASTDR 2005).

Benzene

Benzene is identified as a COPC in subsurface soil, groundwater, and soil vapor. According to ATSDR, sources of benzene emissions include gasoline vapors, automobile exhaust, cigarette smoke, chemical production, and user facilities. The high volatility of benzene is the controlling physical property in the environmental transport and partitioning of this chemical (ATSDR 2007c). Benzene will exist solely as a vapor in the ambient atmosphere. Benzene is very water soluble and may be removed from the atmosphere by rain (HSDB 2014). A substantial portion of any benzene in rainwater that is deposited to soil or water will be returned to the atmosphere via volatilization. Benzene released to soil surfaces partitions to the atmosphere through volatilization, to surface water through runoff, and to groundwater as a result of leaching. Benzene is highly mobile in soil and readily leaches into groundwater. Greater soil

adsorption occurs with increasing organic matter content (ATSDR 2007c). Benzene is expected to biodegrade in soils. If released into water, benzene is not expected to adsorb to sediment and suspended solids. Volatilization from soil and water surfaces is expected to be an important fate process (HSDB 2014). Benzene does not bioaccumulate in marine organisms. Since benzene exists primarily in the vapor phase, air-to-leaf transfer is considered to be the major pathway of vegetative contamination. Benzene accumulates in leaves and fruits of plants (ATSDR 2007c).

Chloroform

Chloroform is identified as a COPC in groundwater. According to ATSDR, chloroform is both a synthetic and naturally occurring compound, although anthropogenic sources are responsible for most of the chloroform in the environment. Chloroform is released into the environment as a result of its manufacture and use; its formation in the chlorination of drinking water, municipal and industrial wastewater, and swimming pool and spa water; and from other water treatment processes involving chlorination. Historically, chloroform was used as a solvent to extract fats, oils, and greases; as a dry-cleaning agent; in fire extinguishers; and as a fumigant and anesthetic (NYSDEC 2018).

Chloroform readily evaporates into air, and dissolves in groundwater (ATSDR 1997). Chloroform typically volatizes to the atmosphere from surface water or shallow soils. Chloroform may leach from soil into groundwater, has a low adsorption capacity, and is soluble in water. Chloroform persists in groundwater for a long time. Most chloroform in the environment eventually enters the atmosphere, where it may be transported and/or degraded by photochemical reactions. Significant bioaccumulation of chloroform does not occur in aquatic food chains (ATSDR 1997).

Ethylbenzene

Ethylbenzene is identified as a COPC in groundwater. Ethylbenzene is used primarily in the production of styrene. It is also used as a solvent, as a constituent of asphalt and naphtha, and in fuels (NYSDEC 2018). Ethylbenzene has a high vapor pressure and will partition into the atmosphere from surface soils and surface water; subsurface soil infiltration will also occur (ATSDR 2010a). This chemical has a relatively high mobility in soils because sorption is not significant enough to prevent migration. Ethylbenzene will leach into groundwater, particularly in soils with low organic carbon content. Significant bioaccumulation does not occur in aquatic food chains. In surface water, ethylbenzene can be transformed via photo-oxidation and biodegradation. In soils, aerobic soil microbes are responsible for biodegradation.

Styrene

Styrene is identified as a COPC in groundwater. According to ATSDR, it is primarily a synthetic chemical used in the production of rubber, plastic, insulation, fiberglass, pipes, automobile parts, food containers, and carpet backing as well as in resins to make boat hulls, thermoplastics, glues, and adhesives (NYSDEC 2018). Styrene released to soils or sediments will likely volatilize to the atmosphere; the rate of volatilization depends on the characteristics of the soil or sediment. Styrene is "moderately mobile" in soil; styrene will adsorb to the organic carbon in soil material. If there is less organic carbon, styrene will be more mobile. The major fate of atmospheric styrene is determined by the rate of photo-oxidation. There is no information indicating that styrene will hydrolyze in water. Styrene is rapidly degraded in most soils under aerobic conditions, but it persists when soil conditions are anaerobic (ATSDR 2010b).

Toluene

Toluene is identified as a COPC in groundwater. The primary use of toluene is as a mixture added to gasoline to improve octane ratings. Toluene is also used to produce benzene and as a solvent in paints, coatings, synthetic fragrances, adhesives, inks, and cleaning agents. Toluene is also used in the production of polymers used to make nylon, plastic soda bottles, and polyurethanes and for pharmaceuticals, dyes, cosmetic nail products, and the synthesis of organic chemicals (NYSDEC 2018). If released to the environment, toluene tends to partition to air and when released to surface water or soil will volatilize quickly (ATSDR 2017). Toluene will exist solely as a vapor in the ambient atmosphere. Volatilization from surface soil and water surfaces is expected to be an important fate process. Toluene present in deep soil is much less likely to volatilize. Biodegradation is expected to occur rapidly in soil surfaces. Toluene is expected to be moderately to highly mobile in soil (HSDB 2016a). The rate of toluene transport to groundwater depends on the degree of adsorption to soil. Toluene is moderately retarded by adsorption to soils rich in organic matter but is readily leached from soils with low organic content (ATSDR 2017). If released into water, toluene is not expected to adsorb to suspended solids and sediment. Biodegradation is expected to occur rapidly in water. Bioconcentration in aquatic organisms is low to moderate (HSDB 2016a). Based on its lipophilic properties, toluene is expected to have a low tendency to bioconcentrate in the fatty tissues of aquatic organisms. The levels that accumulate in the flesh of aquatic species also depend on the degree to which the species metabolize toluene. The highest tissue levels of toluene tend to occur in species such as eels, crabs, and herring that have a low rate of toluene metabolism. Metabolism of toluene limits its tendency to biomagnify in the food chain (ATSDR 2017).

Trichloroethene

TCE is identified as a COPC in soil vapor. TCE is used in the vapor degreasing of metal parts as an extraction solvent for greases, oils, fats, waxes, and tars. It is also a chemical intermediate of PCE and is a component in consumer products such as paint removers/strippers, adhesives, spot removers, rugcleaning fluids, and typewriter correction fluids (NYSDEC 2018). The major route of removal of TCE from water is volatilization; TCE is moderately soluble in water. TCE has lower potential for sorption of soil or sediment particles, has medium to high mobility in soils, and readily leaches into groundwater. TCE is not expected to adsorb to suspended solids and sediments in water. TCE has a low to moderate tendency to bioaccumulate in aquatic systems and biomagnification is unlikely to be important (ATSDR 2014).

Vinyl Chloride

Vinyl chloride is identified as a COPC in groundwater. Vinyl chloride is used to make polyvinyl chloride used in the manufacturing of vinyl products including pipes, wire, cable components, packaging materials, furniture, automobile upholstery and parts, and houseware (wall covering, furniture) (NYSDEC 2018). Essentially all vinyl chloride in the atmosphere exists solely as a gas (ATSDR 2006). It volatilizes readily from surfaces of soil and waters and is not expected to degrade in waters. It is soluble in water and does not readily sorb to soils; therefore, vinyl chloride can leach through soil into groundwater. The potential for bioconcentration in aquatic organisms is predicted to be low, and bioaccumulation or biomagnification in aquatic systems is not expected to be significant (ATSDR 2006).

Xylenes (Total)

Xylenes (all isomers combined) are identified as a COPC in groundwater. Xylenes are primarily used in the production of ethylbenzene, as a solvent in products such as paints and coatings and are blended into gasoline (NYSDEC 2018). If released to air, xylenes will exist solely in the vapor phase in the atmosphere. Once xylenes enter the atmosphere, they undergo rapid photooxidation such that washout and long-range atmospheric transport are not expected to be important processes. Volatilization is expected to be the dominant transport mechanism for xylenes in surface soil and surface water. Xylenes are mobile in soil and will not adsorb strongly to organic matter. Xylenes will leach into groundwater from soil. If released into water, xylenes are not expected to adsorb to suspended solids and sediment. Potential for bioconcentration in aquatic organisms is predicted but expected to be minimal for all isomers of xylenes. Biodegradation of xylenes is expected to occur rapidly in aerobic soil but may proceed more slowly under anaerobic conditions. Xylenes are biodegraded in groundwater under aerobic conditions and may be degraded under anaerobic denitrifying conditions (HSDB 2016b; ATSDR 2007e).

Polycyclic Aromatic Hydrocarbons

Several PAHs are identified as COPCs in soils and groundwater. According to ATSDR, PAHs released to the environment are primarily a result of incomplete burning of organic material (e.g., wood, coal, oil, gasoline, and garbage). In addition to coal and wood ash used historically as fill material, PAHs have been associated with emissions from gasoline and diesel-powered engines. PAHs are also found in petroleum residues incidental to the normal operation of motor vehicles, including crude oil, coal tar, creosote, and asphalt (Massachusetts Department of Environmental Protection 2002).

PAHs are split into low molecular weight PAHs, which have less than four aromatic rings, and high molecular weight PAHs, which have more than four aromatic rings (ATSDR 1995). The site COPCs are high molecular weight PAHs (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene) with the exception of naphthalene, which is a low molecular weight PAH.

PAHs released to the atmosphere are subject to short- and long-range transport and are removed by wet and dry deposition onto soil, water, and vegetation. In surface water, PAHs can volatilize, photolyze, oxidize, biodegrade, bind to suspended particles or sediments, or accumulate in aquatic organisms (with bioconcentration factors often in the range of 10 to 10,000). In sediments, PAHs can biodegrade or accumulate in aquatic organisms. PAHs in soil can volatilize, undergo abiotic degradation (photolysis and oxidation), biodegrade, or accumulate in plants. PAHs in soil can also enter groundwater and be transported within an aquifer.

Generally, when found in air, PAHs that have four rings (chrysene, benzo[a]anthracene) are present in both the vapor and particulate phase, and PAHs having five or more rings (benzo[a]pyrene, benzo[g,h,i]perylene) are found predominantly in the particle phase. The high molecular weight PAHs will volatilize from water only to a limited extent. In general, PAHs have low water solubilities. Because of their low solubility and high affinity for organic carbon, PAHs in aquatic systems are primarily found sorbed to particles that either have settled to the bottom or are suspended in the water column. Volatilization from soil and surface water is not an important transport mechanism for high molecular weight PAHs (ATSDR 1995).

4 POTENTIAL RECEPTORS AND EXPOSURE PATHWAYS

An initial step in evaluating the potential for human exposure to site COPCs is to identify the receptors and potentially complete exposure pathways. For an exposure pathway to be complete, the following five elements must exist:

- contaminant source
- contaminant release and transport mechanisms
- point of exposure
- · route of exposure
- receptor population

An exposure pathway is considered incomplete and may be eliminated from further evaluation in the HHEA when any one of the five elements comprising an exposure pathway has not existed in the past, does not exist in the present, and can reasonably be anticipated to not exist in the future (New York City Department of Environmental Protection [NYCDEP] 2017).

Currently, the Site is a vacant, paved parking lot. For the purposes of this assessment, it is assumed a trespasser could gain access to the Site. However, there is no potential for exposure to soil given that the ground surface is covered by impervious asphalt and cement. There are no buildings at the Site, although buildings are present at adjacent properties. Finally, groundwater is not considered a drinking water source (NYCDEP 2017) and there is no potential for exposure. Surface water reservoirs located in upstate New York serve as the source of drinking water (NYCDEP 2018).

Potentially complete human exposure pathways for the Site exist only under a future use scenario. Although the future land use is considered to be consistent with current uses, should the Site be redeveloped in the future, potential future site receptors include the commercial worker (including indoor workers and outdoor workers), trespasser, and construction and/or utility worker (see **Table 4**).

Exposure pathways for current and future use scenarios are evaluated below.

Potential direct contact with surface and subsurface soils—current site conditions

Based on current and anticipated future land use, commercial workers, construction or utility workers, and/or trespassers are potential receptors at the Site. However, the Site is currently covered by impervious surfaces of asphalt and cement that preclude exposure by any receptors to surface and subsurface soils. Therefore, the direct contact exposure pathway to COPCs in surface soil is incomplete for commercial workers and trespassers.

Potential direct contact with surface and subsurface soils—future site conditions

Based on potential future land use, construction and/or utility workers may be exposed to COPCs in surface and subsurface soils should intrusive activities (e.g., remediation, development, utility maintenance/repair) occur at the Site. Underground utility lines are assumed to be present on and in the vicinity of the Site. The maximum detected concentrations of the surface soil COPCs exceeding the Commercial SCO are associated with surface soil samples EB-13D/MW-13D, EB-11D/MW-11D, EB-14D/MW-14, and EB-07/MW-7 (**Figure 3** and **Appendix A** – Table 2A). Subsurface soil samples with

concentrations exceeding SCOs for commercial land use were collected from depths of 2 to 2.5 and 4 to 6 feet bgs, with the highest detected concentrations generally associated with sample EB-09/MW-9 outside the presumed former remediation area associated with a previous petroleum discharge (Spill 0303688) and west of the concrete pad (**Figure 3** and **Appendix A** – Table 2).

Although the potential exists that exposure by construction and utility workers to surface and subsurface soils may occur during any future intrusive activities, it is likely that workers involved with intrusive activities would follow appropriate health and safety plans (e.g., use of personal protective equipment [PPE] such as gloves, Tyvek® apparel, safety glasses, appropriate ventilation), mitigating any potential exposure to COPCs in surface and subsurface soils.

Potential inhalation of vapors and/or particulates

Under current conditions, there are no exposed surface or subsurface soils at the Site given that the entire Site is covered by impervious surfaces. Therefore, no potential exposure via inhalation currently exists for any current outdoor worker or trespasser.

Construction and utility workers may be exposed to COPCs in subsurface soils and shallow groundwater via inhalation during future intrusive activities. However, as stated previously, future workers would be expected to follow appropriate health and safety protocols, mitigating the potential for any exposure.

There are no buildings on the Site and therefore no current potential for volatile COPCs from a groundwater source to intrude into indoor air. Given that eight volatile analytes were detected in groundwater at concentrations exceeding risk-based thresholds, an evaluation should be conducted to determine the need for vapor mitigation in the event that a building intended for human occupancy is constructed. Options to consider when constructing a future building include installation of a vapor barrier and/or vapor mitigation system.

Potential direct contact with groundwater (construction/utility workers)

Under current conditions, there is no potential for exposure to groundwater by potential receptors at the Site. Shallow groundwater on the Site flows southerly and is generally encountered at a depth of approximately 3 to 6 feet bgs. Groundwater is not used as a potable source, nor is it hydraulically connected to a potable source.

Under future conditions, it is possible that future receptors would include commercial workers and/or utility/construction workers involved with an excavation. However, as previously stated, groundwater is not utilized as a drinking water source and there is no other pathway that would allow exposure to groundwater (with the possible exception of migration of volatiles from groundwater into indoor air of a future building, as discussed previously).

Future construction and/or utility workers could potentially be exposed to groundwater on the Site during intrusive activities. However, it is expected that intrusive activities would include engineering controls (dewatering) to prevent shallow groundwater from infiltrating an excavation or trench. Additionally, potential exposure to shallow groundwater by a construction and/or utility worker would be mitigated by the use of PPE and implementation of required health and safety protocols.

5 SUMMARY AND CONCLUSIONS

This HHEA presents a qualitative exposure assessment characterizing the exposure setting, evaluates contaminant fate and transport pathways, and identifies potentially complete exposure pathways. Analytical data indicate that site COPCs include VOCs (benzene, chloroform, ethylbenzene, naphthalene, toluene, styrene, xylenes, and vinyl chloride), PAHs, and metals (arsenic, barium, cadmium, copper, lead, manganese, and mercury). The RIR indicates that metals and PAHs at concentrations exceeding SCOs are common in historical fill used at the Site (AESI 2017). Urban fill similar to that placed at the Site is ubiquitous throughout Brooklyn and elsewhere in New York City.

Under current conditions, there is no complete exposure pathway to surface soil. Although trespassers and commercial workers could be present at the Site, the entire Site is covered with an impervious surface, precluding potential exposure to surface soil.

The potential for exposure to COPCs in surface and subsurface soils is limited to future construction or excavation activities whereby the asphalt or concrete covering the Site is removed. Potential exposure of future construction and/or utility workers that may be engaged in intrusive activities would likely be mitigated through the use of appropriate required health and safety protocols (e.g., engineering controls and PPE).

Some VOC and PAH analytes were identified as COPCs in groundwater based on comparison to risk-based levels protective of indoor air exposure by future building occupants. Should a future building be constructed at the Site, an evaluation of potential vapor mitigation strategies is recommended. As noted previously, the RIR indicates that PAHs and metals are commonly associated with the fill material historically used at the Site.

Groundwater is not used as a potable resource at the Site under current and future conditions. Under current conditions, there is no potential for volatiles in the subsurface to migrate into indoor air via vapor intrusion since there are no buildings at the Site. Under a future use scenario, it is possible that construction workers and/or utility workers could be in contact with Site groundwater infiltrating an excavation at 15 feet bgs (the depth to groundwater is 3 to 6 feet bgs on average). Although the exposure to shallow groundwater pathway is considered potentially complete for these receptors, potential exposure to groundwater during future intrusive activities is expected to be mitigated with the use of appropriate required health and safety protocols including PPE.

Under a future use scenario, if buildings are constructed at the Site, TCE is a possible COPC for soil vapor intrusion and indoor air.

The presence of the impervious surface prevents potential contact with soil COPCs by current site receptors, including trespassers and commercial workers. This condition exists until the impervious surface is removed, exposing the soil at the Site. Under a future use scenario whereby a building is to be constructed at the Site, it is recommended that potential vapor mitigation strategies be evaluated.

6 REFERENCES

AESI. 2017. Remedial Investigation Report Red Hook 3. October.

ATSDR. 1995. Toxicological profile for Polycyclic Aromatic Hydrocarbons (PAHs). Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. http://www.atsdr.cdc.gov/toxprofiles/index.asp#D

ATSDR. 1997. Toxicological profile for Chloroform. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. http://www.atsdr.cdc.gov/toxprofiles/index.asp#D

ATSDR. 1999. Toxicological profile for Mercury. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. http://www.atsdr.cdc.gov/toxprofiles/index.asp#D

ATSDR. 2004. Toxicological profile for Copper. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. http://www.atsdr.cdc.gov/toxprofiles/index.asp#D

ATSDR. 2005. Toxicological profile for Nickel. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. http://www.atsdr.cdc.gov/toxprofiles/index.asp#D

ATSDR. 2006. Toxicological profile for Vinyl Chloride. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. http://www.atsdr.cdc.gov/toxprofiles/index.asp#D

ATSDR. 2007a. Toxicological profile for Arsenic. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. http://www.atsdr.cdc.gov/toxprofiles/index.asp#D

ATSDR. 2007b. Toxicological profile for Barium. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. http://www.atsdr.cdc.gov/toxprofiles/index.asp#D

ATSDR. 2007c. Toxicological profile for Benzene. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. http://www.atsdr.cdc.gov/toxprofiles/index.asp#D

ATSDR. 2007d. Toxicological profile for Lead. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. http://www.atsdr.cdc.gov/toxprofiles/index.asp#D

ATSDR. 2007e. Toxicological profile for Xylenes. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. http://www.atsdr.cdc.gov/toxprofiles/index.asp#D

ATSDR. 2010a. Toxicological profile for Ethylbenzene. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. http://www.atsdr.cdc.gov/toxprofiles/index.asp#D

ATSDR. 2010b. Toxicological profile for Styrene. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. http://www.atsdr.cdc.gov/toxprofiles/index.asp#D

ATSDR. 2012a. Toxicological profile for Cadmium. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. http://www.atsdr.cdc.gov/toxprofiles/index.asp#D

ATSDR. 2012b. Toxicological profile for Manganese. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. http://www.atsdr.cdc.gov/toxprofiles/index.asp#D

ATSDR. 2014. DRAFT Toxicological profile for Trichloroethylene. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. http://www.atsdr.cdc.gov/toxprofiles/index.asp#D

HUMAN HEALTH EXPOSURE ASSESSMENT - RED HOOK 4

ATSDR. 2017. Toxicological profile for Toluene. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. http://www.atsdr.cdc.gov/toxprofiles/index.asp#D

HSDB. 2014. U.S. National Library of Medicine. Benzene. October. http://toxnet.nlm.nih.gov

HSDB. 2016a. U.S. National Library of Medicine. Toluene. Last revision date – October 25, 2016 http://toxnet.nlm.nih.gov

HSDB. 2016b. U.S. National Library of Medicine. Xylenes. Last revision date – October 25, 2016. http://toxnet.nlm.nih.gov

Massachusetts Department of Environmental Protection. 2002. Technical Update: Background Levels of Polycyclic Aromatic Hydrocarbons and Metals in Soil. Office of Research and Standards. May. https://www.mass.gov/files/documents/2016/08/xl/backtu.pdf

NYCDEP. 2017. Groundwater Supply System for 2017. Accessed May 17, 2018. http://www.nyc.gov/html/dep/html/drinking_water/groundwater.shtml

NYCDEP. 2018. Drinking Water. http://www.nyc.gov/html/dep/html/drinking_water/index.shtml

NYSDEC. 1998. Division of Water Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June.

NYSDEC. 2006. 6 NYCRR Subpart 375-6, Remedial Program Soil Cleanup Objectives. December 14.

NYSDEC. 2017. Final DER-10 Technical Guidance for Site Investigation and Remediation. November 7.

NYSDEC. 2018. Uses, Sources, and Potential Exposure to Toxic Air Pollutants. Accessed May 23, 2018. https://www.dec.ny.gov/chemical/89942.html

NYSDEC and NYSDOH. 2006. New York State Brownfield Cleanup Program. Development of Soil Cleanup Objectives Technical Support Document. September.

NYSDOH. 2017. Updates to Soil Vapor / Indoor Air Decision Matrices. Accessed June 5, 2018. https://health.ny.gov/environmental/indoors/vapor_intrusion/update.htm

USEPA. 2018. Vapor Intrusion Screening Level (VISL) Calculator. Accessed May 17, 2018. https://www.epa.gov/vaporintrusion/vapor-intrusion-screening-level-calculator

TABLES

Table 1
Subsurface Soil Analytical Results

Human Health Exposure Assessment BT Red Hook, LLC Red Hook 4 - NYSDEC Brownfield Site #C224214 Brooklyn, Kings County, New York

Analyte	Commercial SCO ¹	Restricted Residential SCO ¹	Location: Depth Range: Depth Unit: Sample Date: Unit	A-RH4-DB1 5-10 feet 6/27/2017	A-RH4-DB2 5-10 feet 6/29/2017
General Chemistry					
Chromium III	1500	180	mg/kg	15.7	17.3
Cyanide	27	27	mg/kg	< 0.56 U	< 0.61 U
Inorganics					
Aluminum			mg/kg	7600	8470
Antimony			mg/kg	< 0.345 U	< 0.429 U
Arsenic	16	16	mg/kg	4.91 J	3.55 J
Barium	400	400	mg/kg	48.8	49.4
Beryllium	590	72	mg/kg	0.483	0.492
Cadmium	9.3	4.3	mg/kg	0.0835 J	< 0.214 U
Calcium			mg/kg	2450	2270
Chromium			mg/kg	15.7 J	17.3 J
Chromium VI	400	110	mg/kg	< 1.8 U	< 1.8 U
Cobalt			mg/kg	5.85	6.61
Copper	270	270	mg/kg	17.7	12.2
Iron			mg/kg	16100	16700
Lead	1000	400	mg/kg	55.2	8.39
Magnesium			mg/kg	3040	2940
Manganese	10000	2000	mg/kg	286	120
Mercury	2.8	0.81	mg/kg	< 0.118 U	0.0133 J
Nickel	310	310	mg/kg	19.7 J	21 J
Potassium			mg/kg	1540	1590
Selenium	1500	180	mg/kg	< 0.69 U	0.264 J
Silver	1500	180	mg/kg	< 0.173 U	< 0.214 U
Sodium			mg/kg	237	170
Thallium			mg/kg	0.0795 J	0.0909 J
Vanadium			mg/kg	25.2 J	24.9 J
Zinc	10000	10000	mg/kg	61.3 J	38.1 J
Organochlorine Pesticides					
4,4-DDD	92	13	mg/kg	0.00044 J	< 0.0021 U
4,4-DDT	47	7.9	mg/kg	< 0.0020 U	< 0.0021 U
Dibenzofuran	350	59	mg/kg	< 0.039 U	< 0.04 U
Heptachlor epoxide			mg/kg	0.00027 J	< 0.0010 U
PCBs					
Aroclor 1248			mg/kg	< 0.02 U	< 0.021 U
Polychlorinated biphenyls	1	1	mg/kg	< 0.02 U	< 0.021 U
SVOCs			, , , , , , , , , , , , , , , , , , ,		
1,1-Biphenyl			mg/kg	< 0.039 U	< 0.04 U
2-Methylnaphthalene			mg/kg	0.005 J	0.015 J
4-Chlorophenyl phenyl ether			mg/kg	< 0.039 U	< 0.04 U
4-Methylphenol	500	100	mg/kg		
Acenaphthene	500	100	mg/kg	< 0.02 U	< 0.021 U
Acenaphthylene	500	100	mg/kg	0.006 J	0.011 J
Anthracene	500	100	mg/kg	0.009 J	0.008 J
Benzo(a)anthracene	5.6	1	mg/kg	0.027	0.014 J
Benzo(a)pyrene	1	1	mg/kg	0.025	0.01 J
Benzo(b)fluoranthene	5.6	1	mg/kg	0.028	0.012 J
Benzo(g,h,i)perylene	500	100	mg/kg	0.016 J	0.006 J
Benzo(k)fluoranthene	56	3.9	mg/kg	0.015 J	< 0.021 U
Benzoic Acid			mg/kg	< 0.58 U	0.45 J
bis(2-Ethylhexyl)phthalate			mg/kg	< 0.2 U	< 0.21 U
Carbazole			mg/kg	< 0.039 U	< 0.04 U
Chrysene	56	3.9	mg/kg	0.03	0.008 J
Dibenzo(a,h)anthracene	0.56	0.33	mg/kg	0.008 J	< 0.021 U
Fluoranthene	500	100	mg/kg	0.043	0.014 J

See Notes on Page 2.

Red Hook 4 HHEA_Table 1_Subsurface SO 1/2

Human Health Exposure Assessment BT Red Hook, LLC Red Hook 4 - NYSDEC Brownfield Site #C224214 Brooklyn, Kings County, New York

Analyte	Commercial SCO ¹	Restricted Residential SCO ¹	Location: Depth Range: Depth Unit: Sample Date: Unit	A-RH4-DB1 5-10 feet 6/27/2017	A-RH4-DB2 5-10 feet 6/29/2017
SVOCs (cont.)					
Fluorene	500	100	mg/kg	0.004 J	< 0.021 U
Indeno(1,2,3-cd)pyrene	5.6	0.5	mg/kg	0.016 J	< 0.021 U
Naphthalene	500	100	mg/kg	< 0.02 U	0.01 J
Phenanthrene	500	100	mg/kg	0.026	0.014 J
Pyrene	500	100	mg/kg	0.042	0.024
VOCs					
1,1,2,2-Tetrachloroethane			mg/kg	< 0.005 U	< 0.006 UJ
1,1,2-Trichloroethane			mg/kg	< 0.005 U	< 0.006 U
1,2,3-Trichloropropane			mg/kg	< 0.005 U	< 0.006 UJ
1,2,4-Trimethylbenzene	190	52	mg/kg	< 0.005 U	< 0.006 UJ
1,2-Dichlorobenzene	500	100	mg/kg	< 0.005 U	< 0.006 UJ
1,2-Dichloroethane	30	3.1	mg/kg	< 0.005 U	< 0.006 U
1,3,5-Trimethylbenzene	190	52	mg/kg	< 0.005 U	< 0.006 UJ
1,4-Dichlorobenzene	130	13	mg/kg	< 0.005 U	< 0.006 UJ
2-Butanone (MEK)	500	100	mg/kg	< 0.01 U	< 0.012 U
Acetone	400	100	mg/kg	0.047	0.024
Benzene	44	4.8	mg/kg	< 0.005 U	< 0.006 U
Carbon Disulfide			mg/kg	< 0.005 U	0.004 J
Chlorobenzene	500	100	mg/kg	< 0.005 U	< 0.006 U
cis-1,2-Dichloroethene	500	100	mg/kg	< 0.005 U	< 0.006 U
Cyclohexane			mg/kg	< 0.005 U	< 0.006 U
Cymene (p-Isopropyltoluene)			mg/kg	< 0.005 U	< 0.006 UJ
Dichloromethane	500	100	mg/kg	< 0.005 U	< 0.006 U
Isopropylbenzene			mg/kg	< 0.005 U	< 0.006 U
Methyl Acetate			mg/kg	< 0.005 U	< 0.006 U
Methyl N-Butyl Ketone (2-Hexanone)			mg/kg	< 0.01 U	< 0.012 U
Methylcyclohexane			mg/kg	< 0.005 U	< 0.006 U
n-Butylbenzene	500	100	mg/kg	< 0.005 U	< 0.006 UJ
n-Propylbenzene	500	100	mg/kg	< 0.005 U	< 0.006 UJ
sec-Butylbenzene	500	100	mg/kg	< 0.005 U	< 0.006 UJ
tert-Butylbenzene	500	100	mg/kg	< 0.005 U	< 0.006 UJ
Trichloroethene	200	21	mg/kg	< 0.005 U	< 0.006 U

Notes:

Only detected constituents included; herbicides were not detected.

blank = not available or not analyzed

¹ 6 New York Codes, Rules, and Regulations (NYCRR) Part 375 SCOs for commercial land use and restricted residential land use (NYSDEC 2006)

< = not detected

J = estimated value

mg/kg = milligrams per kilogram

PCB = polychlorinated biphenyl

SCO = soil cleanup objective

SVOC = semi-volatile organic compound

U = not detected

VOC = volatile organic compound

Red Hook 4 HHEA_Table 1_Subsurface SO 2/2

Table 2 Soil Vapor Analytical Results

Human Health Exposure Assessment BT Red Hook, LLC Red Hook 4 - NYSDEC Brownfield Site #C224214 Brooklyn, Kings County, New York

Analyte ¹	Thres		Sub-Slab Concen		Location: Sample Date	SV01 5/31/2017	SV02 6/15/2017	SV03 6/15/2017	SV04 6/15/2017	SV05 5/31/2017	SV06 5/31/2017	SV07 5/31/2017	Residential Indoor Air COPC	Commercial Indoor Air COPC
	Lower Limit	Upper Limit	Residential	Commercial	Unit									
VOCs														
2,2,4-Trimethylpentane			NS	NS	ug/m³	ND	ND	ND	ND	19	35	ND		
Acetone			107000	451000	ug/m³	63	9.0	ND	ND	16	38	5		
Benzene			12	52.4	ug/m³	48	11	ND	12	15	34	22	Х	
Carbon Disulfide			2430	10200	ug/m ³	20	58	ND	ND	25	10	26		
Carbon Tetrachloride	6	60	15.6	68.1	ug/m ³	3.2	ND	ND	ND	ND	ND	ND		
Cyclohexane			20900	87600	ug/m³	8.3	ND	ND	ND	ND	63	ND		
Dichlorodifluoromethane			NS	NS	ug/m ³	ND	ND	ND	ND	ND	11	ND		
Methylene chloride	100	1000	2090	8760	ug/m ³	11	ND	ND	120	41	ND	7.3		
Methyl ethyl ketone			17400	73000	ug/m ³	12	ND	ND	ND	ND	ND	ND		
n-Heptane			1390	5840	ug/m³	18	ND	ND	ND	ND	18	ND		
n-Hexane			2430	10200	ug/m ³	120	ND	ND	ND	ND	8.5	ND		
Tetrachloroethene	100	1000	139	584	ug/m ³	14	ND	ND	ND	ND	15	ND		
Toluene			17400	73000	ug/m ³	36	11	9.8	10	27	42	26		
Trichloroethene	6	60	6.95	29.2	ug/m³	15	3.2	4.3	2.7	4.3	12	3.8	Х	
Xylenes (m&p)			NS	NS	ug/m ³	29	13	9.1	9.1	30	46	38		
Xylenes (o)			348	1460	ug/m ³	8.7	ND	ND	ND	9.1	13	11		

Notes:

COPC = constituent of potential concern

ug/m³ = micrograms per cubic meter

ND = not detected

NS = no standard

NYSDOH = New York State Department of Health

USEPA = United States Environmental Protection Agency

VISL = Vapor Intrusion Screening Level

VOC = volatile organic compound

Red Hook 4 HHEA_Table 2_Soil Vapor

¹ Soil vapor sample results obtained from Appendix D of the Remedial Investigation Report (Atlantic Environmental Solutions, Inc. 2017). Only detected analytes are presented.

² NYSDOH has published a decision matrix for eight volatile compounds as sub-slab soil gas samples (NYSDOH 2017), adapted for use at this Site. If soil gas concentrations are below the lower limit or VISLs, no further action is required. If soil gas concentrations exceed the upper limit or VISLs, analyte is identified as a COPC for the vapor migration to indoor air pathway.

