FORMER UNIVERSAL SCRAP METAL PROCESSORS CORP

1181 FLUSHING AVENUE BROOKLYN, NEW YORK 11237 Block 2994, Lot 75

REMEDIAL INVESTIGATION REPORT

May 2017

Prepared for:

Flushing Stewart LLC 266 Broadway Suite 301 Brooklyn, NY 11211

ENVIRONMENTAL BUSINESS CONSULTANTS

1808 Middle Country Road Ridge, NY 11961

TABLE OF CONTENTS

REMEDIAL INVESTIGATION REPORT

FORMER UNIVERSAL SCRAP METAL PROCESSORS CORP.

1.0	INT	TRODUCTION	1
	1.1	Project Background	1
	1.2	Site Location and Description	1
	1.3	Redevelopment Plans	2
	1.4	Site History	2
	1.5	Summary of Previous Investigations	2
		1.5.1 NYSDEC Spill Files 0510000, 1305242	
		1.5.2 Phase I Environmental Site Assessment Screening- EBC (Dec. 2014)	
		1.5.3 Phase II Subsurface Investigation Data Summary - EBC (Jan. 2015)	
		·	
2.0		MEDIAL INVESTIGATION	
		Field Investigation	
		Deviations from the Remedial Investigation Work Plan	
		Geophysical Survey	
		UST Inspection.	
	2.5	Soil Sampling	
		2.5.1 Soil Borings	
	2.6	Monitoring Well Installation	6
		2.6.1 Groundwater Sampling	
	2.7	Soil Vapor Sampling	
		2.7.1 Installation of Soil Vapor Implants	
		2.7.2 Surface Seal Test Procedure	
		2.7.3 Soil vapor Sample Collection	
	2.8	Laboratory Analysis	
		2.8.1 Analytical Results - Soil Samples	
		2.8.2 Analytical Results - Groundwater Samples	11
		2.8.3 Analytical Results - Soil Vapor Samples	13
		2.8.4 Data Usability Summary Report	14
3.0	шуг	DROGEOLOGIC ASSESSMENT AND PHYSICAL SETTING	15
3.0			
	3.1	Surrounding Land Use	
		Regional Geology / Hydrogeology	
	3.4	Site Geology / Hydrogeology	10
4.0	NA'	TURE AND EXTENT OF CONTAMINATION	17
		Identification of Source Areas	
		Groundwater Impacts	
		Soil Vapor Impacts	
		Site Conceptual Model	
			10
5.0	\mathbf{QU}	ALITATIVE EXPOSURE ASSESSMENT	19
	5.1	Contaminant Areas	19
	5.2	Contaminant Release and Transport Mechanism	19
	5.3	Point of Exposure, Route of Exposure and Potentially Exposed Populations	19
6.0	CO	NCLUSIONS AND RECOMENDATIONS	21
7.0	RE	FERENCES	23

TABLE OF CONTENTS

Remedial Investigation Report

FORMER UNIVERSAL SCRAP METAL PROCESSORS CORP.

TABLES

m 11 1	
Table 1	Summary of Sampling Program Rationale and Analysis
Table 2	Monitoring Well Specifications and Elevation
Table 3	Laboratory Results – Soil Samples, Volatile Organic Compounds
Table 4	Laboratory Results – Soil Samples, Semi-Volatile Organic Compounds
Table 5	Laboratory Results – Soil Samples, Pesticides/PCBs
Table 6	Laboratory Results – Soil Samples, Metals
Table 7	Laboratory Results – Groundwater Samples, Volatile Organic Compounds
Table 8	Laboratory Results – Groundwater Samples, Semi-Volatile Organic Compounds
Table 9	Laboratory Results – Groundwater Samples, Pesticides/PCBs
Table 10	Laboratory Results – Groundwater Samples, Total Metals
Table 11	Laboratory Results – Groundwater Samples, Dissolved Metals
Table 12	Laboratory Results – Soil Vapor Samples, Volatile Organic Compounds
Table 13	Parameters Detected Above Track 1 Soil Cleanup Objectives
Table 14	Parameters Detected Above Ambient Groundwater Standards

FIGURES

Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Soil Sampling Locations
Figure 4	Soil Gas and Groundwater Sampling Locations
Figure 5	Groundwater Elevation Map
Figure 6	Posted Soil Results above Unrestricted / Restricted Residential SCOs.
Figure 7	Groundwater Reulsts above AWQS
Figure 8	Soil Gas Detections
Figure 9	Geologic Cross-Section

APPENDICES

Appendix A	Geophysical Investigation Report
Appendix B	Soil Boring Logs
Appendix C	Monitoring Well Completion Reports
Appendix D	Groundwater Sampling Logs
Appendix E	Soil Vapor Sampling Log
Appendix F	Laboratory Reports (On Disk)
Appendix G	Data Usability Summary Reports

LIST OF ACRONYMS

Acronym	Definition
AOC	Area of Concern
AST	Aboveground Storage Tank
BCP	Brownfields Cleanup Program
BCA	Brownfield Site Cleanup Agreement
CVOC	Chlorinated VOC
ESA	Environmental Site Assessment
EBC	Environmental Business Consultants
IRM	Interim Remedial Measure Work Plan
NYCDEP	New York City Department of Environmental Protection
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
PID	Photo-Ionization Detector
PCB	Polychlorinated Biphenyls
REC	Recognized Environmental Condition
RI	Remedial Investigation
RIWR	Remedial Investigation Work Plan
SVOC	Semi-Volatile Organic Compound
UST	Underground Storage Tank
VOC	Volatile Organic Compound

REPORT CERTIFICAION

I, Charles Sosik, certify that I am currently a Qualified Environmental Professional as defined in 6 NYCRR Part 375 and that this Remedial Investigation Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in full accordance with the DER-approved work plan and any DER-approved modifications.

Date: 5-11-2017

Charles Sosik, PG

Charle Sosik

Principal

1.0 INTRODUCTION

1.1 Project Background

This Remedial Investigation Report (RIR) was prepared on behalf of Flushing Stewart LLC for the property known as the Former Universal Scrap Metal Processors Corp., located at 1181 Flushing Avenue, Brooklyn, New York (hereafter referred to as the Site). In February 2015, Flushing Stewart LLC filed an application with the New York State Department of Environmental Conservation (NYSDEC), to admit the Project Site into the New York State Brownfield Cleanup Program (BCP). The application was deemed complete by the NYSDEC on May 7, 2015. On March 16, 2015, the NYSDEC informed Flushing Stewart LLC that the project (Site No. C224194) had been accepted into the BCP with Flushing Stewart LLC classified as a "Volunteer". The Brownfield Cleanup Agreement was executed by NYSDEC on July, 2, 2015.

The purpose of this Remedial Investigation Report is to collect data of sufficient quality and quantity to characterize the nature and extent of residual contamination associated with the UST(s) / historic operations at the site and to complete a qualitative exposure assessment for future occupants of the proposed building and the surrounding community and to evaluate alternatives to remediate the contamination.

The overall objectives of the project are to prepare the Site for commercial use and to remediate known and unknown environmental conditions at the Site to the satisfaction of the NYSDEC and the New York State Department of Health (NYSDOH).

The field work portion of the RI was conducted by EBC in November 2016.

1.2 Site Location and Description

The street address for the Site is 1181 Flushing Avenue, Brooklyn, NY (**Figure 1**). The Site is located in the City of New York in the East Williamsburg neighborhood of the Borough of Brooklyn. The Site is comprised of one tax parcel identified as Block 2994, Lot 75 and totaling 40,006.98 sq. ft (0.92 acres). The Site originally consisted of two tax parcels, Lots 9 and 75, but were merged into Lot 75 for development purposes. The Site consists of approximately 120 ft of street frontage on Flushing Avenue and 210 feet of street frontage on Stewart Avenue. The Brownfield Site is a portion of the new merged lot and contains approximately 21,942.45 sq. ft (0.50 acres) (**Figure 2**). Currently the property is vacant but was most recently occupied by a scrap metal recycler. The property is partially developed with a 1-story 4,500 sf commercial building which was constructed in 1931. The building yard area and Lot 9 to the north were used as a metal scrap yard. The area to the south of the building is used for parking.

The Manhattan Transportation Authority's (MTA) L-train subway line runs beneath a portion of former Lot 9 in an east-west direction near the front quarter of the lot.

The elevation of the Site ranges from 16 to 18 feet above the National Geodetic Vertical Datum (NGVD). The area topography gradually slopes to the north. The depth to groundwater beneath the

Site is approximately 12 feet below grade. Based on regional groundwater elevation maps, groundwater flows to the northwest toward the English Kills Channel.

The area surrounding the property is highly urbanized and is primarily industrial / commercial in accordance with the M1-1, M1-2 and M3-1 zoning which surrounds the property. Adjacent land use includes large manufacturing / warehouse buildings to the west, north and east and a lumber yard, Manhattan Transit Authority maintenance building and a wholesale food warehouse to the south.

Residential areas are present further to the south behind the commercial properties along Flushing Avenue.

1.3 Redevelopment Plans

The redevelopment project consists of the construction of a new 6-8 story commercial building which will cover approximately 60 percent of the south lot (lot 75). The project includes 14,362 sf of commercial / retail space, 14,362 sf of community space and 71,810 sf of hotel space. Plans include a full height basement level requiring excavation to a depth of approximately 11 ft below grade. The basement level will be used for meter rooms and retail storage space. The remainder of the property will be utilized for parking. With groundwater present at 10 feet below grade, dewatering will likely be required during construction of the building's foundation.

1.4 Site History

The Site served as a Long Island Rail Road freight yard from between 1888 and 1907 until sometime between 1951 and 1965. The current building was constructed between 1933 and 1951 in the southeast corner of the Site. In 1951 the building was utilized for fire wood cutting, bagged charcoal storage and automobile storage. The south end of the building, along Flushing Avenue, contained a gasoline tank. In 1965 the south end of the building is no longer present and instead the area, where the gasoline tank had been listed, is a filling station. The structure formerly used for charcoal storage is being used as an auto service. The rest of Lot 75 is lumber storage and Lot 9 still contains two rail road tracks. In 1968 the auto services and filling station remain, and the rest of lot 75 is being utilized for parking. In 1981 the parking area was also being used as an auto parts yard. Staring in 2003 the filling station is no longer depicted at the Site. Between 2007 and 2014 the building on Site was converted from an auto service to a scrap metal facility and the two sets of railroad tracks were removed.

1.5 Summary of Previous Investigations

Environmental investigations performed at the Site include the following:

- NYSDEC Spill Files No. 1305242 and 0510000
- Phase I Environmental Site Assessment Report EBC (December 2014)
- Phase II Subsurface Investigation Data Summary EBC (January 2015)

1.5.1 NYSDEC Spill Files No. 1305242 and 0510000

According to the NYSDEC Spill file, a petroleum spill was reported in November 2005 during the removal of eleven 550 gallon underground storage tanks. Impacted soil was present around the tanks and approximately 239 tons of soil were removed for disposal. Impacted soil remained in the excavation near the western edge in the vicinity of the former fill ports. A groundwater well installed within the former tank area indicated 7,630 ug/L of total BTEX VOCs. Based on these results continued monitoring was required. In 2009 the DEC requested that an additional investigation be performed to delineate the extent of the contamination. An investigation performed in August 2009 by P.W. Grosser Consulting (PWGC) identified total VOCs in groundwater ranging from 3.26 to 9,217 ug/L. In January 2010 PWGC submitted a remedial plan to the DEC consisting of chemical oxidants and oxygen releasing compound injections. DEC approved the plan in March 2010. Two injection rounds were completed, one in July 2010 and one in September 2010. Post injection monitoring indicated a significant reduction in VOC concentrations in groundwater. Subsequent sampling in 2011 and 2013 indicated some rebound with concentrations then stabilizing by 2014 in the 1,000 to 2,500 ug/L range.

1.5.2 December 2014 – Phase I Environmental Site Assessment (EBC)

Based upon reconnaissance of the subject site and surrounding properties, and review of historical records and regulatory agency databases, the Phase I Screening identified the following Recognized Environmental Conditions (RECs) for the Site:

- The entire property was used as a Railroad freight yard from sometime between 1888 and 1907 to sometime between 1951 and 1965. Historic rail lines were known to use PCBs and herbicides for weed control. In addition rail freight yards would be subject to fuel and petroleum releases from equipment and potential chemical releases from rail tanker cars, etc.
- The south end of the Site was utilized as filling station from approximately 1955 until at least 2003.
- The southern portion of the Site and the building were used for auto repair from 1955 until 2007.
- The Site contained a gasoline storage tank at the south end, along Flushing Avenue, in 1951.
- The northern portion of the property was used as an auto scrap yard from 1981 through 2007.
- From 2007 through 2014 the property was used as a scrap metal facility.

1.5.3 January 2015 - Phase II Invesitgation Data Summary (EBC)

The field work portion of the Phase II was performed on December 29th and 30th, 2014 and included the installation of six soil borings and the collection and analysis of eight soil and five groundwater samples. Shallow soil samples were also analyzed for TAL metals and PCBs. Deeper samples, from the water table interface, were analyzed for VOCs by USEPA 8260 and SVOCs by USEPA 8270. Groundwater samples were analyzed for VOCs only. Laboratory services were provided by Phoenix Environmental Laboratories of Manchester, CT 06040, a New York State ELAP certified environmental laboratory (ELAP Certification No. 11301).

The depth to groundwater at the site is approximately 10 feet below grade. Soil at the site is described as historic fill materials to a depth of approximately 0-4 feet below the surface followed by native brown sand and silt.

Laboratory results identified VOCs including 1,2-dichloroethane (B3), benzene, trimethylbenzene, ethylbenzene, toluene and xylene (B9, B10) above unrestricted and groundwater protection SCOs indicated multiple source areas across the Site. The concentration of total VOCs (when including naphthalene) were reported as high as 37,037 ug/kg. One or more SVOCs including chysene, benzo(a)anthracene, benzo(a)pyrene, ideno(1,2,3-cd)pyrene, benzo(k)fluornthene were reported above Unrestricted or Restricted Residential SCOs in two locations (B2 and B10).

Metals reported above included the following:

Unrestricted Use

B2 0-4 ft - Copper (76.6 mg/kg), lead (108 mg/kg), zinc (856 mg/kg)

B3 0-2 ft - Copper (62 mg/kg), lead (161 mg/kg), zinc (170 mg/kg)

B6 0-5 ft - Lead (72.6 mg/kg)

B9 4-6 ft - Zinc (134 mg/kg)

B10 0-4 ft - Copper (68.6 mg/kg), lead (147 mg/kg), mercury (0.55 mg/kg), zinc (1800 mg/kg)

Restricted Residential Use

B1 0-2 ft - Cadmium (3 mg/kg), mercury (1.94 mg/kg)

B2 0-4 ft - Mercury (5.54 mg/kg)

B3 0-2 ft - Mercury (1.01 mg/kg)

Petroleum VOCs were reported in three of the five groundwater samples (MW3, MW5, MW6) above water quality standards. Total petroleum VOCs were reported to 8,727 ug/L.

2.0 REMEDIAL INVESTIGATION

2.1 Field Investigation

The field work portion of the RI was conducted by EBC from November 10, 2016 through November 17, 2016. The field investigation consisted of a geophysical survey, environmental sampling, field observations and measurements to determine:

- Local geologic/hydro geological conditions;
- Definition of source areas:
- Potential migration of contaminants from the Site to surrounding areas; and,
- Overall characterization of site-related contamination in all media.

The field effort included the collection and analysis of soil, groundwater and soil vapor samples. Laboratory services for soil, groundwater and soil vapor analysis were provided by Phoenix Environmental Laboratories of Manchester, CT (NY Cert No. 11301). A sample matrix showing the number, type and analysis of samples collected during the Remedial Investigation is provided as **Table 1**.

2.2 Deviations from the Remedial Investigation Work Plan

The following changes were made in performing the Remedial Investigation:

- Soil borings 15B15, 15B16, 15B17 and 15B18, located north of the subway line, were not installed as the BCP Site was redefined to exclude this area.
- Monitoring wells MW11, MW12 and MW13 located north of the subway line were not installed as the BCP Site was redefined to exclude this area.
- Soil vapor implants SG10 and SG11 located north of the subway line were not installed as the BCP Site was redefined to exclude this area.
- The RIWP specified that samples would be retained from half (8) of the borings for analysis of fill materials and that samples would be retained from the other half (8) for analysis of clean native soil. However only six samples of fill were submitted for analysis while 10 of the native soil was submitted.
- Due to poor recovery, only one sample was collected from soil borings 15B3, 15B10, and 15B13 instead of the minimum of two as specified in the Remedial Investigation Work Plan.

2.3 Geophysical Survey

The GPR survey was conducted by NOVA Geophysical Services (Douglaston, NY) on November 14, 2016. The equipment selected for this investigation was a Noggin 250 MHz ground penetrating radar (GPR) shielded antenna and 3M DYNATL. Several scattered anomalies were identified across the property. Based on their rates and proximity, these scattered anomalies were inconsistent with

any underground storage tanks (USTs). A high noise area was located on the southern portion of the Site, consistent with the prior UST excavation area. In addition, it was determined that there were no outlet pipes emanating from the waste oil sump located behind the former building in the central yard area. The complete geophysical investigation report showing the anomaly location is attached as **Appendix A**.

2.4 UST Inspection

There were no underground tanks identified by the geophysical investigation with the exception of the waste oil sump behind the former building. Although, what appeared to be, a fuel oil tank fill port was observed within the former building during a preliminary site inspection, the presence of a UST in this area could not be confirmed.

According to the Bulk Storage Database provided by the Department of Environmental Conservation, there were eleven (11) 550-gallon underground storage tanks on Site. All eleven of these tanks were removed and the tanks were closed on January 31, 2006.

2.5 Soil Sampling

2.5.1 Soil Borings

A total of sixteen soil borings were advanced between November 10, 2015 and November 14, 2016. to identify source areas and to obtain general soil quality information present at the Site (**Figure 3**). Ten of the borings were installed within, and six were installed outside of, the proposed basement area.

Soil borings were collected in continuous five foot intervals to a terminal depth of 20 to 30 feet below grade. In accordance with the RI Work Plan, two to three samples were retained for analysis per boring with the exception of 15B3, 15B10, and 15B13 in which only one sample was collected due to limited recovery.

Soil recovered from each soil boring was field screened by a qualified environmental professional for the presence of VOCs with a photo-ionization detector (PID) and visually inspected for evidence of contamination. Soil samples exhibiting the highest levels of contamination were retained for analysis. Soil boring logs are provided in **Appendix B**.

Thirty-six (36) soil samples were sampled and retained for analysis from the sixteen (16) soil boring locations. Ssamples were collected in pre-cleaned, laboratory supplied glassware, stored in a cooler with ice and submitted for analysis to Phoenix Environmental Laboratories (Phoenix) of 587 East Middle Turnpike, Manchester, CT 06040, a New York State ELAP certified environmental laboratory (ELAP Certification No. 11301). Samples were analyzed for one or more of the following analyses depending on boring location and depth: VOCs (EPA Method 8260), SVOCs (EPA Method 8270), TAL metals and dissolved metals (EPA Method 6010), and Pesticides and PCBs (EPA Method 8081/8082). Soil sample analytical results were compared to NYSDEC Part 375.6 Unrestricted Use and Residential Restricted SCOs.

2.6 Monitoring Well Installation

Twelve monitoring wells (MW1 through MW10, MW14 and MW15) were installed at the Site from November 11, 2016 through November 14, 2016. All of the wells were installed with a track mounted Geoprobe Model 6712DT drilling machine to a depth of approximately 20 feet below grade with 10 feet of 0.010 PVC well screen and 10 feet of PVC riser.

A No.00 morie filter-pack sand filled the annulus surrounding the screen within two feet above the top of the screen. A one-foot hydrated bentonite seal was then placed on top of the filter sand and the remainder of the borehole was backfilled to grade. Following installation, each of the wells were surveyed to determine relative casing elevation to the nearest 0.01 ft and horizontal position to the nearest 0.1 ft. Groundwater elevations and monitoring well specifications for each well is provided in **Table 2**. Monitoring well locations are identified in **Figure 4**. Well completion reports detailing monitoring well construction are provided in **Appendix C**.

Prior to sampling, a synoptic round of depth-to-groundwater (DTW) measurements were obtained from wells MW1-MW10, MW14 and MW15 on October 16, 2016 to determine the water table elevation and to calculate the volume of standing water in the well. The depth to groundwater ranged from 11.97-13.19 feet below grade. Depth to water and survey readings are provided in **Table 2**. A groundwater elevation map from the October 2016 depth to water readings is provided as **Figure 5**.

2.6.1 Groundwater Sampling

Twelve monitoring wells (MW1-MW10, MW14, MW15) were sampled on November 16-17, 2016. Samples were collected from the monitoring wells using low-flow sampling techniques and were monitored continuously until parameters stabilized. A peristaltic pump and polyethylene sampling tube were used to purge and collect samples from each well location. Sample tubing and the silicone pump tubing were replaced between each sample location. Samples were collected directly into precleaned laboratory supplied glassware, stored in a cooler with ice and submitted to Phoenix Environmental Laboratories of Manchester, CT, a New York State ELAP certified environmental laboratory (ELAP Certification No. 11301). Groundwater sampling logs are provided in **Appendix D**.

All groundwater samples from the monitoring wells were analyzed for VOCs / SVOCs by EPA method 8260 / 8270, target analyte list (TAL) metals and dissolved metals by EPA method 6010 and Pesticides/PCBs by method 8081/8082.

2.7 Soil Vapor Sampling

Nine soil vapor samples were collected during the RI. All samples (SG1 through SG9) were collected at a depth of 9 feet below grade on November 16, 2016. Soil vapor sampling locations are shown on **Figure 4**. All soil vapor samples were collected over a 2-hr sampling period.

Soil vapor samples were collected in accordance with the procedures as described in the *Guidance* for Evaluating Soil Vapor Intrusion in the State of New York (NYSDOH 10/06).

2.7.1 Installation of Soil Vapor Implants

Nine soil vapor implants were installed at the Site on November 11, 2016 through November 14, 2016. The vapor implants (GeoprobeTM Model AT86 series), were constructed of a 6-inch length of double woven stainless steel wire and installed to a depth of 9 ft below grade using GeoprobeTM equipment.

During installation, the barbed end of each implant was attached to ¼ inch polyethylene tubing which extended approximately 24 inches beyond that needed to reach the surface. The tubing was capped with a ¼ inch plastic end to prevent the infiltration of foreign particles into the tube. Coarse sand was placed around the vapor implant to a height of approximately 1 foot above the bottom of the implant. The remainder of the borehole was sealed with a bentonite slurry to the surface. The tubing and borehole were then sealed at the surface with hydrated granular bentonite and a 12" x 12" (approx.) plastic sheet.

2.7.2 Surface Seal Test Procedure

In accordance with NYSDOH guidance, a tracer gas (helium) was used as a quality assurance/quality control device to verify the integrity of the sampling point seal prior to collecting the samples. This was accomplished by enriching the air space above the seal with a tracer gas (helium) while continuously monitoring air drawn from the implant with a helium detector (Ionscience Gas Check G).

The tracer gas test procedure was employed at all 9 soil vapor sampling locations. All seals tested tight with no infiltration of helium through the surface.

2.7.3 Soil Vapor Sample Collection

Following verification that the surface seal was tight, one to three volumes (i.e., the volume of the sample probe and tube) were purged with a handheld vacuum pump prior to collecting the samples to ensure samples collected were representative. After purging, a 6-liter summa canister, fitted with a 2-hour flow regulator was attached to the surface tube of each of the sampling points and the valve opened to initiate sampling. Sample identification, date, start time, start vacuum, end time and end vacuum were recorded on tags attached to each canister and on a sample log sheet (**Appendix E**). When the remaining vacuum in the canisters was between 0 and 7 inches Hg, (after approximately 2 hrs of run-time) the valve was closed and the canisters were detached from the sampling tube.

Sample canisters were picked up the following day by a Phoenix laboratory courier and delivered to the laboratory for analysis of VOCs by USEPA Method TO-15.

2.8 Laboratory Analysis

Data tables summarizing the laboratory results are provided in **Tables 3** through **12** and copies of the laboratory reports (with chains-of-custody) are included in digital format in **Appendix F**. Soil sample results were compared to both Unrestricted Use and Restricted Residential Soil Cleanup Objectives (SCOs) as promulgated in 6 NYCRR Subpart 375-6. Groundwater results were compared to NYSDEC Division of Water, Technical & Operational Guidance Series 1.1.1, Ambient Water Quality Standards and Guidance Values (AWQS), June 1998. Soil vapor analytical results were compared to Outdoor Background Levels for Selected Compounds and sub-slab and indoor air

guidance levels as presented in the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006. **Table 13** contains a list of parameters detected above Track 1 unrestricted soil cleanup objectives and the range in detections. **Table 14** contains a list of parameters detected above ambient groundwater standards and the range in detections.

2.8.1 Analytical Results – Soil Samples

A total of thirty-six (36)soil samples were collected from sixteen (16) soil borings for laboratory analysis of VOCs (EPA Method 8260), SVOCs (EPA Method 8270), TAL metals and pesticides/PCBs (EPA Method 8081/8082).

Soil sampling results are summarized in **Tables 3** through **6**. All soil results above Unrestricted Use SCOs are presented in **Table 13** and posted on **Figure 6**. Soil samples collected from the borings had elevated levels of VOCs, SVOCs and heavy metals that exceeded either Unrestricted Use or Restricted Residential SCOs as follows:

VOCs in Soil Above Unrestricted Use SCOs:

15B1 (12-14ft) – Benzene (90 μg/kg), ethylbenzene (14,000 μg/kg), m&p Xylenes (2.100 μg/kg), n-Propylbenzene (16,000 μg/kg), o-Xylene (1,000 μg/kg)

 $15B2 (22.5-25ft) - \text{m&p Xylenes} (500 \,\mu\text{g/kg})$

15B4 (15-17ft) – Benzene (100 μg/kg)

15B5 (12-14ft) – Acetone (560 μg/kg)

15B6 (5-7ft) – 1,3,5-Trimethylbenzene (15,000 μg/kg), Acetone (550 μg/kg), m&p Xylenes (24,000 μg/kg), n-Propylbenzene (4,900 μg/kg), o-Xylene (9,100 μg/kg)

15B7 (18-20ft) – m&p Xylenes (530 μg/kg), ο-Xylene (380 μg/kg)

15B7 (23-25ft) – Acetone (500 μg/kg), Methyl Ethyl Ketone (160 μg/kg)

15B8 (0-2ft) – Benzene (110 μg/kg)

15B9 (3-5ft) – 1,2,4-Trimethylbenzene (44,000 μg/kg), 1,3,5-Trimethylbenzene (13,000 μg/kg), Acetone (640 μg/kg), benzene (800 μg/kg), Ethylbenzene (8,300 μg/kg), m&p Xylene (32,000 μg/kg), n-Propylbenzene (5,600 μg/kg), o-Xylene (13,000 μg/kg), Toluene (1,900 μg/kg)

15B9 (10-15ft) – Acetone (53 μg/kg)

15B11 (0-2ft) – 1,2,4-Trimethylbenzene (16,000 μg/kg), Acetone (920 μg/kg), Benzene (1,900 μg/kg), Etylbenzene (4,500 μg/kg), m&p Xylenes (9,600 μg/kg), o-Xylene (5,600 μg/kg), Tetrachloroethene (2,400 μg/kg), Toluene (15,000 μg/kg),

15B12 (12-14ft) – 1,2,4-Trimethylbenzene (14,000 μg/kg), Benzene (650 μg/kg), Ethylbenzene (3,900 μg/kg), m&p Xylenes (16,000 μg/kg), o-Xylene (6,700 μg/kg)

15B14 (1-13ft) – Acetone (64 μg/kg), Benzene (240 μg/kg)

15B19 (18-20ft) – Naphthalene ($89,000 \mu g/kg$), n-Butylbenzene ($70,000 \mu g/kg$), sec-Butylbenzene ($23,000 \mu g/kg$), Toluene ($20,000 \mu g/kg$)

15B19 (20-25ft) – m&p Xylenes (2,000 µg/kg), o-Xylene (640 µg/kg)

Duplicate 4 (15B2 12-14ft) – 1,2,4-Trimethylbenzen (17,000 μg/kg), Acetone (400 μg/kg), Ethylbenzene (3,200 μg/kg), m&p Xylenes (2,500 μg/kg), n-Propylbenzene (6,100 μg/kg)

VOCs in Soil Above Unrestricted Use SCOs:

15B1 (*12-14ft*) – 1,2,4-Trimethylbenzene (65,000 μg/kg)

15B6 (5-7ft) - 1,2,4-Trimethylbenzene (56,000 µg/kg), Ethylbenzene (4,700 µg/kg)

15B19 (18-20ft) – 1,2,4-Trimethylbenzene (910,000 μg/kg), 1,3,5-Trimethylbenzene (320,000 μg/kg), Ethylbenzene (190,000 μg/kg), m&p Xylenes (720,000 μg/kg), n-Propylbenzene (140,000 μg/kg), o-Xylene (260,000 μg/kg), Tetrachloroethene (22,000 μg/kg)

SVOCs in Soil Above Unrestricted Use SCOs:

15B5 (0-2ft) – Indeno(1,2,3-cd)pyrene (530 µg/kg)

15B9 (3-5ft) - Chrysene (1,600 µg/kg)

15B19 (18-20ft) - Naphthalene (17,000 μg/kg)

Duplicate 3 (15B19 0-2ft) – Chrysene (1,100 μg/kg)

SVOCs in Soil Above Restricted Residential SCOs:

15B9 (3-5ft) - Benz(a)anthracene (1,500 μg/kg), Benzo(a)pyrene (1,100 μg/kg), Benzo(b)fluoranthene (1,100 μg/kg), Benzo(k)fluoranthene (900 μg/kg), Indeno(1,2,3-cd)pyrene (630 μg/kg)

15B11 (0-2ft) - Indeno(1,2,3-cd)pyrene (720 μg/kg)

15B19 (0-2ft) - Indeno-1,2,3-cd-pyrene (600 μg/kg)

Duplicate 3 (15B19 0-2ft) – Indeno(1,2,3-cd)pyrene (610 μg/kg)

Metals in Soil Above Unrestricted Use SCOs:

15B1 (12-14ft) – Chromium (33.3 mg/kg)

15B5 (0-2ft) - Copper (71 mg/kg), Lead (228 mg/kg), Mercury (0.49 mg/kg), Zinc (261 mg/kg)

15B8 (0-2ft) – Copper (68.1 mg/kg), Lead (196 mg/kg), Mercury (0.45 mg/kg), Zinc (269 mg/kg)

15B9 (3-5ft) – Copper (170 mg/kg), Lead (399 mg/kg), Mercury (0.65 mg/kg), Zinc (431 mg/kg)

15B11 (0-2ft) – Chromium (31.9mg/kg), Copper (266 mg/kg), Mercury (0.81 mg/kg), Zinc (1,100 mg/kg)

15B14 (1-3ft) – Arsenic (13.7 mg/kg), Copper (146 mg/kg), Lead (232 mg/kg), Mercury (0.47 mg/kg), Zinc (677 mg/kg)

15B19 (0-2ft) – Copper (80.5 mg/kg), Lead (237 mg/kg), Zinc (165 mg/kg) 15B20 (0-2ft) – Lead (68.4 mg/kg), Mercury (0.71 mg/kg)

Duplicate 3 (15B19 0-2ft) – Copper (73.7 mg/kg), Lead (243 mg/kg), Lead (114 mg/kg), Zinc (160 mg/kg)

Metals in Soil Above Restricted Residential SCOs:

15B11 (0-2ft – Barium (446 mg/kg), Cadmium (7.67 mg/kg), Lead (754 mg/kg) 15B19 (0-2ft) – Mercury (1.57 mg/kg)

Duplicate 3 (15B19 0-2ft) – Mercury (1.04 mg/kg)

Pesticides in Soil Above Unrestricted Use SCOs:

 $15B5~(0-2ft)-4,4'-DDD~(100~\mu g/kg)~, 4,4'-DDE~(72~\mu g/kg), 4,4'-DDT~(76~\mu g/kg)$ $15B19~(0-2ft)-4,4'-DDT~(7.7~\mu g/kg)$

No Pesticides were detected above NYSDEC Restricted Residential SCOs

No PCBs were detected above NYSDEC Unrestricted Use and Restricted Residential Use SCOs.

2.8.2 *Analytical Results – Groundwater Samples*

A total of twelve (12) groundwater samples were collected from twelve (12) groundwater monitoring wells for laboratory analysis of VOCs (EPA Method 8260), SVOCs (EPA Method 8270), TAL metals and pesticides/PCBs (EPA Method 8081/8082). Monitoring well locations, MW11, MW12, and MW13 were not sampled due to the area in which the wells were propsed are no longer within the BCP Site boundary.

The results of groundwater samples collected during the RI are summarized in **Tables 7** through **11**. Several VOC and metals detections were in excess of the NYSDEC Division of Water, Technical & Operational Guidance Series 1.1.1, Ambient Water Quality Standards and Guidance Values (AWQS), June 1998.

VOCs in Groundwater Above NYSDEC AWQS:

MWI-1,2,4-Trimethylbenzene (140 µg/L) µg/L), 1,3,5-Trimethylbenzene (18 µg/L), Benzene (64 µg/L), Ethylbenzene (440 µg/L), Isopropylbenzene (26 µg/L), m&p Xylenes (290 µg/L), Naphthalene (58 µg/L), n-Propylbenzene (44 µg/L), o-Xylene (70 µg/L), Toluene (24 µg/L)

MW2-1,2,4-Trimethylbenzene (300 $\mu g/L), 1,3,5\text{-Trimethylbenzene}$ (110 $\mu g/L), Acetone$ (53 $\mu g/L), Benzene$ (2.3 $\mu g/L), Ethylbenzene$ (230 $\mu g/L), Isopropylbenzene (22 <math display="inline">\mu g/L),$ m&p Xylenes (720 $\mu g/L),$ Naphthalene (73 $\mu g/L),$ n-Butylbenzene (9.3 $\mu g/L),$ n-Propylbenzene (53 $\mu g/L),$ o-Xylene (210 $\mu g/L),$ sec-Butylbenzene (6.7 $\mu g/L),$ Toluene (30 $\mu g/L)$

MW3-1,2,4-Trimethylbenzene (730 μg/L), 1,3,5-Trimethylbenzene (280 μg/L), Benzene (170 μg/L), Ethylbenzene (570 μg/L), Isopropylbenzene (79 μg/L), m&p Xylenes (540 μg/L), Naphthalene (190 μg/L), n-Butylbenzene (20 μg/L), n-Propylbenzene (200 μg/L), o-Xylene (130 μg/L), p-Isopropyltoluene (5.2 μg/L), sec-Butylbenzene (13 μg/L), Toluene (30 μg/L), Trichloroethene (6.6 μg/L)

MW4 - Benzene (1.7 µg/L)

MW5 - Benzene (0.73 µg/L)

MW6 - 1,2,4-Trimethylbenzene (610 μg/L), 1,3,5-Trimethylbenzene (190 μg/L), 4-Methyl-2-Pentanone (60 μg/L), Acetone (290 μg/L), Benzene (50 μg/L), Ethylbenzene (440 μg/L), Isopropylbenzene (29 μg/L), m&p Xylenes (1,600 μg/L), Methyl Ethyl Ketone (780 μg/L), Methyl t-butyl ether [MTBE] (66 μg/L), Naphthalene (110 μg/L), n-Butylbenzene (9 μg/L), n-Propylbenzene (78 μg/L), o-Xylene (590 μg/L), sec-Butylbenzene (6.5 μg/L), Tetrachloroethene (8.1 μg/L), Toluene (470 μg/L), Trichloroethene (7.4 μg/L)

MW7 – Benzene (1.3 µg/L)

MW8-1,2,4-Trimethylbenzene (5.4 μ g/L), Acetone (180 μ g/L), Benzene (5.5 μ g/L), m&p Xylenes (9.7 μ g/L), Methyl Ethyl Ketone (130 μ g/L), o-Xylene (5.5 μ g/L), Toluene (15 μ g/L)

 $MW9 - Methyl t-butyl ether [MTBE] (51 \mu g/L)$

MW10-1,2,4-Trimethylbenzene (17 µg/L), Benzene (30 µg/L), Ethylbenzene (19 µg/L), m&p Xylenes (30 µg/L), Methyl t-butyl ether [MTBE] (270 µg/L), o-Xylene (21 µg/L)

MW14-1,2,4-Trimethylbenzene (1,400 μg/L), 1,3,5-Trimethylbenzene (400 μg/L), Benzene (380 μg/L), Ethylbenzene (940 μg/L), Isopropylbenzene (64 μg/L), m&p Xylenes (3,700 μg/L), Naphthalene (250 μg/L), n-Butylbenzene (16 μg/L), n-Propylbenzene (170 μg/L), o-Xylene (1,500 μg/L), sec-Butylbenzene (12 μg/L), Styrene (6.9 μg/L), Toluene (1,100 μg/L)

SVOCs in Groundwater Above NYSDEC AWQS:

MWI - Naphthalene (51 µg/L)

MW2 – Naphthalene (40 µg/kg)

MW3 – Naphthalene (130 μg/kg)

MW6 – Naphthalene (100 µg/kg)

MW14 - Naphthalene (260 µg/L)

PCBs in Groundwater Above NYSDEC AWQS:

 $MW14 - PCB-1016 (0.16 \mu g/kg)$

Dissolved Metals in Groundwater Above NYSDEC AWQS:

MW1 - Manganese (3.43 mg/L), Sodium (322 mg/L)

MW2 – Manganese (6.75 mg/L), Sodium (245 mg/L)

MW3 – Manganese (5.54 mg/L), Sodium (343 mg/L)

MW4 – Iron (8.95 mg/L), Manganese (9.87 mg/L), Sodium (142 mg/L)

MW5 - Manganese (4.56 mg/L), Sodium (128 mg/L)

MW6 – Arsenic (1.16 mg/L), Cadmium (0.015 mg/L), Iron (758 mg/L), Lead (0.037 mg/L), Magnesium (95.1 mg/L), Manganese (44.8 mg/L), Sodium (237 mg/L)

MW7 - Iron (62.3 mg/L), Manganese (3.37 mg/L), Sodium (111 mg/L)

MW8 - Iron (79.1 mg/L), Manganese (3.14 mg/L), Sodium (151 mg/L)

MW9 – Magnesium (39.4 mg/L), Manganese (11.1 mg/L), Sodium (126 mg/L)

MW10 – Iron (7.14 mg/L), Manganese (0.999 mg/L), Sodium (124 mg/L)

MW14 – Iron (46.9 mg/L), Manganese (13.5 mg/L), Sodium (282 mg/L)

MW15 – Magnesium (36.2 mg/L), Manganese (11.9 mg/L), Sodium (159 mg/L)

GW Duplicate 1 (MW9) – Iron (0.72 mg/L), Magnesium (40.6 mg/L), Manganese (11.5 mg/L), Sodium (129 mg/L)

GW Duplicate 2 (MW7) – Iron (52.3 mg/L), Manganese (3.09 mg/L), Sodium (102 mg/L)

Total Metals in Groundwater Above NYSDEC AWQS:

Multiple metals were reported above standards in the unfiltered samples from all of the wells including arsenic, barium, cadmium, chromium, iron, lead, magnesium, manganese and sodium. As demonstrated by the filtered samples, these detections are a function of suspended solids in the sample and are not representative of metals concentrations dissolved in the groundwater.

Groundwater parameters reported above groundwater standards are presented in **Table 14** and posted on **Figure 7**.

2.8.3 Analytical Results – Soil Vapor Samples

In order to determine the vapor quality in the soil beneath the Site, soil vapor samples were collected from nine soil vapor implants (SG1 - SG9) installed across the Site. Analytical results were compared to the Summary of Background Levels for Selected Compounds (NYSDOH Database, Outdoor values, 2003).

Total petroleum-related VOCs (BTEX) were generally low in soil vapor samples with the exception of three sample locations, SG-5 (BTEX 2,969 $\mu g/m3$), SG-6 (BTEX 835.1 $\mu g/m3$), and SG-9 (BTEX 978 $\mu g/m3$). Total BTEX compounds ranged from 1.19 $\mu g/m^3$ (SG-2) to 619 $\mu g/m^3$ (SG-7) at all other soil vapor locations.

Chlorinated VOCs (CVOCs) were reported in all of the soil vapor samples with Trichloroethylene (TCE) reported in 5 of the 9 soil vapor samples, and Tetrachloroethylene (PCE) reported in 6 of the 9 soil vapor samples. Detectable concentrations of TCE ranged in concentration from $0.32 \, \mu \, g/m^3$ in SG-3 located towards the southern side of the Site to $11.3 \, \mu \, g/m^3$ in SG-7 located at the northwestern side of the Site towards the adjacent property Lot 105.

PCE concentrations ranged from $1.19\,\mu g/m^3$ in SG-2 located at the southeastern corner of the Site at the intersection of Flushing Avenue and Stewart Avenue to $34.3\,\mu g/m^3$ in SG-3 located towards the southern side of the Site. Vinyl chloride was detected in 5 of the 9 soil vapor samples. Vinyl chloride concentrations ranged from $1.56\,\mu g/m^3$ in SG-4 located in the middle of the western boundary of the Site to $2,530\,\mu g/m^3$ in SG-7 located along the north-western boundary of the Site. Benzene was detected in 7 of the 9 soil vapor samples.

Benzene concentrations ranged from $1.16\,\mu g/m^3$ in SG-1 located in the south-western corner of the Site to $1,140\,\mu g/m^3$ in SG-5 located in the middle of the eastern property boundary along Stewart Avenue. Cis-1,2-Dichloroethene was detected in 3 of the 9 soil vapor samples. Cis-1,2-Dichloroethene concentrations ranged from $10.2\,\mu g/m^3$ in SG-4 located in the middle of the western boundary of the Site to $109\,\mu g/m^3$ in SG-9 located just north of the northern property boundary of the Site.

Soil vapor results are summarized on Table 12 and posted on Figure 8.

2.8.4 Data Usability Summary Report

Data validation services were provided by Koman Government Solutions, LLC (KGS) of Westborough, Massachusetts. KGS reported that, in general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria. In addition, the Department of Environmental Conservation has received notification that the electronic data deliverables (EDDs) package was submitted and successfully uploaded. The Data Usability Summary Reports prepared by H&S are provided in **Appendix G**.

3.0 HYDROGEOLOGIC ASSESSMENT AND PHYSICAL SETTING

3.1 Site Topography

The elevation of the Site ranges from 17 to 18 feet above the National Geodetic Vertical Datum (NGVD). The area topography gradually slopes to the north.

3.2 Surrounding Land Use

The area surrounding the property is highly urbanized and is primarily industrial / commercial in accordance with the M1-1, M1-2 and M3-1 zoning which surrounds the property. Adjacent land use includes large manufacturing / warehouse buildings to the west, north and east and a lumber yard, Manhattan Transit Authority maintenance building and a wholesale food warehouse to the south. There are no schools or daycare centers identified within 1,000 feet of the Site. Schools nearest the Site are P.S. 123 located approximately 1,307 feet to the southeast and J.H.S 162 located approximately 1,570 feet to the east.

3.3 Regional Geology / Hydrogeology

Long Island's present configuration is primarily the result of glaciation which during the Pleistocene Era, predominately that of the last ice age, the Wisconsin, which ended about ten thousand years ago. Two advances of the Wisconsin ice sheet during the Upper Pleistocene of the Quaternary Period caused the island to be blanketed with till, ice contact stratified drift, outwash deposits and deposits composed of clay, silt, sand, gravel and boulders. The terminal moraines and the north shore are composed primarily of stratified drift with some till. The area between the moraines and south of them are mostly the outwash deposits. Central and South Long Island are of the glaciofluvial origin. The Pleistocene deposits lie atop the gently-dipping Cretaceous rocks.

The bedrock was eroded to a peneplain before the overlying Cretaceous sediments were deposited; its surface shows signs of later erosion by Pleistocene glaciation in the north. Bedrock crops out in northwestern Queens County near the East River and slopes southward at about eighty (80) feet per mile. Consequently, the overlying formations form a southward-dipping wedge that attains a maximum thickness of one-thousand fifty (1,050) feet in the southeast corner of Queens County. The maximum thickness of unconsolidated deposits in Kings County is about eight-hundred (800) feet in southeast Kings.

Overlying bedrock is the Raritan Formation of Late Cretaceous age, consisting of the Lloyd Sand Member and an upper, unnamed clay member. Overlying the Raritan Formation is the Magothy Formation and Matawan Group, undifferentiated, also of Late Cretaceous age, the Jameco Gravel of Pleistocene age, the Gardiners Clay of Pleistocene age, upper Pleistocene deposits of Wisconsin age, and a generally thin soil mantle of Holocene age. Holocene beach deposits make up most of the Rockaway Peninsula and Coney Island in the south, and Holocene salt-marsh deposits underlie and fringe the south-shore bay areas. Artificial filling has been done in low and swampy shoreline areas.

Because Holocene deposits occur in relative small areas of Kings and Queens and are not significant water bearers, they are not included in the geologic descriptions that follow. The four distinct

formations on Long Island: The Upper Glacial, the Jameco, the Magothy and the Lloyd aquifers. They all occur in the unconsolidated materials overlying the bedrock.

3.4 Site Geology / Hydrogeology

According to geologic maps of the area created by the United States Geologic Survey (USGS), the bedrock in this area of Brooklyn is an igneous intrusive classified as the Ravenswood grano-diorite of middle Ordovician to middle Cambrian age. The depth to bedrock in this area of Brooklyn is greater than 100 ft below grade. Unconsolidated sediments overlie the bedrock and consist of Pleistocene aged sand, gravel and silty clays, deposited by glacial-fluvial activity. Non-native fill materials consisting of dredge spoils, rubble and / or other materials have historically been used to reinforce and extend shoreline areas and to raise and improve the drainage of low lying areas.

Subsurface soils at the Site consist of historic fill materials to a depth of approximately 2 to 5 feet below grade with some areas extending to 12 feet below grade. Silty sand is present immediately below this layer (**Figure 9**).

Groundwater at the Site is present under water table conditions at a depth of 11.97 to 13.19 feet below grade (**Table 2**). Based upon on-site measurements, groundwater flow is to the north and northeast (**Figure 5**).

4.0 NATURE AND EXTENT OF CONTAMINATION

4.1 Identification of Source Areas

Source areas identified during the RI include the former UST area located in the southern area of the Site. Although the tanks were previously removed there appears to be some residual soil contamination in the northwest corner of the UST area as evidenced by petroleum VOCs reported at the 12-14' interval at the 15B1 location. The residual contamination associated with the UST area extends downgradient (northeast) to the 15B19 location along Stewart Avenue to a depth of 20 to 25'. Indications of a second source area were noted in 15SB6 at the 5-7' interval located adjacent the waste oil tank.

Shallow petroleum contamination reported across much of the Site in the 0-2' and 3-5' intervals and extending to 12-14' at the 15SB12 location is likely related to surface spillage from the storing and dismantling of derelict vehicles.

Historic fill material has been identified across the Site to depths 2 to 5 feet below grade extending as deep as 12 feet in at least one of the borings. Depending on location, the historic fill material contains one or more metals including barium, copper, lead, mercury and zinc, pesticides, PAHs and PCBs above unrestricted and / or restricted use SCOs.

4.2 Groundwater Impacts

Petroleum VOCs above NYSDEC Ambient Water Quality Standards (AWQS) were reported across much of the Site, extending as far north as MW10. Overall petroleum VOCs were reported in the low hundreds across the Site with the exception of the area downgradient of the UST area as defined by wells MW2, MW3 and MW14 which had concentrations of petroleum VOCs in the mid to high hundreds and low thousands. .

CVOCs were reported slightly above standards in two monitoring wells including l tetrachlorethene (PCE) in MW6 and tricloroethene (TCE) n MW3 and MW6.

SVOC detections above groundwater standards were limited to napthalene in wells MW1, MW2, MW3, MW6 and MW14.

PCB1016 was reported slightly above the NYSDEC AWQS standard in well MW14.

Several dissolved metals were detected above standards including iron, sodium magnesium and manganese in most of the wells. These metals are consistent with general groundwater quality throughout the area. Barium, cadmium and lead were also reported above standards at the MW6 location.

4.3 Soil-Vapor Impacts

Petroleum-related VOCs were generally low in soil vapor samples with the exception of benzene, cyclohexane, heptane and hexane in SG4, SG5, SG6, SG7 and SG9. Chlorinated VOCs (CVOCs) were generally limited to vinyl chloride in SG8.

4.4 Site Conceptual Model

VOC contamination at the Site consists of petroleum related contaminants in soil at multiple locations around the property including areas adjacent to and downgradient of the former UST area, adjacent to the waste oil tank and in shallow soil across the Site.

Contamination adjacent to the UST area extends to a depth of 12-14' below grade while downgradient of the UST area in the vicinity of SB19 it extends to 25 feet. Petroleum impact in the vicinity of the waste oil tank extends to 7 feet. Much of the remainder of the Site has petroleum impacts in the top 2 to 5 feet of soil extending to 12 feet in one location.

It has been previously established that a release occurred in the UST area. Released gasoline in this are a would have encountered the shallow water table almost immediately and then migrated north with groundwater flow in free phase form resulting in residually impacted soil. The water table must have been lower at some point during or soon after the release as soil impacts downgradient begin 5 to 8 feet lower in the soil column. Gasoline constituents then dissolved into the groundwater which was in contact with the contaminated soil or which passed through the contaminated soil zone and migrated north.

As noted in the Spill File, eleven 550 gallon USTs were removed from the southern portion of the Site along with 239 toms of petroleum impacted soil. Chemical oxidants were then applied to reduce VOC impacts in groundwater. This remediated a good portion of the source area leaving residually impacted soil adjacent to the excavated area and northeast along Stewart Avenue.

The presence of petroleum impacted soil adjacent to the waste oil sump and the general poor housekeeping observed around it indicates that spills occurred at this location and impacted soil to approximately 7 feet below the surface.

The historic use of the property as an auto dismantler, combined with a partial and damaged asphalt/concrete cover, resulted in surface spillage of automotive fluids (primarily gasoline) entering the ground and impacted shallow soil. For the most part this was limited to the top 2 feet of soil though in some areas of the Site it penetrated to a depth of 12 to 14 feet.

Dissolved petroleum VOCs originated from residually impacted soils in the UST area and downgradient impact zone and then migrated from these areas north. In addition, it is likely that surface runoff passing through the shallow contaminated soils across the site, picked up VOC contaminants and then transported them to the water table as dissolved constituents.

5.0 QUALITATIVE EXPOSURE ASSESSMENT

The objective of the qualitative exposure assessment under the Brownfields Cleanup Program (BCP) is to identify potential receptors to the contaminants of concern (COC) that are present at, or migrating from, the Site. The identification of exposure pathways describes the route that the COC takes to travel from the source to the receptor. An identified pathway indicates that the potential for exposure exists; it does not imply that exposures actually occur. An exposure pathway has five elements; a contaminant source, release and transport mechanisms, point of exposure, route of exposure and a receptor population.

The potential exposure pathways identified below, represent both current and future exposure scenarios.

5.1 Contaminant Source

Source areas of the Site include petroleum VOCs in soil adjacent to and downgradient of the former UST area located in the southern portion of the Site. A second source is present in the vicinity of the waste oil tank though contamination in that area is not in direct contact with the groundwater Petroleum VOCs are also present in shallow soil throughput much of the Site extending to the water table in at least one location. Shallow impacted soil is also considered a contaminant source.

Elevated levels of metals, PAHs and pesticides are also present in fill materials throughout the Site.

5.2 Contaminant Release and Transport Mechanism

Petroleum contamination is present in soil adjacent to and downgradient of the former UST area at depths which put it in direct contact with the groundwater. Contaminants in shallow soil can affect groundwater quality as surface runoff infiltrates the impacted zone and acts as transport water for dissolved constituents.

Dissolved components migrating from the source area or infiltrating through surface runoff would travel north to northeast with groundwater flow.

There appears to be some transfer of lighter petroleum VOCs to the vapor phase in the central and northern areas of the Site. These lighter end petroleum VOCs such as heptane and hexane may be migrating off-site in this area.

5.3 Point of Exposure, Route of Exposure and Potentially Exposed Populations

<u>Potential On-Site Exposures</u>: Remediation workers and construction workers engaged in the excavation of impacted and non-impacted soil at the site may be exposed to petroleum VOCs / SVOCs, CVOCs, pesticides and heavy metals through several routes. Workers excavating impacted soil may be exposed through inhalation, ingestion and dermal contact. A site specific Health and Safety Plan has been developed to identify and minimize the potential hazards to on-site workers. Site trespassers could also be exposed to impacted soil during excavation, however, security measures including an 8 ft high construction fence and 24 hr security will minimize potential

exposure through this route. Potential vapor intrusion is a concern for residents of the planned construction in the north-central area of the Site, however remediation of the source areas is expected to greatly reduce if not eliminate this potential.

<u>Potential Off-Site Exposures</u>: Off-Site residents could also be exposed to dust or vapors during the excavation of impacted soil. A site specific Community Air Monitoring Plan has been developed to identify and minimize the potential for off-site exposure to residents through continuous air monitoring during excavation activity.

The entire area is serviced by the New York City Water System which distributes water from the Croton Reservoir system. Since there are no public or private potable supply wells in the area, exposure from contact with tap water is not a concern. Off-site exposure is therefore limited to vapor intrusion from light end petroleum VOCs. SThis potential will be further reduced following the removal of the source are under the planned redevelopment of the Site.

<u>Potential Off-Site Environmental Impacts</u>: Since petroleum VOCs in groundwater may be migrating beneath the Site at low concentrations in a northeasterly direction, the groundwater to surface water discharge pathway was evaluated. The nearest surface water to the Site is the English Kills Channel located approximately 1,500 feet to the northwest. Based upon the concentrations of contaminants currently in groundwater beneath the Site, there are no expected impacts to surface water environments from contaminants migrating from the Site.

6.0 CONCLUSIONS AND RECOMENDATIONS

Subsurface soils at the Site consist of historic fill materials to a depth of approximately 2 to 5 feet below grade with some areas extending to 12 feet below grade. Silty sand is present immediately below this layer. The fill material contains elevated levels some metals, pesticides and SVOCs.

Groundwater at the Site is present under water table conditions at a depth of 11.97 to 13.19 feet below grade and flows north and northeast.

The results of sampling performed during this RI, identified petroleum VOC and SVOC contamination in soil at multiple locations around the property including areas adjacent to and downgradient of the former UST area, adjacent to the waste oil tank and in shallow soil across the Site. Contamination adjacent to the UST area extends to a depth of 12-14' below grade while downgradient of the UST area in the vicinity of SB19 it extends to 25 feet. Petroleum impact in the vicinity of the waste oil tank extends to 7 feet. Much of the remainder of the Site has petroleum impacts in the top 2 to 5 feet of soil extending to 15 feet in two locations.

Historic fill material has been identified across the Site to depths 2 to 5 feet below grade extending as deep as 12 feet in at least one of the borings. Depending on location, the historic fill material contains one or more metals including barium, copper, lead, mercury and zinc, pesticides, PAHs and PCBs above unrestricted and / or restricted use SCOs.

Groundwater is impacted with petroleum VOCs across much of the Site, extending as far north as MW10. Overall petroleum VOCs were reported in the low hundreds across the Site with the exception of the area downgradient of the UST area as defined by wells MW2, MW3 and MW14 which had concentrations of petroleum VOCs in the mid to high hundreds and low thousands.

Petroleum-related VOCs were generally low in soil vapor samples with the exception of benzene, cyclohexane, heptane and hexane in SG4, SG5, SG6, SG7 and SG9. Chlorinated VOCs (CVOCs) were generally limited to vinyl chloride in SG8.

The qualitative exposure assessment identified potential completed routes of exposure to construction workers and remediation workers through inhalation, ingestion and dermal contact of petroleum compounds, VOCs, pesticides and heavy metals during excavation activities. The Health and Safety Plan prepared for the site identifies such exposures and provides instructions for on-site workers to minimize potential exposure. Occupants in the proposed on-site building may be exposed to VOCs through the vapor intrusion pathway, if remedial action is not taken to remove the source.

The exposure assessment indicated a limited potential exposure to residents and commercial workers in adjacent buildings which would be reduced further following the removal of the identified source areas.

Potential environmental impacts through the groundwater to surface water discharge were considered unlikely based on the concentrations of VOCs in groundwater and the distance to the English Kills Channel.

Recommendations include removal of the waste oil tank, excavation and disposal of petroleum contaminated soil within the source areas, and proper handling and disposal of all soils excavated for structural elements of the new building. This work would be performed under an approved Remedial Action Work Plan which includes a Soil Management Plan, a Construction Health and Safety Plan and a Community Air Monitoring Plan.

Potential soil vapor impact should be re-evaluated following the completion of remedial activities to determine if conditions improve to the point where active mitigation is unnecessary.

7.0 REFERENCES

6 NYCRR Part 375 Environmental Remediation Programs Subparts 375-1, 375-3 and 375-6

Environmental Business Consultants, Remedial Investigation Work Plan - February 2015

NYSDEC, Division of Environmental Remediation, May 2004, *Draft Brownfield Program Cleanup Guide*.

NYSDEC, Division of Environmental Remediation, December 2002, *DER-10*, *Technical Guidance for Site Investigation and Remediation*.

NYSDEC, Division of Environmental Remediation, December 14, 2006, 6 NYCRR Part 375, Environmental Remediation Programs, subparts 375-1 to 375-4 & 375-6.

NYSDEC, Division of Water, June 1998, Addendum April 2000, Technical and Administrative Guidance Series 1:1:1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

NYSDOH, Center for Environmental Health, October 2006, Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York.

TABLES

TABLE 1 SUMMARY OF SAMPLING PROGRAM RATIONALE AND ANALYSIS

Matrix	Location	Approximate Number of Samples	Rationale for Sampling	Laboratory Analysis
Subsurface soil (0 to 5 feet bgs)	from 6 of the borings throughout the site.	6	To assess quality of historic fill across	VOCs EPA Method 8260B, SVOCs EPA Method 8270, pesticide / PCBs EPA Method 8081/8082, TAL metals EPA 6010
Subsurface soil	from 16 borings throughout the site.	20	To evaluate the extent of soil impact and delineate petroleum source areas	VOCs EPA Method 8260B, SVOCs EPA Method 8270, TAL metals EPA 6010.
Subsurface soil (5-15 feet below grade)	from 10 of the borings throughout the site.	10		VOCs EPA Method 8260B, SVOCs EPA Method 8270, EPA Method 8270, pesticide / PCBs EPA Method 8081/8082, TAL metals EPA 6010.
Total (Soils)		36		
Groundwater (water table)	From 12 monitoring wells across the Site.	12	Site.	VOCs EPA Method 8260B, SVOCs EPA Method 8270, pesticide / PCBs EPA Method 8081/8082, TAL metals EPA 6010 dissolved and total.
Total (Groundwater)		12		
Soil Gas (14 ft below existing grade)	9 soil gas implants installed across the Site.	9	Evaluate soil gas across the Site.	VOCs EPA Method TO15
Total (Soil Gas)		9		
MS/MSD	Matrix spike and Matrix spike duplicates at the rate 5%	3	program	4 soil and 2 groundwater MS/MSD for VOCs EPA Method 8260B, SVOCs EPA Method 8270, pesticide / PCBs EPA Method 8081/8082, TAL metals. Soil for VOCs EPA Method 8260B, SVOCs EPA Method 8270 and TAL metals EPA 6010.
Trip Blanks	One laboratory prepared trip blank to accompany samples each time they are delivered to the laboratory.	3	To meet requirements of QA / QC program	VOCs EPA Method 8260B
Total (QA / QC Samples)		6		

TABLE 2 Monitoring Well Specifications and Elevation

Well No.	Well Diamter (in)	Total Well Depth (ft)	Screened Interval	Survey Reading	Casing Elevation	DTW 11/16/2016	DTP	PT	GW ELV 11/16/2016
MW1	1	20	10-20 ft	4.98	95.02	12.60	-	-	82.42
MW2	1	20	10-20 ft	5.54	94.46	12.04	-	-	82.42
MW3	1	20	10-20 ft	5.18	94.82	12.48	-	-	82.34
MW4	1	20	10-20 ft	5.14	94.86	12.50	-	-	82.36
MW5	1	20	10-20 ft	5.14	94.86	12.52	-	-	82.34
MW6	1	20	10-20 ft	4.56	95.44	13.19	-	-	82.25
MW7	1	20	10-20 ft	5.34	94.66	12.50	-	-	82.16
MW8	1	20	10-20 ft	5.14	94.86	12.64	-	-	82.22
MW9	1	20	10-20 ft	4.75	95.25	13.19	-	-	82.06
MW10	1	20	10-20 ft	5.28	94.72	12.69	-	-	82.03
MW14	1	20	10-20 ft	4.84	95.16	12.90	-	-	82.26
MW15	1	20	10-20 ft	5.56	94.44	11.97	-	-	82.47

TABLE 3 Soil Analytical Results Volatile Organic Compounds

000000 000000 000000000000000000000000						15	5B1					1	5B2				15B3							15B4	ı					
Separate sep	COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil Cleanup Objectives*	NYDEC Part 375.6 Restricted Residential Soil Cleanup Objectives*																											
Selection of the select			,		μg/Kg	MDL	Result	μg/Kg	MDL		μg/Kg		Result	μg/Kg	i MDL	Result	μg/Kg	al MDL	Result	μg/Kg	9	MDI.	Result	μg/Kg		MDL	Result	μg/Kg		ADL.
Schellersteiners				< 360	360 U	71	< 15	15 U	0.76	< 1700	1,700	U 83	< 18	18 U	0.89	< 22	22 U	1.1	< 4.4	4.4	U	0.88	< 13	13	U	0.67	< 19	19	U 0.	.93
Schelleringen 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		680	100,000	< 360	360 U	36		3.8 U	0.38	< 410		0 41		4.4 U	0.44	- 0.4	5.4 U	0.54	< 4.4	4.4	U	0.44		0.4	U	0.34		4.6	U 0.	.46
1. Standard 1	., .,=,=			< 360	360 U	71	< 3.8	3.8 U	0.76	< 410	410	U 83	< 4.4	4.4 U	0.89	< 5.4	5.4 U	1.1	< 4.4	4.4	U	0.88	< 3.4	3.4	U	0.67	< 4.6	4.6	U 0.	.93
Selection 19				< 360	360 U	71	< 3.8	3.8 U	0.76	< 410	410	U 83	< 4.4	4.4 U	0.89	< 5.4	5.4 U	1.1	< 4.4	4.4	U	0.88	< 3.4	3.4	U	0.67	< 4.6	4.6	U 0.	.93
1				< 270	270 U	71		3.8 U	0.76	< 270	270	U 83		4.4 U	0.00		5.4 U	1.1		4.4	U	0.88	0.11	3.4	U	0.67	11.0	4.6	U 0.	.93
14 1		330	100,000	< 360	360 U	36		3.8 II	0.38	< 410	410	U 41		4.4 U	0.44	< 5.4	5.4 U	0.54	< 4.4	4.4	U	0.44		3.4	U	0.34		4.6	U 0	146
1. September 1. Se				< 360	360 U	71		3.8 U	0.76	< 410	410	U 83		4.4 U	0.89	< 5.4	5.4 U	1.1	< 4.4	4.4	U	0.88		3.4	U	0.67		4.6	U 0	1.93
1				< 360	360 U	36	< 3.8	3.8 U	0.38	< 410	410	U 41	< 4.4	4.4 U	0.44	< 5.4	5.4 U	0.54	< 4.4	4.4	U	0.44	< 3.4	3.4	U	0.34	< 4.6	4.6	U 0.	.46
1				< 360	360 U	71	< 3.8	3.8 U	0.76	< 410	410	U 83	< 4.4	4.4 U	0.89	< 5.4	5.4 U	1.1	< 4.4	4.4	U	0.88	< 3.4	3.4	U	0.67	< 4.6	4.6	U 0.	.93
2-Schentenders	1,2,4-Trimethylbenzene	3,600	52,000	65,000	3,600 D	1400	1.5	3.8 J	0.38	260	410	J 41	480	330 -	33	1.5	5.4 J	0.54	1.6	4.4	J	0.44	9.6	3.4	-	0.34	2.9	4.6	J 0.	.46
2. Septembers				< 360	360 U	71		3.8 U	0.76	< 410	410	U 83		4.4 U	0.89	< 5.4	5.4 U	1.1		4.4	U	0.88		3.4	U	0.67		4.6	U 0.	.93
2. Septembrounds				- 000	360 U	36		3.8 U	0.38	< 410	410	U 41		4.4 U			5.4 U	0.54		4.4	U	0.44		3.4	U	0.34		4.6	U 0.	.46
2-Discharge from 1.00		1,100	100,000	< 360	360 U	36	< 3.8	3.8 U	0.38	< 410	410	U 41	< 4.4	4.4 U	0.44	< 5.4	5.4 U	0.54	< 4.4	4.4	U	0.44	< 3.4	3.4	U	0.34	< 4.6	4.6	U 0.	.46
3.50 minusplemente 1.00 minus 1.0		20	3,100	< 36	36 U	36	< 3.8	3.8 U	0.38	< 41	41	U 41	< 4.4	4.4 U	0.44	< 5.4	5.4 U	0.54	< 4.4	4.4	U	0.44	< 3.4	3.4	U	0.34	< 4.6	4.6	U 0.	.46
32 Contentioners				- 000	360 U	71		3.8 U	0.76	< 410	410	U 83		4.4 U	0.89		5.4 U	1.1		4.4	U	0.88		3.4	U	0.67		4.6	U 0.	.93
Controlled Control C					360 -	36		3.8 U	0.38	< 410	410	U 41		330 -	33		5.4 J	0.54		4.4	J	0.44		3.4	-	0.34		4.6	J 0.	.46
Control proper Cont		2,400	4,900	< 360	360 U	36		3.8 U	0.38	< 410	410	U 41		4.4 U	0.44		5.4 U	0.54		4.4	U	0.44		3.4	U	0.34		4.6	U 0.	.46
2. An experimental series of the series of t		4	40 ***	< 360	360 11	36	< 3.8	3.8 11	0.70	< 410	410	U 03		4.4 11	0.09	< 5.4	5.4	0.54	< 4.4	4.4	- 11	0.00	< 3.4	3.4	U	0.07	< 4.0	4.0	U 0.	146
Scheentenkers 1.00		1,800	13,000	< 360	360 11	36	< 3.8	3.8 11	0.30	< 410	410	U 41		4.4 11	0.44	< 5.4	5.4	0.54	< 4.4	4.4	- 11	0.44	< 3.4	3.4	U	0.34	< 4.0	4.0	U 0	146
Part		1		< 360	360 11	71		3.8	0.36	< 410	410	U 83		4.4 11	0.89		5.4	1.1		4.4	U	0.88		3.4	U	0.67		4.6	U	.93
Sepanginisary		1		< 1800	1,800 U	360		19 U	3.8	< 2100	2,100	U 410		22 U	4.4		27 U	5.4		22	U	4.4		17	U	3.4	< 23	23	U	4.6
Contentions 1		1		440	360 -	36	< 3.8	3.8 U	0.38	150	410	J 41	14	4.4 -	0.44	< 5.4	5.4 U	0.54	< 4.4	4.4	U	0.44	< 3.4	3.4	U	0.34	< 4.6	4.6	U 0	.46
Monteman 9 9000 700 700 700 700 700 700 700 700				< 360	360 U	36	< 3.8	3.8 U	0.38	< 410	410	U 41	< 4.4	4.4 U	0.44	< 5.4	5.4 U	0.54	< 4.4	4.4	U	0.44	< 3.4	3.4	U	0.34	< 4.6	4.6	U 0	.46
Monteman 9 9000 700 700 700 700 700 700 700 700		<u> </u>		< 1800	1,800 U	360	< 19	19 U	3.8	< 2100	2,100	U 410	< 22	22 U	4.4	< 27	27 U	5.4	< 22	22	U	4.4	< 17	17	U	3.4	< 23	23	U 4	1.6
Accordance 1.00 1.0	Acetone	50	100,000	< 360	360 U	360	< 19	19 U	3.8	< 410	410	U 410	< 22	22 U	4.4	< 27	27 U	5.4	< 22	22	U	4.4	< 17	17	U	3.4	< 23	23	U 4	4.6
Secure 6 6 1	Acrolein			< 1400	1,400 U	180	< 15	15 U	1.9	< 1700	1,700	U 210	< 18	18 U	2.2	< 22	22 U	2.7	< 18	18	U	2.2	< 13	13	U	1.7	< 19	19	U 2	2.3
Smootherse	Acrylonitrile			-110	710 U	71		15 U	0.38	< 1700	1,700	U 41	< 18	18 U	0.44		22 U	0.54		8.8	U	0.88		13	U	0.34	- 10	19	U 0.	.46
Signessignes		60	4,800	90	60 -	36	0.84	3.8 J	0.38	< 60	60	U 41	< 4.4	4.4 U	0.44	1	5.4 J	0.54	1.5	4.4	J	0.44	100	60	-	41	0.62	4.6	J 0.	.46
Demonstrations 1.00				< 360	360 U	36	< 3.8	3.8 U	0.38	< 410	410	U 41	< 4.4	4.4 U	0.44	< 5.4	5.4 U	0.54	< 4.4	4.4	U	0.44	< 3.4	3.4	U	0.34	< 4.6	4.6	U 0.	.46
Semiconfront Semi				< 360	360 U	36		3.8 U	0.38	< 410	410	U 41	< 4.4	4.4 U	0.44	< 5.4	5.4 U	0.54	< 4.4	4.4	U	0.44		3.4	U	0.34	< 4.6	4.6	U 0.	.46
Semone-stands 1.00				< 360	360 U	71		3.8 U	0.76	< 410	410	U 83	< 4.4	4.4 U	0.89	< 5.4	5.4 U	1.1	< 4.4	4.4	U	0.88		3.4	U	0.67	< 4.6	4.6	U 0.	.93
Exhon Designation 1.00				- 000	360 U			3.8 U	0.76	1410	410	U 83		4.4 U	0.00		5.4 U	1.1		4.4	U	0.88		3.4	U	0.67		4.6	U 0.	.93
Canon estandance 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.0				< 360	360 U	140		3.8 U	1.5	< 410	410	U 170		4.4 U	1.8	< 5.4	5.4 U	2.2	< 4.4	4.4	U	1.8	< 3.4	3.4	U	1.3		4.6	U 1	.9
Chrosenbase 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09				< 360	360 U	71		3.8 U	0.76	< 410	410	U 83		4.4 J	0.89	< 5.4	5.4 U	1.1	< 4.4	4.4	U	0.88	< 3.4	3.4	U	0.67		4.6	U 0.	.93
Choresthese 100 10				< 360	360 U	36		3.6 U	0.76	< 410		U 63		4.4 U	0.69		5.4 U	0.54	< 4.4	4.4	II.	0.00	0.11	3.4	IJ	0.67	11.0	4.6	U 0	.93
Charlestones 100 1		1,100	100,000	< 360	360 U	36		3.8 U	0.38	< 410		U 41		4.4 U	0.44		5.4 U	0.54	< 4.4	4.4	U	0.44		3.4	U	0.34		4.6	U 0	1.46
Chromosthame 100 10		370	49.000	< 360	360 U	36		3.8 U	0.38	< 370	370	U 41	< 4.4	4.4 U	0.44	< 5.4	5.4 U	0.54	< 4.4	4.4	U	0.44		3.4	U	0.34		4.6	U 0	.46
Part	Chloromethane	570	45,000	< 360	360 U	71	< 3.8	3.8 U	0.76	< 410	410	U 83	< 4.4	4.4 U	0.89	< 5.4	5.4 U	1.1	< 4.4	4.4	U	0.88	< 3.4	3.4	U	0.67	< 4.6	4.6	U 0	.93
Demonstrations	cis-1,2-Dichloroethene	250	100,000	< 250	250 U	36	< 3.8	3.8 U	0.38	< 250	250	U 41	< 4.4	4.4 U	0.44	< 5.4	5.4 U	0.54	< 4.4	4.4	U	0.44	< 3.4	3.4	U	0.34	< 4.6	4.6	U 0.	.46
Discrimentations 1.00	cis-1,3-Dichloropropene			< 360	360 U	36	< 3.8	3.8 U	0.38	< 410	410	U 41	< 4.4	4.4 U	0.44	< 5.4	5.4 U	0.54	< 4.4	4.4	U	0.44		3.4	U	0.34	< 4.6	4.6	U 0.	.46
Deciminary Configuration Proper prope	Dibromochloromethane			< 360	360 U	71	< 3.8	3.8 U	0.76	< 410	410	U 83	< 4.4	4.4 U	0.89	< 5.4	5.4 U	1.1	< 4.4	4.4	U	0.88	< 3.4	3.4	U	0.67	< 4.6	4.6	U 0.	.93
Enylemene 1000 1,000	Dibromomethane			< 360	360 U	71		3.8 U	0.76	< 410	410	U 83		4.4 U	0.00	< 5.4	5.4 U	1.1	< 4.4	4.4	U	0.88		3.4	U	0.67	< 4.6	4.6	U 0.	.93
Macadinobulatisine Solo Solo U Solo				< 360	360 U	36		3.8 U	0.38	< 410	410	U 41		4.4 U	0.44		5.4 U	0.54		4.4	U	0.44		3.4	U	0.34		4.6	U 0.	.46
sogney-plenemen		1,000	41,000		1,400 D	1400		3.8 -	0.38		410	- 41		330 -	33		420 J	42		4.4	-	0.44		3.4	-	0.34		4.6	J 0.	.46
msp-Systems 200 1500.000 2,000 300 1,000 150 150 150 150 150 150 150 150 150		1			360 U	36		3.8 U	0.38			U 41		4.4 U	0.44	< 5.4	5.4 U	0.54		4.4	U	0.44		3.4	U	0.34		4.6	U 0.	.46
Methyl Edythyl Refore (2-Buttanone) 120 120,000,000 120,000,000 120,000,000 120,000,000 120,000,000 120,000,000 120,000,000 120,000 120,000,000 120,000,000 120,000,000 120,000,000 120,000,000,000 120,000,000 120,00					360 -	36		3.8 J	0.38	600		- 41		330 -	33	< 5.4	5.4 U	0.54		4.4	U	0.44		3.4	-	0.34		4.6	U 0.	.46
Methylene chloride 90 100,000				2,100	360 -	200		3.0 J	0.76	< 410	410	U 83		27 1	4.4		3.4 -	1.1		9.4	-	U.68		3.4	-	3.4		4.b	J 0.	4.6
Methylene chloride 50	Methyl t-hutyl ether (MTRF)			< 710	710 11	71	< 7.6	76 II	0.76	< 830	830	U 410		89 11	0.89	< 11	32 U	1.1		8.8	U.	0.88		6.7	U	0.67	< 9.3	9.3	U 0	193
No-phrishine 12,000 100,000 10				< 360	360 U	360	< 3.8	3.8 U	3.8	< 410	410	U 410		4.4 11	4.4	< 5.4	5.4	5.4		4.4	U	4.4		3.4	U	3.4	< 4.6	4.6	U Z	4.6
Butylename 1200 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 10	Naphthalene				360 -	71		3.8 U	0.76	490	410	- 83		330 -			5.4 U	1.1		4.4	U	0.88		3.4		0.67	110	4.6	U 0	.93
Prophyshoreme 3.600 10.0000 10.00000 10.0000 10.0000 10.0000 10.0000 10.		12,000	,		360 -	36		3.8 J	0.38		410	J 41		330 -	33	< 5.4	5.4 U	0.54	< 4.4	4.4	U	0.44		3.4	J	0.34	< 4.6	4.6	U 0	.46
O-Mylene 280 110,000 100,000 1					3,900 D	2800		3.8 -	0.76		410	- 83		330 -	65	< 5.4	5.4 U	1.1	< 4.4	4.4	U	0.88		3.4	J	0.67	< 4.6	4.6	U 0.	.93
se-Buylphorzone 11,000 100,000 4,000 30 - 30 0,85 38 3 2,000 40 - 41 380 30 - 33 < 84 5 0 0,85 5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	o-Xylene				360 -	71		3.8 U	0.76	< 410	410	U 83	29	4.4 -	0.89	1.5	5.4 J	1.1	2	4.4	J	0.88	17	3.4	-	0.67	< 4.6	4.6	U 0.	.93
Styrene	p-Isopropyltoluene				360 -	36	< 3.8	3.8 U	0.38		410	J 41		4.4 -	0.44	< 5.4	5.4 U	0.54	< 4.4	4.4	U	0.44		3.4	J	0.34	< 4.6	4.6	U 0.	.46
Syrene	sec-Butylbenzene	11,000	100,000	4,800	360 -	36		3.8 J	0.38	2,000	410	- 41		330 -	33		5.4 U	0.54		4.4	U	0.44		3.4	J	0.34		4.6	U 0.	.46
terl-Buylbenzene 5.00 100.000 270 30 U 71 36 4.38 3.8 U 0.38 4.40 40 U 41 8.9 4.4 . U 0.84 <5.8 5.0 U 0.54 <4.4 4.4 U 0.64 <5.3 3.4 U 0.34 <4.6 4.0 U 0.55 <5.8 5.0 U 0.55 <5.		ļ		< 360	360 U	36		3.8 U	0.38	< 410	410	U 41		4.4 U	0.44		5.4 U	0.54		4.4	U	0.44		3.4	J	0.34		4.6	U 0.	.46
Tetrachforethene 1,300 1,000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000				< 7100	7,100 U	1400			15		8,300	U 1700		89 U	10		110 U	22		88	U	18		67	U	13		93	U 1	19
Tetralydofund (THF) Total (The property of the property of th				270	360 J	36	< 3.8	3.8 U	0.38	< 410	410	U 41	8.9	4.4 -	0.44	< 5.4	5.4 U	0.54		4.4	U	0.44		3.4	U	0.34	< 4.6	4.6	U 0.	.46
Tollone 700 100,000 96 300 J 36 438 SB U 038 440 410 U 41 444 44 U 044 454 J 46 U 044 454 J 46 U 054 444 U 044 J 46 U 054 J 46 U 054 J 46		1,300	19,000	< 360	360 U	71	< 3.8	3.8 U	0.76	< 410	410	U 83	< 4.4	4.4 U	0.89	< 5.4	5.4 U	1.1		4.4	U	0.88		3.4	U	0.67	< 4.6	4.6	U 0.	.93
Trans-1,2-Dichloroethene 190 100,000 100 100 100 100 100					/10 U			7.6 J	1.9	< 830	830	U 210	0.0	8.9 U	2.2		11 U	2.7	0.0	8.8	U	2.2		6.7	U	1.7	0.10	9.3	U 2	3
Tans-13-Dichloropropene 1				96	360 J	36		3.8 U	0.38	< 410	410	U 41		4.4 U	0.44	44	420 J	42		4.4	J	0.44		3.4	-	0.34	< 4.6	4.6	U 0.	.46
tabs-1,4-dichloro-2-butene		190	100,000	< 360	360 U	36		3.0 U	0.38 0.38	< /190	410	U 41		4.4 U	0.44	< 5.4	5.4 U	0.54		4.4	U	0.44		3.4	IJ	0.34	< 4.6	4.6	U 0.	40 146
Tichlorosthene 470 21,000 < 500 300 U 30 < 3.8 3.8 U 0.30 < 440 40 U 41 < 4.4 4.4 U 0.80 < 5.4 5.4 5.4 U 0.5 < 4.4 4.4 U 0.6 < 5.4 5.4 U 0.6 U 0.6 < 5.4 5.4 U 0.6 U		+		< 710	710	180	< 7.6	76 11	1.0	< 830	830	U 41		89 11	2.44	< 11	11 U	9.7	< 8.8	8.8	- 11	2.44	< 6.7	6.7	U	1.7	< 9.3	9.0	U 0	2.3
Trichloroffluoromethane		/70	24.000	< 360	360 11	36	< 3.8	3.8	0.38	< 410	410	U 41		4.4 11	0.44	< 5.4	5.4	0.54	< 4.4	4.4	U	0.44	< 3.4	3.4	U	0.34	< 4.6	4.6	Un	1.46
Trichlorotifluorethane		4/0	∠1,000	< 360	360 U	71		3.8 U	0.76	< 410	410	U 83		4.4 11			5.4	1.1			U	0.88		3.4	U	0.67		4.6	U	.93
VinyChorde 20 500 < 30 30 U 30 < 3.8 3.8 U 30.8 < 41 41 U 41 < 4.4 4 U 0.4 < 5.4 5.0 U 0.5 4 < 4.4 4 U 0.4 < 5.4 5.0 U 0.5 4 < 4.4 4 U 0.4 < 5.4 5.0 U 0.5 5 < 4.4 4 4 U 0.4 < 5.4 5 0 U 0.5 5 < 4.7 5 0 U 0.5 5 < 4.7 5 0 U 0.5 5 < 5.7 5 U 0.5 5 U		1		< 360	360 U				0.38	< 410				4.4 U				0.54			U	0.44			U				U 0	.46
1,4-dioxane 100 13,000 < 280 2,80 U 280 < 57 57 U 30 < 380 U 380		20	900	< 36	36 U	36		3.8 U	0.38	< 41		U 41	< 4.4	4.4 U	0.44	< 5.4	5.4 U	0.54	< 4.4	4.4	U	0.44		3.4	U	0.34		4.6	U 0	.46
Total BTEX Concentration 17,286 42.04 420 1029 154.7 23.1 207 4.92	•		13,000	< 2800	2,800 U	2800	< 57	57 U	30	< 3300	3,300	U 3300	< 66	66 U	35	< 81	81 U	43	< 66	66	U	35	< 50	50	U	27	< 70	70	U f	37
					17,286		1	42.04		i '	420	-		1029			154.7	•	1	23.1				207				4.92		ᅱ
	Total VOCs Concentration																												-	\exists

- Notes:

 * 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
 RL- Reporting Limit
 U- The compound was analyzed for but not detected at or above the MDL.
 J- The value is estimated.
 N- The concentration is based on the response fo the nearest internal.

- S- This compound is a solvent that is used in the laboratory.

 D- The reported concentration is the result of a diluted analysis.

 Boldhighlighted- indicated exceedance of the NYSDEC UUSCO Quidance Value

 Boldhighlighted- indicated exceedance of the NYSDEC RRSCO Quidance Value

	ANYONE C						15B5							15	B6						15B7							15	B8	
COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil Cleanup Objectives*	NYDEC Part 375.6 Restricted Residential Soil Cleanup Objectives*		(0-2°) 11/10/2016			(12-14°) 11/10/2016			(15-17') 11/10/2016			(5-7') 11/11/2016			(12-14') 11/11/2016			(12-14') 11/11/2016		(18-20') 11/11/2016		1	(23-25')			(0-2°) 11/10/2016			(12-14') 11/10/2016
	oleanap objectives	OSJECTIVES	Result	μg/Kg RL Qu	al MDL	Result	μg/Kg RL Qua	I MDL	Result	μg/Kg RL Qua	ı MDL	Result	μg/Kg RL Qu	al MDL	Result	µg/Kg	ual MDL	Result	μg/Kg RL Qual MD	Result	μg/Kg RL Qual	MDL	Result	μg/Kg RL Qual	MDL	Result	μg/Kg RL Ou	al MDL	Result	μg/Kg RL Qual
1,2-Tetrachlorothane			< 4.3	4.3 U	0.86	< 3.3	3.3 U	0.66	< 4.6	4.6 U	0.92	< 1200	1,200 U	62	< 18	18	U 0.90	< 19	19 U 0.9	< 460	460 U	93	< 18	18 U	0.88	< 5.3	5.3 U	1.1	< 5.3	5.3 U
I-Trichloroethane	680	100,000	< 4.3	4.3 U	0.43	< 3.3	3.3 U	0.33	< 4.6	4.6 U	0.46	< 310	310 U	31	< 4.5	4.5	U 0.45	< 4.8	4.8 U 0.41	< 460	460 U	46	< 4.4	4.4 U	0.44	< 5.3	5.3 U	0.53	< 5.3	5.3 U
2-Tetrachloroethane			< 4.3	4.3 U	0.86	< 3.3	3.3 U	0.66	< 4.6	4.6 U	0.92	< 310	310 U	62	< 4.5	4.5	U 0.90	< 4.8	4.8 U 0.99		460 U	93	< 4.4	4.4 U	0.88	< 5.3	5.3 U	1.1	< 5.3	5.3 U
-Trichloroethane	+		< 4.3	4.3 U	0.86	< 3.3	3.3 U	0.66	< 4.6	4.6 U	0.92	< 310	310 U	62	< 4.5	4.5	U 0.90	< 4.8	4.8 U 0.95	< 460	460 U	93	< 4.4	4.4 U	0.88	< 5.3	5.3 U	1.1	< 5.3	5.3 U
Dichloroethane	270	26,000	< 4.3	4.3 U	0.86	< 3.3	3.3 U	0.66	< 4.6	4.6 U	0.92	< 270	270 U	62	< 4.5	4.5	U 0.90	< 4.8	4.8 U 0.9	< 270	270 U	93	< 4.4	4.4 U	0.88	< 5.3	5.3 U	1.1	< 5.3	5.3 U
Dichloroethene Dichloropropene	330	100,000	< 4.3	4.3 U	0.43	< 3.3	3.3 U	0.33	< 4.6	4.6 U	0.46	< 310	310 U	31	< 4.5	4.5	U 0.45	< 4.8	4.8 U 0.41	< 330	330 U	46	< 4.4	4.4 U	0.44	< 5.3	5.3 U	0.53	< 5.3 < 5.3	5.3 U
3-Trichlorobenzene			< 4.3	4.3 U	0.43	< 3.3	3.3 U	0.33	< 4.6	4.0 U	0.46	< 310	310 0	1 62	< 4.5	4.5	U 0.45	< 4.8	4.8 U 0.41	< 460	460 U	93	< 4.4	4.4 U	0.44	< 5.3	5.3 U	1.1	< 5.3	5.3 U
3-Trichloropropane			< 4.3	4.3 11	0.00	< 3.3	2.0 0	0.00	< 4.6	4.0 0	0.52	< 310	310 0	02	< 4.5	4.5	0 0.50	< 4.8	4.8 U 0.4	< 460	460 U	46	< 4.4	4.4 U	0.00	< 5.3	5.0 U	0.52	< 5.3	5.3 U
4-Trichlorobenzene			< 4.3	4.3 U	0.43	< 3.3	3.3 U	0.55	< 4.6	4.6 U	0.40	< 310	310 U	62	< 4.5	4.5	U 0.90	< 4.8	4.8 U 0.91		460 U	93	< 4.4	4.4 U	0.88	< 5.3	5.3 11	1.1	< 5.3	5.3 U
4-Trimethylbenzene	3.600	52,000	< 4.3	4.3 U	0.43	< 3.3	3.3 U	0.33	< 4.6	4.6 U	0.46	56.000	3,200 D	320	75	4.5	- 0.45	2.3	4.8 J 0.41	1,200	460 -	46	280	250 -	44	520	330 -	- 33	< 5.3	5.3 U
Dibromo-3-chloropropane	0,000	02,000	< 4.3	4.3 U	0.86	< 3.3	3.3 U	0.66	< 4.6	4.6 U	0.92	< 310	310 U	62	< 4.5	4.5	U 0.90	< 4.8	4.8 U 0.99	< 460	460 U	93	< 4.4	4.4 U	0.88	< 5.3	5.3 U	1.1	< 5.3	5.3 U
Dibromomethane			< 4.3	4.3 U	0.43	< 3.3	3.3 U	0.33	< 4.6	4.6 U	0.46	< 310	310 U	31	< 4.5	4.5	U 0.45	< 4.8	4.8 U 0.41	< 460	460 U	46	< 4.4	4.4 U	0.44	< 5.3	5.3 U	0.53	< 5.3	5.3 U
Dichlorobenzene	1,100	100,000	< 4.3	4.3 U	0.43	< 3.3	3.3 U	0.33	< 4.6	4.6 U	0.46	< 310	310 U	31	< 4.5	4.5	U 0.45	< 4.8	4.8 U 0.41	< 460	460 U	46	< 4.4	4.4 U	0.44	< 5.3	5.3 U	0.53	< 5.3	5.3 U
Dichloroethane	20	3,100	< 4.3	4.3 U	0.43	< 3.3	3.3 U	0.33	< 4.6	4.6 U	0.46	< 31	31 U	31	< 4.5	4.5	U 0.45	< 4.8	4.8 U 0.41	< 46	46 U	46	< 4.4	4.4 U	0.44	< 5.3	5.3 U	0.53	< 5.3	5.3 U
Dichloropropane			< 4.3	4.3 U	0.86	< 3.3	3.3 U	0.66	< 4.6	4.6 U	0.92	< 310	310 U	62	< 4.5	4.5	U 0.90	< 4.8	4.8 U 0.98	< 460	460 U	93	< 4.4	4.4 U	0.88	< 5.3	5.3 U	1.1	< 5.3	5.3 U
5-Trimethylbenzene	8,400	52,000	< 4.3	4.3 U	0.43	< 3.3	3.3 U	0.33	< 4.6	4.6 U	0.46	15,000	3,200 D	320	19	4.5	- 0.45	0.81	4.8 J 0.41	< 460	460 U	46	80	4.4 -	0.44	350	330 -	- 33	< 5.3	5.3 U
Dichlorobenzene	2,400	4,900	< 4.3	4.3 U	0.43	< 3.3	3.3 U	0.33	< 4.6	4.6 U	0.46	< 310	310 U	31	< 4.5	4.5	U 0.45	< 4.8	4.8 U 0.4	< 460	460 U	46	< 4.4	4.4 U	0.44	< 5.3	5.3 U	0.53	< 5.3	5.3 U
Dichloropropane	4		< 4.3	4.3 U	0.86	< 3.3	3.3 U	0.66	< 4.6	4.6 U	0.92	< 310	310 U	62	< 4.5	4.5	U 0.90	< 4.8	4.8 U 0.95	< 460	460 U	93	< 4.4	4.4 U	0.88	< 5.3	5.3 U	1.1	< 5.3	5.3 U
Dichlorobenzene	1,800	13,000	< 4.3	4.3 U	0.43	< 3.3	3.3 U	0.33	< 4.6	4.6 U	0.46	< 310	310 U	31	< 4.5	4.5	U 0.45	< 4.8	4.8 U 0.41	< 460	460 U	46	< 4.4	4.4 U	0.44	< 5.3	5.3 U	0.53	< 5.3	5.3 U
Dichloropropane	1		< 4.3	4.3 U	0.43	< 3.3	3.3 U	0.33	< 4.6	4.6 U	0.46	< 310	310 U	31	< 4.5	4.5	U 0.45	< 4.8	4.8 U 0.41	< 460	460 U	46	< 4.4	4.4 U	0.44	< 5.3	5.3 U	0.53	< 5.3	5.3 U
hiorotoluene			< 4.3	4.3 U	0.86	< 3.3	3.3 U	0.66	< 4.6	4.6 U	0.92	< 310	310 U	62	< 4.5	4.5	U 0.90	< 4.8	4.8 U 0.95	< 460	460 U	93	< 4.4	4.4 U	0.88	< 5.3	5.3 U	1.1	< 5.3	5.3 U
exanone (Methyl Butyl Ketone)	+		< 21	21 U	0.43	< 16	16 U	3.3	< 23	23 U	0.40	< 1600 110	1,600 U	310	< 23	23	U 4.5	< 24	24 U 4.8 4.8 U 0.41	< 2300	2,300 U 460 U	460	< 22 0.56	22 U	0.44	< 27	27 U 5.3 U	5.3	< 27	27 U
sopropyltoluene Chlorotoluene			< 4.3	4.3 U	0.43	< 3.3	3.3 U	0.33	< 4.6	4.0 U	0.46	210	310 J	01	< 4.5	4.5	U.45	< 4.8	4.8 U 0.41	< 460	460 U	46	< 4.4	4.4 J	0.44	< 5.3	5.3 U	0.53	< 5.3	5.3 U
International Internation	+		< 4.3	9.0 U	4.3	9.7	16	2.33	< 4.6	9.0 U	U.40	< 1600	1600 !!	310	< 4.5	23	U 0.45	< 24	4.8 U U.41	< 2300	2 300 U	460	21	U	4.4	< 27	5.3 U	U.03	< 27	5.3 U
etone	50	100,000	< 21	21 U	4.3	560	260 S	260	12	23 JS	4.6	550	310 S	310	28	23	S 4.5	24	24 S 4.8	< 460	460 U	460	500	440 S	440	< 27	27 U	5.3	9.5	27 JS
rolein	30	100,000	< 17	17 U		< 13	13 11	1.6	< 18	18 U	2.3	< 1200	1,200	1 160	< 18	18	U 2.3	< 19	19 U 2.4		1,900 U	230	< 18	18 U	2.2	< 21		2.7	< 21	21 U
rylonitrile			< 8.6	8.6 U	0.86	< 6.6	6.6 U	0.66	< 9.2	9.2 U	0.92	< 1200	1,200 U	31	< 18	18	U 0.45	< 19	19 U 0.41	< 930	930 U	93	< 18	18 U	0.44	< 11	11 U	1.1	< 11	11 U
nzene	60	4.800	< 4.3	4.3 U	0.43	< 3.3	3.3 U	0.33	< 4.6	4.6 U	0.46	< 60	60 U	31	4.6	4.5	- 0.45	1.9	4.8 J 0.41	53	60 J	46	7.4	4.4 -	0.44	110	60 -	33	< 5.3	5.3 U
omobenzene		1,000	< 4.3	4.3 U	0.43	< 3.3	3.3 U	0.33	< 4.6	4.6 U	0.46	< 310	310 U	31	< 4.5	4.5	U 0.45	< 4.8	4.8 U 0.41	< 460	460 U	46	< 4.4	4.4 U	0.44	< 5.3	5.3 U	0.53	< 5.3	5.3 U
omochloromethane			< 4.3	4.3 U	0.43	< 3.3	3.3 U	0.33	< 4.6	4.6 U	0.46	< 310	310 U	31	< 4.5	4.5	U 0.45	< 4.8	4.8 U 0.41	< 460	460 U	46	< 4.4	4.4 U	0.44	< 5.3	5.3 U	0.53	< 5.3	5.3 U
omodichloromethane			< 4.3	4.3 U	0.86	< 3.3	3.3 U	0.66	< 4.6	4.6 U	0.92	< 310	310 U	62	< 4.5	4.5	U 0.90	< 4.8	4.8 U 0.98	< 460	460 U	93	< 4.4	4.4 U	0.88	< 5.3	5.3 U	1.1	< 5.3	5.3 U
omoform			< 4.3	4.3 U	0.86	< 3.3	3.3 U	0.66	< 4.6	4.6 U	0.92	< 310	310 U	62	< 4.5	4.5	U 0.90	< 4.8	4.8 U 0.95	< 460	460 U	93	< 4.4	4.4 U	0.88	< 5.3	5.3 U	1.1	< 5.3	5.3 U
omomethane			< 4.3	4.3 U	1.7	< 3.3	3.3 U	1.3	< 4.6	4.6 U	1.8	< 310	310 U	120	< 4.5	4.5	U 1.8	< 4.8	4.8 U 1.9	< 460	460 U	190	< 4.4	4.4 U	1.8	< 5.3	5.3 U	2.1	< 5.3	5.3 U
rbon Disulfide			< 4.3	4.3 U	0.86	1.9	3.3 J	0.66	< 4.6	4.6 U	0.92	< 310	310 U	62	2.2	4.5	J 0.90	< 4.8	4.8 U 0.98	< 460	460 U	93	4.3	4.4 J	0.88	< 5.3	5.3 U	1.1	< 5.3	5.3 U
rbon tetrachloride	760	2,400	< 4.3	4.3 U	0.86	< 3.3	3.3 U	0.66	< 4.6	4.6 U	0.92	< 310	310 U	62	< 4.5	4.5	U 0.90	< 4.8	4.8 U 0.98	< 460	460 U	93	< 4.4	4.4 U	0.88	< 5.3	5.3 U	1.1	< 5.3	5.3 U
lorobenzene	1,100	100,000	< 4.3	4.3 U	0.43	< 3.3	3.3 U	0.33	< 4.6	4.6 U	0.46	< 310	310 U	31	< 4.5	4.5	U 0.45	< 4.8	4.8 U 0.41	< 460	460 U	46	< 4.4	4.4 U	0.44	< 5.3	5.3 U	0.53	< 5.3	5.3 U
loroethane			< 4.3	4.3 U	0.43	< 3.3	3.3 U	0.33	< 4.6	4.6 U	0.46	< 310	310 U	31	< 4.5	4.5	U 0.45	< 4.8	4.8 U 0.41	< 460	460 U	46	< 4.4	4.4 U	0.44	< 5.3	5.3 U	0.53	< 5.3	5.3 U
hloroform	370	49,000	< 4.3	4.3 U	0.43	< 3.3	3.3 U	0.33	< 4.6	4.6 U	0.46	< 310	310 U	31	< 4.5	4.5	U 0.45	< 4.8	4.8 U 0.41	< 370	370 U	46	< 4.4	4.4 U	0.44	< 5.3	5.3 U	0.53	< 5.3	5.3 U
loromethane			< 4.3	4.3 U	0.86	< 3.3	3.3 U	0.66	< 4.6	4.6 U	0.92	< 310	310 U	62	< 4.5	4.5	U 0.90	< 4.8	4.8 U 0.9	< 460	460 U	93	< 4.4	4.4 U	0.88	< 5.3	5.3 U	1.1	< 5.3	5.3 U
s-1,2-Dichloroethene s-1,3-Dichloropropene	250	100,000	< 4.3	4.3 U	0.43	< 3.3	3.3 U	0.33	< 4.6	4.6 U	0.46	< 250	250 U	31	< 4.5	4.5	U 0.45	< 4.8	4.8 U 0.41	< 250	250 U	46	1.5 < 4.4	4.4 J	0.44	< 5.3 < 5.3	5.3 U	0.53	< 5.3 < 5.3	5.3 U
bromochloromethane			< 4.3	4.3 0	0.43	< 3.3	3.3 11	0.00	< 4.6	4.6 11	0.40	< 310	310 U	1 62	< 4.5	4.5	0 0.40	< 4.8	4.8 U 0.41	< 460	460 U	93	< 4.4	4.4 U	0.88	< 5.3	5.3	1.1	< 5.3	5.3
bromomethane			< 4.3	4.3 U	0.86	< 3.3	3.3 11	0.66	< 4.6	4.6 11	0.02	< 310	310 II	62	< 4.5	4.5	0.00	< 4.8	4.8 U 0.9	< 460	460 U	93	< 4.4	4.4 U	0.88	< 5.3	5.3	1.1	< 5.3	5.3 U
chlorodifluoromethane			< 4.3	4.3 U	0.43	< 3.3	3.3 U	0.33	< 4.6	4.6 U	0.46	< 310	310 U	31	< 4.5	4.5	U 0.45	< 4.8	4.8 U 0.41	< 460	460 U	46	< 4.4	4.4 U	0.44	< 5.3	5.3 U	0.53	< 5.3	5.3 U
hylbenzene	1,000	41,000	< 4.3	4.3 U	0.43	< 3.3	3.3 U	0.33	< 4.6	4.6 U	0.46	4,700	310 -	- 31	16	4.5	- 0.45	2.8	4.8 J 0.41	520	460 -	46	34	4.4 -	0.44	220	330 J	33	< 5.3	5.3 U
exachlorobutadiene	1,000	41,000	< 4.3	4.3 U	0.43	< 3.3	3.3 U	0.33	< 4.6	4.6 U	0.46	< 310	310 U	31	< 4.5	4.5	U 0.45	< 4.8	4.8 U 0.41		460 U	46	< 4.4	4.4 U	0.44	< 5.3	5.3 U	0.53	< 5.3	5.3 U
ppropylbenzene			< 4.3	4.3 U	0.43	< 3.3	3.3 U	0.33	< 4.6	4.6 U	0.46	1,600	310 -	- 31	1.7	4.5	J 0.45	< 4.8	4.8 U 0.41	160	460 J	46	5.9	4.4 -	0.44	61	330 J	33	< 5.3	5.3 U
&p-Xylenes	260	100,000	< 4.3	4.3 U	0.86	< 3.3	3.3 U	0.66	< 4.6	4.6 U	0.92	24,000	310 -	- 62	75	4.5	- 0.90	4.9	4.8 - 0.95	530	460 -	93	99	4.4 -	0.88	580	330 -	67	< 5.3	5.3 U
thyl Ethyl Ketone (2-Butanone)	120	100,000	< 26	26 U	4.3	19	20 J	3.3	< 28	28 U	4.6	< 310	310 U	310	5.5	27	J 4.5	< 29	29 U 4.8	< 460	460 U	460	160	26 -	4.4	< 32	32 U	5.3	< 32	32 U
thyl t-butyl ether (MTBE)	930	100,000	< 8.6	8.6 U	0.86	< 6.6	6.6 U	0.66	< 9.2	9.2 U	0.92	< 620	620 U	62	4.6	9.0	J 0.90	7.5	9.5 J 0.95	< 930	930 U	93	4.7	8.8 J	0.88	140	670 J	67	2.2	11 J
thylene chloride	50	100,000	< 4.3	4.3 U	4.3	< 3.3	3.3 U	3.3	< 4.6	4.6 U	4.6	< 310	310 U	310	< 4.5	4.5	U 4.5	< 4.8	4.8 U 4.8		460 U	460	< 4.4	4.4 U	4.4	< 5.3	5.3 U	5.3	< 5.3	5.3 U
phthalene	12,000	100,000	< 4.3	4.3 U	0.86	< 3.3	3.3 U	0.66	< 4.6	4.6 U	0.92	11,000	3,200 D	650	37	4.5	- 0.90	1.1	4.8 J 0.98	< 460	460 U	93	57	4.4 -	0.88	< 5.3	5.3 U	1.1	< 5.3	5.3 U
Butylbenzene	12,000	100,000	< 4.3	4.3 U	0.43	< 3.3	3.3 U	0.33	< 4.6	4.6 U	0.46	3,400	3,200 D	320	< 4.5	4.5	U 0.45	< 4.8	4.8 U 0.41	6,300	460 -	46	< 4.4	4.4 U	0.44	< 5.3	5.3 U	0.53	< 5.3	5.3 U
Propylbenzene	3,900	100,000	< 4.3	4.3 U	0.86	< 3.3	3.3 U	0.66	< 4.6	4.6 U	0.92	4,900	310 -	- 62	3.4	4.5	J 0.90	< 4.8	4.8 U 0.95	910	460 -	93	14	4.4 -	0.88	< 5.3	5.3 U	1.1	< 5.3	5.3 U
Kylene	260	100,000	< 4.3	4.3 U	0.86	< 3.3	3.3 U	0.66	< 4.6	4.6 U	0.92	9,100	310 -	- 62	26	4.5	- 0.90	2.7	4.8 J 0.9	380	460 J	93	24	4.4 -	0.88	100	330 J	67	< 5.3	5.3 U
sopropyltoluene	1		< 4.3	4.3 U	0.43	< 3.3	3.3 U	0.33	< 4.6	4.6 U	0.46	800 1,000	310 -	- 31	< 4.5	4.5	U 0.45	< 4.8	4.8 U 0.41	2,100	460 -	46	3.3	4.4 J	0.44	< 5.3	5.3 U	0.53	< 5.3	5.3 U
c-Butylbenzene	11,000	100,000	< 4.3	4.3 U	0.43	< 3.3	3.3 U	0.33	< 4.6	4.6 U	0.46	1,000 < 310	310 -	- 31	< 4.5	4.5 4.5	U 0.45	< 4.8	4.8 U 0.41	4,200	460 - 460 II	46 46	< 4.4	4.4 J	0.44	< 5.3	5.3 U	0.53	< 5.3	5.3 U
yrene rt-butyl alcohol			< 4.3	4.3 U	0.43	< 3.3	3.3 U	49	< 4.6	4.0 U	10	< 6200	6 200 U	1200	< 4.5	9.0	U.45	200	9.0 0 0.41	< 9300	9300 17	1000	20	9.4 U	19	< 110	3.3 U	0.53	< 110	3.3 U
t-Butylbenzene	5.900	100.000	< 4.3	4.3	0.43	< 3.3	3.3	0.33	< 4.6	4.6	0.46	32	310	31	< 4.5	4.5	U 0.45	< 4.8	4.8 11 0.41	< 460	460 11	46	< 4.4	4.4 11	0.44	< 5.3	5.3	0.53	< 5.3	5.3
trachloroethene	1,300	100,000	< 4.3	4.3	0.43	< 3.3	3.3	0.66	< 4.6	4.6	0.92	< 310	310 11	62	< 4.5	4.5	U 0.90	< 4.8	4.8 U 0.9	< 460	460 U	93	< 4.4	4.4 U	0.88	< 5.3	5.3	1.1	< 5.3	5.3
trahydrofuran (THF)	1,300	13,000	< 8.6	8.6 U	2.1	< 6.6	6.6 U	1.6	< 9.2	9.2 U	2.3	< 620	620 U	160	< 9.0	9.0	U 2.3	< 9.5	9.5 U 2.4	< 930	930 U	230	< 8.8	8.8 U	2.2	< 11	11 U	2.7	< 11	11 U
luene	700	100,000	< 4.3	4.3 U	0.43	< 3.3	3.3 U	0.33	< 4.6	4.6 U	0.46	390	310 -	- 31	2.2	4.5	J 0.45	< 4.8	4.8 U 0.41		460 -	46	14	4.4 -	0.44	85	330 J	33	< 5.3	5.3 U
ns-1,2-Dichloroethene	190	100,000	< 4.3	4.3 U	0.43	< 3.3	3.3 U	0.33	< 4.6	4.6 U	0.46	< 190	190 U	31	< 4.5	4.5	U 0.45	< 4.8	4.8 U 0.41		190 U	46		4.4 U	0.44	< 5.3	5.3 U	0.53	< 5.3	5.3 U
ns-1,3-Dichloropropene			< 4.3	4.3 U	0.43	< 3.3	3.3 U	0.33	< 4.6	4.6 U	0.46	< 310	310 U	31	< 4.5	4.5	U 0.45	< 4.8	4.8 U 0.41	< 460	460 U	46	< 4.4	4.4 U	0.44	< 5.3	5.3 U	0.53	< 5.3	5.3 U
bs-1,4-dichloro-2-butene			< 8.6	8.6 U	2.1	< 6.6	6.6 U	1.6	< 9.2	9.2 U	2.3	< 620	620 U	160	< 9.0	9.0	U 2.3	< 9.5	9.5 U 2.4	< 930	930 U	230	< 8.8	8.8 U	2.2	< 11	11 U	2.7	< 11	11 U
chloroethene	470	21,000	< 4.3	4.3 U	0.43	< 3.3	3.3 U	0.33	< 4.6	4.6 U	0.46	< 310	310 U	31	< 4.5	4.5	U 0.45	< 4.8	4.8 U 0.4	< 460	460 U	46	0.79	4.4 J	0.44	< 5.3	5.3 U	0.53	< 5.3	5.3 U
chlorofluoromethane			< 4.3	4.3 U	0.86	< 3.3	3.3 U	0.66	< 4.6	4.6 U	0.92	< 310	310 U	62	< 4.5	4.5	U 0.90	< 4.8	4.8 U 0.95	< 460	460 U	93		4.4 U	0.88	< 5.3	5.3 U	1.1	< 5.3	5.3 U
chlorotrifluoroethane			< 4.3	4.3 U	0.43	< 3.3	3.3 U	0.33	< 4.6	4.6 U	0.46	< 310	310 U	31	< 4.5	4.5	U 0.45	< 4.8	4.8 U 0.41		460 U	46		4.4 U	0.44	< 5.3	5.3 U	0.53	< 5.3	5.3 U
yl Chloride	20	900	< 4.3	4.3 U	_	< 3.3	3.3 U	_	< 4.6			< 31	31 U	31	< 4.5	4.5	U 0.45	< 4.8	4.8 U 0.41	_	46 U	46		4.4 U	0.44	< 5.3	-	0.53	< 5.3	5.3 U
dioxane	100	13,000	< 64	64 U	34	< 49	49 U	26	< 69		37	< 2500	2,500 U	2500	< 68	68	U 36	< 71	71 U 38	< 3700		3700	< 66	66 U	35	< 80	80 U	43	< 80	80 U
tal BTEX Concentration	+		I	0			0			0			38,190			123.8			12.3		2,093			178.4			1,095			0
al VOCs Concentration		1	1	0		1	590.6			12			132,582		1	300.2			248.01	1	16,963			1,332.45			2,166			11.7
tes: NYCRR Part 375-6 Remedial Program Soil Cleanu - Reporting Limit The compound was anlayzed for but not di The value is estimated. The concentration is based on the respons	letected at or above the MDL.	S- This compound is a solver D- The reported concentratio Bold/highlighted- Indicated excee Bold/highlighted- Indicated excee	n is the res	sult of a dilut	ted analys	ance Value																								

						15B9				15B10							15B11								15	B12					15B13	3
COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil Cleanup Objectives*	NYDEC Part 375.6 Restricted Residential Soil Cleanup Objectives*		(3-5') 11/14/20			(10-15') 11/14/2016			(10-15') 11/14/2016			(0-2') 11/10/201			1	(3-5') 11/10/2016			(12-14 11/10/20				(12-14') I/10/2016			(20- 11/10	-22') 1/2016			(12-14') 11/10/201	
			Result	μg/Kg		MDL Result	μg/Kg RL Qu	al MDI	Result	μg/Kg RL Qual	MDI	Pasult	μg/Kg PI	Qual	MDI Re	oult .	μg/Kg Pl O	ial MDI	Result	μg/Kg	Qual	MDI Ro		μg/Kg RI Οι	ual MDL	Pasult	μg/		MDI	Result	μg/Kg Pi	
,1,2-Tetrachlorothane			< 1400	1,400	U	72 < 18	18 U	0.88	< 14	14 U	0.71	< 360	360	U	72 <		3.3 L	0.66	< 5.1	5.1	U		310	310 L	J 63	< 4.6		U	0.91	< 5.5	5.5	U
1-Trichloroethane	680	100,000	< 360	360	U	36 < 4.4	4.4 U	0.44	< 3.6	3.6 U	0.36	< 360	360	U	36 <		3.3 L	0.33	< 5.1	5.1	U		310 :	310 L	J 31	< 4.6	4.6	U	0.46	< 5.5	5.5	U
,2,2-Tetrachloroethane			< 360	360	U	72 < 4.4	4.4 U	0.88	< 3.6	3.6 U	0.71	< 360	360	U		3.3	3.3 L	J 0.66	< 5.1	5.1	U	_	310	310 L	J 63	< 4.6	4.6	U	0.91	< 5.5	5.5	U
,2-Trichloroethane			< 360	360	U	72 < 4.4	4.4 U	0.88	< 3.6	3.6 U	0.71	< 360	360	U	72 <	3.3	3.3 L	0.66	< 5.1	5.1	U	1.0 < 3	310	310 L	J 63	< 4.6	4.6	U	0.91	< 5.5	5.5	U
-Dichloroethane	270	26,000	< 270	270	U	72 < 4.4	4.4 U	0.88	< 3.6	3.6 U	0.71	< 270	270	U	72 <	3.3	3.3 L	0.66	< 5.1	5.1	U	1.0 < 2	270	270 L	J 63	< 4.6	4.6	U	0.91	< 5.5	5.5	U
I-Dichloroethene	330	100,000	< 330	330	U	36 < 4.4	4.4 U	0.44	< 3.6	3.6 U	0.36	< 330	330	U	36 <	3.3	3.3 L	0.33	< 5.1 < 5.1	5.1 E 1	U	0.51 < 3		310 L	J 31	< 4.6	4.6	U	0.46	< 5.5	5.5	U
2,3-Trichlorobenzene			< 300	300	- 11	72 < 4.4	4.4 U	0.44	< 3.6	3.0 U	0.30	< 300	300	U II	72 -	3.3	3.3	0.33	< 5.1	5.1 E.1	U	1.0	210	310 L	J 31	< 4.6	4.0	- 11	0.46	< 5.5 < 5.5	5.5	- 11
2,3-Trichloropropane			< 360	360	11	36 < 4.4	4.4 U	0.00	< 3.6	3.6 11	0.71	< 360	360	II	36 <	3.3	3.3	0.00	< 5.1	5.1	II.	0.51 < 3	810	310	J 03	< 4.6	4.6	- 11	0.81	< 5.5	5.5	II
2,4-Trichlorobenzene			< 360	360	II.	72 < 4.4	4.4 U	0.88	< 3.6	3.6 U	0.71	< 360	360	U		3.3	3.3	0.66	< 5.1	5.1	U	10 <		310 L	J 63	< 4.6	4.6	U	0.40	< 5.5	5.5	II.
2,4-Trimethylbenzene	3,600	52,000	44,000	3.600	D	720 0.86	4.4 J	0.44	0.66	3.6 J	0.36	16,000	1.800	D		.5	3.3	J 0.33	< 5.1	5.1	U	0.51 14.	000	630 E	D 63	0.67	4.6	J	0.46	< 5.5	5.5	U
2-Dibromo-3-chloropropane	3,000	32,000	< 360	360	U	72 < 4.4	4.4 U	0.88	< 3.6	3.6 U	0.71	< 360	360	U	72 <		3.3 L	J 0.66	< 5.1	5.1	U	1.0 < 3		310 L	J 63	< 4.6	4.6	U	0.91	< 5.5	5.5	U
2-Dibromomethane			< 360	360	U	36 < 4.4	4.4 U	0.44	< 3.6	3.6 U	0.36	< 360	360	U	36 <	3.3	3.3 L	J 0.33	< 5.1	5.1	U	0.51 < 3	310	310 L	J 31	< 4.6	4.6	U	0.46	< 5.5	5.5	U
2-Dichlorobenzene	1.100	100.000	< 360	360	U	36 < 4.4	4.4 U	0.44	< 3.6	3.6 U	0.36	< 360	360	U	36 <	3.3	3.3 L	J 0.33	< 5.1	5.1	U	0.51 < 3	310	310 L	J 31	< 4.6	4.6	U	0.46	< 5.5	5.5	U
2-Dichloroethane	20	3,100	< 36	36	U	36 < 4.4	4.4 U	0.44	< 3.6	3.6 U	0.36	< 36	36	U	36 <	3.3	3.3 L	J 0.33	< 5.1	5.1	U	0.51 <	31	31 L	J 31	< 4.6	4.6	U	0.46	< 5.5	5.5	U
2-Dichloropropane			< 360	360	U	72 < 4.4	4.4 U	0.88	< 3.6	3.6 U	0.71	< 360	360	U	72 <	3.3	3.3 L	J 0.66	< 5.1	5.1	U	1.0 < 0	310	310 L	J 63	< 4.6	4.6	U	0.91	< 5.5	5.5	U
3,5-Trimethylbenzene	8,400	52,000	13,000	7,200	D	720 < 4.4	4.4 U	0.44	0.51	3.6 J	0.36	7,100	360	-	36 0.	55	3.3	J 0.33	< 5.1	5.1	U	0.51 4,2	200	310	- 31	< 4.6	4.6	U	0.46	< 5.5	5.5	U
3-Dichlorobenzene	2,400	4,900	< 360	360	U	36 < 4.4	4.4 U	0.44	< 3.6	3.6 U	0.36	< 360	360	U	36 <	3.3	3.3 L	0.33	< 5.1	5.1	U	0.51 < 3	310	310 L	J 31	< 4.6	4.6	U	0.46	< 5.5	5.5	U
3-Dichloropropane			< 360	360	U	72 < 4.4	4.4 U	0.88	< 3.6	3.6 U	0.71	< 360	360	U	72 <		3.3 L	0.66	< 5.1	5.1	U		310	310 L	J 63	< 4.6	4.6	U	0.91	< 5.5	5.5	U
,4-Dichlorobenzene	1,800	13,000	< 360	360	U	36 < 4.4	4.4 U	0.44	< 3.6	3.6 U	0.36	< 360	360	U	36 <		3.3 L	J 0.33	< 5.1	5.1	U		310	310 L	J 31	< 4.6	4.6	U	0.46	< 5.5	5.5	U
,2-Dichloropropane			< 360	360	U	36 < 4.4	4.4 U	0.44	< 3.6	3.6 U	0.36	< 360	360	U	36 <		3.3 L	J 0.33	< 5.1	5.1	U	0.51 < 3		310 L	J 31	< 4.6	4.6	U	0.46	< 5.5	5.5	U
-Chlorotoluene			< 360	360	U	72 < 4.4	4.4 U	0.88	< 3.6	3.6 U	0.71	< 360	360	U	72 <	_	3.3 L	0.66	< 5.1	5.1	U	1.0 < ;		310 L	J 63	< 4.6	4.6	U	0.91	< 5.5	5.5	U
-Hexanone (Methyl Butyl Ketone)			< 1800	1,800	U	360 < 22	22 U	4.4	< 18	18 U	3.6	< 1800	1,800	U	360 <	_	16 L	3.3	< 25	25	U		600 1	,600 L	J 310	< 23	23	U	4.6	< 28	28	U
-Isopropyltoluene		1	160	360	J	36 < 4.4	4.4 U	0.44	< 3.6	3.6 U	0.36	82	360	J	36 <	_	3.3 L	0.33	< 5.1	5.1	U		7	310	J 31	< 4.6	4.6	U	0.46	< 5.5	5.5	U
-Chlorotoluene	+		< 360	1 000	U	36 < 4.4	4.4 U	0.44	< 3.6	3.6 U	0.36	< 360	300	U	36 <		3.3 L	J 0.33 J 3.3	< 5.1	5.1	U		600 1	enn .	31	< 4.6	4.6	U	0.46	< 5.5	5.5	U
-Methyl-2-Pentanone		40	< 1800 640	1,000	U	360 < 22	22 U	4.4	4.8	10 U	3.6	< 1800	1,000	0			10	3.3	< 25 27	25	U C		810	,000 L	310	< 23	23	U U	4.5	< 28	28	U
cetone	50	100,000	< 1400	1,400	5	360 53	18 "	9.4	4.8 < 14	10 JS	3.5	920 < 1400	1.400	0		13	13	3.3	< 20	25	0		300 1	300 L	310	16 < 18	23	JS	9.5	43 < 22	28	3
acroiein acrylonitrile		1	< 1400	1,400	U	36 < 18	18 11	0.44	< 14	14 11	0.36	< 720	720	U		6.6	6.6	J 0.66	< 10	10	U		300 1	630	J 160 J 63	< 18	91	II	0.91	< 11	11	U
Senzene	60	4,800	800	720	n	720 < 4.4	44 U	0.44	< 3.6	36 11	0.36	1,900	60	-	36 <	_	3.3	0.00	< 5.1	5.1	II.		50	60	- 31	< 4.6	4.6	11	0.81	< 5.5	5.5	11
romobenzene	ы	4,800	< 360	360	U	36 < 4.4	4.4 U	0.44	< 3.6	3.6 U	0.36	< 360	360	U	36 <	_	3.3 I	J 0.33	< 5.1	5.1	U		310	310 I	J 31	< 4.6	4.6	U	0.46	< 5.5	5.5	U
Fromochloromethane			< 360	360	U	36 < 4.4	4.4 U	0.44	< 3.6	3.6 U	0.36	< 360	360	U		3.3	3.3	1 0.33	< 5.1	5.1	U	0.51 < 3		310 L	J 31	< 4.6	4.6	U	0.46	< 5.5	5.5	Ü
romodichloromethane			< 360	360	U	72 < 4.4	4.4 U	0.88	< 3.6	3.6 U	0.71	< 360	360	U	72 <	3.3	3.3 L	J 0.66	< 5.1	5.1	U		310	310 L	J 63	< 4.6	4.6	U	0.91	< 5.5	5.5	U
romoform			< 360	360	U	72 < 4.4	4.4 U	0.88	< 3.6	3.6 U	0.71	< 360	360	U	72 <	3.3	3.3 L	0.66	< 5.1	5.1	U	1.0 < 3	310	310 L	J 63	< 4.6	4.6	U	0.91	< 5.5	5.5	U
romomethane			< 360	360	U	140 < 4.4	4.4 U	1.8	< 3.6	3.6 U	1.4	< 360	360	U	140 <	3.3	3.3 L	J 1.3	< 5.1	5.1	U	2.0 < 3	310	310 L	J 130	< 4.6	4.6	U	1.8	< 5.5	5.5	U
Carbon Disulfide			< 360	360	U	72 1.6	4.4 J	0.88	< 3.6	3.6 U	0.71	< 360	360	U	72 <	3.3	3.3 L	0.66	1.3	5.1	J	1.0 < 3	310	310 L	J 63	2.9	4.6	J	0.91	1.3	5.5	J
arbon tetrachloride	760	2,400	< 360	360	U	72 < 4.4	4.4 U	0.88	< 3.6	3.6 U	0.71	< 360	360	U	72 <	3.3	3.3 L	0.66	< 5.1	5.1	U	1.0 < 3	310	310 L	J 63	< 4.6	4.6	U	0.91	< 5.5	5.5	U
hlorobenzene	1,100	100,000	< 360	360	U	36 < 4.4	4.4 U	0.44	< 3.6	3.6 U	0.36	< 360	360	U	36 <	3.3	3.3 L	J 0.33	< 5.1	5.1	U	0.51 < 3	310	310 L	J 31	< 4.6	4.6	U	0.46	< 5.5	5.5	U
hloroethane			< 360	360	J	36 < 4.4	4.4 U	0.44	< 3.6	3.6 U	0.36	< 360	360	U	36 <	3.3	3.3 L	J 0.33	< 5.1	5.1	U	0.51 < 3	310	310 L	J 31	< 4.6	4.6	U	0.46	< 5.5	5.5	U
Chloroform	370	49,000	< 360	360	U	36 < 4.4	4.4 U	0.44	< 3.6	3.6 U	0.36	< 360	360	U	36 <	3.3	3.3 L	J 0.33	< 5.1	5.1	U	0.51 < 3	310	310 L	J 31	< 4.6	4.6	U	0.46	< 5.5	5.5	U
Chloromethane			< 360	360	U	72 < 4.4	4.4 U	0.88	< 3.6	3.6 U	0.71	< 360	360	U	72 <	3.3	3.3 L	0.66	< 5.1	5.1	U	1.0 < 0	310	310 L	J 63	< 4.6	4.6	U	0.91	< 5.5	5.5	U
is-1,2-Dichloroethene	250	100,000	< 250	250	U	36 < 4.4	4.4 U	0.44	< 3.6	3.6 U	0.36	27,000	250	D	180 <	3.3	3.3 L	J 0.33	< 5.1	5.1	U	0.51 < 2	250	250 L	J 31	< 4.6	4.6	U	0.46	< 5.5	5.5	U
is-1,3-Dichloropropene			< 360	360	U	36 < 4.4	4.4 U	0.44	< 3.6	3.6 U	0.36	< 360	360	U	36 <	3.3	3.3 L	J 0.33	< 5.1	5.1	U	0.51 < 3	310	310 L	J 31	< 4.6	4.6	U	0.46	< 5.5	5.5	U
Dibromochloromethane			< 360	360	U	72 < 4.4	4.4 U	0.88	< 3.6	3.6 U	0.71	< 360	360	U	72 <		3.3 L	0.66	< 5.1	5.1	U		310	310 L	J 63	< 4.6	4.6	U	0.91	< 5.5	5.5	U
Dibromomethane			< 360	360	U	72 < 4.4	4.4 U	0.88	< 3.6	3.6 U	0.71	< 360	360	U	72 <	3.3	3.3 L	0.66	< 5.1	5.1	U		310	310 L	J 63	< 4.6	4.6	U	0.91	< 5.5	5.5	U
Dichlorodifluoromethane			< 360	360	U	36 < 4.4	4.4 U	0.44	< 3.6	3.6 U	0.36	< 360	360	U	36 <	3.3	3.3 L	0.33	< 5.1	5.1	U		310	310 L	J 31	< 4.6	4.6	U	0.46	< 5.5	5.5	U
thylbenzene	1,000	41,000	8,300 < 360	360	-	36 0.56	4.4 J	0.44	0.6	3.6 J	0.36	4,500	360	-	36 0 .	38	3.3	0.33	< 5.1	5.1	U	0.51 3,9	000	310	- 31	< 4.6	4.6	U	0.46	< 5.5	5.5	U
lexachlorobutadiene			2,200	360	U	36 < 4.4	4.4 U	0.44	< 3.6	3.6 U	0.36	600	360	U	36 <	3.3	3.3 L	0.33	< 5.1 < 5.1	5.1 E 1	U	0.51 9		310 L	J 31	< 4.6	4.6	U	0.46	< 5.5	5.5	- 11
sopropylbenzene n&p-Xylenes	260	100,000	32,000	7 200	n	1400 1.2	4.4 U	0.44	1.5	3.6 U	0.30	9,600	360		72 <	3.3	3.3	0.33	< 5.1	5.1	U U		000	310	- 63	< 4.6	4.6	- 11	0.46	< 5.5	5.5	- 11
Methyl Ethyl Ketone (2-Butanone)	120	100,000	< 360	360	II.	360 13	26 .1	4.4	< 21	21 II	3.6	< 360	360	U		.5	20	1 3.3	< 30	30	U		310	310 L	J 310	< 27	27	U	4.6	< 33	33	- 11
lethyl t-butyl ether (MTBE)	930	100,000	99	720	J	72 6.7	8.8 J	0.88	< 7.1	7.1 U	0.71	< 720	720	U		.1	6.6	J 0.66	22	10	-	1.0 2	90	630 ,	J 63	< 9.1	9.1	U	0.91	70	11	
lethylene chloride	50	100,000	< 360	360	U	360 < 4.4	4.4 U	4.4	< 3.6	3.6 U	3.6	< 360	360	U	360 <	_	3.3 L	3.3	< 5.1	5.1	U	5.1 < 3		310 L	J 310	< 4.6	4.6	U	4.6	< 5.5	5.5	U
laphthalene	12,000	100,000	10,000	360	-	72 2.5	4.4 J	0.88	240	210 -	43	3,400	360	-	72 <	3.3	3.3 L	0.66	< 5.1	5.1	U	1.0 4.4	100	310	- 63	< 4.6	4.6	U	0.91	1.3	5.5	J
-Butylbenzene	12,000	100,000	2,700	360	-	36 < 4.4	4.4 U	0.44	< 3.6	3.6 U	0.36	820	360	-	36 <	3.3	3.3 L	0.33	< 5.1	5.1	U	0.51 8		310	- 31	< 4.6	4.6	U	0.46	< 5.5	5.5	U
-Propylbenzene	3,900	100,000	5,600	360	-	72 < 4.4	4.4 U	0.88	< 3.6	3.6 U	0.71	1,600	360	-	72 <	3.3	3.3 L	0.66	< 5.1	5.1	U		00	310	- 63	< 4.6	4.6	U	0.91	< 5.5	5.5	U
-Xylene	260	100,000	13,000	360	-	72 < 4.4	4.4 U	0.88	< 3.6	3.6 U	0.71	5,600	360	-	72 <	3.3	3.3 L	0.66	< 5.1	5.1	U	1.0 6,7	00	310	- 63	< 4.6	4.6	U	0.91	< 5.5	5.5	U
-Isopropyltoluene			1,100	360	-	36 < 4.4	4.4 U	0.44	< 3.6	3.6 U	0.36	440	360	-	36 <	3.3	3.3 L	0.33	< 5.1	5.1	U	0.51 2	30	310 .	J 31	< 4.6	4.6	U	0.46	< 5.5	5.5	U
ec-Butylbenzene	11,000	100,000	1,300	360	-	36 < 4.4	4.4 U	0.44	< 3.6	3.6 U	0.36	450	360	-	36 <	_	3.3 L	0.33	< 5.1	5.1	U	0.51 3		310	- 31	< 4.6	4.6	U	0.46	< 5.5	5.5	U
tyrene			< 360	360	U	36 < 4.4	4.4 U	0.44	< 3.6	3.6 U	0.36	96	360	J	36 <		3.3 L	J 0.33	< 5.1	5.1	U		310	310 L	J 31	< 4.6	4.6	U	0.46	< 5.5	5.5	U
ert-butyl alcohol			< 7200	7,200	U	1400 < 88	88 U	18	< 71	71 U	14	< 7200	7,200	U		7	66	J 13	32	100	J	_	300 6	,300 L	J 1300	< 91	91	U	18	< 110	110	U
ert-Butylbenzene	5,900	100,000	44	360	J	36 < 4.4	4.4 U	0.44	< 3.6	3.6 U	0.36	< 360	360	U	36 <	3.3	3.3 L	0.33	< 5.1	5.1	U	0.51 < 3	310	310 L	J 31	< 4.6	4.6	U	0.46	< 5.5	5.5	U
etrachloroethene	1,300	19,000	< 360	360	U	72 < 4.4	4.4 U	0.88	< 3.6	3.6 U	0.71	2,400	360	-	72 <	3.3	3.3 L	0.66	< 5.1	5.1	U	1.0 < ;	310	310 L	J 63	< 4.6	4.6	U	0.91	< 5.5	5.5	U
etrahydrofuran (THF)			< 720	720	U	180 < 8.8	8.8 U	2.2	< 7.1	7.1 U	1.8	< 720	720	U		6.6	6.6 L	J 1.6	< 10	10	U	2.5 < 6		630 L	J 160	< 9.1	9.1	U	2.3	< 11	11	U
oluene	700	100,000	1,900	720	D	720 < 4.4	4.4 U	0.44	< 3.6	3.6 U	0.36	15,000	700	D		3.3	3.3 L	0.33	< 5.1	5.1	U	0.51 4	70	310	- 31	< 4.6	4.6	U	0.46	< 5.5	5.5	U
rans-1,2-Dichloroethene	190	100,000	< 190 < 360	190	U	36 < 4.4 36 < 4.4	4.4 U	0.44	< 3.6	3.6 U	0.36	2,300 < 360	190	-	36 <	3.3	3.3 L	0.33	< 5.1 < 5.1	5.1	U		190	190 L	31	< 4.6	4.6	U	0.46		5.5	U
ans-1,3-Dichloropropene abs-1,4-dichloro-2-butene			< 360 < 720	360 720	U	36 < 4.4 180 < 8.8	4.4 U 8.8 U	0.44	< 3.6	3.6 U	0.36	< 360 < 720	720	U		3.3 6.6	3.3 L	J 0.33	< 5.1	5.1	U	2.5 < 0	_	830 L	J 31 J 160	< 4.6	4.6	U	0.46	< 5.5	5.5	U
abs-1,4-dichloro-2-butene richloroethene		A/ ***	< 360	7.2U 360	U	180 < 8.8 36 < 4.4	8.8 U	0.44	< 7.1	7.1 U	1.8	< 720 410	7.2U 360	U	180 < 36 <		3.3 L	1.6	< 10	5.1	U	0.51	810	310 L	J 160	< 4.6	9.1	II.	0.46	< 5.5	55	U II
richlorofluoromethane	470	21,000	< 360	360	J	72 < 4.4	4.4 U	0.44	< 3.6	3.6 11	0.30	410 < 360	360	-		3.3	33 1	0.33	< 5.1	J.1 E4	U II	10 -	310	310	J 63	< 4.6	4.0	U	0.40	< 5.5	5.5	11
richlorofluoromethane richlorotrifluoroethane		1	< 360	360	U	72 < 4.4	4.4 U	0.88	< 3.6	3.6 U	0.77	< 360	360	U	_	3.3	3.3	0.66	< 5.1 < 5.1	5.1	U II	0.51 < 3	_	310	J 31	< 4.6		II.	0.97	< 5.5 < 5.5	5.5	U JI
nyl Chloride	20	900	< 36	36	5	36 < 4.4	4.4 U	0.44	< 3.6	3.6	0.30	3,000	36	-		3.3	3.3	0.03	< 5.1	5.1	II	0.51	31	31] 31	< 4.6	4.0	11	0.46	< 5.5	5.5	II
4- dioxane	100	900	< 2900	2.900	U	2900 < 66	66 U	35	< 53	53 U	28	< 2900	2,900	U		49	49 L	J 26	< 76	76	U	40 < 2	500 2	.500	J 2500	< 68	68	U	37	< 83	83	II
otal BTEX Concentration	100	13,000		56,00	00		1.76	- 55	1	2.1	2.0	2000	36,600)			0.38		1	0	- 1			27,720	. 2000	1					0	
otal VOCs Concentration			1	136,84			79.42		1	248.07		1	103,21		-		63.03		1	82.3				54,807		1		.57			115.60	0
otes: 6 NYCRR Part 375-6 Remedial Program Soil Cleanup O L- Reporting Limit - The compound was anlayzed for but not det The value is estimated. - The concentration is based on the response	tected at or above the MDL.	S- This compound is a solven D- The reported concentration Bold/highlighted- Indicated exceed Bold/highlighted- Indicated exceed	n is the resu lance of the M	ult of a d	liluted a	nnalysis. Guldance Value																•										

Disconsistant in the properties of the propertie									15B1	4													151	B19							
Part	COMPOUND	Unrestricted Use Soil	Residential Soil Cleanup																												
14.1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		Cleanup Objectives*	Objectives*		μg/k	(g			μg/Kg	g			μg/K	g			μg/K	g			μg/K	9			μg/K	g			μg/K	9	
Control Cont	1.1.1.2-Tetrachlorothane				•	_	MDL 0.89		_		MDL 0.77						_	Qual	MDL 1.2			Qual			RL 31,000	Qual	MDL 1600		_		_
1. M. Colleganian		680	100,000	< 4.5	4.5	U	0.45	< 3.9	3.9	U	0.39	< 4.9	4.9	U	0.49	< 5.8	5.8	U	0.58	< 4.9	4.9	U	0.49	< 780	780	U	780	< 7.9	7.9	U	0.79
1. M.	1,1,2,2-Tetrachloroethane			< 4.5	4.5	U	0.89	< 3.9	3.9	U	0.77	< 4.9	4.9	U	0.99	< 5.8	5.8	U	1.2	< 4.9	4.9	U	0.99	< 7800	7,800	U	1600	< 7.9	7.9	U	1.6
1. Contentament					_	U	0.89		3.9	U	0.77			U	0.99		5.8	U	1.2		4.9		0.99		7,800	U	1600		7.9	U	1.6
1. September 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.						U	0.89		3.9	U	0.77			U	0.99		5.8	U	1.2		4.9	U	0.99		1,600	U	1600		7.9	U	1.6
1.3. Frommone		330	100,000		_	U	0.45		3.9	- 11	0.39			U	0.49		5.8	- 11	0.58		4.9	0	0.49		7.900	U	780		7.9	U	0.79
24 Property of the property of					4.5	U	0.89	0.10	3.9	U	0.77			U	0.99		5.8	U	1.2		4.9	U	0.99		7,800	U	1600	< 7.9	7.9	U	1.6
14. September 1. S					4.5	U	0.45	< 3.9	3.9	U	0.39		4.9	U	0.49	< 5.8	5.8	U	0.58		4.9	U	0.49	< 7800	7,800	U	780	< 7.9	7.9	U	0.79
23 Selemental					4.5	U	0.89	0.0	3.9	U	0.77	< 4.9	4.9	U	0.99		5.8	U	1.2		4.9	٥	0.99	< 7800	7,800	U	1600		7.9	U	1.6
24 Manuschendres 1,0		3,600	52,000			U	0.45		3.9	-	0.39			J	0.49	0.58	5.8	J	0.58	0.99	4.9	J	0.49		16,000	D	16000	1,400	460	-	46
3.3. Septembers						U	0.89	0.10	3.9	U	0.77			U	0.99	< 5.8	5.8	U	1.2	< 4.9	4.9	U	0.99		7,800	U	1600	< 7.9	7.9	U	1.6
3. Sections		4.400	400.000			U	0.45	0.10	3.9	II.	0.39			U	0.49	- 0.0	5.8	U	0.58		4.9	II.	0.49	< 1100	1 100	U	780	-1.0	7.9	IJ	0.79
1. 1. 1. 1. 1. 1. 1. 1.					_	U	0.45		3.9	U	0.39		4.9	U	0.49		5.8	U	0.58		4.9	U	0.49	< 780	780	U	780		7.9	U	0.79
Company Comp				< 4.5	4.5	U	0.89	< 3.9	3.9	U	0.77	< 4.9	4.9	U	0.99	< 5.8	5.8	U	1.2	< 4.9	4.9	U	0.99	< 7800	7,800	U	1600	< 7.9	7.9	U	1.6
1.50 colonyogone 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.		8,400	52,000		4.5	U	0.45		3.9	J	0.39		4.0	U	0.49	< 5.8	5.8	U	0.58	- 4.0	4.9	U	0.49		16,000	D	16000	490	460		46
A. Collections A. C		2,400	4,900		4.5	U	0.45	0.10	3.9	U	0.39			U	0.49		5.8	U	0.58		4.9	U	0.49		2,400	U	780	< 7.9	7.9	U	0.79
23-Calcinstratements		4000	40		4.5	U	0.89		3.9	U	0.77		4.9	U	0.99		5.8	U	1.2		4.9	U	0.99		7,800	U	1600	< 7.9	7.9	U	1.6
2-Chorosome		1,800	13,000		4.5	U	0.45		3.9	U	0.39		4.9	U	0.49		5.8	U	0.58		4.9	U	0.49		7,800	U	780	< 7.9	7.9	U	0.79
## Composition of the first fine flowers 1.2 2 2 2 2 2 2 2 2 2					_	U			3.9	U	0.77				0.99		5.8	U	1.2		4.9	U	0.99		7,800	_	1600		7.9	U	1.6
Account of the property of the					22	U	4.5	< 19	19	U	3.9	< 25	25	U	4.9	< 29	29	U	5.8	< 25	25	U	4.9	< 39000	39,000	U	7800	< 40	40	U	7.9
Selection 10 10 10 10 10 10 10 1					4.5	U	0.45	< 3.9	3.9	U	0.39		4.9	U	0.49	< 5.8	5.8	U	0.58		4.9	⊃	0.49	1,400	7,800	J	780	1.4	7.9	J	0.79
Accounte (1900) 64 70 70 70 70 70 70 70 7					4.5	U	0.45	< 3.9	3.9	U	0.39	< 4.9	4.9	U	0.49	< 5.8	5.8	U	0.58	< 4.9	4.9	U	0.49	< 7800	7,800	U	780	< 7.9	7.9	U	0.79
Accommende					22	U c	_	< 19	19	U	3.9	< 25	25	U	4.9	< 29	29	U	5.8	< 25	25 2E	U	4.9	< 39000	7 900	U	7800		40	U	7.9
Accordance (a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c		50	100,000		_	U			15	II.	1.9			11	2.5		23	II.	2.9		20	- 11	2.5		31 000	U	3900		32	II.	4.0
Second gas and second					8.9	U	0.89	< 7.7	7.7	U	0.77	< 9.9	9.9	U	0.99	< 23	23	U	0.58	< 20	20	U	0.49	< 31000	31,000	U	780	< 32	32	U	0.79
Processor Proc		60	4,800	240	60	-	31	0.99	3.9	J	0.39	1.3	4.9	J	0.49	< 5.8	5.8	U	0.58	< 4.9	4.9	U	0.49	< 780	780	U	780	3	7.9	J	0.79
Second					4.5	U	0.45	< 3.9	3.9	U	0.39		4.9	U	0.49	< 5.8	5.8	U	0.58		4.9	U	0.49	< 7800	7,800	U	780	< 7.9	7.9	U	0.79
Semone-from					4.5	U			3.9	U	0.39		4.9	U	0.49		5.8	U	0.58		4.9	U	0.49		7,800	U	780		7.9	U	0.79
Second plane					_	U	0.89		3.9	U	0.77			U	0.99		5.8	U	1.2		4.9	U	0.99		7,800	U	1600		7.9	U	1.6
Carbon Distributions 100 2,000 140 140 140 140 140 140 140 140 140						U	1.8		3.9	U	1.5			U	2.0		5.8	U	2.3		4.9	U	2.0		7,800	U	3100	- 1.0	7.9	U	3.2
State Stat					4.5	U	0.89	1.4	3.9	J	0.77		4.9	J	0.99	< 5.8	5.8	U	1.2	< 4.9	4.9	U	0.99	< 7800	7,800	U	1600	< 7.9	7.9	U	1.6
Chierochiane 500 64	Carbon tetrachloride	760	2,400	< 4.5	4.5	U	0.89	< 3.9	3.9	U	0.77	< 4.9	4.9	U	0.99	< 5.8	5.8	U	1.2	< 4.9	4.9	U	0.99	< 1600	1,600	U	1600	< 7.9	7.9	U	1.6
Chlorodem		1,100	100,000		4.5	U	0.45		3.9	U	0.39		4.9	U	0.49		5.8	U	0.58		4.9	U	0.49		1,100	U	780	< 7.9	7.9	U	0.79
Chisconethane					_	U	0.45		3.9	U	0.39			U	0.49		5.8	U	0.58		4.9	U	0.49		7,800	U	780		7.9	U	0.79
cist -1.2. Collescondennee		370	49,000		4.5	U	0.45		3.9	U	0.39		7.0	U	0.49		5.8	U	1.2		4.9	U	0.49		7.800	U	1600	< 7.9	7.9	U	1.6
six 3-3.0 Chioroprospone		250	100 000		4.5	U	0.45		3.9	U	0.39			U	0.49		5.8	U	0.58		4.9	U	0.49		780	U	780	< 7.9	7.9	U	0.79
Discrimentame 100	cis-1,3-Dichloropropene			< 4.5	4.5	U	0.45	< 3.9	3.9	U	0.39	< 4.9	4.9	U	0.49	< 5.8	5.8	U	0.58	< 4.9	4.9	U	0.49	< 7800	7,800	U	780	< 7.9	7.9	U	0.79
Dichlorodiffuromethane 1,000	Dibromochloromethane				_	U	0.89		3.9	U	0.77				0.99		5.8	U	1.2		4.9	U	0.99		7,800	U	1600		7.9	U	1.6
Ethylencene 1,000	Dibromomethane				_	U	0.89		3.9	U	0.77			U	0.99		5.8	U	1.2		4.9	U	0.99		7,800	U	1600	< 7.9	7.9	U	1.6
Hexachtorizations 14.5 4.5 1.0 0.4 2.0 3.0 3.0 1.0 3.0 4.6 4.5 1.0 0.0 4.5 4.5 4.5 1.0 0.0 4.5 4.5 4.5 1.0 0.0 4.5			44.000		4.5	U	0.45		3.9	- 11	0.39		4.9	U	0.49	< 5.8	5.8	U	0.58		4.9	0	0.49		1,000	U	780	< 7.9	7.9	U	0.79 46
Separate		1,000	41,000		4.5	U	0.45	0.10	3.9	U	0.39		4.9	U	0.49	< 5.8	5.8	U	0.58		4.9	U	0.49	,	7.800	U	780	< 7.9	7.9	U	0.79
Methyl Estyl Astrona (2-Bustones) 120 1500.000 170 1500.000 170 1500.000 170 1500.000 170 1500.000 170 1500.000 170 1500.000 170 1500.000 170 1500.000 170 170 170 170 170 170 170 170 170					4.5	U	0.45	< 3.9	3.9	U	0.39	< 4.9	4.9	U	0.49	< 5.8	5.8	U	0.58	< 4.9	4.9	U	0.49	42,000	7,800	-	780	15	7.9	-	0.79
Methythe church (MTBE) 950 100.000 760 101 00 100 100 100 100 100 100 100 10	m&p-Xylenes	260	100,000	< 4.5	4.5	U	0.89	5.6	3.9	-	0.77	2	4.9	J	0.99	< 5.8	5.8	U	1.2	2.3	4.9	٦	0.99	720,000	******	D	31000	2,000	460	-	91
Methylence-choride 12.000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 1					27	U	4.5		23	U	3.9		30	U	4.9	< 35	35	U	5.8	< 30	30	U	4.9	< 7800	7,800	U	7800	< 47	47	U	7.9
Naphthalene 12,000 100,000			,		610	-	61	49	7.7	- 1	0.77		9.9	J	0.99	< 12	12	U	1.2	< 9.9	9.9	U	0.99	< 1600	1,600	U	1600	< 16	16	U	1.6
n-Burylbenzne 12,000 100,000 < 4.5 4.5 U 0.85 4.5					4.5	U	_	< 3.9	3.9	U	0.77		4.9	U	0.99	210	330	J	5.8		4.9	U	0.99		7,800	-	1600	250	7.9	-	1.6
n-Propylebrazene 3,000 100,00					4.5	U	0.45		3.9	U	0.39		4.9	U	0.49	< 5.8	5.8	U	0.58		4.9	U	0.49		16,000	D	16000		7.9	-	0.79
o-Xylene					4.5	U	0.89	< 3.9	3.9	U	0.77		4.9	U	0.99	< 5.8	5.8	U	1.2	< 4.9	4.9	U	0.99		3,900	_	1600		7.9	-	1.6
Sec-Butylbenzene 11,000 100,000 455 45 U 0,45 45 U 0,	o-Xylene				4.5	U	0.89	2.4	3.9	J	0.77		4.9	U	0.99	< 5.8	5.8	U	1.2	< 4.9	4.9	U	0.99		7,800	-	1600		460	-	91
Styree					4.5	U	0.45	< 3.9	3.9	U	0.39		4.9	U	0.49	< 5.8	5.8	U	0.58	< 4.9	4.9	U	0.49		7,800	-	780		7.9	J	0.79
Tert-butyl alcohol Tert-b		11,000	100,000		4.5	U	0.45		3.9	U	0.39		4.9	U	0.49	< 5.8	5.8	U	0.58		4.9	U	0.49	23,000	7.800	- 0	780	9.6	7.9	-	0.79
Tetra-Butylbenzene 5,000 10,000 < 4.5 4.5 U 0.45 < 3.9 U 0.45 < 3.9 U 0.45 < 3.9 U 0.39 < 4.9 4.9 U 0.46 < 5.8 5.8 U 0.58 < 4.9 4.9 U 0.85 < 4.9 U 0.49 U 0.49 990 5.90 U 7 760 < 7.9 7.9 U 0.79 Tetra-butylordena 1,300 11,000 < 4.5 4.5 U 0.89 < 4.5 U 0.89 < 4.9 U 0.89 < 4.9 U 0.77 < 4.4 U 0.99 < 4.5 0 5.8 5.8 U 0.77 < 4.9 U 0.99 < 5.8 5.8 U 0.70 < 4.9 U 0.70 U 0.70 < 4.9 U 0.70 U					89	U	18	< 77	77	U	15	< 99	99	U	20	< 120	120	U	23	< 99	99	U	20	< 160000	######	U	31000	< 160	160	U	32
Tetrachforethene 1300 19,000 4.65 4.5 U 0.09 4.59 3.9 U 0.07 4.49 4.9 U 0.99 4.50 5.8 U 1.2 4.49 4.9 U 0.99 22,000 10.00 1.00 0 100,000 120 3 7.9 U 1.50 100,000 120 120 120 120 120 120 120 120 120	tert-Butylbenzene	5,900	100,000		4.5	U	0.45	< 3.9	3.9	U	0.39	< 4.9	4.9	U	0.49	< 5.8	5.8	U	0.58	< 4.9	4.9	U	0.49	990	5,900	J	780	< 7.9	7.9	U	0.79
Toluene 700 100,000 120 310 J 31 <30 30 J 31 0 30 J 30 J 30 J 30 J 30 J 0 J 30 J 0 J	Tetrachloroethene			< 4.5	4.5	U	0.89	< 3.9	3.9	U	0.77		4.9	U	0.99	< 5.8	5.8	U	1.2	< 4.9	4.9	U	0.99	22,000	1,600	-	1600	3	7.9	J	1.6
trans-1,2-Dichloroethene 190 100,000 4.5 4.5 U 0.65 4.39 0.9 U 0.89 4.49 4.9 U 0.40 4.5 B.8 U 0.55 4.5 U 0.55 4.9 4.9 U 0.40 4.700 7.00 U 780 4.79 7.9 U 0.79 trans-1,3-Dichloropropene 4.5 4.5 U 0.45 4.39 0.9 U 0.45 4.39 0.9 U 0.39 4.49 4.9 U 0.40 4.5 B.8 U 0.55 4.49 4.9 U 0.40 4.700 7.600 U 780 4.79 7.9 U 0.79 trans-1,3-Dichloropropene 4.70 21,000 4.5 8.5 U 0.5 4.5 U 0.5 4.5 U 0.5 4.9 0.9 U 0.5 4.0 0.0 U 0.5 0.0 0.0 U 0.5 0.0 U 780 4.79 7.9 U 0.79 trans-1,3-Dichloropropene 4.70 21,000 4.5 8.5 U 0.5 4.5 U 0.5 4.5 U 0.5 4.9 U 0.40 4.700 7.600 U 780 4.79 7.9 U 0.79 trichloropropene 4.70 4.5 4.5 U 0.5 4.5 U 0.5 4.5 U 0.5 4.5 U 0.5 4.9 U 0.40 4.5 U 0.5 4.9 U 0.40 4.700 7.600 U 780 4.7 U 780 4.7 U 780 4.7 U 0.79 trichloropropene 4.70 4.5 4.5 U 0.5 4.5 U 0.5 4.5 U 0.5 4.39 0.9 U 0.30 4.4 U 0.40 4.5 U 0.40 4.5 U 0.5 4.8 U 0.5 U 0.5 4.4 U 0.5 U 0.70 trichloropropene 4.70 4.5 4.5 U 0.5 4.5 U 0.5 4.5 U 0.5 4.3 U 0.5 4.3 U 0.5 U 0.70 trichloropropene 4.5 4.5 U 0.5 4.5 U 0.5 4.3 U 0.5 4.3 U 0.5 U 0.70 trichloropropene 4.5 4.5 U 0.5 4.5 U 0.5 4.3 U 0.5 4.3 U 0.5 U 0.70 trichloropropene 4.5 4.5 U 0.5 4.5 U 0.5 4.3 U 0.5 4.3 U 0.70 trichloropropene 4.5 4.5 U 0.5 4.5 U 0.5 4.3 U 0.5 4.3 U 0.5 U 0.70 trichloropropene 4.5 4.5 U 0.5 4.5 U 0.5 4.3 U 0.5 4.3 U 0.5 U 0.70 trichloropropene 4.6 4.5 U 0.5 4.5 U 0.5 4.3 U 0.5 U 0.70 trichloropropene 4.7 U 0.5 4.5 U 0.5 U 0.7 U 0	Tetrahydrofuran (THF)	`				U												U	2.9						16,000		3900		16	U	
trans-1,3-Dichloropropene						J			3.9	U	0.39				0.49		5.8	U	0.58		4.9	U	0.49		16,000		16000		7.9	-	0.79
Trichloroutene 470 21,000 4.5 4.5 U 0.45 4.5 U 0.		190	100,000			U			3.9	U	0.39				0.49		5.8	U	0.58		4.9	U	0.49		7.800		780		7.9	U	0.79
Trichloroethene 470 21,000 445 45 U 0.65 U 0.65 45 U 0.65 U 0.6						_					1.9			_				U	2.9			U			16,000	_			16	U	4.0
Trichloroffluoromethane	Trichloroethene	470	21,000			U				U	0.39		0.10				5.8	U	0.58		4.9		0.49		780		780		7.9	U	0.79
Vinj Chloride 20 900 < 4.5 4.5 U 0.45 < 3.9 U 0.39 < 4.9 U 0.49 < 5.8 5.8 U 0.58 < 4.9 U 0.49 < 7.80 < 7.80 U 7.80 < 7.90 V 0.79 < 7.90 U 0.79 U U U U U U U U U	Trichlorofluoromethane					U	0.89			U	0.77				0.99			U	1.2		4.9	U	0.99		7,800		1600		7.9		1.6
1,4-dioxane 100 13,000 <67 67 U 36 <58 58 U 31 <74 74 U 40 <87 87 U 46 <74 74 U 40 <6300 63,00 U 6300 <100 100 U 63 Total BTEX Concentration 8.99 4 U 5 3.25 1,190,00 3,079 U 6300 5 3,	Trichlorotrifluoroethane					U				U	0.39							U	0.58			U	0		7,800		780		7.9	U	0.79
Total BTEX Concentration 360 8.99 4 0 3.25 1,190,000 3,079						U				U	0.39				0.49			U	0.58			U	0.49		780	U	780		7.9	U	0.79
		100	13,000	< 67		U n	36	< 58		U	31	< 74			40	< 87		U	46	< 74		U	40	_	1 100	000	63000	< 100	2.07	U	ರಿತ
	Total VOCs Concentration										-		30			l			-												\dashv

- Notes:

 * 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

 S- This compound is a solvent that is used in the laboratory.

 D- The reported concentration is the result of a diluted analysis.

 U- The compound was anlayzed for but not detected at or above the MDL.

 J- The value is estimated.

 N- The concentration is based on the response fo the nearest internal.

TABLE 3 Soil Analytical Results Volatile Organic Compounds

						15E	B20					Duplica 15B2			ſ	Duplica 15B7				Duplica 15B1				Duplica 15B2		
COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil Cleanup Objectives*	NYDEC Part 375.6 Restricted Residential Soil Cleanup Objectives*		(0-2°				(12-14				(12-14	')			(12-14	4')			(0-2"))			(12-14	14')	
		•	Result	μg/K	g Qual	MDL	Result	μg/K		MDL	Result	μg/Kg RL	Qual	MDL	Result	μg/Kg RL	g Qual	MDL	Result	μg/Kg RL	g Qual	MDL	Result	μg/Kg RL		MDL
1,1,1,2-Tetrachlorothane			< 2.5	2.5	U	0.50	< 4.3	4.3	U	0.85	< 4.7	4.7	U	0.93	< 21	21	U	1.0	< 17	17	U	0.83	< 1000	1,000	U	52
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	680	100,000	< 2.5	2.5	U	0.25	< 4.3	4.3	U	0.43	< 4.7	4.7	U	0.47	< 5.2	5.2	U	0.52	< 4.1	4.1	U	0.41	< 260	260	U	26 52
1,1,2,1-1 etrachioroethane 1,1,2-Trichloroethane			< 2.5	2.5	U	0.50	< 4.3	4.3	U	0.85	< 4.7	4.7	U	0.93	< 5.2	5.2	U	1.0	< 4.1	4.1	U	0.83	< 260	260	U	52
1,1-Dichloroethane	270	26,000	< 2.5	2.5	U	0.50	< 4.3	4.3	U	0.85	< 4.7	4.7	U	0.93	< 5.2	5.2	U	1.0	< 4.1	4.1	U	0.83	< 260	260	U	52
1,1-Dichloroethene	330	100,000	< 2.5	2.5	U	0.25	< 4.3	4.3	U	0.43	< 4.7	4.7	U	0.47	< 5.2	5.2	U	0.52	< 4.1	4.1	U	0.41	< 260	260	U	26
1,1-Dichloropropene			< 2.5 < 2.5	2.5	U	0.25	< 4.3	4.3	U	0.43	< 4.7	4.7	U	0.47	< 5.2 < 5.2	5.2	U	1.0	< 4.1	4.1	U	0.41	< 260	260 260	U	26 52
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane			< 2.5	2.5	II.	0.50	< 4.3	4.3	U	0.65	< 4.7	4.7	U	0.93	< 5.2	5.2	U	0.52	< 4.1	4.1	IJ	0.03	< 260	260	II.	26
1,2,4-Trichlorobenzene			< 2.5	2.5	U	0.50	< 4.3	4.3	U	0.85	< 4.7	4.7	U	0.93	< 5.2	5.2	U	1.0	< 4.1	4.1	U	0.83	< 260	260	U	52
1,2,4-Trimethylbenzene	3,600	52,000	< 2.5	2.5	U	0.25	< 4.3	4.3	U	0.43	< 4.7	4.7	U	0.47	1	5.2	J	0.52	0.91	4.1	J	0.41	17,000	3,600	D	520
1,2-Dibromo-3-chloropropane			< 2.5	2.5	U	0.50	< 4.3	4.3	U	0.85	< 4.7	4.7	U	0.93	< 5.2	5.2	U	1.0	< 4.1	4.1	U	0.83	< 260	260	U	52
1,2-Dibromomethane		100.000	< 2.5	2.5	U	0.25	< 4.3	4.3	U	0.43	< 4.7	4.7	U	0.47	< 5.2	5.2	U	0.52	< 4.1	4.1	U	0.41	< 260	260	U	26 26
1,2-Dichlorobenzene 1,2-Dichloroethane	1,100 20	100,000 3,100	< 2.5	2.5	U	0.25	< 4.3	4.3	U	0.43	< 4.7	4.7	U	0.47	< 5.2	5.2	U	0.52	< 4.1	4.1	U	0.41	< 26	26	U	26
1,2-Dichloropropane	20	0,100	< 2.5	2.5	U	0.50	< 4.3	4.3	U	0.85	< 4.7	4.7	U	0.93	< 5.2	5.2	U	1.0	< 4.1	4.1	U	0.83	< 260	260	U	52
1,3,5-Trimethylbenzene	8,400	52,000	< 2.5	2.5	U	0.25	< 4.3	4.3	U	0.43	< 4.7	4.7	U	0.47	< 5.2	5.2	U	0.52	0.67	4.1	J	0.41	5,200	260		26
1,3-Dichlorobenzene	2,400	4,900	< 2.5	2.5	U	0.25	< 4.3	4.3	U	0.43	< 4.7	4.7	U	0.47	< 5.2	5.2	U	0.52	< 4.1	4.1	U	0.41	< 260	260	U	26
1,3-Dichloropropane 1,4-Dichlorobenzene	4,000	42.000	< 2.5	2.5	U	0.50	< 4.3	4.3	U	0.85	< 4.7	4.7	U	0.93	< 5.2	5.2	U	1.0	< 4.1	4.1	U	0.83	< 260	260	U	52 26
1,4-Dichloropenzene 2,2-Dichloropropane	1,800	13,000	< 2.5	2.5	U	0.25	< 4.3	4.3	U	0.43	< 4.7	4.7	U	0.47	< 5.2	5.2	U	0.52	< 4.1	4.1	U	0.41	< 260	260	U	26
2-Chlorotoluene			< 2.5	2.5	U	0.50	< 4.3	4.3	U	0.85	< 4.7	4.7	U	0.93	< 5.2	5.2	U	1.0	< 4.1	4.1	U	0.83	< 260	260	U	52
2-Hexanone (Methyl Butyl Ketone)			< 13	13	U	2.5	< 21	21	U	4.3	< 23	23	U	4.7	< 26	26	U	5.2	< 21	21	U	4.1	< 1300	1,300	U	260
2-isopropyltoluene			< 2.5	2.5	U	0.25	< 4.3	4.3	U	0.43	< 4.7	4.7	U	0.47	< 5.2	5.2	U	0.52	< 4.1	4.1	U	0.41	100 < 260	260	J	26
4-Chlorotoluene 4-Methyl-2-Pentanone		1	< 2.5	2.5	U	2.5	< 4.3	4.3	U	0.43	< 4.7	4.7	U	4.7	< 5.2	5.2	U	5.2	< 4.1	4.1	U	0.41 4.1	< 260	1.300	U	26 260
Acetone	50	100,000	< 13	13	U	2.5	< 21	21	U	4.3	< 23	23	U	4.7	26	26	JS	5.2	< 21	21	U	4.1	400	260	S	260
Acrolein			< 10	10	U	1.3	< 17	17	U	2.1	< 19	19	U	2.3	< 21	21	U	2.6	< 17	17	U	2.1	< 1000	1,000	U	130
Acrylonitrile			< 5.0	5.0	U	0.50	< 8.5	8.5	U	0.85	< 9.3	9.3	U	0.93	< 21	21	U	0.52	< 17	17	U	0.41	< 1000	1,000	U	26
Benzene	60	4,800	< 2.5 < 2.5	2.5	U	0.25	< 4.3	4.3	U	0.43	< 4.7	4.7	U	0.47	0.86	5.2	J	0.52	< 4.1	4.1	U	0.41	< 60	60 260	U	26 26
Bromobenzene Bromochloromethane			< 2.5	2.5	U	0.25	< 4.3	4.3	U	0.43	< 4.7	4.7	U	0.47	< 5.2	5.2	U	0.52	< 4.1	4.1	U	0.41	< 260	260	U	26
Bromodichloromethane			< 2.5	2.5	U	0.50	< 4.3	4.3	U	0.85	< 4.7	4.7	U	0.93	< 5.2	5.2	U	1.0	< 4.1	4.1	U	0.83	< 260	260	U	52
Bromoform			< 2.5	2.5	U	0.50	< 4.3	4.3	U	0.85	< 4.7	4.7	U	0.93	< 5.2	5.2	U	1.0	< 4.1	4.1	U	0.83	< 260	260	U	52
Bromomethane			< 2.5	2.5	U	1.0	< 4.3	4.3	U	1.7	< 4.7	4.7	U	1.9	< 5.2	5.2	U	2.1	< 4.1	4.1	U	1.7	< 260	260	U	100
Carbon Disulfide Carbon tetrachloride			< 2.5 < 2.5	2.5	U	0.50	< 4.3	4.3	U	0.85	< 4.7	4.7	U	0.93	1.2	5.2	J	1.0	< 4.1	4.1	U	0.83	< 260	260 260	U	52 52
Chlorobenzene	760 1,100	2,400 100,000	< 2.5	2.5	U	0.30	< 4.3	4.3	U	0.43	< 4.7	4.7	U	0.47	< 5.2	5.2	U	0.52	< 4.1	4.1	U	0.41	< 260	260	U	26
Chloroethane	1,100	100,000	< 2.5	2.5	U	0.25	< 4.3	4.3	U	0.43	< 4.7	4.7	U	0.47	< 5.2	5.2	U	0.52	< 4.1	4.1	U	0.41	< 260	260	U	26
Chloroform	370	49,000	< 2.5	2.5	U	0.25	< 4.3	4.3	U	0.43	< 4.7	4.7	U	0.47	< 5.2	5.2	U	0.52	< 4.1	4.1	U	0.41	< 260	260	U	26
Chloromethane			< 2.5	2.5	U	0.50	< 4.3	4.3	U	0.85	< 4.7	4.7	U	0.93	< 5.2	5.2	U	1.0	< 4.1	4.1	U	0.83	< 260	260	U	52
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	250	100,000	< 2.5	2.5	U	0.25	< 4.3	4.3	U	0.43	< 4.7	4.7	U	0.47	< 5.2 < 5.2	5.2	U	0.52	< 4.1	4.1	U	0.41	< 250	250	U	26 26
Dibromochloromethane			< 2.5	2.5	U	0.50	< 4.3	4.3	U	0.85	< 4.7	4.7	U	0.93	< 5.2	5.2	U	1.0	< 4.1	4.1	U	0.83	< 260	260	U	52
Dibromomethane			< 2.5	2.5	U	0.50	< 4.3	4.3	U	0.85	< 4.7	4.7	U	0.93	< 5.2	5.2	U	1.0	< 4.1	4.1	U	0.83	< 260	260	U	52
Dichlorodifluoromethane			< 2.5	2.5	U	0.25	< 4.3	4.3	U	0.43	< 4.7	4.7	U	0.47	< 5.2	5.2	U	0.52	< 4.1	4.1	U	0.41	< 260	260	U	26
Ethylbenzene	1,000	41,000	< 2.5	2.5	U	0.25	< 4.3	4.3	U	0.43	< 4.7	4.7	U	0.47	1.3	5.2	J	0.52	0.58	4.1	J	0.41	3,200	260	-	26 26
Hexachlorobutadiene Isopropylbenzene			< 2.5	2.5	II.	0.25	< 4.3	4.3	U	0.43	< 4.7	4.7	U	0.47	< 5.2	5.2	U	0.52	< 4.1	4.1	IJ	0.41	1,600	260	-	26
m&p-Xylenes	260	100,000	< 2.5	2.5	U	0.50	< 4.3	4.3	U	0.85	< 4.7	4.7	U	0.93	2.1	5.2	J	1.0	1.4	4.1	J	0.83	2,500	260	_	52
Methyl Ethyl Ketone (2-Butanone)	120	100,000	< 15	15	U	2.5	< 26	26	U	4.3	< 28	28	U	4.7	< 31	31	U	5.2	< 25	25	U	4.1	< 260	260	U	260
Methyl t-butyl ether (MTBE)	930	100,000	< 5.0	5.0	U	0.50	< 8.5	8.5	U	0.85	< 9.3	9.3	U	0.93	5.1	10	J	1.0	< 8.3	8.3	U	0.83	< 520	520	U	52
Methylene chloride	50	100,000	< 2.5 < 2.5	2.5	U	2.5	< 4.3	4.3	U	4.3	< 4.7	4.7	U	4.7	< 5.2	5.2	U	5.2	< 4.1	4.1	U	4.1	< 260	260	U	260 52
Naphthalene n-Butylbenzene	12,000 12,000	100,000 100,000	< 2.5	2.5	U	0.50	< 4.3	4.3	U	0.85	< 4.7	4.7	U	0.93	< 5.2	5.2	U	0.52	0.97 < 4.1	4.1	U	0.83	3,000 1,700	260	H	26
n-Propylbenzene	3,900	100,000	< 2.5	2.5	U	0.50	< 4.3	4.3	U	0.85	< 4.7	4.7	U	0.93	< 5.2	5.2	U	1.0	< 4.1	4.1	U	0.83	6,100	3,900	D	1000
o-Xylene	260	100,000	< 2.5	2.5	U	0.50	< 4.3	4.3	U	0.85	< 4.7	4.7	U	0.93	< 5.2	5.2	U	1.0	< 4.1	4.1	U	0.83	< 260	260	U	52
p-Isopropyltoluene			< 2.5	2.5	U	0.25	< 4.3	4.3	U	0.43	< 4.7	4.7	U	0.47	< 5.2	5.2	U	0.52	< 4.1	4.1	U	0.41	510	260	-	26
sec-Butylbenzene Styrene	11,000	100,000	< 2.5	2.5	U	0.25	< 4.3	4.3	U	0.43	< 4.7	4.7	U	0.47	< 5.2	5.2	U	0.52	< 4.1	4.1	U	0.41	800	260	-	26 26
Tert-butyl alcohol		1	< 50	50	U	10	< 85	85	U	17	< 93	93	U	19	300	100	-	21	< 83	83	U	17	< 5200	5,200	U	1000
tert-Butylbenzene	5,900	100,000	< 2.5	2.5	U	0.25	< 4.3	4.3	U	0.43	< 4.7	4.7	U	0.47	< 5.2	5.2	U	0.52	< 4.1	4.1	U	0.41	51	260	J	26
Tetrachloroethene	1,300	19,000	< 2.5	2.5	U	0.50	< 4.3	4.3	U	0.85	< 4.7	4.7	U	0.93	< 5.2	5.2	U	1.0	< 4.1	4.1	U	0.83	< 260	260	U	52
Tetrahydrofuran (THF)	_		< 5.0	5.0	U	1.3	< 8.5	8.5	U	2.1	< 9.3	9.3	U	2.3	< 10	10	U	2.6	< 8.3	8.3	U	2.1	< 520	520	U	130
Toluene trans-1,2-Dichloroethene	700 190	100,000	< 2.5 < 2.5	2.5	U	0.25	< 4.3	4.3	U	0.43	< 4.7	4.7	U	0.47	< 5.2 < 5.2	5.2	U	0.52	< 4.1	4.1	U	0.41	< 260	260 190	U II	26 26
trans-1,2-Dichloropetnene	190	100,000	< 2.5	2.5	U	0.25	< 4.3	4.3	U	0.43	< 4.7	4.7	U	0.47	< 5.2	5.2	U	0.52	< 4.1	4.1	U	0.41	< 260	260	U	26
trabs-1,4-dichloro-2-butene			< 5.0	5.0	U	1.3	< 8.5	8.5	U	2.1	< 9.3	9.3	U	2.3	< 10	10	U	2.6	< 8.3	8.3	U	2.1	< 520	520	U	130
Trichloroethene	470	21,000	< 2.5	2.5	U	0.25	< 4.3	4.3	U	0.43	< 4.7	4.7	U	0.47	< 5.2	5.2	U	0.52	< 4.1	4.1	U	0.41	< 260	260	U	26
Trichlorofluoromethane		1	< 2.5	2.5	U	0.50	< 4.3	4.3	U	0.85	< 4.7	4.7	U	0.93	< 5.2	5.2	U	1.0	< 4.1	4.1	U	0.83	< 260	260	U	52
Trichlorotrifluoroethane Vinyl Chloride		^~~	< 2.5	2.5	U	0.25	< 4.3	4.3	U	0.43	< 4.7	4.7	U	0.47	< 5.2 < 5.2	5.2	U	0.52	< 4.1	4.1	U	0.41	< 260	260 26	U	26 26
1,4- dioxane	20 100	900 13,000	< 38	38	U	20	< 64	64		34	< 70	70	U	37	< 79	79	U	42	< 62	62	U	33	< 2100	2,100	U	2100
		.,																								_
Total BTEX Concentration				0				0				0				4.26 337.5				1.98 4.53		1		5,700 42,16		

- Notes:

 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

 RL- Reporting Limit

 U- The compound was anlayzed for but not detected at or above the MDL

 J- The value is estimated.

 N- The concentration is based on the response fo the nearest internal.

						15B	81							15E	32					15B3								15B4	ļ					
COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil Cleanup Objectives*	NYDEC Part 375.6 Restricted Residential Soil Cleanup Objectives*		(12-14')	3			(18-20				(12-14				(22.5-2				(12-14') 11/14/201				(12-14				(15-17				(18-2 11/14/		
			Result	μg/Kg	Sunt I s	MDI.	Result	μg/K	g	MDI	Result	μg/Kg	Ouel	MDI	Result	μg/Kg	Ouel 5	4DI	Result	μg/Kg	Oual	MDI	Result	μg/Kg	Oual I M	DI	Beauti	μg/Kg	Ouel	MDI	Beauti	μg/l	Kg	MDI
1,2,4,5-Tetrachlorobenzene			< 290	290	U	150	< 280	280	U	140	< 280	280	U	140	< 290	290	U 1	140	< 270	270	U	140	< 270	270	U 1	40	< 290	290	U	150	< 280	280	U	140
1,2,4-Trichlorobenzene			< 290	290	U	130	< 280	280	U	120	< 280	280	U	120	< 290	290	U 1	120	< 270	270	U	120	< 270	270	U 1	20	< 290	290	U	130	< 280	280	U	120
1,2-Dichlorobenzene			< 290	290	U	120	< 280	280	U	110	< 280	280	U	110	< 290	290	U 1	120	< 270	270	U	110	< 270	270	U 1	10	< 290	290	U	120	< 280	280	U	110
1,2-Diphenylhydrazine 1,3-Dichlorobenzene			< 290	290	U ·	140	< 280	280	U	130	< 280	280	U	130	< 290	290	U 1	130	< 270	270	U	130	< 270	270	U 1	30	< 290	290	U	140	< 280	280	U	130
1,3-Dichlorobenzene 1,4-Dichlorobenzene			< 290	290	U ·	120	< 280	280	U	120	< 280	280	U	120	< 290	290	U 1	120	< 270 < 270	270	U	110	< 270 < 270	270	U 1	20	< 290	290	U	120	< 280	280	- 11	120
2,4,5-Trichlorophenol			< 290	290	U :	230	< 280	280	U	220	< 280	280	U	220	< 290	290	U 2	230	< 270	270	U	210	< 270	270	U 2	10	< 290	290	U	230	< 280	280	U	220
2,4,6-Trichlorophenol			< 210	210	U	130	< 200	200	U	130	< 200	200	U	130	< 210	210	U 1	130	< 190	190	U	120	< 200	200	U 1	30	< 210	210	U	130	< 200	200	U	130
2,4-Dichlorophenol			< 210	210	U .	150	< 200	200	U	140	< 200	200	U	140	< 210	210	U 1	140	< 190	190	U	140	< 200	200	U 1	40	< 210	210	U	150	< 200	200	U	140
2,4-Dimethylphenol			< 290	290	U ·	100	< 280	280	U	100	< 280	280	U	100	< 290	290	U 1	100	< 270	270	U	96	< 270	270	U 9	97	< 290	290	U	100	< 280	280	U	98
2,4-Dinitrophenol 2,4-Dinitrotoluene			< 290	290	U :	290	< 280	280	U	280	< 280	280	U	280	< 290	290	U 2	290	< 270	270	U	270	< 270	270	U 2	70	< 290	290	U	290	< 280	280	U	280
2,4-Dinitrotoluene 2,6-Dinitrotoluene			< 210	210	U ·	130	< 200	200	U	160	< 200	200	U	160	< 210	210	U 1	160	< 190	190	U	150	< 200	200	U 1	20	< 210	210	U	170	< 200	200	- 11	160
2-Chloronaphthalene			< 290	290	U	120	< 280	280	U	110	< 280	280	U	110	< 290	290	U 1	120	< 270	270	U	110	< 270	270	U 1	10	< 290	290	U	120	< 280	280	U	110
2-Chlorophenol			< 290	290	U ·	120	< 280	280	U	110	< 280	280	U	110	< 290	290	U 1	120	< 270	270	U	110	< 270	270	U 1	10	< 290	290	U	120	< 280	280	U	110
2-Methylnaphthalene			1,600	290	-	120	< 280	280	U	120	1,500	280	-	120	< 290	290	U ·	120	< 270	270	U	120	< 270	270	U 1	20	< 290	290	U	120	< 280	280	U	120
2-Methylphenol (o-cresol)	330	100,000	< 290	290	U :	200	< 280	280	U	190	< 280	280	U	190	< 290	290	U 1	190	< 270	270	U	180	< 270	270	U 1	80	< 290	290	U	200	< 280	280	U	190
2-Nitroaniline			< 290	290	U :	290	< 280	280	U	280	< 280	280	U	280	< 290	290	U 2	290	< 270	270	U	270	< 270	270	U 2	70	< 290	290	U	290	< 280	280	U	280
2-Nitrophenol		100.000	< 290	290	U :	270	< 280	280	U	260	< 280	280	U	260	< 290	290	U 2	260	< 270	270	U	250	< 270 < 270	270	U 2	50 50	< 290	290	U	270	< 280	280	- U	250
3&4-Methylphenol (m&p-cresol) 3,3'-Dichlorobenzidine	330	100,000	< 290	210	0 .	200	< 200 < 200	∠80 2nn	11	190	< 280	∠dU 200	U	190	< 290	210	0 1	190	< ±70 < 190	190	U	180	< 270	200	U 1	80	< 210	210	U	200	< 280	280	11	190
3-Nitroaniline			< 420	420	U	840	< 400	400	U	810	< 400	400	U	800	< 410	410	U 8	320	< 390	390	U	770	< 390	390	U 7	80	< 420	420	U	840	< 390	390	U	790
4,6-Dinitro-2-methylphenol			< 250	250	U	84	< 240	240	U	81	< 240	240	U	80	< 250	250	U	82	< 230	230	U	77	< 230	230	U 7	78	< 250	250	U	84	< 240	240	U	79
4-Bromophenyl phenyl ether			< 290	290	U	120	< 280	280	U	120	< 280	280	U	120	< 290	290	U 1	120	< 270	270	U	110	< 270	270	U 1	10	< 290	290	U	120	< 280	280	U	120
4-Chloro-3-methylphenol			< 290	290	U	150	< 280	280	U	140	< 280	280	U	140	< 290	290	U 1	140	< 270	270	U	140	< 270	270	U 1	40	< 290	290	U	150	< 280	280	U	140
4-Chloroaniline			< 330	330	U	190	< 320	320	U	190	< 320	320	U	190	< 330	330	U 1	190	< 310	310	U	180	< 310	310	U 1	80	< 340	340	U	200	< 320	320	U	180
4-Chlorophenyl phenyl ether			< 290	290	U ·	140	< 280	280	U	140	< 280	280	U	140	< 290	290	U 1	140	< 270	270	U	130	< 270	270	U 1	30	< 290	290	U	140	< 280	280	U	130
4-Nitroaniline			< 420 < 420	420 420	U	140	< 400	400	U	130	< 400	400	U	130	< 410	410	U 1	140	< 390	390	U	130	< 390	390	U 1	30	< 420 < 420	420 420	U	140	< 390	390	U	130
4-Nitrophenol Acenaphthene	20,000	100,000	< 290	200	11 .	130	< 280	280	11	120	< 280	280	U II	120	< 290	200	U 1	120	< 270	270	U II	120	< 390	270	U 1	20	< 290	200		130	< 280	280	-	120
Acenaphthylene	100,000	100,000	< 290	290	U	120	< 280	280	U	110	< 280	280	U	110	< 290	290	U 1	120	< 270	270	U	110	< 270	270	U 1	10	< 290	290	U	120	< 280	280	U	110
Acetophenone	100,000	100,000	< 290	290	U	130	< 280	280	U	130	< 280	280	U	130	< 290	290	U 1	130	< 270	270	U	120	< 270	270	U 1	20	< 290	290	U	130	< 280	280	U	120
Aniline			< 330	330	U :	330	< 320	320	U	320	< 320	320	U	320	< 330	330	U 3	330	< 310	310	U	310	< 310	310	U 3	10	< 340	340	U	340	< 320	320	U	320
Anthracene	100,000	100,000	< 290	290	U ·	140	< 280	280	U	130	< 280	280	U	130	< 290	290	U 1	130	< 270	270	U	130	< 270	270	U 1	30	< 290	290	U	140	< 280	280	U	130
Benz(a)anthracene	1,000	1,000	< 290	290	U ·	140	< 280	280	U	140	< 280	280	U	140	< 290	290	U 1	140	< 270	270	U	130	< 270	270	U 1	30	< 290	290	U	140	< 280	280	U	130
Benzidine			< 420	420	U :	250	< 400	400	U	240	< 400	400	U	240	< 410	410	U 2	240	< 390	390	U	230	< 390	390	U 2	30	< 420	420	U	250	< 390	390	U	230
Benzo(a)pyrene Benzo(b)fluoranthene	1,000	1,000	< 210	210	U ·	140	< 200	200	U II	130	< 200	200	U	140	< 210	210	U 1	140	< 190	270	U II	130	< 200 < 270	270	U 1	30	< 210	210	U	140	< 200	200	+ -	130
Benzo(ghi)perylene	1,000	1,000	< 290	290	U ·	140	< 280	280	U	130	< 280	280	U	130	< 290	290	U 1	130	< 270	270	U	130	< 270	270	U 1	30	< 290	290	U	140	< 280	280	U	130
Benzo(k)fluoranthene	800	3,900	< 290	290	U	140	< 280	280	U	130	< 280	280	U	130	< 290	290	U 1	140	< 270	270	U	130	< 270	270	U 1	30	< 290	290	U	140	< 280	280	U	130
Benzoic acid	000	0,000	< 2100	2,100	U	840	< 2000	2,000	U	810	< 2000	2,000	U	800	< 2100	2,100	U 8	320	< 1900	1,900	U	770	< 2000	2,000	U 7	80	< 2100	2,100	U	840	< 2000	2,000) U	790
Benzyl butyl phthalate			< 290	290	U ·	110	< 280	280	U	100	< 280	280	U	100	< 290	290	U 1	110	< 270	270	U	100	< 270	270	U 1	00	< 290	290	U	110	< 280	280	U	100
Bis(2-chloroethoxy)methane			< 290	290	U ·	120	< 280	280	U	110	< 280	280	U	110	< 290	290	U 1	110	< 270	270	U	110	< 270	270	U 1	10	< 290	290	U	120	< 280	280	U	110
Bis(2-chloroethyl)ether			< 210	210	U ·	110	< 200	200	U	110	< 200	200	U	110	< 210	210	U 1	110	< 190	190	U	100	< 200	200	U 1	10	< 210	210	U	110	< 200	200	U	110
Bis(2-chloroisopropyl)ether			< 290	290	U	120	< 280	280	U	110	< 280	280	U	110	< 290	290	U 1	110	< 270	270	U	110	< 270 < 270	270	U 1	10	< 290 < 290	290	U	120	< 280 < 280	280		110
Bis(2-ethylhexyl)phthalate Carbazole			< 210	210	11 .	170	< 200	200	11	160	< 200	200	U II	180	< 210	210	11 1	160	< 100 < 100	190	U II	150	< 200	200	U 1	60	< 210	210		170	< 200	200	-	160
Chrysene	1 000	3.900	< 290	290	U	140	< 280	280	U	140	< 280	280	U	140	< 290	290	U 1	140	< 270	270	U	130	< 270	270	U 1	30	< 290	290	U	140	< 280	280	U	130
Dibenz(a,h)anthracene	330	330	< 210	210	U ·	140	< 200	200	U	130	< 200	200	U	130	< 210	210	U 1	130	< 190	190	U	130	< 200	200	U 1	30	< 210	210	U	140	< 200	200	U	130
Dibenzofuran	7,000	59,000	< 290	290	U .	120	< 280	280	U	120	< 280	280	U	120	< 290	290	U 1	120	< 270	270	U	110	< 270	270	U 1	10	< 290	290	U	120	< 280	280	U	120
Diethyl phthalate			< 290	290	U	130	< 280	280	U	130	< 280	280	U	130	< 290	290	U 1	130	< 270	270	U	120	< 270	270	U 1	20	< 290	290	U	130	< 280	280	U	120
Dimethylphthalate			< 290	290	U	130	< 280	280	U	120	< 280	280	U	120	< 290	290	U 1	130	< 270	270	U	120	< 270	270	U 1	20	< 290	290	U	130	< 280	280	U	120
Di-n-butylphthalate			< 290	290	U .	110	< 280	280		110	< 280	280	U	110	< 290	290	U 1	110	< 270	270	U	100	< 270 < 270	270	U 1	nn .	< 290	290	U	110	< 280 < 280	280		100
Di-n-octylphthalate Fluoranthene	100.000	100,000	< 290	290	U	140	< 280	∠8U 280	11	130	< 280	∠dU 280	U	130	< 290	290	0 1	130	< 270 < 270	270	U	130	< 270	270 270	U 1	30	< 290	290	U	140	< 280	280	11	130
Fluorene	30,000	100,000	< 290	290	U ·	140	< 280	280	U	130	< 280	280	U	130	< 290	290	U 1	140	< 270	270	U	130	< 270	270	U 1	30	< 290	290	U	140	< 280	280	U	130
Hexachlorobenzene	,000	,000	< 210	210	U	120	< 200	200	U	120	< 200	200	U	120	< 210	210	U 1	120	< 190	190	U	110	< 200	200	U 1	10	< 210	210	U	120	< 200	200	U	120
Hexachlorobutadiene			< 290	290	U	150	< 280	280	U	150	< 280	280	U	150	< 290	290	U 1	150	< 270	270	U	140	< 270	270	U 1	40	< 290	290	U	150	< 280	280	U	140
Hexachlorocyclopentadiene			< 290	290	U	130	< 280	280	U	120	< 280	280	U	120	< 290	290	U 1	130	< 270	270	U	120	< 270	270	U 1	20	< 290	290	U	130	< 280	280	U	120
Hexachloroethane			< 210	210	U	130	< 200	200	U	120	< 200	200	U	120	< 210	210	U 1	120	< 190	190	U	120	< 200	200	U 1	20	< 210	210	U	130	< 200	200	U	120
Indeno(1,2,3-cd)pyrene	500	500	< 290	290	U	140	< 280	280	U	130	< 280	280	U	130	< 290	290	U 1	140	< 270	270	U	130	< 270	270	U 1	30	< 290	290	U	140	< 280	280	U	130
Isophorone Naphthalene	12.000	100 000	< 210 3,200	210	U	120	< 200	200		110	< 200 3,000	200	U	110	< 210	210 200	U 1	120	< 190	190	U	110	< 200	200	U 1	10	< 210	210	U	120	< 200 < 280	200	- 11	110
Nitrobenzene	12,000	100,000	< 210	210		150	< 200	200	11	140	< 200	200	U	140	< 210	210	U 1	140	< 190	190	U	140	< 200	200	U 1	40	< 210	210	U	150	< 200	200	111	140
N-Nitrosodimethylamine			< 290	290	_	120	< 280	280	U	110	< 280	280	U	110	< 290	290	U 1	120	< 270	270	U	110	< 270	270	U 1	_	< 290	290	U	120	< 280	280	U	110
N-Nitrosodi-n-propylamine			< 210	210		140	< 200	200	U	130	< 200	200	U	130	< 210	210	U 1	130	< 190	190	U	130	< 200	200	U 1		< 210	210	U	140	< 200	200	U	130
N-Nitrosodiphenylamine			< 290	290	U	160	< 280	280	U	150	< 280	280	U	150	< 290	290	U 1	160	< 270	270	U	150	< 270	270	U 1	50	< 290	290	U	160	< 280	280	U	150
Pentachloronitrobenzene		_	< 290	290	U	160	< 280	280	U	150	< 280	280	U	150	< 290	290	U 1	150	< 270	270	U	140	< 270	270	U 1	50	< 290	290	U	160	< 280	280	U	150
Pentachlorophenol	800	6,700	< 250	250	U	160	< 240	240	U	150	< 240	240	U	150	< 250	250	U 1	160	< 230	230	U	150	< 230	230	U 1	50	< 250	250	U	160	< 240	240	U	150
Phenanthrene	100,000	100,000	< 290	290	-	120	< 280	280	U	120	< 280	280	U	120	< 290	290	U 1	120	< 270	270	U	110	< 270	270	U 1	10	< 290	290	U	120	< 280	280	U	110
Phenol	330	100,000	< 290	290	_	130	< 280	280	U	130	< 280	280	U	130	< 290	290	U 1	130	< 270	270	U	120	< 270	270	U 1	30	< 290	290 290	U	130	< 280	280	U	130
Pyrene Pyridine	100,000	100,000	< 290			100	< 280	28U 28n	11	140	< 280	∠dU 280	U	140	< 290	290	U 1	100	< 270	270	U	130	< 270 < 270	270 270			< 290	290	U	140	< 280 < 280	280	-	140
· 3			- 200	200	-		- 200	200	Ü	00	- 200	200	v	53	- 200	200	Ü		- 2.70	210	ŭ	~~	-2/0	2.10	,		- 200	200	·	.00	- 200	200	ı.	/

- Notes:

 *-6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

 *-6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

 B- This compound is a solvent that is used in the laboratory.

 D- The reported concentration is the result of a diluted analysis.

 U- The compound was analyzed for but not detected at or above the MDL.

 Beddingshipping-indicated exceedance of the NYSDEC UISCO Guidance Value

 Statishipping-indicated exceedance of the NYSDEC RISCO Guidance Value

 Statishipping-indicated exceedance of the NYSDEC RISCO Guidance Value

 Statishipping-indicated exceedance of the NYSDEC RISCO Guidance Value

 N- The concentration is based on the response fo the nearest internal.

TABLE 4 Soil Analytical Results Semi-Volatile Organic Compounds

							15B	5							4	5B6							15B7								5B8		
	NYSDEC Part 375.6	NYDEC Part 375.6		(0-2")			(12-1				(15-17')			(5-7')			(12-14')			(12-14')			(18-20")			(23-25')			(0-2')		1	(12-14')	
COMPOUND	Unrestricted Use Soil Cleanup Objectives*	Restricted Residential Soil Cleanup Objectives*		11/10/2016			11/10/2	016			11/10/2016			11/11/2	016		11/11/2016			11/11/2016			11/11/201	16	11	/11/2016			11/10/2016			11/10/2016	
			Result	μg/Kg RL (Qual MD	L Result	μg/K RL	g Qual	MDL	Result	μg/Kg RL Q	ual MDL	Result	μg/Kg RL	g Qual MDL	Result	μg/Kg RL C	ual MDL	Result	μg/Kg RL Qual	MDL	Result	μg/Kg RL	Qual MDL	Result	μg/Kg RL Qu	ual MDL	Result	μg/Kg RL Q	ual MDL	Result	μg/Kg RL (ual MDL
1,2,4,5-Tetrachlorobenzene			< 250	250	U 13	< 250	250			< 270	270 I	J 140	< 2400	2,400	U 1200	< 280	280	U 140		280 U	140	< 280		U 140	< 280 2	280 U	140	< 260	260 U	J 130	< 280	280	U 140
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene			< 250 < 250	250	U 11	< 250 < 250	250	U	110	< 270	270	J 120	< 2400	2,400	U 1000	< 280	280	U 120	< 280	280 U	120	< 280	280	U 120	< 280 2 < 280 2	280 U	120	< 260	260 U	J 110	< 280	280	U 120
1,2-Diphenylhydrazine			< 250	250	U 12	0 < 250	250	U	120	< 270	270 1	J 130	< 2400	2,400	U 1100	< 280	280	U 130	< 280	280 U	130	< 280	280	U 130	< 280 2	280 U	J 130	< 260	260 U	J 100	< 280	280	U 130
1,3-Dichlorobenzene			< 250	250	U 11	0 < 250	250	U	110	< 270	270	J 110	< 2400	2,400	U 1000	< 280	280	U 120	< 280	280 U	120	< 280	280	U 120	< 280 2	280 U	J 120	< 260	260 U	J 110	< 280	280	U 120
1,4-Dichlorobenzene			< 250	250	U 11	< 250	250	U	110	< 270	270 I	J 110	< 2400	2,400	U 1000	< 280	280	U 120	< 280	280 U	120	< 280	280	U 120	< 280 2	280 U	120	< 260	260 U	J 110	< 280	280	U 120
2,4,5-Trichlorophenol			< 250	250	U 20	< 250	250	U	200	< 270	270 I	J 210	< 2400	2,400	U 1900	< 280	280	U 220	< 280	280 U	220	< 280	280	U 220	< 280 2	280 U	220	< 260	260 U	J 200	< 280	280	U 220
2,4,6-Trichlorophenol			< 180	180	U 12	< 180	180	U	120	< 190	190 I	J 120	< 1700	1,700	U 1100	< 200	200	U 130	< 200	200 U	130	< 200	200	U 130	< 200 2	200 U	J 130	< 190	190 U	J 120	< 200	200	U 130
2,4-Dichlorophenol 2,4-Dimethylphenol			< 180	180	U 13	< 180	180	U	130 en	< 190 < 270	190 I	J 140	< 1700	1,700	U 1200	< 200	200	U 140	< 200	200 U	140	< 200	200	U 140	< 200 2 < 280 2	200 U	1 140	< 190	190 U	J 130	< 200	200	U 140
2,4-Dinitrophenol			< 250	250	U 25	< 250	250	U	250	< 270	270	J 270	< 2400	2,400	U 2400	< 280	280	U 280	< 280	280 U	280	< 280	280	U 280	< 280 2	280 U	280	< 260	260 U	J 260	< 280	280	U 280
2,4-Dinitrotoluene			< 180	180	U 14	< 180	180	U	140	< 190	190 I	J 150	< 1700	1,700	U 1400	< 200	200	U 160	< 200	200 U	160	< 200	200	U 160	< 200 2	200 U	J 160	< 190	190 U	J 150	< 200	200	U 160
2,6-Dinitrotoluene			< 180	180	U 11	< 180	180	U	110	< 190	190 I	J 120	< 1700	1,700	U 1100	< 200	200	U 130	< 200	200 U	130	< 200	200	U 120	< 200 2	200 U	130	< 190	190 U	J 120	< 200	200	U 130
2-Chloronaphthalene			< 250	250	U 10	< 250	250	U	100	< 270	270 I	J 110	< 2400	2,400	U 980	< 280	280	U 110	< 280	280 U	110	< 280	280	U 110	< 280 2	280 U	110	< 260	260 U	J 110	< 280	280	U 110
2-Chlorophenol			< 250	250	U 10	< 250 C < 250	250	U	100	< 270 < 270	270 I	J 110	< 2400	2,400	U 980	< 280	280	U 110	< 280	280 U	110	< 280	280	U 110	< 280 2 < 280 2	280 U	J 110	< 260	260 U	J 110	< 280	280	U 110
2-Methylnaphthalene 2-Methylphenol (o-cresol)	330	100,000	420 < 250	250	- 11 U 17	3 < 250	250	U	170	< 270	270 1	J 110	6,900 < 1600	1,600	- 1000	< 280	280	U 120	< 280	280 U	120	< 280	280	U 120	< 280 2	280 U	1 120	< 260	260 U	J 110	< 280	280	U 120
2-Nitroaniline	330	100,000	< 250	250	U 25	0 < 250	250	U	250	< 270	270	J 270	< 2400	2,400	U 2400	< 280	280	U 280	< 280	280 U	280	< 280	280	U 280	< 280 2	280 U	J 280	< 260	260 U	J 260	< 280	280	U 280
2-Nitrophenol	<u> </u>		< 250	250	U 23	< 250	250	U	230	< 270	270 I	J 240	< 2400	2,400	U 2200	< 280	280	U 250	< 280	280 U	250	< 280	280	U 250	< 280 2	280 U	J 250	< 260	260 U	J 230	< 280	280	U 250
3&4-Methylphenol (m&p-cresol)	330	100,000	< 250	250	U 14	< 250	250	U	140	< 270	270 I	J 150	< 2400	2,400	U 1400	< 280	280	U 160	< 280	280 U	160	< 280	280	U 160	< 280 2	280 U	J 160	< 260	260 U	J 150	< 280	280	U 160
3,3'-Dichlorobenzidine			< 180	180	U 17	< 180	180	U	170	< 190	190 I	J 180	< 1700	1,700	U 1600	< 200	200	U 190	< 200	200 U	190	< 200	200	U 190	< 200 2	200 U	190	< 190	190 U	J 170	< 200	200	U 190
3-Nitroaniline			< 360	360	U 72	< 380	360	U	720	< 390	390 I	J 770	< 3400	3,400	U 6900	< 400	400	U 790	< 400	400 U	800	< 390	390	U 790	< 400 4 < 240 2	400 U	800	< 370	370 U	740	< 400	400	U 800
4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether			< 220	250	U /2	< 220	250	U	110	< 270	270	J //	< 2100	2,100	U 690	< 240	280	U 79	< 240	240 U	120	< 240	280	U 79	< 240 2	240 U	1 120	< 220	220 U	J /4	< 240	280	U 80
4-Chloro-3-methylphenol			< 250	250	U 13	< 250	250	U	130	< 270	270	J 140	< 2400	2,400	U 1200	< 280	280	U 140	< 280	280 U	140	< 280	280	U 140	< 280 2	280 U	140	< 260	260 U	J 130	< 280	280	U 140
4-Chloroaniline			< 290	290	U 17	< 290	290	U	170	< 310	310 I	J 180	< 2700	2,700	U 1600	< 320	320	U 180	< 320	320 U	190	< 310	310	U 180	< 320 3	320 U	190	< 300	300 U	J 170	< 320	320	U 190
4-Chlorophenyl phenyl ether			< 250	250	U 12	< 250	250	U	120	< 270	270 I	J 130	< 2400	2,400	U 1200	< 280	280	U 130	< 280	280 U	130	< 280	280	U 130	< 280 2	280 U	130	< 260	260 U	J 120	< 280	280	U 140
4-Nitroaniline			< 360	360	U 12	< 360	360	U	120	< 390	390 I	J 130	< 3400	3,400	U 1100	< 400	400	U 130	< 400	400 U	130	< 390	390	U 130	< 400 4	400 U	130	< 370	370 U	J 120	< 400	400	U 130
4-Nitrophenol			< 360	360	U 16	< 360	360	U	160	< 390	390 I	J 170	< 3400	3,400	U 1600	< 400	400	U 180	< 400	400 U	180	< 390	390	U 180	< 400 4	400 U	180	< 370	370 U	J 170	< 400	400	U 180
Acenaphthene Acenaphthylene	20,000 100,000	100,000	120 240	250	J 11	< 250 < 250	250	U	110	< 270 < 270	270	J 120	< 2400	2,400	U 1000	< 280	280	U 120	< 280	280 U	120	< 280	280	U 120	< 280 2 < 280 2	280 U	120	< 260	260 U	J 110	< 280 < 280	280	U 120
Acetophenone	100,000	100,000	< 250	250	U 11	0 < 250	250	U	110	< 270	270	J 120	< 2400	2,400	U 1100	< 280	280	U 120	< 280	280 U	120	< 280	280	U 120	< 280 2	280 U	1 120	< 260	260 U	J 120	< 280	280	U 130
Aniline			< 290	290	U 29	< 290	290	U	290	< 310	310 I	J 310	< 2700	2,700	U 2700	< 320	320	U 320	< 320	320 U	320	< 310	310	U 310	< 320 3	320 U	320	< 300	300 U	J 300	< 320	320	U 320
Anthracene	100,000	100,000	250	250	J 12	< 250	250	U	120	< 270	270 I	J 130	< 2400	2,400	U 1100	< 280	280	U 130	< 280	280 U	130	< 280	280	U 130	< 280 2	280 U	130	< 260	260 U	J 120	< 280	280	U 130
Benz(a)anthracene	1,000	1,000	550	250	- 12	< 250	250	U	120	< 270	270 I	J 130	< 1200	1,200	U 1200	< 280	280	U 130	< 280	280 U	130	< 280	280	U 130	< 280 2	280 U	J 130	230	260	J 120	< 280	280	U 140
Benzidine			< 360	360	U 21	< 380	360	U	210	< 390	390 I	J 230	< 3400	3,400	U 2000	< 400	400	U 230	< 400	400 U	240	< 390	390	U 230	< 400 4 < 200 2	400 U	230	< 370	370 U	J 220	< 400	400	U 240
Benzo(a)pyrene Benzo(b)fluoranthene	1,000	1,000	700 800	250	- 12	3 < 180	18U 250	U	120	< 190	270	J 130	< 1100	1,100	U 1100	< 200	200	U 130	< 200	200 U	130	< 200	200	U 130	< 200 2	200 U	130	240 220	260	- 120 I 130	< 200	200	U 130
Benzo(ghi)perylene	1,000	1,000	390	250	- 12	< 250	250	U	120	< 270	270	J 120	< 2400	2,400	U 1100	< 280	280	U 130	< 280	280 U	130	< 280	280	U 130	< 280 2	280 U	130	< 260	260 U	J 120	< 280	280	U 130
Benzo(k)fluoranthene	800	3,900	700	250	- 12	< 250	250	U	120	< 270	270 I	J 130	< 1100	1,100	U 1100	< 280	280	U 130	< 280	280 U	130	< 280	280	U 130	< 280 2	280 U	J 130	220	260	J 120	< 280	280	U 130
Benzoic acid			< 1800	1,800	U 72	< 1800	1,800	U	720	< 1900	1,900 I	J 770	< 17000	17,000	U 6900	< 2000	2,000	U 790	< 2000	2,000 U	800	< 2000	2,000	U 790	3,300 2,	,000,	- 800	< 1900	1,900 U	J 740	< 2000	2,000	U 800
Benzyl butyl phthalate			440	250	- 93	< 250	250	U	93	< 270	270 I	J 99	< 2400	2,400	U 890	< 280	280	U 100	< 280	280 U	100	< 280	280	U 100	< 280 2	280 U	J 100	< 260	260 U	J 96	< 280	280	U 100
Bis(2-chloroethoxy)methane			< 250	250	U 10	< 250	250	U	100	< 270	270 I	J 110	< 2400	2,400	U 950	< 280	280	U 110	< 280	280 U	110	< 280	280	U 110	< 280 2 < 200 2	280 U	110	< 260	260 U	J 100	< 280	280	U 110
Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether			< 180	180	U 98	< 180	180	U	100	< 190	190 I	J 100	< 1700	1,700	U 930	< 200	200	U 110	< 200	200 U	110	< 200	200	U 110	< 200 2 < 280 2	200 U	110	< 190	190 U	J 100	< 200	200	U 110
Bis(2-ethylhexyl)phthalate			110	250	J 10	< 250	250	U	100	< 270	270	J 110	2,600	2,400	- 990	< 280	280	U 110	< 280	280 U	120	< 280	280	U 110	< 280 2	280 U	110	< 260	260 U	J 110	< 280	280	U 120
Carbazole			< 180	180	U 14	< 180	180	U	140	< 190	190 I	J 150	< 1700	1,700	U 1400	< 200	200	U 160	< 200	200 U	160	< 200	200	U 160	< 200 2	200 U	160	< 190	190 U	J 150	< 200	200	U 160
Chrysene	1,000	3,900	690	250	- 12	< 250	250	U	120	< 270	270 I	J 130	< 1200	1,200	U 1200	< 280	280	U 130	< 280	280 U	130	< 280	280	U 130	< 280 2	280 U	J 130	280	260	- 120	< 280	280	U 140
Dibenz(a,h)anthracene	330	330	120	180	J 12	< 180	180	U	120	< 190	190 I	J 120	< 1100	1,100	U 1100	< 200	200	U 130	< 200	200 U	130	< 200	200	U 130	< 200 2	200 U	J 130	< 190	190 U	J 120	< 200	200	U 130
Dibenzofuran	7,000	59,000	160	250	J 11	< 250	250	U	110	< 270	270	J 110	< 2400	2,400	U 1000	< 280	280	U 120	< 280	280 U	120	< 280	280	U 110	< 280 2 < 280 2	280 U	120	< 260	260 U	J 110	< 280	280	U 120
Diethyl phthalate Dimethylphthalate	-		< 250 < 250	250	U 11	< 250 < 250	250	U	110	< 270 < 270	270	J 120	< 2400	2,400	U 1100	< 280	280	U 130	< 280	280 U	130	< 280	280	U 120	< 280 2 < 280 2	280 U	130	< 260	260 U	120	< 280	280	U 130
Di-n-butylphthalate	1		< 250	250	U 96	< 250	250	U	96	< 270	270	J 100	< 2400	2,400	U 910	< 280	280	U 110	< 280	280 U	110	< 280	280	U 100	< 280 2	280 U	110	< 260	260 U	J 99	< 280	280	U 110
Di-n-octylphthalate			< 250	250	U 93	< 250	250	U	93	< 270	270 I	J 99	< 2400	2,400	U 890	< 280	280	U 100	< 280	280 U	100	< 280	280	U 100	< 280 2	280 U	J 100	< 260	260 U	J 96	< 280	280	U 100
Fluoranthene	100,000	100,000	620	250	- 12	< 250	250	U	120	< 270	270 I	J 120	< 2400	2,400	U 1100	< 280	280	U 130	< 280	280 U	130	< 280	280	U 130	< 280 2	280 U	130	510	260	- 120	< 280	280	U 130
Fluorene	30,000	100,000	140	250	J 12	< 250	250	U	120	< 270	270 I	J 130	< 2400	2,400	U 1100	< 280	280	U 130	< 280	280 U	130	< 280	280	U 130	< 280 2	280 U	J 130	< 260	260 U	J 120	< 280	280	U 130
Hexachlorobenzene			< 180	180	U 11	< 180 C < 250	180	U	110	< 190	190 I	J 110	< 1700	1,700	U 1000	< 200	200	U 120	< 200	200 U	120	< 200	200	U 110	< 200 2 < 280 2	200 U	120	< 190	190 U	J 110	< 200	200	U 120
Hexachlorobutadiene Hexachlorocyclopentadiene			< 250	250	U 13	3 < 250	250	U	110	< 270	270 1	J 140	< 2400	2,400	U 1200	< 280	280	U 140	< 280	280 U	120	< 280 < 280	280	U 140	< 280 2	280 U	140	< 260	260 U	J 130	< 280	280	U 150
Hexachloroethane			< 180	180	U 11	< 180	180	U	110	< 190	190	J 120	< 1700	1,700	U 1000	< 200	200	U 120	< 200	200 U	120	< 200	200	U 120	< 200 2	200 U	120	< 190	190 U	J 110	< 200	200	U 120
Indeno(1,2,3-cd)pyrene	500	500	530	250	- 12	< 250	250	U	120	< 270	270	J 130	< 1100	1,100	U 1100	< 280	280	U 130	< 280	280 U	130	< 280	280	U 130	< 280 2	280 U	130	150	260	J 120	< 280	280	U 130
Isophorone			< 180	180	U 10	< 180	180	U	100	< 190	190 I	J 110	< 1700	1,700	U 960	< 200	200	U 110	< 200	200 U	110	< 200	200	U 110	< 200 2	200 U	J 110	< 190	190 U	J 100	< 200	200	U 110
Naphthalene	12,000	100,000	520	250	- 10	< 250	250	U		< 270	270 I	J 110	5,600	2,400	- 990	< 280	280	U 110	< 280	280 U	120	< 280	280	U 110	< 280 2	280 U	110	< 260	260 I	J 110	< 280	280	U 120
Nitrobenzene			< 180	180	U 13	< 180	180	U		< 190	190 I	J 130	< 1700	1,700	U 1200	< 200	200	U 140	< 200	200 U	140	< 200	200	U 140	< 200 2	200 U	J 140	< 190	190 U	J 130	< 200	200	U 140
N-Nitrosodimethylamine	1		< 250	250	U 10	< 250	250	U		< 270	270 I	J 110	< 2400	2,400	U 970	< 280	280	U 110	< 280	280 U	110	< 280	280	U 110	< 280 2	280 U	110	< 260	260 U	J 100	< 280	280	U 110
N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine	 		< 180 < 250	180	U 12	< 180	180	U		< 190	190 I	120	< 1700	1,700	U 1100	< 200	200	130	< 200	200 U	130	< 200	200	U 130	< 200 2 < 280 2	280 U	130	< 190	190 U	120	< 200	200	U 130
N-Nitrosodiphenylamine Pentachloronitrobenzene	1		< 250	250	U 13	3 < 250	250	U		< 270	270	J 140	< 2400	2,400	U 1300	< 280	280	U 150	< 280	280 U	150	< 280	280	U 150	< 280 2	280 11	J 150	< 260	260 I	J 140	< 280	280	U 150
Pentachlorophenol	800	6,700	< 220	220	U 14	< 220	220	U	140	< 230	230	J 150	< 1300	1,300	U 1300	< 240	240	U 150	< 240	240 U	150	< 240	240	U 150	< 240 2	240 U	J 150	< 220	220 U	J 140	< 240	240	U 150
Phenanthrene	100,000	100,000	620	250	- 10	< 250	250	U	100	< 270	270	J 110	< 2400	2,400	U 980	< 280	280	U 110	< 280	280 U	110	< 280	280	U 110	< 280 2	280 U	110	530	260	- 110	< 280	280	U 110
Phenol	330	100,000	< 250	250	U 12	< 250	250	U		< 270	270 I	J 120	< 1100	1,100	U 1100	< 280	280	U 130	< 280	280 U	130	< 280	280	U 130	< 280 2	280 U	J 130	< 260	260 U	J 120	< 280	280	U 130
Pyrene	100,000	100,000	650	250	- 12	< 250	250	U		< 270	270 I	J 130	< 2400	2,400	U 1200	< 280	280	U 140	< 280	280 U	140	< 280	280	U 140	< 280 2	280 U	J 140	460	260	- 130	< 280	280	U 140
Pyridine	[l	< 250	250	U 89	< 250	250	U	89	< 270	270 I	J 95	< 2400	2,400	U 840	< 280	280	U 98	< 280	280 U	98	< 280	280	U 97	< 280 2	280 U	J 98	< 260	260 U	J 91	< 280	280	U 99
Notes:																																	

- Notes:

 *-6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

 *-6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

 D- The compound was analyzed for but not detected at or above the MDL.