³ Target sub-slab soil vapor concentrations for residential and commercial use from the VISL Calculator (USEPA 2018). COPCs exceeding the USEPA Target Sub-Slab Soil Vapor Concentration for residential indoor air are bold.

Table 3 COPC Summary

Human Health Exposure Assessment BT Red Hook, LLC Red Hook 4 - NYSDEC Brownfield Site #C224214 Brooklyn, Kings County, New York

		COPC under Re	sidential Scenario	COPC under Commercial Scenario				
COPC	Surface Soil	Subsurface Soil	Groundwater (Indoor Air)	Soil Vapor (Indoor Air)	Surface Soil	Subsurface Soil	Groundwater (Indoor Air)	Soil Vapor (Indoor Air)
Inorganics								
Arsenic	Х	Х			Х	Х		
Barium	Х				Х			
Cadmium		X						
Copper	Х				Х			
Lead	Х	Х			Х	Х		
Manganese		Х						
Mercury	Х	Х			Х	Х		
Nickel		Х				X		
SVOCs								
1,1-Biphenyl			Х				X	
Acenaphthene		X				<u> </u>		
Acenaphthylene		Х				Х		
Anthracene		Х						
Benzo(a)anthracene	Х	Х	Х			Х		
Benzo(a)pyrene	Х	Х			Х	Х		
Benzo(b)fluoranthene	Х	Х						
Benzo(k)fluoranthene	Х	Х				X		
Chrysene	Х	Х				X		
Dibenzo(a,h)anthracene	Х	Х			Х	Х		
Fluoranthene		Х				X		
Fluorene		Х						
Indeno(1,2,3-cd)pyrene	Х	Х				Х		
Naphthalene		Х	Х			Х	Х	
Phenanthrene		Х				Х		
Pyrene		Х				Х		
Organochlorine Pesticides								
Dibenzofuran		Х						
VOCs								
Benzene		Х	Х	Х			Х	
Chloroform			Х					
Ethylbenzene			Х				Х	
Styrene			Х					
Toluene			Х				Х	
Trichloroethene				Х				
/inyl chloride			Х				Х	
Kylenes			Х				Х	

Notes:

x = selected as a COPC

COPC = constituent of potential concern

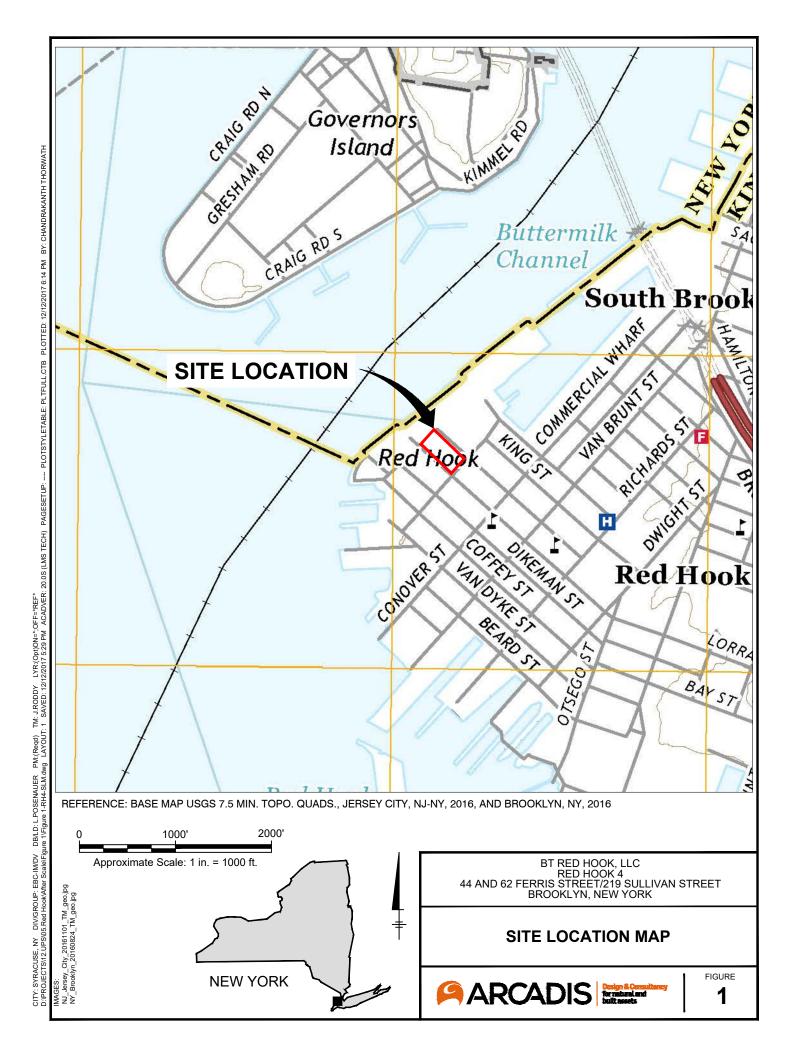
SVOC = semi-volatile organic compound

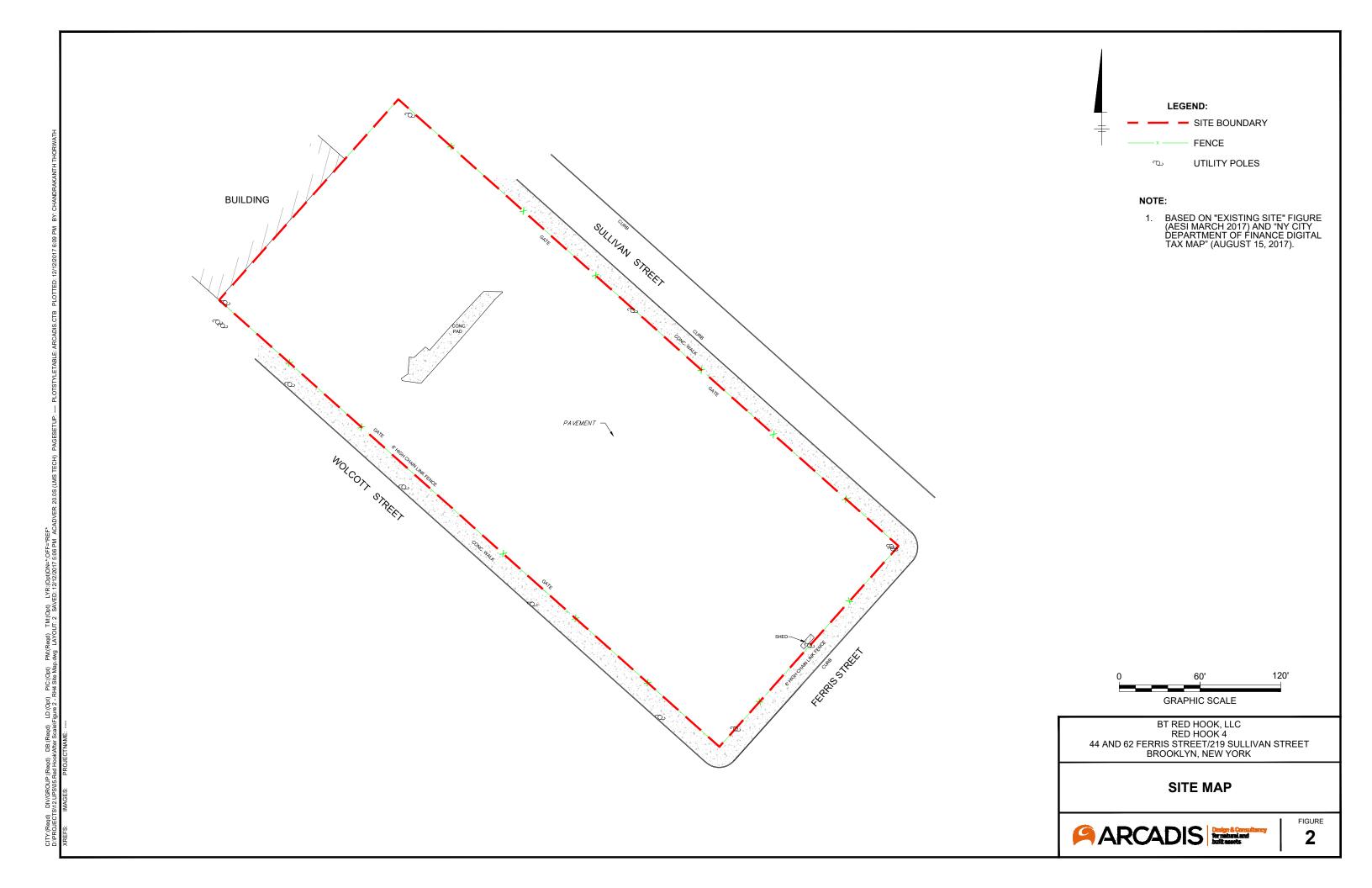
VOC = volatile organic compound

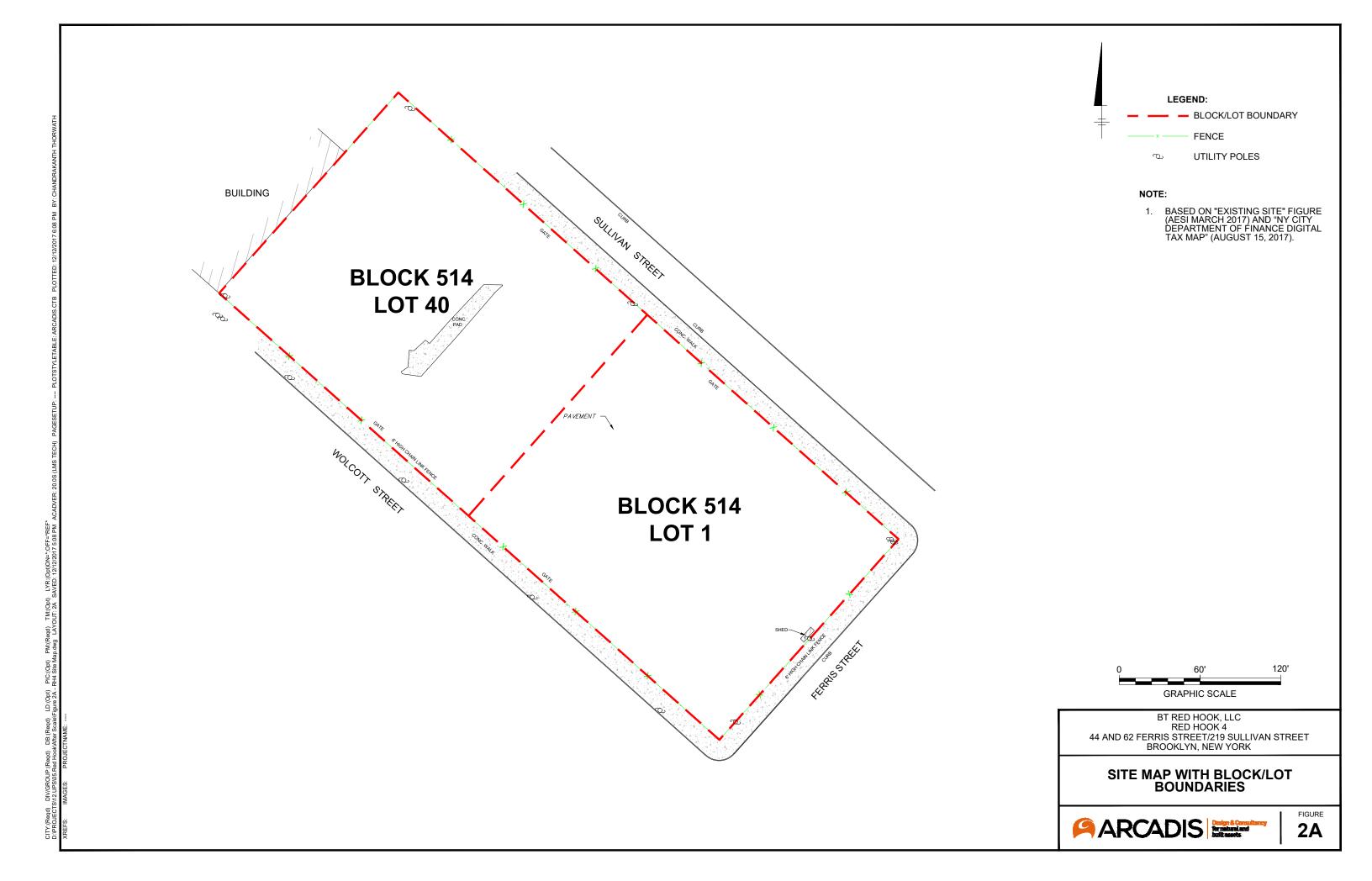
Red Hook 4 HHEA_Table 3_COPCs

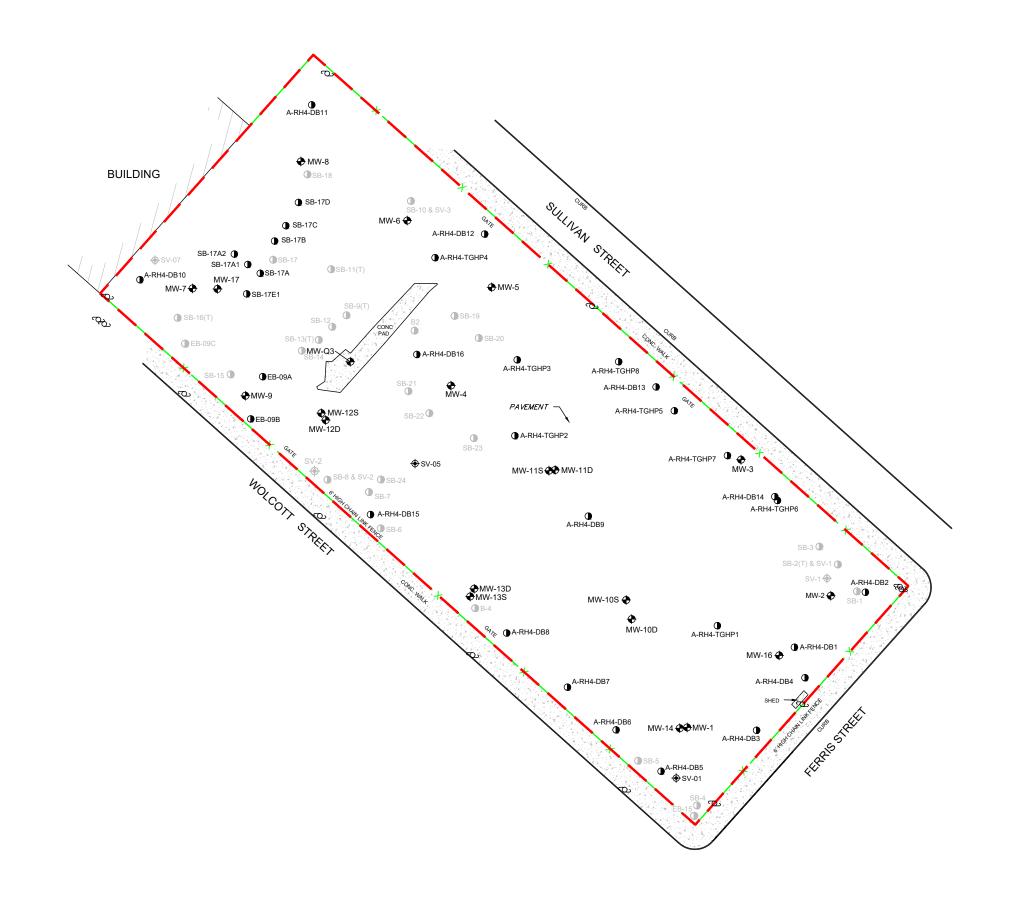
Table 4 Qualitative Exposure Assessment Summary

Human Health Exposure Assessment BT Red Hook, LLC Red Hook 4 - NYSDEC Brownfield Site #C224214 Brooklyn, Kings County, New York


		Human Receptor Exposure Assessment					
Environmental Media	Exposure Route	Current	Future				
Surface Soil	Direct Contact &	None exists.	Future Outdoor Commercial Workers - contact only if impervious surfaces removed.				
	Particulate/Vapor Inhalation	Impervious surface present.	Trespassers - contact only if impervious surfaces and fences removed				
Subsurface Soil	Direct Contact &	None exists.	Construction/Utility Workers - conducting intrusive work.				
	Particulate/Vapor Inhalation	Impervious surface present.					
Groundwater	Direct Contact &	None exists.	Future Commercial Worker or Resident - inhalation only if a new building is constructed.				
	Vapor Inhalation	No building exists.	Construction/Utility Workers - conducting intrusive work.				


Note:


Direct contact with constituents of potential concern (COPCs) includes incidental ingestion and dermal contact.


Red Hook 4 HHEA_Table 4_Exposures

FIGURES

MONITORING WELL

SOIL BORING
SOIL BORING (NOT SURVEYED)
SOIL VAPOR MONITORING POINT
(NOT SURVEYED)
SITE BOUNDARY
FENCE
UTILITY POLES

NOTES:

- FIGURE IS BASED ON A SURVEY PREPARED BY DPK LAND SURVEYING, LLC ON 11/2/2017.
- 2. PROPERTY BOUNDARIES OBTAINED FROM FIGURE ENTITLED "ALTA/NSPS LAND TITLE SURVEY" (LANGAN APRIL 4, 2017).
- 3. BORING LOCATIONS SHOWN IN GRAY WERE NOT FIELD LOCATED OR SURVEYED BY ARCADIS AND WERE DIGITIZED FROM FIGURES PROVIDED BY AESI AND LANGAN.
- 4. "TGHP" INDICATES A TarGOST® LOCATION.
- SOIL BORINGS AND TarGOST[®] LOCATIONS WITH AN "A-" PREFIX WERE ADVANCED BY ARCADIS.
- 6. ${\sf TarGOST}^{\sf 0}$ -TAR SPECIFIC GREEN OPTICAL SENSING TOOL.

BT RED HOOK, LLC RED HOOK 4 44 AND 62 FERRIS STREET/219 SULLIVAN STREET BROOKLYN, NEW YORK

MONITORING WELL AND SOIL BORING LOCATION MAP

LEGEND:

- MONITORING WELL
- SOIL BORING
- SOIL BORING (NOT SURVEYED)
- SOIL VAPOR MONITORING POINT
 - SOIL VAPOR MONITORING POINT (NOT SURVEYED)
- SITE BOUNDARY
- ---× ----- FENCE
 - UTILITY POLES
 - VISIBLE DNAPL IN BORING LOG OR MEASURABLE DNAPL DURING WELL GAUGING ON 4/27/2018 (SEE NOTE 9)
 - VISIBLE LNAPL IN BORING LOG OR MEASURABLE LNAPL DURING WELL GAUGING ON 4/27/2018 (SEE NOTE 9)

NOTES:

- FIGURE IS BASED ON A SURVEY PREPARED BY DPK LAND SURVEYING, LLC ON 11/2/2017.
- PROPERTY BOUNDARIES OBTAINED FROM FIGURE ENTITLED "ALTA/NSPS LAND TITLE SURVEY" (LANGAN APRIL 4, 2017).
- 3. BORING LOCATIONS SHOWN IN GRAY WERE NOT FIELD LOCATED OR SURVEYED BY ARCADIS AND WERE DIGITIZED FROM FIGURES PROVIDED BY AFSI AND I ANGAN
- 4. "TGHP" INDICATES A TarGOST® LOCATION.
- 5. SOIL BORINGS AND TarGOST® LOCATIONS WITH AN "A-" PREFIX WERE ADVANCED BY ARCADIS.
- 6. TarGOST[®] -TAR SPECIFIC GREEN OPTICAL SENSING TOOL.
- 7. LNAPL LIGHT NON-AQUEOUS PHASE LIQUID.
- 8. DNAPL DENSE NON-AQUEOUS PHASE LIQUID.
- 9. FIELD OBSERVATIONS SHOWED THAT LNAPL WAS ENCOUNTERED PRIMARILY AT DEPTHS LESS THAN 20 FEET BELOW GROUND SURFACE (BGS) AND THE VERTICAL INTERVAL FOR DNAPL WAS 50 TO 75 FEET BGS.

BT RED HOOK, LLC - RED HOOK 4 44 AND 62 FERRIS STREET/219 SULLIVAN STREET BROOKLYN, NEW YORK

OCCURRENCE OF VISIBLE DNAPL AND LNAPL

FIGURE 4

APPENDIX A Atlantic Environmental Solutions, Inc. Remedial Investigation Report Tables 1 through 4

Table 1 Brownfield Cleanup Program C224214 "Red Hook 4" Soil Analytical Data (RI Scope)

Sample #: Field ID:		Part 375-6.8(a) Unrestricted Use	Part 37	tion of			EB01-170		EB02-055		DUP EB02- 130							EB09A	EB09B	EB09C	EB09-025			180
Lab ID: Date Sampled: Depth(ft):		Soil Cleanup Objectives (ppm)	Public Residential (ppm)	Restricted Residential		05/24/2017 5/5.5	05/24/2017 16.5/17	04342-015 05/24/2017 2/2.5	05/24/2017 5/5.5					04342-002 05/24/2017 18/18.5				04342-006 05/24/2017 5/6		04342-008 05/24/2017 5/6		04342-010 05/24/2017 11/11.5		
,	CAS	W1 7	41 /	41 7																				
Volatiles (mg/Kg)					Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc
Dichlorodifluoromethane Chloromethane	75-71-8 74-87-3	NS NS	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	~	~	~	ND ND	ND ND	ND ND	ND ND
Vinyl chloride	74-67-3 75-01-4	0.02	0.21	0.9	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Bromomethane	74-83-9	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Chloroethane	75-00-3	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Trichlorofluoromethane	75-69-4	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
1,1-Dichloroethene	75-35-4	0.33	100	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Acetone Carbon disulfide	67-64-1 75-15-0	0.05 NS	100 100	100 NS	ND ND	0.015 ND	0.076 ND	ND 0.00409	ND ND	ND 0.00296	0.010 0.00173	4.92 ND	0.148 ND	ND ND	0.030 ND	ND ND	0.00443 0.00119	~	~	~	ND ND	0.00579 0.00325	0.018 0.0038	0.224 0.00619
Methylene chloride	75-13-0	0.05	51	100	ND ND	ND	ND ND	0.00409 ND	ND	0.00296 ND	0.00173 ND	ND	ND ND	ND	ND	0.00257	0.00119	~	~	~	ND ND	0.00323 ND	0.0036 ND	0.00619 ND
trans-1,2-Dichloroethene	156-60-5	0.19	100	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Methyl tert-butyl ether (MTBE)	1634-04-4	0.93	62	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
1,1-Dichloroethane	75-34-3	0.27	19	26	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
cis-1,2-Dichloroethene	156-59-2	0.25	59	100	ND	ND	ND 0.00045	ND	ND	0.00277	0.000717	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND 0.00405	ND 0.00444	ND 0.00004
2-Butanone (MEK) Bromochloromethane	78-93-3 74-97-5	0.12 NS	100 NS	100 NS	ND ND	ND ND	0.00215 ND	ND ND	ND ND	ND ND	0.00111 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	~	~	~	ND ND	0.00105 ND	0.00114 ND	0.00294 ND
Chloroform	74-97-5 67-66-3	NS 0.37	NS 10	NS 49	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	~	~	~	ND ND	ND ND	ND	ND
1,1,1-Trichloroethane	71-55-6	0.68	100	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Carbon tetrachloride	56-23-5	0.76	1.4	2.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
1,2-Dichloroethane (EDC)	107-06-2	0.02	2.3	3.1	ND	ND	ND	ND	ND	0.000893	0.000223	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Benzene	71-43-2	0.06	2.9	4.8	ND	ND	ND	ND	ND	0.00053	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Trichloroethene	79-01-6 78-87-5	0.47	10 NS	21 NC	ND ND	ND ND	ND ND	ND ND	ND ND	0.000332 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	~	~	~	ND ND	ND ND	ND ND	ND ND
1,2-Dichloropropane 1,4-Dioxane	123-91-1	NS 0.1	9.8	NS 13	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	~	~	~	ND ND	ND ND	ND	ND
Bromodichloromethane	75-27-4	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
cis-1,3-Dichloropropene	10061-01-5	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
4-Methyl-2-pentanone (MIBK)	108-10-1	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Toluene	108-88-3	0.7	100	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	10061-02-6 79-00-5	NS NS	NS	NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	~	~	~	ND ND	ND ND	ND ND	ND ND
Tetrachloroethene	79-00-5 127-18-4	1.3	NS 5.5	NS 19	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	~	~	~	ND	ND ND	ND ND	ND
1,3-Dichloropropane	142-28-9	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
2-Hexanone	591-78-6	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Dibromochloromethane	124-48-1	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
1,2-Dibromoethane (EDB)	106-93-4	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Chlorobenzene	108-90-7	1.1	100	100	ND	ND	ND	ND ND	ND	0.00116	0.000476	ND ND	ND	ND	ND ND	ND ND	ND	~	~	~	ND	ND ND	ND	ND ND
Ethylbenzene Total Xylenes	100-41-4 1330-20-7	0.26	30 100	41 100	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	~	~	~	ND ND	ND ND	ND ND	ND ND
Styrene	100-42-5	NS	NS.	NS.	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Bromoform	75-25-2	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Isopropylbenzene	98-82-8	NS	100	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	0.000125	0.000244	0.000454
1,1,2,2-Tetrachloroethane	79-34-5	NS	35	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
1,2,3-Trichloropropane	96-18-4	NS 3.0	80	NS 100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
n-Propylbenzene 1,3,5-Trimethylbenzene	103-65-1 108-67-8	3.9 8.4	100 47	100 52	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	~	~	~	ND ND	ND ND	ND ND	ND ND
tert-Butylbenzene	98-06-6	5.9	100	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	0.00099	0.0016	0.00225
1,2,4-Trimethylbenzene	95-63-6	3.6	47	52	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
sec-Butylbenzene	135-98-8	11	100	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	0.000169	0.00053	0.000981
1,3-Dichlorobenzene	541-73-1	2.4	17	49	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
4-Isopropyltoluene 1,4-Dichlorobenzene	99-87-6 106-46-7	NS 1.8	NS 9.8	NS 13	0.000331 ND	0.000208 ND	ND ND	ND ND	ND ND	ND 0.00106	ND 0.000754	1.21 ND	0.055 ND	ND ND	ND ND	ND ND	ND ND	~	~	~	ND ND	ND ND	0.000239 ND	0.000401 ND
n-Butylbenzene	104-51-8	1.8	9.8 100	100	ND ND	ND ND	ND	ND	ND	0.00106 ND	0.000754 ND	ND	ND ND	ND ND	ND ND	ND	ND ND	~	~	~	ND ND	ND ND	ND	ND
1,2-Dichlorobenzene	95-50-1	1.1	100	100	ND	ND	ND	ND	ND	0.00367	0.00166	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	96-12-8	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
1,2,4-Trichlorobenzene	120-82-1	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
1,2,3-Trichlorobenzene	87-61-6	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	NS	100	NS	ND	ND 0.00440	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Methyl acetate Cvclohexane	79-20-9 110-82-7	NS NS	NS NS	NS NS	ND ND	0.00112 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	~	~	~	ND ND	ND 0.00191	ND 0.011	ND 0.014
Methylcyclohexane	108-87-2	NS NS	NS NS	NS	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	0.031	ND	ND ND	ND ND	ND ND	~	~	~	0.000671	0.00191	0.011	0.014
TOTAL VO's:		NS	NS	NS	0.000331	0.016	0.078	0.00409	ND	0.013	0.017	6.13	0.234	ND	0.030	0.00257	0.00784	~	~	~	0.000671	0.025	0.066	0.291
TOTAL TIC's:		NS	NS	NS	0.051	ND	ND	ND	ND	0.012	ND	24.3	1.90	ND	0.023	0.00884	ND	~	~	~	0.013	0.097	0.205	0.217
TOTAL VO's & TIC's:		NS	NS	NS	0.051	0.016	0.078	0.00409	ND	0.025	0.017	30.4	2.13	ND	0.053	0.011	0.00784	~	~	~	0.014	0.122	0.271	0.508

NS NS 0.051 0.016 0.078 0.00409 N

6NYCRR Part 375-6.8(a) Unrestricted Use Soil Cleanup Objectives & NYCRR Part 375-6.8(b) Restricted Use Soil Cleanup Objectives December 2006

BOLD Conc

Indicates a concentration that exceeds residential restricted criteria.

BOLD MDL

Indicates MDL that exceeds applicable criteria.

NS = No Standard Available

- = Sample not analyzed for
ND = Analyzed for but Not Detected at the MDL

J = Concentration detected at a value below the RL and above the MDL for target compounds. For non-target compounds (i.e. TICs), qualifier indicates estimated concentrations.

D = The compound was reported from the Diluted analysis
All qualifiers on individual Volatiles & Semivolatiles are carried down through summation.

C = Common Laboratory and/or Bottle Contaminant.

N = Presumptive evidence of a compound from the use of GC/MS library search.