 J- The value is estimated.

 N- The concentration is based on the response fo the nearest internal.

TABLE 4 Soil Analytical Results Semi-Volatile Organic Compounds

					15B9	9		15B10			15B11				15B12			15B13						15B14			
COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil	NYDEC Part 375.6 Restricted Residential		(3-5')		(10-		(10-15')		(0-2')	(3-5')	(12-14")		(12-14")		(20-22')		(12-14")			(1-3")			(12-14')		(14-	
	Cleanup Objectives*	Soil Cleanup Objectives*		1/14/2016 µg/Kg		11/14/ µg/		11/14/2016 µg/Kg		11/10/2016 µg/Kg	11/10/2016 µg/Kg	11/10/2016 µg/Kg		11/10/2016 µg/Kg		11/10/2016 µg/Kg		11/10/2016 µg/Kg			1/10/2016 µg/Kg			I/10/2016 μg/Kg		11/10 µg/	
				RL Qual I	MDL	Result RL	Qual MDL	Result RL Qua	MDL 430	Result RL Qual MC		DL Result RL Qual MDL	Result	RL Qua	MDL Result	RL Qual	MDL Result	RL C	lual MDL	Result	RL Qual	MDL		RL Qual	MDL	Result RL	Qual MDL
1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene			< 260	260 U	110	< 250 250 < 250 250	U 110	< 250 250 U	110	<260 260 U 13	0 <250 250 U 1 0 <250 250 U 1	20 < 280 280 U 140 10 < 280 280 U 120	< 270	270 U	120 < 280	280 U	120 < 280	280	U 120	< 260	260 U	110	< 270 2	270 U	120	< 280 280 < 280 280	U 120
1,2-Dichlorobenzene			120	260 J	100	< 250 250	U 100	< 250 250 U	100	< 260 260 U 11	0 <250 250 U	99 < 280 280 U 110	< 270	270 U	110 < 280	280 U	110 < 280	280	U 110	< 260	260 U	100	< 270	270 U	110	< 280 280	U 110
1,2-Diphenylhydrazine			< 260	260 U	120	< 250 250	U 120	< 250 250 U < 250 250 U	120	< 260 260 U 12	0 <250 250 U 1 0 <250 250 U 1	10 < 280 280 U 130 00 < 280 280 U 120	< 270	270 U	130 < 280	280 U	130 < 280	280	U 130	< 260	260 U	120	< 270	270 U	130	< 280 280	U 130
1,3-Dichlorobenzene 1,4-Dichlorobenzene			< 260	260 U	110	< 250 250 < 250 250	U 110	< 250 250 U	110	<260 260 U 11 <260 260 U 11	0 <250 250 U 1 0 <250 250 U 1	00 < 280 280 U 120 00 < 280 280 U 120	< 270	270 U	110 < 280	280 U	120 < 280	280	U 120	< 260	260 U	110	< 270 2	270 U	120	< 280 280 < 280 280	U 120
2,4,5-Trichlorophenol			< 260	260 U	200	< 250 250	U 200	< 250 250 U	200	< 260 260 U 21	0 <250 250 U 1	90 < 280 280 U 220	< 270	270 U	210 < 280	280 U	220 < 280	280	U 220	< 260	260 U	200	< 270	270 U	220	< 280 280	U 220
2,4,6-Trichlorophenol			< 190	190 U	120	< 180 180	U 110	< 180 180 U	120	< 190 190 U 12	0 <180 180 U 1	10 < 200 200 U 130	< 190	190 U	120 < 200	200 U	130 < 200	200	U 130	< 180	180 U	120	< 200	200 U	130	< 200 200	U 130
2,4-Dichlorophenol			< 190	190 U	130	< 180 180	U 130	< 180 180 U < 250 250 U	130	<190 190 U 13	0 < 180 180 U 1 < 250 250 U	20 < 200 200 U 140 37 < 280 280 U 98	< 190	190 U	140 < 200 96 < 280	200 U	140 < 200	200	U 140	< 180	180 U	130	< 200	200 U	140	< 200 200	U 140
2,4-Dimethylphenol 2,4-Dinitrophenol			170 < 260	260 U	260	< 250 250 < 250 250	U 250	< 250 250 U	250	<260 260 U 26	<250 250 U 2 0 <250 250 U 2	57 < 280 280 U 280 50 < 280 280 U 280	< 270	270 U	270 < 280	280 U	280 < 280	280	U 280	< 260	260 U	260	< 270 2	270 U	270	< 280 280 < 280 280	U 280
2,4-Dinitrotoluene			< 190	190 U	150	< 180 180	U 140	< 180 180 U	140	< 190 190 U 15	0 <180 180 U 1	40 < 200 200 U 160	< 190	190 U	150 < 200	200 U	160 < 200	200	U 160	< 180	180 U	140	< 200	200 U	150	< 200 200	U 160
2,6-Dinitrotoluene			< 190	190 U	120	< 180 180	U 110	< 180 180 U	110	< 190 190 U 12	0 <180 180 U 1	10 < 200 200 U 120	< 190	190 U	120 < 200	200 U	130 < 200	200	U 130	< 180	180 U	120	< 200	200 U	120	< 200 200	U 130
2-Chloronaphthalene			< 260	260 U	110	< 250 250 < 250 250	U 100	< 250 250 U < 250 250 U	100	< 260 260 U 11 < 260 260 U 11	0 <250 250 U 1 0 <250 250 U 1	00 < 280 280 U 110 00 < 280 280 U 110	< 270	270 U	110 < 280	280 U	120 < 280 120 < 280	280	U 110	< 260 < 260	260 U	100	< 270 2	270 U	110	< 280 280 < 280 280	U 110
2-Chlorophenol 2-Methylnaphthalene			1,600	260 -	110	< 250 250	U 110	<250 250 U	110	330 260 - 11	0 <250 250 U 1	00 < 280 280 U 120	1,300	270 -	110 < 280	280 U	120 < 280	280	U 120	< 260	260 U	110	< 270	270 U	120	< 280 280	U 120
2-Methylphenol (o-cresol)	330	100,000	< 260	260 U	170	< 250 250	U 170	< 250 250 U	170	< 260 260 U 18	0 <250 250 U 1	70 < 280 280 U 190	< 270	270 U	180 < 280	280 U	190 < 280	280	U 190	< 260	260 U	170	< 270	270 U	180	< 280 280	U 190
2-Nitroaniline			< 260	260 U :	260	< 250 250	U 250	< 250 250 U	250	< 260 260 U 26	0 <250 250 U 2	50 < 280 280 U 280	< 270	270 U	270 < 280	280 U	280 < 280	280	U 280	< 260	260 U	260	< 270	270 U	270	< 280 280	U 280
2-Nitrophenol		400	< 260	260 U	240 150	< 250 250 < 250 250	U 230	< 250 250 U < 250 250 U	230	<260 260 U 24 <260 260 U 15	0 <250 250 U 2 0 <250 250 U 1	20 < 280 280 U 250 40 < 280 280 U 160	< 270	270 U	240 < 280 150 < 280	280 U	260 < 280 160 < 280	280	U 250	< 260 < 260	260 U	230	< 270 2	270 U	250 150	< 280 280 < 280 280	U 250
3&4-Methylphenol (m&p-cresol) 3,3'-Dichlorobenzidine	330	100,000	< 190	190 U	180	< 250 250 < 180 180	U 170	< 180 180 U	170	<190 190 U 18	0 < 180 180 U 1	70 < 200 200 U 190	< 190	190 U	180 < 200	200 U	190 < 200	200	U 190	< 180	180 U	170	< 200	200 U	190	< 200 200	U 190
3-Nitroaniline			< 370	370 U	740	< 360 360	U 710	< 360 360 U	730	<370 370 U 75	0 <350 350 U 7	00 < 390 390 U 790	< 390	390 U	770 < 410	410 U	810 < 400	400	U 790	< 370	370 U	730	< 390	390 U	790	< 400 400	U 800
4,6-Dinitro-2-methylphenol			< 220	220 U	74	< 210 210	U 71	< 220 220 U	73	< 220 220 U 79	130 210 J	70 < 240 240 U 79	< 230	230 U	77 < 240	240 U	81 < 240	240	U 79	< 220	220 U	73	< 240	240 U	79	< 240 240	U 80
4-Bromophenyl phenyl ether			< 260	260 U	110	< 250 250 < 250 250	U 110	< 250 250 U < 250 250 U	110	<260 260 U 11 <260 260 U 13	0 <250 250 U 1 0 <250 250 U 1	00 < 280 280 U 120 20 < 280 280 U 140	< 270	270 U	110 < 280 140 < 280	280 U	120 < 280 140 < 280	280 280	U 120	< 260 < 260	260 U 260 II	110	< 270 2	270 U 270 U	120 140	< 280 280 < 280 280	U 120
4-Chloro-3-methylphenol 4-Chloroaniline			< 300	300 U	170	< 290 290	U 170	<290 290 U	170	<300 300 U 17	0 <280 280 U 1	60 < 320 320 U 180	< 310	310 U	180 < 320	320 U	190 < 320	320	U 190	< 290	290 U	170	< 310	310 U	180	< 320 320	U 190
4-Chlorophenyl phenyl ether			< 260	260 U	120	< 250 250	U 120	< 250 250 U	120	< 260 260 U 13	0 <250 250 U 1	20 < 280 280 U 130	< 270	270 U	130 < 280	280 U	140 < 280	280	U 130	< 260	260 U	120	< 270	270 U	130	< 280 280	U 130
4-Nitroaniline			< 370	370 U	120	< 360 360	U 120	< 360 360 U	120	<370 370 U 13	0 <350 350 U 1	20 < 390 390 U 130	< 390	390 U	130 < 410	410 U	140 < 400	400	U 130	< 370	370 U	120	< 390	390 U	130	< 400 400	U 130
4-Nitrophenol	20.000	400.000	< 370 410	370 U	170	< 360 360 < 250 250	U 160	< 360 360 U < 250 250 U	160	<370 370 U 17 <260 260 U 11	0 <350 350 U 1 0 <250 250 U 1	60 < 390 390 U 180 10 < 280 280 U 120	< 390	390 U	170 < 410 120 < 280	410 U	180 < 400 120 < 280	280	U 180	< 370	370 U	170	< 390 3	390 U 270 U	180	< 400 400 < 280 280	U 180
Acenaphthene Acenaphthylene	20,000	100,000	170	260 J	100	< 250 250	U 100	< 250 250 U	100	190 260 J 10	0 < 250 250 U	98 < 280 280 U 110	< 270	270 U	110 < 280	280 U	110 < 280	280	U 110	< 260	260 U	100	< 270	270 U	110	< 280 280	U 110
Acetophenone	,		< 260	260 U	120	< 250 250	U 110	< 250 250 U	110	< 260 260 U 12	0 <250 250 U 1	10 < 280 280 U 120	< 270	270 U	120 < 280	280 U	130 < 280	280	U 120	< 260	260 U	110	< 270	270 U	120	< 280 280	U 120
Aniline			< 300	300 U	300	< 290 290	U 290	< 290 290 U	290	<300 300 U 30	0 <280 280 U 2	80 < 320 320 U 320	< 310	310 U	310 < 320	320 U	320 < 320	320	U 320	< 290	290 U	290	< 310	310 U	310	< 320 320	U 320
Anthracene	1,000	1,000	1,500	260 -	120	< 250 250 < 250 250	U 120	< 250 250 U < 250 250 U	120	170 260 J 12 480 260 - 13	0 < 250 250 U 1 0 < 250 250 U 1	20 < 280 280 U 130 20 < 280 280 U 130	< 270	270 U	130 < 280	280 U	130 < 280 140 < 280	280	U 130	< 260 330	260 U	120	< 270	270 U	130	< 280 280 < 280 280	U 130
Benz(a)anthracene Benzidine	1,000	1,000	< 370	370 U	220	< 360 360	U 210	< 360 360 U	210	< 370 370 U 22	0 <350 350 U 2	10 < 390 390 U 230	< 390	390 U	230 < 410	410 U	240 < 400	400	U 230	< 370	370 U	220	< 390	390 U	230	< 400 400	U 240
Benzo(a)pyrene	1,000	1,000	1,100	190 -	120	< 180 180	U 120	< 180 180 U	120	870 190 - 12	0 < 180 180 U 1	10 < 200 200 U 130	< 190	190 U	130 < 200	200 U	130 < 200	200	U 130	300	180 -	120	< 200	200 U	130	< 200 200	U 130
Benzo(b)fluoranthene	1,000	1,000	1,100 640	260 -	130	< 250 250 < 250 250	U 120	< 250 250 U < 250 250 U	120	920 260 - 13 620 260 - 12	0 < 250 250 U 1	20 < 280 280 U 130 10 < 280 280 U 130	< 270	270 U	130 < 280	280 U	140 < 280	280	U 140	380 180	260 -	130	< 270 2	270 U	130	< 280 280 < 280 280	U 140
Benzo(ghi)perylene Benzo(k)fluoranthene	100,000	100,000 3,900	900	260 -	120	< 250 250 < 250 250	U 120	< 250 250 U	120	770 260 - 12	0 <250 250 U 1	10 < 280 280 U 130 20 < 280 280 U 130	< 270	270 U	130 < 280	280 U	130 < 280	280	U 130	300	260 J	120	< 270	270 U	130	< 280 280	U 130
Benzoic acid	000	0,000	< 1900 1	1,900 U	740	< 1800 1,800	U 710	< 1800 1,800 U	730	< 1900 1,900 U 75	0 <1800 1,800 U 3	00 <2000 2,000 U 790	< 1900	1,900 U	770 < 2000	2,000 U	810 < 2000	2,000	U 790	< 1800	1,800 U	730	< 2000 2	U 000,	790	< 2000 2,000	U 800
Benzyl butyl phthalate			< 260	260 U	96	< 250 250	U 92	< 250 250 U	94	< 260 260 U 90	< 250 250 U	91 < 280 280 U 100	< 270	270 U	99 < 280	280 U	100 < 280	280	U 100	< 260	260 U	94	< 270	270 U	100	< 280 280	U 100
Bis(2-chloroethoxy)methane			< 260	260 U	100	< 250 250 < 180 180	U 99	< 250 250 U < 180 180 U	100	<260 260 U 10 <190 190 U 10	0 <250 250 U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	97 < 280 280 U 110 95 < 200 200 U 110	< 270	270 U	110 < 280	280 U	110 < 280 110 < 200	280	U 110	< 260	260 U	100	< 270 2	270 U	110	< 280 280 < 200 200	U 110
Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether			< 260	260 U	100	< 250 250	U 99	< 250 250 U	100	< 260 260 U 10	0 <250 250 U	98 < 280 280 U 110	< 270	270 U	110 < 280	280 U	110 < 280	280	U 110	< 260	260 U	100	< 270	270 U	110	< 280 280	U 110
Bis(2-ethylhexyl)phthalate			1,600	260 -	110	< 250 250	U 100	< 250 250 U	100	5,000 260 - 11	0 < 250 250 U 1	00 < 280 280 U 110	970	270 -	110 < 280	280 U	120 < 280	280	U 110	170	260 J	110	< 270	270 U	110	< 280 280	U 120
Carbazole			360	190 -	150	< 180 180	U 140	< 180 180 U	150	< 190 190 U 15	0 <180 180 U 1	40 <200 200 U 160	< 190	190 U	150 < 200	200 U	160 < 200	200	U 160	< 180	180 U	150	< 200	200 U	160	< 200 200	U 160
Chrysene	1,000	3,900 330	1,600	260 - 190 II	120	< 250 250 < 180 180	U 120	< 250 250 U < 180 180 U	120	670 260 - 13 170 190 J 12	0 < 250 250 U 1 0 < 180 180 U 1	20 < 280 280 U 130 10 < 200 200 U 130	< 270	270 U	130 < 280	280 U	140 < 280 130 < 200	280	U 130	420 < 180	260 - 180 II	120	< 270 2	200 U	130	< 280 280 < 200 200	U 130
Dibenz(a,h)anthracene Dibenzofuran	7,000	59,000	340	260 -	110	< 250 250	U 100	< 250 250 U	110	< 260 260 U 11	0 <250 250 U 1	00 <280 280 U 120	< 270	270 U	110 < 280	280 U	120 < 280	280	U 120	< 260	260 U	110	< 270	270 U	110	< 280 280	U 120
Diethyl phthalate			< 260	260 U	120	< 250 250	U 110	< 250 250 U	110	< 260 260 U 12	0 <250 250 U 1	10 < 280 280 U 120	< 270	270 U	120 < 280	280 U	130 < 280	280	U 130	< 260	260 U	120	< 270	270 U	120	< 280 280	U 130
Dimethylphthalate			< 260	260 U	120	< 250 250 < 250 250	U 110	< 250 250 U < 250 250 U	110	<260 260 U 12 <260 260 U 10	0 <250 250 U 1 0 <250 250 U	10 < 280 280 U 120	< 270	270 U	120 < 280 100 < 280	280 U	130 < 280 110 < 280	280	U 120	< 260	260 U	110	< 270 2	270 U	120	< 280 280 < 280 280	U 120
Di-n-butylphthalate Di-n-octylphthalate			< 260	260 U	96	< 250 250 < 250 250	U 92	<250 250 U	94	<260 260 U 90	<250 250 U	91 < 280 280 U 100	< 270	270 U	99 < 280	280 U	100 < 280	280	U 100	< 260	260 U	94	< 270	270 U	100	< 280 280	U 100
Fluoranthene	100,000	100,000	6,100	260 -	120	< 250 250	U 120	< 250 250 U	120	950 260 - 12	0 < 250 250 U 1	10 < 280 280 U 130	< 270	270 U	120 < 280	280 U	130 < 280	280	U 130	530	260 -	120	< 270	270 U	130	< 280 280	U 130
Fluorene	30,000	100,000	590	260 -	120	< 250 250	U 120	< 250 250 U	120	< 260 260 U 12	0 <250 250 U 1	20 <280 280 U 130	< 270	270 U	130 < 280	280 U	130 < 280	280	U 130	< 260	260 U	120	< 270	270 U	130	< 280 280	U 130
Hexachlorobenzene			< 190	190 U 260 U	110	< 180 180 < 250 250	U 100	< 180 180 U < 250 250 U	110	<190 190 U 11 <260 260 U 14	0 <180 180 U 1 0 <250 250 U 1	00 < 200 200 U 120 30 < 280 280 U 140	< 190	190 U	110 < 200 140 < 280	200 U	120 < 200 150 < 280	200	U 120	< 180	180 U 260 U	110	< 200 2	200 U 270 U	110	< 200 200 < 280 280	U 120
Hexachlorobutadiene Hexachlorocyclopentadiene	1		< 260	260 U	110	< 250 250	U 110	<250 250 U	110	<260 260 U 11	0 <250 250 U 1	10 < 280 280 U 120	< 270	270 U	120 < 280	280 U	120 < 280	280	U 120	< 260	260 U	110	< 270	270 U	120	< 280 280	U 120
Hexachloroethane			< 190	190 U	110	< 180 180	U 110	< 180 180 U	110	<190 190 U 11	0 <180 180 U 1	10 < 200 200 U 120	< 190	190 U	120 < 200	200 U	120 < 200	200	U 120	< 180	180 U	110	< 200	200 U	120	< 200 200	U 120
Indeno(1,2,3-cd)pyrene	500	500	630	260 -	120	< 250 250	U 120	< 250 250 U	120	720 260 - 12	0 < 250 250 U 1	20 < 280 280 U 130	< 270	270 U	130 < 280	280 U	130 < 280	280	U 130	180	260 J	120	< 270	270 U	130	< 280 280	U 130
Isophorone	12,000	100,000	< 190 1,000	190 U 260 -	100	< 180 180 < 250 250	U 100	<180 180 U <250 250 U	100	<190 190 U 10 280 260 - 11	0 < 180 180 U 1 0 < 250 250 U 1	98 < 200 200 U 110 00 < 280 280 U 110	< 190 770	190 U	110 < 200 110 < 280	200 U	110 < 200 120 < 280	200		910 130	180 - 260 J	100		200 U 270 U	110	< 200 200 < 280 280	
Naphthalene Nitrobenzene	12,000	100,000	< 190	190 U	_	< 180 180	U 130	<180 180 U	130	< 190 190 U 13		20 < 200 200 U 140	< 190	190 U	130 < 200	200 U	140 < 200	200	U 140		180 U			200 U	140	< 200 200	
N-Nitrosodimethylamine				260 U	100	< 250 250	U 100	< 250 250 U	100	< 260 260 U 11		99 < 280 280 U 110	< 270	270 U	110 < 280	280 U	110 < 280	280	U 110		260 U	100	< 270	270 U	110	< 280 280	U 110
N-Nitrosodi-n-propylamine			< 190	190 U	120	< 180 180	U 120	< 180 180 U	120	< 190 190 U 12		10 < 200 200 U 130	< 190	190 U	120 < 200	200 U	130 < 200	200	U 130	< 180	180 U	120	< 200	200 U	130	< 200 200	U 130
N-Nitrosodiphenylamine			< 260	260 U	140	< 250 250 < 250 250	U 140	<250 250 U <250 250 U	140	<260 260 U 14 <260 260 U 14		30 < 280 280 U 150 30 < 280 280 U 150	< 270	270 U	150 < 280 140 < 280		160 < 280 150 < 280	280 280	U 150	< 260 < 260	260 U		< 270 2	270 U	150	< 280 280 < 280 280	U 150
Pentachloronitrobenzene Pentachlorophenol	800	6,700	< 220	220 U	_	< 210 210	U 140	<220 220 U	_	<220 220 U 14		30 < 240 240 U 150	< 230	230 U	150 < 240	240 U	150 < 240	240	U 150		220 U		< 240	240 U	150	< 240 240	
Phenanthrene	100,000	100,000	4,100	260 -	110	< 250 250	U 100	< 250 250 U	100	620 280 - 11	0 < 250 250 U 1	00 < 280 280 U 110	< 270	270 U	110 < 280	280 U	120 < 280	280	U 110		260 -	100	< 270	270 U	110	< 280 280	
Phenol	330	100,000	< 260	260 U	120	< 250 250	U 110	< 250 250 U	_	< 260 260 U 12		10 < 280 280 U 130	< 270	270 U	120 < 280	280 U	130 < 280	280	U 130		260 U		< 270	270 U	130	< 280 280	
Pyrene Pyridine	100,000	100,000	5,500	260 -	130	< 250 250 < 250 250	U 120	<250 250 U <250 250 U	130	1,500 260 - 13 < 260 260 U 90	0 < 250 250 U 1 : < 250 250 U	20 < 280 280 U 140 36 < 280 280 U 97	< 270	270 U	130 < 280 95 < 280	280 U	140 < 280	280	U 140		260 - 260 U		< 270 2	270 U		< 280 280 < 280 280	
	-1								1			200 0 97	1	1 1 0	200	1 1 3	- 230				- 1 -		-	-10	1		1 - 1
lotes: - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup 0		S- This compound is a so																									

- Notes:
 6. NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
 8. This compound is a solvent that is used in the laboratory.
 The resported concentration is the result of a diluted analysis.

 The value is estimated.
 The value is estimated.
 The value is estimated.
 The concentration is based on the response fo the nearest internal.

TABLE 4 Soil Analytical Results Semi-Volatile Organic Compounds

							15B14								15B19						15B20		Duplica 15B2	ate 0		Duplicate 2 15B7		Ouplicate 3 15B19		Duplicate 4 15B2	
COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil Cleanup Objectives*	NYDEC Part 375.6 Restricted Residential Soil Cleanup Objectives*		(1-3')			(12-14")		(14-1		(0-		(12-1			(18-20')		(20-25') 11/14/2016	(0-		(12-14)		(12-14	ח		(12-14')		(0-2')		(12-14')	
	Cleanup Objectives*	Soil Cleanup Objectives*											MDL Result RL																		
1,2,4,5-Tetrachlorobenzene				RL Qual		Result < 270		MDL 140	Result RL < 280 280		Result RL < 250 250	Qual		Qual				It RL Qual ME 0 290 U 14		Qual ME	DL Result RL 80 < 260 260					270 U	MDL Result 140 < 250		130 < 280		
1,2,4-Trichlorobenzene			< 260	260 U	110	< 270	270 U	120	< 280 280	U 120	< 250 250	U	110 < 280 280	U	120 < 2900	2,900 U	1200 < 29	0 290 U 12	0 < 250 250	U 11	10 < 260 260	U 110	< 260 260	U 110	0 < 270	270 U	120 < 250	250 U	110 < 280	280 U	120
1,2-Dichlorobenzene				200	100	< 270		110	< 280 280		< 250 250	U		U				0 290 U 12		U 10			< 260 260	U 110		270 U	110 < 250	250 U	100 < 280	280 U	110
1,2-Diphenylhydrazine			< 260	260 U	120	< 270	270 U	130	< 280 280 < 280 280		< 250 250 < 250 250	U	120 < 280 280	U	130 < 2900 120 < 2900		1300 < 29	0 290 U 13	0 < 250 250 0 < 250 250	U 12	20 < 260 260 10 < 260 260	U 120	< 260 260 < 260 260	U 120	0 < 270 0 < 270		130 < 250	250 U	120 < 280	280 U	130
1,3-Dichlorobenzene			< 260	260 U	110	< 270	270 U	120	< 280 280	U 120	< 250 250	U	110 < 280 280	U	120 < 2900		1200 < 29		0 < 250 250	U 11	10 < 260 260	U 110	< 260 260	U 110	0 < 270		110 < 250	250 U	110 < 280	280 U	120
1,4-Dichlorobenzene 2,4,5-Trichlorophenol			< 260	260 U	200	< 270	270 U	220	< 280 280	U 220	< 250 250	U	200 < 280 280	U	220 < 2900	2,900 U	2200 < 29	0 290 U 23	0 < 250 250	U 20	0 < 260 260	U 200	< 260 260	U 210	0 < 270	270 U :	210 < 250	250 U	200 < 280	280 U	220
2,4,6-Trichlorophenol			< 180	180 U	120	< 200	200 U	130	< 200 200	U 130	< 180 180	U	110 < 200 200	U	130 < 2000	2,000 U	1300 < 21	0 210 U 13	0 < 180 180	U 11	10 < 190 190	U 120	< 190 190	U 120	0 < 190	190 U	120 < 180	180 U	110 < 200	200 U	130
2,4-Dichlorophenol			< 180	180 U	130	< 200	200 U	140	< 200 200	U 140	< 180 180	U	130 < 200 200	U	140 < 2000	2,000 U	1400 < 21	0 210 U 14	0 < 180 180	U 13	190 190	U 130	< 190 190	U 130	0 < 190	190 U	140 < 180	180 U	130 < 200	200 U	140
2,4-Dimethylphenol			< 260	260 U	91	< 270	270 U	97	< 280 280 < 280 280	U 99	< 250 250 < 250 250	U	89 < 280 280	U	99 < 2900 280 < 2900	2,900 U	1000 < 29 2900 < 29		0 < 250 250 0 < 250 250	U 8	9 < 260 260 50 < 260 260	U 92	< 260 260 < 260 260	U 93	3 < 270 0 < 270	270 U	96 < 250	250 U	89 < 280 250 < 280	280 U	100
2,4-Dinitrophenol 2,4-Dinitrotoluene			< 180	180 U	140	< 200	270 U	150	< 200 200	U 160	< 180 180	U	140 < 200 200	U	160 < 2000	2,000 U	1600 < 21	0 290 U 16	0 < 250 250	U 14	0 < 190 190	U 150	< 190 190	U 150	0 < 190	190 U	150 < 180	180 U	140 < 200	200 U	160
2,6-Dinitrotoluene			< 180	180 U	120	< 200	200 U	120	< 200 200	U 130	< 180 180	U	110 < 200 200	U	130 < 2000	2,000 U	1300 < 21	0 210 U 13	0 < 180 180	U 11	10 < 190 190	U 120	< 190 190	U 120	0 < 190	190 U	120 < 180	180 U	110 < 200	200 U	130
2-Chloronaphthalene			< 260	260 U	100	< 270	270 U	110	< 280 280	U 110	< 250 250	U	100 < 280 280	U	110 < 2900	2,900 U	1200 < 29	0 290 U 12	0 < 250 250	U 10	00 < 260 260	U 110	< 260 260	U 110	0 < 270	270 U	110 < 250	250 U	100 < 280	280 U	110
2-Chlorophenol			< 260	260 U	100	< 270	270 U	110	< 280 280	U 110	< 250 250	U	100 < 280 280	U	110 < 2900		1200 < 29	0 290 U 12	0 < 250 250	U 10	00 < 260 260	U 110	< 260 260	U 110	0 < 270	270 U	110 < 250	250 U	100 < 280	280 U	110
2-Methylnaphthalene			< 260	260 U	110	< 270	270 U	120	< 280 280 < 280 280	U 120	< 250 250 < 250 250	U	110 < 280 280	U	120 11,000		1200 < 29	0 290 U 12	0 < 250 250 0 < 250 250	U 11	10 < 260 260 260 70 < 260 260	U 110	< 260 260 < 260 260	U 110	0 < 270	270 U	120 < 250	250 U	110 1,100	280 -	120
2-Methylphenol (o-cresol)	330	100,000		260 U	260	< 270	270 U	270	< 280 280	U 190		- 11	250 < 280 280	U II	280 < 2900	.,		0 290 U 19		U 1/		U 170	< 260 260	U 180	0 < 270	270 U	270 < 250	250 U	250 < 280	280 U	280
2-Nitroaniline 2-Nitrophenol			< 260	260 U	230	< 270	270 U	250	< 280 280		< 250 250	U	230 < 280 280	U	250 < 2900	2,900 U	2600 < 29		0 < 250 250	U 23	30 < 260 260	U 240	< 260 260	U 240	0 < 270		240 < 250	250 U	230 < 280	280 U	260
3&4-Methylphenol (m&p-cresol)	330	100,000	< 260	260 U	140	< 270	270 U	150	< 280 280	U 160	< 250 250	U	140 < 280 280	U	160 < 2900	2,900 U	1600 < 29	0 290 U 16	0 < 250 250	U 14	10 < 260 260	U 150	< 260 260	U 150	0 < 270	270 U	150 < 250	250 U	140 < 280	280 U	160
3,3'-Dichlorobenzidine			< 180	180 U	170	< 200	200 U	190	< 200 200	U 190	< 180 180	U	170 < 200 200	U	190 < 2000		1900 < 21		0 < 180 180	U 17	ro < 190 190	U 180	< 190 190	U 180	0 < 190	190 U	180 < 180	180 U	170 < 200	200 U	190
3-Nitroaniline	1		< 370	370 U	730	< 390	390 U	790	< 400 400	U 800	< 360 360	U	720 < 400 400	U	800 < 4100	4,100 U	8200 < 41		0 < 360 360	U 71	10 < 370 370	U 740	< 380 380	U 750	0 < 390	390 U :	770 < 360	360 U	720 < 400	400 U	810
4,6-Dinitro-2-methylphenol	 		< 220	22U U	110	< 240	240 U	/9 120	< 240 240 < 280 280	U 80	< 220 220 < 250 250	U	12 < 240 240 110 < 280 280	U	ou < 2500 120 < 2900	2,500 U	820 < 25 1200 < 29	290 U 12	2 < 210 210	U 10	1 < 220 220 00 < 260 260	U 110	< 230 230 < 250 260	U 75	5 < 230 0 < 270	230 U	110 < 250	210 U	110 < 240	240 U	120
4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol			< 260	260 U	130	< 270	270 U	140	< 280 280	U 140	< 250 250	U	130 < 280 280	U	140 < 2900	2,900 U	1400 < 29	0 290 U 14	0 < 250 250	U 13	10 < 260 260	U 130	< 260 260	U 130	0 < 270	270 U	140 < 250	250 U	130 < 280	280 U	140
4-Chloroaniline			< 290	290 U	170	< 310	310 U	180	< 320 320	U 190	< 290 290	U	170 < 320 320	U	190 < 3300	3,300 U	1900 < 33	0 330 U 19	0 < 290 290	U 17	70 < 300 300	U 170	< 300 300	U 180	0 < 310	310 U	180 < 290	290 U	170 < 320	320 U	190
4-Chlorophenyl phenyl ether			< 260	260 U	120	< 270	270 U	130	< 280 280	U 130	< 250 250	U	120 < 280 280	U	130 < 2900	2,900 U	1400 < 29	0 290 U 14	0 < 250 250	U 12	20 < 260 260	U 120	< 260 260	U 130	0 < 270	270 U	130 < 250	250 U	120 < 280	280 U	140
4-Nitroaniline			< 370	370 U	120	< 390	390 U	130	< 400 400	U 130	< 360 360	U	120 < 400 400	U	130 < 4100	4,100 U	1400 < 41	0 410 U 14	0 < 360 360	U 12	20 < 370 370	U 120	< 380 380	U 130	0 < 390	390 U	130 < 360	360 U	120 < 400	400 U	130
4-Nitrophenol			< 370	370 U	170	< 390	390 U	180	< 400 400	U 180	< 360 360 < 250 250	U	160 < 400 400	U	180 < 4100	4,100 U	1800 < 41		0 < 360 360 0 < 250 250	U 16	50 < 370 370 10 < 360 360	U 170	< 380 380 < 260 260	U 170	0 < 390	390 U	170 < 360	360 U	160 < 400	400 U	180
Acenaphthene Acenaphthylene	20,000	100,000	< 260	260 U	100	< 270	270 U	110	< 280 280	U 110	< 250 250	U	100 < 280 280	U	110 < 2900	2,900 U	1100 < 29	0 290 U 12	0 < 250 250	U 10	00 < 260 260	U 100	< 260 260	U 110	0 < 270	270 U	110 < 250	250 U	100 < 280	280 U	110
Acetophenone	100,000	100,000	< 260	260 U	110	< 270	270 U	120	< 280 280	U 120	< 250 250	U	110 < 280 280	U	120 < 2900	2,900 U	1300 < 29	0 290 U 13	0 < 250 250	U 11	10 < 260 260	U 120	< 260 260	U 120	0 < 270	270 U	120 < 250	250 U	110 < 280	280 U	130
Aniline			< 290	290 U	290	< 310	310 U	310	< 320 320	U 320	< 290 290	U	290 < 320 320	U	320 < 3300	3,300 U	3300 < 33		0 < 290 290	U 29	90 < 300 300	U 300	< 300 300	U 301	0 < 310		310 < 290	290 U	290 < 320	320 U	320
Anthracene	100,000	100,000	< 260	260 U	120	< 270	270 U	130	< 280 280	U 130	230 250	J	120 < 280 280	U	130 < 2900	2,900 U	1300 < 29		0 < 250 250	U 12	20 < 260 260	U 120	< 250 260	U 120	0 < 270		130 210	250 J	120 < 280	280 U	130
Benz(a)anthracene	1,000	1,000	330 < 370	260 -	120	< 270	270 U	130	< 280 280 < 400 400	U 130	910 250 < 360 360	-	120 < 280 280	U	130 < 1400 230 < 4100	1,400 U	1400 < 29 2400 < 41		0 < 250 250 0 < 360 360	U 12	20 < 260 260 10 < 370 370	U 120	< 260 260 < 380 380	U 130	0 < 270		130 980 230 < 360	250 -	120 < 280 210 < 400	280 U	140
Benzidine Benzo(a)pyrene	1,000	1,000	300	180 -	120	< 200	200 U	130	< 200 200	U 130	850 180	-	120 < 200 200	U	130 < 1300	1,300 U	1300 < 21		0 < 180 180	U 12	20 < 190 190	U 120	< 190 190	U 121	0 < 190	190 U	130 930	180 -	120 < 200	200 U	130
Benzo(b)fluoranthene	1,000	1,000	380	260 -	130	< 270	270 U	130	< 280 280	U 140	680 250	-	120 < 280 280	U	140 < 1400	1,400 U	1400 < 29	0 290 U 14	0 < 250 250	U 12	20 < 260 260	U 130	< 260 260	U 130	0 < 270	270 U	130 730	250 -	120 < 280	280 U	140
Benzo(ghi)perylene	100,000	100,000	180	260 J	120	< 270	270 U	130	< 280 280	U 130	590 250	-	120 < 280 280	U	130 < 2900	2,900 U	1300 < 29	0 290 U 13	0 < 250 250	U 12	20 < 260 260	U 120	< 260 260	U 121	0 < 270	270 U	130 590	250 -	120 < 280	280 U	130
Benzo(k)fluoranthene	800	3,900	300	260 -	120	< 270	270 U	130	< 280 280 < 2000 2,000	U 130	670 250 < 1800 1,800	-	120 < 280 280	U	130 < 1400	1,400 U	1400 < 29	0 290 U 14	0 < 250 250	U 12	20 < 260 260	U 120	< 260 260	U 121	0 < 270	270 U	130 730	250 -	120 < 280	280 U	130
Benzoic acid			< 1800	1,800 U	730	< 2000	2,000 U	100	< 2000 2,000 < 280 280	U 800	< 1800 1,800 < 250 250	11	720 < 2000 2,000	U	100 < 20000	20,000 U	1100 < 29	0 2,100 U 82	0 < 1800 1,800 0 < 250 250	U 71	2 < 260 260	U 740	< 1900 1,900 < 260 260	U 750	0 < 1900 r < 270	1,900 U	770 < 1800	1,800 U	720 < 2000	2,000 U	810
Benzyl butyl phthalate Bis(2-chloroethoxy)methane			< 260	260 U	100	< 270	270 U	110	< 280 280	U 110	< 250 250	U	99 < 280 280	U	110 < 2900	2,900 U	1100 < 29		0 < 250 250	U 9	9 < 260 260	U 100	< 260 260	U 100	0 < 270	270 U	110 < 250	250 U	99 < 280	280 U	110
Bis(2-chloroethyl)ether			< 180	180 U	99	< 200	200 U	110	< 200 200	U 110	< 180 180	U	97 < 200 200	U	110 < 2000	2,000 U	1100 < 21	0 210 U 11	0 < 180 180	U 9	6 < 190 190	U 100	< 190 190	U 101	0 < 190	190 U	100 < 180	180 U	97 < 200	200 U	110
Bis(2-chloroisopropyl)ether			< 260	260 U	100	< 270	270 U	110	< 280 280	U 110	< 250 250	U	100 < 280 280	U	110 < 2900	2,900 U	1100 < 29		0 < 250 250	U 9	9 < 260 260	U 100	< 260 260	U 100	0 < 270	270 U	110 < 250	250 U	99 < 280	280 U	110
Bis(2-ethylhexyl)phthalate			170 < 180	260 J	110	< 270	270 U	110	< 280 280 < 200 200		< 250 250 < 180 180	U	100 < 280 280	U	110 < 2900	2,000	1200 < 29	0 290 U 12	0 < 250 250 0 < 180 180	U 10	00 < 260 260 10 < 190 190	U 110	< 260 260 < 190 190	U 110	0 < 270		110 < 250	250 U	100 < 280	280 U	120
Carbazole			< 180 420	180 U	150	< 200	200 U	160	< 200 200 < 280 280		< 180 180 970 250		140 < 200 200	U II	160 < 2000 130 < 1400		1400 < 21		0 < 180 180 0 < 250 250	U 14	10 < 190 190 20 < 260 260	U 150	< 190 190 < 260 260	U 150	0 < 190		150 < 180 130 1,100	180 U	140 < 200 120 < 280	200 U	160
Chrysene Dibenz(a,h)anthracene	1,000	3,900 330	< 180	180 U	120	< 200	200 U	130	< 200 200	U 130	140 180	J	120 < 200 200	U	130 < 1300	1,300 U	1300 < 21		0 < 180 180	U 12	20 < 190 190	U 120	< 190 190	U 120	0 < 190		130 140	180 J	120 < 200	200 U	130
Dibenzofuran	7,000	59,000	< 260	260 U	110	< 270	270 U	110	< 280 280	U 120	< 250 250	U	100 < 280 280	U	120 < 2900	2,900 U	1200 < 29	0 290 U 12	0 < 250 250	U 10	00 < 260 260	U 110	< 260 260	U 110	0 < 270	270 U	110 < 250	250 U	100 < 280	280 U	120
Diethyl phthalate			< 260	260 U	120	< 270	270 U	120	< 280 280	U 130	< 250 250	U	110 < 280 280	U	130 < 2900	2,900 U	1300 < 29		0 < 250 250	U 11	10 < 260 260	U 120	< 260 260	U 121	0 < 270	270 U	120 < 250	250 U	110 < 280	280 U	130
Dimethylphthalate	-		< 260	260 U	110	< 270	270 U	120	< 280 280 < 280 280	U 120	< 250 250 < 250 250	U	110 < 280 280	U	120 < 2900	2,900 U	1300 < 29	0 290 U 13	0 < 250 250 0 < 250 250	U 11	5 < 260 260	U 120	< 260 260 < 260 260	U 120	0 < 270	270 U	120 < 250	250 U	110 < 280	280 U	130
Di-n-butylphthalate Di-n-octylphthalate	 		< 260	260 U	94	< 270	270 U	100	< 280 280 < 280 280	U 100	< 250 250 < 250 250	U	93 < 280 280	U	100 < 2900	2,900 U	1100 < 29	0 290 U 11	0 < 250 250 0 < 250 250	U 90	2 < 260 260	U 96	< 260 260	U 97	7 < 270	270 U	100 < 250	250 U	95 < 280	280 U	100
Fluoranthene	100,000	100,000	530	260 -	120	< 270	270 U	130	< 280 280	U 130	1,500 250	- 1	120 < 280 280	U	130 < 2900	2,900 U	1300 < 29	0 290 U 13	0 160 250	J 12	20 < 260 260	U 120	< 260 260	U 120	0 < 270	270 U	130 1,900	250 -	120 < 280	280 U	130
Fluorene	30,000	100,000	< 260	260 U	120	< 270	270 U	130	< 280 280	U 130	< 250 250	U	120 < 280 280	U	130 < 2900	2,900 U	1300 < 29	0 290 U 14	0 < 250 250	U 12	20 < 260 260	U 120	< 260 260	U 120	0 < 270	270 U	130 < 250	250 U	120 < 280	280 U	130
Hexachlorobenzene			< 180	180 U	110	< 200	200 U	110	< 200 200	U 120	< 180 180	U	100 < 200 200	U	120 < 2000	-,	1200 < 21		0 < 180 180	U 10	00 < 190 190	U 110	< 190 190	U 110	0 < 190	190 U	110 < 180	180 U	100 < 200	200 U	120
Hexachlorobutadiene	-	 	< 260	260 U	130	< 270	270 U	140	< 280 280 < 280 280	U 140	< 250 250 < 250 250	U	130 < 280 280	U	140 < 2900	2,900 U	1500 < 29	0 290 U 15	0 < 250 250 0 < 250 250	U 13	80 < 260 260 10 < 260 260	U 130	< 260 260 < 260 260	U 140	0 < 270	270 U	140 < 250	250 U	130 < 280	280 U	150
Hexachlorocyclopentadiene Hexachloroethane	 		< 180	180 U	110	< 270	200 U	120	< 200 200	U 120	< 180 180	U	110 < 200 200	U	120 < 2000	2,000 U	1200 < 29	0 210 U 12	0 < 250 250 0 < 180 180	U 11	10 < 190 190	U 110	< 190 190	U 110	0 < 190	190 U	120 < 180	180 U	110 < 200	200 U	120
Indeno(1,2,3-cd)pyrene	500	500	180	260 J	120	< 270	270 U	130	< 280 280	U 130	600 250	1	120 < 280 280	U	130 < 1400	1,400 U	1400 < 29	0 290 U 14	0 < 250 250	U 12	20 < 260 260	U 120	< 260 260	U 120	0 < 270	270 U	130 610	250 -	120 < 280	280 U	130
Isophorone			910	180 -	100	< 200	200 U	110	< 200 200	U 110	< 180 180	U	100 < 200 200	U	110 < 2000	2,000 U	1100 < 21	0 210 U 12	0 < 180 180	U 10	190 190	U 100	< 190 190	U 110	0 < 190	190 U	110 < 180	180 U	100 < 200	200 U	110
Naphthalene	12,000	100,000	130	260 J	110	< 270	270 U	110	< 280 280	U 120	< 250 250	U	100 < 280 280	U	110 17,000	2,900 -	1200 < 29	0 290 U 12	0 < 250 250	U 10	00 < 260 260	U 110	< 260 260	U 110	0 < 270	270 U	110 < 250	250 U	100 1,900	280 -	120
Nitrobenzene	1		< 180	180 U	130	< 200	200 U	140	< 200 200 < 280 280	U 140	< 180 180 < 250 250	U	130 < 200 200	U	140 < 2000 110 < 2900	2,000 U	1400 < 21		0 < 180 180 0 < 250 250	U 12	20 < 190 190 00 < 260 260	U 130	< 190 190 < 260 260	U 130	0 < 190	190 U	140 < 180	180 U	130 < 200	200 U	140
N-Nitrosodimethylamine	 		< 180	260 U	120	< 270	2/0 U	110	< 200 200 < 200 200	U 130	< 250 250 < 180 180	U	120 < 280 280	U	130 < 2000	2,900 U	1300 < 29	0 210 U 13	0 < 180 180	U 10	20 < 190 190	U 120	< 190 190	U 120	0 < 2/0	190 U	130 < 180	180 U	120 < 280	200 11	110
N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine	 	 	< 260	260 U	140	< 270	270 U	150	< 280 280	U 150	< 250 250	U	140 < 280 280	U	150 < 2900	2,900 U	1600 < 29	0 290 U 16	0 < 250 250	U 14	10 < 260 260	U 140	< 260 260	U 140	0 < 270	270 U	150 < 250	250 U	140 < 280	280 U	150
Pentachloronitrobenzene			< 260	260 U	140	< 270	270 U	150	< 280 280	U 150	< 250 250	U	130 < 280 280	U	150 < 2900	2,900 U	1500 < 29	0 290 U 15	0 < 250 250	U 13	30 < 260 260	U 140	< 260 260	U 140	0 < 270	270 U	140 < 250	250 U	130 < 280	280 U	150
Pentachlorophenol	800	6,700	< 220	220 U	140	< 240	240 U	150	< 240 240	U 150	< 220 220	U	140 < 240 240	U	150 < 1500	1,500 U	1500 < 25	D 250 U 16	0 < 210 210	U 13	30 < 220 220	U 140	< 230 230	U 140	0 < 230	230 U	150 < 210	210 U	140 < 240	240 U	150
Phenanthrene	100,000	100,000	500	260 -	100	< 270	270 U	110	< 280 280	U 110	1,100 250 < 250 250	1 -	100 < 280 280	U	110 < 2900	2,900 U	1200 < 29	0 290 U 12	0 < 250 250 0 < 250 250	U 10	00 < 260 260	U 110	< 260 260 < 260 260	U 110	0 < 270	270 U	110 1,000	250 -	100 < 280	280 U	120
Phenol	330	100,000	< 260 580	260 U	120	< 270	270 U	130	< 280 280 < 280 280	U 130	< 250 250 1,500 250	U	110 < 280 280 120 < 280 280	U	130 < 1300 140 < 2900	1,300 U	1300 < 29	0 290 U 13 0 290 U 14	0 < 250 250 0 160 250	U 11	0 < 260 260 20 < 260 260	U 120	< 260 260 < 260 260	U 120	0 < 270	270 U	120 < 250 130 1.900	250 U	110 < 280	280 U	130
Pyrene Pyridine	100,000	100,000	< 260	260 U	90	< 270	270 U	97	- 280 280 < 280 280	U 98	< 250 250	U	88 < 280 280	U	98 < 2900	2,900 U	1000 < 29	0 290 U 10	0 < 250 250	U 8	8 < 260 260	U 91	- 260 260 < 260 260	U 93	3 < 270	270 U	95 < 250	250 U	88 < 280	280 11	99
Notes:	1	1		1 1 1			<u> </u>				0 1 230	1		1	- 2300	1 1 1		1 1 1 2 1 2				-							1 1		

Notes:
- "6.4YCRR Part 37-6 Remodal Program Sed Cleanup Objectives S-Thile compound is a solvent that is used in the laboratory.
- The reported concentration is the result of a diluted analysis.
- The value is estimated.

		NYSDEC Part 375.6	NYDEC Part 375.6		15B	1			15E	2			15B	3			15E	34					15	iB5					15B	36	
	COMPOUND	Unrestricted Use Soil Cleanup Objectives*	Restricted Residential Soil Cleanup Objectives*	μg/K	(12-14 11/14/2 (g	016	ı/Kg	μg/l	(12-1 11/14/2 (g	2016	/Kg	µg/k	(12-1- 11/14/2 (g	016	ı/Kg	μg/k	(12-1 11/14/2 (g	2016 µg	ı/Kg	μg/K	(0-2 11/10/2 g	2016 µg	g/Kg	μg/F	(12-1- 11/10/2 (g	2016 μg	/Kg	μg/F		2016 μο	g/Kg
				Result	RL	Qual	MDL	Result	RL	Qual	MDL	Result	RL	Qual	MDL	Result	RL	Qual	MDL	Result	RL	Qual	MDL	Result	RL	Qual	MDL	Result	RL	Qual	MDL
	4,4' -DDD	3.3	13,000	< 2.5	2.5	U	2.5	< 2.4	2.4	U	2.4	< 2.3	2.3	U	2.3	< 2.3	2.3	U	2.3	100	11	D	11	-	-	-	-	< 2.4	2.4	U	2.4
	4,4' -DDE	3.3	8,900	< 2.5	2.5	U	2.5	< 2.4	2.4	U	2.4	< 2.3	2.3	U	2.3	< 2.3	2.3	U	2.3	72	2.2	-	2.2	-	-	-	-	< 2.4	2.4	U	2.4
	4,4' -DDT	3.3	7,900	< 2.5	2.5	U	2.5	< 2.4	2.4	U	2.4	< 2.3	2.3	U	2.3	< 2.3	2.3	U	2.3	76	11	D	11	-	-	-	-	< 2.4	2.4	U	2.4
	a-BHC	20	480	< 8.5	8.5	U	8.5	< 8.0	8.0	U	8.0	< 7.6	7.6	U	7.6	< 7.8	7.8	U	7.8	< 7.2	7.2	U	7.2	-	-	-	-	< 7.9	7.9	U	7.9
	a-Chlordane	94	4,200	< 4.2	4.2	U	4.2	< 4.0	4.0	U	4.0	< 3.8	3.8	U	3.8	< 3.9	3.9	U	3.9	< 3.6	3.6	U	3.6	-	-	-	-	< 3.9	3.9	U	3.9
	Aldrin	5	97	< 4.2	4.2	U	4.2	< 4.0	4.0	U	4.0	< 3.8	3.8	U	3.8	< 3.9	3.9	U	3.9	< 3.6	3.6	U	3.6	-	-	-	-	< 3.9	3.9	U	3.9
	b-BHC	36	360	< 8.5	8.5	U	8.5	< 8.0	8.0	U	8.0	< 7.6	7.6	U	7.6	< 7.8	7.8	U	7.8	< 7.2	7.2	U	7.2	-	-	-	-	< 7.9	7.9	U	7.9
	Chlordane	94	4,200	< 42	42	U	42	< 40	40	U	40	< 38	38	U	38	< 39	39	U	39	< 36	36	U	36	-	-	-	-	< 39	39	U	39
	d-BHC	40	100,000	< 8.5	8.5	U	8.5	< 8.0	8.0	U	8.0	< 7.6	7.6	U	7.6	< 7.8	7.8	U	7.8	< 7.2	7.2	U	7.2	-	-	-	-	< 7.9	7.9	U	7.9
s	Dieldrin	5	200	< 4.2	4.2	U	4.2	< 4.0	4.0	U	4.0	< 3.8	3.8	U	3.8	< 3.9	3.9	U	3.9	< 3.6	3.6	U	3.6	-	-	-	-	< 3.9	3.9	U	3.9
Pesticides	Endosulfan I	2,400	24,000	< 8.5	8.5	U	8.5	< 8.0	8.0	U	8.0	< 7.6	7.6	U	7.6	< 7.8	7.8	U	7.8	< 7.2	7.2	U	7.2	-	-	-	-	< 7.9	7.9	U	7.9
esti	Endosulfan II	2,400	24,000	< 8.5	8.5	U	8.5	< 8.0	8.0	U	8.0	< 7.6	7.6	U	7.6	< 7.8	7.8	U	7.8	< 7.2	7.2	U	7.2	-	-	-	-	< 7.9	7.9	U	7.9
Δ.	Endosulfan sulfate	2,400	24,000	< 8.5	8.5	U	8.5	< 8.0	8.0	U	8.0	< 7.6	7.6	U	7.6	< 7.8	7.8	U	7.8	< 7.2	7.2	U	7.2	-	-	-	-	< 7.9	7.9	U	7.9
	Endrin	14	11,000	< 8.5	8.5	U	8.5	< 8.0	8.0	U	8.0	< 7.6	7.6	U	7.6	< 7.8	7.8	U	7.8	< 7.2	7.2	U	7.2	-	-	-	-	< 7.9	7.9	U	7.9
	Endrin aldehyde			< 8.5	8.5	U	8.5	< 8.0	8.0	U	8.0	< 7.6	7.6	U	7.6	< 7.8	7.8	U	7.8	< 7.2	7.2	U	7.2	-	-	-	-	< 7.9	7.9	U	7.9
	Endrin ketone			< 8.5	8.5	U	8.5	< 8.0	8.0	U	8.0	< 7.6	7.6	U	7.6	< 7.8	7.8	U	7.8	< 7.2	7.2	U	7.2	-	-	-	-	< 7.9	7.9	U	7.9
	g-BHC			< 1.7	1.7	U	1.7	< 1.6	1.6	U	1.6	< 1.5	1.5	U	1.5	< 1.6	1.6	U	1.6	< 1.4	1.4	U	1.4	-	-	-	-	< 1.6	1.6	U	1.6
	g-Chlordane			< 4.2	4.2	U	4.2	< 4.0	4.0	U	4.0	< 3.8	3.8	U	3.8	< 3.9	3.9	U	3.9	< 3.6	3.6	U	3.6	-	-	-	-	< 3.9	3.9	U	3.9
	Heptachlor	42	2,100	< 8.5	8.5	U	8.5	< 8.0	8.0	U	8.0	< 7.6	7.6	U	7.6	< 7.8	7.8	U	7.8	< 7.2	7.2	U	7.2	-	-	-	-	< 7.9	7.9	U	7.9
	Heptachlor epoxide		,	< 8.5	8.5	U	8.5	< 8.0	8.0	U	8.0	< 7.6	7.6	U	7.6	< 7.8	7.8	U	7.8	< 7.2	7.2	U	7.2	-	-	-	-	< 7.9	7.9	U	7.9
	Methoxychlor			< 42	42	U	42	< 40	40	U	40	< 38	38	U	38	< 39	39	U	39	< 36	36	U	36	-	-	-	-	< 39	39	U	39
	Toxaphene			< 170	170	U	170	< 160	160	U	160	< 150	150	U	150	< 160	160	U	160	< 140	140	U	140	-	-	-	-	< 160	160	U	160
	PCB-1016	100	1,000	< 85	85	U	85	< 80	80	U	80	< 76	76	U	76	< 78	78	U	78	< 72	72	U	72	< 74	74	U	74	< 79	79	U	79
	PCB-1221	100	1,000	< 85	85	U	85	< 80	80	U	80	< 76	76	U	76	< 78	78	U	78	< 72	72	U	72	< 74	74	U	74	< 79	79	U	79
	PCB-1232	100	1,000	< 85	85	U	85	< 80	80	U	80	< 76	76	U	76	< 78	78	U	78	< 72	72	U	72	< 74	74	U	74	< 79	79	U	79
	PCB-1242	100	1,000	< 85	85	U	85	< 80	80	U	80	< 76	76	U	76	< 78	78	U	78	< 72	72	U	72	< 74	74	U	74	< 79	79	U	79
PCBs	PCB-1248	100	1,000	< 85	85	U	85	< 80	80	U	80	< 76	76	U	76	< 78	78	U	78	< 72	72	U	72	< 74	74	U	74	< 79	79	U	79
Δ.	PCB-1254	100	1,000	< 85	85	U	85	< 80	80	U	80	< 76	76	U	76	< 78	78	U	78	< 72	72	U	72	< 74	74	U	74	< 79	79	U	79
	PCB-1260	100	1,000	< 85	85	U	85	< 80	80	U	80	< 76	76	U	76	< 78	78	U	78	< 72	72	U	72	< 74	74	U	74	< 79	79	U	79
	PCB-1262	100	1,000	< 85	85	U	85	< 80	80	U	80	< 76	76	U	76	< 78	78	U	78	< 72	72	U	72	< 74	74	U	74	< 79	79	U	79
	PCB-1268	100	1,000	< 85	85	U	85	< 80	80	U	80	< 76	76	U	76	< 78	78	U	78	< 72	72	U	72	< 74	74	U	74	< 79	79	U	79

Notes:

- * 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
- RL- Reporting Limit
 U- The compound was anlayzed for but not detected at or above the MDL.
 J- The value is estimated.
- N- The concentration is based on the response fo the nearest internal.
- S- This compound is a solvent that is used in the laboratory.

 D- The reported concentration is the result of a diluted analysis.

Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value
Bold/highlighted- Indicated exceedance of the NYSDEC RSCO Guidance Value

		NYSDEC Part 375.6	NYDEC Part 375.6		15B						15	B8					15B				15B1		
	COMPOUND	Unrestricted Use Soil Cleanup Objectives*	Restricted Residential Soil Cleanup Objectives*	μg/K	(12-14 11/11/2 a	016	g/Kg	μg/K	(0-2') 11/10/20 a	016	/Kg	μg/K	(12-14 11/10/2	016	/Kg	μg/K	(3-5') 11/14/2 a	016	/Kg	μg/K	(10-15 11/14/20 a		/Ka
				Result	RL	Qual		Result	RL		MDL	Result	RL	Qual	MDL	Result	RL	Qual	MDL	Result	RL	Qual	MDL
	4,4' -DDD	3.3	13,000	< 2.4	2.4	U	2.4	-	-	-	-	< 2.4	2.4	U	2.4	< 2.2	2.2	U	2.2	< 2.2	2.2	U	2.2
	4,4' -DDE	3.3	8,900	< 2.4	2.4	U	2.4	-	-	-	-	< 2.4	2.4	U	2.4	< 2.2	2.2	U	2.2	< 2.2	2.2	U	2.2
	4,4' -DDT	3.3	7,900	< 2.4	2.4	U	2.4	-	-	-	-	< 2.4	2.4	U	2.4	< 2.2	2.2	U	2.2	< 2.2	2.2	U	2.2
	a-BHC	20	480	< 7.8	7.8	U	7.8	-	-	-	-	< 7.9	7.9	U	7.9	< 7.2	7.2	U	7.2	< 7.4	7.4	U	7.4
	a-Chlordane	94	4,200	< 3.9	3.9	U	3.9	-	-	-	-	< 3.9	3.9	U	3.9	< 3.6	3.6	U	3.6	< 3.7	3.7	U	3.7
	Aldrin	5	97	< 3.9	3.9	U	3.9	-	-	-	-	< 3.9	3.9	U	3.9	< 3.6	3.6	U	3.6	< 3.7	3.7	U	3.7
	b-BHC	36	360	< 7.8	7.8	U	7.8	-	-	-	-	< 7.9	7.9	U	7.9	< 7.2	7.2	U	7.2	< 7.4	7.4	U	7.4
	Chlordane	94	4,200	< 39	39	U	39	-	-	-	-	< 39	39	U	39	< 36	36	U	36	< 37	37	U	37
	d-BHC	40	100,000	< 7.8	7.8	U	7.8	-	-	-	-	< 7.9	7.9	U	7.9	< 7.2	7.2	U	7.2	< 7.4	7.4	U	7.4
တ္ဆ	Dieldrin	5	200	< 3.9	3.9	U	3.9	-	-	-	-	< 3.9	3.9	U	3.9	< 3.6	3.6	U	3.6	< 3.7	3.7	U	3.7
Pesticides	Endosulfan I	2,400	24,000	< 7.8	7.8	U	7.8	-	-	-	-	< 7.9	7.9	U	7.9	< 7.2	7.2	U	7.2	< 7.4	7.4	U	7.4
esti	Endosulfan II	2,400	24,000	< 7.8	7.8	U	7.8	-	-	-	-	< 7.9	7.9	U	7.9	< 7.2	7.2	U	7.2	< 7.4	7.4	U	7.4
-	Endosulfan sulfate	2,400	24,000	< 7.8	7.8	U	7.8	-	-	-	-	< 7.9	7.9	U	7.9	< 7.2	7.2	U	7.2	< 7.4	7.4	U	7.4
	Endrin	14	11,000	< 7.8	7.8	U	7.8	-	-	-	-	< 7.9	7.9	U	7.9	< 7.2	7.2	U	7.2	< 7.4	7.4	U	7.4
	Endrin aldehyde			< 7.8	7.8	U	7.8	-	-	-	-	< 7.9	7.9	U	7.9	< 7.2	7.2	U	7.2	< 7.4	7.4	U	7.4
	Endrin ketone			< 7.8	7.8	U	7.8	-	-	-	-	< 7.9	7.9	U	7.9	< 7.2	7.2	U	7.2	< 7.4	7.4	U	7.4
	g-BHC			< 1.6	1.6	U	1.6	-	-	-	-	< 1.6	1.6	U	1.6	< 5.0	5.0	U	5.0	< 1.5	1.5	U	1.5
	g-Chlordane			< 3.9	3.9	U	3.9	-	-	-	-	< 3.9	3.9	U	3.9	< 3.6	3.6	U	3.6	< 3.7	3.7	U	3.7
	Heptachlor	42	2,100	< 7.8	7.8	U	7.8	-	-	-	-	< 7.9	7.9	U	7.9	< 7.2	7.2	U	7.2	< 7.4	7.4	U	7.4
	Heptachlor epoxide			< 7.8	7.8	U	7.8	-	-	-	-	< 7.9	7.9	U	7.9	< 7.2	7.2	U	7.2	< 7.4	7.4	U	7.4
	Methoxychlor			< 39	39	U	39	-	-	-	-	< 39	39	U	39	< 36	36	U	36	< 37	37	U	37
	Toxaphene			< 160	160	U	160	-	-	-	-	< 160	160	U	160	< 140	140	U	140	< 150	150	U	150
	PCB-1016	100	1,000	< 78	78	U	78	< 75	75	U	75	< 79	79	U	79	< 72	72	U	72	< 74	74	U	74
	PCB-1221	100	1,000	< 78	78	U	78	< 75	75	U	75	< 79	79	U	79	< 72	72	U	72	< 74	74	U	74
	PCB-1232	100	1,000	< 78	78	U	78	< 75	75	U	75	< 79	79	U	79	< 72	72	U	72	< 74	74	U	74
s	PCB-1242	100	1,000	< 78	78	U	78	< 75	75	U	75	< 79	79	U	79	< 72	72	U	72	< 74	74	U	74
PCBs	PCB-1248	100	1,000	< 78	78	U	78	< 75	75	U	75	< 79	79	U	79	< 72	72	U	72	< 74	74	U	74
Ι"	PCB-1254	100	1,000	< 78	78	U	78	< 75	75	U	75	< 79	79	U	79	< 72	72	U	72	< 74	74	U	74
	PCB-1260	100	1,000	< 78	78	U	78	< 75	75	U	75	< 79	79	U	79	< 72	72	U	72	< 74	74	U	74
	PCB-1262	100	1,000	< 78	78	U	78	< 75	75	U	75	< 79	79	U	79	< 72	72	U	72	< 74	74	U	74
L	PCB-1268	100	1,000	< 78	78	U	78	< 75	75	U	75	< 79	79	U	79	< 72	72	U	72	< 74	74	U	74

Notes:

- * 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
- RL- Reporting Limit
- U- The compound was anlayzed for but not detected at or above the MDL.
- J- The value is estimated.
- N- The concentration is based on the response fo the nearest internal.
- S- This compound is a solvent that is used in the laboratory.
- D- The reported concentration is the result of a diluted analysis.

Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

		NYSDEC Part 375.6	NYDEC Part 375.6				15	B11					15B1	2			15B1	3					15E	314			
	COMPOUND	Unrestricted Use Soil Cleanup Objectives*	Restricted Residential Soil Cleanup Objectives*	μg/Kç	(0-2' 11/10/2	016	g/Kg	μg/K	(12-14 11/10/2	016	/Kg	μg/K	(12-14 11/10/20	016	/Kg	μg/K	(12-14 11/10/2	016	ı/Kg	μg/K	(1-3' 11/10/2 a	016	/Kg	μg/K	(12-14 11/10/20	016	/Kg
_				Result	RL	Qual		Result	RL		MDL	Result	RL	Qual		Result			MDL	Result	RL		MDL	Result	RL	Qual	
	4,4' -DDD	3.3	13,000	< 30	30	U	30	-	-	-	-	< 2.3	2.3	U	2.3	< 2.4	2.4	U	2.4	< 10	10	U	10	-	-		
	4,4' -DDE	3.3	8,900	< 15	15	U	15	-	-	-	-	< 2.3	2.3	U	2.3	< 2.4	2.4	U	2.4	< 3.0	3.0	U	3.0	-	-	-	
	4,4' -DDT	3.3	7,900	< 20	20	U	20	-	-	-	-	< 2.3	2.3	U	2.3	< 2.4	2.4	U	2.4	< 2.1	2.1	U	2.1	-	-	-	-
	а-ВНС	20	480	< 10	10	U	10	-	-	-	-	< 7.7	7.7	U	7.7	< 8.1	8.1	U	8.1	< 7.2	7.2	U	7.2	-	-	-	-
	a-Chlordane	94	4,200	< 3.7	3.7	U	3.7	-	-	-	-	< 3.9	3.9	U	3.9	< 4.0	4.0	U	4.0	< 3.6	3.6	U	3.6	-	-	-	-
	Aldrin	5	97	< 3.7	3.7	U	3.7	-	-	-	-	< 3.9	3.9	U	3.9	< 4.0	4.0	U	4.0	< 3.6	3.6	U	3.6	-	-	-	-
	b-BHC	36	360	< 7.5	7.5	U	7.5	-	-	-	-	< 7.7	7.7	U	7.7	< 8.1	8.1	U	8.1	< 7.2	7.2	U	7.2	-	-	-	-
	Chlordane	94	4,200	< 37	37	U	37	-	-	-	-	< 39	39	U	39	< 40	40	U	40	< 36	36	U	36	1	-	-	-
	d-BHC	40	100,000	< 7.5	7.5	U	7.5	-	-	-	-	< 7.7	7.7	U	7.7	< 8.1	8.1	U	8.1	< 7.2	7.2	U	7.2	-	-	-	-
w	Dieldrin	5	200	< 10	10	U	10	-	-	-	-	< 3.9	3.9	U	3.9	< 4.0	4.0	U	4.0	< 3.6	3.6	U	3.6	-	-	-	-
Pesticides	Endosulfan I	2,400	24,000	< 7.5	7.5	U	7.5	-	-	-	-	< 7.7	7.7	U	7.7	< 8.1	8.1	U	8.1	< 7.2	7.2	U	7.2	-	-	-	-
esti	Endosulfan II	2,400	24,000	< 7.5	7.5	U	7.5	-	-	-	-	< 7.7	7.7	U	7.7	< 8.1	8.1	U	8.1	< 7.2	7.2	U	7.2	-	-	-	-
4	Endosulfan sulfate	2,400	24,000	< 7.5	7.5	U	7.5	-	-	-	-	< 7.7	7.7	U	7.7	< 8.1	8.1	U	8.1	< 7.2	7.2	U	7.2	-	-	-	-
	Endrin	14	11,000	< 7.5	7.5	U	7.5	-	-	-	-	< 7.7	7.7	U	7.7	< 8.1	8.1	U	8.1	< 7.2	7.2	U	7.2	-	-	-	-
	Endrin aldehyde			< 20	20	U	20	-	-	-	-	< 7.7	7.7	U	7.7	< 8.1	8.1	U	8.1	< 7.2	7.2	U	7.2	-	-	-	-
	Endrin ketone			< 7.5	7.5	U	7.5	-	-	-	-	< 7.7	7.7	U	7.7	< 8.1	8.1	U	8.1	< 7.2	7.2	U	7.2	-	-	-	-
	g-BHC			< 1.5	1.5	U	1.5	-	-	-	-	< 1.5	1.5	U	1.5	< 1.6	1.6	U	1.6	< 1.4	1.4	U	1.4	-	-	-	-
	g-Chlordane			< 3.7	3.7	U	3.7	-	-	-	-	< 3.9	3.9	U	3.9	< 4.0	4.0	U	4.0	< 3.6	3.6	U	3.6	-	-	-	-
	Heptachlor	42	2,100	< 7.5	7.5	U	7.5	-	-	-	-	< 7.7	7.7	U	7.7	< 8.1	8.1	U	8.1	< 7.2	7.2	U	7.2	-	-	-	-
	Heptachlor epoxide		·	< 7.5	7.5	U	7.5	-	-	-	-	< 7.7	7.7	U	7.7	< 8.1	8.1	U	8.1	< 7.2	7.2	U	7.2	-	-	-	-
	Methoxychlor			< 37	37	U	37	-	-	-	-	< 39	39	U	39	< 40	40	U	40	< 36	36	U	36	-	-	-	-
	Toxaphene			< 150	150	U	150	-	-	-	-	< 150	150	U	150	< 160	160	U	160	< 140	140	U	140	-	-	-	-
	PCB-1016	100	1.000	< 75	75	U	75	< 78	78	U	78	< 77	77	U	77	< 81	81	U	81	< 72	72	U	72	< 80	80	U	80
	PCB-1221	100	1,000	< 75	75	U	75	< 78	78	U	78	< 77	77	U	77	< 81	81	U	81	< 72	72	U	72	< 80	80	U	80
	PCB-1232	100	1,000	< 75	75	U	75	< 78	78	U	78	< 77	77	U	77	< 81	81	U	81	< 72	72	U	72	< 80	80	U	80
	PCB-1242	100	1,000	< 75	75	U	75	< 78	78	U	78	< 77	77	U	77	< 81	81	U	81	< 72	72	U	72	< 80	80	U	80
PCBs	PCB-1248	100	1,000	< 75	75	U	75	< 78	78	U	78	< 77	77	U	77	< 81	81	U	81	< 72	72	U	72	< 80	80	U	80
Δ.	PCB-1254	100	1,000	< 75	75	U	75	< 78	78	U	78	< 77	77	U	77	< 81	81	U	81	72	72	-	72	< 80	80	U	80
	PCB-1260	100	1,000	350	75	-	75	< 78	78	U	78	< 77	77	U	77	< 81	81	U	81	< 72	72	U	72	< 80	80	U	80
	PCB-1262	100	1,000	< 75	75	U	75	< 78	78	U	78	< 77	77	U	77	< 81	81	U	81	< 72	72	U	72	< 80	80	U	80
	PCB-1268	100	1,000	< 75	75	U	75	< 78	78	U	78	< 77	77	U	77	< 81	81	U	81	< 72	72	U	72	< 80	80	U	80
	1. 05-1200	100	1,000				<u> </u>	I	I	I	I	l			I		I		1	1	1	1				—	

- **-6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
 RL- Reporting Limit
 U- The compound was anlayzed for but not detected at or above the MDL.
- J- The value is estimated.
- N- The concentration is based on the response fo the nearest internal.
- S- This compound is a solvent that is used in the laboratory. D- The reported concentration is the result of a diluted analysis.

Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

		NYSDEC Part 375.6	NYDEC Part 375.6		15B1						15E	20					Duplica 15B2	0			Ouplica 15B	7			Duplica 15B1				Duplica 15B	2	
	COMPOUND	Unrestricted Use Soil Cleanup Objectives*	Restricted Residential Soil Cleanup Objectives*	μg/K	(0-2" 11/14/20 g	016	/Kg	μg/K	(0-2') 11/10/20 g	116 μg/	Kg	μg/K	(12-14 11/10/2) g	016	/Kg	μg/K	(12-14 11/10/20 g	016	/Kg	μg/K	(12-14 11/11/20	016	/Kg	μg/K	(0-2') 11/14/20 g	16	/Kg	µg/К	(12-14 11/14/2 (g	2016	ı/Kg
				Result	RL	Qual	MDL	Result	RL	Qual	MDL	Result	RL	Qual	MDL	Result	RL	Qual	MDL	Result	RL	Qual	MDL	Result	RL	Qual	MDL	Result	RL	Qual	MDL
	4,4' -DDD	3.3	13,000	< 2.2	2.2	U	2.2	< 2.2	2.2	U	2.2	-	-	-	-	< 2.2	2.2	U	2.2	< 2.3	2.3	U	2.3	< 2.2	2.2	U	2.2	< 2.4	2.4	U	2.4
	4,4' -DDE	3.3	8,900	< 2.2	2.2	U	2.2	< 2.2	2.2	U	2.2	-	-	-	-	< 2.2	2.2	U	2.2	< 2.3	2.3	U	2.3	< 4.0	4.0	U	4.0	< 2.4	2.4	U	2.4
	4,4' -DDT	3.3	7,900	7.7	2.2	-	2.2	< 2.2	2.2	U	2.2	-	-	-	-	< 2.2	2.2	U	2.2	< 2.3	2.3	U	2.3	< 15	15	U	15	< 2.4	2.4	U	2.4
	a-BHC	20	480	< 7.2	7.2	U	7.2	< 7.2	7.2	U	7.2	-	-	-	-	< 7.4	7.4	U	7.4	< 7.8	7.8	U	7.8	< 7.2	7.2	U	7.2	< 8.2	8.2	U	8.2
	a-Chlordane	94	4,200	< 3.6	3.6	U	3.6	< 3.6	3.6	U	3.6	-	-	-	-	< 3.7	3.7	U	3.7	< 3.9	3.9	U	3.9	< 3.6	3.6	U	3.6	< 4.1	4.1	U	4.1
	Aldrin	5	97	< 3.6	3.6	U	3.6	< 3.6	3.6	U	3.6	-	-	-	-	< 3.7	3.7	U	3.7	< 3.9	3.9	U	3.9	< 3.6	3.6	U	3.6	< 4.1	4.1	U	4.1
	b-BHC	36	360	< 7.2	7.2	U	7.2	< 7.2	7.2	U	7.2	-	-	-	-	< 7.4	7.4	U	7.4	< 7.8	7.8	U	7.8	< 7.2	7.2	U	7.2	< 8.2	8.2	U	8.2
	Chlordane	94	4,200	< 36	36	U	36	< 36	36	U	36	-	-	-	-	< 37	37	U	37	< 39	39	U	39	< 36	36	U	36	< 41	41	U	41
	d-BHC	40	100,000	< 7.2	7.2	U	7.2	< 7.2	7.2	U	7.2	-	-	-	-	< 7.4	7.4	U	7.4	< 7.8	7.8	U	7.8	< 7.2	7.2	U	7.2	< 8.2	8.2	U	8.2
,	Dieldrin	5	200	< 3.6	3.6	U	3.6	< 3.6	3.6	U	3.6	-	-	-	-	< 3.7	3.7	U	3.7	< 3.9	3.9	U	3.9	< 3.6	3.6	U	3.6	< 4.1	4.1	U	4.1
Pesticides	Endosulfan I	2,400	24,000	< 7.2	7.2	U	7.2	< 7.2	7.2	U	7.2	-	-	-	-	< 7.4	7.4	U	7.4	< 7.8	7.8	U	7.8	< 7.2	7.2	U	7.2	< 8.2	8.2	U	8.2
esti	Endosulfan II	2,400	24,000	< 7.2	7.2	U	7.2	< 7.2	7.2	U	7.2	-	-	-	-	< 7.4	7.4	U	7.4	< 7.8	7.8	U	7.8	< 7.2	7.2	U	7.2	< 8.2	8.2	U	8.2
	Endosulfan sulfate	2,400	24,000	< 7.2	7.2	U	7.2	< 7.2	7.2	U	7.2	-	-	-	-	< 7.4	7.4	U	7.4	< 7.8	7.8	U	7.8	< 7.2	7.2	U	7.2	< 8.2	8.2	U	8.2
	Endrin	14	11,000	< 7.2	7.2	U	7.2	< 7.2	7.2	U	7.2	-	-	-	-	< 7.4	7.4	U	7.4	< 7.8	7.8	U	7.8	< 7.2	7.2	U	7.2	< 8.2	8.2	U	8.2
	Endrin aldehyde			< 7.2	7.2	U	7.2	< 7.2	7.2	U	7.2	-	-	-	-	< 7.4	7.4	U	7.4	< 7.8	7.8	U	7.8	< 7.2	7.2	U	7.2	< 8.2	8.2	U	8.2
	Endrin ketone			< 7.2	7.2	U	7.2	< 7.2	7.2	U	7.2	-	-	-	-	< 7.4	7.4	U	7.4	< 7.8	7.8	U	7.8	< 7.2	7.2	U	7.2	< 8.2	8.2	U	8.2
	g-BHC			< 1.4	1.4	U	1.4	< 1.4	1.4	U	1.4	-	-	-	-	< 1.5	1.5	U	1.5	< 1.6	1.6	U	1.6	< 1.4	1.4	U	1.4	< 1.6	1.6	U	1.6
	g-Chlordane			< 3.6	3.6	U	3.6	< 3.6	3.6	U	3.6	-	-	-	-	< 3.7	3.7	U	3.7	< 3.9	3.9	U	3.9	< 3.6	3.6	U	3.6	< 4.1	4.1	U	4.1
	Heptachlor	42	2,100	< 7.2	7.2	U	7.2	< 7.2	7.2	U	7.2	-	-	-	-	< 7.4	7.4	U	7.4	< 7.8	7.8	U	7.8	< 7.2	7.2	U	7.2	< 8.2	8.2	U	8.2
	Heptachlor epoxide			< 7.2	7.2	U	7.2	< 7.2	7.2	U	7.2	-	-	-	-	< 7.4	7.4	U	7.4	< 7.8	7.8	U	7.8	< 7.2	7.2	U	7.2	< 8.2	8.2	U	8.2
	Methoxychlor			< 36	36	U	36	< 36	36	U	36	-	-	-	-	< 37	37	U	37	< 39	39	U	39	< 36	36	U	36	< 41	41	U	41
	Toxaphene			< 140	140	U	140	< 140	140	U	140	-	-	-	-	< 150	150	U	150	< 160	160	U	160	< 140	140	U	140	< 160	160	U	160
	PCB-1016	100	1,000	< 72	72	U	72	< 72	72	U	72	< 76	76	U	76	< 74	74	U	74	< 78	78	U	78	< 72	72	U	72	< 82	82	U	82
	PCB-1221	100	1,000	< 72	72	U	72	< 72	72	U	72	< 76	76	U	76	< 74	74	U	74	< 78	78	U	78	< 72	72	U	72	< 82	82	U	82
	PCB-1232	100	1,000	< 72	72	U	72	< 72	72	U	72	< 76	76	U	76	< 74	74	U	74	< 78	78	U	78	< 72	72	U	72	< 82	82	U	82
,,	PCB-1242	100	1,000	< 72	72	U	72	< 72	72	U	72	< 76	76	U	76	< 74	74	U	74	< 78	78	U	78	< 72	72	U	72	< 82	82	U	82
PCBs	PCB-1248	100	1,000	< 72	72	U	72	< 72	72	U	72	< 76	76	U	76	< 74	74	U	74	< 78	78	U	78	< 72	72	U	72	< 82	82	U	82
"	PCB-1254	100	1,000	< 72	72	U	72	< 72	72	U	72	< 76	76	U	76	< 74	74	U	74	< 78	78	U	78	< 72	72	U	72	< 82	82	U	82
	PCB-1260	100	1,000	< 72	72	U	72	< 72	72	U	72	< 76	76	U	76	< 74	74	U	74	< 78	78	U	78	< 72	72	U	72	< 82	82	U	82
	PCB-1262	100	1,000	< 72	72	U	72	< 72	72	U	72	< 76	76	U	76	< 74	74	U	74	< 78	78	U	78	< 72	72	U	72	< 82	82	U	82
	PCB-1268	100	1,000	< 72	72	U	72	< 72	72	U	72	< 76	76	U	76	< 74	74	U	74	< 78	78	U	78	< 72	72	U	72	< 82	82	U	82

Notes:

- * 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
- U- The compound was anlayzed for but not detected at or above the MDL.

 J- The value is estimated.
- N- The concentration is based on the response fo the nearest internal.
- S- This compound is a solvent that is used in the laboratory.

D- The reported concentration is the result of a diluted analysis.

Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value

Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

		NV7505 4055				15	B1							15	B2					15B	3							15B	4					
COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil Cleanup Objectives*	NYDEC Part 375.6 Restricted Residential Soil Cleanup Objectives*	mg/K		016 mg	g/Kg	mg/F		016 mg	ı/Kg	mg/l		016 mg	g/Kg	mg/h		016 mg	g/Kg	mg/l		2016 mg	/Kg	mg/K		.016 mg	/Kg	mg/K		016 mg/		mg/l		16 mg/	
			12.600	RL 40	Qual	MDL	Result 3,690	RL 37	Qual	MDL	Result 4,150	RL 42	Qual	MDL	Result 5,080	RL 40	Qual	MDL 8.0	Result 6,860	RL 40	Qual	MDL	Result 5.130	RL 40	Qual		7,580	RL 42	Qual	MDL 8.4	Result 4,020	RL 39	Qual	MDL 7.7
Aluminum			,		-	8.0			-	7.4		-	-	0.3			-				-	0.1	-,	-	-	7.9			-	0.1	-	+	-	
Antimony			< 2.0	2.0	U	2.0	< 1.9	1.9	U	1.9	< 2.1	2.1	U	2.1	< 2.0	2.0	U	2.0	< 2.0	2.0	U	2.0	< 2.0	2.0	U	2.0	< 2.1	2.1	U	2.1	< 1.9	1.9	U	1.9
Arsenic	13	16	1.72	0.80	-	0.80	1.19	0.74	-	0.74	1.41	0.83	-	0.83	1.09	0.80	-	0.80	1.44	0.81	-	0.81	1.17	0.79	-	0.79	1.33	0.84		0.84	1.33	0.77	-	0.77
Barium	350	350	62.1	0.8	-	0.40	18.4	0.7	-	0.37	44.3	0.8	-	0.42	25.4	0.8	-	0.40	41.6	0.8	-	0.40	36.2	0.8	-	0.40	42.3	0.8	-	0.42	24.1	0.8	-	0.39
Beryllium	7.2	14	0.51	0.32	-	0.16	< 0.30	0.30	U	0.15	0.35	0.33	-	0.17	0.19	0.32	В	0.16	0.3	0.32	В	0.16	0.22	0.32	В	0.16	0.32	0.34	В	0.17	0.19	0.31	В	0.15
Cadmium	2.5	2.5	< 0.40	0.40	U	0.40	< 0.37	0.37	U	0.37	< 0.42	0.42	U	0.42	< 0.40	0.40	U	0.40	< 0.40	0.40	U	0.40	< 0.40	0.40	U	0.40	< 0.42	0.42	U	0.42	< 0.39	0.39	U	0.39
Calcium			1,440	40	-	37	468	3.7	-	3.4	1,170	4.2	-	3.8	750	40	-	37	2,020	4.0	-	3.7	1,660	4.0	-	3.7	1,300	4.2	-	3.9	819	3.9	-	3.6
Chromium	30	180	33.3	0.40	-	0.40	5.75	0.37	-	0.37	19.6	0.42	-	0.42	10.9	0.40	-	0.40	20.7	0.40	-	0.40	13.9	0.40	-	0.40	18.6	0.42	-	0.42	8.39	0.39	-	0.39
Cobalt			11.8	0.40	-	0.40	3.19	0.37	-	0.37	8.8	0.42	-	0.42	4.95	0.40	-	0.40	8.31	0.40	-	0.40	6.37	0.40	-	0.40	7.98	0.42	-	0.42	4.48	0.39	-	0.39
Copper	50	270	21	0.40	-	0.40	6.2	0.37	-	0.37	13.9	0.42	-	0.42	8.23	0.40	-	0.40	13.8	0.40	-	0.40	9.87	0.40	-	0.40	12	0.42	-	0.42	7.52	0.39	-	0.39
Iron			24,100	40	-	40	7,760	37	-	37	8,490	42	-	42	9,490	40	-	40	16,100	40	-	40	13,100	40	-	40	16,400	42	-	42	9,700	39	-	39
Lead	63	400	7.6	0.8	-	0.40	1	0.7	-	0.37	4.4	0.8	-	0.42	1.4	0.8	-	0.40	2.2	0.8	-	0.40	1.5	0.8	-	0.40	1.9	0.8	-	0.42	1.5	0.8	-	0.39
Magnesium			4,100	4.0	-	4.0	1,320	37	-	37	1,650	42	-	42	1,910	4.0	-	4.0	3,080	4.0	-	4.0	2,250	4.0	-	4.0	3,290	4.2	-	4.2	1,450	3.9	-	3.9
Manganese	1,600	2,000	348	4.0	-	4.0	74.9	0.37	-	0.37	237	4.2	-	4.2	175	4.0	-	4.0	332	4.0	-	4.0	356	4.0	-	4.0	441	4.2	-	4.2	156	3.9	-	3.9
Mercury	0.18	0.81	< 0.03	0.03	U	0.02	< 0.03	0.03	U	0.02	< 0.03	0.03	U	0.02	< 0.03	0.03	U	0.02	< 0.03	0.03	U	0.02	< 0.03	0.03	U	0.02	< 0.03	0.03	U	0.02	< 0.03	0.03	U	0.02
Nickel	30	140	15.8	0.40	-	0.40	6.98	0.37	-	0.37	14.8	0.42	-	0.42	8.76	0.40	-	0.40	14	0.40	-	0.40	11	0.40	-	0.40	13.8	0.42	-	0.42	8.09	0.39	-	0.39
Potassium			2,740	8	-	3.1	436	7	-	2.9	1,840	8	-	3.3	943	8	-	3.1	1,750	8	-	3.1	1,280	8	-	3.1	1,700	8	-	3.3	490	8	-	3.0
Selenium	3.9	36	< 1.6	1.6	U	1.4	< 1.5	1.5	U	1.3	< 1.7	1.7	U	1.4	< 1.6	1.6	U	1.4	< 1.6	1.6	U	1.4	< 1.6	1.6	U	1.3	< 1.7	1.7	U	1.4	< 1.5	1.5	U	1.3
Silver	2	36	< 0.40	0.40	U	0.40	< 0.37	0.37	U	0.37	< 0.42	0.42	U	0.42	< 0.40	0.40	U	0.40	< 0.40	0.40	U	0.40	< 0.40	0.40	U	0.40	< 0.42	0.42	U	0.42	< 0.39	0.39	U	0.39
Sodium			313	8	-	3.4	198	7	-	3.2	341	8	-	3.6	168	8	-	3.4	194	8	-	3.5	202	8	-	3.4	323	8	-	3.6	123	8	-	3.3
Thallium			< 1.6	1.6	U	1.6	< 1.5	1.5	U	1.5	< 1.7	1.7	U	1.7	< 1.6	1.6	U	1.6	< 1.6	1.6	U	1.6	< 1.6	1.6	U	1.6	< 1.7	1.7	U	1.7	< 1.5	1.5	U	1.5
Vanadium			37.7	0.40	-	0.40		0.37	-	0.37	29.3	0.42	-	0.42	14.7	0.40	-	0.40	27.9	0.40	-	0.40	21.5	0.40	-	0.40	27	0.42	-	0.42	14.7	0.39	-	0.39
Zinc	109	2,200	49.4	0.8	-	0.40	12.9	0.7	-	0.37	36.2	0.8	-	0.42	20.5	0.8	-	0.40	35	0.8	-	0.40	25.6	0.8	-	0.40	35	0.8	-	0.42	15.5	0.8	-	0.39

- Notes: * 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
- RL- Reporting Limit
- U- The compound was anlayzed for but not detected at or above the MDL.
- J- The value is estimated.

 N- The concentration is based on the response fo the nearest internal.
- S- This compound is a solvent that is used in the laboratory.
- D- The reported concentration is the result of a diluted analysis.
- Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value
- Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

	NVODEO D. 1075 O	NVDEO D. 1075 0						15B	5									15	B6			
COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil Cleanup Objectives*	NYDEC Part 375.6 Restricted Residential Soil Cleanup Objectives*	mg/K	(0-2 ¹ 11/10/2	016	g/Kg	mg/K	(12-14 11/10/2	016	ı/Kg	mg/K	(15-17 11/10/2 g	016	/Kg	mg/K	(5-7') 11/11/20	016	ı/Kg	mg/K	(12-14 11/11/2 g	016	g/Kg
			Result	RL	Qual	MDL	Result	RL	Qual	MDL	Result	RL	Qual	MDL	Result	RL	Qual	MDL	Result	RL	Qual	MDL
Aluminum			6,370	37	-	7.3	4,610	38	-	7.6	2,810	40	-	7.9	4,400	31	-	6.2	6,630	37	-	7.4
Antimony			< 1.9	1.9	U	1.9	< 1.8	1.8	U	1.8	< 1.9	1.9	U	1.9	< 1.6	1.6	U	1.6	< 1.9	1.9	U	1.9
Arsenic	13	16	5.88	0.73	-	0.73	0.89	0.76	-	0.76	< 0.79	0.79	U	0.79	1.25	0.62	-	0.62	1.24	0.74	-	0.74
Barium	350	350	91.2	0.7	-	0.37	24.6	0.8	-	0.38	16.2	0.8	-	0.40	12.5	0.6	-	0.31	37	0.7	-	0.37
Beryllium	7.2	14	0.36	0.29	-	0.15	0.22	0.30	В	0.15	< 0.32	0.32	U	0.16	0.2	0.25	В	0.12	0.33	0.30	-	0.15
Cadmium	2.5	2.5	0.98	0.37	-	0.37	< 0.38	0.38	U	0.38	< 0.40	0.40	U	0.40	< 0.31	0.31	U	0.31	< 0.37	0.37	U	0.37
Calcium			15,400	37	-	34	1,070	3.8	-	3.5	317	4.0	-	3.7	655	3.1	-	2.9	1,030	3.7	-	3.4
Chromium	30	180	15.1	0.37	-	0.37	9.97	0.38	-	0.38	5.31	0.40	-	0.40	8.72	0.31	-	0.31	20	0.37	-	0.37
Cobalt			5.15	0.37	-	0.37	9.15	0.38	-	0.38	2.69	0.40	-	0.40	3.45	0.31	-	0.31	7.14	0.37	-	0.37
Copper	50	270	71	0.37	-	0.37	6.78	0.38	-	0.38	4.65	0.40	-	0.40	9.27	0.31	-	0.31	10.9	0.37	-	0.37
Iron			15,300	37	-	37	12,100	38	-	38	5,430	4.0	-	4.0	7,640	3.1	-	3.1	13,800	37	-	37
Lead	63	400	228	7.3	-	3.7	1.4	0.7	-	0.36	0.7	0.8	В	0.40	1.6	0.6	-	0.31	1.5	0.7	-	0.37
Magnesium			5,190	3.7	-	3.7	2,050	3.8	-	3.8	1,160	4.0	-	4.0	1,710	3.1	-	3.1	2,510	3.7	-	3.7
Manganese	1,600	2,000	309	3.7	-	3.7	694	3.8	-	3.8	106	0.40	-	0.40	73.8	0.31	N	0.31	525	3.7	N	3.7
Mercury	0.18	0.81	0.49	0.03	-	0.02	< 0.03	0.03	U	0.02	< 0.03	0.03	U	0.02	< 0.03	0.03	U	0.02	< 0.03	0.03	U	0.02
Nickel	30	140	13.9	0.37	-	0.37	8.26	0.38	-	0.38	5.23	0.40	-	0.40	7.91	0.31	-	0.31	11.9	0.37	-	0.37
Potassium			710	7	N	2.9	844	8	N	3.0	351	8	N	3.1	598	6	N	2.4	1,240	7	N	2.9
Selenium	3.9	36	< 1.5	1.5	U	1.2	< 1.5	1.5	U	1.3	< 1.6	1.6	U	1.4	< 1.2	1.2	U	1.1	< 1.5	1.5	U	1.3
Silver	2	36	< 0.37	0.37	U	0.37	< 0.38	0.38	U	0.38	< 0.40	0.40	U	0.40	< 0.31	0.31	U	0.31	< 0.37	0.37	U	0.37
Sodium			132	7	-	3.2	108	8	-	3.3	69	8	-	3.4	89	6	N	2.7	146	74	N	32
Thallium			< 1.5	1.5	U	1.5	< 1.5	1.5	U	1.5	< 1.6	1.6	U	1.6	< 1.2	1.2	U	1.2	< 1.5	1.5	U	1.5
Vanadium			20.6	0.37	-	0.37	12.6	0.38	-	0.38	6.39	0.40	-	0.40	12.1	0.31	-	0.31	27.1	0.37	-	0.37
Zinc	109	2,200	261	7.3	-	3.7	19.6	0.8	-	0.38	10.9	0.8	-	0.40	37	0.6	-	0.31	27.8	0.7	-	0.37

Notes:

- * 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
- RL- Reporting Limit
- U- The compound was anlayzed for but not detected at or above the MDL.
- J- The value is estimated.
- N- The concentration is based on the response fo the nearest internal.
- S- This compound is a solvent that is used in the laboratory.
- D- The reported concentration is the result of a diluted analysis.

Bold/highlighted-Indicated exceedance of the NYSDEC UUSCO Guidance Value Bold/highlighted-Indicated exceedance of the NYSDEC RRSCO Guidance Value

								15B	7									15	B8			
COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil Cleanup Objectives*	NYDEC Part 375.6 Restricted Residential Soil Cleanup Objectives*	mg/K	(12-14 11/11/2	016	g/Kg	mg/K	(18-20 11/11/2	016	ı/Kg	mg/K	(23-25 11/11/2	016	ı/Kg	mg/K	(0-2") 11/10/20 g	016	g/Kg	mg/K	(12-14 11/10/2	016	g/Kg
			Result	RL	Qual	MDL	Result	RL	Qual	MDL	Result	RL	Qual	MDL	Result	RL	Qual	MDL	Result	RL	Qual	MDL
Aluminum			7,000	39	-	7.8	4,270	36	-	7.3	4,250	41	-	8.3	7,470	37	-	7.4	4,390	42	-	8.4
Antimony			< 2.0	2.0	U	2.0	< 1.8	1.8	U	1.8	< 2.1	2.1	U	2.1	< 1.9	1.9	U	1.9	< 2.1	2.1	U	2.1
Arsenic	13	16	1.21	0.78	-	0.78	0.9	0.73	-	0.73	0.97	0.83	-	0.83	6	0.74	-	0.74	1.11	0.84	-	0.84
Barium	350	350	29.2	0.8	-	0.39	22.5	0.7	-	0.36	21.3	0.8	-	0.41	76.4	0.7	-	0.37	38.6	0.8	-	0.42
Beryllium	7.2	14	0.31	0.31	-	0.16	0.21	0.29	В	0.15	0.2	0.33	В	0.17	0.44	0.30	-	0.15	0.21	0.33	В	0.17
Cadmium	2.5	2.5	< 0.39	0.39	U	0.39	< 0.36	0.36	U	0.36	< 0.41	0.41	U	0.41	0.67	0.37	-	0.37	< 0.42	0.42	U	0.42
Calcium			911	3.9	-	3.6	969	3.6	-	3.3	1,390	4.1	-	3.8	1,870	3.7	-	3.4	1,100	4.2	-	3.8
Chromium	30	180	21.7	0.39	-	0.39	11.8	0.36	-	0.36	9.84	0.41	-	0.41	14.9	0.37	-	0.37	9.81	0.42	-	0.42
Cobalt			6.08	0.39	-	0.39	5.53	0.36	-	0.36	4.33	0.41	-	0.41	5.99	0.37	-	0.37	4.95	0.42	-	0.42
Copper	50	270	10.5	0.39	-	0.39	8.59	0.36	-	0.36	6.65	0.41	-	0.41	68.1	0.37	-	0.37	8.44	0.42	-	0.42
Iron			13,500	39	-	39	11,100	36	-	36	14,400	41	-	41	13,500	37	-	37	10,700	42	-	42
Lead	63	400	1.3	0.8	-	0.39	3.5	0.7	-	0.36	1.2	0.8	-	0.41	196	7.4	-	3.7	1.2	0.8	-	0.41
Magnesium			2,300	3.9	-	3.9	2,060	3.6	-	3.6	1,850	4.1	-	4.1	1,470	3.7	-	3.7	2,030	4.2	-	4.2
Manganese	1,600	2,000	301	3.9	N	3.9	149	3.6	N	3.6	678	4.1	N	4.1	271	3.7	-	3.7	199	4.2	-	4.2
Mercury	0.18	0.81	< 0.03	0.03	U	0.02	< 0.03	0.03	U	0.02	< 0.03	0.03	U	0.02	0.45	0.03	-	0.02	< 0.03	0.03	U	0.02
Nickel	30	140	9.64	0.39	-	0.39	9.72	0.36	-	0.36	8.72	0.41	-	0.41	14.7	0.37	-	0.37	9.57	0.42	-	0.42
Potassium			799	8	N	3.1	870	7	N	2.8	842	8	N	3.2	570	7	Ν	2.9	909	8	N	3.3
Selenium	3.9	36	< 1.6	1.6	U	1.3	< 1.5	1.5	U	1.2	< 1.7	1.7	U	1.4	< 1.5	1.5	U	1.3	< 1.7	1.7	U	1.4
Silver	2	36	< 0.39	0.39	U	0.39	< 0.36	0.36	U	0.36	< 0.41	0.41	U	0.41	< 0.37	0.37	U	0.37	< 0.42	0.42	U	0.42
Sodium			182	8	N	3.4	162	7	N	3.1	160	8	N	3.5	91	7	-	3.2	109	8	-	3.6
Thallium			< 1.6	1.6	U	1.6	< 1.5	1.5	U	1.5	< 1.7	1.7	U	1.7	< 1.5	1.5	U	1.5	< 1.7	1.7	U	1.7
Vanadium			25.1	0.39	-	0.39	17.6	0.36	-	0.36	13.7	0.41	-	0.41	16	0.37	-	0.37	15.3	0.42	-	0.42
Zinc	109	2,200	24.7	0.8	-	0.39	21.3	0.7	-	0.36	19.3	0.8	-	0.41	269	7.4	-	3.7	21	0.8	-	0.42

Notes:

* - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

RL- Reporting Limit

U- The compound was anlayzed for but not detected at or above the MDL.

J- The value is estimated.

N- The concentration is based on the response fo the nearest internal.

S- This compound is a solvent that is used in the laboratory.

D- The reported concentration is the result of a diluted analysis.

Bold/highlighted-Indicated exceedance of the NYSDEC UUSCO Guidance Value Bold/highlighted-Indicated exceedance of the NYSDEC RRSCO Guidance Value

						15	В9					15B1	0							15B1	11					
COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil Cleanup Objectives*	NYDEC Part 375.6 Restricted Residential Soil Cleanup Objectives*	mg/K		016 mg	ı/Kg	mg/K		, 016 mg	ı/Kg	mg/K		016 mg	/Kg	mg/K		, 016 mg	ı/Kg	mg/k		016 mg	g/Kg	mg/K		.016 mg	ı/Kg
Aluminum			Result 6.550	RL 39	Qual	MDL 7.9	Result 4,470	RL 35	Qual	MDL 7.0	Result 4,600	RL 35	Qual	MDL 6.9	Result 7.940	RL 34	Qual	MDL 6.9	Result 6.140	RL 38	Qual	MDL 7.6	Result 4.620	RL 41	Qual	MDL 8.3
Antimony			3.3	2.0		2.0	< 1.8	1.8	U	1.8	< 1.7	1.7	U	1.7	7.5	1.7		1.7	< 1.8	1.8	U	1.8	< 1.9	1.9	U	1.9
Arsenic			7.72	0.79		0.79	1.96	0.70	-	0.70	1.28	0.69	-	0.69	7.69	0.69		0.69	1.15	0.76	_	0.76	1.43	0.83		0.83
Barium	13	16	261	0.73		0.39	26	0.7	_	0.35	20	0.7		0.35	446	0.7		0.34	20	0.8		0.38	21.5	0.8		0.41
Beryllium	350	350	0.34	0.31		0.16	0.21	0.28	В	0.14	0.19	0.28	В	0.14	0.39	0.27		0.14	0.22	0.30	В	0.15	0.22	0.33	В	0.41
Cadmium	7.2	14	1.6	0.39		0.39	< 0.35	0.35	U	0.35	< 0.35	0.35	U	0.14	7.67	0.34		0.14	< 0.38	0.38	U	0.13	< 0.41	0.33	U	0.41
Calcium	2.5	2.5	12.900	39		36	1,710	35	0	32	1,060	35	0	32	6.970	3.4	_	3.2	908	3.8	0	3.5	663	4.1		3.8
Chromium			20	0.39	_	0.39	1,710	0.35	-	0.35	14.9	0.35	-	0.35	31.9	0.34	-	0.34	11.3	0.38	-	0.38	11.6	0.41		0.41
Cobalt	30	180	6.21	0.39	_	0.39	5.26	0.35		0.35	4.49	0.35	-	0.35	8.49	0.34	-	0.34	4.35	0.38	_	0.38	5.14	0.41		0.41
				3.9	-	3.9		0.35		0.35		0.35	-	0.35		3.4	-	3.4		0.38	-	0.38		0.41	_	0.41
Copper	50	270	170	3.9	-	3.9	11.1	35	-	35	8.89	35	-	35	266	3.4	-	3.4	8.58		-	3.8	8.73	41	-	41
Iron 			14,800		-		12,800		-		11,200		-		25,900		-		9,030	3.8	-		10,800			
Lead	63	400	399	7.9	-	3.9	2.2	0.7	-	0.35	2.2	0.7	-	0.35	754	6.9	-	3.4	1.8	0.7	-	0.36	1.1	8.0	-	0.39
Magnesium			6,810	39	-	39	1,480	3.5	-	3.5	1,530	3.5	-	3.5	2,380	3.4	-	3.4	1,920	3.8	-	3.8	1,990	4.1	-	4.1
Manganese	1,600	2,000	135	0.39	-	0.39	212	3.5	-	3.5	180	3.5	-	3.5	403	3.4	-	3.4	145	0.38	-	0.38	208	4.1	-	4.1
Mercury	0.18	0.81	0.65	0.03	-	0.02	< 0.03	0.03	U	0.02	< 0.03	0.03	U	0.02	0.81	0.03	-	0.02	< 0.03	0.03	U	0.02	< 0.03	0.03	U	0.02
Nickel	30	140	16.6	0.39	-	0.39	10.1	0.35	-	0.35	9.29	0.35	-	0.35	29	0.34	-	0.34	9.5	0.38	-	0.38	10.6	0.41	-	0.41
Potassium			1,130	8	-	3.1	671	7	-	2.7	546	7	-	2.7	861	7	N	2.7	356	8	N	3.0	798	8	N	3.2
Selenium	3.9	36	< 1.6	1.6	U	1.3	< 1.4	1.4	U	1.2	< 1.4	1.4	U	1.2	< 1.4	1.4	U	1.2	< 1.5	1.5	U	1.3	< 1.7	1.7	U	1.4
Silver	2	36	0.46	0.39	-	0.39	< 0.35	0.35	U	0.35	< 0.35	0.35	U	0.35	0.72	0.34	-	0.34	< 0.38	0.38	U	0.38	< 0.41	0.41	U	0.41
Sodium			348	8	-	3.4	147	7	-	3.0	131	7	-	3.0	189	7	-	2.9	129	8	-	3.3	84	8	-	3.5
Thallium			< 1.6	1.6	U	1.6	< 1.4	1.4	U	1.4	< 1.4	1.4	U	1.4	< 1.4	1.4	U	1.4	< 1.5	1.5	U	1.5	< 1.7	1.7	U	1.7
Vanadium			39.7	0.39	-	0.39	30.5	0.35	-	0.35	17.1	0.35	-	0.35	25.6	0.34	-	0.34	12.3	0.38	-	0.38	13.2	0.41	-	0.41
Zinc	109	2,200	431	7.9	-	3.9	22	0.7	-	0.35	18.5	0.7	-	0.35	1,100	6.9	-	3.4	18.5	0.8	-	0.38	19.9	0.8	- 1	0.41

Notes:

- * 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
- RL- Reporting Limit
- U- The compound was anlayzed for but not detected at or above the MDL.
- J- The value is estimated.
- N- The concentration is based on the response fo the nearest internal.
- S- This compound is a solvent that is used in the laboratory. D- The reported concentration is the result of a diluted analysis.

Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

						15	B12					15B1	3							15B1	14					
COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil Cleanup Objectives*	NYDEC Part 375.6 Restricted Residential Soil Cleanup Objectives*	mg/k	(12-1 11/10/2	2016	g/Kg	mg/K	(20-22 11/10/2	016	ı/Kg	mg/K	(12-14 11/10/2 g	016	ı/Kg	mg/K	(1-3' 11/10/2 g	016	g/Kg	mg/K	(12-1- 11/10/2	016	g/Kg	mg/K	(14-16 11/10/2	016	g/Kg
			Result	RL	Qual	MDL	Result	RL	Qual	MDL	Result	RL	Qual	MDL	Result	RL	Qual	MDL	Result	RL	Qual	MDL	Result	RL	Qual	MDL
Aluminum			3,660	37	-	7.4	3,230	37	-	7.4	4,020	39	-	7.8	6,260	38	-	7.5	4,300	36	-	7.2	3,360	42	-	8.4
Antimony			< 2.0	2.0	U	2.0	< 1.9	1.9	U	1.9	< 1.9	1.9	U	1.9	1.8	1.8	-	1.8	< 1.8	1.8	U	1.8	< 2.0	2.0	U	2.0
Arsenic	13	16	< 0.74	0.74	U	0.74	< 0.74	0.74	U	0.74	< 0.78	0.78	U	0.78	13.7	0.75	-	0.75	1.16	0.72	-	0.72	< 0.84	0.84	U	0.84
Barium	350	350	17.6	0.7	-	0.37	17.9	0.7	-	0.37	13.3	0.8	-	0.39	105	0.8	-	0.38	22.4	0.7	-	0.36	18.6	0.8	-	0.42
Beryllium	7.2	14	0.16	0.29	В	0.15	0.17	0.30	В	0.15	< 0.31	0.31	U	0.16	0.35	0.30	-	0.15	0.21	0.29	В	0.14	< 0.33	0.33	U	0.17
Cadmium	2.5	2.5	< 0.37	0.37	U	0.37	< 0.37	0.37	U	0.37	< 0.39	0.39	U	0.39	1.27	0.38	-	0.38	< 0.36	0.36	U	0.36	< 0.42	0.42	U	0.42
Calcium			705	3.7	-	3.4	949	3.7	-	3.4	820	3.9	-	3.6	6,040	3.8	-	3.5	826	3.6	-	3.3	621	4.2	-	3.8
Chromium	30	180	10.3	0.37	-	0.37	8.47	0.37	-	0.37	7.79	0.39	-	0.39	24.5	0.38	-	0.38	11.3	0.36	-	0.36	6.65	0.42	-	0.42
Cobalt			3	0.37	-	0.37	4.47	0.37	-	0.37	3.77	0.39	-	0.39	7.77	0.38	-	0.38	4.08	0.36	-	0.36	3.63	0.42	-	0.42
Copper	50	270	6.54	0.37	-	0.37	7.31	0.37	-	0.37	8.09	0.39	-	0.39	146	0.38	-	0.38	9.43	0.36	-	0.36	7.14	0.42	-	0.42
Iron			6,240	3.7	-	3.7	8,380	3.7	-	3.7	7,020	3.9	-	3.9	24,400	38	-	38	11,400	36	-	36	7,050	4.2	-	4.2
Lead	63	400	1.9	0.8	-	0.40	1.5	0.8	-	0.39	1.1	0.8	-	0.38	232	7.5	-	3.8	1.1	0.7	-	0.37	0.8	0.8	В	0.40
Magnesium			1,400	3.7	-	3.7	1,290	3.7	-	3.7	1,910	3.9	-	3.9	1,890	3.8	-	3.8	1,670	3.6	-	3.6	1,370	4.2	-	4.2
Manganese	1,600	2,000	84.1	0.37	-	0.37	202	3.7	-	3.7	225	3.9	-	3.9	276	3.8	-	3.8	257	3.6	-	3.6	120	0.42	-	0.42
Mercury	0.18	0.81	< 0.03	0.03	U	0.02	< 0.03	0.03	U	0.02	< 0.03	0.03	U	0.02	0.47	0.03	-	0.02	< 0.03	0.03	U	0.02	< 0.03	0.03	U	0.02
Nickel	30	140	6.72	0.37	-	0.37	7.67	0.37	-	0.37	7.95	0.39	-	0.39	21.3	0.38	-	0.38	9.18	0.36	-	0.36	7.35	0.42	-	0.42
Potassium			559	7	N	2.9	456	7	N	2.9	440	8	N	3.0	789	8	N	2.9	476	7	N	2.8	552	8	N	3.3
Selenium	3.9	36	< 1.5	1.5	U	1.3	< 1.5	1.5	U	1.3	< 1.6	1.6	U	1.3	< 1.5	1.5	U	1.3	< 1.4	1.4	U	1.2	< 1.7	1.7	U	1.4
Silver	2	36	< 0.37	0.37	U	0.37	< 0.37	0.37	U	0.37	< 0.39	0.39	U	0.39	< 0.38	0.38	U	0.38	< 0.36	0.36	U	0.36	< 0.42	0.42	U	0.42
Sodium			94	7	-	3.2	93	7	-	3.2	127	8	-	3.4	228	8	-	3.2	104	7	-	3.1	88	8	-	3.6
Thallium			< 1.5	1.5	U	1.5	< 1.5	1.5	U	1.5	< 1.6	1.6	U	1.6	< 1.5	1.5	U	1.5	< 1.4	1.4	U	1.4	< 1.7	1.7	U	1.7
Vanadium			11.6	0.37	-	0.37	12.9	0.37	-	0.37	9.78	0.39	-	0.39	21.9	0.38	-	0.38	15.2	0.36	-	0.36	10.6	0.42	-	0.42
Zinc	109	2,200	13.6	0.7	-	0.37	13.8	0.7	-	0.37	14.8	0.8	-	0.39	677	7.5	-	3.8	45.1	0.7	-	0.36	24.3	0.8	-	0.42

Notes:

- * 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
- RL- Reporting Limit
- U- The compound was anlayzed for but not detected at or above the MDL.
- J- The value is estimated.
- N- The concentration is based on the response fo the nearest internal.

S- This compound is a solvent that is used in the laboratory.
D- The reported concentration is the result of a diluted analysis.

Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

	NYSDEC Part 375.6	NYDEC Part 375.6								15	B19							
COMPOUND	Unrestricted Use Soil Cleanup Objectives*	Restricted Residential Soil Cleanup Objectives*	mg/K	(0-2 11/14/2 g	016	ı/Kg	mg/K	(12-14 11/14/2	016	g/Kg	mg/K	(18-20 11/14/2 g	016	ı/Kg	mg/K	(20-25 11/14/2	016	ı/Kg
			Result	RL	Qual	MDL	Result	RL	Qual	MDL	Result	RL	Qual	MDL	Result	RL	Qual	MDL
Aluminum			7,860	36	-	7.2	4,690	41	-	8.3	6,590	41	-	8.2	4,810	40	-	7.9
Antimony			< 1.8	1.8	U	1.8	< 2.1	2.1	U	2.1	< 2.1	2.1	U	2.1	< 2.0	2.0	U	2.0
Arsenic	13	16	6.59	0.72	-	0.72	1.19	0.83	-	0.83	1.38	0.82	-	0.82	1.28	0.79	-	0.79
Barium	350	350	129	0.7	-	0.36	22.6	0.8	-	0.41	37	0.8	-	0.41	24.3	0.8	-	0.40
Beryllium	7.2	14	0.42	0.29	-	0.14	0.27	0.33	В	0.17	0.26	0.33	В	0.16	0.21	0.32	В	0.16
Cadmium	2.5	2.5	0.68	0.36	-	0.36	< 0.41	0.41	U	0.41	< 0.41	0.41	U	0.41	< 0.40	0.40	U	0.40
Calcium			7,640	3.6	-	3.3	909	4.1	-	3.8	1,220	4.1	-	3.8	1,190	4.0	-	3.6
Chromium	30	180	19.3	0.36	-	0.36	14.1	0.41	-	0.41	16.1	0.41	-	0.41	13.6	0.40	-	0.40
Cobalt			7.67	0.36	-	0.36	4.82	0.41	-	0.41	7.43	0.41	-	0.41	5.56	0.40	-	0.40
Copper	50	270	80.5	0.36	-	0.36	7.07	0.41	-	0.41	12.4	0.41	-	0.41	9.46	0.40	-	0.40
Iron			20,300	36	-	36	10,600	41	-	41	15,000	41	-	41	12,500	40	-	40
Lead	63	400	237	7.2	-	3.6	1.4	0.8	-	0.41	8.2	0.8	-	0.41	2.3	0.8	-	0.40
Magnesium			2,070	3.6	-	3.6	1,740	4.1	-	4.1	2,830	4.1	-	4.1	2,030	4.0	-	4.0
Manganese	1,600	2,000	345	3.6	-	3.6	170	4.1	-	4.1	327	4.1	-	4.1	203	4.0	-	4.0
Mercury	0.18	0.81	1.57	0.03	-	0.02	< 0.03	0.03	U	0.02	< 0.03	0.03	U	0.02	< 0.03	0.03	U	0.02
Nickel	30	140	15.7	0.36	-	0.36	8.75	0.41	-	0.41	13.5	0.41	-	0.41	10.2	0.40	-	0.40
Potassium			1,120	7	-	2.8	792	8	-	3.2	1,530	8	-	3.2	992	8	-	3.1
Selenium	3.9	36	< 1.4	1.4	U	1.2	< 1.7	1.7	U	1.4	< 1.6	1.6	U	1.4	< 1.6	1.6	U	1.3
Silver	2	36	< 0.36	0.36	U	0.36	< 0.41	0.41	U	0.41	< 0.41	0.41	U	0.41	< 0.40	0.40	U	0.40
Sodium			227	7	-	3.1	148	8	-	3.5	157	8	-	3.5	150	8	-	3.4
Thallium			< 1.4	1.4	U	1.4	< 1.7	1.7	U	1.7	< 1.6	1.6	U	1.6	< 1.6	1.6	U	1.6
Vanadium			24.8	3.6	-	3.6	16.2	0.41	-	0.41	24.1	0.41	-	0.41	19.8	0.40	-	0.40
Zinc	109	2,200	165	7.2	-	3.6	18.7	0.8	-	0.41	30	0.8	-	0.41	21.5	0.8	-	0.40

Notes:

* - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

RL- Reporting Limit

- U- The compound was anlayzed for but not detected at or above the MDL.
- J- The value is estimated.
- N- The concentration is based on the response fo the nearest internal.
- S- This compound is a solvent that is used in the laboratory.
- D- The reported concentration is the result of a diluted analysis.

Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value

Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

	NYSDEC Part 375.6	NYDEC Part 375.6				15	B20					Duplic 15B2			Ι	Ouplica 15B			Ι	Ouplica 15B1				Duplicat 15B2		
COMPOUND	Unrestricted Use Soil Cleanup Objectives*	Restricted Residential Soil Cleanup Objectives*	mg/K	(0-2" 11/10/2 g	016	g/Kg	mg/K	(12-14 11/10/20 g	16	/Kg	mg/K	(12-14 11/10/20 g)16	ı/Kg	mg/K	(12-14 11/11/2	016	ı/Kg	mg/K	(0-2' 11/14/2 g	016	ı/Kg	mg/K	(12-14 11/14/20 g	016 mg.	ı/Kg
			Result	RL	Qual	MDL	Result	RL	Qual	MDL	Result	RL	Qual	MDL	Result	RL	Qual	MDL	Result	RL	Qual	MDL	Result	RL	Qual	MDL
Aluminum			6,120	36	-	7.2	3,090	37	-	7.4	3,140	36	-	7.2	5,940	35	-	7.1	8,170	38	-	7.5	6,770	37	-	7.4
Antimony			< 1.7	1.7	U	1.7	< 2.0	2.0	U	2.0	< 2.0	2.0	U	2.0	< 1.8	1.8	U	1.8	< 1.9	1.9	U	1.9	< 1.9	1.9	U	1.9
Arsenic	13	16	3.15	0.72	-	0.72	< 0.74	0.74	U	0.74	< 0.72	0.72	U	0.72	1.17	0.71	-	0.71	6.36	0.75	-	0.75	1.33	0.74	-	0.74
Barium	350	350	53.6	0.7	-	0.36	20	0.7	-	0.37	18.5	0.7	-	0.36	24.3	0.7	-	0.35	113	0.8	-	0.38	40.3	0.7	-	0.37
Beryllium	7.2	14	0.45	0.29	-	0.14	0.15	0.29	В	0.15	0.15	0.29	В	0.14	0.25	0.28	В	0.14	0.41	0.30	-	0.15	0.28	0.30	В	0.15
Cadmium	2.5	2.5	0.83	0.36	-	0.36	< 0.37	0.37	U	0.37	< 0.36	0.36	U	0.36	< 0.35	0.35	U	0.35	0.58	0.38	-	0.38	< 0.37	0.37	U	0.37
Calcium			14,900	36	-	33	423	3.7	-	3.4	468	3.6	-	3.3	814	3.5	-	3.3	6,690	3.8	-	3.5	1,090	37	-	34
Chromium	30	180	17.5	0.36	-	0.36	5.66	0.37	-	0.37	5.49	0.36	-	0.36	18	0.35	-	0.35	20.2	0.38	-	0.38	16.7	0.37	- '	0.37
Cobalt			7.07	0.36	-	0.36	3.22	0.37	-	0.37	3.4	0.36	-	0.36	5.43	0.35	-	0.35	7.23	0.38	-	0.38	7.22	0.37	-	0.37
Copper	50	270	41.9	0.36	-	0.36	5.9	0.37	-	0.37	6.22	0.36	-	0.36	8.44	0.35	-	0.35	73.7	0.38	-	0.38	11.6	0.37	-	0.37
Iron			22,300	36	-	36	7,000	3.7	1	3.7	7,510	3.6	1	3.6	11,400	35	-	35	19,800	38	-	38	15,000	37	-	37
Lead	63	400	68.4	0.7	-	0.36	1.2	0.8	1	0.39	1	0.8	1	0.39	1.3	0.7	-	0.35	243	7.5	-	3.8	2.8	0.7	-	0.37
Magnesium			8,070	36	-	36	1,240	3.7	-	3.7	1,230	3.6	-	3.6	2,000	3.5	-	3.5	2,120	3.8	-	3.8	2,640	3.7	-	3.7
Manganese	1,600	2,000	584	3.6	-	3.6	82.1	0.37	1	0.37	219	3.6	1	3.6	247	3.5	N	3.5	386	3.8	-	3.8	337	3.7	-	3.7
Mercury	0.18	0.81	0.71	0.03	-	0.02	< 0.03	0.03	\supset	0.02	< 0.03	0.03	U	0.02	< 0.03	0.03	U	0.02	1.04	0.03	-	0.02	< 0.03	0.03	U	0.02
Nickel	30	140	13.2	0.36	-	0.36	6.18	0.37	1	0.37	6.41	0.36	1	0.36	8.54	0.35	-	0.35	15.1	0.38	-	0.38	13.2	0.37	-	0.37
Potassium			1,340	7	N	2.8	377	7	Z	2.9	344	7	Z	2.8	649	7	N	2.8	1,120	8	-	2.9	1,410	7	-	2.9
Selenium	3.9	36	< 1.4	1.4	U	1.2	< 1.5	1.5	U	1.3	< 1.4	1.4	U	1.2	< 1.4	1.4	U	1.2	< 1.5	1.5	U	1.3	< 1.5	1.5	U	1.3
Silver	2	36	< 0.36	0.36	U	0.36	< 0.37	0.37	\supset	0.37	< 0.36	0.36	J	0.36	< 0.35	0.35	U	0.35	< 0.38	0.38	U	0.38	< 0.37	0.37	U	0.37
Sodium			361	7	-	3.1	60	7	-	3.2	59	7	-	3.1	161	7	N	3.0	230	8	-	3.2	303	7	-	3.2
Thallium			< 1.4	1.4	U	1.4	< 1.5	1.5	U	1.5	< 1.4	1.4	U	1.4	< 1.4	1.4	U	1.4	< 1.5	1.5	U	1.5	< 1.5	1.5	U	1.5
Vanadium			29.2	0.36	-	0.36	7.69	0.37	-	0.37	8.92	0.36	-	0.36	18.6	0.35	-	0.35	25	0.38	-	0.38	25.1	0.37	-	0.37
Zinc	109	2,200	78.4	0.7	-	0.36	11.9	0.7	-	0.37	12.3	0.7	-	0.36	20.6	0.7	-	0.35	160	7.5	-	3.8	30.3	0.7	-	0.37

Notes:

- * 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
- RL- Reporting Limit
- U- The compound was anlayzed for but not detected at or above the MDL. J- The value is estimated.
- N- The concentration is based on the response fo the nearest internal.
- S- This compound is a solvent that is used in the laboratory.
- D- The reported concentration is the result of a diluted analysis.

Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

TABLE 7 Ground Water Analytical Results Volatile Organic Compounds

Part	Compound	NYSDEC Groundwater Quality Standards		MW ⁻				MW:				MW:				MW-		
1.00	Compound			μg/L				μg/L				μg/L				μg/L		
1.5.1.5.1.5.1.5.1.5.1.5.1.5.1.5.1.5.1.5	1.1.1.2-Tetrachlorothane									_			_	_				MDL 0.25
1.00	1,1,1-Trichloroethane																	0.25
1.000 1.00	1,1,2,2-Tetrachloroethane		< 1.0	1.0	U	0.25	< 5.0	5.0	U	1.3	< 5.0	5.0	U	5.0	< 1.0	1.0	U	0.25
	1,1,2-Trichloroethane	1	< 1.0	1.0	U	0.25	< 1.3	1.3	U	1.3	< 5.0	5.0	U	5.0	< 1.0	1.0	U	0.25
1.50 1.50	1,1-Dichloroethane	5	< 5.0	5.0	U	0.25	< 5.0	5.0	U	1.3	< 5.0	5.0	U	5.0	< 5.0	5.0	U	0.25
1.24 1.25	1,1-Dichloroethene	5	< 1.0		U	0.25	< 5.0		U	1.3	< 5.0			-	< 1.0	1.0		0.25
1.5. Processor 1.5.				-					_	-				_				0.25
1.4 Professionationation																		
1.4 1.5		0.04								-				_				0.25
2.5000000000000000000000000000000000000	• •	5												_				0.25
2-24 2-25	1,2-Dibromo-3-chloropropane			-	_	-		-		_				_			_	0.50
	1,2-Dibromoethane	0.01	< 0.25	0.25	U	0.25	< 1.3	1.3	U	1.3	< 5.0	5.0	U	5.0	< 0.25	0.25	U	0.25
3.8.04.0700000000000000000000000000000000	1,2-Dichlorobenzene	5	< 1.0	1.0	U	0.25	< 4.7	4.7	U	1.3	< 5.0	5.0	U	5.0	< 1.0	1.0	U	0.25
3.45 1.45	1,2-Dichloroethane	0.6	< 0.60	0.60	U	0.50	< 2.5	2.5	U	2.5	< 10	10	U	10	< 0.60	0.60	U	0.50
1.50 1.50	1,2-Dichloropropane	0.94	< 1.0	1.0	U	0.25	< 1.3	1.3	U	1.3	< 5.0	5.0	U	5.0	< 1.0	1.0	U	0.25
		5			-			-		-				_			_	0.25
Additional				-	-				-	-				_				0.25
2.2001 2.0										-				_				0.25
Columnic S				-				-		-				+ -			_	_
										_				+ -			_	-
Negrophisher		5		-										_				2.5
Second S	2-Isopropyltoluene	5			-					_				+ -			_	0.25
Memyly-Americane	4-Chlorotoluene				U					_				+ -			_	0.25
New Procession	4-Methyl-2-Pentanone		< 2.5	2.5	U	2.5	< 13	13	U	13	< 50	50	U	50	5.6	2.5	-	2.5
Companies S	Acetone	50	< 5.0	5.0	U	2.5	53	25	S	13	< 50	50	U	50	46	25	DS	13
	Acrolein		< 5.0	5.0	U	2.5	< 13	13	U	13	< 50	50	U	50	< 5.0	5.0	U	2.5
Sementation	Acrylonitrile	5							U				U				U	2.5
Second-contended S	Benzene	1						-	-	_			-					0.25
Production	Bromobenzene					-								_				0.25
		5								_				+ -			_	-
Second Distriction S				-	_	-		-		-				_			_	_
Carbon Disutifide 0	Bromomethane	5			_					1				1				0.25
Carbon tetrachorde	Carbon Disulfide			-		-		-	U	-				_				0.25
Childrochtane	Carbon tetrachloride		< 1.0	1.0	U	0.25	< 5.0	5.0	U	1.3	< 5.0	5.0	U	5.0	< 1.0	1.0	U	0.25
Chicorolime	Chlorobenzene		< 5.0	5.0	U	0.25	< 5.0	5.0	U	1.3	< 5.0	5.0	U	5.0	< 5.0	5.0	U	0.25
Chiconethane GO	Chloroethane	5	< 5.0	5.0	U	0.25	< 5.0	5.0	U	1.3	< 5.0	5.0	U	5.0	< 5.0	5.0	U	0.25
Section Sect	Chloroform	7	< 5.0	5.0	U	0.25	< 7.0	7.0	U	1.3	< 7.0	7.0	U	5.0	< 5.0	5.0	U	0.25
	Chloromethane	60								-				-				0.25
Selection Sele	cis-1,2-Dichloroethene	5								_				+ -				0.25
Silvenomethane										-			_	-				0.25
		-								-				_				
Ethylenzene 5 440 13 0 13 230 50 0 50 570 50 - 50 410 10 U 02 02 02 0 0 50 570 50 - 50 410 10 U 02 02 02 0 0 050 0 0 0 0 0 0 0 0 0 0 0																		0.25
	Ethylbenzene	-	440	13	D	13	230	5.0	D	5.0	570	5.0	-	5.0	< 1.0	1.0	U	0.25
Major Nylenes 5 290 10 D 2.5 720 20 D 5.0 540 20 - 5.0 0.34 1.0 J 0.2	Hexachlorobutadiene		< 0.50	0.50	U	0.20	< 1.0	1.0	U	1.0	< 4.0	4.0	U	4.0	< 0.50	0.50	U	0.20
Methyl Ethyl Ketone (2-Butanone)	Isopropylbenzene	5	26	1.0	-	0.25	22	5.0	-	1.3	79	5.0	-	5.0	< 1.0	1.0	U	0.25
Methyl t-butyl ether (MTBE)	m&p-Xylenes	5	290	10	D	2.5	720	20	D	5.0	540	20	-	5.0	0.34	1.0	J	0.25
Methylene chloride	Methyl Ethyl Ketone (2-Butanone)	50		-	_	-		-		-				_			-	2.5
Naphthalene 10 58 10 D 10 73 50 - 50 190 20 - 20 <1.0 1.0 U 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0														_				0.25
Second Control of the Purple				-	_			-		-				_				
Second S					D					-				_				_
5 70 50 D 2.5 210 50 D 5.0 D D D D D D D D D					D.	-		1		-				-				0.25
1.3 1.0 - 0.25 2.6 5.0 J 1.3 5.2 5.0 - 5.0 <1.0 1.0 U 0.25									D					_				0.25
Styrene	p-lsopropyltoluene	·		1.0	-	0.25		5.0	J	1.3		5.0	-	5.0	< 1.0	1.0	U	0.25
Trichloroethane	sec-Butylbenzene	5	3.1	1.0	-	0.25	6.7	5.0	-	1.3	13	5.0	-	5.0	0.25	1.0	J	0.25
Fetral brook S	Styrene		< 1.0	1.0	U	0.25	< 5.0	5.0	U	1.3	< 5.0	5.0	U	5.0	< 1.0	1.0	U	0.25
Tetrahydrofuran (THF)	tert-Butylbenzene	5	0.38	1.0	J	0.25	< 5.0	5.0	U	1.3	< 5.0	5.0	U	5.0	< 1.0	1.0	U	0.25
Trichloroethane 5	Tetrachloroethene	5							U				-	_				0.25
rans-1,2-Dichloroethene 5 < 5.0	Tetrahydrofuran (THF)				U					_				_			_	2.5
rans-1,3-Dichloropropene 0,4 < 0,40	Toluene				-									_				0.25
rans-1,4-dichloro-2-butene 5 <.2.5																		0.25
Frichiorotthene 5 < 1.0 1.0 U 0.25 < 5.0 5.0 U 1.3 6.6 5.0 - 5.0 0.26 1.0 J 0.2 Frichiorotthoromethane 5 < 1.0 1.0 U 0.25 < 5.0 5.0 U 1.3 < 5.0 5.0 U 5.0 < 1.0 1.0 U 0.2 Frichiorottifluoroethane < 1.0 1.0 U 0.25 < 5.0 5.0 U 1.3 < 5.0 5.0 U 5.0 < 1.0 1.0 U 0.2 Frichiorottifluoroethane < 1.0 1.0 U 0.25 < 5.0 5.0 U 1.3 < 5.0 5.0 U 5.0 < 1.0 1.0 U 0.2 Frichiorottifluoroethane < 1.0 1.0 U 0.25 < 5.0 5.0 U 1.3 < 5.0 5.0 U 5.0 < 1.0 1.0 U 0.2 Frichiorottifluoroethane < 1.0 1.0 U 0.25 < 5.0 5.0 U 1.3 < 5.0 5.0 U 5.0 < 1.0 1.0 U 0.2 Frichiorottifluoroethane < 1.0 1.0 U 0.25 < 5.0 5.0 U 1.3 < 5.0 5.0 U 5.0 < 1.0 1.0 U 0.2 Frichiorottifluoroethane < 1.0 1.0 U 0.25 < 5.0 5.0 U 1.3 < 5.0 5.0 U 5.0 < 1.0 1.0 U 0.2 Frichiorottifluoroethane < 1.0 1.0 U 0.25 < 5.0 5.0 U 1.3 < 5.0 5.0 U 5.0 < 1.0 1.0 U 0.2 Frichiorottifluoroethane < 1.0 1.0 U 0.25 < 5.0 5.0 U 1.3 < 5.0 5.0 U 5.0 < 1.0 1.0 U 0.2 Frichiorottifluoroethane < 1.0 1.0 U 0.25 < 5.0 5.0 U 1.3 < 5.0 5.0 U 5.0 < 1.0 U 0.2 Frichiorottifluoroethane < 1.0 U 0.25 < 5.0 5.0 U 1.3 < 5.0 5.0 U 5.0 < 1.0 U 0.2 Frichiorottifluoroethane < 1.0 U 0.25 < 5.0 5.0 U 1.3 < 5.0 5.0 U 5.0 < 1.0 U 0.2 Frichiorottifluoroethane < 1.0 U 0.25																		
Frichlorofiluoromethane 5 < 1.0				-		-		-		_				_			_	0.25
Frichlorotrifluoroethane < 1.0										_				_				0.25
	Trichlorotrifluoroethane	J		-	_	-		-		-				_			_	0.25
/inyi Chloride 2 <1.0 1.0 U 0.25 <2.0 2.0 U 1.3 <5.0 5.0 U 5.0 <1.0 1.0 U 0.25	Vinyl Chloride	2	< 1.0	1.0	U	0.25	< 2.0	2.0	U	1.3	< 5.0	5.0	U	5.0	< 1.0	1.0	U	0.25

- Notes:

 RL- Reporting Limit

 U- The compound was anlayzed for but not detected at or above the MDL.

 J- The value is estimated.

 N- The concentration is based on the response fo the nearest internal.

 S- This compound is a solvent that is used in the laboratory.

 D- The reported concentration is the result of a diluted analysis.

 Bold/highlighted- Indicated exceedance of the NYSDEC Groundwater Standard

Part	Qual D () () () () () () () () () (Ow	1/16/20			016	11/16/2				MW: 11/17/2				MW7 11/16/2				MW6	1			MW5		NYSDEC Groundwater Quality Standards	Compound
Section Column	U (U (U (U (U (U (U (U (U (U (μg/L		MDI		μg/L		MDI		μg/L		MDI		μg/L		MDI		μg/L		MDI		μg/L		ug/l	
\$1.57.00000000000000000000000000000000000	U (U (U (U U (U U U (U U U U U U U		RL 1.0	Results < 1.0		Qual		Results < 1.0	MDL 0.25	Qual	RL 1.0	Results < 1.0		Qual	RL 1.0	Results < 1.0	MDL 5.0	Qual				Qual	RL 1.0	Results < 1.0		1,1,1,2-Tetrachlorothane
1	U ((U (U (U (U (U (U (U (U (U	_							0.25						_										5	
1.00-contenume	U ((U (U (U (U (U (U (U (U (U	_													_											1,1,2,2-Tetrachloroethane
Secondary Seco	U ((U ((U (U (U (U (U (U (U (_																								
1.50 1.0	U (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0	_							_	_																,
\$1.5.2	U (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0	U	1.0	< 1.0	0.25	U		< 1.0	0.25	U	1.0	< 1.0	0.25	U		< 1.0	5.0	U	5.0	< 5.0	0.25	U	1.0	< 1.0		
\$\frac{1.54}{\text{Printerpringeness}}\$ \begin{array}{c c c c c c c c c c c c c c c c c c c	U (_													_											1,2,3-Trichlorobenzene
1.2- 1.2-	- (U (U (U (U (U (_																			_				0.04	
1.20-Demonsherman 0.04	U (-				-				-												-			5	, ,
1.20-bit condenses 1.20-bit condenses 5	U (U				U				U				U		< 0.50	10	U				U				
1.20-bit control 1.20-bit co	U (U	0.25	< 0.25	0.25	U	0.25	< 0.25	0.25	U	0.25	< 0.25	0.25	U	0.25	< 0.25	5.0	U	5.0	< 5.0	0.25	U	0.25	< 0.25		
1.5.2 1.5.	U (_																								
13.5 Thermythesense 5									0.00																	,
Section Sect		-				J				-			_	-	_			-								
A-Chichrochesene 5	U	U	1.0		0.25	U	1.0	< 1.0	0.25	U	1.0		0.25	U	1.0	< 1.0	5.0	U	5.0		0.25	U	1.0	< 1.0	Ů	
2-Dishorotoprogene 5	U (_																								
Chicarobiases S	U (_																								,
2-bearanne (Metry) Bury/ Kotone)	U (_																								
Separation S	U	_																							3	
Acethon	U (_							_						_										5	
Accident	U (_								U								U							5	
Acrolative	U	_								- ns				-				- 0							50	
Acrylonitrile 5	U	_							_									U							50	
Second 1 0.73 0.70 - 0.25 50 50 50 - 50 1.3 0.70 - 0.25 5.5 0.70 - 0.25 0.69 0.70 J 0.25 30 1.3	U	_						< 5.0	_			< 5.0			_										5	
Bromockloromethane 5	D	D	1.3	30	0.25	J	0.70	0.69	0.25	-	0.70	5.5	0.25	-		1.3	5.0	-	5.0	50	0.25	-	0.70	0.73		
Strondichioromethane	U (-				-				-			_	-	_			-			_	-				
Stromoform Continuity Con	U (_																							5	
Semomethane S S S S S S S S S	U	_							_						_											
Carbon tetrachloride	U (U				U				U				U				U			_	U			5	
Chiorobename S Chiorobename Chioro	U (-				-				-		0.94		-	_			-			_				60	Carbon Disulfide
Chicroethane S < 50 50 U 0.25 <	U (_																								
Chloroform 7	U	_							_						_											
cis-1,2-Dichloroethene 5 1.4 1.0 - 0.25 < 5.0	U	U				U								U				U				U				
cis-1,3-Dichloropropene < 0,40	U (U				U				U				U								U			60	Chloromethane
Distribution Control	J (J				J				J				-								-			5	
Dichromethane 5 < 1.0 1.0 U 0.25 < 5.0 5.0 U 5.0 < 1.0 1.0 U 0.25	U (_							_						_											
Dichlorodiffluoromethane 5	U	_																							5	
Hexachlorobutadiene 0.5 < 0.50 0.50 U 0.20 < 4.0 4.0 U 4.0 < 0.50 0.50 U 0.20 < 0.50 U 0.20 U	U (U	1.0	< 1.0	0.25	U	1.0	< 1.0	0.25	U	1.0	< 1.0	0.25	U	1.0	< 1.0	5.0	U	5.0	< 5.0	0.25	U	1.0	< 1.0	5	
Sopropylbenzene 5 < 1.0 1.0 U 0.25 29 5.0 - 5.0 < 1.0 1.0 U 0.25 0.41 1.0 J 0.25 0.38 1.0 J 0.25 2.2 1.0	- (-				J				-				J				-				-				Ethylbenzene
	- (U				U			_	U					_			U								
m&p-Xylenes 5 3.6 1.0 - 0.25 1,600 200 D 50 <1.0 1.0 U 0.25 9.7 1.0 - 0.25 2.1 1.0 - 0.25 30 1.0	- (-				-				-								D			_	-				
	U	U				U			25	D				U								U				
meany reduction (mide.)	D	_								-				-				-								Methyl t-butyl ether (MTBE)
	U	U							_	U					_			U								
Naphthalene 10 < 1.0 1.0 U 1.0 110 20 - 20 < 1.0 1.0 U 1.0 2.7 1.0 - 1.0 < 1.0 U 1.0 1.5 1.0 N-Buty/benzene 5 < 1.0 1.0 U 0.25 9 5.0 - 5.0 < 1.0 1.0 U 0.25 < 1.0 1.0 U 0.25 0.43 1.0 U 0.25 < 1.0 1.0 U 0.25 N-Buty/benzene 5 0.0 0	- U (- 11								- 11								-			_					
n-Buty/benzene 5 < 1.0 1.0 U 0.25 9 5.0 - 5.0 < 1.0 1.0 U 0.25 < 1.0 1.0 U 0.25 0.43 1.0 J 0.25 < 1.0 1.0 U 0.25 0.43 0.0 0.43 0.0 0.05 0.43 0.0 0.05 0.43 0.0 0.05 0	- (-				J				J								-								
oxylene 5 1.1 1.0 - 0.25 590 50 D 50 0.5 1.0 J 0.25 5.5 1.0 - 0.25 1.3 1.0 - 0.25 21 1.0	- (-	1.0		0.25	-	1.0		0.25	-	1.0		0.25	J	1.0	0.5	50	D	50		0.25	-	1.0	1.1		
	U (_				U												U								
	U	_				J				_								-								
5,1010	U (_								_																
	U																	-								
Tetrahydrofuran (THF) < 5.0 5.0 U 2.5 < 5.0 5.0 U 5.0 < 5.0 5.0 U 5.0 < 5.0 5.0 U 2.5 < 5.0 U 2.5 < 5.0 5.0 U 2.5 < 5.0 U 2.5 < 5.0 U 2.5 < 5.0 U 2.5 < 5.0 U	U	U				U				U				U	_			U				U				Tetrahydrofuran (THF)
Toluene 5 0.48 1.0 J 0.25 470 5.0 - 5.0 0.32 1.0 J 0.25 15 1.0 - 0.25 0.92 1.0 J 0.25 1.2 1.0	- (_				J				-				J				-				J				
		_																								
	U (
titulio 174 dicinio 2 batchio		_							_						_			-				-				
	U (U	1.0	< 1.0	0.25	U	1.0	< 1.0	0.25	U	1.0	< 1.0	0.25	U	1.0	< 1.0	5.0	U	5.0		0.25	U	1.0			
	U (
Vinyt Chloride 2 <1.0 1.0 U 0.25 <5.0 5.0 U 5.0 <1.0 1.0 U 0.25 <1.0 0.0 U 0.25 <1.0 U 0.25	U (1	U	1.0	< 1.0	0.25	U	1.0	< 1.0	0.25	U	1.0	< 1.0	0.25	U	1.0	< 1.0	5.0	U	5.0	< 5.0	0.25	U	1.0	< 1.0	2	Vinyl Chloride

Notes:

RL- Reporting Limit

U- The compound was anlayzed for but not detected at or above the MDL.

J- The value is estimated.

N- The concentration is based on the response fo the nearest internal.

S- This compound is a solvent that is used in the laboratory,

D- The reported concentration is the result of a diluted analysis.

Bold/highlighted-Indicated exceedance of the NYSDEC Groundwater Standard

Compound	NYSDEC Groundwater Quality Standards		MW1	016			MW1	016			V Dupli ΜW: 11/16/2 μg/L	9 !016			V Dupli MW 11/16/2 μg/L	7	
	μg/L	Results	μg/L RL	Qual	MDL	Results	μg/L RL	Qual	MDL	Results	μg/L RL	Qual	MDL	Results	μg/L RL	Qual	MDL
1,1,1,2-Tetrachlorothane	5	< 5.0	5.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
1,1,1-Trichloroethane	5	< 5.0	5.0	U	5.0	< 5.0	5.0	U	0.25	< 5.0	5.0	U	0.25	< 5.0	5.0	U	0.25
1,1,2,2-Tetrachloroethane	5	< 5.0	5.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
1,1,2-Trichloroethane	1	< 5.0	5.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
1,1-Dichloroethane	5	< 5.0	5.0	U	5.0	< 5.0	5.0	U	0.25	< 5.0	5.0	U	0.25	< 5.0	5.0	U	0.25
1,1-Dichloroethene	5	< 5.0	5.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
1,1-Dichloropropene		< 5.0	20	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	0.04	< 5.0	5.0	U	5.0	< 0.25	0.25	U	0.25	< 0.25	0.25	U	0.25	< 0.25	0.25	U	0.25
1,2,4-Trichlorobenzene	0.04	< 20	20	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
1,2,4-Trimethylbenzene	5	1,400	50	D	50	< 1.0	1.0	U	0.25	3.3	1.0	-	0.25	< 1.0	1.0	U	0.25
1,2-Dibromo-3-chloropropane	0.04	< 10	10	U	10	< 0.50	0.50	U	0.50	< 0.50	0.50	U	0.50	< 0.50	0.50	U	0.50
1,2-Dibromoethane		< 5.0	5.0	U	5.0	< 0.25	0.25	U	0.25	< 0.25	0.25	U	0.25	< 0.25	0.25	U	0.25
1,2-Dichlorobenzene	5	< 5.0	5.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
1,2-Dichloroethane	0.6	< 10	10	U	10	< 0.60	0.60	U	0.50	< 0.60	0.60	U	0.50	< 0.60	0.60	U	0.50
1,2-Dichloropropane	0.94	< 5.0	5.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
1,3,5-Trimethylbenzene	5	400	5.0	-	5.0	< 1.0	1.0	U	0.25	0.82	1.0	J	0.25	< 1.0	1.0	U	0.25
1,3-Dichlorobenzene		< 5.0	5.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
1,3-Dichloropropane	5	< 5.0	5.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
1,4-Dichlorobenzene	5	< 5.0	5.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
2,2-Dichloropropane	5	< 5.0	5.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
2-Chlorotoluene	5	< 5.0	5.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
2-Hexanone (Methyl Butyl Ketone)	-	< 50 < 5.0	50 5.0	U	50	< 2.5	2.5	U	2.5 0.25	< 2.5	2.5	U	2.5 0.25	< 2.5	2.5	U	2.5 0.25
2-Isopropyltoluene	5	< 5.0	5.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
4-Chlorotoluene	5	< 50	50	U	50	< 2.5	2.5	U	2.5	< 2.5	2.5	U	2.5	< 2.5	2.5	U	2.5
4-Methyl-2-Pentanone	50	< 50	50	U	50	< 5.0	5.0	U	2.5	3.4	5.0	JS	2.5	< 5.0	5.0	U	2.5
Acetone Acrolein	50	< 50	50	U	50	< 5.0	5.0	U	2.5	< 5.0	5.0	U	2.5	< 5.0	5.0	U	2.5
Acrylonitrile	5	< 50	50	U	50	< 5.0	5.0	U	2.5	< 5.0	5.0	U	2.5	< 5.0	5.0	U	2.5
Benzene	1	380	5.0	-	5.0	< 0.70	0.70	U	0.25	0.73	0.70	-	0.25	1.2	0.70		0.25
Bromobenzene	5	< 5.0	5.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
Bromochloromethane	5	< 5.0	5.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
Bromodichloromethane		< 20	20	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
Bromoform		< 50	50	U	5.0	< 5.0	5.0	U	0.25	< 5.0	5.0	U	0.25	< 5.0	5.0	U	0.25
Bromomethane	5	< 5.0	5.0	U	5.0	< 5.0	5.0	U	0.25	< 5.0	5.0	U	0.25	< 5.0	5.0	U	0.25
Carbon Disulfide	60	12	20	J	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
Carbon tetrachloride	5	< 5.0	5.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
Chlorobenzene	5	< 5.0	5.0	U	5.0	< 5.0	5.0	U	0.25	< 5.0	5.0	U	0.25	< 5.0	5.0	U	0.25
Chloroethane	5	< 5.0	5.0	U	5.0	< 5.0	5.0	U	0.25	< 5.0	5.0	U	0.25	< 5.0	5.0	U	0.25
Chloroform	7	< 7.0 < 5.0	7.0 5.0	U	5.0	< 5.0 < 5.0	5.0	U	0.25	< 5.0 < 5.0	5.0	U	0.25	< 5.0 < 5.0	5.0	U	0.25 0.25
Chloromethane	60	< 5.0	5.0	U	5.0	< 1.0	1.0	U	0.25	0.62	1.0	J	0.25	1.4	1.0	-	0.25
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	5	< 5.0	5.0	U	5.0	< 0.40	0.40	U	0.25	< 0.40	0.40	U	0.25	< 0.40	0.40	U	0.25
Dibromochloromethane		< 20	20	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
Dibromomethane	5	< 5.0	5.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
Dichlorodifluoromethane	5	< 5.0	5.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
Ethylbenzene	5	940	50	D	50	< 1.0	1.0	U	0.25	0.53	1.0	J	0.25	0.34	1.0	J	0.25
Hexachlorobutadiene	0.5	< 4.0	4.0	U	4.0	< 0.50	0.50	U	0.20	< 0.50	0.50	U	0.20	< 0.50	0.50	U	0.20
Isopropylbenzene	5	64	5.0	-	5.0	< 1.0	1.0	U	0.25	0.3	1.0	J	0.25	< 1.0	1.0	U	0.25
m&p-Xylenes	5	3,700	200	D	50	< 1.0	1.0	U	0.25	1.7	1.0	-	0.25	< 1.0	1.0	U	0.25
Methyl Ethyl Ketone (2-Butanone)	50	< 50	50	U	50	< 2.5	2.5	U	2.5	< 2.5	2.5	U	2.5	< 2.5	2.5	U	2.5
Methyl t-butyl ether (MTBE)	10	< 20	20	U	5.0	< 1.0	1.0	U	0.25	50	5.0	D	1.3	2.1	1.0	-	0.25
Methylene chloride	5	< 20	20	U	20	< 3.0	3.0	U	1.0	< 3.0	3.0	U	1.0	< 3.0	3.0	U	1.0
Naphthalene	10	250	20	-	20	< 1.0	1.0	U	1.0	< 1.0	1.0	U	1.0	< 1.0	1.0	U	1.0
n-Butylbenzene	5	16	5.0	-	5.0	< 1.0	1.0	U	0.25	0.38	1.0	J	0.25	< 1.0	1.0	U	0.25
n-Propylbenzene	5	170 1,500	5.0 50	- D	5.0 50	< 1.0	1.0	U	0.25	0.55 1	1.0	J -	0.25 0.25	< 1.0 0.5	1.0	U	0.25
o-Xylene	5	< 5.0	5.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
p-Isopropyltoluene sec-Butylbenzene	5	12	5.0	-	5.0	< 1.0	1.0	U	0.25	0.62	1.0	J	0.25	< 1.0	1.0	U	0.25
Styrene	5	6.9	5.0	-	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
tert-Butylbenzene	5	< 5.0	5.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
Tetrachloroethene	5	< 5.0	5.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
Tetrahydrofuran (THF)	_	< 50	50	U	50	< 5.0	5.0	U	2.5	< 5.0	5.0	U	2.5	< 5.0	5.0	U	2.5
Toluene	5	1,100	50	D	50	< 1.0	1.0	U	0.25	0.87	1.0	J	0.25	0.33	1.0	J	0.25
trans-1,2-Dichloroethene	5	< 5.0	5.0	U	5.0	< 5.0	5.0	U	0.25	< 5.0	5.0	U	0.25	< 5.0	5.0	U	0.25
trans-1,3-Dichloropropene	0.4	< 5.0	5.0	U	5.0	< 0.40	0.40	U	0.25	< 0.40	0.40	U	0.25	< 0.40	0.40	U	0.25
trans-1,4-dichloro-2-butene	5	< 50	50	U	50	< 2.5	2.5	U	2.5	< 2.5	2.5	U	2.5	< 2.5	2.5	U	2.5
Trichloroethene	5	< 5.0	5.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
Trichlorofluoromethane	5	< 5.0	5.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
Trichlorotrifluoroethane		< 5.0	5.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
Vinyl Chloride	2	< 5.0	5.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25

- Notes:
 RL- Reporting Limit
 U- The compound was anlayzed for but not detected at or above the MDL.
 J- The value is estimated.
 N- The concentration is based on the response fo the nearest internal.
 S- This compound is a solvent that is used in the laboratory.
 D- The reported concentration is the result of a diluted analysis.
 Bold/highlighted-Indicated exceedance of the NYSDEC Groundwater Standard

Compound	NYSDEC Groundwater Quality Standards		MW	1			MW	2			MW	3			MW	1	
Compound	μg/L		11/17/2 μg/L				11/17/2 μg/L				11/17/2 μg/L	016			11/17/2 μg/L	016	
	P9/2	Results	RL	Qual	MDL	Results	RL	Qual	MDL	Results	RL	Qual	MDL	Results	RL	Qual	MDL
1,2,4,5-Tetrachlorobenzene		< 5.0 < 5.0	5.0	U	1.8	< 5.0 < 5.0	5.0	U	1.8	< 26 < 26	26 26	U	9.3 7.9	< 110 < 110	110 110	U	38
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene		< 4.7	4.7	U	1.4	< 4.7	4.7	U	1.4	< 7.4	7.4	U	7.4	< 30	30	U	30
1,2-Diphenylhydrazine		< 5.0	5.0	U	1.6	< 5.0	5.0	U	1.6	< 26	26	U	8.6	< 110	110	U	35
1,3-Dichlorobenzene	3	< 3.0	3.0	U	1.5	< 3.0	3.0	U	1.5	< 7.8	7.8	U	7.8	< 32	32	U	32
1,4-Dichlorobenzene		< 5.0	5.0	U	1.5	< 5.0	5.0	U	1.5	< 7.8	7.8	U	7.8	< 32	32	U	32
2,4,5-Trichlorophenol	1	< 2.7	2.7	U	2.7	< 2.7	2.7	U	2.7	< 14	14	U	14	< 59	59	U	59
2,4,6-Trichlorophenol	1	< 1.6 < 1.8	1.6	U	1.6	< 1.6	1.6	U	1.6	< 8.4 < 9.3	9.3	U	8.4 9.3	< 35 < 38	35 38	U	35 38
2,4-Dichlorophenol 2,4-Dimethylphenol		4.2	1.0	-	1.0	1.6	1.0	-	1.0	< 6.5	6.5	U	6.5	< 27	27	U	27
2,4-Dinitrophenol	5	< 3.5	3.5	U	3.5	< 3.5	3.5	U	3.5	< 18	18	U	18	< 76	76	U	76
2,4-Dinitrotoluene	5	< 5.0	5.0	U	2.0	< 5.0	5.0	U	2.0	< 10	10	U	10	< 43	43	U	43
2,6-Dinitrotoluene	5	< 5.0	5.0	U	1.6	< 5.0	5.0	U	1.6	< 8.3	8.3	U	8.3	< 34	34	U	34
2-Chloronaphthalene	10	< 5.0	5.0	U	1.4	< 5.0	5.0	U	1.4	< 10	10	U	7.5	< 31	31	U	31
2-Chlorophenol	1	< 1.4	1.4	U	1.4	< 1.4	1.4	U	1.4	< 7.5	7.5	U	7.5	< 31	31	U	31
2-Methylphanel (a green)	1	3.2 < 2.4	5.0	J	1.5	11 < 2.4	5.0 2.4	- U	1.5 2.4	15 < 12	26 12	J	7.8 12	< 50 < 51	50 51	U	32 51
2-Methylphenol (o-cresol) 2-Nitroaniline	1 5	< 5.1	5.1	U	5.1	< 5.1	5.1	U	5.1	< 27	27	U	27	< 110	110	U	110
2-Nitrophenol	1	< 3.2	3.2	U	3.2	< 3.2	3.2	U	3.2	< 17	17	U	17	< 69	69	U	69
3&4-Methylphenol (m&p-cresol)		< 5.0	5.0	U	2.0	< 5.0	5.0	U	2.0	< 26	26	U	10	< 110	110	U	43
3,3'-Dichlorobenzidine	5	< 5.0	5.0	U	2.4	< 5.0	5.0	U	2.4	< 12	12	U	12	< 51	51	U	51
3-Nitroaniline	5	< 11 < 5.4	11 5.4	U	11	< 11	11 5.4	U	11 5.4	< 57	57 28	U	57 28	< 240	240	U	240
4,6-Dinitro-2-methylphenol	1	< 5.4	5.4	U	5.4 1.5	< 5.4 < 5.0	5.4	U	1.5	< 28	28	U	7.7	< 120 < 110	120 110	U	120 32
4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol	1	< 1.8	1.8	U	1.8	< 1.8	1.8	U	1.8	< 9.3	9.3	U	9.3	< 38	38	U	38
4-Chloroaniline	5	< 5.0	5.0	U	2.3	< 5.0	5.0	U	2.3	< 12	12	U	12	< 50	50	U	50
4-Chlorophenyl phenyl ether		< 5.0	5.0	U	1.7	< 5.0	5.0	U	1.7	< 26	26	U	8.8	< 110	110	U	36
4-Nitroaniline	5	< 5.0	5.0	U	1.7	< 5.0	5.0	U	1.7	< 8.8	8.8	U	8.8	< 36	36	U	36
4-Nitrophenol		< 2.3	2.3	U	2.3	< 2.3	2.3	U	2.3	< 12	12	U	12	< 49	49	U	49
Acenaphthene	20	< 5.0 < 5.0	5.0	U	1.5	< 5.0 < 5.0	5.0	U	1.5	< 20	20 20	U	8.0 7.4	< 33	33	U	33
Acenaphthylene Acetophenone		< 5.0	5.0	U	1.4	< 5.0	5.0	U	1.4	< 20	26	U	8.2	< 110	110	U	34
Aniline	5	< 15	15	U	15	< 15	15	U	15	< 79	79	U	79	< 320	320	U	320
Anthracene	50	< 5.0	5.0	U	1.6	< 5.0	5.0	U	1.6	< 26	26	U	8.6	< 50	50	U	35
Benz(a)anthracene	0.002	< 1.7	1.7	U	1.7	< 1.7	1.7	U	1.7	< 8.8	8.8	U	8.8	< 36	36	U	36
Benzidine	5	< 5.0	5.0	U	2.9	< 5.0	5.0	U	2.9	< 15	15	U	15	< 64	64	U	64
Benzo(a)pyrene	0.000	< 1.6 < 1.7	1.6	U	1.6	< 1.6 < 1.7	1.6	U	1.6	< 8.6 < 9.0	8.6 9.0	U	8.6 9.0	< 35 < 37	35 37	U	35
Benzo(b)fluoranthene Benzo(ghi)perylene	0.002	< 5.0	5.0	U	1.7	< 5.0	5.0	U	1.7	< 8.5	8.5	U	8.5	< 35	35	U	37 35
Benzo(k)fluoranthene	0.002	< 1.7	1.7	U	1.7	< 1.7	1.7	U	1.7	< 8.7	8.7	U	8.7	< 36	36	U	36
Benzoic acid		< 25	25	U	10	< 25	25	U	10	< 53	53	U	53	360	220	-	220
Benzyl butyl phthalate	50	< 5.0	5.0	U	1.3	< 5.0	5.0	U	1.3	< 26	26	U	6.8	< 50	50	U	28
Bis(2-chloroethoxy)methane	5	< 5.0	5.0	U	1.4	< 5.0	5.0	U	1.4	< 7.3	7.3	U	7.3	< 30	30	U	30
Bis(2-chloroethyl)ether	1	< 1.4	1.4 5.0	U	1.4	< 1.4	1.4 5.0	U	1.4	< 7.1 < 26	7.1	U	7.1	< 29 < 110	29 110	U	29 30
Bis(2-chloroisopropyl)ether Bis(2-ethylhexyl)phthalate	5	< 5.0	5.0	U	1.4	< 5.0	5.0	U	1.4	< 7.6	7.6	U	7.6	< 31	31	U	31
Carbazole	3	< 25	25	U	3.8	< 25	25	U	3.8	< 130	130	U	20	< 540	540	U	82
Chrysene	0.002	< 1.7	1.7	U	1.7	< 1.7	1.7	U	1.7	< 8.8	8.8	U	8.8	< 36	36	U	36
Dibenz(a,h)anthracene		< 5.0	5.0	U	1.6	< 5.0	5.0	U	1.6	< 26	26	U	8.5	< 50	50	U	35
Dibenzofuran		< 5.0	5.0	U	1.5	< 5.0	5.0	U	1.5	< 7.7	7.7	U	7.7	< 32	32	U	32
Diethyl phthalate Dimethylphthalate	50 50	< 5.0 < 5.0	5.0	U	1.6	< 5.0 < 5.0	5.0	U	1.6	< 26 < 26	26 26	U	8.3	< 50 < 50	50 50	U	34 34
Di-n-butylphthalate	50	< 5.0	5.0	U	1.3	< 5.0	5.0	U	1.3	< 26	26	U	7.0	< 50	50	U	29
Di-n-octylphthalate	50	< 5.0	5.0	U	1.3	< 5.0	5.0	U	1.3	< 26	26	U	6.8	< 50	50	U	28
Fluoranthene	50	< 5.0	5.0	U	1.6	< 5.0	5.0	U	1.6	< 26	26	U	8.5	< 50	50	U	35
Fluorene	50	< 5.0	5.0	U	1.7	< 5.0	5.0	U	1.7	< 26	26	U	8.7	< 50	50	U	36
Hexachlorobenzene	0.04	< 1.5	1.5	U	1.5	< 1.5	1.5	U	1.5	< 7.7	7.7	U	7.7	< 32	32	U	32
Hexachloroputadiene	0.5	< 1.8 < 5.0	1.8	U	1.8	< 1.8 < 5.0	1.8 5.0	U	1.8	< 9.5 < 8.1	9.5 8.1	U	9.5 8.1	< 39	39	U	39 33
Hexachlorocyclopentadiene Hexachloroethane	5 5	< 5.0	5.0	U	1.5	< 5.0	5.0	U	1.5	< 8.1 < 7.9	7.9	U	7.9	< 33	33	U	33
Indeno(1,2,3-cd)pyrene	0.002	< 1.7	1.7	U	1.7	< 1.7	1.7	U	1.7	< 8.7	8.7	U	8.7	< 36	36	U	36
Isophorone	50	< 5.0	5.0	U	1.4	< 5.0	5.0	U	1.4	< 26	26	U	7.4	< 50	50	U	30
Naphthalene	10	51	5.0	-	1.4	40	5.0	-	1.4	130	7.6	-	7.6	< 31	31	U	31
Nitrobenzene	0.4	< 1.8	1.8	U	1.8	< 1.8	1.8	U	1.8	< 9.2	9.2	U	9.2	< 38	38	U	38
N-Nitrosodimethylamine		< 5.0 < 5.0	5.0	U	1.4	< 5.0	5.0	U	1.4	< 26 < 26	26 26	U	7.4 8.5	< 110 < 110	110	U	30 35
N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine	50	< 5.0 < 5.0	5.0	U	1.6	< 5.0 < 5.0	5.0	U	1.6	< 26	26 26	U	8.5	< 110 < 50	110 50	U	35 42
N-Nitrosodipnenylamine Pentachloronitrobenzene	50	< 5.0	5.0	U	1.9	< 5.0	5.0	U	1.9	< 26	26	U	9.8	< 110	110	U	42
Pentachlorophenol	1	< 1.9	1.9	U	1.9	< 1.9	1.9	U	1.9	< 9.9	9.9	U	9.9	< 41	41	U	41
Phenanthrene	50	< 5.0	5.0	U	1.4	< 5.0	5.0	U	1.4	< 26	26	U	7.5	< 50	50	U	31
Phenol	50	< 1.6	1.6	U	1.6	< 1.6	1.6	U	1.6	< 8.4	8.4	U	8.4	< 35	35	U	35
Pyrene	50	< 5.0	5.0	U	1.7	< 5.0	5.0	U	1.7	< 26	26	U	9.1	< 50	50	U	37
Pyridine	50	< 5.0	5.0	U	1.2	< 5.0	5.0	U	1.2	< 26	26	U	6.5	< 50	50	U	27

Notes:

- Notes:

 RL- Reporting Limit

 U- The compound was anlayzed for but not detected at or above the MDL.

 J- The value is estimated.

 N- The concentration is based on the response fo the nearest internal.

 S- This compound is a solvent that is used in the laboratory.

 D- The reported concentration is the result of a diluted analysis.

 Bold/highlighted-Indicated exceedance of the NYSDEC Groundwater Standard

TABLE 8 Groundwater Analytical Results Semi-Volatile Organic Compounds

Compound	NYSDEC Groundwater Quality Standards		MW!				MW				MW				MW				MW		
Compound	μg/L		11/17/2 μg/L	016			11/16/2 μg/L				11/16/2 μg/L	016			11/17/2 μg/L				11/16/2 μg/L		
		Results	RL	Qual	MDL	Results	RL	Qual	MDL	Results	RL	Qual	MDL	Results	RL	Qual	MDL	Results	RL	Qual	MDL
1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene		< 0.50 < 5.0	0.50 5.0	U	0.50	< 100	100	U	35 30	< 0.50 < 5.0	0.50 5.0	U	0.50	< 110	110 110	U	39 34	< 0.50 < 5.0	0.50 5.0	U	0.50 1.5
1,2-Dichlorobenzene		< 1.0	1.0	U	1.0	< 28	28	U	28	< 1.0	1.0	U	1.0	< 31	31	U	31	< 1.0	1.0	U	1.0
1,2-Diphenylhydrazine		< 5.0	5.0	U	1.6	< 100	100	U	33	< 5.0	5.0	U	1.6	< 110	110	U	36	< 5.0	5.0	U	1.6
1,3-Dichlorobenzene	3	< 1.0	1.0	U	1.0	< 30	30	U	30	< 1.0	1.0	U	1.0	< 33	33	U	33	< 1.0	1.0	U	1.0
1,4-Dichlorobenzene		< 1.0	1.0	U	1.0	< 30	30	U	30	< 1.0	1.0	U	1.0	< 33	33	U	33	< 1.0	1.0	U	1.0
2,4,5-Trichlorophenol	1	< 1.0	1.0	U	1.0	< 55 < 32	55 32	U	55 32	< 1.0	1.0	U	1.0	< 61 < 36	61 36	U	61 36	< 1.0 < 1.0	1.0	U	1.0
2,4,6-Trichlorophenol 2,4-Dichlorophenol	1	< 1.0	1.0	U	1.0	< 35	35	U	35	< 1.0	1.0	U	1.0	< 39	39	U	39	< 1.0	1.0	U	1.0
2,4-Dimethylphenol		< 1.0	1.0	U	1.0	< 25	25	U	25	< 1.0	1.0	U	1.0	< 28	28	U	28	< 1.0	1.0	U	1.0
2,4-Dinitrophenol	5	< 1.0	1.0	U	1.0	< 70	70	U	70	< 1.0	1.0	U	1.0	< 78	78	U	78	< 1.0	1.0	U	1.0
2,4-Dinitrotoluene	5	< 5.0	5.0	U	2.0	< 39	39	U	39	< 5.0	5.0	U	2.0	< 44	44	U	44	< 5.0	5.0	U	2.0
2,6-Dinitrotoluene	5	< 5.0	5.0	U	1.6	< 32	32	U	32	< 5.0	5.0	U	1.6	< 35	35	U	35	< 5.0	5.0	U	1.6
2-Chloronaphthalene	10	< 5.0 < 1.0	5.0 1.0	U	1.4	< 28	28	U	28	< 5.0 < 1.0	5.0	U	1.4	< 32	32 32	U	32 32	< 5.0 < 1.0	5.0	U	1.4
2-Chlorophenol 2-Methylnaphthalene	1	< 5.0	5.0	U	1.5	< 28 < 50	28 50	U	28 30	< 5.0	5.0	U	1.0	< 50	50	U	33	< 5.0	1.0 5.0	U	1.5
2-Methylphenol (o-cresol)	1	< 1.0	1.0	U	1.0	< 47	47	U	47	< 1.0	1.0	U	1.0	< 52	52	U	52	< 1.0	1.0	U	1.0
2-Nitroaniline	5	< 5.0	5.0	U	2.0	< 100	100	U	100	< 5.0	5.0	U	2.0	< 110	110	U	110	< 5.0	5.0	U	2.0
2-Nitrophenol	1	< 1.0	1.0	U	1.0	< 63	63	U	63	< 1.0	1.0	U	1.0	< 70	70	U	70	< 1.0	1.0	U	1.0
3&4-Methylphenol (m&p-cresol)		< 1.0	1.0	U	1.0	120	100	-	39	< 1.0	1.0	U	1.0	60	110	J	44	< 1.0	1.0	U	1.0
3,3'-Dichlorobenzidine	5	< 5.0	5.0	U	2.4	< 47	47	U	47	< 5.0	5.0	U	2.4	< 52	52	U	52	< 5.0	5.0	U	2.4
3-Nitroaniline	5	< 5.0	5.0	U	2.0	< 220	220	U	220	< 5.0	5.0	U	2.0	< 240	240	U	240	< 5.0	5.0	U	2.0
4,6-Dinitro-2-methylphenol	1	< 1.0 < 5.0	1.0 5.0	U	1.0	< 110 < 100	110 100	U	110 29	< 1.0 < 5.0	1.0 5.0	U	1.0	< 120 < 110	120 110	U	120 33	< 1.0 < 5.0	1.0 5.0	U	1.0
4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol	1	< 1.0	1.0	U	1.0	< 35	35	U	35	< 1.0	1.0	U	1.0	< 39	39	U	33	< 1.0	1.0	U	1.0
4-Chloroaniline	5	< 3.5	3.5	U	2.3	< 47	47	U	47	< 3.5	3.5	U	2.3	< 52	52	U	52	< 3.5	3.5	U	2.3
4-Chlorophenyl phenyl ether	-	< 5.0	5.0	U	1.7	< 100	100	U	34	< 5.0	5.0	U	1.7	< 110	110	U	37	< 5.0	5.0	U	1.7
4-Nitroaniline	5	< 5.0	5.0	U	1.7	< 33	33	U	33	< 5.0	5.0	U	1.7	< 37	37	U	37	< 5.0	5.0	U	1.7
4-Nitrophenol		< 1.0	1.0	U	1.0	< 45	45	U	45	< 1.0	1.0	U	1.0	< 50	50	U	50	< 1.0	1.0	U	1.0
Acenaphthene	20	< 5.0	5.0	U	1.5	< 30	30	U	30	< 5.0	5.0	U	1.5	< 34	34	U	34	< 5.0	5.0	U	1.5
Acenaphthylene		< 0.10	0.10 5.0	U	0.10	< 28	28 100	U	28 31	< 0.10	0.10 5.0	U	0.10	< 31	31 110	U	31 35	< 0.10 < 5.0	0.10 5.0	U	0.10
Acetophenone Aniline	5	< 3.5	3.5	U	5.0	< 300	300	U	300	< 3.5	3.5	U	5.0	< 330	330	U	330	< 3.5	3.5	U	5.0
Anthracene	50	< 5.0	5.0	U	1.6	< 50	50	U	33	< 5.0	5.0	U	1.6	< 50	50	U	36	< 5.0	5.0	U	1.6
Benz(a)anthracene	0.002	< 0.02	0.02	U	0.02	< 34	34	U	34	< 0.02	0.02	U	0.02	< 37	37	U	37	< 0.02	0.02	U	0.02
Benzidine	5	< 4.5	4.5	U	2.9	< 59	59	U	59	< 4.5	4.5	U	2.9	< 65	65	U	65	< 4.5	4.5	U	2.9
Benzo(a)pyrene		< 0.02	0.02	U	0.02	< 33	33	U	33	< 0.02	0.02	U	0.02	< 36	36	U	36	< 0.02	0.02	U	0.02
Benzo(b)fluoranthene	0.002	< 0.02	0.02	U	0.02	< 34	34 32	U	34 32	< 0.02	0.02	U	0.02	< 38	38 36	U	38 36	< 0.02	0.02	U	0.02
Benzo(ghi)perylene Benzo(k)fluoranthene	0.002	< 0.02	0.02	U	0.02	< 33	33	U	33	< 0.02	0.02	U	0.02	< 37	37	U	37	< 0.02	0.02	U	0.02
Benzoic acid	0.002	< 25	25	U	10	7,000	2,000	D	2000	< 25	25	U	10	3,300	2,200	D	2200	< 25	25	U	10
Benzyl butyl phthalate	50	< 5.0	5.0	U	1.3	< 50	50	U	26	< 5.0	5.0	U	1.3	< 50	50	U	29	< 5.0	5.0	U	1.3
Bis(2-chloroethoxy)methane	5	< 5.0	5.0	U	1.4	< 28	28	U	28	< 5.0	5.0	U	1.4	< 31	31	U	31	< 5.0	5.0	U	1.4
Bis(2-chloroethyl)ether	1	< 1.0	1.0	U	1.0	< 27	27	U	27	< 1.0	1.0	U	1.0	< 30	30	U	30	< 1.0	1.0	U	1.0
Bis(2-chloroisopropyl)ether	-	< 5.0	5.0	U	1.4	< 100	100	U	28	< 5.0	5.0	U	1.4	< 110	110	U	31	< 5.0	5.0	U	1.4
Bis(2-ethylhexyl)phthalate Carbazole	5	< 1.0 < 5.0	1.0 5.0	U	1.0	< 29 < 500	29 500	U	29 76	< 1.0 < 5.0	1.0	U	1.0	< 32 < 560	32 560	U	32 84	< 1.0 < 5.0	1.0 5.0	U	1.0
Cardazole Chrysene	0.002	< 0.02	0.02	U	0.02	< 34	34	U	34	< 0.02	0.02	U	0.02	< 37	37	U	37	< 0.02	0.02	U	0.02
Dibenz(a,h)anthracene	0.002	< 0.02	0.02	U	0.02	< 50	50	U	32	< 0.02	0.02	U	0.02	< 50	50	U	36	< 0.02	0.02	U	0.02
Dibenzofuran		< 5.0	5.0	U	1.5	< 29	29	U	29	< 5.0	5.0	U	1.5	< 32	32	U	32	< 5.0	5.0	U	1.5
Diethyl phthalate	50	< 5.0	5.0	U	1.6	< 50	50	U	32	< 5.0	5.0	U	1.6	< 50	50	U	35	< 5.0	5.0	U	1.6
Dimethylphthalate	50	< 5.0	5.0	U	1.6	< 50	50	U	31	< 5.0	5.0	U	1.6	< 50	50	U	34	< 5.0	5.0	U	1.6
Di-n-butylphthalate	50	< 5.0 < 5.0	5.0	U	1.3	< 50 < 50	50 50	U	27 26	< 5.0 < 5.0	5.0	U	1.3	< 50 < 50	50 50	U	30 29	< 5.0 < 5.0	5.0	U	1.3
Di-n-octylphthalate Fluoranthene	50 50	< 5.0	5.0	U	1.6	< 50	50	U	32	< 5.0	5.0	U	1.6	< 50	50	U	36	< 5.0	5.0	U	1.6
Fluorene	50	< 5.0	5.0	U	1.7	< 50	50	U	33	< 5.0	5.0	U	1.7	< 50	50	U	37	< 5.0	5.0	U	1.7
Hexachlorobenzene	0.04	< 0.02	0.02	U	0.02	< 29	29	U	29	< 0.02	0.02	U	0.02	< 32	32	U	32	< 0.02	0.02	U	0.02
Hexachlorobutadiene	0.5	< 0.40	0.40	U	0.40	< 36	36	U	36	< 0.40	0.40	U	0.40	< 40	40	U	40	< 0.40	0.40	U	0.40
Hexachlorocyclopentadiene	5	< 5.0	5.0	U	1.5	< 31	31	U	31	< 5.0	5.0	U	1.5	< 34	34	U	34	< 5.0	5.0	U	1.5
Hexachloroethane	5	< 0.50	0.50	U	0.50	< 30	30	U	30	< 0.50	0.50	U	0.50	< 33	33	U	33	< 0.50	0.50	U	0.50
Indeno(1,2,3-cd)pyrene	0.002 50	< 0.02	0.02 5.0	U	0.02 1.4	< 33 < 50	33 50	U	33 28	< 0.02 < 5.0	0.02 5.0	U	0.02	< 37 < 50	37 50	U	37 31	< 0.02 < 5.0	0.02 5.0	U	0.02
Isophorone Naphthalene	10	< 5.0 < 5.0	5.0	U	1.4	100	29	-	28	< 5.0	5.0	U	1.4	< 32	32	U	31	< 5.0 < 5.0	5.0	U	1.4
Nitrobenzene	0.4	< 0.10	0.10	U	0.10	< 35	35	U	35	< 0.10	0.10	U	0.10	< 39	39	U	39	< 0.10	0.10	U	0.10
N-Nitrosodimethylamine		< 0.10	0.10	U	0.10	< 100	100	U	28	< 0.10	0.10	U	0.10	< 110	110	U	31	< 0.10	0.10	U	0.10
N-Nitrosodi-n-propylamine		< 5.0	5.0	U	1.6	< 100	100	U	32	< 5.0	5.0	U	1.6	< 110	110	U	36	< 5.0	5.0	U	1.6
N-Nitrosodiphenylamine	50	< 5.0	5.0	U	1.9	< 50	50	U	38	< 5.0	5.0	U	1.9	< 50	50	U	43	< 5.0	5.0	U	1.9
Pentachloronitrobenzene		< 0.10	0.10	U	0.10	< 100	100	U	37	< 0.10	0.10	U	0.10	< 110	110	U	41	< 0.10	0.10	U	0.10
Pentachlorophenol	1 50	< 0.80	0.80	U	0.80	< 38	38	U	38	< 0.80	0.80	U	0.80	< 42	42	U	42	< 0.80	0.80	U	0.80
Phenanthrene Phonal	50 50	< 0.10	0.10	U	0.10	< 50 < 32	50 32	U	29 32	< 0.10	0.10	U	0.10	< 50 < 36	50 36	U	32 36	< 0.10	0.10	U	0.10
Phenol Pyrene	50 50	< 5.0	5.0	U	1.0	< 32	32 50	U	32	< 5.0	5.0	U	1.0	< 36	50	U	36	< 1.0	5.0	U	1.0
Pyridine	50	< 10	10	U	1.2	< 50	50	U	25	< 10	10	U	1.7	< 50	50	U	27	< 10	10	U	1.7
ynune	JU	~ IU	10	U	1.2	~ 50	JU	U	20	\ 1U	īU	U	1.2	~ 50	JU	U	21	\ \ 1U	10	U	1.2

Notes:

- Notes:

 RL- Reporting Limit

 U- The compound was anlayzed for but not detected at or above the MDL.

 J- The value is estimated.

 N- The concentration is based on the response fo the nearest internal.

 S- This compound is a solvent that is used in the laboratory.

 D- The reported concentration is the result of a diluted analysis.

 Bold/highlighted- Indicated exceedance of the NYSDEC Groundwater Standard

TABLE 8 Groundwater Analytical Results Semi-Volatile Organic Compounds

## Affine Continue ## Affine Con	Compound	NYSDEC Groundwater Quality Standards		MW1				MW1				MW1				N Dupli MW	9		G ¹	W Dupl	7	
2.4. Fromtonescowne 100 07 0. 10 0. 0. 0. 0. 0. 0.		μg/L		μg/L		MDI		μg/L		MDI		μg/L		MDI		μg/L		MDI	Donale	μg/l		MDI
## Abdressered ## 102 10 10 10 10 10 10 10	1,2,4,5-Tetrachlorobenzene									=				_				_		_		0.50
2-Speechpenhares	1,2,4-Trichlorobenzene		< 5.0	5.0	U	1.5	< 100		U	30	< 5.0	5.0		1.5	< 5.0	5.0	U	_	< 5.0	5.0	U	1.5
Addressed	1,2-Dichlorobenzene				$\overline{}$			_								_		_		_		1.0
Advincementance		0																_		_		
Ad-Enterophyshols 1		3																_				
Ad-Procesupersed		1																_		_		1.0
Administration of the control of the	2,4,6-Trichlorophenol		< 1.0	1.0	U	1.0	< 32	32	U	32	< 1.0	1.0	U	1.0	< 1.0	1.0	U	1.0	< 1.0	1.0	U	1.0
## Administration	2,4-Dichlorophenol		< 1.0	1.0	U	1.0	< 35		U		< 1.0	1.0	U	1.0	< 1.0	1.0	U		< 1.0	1.0	U	1.0
Administration	2,4-Dimethylphenol																	_		_		
Schriedelstere														_				_				_
Company																		_		_		
Meleyshender (2-Chloronaphthalene																	_		_		1.4
Memoratine	2-Chlorophenol	1	< 1.0	1.0	U	1.0	< 28	28	U	28	< 1.0	1.0	U	1.0	< 1.0	1.0	U	1.0	< 1.0	1.0	U	1.0
Newcomine	2-Methylnaphthalene			5.0										1.5			U	_		5.0		1.5
Second	2-Methylphenol (o-cresol)				$\overline{}$					_				_		_						1.0
Ask-Meropherone (n. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.					$\overline{}$			_						_								_
S-Deimonomonice 9		1			_	_				_			_	_				_		_	_	_
Seminary		5								_						_						2.4
	3-Nitroaniline		< 5.0	5.0	U	2.0	< 220	220	U	220	< 5.0	5.0	U	2.0	< 5.0	5.0	U	2.0	< 5.0	5.0	U	2.0
Chros-chemiply peny ether 1	4,6-Dinitro-2-methylphenol	1												_								
-Chosophemy berw ether	4-Bromophenyl phenyl ether																	_		_		1.5
. Chrosphore phray ether	4-Chloro-3-methylphenol																	_		_		
Nivergriens		5												_				_		_		_
New part of the consistency and the series of the series o		5												_								
Company Comp	4-Nitrophenol	-																_		_		1.0
Second continue	Acenaphthene	20	< 5.0	5.0	U	1.5	< 30	30	U	30	< 5.0	5.0	U	1.5	< 5.0	5.0	U	1.5	< 5.0	5.0	U	1.5
Simple S	Acenaphthylene													_								0.10
settlemene	Acetophenone	_						_		_						_		_		_		
inercy laminteneme 0,002														_								_
								_								_				_		0.02
	Benzidine																	_		_		2.9
	Benzo(a)pyrene		< 0.02	0.02	U	0.02	< 33	33	U	33	< 0.02	0.02	U	0.02	< 0.02	0.02	U	0.02	< 0.02	0.02	U	0.02
	Benzo(b)fluoranthene	0.002												_				_				0.02
tenzes caid 50 < 50	Benzo(ghi)perylene													_				_		_		
tenzy buty phthalate 50		0.002												_								
		50																_		_		1.3
iss2-chrorospropy)ether 5	Bis(2-chloroethoxy)methane		< 5.0	5.0	U	1.4	< 28	28	U	28	< 5.0	5.0	U	1.4	< 5.0	5.0	U	1.4	< 5.0	5.0	U	1.4
sig2-ethylhexyliphthalate	Bis(2-chloroethyl)ether	1	< 1.0	1.0	U	1.0	< 27	27	U	27	< 1.0	1.0	U	1.0		1.0	U		< 1.0	1.0	U	1.0
Arbaszole	Bis(2-chloroisopropyl)ether																	_		_		
Display Color Co		5												_				_				_
		0.002												_				_		_		0.02
	-	0.002			_	_											-			-	_	0.02
Immethylphthalate	Dibenzofuran		< 5.0	5.0	U	1.5	< 29	_	U		< 5.0	5.0	U	1.5	< 5.0	5.0	U	_	< 5.0	5.0	U	1.5
	Diethyl phthalate																	_		_		1.6
Note Society	Dimethylphthalate																	_		_		
Nucrenthene 50 <5.0 5.0 U 1.6 <5.0 5.0 U 32 <5.0 5.0 U 1.6 <5.0 5.0 U 1.7 <5														_				_		_		_
Liurene 50														_			-					1.6
Exachloroberzene	Fluorene																	_		_		1.7
lexachlorocyclopentadiene 5 <	Hexachlorobenzene	0.04	< 0.02	0.02	U	0.02	< 29	29	U	29	< 0.02	0.02	U	0.02	< 0.02	0.02	U	0.02	< 0.02	0.02	U	0.02
Exaction S	Hexachlorobutadiene													_				_				0.40
National Content 1.2	Hexachlorocyclopentadiene																	_		_		
Sophorone Soph														_				_		_		
Aphthalene 10														_				_		_		_
Introduction 1	Naphthalene								-					_								1.4
A-hitrosodi-n-propylamine	Nitrobenzene								U									_		_		0.10
Politrosodiphenylamine 50 < 5.0 5.0 U 1.9 < 5.0 5.0 U 3.8 < 5.0 5.0 U 1.9 < 5.0 5.0 U 5.	N-Nitrosodimethylamine				$\overline{}$			_								_		_		_		0.10
dentachloronitrobenzene < 0.10	N-Nitrosodi-n-propylamine					_		_														1.6
Pertachlorophenol 1	N-Nitrosodiphenylamine	50						_		_						_						
Phenanthrene 50 < 0.10		1												_				_		_		_
Henol 50 < 1.0														_				_				0.10
yrene 50 < 5.0 5.0 U 1.7 < 5.0 5.0 U 3.4 < 5.0 5.0 U 1.7	Phenol													_								1.0
	Pyrene		< 5.0	5.0	U		< 50		U				U				U	_		5.0		1.7
	Pyridine		< 10	10	U	1.2	< 50	50	U	25	< 10	10	U	1.2	< 10	10	U	1.2	< 10	10	U	1.2

Notes:

Notes:

RL- Reporting Limit

U- The compound was anlayzed for but not detected at or above the MDL.

J- The value is estimated.

N- The concentration is based on the response fo the nearest internal.

S- This compound is a solvent that is used in the laboratory.

D- The reported concentration is the result of a diluted analysis.

Bold/highlighted- Indicated exceedance of the NYSDEC Groundwater Standard

TABLE 9 Groundwater Analytical Results Pesticides/PCBs

	Compound	NYSDEC Groundwater Quality Standards μg/L		MW ′ 11/17/2 μg/L	-			MW 2 11/17/2 μg/L	_			MW3 11/17/2 µg/L				MW4 11/17/2 μg/L	-	
			Results	RL	Qual	MDL	Results	RL	Qual	MDL	Results	RL	Qual	MDL	Results	RL	Qual	MDL
	PCB-1016	0.09	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050	< 0.055	0.055	U	0.055	< 0.050	0.050	U	0.050
	PCB-1221	0.09	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050	< 0.055	0.055	U	0.055	< 0.050	0.050	U	0.050
	PCB-1232	0.09	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050	< 0.055	0.055	U	0.055	< 0.050	0.050	U	0.050
ş	PCB-1242	0.09	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050	< 0.055	0.055	U	0.055	< 0.050	0.050	U	0.050
PCBs	PCB-1248	0.09	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050	< 0.055	0.055	U	0.055	< 0.050	0.050	U	0.050
	PCB-1254	0.09	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050	< 0.055	0.055	U	0.055	< 0.050	0.050	U	0.050
	PCB-1260	0.09	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050	< 0.055	0.055	U	0.055	< 0.050	0.050	U	0.050
	PCB-1262	0.09	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050	< 0.055	0.055	U	0.055	< 0.050	0.050	U	0.050
	PCB-1268	0.09	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050	< 0.055	0.055	U	0.055	< 0.050	0.050	U	0.050
	4,4-DDD	0.3	< 0.025	0.025	U	0.025	< 0.005	0.005	U	0.010	< 0.006	0.006	U	0.011	< 0.005	0.005	U	0.010
	4,4-DDE	0.2	< 0.025	0.025	U	0.025	< 0.005	0.005	U	0.010	< 0.006	0.006	U	0.011	< 0.005	0.005	U	0.010
	4,4-DDT	0.11	< 0.025	0.025	U	0.025	< 0.005	0.005	U	0.010	< 0.006	0.006	U	0.011	< 0.005	0.005	U	0.010
	a-BHC	0.94	< 0.025	0.025	U	0.025	< 0.005	0.005	U	0.005	< 0.010	0.010	U	0.010	< 0.005	0.005	U	0.005
	a-Chlordane		< 0.10	0.10	U	0.10	< 0.010	0.010	U	0.010	< 0.011	0.011	U	0.011	< 0.010	0.010	U	0.010
	Alachlor		< 0.75	0.75	U	0.75	< 0.075	0.075	U	0.075	< 0.082	0.082	U	0.082	< 0.075	0.075	U	0.075
	Aldrin		< 0.015	0.015	U	0.015	< 0.002	0.002	U	0.002	< 0.002	0.002	U	0.002	< 0.010	0.010	U	0.010
	b-BHC	0.04	< 0.050	0.050	U	0.050	< 0.040	0.040	U	0.040	< 0.030	0.030	U	0.030	< 0.005	0.005	U	0.005
	Chlordane	0.05	< 0.50	0.50	U	0.50	< 0.050	0.050	U	0.050	< 0.055	0.055	U	0.055	< 0.050	0.050	U	0.050
	d-BHC	0.04	< 0.025	0.025	U	0.025	< 0.005	0.005	U	0.005	< 0.006	0.006	U	0.006	< 0.005	0.005	U	0.005
Pesticides	Dieldrin	0.004	< 0.015	0.015	U	0.015	< 0.002	0.002	U	0.002	< 0.002	0.002	U	0.002	< 0.002	0.002	U	0.002
stici	Endosulfan I		< 0.10	0.10	U	0.10	< 0.010	0.010	U	0.010	< 0.011	0.011	U	0.011	< 0.010	0.010	U	0.010
Pes	Endosulfan II		< 0.10	0.10	U	0.10	< 0.010	0.010	U	0.010	< 0.011	0.011	U	0.011	< 0.010	0.010	U	0.010
	Endosulfan Sulfate		< 0.10	0.10	U	0.10	< 0.010	0.010	U	0.010	< 0.011	0.011	U	0.011	< 0.010	0.010	U	0.010
	Endrin		< 0.050	0.050	U	0.050	< 0.010	0.010	U	0.010	< 0.006	0.006	U	0.006	< 0.010	0.010	U	0.010
	Endrin aldehyde	5	< 0.10	0.10	U	0.10	< 0.010	0.010	U	0.010	< 0.011	0.011	U	0.011	< 0.010	0.010	U	0.010
	Endrin ketone		< 0.10	0.10	U	0.10	< 0.010	0.010	U	0.010	< 0.011	0.011	U	0.011	< 0.010	0.010	U	0.010
	gamma-BHC	0.05	< 0.050	0.050	U	0.050	< 0.005	0.005	U	0.005	< 0.006	0.006	U	0.006	< 0.005	0.005	U	0.005
	g-Chlordane		< 0.10	0.10	U	0.10	< 0.010	0.010	U	0.010	< 0.011	0.011	U	0.011	< 0.010	0.010	U	0.010
	Heptachlor	0.04	< 0.050	0.050	U	0.050	< 0.010	0.010	U	0.010	< 0.006	0.006	U	0.006	< 0.010	0.010	U	0.010
	Heptachlor epoxide	0.03	< 0.050	0.050	U	0.050	< 0.010	0.010	U	0.010	< 0.006	0.006	U	0.006	< 0.010	0.010	U	0.010
	Methoxychlor	35	< 1.0	1.0	U	1.0	< 0.10	0.10	U	0.10	< 0.11	0.11	U	0.11	< 0.10	0.10	U	0.10
	Toxaphene		< 2.0	2.0	U	2.0	< 0.20	0.20	U	0.20	< 0.22	0.22	U	0.22	< 0.20	0.20	U	0.20

Notes:

- RL- Reporting Limit
- U- The compound was anlayzed for but not detected at or above the MDL.
- J- The value is estimated.
- $\mbox{N-}$ The concentration is based on the response fo the nearest internal.
- S- This compound is a solvent that is used in the laboratory.
- D- The reported concentration is the result of a diluted analysis.

Bold/highlighted-Indicated exceedance of the NYSDEC Groundwater Standard

TABLE 9 Groundwater Analytical Results Pesticides/PCBs

	Compound	NYSDEC Groundwater Quality Standards		MW5				MW6				MW7				MW8				MW9		
		μg/L	Results	μg/L RL	Qual	MDL																
	PCB-1016	0.09	< 0.052	0.052	U	0.052	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050	< 0.060	0.060	U	0.060	< 0.050	0.050	U	0.050
	PCB-1221	0.09	< 0.052	0.052	U	0.052	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050	< 0.060	0.060	U	0.060	< 0.050	0.050	U	0.050
	PCB-1232	0.09	< 0.052	0.052	U	0.052	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050	< 0.060	0.060	U	0.060	< 0.050	0.050	U	0.050
	PCB-1242	0.09	< 0.052	0.052	U	0.052	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050	< 0.060	0.060	U	0.060	< 0.050	0.050	U	0.050
PCBs	PCB-1248	0.09	< 0.052	0.052	U	0.052	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050	< 0.060	0.060	U	0.060	< 0.050	0.050	U	0.050
-	PCB-1254	0.09	< 0.052	0.052	U	0.052	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050	< 0.060	0.060	U	0.060	< 0.050	0.050	U	0.050
	PCB-1260	0.09	< 0.052	0.052	U	0.052	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050	< 0.060	0.060	U	0.060	< 0.050	0.050	U	0.050
	PCB-1262	0.09	< 0.052	0.052	U	0.052	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050	< 0.060	0.060	U	0.060	< 0.050	0.050	U	0.050
	PCB-1268	0.09	< 0.052	0.052	U	0.052	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050	< 0.060	0.060	U	0.060	< 0.050	0.050	U	0.050
	4,4-DDD	0.3	< 0.005	0.005	U	0.010	< 0.025	0.025	U	0.025	< 0.005	0.005	U	0.010	< 0.006	0.006	U	0.012	< 0.005	0.005	U	0.010
	4,4-DDE	0.2	< 0.005	0.005	U	0.010	< 0.025	0.025	U	0.025	< 0.005	0.005	U	0.010	< 0.006	0.006	U	0.012	< 0.005	0.005	U	0.010
	4,4-DDT	0.11	< 0.005	0.005	U	0.010	< 0.025	0.025	U	0.025	< 0.005	0.005	U	0.010	< 0.006	0.006	U	0.012	< 0.005	0.005	U	0.010
	a-BHC	0.94	< 0.005	0.005	U	0.005	< 0.025	0.025	U	0.025	< 0.005	0.005	U	0.005	< 0.006	0.006	U	0.006	< 0.005	0.005	U	0.005
	a-Chlordane		< 0.010	0.010	U	0.010	< 0.10	0.10	U	0.10	< 0.010	0.010	U	0.010	< 0.012	0.012	U	0.012	< 0.010	0.010	U	0.010
	Alachlor		< 0.077	0.077	U	0.077	< 0.050	0.050	U	0.050	< 0.075	0.075	U	0.075	< 0.089	0.089	U	0.089	< 0.075	0.075	U	0.075
	Aldrin		< 0.002	0.002	U	0.002	< 0.020	0.020	U	0.020	< 0.002	0.002	U	0.002	< 0.002	0.002	U	0.002	< 0.002	0.002	U	0.002
	b-BHC	0.04	< 0.005	0.005	U	0.005	< 0.025	0.025	U	0.025	< 0.040	0.040	U	0.040	< 0.006	0.006	U	0.006	< 0.040	0.040	U	0.040
	Chlordane	0.05	< 0.052	0.052	U	0.052	< 0.50	0.50	U	0.50	< 0.050	0.050	U	0.050	< 0.060	0.060	U	0.060	< 0.050	0.050	U	0.050
۱.,	d-BHC	0.04	< 0.005	0.005	U	0.005	< 0.025	0.025	U	0.025	< 0.005	0.005	U	0.005	< 0.006	0.006	U	0.006	< 0.005	0.005	U	0.005
Pesticides	Dieldrin	0.004	< 0.002	0.002	U	0.002	< 0.015	0.015	U	0.015	< 0.002	0.002	U	0.002	< 0.002	0.002	U	0.002	< 0.002	0.002	U	0.002
stic	Endosulfan I		< 0.010	0.010	U	0.010	< 0.10	0.10	U	0.10	< 0.010	0.010	U	0.010	< 0.012	0.012	U	0.012	< 0.010	0.010	U	0.010
Pe	Endosulfan II		< 0.010	0.010	U	0.010	< 0.050	0.050	U	0.050	< 0.010	0.010	U	0.010	< 0.012	0.012	U	0.012	< 0.010	0.010	U	0.010
	Endosulfan Sulfate		< 0.010	0.010	U	0.010	< 0.10	0.10	U	0.10	< 0.010	0.010	U	0.010	< 0.012	0.012	U	0.012	< 0.010	0.010	U	0.010
	Endrin		< 0.005	0.005	U	0.005	< 0.050	0.050	U	0.050	< 0.010	0.010	U	0.010	< 0.006	0.006	U	0.006	< 0.010	0.010	U	0.010
	Endrin aldehyde	5	< 0.010	0.010	U	0.010	< 0.20	0.20	U	0.20	< 0.010	0.010	U	0.010	< 0.012	0.012	U	0.012	< 0.010	0.010	U	0.010
	Endrin ketone		< 0.010	0.010	U	0.010	< 0.10	0.10	U	0.10	< 0.010	0.010	U	0.010	< 0.012	0.012	U	0.012	< 0.010	0.010	U	0.010
	gamma-BHC	0.05	< 0.005	0.005	U	0.005	< 0.050	0.050	U	0.050	< 0.005	0.005	U	0.005	< 0.006	0.006	U	0.006	< 0.005	0.005	U	0.005
	g-Chlordane		< 0.010	0.010	U	0.010	< 0.10	0.10	U	0.10	< 0.010	0.010	U	0.010	< 0.012	0.012	U	0.012	< 0.010	0.010	U	0.010
	Heptachlor	0.04	< 0.005	0.005	U	0.005	< 0.050	0.050	U	0.050	< 0.010	0.010	U	0.010	< 0.006	0.006	U	0.006	< 0.010	0.010	U	0.010
	Heptachlor epoxide	0.03	< 0.005	0.005	U	0.005	< 0.050	0.050	U	0.050	< 0.010	0.010	U	0.010	< 0.006	0.006	U	0.006	< 0.010	0.010	U	0.010
	Methoxychlor	35	< 0.10	0.10	U	0.10	< 1.0	1.0	U	1.0	< 0.10	0.10	U	0.10	< 0.12	0.12	U	0.12	< 0.10	0.10	U	0.10
	Toxaphene		< 0.21	0.21	U	0.21	< 2.0	2.0	U	2.0	< 0.20	0.20	U	0.20	< 0.24	0.24	U	0.24	< 0.20	0.20	U	0.20

- Notes: RL- Reporting Limit
- U- The compound was anlayzed for but not detected at or above the MDL.
- J- The value is estimated.
- N- The concentration is based on the response fo the nearest internal.
- S- This compound is a solvent that is used in the laboratory.
- D- The reported concentration is the result of a diluted analysis.

Bold/highlighted- Indicated exceedance of the NYSDEC Groundwater Standard

TABLE 9 Groundwater Analytical Results Pesticides/PCBs

	Compound	NYSDEC Groundwater Quality Standards μg/L		MW1 11/16/2 μg/L				MW1 11/17/2 μg/L				MW1 11/17/2 μg/L	016			V Duplic MW9 11/16/20 μg/L				V Duplid MW7 11/16/20 μg/L	,	
		. •	Results	RL	Qual	MDL	Results	RL	Qual	MDL	Results	RL	Qual	MDL	Results	RL	Qual	MDL	Results	RL	Qual	MDL
	PCB-1016	0.09	< 0.050	0.050	U	0.050	0.16	0.052		0.052	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050
	PCB-1221	0.09	< 0.050	0.050	U	0.050	< 0.052	0.052	U	0.052	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050
	PCB-1232	0.09	< 0.050	0.050	U	0.050	< 0.052	0.052	U	0.052	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050
ဟ	PCB-1242	0.09	< 0.050	0.050	U	0.050	< 0.052	0.052	U	0.052	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050
PCBs	PCB-1248	0.09	< 0.050	0.050	U	0.050	< 0.052	0.052	U	0.052	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050
"	PCB-1254	0.09	< 0.050	0.050	U	0.050	< 0.052	0.052	U	0.052	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050
	PCB-1260	0.09	< 0.050	0.050	U	0.050	< 0.052	0.052	U	0.052	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050
	PCB-1262	0.09	< 0.050	0.050	U	0.050	< 0.052	0.052	U	0.052	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050
	PCB-1268	0.09	< 0.050	0.050	U	0.050	< 0.052	0.052	U	0.052	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050
	4,4-DDD	0.3	< 0.025	0.025	U	0.025	< 0.005	0.005	U	0.010	< 0.005	0.005	U	0.010	< 0.005	0.005	U	0.010	< 0.005	0.005	U	0.010
	4,4-DDE	0.2	< 0.025	0.025	U	0.025	< 0.005	0.005	U	0.010	< 0.005	0.005	U	0.010	< 0.005	0.005	U	0.010	< 0.005	0.005	U	0.010
	4,4-DDT	0.11	< 0.025	0.025	U	0.025	< 0.007	0.007	U	0.007	< 0.005	0.005	U	0.010	< 0.005	0.005	U	0.010	< 0.005	0.005	U	0.010
	a-BHC	0.94	< 0.025	0.025	U	0.025	< 0.020	0.020	U	0.020	< 0.005	0.005	U	0.005	< 0.005	0.005	U	0.005	< 0.005	0.005	U	0.005
	a-Chlordane		< 0.050	0.050	U	0.050	< 0.010	0.010	U	0.010	< 0.010	0.010	U	0.010	< 0.010	0.010	U	0.010	< 0.010	0.010	U	0.010
	Alachlor		< 0.050	0.050	U	0.050	< 0.078	0.078	U	0.078	< 0.075	0.075	U	0.075	< 0.075	0.075	U	0.075	< 0.075	0.075	U	0.075
	Aldrin		< 0.015	0.015	U	0.015	< 0.003	0.003	U	0.003	< 0.002	0.002	U	0.002	< 0.002	0.002	U	0.002	< 0.005	0.005	U	0.005
	b-BHC	0.04	< 0.025	0.025	U	0.025	< 0.020	0.020	U	0.020	< 0.010	0.010	U	0.010	< 0.005	0.005	U	0.005	< 0.005	0.005	U	0.005
	Chlordane	0.05	< 0.50	0.50	U	0.50	< 0.052	0.052	U	0.052	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050	< 0.050	0.050	U	0.050
	d-BHC	0.04	< 0.025	0.025	U	0.025	< 0.010	0.010	U	0.010	< 0.005	0.005	U	0.005	< 0.005	0.005	U	0.005	< 0.005	0.005	U	0.005
Pesticides	Dieldrin	0.004	< 0.015	0.015	U	0.015	< 0.005	0.005	U	0.005	< 0.002	0.002	U	0.002	< 0.002	0.002	U	0.002	< 0.002	0.002	U	0.002
stici	Endosulfan I		< 0.10	0.10	U	0.10	< 0.010	0.010	U	0.010	< 0.010	0.010	U	0.010	< 0.010	0.010	U	0.010	< 0.010	0.010	U	0.010
Pe	Endosulfan II		< 0.10	0.10	U	0.10	< 0.010	0.010	U	0.010	< 0.010	0.010	U	0.010	< 0.010	0.010	U	0.010	< 0.010	0.010	U	0.010
	Endosulfan Sulfate		< 0.10	0.10	U	0.10	< 0.010	0.010	U	0.010	< 0.010	0.010	U	0.010	< 0.010	0.010	U	0.010	< 0.010	0.010	U	0.010
	Endrin		< 0.050	0.050	U	0.050	< 0.005	0.005	U	0.005	< 0.010	0.010	U	0.010	< 0.010	0.010	U	0.010	< 0.010	0.010	U	0.010
	Endrin aldehyde	5	< 0.10	0.10	U	0.10	< 0.010	0.010	U	0.010	< 0.010	0.010	U	0.010	< 0.010	0.010	U	0.010	< 0.010	0.010	U	0.010
	Endrin ketone		< 0.10	0.10	U	0.10	< 0.010	0.010	U	0.010	< 0.010	0.010	U	0.010	< 0.010	0.010	U	0.010	< 0.010	0.010	U	0.010
	gamma-BHC	0.05	< 0.050	0.050	U	0.050	< 0.005	0.005	U	0.005	< 0.005	0.005	U	0.005	< 0.005	0.005	U	0.005	< 0.005	0.005	U	0.005
	g-Chlordane		< 0.050	0.050	U	0.050	< 0.030	0.030	U	0.030	< 0.010	0.010	U	0.010	< 0.010	0.010	U	0.010	< 0.010	0.010	U	0.010
	Heptachlor	0.04	< 0.050	0.050	U	0.050	< 0.005	0.005	U	0.005	< 0.010	0.010	U	0.010	< 0.010	0.010	U	0.010	< 0.010	0.010	U	0.010
	Heptachlor epoxide	0.03	< 0.050	0.050	U	0.050	< 0.005	0.005	U	0.005	< 0.010	0.010	U	0.010	< 0.010	0.010	U	0.010	< 0.010	0.010	U	0.010
	Methoxychlor	35	< 1.0	1.0	U	1.0	< 0.10	0.10	U	0.10	< 0.10	0.10	U	0.10	< 0.10	0.10	U	0.10	< 0.10	0.10	U	0.10
	Toxaphene		< 2.0	2.0	U	2.0	< 0.21	0.21	U	0.21	< 0.20	0.20	U	0.20	< 0.20	0.20	U	0.20	< 0.20	0.20	U	0.20

Notes:

- RL- Reporting Limit
- U- The compound was anlayzed for but not detected at or above the MDL.
- J- The value is estimated.
- N- The concentration is based on the response fo the nearest internal. S- This compound is a solvent that is used in the laboratory.

D- The reported concentration is the result of a diluted analysis.

Bold/highlighted- Indicated exceedance of the NYSDEC Groundwater Standard

TABLE 10 Groundwater Analytical Results Total Metals

Compound	NYSDEC Groundwater Quality Standards		MW1 11/17/2 mg/L				MW2 11/17/2(mg/L				MW3				MW4 11/17/2 mg/L	016	
		Results	RL	Qual	MDL	Results	RL	Qual	MDL	Results	RL	Qual	MDL	Results	RL	Qual	MDL
Aluminum	NS	20.9	0.010	-	0.005	5.02	0.010	-	0.005	9.91	0.010	-	0.005	32.7	0.10	-	0.050
Antimony	0.003	< 0.002	0.002	U	0.002	< 0.002	0.002	U	0.002	< 0.002	0.002	U	0.002	< 0.002	0.002	U	0.002
Arsenic	0.025	0.008	0.004	-	0.004	< 0.004	0.004	U	0.004	< 0.004	0.004	U	0.004	0.012	0.004	-	0.004
Barium	1	0.539	0.010	-	0.001	0.211	0.010	-	0.001	0.292	0.010	-	0.001	0.507	0.010	-	0.001
Beryllium	0.003	0.001	0.001	-	0.001	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001	0.002	0.001	-	0.001
Cadmium	0.005	0.002	0.004	В	0.0005	0.001	0.004	В	0.0005	0.001	0.004	В	0.0005	0.003	0.004	В	0.0005
Calcium	NS	133	0.010	-	0.01	113	0.010	-	0.01	110	0.010	-	0.01	118	0.010	-	0.01
Chromium	0.05	0.052	0.001	-	0.001	0.012	0.001	-	0.001	0.027	0.001	-	0.001	0.097	0.001	-	0.001
Cobalt	NS	0.018	0.005	-	0.001	0.005	0.005	В	0.001	0.012	0.005	-	0.001	0.041	0.005	-	0.001
Copper	0.2	0.053	0.005	-	0.001	0.012	0.005	-	0.001	0.029	0.005	-	0.001	0.069	0.005	-	0.001
Iron	0.5	70.8	0.01	-	0.01	19.3	0.01	-	0.01	30.4	0.01	-	0.01	133	0.10	-	0.10
Lead	0.025	0.051	0.002	-	0.001	< 0.002	0.002	U	0.001	0.011	0.002	-	0.001	0.021	0.002	-	0.001
Magnesium	35	31.4	0.010	N	0.01	30.9	0.010	N	0.01	20.7	0.010	N	0.01	37.8	0.010	N	0.01
Manganese	0.3	5.4	0.050	-	0.010	6.91	0.050	-	0.010	6.36	0.050	-	0.010	12.1	0.050	-	0.010
Mercury	0.0007	< 0.0002	0.0002	U	0.00015	< 0.0002	0.0002	U	0.00015	< 0.0002	0.0002	U	0.00015	< 0.0002	0.0002	U	0.00015
Nickel	0.1	0.032	0.004	-	0.001	0.007	0.004	-	0.001	0.017	0.004	-	0.001	0.069	0.004	-	0.001
Potassium	NS	45.2	0.1	-	0.01	10.5	0.1	-	0.01	17.1	0.1	-	0.01	17.5	0.1	-	0.01
Selenium	0.01	< 0.002	0.002	U	0.001	< 0.002	0.002	U	0.001	< 0.002	0.002	U	0.001	< 0.002	0.002	U	0.001
Silver	0.05	< 0.005	0.005	U	0.001	< 0.005	0.005	U	0.001	< 0.005	0.005	U	0.001	< 0.005	0.005	U	0.001
Sodium	2	342	1.0	-	0.10	232	1.0	-	0.10	350	1.0	-	0.10	148	1.0	-	0.10
Thallium	0.0005	< 0.0005	0.0005	U	0.0005	< 0.0005	0.0005	U	0.0005	< 0.0005	0.0005	U	0.0005	< 0.0005	0.0005	U	0.0005
Vanadium	NS	0.057	0.010	-	0.001	0.014	0.010	-	0.001	0.031	0.010	-	0.001	0.088	0.010	-	0.001
Zinc	2	0.124	0.010	-	0.0011	0.028	0.010	-	0.0011	0.049	0.010	-	0.0011	0.118	0.010	-	0.0011

Notes:

- RL- Reporting Limit
- U- The compound was anlayzed for but not detected at or above the MDL.
- J- The value is estimated.
- N- The concentration is based on the response fo the nearest internal.
- S- This compound is a solvent that is used in the laboratory.
- D- The reported concentration is the result of a diluted analysis.

Bold/highlighted- Indicated exceedance of the NYSDEC Groundwater Standard

TABLE 10 **Groundwater Analytical Results** Total Metals

Compound	NYSDEC Groundwater Quality Standards		MW5				MW6				MW7				MW8				MW9	_	
	mg/L		mg/L																		
		Results	RL	Qual	MDL																
Aluminum	NS	1.05	0.010	-	0.005	6.04	0.010	-	0.005	0.031	0.010	-	0.005	6.2	0.010	-	0.005	0.182	0.010	-	0.005
Antimony	0.003	< 0.002	0.002	U	0.002	< 0.002	0.002	U	0.002	< 0.002	0.002	U	0.002	< 0.002	0.002	U	0.002	< 0.002	0.002	U	0.002
Arsenic	0.025	< 0.004	0.004	U	0.004	< 0.004	0.004	U	0.004	0.011	0.004	-	0.004	0.035	0.004	-	0.004	< 0.004	0.004	U	0.004
Barium	1	0.155	0.010	-	0.001	1.33	0.010	-	0.001	0.266	0.010	-	0.001	0.45	0.010	-	0.001	0.198	0.010	-	0.001
Beryllium	0.003	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001
Cadmium	0.005	0.001	0.004	В	0.0005	0.018	0.004	-	0.0005	0.002	0.004	В	0.0005	0.003	0.004	В	0.0005	< 0.004	0.004	U	0.0005
Calcium	NS	98	0.010	-	0.01	429	0.10	-	0.10	47.5	0.010	-	0.01	162	0.10	-	0.10	120	0.010	-	0.01
Chromium	0.05	0.003	0.001	-	0.001	0.016	0.001	-	0.001	< 0.001	0.001	U	0.001	0.021	0.001	-	0.001	0.002	0.001	-	0.001
Cobalt	NS	0.002	0.005	В	0.001	0.082	0.005	-	0.001	0.018	0.005	-	0.001	0.012	0.005	-	0.001	0.008	0.005	-	0.001
Copper	0.2	0.004	0.005	В	0.001	< 0.005	0.005	U	0.001	< 0.005	0.005	U	0.001	0.022	0.005	-	0.001	< 0.005	0.005	U	0.001
Iron	0.5	28.2	0.01	-	0.01	868	0.10	-	0.10	121	0.01	-	0.01	151	0.10	-	0.10	14.6	0.01	-	0.01
Lead	0.025	0.006	0.002	-	0.001	0.059	0.002	-	0.001	0.007	0.002	-	0.001	0.018	0.002	-	0.001	< 0.002	0.002	U	0.001
Magnesium	35	33.5	0.010	N	0.01	99.1	0.10	N	0.10	14.7	0.010	-	0.01	28.7	0.010	Ν	0.01	39.7	0.010	-	0.01
Manganese	0.3	5.19	0.050	-	0.010	33	0.50	-	0.10	3.48	0.050	-	0.010	3.87	0.050	-	0.010	11.4	0.050	-	0.010
Mercury	0.0007	< 0.0002	0.0002	U	0.00015	< 0.0002	0.0002	U	0.00015	< 0.0002	0.0002	U	0.00015	< 0.0002	0.0002	U	0.00015	< 0.0002	0.0002	U	0.00015
Nickel	0.1	0.002	0.004	В	0.001	0.011	0.004	-	0.001	0.004	0.004	В	0.001	0.025	0.004	-	0.001	0.007	0.004	-	0.001
Potassium	NS	4.8	0.1	-	0.01	23.7	0.1	-	0.01	5	0.1	-	0.01	25.2	0.1	-	0.01	9.6	0.1	-	0.01
Selenium	0.01	< 0.002	0.002	U	0.001	< 0.002	0.002	UN	0.001	< 0.002	0.002	UN	0.001	< 0.002	0.002	U	0.001	< 0.002	0.002	UN	0.001
Silver	0.05	< 0.005	0.005	U	0.001	0.001	0.005	В	0.001	< 0.005	0.005	U	0.001	< 0.005	0.005	U	0.001	< 0.005	0.005	U	0.001
Sodium	2	130	1.0	-	0.10	233	1.0	-	0.10	107	1.0	-	0.10	151	1.0	-	0.10	122	1.0	-	0.10
Thallium	0.0005	< 0.0005	0.0005	U	0.0005	< 0.0005	0.0005	U	0.0005	< 0.0005	0.0005	U	0.0005	< 0.0005	0.0005	U	0.0005	< 0.0005	0.0005	U	0.0005
Vanadium	NS	0.004	0.010	В	0.001	0.022	0.010	-	0.001	< 0.010	0.010	U	0.001	0.028	0.010	-	0.001	0.001	0.010	В	0.001
Zinc	2	0.01	0.010	-	0.0011	0.141	0.010	-	0.0011	0.014	0.010	-	0.0011	0.064	0.010	-	0.0011	0.009	0.010	В	0.0011

Notes:

RL- Reporting Limit

- U- The compound was anlayzed for but not detected at or above the MDL.
- J- The value is estimated.
- N- The concentration is based on the response fo the nearest internal.
- S- This compound is a solvent that is used in the laboratory.

D- The reported concentration is the result of a diluted analysis.

Bold/highlighted- Indicated exceedance of the NYSDEC Groundwater Standard

TABLE 10 Groundwater Analytical Results Total Metals

Compound	NYSDEC Groundwater Quality Standards		MW1	_			MW1	-			MW1				V Dupli MW9 11/16/2	9			V Dupli MW7 11/16/2	7	
	mg/L	Results	mg/L RL	Qual	MDL	Results	mg/L RL	Qual	MDL	Results	mg/L RL	Qual	MDL	Results	mg/L RL	Qual	MDL	Results	mg/L RL	Qual	MDL
Aluminum	NS	0.119	0.010	- Quai	0.005	1.25	0.010	- Quai	0.005	0.048	0.010	- Quai	0.005	2.61	0.010	- Quai	0.005	0.032	0.010	- Quai	0.005
		< 0.002	0.002	U	0.002	< 0.002	0.002	U	0.002	< 0.002	0.002	U	0.002	< 0.002	0.002	U	0.002	< 0.002	0.002	U	0.002
Antimony	0.003	0.01	0.004		0.004	0.009	0.004	_	0.004	< 0.004	0.004	U	0.004	< 0.004	0.004	U	0.004	0.011	0.004	_	0.004
Arsenic	0.025	0.309	0.010	-	0.001	0.318	0.010	_	0.001	0.151	0.010		0.001	0.229	0.010	_	0.001	0.282	0.010		0.001
Barium	1	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001
Beryllium	0.003	0.001	0.001	В	0.0001	0.004	0.001	В	0.001	0.001	0.001	В	0.0005	0.001	0.001	В	0.0001	0.002	0.001	В	0.0001
Cadmium	0.005					211		В	0.0003	151	0.004	В		121		В		49.8	0.004	Ь	
Calcium	NS	138	0.010	-	0.01		0.10	-				-	0.10		0.010	-	0.01			-	0.01
Chromium	0.05	< 0.001	0.001	U	0.001	0.005	0.001	-	0.001	< 0.001	0.001	U	0.001	0.01	0.001	-	0.001	< 0.001	0.001	U	0.001
Cobalt	NS	0.002	0.005	В	0.001	0.002	0.005	В	0.001	0.005	0.005	-	0.001	0.011	0.005	-	0.001	0.019	0.005	-	0.001
Copper	0.2	< 0.005	0.005	U	0.001	0.001	0.005	В	0.001	0.004	0.005	В	0.001	0.007	0.005	-	0.001	< 0.005	0.005	U	0.001
Iron	0.5	47.4	0.01	-	0.01	158	0.10	-	0.10	1.35	0.01	-	0.01	18.1	0.01	-	0.01	126	0.10	-	0.10
Lead	0.025	< 0.002	0.002	U	0.001	0.009	0.002	-	0.001	< 0.002	0.002	U	0.001	0.001	0.002	В	0.001	0.009	0.002	-	0.001
Magnesium	35	32.2	0.010	1	0.01	30.4	0.010	N	0.01	39.5	0.010	N	0.01	41.4	0.010	-	0.01	15.5	0.010	-	0.01
Manganese	0.3	1.09	0.005	-	0.001	14.3	0.050	-	0.010	12.1	0.050	-	0.010	12.7	0.050	-	0.010	3.47	0.050	-	0.010
Mercury	0.0007	< 0.0002	0.0002	U	0.00015	< 0.0002	0.0002	U	0.00015	< 0.0002	0.0002	U	0.00015	< 0.0002	0.0002	U	0.00015	< 0.0002	0.0002	U	0.00015
Nickel	0.1	0.002	0.004	В	0.001	0.004	0.004	-	0.001	0.003	0.004	В	0.001	0.015	0.004	-	0.001	0.004	0.004	В	0.001
Potassium	NS	18.5	0.1	-	0.01	17.9	0.1	-	0.01	20.7	0.1	-	0.01	10	0.1	-	0.01	5.4	0.1	-	0.01
Selenium	0.01	< 0.002	0.002	UN	0.001	< 0.002	0.002	U	0.001	< 0.002	0.002	U	0.001	< 0.002	0.002	UN	0.001	< 0.002	0.002	UN	0.001
Silver	0.05	< 0.005	0.005	U	0.001	< 0.005	0.005	U	0.001	< 0.005	0.005	U	0.001	< 0.005	0.005	U	0.001	< 0.005	0.005	U	0.001
Sodium	2	122	1.0	-	0.10	279	1.0	-	0.10	161	1.0	-	0.10	121	1.0	-	0.10	106	1.0	-	0.10
Thallium	0.0005	< 0.0005	0.0005	U	0.0005	< 0.0005	0.0005	U	0.0005	< 0.0005	0.0005	U	0.0005	< 0.0005	0.0005	U	0.0005	< 0.0005	0.0005	U	0.0005
Vanadium	NS	0.002	0.010	В	0.001	0.005	0.010	В	0.001	< 0.010	0.010	U	0.001	0.007	0.010	В	0.001	0.001	0.010	В	0.001
Zinc	2	0.01	0.010	-	0.0011	0.026	0.010	-	0.0011	0.002	0.010	В	0.0011	0.028	0.010	-	0.0011	0.015	0.010	-	0.0011

Notes:

RL- Reporting Limit

- U- The compound was anlayzed for but not detected at or above the MDL.
- J- The value is estimated.
- N- The concentration is based on the response fo the nearest internal.
- S- This compound is a solvent that is used in the laboratory.
- D- The reported concentration is the result of a diluted analysis.

Bold/highlighted- Indicated exceedance of the NYSDEC Groundwater Standard

TABLE 11 Groundwater Analytical Results Dissolved Metals

Compound	NYSDEC Groundwater Quality Standards		MW1 11/17/20 mg/L				MW2 11/17/20 mg/L				MW3				MW4 11/17/2 mg/L	016	
		Results	RL	Qual	MDL	Results	RL	Qual	MDL	Results	RL	Qual	MDL	Results	RL	Qual	MDL
Aluminum	NS	< 0.011	0.011	U	0.005	< 0.011	0.011	U	0.005	< 0.011	0.011	U	0.005	< 0.011	0.011	U	0.005
Antimony	0.003	< 0.003	0.003	U	0.003	< 0.003	0.003	U	0.003	< 0.003	0.003	J	0.003	< 0.003	0.003	U	0.003
Arsenic	0.025	< 0.003	0.003	U	0.003	< 0.003	0.003	U	0.003	< 0.003	0.003	U	0.003	< 0.003	0.003	U	0.003
Barium	1	0.23	0.011	-	0.001	0.137	0.011	-	0.001	0.181	0.011	-	0.001	0.205	0.011	-	0.001
Beryllium	0.003	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001
Cadmium	0.005	< 0.004	0.004	U	0.0005	< 0.004	0.004	U	0.0005	< 0.004	0.004	U	0.0005	< 0.004	0.004	U	0.0005
Calcium	NS	119	0.01	-	0.01	112	0.01	-	0.01	96.9	0.01	-	0.01	105	0.01	-	0.01
Chromium	0.05	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001
Cobalt	NS	0.002	0.005	В	0.001	< 0.005	0.005	U	0.001	0.002	0.005	В	0.001	0.011	0.005	-	0.001
Copper	0.2	0.001	0.005	В	0.001	< 0.005	0.005	U	0.001	0.001	0.005	В	0.001	< 0.005	0.005	U	0.001
Iron	0.5	0.03	0.01	-	0.01	0.12	0.01	-	0.01	< 0.01	0.01	U	0.01	8.95	0.01	-	0.01
Lead	0.025	< 0.002	0.002	U	0.001	0.002	0.002	-	0.001	0.003	0.002	-	0.001	0.002	0.002	В	0.001
Magnesium	35	25.3	0.01	-	0.01	29.3	0.01	-	0.01	16.2	0.01	-	0.01	27.9	0.01	-	0.01
Manganese	0.3	3.43	0.053	-	0.011	6.75	0.053	-	0.011	5.54	0.053	-	0.011	9.87	0.053	-	0.011
Mercury	0.0007	< 0.0002	0.0002	U	0.00015	< 0.0002	0.0002	U	0.00015	< 0.0002	0.0002	U	0.00015	< 0.0002	0.0002	U	0.00015
Nickel	0.1	0.004	0.004	В	0.001	0.001	0.004	В	0.001	0.002	0.004	В	0.001	0.005	0.004	-	0.001
Potassium	NS	40.4	0.1	-	0.01	9.5	0.1	-	0.01	13.4	0.1	-	0.01	10.8	0.1	-	0.01
Selenium	0.01	< 0.004	0.004	U	0.002	< 0.004	0.004	U	0.002	< 0.004	0.004	U	0.002	< 0.004	0.004	U	0.002
Silver	0.05	< 0.005	0.005	U	0.001	< 0.005	0.005	U	0.001	< 0.005	0.005	U	0.001	< 0.005	0.005	U	0.001
Sodium	2	322	1.1	-	0.11	245	1.1	-	0.11	343	1.1	-	0.11	145	1.1	-	0.11
Thallium	0.0005	< 0.0005	0.0005	U	0.0005	< 0.0005	0.0005	U	0.0005	< 0.0005	0.0005	U	0.0005	< 0.0005	0.0005	U	0.0005
Vanadium	NS	< 0.011	0.011	U	0.001	< 0.011	0.011	U	0.001	< 0.011	0.011	U	0.001	< 0.011	0.011	U	0.001
Zinc	2	0.002	0.011	В	0.0012	< 0.011	0.011	U	0.0012	< 0.011	0.011	U	0.0012	0.002	0.011	В	0.0012

Notes:

- RL- Reporting Limit
- U- The compound was anlayzed for but not detected at or above the MDL.
- J- The value is estimated.
- N- The concentration is based on the response fo the nearest internal.
- S- This compound is a solvent that is used in the laboratory.
- D- The reported concentration is the result of a diluted analysis.

Bold/highlighted- Indicated exceedance of the NYSDEC Groundwater Standard

TABLE 11 **Groundwater Analytical Results** Dissolved Metals

Compound	NYSDEC Groundwater Quality Standards		MW!			,	MW6 11/16/2				MW7 11/16/2	016			MW8 11/17/20 mg/L				MW9 11/16/2		
		Results	RL	Qual	MDL	Results	RL	Qual	MDL	Results	RL	Qual	MDL	Results	RL	Qual	MDL	Results	RL	Qual	MDL
Aluminum	NS	< 0.011	0.011	U	0.005	0.035	0.011	-	0.005	< 0.011	0.011	U	0.005	< 0.011	0.011	U	0.005	< 0.011	0.011	U	0.005
Antimony	0.003	< 0.003	0.003	U	0.003	< 0.003	0.003	U	0.003	< 0.003	0.003	U	0.003	< 0.003	0.003	U	0.003	< 0.003	0.003	U	0.003
Arsenic	0.025	< 0.003	0.003	U	0.003	0.014	0.003	-	0.003	< 0.003	0.003	U	0.003	0.014	0.003	-	0.003	< 0.003	0.003	U	0.003
Barium	1	0.085	0.011	-	0.001	1.16	0.011	-	0.001	0.18	0.011	-	0.001	0.272	0.011	-	0.001	0.163	0.011	-	0.001
Beryllium	0.003	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001
Cadmium	0.005	< 0.004	0.004	U	0.0005	0.015	0.004	-	0.0005	0.001	0.004	В	0.0005	0.002	0.004	В	0.0005	< 0.004	0.004	U	0.0005
Calcium	NS	87.4	0.01	-	0.01	417	0.11	-	0.11	46.8	0.01	-	0.01	155	0.01	-	0.01	120	0.01	-	0.01
Chromium	0.05	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001
Cobalt	NS	< 0.005	0.005	U	0.001	0.076	0.005	-	0.001	0.017	0.005	-	0.001	0.006	0.005	-	0.001	0.007	0.005	-	0.001
Copper	0.2	< 0.005	0.005	U	0.001	< 0.005	0.005	U	0.001	< 0.005	0.005	U	0.001	< 0.005	0.005	U	0.001	< 0.005	0.005	U	0.001
Iron	0.5	0.39	0.01	-	0.01	758	0.11	-	0.11	62.3	0.01	-	0.01	79.1	0.01	-	0.01	0.24	0.01	-	0.01
Lead	0.025	< 0.002	0.002	U	0.001	0.037	0.002	-	0.001	0.004	0.002	-	0.001	< 0.002	0.002	U	0.001	0.002	0.002	В	0.001
Magnesium	35	30.1	0.01	-	0.01	95.1	0.11	-	0.11	14.8	0.01	-	0.01	26.8	0.01	-	0.01	39.4	0.01	-	0.01
Manganese	0.3	4.56	0.053	-	0.011	44.8	0.53	-	0.11	3.37	0.053	-	0.011	3.14	0.053	-	0.011	11.1	0.053	-	0.011
Mercury	0.0007	< 0.0002	0.0002	\cup	0.00015	< 0.0002	0.0002	U	0.00015	< 0.0002	0.0002	U	0.00015	< 0.0002	0.0002	U	0.00015	< 0.0002	0.0002	U	0.00015
Nickel	0.1	< 0.004	0.004	U	0.001	< 0.004	0.004	U	0.001	< 0.004	0.004	U	0.001	0.013	0.004	-	0.001	0.008	0.004	-	0.001
Potassium	NS	4.3	0.1	-	0.01	22.3	0.1	-	0.01	4.8	0.1	-	0.01	20.6	1.1	-	0.11	9.4	0.1	-	0.01
Selenium	0.01	< 0.004	0.004	U	0.002	< 0.004	0.004	U	0.002	< 0.004	0.004	U	0.002	< 0.004	0.004	U	0.002	< 0.004	0.004	U	0.002
Silver	0.05	< 0.005	0.005	U	0.001	< 0.005	0.005	U	0.001	< 0.005	0.005	U	0.001	< 0.005	0.005	U	0.001	< 0.005	0.005	U	0.001
Sodium	2	128	1.1	-	0.11	237	1.1	-	0.11	111	1.1	-	0.11	151	1.1	-	0.11	126	1.1	-	0.11
Thallium	0.0005	< 0.0005	0.0005	U	0.0005	< 0.0005	0.0005	U	0.0005	< 0.0005	0.0005	U	0.0005	< 0.0005	0.0005	U	0.0005	< 0.0005	0.0005	U	0.0005
Vanadium	NS	< 0.011	0.011	U	0.001	0.002	0.011	В	0.001	< 0.011	0.011	U	0.001	0.003	0.011	В	0.001	< 0.011	0.011	U	0.001
Zinc	2	< 0.011	0.011	U	0.0012	0.087	0.011	-	0.0012	0.007	0.011	В	0.0012	0.011	0.011	В	0.0012	0.004	0.011	В	0.0012

Notes:

RL- Reporting Limit

- U- The compound was anlayzed for but not detected at or above the MDL.
- J- The value is estimated.
- N- The concentration is based on the response fo the nearest internal.
- S- This compound is a solvent that is used in the laboratory.

D- The reported concentration is the result of a diluted analysis.

Bold/highlighted- Indicated exceedance of the NYSDEC Groundwater Standard

TABLE 11 Groundwater Analytical Results Dissolved Metals

Compound	NYSDEC Groundwater Quality Standards		MW10	-			MW1				MW1	_			V Duplio MW9 11/16/20)			V Dupli MW7 11/16/2	7	
	mg/L	Results	mg/L RL	Qual	MDL	Results	mg/L RL	Qual	MDL	Results	mg/L RL	Qual	MDL	Results	mg/L RL	Qual	MDL	Results	mg/L RL	Qual	MDL
Aluminum	NS	0.006	0.011	В	0.005	0.008	0.011	В	0.005	0.005	0.011	В	0.005	0.005	0.011	В	0.005	< 0.011	0.011	U	0.005
Antimony	0.003	< 0.003	0.003	U	0.003	< 0.003	0.003	U	0.003	< 0.003	0.003	U	0.003	< 0.003	0.003	U	0.003	< 0.003	0.003	U	0.003
Arsenic	0.025	< 0.003	0.003	U	0.003	0.005	0.003	-	0.003	< 0.003	0.003	U	0.003	< 0.003	0.003	U	0.003	< 0.003	0.003	U	0.003
Barium	1	0.186	0.011	-	0.001	0.203	0.011	-	0.001	0.142	0.011	-	0.001	0.175	0.011	-	0.001	0.17	0.011	-	0.001
Beryllium	0.003	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001
Cadmium	0.005	< 0.004	0.004	U	0.0005	0.001	0.004	В	0.0005	< 0.004	0.004	U	0.0005	< 0.004	0.004	U	0.0005	0.001	0.004	В	0.0005
Calcium	NS	130	0.01	-	0.01	196	0.11	-	0.11	141	0.01	-	0.01	122	0.01	-	0.01	46.6	0.01	-	0.01
Chromium	0.05	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001
Cobalt	NS	0.002	0.005	В	0.001	< 0.005	0.005	U	0.001	0.005	0.005	-	0.001	0.008	0.005	-	0.001	0.017	0.005	-	0.001
Copper	0.2	< 0.005	0.005	U	0.001	< 0.005	0.005	U	0.001	0.002	0.005	В	0.001	< 0.005	0.005	U	0.001	< 0.005	0.005	U	0.001
Iron	0.5	7.14	0.01	-	0.01	46.9	0.01	-	0.01	0.12	0.01	-	0.01	0.72	0.01	-	0.01	52.3	0.01	-	0.01
Lead	0.025	< 0.002	0.002	U	0.001	< 0.002	0.002	U	0.001	0.002	0.002	В	0.001	0.001	0.002	В	0.001	0.003	0.002	-	0.001
Magnesium	35	29.6	0.01	-	0.01	29.5	0.01	-	0.01	36.2	0.01	-	0.01	40.6	0.01	-	0.01	14.6	0.01	-	0.01
Manganese	0.3	0.999	0.005	-	0.001	13.5	0.053	-	0.011	11.9	0.053	-	0.011	11.5	0.053	-	0.011	3.09	0.053	-	0.011
Mercury	0.0007	< 0.0002	0.0002	U	0.00015	< 0.0002	0.0002	U	0.00015	< 0.0002	0.0002	U	0.00015	< 0.0002	0.0002	U	0.00015	< 0.0002	0.0002	U	0.00015
Nickel	0.1	0.002	0.004	В	0.001	< 0.004	0.004	U	0.001	0.003	0.004	В	0.001	0.009	0.004	-	0.001	< 0.004	0.004	U	0.001
Potassium	NS	19.3	0.1	-	0.01	13.8	1.1	-	0.11	19.6	0.1	-	0.01	9.5	0.1	-	0.01	4.9	0.1	-	0.01
Selenium	0.01	< 0.004	0.004	U	0.002	< 0.004	0.004	U	0.002	< 0.004	0.004	U	0.002	< 0.004	0.004	U	0.002	< 0.004	0.004	U	0.002
Silver	0.05	< 0.005	0.005	U	0.001	< 0.005	0.005	U	0.001	< 0.005	0.005	U	0.001	< 0.005	0.005	U	0.001	< 0.005	0.005	U	0.001
Sodium	2	124	1.1	-	0.11	282	1.1	-	0.11	159	1.1	-	0.11	129	1.1	-	0.11	102	1.1	-	0.11
Thallium	0.0005	< 0.0005	0.0005	U	0.0005	< 0.0005	0.0005	U	0.0005	< 0.0005	0.0005	U	0.0005	< 0.0005	0.0005	U	0.0005	< 0.0005	0.0005	U	0.0005
Vanadium	NS	< 0.011	0.011	U	0.001	< 0.011	0.011	U	0.001	< 0.011	0.011	U	0.001	< 0.011	0.011	U	0.001	< 0.011	0.011	U	0.001
Zinc	2	0.003	0.011	В	0.0012	0.007	0.011	В	0.0012	0.001	0.011	В	0.0012	0.005	0.011	В	0.0012	0.006	0.011	В	0.0012

Notes:

RL- Reporting Limit

- U- The compound was anlayzed for but not detected at or above the MDL.
- J- The value is estimated.
- N- The concentration is based on the response fo the nearest internal.

S- This compound is a solvent that is used in the laboratory.
D- The reported concentration is the result of a diluted analysis.

Bold/highlighted- Indicated exceedance of the NYSDEC Groundwater Standard

		NYSDOH Soil Outdoor		SG	1			SG	2			SG	3			SG	4	
COMPOUNDS	NYSDOH Maximum Sub-			11/16/2				11/16/2				11/16/2				11/16/2		
	Slab Value (µg/m³) (a)	Background Levels (µg/m³) (b)	Result	(µg/m	Qual	MDL	Result	(µg/m	Qual	MDL	Result	(µg/m	Qual	MDL	Result	(µg/m	Qual	MDL
1,1,1,2-Tetrachloroethane			< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
1,1,1-Trichloroethane	100	<2.0 - 2.8	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	1.02	1.00	-	1.00	< 1.00	1.00	U	1.00
1,1,2,2-Tetrachloroethane		<1.5	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
1,1,2-Trichloroethane		<1.0	< 1.00 < 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00 < 1.00	1.00	U	1.00
1,1-Dichloroethane 1,1-Dichloroethene		<1.0 <1.0	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
1,2,4-Trichlorobenzene		NA	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
1,2,4-Trimethylbenzene		<1.0	1.24	1.00	-	1.00	< 1.00	1.00	U	1.00	1.57	1.00	-	1.00	1.75	1.00	-	1.00
1,2-Dibromoethane		<1.5	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
1,2-Dichlorobenzene		<2.0	< 1.00 < 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
1,2-Dichloroethane 1,2-Dichloropropane		<1.0	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
1,2-Dichlorotetrafluoroethane			< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
1,3,5-Trimethylbenzene		<1.0	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
1,3-Butadiene		NA	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
1,3-Dichlorobenzene		<2.0	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
1,4-Dichlorobenzene		NA	< 1.00 < 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00 < 1.00	1.00	U	1.00	< 1.00 < 1.00	1.00	U	1.00
1,4-Dioxane 2-Hexanone		1	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	24.2	1.00	-	1.00	< 1.00	1.00	U	1.00
4-Ethyltoluene		NA	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
4-Isopropyltoluene			< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
4-Methyl-2-pentanone			< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	512	99.9	D	99.9
Acetone		NA	170	9.99	D	9.99	36.8	1.00	-	1.00	62.7	1.00	-	1.00	1,550	99.9	D	99.9
Acrylonitrile		-16 17	< 1.00 1.16	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00 1.67	1.00	U	1.00	< 1.00	1.00	U	1.00
Benzene Benzyl Chloride		<1.6 - 4.7 NA	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
Bromodichloromethane		<5.0	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
Bromoform		<1.0	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
Bromomethane		<1.0	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
Carbon Disulfide		NA	1.6	1.00	-	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	32.7	1.00	-	1.00
Carbon Tetrachloride	5	<3.1	< 0.25	0.25 1.00	U	1.00	0.51 < 1.00	0.25 1.00	- U	0.25 1.00	< 0.25	0.25 1.00	U	0.25 1.00	< 0.25	0.25 1.00	U	0.25 1.00
Chlorobenzene Chloroethane		<2.0 NA	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
Chloroform		<2.4	2.73	1.00	-	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
Chloromethane		<1.0 - 1.4	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
cis-1,2-Dichloroethene		<1.0	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	10.2	1.00	-	1.00
cis-1,3-Dichloropropene		NA	< 1.00 1.02	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00 671	1.00	U D	1.00
Cyclohexane Dibromochloromethane		NA <5.0	< 1.02	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
Dichlorodifluromethane		NA	7.12	1.00	-	1.00	2.48	1.00	-	1.00	3.73	1.00	-	1.00	1.57	1.00	-	1.00
Ethanol			20.1	1.00	-	1.00	17.1	1.00	-	1.00	50.7	1.00	-	1.00	953	1.00	Е	1.00
Ethyl Acetate		NA	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
Ethylbenzene		<4.3	1.74	1.00	-	1.00	< 1.00	1.00	U	1.00	2.43	1.00	-	1.00	10.5	1.00	-	1.00
Heptane		NA NA	2.63 < 1.00	1.00	- U	1.00	1.35	1.00	- U	1.00	2.47 < 1.00	1.00	- U	1.00	317 < 1.00	99.9	D U	99.9
Hexachlorobutadiene Hexane		NA <1.5	1.14	1.00	S	1.00	3.56	1.00	S	1.00	3.12	1.00	S	1.00	708	100	DS	100
Isopropylalcohol		NA	1.91	1.00	-	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	33.2	1.00	-	1.00
Isopropylbenzene			< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	2.01	1.00	-	1.00
Xylene (m&p)		<4.3	5.9	1.00	-	1.00	< 1.00	1.00	U	1.00	7.94	1.00	-	1.00	16.2	1.00	-	1.00
Methyl Ethyl Ketone			3.48 < 1.00	1.00	- U	1.00	< 1.00	1.00	U	1.00	601 < 1.00	9.99	D U	9.99	1,180	99.9	D U	99.9
MTBE Methylene Chloride		NA <3.4	< 1.00	1.00	U	1.00	7.33	1.00	S	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
n-Butylbenzene		\3.4	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
Xylene (o)		<4.3	2	1.00	-	1.00	< 1.00	1.00	U	1.00	2.67	1.00	-	1.00	6.03	1.00	-	1.00
Propylene		NA	2.61	1.00	-	1.00	< 1.00	1.00	U	1.00	41.1	1.00	-	1.00	347	99.9	D	99.9
sec-Butylbenzene			< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
Styrene	20	<1.0	< 1.00 7.93	1.00 0.25	U	1.00 0.25	< 1.00 1.96	1.00 0.25	U	1.00 0.25	< 1.00 34.3	1.00 0.25	U	1.00 0.25	< 1.00 2.6	1.00	U	1.00 0.25
Tetrachloroethene Tetrahydrofuran	30	NA	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
Toluene		1.0 - 6.1	4.29	1.00	-	1.00	1.19	1.00	-	1.00	11	1.00	-	1.00	57.2	1.00	-	1.00
trans-1,2-Dichloroethene		NA NA	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	1.42	1.00	_	1.00
trans-1,3-Dichloropropene		NA	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
Trichloroethene	2	<1.7	< 0.25	0.25	U	0.25	< 0.25	0.25	U	0.25	0.32	0.25	-	0.25	7.46	0.25	-	0.25
Trichlorofluoromethane		NA	25.7 < 1.00	1.00	- U	1.00	1.99	1.00	- U	1.00	4.41 < 1.00	1.00	- U	1.00	< 1.00 < 1.00	1.00	U	1.00
Trichlorotrifluoroethane Vinyl Chloride		<1.0	< 0.25	0.25	U	0.25	< 0.25	0.25	U	0.25	< 0.25	0.25	U	0.25	1.56	0.25	-	0.25
BTEX		~1.0		15.0		0		1.19				25.7				211.9	93	
Total VOCs				264.				74.2				856.				6544		

Notes:

NA No guidance value or standard available

(a) Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York. October 2006. New York State Department of Health.

(b) NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, February 2005, Summary of Background Levels for Selected Compounds (NYSDOH Database, Outdoor values)

11. The compound was anlavzed for but not detected at or above the MDL.

U- The compound was analyzed for but not detected at or above the MDL.

J- The value is estimated.

N- The concentration is based on the response fo the nearest internal.

S- This compound is a solvent that is used in the laboratory.

D- The reported concentration is the result of a diluted analysis.

				SG	5			SG	6			SGT	7			SG	8			SG9		
COMPOUNDS	NYSDOH Maximum Sub-	NYSDOH Soil Outdoor		11/16/2	2016			11/16/2	016			11/16/2	016			11/16/2	2016		1	1/16/20	16	
	Slab Value	Background Levels		(µg/n	13)			(µg/m	_			(µg/m	3)			(µg/n	13)			(µg/m3	3)	
111071 11 11	(µg/m³) ^(a)	(µg/m³) ^(b)	< 10.0	RL 10.0	Qual	MDL 10.0	Result < 18.5	RL 18.5	Qual U	MDL 18.5	Result < 30.0	RL 30.0	Qual	MDL 30.0	Result < 30.0	RL 30.0	Qual U	MDL 30.0	< 30.0	RL 30.0	Qual	MDL 30.0
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	100	<2.0 - 2.8	< 9.98	9.98	U	9.98	< 18.5	18.5	U	18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
1,1,2,2-Tetrachloroethane	100	<1.5	< 10.0	10.0	U	10.0	< 18.5	18.5	U	18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
1,1,2-Trichloroethane		<1.0	< 9.98	9.98	U	9.98	< 18.5	18.5	U	18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
1,1-Dichloroethane		<1.0	< 9.99	9.99	U	9.99	< 18.5	18.5	U	18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
1,1-Dichloroethene		<1.0	< 9.99	9.99	U	9.99	< 18.5	18.5	U	18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene		NA <1.0	< 10.0	10.0	U	10.0	< 18.5 < 18.5	18.5 18.5	U	18.5 18.5	< 30.0	30.0	IJ	30.0	< 30.0	30.0	U	30.0	< 30.0 94.8	30.0	U	30.0
1,2-Dibromoethane		<1.5	< 9.98	9.98	U	9.98	< 18.5	18.5	U	18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
1,2-Dichlorobenzene		<2.0	< 9.97	9.97	U	9.97	< 18.5	18.5	U	18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
1,2-Dichloroethane		<1.0	< 9.99	9.99	U	9.99	< 18.5	18.5	U	18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
1,2-Dichloropropane			< 10.0	10.0	U	10.0	< 18.5	18.5	U	18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
1,2-Dichlorotetrafluoroethane			< 9.99 < 10.0	9.99	U	9.99	< 18.5 < 18.5	18.5 18.5	U	18.5 18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	< 30.0 75.2	30.0	U	30.0
1,3,5-Trimethylbenzene 1,3-Butadiene		<1.0 NA	< 9.99	9.99	U	9.99	< 18.5	18.5	U	18.5	< 30.1	30.1	U	30.1	< 30.1	30.1	U	30.1	< 30.1	30.1	U	30.1
1,3-Dichlorobenzene		<2.0	< 9.97	9.97	U	9.97	< 18.5	18.5	U	18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
1,4-Dichlorobenzene		NA NA	< 9.97	9.97	U	9.97	< 18.5	18.5	U	18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
1,4-Dioxane		<u> </u>	< 10.0	10.0	U	10.0	< 18.5	18.5	U	18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
2-Hexanone			< 9.99	9.99	U	9.99	< 18.5	18.5	U	18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
4-Ethyltoluene		NA	< 10.0 < 9.98	10.0 9.98	U	10.0	< 18.5 < 18.5	18.5 18.5	U	18.5 18.5	< 30.0	30.0	U	30.0	< 30.0 < 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
4-Isopropyltoluene 4-Methyl-2-pentanone			< 9.98	9.98	U	9.98	< 18.5	18.5	U	18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
Acetone		NA	< 9.99	9.99	U	9.99	< 18.5	18.5	U	18.5	< 29.9	29.9	U	29.9	< 29.9	29.9	U	29.9	< 29.9	29.9	U	29.9
Acrylonitrile			< 10.0	10.0	U	10.0	< 18.5	18.5	U	18.5	< 29.9	29.9	U	29.9	< 29.9	29.9	U	29.9	< 29.9	29.9	U	29.9
Benzene		<1.6 - 4.7	1,140	9.99	-	9.99	766	18.5	-	18.5	619	30.0	-	30.0	< 30.0	30.0	U	30.0	299	30.0		30.0
Benzyl Chloride		NA	< 9.99	9.99	U	9.99	< 18.5	18.5	U	18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
Bromodichloromethane		<5.0	< 9.98	9.98	U	9.98	< 18.5 < 18.5	18.5 18.5	U	18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
Bromoform Bromomethane		<1.0 <1.0	< 10.0	10.0	U	10.0	< 18.5	18.5	U	18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
Carbon Disulfide		NA	< 9.99	9.99	U	9.99	209	18.5	-	18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
Carbon Tetrachloride	5	<3.1	< 2.50	2.50	U	2.50	< 4.61	4.61	U	4.61	< 7.48	7.48	U	7.48	< 7.48	7.48	U	7.48	< 7.48	7.48	U	7.48
Chlorobenzene		<2.0	< 9.98	9.98	U	9.98	< 18.5	18.5	U	18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
Chloroethane		NA	< 10.0	10.0	U	10.0	< 18.5	18.5	U	18.5	< 30.1	30.1	U	30.1	< 30.1	30.1	U	30.1	< 30.1	30.1	U	30.1
Chloroform		<2.4	< 10.0	10.0	U	10.0	< 18.5 < 18.5	18.5 18.5	U	18.5 18.5	< 30.0	30.0 29.9	U	30.0 29.9	< 30.0 < 29.9	30.0 29.9	U	30.0 29.9	< 30.0	30.0 29.9	U	30.0 29.9
Chloromethane cis-1,2-Dichloroethene		<1.0 - 1.4 <1.0	< 9.99	9.99	U	9.99	22.7	18.5	-	18.5	109	30.0	-	30.0	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
cis-1,3-Dichloropropene		NA	< 9.98	9.98	U	9.98	< 18.5	18.5	U	18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
Cyclohexane		NA	17,500	270	D	270	3,350	92.5	D	92.5	15,500	300	D	300	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
Dibromochloromethane		<5.0	< 9.96	9.96	U	9.96	< 18.5	18.5	U	18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
Dichlorodifluromethane		NA	< 9.98	9.98	U	9.98	< 18.5	18.5	U	18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
Ethanol			< 10.0 < 10.0	10.0	U	10.0	92.1 < 18.5	18.5 18.5	- U	18.5 18.5	< 29.9 < 30.0	29.9	U	29.9 30.0	30.7 < 30.0	29.9	- U	29.9 30.0	44.1 < 30.0	29.9	U	29.9 30.0
Ethyl Acetate Ethylbenzene		NA <4.3	146	9.98	-	9.98	45.6	18.5	-	18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
Heptane		NA	8,110	75.0	D	75.0	1,470	18.5	-	18.5	12,900	300	D	300	< 30.0	30.0	U	30.0	16,100	270	D	270
Hexachlorobutadiene		NA	< 10.0	10.0	U	10.0	< 18.5	18.5	U	18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
Hexane		<1.5	19,800	270	D	270	3,210	92.6	D	92.6	28,000	300	D	300	128	30.0	S	30.0	38,000	270	D	270
Isopropylalcohol		NA	< 10.0	10.0	U	10.0	< 18.5	18.5	U	18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
Isopropylbenzene		.4.0	378	9.98	U	9.98	23.5	18.5	U	18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	< 30.0 568	30.0	U	30.0
Xylene (m&p) Methyl Ethyl Ketone		<4.3	1,390	74.9	D	74.9	1,480	18.5	-	18.5	169	30.1	-	30.1	233	30.1	-	30.1	< 30.1	30.1	U	30.1
MTBE		NA	< 10.0	10.0	U	10.0	< 18.5	18.5	U	18.5	2,560	30.0	-	30.0	6,450	150	D	150	11,300	270	D	270
Methylene Chloride		<3.4	< 10.0	10.0	U	10.0	< 18.5	18.5	U	18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
n-Butylbenzene			< 9.98	9.98	U	9.98	< 18.5	18.5	U	18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
Xylene (o)		<4.3	125	9.98	-	9.98	< 18.5	18.5	U	18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	111	30.0	-	30.0
Propylene		NA	1,090 < 9.98	75.0 9.98	D U	75.0 9.98	1,070 < 18.5	18.6 18.5	U	18.6 18.5	< 29.9	29.9	U	29.9 30.0	< 29.9 < 30.0	29.9 30.0	U	29.9 30.0	580 < 30.0	29.9 30.0	U	29.9 30.0
sec-Butylbenzene Styrene		<1.0	< 10.0	10.0	U	10.0	< 18.5	18.5	U	18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
Tetrachloroethene	100	-1.0	3.25	2.50	-	2.50	< 4.62	4.62	U	4.62	14.4	7.52	-	7.52	< 7.52	7.52	U	7.52	< 7.52	7.52	U	7.52
Tetrahydrofuran		NA	< 9.99	9.99	U	9.99	< 18.5	18.5	U	18.5	< 30.1	30.1	U	30.1	< 30.1	30.1	U	30.1	< 30.1	30.1	U	30.1
Toluene		1.0 - 6.1	1,180	10.0	L -	10.0	< 18.5	18.5	U	18.5	< 30.0	30.0	U	30.0	48.6	30.0	-	30.0	< 30.0	30.0	U	30.0
trans-1,2-Dichloroethene		NA	< 9.99	9.99	U	9.99	< 18.5	18.5	U	18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
trans-1,3-Dichloropropene	-	NA 7	< 9.98 4.08	9.98 2.50	U	9.98	< 18.5 7.04	18.5 4.62	U	18.5 4.62	< 30.0 11.3	30.0 7.52	U	30.0 7.52	< 30.0 < 7.52	30.0 7.52	U	30.0 7.52	< 30.0 < 7.52	30.0 7.52	U	30.0 7.52
Trichloroethene Trichlorofluoromethane	5	<1.7 NA	< 9.99	9.99	U	9.99	< 18.5	18.5	U	18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
Trichlorotrifluoroethane		INM	< 10.0	10.0	U	10.0	< 18.5	18.5	U	18.5	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0	< 30.0	30.0	U	30.0
Vinyl Chloride		<1.0	< 2.50	2.50	U	2.50	29.9	4.62		4.62	2,530	7.51	_	7.51	13.9	7.51	-	7.51	36	7.51		7.51
втех				296	9			835.	1			619				48.	6			978		
Total VOCs				50866	6.33			11775	.84			62412	2.7			6904	.2			67208.	1	Ī

Notes:

NA No guidance value or standard available
(a) Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York. October 2006. New York State Department of Health.
(b) NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, February 2005, Summary of Background Levels for Selected Compounds (NYSDOH Database, Outdoor Values)
U-The compound was anlayzed for but not detected at or above the MDL.
J- The value is estimated.
N-The concentration is based on the response fo the nearest internal.
S- This compound is a solvent that is used in the laboratory.
D- The reported concentration is the result of a diluted analysis.

TABLE 13 Parameters Detected Above Track 1 Soil Cleanup Objectives

			15B1	15B2	15B4	15	B5	15B6	15	B7	15B8
COMPOUND	Range in Exceedances	Frequency of Detection	(12-14') 11/14/2016	(22.5-25') 8/22/2016	(15-17') 11/14/2016	(0-2') 11/10/2016	(12-14') 11/10/2016	(5-7') 11/11/2016	(18-20') 11/11/2016	(23-25') 11/11/2016	(0-2') 11/10/2016
Sample Results in ug/kg											
1,2,4-Trimethylbenzene	14000-910000	7	65,000	-	-	-	-	56,000	-	-	-
1,3,5-Trimethylbenzene	13000-320000	3	-	-	-	-	-	15,000	-	-	-
Acetone	53-920	8	-	-	-	-	560	550	-	500	-
Benzene	90-1900	7	90	-	100	-	-	-	-	-	110
Ethylbenzene	3200-190000	7	14,000	-	-	-	-	4,700	-	-	-
m&p-Xylenes	500-720000	10	2,100	500	-	-	-	24,000	530	-	-
Methyl Ethyl Ketone (2-Butanone)	160	1	-	-	-	-	-	-	-	160	-
Naphthalene	89,000	1	-	-	-	-	-	-	-	-	-
n-Butylbenzene	70,000	1	-	-	-	-	-	-	-	-	-
n-Propylbenzene	4900-140000	5	16,000	-	-	-	-	4,900	-	-	-
o-Xylene	380-260000	8	1,000	-	-	-	-	9,100	380	-	-
sec-Butylbenzene	23,000	1	-	-	-	-	-	-	-	-	-
Tetrachloroethene	2400-22000	2	-	-	-	-	-	-	-	-	-
Toluene	1900-20000	3	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethene	2,300	1	-	-	-	-	-	-	-	-	-
Vinyl Chloride	3,000	1	-	-	-	-	-	-	-	-	-
Sample Results in ug/kg											
Sample Results in ug/kg Benz(a)anthracene	1500-1500	1	-	-	-	-	-	-	-	-	-
	1500-1500 1100-1100	1 1	-	-	-	-	-	-	-	-	-
Benz(a)anthracene									1		
Benz(a)anthracene Benzo(a)pyrene	1100-1100	1				-			-		-
Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	1100-1100 1100-1100	1		-	-	-		-	-	-	-
Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene	1100-1100 1100-1100 900-900	1 1 1	-	-	-	-	-	-	-	-	-
Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene	1100-1100 1100-1100 900-900 1100-1600	1 1 1 2		-	-	- - -	-	-	-	-	
Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Indeno(1,2,3-cd)pyrene	1100-1100 1100-1100 900-900 1100-1600 530-720	1 1 1 2 5		-		- - - - 530		-	-		
Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Indeno(1,2,3-cd)pyrene Naphthalene	1100-1100 1100-1100 900-900 1100-1600 530-720	1 1 1 2 5		-		- - - - 530		-	-		
Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Indeno(1,2,3-cd)pyrene Naphthalene Sample Results in ug/kg	1100-1100 1100-1100 900-900 1100-1600 530-720 17,000	1 1 1 2 5		-		- - - - 530		-	-		
Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Indeno(1,2,3-cd)pyrene Naphthalene Sample Results in ug/kg 4,4' -DDD 4,4' -DDE 4,4' -DDT	1100-1100 1100-1100 900-900 1100-1600 530-720 17,000	1 1 1 2 5 1		-		- - - - 530 -		-	-		
Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Indeno(1,2,3-cd)pyrene Naphthalene Sample Results in ug/kg 4,4' -DDD 4,4' -DDE 4,4' -DDT Sample Results in mg/kg	1100-1100 1100-1100 900-900 1100-1600 530-720 17,000 100-100 72-72 7.7-76	1 1 1 2 5 1 1 1 2 5 1 2		-		- - - 530 - 100 72 76		-	-		
Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Indeno(1,2,3-cd)pyrene Naphthalene Sample Results in ug/kg 4,4' -DDD 4,4' -DDE 4,4' -DDT Sample Results in mg/kg Arsenic	1100-1100 1100-1100 900-900 1100-1600 530-720 17,000 100-100 72-72 7.7-76	1 1 2 5 1 1 1 2 5 1 1 2		-				-	-		
Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Indeno(1,2,3-cd)pyrene Naphthalene Sample Results in ug/kg 4,4' -DDD 4,4' -DDE 4,4' -DDT Sample Results in mg/kg Arsenic Barium	1100-1100 1100-1100 900-900 1100-1600 530-720 17,000 100-100 72-72 7.7-76	1 1 1 2 5 1 1 1 2 5 1 1 1 1 1 1 1 1 1						-	-		
Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Indeno(1,2,3-cd)pyrene Naphthalene Sample Results in ug/kg 4,4' -DDD 4,4' -DDE 4,4' -DDT Sample Results in mg/kg Arsenic Barium Cadmium	1100-1100 1100-1100 900-900 1100-1600 530-720 17,000 100-100 72-72 7.7-76 13.7-13.7 446-446 7.67-7.67	1 1 1 2 5 1 1 1 2 5 1 1 1 1 1 1 1 1 1 1				- - - 530 - - 100 72 76		-	-		
Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Indeno(1,2,3-cd)pyrene Naphthalene Sample Results in ug/kg 4,4'-DDD 4,4'-DDE 4,4'-DDT Sample Results in mg/kg Arsenic Barium Cadmium Chromium	1100-1100 1100-1100 900-900 1100-1600 530-720 17,000 100-100 72-72 7.7-76 13.7-13.7 446-446 7.67-7.67 31.9-33.3	1 1 1 2 5 1 1 1 2 5 1 1 1 1 2		-				-			
Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Indeno(1,2,3-cd)pyrene Naphthalene Sample Results in ug/kg 4,4' -DDD 4,4' -DDE 4,4' -DDT Sample Results in mg/kg Arsenic Barium Cadmium Chromium Copper	1100-1100 1100-1100 900-900 1100-1600 530-720 17,000 100-100 72-72 7.7-76 13.7-13.7 446-446 7.67-7.67 31.9-33.3 68.1-266	1 1 1 2 5 1 1 1 2 5 1 1 1 1 2 7						-	-		
Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Indeno(1,2,3-cd)pyrene Naphthalene Sample Results in ug/kg 4,4' -DDD 4,4' -DDT Sample Results in mg/kg Arsenic Barium Cadmium Chromium Copper Lead	1100-1100 1100-1100 900-900 1100-1600 530-720 17,000 100-100 72-72 7.7-76 13.7-13.7 446-446 7.67-7.67 31.9-33.3 68.1-266 68.4-754	1 1 1 2 5 1 1 1 2 5 1 1 1 1 2 1 1 2 7 8		-				-			- - - - - - - - - - - - - - - - - - -
Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Indeno(1,2,3-cd)pyrene Naphthalene Sample Results in ug/kg 4,4' -DDD 4,4' -DDE 4,4' -DDT Sample Results in mg/kg Arsenic Barium Cadmium Chromium Copper	1100-1100 1100-1100 900-900 1100-1600 530-720 17,000 100-100 72-72 7.7-76 13.7-13.7 446-446 7.67-7.67 31.9-33.3 68.1-266	1 1 1 2 5 1 1 1 2 5 1 1 1 1 2 7	- - - - - - - - - 33.3						-		

TABLE 13 Parameters Detected Above Track 1 Soil Cleanup Objectives

			15	B9	15B11	15B12	15B14		15B19		15B20	Duplicate 3	Duplicate 4
COMPOUND	Range in Exceedances	Frequency of Detection	(3-5') 11/14/2016	(10-15') 11/14/2016	(0-2') 11/10/2016	(12-14') 11/10/2016	(1-3') 11/10/2016	(0-2') 11/14/2016	(18-20') 11/14/2016	(20-25') 11/14/2016	(0-2') 11/10/2016	11/14/2016	11/14/2016
Sample Results in ug/kg													
1,2,4-Trimethylbenzene	14000-910000	7	44,000	-	16,000	14,000	-	-	910,000	-	-	-	17,000
1,3,5-Trimethylbenzene	13000-320000	3	13,000	-	-	-	-	-	320,000	-	-	-	•
Acetone	53-920	8	640	53	920	-	64	-	1	-	-	-	400
Benzene	90-1900	7	800	-	1,900	650	240	-	-	-	-	-	-
Ethylbenzene	3200-190000	7	8,300	-	4,500	3,900	-	-	190,000	-	-	-	3,200
m&p-Xylenes	500-720000	10	32,000	-	9,600	16,000	-	-	720,000	2,000	-	-	2,500
Methyl Ethyl Ketone (2-Butanone)	160	1	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	89,000	1	-	-	-	-	-	-	89,000	-	-	-	-
n-Butylbenzene	70,000	1	-	-	-	-	-	-	70,000	-	-	-	-
n-Propylbenzene	4900-140000	5	5,600	-	-	-	-	-	140,000	-	-	-	6,100
o-Xylene	380-260000	8	13,000	-	5,600	6,700	-	-	260,000	640	-	-	-
sec-Butylbenzene	23,000	1	-	-	-	-	-	-	23,000	-	-	-	-
Tetrachloroethene	2400-22000	2	-	-	2,400	-	-	-	22,000	-	-	-	-
Toluene	1900-20000	3	1,900	-	15,000	-	-	-	20,000	-	-	-	-
trans-1,2-Dichloroethene	2,300	1	-	-	2,300	-	-	-	-	-	-	-	-
Vinyl Chloride	3,000	1	-	-	3,000	-	-	-	-	-	-	-	-
Sample Results in ug/kg													
Benz(a)anthracene	1500-1500	1	1,500	-	-	-	-	-	-	-	-	-	-
Benzo(a)pyrene	1100-1100	1	1,100	-	-	-	-	-	-	-	-	-	-
Benzo(b)fluoranthene	1100-1100	1	1,100	-	-	-	-	-	-	-	-	-	-
Benzo(k)fluoranthene	900-900	1	900	-	-	-	-	-	-	-	-	-	-
Chrysene	1100-1600	2	1,600	-	-	-	-	-	-	-	-	1,100	-
Indeno(1,2,3-cd)pyrene	530-720	5	630	-	720	-	-	600	-	-	-	610	-
Naphthalene	17,000	1	-	-	-	-	-	-	17,000	-	-	-	-
Sample Results in ug/kg													
4.4L DDD													
4,4' -DDD	100-100	1	-	-	-	-	-	-	1	-	_	-	
4,4' -DDD 4,4' -DDE	100-100 72-72	1	-	-	-	-	-	-	-	-	-	-	-
,			-	-	-	-	-	7.7	-	-	-	-	-
4,4' -DDE	72-72	1	-	-		- - -				-	-		-
4,4' -DDE 4,4' -DDT	72-72	1	-	-	-	-	13.7			-	-		-
4,4' -DDE 4,4' -DDT Sample Results in mg/kg	72-72 7.7-76	1 2	-	-	-	-	-	7.7	-	-	-	-	-
4,4' -DDE 4,4' -DDT Sample Results in mg/kg Arsenic	72-72 7.7-76 13.7-13.7	1 2	-	-	-	-	13.7	7.7	-	-	-	-	-
4,4' -DDE 4,4' -DDT Sample Results in mg/kg Arsenic Barium	72-72 7.7-76 13.7-13.7 446-446	1 2	-	-	- 446	-	13.7		-	-	-	-	-
4,4' -DDE 4,4' -DDT Sample Results in mg/kg Arsenic Barium Cadmium	72-72 7.7-76 13.7-13.7 446-446 7.67-7.67	1 1 1 1			446	-	13.7	7.7 - -	-	-		-	-
4,4' -DDE 4,4' -DDT Sample Results in mg/kg Arsenic Barium Cadmium Chromium	72-72 7.7-76 13.7-13.7 446-446 7.67-7.67 31.9-33.3	1 2 1 1 1 1 2 2	- - - -		- 446 7.67 31.9		13.7	7.7 - - -					
4,4' -DDE 4,4' -DDT Sample Results in mg/kg Arsenic Barium Cadmium Chromium Copper	72-72 7.7-76 13.7-13.7 446-446 7.67-7.67 31.9-33.3 68.1-266	1 2 1 1 1 1 2 7 7	- - - - 170		- 446 7.67 31.9 266	-	13.7	7.7 - - - - 80.5	-	-	-	73.7	

TABLE 14
Parameters Detected Above Ambient Groundwater Standards

			BANAZA	MW2	BANA/O	MW4	MW5	MANC	841477	MW8	MW9	MW10	MW14	B808/4 F	CW Dunlingto 4	CIM Dunlingto 0
Compound	Range of Exceedances	Frequency of Detection	MW1		MW3			MW6	MW7					MW15	GW Duplicate 1	GW Duplicate 2
Sample Results in ug/L			11/17/2016	11/17/2016	11/17/2016	11/17/2016	11/17/2016	11/16/2016	11/16/2016	11/17/2016	11/16/2016	11/16/2016	11/17/2016	11/17/2016	11/16/2016	11/16/2016
1,2,4-Trimethylbenzene	5.4-1400	7	140	300	730	-		610	-	5.4		17	1,400	-	-	-
1,3,5-Trimethylbenzene	18-400	5	18	110	280	-		190	-	_		-	400		-	_
4-Methyl-2-Pentanone	i	1				_	-	60	-	-	_	_	-		-	_
Acetone	60-60		_	53		_	_	290	_	180		_	_	_	_	_
	53-290	3	64	2.3	170		0.73	50	4.0	5.5		30	380			1.2
Benzene	0.73-380	11				1.7			1.3		-		 	-	-	
Ethylbenzene	19-940	6	440	230	570	-	-	440	-	-	-	19	940	-	-	-
Isopropylbenzene	22-79	5	26	22	79	-	-	29	-	-	-	-	64	-	-	-
m&p-Xylenes	9.7-3700	7	290	720	540	-	-	1,600	-	9.7	-	30	3,700	-	-	-
Methyl Ethyl Ketone (2-Butanone)	130-780	2	-	-	-	-	-	780	-	130	-	-	-	-	-	-
Methyl t-butyl ether (MTBE)	50-270	4	-	-	-	-	-	66	-	-	51	270	-	-	50	-
Naphthalene	58-250	5	58	73	190	-	-	110	-	-	-	-	250	-	-	-
n-Butylbenzene	9-20	4	-	9.3	20	-	-	9	-	-	-	-	16	-	-	-
n-Propylbenzene	44-200	5	44	53	200	-	-	78	-	-	-	-	170	-	-	-
o-Xylene	5.5-1500	7	70	210	130	-	-	590	-	5.5	-	21	1,500	-	-	-
p-lsopropyltoluene	5.2-5.2	1	-	-	5.2	-	-	-	-	-	-	-	-	-	-	-
sec-Butylbenzene	6.5-13	4	-	6.7	13	-	-	6.5	-		-	-	12	-	-	-
Styrene	6.9-6.9	1	-	-	-	-	-	-	-	-	-	-	6.9	-	-	-
Tetrachloroethene	İ	2	-	-	5.4	-	-	8.1	-	-	-	-	-	-	-	_
Toluene	5.4-8.1	6	24	30	91	_	_	470	-	15	_	_	1,100	_	_	_
Trichloroethene	15-1100	2		-	6.6	_	_	7.4		-			1,100	_	_	_
Sample Results in ug/L	6.6-7.4	2			0.0			7								
Naphthalene			51	40	130	-		100					260	-	-	-
Sample Results in ug/L										_						
PCB-1016	0.16	1	-	-	-	-	-	-	-	-	-	-	0.16	-	-	-
Sample Results in mg/L																
Arsenic (total)	0.035	1	•	-	-	-		-	-	0.035	-	-	-	-	-	-
Barium (total)	1.33	1	-	-	-	-		1.33	-	-	-	-	-	-	-	-
Cadmium (total)	0.018	1	-	-	-	-	-	0.018	-	-	-	-	-	-	-	-
Chromium (total)	0.052-0.097	2	0.052	-	-	0.097	-	-	-	-	-	-	-	-	-	-
Iron (total)	1.35-868	14	70.8	19.3	30.4	133	28.2	868	121	151	14.6	47.4	158	1.35	18.1	126
Lead (total)	0.051-0.059	2	0.051	-	-	-	-	0.059	-	-	_	-	-	-	-	-
Magnesium (total)	37.8-99.1	5	-	-	-	37.8	-	99.1	-	-	39.7	-	-	39.5	41.4	-
Manganese (total)	1.09-33	14	5.4	6.91	6.36	12.1	5.19	33	3.48	3.87	11.4	1.09	14.3	12.1	12.7	3.47
Sodium (total)	106-350	14	342	232	350	148	130	233	107	151	122	122	279	161	121	106
Sample Results in mg/L	100-330	14														
Barium (dissolved)	1.16	1	-	-	-	-	-	1.16	-	-	-	-	-	-	-	-
Cadmium (dissolved)	0.015	1	-	-	-	-	-	0.015	-	-	-	-	-	-	-	-
Iron (dissolved)	0.72-758	8	-	-	-	8.95	-	758	62.3	79.1	-	7.14	46.9	-	0.72	52.3
Lead (dissolved)	0.037	1	-	-	-	-	-	0.037	-	-	-	-	-	-	-	-
Magnesium (dissolved)			_	_	_	_	_	95.1	-	_	39.4	_	-	36.2	40.6	_
Manganese (dissolved)	36.2-95.1	4	3.43	6.75	5.54	9.87	4.56	44.8	3.37	3.14	11.1	0.999	13.5	11.9	11.5	3.09
	0.999-44.8	14	322	245	343	145	128	237	111	151	126	124	282	159	129	102
Sodium (dissolved)	102-343	14	322	245	343	145	128	231	177	101	126	124	282	109	129	102

Notes:

Bold/highlighted- Indicated exceedance of the NYSDEC Groundwater Standard

FIGURES

Environmental Business Consultants

Figure No.

Site Address: 1181 FLUSHING AVENUE, BROOKLYN, NY Drawing Title: SITE LOCATION MAP

Environmental Business Consultants

	Phone	631.504.6000	Figure	Site Name: FORMER UNIVERSAL SCRAP METAL
BC	Fax	631. 924 .2870	940	Site Address: 1181 FLUSHING AVENUE, BROOKLYN, NY
ENVIRONM	NTAL BUSINESS CON	SULTANTS		Drawing Title: SOIL SAMPLING LOCATIONS

631.504.6000 631. 924 .2870 **Figure** 4

FORMER UNIVERSAL SCRAP METAL 1181 FLUSHING AVENUE, BROOKLYN, NY

SOIL GAS AND GROUNDWATER SAMPLING LOCATIONS

BC

Phone 631.504.6000 Fax 631. 924 .2870

Environmental Business Consultants

Figure 8 Site Name: FORMER UNIVERSAL SCRAP METAL
Site Address: 1181 FLUSHING AVENUE, BROOKLYN, NY

Drawing Title: SOIL GAS DETECTIONS MAP

Vertical Exageration 3.5 X

Environmental Business Consultants

1808 MIDDLE COUNTRY ROAD, RIDGE, NY 11961

Phone: 631.504.6000 Fax: 631.924.2780

FORMER UNIVERSAL SCRAP METAL 1181 FLUSHING AVENUE, BROOKLYN, NY

CROSS-SECTION A-A

<u>APPENDIX – A</u> <u>Geophysical Investigation Report</u>

GEOPHYSICAL ENGINEERING SURVEY REPORT

Commercial Property 1181 Flushing Avenue Brooklyn, New York 11237

NOVA PROJECT NUMBER

16-0483

DATED

November 14, 2016

PREPARED FOR:

Environmental Business Consultants 1808 Middle Country Rd, Ridge, NY 11961 (631) 504-6000

PREPARED BY:

NOVAGEOPHYSICAL SERVICES

SUBSURFACEMAPPING SOLUTIONS

56-01 Marathon Parkway, #765, Douglaston, New York 11362 Ph. 347-556-7787 Fax. 718-261-1527 www.nova-gsi.com

November 14, 2016

Kevin Waters, PG Field Operations Manager

EB C

Environmental Business Consultants 1808 Middle Country Road, Ridge, New York 11961 Ph: (631) 504-6000 ext. 123

> Re: Geophysical Engineering Survey (GES) Report Commercial Property 1181 Flushing Avenue Brooklyn, New York 11237

Dear Mr. Waters:

Nova Geophysical Services (NOVA) is pleased to provide findings of the geophysical engineering survey (GES) at the above referenced project site: Commercial Property, 1181 Flushing Avenue, Brooklyn, New York (the "Site"). Please see attached Site Location and Geophysical Survey maps for more details.

INTRODUCTION TO GEOPHYSICAL ENGINEERING SURVEY (GES)

NOVA performed a Geophysical engineering surveys (GES) consisting of a Ground Penetrating Radar (GPR) survey at the site. The purpose of this survey is to locate and identify USTs, anomalies, utilities and other substructures and to clear and mark proposed environmental boring areas on November 11, 2016

The equipment selected for this investigation was a Noggin 250 MHz ground penetrating radar (GPR) shielded antenna and 3M DYNATL.

A GPR system consists of a radar control unit, control cable and a transducer (antenna). The control unit transmits a trigger pulse at a normal repetition rate of 250 MHz. The trigger pulse is sent to the transmitter electronics in the transducer via the control cable. The transmitter electronics amplify the trigger pulses into bipolar pulses that are radiated to the surface. The transformed pulses vary in shape and frequency according to the transducer used. In the subsurface, variations of the signal occur at boundaries where there is a dielectric contrast (void, steel, soil type, etc.). Signal reflections travel back to the control unit and are represented as color graphic images for interpolation.

GEOPHYSICAL METHODS

The project site was screened using the GPR to search the specified and inspected for reflections, which could be indicative of substructures and utilities within the subsurface.

GPR data profiles were collected for the areas of the Site specified by the client. The surveyed areas consisted of dirt surfaces.

DATA PROCESSING

In order to improve the quality of the results and to better identify subsurface anomalies NOVA processed the collected data. The processes flow is briefly described at this section.

Step 1. Import raw RAMAC data to standard processing format

Step 2. Remove instrument noise (dewow)

Step 3. Correct for attenuation losses (energy decay function)

Step 4. Remove static from bottom of profile (time cut)

Step 5. Mute horizontal ringing/noise (subtracting average)

The above example shows the significance of data processing. The last image (step 5) has higher resolution than the starting image (raw data – step 1) and describes the subsurface anomalies more accurately.

GEOPHYSICAL ENGINEERING SURVEY/GES REPORT

Commercial Property
1181 Flushing Avenue
Brooklyn, New York 11237

PHYSICAL SETTINGS

Nova observed following physical conditions at the time of the survey:

The weather: Rainy

Temp: 60 Degrees (F).

Surface: Dirt surfaces

Geophysical Noise Level (GNL): Geophysical Noise Level (GNL) was high at the site. The noise was a result of the site being located in an urban environment and having undergone prior demolition.

RESULTS

The results of the geophysical engineering survey (GES) identified following at the project Site:

- GES survey identified scattered anomalies located throughout the project site. Based on their rates
 and proximity, these anomalies were inconsistent with any USTs. These areas were indicated on
 the on-site markout.
- A high noise area was located on the site, consistent with prior excavation. These are indicated both on-site and on the survey map.
- Geophysical Survey Plan portrays the areas investigated during the geophysical survey.

If you have any questions please do not hesitate to contact the undersigned.

Sincerely,

NOVA Geophysical Services

Levent Eskicakit, P.G., E.P.

Project Engineer

Attachments:

Figure 1 Site Location Map Geophysical Survey Plan Geophysical Images

200 ft.

NOVA

Geophysical Services

Subsurface Mapping Solutions

56-01 Marathon Pkwy, # 765, Douglaston, NY11362 (347) 556-7787 Fax (718) 261-1528

<u>www.nova-gsi.com</u>

FIGURE 1 SITE LOCATION MAP

SITE: Commercial Property

1181 Flushing Avenue Brooklyn, New York 11237

SCALE: See Map

1- All anomalies were marked in the field.

NOVA Geophysical Services

Subsurface Mapping Solutions

56-01 Marathon Parkway, PO Box 765 Douglaston, New York11362 Phone (347) 556-7787 * Fax (718) 261-1527 www.nova-gsi.com

GEOPHYSICAL SURVEY PLAN

SITE: Commercial Property

1181 Flushing Avenue Brooklyn, New York 11237

CLIENT: EBC

DATE: November 11, 2016

Scale: See Map

Survey Area

High Noise Area

75 ft.

GEOPHYSICAL IMAGES

Commercial Property 1181 Flushing Avenue Brooklyn, New York 11237 November 11th, 2016

APPENDIX - B Soil Boring Logs

				1561								
Location: Perforn	ned 45' fro	m south a	and 23' from	west pr	operty		o Water	Site Elevation Datum				
bounda	aries					(ft. from	grade.)					
Site Name:		Address	:			Date	DTW	Ground Elevation				
			ushing Avenu	ue Brool	klvn NY							
Former Universal S	Cran				,	Groun	dwater					
Drilling Company:	ыстар		Method:			-1	pth					
	montal						2.5	Well Specifications				
C Squared Environ Date Started:	mentai		Geoprobe		- 14	2.5	well Specifications					
			Date Completed:									
11/14/2016			11/14/2016									
Completion Depth:			Geologist									
20 feet	T		Thomas Ga	IIIO	1							
15B1	DEPTH		SAMPLES	1								
	(ft below	Reco-	Blow			SOIL	DESCRIP	TION				
(NTS)	grade)	very	per	PID								
		(in.)	6 in.	(ppm)								
	0											
	-				17" d	ork brow	n cilty con	nd w/ brick				
	<u> </u>	1			17 - u	ark brow	ii Siity Sai	id W/ Blick				
	– to –	17		0.2								
	<u> </u>	┧ ''		0.2								
	5 -	1			*Retaine	d soil samn	ole 16SB1 (2	-4')				
	- ~ -											
	_	1				17" - med-coarse tan sand 14" - fine brown sand						
	– to –	31		0.1		ino brown sand						
	_	1		• • •								
	10	1										
	_				9" - fine	e brown :	sand					
		Ī					fine brow	n sand				
	to —	36		248				ack silt w/ petrol odors				
						t gray sil		•				
	15				* retaine	d soil samp	le 15B1 (12-	-14')				
					17" - w	et lightly	stained g	ray silt				
	to —				22" - w	et fine gi	ray-tan sa	nd				
	10	39		10.3								
	20				* retaine	d soil samp	le 15B1 (18-	-20')				
	_											
	_											
	_											
	<u> </u>	4										
	_											
	_											
	-											
	<u> </u>	-										
	<u> </u>	1										
	<u> </u>											
	-	1										
	1	1										
	1											
		1										

				15B2) •						
		m south a	and 32' from	east pro	perty		o Water	Site Elevation Datum			
bounda	aries						grade.)				
Site Name:		Address				Date	DTW	Ground Elevation			
		1181 Flu	ushing Aveni	ue Brool	klyn NY						
Former Universal S	Scrap		In a state of				dwater				
Drilling Company:			Method:				pth	Mall On a sification a			
C Squared Environ Date Started:	mentai		Geoprobe Date Comp	latad:		12.5 Well Specification					
11/14/2016			11/14/2016		-	1					
Completion Depth:			Geologist		1						
25 feet			Thomas Ga	llo							
15B2	DEPTH		SAMPLES								
	(ft below	Reco-	Blow			SOIL	DESCRIF	PTION			
(NTS)	grade)	very	per	PID							
		(in.)	6 in.	(ppm)							
	0 -	1									
							sandy fil	<u> </u>			
	– to –	0.7		0.0	9" - cor						
	<u> </u>	27		0.6		- dark brown sandy fill " - med brown sand					
	5 -				10 - 111	- med-coarse brown sand					
					12" - m						
	_ to _				23" - fir	ne browr	n sand				
	L	35		0.2							
	10	_									
	- ' -				9" - fine	- fine brown sand					
	to —				11" - da	amp fine	brown sa	and			
	_ " _	36		202		t brown					
	_ ₁₅ _	_					ed gray-bi ele 15B2 (12	ack silt w/ pretol odors			
	- ' -							w/ pretol odors			
	- to -							w/ petrol odors			
		37		200	11" - w	et med b	rown sar	nd			
	L 20 —				14" - w	et fine b	rown san	d			
	+o				' "			-			
	– to –	14		2.5							
	_ ₂₅ _	4			* rotair=	d ooil oor	ole 15B2 (22) 5 25'\			
	L ^{∠5} –		 	1	retaine	u sun samp	10BZ (ZZ	20)			
	-										
	L =	1									
	- H										
	├ <u> </u>	†									
	ļ <u> </u>	4									
		1									

					1303)						
Location:			m south	and 32.5' fro	m west	property		o Water	Site Elevation Datum			
	bounda	aries	_					grade.)				
Site Name:			Address				Date	DTW	Ground Elevation			
			1181 Fl	ushing Aven	ue Brool	klyn NY						
Former Uni	versal S	Scrap					Groun	dwater				
Drilling Con				Method:			de	pth				
C Squared	Environ	mental		Geoprobe			12	2.5	Well Specifications			
Date Starte	d:			Date Completed:								
11/14/2016				11/14/2016	6							
Completion	Depth:		Geologist									
20 feet				Thomas Ga	allo							
15B3	3	DEPTH		SAMPLES	;							
		(ft below	Reco-	Blow			SOIL	DESCRIF	PTION			
(NTS	5)	grade)	very	per	PID							
`	,	,	(in.)	6 in.	(ppm)							
	1	0 _				0" 1						
		-	-					k silty fill	alone at hottom			
		– to –	31		0.2		rown san ed tan sa		glass at bottom			
		-	- 31		0.2	6 - me	id tan sa	na				
		5 -	+									
		-				34" - fir	fine-med brown sand					
						0						
		– to –	34		0.1							
		_										
		10										
						5" - fine	e brown :	sand				
		to –						orown silt	y sand			
			21		0.1	8" - we	t brown-	gray silt				
		15						le 15B3 (12				
		_						sandy silt				
		– to –	21		0.3	15" - W	et fine gi	ray-browr	n sand			
		-	- 21		0.3							
		20										
L	l	- 20 -										
		_										
		-										
		_										
		_										
		_										
		<u> </u>			1							
		<u> </u>	-									
		<u> </u>	-									
		<u> </u>	+									
-												
		-	1									

				1564								
Location: Perforr	ned 63' fro	m south a	and 31' from	east pro	perty	Depth t	o Water	Site Elevation Datum				
bounda	aries			-		(ft. from	n grade.)					
Site Name:		Address	:			Date	DTW	Ground Elevation				
			ushing Aven	ue Brool	dvn NY							
Formor Universal S	Poron		20.11.1g / (VOI)	uo D .00.		Group	dwater					
Former Universal S	стар		Mathadi			-						
Drilling Company:			Method:				pth	Mall On a "Cartina"				
C Squared Environ	mentai		Geoprobe		12	2.5	Well Specifications					
Date Started:			Date Completed:									
11/14/2016			11/14/2016									
Completion Depth:			Geologist									
20 feet			Thomas Ga									
15B4	DEPTH		SAMPLES									
	(ft below	Reco-	Blow			SOIL	DESCRIP	PTION				
(NTS) grade)		very	per	PID								
, ,		(in.)	6 in.	(ppm)								
	0 _											
		4						d w/ asphalt				
	– to –			0.4	19" - fii	ne browr	silty san	d w/ rock				
		25		0.1	1							
		4										
	5					dark brown silty sand						
		4			5" - dai							
	– to –					- me brown sand " - fine brown-tan sand						
	_	31		0.2	20" - fii							
	10				011 (
	_					e brown						
	to —	24		4.5	22" - da	amp-wet	fine brow	n sand				
		34		4.5	6" - We	t stained	gray slit	w/ light petrol odors				
	L 45 -				* rotoino	d aail aamn	do 15D4 (10	4.41)				
	15						le 15B4 (12					
								t w/ petrol odors				
	– to –	31		350	13" - W	et fine-m	iea browr	sand, PID 0.3				
		31		330								
	20 -	4			* rotaino	d soil samn	Nos 15R4 (1)	5-17'), 15B4 (18-20')				
	- 20 -				rotarro	a don damp	700 TOD+ (10	77), 1054 (1020)				
	<u> </u>	1										
	<u> </u>	1										
	<u> </u>	1										
	<u> </u>	1										
	_											
	_											
	<u> </u>	1	1									
	_		1									
	<u> </u>	1										
		1										

						15B5							
Location:	Perforr bounda		3' fr	om south	and 13' fro	m west p	roperty		to Water n grade.)	Site Elevation Datum			
Site Name:				Address	:			Date	DTW	Ground Elevation			
				1181 Flւ	ushing Aven	ue Brook	dyn NY						
Former Uni		Scrap						Groun	dwater				
Drilling Con					Method:				pth				
C Squared		mental			Geoprobe		1:	2.5	Well Specifications				
Date Starte 11/10/2016					Date Completed:				I				
Completion				11/10/2016 Geologist				4					
20 feet	Бериі.				Thomas Ga	allo							
15B5 DEPTH					SAMPLES			<u> </u>					
1000	,	(ft belo		Reco-	Blow	1		SOIL	DESCRIF	PTION			
(NTS	5)	grade		very	per	PID							
, -	,		,	(in.)	6 in.	(ppm)							
		- 0											
]	- ۲					9" - hla	ck sand	, fill				
				1					n-tan san	d			
	to					0.1							
		L _	_	ļ									
		5	_					ined soil sample 15B4 (0-2') fine tan sand ine tan silt					
		_											
		– to		32		0.4	0	ie tair siit					
]									
		10											
		_					6" - tan	clayey	silt				
		to	_	29		2.7	23" - da	amp tine t stained	gray-bro	wn sand w/ light petrol odors			
		_		23		2.7	O - WC	t Stairied	i gray Siit	w/ light petror odors			
		15					* retained	d soil samp	ole 15B5 (12	?-14')			
							26" - w	et med-	coarse tai	n sand			
		– to		26		0.1							
		-	_	20		0.1							
		20					* retained	d soil samp	oles 15B5 (1	<i>'5-17')</i>			
· · · · · · · · · · · · · · · · · · ·													
		_	_										
		_											
		_											
		_											
		_	_										
		_											
				ł									
_													
		T	_	1									

				1300							
		om south	and 53' fron	n west p	roperty		o Water	Site Elevation Datum			
bounda	aries						grade.)				
Site Name:		Address				Date	DTW	Ground Elevation			
		1181 Flu	ıshing Avenu	ıe Brook	lyn NY						
Former Universal S	Scrap					Groun	dwater				
Drilling Company:			Method:			de	pth				
C Squared Environ	mental		Geoprobe				2.5	Well Specifications			
Date Started:			Date Comp	leted:		1	•	·			
11/11/2016			11/11/2016								
Completion Depth:			Geologist								
20 feet		Thomas Gallo									
15B6						•					
	(ft below	Reco-	SAMPLES Blow			SOIL [DESCRIF	PTION			
(NTS)	(NTS) grade)		per	PID							
()	9.5.57	very (in.)	6 in.	(ppm)							
		/		(PP)							
	0 _										
	L _	4						staining and petrol odor			
	– to –			4= 0	22" - fir	ne-med ta	an sand				
	<u> </u>	31		17.8							
	- ₋ -	4				4" - fine-med tan sand					
	5 _				0.411 €:						
	-	-			34 - 111						
	– to –	34		69.7							
	–			03.1							
	10				* retained soil sample 15B6 (5-7')						
	- " -					e tan san		,			
					amp fine tan sand						
	to —	33		27.0		11" - wet fine gray-tan sand					
		1				et gray-b					
	15					d soil samp					
						et gray-ta					
	– to –				14" - w	et med g	ray-brow	n sand			
	_ " _	31		0.1							
	L	4									
	20										
	L –	1									
	<u> </u>	1									
	-	1									
	<u> </u>	1									
	-										
	–	1									
	_										
	_	1									
		<u>l</u>									
	L =										
	_	_									
_											
	1	1	i .		1						

				15B7	1							
Location: Perforr	med 129' fr	om south	roperty	Depth t	o Water	Site Elevation Datum						
bounda	aries					(ft. from	grade.)					
Site Name:		Address	s:			Date	DTW	Ground Elevation				
		1181 Flu	ushing Aven	ue Brool	klyn NY	n NY						
Former Universal S	Scrap					Groun						
Drilling Company:			Method:			depth						
C Squared Environ	nmental		Geoprobe			12	2.5	Well Specifications				
Date Started:			Date Completed:									
11/11/2016			11/11/2016	j		4						
Completion Depth: 30 feet			Geologist Thomas Ga	allo								
15B7	DEDTU	1	<u>. </u>									
1567	DEPTH (ft below	Reco-	SAMPLES Blow			SOIL I	DESCRIF	DTIONI				
(NTS)	grade)	very		PID		SOIL	DESCINIF	TION				
(1410)	grade)	(in.)	per PID 6 in. (ppm)									
		()		(- /								
	L 0 -				0.4"	ا ع حا ما بده		/ buiok				
	- -	1			34 - gr	ау-ыаск	silty fill v	N/ DIICK				
	- to -	34		0.5								
	5					" - gray-brown silty sandy fill						
	<u> </u>	4			10" - gr	ray-brow	n silty sa	ndy fill				
	- to -	10		0.5								
	<u> </u>	- 10		0.5								
	10	1										
					1" - gray-brown silty sandy fill							
	to —							// light sewage odors				
	<u> </u>	21		0.5	7" - we	t tan san	dy silt					
	15	1			* retained	d soil samp	le 15B7 (12	?-14')				
	- '							sh brown sand				
	- to -							nd w/ petrol/sewage odor				
	L " _	30		316								
	20 -	4			* retained	d soil sama	le 15B7 (18	2-20')				
	├							nd w/ light petrol odors				
	- -	1						e sand				
	- to -	35		51		5 ,						
		_										
	25						le 15B7 (23	,				
	⊢ −	-			10" - W	et fine gr	ay-browr	i sand				
	– to –	10		0.1								
	30											
	<u> </u>											
	<u> </u>	-										
	-	1										
	<u> </u>	1										

				1300							
			and 12.5' fr	om west	t		o Water	Site Elevation Datum			
	ty boundari						grade.)				
Site Name:		Address	: :			Date	DTW	Ground Elevation			
		1181 Flu	ushing Aven	ue Brool	klyn NY						
Former Universal S	Scrap					Groun	dwater				
Drilling Company:			Method:			de	pth				
C Squared Enviror	nmental		Geoprobe		12	2.5	Well Specifications				
Date Started:			Date Comp								
11/10/2016			11/10/2016								
Completion Depth:	•		Geologist								
20 feet			Thomas Gallo								
15B8		SAMPLES									
	Reco-	Blow			SOIL	DESCRIP	PTION				
(NTS)	(NTS) grade)		per	PID							
		(in.)	6 in.	(ppm)							
	0 -										
	├				12" - au	ray-brows	n sandy fi	ill			
	-	1					rown silty				
	- to -	40		0.1			rown san				
	_	Ī						-			
	5				* retained	ed soil sample 15B8 (0-2') gray-brown silty sand iine-med gray/brown sand					
					10" - gı						
	- to -]									
	_ ~ _	33		0.1	10" - m	ned tan sand					
	L	_									
	_ 10 _		ļ		411 C			·			
	-	4					own sand				
	to —	41		0.1			gray-brov	wn sand Drown sand			
	_	1 7'		0.1	Z-T - VV	Ct IIIIC-III	ica gray/c	nown sand			
	15				* retained	d soil samp	le 15B8 (12	-14')			
	_							ay/brown sand w/			
						e odors	J	,			
	_ to _	29		0.2							
	_										
	20										
	<u> </u>	4									
	<u> </u>	4									
	-										
	_	1									
	-										
	_	1									
	_	Ī									
	_										
	<u> </u>	4									
	 	4									
	-	4									
	 										
	–	†									

					1589)							
Location: Pe	erforn	ned 180'	from south	and 42' from	m west p	roperty	Depth t	o Water	Site Elevation Datum				
bo	ounda	ries						grade.)					
Site Name:			Address	s:			Date	DTW	Ground Elevation				
			1181 FI	ushing Aven	ue Brool	klyn NY							
Former Unive	rsal S	crap		Ü		•	Groun	dwater					
Drilling Compa	anv.	σιαρ		Method:				pth					
C Squared En		mental		Geoprobe				2.5	Well Specifications				
Date Started:	IVIIOII	incinai		Date Completed:			┤ ''	0	vven opcomoations				
11/14/2016				11/14/2016									
Completion De	enth:			Geologist			1						
20 feet	срии.			Thomas Gallo									
	15B9 DEPTH			SAMPLES			<u> </u>						
1309	(ft below			Blow	1		eOII	DESCRIF	OTION!				
(NITC)	(NTS) grade)				PID		SOIL	DESCRIP	TION				
(1413)		grade)		per									
			(in.)	6 in.	(ppm)								
		0											
		_				8" - bro	wn-gray	sandy fill	w/ brick & concrete				
		_ -						ay silty fil					
		– to	35		2.5								
		_											
		5					etained soil sample 15B9 (3-5') - tan silty sand						
		_	_			7" - tar							
		– to											
		_	7		0.1								
			_				12" - damp fine-med tan sand						
		10	_			40"							
		_	_			12" - da	amp fine	-med tan	sand				
		to	12		0.1								
		_	- 12		0.1								
		_ 15	-			* retaine	d soil samn	le 15B9 (12	-14')				
		_ 13	_				t med ta		,				
		_	-			7 - WC	i iiica ta	ii Sana					
		- to	7		0.1								
		_											
		20											
<u> </u>													
		_											
		_											
		_											
		_											
		_											
		_											
		_	_										
		_	_										
		_											
		_	-										
		_	-										
		_	-										
		_	+										
		_	\exists										

						15B10)						
	Perforr bounda		' fro		and 22' froi	m east p	roperty		to Water n grade.)	Site Elevation Datum			
Site Name:				Address	:			Date	DTW	Ground Elevation			
				1181 Flu	ushing Aven	ue Brool	klyn NY						
Former Univ		Scrap						4	dwater				
Drilling Con					Method:				pth				
C Squared		mental			Geoprobe			12	2.5	Well Specifications			
Date Starte					Date Completed:				I				
11/11/2016 Completion					11/11/2016 Geologist Thomas Gallo			1					
20 feet	рериі.												
	15B10 DEPTH				SAMPLES			<u> </u>					
1001	O	(ft belo		Reco-	Blow	1		SOIL	DESCRIF	PTION			
(NTS)	grade		very	per	PID		00.2	D_00				
(-	,		,	(in.)	6 in.	(ppm)							
		0	_										
		- °	_				22" - hi	rown-hla	ck silty fil	I w/ brick and asphalt			
		٠	_	1					n sandy s				
	- to -					3.5							
		L _		ļ									
		5	_				0" 400	aller and	- d				
		_					9 - tan	an silty sand					
		– to		9		0.0							
]									
		10											
		_	_				7" - dai	mp fine-r	med tan s	sand			
		to	_	7		0.0							
		_		' '		0.0							
		15	_				* retaine	d soil samp	ole 15B10 (1	(0-15')			
							6" - we	t med ta	n sand				
		– to	_	_									
		-		5		0.0							
		20	-	1									
<u> </u>													
		_	_										
		_	_										
		_	_										
]									
		_	_										
		_											
		_	_	-									
		F	_	1									
		Ľ	_	<u> </u>									
		_	_										

				15B1 ²	1							
	formed 53' fro Indaries	m north a	and 14' from	east pro	perty		o Water grade.)	Site Elevation Datum				
Site Name:		Address	:			Date	DTW	Ground Elevation				
		1181 Flu	ushing Aven	ue Brool	klyn NY							
Former Univers	al Scrap					Groun	dwater					
Drilling Compar		•	Method:			de	pth					
C Squared Envi	ironmental		Geoprobe			12	2.5	Well Specifications				
Date Started:			Date Completed:									
11/10/2016			11/10/2016	6								
Completion Dep	oth:		Geologist									
20 feet			Thomas Ga									
15B11	DEPTH		SAMPLES	;								
	(ft below	Reco-	Blow			SOIL	DESCRIF	PTION				
(NTS) grade)		very	per	PID								
		(in.)	6 in.	(ppm)								
	o -	1										
					4" - sta	ined fine	-coarse b	olack sandy fill w/ odors				
							own silty					
	- to -	30		163	15" - fi	ne gray-b	orown sar	nd				
	L	_				- 1						
	[5 <u></u>					ined soil samples 15B11 (0-2'), 15B11 (3-5')						
		1			36" - fi	fine-med gray/brown sand						
	– to –	36		0.7								
		1 ~~		0.7								
	10	1										
	<u> </u>				6" - me	ed-coarse	brown s	and				
					11" - w	et gray-b	rown silt					
	L	35		0.6	18" - w	et red/br	own silt					
	- 45 -	1			* rotaina	d soil somm	lo 1ED11 /1	2 441)				
	_ 15 _					et brown s	le 15B11 (1	2-14)				
		1					oarse gra	v sand				
	- to -	34		0.1	20 W	ot mic o	odioc gid	y Jana				
		1										
	20											
		_										
		1										
		1										
	_	1										
	-											
		1										
	<u> </u>	4										
		1										
	<u> </u>	-										
	-	1										
		1										

						15B12	2					
	Perforr bounda		' fro	om south	and 42' froi	roperty		to Water n grade.)	Site Elevation Datum			
Site Name:				Address	:			Date	DTW	Ground Elevation		
				1181 Flu	ushing Aven	ue Brool	klyn NY					
Former Univ		Scrap			ı				dwater			
Drilling Com					Method:				pth 2.5	VI II O 10 11		
C Squared I Date Started		mental			Geoprobe Date Comp	lotodi		12	Well Specifications			
11/10/2016	u.				11/10/2016							
Completion	Depth:				Geologist	,						
25 feet					Kevin Wate	ers						
15B12	2	DEPTH	1		SAMPLES							
		(ft belo		Reco-	Blow				DESCRI	PTION		
(NTS)	grade)	very	per	PID						
				(in.)	6 in.	(ppm)						
		0	_									
		to		00			6" - bla	ick staine	ed fine sa	and gravel and with petrol odors		
		- - 5		28		55	12" - gı	" - gray-black fine sand w/ gasoline odoros				
		- °	_				9" - mo	moist fine black sand and silt				
		– to					11" - m	oist gray	/-black fir	ine-med sand		
		_ 10		27		55	7" - fine	e gray sa	andy silt v	v/ petrol odors		
		10	_									
		- '0	_				16" - fir	ne gray s	sand			
		- to	_	_				18" - wet fine-med gray/black sand				
		to		34	55	55	·					
		15	_				* retaine	d soil samr	ole 15B12 (1	12-14")		
		- 13	_							gray/black sand		
		+0								ack sand w/ petrol odor		
		– to		28		3				·		
		L 20	_									
		_ 20	_				24" - w	et dark d	gray sand			
			_				∠¬ W	or dark g	gray saria			
		to		24		0.0						
		25	_				* rotoino	d aail aamn	No 15D12 /	20.001		
		- 25	_				* retained soil sample 15B12 (20-22')					
		-	_									
		L										
		-										
		 	_									
		<u> </u>										
		L				ļ						
		F	_									

					15B1	3						
	erforn ounda		from south	n and 22' from east property				to Water n grade.)	Site Elevation Datum			
Site Name:			Address	s:		Date DTW Ground Elevation						
			1181 Flu	ushing Aven	ue Brool	klyn NY						
Former Univer	rsal S	crap					Groun	dwater				
Drilling Compa				Method:			de	pth				
C Squared En	viron	mental		Geoprobe			12.5 Well Specification					
Date Started:				Date Comp								
11/10/2016				11/10/2016	3							
Completion De	epth:			Geologist								
20 feet				Thomas Ga								
15B13		DEPTH		SAMPLES	5							
		(ft below		Blow			SOIL	DESCRIF	PTION			
(NTS)		grade)	very	per	PID							
			(in.)	6 in.	(ppm)							
		0										
		_ ` .				7" - fin	e brown	silty sand	w/ concrete			
		<u> </u>						dy silt w/				
		to -	32		0.8		5" - damp brown-black silt					
						9" - silt	y fill w/ a	ish				
	-	5					8" - dark brown sandy silt					
						8" - da	rk brown	t				
		– to -	39		0.8		orown silty sand ine brown sand ne brown silty sand					
			- 33		0.0							
		10				7 - 1111	C DIOWII					
		-				9" - da						
		to -				8" - damp med-coarse brown sand						
			37		0.5	20" - w	0" - wet fine-coarse grayish brown sand					
		_ ,				*			(0.44)			
		15						ole 15B13 (1	2-14')			
	-						vet fine gray sand					
		– to -	35		0.2		7" - wet fine brown sand 7" - wet fine brown silty sand					
						, wc	t iiio bic	own only c	barra			
		20										
					_							
		-										
		_ :										
		┕ -	_									
		┝ -	4									
		-	-									
		-										

						15B14	1					
	erforn ounda		' fro	om south	h and 29' from east property				o Water grade.)	Site Elevation Datum		
Site Name:			Address	:			Date	DTW	Ground Elevation			
				1181 Flu	ushing Aver	nue Brook	dyn NY					
Former Univer		crap						Groun	dwater			
Drilling Compa					Method:				pth			
C Squared En	viron	mental			Geoprobe			12.5 Well Specification				
Date Started:					Date Comp							
11/10/2016	tl-				11/10/2016	5		4				
Completion De 20 feet	eptn:				Geologist	0.00						
15B14		DEPTH	1			Kevin Waters						
15614		(ft belo		Reco-	SAMPLES Blow) 		SOII	DESCRIF	OTIONI		
(NTS)		grade		very	рег	PID		SOIL	DESCRIP	TION		
(1413)		grade	,	(in.)	6 in.	(ppm)						
		_		(111.)	0 1111.	(РРП)						
		0										
		_	_				42" - fi	ne gray s	sandy fill v	w/ gravel		
		– to	_	42		0.0						
		_	_	42		0.0						
		5	_				* retaine	d soil samp	le 15B14 (1	-3')		
	-	Ī	_					fine dark gray-brown sand w slight odors				
		to						_	_			
		_	_	49		5						
		_ 10	_									
	10						16" - med gray sand w/ slight odors					
							16" - med gray sand w/ slight odors 16" - wet fine-coarse sand w/ slight odors					
		to	_	32		3	10 - wet fille-coarse sailu w/ slight odors					
		_										
		15					* retained soil sample 15B14 (12-14') 32" - wet fine-coarse gray sand					
		_										
		– to	_	32		0.0						
		_	_	32		0.0						
		20	_				* retained soil sample 15B14 (14-16')					
			_						(- /		
		Ī										
		_	_									
		_	_									
		_	_									
		_	_									
		_	_									
		Ī										
									_			
		L	_									
		<u> </u>	_									
		<u> </u>	_									
		_	_			+						
		-	_		1							

					15B19	9					
		fror	m south a	and 4' from east property					Site Elevation Datum		
Site Name: Add						Date DTW Ground Elevati					
			1181 Flս	ushing Aven	ue Brook	klyn NY					
ersal S	Scrap						Groun	dwater			
pany:	•		•	Method:			de	pth			
nviron	mental			Geoprobe			1:	2.5	Well Specifications		
l:				Date Comp	oleted:						
					3						
Depth:											
)					5						
	,						SOIL	DESCRIF	PTION		
	grade)	-	per							
			(ın.)	6 in.	(ppm)						
	0										
						23" - da	ark brow	n silty fill			
	_ to					4" - fine	e brown	sand			
-	_ "		27		0.1						
	L _					*					
	- ³	_	-								
	-					21 -111	ne-mea (Jaik DiOW	ii siity sanu		
	– to		21		0.0						
	10										
						4" - med brown sand					
	to										
	_		38	10.6							
	15	_									
	- 13										
	_					22" - w	22" - wet stained fine gray silty sand w/ strong				
	– to		41		1,175						
						•					
	_ 20										
	_					14" - w	et fine b	rown san	d		
	– to	_	1.1		0.0						
	-	_	14		9.0						
	25					* retaine	d soil samp	ole 15B19 (2	0-25')		
	_							•	·		
	_										
	_										
	-										
	H	_									
	 										
		_									
	L	_									
	ersal Spany: Environ : Depth:	persal Scrap pany: Invironmental : Depth: Dep	poundaries ersal Scrap pany: Invironmental Depth: epth: Depth: D	DEPTH (ft below grade) very (in.) to 27 to 27 to 38 1181 Fluence Strap (in.) Depth: DEPTH (ft below grade) very (in.) to 27 to 21 to 38 15 to 41 20 to 41 20 14	Address: 1181 Flushing Aver ersal Scrap pany: Invironmental Depth: epth: Depth:	Performed 60' from south and 4' from east propoundaries Address:	Address: 1181 Flushing Avenue Brooklyn NY	Performed 60' from south and 4' from east property (ft. from coundaries) Address: 1181 Flushing Avenue Brooklyn NY Persal Scrap Pany: Invironmental Image: Sero of the pany: Invironmental Image: Sero of the pany: Invironmental Image: Sero of the pany: Image: Sero of t	Performed 60' from south and 4' from east property oundaries Address:		

						15B20)					
	erforn ounda		om	south ar	and 21' from west property				o Water grade.)	Site Elevation Datum		
Site Name:				Address	:		Date DTW Ground Eleva					
				1181 Flս	ushing Aven	ue Brook	klyn NY					
Former Unive	rsal S	crap						Groun	dwater			
Drilling Compa	any:				Method:			de	pth			
C Squared Er		mental			Geoprobe			12	Well Specifications			
Date Started:					Date Comp							
11/10/2016					11/10/2016	3						
Completion D	epth:				Geologist	-11-						
20 feet		DEDT	_	I	Thomas Ga							
15B20		DEPTI (ft belo		Reco-	SAMPLES	1		eou.	DESCRIF	OTION!		
(NTS)		grade		very	Blow per	PID		SOIL	DESCRIP	TION		
(1413)		grade)	(in.)	6 in.	(ppm)						
				(111.)	0 111.	(ррііі)						
		0										
		_								k and concrete		
		– to		34		0.1		e brown	sand n silty san	d		
		_		37		0.1	10 - 11	ne biowi	i Silly Sali	u		
		5					* retaine	d soil samp	ole 15B20 (0	-2')		
		_					7" - brown silty sand					
		– to						- fine brown san - brown sandy silt				
		_		35		0.0	12" - b					
		10										
- -							11" - damp brown silt					
							3" - wet fine red/brown sand					
		to		37		0.0	23" - wet med-coarse tan sand					
		_										
		15	_				* retained soil sample 15B20 (12-14')					
		_	_				no reco	overy				
		– to		0		0						
		_										
		20										
		_										
		_	_									
		_	_									
		_										
		_										
		_										
		_	_									
		_										
		_	_									
		_	_									
		_	_									
		_										

<u>APPENDIX – C</u> Monitoring Well Completion Reports

CONSTRUCTION LOG

MW1

ENVIRONMENTAL BUSINESS CONSULTANTS

1181 Flushing Avenue, Brooklyn NY

Date: 12/7/2016

11/11/2016

C2 Environmental Corp

Hollow Geoprobe Rods

Thomas Gallo

CONSTRUCTION LOG

MW2

ENVIRONMENTAL BUSINESS CONSULTANTS

CONSTRUCTION LOG

12/7/2016

MW3

ENVIRONMENTAL BUSINESS CONSULTANTS

CONSTRUCTION LOG

MW4

ENVIRONMENTAL BUSINESS CONSULTANTS

MW4

1181 Flushing Avenue, Brooklyn NY

12.5 Date: 12/7/2016

20ft bg

5.14

11/11/2016

C2 Environmental Corp

Hollow Geoprobe Rods

Water Removed During Development:

Thomas Gallo

EBC

CONSTRUCTION LOG

MW5

ENVIRONMENTAL BUSINESS CONSULTANTS

CONSTRUCTION LOG

MW6

ENVIRONMENTAL BUSINESS CONSULTANTS

CONSTRUCTION LOG

MW7

ENVIRONMENTAL BUSINESS CONSULTANTS

Monitoring Well No.: MW7

Project: 1181 Flushing Avenue, Brooklyn NY

Depth to Groundwater: 12.5 Date: 12/7/2016

Installation Depth: 20ft bg

Survey Point Elevation: 5.34

Installation Date: 11/14/2016

<u>Drilling Contractor:</u> C2 Environmental Corp

<u>Installation Method:</u> Hollow Geoprobe Rods

Water Removed During Development:

<u>Hydrogeologist:</u> Thomas Gallo

Company Name: EBC

CONSTRUCTION LOG

MW8

ENVIRONMENTAL BUSINESS CONSULTANTS

CONSTRUCTION LOG

MW9

ENVIRONMENTAL BUSINESS CONSULTANTS

Monitoring Well No.: MW9

Project: 1181 Flushing Avenue, Brooklyn NY

Depth to Groundwater: 13.19 Date: 12/7/2016

<u>Installation Depth:</u> 20ft bg

Survey Point Elevation: 4.75

Installation Date: 11/14/2016

<u>Drilling Contractor:</u> C2 Environmental Corp

<u>Installation Method:</u> Hollow Geoprobe Rods

Water Removed During Development:

<u>Hydrogeologist:</u> Thomas Gallo

Company Name: EBC

CONSTRUCTION LOG

MW10

ENVIRONMENTAL BUSINESS CONSULTANTS

CONSTRUCTION LOG

MW14

ENVIRONMENTAL BUSINESS CONSULTANTS

MW14

1181 Flushing Avenue, Brooklyn NY

12.9 Date: 12/7/2016

20ft bg

4.84

11/14/2016

C2 Environmental Corp

Hollow Geoprobe Rods

Water Removed During Development:

Thomas Gallo

EBC

CONSTRUCTION LOG

MW15

ENVIRONMENTAL BUSINESS CONSULTANTS

MW15

1181 Flushing Avenue, Brooklyn NY

11.97 Date: 12/7/2016

20ft bg

5.56

11/14/2016

C2 Environmental Corp

Hollow Geoprobe Rods

Water Removed During Development:

Thomas Gallo

EBC

<u>APPENDIX - D</u> Groundwater Sampling Logs

GROUNDWATER PURGE / SAMPLE LOGS

記の

Well I.D.: MW

Well Depth (from TOC):

Static Water Level (from TOC):

Height of Water in Well:

Gallons of Water per Well Volume: x3: 6.74

Flow Rate:

400ml/min.

Date: Peristable Pump, Horiba

Equipment:

			+	5	5	5	+3	0	Time
			6					400ml/min	Pump Rate
			8.6	2,2	1.6	-	h,0	0	Pump Rate Gal. Removed pH
			6,62	6.62	6.62	6,60	6.53	6,35	pН
			2,36	2,36	2.37	2.35		2,36	Cond. (mS/cm)
			17,74	17.73	17.71	17.64	17,59	16,52	Temp. (deg. C) DO (mg/L)
			1.36	1,38	1.39	24.	1.76	3,46	DO (mg/L)
			-909	-201	-201	-196	-179	-130	ORP (mV)
			12.1	19.3	30	75	240	762	Turbidity (NTU) TDS
			155	1.51	1.52	1.50	1.50	1.51	TDS
			7			Petral alor	Petrolador	light turbidit	Comments
			clear	clesi	clear		1	かんない	

GROUNDWATER PURGE / SAMPLE LOGS

Date:

Equipment:

Moribe, Peristatic Pump

元の

Well I.D.: MWA

Well Depth (from TOC):

Static Water Level (from TOC):

Height of Water in Well:

Gallons of Water per Well Volume: X3: 0.70

Flow Rate: 400ml/min.

5	な	4	43	0	Time
e				400ml/min	Pump Rate
200	1.6	-	h.0	0	Pump Rate Gal. Removed pH
6.48	6,49	6.51	6,62	6,93	рН
1,99	1,98	2,01	2.07	2.04	Cond. (mS/cm)
18.07	18.08	18,09	80,81	18.07	Cond. (mS/cm) Temp. (deg. C) DO (mg/L)
1.19	1.20	1.24	1,44	2,38	DO (mg/L)
-132	-131	-129	-123	7117	ORP (mV)
17.6	H.8H	23.2	323	9778	Turbidity (NTU) TDS
1.28	1.8.1	125	1,32	~	TDS
clear	clear	clear	light petrol adors	turbid	Comments

GROUNDWATER PURGE / SAMPLE LOGS

Well I.D.: MW3

Well Depth (from TOC): 30

Well Depth (from TOC):

Static Water Level (from TOC):

Height of Water in Well:

Gallons of Water per Well Volume: x3: 6,75

Flow Rate:

400ml/min.

Date:

Equipment:

Hariba Peristaltic Pump

				C	34	+ 5	t	5 3	to	
					6			-	too will win	Fump Kate
				2,4)	-0	_	0,4	2 0	Pump Rate Gal. Removed pH
				6.5	7	12.9	6,51	14.9	PE 19	PH
				0. 1	3	2 14	2.15	91.19	2000	Cond. (mS/cm)
				19.67	5000	X92	17.67	18.63	18.75	Cond. (mS/cm) Temp. (deg. C) DO (mg/L) ORP (mV
				1.14	1:16	116	1.2	1.34	2.09	DO (mg/L)
				-130	1120	SCI	101-	-120	163	ORP (mV)
				18	6	\ c .	197	359	445	Turbidity (NTU) TDS
				1.35	1.5/	200	1,28	1.40	14.1) TDS
				cles	Clear	Closi	0000		turbio)	Comments

GROUNDWATER PURGE / SAMPLE LOGS

Well I.D.: MWH

Well Depth (from TOC):

Static Water Level (from TOC):

Height of Water in Well:

Gallons of Water per Well Volume: \$32 0,\$75

400ml/min.

Flow Rate:

Date:

Equipment:

Horiba Paristatic Rump

Time	Pump Rate	Pump Rate Gal. Removed pH	рН	Cond. (mS/cm)	Cond. (mS/cm) Temp. (deq. C) DO (mq/L) ORP (mV	DO (mg/L)	1	Turbidity (NTU) TDS	1	Comments
0	400 m/m.	0	7,75	3,50	17,70	2000	1	53		Turk.id)
艾	-	4.0	7.69	3.97	17.59	200	197	55	2.09	1.50x 4.4.0x.
5		_	7.61	.35	17.49	1,39	105	34	7,27	
4		.6	242	5.5	17,44	ー・ンス	1100	77	コエス	USAI
7		2	1	= 75	700		i (4	000	Clear
1		200	7,40	85° H	1,1,11	1017	-12	12.6	2.77	clear
5	4	8.6	7,43	f. 53	17,43	1.16	-131		2.78	0/02

1181 Flushing Ave GROUNDWATER PURGE / SAMPLE LOGS

に記り

Well I.D.: MWS

Flow Rate:

400ml/min.

Well Depth (from TOC):

Static Water Level (from TOC):

Height of Water in Well:

Gallons of Water per Well Volume: x3: 0.75 Equipment:

	45	5+	5+	5	+3	C	Time
	<					460m1/m.n	Pump Rate
	2.8	2.2	1.6	_	h.0	O	Pump Rate Gal. Removed
	6.77	6.78	44.9	6.76	6,74	6.63	рН
	1.38	1.37	1.37	1.36	1,34	1.34	Cond. (mS/cm)
	18.03	18.03	18,09	18.26	19.41	20.28	Cond. (mS/cm) Temp. (deg. C) DO (mg/L) ORP (mV)
	1.36	1.37	1-37	1.36	1.36	1.78	DO (mg/L)
	-201	-199	+31-	-194	-126	HSI-	ORP (mV)
		23.7	69.4	340	665	1000	Turbidity (NTU) TDS
	0.876	278.0	0.875	0.873	358'0	0.857	TDS
	clear	clear	clear			Tubid	Comments

GROUNDWATER PURGE / SAMPLE LOGS

ENVIRONMENTAL BUSINESS CONSULTANTS

Well I.D.: MWG

Well Depth (from TOC):

Static Water Level (from TOC):

Height of Water in Well:

Gallons of Water per Well Volume:

3:

3○

6

81

400ml/min.

Flow Rate:

Date:

Equipment: Horiba Peristaltic Pump

Time	Pump Kate	Gal. Removed		Cond. (mS/cm) Temp. (deg. C) DO (mg/L) ORP (mV)	Temp. (deg. C)	DO (mg/L)	ORP (mV)	Turbidity	(UTU)	Turbidity (NTU) TDS Comments
0	HOOMI/min	0	5.99	2,24	19.85	3.79)	-104	104 1600+	1600+ 1.66
+3	_	4,0	5,99	3,53	19.37	1.56	1	-134	1000+	1000+
77		-	5.97	3.69	19.25	Ch.1	(135	996	996
5		1.6	5.96	4.24	19,14	1,27		-137	640	640
5+		2.2	5.95	4.34	19.13	1.19		-138	304	364
+5	E	7.8	5.95	4.43	18,13	1.16		-138	163	163
+5		3.4	5.97	4.49	19.08	1,14		-138	-138 46	
45		4	5,96	4.49	19.07	1.14		-138	18.2	18.2

1181 Flushing Avenue GROUNDWATER PURGE / SAMPLE LOGS

いいつ

Well I.D.: MW

Well Depth (from TOC):

Static Water Level (from TOC):

Height of Water in Well:

Gallons of Water per Well Volume: $\sqrt{3} \le 0.75$

Flow Rate: 400ml/min.

Date:

11-16-16

Equipment:

Horbs, Perstallic Pump

	12:58	12:53	8h:41	12:43	38.61	12:36	Time
	4					100 m//m	Pump Rate
	3.6	2,2	1.6	-	0.4	0	Pump Rate Gal. Removed
	6.33	6.33	6.34	6.35	P.49	6.66	PH
	1,29	129	1,28	1.28	1.27	1,24	Cond. (mS/cm)
	19.00	19.03	19.18	86.11	19.66	19.06	Cond. (mS/cm) Temp. (deg. C) DO (mg/L) ORP (m\
	1.17	1.19	1.23	1.36	1,65	2,47	DO (mg/L)
	-163	-164	-163	-162	-158	-152	ORP (mV)
	19.0	33.8	103	260	698	979	Turbidity (NTU) TDS
	0.825 clea-	0.824	0.822	0.830	0.815	0.799	TDS
	clear	0.824 clear	0,822 c/ear	0.830 clear	0.815 clear	0.799 light turbidity	Comments

GROUNDWATER PURGE / SAMPLE LOGS

Wellid: WW8

Well Depth (from TOC):

Well Depth (from TOC):

Static Water Level (from TOC):

Height of Water in Well:

Gallons of Water per Well Volume:

√3:

○-74

Flow Rate:

400ml/min.

Date:

Equipment: Itorila, Peristaltic Pump

		ts	かか	5	54	な	0	Time
		6				-=	400m/5	Pump Rate
		2,8	2,2	1,6	1	4.0	0	Pump Rate Gal. Removed
		6.11	6.12	6.14	6.19	6.33	£45	рН
		1,78	1077	1.77	24.1	1.73	1.73	Cond. (mS/cm)
		20.17	20.16	20.16	20.13	20.08	19.97	Temp. (deg. C) DO (mg/L) ORP (mV)
		1.45	1.46	18481	1.5.1	1.69	1.82	DO (mg/L)
		-118	-115	-11/0	-10	- 99	-98	ORP (mV)
		18.5	20	3/	04	52	68	Turbidity (NTU) TDS
		1.14	1.13	2	1.12		7.//	TDS
		clear	chear	Char	Clear	Mes	123	Comments
							The state of the s	The state of the s

GROUNDWATER PURGE / SAMPLE LOGS

Well I.D.: MWG

Flow Rate:

Equipment:

11-16-16 Horiba, Peristellic Pump

Date:

Well Depth (from TOC):

Static Water Level (from TOC):

Height of Water in Well:

Gallons of Water per Well Volume:

₹3 = ○,68

400ml/min.

Time	Pump Rate	Pump Rate Gal. Removed	рН	Cond. (mS/cm) Temp. (deg. C) DO (mg/L)	Temp. (deg. C)	DO (mg/L)	ORP (mV)	Turbidity (NTII) TOS		Comments
0	4000/	0	6,36	1.12	8	2,59	-67	1000+	22	T d 10
4	-	0,4	6.24	1.38	18.33	1.54	26-			T. Kid
75		_	6.28	1.50	18:30	1,43	100			1200
+5		.6	6.29	-552	8.37	- 39	1 5		2000	Clear
5		ದೆ.		1.56	マ分	1.22			01.10	cleur
7		O 4		カカカ	68		0110	1	111,0	Clear
		0.0	6.05	100	25.21	10.79	-121	+5	0.994	clear
ن ا		7° F	6,34	1,56	18.39	1,26	-132	21,3	0,999	clour
5		4	6.34	1,56	14.8	1	-123		- - - -	
4	<u> </u>	4,6	6.35	1.57	14.31				5 6	Clear
						816	186	000		Clear

1181 Flushing Avenue GROUNDWATER PURGE / SAMPLE LOGS

行記の

Wellid: MWIO

Date:

Equipment:

Hariba, Peristalic Rump

Well Depth (from TOC):

Static Water Level (from TOC):

Height of Water in Well:

Gallons of Water per Well Volume:

7.31

Gallons of Water per Well volume:

7.31

Flow Rate: 400ml/min.

th	ţ.	+5	4	5	5	to	0	Time
<	-					_	400ml/mm	Pump Rate
¥	3.4	2.8	8.6	1.6	1	0,4	0	Pump Rate Gal. Removed pH
6.21	6.27	6.38	6,41	6.45	6,52	6.61	89.9	pH
1,75	1.78	081	1.85	1.89	1,97	3,08	2,18	Cond. (mS/cm)
14.88	14.22	13,90	13.89	13.87	13.85	13.82	13,78	Cond. (mS/cm) Temp. (deg. C)
2.43	2.64	3.50	3.66	3.75	3,88	3.91	3.96	DO (mg/L)
111-	-106	-92	h8-	在一	- 73	-61	-50	ORP (mV)
2,4	6.3	5.1	16.3	99	44	63	79	Turbidity (NTU) TDS
1.12	61.1	1.15	81.1	161	1,30	1,40	1.55	TDS
clear	clear	clear	clear	Clear	Pigni	Tubid	Pidin1	Comments
								AND DESCRIPTION OF THE PERSON NAMED IN

GROUNDWATER PURGE / SAMPLE LOGS

Date:

11-17.16 Horbe Peristalaia Pump

Equipment:

いいいい

Wellid: MW/4

Well Depth (from TOC):

Static Water Level (from TOC):

Height of Water in Well:

Gallons of Water per Well Volume: χ_3 : 0.71Flow Rate:

400ml/min.

Pump Rate Gal. Removed pH				な	15	15	to	0	Time
Cond. (mS/cm) Temp. (deg. C) DO (mg/L) ORP (mV) Turbidity (NTU) TDS 146 2.05 20.03 2.30 - 70 221 1.32 137 2.39 19.72 1.44 -138 176 1.56 38 2.50 19.62 1.27 -166 68.6 1.63 11 2.58 19.60 1.22 -174 33.6 1.65 11 2.58 19.60 1.88 -178 18.2 1.65				*				400ml/mm	Pump Rate
Cond. (mS/cm) Temp. (deg. C) DO (mg/L) ORP (mV) Turbidity (NTU) TDS 146 2.05 20.03 2.30 - 70 221 1.32 137 2.39 19.72 1.44 -138 176 1.56 38 2.50 19.62 1.27 -164 68.6 1.63 11 2.58 19.60 1.22 -174 33.6 1.65 11 2.58 19.60 1.18 -178 18.2 1.65				2.2	1.6	-	0.4	0	Gal. Removed
ORP (mV) Turbidity (NTU) TDS -70 221 1.32 -138 176 1.56 -166 68.6 1.61 -174 33.6 1.63 -178 18.2 1.65				6.41	6,40	6.38	6.37		
ORP (mV) Turbidity (NTU) TDS -70 221 1.32 -138 176 1.56 -166 68.6 1.61 -174 33.6 1.63 -178 18.2 1.65				3.58	2.55	2.50	2.39	2,05	Cond. (mS/cm)
ORP (mV) Turbidity (NTU) TDS -70 221 1.32 -138 176 1.56 -166 68.6 1.61 -174 33.6 1.63 -178 18.2 1.65				19.60	19.60	19.62	19,72	20.03	Temp. (deg. C)
ORP (mV) Turbidity (NTU) TDS -70 221 1.32 -138 176 1.56 -166 68.6 1.61 -174 33.6 1.63 -178 18.2 1.65				81,1	1.22	1,27	1,44	2.30	DO (mg/L)
500				-178	-17H	-182	-138		
500	3.40			4.8	33,6	5,89	176	221	Turbidity (NTU)
Comments light turbidity clear clear				1,65	1.63			1.32	TDS
			COCC	Coch	clock	1000	light tubility	light turbidity	Comments

GROUNDWATER PURGE / SAMPLE LOGS

Date:

11-17.16 Hariba, Perishetic Pump

Equipment:

SESC

Well I.D.: MW15

Well Depth (from TOC):

Static Water Level (from TOC):

Height of Water in Well:

Gallons of Water per Well Volume: \3 \(z\) \(\frac{3}{3}\)

Time	Flow Rate
Pump Rate	Ü
Gal. Removed	400ml/min.
рН	
Cond. (mS/cm)	
Temp. (deg. C)	
DO (mg/L)	
ORP (mV)	
Turbidity (NTU)	
DS Comments	

			5	5	5	5	4	0	Time
			E				_	400m/min	Pump Rate
			8.8	6.6	1.6	-	h.o	0	Pump Kate Gal. Removed
			6.16	6.16	6.16	6,15	6.10	6.06	PH
			1.92	1691	1,90	88.1	1.82	-557	Cond. (mS/cm)
			17.88	17.85	17.77	17,69	17.61	16,88	Temp. (deg. C)
			161	1,29	1.43	1,66	2.08	3.76	DO (mg/L)
			-65	-64	13-	-57	-47	-6	ORP (mV)
			_	1.4	5.6	24.7	114	y	Turbidity (NTU) TDS
			1,23			1,20		1.03	TDS
			1,23 c/ear	clear	clear	clear	clear	clear	Comments
						post of			Name and Part of the Part of t

APPENDIX - E Soil Vapor Sampling Logs

DI.			CHI	VIN OF	CHAIN OF CUSTODY RECORD	ODYR	ECORI	6		P.O. #			Page	- e.	G	
Enviro	Environmental Laboratories, Inc.			A	AIK ANALYSES	LYSES 5426			, 	Data Delivery:	ery:					,
587 East Mi Tele	587 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Telephone: 860.645.1102 - Fax: 860.645.0823			email:	email: greg@phoenixlabs.com	oenixlab	s.com		<u>Juged L</u>	Fax #:	r E					
Report to:	Thomas Gallo	Invoice to:	EBC					Project Name:		Phone #:	Vame:	7				
Customer:						į		Requester	Requested Deliverable	A Page	ASP CAT B	× ×				
Address:									□ dow		NJ Deliverables	es				
		Sampled by:	nomas	s Gallo	100			State when	re samples	State where samples collected:	ž		nj	(O)əti	-	
				Outgoing	Incoming	III	Flow				l		A 100bnI\ti	sodwoo (S		
Phoenix ID #	Client Sample ID	Canister ID #		Pressure (" Hg)	Pressure ("Hg)	lator #		Sampling Start Time	Sampling End Time	Sample F Start Date S	Pressure at P	Canister Pressure at End ("Hg)	Ambien Soil Gas		41-OT	
81,876		9000	THIS SEC	-) c)	THIS SECTION FOR LAB USE ONLY $\mathcal{L}_{\mathcal{L}}}}}}}}}}$	Ğ	~	0.00	20		6	7	MATRIX	ă_	ANALYSES	/SES
84877	79S	1/56	5 —					75.0	11:34 11:16:16		_	- 4	۷ ۱		* *	
81818	263	964				9665		6.3	y-y-11 0C.11	9-C	-	300	×		*	
71.808	S64	21357			ナ、	1665		1 . 🕳	1:35	12.0	6,0	רק	*		7	
	Did Not Use	224				3252									<u> </u>	
	bid Not Use	19224				5707										
03878	SG7	357			47	295		9:30 (11:31 11	11-16-16	8	9	×		×	
18898	268	Design		•	いナー	3502		9:33 11:39		91-91-11	-36	3	×		×	
31882 318882	S65	5h9Cl	\	→	56-	3578	-	9:08	91-91-11 80:11		8	٧.	メ		×	
	9×61 2H-3															
Relinquished by:		Acceptedby:			1	Date:	I	Time:	Data Format:	at:						
Thomas	- Wall		2			11-18	9)	9130	Excel	X	H	Equis 5		GISKey	ey 🗆	
	KUUN	3	A	X		1-18-1	Ď		PDF 1	192		Other:				
PECIAL INSTRUCT	RECIAL INSTRUCTIONS OC REQUIREMENS, RECULATORY INFORMATION.	!	<i>></i>	5	Requested Criteria	Criteria										
								~ \$ 8	l attest that all media r received in good worki back of this document:	ll media relea od working c rcument:	I attest that all media released by Phoenix Environmental Laboratories, Inc. have been received in good working condition and agree to the terms and conditions as listed on the back of this document:	ix Environm agree to the	tental Lab terms and	oratories, I conditior	Inc. have b 1s as listed	on the
					Quote Number:	nber:		S	Signature:					Date:		-

		CHA	IN OF	CUST	ODYR	CHAIN OF CUSTODY RECORD	D					•			
DHOHNIY			AI	AIR ANALYSES	LYSES				P.O. #			Pa	Page	of Of	~
Environmental Laboratories, Inc.			7	800-827-5426	-5426				Data Delivery: ☐ Fax #:	'ery:					
567 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Telephone: 860.645.1102 • Fax: 860.645,0823			email	email: greg@phoenixlabs.com	hoenixlal	bs.com			Email:	म्					1
Donnel for	Invoice to:	14	FR				Project N	ame: Omi	Phone #:	Project Name:	7.				
Customer:		3	3				Requesta	Requested Deliverables	able	ASP CATB	<u>\$</u>				
Address:				•	1, 20			□ WCP		NJ Deliverables	oles 🗆				
	Sampled by:	Thomas	l i	Gaither			State who	ere sample	State where samples collected:	N		ı,	(O) əti		
Phoenix ID # Client Sample ID	Canister ID #	Canister Size (L)	Outgoing Canister Pressure (" Hg)	Incoming Canister Pressure ("Hg)	Flow Regulator ID#	Flow Controller Setting (mL/min)	Sampling Start Time	Sampling End Time	Sample Start Date	Canister Pressure at 3	Canister Pressure at End ("Hg)	Ambient/Indoor Ai	Srab (G) Compos	FI-O1	
		THIS SEC	TION FOR	THIS SECTION FOR LAB USE ONLY	ONLY							١₹	RIX	Ā	YSES
8688 562	05961	0.9	08-	4	3249	43	9:13	11:16	91-91-1I	8	٩	*		*	
8188H SG1	493	0.9	ar-	4-	1875	43	4:17	11:18 11:16:16		630	れ	*		×	
Ç		. ,													
		-													
		ŧ													
					,										
2 × 61 2 40															
إ	Accepted by:				Date:		Time:	Data Format:	nat:					-	
	Ku	3	1		11-11		9:35	Excel 🗗	1		Equis	S	GISE	GISKey	
	1		X	}	11-18-16	3/~	15.3	PDF	75		Other:				
SPECIAL INSTRUCTIONS, OCREO/IREMENTS, RECULATORY INFORMATION	ATION:	\nearrow		Requested Criteria	Criteria										
		,	`					I attest that all media i received in good worki back of this document:	all media rele 100d working 10cument:	I attest that all media released by Phoenix Environmental Laboratories, Inc. have been received in good working condition and agree to the terms and conditions as listed on the back of this document:	nix Environn d agree to the	nental La : terms ar	iboratories 1d conditi	Inc. have ns as liste	been 1 on the
				Quote Mirmher	igh			. 3							
				למסוג זיים	HUC1.			Signature:					Date:	ài	1

L.

<u>APPENDIX - F</u> Laboratory Reports (On Disk)

Tuesday, November 22, 2016

Attn: Mr. Charles B. Sosik, P.G. Environmental Business Consultants 1808 Middle Country Rd Ridge NY 11961-2406

Project ID: 1181 FLUSHING AVE BROOKLYN NY

Sample ID#s: BV83365 - BV83383

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

November 22, 2016

SDG I.D.: GBV83365

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

Any compound that is not detected above the MDL/LOD is reported as ND on the report and is reported in the electronic deliverables (EDD) as <RL or U at the RL per state and EPA guidance.

Version 1: Analysis results minus raw data.

Version 2: Complete report with raw data.

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 22, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample Information Custody Information Date <u>Time</u>

Collected by: TG 11/14/16 Matrix: SOIL

Received by: **EBC** SW 11/15/16 17:12 **Location Code:**

Rush Request: 72 Hour Analyzed by: see "By" below

1181 FLUSHING AVE BROOKLYN NY

P.O.#:

Project ID:

Laboratory Data SDG ID: GBV83365 Phoenix ID: BV83365

Client ID:	15B19 (0-2)								
Parameter		Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Silver		ND	0.36	0.36	mg/Kg	1	11/16/16	TH	SW6010C
Aluminum		7860	36	7.2	mg/Kg	10	11/16/16	LK	SW6010C
Arsenic		6.59	0.72	0.72	mg/Kg	1	11/16/16	LK	SW6010C
Barium		129	0.7	0.36	mg/Kg	1	11/16/16	LK	SW6010C
Beryllium		0.42	0.29	0.14	mg/Kg	1	11/16/16	TH	SW6010C
Calcium		7640	3.6	3.3	mg/Kg	1	11/16/16	LK	SW6010C
Cadmium		0.68	0.36	0.36	mg/Kg	1	11/16/16	TH	SW6010C
Cobalt		7.67	0.36	0.36	mg/Kg	1	11/16/16	TH	SW6010C
Chromium		19.3	0.36	0.36	mg/Kg	1	11/16/16	LK	SW6010C
Copper		80.5	0.36	0.36	mg/kg	1	11/16/16	LK	SW6010C
Iron		20300	36	36	mg/Kg	10	11/16/16	TH	SW6010C
Mercury		1.57	0.03	0.02	mg/Kg	1	11/16/16	RS	SW7471B
Potassium		1120	7	2.8	mg/Kg	1	11/16/16	LK	SW6010C
Magnesium		2070	3.6	3.6	mg/Kg	1	11/16/16	TH	SW6010C
Manganese		345	3.6	3.6	ma/Ka	10	11/16/16	TH	SW6010C

Manganese	0.10	0.0	0.0	mg/rtg		11/10/10		01100100	
Sodium	227	7	3.1	mg/Kg	1	11/16/16	LK	SW6010C	
Nickel	15.7	0.36	0.36	mg/Kg	1	11/16/16	LK	SW6010C	
Lead	237	7.2	3.6	mg/Kg	10	11/16/16	LK	SW6010C	
Antimony	ND	1.8	1.8	mg/Kg	1	11/16/16	TH	SW6010C	
Selenium	ND	1.4	1.2	mg/Kg	1	11/16/16	LK	SW6010C	
Thallium	ND	1.4	1.4	mg/Kg	1	11/16/16	TH	SW6010C	
Vanadium	24.8	3.6	3.6	mg/Kg	10	11/16/16	TH	SW6010C	
Zinc	165	7.2	3.6	mg/Kg	10	11/16/16	LK	SW6010C	
Percent Solid	91			%		11/15/16	W	SW846-%Solid	
Soil Extraction for PCB	Completed					11/15/16	CC/V	SW3545A	
Soil Extraction for Pest	Completed					11/15/16	CC/V	SW3545A	
Soil Extraction for SVOA	Completed					11/15/16	JJ/CKV	SW3545A	
Mercury Digestion	Completed					11/16/16	W/W	SW7471B	

Project ID: 1181 FLUSHING AVE BROOKLYN NY Phoenix I.D.: BV83365

Client ID: 15B19 (0-2)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Total Metals Digest	Completed					11/15/16	X/AG	SW3050B
Field Extraction	Completed					11/14/16		SW5035A
Polychlorinated Biphen	yls							
PCB-1016	ND	72	72	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1221	ND	72	72	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1232	ND	72	72	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1242	ND	72	72	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1248	ND	72	72	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1254	ND	72	72	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1260	ND	72	72	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1262	ND	72	72	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1268	ND	72	72	ug/Kg	2	11/17/16	AW	SW8082A
QA/QC Surrogates								
% DCBP	63			%	2	11/17/16	AW	30 - 150 %
% TCMX	62			%	2	11/17/16	AW	30 - 150 %
Pesticides - Soil								
4,4' -DDD	ND	2.2	2.2	ug/Kg	2	11/16/16	CE	SW8081B
4,4' -DDE	ND	2.2	2.2	ug/Kg	2	11/16/16	CE	SW8081B
4,4' -DDT	7.7	2.2	2.2	ug/Kg	2	11/16/16	CE	SW8081B
a-BHC	ND	7.2	7.2	ug/Kg	2	11/16/16	CE	SW8081B
a-Chlordane	ND	3.6	3.6	ug/Kg	2	11/16/16	CE	SW8081B
Aldrin	ND	3.6	3.6	ug/Kg	2	11/16/16	CE	SW8081B
b-BHC	ND	7.2	7.2	ug/Kg	2	11/16/16	CE	SW8081B
Chlordane	ND	36	36	ug/Kg	2	11/16/16	CE	SW8081B
d-BHC	ND	7.2	7.2	ug/Kg	2	11/16/16	CE	SW8081B
Dieldrin	ND	3.6	3.6	ug/Kg	2	11/16/16	CE	SW8081B
Endosulfan I	ND	7.2	7.2	ug/Kg	2	11/16/16	CE	SW8081B
Endosulfan II	ND	7.2	7.2	ug/Kg	2	11/16/16	CE	SW8081B
Endosulfan sulfate	ND	7.2	7.2	ug/Kg	2	11/16/16	CE	SW8081B
Endrin	ND	7.2	7.2	ug/Kg	2	11/16/16	CE	SW8081B
Endrin aldehyde	ND	7.2	7.2	ug/Kg	2	11/16/16	CE	SW8081B
Endrin ketone	ND	7.2	7.2	ug/Kg	2	11/16/16	CE	SW8081B
g-BHC	ND	1.4	1.4	ug/Kg	2	11/16/16	CE	SW8081B
g-Chlordane	ND	3.6	3.6	ug/Kg	2	11/16/16	CE	SW8081B
Heptachlor	ND	7.2	7.2	ug/Kg	2	11/16/16	CE	SW8081B
Heptachlor epoxide	ND	7.2	7.2	ug/Kg	2	11/16/16	CE	SW8081B
Methoxychlor	ND	36	36	ug/Kg	2	11/16/16	CE	SW8081B
Toxaphene	ND	140	140	ug/Kg	2	11/16/16	CE	SW8081B
QA/QC Surrogates								
% DCBP	65			%	2	11/16/16	CE	40 - 140 %
% TCMX	52			%	2	11/16/16	CE	40 - 140 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	5.8	1.2	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	5.8	1.2	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	5.8	1.2	ug/Kg	1	11/16/16	JLI	SW8260C
1,1-Dichloroethane	ND	5.8	1.2	ug/Kg	1	11/16/16	JLI	SW8260C

Client ID: 15B19 (0-2)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1,1-Dichloroethene	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
1,1-Dichloropropene	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	5.8	1.2	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	5.8	1.2	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,4-Trimethylbenzene	0.58	J 5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	5.8	1.2	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dibromoethane	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichloroethane	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichloropropane	ND	5.8	1.2	ug/Kg	1	11/16/16	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
1,3-Dichloropropane	ND	5.8	1.2	ug/Kg	1	11/16/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
2,2-Dichloropropane	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
2-Chlorotoluene	ND	5.8	1.2	ug/Kg	1	11/16/16	JLI	SW8260C
2-Hexanone	ND	29	5.8	ug/Kg	1	11/16/16	JLI	SW8260C
2-Isopropyltoluene	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C 1
4-Chlorotoluene	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
4-Methyl-2-pentanone	ND	29	5.8	ug/Kg	1	11/16/16	JLI	SW8260C
Acetone	ND	29	5.8	ug/Kg	1	11/16/16	JLI	SW8260C
Acrylonitrile	ND	12	1.2	ug/Kg	1	11/16/16	JLI	SW8260C
Benzene	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
Bromobenzene	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
Bromochloromethane	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
Bromodichloromethane	ND	5.8	1.2	ug/Kg	1	11/16/16	JLI	SW8260C
Bromoform	ND	5.8	1.2	ug/Kg	1	11/16/16	JLI	SW8260C
Bromomethane	ND	5.8	2.3	ug/Kg	1	11/16/16	JLI	SW8260C
Carbon Disulfide	ND	5.8	1.2	ug/Kg	1	11/16/16	JLI	SW8260C
Carbon tetrachloride	ND	5.8	1.2	ug/Kg	1	11/16/16	JLI	SW8260C
Chlorobenzene	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
Chloroethane	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
Chloroform	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
Chloromethane	ND	5.8	1.2	ug/Kg	1	11/16/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
Dibromochloromethane	ND	5.8	1.2	ug/Kg	1	11/16/16	JLI	SW8260C
Dibromomethane	ND	5.8	1.2	ug/Kg	1	11/16/16	JLI	SW8260C
Dichlorodifluoromethane	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
Ethylbenzene	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
Hexachlorobutadiene	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
Isopropylbenzene	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
m&p-Xylene	ND	5.8	1.2	ug/Kg	1	11/16/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	35	5.8	ug/Kg	1	11/16/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	12	1.2	ug/Kg	1	11/16/16	JLI	SW8260C
Methylene chloride	ND	5.8	5.8	ug/Kg	1	11/16/16	JLI	SW8260C
Naphthalene	210	J 330	66	ug/Kg	50	11/16/16	JLI	SW8260C
n-Butylbenzene	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
Jacquidonicono		2.0	2.00	-5' . '8	•		J	

Phoenix I.D.: BV83365

Project ID: 1181 FLUSHING AVE BROOKLYN NY Phoenix I.D.: BV83365

Client ID: 15B19 (0-2)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
n-Propylbenzene	ND	5.8	1.2	ug/Kg	1	11/16/16	JLI	SW8260C
o-Xylene	ND	5.8	1.2	ug/Kg	1	11/16/16	JLI	SW8260C
p-Isopropyltoluene	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
sec-Butylbenzene	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
Styrene	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
tert-Butylbenzene	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
Tetrachloroethene	ND	5.8	1.2	ug/Kg	1	11/16/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	12	2.9	ug/Kg	1	11/16/16	JLI	SW8260C 1
Toluene	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	12	2.9	ug/Kg	1	11/16/16	JLI	SW8260C
Trichloroethene	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
Trichlorofluoromethane	ND	5.8	1.2	ug/Kg	1	11/16/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
Vinyl chloride	ND	5.8	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	98			%	1	11/16/16	JLI	70 - 130 %
% Bromofluorobenzene	99			%	1	11/16/16	JLI	70 - 130 %
% Dibromofluoromethane	95			%	1	11/16/16	JLI	70 - 130 %
% Toluene-d8	101			%	1	11/16/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	87	46	ug/kg	1	11/16/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	98			%	1	11/16/16	JLI	70 - 130 %
% Bromofluorobenzene	99			%	1	11/16/16	JLI	70 - 130 %
% Toluene-d8	101			%	1	11/16/16	JLI	70 - 130 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	23	1.2	ug/Kg	1	11/16/16	JLI	SW8260C
Acrolein	ND	23	2.9	ug/Kg	1	11/16/16	JLI	SW8260C
Acrylonitrile	ND	23	0.58	ug/Kg	1	11/16/16	JLI	SW8260C
Tert-butyl alcohol	ND	120	23	ug/Kg	1	11/16/16	JLI	SW8260C
Client MS/MSD	Completed					11/16/16		
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	250	130	ug/Kg	1	11/15/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	250	110	ug/Kg	1	11/15/16	DD	SW8270D
1,2-Dichlorobenzene	ND	250	100	ug/Kg	1	11/15/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	250	120	ug/Kg	1	11/15/16	DD	SW8270D
1,3-Dichlorobenzene	ND	250	110	ug/Kg	1	11/15/16	DD	SW8270D
1,4-Dichlorobenzene	ND	250	110	ug/Kg	1	11/15/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	250	200	ug/Kg	1	11/15/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	180	110	ug/Kg	1	11/15/16	DD	SW8270D
2,4-Dichlorophenol	ND	180	130	ug/Kg	1	11/15/16	DD	SW8270D
2,4-Dimethylphenol	ND	250	89	ug/Kg	1	11/15/16	DD	SW8270D
2,4-Dinitrophenol	ND	250	250	ug/Kg	1	11/15/16	DD	SW8270D
2,4-Dinitrotoluene	ND	180	140	ug/Kg	1	11/15/16	DD	SW8270D
2,6-Dinitrotoluene	ND	180	110	ug/Kg	1	11/15/16	DD	SW8270D

Client ID: 15B19 (0-2)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
2-Chloronaphthalene	ND	250	100	ug/Kg	1	11/15/16	DD	SW8270D
2-Chlorophenol	ND	250	100	ug/Kg	1	11/15/16	DD	SW8270D
2-Methylnaphthalene	ND	250	110	ug/Kg	1	11/15/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	250	170	ug/Kg	1	11/15/16	DD	SW8270D
2-Nitroaniline	ND	250	250	ug/Kg	1	11/15/16	DD	SW8270D
2-Nitrophenol	ND	250	230	ug/Kg	1	11/15/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	250	140	ug/Kg	1	11/15/16	DD	SW8270D 1
3,3'-Dichlorobenzidine	ND	180	170	ug/Kg	1	11/15/16	DD	SW8270D
3-Nitroaniline	ND	360	720	ug/Kg	1	11/15/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	220	72	ug/Kg	1	11/15/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	250	110	ug/Kg	1	11/15/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	250	130	ug/Kg	1	11/15/16	DD	SW8270D
4-Chloroaniline	ND	290	170	ug/Kg	1	11/15/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	250	120	ug/Kg	1	11/15/16	DD	SW8270D
4-Nitroaniline	ND	360	120	ug/Kg	1	11/15/16	DD	SW8270D
4-Nitrophenol	ND	360	160	ug/Kg	1	11/15/16	DD	SW8270D
Acenaphthene	ND	250	110	ug/Kg	1	11/15/16	DD	SW8270D
Acenaphthylene	ND	250	100	ug/Kg	1	11/15/16	DD	SW8270D
Acetophenone	ND	250	110	ug/Kg	1	11/15/16	DD	SW8270D
Aniline	ND	290	290	ug/Kg	1	11/15/16	DD	SW8270D
Anthracene	230	J 250	120	ug/Kg	1	11/15/16	DD	SW8270D
Benz(a)anthracene	910	250	120	ug/Kg	1	11/15/16	DD	SW8270D
Benzidine	ND	360	210	ug/Kg	1	11/15/16	DD	SW8270D
Benzo(a)pyrene	850	180	120	ug/Kg	1	11/15/16	DD	SW8270D
Benzo(b)fluoranthene	680	250	120	ug/Kg	1	11/15/16	DD	SW8270D
Benzo(ghi)perylene	590	250	120	ug/Kg	1	11/15/16	DD	SW8270D
Benzo(k)fluoranthene	670	250	120	ug/Kg	1	11/15/16	DD	SW8270D
Benzoic acid	ND	1800	720	ug/Kg	1	11/15/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	250	93	ug/Kg	1	11/15/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	250	99	ug/Kg	1	11/15/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	180	97	ug/Kg	1	11/15/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	250	100	ug/Kg	1	11/15/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	250	100	ug/Kg	1	11/15/16	DD	SW8270D
Carbazole	ND	180	140	ug/Kg	1	11/15/16	DD	SW8270D
Chrysene	970	250	120	ug/Kg	1	11/15/16	DD	SW8270D
Dibenz(a,h)anthracene	140	J 180	120	ug/Kg	1	11/15/16	DD	SW8270D
Dibenzofuran	ND	250	100	ug/Kg	1	11/15/16	DD	SW8270D
Diethyl phthalate	ND	250	110	ug/Kg	1	11/15/16	DD	SW8270D
Dimethylphthalate	ND	250	110	ug/Kg	1	11/15/16	DD	SW8270D
Di-n-butylphthalate	ND	250	96	ug/Kg	1	11/15/16	DD	SW8270D
Di-n-octylphthalate	ND	250	93	ug/Kg	1	11/15/16	DD	SW8270D
Fluoranthene	1500	250	120	ug/Kg	1	11/15/16	DD	SW8270D
Fluorene	ND	250	120	ug/Kg	1	11/15/16	DD	SW8270D
Hexachlorobenzene	ND	180	100	ug/Kg	1	11/15/16	DD	SW8270D
Hexachlorobutadiene	ND	250	130	ug/Kg	1	11/15/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	250	110	ug/Kg	1	11/15/16	DD	SW8270D
Hexachloroethane	ND	180	110	ug/Kg	1	11/15/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	600	250	120	ug/Kg	1	11/15/16	DD	SW8270D
Isophorone	ND	180	100	ug/Kg	1	11/15/16	DD	SW8270D
-				-				

Phoenix I.D.: BV83365

Client ID: 15B19 (0-2)

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Naphthalene	ND	250	100	ug/Kg	1	11/15/16	DD	SW8270D
Nitrobenzene	ND	180	130	ug/Kg	1	11/15/16	DD	SW8270D
N-Nitrosodimethylamine	ND	250	100	ug/Kg	1	11/15/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	180	120	ug/Kg	1	11/15/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	250	140	ug/Kg	1	11/15/16	DD	SW8270D
Pentachloronitrobenzene	ND	250	130	ug/Kg	1	11/15/16	DD	SW8270D
Pentachlorophenol	ND	220	140	ug/Kg	1	11/15/16	DD	SW8270D
Phenanthrene	1100	250	100	ug/Kg	1	11/15/16	DD	SW8270D
Phenol	ND	250	110	ug/Kg	1	11/15/16	DD	SW8270D
Pyrene	1500	250	120	ug/Kg	1	11/15/16	DD	SW8270D
Pyridine	ND	250	88	ug/Kg	1	11/15/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	86			%	1	11/15/16	DD	30 - 130 %
% 2-Fluorobiphenyl	72			%	1	11/15/16	DD	30 - 130 %
% 2-Fluorophenol	46			%	1	11/15/16	DD	30 - 130 %
% Nitrobenzene-d5	69			%	1	11/15/16	DD	30 - 130 %
% Phenol-d5	67			%	1	11/15/16	DD	30 - 130 %
% Terphenyl-d14	61			%	1	11/15/16	DD	30 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 22, 2016

Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 22, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOIL Collected by: TG 11/14/16

Wattix. Soil Collected by. 19 11/14/10

Location Code: EBC Received by: SW 11/15/16 17:12

LOD/

Rush Request: 72 Hour Analyzed by: see "By" below P.O.#:

<u>Laboratory Da</u>

Laboratory Data SDG ID: GBV83365
Phoenix ID: BV83366

Project ID: 1181 FLUSHING AVE BROOKLYN NY

Client ID: 15B19 (12-14)

Parameter	Result	RL/ PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.41	0.41	mg/Kg	1	11/16/16	TH	SW6010C
Aluminum	4690	41	8.3	mg/Kg	10	11/16/16	TH	SW6010C
Arsenic	1.19	0.83	0.83	mg/Kg	1	11/16/16	TH	SW6010C
Barium	22.6	0.8	0.41	mg/Kg	1	11/16/16	TH	SW6010C
Beryllium	0.27	B 0.33	0.17	mg/Kg	1	11/16/16	TH	SW6010C
Calcium	909	4.1	3.8	mg/Kg	1	11/16/16	TH	SW6010C
Cadmium	ND	0.41	0.41	mg/Kg	1	11/16/16	TH	SW6010C
Cobalt	4.82	0.41	0.41	mg/Kg	1	11/16/16	TH	SW6010C
Chromium	14.1	0.41	0.41	mg/Kg	1	11/16/16	TH	SW6010C
Copper	7.07	0.41	0.41	mg/kg	1	11/16/16	TH	SW6010C
Iron	10600	41	41	mg/Kg	10	11/16/16	TH	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	11/16/16	RS	SW7471B
Potassium	792	8	3.2	mg/Kg	1	11/16/16	LK	SW6010C
Magnesium	1740	4.1	4.1	mg/Kg	1	11/16/16	TH	SW6010C
Manganese	170	4.1	4.1	mg/Kg	10	11/16/16	TH	SW6010C
Sodium	148	8	3.5	mg/Kg	1	11/16/16	LK	SW6010C
Nickel	8.75	0.41	0.41	mg/Kg	1	11/16/16	TH	SW6010C
Lead	1.4	0.8	0.41	mg/Kg	1	11/16/16	TH	SW6010C
Antimony	ND	2.1	2.1	mg/Kg	1	11/16/16	TH	SW6010C
Selenium	ND	1.7	1.4	mg/Kg	1	11/16/16	TH	SW6010C
Thallium	ND	1.7	1.7	mg/Kg	1	11/16/16	TH	SW6010C
Vanadium	16.2	0.41	0.41	mg/Kg	1	11/16/16	TH	SW6010C
Zinc	18.7	0.8	0.41	mg/Kg	1	11/16/16	TH	SW6010C
Percent Solid	83			%		11/15/16	W	SW846-%Solid
Soil Extraction for SVOA	Completed					11/15/16	JJ/CKV	SW3545A
Mercury Digestion	Completed					11/16/16	W/W	SW7471B
Total Metals Digest	Completed					11/15/16	X/AG	SW3050B
Field Extraction	Completed					11/14/16		SW5035A

Client ID: 15B19 (12-14)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	4.9	0.99	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	4.9	0.99	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	4.9	0.99	ug/Kg	1	11/16/16	JLI	SW8260C
1,1-Dichloroethane	ND	4.9	0.99	ug/Kg	1	11/16/16	JLI	SW8260C
1,1-Dichloroethene	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
1,1-Dichloropropene	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	4.9	0.99	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	4.9	0.99	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,4-Trimethylbenzene	0.99	J 4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	4.9	0.99	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dibromoethane	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichloroethane	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichloropropane	ND	4.9	0.99	ug/Kg	1	11/16/16	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
1,3-Dichloropropane	ND	4.9	0.99	ug/Kg	1	11/16/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
2,2-Dichloropropane	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
2-Chlorotoluene	ND	4.9	0.99	ug/Kg	1	11/16/16	JLI	SW8260C
2-Hexanone	ND	25	4.9	ug/Kg	1	11/16/16	JLI	SW8260C
2-Isopropyltoluene	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C 1
4-Chlorotoluene	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
4-Methyl-2-pentanone	ND	25	4.9	ug/Kg	1	11/16/16	JLI	SW8260C
Acetone	ND	25	4.9	ug/Kg	1	11/16/16	JLI	SW8260C
Acrylonitrile	ND	9.9	0.99	ug/Kg	1	11/16/16	JLI	SW8260C
Benzene	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
Bromobenzene	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
Bromochloromethane	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
Bromodichloromethane	ND	4.9	0.99	ug/Kg	1	11/16/16	JLI	SW8260C
Bromoform	ND	4.9	0.99	ug/Kg	1	11/16/16	JLI	SW8260C
Bromomethane	ND	4.9	2.0	ug/Kg	1	11/16/16	JLI	SW8260C
Carbon Disulfide	ND	4.9	0.99	ug/Kg	1	11/16/16	JLI	SW8260C
Carbon tetrachloride	ND	4.9	0.99	ug/Kg	1	11/16/16	JLI	SW8260C
Chlorobenzene	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
Chloroethane	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
Chloroform	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
Chloromethane	ND	4.9	0.99	ug/Kg	1	11/16/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
Dibromochloromethane	ND	4.9	0.99	ug/Kg	1	11/16/16	JLI	SW8260C
Dibromomethane	ND	4.9	0.99	ug/Kg	1	11/16/16	JLI	SW8260C
Dichlorodifluoromethane	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
Ethylbenzene	0.95	J 4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
Hexachlorobutadiene	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
Isopropylbenzene	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C

Client ID: 15B19 (12-14)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
m&p-Xylene	2.3	J 4.9	0.99	ug/Kg	1	11/16/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	30	4.9	ug/Kg	1	11/16/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	9.9	0.99	ug/Kg	1	11/16/16	JLI	SW8260C
Methylene chloride	ND	4.9	4.9	ug/Kg	1	11/16/16	JLI	SW8260C
Naphthalene	ND	4.9	0.99	ug/Kg	1	11/16/16	JLI	SW8260C
n-Butylbenzene	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
n-Propylbenzene	ND	4.9	0.99	ug/Kg	1	11/16/16	JLI	SW8260C
o-Xylene	ND	4.9	0.99	ug/Kg	1	11/16/16	JLI	SW8260C
p-Isopropyltoluene	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
sec-Butylbenzene	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
Styrene	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
tert-Butylbenzene	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
Tetrachloroethene	ND	4.9	0.99	ug/Kg	1	11/16/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	9.9	2.5	ug/Kg	1	11/16/16	JLI	SW8260C 1
Toluene	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	9.9	2.5	ug/Kg	1	11/16/16	JLI	SW8260C
Trichloroethene	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
Trichlorofluoromethane	ND	4.9	0.99	ug/Kg	1	11/16/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
Vinyl chloride	ND	4.9	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	98			%	1	11/16/16	JLI	70 - 130 %
% Bromofluorobenzene	98			%	1	11/16/16	JLI	70 - 130 %
% Dibromofluoromethane	94			%	1	11/16/16	JLI	70 - 130 %
% Toluene-d8	99			%	1	11/16/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	74	40	ug/kg	1	11/16/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	98			%	1	11/16/16	JLI	70 - 130 %
% Bromofluorobenzene	98			%	1	11/16/16	JLI	70 - 130 %
% Toluene-d8	99			%	1	11/16/16	JLI	70 - 130 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	20	0.99	ug/Kg	1	11/16/16	JLI	SW8260C
Acrolein	ND	20	2.5	ug/Kg	1	11/16/16	JLI	SW8260C
Acrylonitrile	ND	20	0.49	ug/Kg	1	11/16/16	JLI	SW8260C
Tert-butyl alcohol	ND	99	20	ug/Kg	1	11/16/16	JLI	SW8260C
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	280	140	ug/Kg	1	11/15/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	280	120	ug/Kg	1	11/15/16	DD	SW8270D
1,2-Dichlorobenzene	ND	280	110	ug/Kg	1	11/15/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	280	130	ug/Kg	1	11/15/16	DD	SW8270D
1,3-Dichlorobenzene	ND	280	120	ug/Kg	1	11/15/16	DD	SW8270D
1,4-Dichlorobenzene	ND	280	120	ug/Kg	1	11/15/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	280	220	ug/Kg	1	11/15/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	200	130	ug/Kg	1	11/15/16	DD	SW8270D
_, .,				· ə· ·ə	•			- - -

Client ID: 15B19 (12-14)

Cilett ID. 13B19 (12-14)		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
2,4-Dichlorophenol	ND	200	140	ug/Kg	1	11/15/16	DD	SW8270D
2,4-Dimethylphenol	ND	280	99	ug/Kg	1	11/15/16	DD	SW8270D
2,4-Dinitrophenol	ND	280	280	ug/Kg	1	11/15/16	DD	SW8270D
2,4-Dinitrotoluene	ND	200	160	ug/Kg	1	11/15/16	DD	SW8270D
2,6-Dinitrotoluene	ND	200	130	ug/Kg	1	11/15/16	DD	SW8270D
2-Chloronaphthalene	ND	280	110	ug/Kg	1	11/15/16	DD	SW8270D
2-Chlorophenol	ND	280	110	ug/Kg	1	11/15/16	DD	SW8270D
2-Methylnaphthalene	ND	280	120	ug/Kg	1	11/15/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	280	190	ug/Kg	1	11/15/16	DD	SW8270D
2-Nitroaniline	ND	280	280	ug/Kg	1	11/15/16	DD	SW8270D
2-Nitrophenol	ND	280	250	ug/Kg	1	11/15/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	280	160	ug/Kg	1	11/15/16	DD	SW8270D 1
3,3'-Dichlorobenzidine	ND	200	190	ug/Kg	1	11/15/16	DD	SW8270D
3-Nitroaniline	ND	400	800	ug/Kg	1	11/15/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	240	80	ug/Kg	1	11/15/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	280	120	ug/Kg	1	11/15/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	280	140	ug/Kg	1	11/15/16	DD	SW8270D
4-Chloroaniline	ND	320	190	ug/Kg	1	11/15/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	280	130	ug/Kg	1	11/15/16	DD	SW8270D
4-Nitroaniline	ND	400	130	ug/Kg	1	11/15/16	DD	SW8270D
4-Nitrophenol	ND	400	180	ug/Kg	1	11/15/16	DD	SW8270D
Acenaphthene	ND	280	120	ug/Kg	1	11/15/16	DD	SW8270D
Acenaphthylene	ND	280	110	ug/Kg	1	11/15/16	DD	SW8270D
Acetophenone	ND	280	120	ug/Kg	1	11/15/16	DD	SW8270D
Aniline	ND	320	320	ug/Kg	1	11/15/16	DD	SW8270D
Anthracene	ND	280	130	ug/Kg	1	11/15/16	DD	SW8270D
Benz(a)anthracene	ND	280	130	ug/Kg	1	11/15/16	DD	SW8270D
Benzidine	ND	400	230	ug/Kg	1	11/15/16	DD	SW8270D
Benzo(a)pyrene	ND	200	130	ug/Kg	1	11/15/16	DD	SW8270D
Benzo(b)fluoranthene	ND	280	140	ug/Kg	1	11/15/16	DD	SW8270D
Benzo(ghi)perylene	ND	280	130	ug/Kg	1	11/15/16	DD	SW8270D
Benzo(k)fluoranthene	ND	280	130	ug/Kg	1	11/15/16	DD	SW8270D
Benzoic acid	ND	2000	800	ug/Kg	1	11/15/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	280	100	ug/Kg	1	11/15/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	280	110	ug/Kg	1	11/15/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	200	110	ug/Kg	1	11/15/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	280	110	ug/Kg	1	11/15/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	280	110	ug/Kg	1	11/15/16	DD	SW8270D
Carbazole	ND	200	160	ug/Kg	1	11/15/16	DD	SW8270D
Chrysene	ND	280	130	ug/Kg	1	11/15/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	200	130	ug/Kg	1	11/15/16	DD	SW8270D
Dibenzofuran	ND	280	120	ug/Kg	1	11/15/16	DD	SW8270D
Diethyl phthalate	ND	280	130	ug/Kg	1	11/15/16	DD	SW8270D
Dimethylphthalate	ND	280	120	ug/Kg	1	11/15/16	DD	SW8270D
Di-n-butylphthalate	ND	280	110	ug/Kg	1	11/15/16	DD	SW8270D
Di-n-octylphthalate	ND	280	100	ug/Kg	1	11/15/16	DD	SW8270D
Fluoranthene	ND	280	130	ug/Kg	1	11/15/16	DD	SW8270D
Fluorene	ND	280	130	ug/Kg	1	11/15/16	DD	SW8270D
Hexachlorobenzene	ND	200	120	ug/Kg	1	11/15/16	DD	SW8270D
		-		3 3		-		

Client ID: 15B19 (12-14)

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Hexachlorobutadiene	ND	280	140	ug/Kg	1	11/15/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	280	120	ug/Kg	1	11/15/16	DD	SW8270D
Hexachloroethane	ND	200	120	ug/Kg	1	11/15/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	280	130	ug/Kg	1	11/15/16	DD	SW8270D
Isophorone	ND	200	110	ug/Kg	1	11/15/16	DD	SW8270D
Naphthalene	ND	280	110	ug/Kg	1	11/15/16	DD	SW8270D
Nitrobenzene	ND	200	140	ug/Kg	1	11/15/16	DD	SW8270D
N-Nitrosodimethylamine	ND	280	110	ug/Kg	1	11/15/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	200	130	ug/Kg	1	11/15/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	280	150	ug/Kg	1	11/15/16	DD	SW8270D
Pentachloronitrobenzene	ND	280	150	ug/Kg	1	11/15/16	DD	SW8270D
Pentachlorophenol	ND	240	150	ug/Kg	1	11/15/16	DD	SW8270D
Phenanthrene	ND	280	110	ug/Kg	1	11/15/16	DD	SW8270D
Phenol	ND	280	130	ug/Kg	1	11/15/16	DD	SW8270D
Pyrene	ND	280	140	ug/Kg	1	11/15/16	DD	SW8270D
Pyridine	ND	280	98	ug/Kg	1	11/15/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	76			%	1	11/15/16	DD	30 - 130 %
% 2-Fluorobiphenyl	61			%	1	11/15/16	DD	30 - 130 %
% 2-Fluorophenol	46			%	1	11/15/16	DD	30 - 130 %
% Nitrobenzene-d5	63			%	1	11/15/16	DD	30 - 130 %
% Phenol-d5	63			%	1	11/15/16	DD	30 - 130 %
% Terphenyl-d14	73			%	1	11/15/16	DD	30 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 22, 2016

Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 22, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:TG11/14/16Location Code:EBCReceived by:SW11/15/1617:12

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GBV83365

Phoenix ID: BV83367

Project ID: 1181 FLUSHING AVE BROOKLYN NY

Client ID: 15B19 (18-20)

Daniel and the	D It	RL/	LOD/	11.20	D'I d'a	Data/Time	5	Defense
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.41	0.41	mg/Kg	1	11/16/16	TH	SW6010C
Aluminum	6590	41	8.2	mg/Kg	10	11/16/16	TH	SW6010C
Arsenic	1.38	0.82	0.82	mg/Kg	1	11/16/16	TH	SW6010C
Barium	37.0	8.0	0.41	mg/Kg	1	11/16/16	TH	SW6010C
Beryllium	0.26	B 0.33	0.16	mg/Kg	1	11/16/16	TH	SW6010C
Calcium	1220	4.1	3.8	mg/Kg	1	11/16/16	TH	SW6010C
Cadmium	ND	0.41	0.41	mg/Kg	1	11/16/16	TH	SW6010C
Cobalt	7.43	0.41	0.41	mg/Kg	1	11/16/16	TH	SW6010C
Chromium	16.1	0.41	0.41	mg/Kg	1	11/16/16	TH	SW6010C
Copper	12.4	0.41	0.41	mg/kg	1	11/16/16	TH	SW6010C
Iron	15000	41	41	mg/Kg	10	11/16/16	TH	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	11/16/16	RS	SW7471B
Potassium	1530	8	3.2	mg/Kg	1	11/16/16	LK	SW6010C
Magnesium	2830	4.1	4.1	mg/Kg	1	11/16/16	LK	SW6010C
Manganese	327	4.1	4.1	mg/Kg	10	11/16/16	TH	SW6010C
Sodium	157	8	3.5	mg/Kg	1	11/16/16	LK	SW6010C
Nickel	13.5	0.41	0.41	mg/Kg	1	11/16/16	TH	SW6010C
Lead	8.2	0.8	0.41	mg/Kg	1	11/16/16	TH	SW6010C
Antimony	ND	2.1	2.1	mg/Kg	1	11/16/16	TH	SW6010C
Selenium	ND	1.6	1.4	mg/Kg	1	11/16/16	TH	SW6010C
Thallium	ND	1.6	1.6	mg/Kg	1	11/16/16	TH	SW6010C
Vanadium	24.1	0.41	0.41	mg/Kg	1	11/16/16	TH	SW6010C
Zinc	30.0	0.8	0.41	mg/Kg	1	11/16/16	TH	SW6010C
Percent Solid	81			%		11/15/16	W	SW846-%Solid
Soil Extraction for SVOA	Completed					11/15/16	JJ/CKV	SW3545A
Mercury Digestion	Completed					11/16/16	W/W	SW7471B
Total Metals Digest	Completed					11/15/16	X/AG	SW3050B
Field Extraction	Completed					11/14/16		SW5035A

Client ID: 15B19 (18-20)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	7800	1600	ug/Kg	1000	11/16/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	780	780	ug/Kg	1000	11/16/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	7800	1600	ug/Kg	1000	11/16/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	7800	1600	ug/Kg	1000	11/16/16	JLI	SW8260C
1,1-Dichloroethane	ND	1600	1600	ug/Kg	1000	11/16/16	JLI	SW8260C
1,1-Dichloroethene	ND	780	780	ug/Kg	1000	11/16/16	JLI	SW8260C
1,1-Dichloropropene	ND	7800	780	ug/Kg	1000	11/16/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	7800	1600	ug/Kg	1000	11/16/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	7800	780	ug/Kg	1000	11/16/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	7800	1600	ug/Kg	1000	11/16/16	JLI	SW8260C
1,2,4-Trimethylbenzene	910000	16000	16000	ug/Kg	20000	11/16/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	7800	1600	ug/Kg	1000	11/16/16	JLI	SW8260C
1,2-Dibromoethane	ND	7800	780	ug/Kg	1000	11/16/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	1100	780	ug/Kg	1000	11/16/16	JLI	SW8260C
1,2-Dichloroethane	ND	780	780	ug/Kg	1000	11/16/16	JLI	SW8260C
1,2-Dichloropropane	ND	7800	1600	ug/Kg	1000	11/16/16	JLI	SW8260C
1,3,5-Trimethylbenzene	320000	16000	16000	ug/Kg	20000	11/16/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	2400	780	ug/Kg	1000	11/16/16	JLI	SW8260C
1,3-Dichloropropane	ND	7800	1600	ug/Kg	1000	11/16/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	1800	780	ug/Kg	1000	11/16/16	JLI	SW8260C
2,2-Dichloropropane	ND	7800	780	ug/Kg	1000	11/16/16	JLI	SW8260C
2-Chlorotoluene	ND	7800	1600	ug/Kg	1000	11/16/16	JLI	SW8260C
2-Hexanone	ND	39000	7800	ug/Kg	1000	11/16/16	JLI	SW8260C
2-Isopropyltoluene	1400	J 7800	780	ug/Kg	1000	11/16/16	JLI	SW8260C 1
4-Chlorotoluene	ND	7800	780	ug/Kg	1000	11/16/16	JLI	SW8260C
4-Methyl-2-pentanone	ND	39000	7800	ug/Kg	1000	11/16/16	JLI	SW8260C
Acetone	ND	7800	7800	ug/Kg	1000	11/16/16	JLI	SW8260C
Acrylonitrile	ND	16000	1600	ug/Kg	1000	11/16/16	JLI	SW8260C
Benzene	ND	780	780	ug/Kg	1000	11/16/16	JLI	SW8260C
Bromobenzene	ND	7800	780	ug/Kg	1000	11/16/16	JLI	SW8260C
Bromochloromethane	ND	7800	780	ug/Kg	1000	11/16/16	JLI	SW8260C
Bromodichloromethane	ND	7800	1600	ug/Kg	1000	11/16/16	JLI	SW8260C
Bromoform	ND	7800	1600	ug/Kg	1000	11/16/16	JLI	SW8260C
Bromomethane	ND	7800	3100	ug/Kg	1000	11/16/16	JLI	SW8260C
Carbon Disulfide	ND	7800	1600	ug/Kg	1000	11/16/16	JLI	SW8260C
Carbon tetrachloride	ND	1600	1600	ug/Kg	1000	11/16/16	JLI	SW8260C
Chlorobenzene	ND	1100	780	ug/Kg	1000	11/16/16	JLI	SW8260C
Chloroethane	ND	7800	780	ug/Kg	1000	11/16/16	JLI	SW8260C
Chloroform	ND	780	780	ug/Kg	1000	11/16/16	JLI	SW8260C
Chloromethane	ND	7800	1600	ug/Kg	1000	11/16/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	780	780	ug/Kg	1000	11/16/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	7800	780	ug/Kg	1000	11/16/16	JLI	SW8260C
Dibromochloromethane	ND	7800	1600	ug/Kg	1000	11/16/16	JLI	SW8260C
Dibromomethane	ND	7800	1600	ug/Kg	1000	11/16/16	JLI	SW8260C
Dichlorodifluoromethane	ND	7800	780	ug/Kg	1000	11/16/16	JLI	SW8260C
Ethylbenzene	190000	1000	780	ug/Kg	1000	11/16/16	JLI	SW8260C
Hexachlorobutadiene	ND	7800	780	ug/Kg	1000	11/16/16	JLI	SW8260C
Isopropylbenzene	42000	7800	780	ug/Kg	1000	11/16/16	JLI	SW8260C

Client ID: 15B19 (18-20)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
m&p-Xylene	720000	160000	31000	ug/Kg	20000	11/16/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	7800	7800	ug/Kg	1000	11/16/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	1600	1600	ug/Kg	1000	11/16/16	JLI	SW8260C
Methylene chloride	ND	7800	7800	ug/Kg	1000	11/16/16	JLI	SW8260C
Naphthalene	89000	7800	1600	ug/Kg	1000	11/16/16	JLI	SW8260C
n-Butylbenzene	70000	16000	16000	ug/Kg	20000	11/16/16	JLI	SW8260C
n-Propylbenzene	140000	3900	1600	ug/Kg	1000	11/16/16	JLI	SW8260C
o-Xylene	260000	7800	1600	ug/Kg	1000	11/16/16	JLI	SW8260C
p-Isopropyltoluene	13000	7800	780	ug/Kg	1000	11/16/16	JLI	SW8260C
sec-Butylbenzene	23000	16000	16000	ug/Kg	20000	11/16/16	JLI	SW8260C
Styrene	ND	7800	780	ug/Kg	1000	11/16/16	JLI	SW8260C
tert-Butylbenzene	990	J 5900	780	ug/Kg	1000	11/16/16	JLI	SW8260C
Tetrachloroethene	22000	1600	1600	ug/Kg	1000	11/16/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	16000	3900	ug/Kg	1000	11/16/16	JLI	SW8260C 1
Toluene	20000	16000	16000	ug/Kg	20000	11/16/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	780	780	ug/Kg	1000	11/16/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	7800	780	ug/Kg	1000	11/16/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	16000	3900	ug/Kg	1000	11/16/16	JLI	SW8260C
Trichloroethene	ND	780	780	ug/Kg	1000	11/16/16	JLI	SW8260C
Trichlorofluoromethane	ND	7800	1600	ug/Kg	1000	11/16/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	7800	780	ug/Kg	1000	11/16/16	JLI	SW8260C
Vinyl chloride	ND	780	780	ug/Kg	1000	11/16/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	99			%	1000	11/16/16	JLI	70 - 130 %
% Bromofluorobenzene	108			%	1000	11/16/16	JLI	70 - 130 %
% Dibromofluoromethane	95			%	1000	11/16/16	JLI	70 - 130 %
% Toluene-d8	101			%	1000	11/16/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	63000	63000	ug/kg	1000	11/16/16	JLI	SW8260C
QA/QC Surrogates				5 5				
% 1,2-dichlorobenzene-d4	99			%	1000	11/16/16	JLI	70 - 130 %
% Bromofluorobenzene	108			%	1000	11/16/16	JLI	70 - 130 %
% Toluene-d8	101			%	1000	11/16/16	JLI	70 - 130 %
Volatiles								
1,1,1,2-Tetrachloroethane	ND	31000	1600	ug/Kg	1000	11/16/16	JLI	SW8260C
	ND	31000	3900	ug/Kg ug/Kg	1000	11/16/16	JLI	SW8260C
Acrolein	ND	31000	780	ug/Kg ug/Kg	1000	11/16/16	JLI	SW8260C
Acrylonitrile	ND	160000	31000	ug/Kg ug/Kg	1000	11/16/16	JLI	SW8260C
Tert-butyl alcohol	ND	100000	31000	ug/Rg	1000	11/10/10	JLI	34402000
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	2900	1400	ug/Kg	10	11/16/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	2900	1200	ug/Kg	10	11/16/16	DD	SW8270D
1,2-Dichlorobenzene	ND	2900	1200	ug/Kg	10	11/16/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	2900	1300	ug/Kg	10	11/16/16	DD	SW8270D
1,3-Dichlorobenzene	ND	2900	1200	ug/Kg	10	11/16/16	DD	SW8270D
1,4-Dichlorobenzene	ND	2900	1200	ug/Kg	10	11/16/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	2900	2200	ug/Kg	10	11/16/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	2000	1300	ug/Kg	10	11/16/16	DD	SW8270D

Client ID: 15B19 (18-20)

Parameter Result PQL MDL Units Dilution Date/Time By Reference
2,4-Dimethylphenol ND 2900 1000 ug/Kg 10 11/16/16 DD SW8270D 2,4-Dinitrophenol ND 2900 2900 ug/Kg 10 11/16/16 DD SW8270D 2,4-Dinitrotoluene ND 2000 1300 ug/Kg 10 11/16/16 DD SW8270D 2,6-Dinitrotoluene ND 2000 1300 ug/Kg 10 11/16/16 DD SW8270D 2-Chlorophenol ND 2900 1200 ug/Kg 10 11/16/16 DD SW8270D 2-Methylphenol (o-cresol) ND 2900 1200 ug/Kg 10 11/16/16 DD SW8270D 2-Mitrophenol ND 2900 2900 ug/Kg 10 11/16/16 DD SW8270D 2-Nitrophenol (m&p-cresol) ND 2900 2600 ug/Kg 10 11/16/16 DD SW8270D 3,3-Dichlorobenzidine ND 2900 1600 ug/Kg 10 11/16/16
2,4-Dinitrophenol ND 2900 2900 ug/kg 10 11/16/16 DD SW8270D 2,4-Dinitrotoluene ND 2000 1600 ug/kg 10 11/16/16 DD SW8270D 2,6-Dinitrotoluene ND 2000 1200 ug/kg 10 11/16/16 DD SW8270D 2-Chloronaphthalene ND 2900 1200 ug/kg 10 11/16/16 DD SW8270D 2-Methylnaphthalene 11000 2900 1200 ug/kg 10 11/16/16 DD SW8270D 2-Methylphenol (o-cresol) ND 1900 1900 ug/kg 10 11/16/16 DD SW8270D 2-Nitroaniline ND 2900 2600 ug/kg 10 11/16/16 DD SW8270D 3-Nitroaniline ND 2900 1600 ug/kg 10 11/16/16 DD SW8270D 3-Nitroaniline ND 2900 1600 ug/kg 10 11/16/16
2,4-Dinitrotoluene ND 2000 1600 ug/Kg 10 11/16/16 DD SW8270D 2,6-Dinitrotoluene ND 2000 1300 ug/Kg 10 11/16/16 DD SW8270D 2-Chlorophenol ND 2900 1200 ug/Kg 10 11/16/16 DD SW8270D 2-Methylnaphthalene 11000 2900 1200 ug/Kg 10 11/16/16 DD SW8270D 2-Methylphenol (o-cresol) ND 1900 1900 ug/Kg 10 11/16/16 DD SW8270D 2-Mitrophenol ND 2900 2900 ug/Kg 10 11/16/16 DD SW8270D 3-84-Methylphenol (m&p-cresol) ND 2900 1600 ug/Kg 10 11/16/16 DD SW8270D 3-3-Dichlorobenzidine ND 2900 1600 ug/Kg 10 11/16/16 DD SW8270D 4-Bromophenyl phenyl ether ND 2500 820 ug/Kg 10
2,6-Dinitrotoluene ND 2000 1300 ug/Kg 10 11/16/16 DD SW8270D 2-Chloronaphthalene ND 2900 1200 ug/Kg 10 11/16/16 DD SW8270D 2-Chlorophenol ND 2900 1200 ug/Kg 10 11/16/16 DD SW8270D 2-Methylpaphthalene 11000 2900 1200 ug/Kg 10 11/16/16 DD SW8270D 2-Methylphenol (o-cresol) ND 1900 1900 ug/Kg 10 11/16/16 DD SW8270D 2-Nitroaniline ND 2900 2600 ug/Kg 10 11/16/16 DD SW8270D 3,3-Dichlorobenzidine ND 2900 1600 ug/Kg 10 11/16/16 DD SW8270D 3,3-Dichlorobenzidine ND 2000 1900 ug/Kg 10 11/16/16 DD SW8270D 4,6-Dinitro-2-methylphenol ND 2900 1400 ug/Kg 10 <t< td=""></t<>
2-Chloronaphthalene ND 2900 1200 ug/Kg 10 11/16/16 DD SW8270D 2-Chlorophenol ND 2900 1200 ug/Kg 10 11/16/16 DD SW8270D 2-Methylnaphthalene 11000 290 1200 ug/Kg 10 11/16/16 DD SW8270D 2-Methylphenol (o-cresol) ND 1900 1900 ug/Kg 10 11/16/16 DD SW8270D 2-Nitrophenol ND 2900 2600 ug/Kg 10 11/16/16 DD SW8270D 3-Nitrophenol ND 2900 1600 ug/Kg 10 11/16/16 DD SW8270D 3-Nitrophenol ND 2900 1900 ug/Kg 10 11/16/16 DD SW8270D 4-Bromophenyl phenyl ether ND 2900 1200 ug/Kg 10 11/16/16 DD SW8270D 4-Chloro-3-methylphenol ND 2900 1400 ug/Kg 10 11/16/16
2-Chlorophenol ND 2900 1200 ug/Kg 10 11/16/16 DD SW8270D 2-Methylnaphthalene 11000 2900 1200 ug/Kg 10 11/16/16 DD SW8270D 2-Methylphenol (o-cresol) ND 1900 1900 ug/Kg 10 11/16/16 DD SW8270D 2-Nitrophenol ND 2900 2900 ug/Kg 10 11/16/16 DD SW8270D 3&4-Methylphenol (m&p-cresol) ND 2900 1600 ug/Kg 10 11/16/16 DD SW8270D 3.3-Dichlorobenzidine ND 2900 1900 ug/Kg 10 11/16/16 DD SW8270D 3Nitroaniline ND 2500 1900 ug/Kg 10 11/16/16 DD SW8270D 4Eromophenyl phenyl ether ND 2900 1400 ug/Kg 10 11/16/16 DD SW8270D 4-Chloro-3-methylphenol ND 2900 1400 ug/Kg 10
2-Methylnaphthalene 11000 2900 1200 ug/Kg 10 11/16/16 DD SW8270D 2-Methylphenol (o-cresol) ND 1900 1900 ug/Kg 10 11/16/16 DD SW8270D 2-Nitroaniline ND 2900 2900 ug/Kg 10 11/16/16 DD SW8270D 3-Ritrophenol ND 2900 1600 ug/Kg 10 11/16/16 DD SW8270D 3-Ritroaniline ND 2900 1600 ug/Kg 10 11/16/16 DD SW8270D 3-Nitroaniline ND 4100 8200 ug/Kg 10 11/16/16 DD SW8270D 4-G-Dinitro-2-methylphenol ND 2500 820 ug/Kg 10 11/16/16 DD SW8270D 4-Bromophenyl phenyl ether ND 2500 1200 ug/Kg 10 11/16/16 DD SW8270D 4-Chloroaniline ND 490 1400 ug/Kg 10 11/16/16
2-Methylphenol (o-cresol) ND 1900 1900 ug/Kg 10 11/16/16 DD SW8270D 2-Nitroaniline ND 2900 2900 ug/Kg 10 11/16/16 DD SW8270D 2-Nitrophenol ND 2900 2600 ug/Kg 10 11/16/16 DD SW8270D 3&4-Methylphenol (m&p-cresol) ND 2900 1600 ug/Kg 10 11/16/16 DD SW8270D 3,3-Dichlorobenzidine ND 2000 1900 ug/Kg 10 11/16/16 DD SW8270D 3-Nitroaniline ND 4100 8200 ug/Kg 10 11/16/16 DD SW8270D 4-G-Dinitro-2-methylphenol ND 2500 820 ug/Kg 10 11/16/16 DD SW8270D 4-Bromophenyl phenyl ether ND 2900 1200 ug/Kg 10 11/16/16 DD SW8270D 4-Chloroaniline ND 2900 1400 ug/Kg 10
2-Nitroaniline ND 2900 2900 ug/Kg 10 11/16/16 DD SW8270D 2-Nitrophenol ND 2900 2600 ug/Kg 10 11/16/16 DD SW8270D 3.84-Methylphenol (m&p-cresol) ND 2900 1600 ug/Kg 10 11/16/16 DD SW8270D 1 3,3'-Dichlorobenzidine ND 2000 1900 ug/Kg 10 11/16/16 DD SW8270D 1 4-Bromophenyl phenol ND 2500 8200 ug/Kg 10 11/16/16 DD SW8270D 4-Bromophenyl phenyl ether ND 2500 820 ug/Kg 10 11/16/16 DD SW8270D 4-Chloro-3-methylphenol ND 2900 1400 ug/Kg 10 11/16/16 DD SW8270D 4-Chloro-3-methylphenol ND 2900 1400 ug/Kg 10 11/16/16 DD SW8270D 4-Chloro-3-methylphenol ND 2900 1400
2-Nitrophenol ND 2900 2600 ug/Kg 10 11/16/16 DD SW8270D 13.4-Methylphenol (m&p-cresol) ND 2900 1600 ug/Kg 10 11/16/16 DD SW8270D 13.3'-Dichlorobenzidine ND 2000 1900 ug/Kg 10 11/16/16 DD SW8270D 14.5'-Dichlorobenzidine ND 2500 820 ug/Kg 10 11/16/16 DD SW8270D 14.6-Dinitro-2-methylphenol ND 2500 820 ug/Kg 10 11/16/16 DD SW8270D 14.6-Dinitro-2-methylphenol ND 2900 1200 ug/Kg 10 11/16/16 DD SW8270D 14.6-Dinitro-3-methylphenol ND 2900 1400 ug/Kg 10 11/16/16 DD SW8270D 14.6-Dinoro-3-methylphenol ND 2900 1400 ug/Kg 10 11/16/16 DD SW8270D 14.6-Dinoro-3-methylphenol ND 2900 1400 ug/Kg 10 11/16/16 DD SW8270D 14.6-Dinoro-3-methylphenol ND 2900 1400 ug/Kg 10 11/16/16 DD SW8270D 14.6-Dinoro-3-methylphenol ND 4100 1400 ug/Kg 10 11/16/16 DD SW8270D 14.6-Dinoro-3-methylphenol ND 4100 1400 ug/Kg 10 11/16/16 DD SW8270D 14.6-Dinoro-3-methylphenol ND 4100 1800 ug/Kg 10 11/16/16 DD SW8270D 14.6-Dinoro-3-methylphenol ND 2900 1200 ug/Kg 10 11/16/16 DD SW8270D 14.6-Dinoro-3-methylphenol ND 2900 1300 ug/Kg 10 11/16/16 DD SW8270D 14.6-Dinoro-3-methylphenol ND 2900 1300 ug/Kg 10 11/16/16 DD SW8270D 14.6-Dinoro-3-methylphenol ND 2900 1300 ug/Kg 10 11/16/16 DD SW8270D 14.6-Dinoro-3-methylphenol ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D 14.6-Dinoro-3-methylphenol ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D 14.6-Dinoro-3-methylphenol ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D 14.6-Dinoro-3-methylphenol ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D 14.6-Dinoro-3-methylphenol ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D 14.6-Dinoro-3-methylphenol ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D 14.6-Dinoro-3-methylphenol ND 1400 1400 ug/Kg 1
384-Methylphenol (m&p-cresol) ND 2900 1600 ug/Kg 10 11/16/16 DD SW8270D 1 3,3'-Dichlorobenzidine ND 2000 1900 ug/Kg 10 11/16/16 DD SW8270D 3-Nitroaniline ND 4100 8200 ug/Kg 10 11/16/16 DD SW8270D 4,6-Dinitro-2-methylphenol ND 2500 820 ug/Kg 10 11/16/16 DD SW8270D 4-Bromophenyl phenyl ether ND 2900 1200 ug/Kg 10 11/16/16 DD SW8270D 4-Chloro-3-methylphenol ND 2900 1400 ug/Kg 10 11/16/16 DD SW8270D 4-Chloro-3-methylphenol ND 2900 1400 ug/Kg 10 11/16/16 DD SW8270D 4-Chloro-3-methylphenol ND 3300 1900 ug/Kg 10 11/16/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 2900 1400 ug/Kg 10 11/16/16 DD SW8270D 4-Nitroaniline ND 4100 1400 ug/Kg 10 11/16/16 DD SW8270D 4-Nitroaniline ND 4100 1800 ug/Kg 10 11/16/16 DD SW8270D 4-Nitrophenol ND 4100 1800 ug/Kg 10 11/16/16 DD SW8270D 4-Nitrophenol ND 2900 1200 ug/Kg 10 11/16/16 DD SW8270D 4-Reaphthylene ND 2900 1300 ug/Kg 10 11/16/16 DD SW8270D 4-Reaphthylene ND 2900 1300 ug/Kg 10 11/16/16 DD SW8270D 4-Reaphthylene ND 2900 1300 ug/Kg 10 11/16/16 DD SW8270D 4-Reaphthylene ND 2900 1300 ug/Kg 10 11/16/16 DD SW8270D 4-Reaphthylene ND 2900 1300 ug/Kg 10 11/16/16 DD SW8270D 4-Reaphthylene ND 4100 2400 ug/Kg 10 11/16/16 DD SW8270D 4-Reaphthylene ND 4100 4100 ug/Kg 10 11/16/16 DD SW8270D 4-Reaphthylene ND 4100 4100 ug/Kg 10 11/16/16 DD SW8270D 4-Reaphthylene ND 4100 4100 ug/Kg 10 11/16/16 DD SW8270D 4-Reaphthylene ND 4100 4100 ug/Kg 10 11/16/16 DD SW8270D 4-Reaphthylene ND 4100 4100 ug/Kg 10 11/16/16 DD SW8270D 4-Reaphthylene ND 4100 4100 ug/Kg 10 11/16/16 DD SW8270D 4-Reaphthylene ND 4100 4100 ug/Kg 10 11/16/16 DD SW8270D 4-Reap
3,3'-Dichlorobenzidine ND 2000 1900 ug/Kg 10 11/16/16 DD SW8270D 3-Nitroaniline ND 4100 8200 ug/Kg 10 11/16/16 DD SW8270D 4,6-Dinitro-2-methylphenol ND 2500 820 ug/Kg 10 11/16/16 DD SW8270D 4-Bromophenyl phenyl ether ND 2900 1200 ug/Kg 10 11/16/16 DD SW8270D 4-Chloro-3-methylphenol ND 2900 1400 ug/Kg 10 11/16/16 DD SW8270D 4-Chloroaniline ND 3300 1900 ug/Kg 10 11/16/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 2900 1400 ug/Kg 10 11/16/16 DD SW8270D 4-Nitroaniline ND 4100 1800 ug/Kg 10 11/16/16 DD SW8270D Acenaphthene ND 2900 1200 ug/Kg 10
3-Nitroaniline ND 4100 8200 ug/kg 10 11/16/16 DD SW8270D 4,6-Dinitro-2-methylphenol ND 2500 820 ug/kg 10 11/16/16 DD SW8270D 4-Bromophenyl phenyl ether ND 2900 1200 ug/kg 10 11/16/16 DD SW8270D 4-Chloro-3-methylphenol ND 2900 1400 ug/kg 10 11/16/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 3300 1900 ug/kg 10 11/16/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 2900 1400 ug/kg 10 11/16/16 DD SW8270D 4-Nitroaniline ND 4100 1400 ug/kg 10 11/16/16 DD SW8270D 4-Nitrophenol ND 4100 1800 ug/kg 10 11/16/16 DD SW8270D Acenaphthylene ND 2900 1100 ug/kg 10
4,6-Dinitro-2-methylphenol ND 2500 820 ug/Kg 10 11/16/16 DD SW8270D 4-Bromophenyl phenyl ether ND 2900 1200 ug/Kg 10 11/16/16 DD SW8270D 4-Chloro-3-methylphenol ND 2900 1400 ug/Kg 10 11/16/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 2900 1400 ug/Kg 10 11/16/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 2900 1400 ug/Kg 10 11/16/16 DD SW8270D 4-Nitroaniline ND 4100 1400 ug/Kg 10 11/16/16 DD SW8270D 4-Nitrophenol ND 4100 1800 ug/Kg 10 11/16/16 DD SW8270D Acenaphthene ND 2900 1200 ug/Kg 10 11/16/16 DD SW8270D Acetophenone ND 2900 1300 ug/Kg 10 <td< td=""></td<>
4-Bromophenyl phenyl ether ND 2900 1200 ug/Kg 10 11/16/16 DD SW8270D 4-Chloro-3-methylphenol ND 2900 1400 ug/Kg 10 11/16/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 3300 1900 ug/Kg 10 11/16/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 2900 1400 ug/Kg 10 11/16/16 DD SW8270D 4-Nitrophenyl phenyl ether ND 4100 1400 ug/Kg 10 11/16/16 DD SW8270D 4-Nitrophenol ND 4100 1800 ug/Kg 10 11/16/16 DD SW8270D Acenaphthene ND 2900 1200 ug/Kg 10 11/16/16 DD SW8270D Acetophenone ND 2900 1300 ug/Kg 10 11/16/16 DD SW8270D Anitine ND 3300 3300 ug/Kg 10 11/16
4-Chloro-3-methylphenol ND 2900 1400 ug/Kg 10 11/16/16 DD SW8270D 4-Chloroaniline ND 3300 1900 ug/Kg 10 11/16/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 2900 1400 ug/Kg 10 11/16/16 DD SW8270D 4-Nitrophenol ND 4100 1800 ug/Kg 10 11/16/16 DD SW8270D 4-Nitrophenol ND 4100 1800 ug/Kg 10 11/16/16 DD SW8270D Acenaphthene ND 2900 1200 ug/Kg 10 11/16/16 DD SW8270D Acetophenone ND 2900 1300 ug/Kg 10 11/16/16 DD SW8270D Aniline ND 3300 3300 ug/Kg 10 11/16/16 DD SW8270D Anthracene ND 1400 1400 ug/Kg 10 11/16/16 DD
4-Chloroaniline ND 3300 1900 ug/Kg 10 11/16/16 DD SW8270D 4-Chlorophenyl phenyl ether ND 2900 1400 ug/Kg 10 11/16/16 DD SW8270D 4-Nitrophenol ND 4100 1400 ug/Kg 10 11/16/16 DD SW8270D 4-Nitrophenol ND 4100 1800 ug/Kg 10 11/16/16 DD SW8270D Acenaphthene ND 2900 1200 ug/Kg 10 11/16/16 DD SW8270D Acenaphthylene ND 2900 1100 ug/Kg 10 11/16/16 DD SW8270D Acetophenone ND 2900 1300 ug/Kg 10 11/16/16 DD SW8270D Aniline ND 3300 3300 ug/Kg 10 11/16/16 DD SW8270D Anthracene ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D </td
4-Chlorophenyl phenyl ether ND 2900 1400 ug/kg 10 11/16/16 DD SW8270D 4-Nitroaniline ND 4100 1400 ug/kg 10 11/16/16 DD SW8270D 4-Nitrophenol ND 4100 1800 ug/kg 10 11/16/16 DD SW8270D Acenaphthene ND 2900 1200 ug/kg 10 11/16/16 DD SW8270D Acetophenone ND 2900 1300 ug/kg 10 11/16/16 DD SW8270D Aniline ND 2900 1300 ug/kg 10 11/16/16 DD SW8270D Anthracene ND 2900 1300 ug/kg 10 11/16/16 DD SW8270D Benz(a)anthracene ND 1400 1400 ug/kg 10 11/16/16 DD SW8270D Benzo(a)pyrene ND 4100 2400 ug/kg 10 11/16/16 DD SW8270
4-Nitroaniline ND 4100 1400 ug/Kg 10 11/16/16 DD SW8270D 4-Nitrophenol ND 4100 1800 ug/Kg 10 11/16/16 DD SW8270D Acenaphthene ND 2900 1200 ug/Kg 10 11/16/16 DD SW8270D Acenaphthylene ND 2900 1100 ug/Kg 10 11/16/16 DD SW8270D Acetophenone ND 2900 1300 ug/Kg 10 11/16/16 DD SW8270D Aniline ND 3300 3300 ug/Kg 10 11/16/16 DD SW8270D Anthracene ND 2900 1300 ug/Kg 10 11/16/16 DD SW8270D Benz(a)anthracene ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D Benzo(a)pyrene ND 1300 1300 ug/Kg 10 11/16/16 DD SW8270D </td
4-Nitrophenol ND 4100 1800 ug/Kg 10 11/16/16 DD SW8270D Acenaphthene ND 2900 1200 ug/Kg 10 11/16/16 DD SW8270D Acenaphthylene ND 2900 1100 ug/Kg 10 11/16/16 DD SW8270D Acetophenone ND 2900 1300 ug/Kg 10 11/16/16 DD SW8270D Aniline ND 3300 3300 ug/Kg 10 11/16/16 DD SW8270D Anthracene ND 2900 1300 ug/Kg 10 11/16/16 DD SW8270D Benz(a)anthracene ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D Benzo(a)pyrene ND 1300 1300 ug/Kg 10 11/16/16 DD SW8270D Benzo(b)fluoranthene ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D
Acenaphthene ND 2900 1200 ug/Kg 10 11/16/16 DD SW8270D Acenaphthylene ND 2900 1100 ug/Kg 10 11/16/16 DD SW8270D Acetophenone ND 2900 1300 ug/Kg 10 11/16/16 DD SW8270D Aniline ND 3300 3300 ug/Kg 10 11/16/16 DD SW8270D Anthracene ND 2900 1300 ug/Kg 10 11/16/16 DD SW8270D Benz(a)anthracene ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D Benzo(a)pyrene ND 4100 2400 ug/Kg 10 11/16/16 DD SW8270D Benzo(b)fluoranthene ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D Benzo(k)fluoranthene ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270
Acenaphthylene ND 2900 1100 ug/Kg 10 11/16/16 DD SW8270D Acetophenone ND 2900 1300 ug/Kg 10 11/16/16 DD SW8270D Aniline ND 3300 3300 ug/Kg 10 11/16/16 DD SW8270D Anthracene ND 2900 1300 ug/Kg 10 11/16/16 DD SW8270D Benz(a)anthracene ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D Benzo(a)pyrene ND 1300 ug/Kg 10 11/16/16 DD SW8270D Benzo(b)fluoranthene ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D Benzo(ghi)perylene ND 2900 1300 ug/Kg 10 11/16/16 DD SW8270D Benzo(k)fluoranthene ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D
Acetophenone ND 2900 1300 ug/Kg 10 11/16/16 DD SW8270D Aniline ND 3300 3300 ug/Kg 10 11/16/16 DD SW8270D Anthracene ND 2900 1300 ug/Kg 10 11/16/16 DD SW8270D Benz(a)anthracene ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D Benzidine ND 4100 2400 ug/Kg 10 11/16/16 DD SW8270D Benzo(a)pyrene ND 1300 1300 ug/Kg 10 11/16/16 DD SW8270D Benzo(b)fluoranthene ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D Benzo(k)fluoranthene ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D Benzo(k)fluoranthene ND 1400 1400 ug/Kg 10 11/16/16 DD SW8
Aniline ND 3300 3300 ug/Kg 10 11/16/16 DD SW8270D Anthracene ND 2900 1300 ug/Kg 10 11/16/16 DD SW8270D Benz(a)anthracene ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D Benzidine ND 4100 2400 ug/Kg 10 11/16/16 DD SW8270D Benzo(a)pyrene ND 1300 1300 ug/Kg 10 11/16/16 DD SW8270D Benzo(b)fluoranthene ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D Benzo(k)fluoranthene ND 1300 ug/Kg 10 11/16/16 DD SW8270D
Anthracene ND 2900 1300 ug/Kg 10 11/16/16 DD SW8270D Benz(a)anthracene ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D Benzidine ND 4100 2400 ug/Kg 10 11/16/16 DD SW8270D Benzo(a)pyrene ND 1300 1300 ug/Kg 10 11/16/16 DD SW8270D Benzo(b)fluoranthene ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D Benzo(k)fluoranthene ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D
Benz(a)anthracene ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D Benzidine ND 4100 2400 ug/Kg 10 11/16/16 DD SW8270D Benzo(a)pyrene ND 1300 1300 ug/Kg 10 11/16/16 DD SW8270D Benzo(b)fluoranthene ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D Benzo(k)fluoranthene ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D Benzo(k)fluoranthene ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D
Benzidine ND 4100 2400 ug/Kg 10 11/16/16 DD SW8270D Benzo(a)pyrene ND 1300 1300 ug/Kg 10 11/16/16 DD SW8270D Benzo(b)fluoranthene ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D Benzo(ghi)perylene ND 2900 1300 ug/Kg 10 11/16/16 DD SW8270D Benzo(k)fluoranthene ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D
Benzo(a)pyrene ND 1300 1300 ug/Kg 10 11/16/16 DD SW8270D Benzo(b)fluoranthene ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D Benzo(ghi)perylene ND 2900 1300 ug/Kg 10 11/16/16 DD SW8270D Benzo(k)fluoranthene ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D
Benzo(b)fluoranthene ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D Benzo(ghi)perylene ND 2900 1300 ug/Kg 10 11/16/16 DD SW8270D Benzo(k)fluoranthene ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D
Benzo(ghi)perylene ND 2900 1300 ug/Kg 10 11/16/16 DD SW8270D Benzo(k)fluoranthene ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D
Benzo(k)fluoranthene ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D
Ponzeio ceid ND 20000 9200 ualka 10 14/46/46 DD 9/46/70D 1
Benzoic acid ND 20000 8200 ug/Kg 10 11/16/16 DD SW8270D 1
Benzyl butyl phthalate ND 2900 1100 ug/Kg 10 11/16/16 DD SW8270D
Bis(2-chloroethoxy)methane ND 2900 1100 ug/Kg 10 11/16/16 DD SW8270D
Bis(2-chloroethyl)ether ND 2000 1100 ug/Kg 10 11/16/16 DD SW8270D
Bis(2-chloroisopropyl)ether ND 2900 1100 ug/Kg 10 11/16/16 DD SW8270D
Bis(2-ethylhexyl)phthalate ND 2900 1200 ug/Kg 10 11/16/16 DD SW8270D
Carbazole ND 2000 1600 ug/Kg 10 11/16/16 DD SW8270D
Chrysene ND 1400 1400 ug/Kg 10 11/16/16 DD SW8270D
Dibenz(a,h)anthracene ND 1300 1300 ug/Kg 10 11/16/16 DD SW8270D
Dibenzofuran ND 2900 1200 ug/Kg 10 11/16/16 DD SW8270D
Diethyl phthalate ND 2900 1300 ug/Kg 10 11/16/16 DD SW8270D
Dimethylphthalate ND 2900 1300 ug/Kg 10 11/16/16 DD SW8270D
Di-n-butylphthalate ND 2900 1100 ug/Kg 10 11/16/16 DD SW8270D
Di-n-octylphthalate ND 2900 1100 ug/Kg 10 11/16/16 DD SW8270D
Fluoranthene ND 2900 1300 ug/Kg 10 11/16/16 DD SW8270D
Fluorene ND 2900 1300 ug/Kg 10 11/16/16 DD SW8270D
Hexachlorobenzene ND 2000 1200 ug/Kg 10 11/16/16 DD SW8270D

Client ID: 15B19 (18-20)

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Hexachlorobutadiene	ND	2900	1500	ug/Kg	10	11/16/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	2900	1300	ug/Kg	10	11/16/16	DD	SW8270D
Hexachloroethane	ND	2000	1200	ug/Kg	10	11/16/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	1400	1400	ug/Kg	10	11/16/16	DD	SW8270D
Isophorone	ND	2000	1100	ug/Kg	10	11/16/16	DD	SW8270D
Naphthalene	17000	2900	1200	ug/Kg	10	11/16/16	DD	SW8270D
Nitrobenzene	ND	2000	1400	ug/Kg	10	11/16/16	DD	SW8270D
N-Nitrosodimethylamine	ND	2900	1200	ug/Kg	10	11/16/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	2000	1300	ug/Kg	10	11/16/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	2900	1600	ug/Kg	10	11/16/16	DD	SW8270D
Pentachloronitrobenzene	ND	2900	1500	ug/Kg	10	11/16/16	DD	SW8270D
Pentachlorophenol	ND	1500	1500	ug/Kg	10	11/16/16	DD	SW8270D
Phenanthrene	ND	2900	1200	ug/Kg	10	11/16/16	DD	SW8270D
Phenol	ND	1300	1300	ug/Kg	10	11/16/16	DD	SW8270D
Pyrene	ND	2900	1400	ug/Kg	10	11/16/16	DD	SW8270D
Pyridine	ND	2900	1000	ug/Kg	10	11/16/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	Diluted Out			%	10	11/16/16	DD	30 - 130 %
% 2-Fluorobiphenyl	Diluted Out			%	10	11/16/16	DD	30 - 130 %
% 2-Fluorophenol	Diluted Out			%	10	11/16/16	DD	30 - 130 %
% Nitrobenzene-d5	Diluted Out			%	10	11/16/16	DD	30 - 130 %
% Phenol-d5	Diluted Out			%	10	11/16/16	DD	30 - 130 %
% Terphenyl-d14	Diluted Out			%	10	11/16/16	DD	30 - 130 %

Client ID: 15B19 (18-20)

RL/ LOD/

Parameter Result PQL MDL Units Dilution Date/Time By Reference

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

Semi-Volatile Comment:

Due to a matrix interference and/or the presence of a large amount of non-target material in the sample, a dilution was required resulting in an elevated RL for the semivolatile analysis.