Table 1 Brownfield Cleanup Program C224214 "Red Hook 4" Soil Analytical Data (RI Scope)

Sample #	t	Part 375-6.8(a)	Part 37		EB01-025	EB01-055	EB01-170	EB02-025	EB02-055	EB02-130	DUP-3	EB03-025	EB03-075	EB03-185	EB05-025	EB05-075	EB05-180	EB09A	EB09B	EB09C	EB09-025	EB09-115	EB09-180	DUP-4
Field ID Lab ID	:	Unrestricted Use Soil Cleanup	Protect Public		04342-012	04342-013	04342-014	04342-015	04342-016	04342-017	04342-018	04342-019	04342-001	04342-002	04342-003	04342-004	04342-005	04342-006	04342-007	04342-008	04342-009	04342-010	04342-011	04342-020
Date Sampled	· :	Objectives	Residential		05/24/2017		05/24/2017		05/24/2017	05/24/2017	05/24/2017		05/24/2017		05/24/2017			05/24/2017		05/24/2017	05/24/2017	05/24/2017		
Depth(ft)	: CAS	(ppm)	(ppm)	(ppm)	2/2.5	5/5.5	16.5/17	2/2.5	5/5.5	12.5/13		2/2.5	7/7.5	18/18.5	2/2.5	7/7.5	17.5/18	5/6	5/6	5/6	2/2.5	11/11.5	17/17.5	
Semivolatiles - BNA (mg/Kg)	CAS				Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc
Benzaldehyde	100-52-7	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Phenol Bis(2-chloroethyl) ether	108-95-2	0.33 NS	100 NS	100 NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	~	~	~	ND ND	ND ND	ND ND	ND ND
2-Chlorophenol	111-44-4 95-57-8	NS NS	100	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
2-Methylphenol	95-48-7	0.33	100	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
2,2'-Oxybis(1-Chloropropane)	108-60-1	NS 0.33	NS 34	NS 100	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	~	~	~	ND 0.000	ND ND	ND ND	ND ND
4-Methylphenol ** N-Nitrosodi-n-propylamine	106-44-5 621-64-7	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	0.098 ND	ND	ND	ND
Acetophenone	98-86-2	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Hexachloroethane	67-72-1 98-95-3	NS NS	NS 3.7	NS 15	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	~	~	~	ND ND	ND ND	ND ND	ND ND
Nitrobenzene Isophorone	78-59-1	NS	100	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
2-Nitrophenol	88-75-5	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
2,4-Dimethylphenol Bis(2-chloroethoxy) methane	105-67-9 111-91-1	NS NS	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	~	~	~	ND ND	ND ND	ND ND	ND ND
2,4-Dichlorophenol	120-83-2	NS	100	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Naphthalene	91-20-3	12	100	100	0.052	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.097	ND	ND	~	~	~	1.79	ND	ND	ND
4-Chloroaniline Hexachlorobutadiene	106-47-8 87-68-3	NS NS	100 NS	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	~	~	~	ND ND	ND ND	ND ND	ND ND
Caprolactam	105-60-2	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
4-Chloro-3-methylphenol	59-50-7	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
2-Methylnaphthalene	91-57-6	NS	0.41	NS	0.053	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.076	ND	ND	~	~	~	0.972	ND	ND	ND
Hexachlorocyclopentadiene 2,4,6-Trichlorophenol	77-47-4 88-06-2	NS NS	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	~	~	~	ND ND	ND ND	ND ND	ND ND
2,4,5-Trichlorophenol	95-95-4	NS NS	100	NS NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND ND
1,1'-Biphenyl	92-52-4	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	0.227	ND	ND	ND
2-Chloronaphthalene 2-Nitroaniline	91-58-7 88-74-4	NS NS	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	~	~	~	ND ND	ND ND	ND ND	ND ND
Dimethyl phthalate	131-11-3	NS	100	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
2,6-Dinitrotoluene	606-20-2	NS	1.03	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Acenaphthylene 3-Nitroaniline	208-96-8 99-09-2	100 NS	100 NS	100 NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.055 ND	ND ND	ND ND	~	~	~	0.118 ND	ND ND	ND ND	ND ND
Acenaphthene	83-32-9	20	100	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.112	ND	ND	~	~	~	2.04	ND	ND	ND
2,4-Dinitrophenol	51-28-5	NS	100	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
4-Nitrophenol 2,4-Dinitrotoluene	100-02-7 121-14-2	NS NS	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	~	~	~	ND ND	ND ND	ND ND	ND ND
Z,4-Diffictorderie Dibenzofuran	132-64-9	7	14	59	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.082	ND	ND	~	~	~	1.40	ND	ND	ND
Diethyl phthalate	84-66-2	NS	100	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Fluorene 4-Chlorophenyl phenyl ether	86-73-7 7005-72-3	30 NS	100 NS	100 NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.082 ND	ND ND	ND ND	~	~	~	1.45 ND	ND ND	ND ND	ND ND
4-Chlorophenyl phenyl ether 4-Nitroaniline	100-01-6	NS	NS NS	NS NS	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
1,2,4,5-Tetrachlorobenzene	95-94-3	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
2,3,4,6-Tetrachlorophenol 4,6-Dinitro-2-methylphenol	58-90-2 534-52-1	NS NS	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	~	~	~	ND ND	ND ND	ND ND	ND ND
N-Nitrosodiphenylamine	86-30-6	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
4-Bromophenyl phenyl ether	101-55-3	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Hexachlorobenzene Atrazine	118-74-1 1912-24-9	0.33 NS	0.41 NS	1.2 NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	~	~	~	ND ND	ND ND	ND ND	ND ND
Pentachlorophenol	87-86-5	0.8	2.4	6.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Phenanthrene	85-01-8	100	100	100	0.257	ND	ND	0.302	ND	ND	ND	0.990	ND	ND	0.955	ND	ND	~	~	~	10.3	ND	ND	ND
Anthracene Carbazole	120-12-7 86-74-8	100 NS	100 NS	100 NS	0.055 ND	ND ND	ND ND	0.074 0.034	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.301 0.089	ND ND	ND ND	~	~	~	2.03 0.889	ND ND	ND ND	ND ND
Di-n-butyl phthalate	84-74-2	NS	100	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Fluoranthene	206-44-0	100	100	100	0.320	ND	ND	0.429	ND	ND	ND	0.760	ND	ND	1.44	ND	ND	~	~	~	7.78	ND	ND	ND
Pyrene Butyl benzyl phthalate	129-00-0 85-68-7	100 NS	100 100	100 NS	0.301 ND	ND ND	ND ND	0.386 ND	ND ND	ND ND	ND ND	0.798 ND	ND ND	ND ND	1.46 ND	ND ND	ND ND	~	~	~	7.38 ND	ND ND	ND ND	ND ND
3,3'-Dichlorobenzidine	91-94-1	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Benzo[a]anthracene	56-55-3	1	1	1	0.184	ND	ND	0.247	ND	ND	ND	ND	ND	ND	0.927	ND	ND	~	~	~	3.67	ND	ND	ND
Chrysene	218-01-9	1	1	3.9	0.172	ND	ND	0.244	ND	ND	ND	ND	ND	ND	0.936	ND	ND	~	~	~	3.52	ND	ND	ND
Bis(2-ethylhexyl) phthalate Di-n-octyl phthalate	117-81-7 117-84-0	NS NS	50 100	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	~	~	~	ND ND	ND ND	ND ND	ND ND
Benzo[b]fluoranthene	205-99-2	1	1	1	0.144	ND	ND	0.219	ND	ND	ND	ND	ND	ND	0.866	ND	ND	~	~	~ [2.65	ND ND	ND	ND
Benzo[k]fluoranthene	207-08-9	0.8	1	3.9	0.137	ND	ND	0.172	ND	ND	ND	ND	ND	ND	0.837	ND	ND	~	~	~	2.87	ND	ND	ND
Benzo[a]pyrene	50-32-8	1	1	1	0.154	ND	ND	0.224	ND	ND	ND	ND	ND	ND	0.976	ND	ND	~	~	~	3.24	ND	ND	ND
Indeno[1,2,3-cd]pyrene	193-39-5	0.5	0.5	0.5	0.103	ND	ND	0.134	ND	ND	ND	ND	ND	ND	0.597	ND	ND	~	~	~	1.81	ND	ND	ND
Dibenz[a,h]anthracene	53-70-3	0.33	0.33	0.33	0.037	ND	ND	0.052	ND	ND	ND	ND	ND	ND	0.216	ND	ND	~	~	~	0.694	ND	ND	ND
Benzo[g,h,i]perylene Dinitrotoluene (2,4- and 2,6-)	191-24-2 25321-14-6	100 NS	100 NS	100 NS	0.104 ND	ND ND	ND ND	0.140 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.658 ND	ND ND	ND ND	~	~	~	1.99 ND	ND ND	ND ND	ND ND
TOTAL BNA'S:	23021 14-0	NS NS	NS	NS NS	2.07	ND	ND	2.66	ND	ND	ND	2.55	ND	ND	10.8	ND	ND	~	~	~	56.9	ND	ND	ND
TOTAL TIC's:		NS	NS	NS	0.171	ND	ND	0.223	ND	ND	ND	985	ND	0.258	1.86	0.828	ND	~	~	~	16.2	ND	ND	0.832
TOTAL BNA'S & TIC's: 6NYCRR Part 375-6.8(a) Unrestricted Use	Soil Cleanus Object	NS ves & NYCRR Part 37	NS 75-6 8(h) Restrict	NS ed Use Soil Clea	2.24	ND s December	ND 2006	2.88	ND	ND	ND	988	ND	0.258	12.7	0.828	ND	~	~	~	73.1	ND	ND	0.832
BOLD Conc		tration that exceeds re			ap Objective	o podember.	_300																	
BOLD RL		xceeds applicable crit																						
BOLD MDL		exceeds applicable c																						
NS = No Standard Available ~ = Sample not analyzed for																								
~ = Sample not analyzed for ND = Analyzed for but Not Detected at the I	MDL																							
J = Concentration detected at a value below	w the RL and above t	he MDL for target con	npounds. For no	n-target compou	nds (i.e. TICs)	, qualifier ind	icates estimat	ed concentrati	ions.															
D = The compound was reported from the I All qualifiers on individual Volatiles & Semiv		own through summer	ion																					
C = Common Laboratory and/or Bottle Con		omi unough suiniflati	IOTI.																					
N = Presumptive evidence of a compound f		IS library search.																						

Table 1 Brownfield Cleanup Program C224214 "Red Hook 4" Soil Analytical Data (RI Scope)

	Sample #:		Part 375-6.8(a)	Part 3	75-6.8(b)	EB01-025	EB01-055	EB01-170	EB02-025	EB02-055	EB02-130	DUP-3	EB03-025	EB03-075	EB03-185	EB05-025	EB05-075	EB05-180	EB09A	EB09B	EB09C	EB09-025	EB09-115	EB09-180	DUP-4
	Field ID:		Unrestricted Use		ction of	04040 040		04040 044	04040.045	04040.040	04040.047	04040.040	04040 040	04040 004		04040.000		04040.005	04040.000	04040.007	04040.000		04040.040	04040 044	0.40.40.000
D	Lab ID: Date Sampled:		Soil Cleanup Objectives		c Health stricted Reside	04342-012 05/24/2017	04342-013 05/24/2017		04342-015		04342-017 05/24/2017		04342-019 05/24/2017		04342-002 05/24/2017					04342-007 05/24/2017	04342-008 05/24/2017		04342-010 05/24/2017	04342-011 05/24/2017	
	Depth(ft):		(ppm)	(ppm)	(ppm)	2/2.5	5/5.5	16.5/17	2/2.5	5/5.5	12.5/13		2/2.5	7/7.5	18/18.5	2/2.5	7/7.5	17.5/18	5/6	5/6	5/6	2/2.5	11/11.5	17/17.5	
DODI- (//()		CAS				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PCB's (mg/Kg) Aroclor-1016		12674-11-2	NS	NS	NS	Conc ND	Conc ND	Conc ND	Conc ND	Conc ND	Conc ND	Conc ND	Conc ND	Conc ND	Conc ND	Conc ND	Conc ND	Conc ND	Conc	Conc	Conc	Conc ND	Conc ND	Conc ND	Conc ND
Aroclor-1221		11104-28-2	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Aroclor-1232		11141-16-5	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Aroclor-1242		53469-21-9	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Aroclor-1248 Aroclor-1254		12672-29-6 11097-69-1	NS NS	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	~	~	~	ND ND	ND ND	ND ND	ND ND
Aroclor-1260		11097-69-1	NS NS	NS NS	NS NS	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Aroclor-1262		37324-23-5	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Aroclor-1268		11100-14-4	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
PCBs		1336-36-3	0.1	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Pesticides (mg/Kg)		240.04.0	0.00	0.007	0.40	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc ND	Conc	Conc	Conc	Conc	Conc ND	Conc	Conc
alpha-BHC beta-BHC		319-84-6 319-85-7	0.02 0.036	0.097 0.072	0.48 0.36	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	~	~	~	ND ND	ND	ND ND	ND ND
gamma-BHC (Lindane)		58-89-9	0.1	0.28	1.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
delta-BHC		319-86-8	0.04	100	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Heptachlor		76-44-8	0.042	0.42	2.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Aldrin		309-00-2	0.005	0.019	0.097	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Heptachlor epoxide Endosulfan I		1024-57-3 959-98-8	NS 2.4	0.077 4.8	NS 24	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	~	~	~	ND ND	ND ND	ND ND	ND ND
4,4'-DDE		72-55-9	0.0033	1.8	8.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Dieldrin		60-57-1	0.005	0.039	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Endrin		72-20-8	0.014	2.2	11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Endosulfan II 4,4'-DDD		33213-65-9	2.4 0.0033	4.8 2.6	24 13	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	~	~	~	ND ND	ND ND	ND ND	ND ND
4,4 -DDD Endrin aldehyde		72-54-8 7421-93-4	0.0033 NS	NS	NS	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	~	~	~	ND ND	ND	ND	ND
Endosulfan sulfate		1031-07-8	2.4	4.8	24	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
4,4'-DDT		50-29-3	0.0033	1.7	7.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Endrin ketone		53494-70-5	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Methoxychlor		72-43-5	NS 0.094	100	NS	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	~	~	~	ND	ND ND	ND	ND
alpha-Chlordane gamma-Chlordane		5103-71-9 5103-74-2	0.094 NS	0.91 0.54	4.2 NS	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	~	~	~	ND ND	ND	ND ND	ND ND
Toxaphene		8001-35-2	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Endosulfan (I and II)		115-29-7	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Chlordane (alpha and gamma	a)	57-74-9	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
Herbicides (mg/Kg)		75.00.0	NS	NO	NC	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc
Dalapon Dicamba		75-99-0 1918-00-9	NS NS	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	~	~	~	ND ND	ND ND	ND ND	ND ND
2,4-D		94-75-7	NS	100	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
2,4,5-TP (Silvex)		93-72-1	3.8	58	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
2,4,5-T		93-76-5	NS	100	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	~	~	~	ND	ND	ND	ND
2,4-DB Dinasah		94-82-6 88-85-7	NS NS	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	~	~	~	ND ND	ND ND	ND ND	ND ND
Dinoseb Metals (mg/Kg)		00-03-7	No	NO	No	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc
Aluminum		7429-90-5	NS	NS	NS	8050	8380	4850	9610	10600	5160	4460	3340	9050	12400	9370	8240	14300	4080	5790	10700	5680	8580	20500	13400
Antimony		7440-36-0	NS	NS	NS	0.718	ND	ND	ND	ND	ND	ND	1.00	ND	ND	1.76	ND	ND	12.3	0.283	ND	5.77	ND	ND	ND
Arsenic		7440-38-2	13	16	16	7.07	3.71	1.12	3.18	3.41	2.47	3.01	8.19	2.96	3.35	12.5	3.93	4.46	67.1	3.46	3.46	10.6	2.92	9.75	6.27
Barium		7440-39-3	350	350	400	67.2	36.5	37.8	61.2	57.5	24.3	17.8	100	54.3	116	177	39.9	110	145	36.3	125	100	54.6	75.2	50.0
Beryllium		7440-41-7	7.2	14	72	0.488	0.425	0.325	0.698	0.748	ND	ND	ND	0.581	0.813	0.877	0.422	0.994	0.390	ND	0.422	0.710	0.481	1.19	0.758
Cadmium Calcium		7440-43-9 7440-70-2	2.5 NS	2.5 NS	4.3 NS	ND 12200	ND 890	ND 1170	ND 1650	ND 3550	ND 938	ND 723	ND 1010	ND 1610	ND 2500	ND 44200	ND 1750	ND 11700	0.494 3780	ND 1400	ND 3840	0.420 6770	ND 5110	ND 6900	ND 3770
Chromium		7440-70-2	NS NS	NS NS	NS	15.6	17.9	13.8	18.9	23.0	11.3	11.6	19.2	15.5	38.0	84.8	15.5	39.5	11.9	15.6	33.3	13.5	13.9	41.3	64.9
Cobalt		7440-48-4	NS	30	NS	9.07	6.49	4.02	8.04	7.98	4.43	3.42	6.38	7.31	12.9	6.48	7.67	13.4	7.77	5.51	11.1	8.72	8.59	14.9	22.6
Copper		7440-50-8	50	270	270	32.6	10.1	7.64	18.1	14.3	5.94	4.13	74.2	13.4	20.6	46.7	15.0	22.5	164	17.1	18.6	320	21.9	29.2	25.6
Iron		7439-89-6	NS	2000	NS	45900	18200	10700	22700	23400	13200	11800	30400	21800	29000	27700	19800	30500	26200	19400	26500	39000	26600	46400	35300
Lead		7439-92-1	63	400	400	99.0	5.94	3.68	22.1	15.0	8.01	2.83	260	13.3	10.8	416	13.7	12.1	2580	40.8	16.8	171	11.9	61.4	40.8
Magnesium		7439-95-4	NS	NS	NS	2570	2470	2430	3480	3560	2390	2490	708	3490	7550	3400	2880	18900	1840	2610	6820	1710	4390	10200	31100
Manganese		7439-96-5	1600	2000	2000	437	304	94.5	132	161	94.0	77.0	109	174	447	351	162	585	342	206	223	497	416	569	514
Mercury Nickel		7439-97-6 7440-02-0	0.18 30	0.81 140	0.81 310	0.073 19.6	ND 21.8	ND 15.0	0.055 25.4	0.015 24.9	ND 16.8	ND 14.2	0.047 24.2	ND 17.5	ND 129	0.238 17.4	ND 21.6	ND 92.3	0.590 23.1	0.035 16.0	ND 70.3	0.580 19.3	0.019 19.8	0.158 72.5	0.066 298
Potassium		7440-02-0	NS	NS	NS	1150	1450	1160	1910	1670	830	855	290	1310	3360	1950	989	4130	741	1220	3800	762	1430	3600	2690
Selenium		7782-49-2	3.9	36	180	1.12	2.37	0.615	0.929	4.06	1.91	ND	0.989	ND	0.772	0.503	1.43	1.75	2.02	1.06	2.14	ND	0.431	0.566	1.31
Silver		7440-22-4	2	36	180	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.369	ND	ND	ND	ND	ND	ND
Sodium		7440-23-5	NS	NS	NS	630	310	153	161	167	120	126	76.1	101	167	216	145	460	97.6	63.1	162	81.4	184	327	225
Thallium Vanadium		7440-28-0	NS NS	NS 100	NS NS	ND	ND	ND 12.6	ND 26.7	ND 30.1	ND 13.0	ND 13.9	ND	ND 20.0	ND 20.8	ND 27.0	ND 10.8	ND 34.6	ND 16.8	ND 18.0	ND 34.1	ND	ND 16.4	ND 46.6	ND
Vanadium Zinc		7440-62-2 7440-66-6	NS 109	100 2200	NS 10000	23.9 61.9	21.4 29.7	12.6 19.2	26.7 85.9	30.1 39.9	13.0 23.9	13.8 17.8	22.2 62.8	20.0 43.9	29.8 58.3	27.0 216	19.8 38.3	34.6 55.8	16.8 347	18.0 145	34.1 64.2	22.5 1 74	16.4 49.0	46.6 84.9	33.0 61.5
					. 3000																				
						Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc
General Analytical Hexavalent Chromium-mg/Kg	9	18540-29-9	1	22 27	110	Conc ND	Conc ND	ND	Conc ND	Conc ND	Conc ND	Conc ND	Conc ND	Conc ND	Conc ND	Conc ND	Conc ND	Conc ND	Conc	Conc ~	Conc ~	Conc ND ND	Conc ND	Conc ND	Conc ND

6NYCRR Part 375-6.8(a) Unrestricted Use Soil Cleanup Objectives & NYCRR Part 375-6.8(b) Restricted Use Soil Cleanup Objectives December 2006

BOLD Conc Indicates a concentration that exceeds residential restricted criteria.

BOLD RL Indicates RL that exceeds applicable criteria.

BOLD MDL Indicates MDL that exceeds applicable criteria.

BOLD MDL Indicates MDL that exceeds applicable criteria.

NS = No Standard Available

- Sample not analyzed for

ND = Analyzed for but Not Detected at the MDL

J = Concentration detected at a value below the RL and above the MDL for target compounds. For non-target compounds (i.e. TICs), qualifier indicates estimated concentrations.

D = The compound was reported from the Diluted analysis
All qualifiers on individual Volatiles & Semivolatiles are carried down through summation.

C = Common Laboratory and/or Bottle Contaminant.

N = Presumptive evidence of a compound from the use of GC/MS library search.

(June 2017)

Soil Analytical Data (Delineation Scope)

Sample #: Field ID:			Part 375-6.8(b) Protection of	EB15-700	EB15-175	EB15-025	SB-17A	SB-17A1	SB-17A2	SB-17C	SB-17D	SB-17G
Lab ID: Date Sampled:		Residential	Public Health Restricted Residential	04678-001 06/05/2017	04678-002 06/05/2017	04678-003 06/05/2017	04588-010 06/02/2017	04588-011 06/02/2017	04588-012 06/02/2017	04588-013 06/02/2017	04588-014 06/02/2017	04588-015 06/02/2017
Depth(ft):	CAS	(ppm)	(ppm)	70/75	17/17.5	2/2.5	7/7.5	9/9.5	8.5/9	7/7.5	9.5/10	7/7.5
Volatiles (mg/Kg)				Conc								
Dichlorodifluoromethane	75-71-8	NS	NS	ND								
Chloromethane	74-87-3	NS	NS	ND								
Vinyl chloride Bromomethane	75-01-4 74-83-9	0.21 NS	0.9 NS	ND ND								
Chloroethane	75-00-3	NS NS	NS NS	ND ND	ND							
Trichlorofluoromethane	75-69-4	NS	NS NS	ND								
1,1-Dichloroethene	75-35-4	100	100	ND								
Acetone	67-64-1	100	100	ND	0.00359	ND						
Carbon disulfide	75-15-0	100	NS	ND								
Methylene chloride	75-09-2	51	100	ND								
trans-1,2-Dichloroethene	156-60-5	100	100	ND								
Methyl tert-butyl ether (MTBE)	1634-04-4	62	100	ND								
1,1-Dichloroethane	75-34-3	19	26	ND								
cis-1,2-Dichloroethene	156-59-2	59	100	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND
2-Butanone (MEK) Bromochloromethane	78-93-3 74-97-5	100 NS	100 NS	ND ND								
Bromochioromethane Chloroform	74-97-5 67-66-3	NS 10	NS 49	ND ND								
1,1,1-Trichloroethane	71-55-6	100	100	ND								
Carbon tetrachloride	56-23-5	1.4	2.4	ND								
1,2-Dichloroethane (EDC)	107-06-2	2.3	3.1	ND								
Benzene	71-43-2	2.9	4.8	0.846	ND							
Trichloroethene	79-01-6	10	21	ND								
1,2-Dichloropropane	78-87-5	NS	NS	ND								
1,4-Dioxane	123-91-1	9.8	13	ND								
Bromodichloromethane	75-27-4	NS	NS	ND								
cis-1,3-Dichloropropene	10061-01-5	NS	NS	ND								
4-Methyl-2-pentanone (MIBK)	108-10-1	NS	NS	ND								
Toluene	108-88-3	100	100	2.09	ND							
trans-1,3-Dichloropropene	10061-02-6	NS	NS NS	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND
1,1,2-Trichloroethane Tetrachloroethene	79-00-5 127-18-4	NS 5.5	NS 19	ND ND								
1,3-Dichloropropane	142-28-9	NS	NS	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND
2-Hexanone	591-78-6	NS NS	NS	ND								
Dibromochloromethane	124-48-1	NS	NS	ND								
1,2-Dibromoethane (EDB)	106-93-4	NS	NS	ND								
Chlorobenzene	108-90-7	100	100	ND								
Ethylbenzene	100-41-4	30	41	0.357	ND							
Total Xylenes	1330-20-7	100	100	1.71	ND							
Styrene	100-42-5	NS	NS	0.883	ND							
Bromoform	75-25-2	NS	NS	ND								
Isopropylbenzene	98-82-8	100	NS	ND	ND	ND	11.9	3.76	4.88	10.6	6.31	1.44
1,1,2,2-Tetrachloroethane	79-34-5	35	NS	ND								
1,2,3-Trichloropropane	96-18-4 103-65-1	80 100	NS 100	ND 0.060	ND ND	ND ND	ND 22.3	ND 6.62	ND 7.93	ND 20.9	ND 12.5	ND 0.867
n-Propylbenzene 1,3,5-Trimethylbenzene	103-65-1	47	100 52	0.060	ND ND	ND ND	22.3 ND	ND	0.269	20.9 ND	ND	0.867 ND
tert-Butylbenzene	98-06-6	100	100	ND	ND	ND	ND	0.913	1.29	1.97	ND	0.818
1,2,4-Trimethylbenzene	95-63-6	47	52	0.396	ND	ND	0.846	1.51	3.21	ND	ND	0.144
sec-Butylbenzene	135-98-8	100	100	ND	ND	ND	22.2	6.66	7.78	25.0	14.8	4.54
1,3-Dichlorobenzene	541-73-1	17	49	ND								
4-Isopropyltoluene	99-87-6	NS	NS	ND	ND	ND	0.365	0.383	1.03	3.80	2.87	0.171
1,4-Dichlorobenzene	106-46-7	9.8	13	ND								
n-Butylbenzene	104-51-8	100	100	ND	ND	ND	21.0	6.47	7.81	18.3	11.5	4.71
1,2-Dichlorobenzene	95-50-1	100	100	ND								
1,2-Dibromo-3-chloropropane	96-12-8	NS	NS	ND								
1,2,4-Trichlorobenzene	120-82-1	NS	NS	ND								
1,2,3-Trichlorobenzene	87-61-6	NS	NS	ND								
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	100 NS	NS NS	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND ND
Methyl acetate	79-20-9	NS NS	NS NS	ND ND	ND ND	ND	ND ND	ND ND	ND 1 80		ND ND	ND ND
Cyclohexane Methylcyclohexane	110-82-7 108-87-2	NS NS	NS NS	0.026	ND ND	ND ND	ND 91.4	ND 22.4	1.89 29.1	ND 60.2	ND 29.4	ND 15.4
TOTAL VO's:	100.01-2	NS NS	NS NS	6.51	0.00359	ND	170	48.7	65.2	141	77.4	28.1
TOTAL TIC's:		NS	NS	13.6	ND	ND	1950	587	629	1760	1270	364
TOTAL VO's & TIC's:		NS	NS	20.1	0.00359	ND	2120	636	694	1900	1350	392

RS 20.1 0.00339 Nt.

6NYCRR Part 375-6.8(a) Unrestricted Use Soil Cleanup Objectives & NYCRR Part 375-6.8(b) Restricted Use Soil Cleanup Objectives December 2006

BOLD Conc

BOLD RL Indicates A concentration that exceeds restricted residential criteria.

BOLD MDL Indicates MDL that exceeds applicable criteria.

Indicates NIDL that exceeds applicable criteria.

NS = No Standard Available

ND = Analyzed for but Not Detected at the MDL

J = Concentration detected at a value below the RL and above the MDL for target compounds. For non-target compounds (i.e. TICs), qualifier indicates estimated concentrations.

All qualifiers on individual Volatiles & Seminostotalities are carried down through summation.

N = Presumptive evidence of a compound from the use of GC/MS library search.

(June 2017)

Soil Analytical Data (Delineation Scope)

Sample #:			Part 375-6.8(b)	EB15-700	EB15-175	EB15-025	SB-17A	SB-17A1	SB-17A2	SB-17C	SB-17D	SB-17G
Field ID: Lab ID:			Protection of Public Health	04678-001	04678-002	04678-003	04588-010	04588-011	04588-012	04588-013	04588-014	04588-015
Date Sampled:		Residential	Restricted Residential	06/05/2017	06/05/2017	06/05/2017	06/02/2017	06/02/2017	06/02/2017	06/02/2017	06/02/2017	06/02/2017
Depth(ft):	CAS	(ppm)	(ppm)	70/75	17/17.5	2/2.5	7/7.5	9/9.5	8.5/9	7/7.5	9.5/10	7/7.5
Semivolatiles - BNA (mg/Kg)	0.10			Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc
Benzaldehyde	100-52-7	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenol	108-95-2	100	100	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-chloroethyl) ether	111-44-4	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorophenol 2-Methylphenol	95-57-8 95-48-7	100 100	NS 100	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,2'-Oxybis(1-Chloropropane)	108-60-1	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methylphenol **	106-44-5	34	100	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-Nitrosodi-n-propylamine	621-64-7	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetophenone	98-86-2	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachloroethane Nitrobenzene	67-72-1 98-95-3	NS 3.7	NS 15	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Isophorone	78-59-1	100	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Nitrophenol	88-75-5	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol	105-67-9	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-chloroethoxy) methane	111-91-1	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dichlorophenol	120-83-2	100	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene 4-Chloroaniline	91-20-3 106-47-8	100 100	100 NS	0.317 ND	ND ND	ND ND	0.792 ND	0.296 ND	0.106 ND	0.646 ND	0.514 ND	0.539 ND
Hexachlorobutadiene	87-68-3	NS	NS NS	ND	ND	ND	ND	ND	ND	ND	ND	ND
Caprolactam	105-60-2	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chloro-3-methylphenol	59-50-7	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene	91-57-6	0.41	NS	0.150	ND	ND	0.229	0.102	0.031	0.167	0.148	0.111
Hexachlorocyclopentadiene	77-47-4	NS	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4,6-Trichlorophenol 2,4,5-Trichlorophenol	88-06-2 95-95-4	NS 100	NS NS	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND
1,1'-Biphenyl	92-52-4	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chloronaphthalene	91-58-7	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Nitroaniline	88-74-4	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dimethyl phthalate	131-11-3	100	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,6-Dinitrotoluene Acenaphthylene	606-20-2 208-96-8	1.03 100	NS 100	ND 0.073	ND ND	ND ND	ND 0.138	ND 0.039	ND ND	ND 0.347	ND ND	ND 0.064
3-Nitroaniline	99-09-2	NS	NS	0.073 ND	ND	ND	0.136 ND	ND	ND	ND	ND	ND
Acenaphthene	83-32-9	100	100	ND	ND	0.036	2.09	0.887	0.247	1.26	0.337	0.562
2,4-Dinitrophenol	51-28-5	100	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitrophenol	100-02-7	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	121-14-2	NS	NS	ND	ND ND	ND	ND	ND 0.534	ND 0.404	ND 0.636	ND 0.044	ND 0.440
Dibenzofuran Diethyl phthalate	132-64-9 84-66-2	14 100	59 NS	ND ND	ND ND	ND ND	1.20 ND	0.534 ND	0.124 ND	0.636 ND	0.241 ND	0.418 ND
Fluorene	86-73-7	100	100	0.067	ND	ND	1.82	0.715	0.166	1.12	0.473	0.516
4-Chlorophenyl phenyl ether	7005-72-3	NS	NS	ND	ND	ND	ND	0.261	ND	ND	ND	ND
4-Nitroaniline	100-01-6	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetrachlorobenzene	95-94-3	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,3,4,6-Tetrachlorophenol 4,6-Dinitro-2-methylphenol	58-90-2 534-52-1	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
N-Nitrosodiphenylamine	86-30-6	NS NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether	101-55-3	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobenzene	118-74-1	0.41	1.2	ND	ND	ND	ND	ND	ND	ND	ND	ND
Atrazine	1912-24-9	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pentachlorophenol	87-86-5	2.4	6.7	ND 0.104	ND ND	ND 0.306	ND 2.05	ND 1.65	ND 0.380	ND 3.94	ND	ND
Phenanthrene Anthracene	85-01-8 120-12-7	100 100	100 100	0.194 0.053	ND	0.306 0.066	3.85 1.79	1.65 0.787	0.280 0.152	1.10	1.61 0.555	1.12 0.630
Carbazole	86-74-8	NS	NS	ND	ND	ND	0.183	ND	ND	ND	ND	ND
Di-n-butyl phthalate	84-74-2	100	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	206-44-0	100	100	0.052	ND	0.350	2.87	1.42	ND	1.30	1.00	1.05
Pyrene	129-00-0	100	100	0.085	ND	0.405	3.57	1.37	ND	2.27	1.11	1.06
Butyl benzyl phthalate 3,3'-Dichlorobenzidine	85-68-7 91-94-1	100 NS	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Benzo[a]anthracene	56-55-3	1	1	0.033	ND	0.210	1.95	0.633	0.063	1.16	0.426	0.530
Chrysene	218-01-9	1	3.9	ND	ND	0.211	1.86	0.656	0.066	1.56	0.566	0.577
Bis(2-ethylhexyl) phthalate	117-81-7	50	NS	ND	ND	ND	0.060	ND	ND	ND	ND	ND
Di-n-octyl phthalate	117-84-0	100	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo[b]fluoranthene	205-99-2	1	1	ND	ND	0.189	0.792	0.245	ND	0.459	0.211	0.246
Benzo[k]fluoranthene	207-08-9	1	3.9	ND	ND	0.168	0.541	0.232	ND	0.494	0.105	0.181
Benzo[a]pyrene	50-32-8	1	1	ND	ND	0.209	0.912	0.366	ND	0.247	0.212	0.348
Indeno[1,2,3-cd]pyrene Dibenz[a,h]anthracene	193-39-5 53-70-3	0.5 0.33	0.5 0.33	ND ND	ND ND	0.069 0.042	0.224 0.161	0.120 0.074	ND ND	0.107 ND	0.055 ND	0.102 0.084
Benzo[g,h,i]perylene	191-24-2	100	100	ND ND	ND ND	0.042	0.161	0.074	ND	0.105	0.061	0.084
Dinitrotoluene (2,4- and 2,6-)	25321-14-6	NS NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL BN'S:		NS	NS	1.02	ND	2.34	25.3	10.5	1.23	16.9	7.62	8.25
TOTAL TIC's:		NS	NS	ND	ND	0.244	81.9	170	100	34.1	80.7	42.5
TOTAL BN'S & TIC's:		NS	NS	1.02	ND	2.58	107	181	101	51.0	88.3	50.8

il Cleanup Objectives & NYCRR Part 375-6.8(b) Restricted Use Soil Cleanup Objectives December 2006

BOLD Conc

BOLD RL

BOLD MDL Indicates RL that exceeds applicable criteria.
Indicates MDL that exceeds applicable criteria

NS = No Standard Available

ND = Analyzed for but Not Detected at the MDL

J = Concentration detected at a value below the RL and above the MDL for target compounds. For non-target compounds (i.e. TiCs), qualifier indicates estimated concentrations.

All qualifiers on individual Volatiles & Semivolatiles are carried down through summation.

N = Presumptive evidence of a compound from the use of GC/MS library search.