Semi-Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

Volatile Comment:

Elevated reporting limits for volatiles due to the presence of target and/or non-target compounds.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 22, 2016

Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 22, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Matrix: SOIL Collected by: TG 11/14/16

RL/

Location Code: EBC Received by: SW 11/15/16 17:12

LOD/

Rush Request: 72 Hour Analyzed by: see "By" below

1181 FLUSHING AVE BROOKLYN NY

Client ID: 15B19 (20-25)

P.O.#:

Project ID:

Laboratory Data

SDG ID: GBV83365 Phoenix ID: BV83368

Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.40	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Aluminum	4810	40	7.9	mg/Kg	10	11/16/16	TH	SW6010C
Arsenic	1.28	0.79	0.79	mg/Kg	1	11/16/16	TH	SW6010C
Barium	24.3	0.8	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Beryllium	0.21	B 0.32	0.16	mg/Kg	1	11/16/16	TH	SW6010C
Calcium	1190	4.0	3.6	mg/Kg	1	11/16/16	TH	SW6010C
Cadmium	ND	0.40	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Cobalt	5.56	0.40	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Chromium	13.6	0.40	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Copper	9.46	0.40	0.40	mg/kg	1	11/16/16	TH	SW6010C
Iron	12500	40	40	mg/Kg	10	11/16/16	TH	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	11/16/16	RS	SW7471B
Potassium	992	8	3.1	mg/Kg	1	11/16/16	LK	SW6010C
Magnesium	2030	4.0	4.0	mg/Kg	1	11/16/16	TH	SW6010C
Manganese	203	4.0	4.0	mg/Kg	10	11/16/16	TH	SW6010C
Sodium	150	8	3.4	mg/Kg	1	11/16/16	LK	SW6010C
Nickel	10.2	0.40	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Lead	2.3	0.8	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Antimony	ND	2.0	2.0	mg/Kg	1	11/16/16	TH	SW6010C
Selenium	ND	1.6	1.3	mg/Kg	1	11/16/16	TH	SW6010C
Thallium	ND	1.6	1.6	mg/Kg	1	11/16/16	TH	SW6010C
Vanadium	19.8	0.40	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Zinc	21.5	0.8	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Percent Solid	79			%		11/15/16	W	SW846-%Solid
Soil Extraction for SVOA	Completed					11/15/16	JJ/CKV	SW3545A
Mercury Digestion	Completed					11/16/16	W/W	SW7471B
Total Metals Digest	Completed					11/15/16	X/AG	SW3050B
Field Extraction	Completed					11/14/16		SW5035A

Client ID: 15B19 (20-25)

Parameter	Result		RL/ QL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
<u>Volatiles</u>									
1,1,1,2-Tetrachloroethane	ND	-	7.9	1.6	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	-	7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	-	7.9	1.6	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	-	7.9	1.6	ug/Kg	1	11/16/16	JLI	SW8260C
1,1-Dichloroethane	ND	-	7.9	1.6	ug/Kg	1	11/16/16	JLI	SW8260C
1,1-Dichloroethene	ND	-	7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C
1,1-Dichloropropene	ND	-	7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	-	7.9	1.6	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	-	7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	-	7.9	1.6	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,4-Trimethylbenzene	1400	4	160	46	ug/Kg	50	11/18/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	-	7.9	1.6	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dibromoethane	ND	-	7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	-	7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichloroethane	ND	-	7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichloropropane	ND	-	7.9	1.6	ug/Kg	1	11/16/16	JLI	SW8260C
1,3,5-Trimethylbenzene	490	2	160	46	ug/Kg	50	11/18/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	-	7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C
1,3-Dichloropropane	ND	-	7.9	1.6	ug/Kg	1	11/16/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	-	7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C
2,2-Dichloropropane	ND	-	7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C
2-Chlorotoluene	ND	-	7.9	1.6	ug/Kg	1	11/16/16	JLI	SW8260C
2-Hexanone	ND		40	7.9	ug/Kg	1	11/16/16	JLI	SW8260C
2-Isopropyltoluene	1.4	J	7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C 1
4-Chlorotoluene	ND	-	7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C
4-Methyl-2-pentanone	ND		40	7.9	ug/Kg	1	11/16/16	JLI	SW8260C
Acetone	ND		40	7.9	ug/Kg	1	11/16/16	JLI	SW8260C
Acrylonitrile	ND		16	1.6	ug/Kg	1	11/16/16	JLI	SW8260C
Benzene	3.0	J	7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C
Bromobenzene	ND	-	7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C
Bromochloromethane	ND	-	7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C
Bromodichloromethane	ND	-	7.9	1.6	ug/Kg	1	11/16/16	JLI	SW8260C
Bromoform	ND	-	7.9	1.6	ug/Kg	1	11/16/16	JLI	SW8260C
Bromomethane	ND	-	7.9	3.2	ug/Kg	1	11/16/16	JLI	SW8260C
Carbon Disulfide	ND	-	7.9	1.6	ug/Kg	1	11/16/16	JLI	SW8260C
Carbon tetrachloride	ND	-	7.9	1.6	ug/Kg	1	11/16/16	JLI	SW8260C
Chlorobenzene	ND	-	7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C
Chloroethane	ND	-	7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C
Chloroform	ND	-	7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C
Chloromethane	ND	-	7.9	1.6	ug/Kg	1	11/16/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	-	7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	-	7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C
Dibromochloromethane	ND	-	7.9	1.6	ug/Kg	1	11/16/16	JLI	SW8260C
Dibromomethane	ND	-	7.9	1.6	ug/Kg	1	11/16/16	JLI	SW8260C
Dichlorodifluoromethane	ND	-	7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C
Ethylbenzene	410	2	100	46	ug/Kg	50	11/18/16	JLI	SW8260C
Hexachlorobutadiene	ND	-	7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C
Isopropylbenzene	15	•	7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C

Client ID: 15B19 (20-25)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
m&p-Xylene	2000	460	91	ug/Kg	50	11/18/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	47	7.9	ug/Kg	1	11/16/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	16	1.6	ug/Kg	1	11/16/16	JLI	SW8260C
Methylene chloride	ND	7.9	7.9	ug/Kg	1	11/16/16	JLI	SW8260C
Naphthalene	250	7.9	1.6	ug/Kg	1	11/16/16	JLI	SW8260C
n-Butylbenzene	19	7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C
n-Propylbenzene	48	7.9	1.6	ug/Kg	1	11/16/16	JLI	SW8260C
o-Xylene	640	460	91	ug/Kg	50	11/18/16	JLI	SW8260C
p-Isopropyltoluene	5.4	J 7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C
sec-Butylbenzene	9.6	7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C
Styrene	ND	7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C
tert-Butylbenzene	ND	7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C
Tetrachloroethene	3.0	J 7.9	1.6	ug/Kg	1	11/16/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	16	4.0	ug/Kg	1	11/16/16	JLI	SW8260C 1
Toluene	26	7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	16	4.0	ug/Kg	1	11/16/16	JLI	SW8260C
Trichloroethene	ND	7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C
Trichlorofluoromethane	ND	7.9	1.6	ug/Kg	1	11/16/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C
Vinyl chloride	ND	7.9	0.79	ug/Kg	1	11/16/16	JLI	SW8260C
QA/QC Surrogates				3 3				
% 1,2-dichlorobenzene-d4	98			%	1	11/16/16	JLI	70 - 130 %
% Bromofluorobenzene	105			%	1	11/16/16	JLI	70 - 130 %
% Dibromofluoromethane	95			%	1	11/16/16	JLI	70 - 130 %
% Toluene-d8	97			%	1	11/16/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	100	63	ug/kg	1	11/16/16	JLI	SW8260C
QA/QC Surrogates				-99	•			
% 1,2-dichlorobenzene-d4	98			%	1	11/16/16	JLI	70 - 130 %
% Bromofluorobenzene	105			%	1	11/16/16	JLI	70 - 130 %
% Toluene-d8	97			%	1	11/16/16	JLI	70 - 130 %
Volatiles	ND	20	1.6	a/l/a	4	44/46/46		CM6360C
1,1,1,2-Tetrachloroethane	ND	32	1.6	ug/Kg	1	11/16/16	JLI	SW8260C
Acrolein	ND	32	4.0	ug/Kg	1	11/16/16	JLI 	SW8260C
Acrylonitrile	ND	32	0.79	ug/Kg	1	11/16/16	JLI 	SW8260C
Tert-butyl alcohol	ND	160	32	ug/Kg	1	11/16/16	JLI	SW8260C
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
1,2-Dichlorobenzene	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	290	130	ug/Kg	1	11/16/16	DD	SW8270D
1,3-Dichlorobenzene	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
1,4-Dichlorobenzene	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	290	230	ug/Kg	1	11/16/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	210	130	ug/Kg	1	11/16/16	DD	SW8270D

Client ID: 15B19 (20-25)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
2,4-Dichlorophenol	ND	210	140	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dimethylphenol	ND	290	100	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dinitrophenol	ND	290	290	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dinitrotoluene	ND	210	160	ug/Kg	1	11/16/16	DD	SW8270D
2,6-Dinitrotoluene	ND	210	130	ug/Kg	1	11/16/16	DD	SW8270D
2-Chloronaphthalene	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
2-Chlorophenol	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
2-Methylnaphthalene	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	290	190	ug/Kg	1	11/16/16	DD	SW8270D
2-Nitroaniline	ND	290	290	ug/Kg	1	11/16/16	DD	SW8270D
2-Nitrophenol	ND	290	260	ug/Kg	1	11/16/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	290	160	ug/Kg	1	11/16/16	DD	SW8270D 1
3,3'-Dichlorobenzidine	ND	210	190	ug/Kg	1	11/16/16	DD	SW8270D
3-Nitroaniline	ND	410	820	ug/Kg	1	11/16/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	250	82	ug/Kg	1	11/16/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D
4-Chloroaniline	ND	330	190	ug/Kg	1	11/16/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D
4-Nitroaniline	ND	410	140	ug/Kg	1	11/16/16	DD	SW8270D
4-Nitrophenol	ND	410	190	ug/Kg	1	11/16/16	DD	SW8270D
Acenaphthene	ND	290	130	ug/Kg	1	11/16/16	DD	SW8270D
Acenaphthylene	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
Acetophenone	ND	290	130	ug/Kg	1	11/16/16	DD	SW8270D
Aniline	ND	330	330	ug/Kg	1	11/16/16	DD	SW8270D
Anthracene	ND	290	130	ug/Kg	1	11/16/16	DD	SW8270D
Benz(a)anthracene	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D
Benzidine	ND	410	240	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(a)pyrene	ND	210	130	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(b)fluoranthene	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(ghi)perylene	ND	290	130	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(k)fluoranthene	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D
Benzoic acid	ND	2100	820	ug/Kg	1	11/16/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	290	110	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	290	110	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	210	110	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	290	110	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
Carbazole	ND	210	160	ug/Kg	1	11/16/16	DD	SW8270D
Chrysene	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	210	130	ug/Kg	1	11/16/16	DD	SW8270D
Dibenzofuran	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
Diethyl phthalate	ND	290	130	ug/Kg	1	11/16/16	DD	SW8270D
Dimethylphthalate	ND	290	130	ug/Kg	1	11/16/16	DD	SW8270D
Di-n-butylphthalate	ND	290	110	ug/Kg	1	11/16/16	DD	SW8270D
Di-n-octylphthalate	ND	290	110	ug/Kg	1	11/16/16	DD	SW8270D
Fluoranthene	ND	290	130	ug/Kg	1	11/16/16	DD	SW8270D
Fluorene	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D
Hexachlorobenzene	ND	210	120	ug/Kg	1	11/16/16	DD	SW8270D

Client ID: 15B19 (20-25)

5 .	.	RL/	LOD/		5	D / /T:	_	D (
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Hexachlorobutadiene	ND	290	150	ug/Kg	1	11/16/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	290	130	ug/Kg	1	11/16/16	DD	SW8270D
Hexachloroethane	ND	210	120	ug/Kg	1	11/16/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D
Isophorone	ND	210	120	ug/Kg	1	11/16/16	DD	SW8270D
Naphthalene	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
Nitrobenzene	ND	210	140	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodimethylamine	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	210	130	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	290	160	ug/Kg	1	11/16/16	DD	SW8270D
Pentachloronitrobenzene	ND	290	150	ug/Kg	1	11/16/16	DD	SW8270D
Pentachlorophenol	ND	250	160	ug/Kg	1	11/16/16	DD	SW8270D
Phenanthrene	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
Phenol	ND	290	130	ug/Kg	1	11/16/16	DD	SW8270D
Pyrene	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D
Pyridine	ND	290	100	ug/Kg	1	11/16/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	86			%	1	11/16/16	DD	30 - 130 %
% 2-Fluorobiphenyl	67			%	1	11/16/16	DD	30 - 130 %
% 2-Fluorophenol	55			%	1	11/16/16	DD	30 - 130 %
% Nitrobenzene-d5	70			%	1	11/16/16	DD	30 - 130 %
% Phenol-d5	69			%	1	11/16/16	DD	30 - 130 %
% Terphenyl-d14	80			%	1	11/16/16	DD	30 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit 1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 22, 2016

Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

P.O.#:

November 22, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample Information Custody Information Date <u>Time</u>

Collected by: TG 11/14/16 Matrix: SOIL

Received by: Location Code: **EBC** SW 11/15/16 17:12

Rush Request: 72 Hour Analyzed by: see "By" below

1181 FLUSHING AVE BROOKLYN NY Project ID: Client ID: 15B4 (12-14)

Laboratory Data

SDG ID: GBV83365 Phoenix ID: BV83369

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.40	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Aluminum	5130	40	7.9	mg/Kg	10	11/16/16	TH	SW6010C
Arsenic	1.17	0.79	0.79	mg/Kg	1	11/16/16	TH	SW6010C
Barium	36.2	8.0	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Beryllium	0.22	B 0.32	0.16	mg/Kg	1	11/16/16	TH	SW6010C
Calcium	1660	4.0	3.7	mg/Kg	1	11/16/16	TH	SW6010C
Cadmium	ND	0.40	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Cobalt	6.37	0.40	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Chromium	13.9	0.40	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Copper	9.87	0.40	0.40	mg/kg	1	11/16/16	TH	SW6010C
Iron	13100	40	40	mg/Kg	10	11/16/16	TH	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	11/16/16	RS	SW7471B
Potassium	1280	8	3.1	mg/Kg	1	11/16/16	LK	SW6010C
Magnesium	2250	4.0	4.0	mg/Kg	1	11/16/16	TH	SW6010C
Manganese	356	4.0	4.0	mg/Kg	10	11/16/16	TH	SW6010C
Sodium	202	8	3.4	mg/Kg	1	11/16/16	LK	SW6010C
Nickel	11.0	0.40	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Lead	1.5	8.0	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Antimony	ND	2.0	2.0	mg/Kg	1	11/16/16	TH	SW6010C
Selenium	ND	1.6	1.3	mg/Kg	1	11/16/16	TH	SW6010C
Thallium	ND	1.6	1.6	mg/Kg	1	11/16/16	TH	SW6010C
Vanadium	21.5	0.40	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Zinc	25.6	8.0	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Percent Solid	84			%		11/15/16	W	SW846-%Solid
Soil Extraction for PCB	Completed					11/15/16	CC/V	SW3545A
Soil Extraction for Pest	Completed					11/15/16	CC/V	SW3545A
Soil Extraction for SVOA	Completed					11/15/16	JJ/CKV	SW3545A
Mercury Digestion	Completed					11/16/16	W/W	SW7471B

Client ID: 15B4 (12-14)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
		. 4=	52	O'iiio	Bilduoii			
Total Metals Digest	Completed					11/15/16	X/AG	SW3050B
Field Extraction	Completed					11/14/16		SW5035A
Polychlorinated Biphen	<u>yls</u>							
PCB-1016	ND	78	78	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1221	ND	78	78	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1232	ND	78	78	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1242	ND	78	78	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1248	ND	78	78	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1254	ND	78	78	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1260	ND	78	78	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1262	ND	78	78	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1268	ND	78	78	ug/Kg	2	11/17/16	AW	SW8082A
QA/QC Surrogates								
% DCBP	80			%	2	11/17/16	AW	30 - 150 %
% TCMX	72			%	2	11/17/16	AW	30 - 150 %
<u>Pesticides - Soil</u>								
4,4' -DDD	ND	2.3	2.3	ug/Kg	2	11/16/16	CE	SW8081B
4,4' -DDE	ND	2.3	2.3	ug/Kg	2	11/16/16	CE	SW8081B
4,4' -DDT	ND	2.3	2.3	ug/Kg	2	11/16/16	CE	SW8081B
a-BHC	ND	7.8	7.8	ug/Kg	2	11/16/16	CE	SW8081B
a-Chlordane	ND	3.9	3.9	ug/Kg	2	11/16/16	CE	SW8081B
Aldrin	ND	3.9	3.9	ug/Kg	2	11/16/16	CE	SW8081B
b-BHC	ND	7.8	7.8	ug/Kg	2	11/16/16	CE	SW8081B
Chlordane	ND	39	39	ug/Kg	2	11/16/16	CE	SW8081B
d-BHC	ND	7.8	7.8	ug/Kg	2	11/16/16	CE	SW8081B
Dieldrin	ND	3.9	3.9	ug/Kg	2	11/16/16	CE	SW8081B
Endosulfan I	ND	7.8	7.8	ug/Kg	2	11/16/16	CE	SW8081B
Endosulfan II	ND	7.8	7.8	ug/Kg	2	11/16/16	CE	SW8081B
Endosulfan sulfate	ND	7.8	7.8	ug/Kg	2	11/16/16	CE	SW8081B
Endrin	ND	7.8	7.8	ug/Kg	2	11/16/16	CE	SW8081B
Endrin aldehyde	ND	7.8	7.8	ug/Kg	2	11/16/16	CE	SW8081B
Endrin ketone	ND	7.8	7.8	ug/Kg	2	11/16/16	CE	SW8081B
g-BHC	ND	1.6	1.6	ug/Kg	2	11/16/16	CE	SW8081B
g-Chlordane	ND	3.9	3.9	ug/Kg	2	11/16/16	CE	SW8081B
Heptachlor	ND	7.8	7.8	ug/Kg	2	11/16/16	CE	SW8081B
Heptachlor epoxide	ND	7.8	7.8	ug/Kg	2	11/16/16	CE	SW8081B
Methoxychlor	ND	39	39	ug/Kg	2	11/16/16	CE	SW8081B
Toxaphene	ND	160	160	ug/Kg	2	11/16/16	CE	SW8081B
QA/QC Surrogates								
% DCBP	93			%	2	11/16/16	CE	40 - 140 %
% TCMX	53			%	2	11/16/16	CE	40 - 140 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
1,1-Dichloroethane	ND	4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C

Client ID: 15B4 (12-14)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1,1-Dichloroethene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
1,1-Dichloropropene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,4-Trimethylbenzene	1.6	J 4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dibromoethane	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichloroethane	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichloropropane	ND	4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
1,3,5-Trimethylbenzene	0.66	J 4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
1,3-Dichloropropane	ND	4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
2,2-Dichloropropane	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
2-Chlorotoluene	ND	4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
2-Hexanone	ND	22	4.4	ug/Kg	1	11/16/16	JLI	SW8260C
2-Isopropyltoluene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C 1
4-Chlorotoluene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
4-Methyl-2-pentanone	ND	22	4.4	ug/Kg	1	11/16/16	JLI	SW8260C
Acetone	ND	22	4.4	ug/Kg	1	11/16/16	JLI	SW8260C
Acrylonitrile	ND	8.8	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
Benzene	1.5	J 4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Bromobenzene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Bromochloromethane	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Bromodichloromethane	ND	4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
Bromoform	ND	4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
Bromomethane	ND	4.4	1.8	ug/Kg	1	11/16/16	JLI	SW8260C
Carbon Disulfide	ND	4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
Carbon tetrachloride	ND	4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
Chlorobenzene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Chloroethane	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Chloroform	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Chloromethane	ND	4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Dibromochloromethane	ND	4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
Dibromomethane	ND	4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
Dichlorodifluoromethane	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Ethylbenzene	5.3	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Hexachlorobutadiene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Isopropylbenzene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
m&p-Xylene	11	4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	26	4.4	ug/Kg	1	11/16/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	8.8	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
Methylene chloride	ND	4.4	4.4	ug/Kg	1	11/16/16	JLI	SW8260C
Naphthalene	ND	4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
n-Butylbenzene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
·	-			<i>3</i> · 3		-		

Client ID: 15B4 (12-14)

Parameter	Result	RI PG		Units	Dilution	Date/Time	Ву	Reference
n-Propylbenzene	ND	4.	1 0.88	ug/Kg	1	11/16/16	JLI	SW8260C
o-Xylene	2.0	J 4.	1 0.88	ug/Kg	1	11/16/16	JLI	SW8260C
p-Isopropyltoluene	ND	4.	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
sec-Butylbenzene	ND	4.	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Styrene	ND	4.	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
tert-Butylbenzene	ND	4.	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Tetrachloroethene	ND	4.	1 0.88	ug/Kg	1	11/16/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	8.	3 2.2	ug/Kg	1	11/16/16	JLI	SW8260C 1
Toluene	3.3	J 4.	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	4.	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	4.	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	8.	3 2.2	ug/Kg	1	11/16/16	JLI	SW8260C
Trichloroethene	ND	4.	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Trichlorofluoromethane	ND	4.	1 0.88	ug/Kg	1	11/16/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	4.	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Vinyl chloride	ND	4.	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	102			%	1	11/16/16	JLI	70 - 130 %
% Bromofluorobenzene	101			%	1	11/16/16	JLI	70 - 130 %
% Dibromofluoromethane	101			%	1	11/16/16	JLI	70 - 130 %
% Toluene-d8	101			%	1	11/16/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	66	35	ug/kg	1	11/16/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	102			%	1	11/16/16	JLI	70 - 130 %
% Bromofluorobenzene	101			%	1	11/16/16	JLI	70 - 130 %
% Toluene-d8	101			%	1	11/16/16	JLI	70 - 130 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	18	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
Acrolein	ND	18	3 2.2	ug/Kg	1	11/16/16	JLI	SW8260C
Acrylonitrile	ND	18	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Tert-butyl alcohol	ND	88	18	ug/Kg	1	11/16/16	JLI	SW8260C
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	27	0 140	ug/Kg	1	11/16/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	27	0 120	ug/Kg	1	11/16/16	DD	SW8270D
1,2-Dichlorobenzene	ND	27	0 110	ug/Kg	1	11/16/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	27	0 130	ug/Kg	1	11/16/16	DD	SW8270D
1,3-Dichlorobenzene	ND	27	0 120	ug/Kg	1	11/16/16	DD	SW8270D
1,4-Dichlorobenzene	ND	27	0 120	ug/Kg	1	11/16/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	27	0 210	ug/Kg	1	11/16/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	20	0 130	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dichlorophenol	ND	20	0 140	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dimethylphenol	ND	27	0 97	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dinitrophenol	ND	27	0 270	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dinitrotoluene	ND	20	0 150	ug/Kg	1	11/16/16	DD	SW8270D
2,6-Dinitrotoluene	ND	20	0 120	ug/Kg	1	11/16/16	DD	SW8270D
2-Chloronaphthalene	ND	27	0 110	ug/Kg	1	11/16/16	DD	SW8270D

Client ID: 15B4 (12-14)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
2-Chlorophenol	ND	270	110	ug/Kg	1	11/16/16	DD	SW8270D
2-Methylnaphthalene	ND	270	120	ug/Kg	1	11/16/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	270	180	ug/Kg	1	11/16/16	DD	SW8270D
2-Nitroaniline	ND	270	270	ug/Kg	1	11/16/16	DD	SW8270D
2-Nitrophenol	ND	270	250	ug/Kg	1	11/16/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	270	150	ug/Kg	1	11/16/16	DD	SW8270D 1
3,3'-Dichlorobenzidine	ND	200	180	ug/Kg	1	11/16/16	DD	SW8270D
3-Nitroaniline	ND	390	780	ug/Kg	1	11/16/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	230	78	ug/Kg	1	11/16/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	270	110	ug/Kg	1	11/16/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	270	140	ug/Kg	1	11/16/16	DD	SW8270D
4-Chloroaniline	ND	310	180	ug/Kg	1	11/16/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	270	130	ug/Kg	1	11/16/16	DD	SW8270D
4-Nitroaniline	ND	390	130	ug/Kg	1	11/16/16	DD	SW8270D
4-Nitrophenol	ND	390	180	ug/Kg	1	11/16/16	DD	SW8270D
Acenaphthene	ND	270	120	ug/Kg	1	11/16/16	DD	SW8270D
Acenaphthylene	ND	270	110	ug/Kg	1	11/16/16	DD	SW8270D
Acetophenone	ND	270	120	ug/Kg	1	11/16/16	DD	SW8270D
Aniline	ND	310	310	ug/Kg	1	11/16/16	DD	SW8270D
Anthracene	ND	270	130	ug/Kg	1	11/16/16	DD	SW8270D
Benz(a)anthracene	ND	270	130	ug/Kg	1	11/16/16	DD	SW8270D
Benzidine	ND	390	230	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(a)pyrene	ND	200	130	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(b)fluoranthene	ND	270	130	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(ghi)perylene	ND	270	130	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(k)fluoranthene	ND	270	130	ug/Kg	1	11/16/16	DD	SW8270D
Benzoic acid	ND	2000	780	ug/Kg	1	11/16/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	270	100	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	270	110	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	200	110	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	270	110	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	270	110	ug/Kg	1	11/16/16	DD	SW8270D
Carbazole	ND	200	160	ug/Kg	1	11/16/16	DD	SW8270D
Chrysene	ND	270	130	ug/Kg	1	11/16/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	200	130	ug/Kg	1	11/16/16	DD	SW8270D
Dibenzofuran	ND	270	110	ug/Kg	1	11/16/16	DD	SW8270D
Diethyl phthalate	ND	270	120	ug/Kg	1	11/16/16	DD	SW8270D
Dimethylphthalate	ND	270	120	ug/Kg	1	11/16/16	DD	SW8270D
Di-n-butylphthalate	ND	270	100	ug/Kg	1	11/16/16	DD	SW8270D
Di-n-octylphthalate	ND	270	100	ug/Kg	1	11/16/16	DD	SW8270D
Fluoranthene	ND	270	130	ug/Kg	1	11/16/16	DD	SW8270D
Fluorene	ND	270	130	ug/Kg	1	11/16/16	DD	SW8270D
Hexachlorobenzene	ND	200	110	ug/Kg	1	11/16/16	DD	SW8270D
Hexachlorobutadiene	ND	270	140	ug/Kg	1	11/16/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	270	120	ug/Kg	1	11/16/16	DD	SW8270D
Hexachloroethane	ND	200	120	ug/Kg	1	11/16/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	270	130	ug/Kg	1	11/16/16	DD	SW8270D
Isophorone	ND	200	110	ug/Kg	1	11/16/16	DD	SW8270D
Naphthalene	ND	270	110	ug/Kg	1	11/16/16	DD	SW8270D
•				- -				

Client ID: 15B4 (12-14)

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Nitrobenzene	ND	200	140	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodimethylamine	ND	270	110	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	200	130	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	270	150	ug/Kg	1	11/16/16	DD	SW8270D
Pentachloronitrobenzene	ND	270	150	ug/Kg	1	11/16/16	DD	SW8270D
Pentachlorophenol	ND	230	150	ug/Kg	1	11/16/16	DD	SW8270D
Phenanthrene	ND	270	110	ug/Kg	1	11/16/16	DD	SW8270D
Phenol	ND	270	130	ug/Kg	1	11/16/16	DD	SW8270D
Pyrene	ND	270	130	ug/Kg	1	11/16/16	DD	SW8270D
Pyridine	ND	270	96	ug/Kg	1	11/16/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	88			%	1	11/16/16	DD	30 - 130 %
% 2-Fluorobiphenyl	76			%	1	11/16/16	DD	30 - 130 %
% 2-Fluorophenol	56			%	1	11/16/16	DD	30 - 130 %
% Nitrobenzene-d5	79			%	1	11/16/16	DD	30 - 130 %
% Phenol-d5	75			%	1	11/16/16	DD	30 - 130 %
% Terphenyl-d14	83			%	1	11/16/16	DD	30 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 22, 2016

Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 22, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOIL Collected by: TG 11/14/16

Location Code: EBC Received by: SW 11/15/16 17:12

Rush Request: 72 Hour Analyzed by: see "By" below

Lab

Laboratory Data SDG ID: GBV83365
Phoenix ID: BV83370

Project ID: 1181 FLUSHING AVE BROOKLYN NY

Client ID: 15B4 (15-17)

P.O.#:

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.42	0.42	mg/Kg	1	11/16/16	TH	SW6010C
Aluminum	7580	42	8.4	mg/Kg	10	11/16/16	LK	SW6010C
Arsenic	1.33	0.84	0.84	mg/Kg	1	11/16/16	TH	SW6010C
Barium	42.3	0.8	0.42	mg/Kg	1	11/16/16	TH	SW6010C
Beryllium	0.32	B 0.34	0.17	mg/Kg	1	11/16/16	TH	SW6010C
Calcium	1300	4.2	3.9	mg/Kg	1	11/16/16	TH	SW6010C
Cadmium	ND	0.42	0.42	mg/Kg	1	11/16/16	TH	SW6010C
Cobalt	7.98	0.42	0.42	mg/Kg	1	11/16/16	TH	SW6010C
Chromium	18.6	0.42	0.42	mg/Kg	1	11/16/16	LK	SW6010C
Copper	12.0	0.42	0.42	mg/kg	1	11/16/16	TH	SW6010C
Iron	16400	42	42	mg/Kg	10	11/16/16	TH	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	11/16/16	RS	SW7471B
Potassium	1700	8	3.3	mg/Kg	1	11/16/16	LK	SW6010C
Magnesium	3290	4.2	4.2	mg/Kg	1	11/16/16	LK	SW6010C
Manganese	441	4.2	4.2	mg/Kg	10	11/16/16	LK	SW6010C
Sodium	323	8	3.6	mg/Kg	1	11/16/16	LK	SW6010C
Nickel	13.8	0.42	0.42	mg/Kg	1	11/16/16	TH	SW6010C
Lead	1.9	8.0	0.42	mg/Kg	1	11/16/16	TH	SW6010C
Antimony	ND	2.1	2.1	mg/Kg	1	11/16/16	TH	SW6010C
Selenium	ND	1.7	1.4	mg/Kg	1	11/16/16	LK	SW6010C
Thallium	ND	1.7	1.7	mg/Kg	1	11/16/16	TH	SW6010C
Vanadium	27.0	0.42	0.42	mg/Kg	1	11/16/16	LK	SW6010C
Zinc	35.0	8.0	0.42	mg/Kg	1	11/16/16	TH	SW6010C
Percent Solid	79			%		11/15/16	W	SW846-%Solid
Soil Extraction for SVOA	Completed					11/15/16	JJ/CKV	SW3545A
Mercury Digestion	Completed					11/16/16	W/W	SW7471B
Total Metals Digest	Completed					11/15/16	X/AG	SW3050B
Field Extraction	Completed					11/14/16		SW5035A

Client ID: 15B4 (15-17)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	3.4	0.67	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	3.4	0.67	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	3.4	0.67	ug/Kg	1	11/16/16	JLI	SW8260C
1,1-Dichloroethane	ND	3.4	0.67	ug/Kg	1	11/16/16	JLI	SW8260C
1,1-Dichloroethene	ND	3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
1,1-Dichloropropene	ND	3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	3.4	0.67	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	3.4	0.67	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,4-Trimethylbenzene	9.6	3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	3.4	0.67	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dibromoethane	ND	3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichloroethane	ND	3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichloropropane	ND	3.4	0.67	ug/Kg	1	11/16/16	JLI	SW8260C
1,3,5-Trimethylbenzene	4.3	3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
1,3-Dichloropropane	ND	3.4	0.67	ug/Kg	1	11/16/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
2,2-Dichloropropane	ND	3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
2-Chlorotoluene	ND	3.4	0.67	ug/Kg	1	11/16/16	JLI	SW8260C
2-Hexanone	ND	17	3.4	ug/Kg	1	11/16/16	JLI	SW8260C
2-Isopropyltoluene	ND	3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C 1
4-Chlorotoluene	ND	3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
4-Methyl-2-pentanone	ND	17	3.4	ug/Kg	1	11/16/16	JLI	SW8260C
Acetone	ND	17	3.4	ug/Kg	1	11/16/16	JLI	SW8260C
Acrylonitrile	ND	6.7	0.67	ug/Kg	1	11/16/16	JLI	SW8260C
Benzene	100	60	41	ug/Kg	50	11/16/16	JLI	SW8260C
Bromobenzene	ND	3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
Bromochloromethane	ND	3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
Bromodichloromethane	ND	3.4	0.67	ug/Kg	1	11/16/16	JLI	SW8260C
Bromoform	ND	3.4	0.67	ug/Kg	1	11/16/16	JLI	SW8260C
Bromomethane	ND	3.4	1.3	ug/Kg	1	11/16/16	JLI	SW8260C
Carbon Disulfide	ND	3.4	0.67	ug/Kg	1	11/16/16	JLI	SW8260C
Carbon tetrachloride	ND	3.4	0.67	ug/Kg	1	11/16/16	JLI	SW8260C
Chlorobenzene	ND	3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
Chloroethane	ND	3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
Chloroform	ND	3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
Chloromethane	ND	3.4	0.67	ug/Kg	1	11/16/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
Dibromochloromethane	ND	3.4	0.67	ug/Kg	1	11/16/16	JLI	SW8260C
Dibromomethane	ND	3.4	0.67	ug/Kg	1	11/16/16	JLI	SW8260C
Dichlorodifluoromethane	ND	3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
Ethylbenzene	12	3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
Hexachlorobutadiene	ND	3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
Isopropylbenzene	3.6	3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C

Client ID: 15B4 (15-17)

Parameter Parameter	Result	RL/ PQI		Units	Dilution	Date/Time	Ву	Reference
m&p-Xylene	57	3.4	0.67	ug/Kg	1	11/16/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	20	3.4	ug/Kg	1	11/16/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	6.7	0.67	ug/Kg	1	11/16/16	JLI	SW8260C
Methylene chloride	ND	3.4	3.4	ug/Kg	1	11/16/16	JLI	SW8260C
Naphthalene	30	3.4	0.67	ug/Kg	1	11/16/16	JLI	SW8260C
n-Butylbenzene	1.4	J 3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
n-Propylbenzene	3.1	J 3.4	0.67	ug/Kg	1	11/16/16	JLI	SW8260C
o-Xylene	17	3.4	0.67	ug/Kg	1	11/16/16	JLI	SW8260C
p-Isopropyltoluene	0.47	J 3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
sec-Butylbenzene	1.0	J 3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
Styrene	0.38	J 3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
tert-Butylbenzene	ND	3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
Tetrachloroethene	ND	3.4	0.67	ug/Kg	1	11/16/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	6.7	1.7	ug/Kg	1	11/16/16	JLI	SW8260C 1
Toluene	21	3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
trans-1,2-Dichloroethene	0.57	J 3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	6.7	1.7	ug/Kg	1	11/16/16	JLI	SW8260C
Trichloroethene	ND	3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
Trichlorofluoromethane	ND	3.4	0.67	ug/Kg	1	11/16/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
Vinyl chloride	ND	3.4	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	104			%	1	11/16/16	JLI	70 - 130 %
% Bromofluorobenzene	102			%	1	11/16/16	JLI	70 - 130 %
% Dibromofluoromethane	101			%	1	11/16/16	JLI	70 - 130 %
% Toluene-d8	102			%	1	11/16/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	50	27	ug/kg	1	11/16/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	104			%	1	11/16/16	JLI	70 - 130 %
% Bromofluorobenzene	102			%	1	11/16/16	JLI	70 - 130 %
% Toluene-d8	102			%	1	11/16/16	JLI	70 - 130 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	13	0.67	ug/Kg	1	11/16/16	JLI	SW8260C
Acrolein	ND	13	1.7	ug/Kg	1	11/16/16	JLI	SW8260C
Acrylonitrile	ND	13	0.34	ug/Kg	1	11/16/16	JLI	SW8260C
Tert-butyl alcohol	ND	67	13	ug/Kg	1	11/16/16	JLI	SW8260C
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	290	150	ug/Kg	1	11/16/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	290	130	ug/Kg	1	11/16/16	DD	SW8270D
1,2-Dichlorobenzene	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D
1,3-Dichlorobenzene	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
1,4-Dichlorobenzene	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	290	230	ug/Kg	1	11/16/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	210	130	ug/Kg	1	11/16/16	DD	SW8270D

Client ID: 15B4 (15-17)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
2,4-Dichlorophenol	ND	210	150	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dimethylphenol	ND	290	100	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dinitrophenol	ND	290	290	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dinitrotoluene	ND	210	170	ug/Kg	1	11/16/16	DD	SW8270D
2,6-Dinitrotoluene	ND	210	130	ug/Kg	1	11/16/16	DD	SW8270D
2-Chloronaphthalene	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
2-Chlorophenol	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
2-Methylnaphthalene	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	290	200	ug/Kg	1	11/16/16	DD	SW8270D
2-Nitroaniline	ND	290	290	ug/Kg	1	11/16/16	DD	SW8270D
2-Nitrophenol	ND	290	270	ug/Kg	1	11/16/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	290	170	ug/Kg	1	11/16/16	DD	SW8270D 1
3,3'-Dichlorobenzidine	ND	210	200	ug/Kg	1	11/16/16	DD	SW8270D
3-Nitroaniline	ND	420	840	ug/Kg	1	11/16/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	250	84	ug/Kg	1	11/16/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	290	150	ug/Kg	1	11/16/16	DD	SW8270D
4-Chloroaniline	ND	340	200	ug/Kg	1	11/16/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D
4-Nitroaniline	ND	420	140	ug/Kg	1	11/16/16	DD	SW8270D
4-Nitrophenol	ND	420	190	ug/Kg	1	11/16/16	DD	SW8270D
Acenaphthene	ND	290	130	ug/Kg	1	11/16/16	DD	SW8270D
Acenaphthylene	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
Acetophenone	ND	290	130	ug/Kg	1	11/16/16	DD	SW8270D
Aniline	ND	340	340	ug/Kg	1	11/16/16	DD	SW8270D
Anthracene	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D
Benz(a)anthracene	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D
Benzidine	ND	420	250	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(a)pyrene	ND	210	140	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(b)fluoranthene	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(ghi)perylene	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(k)fluoranthene	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D
Benzoic acid	ND	2100	840	ug/Kg	1	11/16/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	290	110	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	210	110	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
Carbazole	ND	210	170	ug/Kg	1	11/16/16	DD	SW8270D
Chrysene	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	210	140	ug/Kg	1	11/16/16	DD	SW8270D
Dibenzofuran	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
Diethyl phthalate	ND	290	130	ug/Kg	1	11/16/16	DD	SW8270D
Dimethylphthalate	ND	290	130	ug/Kg	1	11/16/16	DD	SW8270D
Di-n-butylphthalate	ND	290	110	ug/Kg	1	11/16/16	DD	SW8270D
Di-n-octylphthalate	ND	290	110	ug/Kg	1	11/16/16	DD	SW8270D
Fluoranthene	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D
Fluorene	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D
Hexachlorobenzene	ND	210	120	ug/Kg	1	11/16/16	DD	SW8270D
1 TOAGOTHOTODOTIZGI IG	.10	210	.20	~9,1 \g	,	11/10/10	55	2.102.02

Client ID: 15B4 (15-17)

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Hexachlorobutadiene	ND	290	150	ug/Kg	1	11/16/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	290	130	ug/Kg	1	11/16/16	DD	SW8270D
Hexachloroethane	ND	210	130	ug/Kg	1	11/16/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D
Isophorone	ND	210	120	ug/Kg	1	11/16/16	DD	SW8270D
Naphthalene	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
Nitrobenzene	ND	210	150	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodimethylamine	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	210	140	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	290	160	ug/Kg	1	11/16/16	DD	SW8270D
Pentachloronitrobenzene	ND	290	160	ug/Kg	1	11/16/16	DD	SW8270D
Pentachlorophenol	ND	250	160	ug/Kg	1	11/16/16	DD	SW8270D
Phenanthrene	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
Phenol	ND	290	130	ug/Kg	1	11/16/16	DD	SW8270D
Pyrene	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D
Pyridine	ND	290	100	ug/Kg	1	11/16/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	86			%	1	11/16/16	DD	30 - 130 %
% 2-Fluorobiphenyl	73			%	1	11/16/16	DD	30 - 130 %
% 2-Fluorophenol	59			%	1	11/16/16	DD	30 - 130 %
% Nitrobenzene-d5	76			%	1	11/16/16	DD	30 - 130 %
% Phenol-d5	75			%	1	11/16/16	DD	30 - 130 %
% Terphenyl-d14	82			%	1	11/16/16	DD	30 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit 1

OA/OC Surrogates: Surrogates are compounds (preceded with a %) added by the lab to determine analysis efficiency. Surrogates

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 22, 2016

Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 22, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOIL Collected by: TG 11/14/16

Location Code: EBC Received by: SW 11/15/16 17:12

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GBV83365

Phoenix ID: BV83371

Project ID: 1181 FLUSHING AVE BROOKLYN NY

Client ID: 15B4 (18-20)

Б	5	RL/	LOD/	11.2	5 .2.7	D . /T:	_	5 (
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.39	0.39	mg/Kg	1	11/16/16	TH	SW6010C
Aluminum	4020	39	7.7	mg/Kg	10	11/16/16	TH	SW6010C
Arsenic	1.33	0.77	0.77	mg/Kg	1	11/16/16	TH	SW6010C
Barium	24.1	8.0	0.39	mg/Kg	1	11/16/16	TH	SW6010C
Beryllium	0.19	B 0.31	0.15	mg/Kg	1	11/16/16	TH	SW6010C
Calcium	819	3.9	3.6	mg/Kg	1	11/16/16	TH	SW6010C
Cadmium	ND	0.39	0.39	mg/Kg	1	11/16/16	TH	SW6010C
Cobalt	4.48	0.39	0.39	mg/Kg	1	11/16/16	TH	SW6010C
Chromium	8.39	0.39	0.39	mg/Kg	1	11/16/16	TH	SW6010C
Copper	7.52	0.39	0.39	mg/kg	1	11/16/16	TH	SW6010C
Iron	9700	39	39	mg/Kg	10	11/16/16	TH	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	11/16/16	RS	SW7471B
Potassium	490	8	3.0	mg/Kg	1	11/16/16	LK	SW6010C
Magnesium	1450	3.9	3.9	mg/Kg	1	11/16/16	TH	SW6010C
Manganese	156	3.9	3.9	mg/Kg	10	11/16/16	TH	SW6010C
Sodium	123	8	3.3	mg/Kg	1	11/16/16	LK	SW6010C
Nickel	8.09	0.39	0.39	mg/Kg	1	11/16/16	TH	SW6010C
Lead	1.5	0.8	0.39	mg/Kg	1	11/16/16	TH	SW6010C
Antimony	ND	1.9	1.9	mg/Kg	1	11/16/16	TH	SW6010C
Selenium	ND	1.5	1.3	mg/Kg	1	11/16/16	TH	SW6010C
Thallium	ND	1.5	1.5	mg/Kg	1	11/16/16	TH	SW6010C
Vanadium	14.7	0.39	0.39	mg/Kg	1	11/16/16	TH	SW6010C
Zinc	15.5	0.8	0.39	mg/Kg	1	11/16/16	TH	SW6010C
Percent Solid	83			%		11/15/16	W	SW846-%Solid
Soil Extraction for SVOA	Completed					11/15/16	JJ/CKV	SW3545A
Mercury Digestion	Completed					11/16/16	W/W	SW7471B
Total Metals Digest	Completed					11/15/16	X/AG	SW3050B
Field Extraction	Completed					11/14/16		SW5035A

Client ID: 15B4 (18-20)

Parameter Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	4.6	0.93	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	4.6	0.93	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	4.6	0.93	ug/Kg	1	11/16/16	JLI	SW8260C
1,1-Dichloroethane	ND	4.6	0.93	ug/Kg	1	11/16/16	JLI	SW8260C
1,1-Dichloroethene	ND	4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
1,1-Dichloropropene	ND	4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	4.6	0.93	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	4.6	0.93	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,4-Trimethylbenzene	2.9	J 4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	4.6	0.93	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dibromoethane	ND	4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichloroethane	ND	4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichloropropane	ND	4.6	0.93	ug/Kg	1	11/16/16	JLI	SW8260C
1,3,5-Trimethylbenzene	1.3	J 4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
1,3-Dichloropropane	ND	4.6	0.93	ug/Kg	1	11/16/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
2,2-Dichloropropane	ND	4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
2-Chlorotoluene	ND	4.6	0.93	ug/Kg	1	11/16/16	JLI	SW8260C
2-Hexanone	ND	23	4.6	ug/Kg	1	11/16/16	JLI	SW8260C
2-Isopropyltoluene	ND	4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C 1
4-Chlorotoluene	ND	4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
4-Methyl-2-pentanone	ND	23	4.6	ug/Kg	1	11/16/16	JLI	SW8260C
Acetone	ND	23	4.6	ug/Kg	1	11/16/16	JLI	SW8260C
Acrylonitrile	ND	9.3	0.93	ug/Kg	1	11/16/16	JLI	SW8260C
Benzene	0.62	J 4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
Bromobenzene	ND	4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
Bromochloromethane	ND	4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
Bromodichloromethane	ND	4.6	0.93	ug/Kg	1	11/16/16	JLI	SW8260C
Bromoform	ND	4.6	0.93	ug/Kg	1	11/16/16	JLI	SW8260C
Bromomethane	ND	4.6	1.9	ug/Kg	1	11/16/16	JLI	SW8260C
Carbon Disulfide	ND	4.6	0.93	ug/Kg	1	11/16/16	JLI	SW8260C
Carbon tetrachloride	ND	4.6	0.93	ug/Kg	1	11/16/16	JLI	SW8260C
Chlorobenzene	ND	4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
Chloroethane	ND	4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
Chloroform	ND	4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
Chloromethane	ND	4.6	0.93	ug/Kg	1	11/16/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
Dibromochloromethane	ND	4.6	0.93	ug/Kg	1	11/16/16	JLI	SW8260C
Dibromomethane	ND	4.6	0.93	ug/Kg	1	11/16/16	JLI	SW8260C
Dichlorodifluoromethane	ND	4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
Ethylbenzene	1.3	J 4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
Hexachlorobutadiene	ND	4.6	0.46	ug/Kg	' 1	11/16/16	JLI	SW8260C
Isopropylbenzene	ND	4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C

Client ID: 15B4 (18-20)

Parameter Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
m&p-Xylene	3.0	J 4.6	0.93	ug/Kg	1	11/16/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	28	4.6	ug/Kg	1	11/16/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	9.3	0.93	ug/Kg	1	11/16/16	JLI	SW8260C
Methylene chloride	ND	4.6	4.6	ug/Kg	1	11/16/16	JLI	SW8260C
Naphthalene	ND	4.6	0.93	ug/Kg	1	11/16/16	JLI	SW8260C
n-Butylbenzene	ND	4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
n-Propylbenzene	ND	4.6	0.93	ug/Kg	1	11/16/16	JLI	SW8260C
o-Xylene	ND	4.6	0.93	ug/Kg	1	11/16/16	JLI	SW8260C
p-Isopropyltoluene	ND	4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
sec-Butylbenzene	ND	4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
Styrene	ND	4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
tert-Butylbenzene	ND	4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
Tetrachloroethene	ND	4.6	0.93	ug/Kg	1	11/16/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	9.3	2.3	ug/Kg	1	11/16/16	JLI	SW8260C 1
Toluene	ND	4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	9.3	2.3	ug/Kg	1	11/16/16	JLI	SW8260C
Trichloroethene	ND	4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
Trichlorofluoromethane	ND	4.6	0.93	ug/Kg	1	11/16/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
Vinyl chloride	ND	4.6	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
QA/QC Surrogates				0 0				
% 1,2-dichlorobenzene-d4	99			%	1	11/16/16	JLI	70 - 130 %
% Bromofluorobenzene	98			%	1	11/16/16	JLI	70 - 130 %
% Dibromofluoromethane	94			%	1	11/16/16	JLI	70 - 130 %
% Toluene-d8	100			%	1	11/16/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	70	37	ug/kg	1	11/16/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	99			%	1	11/16/16	JLI	70 - 130 %
% Bromofluorobenzene	98			%	1	11/16/16	JLI	70 - 130 %
% Toluene-d8	100			%	1	11/16/16	JLI	70 - 130 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	19	0.93	ug/Kg	1	11/16/16	JLI	SW8260C
Acrolein	ND	19	2.3	ug/Kg	1	11/16/16	JLI	SW8260C
Acrylonitrile	ND	19	0.46	ug/Kg	1	11/16/16	JLI	SW8260C
Tert-butyl alcohol	ND	93	19	ug/Kg	1	11/16/16	JLI	SW8260C
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	280	140	ug/Kg	1	11/16/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	280	120	ug/Kg	1	11/16/16	DD	SW8270D
1,2-Dichlorobenzene	ND	280	110	ug/Kg	1	11/16/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	280	130	ug/Kg	1	11/16/16	DD	SW8270D
1,3-Dichlorobenzene	ND	280	120	ug/Kg	1	11/16/16	DD	SW8270D
1,4-Dichlorobenzene	ND	280	120	ug/Kg	1	11/16/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	280	220	ug/Kg	1	11/16/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	200	130	ug/Kg	1	11/16/16	DD	SW8270D

Client ID: 15B4 (18-20)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
2,4-Dichlorophenol	ND ND	200 280	140 98	ug/Kg ug/Kg	1	11/16/16 11/16/16	DD DD	SW8270D SW8270D
2,4-Dimethylphenol	ND ND	280	96 280	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D SW8270D
2,4-Dinitrophenol	ND	200	160	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D SW8270D
2,4-Dinitrotoluene	ND ND	200	120	ug/Kg ug/Kg	1 1	11/16/16	DD	SW8270D SW8270D
2,6-Dinitrotoluene	ND	280	110	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D SW8270D
2-Chloronaphthalene2-Chlorophenol	ND	280	110	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D
•	ND	280	120	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D
2-Methylnaphthalene 2-Methylphenol (o-cresol)	ND	280	190	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D
2-Nitroaniline	ND	280	280	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D
	ND	280	250	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D
2-Nitrophenol	ND	280	160	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D 1
3&4-Methylphenol (m&p-cresol)	ND	200	190	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D
3,3'-Dichlorobenzidine3-Nitroaniline	ND	390	790	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D
	ND	240	790 79	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	280	120	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	280	140	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	320	180	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D
4-Chloroaniline	ND	280	130	ug/Kg ug/Kg		11/16/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	390	130	ug/Kg ug/Kg	1 1	11/16/16	DD	SW8270D SW8270D
4-Nitroaniline	ND	390	180	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D SW8270D
4-Nitrophenol	ND	280	120	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D SW8270D
Acenaphthene								
Acetaphanana	ND ND	280 280	110 120	ug/Kg	1	11/16/16 11/16/16	DD DD	SW8270D SW8270D
Acetophenone	ND	320	320	ug/Kg ug/Kg	1 1	11/16/16	DD	SW8270D
Aniline	ND	280	130	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D SW8270D
Anthracene	ND	280	130	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D
Benz(a)anthracene Benzidine	ND	390	230	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D
	ND	200	130	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D
Benzo(a)pyrene	ND	280	130	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D
Benzo(b)fluoranthene Benzo(ghi)perylene	ND	280	130	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D
Benzo(k)fluoranthene	ND	280	130	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D
· ·						11/16/16		
Benzoic acid	ND ND	2000 280	790 100	ug/Kg	1 1	11/16/16	DD	SW8270D 1 SW8270D
Benzyl butyl phthalate	ND	280	110	ug/Kg ug/Kg		11/16/16	DD DD	SW8270D
Bis(2-chloroethoxy)methane	ND	200	110	ug/Kg ug/Kg	1 1	11/16/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	280	110	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	280	110	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D SW8270D
Bis(2-ethylhexyl)phthalate	ND	200	160	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D SW8270D
Carbazole	ND	280	130		1	11/16/16		SW8270D SW8270D
Chrysene				ug/Kg			DD	
Dibenz(a,h)anthracene	ND	200	130	ug/Kg	1	11/16/16	DD	SW8270D
Dibenzofuran	ND	280	120	ug/Kg	1	11/16/16	DD	SW8270D
Diethyl phthalate	ND	280	120	ug/Kg	1	11/16/16	DD	SW8270D
Dimethylphthalate	ND	280	120	ug/Kg	1	11/16/16	DD	SW8270D
Di-n-butylphthalate	ND	280	100	ug/Kg	1	11/16/16	DD	SW8270D
Di-n-octylphthalate	ND	280	100	ug/Kg	1	11/16/16	DD	SW8270D
Fluoranthene	ND	280	130	ug/Kg	1	11/16/16	DD	SW8270D
Fluorene	ND	280	130	ug/Kg	1	11/16/16	DD	SW8270D
Hexachlorobenzene	ND	200	120	ug/Kg	1	11/16/16	DD	SW8270D

Client ID: 15B4 (18-20)

_		RL/	LOD/				_	
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Hexachlorobutadiene	ND	280	140	ug/Kg	1	11/16/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	280	120	ug/Kg	1	11/16/16	DD	SW8270D
Hexachloroethane	ND	200	120	ug/Kg	1	11/16/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	280	130	ug/Kg	1	11/16/16	DD	SW8270D
Isophorone	ND	200	110	ug/Kg	1	11/16/16	DD	SW8270D
Naphthalene	ND	280	110	ug/Kg	1	11/16/16	DD	SW8270D
Nitrobenzene	ND	200	140	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodimethylamine	ND	280	110	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	200	130	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	280	150	ug/Kg	1	11/16/16	DD	SW8270D
Pentachloronitrobenzene	ND	280	150	ug/Kg	1	11/16/16	DD	SW8270D
Pentachlorophenol	ND	240	150	ug/Kg	1	11/16/16	DD	SW8270D
Phenanthrene	ND	280	110	ug/Kg	1	11/16/16	DD	SW8270D
Phenol	ND	280	130	ug/Kg	1	11/16/16	DD	SW8270D
Pyrene	ND	280	140	ug/Kg	1	11/16/16	DD	SW8270D
Pyridine	ND	280	97	ug/Kg	1	11/16/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	85			%	1	11/16/16	DD	30 - 130 %
% 2-Fluorobiphenyl	71			%	1	11/16/16	DD	30 - 130 %
% 2-Fluorophenol	56			%	1	11/16/16	DD	30 - 130 %
% Nitrobenzene-d5	75			%	1	11/16/16	DD	30 - 130 %
% Phenol-d5	72			%	1	11/16/16	DD	30 - 130 %
% Terphenyl-d14	78			%	1	11/16/16	DD	30 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit 1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 22, 2016

Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 22, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:TG11/14/16Location Code:EBCReceived by:SW11/15/1617:12

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GBV83365

Phoenix ID: BV83372

Project ID: 1181 FLUSHING AVE BROOKLYN NY

Client ID: 15B3 (12-14)

_		RL/	LOD/				_	
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.40	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Aluminum	6860	40	8.1	mg/Kg	10	11/16/16	TH	SW6010C
Arsenic	1.44	0.81	0.81	mg/Kg	1	11/16/16	TH	SW6010C
Barium	41.6	8.0	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Beryllium	0.30	B 0.32	0.16	mg/Kg	1	11/16/16	TH	SW6010C
Calcium	2020	4.0	3.7	mg/Kg	1	11/16/16	LK	SW6010C
Cadmium	ND	0.40	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Cobalt	8.31	0.40	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Chromium	20.7	0.40	0.40	mg/Kg	1	11/16/16	LK	SW6010C
Copper	13.8	0.40	0.40	mg/kg	1	11/16/16	TH	SW6010C
Iron	16100	40	40	mg/Kg	10	11/16/16	TH	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	11/16/16	RS	SW7471B
Potassium	1750	8	3.1	mg/Kg	1	11/16/16	LK	SW6010C
Magnesium	3080	4.0	4.0	mg/Kg	1	11/16/16	LK	SW6010C
Manganese	332	4.0	4.0	mg/Kg	10	11/16/16	TH	SW6010C
Sodium	194	8	3.5	mg/Kg	1	11/16/16	LK	SW6010C
Nickel	14.0	0.40	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Lead	2.2	8.0	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Antimony	ND	2.0	2.0	mg/Kg	1	11/16/16	TH	SW6010C
Selenium	ND	1.6	1.4	mg/Kg	1	11/16/16	TH	SW6010C
Thallium	ND	1.6	1.6	mg/Kg	1	11/16/16	TH	SW6010C
Vanadium	27.9	0.40	0.40	mg/Kg	1	11/16/16	LK	SW6010C
Zinc	35.0	8.0	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Percent Solid	85			%		11/15/16	W	SW846-%Solid
Soil Extraction for PCB	Completed					11/15/16	CC/V	SW3545A
Soil Extraction for Pest	Completed					11/15/16	CC/V	SW3545A
Soil Extraction for SVOA	Completed					11/15/16	JJ/CKV	SW3545A
Mercury Digestion	Completed					11/16/16	W/W	SW7471B

Client ID: 15B3 (12-14)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Total Metals Digest	Completed					11/15/16	X/AG	SW3050B
Field Extraction	Completed					11/14/16		SW5035A
Polychlorinated Biphen	<u>yls</u>							
PCB-1016	ND	76	76	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1221	ND	76	76	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1232	ND	76	76	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1242	ND	76	76	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1248	ND	76	76	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1254	ND	76	76	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1260	ND	76	76	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1262	ND	76	76	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1268	ND	76	76	ug/Kg	2	11/17/16	AW	SW8082A
QA/QC Surrogates								
% DCBP	82			%	2	11/17/16	AW	30 - 150 %
% TCMX	73			%	2	11/17/16	AW	30 - 150 %
Pesticides - Soil								
4,4' -DDD	ND	2.3	2.3	ug/Kg	2	11/16/16	CE	SW8081B
4,4' -DDE	ND	2.3	2.3	ug/Kg	2	11/16/16	CE	SW8081B
4,4' -DDT	ND	2.3	2.3	ug/Kg	2	11/16/16	CE	SW8081B
a-BHC	ND	7.6	7.6	ug/Kg	2	11/16/16	CE	SW8081B
a-Chlordane	ND	3.8	3.8	ug/Kg	2	11/16/16	CE	SW8081B
Aldrin	ND	3.8	3.8	ug/Kg	2	11/16/16	CE	SW8081B
b-BHC	ND	7.6	7.6	ug/Kg	2	11/16/16	CE	SW8081B
Chlordane	ND	38	38	ug/Kg	2	11/16/16	CE	SW8081B
d-BHC	ND	7.6	7.6	ug/Kg	2	11/16/16	CE	SW8081B
Dieldrin	ND	3.8	3.8	ug/Kg	2	11/16/16	CE	SW8081B
Endosulfan I	ND	7.6	7.6	ug/Kg	2	11/16/16	CE	SW8081B
Endosulfan II	ND	7.6	7.6	ug/Kg	2	11/16/16	CE	SW8081B
Endosulfan sulfate	ND	7.6	7.6	ug/Kg	2	11/16/16	CE	SW8081B
Endrin	ND	7.6	7.6	ug/Kg	2	11/16/16	CE	SW8081B
Endrin aldehyde	ND	7.6	7.6	ug/Kg	2	11/16/16	CE	SW8081B
Endrin ketone	ND	7.6	7.6	ug/Kg	2	11/16/16	CE	SW8081B
g-BHC	ND	1.5	1.5	ug/Kg	2	11/16/16	CE	SW8081B
g-Chlordane	ND	3.8	3.8	ug/Kg	2	11/16/16	CE	SW8081B
Heptachlor	ND	7.6	7.6	ug/Kg	2	11/16/16	CE	SW8081B
Heptachlor epoxide	ND	7.6	7.6	ug/Kg	2	11/16/16	CE	SW8081B
Methoxychlor	ND	38	38	ug/Kg	2	11/16/16	CE	SW8081B
Toxaphene	ND	150	150	ug/Kg	2	11/16/16	CE	SW8081B
QA/QC Surrogates								
% DCBP	81			%	2	11/16/16	CE	40 - 140 %
% TCMX	42			%	2	11/16/16	CE	40 - 140 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	5.4	1.1	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	5.4	0.54	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	5.4	1.1	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	5.4	1.1	ug/Kg	1	11/16/16	JLI	SW8260C
1,1-Dichloroethane	ND	5.4	1.1	ug/Kg	1	11/16/16	JLI	SW8260C

Client ID: 15B3 (12-14)

Client ID. 13B3 (12-14)			D. /						
Parameter	Result		RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1,1-Dichloroethene	ND		5.4	0.54	ug/Kg	1	11/16/16	JLI	SW8260C
1,1-Dichloropropene	ND		5.4	0.54	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND		5.4	1.1	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,3-Trichloropropane	ND		5.4	0.54	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND		5.4	1.1	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,4-Trimethylbenzene	1.5	J	5.4	0.54	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND		5.4	1.1	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dibromoethane	ND		5.4	0.54	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichlorobenzene	ND		5.4	0.54	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichloroethane	ND		5.4	0.54	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichloropropane	ND		5.4	1.1	ug/Kg	1	11/16/16	JLI	SW8260C
1,3,5-Trimethylbenzene	0.67	J	5.4	0.54	ug/Kg	1	11/16/16	JLI	SW8260C
1,3-Dichlorobenzene	ND		5.4	0.54	ug/Kg	1	11/16/16	JLI	SW8260C
1,3-Dichloropropane	ND		5.4	1.1	ug/Kg	1	11/16/16	JLI	SW8260C
1,4-Dichlorobenzene	ND		5.4	0.54	ug/Kg	1	11/16/16	JLI	SW8260C
2,2-Dichloropropane	ND		5.4	0.54	ug/Kg	1	11/16/16	JLI	SW8260C
2-Chlorotoluene	ND		5.4	1.1	ug/Kg	1	11/16/16	JLI	SW8260C
2-Hexanone	ND		27	5.4	ug/Kg	1	11/16/16	JLI	SW8260C
2-Isopropyltoluene	ND		5.4	0.54	ug/Kg	1	11/16/16	JLI	SW8260C 1
4-Chlorotoluene	ND		5.4	0.54	ug/Kg	1	11/16/16	JLI	SW8260C
4-Methyl-2-pentanone	ND		27	5.4	ug/Kg	1	11/16/16	JLI	SW8260C
Acetone	ND		27	5.4	ug/Kg	1	11/16/16	JLI	SW8260C
Acrylonitrile	ND		11	1.1	ug/Kg	1	11/16/16	JLI	SW8260C
Benzene	1.0	J	5.4	0.54	ug/Kg	1	11/16/16	JLI	SW8260C
Bromobenzene	ND		5.4	0.54	ug/Kg	1	11/16/16	JLI	SW8260C
Bromochloromethane	ND		5.4	0.54	ug/Kg	1	11/16/16	JLI	SW8260C
Bromodichloromethane	ND		5.4	1.1	ug/Kg	1	11/16/16	JLI	SW8260C
Bromoform	ND		5.4	1.1	ug/Kg	1	11/16/16	JLI	SW8260C
Bromomethane	ND		5.4	2.2	ug/Kg	1	11/16/16	JLI	SW8260C
Carbon Disulfide	ND		5.4	1.1	ug/Kg	1	11/16/16	JLI	SW8260C
Carbon tetrachloride	ND		5.4	1.1	ug/Kg	1	11/16/16	JLI	SW8260C
Chlorobenzene	ND		5.4	0.54	ug/Kg	1	11/16/16	JLI	SW8260C
Chloroethane	ND		5.4	0.54	ug/Kg	1	11/16/16	JLI	SW8260C
Chloroform	ND		5.4	0.54	ug/Kg	1	11/16/16	JLI	SW8260C
Chloromethane	ND		5.4	1.1	ug/Kg	1	11/16/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND		5.4	0.54	ug/Kg ug/Kg	1	11/16/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND		5.4	0.54	ug/Kg ug/Kg	1	11/16/16	JLI	SW8260C
Dibromochloromethane	ND		5.4	1.1	ug/Kg	1	11/16/16	JLI	SW8260C
Dibromomethane	ND		5.4	1.1	ug/Kg ug/Kg	1	11/16/16	JLI	SW8260C
Dichlorodifluoromethane	ND		5.4	0.54	ug/Kg	1	11/16/16	JLI	SW8260C
Ethylbenzene	100		420	42	ug/Kg ug/Kg	50	11/16/16	JLI	SW8260C
Hexachlorobutadiene	ND	0	5.4	0.54	ug/Kg ug/Kg	1	11/16/16	JLI	SW8260C
Isopropylbenzene	ND		5.4	0.54	ug/Kg ug/Kg	1	11/16/16	JLI	SW8260C
	8.2		5.4	1.1	ug/Kg	1	11/16/16	JLI	SW8260C
m&p-Xylene	ND		32	5.4	ug/Kg ug/Kg	1	11/16/16	JLI	SW8260C
Methyl Ethyl Ketone									
Methyl t-butyl ether (MTBE)	ND ND		11 5.4	1.1 5.4	ug/Kg ug/Kg	1	11/16/16 11/16/16	JLI JLI	SW8260C
Methylene chloride						1			SW8260C
Naphthalene	ND		5.4 5.4	1.1	ug/Kg	1	11/16/16	JLI	SW8260C
n-Butylbenzene	ND		5.4	0.54	ug/Kg	1	11/16/16	JLI	SW8260C

Client ID: 15B3 (12-14)

Client ID: 15B3 (12-14)								
Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
n-Propylbenzene	ND	5.4	1.1	ug/Kg	1	11/16/16	JLI	SW8260C
o-Xylene	1.5	J 5.4	1.1	ug/Kg	1	11/16/16	JLI	SW8260C
p-Isopropyltoluene	ND	5.4	0.54	ug/Kg	1	11/16/16	JLI	SW8260C
sec-Butylbenzene	ND	5.4	0.54	ug/Kg	1	11/16/16	JLI	SW8260C
Styrene	ND	5.4	0.54	ug/Kg	1	11/16/16	JLI	SW8260C
tert-Butylbenzene	ND	5.4	0.54	ug/Kg	1	11/16/16	JLI	SW8260C
Tetrachloroethene	ND	5.4	1.1	ug/Kg	1	11/16/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	11	2.7	ug/Kg	1	11/16/16	JLI	SW8260C 1
Toluene	44	J 420	42	ug/Kg	50	11/16/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.4	0.54	ug/Kg	1	11/16/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.4	0.54	ug/Kg	1	11/16/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	11	2.7	ug/Kg	1	11/16/16	JLI	SW8260C
Trichloroethene	ND	5.4	0.54	ug/Kg	1	11/16/16	JLI	SW8260C
Trichlorofluoromethane	ND	5.4	1.1	ug/Kg	1	11/16/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.4	0.54	ug/Kg	1	11/16/16	JLI	SW8260C
Vinyl chloride	ND	5.4	0.54	ug/Kg	1	11/16/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	100			%	1	11/16/16	JLI	70 - 130 %
% Bromofluorobenzene	96			%	1	11/16/16	JLI	70 - 130 %
% Dibromofluoromethane	92			%	1	11/16/16	JLI	70 - 130 %
% Toluene-d8	101			%	1	11/16/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	81	43	ug/kg	1	11/16/16	JLI	SW8260C
QA/QC Surrogates	ND	01	40	ug/kg	•	11/10/10	021	01102000
% 1,2-dichlorobenzene-d4	100			%	1	11/16/16	JLI	70 - 130 %
% Bromofluorobenzene	96			%	1	11/16/16	JLI	70 - 130 %
% Toluene-d8	101			%	1	11/16/16	JLI	70 - 130 %
Volatiles								
	ND	20	4.4	/// 0	4	11/16/16		C/M02C0C
1,1,1,2-Tetrachloroethane		22 22	1.1 2.7	ug/Kg	1		JLI	SW8260C
Acrolein	ND ND	22	0.54	ug/Kg ug/Kg	1	11/16/16 11/16/16	JLI JLI	SW8260C SW8260C
Acrylonitrile Tert-butyl alcohol	ND	110	22	ug/Kg ug/Kg	1 1	11/16/16	JLI	SW8260C
•	ND	110	22	ug/Ng	1	11/10/10	JLI	34402000
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	270	140	ug/Kg	1	11/16/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	270	120	ug/Kg	1	11/16/16	DD	SW8270D
1,2-Dichlorobenzene	ND	270	110	ug/Kg	1	11/16/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	270	130	ug/Kg	1	11/16/16	DD	SW8270D
1,3-Dichlorobenzene	ND	270	110	ug/Kg	1	11/16/16	DD	SW8270D
1,4-Dichlorobenzene	ND	270	110	ug/Kg	1	11/16/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	270	210	ug/Kg	1	11/16/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	190	120	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dichlorophenol	ND	190	140	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dimethylphenol	ND	270	96	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dinitrophenol	ND	270	270	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dinitrotoluene	ND	190	150	ug/Kg	1	11/16/16	DD	SW8270D
2,6-Dinitrotoluene	ND	190	120	ug/Kg	1	11/16/16	DD	SW8270D
2-Chloronaphthalene	ND	270	110	ug/Kg	1	11/16/16	DD	SW8270D

LOD/ RL/ Parameter Result **PQL** Units Dilution Date/Time MDL By Reference ND 1 2-Chlorophenol 270 110 ug/Kg 11/16/16 DD SW8270D ND 1 270 120 ug/Kg 11/16/16 DD SW8270D 2-Methylnaphthalene 2-Methylphenol (o-cresol) ND 270 180 ug/Kg 1 11/16/16 DD SW8270D 270 1 2-Nitroaniline ND 270 ug/Kg 11/16/16 DD SW8270D ND 270 1 11/16/16 DD SW8270D 2-Nitrophenol 250 ug/Kg 1 3&4-Methylphenol (m&p-cresol) ND 270 150 ug/Kg 11/16/16 DD SW8270D ND 1 190 180 ug/Kg DD SW8270D 3,3'-Dichlorobenzidine 11/16/16 ND 1 3-Nitroaniline 390 770 ug/Kg 11/16/16 DD SW8270D ND 230 1 DD SW8270D 4,6-Dinitro-2-methylphenol 77 ug/Kg 11/16/16 1 DD 4-Bromophenyl phenyl ether ND 270 110 ug/Kg 11/16/16 SW8270D 4-Chloro-3-methylphenol ND 270 140 ug/Kg 1 11/16/16 DD SW8270D ND 1 4-Chloroaniline 310 180 ug/Kg 11/16/16 DD SW8270D ND 1 4-Chlorophenyl phenyl ether 270 130 ug/Kg 11/16/16 DD SW8270D ND 390 1 DD SW8270D 4-Nitroaniline 130 ug/Kg 11/16/16 170 ND 390 1 11/16/16 DD SW8270D 4-Nitrophenol ug/Kg Acenaphthene ND 270 120 ug/Kg 1 11/16/16 DD SW8270D ND 270 110 ug/Kg 1 11/16/16 DD SW8270D Acenaphthylene Acetophenone ND 270 120 ug/Kg 1 11/16/16 DD SW8270D ND 310 1 DD SW8270D Aniline 310 ug/Kg 11/16/16 ND 270 1 130 ug/Kg 11/16/16 DD SW8270D Anthracene ND 270 130 ug/Kg 1 11/16/16 DD SW8270D Benz(a)anthracene Benzidine ND 390 230 ug/Kg 1 11/16/16 DD SW8270D Benzo(a)pyrene ND 190 130 ug/Kg 1 11/16/16 DD SW8270D Benzo(b)fluoranthene ND 270 130 ug/Kg 1 11/16/16 DD SW8270D ND 270 130 1 11/16/16 DD SW8270D Benzo(ghi)perylene ug/Kg ND 270 130 1 11/16/16 DD SW8270D Benzo(k)fluoranthene ug/Kg ND 1900 770 1 11/16/16 DD SW8270D Benzoic acid ug/Kg Benzyl butyl phthalate ND 270 100 ug/Kg 1 11/16/16 DD SW8270D ND 270 110 1 11/16/16 DD SW8270D Bis(2-chloroethoxy)methane ug/Kg 190 1 SW8270D Bis(2-chloroethyl)ether ND 100 ug/Kg 11/16/16 DD ND 270 1 SW8270D Bis(2-chloroisopropyl)ether 110 ug/Kg 11/16/16 DD ND 270 1 110 11/16/16 DD SW8270D Bis(2-ethylhexyl)phthalate ug/Kg Carbazole ND 190 150 ug/Kg 1 11/16/16 DD SW8270D 270 1 DD SW8270D Chrysene ND 130 ug/Kg 11/16/16 ND 190 130 ug/Kg 1 11/16/16 DD SW8270D Dibenz(a,h)anthracene ND 270 1 DD SW8270D Dibenzofuran 110 ug/Kg 11/16/16 ND 270 1 DD SW8270D 120 11/16/16 Diethyl phthalate ug/Kg ND 270 1 DD SW8270D Dimethylphthalate 120 ug/Kg 11/16/16 ND 270 100 1 11/16/16 DD SW8270D ug/Kg Di-n-butylphthalate 270 1 DD SW8270D Di-n-octylphthalate ND 100 ug/Kg 11/16/16 ND 270 130 ug/Kg 1 11/16/16 DD SW8270D Fluoranthene ND 270 1 DD SW8270D 130 ug/Kg 11/16/16 Fluorene ND 190 110 ug/Kg 1 11/16/16 DD SW8270D Hexachlorobenzene ND 270 140 1 11/16/16 DD SW8270D ug/Kg Hexachlorobutadiene ND 270 120 ug/Kg 1 11/16/16 DD SW8270D Hexachlorocyclopentadiene ND 190 1 DD SW8270D 120 ug/Kg 11/16/16 Hexachloroethane ND 270 130 ug/Kg 1 11/16/16 DD SW8270D Indeno(1,2,3-cd)pyrene ND 190 110 ug/Kg 1 11/16/16 DD SW8270D Isophorone DD ND 270 1 SW8270D Naphthalene 110 ug/Kg 11/16/16

Project ID: 1181 FLUSHING AVE BROOKLYN NY Phoenix I.D.: BV83372

Client ID: 15B3 (12-14)

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Nitrobenzene	ND	190	140	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodimethylamine	ND	270	110	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	190	130	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	270	150	ug/Kg	1	11/16/16	DD	SW8270D
Pentachloronitrobenzene	ND	270	140	ug/Kg	1	11/16/16	DD	SW8270D
Pentachlorophenol	ND	230	150	ug/Kg	1	11/16/16	DD	SW8270D
Phenanthrene	ND	270	110	ug/Kg	1	11/16/16	DD	SW8270D
Phenol	ND	270	120	ug/Kg	1	11/16/16	DD	SW8270D
Pyrene	ND	270	130	ug/Kg	1	11/16/16	DD	SW8270D
Pyridine	ND	270	95	ug/Kg	1	11/16/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	77			%	1	11/16/16	DD	30 - 130 %
% 2-Fluorobiphenyl	69			%	1	11/16/16	DD	30 - 130 %
% 2-Fluorophenol	48			%	1	11/16/16	DD	30 - 130 %
% Nitrobenzene-d5	70			%	1	11/16/16	DD	30 - 130 %
% Phenol-d5	67			%	1	11/16/16	DD	30 - 130 %
% Terphenyl-d14	81			%	1	11/16/16	DD	30 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 22, 2016

Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 22, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample Information Custody Information Date <u>Time</u>

Collected by: TG 11/14/16 Matrix: SOIL

RI/ IOD/

Received by: Location Code: **EBC** SW 11/15/16 17:12

Rush Request: 72 Hour Analyzed by: see "By" below

Client ID: 15B1 (12-14)

P.O.#:

Project ID:

Laboratory Data	SDG ID: GBV83365
<u> </u>	Phoenix ID: BV83373
1181 FLUSHING AVE BROOKLYN NY	

Parameter	Result	RL/ PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.40	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Aluminum	12600	40	8.0	mg/Kg	10	11/16/16	LK	SW6010C
Arsenic	1.72	0.80	0.80	mg/Kg	1	11/16/16	TH	SW6010C
Barium	62.1	8.0	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Beryllium	0.51	0.32	0.16	mg/Kg	1	11/16/16	LK	SW6010C
Calcium	1440	40	37	mg/Kg	10	11/16/16	TH	SW6010C
Cadmium	ND	0.40	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Cobalt	11.8	0.40	0.40	mg/Kg	1	11/16/16	LK	SW6010C
Chromium	33.3	0.40	0.40	mg/Kg	1	11/16/16	LK	SW6010C
Copper	21.0	0.40	0.40	mg/kg	1	11/16/16	TH	SW6010C
Iron	24100	40	40	mg/Kg	10	11/16/16	LK	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	11/16/16	RS	SW7471B
Potassium	2740	8	3.1	mg/Kg	1	11/16/16	LK	SW6010C
Magnesium	4100	4.0	4.0	mg/Kg	1	11/16/16	LK	SW6010C
Manganese	348	4.0	4.0	mg/Kg	10	11/16/16	TH	SW6010C
Sodium	313	8	3.4	mg/Kg	1	11/16/16	LK	SW6010C
Nickel	15.8	0.40	0.40	mg/Kg	1	11/16/16	LK	SW6010C
Lead	7.6	8.0	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Antimony	ND	2.0	2.0	mg/Kg	1	11/16/16	TH	SW6010C
Selenium	ND	1.6	1.4	mg/Kg	1	11/16/16	LK	SW6010C
Thallium	ND	1.6	1.6	mg/Kg	1	11/16/16	TH	SW6010C
Vanadium	37.7	0.40	0.40	mg/Kg	1	11/16/16	LK	SW6010C
Zinc	49.4	8.0	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Percent Solid	78			%		11/15/16	W	SW846-%Solid
Soil Extraction for PCB	Completed					11/17/16	JJ/V	SW3545A
Soil Extraction for Pest	Completed					11/17/16	JJ/V	SW3545A
Soil Extraction for SVOA	Completed					11/15/16	JJ/CKV	SW3545A
Mercury Digestion	Completed					11/16/16	W/W	SW7471B

Client ID: 15B1 (12-14)

RL/ LOD/ Parameter Result **PQL** MDL Units Dilution Date/Time Βv Reference Total Metals Digest Completed 11/15/16 X/AG SW3050B Completed 11/14/16 SW5035A Field Extraction **Polychlorinated Biphenyls** PCB-1016 ND 85 85 2 ug/Kg 11/17/16 AW SW8082A PCB-1221 ND 85 85 ug/Kg 2 11/17/16 AW SW8082A PCB-1232 ND 85 85 ug/Kg 2 11/17/16 AW SW8082A PCB-1242 ND 85 85 ug/Kg 2 11/17/16 AW SW8082A 2 PCB-1248 ND 85 85 ug/Kg 11/17/16 AW SW8082A 2 ND PCB-1254 85 85 ug/Kg 11/17/16 AW SW8082A ND 85 2 85 ug/Kg 11/17/16 AW SW8082A PCB-1260 ND 85 85 ug/Kg 2 11/17/16 AW SW8082A PCB-1262 ND 85 2 SW8082A PCB-1268 85 ug/Kg 11/17/16 AW **QA/QC Surrogates** 2 % % DCBP 61 11/17/16 ΑW 30 - 150 % 2 63 % % TCMX 11/17/16 AW 30 - 150 % **Pesticides - Soil** 2.5 2 4.4' -DDD ND 2.5 CE SW8081B ug/Kg 11/18/16 4,4' -DDE ND 2.5 2.5 ug/Kg 2 11/18/16 CE SW8081B 2 SW8081B 4,4' -DDT ND 2.5 2.5 ug/Kg 11/18/16 CE 2 ND 8.5 8.5 ug/Kg 11/18/16 CE SW8081B a-BHC 2 a-Chlordane ND 4.2 4.2 ug/Kg 11/18/16 CE SW8081B 4.2 2 ND 4.2 CE SW8081B Aldrin ug/Kg 11/18/16 2 b-BHC ND 8.5 8.5 ug/Kg 11/18/16 CE SW8081B ND 42 42 2 11/18/16 CF SW8081B Chlordane ug/Kg d-BHC ND 8.5 8.5 ug/Kg 2 11/18/16 CE SW8081B ND 4.2 4.2 2 11/18/16 CE SW8081B Dieldrin ug/Kg 8.5 2 SW8081B Endosulfan I ND 8.5 ug/Kg 11/18/16 CE Endosulfan II ND 8.5 8.5 ug/Kg 2 11/18/16 CE SW8081B 8.5 8.5 2 SW8081B ND 11/18/16 CE Endosulfan sulfate ug/Kg ND 8.5 2 11/18/16 CE SW8081B Endrin 8.5 ug/Kg Endrin aldehyde ND 8.5 8.5 ug/Kg 2 11/18/16 CE SW8081B ND 8.5 8.5 2 11/18/16 CE SW8081B Endrin ketone ug/Kg g-BHC ND 1.7 1.7 ug/Kg 2 11/18/16 CE SW8081B 2 g-Chlordane ND 4.2 4.2 ug/Kg 11/18/16 CE SW8081B 8.5 2 SW8081B ND 8.5 11/18/16 CE Heptachlor ug/Kg ND 8.5 8.5 2 11/18/16 CE SW8081B ug/Kg Heptachlor epoxide 2 SW8081B Methoxychlor ND 42 42 ug/Kg 11/18/16 CE Toxaphene ND 170 170 ug/Kg 2 11/18/16 CE SW8081B **QA/QC Surrogates** 2 40 - 140 % % DCBP 56 % 11/18/16 CE 53 % 2 11/18/16 CE 40 - 140 % % TCMX Volatiles 1,1,1,2-Tetrachloroethane ND 360 71 ug/Kg 50 11/16/16 JH SW8260C ND 360 36 ug/Kg 50 11/16/16 JLI SW8260C 1,1,1-Trichloroethane ND 360 71 50 11/16/16 SW8260C 1,1,2,2-Tetrachloroethane ug/Kg JLI ND 360 71 ug/Kg 50 11/16/16 JLI SW8260C 1,1,2-Trichloroethane 1,1-Dichloroethane ND 270 71 ug/Kg 50 11/16/16 SW8260C

Client ID: 15B1 (12-14)

Client ID. 13B1 (12-14)		D. /						
Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1,1-Dichloroethene	ND	330	36	ug/Kg	50	11/16/16	JLI	SW8260C
1,1-Dichloropropene	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	360	71	ug/Kg	50	11/16/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	360	71	ug/Kg	50	11/16/16	JLI	SW8260C
1,2,4-Trimethylbenzene	65000	3600	1400	ug/Kg	2000	11/16/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	360	71	ug/Kg	50	11/16/16	JLI	SW8260C
1,2-Dibromoethane	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
1,2-Dichloroethane	ND	36	36	ug/Kg	50	11/16/16	JLI	SW8260C
1,2-Dichloropropane	ND	360	71	ug/Kg	50	11/16/16	JLI	SW8260C
1,3,5-Trimethylbenzene	570	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
1,3-Dichloropropane	ND	360	71	ug/Kg	50	11/16/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
2,2-Dichloropropane	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
2-Chlorotoluene	ND	360	71	ug/Kg	50	11/16/16	JLI	SW8260C
2-Hexanone	ND	1800	360	ug/Kg	50	11/16/16	JLI	SW8260C
2-Isopropyltoluene	440	360	36	ug/Kg	50	11/16/16	JLI	SW8260C 1
4-Chlorotoluene	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
4-Methyl-2-pentanone	ND	1800	360	ug/Kg	50	11/16/16	JLI	SW8260C
Acetone	ND	360	360	ug/Kg	50	11/16/16	JLI	SW8260C
Acrylonitrile	ND	710	71	ug/Kg	50	11/16/16	JLI	SW8260C
Benzene	90	60	36	ug/Kg	50	11/16/16	JLI	SW8260C
Bromobenzene	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
Bromochloromethane	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
Bromodichloromethane	ND	360	71	ug/Kg	50	11/16/16	JLI	SW8260C
Bromoform	ND	360	71	ug/Kg	50	11/16/16	JLI	SW8260C
Bromomethane	ND	360	140	ug/Kg	50	11/16/16	JLI	SW8260C
Carbon Disulfide	ND	360	71	ug/Kg	50	11/16/16	JLI	SW8260C
Carbon tetrachloride	ND	360	71	ug/Kg	50	11/16/16	JLI	SW8260C
Chlorobenzene	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
Chloroethane	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
Chloroform	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
Chloromethane	ND	360	71	ug/Kg	50	11/16/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	250	36	ug/Kg	50	11/16/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
Dibromochloromethane	ND	360	71	ug/Kg	50	11/16/16	JLI	SW8260C
Dibromomethane	ND	360	71	ug/Kg	50	11/16/16	JLI	SW8260C
Dichlorodifluoromethane	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
Ethylbenzene	14000	1400	1400	ug/Kg	2000	11/16/16	JLI	SW8260C
Hexachlorobutadiene	ND	360	36	ug/Kg ug/Kg	50	11/16/16	JLI	SW8260C
Isopropylbenzene	6300	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
	2100	360	71	ug/Kg	50	11/16/16	JLI	SW8260C
m&p-Xylene	ND	360		ug/Kg ug/Kg	50	11/16/16		SW8260C
Methyl t butyl other (MTRE)	ND	710	360 71	ug/Kg ug/Kg		11/16/16	JLI	SW8260C SW8260C
Methyl t-butyl ether (MTBE)	ND ND	360	360		50 50	11/16/16	JLI JLI	SW8260C SW8260C
Methylene chloride				ug/Kg				
Naphthalene	2200	360	71 26	ug/Kg	50 50	11/16/16	JLI	SW8260C
n-Butylbenzene	7400	360	36	ug/Kg	50	11/16/16	JLI	SW8260C

Client ID: 15B1 (12-14)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
n-Propylbenzene	16000	3900	2800	ug/Kg	2000	11/16/16	JLI	SW8260C	
o-Xylene	1000	360	71	ug/Kg	50	11/16/16	JLI	SW8260C	
p-Isopropyltoluene	2800	360	36	ug/Kg	50	11/16/16	JLI	SW8260C	
sec-Butylbenzene	4800	360	36	ug/Kg	50	11/16/16	JLI	SW8260C	
Styrene	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C	
tert-Butylbenzene	270	J 360	36	ug/Kg	50	11/16/16	JLI	SW8260C	
Tetrachloroethene	ND	360	71	ug/Kg	50	11/16/16	JLI	SW8260C	
Tetrahydrofuran (THF)	ND	710	180	ug/Kg	50	11/16/16	JLI	SW8260C	1
Toluene	96	J 360	36	ug/Kg	50	11/16/16	JLI	SW8260C	
trans-1,2-Dichloroethene	ND	190	36	ug/Kg	50	11/16/16	JLI	SW8260C	
trans-1,3-Dichloropropene	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C	
trans-1,4-dichloro-2-butene	ND	710	180	ug/Kg	50	11/16/16	JLI	SW8260C	
Trichloroethene	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C	
Trichlorofluoromethane	ND	360	71	ug/Kg	50	11/16/16	JLI	SW8260C	
Trichlorotrifluoroethane	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C	
Vinyl chloride	ND	36	36	ug/Kg	50	11/16/16	JLI	SW8260C	
QA/QC Surrogates									
% 1,2-dichlorobenzene-d4	97			%	50	11/16/16	JLI	70 - 130 %	
% Bromofluorobenzene	147			%	50	11/16/16	JLI	70 - 130 %	3
% Dibromofluoromethane	95			%	50	11/16/16	JLI	70 - 130 %	
% Toluene-d8	99			%	50	11/16/16	JLI	70 - 130 %	
1,4-dioxane									
1,4-dioxane	ND	2800	2800	ug/kg	50	11/16/16	JLI	SW8260C	
QA/QC Surrogates									
% 1,2-dichlorobenzene-d4	97			%	50	11/16/16	JLI	70 - 130 %	
% Bromofluorobenzene	147			%	50	11/16/16	JLI	70 - 130 %	3
% Toluene-d8	99			%	50	11/16/16	JLI	70 - 130 %	
<u>Volatiles</u>									
1,1,1,2-Tetrachloroethane	ND	1400	71	ug/Kg	50	11/16/16	JLI	SW8260C	
Acrolein	ND	1400	180	ug/Kg	50	11/16/16	JLI	SW8260C	
Acrylonitrile	ND	1400	36	ug/Kg	50	11/16/16	JLI	SW8260C	
Tert-butyl alcohol	ND	7100	1400	ug/Kg	50	11/16/16	JLI	SW8260C	
<u>Semivolatiles</u>									
1,2,4,5-Tetrachlorobenzene	ND	290	150	ug/Kg	1	11/16/16	DD	SW8270D	
1,2,4-Trichlorobenzene	ND	290	130	ug/Kg	1	11/16/16	DD	SW8270D	
1,2-Dichlorobenzene	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D	
1,2-Diphenylhydrazine	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D	
1,3-Dichlorobenzene	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D	
1,4-Dichlorobenzene	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D	
2,4,5-Trichlorophenol	ND	290	230	ug/Kg	1	11/16/16	DD	SW8270D	
2,4,6-Trichlorophenol	ND	210	130	ug/Kg	1	11/16/16	DD	SW8270D	
2,4-Dichlorophenol	ND	210	150	ug/Kg	1	11/16/16	DD	SW8270D	
2,4-Dimethylphenol	ND	290	100	ug/Kg	1	11/16/16	DD	SW8270D	
2,4-Dinitrophenol	ND	290	290	ug/Kg	1	11/16/16	DD	SW8270D	
2,4-Dinitrotoluene	ND	210	160	ug/Kg	1	11/16/16	DD	SW8270D	
2,6-Dinitrotoluene	ND	210	130	ug/Kg	1	11/16/16	DD	SW8270D	
2-Chloronaphthalene	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D	

Client ID: 15B1 (12-14)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
2-Chlorophenol	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D	
2-Methylnaphthalene	1600	290	120	ug/Kg	1	11/16/16	DD	SW8270D	
2-Methylphenol (o-cresol)	ND	290	200	ug/Kg	1	11/16/16	DD	SW8270D	
2-Nitroaniline	ND	290	290	ug/Kg	1	11/16/16	DD	SW8270D	
2-Nitrophenol	ND	290	270	ug/Kg	1	11/16/16	DD	SW8270D	
3&4-Methylphenol (m&p-cresol)	ND	290	160	ug/Kg	1	11/16/16	DD	SW8270D	1
3,3'-Dichlorobenzidine	ND	210	200	ug/Kg	1	11/16/16	DD	SW8270D	
3-Nitroaniline	ND	420	840	ug/Kg	1	11/16/16	DD	SW8270D	
4,6-Dinitro-2-methylphenol	ND	250	84	ug/Kg	1	11/16/16	DD	SW8270D	
4-Bromophenyl phenyl ether	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D	
4-Chloro-3-methylphenol	ND	290	150	ug/Kg	1	11/16/16	DD	SW8270D	
4-Chloroaniline	ND	330	190	ug/Kg	1	11/16/16	DD	SW8270D	
4-Chlorophenyl phenyl ether	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D	
4-Nitroaniline	ND	420	140	ug/Kg	1	11/16/16	DD	SW8270D	
4-Nitrophenol	ND	420	190	ug/Kg	1	11/16/16	DD	SW8270D	
Acenaphthene	ND	290	130	ug/Kg	1	11/16/16	DD	SW8270D	
Acenaphthylene	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D	
Acetophenone	ND	290	130	ug/Kg	1	11/16/16	DD	SW8270D	
Aniline	ND	330	330	ug/Kg	1	11/16/16	DD	SW8270D	
Anthracene	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D	
Benz(a)anthracene	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D	
Benzidine	ND	420	250	ug/Kg	1	11/16/16	DD	SW8270D	
Benzo(a)pyrene	ND	210	140	ug/Kg	1	11/16/16	DD	SW8270D	
Benzo(b)fluoranthene	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D	
Benzo(ghi)perylene	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D	
Benzo(k)fluoranthene	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D	
Benzoic acid	ND	2100	840	ug/Kg	1	11/16/16	DD	SW8270D	1
Benzyl butyl phthalate	ND	290	110	ug/Kg	1	11/16/16	DD	SW8270D	
Bis(2-chloroethoxy)methane	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D	
Bis(2-chloroethyl)ether	ND	210	110	ug/Kg	1	11/16/16	DD	SW8270D	
Bis(2-chloroisopropyl)ether	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D	
Bis(2-ethylhexyl)phthalate	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D	
Carbazole	ND	210	170	ug/Kg	1	11/16/16	DD	SW8270D	
Chrysene	ND	290	140	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D	
Dibenz(a,h)anthracene	ND	210	140	ug/Kg	1	11/16/16	DD	SW8270D	
Dibenzofuran	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D	
Diethyl phthalate	ND	290	130	ug/Kg	1	11/16/16	DD	SW8270D	
Dimethylphthalate	ND	290	130	ug/Kg	1	11/16/16	DD	SW8270D	
Di-n-butylphthalate	ND	290	110	ug/Kg	1	11/16/16	DD	SW8270D	
Di-n-octylphthalate	ND	290	110	ug/Kg	1	11/16/16	DD	SW8270D	
Fluoranthene	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D	
Fluorene	ND	290	140	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D	
Hexachlorobenzene	ND	210	120	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D	
Hexachlorobutadiene	ND	290	150	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D	
	ND	290	130	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D	
Hexachlorocyclopentadiene Hexachloroethane	ND	210	130	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D	
	ND	290	140	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D	
Indeno(1,2,3-cd)pyrene	ND	210	120	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D	
Isophorone	3200	290	120	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D	
Naphthalene	3200	230	120	ug/Ng	ı	11/10/10	טט	3440210D	

Client ID: 15B1 (12-14)

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Nitrobenzene	ND	210	150	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodimethylamine	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	210	140	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	290	160	ug/Kg	1	11/16/16	DD	SW8270D
Pentachloronitrobenzene	ND	290	160	ug/Kg	1	11/16/16	DD	SW8270D
Pentachlorophenol	ND	250	160	ug/Kg	1	11/16/16	DD	SW8270D
Phenanthrene	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
Phenol	ND	290	130	ug/Kg	1	11/16/16	DD	SW8270D
Pyrene	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D
Pyridine	ND	290	100	ug/Kg	1	11/16/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	75			%	1	11/16/16	DD	30 - 130 %
% 2-Fluorobiphenyl	57			%	1	11/16/16	DD	30 - 130 %
% 2-Fluorophenol	52			%	1	11/16/16	DD	30 - 130 %
% Nitrobenzene-d5	64			%	1	11/16/16	DD	30 - 130 %
% Phenol-d5	55			%	1	11/16/16	DD	30 - 130 %
% Terphenyl-d14	66			%	1	11/16/16	DD	30 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

Volatile Comment:

Elevated reporting limits for volatiles due to the presence of target and/or non-target compounds.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

Pesticide Comment:

Due to matrix interference caused by the presence of PCBs in the sample, an elevated RL was reported.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 22, 2016

Reviewed and Released by: Ethan Lee, Project Manager

^{3 =} This parameter exceeds laboratory specified limits.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 22, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOIL Collected by: TG 11/14/16

Location Code: EBC Received by: SW 11/15/16 17:12

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GBV83365
Phoenix ID: BV83374

Project ID: 1181 FLUSHING AVE BROOKLYN NY

Client ID: 15B1 (18-20)

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.37	0.37	mg/Kg	1	11/16/16	TH	SW6010C
Aluminum	3690	37	7.4	mg/Kg	10	11/16/16	TH	SW6010C
Arsenic	1.19	0.74	0.74	mg/Kg	1	11/16/16	TH	SW6010C
Barium	18.4	0.7	0.37	mg/Kg	1	11/16/16	TH	SW6010C
Beryllium	ND	0.30	0.15	mg/Kg	1	11/16/16	TH	SW6010C
Calcium	468	3.7	3.4	mg/Kg	1	11/16/16	TH	SW6010C
Cadmium	ND	0.37	0.37	mg/Kg	1	11/16/16	TH	SW6010C
Cobalt	3.19	0.37	0.37	mg/Kg	1	11/16/16	TH	SW6010C
Chromium	5.75	0.37	0.37	mg/Kg	1	11/16/16	TH	SW6010C
Copper	6.20	0.37	0.37	mg/kg	1	11/16/16	TH	SW6010C
Iron	7760	37	37	mg/Kg	10	11/16/16	TH	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	11/16/16	RS	SW7471B
Potassium	436	7	2.9	mg/Kg	1	11/16/16	LK	SW6010C
Magnesium	1320	37	37	mg/Kg	10	11/16/16	TH	SW6010C
Manganese	74.9	0.37	0.37	mg/Kg	1	11/16/16	LK	SW6010C
Sodium	198	7	3.2	mg/Kg	1	11/16/16	LK	SW6010C
Nickel	6.98	0.37	0.37	mg/Kg	1	11/16/16	TH	SW6010C
Lead	1.0	0.7	0.37	mg/Kg	1	11/16/16	TH	SW6010C
Antimony	ND	1.9	1.9	mg/Kg	1	11/16/16	TH	SW6010C
Selenium	ND	1.5	1.3	mg/Kg	1	11/16/16	TH	SW6010C
Thallium	ND	1.5	1.5	mg/Kg	1	11/16/16	TH	SW6010C
Vanadium	8.97	0.37	0.37	mg/Kg	1	11/16/16	TH	SW6010C
Zinc	12.9	0.7	0.37	mg/Kg	1	11/16/16	TH	SW6010C
Percent Solid	82			%		11/15/16	W	SW846-%Solid
Soil Extraction for SVOA	Completed					11/15/16	JJ/CKV	SW3545A
Mercury Digestion	Completed					11/16/16	W/W	SW7471B
Total Metals Digest	Completed					11/15/16	X/AG	SW3050B
Field Extraction	Completed					11/14/16		SW5035A

Client ID: 15B1 (18-20)

Parameter Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	3.8	0.76	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	3.8	0.76	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	3.8	0.76	ug/Kg	1	11/16/16	JLI	SW8260C
1,1-Dichloroethane	ND	3.8	0.76	ug/Kg	1	11/16/16	JLI	SW8260C
1,1-Dichloroethene	ND	3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
1,1-Dichloropropene	ND	3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	3.8	0.76	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	3.8	0.76	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,4-Trimethylbenzene	1.5	J 3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	3.8	0.76	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dibromoethane	ND	3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichloroethane	ND	3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichloropropane	ND	3.8	0.76	ug/Kg	1	11/16/16	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
1,3-Dichloropropane	ND	3.8	0.76	ug/Kg	1	11/16/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
2,2-Dichloropropane	ND	3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
2-Chlorotoluene	ND	3.8	0.76	ug/Kg	1	11/16/16	JLI	SW8260C
2-Hexanone	ND	19	3.8	ug/Kg	1	11/16/16	JLI	SW8260C
2-Isopropyltoluene	ND	3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C 1
4-Chlorotoluene	ND	3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
4-Methyl-2-pentanone	ND	19	3.8	ug/Kg	1	11/16/16	JLI	SW8260C
Acetone	ND	19	3.8	ug/Kg	1	11/16/16	JLI	SW8260C
Acrylonitrile	ND	7.6	0.76	ug/Kg	1	11/16/16	JLI	SW8260C
Benzene	0.84	J 3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
Bromobenzene	ND	3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
Bromochloromethane	ND	3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
Bromodichloromethane	ND	3.8	0.76	ug/Kg	1	11/16/16	JLI	SW8260C
Bromoform	ND	3.8	0.76	ug/Kg	1	11/16/16	JLI	SW8260C
Bromomethane	ND	3.8	1.5	ug/Kg	1	11/16/16	JLI	SW8260C
Carbon Disulfide	ND	3.8	0.76	ug/Kg	1	11/16/16	JLI	SW8260C
Carbon tetrachloride	ND	3.8	0.76	ug/Kg	1	11/16/16	JLI	SW8260C
Chlorobenzene	ND	3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
Chloroethane	ND	3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
Chloroform	ND	3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
Chloromethane	ND	3.8	0.76	ug/Kg	1	11/16/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
Dibromochloromethane	ND	3.8	0.76	ug/Kg	1	11/16/16	JLI	SW8260C
Dibromomethane	ND	3.8	0.76	ug/Kg	1	11/16/16	JLI	SW8260C
Dichlorodifluoromethane	ND	3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
Ethylbenzene	39	3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
Hexachlorobutadiene	ND	3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
Isopropylbenzene	3.3	J 3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C

Client ID: 15B1 (18-20)

Parameter Parameter	Result		RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
m&p-Xylene	2.2	J	3.8	0.76	ug/Kg	1	11/16/16	JLI	SW8260C
Methyl Ethyl Ketone	ND		23	3.8	ug/Kg	1	11/16/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND		7.6	0.76	ug/Kg	1	11/16/16	JLI	SW8260C
Methylene chloride	ND		3.8	3.8	ug/Kg	1	11/16/16	JLI	SW8260C
Naphthalene	ND		3.8	0.76	ug/Kg	1	11/16/16	JLI	SW8260C
n-Butylbenzene	0.64	J	3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
n-Propylbenzene	5.0		3.8	0.76	ug/Kg	1	11/16/16	JLI	SW8260C
o-Xylene	ND		3.8	0.76	ug/Kg	1	11/16/16	JLI	SW8260C
p-Isopropyltoluene	ND		3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
sec-Butylbenzene	0.85	J	3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
Styrene	ND		3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
tert-Butylbenzene	ND		3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
Tetrachloroethene	ND		3.8	0.76	ug/Kg	1	11/16/16	JLI	SW8260C
Tetrahydrofuran (THF)	4.0	J	7.6	1.9	ug/Kg	1	11/16/16	JLI	SW8260C 1
Toluene	ND		3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND		3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND		3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND		7.6	1.9	ug/Kg	1	11/16/16	JLI	SW8260C
Trichloroethene	ND		3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
Trichlorofluoromethane	ND		3.8	0.76	ug/Kg	1	11/16/16	JLI	SW8260C
Trichlorotrifluoroethane	ND		3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
Vinyl chloride	ND		3.8	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
QA/QC Surrogates									
% 1,2-dichlorobenzene-d4	98				%	1	11/16/16	JLI	70 - 130 %
% Bromofluorobenzene	98				%	1	11/16/16	JLI	70 - 130 %
% Dibromofluoromethane	95				%	1	11/16/16	JLI	70 - 130 %
% Toluene-d8	100				%	1	11/16/16	JLI	70 - 130 %
1,4-dioxane									
1,4-dioxane	ND		57	30	ug/kg	1	11/16/16	JLI	SW8260C
QA/QC Surrogates									
% 1,2-dichlorobenzene-d4	98				%	1	11/16/16	JLI	70 - 130 %
% Bromofluorobenzene	98				%	1	11/16/16	JLI	70 - 130 %
% Toluene-d8	100				%	1	11/16/16	JLI	70 - 130 %
<u>Volatiles</u>									
1,1,1,2-Tetrachloroethane	ND		15	0.76	ug/Kg	1	11/16/16	JLI	SW8260C
Acrolein	ND		15	1.9	ug/Kg	1	11/16/16	JLI	SW8260C
Acrylonitrile	ND		15	0.38	ug/Kg	1	11/16/16	JLI	SW8260C
Tert-butyl alcohol	ND		76	15	ug/Kg	1	11/16/16	JLI	SW8260C
<u>Semivolatiles</u>									
1,2,4,5-Tetrachlorobenzene	ND		280	140	ug/Kg	1	11/15/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND		280	120	ug/Kg	1	11/15/16	DD	SW8270D
1,2-Dichlorobenzene	ND		280	110	ug/Kg	1	11/15/16	DD	SW8270D
1,2-Diphenylhydrazine	ND		280	130	ug/Kg	1	11/15/16	DD	SW8270D
1,3-Dichlorobenzene	ND		280	120	ug/Kg	1	11/15/16	DD	SW8270D
1,4-Dichlorobenzene	ND		280	120	ug/Kg	1	11/15/16	DD	SW8270D
2,4,5-Trichlorophenol	ND		280	220	ug/Kg	1	11/15/16	DD	SW8270D
2,4,6-Trichlorophenol	ND		200	130	ug/Kg	1	11/15/16	DD	SW8270D

Client ID: 15B1 (18-20)

Client ID. 13B1 (10-20)		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
2,4-Dichlorophenol	ND	200	140	ug/Kg	1	11/15/16	DD	SW8270D
2,4-Dimethylphenol	ND	280	100	ug/Kg	1	11/15/16	DD	SW8270D
2,4-Dinitrophenol	ND	280	280	ug/Kg	1	11/15/16	DD	SW8270D
2,4-Dinitrotoluene	ND	200	160	ug/Kg	1	11/15/16	DD	SW8270D
2,6-Dinitrotoluene	ND	200	130	ug/Kg	1	11/15/16	DD	SW8270D
2-Chloronaphthalene	ND	280	110	ug/Kg	1	11/15/16	DD	SW8270D
2-Chlorophenol	ND	280	110	ug/Kg	1	11/15/16	DD	SW8270D
2-Methylnaphthalene	ND	280	120	ug/Kg	1	11/15/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	280	190	ug/Kg	1	11/15/16	DD	SW8270D
2-Nitroaniline	ND	280	280	ug/Kg	1	11/15/16	DD	SW8270D
2-Nitrophenol	ND	280	260	ug/Kg	1	11/15/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	280	160	ug/Kg	1	11/15/16	DD	SW8270D 1
3,3'-Dichlorobenzidine	ND	200	190	ug/Kg	1	11/15/16	DD	SW8270D
3-Nitroaniline	ND	400	810	ug/Kg	1	11/15/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	240	81	ug/Kg	1	11/15/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	280	120	ug/Kg	1	11/15/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	280	140	ug/Kg	1	11/15/16	DD	SW8270D
4-Chloroaniline	ND	320	190	ug/Kg	1	11/15/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	280	140	ug/Kg	1	11/15/16	DD	SW8270D
4-Nitroaniline	ND	400	130	ug/Kg	1	11/15/16	DD	SW8270D
4-Nitrophenol	ND	400	180	ug/Kg	1	11/15/16	DD	SW8270D
Acenaphthene	ND	280	120	ug/Kg	1	11/15/16	DD	SW8270D
Acenaphthylene	ND	280	110	ug/Kg	1	11/15/16	DD	SW8270D
Acetophenone	ND	280	130	ug/Kg	1	11/15/16	DD	SW8270D
Aniline	ND	320	320	ug/Kg	1	11/15/16	DD	SW8270D
Anthracene	ND	280	130	ug/Kg	1	11/15/16	DD	SW8270D
Benz(a)anthracene	ND	280	140	ug/Kg	1	11/15/16	DD	SW8270D
Benzidine	ND	400	240	ug/Kg	1	11/15/16	DD	SW8270D
Benzo(a)pyrene	ND	200	130	ug/Kg	1	11/15/16	DD	SW8270D
Benzo(b)fluoranthene	ND	280	140	ug/Kg	1	11/15/16	DD	SW8270D
Benzo(ghi)perylene	ND	280	130	ug/Kg	1	11/15/16	DD	SW8270D
Benzo(k)fluoranthene	ND	280	130	ug/Kg	1	11/15/16	DD	SW8270D
Benzoic acid	ND	2000	810	ug/Kg	1	11/15/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	280	100	ug/Kg	1	11/15/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	280	110	ug/Kg	1	11/15/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	200	110	ug/Kg	1	11/15/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	280	110	ug/Kg	1	11/15/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	280	120	ug/Kg	1	11/15/16	DD	SW8270D
Carbazole	ND	200	160	ug/Kg	1	11/15/16	DD	SW8270D
Chrysene	ND	280	140	ug/Kg	1	11/15/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	200	130	ug/Kg	1	11/15/16	DD	SW8270D
Dibenzofuran	ND	280	120	ug/Kg	1	11/15/16	DD	SW8270D
Diethyl phthalate	ND	280	130	ug/Kg	1	11/15/16	DD	SW8270D
Dimethylphthalate	ND	280	120	ug/Kg	1	11/15/16	DD	SW8270D
Di-n-butylphthalate	ND	280	110	ug/Kg	1	11/15/16	DD	SW8270D
Di-n-octylphthalate	ND	280	100	ug/Kg	1	11/15/16	DD	SW8270D
Fluoranthene	ND	280	130	ug/Kg	1	11/15/16	DD	SW8270D
Fluorene	ND	280	130	ug/Kg	1	11/15/16	DD	SW8270D
Hexachlorobenzene	ND	200	120	ug/Kg	1	11/15/16	DD	SW8270D

Client ID: 15B1 (18-20)

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Hexachlorobutadiene	ND	280	150	ug/Kg	1	11/15/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	280	120	ug/Kg	1	11/15/16	DD	SW8270D
Hexachloroethane	ND	200	120	ug/Kg	1	11/15/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	280	130	ug/Kg	1	11/15/16	DD	SW8270D
Isophorone	ND	200	110	ug/Kg	1	11/15/16	DD	SW8270D
Naphthalene	ND	280	120	ug/Kg	1	11/15/16	DD	SW8270D
Nitrobenzene	ND	200	140	ug/Kg	1	11/15/16	DD	SW8270D
N-Nitrosodimethylamine	ND	280	110	ug/Kg	1	11/15/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	200	130	ug/Kg	1	11/15/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	280	150	ug/Kg	1	11/15/16	DD	SW8270D
Pentachloronitrobenzene	ND	280	150	ug/Kg	1	11/15/16	DD	SW8270D
Pentachlorophenol	ND	240	150	ug/Kg	1	11/15/16	DD	SW8270D
Phenanthrene	ND	280	120	ug/Kg	1	11/15/16	DD	SW8270D
Phenol	ND	280	130	ug/Kg	1	11/15/16	DD	SW8270D
Pyrene	ND	280	140	ug/Kg	1	11/15/16	DD	SW8270D
Pyridine	ND	280	99	ug/Kg	1	11/15/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	79			%	1	11/15/16	DD	30 - 130 %
% 2-Fluorobiphenyl	66			%	1	11/15/16	DD	30 - 130 %
% 2-Fluorophenol	49			%	1	11/15/16	DD	30 - 130 %
% Nitrobenzene-d5	70			%	1	11/15/16	DD	30 - 130 %
% Phenol-d5	66			%	1	11/15/16	DD	30 - 130 %
% Terphenyl-d14	74			%	1	11/15/16	DD	30 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 22, 2016

Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 22, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample Information Custody Information Date <u>Time</u> Collected by: TG 11/14/16 Matrix: SOIL

Received by: Location Code: **EBC** SW 11/15/16 17:12

Rush Request: 72 Hour Analyzed by: see "By" below

RL/

1181 FLUSHING AVE BROOKLYN NY

Client ID: 15B2 (12-14)

P.O.#:

Project ID:

Laboratory Data

LOD/

SDG ID: GBV83365 Phoenix ID: BV83375

Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.42	0.42	mg/Kg	1	11/16/16	TH	SW6010C
Aluminum	4150	42	8.3	mg/Kg	10	11/16/16	TH	SW6010C
Arsenic	1.41	0.83	0.83	mg/Kg	1	11/16/16	TH	SW6010C
Barium	44.3	0.8	0.42	mg/Kg	1	11/16/16	TH	SW6010C
Beryllium	0.35	0.33	0.17	mg/Kg	1	11/16/16	TH	SW6010C
Calcium	1170	4.2	3.8	mg/Kg	1	11/16/16	TH	SW6010C
Cadmium	ND	0.42	0.42	mg/Kg	1	11/16/16	TH	SW6010C
Cobalt	8.80	0.42	0.42	mg/Kg	1	11/16/16	LK	SW6010C
Chromium	19.6	0.42	0.42	mg/Kg	1	11/16/16	LK	SW6010C
Copper	13.9	0.42	0.42	mg/kg	1	11/16/16	TH	SW6010C
Iron	8490	42	42	mg/Kg	10	11/16/16	TH	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	11/16/16	RS	SW7471B
Potassium	1840	8	3.3	mg/Kg	1	11/16/16	LK	SW6010C
Magnesium	1650	42	42	mg/Kg	10	11/16/16	TH	SW6010C
Manganese	237	4.2	4.2	mg/Kg	10	11/16/16	TH	SW6010C
Sodium	341	8	3.6	mg/Kg	1	11/16/16	LK	SW6010C
Nickel	14.8	0.42	0.42	mg/Kg	1	11/16/16	LK	SW6010C
Lead	4.4	0.8	0.42	mg/Kg	1	11/16/16	TH	SW6010C
Antimony	ND	2.1	2.1	mg/Kg	1	11/16/16	TH	SW6010C
Selenium	ND	1.7	1.4	mg/Kg	1	11/16/16	TH	SW6010C
Thallium	ND	1.7	1.7	mg/Kg	1	11/16/16	TH	SW6010C
Vanadium	29.3	0.42	0.42	mg/Kg	1	11/16/16	LK	SW6010C
Zinc	36.2	0.8	0.42	mg/Kg	1	11/16/16	TH	SW6010C
Percent Solid	81			%		11/15/16	W	SW846-%Solid
Soil Extraction for PCB	Completed					11/15/16	CC/V	SW3545A
Soil Extraction for Pest	Completed					11/15/16	CC/V	SW3545A
Soil Extraction for SVOA	Completed					11/15/16	JJ/CKV	SW3545A
Mercury Digestion	Completed					11/16/16	W/W	SW7471B

Client ID: 15B2 (12-14)

Total Metals Digest Completed Comple	Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Polychlorinated Biphenyls									
Polychlorinated Biphenyls	_							MAG	
PCB-1016	Field Extraction	Completed					11/14/16		21/2032A
PCB-1016	Polychlorinated Bipher	nvis							
PCB-1221	•		80	80	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1232									
PCB-1242							11/17/16		
PCB-1248									
PCB-1254									
PCB-1260 ND 80 80 ug/Kg 2 11/17/16 AW SW8082A PCB-1262 ND 80 80 ug/Kg 2 11/17/16 AW SW8082A PCB-1268 ND 80 0 ug/Kg 2 11/17/16 AW SW8082A DCBP 82 " " % 2 11/17/16 AW 30 - 150 % **CMX** 75 " " % 2 11/17/16 AW 30 - 150 % **Pesticides - Soil 4,4"-DDD ND 2.4 2.4 ug/Kg 2 11/17/16 CE SW8081B 4,4"-DDT ND 2.4 2.4 ug/Kg 2 11/17/16 CE SW8081B 4-BHC ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B a-Chlordane ND 4.0 4.0 ug/Kg 2 11/17/16 CE SW8081B <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
PCB-1262 ND 80 80 Ug/Kg 2 11/17/16 AW SW8082A PCB-1268 ND 80 80 Ug/Kg 2 11/17/16 AW SW8082A PCB-1268 ND 80 80 Ug/Kg 2 11/17/16 AW SW8082A PCB-1268 ND 80 80 Ug/Kg 2 11/17/16 AW 30-150 % TCMX 75								AW	
PCB-1268			80					AW	
SOCBP 82 % 2 11/17/16 AW 30 - 150 %			80					AW	
% DCBP 82 % 2 11/17/16 AW 30 - 150 % % TCMX 75 % 2 11/17/16 AW 30 - 150 % Pesticides - Soil 4,4'-DDD ND 2.4 2.4 ug/Kg 2 11/17/16 CE SW8081B 4,4'-DDT ND 2.4 2.4 ug/Kg 2 11/17/16 CE SW8081B a-BHC ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B a-Chlordane ND 4.0 4.0 ug/Kg 2 11/17/16 CE SW8081B Aldrin ND 4.0 4.0 ug/Kg 2 11/17/16 CE SW8081B Aldrin ND 4.0 4.0 ug/Kg 2 11/17/16 CE SW8081B A-BHC ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Chlordane ND 4.0 4.0 <td></td> <td></td> <td></td> <td></td> <td>0 0</td> <td></td> <td></td> <td></td> <td></td>					0 0				
Pesticides - Soil 4,4'-DDD ND 2.4 2.4 ug/Kg 2 11/17/16 CE SW8081B 4,4'-DDD ND 2.4 2.4 ug/Kg 2 11/17/16 CE SW8081B 4,4'-DDT ND 2.4 2.4 ug/Kg 2 11/17/16 CE SW8081B a-BHC ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B a-Chlordane ND 4.0 4.0 ug/Kg 2 11/17/16 CE SW8081B Aldrin ND 4.0 4.0 ug/Kg 2 11/17/16 CE SW8081B Aldrin ND 4.0 4.0 ug/Kg 2 11/17/16 CE SW8081B Aldrin ND 4.0 4.0 ug/Kg 2 11/17/16 CE SW8081B Chlordane ND 4.0 4.0 ug/Kg 2 11/17/16 CE SW8081B		82			%	2	11/17/16	AW	30 - 150 %
Pesticides - Soil									
4,4'-DDD ND 2.4 2.4 ug/Kg 2 11/17/16 CE SW8081B 4,4'-DDE ND 2.4 2.4 ug/Kg 2 11/17/16 CE SW8081B 4,4'-DDT ND 2.4 2.4 ug/Kg 2 11/17/16 CE SW8081B a-BHC ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B a-Chlordane ND 4.0 4.0 ug/Kg 2 11/17/16 CE SW8081B Aldrin ND 4.0 4.0 ug/Kg 2 11/17/16 CE SW8081B Aldrin ND 4.0 4.0 ug/Kg 2 11/17/16 CE SW8081B b-BHC ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B c-BHC ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B b-BHC ND 8.0	, , , , , , , , , , , , , , , , , , , ,								
4,4'-DDE ND 2.4 2.4 ug/kg 2 11/17/16 CE SW8081B 4,4'-DDT ND 2.4 2.4 ug/kg 2 11/17/16 CE SW8081B a-BHC ND 8.0 8.0 ug/kg 2 11/17/16 CE SW8081B a-Chlordane ND 4.0 4.0 ug/kg 2 11/17/16 CE SW8081B Aldrin ND 4.0 4.0 ug/kg 2 11/17/16 CE SW8081B Aldrin ND 4.0 4.0 ug/kg 2 11/17/16 CE SW8081B b-BHC ND 8.0 8.0 ug/kg 2 11/17/16 CE SW8081B Chlordane ND 4.0 4.0 ug/kg 2 11/17/16 CE SW8081B d-BHC ND 8.0 8.0 ug/kg 2 11/17/16 CE SW8081B Endosulfan I ND 8.	Pesticides - Soil								
A,4' - DDT	4,4' -DDD	ND	2.4	2.4	ug/Kg	2	11/17/16	CE	SW8081B
a-BHC ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B a-Chlordane ND 4.0 4.0 ug/Kg 2 111/17/16 CE SW8081B Aldrin ND 4.0 4.0 ug/Kg 2 111/17/16 CE SW8081B b-BHC ND 8.0 8.0 ug/Kg 2 111/17/16 CE SW8081B b-BHC ND 8.0 8.0 ug/Kg 2 111/17/16 CE SW8081B Chlordane ND 40 40 ug/Kg 2 111/17/16 CE SW8081B Chlordane ND 40 40 ug/Kg 2 111/17/16 CE SW8081B Chlordane ND 8.0 8.0 ug/Kg 2 111/17/16 CE SW8081B Dieldrin ND 8.0 8.0 ug/Kg 2 111/17/16 CE SW8081B Endosulfan I ND 8.0 8.0 ug/Kg 2 111/17/16 CE SW8081B Endosulfan II ND 8.0 8.0 ug/Kg 2 111/17/16 CE SW8081B Endosulfan II ND 8.0 8.0 ug/Kg 2 111/17/16 CE SW8081B Endrin ND 8.0 8.0 ug/Kg 2 111/17/16 CE SW8081B Endrin aldehyde ND 8.0 8.0 ug/Kg 2 111/17/16 CE SW8081B Endrin ketone ND 8.0 8.0 ug/Kg 2 111/17/16 CE SW8081B Gg-BHC ND 1.6 1.6 ug/Kg 2 111/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 111/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 111/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 111/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 111/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 111/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 111/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 111/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 111/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 111/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 111/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 111/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 111/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 111/17/16 CE SW8081B Methoxychlor ND 40 40 ug/Kg 2 111/17/16 CE SW8081B Methoxychlor ND 40 40 ug/Kg 2 111/17/16 CE SW8081B Methoxychlor ND 40 40 ug/Kg 2 111/17/16 CE SW8081B Methoxychlor ND 40 40 ug/Kg 2 11/17/16 CE SW8081B Methoxychlor ND 40 40 ug/Kg 2 11/17/16 CE SW8081B Methoxychlor ND 40 40 ug/Kg 2 11/17/16 CE SW8081B	4,4' -DDE	ND	2.4	2.4	ug/Kg	2	11/17/16	CE	SW8081B
a-Chlordane ND 4.0 4.0 ug/kg 2 11/17/16 CE SW8081B Aldrin ND 4.0 4.0 ug/kg 2 11/17/16 CE SW8081B b-BHC ND 8.0 8.0 ug/kg 2 11/17/16 CE SW8081B Chlordane ND 40 40 ug/kg 2 11/17/16 CE SW8081B d-BHC ND 8.0 8.0 ug/kg 2 11/17/16 CE SW8081B Dieldrin ND 4.0 4.0 ug/kg 2 11/17/16 CE SW8081B Endosulfan I ND 8.0 8.0 ug/kg 2 11/17/16 CE SW8081B Endosulfan II ND 8.0 8.0 ug/kg 2 11/17/16 CE SW8081B Endrin ND 8.0 8.0 ug/kg 2 11/17/16 CE SW8081B Endrin aldehyde ND	4,4' -DDT	ND	2.4	2.4	ug/Kg	2	11/17/16	CE	SW8081B
Aldrin ND 4.0 4.0 ug/Kg 2 11/17/16 CE SW8081B b-BHC ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Chlordane ND 40 40 ug/Kg 2 11/17/16 CE SW8081B d-BHC ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Dieldrin ND 4.0 4.0 ug/Kg 2 11/17/16 CE SW8081B Endosulfan I ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endosulfan II ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endosulfan II ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endosulfan sulfate ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endrin aldehyde ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endrin ketone ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endrin ketone ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endrin etone ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endrin etone ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endrin etone ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endrin etone ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endrin etone ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endrin etone ND 4.0 4.0 ug/Kg 2 11/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B	a-BHC	ND	8.0	8.0	ug/Kg	2	11/17/16	CE	SW8081B
b-BHC ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Chlordane ND 40 40 ug/Kg 2 11/17/16 CE SW8081B d-BHC ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Dieldrin ND 4.0 4.0 ug/Kg 2 11/17/16 CE SW8081B Endosulfan I ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endosulfan II ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endosulfan sulfate ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endrin aldehyde ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endrin ketone ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B g-Chlordane	a-Chlordane	ND	4.0	4.0	ug/Kg	2	11/17/16	CE	SW8081B
Chlordane ND 40 40 ug/kg 2 11/17/16 CE SW8081B d-BHC ND 8.0 8.0 ug/kg 2 11/17/16 CE SW8081B Dieldrin ND 4.0 4.0 ug/kg 2 11/17/16 CE SW8081B Endosulfan I ND 8.0 8.0 ug/kg 2 11/17/16 CE SW8081B Endosulfan II ND 8.0 8.0 ug/kg 2 11/17/16 CE SW8081B Endosulfan sulfate ND 8.0 8.0 ug/kg 2 11/17/16 CE SW8081B Endosulfan sulfate ND 8.0 8.0 ug/kg 2 11/17/16 CE SW8081B Endrin ND 8.0 8.0 ug/kg 2 11/17/16 CE SW8081B Endrin aldehyde ND 8.0 8.0 ug/kg 2 11/17/16 CE SW8081B Endrin ketone ND 8.0 8.0 ug/kg 2 11/17/16 CE SW8081B Endrin ketone ND 8.0 8.0 ug/kg 2 11/17/16 CE SW8081B Endrin ketone ND 8.0 8.0 ug/kg 2 11/17/16 CE SW8081B Endrin ketone ND 8.0 8.0 ug/kg 2 11/17/16 CE SW8081B G-BHC ND 1.6 1.6 ug/kg 2 11/17/16 CE SW8081B Heptachlor ND 4.0 4.0 ug/kg 2 11/17/16 CE SW8081B Heptachlor epoxide ND 8.0 8.0 ug/kg 2 11/17/16 CE SW8081B Heptachlor epoxide ND 8.0 8.0 ug/kg 2 11/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/kg 2 11/17/16 CE SW8081B Heptachlor epoxide ND 8.0 8.0 ug/kg 2 11/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/kg 2 11/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/kg 2 11/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/kg 2 11/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/kg 2 11/17/16 CE SW8081B Heptachlor ND 40 40 ug/kg 2 11/17/16 CE SW8081B Methoxychlor Toxaphene ND 160 160 ug/kg 2 11/17/16 CE SW8081B QA/QC Surrogates % DCBP 77	Aldrin	ND	4.0	4.0	ug/Kg	2	11/17/16	CE	SW8081B
d-BHC	b-BHC	ND	8.0	8.0	ug/Kg	2	11/17/16	CE	SW8081B
Dieldrin ND 4.0 4.0 ug/Kg 2 11/17/16 CE SW8081B Endosulfan I ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endosulfan II ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endosulfan sulfate ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endrin ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endrin aldehyde ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endrin ketone ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B g-BHC ND 1.6 1.6 ug/Kg 2 11/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Methoxychlor <td>Chlordane</td> <td>ND</td> <td>40</td> <td>40</td> <td>ug/Kg</td> <td>2</td> <td>11/17/16</td> <td>CE</td> <td>SW8081B</td>	Chlordane	ND	40	40	ug/Kg	2	11/17/16	CE	SW8081B
Endosulfan I ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endosulfan II ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endosulfan sulfate ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endrin ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endrin aldehyde ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endrin ketone ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endrin ketone ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B g-BHC ND 1.6 1.6 ug/Kg 2 11/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Methoxychl	d-BHC	ND	8.0	8.0	ug/Kg	2	11/17/16	CE	SW8081B
Endosulfan II ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endosulfan sulfate ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endrin ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endrin aldehyde ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endrin ketone ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endrin ketone ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B BeHC ND 1.6 1.6 ug/Kg 2 11/17/16 CE SW8081B G-Chlordane ND 4.0 4.0 ug/Kg 2 11/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Methoxychlor	Dieldrin	ND	4.0	4.0	ug/Kg	2	11/17/16	CE	SW8081B
Endosulfan sulfate ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endrin ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endrin aldehyde ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endrin ketone ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B g-BHC ND 1.6 1.6 ug/Kg 2 11/17/16 CE SW8081B g-Chlordane ND 4.0 4.0 ug/Kg 2 11/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Methoxychlor poxide ND 40 40 ug/Kg 2 11/17/16 CE SW8081B Toxaphene ND 160 160 ug/Kg 2 11/17/16 CE SW8081B QA/QC Surro	Endosulfan I	ND	8.0	8.0	ug/Kg	2	11/17/16	CE	SW8081B
Endrin ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endrin aldehyde ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endrin ketone ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B g-BHC ND 1.6 1.6 ug/Kg 2 11/17/16 CE SW8081B g-Chlordane ND 4.0 4.0 ug/Kg 2 11/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Heptachlor epoxide ND 8.0 ug/Kg 2 11/17/16 CE SW8081B Methoxychlor ND 40 40 ug/Kg 2 11/17/16 CE SW8081B Toxaphene ND 160 ug/Kg 2 11/17/16 CE SW8081B QA/QC Surrogates % 2	Endosulfan II	ND	8.0	8.0	ug/Kg	2	11/17/16	CE	SW8081B
Endrin aldehyde ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Endrin ketone ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B g-BHC ND 1.6 1.6 ug/Kg 2 11/17/16 CE SW8081B g-Chlordane ND 4.0 4.0 ug/Kg 2 11/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Heptachlor epoxide ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Methoxychlor ND 40 40 ug/Kg 2 11/17/16 CE SW8081B Toxaphene ND 160 160 ug/Kg 2 11/17/16 CE SW8081B QA/QC Surrogates 8 0 2 11/17/16 CE 40 - 140 % % TCMX 53 %	Endosulfan sulfate	ND	8.0	8.0	ug/Kg	2	11/17/16	CE	SW8081B
Endrin ketone g-BHC ND 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.7 1.7 1.6 CE SW8081B G-Chlordane ND 1.6 ND 1.6 1.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Endrin	ND	8.0	8.0	ug/Kg	2	11/17/16	CE	SW8081B
g-BHC ND 1.6 1.6 ug/Kg 2 11/17/16 CE SW8081B g-Chlordane ND 4.0 4.0 ug/Kg 2 11/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Heptachlor epoxide ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Methoxychlor ND 40 40 ug/Kg 2 11/17/16 CE SW8081B Toxaphene ND 160 160 ug/Kg 2 11/17/16 CE SW8081B QA/QC Surrogates ** ** ** 2 11/17/16 CE 40 - 140 % % TCMX 53 ** ** 2 11/17/16 CE 40 - 140 %	Endrin aldehyde	ND	8.0	8.0	ug/Kg	2	11/17/16	CE	SW8081B
g-Chlordane ND 4.0 4.0 ug/Kg 2 11/17/16 CE SW8081B Heptachlor ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Heptachlor epoxide ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Methoxychlor ND 40 40 ug/Kg 2 11/17/16 CE SW8081B Toxaphene ND 160 160 ug/Kg 2 11/17/16 CE SW8081B QA/QC Surrogates % DCBP 77 % 2 11/17/16 CE 40 - 140 % % TCMX 53 % 2 11/17/16 CE 40 - 140 %	Endrin ketone	ND	8.0	8.0	ug/Kg	2	11/17/16	CE	SW8081B
Heptachlor ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Heptachlor epoxide ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Methoxychlor ND 40 40 ug/Kg 2 11/17/16 CE SW8081B Toxaphene ND 160 160 ug/Kg 2 11/17/16 CE SW8081B QA/QC Surrogates V 2 11/17/16 CE 40 - 140 % % TCMX 53 % 2 11/17/16 CE 40 - 140 %	g-BHC	ND	1.6	1.6	ug/Kg	2	11/17/16	CE	SW8081B
Heptachlor epoxide ND 8.0 8.0 ug/Kg 2 11/17/16 CE SW8081B Methoxychlor ND 40 40 ug/Kg 2 11/17/16 CE SW8081B Toxaphene ND 160 160 ug/Kg 2 11/17/16 CE SW8081B QA/QC Surrogates V 2 11/17/16 CE 40 - 140 % % TCMX 53 % 2 11/17/16 CE 40 - 140 %	g-Chlordane	ND	4.0	4.0	ug/Kg	2	11/17/16	CE	SW8081B
Methoxychlor ND 40 40 ug/Kg 2 11/17/16 CE SW8081B Toxaphene ND 160 160 ug/Kg 2 11/17/16 CE SW8081B QA/QC Surrogates V V 2 11/17/16 CE 40 - 140 % % TCMX 53 % 2 11/17/16 CE 40 - 140 %	Heptachlor	ND	8.0	8.0	ug/Kg	2	11/17/16	CE	SW8081B
Toxaphene ND 160 160 ug/Kg 2 11/17/16 CE SW8081B QA/QC Surrogates % 2 11/17/16 CE 40 - 140 % % TCMX 53 % 2 11/17/16 CE 40 - 140 %	Heptachlor epoxide	ND	8.0	8.0	ug/Kg	2	11/17/16	CE	SW8081B
QA/QC Surrogates % DCBP 77 % 2 11/17/16 CE 40 - 140 % % TCMX 53 % 2 11/17/16 CE 40 - 140 %	Methoxychlor	ND	40	40	ug/Kg	2	11/17/16	CE	SW8081B
% DCBP 77 % 2 11/17/16 CE 40 - 140 % % TCMX 53 % 2 11/17/16 CE 40 - 140 %	Toxaphene	ND	160	160	ug/Kg	2	11/17/16	CE	SW8081B
% TCMX 53 % 2 11/17/16 CE 40 - 140 %	QA/QC Surrogates								
	% DCBP	77			%	2	11/17/16	CE	40 - 140 %
	% TCMX	53			%	2	11/17/16	CE	40 - 140 %
<u>Volatiles</u>	<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane ND 410 83 ug/Kg 50 11/16/16 JLI SW8260C	1,1,1,2-Tetrachloroethane	ND	410	83	ug/Kg	50	11/16/16	JLI	SW8260C
1,1,1-Trichloroethane ND 410 41 ug/Kg 50 11/16/16 JLI SW8260C		ND	410	41	ug/Kg	50	11/16/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane ND 410 83 ug/Kg 50 11/16/16 JLI SW8260C		ND	410	83	ug/Kg	50	11/16/16	JLI	SW8260C
1,1,2-Trichloroethane ND 410 83 ug/Kg 50 11/16/16 JLI SW8260C		ND	410	83		50	11/16/16	JLI	SW8260C
1,1-Dichloroethane ND 270 83 ug/Kg 50 11/16/16 JLI SW8260C		ND	270	83	ug/Kg	50	11/16/16	JLI	SW8260C

Client ID: 15B2 (12-14)

Client ID: 15B2 (12-14)								
Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1,1-Dichloroethene	ND	330	41	ug/Kg	50	11/16/16	JLI	SW8260C
1,1-Dichloropropene	ND	410	41	ug/Kg	50	11/16/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	410	83	ug/Kg	50	11/16/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	410	41	ug/Kg	50	11/16/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	410	83	ug/Kg	50	11/16/16	JLI	SW8260C
1,2,4-Trimethylbenzene	260	J 410	41	ug/Kg	50	11/16/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	410	83	ug/Kg	50	11/16/16	JLI	SW8260C
1,2-Dibromoethane	ND	410	41	ug/Kg	50	11/16/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	410	41	ug/Kg	50	11/16/16	JLI	SW8260C
1,2-Dichloroethane	ND	41	41	ug/Kg	50	11/16/16	JLI	SW8260C
1,2-Dichloropropane	ND	410	83	ug/Kg	50	11/16/16	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	410	41	ug/Kg	50	11/16/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	410	41	ug/Kg	50	11/16/16	JLI	SW8260C
1,3-Dichloropropane	ND	410	83	ug/Kg	50	11/16/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	410	41	ug/Kg	50	11/16/16	JLI	SW8260C
2,2-Dichloropropane	ND	410	41	ug/Kg	50	11/16/16	JLI	SW8260C
2-Chlorotoluene	ND	410	83	ug/Kg	50	11/16/16	JLI	SW8260C
2-Hexanone	ND	2100	410	ug/Kg	50	11/16/16	JLI	SW8260C
2-Isopropyltoluene	150	J 410	41	ug/Kg	50	11/16/16	JLI	SW8260C 1
4-Chlorotoluene	ND	410	41	ug/Kg	50	11/16/16	JLI	SW8260C
4-Methyl-2-pentanone	ND	2100	410	ug/Kg	50	11/16/16	JLI	SW8260C
Acetone	ND	410	410	ug/Kg	50	11/16/16	JLI	SW8260C
Acrylonitrile	ND	830	83	ug/Kg	50	11/16/16	JLI	SW8260C
Benzene	ND	60	41	ug/Kg	50	11/16/16	JLI	SW8260C
Bromobenzene	ND	410	41	ug/Kg	50	11/16/16	JLI	SW8260C
Bromochloromethane	ND	410	41	ug/Kg	50	11/16/16	JLI	SW8260C
Bromodichloromethane	ND	410	83	ug/Kg	50	11/16/16	JLI	SW8260C
Bromoform	ND	410	83	ug/Kg	50	11/16/16	JLI	SW8260C
Bromomethane	ND	410	170	ug/Kg	50	11/16/16	JLI	SW8260C
Carbon Disulfide	ND	410	83	ug/Kg	50	11/16/16	JLI	SW8260C
Carbon tetrachloride	ND	410	83	ug/Kg	50	11/16/16	JLI	SW8260C
Chlorobenzene	ND	410	41	ug/Kg	50	11/16/16	JLI	SW8260C
Chloroethane	ND	410	41	ug/Kg	50	11/16/16	JLI	SW8260C
Chloroform	ND	370	41	ug/Kg	50	11/16/16	JLI	SW8260C
Chloromethane	ND	410	83	ug/Kg	50	11/16/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	250	41	ug/Kg	50	11/16/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	410	41	ug/Kg	50	11/16/16	JLI	SW8260C
Dibromochloromethane	ND	410	83	ug/Kg	50	11/16/16	JLI	SW8260C
Dibromomethane	ND	410	83	ug/Kg	50	11/16/16	JLI	SW8260C
Dichlorodifluoromethane	ND	410	41	ug/Kg	50	11/16/16	JLI	SW8260C
	420	410	41	ug/Kg	50	11/16/16	JLI	SW8260C
Ethylbenzene Hexachlorobutadiene	ND	410	41	ug/Kg ug/Kg	50	11/16/16	JLI	SW8260C
	600	410	41	ug/Kg ug/Kg	50	11/16/16	JLI	SW8260C
Isopropylbenzene	ND	410	83	ug/Kg ug/Kg	50	11/16/16	JLI	SW8260C SW8260C
m&p-Xylene								
Methyl Ethyl Ketone	ND ND	410 830	410 83	ug/Kg ug/Kg	50 50	11/16/16 11/16/16	JLI JLI	SW8260C SW8260C
Methyl t-butyl ether (MTBE)	ND ND							
Methylene chloride		410	410	ug/Kg	50 50	11/16/16	JLI	SW8260C
Naphthalene	490	410	83	ug/Kg	50 50	11/16/16	JLI	SW8260C
n-Butylbenzene	410	J 410	41	ug/Kg	50	11/16/16	JLI	SW8260C

Client ID: 15B2 (12-14)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
n-Propylbenzene	2800	410	83	ug/Kg	50	11/16/16	JLI	SW8260C
o-Xylene	ND	410	83	ug/Kg	50	11/16/16	JLI	SW8260C
p-Isopropyltoluene	340	J 410	41	ug/Kg	50	11/16/16	JLI	SW8260C
sec-Butylbenzene	2000	410	41	ug/Kg	50	11/16/16	JLI	SW8260C
Styrene	ND	410	41	ug/Kg	50	11/16/16	JLI	SW8260C
tert-Butylbenzene	ND	410	41	ug/Kg	50	11/16/16	JLI	SW8260C
Tetrachloroethene	ND	410	83	ug/Kg	50	11/16/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	830	210	ug/Kg	50	11/16/16	JLI	SW8260C 1
Toluene	ND	410	41	ug/Kg	50	11/16/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	190	41	ug/Kg	50	11/16/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	410	41	ug/Kg	50	11/16/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	830	210	ug/Kg	50	11/16/16	JLI	SW8260C
Trichloroethene	ND	410	41	ug/Kg	50	11/16/16	JLI	SW8260C
Trichlorofluoromethane	ND	410	83	ug/Kg	50	11/16/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	410	41	ug/Kg	50	11/16/16	JLI	SW8260C
Vinyl chloride	ND	41	41	ug/Kg	50	11/16/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	97			%	50	11/16/16	JLI	70 - 130 %
% Bromofluorobenzene	114			%	50	11/16/16	JLI	70 - 130 %
% Dibromofluoromethane	94			%	50	11/16/16	JLI	70 - 130 %
% Toluene-d8	94			%	50	11/16/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	3300	3300	ug/kg	50	11/16/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	97			%	50	11/16/16	JLI	70 - 130 %
% Bromofluorobenzene	114			%	50	11/16/16	JLI	70 - 130 %
% Toluene-d8	94			%	50	11/16/16	JLI	70 - 130 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	1700	83	ug/Kg	50	11/16/16	JLI	SW8260C
Acrolein	ND	1700	210	ug/Kg	50	11/16/16	JLI	SW8260C
Acrylonitrile	ND	1700	41	ug/Kg	50	11/16/16	JLI	SW8260C
Tert-butyl alcohol	ND	8300	1700	ug/Kg	50	11/16/16	JLI	SW8260C
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	280	140	ug/Kg	1	11/16/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	280	120	ug/Kg	1	11/16/16	DD	SW8270D
1,2-Dichlorobenzene	ND	280	110	ug/Kg	1	11/16/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	280	130	ug/Kg	1	11/16/16	DD	SW8270D
1,3-Dichlorobenzene	ND	280	120	ug/Kg	1	11/16/16	DD	SW8270D
1,4-Dichlorobenzene	ND	280	120	ug/Kg	1	11/16/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	280	220	ug/Kg	1	11/16/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	200	130	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dichlorophenol	ND	200	140	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dimethylphenol	ND	280	100	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dinitrophenol	ND	280	280	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dinitrotoluene	ND	200	160	ug/Kg	1	11/16/16	DD	SW8270D
2,6-Dinitrotoluene	ND	200	130	ug/Kg	1	11/16/16	DD	SW8270D
2-Chloronaphthalene	ND	280	110	ug/Kg	1	11/16/16	DD	SW8270D

Client ID: 15B2 (12-14)

Cilent ID. 13B2 (12-14)	Danult	RL/	LOD/	l loite	Dibation	Data/Time	Dec	Defenses
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
2-Chlorophenol	ND	280	110	ug/Kg	1	11/16/16	DD	SW8270D
2-Methylnaphthalene	1500	280	120	ug/Kg	1	11/16/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	280	190	ug/Kg	1	11/16/16	DD	SW8270D
2-Nitroaniline	ND	280	280	ug/Kg	1	11/16/16	DD	SW8270D
2-Nitrophenol	ND	280	260	ug/Kg	1	11/16/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	280	160	ug/Kg	1	11/16/16	DD	SW8270D 1
3,3'-Dichlorobenzidine	ND	200	190	ug/Kg	1	11/16/16	DD	SW8270D
3-Nitroaniline	ND	400	800	ug/Kg	1	11/16/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	240	80	ug/Kg	1	11/16/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	280	120	ug/Kg	1	11/16/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	280	140	ug/Kg	1	11/16/16	DD	SW8270D
4-Chloroaniline	ND	320	190	ug/Kg	1	11/16/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	280	140	ug/Kg	1	11/16/16	DD	SW8270D
4-Nitroaniline	ND	400	130	ug/Kg	1	11/16/16	DD	SW8270D
4-Nitrophenol	ND	400	180	ug/Kg	1	11/16/16	DD	SW8270D
Acenaphthene	ND	280	120	ug/Kg	1	11/16/16	DD	SW8270D
Acenaphthylene	ND	280	110	ug/Kg	1	11/16/16	DD	SW8270D
Acetophenone	ND	280	130	ug/Kg	1	11/16/16	DD	SW8270D
Aniline	ND	320	320	ug/Kg	1	11/16/16	DD	SW8270D
Anthracene	ND	280	130	ug/Kg	1	11/16/16	DD	SW8270D
Benz(a)anthracene	ND	280	140	ug/Kg	1	11/16/16	DD	SW8270D
Benzidine	ND	400	240	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(a)pyrene	ND	200	130	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(b)fluoranthene	ND	280	140	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(ghi)perylene	ND	280	130	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(k)fluoranthene	ND	280	130	ug/Kg	1	11/16/16	DD	SW8270D
Benzoic acid	ND	2000	800	ug/Kg	1	11/16/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	280	100	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	280	110	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	200	110	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	280	110	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	280	120	ug/Kg	1	11/16/16	DD	SW8270D
Carbazole	ND	200	160	ug/Kg	1	11/16/16	DD	SW8270D
Chrysene	ND	280	140	ug/Kg	1	11/16/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	200	130	ug/Kg	1	11/16/16	DD	SW8270D
Dibenzofuran	ND	280	120	ug/Kg	1	11/16/16	DD	SW8270D
Diethyl phthalate	ND	280	130	ug/Kg	1	11/16/16	DD	SW8270D
Dimethylphthalate	ND	280	120	ug/Kg	1	11/16/16	DD	SW8270D
Di-n-butylphthalate	ND	280	110	ug/Kg	1	11/16/16	DD	SW8270D
Di-n-octylphthalate	ND	280	100	ug/Kg	1	11/16/16	DD	SW8270D
Fluoranthene	ND	280	130	ug/Kg	1	11/16/16	DD	SW8270D
Fluorene	ND	280	130	ug/Kg	1	11/16/16	DD	SW8270D
Hexachlorobenzene	ND	200	120	ug/Kg	1	11/16/16	DD	SW8270D
Hexachlorobutadiene	ND	280	150	ug/Kg	1	11/16/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	280	120	ug/Kg	1	11/16/16	DD	SW8270D
Hexachloroethane	ND	200	120	ug/Kg	1	11/16/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	280	130	ug/Kg	1	11/16/16	DD	SW8270D
Isophorone	ND	200	110	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D
Naphthalene	3000	280	120	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D
ιναρημιαιστισ	5000	200	120	ug/Ng	ı	11/10/10	טט	3,102,100

Client ID: 15B2 (12-14)

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Nitrobenzene	ND	200	140	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodimethylamine	ND	280	110	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	200	130	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	280	150	ug/Kg	1	11/16/16	DD	SW8270D
Pentachloronitrobenzene	ND	280	150	ug/Kg	1	11/16/16	DD	SW8270D
Pentachlorophenol	ND	240	150	ug/Kg	1	11/16/16	DD	SW8270D
Phenanthrene	ND	280	120	ug/Kg	1	11/16/16	DD	SW8270D
Phenol	ND	280	130	ug/Kg	1	11/16/16	DD	SW8270D
Pyrene	ND	280	140	ug/Kg	1	11/16/16	DD	SW8270D
Pyridine	ND	280	99	ug/Kg	1	11/16/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	72			%	1	11/16/16	DD	30 - 130 %
% 2-Fluorobiphenyl	59			%	1	11/16/16	DD	30 - 130 %
% 2-Fluorophenol	54			%	1	11/16/16	DD	30 - 130 %
% Nitrobenzene-d5	67			%	1	11/16/16	DD	30 - 130 %
% Phenol-d5	58			%	1	11/16/16	DD	30 - 130 %
% Terphenyl-d14	68			%	1	11/16/16	DD	30 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

Volatile Comment:

Elevated reporting limits for volatiles due to the presence of non-target compounds.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 22, 2016

Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 22, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOIL Collected by: TG 11/14/16

Location Code: EBC Received by: SW 11/15/16 17:12

LOD/

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GBV83365

Phoenix ID: BV83376

Project ID: 1181 FLUSHING AVE BROOKLYN NY

Client ID: 15B2 (22.5-25)

Parameter	Result	RL/ PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.40	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Aluminum	5080	40	8.0	mg/Kg	10	11/16/16	TH	SW6010C
Arsenic	1.09	0.80	0.80	mg/Kg	1	11/16/16	TH	SW6010C
Barium	25.4	0.8	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Beryllium	0.19	B 0.32	0.16	mg/Kg	1	11/16/16	TH	SW6010C
Calcium	750	40	37	mg/Kg	10	11/16/16	TH	SW6010C
Cadmium	ND	0.40	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Cobalt	4.95	0.40	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Chromium	10.9	0.40	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Copper	8.23	0.40	0.40	mg/kg	1	11/16/16	TH	SW6010C
Iron	9490	40	40	mg/Kg	10	11/16/16	TH	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	11/16/16	RS	SW7471B
Potassium	943	8	3.1	mg/Kg	1	11/16/16	LK	SW6010C
Magnesium	1910	4.0	4.0	mg/Kg	1	11/16/16	TH	SW6010C
Manganese	175	4.0	4.0	mg/Kg	10	11/16/16	TH	SW6010C
Sodium	168	8	3.4	mg/Kg	1	11/16/16	LK	SW6010C
Nickel	8.76	0.40	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Lead	1.4	0.8	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Antimony	ND	2.0	2.0	mg/Kg	1	11/16/16	TH	SW6010C
Selenium	ND	1.6	1.4	mg/Kg	1	11/16/16	TH	SW6010C
Thallium	ND	1.6	1.6	mg/Kg	1	11/16/16	TH	SW6010C
Vanadium	14.7	0.40	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Zinc	20.5	0.8	0.40	mg/Kg	1	11/16/16	TH	SW6010C
Percent Solid	79			%		11/15/16	W	SW846-%Solid
Soil Extraction for SVOA	Completed					11/15/16	JJ/CKV	SW3545A
Mercury Digestion	Completed					11/16/16	W/W	SW7471B
Total Metals Digest	Completed					11/15/16	X/AG	SW3050B
Field Extraction	Completed					11/14/16		SW5035A

Project ID: 1181 FLUSHING AVE BROOKLYN NY Phoenix I.D.: BV83376

Client ID: 15B2 (22.5-25)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	4.4	0.89	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	4.4	0.89	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	4.4	0.89	ug/Kg	1	11/16/16	JLI	SW8260C
1,1-Dichloroethane	ND	4.4	0.89	ug/Kg	1	11/16/16	JLI	SW8260C
1,1-Dichloroethene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
1,1-Dichloropropene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	4.4	0.89	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	4.4	0.89	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,4-Trimethylbenzene	480	330	33	ug/Kg	50	11/16/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	4.4	0.89	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dibromoethane	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichloroethane	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichloropropane	ND	4.4	0.89	ug/Kg	1	11/16/16	JLI	SW8260C
1,3,5-Trimethylbenzene	2300	330	33	ug/Kg	50	11/16/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
1,3-Dichloropropane	ND	4.4	0.89	ug/Kg	1	11/16/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
2,2-Dichloropropane	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
2-Chlorotoluene	ND	4.4	0.89	ug/Kg	1	11/16/16	JLI	SW8260C
2-Hexanone	ND	22	4.4	ug/Kg	1	11/16/16	JLI	SW8260C
2-Isopropyltoluene	14	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C 1
4-Chlorotoluene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
4-Methyl-2-pentanone	ND	22	4.4	ug/Kg	1	11/16/16	JLI	SW8260C
Acetone	ND	22	4.4	ug/Kg	1	11/16/16	JLI	SW8260C
Acrylonitrile	ND	8.9	0.89	ug/Kg	1	11/16/16	JLI	SW8260C
Benzene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Bromobenzene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Bromochloromethane	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Bromodichloromethane	ND	4.4	0.89	ug/Kg	1	11/16/16	JLI	SW8260C
Bromoform	ND	4.4	0.89	ug/Kg	1	11/16/16	JLI	SW8260C
Bromomethane	ND	4.4	1.8	ug/Kg	1	11/16/16	JLI	SW8260C
Carbon Disulfide	2.2	J 4.4	0.89	ug/Kg	1	11/16/16	JLI	SW8260C
Carbon tetrachloride	ND	4.4	0.89	ug/Kg	1	11/16/16	JLI	SW8260C
Chlorobenzene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Chloroethane	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Chloroform	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Chloromethane	ND	4.4	0.89	ug/Kg	1	11/16/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Dibromochloromethane	ND	4.4	0.89	ug/Kg	1	11/16/16	JLI	SW8260C
Dibromomethane	ND	4.4	0.89	ug/Kg	1	11/16/16	JLI	SW8260C
Dichlorodifluoromethane	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Ethylbenzene	500	330	33	ug/Kg	50	11/16/16	JLI	SW8260C
Hexachlorobutadiene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Isopropylbenzene	500	330	33	ug/Kg	50	11/16/16	JLI	SW8260C

Client ID: 15B2 (22.5-25)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
m&p-Xylene	500	330	65	ug/Kg	50	11/16/16	JLI	SW8260C	_
Methyl Ethyl Ketone	ND	27	4.4	ug/Kg	1	11/16/16	JLI	SW8260C	
Methyl t-butyl ether (MTBE)	ND	8.9	0.89	ug/Kg	1	11/16/16	JLI	SW8260C	
Methylene chloride	ND	4.4	4.4	ug/Kg	1	11/16/16	JLI	SW8260C	
Naphthalene	390	330	65	ug/Kg	50	11/16/16	JLI	SW8260C	
n-Butylbenzene	1200	330	33	ug/Kg	50	11/16/16	JLI	SW8260C	
n-Propylbenzene	2000	330	65	ug/Kg	50	11/16/16	JLI	SW8260C	
o-Xylene	29	4.4	0.89	ug/Kg	1	11/16/16	JLI	SW8260C	
p-Isopropyltoluene	71	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C	
sec-Butylbenzene	350	330	33	ug/Kg	50	11/16/16	JLI	SW8260C	
Styrene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C	
tert-Butylbenzene	8.9	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C	
Tetrachloroethene	ND	4.4	0.89	ug/Kg	1	11/16/16	JLI	SW8260C	
Tetrahydrofuran (THF)	ND	8.9	2.2	ug/Kg	1	11/16/16	JLI	SW8260C	1
Toluene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C	
trans-1,2-Dichloroethene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C	
trans-1,3-Dichloropropene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C	
trans-1,4-dichloro-2-butene	ND	8.9	2.2	ug/Kg	1	11/16/16	JLI	SW8260C	
Trichloroethene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C	
Trichlorofluoromethane	ND	4.4	0.89	ug/Kg	1	11/16/16	JLI	SW8260C	
Trichlorotrifluoroethane	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C	
Vinyl chloride	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C	
QA/QC Surrogates									
% 1,2-dichlorobenzene-d4	97			%	1	11/16/16	JLI	70 - 130 %	
% Bromofluorobenzene	132			%	1	11/16/16	JLI	70 - 130 %	3
% Dibromofluoromethane	96			%	1	11/16/16	JLI	70 - 130 %	
% Toluene-d8	127			%	1	11/16/16	JLI	70 - 130 %	
1,4-dioxane									
1,4-dioxane	ND	66	35	ug/kg	1	11/16/16	JLI	SW8260C	
QA/QC Surrogates									
% 1,2-dichlorobenzene-d4	97			%	1	11/16/16	JLI	70 - 130 %	
% Bromofluorobenzene	132			%	1	11/16/16	JLI	70 - 130 %	3
% Toluene-d8	127			%	1	11/16/16	JLI	70 - 130 %	
<u>Volatiles</u>									
1,1,1,2-Tetrachloroethane	ND	18	0.89	ug/Kg	1	11/16/16	JLI	SW8260C	
Acrolein	ND	18	2.2	ug/Kg	1	11/16/16	JLI	SW8260C	
Acrylonitrile	ND	18	0.44	ug/Kg	1	11/16/16	JLI	SW8260C	
Tert-butyl alcohol	ND	89	18	ug/Kg	1	11/16/16	JLI	SW8260C	
<u>Semivolatiles</u>									
1,2,4,5-Tetrachlorobenzene	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D	
1,2,4-Trichlorobenzene	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D	
1,2-Dichlorobenzene	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D	
1,2-Diphenylhydrazine	ND	290	130	ug/Kg	1	11/16/16	DD	SW8270D	
1,3-Dichlorobenzene	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D	
1,4-Dichlorobenzene	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D	
2,4,5-Trichlorophenol	ND	290	230	ug/Kg	1	11/16/16	DD	SW8270D	
2,4,6-Trichlorophenol	ND	210	130	ug/Kg	1	11/16/16	DD	SW8270D	

Client ID: 15B2 (22.5-25)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
2,4-Dichlorophenol	ND	210	140	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dimethylphenol	ND	290	100	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dinitrophenol	ND	290	290	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dinitrotoluene	ND	210	160	ug/Kg	1	11/16/16	DD	SW8270D
2,6-Dinitrotoluene	ND	210	130	ug/Kg	1	11/16/16	DD	SW8270D
2-Chloronaphthalene	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
2-Chlorophenol	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
2-Methylnaphthalene	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	290	190	ug/Kg	1	11/16/16	DD	SW8270D
2-Nitroaniline	ND	290	290	ug/Kg	1	11/16/16	DD	SW8270D
2-Nitrophenol	ND	290	260	ug/Kg	1	11/16/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	290	160	ug/Kg	1	11/16/16	DD	SW8270D 1
3,3'-Dichlorobenzidine	ND	210	190	ug/Kg	1	11/16/16	DD	SW8270D
3-Nitroaniline	ND	410	820	ug/Kg	1	11/16/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	250	82	ug/Kg	1	11/16/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D
4-Chloroaniline	ND	330	190	ug/Kg	1	11/16/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D
4-Nitroaniline	ND	410	140	ug/Kg	1	11/16/16	DD	SW8270D
4-Nitrophenol	ND	410	190	ug/Kg	1	11/16/16	DD	SW8270D
Acenaphthene	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
Acenaphthylene	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
Acetophenone	ND	290	130	ug/Kg	1	11/16/16	DD	SW8270D
Aniline	ND	330	330	ug/Kg	1	11/16/16	DD	SW8270D
Anthracene	ND	290	130	ug/Kg	1	11/16/16	DD	SW8270D
Benz(a)anthracene	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D
Benzidine	ND	410	240	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(a)pyrene	ND	210	130	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(b)fluoranthene	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(ghi)perylene	ND	290	130	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(k)fluoranthene	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D
Benzoic acid	ND	2100	820	ug/Kg	1	11/16/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	290	110	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	290	110	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	210	110	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	290	110	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
Carbazole	ND	210	160	ug/Kg	1	11/16/16	DD	SW8270D
Chrysene	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	210	130	ug/Kg	1	11/16/16	DD	SW8270D
Dibenzofuran	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
Diethyl phthalate	ND	290	130	ug/Kg	1	11/16/16	DD	SW8270D
Dimethylphthalate	ND	290	130	ug/Kg	1	11/16/16	DD	SW8270D
Di-n-butylphthalate	ND	290	110	ug/Kg	1	11/16/16	DD	SW8270D
Di-n-octylphthalate	ND	290	110	ug/Kg	1	11/16/16	DD	SW8270D
Fluoranthene	ND	290	130	ug/Kg	1	11/16/16	DD	SW8270D
Fluorene	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D
Hexachlorobenzene	ND	210	120	ug/Kg	1	11/16/16	DD	SW8270D
TO AGOINGTO DOTIZONO	.15		0	~ ₉ ,1,8	•	, . 5, 10	22	

Client ID: 15B2 (22.5-25)

	.	RL/	LOD/		5	D . /T	_	5.
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Hexachlorobutadiene	ND	290	150	ug/Kg	1	11/16/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	290	130	ug/Kg	1	11/16/16	DD	SW8270D
Hexachloroethane	ND	210	120	ug/Kg	1	11/16/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D
Isophorone	ND	210	120	ug/Kg	1	11/16/16	DD	SW8270D
Naphthalene	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
Nitrobenzene	ND	210	140	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodimethylamine	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	210	130	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	290	160	ug/Kg	1	11/16/16	DD	SW8270D
Pentachloronitrobenzene	ND	290	150	ug/Kg	1	11/16/16	DD	SW8270D
Pentachlorophenol	ND	250	160	ug/Kg	1	11/16/16	DD	SW8270D
Phenanthrene	ND	290	120	ug/Kg	1	11/16/16	DD	SW8270D
Phenol	ND	290	130	ug/Kg	1	11/16/16	DD	SW8270D
Pyrene	ND	290	140	ug/Kg	1	11/16/16	DD	SW8270D
Pyridine	ND	290	100	ug/Kg	1	11/16/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	68			%	1	11/16/16	DD	30 - 130 %
% 2-Fluorobiphenyl	61			%	1	11/16/16	DD	30 - 130 %
% 2-Fluorophenol	54			%	1	11/16/16	DD	30 - 130 %
% Nitrobenzene-d5	65			%	1	11/16/16	DD	30 - 130 %
% Phenol-d5	63			%	1	11/16/16	DD	30 - 130 %
% Terphenyl-d14	67			%	1	11/16/16	DD	30 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

Volatile comment

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 22, 2016

Reviewed and Released by: Ethan Lee, Project Manager

^{3 =} This parameter exceeds laboratory specified limits.

^{**}Poor surrogate recovery was observed for volatiles due to matrix interference.

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG ID: GBV83365 Phoenix ID: BV83377

Analysis Report

November 22, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOIL Collected by: TG 11/14/16

Location Code: EBC Received by: SW 11/15/16 17:12

Rush Request: 72 Hour Analyzed by: see "By" below

Laboratory Data

Project ID: 1181 FLUSHING AVE BROOKLYN NY

Client ID: 15B10 (10-15)

P.O.#:

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.35	0.35	mg/Kg	1	11/16/16	TH	SW6010C
Aluminum	4600	35	6.9	mg/Kg	10	11/16/16	TH	SW6010C
Arsenic	1.28	0.69	0.69	mg/Kg	1	11/16/16	TH	SW6010C
Barium	20.0	0.7	0.35	mg/Kg	1	11/16/16	TH	SW6010C
Beryllium	0.19	B 0.28	0.14	mg/Kg	1	11/16/16	TH	SW6010C
Calcium	1060	35	32	mg/Kg	10	11/16/16	TH	SW6010C
Cadmium	ND	0.35	0.35	mg/Kg	1	11/16/16	TH	SW6010C
Cobalt	4.49	0.35	0.35	mg/Kg	1	11/16/16	TH	SW6010C
Chromium	14.9	0.35	0.35	mg/Kg	1	11/16/16	TH	SW6010C
Copper	8.89	0.35	0.35	mg/kg	1	11/16/16	TH	SW6010C
ron	11200	35	35	mg/Kg	10	11/16/16	TH	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	11/16/16	RS	SW7471B
Potassium	546	7	2.7	mg/Kg	1	11/16/16	LK	SW6010C
Magnesium	1530	3.5	3.5	mg/Kg	1	11/16/16	TH	SW6010C
Manganese	180	3.5	3.5	mg/Kg	10	11/16/16	TH	SW6010C
Sodium	131	7	3.0	mg/Kg	1	11/16/16	LK	SW6010C
Nickel	9.29	0.35	0.35	mg/Kg	1	11/16/16	TH	SW6010C
_ead	2.2	0.7	0.35	mg/Kg	1	11/16/16	TH	SW6010C
Antimony	ND	1.7	1.7	mg/Kg	1	11/16/16	TH	SW6010C
Selenium	ND	1.4	1.2	mg/Kg	1	11/16/16	TH	SW6010C
Гhallium	ND	1.4	1.4	mg/Kg	1	11/16/16	TH	SW6010C
/anadium	17.1	0.35	0.35	mg/Kg	1	11/16/16	TH	SW6010C
Zinc	18.5	0.7	0.35	mg/Kg	1	11/16/16	TH	SW6010C
Percent Solid	90			%		11/15/16	W	SW846-%Solid
Soil Extraction for PCB	Completed					11/15/16	CC/V	SW3545A
Soil Extraction for Pest	Completed					11/15/16	CC/V	SW3545A
Soil Extraction for SVOA	Completed					11/15/16	JJ/CKV	SW3545A
Mercury Digestion	Completed					11/16/16	W/W	SW7471B

Project ID: 1181 FLUSHING AVE BROOKLYN NY Phoenix I.D.: BV83377

Client ID: 15B10 (10-15)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Total Metals Digest	Completed					11/15/16	X/AG	SW3050B
Field Extraction	Completed					11/14/16	70710	SW5035A
Tiola Extraotion	Completed					,		311 000011
Polychlorinated Biphen	<u>yls</u>							
PCB-1016	 ND	74	74	ug/Kg	2	11/16/16	AW	SW8082A
PCB-1221	ND	74	74	ug/Kg	2	11/16/16	AW	SW8082A
PCB-1232	ND	74	74	ug/Kg	2	11/16/16	AW	SW8082A
PCB-1242	ND	74	74	ug/Kg	2	11/16/16	AW	SW8082A
PCB-1248	ND	74	74	ug/Kg	2	11/16/16	AW	SW8082A
PCB-1254	ND	74	74	ug/Kg	2	11/16/16	AW	SW8082A
PCB-1260	ND	74	74	ug/Kg	2	11/16/16	AW	SW8082A
PCB-1262	ND	74	74	ug/Kg	2	11/16/16	AW	SW8082A
PCB-1268	ND	74	74	ug/Kg	2	11/16/16	AW	SW8082A
QA/QC Surrogates								
% DCBP	82			%	2	11/16/16	AW	30 - 150 %
% TCMX	69			%	2	11/16/16	AW	30 - 150 %
Pesticides - Soil								
4,4' -DDD	ND	2.2	2.2	ug/Kg	2	11/17/16	CE	SW8081B
4,4' -DDE	ND	2.2	2.2	ug/Kg	2	11/17/16	CE	SW8081B
4,4' -DDT	ND	2.2	2.2	ug/Kg	2	11/17/16	CE	SW8081B
a-BHC	ND	7.4	7.4	ug/Kg	2	11/17/16	CE	SW8081B
a-Chlordane	ND	3.7	3.7	ug/Kg	2	11/17/16	CE	SW8081B
Aldrin	ND	3.7	3.7	ug/Kg	2	11/17/16	CE	SW8081B
b-BHC	ND	7.4	7.4	ug/Kg	2	11/17/16	CE	SW8081B
Chlordane	ND	37	37	ug/Kg	2	11/17/16	CE	SW8081B
d-BHC	ND	7.4	7.4	ug/Kg	2	11/17/16	CE	SW8081B
Dieldrin	ND	3.7	3.7	ug/Kg	2	11/17/16	CE	SW8081B
Endosulfan I	ND	7.4	7.4	ug/Kg	2	11/17/16	CE	SW8081B
Endosulfan II	ND	7.4	7.4	ug/Kg	2	11/17/16	CE	SW8081B
Endosulfan sulfate	ND	7.4	7.4	ug/Kg	2	11/17/16	CE	SW8081B
Endrin	ND	7.4	7.4	ug/Kg	2	11/17/16	CE	SW8081B
Endrin aldehyde	ND	7.4	7.4	ug/Kg	2	11/17/16	CE	SW8081B
Endrin ketone	ND	7.4	7.4	ug/Kg	2	11/17/16	CE	SW8081B
g-BHC	ND	1.5	1.5	ug/Kg	2	11/17/16	CE	SW8081B
g-Chlordane	ND	3.7	3.7	ug/Kg	2	11/17/16	CE	SW8081B
Heptachlor	ND	7.4	7.4	ug/Kg	2	11/17/16	CE	SW8081B
Heptachlor epoxide	ND	7.4	7.4	ug/Kg	2	11/17/16	CE	SW8081B
Methoxychlor	ND	37	37	ug/Kg	2	11/17/16	CE	SW8081B
Toxaphene	ND	150	150	ug/Kg	2	11/17/16	CE	SW8081B
QA/QC Surrogates								
% DCBP	87			%	2	11/17/16	CE	40 - 140 %
% TCMX	43			%	2	11/17/16	CE	40 - 140 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	3.6	0.71	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	3.6	0.71	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	3.6	0.71	ug/Kg	1	11/16/16	JLI	SW8260C
1,1-Dichloroethane	ND	3.6	0.71	ug/Kg	1	11/16/16	JLI	SW8260C

Client ID: 15B10 (10-15)

Parameter Parameter	Result		RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1,1-Dichloroethene	ND		3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
1,1-Dichloropropene	ND		3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND		3.6	0.71	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,3-Trichloropropane	ND		3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND		3.6	0.71	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,4-Trimethylbenzene	0.66	J	3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND		3.6	0.71	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dibromoethane	ND		3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichlorobenzene	ND		3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichloroethane	ND		3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichloropropane	ND		3.6	0.71	ug/Kg	1	11/16/16	JLI	SW8260C
1,3,5-Trimethylbenzene	0.51	J	3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
1,3-Dichlorobenzene	ND		3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
1,3-Dichloropropane	ND		3.6	0.71	ug/Kg	1	11/16/16	JLI	SW8260C
1,4-Dichlorobenzene	ND		3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
2,2-Dichloropropane	ND		3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
2-Chlorotoluene	ND		3.6	0.71	ug/Kg	1	11/16/16	JLI	SW8260C
2-Hexanone	ND		18	3.6	ug/Kg	1	11/16/16	JLI	SW8260C
2-Isopropyltoluene	ND		3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C 1
4-Chlorotoluene	ND		3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
4-Methyl-2-pentanone	ND		18	3.6	ug/Kg	1	11/16/16	JLI	SW8260C
Acetone	4.8	JS	18	3.6	ug/Kg	1	11/16/16	JLI	SW8260C
Acrylonitrile	ND		7.1	0.71	ug/Kg	1	11/16/16	JLI	SW8260C
Benzene	ND		3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
Bromobenzene	ND		3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
Bromochloromethane	ND		3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
Bromodichloromethane	ND		3.6	0.71	ug/Kg	1	11/16/16	JLI	SW8260C
Bromoform	ND		3.6	0.71	ug/Kg	1	11/16/16	JLI	SW8260C
Bromomethane	ND		3.6	1.4	ug/Kg	1	11/16/16	JLI	SW8260C
Carbon Disulfide	ND		3.6	0.71	ug/Kg	1	11/16/16	JLI	SW8260C
Carbon tetrachloride	ND		3.6	0.71	ug/Kg	1	11/16/16	JLI	SW8260C
Chlorobenzene	ND		3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
Chloroethane	ND		3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
Chloroform	ND		3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
Chloromethane	ND		3.6	0.71	ug/Kg	1	11/16/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND		3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND		3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
Dibromochloromethane	ND		3.6	0.71	ug/Kg	1	11/16/16	JLI	SW8260C
Dibromomethane	ND		3.6	0.71	ug/Kg	1	11/16/16	JLI	SW8260C
Dichlorodifluoromethane	ND		3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
Ethylbenzene	0.60	J	3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
Hexachlorobutadiene	ND		3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
Isopropylbenzene	ND		3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
m&p-Xylene	1.5	J	3.6	0.71	ug/Kg	1	11/16/16	JLI	SW8260C
Methyl Ethyl Ketone	ND		21	3.6	ug/Kg	1	11/16/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND		7.1	0.71	ug/Kg	1	11/16/16	JLI	SW8260C
Methylene chloride	ND		3.6	3.6	ug/Kg	1	11/16/16	JLI	SW8260C
Naphthalene	240		210	43	ug/Kg	50	11/16/16	JLI	SW8260C
n-Butylbenzene	ND		3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C

Client ID: 15B10 (10-15)

Parameter Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
n-Propylbenzene	ND	3.6	0.71	ug/Kg	1	11/16/16	JLI	SW8260C
o-Xylene	ND	3.6	0.71	ug/Kg	1	11/16/16	JLI	SW8260C
p-Isopropyltoluene	ND	3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
sec-Butylbenzene	ND	3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
Styrene	ND	3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
tert-Butylbenzene	ND	3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
Tetrachloroethene	ND	3.6	0.71	ug/Kg	1	11/16/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	7.1	1.8	ug/Kg	1	11/16/16	JLI	SW8260C 1
Toluene	ND	3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	7.1	1.8	ug/Kg	1	11/16/16	JLI	SW8260C
Trichloroethene	ND	3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
Trichlorofluoromethane	ND	3.6	0.71	ug/Kg	1	11/16/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
Vinyl chloride	ND	3.6	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	99			%	1	11/16/16	JLI	70 - 130 %
% Bromofluorobenzene	99			%	1	11/16/16	JLI	70 - 130 %
% Dibromofluoromethane	98			%	1	11/16/16	JLI	70 - 130 %
% Toluene-d8	101			%	1	11/16/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	53	28	ug/kg	1	11/16/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	99			%	1	11/16/16	JLI	70 - 130 %
% Bromofluorobenzene	99			%	1	11/16/16	JLI	70 - 130 %
% Toluene-d8	101			%	1	11/16/16	JLI	70 - 130 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	14	0.71	ug/Kg	1	11/16/16	JLI	SW8260C
Acrolein	ND	14	1.8	ug/Kg	1	11/16/16	JLI	SW8260C
Acrylonitrile	ND	14	0.36	ug/Kg	1	11/16/16	JLI	SW8260C
Tert-butyl alcohol	ND	71	14	ug/Kg	1	11/16/16	JLI	SW8260C
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	250	130	ug/Kg	1	11/16/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	250	110	ug/Kg	1	11/16/16	DD	SW8270D
1,2-Dichlorobenzene	ND	250	100	ug/Kg	1	11/16/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	250	120	ug/Kg	1	11/16/16	DD	SW8270D
1,3-Dichlorobenzene	ND	250	110	ug/Kg	1	11/16/16	DD	SW8270D
1,4-Dichlorobenzene	ND	250	110	ug/Kg	1	11/16/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	250	200	ug/Kg	1	11/16/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	180	120	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dichlorophenol	ND	180	130	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dimethylphenol	ND	250	90	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dinitrophenol	ND	250	250	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dinitrotoluene	ND	180	140	ug/Kg	1	11/16/16	DD	SW8270D
2,6-Dinitrotoluene	ND	180	110	ug/Kg	1	11/16/16	DD	SW8270D
2-Chloronaphthalene	ND	250	100	ug/Kg	1	11/16/16	DD	SW8270D

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
2-Chlorophenol	ND	250	100	ug/Kg	1	11/16/16	DD	SW8270D
2-Methylnaphthalene	ND	250	110	ug/Kg	1	11/16/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	250	170	ug/Kg	1	11/16/16	DD	SW8270D
2-Nitroaniline	ND	250	250	ug/Kg	1	11/16/16	DD	SW8270D
2-Nitrophenol	ND	250	230	ug/Kg	1	11/16/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	250	140	ug/Kg	1	11/16/16	DD	SW8270D 1
3,3'-Dichlorobenzidine	ND	180	170	ug/Kg	1	11/16/16	DD	SW8270D
3-Nitroaniline	ND	360	730	ug/Kg	1	11/16/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	220	73	ug/Kg	1	11/16/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	250	110	ug/Kg	1	11/16/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	250	130	ug/Kg	1	11/16/16	DD	SW8270D
4-Chloroaniline	ND	290	170	ug/Kg	1	11/16/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	250	120	ug/Kg	1	11/16/16	DD	SW8270D
4-Nitroaniline	ND	360	120	ug/Kg	1	11/16/16	DD	SW8270D
4-Nitrophenol	ND	360	160	ug/Kg	1	11/16/16	DD	SW8270D
Acenaphthene	ND	250	110	ug/Kg	1	11/16/16	DD	SW8270D
Acenaphthylene	ND	250	100	ug/Kg	1	11/16/16	DD	SW8270D
Acetophenone	ND	250	110	ug/Kg	1	11/16/16	DD	SW8270D
Aniline	ND	290	290	ug/Kg	1	11/16/16	DD	SW8270D
Anthracene	ND	250	120	ug/Kg	1	11/16/16	DD	SW8270D
Benz(a)anthracene	ND	250	120	ug/Kg	1	11/16/16	DD	SW8270D
Benzidine	ND	360	210	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(a)pyrene	ND	180	120	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(b)fluoranthene	ND	250	120	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(ghi)perylene	ND	250	120	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(k)fluoranthene	ND	250	120	ug/Kg	1	11/16/16	DD	SW8270D
Benzoic acid	ND	1800	730	ug/Kg	1	11/16/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	250	94	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	250	100	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	180	98	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	250	100	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	250	100	ug/Kg	1	11/16/16	DD	SW8270D
Carbazole	ND	180	150	ug/Kg	1	11/16/16	DD	SW8270D
Chrysene	ND	250	120	ug/Kg	1	11/16/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	180	120	ug/Kg	1	11/16/16	DD	SW8270D
Dibenzofuran	ND	250	110	ug/Kg	1	11/16/16	DD	SW8270D
Diethyl phthalate	ND	250	110	ug/Kg	1	11/16/16	DD	SW8270D
Dimethylphthalate	ND	250	110	ug/Kg	1	11/16/16	DD	SW8270D
Di-n-butylphthalate	ND	250	97	ug/Kg	1	11/16/16	DD	SW8270D
Di-n-octylphthalate	ND	250	94	ug/Kg	1	11/16/16	DD	SW8270D
Fluoranthene	ND	250	120	ug/Kg	1	11/16/16	DD	SW8270D
Fluorene	ND	250	120	ug/Kg	1	11/16/16	DD	SW8270D
Hexachlorobenzene	ND	180	110	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D
Hexachlorobutadiene	ND	250	130	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	250	110	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D
Hexachloroethane	ND	180	110	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	250	120	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D
Isophorone	ND	180	100	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D
Naphthalene	ND	250	100	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D
ιναρτιμιαιστισ	ND	200	100	ug/Ng	ı	11/10/10	טט	3410210D

Client ID: 15B10 (10-15)

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Nitrobenzene	ND	180	130	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodimethylamine	ND	250	100	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	180	120	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	250	140	ug/Kg	1	11/16/16	DD	SW8270D
Pentachloronitrobenzene	ND	250	140	ug/Kg	1	11/16/16	DD	SW8270D
Pentachlorophenol	ND	220	140	ug/Kg	1	11/16/16	DD	SW8270D
Phenanthrene	ND	250	100	ug/Kg	1	11/16/16	DD	SW8270D
Phenol	ND	250	120	ug/Kg	1	11/16/16	DD	SW8270D
Pyrene	ND	250	130	ug/Kg	1	11/16/16	DD	SW8270D
Pyridine	ND	250	90	ug/Kg	1	11/16/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	84			%	1	11/16/16	DD	30 - 130 %
% 2-Fluorobiphenyl	65			%	1	11/16/16	DD	30 - 130 %
% 2-Fluorophenol	50			%	1	11/16/16	DD	30 - 130 %
% Nitrobenzene-d5	64			%	1	11/16/16	DD	30 - 130 %
% Phenol-d5	65			%	1	11/16/16	DD	30 - 130 %
% Terphenyl-d14	73			%	1	11/16/16	DD	30 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 22, 2016

Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Reference SW6010C

SW6010C

Analysis Report

P.O.#:

Project ID:

November 22, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample Information **Custody Information** Date Time

TG Matrix: SOIL Collected by: 11/14/16

Received by: Location Code: **EBC** SW 11/15/16 17:12

Rush Request: 72 Hour Analyzed by: see "By" below

1181 FLUSHING AVE BROOKLYN NY

aboratory Data SDG ID: GBV83365 Phoenix ID: BV83378

Client ID:	15B9 (3-5)							
Parameter		Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву
Silver		0.46	0.39	0.39	mg/Kg	1	11/16/16	LK
Aluminum		6550	39	7.9	mg/Kg	10	11/16/16	TH
Arsenic		7.72	0.79	0.79	mg/Kg	1	11/16/16	LK

Project ID: 1181 FLUSHING AVE BROOKLYN NY Phoenix I.D.: BV83378

Client ID: 15B9 (3-5)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
<u>Volatiles</u>							-	
1,1,1,2-Tetrachloroethane	ND	360	72	ug/Kg	50	11/16/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	360	72	ug/Kg	50	11/16/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	360	72	ug/Kg	50	11/16/16	JLI	SW8260C
1,1-Dichloroethane	ND	270	72	ug/Kg	50	11/16/16	JLI	SW8260C
1,1-Dichloroethene	ND	330	36	ug/Kg	50	11/16/16	JLI	SW8260C
1,1-Dichloropropene	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	360	72	ug/Kg	50	11/16/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	360	72	ug/Kg ug/Kg	50	11/16/16	JLI	SW8260C
	44000	3600	720	ug/Kg ug/Kg	1000	11/16/16	JLI	SW8260C
1,2,4-Trimethylbenzene	44000 ND	360	720 72	ug/Kg ug/Kg	50	11/16/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	360	36	ug/Kg ug/Kg		11/16/16	JLI	SW8260C
1,2-Dibromoethane	ND ND	360			50 50	11/16/16	JLI	SW8260C
1,2-Dichlorobenzene			36	ug/Kg	50 50			
1,2-Dichloroethane	ND	36	36	ug/Kg	50 50	11/16/16	JLI	SW8260C
1,2-Dichloropropane	ND	360	72	ug/Kg	50	11/16/16	JLI	SW8260C
1,3,5-Trimethylbenzene	13000	7200	720	ug/Kg	1000	11/16/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
1,3-Dichloropropane	ND	360	72	ug/Kg	50	11/16/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
2,2-Dichloropropane	ND	360	36	ug/Kg	50	11/16/16	JLI 	SW8260C
2-Chlorotoluene	ND	360	72	ug/Kg	50	11/16/16	JLI 	SW8260C
2-Hexanone	ND	1800	360	ug/Kg	50	11/16/16	JLI 	SW8260C
2-Isopropyltoluene	160	J 360	36	ug/Kg	50	11/16/16	JLI	SW8260C 1
4-Chlorotoluene	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
4-Methyl-2-pentanone	ND	1800	360	ug/Kg	50	11/16/16	JLI	SW8260C
Acetone	640	S 360	360	ug/Kg	50	11/16/16	JLI	SW8260C
Acrylonitrile	ND	720	72	ug/Kg	50	11/16/16	JLI	SW8260C
Benzene	800	720	720	ug/Kg	1000	11/16/16	JLI	SW8260C
Bromobenzene	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
Bromochloromethane	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
Bromodichloromethane	ND	360	72	ug/Kg	50	11/16/16	JLI	SW8260C
Bromoform	ND	360	72	ug/Kg	50	11/16/16	JLI	SW8260C
Bromomethane	ND	360	140	ug/Kg	50	11/16/16	JLI	SW8260C
Carbon Disulfide	ND	360	72	ug/Kg	50	11/16/16	JLI	SW8260C
Carbon tetrachloride	ND	360	72	ug/Kg	50	11/16/16	JLI	SW8260C
Chlorobenzene	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
Chloroethane	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
Chloroform	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
Chloromethane	ND	360	72	ug/Kg	50	11/16/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	250	36	ug/Kg	50	11/16/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
Dibromochloromethane	ND	360	72	ug/Kg	50	11/16/16	JLI	SW8260C
Dibromomethane	ND	360	72	ug/Kg	50	11/16/16	JLI	SW8260C
Dichlorodifluoromethane	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
Ethylbenzene	8300	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
Hexachlorobutadiene	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
Isopropylbenzene	2200	360	36	ug/Kg	50	11/16/16	JLI	SW8260C

Project ID: 1181 FLUSHING AVE BROOKLYN NY Phoenix I.D.: BV83378

Client ID: 15B9 (3-5)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
m&p-Xylene	32000	7200	1400	ug/Kg	1000	11/16/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	360	360	ug/Kg	50	11/16/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	99	J 720	72	ug/Kg	50	11/16/16	JLI	SW8260C
Methylene chloride	ND	360	360	ug/Kg	50	11/16/16	JLI	SW8260C
Naphthalene	10000	360	72	ug/Kg	50	11/16/16	JLI	SW8260C
n-Butylbenzene	2700	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
n-Propylbenzene	5600	360	72	ug/Kg	50	11/16/16	JLI	SW8260C
o-Xylene	13000	360	72	ug/Kg	50	11/16/16	JLI	SW8260C
p-Isopropyltoluene	1100	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
sec-Butylbenzene	1300	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
Styrene	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
tert-Butylbenzene	44	J 360	36	ug/Kg	50	11/16/16	JLI	SW8260C
Tetrachloroethene	ND	360	72	ug/Kg	50	11/16/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	720	180	ug/Kg	50	11/16/16	JLI	SW8260C 1
Toluene	1900	720	720	ug/Kg	1000	11/16/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	190	36	ug/Kg	50	11/16/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	720	180	ug/Kg	50	11/16/16	JLI	SW8260C
Trichloroethene	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
Trichlorofluoromethane	ND	360	72	ug/Kg	50	11/16/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	360	36	ug/Kg	50	11/16/16	JLI	SW8260C
Vinyl chloride	ND	36	36	ug/Kg	50	11/16/16	JLI	SW8260C
QA/QC Surrogates				3. 3				
% 1,2-dichlorobenzene-d4	100			%	50	11/16/16	JLI	70 - 130 %
% Bromofluorobenzene	105			%	50	11/16/16	JLI	70 - 130 %
% Dibromofluoromethane	94			%	50	11/16/16	JLI	70 - 130 %
% Toluene-d8	98			%	50	11/16/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	2900	2900	ug/kg	50	11/16/16	JLI	SW8260C
QA/QC Surrogates	112	2000	2000	uging	00	11/10/10	OL.	01102000
% 1,2-dichlorobenzene-d4	100			%	50	11/16/16	JLI	70 - 130 %
% Bromofluorobenzene	105			%	50	11/16/16	JLI	70 - 130 %
% Toluene-d8	98			%	50	11/16/16	JLI	70 - 130 %
	30			70	30	11/10/10	JLI	70 - 130 70
<u>Volatiles</u>	ND	4.400	70		50	44/40/40		CMOCCO
1,1,1,2-Tetrachloroethane	ND	1400	72	ug/Kg	50	11/16/16	JLI	SW8260C
Acrolein	ND	1400	180	ug/Kg	50	11/16/16	JLI 	SW8260C
Acrylonitrile	ND	1400	36	ug/Kg	50	11/16/16	JLI 	SW8260C
Tert-butyl alcohol	ND	7200	1400	ug/Kg	50	11/16/16	JLI	SW8260C
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	260	130	ug/Kg	1	11/16/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	260	110	ug/Kg	1	11/16/16	DD	SW8270D
1,2-Dichlorobenzene	120	J 260	100	ug/Kg	1	11/16/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	260	120	ug/Kg	1	11/16/16	DD	SW8270D
1,3-Dichlorobenzene	ND	260	110	ug/Kg	1	11/16/16	DD	SW8270D
1,4-Dichlorobenzene	ND	260	110	ug/Kg	1	11/16/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	260	200	ug/Kg	1	11/16/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	190	120	ug/Kg	1	11/16/16	DD	SW8270D

Client ID: 15B9 (3-5)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
2,4-Dichlorophenol	ND	190	130	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dimethylphenol	170	J 260	92	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dinitrophenol	ND	260	260	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dinitrotoluene	ND	190	150	ug/Kg	1	11/16/16	DD	SW8270D
2,6-Dinitrotoluene	ND	190	120	ug/Kg	1	11/16/16	DD	SW8270D
2-Chloronaphthalene	ND	260	110	ug/Kg	1	11/16/16	DD	SW8270D
2-Chlorophenol	ND	260	110	ug/Kg	1	11/16/16	DD	SW8270D
2-Methylnaphthalene	1600	260	110	ug/Kg	1	11/16/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	260	170	ug/Kg	1	11/16/16	DD	SW8270D
2-Nitroaniline	ND	260	260	ug/Kg	1	11/16/16	DD	SW8270D
2-Nitrophenol	ND	260	240	ug/Kg	1	11/16/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	260	150	ug/Kg	1	11/16/16	DD	SW8270D 1
3,3'-Dichlorobenzidine	ND	190	180	ug/Kg	1	11/16/16	DD	SW8270D
3-Nitroaniline	ND	370	740	ug/Kg	1	11/16/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	220	74	ug/Kg	1	11/16/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	260	110	ug/Kg	1	11/16/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	260	130	ug/Kg	1	11/16/16	DD	SW8270D
4-Chloroaniline	ND	300	170	ug/Kg	1	11/16/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	260	120	ug/Kg	1	11/16/16	DD	SW8270D
4-Nitroaniline	ND	370	120	ug/Kg	1	11/16/16	DD	SW8270D
4-Nitrophenol	ND	370	170	ug/Kg	1	11/16/16	DD	SW8270D
Acenaphthene	410	260	110	ug/Kg	1	11/16/16	DD	SW8270D
Acenaphthylene	170	J 260	100	ug/Kg	1	11/16/16	DD	SW8270D
Acetophenone	ND	260	120	ug/Kg	1	11/16/16	DD	SW8270D
Aniline	ND	300	300	ug/Kg	1	11/16/16	DD	SW8270D
Anthracene	660	260	120	ug/Kg	1	11/16/16	DD	SW8270D
Benz(a)anthracene	1500	260	120	ug/Kg	1	11/16/16	DD	SW8270D
Benzidine	ND	370	220	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(a)pyrene	1100	190	120	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(b)fluoranthene	1100	260	130	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(ghi)perylene	640	260	120	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(k)fluoranthene	900	260	120	ug/Kg	1	11/16/16	DD	SW8270D
Benzoic acid	ND	1900	740	ug/Kg	1	11/16/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	260	96	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	260	100	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	190	100	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	260	100	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	1600	260	110	ug/Kg	1	11/16/16	DD	SW8270D
Carbazole	360	190	150	ug/Kg	1	11/16/16	DD	SW8270D
Chrysene	1600	260	120	ug/Kg	1	11/16/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	190	120	ug/Kg	1	11/16/16	DD	SW8270D
Dibenzofuran	340	260	110	ug/Kg	1	11/16/16	DD	SW8270D
Diethyl phthalate	ND	260	120	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D
Dimethylphthalate	ND	260	120	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D
	ND	260	99	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D
Di-n-butylphthalate	ND	260	99 96	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D
Di-n-octylphthalate	6100	260	120	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D
Fluoranthene	590	260	120		1	11/16/16		SW8270D SW8270D
Fluorene				ug/Kg			DD	
Hexachlorobenzene	ND	190	110	ug/Kg	1	11/16/16	DD	SW8270D

Client ID: 15B9 (3-5)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Hexachlorobutadiene	ND	260	130	ug/Kg	1	11/16/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	260	110	ug/Kg ug/Kg	1	11/16/16	DD	SW8270D
Hexachloroethane	ND	190	110	ug/Kg	1	11/16/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	630	260	120	ug/Kg	1	11/16/16	DD	SW8270D
Isophorone	ND	190	100	ug/Kg	1	11/16/16	DD	SW8270D
Naphthalene	1000	260	110	ug/Kg	1	11/16/16	DD	SW8270D
Nitrobenzene	ND	190	130	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodimethylamine	ND	260	100	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	190	120	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	260	140	ug/Kg	1	11/16/16	DD	SW8270D
Pentachloronitrobenzene	ND	260	140	ug/Kg	1	11/16/16	DD	SW8270D
Pentachlorophenol	ND	220	140	ug/Kg	1	11/16/16	DD	SW8270D
Phenanthrene	4100	260	110	ug/Kg	1	11/16/16	DD	SW8270D
Phenol	ND	260	120	ug/Kg	1	11/16/16	DD	SW8270D
Pyrene	5500	260	130	ug/Kg	1	11/16/16	DD	SW8270D
Pyridine	ND	260	91	ug/Kg	1	11/16/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	105			%	1	11/16/16	DD	30 - 130 %
% 2-Fluorobiphenyl	75			%	1	11/16/16	DD	30 - 130 %
% 2-Fluorophenol	73			%	1	11/16/16	DD	30 - 130 %
% Nitrobenzene-d5	78			%	1	11/16/16	DD	30 - 130 %
% Phenol-d5	77			%	1	11/16/16	DD	30 - 130 %
% Terphenyl-d14	136			%	1	11/16/16	DD	30 - 130 %

Project ID: 1181 FLUSHING AVE BROOKLYN NY Phoenix I.D.: BV83378

Client ID: 15B9 (3-5)

RL/ LOD/

Parameter Result PQL MDL Units Dilution Date/Time By Reference

- 1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.
- 3 = This parameter exceeds laboratory specified limits.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

Semi-Volatile Comment:

One of the surrogate recoveries was above the upper range due to sample matrix interference. The other surrogates associated with this sample were within QA/QC criteria. No significant bias is suspected.

Volatile Comment:

Elevated reporting limits for volatiles due to the presence of target and/or non-target compounds.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 22, 2016

Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 22, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample Information Custody Information Time Date

Collected by: TG 11/14/16 Matrix: SOIL

Received by: Location Code: **EBC** SW 11/15/16 17:12

Rush Request: 72 Hour Analyzed by: see "By" below

Client ID: 15B9 (10-15)

P.O.#:

Project ID:

Laboratory Data	SDG ID: GBV83365
<u>=====================================</u>	Phoenix ID: BV83379
1181 FLUSHING AVE BROOKLYN NY	

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.35	0.35	mg/Kg	1	11/16/16	TH	SW6010C
Aluminum	4470	35	7.0	mg/Kg	10	11/16/16	TH	SW6010C
Arsenic	1.96	0.70	0.70	mg/Kg	1	11/16/16	TH	SW6010C
Barium	26.0	0.7	0.35	mg/Kg	1	11/16/16	TH	SW6010C
Beryllium	0.21	B 0.28	0.14	mg/Kg	1	11/16/16	TH	SW6010C
Calcium	1710	35	32	mg/Kg	10	11/16/16	TH	SW6010C
Cadmium	ND	0.35	0.35	mg/Kg	1	11/16/16	TH	SW6010C
Cobalt	5.26	0.35	0.35	mg/Kg	1	11/16/16	TH	SW6010C
Chromium	15.8	0.35	0.35	mg/Kg	1	11/16/16	TH	SW6010C
Copper	11.1	0.35	0.35	mg/kg	1	11/16/16	TH	SW6010C
Iron	12800	35	35	mg/Kg	10	11/16/16	TH	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	11/16/16	RS	SW7471B
Potassium	671	7	2.7	mg/Kg	1	11/16/16	LK	SW6010C
Magnesium	1480	3.5	3.5	mg/Kg	1	11/16/16	TH	SW6010C
Manganese	212	3.5	3.5	mg/Kg	10	11/16/16	TH	SW6010C
Sodium	147	7	3.0	mg/Kg	1	11/16/16	LK	SW6010C
Nickel	10.1	0.35	0.35	mg/Kg	1	11/16/16	TH	SW6010C
Lead	2.2	0.7	0.35	mg/Kg	1	11/16/16	TH	SW6010C
Antimony	ND	1.8	1.8	mg/Kg	1	11/16/16	TH	SW6010C
Selenium	ND	1.4	1.2	mg/Kg	1	11/16/16	TH	SW6010C
Thallium	ND	1.4	1.4	mg/Kg	1	11/16/16	TH	SW6010C
Vanadium	30.5	0.35	0.35	mg/Kg	1	11/16/16	LK	SW6010C
Zinc	22.0	0.7	0.35	mg/Kg	1	11/16/16	TH	SW6010C
Percent Solid	91			%		11/15/16	W	SW846-%Solid
Soil Extraction for PCB	Completed					11/15/16	CC/V	SW3545A
Soil Extraction for Pest	Completed					11/15/16	CC/V	SW3545A
Soil Extraction for SVOA	Completed					11/15/16	JJ/CKV	SW3545A
Mercury Digestion	Completed					11/16/16	W/W	SW7471B

Project ID: 1181 FLUSHING AVE BROOKLYN NY Phoenix I.D.: BV83379

Client ID: 15B9 (10-15)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Total Metals Digest	Completed					11/15/16	X/AG	SW3050B
Field Extraction	Completed					11/14/16		SW5035A
Polychlorinated Biphen	<u>yls</u>							
PCB-1016	ND	72	72	ug/Kg	2	11/16/16	AW	SW8082A
PCB-1221	ND	72	72	ug/Kg	2	11/16/16	AW	SW8082A
PCB-1232	ND	72	72	ug/Kg	2	11/16/16	AW	SW8082A
PCB-1242	ND	72	72	ug/Kg	2	11/16/16	AW	SW8082A
PCB-1248	ND	72	72	ug/Kg	2	11/16/16	AW	SW8082A
PCB-1254	ND	72	72	ug/Kg	2	11/16/16	AW	SW8082A
PCB-1260	ND	72	72	ug/Kg	2	11/16/16	AW	SW8082A
PCB-1262	ND	72	72	ug/Kg	2	11/16/16	AW	SW8082A
PCB-1268	ND	72	72	ug/Kg	2	11/16/16	AW	SW8082A
QA/QC Surrogates				0 0				
% DCBP	79			%	2	11/16/16	AW	30 - 150 %
% TCMX	68			%	2	11/16/16	AW	30 - 150 %
Pesticides - Soil								
4,4' -DDD	ND	2.2	2.2	ug/Kg	2	11/17/16	CE	SW8081B
4,4' -DDE	ND	2.2	2.2	ug/Kg	2	11/17/16	CE	SW8081B
4,4' -DDT	ND	2.2	2.2	ug/Kg	2	11/17/16	CE	SW8081B
a-BHC	ND	7.2	7.2	ug/Kg	2	11/17/16	CE	SW8081B
a-Chlordane	ND	3.6	3.6	ug/Kg	2	11/17/16	CE	SW8081B
Aldrin	ND	3.6	3.6	ug/Kg	2	11/17/16	CE	SW8081B
b-BHC	ND	7.2	7.2	ug/Kg	2	11/17/16	CE	SW8081B
Chlordane	ND	36	36	ug/Kg	2	11/17/16	CE	SW8081B
d-BHC	ND	7.2	7.2	ug/Kg	2	11/17/16	CE	SW8081B
Dieldrin	ND	3.6	3.6	ug/Kg	2	11/17/16	CE	SW8081B
Endosulfan I	ND	7.2	7.2	ug/Kg	2	11/17/16	CE	SW8081B
Endosulfan II	ND	7.2	7.2	ug/Kg	2	11/17/16	CE	SW8081B
Endosulfan sulfate	ND	7.2	7.2	ug/Kg	2	11/17/16	CE	SW8081B
Endrin	ND	7.2	7.2	ug/Kg	2	11/17/16	CE	SW8081B
Endrin aldehyde	ND	7.2	7.2	ug/Kg	2	11/17/16	CE	SW8081B
Endrin ketone	ND	7.2	7.2	ug/Kg	2	11/17/16	CE	SW8081B
g-BHC	ND	5.0	5.0	ug/Kg	2	11/17/16	CE	SW8081B
g-Chlordane	ND	3.6	3.6	ug/Kg	2	11/17/16	CE	SW8081B
Heptachlor	ND	7.2	7.2	ug/Kg	2	11/17/16	CE	SW8081B
Heptachlor epoxide	ND	7.2	7.2	ug/Kg	2	11/17/16	CE	SW8081B
Methoxychlor	ND	36	36	ug/Kg	2	11/17/16	CE	SW8081B
Toxaphene	ND	140	140	ug/Kg	2	11/17/16	CE	SW8081B
QA/QC Surrogates								
% DCBP	73			%	2	11/17/16	CE	40 - 140 %
% TCMX	44			%	2	11/17/16	CE	40 - 140 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
1,1-Dichloroethane	ND	4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C

Client ID: 15B9 (10-15)

Client ID. 1369 (10-13)			RL/	LOD/					
Parameter	Result		PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1,1-Dichloroethene	ND		4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
1,1-Dichloropropene	ND		4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND		4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,3-Trichloropropane	ND		4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND		4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,4-Trimethylbenzene	0.86	J	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND		4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dibromoethane	ND		4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichlorobenzene	ND		4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichloroethane	ND		4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichloropropane	ND		4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
1,3,5-Trimethylbenzene	ND		4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
1,3-Dichlorobenzene	ND		4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
1,3-Dichloropropane	ND		4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
1,4-Dichlorobenzene	ND		4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
2,2-Dichloropropane	ND		4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
2-Chlorotoluene	ND		4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
2-Hexanone	ND		22	4.4	ug/Kg	1	11/16/16	JLI	SW8260C
2-Isopropyltoluene	ND		4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C 1
4-Chlorotoluene	ND		4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
4-Methyl-2-pentanone	ND		22	4.4	ug/Kg	1	11/16/16	JLI	SW8260C
Acetone	53	S	22	4.4	ug/Kg	1	11/16/16	JLI	SW8260C
Acrylonitrile	ND		8.8	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
Benzene	ND		4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Bromobenzene	ND		4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Bromochloromethane	ND		4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Bromodichloromethane	ND		4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
Bromoform	ND		4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
Bromomethane	ND		4.4	1.8	ug/Kg	1	11/16/16	JLI	SW8260C
Carbon Disulfide	1.6	J	4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
Carbon tetrachloride	ND		4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
Chlorobenzene	ND		4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Chloroethane	ND		4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Chloroform	ND		4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Chloromethane	ND		4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND		4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND		4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Dibromochloromethane	ND		4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
Dibromomethane	ND		4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
Dichlorodifluoromethane	ND		4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Ethylbenzene	0.56	J	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Hexachlorobutadiene	ND		4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Isopropylbenzene	ND		4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
m&p-Xylene	1.2	J	4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
Methyl Ethyl Ketone	13	J	26	4.4	ug/Kg	1	11/16/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	6.7	J	8.8	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
Methylene chloride	ND		4.4	4.4	ug/Kg	1	11/16/16	JLI	SW8260C
Naphthalene	2.5	J		0.88	ug/Kg	1	11/16/16	JLI	SW8260C
n-Butylbenzene	ND		4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
,					3 0				

Client ID: 15B9 (10-15)

Parameter Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
n-Propylbenzene	ND	4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
o-Xylene	ND	4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
p-Isopropyltoluene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
sec-Butylbenzene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Styrene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
tert-Butylbenzene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Tetrachloroethene	ND	4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	8.8	2.2	ug/Kg	1	11/16/16	JLI	SW8260C 1
Toluene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	8.8	2.2	ug/Kg	1	11/16/16	JLI	SW8260C
Trichloroethene	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Trichlorofluoromethane	ND	4.4	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Vinyl chloride	ND	4.4	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	99			%	1	11/16/16	JLI	70 - 130 %
% Bromofluorobenzene	100			%	1	11/16/16	JLI	70 - 130 %
% Dibromofluoromethane	98			%	1	11/16/16	JLI	70 - 130 %
% Toluene-d8	100			%	1	11/16/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	66	35	ug/kg	1	11/16/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	99			%	1	11/16/16	JLI	70 - 130 %
% Bromofluorobenzene	100			%	1	11/16/16	JLI	70 - 130 %
% Toluene-d8	100			%	1	11/16/16	JLI	70 - 130 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	18	0.88	ug/Kg	1	11/16/16	JLI	SW8260C
Acrolein	ND	18	2.2	ug/Kg	1	11/16/16	JLI	SW8260C
Acrylonitrile	ND	18	0.44	ug/Kg	1	11/16/16	JLI	SW8260C
Tert-butyl alcohol	ND	88	18	ug/Kg	1	11/16/16	JLI	SW8260C
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	250	130	ug/Kg	1	11/16/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	250	110	ug/Kg	1	11/16/16	DD	SW8270D
1,2-Dichlorobenzene	ND	250	100	ug/Kg	1	11/16/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	250	120	ug/Kg	1	11/16/16	DD	SW8270D
1,3-Dichlorobenzene	ND	250	110	ug/Kg	1	11/16/16	DD	SW8270D
1,4-Dichlorobenzene	ND	250	110	ug/Kg	1	11/16/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	250	200	ug/Kg	1	11/16/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	180	110	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dichlorophenol	ND	180	130	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dimethylphenol	ND	250	89	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dinitrophenol	ND	250	250	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dinitrotoluene	ND	180	140	ug/Kg	1	11/16/16	DD	SW8270D
2,6-Dinitrotoluene	ND	180	110	ug/Kg	1	11/16/16	DD	SW8270D
2-Chloronaphthalene	ND	250	100	ug/Kg	1	11/16/16	DD	SW8270D

Client ID: 15B9 (10-15)

Parameter Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
2-Chlorophenol	ND	250	100	ug/Kg	1	11/16/16	DD	SW8270D
2-Methylnaphthalene	ND	250	110	ug/Kg	1	11/16/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	250	170	ug/Kg	1	11/16/16	DD	SW8270D
2-Nitroaniline	ND	250	250	ug/Kg	1	11/16/16	DD	SW8270D
2-Nitrophenol	ND	250	230	ug/Kg	1	11/16/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	250	140	ug/Kg	1	11/16/16	DD	SW8270D 1
3,3'-Dichlorobenzidine	ND	180	170	ug/Kg	1	11/16/16	DD	SW8270D
3-Nitroaniline	ND	360	710	ug/Kg	1	11/16/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	210	71	ug/Kg	1	11/16/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	250	110	ug/Kg	1	11/16/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	250	130	ug/Kg	1	11/16/16	DD	SW8270D
4-Chloroaniline	ND	290	170	ug/Kg	1	11/16/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	250	120	ug/Kg	1	11/16/16	DD	SW8270D
4-Nitroaniline	ND	360	120	ug/Kg	1	11/16/16	DD	SW8270D
4-Nitrophenol	ND	360	160	ug/Kg	1	11/16/16	DD	SW8270D
Acenaphthene	ND	250	110	ug/Kg	1	11/16/16	DD	SW8270D
Acenaphthylene	ND	250	100	ug/Kg	1	11/16/16	DD	SW8270D
Acetophenone	ND	250	110	ug/Kg	1	11/16/16	DD	SW8270D
Aniline	ND	290	290	ug/Kg	1	11/16/16	DD	SW8270D
Anthracene	ND	250	120	ug/Kg	1	11/16/16	DD	SW8270D
Benz(a)anthracene	ND	250	120	ug/Kg	1	11/16/16	DD	SW8270D
Benzidine	ND	360	210	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(a)pyrene	ND	180	120	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(b)fluoranthene	ND	250	120	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(ghi)perylene	ND	250	120	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(k)fluoranthene	ND	250	120	ug/Kg	1	11/16/16	DD	SW8270D
Benzoic acid	ND	1800	710	ug/Kg	1	11/16/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	250	92	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	250	99	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	180	96	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	250	99	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	250	100	ug/Kg	1	11/16/16	DD	SW8270D
Carbazole	ND	180	140	ug/Kg	1	11/16/16	DD	SW8270D
Chrysene	ND	250	120	ug/Kg	1	11/16/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	180	120	ug/Kg	1	11/16/16	DD	SW8270D
Dibenzofuran	ND	250	100	ug/Kg	1	11/16/16	DD	SW8270D
Diethyl phthalate	ND	250	110	ug/Kg	1	11/16/16	DD	SW8270D
Dimethylphthalate	ND	250	110	ug/Kg	1	11/16/16	DD	SW8270D
Di-n-butylphthalate	ND	250	95	ug/Kg	1	11/16/16	DD	SW8270D
Di-n-octylphthalate	ND	250	92	ug/Kg	1	11/16/16	DD	SW8270D
Fluoranthene	ND	250	120	ug/Kg	1	11/16/16	DD	SW8270D
Fluorene	ND	250	120	ug/Kg	1	11/16/16	DD	SW8270D
Hexachlorobenzene	ND	180	100	ug/Kg	1	11/16/16	DD	SW8270D
Hexachlorobutadiene	ND	250	130	ug/Kg	1	11/16/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	250	110	ug/Kg	1	11/16/16	DD	SW8270D
Hexachloroethane	ND	180	110	ug/Kg	1	11/16/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	250	120	ug/Kg	1	11/16/16	DD	SW8270D
Isophorone	ND	180	100	ug/Kg	1	11/16/16	DD	SW8270D
Naphthalene	ND	250	100	ug/Kg	1	11/16/16	DD	SW8270D
нарпинаюно	110	200	100	~9/1 . 19	,	, 10, 10	טט	51102100

Client ID: 15B9 (10-15)

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Nitrobenzene	ND	180	130	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodimethylamine	ND	250	100	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	180	120	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	250	140	ug/Kg	1	11/16/16	DD	SW8270D
Pentachloronitrobenzene	ND	250	130	ug/Kg	1	11/16/16	DD	SW8270D
Pentachlorophenol	ND	210	140	ug/Kg	1	11/16/16	DD	SW8270D
Phenanthrene	ND	250	100	ug/Kg	1	11/16/16	DD	SW8270D
Phenol	ND	250	110	ug/Kg	1	11/16/16	DD	SW8270D
Pyrene	ND	250	120	ug/Kg	1	11/16/16	DD	SW8270D
Pyridine	ND	250	88	ug/Kg	1	11/16/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	107			%	1	11/16/16	DD	30 - 130 %
% 2-Fluorobiphenyl	73			%	1	11/16/16	DD	30 - 130 %
% 2-Fluorophenol	57			%	1	11/16/16	DD	30 - 130 %
% Nitrobenzene-d5	78			%	1	11/16/16	DD	30 - 130 %
% Phenol-d5	63			%	1	11/16/16	DD	30 - 130 %
% Terphenyl-d14	71			%	1	11/16/16	DD	30 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

Pesticide Comment:

Due to a matrix interference and/or the presence of a large amount of non-target material in the sample, an elevated RL was reported for the affected compounds.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 22, 2016

Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

P.O.#:

Project ID:

November 22, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample Information Custody Information Date <u>Time</u>

Collected by: TG 11/14/16 Matrix: SOIL

RL/

Received by: Location Code: **EBC** SW 11/15/16 17:12

LOD/

Rush Request: 72 Hour Analyzed by: see "By" below

1181 FLUSHING AVE BROOKLYN NY

Client ID: **SOIL DUPLICATE 3**

Laboratory Data

SDG ID: GBV83365 Phoenix ID: BV83380

Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.38	0.38	mg/Kg	1	11/16/16	TH	SW6010C
Aluminum	8170	38	7.5	mg/Kg	10	11/16/16	LK	SW6010C
Arsenic	6.36	0.75	0.75	mg/Kg	1	11/16/16	LK	SW6010C
Barium	113	8.0	0.38	mg/Kg	1	11/16/16	LK	SW6010C
Beryllium	0.41	0.30	0.15	mg/Kg	1	11/16/16	TH	SW6010C
Calcium	6690	3.8	3.5	mg/Kg	1	11/16/16	LK	SW6010C
Cadmium	0.58	0.38	0.38	mg/Kg	1	11/16/16	TH	SW6010C
Cobalt	7.23	0.38	0.38	mg/Kg	1	11/16/16	TH	SW6010C
Chromium	20.2	0.38	0.38	mg/Kg	1	11/16/16	LK	SW6010C
Copper	73.7	0.38	0.38	mg/kg	1	11/16/16	LK	SW6010C
Iron	19800	38	38	mg/Kg	10	11/16/16	TH	SW6010C
Mercury	1.04	0.03	0.02	mg/Kg	1	11/16/16	RS	SW7471B
Potassium	1120	8	2.9	mg/Kg	1	11/16/16	LK	SW6010C
Magnesium	2120	3.8	3.8	mg/Kg	1	11/16/16	TH	SW6010C
Manganese	386	3.8	3.8	mg/Kg	10	11/16/16	TH	SW6010C
Sodium	230	8	3.2	mg/Kg	1	11/16/16	LK	SW6010C
Nickel	15.1	0.38	0.38	mg/Kg	1	11/16/16	LK	SW6010C
Lead	243	7.5	3.8	mg/Kg	10	11/16/16	LK	SW6010C
Antimony	ND	1.9	1.9	mg/Kg	1	11/16/16	TH	SW6010C
Selenium	ND	1.5	1.3	mg/Kg	1	11/16/16	LK	SW6010C
Thallium	ND	1.5	1.5	mg/Kg	1	11/16/16	TH	SW6010C
Vanadium	25.0	0.38	0.38	mg/Kg	1	11/16/16	TH	SW6010C
Zinc	160	7.5	3.8	mg/Kg	10	11/16/16	LK	SW6010C
Percent Solid	92			%		11/15/16	W	SW846-%Solid
Soil Extraction for PCB	Completed					11/15/16	CC/V	SW3545A
Soil Extraction for Pest	Completed					11/15/16	CC/V	SW3545A
Soil Extraction for SVOA	Completed					11/15/16	JJ/CKV	SW3545A
Mercury Digestion	Completed					11/16/16	W/W	SW7471B

Project ID: 1181 FLUSHING AVE BROOKLYN NY Phoenix I.D.: BV83380

Client ID: SOIL DUPLICATE 3

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Total Metals Digest	Completed					11/15/16	X/AG	SW3050B
Field Extraction	Completed					11/14/16		SW5035A
Polychlorinated Biphen	yls							
PCB-1016	ND	72	72	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1221	ND	72	72	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1232	ND	72	72	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1242	ND	72	72	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1248	ND	72	72	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1254	ND	72	72	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1260	ND	72	72	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1262	ND	72	72	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1268	ND	72	72	ug/Kg	2	11/17/16	AW	SW8082A
QA/QC Surrogates				0 0				
% DCBP	73			%	2	11/17/16	AW	30 - 150 %
% TCMX	67			%	2	11/17/16	AW	30 - 150 %
Pesticides - Soil								
4,4' -DDD	ND	2.2	2.2	ug/Kg	2	11/17/16	CE	SW8081B
4,4' -DDE	ND	4.0	4.0	ug/Kg	2	11/17/16	CE	SW8081B
4,4' -DDT	ND	15	15	ug/Kg	2	11/17/16	CE	SW8081B
a-BHC	ND	7.2	7.2	ug/Kg	2	11/17/16	CE	SW8081B
a-Chlordane	ND	3.6	3.6	ug/Kg	2	11/17/16	CE	SW8081B
Aldrin	ND	3.6	3.6	ug/Kg	2	11/17/16	CE	SW8081B
b-BHC	ND	7.2	7.2	ug/Kg	2	11/17/16	CE	SW8081B
Chlordane	ND	36	36	ug/Kg	2	11/17/16	CE	SW8081B
d-BHC	ND	7.2	7.2	ug/Kg	2	11/17/16	CE	SW8081B
Dieldrin	ND	3.6	3.6	ug/Kg	2	11/17/16	CE	SW8081B
Endosulfan I	ND	7.2	7.2	ug/Kg	2	11/17/16	CE	SW8081B
Endosulfan II	ND	7.2	7.2	ug/Kg	2	11/17/16	CE	SW8081B
Endosulfan sulfate	ND	7.2	7.2	ug/Kg	2	11/17/16	CE	SW8081B
Endrin	ND	7.2	7.2	ug/Kg	2	11/17/16	CE	SW8081B
Endrin aldehyde	ND	7.2	7.2	ug/Kg	2	11/17/16	CE	SW8081B
Endrin ketone	ND	7.2	7.2	ug/Kg	2	11/17/16	CE	SW8081B
g-BHC	ND	1.4	1.4	ug/Kg	2	11/17/16	CE	SW8081B
g-Chlordane	ND	3.6	3.6	ug/Kg	2	11/17/16	CE	SW8081B
Heptachlor	ND	7.2	7.2	ug/Kg	2	11/17/16	CE	SW8081B
Heptachlor epoxide	ND	7.2	7.2	ug/Kg	2	11/17/16	CE	SW8081B
Methoxychlor	ND	36	36	ug/Kg	2	11/17/16	CE	SW8081B
Toxaphene	ND	140	140	ug/Kg	2	11/17/16	CE	SW8081B
QA/QC Surrogates								
% DCBP	74			%	2	11/17/16	CE	40 - 140 %
% TCMX	49			%	2	11/17/16	CE	40 - 140 %
Volatiles								
1,1,1,2-Tetrachloroethane	ND	4.1	0.83	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	4.1	0.41	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	4.1	0.83	ug/Kg	1	11/16/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	4.1	0.83	ug/Kg	1	11/16/16	JLI	SW8260C
1,1-Dichloroethane	ND	4.1	0.83	ug/Kg ug/Kg	1	11/16/16	JLI	SW8260C
i, i-Dichioloctilane	IND	7.1	0.03	ug/ING	1	1 1/ 10/ 10	JLI	5 V V U Z U U U

Client ID: SOIL DUPLICATE 3

1,1-Dichloroethene	Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1.2.3-Trichlorobenzene	1,1-Dichloroethene	ND	4.1	0.41	ug/Kg	1	11/16/16	JLI	SW8260C
1.2.3—Trichloropropane	1,1-Dichloropropene	ND	4.1	0.41	ug/Kg	1	11/16/16	JLI	SW8260C
1,2,4-Trinchtorbenzene	1,2,3-Trichlorobenzene	ND	4.1	0.83	ug/Kg	1	11/16/16	JLI	SW8260C
1.24-Trimethylbenzene	1,2,3-Trichloropropane	ND	4.1	0.41	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	1,2,4-Trichlorobenzene	ND	4.1	0.83	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dibromoethane	1,2,4-Trimethylbenzene	0.91	J 4.1	0.41	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichlorobenzene	1,2-Dibromo-3-chloropropane	ND	4.1	0.83	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-Dichloroethane ND	1,2-Dibromoethane	ND	4.1	0.41	ug/Kg	1	11/16/16	JLI	SW8260C
1,2-bichloropropane	1,2-Dichlorobenzene	ND	4.1	0.41	ug/Kg	1	11/16/16	JLI	SW8260C
1,3-Frimethylbenzene	1,2-Dichloroethane	ND	4.1	0.41	ug/Kg	1	11/16/16	JLI	SW8260C
1,3-Dichlorobenzene ND 4.11 0.41 ug/Kg 1 11/16/16 JLI SW8260C 1,3-Dichloropropane ND 4.11 0.33 ug/Kg 1 11/16/16 JLI SW8260C 2,2-Dichloropropane ND 4.11 0.41 ug/Kg 1 11/16/16 JLI SW8260C 2,2-Dichloropropane ND 4.11 0.41 ug/Kg 1 11/16/16 JLI SW8260C 2-Hexanone ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C 2-Hexanone ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C 2-Hexanone ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C 4-Chlorotoluene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Actone ND 2.1 4.1 ug/Kg 1 11/16/16 JLI SW8260C <td>1,2-Dichloropropane</td> <td>ND</td> <td>4.1</td> <td>0.83</td> <td>ug/Kg</td> <td>1</td> <td>11/16/16</td> <td>JLI</td> <td>SW8260C</td>	1,2-Dichloropropane	ND	4.1	0.83	ug/Kg	1	11/16/16	JLI	SW8260C
1,3-Dichloropropane	1,3,5-Trimethylbenzene	0.67	J 4.1	0.41	ug/Kg	1	11/16/16	JLI	SW8260C
1,4-Dichlorobenzene	1,3-Dichlorobenzene	ND	4.1	0.41	ug/Kg	1	11/16/16	JLI	SW8260C
1,4-Dichlorobenzene ND 4.1 0.41 ug/Kg 1 111/6/16 JLI SW8260C 2,2-Dichloropropane ND 4.1 0.41 ug/Kg 1 111/16/16 JLI SW8260C 2-Hexanone ND 4.1 0.41 ug/Kg 1 111/16/16 JLI SW8260C 2-Hexanone ND 4.1 0.41 ug/Kg 1 111/16/16 JLI SW8260C 2-Hexanone ND 4.1 0.41 ug/Kg 1 111/16/16 JLI SW8260C 4-Methyl-2-pentanone ND 2.1 4.1 ug/Kg 1 111/16/16 JLI SW8260C Acetone ND 2.1 4.1 ug/Kg 1 111/16/16 JLI SW8260C Acetone ND 4.1 0.41 ug/Kg 1 111/16/16 JLI SW8260C Bernzene ND 4.1 0.41 ug/Kg 1 111/16/16 JLI SW8260C	1,3-Dichloropropane	ND	4.1	0.83	ug/Kg	1	11/16/16	JLI	SW8260C
2-Chlorotoluene ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C 2-Hexanone ND 21 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C 1 2-Isopropyltoluene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C 1 4-Chlorotoluene ND 2.1 4.1 ug/Kg 1 11/16/16 JLI SW8260C 4-Methyl-2-pentanone ND 2.1 4.1 ug/Kg 1 11/16/16 JLI SW8260C Acetone ND 2.1 4.1 ug/Kg 1 11/16/16 JLI SW8260C Benzene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Bromochloromethane ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Bromochloromethane ND 4.1 0.43 ug/Kg 1 11/16		ND	4.1	0.41	ug/Kg	1	11/16/16	JLI	SW8260C
2-Hexanone ND	2,2-Dichloropropane	ND	4.1	0.41	ug/Kg	1	11/16/16	JLI	SW8260C
2-Isopropyltoluene		ND	4.1	0.83	ug/Kg	1	11/16/16	JLI	SW8260C
4-Chlorotoluene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C 4-Methyl-2-pentanone ND 21 4.1 ug/Kg 1 11/16/16 JLI SW8260C Acetone ND 21 4.1 ug/Kg 1 11/16/16 JLI SW8260C Acryloritrile ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Benzene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Bromochloromethane ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Bromoform ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Bromoform ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Bromoform ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C	2-Hexanone	ND	21	4.1	ug/Kg	1	11/16/16	JLI	SW8260C
4-Chlorotoluene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C 4-Methyl-2-pentanone ND 21 4.1 ug/Kg 1 11/16/16 JLI SW8260C Acetone ND 21 4.1 ug/Kg 1 11/16/16 JLI SW8260C Acryloritrile ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Benzene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Bromochloromethane ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Bromoform ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Bromoform ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Bromoform ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C	2-Isopropyltoluene	ND	4.1	0.41	ug/Kg	1	11/16/16	JLI	SW8260C 1
Acetone ND 21 4.1 ug/Kg 1 11/16/16 JLI SW8260C Acrylonitrile ND 8.3 0.83 ug/Kg 1 11/16/16 JLI SW8260C Benzene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Bromochloromethane ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Bromochloromethane ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Bromoform ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Bromomethane ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Carbon Disulfide ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Carbon tetrachloride ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C		ND	4.1	0.41		1	11/16/16	JLI	SW8260C
Acetone ND 21 4.1 ug/Kg 1 11/16/16 JLI SW8260C Acrylonitrile ND 8.3 0.83 ug/Kg 1 11/16/16 JLI SW8260C Benzene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Bromochloromethane ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Bromochloromethane ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Bromoform ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Bromoform ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Carbon Disulfide ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Carbon tetrachloride ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C	4-Methyl-2-pentanone	ND	21	4.1	ug/Kg	1	11/16/16	JLI	SW8260C
Benzene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Bromobenzene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Bromochloromethane ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Bromoform ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Bromomethane ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Bromomethane ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Carbon Isulfide ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Carbon Isulfide ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Carbon tetrachloride ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C <td></td> <td>ND</td> <td>21</td> <td>4.1</td> <td>ug/Kg</td> <td>1</td> <td>11/16/16</td> <td>JLI</td> <td>SW8260C</td>		ND	21	4.1	ug/Kg	1	11/16/16	JLI	SW8260C
Benzene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Bromobenzene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Bromochloromethane ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Bromoform ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Bromomethane ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Bromomethane ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Carbon Isulfide ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Carbon Isulfide ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Carbon tetrachloride ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C <td>Acrylonitrile</td> <td>ND</td> <td>8.3</td> <td>0.83</td> <td>ug/Kg</td> <td>1</td> <td>11/16/16</td> <td>JLI</td> <td>SW8260C</td>	Acrylonitrile	ND	8.3	0.83	ug/Kg	1	11/16/16	JLI	SW8260C
Bromobenzene ND		ND	4.1	0.41		1	11/16/16	JLI	SW8260C
Bromochloromethane ND 4.1 0.41 ug/kg 1 11/16/16 JLI SW8260C Bromodichloromethane ND 4.1 0.83 ug/kg 1 11/16/16 JLI SW8260C Bromomethane ND 4.1 0.83 ug/kg 1 11/16/16 JLI SW8260C Carbon Disulfide ND 4.1 0.83 ug/kg 1 11/16/16 JLI SW8260C Carbon tetrachloride ND 4.1 0.83 ug/kg 1 11/16/16 JLI SW8260C Chlorobenzene ND 4.1 0.41 ug/kg 1 11/16/16 JLI SW8260C Chlorobenzene ND 4.1 0.41 ug/kg 1 11/16/16 JLI SW8260C Chloropethane ND 4.1 0.41 ug/kg 1 11/16/16 JLI SW8260C Chloromethane ND 4.1 0.41 ug/kg 1 11/16/16 JLI SW8	Bromobenzene	ND	4.1	0.41		1	11/16/16	JLI	SW8260C
Bromodichloromethane ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Bromoform ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Bromomethane ND 4.1 1.7 ug/Kg 1 11/16/16 JLI SW8260C Carbon Disulfide ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Carbon tetrachloride ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Chlorobenzene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Chloroform ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Chloromethane ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Cis-1,2-Dichloroethene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C	Bromochloromethane	ND	4.1	0.41		1	11/16/16	JLI	SW8260C
Bromoform ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Bromomethane ND 4.1 1.7 ug/Kg 1 11/16/16 JLI SW8260C Carbon Disulfide ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Carbon tetrachloride ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Chlorobenzene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Chloroethane ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Chloroform ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Chloromethane ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C cis-1,2-Dichlorogropene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C	Bromodichloromethane	ND	4.1	0.83		1	11/16/16	JLI	SW8260C
Bromomethane ND 4.1 1.7 ug/Kg 1 11/16/16 JLI SW8260C Carbon Disulfide ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Carbon tetrachloride ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Chlorobenzene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Chloroethane ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Chloroform ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Chloromethane ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C cis-1,3-Dichloroptopene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Dibromomethane ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C </td <td>Bromoform</td> <td>ND</td> <td>4.1</td> <td>0.83</td> <td></td> <td>1</td> <td>11/16/16</td> <td>JLI</td> <td>SW8260C</td>	Bromoform	ND	4.1	0.83		1	11/16/16	JLI	SW8260C
Carbon tetrachloride ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Chlorobenzene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Chloroethane ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Chloromethane ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Chloromethane ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C cis-1,2-Dichloroethene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C cis-1,3-Dichloropropene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Dibromomethane ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Ethylbenzene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI <td< td=""><td>Bromomethane</td><td>ND</td><td>4.1</td><td>1.7</td><td></td><td>1</td><td>11/16/16</td><td>JLI</td><td>SW8260C</td></td<>	Bromomethane	ND	4.1	1.7		1	11/16/16	JLI	SW8260C
Carbon tetrachloride ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Chlorobenzene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Chloroethane ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Chloromethane ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Chloromethane ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C cis-1,2-Dichloroethene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C cis-1,3-Dichloropropene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Dibromomethane ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Ethylbenzene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI <td< td=""><td></td><td>ND</td><td>4.1</td><td>0.83</td><td></td><td>1</td><td>11/16/16</td><td>JLI</td><td>SW8260C</td></td<>		ND	4.1	0.83		1	11/16/16	JLI	SW8260C
Chlorobenzene ND 4.1 0.41 ug/kg 1 11/16/16 JLI SW8260C Chloroethane ND 4.1 0.41 ug/kg 1 11/16/16 JLI SW8260C Chloroform ND 4.1 0.41 ug/kg 1 11/16/16 JLI SW8260C Chloromethane ND 4.1 0.83 ug/kg 1 11/16/16 JLI SW8260C cis-1,2-Dichloroethene ND 4.1 0.41 ug/kg 1 11/16/16 JLI SW8260C cis-1,3-Dichloropropene ND 4.1 0.41 ug/kg 1 11/16/16 JLI SW8260C Dibromoethloromethane ND 4.1 0.83 ug/kg 1 11/16/16 JLI SW8260C Dichlorodifluoromethane ND 4.1 0.83 ug/kg 1 11/16/16 JLI SW8260C Ethylbenzene 0.58 J 4.1 0.41 ug/kg 1 11/16/16	Carbon tetrachloride	ND	4.1	0.83	ug/Kg	1	11/16/16	JLI	SW8260C
Chloroethane ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Chloroform ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Chloromethane ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C cis-1,2-Dichloroethene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C cis-1,3-Dichloropropene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Dibromochloromethane ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Dichlorodifluoromethane ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Ethylbenzene 0.58 J 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Hexachlorobutadiene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI<	Chlorobenzene	ND	4.1	0.41		1	11/16/16	JLI	SW8260C
Chloroform ND 4.1 0.41 ug/kg 1 11/16/16 JLI SW8260C Chloromethane ND 4.1 0.83 ug/kg 1 11/16/16 JLI SW8260C cis-1,2-Dichloroethene ND 4.1 0.41 ug/kg 1 11/16/16 JLI SW8260C cis-1,3-Dichloropropene ND 4.1 0.41 ug/kg 1 11/16/16 JLI SW8260C Dibromochloromethane ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Dichlorodifluoromethane ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Ethylbenzene 0.58 J 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Hexachlorobutadiene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Isopropylbenzene ND 4.1 0.41 ug/Kg 1 11/16/16<	Chloroethane	ND	4.1	0.41		1	11/16/16	JLI	SW8260C
Chloromethane ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C cis-1,2-Dichloroethene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C cis-1,3-Dichloropropene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Dibromomethane ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Dibromomethane ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Dichlorodifluoromethane ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Ethylbenzene 0.58 J 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Hexachlorobutadiene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Isopropylbenzene ND 4.1 0.41 ug/Kg 1 11/16/16 <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td>						1			
cis-1,2-Dichloroethene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C cis-1,3-Dichloropropene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Dibromochloromethane ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Dibromomethane ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Dichlorodifluoromethane ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Ethylbenzene 0.58 J 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Hexachlorobutadiene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Isopropylbenzene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Methyl Ethyl Ketone ND 25 4.1 ug/Kg 1 1		ND	4.1	0.83		1	11/16/16	JLI	
Cis-1,3-Dichloropropene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Dibromochloromethane ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Dibromomethane ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Dichlorodifluoromethane ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Ethylbenzene 0.58 J 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Hexachlorobutadiene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Isopropylbenzene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Methyl Ethyl Ketone ND 25 4.1 ug/Kg 1 11/16/16 JLI SW8260C Methylene chloride ND 4.1 4.1 ug/Kg 1 11/16/		ND	4.1	0.41		1	11/16/16	JLI	
Dibromochloromethane ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Dibromomethane ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Dichlorodifluoromethane ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Ethylbenzene 0.58 J 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Hexachlorobutadiene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Isopropylbenzene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Methyl Ethyl Ketone ND 25 4.1 ug/Kg 1 11/16/16 JLI SW8260C Methyl t-butyl ether (MTBE) ND 8.3 0.83 ug/Kg 1 11/16/16 JLI SW8260C Naphthalene 0.97 J 4.1 0.83 ug/Kg 1		ND	4.1	0.41		1		JLI	SW8260C
Dibromomethane ND 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Dichlorodifluoromethane ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Ethylbenzene 0.58 J 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Hexachlorobutadiene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Isopropylbenzene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Methyl Ethyl Ketone ND 25 4.1 ug/Kg 1 11/16/16 JLI SW8260C Methyl t-butyl ether (MTBE) ND 8.3 0.83 ug/Kg 1 11/16/16 JLI SW8260C Methylene chloride ND 4.1 4.1 ug/Kg 1 11/16/16 JLI SW8260C Naphthalene 0.97 J 4.1 0.83 ug/Kg 1		ND	4.1	0.83		1	11/16/16	JLI	SW8260C
Dichlorodifluoromethane ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Ethylbenzene 0.58 J 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Hexachlorobutadiene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Isopropylbenzene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C m&p-Xylene 1.4 J 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Methyl Ethyl Ketone ND 25 4.1 ug/Kg 1 11/16/16 JLI SW8260C Methyl t-butyl ether (MTBE) ND 8.3 0.83 ug/Kg 1 11/16/16 JLI SW8260C Methylene chloride ND 4.1 4.1 ug/Kg 1 11/16/16 JLI SW8260C Naphthalene 0.97 J 4.1 0.83 ug/Kg 1 11/16/16 <td< td=""><td></td><td>ND</td><td>4.1</td><td>0.83</td><td></td><td>1</td><td>11/16/16</td><td>JLI</td><td>SW8260C</td></td<>		ND	4.1	0.83		1	11/16/16	JLI	SW8260C
Ethylbenzene 0.58 J 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Hexachlorobutadiene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Isopropylbenzene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C m&p-Xylene 1.4 J 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Methyl Ethyl Ketone ND 25 4.1 ug/Kg 1 11/16/16 JLI SW8260C Methyl t-butyl ether (MTBE) ND 8.3 0.83 ug/Kg 1 11/16/16 JLI SW8260C Methylene chloride ND 4.1 4.1 ug/Kg 1 11/16/16 JLI SW8260C Naphthalene 0.97 J 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C		ND	4.1	0.41		1	11/16/16	JLI	SW8260C
Hexachlorobutadiene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C Isopropylbenzene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C m&p-Xylene 1.4 J 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Methyl Ethyl Ketone ND 25 4.1 ug/Kg 1 11/16/16 JLI SW8260C Methyl t-butyl ether (MTBE) ND 8.3 0.83 ug/Kg 1 11/16/16 JLI SW8260C Methylene chloride ND 4.1 4.1 ug/Kg 1 11/16/16 JLI SW8260C Naphthalene 0.97 J 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C		0.58	J 4.1	0.41		1	11/16/16	JLI	SW8260C
Isopropylbenzene ND 4.1 0.41 ug/Kg 1 11/16/16 JLI SW8260C m&p-Xylene 1.4 J 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Methyl Ethyl Ketone ND 25 4.1 ug/Kg 1 11/16/16 JLI SW8260C Methyl t-butyl ether (MTBE) ND 8.3 0.83 ug/Kg 1 11/16/16 JLI SW8260C Methylene chloride ND 4.1 4.1 ug/Kg 1 11/16/16 JLI SW8260C Naphthalene 0.97 J 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C	-	ND	4.1	0.41		1	11/16/16		SW8260C
m&p-Xylene 1.4 J 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C Methyl Ethyl Ketone ND 25 4.1 ug/Kg 1 11/16/16 JLI SW8260C Methyl t-butyl ether (MTBE) ND 8.3 0.83 ug/Kg 1 11/16/16 JLI SW8260C Methylene chloride ND 4.1 4.1 ug/Kg 1 11/16/16 JLI SW8260C Naphthalene 0.97 J 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C		ND	4.1	0.41		1	11/16/16	JLI	SW8260C
Methyl Ethyl Ketone ND 25 4.1 ug/Kg 1 11/16/16 JLI SW8260C Methyl t-butyl ether (MTBE) ND 8.3 0.83 ug/Kg 1 11/16/16 JLI SW8260C Methylene chloride ND 4.1 4.1 ug/Kg 1 11/16/16 JLI SW8260C Naphthalene 0.97 J 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C		1.4	J 4.1	0.83		1	11/16/16	JLI	
Methyl t-butyl ether (MTBE) ND 8.3 0.83 ug/Kg 1 11/16/16 JLI SW8260C Methylene chloride ND 4.1 4.1 ug/Kg 1 11/16/16 JLI SW8260C Naphthalene 0.97 J 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C									
Methylene chloride ND 4.1 4.1 ug/Kg 1 11/16/16 JLI SW8260C Naphthalene 0.97 J 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C	-								
Naphthalene 0.97 J 4.1 0.83 ug/Kg 1 11/16/16 JLI SW8260C									
•	-		J 4.1			1			
II-Dutylbelizerie ND 4.1 0.41 ug/kg 1 11/16/16 JLI 5W8260C	n-Butylbenzene	ND	4.1	0.41	ug/Kg	1	11/16/16	JLI	SW8260C

Client ID: SOIL DUPLICATE 3

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
n-Propylbenzene	ND	4.1	0.83	ug/Kg	1	11/16/16	JLI	SW8260C
o-Xylene	ND	4.1	0.83	ug/Kg	1	11/16/16	JLI	SW8260C
p-Isopropyltoluene	ND	4.1	0.41	ug/Kg	1	11/16/16	JLI	SW8260C
sec-Butylbenzene	ND	4.1	0.41	ug/Kg	1	11/16/16	JLI	SW8260C
Styrene	ND	4.1	0.41	ug/Kg	1	11/16/16	JLI	SW8260C
tert-Butylbenzene	ND	4.1	0.41	ug/Kg	1	11/16/16	JLI	SW8260C
Tetrachloroethene	ND	4.1	0.83	ug/Kg	1	11/16/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	8.3	2.1	ug/Kg	1	11/16/16	JLI	SW8260C 1
Toluene	ND	4.1	0.41	ug/Kg	1	11/16/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	4.1	0.41	ug/Kg	1	11/16/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	4.1	0.41	ug/Kg	1	11/16/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	8.3	2.1	ug/Kg	1	11/16/16	JLI	SW8260C
Trichloroethene	ND	4.1	0.41	ug/Kg	1	11/16/16	JLI	SW8260C
Trichlorofluoromethane	ND	4.1	0.83	ug/Kg	1	11/16/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	4.1	0.41	ug/Kg	1	11/16/16	JLI	SW8260C
Vinyl chloride	ND	4.1	0.41	ug/Kg	1	11/16/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	103			%	1	11/16/16	JLI	70 - 130 %
% Bromofluorobenzene	87			%	1	11/16/16	JLI	70 - 130 %
% Dibromofluoromethane	96			%	1	11/16/16	JLI	70 - 130 %
% Toluene-d8	100			%	1	11/16/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	62	33	ug/kg	1	11/16/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	103			%	1	11/16/16	JLI	70 - 130 %
% Bromofluorobenzene	87			%	1	11/16/16	JLI	70 - 130 %
% Toluene-d8	100			%	1	11/16/16	JLI	70 - 130 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	17	0.83	ug/Kg	1	11/16/16	JLI	SW8260C
Acrolein	ND	17	2.1	ug/Kg	1	11/16/16	JLI	SW8260C
Acrylonitrile	ND	17	0.41	ug/Kg	1	11/16/16	JLI	SW8260C
Tert-butyl alcohol	ND	83	17	ug/Kg	1	11/16/16	JLI	SW8260C
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	250	130	ug/Kg	1	11/16/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	250	110	ug/Kg	1	11/16/16	DD	SW8270D
1,2-Dichlorobenzene	ND	250	100	ug/Kg	1	11/16/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	250	120	ug/Kg	1	11/16/16	DD	SW8270D
1,3-Dichlorobenzene	ND	250	110	ug/Kg	1	11/16/16	DD	SW8270D
1,4-Dichlorobenzene	ND	250	110	ug/Kg	1	11/16/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	250	200	ug/Kg	1	11/16/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	180	110	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dichlorophenol	ND	180	130	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dimethylphenol	ND	250	89	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dinitrophenol	ND	250	250	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dinitrotoluene	ND	180	140	ug/Kg	1	11/16/16	DD	SW8270D
2,6-Dinitrotoluene	ND	180	110	ug/Kg	1	11/16/16	DD	SW8270D
2-Chloronaphthalene	ND	250	100	ug/Kg	1	11/16/16	DD	SW8270D

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
2-Chlorophenol	ND	250	100	ug/Kg	1	11/16/16	DD	SW8270D
2-Methylnaphthalene	ND	250	110	ug/Kg	1	11/16/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	250	170	ug/Kg	1	11/16/16	DD	SW8270D
2-Nitroaniline	ND	250	250	ug/Kg	1	11/16/16	DD	SW8270D
2-Nitrophenol	ND	250	230	ug/Kg	1	11/16/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	250	140	ug/Kg	1	11/16/16	DD	SW8270D 1
3,3'-Dichlorobenzidine	ND	180	170	ug/Kg	1	11/16/16	DD	SW8270D
3-Nitroaniline	ND	360	720	ug/Kg	1	11/16/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	210	72	ug/Kg	1	11/16/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	250	110	ug/Kg	1	11/16/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	250	130	ug/Kg	1	11/16/16	DD	SW8270D
4-Chloroaniline	ND	290	170	ug/Kg	1	11/16/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	250	120	ug/Kg	1	11/16/16	DD	SW8270D
4-Nitroaniline	ND	360	120	ug/Kg	1	11/16/16	DD	SW8270D
4-Nitrophenol	ND	360	160	ug/Kg	1	11/16/16	DD	SW8270D
Acenaphthene	ND	250	110	ug/Kg	1	11/16/16	DD	SW8270D
Acenaphthylene	ND	250	100	ug/Kg	1	11/16/16	DD	SW8270D
Acetophenone	ND	250	110	ug/Kg	1	11/16/16	DD	SW8270D
Aniline	ND	290	290	ug/Kg	1	11/16/16	DD	SW8270D
Anthracene	210	J 250	120	ug/Kg	1	11/16/16	DD	SW8270D
Benz(a)anthracene	980	250	120	ug/Kg	1	11/16/16	DD	SW8270D
Benzidine	ND	360	210	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(a)pyrene	930	180	120	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(b)fluoranthene	730	250	120	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(ghi)perylene	590	250	120	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(k)fluoranthene	730	250	120	ug/Kg	1	11/16/16	DD	SW8270D
Benzoic acid	ND	1800	720	ug/Kg	1	11/16/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	250	92	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	250	99	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	180	97	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	250	99	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	250	100	ug/Kg	1	11/16/16	DD	SW8270D
Carbazole	ND	180	140	ug/Kg	1	11/16/16	DD	SW8270D
Chrysene	1100	250	120	ug/Kg	1	11/16/16	DD	SW8270D
Dibenz(a,h)anthracene	140	J 180	120	ug/Kg	1	11/16/16	DD	SW8270D
Dibenzofuran	ND	250	100	ug/Kg	1	11/16/16	DD	SW8270D
Diethyl phthalate	ND	250	110	ug/Kg	1	11/16/16	DD	SW8270D
Dimethylphthalate	ND	250	110	ug/Kg	1	11/16/16	DD	SW8270D
Di-n-butylphthalate	ND	250	95	ug/Kg	1	11/16/16	DD	SW8270D
Di-n-octylphthalate	ND	250	92	ug/Kg	1	11/16/16	DD	SW8270D
Fluoranthene	1900	250	120	ug/Kg	1	11/16/16	DD	SW8270D
Fluorene	ND	250	120	ug/Kg	1	11/16/16	DD	SW8270D
Hexachlorobenzene	ND	180	100	ug/Kg	1	11/16/16	DD	SW8270D
Hexachlorobutadiene	ND	250	130	ug/Kg	1	11/16/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	250	110	ug/Kg	1	11/16/16	DD	SW8270D
Hexachloroethane	ND	180	110	ug/Kg	1	11/16/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	610	250	120	ug/Kg	1	11/16/16	DD	SW8270D
Isophorone	ND	180	100	ug/Kg	1	11/16/16	DD	SW8270D
Naphthalene	ND	250	100	ug/Kg	1	11/16/16	DD	SW8270D

Client ID: SOIL DUPLICATE 3

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Nitrobenzene	ND	180	130	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodimethylamine	ND	250	100	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	180	120	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	250	140	ug/Kg	1	11/16/16	DD	SW8270D
Pentachloronitrobenzene	ND	250	130	ug/Kg	1	11/16/16	DD	SW8270D
Pentachlorophenol	ND	210	140	ug/Kg	1	11/16/16	DD	SW8270D
Phenanthrene	1000	250	100	ug/Kg	1	11/16/16	DD	SW8270D
Phenol	ND	250	110	ug/Kg	1	11/16/16	DD	SW8270D
Pyrene	1900	250	120	ug/Kg	1	11/16/16	DD	SW8270D
Pyridine	ND	250	88	ug/Kg	1	11/16/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	88			%	1	11/16/16	DD	30 - 130 %
% 2-Fluorobiphenyl	69			%	1	11/16/16	DD	30 - 130 %
% 2-Fluorophenol	42			%	1	11/16/16	DD	30 - 130 %
% Nitrobenzene-d5	76			%	1	11/16/16	DD	30 - 130 %
% Phenol-d5	55			%	1	11/16/16	DD	30 - 130 %
% Terphenyl-d14	64			%	1	11/16/16	DD	30 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

Pesticide Comment:

Due to a matrix interference and/or the presence of a large amount of non-target material in the sample, an elevated RL was reported for the affected compounds.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 22, 2016

Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 22, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOIL Collected by: TG 11/14/16

Location Code: EBC Received by: SW 11/15/16 17:12

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV83365

Phoenix ID: BV83381

Project ID: 1181 FLUSHING AVE BROOKLYN NY

Client ID: SOIL DUPLICATE 4

Darameter	Dooult	RL/	LOD/	Lloito	Dilution	Data/Time	D.	Deference
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.37	0.37	mg/Kg	1	11/16/16	TH	SW6010C
Aluminum	6770	37	7.4	mg/Kg	10	11/16/16	TH	SW6010C
Arsenic	1.33	0.74	0.74	mg/Kg	1	11/16/16	TH	SW6010C
Barium	40.3	0.7	0.37	mg/Kg	1	11/16/16	TH	SW6010C
Beryllium	0.28	B 0.30	0.15	mg/Kg	1	11/16/16	TH	SW6010C
Calcium	1090	37	34	mg/Kg	10	11/16/16	TH	SW6010C
Cadmium	ND	0.37	0.37	mg/Kg	1	11/16/16	TH	SW6010C
Cobalt	7.22	0.37	0.37	mg/Kg	1	11/16/16	TH	SW6010C
Chromium	16.7	0.37	0.37	mg/Kg	1	11/16/16	TH	SW6010C
Copper	11.6	0.37	0.37	mg/kg	1	11/16/16	TH	SW6010C
Iron	15000	37	37	mg/Kg	10	11/16/16	TH	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	11/16/16	RS	SW7471B
Potassium	1410	7	2.9	mg/Kg	1	11/16/16	LK	SW6010C
Magnesium	2640	3.7	3.7	mg/Kg	1	11/16/16	LK	SW6010C
Manganese	337	3.7	3.7	mg/Kg	10	11/16/16	TH	SW6010C
Sodium	303	7	3.2	mg/Kg	1	11/16/16	LK	SW6010C
Nickel	13.2	0.37	0.37	mg/Kg	1	11/16/16	TH	SW6010C
Lead	2.8	0.7	0.37	mg/Kg	1	11/16/16	TH	SW6010C
Antimony	ND	1.9	1.9	mg/Kg	1	11/16/16	TH	SW6010C
Selenium	ND	1.5	1.3	mg/Kg	1	11/16/16	TH	SW6010C
Thallium	ND	1.5	1.5	mg/Kg	1	11/16/16	TH	SW6010C
Vanadium	25.1	0.37	0.37	mg/Kg	1	11/16/16	TH	SW6010C
Zinc	30.3	0.7	0.37	mg/Kg	1	11/16/16	TH	SW6010C
Percent Solid	81			%		11/15/16	W	SW846-%Solid
Soil Extraction for PCB	Completed					11/15/16	CC/V	SW3545A
Soil Extraction for Pest	Completed					11/15/16	CC/V	SW3545A
Soil Extraction for SVOA	Completed					11/15/16	JJ/CKV	SW3545A
Mercury Digestion	Completed					11/16/16	W/W	SW7471B

Client ID: SOIL DUPLICATE 4

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Total Metals Digest	Completed					11/15/16	X/AG	SW3050B
Field Extraction	Completed					11/14/16		SW5035A
Polychlorinated Biphen	yls							
PCB-1016	ND	82	82	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1221	ND	82	82	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1232	ND	82	82	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1242	ND	82	82	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1248	ND	82	82	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1254	ND	82	82	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1260	ND	82	82	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1262	ND	82	82	ug/Kg	2	11/17/16	AW	SW8082A
PCB-1268	ND	82	82	ug/Kg	2	11/17/16	AW	SW8082A
QA/QC Surrogates								
% DCBP	72			%	2	11/17/16	AW	30 - 150 %
% TCMX	67			%	2	11/17/16	AW	30 - 150 %
Pesticides - Soil								
	ND	2.4	2.4	a/l/.a	2	44/47/46	CE	SW8081B
4,4' -DDD	ND ND	2.4 2.4	2.4 2.4	ug/Kg	2 2	11/17/16 11/17/16	CE CE	SW8081B
4,4' -DDE	ND	2.4	2.4	ug/Kg		11/17/16	CE	SW8081B
4,4' -DDT				ug/Kg	2			
a-BHC	ND	8.2	8.2	ug/Kg	2	11/17/16	CE	SW8081B
a-Chlordane	ND	4.1	4.1	ug/Kg	2	11/17/16	CE	SW8081B
Aldrin	ND	4.1	4.1	ug/Kg	2	11/17/16	CE	SW8081B
b-BHC	ND	8.2	8.2	ug/Kg	2	11/17/16	CE	SW8081B
Chlordane	ND	41	41	ug/Kg	2	11/17/16	CE	SW8081B
d-BHC	ND	8.2	8.2	ug/Kg	2	11/17/16	CE	SW8081B
Dieldrin	ND	4.1	4.1	ug/Kg	2	11/17/16	CE	SW8081B
Endosulfan I	ND	8.2	8.2	ug/Kg	2	11/17/16	CE	SW8081B
Endosulfan II	ND	8.2	8.2	ug/Kg	2	11/17/16	CE	SW8081B
Endosulfan sulfate	ND	8.2	8.2	ug/Kg	2	11/17/16	CE	SW8081B
Endrin	ND	8.2	8.2	ug/Kg	2	11/17/16	CE	SW8081B
Endrin aldehyde	ND	8.2	8.2	ug/Kg	2	11/17/16	CE	SW8081B
Endrin ketone	ND	8.2	8.2	ug/Kg	2	11/17/16	CE	SW8081B
g-BHC	ND	1.6	1.6	ug/Kg	2	11/17/16	CE	SW8081B
g-Chlordane	ND	4.1	4.1	ug/Kg	2	11/17/16 11/17/16	CE	SW8081B
Heptachlor	ND	8.2	8.2	ug/Kg	2		CE	SW8081B SW8081B
Heptachlor epoxide	ND	8.2	8.2	ug/Kg	2	11/17/16	CE	SW8081B
Methoxychlor	ND	41	41	ug/Kg	2	11/17/16	CE	
Toxaphene	ND	160	160	ug/Kg	2	11/17/16	CE	SW8081B
QA/QC Surrogates	74			0/	2	44/47/46	CE	40 440 0/
% DCBP	74 52			% %	2	11/17/16	CE	40 - 140 %
% TCMX	53			%	2	11/17/16	CE	40 - 140 %
Volatiles	ND	260	5 0	ua/V~	E 0	11/16/16	JI 1	SMeacoc
1,1,1,2-Tetrachloroethane	ND	260	52 36	ug/Kg	50 50	11/16/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	260	26	ug/Kg	50 50	11/16/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	260	52	ug/Kg	50	11/16/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	260	52	ug/Kg	50	11/16/16	JLI	SW8260C
1,1-Dichloroethane	ND	260	52	ug/Kg	50	11/16/16	JLI	SW8260C

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1,1-Dichloroethene	ND	260	26	ug/Kg	50	11/16/16	JLI	SW8260C
1,1-Dichloropropene	ND	260	26	ug/Kg	50	11/16/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	260	52	ug/Kg	50	11/16/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	260	26	ug/Kg	50	11/16/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	260	52	ug/Kg	50	11/16/16	JLI	SW8260C
1,2,4-Trimethylbenzene	17000	3600	520	ug/Kg	1000	11/16/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	260	52	ug/Kg	50	11/16/16	JLI	SW8260C
1,2-Dibromoethane	ND	260	26	ug/Kg	50	11/16/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	260	26	ug/Kg	50	11/16/16	JLI	SW8260C
1,2-Dichloroethane	ND	26	26	ug/Kg	50	11/16/16	JLI	SW8260C
1,2-Dichloropropane	ND	260	52	ug/Kg	50	11/16/16	JLI	SW8260C
1,3,5-Trimethylbenzene	5200	260	26	ug/Kg	50	11/16/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	260	26	ug/Kg	50	11/16/16	JLI	SW8260C
1,3-Dichloropropane	ND	260	52	ug/Kg	50	11/16/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	260	26	ug/Kg	50	11/16/16	JLI	SW8260C
2,2-Dichloropropane	ND	260	26	ug/Kg	50	11/16/16	JLI	SW8260C
2-Chlorotoluene	ND	260	52	ug/Kg	50	11/16/16	JLI	SW8260C
2-Hexanone	ND	1300	260	ug/Kg	50	11/16/16	JLI	SW8260C
2-Isopropyltoluene	100	J 260	26	ug/Kg	50	11/16/16	JLI	SW8260C 1
4-Chlorotoluene	ND	260	26	ug/Kg	50	11/16/16	JLI	SW8260C
4-Methyl-2-pentanone	ND	1300	260	ug/Kg	50	11/16/16	JLI	SW8260C
Acetone	400	S 260	260	ug/Kg	50	11/16/16	JLI	SW8260C
Acrylonitrile	ND	520	52	ug/Kg	50	11/16/16	JLI	SW8260C
Benzene	ND	60	26	ug/Kg	50	11/16/16	JLI	SW8260C
Bromobenzene	ND	260	26	ug/Kg	50	11/16/16	JLI	SW8260C
Bromochloromethane	ND	260	26	ug/Kg	50	11/16/16	JLI	SW8260C
Bromodichloromethane	ND	260	52	ug/Kg	50	11/16/16	JLI	SW8260C
Bromoform	ND	260	52	ug/Kg	50	11/16/16	JLI	SW8260C
Bromomethane	ND	260	100	ug/Kg	50	11/16/16	JLI	SW8260C
Carbon Disulfide	ND	260	52	ug/Kg	50	11/16/16	JLI	SW8260C
Carbon tetrachloride	ND	260	52	ug/Kg	50	11/16/16	JLI	SW8260C
Chlorobenzene	ND	260	26	ug/Kg	50	11/16/16	JLI	SW8260C
Chloroethane	ND	260	26	ug/Kg	50	11/16/16	JLI	SW8260C
Chloroform	ND	260	26	ug/Kg	50	11/16/16	JLI	SW8260C
Chloromethane	ND	260	52	ug/Kg	50	11/16/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	250	26	ug/Kg	50	11/16/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	260	26	ug/Kg	50	11/16/16	JLI	SW8260C
Dibromochloromethane	ND	260	52	ug/Kg	50	11/16/16	JLI	SW8260C
Dibromomethane	ND	260	52	ug/Kg	50	11/16/16	JLI	SW8260C
Dichlorodifluoromethane	ND	260	26	ug/Kg	50	11/16/16	JLI	SW8260C
Ethylbenzene	3200	260	26	ug/Kg	50	11/16/16	JLI	SW8260C
Hexachlorobutadiene	ND	260	26	ug/Kg	50	11/16/16	JLI	SW8260C
Isopropylbenzene	1600	260	26	ug/Kg	50	11/16/16	JLI	SW8260C
m&p-Xylene	2500	260	52	ug/Kg	50	11/16/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	260	260	ug/Kg	50	11/16/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	520	52	ug/Kg	50	11/16/16	JLI	SW8260C
Methylene chloride	ND	260	260	ug/Kg	50	11/16/16	JLI	SW8260C
Naphthalene	3000	260	52	ug/Kg	50	11/16/16	JLI	SW8260C
n-Butylbenzene	1700	260	26	ug/Kg	50	11/16/16	JLI	SW8260C

Client ID: SOIL DUPLICATE 4

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
n-Propylbenzene	6100	3900	1000	ug/Kg	1000	11/16/16	JLI	SW8260C
o-Xylene	ND	260	52	ug/Kg	50	11/16/16	JLI	SW8260C
p-Isopropyltoluene	510	260	26	ug/Kg	50	11/16/16	JLI	SW8260C
sec-Butylbenzene	800	260	26	ug/Kg	50	11/16/16	JLI	SW8260C
Styrene	ND	260	26	ug/Kg	50	11/16/16	JLI	SW8260C
tert-Butylbenzene	51	J 260	26	ug/Kg	50	11/16/16	JLI	SW8260C
Tetrachloroethene	ND	260	52	ug/Kg	50	11/16/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	520	130	ug/Kg	50	11/16/16	JLI	SW8260C 1
Toluene	ND	260	26	ug/Kg	50	11/16/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	190	26	ug/Kg	50	11/16/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	260	26	ug/Kg	50	11/16/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	520	130	ug/Kg	50	11/16/16	JLI	SW8260C
Trichloroethene	ND	260	26	ug/Kg	50	11/16/16	JLI	SW8260C
Trichlorofluoromethane	ND	260	52	ug/Kg	50	11/16/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	260	26	ug/Kg	50	11/16/16	JLI	SW8260C
Vinyl chloride	ND	26	26	ug/Kg	50	11/16/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	98			%	50	11/16/16	JLI	70 - 130 %
% Bromofluorobenzene	105			%	50	11/16/16	JLI	70 - 130 %
% Dibromofluoromethane	94			%	50	11/16/16	JLI	70 - 130 %
% Toluene-d8	99			%	50	11/16/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	2100	2100	ug/kg	50	11/16/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	98			%	50	11/16/16	JLI	70 - 130 %
% Bromofluorobenzene	105			%	50	11/16/16	JLI	70 - 130 %
% Toluene-d8	99			%	50	11/16/16	JLI	70 - 130 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	1000	52	ug/Kg	50	11/16/16	JLI	SW8260C
Acrolein	ND	1000	130	ug/Kg	50	11/16/16	JLI	SW8260C
Acrylonitrile	ND	1000	26	ug/Kg	50	11/16/16	JLI	SW8260C
Tert-butyl alcohol	ND	5200	1000	ug/Kg	50	11/16/16	JLI	SW8260C
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	280	140	ug/Kg	1	11/16/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	280	120	ug/Kg	1	11/16/16	DD	SW8270D
1,2-Dichlorobenzene	ND	280	110	ug/Kg	1	11/16/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	280	130	ug/Kg	1	11/16/16	DD	SW8270D
1,3-Dichlorobenzene	ND	280	120	ug/Kg	1	11/16/16	DD	SW8270D
1,4-Dichlorobenzene	ND	280	120	ug/Kg	1	11/16/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	280	220	ug/Kg	1	11/16/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	200	130	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dichlorophenol	ND	200	140	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dimethylphenol	ND	280	100	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dinitrophenol	ND	280	280	ug/Kg	1	11/16/16	DD	SW8270D
2,4-Dinitrotoluene	ND	200	160	ug/Kg	1	11/16/16	DD	SW8270D
2,6-Dinitrotoluene	ND	200	130	ug/Kg	1	11/16/16	DD	SW8270D
2-Chloronaphthalene	ND	280	110	ug/Kg	1	11/16/16	DD	SW8270D

Client ID: SOIL DUPLICATE 4

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
2-Chlorophenol	ND	280	110	ug/Kg	1	11/16/16	DD	SW8270D
2-Methylnaphthalene	1100	280	120	ug/Kg	1	11/16/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	280	190	ug/Kg	1	11/16/16	DD	SW8270D
2-Nitroaniline	ND	280	280	ug/Kg	1	11/16/16	DD	SW8270D
2-Nitrophenol	ND	280	260	ug/Kg	1	11/16/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	280	160	ug/Kg	1	11/16/16	DD	SW8270D 1
3,3'-Dichlorobenzidine	ND	200	190	ug/Kg	1	11/16/16	DD	SW8270D
3-Nitroaniline	ND	400	810	ug/Kg	1	11/16/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	240	81	ug/Kg	1	11/16/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	280	120	ug/Kg	1	11/16/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	280	140	ug/Kg	1	11/16/16	DD	SW8270D
4-Chloroaniline	ND	320	190	ug/Kg	1	11/16/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	280	140	ug/Kg	1	11/16/16	DD	SW8270D
4-Nitroaniline	ND	400	130	ug/Kg	1	11/16/16	DD	SW8270D
4-Nitrophenol	ND	400	180	ug/Kg	1	11/16/16	DD	SW8270D
Acenaphthene	ND	280	120	ug/Kg	1	11/16/16	DD	SW8270D
Acenaphthylene	ND	280	110	ug/Kg	1	11/16/16	DD	SW8270D
Acetophenone	ND	280	130	ug/Kg	1	11/16/16	DD	SW8270D
Aniline	ND	320	320	ug/Kg	1	11/16/16	DD	SW8270D
Anthracene	ND	280	130	ug/Kg	1	11/16/16	DD	SW8270D
Benz(a)anthracene	ND	280	140	ug/Kg	1	11/16/16	DD	SW8270D
Benzidine	ND	400	240	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(a)pyrene	ND	200	130	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(b)fluoranthene	ND	280	140	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(ghi)perylene	ND	280	130	ug/Kg	1	11/16/16	DD	SW8270D
Benzo(k)fluoranthene	ND	280	130	ug/Kg	1	11/16/16	DD	SW8270D
Benzoic acid	ND	2000	810	ug/Kg	1	11/16/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	280	100	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	280	110	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	200	110	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	280	110	ug/Kg	1	11/16/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	280	120	ug/Kg	1	11/16/16	DD	SW8270D
Carbazole	ND	200	160	ug/Kg	1	11/16/16	DD	SW8270D
Chrysene	ND	280	140	ug/Kg	1	11/16/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	200	130	ug/Kg	1	11/16/16	DD	SW8270D
Dibenzofuran	ND	280	120	ug/Kg	1	11/16/16	DD	SW8270D
Diethyl phthalate	ND	280	130	ug/Kg	1	11/16/16	DD	SW8270D
Dimethylphthalate	ND	280	130	ug/Kg	1	11/16/16	DD	SW8270D
Di-n-butylphthalate	ND	280	110	ug/Kg	1	11/16/16	DD	SW8270D
Di-n-octylphthalate	ND	280	100	ug/Kg	1	11/16/16	DD	SW8270D
Fluoranthene	ND	280	130	ug/Kg	1	11/16/16	DD	SW8270D
Fluorene	ND	280	130	ug/Kg	1	11/16/16	DD	SW8270D
Hexachlorobenzene	ND	200	120	ug/Kg	1	11/16/16	DD	SW8270D
Hexachlorobutadiene	ND	280	150	ug/Kg	1	11/16/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	280	120	ug/Kg	1	11/16/16	DD	SW8270D
Hexachloroethane	ND	200	120	ug/Kg	1	11/16/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	280	130	ug/Kg	1	11/16/16	DD	SW8270D
Isophorone	ND	200	110	ug/Kg	1	11/16/16	DD	SW8270D
Naphthalene	1900	280	120	ug/Kg	1	11/16/16	DD	SW8270D

Client ID: SOIL DUPLICATE 4

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Nitrobenzene	ND	200	140	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodimethylamine	ND	280	110	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	200	130	ug/Kg	1	11/16/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	280	150	ug/Kg	1	11/16/16	DD	SW8270D
Pentachloronitrobenzene	ND	280	150	ug/Kg	1	11/16/16	DD	SW8270D
Pentachlorophenol	ND	240	150	ug/Kg	1	11/16/16	DD	SW8270D
Phenanthrene	ND	280	120	ug/Kg	1	11/16/16	DD	SW8270D
Phenol	ND	280	130	ug/Kg	1	11/16/16	DD	SW8270D
Pyrene	ND	280	140	ug/Kg	1	11/16/16	DD	SW8270D
Pyridine	ND	280	99	ug/Kg	1	11/16/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	71			%	1	11/16/16	DD	30 - 130 %
% 2-Fluorobiphenyl	54			%	1	11/16/16	DD	30 - 130 %
% 2-Fluorophenol	40			%	1	11/16/16	DD	30 - 130 %
% Nitrobenzene-d5	53			%	1	11/16/16	DD	30 - 130 %
% Phenol-d5	44			%	1	11/16/16	DD	30 - 130 %
% Terphenyl-d14	64			%	1	11/16/16	DD	30 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

Volatile Comment:

Elevated reporting limits for volatiles due to the presence of target and/or non-target compounds.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 22, 2016

Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG ID: GBV83365 Phoenix ID: BV83382

Analysis Report

November 22, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOIL Collected by: TG 11/14/16

Location Code: EBC Received by: SW 11/15/16 17:12

Rush Request: 72 Hour Analyzed by: see "By" below

1181 FLUSHING AVE BROOKLYN NY

Laboratory Data

Client ID: TRIP BLANK HL

P.O.#:

Project ID:

RL/ LOD/

Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference	
Field Extraction	Completed					11/14/16		SW5035A	,
<u>Volatiles</u>									
1,1,1,2-Tetrachloroethane	ND	250	50	ug/Kg	50	11/15/16	JLI	SW8260C	
1,1,1-Trichloroethane	ND	250	25	ug/Kg	50	11/15/16	JLI	SW8260C	
1,1,2,2-Tetrachloroethane	ND	250	50	ug/Kg	50	11/15/16	JLI	SW8260C	
1,1,2-Trichloroethane	ND	250	50	ug/Kg	50	11/15/16	JLI	SW8260C	
1,1-Dichloroethane	ND	250	50	ug/Kg	50	11/15/16	JLI	SW8260C	
1,1-Dichloroethene	ND	250	25	ug/Kg	50	11/15/16	JLI	SW8260C	
1,1-Dichloropropene	ND	250	25	ug/Kg	50	11/15/16	JLI	SW8260C	
1,2,3-Trichlorobenzene	ND	250	50	ug/Kg	50	11/15/16	JLI	SW8260C	
1,2,3-Trichloropropane	ND	250	25	ug/Kg	50	11/15/16	JLI	SW8260C	
1,2,4-Trichlorobenzene	ND	250	50	ug/Kg	50	11/15/16	JLI	SW8260C	
1,2,4-Trimethylbenzene	ND	250	25	ug/Kg	50	11/15/16	JLI	SW8260C	
1,2-Dibromo-3-chloropropane	ND	250	50	ug/Kg	50	11/15/16	JLI	SW8260C	
1,2-Dibromoethane	ND	250	25	ug/Kg	50	11/15/16	JLI	SW8260C	
1,2-Dichlorobenzene	ND	250	25	ug/Kg	50	11/15/16	JLI	SW8260C	
1,2-Dichloroethane	ND	25	25	ug/Kg	50	11/15/16	JLI	SW8260C	
1,2-Dichloropropane	ND	250	50	ug/Kg	50	11/15/16	JLI	SW8260C	
1,3,5-Trimethylbenzene	ND	250	25	ug/Kg	50	11/15/16	JLI	SW8260C	
1,3-Dichlorobenzene	ND	250	25	ug/Kg	50	11/15/16	JLI	SW8260C	
1,3-Dichloropropane	ND	250	50	ug/Kg	50	11/15/16	JLI	SW8260C	
1,4-Dichlorobenzene	ND	250	25	ug/Kg	50	11/15/16	JLI	SW8260C	
2,2-Dichloropropane	ND	250	25	ug/Kg	50	11/15/16	JLI	SW8260C	
2-Chlorotoluene	ND	250	50	ug/Kg	50	11/15/16	JLI	SW8260C	
2-Hexanone	ND	1300	250	ug/Kg	50	11/15/16	JLI	SW8260C	
2-Isopropyltoluene	ND	250	25	ug/Kg	50	11/15/16	JLI	SW8260C 1	
4-Chlorotoluene	ND	250	25	ug/Kg	50	11/15/16	JLI	SW8260C	

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
4-Methyl-2-pentanone	ND	1300	250	ug/Kg	50	11/15/16	JLI	SW8260C
Acetone	ND	250	250	ug/Kg	50	11/15/16	JLI	SW8260C
Acrylonitrile	ND	500	50	ug/Kg	50	11/15/16	JLI	SW8260C
Benzene	ND	60	25	ug/Kg	50	11/15/16	JLI	SW8260C
Bromobenzene	ND	250	25	ug/Kg	50	11/15/16	JLI	SW8260C
Bromochloromethane	ND	250	25	ug/Kg	50	11/15/16	JLI	SW8260C
Bromodichloromethane	ND	250	50	ug/Kg	50	11/15/16	JLI	SW8260C
Bromoform	ND	250	50	ug/Kg	50	11/15/16	JLI	SW8260C
Bromomethane	ND	250	100	ug/Kg	50	11/15/16	JLI	SW8260C
Carbon Disulfide	ND	250	50	ug/Kg	50	11/15/16	JLI	SW8260C
Carbon tetrachloride	ND	250	50	ug/Kg	50	11/15/16	JLI	SW8260C
Chlorobenzene	ND	250	25	ug/Kg	50	11/15/16	JLI	SW8260C
Chloroethane	ND	250	25	ug/Kg	50	11/15/16	JLI	SW8260C
Chloroform	ND	250	25	ug/Kg	50	11/15/16	JLI	SW8260C
Chloromethane	ND	250	50	ug/Kg	50	11/15/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	250	25	ug/Kg	50	11/15/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	250	25	ug/Kg	50	11/15/16	JLI	SW8260C
Dibromochloromethane	ND	250	50	ug/Kg	50	11/15/16	JLI	SW8260C
Dibromomethane	ND	250	50	ug/Kg	50	11/15/16	JLI	SW8260C
Dichlorodifluoromethane	ND	250	25	ug/Kg	50	11/15/16	JLI	SW8260C
Ethylbenzene	ND	250	25	ug/Kg	50	11/15/16	JLI	SW8260C
Hexachlorobutadiene	ND	250	25	ug/Kg	50	11/15/16	JLI	SW8260C
Isopropylbenzene	ND	250	25	ug/Kg	50	11/15/16	JLI	SW8260C
m&p-Xylene	ND	250	50	ug/Kg	50	11/15/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	250	250	ug/Kg	50	11/15/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	500	50	ug/Kg	50	11/15/16	JLI	SW8260C
Methylene chloride	ND	250	250	ug/Kg	50	11/15/16	JLI	SW8260C
Naphthalene	ND	250	50	ug/Kg	50	11/15/16	JLI	SW8260C
n-Butylbenzene	ND	250	25	ug/Kg	50	11/15/16	JLI	SW8260C
n-Propylbenzene	ND	250	50	ug/Kg	50	11/15/16	JLI	SW8260C
o-Xylene	ND	250	50	ug/Kg	50	11/15/16	JLI	SW8260C
p-Isopropyltoluene	ND	250	25	ug/Kg	50	11/15/16	JLI	SW8260C
sec-Butylbenzene	ND	250	25	ug/Kg	50	11/15/16	JLI	SW8260C
Styrene	ND	250	25	ug/Kg	50	11/15/16	JLI	SW8260C
tert-Butylbenzene	ND	250	25	ug/Kg	50	11/15/16	JLI	SW8260C
Tetrachloroethene	ND	250	50	ug/Kg	50	11/15/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	500	130	ug/Kg	50	11/15/16	JLI	SW8260C 1
Toluene	ND	250	25	ug/Kg	50	11/15/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	190	25	ug/Kg	50	11/15/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	250	25	ug/Kg	50	11/15/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	500	130	ug/Kg	50	11/15/16	JLI	SW8260C
Trichloroethene	ND	250	25	ug/Kg	50	11/15/16	JLI	SW8260C
Trichlorofluoromethane	ND	250	50	ug/Kg	50	11/15/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	250	25	ug/Kg	50	11/15/16	JLI	SW8260C
Vinyl chloride	ND	25	25 25	ug/Kg	50	11/15/16	JLI	SW8260C
=	ND	20	20	agritg	30	11/10/10	ULI	21102000
QA/QC Surrogates % 1,2-dichlorobenzene-d4	98			%	50	11/15/16	JLI	70 - 130 %
% 1,2-dictilorobenzene-d4 % Bromofluorobenzene	100			%	50	11/15/16	JLI	70 - 130 % 70 - 130 %
% Dibromofluoromethane	93			%	50	11/15/16	JLI	70 - 130 % 70 - 130 %
70 DIDIOINGIQUIOINEUIANE	33			70	30	11/10/10	JLI	10 - 100 /0

Client ID: TRIP BLANK HL

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	99			%	50	11/15/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	2000	2000	ug/kg	50	11/15/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	98			%	50	11/15/16	JLI	70 - 130 %
% Bromofluorobenzene	100			%	50	11/15/16	JLI	70 - 130 %
% Toluene-d8	99			%	50	11/15/16	JLI	70 - 130 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	1000	50	ug/Kg	50	11/15/16	JLI	SW8260C
Acrolein	ND	1000	130	ug/Kg	50	11/15/16	JLI	SW8260C
Acrylonitrile	ND	1000	25	ug/Kg	50	11/15/16	JLI	SW8260C
Tert-butyl alcohol	ND	5000	1000	ug/Kg	50	11/15/16	JLI	SW8260C

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TRIP BLANK INCLUDED.

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 22, 2016

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 22, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:TG11/14/16Location Code:EBCReceived by:SW11/15/1617:12

Rush Request: 72 Hour Analyzed by: see "By" below

ND

5.0

0.50

ug/Kg

1

11/15/16

RL/

LOD/

P.O.#:

Laboratory Data SDG ID: GBV83365

Phoenix ID: BV83383

Project ID: 1181 FLUSHING AVE BROOKLYN NY

Client ID: TRIP BLANK LL

Parameter Result **PQL** MDL Units Dilution Date/Time Βy Reference Field Extraction Completed 11/14/16 SW5035A Volatiles ND 5.0 11/15/16 SW8260C 1,1,1,2-Tetrachloroethane 1.0 ug/Kg 1 JLI 1.1.1-Trichloroethane ND 5.0 0.50 ug/Kg 1 11/15/16 JLI SW8260C ND SW8260C 1,1,2,2-Tetrachloroethane 5.0 1.0 ug/Kg 1 11/15/16 JH SW8260C 1,1,2-Trichloroethane ND 5.0 1.0 ug/Kg 1 11/15/16 JLI ND 5.0 SW8260C 1,1-Dichloroethane 1.0 ug/Kg 1 11/15/16 JLI SW8260C ND 5.0 0.50 ug/Kg 1 11/15/16 JLI 1,1-Dichloroethene ND 5.0 11/15/16 SW8260C 1,1-Dichloropropene 0.50 ug/Kg 1 1,2,3-Trichlorobenzene ND 5.0 1.0 ug/Kg 1 11/15/16 JLI SW8260C 1,2,3-Trichloropropane ND 5.0 0.50 ug/Kg 1 11/15/16 JH SW8260C SW8260C 1,2,4-Trichlorobenzene ND 5.0 JLI 1.0 ug/Kg 1 11/15/16 ND 5.0 1 11/15/16 SW8260C 1,2,4-Trimethylbenzene 0.50 ug/Kg JLI ND 5.0 1.0 ug/Kg 1 11/15/16 JLI SW8260C 1,2-Dibromo-3-chloropropane ND 5.0 11/15/16 SW8260C 1,2-Dibromoethane 0.50 ug/Kg 1 ND 5.0 0.50 ug/Kg 1 11/15/16 SW8260C 1,2-Dichlorobenzene SW8260C ND 5.0 11/15/16 JLI 0.50 ug/Kg 1 1,2-Dichloroethane ND 5.0 1 11/15/16 JLI SW8260C 1,2-Dichloropropane 1.0 ug/Kg ND 5.0 11/15/16 JH SW8260C 1,3,5-Trimethylbenzene 0.50 ug/Kg 1 ND 5.0 0.50 ug/Kg 1 11/15/16 JLI SW8260C 1,3-Dichlorobenzene ND 5.0 1.0 ug/Kg 1 11/15/16 SW8260C 1,3-Dichloropropane ND 5.0 0.50 ug/Kg 1 11/15/16 JLI SW8260C 1,4-Dichlorobenzene ND 5.0 1 11/15/16 JLI SW8260C 2,2-Dichloropropane 0.50 ug/Kg ND 5.0 1 11/15/16 JLI SW8260C 1.0 ug/Kg 2-Chlorotoluene ND 25 1 11/15/16 SW8260C 5.0 ug/Kg JH 2-Hexanone ND 5.0 0.50 ug/Kg 1 11/15/16 JLI SW8260C 2-Isopropyltoluene

4-Chlorotoluene

SW8260C

JLI

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
4-Methyl-2-pentanone	ND	25	5.0	ug/Kg	1	11/15/16	JLI	SW8260C
Acetone	6.3	JS 25	5.0	ug/Kg	1	11/15/16	JLI	SW8260C
Acrylonitrile	ND	10	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
Benzene	ND	5.0	0.50	ug/Kg	1	11/15/16	JLI	SW8260C
Bromobenzene	ND	5.0	0.50	ug/Kg	1	11/15/16	JLI	SW8260C
Bromochloromethane	ND	5.0	0.50	ug/Kg	1	11/15/16	JLI	SW8260C
Bromodichloromethane	ND	5.0	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
Bromoform	ND	5.0	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
Bromomethane	ND	5.0	2.0	ug/Kg	1	11/15/16	JLI	SW8260C
Carbon Disulfide	ND	5.0	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
Carbon tetrachloride	ND	5.0	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
Chlorobenzene	ND	5.0	0.50	ug/Kg	1	11/15/16	JLI	SW8260C
Chloroethane	ND	5.0	0.50	ug/Kg	1	11/15/16	JLI	SW8260C
Chloroform	ND	5.0	0.50	ug/Kg	1	11/15/16	JLI	SW8260C
Chloromethane	ND	5.0	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	5.0	0.50	ug/Kg	1	11/15/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.0	0.50	ug/Kg	1	11/15/16	JLI	SW8260C
Dibromochloromethane	ND	5.0	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
Dibromomethane	ND	5.0	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
Dichlorodifluoromethane	ND	5.0	0.50	ug/Kg	1	11/15/16	JLI	SW8260C
Ethylbenzene	0.71	J 5.0	0.50	ug/Kg	1	11/15/16	JLI	SW8260C
Hexachlorobutadiene	ND	5.0	0.50	ug/Kg	1	11/15/16	JLI	SW8260C
Isopropylbenzene	ND	5.0	0.50	ug/Kg	1	11/15/16	JLI	SW8260C
m&p-Xylene	1.6	J 5.0	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	30	5.0	ug/Kg	1	11/15/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	10	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
Methylene chloride	ND	5.0	5.0	ug/Kg	1	11/15/16	JLI	SW8260C
Naphthalene	ND	5.0	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
n-Butylbenzene	ND	5.0	0.50	ug/Kg	1	11/15/16	JLI	SW8260C
n-Propylbenzene	ND	5.0	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
o-Xylene	ND	5.0	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
p-Isopropyltoluene	ND	5.0	0.50	ug/Kg	1	11/15/16	JLI	SW8260C
sec-Butylbenzene	ND	5.0	0.50	ug/Kg	1	11/15/16	JLI	SW8260C
Styrene	ND	5.0	0.50	ug/Kg	1	11/15/16	JLI	SW8260C
tert-Butylbenzene	ND	5.0	0.50	ug/Kg	1	11/15/16	JLI	SW8260C
Tetrachloroethene	ND	5.0	1.0	ug/Kg ug/Kg	1	11/15/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	10	2.5	ug/Kg ug/Kg	1	11/15/16	JLI	SW8260C
Toluene	ND	5.0	0.50	ug/Kg ug/Kg	1	11/15/16	JLI	SW8260C
	ND	5.0	0.50	ug/Kg ug/Kg	1	11/15/16		SW8260C
trans-1,2-Dichloroethene	ND ND	5.0	0.50			11/15/16	JLI JLI	SW8260C
trans-1,3-Dichloropropene				ug/Kg	1			
trans-1,4-dichloro-2-butene	ND	10	2.5	ug/Kg	1	11/15/16	JLI	SW8260C
Trichloroethene	ND	5.0	0.50	ug/Kg	1	11/15/16	JLI	SW8260C
Trichlorofluoromethane	ND	5.0	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.0	0.50	ug/Kg	1	11/15/16	JLI	SW8260C
Vinyl chloride	ND	5.0	0.50	ug/Kg	1	11/15/16	JLI	SW8260C
QA/QC Surrogates				0,		44/45/40		70 400.01
% 1,2-dichlorobenzene-d4	99			%	1	11/15/16	JLI 	70 - 130 %
% Bromofluorobenzene	97			%	1	11/15/16	JLI 	70 - 130 %
% Dibromofluoromethane	95			%	1	11/15/16	JLI	70 - 130 %

Client ID: TRIP BLANK LL

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	101			%	1	11/15/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	75	40	ug/kg	1	11/15/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	99			%	1	11/15/16	JLI	70 - 130 %
% Bromofluorobenzene	97			%	1	11/15/16	JLI	70 - 130 %
% Toluene-d8	101			%	1	11/15/16	JLI	70 - 130 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	20	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
Acrolein	ND	20	2.5	ug/Kg	1	11/15/16	JLI	SW8260C
Acrylonitrile	ND	20	0.50	ug/Kg	1	11/15/16	JLI	SW8260C
Tert-butyl alcohol	ND	100	20	ug/Kg	1	11/15/16	JLI	SW8260C

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TRIP BLANK INCLUDED.

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 22, 2016

Reviewed and Released by: Ethan Lee, Project Manager

Criteria: NY: 375, 375GWP, 375RRS, 375RS

Sample Criteria Exceedances Report GBV83365 - EBC

State.	IN T						RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BV83365	\$8270SMRDP	Indeno(1,2,3-cd)pyrene	NY / 375-6.8 Semivolatiles / Residential	600	250	500	500	ug/Kg
BV83365	\$8270SMRDP	Indeno(1,2,3-cd)pyrene	NY / 375-6.8 Semivolatiles / Residential Restricted	600	250	500	500	ug/Kg
BV83365	\$8270SMRDP	Indeno(1,2,3-cd)pyrene	NY / 375-6.8 Semivolatiles / Unrestricted Use Soil	600	250	500	500	ug/Kg
BV83365	\$PESTSMDPR	4,4' -DDT	NY / 375-6.8 PCBs/Pesticides / Unrestricted Use Soil	7.7	2.2	3.3	3.3	ug/Kg
BV83365	CU-SM	Copper	NY / 375-6.8 Metals / Unrestricted Use Soil	80.5	0.36	50	50	mg/kg
BV83365	HG-SM	Mercury	NY / 375-6.8 Metals / Ground Water Protection	1.57	0.03	0.73	0.73	mg/Kg
BV83365	HG-SM	Mercury	NY / 375-6.8 Metals / Residential	1.57	0.03	0.81	0.81	mg/Kg
BV83365	HG-SM	Mercury	NY / 375-6.8 Metals / Residential Restricted	1.57	0.03	0.81	0.81	mg/Kg
BV83365	HG-SM	Mercury	NY / 375-6.8 Metals / Unrestricted Use Soil	1.57	0.03	0.18	0.18	mg/Kg
BV83365	PB-SMDP	Lead	NY / 375-6.8 Metals / Unrestricted Use Soil	237	7.2	63	63	mg/Kg
BV83365	ZN-SMDP	Zinc	NY / 375-6.8 Metals / Unrestricted Use Soil	165	7.2	109	109	mg/Kg
BV83367	\$8260MADPR	trans-1,2-Dichloroethene	NY / 375-6.8 Volatiles / Ground Water Protection	ND	780	190	190	ug/Kg
BV83367	\$8260MADPR	Acetone	NY / 375-6.8 Volatiles / Ground Water Protection	ND	7800	50	50	ug/Kg
BV83367	\$8260MADPR	Methylene chloride	NY / 375-6.8 Volatiles / Ground Water Protection	ND	7800	50	50	ug/Kg
BV83367	\$8260MADPR	Ethylbenzene	NY / 375-6.8 Volatiles / Ground Water Protection	190000	1000	1000	1000	ug/Kg
BV83367	\$8260MADPR	n-Butylbenzene	NY / 375-6.8 Volatiles / Ground Water Protection	70000	16000	12000	12000	ug/Kg
BV83367	\$8260MADPR	cis-1,2-Dichloroethene	NY / 375-6.8 Volatiles / Ground Water Protection	ND	780	250	250	ug/Kg
BV83367	\$8260MADPR	n-Propylbenzene	NY / 375-6.8 Volatiles / Ground Water Protection	140000	3900	3900	3900	ug/Kg
BV83367	\$8260MADPR	Chloroform	NY / 375-6.8 Volatiles / Ground Water Protection	ND	780	370	370	ug/Kg
BV83367	\$8260MADPR	Carbon tetrachloride	NY / 375-6.8 Volatiles / Ground Water Protection	ND	1600	760	760	ug/Kg
BV83367	\$8260MADPR	Benzene	NY / 375-6.8 Volatiles / Ground Water Protection	ND	780	60	60	ug/Kg
BV83367	\$8260MADPR	Tetrachloroethene	NY / 375-6.8 Volatiles / Ground Water Protection	22000	1600	1300	1300	ug/Kg
BV83367	\$8260MADPR	Methyl t-butyl ether (MTBE)	NY / 375-6.8 Volatiles / Ground Water Protection	ND	1600	930	930	ug/Kg
BV83367	\$8260MADPR	1,1,1-Trichloroethane	NY / 375-6.8 Volatiles / Ground Water Protection	ND	780	680	680	ug/Kg
BV83367	\$8260MADPR	1,1-Dichloroethane	NY / 375-6.8 Volatiles / Ground Water Protection	ND	1600	270	270	ug/Kg
BV83367	\$8260MADPR	Methyl Ethyl Ketone	NY / 375-6.8 Volatiles / Ground Water Protection	ND	7800	120	120	ug/Kg
BV83367	\$8260MADPR	1,2-Dichloroethane	NY / 375-6.8 Volatiles / Ground Water Protection	ND	780	20	20	ug/Kg
BV83367	\$8260MADPR	sec-Butylbenzene	NY / 375-6.8 Volatiles / Ground Water Protection	23000	16000	11000	11000	ug/Kg
BV83367	\$8260MADPR	Trichloroethene	NY / 375-6.8 Volatiles / Ground Water Protection	ND	780	470	470	ug/Kg
BV83367	\$8260MADPR	1,3,5-Trimethylbenzene	NY / 375-6.8 Volatiles / Ground Water Protection	320000	16000	8400	8400	ug/Kg
BV83367	\$8260MADPR	1,1-Dichloroethene	NY / 375-6.8 Volatiles / Ground Water Protection	ND	780	330	330	ug/Kg
BV83367	\$8260MADPR	Toluene	NY / 375-6.8 Volatiles / Ground Water Protection	20000	16000	700	700	ug/Kg
BV83367	\$8260MADPR	1,2,4-Trimethylbenzene	NY / 375-6.8 Volatiles / Ground Water Protection	910000	16000	3600	3600	ug/Kg
BV83367	\$8260MADPR	Vinyl chloride	NY / 375-6.8 Volatiles / Ground Water Protection	ND	780	20	20	ug/Kg
BV83367	\$8260MADPR	Carbon tetrachloride	NY / 375-6.8 Volatiles / Residential	ND	1600	1400	1400	ug/Kg
BV83367	\$8260MADPR	Ethylbenzene	NY / 375-6.8 Volatiles / Residential	190000	1000	30000	30000	ug/Kg
BV83367	\$8260MADPR	Vinyl chloride	NY / 375-6.8 Volatiles / Residential	ND	780	210	210	ug/Kg
BV83367	\$8260MADPR	n-Propylbenzene	NY / 375-6.8 Volatiles / Residential	140000	3900	100000	100000	ug/Kg
BV83367	\$8260MADPR	Tetrachloroethene	NY / 375-6.8 Volatiles / Residential	22000	1600	5500	5500	ug/Kg
BV83367	\$8260MADPR	1,3,5-Trimethylbenzene	NY / 375-6.8 Volatiles / Residential	320000	16000	47000	47000	ug/Kg
BV83367	\$8260MADPR	1,2,4-Trimethylbenzene	NY / 375-6.8 Volatiles / Residential	910000	16000	47000	47000	ug/Kg

Criteria: NY: 375, 375GWP, 375RRS, 375RS

Sample Criteria Exceedances Report GBV83365 - EBC

State.							RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BV83367	\$8260MADPR	n-Propylbenzene	NY / 375-6.8 Volatiles / Residential Restricted	140000	3900	100000	100000	ug/Kg
BV83367	\$8260MADPR	Tetrachloroethene	NY / 375-6.8 Volatiles / Residential Restricted	22000	1600	19000	19000	ug/Kg
BV83367	\$8260MADPR	1,2,4-Trimethylbenzene	NY / 375-6.8 Volatiles / Residential Restricted	910000	16000	52000	52000	ug/Kg
BV83367	\$8260MADPR	Ethylbenzene	NY / 375-6.8 Volatiles / Residential Restricted	190000	1000	41000	41000	ug/Kg
BV83367	\$8260MADPR	1,3,5-Trimethylbenzene	NY / 375-6.8 Volatiles / Residential Restricted	320000	16000	52000	52000	ug/Kg
BV83367	\$8260MADPR	n-Propylbenzene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	140000	3900	3900	3900	ug/Kg
BV83367	\$8260MADPR	Methyl Ethyl Ketone	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	7800	120	120	ug/Kg
BV83367	\$8260MADPR	Vinyl chloride	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	780	20	20	ug/Kg
BV83367	\$8260MADPR	1,1-Dichloroethane	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	1600	270	270	ug/Kg
BV83367	\$8260MADPR	1,1-Dichloroethene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	780	330	330	ug/Kg
BV83367	\$8260MADPR	Trichloroethene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	780	470	470	ug/Kg
BV83367	\$8260MADPR	1,2,4-Trimethylbenzene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	910000	16000	3600	3600	ug/Kg
BV83367	\$8260MADPR	Toluene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	20000	16000	700	700	ug/Kg
BV83367	\$8260MADPR	1,2-Dichloroethane	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	780	20	20	ug/Kg
BV83367	\$8260MADPR	Tetrachloroethene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	22000	1600	1300	1300	ug/Kg
BV83367	\$8260MADPR	1,3,5-Trimethylbenzene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	320000	16000	8400	8400	ug/Kg
BV83367	\$8260MADPR	sec-Butylbenzene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	23000	16000	11000	11000	ug/Kg
BV83367	\$8260MADPR	Ethylbenzene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	190000	1000	1000	1000	ug/Kg
BV83367	\$8260MADPR	Benzene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	780	60	60	ug/Kg
BV83367	\$8260MADPR	1,1,1-Trichloroethane	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	780	680	680	ug/Kg
BV83367	\$8260MADPR	Methyl t-butyl ether (MTBE)	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	1600	930	930	ug/Kg
BV83367	\$8260MADPR	Carbon tetrachloride	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	1600	760	760	ug/Kg
BV83367	\$8260MADPR	Chloroform	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	780	370	370	ug/Kg
BV83367	\$8260MADPR	n-Butylbenzene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	70000	16000	12000	12000	ug/Kg
BV83367	\$8260MADPR	cis-1,2-Dichloroethene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	780	250	250	ug/Kg
BV83367	\$8260MADPR	Methylene chloride	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	7800	50	50	ug/Kg
BV83367	\$8260MADPR	Acetone	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	7800	50	50	ug/Kg
BV83367	\$8260MADPR	trans-1,2-Dichloroethene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	780	190	190	ug/Kg
BV83367	\$8270SMRDP	2-Methylphenol (o-cresol)	NY / 375-6.8 Semivolatiles / Ground Water Protection	ND	1900	330	330	ug/Kg
BV83367	\$8270SMRDP	Naphthalene	NY / 375-6.8 Semivolatiles / Ground Water Protection	17000	2900	12000	12000	ug/Kg
BV83367	\$8270SMRDP	Pentachlorophenol	NY / 375-6.8 Semivolatiles / Ground Water Protection	ND	1500	800	800	ug/Kg
BV83367	\$8270SMRDP	Chrysene	NY / 375-6.8 Semivolatiles / Ground Water Protection	ND	1400	1000	1000	ug/Kg
BV83367	\$8270SMRDP	Phenol	NY / 375-6.8 Semivolatiles / Ground Water Protection	ND	1300	330	330	ug/Kg
BV83367	\$8270SMRDP	Benz(a)anthracene	NY / 375-6.8 Semivolatiles / Ground Water Protection	ND	1400	1000	1000	ug/Kg
BV83367	\$8270SMRDP	Benz(a)anthracene	NY / 375-6.8 Semivolatiles / Residential	ND	1400	1000	1000	ug/Kg
BV83367	\$8270SMRDP	Benzo(a)pyrene	NY / 375-6.8 Semivolatiles / Residential	ND	1300	1000	1000	ug/Kg
BV83367	\$8270SMRDP	Indeno(1,2,3-cd)pyrene	NY / 375-6.8 Semivolatiles / Residential	ND	1400	500	500	ug/Kg
BV83367	\$8270SMRDP	Benzo(b)fluoranthene	NY / 375-6.8 Semivolatiles / Residential	ND	1400	1000	1000	ug/Kg
BV83367	\$8270SMRDP	Dibenz(a,h)anthracene	NY / 375-6.8 Semivolatiles / Residential	ND	1300	330	330	ug/Kg
BV83367	\$8270SMRDP	Benzo(k)fluoranthene	NY / 375-6.8 Semivolatiles / Residential	ND	1400	1000	1000	ug/Kg
BV83367	\$8270SMRDP	Chrysene	NY / 375-6.8 Semivolatiles / Residential	ND	1400	1000	1000	ug/Kg
BV83367	\$8270SMRDP	Indeno(1,2,3-cd)pyrene	NY / 375-6.8 Semivolatiles / Residential Restricted	ND	1400	500	500	ug/Kg

Criteria: NY: 375, 375GWP, 375RRS, 375RS

Sample Criteria Exceedances Report GBV83365 - EBC

State:	NY		CB 700000 EB0				RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BV83367	\$8270SMRDP	Dibenz(a,h)anthracene	NY / 375-6.8 Semivolatiles / Residential Restricted	ND	1300	330	330	ug/Kg
BV83367	\$8270SMRDP	Benzo(b)fluoranthene	NY / 375-6.8 Semivolatiles / Residential Restricted	ND	1400	1000	1000	ug/Kg
BV83367	\$8270SMRDP	Benzo(a)pyrene	NY / 375-6.8 Semivolatiles / Residential Restricted	ND	1300	1000	1000	ug/Kg
BV83367	\$8270SMRDP	Benz(a)anthracene	NY / 375-6.8 Semivolatiles / Residential Restricted	ND	1400	1000	1000	ug/Kg
BV83367	\$8270SMRDP	2-Methylphenol (o-cresol)	NY / 375-6.8 Semivolatiles / Unrestricted Use Soil	ND	1900	330	330	ug/Kg
BV83367	\$8270SMRDP	Phenol	NY / 375-6.8 Semivolatiles / Unrestricted Use Soil	ND	1300	330	330	ug/Kg
BV83367	\$8270SMRDP	Benz(a)anthracene	NY / 375-6.8 Semivolatiles / Unrestricted Use Soil	ND	1400	1000	1000	ug/Kg
BV83367	\$8270SMRDP	Pentachlorophenol	NY / 375-6.8 Semivolatiles / Unrestricted Use Soil	ND	1500	800	800	ug/Kg
BV83367	\$8270SMRDP	Benzo(k)fluoranthene	NY / 375-6.8 Semivolatiles / Unrestricted Use Soil	ND	1400	800	800	ug/Kg
BV83367	\$8270SMRDP	Naphthalene	NY / 375-6.8 Semivolatiles / Unrestricted Use Soil	17000	2900	12000	12000	ug/Kg
BV83367	\$8270SMRDP	Indeno(1,2,3-cd)pyrene	NY / 375-6.8 Semivolatiles / Unrestricted Use Soil	ND	1400	500	500	ug/Kg
BV83367	\$8270SMRDP	Benzo(a)pyrene	NY / 375-6.8 Semivolatiles / Unrestricted Use Soil	ND	1300	1000	1000	ug/Kg
BV83367	\$8270SMRDP	Dibenz(a,h)anthracene	NY / 375-6.8 Semivolatiles / Unrestricted Use Soil	ND	1300	330	330	ug/Kg
BV83367	\$8270SMRDP	Benzo(b)fluoranthene	NY / 375-6.8 Semivolatiles / Unrestricted Use Soil	ND	1400	1000	1000	ug/Kg
BV83367	\$8270SMRDP	Chrysene	NY / 375-6.8 Semivolatiles / Unrestricted Use Soil	ND	1400	1000	1000	ug/Kg
BV83367	\$DIOX_SMR	1,4-dioxane	NY / 375-6.8 Volatiles / Ground Water Protection	ND	63000	100	100	ug/kg
BV83367	\$DIOX_SMR	1,4-dioxane	NY / 375-6.8 Volatiles / Residential	ND	63000	9800	9800	ug/kg
BV83367	\$DIOX_SMR	1,4-dioxane	NY / 375-6.8 Volatiles / Residential Restricted	ND	63000	13000	13000	ug/kg
BV83367	\$DIOX_SMR	1,4-dioxane	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	63000	100	100	ug/kg
BV83370	\$8260MADPR	Benzene	NY / 375-6.8 Volatiles / Ground Water Protection	100	60	60	60	ug/Kg
BV83370	\$8260MADPR	Benzene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	100	60	60	60	ug/Kg
BV83373	\$8260MADPR	1,2,4-Trimethylbenzene	NY / 375-6.8 Volatiles / Ground Water Protection	65000	3600	3600	3600	ug/Kg
BV83373	\$8260MADPR	Acetone	NY / 375-6.8 Volatiles / Ground Water Protection	ND	360	50	50	ug/Kg
BV83373	\$8260MADPR	1,2-Dichloroethane	NY / 375-6.8 Volatiles / Ground Water Protection	ND	36	20	20	ug/Kg
BV83373	\$8260MADPR	Vinyl chloride	NY / 375-6.8 Volatiles / Ground Water Protection	ND	36	20	20	ug/Kg
BV83373	\$8260MADPR	Benzene	NY / 375-6.8 Volatiles / Ground Water Protection	90	60	60	60	ug/Kg
BV83373	\$8260MADPR	n-Propylbenzene	NY / 375-6.8 Volatiles / Ground Water Protection	16000	3900	3900	3900	ug/Kg
BV83373	\$8260MADPR	Ethylbenzene	NY / 375-6.8 Volatiles / Ground Water Protection	14000	1400	1000	1000	ug/Kg
BV83373	\$8260MADPR	Methyl Ethyl Ketone	NY / 375-6.8 Volatiles / Ground Water Protection	ND	360	120	120	ug/Kg
BV83373	\$8260MADPR	Methylene chloride	NY / 375-6.8 Volatiles / Ground Water Protection	ND	360	50	50	ug/Kg
BV83373	\$8260MADPR	1,2,4-Trimethylbenzene	NY / 375-6.8 Volatiles / Residential	65000	3600	47000	47000	ug/Kg
BV83373	\$8260MADPR	1,2,4-Trimethylbenzene	NY / 375-6.8 Volatiles / Residential Restricted	65000	3600	52000	52000	ug/Kg
BV83373	\$8260MADPR	Acetone	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	360	50	50	ug/Kg
BV83373	\$8260MADPR	n-Propylbenzene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	16000	3900	3900	3900	ug/Kg
BV83373	\$8260MADPR	Methylene chloride	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	360	50	50	ug/Kg
BV83373	\$8260MADPR	Ethylbenzene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	14000	1400	1000	1000	ug/Kg
BV83373	\$8260MADPR	1,2,4-Trimethylbenzene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	65000	3600	3600	3600	ug/Kg
BV83373	\$8260MADPR	Benzene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	90	60	60	60	ug/Kg
BV83373	\$8260MADPR	1,2-Dichloroethane	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	36	20	20	ug/Kg
BV83373	\$8260MADPR	Methyl Ethyl Ketone	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	360	120	120	ug/Kg

Criteria: NY: 375, 375GWP, 375RRS, 375RS

Sample Criteria Exceedances Report GBV83365 - EBC

State.	INY						RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BV83373	\$8260MADPR	Vinyl chloride	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	36	20	20	ug/Kg
BV83373	\$DIOX_SMR	1,4-dioxane	NY / 375-6.8 Volatiles / Ground Water Protection	ND	2800	100	100	ug/kg
BV83373	\$DIOX_SMR	1,4-dioxane	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	2800	100	100	ug/kg
BV83373	CR-SM	Chromium	NY / 375-6.8 Metals / Unrestricted Use Soil	33.3	0.40	30		mg/Kg
BV83375	\$8260MADPR	1,2-Dichloroethane	NY / 375-6.8 Volatiles / Ground Water Protection	ND	41	20	20	ug/Kg
BV83375	\$8260MADPR	Vinyl chloride	NY / 375-6.8 Volatiles / Ground Water Protection	ND	41	20	20	ug/Kg
BV83375	\$8260MADPR	Methylene chloride	NY / 375-6.8 Volatiles / Ground Water Protection	ND	410	50	50	ug/Kg
BV83375	\$8260MADPR	Methyl Ethyl Ketone	NY / 375-6.8 Volatiles / Ground Water Protection	ND	410	120	120	ug/Kg
BV83375	\$8260MADPR	Acetone	NY / 375-6.8 Volatiles / Ground Water Protection	ND	410	50	50	ug/Kg
BV83375	\$8260MADPR	Acetone	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	410	50	50	ug/Kg
BV83375	\$8260MADPR	Methyl Ethyl Ketone	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	410	120	120	ug/Kg
BV83375	\$8260MADPR	Methylene chloride	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	410	50	50	ug/Kg
BV83375	\$8260MADPR	Vinyl chloride	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	41	20	20	ug/Kg
BV83375	\$8260MADPR	1,2-Dichloroethane	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	41	20	20	ug/Kg
BV83375	\$DIOX_SMR	1,4-dioxane	NY / 375-6.8 Volatiles / Ground Water Protection	ND	3300	100	100	ug/kg
BV83375	\$DIOX_SMR	1,4-dioxane	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	3300	100	100	ug/kg
BV83378	\$8260MADPR	Methylene chloride	NY / 375-6.8 Volatiles / Ground Water Protection	ND	360	50	50	ug/Kg
BV83378	\$8260MADPR	Vinyl chloride	NY / 375-6.8 Volatiles / Ground Water Protection	ND	36	20	20	ug/Kg
BV83378	\$8260MADPR	1,2-Dichloroethane	NY / 375-6.8 Volatiles / Ground Water Protection	ND	36	20	20	ug/Kg
BV83378	\$8260MADPR	1,3,5-Trimethylbenzene	NY / 375-6.8 Volatiles / Ground Water Protection	13000	7200	8400	8400	ug/Kg
BV83378	\$8260MADPR	Toluene	NY / 375-6.8 Volatiles / Ground Water Protection	1900	720	700	700	ug/Kg
BV83378	\$8260MADPR	Acetone	NY / 375-6.8 Volatiles / Ground Water Protection	640	360	50	50	ug/Kg
BV83378	\$8260MADPR	Benzene	NY / 375-6.8 Volatiles / Ground Water Protection	800	720	60	60	ug/Kg
BV83378	\$8260MADPR	n-Propylbenzene	NY / 375-6.8 Volatiles / Ground Water Protection	5600	360	3900	3900	ug/Kg
BV83378	\$8260MADPR	Ethylbenzene	NY / 375-6.8 Volatiles / Ground Water Protection	8300	360	1000	1000	ug/Kg
BV83378	\$8260MADPR	1,2,4-Trimethylbenzene	NY / 375-6.8 Volatiles / Ground Water Protection	44000	3600	3600	3600	ug/Kg
BV83378	\$8260MADPR	Methyl Ethyl Ketone	NY / 375-6.8 Volatiles / Ground Water Protection	ND	360	120	120	ug/Kg
BV83378	\$8260MADPR	Vinyl chloride	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	36	20	20	ug/Kg
BV83378	\$8260MADPR	Toluene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	1900	720	700	700	ug/Kg
BV83378	\$8260MADPR	n-Propylbenzene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	5600	360	3900	3900	ug/Kg
BV83378	\$8260MADPR	Ethylbenzene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	8300	360	1000	1000	ug/Kg
BV83378	\$8260MADPR	Benzene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	800	720	60	60	ug/Kg
BV83378	\$8260MADPR	Acetone	NY / 375-6.8 Volatiles / Unrestricted Use Soil	640	360	50	50	ug/Kg
BV83378	\$8260MADPR	1,3,5-Trimethylbenzene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	13000	7200	8400	8400	ug/Kg
BV83378	\$8260MADPR	1,2-Dichloroethane	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	36	20	20	ug/Kg
BV83378	\$8260MADPR	1,2,4-Trimethylbenzene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	44000	3600	3600	3600	ug/Kg
BV83378	\$8260MADPR	Methyl Ethyl Ketone	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	360	120	120	ug/Kg
BV83378	\$8260MADPR	Methylene chloride	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	360	50	50	ug/Kg
BV83378	\$8270SMRDP	Benz(a)anthracene	NY / 375-6.8 Semivolatiles / Ground Water Protection	1500	260	1000	1000	ug/Kg
BV83378	\$8270SMRDP	Chrysene	NY / 375-6.8 Semivolatiles / Ground Water Protection	1600	260	1000	1000	ug/Kg

Criteria: NY: 375, 375GWP, 375RRS, 375RS

Sample Criteria Exceedances Report GBV83365 - EBC

SampNo Acode Phoenix Analyte Criteria Criteria Result RL Criteria Criteria BV83378 \$8270SMRDP Chrysene NY / 375-6.8 Semivolatiles / Residential 1600 260 1000 1000 BV83378 \$8270SMRDP Benzo(a)pyrene NY / 375-6.8 Semivolatiles / Residential 1100 190 1000 1000 BV83378 \$8270SMRDP Benzo(b)fluoranthene NY / 375-6.8 Semivolatiles / Residential 1100 260 1000 1000 BV83378 \$8270SMRDP Benz(a)anthracene NY / 375-6.8 Semivolatiles / Residential 1500 260 1000 1000 BV83378 \$8270SMRDP Indeno(1,2,3-cd)pyrene NY / 375-6.8 Semivolatiles / Residential Restricted 630 260 500 500 BV83378 \$8270SMRDP Benzo(a)pyrene NY / 375-6.8 Semivolatiles / Residential Restricted 630 260 500 500 BV83378 \$8270SMRDP Benzo(a)anthracene NY / 375-6.8 Semivolatiles / Residential Restricted 1100 190 1000 1000	nalysis Units ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
BV83378 \$8270SMRDP Benzo(a)pyrene NY / 375-6.8 Semivolatiles / Residential 1100 190 1000 1000 BV83378 \$8270SMRDP Indeno(1,2,3-cd)pyrene NY / 375-6.8 Semivolatiles / Residential 630 260 500 500 BV83378 \$8270SMRDP Benzo(b)fluoranthene NY / 375-6.8 Semivolatiles / Residential 1100 260 1000 1000 BV83378 \$8270SMRDP Benz(a)anthracene NY / 375-6.8 Semivolatiles / Residential Restricted 630 260 500 500 BV83378 \$8270SMRDP Indeno(1,2,3-cd)pyrene NY / 375-6.8 Semivolatiles / Residential Restricted 630 260 500 500 BV83378 \$8270SMRDP Benzo(a)pyrene NY / 375-6.8 Semivolatiles / Residential Restricted 1100 190 1000 1000 BV83378 \$8270SMRDP Benz(a)anthracene NY / 375-6.8 Semivolatiles / Residential Restricted 1500 260 1000 1000 BV83378 \$8270SMRDP Benzo(b)fluoranthene NY / 375-6.8 Semivolatiles / Residential Restricted 1500 260 1000	ug/Kg ug/Kg ug/Kg ug/Kg
BV83378 \$8270SMRDP Indeno(1,2,3-cd)pyrene NY / 375-6.8 Semivolatiles / Residential 630 260 500 500 BV83378 \$8270SMRDP Benzo(b)fluoranthene NY / 375-6.8 Semivolatiles / Residential 1100 260 1000 1000 BV83378 \$8270SMRDP Benz(a)anthracene NY / 375-6.8 Semivolatiles / Residential 1500 260 1000 1000 BV83378 \$8270SMRDP Indeno(1,2,3-cd)pyrene NY / 375-6.8 Semivolatiles / Residential Restricted 630 260 500 500 BV83378 \$8270SMRDP Benzo(a)pyrene NY / 375-6.8 Semivolatiles / Residential Restricted 1100 190 1000 1000 BV83378 \$8270SMRDP Benz(a)anthracene NY / 375-6.8 Semivolatiles / Residential Restricted 1500 260 1000 1000 BV83378 \$8270SMRDP Benz(a)anthracene NY / 375-6.8 Semivolatiles / Residential Restricted 1500 260 1000 1000 BV83378 \$8270SMRDP Benzo(b)fluoranthene NY / 375-6.8 Semivolatiles / Residential Restricted 1100 260 1000 <td>ug/Kg ug/Kg ug/Kg</td>	ug/Kg ug/Kg ug/Kg
BV83378 \$8270SMRDP Benzo(b)fluoranthene NY / 375-6.8 Semivolatiles / Residential 1100 260 1000 1000 BV83378 \$8270SMRDP Benz(a)anthracene NY / 375-6.8 Semivolatiles / Residential 1500 260 1000 1000 BV83378 \$8270SMRDP Indeno(1,2,3-cd)pyrene NY / 375-6.8 Semivolatiles / Residential Restricted 630 260 500 500 BV83378 \$8270SMRDP Benzo(a)pyrene NY / 375-6.8 Semivolatiles / Residential Restricted 1100 190 1000 1000 BV83378 \$8270SMRDP Benz(a)anthracene NY / 375-6.8 Semivolatiles / Residential Restricted 1500 260 1000 1000 BV83378 \$8270SMRDP Benzo(b)fluoranthene NY / 375-6.8 Semivolatiles / Residential Restricted 1500 260 1000 1000 BV83378 \$8270SMRDP Benzo(b)fluoranthene NY / 375-6.8 Semivolatiles / Residential Restricted 1100 260 1000 1000	ug/Kg ug/Kg
BV83378 \$8270SMRDP Benz(a)anthracene NY / 375-6.8 Semivolatiles / Residential 1500 260 1000 1000 BV83378 \$8270SMRDP Indeno(1,2,3-cd)pyrene NY / 375-6.8 Semivolatiles / Residential Restricted 630 260 500 500 BV83378 \$8270SMRDP Benzo(a)pyrene NY / 375-6.8 Semivolatiles / Residential Restricted 1100 190 1000 1000 BV83378 \$8270SMRDP Benzo(a)anthracene NY / 375-6.8 Semivolatiles / Residential Restricted 1500 260 1000 1000 BV83378 \$8270SMRDP Benzo(b)fluoranthene NY / 375-6.8 Semivolatiles / Residential Restricted 1100 260 1000 1000	ug/Kg
BV83378 \$8270SMRDP Benz(a)anthracene NY / 375-6.8 Semivolatiles / Residential 1500 260 1000 1000 BV83378 \$8270SMRDP Indeno(1,2,3-cd)pyrene NY / 375-6.8 Semivolatiles / Residential Restricted 630 260 500 500 BV83378 \$8270SMRDP Benzo(a)pyrene NY / 375-6.8 Semivolatiles / Residential Restricted 1100 190 1000 1000 BV83378 \$8270SMRDP Benzo(a)anthracene NY / 375-6.8 Semivolatiles / Residential Restricted 1500 260 1000 1000 BV83378 \$8270SMRDP Benzo(b)fluoranthene NY / 375-6.8 Semivolatiles / Residential Restricted 1100 260 1000 1000	ug/Kg
BV83378 \$8270SMRDP Benzo(a)pyrene NY / 375-6.8 Semivolatiles / Residential Restricted 1100 190 1000 1000 BV83378 \$8270SMRDP Benz(a)anthracene NY / 375-6.8 Semivolatiles / Residential Restricted 1500 260 1000 1000 BV83378 \$8270SMRDP Benzo(b)fluoranthene NY / 375-6.8 Semivolatiles / Residential Restricted 1100 260 1000 1000	
BV83378 \$8270SMRDP Benz(a)anthracene NY / 375-6.8 Semivolatiles / Residential Restricted 1500 260 1000 1000 BV83378 \$8270SMRDP Benzo(b)fluoranthene NY / 375-6.8 Semivolatiles / Residential Restricted 1100 260 1000 1000	ug/Kg
BV83378 \$8270SMRDP Benzo(b)fluoranthene	ug/Kg
	ug/Kg
BV83378 \$8270SMRDP Benzo(b)fluoranthene NY / 375-6.8 Semivolatiles / Unrestricted Use Soil 1100 260 1000 1000	ug/Kg
	ug/Kg
BV83378 \$8270SMRDP Benzo(k)fluoranthene NY / 375-6.8 Semivolatiles / Unrestricted Use Soil 900 260 800 800	ug/Kg
BV83378 \$8270SMRDP Benzo(a)pyrene	ug/Kg
BV83378 \$8270SMRDP	ug/Kg
BV83378 \$8270SMRDP Benz(a)anthracene	ug/Kg
BV83378 \$8270SMRDP Indeno(1,2,3-cd)pyrene NY / 375-6.8 Semivolatiles / Unrestricted Use Soil 630 260 500 500	ug/Kg
BV83378 \$DIOX_SMR 1,4-dioxane	ug/kg
BV83378 \$DIOX_SMR 1,4-dioxane	ug/kg
BV83378 CU-SM Copper NY / 375-6.8 Metals / Unrestricted Use Soil 170 3.9 50 50	mg/kg
BV83378 HG-SM Mercury NY / 375-6.8 Metals / Unrestricted Use Soil 0.65 0.03 0.18 0.18	mg/Kg
BV83378 PB-SMDP Lead NY / 375-6.8 Metals / Unrestricted Use Soil 399 7.9 63 63	mg/Kg
BV83378 ZN-SMDP Zinc NY / 375-6.8 Metals / Unrestricted Use Soil 431 7.9 109 109	mg/Kg
BV83379 \$8260MADPR	ug/Kg
BV83379 \$8260MADPR Acetone NY / 375-6.8 Volatiles / Unrestricted Use Soil 53 22 50 50	ug/Kg
BV83380	ug/Kg
BV83380 \$8270SMRDP Chrysene NY / 375-6.8 Semivolatiles / Residential 1100 250 1000 1000	ug/Kg
BV83380 \$8270SMRDP Indeno(1,2,3-cd)pyrene NY / 375-6.8 Semivolatiles / Residential 610 250 500 500	ug/Kg
BV83380 \$8270SMRDP Indeno(1,2,3-cd)pyrene NY / 375-6.8 Semivolatiles / Residential Restricted 610 250 500 500	ug/Kg
BV83380	ug/Kg
BV83380 \$8270SMRDP Indeno(1,2,3-cd)pyrene NY / 375-6.8 Semivolatiles / Unrestricted Use Soil 610 250 500 500	ug/Kg
BV83380	ug/Kg
BV83380	ug/Kg
BV83380 CU-SM Copper NY / 375-6.8 Metals / Unrestricted Use Soil 73.7 0.38 50 50	mg/kg
BV83380 HG-SM Mercury NY / 375-6.8 Metals / Ground Water Protection 1.04 0.03 0.73 0.73	mg/Kg
BV83380 HG-SM Mercury NY / 375-6.8 Metals / Residential 1.04 0.03 0.81 0.81	mg/Kg
BV83380 HG-SM Mercury NY / 375-6.8 Metals / Residential Restricted 1.04 0.03 0.81 0.81	mg/Kg
BV83380 HG-SM Mercury NY / 375-6.8 Metals / Unrestricted Use Soil 1.04 0.03 0.18 0.18	mg/Kg
BV83380 PB-SMDP Lead NY / 375-6.8 Metals / Unrestricted Use Soil 243 7.5 63 63	mg/Kg
BV83380 ZN-SMDP Zinc NY / 375-6.8 Metals / Unrestricted Use Soil 160 7.5 109 109	mg/Kg
BV83381 \$8260MADPR Acetone NY / 375-6.8 Volatiles / Ground Water Protection 400 260 50 50	ug/Kg
BV83381 \$8260MADPR Vinyl chloride NY / 375-6.8 Volatiles / Ground Water Protection ND 26 20 20	ug/Kg

Criteria: NY: 375, 375GWP, 375RRS, 375RS

Sample Criteria Exceedances Report GBV83365 - EBC

State: NY

State:	NY						RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BV83381	\$8260MADPR	n-Propylbenzene	NY / 375-6.8 Volatiles / Ground Water Protection	6100	3900	3900	3900	ug/Kg
BV83381	\$8260MADPR	Methylene chloride	NY / 375-6.8 Volatiles / Ground Water Protection	ND	260	50	50	ug/Kg
BV83381	\$8260MADPR	Methyl Ethyl Ketone	NY / 375-6.8 Volatiles / Ground Water Protection	ND	260	120	120	ug/Kg
BV83381	\$8260MADPR	Ethylbenzene	NY / 375-6.8 Volatiles / Ground Water Protection	3200	260	1000	1000	ug/Kg
BV83381	\$8260MADPR	1,2-Dichloroethane	NY / 375-6.8 Volatiles / Ground Water Protection	ND	26	20	20	ug/Kg
BV83381	\$8260MADPR	1,2,4-Trimethylbenzene	NY / 375-6.8 Volatiles / Ground Water Protection	17000	3600	3600	3600	ug/Kg
BV83381	\$8260MADPR	1,2-Dichloroethane	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	26	20	20	ug/Kg
BV83381	\$8260MADPR	Ethylbenzene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	3200	260	1000	1000	ug/Kg
BV83381	\$8260MADPR	Methyl Ethyl Ketone	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	260	120	120	ug/Kg
BV83381	\$8260MADPR	1,2,4-Trimethylbenzene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	17000	3600	3600	3600	ug/Kg
BV83381	\$8260MADPR	Methylene chloride	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	260	50	50	ug/Kg
BV83381	\$8260MADPR	n-Propylbenzene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	6100	3900	3900	3900	ug/Kg
BV83381	\$8260MADPR	Vinyl chloride	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	26	20	20	ug/Kg
BV83381	\$8260MADPR	Acetone	NY / 375-6.8 Volatiles / Unrestricted Use Soil	400	260	50	50	ug/Kg
BV83381	\$DIOX_SMR	1,4-dioxane	NY / 375-6.8 Volatiles / Ground Water Protection	ND	2100	100	100	ug/kg
BV83381	\$DIOX_SMR	1,4-dioxane	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	2100	100	100	ug/kg

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY Temperature Narration

November 22, 2016

SDG I.D.: GBV83365

The samples in this delivery group were received at 4° C. (Note acceptance criteria is above freezing up to 6° C)

NY/NJ CHAIN OF CUSTODY RECORD S87 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Email: info@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-8726 Cooler: Yes No	to: Environmental Business Consultants This section MUST be consultants Completed with Bottle Quantities.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	000000000000000000000000000000000000000			X &	x	NY 375 GWP NY 375 GWP NY 375 Unrestricted	Cleanup Cinteria GW Criteria	State where samples were collected: State where samples were collected: Output Data Package In NJ Reduced Deliv.* Data NY Enhanced (ASP B)*
Y/NJ CHAIN OF CUSEst Middle Tumpike, P.O. Box Email: info@phoenixlabs.com Client Services (8	Project: Report to: Invoice to:	Analysis Request	20 × × 20 × 20 × 20 × 20 × 20 × 20 × 20	ッ メ 及 ッ ま ×	* x	x	* *	% X X X 4 X	Date: Ti		
MIX Experies, Inc.	Environmental Business Consultants 1808 Middle Country Road Ridge, NY 11961	Sampler's Thom at Callo Information - Identification Signature Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water Waste Water RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Solid W=Wipe OIL=Oil B=Bulk L=Liquid	Customer Sample Sample Date Time Time Matrix Sampled Sampled Sampled	15819 (18-20) S		584 (1) S		1582 (19-14) 5 11-14.16	M Relay:	Pecial Requirements or Regulations: Run MS/MSD on 15819 (0-2)	
PHOE Environmental	Customer: Env Address: 180 Ride	Sampler's The Signature Matrix Code: DW=Drinking Water GW RW=Raw Water SE=Sed OIL=Oil B=Bulk L=Liqui	PHOENIX USE ONLY SAMPLE # 83365		3368	0 -	٦.	51 21.658	Relinquished by:	Comments, Special Requirements or Regulations: RAN MS/MSD ON	

587 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Fax. Email: info@phoenixlabs.com Fax (860) 645-0823 Phone: 63 Inc. Client Services (860) 645-8726 Email: 6	ntry Road Project: IRIFINANA Brookh Projecting Invoice to: Environmental Business Consultants Invoice to: Environmental Business Consultants	-Information - Identification Gallo Date: 11-14-16 Request Nater SW=Surface Water Ww=Waste Water =Sludge S=Soil SD=Soild W=Wipe	ne pied to	(3-15) (3-15)	(10-15) \$	(Duelicated 5 V X X X X X X X X X X X X X X X X X X	blank LL	Date: Time: Turnaround: NJ Res. Criteria II-/5-16 9 15 10 10 10 10 10 10 10	Control of the Contro
Environmental Laboratories,	Customer: Environmental Business Co Address: 1808 Middle Country Road Ridge, NY 11961	Sampler's Signature Matrix Code: DW-Drinking Water GW-Ground Water SW-Su RW-Raw Water SE-Sediment SL-Sludge S-SOIL-Oil B-Bulk L-Liquid	PHOENIX USE ONLY Customer Sample SAMPLE # Identification	17 5810 78 589	3379	So. (Du	22	Relinquished by: M. M	

		*																									
Coolant: IPK N ICE NO	Temp Loc Pg Pof 2	ct Options:	Phone: 631-504-6000	Project P.O:		completed with	Bottle Quantities.			The land of the la											NY Data Format	NY 375 GWP Procenix Std Report	Inrestricted	Use Soil GIS/Key NY375 Residential		Commercial Other Other	
	STODY RECORD	370, Manchester, CT 06040	Fax (860) 645-0823 5 0) 645-8726	1181 Flushing Avenue Brookly	ultants	Environmental Business Consultants						7		ر ا	<u>~</u>	т сб	_ re		7		Turnaround: NJ	1 Day* Res. Criteria		Cleanup Criteria 10 Days GW Criteria		* SURCHARGE APPLIES	State where samples were collected:
	NY/NJ CHAIN OF CUSTODY RECORD	587 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040	Email: info@phoenixlabs.com Fax (860) 64 Client Services (860) 645-8726	Project: 18	Report to: Envi	Invoice to: Envi			Request	N. S.	Time Colon	x	-	X X X	* * * *	× 4 7 ×	X X X	×	×		Date: Time:	11-16-16 9:W	KIEL DIST				
		587	es, Inc.	ess Consultants	Road				- 4 Date: - 4	Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waste Water RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Solid W=Wipe OIL=Oil B=Bulk L=Liquid	Sample Date Tir Matrix Sampled Sam	19-11-11 5 (58-	1 5 7	N	γ)	20	> N						Last re	•	ions:	(A/h-E)) D W
			Environmental Laboratories,	er: Environmental Business Consultants		Ridge, NY 11961		-	Thomas Oallo	Water GW=Ground Water SW- iter SE=Sediment SL=Sludge S 3ulk L=Liquid	ONLY Customer Sample Hontification	6 15BA (32.5-6	7 15810 (10-15	8 1589 (3-5)	0 1589 (10-15	Soil Dwollcate 3	Chinamite	12	J Tripblank LL		by: Accepted by:	Se S			Comments, Special Requirements or Regulations:	Habeled 15 Bg (12-14	okay per Tom (#
		T A	Environ	Customer:	Address:			0.00 C	Signature	Matrix Code: DW=Drinking RW=Raw Wa OIL=Oil B=E	PHOENIX USE ONLY SAMPLE #	8337	8337	8337	8331	83380	8228	8008	8208		Relinquished	1			Comments, St	7) (K

Attn: Mr. Charles B. Sosik, P.G. Environmental Business Consultants 1808 Middle Country Rd Ridge NY 11961-2406

Project ID: 1181 FLUSHING AVENUE BROOKLYN

Sample ID#s: BV82267 - BV82268, BV82270 - BV82272, BV82274 - BV82276

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

Enclosed are revised Analysis Report pages. Please replace and discard the original pages. If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY ANALYTICAL SERVICES PROTOCOL DATA PACKAGE

Client: Environmental Business Consultants
Project: 1181 FLUSHING AVENUE BROOKLYN
Laboratory Project: GBV82267

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

NY Analytical Services Protocol Format

November 29, 2016 SDG I.D.: GBV82267

Environmental Business Consultants 1181 FLUSHING AVENUE BROOKLYN

Methodology Summary

Accelerated Solvent Extraction (ASE)

Soil Sample - USEPA SW-846 Test Methods for Evaluating Solid Waste Physical/Chemical Methods 3rd Ed.Update III, Method 3545A.

Mercury Prep

Soil Sample - USEPA SW-846 Test Methods for Evaluating Solid Waste Physical/Chemical Methods 3rd Ed. Update IV, Method 7471B.

Metals

ICP:

USEPA SW-846 Test Methods for Evaluating Solid Waste Physical/Chemical Methods 3rd Ed. Update IV, Method 6010C.

Mercury:

USEPA SW-846 Test Methods for Evaluating Solid Waste Physical/Chemical Methods Update III, 7471

Pesticides:

USEPA SW-846 Test Methods for Evaluating Solid Waste Physical/Chemical Methods 3rd Ed. Update IV, Method 8081B.

Polychlorinated Biphenyls (PCBs):

USEPA SW-846 Test Methods for Evaluating Solid Waste Physical/Chemical Methods 3rd Ed. Update IV, Method 8082A.

Semivolatile Organic Compounds

USEPA SW-846 Test Methods for Evaluating Solid Waste Physical/Chemical Methods 3rd Ed. Update IV, Method 8270D.

Volatile Organic Compounds:

USEPA SW-846 Test Methods for Evaluating Solid Waste Physical/Chemical Methods 3rd Ed.Update III, Method 8260C and Environmental Protection Agency, EPA-600/4-79-020, Revised March 1983 (Methods 624) as printed in 40CFR part 136.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

NY Analytical Services Protocol Format

November 29, 2016 SDG I.D.: GBV82267

Environmental Business Consultants 1181 FLUSHING AVENUE BROOKLYN

Sample Id Cross Reference

Client Id	Lab Id	Matrix	
15B6 (5-7)	BV82267	SOLID	
15B6 (12-14)	BV82268	SOLID	
15B7 (12-14)	BV82270	SOLID	
15B7 (18-20)	BV82271	SOLID	
15B7 (23-25)	BV82272	SOLID	
SOIL DUPLICATE 2	BV82274	SOLID	
TRIP BLANK HL	BV82275	SOLID	
TRIP BLANK LL	BV82276	SOLID	

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

NY Analytical Services Protocol Format

November 29, 2016 SDG I.D.: GBV82267

Environmental Business Consultants 1181 FLUSHING AVENUE BROOKLYN

Laboratory Chronicle

The samples in this delivery group were received at 4°C.

Sample	Analysis	Collection Date	Prep Date	Analysis Date	Analyst	Hold Time Met
BV82267	1,4-dioxane	11/11/16	11/15/16	11/15/16	JLI	Y
BV82267	Aluminum	11/11/16	11/14/16	11/17/16	LK	Y
BV82267	Antimony	11/11/16	11/14/16	11/15/16	LK	Υ
BV82267	Arsenic	11/11/16	11/14/16	11/15/16	LK	Y
BV82267	Barium	11/11/16	11/14/16	11/15/16	LK	Y
BV82267	Beryllium	11/11/16	11/14/16	11/15/16	LK	Y
BV82267	Cadmium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82267	Calcium	11/11/16	11/14/16	11/15/16	LK	Y
BV82267	Chromium	11/11/16	11/14/16	11/15/16	LK	Y
BV82267	Cobalt	11/11/16	11/14/16	11/15/16	LK	Y
BV82267	Copper	11/11/16	11/14/16	11/15/16	LK	Y
BV82267	Field Extraction	11/11/16	11/11/16	11/11/16		Y
BV82267	Iron	11/11/16	11/14/16	11/15/16	LK	Y
BV82267	Lead	11/11/16	11/14/16	11/15/16	LK	Υ
BV82267	Magnesium	11/11/16	11/14/16	11/15/16	LK	Y
BV82267	Manganese	11/11/16	11/14/16	11/15/16	LK	Υ
BV82267	Mercury	11/11/16	11/15/16	11/15/16	RS	Υ
BV82267	Nickel	11/11/16	11/14/16	11/15/16	LK	Y
BV82267	Percent Solid	11/11/16	11/14/16	11/14/16	W	Y
BV82267	Potassium	11/11/16	11/14/16	11/15/16	LK	Y
BV82267	Selenium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82267	Semivolatiles	11/11/16	11/14/16	11/15/16	DD	Y
BV82267	Silver	11/11/16	11/14/16	11/15/16	LK	Y
BV82267	Sodium	11/11/16	11/14/16	11/15/16	LK	Y
BV82267	Thallium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82267	Vanadium	11/11/16	11/14/16	11/15/16	LK	Y
BV82267	Volatiles	11/11/16	11/15/16	11/15/16	JLI	Y
BV82267	Volatiles	11/11/16	11/15/16	11/15/16	JLI	Y
BV82267	Zinc	11/11/16	11/14/16	11/15/16	LK	Υ
BV82268	1,4-dioxane	11/11/16	11/15/16	11/15/16	JLI	Υ
BV82268	Aluminum	11/11/16	11/14/16	11/15/16	LK	Υ
BV82268	Antimony	11/11/16	11/14/16	11/15/16	LK	Υ

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

NY Analytical Services Protocol Format

November 29, 2016 SDG I.D.: GBV82267

BV82268	Arsenic	11/11/16	11/14/16	11/15/16	LK	Υ
BV82268	Barium	11/11/16	11/14/16	11/15/16	LK	Y
BV82268	Beryllium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82268	Cadmium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82268	Calcium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82268	Chromium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82268	Client MS/MSD	11/11/16	11/15/16	11/15/16		Υ
BV82268	Cobalt	11/11/16	11/14/16	11/15/16	LK	Υ
BV82268	Copper	11/11/16	11/14/16	11/15/16	LK	Υ
BV82268	Field Extraction	11/11/16	11/11/16	11/11/16		Υ
BV82268	Iron	11/11/16	11/14/16	11/15/16	LK	Υ
BV82268	Lead	11/11/16	11/14/16	11/15/16	LK	Υ
BV82268	Magnesium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82268	Manganese	11/11/16	11/14/16	11/15/16	LK	Υ
BV82268	Mercury	11/11/16	11/15/16	11/15/16	RS	Υ
BV82268	Nickel	11/11/16	11/14/16	11/15/16	LK	Υ
BV82268	Percent Solid	11/11/16	11/14/16	11/14/16	W	Υ
BV82268	Pesticides - Soil	11/11/16	11/14/16	11/15/16	CE	Υ
BV82268	Polychlorinated Biphenyls	11/11/16	11/14/16	11/15/16	AW	Υ
BV82268	Potassium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82268	Selenium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82268	Semivolatiles	11/11/16	11/14/16	11/14/16	DD	Υ
BV82268	Silver	11/11/16	11/14/16	11/15/16	LK	Υ
BV82268	Sodium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82268	Thallium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82268	Vanadium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82268	Volatiles	11/11/16	11/15/16	11/15/16	JLI	Υ
BV82268	Volatiles	11/11/16	11/15/16	11/15/16	JLI	Υ
BV82268	Zinc	11/11/16	11/14/16	11/15/16	LK	Υ
BV82269	On Hold	11/11/16				Υ
BV82270	1,4-dioxane	11/11/16	11/15/16	11/15/16	JLI	Υ
BV82270	Aluminum	11/11/16	11/14/16	11/15/16	LK	Υ
BV82270	Antimony	11/11/16	11/14/16	11/15/16	LK	Υ
BV82270	Arsenic	11/11/16	11/14/16	11/15/16	LK	Υ
BV82270	Barium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82270	Beryllium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82270	Cadmium	11/11/16	11/14/16	11/15/16	LK	Υ

NY Analytical Services Protocol Format

November 29, 2016 SDG I.D.: GBV82267

BV82270	Calcium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82270	Chromium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82270	Cobalt	11/11/16	11/14/16	11/15/16	LK	Υ
BV82270	Copper	11/11/16	11/14/16	11/15/16	LK	Υ
BV82270	Field Extraction	11/11/16	11/11/16	11/11/16		Υ
BV82270	Iron	11/11/16	11/14/16	11/15/16	LK	Υ
BV82270	Lead	11/11/16	11/14/16	11/15/16	LK	Υ
BV82270	Magnesium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82270	Manganese	11/11/16	11/14/16	11/15/16	LK	Υ
BV82270	Mercury	11/11/16	11/15/16	11/15/16	RS	Υ
BV82270	Nickel	11/11/16	11/14/16	11/15/16	LK	Υ
BV82270	Percent Solid	11/11/16	11/14/16	11/14/16	W	Υ
BV82270	Pesticides - Soil	11/11/16	11/14/16	11/16/16	CE	Υ
BV82270	Polychlorinated Biphenyls	11/11/16	11/14/16	11/15/16	AW	Υ
BV82270	Potassium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82270	Selenium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82270	Semivolatiles	11/11/16	11/14/16	11/14/16	DD	Υ
BV82270	Silver	11/11/16	11/14/16	11/15/16	LK	Υ
BV82270	Sodium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82270	Thallium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82270	Vanadium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82270	Volatiles	11/11/16	11/15/16	11/15/16	JLI	Υ
BV82270	Volatiles	11/11/16	11/15/16	11/15/16	JLI	Υ
BV82270	Zinc	11/11/16	11/14/16	11/15/16	LK	Υ
BV82271	1,4-dioxane	11/11/16	11/15/16	11/15/16	JLI	Υ
BV82271	Aluminum	11/11/16	11/14/16	11/15/16	LK	Υ
BV82271	Antimony	11/11/16	11/14/16	11/15/16	LK	Υ
BV82271	Arsenic	11/11/16	11/14/16	11/15/16	LK	Υ
BV82271	Barium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82271	Beryllium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82271	Cadmium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82271	Calcium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82271	Chromium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82271	Cobalt	11/11/16	11/14/16	11/15/16	LK	Υ
BV82271	Copper	11/11/16	11/14/16	11/15/16	LK	Υ
BV82271	Field Extraction	11/11/16	11/11/16	11/11/16		Υ
BV82271	Iron	11/11/16	11/14/16	11/15/16	LK	Υ

NY Analytical Services Protocol Format

November 29, 2016 SDG I.D.: GBV82267

BV82271	Lead	11/11/16	11/14/16	11/15/16	LK	Υ
BV82271	Magnesium	11/11/16	11/14/16	11/15/16	LK	Y
BV82271	Manganese	11/11/16	11/14/16	11/15/16	LK	Y
BV82271	Mercury	11/11/16	11/15/16	11/15/16	RS	Y
BV82271	Nickel	11/11/16	11/14/16	11/15/16	LK	Y
BV82271	Percent Solid	11/11/16	11/14/16	11/14/16	W	Y
BV82271	Potassium	11/11/16	11/14/16	11/15/16	LK	Y
BV82271	Selenium	11/11/16	11/14/16	11/15/16	LK	Y
BV82271	Semivolatiles	11/11/16	11/14/16	11/14/16	DD	Y
BV82271	Silver	11/11/16	11/14/16	11/15/16	LK	Y
BV82271	Sodium	11/11/16	11/14/16	11/15/16	LK	Y
BV82271	Thallium	11/11/16	11/14/16	11/15/16	LK	Y
BV82271	Vanadium	11/11/16	11/14/16	11/15/16	LK	Y
BV82271	Volatiles	11/11/16	11/15/16	11/15/16	JLI	Y
BV82271	Volatiles	11/11/16	11/15/16	11/15/16	JLI	Y
BV82271	Zinc	11/11/16	11/14/16	11/15/16	LK	Y
BV82272	1,4-dioxane	11/11/16	11/15/16	11/15/16	JLI	Υ
BV82272	Aluminum	11/11/16	11/14/16	11/15/16	LK	Υ
BV82272	Antimony	11/11/16	11/14/16	11/15/16	LK	Υ
BV82272	Arsenic	11/11/16	11/14/16	11/15/16	LK	Υ
BV82272	Barium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82272	Beryllium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82272	Cadmium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82272	Calcium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82272	Chromium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82272	Cobalt	11/11/16	11/14/16	11/15/16	LK	Υ
BV82272	Copper	11/11/16	11/14/16	11/18/16	LK	Υ
BV82272	Field Extraction	11/11/16	11/11/16	11/11/16		Υ
BV82272	Iron	11/11/16	11/14/16	11/15/16	LK	Υ
BV82272	Lead	11/11/16	11/14/16	11/15/16	LK	Υ
BV82272	Magnesium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82272	Manganese	11/11/16	11/14/16	11/15/16	LK	Υ
BV82272	Mercury	11/11/16	11/15/16	11/15/16	RS	Υ
BV82272	Nickel	11/11/16	11/14/16	11/15/16	LK	Υ
BV82272	Percent Solid	11/11/16	11/14/16	11/14/16	W	Υ
BV82272	Potassium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82272	Selenium	11/11/16	11/14/16	11/15/16	LK	Υ

NY Analytical Services Protocol Format

November 29, 2016 SDG I.D.: GBV82267

BV82272	Semivolatiles	11/11/16	11/14/16	11/14/16	DD	Υ
BV82272	Silver	11/11/16	11/14/16	11/15/16	LK	Υ
BV82272	Sodium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82272	Thallium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82272	Vanadium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82272	Volatiles	11/11/16	11/15/16	11/15/16	JLI	Υ
BV82272	Volatiles	11/11/16	11/15/16	11/15/16	JLI	Υ
BV82272	Zinc	11/11/16	11/14/16	11/15/16	LK	Υ
BV82273	On Hold	11/11/16				Υ
BV82274	1,4-dioxane	11/11/16	11/15/16	11/15/16	JLI	Υ
BV82274	Aluminum	11/11/16	11/14/16	11/15/16	LK	Υ
BV82274	Antimony	11/11/16	11/14/16	11/15/16	LK	Υ
BV82274	Arsenic	11/11/16	11/14/16	11/15/16	LK	Υ
BV82274	Barium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82274	Beryllium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82274	Cadmium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82274	Calcium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82274	Chromium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82274	Cobalt	11/11/16	11/14/16	11/15/16	LK	Υ
BV82274	Copper	11/11/16	11/14/16	11/15/16	LK	Υ
BV82274	Field Extraction	11/11/16	11/11/16	11/11/16		Υ
BV82274	Iron	11/11/16	11/14/16	11/15/16	LK	Υ
BV82274	Lead	11/11/16	11/14/16	11/15/16	LK	Υ
BV82274	Magnesium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82274	Manganese	11/11/16	11/14/16	11/15/16	LK	Υ
BV82274	Mercury	11/11/16	11/15/16	11/15/16	RS	Υ
BV82274	Nickel	11/11/16	11/14/16	11/15/16	LK	Υ
BV82274	Percent Solid	11/11/16	11/14/16	11/14/16	W	Υ
BV82274	Pesticides - Soil	11/11/16	11/14/16	11/16/16	CE	Υ
BV82274	Polychlorinated Biphenyls	11/11/16	11/14/16	11/15/16	AW	Υ
BV82274	Potassium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82274	Selenium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82274	Semivolatiles	11/11/16	11/14/16	11/14/16	DD	Υ
BV82274	Silver	11/11/16	11/14/16	11/15/16	LK	Υ
BV82274	Sodium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82274	Thallium	11/11/16	11/14/16	11/15/16	LK	Υ
BV82274	Vanadium	11/11/16	11/14/16	11/15/16	LK	Υ

NY Analytical Services Protocol Format

November 29, 2016 SDG I.D.: GBV82267

BV82274	Volatiles	11/11/16	11/15/16	11/15/16	JLI	Υ
BV82274	Volatiles	11/11/16	11/15/16	11/15/16	JLI	Y
BV82274	Zinc	11/11/16	11/14/16	11/15/16	LK	Y
BV82275	1,4-dioxane	11/11/16	11/14/16	11/14/16	JLI	Y
BV82275	Field Extraction	11/11/16	11/11/16	11/11/16		Y
BV82275	Volatiles	11/11/16	11/14/16	11/14/16	JLI	Y
BV82275	Volatiles	11/11/16	11/14/16	11/14/16	JLI	Y
BV82276	1,4-dioxane	11/11/16	11/14/16	11/14/16	JLI	Y
BV82276	Field Extraction	11/11/16	11/11/16	11/11/16		Y
BV82276	Volatiles	11/11/16	11/14/16	11/14/16	JLI	Y
BV82276	Volatiles	11/11/16	11/14/16	11/14/16	JLI	Y

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

November 29, 2016

SDG I.D.: GBV82267

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

Any compound that is not detected above the MDL/LOD is reported as ND on the report and is reported in the electronic deliverables (EDD) as <RL or U at the RL per state and EPA guidance.

Version 1: Analysis results minus raw data.

Version 2: Complete report with raw data.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 29, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample InformationCustody InformationDateTimeMatrix:SOLIDCollected by:TG11/11/16

Location Code: EBC Received by: SW 11/14/16 14:46

Rush Request: 72 Hour Analyzed by: see "By" below

<u>Laboratory Data</u>

ratory Data SDG ID: GBV82267

Phoenix ID: BV82267

Project ID: 1181 FLUSHING AVENUE BROOKLYN

Client ID: 15B6 (5-7)

P.O.#:

Parameter	Result		RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
Silver	ND		0.31	0.31	mg/Kg	1	11/15/16	LK	SW6010C	
Aluminum	4400		31	6.2	mg/Kg	10	11/17/16	LK	SW6010C	
Arsenic	1.25		0.62	0.62	mg/Kg	1	11/15/16	LK	SW6010C	
Barium	12.5		0.6	0.31	mg/Kg	1	11/15/16	LK	SW6010C	
Beryllium	0.20	В	0.25	0.12	mg/Kg	1	11/15/16	LK	SW6010C	
Calcium	655		3.1	2.9	mg/Kg	1	11/15/16	LK	SW6010C	
Cadmium	ND		0.31	0.31	mg/Kg	1	11/15/16	LK	SW6010C	
Cobalt	3.45		0.31	0.31	mg/Kg	1	11/15/16	LK	SW6010C	
Chromium	8.72		0.31	0.31	mg/Kg	1	11/15/16	LK	SW6010C	
Copper	9.27		0.31	0.31	mg/kg	1	11/15/16	LK	SW6010C	В
Iron	7640		3.1	3.1	mg/Kg	1	11/15/16	LK	SW6010C	
Mercury	ND		0.03	0.02	mg/Kg	1	11/15/16	RS	SW7471B	
Potassium	598	Ν	6	2.4	mg/Kg	1	11/15/16	LK	SW6010C	
Magnesium	1710		3.1	3.1	mg/Kg	1	11/15/16	LK	SW6010C	
Manganese	73.8	Ν	0.31	0.31	mg/Kg	1	11/15/16	LK	SW6010C	
Sodium	89	Ν	6	2.7	mg/Kg	1	11/15/16	LK	SW6010C	
Nickel	7.91		0.31	0.31	mg/Kg	1	11/15/16	LK	SW6010C	
Lead	1.6		0.6	0.31	mg/Kg	1	11/15/16	LK	SW6010C	
Antimony	ND		1.6	1.6	mg/Kg	1	11/15/16	LK	SW6010C	
Selenium	ND		1.2	1.1	mg/Kg	1	11/15/16	LK	SW6010C	
Thallium	ND		1.2	1.2	mg/Kg	1	11/15/16	LK	SW6010C	
Vanadium	12.1		0.31	0.31	mg/Kg	1	11/15/16	LK	SW6010C	
Zinc	37.0		0.6	0.31	mg/Kg	1	11/15/16	LK	SW6010C	В
Percent Solid	97				%		11/14/16	W	SW846-%Solid	
Soil Extraction for SVOA	Completed						11/14/16	G/J/CK\	SW3545A	
Mercury Digestion	Completed	l					11/15/16	W/W	SW7471B	
Total Metals Digest	Completed						11/14/16	X/AG	SW3050B	
Field Extraction	Completed	l					11/11/16		SW5035A	

Client ID: 15B6 (5-7)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Volatiles								
1,1,1,2-Tetrachloroethane	ND	310	62	ug/Kg	50	11/15/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	310	31	ug/Kg	50	11/15/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	310	62	ug/Kg	50	11/15/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	310	62	ug/Kg	50	11/15/16	JLI	SW8260C
1,1-Dichloroethane	ND	270	62	ug/Kg	50	11/15/16	JLI	SW8260C
1,1-Dichloroethene	ND	310	31	ug/Kg	50	11/15/16	JLI	SW8260C
1,1-Dichloropropene	ND	310	31	ug/Kg	50	11/15/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	310	62	ug/Kg	50	11/15/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	310	31	ug/Kg	50	11/15/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	310	62	ug/Kg	50	11/15/16	JLI	SW8260C
1,2,4-Trimethylbenzene	56000	D 3200	320	ug/Kg	500	11/15/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	310	62	ug/Kg	50	11/15/16	JLI	SW8260C
1,2-Dibromoethane	ND	310	31	ug/Kg	50	11/15/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	310	31	ug/Kg	50	11/15/16	JLI	SW8260C
1,2-Dichloroethane	ND	31	31	ug/Kg	50	11/15/16	JLI	SW8260C
1,2-Dichloropropane	ND	310	62	ug/Kg	50	11/15/16	JLI	SW8260C
1,3,5-Trimethylbenzene	15000	D 3200	320	ug/Kg	500	11/15/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	310	31	ug/Kg	50	11/15/16	JLI	SW8260C
1,3-Dichloropropane	ND	310	62	ug/Kg	50	11/15/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	310	31	ug/Kg	50	11/15/16	JLI	SW8260C
2,2-Dichloropropane	ND	310	31	ug/Kg	50	11/15/16	JLI	SW8260C
2-Chlorotoluene	ND	310	62	ug/Kg	50	11/15/16	JLI	SW8260C
2-Hexanone	ND	1600	310	ug/Kg	50	11/15/16	JLI	SW8260C
2-Isopropyltoluene	110	J 310	31	ug/Kg	50	11/15/16	JLI	SW8260C 1
4-Chlorotoluene	ND	310	31	ug/Kg	50	11/15/16	JLI	SW8260C
4-Methyl-2-pentanone	ND	1600	310	ug/Kg	50	11/15/16	JLI	SW8260C
Acetone	550	S 310	310	ug/Kg	50	11/15/16	JLI	SW8260C
Acrylonitrile	ND	620	62	ug/Kg	50	11/15/16	JLI	SW8260C
Benzene	ND	60	31	ug/Kg	50	11/15/16	JLI	SW8260C
Bromobenzene	ND	310	31	ug/Kg	50	11/15/16	JLI	SW8260C
Bromochloromethane	ND	310	31	ug/Kg	50	11/15/16	JLI	SW8260C
Bromodichloromethane	ND	310	62	ug/Kg	50	11/15/16	JLI	SW8260C
Bromoform	ND	310	62	ug/Kg	50	11/15/16	JLI	SW8260C
Bromomethane	ND	310	120	ug/Kg	50	11/15/16	JLI	SW8260C
Carbon Disulfide	ND	310	62	ug/Kg	50	11/15/16	JLI	SW8260C
Carbon tetrachloride	ND	310	62	ug/Kg	50	11/15/16	JLI	SW8260C
Chlorobenzene	ND	310	31	ug/Kg	50	11/15/16	JLI	SW8260C
Chloroethane	ND	310	31	ug/Kg	50	11/15/16	JLI	SW8260C
Chloroform	ND	310	31	ug/Kg	50	11/15/16	JLI	SW8260C
Chloromethane	ND	310	62	ug/Kg	50	11/15/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	250	31	ug/Kg	50	11/15/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	310	31	ug/Kg	50	11/15/16	JLI	SW8260C
Dibromochloromethane	ND	310	62	ug/Kg	50	11/15/16	JLI	SW8260C
Dibromomethane	ND	310	62	ug/Kg	50	11/15/16	JLI	SW8260C
Dichlorodifluoromethane	ND	310	31	ug/Kg	50	11/15/16	JLI	SW8260C
Ethylbenzene	4700	310	31	ug/Kg	50	11/15/16	JLI	SW8260C
Hexachlorobutadiene	ND	310	31	ug/Kg	50	11/15/16	JLI	SW8260C
Isopropylbenzene	1600	310	31	ug/Kg	50	11/15/16	JLI	SW8260C

Client ID: 15B6 (5-7)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
m&p-Xylene	24000	310	62	ug/Kg	50	11/15/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	310	310	ug/Kg	50	11/15/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	620	62	ug/Kg	50	11/15/16	JLI	SW8260C
Methylene chloride	ND	310	310	ug/Kg	50	11/15/16	JLI	SW8260C
Naphthalene	11000	D 3200	650	ug/Kg	500	11/15/16	JLI	SW8260C
n-Butylbenzene	3400	D 3200	320	ug/Kg	500	11/15/16	JLI	SW8260C
n-Propylbenzene	4900	310	62	ug/Kg	50	11/15/16	JLI	SW8260C
o-Xylene	9100	310	62	ug/Kg	50	11/15/16	JLI	SW8260C
p-Isopropyltoluene	800	310	31	ug/Kg	50	11/15/16	JLI	SW8260C
sec-Butylbenzene	1000	310	31	ug/Kg	50	11/15/16	JLI	SW8260C
Styrene	ND	310	31	ug/Kg	50	11/15/16	JLI	SW8260C
tert-Butylbenzene	32	J 310	31	ug/Kg	50	11/15/16	JLI	SW8260C
Tetrachloroethene	ND	310	62	ug/Kg	50	11/15/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	620	160	ug/Kg	50	11/15/16	JLI	SW8260C 1
Toluene	390	310	31	ug/Kg	50	11/15/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	190	31	ug/Kg	50	11/15/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	310	31	ug/Kg	50	11/15/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	620	160	ug/Kg	50	11/15/16	JLI	SW8260C
Trichloroethene	ND	310	31	ug/Kg	50	11/15/16	JLI	SW8260C
Trichlorofluoromethane	ND	310	62	ug/Kg	50	11/15/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	310	31	ug/Kg	50	11/15/16	JLI	SW8260C
Vinyl chloride	ND	31	31	ug/Kg	50	11/15/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	99			%	50	11/15/16	JLI	70 - 130 %
% Bromofluorobenzene	107			%	50	11/15/16	JLI	70 - 130 %
% Dibromofluoromethane	92			%	50	11/15/16	JLI	70 - 130 %
% Toluene-d8	99			%	50	11/15/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	2500	2500	ug/kg	50	11/15/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	99			%	50	11/15/16	JLI	70 - 130 %
% Bromofluorobenzene	107			%	50	11/15/16	JLI	70 - 130 %
% Toluene-d8	99			%	50	11/15/16	JLI	70 - 130 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	1200	62	ug/Kg	50	11/15/16	JLI	SW8260C
Acrolein	ND	1200	160	ug/Kg	50	11/15/16	JLI	SW8260C
Acrylonitrile	ND	1200	31	ug/Kg	50	11/15/16	JLI	SW8260C
Tert-butyl alcohol	ND	6200	1200	ug/Kg	50	11/15/16	JLI	SW8260C
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	2400	1200	ug/Kg	10	11/15/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	2400	1000	ug/Kg	10	11/15/16	DD	SW8270D
1,2-Dichlorobenzene	ND	2400	970	ug/Kg	10	11/15/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	2400	1100	ug/Kg	10	11/15/16	DD	SW8270D
1,3-Dichlorobenzene	ND	2400	1000	ug/Kg	10	11/15/16	DD	SW8270D
1,4-Dichlorobenzene	ND	2400	1000	ug/Kg	10	11/15/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	2400	1900	ug/Kg	10	11/15/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	1700	1100	ug/Kg	10	11/15/16	DD	SW8270D

Client ID: 15B6 (5-7)

RL/ LOD/ Parameter Result **PQL** Units Dilution Date/Time MDL By Reference 2,4-Dichlorophenol ND 1700 1200 ug/Kg 10 11/15/16 DD SW8270D ND 2400 850 ug/Kg 10 DD SW8270D 2,4-Dimethylphenol 11/15/16 2,4-Dinitrophenol ND 2400 2400 ug/Kg 10 11/15/16 DD SW8270D 2,4-Dinitrotoluene ND 1700 1400 ug/Kg 10 11/15/16 DD SW8270D ND 1700 1100 10 11/15/16 DD SW8270D 2,6-Dinitrotoluene ug/Kg 2-Chloronaphthalene ND 2400 980 ug/Kg 10 11/15/16 DD SW8270D ND 2400 ug/Kg 10 DD SW8270D 2-Chlorophenol 980 11/15/16 2-Methylnaphthalene 6900 2400 1000 ug/Kg 10 11/15/16 DD SW8270D ND 1600 10 DD SW8270D 2-Methylphenol (o-cresol) 1600 ug/Kg 11/15/16 2-Nitroaniline ND 2400 2400 ug/Kg 10 11/15/16 DD SW8270D ND 2400 2200 ug/Kg 10 11/15/16 DD SW8270D 2-Nitrophenol 3&4-Methylphenol (m&p-cresol) ND 2400 1400 ug/Kg 10 11/15/16 DD SW8270D 1 ND 3,3'-Dichlorobenzidine 1700 1600 ug/Kg 10 11/15/16 DD SW8270D ND 3400 6900 10 DD SW8270D 3-Nitroaniline ug/Kg 11/15/16 ND 2100 10 11/15/16 DD SW8270D 4,6-Dinitro-2-methylphenol 690 ug/Kg 4-Bromophenyl phenyl ether ND 2400 1000 ug/Kg 10 11/15/16 DD SW8270D ND 2400 1200 ug/Kg 10 11/15/16 DD SW8270D 4-Chloro-3-methylphenol 4-Chloroaniline ND 2700 1600 ug/Kg 10 11/15/16 DD SW8270D ND 2400 10 DD SW8270D 4-Chlorophenyl phenyl ether 1200 ug/Kg 11/15/16 ND 10 3400 1100 11/15/16 DD SW8270D 4-Nitroaniline ug/Kg ND 3400 1600 ug/Kg 10 11/15/16 DD SW8270D 4-Nitrophenol ND 2400 1000 ug/Kg 10 11/15/16 DD SW8270D Acenaphthene Acenaphthylene ND 2400 960 ug/Kg 10 11/15/16 DD SW8270D Acetophenone ND 2400 1100 ug/Kg 10 11/15/16 DD SW8270D ND 2700 2700 10 11/15/16 DD SW8270D Aniline ug/Kg ND 2400 1100 10 DD SW8270D Anthracene ug/Kg 11/15/16 ND 1200 1200 10 11/15/16 DD SW8270D Benz(a)anthracene ug/Kg Benzidine ND 3400 2000 ug/Kg 10 11/15/16 DD SW8270D ND 1100 1100 10 11/15/16 DD SW8270D Benzo(a)pyrene ug/Kg SW8270D Benzo(b)fluoranthene ND 1200 1200 ug/Kg 10 11/15/16 DD 11/15/16 SW8270D Benzo(ghi)perylene ND 2400 1100 ug/Kg 10 DD ND 10 1100 1100 11/15/16 DD SW8270D Benzo(k)fluoranthene ug/Kg Benzoic acid ND 17000 6900 ug/Kg 10 11/15/16 DD SW8270D 10 DD SW8270D Benzyl butyl phthalate ND 2400 890 ug/Kg 11/15/16 ND 2400 950 ug/Kg 10 11/15/16 DD SW8270D Bis(2-chloroethoxy)methane ND DD Bis(2-chloroethyl)ether 1700 930 ug/Kg 10 11/15/16 SW8270D ND 2400 10 DD 950 11/15/16 SW8270D Bis(2-chloroisopropyl)ether ug/Kg 2600 2400 10 DD SW8270D Bis(2-ethylhexyl)phthalate 990 ug/Kg 11/15/16 ND 1700 1400 10 11/15/16 DD SW8270D ug/Kg Carbazole 1200 DD SW8270D Chrysene ND 1200 ug/Kg 10 11/15/16 ND 1100 1100 10 11/15/16 DD SW8270D Dibenz(a,h)anthracene ug/Kg ND 2400 10 DD SW8270D Dibenzofuran 1000 ug/Kg 11/15/16 ND 2400 1100 ug/Kg 10 11/15/16 DD SW8270D Diethyl phthalate ND 2400 1100 10 11/15/16 DD SW8270D ug/Kg Dimethylphthalate ND 2400 910 ug/Kg 10 11/15/16 DD SW8270D Di-n-butylphthalate ND 2400 10 DD SW8270D 890 ug/Kg 11/15/16 Di-n-octylphthalate ND 2400 1100 ug/Kg 10 11/15/16 DD SW8270D Fluoranthene ND 2400 1100 ug/Kg 10 11/15/16 DD SW8270D Fluorene ND SW8270D Hexachlorobenzene 1700 1000 ug/Kg 10 11/15/16 DD

Client ID: 15B6 (5-7)

, ,		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Hexachlorobutadiene	ND	2400	1200	ug/Kg	10	11/15/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	2400	1100	ug/Kg	10	11/15/16	DD	SW8270D
Hexachloroethane	ND	1700	1000	ug/Kg	10	11/15/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	1100	1100	ug/Kg	10	11/15/16	DD	SW8270D
Isophorone	ND	1700	960	ug/Kg	10	11/15/16	DD	SW8270D
Naphthalene	5600	2400	990	ug/Kg	10	11/15/16	DD	SW8270D
Nitrobenzene	ND	1700	1200	ug/Kg	10	11/15/16	DD	SW8270D
N-Nitrosodimethylamine	ND	2400	970	ug/Kg	10	11/15/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	1700	1100	ug/Kg	10	11/15/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	2400	1300	ug/Kg	10	11/15/16	DD	SW8270D
Pentachloronitrobenzene	ND	2400	1300	ug/Kg	10	11/15/16	DD	SW8270D
Pentachlorophenol	ND	1300	1300	ug/Kg	10	11/15/16	DD	SW8270D
Phenanthrene	ND	2400	980	ug/Kg	10	11/15/16	DD	SW8270D
Phenol	ND	1100	1100	ug/Kg	10	11/15/16	DD	SW8270D
Pyrene	ND	2400	1200	ug/Kg	10	11/15/16	DD	SW8270D
Pyridine	ND	2400	840	ug/Kg	10	11/15/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	Diluted Out			%	10	11/15/16	DD	30 - 130 %
% 2-Fluorobiphenyl	Diluted Out			%	10	11/15/16	DD	30 - 130 %
% 2-Fluorophenol	Diluted Out			%	10	11/15/16	DD	30 - 130 %
% Nitrobenzene-d5	Diluted Out			%	10	11/15/16	DD	30 - 130 %
% Phenol-d5	Diluted Out			%	10	11/15/16	DD	30 - 130 %
% Terphenyl-d14	Diluted Out			%	10	11/15/16	DD	30 - 130 %

Project ID: 1181 FLUSHING AVENUE BROOKLYN Phoenix I.D.: BV82267

Client ID: 15B6 (5-7)

RL/ LOD/

Parameter Result PQL MDL Units Dilution Date/Time By Reference

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time. B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below

Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1
QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

Volatile Comment:

Elevated reporting limits for volatiles due to the presence of target and/or non-target compounds.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

Semi-Volatile Comment:

Due to a matrix interference and/or the presence of a large amount of non-target material in the sample, a dilution was required resulting in an elevated RL for the semivolatile analysis.

Semi-Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 29, 2016

Reviewed and Released by: Jon Carlson, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 29, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: TG 11/11/16

Location Code: EBC Received by: SW 11/14/16 14:46

Rush Request: 72 Hour Analyzed by: see "By" below

1181 FLUSHING AVENUE BROOKLYN

Client ID: 15B6 (12-14)

P.O.#:

Project ID:

<u>Laboratory Data</u>

SDG ID: GBV82267

Parameter	Result		RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
	ND		0.37	0.37	mg/Kg	1	11/15/16	LK	SW6010C	
Silver	6630		37	7.4	mg/Kg	10	11/15/16	LK	SW6010C	
Aluminum	1.24			0.74	0 0		11/15/16		SW6010C	
Arsenic			0.74	-	mg/Kg	1		LK		
Barium	37.0		0.7	0.37	mg/Kg	1	11/15/16	LK	SW6010C	
Beryllium	0.33		0.30	0.15	mg/Kg	1	11/15/16	LK	SW6010C	
Calcium	1030		3.7	3.4	mg/Kg	1	11/15/16	LK	SW6010C	
Cadmium	ND		0.37	0.37	mg/Kg	1	11/15/16	LK	SW6010C	
Cobalt	7.14		0.37	0.37	mg/Kg	1	11/15/16	LK	SW6010C	
Chromium	20.0		0.37	0.37	mg/Kg	1	11/15/16	LK	SW6010C	
Copper	10.9		0.37	0.37	mg/kg	1	11/15/16	LK	SW6010C	В
Iron	13800		37	37	mg/Kg	10	11/15/16	LK	SW6010C	
Mercury	ND		0.03	0.02	mg/Kg	1	11/15/16	RS	SW7471B	
Potassium	1240	Ν	7	2.9	mg/Kg	1	11/15/16	LK	SW6010C	
Magnesium	2510		3.7	3.7	mg/Kg	1	11/15/16	LK	SW6010C	
Manganese	525	Ν	3.7	3.7	mg/Kg	10	11/15/16	LK	SW6010C	
Sodium	146	Ν	74	32	mg/Kg	10	11/15/16	LK	SW6010C	
Nickel	11.9		0.37	0.37	mg/Kg	1	11/15/16	LK	SW6010C	
Lead	1.5		0.7	0.37	mg/Kg	1	11/15/16	LK	SW6010C	
Antimony	ND		1.9	1.9	mg/Kg	1	11/15/16	LK	SW6010C	
Selenium	ND		1.5	1.3	mg/Kg	1	11/15/16	LK	SW6010C	
Thallium	ND		1.5	1.5	mg/Kg	1	11/15/16	LK	SW6010C	
Vanadium	27.1		0.37	0.37	mg/Kg	1	11/15/16	LK	SW6010C	
Zinc	27.8		0.7	0.37	mg/Kg	1	11/15/16	LK	SW6010C	В
Percent Solid	84				%		11/14/16	W	SW846-%Solid	
Soil Extraction for PCB	Completed						11/14/16	NC/V	SW3545A	
Soil Extraction for Pest	Completed						11/14/16	NC/V	SW3545A	
Soil Extraction for SVOA	Completed						11/14/16	G/J/CK\	SW3545A	
Mercury Digestion	Completed						11/15/16		SW7471B	

Client ID: 15B6 (12-14)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Total Metals Digest Co	ompleted					11/14/16	X/AG	SW3050B
Field Extraction Co	ompleted					11/11/16		SW5035A
Polychlorinated Biphenyls	;							
PCB-1016	ND	79	79	ug/Kg	2	11/15/16	AW	SW8082A
PCB-1221	ND	79	79	ug/Kg	2	11/15/16	AW	SW8082A
PCB-1232	ND	79	79	ug/Kg	2	11/15/16	AW	SW8082A
PCB-1242	ND	79	79	ug/Kg	2	11/15/16	AW	SW8082A
PCB-1248	ND	79	79	ug/Kg	2	11/15/16	AW	SW8082A
PCB-1254	ND	79	79	ug/Kg	2	11/15/16	AW	SW8082A
PCB-1260	ND	79	79	ug/Kg	2	11/15/16	AW	SW8082A
PCB-1262	ND	79	79	ug/Kg	2	11/15/16	AW	SW8082A
PCB-1268	ND	79	79	ug/Kg	2	11/15/16	AW	SW8082A
QA/QC Surrogates				0 0				
% DCBP	84			%	2	11/15/16	AW	40 - 140 %
% TCMX	77			%	2	11/15/16	AW	40 - 140 %
<u>Pesticides - Soil</u>								
4,4' -DDD	ND	2.4	2.4	ug/Kg	2	11/15/16	CE	SW8081B
4,4' -DDE	ND	2.4	2.4	ug/Kg	2	11/15/16	CE	SW8081B
4,4' -DDT	ND	2.4	2.4	ug/Kg	2	11/15/16	CE	SW8081B
a-BHC	ND	7.9	7.9	ug/Kg	2	11/15/16	CE	SW8081B
a-Chlordane	ND	3.9	3.9	ug/Kg	2	11/15/16	CE	SW8081B
Aldrin	ND	3.9	3.9	ug/Kg	2	11/15/16	CE	SW8081B
b-BHC	ND	7.9	7.9	ug/Kg	2	11/15/16	CE	SW8081B
Chlordane	ND	39	39	ug/Kg	2	11/15/16	CE	SW8081B
d-BHC	ND	7.9	7.9	ug/Kg	2	11/15/16	CE	SW8081B
Dieldrin	ND	3.9	3.9	ug/Kg	2	11/15/16	CE	SW8081B
Endosulfan I	ND	7.9	7.9	ug/Kg	2	11/15/16	CE	SW8081B
Endosulfan II	ND	7.9	7.9	ug/Kg	2	11/15/16	CE	SW8081B
Endosulfan sulfate	ND	7.9	7.9	ug/Kg	2	11/15/16	CE	SW8081B
Endrin	ND	7.9	7.9	ug/Kg	2	11/15/16	CE	SW8081B
Endrin aldehyde	ND	7.9	7.9	ug/Kg	2	11/15/16	CE	SW8081B
Endrin ketone	ND	7.9	7.9	ug/Kg	2	11/15/16	CE	SW8081B
g-BHC	ND	1.6	1.6	ug/Kg	2	11/15/16	CE	SW8081B
g-Chlordane	ND	3.9	3.9	ug/Kg	2	11/15/16	CE	SW8081B
Heptachlor	ND	7.9	7.9	ug/Kg	2	11/15/16	CE	SW8081B
Heptachlor epoxide	ND	7.9	7.9	ug/Kg	2	11/15/16	CE	SW8081B
Methoxychlor	ND	39	39	ug/Kg	2	11/15/16	CE	SW8081B
Toxaphene	ND	160	160	ug/Kg	2	11/15/16	CE	SW8081B
QA/QC Surrogates								
% DCBP	97			%	2	11/15/16	CE	40 - 140 %
% TCMX	69			%	2	11/15/16	CE	40 - 140 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	4.5	0.90	ug/Kg	1	11/15/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	4.5	0.90	ug/Kg	1	11/15/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	4.5	0.90	ug/Kg	1	11/15/16	JLI	SW8260C
1,1-Dichloroethane	ND	4.5	0.90	ug/Kg	1	11/15/16	JLI	SW8260C

Client ID: 15B6 (12-14)

Client ID. 1386 (12-14)			5. /						
Parameter	Result		RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1,1-Dichloroethene	ND		4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
1,1-Dichloropropene	ND		4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND		4.5	0.90	ug/Kg	1	11/15/16	JLI	SW8260C
1,2,3-Trichloropropane	ND		4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND		4.5	0.90	ug/Kg	1	11/15/16	JLI	SW8260C
1,2,4-Trimethylbenzene	75		4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND		4.5	0.90	ug/Kg	1	11/15/16	JLI	SW8260C
1,2-Dibromoethane	ND		4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
1,2-Dichlorobenzene	ND		4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
1,2-Dichloroethane	ND		4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
1,2-Dichloropropane	ND		4.5	0.90	ug/Kg	1	11/15/16	JLI	SW8260C
1,3,5-Trimethylbenzene	19		4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
1,3-Dichlorobenzene	ND		4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
1,3-Dichloropropane	ND		4.5	0.90	ug/Kg	1	11/15/16	JLI	SW8260C
1,4-Dichlorobenzene	ND		4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
2,2-Dichloropropane	ND		4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
2-Chlorotoluene	ND		4.5	0.90	ug/Kg	1	11/15/16	JLI	SW8260C
2-Hexanone	ND		23	4.5	ug/Kg	1	11/15/16	JLI	SW8260C
2-Isopropyltoluene	ND		4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C 1
4-Chlorotoluene	ND		4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
4-Methyl-2-pentanone	ND		23	4.5	ug/Kg	1	11/15/16	JLI	SW8260C
Acetone	28	S	23	4.5	ug/Kg	1	11/15/16	JLI	SW8260C
Acrylonitrile	ND		9.0	0.90	ug/Kg	1	11/15/16	JLI	SW8260C
Benzene	4.6		4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
Bromobenzene	ND		4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
Bromochloromethane	ND		4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
Bromodichloromethane	ND		4.5	0.90	ug/Kg	1	11/15/16	JLI	SW8260C
Bromoform	ND		4.5	0.90	ug/Kg	1	11/15/16	JLI	SW8260C
Bromomethane	ND		4.5	1.8	ug/Kg	1	11/15/16	JLI	SW8260C
Carbon Disulfide	2.2	J	4.5	0.90	ug/Kg	1	11/15/16	JLI	SW8260C
Carbon tetrachloride	ND		4.5	0.90	ug/Kg	1	11/15/16	JLI	SW8260C
Chlorobenzene	ND		4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
Chloroethane	ND		4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
Chloroform	ND		4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
Chloromethane	ND		4.5	0.90	ug/Kg	1	11/15/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND		4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND		4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
Dibromochloromethane	ND		4.5	0.90	ug/Kg	1	11/15/16	JLI	SW8260C
Dibromomethane	ND		4.5	0.90	ug/Kg	1	11/15/16	JLI	SW8260C
Dichlorodifluoromethane	ND		4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
Ethylbenzene	16		4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
Hexachlorobutadiene	ND		4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
Isopropylbenzene	1.7	J	4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
m&p-Xylene	75		4.5	0.90	ug/Kg	1	11/15/16	JLI	SW8260C
Methyl Ethyl Ketone	5.5	J	27	4.5	ug/Kg	1	11/15/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	4.6	J	9.0	0.90	ug/Kg	1	11/15/16	JLI	SW8260C
Methylene chloride	ND	-	4.5	4.5	ug/Kg	1	11/15/16	JLI	SW8260C
Naphthalene	37		4.5	0.90	ug/Kg	1	11/15/16	JLI	SW8260C
n-Butylbenzene	ND		4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
2017.0020110				· •	· <i>9</i> · · · 9	•			

Client ID: 15B6 (12-14)

Parameter Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
n-Propylbenzene	3.4	J 4.5	0.90	ug/Kg	1	11/15/16	JLI	SW8260C
o-Xylene	26	4.5	0.90	ug/Kg	1	11/15/16	JLI	SW8260C
p-Isopropyltoluene	ND	4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
sec-Butylbenzene	ND	4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
Styrene	ND	4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
tert-Butylbenzene	ND	4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
Tetrachloroethene	ND	4.5	0.90	ug/Kg	1	11/15/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	9.0	2.3	ug/Kg	1	11/15/16	JLI	SW8260C
Toluene	2.2	J 4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	9.0	2.3	ug/Kg	1	11/15/16	JLI	SW8260C
Trichloroethene	ND	4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
Trichlorofluoromethane	ND	4.5	0.90	ug/Kg	1	11/15/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
Vinyl chloride	ND	4.5	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	98			%	1	11/15/16	JLI	70 - 130 %
% Bromofluorobenzene	98			%	1	11/15/16	JLI	70 - 130 %
% Dibromofluoromethane	92			%	1	11/15/16	JLI	70 - 130 %
% Toluene-d8	101			%	1	11/15/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	68	36	ug/kg	1	11/15/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	98			%	1	11/15/16	JLI	70 - 130 %
% Bromofluorobenzene	98			%	1	11/15/16	JLI	70 - 130 %
% Toluene-d8	101			%	1	11/15/16	JLI	70 - 130 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	18	0.90	ug/Kg	1	11/15/16	JLI	SW8260C
Acrolein	ND	18	2.3	ug/Kg	1	11/15/16	JLI	SW8260C
Acrylonitrile	ND	18	0.45	ug/Kg	1	11/15/16	JLI	SW8260C
Tert-butyl alcohol	ND	90	18	ug/Kg	1	11/15/16	JLI	SW8260C
Client MS/MSD	Completed					11/15/16		
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	280	140	ug/Kg	1	11/14/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
1,2-Dichlorobenzene	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
1,3-Dichlorobenzene	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
1,4-Dichlorobenzene	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	280	220	ug/Kg	1	11/14/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	200	130	ug/Kg	1	11/14/16	DD	SW8270D
2,4-Dichlorophenol	ND	200	140	ug/Kg	1	11/14/16	DD	SW8270D
2,4-Dimethylphenol	ND	280	98	ug/Kg	1	11/14/16	DD	SW8270D
2,4-Dinitrophenol	ND	280	280	ug/Kg	1	11/14/16	DD	SW8270D
2,4-Dinitrotoluene	ND	200	160	ug/Kg	1	11/14/16	DD	SW8270D
2,6-Dinitrotoluene	ND	200	130	ug/Kg	1	11/14/16	DD	SW8270D

Client ID: 15B6 (12-14)

Decemeter	Dooult	RL/ PQL	LOD/ MDL	Lloito	Dilution	Data/Time	Dv	Deference
Parameter	Result			Units	Dilution	Date/Time	Ву	Reference
2-Chloronaphthalene	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
2-Chlorophenol	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
2-Methylnaphthalene	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	280	190	ug/Kg	1	11/14/16	DD	SW8270D
2-Nitroaniline	ND	280	280	ug/Kg	1	11/14/16	DD	SW8270D
2-Nitrophenol	ND	280	250	ug/Kg	1	11/14/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	280	160	ug/Kg	1	11/14/16	DD	SW8270D 1
3,3'-Dichlorobenzidine	ND	200	190	ug/Kg	1	11/14/16	DD	SW8270D
3-Nitroaniline	ND	400	790	ug/Kg	1	11/14/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	240	79	ug/Kg	1	11/14/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	280	140	ug/Kg	1	11/14/16	DD	SW8270D
4-Chloroaniline	ND	320	180	ug/Kg	1	11/14/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
4-Nitroaniline	ND	400	130	ug/Kg	1	11/14/16	DD	SW8270D
4-Nitrophenol	ND	400	180	ug/Kg	1	11/14/16	DD	SW8270D
Acenaphthene	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
Acenaphthylene	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
Acetophenone	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
Aniline	ND	320	320	ug/Kg	1	11/14/16	DD	SW8270D
Anthracene	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Benz(a)anthracene	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Benzidine	ND	400	230	ug/Kg	1	11/14/16	DD	SW8270D
Benzo(a)pyrene	ND	200	130	ug/Kg	1	11/14/16	DD	SW8270D
Benzo(b)fluoranthene	ND	280	140	ug/Kg	1	11/14/16	DD	SW8270D
Benzo(ghi)perylene	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Benzo(k)fluoranthene	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Benzoic acid	ND	2000	790	ug/Kg	1	11/14/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	280	100	ug/Kg	1	11/14/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	200	110	ug/Kg	1	11/14/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
Carbazole	ND	200	160	ug/Kg	1	11/14/16	DD	SW8270D
Chrysene	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	200	130	ug/Kg	1	11/14/16	DD	SW8270D
Dibenzofuran	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
Diethyl phthalate	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Dimethylphthalate	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
Di-n-butylphthalate	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
Di-n-octylphthalate	ND	280	100	ug/Kg	1	11/14/16	DD	SW8270D
Fluoranthene	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Fluorene	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Hexachlorobenzene	ND	200	120	ug/Kg	1	11/14/16	DD	SW8270D
Hexachlorobutadiene	ND	280	140	ug/Kg	1	11/14/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
Hexachloroethane	ND	200	120	ug/Kg	1	11/14/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	280	130	ug/Kg ug/Kg	1	11/14/16	DD	SW8270D
Isophorone	ND	200	110	ug/Kg ug/Kg	1	11/14/16	DD	SW8270D
ізорпогоп е	ND	200	110	ug/Ng	ı	11/17/10	טט	5110210D

Client ID: 15B6 (12-14)

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Naphthalene	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
Nitrobenzene	ND	200	140	ug/Kg	1	11/14/16	DD	SW8270D
N-Nitrosodimethylamine	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	200	130	ug/Kg	1	11/14/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	280	150	ug/Kg	1	11/14/16	DD	SW8270D
Pentachloronitrobenzene	ND	280	150	ug/Kg	1	11/14/16	DD	SW8270D
Pentachlorophenol	ND	240	150	ug/Kg	1	11/14/16	DD	SW8270D
Phenanthrene	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
Phenol	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Pyrene	ND	280	140	ug/Kg	1	11/14/16	DD	SW8270D
Pyridine	ND	280	98	ug/Kg	1	11/14/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	79			%	1	11/14/16	DD	30 - 130 %
% 2-Fluorobiphenyl	65			%	1	11/14/16	DD	30 - 130 %
% 2-Fluorophenol	52			%	1	11/14/16	DD	30 - 130 %
% Nitrobenzene-d5	67			%	1	11/14/16	DD	30 - 130 %
% Phenol-d5	63			%	1	11/14/16	DD	30 - 130 %
% Terphenyl-d14	65			%	1	11/14/16	DD	30 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 29, 2016

Reviewed and Released by: Jon Carlson, Project Manager

B = Present in blank, no bias suspected.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 29, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample InformationCustody InformationDateTimeMatrix:SOLIDCollected by:TG11/11/16Location Code:EBCReceived by:SW11/14/1614:46

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GBV82267

Phoenix ID: BV82270

Project ID: 1181 FLUSHING AVENUE BROOKLYN

Client ID: 15B7 (12-14)

Parameter	Result		RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
Silver	ND		0.39	0.39	mg/Kg	1	11/15/16	LK	SW6010C	
Aluminum	7000		39	7.8	mg/Kg	10	11/15/16	LK	SW6010C	
Arsenic	1.21		0.78	0.78	mg/Kg	1	11/15/16	LK	SW6010C	
Barium	29.2		8.0	0.39	mg/Kg	1	11/15/16	LK	SW6010C	
Beryllium	0.31		0.31	0.16	mg/Kg	1	11/15/16	LK	SW6010C	
Calcium	911		3.9	3.6	mg/Kg	1	11/15/16	LK	SW6010C	
Cadmium	ND		0.39	0.39	mg/Kg	1	11/15/16	LK	SW6010C	
Cobalt	6.08		0.39	0.39	mg/Kg	1	11/15/16	LK	SW6010C	
Chromium	21.7		0.39	0.39	mg/Kg	1	11/15/16	LK	SW6010C	
Copper	10.5		0.39	0.39	mg/kg	1	11/15/16	LK	SW6010C	В
Iron	13500		39	39	mg/Kg	10	11/15/16	LK	SW6010C	
Mercury	ND		0.03	0.02	mg/Kg	1	11/15/16	RS	SW7471B	
Potassium	799	Ν	8	3.1	mg/Kg	1	11/15/16	LK	SW6010C	
Magnesium	2300		3.9	3.9	mg/Kg	1	11/15/16	LK	SW6010C	
Manganese	301	Ν	3.9	3.9	mg/Kg	10	11/15/16	LK	SW6010C	
Sodium	182	Ν	8	3.4	mg/Kg	1	11/15/16	LK	SW6010C	
Nickel	9.64		0.39	0.39	mg/Kg	1	11/15/16	LK	SW6010C	
Lead	1.3		8.0	0.39	mg/Kg	1	11/15/16	LK	SW6010C	
Antimony	ND		2.0	2.0	mg/Kg	1	11/15/16	LK	SW6010C	
Selenium	ND		1.6	1.3	mg/Kg	1	11/15/16	LK	SW6010C	
Thallium	ND		1.6	1.6	mg/Kg	1	11/15/16	LK	SW6010C	
Vanadium	25.1		0.39	0.39	mg/Kg	1	11/15/16	LK	SW6010C	
Zinc	24.7		0.8	0.39	mg/Kg	1	11/15/16	LK	SW6010C	В
Percent Solid	83				%		11/14/16	W	SW846-%Solid	
Soil Extraction for PCB	Completed	i					11/14/16	NC/V	SW3545A	
Soil Extraction for Pest	Completed	i					11/14/16	NC/V	SW3545A	
Soil Extraction for SVOA	Completed	i					11/14/16	G/J/CK	/ SW3545A	
Mercury Digestion	Completed	i					11/15/16	W/W	SW7471B	

Client ID: 15B7 (12-14)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Total Metals Digest	Completed					11/14/16	X/AG	SW3050B
Field Extraction	Completed					11/11/16		SW5035A
Polychlorinated Biphen	yls							
PCB-1016	ND	78	78	ug/Kg	2	11/15/16	AW	SW8082A
PCB-1221	ND	78	78	ug/Kg	2	11/15/16	AW	SW8082A
PCB-1232	ND	78	78	ug/Kg	2	11/15/16	AW	SW8082A
PCB-1242	ND	78	78	ug/Kg	2	11/15/16	AW	SW8082A
PCB-1248	ND	78	78	ug/Kg	2	11/15/16	AW	SW8082A
PCB-1254	ND	78	78	ug/Kg	2	11/15/16	AW	SW8082A
PCB-1260	ND	78	78	ug/Kg	2	11/15/16	AW	SW8082A
PCB-1262	ND	78	78	ug/Kg	2	11/15/16	AW	SW8082A
PCB-1268	ND	78	78	ug/Kg	2	11/15/16	AW	SW8082A
QA/QC Surrogates								
% DCBP	65			%	2	11/15/16	AW	40 - 140 %
% TCMX	58			%	2	11/15/16	AW	40 - 140 %
Pesticides - Soil								
4,4' -DDD	ND	2.4	2.4	ug/Kg	2	11/16/16	CE	SW8081B
4,4' -DDE	ND	2.4	2.4	ug/Kg ug/Kg	2	11/16/16	CE	SW8081B
4,4' -DDT	ND	2.4	2.4	ug/Kg ug/Kg	2	11/16/16	CE	SW8081B
a-BHC	ND	7.8	7.8	ug/Kg ug/Kg	2	11/16/16	CE	SW8081B
a-Chlordane	ND	3.9	3.9	ug/Kg ug/Kg	2	11/16/16	CE	SW8081B
Aldrin	ND	3.9	3.9	ug/Kg ug/Kg	2	11/16/16	CE	SW8081B
b-BHC	ND	7.8	7.8	ug/Kg ug/Kg	2	11/16/16	CE	SW8081B
Chlordane	ND	39	39	ug/Kg ug/Kg	2	11/16/16	CE	SW8081B
d-BHC	ND	7.8	7.8	ug/Kg ug/Kg	2	11/16/16	CE	SW8081B
Dieldrin	ND	3.9	3.9	ug/Kg	2	11/16/16	CE	SW8081B
Endosulfan I	ND	7.8	7.8	ug/Kg	2	11/16/16	CE	SW8081B
Endosulfan II	ND	7.8	7.8	ug/Kg	2	11/16/16	CE	SW8081B
Endosulfan sulfate	ND	7.8	7.8	ug/Kg	2	11/16/16	CE	SW8081B
Endrin	ND	7.8	7.8	ug/Kg	2	11/16/16	CE	SW8081B
Endrin aldehyde	ND	7.8	7.8	ug/Kg	2	11/16/16	CE	SW8081B
Endrin ketone	ND	7.8	7.8	ug/Kg	2	11/16/16	CE	SW8081B
g-BHC	ND	1.6	1.6	ug/Kg	2	11/16/16	CE	SW8081B
g-Chlordane	ND	3.9	3.9	ug/Kg	2	11/16/16	CE	SW8081B
Heptachlor	ND	7.8	7.8	ug/Kg	2	11/16/16	CE	SW8081B
Heptachlor epoxide	ND	7.8	7.8	ug/Kg	2	11/16/16	CE	SW8081B
Methoxychlor	ND	39	39	ug/Kg	2	11/16/16	CE	SW8081B
Toxaphene	ND	160	160	ug/Kg	2	11/16/16	CE	SW8081B
QA/QC Surrogates				0 0				
% DCBP	71			%	2	11/16/16	CE	40 - 140 %
% TCMX	48			%	2	11/16/16	CE	40 - 140 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	4.8	0.95	ug/Kg	1	11/15/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	4.8	0.95	ug/Kg	1	11/15/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	4.8	0.95	ug/Kg	1	11/15/16	JLI	SW8260C
1,1-Dichloroethane	ND	4.8	0.95	ug/Kg	1	11/15/16	JLI	SW8260C

Client ID: 15B7 (12-14)

Gliefit ID. 1367 (12-14)			RL/	LOD/					
Parameter	Result		PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
1,1-Dichloroethene	ND		4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
1,1-Dichloropropene	ND		4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND		4.8	0.95	ug/Kg	1	11/15/16	JLI	SW8260C
1,2,3-Trichloropropane	ND		4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND		4.8	0.95	ug/Kg	1	11/15/16	JLI	SW8260C
1,2,4-Trimethylbenzene	2.3	J	4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND		4.8	0.95	ug/Kg	1	11/15/16	JLI	SW8260C
1,2-Dibromoethane	ND		4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
1,2-Dichlorobenzene	ND		4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
1,2-Dichloroethane	ND		4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
1,2-Dichloropropane	ND		4.8	0.95	ug/Kg	1	11/15/16	JLI	SW8260C
1,3,5-Trimethylbenzene	0.81	J	4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
1,3-Dichlorobenzene	ND		4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
1,3-Dichloropropane	ND		4.8	0.95	ug/Kg	1	11/15/16	JLI	SW8260C
1,4-Dichlorobenzene	ND		4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
2,2-Dichloropropane	ND		4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
2-Chlorotoluene	ND		4.8	0.95	ug/Kg	1	11/15/16	JLI	SW8260C
2-Hexanone	ND		24	4.8	ug/Kg	1	11/15/16	JLI	SW8260C
2-Isopropyltoluene	ND		4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C 1
4-Chlorotoluene	ND		4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
4-Methyl-2-pentanone	ND		24	4.8	ug/Kg	1	11/15/16	JLI	SW8260C
Acetone	24	S	24	4.8	ug/Kg	1	11/15/16	JLI	SW8260C
Acrylonitrile	ND		9.5	0.95	ug/Kg	1	11/15/16	JLI	SW8260C
Benzene	1.9	J	4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
Bromobenzene	ND		4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
Bromochloromethane	ND		4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
Bromodichloromethane	ND		4.8	0.95	ug/Kg	1	11/15/16	JLI	SW8260C
Bromoform	ND		4.8	0.95	ug/Kg	1	11/15/16	JLI	SW8260C
Bromomethane	ND		4.8	1.9	ug/Kg	1	11/15/16	JLI	SW8260C
Carbon Disulfide	ND		4.8	0.95	ug/Kg	1	11/15/16	JLI	SW8260C
Carbon tetrachloride	ND		4.8	0.95	ug/Kg	1	11/15/16	JLI	SW8260C
Chlorobenzene	ND		4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
Chloroethane	ND		4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
Chloroform	ND		4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
Chloromethane	ND		4.8	0.95	ug/Kg	1	11/15/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND		4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND		4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
Dibromochloromethane	ND		4.8	0.95	ug/Kg	1	11/15/16	JLI	SW8260C
Dibromomethane	ND		4.8	0.95	ug/Kg	1	11/15/16	JLI	SW8260C
Dichlorodifluoromethane	ND		4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
Ethylbenzene	2.8	J	4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
Hexachlorobutadiene	ND		4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
Isopropylbenzene	ND		4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
m&p-Xylene	4.9		4.8	0.95	ug/Kg	1	11/15/16	JLI	SW8260C
Methyl Ethyl Ketone	ND		29	4.8	ug/Kg	1	11/15/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	7.5	J		0.95	ug/Kg	1	11/15/16	JLI	SW8260C
Methylene chloride	ND	-	4.8	4.8	ug/Kg	1	11/15/16	JLI	SW8260C
Naphthalene	1.1	J		0.95	ug/Kg	1	11/15/16	JLI	SW8260C
n-Butylbenzene	ND	-	4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
,					0 0				

Client ID: 15B7 (12-14)

Parameter Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
n-Propylbenzene	ND	4.8	0.95	ug/Kg	1	11/15/16	JLI	SW8260C
o-Xylene	2.7	J 4.8	0.95	ug/Kg	1	11/15/16	JLI	SW8260C
p-Isopropyltoluene	ND	4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
sec-Butylbenzene	ND	4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
Styrene	ND	4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
tert-Butylbenzene	ND	4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
Tetrachloroethene	ND	4.8	0.95	ug/Kg	1	11/15/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	9.5	2.4	ug/Kg	1	11/15/16	JLI	SW8260C 1
Toluene	ND	4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	9.5	2.4	ug/Kg	1	11/15/16	JLI	SW8260C
Trichloroethene	ND	4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
Trichlorofluoromethane	ND	4.8	0.95	ug/Kg	1	11/15/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
Vinyl chloride	ND	4.8	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	98			%	1	11/15/16	JLI	70 - 130 %
% Bromofluorobenzene	98			%	1	11/15/16	JLI	70 - 130 %
% Dibromofluoromethane	95			%	1	11/15/16	JLI	70 - 130 %
% Toluene-d8	100			%	1	11/15/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	71	38	ug/kg	1	11/15/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	98			%	1	11/15/16	JLI	70 - 130 %
% Bromofluorobenzene	98			%	1	11/15/16	JLI	70 - 130 %
% Toluene-d8	100			%	1	11/15/16	JLI	70 - 130 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	19	0.95	ug/Kg	1	11/15/16	JLI	SW8260C
Acrolein	ND	19	2.4	ug/Kg	1	11/15/16	JLI	SW8260C
Acrylonitrile	ND	19	0.48	ug/Kg	1	11/15/16	JLI	SW8260C
Tert-butyl alcohol	200	95	19	ug/Kg	1	11/15/16	JLI	SW8260C
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	280	140	ug/Kg	1	11/14/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
1,2-Dichlorobenzene	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
1,3-Dichlorobenzene	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
1,4-Dichlorobenzene	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	280	220	ug/Kg	1	11/14/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	200	130	ug/Kg	1	11/14/16	DD	SW8270D
2,4-Dichlorophenol	ND	200	140	ug/Kg	1	11/14/16	DD	SW8270D
2,4-Dimethylphenol	ND	280	99	ug/Kg	1	11/14/16	DD	SW8270D
2,4-Dinitrophenol	ND	280	280	ug/Kg	1	11/14/16	DD	SW8270D
2,4-Dinitrotoluene	ND	200	160	ug/Kg	1	11/14/16	DD	SW8270D
2,6-Dinitrotoluene	ND	200	130	ug/Kg	1	11/14/16	DD	SW8270D
2-Chloronaphthalene	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D

Client ID: 15B7 (12-14)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
2-Chlorophenol	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
2-Methylnaphthalene	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	280	190	ug/Kg	1	11/14/16	DD	SW8270D
2-Nitroaniline	ND	280	280	ug/Kg	1	11/14/16	DD	SW8270D
2-Nitrophenol	ND	280	250	ug/Kg	1	11/14/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	280	160	ug/Kg	1	11/14/16	DD	SW8270D 1
3,3'-Dichlorobenzidine	ND	200	190	ug/Kg	1	11/14/16	DD	SW8270D
3-Nitroaniline	ND	400	800	ug/Kg	1	11/14/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	240	80	ug/Kg	1	11/14/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	280	140	ug/Kg	1	11/14/16	DD	SW8270D
4-Chloroaniline	ND	320	190	ug/Kg	1	11/14/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
4-Nitroaniline	ND	400	130	ug/Kg	1	11/14/16	DD	SW8270D
4-Nitrophenol	ND	400	180	ug/Kg	1	11/14/16	DD	SW8270D
Acenaphthene	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
Acenaphthylene	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
Acetophenone	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
Aniline	ND	320	320	ug/Kg	1	11/14/16	DD	SW8270D
Anthracene	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Benz(a)anthracene	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Benzidine	ND	400	240	ug/Kg	1	11/14/16	DD	SW8270D
Benzo(a)pyrene	ND	200	130	ug/Kg	1	11/14/16	DD	SW8270D
Benzo(b)fluoranthene	ND	280	140	ug/Kg	1	11/14/16	DD	SW8270D
Benzo(ghi)perylene	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Benzo(k)fluoranthene	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Benzoic acid	ND	2000	800	ug/Kg	1	11/14/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	280	100	ug/Kg	1	11/14/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	200	110	ug/Kg	1	11/14/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
Carbazole	ND	200	160	ug/Kg	1	11/14/16	DD	SW8270D
Chrysene	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	200	130	ug/Kg	1	11/14/16	DD	SW8270D
Dibenzofuran	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
Diethyl phthalate	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Dimethylphthalate	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
Di-n-butylphthalate	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
Di-n-octylphthalate	ND	280	100	ug/Kg	1	11/14/16	DD	SW8270D
Fluoranthene	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Fluorene	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Hexachlorobenzene	ND	200	120	ug/Kg	1	11/14/16	DD	SW8270D
Hexachlorobutadiene	ND	280	140	ug/Kg	1	11/14/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
Hexachloroethane	ND	200	120	ug/Kg	1	11/14/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Isophorone	ND	200	110	ug/Kg	1	11/14/16	DD	SW8270D
Naphthalene	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
	_			- 3 - 3	·			

Client ID: 15B7 (12-14)

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Nitrobenzene	ND	200	140	ug/Kg	1	11/14/16	DD	SW8270D
N-Nitrosodimethylamine	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	200	130	ug/Kg	1	11/14/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	280	150	ug/Kg	1	11/14/16	DD	SW8270D
Pentachloronitrobenzene	ND	280	150	ug/Kg	1	11/14/16	DD	SW8270D
Pentachlorophenol	ND	240	150	ug/Kg	1	11/14/16	DD	SW8270D
Phenanthrene	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
Phenol	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Pyrene	ND	280	140	ug/Kg	1	11/14/16	DD	SW8270D
Pyridine	ND	280	98	ug/Kg	1	11/14/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	84			%	1	11/14/16	DD	30 - 130 %
% 2-Fluorobiphenyl	73			%	1	11/14/16	DD	30 - 130 %
% 2-Fluorophenol	58			%	1	11/14/16	DD	30 - 130 %
% Nitrobenzene-d5	70			%	1	11/14/16	DD	30 - 130 %
% Phenol-d5	73			%	1	11/14/16	DD	30 - 130 %
% Terphenyl-d14	73			%	1	11/14/16	DD	30 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time. B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 29, 2016

Reviewed and Released by: Jon Carlson, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG ID: GBV82267

Phoenix ID: BV82271

Analysis Report

November 29, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: TG 11/11/16

RI/

Location Code: EBC Received by: SW 11/14/16 14:46

LOD/

Rush Request: 72 Hour Analyzed by: see "By" below

Laboratory Data

Project ID: 1181 FLUSHING AVENUE BROOKLYN

Client ID: 15B7 (18-20)

P.O.#:

Parameter	Result		RL/ PQL	MDL	Units	Dilution	Date/Time	Ву	Reference	
Silver	ND		0.36	0.36	mg/Kg	1	11/15/16	LK	SW6010C	
Aluminum	4270		36	7.3	mg/Kg	10	11/15/16	LK	SW6010C	
Arsenic	0.90		0.73	0.73	mg/Kg	1	11/15/16	LK	SW6010C	
Barium	22.5		0.7	0.36	mg/Kg	1	11/15/16	LK	SW6010C	
Beryllium	0.21	В	0.29	0.15	mg/Kg	1	11/15/16	LK	SW6010C	
Calcium	969		3.6	3.3	mg/Kg	1	11/15/16	LK	SW6010C	
Cadmium	ND		0.36	0.36	mg/Kg	1	11/15/16	LK	SW6010C	
Cobalt	5.53		0.36	0.36	mg/Kg	1	11/15/16	LK	SW6010C	
Chromium	11.8		0.36	0.36	mg/Kg	1	11/15/16	LK	SW6010C	
Copper	8.59		0.36	0.36	mg/kg	1	11/15/16	LK	SW6010C	В
Iron	11100		36	36	mg/Kg	10	11/15/16	LK	SW6010C	
Mercury	ND		0.03	0.02	mg/Kg	1	11/15/16	RS	SW7471B	
Potassium	870	Ν	7	2.8	mg/Kg	1	11/15/16	LK	SW6010C	
Magnesium	2060		3.6	3.6	mg/Kg	1	11/15/16	LK	SW6010C	
Manganese	149	Ν	3.6	3.6	mg/Kg	10	11/15/16	LK	SW6010C	
Sodium	162	Ν	7	3.1	mg/Kg	1	11/15/16	LK	SW6010C	
Nickel	9.72		0.36	0.36	mg/Kg	1	11/15/16	LK	SW6010C	
Lead	3.5		0.7	0.36	mg/Kg	1	11/15/16	LK	SW6010C	
Antimony	ND		1.8	1.8	mg/Kg	1	11/15/16	LK	SW6010C	
Selenium	ND		1.5	1.2	mg/Kg	1	11/15/16	LK	SW6010C	
Thallium	ND		1.5	1.5	mg/Kg	1	11/15/16	LK	SW6010C	
Vanadium	17.6		0.36	0.36	mg/Kg	1	11/15/16	LK	SW6010C	
Zinc	21.3		0.7	0.36	mg/Kg	1	11/15/16	LK	SW6010C	В
Percent Solid	84				%		11/14/16	W	SW846-%Solid	
Soil Extraction for SVOA	Completed	i					11/14/16	G/J/CK\	/ SW3545A	
Mercury Digestion	Completed	ł					11/15/16	W/W	SW7471B	
Total Metals Digest	Completed	i					11/14/16	X/AG	SW3050B	
Field Extraction	Completed	i					11/11/16		SW5035A	

Client ID: 15B7 (18-20)

Parameter Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	460	93	ug/Kg	50	11/15/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	460	46	ug/Kg	50	11/15/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	460	93	ug/Kg	50	11/15/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	460	93	ug/Kg	50	11/15/16	JLI	SW8260C
1,1-Dichloroethane	ND	270	93	ug/Kg	50	11/15/16	JLI	SW8260C
1,1-Dichloroethene	ND	330	46	ug/Kg	50	11/15/16	JLI	SW8260C
1,1-Dichloropropene	ND	460	46	ug/Kg	50	11/15/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	460	93	ug/Kg	50	11/15/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	460	46	ug/Kg	50	11/15/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	460	93	ug/Kg	50	11/15/16	JLI	SW8260C
1,2,4-Trimethylbenzene	1200	460	46	ug/Kg	50	11/15/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	460	93	ug/Kg	50	11/15/16	JLI	SW8260C
1,2-Dibromoethane	ND	460	46	ug/Kg	50	11/15/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	460	46	ug/Kg	50	11/15/16	JLI	SW8260C
1,2-Dichloroethane	ND	46	46	ug/Kg	50	11/15/16	JLI	SW8260C
1,2-Dichloropropane	ND	460	93	ug/Kg	50	11/15/16	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	460	46	ug/Kg	50	11/15/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	460	46	ug/Kg	50	11/15/16	JLI	SW8260C
1,3-Dichloropropane	ND	460	93	ug/Kg	50	11/15/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	460	46	ug/Kg	50	11/15/16	JLI	SW8260C
2,2-Dichloropropane	ND	460	46	ug/Kg	50	11/15/16	JLI	SW8260C
2-Chlorotoluene	ND	460	93	ug/Kg	50	11/15/16	JLI	SW8260C
2-Hexanone	ND	2300	460	ug/Kg	50	11/15/16	JLI	SW8260C
2-Isopropyltoluene	ND	460	46	ug/Kg	50	11/15/16	JLI	SW8260C 1
4-Chlorotoluene	ND	460	46	ug/Kg	50	11/15/16	JLI	SW8260C
4-Methyl-2-pentanone	ND	2300	460	ug/Kg	50	11/15/16	JLI	SW8260C
Acetone	ND	460	460	ug/Kg	50	11/15/16	JLI	SW8260C
Acrylonitrile	ND	930	93	ug/Kg	50	11/15/16	JLI	SW8260C
Benzene	53	J 60	46	ug/Kg	50	11/15/16	JLI	SW8260C
Bromobenzene	ND	460	46	ug/Kg	50	11/15/16	JLI	SW8260C
Bromochloromethane	ND	460	46	ug/Kg	50	11/15/16	JLI	SW8260C
Bromodichloromethane	ND	460	93	ug/Kg	50	11/15/16	JLI	SW8260C
Bromoform	ND	460	93	ug/Kg	50	11/15/16	JLI	SW8260C
Bromomethane	ND	460	190	ug/Kg	50	11/15/16	JLI	SW8260C
Carbon Disulfide	ND	460	93	ug/Kg	50	11/15/16	JLI	SW8260C
Carbon tetrachloride	ND	460	93	ug/Kg	50	11/15/16	JLI	SW8260C
Chlorobenzene	ND	460	46	ug/Kg	50	11/15/16	JLI	SW8260C
Chloroethane	ND	460	46	ug/Kg	50	11/15/16	JLI	SW8260C
Chloroform	ND	370	46	ug/Kg	50	11/15/16	JLI	SW8260C
Chloromethane	ND	460	93	ug/Kg	50	11/15/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	250	46	ug/Kg	50	11/15/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	460	46	ug/Kg	50	11/15/16	JLI	SW8260C
Dibromochloromethane	ND	460	93	ug/Kg	50	11/15/16	JLI	SW8260C
Dibromomethane	ND	460	93	ug/Kg	50	11/15/16	JLI	SW8260C
Dichlorodifluoromethane	ND	460	46	ug/Kg	50	11/15/16	JLI	SW8260C
Ethylbenzene	520	460	46	ug/Kg	50	11/15/16	JLI	SW8260C
Hexachlorobutadiene	ND	460	46	ug/Kg	50	11/15/16	JLI	SW8260C
Isopropylbenzene	160	J 460	46	ug/Kg	50	11/15/16	JLI	SW8260C

Client ID: 15B7 (18-20)

Parameter Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
m&p-Xylene	530	460	93	ug/Kg	50	11/15/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	460	460	ug/Kg	50	11/15/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	930	93	ug/Kg	50	11/15/16	JLI	SW8260C
Methylene chloride	ND	460	460	ug/Kg	50	11/15/16	JLI	SW8260C
Naphthalene	ND	460	93	ug/Kg	50	11/15/16	JLI	SW8260C
n-Butylbenzene	6300	460	46	ug/Kg	50	11/15/16	JLI	SW8260C
n-Propylbenzene	910	460	93	ug/Kg	50	11/15/16	JLI	SW8260C
o-Xylene	380	J 460	93	ug/Kg	50	11/15/16	JLI	SW8260C
p-Isopropyltoluene	2100	460	46	ug/Kg	50	11/15/16	JLI	SW8260C
sec-Butylbenzene	4200	460	46	ug/Kg	50	11/15/16	JLI	SW8260C
Styrene	ND	460	46	ug/Kg	50	11/15/16	JLI	SW8260C
tert-Butylbenzene	ND	460	46	ug/Kg	50	11/15/16	JLI	SW8260C
Tetrachloroethene	ND	460	93	ug/Kg	50	11/15/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	930	230	ug/Kg	50	11/15/16	JLI	SW8260C 1
Toluene	610	460	46	ug/Kg	50	11/15/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	190	46	ug/Kg	50	11/15/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	460	46	ug/Kg	50	11/15/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	930	230	ug/Kg	50	11/15/16	JLI	SW8260C
Trichloroethene	ND	460	46	ug/Kg	50	11/15/16	JLI	SW8260C
Trichlorofluoromethane	ND	460	93	ug/Kg	50	11/15/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	460	46	ug/Kg	50	11/15/16	JLI	SW8260C
Vinyl chloride	ND	46	46	ug/Kg	50	11/15/16	JLI	SW8260C
QA/QC Surrogates			-	3. 3				
% 1,2-dichlorobenzene-d4	97			%	50	11/15/16	JLI	70 - 130 %
% Bromofluorobenzene	127			%	50	11/15/16	JLI	70 - 130 %
% Dibromofluoromethane	95			%	50	11/15/16	JLI	70 - 130 %
% Toluene-d8	102			%	50	11/15/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	3700	3700	ug/kg	50	11/15/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	97			%	50	11/15/16	JLI	70 - 130 %
% Bromofluorobenzene	127			%	50	11/15/16	JLI	70 - 130 %
% Toluene-d8	102			%	50	11/15/16	JLI	70 - 130 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	1900	93	ug/Kg	50	11/15/16	JLI	SW8260C
Acrolein	ND	1900	230	ug/Kg	50	11/15/16	JLI	SW8260C
Acrylonitrile	ND	1900	46	ug/Kg	50	11/15/16	JLI	SW8260C
Tert-butyl alcohol	ND	9300	1900	ug/Kg	50	11/15/16	JLI	SW8260C
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	280	140	ug/Kg	1	11/14/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
1,2-Dichlorobenzene	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
1,3-Dichlorobenzene	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
1,4-Dichlorobenzene	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	280	220	ug/Kg	1	11/14/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	200	130	ug/Kg	1	11/14/16	DD	SW8270D

Client ID: 15B7 (18-20)

Client ID. 13B7 (10-20)		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
2,4-Dichlorophenol	ND	200	140	ug/Kg	1	11/14/16	DD	SW8270D
2,4-Dimethylphenol	ND	280	98	ug/Kg	1	11/14/16	DD	SW8270D
2,4-Dinitrophenol	ND	280	280	ug/Kg	1	11/14/16	DD	SW8270D
2,4-Dinitrotoluene	ND	200	160	ug/Kg	1	11/14/16	DD	SW8270D
2,6-Dinitrotoluene	ND	200	120	ug/Kg	1	11/14/16	DD	SW8270D
2-Chloronaphthalene	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
2-Chlorophenol	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
2-Methylnaphthalene	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	280	180	ug/Kg	1	11/14/16	DD	SW8270D
2-Nitroaniline	ND	280	280	ug/Kg	1	11/14/16	DD	SW8270D
2-Nitrophenol	ND	280	250	ug/Kg	1	11/14/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	280	160	ug/Kg	1	11/14/16	DD	SW8270D 1
3,3'-Dichlorobenzidine	ND	200	190	ug/Kg	1	11/14/16	DD	SW8270D
3-Nitroaniline	ND	390	790	ug/Kg	1	11/14/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	240	79	ug/Kg	1	11/14/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	280	140	ug/Kg	1	11/14/16	DD	SW8270D
4-Chloroaniline	ND	310	180	ug/Kg	1	11/14/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
4-Nitroaniline	ND	390	130	ug/Kg	1	11/14/16	DD	SW8270D
4-Nitrophenol	ND	390	180	ug/Kg	1	11/14/16	DD	SW8270D
Acenaphthene	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
Acenaphthylene	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
Acetophenone	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
Aniline	ND	310	310	ug/Kg	1	11/14/16	DD	SW8270D
Anthracene	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Benz(a)anthracene	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Benzidine	ND	390	230	ug/Kg	1	11/14/16	DD	SW8270D
Benzo(a)pyrene	ND	200	130	ug/Kg	1	11/14/16	DD	SW8270D
Benzo(b)fluoranthene	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Benzo(ghi)perylene	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Benzo(k)fluoranthene	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Benzoic acid	ND	2000	790	ug/Kg	1	11/14/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	280	100	ug/Kg	1	11/14/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	200	110	ug/Kg	1	11/14/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
Carbazole	ND	200	160	ug/Kg	1	11/14/16	DD	SW8270D
Chrysene	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	200	130	ug/Kg	1	11/14/16	DD	SW8270D
Dibenzofuran	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
Diethyl phthalate	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
Dimethylphthalate	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
Di-n-butylphthalate	ND	280	100	ug/Kg	1	11/14/16	DD	SW8270D
Di-n-octylphthalate	ND	280	100	ug/Kg ug/Kg	1	11/14/16	DD	SW8270D
Fluoranthene	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Fluorene	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Hexachlorobenzene	ND	200	110	ug/Kg	1	11/14/16	DD	SW8270D
TOXAGINGTODONEONO		_00		~ o ,''8		,, 10		

Client ID: 15B7 (18-20)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Hexachlorobutadiene	ND	280	140	ug/Kg	1	11/14/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
Hexachloroethane	ND	200	120	ug/Kg	1	11/14/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Isophorone	ND	200	110	ug/Kg	1	11/14/16	DD	SW8270D
Naphthalene	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
Nitrobenzene	ND	200	140	ug/Kg	1	11/14/16	DD	SW8270D
N-Nitrosodimethylamine	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	200	130	ug/Kg	1	11/14/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	280	150	ug/Kg	1	11/14/16	DD	SW8270D
Pentachloronitrobenzene	ND	280	150	ug/Kg	1	11/14/16	DD	SW8270D
Pentachlorophenol	ND	240	150	ug/Kg	1	11/14/16	DD	SW8270D
Phenanthrene	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
Phenol	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Pyrene	ND	280	140	ug/Kg	1	11/14/16	DD	SW8270D
Pyridine	ND	280	97	ug/Kg	1	11/14/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	66			%	1	11/14/16	DD	30 - 130 %
% 2-Fluorobiphenyl	51			%	1	11/14/16	DD	30 - 130 %
% 2-Fluorophenol	48			%	1	11/14/16	DD	30 - 130 %
% Nitrobenzene-d5	49			%	1	11/14/16	DD	30 - 130 %
% Phenol-d5	54			%	1	11/14/16	DD	30 - 130 %
% Terphenyl-d14	58			%	1	11/14/16	DD	30 - 130 %

Project ID: 1181 FLUSHING AVENUE BROOKLYN Phoenix I.D.: BV82271

Client ID: 15B7 (18-20)

RL/ LOD/

Parameter Result PQL MDL Units Dilution Date/Time By Reference

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time. B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

Volatile Comment:

Elevated reporting limits for volatiles due to the presence of target and/or non-target compounds.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 29, 2016

Reviewed and Released by: Jon Carlson, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 29, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample InformationCustody InformationDateTimeMatrix:SOLIDCollected by:TG11/11/16Location Code:EBCReceived by:SW11/14/1614:46

Rush Request: 72 Hour Analyzed by: see "By" below

RI/

LOD/

P.O.#:

Laboratory Data

SDG ID: GBV82267
Phoenix ID: BV82272

Project ID: 1181 FLUSHING AVENUE BROOKLYN

Client ID: 15B7 (23-25)

Parameter	Result		RL/ PQL	MDL	Units	Dilution	Date/Time	Ву	Reference	
Silver	ND		0.41	0.41	mg/Kg	1	11/15/16	LK	SW6010C	
Aluminum	4250		41	8.3	mg/Kg	10	11/15/16	LK	SW6010C	
Arsenic	0.97		0.83	0.83	mg/Kg	1	11/15/16	LK	SW6010C	
Barium	21.3		8.0	0.41	mg/Kg	1	11/15/16	LK	SW6010C	
Beryllium	0.20	В	0.33	0.17	mg/Kg	1	11/15/16	LK	SW6010C	
Calcium	1390		4.1	3.8	mg/Kg	1	11/15/16	LK	SW6010C	
Cadmium	ND		0.41	0.41	mg/Kg	1	11/15/16	LK	SW6010C	
Cobalt	4.33		0.41	0.41	mg/Kg	1	11/15/16	LK	SW6010C	
Chromium	9.84		0.41	0.41	mg/Kg	1	11/15/16	LK	SW6010C	
Copper	6.65		0.41	0.41	mg/kg	1	11/18/16	LK	SW6010C	B*
Iron	14400		41	41	mg/Kg	10	11/15/16	LK	SW6010C	
Mercury	ND		0.03	0.02	mg/Kg	1	11/15/16	RS	SW7471B	
Potassium	842	Ν	8	3.2	mg/Kg	1	11/15/16	LK	SW6010C	
Magnesium	1850		4.1	4.1	mg/Kg	1	11/15/16	LK	SW6010C	
Manganese	678	Ν	4.1	4.1	mg/Kg	10	11/15/16	LK	SW6010C	
Sodium	160	Ν	8	3.5	mg/Kg	1	11/15/16	LK	SW6010C	
Nickel	8.72		0.41	0.41	mg/Kg	1	11/15/16	LK	SW6010C	
Lead	1.2		8.0	0.41	mg/Kg	1	11/15/16	LK	SW6010C	
Antimony	ND		2.1	2.1	mg/Kg	1	11/15/16	LK	SW6010C	
Selenium	ND		1.7	1.4	mg/Kg	1	11/15/16	LK	SW6010C	
Thallium	ND		1.7	1.7	mg/Kg	1	11/15/16	LK	SW6010C	
Vanadium	13.7		0.41	0.41	mg/Kg	1	11/15/16	LK	SW6010C	
Zinc	19.3		8.0	0.41	mg/Kg	1	11/15/16	LK	SW6010C	В
Percent Solid	83				%		11/14/16	W	SW846-%Solid	
Soil Extraction for SVOA	Completed	i					11/14/16	G/J/CK\	/ SW3545A	
Mercury Digestion	Completed	ł					11/15/16	W/W	SW7471B	
Total Metals Digest	Completed	i					11/14/16	X/AG	SW3050B	
Field Extraction	Completed	i					11/11/16		SW5035A	

Client ID: 15B7 (23-25)

Parameter	Result		RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
<u>Volatiles</u>									
1,1,1,2-Tetrachloroethane	ND		4.4	0.88	ug/Kg	1	11/15/16	JLI	SW8260C
1,1,1-Trichloroethane	ND		4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND		4.4	0.88	ug/Kg	1	11/15/16	JLI	SW8260C
1,1,2-Trichloroethane	ND		4.4	0.88	ug/Kg	1	11/15/16	JLI	SW8260C
1,1-Dichloroethane	ND		4.4	0.88	ug/Kg	1	11/15/16	JLI	SW8260C
1,1-Dichloroethene	ND		4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
1,1-Dichloropropene	ND		4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND		4.4	0.88	ug/Kg	1	11/15/16	JLI	SW8260C
1,2,3-Trichloropropane	ND		4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND		4.4	0.88	ug/Kg	1	11/15/16	JLI	SW8260C
1,2,4-Trimethylbenzene	280		250	44	ug/Kg	50	11/15/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND		4.4	0.88	ug/Kg	1	11/15/16	JLI	SW8260C
1,2-Dibromoethane	ND		4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
1,2-Dichlorobenzene	ND		4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
1,2-Dichloroethane	ND		4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
1,2-Dichloropropane	ND		4.4	0.88	ug/Kg	1	11/15/16	JLI	SW8260C
1,3,5-Trimethylbenzene	80		4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
1,3-Dichlorobenzene	ND		4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
1,3-Dichloropropane	ND		4.4	0.88	ug/Kg	1	11/15/16	JLI	SW8260C
1,4-Dichlorobenzene	ND		4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
2,2-Dichloropropane	ND		4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
2-Chlorotoluene	ND		4.4	0.88	ug/Kg	1	11/15/16	JLI	SW8260C
2-Hexanone	ND		22	4.4	ug/Kg	1	11/15/16	JLI	SW8260C
2-Isopropyltoluene	0.56	J	4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C 1
4-Chlorotoluene	ND		4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
4-Methyl-2-pentanone	21	J	22	4.4	ug/Kg	1	11/15/16	JLI	SW8260C
Acetone	500	S	440	440	ug/Kg	50	11/15/16	JLI	SW8260C
Acrylonitrile	ND		8.8	0.88	ug/Kg	1	11/15/16	JLI	SW8260C
Benzene	7.4		4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
Bromobenzene	ND		4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
Bromochloromethane	ND		4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
Bromodichloromethane	ND		4.4	0.88	ug/Kg	1	11/15/16	JLI	SW8260C
Bromoform	ND		4.4	0.88	ug/Kg	1	11/15/16	JLI	SW8260C
Bromomethane	ND		4.4	1.8	ug/Kg	1	11/15/16	JLI	SW8260C
Carbon Disulfide	4.3	J	4.4	0.88	ug/Kg	1	11/15/16	JLI	SW8260C
Carbon tetrachloride	ND		4.4	0.88	ug/Kg	1	11/15/16	JLI	SW8260C
Chlorobenzene	ND		4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
Chloroethane	ND		4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
Chloroform	ND		4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
Chloromethane	ND		4.4	0.88	ug/Kg	1	11/15/16	JLI	SW8260C
cis-1,2-Dichloroethene	1.5	J	4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND		4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
Dibromochloromethane	ND		4.4	0.88	ug/Kg	1	11/15/16	JLI	SW8260C
Dibromomethane	ND		4.4	0.88	ug/Kg	1	11/15/16	JLI	SW8260C
Dichlorodifluoromethane	ND		4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
Ethylbenzene	34		4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
Hexachlorobutadiene	ND		4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
Isopropylbenzene	5.9		4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C

Project ID: 1181 FLUSHING AVENUE BROOKLYN

Client ID: 15B7 (23-25)

Parameter Parameter	Result		RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
m&p-Xylene	99		4.4	0.88	ug/Kg	1	11/15/16	JLI	SW8260C
Methyl Ethyl Ketone	160		26	4.4	ug/Kg	1	11/15/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	4.7	J	8.8	0.88	ug/Kg	1	11/15/16	JLI	SW8260C
Methylene chloride	ND		4.4	4.4	ug/Kg	1	11/15/16	JLI	SW8260C
Naphthalene	57		4.4	0.88	ug/Kg	1	11/15/16	JLI	SW8260C
n-Butylbenzene	ND		4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
n-Propylbenzene	14		4.4	0.88	ug/Kg	1	11/15/16	JLI	SW8260C
o-Xylene	24		4.4	0.88	ug/Kg	1	11/15/16	JLI	SW8260C
p-Isopropyltoluene	1.0	J	4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
sec-Butylbenzene	3.3	J	4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
Styrene	ND		4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
tert-Butylbenzene	ND		4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
Tetrachloroethene	ND		4.4	0.88	ug/Kg	1	11/15/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND		8.8	2.2	ug/Kg	1	11/15/16	JLI	SW8260C 1
Toluene	14		4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND		4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND		4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND		8.8	2.2	ug/Kg	1	11/15/16	JLI	SW8260C
Trichloroethene	0.79	J	4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
Trichlorofluoromethane	ND	Ŭ	4.4	0.88	ug/Kg	1	11/15/16	JLI	SW8260C
Trichlorotrifluoroethane	ND		4.4	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
Vinyl chloride	ND		4.4	0.44	ug/Kg ug/Kg	1	11/15/16	JLI	SW8260C
QA/QC Surrogates	ND		77	0.44	ug/rtg	·	11/10/10	OL.	01102000
% 1,2-dichlorobenzene-d4	99				%	1	11/15/16	JLI	70 - 130 %
% Bromofluorobenzene	98				%	1	11/15/16	JLI	70 - 130 %
% Dibromofluoromethane	94				%	1	11/15/16	JLI	70 - 130 %
% Toluene-d8	102				%	1	11/15/16	JLI	70 - 130 %
	102				70	·	11/10/10	OLI	70 100 70
<u>1,4-dioxane</u>									
1,4-dioxane	ND		66	35	ug/kg	1	11/15/16	JLI	SW8260C
QA/QC Surrogates									
% 1,2-dichlorobenzene-d4	99				%	1	11/15/16	JLI	70 - 130 %
% Bromofluorobenzene	98				%	1	11/15/16	JLI	70 - 130 %
% Toluene-d8	102				%	1	11/15/16	JLI	70 - 130 %
<u>Volatiles</u>									
1,1,1,2-Tetrachloroethane	ND		18	0.88	ug/Kg	1	11/15/16	JLI	SW8260C
Acrolein	ND		18	2.2	ug/Kg	1	11/15/16	JLI	SW8260C
Acrylonitrile	ND		18	0.44	ug/Kg	1	11/15/16	JLI	SW8260C
Tert-butyl alcohol	20	J	88	18	ug/Kg	1	11/15/16	JLI	SW8260C
<u>Semivolatiles</u>									
1,2,4,5-Tetrachlorobenzene	ND		280	140	ug/Kg	1	11/14/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND		280	120	ug/Kg	1	11/14/16	DD	SW8270D
1,2-Dichlorobenzene	ND		280	110	ug/Kg	1	11/14/16	DD	SW8270D
1,2-Diphenylhydrazine	ND		280	130	ug/Kg	1	11/14/16	DD	SW8270D
1,3-Dichlorobenzene	ND		280	120	ug/Kg	1	11/14/16	DD	SW8270D
1,4-Dichlorobenzene	ND		280	120	ug/Kg	1	11/14/16	DD	SW8270D
2,4,5-Trichlorophenol	ND		280	220	ug/Kg	1	11/14/16	DD	SW8270D
2,4,6-Trichlorophenol	ND		200	130	ug/Kg	1	11/14/16	DD	SW8270D

Client ID: 15B7 (23-25)

Parameter Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
2,4-Dichlorophenol	ND	200	140	ug/Kg	1	11/14/16	DD	SW8270D
2,4-Dimethylphenol	ND	280	99	ug/Kg	1	11/14/16	DD	SW8270D
2,4-Dinitrophenol	ND	280	280	ug/Kg	1	11/14/16	DD	SW8270D
2,4-Dinitrotoluene	ND	200	160	ug/Kg	1	11/14/16	DD	SW8270D
2,6-Dinitrotoluene	ND	200	130	ug/Kg	1	11/14/16	DD	SW8270D
2-Chloronaphthalene	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
2-Chlorophenol	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
2-Methylnaphthalene	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	280	190	ug/Kg	1	11/14/16	DD	SW8270D
2-Nitroaniline	ND	280	280	ug/Kg	1	11/14/16	DD	SW8270D
2-Nitrophenol	ND	280	250	ug/Kg	1	11/14/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	280	160	ug/Kg	1	11/14/16	DD	SW8270D 1
3,3'-Dichlorobenzidine	ND	200	190	ug/Kg	1	11/14/16	DD	SW8270D
3-Nitroaniline	ND	400	800	ug/Kg	1	11/14/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	240	80	ug/Kg	1	11/14/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	280	140	ug/Kg	1	11/14/16	DD	SW8270D
4-Chloroaniline	ND	320	190	ug/Kg	1	11/14/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
4-Nitroaniline	ND	400	130	ug/Kg	1	11/14/16	DD	SW8270D
4-Nitrophenol	ND	400	180	ug/Kg	1	11/14/16	DD	SW8270D
Acenaphthene	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
Acenaphthylene	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
Acetophenone	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
Aniline	ND	320	320	ug/Kg	1	11/14/16	DD	SW8270D
Anthracene	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Benz(a)anthracene	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Benzidine	ND	400	230	ug/Kg	1	11/14/16	DD	SW8270D
Benzo(a)pyrene	ND	200	130	ug/Kg	1	11/14/16	DD	SW8270D
Benzo(b)fluoranthene	ND	280	140	ug/Kg	1	11/14/16	DD	SW8270D
Benzo(ghi)perylene	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Benzo(k)fluoranthene	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Benzoic acid	3300	2000	800	ug/Kg	1	11/14/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	280	100	ug/Kg	1	11/14/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	200	110	ug/Kg	1	11/14/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
Carbazole	ND	200	160	ug/Kg	1	11/14/16	DD	SW8270D
Chrysene	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	200	130	ug/Kg	1	11/14/16	DD	SW8270D
Dibenzofuran	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
Diethyl phthalate	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Dimethylphthalate	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
Di-n-butylphthalate	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
Di-n-octylphthalate	ND	280	100	ug/Kg	1	11/14/16	DD	SW8270D
Fluoranthene	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Fluorene	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Hexachlorobenzene	ND	200	120	ug/Kg	1	11/14/16	DD	SW8270D

Project ID: 1181 FLUSHING AVENUE BROOKLYN

Client ID: 15B7 (23-25)

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Hexachlorobutadiene	ND	280	140	ug/Kg	1	11/14/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	280	120	ug/Kg	1	11/14/16	DD	SW8270D
Hexachloroethane	ND	200	120	ug/Kg	1	11/14/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Isophorone	ND	200	110	ug/Kg	1	11/14/16	DD	SW8270D
Naphthalene	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
Nitrobenzene	ND	200	140	ug/Kg	1	11/14/16	DD	SW8270D
N-Nitrosodimethylamine	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	200	130	ug/Kg	1	11/14/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	280	150	ug/Kg	1	11/14/16	DD	SW8270D
Pentachloronitrobenzene	ND	280	150	ug/Kg	1	11/14/16	DD	SW8270D
Pentachlorophenol	ND	240	150	ug/Kg	1	11/14/16	DD	SW8270D
Phenanthrene	ND	280	110	ug/Kg	1	11/14/16	DD	SW8270D
Phenol	ND	280	130	ug/Kg	1	11/14/16	DD	SW8270D
Pyrene	ND	280	140	ug/Kg	1	11/14/16	DD	SW8270D
Pyridine	ND	280	98	ug/Kg	1	11/14/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	69			%	1	11/14/16	DD	30 - 130 %
% 2-Fluorobiphenyl	61			%	1	11/14/16	DD	30 - 130 %
% 2-Fluorophenol	51			%	1	11/14/16	DD	30 - 130 %
% Nitrobenzene-d5	71			%	1	11/14/16	DD	30 - 130 %
% Phenol-d5	68			%	1	11/14/16	DD	30 - 130 %
% Terphenyl-d14	64			%	1	11/14/16	DD	30 - 130 %

Project ID: 1181 FLUSHING AVENUE BROOKLYN Phoenix I.D.: BV82272

Client ID: 15B7 (23-25)

RL/ LOD/

Parameter Result PQL MDL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 29, 2016

Reviewed and Released by: Jon Carlson, Project Manager

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time. B^* = Present in blank, a bias is possible.