(June 2017)

Soil Analytical Data (Delineation Scope)

	Sample #:			art 375-6.8(b)	EB15-700	EB15-175	EB15-025	SB-17A	SB-17A1	SB-17A2	SB-17C	SB-17D	SB-17G
	Field ID:			Protection of									
	Lab ID:		Residential	Public Health	04678-001 06/05/2017	04678-002	04678-003	04588-010	04588-011	04588-012	04588-013	04588-014	04588-015
	Date Sampled: Depth(ft):		(ppm)	Restricted Residential (ppm)	70/75	06/05/2017 17/17.5	06/05/2017 2/2.5	06/02/2017 7/7.5	06/02/2017 9/9.5	06/02/2017 8.5/9	06/02/2017 7/7.5	06/02/2017 9.5/10	06/02/2017 7/7.5
	Depui(it).	CAS	(ppiii)	(ррш)	10/13	17/17.5	2/2.5	111.5	3/3.3	0.3/3	111.5	3.3/10	111.5
PCB's (mg/Kg)					Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc
Aroclor-1016		12674-11-2	NS	NS	ND	ND	ND	~	~	~	~	~	~
Aroclor-1221		11104-28-2	NS	NS	ND	ND	ND	~	~	~	~	~	~
Aroclor-1232		11141-16-5	NS	NS	ND	ND	ND	~	~	~	~	~	~
Aroclor-1242		53469-21-9	NS	NS	ND	ND	ND	~	~	~	~	~	~
Aroclor-1248		12672-29-6	NS	NS	ND	ND	ND	~	~	~	~	~	~
Aroclor-1254		11097-69-1	NS	NS	ND	ND	ND	~	~	~	~	~	~
Aroclor-1260		11096-82-5	NS	NS	ND	ND	ND	~	~	~	~	~	~
Aroclor-1262		37324-23-5	NS	NS	ND	ND	ND	~	~	~	~	~	~
Aroclor-1268		11100-14-4	NS	NS	ND	ND	ND	~	~	~	~	~	~
PCBs		1336-36-3	1	1	ND	ND	ND	~	~	~	~	~	~
	Sample #:			art 375-6.8(b)	EB15-700	EB15-175	EB15-025	SB-17A	SB-17A1	SB-17A2	SB-17C	SB-17D	SB-17G
	Field ID:			Protection of									
	Lab ID:			Public Health	04678-001	04678-002	04678-003	04588-010	04588-011	04588-012	04588-013	04588-014	04588-015
	Date Sampled:		Residential	Restricted Residential	06/05/2017	06/05/2017	06/05/2017	06/02/2017	06/02/2017	06/02/2017	06/02/2017	06/02/2017	06/02/2017
	Depth(ft):		(ppm)	(ppm)	70/75	17/17.5	2/2.5	7/7.5	9/9.5	8.5/9	7/7.5	9.5/10	7/7.5
		CAS											
Pesticides (mg/Kg)					Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc
alpha-BHC		319-84-6	0.097	0.48	ND	ND	ND	~	~	~	~	~	~
beta-BHC		319-85-7	0.072	0.36	ND	ND	ND	~	~	~	~	~	~
gamma-BHC (Lindane)		58-89-9	0.28	1.3	ND	ND	ND	~	~	~	~	~	~
delta-BHC		319-86-8	100	100	ND	ND	ND	~	~	~	~	~	~
Heptachlor		76-44-8	0.42	2.1	ND	ND	ND	~	~	~	~	~	~
Aldrin		309-00-2	0.019	0.097	ND	ND	ND	~	~	~	~	~	~
Heptachlor epoxide		1024-57-3	0.077	NS	ND	ND	ND	~	~	~	~	~	~
Endosulfan I		959-98-8	4.8	24	ND	ND	ND	~	~	~	~	~	~
4,4'-DDE		72-55-9	1.8	8.9	ND	ND	ND	~	~	~	~	~	~
Dieldrin		60-57-1	0.039	0.2	ND	ND	ND	~	~	~	~	~	~
Endrin		72-20-8	2.2	11	ND	ND	ND	~	~	~	~	~	~
Endosulfan II		33213-65-9	4.8	24	ND	ND	ND	~	~	~	~	~	~
4,4'-DDD		72-54-8	2.6	13	ND	ND	ND	~	~	~	~	~	~
Endrin aldehyde		7421-93-4	NS	NS	ND	ND	ND	~	~	~	~	~	~
Endosulfan sulfate		1031-07-8	4.8	24	ND	ND	ND	~	~	~	~	~	~
4,4'-DDT		50-29-3	1.7	7.9	ND	ND	ND	~	~	~	~	~	~
Endrin ketone		53494-70-5	NS	NS	ND	ND	ND	~	~	~	~	~	~
Methoxychlor		72-43-5	100	NS	ND	ND	ND	~	~	~	~	~	~
alpha-Chlordane		5103-71-9	0.91	4.2	ND	ND	ND	~	~	~	~	~	~
gamma-Chlordane		5103-74-2	0.54	NS	ND	ND	ND	~	~	~	~	~	~
Toxaphene		8001-35-2	NS	NS	ND	ND	ND	~	~	~	~	~	~
Endosulfan (I and II)		115-29-7	NS	NS	ND	ND	ND	~	~	~	~	~	~
Chlordane (alpha and gam	ima)	57-74-9	NS	NS	ND	ND	ND	~	~	~	~	~	~

ed Use Soil Cleanup Objectives & NYCRR Part 375-6.8(b) Restricted Use Soil Cleanup Objectives December 2006 Indicates a concentration that exceeds restricted residential criteria. 6NYCRR Part 375-6.8(a) Unres BOLD Conc BOLD RL

Indicates RL that exceeds applicable criteria.
Indicates MDL that exceeds applicable criteria.

NS = No Standard Available

ND = Analyzed for but Not Detected at the MDL

J = Concentration detected at a value below the RL and above the MDL for target compounds. For non-target compounds (i.e. TICs), qualifier indicates estimated concentrations. All qualifiers on individual Volatiles & Seminostaties are carried down through summation.

N = Presumptive evidence of a compound from the use of GC/MS library search.

(June 2017)

Soil Analytical Data (Delineation Scope)

Sample #	·	Pa	art 375-6.8(b)	EB15-700	EB15-175	EB15-025	SB-17A	SB-17A1	SB-17A2	SB-17C	SB-17D	SB-17G
Field ID			Protection of									
Lab ID			ublic Health	04678-001	04678-002	04678-003	04588-010	04588-011	04588-012	04588-013	04588-014	04588-015
Date Sampled		Residential	Restricted Residential	06/05/2017	06/05/2017	06/05/2017	06/02/2017	06/02/2017	06/02/2017	06/02/2017	06/02/2017	06/02/2017
Depth(ft)		(ppm)	(ppm)	70/75	17/17.5	2/2.5	7/7.5	9/9.5	8.5/9	7/7.5	9.5/10	7/7.5
	CAS											
Herbicides (mg/Kg)				Conc								
Dalapon	75-99-0	NS	NS	ND	ND	ND	~	~	~	~	~	~
Dicamba	1918-00-9	NS	NS	ND	ND	ND	~	~	~	~	~	~
2,4-D	94-75-7	100	NS	ND	ND	ND	~	~	~	~	~	~
2,4,5-TP (Silvex)	93-72-1	58	100	ND	ND	ND	~	~	~	~	~	~
2,4,5-T	93-76-5	100	NS	ND	ND	ND	~	~	~	~	~	~
2,4-DB	94-82-6	NS	NS	ND	ND	ND	~	~	~	~	~	~
Dinoseb	88-85-7	NS	NS	ND	ND	ND	~	~	~	~	~	~
Sample #		Pa	art 375-6.8(b)	EB15-700	EB15-175	EB15-025	SB-17A	SB-17A1	SB-17A2	SB-17C	SB-17D	SB-17G
Field ID		P	Protection of									
Lab ID		P	ublic Health	04678-001	04678-002	04678-003	04588-010	04588-011	04588-012	04588-013	04588-014	04588-015
Date Sampled		Residential	Restricted Residential	06/05/2017	06/05/2017	06/05/2017	06/02/2017	06/02/2017	06/02/2017	06/02/2017	06/02/2017	06/02/2017
Depth(ft)		(ppm)	(ppm)	70/75	17/17.5	2/2.5	7/7.5	9/9.5	8.5/9	7/7.5	9.5/10	7/7.5
	CAS											
Metals (mg/Kg)				Conc								
Aluminum	7429-90-5	NS	NS	6960	11500	9390	~	~	~	~	~	~
Antimony	7440-36-0	NS	NS	ND	ND	0.646	~	~	~	~	~	~
Arsenic	7440-38-2	16	16	1.06	3.55	6.04	~	~	~	~	~	~
Barium	7440-39-3	350	400	95.3	162	56.8	~	~	~	~	~	~
Beryllium	7440-41-7	14	72	0.333	0.922	0.527	~	~	~	~	~	~
Cadmium	7440-43-9	2.5	4.3	ND	ND	ND	~	~	~	. ~	~	~
Calcium	7440-70-2	NS	NS	4690	3040	2210	~	~	~	~	~	~
Chromium	7440-47-3	NS	NS	16.6	46.4	21.4	~	~	~	~	~	~
Cobalt	7440-48-4	30	NS	6.25	11.7	7.92	~	~	~	~	~	~
Copper	7440-50-8	270	270	9.79	45.7	34.0	~	~	~	~	~	~
Iron	7439-89-6	2000	NS	18000	29000	24900	~	~	~	~	~	~
Lead	7439-92-1	400	400	5.04	9.65	64.6	~	~	~	~	~	~
Magnesium	7439-95-4	NS	NS	4690	12700	3200	~	~	~	~	~	~
Manganese	7439-96-5	2000	2000	264	485	358	~	~	~	~	~	~
Mercury	7439-97-6	0.81	0.81	ND	ND	0.152	~	~	~	~	~	~
Nickel	7440-02-0	140	310	16.9	94.9	29.8	~	~	~	~	~	~
Potassium	7440-09-7'	NS	NS	2220	3740	1480	~	~	~	~	~	~
Selenium	7782-49-2	36	180	1.21	0.423	0.744	~	~	~	~	~	~
Silver	7440-22-4	36	180	ND	ND	ND	~	~	~	~	~	~
Sodium	7440-23-5	NS	NS	1170	271	143	~	~	~	~	~	~
Thallium	7440-28-0	NS	NS	0.315	ND	ND	~	~	~	~	~	~
Vanadium	7440-62-2	100	NS	21.8	35.5	26.1	~	~	~	~	~	~
Zinc	7440-66-6	2200	10000	27.6	44.9	86.1	~	~	~	~	~	~
General Analytical				Conc								
Hexavalent Chromium-mg/Kg	18540-29-9	22	110	ND	ND	ND	~	~	~	~	~	~
	57-12-5	27	27	ND	ND	ND					~	

CNYCRR Part 375-6.8(a) Unrestricted Use Soil Cleanup Objectives & NYCRR Part 375-6.8(b) Restricted Use Soil Cleanup Objectives December 2006
 CONC
 Indicates a concentration that exceeds restricted residential criteria.

 Indicates RL that exceeds applicable criteria.

 Indicates MDL that exceeds applicable criteria.

NS = No Standard Available

ND = Analyzed for but Not Detected at the MDL

J = Concentration detected at a value below the RL and above the MDL for target compounds. For non-target compounds (i.e. TICs), qualifier indicates estimated concentrations. All qualifiers on individual Volatiles & Seminostatiles are carried down through summation.

N = Presumptive evidence of a compound from the use of GC/MS library search.

DRAFT Table 2A

Soil Sample Analytical Results Summary - VOCs Remedial Investigation Report

Red Hook 4 Properties Brooklyn, New York Langan Project Number: 170363001

Location Sample ID Lab ID Sample Date Sample Interval (ft bgs)	NYSDEC Part 375 Unrestricted SCO	NYSDEC Part 375 Restricted Use Commercial SCO	EB04 EB04_0-2 17B0419-03 2/10/2017 0-2		EB04 EB04_4-5 17B0419-0- 2/10/2017 4-5	1	EB04_24- 1780419- 2/10/201 24-25	06	EB06_0 EB06_0 17B0225 2/6/20	-2	EB06_7 17B0225 2/6/20 7-8	-02	EB06 EB06_14 17B0225 2/6/201	-15 -03 17	EB07 EB07_0-1 17B0225-04 2/6/2017 0-1		EB07 EB07_1- 17B0225- 2/6/201 1-2	-05	EB07 EB07_7-6 17B0226-6 2/6/2017	06	EB08 EB08_0- 17B0271- 2/7/201	08	EB08 EB08_9-10 17B0271-10 2/7/2017
Volatile Organic Compounds - VOCs (mg/k	(g)										- 70		14-15		V* I.		1-2		7-8		0-2		9-10
1,1,2,2-Tetrachloroethane	~	~	0.0066	U	5.9	D	0.0047	U	0.0048	U	1.2	11	0.0041	11	0.0055	U	0.007	11	0.0062	- 11	0.0044		
1,1,2-Trichloroethane	~	~	0.0066	U	0.98	D	0.0047	II.	0.0048	II.	1.2	ĭi l	0.0041	Ü	0.0055	U	0.007	0		U	0.0044	U	0.45
1,2,3-Trichloropropane	~	~	0.0066	U	1.5	D	0.0047	U	0.0048	ŭ	1.2	ŭ	0.0041	U	0.0055	ŭ.	0.007	U	0.0062	U	0.0044	U	0.45
1,2,4-Trimethylbenzene	3.6	190	0.0066	U	1.3	D	0.0047	Ü	0.0048	ĭi l	1.2	11	0.0041	U	0.0055	ŭ.		U	0.0062	U	0.0044	U	0.45
1,3,5-Trimethylbenzene (Mesitylene)	8.4	190	0.0066	II	0.49	U	0.0047	II.	0.0048	ii l	1.2		0.0041	U		-	0.007	U	0.0062	U	0.0044	U	0.3
2-Hexanone	~	~	0.0066	ŭ	1	D	0.0047	ü	0.0048		1.2			0	0.0055	U	0.007	U	0.0062	U	0.0044	U	0.45
Acetone	0.05	500	0.099	_	0.53	ID	0.0075	ŭ	0.0048	0	2.4		0.0041	U	0.0055	U	0.007	_ U	0.0062	U	0.0044	U	0.45
Benzene	0.06	44	0.0066	11.	0.49	11	0.0073	U	0.0048				0.021	200	0.007	7	0.21	DR	0.024		0.019		0.9
Carbon Disulfide	~		0.0039	1	0.49	11	0.0047	11	0.0048	0	1.2	U	0.0041	U	0.0055	U	0.007	U	0.0062	U	0.0044	U	0.45
Cymene	~	~	0.0066	11	0.88	0	0.0047	ii l			1.2	U	0.0041	U	0.0055	U	0.007	U	0.0062	U	0.0044	U	0.45
Ethylbenzene	1	390	0.0066	ii l	0.49		0.0047	U I	0.0048		0.99	JD	0.0041	U	0.0055	U	0.007	U	0.0062	U	0.0044	U	0.45
Isopropylbenzene (Cumene)		330	0.0066	11	0.49	U	0.0047	U	0.0048		1.2	U	0.0041	U	0.0055	U	0.007	U	0.0062	U	0.0044	U	0.45
M.P-Xvlene			0.013		0.99		0.0047	U	0.0048	0	2.1	U	0.0041	U	0.0055	U	0.007	U	0.0062	U	0.0044	U	0.62
Methyl Acetate		~	0.0066			0		-	0.0095	0	2.4	U	0.0082	U	0.011	U	0.014	U	0.012	U	0.0088	U	0.9
Methyl Ethyl Ketone (2-Butanone)	0.12	500	0.015	0	0.49	U	0.0047	U	0.0048	U	1.2	U	0.0041	U	0.0055	U	0.007	U	0.0062	U	0.0044	U	1.5
Methylcyclohexane	0.12	500	0.015		0.49	U	0.0047	U	0.0048	U	1.2	U	0.0057		0.0055	U	0.035		0.005	J	0.0044	U	0.45
Methylene Chloride	0.05	500	0.0075	JB I	0.49	JBD	0.0047	U	0.0048	U	21	D	0.0067	2000	0.0055	U	0.007	U	0.0062	U	0.0044	U	1.3
N-Butylbenzene	12	500	0.0075	JB		JRD	0.0094	U	0.0064	J	2.4	U	0.0082	U	0.011	U	0.014	U	0.012	U	0.0088	U	0.9
N-Propylbenzene	3.9	500	0.0066	0	0.72	U	0.0047	-	0.0048	U	1.2	U	0.0041	U	0.0055	U	0.007	U	0.0062	U	0.0044	U	2.2
O-Xylene (1,2-Dimethylbenzene)	3.5	500	0.0066	0	0.49	U	0.0047	U	0.0048	U	3.9	D	0.0024	J	0.0055	U	0.007	U	0.0062	U	0.0044	U	0.45
Sec-Butylbenzene	11	500	0.0066	0	0.49	0	0.0047	U	0.0048	U	1.2	U	0.0041	U	0.0055	U	0.007	U	0.0062	U	0.0044	U	0.45
Styrene	1 "		0.0066	0	0.40	U	0.0047	U	0.0048	U	3.9	D	0.0025	J	0.0055	U	0.007	U	0.0062	U	0.0044	U	5.8
T-Butylbenzene	5.9	500	0.0066	U	0.49	U	0.0047	U	0.0048	U	1.2	U	0.0041	U	0.0055	U	0.007	U	0.0062	U	0.0044	U	0.45
Toluene	0.7	500		U	0.51	U	0.0047	U	0.0048	U	1.2	U	0.0041	U	0.0055	U	0.007	U	0.0062	U	0.0044	U	0.38
Xylenes, Total	0.7	500	0.0066	U	0.49	U	0.0047	U	0.0048	U	1.2	U	0.0041	U	0.0055	U	0.007	U	0.0062	U	0.0044	U	0.45
Ayrenes, rotal	0.26	500	0.02	U	1.5	U	0.014	U	0.014	U	3.7	U	0.012	U	0.017	U	0.021	U	0.019	U	0.013	11	14

- Soil sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 375 Unrestricted Use and Restricted Use Commercial Soil Cleanup Objectives (SCOs).
- 2. Only compounds with detections are shown in the table.
- 3. Concentrations above the NYSDEC Part 375 Unrestricted Use SCOs are shaded.
- 4. Concentrations above the NYSDEC Part 375 Restricted Use Commercial SCOs were not identified.
- 5. Reporting Limits (RL) above the NYSDEC Part 375 Unrestricted Use SCO standards are italicized.

- 6. = Criterion does not exist.
- 7. J = The analyte was detected above the Method Detection Limit (MDL), but below the RL; therefore, the result is an estimated concentration.
- 8. U = The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL.

- 8. U = The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value sht 9. E = The value is estimated due to its behavior during calibration.
 10. B = Analyte is found in the associated analysis batch blank.
 11. D = Result is from an analysis that required dilution.
 12. DUP01_020717 is a duplicate sample of EB110_1-2 and DUP02_020817 is a duplicate of sample EB140_0.2.
- 13. ft. bgs = feet below grade surface
- 14. mg/kg = milligrams per kilogram

Table 2A Soil Sample Analytical Results Summary - VOCs Remedial Investigation Report

Red Hook 4 Properties Brooklyn, New York Langan Project Number: 170363001

Location Sample ID Lab ID Sample Date Sample Interval (ft bos)	NYSDEC Part 375 Unrestricted SCO	NYSDEC Part 375 Restricted Use Commercial SCO	EB08 EB08_19-20 17B0271-07 2/7/2017 19-20		EB10D EB10D_0-2 1780169-01 2/3/2017 0-2		EB10D EB10D_41-4 17B0169-0- 2/3/2017 41-42	4	EB10D EB10D_49-1 17B0169-0 2/3/2017 49-50		EB10D EB10D_62-64 17B0169-07 2/3/2017 62-64		EB10D EB10D_73-7 17B0169-0 2/3/2017 73-75		EB11D EB11D_0-1 17B0271-01 2/7/2017 0-1		EB11D_1 EB11D_1 17B0271- 2/7/201 1-2	-2 02	EB11D DUP01_020 1780271-0 2/7/2017 1-2	14	EB11D EB11D_7.5- 1780271- 2/7/2017 7.5-8.5	03	EB12D EB12D_0-2 17B0058-01 2/1/2017 0-2
Volatile Organic Compounds - VOCs (mg/kg	3)					_						_				_		71.5	0.0045		0.0049	- 11	0.64 U
1,1,2,2-Tetrachloroethane	~	~	0.0055	U	0.0052 U		0.0053	U	0.005	U	0.92 U		0.0045	U	0.0046 U	. 1	0.0043	U	0.0045 0.0045	U	0.0049	- 0	0.64 U
1,1,2-Trichloroethane	~	~	0.0055	U	0.0052 U		0.0053	U	0.005	U	0.92 U		0.0045	U	0.0046 U		0.0043	U	0.0045	U	0.0049	11	0.64 U
1,2,3-Trichloropropane	~	~	0.0055	U	0.0052 U		0.0053	U	0.005	U	0.92 U		0.0045	U	0.0046 U		0.0043	U		0			0.64 U
1.2.4-Trimethylbenzene	3.6	190	0.0055	U	0.0052 U		0.0053	U	0.005	U	44 D	1	0.0045	U	0.0046 U		0.0043	U	0.0045	U	0.0049	U	0.64 U
1.3.5-Trimethylbenzene (Mesitylene)	8.4	190	0.0055	U	0.0052 U		0.0053	U	0.005	U	15 D	1	0.0045	U	0.0046 U		0.0043	U	0.0045	U		U	
2-Hexanone	~	~	0.0055	U	0.0052 U		0.0053	U	0.005	U	0.92 U		0.0045	U	0.0046 U	,	0.0043	U	0.0045	U	0.0049	U	0.64 U
Acetone	0.05	500	0.024		0.038		0.019		0.01	U	1.8 U	1	0.0089	U	0.019	.	0.023	17.7	0.012		0.028	127	1.3 U
Benzene	0.06	44	0.0055	U	0.0052 U	1	0.0053	U	0.005	U	31 DE	E	0.0045	U	0.0046 U	1	0.0043	U	0.0045	U	0.0049	0	0.64 U
Carbon Disulfide	~	~	0.0055	U	0.0052 U		0.0053	U	0.005	U	0.92 U		0.0045	U	0.0046 U	J	0.0043	U	0.0045	U	0.0049	U	0.64 U
Cymene	~	~	0.0055	U	0.0052 U		0.0072		0.005	U	0.92 U	J	0.0045	U	0.0046 U	1	0.0043	U	0.0045	U	0.0049	U	1.8 D
Ethylbenzene	1 1	390	0.0055	U	0.0052 U	1	0.0028	J	0.005	U	24 D)	0.0045	U	0.0046 L	3	0.0043	U	0.0045	U	0.0049	U	0.0
Isopropylbenzene (Cumene)	2	~	0.0055	U	0.0052 U		0.0053	U	0.005	U	1.9 D		0.0045	U	0.0046 L	1	0.0043	U	0.0045	U	0.0049	U	0.64 U
M.P-Xvlene	~	~	0.011	U	0.01 U		0.011	Ų	0.01	U	68 DE	E	0.0089	U	0.0091 U	1	0.0086	U	0.009	U	0.0099	U	1.3 U
Methyl Acetate	~	~	0.0038	J	0.0052 U		0.0053	U	0.005	U	0.59 JD	0	0.0045	U	0.0046 L	,	0.0043	U	0.0045	U	0.0049	U	0.64 U
Methyl Ethyl Ketone (2-Butanone)	0.12	500	0.0084		0.0034 J		0.0038	J	0.005	U	0.92 U	J	0.0045	U	0.003		0.0043	U	0.0045	U	0.0039	J	0.64 U
Methylcyclohexane	~	~	0.0055	U	0.0052 U		0.0053	U	0.005	U	2.8 D		0.0045	U	0.0046 L	1	0.0043	U	0.0045	U	0.0049	U	0.64 U
Methylene Chloride	0.05	500	0.011	U	0.01 U		0.011	U	0.01	U	1.8 U		0.0089	U	0.0091 L	1	0.0086	U	0.009	U	0.0099	U	1.3 U
N-Butylbenzene	12	500	0.0055	U	0.0052 U		0.0053	U	0.005	U	0.92 U	J	0.0045	U	0.0046 L	1	0.0043	U	0.0045	U	0.0049	U	0.64 U
N-Propylbenzene	3.9	500	0.0055	U	0.0052 U		0.0053	U	0.005	U	7.3 D		0.0045	U	0.0046 U)	0.0043	U	0.0045	U	0.0049	U	0.64 U
O-Xylene (1,2-Dimethylbenzene)	0.0	~	0.0055	U	0.0052 U		0.0053	U	0.005	U	35 DE	E	0.0045	U	0.0046 L	J	0.0043	U	0.0045	U	0.0049	U	0.64
Sec-Butylbenzene	11	500	0.0055	U	0.0052 U		0.0053	U	0.005	U	0.54 JE	D	0.0045	U	0.0046 L		0.0043	U	0.0045	U	0.0049	U	0.64 U
Styrene		200	0.0055	Ü	0.0052 U		0.0053	U	0.005	U	77 DE	E	0.0045	U	0.0046 L	į	0.0043	U	0.0045	U	0.0049	U	0.64 U
T-Butylbenzene	5.9	500	0.0055	ŭ	0.0052 U		0.0053	Ü	0.005	U	0.92 U)	0.0045	U	0.0046 L	,	0.0043	U	0.0045	U	0.0049	U	0.64
	0.7	500	0.0055	ĬI	0.0052 U		0.0053	U	0.005	U	160 D		0.0045	U	0.0046 L	J	0.0043	U	0.0045	U	0.0049	U	0.64
Toluene Xylenes, Total	0.26	500	0.017	ŭ	0.0052 U		0.016	U	0.015	Ū	100 D		0.013	U	0.014 L	į	0.013	U	0.013	U	0.015	U	1.9 L

- Soil sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 375 Unrestricted Use and Restricted Use Commercial Soil Cleanup Objectives (SCOs).
- Only compounds with detections are shown in the table.
 Concentrations above the NYSDEC Part 375 Unrestricted Use SCOs are shaded.
- 4. Concentrations above the NYSDEC Part 375 Restricted Use Commercial SCOs were not identified.
- 5. Reporting Limits (RL) above the NYSDEC Part 375 Unrestricted Use SCO standards are italicized.

- = Cheminal was not easi.
 J = The analyte was detected above the Method Detection Limit (MDL), but below the RL; therefore, the result is an estimated concentration.
 U = The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL.
- 9. E = The value is estimated. The value is estimated due to its behavior during calibration.
- 10. B = Analyte is found in the associated analysis batch blank.
- 11. D = Result is from an analysis that required dilution.
 12. DUP01_020717 is a duplicate sample of EB11D_1-2 and DUP02_020817 is a duplicate of sample EB14D_0-2.
 13. ft. bgs = feet below grade surface
 14. mg/kg = milligrams per kilogram

Table 2A Soil Sample Analytical Results Summary - VOCs Remedial Investigation Report

Red Hook 4 Properties Brooklyn, New York Langan Project Number: 170363001

Location Sample ID Lab ID Sample Date Sample Interval (ft bgs)	NYSDEC Part 375 Unrestricted SCO	NYSDEC Part 375 Restricted Use Commercial SCO	EB12D_7- 17B0058-(2/1/2017 7-8	2	EB12D_6 EB12D_6 17B0058 2/1/201 8-9	03 03	EB13D EB13D_0 17B0122- 2/2/201 0-2	01	EB13D 4 17B0122 2/2/2014-5	1-5 -02	EB13D_9- 17B0122- 2/2/201 9-10	-10 -03	EB14D EB14D_0- 17B0358-4 2/8/2011 0-2	-2	EB14D DUP02_020 17B0358- 2/8/2011 0-2	0817 03	EB14D EB14D_2 17B0358- 2/8/201 2-3	-3 04	EB14D_66 1780358 2/8/201 66-68	-68 -06	EB14D_93 17B0358- 2/8/201 93-95	3-95 -09 17
Volatile Organic Compounds - VOCs (mg/	kg)														- 02		2-3		00-00		93-95	
1,1,2,2-Tetrachloroethane	~	~	0.0055	U	0.0062	U	0.0069	U	0.006	U	0.0043	U	0.0082	U	0.0045	U	0.0052	- 11	0.87	- 11	0.0036	- 11
1,1,2-Trichloroethane	~	~	0.0055	U	0.0062	U	0.0069	U	0.006	U	0.0043	U	0.0082	11	0.0045	U	0.0052	U	0.87			U
1,2,3-Trichloropropane	~	~	0.0055	U	0.0062	U	0.0069	U	0.006	Ü	0.0043	Ü	0.0082	11	0.0045	ŭ	0.0052	- 11	0.87		0.0036	U
1,2,4-Trimethylbenzene	3.6	190	0.0055	U	0.0062	U	0.0069	U	0.006	ŭ	0.0043	ŭ	0.0082	U	0.0045	U	0.0052			= 0	0.0036	U
1,3,5-Trimethylbenzene (Mesitylene)	8.4	190	0.0055	U	0.0062	U	0.0069	Ü	0.006	Ŭ	0.0043	Ü	0.0082	11	0.0045	0	0.0052		5.8	E 0	0.0036	U
2-Hexanone	~	~	0.0055	U	0.0062	U	0.0069	U	0.006	ŭ	0.0043	U	0.0082		0.0045	U		U	2	U	0.0036	U
Acetone	0.05	500	1.1	U	0.062		0.016	ŭ	0.05	0	0.0096	U	0.0085	0	0.0045	0	0.0052	U	0.87	U	0.0036	U
Benzene	0.06	44	0.0055	Ü	0.0062	U	0.0069	U	0.006	U	0.0043	11	0.0083	J	0.0068	3	0.0062	J	1.7	_ 0	0.0073	U
Carbon Disulfide	~	~	0.0055	ŭ	0.0062	Ü	0.0069	ŭ	0.006	U	0.0043	U	0.0082	0		U	0.0052	U	8.1	D	0.0036	U
Cymene	~	~	0.0055	Ü	0.0062	ŭ	0.0069	ŭ	0.006	U	0.0043	0	0.0082	U	0.0045	U	0.0052	U	0.87	U	0.0036	U
Ethylbenzene	1	390	0.0055	Ü	0.0062	U	0.0069	Ü	0.006	U	0.0043	11	0.0082	0		U	0.0052	U	0.87	_ U	0.0036	U
Isopropylbenzene (Cumene)	~	~	0.0055	Ü	0.0062	IJ	0.0069	Ü	0.006	U	0.0043	0		U	0.0045	U	0.0052	U	3.2	D	0.0036	U
M,P-Xylene	~	~	0.011	ŭ	0.012	U	0.014	U	0.000	U	0.0043		0.0082	U	0.0045	U	0.0052	U	0.87	U	0.0036	U
Methyl Acetate	~	~	0.0055	ŭ	0.0062	U	0.0069	ŭ	0.012	Ü		0	0.016	U	0.009	U	0.01	U	15	D	0.0073	U
Methyl Ethyl Ketone (2-Butanone)	0.12	500	0.0088	٠,۱	0.0002	U	0.0069	U			0.0043	0	0.0082	U	0.0045	U	0.0052	U	0.87	U	0.0036	U
Methylcyclohexane	-	500	0.0055	U	0.0062	U I	0.0069	ŭ	0.006 0.006	U	0.0043	U	0.0082	U	0.0045	U	0.0052	U	0.87	U	0.0036	U
Methylene Chloride	0.05	500	0.011	ŭ	0.002	Ü	0.0069	U		U	0.0043	U	0.0082	U	0.0045	U	0.0052	U	0.87	U	0.0036	U
N-Butylbenzene	12	500	0.0055	ŭ l	0.0062	U	0.0069	Ü	0.012	U	0.0086	U	0.016	U	0.009	U	0.01	U	1.7	U	0.0073	U
N-Propylbenzene	3.9	500	0.0055	ŭ	0.0062	u		Ü	0.006	U	0.0043	U	0.0082	U	0.0045	U	0.0052	U	0.87	U	0.0036	U
O-Xvlene (1.2-Dimethylbenzene)	3.5	200	0.0055	U	0.0062	U	0.0069	Ü	0.006	U	0.0043	0	0.0082	U	0.0045	U	0.0052	U	0.7	JD	0.0036	U
Sec-Butylbenzene	11	500	0.0055	ŭ	0.0062	Ü	0.0069	U	0.006	U	0.0043	0	0.0082	U	0.0045	U	0.0052	U	7.2	D	0.0036	U
Styrene	1	200	0.0055	ŭ	0.0062	ŭ	0.0069	Ü	0.006	U	0.0043	0	0.0082	U	0.0045	U	0.0052	U	0.87	U	0.0036	U
T-Butylbenzene	5.9	500	0.0055	ŭI	0.0062	ŭ		27.0	0.006	U	0.0043	U	0.0082	U	0.0045	U	0.0052	U	14	D	0.0036	U
Toluene	0.7	500	0.0055	ü		1750	0.0069	U	0.006	U	0.0043	U	0.0082	U	0.0045	U	0.0052	U	0.87	U	0.0036	U
Xylenes, Total	0.26	500	0.0055	S I	0.0062	U	0.0069	U	0.006	U	0.0043	U	0.0082	U	0.0045	U	0.0052	U	19	D	0.0036	U
17.01.007 . 010.	0.20	500	0.016	U	0.018	U	0.021	U	0.018	U	0.013	U	0.024	U	0.014	U	0.016	U	22	D I	0.011	1.1

- Soil sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 375 Unrestricted Use and Restricted Use Commercial Soil Cleanup Objectives (SCOs).
- 2. Only compounds with detections are shown in the table.
- 3. Concentrations above the NYSDEC Part 375 Unrestricted Use SCOs are shaded.
- 4. Concentrations above the NYSDEC Part 375 Restricted Use Commercial SCOs were not identified.
- 5. Reporting Limits (RL) above the NYSDEC Part 375 Unrestricted Use SCO standards are italicized.

- 6. = Criterion does not exist.
 7. J = The analyte was detected above the Method Detection Limit (MDU, but below the RL; therefore, the result is an estimated concentration.
 8. U = The analyte was analyte of for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL
 9. E = The value is estimated. The value is estimated due to its behavior during calibration.

- 10. B = Analyte is found in the associated analysis batch blank.
- 10. D. Allowyn is found in the associated analysis batton bank.

 11. D. a. Result is from an analysis that required diction.

 12. DUP01_020717 is a duplicate sample of EB11D_1-2 and DUP02_020817 is a duplicate of sample EB14D_0-2.

 13. ft. bgs = feet below grade surface

 14. mg/kg = milligrams per kilogram

DRAFT

Table 2B

Soil Sample Analytical Results Summary - SVOCs Remedial Investigation Report

Red Hook 4 Properties Brooklyn, New York Langan Project Number: 170363001

Location Sample ID Lab ID Sample Date Sample Interval (ft bgs)	NYSDEC Part 375 Unrestricted SCO	NYSDEC Part 375 Restricted Use Commercial SCO	EB04 EB04_0-2 17B0419-03 2/10/2017 0-2	3	EB04 EB04_4-5 17B0419-0 2/10/201 4-5	14	EB04 EB04_24- 17B0419- 2/10/201 24-25	06	EB06 EB06_0- 17B0225- 2/6/201 0-2	-01	EB06 EB06_7- 17B0225- 2/6/201 7-8	02	EB06 EB06_14- 17B0225- 2/6/2017 14-15	03	EB07 EB07_0- 17B0225- 2/6/2017 0-1	04	EB07 EB07_1- 1780225- 2/6/201 1-2	05	EB07 EB07_7-6 17B0225-6 2/6/2017 7-8	06	EB08 EB08_0-2 17B0271-0 2/7/2017 0-2	18	EB08 EB08_9- 1780271 2/7/201 9-10	-10 -10 17
Semivolatile Organic Compounds - SVO	Cs (mg/kg)																		2.110		0.0401	10.1	0.102	- 11
2-Methylnaphthalene	~	~	0.0953	U	0.0925	U	0.0986	U	0.132	U	0.15	U	0.0979	U	0.144	U	0.16	U	0.146	U	0.0461	JU	0.103 0.103	0 1
Acenaphthene	20	500	0.0953	U	0.0925	U	0.0986	U	0.132	U	0.146	JD	0.0979	U	0.144	U	0.16	U	0.146	U		U		
Acenaphthylene	100	500	0.0953	U	0.0925	U	0.0986	U	0.132	Ų	0.15	U	0.0979	U	0.144	U	0.152	JD	0.146	U	0.09	0	0.103	0
Anthracene	100	500	0.0953	U	0.0925	U	0.0986	U	0.132	U	0.15	U	0.0979	U	0.1	JD	0.266	_ D	0.146	U	0.825	D	0.599	DE D
Benzo(a)Anthracene	1	5.6	0.0495	JD	0.0925	U	0.0986	U	0.139	D	0.15	U	0.0979	U	0.456	D	1.13	D	0.146	U	2.09	D	0.217	U
Benzo(a)Pyrene	1	1	0.0526	JD	0.0925	U	0.0986	U	0.152	D	0.15	U	0.0979	U	0.586	D	1.01	D	0.146	U	1.88	D	0.103	U
Benzo(b)Fluoranthene	1	5.6	0.0739	JD	0.0925	U	0.0986	U	0.129	JD	0.15	U	0.0979	U	0.721	D	0.736	D	0.146	U	2.23	U	0.103	U
Benzo(g,h,i)Perylene	100	500	0.0953	U	0.0925	U	0.0986	U	0.0751	JD	0.15	U	0.0979	U	0.327	D	0.753	_ D	0.146	U	1.21	D	0.103	U
Benzo(k)Fluoranthene	0.8	56	0.0732	JD	0.0925	U	0.0986	U	0.157	D	0.15	U	0.0979	U	0.58	D	1.04	D	0.146	U	2.16	D	0.113	D
Benzyl Butyl Phthalate	~	~	0.0953	U	0.0925	U	0.0986	U	0.132	U	0.15	U	0.0979	U	0.144	U	0.16	U	0.146	U	0.09	U	0.103	U
Biphenyl (Diphenyl)	- · · · · · · · · · · · · · · · · · · ·	~	0.0953	U	0.0925	U	0.0986	U	0.132	U	0.15	U	0.0979	U	0.144	U	0.16	U	0.146	U	0.09	U	0.103	U
Bis(2-Ethylhexyl) Phthalate		~	0.0953	U	0.0925	U	0.0986	U	0.132	U	0.15	U	0.0979	U	0.144	U	0.16	U	0.146	U	0.09	U	0.0764	JD
Carbazole		~	0.0953	U	0.0925	U	0.0986	U	0.132	U	0.15	U	0.0979	U	0.144	U	0.16	U	0.146	U	0.526	. D	0.103	U
Chrysene	1	56	0.0854	JD	0.0925	Ü	0.0986	U	0.163	D	0.15	U	0.0979	U	0.553	D	1.29	D	0.146	U	2.32	D	0.331	D
Dibenz(a,h)Anthracene	0.33	0.56	0.0953	U	0.0925	Ü	0.0986	U	0.132	U	0.15	U	0.0979	U	0.199	D	0.252	D	0.146	U	0.421	D	0.103	U
Dibenzofuran	7	350	0.0953	U	0.0925	U	0.0986	U	0.132	U	0.15	U	0.0979	U	0.144	U	0.16	U	0.146	U	0.161	D	0.103	U
Fluoranthene	100	500	0.104	Ď	0.0925	ŭ	0.0986	Ü	0.349	D	1.35	D	0.0979	U	0.842	D	2.31	D	0.146	U	7.08	D	0.103	U
Fluorene	30	500	0.0953	u	0.0925	ŭ	0.0986	Ü	0.132	U	0.15	U	0.0979	U	0.144	U	0.16	U	0.146	U	0.276	D	0.15	D
Hexachloroethane	30	300	0.0953	ŭ	0.0925	Ü	0.0986	Ü	0.132	U	0.15	U	0.0979	U	0.144	U	0.16	U	0.146	U	0.09	U	0.103	U
	0.5	5.6	0.0953	Ŭ.	0.0925	i i	0.0986	U	0.072	JD	0.15	U	0.0979	U	0.289	D	0.575	D	0.146	U	1.02	D	0.103	U
Indeno(1,2,3-C,D)Pyrene	12	500	0.0953	ŭ	0.0925	ŭ	0.0986	ŭ	0.132	U	0.15	Ü	0.0979	U	0.144	U	0.16	U	0.146	U	0.117	D	0.27	D
Naphthalene	100	500	0.0678	ID	0.0925	ŭ	0.0986	ii.	0.148	Ď	0.15	U	0.0979	U	0.252	D	0.693	D	0.146	U	4.18	D	0.62	DE
Phenanthrene Pyrene	100	500	0.0876	JD	0.0925	ŭ	0.0986	ii.	0.253	D	0.15	U	0.0979	U	0.55	D	1.77	D	0.146	U	5.75	D	0.49	D

- Soil sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 375 Unrestricted Use and Restricted Use Commercial Soil Cleanup Objectives (SCOs).
- Only compounds with detections are shown in the table.
 Concentrations above the NYSDEC Part 375 Unrestricted Use SCOs are shaded.
- 4. Concentrations above the NYSDEC Part 375 Restricted Use Commercial SCOs are shaded and bolded.
- 5. Reporting Limits (RL) above the NYSDEC Part 375 Unrestricted Use SCO standards are italicized.

- 6. ~ = Criterion does not exist.
- 7. J = The analyte was detected above the Method Detection Limit (MDL), but below the RL; therefore, the result is an estimated concentration.

 8. U = The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL.
- 9. E = The value is estimated. The value is estimated due to its behavior during calibration.
- 10. D = Result is from an analysis that required dilution.

 11. DUP01_020717 is a duplicate sample of EB11D_1-2 and DUP02_020817 is a duplicate of sample EB14D_0-2.
- 12. ft. bgs = feet below grade surface 13. mg/kg = milligrams per kilogram

Table 2B Soil Sample Analytical Results Summary - SVOCs Remedial Investigation Report

Red Hook 4 Properties Brooklyn, New York Langan Project Number: 170363001

Location Sample ID Lab ID Sample Date Sample Interval (ft bgs)	NYSDEC Pert 375 Unrestricted SCO	NYSDEC Part 375 Restricted Use Commercial SCO	EB08_19- 17B0271- 2/7/201 19-20	07	EB10D EB10D_0-2 17B0169-01 2/3/2017 0-2	EB10D_41- 17B0169-(2/3/2017 41-42	-42 04	EB10D_49-50 17B0169-05 2/3/2017 49-50		EB10D EB10D_62 17B0169- 2/3/201 62-64	2-64 -07 7	EB10D_7: 17B0169 2/3/201 73-75	3-75 -08 17	EB11D_0 17B0271- 2/7/201 0-1	-1 01	EB11D_1 17B0271- 2/7/201 1-2	-2 -02	EB11D DUP01_020 17B0271- 2/7/201 1-2	0717 -04	EB11D EB11D_7.5 17B0271- 2/7/201	-8.5 03 7	EB12D_0 EB12D_0 17B0058- 2/1/201	0-2 1-01
Semivolatile Organic Compounds - SVC	Cs (mg/kg)		1000	~~						02.01		70 73		0-1		1-2		1-2	Salary.	7.5-8.5	A COLUMN	0-2	
2-Methylnaphthalene	-	~	0.1	U	0.0524 JD	0.0903	U	0.206	D. T	1180	D	0.594	DI	0.0461	UI	0.0484	0.1	0.0485	- 11	0.0465	- 11	0.0000	
Acenaphthene	20	500	0.1	U	0.081 JD	2.83	D	0.202	D	242	II I	0.107	ii l	0.028	9	0.0484		0.0485	U		U	0.0993	U
Acenaphthylene	100	500	0.1	U	0.205 D	0.0903	U	0.124	n l	503	- ŏ	0.107	5	0.028	٠,١	0.0484	U		U	0.0465	U	0.0993	U
Anthracene	100	500	0.1	U	0.352 D	0.0903	11	0.545	D	271	5	0.122	5	0.127	- 1		U	0.0485	U	0.0465	U	0.0993	U
Benzo(a)Anthracene	1	5.6	0.1	U	1.01 D	8.58	B D	0.441	5	168	JD.	0.0751	JD	0.127	- 1	0.0488		0.0559		0.0465	U	0.189	D
Benzo(a)Pyrene	1	1	0.1	U	1.58 D	7.87	D	0.335	5	242	30	0.075	30	0.475	- 1	0.197		0.204		0.0465	U	0.0993	U
Benzo(b)Fluoranthene	1	5.6	0.1	11	1.17 D	1.96	D	0.133	5	242	11	0.107	ı. I	0.398	- 1	0.197		0.166		0.0465	U	0.0993	U
Benzo(g,h,i)Perylene	100	500	0.1	II.	1.2 D	2.53	D	0.154	5	242	ŭ	0.107			- 1	0.142		0.164		0.0465	U	0.0993	U
Benzo(k)Fluoranthene	0.8	56	0.1	11	1.36 D	2.05	DE	0.186	5	242	ı.			0.201	- 1	0.13		0.164		0.0465	U	0.085	JD
Benzyl Butyl Phthalate	~	~	0.1	11	0.0874 U	0.0903	DC II	0.101		242		0.107		0.421		0.168	100	0.167		0.0465	U	0.0993	U
Biphenyl (Diphenyl)	~		0.1	11	0.0874 U	0.0903	11	0.101			0	0.107	0	0.0461	U	0.0484	U	0.0485	U	0.0465	U	0.0993	U
Bis(2-Ethylhexyl) Phthalate	~	2	0.1	11	0.0874 U	0.119	D	0.101		242	U	0.0742	JD	0.0461	U	0.0484	U	0.0485	U	0.0465	U	0.0993	U
Carbazole		25	0.1	ŭ	0.0566 JD	0.0903		0.101		242	0	0.107	U	0.0461	U	0.0484	U	0.0485	U	0.0465	U	0.0993	U
Chrysene	1	56	0.1	ŭ	1,38 D	9.13	E D	0.101	0	242	= 0	0.107	U	0.0461	U	0.0484	U	0.0485	U	0.0465	U	0.0993	U
Dibenz(a.h)Anthracene	0.33	0.56	0.1	ŭ		0.849	D		2	170	■ JD	0.0751	JD	0.539	- 1	0.231		0.231		0.0465	U	0.0993	U
Dibenzofuran	7	350	0.1	o l	0.576 D 0.0874 U	0.0903			JD	242	U	0.107	U	0.0722		0.0592		0.0725		0.0465	U	0.0993	U
Fluoranthene	100	500	0.1	11			0		JD _	242	. U	0.107	U	0.0461	U	0.0484	U	0.0485	U	0.0465	U	0.0993	U
Fluorene	30	500	0.1	U	1.67 D	7.72	D	0.393	U	294	D	0.113	D	0.718	- 1	0.248		0.294		0.0465	U	0.309	D
Hexachloroethane	30	500	0.1	U	0.137 D	0.411	D	0.101	U	381	B D	0.124	D	0.0273	J	0.0484	U	0.0485	U	0.0465	U	0.0993	U
Indeno(1,2,3-C,D)Pyrene	0.5	-		U	0.0874 U	0.0903	U	0.101	U	242	U	0.107	U	0.0461	U	0.0484	U	0.0485	U	0.0465	U	0.0993	U
Naphthalene	12	5.6	0.1	U	0.972 D	1.78	D	0.109	D	242	_ U	0.107	U	0.188	- 1	0.106		0.14		0.0465	U	0.0993	U
Phenanthrene	2.77	500	0.1	U	0.0874 U	1.95	D	0.698	D	3080	D	1.71	D	0.0461	U	0.0286	J	0.0485	U	0.0465	U	0.0993	U
	100	500	0.1	U	0.936 D	13.1	DE		JD	1020	D	0.399	D	0.512	[0.253	100	0.291		0.0465	U	0.199	D
Pyrene	100	500	0.1	U	1.47 D	26.7	D	1.37	D	414	D	0.196	D	0.973		0.489		0.453		0.0465	U	0.233	D

- Soil sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 375 Unrestricted Use and Restricted Use Commercial Soil Cleanup Objectives (SCOs).
- 2. Only compounds with detections are shown in the table.
- Concentrations above the NYSDEC Part 375 Unrestricted Use SCOs are shaded.
- 4, Concentrations above the NYSDEC Part 375 Restricted Use Commercial SCOs are shaded and bolded.
- 5. Reporting Limits (RL) above the NYSDEC Part 375 Unrestricted Use SCO standards are italicized.

- 7. J = The analyte was detected above the Method Detection Limit (MDL), but below the RL; therefore, the result is an estimated concentration.
- 8. U = The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL.

 9. E = The value is estimated. The value is estimated due to its behavior during calibration.

 10. D = Result is from an analysis that required diution.

 11. DUP01_020717 is a duplicate sample of EB11D_1-2 and DUP02_020817 is a duplicate of sample EB14D_0-2.

- 12. ft. bgs = feet below grade surface
- 13. mg/kg = milligrams per kilogram

Table 2B Soil Sample Analytical Results Summary - SVOCs Remedial Investigation Report

Red Hook 4 Properties Brooklyn, New York Langan Project Number: 170363001

Location Sample ID Lab ID Sample Date Sample Interval (ft bgs)	NYSDEC Part 375 Unrestricted SCO	NYSDEC Part 375 Restricted Use Commercial SCO	EB121 EB12D_ 17B0058 2/1/20 7-8	7-8 I-02	EB12D_6 EB12D_6 17B0058 2/1/201 8-9	-9 -03	EB13D_0 EB13D_0 17B0122- 2/2/201 0-2	-01	EB13D_4 17B0122- 2/2/201 4-5	l-5 -02	EB13D_9 17B0122 2/2/201 9-10	-10 -03	EB14D_0 17B0358- 2/8/201 0-2	-2 02	EB14D DUP02_02 17B0358 2/8/201 0-2	0817	EB14D_2 17B0358- 2/8/201 2-3	-3 04	EB14D EB14D_66 17B0358 2/8/201 66-68	6-68 -06 17	EB14D EB14D_93 1780358- 2/8/201 93-95	3-95 -09 17
Semivolatile Organic Compounds - SV	OCs (mg/kg)																	5.1	1000	- 5 1	0.0919	- 17
2-Methylnaphthalene	~	~	2.2	U	0.0971	U	0.128	D	0.0663	JD	0.094	U	0.0546	JD	0.0664	JD	0.106	D	1060	= 5	0.0919	U
Acenaphthene	20	500	2.2	U	0.2	D	0.28	D	0.0874	JD	0.094	U	0.105	D	0.109	0	0.0949	U	167	5	0.0919	U
Acenaphthylene	100	500	2.2	U	0.0971	U	1.28	D	0.422	D	0.094	U	0.0912	U	0.0638	JD	0.0949	0	745			
Anthracene	100	500	2.2	U	0.389	D	1.82	D	0.657	_ D	0.094	U	0.29	D	0.135	D	0.0949	U	455	D	0.0919	U
Benzo(a)Anthracene	1	5.6	2.2	U	0.731	D	4.52	D	1.81	D	0.094	U	0.83	D	0.546	D	0.0949	U	259	D	0.0919	U
Benzo(a)Pyrene	1	1	2.2	U	0.545	D	2.97	D	2.01	D	0.094	U	0.839	D	0.484	D	0.0949	U	161	D	0.0919	U
Benzo(b)Fluoranthene	1	5.6	2.2	U	0.436	D	3.96	D	2.2	D	0.094	U	0.612	D	0.486	D	0.0949	U	88.9	D	0.0919	U
Benzo(g,h,i)Perylene	100	500	2.2	U	0.274	D	3.17	D	1.14	D	0.094	U	0.472	D	0.368	D	0.0949	U	92.8	_ D	0.0919	U
Benzo(k)Fluoranthene	0.8	56	2.2	U	0.528	D	4.37	D	1.62	D	0.094	U	0.688	D	0.53	D	0.0949	U	111	D	0.0919	U
Benzyl Butyl Phthalate	~	~	2.2	U	0.0971	U	0.124	D	0.101	U	0.094	U	0.0912	U	0.109	U	0.0949	U	37.8	U	0.0919	U
Biphenyl (Diphenyl)	_	~	2.2	Ü	0.0971	U	0.0985	U	0.101	U	0.094	U	0.0912	U	0.109	U	0.0949	U	196	D	0.0919	U
Bis(2-Ethylhexyl) Phthalate		~	2.2	Ü	0.101	D	0.0985	U	0.0712	JD	0.094	U	0.0912	U	0.109	U	0.0949	U	37.8	U	0.0919	U
Carbazole	_	~	2.2	Ü	0.144	D	0.367	D	0.203	D	0.094	U	0.0831	JD	0.109	U	0.0949	U	37.8	U	0.0919	U
Chrysene	1	56	2.2	Ü	0.84	D	4.57	DE	2.2	D	0.094	U	1.08	D	0.737	D	0.0736	JD	233	D	0.0919	U
Dibenz(a.h)Anthracene	0.33	0.56	2.2	U	0.144	D	1.32	D	0.476	D	0.094	U	0.0912	U	0.131	D	0.0949	U	42.6	D	0.0919	U
Dibenzofuran	7	350	2.2	Ü	0.0714	JD	0.0985	U	0.0817	JD	0.094	U	0.0517	JD	0.109	U	0.0949	U	87.1	D	0.0919	U
Fluoranthene	100	500	2.2	ŭ	1.7	D	7.46	D	2.91	D	0.094	U	1.51	D	0.948	D	0.0501	JD	439	D	0.0919	U
Fluorene	30	500	2.2	ŭ	0.155	D	0.268	D	0.101	D	0.094	U	0.102	D	0.109	U	0.0949	U	744	D	0.0919	U
Hexachloroethane	30	~	2.2	Ü	0.0971	U	0.0724	JD	0.101	U	0.094	U	0.0912	U	0.109	U	0.0949	U	37.8	U	0.0919	U
	0.5	5.6	2.2	11	0.219	D	2.48	D .	0.919	ı D	0.094	11	0.397	D	0.315	D	0.0949	U	59.9	D	0.0919	U
Indeno(1,2,3-C,D)Pyrene	12	500	2.2	IJ	0.0971	II	0.162	D	0.0841	JD	0.094	II.	0.0525	JD	0.109	Ū	0.0607	JD	2030	D	0.0919	U
Naphthalene					1.7	0	5.3	5	1.81	D	0.094	ii l	1.29	D	0.553	Ď	0.136	D	854	D	0.0919	U
Phenanthrene	100	500	2.2	U	1.7	D	8.26	0	3.07	D	0.094	11	1.75	D	1.03	5 1	0.0493	.ID	545	D	0.0919	Ŭ
Pyrene	100	500	2.2	U	1.59	U	8.26	U	3.07	U	0.094	U	1.75	U	1.03	U	0.0433	JU	940	_ U	0.3010	

- Soil sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 375 Unrestricted Use and Restricted Use Commercial Soil Cleanup Objectives (SCOs).
- 2. Only compounds with detections are shown in the table.
- 3. Concentrations above the NYSDEC Part 375 Unrestricted Use SCOs are shaded.
- 4. Concentrations above the NYSDEC Part 375 Restricted Use Commercial SCOs are shaded and bolded.
- 5. Reporting Limits (RL) above the NYSDEC Part 375 Unrestricted Use SCO standards are italicized.

- 6. ~ = Criterion does not exist.
- E. E. (merion does not exist.
 J = The analyte was detected above the Method Detection Limit (MDU), but below the RL; therefore, the result is an estimated concentration.
 U = The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL.
 E = The value is estimated. The value is estimated due to its behavior during calibration.

- 10. D = Result is from an analysis that required dilution.
- 11. DUP01_020717 is a duplicate sample of EB11D_1-2 and DUP02_020817 is a duplicate of sample EB14D_0-2.
- 12. ft. bgs = feet below grade surface
- 13. mg/kg = milligrams per kilogram

DRAFT Table 2C

Soil Sample Analytical Results Summary - Inorganics, PCBs, Pesticides, and Herbicides Remedial Investigation Report

Red Hook 4 Properties Brooklyn, New York Langan Project Number: 170363001

NYSDEC Part 375 Unrestricted SCO	NYSDEC Part 375 Restricted Use Commercial SCO	EB04_0-2 17B0419-03 2/10/2017	EB04_4-5 17B0419-04 2/10/2017	EB04_24-25 17B0419-06 2/10/2017	EB06 EB06_0-2 17B0225-01 2/6/2017	EB06 EB06_7-8 17B0225-02 2/6/2017	EB06 EB06_14-15 17B0225-03 2/6/2017	EB07 EB07_0-1 17B0225-04 2/6/2017	EB07 EB07_1-2 17B0225-05 2/6/2017	EB07 EB07_7-8 17B0225-06 2/6/2017	EB08 EB08_0-2 17B0271-08 2/7/2017	EB08 EB08_9-10 17B0271-10 2/7/2017
		0-2	4-5	24-25	0-2	7-8	14-15	0-1	1-2	7-8	0-2	9-10
~	~	7230 T	4910	7390	3690	3240	4500	7500	6310	2000	0.70	1500
~	~											4530
13	16	1.14 U					200000000000000000000000000000000000000					0.616 U
350	400	89						5.555				1.23 U
7.2	590											29.2
												0.123 U
_	~											0.37 U
30	1500		200000									1270
1												9.47
- 1	~								1000000			1.23
~	~							1000000				10.7
50	270	and the same of th										5.93
												10.6
~	~											0.616 U
63	1000	72000						THE RESERVE OF THE PARTY OF THE				8890
~	~											11.3
1600	10000											2930
										115500		61.4
												0.0573
~												26.7
3.0	7,000,000										0.0000	1660
3.5	100000											1.23 U
	1500											0.616 U
	1.5											205
	1.00											1.23 U
	10000											15.4
(g)	10000	1020	58.2	51.6	23.7	332	18.5	1640	84.2	25.6	63.4	31.1
	T	0.010	0.0105 11.1	0.0107 11 1	0.0170	0.0400	0.0100					
1												0.0205 U
	V 100											0.0205 U
	1											0.0205 U
0.1		0.019	0.0185	0.0197 0	0.0297	0.0199	0.0195	0.0192 U	0.0213 U	0.0195 U	0.018 U	0.0205 U
0.0033	92	0.00189	0.00192 11	0.00105 11	0.00175	0.00100 11	0.00101	0.0000			,	
												0.00203 U
												0.00203 U
~	~ 1											0.00203 ∪
		0.00100	0.00163	0.00195 0	0.00175 U	0.00198 0	0.00194 0	U.0019 U	0.00211 U	0.00193 U	0.00189 DP	0.00203 U
~	~	ND	ND T	ND	ND	ND	ND	L ND	Í ND	110	T	
		-10	110	NU	IND	INU	IND	IND	NU	ND	ND	ND
~	~	87.5	90.2	84.5	94.5	83.5	95.2	06.0	70.2	OF F	00.0	81.2
	13 350 7.2 2.5 - 30 1 - 30 1 - 50 27 - 63 - 1600 0.18 30 - 3.9 2 - 109 2 - 109 - 0.1	Commercial SCO Commercial SCO 13	Commercial SCO	Commercial SCO 27/07/2017 0-2 27/07/2017 0-2 4-5	Commercial SCO	Commercial SCO	Commercial SCO	Commercial SCD 2710/2017	Commercial SCO 27/07/2017	Commercial SCO	Commercial SCO	Commercial SCO Commercial SCO Color Co

- Soil sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 375 Unrestricted Use and Restricted Use Commercial Soil Cleanup Objectives (SCOs).
- 2. Only compounds with detections are shown in the table.
- Concentrations above the NYSDEC Part 375 Unrestricted Use SCOs are shaded.
- 4. Concentrations above the NYSDEC Part 375 Restricted Use Commercial SCOs are shaded and bolded.
- 5. Reporting Limits (RL) above the NYSDEC Part 375 Unrestricted Use SCO standards are italicized.
- 6. = Criterion does not exist.

- 7 DUP01_020717 is a duplicate sample of EB11D_1-2 and DUP02_020817 is a duplicate of sample EB14D_0-2.
- 8. ft. bgs = feet below grade surface
- mg/kg = milligrams per kilogram
 ND = Not Detected
- B = Analyte is found in the associated analysis batch blank.
- 12. D = Result is from an analysis that required dilution.
- 13. E = The value is estimated. The value is estimated due to its behavior during calibration.
- 14. J = The analyte was detected above the Method Detection Limit (MDL), but below the RL; therefore, the result is an estimated concentration.
- 15. U = The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL.

Table 2C Soil Sample Analytical Results Summary - Inorganics, PCBs, Pesticides, and Herbicides Remedial Investigation Report

Red Hook 4 Properties Brooklyn, New York Langan Project Number: 170363001

Location Sample ID Lab ID Sample Date Sample Interval (ft bgs)	NYSDEC Part 375 Unrestricted SCO	NYSDEC Part 375 Restricted Use Commercial SCO	EB08 EB08_19-20 17B0271-07 2/7/2017 19-20		EB10D EB10D_0-2 17B0169-01 2/3/2017 0-2		EB10D_41- 17B0169-0 2/3/2017 41-42	14	EB10D EB10D_49 17B0169- 2/3/201 49-50	-50 05	EB10D EB10D_62 17B0169- 2/3/201 62-64	-64 07	EB10D EB10D_73-7 17B0169-08 2/3/2017 73-75		EB11D EB11D_0- 1780271-0 2/7/2017 0-1	11	EB11D EB11D_1- 17B0271-0 2/7/2017 1-2	12	EB11D DUP01_020717 1780271-04 2/7/2017 1-2	EB11D		EB12D_0 17B0058- 2/1/201 0-2	0-2 -01
Inorganics (mg/kg)																				7			
Aluminum	~	~	4330	\neg	3210		2290		2610		2720		2180		3840	100.0	4470		4880	1370		2570	В
Antimony	_	~	0.601	U	0.613	- 1	0.541	U	0.607	U	0.58	U	0.64	U	0.552	U	0.58	U	0.582 U	0.557	U	0.596	U
Arsenic	13	16	1.2	U	4.39	- 1	1.08	U	1.21	U	1.16	U	1.28	U	8.2		4.73		11.2	10.5		13.3	AL .
Barium	350	400	27.8		56.8		15.2		22.3		16.2		9.49		102		5190	1 1	1030	88.8		90.3	
Beryllium	7.2	590	0.18	- 1	0.247		0.108	U	0.121	U	0.116	U	0.128	U	0.326		0.625		0.216	0.161		0.219	
Cadmium	2.5	9.3	0.36	U	0.415		0.325	U	0.364	U	0.348	U	0.384	U	2.04		1.5	,	0.349 U	0.334		0.56	
Calcium	~	~	851	-	71000	- 1	4560	- 1	5310		4430		1180		3300		8590		6040	58600)	2890	
Chromium III	30	1500	17.9		10.3	- 1	9.21	- 1	4.69		7.74		4.35		9.64		15.3	,	19	4.66		7.12	
Chromium, Hexavalent	1	400	0.721			U	0.649	- 1	0.607	U	0.929		0.64	U	0.552	U	0.58	U	0.582 U	0.557	U	0.596	U
Chromium, Total	1	~	18.6	- 1	10.3		4.69	- 1	4.73	0.70	8.67		4.35		9.64		15.3		19	4.66		7.12	
Cobalt	855	~	14.2	- 1	2.91		2.82	- 1	3.46		3.93		2.64	- 1	6.27		11.1		16.4	3.05		5.26	
	50	270	10.2	100	79.3	- 1	6.41	- 1	5.76		8.9		6.7	- 1	7380	1	11000	6 7	814	7.32		46.4	
Copper	27	27		Ü		U	0.541	U	0.607	U	0.58	U	0.64	U	0.552	U	0.58	U	0.582 U	0.557	U	0.596	U
Cyanide	27	~	13000	٩I	7960	~ I	4720		6330		6690		5870	٠,	15600		51500	-	34800	10700		8970	
Iron	63	1000	7.71	1000	121	- 1	2.43	- 1	2.31		3.07		1.95	- 1	353	1	413	6 7	255	15.5		76.2	E .
Lead	63	~	22300	-	40900	- 1	2270	- 1	2890		4060		1320	- 1	2100		1700		1880	2220		598	
Magnesium	1600	10000	155	- 1	189	- 1	136	- 1	199		187		142		121		379	,	361	222		52.8	
Manganese				U I		- 1	0.0325	U	0.0364	U	0.0348	U	0.0384	10:	0.392		0.0945	- /	0.396	0.061	5	0.449	EE .
Mercury	0.18	2.8		0	0.218	- 1		0	11.5	U	26.4	U	5.6	٠,	42.4		57.2	6. 7	36.4	6.22	~	13.3	400
Nickel	30	310	223	- 1	10.7	- 1	13	- 1	502				521	- 1	464		532		717	311		383	
Potassium			947		493		457	377		u	621	7.0		U	2.35		6.17	6 7	5.19	1.55		2.24	
Selenium	3.9	1500		U		U	1.08	U	1.21	1955	1.16	U	1.28	10707		11		11	0.582 U	0.557	7 U	0.596	U
Silver	2	1500		U		U	0.541	U	0.607	U	0.58	U	0.64	U	0.552	U	0.58	U	136	393	U	266	В
Sodium	-	~	157		242	.5.	157	337	469	0.0	950		1670		140		148			1,11	U	1.19	U
Thallium	~	~		U		U	1.08	U	1.21	U	1.16	U	1.28	U	1.1	U	1.96		1.10		-	13.3	U
Vanadium	_	~	11.1	_	15.3	- 1	6.84		7.33		10		7.23	- 1	15.1		17.6		15.9	14.6			ent C
Zinc	109	10000	28.5	200	141		14		13.2		15.6		9.8		2740	_	5590	_	3170	37		279	_
Polychlorinated Biphenyls - PCBs (mg/	/kg)																	-	T	1 0010		1 00100	
PCB-1248 (Aroclor 1248)	~	~	0.02	U	0.0	U	0.018	U	0.0202	U	0.0193	U	0.0213	U	0.0184	U	0.0193	U	0.0194 U	5257/15		0.0198	U
PCB-1254 (Aroclor 1254)	~	~		U		U	0.018	U	0.0202	U	0.0193	U	0.0213	U	0.0184	U	0.0193	U	0.0194 U	0.018		0.0198	U
PCB-1260 (Aroclor 1260)	~	-	0.02	U	0.0389	- 1	0.018	U	0.0202	U	0.0193	U	0.0213	U	0.0184	U	0.0193	U	0.0194 U	0.018		0.0198	U
Total PCBs	0.1	1	0.02	U	0.0389		0.018	U	0.0202	U	0.0193	U	0.0213	U	0.0184	U	0.0193	U	0.0194 U	0.018	6 U	0.0198	U
Pesticides (mg/kg)																							
4,4'-DDD	0.0033	92	0.00198	U	0.0131	D	0.00179	U	0.002	U	0.00192	U	0.00211	U	0.00182	U	0.00192	U	0.00192 U	0.0018		0.00197	U
4,4'-DDT	0.0033	47		U		D	0.00179	U	0.002	U	0.00192	U	0.00211	U	0.00182	U	0.00192	U	0.00192 U	0.0018		0.00197	U
Alpha Chlordane	0.094	24	0.00198	U	0.00173	U	0.00179	U	0.002	U	0.00192	U	0.00211	U	0.00182	U	0.00192	U	0.00192 U	0.0018		0.00197	U
Gamma-Chlordane	~	~	0.00198	U	0.00173	U	0.00179	Ų	0.002	U	0.00192	U	0.00211	U	0.00182	U	0.00192	U	0.00192 U	0.0018	34 U	0.00197	U
Herbicides (mg/kg)		2000-20						100			10000												
Silvex (2.4.5-Tp)	_	~	ND		ND		ND		ND		ND.		ND		ND		ND		ND	ND		ND	
General Chemistry (%)										V.C													
Solids, Percent	~	~	83.2		95.4		92.4		82.4	400000	86.2		78.1		90.5		86.1		85.9	89.7		84	

- 1. Soil sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 375 Unrestricted Use and Restricted Use Commercial Soil Cleanup Objectives (SCOs).
- 2. Only compounds with detections are shown in the table.
- 3. Concentrations above the NYSDEC Part 375 Unrestricted Use SCOs are shaded.
- 4. Concentrations above the NYSDEC Part 375 Restricted Use Commercial SCOs are shaded and bolded.
- 5. Reporting Limits (RL) above the NYSDEC Part 375 Unrestricted Use SCO standards are italicized.
- 6. ~ = Criterion does not exist.