B = Present in blank, no bias suspected.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 29, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: TG 11/11/16

Location Code: EBC Received by: SW 11/14/16 14:46

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV82267

Phoenix ID: BV82274

Project ID: 1181 FLUSHING AVENUE BROOKLYN

Client ID: SOIL DUPLICATE 2

Parameter	Result		RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
Silver	ND		0.35	0.35	mg/Kg	1	11/15/16	LK	SW6010C	
Aluminum	5940		35	7.1	mg/Kg	10	11/15/16	LK	SW6010C	
Arsenic	1.17		0.71	0.71	mg/Kg	1	11/15/16	LK	SW6010C	
Barium	24.3		0.7	0.35	mg/Kg	1	11/15/16	LK	SW6010C	
Beryllium	0.25	В	0.28	0.14	mg/Kg	1	11/15/16	LK	SW6010C	
Calcium	814		3.5	3.3	mg/Kg	1	11/15/16	LK	SW6010C	
Cadmium	ND		0.35	0.35	mg/Kg	1	11/15/16	LK	SW6010C	
Cobalt	5.43		0.35	0.35	mg/Kg	1	11/15/16	LK	SW6010C	
Chromium	18.0		0.35	0.35	mg/Kg	1	11/15/16	LK	SW6010C	
Copper	8.44		0.35	0.35	mg/kg	1	11/15/16	LK	SW6010C	В
Iron	11400		35	35	mg/Kg	10	11/15/16	LK	SW6010C	
Mercury	ND		0.03	0.02	mg/Kg	1	11/15/16	RS	SW7471B	
Potassium	649	Ν	7	2.8	mg/Kg	1	11/15/16	LK	SW6010C	
Magnesium	2000		3.5	3.5	mg/Kg	1	11/15/16	LK	SW6010C	
Manganese	247	Ν	3.5	3.5	mg/Kg	10	11/15/16	LK	SW6010C	
Sodium	161	Ν	7	3.0	mg/Kg	1	11/15/16	LK	SW6010C	
Nickel	8.54		0.35	0.35	mg/Kg	1	11/15/16	LK	SW6010C	
Lead	1.3		0.7	0.35	mg/Kg	1	11/15/16	LK	SW6010C	
Antimony	ND		1.8	1.8	mg/Kg	1	11/15/16	LK	SW6010C	
Selenium	ND		1.4	1.2	mg/Kg	1	11/15/16	LK	SW6010C	
Thallium	ND		1.4	1.4	mg/Kg	1	11/15/16	LK	SW6010C	
Vanadium	18.6		0.35	0.35	mg/Kg	1	11/15/16	LK	SW6010C	
Zinc	20.6		0.7	0.35	mg/Kg	1	11/15/16	LK	SW6010C	В
Percent Solid	84				%		11/14/16	W	SW846-%Solid	
Soil Extraction for PCB	Completed	ł					11/14/16	NC/V	SW3545A	
Soil Extraction for Pest	Completed	i					11/14/16	NC/V	SW3545A	
Soil Extraction for SVOA	Completed	i					11/14/16	G/J/CK\	/ SW3545A	
Mercury Digestion	Completed	i					11/15/16	W/W	SW7471B	

Project ID: 1181 FLUSHING AVENUE BROOKLYN

Client ID: SOIL DUPLICATE 2

Parameter Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Total Metals Digest	Completed					11/14/16	X/AG	SW3050B
Field Extraction	Completed					11/11/16		SW5035A
Polychlorinated Biphe	envis							
PCB-1016	ND	78	78	ug/Kg	2	11/15/16	AW	SW8082A
PCB-1221	ND	78	78	ug/Kg	2	11/15/16	AW	SW8082A
PCB-1232	ND	78	78	ug/Kg	2	11/15/16	AW	SW8082A
PCB-1242	ND	78	78	ug/Kg	2	11/15/16	AW	SW8082A
PCB-1248	ND	78	78	ug/Kg	2	11/15/16	AW	SW8082A
PCB-1254	ND	78	78	ug/Kg	2	11/15/16	AW	SW8082A
PCB-1260	ND	78	78	ug/Kg	2	11/15/16	AW	SW8082A
PCB-1262	ND	78	78	ug/Kg	2	11/15/16	AW	SW8082A
PCB-1268	ND	78	78	ug/Kg	2	11/15/16	AW	SW8082A
QA/QC Surrogates				0 0				
% DCBP	75			%	2	11/15/16	AW	40 - 140 %
% TCMX	68			%	2	11/15/16	AW	40 - 140 %
Pesticides - Soil								
4,4' -DDD	ND	2.3	2.3	ug/Kg	2	11/16/16	CE	SW8081B
4,4' -DDE	ND	2.3	2.3	ug/Kg	2	11/16/16	CE	SW8081B
4,4' -DDT	ND	2.3	2.3	ug/Kg	2	11/16/16	CE	SW8081B
a-BHC	ND	7.8	7.8	ug/Kg	2	11/16/16	CE	SW8081B
a-Chlordane	ND	3.9	3.9	ug/Kg	2	11/16/16	CE	SW8081B
Aldrin	ND	3.9	3.9	ug/Kg	2	11/16/16	CE	SW8081B
b-BHC	ND	7.8	7.8	ug/Kg	2	11/16/16	CE	SW8081B
Chlordane	ND	39	39	ug/Kg ug/Kg	2	11/16/16	CE	SW8081B
d-BHC	ND	7.8	7.8	ug/Kg	2	11/16/16	CE	SW8081B
Dieldrin	ND	3.9	3.9	ug/Kg	2	11/16/16	CE	SW8081B
Endosulfan I	ND	7.8	7.8	ug/Kg	2	11/16/16	CE	SW8081B
Endosulfan II	ND	7.8	7.8	ug/Kg	2	11/16/16	CE	SW8081B
Endosulfan sulfate	ND	7.8	7.8	ug/Kg	2	11/16/16	CE	SW8081B
Endrin	ND	7.8	7.8	ug/Kg	2	11/16/16	CE	SW8081B
Endrin aldehyde	ND	7.8	7.8	ug/Kg	2	11/16/16	CE	SW8081B
Endrin ketone	ND	7.8	7.8	ug/Kg	2	11/16/16	CE	SW8081B
g-BHC	ND	1.6	1.6	ug/Kg	2	11/16/16	CE	SW8081B
g-Chlordane	ND	3.9	3.9	ug/Kg	2	11/16/16	CE	SW8081B
Heptachlor	ND	7.8	7.8	ug/Kg	2	11/16/16	CE	SW8081B
Heptachlor epoxide	ND	7.8	7.8	ug/Kg	2	11/16/16	CE	SW8081B
Methoxychlor	ND	39	39	ug/Kg	2	11/16/16	CE	SW8081B
Toxaphene	ND	160	160	ug/Kg	2	11/16/16	CE	SW8081B
QA/QC Surrogates	No	100	100	ug/itg	_	11/10/10	OL	OWOOOTE
% DCBP	84			%	2	11/16/16	CE	40 - 140 %
% TCMX	66			%	2	11/16/16	CE	40 - 140 %
Volatiles								
1,1,1,2-Tetrachloroethane	ND	5.2	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	5.2	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	5.2	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
1,1-Dichloroethane	ND	5.2	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
1,1-Dichloroethane	ND	5.2	1.0	ug/Kg	1	11/15/16	JLI	SW8260C

Parameter	Result		RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1,1-Dichloroethene	ND		5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
1,1-Dichloropropene	ND		5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND		5.2	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
1,2,3-Trichloropropane	ND		5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND		5.2	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
1,2,4-Trimethylbenzene	1.0	J	5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND		5.2	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
1,2-Dibromoethane	ND		5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
1,2-Dichlorobenzene	ND		5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
1,2-Dichloroethane	ND		5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
1,2-Dichloropropane	ND		5.2	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
1,3,5-Trimethylbenzene	ND		5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
1,3-Dichlorobenzene	ND		5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
1,3-Dichloropropane	ND		5.2	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
1,4-Dichlorobenzene	ND		5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
2,2-Dichloropropane	ND		5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
2-Chlorotoluene	ND		5.2	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
2-Hexanone	ND		26	5.2	ug/Kg	1	11/15/16	JLI	SW8260C
2-Isopropyltoluene	ND		5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C 1
4-Chlorotoluene	ND		5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
4-Methyl-2-pentanone	ND		26	5.2	ug/Kg	1	11/15/16	JLI	SW8260C
Acetone	26	JS	26	5.2	ug/Kg	1	11/15/16	JLI	SW8260C
Acrylonitrile	ND		10	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
Benzene	0.86	J	5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
Bromobenzene	ND		5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
Bromochloromethane	ND		5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
Bromodichloromethane	ND		5.2	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
Bromoform	ND		5.2	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
Bromomethane	ND		5.2	2.1	ug/Kg	1	11/15/16	JLI	SW8260C
Carbon Disulfide	1.2	J	5.2	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
Carbon tetrachloride	ND		5.2	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
Chlorobenzene	ND		5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
Chloroethane	ND		5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
Chloroform	ND		5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
Chloromethane	ND		5.2	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND		5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND		5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
Dibromochloromethane	ND		5.2	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
Dibromomethane	ND		5.2	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
Dichlorodifluoromethane	ND		5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
Ethylbenzene	1.3	J	5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
Hexachlorobutadiene	ND		5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
Isopropylbenzene	ND		5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
m&p-Xylene	2.1	J	5.2	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
Methyl Ethyl Ketone	ND		31	5.2	ug/Kg	1	11/15/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	5.1	J	10	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
Methylene chloride	ND		5.2	5.2	ug/Kg	1	11/15/16	JLI	SW8260C
Naphthalene	ND		5.2	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
n-Butylbenzene	ND		5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C

Client ID: SOIL DUPLICATE 2

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
n-Propylbenzene	ND	5.2	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
o-Xylene	ND	5.2	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
p-Isopropyltoluene	ND	5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
sec-Butylbenzene	ND	5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
Styrene	ND	5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
tert-Butylbenzene	ND	5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
Tetrachloroethene	ND	5.2	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	10	2.6	ug/Kg	1	11/15/16	JLI	SW8260C 1
Toluene	ND	5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	10	2.6	ug/Kg	1	11/15/16	JLI	SW8260C
Trichloroethene	ND	5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
Trichlorofluoromethane	ND	5.2	1.0	ug/Kg	1	11/15/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
Vinyl chloride	ND	5.2	0.52	ug/Kg	1	11/15/16	JLI	SW8260C
QA/QC Surrogates	110	0.2	0.02	ug/itg	·	11/10/10	02.	01102000
% 1,2-dichlorobenzene-d4	99			%	1	11/15/16	JLI	70 - 130 %
% Bromofluorobenzene	98			%	1	11/15/16	JLI	70 - 130 %
% Dibromofluoromethane	95			%	1	11/15/16	JLI	70 - 130 %
% Toluene-d8	101			%	1	11/15/16	JLI	70 - 130 %
70 Toldene-do	101			,0	·	11/10/10	02.	70 100 /0
<u>1,4-dioxane</u>								
1,4-dioxane	ND	79	42	ug/kg	1	11/15/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	99			%	1	11/15/16	JLI	70 - 130 %
% Bromofluorobenzene	98			%	1	11/15/16	JLI	70 - 130 %
% Toluene-d8	101			%	1	11/15/16	JLI	70 - 130 %
Valatilaa								
<u>Volatiles</u>	ND	0.4	4.0			44/45/40		014/00000
1,1,1,2-Tetrachloroethane	ND	21	1.0	ug/Kg	1	11/15/16	JLI 	SW8260C
Acrolein	ND	21	2.6	ug/Kg	1	11/15/16	JLI 	SW8260C
Acrylonitrile	ND	21	0.52	ug/Kg	1	11/15/16	JLI 	SW8260C
Tert-butyl alcohol	300	100	21	ug/Kg	1	11/15/16	JLI	SW8260C
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	270	140	ug/Kg	1	11/14/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	270	120	ug/Kg	1	11/14/16	DD	SW8270D
1,2-Dichlorobenzene	ND	270	110	ug/Kg	1	11/14/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	270	130	ug/Kg	1	11/14/16	DD	SW8270D
1,3-Dichlorobenzene	ND	270	110	ug/Kg	1	11/14/16	DD	SW8270D
1,4-Dichlorobenzene	ND	270	110	ug/Kg	1	11/14/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	270	210	ug/Kg	1	11/14/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	190	120	ug/Kg	1	11/14/16	DD	SW8270D
2,4-Dichlorophenol	ND	190	140	ug/Kg	1	11/14/16	DD	SW8270D
2,4-Dimethylphenol	ND	270	96	ug/Kg ug/Kg	1	11/14/16	DD	SW8270D
- · ·	ND ND	270	96 270	ug/Kg ug/Kg	1 1	11/14/16	DD	SW8270D SW8270D
2,4-Dinitrophenol								
2,4-Dinitrotoluene	ND	190	150	ug/Kg	1	11/14/16	DD	SW8270D
2,6-Dinitrotoluene	ND	190	120	ug/Kg	1	11/14/16	DD	SW8270D
2-Chloronaphthalene	ND	270	110	ug/Kg	1	11/14/16	DD	SW8270D

Client ID: SOIL DUPLICATE 2

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
2-Chlorophenol	ND	270	110	ug/Kg	1	11/14/16	DD	SW8270D
2-Methylnaphthalene	ND	270	120	ug/Kg	1	11/14/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	270	180	ug/Kg	1	11/14/16	DD	SW8270D
2-Nitroaniline	ND	270	270	ug/Kg	1	11/14/16	DD	SW8270D
2-Nitrophenol	ND	270	240	ug/Kg	1	11/14/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	270	150	ug/Kg	1	11/14/16	DD	SW8270D 1
3,3'-Dichlorobenzidine	ND	190	180	ug/Kg	1	11/14/16	DD	SW8270D
3-Nitroaniline	ND	390	770	ug/Kg	1	11/14/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	230	77	ug/Kg	1	11/14/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	270	110	ug/Kg	1	11/14/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	270	140	ug/Kg	1	11/14/16	DD	SW8270D
4-Chloroaniline	ND	310	180	ug/Kg	1	11/14/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	270	130	ug/Kg	1	11/14/16	DD	SW8270D
4-Nitroaniline	ND	390	130	ug/Kg	1	11/14/16	DD	SW8270D
4-Nitrophenol	ND	390	170	ug/Kg	1	11/14/16	DD	SW8270D
Acenaphthene	ND	270	120	ug/Kg	1	11/14/16	DD	SW8270D
Acenaphthylene	ND	270	110	ug/Kg	1	11/14/16	DD	SW8270D
Acetophenone	ND	270	120	ug/Kg	1	11/14/16	DD	SW8270D
Aniline	ND	310	310	ug/Kg	1	11/14/16	DD	SW8270D
Anthracene	ND	270	130	ug/Kg	1	11/14/16	DD	SW8270D
Benz(a)anthracene	ND	270	130	ug/Kg	1	11/14/16	DD	SW8270D
Benzidine	ND	390	230	ug/Kg	1	11/14/16	DD	SW8270D
Benzo(a)pyrene	ND	190	130	ug/Kg	1	11/14/16	DD	SW8270D
Benzo(b)fluoranthene	ND	270	130	ug/Kg	1	11/14/16	DD	SW8270D
Benzo(ghi)perylene	ND	270	130	ug/Kg	1	11/14/16	DD	SW8270D
Benzo(k)fluoranthene	ND	270	130	ug/Kg	1	11/14/16	DD	SW8270D
Benzoic acid	ND	1900	770	ug/Kg ug/Kg	1	11/14/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	270	100	ug/Kg ug/Kg	1	11/14/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	270	110	ug/Kg ug/Kg	1	11/14/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	190	100	ug/Kg	1	11/14/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	270	110	ug/Kg ug/Kg	1	11/14/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	270	110	ug/Kg ug/Kg	1	11/14/16	DD	SW8270D
Carbazole	ND	190	150	ug/Kg ug/Kg	1	11/14/16	DD	SW8270D
	ND	270	130	ug/Kg ug/Kg	1	11/14/16	DD	SW8270D
Chrysene	ND	190	130	ug/Kg ug/Kg	1	11/14/16	DD	SW8270D SW8270D
Dibenz(a,h)anthracene	ND							
Dibenzofuran		270	110	ug/Kg	1	11/14/16	DD	SW8270D
Diethyl phthalate	ND	270	120	ug/Kg	1	11/14/16	DD	SW8270D
Dimethylphthalate	ND	270	120	ug/Kg	1	11/14/16	DD	SW8270D
Di-n-butylphthalate	ND	270	100	ug/Kg	1	11/14/16	DD	SW8270D
Di-n-octylphthalate	ND	270	100	ug/Kg	1	11/14/16	DD	SW8270D
Fluoranthene	ND	270	130	ug/Kg	1	11/14/16	DD	SW8270D
Fluorene	ND	270	130	ug/Kg	1	11/14/16	DD	SW8270D
Hexachlorobenzene	ND	190	110	ug/Kg	1	11/14/16	DD	SW8270D
Hexachlorobutadiene	ND	270	140	ug/Kg	1	11/14/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	270	120	ug/Kg	1	11/14/16	DD	SW8270D
Hexachloroethane	ND	190	120	ug/Kg	1	11/14/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	270	130	ug/Kg	1	11/14/16	DD	SW8270D
Isophorone	ND	190	110	ug/Kg	1	11/14/16	DD	SW8270D
Naphthalene	ND	270	110	ug/Kg	1	11/14/16	DD	SW8270D

Project ID: 1181 FLUSHING AVENUE BROOKLYN

Client ID: SOIL DUPLICATE 2

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Nitrobenzene	ND	190	140	ug/Kg	1	11/14/16	DD	SW8270D
N-Nitrosodimethylamine	ND	270	110	ug/Kg	1	11/14/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	190	130	ug/Kg	1	11/14/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	270	150	ug/Kg	1	11/14/16	DD	SW8270D
Pentachloronitrobenzene	ND	270	140	ug/Kg	1	11/14/16	DD	SW8270D
Pentachlorophenol	ND	230	150	ug/Kg	1	11/14/16	DD	SW8270D
Phenanthrene	ND	270	110	ug/Kg	1	11/14/16	DD	SW8270D
Phenol	ND	270	120	ug/Kg	1	11/14/16	DD	SW8270D
Pyrene	ND	270	130	ug/Kg	1	11/14/16	DD	SW8270D
Pyridine	ND	270	95	ug/Kg	1	11/14/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	70			%	1	11/14/16	DD	30 - 130 %
% 2-Fluorobiphenyl	58			%	1	11/14/16	DD	30 - 130 %
% 2-Fluorophenol	48			%	1	11/14/16	DD	30 - 130 %
% Nitrobenzene-d5	60			%	1	11/14/16	DD	30 - 130 %
% Phenol-d5	60			%	1	11/14/16	DD	30 - 130 %
% Terphenyl-d14	67			%	1	11/14/16	DD	30 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time. B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 29, 2016

Reviewed and Released by: Jon Carlson, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 29, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: TG 11/11/16

Location Code: EBC Received by: SW 11/14/16 14:46

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

<u>aboratory Data</u> SDG ID: GBV82267

Phoenix ID: BV82275

Project ID: 1181 FLUSHING AVENUE BROOKLYN

Client ID: TRIP BLANK HL

RL/ LOD/

Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Field Extraction	Completed					11/11/16		SW5035A
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	250	50	ug/Kg	50	11/14/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	250	25	ug/Kg	50	11/14/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	250	50	ug/Kg	50	11/14/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	250	50	ug/Kg	50	11/14/16	JLI	SW8260C
1,1-Dichloroethane	ND	250	50	ug/Kg	50	11/14/16	JLI	SW8260C
1,1-Dichloroethene	ND	250	25	ug/Kg	50	11/14/16	JLI	SW8260C
1,1-Dichloropropene	ND	250	25	ug/Kg	50	11/14/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	250	50	ug/Kg	50	11/14/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	250	25	ug/Kg	50	11/14/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	250	50	ug/Kg	50	11/14/16	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	250	25	ug/Kg	50	11/14/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	250	50	ug/Kg	50	11/14/16	JLI	SW8260C
1,2-Dibromoethane	ND	250	25	ug/Kg	50	11/14/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	250	25	ug/Kg	50	11/14/16	JLI	SW8260C
1,2-Dichloroethane	ND	25	25	ug/Kg	50	11/14/16	JLI	SW8260C
1,2-Dichloropropane	ND	250	50	ug/Kg	50	11/14/16	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	250	25	ug/Kg	50	11/14/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	250	25	ug/Kg	50	11/14/16	JLI	SW8260C
1,3-Dichloropropane	ND	250	50	ug/Kg	50	11/14/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	250	25	ug/Kg	50	11/14/16	JLI	SW8260C
2,2-Dichloropropane	ND	250	25	ug/Kg	50	11/14/16	JLI	SW8260C
2-Chlorotoluene	ND	250	50	ug/Kg	50	11/14/16	JLI	SW8260C
2-Hexanone	ND	1300	250	ug/Kg	50	11/14/16	JLI	SW8260C
2-Isopropyltoluene	ND	250	25	ug/Kg	50	11/14/16	JLI	SW8260C 1
4-Chlorotoluene	ND	250	25	ug/Kg	50	11/14/16	JLI	SW8260C

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
4-Methyl-2-pentanone	ND	1300	250	ug/Kg	50	11/14/16	JLI	SW8260C
Acetone	ND	250	250	ug/Kg	50	11/14/16	JLI	SW8260C
Acrylonitrile	ND	500	50	ug/Kg	50	11/14/16	JLI	SW8260C
Benzene	ND	60	25	ug/Kg	50	11/14/16	JLI	SW8260C
Bromobenzene	ND	250	25	ug/Kg	50	11/14/16	JLI	SW8260C
Bromochloromethane	ND	250	25	ug/Kg	50	11/14/16	JLI	SW8260C
Bromodichloromethane	ND	250	50	ug/Kg	50	11/14/16	JLI	SW8260C
Bromoform	ND	250	50	ug/Kg	50	11/14/16	JLI	SW8260C
Bromomethane	ND	250	100	ug/Kg	50	11/14/16	JLI	SW8260C
Carbon Disulfide	ND	250	50	ug/Kg	50	11/14/16	JLI	SW8260C
Carbon tetrachloride	ND	250	50	ug/Kg	50	11/14/16	JLI	SW8260C
Chlorobenzene	ND	250	25	ug/Kg	50	11/14/16	JLI	SW8260C
Chloroethane	ND	250	25	ug/Kg	50	11/14/16	JLI	SW8260C
Chloroform	ND	250	25	ug/Kg	50	11/14/16	JLI	SW8260C
Chloromethane	ND	250	50	ug/Kg	50	11/14/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	250	25	ug/Kg	50	11/14/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	250	25	ug/Kg	50	11/14/16	JLI	SW8260C
Dibromochloromethane	ND	250	50	ug/Kg	50	11/14/16	JLI	SW8260C
Dibromomethane	ND	250	50	ug/Kg	50	11/14/16	JLI	SW8260C
Dichlorodifluoromethane	ND	250	25	ug/Kg	50	11/14/16	JLI	SW8260C
Ethylbenzene	ND	250	25	ug/Kg	50	11/14/16	JLI	SW8260C
Hexachlorobutadiene	ND	250	25	ug/Kg	50	11/14/16	JLI	SW8260C
Isopropylbenzene	ND	250	25	ug/Kg	50	11/14/16	JLI	SW8260C
m&p-Xylene	ND	250	50	ug/Kg	50	11/14/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	250	250	ug/Kg	50	11/14/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	500	50	ug/Kg	50	11/14/16	JLI	SW8260C
Methylene chloride	ND	250	250	ug/Kg	50	11/14/16	JLI	SW8260C
Naphthalene	ND	250	50	ug/Kg	50	11/14/16	JLI	SW8260C
n-Butylbenzene	ND	250	25	ug/Kg	50	11/14/16	JLI	SW8260C
n-Propylbenzene	ND	250	50	ug/Kg	50	11/14/16	JLI	SW8260C
o-Xylene	ND	250	50	ug/Kg	50	11/14/16	JLI	SW8260C
p-Isopropyltoluene	ND	250	25	ug/Kg	50	11/14/16	JLI	SW8260C
sec-Butylbenzene	ND	250	25	ug/Kg	50	11/14/16	JLI	SW8260C
Styrene	ND	250	25	ug/Kg	50	11/14/16	JLI	SW8260C
tert-Butylbenzene	ND	250	25	ug/Kg	50	11/14/16	JLI	SW8260C
Tetrachloroethene	ND	250	50	ug/Kg	50	11/14/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	500	130	ug/Kg	50	11/14/16	JLI	SW8260C
Toluene	ND	250	25	ug/Kg	50	11/14/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	190	25	ug/Kg	50	11/14/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	250	25	ug/Kg	50	11/14/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	500	130	ug/Kg	50	11/14/16	JLI	SW8260C
Trichloroethene	ND	250	25	ug/Kg	50	11/14/16	JLI	SW8260C
Trichlorofluoromethane	ND	250	50	ug/Kg	50	11/14/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	250	25	ug/Kg	50	11/14/16	JLI	SW8260C
Vinyl chloride	ND	25	25	ug/Kg	50	11/14/16	JLI	SW8260C
QA/QC Surrogates		-		3 3		-		
% 1,2-dichlorobenzene-d4	99			%	50	11/14/16	JLI	70 - 130 %
% Bromofluorobenzene	99			%	50	11/14/16	JLI	70 - 130 %
% Dibromofluoromethane	93			%	50	11/14/16	JLI	70 - 130 %

Project ID: 1181 FLUSHING AVENUE BROOKLYN

Client ID: TRIP BLANK HL

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	100			%	50	11/14/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	2000	2000	ug/kg	50	11/14/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	99			%	50	11/14/16	JLI	70 - 130 %
% Bromofluorobenzene	99			%	50	11/14/16	JLI	70 - 130 %
% Toluene-d8	100			%	50	11/14/16	JLI	70 - 130 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	1000	50	ug/Kg	50	11/14/16	JLI	SW8260C
Acrolein	ND	1000	130	ug/Kg	50	11/14/16	JLI	SW8260C
Acrylonitrile	ND	1000	25	ug/Kg	50	11/14/16	JLI	SW8260C
Tert-butyl alcohol	ND	5000	1000	ug/Kg	50	11/14/16	JLI	SW8260C

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TRIP BLANK INCLUDED.

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 29, 2016

Reviewed and Released by: Jon Carlson, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 29, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample InformationCustody InformationDateTimeMatrix:SOLIDCollected by:TG11/11/16Location Code:EBCReceived by:SW11/14/1614:46

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GBV82267

Phoenix ID: BV82276

Project ID: 1181 FLUSHING AVENUE BROOKLYN

Client ID: TRIP BLANK LL

RL/ LOD/

Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Field Extraction	Completed					11/11/16		SW5035A
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	5.0	1.0	ug/Kg	1	11/14/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	5.0	1.0	ug/Kg	1	11/14/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	5.0	1.0	ug/Kg	1	11/14/16	JLI	SW8260C
1,1-Dichloroethane	ND	5.0	1.0	ug/Kg	1	11/14/16	JLI	SW8260C
1,1-Dichloroethene	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
1,1-Dichloropropene	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/Kg	1	11/14/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	5.0	1.0	ug/Kg	1	11/14/16	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/Kg	1	11/14/16	JLI	SW8260C
1,2-Dibromoethane	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
1,2-Dichloroethane	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
1,2-Dichloropropane	ND	5.0	1.0	ug/Kg	1	11/14/16	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
1,3-Dichloropropane	ND	5.0	1.0	ug/Kg	1	11/14/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
2,2-Dichloropropane	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
2-Chlorotoluene	ND	5.0	1.0	ug/Kg	1	11/14/16	JLI	SW8260C
2-Hexanone	ND	25	5.0	ug/Kg	1	11/14/16	JLI	SW8260C
2-Isopropyltoluene	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C 1
4-Chlorotoluene	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
4-Methyl-2-pentanone	ND	25	5.0	ug/Kg	1	11/14/16	JLI	SW8260C
Acetone	ND	25	5.0	ug/Kg	1	11/14/16	JLI	SW8260C
Acrylonitrile	ND	10	1.0	ug/Kg	1	11/14/16	JLI	SW8260C
Benzene	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
Bromobenzene	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
Bromochloromethane	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
Bromodichloromethane	ND	5.0	1.0	ug/Kg	1	11/14/16	JLI	SW8260C
Bromoform	ND	5.0	1.0	ug/Kg	1	11/14/16	JLI	SW8260C
Bromomethane	ND	5.0	2.0	ug/Kg	1	11/14/16	JLI	SW8260C
Carbon Disulfide	ND	5.0	1.0	ug/Kg	1	11/14/16	JLI	SW8260C
Carbon tetrachloride	ND	5.0	1.0	ug/Kg	1	11/14/16	JLI	SW8260C
Chlorobenzene	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
Chloroethane	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
Chloroform	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
Chloromethane	ND	5.0	1.0	ug/Kg	1	11/14/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
Dibromochloromethane	ND	5.0	1.0	ug/Kg	1	11/14/16	JLI	SW8260C
Dibromomethane	ND	5.0	1.0	ug/Kg	1	11/14/16	JLI	SW8260C
Dichlorodifluoromethane	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
Ethylbenzene	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
Hexachlorobutadiene	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
Isopropylbenzene	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
m&p-Xylene	ND	5.0	1.0	ug/Kg	1	11/14/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	30	5.0	ug/Kg	1	11/14/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	10	1.0	ug/Kg	1	11/14/16	JLI	SW8260C
Methylene chloride	ND	5.0	5.0	ug/Kg	1	11/14/16	JLI	SW8260C
Naphthalene	ND	5.0	1.0	ug/Kg	1	11/14/16	JLI	SW8260C
n-Butylbenzene	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
n-Propylbenzene	ND	5.0	1.0	ug/Kg	1	11/14/16	JLI	SW8260C
o-Xylene	ND	5.0	1.0	ug/Kg	1	11/14/16	JLI	SW8260C
p-Isopropyltoluene	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
sec-Butylbenzene	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
Styrene	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
tert-Butylbenzene	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
Tetrachloroethene	ND	5.0	1.0	ug/Kg	1	11/14/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	10	2.5	ug/Kg	1	11/14/16	JLI	SW8260C
Toluene	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	10	2.5	ug/Kg	1	11/14/16	JLI	SW8260C
Trichloroethene	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
Trichlorofluoromethane	ND	5.0	1.0	ug/Kg	1	11/14/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
Vinyl chloride	ND	5.0	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
QA/QC Surrogates		5.0	0.00	~¤'''\	•	,, 10	J	27.0200
% 1,2-dichlorobenzene-d4	100			%	1	11/14/16	JLI	70 - 130 %
% Bromofluorobenzene	97			%	1	11/14/16	JLI	70 - 130 %
% Dibromofluoromethane	95			%	1	11/14/16	JLI	70 - 130 %
	55			70	1	11,1-1,10	JLI	. 5 100 /0

Project ID: 1181 FLUSHING AVENUE BROOKLYN

Client ID: TRIP BLANK LL

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	100			%	1	11/14/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	75	40	ug/kg	1	11/14/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	100			%	1	11/14/16	JLI	70 - 130 %
% Bromofluorobenzene	97			%	1	11/14/16	JLI	70 - 130 %
% Toluene-d8	100			%	1	11/14/16	JLI	70 - 130 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	20	1.0	ug/Kg	1	11/14/16	JLI	SW8260C
Acrolein	ND	20	2.5	ug/Kg	1	11/14/16	JLI	SW8260C
Acrylonitrile	ND	20	0.50	ug/Kg	1	11/14/16	JLI	SW8260C
Tert-butyl alcohol	ND	100	20	ug/Kg	1	11/14/16	JLI	SW8260C

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TRIP BLANK INCLUDED.

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 29, 2016

Reviewed and Released by: Jon Carlson, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

November 29, 2016

QA/QC Data

SDG I.D.: GBV82267 %

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	Rec Limits	RPD Limits	
QA/QC Batch 366701 (mg/kg),	QC Sam	ple No:	BV8226	8 (BV822	267, BV	/82268,	BV822	70, BV8	32271,	BV8227	2, BV8	2274)		
ICP Metals - Soil														
Aluminum	BRL	4.9	6630	6520	1.70	103			NC			80 - 120	30	
Antimony	BRL	3.3	<1.9	<1.9	NC	95.5			85.6			70 - 130	30	
Arsenic	BRL	0.66	1.24	1.30	NC	98.7			89.8			80 - 120	30	
Barium	BRL	0.33	37.0	35.5	4.10	96.3			97.4			80 - 120	30	
Beryllium	BRL	0.26	0.33	0.32	NC	98.8			94.1			80 - 120	30	
Cadmium	BRL	0.33	< 0.37	< 0.38	NC	96.5			92.7			80 - 120	30	
Calcium	BRL	4.9	1030	1010	2.00	97.9			NC			80 - 120	30	
Chromium	BRL	0.33	20.0	19.1	4.60	104			95.3			80 - 120	30	
Cobalt	BRL	0.33	7.14	6.89	3.60	99.3			94.8			80 - 120	30	
Copper	0.76	0.33	10.9	10.3	5.70	91.5			100			80 - 120	30	
Iron	BRL	4.9	13800	13600	1.50	105			NC			80 - 120	30	
Lead	BRL	0.33	1.5	1.15	NC	99.1			93.2			80 - 120	30	
Magnesium	BRL	4.9	2510	2380	5.30	106			NC			80 - 120	30	
Manganese	BRL	0.33	525	483	8.30	93.3			26.3			80 - 120	30	m
Nickel	BRL	0.33	11.9	11.3	5.20	102			94.3			80 - 120	30	
Potassium	BRL	4.9	1240	1190	4.10	108			>130			80 - 120	30	m
Selenium	BRL	1.3	<1.5	<1.5	NC	84.0			79.8			80 - 120	30	
Silver	BRL	0.33	< 0.37	< 0.38	NC	99.7			92.5			70 - 130	30	
Sodium	BRL	4.9	146	151	NC	108			>130			80 - 120	30	m
Thallium	BRL	3.0	<1.5	<1.7	NC	103			94.6			80 - 120	30	
Vanadium	BRL	0.33	27.1	25.6	5.70	112			94.4			80 - 120	30	
Zinc	0.34	0.33	27.8	26.2	5.90	97.7			92.0			80 - 120	30	
QA/QC Batch 366756 (mg/kg),	QC Sam	ple No:	BV8226	8 (BV822	267, BV	/82268,	BV822	70, BV8	32271,	BV8227	2, BV8	2274)		
Mercury - Soil	BRL	0.03	<0.03	<0.03	NC	98.3	98.3	0.0	94.5			75 - 125	30	

m = This parameter is outside laboratory MS/MSD specified recovery limits.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

% TCMX (Surrogate Rec)

84

QA/QC Data

November 29, 2016		<u>QA/QC</u>		SDG I.D.: GBV82267						
Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 366705 (ug/Kg), Q	C Sam	ole No: BV82268 2X (BV82268	8, BV822	70, BV8	2274)					
Pesticides - Solid										
4,4' -DDD	ND	1.7	82	100	19.8	72	67	7.2	40 - 140	30
4,4' -DDE	ND	1.7	77	93	18.8	69	65	6.0	40 - 140	30
4,4' -DDT	ND	1.7	80	96	18.2	69	65	6.0	40 - 140	30
a-BHC	ND	1.0	71	87	20.3	67	68	1.5	40 - 140	30
a-Chlordane	ND	3.3	71	86	19.1	61	59	3.3	40 - 140	30
Aldrin	ND	1.0	74	91	20.6	146	143	2.1	40 - 140	30
b-BHC	ND	1.0	70	86	20.5	117	108	8.0	40 - 140	30
Chlordane	ND	33	74	89	18.4	63	61	3.2	40 - 140	30
d-BHC	ND	3.3	79	95	18.4	146	117	22.1	40 - 140	30
Dieldrin	ND	1.0	75	91	19.3	67	65	3.0	40 - 140	30
Endosulfan I	ND	3.3	81	98	19.0	70	68	2.9	40 - 140	30
Endosulfan II	ND	3.3	86	102	17.0	71	68	4.3	40 - 140	30
Endosulfan sulfate	ND	3.3	82	96	15.7	64	61	4.8	40 - 140	30
Endrin	ND	3.3	76	89	15.8	65	62	4.7	40 - 140	30
Endrin aldehyde	ND	3.3	61	71	15.2	52	52	0.0	40 - 140	30
Endrin ketone	ND	3.3	88	107	19.5	70	68	2.9	40 - 140	30
g-BHC	ND	1.0	72	89	21.1	76	74	2.7	40 - 140	30
g-Chlordane	ND	3.3	74	89	18.4	63	61	3.2	40 - 140	30
Heptachlor	ND	3.3	72	88	20.0	62	61	1.6	40 - 140	30
Heptachlor epoxide	ND	3.3	76	94	21.2	65	64	1.6	40 - 140	30
Methoxychlor	ND	3.3	78 NA	92 NA	16.5	66	60	9.5	40 - 140	30
Toxaphene % DCBP	ND 87	130 %	NA 91	NA 110	NC 18.9	NA 73	NA 69	NC 5.6	40 - 140 40 - 140	30 30
% TCMX	76	% %	75	90	18.2	63	61	3.2	40 - 140	30
Comment:	76	76	75	90	10.2	03	01	3.2	40 - 140	30
Alpha and gamma chlordane were s chlordane in the LCS, LCSD, MS a QA/QC Batch 366726 (ug/Kg), Q	nd MSD					ie recov	ery is re	ported a	as	
Polychlorinated Biphenyls		•	0, 0 0 0 2 2	.70, 600	12214)					
			40		2.0	F.4		1.0		
PCB-1016	ND	33	68	66	3.0	54	55	1.8	40 - 140	30
PCB-1221	ND	33							40 - 140	30
PCB-1232 PCB-1242	ND	33							40 - 140	30
	ND	33							40 - 140	30
PCB-1248	ND	33							40 - 140	30
PCB-1254 PCB-1260	ND ND	33 33	70	72	2.8	60	54	10.5	40 - 140 40 - 140	30 30
PCB-1260 PCB-1262	ND	33	70	12	2.0	00	54	10.3	40 - 140	30
PCB-1268	ND	33							40 - 140	30
% DCBP (Surrogate Rec)	88	%	83	83	0.0	71	67	5.8	40 - 140	30
70 DODE (Surroyate Rec)	00	70	03	70	0.0	/ 1	()	5.0	40 - 140	30

72

6.7

1.6 40 - 140

SDG I.D.: GBV82267

% % Blk LCS LCSD LCS MS MSD MS Rec **RPD** Blank RL % **RPD** % % RPD Limits Limits Parameter QA/QC Batch 366971 (ug/kg), QC Sample No: BV82268 (BV82267 (500X), BV82268, BV82270, BV82272, BV82274) Volatiles - Solid 112 1,1,1,2-Tetrachloroethane ND 5.0 94 104 10.1 112 0.0 70 - 130 30 1,1,1-Trichloroethane ND 5.0 87 95 8.8 101 101 0.0 70 - 130 30 95 70 - 130 ND 3.0 87 8.8 107 106 0.9 30 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane ND 5.0 81 91 11.6 98 100 2.0 70 - 130 30 ND 90 99 9.5 70 - 130 1,1-Dichloroethane 5.0 110 110 0.0 30 91 70 - 130 1,1-Dichloroethene ND 5.0 102 11.4 107 108 0.9 30 ND 5.0 87 97 10.9 102 70 - 130 30 1,1-Dichloropropene 103 1.0 1,2,3-Trichlorobenzene ND 5.0 66 79 17.9 102 98 4.0 70 - 130 30 ī 1,2,3-Trichloropropane ND 5.0 83 98 16.6 101 100 1.0 70 - 130 30 1,2,4-Trichlorobenzene ND 5.0 74 86 15.0 103 97 70 - 130 30 6.0 1,2,4-Trimethylbenzene ND 1.0 87 97 10.9 >200 109 NC 70 - 130 30 m ND 93 105 1,2-Dibromo-3-chloropropane 5.0 86 7.8 103 19 70 - 130 30 1,2-Dibromoethane ND 5.0 88 96 8.7 105 106 0.9 70 - 130 30 1,2-Dichlorobenzene ND 5.0 84 92 9.1 100 102 2.0 70 - 130 30 ND 95 9.9 103 104 1,2-Dichloroethane 5.0 86 1.0 70 - 130 30 ND 95 102 1,2-Dichloropropane 5.0 85 11.1 101 1.0 70 - 130 30 1,3,5-Trimethylbenzene ND 1.0 89 100 11.6 146 107 30.8 70 - 130 30 m,r ND 5.0 85 94 102 1,3-Dichlorobenzene 10.1 102 0.0 70 - 130 30 95 1,3-Dichloropropane ND 5.0 87 8.8 104 105 1.0 70 - 130 30 ND 93 1,4-Dichlorobenzene 5.0 86 7.8 101 101 0.0 70 - 130 30 ND 100 85 89 4.6 126 139 9.8 70 - 130 1,4-dioxane 30 2,2-Dichloropropane ND 5.0 93 101 8.2 103 102 1.0 70 - 130 30 ND 5.0 89 97 107 107 2-Chlorotoluene 8.6 0.0 70 - 130 30 2-Hexanone ND 25 71 77 8.1 86 86 0.0 70 - 130 30 ND 97 12.0 2-Isopropyltoluene 5.0 86 106 106 70 - 130 0.0 30 92 4-Chlorotoluene ND 5.0 86 6.7 101 101 0.0 70 - 130 30 ND 71 79 4-Methyl-2-pentanone 25 10.7 90 87 3.4 70 - 130 30 Acetone ND 10 61 68 10.9 120 70 52.6 70 - 130 30 I,r Acrolein ND 25 98 104 5.9 71 84 16.8 70 - 130 30 Acrylonitrile ND 5.0 81 89 9.4 95 93 2.1 70 - 130 30 Benzene ND 1.0 85 96 12.2 95 101 70 - 130 30 ND 5.0 94 8.9 103 105 Bromobenzene 86 70 - 130 30 1.9 Bromochloromethane ND 5.0 85 93 9.0 100 101 1.0 70 - 130 30 Bromodichloromethane ND 5.0 88 99 11.8 103 107 3.8 70 - 130 30 ND 92 103 106 109 **Bromoform** 5.0 11.3 2.8 70 - 130 30 ND 5.0 81 100 108 Bromomethane 21.0 109 0.9 70 - 130 30 ND 103 Carbon Disulfide 5.0 113 9.3 119 119 0.0 70 - 130 30 101 Carbon tetrachloride ND 5.0 95 104 9.0 100 1.0 70 - 130 30 Chlorobenzene ND 5.0 87 97 10.9 105 106 0.9 70 - 130 30 ND 99 Chloroethane 5.0 87 12.9 110 109 0.9 70 - 130 30 Chloroform ND 5.0 86 94 8.9 102 103 1.0 70 - 130 30 89 Chloromethane ND 5.0 87 2.3 88 88 0.0 70 - 130 30 ND 5.0 86 95 9.9 102 103 70 - 130 cis-1,2-Dichloroethene 1.0 30 cis-1,3-Dichloropropene ND 5.0 87 97 10.9 98 102 4.0 70 - 130 30 97 113 116 Dibromochloromethane ND 3.0 108 10.7 2.6 70 - 130 30 Dibromomethane ND 5.0 83 92 10.3 99 100 1.0 70 - 130 30 Dichlorodifluoromethane ND 99 96 107 5.0 3.1 106 0.9 70 - 130 30 89 Ethylbenzene ND 1.0 100 11.6 101 106 4.8 70 - 130 30 ND 74 89 18.4 87 94 7.7 Hexachlorobutadiene 5.0 70 - 130 30 Isopropylbenzene ND 1.0 91 100 9.4 108 107 0.9 70 - 130 30

SDG I.D.: GBV82267

Map	Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Methyther chloride mother (MTBE) ND 10 10 91 100 94 103 104 105 10 103 101 103 103 104 105 103 103 104 105 105 103 103 105	m&p-Xylene	ND	2.0	92	98	6.3	124	103	18.5	70 - 130	30	
Methylatene chloride	Methyl ethyl ketone	ND	5.0	66	71	7.3	93	70	28.2	70 - 130	30	1
Maphitabane MD 5.0 5.0 7.0	Methyl t-butyl ether (MTBE)	ND	1.0	91	100	9.4	103	110	6.6	70 - 130	30	
Publiphenseme	Methylene chloride	ND	5.0	89	97	8.6	104	105	1.0	70 - 130	30	
Part	Naphthalene	ND	5.0	74	85	13.8	>200	133	NC	70 - 130	30	m
Post-page personal	n-Butylbenzene	ND	1.0	90	100	10.5	112	110	1.8	70 - 130	30	
P-Isonopylolucene	n-Propylbenzene	ND	1.0	88	97	9.7	101	102	1.0	70 - 130	30	
Second No. 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.13 1.3 1.0 1.	o-Xylene	ND	2.0	87	98	11.9	105	105	0.0	70 - 130	30	
Stylene	p-Isopropyltoluene	ND	1.0	90	99	9.5	109	108	0.9	70 - 130	30	
Pert-Burly la cohor No	sec-Butylbenzene	ND	1.0	94	104	10.1	112	113	0.9	70 - 130	30	
Feet-Butylbenzene ND 1.0 0.0	Styrene	ND	5.0	90	100	10.5	104	106	1.9	70 - 130	30	
Petrachloroethene	tert-butyl alcohol	ND	100	85	90	5.7	125	132	5.4	70 - 130	30	m
Tellarlydrofuran (THF)	tert-Butylbenzene	ND	1.0	90	98	8.5	103	106	2.9	70 - 130	30	
Total	Tetrachloroethene	ND	5.0	85	97	13.2	101	102	1.0	70 - 130	30	
trans-1,2-Dichloroethene ND 5.0 96 104 8.0 110 110 0.0 70-130 30 trans-1,3-Dichloropropene ND 5.0 86 96 11.0 100 102 07-130 30 Trichloroethene ND 5.0 88 98 10.8 104 103 10 70-130 30 Trichloroethene ND 5.0 87 92 5.0 100 100 70-130 30 Vinyl chloride ND 5.0 99 99 90 10.0 100 10.0 70-130 30 St 12-dichlorobenzene 190 9 90 90 10.0 100 10.0 70-130 30 St 12-dichlorobenzene 99 9 100 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 <	Tetrahydrofuran (THF)	ND	5.0	75	83	10.1	89	86	3.4	70 - 130	30	
trans-1,3-Dichloropropene ND 5.0 86 96 11.0 100 102 2.0 70-130 30 trans-1,4-dichloro-Z-butene ND 5.0 88 88 80 10.0 104 103 1.0 70-130 30 Trichlorothuromethane ND 5.0 88 89 10.8 100 100 0.0 70-130 30 Trichlorothuromethane ND 5.0 97 75.0 100 100 10.0 70-130 30 Virily chloride ND 5.0 90 97 75.0 100 100 10.0 70-130 30 Virily chloride ND 5.0 90 99 90 0.0 100 10.0 70-130 30 & Bromofluorobenzene 90 % 101 99 100 10.0 10.0 70-130 30 Broundlides 90 % 101 99 100 10.0 10.0	Toluene	ND	1.0	85	96	12.2	100	102	2.0	70 - 130	30	
trans-1,4-dichloro-2-butene ND 5.0 93 96 3.2 92 94 2.2 70-130 30 Trichloroethene ND 5.0 88 98 10.8 104 103 1.0 70-130 30 Trichlorotterme ND 5.0 94 93 1.1 109 109 0.0 70-130 30 Vinyl chloride ND 5.0 90 97 7.5 100 101 1.0 70-130 30 % 1,2-dichlorobenzene 99 % 101 100 100 100 70-130 30 % 101 99 10 10 70-130 30 70-130 30 % 101 10 99 1.0 10 90 10 10 70-130 30 % 10/20 30 60 10 99 1.0 20 70-130 30 % 10/20 30 30 30 30 30	trans-1,2-Dichloroethene	ND	5.0	96	104	8.0	110	111	0.9	70 - 130	30	
Trichloroethene ND 5.0 88 98 10.8 104 103 7.0 70-130 30 Trichlorotriburomethane ND 5.0 87 92 5.6 100 100 70-130 30 Trichlorotriburomethane ND 5.0 94 93 1.1 109 100 70-130 30 Vinyl chloride ND 5.0 99 99 0.0 99 100 1.0 70-130 30 % Bromofluorobenzene-d4 100 % 100 99 1.0 1.0 90 1.0 70-130 30 % Bromofluoromethane 96 % 100 99 1.0 1.0 99 1.0 1.0 1.0 70-130 30 % Bromofluoromethane 101 % 100 99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 <t< td=""><td>trans-1,3-Dichloropropene</td><td>ND</td><td>5.0</td><td>86</td><td>96</td><td>11.0</td><td>100</td><td>102</td><td>2.0</td><td>70 - 130</td><td>30</td><td></td></t<>	trans-1,3-Dichloropropene	ND	5.0	86	96	11.0	100	102	2.0	70 - 130	30	
Trichlorofluoromethane ND 5.0 87 92 5.6 100 100 70 - 130 30 Trichlorotrifluoroethane ND 5.0 94 93 1.1 109 100 70 - 130 30 Vilryl chlorobenzene-d4 100 % 99 99 0.0 99 100 10. 70 - 130 30 % Bromofluorobenzene 99 % 101 100 10. 109 10.0 10.0 10.0 70 - 130 30 % Dibromofluorobenzene 99 % 100 10.0	trans-1,4-dichloro-2-butene	ND			96	3.2	92	94	2.2	70 - 130	30	
Trichlorotrifluoroethane ND 5.0 94 93 1.1 109 109 0.0 70-130 30 Vinyl chloride ND 5.0 90 97 7.5 100 101 0.0 70-130 30 % 12-dichlorobenzene4 100 % 101 100 1.0 90 100 1.0 70-130 30 % Bromofluorobenzene 99 % 100 99 1.0 98 96 2.1 70-130 30 % Toluene-d8 101 99 1.0 98 96 2.1 70-130 30 % Toluene-d8 101 99 1.0 98 90 2.0 2.0 2.0 30 CA/CAC Batch 366709 (ug/kg), QC 70 80 8282268 (BV82267, BV82268, BV8227), BV82271, BV82271, BV82272, BV82272, BV82272, BV82272, BV82272, BV82274 80 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 <td>Trichloroethene</td> <td>ND</td> <td>5.0</td> <td>88</td> <td>98</td> <td>10.8</td> <td>104</td> <td>103</td> <td>1.0</td> <td>70 - 130</td> <td>30</td> <td></td>	Trichloroethene	ND	5.0	88	98	10.8	104	103	1.0	70 - 130	30	
Vinyl chloride	Trichlorofluoromethane	ND	5.0	87	92	5.6	100	100	0.0	70 - 130	30	
% 1,2-dichlorobenzene 100 % 99 99 0.0 99 100 1,0 70.130 30 % Bromofluorobenzene 99 % 101 100 1,0 100 100 0.0 70.130 30 % Dibromofluoromethane 96 % 100 99 10.0 99 100 10.7 70.130 30 W Tolluene-d8 101 % 99 100 1.0 99 100 1.0 70.130 30 CAYOCE Batch 366709 (ug/kg), OC Samber by Sex	Trichlorotrifluoroethane	ND		94	93	1.1	109	109	0.0	70 - 130	30	
8 Bromofluorobenzene 99 % % Dibromofluoromethane 96 % % Dibromofluoromethane 96 % % Toluene-d8 101 99 1.0 98 96 2.1 70-130 30 QA/QC Batch 366709 (ug/kg), QC Sampler No: BV82268 (BV82267, BV82268; BV82275; BV82275; BV82271; BV82272; BV82274; BV822	Vinyl chloride	ND		90	97	7.5		101	1.0	70 - 130	30	
% Dibromofluoromethane 96 % 100 99 1.0 98 96 2.1 70 - 130 30 % Toluene-d8 101 % 99 100 1.0 99 100 1.0 99 100 1.0 70 - 130 30 CA/ACC Batch 366709 (ug/kg), VC Sampter ND: BV82268 (BV82267, BV82268, BV82275, BV82277; BV8227		100		99	99	0.0	99	100	1.0	70 - 130	30	
% Toluene-d8 101 % 99 100 1.0 99 100 1.0 70 - 130 30 CA/QC Batch 366709 (ug/kg), QC Sampler No: BV82268 (BV82267, BV82267, BV82271, BV82272, BV82271, BV82272, BV82274) BV82272, BV82271, BV82272, BV82274, BV8		99				1.0		100	0.0	70 - 130	30	
QA/QC Batch 366709 (ug/kg), QC Sample No: BV82268 (BV82267, BV82267, BV82270, BV82271, BV82272, BV82274) Semivolatiles - Solid 1,2,4,5-Tetrachlorobenzene ND 230 67 66 1.5 74 69 7.0 30 - 130 30 1,2,4-Trichlorobenzene ND 230 60 66 9.5 69 67 2.9 30 - 130 30 1,2-Dichlorobenzene ND 230 68 69 1.5 71 69 2.9 30 - 130 30 1,2-Dichlorobenzene ND 230 68 69 1.5 71 69 2.9 30 - 130 30 1,3-Dichlorobenzene ND 230 48 56 15.4 56 53 5.5 30 - 130 30 1,4-Dichlorobenzene ND 230 75 71 5.5 77 75 2.6 30 - 130 30 2,4-5-Trichlorophenol ND 130 72 73 1.4 77 75 2.6 30 - 130	% Dibromofluoromethane						98		2.1	70 - 130	30	
Semivolatiles - Solid	% Toluene-d8	101	%	99	100	1.0	99	100	1.0	70 - 130	30	
1,2,4-Trichlorobenzene ND 230 60 66 9.5 69 67 2.9 30-130 30 1,2-Dichlorobenzene ND 180 52 57 9.2 61 57 6.8 30-130 30 1,2-Diphenylhydrazine ND 230 68 69 1.5 71 69 2.9 30-130 30 1,3-Dichlorobenzene ND 230 43 49 13.0 50 48 4.1 30-130 30 1,4-Dichlorobenzene ND 230 48 56 15.4 56 53 5.5 30-130 30 2,4.5-Trichlorophenol ND 230 72 73 1.4 77 75 2.6 30-130 30 2,4.6-Trichlorophenol ND 130 72 73 1.4 80 74 7.8 30-130 30 2,4-Dichlorophenol ND 230 67 68 1.5 83 77		QC Sam _l	ole No: BV82268 (BV82267, E	3V82268,	BV8227	70, BV8	2271, E	3V8227	2, BV8	2274)		
1,2,4-Trichlorobenzene ND 230 60 66 9.5 69 67 2.9 30-130 30 1,2-Dichlorobenzene ND 180 52 57 9.2 61 57 6.8 30-130 30 1,2-Diphenylhydrazine ND 230 68 69 1.5 71 69 2.9 30-130 30 1,3-Dichlorobenzene ND 230 43 49 13.0 50 48 4.1 30-130 30 1,4-Dichlorobenzene ND 230 48 56 15.4 56 53 5.5 30-130 30 2,4.5-Trichlorophenol ND 230 72 73 1.4 77 75 2.6 30-130 30 2,4.6-Trichlorophenol ND 130 72 73 1.4 80 74 7.8 30-130 30 2,4-Dichlorophenol ND 230 67 68 1.5 83 77	1.2.4.5-Tetrachlorobenzene	ND	230	67	66	1.5	74	69	7.0	30 - 130	30	
1,2-Dichlorobenzene ND 180 52 57 9.2 61 57 6.8 30 - 130 30 1,2-Diphenylhydrazine ND 230 68 69 1.5 71 69 2.9 30 - 130 30 1,3-Dichlorobenzene ND 230 43 49 13.0 50 48 4.1 30 - 130 30 1,4-Dichlorobenzene ND 230 48 56 15.4 56 53 5.5 30 - 130 30 2,4,5-Trichlorophenol ND 230 75 71 5.5 77 75 2.6 30 - 130 30 2,4,6-Trichlorophenol ND 130 72 73 1.4 77 75 2.6 30 - 130 30 2,4-Dichlorophenol ND 230 72 73 1.4 80 74 7.8 30 - 130 30 2,4-Dimethylphenol ND 230 67 68 1.5 83 77 7.5 30 - 130 30 2,4-Dinitrophenol ND 230 16 <10 NC 72 70 2.8 30 - 130 30 2,4-Dinitrophenol ND 230 16 <10 NC 72 70 2.8 30 - 130 30 2,4-Dinitrophenol ND 230 16 <10 NC 72 70 2.8 30 - 130 30 2,4-Dinitrotoluene ND 130 71 72 1.4 77 75 2.6 30 - 130 30 2,4-Dinitrotoluene ND 130 71 72 1.4 77 75 2.6 30 - 130 30 2,4-Dinitrotoluene ND 230 66 66 60 0.0 71 68 4.3 30 - 130 30 2,4-Dinitrotoluene ND 230 66 66 60 0.0 71 68 4.3 30 - 130 30 2,4-Dinitrotoluene ND 230 65 64 1.6 103 95 8.1 30 - 130 30 2,4-Dinitrotoluene ND 230 65 69 6.0 73 70 4.2 30 - 130 30 2,4-Dinitrotoluene ND 230 65 69 6.0 73 70 4.2 30 - 130 30 2,4-Dinitrotoluene ND 330 64 62 3.2 63 65 51 7.4 30 - 130 30 2,4-Dinitrotoluene ND 230 65 69 6.0 73 70 65 7.4 30 - 130 30 2,4-Dinitrotoluene ND 330 64 66 3.1 70 65 7.4 30 - 130 30 3,3-Dichlorobenzidine ND 330 62 63 63 63 63 63 60 60 63 63										30 - 130		
1,2-Diphenylhydrazine												
1,3-Dichlorobenzene ND 230 43 49 13.0 50 48 4.1 30 - 130 30 1,4-Dichlorobenzene ND 230 48 56 15.4 56 53 5.5 30 - 130 30 2,4,5-Trichlorophenol ND 130 72 73 1.4 77 75 2.6 30 - 130 30 2,4-Dichlorophenol ND 130 72 73 1.4 80 74 7.8 30 - 130 30 2,4-Dichlorophenol ND 230 67 68 1.5 83 77 7.5 30 - 130 30 2,4-Dinthylphenol ND 230 67 68 1.5 83 77 7.5 30 - 130 30 2,4-Dinthylphenol ND 230 16 <10 NC 72 70 2.8 30 - 130 30 2,4-Dinthylphenol ND 130 80 75 6.5 77 75 2.6 30 - 130 30 2,4-Dinthylphenol ND 130 80 75 6.5 77 75 2.6 30 - 130 30 2,4-Dinthylphenol ND 130 71 72 1.4 77 75 2.6 30 - 130 30 2,4-Dinthylphenol ND 230 66 66 0.0 71 68 4.3 30 - 130 30 2,4-Dinthylphenol ND 230 57 62 8.4 67 61 9.4 30 - 130 30 2,4-Dinthylphenol ND 230 65 64 1.6 103 95 8.1 30 - 130 30 2,4-Dinthylphenol ND 230 65 69 6.0 73 70 4.2 30 - 130 30 2,4-Dinthylphenol ND 230 65 69 6.0 73 70 4.2 30 - 130 30 2,4-Dinthylphenol ND 230 65 69 6.0 73 70 4.2 30 - 130 30 2,4-Dinthylphenol ND 230 64 66 3.1 70 65 7.4 30 - 130 30 2,4-Dinthylphenol ND 230 64 66 3.1 70 65 7.4 30 - 130 30 3,3'-Dichlorobenzidine ND 330 62 63 65 65 52 7.4 30 - 130 30 3,3'-Dichlorobenzidine ND 330 62 63 63 63 63 60 60 60 60	·											
1,4-Dichlorobenzene ND 230 48 56 15.4 56 53 5.5 30 - 130 30 2,4,5-Trichlorophenol ND 230 75 71 5.5 77 75 2.6 30 - 130 30 2,4-Dirichlorophenol ND 130 72 73 1.4 77 75 2.6 30 - 130 30 2,4-Dirichlorophenol ND 130 72 73 1.4 80 74 7.8 30 - 130 30 2,4-Dirichlorophenol ND 230 67 68 1.5 83 77 7.5 30 - 130 30 2,4-Dinitrobluene ND 130 80 75 6.5 77 75 2.6 30 - 130 30 2,6-Dinitrobluene ND 130 71 72 1.4 77 75 2.6 30 - 130 30 2-Chlorophenol ND 230 57 62 8.4 67 61							50			30 - 130	30	
2,4,5-Trichlorophenol ND 230 75 71 5.5 77 75 2.6 30 - 130 30 2,4,6-Trichlorophenol ND 130 72 73 1.4 77 75 2.6 30 - 130 30 2,4-Dindethylphenol ND 130 72 73 1.4 80 74 7.8 30 - 130 30 2,4-Dimitrophenol ND 230 67 68 1.5 83 77 7.5 30 - 130 30 2,4-Dinitrophenol ND 130 80 75 6.5 77 75 2.6 30 - 130 30 2,4-Dinitrotoluene ND 130 80 75 6.5 77 75 2.6 30 - 130 30 2,4-Dinitrotoluene ND 130 71 72 1.4 77 75 2.6 30 - 130 30 2,4-Dinitrotoluene ND 130 71 72 1.4 77 75 2.6 30 - 130 30 2,6-Dinitrotoluene ND 230 57<												
2,4,6-Trichlorophenol ND 130 72 73 1.4 77 75 2.6 30 - 130 30 2,4-Dichlorophenol ND 130 72 73 1.4 80 74 7.8 30 - 130 30 2,4-Dinitrophenol ND 230 67 68 1.5 83 77 7.5 30 - 130 30 2,4-Dinitrophenol ND 230 16 <10		ND			71				2.6	30 - 130	30	
2,4-Dichlorophenol ND 130 72 73 1.4 80 74 7.8 30 - 130 30 2,4-Dimethylphenol ND 230 67 68 1.5 83 77 7.5 30 - 130 30 2,4-Dinitrophenol ND 230 16 <10	•	ND		72	73		77	75	2.6	30 - 130	30	
2,4-Dimethylphenol ND 230 67 68 1.5 83 77 7.5 30 - 130 30 2,4-Dinitrophenol ND 230 16 <10	•	ND		72	73	1.4		74		30 - 130	30	
2,4-Dinitrophenol ND 230 16 <10	•	ND	230	67	68	1.5	83	77		30 - 130	30	
2,4-Dinitrotoluene ND 130 80 75 6.5 77 75 2.6 30 - 130 30 2,6-Dinitrotoluene ND 130 71 72 1.4 77 75 2.6 30 - 130 30 2-Chloropaphthalene ND 230 66 66 0.0 71 68 4.3 30 - 130 30 2-Methylnaphthalene ND 230 65 64 1.6 103 95 8.1 30 - 130 30 2-Methylphenol (o-cresol) ND 230 65 69 6.0 73 70 4.2 30 - 130 30 2-Nitrophenol ND 330 64 62 3.2 63 65 3.1 30 - 130 30 2-Nitrophenol ND 230 70 68 2.9 80 74 7.8 30 - 130 30 3&4-Methylphenol (m&p-cresol) ND 230 64 66 3.1 70 65 7.4 30 - 130 30 3,3'-Dichlorobenzidine ND 330	= :	ND		16	<10		72	70	2.8	30 - 130	30	1
2,6-Dinitrotoluene ND 130 71 72 1.4 77 75 2.6 30 - 130 30 2-Chloronaphthalene ND 230 66 66 60 0.0 71 68 4.3 30 - 130 30 2-Chlorophenol ND 230 57 62 8.4 67 61 9.4 30 - 130 30 2-Methylnaphthalene ND 230 65 64 1.6 103 95 8.1 30 - 130 30 2-Methylphenol (o-cresol) ND 230 65 69 6.0 73 70 4.2 30 - 130 30 2-Nitroaniline ND 330 64 62 3.2 63 65 3.1 30 - 130 30 3&4-Methylphenol (m&p-cresol) ND 230 64 66 3.1 70 65 7.4 30 - 130 30 3,3'-Dichlorobenzidine ND 130 54 56 3.6 56 52 7.4 30 - 130 30 3-Nitroaniline ND	·			80						30 - 130		
2-Chloronaphthalene ND 230 66 66 0.0 71 68 4.3 30 - 130 30 2-Chlorophenol ND 230 57 62 8.4 67 61 9.4 30 - 130 30 2-Methylnaphthalene ND 230 65 64 1.6 103 95 8.1 30 - 130 30 2-Methylphenol (o-cresol) ND 230 65 69 6.0 73 70 4.2 30 - 130 30 2-Nitroaniline ND 330 64 62 3.2 63 65 3.1 30 - 130 30 2-Nitrophenol ND 230 70 68 2.9 80 74 7.8 30 - 130 30 3&4-Methylphenol (m&p-cresol) ND 230 64 66 3.1 70 65 7.4 30 - 130 30 3,3'-Dichlorobenzidine ND 130 54 56 3.6 56 52 7.4 30 - 130 30 3-Nitroaniline ND 330	2,6-Dinitrotoluene	ND			72				2.6	30 - 130		
2-Chlorophenol ND 230 57 62 8.4 67 61 9.4 30 - 130 30 2-Methylnaphthalene ND 230 65 64 1.6 103 95 8.1 30 - 130 30 2-Methylphenol (o-cresol) ND 230 65 69 6.0 73 70 4.2 30 - 130 30 2-Nitroaniline ND 330 64 62 3.2 63 65 3.1 30 - 130 30 2-Nitrophenol ND 230 70 68 2.9 80 74 7.8 30 - 130 30 3&4-Methylphenol (m&p-cresol) ND 230 64 66 3.1 70 65 7.4 30 - 130 30 3,3'-Dichlorobenzidine ND 130 54 56 3.6 56 52 7.4 30 - 130 30 3-Nitroaniline ND 330 62 63 1.6 63 63 0.0 30 - 130 30	2-Chloronaphthalene	ND	230	66	66	0.0		68	4.3	30 - 130	30	
2-Methylnaphthalene ND 230 65 64 1.6 103 95 8.1 30 - 130 30 2-Methylphenol (o-cresol) ND 230 65 69 6.0 73 70 4.2 30 - 130 30 2-Nitroaniline ND 330 64 62 3.2 63 65 3.1 30 - 130 30 2-Nitrophenol ND 230 70 68 2.9 80 74 7.8 30 - 130 30 3&4-Methylphenol (m&p-cresol) ND 230 64 66 3.1 70 65 7.4 30 - 130 30 3,3'-Dichlorobenzidine ND 130 54 56 3.6 56 52 7.4 30 - 130 30 3-Nitroaniline ND 330 62 63 1.6 63 63 0.0 30 - 130 30	•	ND		57	62	8.4	67	61	9.4	30 - 130	30	
2-Methylphenol (o-cresol) ND 230 65 69 6.0 73 70 4.2 30 - 130 30 2-Nitroaniline ND 330 64 62 3.2 63 65 3.1 30 - 130 30 2-Nitrophenol ND 230 70 68 2.9 80 74 7.8 30 - 130 30 3&4-Methylphenol (m&p-cresol) ND 230 64 66 3.1 70 65 7.4 30 - 130 30 3,3'-Dichlorobenzidine ND 130 54 56 3.6 56 52 7.4 30 - 130 30 3-Nitroaniline ND 330 62 63 1.6 63 63 0.0 30 - 130 30	·	ND		65	64	1.6	103	95	8.1	30 - 130	30	
2-Nitroaniline ND 330 64 62 3.2 63 65 3.1 30 - 130 30 2-Nitrophenol ND 230 70 68 2.9 80 74 7.8 30 - 130 30 3&4-Methylphenol (m&p-cresol) ND 230 64 66 3.1 70 65 7.4 30 - 130 30 3,3'-Dichlorobenzidine ND 130 54 56 3.6 56 52 7.4 30 - 130 30 3-Nitroaniline ND 330 62 63 1.6 63 63 0.0 30 - 130 30				65								
2-Nitrophenol ND 230 70 68 2.9 80 74 7.8 30 - 130 30 3&4-Methylphenol (m&p-cresol) ND 230 64 66 3.1 70 65 7.4 30 - 130 30 3,3'-Dichlorobenzidine ND 130 54 56 3.6 56 52 7.4 30 - 130 30 3-Nitroaniline ND 330 62 63 1.6 63 63 0.0 30 - 130 30				64				65				
3&4-Methylphenol (m&p-cresol) ND 230 64 66 3.1 70 65 7.4 30 - 130 30 3,3'-Dichlorobenzidine ND 130 54 56 3.6 56 52 7.4 30 - 130 30 3-Nitroaniline ND 330 62 63 1.6 63 63 0.0 30 - 130 30												
3,3'-Dichlorobenzidine ND 130 54 56 3.6 56 52 7.4 30 - 130 30 3-Nitroaniline ND 330 62 63 1.6 63 63 0.0 30 - 130 30												
3-Nitroaniline ND 330 62 63 1.6 63 63 0.0 30-130 30												
	4,6-Dinitro-2-methylphenol	ND			25	55.1	82	78	5.0	30 - 130	30	l,r

SDG I.D.: GBV82267

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
4-Bromophenyl phenyl ether	ND	230	73	70	4.2	75	71	5.5	30 - 130	30	
4-Chloro-3-methylphenol	ND	230	78	76	2.6	84	80	4.9	30 - 130	30	
4-Chloroaniline	ND	230	76	78	2.6	73	73	0.0	30 - 130	30	
4-Chlorophenyl phenyl ether	ND	230	68	68	0.0	72	68	5.7	30 - 130	30	
4-Nitroaniline	ND	230	76	73	4.0	78	76	2.6	30 - 130	30	
4-Nitrophenol	ND	230	77	73	5.3	73	73	0.0	30 - 130	30	
Acenaphthene	ND	230	67	68	1.5	72	68	5.7	30 - 130	30	
Acenaphthylene	ND	130	70	69	1.4	75	71	5.5	30 - 130	30	
Acetophenone	ND	230	56	60	6.9	61	60	1.7	30 - 130	30	
Aniline	ND	330	55	60	8.7	56	54	3.6	30 - 130	30	
Anthracene	ND	230	67	70	4.4	71	69	2.9	30 - 130	30	
Benz(a)anthracene	ND	230	70	67	4.4	68	68	0.0	30 - 130	30	
Benzidine	ND	330	17	19	11.1	<10	<10	NC	30 - 130	30	l,m
Benzo(a)pyrene	ND	130	72	71	1.4	71	69	2.9	30 - 130	30	
Benzo(b)fluoranthene	ND	160	75	76	1.3	76	74	2.7	30 - 130	30	
Benzo(ghi)perylene	ND	230	76	73	4.0	75	74	1.3	30 - 130	30	
Benzo(k)fluoranthene	ND	230	70	69	1.4	69	69	0.0	30 - 130	30	
Benzoic Acid	ND	330	<10	<10	NC	71	74	4.1	30 - 130	30	1
Benzyl butyl phthalate	ND	230	74	73	1.4	75	73	2.7	30 - 130	30	
Bis(2-chloroethoxy)methane	ND	230	70	71	1.4	78	75	3.9	30 - 130	30	
Bis(2-chloroethyl)ether	ND	130	53	53	0.0	67	67	0.0	30 - 130	30	
Bis(2-chloroisopropyl)ether	ND	230	53	57	7.3	62	56	10.2	30 - 130	30	
Bis(2-ethylhexyl)phthalate	ND	230	78	76	2.6	78	78	0.0	30 - 130	30	
Carbazole	ND	230	70	71	1.4	68	68	0.0	30 - 130	30	
Chrysene	ND	230	74	73	1.4	72	73	1.4	30 - 130	30	
Dibenz(a,h)anthracene	ND	130	76	75	1.3	75	74	1.3	30 - 130	30	
Dibenzofuran	ND	230	66	66	0.0	69	66	4.4	30 - 130	30	
Diethyl phthalate	ND	230	70	72	2.8	72	72	0.0	30 - 130	30	
Dimethylphthalate	ND	230	68	69	1.5	72	71	1.4	30 - 130	30	
Di-n-butylphthalate	ND	230	79	81	2.5	75	72	4.1	30 - 130	30	
Di-n-octylphthalate	ND	230	75	74	1.3	77	76	1.3	30 - 130	30	
Fluoranthene	ND	230	71	72	1.4	61	59	3.3	30 - 130	30	
Fluorene	ND	230	70	69	1.4	72	69	4.3	30 - 130	30	
Hexachlorobenzene	ND	130	72	73	1.4	69	74	7.0	30 - 130	30	
Hexachlorobutadiene	ND	230	59	65	9.7	71	67	5.8	30 - 130	30	
Hexachlorocyclopentadiene	ND	230	72	71	1.4	69	64	7.5	30 - 130	30	
Hexachloroethane	ND	130	52	57	9.2	65	57	13.1	30 - 130	30	
Indeno(1,2,3-cd)pyrene	ND	230	74	71	4.1	77	73	5.3	30 - 130	30	
Isophorone	ND	130	62	64	3.2	69	65	6.0	30 - 130	30	
Naphthalene	ND	230	61	66	7.9	73	67	8.6	30 - 130	30	
Nitrobenzene	ND	130	57	65	13.1	65	63	3.1	30 - 130	30	
N-Nitrosodimethylamine	ND	230	50	52	3.9	56	56	0.0	30 - 130	30	
N-Nitrosodi-n-propylamine	ND	130	63	71	11.9	76	66	14.1	30 - 130	30	
N-Nitrosodiphenylamine	ND	130	74	77	4.0	76	75	1.3	30 - 130	30	
Pentachloronitrobenzene	ND	230	68	73	7.1	75	74	1.3	30 - 130	30	
Pentachlorophenol	ND	230	72	64	11.8	90	88	2.2	30 - 130	30	
Phenanthrene	ND	130	68	69	1.5	71	67	5.8	30 - 130	30	
Phenol	ND	230	61	63	3.2	64	59	8.1	30 - 130	30	
Pyrene	ND	230	74	74	0.0	72	70	2.8	30 - 130	30	
Pyridine	ND	230	35	37	5.6	41	43	4.8	30 - 130	30	
% 2,4,6-Tribromophenol	78	%	77	76	1.3	85	80	6.1	30 - 130	30	
% 2-Fluorobiphenyl	63	%	62	61	1.6	64	63	1.6	30 - 130	30	
% 2-Fluorophenol	49	%	54	56	3.6	60	54	10.5	30 - 130	30	

SDG I.D.: GBV82267

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
% Nitrobenzene-d5	63	%	59	64	8.1	69	63	9.1	30 - 130	30	
% Phenol-d5	60	%	65	67	3.0	72	66	8.7	30 - 130	30	
% Terphenyl-d14	70	%	74	72	2.7	72	69	4.3	30 - 130	30	
, ,			BV82544 (BV82267 (50X) , BV								
Volatiles - Solid											
1,1,1,2-Tetrachloroethane	ND	5.0	101	102	1.0	109	112	2.7	70 - 130	30	
1,1,1-Trichloroethane	ND	5.0	93	89	4.4	101	101	0.0	70 - 130	30	
1,1,2,2-Tetrachloroethane	ND	3.0	93	96	3.2	104	101	2.9	70 - 130	30	
1,1,2-Trichloroethane	ND	5.0	90	91	1.1	100	99	1.0	70 - 130	30	
1,1-Dichloroethane	ND	5.0	98	88	10.8	100	107	6.8	70 - 130	30	
1,1-Dichloroethene	ND	5.0	96	93	3.2	70	75	6.9	70 - 130	30	
1,1-Dichloropropene	ND	5.0	94	91	3.2	103	102	1.0	70 - 130	30	
1,2,3-Trichlorobenzene	ND	5.0	92	93	1.1	92	93	1.1	70 - 130	30	
1,2,3-Trichloropropane	ND	5.0	90	94	4.3	101	98	3.0	70 - 130	30	
1,2,4-Trichlorobenzene	ND	5.0	94	95	1.1	92	97	5.3	70 - 130	30	
1,2,4-Trimethylbenzene	ND	1.0	98	95	3.1	105	107	1.9	70 - 130	30	
1,2-Dibromo-3-chloropropane	ND	5.0	91	94	3.2	97	92	5.3	70 - 130	30	
1,2-Dibromoethane	ND	5.0	94	98	4.2	108	105	2.8	70 - 130	30	
1,2-Dichlorobenzene	ND	5.0	93	93	0.0	102	103	1.0	70 - 130	30	
1,2-Dichloroethane	ND	5.0	92	95	3.2	106	104	1.9	70 - 130	30	
1,2-Dichloropropane	ND	5.0	92	92	0.0	102	102	0.0	70 - 130	30	
1,3,5-Trimethylbenzene	ND	1.0	99	97	2.0	107	108	0.9	70 - 130	30	
1,3-Dichlorobenzene	ND	5.0	94	94	0.0	103	104	1.0	70 - 130	30	
1,3-Dichloropropane	ND	5.0	93	96	3.2	107	104	2.8	70 - 130	30	
1,4-Dichlorobenzene	ND	5.0	93	93	0.0	102	103	1.0	70 - 130	30	
1,4-dioxane	ND	100	91	91	0.0	109	104	4.7	70 - 130	30	
2,2-Dichloropropane	ND	5.0	99	95	4.1	106	106	0.0	70 - 130	30	
2-Chlorotoluene	ND	5.0	98	96	2.1	105	107	1.9	70 - 130	30	
2-Hexanone	ND	25	74	79	6.5	85	82	3.6	70 - 130	30	
2-Isopropyltoluene	ND	5.0	97	94	3.1	105	107	1.9	70 - 130	30	
4-Chlorotoluene	ND	5.0	93	93	0.0	100	102	2.0	70 - 130	30	
4-Methyl-2-pentanone	ND	25	76	79	3.9	88	84	4.7	70 - 130	30	
Acetone	ND	10	65	66	1.5	45	49	8.5	70 - 130		l,m
Acrolein	ND	25	95	99	4.1	71	83	15.6	70 - 130	30	
Acrylonitrile	ND	5.0	86	86	0.0	103	99	4.0	70 - 130	30	
Benzene	ND	1.0	93	92 05	1.1	103	103	0.0	70 - 130	30	
Bromobenzene Bromochloromethane	ND ND	5.0 5.0	94 91	95 91	1.1 0.0	104 103	104 101	0.0 2.0	70 - 130 70 - 130	30 30	
Bromodichloromethane	ND ND	5.0	96	91 97	1.0	103	101	0.0	70 - 130 70 - 130	30	
Bromoform	ND	5.0	100	104	3.9	104	104	1.0	70 - 130	30	
Bromomethane	ND	5.0	92	88	4.4	72	81	11.8	70 - 130	30	
Carbon Disulfide	ND	5.0	103	100	3.0	70	79	12.1	70 - 130	30	
Carbon tetrachloride	ND	5.0	100	96	4.1	100	105	4.9	70 - 130	30	
Chlorobenzene	ND	5.0	96	95	1.0	105	106	0.9	70 - 130	30	
Chloroethane	ND	5.0	90	87	3.4	45	45	0.0	70 - 130	30	m
Chloroform	ND	5.0	93	91	2.2	103	102	1.0	70 - 130	30	
Chloromethane	ND	5.0	85	83	2.4	100	98	2.0	70 - 130	30	
cis-1,2-Dichloroethene	ND	5.0	93	92	1.1	104	103	1.0	70 - 130	30	
cis-1,3-Dichloropropene	ND	5.0	94	95	1.1	104	104	0.0	70 - 130	30	
Dibromochloromethane	ND	3.0	104	106	1.9	114	113	0.9	70 - 130	30	
Dibromomethane	ND	5.0	90	92	2.2	102	100	2.0	70 - 130	30	

% % Blk **LCSD** LCS MS MSD **RPD** LCS MS Rec Blank RL **RPD** % % RPD Limits Limits % % Parameter Dichlorodifluoromethane ND 5.0 102 95 7.1 120 122 70 - 130 1.7 30 Ethylbenzene ND 1.0 98 97 1.0 107 109 1.9 70 - 130 30 ND Hexachlorobutadiene 5.0 100 93 7.3 103 107 3.8 70 - 130 30 ND 1.0 98 95 106 107 0.9 70 - 130 30 Isopropylbenzene 3.1 m&p-Xylene ND 2.0 97 95 2.1 106 107 0.9 70 - 130 30 Methyl ethyl ketone ND 5.0 67 71 5.8 82 78 5.0 70 - 130 30 Methyl t-butyl ether (MTBE) ND 1.0 95 98 3.1 107 108 0.9 70 - 130 30 ND 5.0 92 92 0.0 92 100 70 - 130 Methylene chloride 8.3 30 ND 93 97 94 96 70 - 130 30 Naphthalene 5.0 4.2 2.1 n-Butylbenzene ND 1.0 102 98 4.0 107 110 2.8 70 - 130 30 n-Propylbenzene ND 1.0 96 92 4.3 102 104 1.9 70 - 130 30 ND 97 2.0 96 106 108 70 - 130 o-Xylene 1.0 1.9 30 ND 1.0 100 97 3.0 106 110 3.7 70 - 130 30 p-Isopropyltoluene ND sec-Butylbenzene 1.0 104 100 3.9 112 115 2.6 70 - 130 30 Styrene ND 5.0 99 100 1.0 109 111 1.8 70 - 130 30 tert-butyl alcohol ND 100 87 89 2.3 106 104 1.9 70 - 130 30 ND 99 95 tert-Butylbenzene 1.0 4.1 106 108 1.9 70 - 130 30 Tetrachloroethene ND 5.0 94 93 1.1 101 103 2.0 70 - 130 30 ND 79 5.0 82 3.7 101 92 9.3 70 - 130 Tetrahydrofuran (THF) 30 Toluene ND 1.0 94 93 1.1 102 103 1.0 70 - 130 30 ND 5.0 99 97 2.0 101 107 5.8 trans-1,2-Dichloroethene 70 - 130 30 trans-1,3-Dichloropropene ND 5.0 94 96 2.1 103 103 0.0 70 - 130 30 99 ND 5.0 95 4.1 105 102 trans-1,4-dichloro-2-butene 2.9 70 - 130 30 Trichloroethene ND 5.0 96 95 1.0 104 104 0.0 70 - 130 30 Trichlorofluoromethane ND 5.0 89 86 3.4 33 30 9.5 70 - 130 30 Trichlorotrifluoroethane ND 100 97 3.0 75 5.0 82 8.9 70 - 130 30 ND 5.0 92 88 4.4 106 106 0.0 70 - 130 Vinyl chloride 30 99 99 100 % 101 100 1.0 % 1,2-dichlorobenzene-d4 0.0 70 - 130 30 % Bromofluorobenzene 98 % 100 102 101 102 1.0 2.0 70 - 130 30 % Dibromofluoromethane 96 % 101 99 2.0 98 97 1.0 70 - 130 30 % Toluene-d8 100 % 100 100 0.0 99 100 1.0 70 - 130 30

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director November 29, 2016

SDG I.D.: GBV82267

Page 60 of 64

I = This parameter is outside laboratory LCS/LCSD specified recovery limits.

m = This parameter is outside laboratory MS/MSD specified recovery limits.

r = This parameter is outside laboratory RPD specified recovery limits.

Tuesday, November 29, 2016

Criteria: NY: 375, 375GWP, 375RRS, 375RS

Sample Criteria Exceedances Report GBV82267 - EBC

State: NY

State: 1	INT						RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BV82267	\$8260MADPR	Vinyl chloride	NY / 375-6.8 Volatiles / Ground Water Protection	ND	31	20	20	ug/Kg
BV82267	\$8260MADPR	Vinyl chloride	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	31	20	20	ug/Kg
BV82267	\$8260MADPR	Acetone	NY / 375-6.8 Volatiles / Ground Water Protection	550	310	50	50	ug/Kg
BV82267	\$8260MADPR	Acetone	NY / 375-6.8 Volatiles / Unrestricted Use Soil	550	310	50	50	ug/Kg
BV82267	\$8260MADPR	Methylene chloride	NY / 375-6.8 Volatiles / Ground Water Protection	ND	310	50	50	ug/Kg
BV82267	\$8260MADPR	Methylene chloride	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	310	50	50	ug/Kg
BV82267	\$8260MADPR	Methyl Ethyl Ketone	NY / 375-6.8 Volatiles / Ground Water Protection	ND	310	120	120	ug/Kg
BV82267	\$8260MADPR	Methyl Ethyl Ketone	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	310	120	120	ug/Kg
BV82267	\$8260MADPR	1,2-Dichloroethane	NY / 375-6.8 Volatiles / Ground Water Protection	ND	31	20	20	ug/Kg
BV82267	\$8260MADPR	1,2-Dichloroethane	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	31	20	20	ug/Kg
BV82267	\$8260MADPR	Ethylbenzene	NY / 375-6.8 Volatiles / Ground Water Protection	4700	310	1000	1000	ug/Kg
BV82267	\$8260MADPR	Ethylbenzene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	4700	310	1000	1000	ug/Kg
BV82267	\$8260MADPR	n-Propylbenzene	NY / 375-6.8 Volatiles / Ground Water Protection	4900	310	3900	3900	ug/Kg
BV82267	\$8260MADPR	n-Propylbenzene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	4900	310	3900	3900	ug/Kg
BV82267	\$8260MADPR	1,3,5-Trimethylbenzene	NY / 375-6.8 Volatiles / Ground Water Protection	15000	3200	8400	8400	ug/Kg
BV82267	\$8260MADPR	1,3,5-Trimethylbenzene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	15000	3200	8400	8400	ug/Kg
BV82267	\$8260MADPR	1,2,4-Trimethylbenzene	NY / 375-6.8 Volatiles / Ground Water Protection	56000	3200	3600	3600	ug/Kg
BV82267	\$8260MADPR	1,2,4-Trimethylbenzene	NY / 375-6.8 Volatiles / Residential	56000	3200	47000	47000	ug/Kg
BV82267	\$8260MADPR	1,2,4-Trimethylbenzene	NY / 375-6.8 Volatiles / Residential Restricted	56000	3200	52000	52000	ug/Kg
BV82267	\$8260MADPR	1,2,4-Trimethylbenzene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	56000	3200	3600	3600	ug/Kg
BV82267	\$8270SMRDP	Benz(a)anthracene	NY / 375-6.8 Semivolatiles / Ground Water Protection	ND	1200	1000	1000	ug/Kg
BV82267	\$8270SMRDP	Chrysene	NY / 375-6.8 Semivolatiles / Ground Water Protection	ND	1200	1000	1000	ug/Kg
BV82267	\$8270SMRDP	Pentachlorophenol	NY / 375-6.8 Semivolatiles / Ground Water Protection	ND	1300	800	800	ug/Kg
BV82267	\$8270SMRDP	2-Methylphenol (o-cresol)	NY / 375-6.8 Semivolatiles / Ground Water Protection	ND	1600	330	330	ug/Kg
BV82267	\$8270SMRDP	Phenol	NY / 375-6.8 Semivolatiles / Ground Water Protection	ND	1100	330	330	ug/Kg
BV82267	\$8270SMRDP	Benzo(b)fluoranthene	NY / 375-6.8 Semivolatiles / Residential	ND	1200	1000	1000	ug/Kg
BV82267	\$8270SMRDP	Benzo(k)fluoranthene	NY / 375-6.8 Semivolatiles / Residential	ND	1100	1000	1000	ug/Kg
BV82267	\$8270SMRDP	Benzo(a)pyrene	NY / 375-6.8 Semivolatiles / Residential	ND	1100	1000	1000	ug/Kg
BV82267	\$8270SMRDP	Chrysene	NY / 375-6.8 Semivolatiles / Residential	ND	1200	1000	1000	ug/Kg
BV82267	\$8270SMRDP	Dibenz(a,h)anthracene	NY / 375-6.8 Semivolatiles / Residential	ND	1100	330	330	ug/Kg
BV82267	\$8270SMRDP	Indeno(1,2,3-cd)pyrene	NY / 375-6.8 Semivolatiles / Residential	ND	1100	500	500	ug/Kg
BV82267	\$8270SMRDP	Benz(a)anthracene	NY / 375-6.8 Semivolatiles / Residential	ND	1200	1000	1000	ug/Kg
BV82267	\$8270SMRDP	Dibenz(a,h)anthracene	NY / 375-6.8 Semivolatiles / Residential Restricted	ND	1100	330	330	ug/Kg
BV82267	\$8270SMRDP	Benz(a)anthracene	NY / 375-6.8 Semivolatiles / Residential Restricted	ND	1200	1000	1000	ug/Kg
BV82267	\$8270SMRDP	Benzo(b)fluoranthene	NY / 375-6.8 Semivolatiles / Residential Restricted	ND	1200	1000	1000	ug/Kg
BV82267	\$8270SMRDP	Indeno(1,2,3-cd)pyrene	NY / 375-6.8 Semivolatiles / Residential Restricted	ND	1100	500	500	ug/Kg
BV82267	\$8270SMRDP	Benzo(a)pyrene	NY / 375-6.8 Semivolatiles / Residential Restricted	ND	1100	1000	1000	ug/Kg
BV82267	\$8270SMRDP	2-Methylphenol (o-cresol)	NY / 375-6.8 Semivolatiles / Unrestricted Use Soil	ND	1600	330	330	ug/Kg
BV82267	\$8270SMRDP	Benz(a)anthracene	NY / 375-6.8 Semivolatiles / Unrestricted Use Soil	ND	1200	1000	1000	ug/Kg
BV82267	\$8270SMRDP	Benzo(k)fluoranthene	NY / 375-6.8 Semivolatiles / Unrestricted Use Soil	ND	1100	800	800	ug/Kg
BV82267	\$8270SMRDP	Chrysene	NY / 375-6.8 Semivolatiles / Unrestricted Use Soil	ND	1200	1000	1000	ug/Kg
BV82267	\$8270SMRDP	Dibenz(a,h)anthracene	NY / 375-6.8 Semivolatiles / Unrestricted Use Soil	ND	1100	330	330	ug/Kg

Tuesday, November 29, 2016

Criteria: NY: 375, 375GWP, 375RRS, 375RS

Sample Criteria Exceedances Report GBV82267 - EBC

State: NY

State:	NY						RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BV82267	\$8270SMRDP	Indeno(1,2,3-cd)pyrene	NY / 375-6.8 Semivolatiles / Unrestricted Use Soil	ND	1100	500	500	ug/Kg
BV82267	\$8270SMRDP	Pentachlorophenol	NY / 375-6.8 Semivolatiles / Unrestricted Use Soil	ND	1300	800	800	ug/Kg
BV82267	\$8270SMRDP	Phenol	NY / 375-6.8 Semivolatiles / Unrestricted Use Soil	ND	1100	330	330	ug/Kg
BV82267	\$8270SMRDP	Benzo(b)fluoranthene	NY / 375-6.8 Semivolatiles / Unrestricted Use Soil	ND	1200	1000	1000	ug/Kg
BV82267	\$8270SMRDP	Benzo(a)pyrene	NY / 375-6.8 Semivolatiles / Unrestricted Use Soil	ND	1100	1000	1000	ug/Kg
BV82267	\$DIOX_SMR	1,4-dioxane	NY / 375-6.8 Volatiles / Ground Water Protection	ND	2500	100	100	ug/kg
BV82267	\$DIOX_SMR	1,4-dioxane	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	2500	100	100	ug/kg
BV82271	\$8260MADPR	Acetone	NY / 375-6.8 Volatiles / Ground Water Protection	ND	460	50	50	ug/Kg
BV82271	\$8260MADPR	Vinyl chloride	NY / 375-6.8 Volatiles / Ground Water Protection	ND	46	20	20	ug/Kg
BV82271	\$8260MADPR	Methylene chloride	NY / 375-6.8 Volatiles / Ground Water Protection	ND	460	50	50	ug/Kg
BV82271	\$8260MADPR	Methyl Ethyl Ketone	NY / 375-6.8 Volatiles / Ground Water Protection	ND	460	120	120	ug/Kg
BV82271	\$8260MADPR	1,2-Dichloroethane	NY / 375-6.8 Volatiles / Ground Water Protection	ND	46	20	20	ug/Kg
BV82271	\$8260MADPR	1,2-Dichloroethane	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	46	20	20	ug/Kg
BV82271	\$8260MADPR	Methyl Ethyl Ketone	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	460	120	120	ug/Kg
BV82271	\$8260MADPR	Methylene chloride	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	460	50	50	ug/Kg
BV82271	\$8260MADPR	Vinyl chloride	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	46	20	20	ug/Kg
BV82271	\$8260MADPR	Acetone	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	460	50	50	ug/Kg
BV82271	\$DIOX_SMR	1,4-dioxane	NY / 375-6.8 Volatiles / Ground Water Protection	ND	3700	100	100	ug/kg
BV82271	\$DIOX_SMR	1,4-dioxane	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	3700	100	100	ug/kg
BV82272	\$8260MADPR	Acetone	NY / 375-6.8 Volatiles / Ground Water Protection	500	440	50	50	ug/Kg
BV82272	\$8260MADPR	Methyl Ethyl Ketone	NY / 375-6.8 Volatiles / Ground Water Protection	160	26	120	120	ug/Kg
BV82272	\$8260MADPR	Methyl Ethyl Ketone	NY / 375-6.8 Volatiles / Unrestricted Use Soil	160	26	120	120	ug/Kg
BV82272	\$8260MADPR	Acetone	NY / 375-6.8 Volatiles / Unrestricted Use Soil	500	440	50	50	ug/Kg

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY Temperature Narration

November 29, 2016

SDG I.D.: GBV82267

The samples in this delivery group were received at 4° C. (Note acceptance criteria is above freezing up to 6° C)

Cooler: Yes No No NY/NJ CHAIN OF CUSTODY RECORD	Contact Options:	Email: info@phoenixlabs.com Fax (860) 645-0823	Project: 4181 1 UShing Venue Drooken Project	Environmental Busine s Consul	Invoice to: Environmental Busines Consultants completed with	Bottle Quantities.		Date 11-1/16 Analysis	Jeanhay		Carlo de la Carlo	Sampled Sample	* * * * * * * * * * * * * * * * * * * *	1 1 1 2 7 7 7 7 1 1 1 1 1 1	11-11-11	11-11-11	11-11-11	* * * * * * * * * * * * * * * * * * * *	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			 Res. Criteria	12 Days* Unn-Res. Criteria	Cleanup Criteria Use Soil		SURCHARGE Surcharge Commercial Co	Industrial	Data Package Dat
NY/NJ CHAIN		(1 mages) atories, Inc.	 Environmental Business Consultants	ntry Road	Ridge, NY 11961 Invoice		Client Sample - Information - Identification	11-11-16		RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Solid W=Wipe OIL=Oil B=Bulk L=Liquid	le le	Sampled	8/15/86 (19-14) 8 (11-16) 2815/8	1586 (15-17) \$ 11-11-16	1587 (12-14) 5 11-11-16	71 1587 (18-20) 3 11-11-11	72 1587 (33-25) 5 11.11.16	273 1587(35-37.5) S 11-11-16	74 Soil Duplicete 2 5 11-11-16 x x	**	82276 Tripblank LL	 1/4. / 12-14-16	1	9/2//	Comments, Special Requirements or Regulations:	* Run MS/MSD on 1586 (12-14)	x Place 1586 (15-17) 800 hold	* Place 1587 (25-37.5) on hold

Monday, November 28, 2016

Attn: Mr. Charles B. Sosik, P.G. Environmental Business Consultants 1808 Middle Country Rd Ridge NY 11961-2406

Project ID: 1181 FLUSHING AVENUE BROOKLYN NY

Sample ID#s: BV81835 - BV81853

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

Enclosed are revised Analysis Report pages. Please replace and discard the original pages. If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY ANALYTICAL SERVICES PROTOCOL DATA PACKAGE

Client: Environmental Business Consultants
Project: 1181 FLUSHING AVENUE BROOKLYN NY
Laboratory Project: GBV81835

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

NY Analytical Services Protocol Format

November 28, 2016 SDG I.D.: GBV81835

Environmental Business Consultants 1181 FLUSHING AVENUE BROOKLYN NY

Methodology Summary

Accelerated Solvent Extraction (ASE)

Soil Sample - USEPA SW-846 Test Methods for Evaluating Solid Waste Physical/Chemical Methods 3rd Ed.Update III, Method 3545A.

Mercury Prep

Soil Sample - USEPA SW-846 Test Methods for Evaluating Solid Waste Physical/Chemical Methods 3rd Ed. Update IV, Method 7471B.

Metals

ICP:

USEPA SW-846 Test Methods for Evaluating Solid Waste Physical/Chemical Methods 3rd Ed. Update IV, Method 6010C.

Mercury:

USEPA SW-846 Test Methods for Evaluating Solid Waste Physical/Chemical Methods Update III, 7471

Pesticides:

USEPA SW-846 Test Methods for Evaluating Solid Waste Physical/Chemical Methods 3rd Ed. Update IV, Method 8081B.

Polychlorinated Biphenyls (PCBs):

USEPA SW-846 Test Methods for Evaluating Solid Waste Physical/Chemical Methods 3rd Ed. Update IV, Method 8082A.

Semivolatile Organic Compounds

USEPA SW-846 Test Methods for Evaluating Solid Waste Physical/Chemical Methods 3rd Ed. Update IV, Method 8270D.

Volatile Organic Compounds:

USEPA SW-846 Test Methods for Evaluating Solid Waste Physical/Chemical Methods 3rd Ed.Update III, Method 8260C and Environmental Protection Agency, EPA-600/4-79-020, Revised March 1983 (Methods 624) as printed in 40CFR part 136.

NY Analytical Services Protocol Format

November 28, 2016 SDG I.D.: GBV81835

Environmental Business Consultants 1181 FLUSHING AVENUE BROOKLYN NY

Sample Id Cross Reference

Client Id	Lab Id	Matrix			
15B5 (0-2)	BV81835	SOIL			
15B5 (12-14)	BV81836	SOIL			
15B5 (15-17)	BV81837	SOIL			
15B8 (0-2)	BV81838	SOIL			
15B8 (12-14)	BV81839	SOIL			
15B11 (0-2)	BV81840	SOIL			
15B11 (3-5)	BV81841	SOIL			
15B11 (12-14)	BV81842	SOIL			
15B12 (12-14)	BV81843	SOIL			
15B12 (20-22)	BV81844	SOIL			
15B13 (12-14)	BV81845	SOIL			
15B14 (1-3)	BV81846	SOIL			
15B14 (12-14)	BV81847	SOIL			
15B14 (14-16)	BV81848	SOIL			
15B20 (0-2)	BV81849	SOIL			
15B20 (12-14)	BV81850	SOIL			
SOIL DUPLICATE	BV81851	SOIL			
TRIP BLANK HIGH	BV81852	SOIL			
TRIP BLANK LOW	BV81853	SOIL			

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

NY Analytical Services Protocol Format

November 28, 2016 SDG I.D.: GBV81835

Environmental Business Consultants 1181 FLUSHING AVENUE BROOKLYN NY

Laboratory Chronicle

The samples in this delivery group were received at 4°C.

Sample	Analysis	Collection Date	Prep Date	Analysis Date	Analyst	Hold Time Met
BV81835	1,4-dioxane	11/10/16	11/13/16	11/13/16	JLI	Υ
BV81835	Aluminum	11/10/16	11/14/16	11/13/16	LK	Y
BV81835	Antimony	11/10/16	11/14/16	11/15/16	LK	Y
BV81835	Arsenic	11/10/16	11/14/16	11/13/16	LK	Y
BV81835	Barium	11/10/16	11/14/16	11/13/16	LK	Y
BV81835	Beryllium	11/10/16	11/14/16	11/13/16	LK	Y
BV81835	Cadmium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81835	Calcium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81835	Chromium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81835	Cobalt	11/10/16	11/14/16	11/13/16	LK	Υ
BV81835	Copper	11/10/16	11/14/16	11/13/16	LK	Υ
BV81835	Field Extraction	11/10/16	11/10/16	11/10/16		Υ
BV81835	Iron	11/10/16	11/14/16	11/13/16	LK	Υ
BV81835	Lead	11/10/16	11/14/16	11/13/16	LK	Υ
BV81835	Magnesium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81835	Manganese	11/10/16	11/14/16	11/13/16	LK	Y
BV81835	Mercury	11/10/16	11/14/16	11/14/16	RS	Υ
BV81835	Nickel	11/10/16	11/14/16	11/13/16	LK	Υ
BV81835	Percent Solid	11/10/16	11/11/16	11/11/16	W	Υ
BV81835	Pesticides - Soil	11/10/16	11/11/16	11/16/16	CE	Υ
BV81835	Polychlorinated Biphenyls	11/10/16	11/11/16	11/14/16	AW	Υ
BV81835	Potassium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81835	Selenium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81835	Semivolatiles	11/10/16	11/11/16	11/12/16	DD	Υ
BV81835	Silver	11/10/16	11/14/16	11/13/16	LK	Υ
BV81835	Sodium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81835	Thallium	11/10/16	11/14/16	11/13/16	LK	Y
BV81835	Vanadium	11/10/16	11/14/16	11/13/16	LK	Y
BV81835	Volatiles	11/10/16	11/13/16	11/13/16	JLI	Υ
BV81835	Volatiles	11/10/16	11/13/16	11/13/16	JLI	Υ
BV81835	Zinc	11/10/16	11/14/16	11/13/16	LK	Y
BV81836	1,4-dioxane	11/10/16	11/13/16	11/13/16	JLI	Υ

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

NY Analytical Services Protocol Format

November 28, 2016 SDG I.D.: GBV81835

BV81836	DV(0402C	Alumainum	44/40/40	44/44/40	44/40/40	LIZ	Υ
BV81836							
BV81836 Barium		•					
BV81836 Beryllium							
BV81836 Cadmium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Calcium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Chromium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Cobalt 11/10/16 11/14/16 11/13/16 LK Y BV81836 Copper 11/10/16 11/14/16 11/13/16 LK Y BV81836 Field Extraction 11/10/16 11/10/16 11/10/16 LK Y BV81836 Iron 11/10/16 11/14/16 11/13/16 LK Y BV81836 Iron 11/10/16 11/14/16 11/13/16 LK Y BV81836 Iron 11/10/16 11/14/16 11/13/16 LK Y BV81836 Manganese 11/10/16 11/14/16 11/13/16 LK Y BV81836 Mercury 11/10/16 11/14/16 11/14/16 11/14/16 RS							
BV81836 Calcium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Chromium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Cobalt 11/10/16 11/14/16 11/13/16 LK Y BV81836 Copper 11/10/16 11/10/16 11/13/16 LK Y BV81836 Field Extraction 11/10/16 11/10/16 11/10/16 LK Y BV81836 Iron 11/10/16 11/10/16 11/14/16 LK Y BV81836 Lead 11/10/16 11/14/16 11/15/16 LK Y BV81836 Magnesium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Mercury 11/10/16 11/14/16 11/14/16 RS Y BV81836 Nickel 11/10/16 11/14/16 11/14/16 RS Y BV81836 Percent Solid 11/10/16 11/11/16 11/11/16 M Y		-					
BV81836 Chromium							
BV81836 Cobalt							
BV81836 Copper							
BV81836 Field Extraction 11/10/16 11/10/16 11/10/16 Y							
BV81836 Iron						LK	
BV81836 Lead 11/10/16 11/14/16 11/15/16 LK Y BV81836 Magnesium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Manganese 11/10/16 11/14/16 11/13/16 LK Y BV81836 Mercury 11/10/16 11/14/16 11/14/16 RS Y BV81836 Nickel 11/10/16 11/14/16 11/13/16 LK Y BV81836 Percent Solid 11/10/16 11/11/16 11/11/16 W Y BV81836 Potassium 11/10/16 11/11/16 11/13/16 LK Y BV81836 Potassium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Selenium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Selenium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Solium 11/10/16 11/14/16 11/13/16 LK Y <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
BV81836 Magnesium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Manganese 11/10/16 11/14/16 11/13/16 LK Y BV81836 Mercury 11/10/16 11/14/16 11/14/16 RS Y BV81836 Nickel 11/10/16 11/14/16 11/13/16 LK Y BV81836 Percent Solid 11/10/16 11/11/16 11/11/16 W Y BV81836 Percent Solid 11/10/16 11/11/16 W Y BV81836 Polychlorinated Biphenyls 11/10/16 11/11/16 MW Y BV81836 Potassium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Selenium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Seinvolatiles 11/10/16 11/14/16 11/13/16 LK Y BV81836 Soilum 11/10/16 11/14/16 11/13/16 LK Y							
BV81836 Manganese 11/10/16 11/14/16 11/13/16 LK Y BV81836 Mercury 11/10/16 11/14/16 11/14/16 RS Y BV81836 Nickel 11/10/16 11/14/16 11/13/16 LK Y BV81836 Percent Solid 11/10/16 11/11/16 11/11/16 W Y BV81836 Percent Solid 11/10/16 11/11/16 11/11/16 W Y BV81836 Percent Solid 11/10/16 11/11/16 11/11/16 W Y BV81836 Polychlorinated Biphenyls 11/10/16 11/11/16 11/13/16 LK Y BV81836 Potassium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Selenium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Semivolatiles 11/10/16 11/14/16 11/13/16 LK Y BV81836 Solium 11/10/16 11/14/16 11/13/16							
BV81836 Mercury							
BV81836 Nickel 11/10/16 11/14/16 11/13/16 LK Y BV81836 Percent Solid 11/10/16 11/11/16 11/11/16 W Y BV81836 Polychlorinated Biphenyls 11/10/16 11/11/16 11/16/16 AW Y BV81836 Potassium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Selenium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Semivolatiles 11/10/16 11/14/16 11/13/16 LK Y BV81836 Solium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Sodium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Vanadium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Volatiles 11/10/16 11/13/16 11/13/16 LK Y BV81836 Volatiles 11/10/16 11/13/16 11/13/16 L							
BV81836 Percent Solid 11/10/16 11/11/16 W Y BV81836 Polychlorinated Biphenyls 11/10/16 11/11/16 11/16/16 AW Y BV81836 Potassium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Selenium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Semivolatiles 11/10/16 11/11/16 11/12/16 DD Y BV81836 Soliver 11/10/16 11/14/16 11/13/16 LK Y BV81836 Sodium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Thallium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Vanadium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Volatiles 11/10/16 11/13/16 11/13/16 LK Y BV81836 Zinc 11/10/16 11/13/16 11/13/16 LK Y	BV81836	Mercury	11/10/16	11/14/16		RS	
BV81836 Polychlorinated Biphenyls 11/10/16 11/11/16 11/16/16 AW Y BV81836 Potassium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Selenium 11/10/16 11/11/16 11/13/16 LK Y BV81836 Semivolatiles 11/10/16 11/11/16 11/12/16 DD Y BV81836 Soliver 11/10/16 11/11/16 11/13/16 LK Y BV81836 Sodium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Thallium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Vanadium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Volatiles 11/10/16 11/13/16 11/13/16 LK Y BV81836 Volatiles 11/10/16 11/13/16 11/13/16 JLI Y BV81837 1,4-dioxane 11/10/16 11/13/16 11/13/16 <t< td=""><td>BV81836</td><td>Nickel</td><td>11/10/16</td><td></td><td>11/13/16</td><td>LK</td><td></td></t<>	BV81836	Nickel	11/10/16		11/13/16	LK	
BV81836 Potassium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Selenium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Semivolatiles 11/10/16 11/11/16 11/12/16 DD Y BV81836 Silver 11/10/16 11/14/16 11/13/16 LK Y BV81836 Sodium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Thallium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Vanadium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Volatiles 11/10/16 11/13/16 11/13/16 JLI Y BV81836 Volatiles 11/10/16 11/13/16 11/13/16 JLI Y BV81837 1,4-dioxane 11/10/16 11/13/16 11/13/16 LK Y BV81837 Antimony 11/10/16 11/14/16 11/13/16 LK	BV81836	Percent Solid	11/10/16	11/11/16	11/11/16	W	Υ
BV81836 Selenium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Semivolatiles 11/10/16 11/11/16 11/12/16 DD Y BV81836 Silver 11/10/16 11/14/16 11/13/16 LK Y BV81836 Sodium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Thallium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Vanadium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Volatiles 11/10/16 11/13/16 JLI Y BV81836 Volatiles 11/10/16 11/13/16 JLI Y BV81836 Zinc 11/10/16 11/13/16 LK Y BV81837 1,4-dioxane 11/10/16 11/13/16 LK Y BV81837 Antimony 11/10/16 11/14/16 11/13/16 LK Y BV81837 Barium 11/10/16	BV81836	Polychlorinated Biphenyls	11/10/16	11/11/16	11/16/16	AW	Y
BV81836 Semivolatiles 11/10/16 11/11/16 11/12/16 DD Y BV81836 Silver 11/10/16 11/14/16 11/13/16 LK Y BV81836 Sodium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Thallium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Vanadium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Volatiles 11/10/16 11/13/16 11/13/16 JLI Y BV81836 Zinc 11/10/16 11/14/16 11/13/16 JLI Y BV81837 1,4-dioxane 11/10/16 11/13/16 11/13/16 LK Y BV81837 Aluminum 11/10/16 11/14/16 11/13/16 LK Y BV81837 Arsenic 11/10/16 11/14/16 11/13/16 LK Y BV81837 Barium 11/10/16 11/14/16 11/13/16 LK Y <td>BV81836</td> <td>Potassium</td> <td></td> <td>11/14/16</td> <td>11/13/16</td> <td>LK</td> <td>Υ</td>	BV81836	Potassium		11/14/16	11/13/16	LK	Υ
BV81836 Silver 11/10/16 11/14/16 11/13/16 LK Y BV81836 Sodium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Thallium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Vanadium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Volatiles 11/10/16 11/13/16 11/13/16 JLI Y BV81836 Volatiles 11/10/16 11/13/16 11/13/16 JLI Y BV81837 Zinc 11/10/16 11/13/16 11/13/16 LK Y BV81837 Aluminum 11/10/16 11/13/16 11/13/16 LK Y BV81837 Antimony 11/10/16 11/14/16 11/13/16 LK Y BV81837 Barium 11/10/16 11/14/16 11/13/16 LK Y BV81837 Beryllium 11/10/16 11/14/16 11/13/16 LK Y	BV81836	Selenium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81836 Sodium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Thallium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Vanadium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Volatiles 11/10/16 11/13/16 11/13/16 JLI Y BV81836 Volatiles 11/10/16 11/13/16 11/13/16 JLI Y BV81836 Zinc 11/10/16 11/14/16 11/13/16 LK Y BV81837 1,4-dioxane 11/10/16 11/13/16 11/13/16 LK Y BV81837 Aluminum 11/10/16 11/14/16 11/13/16 LK Y BV81837 Arsenic 11/10/16 11/14/16 11/13/16 LK Y BV81837 Beryllium 11/10/16 11/14/16 11/13/16 LK Y BV81837 Cadmium 11/10/16 11/14/16 11/13/16 LK Y <td>BV81836</td> <td>Semivolatiles</td> <td>11/10/16</td> <td>11/11/16</td> <td>11/12/16</td> <td>DD</td> <td>Y</td>	BV81836	Semivolatiles	11/10/16	11/11/16	11/12/16	DD	Y
BV81836 Thallium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Vanadium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Volatiles 11/10/16 11/13/16 11/13/16 JLI Y BV81836 Volatiles 11/10/16 11/13/16 11/13/16 JLI Y BV81836 Zinc 11/10/16 11/14/16 11/13/16 LK Y BV81837 1,4-dioxane 11/10/16 11/13/16 LK Y BV81837 Aluminum 11/10/16 11/14/16 11/13/16 LK Y BV81837 Arsenic 11/10/16 11/14/16 11/13/16 LK Y BV81837 Barium 11/10/16 11/14/16 11/13/16 LK Y BV81837 Beryllium 11/10/16 11/14/16 11/13/16 LK Y BV81837 Cadmium 11/10/16 11/14/16 11/13/16 LK Y	BV81836	Silver	11/10/16	11/14/16	11/13/16	LK	Y
BV81836 Vanadium 11/10/16 11/14/16 11/13/16 LK Y BV81836 Volatiles 11/10/16 11/13/16 11/13/16 JLI Y BV81836 Volatiles 11/10/16 11/13/16 11/13/16 JLI Y BV81836 Zinc 11/10/16 11/14/16 11/13/16 LK Y BV81837 1,4-dioxane 11/10/16 11/13/16 JLI Y BV81837 Aluminum 11/10/16 11/14/16 11/13/16 LK Y BV81837 Arsenic 11/10/16 11/14/16 11/13/16 LK Y BV81837 Barium 11/10/16 11/14/16 11/13/16 LK Y BV81837 Beryllium 11/10/16 11/14/16 11/13/16 LK Y BV81837 Cadmium 11/10/16 11/14/16 11/13/16 LK Y	BV81836	Sodium	11/10/16	11/14/16	11/13/16	LK	Y
BV81836 Volatiles 11/10/16 11/13/16 11/13/16 JLI Y BV81836 Volatiles 11/10/16 11/13/16 11/13/16 JLI Y BV81836 Zinc 11/10/16 11/14/16 11/13/16 LK Y BV81837 1,4-dioxane 11/10/16 11/13/16 JLI Y BV81837 Aluminum 11/10/16 11/14/16 11/13/16 LK Y BV81837 Antimony 11/10/16 11/14/16 11/13/16 LK Y BV81837 Barium 11/10/16 11/14/16 11/13/16 LK Y BV81837 Beryllium 11/10/16 11/14/16 11/13/16 LK Y BV81837 Cadmium 11/10/16 11/14/16 11/13/16 LK Y	BV81836	Thallium	11/10/16	11/14/16	11/13/16	LK	Y
BV81836 Volatiles 11/10/16 11/13/16 11/13/16 JLI Y BV81836 Zinc 11/10/16 11/14/16 11/13/16 LK Y BV81837 1,4-dioxane 11/10/16 11/13/16 11/13/16 JLI Y BV81837 Aluminum 11/10/16 11/14/16 11/13/16 LK Y BV81837 Arsenic 11/10/16 11/14/16 11/13/16 LK Y BV81837 Barium 11/10/16 11/14/16 11/13/16 LK Y BV81837 Beryllium 11/10/16 11/14/16 11/13/16 LK Y BV81837 Cadmium 11/10/16 11/14/16 11/13/16 LK Y	BV81836	Vanadium	11/10/16	11/14/16	11/13/16	LK	Y
BV81836 Zinc 11/10/16 11/14/16 11/13/16 LK Y BV81837 1,4-dioxane 11/10/16 11/13/16 11/13/16 JLI Y BV81837 Aluminum 11/10/16 11/14/16 11/13/16 LK Y BV81837 Arsenic 11/10/16 11/14/16 11/13/16 LK Y BV81837 Barium 11/10/16 11/14/16 11/13/16 LK Y BV81837 Beryllium 11/10/16 11/14/16 11/13/16 LK Y BV81837 Cadmium 11/10/16 11/14/16 11/13/16 LK Y	BV81836	Volatiles	11/10/16	11/13/16	11/13/16	JLI	Y
BV81837 1,4-dioxane 11/10/16 11/13/16 11/13/16 JLI Y BV81837 Aluminum 11/10/16 11/14/16 11/13/16 LK Y BV81837 Antimony 11/10/16 11/14/16 11/15/16 LK Y BV81837 Arsenic 11/10/16 11/14/16 11/13/16 LK Y BV81837 Barium 11/10/16 11/14/16 11/13/16 LK Y BV81837 Cadmium 11/10/16 11/14/16 11/13/16 LK Y	BV81836	Volatiles	11/10/16	11/13/16	11/13/16	JLI	Υ
BV81837 Aluminum 11/10/16 11/14/16 11/13/16 LK Y BV81837 Antimony 11/10/16 11/14/16 11/15/16 LK Y BV81837 Arsenic 11/10/16 11/14/16 11/13/16 LK Y BV81837 Barium 11/10/16 11/14/16 11/13/16 LK Y BV81837 Beryllium 11/10/16 11/14/16 11/13/16 LK Y BV81837 Cadmium 11/10/16 11/14/16 11/13/16 LK Y	BV81836	Zinc	11/10/16	11/14/16	11/13/16	LK	Υ
BV81837 Antimony 11/10/16 11/14/16 11/15/16 LK Y BV81837 Arsenic 11/10/16 11/14/16 11/13/16 LK Y BV81837 Barium 11/10/16 11/14/16 11/13/16 LK Y BV81837 Beryllium 11/10/16 11/14/16 11/13/16 LK Y BV81837 Cadmium 11/10/16 11/14/16 11/13/16 LK Y	BV81837	1,4-dioxane	11/10/16	11/13/16	11/13/16	JLI	Υ
BV81837 Arsenic 11/10/16 11/14/16 11/13/16 LK Y BV81837 Barium 11/10/16 11/14/16 11/13/16 LK Y BV81837 Beryllium 11/10/16 11/14/16 11/13/16 LK Y BV81837 Cadmium 11/10/16 11/14/16 11/13/16 LK Y	BV81837	Aluminum	11/10/16	11/14/16	11/13/16	LK	Υ
BV81837 Barium 11/10/16 11/14/16 11/13/16 LK Y BV81837 Beryllium 11/10/16 11/14/16 11/13/16 LK Y BV81837 Cadmium 11/10/16 11/14/16 11/13/16 LK Y	BV81837	Antimony	11/10/16	11/14/16	11/15/16	LK	Υ
BV81837 Beryllium 11/10/16 11/14/16 11/13/16 LK Y BV81837 Cadmium 11/10/16 11/14/16 11/13/16 LK Y	BV81837	Arsenic	11/10/16	11/14/16	11/13/16	LK	Υ
BV81837 Beryllium 11/10/16 11/14/16 11/13/16 LK Y BV81837 Cadmium 11/10/16 11/14/16 11/13/16 LK Y	BV81837	Barium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81837 Cadmium 11/10/16 11/14/16 11/13/16 LK Y	BV81837	Beryllium	11/10/16	11/14/16	11/13/16	LK	Υ
RV81837 Calcium 11/10/16 11/14/16 11/13/16 LK V	BV81837	-	11/10/16	11/14/16	11/13/16	LK	Υ
DV01031 Calcium	BV81837	Calcium	11/10/16	11/14/16	11/13/16	LK	Υ

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

NY Analytical Services Protocol Format

November 28, 2016 SDG I.D.: GBV81835

BV81837	Chromium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81837	Cobalt	11/10/16	11/14/16	11/13/16	LK	Υ
BV81837	Copper	11/10/16	11/14/16	11/13/16	LK	Υ
BV81837	Field Extraction	11/10/16	11/10/16	11/10/16		Υ
BV81837	Iron	11/10/16	11/14/16	11/13/16	LK	Υ
BV81837	Lead	11/10/16	11/14/16	11/13/16	LK	Υ
BV81837	Magnesium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81837	Manganese	11/10/16	11/14/16	11/13/16	LK	Υ
BV81837	Mercury	11/10/16	11/14/16	11/14/16	RS	Υ
BV81837	Nickel	11/10/16	11/14/16	11/13/16	LK	Υ
BV81837	Percent Solid	11/10/16	11/11/16	11/11/16	W	Υ
BV81837	Potassium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81837	Selenium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81837	Semivolatiles	11/10/16	11/11/16	11/12/16	DD	Υ
BV81837	Silver	11/10/16	11/14/16	11/13/16	LK	Υ
BV81837	Sodium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81837	Thallium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81837	Vanadium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81837	Volatiles	11/10/16	11/13/16	11/13/16	JLI	Υ
BV81837	Volatiles	11/10/16	11/13/16	11/13/16	JLI	Υ
BV81837	Zinc	11/10/16	11/14/16	11/13/16	LK	Υ
BV81838	1,4-dioxane	11/10/16	11/13/16	11/13/16	JLI	Υ
BV81838	Aluminum	11/10/16	11/14/16	11/13/16	LK	Υ
BV81838	Antimony	11/10/16	11/14/16	11/15/16	LK	Υ
BV81838	Arsenic	11/10/16	11/14/16	11/13/16	LK	Υ
BV81838	Barium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81838	Beryllium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81838	Cadmium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81838	Calcium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81838	Chromium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81838	Cobalt	11/10/16	11/14/16	11/13/16	LK	Υ
BV81838	Copper	11/10/16	11/14/16	11/13/16	LK	Υ
BV81838	Field Extraction	11/10/16	11/10/16	11/10/16		Υ
BV81838	Iron	11/10/16	11/14/16	11/13/16	LK	Υ
BV81838	Lead	11/10/16	11/14/16	11/13/16	LK	Υ
BV81838	Magnesium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81838	Manganese	11/10/16	11/14/16	11/13/16	LK	Υ

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

NY Analytical Services Protocol Format

November 28, 2016 SDG I.D.: GBV81835

BV81838	Mercury	11/10/16	11/14/16	11/14/16	RS	Υ
BV81838	Nickel	11/10/16	11/14/16	11/13/16	LK	Υ
BV81838	Percent Solid	11/10/16	11/11/16	11/11/16	W	Υ
BV81838	Polychlorinated Biphenyls	11/10/16	11/11/16	11/14/16	AW	Υ
BV81838	Potassium	11/10/16	11/14/16	11/13/16	LK	Y
BV81838	Selenium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81838	Semivolatiles	11/10/16	11/11/16	11/12/16	DD	Υ
BV81838	Silver	11/10/16	11/14/16	11/13/16	LK	Υ
BV81838	Sodium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81838	Thallium	11/10/16	11/14/16	11/13/16	LK	Y
BV81838	Vanadium	11/10/16	11/14/16	11/13/16	LK	Y
BV81838	Volatiles	11/10/16	11/13/16	11/13/16	JLI	Y
BV81838	Volatiles	11/10/16	11/13/16	11/13/16	JLI	Y
BV81838	Zinc	11/10/16	11/14/16	11/13/16	LK	Υ
BV81839	1,4-dioxane	11/10/16	11/13/16	11/13/16	JLI	Υ
BV81839	Aluminum	11/10/16	11/14/16	11/13/16	LK	Υ
BV81839	Antimony	11/10/16	11/14/16	11/15/16	LK	Υ
BV81839	Arsenic	11/10/16	11/14/16	11/13/16	LK	Y
BV81839	Barium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81839	Beryllium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81839	Cadmium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81839	Calcium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81839	Chromium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81839	Cobalt	11/10/16	11/14/16	11/13/16	LK	Υ
BV81839	Copper	11/10/16	11/14/16	11/13/16	LK	Υ
BV81839	Field Extraction	11/10/16	11/10/16	11/10/16		Υ
BV81839	Iron	11/10/16	11/14/16	11/13/16	LK	Υ
BV81839	Lead	11/10/16	11/14/16	11/15/16	LK	Υ
BV81839	Magnesium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81839	Manganese	11/10/16	11/14/16	11/13/16	LK	Υ
BV81839	Mercury	11/10/16	11/14/16	11/14/16	RS	Υ
BV81839	Nickel	11/10/16	11/14/16	11/13/16	LK	Υ
BV81839	Percent Solid	11/10/16	11/11/16	11/11/16	W	Υ
BV81839	Pesticides - Soil	11/10/16	11/11/16	11/16/16	CE	Υ
BV81839	Polychlorinated Biphenyls	11/10/16	11/11/16	11/14/16	AW	Y
BV81839	Potassium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81839	Selenium	11/10/16	11/14/16	11/13/16	LK	Υ

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

NY Analytical Services Protocol Format

November 28, 2016 SDG I.D.: GBV81835

BV81839	Semivolatiles	11/10/16	11/11/16	11/12/16	DD	Υ
BV81839	Silver	11/10/16	11/14/16	11/13/16	LK	Υ
BV81839	Sodium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81839	Thallium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81839	Vanadium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81839	Volatiles	11/10/16	11/13/16	11/13/16	JLI	Υ
BV81839	Volatiles	11/10/16	11/13/16	11/13/16	JLI	Υ
BV81839	Zinc	11/10/16	11/14/16	11/13/16	LK	Υ
BV81840	1,4-dioxane	11/10/16	11/13/16	11/13/16	JLI	Y
BV81840	Aluminum	11/10/16	11/14/16	11/13/16	LK	Υ
BV81840	Antimony	11/10/16	11/14/16	11/15/16	LK	Y
BV81840	Arsenic	11/10/16	11/14/16	11/13/16	LK	Y
BV81840	Barium	11/10/16	11/14/16	11/13/16	LK	Y
BV81840	Beryllium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81840	Cadmium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81840	Calcium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81840	Chromium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81840	Cobalt	11/10/16	11/14/16	11/13/16	LK	Υ
BV81840	Copper	11/10/16	11/14/16	11/13/16	LK	Υ
BV81840	Field Extraction	11/10/16	11/10/16	11/10/16		Υ
BV81840	Iron	11/10/16	11/14/16	11/13/16	LK	Υ
BV81840	Lead	11/10/16	11/14/16	11/13/16	LK	Υ
BV81840	Magnesium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81840	Manganese	11/10/16	11/14/16	11/13/16	LK	Υ
BV81840	Mercury	11/10/16	11/14/16	11/14/16	RS	Υ
BV81840	Nickel	11/10/16	11/14/16	11/13/16	LK	Υ
BV81840	Percent Solid	11/10/16	11/11/16	11/11/16	W	Υ
BV81840	Pesticides - Soil	11/10/16	11/11/16	11/16/16	CE	Υ
BV81840	Polychlorinated Biphenyls	11/10/16	11/11/16	11/14/16	AW	Υ
BV81840	Potassium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81840	Selenium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81840	Semivolatiles	11/10/16	11/11/16	11/12/16	DD	Υ
BV81840	Silver	11/10/16	11/14/16	11/13/16	LK	Υ
BV81840	Sodium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81840	Thallium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81840	Vanadium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81840	Volatiles	11/10/16	11/13/16	11/13/16	JLI	Υ

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

NY Analytical Services Protocol Format

November 28, 2016 SDG I.D.: GBV81835

BV81840	Volatiles	11/10/16	11/14/16	11/14/16	JLI	Υ
BV81840	Zinc	11/10/16	11/14/16	11/13/16	LK	Υ
BV81841	1,4-dioxane	11/10/16	11/14/16	11/14/16	JLI	Υ
BV81841	Aluminum	11/10/16	11/14/16	11/13/16	LK	Υ
BV81841	Antimony	11/10/16	11/14/16	11/15/16	LK	Υ
BV81841	Arsenic	11/10/16	11/14/16	11/13/16	LK	Υ
BV81841	Barium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81841	Beryllium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81841	Cadmium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81841	Calcium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81841	Chromium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81841	Cobalt	11/10/16	11/14/16	11/13/16	LK	Υ
BV81841	Copper	11/10/16	11/14/16	11/13/16	LK	Υ
BV81841	Field Extraction	11/10/16	11/10/16	11/10/16		Υ
BV81841	Iron	11/10/16	11/14/16	11/13/16	LK	Υ
BV81841	Lead	11/10/16	11/14/16	11/15/16	LK	Υ
BV81841	Magnesium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81841	Manganese	11/10/16	11/14/16	11/13/16	LK	Υ
BV81841	Mercury	11/10/16	11/14/16	11/14/16	RS	Υ
BV81841	Nickel	11/10/16	11/14/16	11/13/16	LK	Υ
BV81841	Percent Solid	11/10/16	11/11/16	11/11/16	W	Υ
BV81841	Potassium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81841	Selenium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81841	Semivolatiles	11/10/16	11/11/16	11/12/16	DD	Υ
BV81841	Silver	11/10/16	11/14/16	11/13/16	LK	Υ
BV81841	Sodium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81841	Thallium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81841	Vanadium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81841	Volatiles	11/10/16	11/14/16	11/14/16	JLI	Υ
BV81841	Volatiles	11/10/16	11/14/16	11/14/16	JLI	Υ
BV81841	Zinc	11/10/16	11/14/16	11/13/16	LK	Υ
BV81842	1,4-dioxane	11/10/16	11/13/16	11/13/16	JLI	Υ
BV81842	Aluminum	11/10/16	11/14/16	11/13/16	LK	Υ
BV81842	Antimony	11/10/16	11/14/16	11/15/16	LK	Υ
BV81842	Arsenic	11/10/16	11/14/16	11/13/16	LK	Υ
BV81842	Barium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81842	Beryllium	11/10/16	11/14/16	11/13/16	LK	Υ

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

NY Analytical Services Protocol Format

November 28, 2016 SDG I.D.: GBV81835

BV81842	Cadmium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81842	Calcium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81842	Chromium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81842	Cobalt	11/10/16	11/14/16	11/13/16	LK	Υ
BV81842	Copper	11/10/16	11/14/16	11/13/16	LK	Υ
BV81842	Field Extraction	11/10/16	11/10/16	11/10/16		Υ
BV81842	Iron	11/10/16	11/14/16	11/13/16	LK	Υ
BV81842	Lead	11/10/16	11/14/16	11/15/16	LK	Y
BV81842	Magnesium	11/10/16	11/14/16	11/13/16	LK	Y
BV81842	Manganese	11/10/16	11/14/16	11/13/16	LK	Υ
BV81842	Mercury	11/10/16	11/14/16	11/14/16	RS	Υ
BV81842	Nickel	11/10/16	11/14/16	11/13/16	LK	Υ
BV81842	Percent Solid	11/10/16	11/11/16	11/11/16	W	Υ
BV81842	Polychlorinated Biphenyls	11/10/16	11/11/16	11/14/16	AW	Υ
BV81842	Potassium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81842	Selenium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81842	Semivolatiles	11/10/16	11/11/16	11/12/16	DD	Υ
BV81842	Silver	11/10/16	11/14/16	11/13/16	LK	Υ
BV81842	Sodium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81842	Thallium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81842	Vanadium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81842	Volatiles	11/10/16	11/13/16	11/13/16	JLI	Υ
BV81842	Volatiles	11/10/16	11/13/16	11/13/16	JLI	Υ
BV81842	Zinc	11/10/16	11/14/16	11/13/16	LK	Υ
BV81843	1,4-dioxane	11/10/16	11/13/16	11/13/16	JLI	Υ
BV81843	Aluminum	11/10/16	11/14/16	11/13/16	LK	Υ
BV81843	Antimony	11/10/16	11/14/16	11/15/16	LK	Υ
BV81843	Arsenic	11/10/16	11/14/16	11/13/16	LK	Υ
BV81843	Barium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81843	Beryllium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81843	Cadmium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81843	Calcium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81843	Chromium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81843	Cobalt	11/10/16	11/14/16	11/13/16	LK	Υ
BV81843	Copper	11/10/16	11/14/16	11/13/16	LK	Υ
BV81843	Field Extraction	11/10/16	11/10/16	11/10/16		Υ
BV81843	Iron	11/10/16	11/14/16	11/13/16	LK	Υ

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

NY Analytical Services Protocol Format

November 28, 2016 SDG I.D.: GBV81835

BV81843	Lead	11/10/16	11/14/16	11/15/16	LK	Υ
BV81843	Magnesium	11/10/16	11/14/16	11/13/16	LK	Y
BV81843	Manganese	11/10/16	11/14/16	11/13/16	LK	Υ
BV81843	Mercury	11/10/16	11/14/16	11/14/16	RS	Υ
BV81843	Nickel	11/10/16	11/14/16	11/13/16	LK	Υ
BV81843	Percent Solid	11/10/16	11/11/16	11/11/16	W	Υ
BV81843	Pesticides - Soil	11/10/16	11/11/16	11/15/16	CE	Υ
BV81843	Polychlorinated Biphenyls	11/10/16	11/11/16	11/14/16	AW	Υ
BV81843	Potassium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81843	Selenium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81843	Semivolatiles	11/10/16	11/11/16	11/12/16	DD	Υ
BV81843	Silver	11/10/16	11/14/16	11/13/16	LK	Υ
BV81843	Sodium	11/10/16	11/14/16	11/13/16	LK	Y
BV81843	Thallium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81843	Vanadium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81843	Volatiles	11/10/16	11/13/16	11/13/16	JLI	Υ
BV81843	Volatiles	11/10/16	11/14/16	11/14/16	JLI	Υ
BV81843	Zinc	11/10/16	11/14/16	11/13/16	LK	Υ
BV81844	1,4-dioxane	11/10/16	11/13/16	11/13/16	JLI	Υ
BV81844	Aluminum	11/10/16	11/14/16	11/13/16	LK	Υ
BV81844	Antimony	11/10/16	11/14/16	11/15/16	LK	Υ
BV81844	Arsenic	11/10/16	11/14/16	11/13/16	LK	Υ
BV81844	Barium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81844	Beryllium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81844	Cadmium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81844	Calcium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81844	Chromium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81844	Cobalt	11/10/16	11/14/16	11/13/16	LK	Υ
BV81844	Copper	11/10/16	11/14/16	11/13/16	LK	Υ
BV81844	Field Extraction	11/10/16	11/10/16	11/10/16		Υ
BV81844	Iron	11/10/16	11/14/16	11/13/16	LK	Υ
BV81844	Lead	11/10/16	11/14/16	11/15/16	LK	Υ
BV81844	Magnesium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81844	Manganese	11/10/16	11/14/16	11/13/16	LK	Υ
BV81844	Mercury	11/10/16	11/14/16	11/14/16	RS	Υ
BV81844	Nickel	11/10/16	11/14/16	11/13/16	LK	Υ
BV81844	Percent Solid	11/10/16	11/11/16	11/11/16	W	Υ

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

NY Analytical Services Protocol Format

November 28, 2016 SDG I.D.: GBV81835

BV81844	Potassium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81844	Selenium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81844	Semivolatiles	11/10/16	11/11/16	11/12/16	DD	Υ
BV81844	Silver	11/10/16	11/14/16	11/13/16	LK	Υ
BV81844	Sodium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81844	Thallium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81844	Vanadium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81844	Volatiles	11/10/16	11/13/16	11/13/16	JLI	Y
BV81844	Volatiles	11/10/16	11/13/16	11/13/16	JLI	Y
BV81844	Zinc	11/10/16	11/14/16	11/13/16	LK	Y
BV81845	1,4-dioxane	11/10/16	11/14/16	11/14/16	JLI	Υ
BV81845	Aluminum	11/10/16	11/14/16	11/13/16	LK	Υ
BV81845	Antimony	11/10/16	11/14/16	11/15/16	LK	Υ
BV81845	Arsenic	11/10/16	11/14/16	11/13/16	LK	Υ
BV81845	Barium	11/10/16	11/14/16	11/13/16	LK	Y
BV81845	Beryllium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81845	Cadmium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81845	Calcium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81845	Chromium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81845	Cobalt	11/10/16	11/14/16	11/13/16	LK	Υ
BV81845	Copper	11/10/16	11/14/16	11/13/16	LK	Υ
BV81845	Field Extraction	11/10/16	11/10/16	11/10/16		Υ
BV81845	Iron	11/10/16	11/14/16	11/13/16	LK	Υ
BV81845	Lead	11/10/16	11/14/16	11/15/16	LK	Υ
BV81845	Magnesium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81845	Manganese	11/10/16	11/14/16	11/13/16	LK	Υ
BV81845	Mercury	11/10/16	11/14/16	11/14/16	RS	Υ
BV81845	Nickel	11/10/16	11/14/16	11/13/16	LK	Υ
BV81845	Percent Solid	11/10/16	11/11/16	11/11/16	W	Υ
BV81845	Pesticides - Soil	11/10/16	11/11/16	11/16/16	CE	Υ
BV81845	Polychlorinated Biphenyls	11/10/16	11/11/16	11/14/16	AW	Υ
BV81845	Potassium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81845	Selenium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81845	Semivolatiles	11/10/16	11/11/16	11/12/16	DD	Υ
BV81845	Silver	11/10/16	11/14/16	11/13/16	LK	Υ
BV81845	Sodium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81845	Thallium	11/10/16	11/14/16	11/13/16	LK	Υ

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

NY Analytical Services Protocol Format

November 28, 2016 SDG I.D.: GBV81835

BV81845	Vanadium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81845	Volatiles	11/10/16	11/14/16	11/14/16	JLI	Υ
BV81845	Volatiles	11/10/16	11/14/16	11/14/16	JLI	Υ
BV81845	Zinc	11/10/16	11/14/16	11/13/16	LK	Υ
BV81846	1,4-dioxane	11/10/16	11/14/16	11/14/16	JLI	Υ
BV81846	Aluminum	11/10/16	11/14/16	11/13/16	LK	Υ
BV81846	Antimony	11/10/16	11/14/16	11/15/16	LK	Υ
BV81846	Arsenic	11/10/16	11/14/16	11/13/16	LK	Υ
BV81846	Barium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81846	Beryllium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81846	Cadmium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81846	Calcium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81846	Chromium	11/10/16	11/14/16	11/13/16	LK	Y
BV81846	Cobalt	11/10/16	11/14/16	11/13/16	LK	Υ
BV81846	Copper	11/10/16	11/14/16	11/13/16	LK	Υ
BV81846	Field Extraction	11/10/16	11/10/16	11/10/16		Υ
BV81846	Iron	11/10/16	11/14/16	11/13/16	LK	Y
BV81846	Lead	11/10/16	11/14/16	11/13/16	LK	Υ
BV81846	Magnesium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81846	Manganese	11/10/16	11/14/16	11/13/16	LK	Υ
BV81846	Mercury	11/10/16	11/14/16	11/14/16	RS	Υ
BV81846	Nickel	11/10/16	11/14/16	11/13/16	LK	Υ
BV81846	Percent Solid	11/10/16	11/11/16	11/11/16	W	Υ
BV81846	Pesticides - Soil	11/10/16	11/11/16	11/15/16	CE	Υ
BV81846	Polychlorinated Biphenyls	11/10/16	11/11/16	11/14/16	AW	Υ
BV81846	Potassium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81846	Selenium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81846	Semivolatiles	11/10/16	11/11/16	11/12/16	DD	Υ
BV81846	Silver	11/10/16	11/14/16	11/13/16	LK	Υ
BV81846	Sodium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81846	Thallium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81846	Vanadium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81846	Volatiles	11/10/16	11/13/16	11/13/16	JLI	Υ
BV81846	Volatiles	11/10/16	11/14/16	11/14/16	JLI	Υ
BV81846	Zinc	11/10/16	11/14/16	11/13/16	LK	Υ
BV81847	1,4-dioxane	11/10/16	11/14/16	11/14/16	JLI	Υ
BV81847	Aluminum	11/10/16	11/14/16	11/13/16	LK	Υ

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

NY Analytical Services Protocol Format

November 28, 2016 SDG I.D.: GBV81835

BV81847 Antimony 11/10/16 11/14/16 11/15/16 LK Y BV81847 Barsinc 11/10/16 11/14/16 11/13/16 LK Y BV81847 Barium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Beryllium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Cadmium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Chromium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Chromium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Cobalt 11/10/16 11/14/16 11/13/16 LK Y BV81847 Field Extraction 11/10/16 11/14/16 11/13/16 LK Y BV81847 Iron 11/10/16 11/14/16 11/13/16 LK Y BV81847 Iron 11/10/16 11/14/16 11/13/16 LK Y	D) (0 (0 (T	A	444040	4.44.44.6	4.4.4.7.4.0		.,
BV81847 Baryllium		•					
BV81847 Beryllium							
BV81847							
BV81847 Calcium		-					
BV81847 Chromium							
BV81847 Cobalt							
BV81847							
BV81847 Field Extraction 11/10/16 11/10/16 11/10/16 Y BV81847 Iron 11/10/16 11/10/16 11/13/16 LK Y BV81847 Lead 11/10/16 11/14/16 11/15/16 LK Y BV81847 Magnesium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Manganese 11/10/16 11/14/16 11/13/16 LK Y BV81847 Mercury 11/10/16 11/14/16 11/13/16 LK Y BV81847 Nickel 11/10/16 11/14/16 11/13/16 LK Y BV81847 Percent Solid 11/10/16 11/11/16 11/11/16 W Y BV81847 Polychlorinated Biphenyls 11/10/16 11/11/16 11/11/16 AW Y BV81847 Polychlorinated Biphenyls 11/10/16 11/14/16 11/13/16 LK Y BV81847 Polychlorinated Biphenyls 11/10/16 11/14/16 11/13/16 LK Y							
BV81847 Iron		* * *				LK	
BV81847 Lead 11/10/16 11/14/16 11/15/16 LK Y BV81847 Magnesium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Manganese 11/10/16 11/14/16 11/13/16 LK Y BV81847 Mercury 11/10/16 11/14/16 11/14/16 RS Y BV81847 Nickel 11/10/16 11/14/16 11/13/16 LK Y BV81847 Percent Solid 11/10/16 11/11/16 11/11/16 W Y BV81847 Polychlorinated Biphenyls 11/10/16 11/11/16 11/14/16 AW Y BV81847 Potassium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Selenium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Semivolatiles 11/10/16 11/14/16 11/13/16 LK Y BV81847 Sodium 11/10/16 11/14/16 11/13/16 LK </td <td>BV81847</td> <td>Field Extraction</td> <td></td> <td></td> <td></td> <td></td> <td></td>	BV81847	Field Extraction					
BV81847 Magnesium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Manganese 11/10/16 11/14/16 11/13/16 LK Y BV81847 Mercury 11/10/16 11/14/16 11/14/16 RS Y BV81847 Nickel 11/10/16 11/14/16 11/13/16 LK Y BV81847 Piccent Solid 11/10/16 11/11/16 11/11/16 W Y BV81847 Polychlorinated Biphenyls 11/10/16 11/11/16 M Y BV81847 Potassium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Potassium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Selenium 11/10/16 11/11/16 11/13/16 LK Y BV81847 Semivolatiles 11/10/16 11/14/16 11/13/16 LK Y BV81847 Sodium 11/10/16 11/14/16 11/13/16 LK Y		Iron					
BV81847 Manganese 11/10/16 11/14/16 11/13/16 LK Y BV81847 Mercury 11/10/16 11/14/16 11/14/16 RS Y BV81847 Nickel 11/10/16 11/14/16 11/13/16 LK Y BV81847 Percent Solid 11/10/16 11/11/16 11/11/16 W Y BV81847 Percent Solid 11/10/16 11/11/16 11/11/16 W Y BV81847 Potassium 11/10/16 11/11/16 11/13/16 LK Y BV81847 Potassium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Selenium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Selenium 11/10/16 11/11/16 11/12/16 DD Y BV81847 Selenium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Sodium 11/10/16 11/14/16 11/13/16 LK <t< td=""><td>BV81847</td><td>Lead</td><td>11/10/16</td><td></td><td></td><td>LK</td><td></td></t<>	BV81847	Lead	11/10/16			LK	
BV81847 Mercury	BV81847	Magnesium	11/10/16	11/14/16	11/13/16	LK	
BV81847 Nickel 11/10/16 11/14/16 11/13/16 LK Y BV81847 Percent Solid 11/10/16 11/11/16 11/11/16 W Y BV81847 Polychlorinated Biphenyls 11/10/16 11/11/16 11/14/16 AW Y BV81847 Potassium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Selenium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Semivolatiles 11/10/16 11/11/16 11/13/16 LK Y BV81847 Silver 11/10/16 11/14/16 11/13/16 LK Y BV81847 Sodium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Thallium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Volatiles 11/10/16 11/14/16 11/14/16 11/14/16 JLI Y BV81848 1,4-dioxane 11/10/16 11/14/16 <t< td=""><td>BV81847</td><td>_</td><td>11/10/16</td><td>11/14/16</td><td>11/13/16</td><td>LK</td><td>Υ</td></t<>	BV81847	_	11/10/16	11/14/16	11/13/16	LK	Υ
BV81847 Percent Solid 11/10/16 11/11/16 W Y BV81847 Polychlorinated Biphenyls 11/10/16 11/11/16 11/14/16 AW Y BV81847 Potassium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Selenium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Semivolatiles 11/10/16 11/11/16 11/12/16 DD Y BV81847 Silver 11/10/16 11/14/16 11/13/16 LK Y BV81847 Sodium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Vanadium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Volatiles 11/10/16 11/14/16 11/14/16 JLI Y BV81847 Volatiles 11/10/16 11/14/16 11/14/16 JLI Y BV81848 1,4-dioxane 11/10/16 11/14/16 11/13/16 LK	BV81847	Mercury	11/10/16	11/14/16	11/14/16	RS	Y
BV81847 Polychlorinated Biphenyls 11/10/16 11/11/16 11/14/16 AW Y BV81847 Potassium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Selenium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Semivolatiles 11/10/16 11/14/16 11/13/16 LK Y BV81847 Sodium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Thallium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Vanadium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Volatiles 11/10/16 11/14/16 11/14/16 JLI Y BV81848 1,4-dioxane 11/10/16 11/14/16 11/13/16 LK Y BV81848 Aluminum 11/10/16 11/14/16 11/13/16 LK Y BV81848 Arsenic 11/10/16 11/14/16 11/13/16 <td< td=""><td>BV81847</td><td>Nickel</td><td>11/10/16</td><td>11/14/16</td><td>11/13/16</td><td>LK</td><td>Υ</td></td<>	BV81847	Nickel	11/10/16	11/14/16	11/13/16	LK	Υ
BV81847 Potassium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Selenium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Semivolatiles 11/10/16 11/11/16 11/12/16 DD Y BV81847 Silver 11/10/16 11/14/16 11/13/16 LK Y BV81847 Sodium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Thallium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Vanadium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Volatiles 11/10/16 11/14/16 11/14/16 JLI Y BV81847 Volatiles 11/10/16 11/14/16 11/14/16 JLI Y BV81848 1,4-dioxane 11/10/16 11/14/16 11/13/16 LK Y BV81848 Aluminum 11/10/16 11/14/16 11/13/16 LK	BV81847	Percent Solid	11/10/16	11/11/16	11/11/16	W	Υ
BV81847 Selenium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Semivolatiles 11/10/16 11/11/16 11/12/16 DD Y BV81847 Silver 11/10/16 11/14/16 11/13/16 LK Y BV81847 Sodium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Thallium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Vanadium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Volatiles 11/10/16 11/14/16 11/14/16 JLI Y BV81847 Volatiles 11/10/16 11/14/16 11/14/16 JLI Y BV81847 Volatiles 11/10/16 11/14/16 11/14/16 JLI Y BV81848 1,4-dioxane 11/10/16 11/14/16 11/13/16 LK Y BV81848 Aluminum 11/10/16 11/14/16 11/13/16 LK	BV81847	Polychlorinated Biphenyls	11/10/16	11/11/16	11/14/16	AW	Y
BV81847 Semivolatiles 11/10/16 11/11/16 11/12/16 DD Y BV81847 Silver 11/10/16 11/14/16 11/13/16 LK Y BV81847 Sodium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Thallium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Vanadium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Volatiles 11/10/16 11/14/16 11/14/16 JLI Y BV81847 Volatiles 11/10/16 11/14/16 11/14/16 JLI Y BV818487 Zinc 11/10/16 11/14/16 11/13/16 LK Y BV818488 1,4-dioxane 11/10/16 11/13/16 11/13/16 LK Y BV818488 Aluminum 11/10/16 11/14/16 11/13/16 LK Y BV818489 Arsenic 11/10/16 11/14/16 11/13/16 LK <	BV81847	Potassium	11/10/16	11/14/16	11/13/16	LK	Y
BV81847 Silver 11/10/16 11/14/16 11/13/16 LK Y BV81847 Sodium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Thallium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Vanadium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Volatiles 11/10/16 11/14/16 11/14/16 JLI Y BV81847 Zinc 11/10/16 11/14/16 11/13/16 LK Y BV81847 Zinc 11/10/16 11/14/16 11/13/16 LK Y BV81848 1,4-dioxane 11/10/16 11/13/16 LK Y BV81848 Aluminum 11/10/16 11/14/16 11/13/16 LK Y BV81848 Arsenic 11/10/16 11/14/16 11/13/16 LK Y BV81848 Barium 11/10/16 11/14/16 11/13/16 LK Y BV	BV81847	Selenium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81847 Sodium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Thallium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Vanadium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Volatiles 11/10/16 11/14/16 11/14/16 JLI Y BV81847 Zinc 11/10/16 11/14/16 11/13/16 LK Y BV81848 1,4-dioxane 11/10/16 11/13/16 11/13/16 LK Y BV81848 Aluminum 11/10/16 11/14/16 11/13/16 LK Y BV81848 Arsenic 11/10/16 11/14/16 11/13/16 LK Y BV81848 Barium 11/10/16 11/14/16 11/13/16 LK Y BV81848 Cadmium 11/10/16 11/14/16 11/13/16 LK Y BV81848 Cadmium 11/10/16 11/14/16 11/13/16 LK Y	BV81847	Semivolatiles	11/10/16	11/11/16	11/12/16	DD	Υ
BV81847 Thallium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Vanadium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Volatiles 11/10/16 11/14/16 11/14/16 JLI Y BV81847 Volatiles 11/10/16 11/14/16 11/14/16 JLI Y BV81847 Zinc 11/10/16 11/14/16 11/13/16 LK Y BV81848 1,4-dioxane 11/10/16 11/13/16 11/13/16 LK Y BV81848 Aluminum 11/10/16 11/14/16 11/13/16 LK Y BV81848 Arsenic 11/10/16 11/14/16 11/13/16 LK Y BV81848 Barium 11/10/16 11/14/16 11/13/16 LK Y BV81848 Cadmium 11/10/16 11/14/16 11/13/16 LK Y BV81848 Cadmium 11/10/16 11/14/16 11/13/16 LK Y	BV81847	Silver	11/10/16	11/14/16	11/13/16	LK	Y
BV81847 Vanadium 11/10/16 11/14/16 11/13/16 LK Y BV81847 Volatiles 11/10/16 11/14/16 11/14/16 JLI Y BV81847 Volatiles 11/10/16 11/14/16 11/14/16 JLI Y BV81847 Zinc 11/10/16 11/14/16 11/13/16 LK Y BV81848 1,4-dioxane 11/10/16 11/13/16 JLI Y BV81848 Aluminum 11/10/16 11/14/16 11/13/16 LK Y BV81848 Antimony 11/10/16 11/14/16 11/13/16 LK Y BV81848 Barium 11/10/16 11/14/16 11/13/16 LK Y BV81848 Beryllium 11/10/16 11/14/16 11/13/16 LK Y BV81848 Cadmium 11/10/16 11/14/16 11/13/16 LK Y BV81848 Calcium 11/10/16 11/14/16 11/13/16 LK Y	BV81847	Sodium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81847 Volatiles 11/10/16 11/14/16 11/14/16 JLI Y BV81847 Volatiles 11/10/16 11/14/16 11/14/16 JLI Y BV81847 Zinc 11/10/16 11/14/16 11/13/16 LK Y BV81848 1,4-dioxane 11/10/16 11/13/16 JLI Y BV81848 Aluminum 11/10/16 11/14/16 11/13/16 LK Y BV81848 Antimony 11/10/16 11/14/16 11/13/16 LK Y BV81848 Arsenic 11/10/16 11/14/16 11/13/16 LK Y BV81848 Barium 11/10/16 11/14/16 11/13/16 LK Y BV81848 Cadmium 11/10/16 11/14/16 11/13/16 LK Y BV81848 Calcium 11/10/16 11/14/16 11/13/16 LK Y	BV81847	Thallium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81847 Volatiles 11/10/16 11/14/16 11/14/16 JLI Y BV81847 Zinc 11/10/16 11/14/16 11/13/16 LK Y BV81848 1,4-dioxane 11/10/16 11/13/16 11/13/16 JLI Y BV81848 Aluminum 11/10/16 11/14/16 11/13/16 LK Y BV81848 Antimony 11/10/16 11/14/16 11/13/16 LK Y BV81848 Arsenic 11/10/16 11/14/16 11/13/16 LK Y BV81848 Barium 11/10/16 11/14/16 11/13/16 LK Y BV81848 Cadmium 11/10/16 11/14/16 11/13/16 LK Y BV81848 Calcium 11/10/16 11/14/16 11/13/16 LK Y	BV81847	Vanadium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81847 Zinc 11/10/16 11/14/16 11/13/16 LK Y BV81848 1,4-dioxane 11/10/16 11/13/16 11/13/16 JLI Y BV81848 Aluminum 11/10/16 11/14/16 11/13/16 LK Y BV81848 Antimony 11/10/16 11/14/16 11/15/16 LK Y BV81848 Arsenic 11/10/16 11/14/16 11/13/16 LK Y BV81848 Barium 11/10/16 11/14/16 11/13/16 LK Y BV81848 Cadmium 11/10/16 11/14/16 11/13/16 LK Y BV81848 Calcium 11/10/16 11/14/16 11/13/16 LK Y	BV81847	Volatiles	11/10/16	11/14/16	11/14/16	JLI	Υ
BV81848 1,4-dioxane 11/10/16 11/13/16 11/13/16 JLI Y BV81848 Aluminum 11/10/16 11/14/16 11/13/16 LK Y BV81848 Antimony 11/10/16 11/14/16 11/15/16 LK Y BV81848 Arsenic 11/10/16 11/14/16 11/13/16 LK Y BV81848 Barium 11/10/16 11/14/16 11/13/16 LK Y BV81848 Cadmium 11/10/16 11/14/16 11/13/16 LK Y BV81848 Calcium 11/10/16 11/14/16 11/13/16 LK Y	BV81847	Volatiles	11/10/16	11/14/16	11/14/16	JLI	Υ
BV81848 Aluminum 11/10/16 11/14/16 11/13/16 LK Y BV81848 Antimony 11/10/16 11/14/16 11/15/16 LK Y BV81848 Arsenic 11/10/16 11/14/16 11/13/16 LK Y BV81848 Barium 11/10/16 11/14/16 11/13/16 LK Y BV81848 Beryllium 11/10/16 11/14/16 11/13/16 LK Y BV81848 Cadmium 11/10/16 11/14/16 11/13/16 LK Y BV81848 Calcium 11/10/16 11/14/16 11/13/16 LK Y	BV81847	Zinc	11/10/16	11/14/16	11/13/16	LK	Υ
BV81848 Antimony 11/10/16 11/14/16 11/15/16 LK Y BV81848 Arsenic 11/10/16 11/14/16 11/13/16 LK Y BV81848 Barium 11/10/16 11/14/16 11/13/16 LK Y BV81848 Beryllium 11/10/16 11/14/16 11/13/16 LK Y BV81848 Cadmium 11/10/16 11/14/16 11/13/16 LK Y BV81848 Calcium 11/10/16 11/14/16 11/13/16 LK Y	BV81848	1,4-dioxane	11/10/16	11/13/16	11/13/16	JLI	Υ
BV81848 Arsenic 11/10/16 11/14/16 11/13/16 LK Y BV81848 Barium 11/10/16 11/14/16 11/13/16 LK Y BV81848 Beryllium 11/10/16 11/14/16 11/13/16 LK Y BV81848 Cadmium 11/10/16 11/14/16 11/13/16 LK Y BV81848 Calcium 11/10/16 11/14/16 11/13/16 LK Y	BV81848	Aluminum	11/10/16	11/14/16	11/13/16	LK	Υ
BV81848 Barium 11/10/16 11/14/16 11/13/16 LK Y BV81848 Beryllium 11/10/16 11/14/16 11/13/16 LK Y BV81848 Cadmium 11/10/16 11/14/16 11/13/16 LK Y BV81848 Calcium 11/10/16 11/14/16 11/13/16 LK Y	BV81848	Antimony	11/10/16	11/14/16	11/15/16	LK	Υ
BV81848 Beryllium 11/10/16 11/14/16 11/13/16 LK Y BV81848 Cadmium 11/10/16 11/14/16 11/13/16 LK Y BV81848 Calcium 11/10/16 11/14/16 11/13/16 LK Y	BV81848	Arsenic	11/10/16	11/14/16	11/13/16	LK	Υ
BV81848 Cadmium 11/10/16 11/14/16 11/13/16 LK Y BV81848 Calcium 11/10/16 11/14/16 11/13/16 LK Y	BV81848	Barium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81848 Calcium 11/10/16 11/14/16 11/13/16 LK Y	BV81848	Beryllium	11/10/16	11/14/16	11/13/16	LK	Υ
	BV81848	Cadmium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81848 Chromium 11/10/16 11/14/16 11/13/16 LK Y	BV81848	Calcium	11/10/16	11/14/16	11/13/16	LK	Υ
	BV81848	Chromium	11/10/16	11/14/16	11/13/16	LK	Υ

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

NY Analytical Services Protocol Format

November 28, 2016 SDG I.D.: GBV81835

BV81848	Cobalt	11/10/16	11/14/16	11/13/16	LK	Υ
BV81848	Copper	11/10/16	11/14/16	11/13/16	LK	Υ
BV81848	Field Extraction	11/10/16	11/10/16	11/10/16		Υ
BV81848	Iron	11/10/16	11/14/16	11/13/16	LK	Υ
BV81848	Lead	11/10/16	11/14/16	11/15/16	LK	Υ
BV81848	Magnesium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81848	Manganese	11/10/16	11/14/16	11/13/16	LK	Υ
BV81848	Mercury	11/10/16	11/14/16	11/14/16	RS	Υ
BV81848	Nickel	11/10/16	11/14/16	11/13/16	LK	Y
BV81848	Percent Solid	11/10/16	11/11/16	11/11/16	W	Y
BV81848	Potassium	11/10/16	11/14/16	11/13/16	LK	Y
BV81848	Selenium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81848	Semivolatiles	11/10/16	11/11/16	11/12/16	DD	Υ
BV81848	Silver	11/10/16	11/14/16	11/13/16	LK	Υ
BV81848	Sodium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81848	Thallium	11/10/16	11/14/16	11/13/16	LK	Y
BV81848	Vanadium	11/10/16	11/14/16	11/13/16	LK	Y
BV81848	Volatiles	11/10/16	11/13/16	11/13/16	JLI	Υ
BV81848	Volatiles	11/10/16	11/13/16	11/13/16	JLI	Y
BV81848	Zinc	11/10/16	11/14/16	11/13/16	LK	Y
BV81849	1,4-dioxane	11/10/16	11/13/16	11/13/16	JLI	Υ
BV81849	Aluminum	11/10/16	11/14/16	11/13/16	LK	Y
BV81849	Antimony	11/10/16	11/14/16	11/15/16	LK	Y
BV81849	Arsenic	11/10/16	11/14/16	11/13/16	LK	Y
BV81849	Barium	11/10/16	11/14/16	11/13/16	LK	Y
BV81849	Beryllium	11/10/16	11/14/16	11/13/16	LK	Y
BV81849	Cadmium	11/10/16	11/14/16	11/13/16	LK	Y
BV81849	Calcium	11/10/16	11/14/16	11/13/16	LK	Y
BV81849	Chromium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81849	Cobalt	11/10/16	11/14/16	11/13/16	LK	Υ
BV81849	Copper	11/10/16	11/14/16	11/13/16	LK	Υ
BV81849	Field Extraction	11/10/16	11/10/16	11/10/16		Υ
BV81849	Iron	11/10/16	11/14/16	11/13/16	LK	Υ
BV81849	Lead	11/10/16	11/14/16	11/13/16	LK	Υ
BV81849	Magnesium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81849	Manganese	11/10/16	11/14/16	11/13/16	LK	Υ
BV81849	Mercury	11/10/16	11/14/16	11/14/16	RS	Υ

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

NY Analytical Services Protocol Format

November 28, 2016 SDG I.D.: GBV81835

BV81849	Nickel	11/10/16	11/14/16	11/13/16	LK	Υ
BV81849	Percent Solid	11/10/16	11/11/16	11/11/16	W	Υ
BV81849	Pesticides - Soil	11/10/16	11/11/16	11/15/16	CE	Υ
BV81849	Polychlorinated Biphenyls	11/10/16	11/11/16	11/14/16	AW	Υ
BV81849	Potassium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81849	Selenium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81849	Semivolatiles	11/10/16	11/11/16	11/12/16	DD	Υ
BV81849	Silver	11/10/16	11/14/16	11/13/16	LK	Υ
BV81849	Sodium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81849	Thallium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81849	Vanadium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81849	Volatiles	11/10/16	11/13/16	11/13/16	JLI	Υ
BV81849	Volatiles	11/10/16	11/13/16	11/13/16	JLI	Υ
BV81849	Zinc	11/10/16	11/14/16	11/13/16	LK	Υ
BV81850	1,4-dioxane	11/10/16	11/13/16	11/13/16	JLI	Υ
BV81850	Aluminum	11/10/16	11/14/16	11/13/16	LK	Υ
BV81850	Antimony	11/10/16	11/14/16	11/15/16	LK	Υ
BV81850	Arsenic	11/10/16	11/14/16	11/13/16	LK	Υ
BV81850	Barium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81850	Beryllium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81850	Cadmium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81850	Calcium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81850	Chromium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81850	Cobalt	11/10/16	11/14/16	11/13/16	LK	Υ
BV81850	Copper	11/10/16	11/14/16	11/13/16	LK	Υ
BV81850	Field Extraction	11/10/16	11/10/16	11/10/16		Υ
BV81850	Iron	11/10/16	11/14/16	11/13/16	LK	Υ
BV81850	Lead	11/10/16	11/14/16	11/15/16	LK	Υ
BV81850	Magnesium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81850	Manganese	11/10/16	11/14/16	11/13/16	LK	Υ
BV81850	Mercury	11/10/16	11/14/16	11/14/16	RS	Υ
BV81850	Nickel	11/10/16	11/14/16	11/13/16	LK	Υ
BV81850	Percent Solid	11/10/16	11/11/16	11/11/16	W	Υ
BV81850	Polychlorinated Biphenyls	11/10/16	11/11/16	11/14/16	AW	Υ
BV81850	Potassium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81850	Selenium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81850	Semivolatiles	11/10/16	11/11/16	11/12/16	DD	Υ

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

NY Analytical Services Protocol Format

November 28, 2016 SDG I.D.: GBV81835

BV81850	Silver	11/10/16	11/14/16	11/13/16	LK	Υ
BV81850	Sodium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81850	Thallium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81850	Vanadium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81850	Volatiles	11/10/16	11/13/16	11/13/16	JLI	Υ
BV81850	Volatiles	11/10/16	11/13/16	11/13/16	JLI	Υ
BV81850	Zinc	11/10/16	11/14/16	11/13/16	LK	Υ
BV81851	1,4-dioxane	11/10/16	11/13/16	11/13/16	JLI	Υ
BV81851	Aluminum	11/10/16	11/14/16	11/13/16	LK	Υ
BV81851	Antimony	11/10/16	11/14/16	11/15/16	LK	Υ
BV81851	Arsenic	11/10/16	11/14/16	11/13/16	LK	Υ
BV81851	Barium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81851	Beryllium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81851	Cadmium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81851	Calcium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81851	Chromium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81851	Cobalt	11/10/16	11/14/16	11/13/16	LK	Υ
BV81851	Copper	11/10/16	11/14/16	11/13/16	LK	Υ
BV81851	Field Extraction	11/10/16	11/10/16	11/10/16		Υ
BV81851	Iron	11/10/16	11/14/16	11/13/16	LK	Υ
BV81851	Lead	11/10/16	11/14/16	11/15/16	LK	Υ
BV81851	Magnesium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81851	Manganese	11/10/16	11/14/16	11/13/16	LK	Υ
BV81851	Mercury	11/10/16	11/14/16	11/14/16	RS	Υ
BV81851	Nickel	11/10/16	11/14/16	11/13/16	LK	Υ
BV81851	Percent Solid	11/10/16	11/11/16	11/11/16	W	Υ
BV81851	Pesticides - Soil	11/10/16	11/11/16	11/15/16	CE	Υ
BV81851	Polychlorinated Biphenyls	11/10/16	11/11/16	11/14/16	AW	Υ
BV81851	Potassium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81851	Selenium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81851	Semivolatiles	11/10/16	11/11/16	11/12/16	DD	Υ
BV81851	Silver	11/10/16	11/14/16	11/13/16	LK	Υ
BV81851	Sodium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81851	Thallium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81851	Vanadium	11/10/16	11/14/16	11/13/16	LK	Υ
BV81851	Volatiles	11/10/16	11/13/16	11/13/16	JLI	Υ
BV81851	Volatiles	11/10/16	11/13/16	11/13/16	JLI	Υ

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

NY Analytical Services Protocol Format

November 28, 2016 SDG I.D.: GBV81835

BV81851	Zinc	11/10/16	11/14/16	11/13/16	LK	Υ
BV81852	1,4-dioxane	11/10/16	11/13/16	11/13/16	JLI	Υ
BV81852	Field Extraction	11/10/16	11/10/16	11/10/16		Y
BV81852	Volatiles	11/10/16	11/13/16	11/13/16	JLI	Υ
BV81852	Volatiles	11/10/16	11/13/16	11/13/16	JLI	Υ
BV81853	1,4-dioxane	11/10/16	11/13/16	11/13/16	JLI	Υ
BV81853	Field Extraction	11/10/16	11/10/16	11/10/16		Υ
BV81853	Volatiles	11/10/16	11/13/16	11/13/16	JLI	Υ
BV81853	Volatiles	11/10/16	11/13/16	11/13/16	JLI	Y

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

November 28, 2016

SDG I.D.: GBV81835

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

Any compound that is not detected above the MDL/LOD is reported as ND on the report and is reported in the electronic deliverables (EDD) as <RL or U at the RL per state and EPA guidance.

Version 1: Analysis results minus raw data.