- 7 DUP01_020717 is a duplicate sample of EB11D_1-2 and DUP02_020817 is a duplicate of sample EB14D_0-2.
- 8. ft. bgs = feet below grade surface 9. mg/kg = milligrams per kilogram
- 10. ND = Not Detected
- 11. B = Analyte is found in the associated analysis batch blank.
 12. D = Result is from an analysis that required dilution.
- 13. E = The value is estimated. The value is estimated due to its behavior during calibration.
- 14. J = The analyte was detected above the Method Detection Limit (MDL), but below the RL; therefore, the result is an estimated concentration.
- 15. U = The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL.

Table 2C Soil Sample Analytical Results Summary - Inorganics, PCBs, Pesticides, and Herbicides Remedial Investigation Report

Red Hook 4 Properties Brooklyn, New York Langan Project Number: 170363001

Location Sample ID Lab ID Sample Date Sample Interval (ft bgs)	NYSDEC Part 375 Unrestricted SCO	NYSDEC Part 375 Restricted Use Commercial SCO	EB12D EB12D_7-1 17B0058-0 2/1/2017	2	EB12D_8 EB12D_8 17B0058- 2/1/201	-9 03	EB13D EB13D_0-2 17B0122-01 2/2/2017		EB13D EB13D_4-5 17B0122-02 2/2/2017	17E	B13D 13D_9-10 30122-03 2/2017		EB14D_0-2 17B0358-02 2/8/2017		EB14D DUP02_02081 17B0358-03 2/8/2017		EB14D EB14D_2- 1780358-0 2/8/2017	14	EB14D EB14D_66- 17B0358-0 2/8/2017	-68 06	EB14L EB14D_9 17B0358 2/8/20	3-95 8-09
Inorganics (mg/kg)	District Control of the Control of t		7-8		8-9	69.66	0-2		4-5		9-10		0-2		0-2	17.0	2-3		66-68		93-95	,
Aluminum		~ 1	2510	В	2200	В	5810	ВТ	4830 B	T	10	0.1	1700		2442	_						
Antimony		~	0.528	Ü	0.582	II.	12.3	٥١	13.3	64		В	4720	I	2110	- 1	5930		4420		4170	
Arsenic	13	16	4.6	0	11.4	U	20.4	- 1-	33.2	0.5		U		U	1.66	- 1	0.569	U	0.605	U	0.551	U
Barium	350	400	27.4	- 1	63.2	3		- 1		2.4			8.24	- 1	35.1		1.14	U	1.21	U	1.1	U
Beryllium	7.2	590	0.106	U		2000	300	- 1	343	35			268	- 1	158		47	00000	31.8	i	31.3	
Cadmium	2.5				0.116	U	0.299	- 1	0.29	0.1		U	0.157		0.296	200	0.114	U	0.121	U	0.11	U
Calcium	2.5	9.3	0.317	U	0.349	U	2.44		4.59	0.3		U	0.548		0.393	U	0.341	U	0.363	U	0.331	U
Chromium III	20	~	43800	- 1	2210			В	12500 B	1 6		В	2810	- 1	3020		1590		3560	-	2360	
	30	1500	5.85	5555	12.2	9000	16.9	- 1	13.2	1			18.7		13.2	- 1	11,1	- 1	9.53	- 1	8.18	
Chromium, Hexavalent	1 1	400	0.528	U	0.582	U	0.709		0.922	0.5		U	0.546	U	0.655	U	0.569	U	0.605	U	0.551	U
Chromium, Total	~	~	5.85	- 1	12.2		17.6	- [14.1	1	4		18.7		13.2		11.1		9.53	-	8.18	
Cobalt	~	~	3.61	- 1	5.2		11.5		11	7.1	39		5.68		4.97		8.64		5.01		4.46	
Copper	50	270	43.1		94.3	9	223		231	12	.1	- 1	878	- 1	144	- 1	14		9.7	- 1	9.5	
Cyanide	27	27	0.528	U	0.582	U	0.591	U	0.607 U	0.5	64	U	0.546	U		U	0.569	U	0.605	U	0.551	U
Iron	~	~	10200		20200		38900	В	59000	136	000	В	12400		33600		28500	-	8610	~	8260	O
Lead	63	1000	46.6	- 1	110	8 1	885	- 11	1900	5.0		- 1	374	- 1	265	- 1	19.2		2.83	- 1	2.92	
Magnesium	~		10500	- 1	530	_	1970	- [1670	22		- 1	2180	- 1	553		959		3410	- 1	2120	
Manganese	1600	10000	120	- 1	96.5		343	- 10	2040	22		- 1	109	- 1	109	- 1	4260		170	- 1	147	
Mercury	0.18	2.8	0.0317	U	0.445	1	6.61	- 10	11.8	0.03		U	0.927	- 1	0.562	- 1	0.0579					500
Nickel	30	310	8.08	- 1	14		33.6	- 1	28.5	28		Ÿ	35.5	- 1	23.8			- 1	0.0363	U	0.0331	U
Potassium	2	~	669	- 1	427		799	- 1	679	13		- 1		В		.	11.9		16.9		9.75	
Selenium	3.9	1500	1.06	U	3.18		4.42	- 10	5.63	1.		U		ь !		В	778	В	1720	В	1390	В
Silver	2	1500	0.528	ŭ	0.582	U	0.591	. F	0.607 U	0.5		U	2.26	!	19.3		3.89		1.21	U	1.1	U
Sodium	2	~	265	В	249	В	301	٧ [U		U		U	0.569	U	0.605	U	0.551	U
Thallium		~	1.06	Ü	1.16	Ü		8 L	211	15			330		380		308		1130		1070	
Vanadium		~	31.6	0	10.9	0		u	1.21 U	1.1		U		U	100	U	1.14	U	1.21	U	1.1	U
Zinc	109	10000	113	- 1			33		26.1	19			23.5	- 1	19.9	- 1	25		14.4		23.9	
Polychlorinated Biphenyls - PCBs (mg.	/kg)	10000	113	_	136	2	741	В	1620 B	30	.5	В	718		235		25.6		18.1		15.6	
PCB-1248 (Aroclor 1248)		~	0.0565		0.0104		0.0107					-		_								
PCB-1254 (Aroclor 1254)	2				0.0194	U	0.0197	~	0.0202 U	0.0		U		U		U	0.019	U	0.0202	U	0.0184	U
PCB-1260 (Aroclor 1260)		~	0.0176	U	0.0194	U	0.0197		0.0202 U	0.0		U		U		U	0.019	U	0.0202	U	0.0184	U
Total PCBs		~	0.0176	U	0.0194	U	0.0197		0.0202 U	0.0		U	0.0182	U	0.0218	U	0.019	U	0.0202	U	0.0184	U
Pesticides (mg/kg)	0.1		0.0565		0.0194	U	0.0197	U.	0.0202 U	0.0	88	U	0.0182	U	0.0218	U	0.019	U	0.0202	U	0.0184	U
4.4'-DDD	0.0000							_										- 1/2				
4,4'-DDT	0.0033	92	0.00174	U	0.00192	U		U	0.002 U	0.00		U	0.0018	U	0.00216	U	0.00188	U	0.002	U	0.00182	U
Alpha Chlordane	0.0033	47	0.00295	D	0.00192	U		U	0.002 U	0.00		U		U		U	0.00188	U	0.002	U	0.00182	U
	0.094	24	0.00174	U	0.00192	U		U	0.002 U	0.00	186	U	0.0018	U	0.00216	U	0.00188	U	0.002	U	0.00182	U
Gamma-Chlordane Herbicides (mg/kg)	~	~	0.00174	U	0.00192	U	0.00195	U	0.002 U	0.00	186	U	0.0018	U	0.00216	U	0.00188	U	0.002	U	0.00182	U
																_					2.20102	
Silvex (2,4,5-Tp) General Chemistry (%)		~	ND		ND		ND		ND	N	D C		ND	T	ND		ND		ND		ND	_
Solids, Percent	~	~	94.7		85.9		84.7		82.4	88	7	\neg	91.5	\neg	76.3	_	87.9	$\overline{}$	82.7		90.7	

- Soil sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 375 Unrestricted Use and Restricted Use Commercial Soil Cleanup Objectives (SCOs).
- Only compounds with detections are shown in the table.
 Concentrations above the NYSDEC Part 375 Unrestricted Use SCOs are shaded.
- 4. Concentrations above the NYSDEC Part 375 Restricted Use Commercial SCOs are shaded and bolded.
- 5. Reporting Limits (RL) above the NYSDEC Part 375 Unrestricted Use SCO standards are italicized.
- 6. ~ = Criterion does not exist.

- 7 DUP01_020717 is a duplicate sample of EB11D_1-2 and DUP02_020817 is a duplicate of sample EB14D_0-2.
- 8. ft. bgs = feet below grade surface 9. mg/kg = milligrams per kilogram
- 10. ND = Not Detected
- 11. B = Analyte is found in the associated analysis batch blank.
- D = Result is from an analysis that required dilution.
- E = The value is estimated. The value is estimated due to its behavior during calibration.
 J = The analyte was detected above the Method Detection Limit (MDL), but below the RL; therefore, the result is an estimated concentration.
- 15. U = The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL.

	Sample #: Field ID:		TOGs - Table 5 Groundwater	MW 1	MW 1 FILT	MW 2	MW 2 FILT	MW 3	MW 3 FILT	MW04	MW04 FILT	MW05	MW05-FILT	MW06	MW06-FILT	MW07	MW07-FILT	MW08	MW08-FILT	MW09	MW09-FILT	MW 10S
	Lab ID: Sampled:		Effluent Limitations (Class GA)			04764-003 06/08/2017				05060-002 06/16/2017	05060-011 06/16/2017	04600-001 06/03/2017	04600-012 06/03/2017	04600-002 06/03/2017	04600-013 06/03/2017	04600-003 06/03/2017	04600-014 06/03/2017	04600-004 06/03/2017	04600-015 06/03/2017	04600-005 06/03/2017	04600-016 06/03/2017	
	Depth(ft):	CAS	(ug/L)																			Į.
Volatiles (ug/L)		07.10		Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc
Dichlorodifluoromethane		75-71-8	5	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Chloromethane		74-87-3	5	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Vinyl chloride		75-01-4	2	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Bromomethane		74-83-9	5	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Chloroethane		75-00-3	5	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Trichlorofluoromethane		75-69-4	5	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
1,1-Dichloroethene		75-35-4	5	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Acetone		67-64-1	50	ND	~	ND	~	184	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Carbon disulfide		75-15-0	60	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Methylene chloride		75-09-2	5	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
trans-1,2-Dichloroethene		156-60-5	5	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Methyl tert-butyl ether (MTBE)		1634-04-4	10	ND	~	ND	~	12.1	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
1,1-Dichloroethane		75-34-3	5	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
cis-1,2-Dichloroethene		156-59-2	5	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
2-Butanone (MEK)		78-93-3	50	ND	~	ND	~	4.65	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Bromochloromethane		74-97-5	5	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Chloroform		67-66-3	7	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
1,1,1-Trichloroethane		71-55-6	5	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Carbon tetrachloride		56-23-5	5	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
1,2-Dichloroethane (EDC)		107-06-2	0.6	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Benzene		71-43-2	1	ND	~	ND	~	1.38	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Trichloroethene		79-01-6	5	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
1,2-Dichloropropane		78-87-5	1	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
1,4-Dioxane		123-91-1	NS	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Bromodichloromethane		75-27-4	50	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
cis-1,3-Dichloropropene		10061-01-5	NS	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
4-Methyl-2-pentanone (MIBK)		108-10-1	NS	ND	~	ND	~	3.08	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Toluene		108-88-3	5	ND	~	ND	~	4.83	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
trans-1,3-Dichloropropene		10061-02-6	NS	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
1,1,2-Trichloroethane		79-00-5	1	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Tetrachloroethene		127-18-4	5	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
2-Hexanone		591-78-6	50	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Dibromochloromethane		124-48-1	50	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
1,2-Dibromoethane (EDB)^		106-93-4	0.0006	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Chlorobenzene		108-90-7	5	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Ethylbenzene		100-41-4	5	ND	~	ND	~	0.762	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Total Xylenes		1330-20-7	15	ND	~	ND	~	97.4	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Styrene		100-42-5	930	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Bromoform		75-25-2	50	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Isopropylbenzene		98-82-8	5	ND	~	ND	~	3.42	~	ND	~	ND	~	ND	~	1.60	~	ND	~	ND	~	ND
1,1,2,2-Tetrachloroethane		79-34-5	5	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
1,3-Dichlorobenzene		541-73-1	3	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
1,4-Dichlorobenzene		106-46-7	3	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
1,2-Dichlorobenzene		95-50-1	3	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
1,2-Dibromo-3-chloropropane^		96-12-8	0.04	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
1,2,4-Trichlorobenzene		120-82-1	5	ND	~	ND	~	ND	~	ND	~	ND	~	ND ND	~	ND	~	ND	~	ND	~	ND ND
1,2,3-Trichlorobenzene		87-61-6	5	ND	~	ND	~	ND	~	ND	~	ND	~		~	ND	~	ND	~	ND	~	
1,1,2-Trichloro-1,2,2-trifluoroetha	arie	76-13-1 79-20-9	O NG	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND
Methyl acetate Cyclohexane		110-82-7	NS NS	ND ND	~	ND	~	89.5	~	ND	~	ND	~	ND	~	9.26	~	ND	~	ND	~	ND
Methylcyclohexane		108-87-2	NS NS	ND ND	~	ND ND	~	190	~	ND ND	~	ND	~	1.13	~	11.6	~	ND ND	~	ND ND	~	ND
1,3-Dichloropropene (cis- and trai	ns-)	542-75-6	0.4	ND	-	ND	-	ND	~	ND	~	ND	~	ND	-	ND	~	ND	~	ND	-	ND
TOTAL VO's:	113.)	342-73-0	NS	ND	~	ND	~	591	~	ND	~	ND	~	1.13	~	22.5	~	ND	~	ND	~	ND
TOTAL TIC's:			NS	ND	~	ND	~	378	~	288	~	ND	~	ND	~	180	~	ND	~	ND	~	ND
TOTAL VO's & TIC's:			NS	ND	~	ND	~	969	~	288	~	ND	~	1.13	~	203	~	ND	~	ND	~	ND

Technical Guidance and Operational Series - Table 1 New York State Ambient Water Quality Standards and Guidance Values and Table 5 New York State Groundwater Effluent Limitations (Class GA), June 1998.

BOLD Conc
Indicates a concentration that exceeds applicable criteria.

BOLD MDL
Indicates RL that exceeds applicable criteria.

BOLD MDL
Indicates MDL that exceeds applicable criteria.

NS = No Standard Available
- Sample not analyzed for
ND = Analyzed for but Not Detected at the MDL
J = Concentration detected at a value below the RL and above the MDL for target compounds. For non-target compounds (i.e. TICs), qualifier indicates estimated concentrations.

D = The compound was reported from the Diluted analysis
All qualifiers on individual Volatiles & Semivolatiles are carried down through summation.

N = Presumptive evidence of a compound from the use of GC/MS library search.

X = Samples analyzed for total and dissolved metals differ at <= 20% RPD.

Sample #:		TOGs - Table 5	MW 10S FILT	MW10D	MW10D FILT	MW 11S	MW 11S FILT	MW 11D	MW 11D FILT	MW12	MW12-FILT	MW12D	MW12D-FILT	MW 13S	MW 13S FILT	MW 13D	MW 13D FILT	MW14	MW14 FILT	MW15	MW15 FILT	MW 16	MW 16 FILT	MW17	MW17 FILT
Field ID: Lab ID: Date Sampled: Depth(ft):		Groundwater Effluent Limitations (Class GA) (ug/L)	04764-018 06/08/2017	05060-003 06/16/2017	05060-012 06/16/2017	04764-006 06/08/2017		04764-007 06/08/2017	04764-020 06/08/2017	04600-007 06/03/2017	04600-018 06/03/2017	04600-008 06/03/2017	04600-019 06/03/2017	04764-008 06/08/2017		04764-009 06/08/2017	04764-022 06/08/2017	05060-001 06/16/2017	05060-010 06/16/2017				04764-023 06/08/2017		
20011(13)	CAS	(49/2)																							
Volatiles (ug/L)			Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc
Dichlorodifluoromethane	75-71-8	5	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Chloromethane	74-87-3	5	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Vinyl chloride	75-01-4	2	~	ND	~	ND	~	3.59	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Bromomethane	74-83-9	5	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Chloroethane	75-00-3	5	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Trichlorofluoromethane	75-69-4	5	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
1,1-Dichloroethene	75-35-4	5	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Acetone	67-64-1	50	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	9.87	~	ND	~	ND	~
Carbon disulfide	75-15-0	60	~	ND	~	ND	~	1.60	~	ND	~	1.92	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Methylene chloride	75-09-2	5	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
trans-1,2-Dichloroethene	156-60-5	5	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Methyl tert-butyl ether (MTBE)	1634-04-4	10	~	ND	~	2.05	~	2.67	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
1,1-Dichloroethane	75-34-3	5	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
cis-1,2-Dichloroethene	156-59-2	5	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
2-Butanone (MEK)	78-93-3	50	~	ND	~	ND	~	ND ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	4.39	~	ND ND	~	ND	~
Bromochloromethane Chloroform	74-97-5 67-66-3	5	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND 1.07	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~
1,1,1-Trichloroethane	71-55-6	5	~	ND ND	~	ND ND	~	ND ND	~	ND	~	ND	~	ND ND	~	ND ND	~	ND	~	ND ND	~	ND ND	~	ND	~
Carbon tetrachloride	56-23-5	5	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
1,2-Dichloroethane (EDC)	107-06-2	0.6	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Benzene	71-43-2	1	~	16600	1 ~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	11600	1 ~	ND	~	ND	~	ND	~
Trichloroethene	79-01-6	5	~	ND	J ~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	<u>.</u>	ND	~	ND	~	ND	~
1,2-Dichloropropane	78-87-5	1	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
1,4-Dioxane	123-91-1	NS	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Bromodichloromethane	75-27-4	50	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
cis-1,3-Dichloropropene	10061-01-5	NS	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
4-Methyl-2-pentanone (MIBK)	108-10-1	NS	~	ND	. ~	ND	~	ND	~	ND	~	0.743	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Toluene	108-88-3	5	~	15300	~	ND	~	ND	~	ND	~	0.454	~	ND	~	ND	~	15300	_	ND	~	ND	~	ND	~
trans-1,3-Dichloropropene	10061-02-6	NS	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
1,1,2-Trichloroethane	79-00-5	1	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Tetrachloroethene	127-18-4	5	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
2-Hexanone	591-78-6	50	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~
Dibromochloromethane 1,2-Dibromoethane (EDB)^	124-48-1 106-93-4	0.0006	~	ND	~	ND ND	~	ND ND	~	ND	~	ND	~	ND ND	~	ND	~	ND ND	~	ND ND	~	ND ND	~	ND	~
Chlorobenzene	108-90-7	5	~	ND	_	ND	-	ND	_	ND	~	ND	-	ND	~	ND	-	ND	~	ND	_	ND	-	ND	~
Ethylbenzene	100-41-4	5		801	1 _	ND	_	ND		ND	_	ND	_	ND	_	ND	_	1640	1 _	ND		ND	_	ND	_
Total Xylenes	1330-20-7	15	1 -	4630	l _	ND	_	ND	_	ND	-	1.16	_	ND	_	ND	_	5420	1 _	ND	_	ND	_	ND	-
Styrene	100-42-5	930		3410	l -	ND	-	ND	_	ND	-	ND	~	ND	-	ND	~	3370	1 ~	ND	_	ND		ND	
		500	~		1 ~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~		<u>ll</u> ~	ND	~	ND	~	ND	~
Bromoform Isopropylbenzene	75-25-2 98-82-8	5	~	ND ND	~	ND ND	~	ND ND	~	ND	~	ND	~	ND ND	~	ND	~	ND ND	~	1.66	~	ND ND	~	1.65	~
1,1,2,2-Tetrachloroethane	79-34-5	5	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
1,3-Dichlorobenzene	541-73-1	3	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
1,4-Dichlorobenzene	106-46-7	3	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
1,2-Dichlorobenzene	95-50-1	3	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
1,2-Dibromo-3-chloropropane^	96-12-8	0.04	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
1,2,4-Trichlorobenzene	120-82-1	5	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
1,2,3-Trichlorobenzene	87-61-6	5	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	5	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Methyl acetate	79-20-9	NS	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND 4.00	~	ND	~	ND	~
Cyclohexane Mathylayalahaxana	110-82-7 108-87-2	NS NS	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	4.92 7.40	~	ND ND	~	2.23 5.92	~
Methylcyclohexane 1,3-Dichloropropene (cis- and trans-)	108-87-2 542-75-6	NS 0.4	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	7.40 ND	-	ND ND	~	5.92 ND	~
TOTAL VO's:	342-73-0	NS	~	40700	~	2.05	~	7.86	~	ND	~	5.35	~	ND	~	ND	~	37300	~	28.2	~	ND	~	9.80	~
TOTAL TIC's:		NS NS	~	16500	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	25100	~	352	~	16.3	~	120	~
TOTAL VO's & TIC's:		NS	~	57200	~	2.05	~	7.86	~	ND	~	5.35	~	ND	~	ND	~	62400	~	380	~	16.3	~	130	~

Technical Guidance and Operational Series - Table 1 New York State Ambient Water Quality Stans
BOLD Conc Indicates a concentration that exceeds applicable crite indicates RL that exceeds applicable criteria.

BOLD MDL Indicates RL that exceeds applicable criteria.

NS = No Standard Available - Sample not analyzed for
ND = Analyzed for but Not Detected at the MDL
J = Concentration detected at a value below the RL and above the MDL for target compounds. For D = The compound was reported from the Diluted analysis
All qualifiers on individual Volatiles & Semivolatiles are carried down through summation.
N = Presumptive evidence of a compound from the use of GC/MS library search.
X = Samples analyzed for total and dissolved metals differ at <= 20% RPD.

Samp	ple #: Id ID:	TOGs - Table 5	MW 1	MW 1 FILT	MW 2	MW 2 FILT	MW 3	MW 3 FILT	MW04	MW04 FILT	MW05	MW05-FILT	MW06	MW06-FILT	MW07	MW07-FILT	MW08	MW08-FILT	MW09	MW09-FILT	MW 10S
	ab ID: pled:	Groundwater Effluent Limitations (Class GA) (ug/L)	04764-001 06/08/2017			04764-016 06/08/2017	04764-004 06/08/2017	04764-017 06/08/2017		05060-011 06/16/2017	04600-001 06/03/2017	04600-012 06/03/2017	04600-002 06/03/2017	04600-013 06/03/2017	04600-003 06/03/2017	04600-014 06/03/2017	04600-004 06/03/2017	04600-015 06/03/2017	04600-005 06/03/2017		
Бери	CAS	(ug/L)																			
2,2'-Oxybis(1-Chloropropane)	108-60-1	5	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
4-Methylphenol **	106-44-5	see total phenois	ND	~	ND ND	~	ND ND	~	ND ND	~	ND	~	ND	~	ND ND	~	ND	~	ND	~	ND
N-Nitrosodi-n-propylamine Acetophenone	621-64-7 98-86-2	NS NS	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	-	ND ND	-	ND ND
Hexachloroethane	67-72-1	5	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Nitrobenzene	98-95-3	0.4	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Isophorone	78-59-1	50	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
2-Nitrophenol	88-75-5	see total phenols	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
2,4-Dimethylphenol	105-67-9	see total phenols	ND	~	ND ND	~	0.681 ND	~	ND ND	~	ND	~	ND ND	~	ND	~	ND ND	~	ND ND	~	ND
Bis(2-chloroethoxy) methane 2,4-Dichlorophenol	111-91-1 120-83-2	see total phenols	ND ND		ND	~	ND	~	ND	~	ND ND	~	ND	~	ND ND	~	ND	~	ND	~	ND ND
Naphthalene	91-20-3	see total phenois	0.328	-	ND	_	ND	-	10.6	_	0.187	~	0.761	-	ND	-	ND	_	ND	_	ND
4-Chloroaniline	106-47-8	5	ND		ND		ND	_	ND	_	ND	_	ND	_	ND	_	ND		ND		ND
Hexachlorobutadiene	87-68-3	0.5	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Caprolactam	105-60-2	NS	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
4-Chloro-3-methylphenol	59-50-7	see total phenols	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
2-Methylnaphthalene	91-57-6	NS	ND	~	ND	~	ND	~	2.09	~	ND	~	0.254	~	ND	~	ND	~	ND	~	ND
Hexachlorocyclopentadiene	77-47-4	5	ND	~	ND ND	~	ND	~	ND	~	ND	~	ND	~	ND ND	~	ND	~	ND	~	ND
2,4,6-Trichlorophenol 2,4,5-Trichlorophenol	88-06-2 95-95-4	see total phenols see total phenols	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND
1,1'-Biphenyl	95-95-4	see total prienois	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	0.195	~	ND ND	~	ND ND	~	ND ND	~	ND ND
2-Chloronaphthalene	92-52-4 91-58-7	5 10	ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	0.195 ND	~	ND ND	~	ND ND	~	ND	~	ND
2-Nitroaniline	88-74-4	5	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Dimethyl phthalate	131-11-3	50	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
2,6-Dinitrotoluene	606-20-2	5	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Acenaphthylene	208-96-8	NS	ND	~	ND	~	ND	~	0.729	~	ND	~	ND								
3-Nitroaniline	99-09-2	5	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Acenaphthene	83-32-9	20	ND	~	ND	~	ND	~	0.848	~	ND	~	0.888	~	1.54	~	ND	~	ND	~	ND
2,4-Dinitrophenol	51-28-5	see total phenois	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
4-Nitrophenol 2,4-Dinitrotoluene	100-02-7 121-14-2	see total phenols	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND
Dibenzofuran	132-64-9	NS	ND	~	ND	~	ND	~	ND	~	ND	~	0.299	~	ND	~	ND	~	ND	~	ND
Diethyl phthalate	84-66-2	50	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Fluorene	86-73-7	50	ND	~	ND	~	ND	~	0.543	~	ND	~	0.492	~	0.990	~	ND	~	ND	~	ND
4-Chlorophenyl phenyl ether	7005-72-3	NS	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
4-Nitroaniline	100-01-6	5	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
1,2,4,5-Tetrachlorobenzene	95-94-3	5	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
2,3,4,6-Tetrachlorophenol	58-90-2	see total phenois	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine	534-52-1 86-30-6	see total phenois	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND
4-Bromophenyl phenyl ether	101-55-3	NS	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Hexachlorobenzene	118-74-1	0.04	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Atrazine	1912-24-9	7.5	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Pentachlorophenol	87-86-5	see total phenols	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Phenanthrene	85-01-8	50	ND	~	ND	~	ND	~	0.461	~	ND	~	0.406	~	0.328	~	ND	~	ND	~	0.276
Anthracene	120-12-7	50	ND	~	ND	~	ND	~	0.276	~	ND	~	ND								
Carbazole	86-74-8	NS 50	ND 0.220	~	ND 0.211	~	ND ND	~	ND	~	ND	~	0.407 ND	~	ND	~	ND ND	~	ND ND	~	ND
Di-n-butyl phthalate	84-74-2 206-44-0	50 50	0.229 ND	~	0.211 ND	~	ND ND	~	ND	~	ND 0.334	~		~	ND ND	~	ND ND	~	ND ND	~	ND ND
Fluoranthene	129-00-0	50 50	ND ND	~	ND ND	~	ND ND	~	0.635 0.728	~	0.224 ND	~	0.503 0.452	~	ND ND	~	ND ND	~	ND ND	~	ND ND
Pyrene Butyl honzyl phthalato	85-68-7	50 50		~	ND ND	~	ND ND	~	0.728 ND	~	ND ND	~	0.452 ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND
Butyl benzyl phthalate 3,3'-Dichlorobenzidine	91-94-1	50 5	ND ND	~	ND	~	ND	~	ND	~	ND ND	~	ND	~	ND	~	ND	~	ND	~	ND
Benzo[a]anthracene	56-55-3	0.002	ND	-	ND	-	ND	-	ND	-	0.113	-	ND	-	ND	-	ND	-	ND	_	ND
Chrysene	218-01-9	0.002	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND ND	~	ND	~	ND
Bis(2-ethylhexyl) phthalate	117-81-7	5	0.907	~	0.633	~	ND	~	0.622	~	ND	~	ND								
Di-n-octyl phthalate	117-84-0	50	ND	~	ND	~	ND	~	0.822	~	ND	~	ND								
Benzo[b]fluoranthene	205-99-2	0.002	ND	~	ND	~	ND	~	ND	~	0.142	~	ND	~	ND	~	ND	~	ND	~	ND
Benzo[k]fluoranthene	207-08-9	0.002	ND	~	ND	~	ND	~	ND	~	0.112	~	ND	~	ND	~	ND	~	ND	~	ND
Benzo[a]pyrene	50-32-8	NS	ND	~	ND	~	ND	~	ND	~	0.150	~	ND	~	ND	~	ND	~	ND	~	ND
Indeno[1,2,3-cd]pyrene	193-39-5	0.002	ND	~	ND	~	ND	~	ND	~	0.129	~	ND	~	ND	~	ND	~	ND	~	ND
Dibenz[a,h]anthracene	53-70-3	NS	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Benzo[g,h,i]perylene	191-24-2	NS	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Dinitrotoluene (2,4- and 2,6-)	25321-14-6	NS	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
TOTAL BNA'S:		NS	1.46	~	0.844	~	0.681	~	17.9	~	1.06	~	4.66	~	2.86	~	ND	~	ND	~	0.276
TOTAL TIC's:		NS	12.7	~	ND	~	24.9	~	140	~	4.30	~	59.4	~	55.8	~	ND	~	6.80	~	16.2
TOTAL BNA'S & TIC's:		NS	14.2	~	0.844	~	25.6	~	158	~	5.36	~	64.1	~	58.7	~	ND	~	6.80	~	16.5

Technical Guidance and Operational Series - Table 1 New York State Ambient Water Quality Standards and Guidance Values and Table 5 New York State Groundwater Effluent Limitations (Class GA), June 1998.

BOLD Conc
Indicates a concentration that exceeds applicable criteria.

BOLD MDL
Indicates RL that exceeds applicable criteria.

BOLD MDL
Indicates MDL that exceeds applicable criteria.

NS = No Standard Available
-- Sample not analyzed for
ND = Analyzed for but Not Detected at the MDL
J = Concentration detected at a value below the RL and above the MDL for target compounds. For non-target compounds (i.e. TICs), qualifier indicates estimated concentrations.

D = The compound was reported from the Diluted analysis
All qualifiers on individual Volatiles & Semivolatiles are carried down through summation.

N = Presumptive evidence of a compound from the use of GC/MS library search.

X = Samples analyzed for total and dissolved metals differ at <= 20% RPD.

Sample #		TOGs - Table 5	MW 10S FILT	MW10D	MW10D FILT	MW 11S	MW 11S FILT	MW 11D	MW 11D FILT	MW12	MW12-FILT	MW12D	MW12D-FILT	MW 13S	MW 13S FILT	MW 13D	MW 13D FILT	MW01D	MW01D FILT	MW15	MW15 FILT	MW 16	MW 16 FILT	MW14	MW14 FILT
Field ID Lab ID):	Groundwater Effluent	04764-018	05060-003	05060-012			04764-007	04764-020	04600-007		04600-008	04600-019	04764-008	04764-021	04764-009	04764-022	05060-001	05060-010	05060-005			04764-023		
Date Sampled Depth(ft)		Limitations (Class GA) (ug/L)	06/08/2017	06/16/2017	06/16/2017	06/08/2017	06/08/2017	06/08/2017	06/08/2017	06/03/2017	06/03/2017	06/03/2017	06/03/2017	06/08/2017	06/08/2017	06/08/2017	06/08/2017	06/16/2017	06/16/2017	06/16/2017	06/16/2017	06/08/2017	06/08/2017	06/16/2017	06/16/2017
2,2'-Oxybis(1-Chloropropane)	108-60-1	5	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	
4-Methylphenol **	106-44-5	see total phenols	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
N-Nitrosodi-n-propylamine	621-64-7	NS	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Acetophenone	98-86-2 67-72-1	NS	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~
Hexachloroethane Nitrobenzene	98-95-3	0.4	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND ND	~	ND	~
Isophorone	78-59-1	50	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
2-Nitrophenol	88-75-5	see total phenols	~	64.2	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
2,4-Dimethylphenol	105-67-9	see total phenols	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Bis(2-chloroethoxy) methane	111-91-1	5	~	ND	· ~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
2,4-Dichlorophenol	120-83-2	see total phenols	~	2690	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Naphthalene	91-20-3	10	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	10800	~	5.57	~	ND	~	7.26	~
4-Chloroaniline	106-47-8	5 0.5	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND	~	ND	~	ND	~	ND ND	~	ND ND	~	ND	~	ND ND	~
Hexachlorobutadiene Caprolactam	87-68-3 105-60-2	NS	~	ND	~	ND	~	ND	~	ND	~	ND ND	~	ND ND	~	ND ND	~	ND	~	ND	~	ND ND	~	ND	~
4-Chloro-3-methylphenol	59-50-7	see total phenols	~	308	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
2-Methylnaphthalene	91-57-6	NS .	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	3580	~	ND	~	ND	~	0.950	~
Hexachlorocyclopentadiene	77-47-4	5	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
2,4,6-Trichlorophenol	88-06-2	see total phenols	~	ND	. ~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
2,4,5-Trichlorophenol	95-95-4	see total phenols	~	23.0	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
1,1'-Biphenyl	92-52-4	5	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	381	~	ND	~	ND	~	ND	~
2-Chloronaphthalene	91-58-7	10	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
2-Nitroaniline Dimethyl phthalate	88-74-4 131-11-3	5 50	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	_	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~
2,6-Dinitrotoluene	606-20-2	5	~	133	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Acenaphthylene	208-96-8	NS	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	1340	~	ND	~	ND	~	0.476	~
3-Nitroaniline	99-09-2	5	~	17.3	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Acenaphthene	83-32-9	20	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	0.333	~	353	~	ND	~	ND	~	1.15	~
2,4-Dinitrophenol	51-28-5	see total phenols	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
4-Nitrophenol	100-02-7	see total phenols	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
2,4-Dinitrotoluene	121-14-2	5	~	4.35 ND	~	ND ND	~	ND ND	~	ND	~	ND	~	ND	~	ND	~	ND oo r	~	ND	~	ND	~	ND ND	~
Dibenzofuran Diethyl phthalate	132-64-9 84-66-2	NS 50	~	38.7	~	ND	~	ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	98.5 ND	~	ND 3.45	~	ND ND	~	ND	~
Fluorene	86-73-7	50	-	ND	~	ND	-	ND	-	ND	~	ND	-	ND	-	ND	~	1160	1 ~	ND	_	ND	~	0.661	_
4-Chlorophenyl phenyl ether	7005-72-3	NS	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	_	ND	~	ND	~	ND	~
4-Nitroaniline	100-01-6	5	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
1,2,4,5-Tetrachlorobenzene	95-94-3	5	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
2,3,4,6-Tetrachlorophenol	58-90-2	see total phenols	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
4,6-Dinitro-2-methylphenol	534-52-1	see total phenols	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
N-Nitrosodiphenylamine	86-30-6	50 NC	~	ND	~	ND ND	~	ND	~	ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND	~	ND ND	~
4-Bromophenyl phenyl ether Hexachlorobenzene	101-55-3 118-74-1	0.04	~	ND ND	~	ND	~	ND ND	~	ND ND	~	ND	_	ND	~	ND	~	ND	~	ND	~	ND ND	~	ND	~
Atrazine	1912-24-9	7.5	~	38.6	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Pentachlorophenol	87-86-5	see total phenols	~	8.05	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Phenanthrene	85-01-8	50	~	13.7	~	ND	~	ND	~	ND	~	0.469	~	ND	~	0.202	~	2630	~	ND	~	ND	~	0.195	~
Anthracene	120-12-7	50	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	717	~	ND	~	ND	~	0.321	~
Carbazole	86-74-8	NS	~	3.22	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	32.7	~	ND	~	ND	~	ND	~
Di-n-butyl phthalate	84-74-2	50	~	4.84	~	ND	~	0.198	~	ND	~	ND	~	ND	~	ND	~	ND	~	0.431	~	ND	~	ND	~
Fluoranthene	206-44-0	50	~	ND	. ~	0.240	~	ND	~	ND	~	ND	~	ND	~	ND	~	691	~	ND	~	ND	~	0.377	~
Pyrene	129-00-0	50	~	0.305	~	ND	~	0.555	~	ND	~	ND	~	ND	~	ND	~	1090	~	ND	~	ND	~	0.355	~
Butyl benzyl phthalate	85-68-7	50	~	0.589	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
3,3'-Dichlorobenzidine	91-94-1	5	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Benzo[a]anthracene	56-55-3	0.002	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	407	~	ND	~	ND	~	ND	~
Chrysene	218-01-9	0.002	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	359	_	ND	~	ND	~	ND	~
Bis(2-ethylhexyl) phthalate	117-81-7	5 50	~	ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND	~	ND ND	~
Di-n-octyl phthalate Benzo[b]fluoranthene	117-84-0 205-99-2	50 0.002	~	0.173 ND	~		~		~		~		~		~		~		ī ~		~	ND	~		~
	205-99-2	0.002	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND		171 147	~	ND ND	~	ND ND	~	ND ND	~
Benzo[k]fluoranthene Benzo[a]pyrene	50-32-8	0.002 NS	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	314	~	ND ND	~	ND ND	~	ND ND	~
		0.002	~	ND ND	~	ND ND	~	ND ND	~		~		~		~				· ~	ND ND	~		~	ND ND	~
Indeno[1,2,3-cd]pyrene	193-39-5 53-70-3	0.002 NS	~	3390	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	102 36.9	_ ~	ND ND	~	ND ND	~	ND ND	~
Dibenz[a,h]anthracene Benzo[g,h,i]perylene	53-70-3 191-24-2	NS NS	~	3390 4040	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	130	~	ND ND	~	ND ND	~	ND ND	~
Dinitrotoluene (2,4- and 2,6-)	25321-14-6	NS	~	7430	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
TOTAL BNA'S:	· · · · ·	NS	~		~	0.240	~	0.753	~	ND	~	0.469	~	ND	~	0.535	~	24500	~	9.45	~	ND	~	11.7	~
TOTAL TIC's:		NS	~		~	ND	~	14.3	~	4.50	~	29.8	~	25.7	~	25.6	~	12800	~	240	~	4.20	~	73.3	~
TOTAL BNA'S & TIC's:		NS	~		~	0.240	~	15.1	~	4.50	~	30.3	~	25.7	~	26.1	~	37300	~	249	~	4.20	~	85.0	~

Technical Guidance and Operational Series - Table 1 New York State Ambient Water Quality Stand BOLD Conc Indicates a concentration that exceeds applicable criteria.

BOLD RL Indicates RL that exceeds applicable criteria.

NS = No Standard Available Indicates MDL that exceeds applicable criteria.

NS = No Standard Available Indicates MDL That exceeds applicable criteria.

ND = Analyzed for but Not Detected at the MDL

J = Concentration detected at a value below the RL and above the MDL for target compounds. For D = The compound was reported from the Diluted analysis

All qualifiers on individual Volatiles & Semivolatiles are carried down through summation.

N = Presumptive evidence of a compound from the use of GC/MS library search.

X = Samples analyzed for total and dissolved metals differ at <= 20% RPD.

Control Cont	Sample #	:	TOGs - Table 5	MW 1	MW 1 FILT	MW 2	MW 2 FILT	MW 3	MW 3 FILT	MW04	MW04 FILT	MW05	MW05-FILT	MW06	MW06-FILT	MW07	MW07-FILT	MW08	MW08-FILT	MW09	MW09-FILT	MW 10S
Date Servander Control of Service Control of		:		04764-001	04764-014	04764-003	04764-016	04764-004	04764-017	05060-002	05060-011	04600-001	04600-012	04600-002	04600-013	04600-003	04600-014	04600-004	04600-015	04600-005	04600-016	04764-005
Column C																						
March Marc	Depth(ft)		(ug/L)																			
Monte-1958 Mon	Arcolor 1951		con total DCPs	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND
March Marc					~		~		~		~		~		~		~		~		~	
Second S					~		~		~		~		~		~		~		~		~	
Marchagolist					~		~		~		~		~		~		~		~		~	
Second Column		1336-36-3	0.09		~		~		~		~		~		~		~		~		~	
Seminar Continue		310-84-6	0.01		Conc		Conc		Conc		Conc		Conc		Conc		Conc		Conc		Conc	
Servicing 1986-86 104 106 10 1 10 1 10 1 10 1 10 1 10 1					~		~		~		~		~		~		~		~		~	
Marganisty 76-48 80.6					~		~		~		~		~		~		~		~		~	
March Marc					~		~		~		~		~		~		~		~		~	
Marenthy squarks 1064573 1064574 10645					~		~		~		~		~		~		~		~		~	
A CONTACT A CO					~		~		~		~		~		~		~		~		~	
Design D					~		~		~		~		~		~		~		~		~	
Composition 172-2006 No					~		~		~		~		~		~		~		~		~	
Controller					~		~		~		~		~		~		~		~		~	
					~		~		~		~		~		~		~		~		~	
Consistent willings		72-54-8			~		~		~		~		~		~		~		~		~	ND
March Marc					~		~		~		~		~		~		~		~		~	
Scale March Sale March Sale March Sale March					~		~		~		~		~		~		~		~		~	
Selections of 1057-10					~		~		~		~		~		~		~		~		~	
Seminate S103-742 NS	Methoxychlor				~		~		~		~		~		~		~		~		~	
Fooglaserie (1801) 15-22 0.66 N.D. - N.D	•				~		~		~		~		~		~		~		~		~	
Secondary 155-97	3				~		~		~		~		~		~		~		~		~	
Control playment glumman S77-89 0.65 No -			0.00		~		~		~		~		~		~		~		~		~	
Design 198-09 50	Chlordane (alpha and gamma)		0.05	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND
Deamba 1915-05-9 0.44 ND - ND					Conc		Conc		Conc		Conc		Conc		Conc		Conc		Conc		Conc	
2.4-5 P (Shew) 93-75-1					~		~		~		~		~		~		~		~		~	
24.5 T System 93.72-1					~		~		~		~		~		~		~		~		~	
2.4-10 1					~		~		~		~		~		~		~		~		~	
Denoche Bass Field ID: Lab ID: Total - Total - S Groundwater Efficient Limitations (Class GA) Will Mil Limitations (Class GA) Will Mil					~		~		~		~		~		~		~		~		~	
Sample F Field D. Lab DD. Lab DD. Lab DD. Date Sampled: Effluent Limitations (class GA) General Part General			NS	.,,	~		~		~		~		~		~		~		~		~	
Field ID Lab Date Field ID Lab Date Field ID Lab Date Field ID Lab		88-85-7	Z TOCo. Toblo F		~ MW 4 Ell T		MW 2 Ell T		MW 2 EII T		~ MWO4 EII T		MWOE EILT		MWOS EILT		~ M\M07 EII T		AMAZOO EII T		~ MW00 Ell T	
Efficient Lab ID. Data Sample Deptin(m) Dept				IVIVV 1	WWYTFILI	IVIVV Z	IVIVV 2 FIL I	IVIVV 3	IVIVV 3 FILI	WWWU4	WWWU4 FILI	COVVIVI	IVIVVUS-FIL I	IVIVVUO	MMM06-FIL I	IVIVVO7	WWW07-FILI	IVIVVUS	WWWU8-FILI	WWU9	WWW9-FILT	IVIVV 105
Cadmism				04764-001	04764-014	04764-003	04764-016	04764-004	04764-017	05060-002	05060-011	04600-001	04600-012	04600-002	04600-013	04600-003	04600-014	04600-004	04600-015	04600-005	04600-016	04764-005
CASTILLIM 7440-3-9 10 ND ND ND ND ND ND ND ND ND N				06/08/2017	06/08/2017	06/08/2017	06/08/2017	06/08/2017	06/08/2017	06/16/2017	06/16/2017	06/03/2017	06/03/2017	06/03/2017	06/03/2017	06/03/2017	06/03/2017	06/03/2017	06/03/2017	06/03/2017	06/03/2017	06/08/2017
Calcium 7440-78-2 10	Depth(ft)		(ug/L)																			
Calcium T440-7-2	Cadmium		10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chromium																						114000
Copper C	Chromium	7440-47-3		ND	ND	ND	ND	ND	ND	ND	ND	4.72	1.13	ND	ND	ND	ND	ND	ND	1.89	ND	ND
Trian																						
Lead					-1			1										-1				-
Magnesium		-			-																	
Manganese						-												-				
Mercury 7439-97-6														-								
Nicker N																						
Selenium T782-49-2 20		7440-02-0	200							1.16	ND	1.59	ND	1.26	ND	ND	ND	ND	ND	ND	ND	6.89
Silver 7440-22-4 100 ND																						
Sodium 7440-23-5 case by case 45300 51000 25800 23900 25600 25000 216000 18600 39000 33400 155000 14800 68800 70500 8790 7930 23100 23600 2450																						
Thailium																						ND 245000
Zinc 740-66-6 5000 4.46 4.36 14.4 4.07 3.98 3.14 14.0 ND 57.3 5.02 29.8 ND 7.96 ND 3.10 1.87 52.4 47.0 22.3 General Analytical Hexavalent Chromium-ug/L 18540-29-9 100 ND ~ ND																						
General Analytical Conc Conc Conc Conc Conc Conc Conc Conc																						
Hexavalent Chromium-ug/L 18540-29-9 100 ND ~ ND	LIIO	7440-66-6	5000	1.10	1.00		1.01	0.00	0.11	1 1.0	- 115	01.0	0.02	20.0		1.00		0.10	1.01	02.1	11.0	LL.O
		18540-20-0	100		Conc		Conc		Conc		Conc		Conc		Conc		Conc		Conc		Conc	
	Cvanide, Total-ug/L	57-12-5	400	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND

Technical Guidance and Operational Series - Table 1 New York State Ambient Water Quality Standards and Guidance Values and Table 5 New York State Groundwater Effluent Limitations (Class GA), June 1998.

BOLD Conc
BOLD RL
Indicates RL that exceeds applicable criteria.
BOLD MDL
Indicates MDL that exceeds applicable criteria.

	Sample #: Field ID:		TOGs - Table 5 Groundwater	MW 10S FILT		MW10D FILT		MW 11S FILT		MW 11D FILT		MW12-FILT	MW12D	MW12D-FILT	MW 13S	MW 13S FILT	MW 13D	MW 13D FILT	MW01D	MW01D FILT	MW15	MW15 FILT		MW 16 FILT		MW14 FILT
	Lab ID: Date Sampled: Depth(ft):	CAS	Effluent Limitations (Class GA) (ug/L)	04764-018 06/08/2017	05060-003 06/16/2017	05060-012 06/16/2017	04764-006 06/08/2017		04764-007 06/08/2017	04764-020 06/08/2017	04600-007 06/03/2017		04600-008 06/03/2017	04600-019 06/03/2017	04764-008 06/08/2017	04764-021 06/08/2017	04764-009 06/08/2017	04764-022 06/08/2017	05060-001 06/16/2017	05060-010 06/16/2017	05060-005 06/16/2017	05060-014 06/16/2017				05060-013 06/16/2017
Aroclor-1254		11097-69-1	see total PCBs	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Aroclor-1260		11096-82-5	see total PCBs	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Aroclor-1262 Aroclor-1268		37324-23-5 11100-14-4	see total PCBs see total PCBs	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~
PCBs		1336-36-3	0.09	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Pesticides (ug/L)				Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc
alpha-BHC		319-84-6	0.01	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
beta-BHC gamma-BHC (Lindane)		319-85-7 58-89-9	0.04 0.05	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~
delta-BHC (Lindane)		319-86-8	0.05	~	ND	~	ND	~	ND	~	ND ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Heptachlor		76-44-8	0.04	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Aldrin		309-00-2	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Heptachlor epoxide		1024-57-3	0.03 NS	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~
Endosulfan I 4,4'-DDE		959-98-8 72-55-9	NS 0.2	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND	~	ND ND	~	ND ND	~	ND ND	-	ND ND	~
Dieldrin		60-57-1	0.004	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Endrin		72-20-8	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Endosulfan II		33213-65-9	NS	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND ND	~	ND	~	ND	~	ND	~	ND	~
4,4'-DDD Endrin aldehyde		72-54-8 7421-93-4	0.3 5	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~
Endosulfan sulfate		1031-07-8	NS	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
4,4'-DDT		50-29-3	0.2	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Endrin ketone		53494-70-5	5	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Methoxychlor alpha-Chlordane		72-43-5 5103-71-9	35 NS	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~
gamma-Chlordane		5103-71-9	NS NS	~	ND	~	ND ND	~	ND	~	ND ND	~	ND	~	ND ND	~	ND	~	ND ND	~	ND ND	~	ND	~	ND ND	~
Toxaphene		8001-35-2	0.06	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Endosulfan (I and II)		115-29-7	NS	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Chlordane (alpha and gan	mma)	57-74-9	0.05	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
Herbicides (ug/L) Dalapon		75-99-0	50	Conc	Conc ND	Conc	Conc ND	Conc	Conc ND	Conc	Conc ND	Conc	Conc ND	Conc	Conc ND	Conc	Conc ND	Conc	Conc ND	Conc	Conc ND	Conc	Conc ND	Conc	Conc ND	Conc
Dicamba		1918-00-9	0.44	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
2,4-D		94-75-7	50	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
2,4,5-TP (Silvex)		93-72-1	0.26	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~	ND	~
2,4,5-T		93-76-5	35 NS	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~
2,4-DB Dinoseb		94-82-6 88-85-7	NS 2	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~	ND ND	~
	Sample #:		TOGs - Table 5	MW 10S FILT	MW10D	MW10D FILT	MW 11S	MW 11S FILT	MW 11D	MW 11D FILT	MW12	MW12-FILT	MW12D	MW12D-FILT	MW 13S	MW 13S FILT	MW 13D	MW 13D FILT	MW01D	MW01D FILT	MW15	MW15 FILT	MW 16	MW 16 FILT	MW14	MW14 FILT
	Field ID:		Groundwater																							
	Lab ID:		Effluent	04764-018	05060-003 06/16/2017	05060-012 06/16/2017	04764-006 06/08/2017	04764-019 06/08/2017	04764-007 06/08/2017	04764-020 06/08/2017	04600-007 06/03/2017	04600-018 06/03/2017	04600-008 06/03/2017	04600-019 06/03/2017	04764-008 06/08/2017	04764-021 06/08/2017	04764-009 06/08/2017	04764-022 06/08/2017	05060-001 06/16/2017	05060-010 06/16/2017	05060-005 06/16/2017	05060-014	04764-010 06/08/2017			05060-013 06/16/2017
	Date Sampled: Depth(ft):	CAS	Limitations (Class GA) (ug/L)	06/08/2017	06/16/2017	06/16/2017	06/08/2017	06/06/2017	06/08/2017	06/08/2017	06/03/2017	06/03/2017	06/03/2017	06/03/2017	06/08/2017	06/08/2017	06/08/2017	06/08/2017	06/16/2017	06/16/2017	06/16/2017	06/16/2017	06/08/2017	06/08/2017	06/16/2017	06/16/2017
Cadmium		7440-43-9	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Calcium		7440-70-2	NS	120000	232000	224000	95200	91000	96100	102000	145000	136000	94100	66000 ND	171000 ND	167000 ND	250000 ND	239000 ND	241000 ND	243000 ND	201000 ND	200000 ND	126000 ND	121000 ND	174000 ND	176000 ND
Chromium Cobalt			400	ND	ND	ND		VID.		NID.	1 = 1					NU	ND	IND						ND 1.46	ND ND	ND ND
		7440-47-3 7440-48-4	100 NS	ND 2.18	ND 1.52	ND 1.53	ND 0.862	ND ND	ND 1.43	ND 1.48	1.51 ND	1.02 ND	ND ND			2.41	6.62	6.42	ND	ND	ND	ND	1.45			
Copper				ND 2.18 7.58	ND 1.52 11.0	ND 1.53 11.5	0.862 3.58	ND ND ND	ND 1.43 8.15		1.51 ND 3.70	1.02 ND 3.77	ND ND ND	ND ND	2.69 8.67	2.41 5.47	6.62 6.42	6.42 ND	ND 7.73	ND ND	ND 10.0	ND ND	1.45 1.74	ND	3.08	ND
Copper Iron		7440-48-4	NS	2.18	1.52	1.53	0.862	ND	1.43	1.48	ND	ND	ND	ND	2.69											ND 41500
Copper Iron Lead		7440-48-4 7440-50-8 7439-89-6 7439-92-1	NS 1000 600 50	2.18 7.58 27700 ND	1.52 11.0 2400 2.47	1.53 11.5 2010 ND	0.862 3.58 8680 1.33	ND ND 5240 ND	1.43 8.15 768 ND	1.48 2.90 640 ND	ND 3.70 26800 ND	ND 3.77 23200 ND	ND ND 1160 ND	ND ND 451 ND	2.69 8.67 1490 10.9	5.47 487 0.853	6.42 2870 ND	ND 2370 ND	7.73 3400 ND	ND 1460 ND	10.0 31600 0.723	ND 28300 ND	1.74 28000 ND	ND 32000 ND	3.08 49400 ND	41500 ND
Iron Lead Magnesium		7440-48-4 7440-50-8 7439-89-6 7439-92-1 7439-95-4	NS 1000 600 50 35000	2.18 7.58 27700 ND 14700	1.52 11.0 2400 2.47 940000	1.53 11.5 2010 ND 1050000	0.862 3.58 8680 1.33 10700	ND ND 5240 ND 10100	1.43 8.15 768 ND 432000	1.48 2.90 640 ND 448000	ND 3.70 26800 ND 15000	ND 3.77 23200 ND 14000	ND ND 1160 ND 313000	ND ND 451 ND 194000	2.69 8.67 1490 10.9 23000	5.47 487 0.853 22200	6.42 2870 ND 1070000	ND 2370 ND 1100000	7.73 3400 ND 980000	ND 1460 ND 1060000	10.0 31600 0.723 22200	ND 28300 ND 22100	1.74 28000 ND 14200	ND 32000 ND 13400	3.08 49400 ND 68200	41500 ND 67300
Iron Lead Magnesium Manganese		7440-48-4 7440-50-8 7439-89-6 7439-92-1 7439-95-4 7439-96-5	NS 1000 600 50 35000 600	2.18 7.58 27700 ND 14700 3780	1.52 11.0 2400 2.47 940000 3610	1.53 11.5 2010 ND 1050000 3520	0.862 3.58 8680 1.33 10700 2130	ND ND 5240 ND 10100	1.43 8.15 768 ND 432000 2350	1.48 2.90 640 ND 448000 2440	ND 3.70 26800 ND 15000 898	ND 3.77 23200 ND 14000 1080	ND ND 1160 ND 313000 1850	ND ND 451 ND 194000 1270	2.69 8.67 1490 10.9 23000 7290	5.47 487 0.853 22200 7050	6.42 2870 ND 1070000 10100	ND 2370 ND 1100000 8940	7.73 3400 ND 980000 3860	ND 1460 ND 1060000 3850	10.0 31600 0.723 22200 861	ND 28300 ND 22100 847	1.74 28000 ND 14200 2320	ND 32000 ND 13400 2200	3.08 49400 ND 68200 751	41500 ND 67300 731
Iron Lead Magnesium Manganese Mercury		7440-48-4 7440-50-8 7439-89-6 7439-92-1 7439-95-4 7439-96-5 7439-97-6	NS 1000 600 50 35000	2.18 7.58 27700 ND 14700 3780	1.52 11.0 2400 2.47 940000 ND	1.53 11.5 2010 ND 1050000 3520	0.862 3.58 8680 1.33 10700 2130 ND	ND ND 5240 ND 10100 2050 ND	1.43 8.15 768 ND 432000 2350	1.48 2.90 640 ND 448000 2440	ND 3.70 26800 ND 15000 898 ND	ND 3.77 23200 ND 14000 1080 ND	ND ND 1160 ND 313000 1850	ND ND 451 ND 194000 1270	2.69 8.67 1490 10.9 23000 7290 ND	5.47 487 0.853 22200 7050 ND	6.42 2870 ND 1070000 10100 ND	ND 2370 ND 1100000 8940 ND	7.73 3400 ND 980000 3860 ND	ND 1460 ND 1060000 3850 ND	10.0 31600 0.723 22200 861 ND	ND 28300 ND 22100 847 ND	1.74 28000 ND 14200 2320 ND	ND 32000 ND 13400 2200 ND	3.08 49400 ND 68200 751 ND	41500 ND 67300 731 ND
Iron Lead Magnesium Manganese Mercury Nickel		7440-48-4 7440-50-8 7439-89-6 7439-92-1 7439-95-4 7439-96-5 7439-97-6 7440-02-0	NS 1000 600 50 35000 600	2.18 7.58 27700 ND 14700 3780 ND 5.22	1.52 11.0 2400 2.47 940000 ND 5.02	1.53 11.5 2010 ND 1050000 3520 ND 4.76	0.862 3.58 8680 1.33 10700 2130 ND 1.66	ND ND 5240 ND 10100 2050 ND 1.32	1.43 8.15 768 ND 432000 2350 ND 2.71	1.48 2.90 640 ND 448000 2440 ND 2.30	ND 3.70 26800 ND 15000 898 ND ND	ND 3.77 23200 ND 14000 1080 ND ND	ND ND 1160 ND 313000 1850 ND	ND ND 451 ND 194000 1270 ND ND	2.69 8.67 1490 10.9 23000 7290 ND 5.03	5.47 487 0.853 22200 7050 ND 3.76	6.42 2870 ND 1070000 10100 ND 3.35	ND 2370 ND 1100000 8940 ND 3.19	7.73 3400 ND 980000 3860 ND ND	ND 1460 ND 1060000 3850 ND ND ND	10.0 31600 0.723 22200 861 ND ND	ND 28300 ND 22100 847 ND ND	1.74 28000 ND 14200 2320 ND 5.97	ND 32000 ND 13400 2200 ND 6.81	3.08 49400 ND 68200 751 ND 1.63	41500 ND 67300 731 ND 1.71
Iron Lead Magnesium Manganese Mercury		7440-48-4 7440-50-8 7439-89-6 7439-92-1 7439-95-4 7439-96-5 7439-97-6	NS 1000 600 50 35000 600	2.18 7.58 27700 ND 14700 3780 ND 5.22 8750 ND	1.52 11.0 2400 2.47 940000 ND	1.53 11.5 2010 ND 1050000 3520 ND 4.76 304000 6.58	0.862 3.58 8680 1.33 10700 2130 ND	ND ND 5240 ND 10100 2050 ND	1.43 8.15 768 ND 432000 2350	1.48 2.90 640 ND 448000 2440	ND 3.70 26800 ND 15000 898 ND	ND 3.77 23200 ND 14000 1080 ND	ND ND 1160 ND 313000 1850	ND ND 451 ND 194000 1270	2.69 8.67 1490 10.9 23000 7290 ND	5.47 487 0.853 22200 7050 ND	6.42 2870 ND 1070000 10100 ND	ND 2370 ND 1100000 8940 ND	7.73 3400 ND 980000 3860 ND	ND 1460 ND 1060000 3850 ND	10.0 31600 0.723 22200 861 ND	ND 28300 ND 22100 847 ND	1.74 28000 ND 14200 2320 ND	ND 32000 ND 13400 2200 ND 6.81 10400 ND	3.08 49400 ND 68200 751 ND	41500 ND 67300 731 ND
iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver		7440-48-4 7440-50-8 7439-89-6 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7440-09-7' 7782-49-2 7440-22-4	NS 1000 600 50 35000 600	2.18 7.58 27700 ND 14700 3780 ND 5.22 8750 ND ND	1.52 11.0 2400 2.47 940000 3610 ND 5.02 315000 5.57 ND	1.53 11.5 2010 ND 1050000 3520 ND 4.76 304000 6.58 ND	0.862 3.58 8680 1.33 10700 2130 ND 1.66 10600 ND ND	ND ND S240 ND 10100 2050 ND 1.32 10100 ND ND ND ND ND ND ND ND ND	1.43 8.15 768 ND 432000 2350 ND 2.71 172000 ND ND	1.48 2.90 640 ND 448000 2440 ND 2.30 178000 ND ND	ND 3.70 26800 ND 15000 898 ND ND 23800 1.56 ND	ND 3.77 23200 ND 14000 1080 ND ND ND ND ND 22800 ND ND ND	ND ND 1160 ND 313000 1850 ND ND 142000 3.92 ND	ND ND 451 ND 194000 1270 ND ND 95500 ND ND	2.69 8.67 1490 10.9 23000 7290 ND 5.03 15600 ND ND	5.47 487 0.853 22200 7050 ND 3.76 14900 ND ND	6.42 2870 ND 1070000 10100 ND 3.35 295000 ND ND	ND 2370 ND 1100000 8940 ND 3.19 289000 ND ND	7.73 3400 ND 980000 3860 ND ND 313000 5.00 ND	ND 1460 ND 1060000 3850 ND ND ND 315000 2.95 ND	10.0 31600 0.723 22200 861 ND ND 20400 4.27 ND	ND 28300 ND 22100 847 ND ND 20300 ND ND ND ND	1.74 28000 ND 14200 2320 ND 5.97 11300 ND ND	ND 32000 ND 13400 2200 ND 6.81 10400 ND ND	3.08 49400 ND 68200 751 ND 1.63 24100 ND ND	41500 ND 67300 731 ND 1.71 24300 ND ND
Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium		7440-48-4 7440-50-8 7439-89-6 7439-92-1 7439-95-4 7439-97-6 7440-02-0 7440-09-7' 7782-49-2 7440-23-5	NS 1000 600 50 35000 600 1.4 200 NS 20 100 case by case	2.18 7.58 27700 ND 14700 3780 ND 5.22 8750 ND ND 5.22	1.52 11.0 2400 2.47 940000 3610 ND 5.02 315000 5.57 ND 8900000	1.53 11.5 2010 ND 1050000 3520 ND 4.76 304000 6.58 ND 9840000	0.862 3.58 8680 1.33 10700 2130 ND 1.66 10600 ND ND 200000	ND ND 5240 ND 10100 2050 ND 1.32 10100 ND ND ND 190000	1.43 8.15 768 ND 432000 2350 ND 2.71 172000 ND ND 5450000	1.48 2.90 640 ND 448000 2440 ND 2.30 178000 ND ND 5450000	ND 3.70 26800 ND 15000 898 ND ND 23800 1.56 ND 213000	ND 3.77 23200 ND 14000 1080 ND ND 22800 ND ND ND 22000	ND ND 1160 ND 313000 1850 ND ND 142000 3.92 ND 4750000	ND ND 451 ND 194000 1270 ND ND 95500 ND ND ND 2640000	2.69 8.67 1490 10.9 23000 7290 ND 5.03 15600 ND ND 223000	5.47 487 0.853 22200 7050 ND 3.76 14900 ND ND ND 210000	6.42 2870 ND 1070000 10100 ND 3.35 295000 ND ND 10400000	ND 2370 ND 1100000 8940 ND 3.19 289000 ND ND 10200000	7.73 3400 ND 980000 3860 ND ND 313000 5.00 ND 8950000	ND 1460 ND 1060000 3850 ND ND 315000 2.95 ND 9590000	10.0 31600 0.723 22200 861 ND ND 20400 4.27 ND 289000	ND 28300 ND 22100 847 ND ND ND ND ND ND 20300 ND ND ND 287000	1.74 28000 ND 14200 2320 ND 5.97 11300 ND ND 331000	ND 32000 ND 13400 2200 ND 6.81 10400 ND ND 326000	3.08 49400 ND 68200 751 ND 1.63 24100 ND ND 721000	41500 ND 67300 731 ND 1.71 24300 ND ND 721000
iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium		7440-48-4 7440-50-8 7439-89-6 7439-92-1 7439-97-6 7440-02-0 7440-02-0 7440-22-4 7440-23-5 7440-28-0	NS 1000 600 50 35000 600 1.4 200 NS 20 100 case by case 0.5	2.18 7.58 27700 ND 14700 3780 ND 5.22 8750 ND ND 262000 ND	1.52 11.0 2400 2.47 940000 3610 ND 5.02 315000 5.57 ND 8900000 ND	1.53 11.5 2010 ND 1050000 3520 ND 4.76 304000 6.58 ND 9840000 ND	0.862 3.58 8680 1.33 10700 2130 ND 1.66 10600 ND ND ND ND	ND ND 10100 ND	1.43 8.15 768 ND 432000 2350 ND 2.71 172000 ND ND 5450000 ND	1.48 2.90 640 ND 448000 2440 ND 2.30 178000 ND ND 5450000 ND	ND 3.70 26800 ND 15000 898 ND ND 23800 1.56 ND 213000 ND	ND 3.77 23200 ND 14000 1080 ND ND 22800 ND N	ND ND 1160 ND 313000 1850 ND 142000 3.92 ND 4750000 ND	ND ND 451 ND 194000 1270 ND ND 95500 ND ND ND 2640000 ND	2.69 8.67 1490 10.9 23000 7290 ND 5.03 15600 ND ND 223000 ND	5.47 487 0.853 22200 7050 ND 3.76 14900 ND ND ND 210000 ND	6.42 2870 ND 1070000 10100 ND 3.35 295000 ND ND 10400000 ND	ND 2370 ND 1100000 8940 ND 3.19 289000 ND ND 10200000 ND	7.73 3400 ND 980000 3860 ND ND 313000 5.00 ND 8950000 ND	ND 1460 ND 1060000 3850 ND ND 315000 2.95 ND ND 9590000 ND	10.0 31600 0.723 22200 861 ND ND 20400 4.27 ND 289000 ND	ND 28300 ND 22100 847 ND ND 20300 ND 20300 ND	1.74 28000 ND 14200 2320 ND 5.97 11300 ND ND ND ND 331000 ND	ND 32000 ND 13400 2200 ND 6.81 10400 ND ND 0326000 ND	3.08 49400 ND 68200 751 ND 1.63 24100 ND ND 721000 ND	ND 67300 731 ND 1.71 24300 ND ND 721000 ND
Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium		7440-48-4 7440-50-8 7439-89-6 7439-92-1 7439-95-4 7439-97-6 7440-02-0 7440-09-7' 7782-49-2 7440-23-5	NS 1000 600 50 35000 600 1.4 200 NS 20 100 case by case	2.18 7.58 27700 ND 14700 3780 ND 5.22 8750 ND ND 5.22	1.52 11.0 2400 2.47 940000 3610 ND 5.02 315000 5.57 ND 8900000	1.53 11.5 2010 ND 1050000 3520 ND 4.76 304000 6.58 ND 9840000	0.862 3.58 8680 1.33 10700 2130 ND 1.66 10600 ND ND 200000	ND ND 5240 ND 10100 2050 ND 1.32 10100 ND ND ND 190000	1.43 8.15 768 ND 432000 2350 ND 2.71 172000 ND ND 5450000	1.48 2.90 640 ND 448000 2440 ND 2.30 178000 ND ND 5450000	ND 3.70 26800 ND 15000 898 ND ND 23800 1.56 ND 213000	ND 3.77 23200 ND 14000 1080 ND ND 22800 ND ND ND 22000	ND ND 1160 ND 313000 1850 ND ND 142000 3.92 ND 4750000	ND ND 451 ND 194000 1270 ND ND 95500 ND ND ND 2640000	2.69 8.67 1490 10.9 23000 7290 ND 5.03 15600 ND ND 223000	5.47 487 0.853 22200 7050 ND 3.76 14900 ND ND ND 210000	6.42 2870 ND 1070000 10100 ND 3.35 295000 ND ND 10400000	ND 2370 ND 1100000 8940 ND 3.19 289000 ND ND 10200000	7.73 3400 ND 980000 3860 ND ND 313000 5.00 ND 8950000	ND 1460 ND 1060000 3850 ND ND 315000 2.95 ND 9590000	10.0 31600 0.723 22200 861 ND ND 20400 4.27 ND 289000	ND 28300 ND 22100 847 ND ND ND ND ND ND 20300 ND ND ND 287000	1.74 28000 ND 14200 2320 ND 5.97 11300 ND ND 331000	ND 32000 ND 13400 2200 ND 6.81 10400 ND ND 326000	3.08 49400 ND 68200 751 ND 1.63 24100 ND ND 721000	41500 ND 67300 731 ND 1.71 24300 ND ND 721000
iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium		7440-48-4 7440-50-8 7439-89-6 7439-92-1 7439-95-4 7439-97-6 7440-02-0 7440-09-7' 7782-49-2 7440-23-5 7440-23-5 7440-28-0	NS 1000 600 50 35000 600 1.4 200 NS 20 100 case by case 0.5 NS	2.18 7.58 27700 ND 14700 3780 ND 5.22 8750 ND ND 262000 ND	1.52 11.0 2400 2.47 940000 3610 ND 5.02 315000 5.57 ND 8900000 ND	1.53 11.5 2010 ND 1050000 3520 ND 4.76 304000 6.58 ND 9840000 ND	0.862 3.58 8680 1.33 10700 2130 ND 1.66 10600 ND ND ND 200000 ND ND 2222	ND ND 10100 PD 132 ND 10100 ND ND 190000 ND	1.43 8.15 768 ND 432000 2350 ND 2.71 172000 ND ND 5450000 ND	1.48 2.90 640 ND 448000 2440 ND 2.30 178000 ND ND S450000 ND	ND 3.70 26800 ND 15000 898 ND ND 23800 1.56 ND 213000 ND 3.19	ND 3,77 23200 ND 14000 1080 ND ND ND 22800 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND 1160 ND 313000 ND ND ND 142000 3.92 ND 4750000 ND ND ND	ND ND 451 ND 194000 1270 ND ND 95500 ND ND ND 2640000 ND ND	2.69 8.67 1490 23000 7290 ND 5.03 15600 ND ND 223000 ND	5.47 487 0.853 22200 7050 ND 3.76 14900 ND ND 210000 ND	6.42 2870 ND 1070000 10100 ND 3.35 295000 ND ND 10400000 ND ND ND ND ND ND ND ND N	ND 2370 ND 1100000 8940 ND 3.19 289000 ND ND 10200000 ND ND	7.73 3400 ND 980000 3860 ND ND 313000 5.00 ND 8950000 ND ND ND	ND 1460 ND 1060000 3850 ND ND 315000 2.95 ND 9590000 ND ND ND	10.0 31600 0.723 22200 861 ND ND 20400 4.27 ND 289000 ND 2.02	ND 28300 ND 22100 847 ND ND 20300 ND ND 20300 ND ND ND 287000 ND ND ND ND	1.74 28000 ND 14200 2320 ND 5.97 11300 ND	ND 32000 ND 13400 2200 ND 6.81 10400 ND	3.08 49400 ND 68200 751 ND 1.63 24100 ND ND ND ND ND ND ND ND ND ND	ND 67300 731 ND 1.71 24300 ND
Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	g/L	7440-48-4 7440-50-8 7439-89-6 7439-92-1 7439-95-4 7439-97-6 7440-02-0 7440-09-7' 7782-49-2 7440-23-5 7440-23-5 7440-28-0	NS 1000 600 50 35000 600 1.4 200 NS 20 100 case by case 0.5 NS	2.18 7.58 27700 ND 14700 3780 ND 5.22 8750 ND ND 262000 ND ND 5.25	1.52 11.0 2400 2.47 940000 3610 ND 5.02 315000 5.57 ND 8900000 ND ND	1.53 11.5 2010 ND 1050000 3520 ND 4.76 304000 6.58 ND 9840000 ND ND	0.862 3.58 8680 1.33 10700 2130 ND 1.66 10600 ND ND 200000 ND 200000 ND 2.22 12.1	ND ND 10100 2050 ND 132 10100 ND 190000 ND ND 1.95	1.43 8.15 768 ND 432000 2350 ND 2.71 172000 ND ND 5450000 ND ND	1.48 2.90 640 ND 448000 2440 ND 2.30 178000 ND ND 5450000 ND ND ND	ND 3.70 26800 ND 15000 898 ND ND 23800 1.56 ND 213000 ND 213000 ND 3.19 11.6	ND 3.77 23200 ND 14000 1080 ND ND 22800 ND ND 202000 ND	ND ND 1160 ND 313000 1850 ND ND 142000 3.92 ND 4750000 ND ND	ND ND 451 ND 194000 1270 ND ND 95500 ND ND 2640000 ND ND ND	2.69 8.67 1490 10.9 23000 7290 ND 5.03 15600 ND ND 223000 ND 1.87 23.4	5.47 487 0.853 22200 7050 ND 3.76 14900 ND ND 210000 ND ND 13.8	6.42 2870 ND 1070000 10100 ND 3.35 295000 ND ND 10400000 ND ND ND 3.00	ND 2370 ND 1100000 8940 ND 3.19 289000 ND ND 10200000 ND ND ND ND 2.32	7.73 3400 ND 980000 3860 ND ND ND 313000 5.00 ND 8950000 ND ND ND ND ND ND ND ND ND	ND 1460 ND 1060000 3850 ND ND 315000 2.95 ND 9590000 ND ND ND ND	10.0 31600 0.723 22200 861 ND ND 20400 4.27 ND 289000 ND 2.02 ND	ND 28300 ND 22100 847 ND ND 20300 ND ND ND 287000 ND	1.74 28000 ND 14200 2320 ND 5.97 11300 ND ND 331000 ND ND ND 5.97	ND 32000 ND 13400 2200 ND 6.81 10400 ND	3.08 49400 ND 68200 751 ND 1.63 24100 ND ND ND ND ND ND ND ND ND ND	ND 67300 ND 1.71 24300 ND ND 1.71 24300 ND N