Version 2: Complete report with raw data.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOIL Collected by: TG 11/10/16

Location Code: EBC Received by: SW 11/11/16 18:03

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GBV81835

Phoenix ID: BV81835

Project ID: 1181 FLUSHING AVENUE BROOKLYN NY

Client ID: 15B5 (0-2)

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.37	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Aluminum	6370	37	7.3	mg/Kg	10	11/13/16	LK	SW6010C
Arsenic	5.88	0.73	0.73	mg/Kg	1	11/13/16	LK	SW6010C
Barium	91.2	0.7	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Beryllium	0.36	0.29	0.15	mg/Kg	1	11/13/16	LK	SW6010C
Calcium	15400	37	34	mg/Kg	10	11/13/16	LK	SW6010C
Cadmium	0.98	0.37	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Cobalt	5.15	0.37	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Chromium	15.1	0.37	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Copper	71.0	0.37	0.37	mg/kg	1	11/13/16	LK	SW6010C
Iron	15300	37	37	mg/Kg	10	11/13/16	LK	SW6010C
Mercury	0.49	0.03	0.02	mg/Kg	1	11/14/16	RS	SW7471B
Potassium	710	N 7	2.9	mg/Kg	1	11/13/16	LK	SW6010C
Magnesium	5190	3.7	3.7	mg/Kg	1	11/13/16	LK	SW6010C
Manganese	309	3.7	3.7	mg/Kg	10	11/13/16	LK	SW6010C
Sodium	132	7	3.2	mg/Kg	1	11/13/16	LK	SW6010C
Nickel	13.9	0.37	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Lead	228	7.3	3.7	mg/Kg	10	11/13/16	LK	SW6010C
Antimony	ND	1.9	1.9	mg/Kg	1	11/15/16	LK	SW6010C
Selenium	ND	1.5	1.2	mg/Kg	1	11/13/16	LK	SW6010C
Thallium	ND	1.5	1.5	mg/Kg	1	11/13/16	LK	SW6010C
Vanadium	20.6	0.37	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Zinc	261	7.3	3.7	mg/Kg	10	11/13/16	LK	SW6010C
Percent Solid	91			%		11/11/16	W	SW846-%Solid
Soil Extraction for PCB	Completed					11/11/16	CC/V	SW3545A
Soil Extraction for Pest	Completed					11/11/16	CC/V	SW3545A
Soil Extraction for SVOA	Completed					11/11/16	NJ/CKV	SW3545A
Mercury Digestion	Completed					11/14/16	W/W	SW7471B

Client ID: 15B5 (0-2)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Total Metals Digest	Completed					11/14/16	X/AG	SW3050B
Field Extraction	Completed					11/10/16		SW5035A
Polychlorinated Biphen	<u>yls</u>							
PCB-1016	ND	72	72	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1221	ND	72	72	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1232	ND	72	72	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1242	ND	72	72	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1248	ND	72	72	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1254	ND	72	72	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1260	ND	72	72	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1262	ND	72	72	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1268	ND	72	72	ug/Kg	2	11/14/16	AW	SW8082A
QA/QC Surrogates								
% DCBP	76			%	2	11/14/16	AW	40 - 140 %
% TCMX	76			%	2	11/14/16	AW	40 - 140 %
Pesticides - Soil								
4,4' -DDD	100	D 11	11	ug/Kg	10	11/16/16	CE	SW8081B
4,4' -DDE	72	2.2	2.2	ug/Kg	2	11/16/16	CE	SW8081B
4,4' -DDT	76	D 11	11	ug/Kg	10	11/16/16	CE	SW8081B
a-BHC	ND	7.2	7.2	ug/Kg	2	11/16/16	CE	SW8081B
a-Chlordane	ND	3.6	3.6	ug/Kg	2	11/16/16	CE	SW8081B
Aldrin	ND	3.6	3.6	ug/Kg	2	11/16/16	CE	SW8081B
b-BHC	ND	7.2	7.2	ug/Kg	2	11/16/16	CE	SW8081B
Chlordane	ND	36	36	ug/Kg	2	11/16/16	CE	SW8081B
d-BHC	ND	7.2	7.2	ug/Kg	2	11/16/16	CE	SW8081B
Dieldrin	ND	3.6	3.6	ug/Kg	2	11/16/16	CE	SW8081B
Endosulfan I	ND	7.2	7.2	ug/Kg	2	11/16/16	CE	SW8081B
Endosulfan II	ND	7.2	7.2	ug/Kg	2	11/16/16	CE	SW8081B
Endosulfan sulfate	ND	7.2	7.2	ug/Kg	2	11/16/16	CE	SW8081B
Endrin	ND	7.2	7.2	ug/Kg	2	11/16/16	CE	SW8081B
Endrin aldehyde	ND	7.2	7.2	ug/Kg	2	11/16/16	CE	SW8081B
Endrin ketone	ND	7.2	7.2	ug/Kg	2	11/16/16	CE	SW8081B
g-BHC	ND	1.4	1.4	ug/Kg	2	11/16/16	CE	SW8081B
g-Chlordane	ND	3.6	3.6	ug/Kg	2	11/16/16	CE	SW8081B
Heptachlor	ND	7.2	7.2	ug/Kg	2	11/16/16	CE	SW8081B
Heptachlor epoxide	ND	7.2	7.2	ug/Kg	2	11/16/16	CE	SW8081B
Methoxychlor	ND	36	36	ug/Kg	2	11/16/16	CE	SW8081B
Toxaphene	ND	140	140	ug/Kg	2	11/16/16	CE	SW8081B
QA/QC Surrogates								
% DCBP	70			%	2	11/16/16	CE	40 - 140 %
% TCMX	65			%	2	11/16/16	CE	40 - 140 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	4.3	0.86	ug/Kg	1	11/13/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	4.3	0.86	ug/Kg	1	11/13/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	4.3	0.86	ug/Kg	1	11/13/16	JLI	SW8260C
1,1-Dichloroethane	ND	4.3	0.86	ug/Kg	1	11/13/16	JLI	SW8260C

Client ID: 15B5 (0-2)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1,1-Dichloroethene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
1,1-Dichloropropene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	4.3	0.86	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	4.3	0.86	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	4.3	0.86	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dibromoethane	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dichloroethane	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dichloropropane	ND	4.3	0.86	ug/Kg	1	11/13/16	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
1,3-Dichloropropane	ND	4.3	0.86	ug/Kg	1	11/13/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
2,2-Dichloropropane	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
2-Chlorotoluene	ND	4.3	0.86	ug/Kg	1	11/13/16	JLI	SW8260C
2-Hexanone	ND	21	4.3	ug/Kg	1	11/13/16	JLI	SW8260C
2-Isopropyltoluene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C 1
4-Chlorotoluene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
4-Methyl-2-pentanone	ND	21	4.3	ug/Kg	1	11/13/16	JLI	SW8260C
Acetone	ND	21	4.3	ug/Kg	1	11/13/16	JLI	SW8260C
Acrylonitrile	ND	8.6	0.86	ug/Kg	1	11/13/16	JLI	SW8260C
Benzene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
Bromobenzene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
Bromochloromethane	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
Bromodichloromethane	ND	4.3	0.86	ug/Kg	1	11/13/16	JLI	SW8260C
Bromoform	ND	4.3	0.86	ug/Kg	1	11/13/16	JLI	SW8260C
Bromomethane	ND	4.3	1.7	ug/Kg	1	11/13/16	JLI	SW8260C
Carbon Disulfide	ND	4.3	0.86	ug/Kg	1	11/13/16	JLI	SW8260C
Carbon tetrachloride	ND	4.3	0.86	ug/Kg	1	11/13/16	JLI	SW8260C
Chlorobenzene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
Chloroethane	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
Chloroform	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
Chloromethane	ND	4.3	0.86	ug/Kg	1	11/13/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
Dibromochloromethane	ND	4.3	0.86	ug/Kg	1	11/13/16	JLI	SW8260C
Dibromomethane	ND	4.3	0.86	ug/Kg	1	11/13/16	JLI	SW8260C
Dichlorodifluoromethane	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
Ethylbenzene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
Hexachlorobutadiene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
Isopropylbenzene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
m&p-Xylene	ND	4.3	0.86	ug/Kg	1	11/13/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	26	4.3	ug/Kg	1	11/13/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	8.6	0.86	ug/Kg	1	11/13/16	JLI	SW8260C
Methylene chloride	ND	4.3	4.3	ug/Kg	1	11/13/16	JLI	SW8260C
Naphthalene	ND	4.3	0.86	ug/Kg	1	11/13/16	JLI	SW8260C
n-Butylbenzene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C

Client ID: 15B5 (0-2)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
n-Propylbenzene	ND	4.3	0.86	ug/Kg	1	11/13/16	JLI	SW8260C
o-Xylene	ND	4.3	0.86	ug/Kg	1	11/13/16	JLI	SW8260C
p-Isopropyltoluene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
sec-Butylbenzene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
Styrene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
tert-Butylbenzene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
Tetrachloroethene	ND	4.3	0.86	ug/Kg	1	11/13/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	8.6	2.1	ug/Kg	1	11/13/16	JLI	SW8260C
Toluene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	8.6	2.1	ug/Kg	1	11/13/16	JLI	SW8260C
Trichloroethene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
Trichlorofluoromethane	ND	4.3	0.86	ug/Kg	1	11/13/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
Vinyl chloride	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	107			%	1	11/13/16	JLI	70 - 130 %
% Bromofluorobenzene	93			%	1	11/13/16	JLI	70 - 130 %
% Dibromofluoromethane	96			%	1	11/13/16	JLI	70 - 130 %
% Toluene-d8	99			%	1	11/13/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	64	34	ug/kg	1	11/13/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	107			%	1	11/13/16	JLI	70 - 130 %
% Bromofluorobenzene	93			%	1	11/13/16	JLI	70 - 130 %
% Toluene-d8	99			%	1	11/13/16	JLI	70 - 130 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	17	0.86	ug/Kg	1	11/13/16	JLI	SW8260C
Acrolein	ND	17	2.1	ug/Kg	1	11/13/16	JLI	SW8260C
Acrylonitrile	ND	17	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
Tert-butyl alcohol	ND	86	17	ug/Kg	1	11/13/16	JLI	SW8260C
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	250	130	ug/Kg	1	11/12/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	250	110	ug/Kg	1	11/12/16	DD	SW8270D
1,2-Dichlorobenzene	ND	250	100	ug/Kg	1	11/12/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	250	120	ug/Kg	1	11/12/16	DD	SW8270D
1,3-Dichlorobenzene	ND	250	110	ug/Kg	1	11/12/16	DD	SW8270D
1,4-Dichlorobenzene	ND	250	110	ug/Kg	1	11/12/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	250	200	ug/Kg	1	11/12/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	180	120	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dichlorophenol	ND	180	130	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dimethylphenol	ND	250	90	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dinitrophenol	ND	250	250	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dinitrotoluene	ND	180	140	ug/Kg	1	11/12/16	DD	SW8270D
2,6-Dinitrotoluene	ND	180	110	ug/Kg	1	11/12/16	DD	SW8270D
2-Chloronaphthalene	ND	250	100	ug/Kg	1	11/12/16	DD	SW8270D

Client ID: 15B5 (0-2)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
2-Chlorophenol	ND	250	100	ug/Kg	1	11/12/16	DD	SW8270D
2-Methylnaphthalene	420	250	110	ug/Kg	1	11/12/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	250	170	ug/Kg	1	11/12/16	DD	SW8270D
2-Nitroaniline	ND	250	250	ug/Kg	1	11/12/16	DD	SW8270D
2-Nitrophenol	ND	250	230	ug/Kg	1	11/12/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	250	140	ug/Kg	1	11/12/16	DD	SW8270D 1
3,3'-Dichlorobenzidine	ND	180	170	ug/Kg	1	11/12/16	DD	SW8270D
3-Nitroaniline	ND	360	720	ug/Kg	1	11/12/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	220	72	ug/Kg	1	11/12/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	250	110	ug/Kg	1	11/12/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	250	130	ug/Kg	1	11/12/16	DD	SW8270D
4-Chloroaniline	ND	290	170	ug/Kg	1	11/12/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	250	120	ug/Kg	1	11/12/16	DD	SW8270D
4-Nitroaniline	ND	360	120	ug/Kg	1	11/12/16	DD	SW8270D
4-Nitrophenol	ND	360	160	ug/Kg	1	11/12/16	DD	SW8270D
Acenaphthene	120	J 250	110	ug/Kg	1	11/12/16	DD	SW8270D
Acenaphthylene	240	J 250	100	ug/Kg	1	11/12/16	DD	SW8270D
Acetophenone	ND	250	110	ug/Kg	1	11/12/16	DD	SW8270D
Aniline	ND	290	290	ug/Kg	1	11/12/16	DD	SW8270D
Anthracene	250	J 250	120	ug/Kg	1	11/12/16	DD	SW8270D
Benz(a)anthracene	550	250	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzidine	ND	360	210	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(a)pyrene	700	180	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(b)fluoranthene	800	250	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(ghi)perylene	390	250	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(k)fluoranthene	700	250	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzoic acid	ND	1800	720	ug/Kg	1	11/12/16	DD	SW8270D 1
Benzyl butyl phthalate	440	250	93	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	250	100	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	180	98	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	250	100	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	110	J 250	100	ug/Kg	1	11/12/16	DD	SW8270D
Carbazole	ND	180	140	ug/Kg	1	11/12/16	DD	SW8270D
Chrysene	690	250	120	ug/Kg	1	11/12/16	DD	SW8270D
Dibenz(a,h)anthracene	120	J 180	120	ug/Kg	1	11/12/16	DD	SW8270D
Dibenzofuran	160	J 250	110	ug/Kg	1	11/12/16	DD	SW8270D
Diethyl phthalate	ND	250	110	ug/Kg	1	11/12/16	DD	SW8270D
Dimethylphthalate	ND	250	110	ug/Kg	1	11/12/16	DD	SW8270D
Di-n-butylphthalate	ND	250	96	ug/Kg	1	11/12/16	DD	SW8270D
Di-n-octylphthalate	ND	250	93	ug/Kg	1	11/12/16	DD	SW8270D
Fluoranthene	620	250	120	ug/Kg	1	11/12/16	DD	SW8270D
Fluorene	140	J 250	120	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorobenzene	ND	180	110	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorobutadiene	ND	250	130	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	250	110	ug/Kg	1	11/12/16	DD	SW8270D
Hexachloroethane	ND	180	110	ug/Kg	1	11/12/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	530	250	120	ug/Kg	1	11/12/16	DD	SW8270D
Isophorone	ND	180	100	ug/Kg	1	11/12/16	DD	SW8270D
Naphthalene	520	250	100	ug/Kg	1	11/12/16	DD	SW8270D
Naphtialono	320	200	.00	שיי <i>יש</i> י	•		22	

Client ID: 15B5 (0-2)

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Nitrobenzene	ND	180	130	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodimethylamine	ND	250	100	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	180	120	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	250	140	ug/Kg	1	11/12/16	DD	SW8270D
Pentachloronitrobenzene	ND	250	130	ug/Kg	1	11/12/16	DD	SW8270D
Pentachlorophenol	ND	220	140	ug/Kg	1	11/12/16	DD	SW8270D
Phenanthrene	620	250	100	ug/Kg	1	11/12/16	DD	SW8270D
Phenol	ND	250	120	ug/Kg	1	11/12/16	DD	SW8270D
Pyrene	650	250	120	ug/Kg	1	11/12/16	DD	SW8270D
Pyridine	ND	250	89	ug/Kg	1	11/12/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	74			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorobiphenyl	66			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorophenol	46			%	1	11/12/16	DD	30 - 130 %
% Nitrobenzene-d5	71			%	1	11/12/16	DD	30 - 130 %
% Phenol-d5	64			%	1	11/12/16	DD	30 - 130 %
% Terphenyl-d14	58			%	1	11/12/16	DD	30 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2016

Reviewed and Released by: Jon Carlson, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG ID: GBV81835

Phoenix ID: BV81836

Analysis Report

November 28, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOIL Collected by: TG 11/10/16

Location Code: EBC Received by: SW 11/11/16 18:03

Rush Request: 72 Hour Analyzed by: see "By" below

Laboratory Data

Project ID: 1181 FLUSHING AVENUE BROOKLYN NY

Client ID: 15B5 (12-14)

P.O.#:

Б	D 4	RL/	LOD/	11.2	D" (D / /T'	-	D (
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.38	0.38	mg/Kg	1	11/13/16	LK	SW6010C
Aluminum	4610	38	7.6	mg/Kg	10	11/13/16	LK	SW6010C
Arsenic	0.89	0.76	0.76	mg/Kg	1	11/13/16	LK	SW6010C
Barium	24.6	8.0	0.38	mg/Kg	1	11/13/16	LK	SW6010C
Beryllium	0.22	B 0.30	0.15	mg/Kg	1	11/13/16	LK	SW6010C
Calcium	1070	3.8	3.5	mg/Kg	1	11/13/16	LK	SW6010C
Cadmium	ND	0.38	0.38	mg/Kg	1	11/13/16	LK	SW6010C
Cobalt	9.15	0.38	0.38	mg/Kg	1	11/13/16	LK	SW6010C
Chromium	9.97	0.38	0.38	mg/Kg	1	11/13/16	LK	SW6010C
Copper	6.78	0.38	0.38	mg/kg	1	11/13/16	LK	SW6010C
Iron	12100	38	38	mg/Kg	10	11/13/16	LK	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	11/14/16	RS	SW7471B
Potassium	844	N 8	3.0	mg/Kg	1	11/13/16	LK	SW6010C
Magnesium	2050	3.8	3.8	mg/Kg	1	11/13/16	LK	SW6010C
Manganese	694	3.8	3.8	mg/Kg	10	11/13/16	LK	SW6010C
Sodium	108	8	3.3	mg/Kg	1	11/13/16	LK	SW6010C
Nickel	8.26	0.38	0.38	mg/Kg	1	11/13/16	LK	SW6010C
Lead	1.4	0.7	0.36	mg/Kg	1	11/15/16	LK	SW6010C
Antimony	ND	1.8	1.8	mg/Kg	1	11/15/16	LK	SW6010C
Selenium	ND	1.5	1.3	mg/Kg	1	11/13/16	LK	SW6010C
Thallium	ND	1.5	1.5	mg/Kg	1	11/13/16	LK	SW6010C
Vanadium	12.6	0.38	0.38	mg/Kg	1	11/13/16	LK	SW6010C
Zinc	19.6	8.0	0.38	mg/Kg	1	11/13/16	LK	SW6010C
Percent Solid	90			%		11/11/16	W	SW846-%Solid
Soil Extraction for PCB	Completed					11/11/16	CC/V	SW3545A
Soil Extraction for Pest	Completed					11/11/16	CC/V	SW3545A
Soil Extraction for SVOA	Completed					11/11/16	NJ/CKV	SW3545A
Mercury Digestion	Completed					11/14/16	W/W	SW7471B

Client ID: 15B5 (12-14)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Total Metals Digest	Completed					11/14/16		SW3050B
Field Extraction	Completed					11/10/16	NAG	SW5035A
Tield Extraction	Completed					11/10/10		Ovv0000/1
Polychlorinated Biphen	<u>yls</u>							
PCB-1016	ND	74	74	ug/Kg	2	11/16/16	AW	SW8082A
PCB-1221	ND	74	74	ug/Kg	2	11/16/16	AW	SW8082A
PCB-1232	ND	74	74	ug/Kg	2	11/16/16	AW	SW8082A
PCB-1242	ND	74	74	ug/Kg	2	11/16/16	AW	SW8082A
PCB-1248	ND	74	74	ug/Kg	2	11/16/16	AW	SW8082A
PCB-1254	ND	74	74	ug/Kg	2	11/16/16	AW	SW8082A
PCB-1260	ND	74	74	ug/Kg	2	11/16/16	AW	SW8082A
PCB-1262	ND	74	74	ug/Kg	2	11/16/16	AW	SW8082A
PCB-1268	ND	74	74	ug/Kg	2	11/16/16	AW	SW8082A
QA/QC Surrogates								
% DCBP	81			%	2	11/16/16	AW	40 - 140 %
% TCMX	73			%	2	11/16/16	AW	40 - 140 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	3.3	0.66	ug/Kg	1	11/13/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	3.3	0.66	ug/Kg	1	11/13/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	3.3	0.66	ug/Kg	1	11/13/16	JLI	SW8260C
1,1-Dichloroethane	ND	3.3	0.66	ug/Kg	1	11/13/16	JLI	SW8260C
1,1-Dichloroethene	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
1,1-Dichloropropene	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	3.3	0.66	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	3.3	0.66	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	3.3	0.66	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dibromoethane	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dichloroethane	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dichloropropane	ND	3.3	0.66	ug/Kg	1	11/13/16	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
1,3-Dichloropropane	ND	3.3	0.66	ug/Kg	1	11/13/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
2,2-Dichloropropane	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
2-Chlorotoluene	ND	3.3	0.66	ug/Kg	1	11/13/16	JLI	SW8260C
2-Hexanone	ND	16	3.3	ug/Kg	1	11/13/16	JLI	SW8260C
2-Isopropyltoluene	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C 1
4-Chlorotoluene	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
4-Methyl-2-pentanone	9.7	J 16	3.3	ug/Kg	1	11/13/16	JLI	SW8260C
Acetone	560	S 260	260	ug/Kg	50	11/13/16	JLI	SW8260C
Acrylonitrile	ND	6.6	0.66	ug/Kg	1	11/13/16	JLI	SW8260C
Benzene	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
Bromobenzene	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
Bromochloromethane	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
Bromodichloromethane	ND	3.3	0.66	ug/Kg	1	11/13/16	JLI	SW8260C

Client ID: 15B5 (12-14)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Bromoform	ND	3.3	0.66	ug/Kg	1	11/13/16	JLI	SW8260C
Bromomethane	ND	3.3	1.3	ug/Kg	1	11/13/16	JLI	SW8260C
Carbon Disulfide	1.9	J 3.3	0.66	ug/Kg	1	11/13/16	JLI	SW8260C
Carbon tetrachloride	ND	3.3	0.66	ug/Kg	1	11/13/16	JLI	SW8260C
Chlorobenzene	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
Chloroethane	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
Chloroform	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
Chloromethane	ND	3.3	0.66	ug/Kg	1	11/13/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
Dibromochloromethane	ND	3.3	0.66	ug/Kg	1	11/13/16	JLI	SW8260C
Dibromomethane	ND	3.3	0.66	ug/Kg	1	11/13/16	JLI	SW8260C
Dichlorodifluoromethane	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
Ethylbenzene	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
Hexachlorobutadiene	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
Isopropylbenzene	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
m&p-Xylene	ND	3.3	0.66	ug/Kg	1	11/13/16	JLI	SW8260C
Methyl Ethyl Ketone	19	J 20	3.3	ug/Kg	1	11/13/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	6.6	0.66	ug/Kg	1	11/13/16	JLI	SW8260C
Methylene chloride	ND	3.3	3.3	ug/Kg	1	11/13/16	JLI	SW8260C
Naphthalene	ND	3.3	0.66	ug/Kg	1	11/13/16	JLI	SW8260C
n-Butylbenzene	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
n-Propylbenzene	ND	3.3	0.66	ug/Kg	1	11/13/16	JLI	SW8260C
o-Xylene	ND	3.3	0.66	ug/Kg	1	11/13/16	JLI	SW8260C
p-Isopropyltoluene	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
sec-Butylbenzene	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
Styrene	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
tert-Butylbenzene	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
Tetrachloroethene	ND	3.3	0.66	ug/Kg	1	11/13/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	6.6	1.6	ug/Kg	1	11/13/16	JLI	SW8260C 1
Toluene	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	6.6	1.6	ug/Kg	1	11/13/16	JLI	SW8260C
Trichloroethene	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
Trichlorofluoromethane	ND	3.3	0.66	ug/Kg	1	11/13/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
Vinyl chloride	ND	3.3	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
QA/QC Surrogates				0 0				
% 1,2-dichlorobenzene-d4	100			%	1	11/13/16	JLI	70 - 130 %
% Bromofluorobenzene	102			%	1	11/13/16	JLI	70 - 130 %
% Dibromofluoromethane	98			%	1	11/13/16	JLI	70 - 130 %
% Toluene-d8	100			%	1	11/13/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	49	26	ug/kg	1	11/13/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	100			%	1	11/13/16	JLI	70 - 130 %
% Bromofluorobenzene	102			%	1	11/13/16	JLI	70 - 130 %
% Toluene-d8	100			%	1	11/13/16	JLI	70 - 130 %

Client ID: 15B5 (12-14)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	13	0.66	ug/Kg	1	11/13/16	JLI	SW8260C
Acrolein	ND	13	1.6	ug/Kg	1	11/13/16	JLI	SW8260C
Acrylonitrile	ND	13	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
Tert-butyl alcohol	ND	66	13	ug/Kg	1	11/13/16	JLI	SW8260C
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	250	130	ug/Kg	1	11/12/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	250	110	ug/Kg	1	11/12/16	DD	SW8270D
1,2-Dichlorobenzene	ND	250	100	ug/Kg	1	11/12/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	250	120	ug/Kg	1	11/12/16	DD	SW8270D
1,3-Dichlorobenzene	ND	250	110	ug/Kg	1	11/12/16	DD	SW8270D
1,4-Dichlorobenzene	ND	250	110	ug/Kg	1	11/12/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	250	200	ug/Kg	1	11/12/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	180	120	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dichlorophenol	ND	180	130	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dimethylphenol	ND	250	89	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dinitrophenol	ND	250	250	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dinitrotoluene	ND	180	140	ug/Kg	1	11/12/16	DD	SW8270D
2,6-Dinitrotoluene	ND	180	110	ug/Kg	1	11/12/16	DD	SW8270D
2-Chloronaphthalene	ND	250	100	ug/Kg	1	11/12/16	DD	SW8270D
2-Chlorophenol	ND	250	100	ug/Kg	1	11/12/16	DD	SW8270D
2-Methylnaphthalene	ND	250	110	ug/Kg	1	11/12/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	250	170	ug/Kg	1	11/12/16	DD	SW8270D
2-Nitroaniline	ND	250	250	ug/Kg	1	11/12/16	DD	SW8270D
2-Nitrophenol	ND	250	230	ug/Kg	1	11/12/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	250	140	ug/Kg	1	11/12/16	DD	SW8270D 1
3,3'-Dichlorobenzidine	ND	180	170	ug/Kg	1	11/12/16	DD	SW8270D
3-Nitroaniline	ND	360	720	ug/Kg	1	11/12/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	220	72	ug/Kg	1	11/12/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	250	110	ug/Kg	1	11/12/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	250	130	ug/Kg	1	11/12/16	DD	SW8270D
4-Chloroaniline	ND	290	170	ug/Kg	1	11/12/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	250	120	ug/Kg	1	11/12/16	DD	SW8270D
4-Nitroaniline	ND	360	120	ug/Kg	1	11/12/16	DD	SW8270D
4-Nitrophenol	ND	360	160	ug/Kg	1	11/12/16	DD	SW8270D
Acenaphthene	ND	250	110	ug/Kg	1	11/12/16	DD	SW8270D
Acenaphthylene	ND	250	100	ug/Kg	1	11/12/16	DD	SW8270D
Acetophenone	ND	250	110	ug/Kg	1	11/12/16	DD	SW8270D
Aniline	ND	290	290	ug/Kg	1	11/12/16	DD	SW8270D
Anthracene	ND	250	120	ug/Kg	1	11/12/16	DD	SW8270D
Benz(a)anthracene	ND	250	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzidine	ND	360	210	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(a)pyrene	ND	180	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(b)fluoranthene	ND	250	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(ghi)perylene	ND	250	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(k)fluoranthene	ND	250	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzoic acid	ND	1800	720	ug/Kg	1	11/12/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	250	93	ug/Kg	1	11/12/16	DD	SW8270D

Client ID: 15B5 (12-14)

Oliche 15. 1050 (12 14)		D1 /						
Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Bis(2-chloroethoxy)methane	ND	250	100	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	180	97	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	250	100	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	250	100	ug/Kg	1	11/12/16	DD	SW8270D
Carbazole	ND	180	140	ug/Kg	1	11/12/16	DD	SW8270D
Chrysene	ND	250	120	ug/Kg	1	11/12/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	180	120	ug/Kg	1	11/12/16	DD	SW8270D
Dibenzofuran	ND	250	110	ug/Kg	1	11/12/16	DD	SW8270D
Diethyl phthalate	ND	250	110	ug/Kg	1	11/12/16	DD	SW8270D
Dimethylphthalate	ND	250	110	ug/Kg	1	11/12/16	DD	SW8270D
Di-n-butylphthalate	ND	250	96	ug/Kg	1	11/12/16	DD	SW8270D
Di-n-octylphthalate	ND	250	93	ug/Kg	1	11/12/16	DD	SW8270D
Fluoranthene	ND	250	120	ug/Kg	1	11/12/16	DD	SW8270D
Fluorene	ND	250	120	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorobenzene	ND	180	110	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorobutadiene	ND	250	130	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	250	110	ug/Kg	1	11/12/16	DD	SW8270D
Hexachloroethane	ND	180	110	ug/Kg	1	11/12/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	250	120	ug/Kg	1	11/12/16	DD	SW8270D
Isophorone	ND	180	100	ug/Kg	1	11/12/16	DD	SW8270D
Naphthalene	ND	250	100	ug/Kg	1	11/12/16	DD	SW8270D
Nitrobenzene	ND	180	130	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodimethylamine	ND	250	100	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	180	120	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	250	140	ug/Kg	1	11/12/16	DD	SW8270D
Pentachloronitrobenzene	ND	250	130	ug/Kg	1	11/12/16	DD	SW8270D
Pentachlorophenol	ND	220	140	ug/Kg	1	11/12/16	DD	SW8270D
Phenanthrene	ND	250	100	ug/Kg	1	11/12/16	DD	SW8270D
Phenol	ND	250	120	ug/Kg	1	11/12/16	DD	SW8270D
Pyrene	ND	250	120	ug/Kg	1	11/12/16	DD	SW8270D
Pyridine	ND	250	89	ug/Kg	1	11/12/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	84			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorobiphenyl	66			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorophenol	47			%	1	11/12/16	DD	30 - 130 %
% Nitrobenzene-d5	65			%	1	11/12/16	DD	30 - 130 %
% Phenol-d5	61			%	1	11/12/16	DD	30 - 130 %
% Terphenyl-d14	69			%	1	11/12/16	DD	30 - 130 %

Project ID: 1181 FLUSHING AVENUE BROOKLYN NY Phoenix I.D.: BV81836

Client ID: 15B5 (12-14)

RL/ LOD/

Parameter Result PQL MDL Units Dilution Date/Time By Reference

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2016

Reviewed and Released by: Jon Carlson, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG ID: GBV81835 Phoenix ID: BV81837

Analysis Report

November 28, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOIL Collected by: TG 11/10/16

Location Code: EBC Received by: SW 11/11/16 18:03

Rush Request: 72 Hour Analyzed by: see "By" below

Laboratory Data

1181 FLUSHING AVENUE BROOKLYN NY

Client ID: 15B5 (15-17)

P.O.#:

Project ID:

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.40	0.40	mg/Kg	1	11/13/16	LK	SW6010C
Aluminum	2810	40	7.9	mg/Kg	10	11/13/16	LK	SW6010C
Arsenic	ND	0.79	0.79	mg/Kg	1	11/13/16	LK	SW6010C
Barium	16.2	0.8	0.40	mg/Kg	1	11/13/16	LK	SW6010C
Beryllium	ND	0.32	0.16	mg/Kg	1	11/13/16	LK	SW6010C
Calcium	317	4.0	3.7	mg/Kg	1	11/13/16	LK	SW6010C
Cadmium	ND	0.40	0.40	mg/Kg	1	11/13/16	LK	SW6010C
Cobalt	2.69	0.40	0.40	mg/Kg	1	11/13/16	LK	SW6010C
Chromium	5.31	0.40	0.40	mg/Kg	1	11/13/16	LK	SW6010C
Copper	4.65	0.40	0.40	mg/kg	1	11/13/16	LK	SW6010C
Iron	5430	4.0	4.0	mg/Kg	1	11/13/16	LK	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	11/14/16	RS	SW7471B
Potassium	351	N 8	3.1	mg/Kg	1	11/13/16	LK	SW6010C
Magnesium	1160	4.0	4.0	mg/Kg	1	11/13/16	LK	SW6010C
Manganese	106	0.40	0.40	mg/Kg	1	11/13/16	LK	SW6010C
Sodium	69	8	3.4	mg/Kg	1	11/13/16	LK	SW6010C
Nickel	5.23	0.40	0.40	mg/Kg	1	11/13/16	LK	SW6010C
Lead	0.7	B 0.8	0.40	mg/Kg	1	11/13/16	LK	SW6010C
Antimony	ND	1.9	1.9	mg/Kg	1	11/15/16	LK	SW6010C
Selenium	ND	1.6	1.4	mg/Kg	1	11/13/16	LK	SW6010C
Thallium	ND	1.6	1.6	mg/Kg	1	11/13/16	LK	SW6010C
Vanadium	6.39	0.40	0.40	mg/Kg	1	11/13/16	LK	SW6010C
Zinc	10.9	0.8	0.40	mg/Kg	1	11/13/16	LK	SW6010C
Percent Solid	85			%		11/11/16	W	SW846-%Solid
Soil Extraction for SVOA	Completed	d				11/11/16	NJ/CKV	SW3545A
Mercury Digestion	Completed	d				11/14/16	W/W	SW7471B
Total Metals Digest	Completed	d				11/14/16	X/AG	SW3050B
Field Extraction	Completed	i				11/10/16		SW5035A

Client ID: 15B5 (15-17)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	4.6	0.92	ug/Kg	1	11/13/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	4.6	0.92	ug/Kg	1	11/13/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	4.6	0.92	ug/Kg	1	11/13/16	JLI	SW8260C
1,1-Dichloroethane	ND	4.6	0.92	ug/Kg	1	11/13/16	JLI	SW8260C
1,1-Dichloroethene	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
1,1-Dichloropropene	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	4.6	0.92	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	4.6	0.92	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	4.6	0.92	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dibromoethane	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dichloroethane	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dichloropropane	ND	4.6	0.92	ug/Kg	1	11/13/16	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
1,3-Dichloropropane	ND	4.6	0.92	ug/Kg	1	11/13/16	JLI	SW8260C
	ND	4.6	0.46	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	4.6	0.46	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
2,2-Dichloropropane	ND	4.6	0.40			11/13/16	JLI	SW8260C
2-Chlorotoluene				ug/Kg	1			
2-Hexanone	ND	23	4.6	ug/Kg	1	11/13/16 11/13/16	JLI	SW8260C SW8260C
2-Isopropyltoluene	ND	4.6	0.46	ug/Kg	1		JLI	01102000
4-Chlorotoluene	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
4-Methyl-2-pentanone	ND	23	4.6	ug/Kg	1	11/13/16	JLI	SW8260C
Acetone	12 ND	JS 23	4.6	ug/Kg	1	11/13/16	JLI	SW8260C
Acrylonitrile	ND	9.2	0.92	ug/Kg	1	11/13/16	JLI	SW8260C
Benzene	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
Bromobenzene	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
Bromochloromethane	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI 	SW8260C
Bromodichloromethane	ND	4.6	0.92	ug/Kg	1	11/13/16	JLI	SW8260C
Bromoform	ND	4.6	0.92	ug/Kg	1	11/13/16	JLI	SW8260C
Bromomethane	ND	4.6	1.8	ug/Kg	1	11/13/16	JLI 	SW8260C
Carbon Disulfide	ND	4.6	0.92	ug/Kg	1	11/13/16	JLI 	SW8260C
Carbon tetrachloride	ND	4.6	0.92	ug/Kg	1	11/13/16	JLI 	SW8260C
Chlorobenzene	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
Chloroethane	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
Chloroform	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
Chloromethane	ND	4.6	0.92	ug/Kg	1	11/13/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
Dibromochloromethane	ND	4.6	0.92	ug/Kg	1	11/13/16	JLI	SW8260C
Dibromomethane	ND	4.6	0.92	ug/Kg	1	11/13/16	JLI	SW8260C
Dichlorodifluoromethane	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
Ethylbenzene	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
Hexachlorobutadiene	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
Isopropylbenzene	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C

Client ID: 15B5 (15-17)

Parameter Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
m&p-Xylene	ND	4.6	0.92	ug/Kg	1	11/13/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	28	4.6	ug/Kg	1	11/13/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	9.2	0.92	ug/Kg	1	11/13/16	JLI	SW8260C
Methylene chloride	ND	4.6	4.6	ug/Kg	1	11/13/16	JLI	SW8260C
Naphthalene	ND	4.6	0.92	ug/Kg	1	11/13/16	JLI	SW8260C
n-Butylbenzene	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
n-Propylbenzene	ND	4.6	0.92	ug/Kg	1	11/13/16	JLI	SW8260C
o-Xylene	ND	4.6	0.92	ug/Kg	1	11/13/16	JLI	SW8260C
p-Isopropyltoluene	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
sec-Butylbenzene	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
Styrene	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
tert-Butylbenzene	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
Tetrachloroethene	ND	4.6	0.92	ug/Kg	1	11/13/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	9.2	2.3	ug/Kg	1	11/13/16	JLI	SW8260C 1
Toluene	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	9.2	2.3	ug/Kg	1	11/13/16	JLI	SW8260C
Trichloroethene	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
Trichlorofluoromethane	ND	4.6	0.92	ug/Kg	1	11/13/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
Vinyl chloride	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	100			%	1	11/13/16	JLI	70 - 130 %
% Bromofluorobenzene	99			%	1	11/13/16	JLI	70 - 130 %
% Dibromofluoromethane	95			%	1	11/13/16	JLI	70 - 130 %
% Toluene-d8	100			%	1	11/13/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	69	37	ug/kg	1	11/13/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	100			%	1	11/13/16	JLI	70 - 130 %
% Bromofluorobenzene	99			%	1	11/13/16	JLI	70 - 130 %
% Toluene-d8	100			%	1	11/13/16	JLI	70 - 130 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	18	0.92	ug/Kg	1	11/13/16	JLI	SW8260C
Acrolein	ND	18	2.3	ug/Kg	1	11/13/16	JLI	SW8260C
Acrylonitrile	ND	18	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
Tert-butyl alcohol	ND	92	18	ug/Kg	1	11/13/16	JLI	SW8260C
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	270	140	ug/Kg	1	11/12/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	270	120	ug/Kg	1	11/12/16	DD	SW8270D
1,2-Dichlorobenzene	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	270	130	ug/Kg	1	11/12/16	DD	SW8270D
1,3-Dichlorobenzene	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
1,4-Dichlorobenzene	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	270	210	ug/Kg	1	11/12/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	190	120	ug/Kg	1	11/12/16	DD	SW8270D

Client ID: 15B5 (15-17)

Parameter Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
2,4-Dichlorophenol	ND	190	140	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dimethylphenol	ND	270	96	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dinitrophenol	ND	270	270	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dinitrotoluene	ND	190	150	ug/Kg	1	11/12/16	DD	SW8270D
2,6-Dinitrotoluene	ND	190	120	ug/Kg	1	11/12/16	DD	SW8270D
2-Chloronaphthalene	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
2-Chlorophenol	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
2-Methylnaphthalene	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	270	180	ug/Kg	1	11/12/16	DD	SW8270D
2-Nitroaniline	ND	270	270	ug/Kg	1	11/12/16	DD	SW8270D
2-Nitrophenol	ND	270	240	ug/Kg	1	11/12/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	270	150	ug/Kg	1	11/12/16	DD	SW8270D 1
3,3'-Dichlorobenzidine	ND	190	180	ug/Kg	1	11/12/16	DD	SW8270D
3-Nitroaniline	ND	390	770	ug/Kg	1	11/12/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	230	77	ug/Kg	1	11/12/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	270	140	ug/Kg	1	11/12/16	DD	SW8270D
4-Chloroaniline	ND	310	180	ug/Kg	1	11/12/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	270	130	ug/Kg	1	11/12/16	DD	SW8270D
4-Nitroaniline	ND	390	130	ug/Kg	1	11/12/16	DD	SW8270D
4-Nitrophenol	ND	390	170	ug/Kg	1	11/12/16	DD	SW8270D
Acenaphthene	ND	270	120	ug/Kg	1	11/12/16	DD	SW8270D
Acenaphthylene	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
Acetophenone	ND	270	120	ug/Kg	1	11/12/16	DD	SW8270D
Aniline	ND	310	310	ug/Kg	1	11/12/16	DD	SW8270D
Anthracene	ND	270	130	ug/Kg	1	11/12/16	DD	SW8270D
Benz(a)anthracene	ND	270	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzidine	ND	390	230	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(a)pyrene	ND	190	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(b)fluoranthene	ND	270	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(ghi)perylene	ND	270	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(k)fluoranthene	ND	270	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzoic acid	ND	1900	770	ug/Kg	1	11/12/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	270	99	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	190	100	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
Carbazole	ND	190	150	ug/Kg	1	11/12/16	DD	SW8270D
Chrysene	ND	270	130	ug/Kg	1	11/12/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	190	120	ug/Kg	1	11/12/16	DD	SW8270D
Dibenzofuran	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
Diethyl phthalate	ND	270	120	ug/Kg	1	11/12/16	DD	SW8270D
Dimethylphthalate	ND	270	120	ug/Kg	1	11/12/16	DD	SW8270D
Di-n-butylphthalate	ND	270	100	ug/Kg	1	11/12/16	DD	SW8270D
Di-n-octylphthalate	ND	270	99	ug/Kg	1	11/12/16	DD	SW8270D
Fluoranthene	ND	270	120	ug/Kg	1	11/12/16	DD	SW8270D
Fluorene	ND	270	130	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorobenzene	ND	190	110	ug/Kg	1	11/12/16	DD	SW8270D

Client ID: 15B5 (15-17)

_		RL/	LOD/				_	
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Hexachlorobutadiene	ND	270	140	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	270	120	ug/Kg	1	11/12/16	DD	SW8270D
Hexachloroethane	ND	190	120	ug/Kg	1	11/12/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	270	130	ug/Kg	1	11/12/16	DD	SW8270D
Isophorone	ND	190	110	ug/Kg	1	11/12/16	DD	SW8270D
Naphthalene	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
Nitrobenzene	ND	190	130	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodimethylamine	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	190	120	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	270	150	ug/Kg	1	11/12/16	DD	SW8270D
Pentachloronitrobenzene	ND	270	140	ug/Kg	1	11/12/16	DD	SW8270D
Pentachlorophenol	ND	230	150	ug/Kg	1	11/12/16	DD	SW8270D
Phenanthrene	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
Phenol	ND	270	120	ug/Kg	1	11/12/16	DD	SW8270D
Pyrene	ND	270	130	ug/Kg	1	11/12/16	DD	SW8270D
Pyridine	ND	270	95	ug/Kg	1	11/12/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	79			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorobiphenyl	72			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorophenol	57			%	1	11/12/16	DD	30 - 130 %
% Nitrobenzene-d5	78			%	1	11/12/16	DD	30 - 130 %
% Phenol-d5	70			%	1	11/12/16	DD	30 - 130 %
% Terphenyl-d14	71			%	1	11/12/16	DD	30 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

S - Laboratory solvent, contamination is possible.

results(%) listed in the report are not "detected" compounds.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2016

Reviewed and Released by: Jon Carlson, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG ID: GBV81835

Analysis Report

November 28, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample Information Custody Information Date <u>Time</u> Collected by: TG 11/10/16 Matrix: SOIL

Received by: Location Code: **EBC** SW 11/11/16 18:03

LOD/

Rush Request: 72 Hour Analyzed by: see "By" below

Laboratory Data Phoenix ID: BV81838

1181 FLUSHING AVENUE BROOKLYN NY Project ID:

Client ID: 15B8 (0-2)

P.O.#:

Parameter	Result	RL/ PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.37	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Aluminum	7470	37	7.4	mg/Kg	10	11/13/16	LK	SW6010C
Arsenic	6.00	0.74	0.74	mg/Kg	1	11/13/16	LK	SW6010C
Barium	76.4	0.7	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Beryllium	0.44	0.30	0.15	mg/Kg	1	11/13/16	LK	SW6010C
Calcium	1870	3.7	3.4	mg/Kg	1	11/13/16	LK	SW6010C
Cadmium	0.67	0.37	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Cobalt	5.99	0.37	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Chromium	14.9	0.37	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Copper	68.1	0.37	0.37	mg/kg	1	11/13/16	LK	SW6010C
Iron	13500	37	37	mg/Kg	10	11/13/16	LK	SW6010C
Mercury	0.45	0.03	0.02	mg/Kg	1	11/14/16	RS	SW7471B
Potassium	570	N 7	2.9	mg/Kg	1	11/13/16	LK	SW6010C
Magnesium	1470	3.7	3.7	mg/Kg	1	11/13/16	LK	SW6010C
Manganese	271	3.7	3.7	mg/Kg	10	11/13/16	LK	SW6010C
Sodium	91	7	3.2	mg/Kg	1	11/13/16	LK	SW6010C
Nickel	14.7	0.37	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Lead	196	7.4	3.7	mg/Kg	10	11/13/16	LK	SW6010C
Antimony	ND	1.9	1.9	mg/Kg	1	11/15/16	LK	SW6010C
Selenium	ND	1.5	1.3	mg/Kg	1	11/13/16	LK	SW6010C
Thallium	ND	1.5	1.5	mg/Kg	1	11/13/16	LK	SW6010C
Vanadium	16.0	0.37	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Zinc	269	7.4	3.7	mg/Kg	10	11/13/16	LK	SW6010C
Percent Solid	88			%		11/11/16	W	SW846-%Solid
Soil Extraction for PCB	Completed					11/11/16	CC/V	SW3545A
Soil Extraction for Pest	Completed					11/11/16	CC/V	SW3545A
Soil Extraction for SVOA	Completed					11/11/16	NJ/CKV	SW3545A
Mercury Digestion	Completed					11/14/16	W/W	SW7471B

Client ID: 15B8 (0-2)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference		
Total Metals Digest	Completed					11/14/16	X/AG	SW3050B		
Field Extraction	Completed					11/10/16		SW5035A		
Polychlorinated Biphen	<u>yls</u>									
PCB-1016	ND	75	75	ug/Kg	2	11/14/16	AW	SW8082A		
PCB-1221	ND	75	75	ug/Kg	2	11/14/16	AW	SW8082A		
PCB-1232	ND	75	75	ug/Kg	2	11/14/16	AW	SW8082A		
PCB-1242	ND	75	75	ug/Kg	2	11/14/16	AW	SW8082A		
PCB-1248	ND	75	75	ug/Kg	2	11/14/16	AW	SW8082A		
PCB-1254	ND	75	75	ug/Kg	2	11/14/16	AW	SW8082A		
PCB-1260	ND	75	75	ug/Kg	2	11/14/16	AW	SW8082A		
PCB-1262	ND	75	75	ug/Kg	2	11/14/16	AW	SW8082A		
PCB-1268	ND	75	75	ug/Kg	2	11/14/16	AW	SW8082A		
QA/QC Surrogates										
% DCBP	82			%	2	11/14/16	AW	40 - 140 %		
% TCMX	78			%	2	11/14/16	AW	40 - 140 %		
Volatiles										
1,1,1,2-Tetrachloroethane	ND	5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C		
1,1,1-Trichloroethane	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C		
1,1,2,2-Tetrachloroethane	ND	5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C		
1,1,2-Trichloroethane	ND	5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C		
1,1-Dichloroethane	ND	5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C		
1,1-Dichloroethene	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C		
1,1-Dichloropropene	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C		
1,2,3-Trichlorobenzene	ND	5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C		
1,2,3-Trichloropropane	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C		
1,2,4-Trichlorobenzene	ND	5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C		
1,2,4-Trimethylbenzene	520	330	33	ug/Kg	50	11/13/16	JLI	SW8260C		
1,2-Dibromo-3-chloropropane	ND	5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C		
1,2-Dibromoethane	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C		
1,2-Dichlorobenzene	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C		
1,2-Dichloroethane	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C		
1,2-Dichloropropane	ND	5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C		
1,3,5-Trimethylbenzene	350	330	33	ug/Kg	50	11/13/16	JLI	SW8260C		
1,3-Dichlorobenzene	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C		
1,3-Dichloropropane	ND	5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C		
1,4-Dichlorobenzene	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C		
2,2-Dichloropropane	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C		
2-Chlorotoluene	ND	5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C		
2-Hexanone	ND	27	5.3	ug/Kg	1	11/13/16	JLI	SW8260C		
2-Isopropyltoluene	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C 1		
4-Chlorotoluene	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C		
4-Methyl-2-pentanone	ND	27	5.3	ug/Kg	1	11/13/16	JLI	SW8260C		
Acetone	ND	27	5.3	ug/Kg	1	11/13/16	JLI	SW8260C		
Acrylonitrile	ND	11	1.1	ug/Kg	1	11/13/16	JLI	SW8260C		
Benzene	110	60	33	ug/Kg	50	11/13/16	JLI	SW8260C		
Bromobenzene	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C		
Bromochloromethane	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C		
Bromodichloromethane	ND	5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C		

Client ID: 15B8 (0-2)

Parameter Parameter	Result		RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Bromoform	ND		5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
Bromomethane	ND		5.3	2.1	ug/Kg	1	11/13/16	JLI	SW8260C
Carbon Disulfide	ND		5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
Carbon tetrachloride	ND		5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
Chlorobenzene	ND		5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
Chloroethane	ND		5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
Chloroform	ND		5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
Chloromethane	ND		5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND		5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND		5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
Dibromochloromethane	ND		5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
Dibromomethane	ND		5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
Dichlorodifluoromethane	ND		5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
Ethylbenzene	220	J	330	33	ug/Kg	50	11/13/16	JLI	SW8260C
Hexachlorobutadiene	ND		5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
Isopropylbenzene	61	J	330	33	ug/Kg	50	11/13/16	JLI	SW8260C
m&p-Xylene	580		330	67	ug/Kg	50	11/13/16	JLI	SW8260C
Methyl Ethyl Ketone	ND		32	5.3	ug/Kg	1	11/13/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	140	J	670	67	ug/Kg	50	11/13/16	JLI	SW8260C
Methylene chloride	ND		5.3	5.3	ug/Kg	1	11/13/16	JLI	SW8260C
Naphthalene	ND		5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
n-Butylbenzene	ND		5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
n-Propylbenzene	ND		5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
o-Xylene	100	J	330	67	ug/Kg	50	11/13/16	JLI	SW8260C
p-Isopropyltoluene	ND		5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
sec-Butylbenzene	ND		5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
Styrene	ND		5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
tert-Butylbenzene	ND		5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
Tetrachloroethene	ND		5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND		11	2.7	ug/Kg	1	11/13/16	JLI	SW8260C 1
Toluene	85	J	330	33	ug/Kg	50	11/13/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND		5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND		5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND		11	2.7	ug/Kg	1	11/13/16	JLI	SW8260C
Trichloroethene	ND		5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
Trichlorofluoromethane	ND		5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
Trichlorotrifluoroethane	ND		5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
Vinyl chloride	ND		5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
QA/QC Surrogates					0 0				
% 1,2-dichlorobenzene-d4	100				%	1	11/13/16	JLI	70 - 130 %
% Bromofluorobenzene	98				%	1	11/13/16	JLI	70 - 130 %
% Dibromofluoromethane	96				%	1	11/13/16	JLI	70 - 130 %
% Toluene-d8	99				%	1	11/13/16	JLI	70 - 130 %
1,4-dioxane 1,4-dioxane	ND		80	43	ug/kg	1	11/13/16	JLI	SW8260C
QA/QC Surrogates	110		50	70	~g/Ng	'	1.710/10	OLI	2.1.02000
	100				%	1	11/13/16	JLI	70 - 130 %
% 1,2-dichlorobenzene-d4									
% Bromofluorobenzene	98				%	1	11/13/16	JLI	70 - 130 %
% Toluene-d8	99				%	1	11/13/16	JLI	70 - 130 %

Client ID: 15B8 (0-2)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	21	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
Acrolein	ND	21	2.7	ug/Kg	1	11/13/16	JLI	SW8260C
Acrylonitrile	ND	21	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
Tert-butyl alcohol	ND	110	21	ug/Kg	1	11/13/16	JLI	SW8260C
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	260	130	ug/Kg	1	11/12/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
1,2-Dichlorobenzene	ND	260	100	ug/Kg	1	11/12/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
1,3-Dichlorobenzene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
1,4-Dichlorobenzene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	260	200	ug/Kg	1	11/12/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	190	120	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dichlorophenol	ND	190	130	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dimethylphenol	ND	260	92	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dinitrophenol	ND	260	260	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dinitrotoluene	ND	190	150	ug/Kg	1	11/12/16	DD	SW8270D
2,6-Dinitrotoluene	ND	190	120	ug/Kg	1	11/12/16	DD	SW8270D
2-Chloronaphthalene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
2-Chlorophenol	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
2-Methylnaphthalene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	260	170	ug/Kg	1	11/12/16	DD	SW8270D
2-Nitroaniline	ND	260	260	ug/Kg	1	11/12/16	DD	SW8270D
2-Nitrophenol	ND	260	230	ug/Kg	1	11/12/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	260	150	ug/Kg	1	11/12/16	DD	SW8270D 1
3,3'-Dichlorobenzidine	ND	190	170	ug/Kg	1	11/12/16	DD	SW8270D
3-Nitroaniline	ND	370	740	ug/Kg	1	11/12/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	220	74	ug/Kg	1	11/12/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	260	130	ug/Kg	1	11/12/16	DD	SW8270D
4-Chloroaniline	ND	300	170	ug/Kg	1	11/12/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
4-Nitroaniline	ND	370	120	ug/Kg	1	11/12/16	DD	SW8270D
4-Nitrophenol	ND	370	170	ug/Kg	1	11/12/16	DD	SW8270D
Acenaphthene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
Acenaphthylene	ND	260	100	ug/Kg	1	11/12/16	DD	SW8270D
Acetophenone	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Aniline	ND	300	300	ug/Kg	1	11/12/16	DD	SW8270D
Anthracene	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Benz(a)anthracene	230	J 260	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzidine	ND	370	220	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(a)pyrene	240	190	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(b)fluoranthene	220	J 260	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(ghi)perylene	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(k)fluoranthene	220	J 260	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzoic acid	ND	1900	740	ug/Kg	1	11/12/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	260	96	ug/Kg	1	11/12/16	DD	SW8270D

Client ID: 15B8 (0-2)

Chefit IB. Tobo (0 2)								
Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Bis(2-chloroethoxy)methane	ND	260	100	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	190	100	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	260	100	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
Carbazole	ND	190	150	ug/Kg	1	11/12/16	DD	SW8270D
Chrysene	280	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	190	120	ug/Kg	1	11/12/16	DD	SW8270D
Dibenzofuran	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
Diethyl phthalate	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Dimethylphthalate	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
Di-n-butylphthalate	ND	260	99	ug/Kg	1	11/12/16	DD	SW8270D
Di-n-octylphthalate	ND	260	96	ug/Kg	1	11/12/16	DD	SW8270D
Fluoranthene	510	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Fluorene	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorobenzene	ND	190	110	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorobutadiene	ND	260	130	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
Hexachloroethane	ND	190	110	ug/Kg	1	11/12/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	150	J 260	120	ug/Kg	1	11/12/16	DD	SW8270D
Isophorone	ND	190	100	ug/Kg	1	11/12/16	DD	SW8270D
Naphthalene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
Nitrobenzene	ND	190	130	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodimethylamine	ND	260	100	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	190	120	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	260	140	ug/Kg	1	11/12/16	DD	SW8270D
Pentachloronitrobenzene	ND	260	140	ug/Kg	1	11/12/16	DD	SW8270D
Pentachlorophenol	ND	220	140	ug/Kg	1	11/12/16	DD	SW8270D
Phenanthrene	530	260	110	ug/Kg	1	11/12/16	DD	SW8270D
Phenol	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Pyrene	460	260	130	ug/Kg	1	11/12/16	DD	SW8270D
Pyridine	ND	260	91	ug/Kg	1	11/12/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	77			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorobiphenyl	64			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorophenol	48			%	1	11/12/16	DD	30 - 130 %
% Nitrobenzene-d5	65			%	1	11/12/16	DD	30 - 130 %
% Phenol-d5	62			%	1	11/12/16	DD	30 - 130 %
% Terphenyl-d14	66			%	1	11/12/16	DD	30 - 130 %
,	30			. •	•			

Project ID: 1181 FLUSHING AVENUE BROOKLYN NY Phoenix I.D.: BV81838

Client ID: 15B8 (0-2)

RL/ LOD/

Parameter Result PQL MDL Units Dilution Date/Time By Reference

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

Volatile Comment:

There was a suppression of the last internal standard in the low level analysis, all affected compounds are reported from the methanol preserved high level analysis which did not exhibit this interference.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2016

Reviewed and Released by: Jon Carlson, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG ID: GBV81835 Phoenix ID: BV81839

Analysis Report

November 28, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOIL Collected by: TG 11/10/16

Location Code: EBC Received by: SW 11/11/16 18:03

LOD/

Rush Request: 72 Hour Analyzed by: see "By" below

<u>Laboratory Data</u>

1181 FLUSHING AVENUE BROOKLYN NY

Client ID: 15B8 (12-14)

P.O.#:

Project ID:

Parameter	Result	RL/ PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.42	0.42	mg/Kg	1	11/13/16	LK	SW6010C
Aluminum	4390	42	8.4	mg/Kg	10	11/13/16	LK	SW6010C
Arsenic	1.11	0.84	0.84	mg/Kg	1	11/13/16	LK	SW6010C
Barium	38.6	0.8	0.42	mg/Kg	1	11/13/16	LK	SW6010C
Beryllium	0.21	B 0.33	0.17	mg/Kg	1	11/13/16	LK	SW6010C
Calcium	1100	4.2	3.8	mg/Kg	1	11/13/16	LK	SW6010C
Cadmium	ND	0.42	0.42	mg/Kg	1	11/13/16	LK	SW6010C
Cobalt	4.95	0.42	0.42	mg/Kg	1	11/13/16	LK	SW6010C
Chromium	9.81	0.42	0.42	mg/Kg	1	11/13/16	LK	SW6010C
Copper	8.44	0.42	0.42	mg/kg	1	11/13/16	LK	SW6010C
Iron	10700	42	42	mg/Kg	10	11/13/16	LK	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	11/14/16	RS	SW7471B
Potassium	909	N 8	3.3	mg/Kg	1	11/13/16	LK	SW6010C
Magnesium	2030	4.2	4.2	mg/Kg	1	11/13/16	LK	SW6010C
Manganese	199	4.2	4.2	mg/Kg	10	11/13/16	LK	SW6010C
Sodium	109	8	3.6	mg/Kg	1	11/13/16	LK	SW6010C
Nickel	9.57	0.42	0.42	mg/Kg	1	11/13/16	LK	SW6010C
Lead	1.2	0.8	0.41	mg/Kg	1	11/15/16	LK	SW6010C
Antimony	ND	2.1	2.1	mg/Kg	1	11/15/16	LK	SW6010C
Selenium	ND	1.7	1.4	mg/Kg	1	11/13/16	LK	SW6010C
Thallium	ND	1.7	1.7	mg/Kg	1	11/13/16	LK	SW6010C
Vanadium	15.3	0.42	0.42	mg/Kg	1	11/13/16	LK	SW6010C
Zinc	21.0	8.0	0.42	mg/Kg	1	11/13/16	LK	SW6010C
Percent Solid	82			%		11/11/16	W	SW846-%Solid
Soil Extraction for PCB	Completed					11/11/16	CC/V	SW3545A
Soil Extraction for Pest	Completed	l				11/11/16	CC/V	SW3545A
Soil Extraction for SVOA	Completed					11/11/16	NJ/CKV	SW3545A
Mercury Digestion	Completed	l				11/14/16	W/W	SW7471B

Client ID: 15B8 (12-14)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Total Metals Digest	Completed					11/14/16	X/AG	SW3050B
Field Extraction	Completed					11/10/16		SW5035A
Polychlorinated Biphen	yls							
PCB-1016	ND	79	79	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1221	ND	79	79	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1232	ND	79	79	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1242	ND	79	79	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1248	ND	79	79	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1254	ND	79	79	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1260	ND	79	79	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1262	ND	79	79	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1268	ND	79	79	ug/Kg	2	11/14/16	AW	SW8082A
QA/QC Surrogates				0 0				
% DCBP	41			%	2	11/14/16	AW	40 - 140 %
% TCMX	56			%	2	11/14/16	AW	40 - 140 %
Pesticides - Soil								
4,4' -DDD	ND	2.4	2.4	ug/Kg	2	11/16/16	CE	SW8081B
4,4' -DDE	ND	2.4	2.4	ug/Kg	2	11/16/16	CE	SW8081B
4,4' -DDT	ND	2.4	2.4	ug/Kg	2	11/16/16	CE	SW8081B
a-BHC	ND	7.9	7.9	ug/Kg	2	11/16/16	CE	SW8081B
a-Chlordane	ND	3.9	3.9	ug/Kg	2	11/16/16	CE	SW8081B
Aldrin	ND	3.9	3.9	ug/Kg	2	11/16/16	CE	SW8081B
b-BHC	ND	7.9	7.9	ug/Kg	2	11/16/16	CE	SW8081B
Chlordane	ND	39	39	ug/Kg	2	11/16/16	CE	SW8081B
d-BHC	ND	7.9	7.9	ug/Kg	2	11/16/16	CE	SW8081B
Dieldrin	ND	3.9	3.9	ug/Kg	2	11/16/16	CE	SW8081B
Endosulfan I	ND	7.9	7.9	ug/Kg	2	11/16/16	CE	SW8081B
Endosulfan II	ND	7.9	7.9	ug/Kg	2	11/16/16	CE	SW8081B
Endosulfan sulfate	ND	7.9	7.9	ug/Kg	2	11/16/16	CE	SW8081B
Endrin	ND	7.9	7.9	ug/Kg	2	11/16/16	CE	SW8081B
Endrin aldehyde	ND	7.9	7.9	ug/Kg	2	11/16/16	CE	SW8081B
Endrin ketone	ND	7.9	7.9	ug/Kg	2	11/16/16	CE	SW8081B
g-BHC	ND	1.6	1.6	ug/Kg	2	11/16/16	CE	SW8081B
g-Chlordane	ND	3.9	3.9	ug/Kg	2	11/16/16	CE	SW8081B
Heptachlor	ND	7.9	7.9	ug/Kg	2	11/16/16	CE	SW8081B
Heptachlor epoxide	ND	7.9	7.9	ug/Kg	2	11/16/16	CE	SW8081B
Methoxychlor	ND	39	39	ug/Kg	2	11/16/16	CE	SW8081B
Toxaphene	ND	160	160	ug/Kg	2	11/16/16	CE	SW8081B
QA/QC Surrogates								
% DCBP	63			%	2	11/16/16	CE	40 - 140 %
% TCMX	50			%	2	11/16/16	CE	40 - 140 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
1,1-Dichloroethane	ND	5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C

Client ID: 15B8 (12-14)

Client ID. 1366 (12-14)		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
1,1-Dichloroethene	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
1,1-Dichloropropene	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dibromoethane	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dichloroethane	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dichloropropane	ND	5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
1,3-Dichloropropane	ND	5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
2,2-Dichloropropane	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
2-Chlorotoluene	ND	5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
2-Hexanone	ND	27	5.3	ug/Kg	1	11/13/16	JLI	SW8260C
2-Isopropyltoluene	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C 1
4-Chlorotoluene	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
4-Methyl-2-pentanone	ND	27	5.3	ug/Kg	1	11/13/16	JLI	SW8260C
Acetone	9.5	JS 27	5.3	ug/Kg	1	11/13/16	JLI	SW8260C
Acrylonitrile	ND	11	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
Benzene	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
Bromobenzene	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
Bromochloromethane	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
Bromodichloromethane	ND	5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
Bromoform	ND	5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
Bromomethane	ND	5.3	2.1	ug/Kg	1	11/13/16	JLI	SW8260C
Carbon Disulfide	ND	5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
Carbon tetrachloride	ND	5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
Chlorobenzene	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
Chloroethane	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
Chloroform	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
Chloromethane	ND	5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
Dibromochloromethane	ND	5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
Dibromomethane	ND	5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
Dichlorodifluoromethane	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
Ethylbenzene	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
Hexachlorobutadiene	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
Isopropylbenzene	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
m&p-Xylene	ND	5.3	1.1	ug/Kg	' 1	11/13/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	32	5.3	ug/Kg	1	11/13/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	2.2	J 11	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
Methylene chloride	ND	5.3	5.3	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
Naphthalene	ND	5.3	1.1	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
n-Butylbenzene	ND	5.3	0.53	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
ii butyiberizerie	IND	0.0	0.00	ug/11g	ı	11/10/10	ULI	J.1.02000

Client ID: 15B8 (12-14)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
n-Propylbenzene	ND	5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
o-Xylene	ND	5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
p-Isopropyltoluene	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
sec-Butylbenzene	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
Styrene	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
tert-Butylbenzene	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
Tetrachloroethene	ND	5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	11	2.7	ug/Kg	1	11/13/16	JLI	SW8260C 1
Toluene	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	11	2.7	ug/Kg	1	11/13/16	JLI	SW8260C
Trichloroethene	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
Trichlorofluoromethane	ND	5.3	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
Vinyl chloride	ND	5.3	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	100			%	1	11/13/16	JLI	70 - 130 %
% Bromofluorobenzene	99			%	1	11/13/16	JLI	70 - 130 %
% Dibromofluoromethane	95			%	1	11/13/16	JLI	70 - 130 %
% Toluene-d8	100			%	1	11/13/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	80	42	ug/kg	1	11/13/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	100			%	1	11/13/16	JLI	70 - 130 %
% Bromofluorobenzene	99			%	1	11/13/16	JLI	70 - 130 %
% Toluene-d8	100			%	1	11/13/16	JLI	70 - 130 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	21	1.1	ug/Kg	1	11/13/16	JLI	SW8260C
Acrolein	ND	21	2.7	ug/Kg	1	11/13/16	JLI	SW8260C
Acrylonitrile	ND	21	0.53	ug/Kg	1	11/13/16	JLI	SW8260C
Tert-butyl alcohol	ND	110	21	ug/Kg	1	11/13/16	JLI	SW8260C
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	280	140	ug/Kg	1	11/12/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
1,2-Dichlorobenzene	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
1,3-Dichlorobenzene	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
1,4-Dichlorobenzene	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	280	220	ug/Kg	1	11/12/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	200	130	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dichlorophenol	ND	200	140	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dimethylphenol	ND	280	100	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dinitrophenol	ND	280	280	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dinitrotoluene	ND	200	160	ug/Kg	1	11/12/16	DD	SW8270D
2,6-Dinitrotoluene	ND	200	130	ug/Kg	1	11/12/16	DD	SW8270D
2-Chloronaphthalene	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D

Client ID: 15B8 (12-14)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
2-Chlorophenol	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
2-Methylnaphthalene	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	280	190	ug/Kg	1	11/12/16	DD	SW8270D
2-Nitroaniline	ND	280	280	ug/Kg	1	11/12/16	DD	SW8270D
2-Nitrophenol	ND	280	250	ug/Kg	1	11/12/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	280	160	ug/Kg	1	11/12/16	DD	SW8270D 1
3,3'-Dichlorobenzidine	ND	200	190	ug/Kg	1	11/12/16	DD	SW8270D
3-Nitroaniline	ND	400	800	ug/Kg	1	11/12/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	240	80	ug/Kg	1	11/12/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	280	140	ug/Kg	1	11/12/16	DD	SW8270D
4-Chloroaniline	ND	320	190	ug/Kg	1	11/12/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	280	140	ug/Kg	1	11/12/16	DD	SW8270D
4-Nitroaniline	ND	400	130	ug/Kg	1	11/12/16	DD	SW8270D
4-Nitrophenol	ND	400	180	ug/Kg	1	11/12/16	DD	SW8270D
Acenaphthene	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
Acenaphthylene	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
Acetophenone	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Aniline	ND	320	320	ug/Kg	1	11/12/16	DD	SW8270D
Anthracene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Benz(a)anthracene	ND	280	140	ug/Kg	1	11/12/16	DD	SW8270D
Benzidine	ND	400	240	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(a)pyrene	ND	200	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(b)fluoranthene	ND	280	140	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(ghi)perylene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(k)fluoranthene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzoic acid	ND	2000	800	ug/Kg	1	11/12/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	280	100	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	200	110	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
Carbazole	ND	200	160	ug/Kg	1	11/12/16	DD	SW8270D
Chrysene	ND	280	140	ug/Kg	1	11/12/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	200	130	ug/Kg	1	11/12/16	DD	SW8270D
Dibenzofuran	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
Diethyl phthalate	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Dimethylphthalate	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
Di-n-butylphthalate	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
Di-n-octylphthalate	ND	280	100	ug/Kg	1	11/12/16	DD	SW8270D
Fluoranthene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Fluorene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorobenzene	ND	200	120	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorobutadiene	ND	280	150	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	280	120	ug/Kg ug/Kg	1	11/12/16	DD	SW8270D
Hexachloroethane	ND	200	120	ug/Kg ug/Kg	1	11/12/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	280	130	ug/Kg ug/Kg	1	11/12/16	DD	SW8270D
Isophorone	ND	200	110	ug/Kg ug/Kg	1	11/12/16	DD	SW8270D
Naphthalene	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
нарпшаюно	110	200	120	~g/1.vg	•	11,12,10	טט	31102100

Client ID: 15B8 (12-14)

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Nitrobenzene	ND	200	140	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodimethylamine	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	200	130	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	280	150	ug/Kg	1	11/12/16	DD	SW8270D
Pentachloronitrobenzene	ND	280	150	ug/Kg	1	11/12/16	DD	SW8270D
Pentachlorophenol	ND	240	150	ug/Kg	1	11/12/16	DD	SW8270D
Phenanthrene	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
Phenol	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Pyrene	ND	280	140	ug/Kg	1	11/12/16	DD	SW8270D
Pyridine	ND	280	99	ug/Kg	1	11/12/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	84			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorobiphenyl	68			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorophenol	52			%	1	11/12/16	DD	30 - 130 %
% Nitrobenzene-d5	69			%	1	11/12/16	DD	30 - 130 %
% Phenol-d5	64			%	1	11/12/16	DD	30 - 130 %
% Terphenyl-d14	62			%	1	11/12/16	DD	30 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2016

Reviewed and Released by: Jon Carlson, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG ID: GBV81835 Phoenix ID: BV81840

Analysis Report

November 28, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOIL Collected by: TG 11/10/16

Location Code: EBC Received by: SW 11/11/16 18:03

Rush Request: 72 Hour Analyzed by: see "By" below

<u>Laboratory Data</u>

1181 FLUSHING AVENUE BROOKLYN NY

Client ID: 15B11 (0-2)

P.O.#:

Project ID:

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	0.72	0.34	0.34	mg/Kg	1	11/13/16	LK	SW6010C
Aluminum	7940	34	6.9	mg/Kg	10	11/13/16	LK	SW6010C
Arsenic	7.69	0.69	0.69	mg/Kg	1	11/13/16	LK	SW6010C
Barium	446	0.7	0.34	mg/Kg	1	11/13/16	LK	SW6010C
Beryllium	0.39	0.27	0.14	mg/Kg	1	11/13/16	LK	SW6010C
Calcium	6970	3.4	3.2	mg/Kg	1	11/13/16	LK	SW6010C
Cadmium	7.67	0.34	0.34	mg/Kg	1	11/13/16	LK	SW6010C
Cobalt	8.49	0.34	0.34	mg/Kg	1	11/13/16	LK	SW6010C
Chromium	31.9	0.34	0.34	mg/Kg	1	11/13/16	LK	SW6010C
Copper	266	3.4	3.4	mg/kg	10	11/13/16	LK	SW6010C
Iron	25900	34	34	mg/Kg	10	11/13/16	LK	SW6010C
Mercury	0.81	0.03	0.02	mg/Kg	1	11/14/16	RS	SW7471B
Potassium	861	N 7	2.7	mg/Kg	1	11/13/16	LK	SW6010C
Magnesium	2380	3.4	3.4	mg/Kg	1	11/13/16	LK	SW6010C
Manganese	403	3.4	3.4	mg/Kg	10	11/13/16	LK	SW6010C
Sodium	189	7	2.9	mg/Kg	1	11/13/16	LK	SW6010C
Nickel	29.0	0.34	0.34	mg/Kg	1	11/13/16	LK	SW6010C
Lead	754	6.9	3.4	mg/Kg	10	11/13/16	LK	SW6010C
Antimony	7.5	1.7	1.7	mg/Kg	1	11/15/16	LK	SW6010C
Selenium	ND	1.4	1.2	mg/Kg	1	11/13/16	LK	SW6010C
Thallium	ND	1.4	1.4	mg/Kg	1	11/13/16	LK	SW6010C
Vanadium	25.6	0.34	0.34	mg/Kg	1	11/13/16	LK	SW6010C
Zinc	1100	6.9	3.4	mg/Kg	10	11/13/16	LK	SW6010C
Percent Solid	89			%		11/11/16	W	SW846-%Solid
Soil Extraction for PCB	Completed					11/11/16	CC/V	SW3545A
Soil Extraction for Pest	Completed					11/11/16	CC/V	SW3545A
Soil Extraction for SVOA	Completed					11/11/16	NJ/CKV	SW3545A
Mercury Digestion	Completed					11/14/16	W/W	SW7471B

Client ID: 15B11 (0-2)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Total Metals Digest	Completed					11/14/16	X/AG	SW3050B
Field Extraction	Completed					11/10/16		SW5035A
	•							
Polychlorinated Biphen	<u>yls</u>							
PCB-1016	ND	75	75	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1221	ND	75	75	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1232	ND	75	75	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1242	ND	75	75	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1248	ND	75	75	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1254	ND	75	75	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1260	350	75	75	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1262	ND	75	75	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1268	ND	75	75	ug/Kg	2	11/14/16	AW	SW8082A
QA/QC Surrogates								
% DCBP	71			%	2	11/14/16	AW	40 - 140 %
% TCMX	65			%	2	11/14/16	AW	40 - 140 %
Pesticides - Soil								
4,4' -DDD	ND	30	30	ug/Kg	2	11/16/16	CE	SW8081B
4,4' -DDE	ND	15	15	ug/Kg	2	11/16/16	CE	SW8081B
4,4' -DDT	ND	20	20	ug/Kg	2	11/16/16	CE	SW8081B
a-BHC	ND	10	10	ug/Kg	2	11/16/16	CE	SW8081B
a-Chlordane	ND	3.7	3.7	ug/Kg	2	11/16/16	CE	SW8081B
Aldrin	ND	3.7	3.7	ug/Kg	2	11/16/16	CE	SW8081B
b-BHC	ND	7.5	7.5	ug/Kg	2	11/16/16	CE	SW8081B
Chlordane	ND	37	37	ug/Kg	2	11/16/16	CE	SW8081B
d-BHC	ND	7.5	7.5	ug/Kg	2	11/16/16	CE	SW8081B
Dieldrin	ND	10	10	ug/Kg	2	11/16/16	CE	SW8081B
Endosulfan I	ND	7.5	7.5	ug/Kg	2	11/16/16	CE	SW8081B
Endosulfan II	ND	7.5	7.5	ug/Kg	2	11/16/16	CE	SW8081B
Endosulfan sulfate	ND	7.5	7.5	ug/Kg	2	11/16/16	CE	SW8081B
Endrin	ND	7.5	7.5	ug/Kg	2	11/16/16	CE	SW8081B
Endrin aldehyde	ND	20	20	ug/Kg	2	11/16/16	CE	SW8081B
Endrin ketone	ND	7.5	7.5	ug/Kg	2	11/16/16	CE	SW8081B
g-BHC	ND	1.5	1.5	ug/Kg	2	11/16/16	CE	SW8081B
g-Chlordane	ND	3.7	3.7	ug/Kg	2	11/16/16	CE	SW8081B
Heptachlor	ND	7.5	7.5	ug/Kg	2	11/16/16	CE	SW8081B
Heptachlor epoxide	ND	7.5	7.5	ug/Kg	2	11/16/16	CE	SW8081B
Methoxychlor	ND	37	37	ug/Kg	2	11/16/16	CE	SW8081B
Toxaphene	ND	150	150	ug/Kg	2	11/16/16	CE	SW8081B
QA/QC Surrogates								
% DCBP	77			%	2	11/16/16	CE	40 - 140 %
% TCMX	62			%	2	11/16/16	CE	40 - 140 %
Volatiles		.						0.00000
1,1,1,2-Tetrachloroethane	ND	360	72	ug/Kg	50	11/13/16	JLI 	SW8260C
1,1,1-Trichloroethane	ND	360	36	ug/Kg	50	11/13/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	360	72	ug/Kg	50	11/13/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	360	72	ug/Kg	50	11/13/16	JLI	SW8260C
1,1-Dichloroethane	ND	270	72	ug/Kg	50	11/13/16	JLI	SW8260C

Client ID: 15B11 (0-2)

Parameter Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1,1-Dichloroethene	ND	330	36	ug/Kg	50	11/13/16	JLI	SW8260C
1,1-Dichloropropene	ND	360	36	ug/Kg	50	11/13/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	360	72	ug/Kg	50	11/13/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	360	36	ug/Kg	50	11/13/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	360	72	ug/Kg	50	11/13/16	JLI	SW8260C
1,2,4-Trimethylbenzene	16000	D 1800	180	ug/Kg	250	11/14/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	360	72	ug/Kg	50	11/13/16	JLI	SW8260C
1,2-Dibromoethane	ND	360	36	ug/Kg	50	11/13/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	360	36	ug/Kg	50	11/13/16	JLI	SW8260C
1,2-Dichloroethane	ND	36	36	ug/Kg	50	11/13/16	JLI	SW8260C
1,2-Dichloropropane	ND	360	72	ug/Kg	50	11/13/16	JLI	SW8260C
1,3,5-Trimethylbenzene	7100	360	36	ug/Kg	50	11/13/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	360	36	ug/Kg	50	11/13/16	JLI	SW8260C
1,3-Dichloropropane	ND	360	72	ug/Kg	50	11/13/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	360	36	ug/Kg	50	11/13/16	JLI	SW8260C
2,2-Dichloropropane	ND	360	36	ug/Kg	50	11/13/16	JLI	SW8260C
2-Chlorotoluene	ND	360	72	ug/Kg	50	11/13/16	JLI	SW8260C
2-Hexanone	ND	1800	360	ug/Kg	50	11/13/16	JLI	SW8260C
2-Isopropyltoluene	82	J 360	36	ug/Kg	50	11/13/16	JLI	SW8260C 1
4-Chlorotoluene	ND	360	36	ug/Kg	50	11/13/16	JLI	SW8260C
4-Methyl-2-pentanone	ND	1800	360	ug/Kg	50	11/13/16	JLI	SW8260C
Acetone	920	S 360	360	ug/Kg	50	11/13/16	JLI	SW8260C
Acrylonitrile	ND	720	72	ug/Kg	50	11/13/16	JLI	SW8260C
Benzene	1900	60	36	ug/Kg	50	11/13/16	JLI	SW8260C
Bromobenzene	ND	360	36	ug/Kg	50	11/13/16	JLI	SW8260C
Bromochloromethane	ND	360	36	ug/Kg	50	11/13/16	JLI	SW8260C
Bromodichloromethane	ND	360	72	ug/Kg	50	11/13/16	JLI	SW8260C
Bromoform	ND	360	72	ug/Kg	50	11/13/16	JLI	SW8260C
Bromomethane	ND	360	140	ug/Kg	50	11/13/16	JLI	SW8260C
Carbon Disulfide	ND	360	72	ug/Kg	50	11/13/16	JLI	SW8260C
Carbon tetrachloride	ND	360	72	ug/Kg	50	11/13/16	JLI	SW8260C
Chlorobenzene	ND	360	36	ug/Kg	50	11/13/16	JLI	SW8260C
Chloroethane	ND	360	36	ug/Kg	50	11/13/16	JLI	SW8260C
Chloroform	ND	360	36	ug/Kg	50	11/13/16	JLI	SW8260C
Chloromethane	ND	360	72	ug/Kg	50	11/13/16	JLI	SW8260C
cis-1,2-Dichloroethene	27000	D 250	180	ug/Kg	250	11/14/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	360	36	ug/Kg	50	11/13/16	JLI	SW8260C
Dibromochloromethane	ND	360	72	ug/Kg	50	11/13/16	JLI	SW8260C
Dibromomethane	ND	360	72	ug/Kg	50	11/13/16	JLI	SW8260C
Dichlorodifluoromethane	ND	360	36	ug/Kg	50	11/13/16	JLI	SW8260C
Ethylbenzene	4500	360	36	ug/Kg	50	11/13/16	JLI	SW8260C
Hexachlorobutadiene	ND	360	36	ug/Kg	50	11/13/16	JLI	SW8260C
Isopropylbenzene	600	360	36	ug/Kg	50	11/13/16	JLI	SW8260C
m&p-Xylene	9600	360	72	ug/Kg	50	11/13/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	360	360	ug/Kg	50	11/13/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	720	72	ug/Kg	50	11/13/16	JLI	SW8260C
Methylene chloride	ND	360	360	ug/Kg	50	11/13/16	JLI	SW8260C
Naphthalene	3400	360	72	ug/Kg	50	11/13/16	JLI	SW8260C
n-Butylbenzene	820	360	36	ug/Kg	50	11/13/16	JLI	SW8260C

Client ID: 15B11 (0-2)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
n-Propylbenzene	1600	360	72	ug/Kg	50	11/13/16	JLI	SW8260C
o-Xylene	5600	360	72	ug/Kg	50	11/13/16	JLI	SW8260C
p-Isopropyltoluene	440	360	36	ug/Kg	50	11/13/16	JLI	SW8260C
sec-Butylbenzene	450	360	36	ug/Kg	50	11/13/16	JLI	SW8260C
Styrene	96	J 360	36	ug/Kg	50	11/13/16	JLI	SW8260C
tert-Butylbenzene	ND	360	36	ug/Kg	50	11/13/16	JLI	SW8260C
Tetrachloroethene	2400	360	72	ug/Kg	50	11/13/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	720	180	ug/Kg	50	11/13/16	JLI	SW8260C 1
Toluene	15000	D 700	180	ug/Kg	250	11/14/16	JLI	SW8260C
trans-1,2-Dichloroethene	2300	190	36	ug/Kg	50	11/13/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	360	36	ug/Kg	50	11/13/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	720	180	ug/Kg	50	11/13/16	JLI	SW8260C
Trichloroethene	410	360	36	ug/Kg	50	11/13/16	JLI	SW8260C
Trichlorofluoromethane	ND	360	72	ug/Kg	50	11/13/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	360	36	ug/Kg	50	11/13/16	JLI	SW8260C
Vinyl chloride	3000	36	36	ug/Kg	50	11/13/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	101			%	50	11/13/16	JLI	70 - 130 %
% Bromofluorobenzene	106			%	50	11/13/16	JLI	70 - 130 %
% Dibromofluoromethane	95			%	50	11/13/16	JLI	70 - 130 %
% Toluene-d8	97			%	50	11/13/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	2900	2900	ug/kg	50	11/13/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	101			%	50	11/13/16	JLI	70 - 130 %
% Bromofluorobenzene	106			%	50	11/13/16	JLI	70 - 130 %
% Toluene-d8	97			%	50	11/13/16	JLI	70 - 130 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	1400	72	ug/Kg	50	11/13/16	JLI	SW8260C
Acrolein	ND	1400	180	ug/Kg	50	11/13/16	JLI	SW8260C
Acrylonitrile	ND	1400	36	ug/Kg	50	11/13/16	JLI	SW8260C
Tert-butyl alcohol	ND	7200	1400	ug/Kg	50	11/13/16	JLI	SW8260C
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	260	130	ug/Kg	1	11/12/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
1,2-Dichlorobenzene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
1,3-Dichlorobenzene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
1,4-Dichlorobenzene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	260	210	ug/Kg	1	11/12/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	190	120	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dichlorophenol	ND	190	130	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dimethylphenol	ND	260	93	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dinitrophenol	ND	260	260	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dinitrotoluene	ND	190	150	ug/Kg	1	11/12/16	DD	SW8270D
2,6-Dinitrotoluene	ND	190	120	ug/Kg	1	11/12/16	DD	SW8270D
2-Chloronaphthalene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D

Client ID: 15B11 (0-2)

Parameter Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
2-Chlorophenol	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
2-Methylnaphthalene	330	260	110	ug/Kg	1	11/12/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	260	180	ug/Kg	1	11/12/16	DD	SW8270D
2-Nitroaniline	ND	260	260	ug/Kg	1	11/12/16	DD	SW8270D
2-Nitrophenol	ND	260	240	ug/Kg	1	11/12/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	260	150	ug/Kg	1	11/12/16	DD	SW8270D 1
3,3'-Dichlorobenzidine	ND	190	180	ug/Kg	1	11/12/16	DD	SW8270D
3-Nitroaniline	ND	370	750	ug/Kg	1	11/12/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	220	75	ug/Kg	1	11/12/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	260	130	ug/Kg	1	11/12/16	DD	SW8270D
4-Chloroaniline	ND	300	170	ug/Kg	1	11/12/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	260	130	ug/Kg	1	11/12/16	DD	SW8270D
4-Nitroaniline	ND	370	130	ug/Kg	1	11/12/16	DD	SW8270D
4-Nitrophenol	ND	370	170	ug/Kg	1	11/12/16	DD	SW8270D
Acenaphthene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
Acenaphthylene	190	J 260	100	ug/Kg	1	11/12/16	DD	SW8270D
Acetophenone	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Aniline	ND	300	300	ug/Kg	1	11/12/16	DD	SW8270D
Anthracene	170	J 260	120	ug/Kg	1	11/12/16	DD	SW8270D
Benz(a)anthracene	480	260	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzidine	ND	370	220	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(a)pyrene	870	190	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(b)fluoranthene	920	260	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(ghi)perylene	620	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(k)fluoranthene	770	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzoic acid	ND	1900	750	ug/Kg	1	11/12/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	260	97	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	260	100	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	190	100	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	260	100	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	5000	260	110	ug/Kg	1	11/12/16	DD	SW8270D
Carbazole	ND	190	150	ug/Kg	1	11/12/16	DD	SW8270D
Chrysene	670	260	130	ug/Kg	1	11/12/16	DD	SW8270D
Dibenz(a,h)anthracene	170	J 190	120	ug/Kg	1	11/12/16	DD	SW8270D
Dibenzofuran	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
Diethyl phthalate	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Dimethylphthalate	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Di-n-butylphthalate	ND	260	100	ug/Kg	1	11/12/16	DD	SW8270D
Di-n-octylphthalate	ND	260	97	ug/Kg	1	11/12/16	DD	SW8270D
Fluoranthene	950	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Fluorene	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorobenzene	ND	190	110	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorobutadiene	ND	260	140	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
Hexachloroethane	ND	190	110	ug/Kg	1	11/12/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	720	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Isophorone	ND	190	100	ug/Kg	1	11/12/16	DD	SW8270D
Naphthalene	280	260	110	ug/Kg	1	11/12/16	DD	SW8270D
•								

Client ID: 15B11 (0-2)

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Nitrobenzene	ND	190	130	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodimethylamine	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	190	120	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	260	140	ug/Kg	1	11/12/16	DD	SW8270D
Pentachloronitrobenzene	ND	260	140	ug/Kg	1	11/12/16	DD	SW8270D
Pentachlorophenol	ND	220	140	ug/Kg	1	11/12/16	DD	SW8270D
Phenanthrene	620	260	110	ug/Kg	1	11/12/16	DD	SW8270D
Phenol	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Pyrene	1500	260	130	ug/Kg	1	11/12/16	DD	SW8270D
Pyridine	ND	260	92	ug/Kg	1	11/12/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	82			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorobiphenyl	76			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorophenol	57			%	1	11/12/16	DD	30 - 130 %
% Nitrobenzene-d5	71			%	1	11/12/16	DD	30 - 130 %
% Phenol-d5	70			%	1	11/12/16	DD	30 - 130 %
% Terphenyl-d14	75			%	1	11/12/16	DD	30 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

Volatile Comment:

Elevated reporting limits for volatiles due to the presence of target and/or non-target compounds.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

Pesticide Comment:

Due to matrix interference caused by the presence of PCBs in the sample, an elevated RL was reported.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2016

Reviewed and Released by: Jon Carlson, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG ID: GBV81835 Phoenix ID: BV81841

Analysis Report

November 28, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOIL Collected by: TG 11/10/16

Location Code: EBC Received by: SW 11/11/16 18:03

Rush Request: 72 Hour Analyzed by: see "By" below

Laboratory Data

1181 FLUSHING AVENUE BROOKLYN NY

Client ID: 15B11 (3-5)

P.O.#:

Project ID:

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.38	0.38	mg/Kg	1	11/13/16	LK	SW6010C
Aluminum	6140	38	7.6	mg/Kg	10	11/13/16	LK	SW6010C
Arsenic	1.15	0.76	0.76	mg/Kg	1	11/13/16	LK	SW6010C
Barium	20.0	8.0	0.38	mg/Kg	1	11/13/16	LK	SW6010C
Beryllium	0.22	B 0.30	0.15	mg/Kg	1	11/13/16	LK	SW6010C
Calcium	908	3.8	3.5	mg/Kg	1	11/13/16	LK	SW6010C
Cadmium	ND	0.38	0.38	mg/Kg	1	11/13/16	LK	SW6010C
Cobalt	4.35	0.38	0.38	mg/Kg	1	11/13/16	LK	SW6010C
Chromium	11.3	0.38	0.38	mg/Kg	1	11/13/16	LK	SW6010C
Copper	8.58	0.38	0.38	mg/kg	1	11/13/16	LK	SW6010C
Iron	9030	3.8	3.8	mg/Kg	1	11/13/16	LK	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	11/14/16	RS	SW7471B
Potassium	356	N 8	3.0	mg/Kg	1	11/13/16	LK	SW6010C
Magnesium	1920	3.8	3.8	mg/Kg	1	11/13/16	LK	SW6010C
Manganese	145	0.38	0.38	mg/Kg	1	11/13/16	LK	SW6010C
Sodium	129	8	3.3	mg/Kg	1	11/13/16	LK	SW6010C
Nickel	9.50	0.38	0.38	mg/Kg	1	11/13/16	LK	SW6010C
Lead	1.8	0.7	0.36	mg/Kg	1	11/15/16	LK	SW6010C
Antimony	ND	1.8	1.8	mg/Kg	1	11/15/16	LK	SW6010C
Selenium	ND	1.5	1.3	mg/Kg	1	11/13/16	LK	SW6010C
Thallium	ND	1.5	1.5	mg/Kg	1	11/13/16	LK	SW6010C
Vanadium	12.3	0.38	0.38	mg/Kg	1	11/13/16	LK	SW6010C
Zinc	18.5	0.8	0.38	mg/Kg	1	11/13/16	LK	SW6010C
Percent Solid	93			%		11/11/16	W	SW846-%Solid
Soil Extraction for SVOA	Completed	l				11/11/16	NJ/CKV	SW3545A
Mercury Digestion	Completed	l				11/14/16	W/W	SW7471B
Total Metals Digest	Completed	l				11/14/16	X/AG	SW3050B
Field Extraction	Completed	I				11/10/16		SW5035A

Client ID: 15B11 (3-5)

Parameter Parameter	Result		RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Volatiles									
1,1,1,2-Tetrachloroethane	ND		3.3	0.66	ug/Kg	1	11/14/16	JLI	SW8260C
1,1,1-Trichloroethane	ND		3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND		3.3	0.66	ug/Kg	1	11/14/16	JLI	SW8260C
1,1,2-Trichloroethane	ND		3.3	0.66	ug/Kg	1	11/14/16	JLI	SW8260C
1,1-Dichloroethane	ND		3.3	0.66	ug/Kg	1	11/14/16	JLI	SW8260C
1,1-Dichloroethene	ND		3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
1,1-Dichloropropene	ND		3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND		3.3	0.66	ug/Kg	1	11/14/16	JLI	SW8260C
1,2,3-Trichloropropane	ND		3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND		3.3	0.66	ug/Kg	1	11/14/16	JLI	SW8260C
1,2,4-Trimethylbenzene	1.5	J	3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND		3.3	0.66	ug/Kg	1	11/14/16	JLI	SW8260C
1,2-Dibromoethane	ND		3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
1,2-Dichlorobenzene	ND		3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
1,2-Dichloroethane	ND		3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
1,2-Dichloropropane	ND		3.3	0.66	ug/Kg	1	11/14/16	JLI	SW8260C
1,3,5-Trimethylbenzene	0.55	J	3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
1,3-Dichlorobenzene	ND		3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
1,3-Dichloropropane	ND		3.3	0.66	ug/Kg	1	11/14/16	JLI	SW8260C
1,4-Dichlorobenzene	ND		3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
2,2-Dichloropropane	ND		3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
2-Chlorotoluene	ND		3.3	0.66	ug/Kg	1	11/14/16	JLI	SW8260C
2-Hexanone	ND		16	3.3	ug/Kg	1	11/14/16	JLI	SW8260C
2-Isopropyltoluene	ND		3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C 1
4-Chlorotoluene	ND		3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
4-Methyl-2-pentanone	ND		16	3.3	ug/Kg	1	11/14/16	JLI	SW8260C
Acetone	36	S	16	3.3	ug/Kg	1	11/14/16	JLI	SW8260C
Acrylonitrile	ND		6.6	0.66	ug/Kg	1	11/14/16	JLI	SW8260C
Benzene	ND		3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
Bromobenzene	ND		3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
Bromochloromethane	ND		3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
Bromodichloromethane	ND		3.3	0.66	ug/Kg	1	11/14/16	JLI	SW8260C
Bromoform	ND		3.3	0.66	ug/Kg	1	11/14/16	JLI	SW8260C
Bromomethane	ND		3.3	1.3	ug/Kg	1	11/14/16	JLI	SW8260C
Carbon Disulfide	ND		3.3	0.66	ug/Kg	1	11/14/16	JLI	SW8260C
Carbon tetrachloride	ND		3.3	0.66	ug/Kg	1	11/14/16	JLI	SW8260C
Chlorobenzene	ND		3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
Chloroethane	ND		3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
Chloroform	ND		3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
Chloromethane	ND		3.3	0.66	ug/Kg	1	11/14/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND		3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND		3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
Dibromochloromethane	ND		3.3	0.66	ug/Kg	1	11/14/16	JLI	SW8260C
Dibromomethane	ND		3.3	0.66	ug/Kg	1	11/14/16	JLI	SW8260C
Dichlorodifluoromethane	ND		3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
Ethylbenzene	0.38	J	3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
Hexachlorobutadiene	ND	•	3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
Isopropylbenzene	ND		3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C

Client ID: 15B11 (3-5)

Parameter Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
m&p-Xylene	ND	3.3	0.66	ug/Kg	1	11/14/16	JLI	SW8260C
Methyl Ethyl Ketone	6.5	J 20	3.3	ug/Kg	1	11/14/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	1.1	J 6.6	0.66	ug/Kg	1	11/14/16	JLI	SW8260C
Methylene chloride	ND	3.3	3.3	ug/Kg	1	11/14/16	JLI	SW8260C
Naphthalene	ND	3.3	0.66	ug/Kg	1	11/14/16	JLI	SW8260C
n-Butylbenzene	ND	3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
n-Propylbenzene	ND	3.3	0.66	ug/Kg	1	11/14/16	JLI	SW8260C
o-Xylene	ND	3.3	0.66	ug/Kg	1	11/14/16	JLI	SW8260C
p-Isopropyltoluene	ND	3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
sec-Butylbenzene	ND	3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
Styrene	ND	3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
tert-Butylbenzene	ND	3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
Tetrachloroethene	ND	3.3	0.66	ug/Kg	1	11/14/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	6.6	1.6	ug/Kg	1	11/14/16	JLI	SW8260C 1
Toluene	ND	3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	6.6	1.6	ug/Kg	1	11/14/16	JLI	SW8260C
Trichloroethene	ND	3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
Trichlorofluoromethane	ND	3.3	0.66	ug/Kg	1	11/14/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
Vinyl chloride	ND	3.3	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
QA/QC Surrogates				0 0				
% 1,2-dichlorobenzene-d4	100			%	1	11/14/16	JLI	70 - 130 %
% Bromofluorobenzene	100			%	1	11/14/16	JLI	70 - 130 %
% Dibromofluoromethane	99			%	1	11/14/16	JLI	70 - 130 %
% Toluene-d8	100			%	1	11/14/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	49	26	ug/kg	1	11/14/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	100			%	1	11/14/16	JLI	70 - 130 %
% Bromofluorobenzene	100			%	1	11/14/16	JLI	70 - 130 %
% Toluene-d8	100			%	1	11/14/16	JLI	70 - 130 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	13	0.66	ug/Kg	1	11/14/16	JLI	SW8260C
Acrolein	ND	13	1.6	ug/Kg	1	11/14/16	JLI	SW8260C
Acrylonitrile	ND	13	0.33	ug/Kg	1	11/14/16	JLI	SW8260C
Tert-butyl alcohol	17	J 66	13	ug/Kg	1	11/14/16	JLI	SW8260C
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	250	120	ug/Kg	1	11/12/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	250	110	ug/Kg	1	11/12/16	DD	SW8270D
1,2-Dichlorobenzene	ND	250	99	ug/Kg	1	11/12/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	250	110	ug/Kg	1	11/12/16	DD	SW8270D
1,3-Dichlorobenzene	ND	250	100	ug/Kg	1	11/12/16	DD	SW8270D
1,4-Dichlorobenzene	ND	250	100	ug/Kg	1	11/12/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	250	190	ug/Kg	1	11/12/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	180	110	ug/Kg	1	11/12/16	DD	SW8270D

Client ID: 15B11 (3-5)

RL/ LOD/ Parameter Result **PQL** Units Dilution Date/Time MDL By Reference ND 1 2,4-Dichlorophenol 180 120 ug/Kg 11/12/16 DD SW8270D ND 1 250 87 ug/Kg DD SW8270D 2,4-Dimethylphenol 11/12/16 2,4-Dinitrophenol ND 250 250 ug/Kg 1 11/12/16 DD SW8270D 2,4-Dinitrotoluene ND 180 140 ug/Kg 1 11/12/16 DD SW8270D ND 180 1 11/12/16 DD SW8270D 2,6-Dinitrotoluene 110 ug/Kg 250 1 2-Chloronaphthalene ND 100 ug/Kg 11/12/16 DD SW8270D 1 ND 250 100 ug/Kg DD SW8270D 2-Chlorophenol 11/12/16 ND 1 2-Methylnaphthalene 250 100 ug/Kg 11/12/16 DD SW8270D ND 250 1 DD SW8270D 2-Methylphenol (o-cresol) 170 ug/Kg 11/12/16 1 DD 2-Nitroaniline ND 250 250 ug/Kg 11/12/16 SW8270D ND 250 220 ug/Kg 1 11/12/16 DD SW8270D 2-Nitrophenol ND 1 3&4-Methylphenol (m&p-cresol) 250 140 ug/Kg 11/12/16 DD SW8270D 1 ND 1 3,3'-Dichlorobenzidine 180 170 ug/Kg 11/12/16 DD SW8270D ND 1 350 700 DD SW8270D 3-Nitroaniline ug/Kg 11/12/16 130 J 210 70 1 11/12/16 DD SW8270D 4,6-Dinitro-2-methylphenol ug/Kg 4-Bromophenyl phenyl ether ND 250 100 ug/Kg 1 11/12/16 DD SW8270D ND 250 120 ug/Kg 1 11/12/16 DD SW8270D 4-Chloro-3-methylphenol 4-Chloroaniline ND 280 160 ug/Kg 1 11/12/16 DD SW8270D ND 250 1 DD SW8270D 4-Chlorophenyl phenyl ether 120 ug/Kg 11/12/16 ND 350 1 120 11/12/16 DD SW8270D 4-Nitroaniline ug/Kg ND 350 160 ug/Kg 1 11/12/16 DD SW8270D 4-Nitrophenol ND 250 110 ug/Kg 1 11/12/16 DD SW8270D Acenaphthene Acenaphthylene ND 250 98 ug/Kg 1 11/12/16 DD SW8270D Acetophenone ND 250 110 ug/Kg 1 11/12/16 DD SW8270D ND 280 280 1 11/12/16 DD SW8270D Aniline ug/Kg ND 250 120 1 11/12/16 DD SW8270D Anthracene ug/Kg ND 250 1 11/12/16 DD SW8270D Benz(a)anthracene 120 ug/Kg Benzidine ND 350 210 ug/Kg 1 11/12/16 DD SW8270D ND 180 110 1 11/12/16 DD SW8270D Benzo(a)pyrene ug/Kg ND 250 1 SW8270D Benzo(b)fluoranthene 120 ug/Kg 11/12/16 DD ND 250 1 SW8270D Benzo(ghi)perylene 110 ug/Kg 11/12/16 DD ND 250 1 120 11/12/16 DD SW8270D Benzo(k)fluoranthene ug/Kg Benzoic acid ND 1800 700 ug/Kg 1 11/12/16 DD SW8270D 250 1 DD SW8270D Benzyl butyl phthalate ND 91 ug/Kg 11/12/16 ND 250 97 ug/Kg 1 11/12/16 DD SW8270D Bis(2-chloroethoxy)methane ND 1 DD SW8270D Bis(2-chloroethyl)ether 180 95 ug/Kg 11/12/16 ND 250 1 DD SW8270D 98 11/12/16 Bis(2-chloroisopropyl)ether ug/Kg ND 250 1 DD SW8270D Bis(2-ethylhexyl)phthalate 100 ug/Kg 11/12/16 ND 180 140 1 11/12/16 DD SW8270D ug/Kg Carbazole 250 1 DD SW8270D Chrysene ND 120 ug/Kg 11/12/16 ND 180 110 ug/Kg 1 11/12/16 DD SW8270D Dibenz(a,h)anthracene ND 250 1 DD SW8270D Dibenzofuran 100 ug/Kg 11/12/16 ND 250 110 ug/Kg 1 11/12/16 DD SW8270D Diethyl phthalate ND 250 110 1 11/12/16 DD SW8270D ug/Kg Dimethylphthalate ND 250 93 ug/Kg 1 11/12/16 DD SW8270D Di-n-butylphthalate ND 250 1 DD SW8270D 91 ug/Kg 11/12/16 Di-n-octylphthalate ND 250 110 ug/Kg 1 11/12/16 DD SW8270D Fluoranthene ND 250 120 ug/Kg 1 11/12/16 DD SW8270D Fluorene ND 1 SW8270D Hexachlorobenzene 180 100 ug/Kg 11/12/16 DD

Client ID: 15B11 (3-5)

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Hexachlorobutadiene	ND	250	130	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	250	110	ug/Kg	1	11/12/16	DD	SW8270D
Hexachloroethane	ND	180	110	ug/Kg	1	11/12/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	250	120	ug/Kg	1	11/12/16	DD	SW8270D
Isophorone	ND	180	98	ug/Kg	1	11/12/16	DD	SW8270D
Naphthalene	ND	250	100	ug/Kg	1	11/12/16	DD	SW8270D
Nitrobenzene	ND	180	120	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodimethylamine	ND	250	99	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	180	110	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	250	130	ug/Kg	1	11/12/16	DD	SW8270D
Pentachloronitrobenzene	ND	250	130	ug/Kg	1	11/12/16	DD	SW8270D
Pentachlorophenol	ND	210	130	ug/Kg	1	11/12/16	DD	SW8270D
Phenanthrene	ND	250	100	ug/Kg	1	11/12/16	DD	SW8270D
Phenol	ND	250	110	ug/Kg	1	11/12/16	DD	SW8270D
Pyrene	ND	250	120	ug/Kg	1	11/12/16	DD	SW8270D
Pyridine	ND	250	86	ug/Kg	1	11/12/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	67			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorobiphenyl	73			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorophenol	60			%	1	11/12/16	DD	30 - 130 %
% Nitrobenzene-d5	70			%	1	11/12/16	DD	30 - 130 %
% Phenol-d5	70			%	1	11/12/16	DD	30 - 130 %
% Terphenyl-d14	76			%	1	11/12/16	DD	30 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit 1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2016

Reviewed and Released by: Jon Carlson, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG ID: GBV81835

Analysis Report

November 28, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample Information Custody Information Date <u>Time</u>

Collected by: TG 11/10/16 Matrix: SOIL

Received by: Location Code: **EBC** SW 11/11/16 18:03

Rush Request: 72 Hour Analyzed by: see "By" below

Laboratory Data

Phoenix ID: BV81842

1181 FLUSHING AVENUE BROOKLYN NY Project ID:

Client ID: 15B11 (12-14)

P.O.#:

Davamatar	Daguit	RL/	LOD/	l loite	Dilution	Dete/Time	D	Deference
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.41	0.41	mg/Kg	1	11/13/16	LK	SW6010C
Aluminum	4620	41	8.3	mg/Kg	10	11/13/16	LK	SW6010C
Arsenic	1.43	0.83	0.83	mg/Kg	1	11/13/16	LK	SW6010C
Barium	21.5	8.0	0.41	mg/Kg	1	11/13/16	LK	SW6010C
Beryllium	0.22	B 0.33	0.17	mg/Kg	1	11/13/16	LK	SW6010C
Calcium	663	4.1	3.8	mg/Kg	1	11/13/16	LK	SW6010C
Cadmium	ND	0.41	0.41	mg/Kg	1	11/13/16	LK	SW6010C
Cobalt	5.14	0.41	0.41	mg/Kg	1	11/13/16	LK	SW6010C
Chromium	11.6	0.41	0.41	mg/Kg	1	11/13/16	LK	SW6010C
Copper	8.73	0.41	0.41	mg/kg	1	11/13/16	LK	SW6010C
Iron	10800	41	41	mg/Kg	10	11/13/16	LK	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	11/14/16	RS	SW7471B
Potassium	798	N 8	3.2	mg/Kg	1	11/13/16	LK	SW6010C
Magnesium	1990	4.1	4.1	mg/Kg	1	11/13/16	LK	SW6010C
Manganese	208	4.1	4.1	mg/Kg	10	11/13/16	LK	SW6010C
Sodium	84	8	3.5	mg/Kg	1	11/13/16	LK	SW6010C
Nickel	10.6	0.41	0.41	mg/Kg	1	11/13/16	LK	SW6010C
Lead	1.1	8.0	0.39	mg/Kg	1	11/15/16	LK	SW6010C
Antimony	ND	1.9	1.9	mg/Kg	1	11/15/16	LK	SW6010C
Selenium	ND	1.7	1.4	mg/Kg	1	11/13/16	LK	SW6010C
Thallium	ND	1.7	1.7	mg/Kg	1	11/13/16	LK	SW6010C
Vanadium	13.2	0.41	0.41	mg/Kg	1	11/13/16	LK	SW6010C
Zinc	19.9	8.0	0.41	mg/Kg	1	11/13/16	LK	SW6010C
Percent Solid	83			%		11/11/16	W	SW846-%Solid
Soil Extraction for PCB	Completed					11/11/16	CC/V	SW3545A
Soil Extraction for Pest	Completed					11/11/16	CC/V	SW3545A
Soil Extraction for SVOA	Completed					11/11/16	NJ/CKV	SW3545A
Mercury Digestion	Completed					11/14/16	W/W	SW7471B

Client ID: 15B11 (12-14)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Total Metals Digest	Completed					11/14/16	X/AG	SW3050B
Field Extraction	Completed					11/10/16		SW5035A
Polychlorinated Biphen	<u>yls</u>							
PCB-1016	ND	78	78	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1221	ND	78	78	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1232	ND	78	78	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1242	ND	78	78	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1248	ND	78	78	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1254	ND	78	78	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1260	ND	78	78	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1262	ND	78	78	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1268	ND	78	78	ug/Kg	2	11/14/16	AW	SW8082A
QA/QC Surrogates								
% DCBP	80			%	2	11/14/16	AW	40 - 140 %
% TCMX	82			%	2	11/14/16	AW	40 - 140 %
Volatiles								
1,1,1,2-Tetrachloroethane	ND	5.1	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	5.1	0.51	ug/Kg	1	11/13/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	5.1	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	5.1	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
1,1-Dichloroethane	ND	5.1	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
1,1-Dichloroethene	ND	5.1	0.51	ug/Kg	1	11/13/16	JLI	SW8260C
1,1-Dichloropropene	ND	5.1	0.51	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	5.1	1.0	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C SW8260C
1,2,3-Trichloropropane	ND	5.1	0.51	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	5.1	1.0	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C SW8260C
1,2,4-Trimethylbenzene	ND	5.1	0.51	ug/Kg	' 1	11/13/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	5.1	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dibromoethane	ND	5.1	0.51	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	5.1	0.51	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dichloroethane	ND	5.1	0.51	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C SW8260C
1,2-Dichloropropane	ND	5.1	1.0	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C SW8260C
1,3,5-Trimethylbenzene	ND	5.1	0.51	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	5.1	0.51	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C SW8260C
1,3-Dichloropropane	ND	5.1	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	5.1	0.51	ug/Kg	1	11/13/16	JLI	SW8260C
2,2-Dichloropropane	ND	5.1	0.51	ug/Kg	1	11/13/16	JLI	SW8260C
2-Chlorotoluene	ND	5.1	1.0	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C SW8260C
2-Hexanone	ND	25	5.1	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
2-lsopropyltoluene	ND	5.1	0.51	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C 1
	ND	5.1	0.51	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
4-Chlorotoluene	ND	25	5.1	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
4-Methyl-2-pentanone	27	S 25	5.1	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C SW8260C
Acetone	ND	10	5.1 1.0	ug/Kg ug/Kg	1 1	11/13/16	JLI	SW8260C SW8260C
Acrylonitrile	ND ND	5.1	0.51	ug/Kg ug/Kg		11/13/16	JLI	
Benzene	ND ND	5.1 5.1		ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
Bromobenzene Bromoshlaramathana	ND ND	5.1 5.1	0.51 0.51		1	11/13/16	JLI	SW8260C SW8260C
Bromochloromethane Bromodiabloromethane				ug/Kg	1			
Bromodichloromethane	ND	5.1	1.0	ug/Kg	1	11/13/16	JLI	SW8260C

Client ID: 15B11 (12-14)

Parameter Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Bromoform	ND	5.1	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
Bromomethane	ND	5.1	2.0	ug/Kg	1	11/13/16	JLI	SW8260C
Carbon Disulfide	1.3	J 5.1	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
Carbon tetrachloride	ND	5.1	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
Chlorobenzene	ND	5.1	0.51	ug/Kg	1	11/13/16	JLI	SW8260C
Chloroethane	ND	5.1	0.51	ug/Kg	1	11/13/16	JLI	SW8260C
Chloroform	ND	5.1	0.51	ug/Kg	1	11/13/16	JLI	SW8260C
Chloromethane	ND	5.1	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	5.1	0.51	ug/Kg	1	11/13/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.1	0.51	ug/Kg	1	11/13/16	JLI	SW8260C
Dibromochloromethane	ND	5.1	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
Dibromomethane	ND	5.1	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
Dichlorodifluoromethane	ND	5.1	0.51	ug/Kg	1	11/13/16	JLI	SW8260C
Ethylbenzene	ND	5.1	0.51	ug/Kg	1	11/13/16	JLI	SW8260C
Hexachlorobutadiene	ND	5.1	0.51	ug/Kg	1	11/13/16	JLI	SW8260C
Isopropylbenzene	ND	5.1	0.51	ug/Kg	1	11/13/16	JLI	SW8260C
m&p-Xylene	ND	5.1	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	30	5.1	ug/Kg	1	11/13/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	22	10	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
Methylene chloride	ND	5.1	5.1	ug/Kg	1	11/13/16	JLI	SW8260C
Naphthalene	ND	5.1	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
n-Butylbenzene	ND	5.1	0.51	ug/Kg	1	11/13/16	JLI	SW8260C
n-Propylbenzene	ND	5.1	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
o-Xylene	ND	5.1	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
p-Isopropyltoluene	ND	5.1	0.51	ug/Kg	1	11/13/16	JLI	SW8260C
sec-Butylbenzene	ND	5.1	0.51	ug/Kg	1	11/13/16	JLI	SW8260C
Styrene	ND	5.1	0.51	ug/Kg	1	11/13/16	JLI	SW8260C
tert-Butylbenzene	ND	5.1	0.51	ug/Kg	1	11/13/16	JLI	SW8260C
Tetrachloroethene	ND	5.1	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	10	2.5	ug/Kg	1	11/13/16	JLI	SW8260C 1
Toluene	ND	5.1	0.51	ug/Kg	1	11/13/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.1	0.51	ug/Kg	1	11/13/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.1	0.51	ug/Kg	1	11/13/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	10	2.5	ug/Kg	1	11/13/16	JLI	SW8260C
Trichloroethene	ND	5.1	0.51	ug/Kg	1	11/13/16	JLI	SW8260C
Trichlorofluoromethane	ND	5.1	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.1	0.51	ug/Kg	1	11/13/16	JLI	SW8260C
Vinyl chloride	ND	5.1	0.51	ug/Kg	1	11/13/16	JLI	SW8260C
QA/QC Surrogates				0 0				
% 1,2-dichlorobenzene-d4	99			%	1	11/13/16	JLI	70 - 130 %
% Bromofluorobenzene	99			%	1	11/13/16	JLI	70 - 130 %
% Dibromofluoromethane	97			%	1	11/13/16	JLI	70 - 130 %
% Toluene-d8	101			%	1	11/13/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	76	40	ug/kg	1	11/13/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	99			%	1	11/13/16	JLI	70 - 130 %
% Bromofluorobenzene	99			%	1	11/13/16	JLI	70 - 130 %
% Toluene-d8	101			%	1	11/13/16	JLI	70 - 130 %

Client ID: 15B11 (12-14)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	20	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
Acrolein	ND	20	2.5	ug/Kg	1	11/13/16	JLI	SW8260C
Acrylonitrile	ND	20	0.51	ug/Kg	1	11/13/16	JLI	SW8260C
Tert-butyl alcohol	32	J 100	20	ug/Kg	1	11/13/16	JLI	SW8260C
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	280	140	ug/Kg	1	11/12/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
1,2-Dichlorobenzene	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
1,3-Dichlorobenzene	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
1,4-Dichlorobenzene	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	280	220	ug/Kg	1	11/12/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	200	130	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dichlorophenol	ND	200	140	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dimethylphenol	ND	280	98	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dinitrophenol	ND	280	280	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dinitrotoluene	ND	200	160	ug/Kg	1	11/12/16	DD	SW8270D
2,6-Dinitrotoluene	ND	200	120	ug/Kg	1	11/12/16	DD	SW8270D
2-Chloronaphthalene	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
2-Chlorophenol	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
2-Methylnaphthalene	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	280	190	ug/Kg	1	11/12/16	DD	SW8270D
2-Nitroaniline	ND	280	280	ug/Kg	1	11/12/16	DD	SW8270D
2-Nitrophenol	ND	280	250	ug/Kg	1	11/12/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	280	160	ug/Kg	1	11/12/16	DD	SW8270D 1
3,3'-Dichlorobenzidine	ND	200	190	ug/Kg	1	11/12/16	DD	SW8270D
3-Nitroaniline	ND	390	790	ug/Kg	1	11/12/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	240	79	ug/Kg	1	11/12/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	280	140	ug/Kg	1	11/12/16	DD	SW8270D
4-Chloroaniline	ND	320	180	ug/Kg	1	11/12/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
4-Nitroaniline	ND	390	130	ug/Kg	1	11/12/16	DD	SW8270D
4-Nitrophenol	ND	390	180	ug/Kg	1	11/12/16	DD	SW8270D
Acenaphthene	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
Acenaphthylene	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
Acetophenone	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
Aniline	ND	320	320	ug/Kg	1	11/12/16	DD	SW8270D
Anthracene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Benz(a)anthracene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzidine	ND	390	230	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(a)pyrene	ND	200	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(b)fluoranthene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(ghi)perylene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(k)fluoranthene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzoic acid	ND	2000	790	ug/Kg	1	11/12/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	280	100	ug/Kg	1	11/12/16	DD	SW8270D

Client ID: 15B11 (12-14)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Bis(2-chloroethoxy)methane	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	200	110	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
Carbazole	ND	200	160	ug/Kg	1	11/12/16	DD	SW8270D
Chrysene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	200	130	ug/Kg	1	11/12/16	DD	SW8270D
Dibenzofuran	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
Diethyl phthalate	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
Dimethylphthalate	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
Di-n-butylphthalate	ND	280	100	ug/Kg	1	11/12/16	DD	SW8270D
Di-n-octylphthalate	ND	280	100	ug/Kg	1	11/12/16	DD	SW8270D
Fluoranthene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Fluorene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorobenzene	ND	200	120	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorobutadiene	ND	280	140	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
Hexachloroethane	ND	200	120	ug/Kg	1	11/12/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Isophorone	ND	200	110	ug/Kg	1	11/12/16	DD	SW8270D
Naphthalene	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
Nitrobenzene	ND	200	140	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodimethylamine	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	200	130	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	280	150	ug/Kg	1	11/12/16	DD	SW8270D
Pentachloronitrobenzene	ND	280	150	ug/Kg	1	11/12/16	DD	SW8270D
Pentachlorophenol	ND	240	150	ug/Kg	1	11/12/16	DD	SW8270D
Phenanthrene	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
Phenol	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Pyrene	ND	280	140	ug/Kg	1	11/12/16	DD	SW8270D
Pyridine	ND	280	97	ug/Kg	1	11/12/16	DD	SW8270D
QA/QC Surrogates				-9/1-9				
% 2,4,6-Tribromophenol	102			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorobiphenyl	70			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorophenol	48			%	1	11/12/16	DD	30 - 130 %
% Nitrobenzene-d5	62			%	1	11/12/16	DD	30 - 130 %
% Phenol-d5	62			%	1	11/12/16	DD	30 - 130 %
% Terphenyl-d14	78			%	1	11/12/16	DD	30 - 130 %
	-							

Project ID: 1181 FLUSHING AVENUE BROOKLYN NY Phoenix I.D.: BV81842

Client ID: 15B11 (12-14)

RL/ LOD/

Parameter Result PQL MDL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2016

Reviewed and Released by: Jon Carlson, Project Manager

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:TG11/10/16Location Code:EBCReceived by:SW11/11/1618:03

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GBV81835

Phoenix ID: BV81843

Project ID: 1181 FLUSHING AVENUE BROOKLYN NY

Client ID: 15B12 (12-14)

_		RL/	LOD/				_	
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.37	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Aluminum	3660	37	7.4	mg/Kg	10	11/13/16	LK	SW6010C
Arsenic	ND	0.74	0.74	mg/Kg	1	11/13/16	LK	SW6010C
Barium	17.6	0.7	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Beryllium	0.16	B 0.29	0.15	mg/Kg	1	11/13/16	LK	SW6010C
Calcium	705	3.7	3.4	mg/Kg	1	11/13/16	LK	SW6010C
Cadmium	ND	0.37	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Cobalt	3.00	0.37	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Chromium	10.3	0.37	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Copper	6.54	0.37	0.37	mg/kg	1	11/13/16	LK	SW6010C
Iron	6240	3.7	3.7	mg/Kg	1	11/13/16	LK	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	11/14/16	RS	SW7471B
Potassium	559	N 7	2.9	mg/Kg	1	11/13/16	LK	SW6010C
Magnesium	1400	3.7	3.7	mg/Kg	1	11/13/16	LK	SW6010C
Manganese	84.1	0.37	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Sodium	94	7	3.2	mg/Kg	1	11/13/16	LK	SW6010C
Nickel	6.72	0.37	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Lead	1.9	8.0	0.40	mg/Kg	1	11/15/16	LK	SW6010C
Antimony	ND	2.0	2.0	mg/Kg	1	11/15/16	LK	SW6010C
Selenium	ND	1.5	1.3	mg/Kg	1	11/13/16	LK	SW6010C
Thallium	ND	1.5	1.5	mg/Kg	1	11/13/16	LK	SW6010C
Vanadium	11.6	0.37	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Zinc	13.6	0.7	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Percent Solid	85			%		11/11/16	W	SW846-%Solid
Soil Extraction for PCB	Completed					11/11/16	NC/V	SW3545A
Soil Extraction for Pest	Completed					11/11/16	NC/V	SW3545A
Soil Extraction for SVOA	Completed					11/11/16	NJ/CKV	SW3545A
Mercury Digestion	Completed					11/14/16	W/W	SW7471B

Client ID: 15B12 (12-14)

Parameter Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Total Metals Digest Field Extraction	Completed Completed					11/14/16 11/10/16	X/AG	SW3050B SW5035A
Polychlorinated Bipher	nvis							
PCB-1016	ND	77	77	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1221	ND	77	77	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1232	ND	77	77	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1242	ND	77	77	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1248	ND	77	77	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1254	ND	77	77	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1260	ND	77	77	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1262	ND	77	77	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1268	ND	77	77	ug/Kg	2	11/14/16	AW	SW8082A
QA/QC Surrogates				3 3				
% DCBP	61			%	2	11/14/16	AW	40 - 140 %
% TCMX	55			%	2	11/14/16	AW	40 - 140 %
	33			,,	_	.,,.,,.		.6 . 1.6 /6
Pesticides - Soil								
4,4' -DDD	ND	2.3	2.3	ug/Kg	2	11/15/16	CE	SW8081B
4,4' -DDE	ND	2.3	2.3	ug/Kg	2	11/15/16	CE	SW8081B
4,4' -DDT	ND	2.3	2.3	ug/Kg	2	11/15/16	CE	SW8081B
a-BHC	ND	7.7	7.7	ug/Kg	2	11/15/16	CE	SW8081B
a-Chlordane	ND	3.9	3.9	ug/Kg	2	11/15/16	CE	SW8081B
Aldrin	ND	3.9	3.9	ug/Kg	2	11/15/16	CE	SW8081B
b-BHC	ND	7.7	7.7	ug/Kg	2	11/15/16	CE	SW8081B
Chlordane	ND	39	39	ug/Kg	2	11/15/16	CE	SW8081B
d-BHC	ND	7.7	7.7	ug/Kg	2	11/15/16	CE	SW8081B
Dieldrin	ND	3.9	3.9	ug/Kg	2	11/15/16	CE	SW8081B
Endosulfan I	ND	7.7	7.7	ug/Kg	2	11/15/16	CE	SW8081B
Endosulfan II	ND	7.7	7.7	ug/Kg	2	11/15/16	CE	SW8081B
Endosulfan sulfate	ND	7.7	7.7	ug/Kg	2	11/15/16	CE	SW8081B
Endrin	ND	7.7	7.7	ug/Kg	2	11/15/16	CE	SW8081B
Endrin aldehyde	ND	7.7	7.7	ug/Kg	2	11/15/16	CE	SW8081B
Endrin ketone	ND	7.7	7.7	ug/Kg	2	11/15/16	CE	SW8081B
g-BHC	ND	1.5	1.5	ug/Kg	2	11/15/16	CE	SW8081B
g-Chlordane	ND	3.9	3.9	ug/Kg	2	11/15/16	CE	SW8081B
Heptachlor	ND	7.7	7.7	ug/Kg	2	11/15/16	CE	SW8081B
Heptachlor epoxide	ND	7.7	7.7	ug/Kg	2	11/15/16	CE	SW8081B
Methoxychlor	ND	39	39	ug/Kg	2	11/15/16	CE	SW8081B
Toxaphene	ND	150	150	ug/Kg	2	11/15/16	CE	SW8081B
QA/QC Surrogates								
% DCBP	65			%	2	11/15/16	CE	40 - 140 %
% TCMX	48			%	2	11/15/16	CE	40 - 140 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	310	63	ug/Kg	50	11/13/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	310	31	ug/Kg	50	11/13/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	310	63	ug/Kg	50	11/13/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	310	63	ug/Kg	50	11/13/16	JLI	SW8260C
1,1-Dichloroethane	ND	270	63	ug/Kg	50	11/13/16	JLI	SW8260C

Client ID: 15B12 (12-14)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1,1-Dichloroethene	ND	310	31	ug/Kg	50	11/13/16	JLI	SW8260C
1,1-Dichloropropene	ND	310	31	ug/Kg	50	11/13/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	310	63	ug/Kg	50	11/13/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	310	31	ug/Kg	50	11/13/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	310	63	ug/Kg	50	11/13/16	JLI	SW8260C
1,2,4-Trimethylbenzene	14000	D 630	63	ug/Kg	100	11/14/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	310	63	ug/Kg	50	11/13/16	JLI	SW8260C
1,2-Dibromoethane	ND	310	31	ug/Kg	50	11/13/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	310	31	ug/Kg	50	11/13/16	JLI	SW8260C
1,2-Dichloroethane	ND	31	31	ug/Kg	50	11/13/16	JLI	SW8260C
1,2-Dichloropropane	ND	310	63	ug/Kg	50	11/13/16	JLI	SW8260C
1,3,5-Trimethylbenzene	4200	310	31	ug/Kg	50	11/13/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	310	31	ug/Kg	50	11/13/16	JLI	SW8260C
1,3-Dichloropropane	ND	310	63	ug/Kg	50	11/13/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	310	31	ug/Kg	50	11/13/16	JLI	SW8260C
2,2-Dichloropropane	ND	310	31	ug/Kg	50	11/13/16	JLI	SW8260C
2-Chlorotoluene	ND	310	63	ug/Kg	50	11/13/16	JLI	SW8260C
2-Hexanone	ND	1600	310	ug/Kg	50	11/13/16	JLI	SW8260C
2-Isopropyltoluene	37	J 310	31	ug/Kg	50	11/13/16	JLI	SW8260C 1
4-Chlorotoluene	ND	310	31	ug/Kg	50	11/13/16	JLI	SW8260C
4-Methyl-2-pentanone	ND	1600	310	ug/Kg	50	11/13/16	JLI	SW8260C
Acetone	ND	310	310	ug/Kg	50	11/13/16	JLI	SW8260C
Acrylonitrile	ND	630	63	ug/Kg	50	11/13/16	JLI	SW8260C
Benzene	650	60	31	ug/Kg	50	11/13/16	JLI	SW8260C
Bromobenzene	ND	310	31	ug/Kg	50	11/13/16	JLI	SW8260C
Bromochloromethane	ND	310	31	ug/Kg	50	11/13/16	JLI	SW8260C
Bromodichloromethane	ND	310	63	ug/Kg	50	11/13/16	JLI	SW8260C
Bromoform	ND	310	63	ug/Kg	50	11/13/16	JLI	SW8260C
Bromomethane	ND	310	130	ug/Kg	50	11/13/16	JLI	SW8260C
Carbon Disulfide	ND	310	63	ug/Kg	50	11/13/16	JLI	SW8260C
Carbon tetrachloride	ND	310	63	ug/Kg	50	11/13/16	JLI	SW8260C
Chlorobenzene	ND	310	31	ug/Kg	50	11/13/16	JLI	SW8260C
Chloroethane	ND	310	31	ug/Kg	50	11/13/16	JLI	SW8260C
Chloroform	ND	310	31	ug/Kg	50	11/13/16	JLI	SW8260C
Chloromethane	ND	310	63	ug/Kg	50	11/13/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	250	31	ug/Kg	50	11/13/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	310	31	ug/Kg	50	11/13/16	JLI	SW8260C
Dibromochloromethane	ND	310	63	ug/Kg	50	11/13/16	JLI	SW8260C
Dibromomethane	ND	310	63	ug/Kg	50	11/13/16	JLI	SW8260C
Dichlorodifluoromethane	ND	310	31	ug/Kg	50	11/13/16	JLI	SW8260C
Ethylbenzene	3900	310	31	ug/Kg	50	11/13/16	JLI	SW8260C
Hexachlorobutadiene	ND	310	31	ug/Kg	50	11/13/16	JLI	SW8260C
Isopropylbenzene	940	310	31	ug/Kg	50	11/13/16	JLI	SW8260C
m&p-Xylene	16000	310	63	ug/Kg	50	11/13/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	310	310	ug/Kg	50	11/13/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	290	J 630	63	ug/Kg	50	11/13/16	JLI	SW8260C
Methylene chloride	ND	310	310	ug/Kg	50	11/13/16	JLI	SW8260C
Naphthalene	4400	310	63	ug/Kg	50	11/13/16	JLI	SW8260C
n-Butylbenzene	810	310	31	ug/Kg	50	11/13/16	JLI	SW8260C
•								

Client ID: 15B12 (12-14)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
n-Propylbenzene	1800	310	63	ug/Kg	50	11/13/16	JLI	SW8260C
o-Xylene	6700	310	63	ug/Kg	50	11/13/16	JLI	SW8260C
p-Isopropyltoluene	230	J 310	31	ug/Kg	50	11/13/16	JLI	SW8260C
sec-Butylbenzene	380	310	31	ug/Kg	50	11/13/16	JLI	SW8260C
Styrene	ND	310	31	ug/Kg	50	11/13/16	JLI	SW8260C
tert-Butylbenzene	ND	310	31	ug/Kg	50	11/13/16	JLI	SW8260C
Tetrachloroethene	ND	310	63	ug/Kg	50	11/13/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	630	160	ug/Kg	50	11/13/16	JLI	SW8260C 1
Toluene	470	310	31	ug/Kg	50	11/13/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	190	31	ug/Kg	50	11/13/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	310	31	ug/Kg	50	11/13/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	630	160	ug/Kg	50	11/13/16	JLI	SW8260C
Trichloroethene	ND	310	31	ug/Kg	50	11/13/16	JLI	SW8260C
Trichlorofluoromethane	ND	310	63	ug/Kg	50	11/13/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	310	31	ug/Kg	50	11/13/16	JLI	SW8260C
Vinyl chloride	ND	31	31	ug/Kg	50	11/13/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	99			%	50	11/13/16	JLI	70 - 130 %
% Bromofluorobenzene	103			%	50	11/13/16	JLI	70 - 130 %
% Dibromofluoromethane	94			%	50	11/13/16	JLI	70 - 130 %
% Toluene-d8	100			%	50	11/13/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	2500	2500	ug/kg	50	11/13/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	99			%	50	11/13/16	JLI	70 - 130 %
% Bromofluorobenzene	103			%	50	11/13/16	JLI	70 - 130 %
% Toluene-d8	100			%	50	11/13/16	JLI	70 - 130 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	1300	63	ug/Kg	50	11/13/16	JLI	SW8260C
Acrolein	ND	1300	160	ug/Kg	50	11/13/16	JLI	SW8260C
Acrylonitrile	ND	1300	31	ug/Kg	50	11/13/16	JLI	SW8260C
Tert-butyl alcohol	ND	6300	1300	ug/Kg	50	11/13/16	JLI	SW8260C
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	270	140	ug/Kg	1	11/12/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	270	120	ug/Kg	1	11/12/16	DD	SW8270D
1,2-Dichlorobenzene	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	270	130	ug/Kg	1	11/12/16	DD	SW8270D
1,3-Dichlorobenzene	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
1,4-Dichlorobenzene	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	270	210	ug/Kg	1	11/12/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	190	120	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dichlorophenol	ND	190	140	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dimethylphenol	ND	270	96	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dinitrophenol	ND	270	270	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dinitrotoluene	ND	190	150	ug/Kg	1	11/12/16	DD	SW8270D
2,6-Dinitrotoluene	ND	190	120	ug/Kg	1	11/12/16	DD	SW8270D
2-Chloronaphthalene	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D

Client ID: 15B12 (12-14)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
2-Chlorophenol	1300	270	110	ug/Kg ug/Kg	1	11/12/16	DD	SW8270D SW8270D
2-Methylnaphthalene	ND	270	180	ug/Kg ug/Kg	1	11/12/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	270	270	ug/Kg ug/Kg	1	11/12/16	DD	SW8270D
2-Nitroaniline	ND	270	240			11/12/16	DD	SW8270D SW8270D
2-Nitrophenol	ND	270	150	ug/Kg	1	11/12/16	DD	SW8270D 1
3&4-Methylphenol (m&p-cresol)	ND	190	180	ug/Kg ug/Kg	1	11/12/16	DD	SW8270D
3,3'-Dichlorobenzidine					1			SW8270D SW8270D
3-Nitroaniline	ND	390	770	ug/Kg	1	11/12/16	DD	
4,6-Dinitro-2-methylphenol	ND	230	77	ug/Kg	1	11/12/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	270	140	ug/Kg	1	11/12/16	DD	SW8270D
4-Chloroaniline	ND	310	180	ug/Kg	1	11/12/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	270	130	ug/Kg	1	11/12/16	DD	SW8270D
4-Nitroaniline	ND	390	130	ug/Kg	1	11/12/16	DD	SW8270D
4-Nitrophenol	ND	390	170	ug/Kg	1	11/12/16	DD	SW8270D
Acenaphthene	ND	270	120	ug/Kg	1	11/12/16	DD	SW8270D
Acenaphthylene	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
Acetophenone	ND	270	120	ug/Kg	1	11/12/16	DD	SW8270D
Aniline	ND	310	310	ug/Kg	1	11/12/16	DD	SW8270D
Anthracene	ND	270	130	ug/Kg	1	11/12/16	DD	SW8270D
Benz(a)anthracene	ND	270	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzidine	ND	390	230	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(a)pyrene	ND	190	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(b)fluoranthene	ND	270	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(ghi)perylene	ND	270	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(k)fluoranthene	ND	270	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzoic acid	ND	1900	770	ug/Kg	1	11/12/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	270	99	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	190	100	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	970	270	110	ug/Kg	1	11/12/16	DD	SW8270D
Carbazole	ND	190	150	ug/Kg	1	11/12/16	DD	SW8270D
Chrysene	ND	270	130	ug/Kg	1	11/12/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	190	120	ug/Kg	1	11/12/16	DD	SW8270D
Dibenzofuran	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
Diethyl phthalate	ND	270	120	ug/Kg	1	11/12/16	DD	SW8270D
Dimethylphthalate	ND	270	120	ug/Kg	1	11/12/16	DD	SW8270D
Di-n-butylphthalate	ND	270	100	ug/Kg	1	11/12/16	DD	SW8270D
Di-n-octylphthalate	ND	270	99	ug/Kg	1	11/12/16	DD	SW8270D
Fluoranthene	ND	270	120	ug/Kg	1	11/12/16	DD	SW8270D
Fluorene	ND	270	130	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorobenzene	ND	190	110	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorobutadiene	ND	270	140	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	270	120	ug/Kg	1	11/12/16	DD	SW8270D
Hexachloroethane	ND	190	120	ug/Kg	1	11/12/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	270	130	ug/Kg	1	11/12/16	DD	SW8270D
Isophorone	ND	190	110	ug/Kg	1	11/12/16	DD	SW8270D
Naphthalene	770	270	110	ug/Kg	1	11/12/16	DD	SW8270D
		0		ישיי	•			· • -

Client ID: 15B12 (12-14)

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Nitrobenzene	ND	190	130	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodimethylamine	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	190	120	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	270	150	ug/Kg	1	11/12/16	DD	SW8270D
Pentachloronitrobenzene	ND	270	140	ug/Kg	1	11/12/16	DD	SW8270D
Pentachlorophenol	ND	230	150	ug/Kg	1	11/12/16	DD	SW8270D
Phenanthrene	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
Phenol	ND	270	120	ug/Kg	1	11/12/16	DD	SW8270D
Pyrene	ND	270	130	ug/Kg	1	11/12/16	DD	SW8270D
Pyridine	ND	270	95	ug/Kg	1	11/12/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	94			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorobiphenyl	81			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorophenol	65			%	1	11/12/16	DD	30 - 130 %
% Nitrobenzene-d5	70			%	1	11/12/16	DD	30 - 130 %
% Phenol-d5	73			%	1	11/12/16	DD	30 - 130 %
% Terphenyl-d14	65			%	1	11/12/16	DD	30 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

Volatile Comment:

Elevated reporting limits for volatiles due to the presence of target and/or non-target compounds.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2016

Reviewed and Released by: Jon Carlson, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG ID: GBV81835 Phoenix ID: BV81844

Analysis Report

November 28, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOIL Collected by: TG 11/10/16

Location Code: EBC Received by: SW 11/11/16 18:03

Rush Request: 72 Hour Analyzed by: see "By" below

Laboratory Data

Project ID: 1181 FLUSHING AVENUE BROOKLYN NY

Client ID: 15B12 (20-22)

P.O.#:

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.37	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Aluminum	3230	37	7.4	mg/Kg	10	11/13/16	LK	SW6010C
Arsenic	ND	0.74	0.74	mg/Kg	1	11/13/16	LK	SW6010C
Barium	17.9	0.7	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Beryllium	0.17	B 0.30	0.15	mg/Kg	1	11/13/16	LK	SW6010C
Calcium	949	3.7	3.4	mg/Kg	1	11/13/16	LK	SW6010C
Cadmium	ND	0.37	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Cobalt	4.47	0.37	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Chromium	8.47	0.37	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Copper	7.31	0.37	0.37	mg/kg	1	11/13/16	LK	SW6010C
Iron	8380	3.7	3.7	mg/Kg	1	11/13/16	LK	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	11/14/16	RS	SW7471B
Potassium	456	N 7	2.9	mg/Kg	1	11/13/16	LK	SW6010C
Magnesium	1290	3.7	3.7	mg/Kg	1	11/13/16	LK	SW6010C
Manganese	202	3.7	3.7	mg/Kg	10	11/13/16	LK	SW6010C
Sodium	93	7	3.2	mg/Kg	1	11/13/16	LK	SW6010C
Nickel	7.67	0.37	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Lead	1.5	0.8	0.39	mg/Kg	1	11/15/16	LK	SW6010C
Antimony	ND	1.9	1.9	mg/Kg	1	11/15/16	LK	SW6010C
Selenium	ND	1.5	1.3	mg/Kg	1	11/13/16	LK	SW6010C
Thallium	ND	1.5	1.5	mg/Kg	1	11/13/16	LK	SW6010C
Vanadium	12.9	0.37	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Zinc	13.8	0.7	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Percent Solid	80			%		11/11/16	W	SW846-%Solid
Soil Extraction for SVOA	Completed	l				11/11/16	NJ/CKV	SW3545A
Mercury Digestion	Completed	I				11/14/16	W/W	SW7471B
Total Metals Digest	Completed	l				11/14/16	X/AG	SW3050B
Field Extraction	Completed	I				11/10/16		SW5035A

Client ID: 15B12 (20-22)

Parameter	Result		RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
<u>Volatiles</u>									
1,1,1,2-Tetrachloroethane	ND		4.6	0.91	ug/Kg	1	11/13/16	JLI	SW8260C
1,1,1-Trichloroethane	ND		4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND		4.6	0.91	ug/Kg	1	11/13/16	JLI	SW8260C
1,1,2-Trichloroethane	ND		4.6	0.91	ug/Kg	1	11/13/16	JLI	SW8260C
1,1-Dichloroethane	ND		4.6	0.91	ug/Kg	1	11/13/16	JLI	SW8260C
1,1-Dichloroethene	ND		4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
1,1-Dichloropropene	ND		4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND		4.6	0.91	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,3-Trichloropropane	ND		4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND		4.6	0.91	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,4-Trimethylbenzene	0.67	J	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND		4.6	0.91	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dibromoethane	ND		4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dichlorobenzene	ND		4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dichloroethane	ND		4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dichloropropane	ND		4.6	0.91	ug/Kg	1	11/13/16	JLI	SW8260C
1,3,5-Trimethylbenzene	ND		4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
1,3-Dichlorobenzene	ND		4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
1,3-Dichloropropane	ND		4.6	0.91	ug/Kg	1	11/13/16	JLI	SW8260C
1,4-Dichlorobenzene	ND		4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
2,2-Dichloropropane	ND		4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
2-Chlorotoluene	ND		4.6	0.91	ug/Kg	1	11/13/16	JLI	SW8260C
2-Hexanone	ND		23	4.6	ug/Kg	1	11/13/16	JLI	SW8260C
2-Isopropyltoluene	ND		4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C 1
4-Chlorotoluene	ND		4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
4-Methyl-2-pentanone	ND		23	4.6	ug/Kg	1	11/13/16	JLI	SW8260C
Acetone	16	JS	23	4.6	ug/Kg	1	11/13/16	JLI	SW8260C
Acrylonitrile	ND		9.1	0.91	ug/Kg	1	11/13/16	JLI	SW8260C
Benzene	ND		4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
Bromobenzene	ND		4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
Bromochloromethane	ND		4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
Bromodichloromethane	ND		4.6	0.91	ug/Kg	1	11/13/16	JLI	SW8260C
Bromoform	ND		4.6	0.91	ug/Kg	1	11/13/16	JLI	SW8260C
Bromomethane	ND		4.6	1.8	ug/Kg	1	11/13/16	JLI	SW8260C
Carbon Disulfide	2.9	J	4.6	0.91	ug/Kg	1	11/13/16	JLI	SW8260C
Carbon tetrachloride	ND		4.6	0.91	ug/Kg	1	11/13/16	JLI	SW8260C
Chlorobenzene	ND		4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
Chloroethane	ND		4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
Chloroform	ND		4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
Chloromethane	ND		4.6	0.91	ug/Kg	1	11/13/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND		4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND		4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
Dibromochloromethane	ND		4.6	0.91	ug/Kg	1	11/13/16	JLI	SW8260C
Dibromomethane	ND		4.6	0.91	ug/Kg	1	11/13/16	JLI	SW8260C
Dichlorodifluoromethane	ND		4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
Ethylbenzene	ND		4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
Hexachlorobutadiene	ND		4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
Isopropylbenzene	ND		4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C

Client ID: 15B12 (20-22)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
m&p-Xylene	ND	4.6	0.91	ug/Kg	1	11/13/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	27	4.6	ug/Kg	1	11/13/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	9.1	0.91	ug/Kg	1	11/13/16	JLI	SW8260C
Methylene chloride	ND	4.6	4.6	ug/Kg	1	11/13/16	JLI	SW8260C
Naphthalene	ND	4.6	0.91	ug/Kg	1	11/13/16	JLI	SW8260C
n-Butylbenzene	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
n-Propylbenzene	ND	4.6	0.91	ug/Kg	1	11/13/16	JLI	SW8260C
o-Xylene	ND	4.6	0.91	ug/Kg	1	11/13/16	JLI	SW8260C
p-Isopropyltoluene	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
sec-Butylbenzene	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
Styrene	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
tert-Butylbenzene	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
Tetrachloroethene	ND	4.6	0.91	ug/Kg	1	11/13/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	9.1	2.3	ug/Kg	1	11/13/16	JLI	SW8260C 1
Toluene	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	9.1	2.3	ug/Kg	1	11/13/16	JLI	SW8260C
Trichloroethene	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
Trichlorofluoromethane	ND	4.6	0.91	ug/Kg	1	11/13/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
Vinyl chloride	ND	4.6	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	100			%	1	11/13/16	JLI	70 - 130 %
% Bromofluorobenzene	99			%	1	11/13/16	JLI	70 - 130 %
% Dibromofluoromethane	96			%	1	11/13/16	JLI	70 - 130 %
% Toluene-d8	101			%	1	11/13/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	68	37	ug/kg	1	11/13/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	100			%	1	11/13/16	JLI	70 - 130 %
% Bromofluorobenzene	99			%	1	11/13/16	JLI	70 - 130 %
% Toluene-d8	101			%	1	11/13/16	JLI	70 - 130 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	18	0.91	ug/Kg	1	11/13/16	JLI	SW8260C
Acrolein	ND	18	2.3	ug/Kg	1	11/13/16	JLI	SW8260C
Acrylonitrile	ND	18	0.46	ug/Kg	1	11/13/16	JLI	SW8260C
Tert-butyl alcohol	ND	91	18	ug/Kg	1	11/13/16	JLI	SW8260C
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	280	140	ug/Kg	1	11/12/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
1,2-Dichlorobenzene	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
1,3-Dichlorobenzene	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
1,4-Dichlorobenzene	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	280	220	ug/Kg	1	11/12/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	200	130	ug/Kg	1	11/12/16	DD	SW8270D

Client ID: 15B12 (20-22)

Parameter Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
2,4-Dichlorophenol	ND	200	140	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dimethylphenol	ND	280	100	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dinitrophenol	ND	280	280	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dinitrotoluene	ND	200	160	ug/Kg	1	11/12/16	DD	SW8270D
2,6-Dinitrotoluene	ND	200	130	ug/Kg	1	11/12/16	DD	SW8270D
2-Chloronaphthalene	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
2-Chlorophenol	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
2-Methylnaphthalene	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	280	190	ug/Kg	1	11/12/16	DD	SW8270D
2-Nitroaniline	ND	280	280	ug/Kg	1	11/12/16	DD	SW8270D
2-Nitrophenol	ND	280	260	ug/Kg	1	11/12/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	280	160	ug/Kg	1	11/12/16	DD	SW8270D 1
3,3'-Dichlorobenzidine	ND	200	190	ug/Kg	1	11/12/16	DD	SW8270D
3-Nitroaniline	ND	410	810	ug/Kg	1	11/12/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	240	81	ug/Kg	1	11/12/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	280	140	ug/Kg	1	11/12/16	DD	SW8270D
4-Chloroaniline	ND	320	190	ug/Kg	1	11/12/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	280	140	ug/Kg	1	11/12/16	DD	SW8270D
4-Nitroaniline	ND	410	140	ug/Kg	1	11/12/16	DD	SW8270D
4-Nitrophenol	ND	410	180	ug/Kg	1	11/12/16	DD	SW8270D
Acenaphthene	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
Acenaphthylene	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
Acetophenone	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Aniline	ND	320	320	ug/Kg	1	11/12/16	DD	SW8270D
Anthracene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Benz(a)anthracene	ND	280	140	ug/Kg	1	11/12/16	DD	SW8270D
Benzidine	ND	410	240	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(a)pyrene	ND	200	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(b)fluoranthene	ND	280	140	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(ghi)perylene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(k)fluoranthene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzoic acid	ND	2000	810	ug/Kg	1	11/12/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	280	100	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	200	110	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
Carbazole	ND	200	160	ug/Kg	1	11/12/16	DD	SW8270D
Chrysene	ND	280	140	ug/Kg	1	11/12/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	200	130	ug/Kg	1	11/12/16	DD	SW8270D
Dibenzofuran	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
Diethyl phthalate	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Dimethylphthalate	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Di-n-butylphthalate	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
Di-n-octylphthalate	ND	280	100	ug/Kg	1	11/12/16	DD	SW8270D
Fluoranthene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Fluorene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorobenzene	ND	200	120	ug/Kg	1	11/12/16	DD	SW8270D

Client ID: 15B12 (20-22)

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Hexachlorobutadiene	ND	280	150	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
Hexachloroethane	ND	200	120	ug/Kg	1	11/12/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Isophorone	ND	200	110	ug/Kg	1	11/12/16	DD	SW8270D
Naphthalene	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
Nitrobenzene	ND	200	140	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodimethylamine	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	200	130	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	280	160	ug/Kg	1	11/12/16	DD	SW8270D
Pentachloronitrobenzene	ND	280	150	ug/Kg	1	11/12/16	DD	SW8270D
Pentachlorophenol	ND	240	150	ug/Kg	1	11/12/16	DD	SW8270D
Phenanthrene	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
Phenol	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Pyrene	ND	280	140	ug/Kg	1	11/12/16	DD	SW8270D
Pyridine	ND	280	100	ug/Kg	1	11/12/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	65			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorobiphenyl	64			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorophenol	50			%	1	11/12/16	DD	30 - 130 %
% Nitrobenzene-d5	56			%	1	11/12/16	DD	30 - 130 %
% Phenol-d5	58			%	1	11/12/16	DD	30 - 130 %
% Terphenyl-d14	70			%	1	11/12/16	DD	30 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2016

Reviewed and Released by: Jon Carlson, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOIL Collected by: TG 11/10/16

Location Code: EBC Received by: SW 11/11/16 18:03

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV81835

Phoenix ID: BV81845

Project ID: 1181 FLUSHING AVENUE BROOKLYN NY

Client ID: 15B13 (12-14)

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.39	0.39	mg/Kg	1	11/13/16	LK	SW6010C
Aluminum	4020	39	7.8	mg/Kg	10	11/13/16	LK	SW6010C
Arsenic	ND	0.78	0.78	mg/Kg	1	11/13/16	LK	SW6010C
Barium	13.3	0.8	0.39	mg/Kg	1	11/13/16	LK	SW6010C
Beryllium	ND	0.31	0.16	mg/Kg	1	11/13/16	LK	SW6010C
Calcium	820	3.9	3.6	mg/Kg	1	11/13/16	LK	SW6010C
Cadmium	ND	0.39	0.39	mg/Kg	1	11/13/16	LK	SW6010C
Cobalt	3.77	0.39	0.39	mg/Kg	1	11/13/16	LK	SW6010C
Chromium	7.79	0.39	0.39	mg/Kg	1	11/13/16	LK	SW6010C
Copper	8.09	0.39	0.39	mg/kg	1	11/13/16	LK	SW6010C
Iron	7020	3.9	3.9	mg/Kg	1	11/13/16	LK	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	11/14/16	RS	SW7471B
Potassium	440	N 8	3.0	mg/Kg	1	11/13/16	LK	SW6010C
Magnesium	1910	3.9	3.9	mg/Kg	1	11/13/16	LK	SW6010C
Manganese	225	3.9	3.9	mg/Kg	10	11/13/16	LK	SW6010C
Sodium	127	8	3.4	mg/Kg	1	11/13/16	LK	SW6010C
Nickel	7.95	0.39	0.39	mg/Kg	1	11/13/16	LK	SW6010C
Lead	1.1	0.8	0.38	mg/Kg	1	11/15/16	LK	SW6010C
Antimony	ND	1.9	1.9	mg/Kg	1	11/15/16	LK	SW6010C
Selenium	ND	1.6	1.3	mg/Kg	1	11/13/16	LK	SW6010C
Thallium	ND	1.6	1.6	mg/Kg	1	11/13/16	LK	SW6010C
Vanadium	9.78	0.39	0.39	mg/Kg	1	11/13/16	LK	SW6010C
Zinc	14.8	0.8	0.39	mg/Kg	1	11/13/16	LK	SW6010C
Percent Solid	82			%		11/11/16	W	SW846-%Solid
Soil Extraction for PCB	Completed					11/11/16	NC/V	SW3545A
Soil Extraction for Pest	Completed					11/11/16	NC/V	SW3545A
Soil Extraction for SVOA	Completed					11/11/16	NJ/CKV	SW3545A
Mercury Digestion	Completed					11/14/16	W/W	SW7471B

Project ID: 1181 FLUSHING AVENUE BROOKLYN NY Phoenix I.D.: BV81845

Client ID: 15B13 (12-14)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Total Metals Digest Field Extraction	Completed Completed					11/14/16 11/10/16	X/AG	SW3050B SW5035A
Polychlorinated Biphen	yls							
PCB-1016	ND	81	81	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1221	ND	81	81	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1232	ND	81	81	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1242	ND	81	81	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1248	ND	81	81	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1254	ND	81	81	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1260	ND	81	81	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1262	ND	81	81	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1268	ND	81	81	ug/Kg	2	11/14/16	AW	SW8082A
QA/QC Surrogates								
% DCBP	82			%	2	11/14/16	AW	40 - 140 %
% TCMX	80			%	2	11/14/16	AW	40 - 140 %
Pesticides - Soil								
4,4' -DDD	ND	2.4	2.4	ug/Kg	2	11/16/16	CE	SW8081B
4,4' -DDE	ND	2.4	2.4	ug/Kg	2	11/16/16	CE	SW8081B
4,4' -DDT	ND	2.4	2.4	ug/Kg	2	11/16/16	CE	SW8081B
a-BHC	ND	8.1	8.1	ug/Kg	2	11/16/16	CE	SW8081B
a-Chlordane	ND	4.0	4.0	ug/Kg	2	11/16/16	CE	SW8081B
Aldrin	ND	4.0	4.0	ug/Kg	2	11/16/16	CE	SW8081B
b-BHC	ND	8.1	8.1	ug/Kg	2	11/16/16	CE	SW8081B
Chlordane	ND	40	40	ug/Kg	2	11/16/16	CE	SW8081B
d-BHC	ND	8.1	8.1	ug/Kg	2	11/16/16	CE	SW8081B
Dieldrin	ND	4.0	4.0	ug/Kg	2	11/16/16	CE	SW8081B
Endosulfan I	ND	8.1	8.1	ug/Kg	2	11/16/16	CE	SW8081B
Endosulfan II	ND	8.1	8.1	ug/Kg	2	11/16/16	CE	SW8081B
Endosulfan sulfate	ND	8.1	8.1	ug/Kg	2	11/16/16	CE	SW8081B
Endrin	ND	8.1	8.1	ug/Kg	2	11/16/16	CE	SW8081B
Endrin aldehyde	ND	8.1	8.1	ug/Kg	2	11/16/16	CE	SW8081B
Endrin ketone	ND	8.1	8.1	ug/Kg	2	11/16/16	CE	SW8081B
g-BHC	ND	1.6	1.6	ug/Kg	2	11/16/16	CE	SW8081B
g-Chlordane	ND	4.0	4.0	ug/Kg	2	11/16/16	CE	SW8081B
Heptachlor	ND	8.1	8.1	ug/Kg	2	11/16/16	CE	SW8081B
Heptachlor epoxide	ND	8.1	8.1	ug/Kg	2	11/16/16	CE	SW8081B
Methoxychlor	ND	40	40	ug/Kg	2	11/16/16	CE	SW8081B
Toxaphene	ND	160	160	ug/Kg	2	11/16/16	CE	SW8081B
QA/QC Surrogates				-9-1-9	_			
% DCBP	66			%	2	11/16/16	CE	40 - 140 %
% TCMX	64			%	2	11/16/16	CE	40 - 140 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	5.5	1.1	ug/Kg	1	11/14/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	5.5	1.1	ug/Kg	1	11/14/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	5.5	1.1	ug/Kg	1	11/14/16	JLI	SW8260C
1,1-Dichloroethane	ND	5.5	1.1	ug/Kg	1	11/14/16	JLI	SW8260C

Client ID: 15B13 (12-14)

Parameter	Result		RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1,1-Dichloroethene	ND		5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
1,1-Dichloropropene	ND		5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND		5.5	1.1	ug/Kg	1	11/14/16	JLI	SW8260C
1,2,3-Trichloropropane	ND		5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND		5.5	1.1	ug/Kg	1	11/14/16	JLI	SW8260C
1,2,4-Trimethylbenzene	ND		5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND		5.5	1.1	ug/Kg	1	11/14/16	JLI	SW8260C
1,2-Dibromoethane	ND		5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
1,2-Dichlorobenzene	ND		5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
1,2-Dichloroethane	ND		5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
1,2-Dichloropropane	ND		5.5	1.1	ug/Kg	1	11/14/16	JLI	SW8260C
1,3,5-Trimethylbenzene	ND		5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
1,3-Dichlorobenzene	ND		5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
1,3-Dichloropropane	ND		5.5	1.1	ug/Kg	1	11/14/16	JLI	SW8260C
1,4-Dichlorobenzene	ND		5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
2,2-Dichloropropane	ND		5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
2-Chlorotoluene	ND		5.5	1.1	ug/Kg	1	11/14/16	JLI	SW8260C
2-Hexanone	ND		28	5.5	ug/Kg	1	11/14/16	JLI	SW8260C
2-Isopropyltoluene	ND		5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C 1
4-Chlorotoluene	ND		5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
4-Methyl-2-pentanone	ND		28	5.5	ug/Kg	1	11/14/16	JLI	SW8260C
Acetone	43	S	28	5.5	ug/Kg	1	11/14/16	JLI	SW8260C
Acrylonitrile	ND		11	1.1	ug/Kg	1	11/14/16	JLI	SW8260C
Benzene	ND		5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
Bromobenzene	ND		5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
Bromochloromethane	ND		5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
Bromodichloromethane	ND		5.5	1.1	ug/Kg	1	11/14/16	JLI	SW8260C
Bromoform	ND		5.5	1.1	ug/Kg	1	11/14/16	JLI	SW8260C
Bromomethane	ND		5.5	2.2	ug/Kg	1	11/14/16	JLI	SW8260C
Carbon Disulfide	1.3	J	5.5	1.1	ug/Kg	1	11/14/16	JLI	SW8260C
Carbon tetrachloride	ND		5.5	1.1	ug/Kg	1	11/14/16	JLI	SW8260C
Chlorobenzene	ND		5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
Chloroethane	ND		5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
Chloroform	ND		5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
Chloromethane	ND		5.5	1.1	ug/Kg	1	11/14/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND		5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND		5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
Dibromochloromethane	ND		5.5	1.1	ug/Kg	1	11/14/16	JLI	SW8260C
Dibromomethane	ND		5.5	1.1	ug/Kg	1	11/14/16	JLI	SW8260C
Dichlorodifluoromethane	ND		5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
Ethylbenzene	ND		5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
Hexachlorobutadiene	ND		5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
Isopropylbenzene	ND		5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
m&p-Xylene	ND		5.5	1.1	ug/Kg	1	11/14/16	JLI	SW8260C
Methyl Ethyl Ketone	ND		33	5.5	ug/Kg	1	11/14/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	70		11	1.1	ug/Kg	1	11/14/16	JLI	SW8260C
Methylene chloride	ND		5.5	5.5	ug/Kg	1	11/14/16	JLI	SW8260C
Naphthalene	1.3	J	5.5	1.1	ug/Kg	1	11/14/16	JLI	SW8260C
n-Butylbenzene	ND		5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C

Client ID: 15B13 (12-14)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
n-Propylbenzene	ND	5.5	1.1	ug/Kg	1	11/14/16	JLI	SW8260C
o-Xylene	ND	5.5	1.1	ug/Kg	1	11/14/16	JLI	SW8260C
p-Isopropyltoluene	ND	5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
sec-Butylbenzene	ND	5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
Styrene	ND	5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
tert-Butylbenzene	ND	5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
Tetrachloroethene	ND	5.5	1.1	ug/Kg	1	11/14/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	11	2.8	ug/Kg	1	11/14/16	JLI	SW8260C 1
Toluene	ND	5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	11	2.8	ug/Kg	1	11/14/16	JLI	SW8260C
Trichloroethene	ND	5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
Trichlorofluoromethane	ND	5.5	1.1	ug/Kg	1	11/14/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
Vinyl chloride	ND	5.5	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	100			%	1	11/14/16	JLI	70 - 130 %
% Bromofluorobenzene	98			%	1	11/14/16	JLI	70 - 130 %
% Dibromofluoromethane	97			%	1	11/14/16	JLI	70 - 130 %
% Toluene-d8	101			%	1	11/14/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	83	44	ug/kg	1	11/14/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	100			%	1	11/14/16	JLI	70 - 130 %
% Bromofluorobenzene	98			%	1	11/14/16	JLI	70 - 130 %
% Toluene-d8	101			%	1	11/14/16	JLI	70 - 130 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	22	1.1	ug/Kg	1	11/14/16	JLI	SW8260C
Acrolein	ND	22	2.8	ug/Kg	1	11/14/16	JLI	SW8260C
Acrylonitrile	ND	22	0.55	ug/Kg	1	11/14/16	JLI	SW8260C
Tert-butyl alcohol	ND	110	22	ug/Kg	1	11/14/16	JLI	SW8260C
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	280	140	ug/Kg	1	11/12/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
1,2-Dichlorobenzene	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
1,3-Dichlorobenzene	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
1,4-Dichlorobenzene	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	280	220	ug/Kg	1	11/12/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	200	130	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dichlorophenol	ND	200	140	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dimethylphenol	ND	280	99	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dinitrophenol	ND	280	280	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dinitrotoluene	ND	200	160	ug/Kg	1	11/12/16	DD	SW8270D
2,6-Dinitrotoluene	ND	200	130	ug/Kg	1	11/12/16	DD	SW8270D
2-Chloronaphthalene	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D

Client ID: 15B13 (12-14)

Parameter Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
2-Chlorophenol	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
2-Methylnaphthalene	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	280	190	ug/Kg	1	11/12/16	DD	SW8270D
2-Nitroaniline	ND	280	280	ug/Kg	1	11/12/16	DD	SW8270D
2-Nitrophenol	ND	280	250	ug/Kg	1	11/12/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	280	160	ug/Kg	1	11/12/16	DD	SW8270D 1
3,3'-Dichlorobenzidine	ND	200	190	ug/Kg	1	11/12/16	DD	SW8270D
3-Nitroaniline	ND	400	790	ug/Kg	1	11/12/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	240	79	ug/Kg	1	11/12/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	280	140	ug/Kg	1	11/12/16	DD	SW8270D
4-Chloroaniline	ND	320	190	ug/Kg	1	11/12/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
4-Nitroaniline	ND	400	130	ug/Kg	1	11/12/16	DD	SW8270D
4-Nitrophenol	ND	400	180	ug/Kg	1	11/12/16	DD	SW8270D
Acenaphthene	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
Acenaphthylene	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
Acetophenone	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
Aniline	ND	320	320	ug/Kg	1	11/12/16	DD	SW8270D
Anthracene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Benz(a)anthracene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzidine	ND	400	230	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(a)pyrene	ND	200	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(b)fluoranthene	ND	280	140	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(ghi)perylene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(k)fluoranthene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzoic acid	ND	2000	790	ug/Kg	1	11/12/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	280	100	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	200	110	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
Carbazole	ND	200	160	ug/Kg	1	11/12/16	DD	SW8270D
Chrysene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	200	130	ug/Kg	1	11/12/16	DD	SW8270D
Dibenzofuran	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
Diethyl phthalate	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Dimethylphthalate	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
Di-n-butylphthalate	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
Di-n-octylphthalate	ND	280	100	ug/Kg	1	11/12/16	DD	SW8270D
Fluoranthene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Fluorene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorobenzene	ND	200	120	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorobutadiene	ND	280	140	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	280	120	ug/Kg ug/Kg	1	11/12/16	DD	SW8270D
Hexachloroethane	ND	200	120	ug/Kg	1	11/12/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	280	130	ug/Kg ug/Kg	1	11/12/16	DD	SW8270D
Isophorone	ND	200	110	ug/Kg ug/Kg	1	11/12/16	DD	SW8270D
Naphthalene	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
Hapitilalono	,,,,	_00	. 10	~9,1 <i>1</i> 9	•	11,12,10	טט	2.102.02

Client ID: 15B13 (12-14)

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Nitrobenzene	ND	200	140	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodimethylamine	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	200	130	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	280	150	ug/Kg	1	11/12/16	DD	SW8270D
Pentachloronitrobenzene	ND	280	150	ug/Kg	1	11/12/16	DD	SW8270D
Pentachlorophenol	ND	240	150	ug/Kg	1	11/12/16	DD	SW8270D
Phenanthrene	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
Phenol	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Pyrene	ND	280	140	ug/Kg	1	11/12/16	DD	SW8270D
Pyridine	ND	280	98	ug/Kg	1	11/12/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	74			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorobiphenyl	69			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorophenol	54			%	1	11/12/16	DD	30 - 130 %
% Nitrobenzene-d5	58			%	1	11/12/16	DD	30 - 130 %
% Phenol-d5	64			%	1	11/12/16	DD	30 - 130 %
% Terphenyl-d14	80			%	1	11/12/16	DD	30 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2016

Reviewed and Released by: Jon Carlson, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOIL Collected by: TG 11/10/16

Location Code: EBC Received by: SW 11/11/16 18:03

Rush Request: 72 Hour Analyzed by: see "By" below

Laborato

Laboratory Data

SDG ID: GBV81835
Phoenix ID: BV81846

Project ID: 1181 FLUSHING AVENUE BROOKLYN NY

Client ID: 15B14 (1-3)

P.O.#:

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.38	0.38	mg/Kg	1	11/13/16	LK	SW6010C
Aluminum	6260	38	7.5	mg/Kg	10	11/13/16	LK	SW6010C
Arsenic	13.7	0.75	0.75	mg/Kg	1	11/13/16	LK	SW6010C
Barium	105	8.0	0.38	mg/Kg	1	11/13/16	LK	SW6010C
Beryllium	0.35	0.30	0.15	mg/Kg	1	11/13/16	LK	SW6010C
Calcium	6040	3.8	3.5	mg/Kg	1	11/13/16	LK	SW6010C
Cadmium	1.27	0.38	0.38	mg/Kg	1	11/13/16	LK	SW6010C
Cobalt	7.77	0.38	0.38	mg/Kg	1	11/13/16	LK	SW6010C
Chromium	24.5	0.38	0.38	mg/Kg	1	11/13/16	LK	SW6010C
Copper	146	0.38	0.38	mg/kg	1	11/13/16	LK	SW6010C
Iron	24400	38	38	mg/Kg	10	11/13/16	LK	SW6010C
Mercury	0.47	0.03	0.02	mg/Kg	1	11/14/16	RS	SW7471B
Potassium	789	N 8	2.9	mg/Kg	1	11/13/16	LK	SW6010C
Magnesium	1890	3.8	3.8	mg/Kg	1	11/13/16	LK	SW6010C
Manganese	276	3.8	3.8	mg/Kg	10	11/13/16	LK	SW6010C
Sodium	228	8	3.2	mg/Kg	1	11/13/16	LK	SW6010C
Nickel	21.3	0.38	0.38	mg/Kg	1	11/13/16	LK	SW6010C
Lead	232	7.5	3.8	mg/Kg	10	11/13/16	LK	SW6010C
Antimony	1.8	1.8	1.8	mg/Kg	1	11/15/16	LK	SW6010C
Selenium	ND	1.5	1.3	mg/Kg	1	11/13/16	LK	SW6010C
Thallium	ND	1.5	1.5	mg/Kg	1	11/13/16	LK	SW6010C
Vanadium	21.9	0.38	0.38	mg/Kg	1	11/13/16	LK	SW6010C
Zinc	677	7.5	3.8	mg/Kg	10	11/13/16	LK	SW6010C
Percent Solid	91			%		11/11/16	W	SW846-%Solid
Soil Extraction for PCB	Completed					11/11/16	NC/V	SW3545A
Soil Extraction for Pest	Completed					11/11/16	NC/V	SW3545A
Soil Extraction for SVOA	Completed					11/11/16	NJ/CKV	SW3545A
Mercury Digestion	Completed					11/14/16	W/W	SW7471B

Project ID: 1181 FLUSHING AVENUE BROOKLYN NY Phoenix I.D.: BV81846

Client ID: 15B14 (1-3)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Total Metals Digest Field Extraction	Completed Completed					11/14/16 11/10/16	X/AG	SW3050B SW5035A
Polychlorinated Biphen	vls							
PCB-1016	ND	72	72	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1221	ND	72	72	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1232	ND	72	72	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1242	ND	72	72	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1248	ND	72	72	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1254	72	72	72	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1260	ND	72	72	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1262	ND	72	72	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1268	ND	72	72	ug/Kg	2	11/14/16	AW	SW8082A
QA/QC Surrogates								
% DCBP	75			%	2	11/14/16	AW	40 - 140 %
% TCMX	65			%	2	11/14/16	AW	40 - 140 %
Pesticides - Soil								
4,4' -DDD	ND	10	10	ug/Kg	2	11/15/16	CE	SW8081B
4,4' -DDE	ND	3.0	3.0	ug/Kg	2	11/15/16	CE	SW8081B
4,4' -DDT	ND	2.1	2.1	ug/Kg	2	11/15/16	CE	SW8081B
a-BHC	ND	7.2	7.2	ug/Kg	2	11/15/16	CE	SW8081B
a-Chlordane	ND	3.6	3.6	ug/Kg	2	11/15/16	CE	SW8081B
Aldrin	ND	3.6	3.6	ug/Kg	2	11/15/16	CE	SW8081B
b-BHC	ND	7.2	7.2	ug/Kg	2	11/15/16	CE	SW8081B
Chlordane	ND	36	36	ug/Kg	2	11/15/16	CE	SW8081B
d-BHC	ND	7.2	7.2	ug/Kg	2	11/15/16	CE	SW8081B
Dieldrin	ND	3.6	3.6	ug/Kg	2	11/15/16	CE	SW8081B
Endosulfan I	ND	7.2	7.2	ug/Kg	2	11/15/16	CE	SW8081B
Endosulfan II	ND	7.2	7.2	ug/Kg	2	11/15/16	CE	SW8081B
Endosulfan sulfate	ND	7.2	7.2	ug/Kg	2	11/15/16	CE	SW8081B
Endrin	ND	7.2	7.2	ug/Kg	2	11/15/16	CE	SW8081B
Endrin aldehyde	ND	7.2	7.2	ug/Kg	2	11/15/16	CE	SW8081B
Endrin ketone	ND	7.2	7.2	ug/Kg	2	11/15/16	CE	SW8081B
g-BHC	ND	1.4	1.4	ug/Kg	2	11/15/16	CE	SW8081B
g-Chlordane	ND	3.6	3.6	ug/Kg	2	11/15/16	CE	SW8081B
Heptachlor	ND	7.2	7.2	ug/Kg	2	11/15/16	CE	SW8081B
Heptachlor epoxide	ND	7.2	7.2	ug/Kg	2	11/15/16	CE	SW8081B
Methoxychlor	ND	36	36	ug/Kg	2	11/15/16	CE	SW8081B
Toxaphene	ND	140	140	ug/Kg	2	11/15/16	CE	SW8081B
QA/QC Surrogates	112		1 10	ug/11g	_	11,13,13	0_	C110001B
% DCBP	91			%	2	11/15/16	CE	40 - 140 %
% TCMX	59			%	2	11/15/16	CE	40 - 140 %
Volatiles								
1,1,1,2-Tetrachloroethane	ND	4.5	0.89	ug/Kg	1	11/14/16	JLI	SW8260C
1,1,1,2-Tetrachioroethane	ND	4.5 4.5	0.69	ug/Kg ug/Kg	1	11/14/16	JLI	SW8260C SW8260C
	ND	4.5 4.5	0.45	ug/Kg ug/Kg	1	11/14/16	JLI	SW8260C SW8260C
1,1,2,2-Tetrachloroethane	ND	4.5 4.5	0.89		1 1	11/14/16	JLI	SW8260C SW8260C
1,1,2-Trichloroethane				ug/Kg				
1,1-Dichloroethane	ND	4.5	0.89	ug/Kg	1	11/14/16	JLI	SW8260C

Client ID: 15B14 (1-3)

Parameter Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1,1-Dichloroethene	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
1,1-Dichloropropene	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	4.5	0.89	ug/Kg	1	11/14/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	4.5	0.89	ug/Kg	1	11/14/16	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	4.5	0.89	ug/Kg	1	11/14/16	JLI	SW8260C
1,2-Dibromoethane	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
1,2-Dichloroethane	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
1,2-Dichloropropane	ND	4.5	0.89	ug/Kg	1	11/14/16	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
1,3-Dichloropropane	ND	4.5	0.89	ug/Kg	1	11/14/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
2,2-Dichloropropane	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
2-Chlorotoluene	ND	4.5	0.89	ug/Kg	1	11/14/16	JLI	SW8260C
2-Hexanone	ND	22	4.5	ug/Kg	1	11/14/16	JLI	SW8260C
2-Isopropyltoluene	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C 1
4-Chlorotoluene	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
4-Methyl-2-pentanone	ND	22	4.5	ug/Kg	1	11/14/16	JLI	SW8260C
Acetone	64	S 22	4.5	ug/Kg	1	11/14/16	JLI	SW8260C
Acrylonitrile	ND	8.9	0.89	ug/Kg	1	11/14/16	JLI	SW8260C
Benzene	240	60	31	ug/Kg	50	11/13/16	JLI	SW8260C
Bromobenzene	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
Bromochloromethane	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
Bromodichloromethane	ND	4.5	0.89	ug/Kg	1	11/14/16	JLI	SW8260C
Bromoform	ND	4.5	0.89	ug/Kg	1	11/14/16	JLI	SW8260C
Bromomethane	ND	4.5	1.8	ug/Kg	1	11/14/16	JLI	SW8260C
Carbon Disulfide	ND	4.5	0.89	ug/Kg	1	11/14/16	JLI	SW8260C
Carbon tetrachloride	ND	4.5	0.89	ug/Kg	1	11/14/16	JLI	SW8260C
Chlorobenzene	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
Chloroethane	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
Chloroform	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
Chloromethane	ND	4.5	0.89	ug/Kg	1	11/14/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
Dibromochloromethane	ND	4.5	0.89	ug/Kg	1	11/14/16	JLI	SW8260C
Dibromomethane	ND	4.5	0.89	ug/Kg	1	11/14/16	JLI	SW8260C
Dichlorodifluoromethane	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
Ethylbenzene	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
Hexachlorobutadiene	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
Isopropylbenzene	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
m&p-Xylene	ND	4.5	0.89	ug/Kg	1	11/14/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	27	4.5	ug/Kg	1	11/14/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	760	610	61	ug/Kg	50	11/13/16	JLI	SW8260C
Methylene chloride	ND	4.5	4.5	ug/Kg	1	11/14/16	JLI	SW8260C
Naphthalene	ND	4.5	0.89	ug/Kg	1	11/14/16	JLI	SW8260C
n-Butylbenzene	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
n Datyibonzene	110	7.0	5.40	~9/1·Y		11,17,10	OL1	552500

Client ID: 15B14 (1-3)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
n-Propylbenzene	ND	4.5	0.89	ug/Kg	1	11/14/16	JLI	SW8260C
o-Xylene	ND	4.5	0.89	ug/Kg	1	11/14/16	JLI	SW8260C
p-Isopropyltoluene	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
sec-Butylbenzene	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
Styrene	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
tert-Butylbenzene	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
Tetrachloroethene	ND	4.5	0.89	ug/Kg	1	11/14/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	8.9	2.2	ug/Kg	1	11/14/16	JLI	SW8260C 1
Toluene	120	J 310	31	ug/Kg	50	11/13/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	8.9	2.2	ug/Kg	1	11/14/16	JLI	SW8260C
Trichloroethene	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
Trichlorofluoromethane	ND	4.5	0.89	ug/Kg	1	11/14/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
Vinyl chloride	ND	4.5	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	101			%	1	11/14/16	JLI	70 - 130 %
% Bromofluorobenzene	100			%	1	11/14/16	JLI	70 - 130 %
% Dibromofluoromethane	96			%	1	11/14/16	JLI	70 - 130 %
% Toluene-d8	101			%	1	11/14/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	67	36	ug/kg	1	11/14/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	101			%	1	11/14/16	JLI	70 - 130 %
% Bromofluorobenzene	100			%	1	11/14/16	JLI	70 - 130 %
% Toluene-d8	101			%	1	11/14/16	JLI	70 - 130 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	18	0.89	ug/Kg	1	11/14/16	JLI	SW8260C
Acrolein	ND	18	2.2	ug/Kg	1	11/14/16	JLI	SW8260C
Acrylonitrile	ND	18	0.45	ug/Kg	1	11/14/16	JLI	SW8260C
Tert-butyl alcohol	ND	89	18	ug/Kg	1	11/14/16	JLI	SW8260C
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	260	130	ug/Kg	1	11/12/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
1,2-Dichlorobenzene	ND	260	100	ug/Kg	1	11/12/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
1,3-Dichlorobenzene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
1,4-Dichlorobenzene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	260	200	ug/Kg	1	11/12/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	180	120	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dichlorophenol	ND	180	130	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dimethylphenol	ND	260	91	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dinitrophenol	ND	260	260	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dinitrotoluene	ND	180	140	ug/Kg	1	11/12/16	DD	SW8270D
2,6-Dinitrotoluene	ND	180	120	ug/Kg	1	11/12/16	DD	SW8270D
2-Chloronaphthalene	ND	260	100	ug/Kg	1	11/12/16	DD	SW8270D

Client ID: 15B14 (1-3)

Ciletit ID. 13B14 (1-3)		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
2-Chlorophenol	ND	260	100	ug/Kg	1	11/12/16	DD	SW8270D
2-Methylnaphthalene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	260	170	ug/Kg	1	11/12/16	DD	SW8270D
2-Nitroaniline	ND	260	260	ug/Kg	1	11/12/16	DD	SW8270D
2-Nitrophenol	ND	260	230	ug/Kg	1	11/12/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	260	140	ug/Kg	1	11/12/16	DD	SW8270D 1
3,3'-Dichlorobenzidine	ND	180	170	ug/Kg	1	11/12/16	DD	SW8270D
3-Nitroaniline	ND	370	730	ug/Kg	1	11/12/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	220	73	ug/Kg	1	11/12/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	260	130	ug/Kg	1	11/12/16	DD	SW8270D
4-Chloroaniline	ND	290	170	ug/Kg	1	11/12/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
4-Nitroaniline	ND	370	120	ug/Kg	1	11/12/16	DD	SW8270D
4-Nitrophenol	ND	370	170	ug/Kg	1	11/12/16	DD	SW8270D
Acenaphthene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
Acenaphthylene	ND	260	100	ug/Kg	1	11/12/16	DD	SW8270D
Acetophenone	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
Aniline	ND	290	290	ug/Kg	1	11/12/16	DD	SW8270D
Anthracene	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Benz(a)anthracene	330	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzidine	ND	370	220	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(a)pyrene	300	180	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(b)fluoranthene	380	260	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(ghi)perylene	180	J 260	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(k)fluoranthene	300	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzoic acid	ND	1800	730	ug/Kg	1	11/12/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	260	94	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	260	100	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	180	99	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	260	100	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	170	J 260	110	ug/Kg	1	11/12/16	DD	SW8270D
Carbazole	ND	180	150	ug/Kg	1	11/12/16	DD	SW8270D
Chrysene	420	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	180	120	ug/Kg	1	11/12/16	DD	SW8270D
Dibenzofuran	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
Diethyl phthalate	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Dimethylphthalate	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
Di-n-butylphthalate	ND	260	97	ug/Kg	1	11/12/16	DD	SW8270D
Di-n-octylphthalate	ND	260	94	ug/Kg	1	11/12/16	DD	SW8270D
Fluoranthene	530	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Fluorene	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorobenzene	ND	180	110	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorobutadiene	ND	260	130	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
Hexachloroethane	ND	180	110	ug/Kg ug/Kg	1	11/12/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	180	J 260	120	ug/Kg ug/Kg	1	11/12/16	DD	SW8270D
Isophorone	910	180	100	ug/Kg ug/Kg	1	11/12/16	DD	SW8270D
Naphthalene	130	J 260	110	ug/Kg ug/Kg	1	11/12/16	DD	SW8270D
Ναρπιπαιστισ	130	0 200	110	ug/Itg	ı	11/12/10	טט	3,102,100

Client ID: 15B14 (1-3)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Nitrobenzene	ND	180	130	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodimethylamine	ND	260	100	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	180	120	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	260	140	ug/Kg	1	11/12/16	DD	SW8270D
Pentachloronitrobenzene	ND	260	140	ug/Kg	1	11/12/16	DD	SW8270D
Pentachlorophenol	ND	220	140	ug/Kg	1	11/12/16	DD	SW8270D
Phenanthrene	500	260	100	ug/Kg	1	11/12/16	DD	SW8270D
Phenol	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Pyrene	580	260	130	ug/Kg	1	11/12/16	DD	SW8270D
Pyridine	ND	260	90	ug/Kg	1	11/12/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	50			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorobiphenyl	67			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorophenol	40			%	1	11/12/16	DD	30 - 130 %
% Nitrobenzene-d5	59			%	1	11/12/16	DD	30 - 130 %
% Phenol-d5	60			%	1	11/12/16	DD	30 - 130 %
% Terphenyl-d14	64			%	1	11/12/16	DD	30 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

Pesticide Comment:

Due to matrix interference caused by the presence of PCBs in the sample, an elevated RL was reported.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2016

Reviewed and Released by: Jon Carlson, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOIL Collected by: TG 11/10/16

Location Code: EBC Received by: SW 11/11/16 18:03

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GBV81835

Phoenix ID: BV81847

Project ID: 1181 FLUSHING AVENUE BROOKLYN NY

Client ID: 15B14 (12-14)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.36	0.36	mg/Kg	1	11/13/16	LK	SW6010C
Aluminum	4300	36	7.2	mg/Kg	10	11/13/16	LK	SW6010C
Arsenic	1.16	0.72	0.72	mg/Kg	1	11/13/16	LK	SW6010C
Barium	22.4	0.7	0.36	mg/Kg	1	11/13/16	LK	SW6010C
Beryllium	0.21	B 0.29	0.14	mg/Kg	1	11/13/16	LK	SW6010C
Calcium	826	3.6	3.3	mg/Kg	1	11/13/16	LK	SW6010C
Cadmium	ND	0.36	0.36	mg/Kg	1	11/13/16	LK	SW6010C
Cobalt	4.08	0.36	0.36	mg/Kg	1	11/13/16	LK	SW6010C
Chromium	11.3	0.36	0.36	mg/Kg	1	11/13/16	LK	SW6010C
Copper	9.43	0.36	0.36	mg/kg	1	11/13/16	LK	SW6010C
Iron	11400	36	36	mg/Kg	10	11/13/16	LK	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	11/14/16	RS	SW7471B
Potassium	476	N 7	2.8	mg/Kg	1	11/13/16	LK	SW6010C
Magnesium	1670	3.6	3.6	mg/Kg	1	11/13/16	LK	SW6010C
Manganese	257	3.6	3.6	mg/Kg	10	11/13/16	LK	SW6010C
Sodium	104	7	3.1	mg/Kg	1	11/13/16	LK	SW6010C
Nickel	9.18	0.36	0.36	mg/Kg	1	11/13/16	LK	SW6010C
Lead	1.1	0.7	0.37	mg/Kg	1	11/15/16	LK	SW6010C
Antimony	ND	1.8	1.8	mg/Kg	1	11/15/16	LK	SW6010C
Selenium	ND	1.4	1.2	mg/Kg	1	11/13/16	LK	SW6010C
Thallium	ND	1.4	1.4	mg/Kg	1	11/13/16	LK	SW6010C
Vanadium	15.2	0.36	0.36	mg/Kg	1	11/13/16	LK	SW6010C
Zinc	45.1	0.7	0.36	mg/Kg	1	11/13/16	LK	SW6010C
Percent Solid	83			%		11/11/16	W	SW846-%Solid
Soil Extraction for PCB	Completed	I				11/11/16	NC/V	SW3545A
Soil Extraction for Pest	Completed	I				11/11/16	NC/V	SW3545A
Soil Extraction for SVOA	Completed	I				11/11/16	NJ/CKV	SW3545A
Mercury Digestion	Completed	I				11/14/16	W/W	SW7471B

Client ID: 15B14 (12-14)

Parameter	Result		RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
			- QL	WIDE	Office	Dilation			
Total Metals Digest	Completed						11/14/16	X/AG	SW3050B
Field Extraction	Completed						11/10/16		SW5035A
Polychlorinated Bipheny	/ls								
PCB-1016	ND		80	80	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1221	ND		80	80	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1232	ND		80	80	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1242	ND		80	80	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1248	ND		80	80	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1254	ND		80	80	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1260	ND		80	80	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1262	ND		80	80	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1268	ND		80	80	ug/Kg	2	11/14/16	AW	SW8082A
QA/QC Surrogates					0 0				
% DCBP	79				%	2	11/14/16	AW	40 - 140 %
% TCMX	77				%	2	11/14/16	AW	40 - 140 %
<u>Volatiles</u>									
1,1,1,2-Tetrachloroethane	ND		3.9	0.77	ug/Kg	1	11/14/16	JLI	SW8260C
1,1,1-Trichloroethane	ND		3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND		3.9	0.77	ug/Kg	1	11/14/16	JLI	SW8260C
1,1,2-Trichloroethane	ND		3.9	0.77	ug/Kg	1	11/14/16	JLI	SW8260C
1,1-Dichloroethane	ND		3.9	0.77	ug/Kg	1	11/14/16	JLI	SW8260C
1,1-Dichloroethene	ND		3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
1,1-Dichloropropene	ND		3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND		3.9	0.77	ug/Kg	1	11/14/16	JLI	SW8260C
1,2,3-Trichloropropane	ND		3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND		3.9	0.77	ug/Kg	1	11/14/16	JLI	SW8260C
1,2,4-Trimethylbenzene	9.2		3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND		3.9	0.77	ug/Kg	1	11/14/16	JLI	SW8260C
1,2-Dibromoethane	ND		3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
1,2-Dichlorobenzene	ND		3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
1,2-Dichloroethane	ND		3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
1,2-Dichloropropane	ND		3.9	0.77	ug/Kg	1	11/14/16	JLI	SW8260C
1,3,5-Trimethylbenzene	2.4	J	3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
1,3-Dichlorobenzene	ND		3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
1,3-Dichloropropane	ND		3.9	0.77	ug/Kg	1	11/14/16	JLI	SW8260C
1,4-Dichlorobenzene	ND		3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
2,2-Dichloropropane	ND		3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
2-Chlorotoluene	ND		3.9	0.77	ug/Kg	1	11/14/16	JLI	SW8260C
2-Hexanone	ND		19	3.9	ug/Kg	1	11/14/16	JLI	SW8260C
2-Isopropyltoluene	ND		3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C 1
4-Chlorotoluene	ND		3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
4-Methyl-2-pentanone	ND		19	3.9	ug/Kg	1	11/14/16	JLI	SW8260C
Acetone	19	JS	19	3.9	ug/Kg	1	11/14/16	JLI	SW8260C
Acrylonitrile	ND		7.7	0.77	ug/Kg	1	11/14/16	JLI	SW8260C
Benzene	0.99	J	3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
Bromobenzene	ND		3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
Bromochloromethane	ND		3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
Bromodichloromethane	ND		3.9	0.77	ug/Kg	1	11/14/16	JLI	SW8260C

Client ID: 15B14 (12-14)

Cilett ID. 13B14 (12-14)		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Bromoform	ND	3.9	0.77	ug/Kg	1	11/14/16	JLI	SW8260C
Bromomethane	ND	3.9	1.5	ug/Kg	1	11/14/16	JLI	SW8260C
Carbon Disulfide	1.4	J 3.9	0.77	ug/Kg	1	11/14/16	JLI	SW8260C
Carbon tetrachloride	ND	3.9	0.77	ug/Kg	1	11/14/16	JLI	SW8260C
Chlorobenzene	ND	3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
Chloroethane	ND	3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
Chloroform	ND	3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
Chloromethane	ND	3.9	0.77	ug/Kg	1	11/14/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
Dibromochloromethane	ND	3.9	0.77	ug/Kg	1	11/14/16	JLI	SW8260C
Dibromomethane	ND	3.9	0.77	ug/Kg	1	11/14/16	JLI	SW8260C
Dichlorodifluoromethane	ND	3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
Ethylbenzene	ND	3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
Hexachlorobutadiene	ND	3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
Isopropylbenzene	ND	3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
m&p-Xylene	5.6	3.9	0.77	ug/Kg	1	11/14/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	23	3.9	ug/Kg	1	11/14/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	49	7.7	0.77	ug/Kg	1	11/14/16	JLI	SW8260C
Methylene chloride	ND	3.9	3.9	ug/Kg	1	11/14/16	JLI	SW8260C
Naphthalene	ND	3.9	0.77	ug/Kg	1	11/14/16	JLI	SW8260C
n-Butylbenzene	ND	3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
n-Propylbenzene	ND	3.9	0.77	ug/Kg	1	11/14/16	JLI	SW8260C
o-Xylene	2.4	J 3.9	0.77	ug/Kg	1	11/14/16	JLI	SW8260C
p-Isopropyltoluene	ND	3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
sec-Butylbenzene	ND	3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
Styrene	ND	3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
tert-Butylbenzene	ND	3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
Tetrachloroethene	ND	3.9	0.77	ug/Kg	1	11/14/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	7.7	1.9	ug/Kg	1	11/14/16	JLI	SW8260C 1
Toluene	ND	3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	7.7	1.9	ug/Kg	1	11/14/16	JLI	SW8260C
Trichloroethene	ND	3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
Trichlorofluoromethane	ND	3.9	0.77	ug/Kg	1	11/14/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
Vinyl chloride	ND	3.9	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	99			%	1	11/14/16	JLI	70 - 130 %
% Bromofluorobenzene	100			%	1	11/14/16	JLI	70 - 130 %
% Dibromofluoromethane	96			%	1	11/14/16	JLI	70 - 130 %
% Toluene-d8	102			%	1	11/14/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	58	31	ug/kg	1	11/14/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	99			%	1	11/14/16	JLI	70 - 130 %
% Bromofluorobenzene	100			%	1	11/14/16	JLI	70 - 130 %
% Toluene-d8	102			%	1	11/14/16	JLI	70 - 130 %

Client ID: 15B14 (12-14)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	15	0.77	ug/Kg	1	11/14/16	JLI	SW8260C
Acrolein	ND	15	1.9	ug/Kg	1	11/14/16	JLI	SW8260C
Acrylonitrile	ND	15	0.39	ug/Kg	1	11/14/16	JLI	SW8260C
Tert-butyl alcohol	ND	77	15	ug/Kg	1	11/14/16	JLI	SW8260C
Semivolatiles								
1,2,4,5-Tetrachlorobenzene	ND	270	140	ug/Kg	1	11/12/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	270	120	ug/Kg	1	11/12/16	DD	SW8270D
1,2-Dichlorobenzene	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	270	130	ug/Kg	1	11/12/16	DD	SW8270D
1,3-Dichlorobenzene	ND	270	120	ug/Kg	1	11/12/16	DD	SW8270D
1,4-Dichlorobenzene	ND	270	120	ug/Kg	1	11/12/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	270	220	ug/Kg	1	11/12/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	200	130	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dichlorophenol	ND	200	140	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dimethylphenol	ND	270	97	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dinitrophenol	ND	270	270	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dinitrotoluene	ND	200	150	ug/Kg	1	11/12/16	DD	SW8270D
2,6-Dinitrotoluene	ND	200	120	ug/Kg	1	11/12/16	DD	SW8270D
2-Chloronaphthalene	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
2-Chlorophenol	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
2-Methylnaphthalene	ND	270	120	ug/Kg	1	11/12/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	270	180	ug/Kg ug/Kg	1	11/12/16	DD	SW8270D
2-Nitroaniline	ND	270	270	ug/Kg	' 1	11/12/16	DD	SW8270D
2-Nitrophenol	ND	270	250	ug/Kg	1	11/12/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	270	150	ug/Kg ug/Kg	1	11/12/16	DD	SW8270D 1
3,3'-Dichlorobenzidine	ND	200	190	ug/Kg ug/Kg	1	11/12/16	DD	SW8270D
3-Nitroaniline	ND	390	790	ug/Kg ug/Kg	1	11/12/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	240	790 79	ug/Kg ug/Kg	1	11/12/16	DD	SW8270D
	ND	270	120	ug/Kg ug/Kg	1	11/12/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	270	140	ug/Kg ug/Kg		11/12/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	310	180		1	11/12/16	DD	SW8270D
4-Chloroaniline				ug/Kg	1			
4-Chlorophenyl phenyl ether	ND	270	130	ug/Kg	1	11/12/16	DD	SW8270D
4-Nitroaniline	ND	390	130	ug/Kg	1	11/12/16	DD	SW8270D
4-Nitrophenol	ND	390	180	ug/Kg	1	11/12/16	DD	SW8270D
Acenaphthene	ND	270	120	ug/Kg	1	11/12/16	DD	SW8270D
Acenaphthylene	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
Acetophenone	ND	270	120	ug/Kg	1	11/12/16	DD	SW8270D
Aniline	ND	310	310	ug/Kg	1	11/12/16	DD	SW8270D
Anthracene	ND	270	130	ug/Kg	1	11/12/16	DD	SW8270D
Benz(a)anthracene	ND	270	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzidine	ND	390	230	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(a)pyrene	ND	200	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(b)fluoranthene	ND	270	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(ghi)perylene	ND	270	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(k)fluoranthene	ND	270	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzoic acid	ND	2000	790	ug/Kg	1	11/12/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	270	100	ug/Kg	1	11/12/16	DD	SW8270D

Client ID: 15B14 (12-14)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Bis(2-chloroethoxy)methane	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	200	110	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
Carbazole	ND	200	160	ug/Kg	1	11/12/16	DD	SW8270D
Chrysene	ND	270	130	ug/Kg	1	11/12/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	200	130	ug/Kg	1	11/12/16	DD	SW8270D
Dibenzofuran	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
Diethyl phthalate	ND	270	120	ug/Kg	1	11/12/16	DD	SW8270D
Dimethylphthalate	ND	270	120	ug/Kg	1	11/12/16	DD	SW8270D
Di-n-butylphthalate	ND	270	100	ug/Kg	1	11/12/16	DD	SW8270D
Di-n-octylphthalate	ND	270	100	ug/Kg	1	11/12/16	DD	SW8270D
Fluoranthene	ND	270	130	ug/Kg	1	11/12/16	DD	SW8270D
Fluorene	ND	270	130	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorobenzene	ND	200	110	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorobutadiene	ND	270	140	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	270	120	ug/Kg	1	11/12/16	DD	SW8270D
Hexachloroethane	ND	200	120	ug/Kg	1	11/12/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	270	130	ug/Kg	1	11/12/16	DD	SW8270D
Isophorone	ND	200	110	ug/Kg	1	11/12/16	DD	SW8270D
Naphthalene	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
Nitrobenzene	ND	200	140	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodimethylamine	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	200	130	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	270	150	ug/Kg	1	11/12/16	DD	SW8270D
Pentachloronitrobenzene	ND	270	150	ug/Kg	1	11/12/16	DD	SW8270D
Pentachlorophenol	ND	240	150	ug/Kg	1	11/12/16	DD	SW8270D
Phenanthrene	ND	270	110	ug/Kg	1	11/12/16	DD	SW8270D
Phenol	ND	270	130	ug/Kg	1	11/12/16	DD	SW8270D
Pyrene	ND	270	140	ug/Kg	1	11/12/16	DD	SW8270D
Pyridine	ND	270	97	ug/Kg	1	11/12/16	DD	SW8270D
QA/QC Surrogates			-	9/9				
% 2,4,6-Tribromophenol	67			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorobiphenyl	70			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorophenol	58			%	1	11/12/16	DD	30 - 130 %
% Nitrobenzene-d5	67			%	1	11/12/16	DD	30 - 130 %
% Phenol-d5	69			%	1	11/12/16	DD	30 - 130 %
% Terphenyl-d14	73			%	1	11/12/16	DD	30 - 130 %
70 Telphenyi-u14	13			/0	ı	11/12/10	טט	JU - 1JU /0

Project ID: 1181 FLUSHING AVENUE BROOKLYN NY Phoenix I.D.: BV81847

Client ID: 15B14 (12-14)

RL/ LOD/

Parameter Result PQL MDL Units Dilution Date/Time By Reference

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2016

Reviewed and Released by: Jon Carlson, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample Information Custody Information Date <u>Time</u>

Collected by: TG 11/10/16 Matrix: SOIL

Received by: Location Code: **EBC** SW 11/11/16 18:03

Rush Request: 72 Hour Analyzed by: see "By" below

Laboratory Data SDG ID: GBV81835 Phoenix ID: BV81848

1181 FLUSHING AVENUE BROOKLYN NY Project ID:

Client ID: 15B14 (14-16)

P.O.#:

Daramatar	Dogult	RL/ PQL	LOD/ MDL	Lloito	Dilution	Date/Time	D.	Deference
Parameter	Result		MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.42	0.42	mg/Kg	1	11/13/16	LK	SW6010C
Aluminum	3360	42	8.4	mg/Kg	10	11/13/16	LK	SW6010C
Arsenic	ND	0.84	0.84	mg/Kg	1	11/13/16	LK	SW6010C
Barium	18.6	8.0	0.42	mg/Kg	1	11/13/16	LK	SW6010C
Beryllium	ND	0.33	0.17	mg/Kg	1	11/13/16	LK	SW6010C
Calcium	621	4.2	3.8	mg/Kg	1	11/13/16	LK	SW6010C
Cadmium	ND	0.42	0.42	mg/Kg	1	11/13/16	LK	SW6010C
Cobalt	3.63	0.42	0.42	mg/Kg	1	11/13/16	LK	SW6010C
Chromium	6.65	0.42	0.42	mg/Kg	1	11/13/16	LK	SW6010C
Copper	7.14	0.42	0.42	mg/kg	1	11/13/16	LK	SW6010C
Iron	7050	4.2	4.2	mg/Kg	1	11/13/16	LK	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	11/14/16	RS	SW7471B
Potassium	552	N 8	3.3	mg/Kg	1	11/13/16	LK	SW6010C
Magnesium	1370	4.2	4.2	mg/Kg	1	11/13/16	LK	SW6010C
Manganese	120	0.42	0.42	mg/Kg	1	11/13/16	LK	SW6010C
Sodium	88	8	3.6	mg/Kg	1	11/13/16	LK	SW6010C
Nickel	7.35	0.42	0.42	mg/Kg	1	11/13/16	LK	SW6010C
Lead	0.8	B 0.8	0.40	mg/Kg	1	11/15/16	LK	SW6010C
Antimony	ND	2.0	2.0	mg/Kg	1	11/15/16	LK	SW6010C
Selenium	ND	1.7	1.4	mg/Kg	1	11/13/16	LK	SW6010C
Thallium	ND	1.7	1.7	mg/Kg	1	11/13/16	LK	SW6010C
Vanadium	10.6	0.42	0.42	mg/Kg	1	11/13/16	LK	SW6010C
Zinc	24.3	8.0	0.42	mg/Kg	1	11/13/16	LK	SW6010C
Percent Solid	83			%		11/11/16	W	SW846-%Solid
Soil Extraction for SVOA	Completed					11/11/16	NJ/CKV	SW3545A
Mercury Digestion	Completed					11/14/16	W/W	SW7471B
Total Metals Digest	Completed					11/14/16	X/AG	SW3050B
Field Extraction	Completed					11/10/16		SW5035A

Project ID: 1181 FLUSHING AVENUE BROOKLYN NY Phoenix I.D.: BV81848

Client ID: 15B14 (14-16)

Parameter	Result		RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
<u>Volatiles</u>									
1,1,1,2-Tetrachloroethane	ND		4.9	0.99	ug/Kg	1	11/13/16	JLI	SW8260C
1,1,1-Trichloroethane	ND		4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND		4.9	0.99	ug/Kg	1	11/13/16	JLI	SW8260C
1,1,2-Trichloroethane	ND		4.9	0.99	ug/Kg	1	11/13/16	JLI	SW8260C
1,1-Dichloroethane	ND		4.9	0.99	ug/Kg	1	11/13/16	JLI	SW8260C
1,1-Dichloroethene	ND		4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
1,1-Dichloropropene	ND		4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND		4.9	0.99	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,3-Trichloropropane	ND		4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND		4.9	0.99	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,4-Trimethylbenzene	1.0	J	4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND		4.9	0.99	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dibromoethane	ND		4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dichlorobenzene	ND		4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dichloroethane	ND		4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dichloropropane	ND		4.9	0.99	ug/Kg	1	11/13/16	JLI	SW8260C
1,3,5-Trimethylbenzene	ND		4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
1,3-Dichlorobenzene	ND		4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
1,3-Dichloropropane	ND		4.9	0.99	ug/Kg	1	11/13/16	JLI	SW8260C
1,4-Dichlorobenzene	ND		4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
2,2-Dichloropropane	ND		4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
2-Chlorotoluene	ND		4.9	0.99	ug/Kg	1	11/13/16	JLI	SW8260C
2-Hexanone	ND		25	4.9	ug/Kg	1	11/13/16	JLI	SW8260C
2-Isopropyltoluene	ND		4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C 1
4-Chlorotoluene	ND		4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
4-Methyl-2-pentanone	ND		25	4.9	ug/Kg	1	11/13/16	JLI	SW8260C
Acetone	13	JS	25	4.9	ug/Kg	1	11/13/16	JLI	SW8260C
Acrylonitrile	ND		9.9	0.99	ug/Kg	1	11/13/16	JLI	SW8260C
Benzene	1.3	J	4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
Bromobenzene	ND		4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
Bromochloromethane	ND		4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
Bromodichloromethane	ND		4.9	0.99	ug/Kg	1	11/13/16	JLI	SW8260C
Bromoform	ND		4.9	0.99	ug/Kg	1	11/13/16	JLI	SW8260C
Bromomethane	ND		4.9	2.0	ug/Kg	1	11/13/16	JLI	SW8260C
Carbon Disulfide	1.9	J	4.9	0.99	ug/Kg	1	11/13/16	JLI	SW8260C
Carbon tetrachloride	ND		4.9	0.99	ug/Kg	1	11/13/16	JLI	SW8260C
Chlorobenzene	ND		4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
Chloroethane	ND		4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
Chloroform	ND		4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
Chloromethane	ND		4.9	0.99	ug/Kg	1	11/13/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND		4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND		4.9	0.49	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
Dibromochloromethane	ND		4.9	0.99	ug/Kg	1	11/13/16	JLI	SW8260C
Dibromomethane	ND		4.9	0.99	ug/Kg	1	11/13/16	JLI	SW8260C
Dichlorodifluoromethane	ND		4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
Ethylbenzene	0.90	J	4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
Hexachlorobutadiene	ND	J	4.9	0.49	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
Isopropylbenzene	ND		4.9	0.49	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C SW8260C
130ргорушендене	שויו		7.0	U.73	ug/11g	ı	11/10/10	υLI	31102000

Client ID: 15B14 (14-16)

Parameter Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
m&p-Xylene	2.0	J 4.9	0.99	ug/Kg	1	11/13/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	30	4.9	ug/Kg	1	11/13/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	9.5	J 9.9	0.99	ug/Kg	1	11/13/16	JLI	SW8260C
Methylene chloride	ND	4.9	4.9	ug/Kg	1	11/13/16	JLI	SW8260C
Naphthalene	ND	4.9	0.99	ug/Kg	1	11/13/16	JLI	SW8260C
n-Butylbenzene	ND	4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
n-Propylbenzene	ND	4.9	0.99	ug/Kg	1	11/13/16	JLI	SW8260C
o-Xylene	ND	4.9	0.99	ug/Kg	1	11/13/16	JLI	SW8260C
p-Isopropyltoluene	ND	4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
sec-Butylbenzene	ND	4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
Styrene	ND	4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
tert-Butylbenzene	ND	4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
Tetrachloroethene	ND	4.9	0.99	ug/Kg	1	11/13/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	9.9	2.5	ug/Kg	1	11/13/16	JLI	SW8260C 1
Toluene	ND	4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	9.9	2.5	ug/Kg	1	11/13/16	JLI	SW8260C
Trichloroethene	ND	4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
Trichlorofluoromethane	ND	4.9	0.99	ug/Kg	1	11/13/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
Vinyl chloride	ND	4.9	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	100			%	1	11/13/16	JLI	70 - 130 %
% Bromofluorobenzene	99			%	1	11/13/16	JLI	70 - 130 %
% Dibromofluoromethane	97			%	1	11/13/16	JLI	70 - 130 %
% Toluene-d8	99			%	1	11/13/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	74	40	ug/kg	1	11/13/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	100			%	1	11/13/16	JLI	70 - 130 %
% Bromofluorobenzene	99			%	1	11/13/16	JLI	70 - 130 %
% Toluene-d8	99			%	1	11/13/16	JLI	70 - 130 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	20	0.99	ug/Kg	1	11/13/16	JLI	SW8260C
Acrolein	ND	20	2.5	ug/Kg	1	11/13/16	JLI	SW8260C
Acrylonitrile	ND	20	0.49	ug/Kg	1	11/13/16	JLI	SW8260C
Tert-butyl alcohol	ND	99	20	ug/Kg	1	11/13/16	JLI	SW8260C
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	280	140	ug/Kg	1	11/12/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
1,2-Dichlorobenzene	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
1,3-Dichlorobenzene	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
1,4-Dichlorobenzene	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	280	220	ug/Kg	1	11/12/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	200	130	ug/Kg	1	11/12/16	DD	SW8270D

Client ID: 15B14 (14-16)

Parameter Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
2,4-Dichlorophenol	ND	200	140	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dimethylphenol	ND	280	99	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dinitrophenol	ND	280	280	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dinitrotoluene	ND	200	160	ug/Kg	1	11/12/16	DD	SW8270D
2,6-Dinitrotoluene	ND	200	130	ug/Kg	1	11/12/16	DD	SW8270D
2-Chloronaphthalene	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
2-Chlorophenol	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
2-Methylnaphthalene	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	280	190	ug/Kg	1	11/12/16	DD	SW8270D
2-Nitroaniline	ND	280	280	ug/Kg	1	11/12/16	DD	SW8270D
2-Nitrophenol	ND	280	250	ug/Kg	1	11/12/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	280	160	ug/Kg	1	11/12/16	DD	SW8270D 1
3,3'-Dichlorobenzidine	ND	200	190	ug/Kg	1	11/12/16	DD	SW8270D
3-Nitroaniline	ND	400	800	ug/Kg	1	11/12/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	240	80	ug/Kg	1	11/12/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	280	140	ug/Kg	1	11/12/16	DD	SW8270D
4-Chloroaniline	ND	320	190	ug/Kg	1	11/12/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
4-Nitroaniline	ND	400	130	ug/Kg	1	11/12/16	DD	SW8270D
4-Nitrophenol	ND	400	180	ug/Kg	1	11/12/16	DD	SW8270D
Acenaphthene	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
Acenaphthylene	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
Acetophenone	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
Aniline	ND	320	320	ug/Kg	1	11/12/16	DD	SW8270D
Anthracene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Benz(a)anthracene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzidine	ND	400	240	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(a)pyrene	ND	200	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(b)fluoranthene	ND	280	140	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(ghi)perylene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(k)fluoranthene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzoic acid	ND	2000	800	ug/Kg	1	11/12/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	280	100	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	200	110	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
Carbazole	ND	200	160	ug/Kg	1	11/12/16	DD	SW8270D
Chrysene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	200	130	ug/Kg	1	11/12/16	DD	SW8270D
Dibenzofuran	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
Diethyl phthalate	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Dimethylphthalate	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
Di-n-butylphthalate	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
Di-n-octylphthalate	ND	280	100	ug/Kg	1	11/12/16	DD	SW8270D
Fluoranthene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Fluorene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorobenzene	ND	200	120	ug/Kg	1	11/12/16	DD	SW8270D

Client ID: 15B14 (14-16)

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Hexachlorobutadiene	ND	280	140	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
Hexachloroethane	ND	200	120	ug/Kg	1	11/12/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Isophorone	ND	200	110	ug/Kg	1	11/12/16	DD	SW8270D
Naphthalene	ND	280	120	ug/Kg	1	11/12/16	DD	SW8270D
Nitrobenzene	ND	200	140	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodimethylamine	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	200	130	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	280	150	ug/Kg	1	11/12/16	DD	SW8270D
Pentachloronitrobenzene	ND	280	150	ug/Kg	1	11/12/16	DD	SW8270D
Pentachlorophenol	ND	240	150	ug/Kg	1	11/12/16	DD	SW8270D
Phenanthrene	ND	280	110	ug/Kg	1	11/12/16	DD	SW8270D
Phenol	ND	280	130	ug/Kg	1	11/12/16	DD	SW8270D
Pyrene	ND	280	140	ug/Kg	1	11/12/16	DD	SW8270D
Pyridine	ND	280	98	ug/Kg	1	11/12/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	68			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorobiphenyl	66			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorophenol	54			%	1	11/12/16	DD	30 - 130 %
% Nitrobenzene-d5	56			%	1	11/12/16	DD	30 - 130 %
% Phenol-d5	65			%	1	11/12/16	DD	30 - 130 %
% Terphenyl-d14	75			%	1	11/12/16	DD	30 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit 1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2016

Reviewed and Released by: Jon Carlson, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOIL Collected by: TG 11/10/16

RI/

Location Code: EBC Received by: SW 11/11/16 18:03

LOD/

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GBV81835
Phoenix ID: BV81849

Project ID: 1181 FLUSHING AVENUE BROOKLYN NY

Client ID: 15B20 (0-2)

Parameter	Result	RL/ PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.36	0.36	mg/Kg	1	11/13/16	LK	SW6010C
Aluminum	6120	36	7.2	mg/Kg	10	11/13/16	LK	SW6010C
Arsenic	3.15	0.72	0.72	mg/Kg	1	11/13/16	LK	SW6010C
Barium	53.6	0.7	0.36	mg/Kg	1	11/13/16	LK	SW6010C
Beryllium	0.45	0.29	0.14	mg/Kg	1	11/13/16	LK	SW6010C
Calcium	14900	36	33	mg/Kg	10	11/13/16	LK	SW6010C
Cadmium	0.83	0.36	0.36	mg/Kg	1	11/13/16	LK	SW6010C
Cobalt	7.07	0.36	0.36	mg/Kg	1	11/13/16	LK	SW6010C
Chromium	17.5	0.36	0.36	mg/Kg	1	11/13/16	LK	SW6010C
Copper	41.9	0.36	0.36	mg/kg	1	11/13/16	LK	SW6010C
Iron	22300	36	36	mg/Kg	10	11/13/16	LK	SW6010C
Mercury	0.71	0.03	0.02	mg/Kg	1	11/14/16	RS	SW7471B
Potassium	1340	N 7	2.8	mg/Kg	1	11/13/16	LK	SW6010C
Magnesium	8070	36	36	mg/Kg	10	11/13/16	LK	SW6010C
Manganese	584	3.6	3.6	mg/Kg	10	11/13/16	LK	SW6010C
Sodium	361	7	3.1	mg/Kg	1	11/13/16	LK	SW6010C
Nickel	13.2	0.36	0.36	mg/Kg	1	11/13/16	LK	SW6010C
Lead	68.4	0.7	0.36	mg/Kg	1	11/13/16	LK	SW6010C
Antimony	ND	1.7	1.7	mg/Kg	1	11/15/16	LK	SW6010C
Selenium	ND	1.4	1.2	mg/Kg	1	11/13/16	LK	SW6010C
Thallium	ND	1.4	1.4	mg/Kg	1	11/13/16	LK	SW6010C
Vanadium	29.2	0.36	0.36	mg/Kg	1	11/13/16	LK	SW6010C
Zinc	78.4	0.7	0.36	mg/Kg	1	11/13/16	LK	SW6010C
Percent Solid	92			%		11/11/16	W	SW846-%Solid
Soil Extraction for PCB	Completed					11/11/16	NC/V	SW3545A
Soil Extraction for Pest	Completed					11/11/16	NC/V	SW3545A
Soil Extraction for SVOA	Completed					11/11/16	NJ/CKV	SW3545A
Mercury Digestion	Completed					11/14/16	W/W	SW7471B

Client ID: 15B20 (0-2)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Total Metals Digest	Completed					11/14/16	X/AG	SW3050B
Field Extraction	Completed					11/10/16		SW5035A
Polychlorinated Bipher	nyls							
PCB-1016	ND	72	72	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1221	ND	72	72	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1232	ND	72	72	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1242	ND	72	72	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1248	ND	72	72	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1254	ND	72	72	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1260	ND	72	72	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1262	ND	72	72	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1268	ND	72	72	ug/Kg	2	11/14/16	AW	SW8082A
QA/QC Surrogates								
% DCBP	85			%	2	11/14/16	AW	40 - 140 %
% TCMX	82			%	2	11/14/16	AW	40 - 140 %
Pesticides - Soil								
4,4' -DDD	ND	2.2	2.2	ug/Kg	2	11/15/16	CE	SW8081B
4,4' -DDE	ND	2.2	2.2	ug/Kg	2	11/15/16	CE	SW8081B
4,4' -DDT	ND	2.2	2.2	ug/Kg	2	11/15/16	CE	SW8081B
a-BHC	ND	7.2	7.2	ug/Kg	2	11/15/16	CE	SW8081B
a-Chlordane	ND	3.6	3.6	ug/Kg	2	11/15/16	CE	SW8081B
Aldrin	ND	3.6	3.6	ug/Kg	2	11/15/16	CE	SW8081B
b-BHC	ND	7.2	7.2	ug/Kg	2	11/15/16	CE	SW8081B
Chlordane	ND	36	36	ug/Kg	2	11/15/16	CE	SW8081B
d-BHC	ND	7.2	7.2	ug/Kg	2	11/15/16	CE	SW8081B
Dieldrin	ND	3.6	3.6	ug/Kg	2	11/15/16	CE	SW8081B
Endosulfan I	ND	7.2	7.2	ug/Kg	2	11/15/16	CE	SW8081B
Endosulfan II	ND	7.2	7.2	ug/Kg	2	11/15/16	CE	SW8081B
Endosulfan sulfate	ND	7.2	7.2	ug/Kg	2	11/15/16	CE	SW8081B
Endrin	ND	7.2	7.2	ug/Kg	2	11/15/16	CE	SW8081B
Endrin aldehyde	ND	7.2	7.2	ug/Kg	2	11/15/16	CE	
Endrin ketone	ND	7.2	7.2	ug/Kg	2	11/15/16	CE	SW8081B
g-BHC	ND	1.4	1.4	ug/Kg	2	11/15/16	CE	SW8081B
g-Chlordane	ND	3.6	3.6	ug/Kg	2	11/15/16	CE	SW8081B
Heptachlor	ND	7.2	7.2	ug/Kg	2	11/15/16	CE	SW8081B
Heptachlor epoxide	ND	7.2	7.2	ug/Kg	2	11/15/16	CE	SW8081B
Methoxychlor	ND	36	36	ug/Kg	2	11/15/16	CE	SW8081B
Toxaphene	ND	140	140	ug/Kg	2	11/15/16	CE	SW8081B
QA/QC Surrogates				9,9				
% DCBP	90			%	2	11/15/16	CE	40 - 140 %
% TCMX	70			%	2	11/15/16	CE	40 - 140 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	2.5	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
					•			
1,1-Dichloroethane	ND	2.5	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane	ND ND ND	2.5 2.5 2.5	0.50 0.50 0.50	ug/Kg ug/Kg ug/Kg	1 1 1	11/13/16 11/13/16 11/13/16	JLI JLI JLI	SW8260C SW8260C SW8260C

Client ID: 15B20 (0-2)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1,1-Dichloroethene	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
1,1-Dichloropropene	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	2.5	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	2.5	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	2.5	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dibromoethane	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dichloroethane	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dichloropropane	ND	2.5	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
1,3-Dichloropropane	ND	2.5	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
2,2-Dichloropropane	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
2-Chlorotoluene	ND	2.5	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
2-Hexanone	ND	13	2.5	ug/Kg	1	11/13/16	JLI	SW8260C
2-Isopropyltoluene	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C 1
4-Chlorotoluene	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
4-Methyl-2-pentanone	ND	13	2.5	ug/Kg	1	11/13/16	JLI	SW8260C
Acetone	ND	13	2.5	ug/Kg	1	11/13/16	JLI	SW8260C
Acrylonitrile	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
Benzene	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
Bromobenzene	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
Bromochloromethane	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
Bromodichloromethane	ND	2.5	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
Bromoform	ND	2.5	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
Bromomethane	ND	2.5	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
Carbon Disulfide	ND	2.5	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
Carbon tetrachloride	ND	2.5	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
Chlorobenzene	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
Chloroethane	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
Chloroform	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
Chloromethane	ND	2.5	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
Dibromochloromethane	ND	2.5	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
Dibromomethane	ND	2.5	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
Dichlorodifluoromethane	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
Ethylbenzene	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
Hexachlorobutadiene	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
Isopropylbenzene	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
m&p-Xylene	ND	2.5	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	15	2.5	ug/Kg	1	11/13/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
Methylene chloride	ND	2.5	2.5	ug/Kg	1	11/13/16	JLI	SW8260C
Naphthalene	ND	2.5	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
n-Butylbenzene	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
Datyibonzono			0.20	"פייי פי	,	,	J	

Client ID: 15B20 (0-2)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
n-Propylbenzene	ND	2.5	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
o-Xylene	ND	2.5	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
p-lsopropyltoluene	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
sec-Butylbenzene	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
Styrene	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
tert-Butylbenzene	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
Tetrachloroethene	ND	2.5	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	5.0	1.3	ug/Kg	1	11/13/16	JLI	SW8260C 1
Toluene	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	5.0	1.3	ug/Kg	1	11/13/16	JLI	SW8260C
Trichloroethene	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
Trichlorofluoromethane	ND	2.5	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
Vinyl chloride	ND	2.5	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	100			%	1	11/13/16	JLI	70 - 130 %
% Bromofluorobenzene	99			%	1	11/13/16	JLI	70 - 130 %
% Dibromofluoromethane	99			%	1	11/13/16	JLI	70 - 130 %
% Toluene-d8	100			%	1	11/13/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	38	20	ug/kg	1	11/13/16	JLI	SW8260C
QA/QC Surrogates				0 0				
% 1,2-dichlorobenzene-d4	100			%	1	11/13/16	JLI	70 - 130 %
% Bromofluorobenzene	99			%	1	11/13/16	JLI	70 - 130 %
% Toluene-d8	100			%	1	11/13/16	JLI	70 - 130 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	10	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
Acrolein	ND	10	1.3	ug/Kg	1	11/13/16	JLI	SW8260C
Acrylonitrile	ND	10	0.25	ug/Kg	1	11/13/16	JLI	SW8260C
Tert-butyl alcohol	ND	50	10	ug/Kg	1	11/13/16	JLI	SW8260C
Semivolatiles								
	ND	250	120	a/l/a	1	11/12/16	DD	CW0270D
1,2,4,5-Tetrachlorobenzene	ND	250	130	ug/Kg	1	11/12/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	250	110	ug/Kg	1	11/12/16	DD	SW8270D
1,2-Dichlorobenzene	ND	250	100	ug/Kg	1	11/12/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	250	120	ug/Kg	1	11/12/16	DD	SW8270D
1,3-Dichlorobenzene	ND	250	110	ug/Kg	1	11/12/16	DD	SW8270D
1,4-Dichlorobenzene	ND	250	110	ug/Kg	1	11/12/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	250	200	ug/Kg	1	11/12/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	180	110	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dichlorophenol	ND	180	130	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dimethylphenol	ND	250	89	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dinitrophenol	ND	250	250	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dinitrotoluene	ND	180	140	ug/Kg	1	11/12/16	DD	SW8270D
2,6-Dinitrotoluene	ND	180	110	ug/Kg	1	11/12/16	DD	SW8270D
2-Chloronaphthalene	ND	250	100	ug/Kg	1	11/12/16	DD	SW8270D

Client ID: 15B20 (0-2)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
2-Chlorophenol	ND	250	100	ug/Kg	1	11/12/16	DD	SW8270D
2-Methylnaphthalene	ND	250	110	ug/Kg	1	11/12/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	250	170	ug/Kg	1	11/12/16	DD	SW8270D
2-Nitroaniline	ND	250	250	ug/Kg	1	11/12/16	DD	SW8270D
2-Nitrophenol	ND	250	230	ug/Kg	1	11/12/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	250	140	ug/Kg	1	11/12/16	DD	SW8270D 1
3,3'-Dichlorobenzidine	ND	180	170	ug/Kg	1	11/12/16	DD	SW8270D
3-Nitroaniline	ND	360	710	ug/Kg	1	11/12/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	210	71	ug/Kg	1	11/12/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	250	100	ug/Kg	1	11/12/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	250	130	ug/Kg	1	11/12/16	DD	SW8270D
4-Chloroaniline	ND	290	170	ug/Kg	1	11/12/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	250	120	ug/Kg	1	11/12/16	DD	SW8270D
4-Nitroaniline	ND	360	120	ug/Kg	1	11/12/16	DD	SW8270D
4-Nitrophenol	ND	360	160	ug/Kg	1	11/12/16	DD	SW8270D
Acenaphthene	ND	250	110	ug/Kg	1	11/12/16	DD	SW8270D
Acenaphthylene	ND	250	100	ug/Kg	1	11/12/16	DD	SW8270D
Acetophenone	ND	250	110	ug/Kg	1	11/12/16	DD	SW8270D
Aniline	ND	290	290	ug/Kg	1	11/12/16	DD	SW8270D
Anthracene	ND	250	120	ug/Kg	1	11/12/16	DD	SW8270D
Benz(a)anthracene	ND	250	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzidine	ND	360	210	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(a)pyrene	ND	180	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(b)fluoranthene	ND	250	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(ghi)perylene	ND	250	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(k)fluoranthene	ND	250	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzoic acid	ND	1800	710	ug/Kg	1	11/12/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	250	92	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	250	99	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	180	96	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	250	99	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	250	100	ug/Kg	1	11/12/16	DD	SW8270D
Carbazole	ND	180	140	ug/Kg	1	11/12/16	DD	SW8270D
Chrysene	ND	250	120	ug/Kg	1	11/12/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	180	120	ug/Kg	1	11/12/16	DD	SW8270D
Dibenzofuran	ND	250	100	ug/Kg	1	11/12/16	DD	SW8270D
Diethyl phthalate	ND	250	110	ug/Kg	1	11/12/16	DD	SW8270D
Dimethylphthalate	ND	250	110	ug/Kg	1	11/12/16	DD	SW8270D
Di-n-butylphthalate	ND	250	95	ug/Kg	1	11/12/16	DD	SW8270D
Di-n-octylphthalate	ND	250	92	ug/Kg	1	11/12/16	DD	SW8270D
Fluoranthene	160	J 250	120	ug/Kg	1	11/12/16	DD	SW8270D
Fluorene	ND	250	120	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorobenzene	ND	180	100	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorobutadiene	ND	250	130	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	250	110	ug/Kg	1	11/12/16	DD	SW8270D
Hexachloroethane	ND	180	110	ug/Kg	1	11/12/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	250	120	ug/Kg	1	11/12/16	DD	SW8270D
Isophorone	ND	180	100	ug/Kg	1	11/12/16	DD	SW8270D
Naphthalene	ND	250	100	ug/Kg	1	11/12/16	DD	SW8270D
нарпинаюно	110	200	100	~g/1\g		, .2, .0	טט	31102100