Technical Guidance and Operational Series - Table 1 New York State Ambient Water Quality Stand Indicates a concentration that exceeds applicable criteria.

BOLD RL Indicates RL that exceeds applicable criteria.

BOLD MDL Indicates MDL that exceeds applicable criteria.

NS = No Standard Available -- sample not analyzed for ND = Analyzed for but Not Detected at the MDL J = Concentration detected at a value below the RL and above the MDL for target compounds. For D = The compound was reported from the Diluted analysis

All qualifiers on individual Volatiles & Semivolatiles are carried down through summation.

N = Presumptive evidence of a compound from the use of GC/MS library search.

X = Samples analyzed for total and dissolved metals differ at <= 20% RPD.

DRAFT

Table 3B Groundwater Semple Analytical Results Summary - Metals, PCBs, Pesticides, and Herbicides Remedial Investigation Report

Red Hook 4 Properties Brooklyn, New York Langan Project Number: 170363001

Location	Feet State of State o	MW04	MW06	MW06	MW07	MW08	MW10D-R	MW10S	MW11D	MW11S	MW12D	MW12S	MW13D	MW138	MW14
Sample ID	NYSDEC AWOS	MW04_021417	MW08_020717	DUP03_020717	MW07_021017	MW08_021317	MW10D_R_021317	MW10S_021317	MW11D_021417	MW118_021417	MW12D_020717	MW12S_020717	MW13D_021317 17B0460-08	MW13S_021317 17B0460-09	MW14_021317 17B0460-02
Lab ID	NYSDEC AWUS	17B0517-03	17B0276-03	17B0276-04	1780419-01	17B0460-06	17B0460-04	17B0460-05	17B0517-01	1780517-02	17B0276-01	17B0276-02 2/7/2017	2/13/2017	2/13/2017	2/13/2017
Sample Date		2/14/2017	2/7/2017	2/7/2017	2/10/2017	2/13/2017	2/13/2017	2/13/2017	2/14/2017	2/14/2017	2/7/2017	2/1/201/	2/13/201/	2/13/2017	271372017
Total Metals (µg/L)				·				orgo	2520	EE C II	1330	8530	6900	294	140
Aluminum	~	3540	1300	1030	931	55.6 U	10200	2580	3520 42.9 D	55.6 U 3.52 D	27.6 D	28.7 D	60.5 D	2 U	44.4 D
Arsenic	25	6.85 D	4.38 D	3.02 D	42.2 D	2 U	36.2 D	11.5 D			184	285	228	41.3	391
Barium	1000	153	51.1	55.7	750	38.1	242	206 1.11 U	282 1.11 U	132 1,11 U	1,13 D	1.96 D	1.11 U	1.11 U	1.11 U
Beryllium	3	1.11 U	0.667 U	0.667 U	1.11 U	1.11 U	1.11 U			74900	30600	112000	172000	16400	154000
Calcium	~	63600	79400	81100	194000	80000 10 U	125000	98300 10 U	156000 10 U	10 U	10 U	18	10.8	10 U	10 U
Chromium III	~	10 U	10 U	10 U	10 U		10	335	10.00	45 B	10 U	10 U	10 U	10 U	10 U
Chromium, Hexavalent	50	35 B	10 U	10 U	35	20	13	10	45 B 15.2	5.56 U	5 U	18	14.7	5.56 U	6.6
Chromium, Total	50	17.1	5 U	5 U	19.1	5.56 U	17.4	7.57	319	3.33 U	5.9	20.9	21.8	4.84	22.6
Copper	200	16.1	3 U	3 U	18.5	3.33 U	25.6	22.3	4180		1830	27300	6440	340	2080
Iron	300	6100	292	121	50000	42.3	8090	14300		3930 3.33 U	3 U	106	4.61	4.31	3.33 U
Lead	25	11.9	3 U	3 U	106	3.33 U	7.17	47.8	16.9	8230	67500	15200	494000	1750	429000
Magnesium	35000	7180	137	66.3	40100	11900	321000	13200	306000	1800	767	1150	6530	133	2790
Manganese	300	615	5 U	5 U	1110	16.2	2700	3250 4.14 D	3220 20.5 D	4.74 D	23.9 D	12.4 D	16.5 D	4.1 D	7.22 D
Molybdenum	-	6.19 D	12 D	10.4 D	2.35 D	10.2 D	23.8 D		20.5 D 36.1	7.41	6.87	31.2	24.5	6.6	6.47
Nickel	100	21.8	9.32	8.79	6.19	10.5	26.6	24.5	97900	7.41 7310 B	58100	12800	555000	8140	544000
Potassium	~	8220 B	23900	23900	30700	22400	322000	6820 11.1 U	97900 11.1 U	11.1 U	102 D	25.5 D	11.1 U	11.1 U	11.1 U
Selenium	10	11.1 U	7.89 D		11.1 U	11.1 U	11.1 U	THE RESERVE THE PERSON NAMED IN COLUMN 2 I	4550000	89700 B	1980000	166000	6110000	185000	7080000
Sodium	20000	241000 B	60100	59700	466000	51700	4610000	117000 11.1 U		11.1 U	10 U	30.9	11.4	11.1 U	11.1 U
Vanadium	~	11.1 U	12.1	10 U	11.1 U	11.1 U	15 41.9	11.1 U	11.1 U	19.9	16.7	122	46.7	28.3	29.9
Zinc	2000	73.9	13.7	11.1	88	19.9	41.9	115	121	13.3	10.7	122	40.7	20.0	
Dissolved Metals (µg/L)		55.6 U	1010	1010	55.6 U	55.6 U	55.6 U	55.6 U	3100	878	55.6 U	55.6 U	55.6 U	84.5	55.6 U
Aluminum	25	6.85 D	2.22 U	2.22 U	42.2 D	2.22 U	40.2 D	12.7 D	42.9 D	3.52 D	24 D	16.7 D	67.2 D	2.22 U	49.3 D
Arsenic	1000	117	58.8	59.9	656	39.8	180	164	320	147	184	87.8	184	33.5	376
Barium	3	1.11 U	0.933 D	1.04 D	1.11 U	1.11 U	1.11 U	1.11 U	1.11 U	1.11 U	1.24 D	1 D	1.11 U	1.11 U	1.11 U
Beryllium Calcium	3	60000	85900	87000	176000	79800	126000	91900	181000	72000	33000	80800	172000	15500	156000
Chromium, Total	50	5.56 U	5.56 U	5.56 U	5.56 U	5.56 U	5.56 U	5.56 U	18.8	5.56 U	5.56 U	5.56 U	5.56 U	5.56 U	5.56 U
	200	3.33 U	5.45	3.33 U	12.7	6.28	15.1	3.76	389	24.7	8.42	6.33	12.1	4.66	23.7
Copper	300	1950	30.1	44.2	43000	22.2 U	457	10000	6320	5670	631	1000	299	67.7	1820
Iron Lead	25	3.33 U	3.33 U	3.33 U	3.33 U	3.33 U	3.33 U	3.33 U	26.9	16.4	3.33 U	3.33 U	3.33 U	3.33 U	3.33 U
Magnesium	35000	6180	55.6 U	72.8	35900	11400	339000	11400	352000	8300	74800	9650	514000	1580	443000
Manganese	300	530	5.56 U	5.56 U	994	16.3	2660	3160	3790	2020	803	199	6550	115	2710
Molybdenum	300	6.19 D	10.8 D	10.8 D	2.35 D	11.3 D	26.5 D	4.6 D	20.5 D	4.74 D	23.6 D	19.4 D	18.3 D	4.56 D	8.03 D
Nickel	100	11.8	10.8	10.5	5.56 U	12.4	5.91	13.6	59.2	12.6	5.56 U	6.31	8.4	8.61	5.56 U
Potassium	~	7300	25700	26500	27200	23800	104000	7280	117000	7440	64200	10100	134000	8670	120000
Selenium	10	11.1 U	8.2 D	7 D	11.1 U	11.1 U	11.1 U	11.1 U	11.1 U	11.1 U	91.4 D	22.5 D	11.1 U	11.1 U	11.1 U
Sodium	20000	219000	60800	61500	416000	53600	3860000	128000	3340000	89700	1940000	142000	5410000	190000	5120000
Zine	2000	35.4	16.6	13.5	34.1	16.9	21.7	37.8	167	43.4	18.3	15.8	20.1	22	24.4
Polychlorinated Biphenyls (µg/L)	2000	33.4	10.0	10.0											
PCBs	0.09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pesticides (ug/L)	3.00					5770									
Ibb/	~	ND ND	ND	T ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Pesticides															
Total Pesticides 4 4'-DDD	0.3	0.00485 U	0.00471 U	0.00444 U	0.00444 U	0.00421 U	0.00421 U	0.00426	0.00421 U	0.005 U	0.0041 U	0.005 U	0.00432 U	0.00432 U	0.041 U
Total Pesticides 4,4'-DDD Herbicides (µg/L)									0.00421 U	0.005 U	0.0041 U	0.005 U	0.00432 U	0.00432 U	0.041 U

- Notes and Qualifiers:

 1. Groundwater sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEO) Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards (AWOS) and Guidance Values for Class GA.

 2. Only detected compounds are shown in the table.

 3. Concentrations exceeding the NYSDEC TOGS AWOS criteria are shaded.

 4. Reporting limits (RL) exceeding the NYSDEC TOGS AWOS criteria are italicized.

- 5. µg/L = micrograms per liter
 6. ~ = Criterion doesn't exist
 7. DUP03_020717 is a duplicate sample of MW06_020717.
 8. B = Analyte found in the analysis batch blank
 9. D = Result is from an analysis that the required a dilution.
 10. U = The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

DRAFT

Table 3B Groundwater Sample Analytical Results Summary - Metals, PCBs, Pesticides, and Herbicides Remedial Investigation Report

Red Hook 4 Properties Brooklyn, New York Langan Project Number: 170363001

Location		MW04	MW06	I MW06	MW07	1 MW08									
Sample ID		MW04 021417	MW08 020717	DUP03 020717	MW07 021017	MW08 021317	MW10D-R MW10D R 021317	MW10S MW10S 021317	MW11D MW11D 021417	MW11S MW11S 021417	MW12D MW12D 020717	MW12S	MW13D	MW13S	MW14
Lab ID	NYSDEC AWQS	1780517-03	17B0278-03	17B0276-04	17B0419-01	1780460-06	17B0460-04	17B0460-05	1780517-01	17B0517-02	17B0276-01	MW12S_020717 17B0276-02	MW13D_021317 17B0460-08	MW13S_021317 17B0460-09	MW14_021317
Sample Date		2/14/2017	2/7/2017	2/7/2017	2/10/2017	2/13/2017	2/13/2017	2/13/2017	2/14/2017	2/14/2017	2/7/2017	2/7/2017	2/13/2017	2/13/2017	17B0460-02
Total Metals (µg/L)								2.072011	21112011	2114/2017	2772017	27772017	2 13/201/	2/13/201/	2/13/2017
Aluminum	-	3540	1300	1030	931	55.6 U	10200	2580	3520	55.6 U	1330	8530	6900	294	140
Arsenic	25	6.85 D	4.38 D	3.02 D	42.2 D	2 U	36.2 D	11.5 D	42.9 D	3.52 D	27.6 D	28.7 D	60.5 D	2 U	44.4 D
Barium	1000	153	51.1	55.7	750	38.1	242	206	282	132	184	285	228	41.3	391
Beryllium	3	1.11 U	0.667 U	0.667 U	1.11 U	1,11 U	1.11 U	1.11 U	1.11 U	1.11 U	1,13 D	1.96 D	1,11 U	1.11 U	1,11 U
Calcium	-	63600	79400	81100	194000	80000	125000	98300	156000	74900	30600	112000	172000	16400	154000
Chromium III	~	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	18	10.8	10 U	
Chromium, Hexavalent	50	35 B	10 U	10 U	35	20	13	10 U	45 B	45 B	10 U	10 U	10.8 10 U		
Chromium, Total	50	17.1	5 U	5 U	19.1	5.56 U	17.4	7.57	15.2	5.56 U	5 U	18	14.7	10 U 5.56 U	
Copper	200	16.1	3 U	3 U	18.5	3.33 U	25.6	22.3	319	3.33 U	5.9	20.9	21.8	5.56 U	6.6
Iron	300	6100	292	121	50000	42.3	8090	14300	4180	3930	1830	27300	6440	340	22.6
Lead	25	11.9	3 U	3 U	106	3.33 U	7.17	47.8	16.9	3.33 U	3 U	106	4.61		2080
Magnesium	35000	7180	137	66.3	40100	11900	321000	13200	306000	8230	67500	15200	494000	4.31 1750	3.33 U
Manganese	300	615	5 U	5 U	1110	16.2	2700	3250	3220	1800	767	1150			429000
Molybdenum	-	6.19 D	12 D	10.4 D	2.35 D	10.2 D	23.8 D	4.14 D	20.5 D	4.74 D	23.9 D	1150 12.4 D	6530 16.5 D	133 4.1 D	2790
Nickel	100	21.8	9.32	8.79	6.19	10.5	26.6	24.5	36.1	7.41	6.87				7.22 D
Potassium	1.5	8220 B	23900	23900	30700	22400	322000	6820	97900	7310 B		31.2	24.5	6.6	6.47
Selenium	10	11.1 U	7.89 D	5.36 D	11.1	11.1 U	11.1 U	11.1 U	11.1 U	11.1 U	58100 102 D	12800	555000	8140	544000
Sodium	20000	241000 B	60100	59700	466000	51700	4610000	117000	4550000	AND DESCRIPTION OF THE PARTY OF	The state of the s	25.5 D	11.1 U	11.1 U	11.1 U
Vanadium		11.1 U	12.1	10 U	11.1 U	11.1 U	15	117000 U	11.1 U	89700 B	1980000	166000	6110000	185000	7080000
Zinc	2000	73.9	13.7	11.1	88	19.9	41.9	115	121	19.9	10 U	30.9	11.4	11.1 U	11.1 U
Dissolved Metals (µg/L)		10.0	10.7		1 00	13.3	41.3	110	121	19.9	16.7	122	46.7	28.3	29.9
Aluminum	-	55.6 U	1010	1010	55.6 U	55.6 U	55.6 U	55.6 U	3100	878	55.6 U	55.6 U	55.6 U	84.5	0.73
Arsenic	25	6.85 D	2.22 U	2.22 U	42.2 D	2.22 U	40.2 D	12.7 D	42.9 D	3.52 D	24 D	16.7 D	67.2 D	2.22 U	55.6 U 49.3 D
Barium	1000	117	58.8	59.9	656	39.8	180	164	320	147	184	87.8	184	33.5	
Beryllium	3	1.11 U	0.933 D	1.04 D	1.11 U	1.11 U	1.11 U	1.11 U	1.11 U	1.11 U	1.24 D	1 D	1.11 U	1.11 U	376 1,11 U
Calcium	~	60000	85900	87000	176000	79800	126000	91900	181000	72000	33000	80800	172000	15500	156000
Chromium, Total	50	5.56 U	5.56 U	5.56 U	5.56 U	5.56 U	5.56 U	5.56 U	18.8	5.56 U	5.56 U	5.56 U	5.56 U	5.56 U	5.56 U
Copper	200	3.33 U	5.45	3.33 U	12.7	6.28	15.1	3.76	389	24.7	8.42	6.33	12.1	4.66	23.7
Iron	300	1950	30.1	44.2	43000	22.2 U	457	10000	6320	5670	631	1000	299	67.7	1820
Lead	25	3.33 U	3.33 U	3.33 U	3.33 U	3.33 U	3.33 U	3.33 U	26.9	16.4	3.33 U	3.33 U	3.33 U	3.33 U	3.33 U
Magnesium	35000	6180	55.6 U	72.8	35900	11400	339000	11400	352000	8300	74800	9650	514000	1580	443000
Manganese	300	530	5.56 U	5.56 U	994	16.3	2660	3160	3790	2020	803	199	6550	115	2710
Molybdenum	-	6.19 D	10.8 D	10.8 D	2.35 D	11.3 D	26.5 D	4.6 D	20.5 D	4.74 D	23.6 D	19.4 D	18.3 D	4.56 D	The second secon
Nickel	100	11.8	10.8	10.5	5.56 U	12.4	5.91	13.6	59.2	12.6	5.56 U	6.31	8.4	8.61	8.03 D 5.56 U
Potassium	~	7300	25700	26500	27200	23800	104000	7280	117000	7440	64200	10100	134000	8670	
Selenium	10	11.1 U	8.2 D	7 D	11.1 U	11.1 U	11.1 U	11.1 U	11.1 U	71.1 U	91,4 D	22.5 D	11.1 U	11.1 U	120000 11.1 U
Sodium	20000	219000	60800	61500	416000	53600	3860000	128000	3340000	89700	1940000	142000	5410000	190000	
Zinc	2000	35.4	16.6	13.5	34.1	16.9	21.7	37.8	167	43.4	18.3	15.8	20.1	190000	5120000
Polychlorinated Biphenyls (µg/L)						10.0		07.0	107	40.4	10.3	15.0	20.1	1 11	24.4
PCBs	0.09	ND	ND	ND	ND	ND	ND	ND	I ND	ND	ND	ND	ND	ND	ND
Pesticides (µg/L)						-						110	1 140	I NO	IND
Total Pesticides	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,4'-DDD	0.3	0.00485 U	0.00471 U	0.00444 U	0.00444 U	0.00421 U	0.00421 U	0.00426	0.00421 U	0.005 U	0.0041 U	0.005 U	0.00432 U	0.00432 U	0.041 U
Herbicides (µg/L)										1 0.000	0.0041	9.000	1 0.00432 0	0.00432 0	0.041 0
Silvex (2.4.5-Tp)		ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

- Notes and Qualifiers:

 1. Groundwater sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEQ) Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards (AWVG)s and Guidance Values for Class GA.

 2. Only detected compounds are shown in the table:
 3. Concentrations exceeding the NYSDEC TOGS AWQS criteria are shaded.

 4. Reporting limits (RL) exceeding the NYSDEC TOGS AWQS criteria are italicized.

- 5. µg/L = micrograms per liter
 6. = = Cnterion doesn't exist
 7. DUP02_020717 is a duplicate sample of MW06_020717.
 8. B = Analyte found in the analysis batch blank
 9. D = Result is from an analysis that required a dilution.
 10. U = The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

DRAFT Table 4

QAQC Analytical Results Summary - Field Blanks and Trip Blanks Remedial Investigation Report

Red Hook 4 Properties Brooklyn, New York Langan Project Number: 170363001

Location Sample ID Lab ID Sample Date	Field Blank FB01_020717 17B0271-06 2/7/2017		Field Blank FB01_021317 17B0460-10 2/13/2017		Field Blank FB02_020817 17B0358-01 2/8/2017	Trip Blank TB01_020117 17B0058-04 2/1/2017	Trip Blank TB02_020217 1780122-04 2/2/2017		Trip Blank TB03_020317 17B0169-10 2/3/2017	Trip Blank TB04_020617 17B0225-07 2/6/2017		Trip Blank TB04_020717 17B0271-05 2/7/2017	Trip Blank TB05_020817 17B0358-10 2/8/2017	TB0	p Blank 6_021017 00419-02 10/2017	Trip Blank TB08_021317 17B0460-07 2/13/2017		Trip Blank TB08_021417 17B0517-04 2/14/2017	
Volatile Organic Compounds - VOCs (µg/L)																0.0	2 1	10	
Acetone	2.6		2	В	2.6	1.9 J	2	U	2.8	2	U	2.5	2.9			2.3	В	1.9 J	
Bromomethane	0.5	U	0.5	U	0.5 U	2 U	0.5	U	0.5 U	1.1	JB	0.5 U	0.5 t	0.		0.5	U	0.5 U	
Carbon Disulfide	0.5	U	0.5	U	0.5 U	0.5 U	0.5	U	0.5 U	0.37	J	0.5 U	0.5 L	J 0.	5 U	0.5	U	0.5 U	
Chloroform	0.5	U	0.23	J	0.5 U	0.5 U	0.5	U	0.5 U	0.23	J	0.23 J	0.5 L	0.	5 U	0.22	J	0.23 J	
Chloromethane	0.5	U	0.5	U	0.5 U	0.5 U	0.5	U	0.5 U	1.1		0.5 U	0.5 L	0.	5 U	0.5	U	0.5 U	
Tert-Butyl Alcohol	1	U	2	U	1.7	2 U	1	U	1 U	2	U	0.56 J	1 1	1 1	U	2	U	1 U	
Semivolatile Organic Compounds - SVOCs (µg/L)																			
Naphthalene	0.0385	U	0.0615	В	0.162	NA	NA		NA	NA		NA	NA	N	A	NA		NA	
Pesticides (µg/L)																			
Total Pesticides	ND	10000	ND		ND	NA	NA		NA	NA		NA	NA	N	A	NA		NA	
Herbicides (µg/L)				10 101							-								
Total Herbicides	ND		ND		ND	NA	NA		NA	NA		NA	NA	N	A	NA		NA	
Polychlorinated Biphenyls (µg/L)		500						1000		11.0									
Total PCBs	ND		ND		ND	NA	NA		NA	NA		NA	NA	N	Α	NA		NA	
Total Metals (µg/L)																			
Iron	20	U	28.8		22.2 U	NA	NA	-T	NA	NA		NA	NA	N	A	NA		NA	
Nickel	7.48		11	1	6.29	NA	NA	- 1	NA	NA	- 1	NA	NA	N	A	NA		NA	
Potassium	50	U	144	- 1	96.5	NA	NA	- 1	NA	NA	- 1	NA	NA	N	A	NA	- 1	NA	
Sodium	444		1700	- 1	760	NA	NA	- 1	NA	NA	- 1	NA	NA	N	A	NA	- 1	NA	
Zinc	10	30	14.7		16.9	NA	NA		NA	NA	- 1	NA	NA.	l N	A	NA		NA	

- Notes and Qualifiers:

 1. Only detected compounds are shown in the table.

 2. µg/L = micrograms per liter

 3. NA = Not Analyzed

 4. ND = Not Detected

 5. B = Analyte found in the analysis batch blank

 6. J = Analyte detected at or above the method detection limit but below the RL; therefore data is a stimated.

 7. U = The analyte was analyzed for, but was not detected at a

Arcadis of New York, Inc.

One Lincoln Center
110 West Fayette Street
Suite 300
Syracuse, New York 13202
Tel 315 446 9120
Fax 315 449 0017

www.arcadis.com