Client ID: 15B20 (0-2)

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Nitrobenzene	ND	180	120	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodimethylamine	ND	250	100	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	180	120	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	250	140	ug/Kg	1	11/12/16	DD	SW8270D
Pentachloronitrobenzene	ND	250	130	ug/Kg	1	11/12/16	DD	SW8270D
Pentachlorophenol	ND	210	130	ug/Kg	1	11/12/16	DD	SW8270D
Phenanthrene	ND	250	100	ug/Kg	1	11/12/16	DD	SW8270D
Phenol	ND	250	110	ug/Kg	1	11/12/16	DD	SW8270D
Pyrene	160	J 250	120	ug/Kg	1	11/12/16	DD	SW8270D
Pyridine	ND	250	88	ug/Kg	1	11/12/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	70			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorobiphenyl	71			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorophenol	54			%	1	11/12/16	DD	30 - 130 %
% Nitrobenzene-d5	62			%	1	11/12/16	DD	30 - 130 %
% Phenol-d5	67			%	1	11/12/16	DD	30 - 130 %
% Terphenyl-d14	79			%	1	11/12/16	DD	30 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2016

Reviewed and Released by: Jon Carlson, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOIL Collected by: TG 11/10/16

Location Code: EBC Received by: SW 11/11/16 18:03

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GBV81835

Phoenix ID: BV81850

Project ID: 1181 FLUSHING AVENUE BROOKLYN NY

Client ID: 15B20 (12-14)

_		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.37	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Aluminum	3090	37	7.4	mg/Kg	10	11/13/16	LK	SW6010C
Arsenic	ND	0.74	0.74	mg/Kg	1	11/13/16	LK	SW6010C
Barium	20.0	0.7	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Beryllium	0.15	B 0.29	0.15	mg/Kg	1	11/13/16	LK	SW6010C
Calcium	423	3.7	3.4	mg/Kg	1	11/13/16	LK	SW6010C
Cadmium	ND	0.37	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Cobalt	3.22	0.37	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Chromium	5.66	0.37	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Copper	5.90	0.37	0.37	mg/kg	1	11/13/16	LK	SW6010C
Iron	7000	3.7	3.7	mg/Kg	1	11/13/16	LK	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	11/14/16	RS	SW7471B
Potassium	377	N 7	2.9	mg/Kg	1	11/13/16	LK	SW6010C
Magnesium	1240	3.7	3.7	mg/Kg	1	11/13/16	LK	SW6010C
Manganese	82.1	0.37	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Sodium	60	7	3.2	mg/Kg	1	11/13/16	LK	SW6010C
Nickel	6.18	0.37	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Lead	1.2	8.0	0.39	mg/Kg	1	11/15/16	LK	SW6010C
Antimony	ND	2.0	2.0	mg/Kg	1	11/15/16	LK	SW6010C
Selenium	ND	1.5	1.3	mg/Kg	1	11/13/16	LK	SW6010C
Thallium	ND	1.5	1.5	mg/Kg	1	11/13/16	LK	SW6010C
Vanadium	7.69	0.37	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Zinc	11.9	0.7	0.37	mg/Kg	1	11/13/16	LK	SW6010C
Percent Solid	87			%		11/11/16	W	SW846-%Solid
Soil Extraction for PCB	Completed					11/11/16	NC/V	SW3545A
Soil Extraction for Pest	Completed					11/11/16	NC/V	SW3545A
Soil Extraction for SVOA	Completed					11/11/16	NJ/CKV	SW3545A
Mercury Digestion	Completed					11/14/16	W/W	SW7471B

Project ID: 1181 FLUSHING AVENUE BROOKLYN NY Phoenix I.D.: BV81850

Client ID: 15B20 (12-14)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Total Metals Digest	Completed					11/14/16		SW3050B
Field Extraction	Completed					11/10/16	NAG	SW5035A
Tield Extraction	Completed					11/10/10		Ovv0000/1
Polychlorinated Biphen	yl <u>s</u>							
PCB-1016	ND	76	76	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1221	ND	76	76	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1232	ND	76	76	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1242	ND	76	76	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1248	ND	76	76	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1254	ND	76	76	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1260	ND	76	76	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1262	ND	76	76	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1268	ND	76	76	ug/Kg	2	11/14/16	AW	SW8082A
QA/QC Surrogates								
% DCBP	65			%	2	11/14/16	AW	40 - 140 %
% TCMX	61			%	2	11/14/16	AW	40 - 140 %
Walatilaa								
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	4.3	0.85	ug/Kg	1	11/13/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	4.3	0.85	ug/Kg	1	11/13/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	4.3	0.85	ug/Kg	1	11/13/16	JLI	SW8260C
1,1-Dichloroethane	ND	4.3	0.85	ug/Kg	1	11/13/16	JLI	SW8260C
1,1-Dichloroethene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
1,1-Dichloropropene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	4.3	0.85	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	4.3	0.85	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	4.3	0.85	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dibromoethane	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dichloroethane	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dichloropropane	ND	4.3	0.85	ug/Kg	1	11/13/16	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
1,3-Dichloropropane	ND	4.3	0.85	ug/Kg	1	11/13/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
2,2-Dichloropropane	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
2-Chlorotoluene	ND	4.3	0.85	ug/Kg	1	11/13/16	JLI	SW8260C
2-Hexanone	ND	21	4.3	ug/Kg	1	11/13/16	JLI	SW8260C
2-Isopropyltoluene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C 1
4-Chlorotoluene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
4-Methyl-2-pentanone	ND	21	4.3	ug/Kg	1	11/13/16	JLI	SW8260C
Acetone	ND	21	4.3	ug/Kg	1	11/13/16	JLI	SW8260C
Acrylonitrile	ND	8.5	0.85	ug/Kg	1	11/13/16	JLI	SW8260C
Benzene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
Bromobenzene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
Bromochloromethane	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
Bromodichloromethane	ND	4.3	0.85	ug/Kg	1	11/13/16	JLI	SW8260C

Client ID: 15B20 (12-14)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Bromoform	ND	4.3	0.85	ug/Kg	1	11/13/16	JLI	SW8260C
Bromomethane	ND	4.3	1.7	ug/Kg	1	11/13/16	JLI	SW8260C
Carbon Disulfide	ND	4.3	0.85	ug/Kg	1	11/13/16	JLI	SW8260C
Carbon tetrachloride	ND	4.3	0.85	ug/Kg	1	11/13/16	JLI	SW8260C
Chlorobenzene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
Chloroethane	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
Chloroform	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
Chloromethane	ND	4.3	0.85	ug/Kg	1	11/13/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
Dibromochloromethane	ND	4.3	0.85	ug/Kg	1	11/13/16	JLI	SW8260C
Dibromomethane	ND	4.3	0.85	ug/Kg	1	11/13/16	JLI	SW8260C
Dichlorodifluoromethane	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
Ethylbenzene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
Hexachlorobutadiene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
Isopropylbenzene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
m&p-Xylene	ND	4.3	0.85	ug/Kg	1	11/13/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	26	4.3	ug/Kg	1	11/13/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	8.5	0.85	ug/Kg	1	11/13/16	JLI	SW8260C
Methylene chloride	ND	4.3	4.3	ug/Kg	1	11/13/16	JLI	SW8260C
Naphthalene	ND	4.3	0.85	ug/Kg	1	11/13/16	JLI	SW8260C
n-Butylbenzene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
n-Propylbenzene	ND	4.3	0.85	ug/Kg	1	11/13/16	JLI	SW8260C
o-Xylene	ND	4.3	0.85	ug/Kg	1	11/13/16	JLI	SW8260C
p-Isopropyltoluene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
sec-Butylbenzene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
Styrene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
tert-Butylbenzene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
Tetrachloroethene	ND	4.3	0.85	ug/Kg	1	11/13/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	8.5	2.1	ug/Kg	1	11/13/16	JLI	SW8260C 1
Toluene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	8.5	2.1	ug/Kg	1	11/13/16	JLI	SW8260C
Trichloroethene	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
Trichlorofluoromethane	ND	4.3	0.85	ug/Kg	1	11/13/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
Vinyl chloride	ND	4.3	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
QA/QC Surrogates				0 0				
% 1,2-dichlorobenzene-d4	100			%	1	11/13/16	JLI	70 - 130 %
% Bromofluorobenzene	100			%	1	11/13/16	JLI	70 - 130 %
% Dibromofluoromethane	97			%	1	11/13/16	JLI	70 - 130 %
% Toluene-d8	100			%	1	11/13/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	64	34	ug/kg	1	11/13/16	JLI	SW8260C
QA/QC Surrogates				- -				
% 1,2-dichlorobenzene-d4	100			%	1	11/13/16	JLI	70 - 130 %
% Bromofluorobenzene	100			%	1	11/13/16	JLI	70 - 130 %
% Toluene-d8	100			%	1	11/13/16	JLI	70 - 130 %

Project ID: 1181 FLUSHING AVENUE BROOKLYN NY Phoenix I.D.: BV81850

Client ID: 15B20 (12-14)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	17	0.85	ug/Kg	1	11/13/16	JLI	SW8260C
Acrolein	ND	17	2.1	ug/Kg	1	11/13/16	JLI	SW8260C
Acrylonitrile	ND	17	0.43	ug/Kg	1	11/13/16	JLI	SW8260C
Tert-butyl alcohol	ND	85	17	ug/Kg	1	11/13/16	JLI	SW8260C
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	260	130	ug/Kg	1	11/12/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
1,2-Dichlorobenzene	ND	260	100	ug/Kg	1	11/12/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
1,3-Dichlorobenzene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
1,4-Dichlorobenzene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	260	200	ug/Kg	1	11/12/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	190	120	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dichlorophenol	ND	190	130	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dimethylphenol	ND	260	92	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dinitrophenol	ND	260	260	ug/Kg	1	11/12/16	DD	SW8270D
2,4-Dinitrotoluene	ND	190	150	ug/Kg	1	11/12/16	DD	SW8270D
2,6-Dinitrotoluene	ND	190	120	ug/Kg	1	11/12/16	DD	SW8270D
2-Chloronaphthalene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
2-Chlorophenol	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
2-Methylnaphthalene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	260	170	ug/Kg	1	11/12/16	DD	SW8270D
2-Nitroaniline	ND	260	260	ug/Kg	1	11/12/16	DD	SW8270D
2-Nitrophenol	ND	260	240	ug/Kg	1	11/12/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	260	150	ug/Kg	1	11/12/16	DD	SW8270D 1
3,3'-Dichlorobenzidine	ND	190	180	ug/Kg	1	11/12/16	DD	SW8270D
3-Nitroaniline	ND	370	740	ug/Kg	1	11/12/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	220	74	ug/Kg	1	11/12/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	260	130	ug/Kg	1	11/12/16	DD	SW8270D
4-Chloroaniline	ND	300	170	ug/Kg	1	11/12/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
4-Nitroaniline	ND	370	120	ug/Kg	1	11/12/16	DD	SW8270D
4-Nitrophenol	ND	370	170	ug/Kg	1	11/12/16	DD	SW8270D
Acenaphthene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
Acenaphthylene	ND	260	100	ug/Kg	1	11/12/16	DD	SW8270D
Acetophenone	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Aniline	ND	300	300	ug/Kg	1	11/12/16	DD	SW8270D
Anthracene	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Benz(a)anthracene	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzidine	ND	370	220	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(a)pyrene	ND	190	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(b)fluoranthene	ND	260	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(ghi)perylene	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(k)fluoranthene	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzoic acid	ND	1900	740	ug/Kg ug/Kg	1	11/12/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	260	96	ug/Kg ug/Kg	1	11/12/16	DD	SW8270D
Denzyi butyi pritilalate	ND	200	90	ug/rtg	1	11/12/10	טט	0 V V O Z / U D

Client ID: 15B20 (12-14)

Onone 15. 10520 (12 14)		DI.	1.00/					
Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Bis(2-chloroethoxy)methane	ND	260	100	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	190	100	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	260	100	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
Carbazole	ND	190	150	ug/Kg	1	11/12/16	DD	SW8270D
Chrysene	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	190	120	ug/Kg	1	11/12/16	DD	SW8270D
Dibenzofuran	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
Diethyl phthalate	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Dimethylphthalate	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Di-n-butylphthalate	ND	260	99	ug/Kg	1	11/12/16	DD	SW8270D
Di-n-octylphthalate	ND	260	96	ug/Kg	1	11/12/16	DD	SW8270D
Fluoranthene	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Fluorene	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorobenzene	ND	190	110	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorobutadiene	ND	260	130	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
Hexachloroethane	ND	190	110	ug/Kg	1	11/12/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Isophorone	ND	190	100	ug/Kg	1	11/12/16	DD	SW8270D
Naphthalene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
Nitrobenzene	ND	190	130	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodimethylamine	ND	260	100	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	190	120	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	260	140	ug/Kg	1	11/12/16	DD	SW8270D
Pentachloronitrobenzene	ND	260	140	ug/Kg	1	11/12/16	DD	SW8270D
Pentachlorophenol	ND	220	140	ug/Kg	1	11/12/16	DD	SW8270D
Phenanthrene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
Phenol	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Pyrene	ND	260	130	ug/Kg	1	11/12/16	DD	SW8270D
Pyridine	ND	260	91	ug/Kg	1	11/12/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	73			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorobiphenyl	78			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorophenol	59			%	1	11/12/16	DD	30 - 130 %
% Nitrobenzene-d5	66			%	1	11/12/16	DD	30 - 130 %
% Phenol-d5	68			%	1	11/12/16	DD	30 - 130 %
% Terphenyl-d14	81			%	1	11/12/16	DD	30 - 130 %

Project ID: 1181 FLUSHING AVENUE BROOKLYN NY Phoenix I.D.: BV81850

Client ID: 15B20 (12-14)

RL/ LOD/

Parameter Result PQL MDL Units Dilution Date/Time By Reference

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2016

Reviewed and Released by: Jon Carlson, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOIL Collected by: TG 11/10/16

Location Code: EBC Received by: SW 11/11/16 18:03

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GBV81835

Phoenix ID: BV81851

Project ID: 1181 FLUSHING AVENUE BROOKLYN NY

Client ID: SOIL DUPLICATE

Darameter	Dooult	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	D.	Deference
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Silver	ND	0.36	0.36	mg/Kg	1	11/13/16	LK	SW6010C
Aluminum	3140	36	7.2	mg/Kg	10	11/13/16	LK	SW6010C
Arsenic	ND	0.72	0.72	mg/Kg	1	11/13/16	LK	SW6010C
Barium	18.5	0.7	0.36	mg/Kg	1	11/13/16	LK	SW6010C
Beryllium	0.15	B 0.29	0.14	mg/Kg	1	11/13/16	LK	SW6010C
Calcium	468	3.6	3.3	mg/Kg	1	11/13/16	LK	SW6010C
Cadmium	ND	0.36	0.36	mg/Kg	1	11/13/16	LK	SW6010C
Cobalt	3.40	0.36	0.36	mg/Kg	1	11/13/16	LK	SW6010C
Chromium	5.49	0.36	0.36	mg/Kg	1	11/13/16	LK	SW6010C
Copper	6.22	0.36	0.36	mg/kg	1	11/13/16	LK	SW6010C
Iron	7510	3.6	3.6	mg/Kg	1	11/13/16	LK	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	11/14/16	RS	SW7471B
Potassium	344	N 7	2.8	mg/Kg	1	11/13/16	LK	SW6010C
Magnesium	1230	3.6	3.6	mg/Kg	1	11/13/16	LK	SW6010C
Manganese	219	3.6	3.6	mg/Kg	10	11/13/16	LK	SW6010C
Sodium	59	7	3.1	mg/Kg	1	11/13/16	LK	SW6010C
Nickel	6.41	0.36	0.36	mg/Kg	1	11/13/16	LK	SW6010C
Lead	1.0	8.0	0.39	mg/Kg	1	11/15/16	LK	SW6010C
Antimony	ND	2.0	2.0	mg/Kg	1	11/15/16	LK	SW6010C
Selenium	ND	1.4	1.2	mg/Kg	1	11/13/16	LK	SW6010C
Thallium	ND	1.4	1.4	mg/Kg	1	11/13/16	LK	SW6010C
Vanadium	8.92	0.36	0.36	mg/Kg	1	11/13/16	LK	SW6010C
Zinc	12.3	0.7	0.36	mg/Kg	1	11/13/16	LK	SW6010C
Percent Solid	87			%		11/11/16	W	SW846-%Solid
Soil Extraction for PCB	Completed					11/11/16	NC/V	SW3545A
Soil Extraction for Pest	Completed					11/11/16	NC/V	SW3545A
Soil Extraction for SVOA	Completed					11/11/16	NJ/CKV	SW3545A
Mercury Digestion	Completed					11/14/16	W/W	SW7471B

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Total Metals Digest Field Extraction	Completed Completed					11/14/16 11/10/16	X/AG	SW3050B SW5035A
Polychlorinated Biphe	envis							
PCB-1016	ND	74	74	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1221	ND	74	74	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1232	ND	74	74	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1242	ND	74	74	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1248	ND	74	74	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1254	ND	74	74	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1260	ND	74	74	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1262	ND	74	74	ug/Kg	2	11/14/16	AW	SW8082A
PCB-1268	ND	74	74	ug/Kg	2	11/14/16	AW	SW8082A
QA/QC Surrogates								
% DCBP	61			%	2	11/14/16	AW	40 - 140 %
% TCMX	71			%	2	11/14/16	AW	40 - 140 %
Pesticides - Soil								
4,4' -DDD	ND	2.2	2.2	ug/Kg	2	11/15/16	CE	SW8081B
4,4' -DDE	ND	2.2	2.2	ug/Kg	2	11/15/16	CE	SW8081B
4,4' -DDT	ND	2.2	2.2	ug/Kg	2	11/15/16	CE	SW8081B
a-BHC	ND	7.4	7.4	ug/Kg	2	11/15/16	CE	SW8081B
a-Chlordane	ND	3.7	3.7	ug/Kg	2	11/15/16	CE	SW8081B
Aldrin	ND	3.7	3.7	ug/Kg	2	11/15/16	CE	SW8081B
b-BHC	ND	7.4	7.4	ug/Kg	2	11/15/16	CE	SW8081B
Chlordane	ND	37	37	ug/Kg	2	11/15/16	CE	SW8081B
d-BHC	ND	7.4	7.4	ug/Kg	2	11/15/16	CE	SW8081B
Dieldrin	ND	3.7	3.7	ug/Kg	2	11/15/16	CE	SW8081B
Endosulfan I	ND	7.4	7.4	ug/Kg	2	11/15/16	CE	SW8081B
Endosulfan II	ND	7.4	7.4	ug/Kg	2	11/15/16	CE	SW8081B
Endosulfan sulfate	ND	7.4	7.4	ug/Kg	2	11/15/16	CE	SW8081B
Endrin	ND	7.4	7.4	ug/Kg	2	11/15/16	CE	SW8081B
Endrin aldehyde	ND	7.4	7.4	ug/Kg	2	11/15/16	CE	SW8081B
Endrin ketone	ND	7.4	7.4	ug/Kg	2	11/15/16	CE	SW8081B
g-BHC	ND	1.5	1.5	ug/Kg	2	11/15/16	CE	SW8081B
g-Chlordane	ND	3.7	3.7	ug/Kg	2	11/15/16	CE	SW8081B
Heptachlor	ND	7.4	7.4	ug/Kg	2	11/15/16	CE	SW8081B
Heptachlor epoxide	ND	7.4	7.4	ug/Kg	2	11/15/16	CE	SW8081B
Methoxychlor	ND	37	37	ug/Kg	2	11/15/16	CE	SW8081B
Toxaphene	ND	150	150	ug/Kg	2	11/15/16	CE	SW8081B
QA/QC Surrogates				0 0				
% DCBP	96			%	2	11/15/16	CE	40 - 140 %
% TCMX	76			%	2	11/15/16	CE	40 - 140 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	4.7	0.93	ug/Kg	1	11/13/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	4.7	0.47	ug/Kg	1	11/13/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	4.7	0.93	ug/Kg	1	11/13/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	4.7	0.93	ug/Kg	1	11/13/16	JLI	SW8260C
1,1-Dichloroethane	ND	4.7	0.93	ug/Kg	1	11/13/16	JLI	SW8260C

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
	ND	4.7	0.47	ug/Kg		11/13/16	JLI	SW8260C
1,1-Dichloroethene	ND	4.7	0.47	ug/Kg ug/Kg	1 1	11/13/16	JLI	SW8260C SW8260C
1,1-Dichloropropene 1,2,3-Trichlorobenzene	ND	4.7	0.47	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	4.7	0.93	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	4.7	0.47	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	4.7	0.93	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	4.7	0.47	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dibromoethane	ND	4.7	0.33	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	4.7	0.47	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dichloroethane	ND	4.7	0.47	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dichloropropane	ND	4.7	0.93	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
	ND	4.7	0.93	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	4.7	0.47	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	4.7	0.47	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
1,3-Dichloropropane	ND	4.7	0.93	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	4.7	0.47	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
2,2-Dichloropropane	ND	4.7	0.47	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
2-Chlorotoluene	ND	23	4.7	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
2-Hexanone	ND	4.7	0.47	ug/Kg ug/Kg		11/13/16	JLI	SW8260C 1
2-Isopropyltoluene	ND	4.7	0.47	ug/Kg ug/Kg	1 1	11/13/16	JLI	SW8260C SW8260C
4-Chlorotoluene	ND	23	4.7		1	11/13/16	JLI	SW8260C SW8260C
4-Methyl-2-pentanone	ND	23	4.7	ug/Kg	1	11/13/16	JLI	SW8260C
Acetone				ug/Kg				
Acrylonitrile	ND ND	9.3 4.7	0.93	ug/Kg	1	11/13/16	JLI	SW8260C
Benzene	ND	4.7	0.47 0.47	ug/Kg ug/Kg	1	11/13/16 11/13/16	JLI JLI	SW8260C SW8260C
Bromobenzene	ND	4.7 4.7	0.47	ug/Kg ug/Kg	1 1	11/13/16	JLI	SW8260C SW8260C
Bromochloromethane	ND	4.7	0.47	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C SW8260C
Bromodichloromethane	ND	4.7 4.7	0.93	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C SW8260C
Bromoform Bromomethane	ND	4.7	1.9	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C SW8260C
Carbon Disulfide	ND	4.7	0.93	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
Carbon tetrachloride	ND	4.7	0.93	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
Chlorobenzene	ND	4.7	0.93	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
Chloroethane	ND	4.7	0.47	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
•	ND	4.7	0.47	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
Chloroform Chloromethane	ND	4.7	0.47	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	4.7	0.93	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
	ND	4.7	0.47	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
cis-1,3-Dichloropropene Dibromochloromethane	ND	4.7	0.47	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
Dibromomethane	ND	4.7	0.93	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
Dichlorodifluoromethane	ND	4.7	0.93	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
	ND	4.7	0.47	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
Ethylbenzene Hexachlorobutadiene	ND	4.7	0.47	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
	ND	4.7	0.47	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
Isopropylbenzene m&p-Xylene	ND	4.7 4.7	0.47	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C SW8260C
	ND	28	4.7	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	9.3	0.93	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C SW8260C
Methyl t-butyl ether (MTBE)	ND ND	9.3 4.7	0.93 4.7	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C SW8260C
Methylene chloride	ND	4.7 4.7	0.93	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C SW8260C
Naphthalene n-Butylbenzene	ND ND	4.7	0.93	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C SW8260C
n-butylbenzene	ND	7.1	0.47	ug/Ng	ı	11/13/10	JLI	31102000

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
n-Propylbenzene	ND	4.7	0.93	ug/Kg	1	11/13/16	JLI	SW8260C	
o-Xylene	ND	4.7	0.93	ug/Kg	1	11/13/16	JLI	SW8260C	
p-Isopropyltoluene	ND	4.7	0.47	ug/Kg	1	11/13/16	JLI	SW8260C	
sec-Butylbenzene	ND	4.7	0.47	ug/Kg	1	11/13/16	JLI	SW8260C	
Styrene	ND	4.7	0.47	ug/Kg	1	11/13/16	JLI	SW8260C	
tert-Butylbenzene	ND	4.7	0.47	ug/Kg	1	11/13/16	JLI	SW8260C	
Tetrachloroethene	ND	4.7	0.93	ug/Kg	1	11/13/16	JLI	SW8260C	
Tetrahydrofuran (THF)	ND	9.3	2.3	ug/Kg	1	11/13/16	JLI	SW8260C	1
Toluene	ND	4.7	0.47	ug/Kg	1	11/13/16	JLI	SW8260C	
trans-1,2-Dichloroethene	ND	4.7	0.47	ug/Kg	1	11/13/16	JLI	SW8260C	
trans-1,3-Dichloropropene	ND	4.7	0.47	ug/Kg	1	11/13/16	JLI	SW8260C	
trans-1,4-dichloro-2-butene	ND	9.3	2.3	ug/Kg	1	11/13/16	JLI	SW8260C	
Trichloroethene	ND	4.7	0.47	ug/Kg	1	11/13/16	JLI	SW8260C	
Trichlorofluoromethane	ND	4.7	0.93	ug/Kg	1	11/13/16	JLI	SW8260C	
Trichlorotrifluoroethane	ND	4.7	0.47	ug/Kg	1	11/13/16	JLI	SW8260C	
Vinyl chloride	ND	4.7	0.47	ug/Kg	1	11/13/16	JLI	SW8260C	
QA/QC Surrogates									
% 1,2-dichlorobenzene-d4	100			%	1	11/13/16	JLI	70 - 130 %	
% Bromofluorobenzene	99			%	1	11/13/16	JLI	70 - 130 %	
% Dibromofluoromethane	96			%	1	11/13/16	JLI	70 - 130 %	
% Toluene-d8	101			%	1	11/13/16	JLI	70 - 130 %	
1,4-dioxane									
1,4-dioxane	ND	70	37	ug/kg	1	11/13/16	JLI	SW8260C	
QA/QC Surrogates									
% 1,2-dichlorobenzene-d4	100			%	1	11/13/16	JLI	70 - 130 %	
% Bromofluorobenzene	99			%	1	11/13/16	JLI	70 - 130 %	
% Toluene-d8	101			%	1	11/13/16	JLI	70 - 130 %	
<u>Volatiles</u>									
1,1,1,2-Tetrachloroethane	ND	19	0.93	ug/Kg	1	11/13/16	JLI	SW8260C	
Acrolein	ND	19	2.3	ug/Kg	1	11/13/16	JLI	SW8260C	
Acrylonitrile	ND	19	0.47	ug/Kg	1	11/13/16	JLI	SW8260C	
Tert-butyl alcohol	ND	93	19	ug/Kg	1	11/13/16	JLI	SW8260C	
<u>Semivolatiles</u>									
1,2,4,5-Tetrachlorobenzene	ND	260	130	ug/Kg	1	11/12/16	DD	SW8270D	
1,2,4-Trichlorobenzene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D	
1,2-Dichlorobenzene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D	
1,2-Diphenylhydrazine	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D	
1,3-Dichlorobenzene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D	
1,4-Dichlorobenzene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D	
2,4,5-Trichlorophenol	ND	260	210	ug/Kg	1	11/12/16	DD	SW8270D	
2,4,6-Trichlorophenol	ND	190	120	ug/Kg	1	11/12/16	DD	SW8270D	
2,4-Dichlorophenol	ND	190	130	ug/Kg	1	11/12/16	DD	SW8270D	
2,4-Dimethylphenol	ND	260	93	ug/Kg	1	11/12/16	DD	SW8270D	
2,4-Dinitrophenol	ND	260	260	ug/Kg	1	11/12/16	DD	SW8270D	
2,4-Dinitrotoluene	ND	190	150	ug/Kg	1	11/12/16	DD	SW8270D	
2,6-Dinitrotoluene	ND	190	120	ug/Kg	1	11/12/16	DD	SW8270D	
2-Chloronaphthalene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D	

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
2-Chlorophenol	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
2-Methylnaphthalene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	260	180	ug/Kg	1	11/12/16	DD	SW8270D
2-Nitroaniline	ND	260	260	ug/Kg	1	11/12/16	DD	SW8270D
2-Nitrophenol	ND	260	240	ug/Kg	1	11/12/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	260	150	ug/Kg	1	11/12/16	DD	SW8270D 1
3,3'-Dichlorobenzidine	ND	190	180	ug/Kg	1	11/12/16	DD	SW8270D
3-Nitroaniline	ND	380	750	ug/Kg	1	11/12/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	230	75	ug/Kg	1	11/12/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	260	130	ug/Kg	1	11/12/16	DD	SW8270D
4-Chloroaniline	ND	300	180	ug/Kg	1	11/12/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	260	130	ug/Kg	1	11/12/16	DD	SW8270D
4-Nitroaniline	ND	380	130	ug/Kg	1	11/12/16	DD	SW8270D
4-Nitrophenol	ND	380	170	ug/Kg	1	11/12/16	DD	SW8270D
Acenaphthene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
Acenaphthylene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
Acetophenone	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Aniline	ND	300	300	ug/Kg	1	11/12/16	DD	SW8270D
Anthracene	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Benz(a)anthracene	ND	260	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzidine	ND	380	220	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(a)pyrene	ND	190	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(b)fluoranthene	ND	260	130	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(ghi)perylene	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzo(k)fluoranthene	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Benzoic acid	ND	1900	750	ug/Kg	1	11/12/16	DD	SW8270D 1
Benzyl butyl phthalate	ND	260	97	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	260	100	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	190	100	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	260	100	ug/Kg	1	11/12/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
Carbazole	ND	190	150	ug/Kg	1	11/12/16	DD	SW8270D
Chrysene	ND	260	130	ug/Kg	1	11/12/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	190	120	ug/Kg	1	11/12/16	DD	SW8270D
Dibenzofuran	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
Diethyl phthalate	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Dimethylphthalate	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Di-n-butylphthalate	ND	260	100	ug/Kg	1	11/12/16	DD	SW8270D
Di-n-octylphthalate	ND	260	97	ug/Kg	1	11/12/16	DD	SW8270D
Fluoranthene	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Fluorene	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorobenzene	ND	190	110	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorobutadiene	ND	260	140	ug/Kg	1	11/12/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Hexachloroethane	ND	190	110	ug/Kg	1	11/12/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Isophorone	ND	190	110	ug/Kg	1	11/12/16	DD	SW8270D
Naphthalene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D

Project ID: 1181 FLUSHING AVENUE BROOKLYN NY

Client ID: SOIL DUPLICATE

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Nitrobenzene	ND	190	130	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodimethylamine	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	190	120	ug/Kg	1	11/12/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	260	140	ug/Kg	1	11/12/16	DD	SW8270D
Pentachloronitrobenzene	ND	260	140	ug/Kg	1	11/12/16	DD	SW8270D
Pentachlorophenol	ND	230	140	ug/Kg	1	11/12/16	DD	SW8270D
Phenanthrene	ND	260	110	ug/Kg	1	11/12/16	DD	SW8270D
Phenol	ND	260	120	ug/Kg	1	11/12/16	DD	SW8270D
Pyrene	ND	260	130	ug/Kg	1	11/12/16	DD	SW8270D
Pyridine	ND	260	93	ug/Kg	1	11/12/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	86			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorobiphenyl	65			%	1	11/12/16	DD	30 - 130 %
% 2-Fluorophenol	53			%	1	11/12/16	DD	30 - 130 %
% Nitrobenzene-d5	64			%	1	11/12/16	DD	30 - 130 %
% Phenol-d5	65			%	1	11/12/16	DD	30 - 130 %
% Terphenyl-d14	77			%	1	11/12/16	DD	30 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2016

Reviewed and Released by: Jon Carlson, Project Manager

Phoenix I.D.: BV81851

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

P.O.#:

November 28, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOIL Collected by: TG 11/10/16

Location Code: EBC Received by: SW 11/11/16 18:03

Rush Request: 72 Hour Analyzed by: see "By" below

<u>Laboratory Data</u> SDG ID: GBV81835

Phoenix ID: BV81852

Project ID: 1181 FLUSHING AVENUE BROOKLYN NY

Client ID: TRIP BLANK HIGH

RL/ LOD/

Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Field Extraction	Completed					11/10/16		SW5035A
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	250	50	ug/Kg	50	11/13/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	250	25	ug/Kg	50	11/13/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	250	50	ug/Kg	50	11/13/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	250	50	ug/Kg	50	11/13/16	JLI	SW8260C
1,1-Dichloroethane	ND	250	50	ug/Kg	50	11/13/16	JLI	SW8260C
1,1-Dichloroethene	ND	250	25	ug/Kg	50	11/13/16	JLI	SW8260C
1,1-Dichloropropene	ND	250	25	ug/Kg	50	11/13/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	250	50	ug/Kg	50	11/13/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	250	25	ug/Kg	50	11/13/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	250	50	ug/Kg	50	11/13/16	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	250	25	ug/Kg	50	11/13/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	250	50	ug/Kg	50	11/13/16	JLI	SW8260C
1,2-Dibromoethane	ND	250	25	ug/Kg	50	11/13/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	250	25	ug/Kg	50	11/13/16	JLI	SW8260C
1,2-Dichloroethane	ND	25	25	ug/Kg	50	11/13/16	JLI	SW8260C
1,2-Dichloropropane	ND	250	50	ug/Kg	50	11/13/16	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	250	25	ug/Kg	50	11/13/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	250	25	ug/Kg	50	11/13/16	JLI	SW8260C
1,3-Dichloropropane	ND	250	50	ug/Kg	50	11/13/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	250	25	ug/Kg	50	11/13/16	JLI	SW8260C
2,2-Dichloropropane	ND	250	25	ug/Kg	50	11/13/16	JLI	SW8260C
2-Chlorotoluene	ND	250	50	ug/Kg	50	11/13/16	JLI	SW8260C
2-Hexanone	ND	1300	250	ug/Kg	50	11/13/16	JLI	SW8260C
2-Isopropyltoluene	ND	250	25	ug/Kg	50	11/13/16	JLI	SW8260C 1
4-Chlorotoluene	ND	250	25	ug/Kg	50	11/13/16	JLI	SW8260C

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
4-Methyl-2-pentanone	ND	1300	250	ug/Kg	50	11/13/16	JLI	SW8260C
Acetone	ND	250	250	ug/Kg	50	11/13/16	JLI	SW8260C
Acrylonitrile	ND	500	50	ug/Kg	50	11/13/16	JLI	SW8260C
Benzene	ND	60	25	ug/Kg	50	11/13/16	JLI	SW8260C
Bromobenzene	ND	250	25	ug/Kg	50	11/13/16	JLI	SW8260C
Bromochloromethane	ND	250	25	ug/Kg	50	11/13/16	JLI	SW8260C
Bromodichloromethane	ND	250	50	ug/Kg	50	11/13/16	JLI	SW8260C
Bromoform	ND	250	50	ug/Kg	50	11/13/16	JLI	SW8260C
Bromomethane	ND	250	100	ug/Kg	50	11/13/16	JLI	SW8260C
Carbon Disulfide	ND	250	50	ug/Kg	50	11/13/16	JLI	SW8260C
Carbon tetrachloride	ND	250	50	ug/Kg	50	11/13/16	JLI	SW8260C
Chlorobenzene	ND	250	25	ug/Kg	50	11/13/16	JLI	SW8260C
Chloroethane	ND	250	25	ug/Kg	50	11/13/16	JLI	SW8260C
Chloroform	ND	250	25	ug/Kg	50	11/13/16	JLI	SW8260C
Chloromethane	ND	250	50	ug/Kg	50	11/13/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	250	25	ug/Kg	50	11/13/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	250	25	ug/Kg	50	11/13/16	JLI	SW8260C
Dibromochloromethane	ND	250	50	ug/Kg	50	11/13/16	JLI	SW8260C
Dibromomethane	ND	250	50	ug/Kg	50	11/13/16	JLI	SW8260C
Dichlorodifluoromethane	ND	250	25	ug/Kg	50	11/13/16	JLI	SW8260C
Ethylbenzene	ND	250	25	ug/Kg	50	11/13/16	JLI	SW8260C
Hexachlorobutadiene	ND	250	25	ug/Kg	50	11/13/16	JLI	SW8260C
Isopropylbenzene	ND	250	25	ug/Kg	50	11/13/16	JLI	SW8260C
m&p-Xylene	ND	250	50	ug/Kg	50	11/13/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	250	250	ug/Kg	50	11/13/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	500	50	ug/Kg	50	11/13/16	JLI	SW8260C
Methylene chloride	ND	250	250	ug/Kg	50	11/13/16	JLI	SW8260C
Naphthalene	ND	250	50	ug/Kg	50	11/13/16	JLI	SW8260C
n-Butylbenzene	ND	250	25	ug/Kg	50	11/13/16	JLI	SW8260C
n-Propylbenzene	ND	250	50	ug/Kg	50	11/13/16	JLI	SW8260C
o-Xylene	ND	250	50	ug/Kg	50	11/13/16	JLI	SW8260C
p-Isopropyltoluene	ND	250	25	ug/Kg	50	11/13/16	JLI	SW8260C
sec-Butylbenzene	ND	250	25	ug/Kg	50	11/13/16	JLI	SW8260C
Styrene	ND	250	25	ug/Kg	50	11/13/16	JLI	SW8260C
tert-Butylbenzene	ND	250	25	ug/Kg	50	11/13/16	JLI	SW8260C
Tetrachloroethene	ND	250	50	ug/Kg	50	11/13/16	JLI	SW8260C
Tetrahydrofuran (THF)	ND	500	130	ug/Kg	50	11/13/16	JLI	SW8260C 1
Toluene	ND	250	25	ug/Kg	50	11/13/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	190	25	ug/Kg	50	11/13/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	250	25	ug/Kg	50	11/13/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	500	130	ug/Kg	50	11/13/16	JLI	SW8260C
Trichloroethene	ND	250	25	ug/Kg	50	11/13/16	JLI	SW8260C
Trichlorofluoromethane	ND	250	50	ug/Kg	50	11/13/16	JLI	SW8260C
	ND	250	25	ug/Kg	50	11/13/16	JLI	SW8260C
Trichlorotrifluoroethane Vinyl chloride	ND	250	25 25	ug/Kg ug/Kg	50	11/13/16	JLI	SW8260C
•	טאו	20	20	ug/rtg	30	11/13/10	JLI	J 7 7 0 2 0 0 C
QA/QC Surrogates	98			%	50	11/13/16	JLI	70 - 130 %
% 1,2-dichlorobenzene-d4	98 100			%	50 50	11/13/16	JLI	70 - 130 % 70 - 130 %
% Bromofluorobenzene								
% Dibromofluoromethane	94			%	50	11/13/16	JLI	70 - 130 %

Phoenix I.D.: BV81852

Project ID: 1181 FLUSHING AVENUE BROOKLYN NY

Client ID: TRIP BLANK HIGH

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	100			%	50	11/13/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	2000	2000	ug/kg	50	11/13/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	98			%	50	11/13/16	JLI	70 - 130 %
% Bromofluorobenzene	100			%	50	11/13/16	JLI	70 - 130 %
% Toluene-d8	100			%	50	11/13/16	JLI	70 - 130 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	1000	50	ug/Kg	50	11/13/16	JLI	SW8260C
Acrolein	ND	1000	130	ug/Kg	50	11/13/16	JLI	SW8260C
Acrylonitrile	ND	1000	25	ug/Kg	50	11/13/16	JLI	SW8260C
Tert-butyl alcohol	ND	5000	1000	ug/Kg	50	11/13/16	JLI	SW8260C

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TRIP BLANK INCLUDED.

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2016

Reviewed and Released by: Jon Carlson, Project Manager

Phoenix I.D.: BV81852

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOIL Collected by: TG 11/10/16

Location Code: EBC Received by: SW 11/11/16 18:03

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV81835

Phoenix ID: BV81853

Project ID: 1181 FLUSHING AVENUE BROOKLYN NY

Client ID: TRIP BLANK LOW

RL/ LOD/

Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Field Extraction	Completed					11/10/16		SW5035A
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	5.0	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
1,1,1-Trichloroethane	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	5.0	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	5.0	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
1,1-Dichloroethane	ND	5.0	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
1,1-Dichloroethene	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
1,1-Dichloropropene	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	5.0	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,3-Trichloropropane	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	5.0	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dibromoethane	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dichloroethane	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
1,2-Dichloropropane	ND	5.0	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
1,3-Dichloropropane	ND	5.0	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
2,2-Dichloropropane	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
2-Chlorotoluene	ND	5.0	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
2-Hexanone	ND	25	5.0	ug/Kg	1	11/13/16	JLI	SW8260C
2-Isopropyltoluene	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C 1
4-Chlorotoluene	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
4-Methyl-2-pentanone	ND	25	5.0	ug/Kg	1	11/13/16	JLI	SW8260C
Acetone	ND	25	5.0	ug/Kg	1	11/13/16	JLI	SW8260C
Acrylonitrile	ND	10	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
Benzene	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
Bromobenzene	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
Bromochloromethane	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
Bromodichloromethane	ND	5.0	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
Bromoform	ND	5.0	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
Bromomethane	ND	5.0	2.0	ug/Kg	1	11/13/16	JLI	SW8260C
Carbon Disulfide	ND	5.0	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
Carbon tetrachloride	ND	5.0	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
Chlorobenzene	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
Chloroethane	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
Chloroform	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
Chloromethane	ND	5.0	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
Dibromochloromethane	ND	5.0	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
Dibromomethane	ND	5.0	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
Dichlorodifluoromethane	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
Ethylbenzene	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
Hexachlorobutadiene	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
Isopropylbenzene	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
m&p-Xylene	ND	5.0	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
Methyl Ethyl Ketone	ND	30	5.0	ug/Kg	1	11/13/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	10	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
Methylene chloride	ND	5.0	5.0	ug/Kg	1	11/13/16	JLI	SW8260C
Naphthalene	ND	5.0	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
n-Butylbenzene	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
n-Propylbenzene	ND	5.0	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
o-Xylene	ND	5.0	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
p-Isopropyltoluene	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
	ND	5.0	0.50	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
sec-Butylbenzene	ND	5.0	0.50	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
Styrene tart Butulbanzana	ND	5.0	0.50	ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
tert-Butylbenzene Tetrachloroethene	ND	5.0		ug/Kg ug/Kg	1	11/13/16	JLI	SW8260C
	ND	10	1.0 2.5		1	11/13/16	JLI	SW8260C
Tetrahydrofuran (THF)				ug/Kg				SW8260C SW8260C
Toluene	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	
trans-1,2-Dichloroethene	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	10	2.5	ug/Kg	1	11/13/16	JLI	SW8260C
Trichloroethene	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
Trichlorofluoromethane	ND	5.0	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
Vinyl chloride	ND	5.0	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
QA/QC Surrogates				2.	_	441.51.5		70 400 01
% 1,2-dichlorobenzene-d4	100			%	1	11/13/16	JLI	70 - 130 %
% Bromofluorobenzene	99			%	1	11/13/16	JLI 	70 - 130 %
% Dibromofluoromethane	96			%	1	11/13/16	JLI	70 - 130 %

Phoenix I.D.: BV81853

Project ID: 1181 FLUSHING AVENUE BROOKLYN NY

Client ID: TRIP BLANK LOW

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	100			%	1	11/13/16	JLI	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	75	40	ug/kg	1	11/13/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	100			%	1	11/13/16	JLI	70 - 130 %
% Bromofluorobenzene	99			%	1	11/13/16	JLI	70 - 130 %
% Toluene-d8	100			%	1	11/13/16	JLI	70 - 130 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	20	1.0	ug/Kg	1	11/13/16	JLI	SW8260C
Acrolein	ND	20	2.5	ug/Kg	1	11/13/16	JLI	SW8260C
Acrylonitrile	ND	20	0.50	ug/Kg	1	11/13/16	JLI	SW8260C
Tert-butyl alcohol	ND	100	20	ug/Kg	1	11/13/16	JLI	SW8260C

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TRIP BLANK INCLUDED.

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2016

Reviewed and Released by: Jon Carlson, Project Manager

Phoenix I.D.: BV81853

SDG I.D.: GBV81835

95.2

QA/QC Report

November 28, 2016

QA/QC Data

% LCS **LCSD** LCS MS **MSD** MS Rec **RPD** Sample Dup Dup Blank **RPD** RΙ Result Result **RPD** % % **RPD** % % Limits Limits Parameter QA/QC Batch 366615 (mg/kg), QC Sample No: BV80886 (BV81835, BV81836, BV81837, BV81838, BV81839, BV81840, BV81841, BV81842) Mercury - Soil **BRL** 0.03 0.78 NC 92.4 87.2 5.8 107 75 - 125 QA/QC Batch 366616 (mg/kg), QC Sample No: BV80887 (BV81843, BV81844, BV81845, BV81846, BV81847, BV81848, BV81849, BV81850, BV81851) Mercury - Soil **BRL** 0.03 0.52 0.59 12.6 98.5 96.0 103 QA/QC Batch 366700 (mg/kg), QC Sample No: BV81940 (BV81835, BV81836, BV81837, BV81838, BV81839, BV81840, BV81841, BV81842, BV81843, BV81844, BV81845, BV81846, BV81847, BV81848, BV81849, BV81850, BV81851) ICP Metals - Soil BRL 5.0 3970 3830 91.3 NC Aluminum 3.60 80 - 120 30 **Antimony** BRL 3.3 < 3.5 <4.0 NC 99.8 88.9 70 - 130 30 NC Arsenic BRL 0.67 0.77 < 0.79 87.7 85.1 80 - 120 30 BRL 0.33 51.9 44.6 15.1 88.9 98.6 **Barium** 80 - 120 30 Beryllium **BRL** 0.27 0.17 < 0.32 NC 93.5 93.6 80 - 120 30 BRL 0.33 < 0.35 < 0.40 NC 87.4 90.0 Cadmium 80 - 120 30 Calcium BRL 5.0 650 652 0.30 92.8 122 80 - 120 30 Chromium BRL 0.33 9.34 9.00 3.70 96.5 94.3 80 - 120 30 BRL 0.33 2.79 2.40 15.0 95.6 95.2 Cobalt 80 - 120 30 BRL 0.33 2.97 2.20 29.8 83.8 96.0 Copper 80 - 120 30 4280 Iron **BRL** 5.0 4530 5.70 93.1 NC 80 - 120 30 95.9 **BRL** 0.33 1.9 2.44 NC 93.1 Lead 80 - 120 30 BRL 5.0 898 694 25.6 98.2 NC 80 - 120 30 Magnesium Manganese **BRL** 0.33 35.9 32.4 10.2 86.3 93.8 80 - 120 30 Nickel BRL 0.33 5.29 4.32 20.2 98.8 95.7 80 - 120 30 Potassium **BRL** 5.0 316 281 11.7 103 >130 80 - 120 30 m BRL NC 91.9 Selenium 1.3 76.2 < 1.4 < 1.6 80 - 120 30 Silver BRL 0.33 < 0.35 < 0.40 NC 90.6 89.0 70 - 130 30 Sodium BRL 5.0 131 134 2.30 103 121 80 - 120 30 Thallium BRL 3.0 <3.2 <3.6 NC 95.9 93.6 80 - 120 30 BRL 0.33 9.76 Vanadium 10.0 2.40 102 96.7 80 - 120 30

BRL

0.33

18.4

17.3

6.20

92.8

Zinc

80 - 120

30

I = This parameter is outside laboratory LCS/LCSD specified recovery limits.

m = This parameter is outside laboratory MS/MSD specified recovery limits.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG I.D.: GBV81835

QA/QC Report

November 28, 2016

QA/QC Data

14010111201 20, 2011	•						3001	.D C	ייטעכונ	,,,,	
Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 366775 (ug/kg),	OC Sami	ple No: BV78555 (BV81845)									
Volatiles - Soil	20 04	p.o. 1.o. 2 1 / 0000 (2 1 0 1 0 1 o,									
1,1,1,2-Tetrachloroethane	ND	5.0	101	110	8.5	106	110	3.7	70 - 130	30	
1,1,1-Trichloroethane	ND	5.0	89	94	5.5	98	99	1.0	70 - 130	30	
1,1,2,2-Tetrachloroethane	ND	3.0	95	101	6.1	102	102	0.0	70 - 130	30	
1,1,2-Trichloroethane	ND	5.0	90	95	5.4	98	98	0.0	70 - 130	30	
1,1-Dichloroethane	ND	5.0	86	92	6.7	100	97	3.0	70 - 130	30	
1,1-Dichloroethene	ND	5.0	93	98	5.2	76	74	2.7	70 - 130	30	
1,1-Dichloropropene	ND	5.0	92	97	5.3	101	101	0.0	70 - 130	30	
1,2,3-Trichlorobenzene	ND	5.0	91	82	10.4	102	107	4.8	70 - 130	30	
1,2,3-Trichloropropane	ND	5.0	91	99	8.4	99	100	1.0	70 - 130	30	
1,2,4-Trichlorobenzene	ND	5.0	95	93	2.1	101	106	4.8	70 - 130	30	
1,2,4-Trimethylbenzene	ND	1.0	95	98	3.1	103	104	1.0	70 - 130	30	
1,2-Dibromo-3-chloropropane	ND	5.0	95	104	9.0	97	101	4.0	70 - 130	30	
1,2-Dibromoethane	ND	5.0	96	102	6.1	103	104	1.0	70 - 130	30	
1,2-Dichlorobenzene	ND	5.0	92	96	4.3	101	102	1.0	70 - 130	30	
1,2-Dichloroethane	ND	5.0	93	97	4.2	101	102	1.0	70 - 130	30	
1,2-Dichloropropane	ND	5.0	92	97	5.3	100	100	0.0	70 - 130	30	
1,3,5-Trimethylbenzene	ND	1.0	96	100	4.1	106	107	0.9	70 - 130	30	
1,3-Dichlorobenzene	ND	5.0	94	97	3.1	102	103	1.0	70 - 130	30	
1,3-Dichloropropane	ND	5.0	94	101	7.2	103	103	0.0	70 - 130	30	
1,4-Dichlorobenzene	ND	5.0	94	96	2.1	101	102	1.0	70 - 130	30	
1,4-dioxane	ND	100	87	94	7.7	106	106	0.0	70 - 130	30	
2,2-Dichloropropane	ND	5.0	95	100	5.1	103	103	0.0	70 - 130	30	
2-Chlorotoluene	ND	5.0	95	100	5.1	104	105	1.0	70 - 130	30	
2-Hexanone	ND	25	77	84	8.7	86	85	1.2	70 - 130	30	
2-Isopropyltoluene	ND	5.0	93	97	4.2	105	105	0.0	70 - 130	30	
4-Chlorotoluene	ND	5.0	92	96	4.3	100	101	1.0	70 - 130	30	
4-Methyl-2-pentanone	ND	25	79	83	4.9	88	87	1.1	70 - 130	30	
Acetone	ND	10	66	69	4.4	63	58	8.3	70 - 130	30	I,m
Acrolein	ND	25	105	113	7.3	91	89	2.2	70 - 130	30	
Acrylonitrile	ND	5.0	78	84	7.4	102	102	0.0	70 - 130	30	
Benzene	ND	1.0	92	97	5.3	101	100	1.0	70 - 130	30	
Bromobenzene	ND	5.0	94	99	5.2	100	103	3.0	70 - 130	30	
Bromochloromethane	ND	5.0	91	96	5.3	100	100	0.0	70 - 130	30	
Bromodichloromethane	ND	5.0	97	101	4.0	102	104	1.9	70 - 130	30	
Bromoform	ND	5.0	103	110	6.6	103	107	3.8	70 - 130	30	
Bromomethane	ND	5.0	92	83	10.3	69	75	8.3	70 - 130	30	m
Carbon Disulfide	ND	5.0	102	109	6.6	80	80	0.0	70 - 130	30	
Carbon tetrachloride	ND	5.0	96	104	8.0	98	103	5.0	70 - 130	30	
Chlorobenzene	ND	5.0	94	99	5.2	103	104	1.0	70 - 130	30	
Chloroethane	ND	5.0	90	92	2.2	40	41	2.5	70 - 130	30	m
Chloroform	ND	5.0	89	94	5.5	100	100	0.0	70 - 130	30	

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Chloromethane	ND	5.0	85	93	9.0	95	94	1.1	70 - 130	30	
cis-1,2-Dichloroethene	ND	5.0	91	96	5.3	101	101	0.0	70 - 130	30	
cis-1,3-Dichloropropene	ND	5.0	95	100	5.1	101	101	0.0	70 - 130	30	
Dibromochloromethane	ND	3.0	105	114	8.2	108	111	2.7	70 - 130	30	
Dibromomethane	ND	5.0	91	95	4.3	99	99	0.0	70 - 130	30	
Dichlorodifluoromethane	ND	5.0	103	108	4.7	114	115	0.9	70 - 130	30	
Ethylbenzene	ND	1.0	95	102	7.1	107	108	0.9	70 - 130	30	
Hexachlorobutadiene	ND	5.0	93	84	10.2	106	107	0.9	70 - 130	30	
Isopropylbenzene	ND	1.0	94	102	8.2	105	107	1.9	70 - 130	30	
m&p-Xylene	ND	2.0	95	103	8.1	104	104	0.0	70 - 130	30	
Methyl ethyl ketone	ND	5.0	71	72	1.4	77	78	1.3	70 - 130	30	
Methyl t-butyl ether (MTBE)	ND	1.0	96	101	5.1	105	105	0.0	70 - 130	30	
Methylene chloride	ND	5.0	92	98	6.3	98	98	0.0	70 - 130	30	
Naphthalene	ND	5.0	97	92	5.3	103	112	8.4	70 - 130	30	
n-Butylbenzene	ND	1.0	99	101	2.0	109	110	0.9	70 - 130	30	
n-Propylbenzene	ND	1.0	92	98	6.3	103	103	0.0	70 - 130	30	
	ND	2.0	95	101	6.1	106	107	0.9	70 - 130	30	
p-Isopropyltoluene	ND	1.0	96	100	4.1	108	109	0.9	70 - 130	30	
sec-Butylbenzene	ND	1.0	100	105	4.9	112	113	0.9	70 - 130	30	
Styrene	ND	5.0	98	104	5.9	106	109	2.8	70 - 130	30	
tert-butyl alcohol	ND	100	86	94	8.9	100	101	1.0	70 - 130	30	
tert-Butylbenzene	ND	1.0	93	99	6.3	104	106	1.9	70 - 130	30	
Tetrachloroethene	ND	5.0	93	96	3.2	101	100	1.0	70 - 130	30	
	ND	5.0	82	85	3.6	93	92	1.1	70 - 130	30	
-	ND	1.0	92	96	4.3	102	101	1.0	70 - 130	30	
trans-1,2-Dichloroethene	ND	5.0	97	102	5.0	103	104	1.0	70 - 130	30	
	ND	5.0	95	100	5.1	101	102	1.0	70 - 130	30	
trans-1,4-dichloro-2-butene	ND	5.0	98	106	7.8	104	104	0.0	70 - 130	30	
Trichloroethene	ND	5.0	95	98	3.1	104	103	1.0	70 - 130	30	
	ND	5.0	86	91	5.6	27	27	0.0	70 - 130	30	m
Trichlorotrifluoroethane	ND	5.0	97	101	4.0	83	83	0.0	70 - 130	30	
Vinyl chloride	ND	5.0	90	97	7.5	100	101	1.0	70 - 130	30	
% 1,2-dichlorobenzene-d4	99	%	99	100	1.0	99	99	0.0	70 - 130	30	
% Bromofluorobenzene	99	%	100	101	1.0	102	102	0.0	70 - 130	30	
% Dibromofluoromethane	96	%	99	98	1.0	95	96	1.0	70 - 130	30	
	100	%	100	100	0.0	100	99	1.0	70 - 130	30	
QA/QC Batch 366544 (ug/Kg), QC Pesticides - Soil	Sam	ple No: BV81728 2X (BV81835,					89, BV8 ²	1840, E	3V81842	2)	
	ND	1.7	44,	400	10.0			4 -	40 ::-	0.0	
	ND	1.7	116	102	12.8	68	65	4.5	40 - 140	30	
4,4' -DDE	ND	1.7	111	97	13.5	63	67	6.2	40 - 140	30	
4,4' -DDT	ND	1.7	116	102	12.8	67	61	9.4	40 - 140	30	
a-BHC	ND	1.0	99	89	10.6	68	57	17.6	40 - 140	30	
a-Chlordane	ND	3.3	103	91	12.4	59	61	3.3	40 - 140	30	
Aldrin	ND	1.0	103	90	13.5	64	62	3.2	40 - 140	30	
b-BHC	ND	1.0	99	88	11.8	85	81	4.8	40 - 140	30	
Chlordane	ND	33	107	93	14.0	59	57	3.4	40 - 140	30	
d-BHC	ND	3.3	109	100	8.6	76	71	6.8	40 - 140	30	
	ND	1.0	115	101	13.0	68	61	10.9	40 - 140	30	
Endosulfan I	ND	3.3	113	100	12.2	64	65	1.6	40 - 140	30	
	ND	3.3	118	104	12.6	69	62	10.7	40 - 140	30	
	ND	3.3	120	115	4.3	67	62	7.8	40 - 140	30	
Endrin	ND	3.3	116	103	11.9	74	75	1.3	40 - 140	30	

QA/QC Data SDG I.D.: GBV81835

									%	%
Parameter	Blank	BIk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	Rec Limits	RPD Limits
Endrin aldehyde	ND	3.3	100	88	12.8	65	61	6.3	40 - 140	30
Endrin ketone	ND	3.3	118	103	13.6	72	67	7.2	40 - 140	30
g-BHC	ND	1.0	102	90	12.5	70	68	2.9	40 - 140	30
g-Chlordane	ND	3.3	107	93	14.0	59	57	3.4	40 - 140	30
Heptachlor	ND	3.3	108	100	7.7	78	64	19.7	40 - 140	30
Heptachlor epoxide	ND	3.3	111	100	10.4	70	60	15.4	40 - 140	30
Methoxychlor	ND	3.3	120	107	11.5	70	67	4.4	40 - 140	30
Toxaphene	ND	130	NA	NA	NC	NA	NA	NC	40 - 140	30
% DCBP	118	%	118	105	11.7	70	70	0.0	40 - 140	30
% TCMX	92	%	88	82	7.1	73	70	4.2	40 - 140	30
Comment:										
Alpha and gamma chlordane wer chlordane in the LCS, LCSD, MS		nd analyzed instead of technical ch).	lordane.	Gamma	chlordar	ie recov	ery is re	ported	as	
QA/QC Batch 366545 (ug/Kg),	QC Sam	ple No: BV81728 2X (BV81835,	BV818	36, BV8	31838, E	3V8183	39, BV8	1840, E	3V81842	2)
Polychlorinated Biphenyl										
PCB-1016	ND	33	81	70	14.6	71	61	15.2	40 - 140	30
PCB-1221	ND	33							40 - 140	30
PCB-1232	ND	33							40 - 140	30
PCB-1242	ND	33							40 - 140	30
PCB-1248	ND	33							40 - 140	30
PCB-1254	ND	33							40 - 140	30
PCB-1260	ND	33	74	72	2.7	75	56	29.0	40 - 140	30
PCB-1262	ND	33							40 - 140	30
PCB-1268	ND	33							40 - 140	30
% DCBP (Surrogate Rec)	68	%	86	83	3.6	79	61	25.7	40 - 140	30
% TCMX (Surrogate Rec)	71	%	85	83	2.4	84	71	16.8	40 - 140	30
QA/QC Batch 366678 (ug/kg), (100X), BV81846, BV81847)	QC Samp	ole No: BV81838 (BV81836, BV	81838	(1X, 50)	() , BV8	1840 (250X) ,	BV818	41, BV8	1843
Volatiles - Soil										
1,1,1,2-Tetrachloroethane	ND	5.0	96	100	4.1	108	111	2.7	70 - 130	30
1,1,1-Trichloroethane	ND	5.0	91	93	2.2	104	104	0.0	70 - 130	30
1,1,2,2-Tetrachloroethane	ND	3.0	83	88	5.8	103	103	0.0	70 - 130	30
1,1,2-Trichloroethane	ND	5.0	86	92	6.7	101	106	4.8	70 - 130	30
1,1-Dichloroethane	ND	5.0	96	98	2.1	101	101	0.0	70 - 130	30
1,1-Dichloroethene	ND	5.0	94	98	4.2	83	80	3.7	70 - 130	30
1,1-Dichloropropene	ND	5.0	93	97	4.2	106	106	0.0	70 - 130	30
1,2,3-Trichlorobenzene	ND	5.0	76	80	5.1	102	106	3.8	70 - 130	30
1,2,3-Trichloropropane	ND	5.0	82	89	8.2	102	101	1.0	70 - 130	30
1,2,4-Trichlorobenzene	ND	5.0	76	80	5.1	96	103	7.0	70 - 130	30
1,2,4-Trimethylbenzene	ND	1.0	87	92	5.6	102	104	1.9	70 - 130	30
1,2-Dibromo-3-chloropropane	ND	5.0	85	92	7.9	104	103	1.0	70 - 130	30
1,2-Dibromoethane	ND	5.0	90	95	5.4	105	105	0.0	70 - 130	30
1,2-Dichlorobenzene	ND	5.0	83	87	4.7	100	101	1.0	70 - 130	30
1,2-Dichloroethane	ND	5.0	88	94	6.6	105	105	0.0	70 - 130	30
1,2-Dichloropropane	ND	5.0	89	94	5.5	105	105	0.0	70 - 130	30
1,3,5-Trimethylbenzene	ND	1.0	89	94	5.5	104	106	1.9	70 - 130	30
1,3-Dichlorobenzene	ND	5.0	83	88	5.8	100	102	2.0	70 - 130	30
1,3-Dichloropropane	ND	5.0	88	93	5.5	104	104	0.0	70 - 130	30
1,4-Dichlorobenzene	ND	5.0	82	86	4.8	97	101	4.0	70 - 130	30
1,4-dioxane	ND	100	82	89	8.2	107	96	10.8	70 - 130	30
2,2-Dichloropropane	ND	5.0	93	97	4.2	106	108	1.9	70 - 130	30
2-Chlorotoluene	ND	5.0	88	93	5.5	105	106	0.9	70 - 130	30

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
2-Hexanone	ND	25	71	77	8.1	88	88	0.0	70 - 130	30	
2-Isopropyltoluene	ND	5.0	88	93	5.5	106	107	0.9	70 - 130	30	
4-Chlorotoluene	ND	5.0	84	88	4.7	100	102	2.0	70 - 130	30	
4-Methyl-2-pentanone	ND	25	73	79	7.9	92	93	1.1	70 - 130	30	
Acetone	ND	10	60	66	9.5	43	41	4.8	70 - 130	30	l,m
Acrolein	ND	25	90	96	6.5	101	95	6.1	70 - 130	30	
Acrylonitrile	ND	5.0	82	88	7.1	95	95	0.0	70 - 130	30	
Benzene	ND	1.0	91	95	4.3	104	105	1.0	70 - 130	30	
Bromobenzene	ND	5.0	86	90	4.5	102	103	1.0	70 - 130	30	
Bromochloromethane	ND	5.0	87	91	4.5	104	104	0.0	70 - 130	30	
Bromodichloromethane	ND	5.0	92	97	5.3	104	105	1.0	70 - 130	30	
Bromoform	ND	5.0	94	100	6.2	104	108	3.8	70 - 130	30	
Bromomethane	ND	5.0	92	92	0.0	74	81	9.0	70 - 130	30	
Carbon Disulfide	ND	5.0	101	106	4.8	86	84	2.4	70 - 130	30	
Carbon tetrachloride	ND	5.0	99	102	3.0	102	109	6.6	70 - 130	30	
Chlorobenzene	ND	5.0	89	94	5.5	104	105	1.0	70 - 130	30	
Chloroethane	ND	5.0	89	92	3.3	45	46	2.2	70 - 130	30	m
Chloroform	ND	5.0	89	92	3.3	104	105	1.0	70 - 130	30	
Chloromethane	ND	5.0	84	88	4.7	99	101	2.0	70 - 130	30	
cis-1,2-Dichloroethene	ND	5.0	90	93	3.3	106	105	0.9	70 - 130	30	
cis-1,3-Dichloropropene	ND	5.0	88	94	6.6	105	106	0.9	70 - 130	30	
Dibromochloromethane	ND	3.0	98	103	5.0	110	113	2.7	70 - 130	30	
Dibromomethane	ND	5.0	86	92	6.7	101	103	2.0	70 - 130	30	
Dichlorodifluoromethane	ND	5.0	108	113	4.5	123	124	0.8	70 - 130	30	
Ethylbenzene	ND	1.0	92	97	5.3	107	108	0.9	70 - 130	30	
Hexachlorobutadiene	ND	5.0	88	91	3.4	108	105	2.8	70 - 130	30	
Isopropylbenzene	ND	1.0	91	96	5.3	107	107	0.0	70 - 130	30	
m&p-Xylene	ND	2.0	92	95	3.2	105	108	2.8	70 - 130	30	
Methyl ethyl ketone	ND	5.0	66	71	7.3	86	81	6.0	70 - 130	30	ı
Methyl t-butyl ether (MTBE)	ND	1.0	90	95	5.4	109	109	0.0	70 - 130	30	
Methylene chloride	ND	5.0	89	92	3.3	104	103	1.0	70 - 130	30	
Naphthalene	ND	5.0	83	90	8.1	112	117	4.4	70 - 130	30	
n-Butylbenzene	ND	1.0	88	94	6.6	107	110	2.8	70 - 130	30	
n-Propylbenzene	ND	1.0	87	91	4.5	103	103	0.0	70 - 130	30	
o-Xylene	ND	2.0	91	95	4.3	107	107	0.0	70 - 130	30	
p-Isopropyltoluene	ND	1.0	89	95	6.5	109	110	0.9	70 - 130	30	
sec-Butylbenzene	ND	1.0	95	101	6.1	114	115	0.9	70 - 130	30	
Styrene	ND	5.0	93	97	4.2	108	111	2.7	70 - 130	30	
tert-butyl alcohol	ND	100	78	86	9.8	101	94	7.2	70 - 130	30	
tert-Butylbenzene	ND	1.0	91	96	5.3	109	109	0.0	70 - 130	30	
Tetrachloroethene	ND	5.0	91	97	6.4	104	106	1.9	70 - 130	30	
Tetrahydrofuran (THF)	ND	5.0	77	82	6.3	97	97	0.0	70 - 130	30	
Toluene	ND	1.0	90	96	6.5	104	105	1.0	70 - 130	30	
trans-1,2-Dichloroethene	ND	5.0	95	99	4.1	111	110	0.9	70 - 130	30	
trans-1,3-Dichloropropene	ND	5.0	88	93	5.5	103	105	1.9	70 - 130	30	
trans-1,4-dichloro-2-butene	ND	5.0	84	88	4.7	101	102	1.0	70 - 130	30	
Trichloroethene	ND	5.0	96	101	5.1	107	108	0.9	70 - 130	30	
Trichlorofluoromethane	ND	5.0	88	93	5.5	31	30	3.3	70 - 130	30	m
Trichlorotrifluoroethane	ND	5.0	99	104	4.9	92	87	5.6	70 - 130	30	
Vinyl chloride	ND	5.0	92	95	3.2	107	109	1.9	70 - 130	30	
% 1,2-dichlorobenzene-d4	99	%	99	101	2.0	100	99	1.0	70 - 130	30	
% Bromofluorobenzene	99	%	102	102	0.0	103	102	1.0	70 - 130	30	
% Dibromofluoromethane	96	%	100	98	2.0	99	96	3.1	70 - 130	30	

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	;
% Toluene-d8	101	%	100	101	1.0	100	100	0.0	70 - 130	30	
QA/QC Batch 366556 (ug/Kg), BV81842, BV81843, BV81844	QC Sam , BV8184	ple No: BV81841 (BV818 5, BV81846, BV81847, B	335, BV81836, 3V81848, BV8	BV8183 1849, B\	37, BV8 /81850	1838, BV81	BV8183 851)	9, BV8	1840, B	V8184	11,
Semivolatiles - Soil											
1,2,4,5-Tetrachlorobenzene	ND	230	62	64	3.2	52	67	25.2	30 - 130	30	
1,2,4-Trichlorobenzene	ND	230	63	67	6.2	54	71	27.2	30 - 130	30	
1,2-Dichlorobenzene	ND	180	56	61	8.5	47	62	27.5	30 - 130	30	
1,2-Diphenylhydrazine	ND	230	72	64	11.8	62	68	9.2	30 - 130	30	
1,3-Dichlorobenzene	ND	230	53	57	7.3	43	58	29.7	30 - 130	30	
1,4-Dichlorobenzene	ND	230	56	60	6.9	46	61	28.0	30 - 130	30	
2,4,5-Trichlorophenol	ND	230	73	83	12.8	60	79	27.3	30 - 130	30	
2,4,6-Trichlorophenol	ND	130	74	81	9.0	59	81	31.4	30 - 130	30	r
2,4-Dichlorophenol	ND	130	70	73	4.2	58	75	25.6	30 - 130	30	
2,4-Dimethylphenol	ND	230	64	68	6.1	58	74	24.2	30 - 130	30	
2,4-Dinitrophenol	ND	230	22	<10	NC	29	59	68.2	30 - 130	30	l,m,r
2,4-Dinitrotoluene	ND	130	79	82	3.7	69	84	19.6	30 - 130	30	
2,6-Dinitrotoluene	ND	130	79	82	3.7	68	86	23.4	30 - 130	30	
2-Chloronaphthalene	ND	230	70	78	10.8	60	76	23.5	30 - 130	30	
2-Chlorophenol	ND	230	63	70	10.5	54	71	27.2	30 - 130	30	
2-Methylnaphthalene	ND	230	63	66	4.7	54	66	20.0	30 - 130	30	
2-Methylphenol (o-cresol)	ND	230	68	71	4.3	56	75	29.0	30 - 130	30	
2-Nitroaniline	ND	330	77	66	15.4	70	74	5.6	30 - 130	30	
2-Nitrophenol	ND	230	65	68	4.5	55	65	16.7	30 - 130	30	
3&4-Methylphenol (m&p-cresol)	ND	230	71	76	6.8	60	78	26.1	30 - 130	30	
3,3'-Dichlorobenzidine	ND	130	61	67	9.4	56	69	20.8	30 - 130	30	
3-Nitroaniline	ND	330	69	71	2.9	60	69	14.0	30 - 130	30	
4,6-Dinitro-2-methylphenol	ND	230	49	28	54.5	55	87	45.1	30 - 130	30	l,r
4-Bromophenyl phenyl ether	ND	230	79	83	4.9	70	86	20.5	30 - 130	30	
4-Chloro-3-methylphenol	ND	230	73	75	2.7	63	71	11.9	30 - 130	30	
4-Chloroaniline	ND	230	67	69	2.9	56	56	0.0	30 - 130	30	
4-Chlorophenyl phenyl ether	ND	230	70	75	6.9	61	77	23.2	30 - 130	30	
4-Nitroaniline	ND	230	79	84	6.1	69	72	4.3	30 - 130	30	
4-Nitrophenol	ND	230	81	68	17.4	64	70	9.0	30 - 130	30	
Acenaphthene	ND	230	72	75	4.1	62	79	24.1	30 - 130	30	
Acenaphthylene	ND	130	72	74	2.7	61	78	24.5	30 - 130	30	
Acetophenone	ND	230	67	70	4.4	55	73	28.1	30 - 130	30	
Aniline	ND	330	57	64	11.6	51	56	9.3	30 - 130	30	
Anthracene	ND	230	79	82	3.7	66	83	22.8	30 - 130	30	
Benz(a)anthracene	ND	230	83	87	4.7	71	88	21.4	30 - 130	30	
Benzidine	ND	330	12	18	40.0	16	16	0.0	30 - 130	30	I,m,r
Benzo(a)pyrene	ND	130	75	78	3.9	65	79	19.4	30 - 130	30	
Benzo(b)fluoranthene	ND	160	80	82	2.5	68	81	17.4	30 - 130	30	
Benzo(ghi)perylene	ND	230	82	85	3.6	69	79	13.5	30 - 130	30	
Benzo(k)fluoranthene	ND	230	74	78	5.3	66	81	20.4	30 - 130	30	
Benzoic Acid	ND	330	<10	<10	NC	<10	18	NC	30 - 130	30	l,m
Benzyl butyl phthalate	ND	230	82	86	4.8	69	89	25.3	30 - 130	30	
Bis(2-chloroethoxy)methane	ND	230	71	70	1.4	60	79	27.3	30 - 130	30	
Bis(2-chloroethyl)ether	ND	130	54	62	13.8	44	63	35.5	30 - 130	30	r
Bis(2-chloroisopropyl)ether	ND	230	56	55	1.8	46	59	24.8	30 - 130	30	
Bis(2-ethylhexyl)phthalate	ND	230	82	85	3.6	70	90	25.0	30 - 130	30	
Carbazole	ND	230	80	81	1.2	65	81	21.9	30 - 130	30	
Chrysene	ND	230	83	85	2.4	70	87	21.7	30 - 130	30	

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Dibenz(a,h)anthracene	ND	130	79	81	2.5	67	78	15.2	30 - 130	30	
Dibenzofuran	ND	230	73	77	5.3	63	79	22.5	30 - 130	30	
Diethyl phthalate	ND	230	78	78	0.0	67	80	17.7	30 - 130	30	
Dimethylphthalate	ND	230	76	78	2.6	66	81	20.4	30 - 130	30	
Di-n-butylphthalate	ND	230	88	87	1.1	67	87	26.0	30 - 130	30	
Di-n-octylphthalate	ND	230	84	87	3.5	70	85	19.4	30 - 130	30	
Fluoranthene	ND	230	76	82	7.6	65	83	24.3	30 - 130	30	
Fluorene	ND	230	74	78	5.3	66	80	19.2	30 - 130	30	
Hexachlorobenzene	ND	130	81	78	3.8	70	80	13.3	30 - 130	30	
Hexachlorobutadiene	ND	230	59	62	5.0	49	63	25.0	30 - 130	30	
Hexachlorocyclopentadiene	ND	230	59	64	8.1	38	53	33.0	30 - 130	30	r
Hexachloroethane	ND	130	53	58	9.0	44	57	25.7	30 - 130	30	
Indeno(1,2,3-cd)pyrene	ND	230	80	83	3.7	67	79	16.4	30 - 130	30	
Isophorone	ND	130	64	63	1.6	53	70	27.6	30 - 130	30	
Naphthalene	ND	230	65	68	4.5	57	73	24.6	30 - 130	30	
Nitrobenzene	ND	130	64	68	6.1	53	66	21.8	30 - 130	30	
N-Nitrosodimethylamine	ND	230	47	49	4.2	39	50	24.7	30 - 130	30	
N-Nitrosodi-n-propylamine	ND	130	72	75	4.1	60	79	27.3	30 - 130	30	
N-Nitrosodiphenylamine	ND	130	78	82	5.0	68	85	22.2	30 - 130	30	
Pentachloronitrobenzene	ND	230	77	77	0.0	66	77	15.4	30 - 130	30	
Pentachlorophenol	ND	230	84	75	11.3	51	94	59.3	30 - 130	30	r
Phenanthrene	ND	130	77	80	3.8	64	81	23.4	30 - 130	30	
Phenol	ND	230	63	70	10.5	55	71	25.4	30 - 130	30	
Pyrene	ND	230	77	84	8.7	68	85	22.2	30 - 130	30	
Pyridine	ND	230	35	35	0.0	31	36	14.9	30 - 130	30	
% 2,4,6-Tribromophenol	81	%	85	70	19.4	67	72	7.2	30 - 130	30	
% 2-Fluorobiphenyl	71	%	66	74	11.4	57	72	23.3	30 - 130	30	
% 2-Fluorophenol	57	%	62	66	6.3	50	69	31.9	30 - 130	30	r
% Nitrobenzene-d5	63	%	66	69	4.4	55	71	25.4	30 - 130	30	
% Phenol-d5	67	%	66	72	8.7	56	75	29.0	30 - 130	30	
% Terphenyl-d14	76	%	77	82	6.3	66	85	25.2	30 - 130	30	
QA/QC Batch 366557 (ug/Kg), BV81851)	QC Sam	ple No: BV81845 2X (BV81843,	BV818	345, BV8	31846, E	3V8184	17, BV8	1849, E	3V81850),	
Pesticides - Soil											
4,4' -DDD	ND	1.7	115	112	2.6	75	65	14.3	40 - 140	30	
4,4' -DDE	ND	1.7	114	98	15.1	72	62	14.9	40 - 140	30	
4,4' -DDT	ND	1.7	116	108	7.1	72	64	11.8	40 - 140	30	
a-BHC	ND	1.0	104	91	13.3	70	59	17.1	40 - 140	30	
a-Chlordane	ND	3.3	106	92	14.1	69	59	15.6	40 - 140	30	
Aldrin	ND	1.0	99	99	0.0	76	58	26.9	40 - 140	30	
b-BHC	ND	1.0	107	86	21.8	69	57	19.0	40 - 140	30	
Chlordane	ND	33	110	95	14.6	69	60	14.0	40 - 140	30	
d-BHC	ND	3.3	116	101	13.8	73	65	11.6	40 - 140	30	
Dieldrin	ND	1.0	116	108	7.1	75	65	14.3	40 - 140	30	
Endosulfan I	ND	3.3	114	99	14.1	73	63	14.7	40 - 140	30	
Endosulfan II	ND	3.3	120	112	6.9	75	66	12.8	40 - 140	30	
Endosulfan sulfate	ND	3.3	119	111	7.0	75	62	19.0	40 - 140	30	
Endrin	ND	3.3	115	111	3.5	75	65	14.3	40 - 140	30	
Endrin aldehyde	ND	3.3	92	88	4.4	59	48	20.6	40 - 140	30	
Endrin ketone	ND	3.3	115	113	1.8	73	62	16.3	40 - 140	30	
g-BHC	ND	1.0	106	98	7.8	69	58	17.3	40 - 140	30	
g-Chlordane	ND	3.3	110	95	14.6	69	60	14.0	40 - 140	30	

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Heptachlor	ND	3.3	109	110	0.9	71	64	10.4	40 - 140	30	
Heptachlor epoxide	ND	3.3	117	105	10.8	75	67	11.3	40 - 140	30	
Methoxychlor	ND	3.3	110	109	0.9	72	64	11.8	40 - 140	30	
Toxaphene	ND	130	NA	NA	NC	NA	NA	NC	40 - 140	30	
% DCBP	94	%	109	105	3.7	72	65	10.2	40 - 140	30	
% TCMX	79	%	86	89	3.4	66	57	14.6	40 - 140	30	
Comment:											
Alpha and gamma chlordane we chlordane in the LCS, LCSD, M		nd analyzed instead of technical o	chlordane.	Gamma	chlordar	e recov	ery is re	ported	as		
QA/QC Batch 366558 (ug/Kg), BV81851)	, QC Samı	ole No: BV81845 2X (BV8184	3, BV818	345, BV8	31846, E	3V8184	47, BV8	1849, I	BV81850),	
Polychlorinated Bipheny	<u>ls - Soil</u>										
PCB-1016	ND	33	74	75	1.3	61	57	6.8	40 - 140	30	
PCB-1221	ND	33							40 - 140	30	
PCB-1232	ND	33							40 - 140	30	
PCB-1242	ND	33							40 - 140	30	
PCB-1248	ND	33							40 - 140	30	
PCB-1254	ND	33							40 - 140	30	
PCB-1260	ND	33	72	78	8.0	62	62	0.0	40 - 140	30	
PCB-1262	ND	33							40 - 140	30	
PCB-1268	ND	33							40 - 140	30	
% DCBP (Surrogate Rec)	83	%	95	103	8.1	81	83	2.4	40 - 140	30	
% TCMX (Surrogate Rec)	78	%	91	95	4.3	75	71	5.5	40 - 140	30	
QA/QC Batch 366672 (ug/kg), BV81842, BV81843 (50X) , B\ <u>Volatiles - Soil</u>										3)	
1,1,1,2-Tetrachloroethane	ND	5.0	101	105	3.9	101	99	2.0	70 - 130	30	
1,1,1-Trichloroethane	ND	5.0	90	94	4.3	94	92	2.2	70 - 130	30	
1,1,2,2-Tetrachloroethane	ND	3.0	95	97	2.1	86	83	3.6	70 - 130	30	
1,1,2-Trichloroethane	ND	5.0	93	97	4.2	88	85	3.5	70 - 130	30	
1,1-Dichloroethane	ND	5.0	86	90	4.5	100	98	2.0	70 - 130	30	
1,1-Dichloroethene	ND	5.0	95	100	5.1	95	96	1.0	70 - 130	30	
1,1-Dichloropropene	ND	5.0	94	98	4.2	95	94	1.1	70 - 130	30	
1,2,3-Trichlorobenzene	ND	5.0	92	98	6.3	70	66	5.9	70 - 130	30	m
1,2,3-Trichloropropane	ND	5.0	90	103	13.5	82	81	1.2	70 - 130	30	
1,2,4-Trichlorobenzene	ND	5.0	96	101	5.1	67	62	7.8	70 - 130	30	m
1,2,4-Trimethylbenzene	ND	1.0	95	98	3.1	88	87	1.1	70 - 130	30	
1,2-Dibromo-3-chloropropane	ND	5.0	94	100	6.2	83	79	4.9	70 - 130	30	
1,2-Dibromoethane	ND	5.0	97	101	4.0	90	88	2.2	70 - 130	30	
1,2-Dichlorobenzene	ND	5.0	92	96	4.3	82	79	3.7	70 - 130	30	
1,2-Dichloroethane	ND	5.0	93	97	4.2	91	89	2.2	70 - 130	30	
1,2-Dichloropropane	ND	5.0	94	98	4.2	93	90	3.3	70 - 130	30	
1,3,5-Trimethylbenzene	ND	1.0	97	99	2.0	91	90	1.1	70 - 130	30	
1,3-Dichlorobenzene	ND	5.0	94	98	4.2	81	78	3.8	70 - 130	30	
1,3-Dichloropropane	ND	5.0	95	98	3.1	89	89	0.0	70 - 130	30	
1,4-Dichlorobenzene	ND	5.0	93	97	4.2	80	76	5.1	70 - 130	30	
1,4-dioxane	ND	100	90	91	1.1	91	88	3.4	70 - 130	30	
2,2-Dichloropropane	ND	5.0	97	102	5.0	97	95	2.1	70 - 130	30	
2-Chlorotoluene	ND	5.0	95	99	4.1	91	88	3.4	70 - 130	30	
2-Hexanone	ND	25	79	80	1.3	69	68	1.5	70 - 130	30	m
2-Isopropyltoluene	ND	5.0	94	97	3.1	91	89	2.2	70 - 130	30	
4-Chlorotoluene	ND	5.0	93	96	3.2	84	81	3.6	70 - 130	30	

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
4-Methyl-2-pentanone	ND	25	81	83	2.4	72	69	4.3	70 - 130	30	m
Acetone	ND	10	65	67	3.0	73	69	5.6	70 - 130	30	l,m
Acrolein	ND	25	110	109	0.9	88	86	2.3	70 - 130	30	
Acrylonitrile	ND	5.0	77	84	8.7	81	76	6.4	70 - 130	30	
Benzene	ND	1.0	95	98	3.1	95	92	3.2	70 - 130	30	
Bromobenzene	ND	5.0	95	97	2.1	86	84	2.4	70 - 130	30	
Bromochloromethane	ND	5.0	92	96	4.3	91	89	2.2	70 - 130	30	
Bromodichloromethane	ND	5.0	97	101	4.0	97	93	4.2	70 - 130	30	
Bromoform	ND	5.0	102	107	4.8	94	92	2.2	70 - 130	30	
Bromomethane	ND	5.0	94	96	2.1	89	84	5.8	70 - 130	30	
Carbon Disulfide	ND	5.0	104	108	3.8	105	103	1.9	70 - 130	30	
Carbon tetrachloride	ND	5.0	94	102	8.2	101	98	3.0	70 - 130	30	
Chlorobenzene	ND	5.0	96	99	3.1	90	90	0.0	70 - 130	30	
Chloroethane	ND	5.0	92	93	1.1	91	91	0.0	70 - 130	30	
Chloroform	ND	5.0	91	95	4.3	93	90	3.3	70 - 130	30	
Chloromethane	ND	5.0	86	90	4.5	89	89	0.0	70 - 130	30	
cis-1,2-Dichloroethene	ND	5.0	93	97	4.2	94	92	2.2	70 - 130	30	
cis-1,3-Dichloropropene	ND	5.0	98	102	4.0	92	89	3.3	70 - 130	30	
Dibromochloromethane	ND	3.0	106	108	1.9	100	98	2.0	70 - 130	30	
Dibromomethane	ND	5.0	92	97	5.3	89	85	4.6	70 - 130	30	
Dichlorodifluoromethane	ND	5.0	107	112	4.6	113	112	0.9	70 - 130	30	
Ethylbenzene	ND	1.0	97	101	4.0	95	94	1.1	70 - 130	30	
Hexachlorobutadiene	ND	5.0	94	98	4.2	82	82	0.0	70 - 130	30	
Isopropylbenzene	ND	1.0	96	98	2.1	94	93	1.1	70 - 130	30	
m&p-Xylene	ND	2.0	95	100	5.1	97	95	2.1	70 - 130	30	
Methyl ethyl ketone	ND	5.0	72	73	1.4	62	60	3.3	70 - 130	30	m
Methyl t-butyl ether (MTBE)	ND	1.0	96	100	4.1	94	91	3.2	70 - 130	30	
Methylene chloride	ND	5.0	92	96	4.3	96	96	0.0	70 - 130	30	
Naphthalene	ND	5.0	98	103	5.0	76	73	4.0	70 - 130	30	
n-Butylbenzene	ND	1.0	99	103	4.0	85	83	2.4	70 - 130	30	
n-Propylbenzene	ND	1.0	93	96	3.2	89	87	2.3	70 - 130	30	
o-Xylene	ND	2.0	96	100	4.1	94	93	1.1	70 - 130	30	
p-Isopropyltoluene	ND	1.0	98	101	3.0	91	89	2.2	70 - 130	30	
sec-Butylbenzene	ND	1.0	100	104	3.9	99	97	2.0	70 - 130	30	
Styrene	ND	5.0	99	103	4.0	94	92	2.2	70 - 130	30	
tert-butyl alcohol	ND	100	87	86	1.2	87	83	4.7	70 - 130	30	
tert-Butylbenzene	ND	1.0	95	98	3.1	97	95	2.1	70 - 130	30	
Tetrachloroethene	ND	5.0	98	101	3.0	93	91	2.2	70 - 130	30	
Tetrahydrofuran (THF)	ND	5.0	83	84	1.2	74	71	4.1	70 - 130	30	
Toluene	ND	1.0	95	99	4.1	93	91	2.2	70 - 130	30	
trans-1,2-Dichloroethene	ND	5.0	98	102	4.0	99	97	2.0	70 - 130	30	
trans-1,3-Dichloropropene	ND	5.0	96	102	6.1	89	87	2.3	70 - 130	30	
trans-1,4-dichloro-2-butene	ND	5.0	96	99	3.1	83	79	4.9	70 - 130	30	
Trichloroethene	ND	5.0	98	101	3.0	96	96	0.0	70 - 130	30	
Trichlorofluoromethane	ND	5.0	86	89	3.4	93	92	1.1	70 - 130	30	
Trichlorotrifluoroethane	ND	5.0	99	103	4.0	103	100	3.0	70 - 130	30	
Vinyl chloride	ND	5.0	92	96	4.3	96	94	2.1	70 - 130	30	
% 1,2-dichlorobenzene-d4	100	%	100	100	0.0	99	99	0.0	70 - 130	30	
% Bromofluorobenzene	99	%	101	101	0.0	101	102	1.0	70 - 130	30	
% Dibromofluoromethane	97	%	99	101	2.0	98	99	1.0	70 - 130	30	
% Toluene-d8	100	%	101	100	1.0	100	100	0.0	70 - 130	30	

LCS LCSD

%

%

SDG I.D.: GBV81835 % RPD %

MS

%

MSD

%

MS

RPD

Rec

Limits Limits

LCS

RPD

Blk

Blank RL

 $\label{eq:local_$

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

Parameter

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

November 28, 2016

Monday, November 28, 2016

Criteria: NY: 375, 375GWP, 375RRS, 375RS

Sample Criteria Exceedances Report GBV81835 - EBC

State:	NY		0570.000 250				RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BV81835	\$8270SMRDP	Indeno(1,2,3-cd)pyrene	NY / 375-6.8 Semivolatiles / Residential	530	250	500	500	ug/Kg
BV81835	\$8270SMRDP	Indeno(1,2,3-cd)pyrene	NY / 375-6.8 Semivolatiles / Residential Restricted	530	250	500	500	ug/Kg
BV81835	\$8270SMRDP	Indeno(1,2,3-cd)pyrene	NY / 375-6.8 Semivolatiles / Unrestricted Use Soil	530	250	500	500	ug/Kg
BV81835	\$PESTSMDPR	4,4' -DDE	NY / 375-6.8 PCBs/Pesticides / Unrestricted Use Soil	72	2.2	3.3	3.3	ug/Kg
BV81835	\$PESTSMDPR	4,4' -DDD	NY / 375-6.8 PCBs/Pesticides / Unrestricted Use Soil	100	11	3.3	3.3	ug/Kg
BV81835	\$PESTSMDPR	4,4' -DDT	NY / 375-6.8 PCBs/Pesticides / Unrestricted Use Soil	76	11	3.3	3.3	ug/Kg
BV81835	CU-SM	Copper	NY / 375-6.8 Metals / Unrestricted Use Soil	71.0	0.37	50	50	mg/kg
BV81835	HG-SM	Mercury	NY / 375-6.8 Metals / Unrestricted Use Soil	0.49	0.03	0.18	0.18	mg/Kg
BV81835	PB-SMDP	Lead	NY / 375-6.8 Metals / Unrestricted Use Soil	228	7.3	63	63	mg/Kg
BV81835	ZN-SMDP	Zinc	NY / 375-6.8 Metals / Unrestricted Use Soil	261	7.3	109	109	mg/Kg
BV81836	\$8260MADPR	Acetone	NY / 375-6.8 Volatiles / Ground Water Protection	560	260	50	50	ug/Kg
BV81836	\$8260MADPR	Acetone	NY / 375-6.8 Volatiles / Unrestricted Use Soil	560	260	50	50	ug/Kg
BV81838	\$8260MADPR	Benzene	NY / 375-6.8 Volatiles / Ground Water Protection	110	60	60	60	ug/Kg
BV81838	\$8260MADPR	Benzene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	110	60	60	60	ug/Kg
BV81838	CU-SM	Copper	NY / 375-6.8 Metals / Unrestricted Use Soil	68.1	0.37	50	50	mg/kg
BV81838	HG-SM	Mercury	NY / 375-6.8 Metals / Unrestricted Use Soil	0.45	0.03	0.18	0.18	mg/Kg
BV81838	PB-SMDP	Lead	NY / 375-6.8 Metals / Unrestricted Use Soil	196	7.4	63	63	mg/Kg
BV81838	ZN-SMDP	Zinc	NY / 375-6.8 Metals / Unrestricted Use Soil	269	7.4	109	109	mg/Kg
BV81840	\$8260MADPR	Vinyl chloride	NY / 375-6.8 Volatiles / Ground Water Protection	3000	36	20	20	ug/Kg
BV81840	\$8260MADPR	Vinyl chloride	NY / 375-6.8 Volatiles / Residential	3000	36	210	210	ug/Kg
BV81840	\$8260MADPR	Vinyl chloride	NY / 375-6.8 Volatiles / Residential Restricted	3000	36	900	900	ug/Kg
BV81840	\$8260MADPR	Vinyl chloride	NY / 375-6.8 Volatiles / Unrestricted Use Soil	3000	36	20	20	ug/Kg
BV81840	\$8260MADPR	Acetone	NY / 375-6.8 Volatiles / Ground Water Protection	920	360	50	50	ug/Kg
BV81840	\$8260MADPR	Acetone	NY / 375-6.8 Volatiles / Unrestricted Use Soil	920	360	50	50	ug/Kg
BV81840	\$8260MADPR	Methylene chloride	NY / 375-6.8 Volatiles / Ground Water Protection	ND	360	50	50	ug/Kg
BV81840	\$8260MADPR	Methylene chloride	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	360	50	50	ug/Kg
BV81840	\$8260MADPR	trans-1,2-Dichloroethene	NY / 375-6.8 Volatiles / Ground Water Protection	2300	190	190	190	ug/Kg
BV81840	\$8260MADPR	trans-1,2-Dichloroethene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	2300	190	190	190	ug/Kg
BV81840	\$8260MADPR	cis-1,2-Dichloroethene	NY / 375-6.8 Volatiles / Ground Water Protection	27000	250	250	250	ug/Kg
BV81840	\$8260MADPR	cis-1,2-Dichloroethene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	27000	250	250	250	ug/Kg
BV81840		Methyl Ethyl Ketone	NY / 375-6.8 Volatiles / Ground Water Protection	ND	360	120	120	ug/Kg
BV81840	\$8260MADPR	Methyl Ethyl Ketone	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	360	120	120	ug/Kg
BV81840	\$8260MADPR	Benzene	NY / 375-6.8 Volatiles / Ground Water Protection	1900	60	60	60	ug/Kg
BV81840	\$8260MADPR	Benzene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	1900	60	60	60	ug/Kg
BV81840	\$8260MADPR	1,2-Dichloroethane	NY / 375-6.8 Volatiles / Ground Water Protection	ND	36	20	20	ug/Kg
BV81840	\$8260MADPR	1,2-Dichloroethane	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	36	20	20	ug/Kg
BV81840	\$8260MADPR	Toluene	NY / 375-6.8 Volatiles / Ground Water Protection	15000	700	700	700	ug/Kg
BV81840		Toluene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	15000	700	700	700	ug/Kg
BV81840	·	Tetrachloroethene	NY / 375-6.8 Volatiles / Ground Water Protection	2400	360	1300	1300	ug/Kg
BV81840	\$8260MADPR	Tetrachloroethene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	2400	360	1300	1300	ug/Kg

Monday, November 28, 2016

Criteria: NY: 375, 375GWP, 375RRS, 375RS

Sample Criteria Exceedances Report GBV81835 - EBC

State: NY

State.		Dhaaniy Analyta	Cuitavia	Dogult	DI	Ouitouio	RL Oritaria	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BV81840	\$8260MADPR	Ethylbenzene	NY / 375-6.8 Volatiles / Ground Water Protection	4500	360	1000	1000	ug/Kg
BV81840	\$8260MADPR	Ethylbenzene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	4500	360	1000	1000	ug/Kg
BV81840	\$8260MADPR	1,2,4-Trimethylbenzene	NY / 375-6.8 Volatiles / Ground Water Protection	16000	1800	3600	3600	ug/Kg
BV81840	\$8260MADPR	1,2,4-Trimethylbenzene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	16000	1800	3600	3600	ug/Kg
BV81840	\$8270SMRDP	Indeno(1,2,3-cd)pyrene	NY / 375-6.8 Semivolatiles / Residential	720	260	500	500	ug/Kg
BV81840	\$8270SMRDP	Indeno(1,2,3-cd)pyrene	NY / 375-6.8 Semivolatiles / Residential Restricted	720	260	500	500	ug/Kg
BV81840	\$8270SMRDP	Indeno(1,2,3-cd)pyrene	NY / 375-6.8 Semivolatiles / Unrestricted Use Soil	720	260	500	500	ug/Kg
BV81840	\$DIOX_SMR	1,4-dioxane	NY / 375-6.8 Volatiles / Ground Water Protection	ND	2900	100	100	ug/kg
BV81840	\$DIOX_SMR	1,4-dioxane	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	2900	100	100	ug/kg
BV81840	\$PCB_SMRDP	PCB-1260	NY / 375-6.8 PCBs/Pesticides / Unrestricted Use Soil	350	75	100	100	ug/Kg
BV81840	\$PESTSMDPR	4,4' -DDE	NY / 375-6.8 PCBs/Pesticides / Unrestricted Use Soil	ND	15	3.3	3.3	ug/Kg
BV81840	\$PESTSMDPR	4,4' -DDT	NY / 375-6.8 PCBs/Pesticides / Unrestricted Use Soil	ND	20	3.3	3.3	ug/Kg
BV81840	\$PESTSMDPR	Dieldrin	NY / 375-6.8 PCBs/Pesticides / Unrestricted Use Soil	ND	10	5	5	ug/Kg
BV81840	\$PESTSMDPR	4,4' -DDD	NY / 375-6.8 PCBs/Pesticides / Unrestricted Use Soil	ND	30	3.3	3.3	ug/Kg
BV81840	BA-SMDP	Barium	NY / 375-6.8 Metals / Residential	446	0.7	350	350	mg/Kg
BV81840	BA-SMDP	Barium	NY / 375-6.8 Metals / Residential Restricted	446	0.7	400	400	mg/Kg
BV81840	BA-SMDP	Barium	NY / 375-6.8 Metals / Unrestricted Use Soil	446	0.7	350	350	mg/Kg
BV81840	CD-SM	Cadmium	NY / 375-6.8 Metals / Ground Water Protection	7.67	0.34	7.5	7.5	mg/Kg
BV81840	CD-SM	Cadmium	NY / 375-6.8 Metals / Residential	7.67	0.34	2.5	2.5	mg/Kg
BV81840	CD-SM	Cadmium	NY / 375-6.8 Metals / Residential Restricted	7.67	0.34	4.3	4.3	mg/Kg
BV81840	CD-SM	Cadmium	NY / 375-6.8 Metals / Unrestricted Use Soil	7.67	0.34	2.5	2.5	mg/Kg
BV81840	CR-SM	Chromium	NY / 375-6.8 Metals / Unrestricted Use Soil	31.9	0.34	30		mg/Kg
BV81840	CU-SM	Copper	NY / 375-6.8 Metals / Unrestricted Use Soil	266	3.4	50	50	mg/kg
BV81840	HG-SM	Mercury	NY / 375-6.8 Metals / Ground Water Protection	0.81	0.03	0.73	0.73	mg/Kg
BV81840	HG-SM	Mercury	NY / 375-6.8 Metals / Unrestricted Use Soil	0.81	0.03	0.18	0.18	mg/Kg
BV81840	PB-SMDP	Lead	NY / 375-6.8 Metals / Ground Water Protection	754	6.9	450	450	mg/Kg
BV81840	PB-SMDP	Lead	NY / 375-6.8 Metals / Residential	754	6.9	400	400	mg/Kg
BV81840	PB-SMDP	Lead	NY / 375-6.8 Metals / Residential Restricted	754	6.9	400	400	mg/Kg
BV81840	PB-SMDP	Lead	NY / 375-6.8 Metals / Unrestricted Use Soil	754	6.9	63	63	mg/Kg
BV81840	ZN-SMDP	Zinc	NY / 375-6.8 Metals / Unrestricted Use Soil	1100	6.9	109	109	mg/Kg
BV81843	\$8260MADPR	Vinyl chloride	NY / 375-6.8 Volatiles / Ground Water Protection	ND	31	20	20	ug/Kg
BV81843	\$8260MADPR	Vinyl chloride	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	31	20	20	ug/Kg
BV81843	\$8260MADPR	Acetone	NY / 375-6.8 Volatiles / Ground Water Protection	ND	310	50	50	ug/Kg
BV81843	\$8260MADPR	Acetone	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	310	50	50	ug/Kg
BV81843	\$8260MADPR	Methylene chloride	NY / 375-6.8 Volatiles / Ground Water Protection	ND	310	50	50	ug/Kg
BV81843	\$8260MADPR	Methylene chloride	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	310	50	50	ug/Kg
BV81843	\$8260MADPR	Methyl Ethyl Ketone	NY / 375-6.8 Volatiles / Ground Water Protection	ND	310	120	120	ug/Kg
BV81843	\$8260MADPR	Methyl Ethyl Ketone	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	310	120	120	ug/Kg
BV81843	\$8260MADPR	Benzene	NY / 375-6.8 Volatiles / Ground Water Protection	650	60	60	60	ug/Kg
BV81843	\$8260MADPR	Benzene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	650	60	60	60	ug/Kg
BV81843		1,2-Dichloroethane	NY / 375-6.8 Volatiles / Ground Water Protection	ND	31	20	20	ug/Kg
	,				-	-	-	5 5

Monday, November 28, 2016

Criteria: NY: 375, 375GWP, 375RRS, 375RS

Sample Criteria Exceedances Report GBV81835 - EBC

State: NY

SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	RL Criteria	Analysis Units
BV81843	\$8260MADPR	1,2-Dichloroethane	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	31	20	20	ug/Kg
BV81843	\$8260MADPR	Ethylbenzene	NY / 375-6.8 Volatiles / Ground Water Protection	3900	310	1000	1000	ug/Kg
BV81843	\$8260MADPR	Ethylbenzene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	3900	310	1000	1000	ug/Kg
BV81843	\$8260MADPR	1,2,4-Trimethylbenzene	NY / 375-6.8 Volatiles / Ground Water Protection	14000	630	3600	3600	ug/Kg
BV81843	\$8260MADPR	1,2,4-Trimethylbenzene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	14000	630	3600	3600	ug/Kg
BV81843	\$DIOX_SMR	1,4-dioxane	NY / 375-6.8 Volatiles / Ground Water Protection	ND	2500	100	100	ug/kg
BV81843	\$DIOX_SMR	1,4-dioxane	NY / 375-6.8 Volatiles / Unrestricted Use Soil	ND	2500	100	100	ug/kg
BV81846	\$8260MADPR	Benzene	NY / 375-6.8 Volatiles / Ground Water Protection	240	60	60	60	ug/Kg
BV81846	\$8260MADPR	Acetone	NY / 375-6.8 Volatiles / Ground Water Protection	64	22	50	50	ug/Kg
BV81846	\$8260MADPR	Acetone	NY / 375-6.8 Volatiles / Unrestricted Use Soil	64	22	50	50	ug/Kg
BV81846	\$8260MADPR	Benzene	NY / 375-6.8 Volatiles / Unrestricted Use Soil	240	60	60	60	ug/Kg
BV81846	\$PESTSMDPR	4,4' -DDD	NY / 375-6.8 PCBs/Pesticides / Unrestricted Use Soil	ND	10	3.3	3.3	ug/Kg
BV81846	AS-SM	Arsenic	NY / 375-6.8 Metals / Unrestricted Use Soil	13.7	0.75	13	13	mg/Kg
BV81846	CU-SM	Copper	NY / 375-6.8 Metals / Unrestricted Use Soil	146	0.38	50	50	mg/kg
BV81846	HG-SM	Mercury	NY / 375-6.8 Metals / Unrestricted Use Soil	0.47	0.03	0.18	0.18	mg/Kg
BV81846	PB-SMDP	Lead	NY / 375-6.8 Metals / Unrestricted Use Soil	232	7.5	63	63	mg/Kg
BV81846	ZN-SMDP	Zinc	NY / 375-6.8 Metals / Unrestricted Use Soil	677	7.5	109	109	mg/Kg
BV81849	HG-SM	Mercury	NY / 375-6.8 Metals / Unrestricted Use Soil	0.71	0.03	0.18	0.18	mg/Kg
BV81849	PB-SMDP	Lead	NY / 375-6.8 Metals / Unrestricted Use Soil	68.4	0.7	63	63	mg/Kg

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY Temperature Narration

November 28, 2016

SDG I.D.: GBV81835

The samples in this delivery group were received at 4° C. (Note acceptance criteria is above freezing up to 6° C)

NY/NJ CHAIN OF CUSTODY RECORD Temp	Project: 1।গুৰ দ্বা _{uSk}), ntry Road Report to: Environmental Invoice to: Environmental	Analysis Analysis	Sample Date Time Time A A A A A A A A A A A A A A A A A A A	* * * * * * * * * * * * * * * * * * *	N V ((3-5) S X X X X X X X X X X X X X X X X X X	2 (3-14) S	NY 375 GWP Non-Res. Criteria NY 375 GWP Impact to GW Soil CAN Soil Use Soil Use Soil	Its or Regulations: Its or Residential in the strict of the	State where samples were collected: Data Package In Nature Deliv.* Natural Deliv.* Natural Deliv.* Other Deliv.*
PHOENIX Environmental Laboratories, Inc	Customer: Environmental Business Consultants Address: 1808 Middle Country Road Ridge, NY 11961	I ≧ .II 7à.a.	AMPLE # Customer Sample Identification 1585 (0-2)	5 (19)	9 1588 (0	118512451	13-14 130-3		Comments, Special Requirements or Regulations:	

Coolant IPK I ICE IN No Temp Let P 2 of 2 of 2 or I contact Options:	Project P.O: This section MUST be completed with Bottle Quantities.		1.01	
040 Eax.	الم دميان		Non-Res. Criteria Solution	
NY/NJ CHAIN OF CUSTODY RECORD 7 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 6 Email: info@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-8726	ואסבסלן איייאפאל אלהלצון ארנהלצון ארנהלצון ב Environmental Business Consultants Environmental Business Consultants		round:	APPLIES State where samples were collected:
Y/NJ CHAIN OF CU; East Middle Tumpike, P.O. Box Email: info@phoenixlabs.com Client Services (8	Project: 1 Report to: E Invoice to: E	N # 3		
587 E	onsultants 1		Sample Date Time Matrix Sampled Sample	
MIX Exporatories,	Environmental Business Consultants 1808 Middle Country Road Ridge, NY 11961	Sampler's Client Sample - Information - Identification Signature Matrix Code: Matrix	SAMPLE # Customer Sample SAMPLE # Identification SAMPLE # ISBIH (1-3) ST SU	
PHOE Environmental	Customer: El Address: 18	Sampler's Clissignature Matrix Code: DW-Drinking Water G RW-Raw Water SE=S OIL-Oil B-Bulk L-Lici	PHOENIX USE ONLY SAMPLE # SAMP	

Client Services

To: 'Thomas Gallo'

Subject: RE: Phoenix Labs - GBV81835, 1181 FLUSHING AVENUE BROOKLYN NY - COC

Acknowledgement

15B5 (12-14), BV81836

15B8 (12-14), BV81838

15B11 (12-14), BV81842

15B14 (12-14), BV81847

15B20 (12-14). BV81850

Sarah Bell

Client Services - Project Manager Accounts Receivable Phoenix Environmental Laboratories 587 East Middle Turnpike

Manchester, CT 06040 Ph: 1-860-645-1102

From: Client Services

Sent: Tuesday, November 15, 2016 9:57 AM

To: 'Thomas Gallo'

Subject: RE: Phoenix Labs - GBV81835, 1181 FLUSHING AVENUE BROOKLYN NY - COC Acknowledgement

Thomas

I can remove the Pesticides only on this PCBs are done.

Thanks Sarah

Sarah Bell

Client Services - Project Manager Accounts Receivable Phoenix Environmental Laboratories 587 East Middle Turnpike

Manchester, CT 06040 Ph: 1-860-645-1102

From: Thomas Gallo [mailto:tgallo@ebcincny.com]
Sent: Tuesday, November 15, 2016 9:23 AM

To: Client Services

Subject: Re: Phoenix Labs - GBV81835, 1181 FLUSHING AVENUE BROOKLYN NY - COC Acknowledgement

If it's not too late can the Pesticide/PCB analysis be cancelled for the following samples. 115B5 (12-14), 15B8 (12-14), 15B11 (12-14), 15B14 (12-14), 15B20 (12-14).

Thomas Gallo	
Environmental Geologist	
EBC	
Cell 516 972 5354	

On Nov 11, 2016 8:53 PM, <u>clientservices@phoenixlabs.com</u> wrote: Tom,

Please email client services only if you Require a PO# on your Invoice, a PO# was not listed on the COC.

Delivery group GBV81835 (1181 FLUSHING AVENUE BROOKLYN NY) has been logged in for the following samples:

Phoenix Id	Client Id
BV81835	15B5 (0-2)
BV81836	15B5 (12-14)
BV81837	15B5 (15-17)
BV81838	15B8 (0-2)
BV81839	15B8 (12-14)
BV81840	15B11 (0-2)
BV81841	15B11 (3-5)
BV81842	15B11 (12-14)
BV81843	15B12 (12-14)
BV81844	15B12 (20-22)
BV81845	15B13 (12-14)
BV81846	15B14 (1-3)
BV81847	15B14 (12-14)
BV81848	15B14 (14-16)
BV81849	15B20 (0-2)
BV81850	15B20 (12-14)
BV81851	SOIL DUPLICATE
BV81852	TRIP BLANK HIGH
BV81853	TRIP BLANK LOW

The samples in this delivery group were received at $4 \diamondsuit C$. (Note acceptance criteria is above freezing up to $6 \diamondsuit C$)

If there are any questions regarding this submittal, please call Phoenix Client Services at extension 200.

Phoenix Environmental Laboratories, Inc.

587 East Middle Turnpike P.O. Box 370 Manchester, CT 06374 Tel. (860) 645-1102 Fax. (860) 645-0823 www.phoenixlabs.com

Please do not reply to this email.

Wednesday, November 30, 2016

Attn: Mr. Charles B. Sosik, P.G. Environmental Business Consultants 1808 Middle Country Rd Ridge NY 11961-2406

Project ID: 1181 FLUSHING AVE., BROOKLYN

Sample ID#s: BV86885 - BV86891

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

November 30, 2016

SDG I.D.: GBV86885

8260 Volatile Organics:

1,2-Dibromoethane, 1,2,3 Trichloropropane, and 1,2-Dibromo-3-chloropropane do not meet NY TOGS GA criteria, these compounds are analyzed by GC/FID method 504 or 8011 to achieve this criteria.

SIM Analysis:

The lowest possible reporting limit under SIM conditions is 0.02 ug/L. The NY TOGS GA criteria for some PAHs is 0.002 ug/L. This level can not be achieved.

Toxaphene is reported to the lowest possible reporting level. The NY TOGS criteria for this compound can not be achieved.

Any compound that is not detected above the MDL/LOD is reported as ND on the report and is reported in the electronic deliverables (EDD) as <RL or U at the RL per state and EPA guidance.

Version 1: Analysis results minus raw data.

Version 2: Complete report with raw data.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 30, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: GROUND WATER Collected by: 11/16/16

Location Code: EBC Received by: LB 11/17/16 15:39

Rush Request: 72 Hour Analyzed by: see "By" below

Labul

Laboratory Data

SDG ID: GBV86885
Phoenix ID: BV86885

Project ID: 1181 FLUSHING AVE., BROOKLYN

Client ID: MW6

P.O.#:

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
Silver	0.001	B 0.005	0.001	mg/L	1	11/20/16	LK	SW6010C	
Aluminum	6.04	0.010	0.005	mg/L	1	11/20/16	LK	SW6010C	
Arsenic - LDL	ND	0.004	0.004	mg/L	1	11/20/16	LK	SW6010C	
Barium	1.33	0.010	0.001	mg/L	1	11/20/16	LK	SW6010C	
Beryllium	ND	0.001	0.001	mg/L	1	11/20/16	LK	SW6010C	
Calcium	429	0.10	0.10	mg/L	10	11/20/16	LK	SW6010C	В
Cadmium	0.018	0.004	0.0005	mg/L	1	11/20/16	LK	SW6010C	
Cobalt	0.082	0.005	0.001	mg/L	1	11/20/16	LK	SW6010C	
Chromium	0.016	0.001	0.001	mg/L	1	11/20/16	LK	SW6010C	
Copper	ND	0.005	0.001	mg/L	1	11/20/16	LK	SW6010C	
Silver (Dissolved)	ND	0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Aluminum (Dissolved)	0.035	0.011	0.005	mg/L	1	11/19/16	LK	SW6010C	
Arsenic, (Dissolved)	0.014	0.003	0.004	mg/L	1	11/19/16	LK	SW6010C	
Barium (Dissolved)	1.16	0.011	0.001	mg/L	1	11/19/16	LK	SW6010C	
Beryllium (Dissolved)	ND	0.001	0.001	mg/L	1	11/19/16	LK	SW6010C	
Calcium (Dissolved)	417	0.11	0.11	mg/L	10	11/19/16	LK	SW6010C	В
Cadmium (Dissolved)	0.015	0.004	0.0005	mg/L	1	11/19/16	LK	SW6010C	
Cobalt, (Dissolved)	0.076	0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Chromium (Dissolved)	ND	0.001	0.001	mg/L	1	11/19/16	LK	SW6010C	
Copper, (Dissolved)	ND	0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Iron, (Dissolved)	758	0.11	0.11	mg/L	10	11/19/16	LK	SW6010C	
Mercury (Dissolved)	ND	0.0002	0.00015	mg/L	1	11/21/16	RS	SW7470A	
Potassium (Dissolved)	22.3	0.1	0.01	mg/L	1	11/22/16	LK/MA	SW6010C	
Magnesium (Dissolved)	95.1	0.11	0.11	mg/L	10	11/19/16	LK	SW6010C	
Manganese, (Dissolved)	44.8	0.53	0.11	mg/L	100	11/22/16	LK	SW6010C	
Sodium (Dissolved)	237	1.1	0.11	mg/L	10	11/19/16	LK	SW6010C	
Nickel, (Dissolved)	ND	0.004	0.001	mg/L	1	11/19/16	LK	SW6010C	
Lead (Dissolved)	0.037	0.002	0.001	mg/L	1	11/19/16	LK	SW6010C	

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
Antimony, (Dissolved)	ND	0.003	0.003	mg/L	1	11/20/16	RS	SW7010	
Selenium, (Dissolved)	ND	0.004	0.002	mg/L	1	11/18/16	RS	SW7010	
Thallium, (Dissolved)	ND	0.0005	0.0005	mg/L	1	11/18/16	RS	SW7010	
Vanadium, (Dissolved)	0.002	B 0.011	0.001	mg/L	1	11/19/16	LK	SW6010C	
Zinc, (Dissolved)	0.087	0.011	0.0012	mg/L	1	11/19/16	LK	SW6010C	
Iron	868	0.10	0.10	mg/L	10	11/20/16	LK	SW6010C	
Mercury	ND	0.0002	0.00015	mg/L	1	11/21/16	RS	SW7470A	
Potassium	23.7	0.1	0.01	mg/L	1	11/20/16	LK	SW6010C	
Magnesium	99.1	0.10	0.10	mg/L	10	11/20/16	LK	SW6010C	
Manganese	33.0	0.50	0.10	mg/L	100	11/22/16	LK	SW6010C	
Sodium	233	1.0	0.10	mg/L	10	11/20/16	LK	SW6010C	
Nickel	0.011	0.004	0.001	mg/L	1	11/20/16	LK	SW6010C	
Lead	0.059	0.002	0.001	mg/L	1	11/20/16	LK	SW6010C	
Antimony	ND	0.002	0.002	mg/L	1	11/20/16	RS	SW7010	
Selenium	ND	0.002	0.001	mg/L	1	11/22/16	RS	SW7010	
Thallium - LDL	ND	0.0005	0.0005	mg/L	1	11/21/16	RS	SW7010	
Vanadium	0.022	0.010	0.001	mg/L	1	11/20/16	LK	SW6010C	
Zinc	0.141	0.010	0.0011	mg/L	1	11/20/16	LK	SW6010C	
Filtration	Completed					11/17/16	AG	0.45um Filter	
Dissolved Mercury Digestion	Completed					11/21/16	QW/W	SW7470A	
Mercury Digestion	Completed					11/21/16	Q/Q	SW7470A	
PCB Extraction (2 Liter)	Completed					11/21/16	Z/T	SW3510C	
Extraction for Pest (2 Liter)	Completed					11/21/16	Z	SW3510C	
Semi-Volatile Extraction	Completed					11/17/16	P/D/D		
Dissolved Metals Preparation	Completed					11/17/16	AG	SW3005A	
Total Metals Digestion	Completed					11/18/16	AG		
<u>Pesticides</u>									
4,4' -DDD	ND	0.025	0.025	ug/L	10	11/18/16	CE	SW8081B	
4,4' -DDE	ND	0.025	0.025	ug/L	10	11/18/16	CE	SW8081B	
4,4' -DDT	ND	0.025	0.025	ug/L	10	11/18/16	CE	SW8081B	
a-BHC	ND	0.025	0.025	ug/L	10	11/18/16	CE	SW8081B	
a-chlordane	ND	0.10	0.10	ug/L	10	11/18/16	CE	SW8081B	
Alachlor	ND	0.050	0.050	ug/L	10	11/18/16	CE	SW8081B	1
Aldrin	ND	0.020	0.020	ug/L	10	11/18/16	CE	SW8081B	
b-BHC	ND	0.025	0.025	ug/L	10	11/18/16	CE	SW8081B	
Chlordane	ND	0.50	0.50	ug/L	10	11/18/16	CE	SW8081B	
d-BHC	ND	0.025	0.025	ug/L	10	11/18/16	CE	SW8081B	
Dieldrin	ND	0.015	0.015	ug/L	10	11/18/16	CE	SW8081B	
Endosulfan I	ND	0.10	0.10	ug/L	10	11/18/16	CE	SW8081B	
Endosulfan II	ND	0.050	0.050	ug/L	10	11/18/16	CE	SW8081B	
Endosulfan Sulfate	ND	0.10	0.10	ug/L	10	11/18/16	CE	SW8081B	
Endrin	ND	0.050	0.050	ug/L	10	11/18/16	CE	SW8081B	
Endrin Aldehyde	ND	0.20	0.20	ug/L	10	11/18/16	CE	SW8081B	
Endrin ketone	ND	0.10	0.10	ug/L	10	11/18/16	CE	SW8081B	
g-BHC (Lindane)	ND	0.050	0.050	ug/L	10	11/18/16	CE	SW8081B	
g-chlordane	ND	0.10	0.10	ug/L	10	11/18/16	CE	SW8081B	
Heptachlor	ND	0.050	0.050	ug/L	10	11/18/16	CE	SW8081B	
Heptachlor epoxide	ND	0.050	0.050	ug/L	10	11/18/16	CE	SW8081B	
Methoxychlor	ND	1.0	1.0	ug/L ug/L	10	11/18/16	CE	SW8081B	

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
Toxaphene	ND	2.0	2.0	ug/L	10	11/18/16	CE	SW8081B	
QA/QC Surrogates				-					
%DCBP (Surrogate Rec)	Diluted Out			%	10	11/18/16	CE	SW8081B	
%TCMX (Surrogate Rec)	Diluted Out			%	10	11/18/16	CE	SW8081B	
Polychlorinated Biphen	vls								
PCB-1016	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A	
PCB-1221	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A	
PCB-1232	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A	
PCB-1242	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A	
PCB-1248	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A	
PCB-1254	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A	
PCB-1260	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A	
PCB-1262	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A	
PCB-1268	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A	
QA/QC Surrogates				Ü					
% DCBP	<10			%	1	11/22/16	AW	40 - 140 %	3
% TCMX	81			%	1	11/22/16	AW	40 - 140 %	
<u>Volatiles</u>									
1,1,1,2-Tetrachloroethane	ND	5.0	5.0	ug/L	20	11/17/16	HM	SW8260C	
1,1,1-Trichloroethane	ND	5.0	5.0	ug/L	20	11/17/16	HM	SW8260C	
1,1,2,2-Tetrachloroethane	ND	5.0	5.0	ug/L	20	11/17/16	HM	SW8260C	
1,1,2-Trichloroethane	ND	5.0	5.0	ug/L	20	11/17/16	HM	SW8260C	
1,1-Dichloroethane	ND	5.0	5.0	ug/L	20	11/17/16	HM	SW8260C	
1,1-Dichloroethene	ND	5.0	5.0	ug/L	20	11/17/16	HM	SW8260C	
1,1-Dichloropropene	ND	5.0	5.0	ug/L	20	11/17/16	HM	SW8260C	
1,2,3-Trichlorobenzene	ND	20	5.0	ug/L	20	11/17/16	HM	SW8260C	
1,2,3-Trichloropropane	ND	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C	
1,2,4-Trichlorobenzene	ND	20	5.0	ug/L	20	11/17/16	HM	SW8260C	
1,2,4-Trimethylbenzene	610	50	50	ug/L	200	11/18/16	HM	SW8260C	
1,2-Dibromo-3-chloropropane	ND	10	10	ug/L	20	11/17/16	HM	SW8260C	
1,2-Dibromoethane	ND	5.0	5.0	ug/L	20	11/17/16	HM	SW8260C	
1,2-Dichlorobenzene	ND	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C	
1,2-Dichloroethane	ND	10	10	ug/L	20	11/17/16	HM	SW8260C	
1,2-Dichloropropane	ND	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C	
1,3,5-Trimethylbenzene	190	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C	
1,3-Dichlorobenzene	ND	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C	
1,3-Dichloropropane	ND	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C	
1,4-Dichlorobenzene	ND	5.0	5.0	ug/L	20	11/17/16	HM	SW8260C	
2,2-Dichloropropane	ND	5.0	5.0	ug/L	20	11/17/16	HM	SW8260C	
2-Chlorotoluene	ND	5.0	5.0	ug/L	20	11/17/16	HM	SW8260C	
2-Hexanone	ND	50	50	ug/L	20	11/17/16	HM	SW8260C	
2-Isopropyltoluene	ND	5.0	5.0	ug/L	20	11/17/16	HM	SW8260C	1
4-Chlorotoluene	ND	5.0	5.0	ug/L	20	11/17/16	HM	SW8260C	
4-Methyl-2-pentanone	60	50	50	ug/L	20	11/17/16	HM	SW8260C	
Acetone		S 50	50	ug/L	20	11/17/16	HM	SW8260C	
Acrolein	ND	50	50	ug/L	20	11/17/16	HM	SW8260C	
Acrylonitrile	ND 50	50	50	ug/L	20	11/17/16	HM	SW8260C	
Benzene	50	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C	

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Bromobenzene	ND	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C
Bromochloromethane	ND	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C
Bromodichloromethane	ND	20	5.0	ug/L	20	11/17/16	НМ	SW8260C
Bromoform	ND	50	5.0	ug/L	20	11/17/16	НМ	SW8260C
Bromomethane	ND	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C
Carbon Disulfide	22	20	5.0	ug/L	20	11/17/16	НМ	SW8260C
Carbon tetrachloride	ND	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C
Chlorobenzene	ND	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C
Chloroethane	ND	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C
Chloroform	ND	7.0	5.0	ug/L	20	11/17/16	НМ	SW8260C
Chloromethane	ND	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C
cis-1,2-Dichloroethene	ND	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C
cis-1,3-Dichloropropene	ND	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C
Dibromochloromethane	ND	20	5.0	ug/L	20	11/17/16	НМ	SW8260C
Dibromomethane	ND	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C
Dichlorodifluoromethane	ND	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C
Ethylbenzene	440	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C
Hexachlorobutadiene	ND	4.0	4.0	ug/L	20	11/17/16	НМ	SW8260C
Isopropylbenzene	29	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C
m&p-Xylene	1600	200	50	ug/L	200	11/18/16	НМ	SW8260C
Methyl ethyl ketone	780	500	500	ug/L	200	11/18/16	НМ	SW8260C
Methyl t-butyl ether (MTBE)	66	20	5.0	ug/L	20	11/17/16	НМ	SW8260C
Methylene chloride	ND	20	20	ug/L	20	11/17/16	НМ	SW8260C
Naphthalene	110	20	20	ug/L	20	11/17/16	НМ	SW8260C
n-Butylbenzene	9.0	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C
n-Propylbenzene	78	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C
o-Xylene	590	50	50	ug/L	200	11/18/16	НМ	SW8260C
p-Isopropyltoluene	ND	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C
sec-Butylbenzene	6.5	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C
Styrene	ND	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C
tert-Butylbenzene	ND	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C
Tetrachloroethene	8.1	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C
Tetrahydrofuran (THF)	ND	50	50	ug/L	20	11/17/16	НМ	SW8260C 1
Toluene	470	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C
trans-1,2-Dichloroethene	ND	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C
trans-1,3-Dichloropropene	ND	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C
trans-1,4-dichloro-2-butene	ND	50	50	ug/L	20	11/17/16	НМ	SW8260C
Trichloroethene	7.4	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C
Trichlorofluoromethane	ND	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C
Trichlorotrifluoroethane	ND	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C
Vinyl chloride	ND	5.0	5.0	ug/L	20	11/17/16	НМ	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	98			%	20	11/17/16	НМ	70 - 130 %
% Bromofluorobenzene	94			%	20	11/17/16	НМ	70 - 130 %
% Dibromofluoromethane	96			%	20	11/17/16	НМ	70 - 130 %
% Toluene-d8	100			%	20	11/17/16	НМ	70 - 130 %
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	100	35	ug/L	20	11/22/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	100	30	ug/L	20	11/22/16	DD	SW8270D

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1,2-Dichlorobenzene	ND	28	28	ug/L	20	11/22/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	100	33	ug/L	20	11/22/16	DD	SW8270D
1,3-Dichlorobenzene	ND	30	30	ug/L	20	11/22/16	DD	SW8270D
1,4-Dichlorobenzene	ND	30	30	ug/L	20	11/22/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	55	55	ug/L	20	11/22/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	32	32	ug/L	20	11/22/16	DD	SW8270D
2,4-Dichlorophenol	ND	35	35	ug/L	20	11/22/16	DD	SW8270D
2,4-Dimethylphenol	ND	25	25	ug/L	20	11/22/16	DD	SW8270D
2,4-Dinitrophenol	ND	70	70	ug/L	20	11/22/16	DD	SW8270D
2,4-Dinitrotoluene	ND	39	39	ug/L	20	11/22/16	DD	SW8270D
2,6-Dinitrotoluene	ND	32	32	ug/L	20	11/22/16	DD	SW8270D
2-Chloronaphthalene	ND	28	28	ug/L	20	11/22/16	DD	SW8270D
2-Chlorophenol	ND	28	28	ug/L	20	11/22/16	DD	SW8270D
2-Methylnaphthalene	ND	50	30	ug/L	20	11/22/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	47	47	ug/L	20	11/22/16	DD	SW8270D
2-Nitroaniline	ND	100	100	ug/L	20	11/22/16	DD	SW8270D
2-Nitrophenol	ND	63	63	ug/L	20	11/22/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	120	100	39	ug/L	20	11/22/16	DD	SW8270D
3,3'-Dichlorobenzidine	ND	47	47	ug/L	20	11/22/16	DD	SW8270D
3-Nitroaniline	ND	220	220	ug/L	20	11/22/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	110	110	ug/L	20	11/22/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	100	29	ug/L	20	11/22/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	35	35	ug/L	20	11/22/16	DD	SW8270D
4-Chloroaniline	ND	47	47	ug/L	20	11/22/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	100	34	ug/L	20	11/22/16	DD	SW8270D
4-Nitroaniline	ND	33	33	ug/L	20	11/22/16	DD	SW8270D
4-Nitrophenol	ND	45	45	ug/L	20	11/22/16	DD	SW8270D
Acenaphthene	ND	30	30	ug/L	20	11/22/16	DD	SW8270D
Acenaphthylene	ND	28	28	ug/L	20	11/22/16	DD	SW8270D
Acetophenone	ND	100	31	ug/L	20	11/22/16	DD	SW8270D
Aniline	ND	300	300	ug/L	20	11/22/16	DD	SW8270D
Anthracene	ND	50	33	ug/L	20	11/22/16	DD	SW8270D
Benz(a)anthracene	ND	34	34	ug/L	20	11/22/16	DD	SW8270D
Benzidine	ND	59	59	ug/L	20	11/22/16	DD	SW8270D
Benzo(a)pyrene	ND	33	33	ug/L	20	11/22/16	DD	SW8270D
Benzo(b)fluoranthene	ND	34	34	ug/L	20	11/22/16	DD	SW8270D
Benzo(ghi)perylene	ND	32	32	ug/L	20	11/22/16	DD	SW8270D
Benzo(k)fluoranthene	ND	33	33	ug/L	20	11/22/16	DD	SW8270D
Benzoic acid	7000	2000	2000	ug/L	200	11/22/16	DD	SW8270D
Benzyl butyl phthalate	ND	50	26	ug/L	20	11/22/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	28	28	ug/L	20	11/22/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	27	27	ug/L	20	11/22/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	100	28	ug/L	20	11/22/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	29	29	ug/L	20	11/22/16	DD	SW8270D
Carbazole	ND	500	76	ug/L	20	11/22/16	DD	SW8270D
Chrysene	ND	34	34	ug/L	20	11/22/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	50	32	ug/L	20	11/22/16	DD	SW8270D
Dibenzofuran	ND	29	29	ug/L	20	11/22/16	DD	SW8270D
Diethyl phthalate	ND	50	32	ug/L	20	11/22/16	DD	SW8270D

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Dimethylphthalate	ND	50	31	ug/L	20	11/22/16	DD	SW8270D
Di-n-butylphthalate	ND	50	27	ug/L	20	11/22/16	DD	SW8270D
Di-n-octylphthalate	ND	50	26	ug/L	20	11/22/16	DD	SW8270D
Fluoranthene	ND	50	32	ug/L	20	11/22/16	DD	SW8270D
Fluorene	ND	50	33	ug/L	20	11/22/16	DD	SW8270D
Hexachlorobenzene	ND	29	29	ug/L	20	11/22/16	DD	SW8270D
Hexachlorobutadiene	ND	36	36	ug/L	20	11/22/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	31	31	ug/L	20	11/22/16	DD	SW8270D
Hexachloroethane	ND	30	30	ug/L	20	11/22/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	33	33	ug/L	20	11/22/16	DD	SW8270D
Isophorone	ND	50	28	ug/L	20	11/22/16	DD	SW8270D
Naphthalene	100	29	29	ug/L	20	11/22/16	DD	SW8270D
Nitrobenzene	ND	35	35	ug/L	20	11/22/16	DD	SW8270D
N-Nitrosodimethylamine	ND	100	28	ug/L	20	11/22/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	100	32	ug/L	20	11/22/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	50	38	ug/L	20	11/22/16	DD	SW8270D
Pentachloronitrobenzene	ND	100	37	ug/L	20	11/22/16	DD	SW8270D
Pentachlorophenol	ND	38	38	ug/L	20	11/22/16	DD	SW8270D
Phenanthrene	ND	50	29	ug/L	20	11/22/16	DD	SW8270D
Phenol	ND	32	32	ug/L	20	11/22/16	DD	SW8270D
Pyrene	ND	50	34	ug/L	20	11/22/16	DD	SW8270D
Pyridine	ND	50	25	ug/L	20	11/22/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	Diluted Out			%	20	11/22/16	DD	15 - 110 %
% 2-Fluorobiphenyl	Diluted Out			%	20	11/22/16	DD	30 - 130 %
% 2-Fluorophenol	Diluted Out			%	20	11/22/16	DD	15 - 110 %
% Nitrobenzene-d5	Diluted Out			%	20	11/22/16	DD	30 - 130 %
% Phenol-d5	Diluted Out			%	20	11/22/16	DD	15 - 110 %
% Terphenyl-d14	Diluted Out			%	20	11/22/16	DD	30 - 130 %

Client ID: MW6

RL/ LOD/

Parameter Result PQL MDL Units Dilution Date/Time By Reference

- 1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.
- 3 = This parameter exceeds laboratory specified limits.
- B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Volatile Comment:

Elevated reporting limits for volatiles due to the presence of target and/or non-target compounds.

Volatile Comment

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

Pesticide Comment:

Due to a matrix interference and/or the presence of a large amount of non-target material in the sample, an elevated RL was reported for the affected compounds.

PCB Comment:

Poor surrogate recovery was observed for PCBs. Sample was re-extracted with similar results.

Semi-Volatile Comment:

Due to a matrix interference and/or the presence of a large amount of non-target material in the sample, a dilution was required resulting in an elevated RL for the semivolatile analysis.

Semi-Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 30, 2016

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 30, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample Information Custody Information Date <u>Time</u>

GROUND WATER Collected by: Matrix: 11/16/16

Received by: Location Code: **EBC** LB 11/17/16 15:39

Rush Request: 72 Hour Analyzed by: see "By" below

1181 FLUSHING AVE., BROOKLYN

Project ID: Client ID: MW7

P.O.#:

Laboratory Data

SDG ID: GBV86885

Phoenix ID: BV86886

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
Silver	ND	0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Aluminum	0.031	0.010	0.005	mg/L	1	11/19/16	LK	SW6010C	
Arsenic - LDL	0.011	0.004	0.004	mg/L	1	11/19/16	LK	SW6010C	
Barium	0.266	0.010	0.001	mg/L	1	11/19/16	LK	SW6010C	
Beryllium	ND	0.001	0.001	mg/L	1	11/19/16	LK	SW6010C	
Calcium	47.5	0.010	0.01	mg/L	1	11/19/16	LK	SW6010C	
Cadmium	0.002	B 0.004	0.0005	mg/L	1	11/19/16	LK	SW6010C	
Cobalt	0.018	0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Chromium	ND	0.001	0.001	mg/L	1	11/19/16	LK	SW6010C	
Copper	ND	0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Silver (Dissolved)	ND	0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Aluminum (Dissolved)	ND	0.011	0.005	mg/L	1	11/19/16	LK	SW6010C	
Arsenic, (Dissolved)	ND	0.003	0.004	mg/L	1	11/19/16	LK	SW6010C	
Barium (Dissolved)	0.180	0.011	0.001	mg/L	1	11/19/16	LK	SW6010C	
Beryllium (Dissolved)	ND	0.001	0.001	mg/L	1	11/19/16	LK	SW6010C	
Calcium (Dissolved)	46.8	0.01	0.01	mg/L	1	11/19/16	LK	SW6010C	В
Cadmium (Dissolved)	0.001	B 0.004	0.0005	mg/L	1	11/19/16	LK	SW6010C	
Cobalt, (Dissolved)	0.017	0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Chromium (Dissolved)	ND	0.001	0.001	mg/L	1	11/19/16	LK	SW6010C	
Copper, (Dissolved)	ND	0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Iron, (Dissolved)	62.3	0.01	0.01	mg/L	1	11/19/16	LK	SW6010C	
Mercury (Dissolved)	ND	0.0002	0.00015	mg/L	1	11/21/16	RS	SW7470A	
Potassium (Dissolved)	4.8	0.1	0.01	mg/L	1	11/22/16	LK/MA	SW6010C	
Magnesium (Dissolved)	14.8	0.01	0.01	mg/L	1	11/19/16	LK	SW6010C	
Manganese, (Dissolved)	3.37	0.053	0.011	mg/L	10	11/19/16	LK	SW6010C	
Sodium (Dissolved)	111	1.1	0.11	mg/L	10	11/19/16	LK	SW6010C	
Nickel, (Dissolved)	ND	0.004	0.001	mg/L	1	11/19/16	LK	SW6010C	
Lead (Dissolved)	0.004	0.002	0.001	mg/L	1	11/19/16	LK	SW6010C	

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
Antimony, (Dissolved)	ND	0.003	0.003	mg/L	1	11/20/16	RS	SW7010	
Selenium, (Dissolved)	ND	0.004	0.002	mg/L	1	11/18/16	RS	SW7010	
Thallium, (Dissolved)	ND	0.0005	0.0005	mg/L	1	11/18/16	RS	SW7010	
Vanadium, (Dissolved)	ND	0.011	0.001	mg/L	1	11/19/16	LK	SW6010C	
Zinc, (Dissolved)	0.007	B 0.011	0.0012	mg/L	1	11/19/16	LK	SW6010C	
Iron	121	0.01	0.01	mg/L	1	11/19/16	LK	SW6010C	
Mercury	ND	0.0002	0.00015	mg/L	1	11/18/16	RS	SW7470A	
Potassium	5.0	0.1	0.01	mg/L	1	11/19/16	LK	SW6010C	
Magnesium	14.7	0.010	0.01	mg/L	1	11/19/16	LK	SW6010C	
Manganese	3.48	0.050	0.010	mg/L	10	11/19/16	LK	SW6010C	
Sodium	107	1.0	0.10	mg/L	10	11/19/16	LK	SW6010C	
Nickel	0.004	B 0.004	0.001	mg/L	1	11/19/16	LK	SW6010C	
Lead	0.007	0.002	0.001	mg/L	1	11/19/16	LK	SW6010C	
Antimony	ND	0.002	0.002	mg/L	1	11/20/16	RS	SW7010	
Selenium	ND	0.002	0.001	mg/L	1	11/18/16	RS	SW7010	
Thallium - LDL	ND	0.0005	0.0005	mg/L	1	11/18/16	RS	SW7010	
Vanadium	ND	0.010	0.001	mg/L	1	11/19/16	LK	SW6010C	
Zinc	0.014	0.010	0.0011	mg/L	1	11/19/16	LK	SW6010C	
Filtration	Completed	l				11/17/16	AG	0.45um Filter	
Dissolved Mercury Digestion	Completed	l				11/21/16	QW/W	SW7470A	
Mercury Digestion	Completed	l				11/18/16	QW/QW	/ SW7470A	
PCB Extraction (2 Liter)	Completed	l				11/21/16	Z/T	SW3510C	
Extraction for Pest (2 Liter)	Completed	I				11/21/16	Z	SW3510C	
Semi-Volatile Extraction	Completed	I				11/17/16	P/D/D	SW3520C	
Dissolved Metals Preparation	Completed	I				11/17/16	AG	SW3005A	
Total Metals Digestion	Completed	I				11/17/16	AG		
<u>Pesticides</u>									
4,4' -DDD	ND	0.005	0.010	ug/L	1	11/21/16	CE	SW8081B	
4,4' -DDE	ND	0.005	0.010	ug/L	1	11/21/16	CE	SW8081B	
4,4' -DDT	ND	0.005	0.010	ug/L	1	11/21/16	CE	SW8081B	
a-BHC	ND	0.005	0.005	ug/L	1	11/21/16	CE	SW8081B	
a-chlordane	ND	0.010	0.010	ug/L	1	11/21/16	CE	SW8081B	
Alachlor	ND	0.075	0.075	ug/L	1	11/21/16	CE	SW8081B	
Aldrin	ND	0.002	0.002	ug/L	1	11/21/16	CE	SW8081B	
b-BHC	ND	0.040	0.040	ug/L	1	11/21/16	CE	SW8081B	
Chlordane	ND	0.050	0.050	ug/L	1	11/21/16	CE	SW8081B	
d-BHC	ND	0.005	0.005	ug/L	1	11/21/16	CE	SW8081B	
Dieldrin	ND	0.002	0.002	ug/L	1	11/21/16	CE	SW8081B	
Endosulfan I	ND	0.010	0.010	ug/L	1	11/21/16	CE	SW8081B	
Endosulfan II	ND	0.010	0.010	ug/L	1	11/21/16	CE	SW8081B	
Endosulfan Sulfate	ND	0.010	0.010	ug/L	1	11/21/16	CE	SW8081B	
Endrin	ND	0.010	0.010	ug/L	1	11/21/16	CE	SW8081B	
Endrin Aldehyde	ND	0.010	0.010	ug/L	1	11/21/16	CE	SW8081B	
Endrin ketone	ND	0.010	0.010	ug/L	1	11/21/16	CE	SW8081B	
g-BHC (Lindane)	ND	0.005	0.005	ug/L	1	11/21/16	CE	SW8081B	
g-chlordane	ND	0.010	0.010	ug/L	1	11/21/16	CE	SW8081B	
Heptachlor	ND	0.010	0.010	ug/L	1	11/21/16	CE	SW8081B	
Heptachlor epoxide	ND	0.010	0.010	ug/L	1	11/21/16	CE	SW8081B	
Methoxychlor	ND	0.10	0.10	ug/L	1	11/21/16	CE	SW8081B	

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
Toxaphene	ND	0.20	0.20	ug/L	1	11/21/16	CE	SW8081B	
QA/QC Surrogates									
%DCBP (Surrogate Rec)	34			%	1	11/21/16	CE	SW8081B	
%TCMX (Surrogate Rec)	74			%	1	11/21/16	CE	SW8081B	
Polychlorinated Bipheny	<u>/ls</u>								
PCB-1016	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A	
PCB-1221	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A	
PCB-1232	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A	
PCB-1242	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A	
PCB-1248	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A	
PCB-1254	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A	
PCB-1260	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A	
PCB-1262	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A	
PCB-1268	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A	
QA/QC Surrogates									
% DCBP	25			%	1	11/22/16	AW	40 - 140 %	3
% TCMX	80			%	1	11/22/16	AW	40 - 140 %	
Volatiles									
1,1,1,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,1,1-Trichloroethane	ND	5.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,1,2,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,1,2-Trichloroethane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,1-Dichloroethane	ND	5.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,1-Dichloroethene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,1-Dichloropropene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,2,3-Trichloropropane	ND	0.25	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,2,4-Trichlorobenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,2,4-Trimethylbenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,2-Dibromo-3-chloropropane	ND	0.50	0.50	ug/L	1	11/18/16	НМ	SW8260C	
1,2-Dibromoethane	ND	0.25	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,2-Dichlorobenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,2-Dichloroethane	ND	0.60	0.50	ug/L	1	11/18/16	НМ	SW8260C	
1,2-Dichloropropane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,3,5-Trimethylbenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,3-Dichlorobenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,3-Dichloropropane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,4-Dichlorobenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
2,2-Dichloropropane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
2-Chlorotoluene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
2-Hexanone	ND	2.5	2.5	ug/L	1	11/18/16	НМ	SW8260C	
2-Isopropyltoluene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	1
4-Chlorotoluene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
4-Methyl-2-pentanone	ND	2.5	2.5	ug/L	1	11/18/16	НМ	SW8260C	
Acetone	ND	5.0	2.5	ug/L	1	11/18/16	HM	SW8260C	
Acrolein	ND	5.0	2.5	ug/L	' 1	11/18/16	HM	SW8260C	
Acrylonitrile	ND	5.0	2.5	ug/L	1	11/18/16	HM	SW8260C	
Benzene	1.3	0.70	0.25	ug/L	1	11/18/16	HM	SW8260C	
201120110	1.0	3.70	J.20	49 / □	•	11,10,10	1 1171	302000	

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Bromobenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Bromochloromethane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Bromodichloromethane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Bromoform	ND	5.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Bromomethane	ND	5.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Carbon Disulfide	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Carbon tetrachloride	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Chlorobenzene	ND	5.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Chloroethane	ND	5.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Chloroform	ND	5.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Chloromethane	ND	5.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
cis-1,2-Dichloroethene	1.5	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
cis-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	11/18/16	НМ	SW8260C
Dibromochloromethane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Dibromomethane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Dichlorodifluoromethane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Ethylbenzene	0.35	J 1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Hexachlorobutadiene	ND	0.50	0.20	ug/L	1	11/18/16	НМ	SW8260C
Isopropylbenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
m&p-Xylene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Methyl ethyl ketone	ND	2.5	2.5	ug/L	1	11/18/16	НМ	SW8260C
Methyl t-butyl ether (MTBE)	2.9	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Methylene chloride	ND	3.0	1.0	ug/L	1	11/18/16	НМ	SW8260C
Naphthalene	ND	1.0	1.0	ug/L	1	11/18/16	НМ	SW8260C
n-Butylbenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
n-Propylbenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
o-Xylene	0.50	J 1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
p-Isopropyltoluene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
sec-Butylbenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Styrene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
tert-Butylbenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Tetrachloroethene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Tetrahydrofuran (THF)	ND	5.0	2.5	ug/L	1	11/18/16	НМ	SW8260C 1
Toluene	0.32	J 1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
trans-1,2-Dichloroethene	ND	5.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
trans-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	11/18/16	НМ	SW8260C
trans-1,4-dichloro-2-butene	ND	2.5	2.5	ug/L	1	11/18/16	НМ	SW8260C
Trichloroethene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Trichlorofluoromethane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Trichlorotrifluoroethane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Vinyl chloride	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
QA/QC Surrogates				9/-	·	,		
% 1,2-dichlorobenzene-d4	101			%	1	11/18/16	НМ	70 - 130 %
% Bromofluorobenzene	98			%	1	11/18/16	НМ	70 - 130 %
% Dibromofluoromethane	100			%	1	11/18/16	НМ	70 - 130 %
% Toluene-d8	99			%	1	11/18/16	НМ	70 - 130 %
					·	,		
Semivolatiles	NIP	5 ^	4.5	, n	4	44/00/40		CW00705
1,2,4-Trichlorobenzene	ND	5.0	1.5	ug/L	1	11/22/16	DD	SW8270D
1,2-Dichlorobenzene	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1,2-Diphenylhydrazine	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
1,3-Dichlorobenzene	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
1,4-Dichlorobenzene	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2,4-Dichlorophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2,4-Dimethylphenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2,4-Dinitrophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2,4-Dinitrotoluene	ND	5.0	2.0	ug/L	1	11/22/16	DD	SW8270D
2,6-Dinitrotoluene	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
2-Chloronaphthalene	ND	5.0	1.4	ug/L	1	11/22/16	DD	SW8270D
2-Chlorophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2-Methylnaphthalene	ND	5.0	1.5	ug/L	1	11/22/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2-Nitroaniline	ND	5.0	2.0	ug/L	1	11/22/16	DD	SW8270D
2-Nitrophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
3,3'-Dichlorobenzidine	ND	5.0	2.4	ug/L	1	11/22/16	DD	SW8270D
3-Nitroaniline	ND	5.0	2.0	ug/L	1	11/22/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	5.0	1.5	ug/L	1	11/22/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
4-Chloroaniline	ND	3.5	2.3	ug/L	1	11/22/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	5.0	1.7	ug/L	1	11/22/16	DD	SW8270D
4-Nitroaniline	ND	5.0	1.7	ug/L	1	11/22/16	DD	SW8270D
4-Nitrophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
Acenaphthene	ND	5.0	1.5	ug/L	1	11/22/16	DD	SW8270D
Acetophenone	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
Aniline	ND	3.5	5.0	ug/L	1	11/22/16	DD	SW8270D
Anthracene	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
Benzidine	ND	4.5	2.9	ug/L	1	11/22/16	DD	SW8270D
Benzoic acid	ND	4.5 25	10	ug/L ug/L	1	11/22/16	DD	SW8270D
					_			
Benzyl butyl phthalate	ND ND	5.0 5.0	1.3 1.4	ug/L	1	11/22/16 11/22/16	DD DD	SW8270D SW8270D
Bis(2-chloroethoxy)methane				ug/L	1			
Bis(2-chloroethyl)ether	ND	1.0	1.0	ug/L	1	11/22/16 11/22/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	5.0	1.4	ug/L	1		DD	SW8270D
Carbazole	ND	5.0	3.8	ug/L	1	11/22/16	DD	SW8270D
Dibenzofuran	ND	5.0	1.5	ug/L	1	11/22/16	DD	SW8270D
Diethyl phthalate	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
Dimethylphthalate	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
Di-n-butylphthalate	ND	5.0	1.3	ug/L	1	11/22/16	DD	SW8270D
Di-n-octylphthalate	ND	5.0	1.3	ug/L	1	11/22/16	DD	SW8270D
Fluoranthene	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
Fluorene	ND	5.0	1.7	ug/L	1	11/22/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	5.0	1.5	ug/L	1	11/22/16	DD	SW8270D
Isophorone	ND	5.0	1.4	ug/L	1	11/22/16	DD	SW8270D
Naphthalene	ND	5.0	1.4	ug/L	1	11/22/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	5.0	1.9	ug/L	1	11/22/16	DD	SW8270D

Client ID: MW7

Chorte 12. WWV7		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Phenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
Pyrene	ND	5.0	1.7	ug/L	1	11/22/16	DD	SW8270D
Pyridine	ND	10	1.2	ug/L	1	11/22/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	99			%	1	11/22/16	DD	15 - 110 %
% 2-Fluorobiphenyl	83			%	1	11/22/16	DD	30 - 130 %
% 2-Fluorophenol	57			%	1	11/22/16	DD	15 - 110 %
% Nitrobenzene-d5	67			%	1	11/22/16	DD	30 - 130 %
% Phenol-d5	69			%	1	11/22/16	DD	15 - 110 %
% Terphenyl-d14	90			%	1	11/22/16	DD	30 - 130 %
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	0.50	0.50	ug/L	1	11/21/16	DD	SW8270D (SIM)
Acenaphthylene	ND	0.10	0.10	ug/L	1	11/21/16	DD	SW8270D (SIM)
Benz(a)anthracene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)
Bis(2-ethylhexyl)phthalate	ND	1.0	1.0	ug/L	1	11/21/16	DD	SW8270D (SIM)
Chrysene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)
Hexachlorobenzene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)
Hexachlorobutadiene	ND	0.40	0.40	ug/L	1	11/21/16	DD	SW8270D (SIM)
Hexachloroethane	ND	0.50	0.50	ug/L	1	11/21/16	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)
Nitrobenzene	ND	0.10	0.10	ug/L	1	11/21/16	DD	SW8270D (SIM)
N-Nitrosodimethylamine	ND	0.10	0.10	ug/L	1	11/21/16	DD	SW8270D (SIM)
Pentachloronitrobenzene	ND	0.10	0.10	ug/L	1	11/21/16	DD	SW8270D (SIM)
Pentachlorophenol	ND	0.80	0.80	ug/L	1	11/21/16	DD	SW8270D (SIM)
Phenanthrene	ND	0.10	0.10	ug/L	1	11/21/16	DD	SW8270D (SIM)
QA/QC Surrogates								
% 2,4,6-Tribromophenol	109			%	1	11/21/16	DD	15 - 110 %
% 2-Fluorobiphenyl	77			%	1	11/21/16	DD	30 - 130 %
% 2-Fluorophenol	61			%	1	11/21/16	DD	15 - 110 %
% Nitrobenzene-d5	81			%	1	11/21/16	DD	30 - 130 %
% Phenol-d5	81			%	1	11/21/16	DD	15 - 110 %
% Terphenyl-d14	102			%	1	11/21/16	DD	30 - 130 %

Phoenix I.D.: BV86886

Client ID: MW7

RL/ LOD/

Parameter Result PQL MDL Units Dilution Date/Time By Reference

- 1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.
- 3 = This parameter exceeds laboratory specified limits.
- B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

PCB Comment:

Poor surrogate recovery was observed for PCBs. Sample was re-extracted with similar results.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 30, 2016

Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 30, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: GROUND WATER Collected by: 11/16/16

Location Code: EBC Received by: LB 11/17/16 15:39

Rush Request: 72 Hour Analyzed by: see "By" below

Labora

Laboratory Data

SDG ID: GBV86885
Phoenix ID: BV86887

Project ID: 1181 FLUSHING AVE., BROOKLYN

Client ID: MW9

P.O.#:

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	D.,	Reference	
Farameter		PQL	MDL	UTIILS	Dilution	Date/Time	Ву		
Silver	ND	0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Aluminum	0.182	0.010	0.005	mg/L	1	11/19/16	LK	SW6010C	
Arsenic - LDL	ND	0.004	0.004	mg/L	1	11/19/16	LK	SW6010C	
Barium	0.198	0.010	0.001	mg/L	1	11/19/16	LK	SW6010C	
Beryllium	ND	0.001	0.001	mg/L	1	11/19/16	LK	SW6010C	
Calcium	120	0.010	0.01	mg/L	1	11/19/16	LK	SW6010C	
Cadmium	ND	0.004	0.0005	mg/L	1	11/19/16	LK	SW6010C	
Cobalt	0.008	0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Chromium	0.002	0.001	0.001	mg/L	1	11/19/16	LK	SW6010C	
Copper	ND	0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Silver (Dissolved)	ND	0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Aluminum (Dissolved)	ND	0.011	0.005	mg/L	1	11/19/16	LK	SW6010C	
Arsenic, (Dissolved)	ND	0.003	0.004	mg/L	1	11/19/16	LK	SW6010C	
Barium (Dissolved)	0.163	0.011	0.001	mg/L	1	11/19/16	LK	SW6010C	
Beryllium (Dissolved)	ND	0.001	0.001	mg/L	1	11/19/16	LK	SW6010C	
Calcium (Dissolved)	120	0.01	0.01	mg/L	1	11/19/16	LK	SW6010C	В
Cadmium (Dissolved)	ND	0.004	0.0005	mg/L	1	11/19/16	LK	SW6010C	
Cobalt, (Dissolved)	0.007	0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Chromium (Dissolved)	ND	0.001	0.001	mg/L	1	11/19/16	LK	SW6010C	
Copper, (Dissolved)	ND	0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Iron, (Dissolved)	0.24	0.01	0.01	mg/L	1	11/19/16	LK	SW6010C	
Mercury (Dissolved)	ND	0.0002	0.00015	mg/L	1	11/21/16	RS	SW7470A	
Potassium (Dissolved)	9.4	0.1	0.01	mg/L	1	11/22/16	LK/MA	SW6010C	
Magnesium (Dissolved)	39.4	0.01	0.01	mg/L	1	11/19/16	LK	SW6010C	
Manganese, (Dissolved)	11.1	0.053	0.011	mg/L	10	11/19/16	LK	SW6010C	
Sodium (Dissolved)	126	1.1	0.11	mg/L	10	11/19/16	LK	SW6010C	
Nickel, (Dissolved)	0.008	0.004	0.001	mg/L	1	11/19/16	LK	SW6010C	
Lead (Dissolved)	0.002	B 0.002	0.001	mg/L	1	11/19/16	LK	SW6010C	

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
Antimony, (Dissolved)	ND	0.003	0.003	mg/L	1	11/20/16	RS	SW7010	
Selenium, (Dissolved)	ND	0.004	0.002	mg/L	1	11/18/16	RS	SW7010	
Thallium , (Dissolved)	ND	0.0005	0.0005	mg/L	1	11/18/16	RS	SW7010	
Vanadium, (Dissolved)	ND	0.011	0.001	mg/L	1	11/19/16	LK	SW6010C	
Zinc, (Dissolved)	0.004	B 0.011	0.0012	mg/L	1	11/19/16	LK	SW6010C	
Iron	14.6	0.01	0.01	mg/L	1	11/19/16	LK	SW6010C	
Mercury	ND	0.0002	0.00015	mg/L	1	11/18/16	RS	SW7470A	
Potassium	9.6	0.1	0.01	mg/L	1	11/19/16	LK	SW6010C	
Magnesium	39.7	0.010	0.01	mg/L	1	11/19/16	LK	SW6010C	
Manganese	11.4	0.050	0.010	mg/L	10	11/19/16	LK	SW6010C	
Sodium	122	1.0	0.10	mg/L	10	11/19/16	LK	SW6010C	
Nickel	0.007	0.004	0.001	mg/L	1	11/19/16	LK	SW6010C	
Lead	ND	0.002	0.001	mg/L	1	11/19/16	LK	SW6010C	
Antimony	ND	0.002	0.002	mg/L	1	11/20/16	RS	SW7010	
Selenium	ND	0.002	0.001	mg/L	1	11/18/16	RS	SW7010	
Thallium - LDL	ND	0.0005	0.0005	mg/L	1	11/18/16	RS	SW7010	
Vanadium	0.001	B 0.010	0.001	mg/L	1	11/19/16	LK	SW6010C	
Zinc	0.009	B 0.010	0.0011	mg/L	1	11/19/16	LK	SW6010C	
Filtration	Completed	l				11/17/16	AG	0.45um Filter	
Dissolved Mercury Digestion	Completed	l				11/21/16	QW/W	SW7470A	
Mercury Digestion	Completed	l				11/18/16	QW/QW	/ SW7470A	
PCB Extraction (2 Liter)	Completed	l				11/21/16	Z/T	SW3510C	
Extraction for Pest (2 Liter)	Completed	I				11/21/16	Z	SW3510C	
Semi-Volatile Extraction	Completed	I				11/17/16	P/D/D	SW3520C	
Dissolved Metals Preparation	Completed	I				11/17/16	AG	SW3005A	
Total Metals Digestion	Completed	I				11/17/16	AG		
<u>Pesticides</u>									
4,4' -DDD	ND	0.005	0.010	ug/L	1	11/22/16	CE	SW8081B	
4,4' -DDE	ND	0.005	0.010	ug/L	1	11/22/16	CE	SW8081B	
4,4' -DDT	ND	0.005	0.010	ug/L	1	11/22/16	CE	SW8081B	
a-BHC	ND	0.005	0.005	ug/L	1	11/22/16	CE	SW8081B	
a-chlordane	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B	
Alachlor	ND	0.075	0.075	ug/L	1	11/22/16	CE	SW8081B	
Aldrin	ND	0.002	0.002	ug/L	1	11/22/16	CE	SW8081B	
b-BHC	ND	0.040	0.040	ug/L	1	11/22/16	CE	SW8081B	
Chlordane	ND	0.050	0.050	ug/L	1	11/22/16	CE	SW8081B	
d-BHC	ND	0.005	0.005	ug/L	1	11/22/16	CE	SW8081B	
Dieldrin	ND	0.002	0.002	ug/L	1	11/22/16	CE	SW8081B	
Endosulfan I	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B	
Endosulfan II	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B	
Endosulfan Sulfate	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B	
Endrin	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B	
Endrin Aldehyde	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B	
Endrin ketone	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B	
g-BHC (Lindane)	ND	0.005	0.005	ug/L	1	11/22/16	CE	SW8081B	
g-chlordane	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B	
Heptachlor	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B	
Heptachlor epoxide	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B	
Methoxychlor	ND	0.10	0.10	ug/L	1	11/22/16	CE	SW8081B	

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Toxaphene	ND	0.20	0.20	ug/L	1	11/22/16	CE	SW8081B
QA/QC Surrogates								
%DCBP (Surrogate Rec)	58			%	1	11/22/16	CE	SW8081B
%TCMX (Surrogate Rec)	69			%	1	11/22/16	CE	SW8081B
Polychlorinated Bipheny	ls							
PCB-1016	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A
PCB-1221	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A
PCB-1232	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A
PCB-1242	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A
PCB-1248	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A
PCB-1254	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A
PCB-1260	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A
PCB-1262	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A
PCB-1268	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A
QA/QC Surrogates				3				
% DCBP	47			%	1	11/22/16	AW	40 - 140 %
% TCMX	80			%	1	11/22/16	AW	40 - 140 %
<u>Volatiles</u>					_			
1,1,1,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
1,1,1-Trichloroethane	ND	5.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
1,1,2,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
1,1,2-Trichloroethane	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
1,1-Dichloroethane	ND	5.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
1,1-Dichloroethene	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
1,1-Dichloropropene	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L	1	11/17/16	HM	SW8260C
1,2,3-Trichloropropane	ND	0.25	0.25	ug/L	1	11/17/16	НМ	SW8260C
1,2,4-Trichlorobenzene	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
1,2,4-Trimethylbenzene	4.0	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
1,2-Dibromo-3-chloropropane	ND	0.50	0.50	ug/L	1	11/17/16	НМ	SW8260C
1,2-Dibromoethane	ND	0.25	0.25	ug/L	1	11/17/16	НМ	SW8260C
1,2-Dichlorobenzene	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
1,2-Dichloroethane	ND	0.60	0.50	ug/L	1	11/17/16	НМ	SW8260C
1,2-Dichloropropane	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
1,3,5-Trimethylbenzene	1.0	J 1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
1,3-Dichlorobenzene	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
1,3-Dichloropropane	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
1,4-Dichlorobenzene	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
2,2-Dichloropropane	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
2-Chlorotoluene	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
2-Hexanone	ND	2.5	2.5	ug/L	1	11/17/16	НМ	SW8260C
2-Isopropyltoluene	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C 1
4-Chlorotoluene	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
4-Methyl-2-pentanone	ND	2.5	2.5	ug/L	1	11/17/16	НМ	SW8260C
Acetone	2.6	JS 5.0	2.5	ug/L	1	11/17/16	НМ	SW8260C
Acrolein	ND	5.0	2.5	ug/L	1	11/17/16	НМ	SW8260C
Acrylonitrile	ND	5.0	2.5	ug/L	1	11/17/16	НМ	SW8260C
Benzene	0.69	J 0.70	0.25	ug/L	1	11/17/16	НМ	SW8260C

Parameter	Result		L/ LC QL M		s Dilution	Date/Time	Ву	Reference
Bromobenzene	ND	1	.0 0.	25 ug/L	1	11/17/16	НМ	SW8260C
Bromochloromethane	ND	1	.0 0.	25 ug/L	1	11/17/16	HM	SW8260C
Bromodichloromethane	ND	1	.0 0.	25 ug/L	1	11/17/16	НМ	SW8260C
Bromoform	ND	5	.0 0.	25 ug/L	1	11/17/16	НМ	SW8260C
Bromomethane	ND	5	.0 0.	25 ug/L	1	11/17/16	НМ	SW8260C
Carbon Disulfide	ND	1	.0 0.	25 ug/L	1	11/17/16	НМ	SW8260C
Carbon tetrachloride	ND	1	.0 0.	25 ug/L	1	11/17/16	НМ	SW8260C
Chlorobenzene	ND	5	.0 0.	25 ug/L	1	11/17/16	НМ	SW8260C
Chloroethane	ND	5	.0 0.	25 ug/L	1	11/17/16	НМ	SW8260C
Chloroform	ND	5	.0 0.	25 ug/L	1	11/17/16	НМ	SW8260C
Chloromethane	ND	5	.0 0.	25 ug/L	1	11/17/16	НМ	SW8260C
cis-1,2-Dichloroethene	0.62	J 1	.0 0.	25 ug/L	1	11/17/16	НМ	SW8260C
cis-1,3-Dichloropropene	ND	0.	40 0.	25 ug/L	1	11/17/16	НМ	SW8260C
Dibromochloromethane	ND	1	.0 0.	25 ug/L	1	11/17/16	НМ	SW8260C
Dibromomethane	ND	1	.0 0.	25 ug/L	1	11/17/16	НМ	SW8260C
Dichlorodifluoromethane	ND	1	.0 0.		1	11/17/16	НМ	SW8260C
Ethylbenzene	0.67	J 1	.0 0.		1	11/17/16	НМ	SW8260C
Hexachlorobutadiene	ND	0.	50 0.	20 ug/L	1	11/17/16	НМ	SW8260C
Isopropylbenzene	0.38	J 1	.0 0.	25 ug/L	1	11/17/16	НМ	SW8260C
m&p-Xylene	2.1			25 ug/L	1	11/17/16	НМ	SW8260C
Methyl ethyl ketone	ND	2		.5 ug/L	1	11/17/16	НМ	SW8260C
Methyl t-butyl ether (MTBE)	51			.3 ug/L	5	11/18/16	НМ	SW8260C
Methylene chloride	ND	3	.0 1	.0 ug/L	1	11/17/16	НМ	SW8260C
Naphthalene	ND			.0 ug/L	1	11/17/16	НМ	SW8260C
n-Butylbenzene	0.43		.0 0.		1	11/17/16	НМ	SW8260C
n-Propylbenzene	0.71		.0 0.		1	11/17/16	НМ	SW8260C
o-Xylene	1.3			25 ug/L	1	11/17/16	НМ	SW8260C
p-Isopropyltoluene	ND		.0 0.	•	1	11/17/16	НМ	SW8260C
sec-Butylbenzene	0.64	J 1	.0 0.		1	11/17/16	НМ	SW8260C
Styrene	ND		.0 0.		1	11/17/16	НМ	SW8260C
tert-Butylbenzene	ND	1	.0 0.		1	11/17/16	НМ	SW8260C
Tetrachloroethene	ND			25 ug/L	1	11/17/16	НМ	SW8260C
Tetrahydrofuran (THF)	ND	5		.5 ug/L	1	11/17/16	НМ	SW8260C 1
Toluene	0.92	J 1		25 ug/L	1	11/17/16	НМ	SW8260C
trans-1,2-Dichloroethene	ND			25 ug/L	1	11/17/16	НМ	SW8260C
trans-1,3-Dichloropropene	ND			25 ug/L	1	11/17/16	НМ	SW8260C
trans-1,4-dichloro-2-butene	ND			.5 ug/L	1	11/17/16	НМ	SW8260C
Trichloroethene	ND			25 ug/L	1	11/17/16	НМ	SW8260C
Trichlorofluoromethane	ND			25 ug/L	1	11/17/16	НМ	SW8260C
Trichlorotrifluoroethane	ND			25 ug/L	1	11/17/16	НМ	SW8260C
Vinyl chloride	ND			25 ug/L	1	11/17/16	НМ	SW8260C
QA/QC Surrogates		•			•	.,,,,,,		
% 1,2-dichlorobenzene-d4	96			%	1	11/17/16	НМ	70 - 130 %
% Bromofluorobenzene	96			%	1	11/17/16	НМ	70 - 130 %
% Dibromofluoromethane	96			%	1	11/17/16	HM	70 - 130 %
% Toluene-d8	99			%	1	11/17/16	HM	70 - 130 %
	00			,0		, 11, 10		. 5 . 60 ,0
<u>Semivolatiles</u>								
1,2,4-Trichlorobenzene	ND			.5 ug/L	1	11/22/16	DD	SW8270D
1,2-Dichlorobenzene	ND	1	.0 1	.0 ug/L	1	11/22/16	DD	SW8270D

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1,2-Diphenylhydrazine	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
1,3-Dichlorobenzene	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
1,4-Dichlorobenzene	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2,4-Dichlorophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2,4-Dimethylphenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2,4-Dinitrophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2,4-Dinitrotoluene	ND	5.0	2.0	ug/L	1	11/22/16	DD	SW8270D
2,6-Dinitrotoluene	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
2-Chloronaphthalene	ND	5.0	1.4	ug/L	1	11/22/16	DD	SW8270D
2-Chlorophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2-Methylnaphthalene	ND	5.0	1.5	ug/L	1	11/22/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2-Nitroaniline	ND	5.0	2.0	ug/L	1	11/22/16	DD	SW8270D
2-Nitrophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
3,3'-Dichlorobenzidine	ND	5.0	2.4	ug/L	1	11/22/16	DD	SW8270D
3-Nitroaniline	ND	5.0	2.0	ug/L	1	11/22/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	5.0	1.5	ug/L	1	11/22/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
4-Chloroaniline	ND	3.5	2.3	ug/L	1	11/22/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	5.0	1.7	ug/L	1	11/22/16	DD	SW8270D
4-Nitroaniline	ND	5.0	1.7	ug/L	1	11/22/16	DD	SW8270D
4-Nitrophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
Acenaphthene	ND	5.0	1.5	ug/L	1	11/22/16	DD	SW8270D
Acetophenone	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
Aniline	ND	3.5	5.0	ug/L	1	11/22/16	DD	SW8270D
Anthracene	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
Benzidine	ND	4.5	2.9	ug/L	1	11/22/16	DD	SW8270D
Benzoic acid	ND	25	10	ug/L	1	11/22/16	DD	SW8270D
Benzyl butyl phthalate	ND	5.0	1.3	ug/L	1	11/22/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	5.0	1.4	ug/L	1	11/22/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	5.0	1.4	ug/L	1	11/22/16	DD	SW8270D
Carbazole	ND	5.0	3.8	ug/L	1	11/22/16	DD	SW8270D
Dibenzofuran	ND	5.0	1.5	ug/L	1	11/22/16	DD	SW8270D
Diethyl phthalate	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
Dimethylphthalate	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
Di-n-butylphthalate	ND	5.0	1.3	ug/L	1	11/22/16	DD	SW8270D
Di-n-octylphthalate	ND	5.0	1.3	ug/L	1	11/22/16	DD	SW8270D
Fluoranthene	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
Fluorene	ND	5.0	1.7	ug/L	1	11/22/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	5.0	1.5	ug/L	1	11/22/16	DD	SW8270D
Isophorone	ND	5.0	1.4	ug/L	1	11/22/16	DD	SW8270D
Naphthalene	ND	5.0	1.4	ug/L	1	11/22/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	5.0	1.9	ug/L	1	11/22/16	DD	SW8270D
14 1411103001phenylanille	ND	0.0	1.0	ug/ L		11/22/10	טט	3.102.102

Client ID: MW9

Chefit IB: WW5									
Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
Phenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D	
Pyrene	ND	5.0	1.7	ug/L	1	11/22/16	DD	SW8270D	
Pyridine	ND	10	1.2	ug/L	1	11/22/16	DD	SW8270D	
QA/QC Surrogates	NB	10	1.2	ug/ L	•	11/22/10		CVVOZIOD	
% 2,4,6-Tribromophenol	125			%	1	11/22/16	DD	15 - 110 %	3
% 2-Fluorobiphenyl	80			%	1	11/22/16	DD	30 - 130 %	
% 2-Fluorophenol	65			%	1	11/22/16	DD	15 - 110 %	
% Nitrobenzene-d5	79			%	1	11/22/16	DD	30 - 130 %	
% Phenol-d5	81			%	1	11/22/16	DD	15 - 110 %	
% Terphenyl-d14	91			%	1	11/22/16	DD	30 - 130 %	
, o . e. p e ,									
<u>Semivolatiles</u>									
1,2,4,5-Tetrachlorobenzene	ND	0.50	0.50	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Acenaphthylene	ND	0.10	0.10	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Benz(a)anthracene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Benzo(a)pyrene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Benzo(b)fluoranthene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Benzo(ghi)perylene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Benzo(k)fluoranthene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Bis(2-ethylhexyl)phthalate	ND	1.0	1.0	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Chrysene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Dibenz(a,h)anthracene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Hexachlorobenzene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Hexachlorobutadiene	ND	0.40	0.40	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Hexachloroethane	ND	0.50	0.50	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Indeno(1,2,3-cd)pyrene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Nitrobenzene	ND	0.10	0.10	ug/L	1	11/21/16	DD	SW8270D (SIM)	
N-Nitrosodimethylamine	ND	0.10	0.10	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Pentachloronitrobenzene	ND	0.10	0.10	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Pentachlorophenol	ND	0.80	0.80	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Phenanthrene	ND	0.10	0.10	ug/L	1	11/21/16	DD	SW8270D (SIM)	
QA/QC Surrogates									
% 2,4,6-Tribromophenol	125			%	1	11/21/16	DD	15 - 110 %	3
% 2-Fluorobiphenyl	78			%	1	11/21/16	DD	30 - 130 %	
% 2-Fluorophenol	70			%	1	11/21/16	DD	15 - 110 %	
% Nitrobenzene-d5	87			%	1	11/21/16	DD	30 - 130 %	
% Phenol-d5	90			%	1	11/21/16	DD	15 - 110 %	
% Terphenyl-d14	101			%	1	11/21/16	DD	30 - 130 %	

Phoenix I.D.: BV86887

Client ID: MW9

RL/ LOD/

Parameter Result PQL MDL Units Dilution Date/Time By Reference

- 1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.
- 3 = This parameter exceeds laboratory specified limits.
- B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

Semi-Volatile Comment:

One of the surrogate recoveries was above the upper range due to sample matrix interference. The other surrogates associated with this sample were within QA/QC criteria. No significant bias is suspected.

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 30, 2016

Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 30, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample Information Custody Information Date <u>Time</u>

GROUND WATER Collected by: Matrix: 11/16/16

Received by: Location Code: **EBC** LB 11/17/16 15:39

Rush Request: 72 Hour Analyzed by: see "By" below

Laboratory Data SDG ID: GBV86885 Phoenix ID: BV86888

1181 FLUSHING AVE., BROOKLYN Project ID:

Client ID: MW10

P.O.#:

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
Silver	ND	0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Aluminum	0.119	0.010	0.005	mg/L	1	11/19/16	LK	SW6010C	
Arsenic - LDL	0.010	0.004	0.004	mg/L	1	11/19/16	LK	SW6010C	
Barium	0.309	0.010	0.001	mg/L	1	11/19/16	LK	SW6010C	
Beryllium	ND	0.001	0.001	mg/L	1	11/19/16	LK	SW6010C	
Calcium	138	0.010	0.01	mg/L	1	11/19/16	LK	SW6010C	
Cadmium	0.001	B 0.004	0.0005	mg/L	1	11/19/16	LK	SW6010C	
Cobalt	0.002	B 0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Chromium	ND	0.001	0.001	mg/L	1	11/19/16	LK	SW6010C	
Copper	ND	0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Silver (Dissolved)	ND	0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Aluminum (Dissolved)	0.006	B 0.011	0.005	mg/L	1	11/19/16	LK	SW6010C	
Arsenic, (Dissolved)	ND	0.003	0.004	mg/L	1	11/19/16	LK	SW6010C	
Barium (Dissolved)	0.186	0.011	0.001	mg/L	1	11/19/16	LK	SW6010C	
Beryllium (Dissolved)	ND	0.001	0.001	mg/L	1	11/19/16	LK	SW6010C	
Calcium (Dissolved)	130	0.01	0.01	mg/L	1	11/19/16	LK	SW6010C	В
Cadmium (Dissolved)	ND	0.004	0.0005	mg/L	1	11/19/16	LK	SW6010C	
Cobalt, (Dissolved)	0.002	B 0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Chromium (Dissolved)	ND	0.001	0.001	mg/L	1	11/19/16	LK	SW6010C	
Copper, (Dissolved)	ND	0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Iron, (Dissolved)	7.14	0.01	0.01	mg/L	1	11/19/16	LK	SW6010C	
Mercury (Dissolved)	ND	0.0002	0.00015	mg/L	1	11/21/16	RS	SW7470A	
Potassium (Dissolved)	19.3	0.1	0.01	mg/L	1	11/22/16	LK/MA	SW6010C	
Magnesium (Dissolved)	29.6	0.01	0.01	mg/L	1	11/19/16	LK	SW6010C	
Manganese, (Dissolved)	0.999	0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Sodium (Dissolved)	124	1.1	0.11	mg/L	10	11/19/16	LK	SW6010C	
Nickel, (Dissolved)	0.002	B 0.004	0.001	mg/L	1	11/19/16	LK	SW6010C	
Lead (Dissolved)	ND	0.002	0.001	mg/L	1	11/19/16	LK	SW6010C	

Relimony, (Dissolved)	Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Thallium, (Dissolved)	Antimony, (Dissolved)	ND	0.003	0.003	mg/L	1	11/20/16	RS	SW7010
Name	Selenium, (Dissolved)	ND	0.004	0.002	mg/L	1	11/18/16	RS	SW7010
Zinc, (Disolved)	Thallium , (Dissolved)	ND	0.0005	0.0005	mg/L	1	11/18/16	RS	SW7010
India	Vanadium, (Dissolved)	ND	0.011	0.001	mg/L	1	11/19/16	LK	SW6010C
Mercury	Zinc, (Dissolved)	0.003	B 0.011	0.0012	mg/L	1	11/19/16	LK	SW6010C
Potassium	Iron	47.4	0.01	0.01	mg/L	1	11/19/16	LK	SW6010C
Magnesium 32.2	Mercury	ND	0.0002	0.00015	mg/L	1	11/18/16	RS	SW7470A
Manganese	Potassium	18.5	0.1	0.01	mg/L	1	11/19/16	LK	SW6010C
Sodium	Magnesium	32.2	0.010	0.01	mg/L	1	11/19/16	LK	SW6010C
Nickel	Manganese	1.09	0.005	0.001	mg/L	1	11/19/16	LK	SW6010C
Lead ND 0.002 0.001 mg/L 1 11/19/16 LX SW0010C Antimony ND 0.002 0.002 mg/L 1 11/18/16 RS SW7010 Selenium ND 0.002 0.0005 0.0005 mg/L 1 11/18/16 RS SW7010 Thallium - LDL ND 0.0002 0.0001 mg/L 1 11/18/16 RS SW7010 Vanadium 0.002 B 0.010 0.001 mg/L 1 11/18/16 RS SW7010 Vanadium 0.002 B 0.001 mg/L 1 11/18/16 RS SW7010 Vanadium 0.002 0.001 mg/L 1 11/18/16 RS SW7010 Vanadium 0.0026 0.0011 mg/L 1 11/19/16 RS SW7010 Variation 0.0026 0.0021 0.0011 mg/L 1 11/17/16 AS AS X X Post		122	1.0	0.10	mg/L	10	11/19/16	LK	SW6010C
Antimony ND 0.002 0.002 mg/L 1 11/20/16 RS SW7010 Selenium ND 0.0002 0.001 mg/L 1 11/18/16 RS SW7010 Thallium - LDL ND 0.0002 0.0010 0.0011 mg/L 1 11/18/16 RS SW7010 Vanadium 0.002 0.010 0.0011 mg/L 1 11/18/16 LK SW6010C Zinc 0.010 0.010 0.0011 mg/L 1 11/18/16 LK SW6010C Tiltration Completed	Nickel	0.002	B 0.004	0.001	mg/L	1	11/19/16	LK	SW6010C
Selenium	Lead	ND	0.002	0.001	mg/L	1	11/19/16	LK	SW6010C
Selenium	Antimony	ND	0.002	0.002	mg/L	1	11/20/16	RS	SW7010
Vanadium 0.002 B 0.010 0.001 mg/L 1 11/19/16 LK SW6010C Zinc 0.010 0.010 0.001 mg/L 1 11/19/16 LK SW6010C Filtration Completed 11/17/16 AG 0.45um Filter Dissolved Mercury Digestion 11/17/16 QW SW7470A Mercury Digestion Completed	Selenium	ND	0.002	0.001	mg/L	1	11/18/16	RS	SW7010
Zinc 0.010 0.010 0.001 mg/L 1 11/19/16 LK SW6010C Filtration Completed 11/17/716 AG 0.45 um Filter 11/17/716 QW/W SW7470A Intraction 11/12/16 QW/W SW7470A Mercury Digestion Completed 11/12/16 QW/W SW7510C SW3510C S	Thallium - LDL	ND	0.0005	0.0005	mg/L	1	11/18/16	RS	SW7010
Filtration Completed	Vanadium	0.002	B 0.010	0.001	mg/L	1	11/19/16	LK	SW6010C
Filtration Completed Com		0.010	0.010	0.0011		1	11/19/16	LK	SW6010C
Mercury Digestion Completed 11/18/16 QW/QW SW7470A PCB Extraction (2 Liter) Completed 11/21/16 ZT SW3510C Extraction for Pest (2 Liter) Completed 11/21/16 ZT SW3510C Semi-Volatile Extraction Completed 11/17/16 P/D/D/D SW3520C Dissolved Metals Preparation Completed 11/17/16 AG SW3005A Total Metals Digestion Completed 11/17/16 AG SW3005A Pesticides 4,4'-DDD ND 0.025 0.025 ug/L 10 11/18/16 CE SW8081B 4,4'-DDE ND 0.025 0.025 ug/L 10 11/18/16 CE SW8081B a-BHC ND 0.025 0.025 ug/L 10 11/18/16 CE SW8081B a-chlordane ND 0.025 0.025 ug/L 10 11/18/16 CE SW8081B Alachior ND 0.050 0.050 ug/L 10		Completed					11/17/16	AG	0.45um Filter
Mercury Digestion Completed 11/18/16 QWQW SW7470A PCB Extraction (2 Liter) Completed 11/21/16 ZT SW3510C Extraction for Pest (2 Liter) Completed 11/21/16 ZT SW3510C Semi-Volatile Extraction Completed 11/17/16 PPD/D SW3520C Dissolved Metals Preparation Completed 11/17/16 AG SW3005A Total Metals Digestion Completed 11/17/16 AG SW3005A Pesticides 4,4'-DDD ND 0.025 0.025 ug/L 10 11/18/16 CE SW8081B 4,4'-DDF ND 0.025 0.025 ug/L 10 11/18/16 CE SW8081B 4,4'-DDT ND 0.025 0.025 ug/L 10 11/18/16 CE SW8081B a-Chlordane ND 0.025 0.025 ug/L 10 11/18/16 CE SW8081B Alachir ND 0.050 0.050 ug/L <	Dissolved Mercury Digestion	Completed					11/21/16	QW/W	SW7470A
PCB Extraction (2 Liter) Completed		Completed					11/18/16	QW/QV	V SW7470A
Extraction for Pest (2 Liter) Completed Complete							11/21/16	Z/T	SW3510C
Semi-Volatile Extraction Completed C	· ,						11/21/16	Z	SW3510C
Dissolved Metals Preparation Total Metals Digestion		Completed						P/D/D	
Pesticides							11/17/16	AG	SW3005A
4,4'-DDD ND 0.025 0.025 ug/L 10 11/18/16 CE SW8081B 4,4'-DDE ND 0.025 0.025 ug/L 10 11/18/16 CE SW8081B 4,4'-DDT ND 0.025 0.025 ug/L 10 11/18/16 CE SW8081B a-BHC ND 0.025 0.025 ug/L 10 11/18/16 CE SW8081B a-chlordane ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Alachlor ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Alachlor ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Aldrin ND 0.050 0.055 ug/L 10 11/18/16 CE SW8081B Chlordane ND 0.050 0.055 ug/L 10 11/18/16 CE SW8081B Dieldrin	-						11/17/16		
4,4'-DDE ND 0.025 0.025 ug/L 10 11/18/16 CE SW8081B 4,4'-DDT ND 0.025 0.025 ug/L 10 11/18/16 CE SW8081B a-BHC ND 0.025 0.025 ug/L 10 11/18/16 CE SW8081B a-chlordane ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Alachlor ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Alachlor ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Alachlor ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Aldrin ND 0.015 0.015 ug/L 10 11/18/16 CE SW8081B Chlordane ND 0.050 0.055 ug/L 10 11/18/16 CE SW8081B Endsulfa	<u>Pesticides</u>								
4,4'-DDT ND 0.025 0.025 ug/L 10 11/18/16 CE SW8081B a-BHC ND 0.025 0.025 ug/L 10 11/18/16 CE SW8081B a-chlordane ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Alachlor ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Aldrin ND 0.015 0.015 ug/L 10 11/18/16 CE SW8081B b-BHC ND 0.025 0.025 ug/L 10 11/18/16 CE SW8081B Chlordane ND 0.025 0.025 ug/L 10 11/18/16 CE SW8081B Chlordane ND 0.50 0.050 ug/L 10 11/18/16 CE SW8081B d-BHC ND 0.050 0.051 ug/L 10 11/18/16 CE SW8081B Dieldrin	4,4' -DDD	ND	0.025	0.025	ug/L	10	11/18/16	CE	SW8081B
a-BHC ND 0.025 0.025 ug/L 10 11/18/16 CE SW8081B a-chlordane ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Alachlor ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Aldrin ND 0.015 0.015 ug/L 10 11/18/16 CE SW8081B b-BHC ND 0.025 0.025 ug/L 10 11/18/16 CE SW8081B Chlordane ND 0.025 0.025 ug/L 10 11/18/16 CE SW8081B Chlordane ND 0.50 0.50 ug/L 10 11/18/16 CE SW8081B Chlordane ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Chlordane ND 0.010 0.010 ug/L 10 11/18/16 CE SW8081B Endosulfan	4,4' -DDE	ND	0.025	0.025	ug/L	10	11/18/16	CE	SW8081B
a-chlordane ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Alachlor ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B 1 Aldrin ND 0.015 0.015 ug/L 10 11/18/16 CE SW8081B b-BHC ND 0.025 0.025 ug/L 10 11/18/16 CE SW8081B Chlordane ND 0.50 0.50 ug/L 10 11/18/16 CE SW8081B d-BHC ND 0.025 0.025 ug/L 10 11/18/16 CE SW8081B d-BHC ND 0.015 0.015 ug/L 10 11/18/16 CE SW8081B Dieldrin ND 0.010 0.10 ug/L 10 11/18/16 CE SW8081B Endosulfan I ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B	4,4' -DDT	ND	0.025	0.025	ug/L	10	11/18/16	CE	SW8081B
Alachlor ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B 1 Aldrin ND 0.015 0.015 ug/L 10 11/18/16 CE SW8081B b-BHC ND 0.025 0.025 ug/L 10 11/18/16 CE SW8081B Chlordane ND 0.50 0.50 ug/L 10 11/18/16 CE SW8081B d-BHC ND 0.025 0.025 ug/L 10 11/18/16 CE SW8081B Dieldrin ND 0.015 0.015 ug/L 10 11/18/16 CE SW8081B Endosulfan I ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B Endosulfan Sulfate ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B Endrin ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B	a-BHC	ND	0.025	0.025	ug/L	10	11/18/16	CE	SW8081B
Aldrin ND 0.015 0.015 ug/L 10 11/18/16 CE SW8081B b-BHC ND 0.025 0.025 ug/L 10 11/18/16 CE SW8081B Chlordane ND 0.050 0.50 ug/L 10 11/18/16 CE SW8081B d-BHC ND 0.025 0.025 ug/L 10 11/18/16 CE SW8081B d-BHC ND 0.025 0.025 ug/L 10 11/18/16 CE SW8081B Dieldrin ND 0.015 0.015 ug/L 10 11/18/16 CE SW8081B Endosulfan I ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B Endosulfan Sulfate ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B Endrin ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Endrin Ald	a-chlordane	ND	0.050	0.050	ug/L	10	11/18/16	CE	SW8081B
b-BHC ND 0.025 0.025 ug/L 10 11/18/16 CE SW8081B Chlordane ND 0.50 0.50 ug/L 10 11/18/16 CE SW8081B d-BHC ND 0.025 0.025 ug/L 10 11/18/16 CE SW8081B Dieldrin ND 0.015 0.015 ug/L 10 11/18/16 CE SW8081B Endosulfan I ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B Endosulfan II ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B Endrin Sulfate ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B Endrin Aldehyde ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B Endrin ketone ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B <	Alachlor	ND	0.050	0.050	ug/L	10	11/18/16	CE	SW8081B 1
Chlordane ND 0.50 0.50 ug/L 10 11/18/16 CE SW8081B d-BHC ND 0.025 0.025 ug/L 10 11/18/16 CE SW8081B Dieldrin ND 0.015 0.015 ug/L 10 11/18/16 CE SW8081B Endosulfan I ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B Endosulfan II ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B Endosulfan Sulfate ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B Endrin Sulfate ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Endrin Aldehyde ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B Endrin ketone ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B	Aldrin	ND	0.015	0.015	ug/L	10	11/18/16	CE	SW8081B
d-BHC ND 0.025 0.025 ug/L 10 11/18/16 CE SW8081B Dieldrin ND 0.015 0.015 ug/L 10 11/18/16 CE SW8081B Endosulfan I ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B Endosulfan II ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B Endosulfan Sulfate ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B Endrin Sulfate ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Endrin Aldehyde ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B Endrin ketone ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B g-BHC (Lindane) ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B <td>b-BHC</td> <td>ND</td> <td>0.025</td> <td>0.025</td> <td>ug/L</td> <td>10</td> <td>11/18/16</td> <td>CE</td> <td>SW8081B</td>	b-BHC	ND	0.025	0.025	ug/L	10	11/18/16	CE	SW8081B
Dieldrin ND 0.015 0.015 ug/L 10 11/18/16 CE SW8081B Endosulfan I ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B Endosulfan II ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B Endosulfan Sulfate ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B Endrin ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Endrin Aldehyde ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B Endrin ketone ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B g-BHC (Lindane) ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Heptachlor ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B	Chlordane	ND	0.50	0.50	ug/L	10	11/18/16	CE	SW8081B
Endosulfan I ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B Endosulfan II ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B Endosulfan Sulfate ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B Endrin ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Endrin Aldehyde ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B Endrin ketone ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B g-BHC (Lindane) ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B g-chlordane ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Heptachlor ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B <td>d-BHC</td> <td>ND</td> <td>0.025</td> <td>0.025</td> <td>ug/L</td> <td>10</td> <td>11/18/16</td> <td>CE</td> <td>SW8081B</td>	d-BHC	ND	0.025	0.025	ug/L	10	11/18/16	CE	SW8081B
Endosulfan II ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B Endosulfan Sulfate ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B Endrin ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Endrin Aldehyde ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B Endrin ketone ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B g-BHC (Lindane) ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B g-chlordane ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Heptachlor ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Heptachlor epoxide ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B	Dieldrin	ND	0.015	0.015	ug/L	10	11/18/16	CE	SW8081B
Endosulfan Sulfate ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B Endrin ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Endrin Aldehyde ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B Endrin ketone ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B g-BHC (Lindane) ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B g-chlordane ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Heptachlor ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Heptachlor epoxide ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B	Endosulfan I	ND	0.10	0.10	ug/L	10	11/18/16	CE	SW8081B
Endrin ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Endrin Aldehyde ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B Endrin ketone ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B g-BHC (Lindane) ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B g-chlordane ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Heptachlor ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Heptachlor epoxide ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B	Endosulfan II	ND	0.10	0.10	ug/L	10	11/18/16	CE	SW8081B
Endrin Aldehyde ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B Endrin ketone ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B g-BHC (Lindane) ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B g-chlordane ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Heptachlor ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Heptachlor epoxide ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B	Endosulfan Sulfate	ND	0.10	0.10	ug/L	10	11/18/16	CE	SW8081B
Endrin ketone ND 0.10 0.10 ug/L 10 11/18/16 CE SW8081B g-BHC (Lindane) ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B g-chlordane ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Heptachlor ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Heptachlor epoxide ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B	Endrin	ND	0.050	0.050	ug/L	10	11/18/16	CE	SW8081B
g-BHC (Lindane) ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B g-chlordane ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Heptachlor ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Heptachlor epoxide ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B	Endrin Aldehyde	ND	0.10	0.10	ug/L	10	11/18/16	CE	SW8081B
g-BHC (Lindane) ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B g-chlordane ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Heptachlor ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Heptachlor epoxide ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B		ND	0.10	0.10	ug/L	10	11/18/16	CE	SW8081B
g-chlordane ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Heptachlor ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Heptachlor epoxide ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B		ND	0.050	0.050		10	11/18/16	CE	
Heptachlor ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B Heptachlor epoxide ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B		ND	0.050	0.050		10	11/18/16	CE	SW8081B
Heptachlor epoxide ND 0.050 0.050 ug/L 10 11/18/16 CE SW8081B		ND	0.050	0.050	ug/L	10	11/18/16	CE	SW8081B
		ND	0.050	0.050		10	11/18/16	CE	SW8081B
		ND	1.0	1.0			11/18/16	CE	

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
Toxaphene	ND	2.0	2.0	ug/L	10	11/18/16	CE	SW8081B	
QA/QC Surrogates									
%DCBP (Surrogate Rec)	Diluted Out			%	10	11/18/16	CE	SW8081B	
%TCMX (Surrogate Rec)	Diluted Out			%	10	11/18/16	CE	SW8081B	
Polychlorinated Biphen	vle								
PCB-1016	<u>yis</u> ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A	
PCB-1221	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A	
PCB-1232	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A	
PCB-1242	ND	0.050	0.050	ug/L ug/L	1	11/22/16	AW	E608/SW8082A	
PCB-1248	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A	
PCB-1254	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A	
PCB-1260	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A	
PCB-1262	ND	0.050	0.050	ug/L ug/L	1	11/22/16	AW	E608/SW8082A	
PCB-1268	ND	0.050	0.050	ug/L ug/L	1	11/22/16	AW	E608/SW8082A	
QA/QC Surrogates	ND	0.030	0.030	ug/L		11/22/10	AVV	L000/3770002A	
% DCBP	24			%	1	11/22/16	AW	40 - 140 %	3
	24 75			% %	1 1	11/22/16	AW	40 - 140 %	3
% TCMX	75			70	'	11/22/10	AVV	40 - 140 %	
<u>Volatiles</u>									
1,1,1,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	11/17/16	HM	SW8260C	
1,1,1-Trichloroethane	ND	5.0	0.25	ug/L	1	11/17/16	НМ	SW8260C	
1,1,2,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C	
1,1,2-Trichloroethane	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C	
1,1-Dichloroethane	ND	5.0	0.25	ug/L	1	11/17/16	НМ	SW8260C	
1,1-Dichloroethene	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C	
1,1-Dichloropropene	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C	
1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C	
1,2,3-Trichloropropane	ND	0.25	0.25	ug/L	1	11/17/16	НМ	SW8260C	
1,2,4-Trichlorobenzene	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C	
1,2,4-Trimethylbenzene	17	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C	
1,2-Dibromo-3-chloropropane	ND	0.50	0.50	ug/L	1	11/17/16	НМ	SW8260C	
1,2-Dibromoethane	ND	0.25	0.25	ug/L	1	11/17/16	НМ	SW8260C	
1,2-Dichlorobenzene	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C	
1,2-Dichloroethane	ND	0.60	0.50	ug/L	1	11/17/16	НМ	SW8260C	
1,2-Dichloropropane	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C	
1,3,5-Trimethylbenzene	3.7	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C	
1,3-Dichlorobenzene	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C	
1,3-Dichloropropane	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C	
1,4-Dichlorobenzene	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C	
2,2-Dichloropropane	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C	
2-Chlorotoluene	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C	
2-Hexanone	ND	2.5	2.5	ug/L	1	11/17/16	НМ	SW8260C	
2-Isopropyltoluene	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C	1
4-Chlorotoluene	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C	
4-Methyl-2-pentanone	ND	2.5	2.5	ug/L	1	11/17/16	НМ	SW8260C	
Acetone	ND	5.0	2.5	ug/L	1	11/17/16	НМ	SW8260C	
Acrolein	ND	5.0	2.5	ug/L	1	11/17/16	НМ	SW8260C	
Acrylonitrile	ND	5.0	2.5	ug/L	1	11/17/16	НМ	SW8260C	
Benzene	30	1.3	1.3	ug/L	5	11/18/16	НМ	SW8260C	

Parameter Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Bromobenzene	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
Bromochloromethane	ND	1.0	0.25	ug/L	1	11/17/16	HM	SW8260C
Bromodichloromethane	ND	1.0	0.25	ug/L	1	11/17/16	HM	SW8260C
Bromoform	ND	5.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
Bromomethane	ND	5.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
Carbon Disulfide	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
Carbon tetrachloride	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
Chlorobenzene	ND	5.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
Chloroethane	ND	5.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
Chloroform	ND	5.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
Chloromethane	ND	5.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
cis-1,2-Dichloroethene	0.71	J 1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
cis-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	11/17/16	НМ	SW8260C
Dibromochloromethane	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
Dibromomethane	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
Dichlorodifluoromethane	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
Ethylbenzene	19	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
Hexachlorobutadiene	ND	0.50	0.20	ug/L	1	11/17/16	НМ	SW8260C
Isopropylbenzene	2.2	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
m&p-Xylene	30	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
Methyl ethyl ketone	ND	2.5	2.5	ug/L	1	11/17/16	НМ	SW8260C
Methyl t-butyl ether (MTBE)	270	25	6.3	ug/L	25	11/18/16	НМ	SW8260C
Methylene chloride	ND	3.0	1.0	ug/L	1	11/17/16	НМ	SW8260C
Naphthalene	1.5	1.0	1.0	ug/L	1	11/17/16	НМ	SW8260C
n-Butylbenzene	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
n-Propylbenzene	2.4	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
o-Xylene	21	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
p-lsopropyltoluene	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
sec-Butylbenzene	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
Styrene	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
tert-Butylbenzene	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
Tetrachloroethene	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
Tetrahydrofuran (THF)	ND	5.0	2.5	ug/L	1	11/17/16	НМ	SW8260C 1
Toluene	1.2	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
trans-1,2-Dichloroethene	ND	5.0	0.25	ug/L	1	11/17/16	HM	SW8260C
trans-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	11/17/16	НМ	SW8260C
trans-1,4-dichloro-2-butene	ND	2.5	2.5	ug/L	1	11/17/16	НМ	SW8260C
Trichloroethene	ND	1.0	0.25	ug/L	1	11/17/16	HM	SW8260C
Trichlorofluoromethane	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
Trichlorotrifluoroethane	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
Vinyl chloride	ND	1.0	0.25	ug/L	1	11/17/16	HM	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	99			%	1	11/17/16	HM	70 - 130 %
% Bromofluorobenzene	97			%	1	11/17/16	HM	70 - 130 %
% Dibromofluoromethane	98			%	1	11/17/16	НМ	70 - 130 %
% Toluene-d8	99			%	1	11/17/16	НМ	70 - 130 %
Client MS/MSD	Completed					11/22/16		
<u>Semivolatiles</u>								
1,2,4-Trichlorobenzene	ND	5.0	1.5	ug/L	1	11/22/16	DD	SW8270D

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1,2-Dichlorobenzene	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
1,3-Dichlorobenzene	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
1,4-Dichlorobenzene	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2,4-Dichlorophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2,4-Dimethylphenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2,4-Dinitrophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2,4-Dinitrotoluene	ND	5.0	2.0	ug/L	1	11/22/16	DD	SW8270D
2,6-Dinitrotoluene	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
2-Chloronaphthalene	ND	5.0	1.4	ug/L	1	11/22/16	DD	SW8270D
2-Chlorophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2-Methylnaphthalene	ND	5.0	1.5	ug/L	1	11/22/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2-Nitroaniline	ND	5.0	2.0	ug/L	1	11/22/16	DD	SW8270D
2-Nitrophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
3,3'-Dichlorobenzidine	ND	5.0	2.4	ug/L	1	11/22/16	DD	SW8270D
3-Nitroaniline	ND	5.0	2.0	ug/L	1	11/22/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	5.0	1.5	ug/L	1	11/22/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
4-Chloroaniline	ND	3.5	2.3	ug/L	1	11/22/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	5.0	1.7	ug/L	1	11/22/16	DD	SW8270D
4-Nitroaniline	ND	5.0	1.7	ug/L	1	11/22/16	DD	SW8270D
4-Nitrophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
Acenaphthene	ND	5.0	1.5	ug/L	1	11/22/16	DD	SW8270D
Acetophenone	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
Aniline	ND	3.5	5.0	ug/L	1	11/22/16	DD	SW8270D
Anthracene	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
Benzidine	ND	4.5	2.9	ug/L	1	11/22/16	DD	SW8270D
Benzoic acid	ND	25	10	ug/L	1	11/22/16	DD	SW8270D
Benzyl butyl phthalate	ND	5.0	1.3	ug/L	1	11/22/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	5.0	1.4	ug/L	1	11/22/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	5.0	1.4	ug/L	1	11/22/16	DD	SW8270D
Carbazole	ND	5.0	3.8	ug/L	1	11/22/16	DD	SW8270D
Dibenzofuran	ND	5.0	1.5	ug/L	1	11/22/16	DD	SW8270D
Diethyl phthalate	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
Dimethylphthalate	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
Di-n-butylphthalate	ND	5.0	1.3	ug/L	1	11/22/16	DD	SW8270D
Di-n-octylphthalate	ND	5.0	1.3	ug/L	1	11/22/16	DD	SW8270D
Fluoranthene	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
Fluorene	ND	5.0	1.7	ug/L	1	11/22/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	5.0	1.5	ug/L	1	11/22/16	DD	SW8270D
Isophorone	ND	5.0	1.4	ug/L	1	11/22/16	DD	SW8270D
Naphthalene	ND	5.0	1.4	ug/L	1	11/22/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
N-Nitrosodiphenylamine	ND	5.0	1.9	ug/L	1	11/22/16	DD	SW8270D	
Phenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D	
Pyrene	ND	5.0	1.7	ug/L	1	11/22/16	DD	SW8270D	
Pyridine	ND	10	1.2	ug/L	1	11/22/16	DD	SW8270D	
QA/QC Surrogates									
% 2,4,6-Tribromophenol	105			%	1	11/22/16	DD	15 - 110 %	
% 2-Fluorobiphenyl	56			%	1	11/22/16	DD	30 - 130 %	
% 2-Fluorophenol	52			%	1	11/22/16	DD	15 - 110 %	
% Nitrobenzene-d5	83			%	1	11/22/16	DD	30 - 130 %	
% Phenol-d5	73			%	1	11/22/16	DD	15 - 110 %	
% Terphenyl-d14	81			%	1	11/22/16	DD	30 - 130 %	
<u>Semivolatiles</u>									
1,2,4,5-Tetrachlorobenzene	ND	0.50	0.50	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Acenaphthylene	ND	0.10	0.10	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Benz(a)anthracene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Benzo(a)pyrene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Benzo(b)fluoranthene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Benzo(ghi)perylene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Benzo(k)fluoranthene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Bis(2-ethylhexyl)phthalate	ND	1.0	1.0	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Chrysene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Dibenz(a,h)anthracene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Hexachlorobenzene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Hexachlorobutadiene	ND	0.40	0.40	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Hexachloroethane	ND	0.50	0.50	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Indeno(1,2,3-cd)pyrene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Nitrobenzene	ND	0.10	0.10	ug/L	1	11/21/16	DD	SW8270D (SIM)	
N-Nitrosodimethylamine	ND	0.10	0.10	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Pentachloronitrobenzene	ND	0.10	0.10	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Pentachlorophenol	ND	0.80	0.80	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Phenanthrene	ND	0.10	0.10	ug/L	1	11/21/16	DD	SW8270D (SIM)	
QA/QC Surrogates									
% 2,4,6-Tribromophenol	111			%	1	11/21/16	DD	15 - 110 %	3
% 2-Fluorobiphenyl	60			%	1	11/21/16	DD	30 - 130 %	
% 2-Fluorophenol	54			%	1	11/21/16	DD	15 - 110 %	
% Nitrobenzene-d5	81			%	1	11/21/16	DD	30 - 130 %	
% Phenol-d5	73			%	1	11/21/16	DD	15 - 110 %	
% Terphenyl-d14	91			%	1	11/21/16	DD	30 - 130 %	

Client ID: MW10

RL/ LOD/

Parameter Result PQL MDL Units Dilution Date/Time By Reference

- 1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.
- 3 = This parameter exceeds laboratory specified limits.
- B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

Pesticide Comment:

Due to a matrix interference and/or the presence of a large amount of non-target material in the sample, an elevated RL was reported for the affected compounds.

Semi-Volatile Comment:

One of the surrogate recoveries was above the upper range due to sample matrix interference. The other surrogates associated with this sample were within QA/QC criteria. No significant bias is suspected.

PCB Comment:

Poor surrogate recovery was observed for PCBs. Sample was re-extracted with similar results.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 30, 2016

Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 30, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample Information Custody Information Date <u>Time</u>

GROUND WATER 11/16/16 Matrix: Collected by:

Received by: Location Code: **EBC** LB 11/17/16 15:39

Rush Request: 72 Hour Analyzed by: see "By" below

1181 FLUSHING AVE.,

Client ID: GW DUP 1

P.O.#:

Project ID:

SDG ID: GBV86885
Phoenix ID: BV86889

Doromotor	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Dν	Reference	
Parameter	Result	PQL	MDL	UTIILS	Dilution	Date/Time	Ву	Reference	
Silver	ND	0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Aluminum	2.61	0.010	0.005	mg/L	1	11/19/16	LK	SW6010C	
Arsenic - LDL	ND	0.004	0.004	mg/L	1	11/19/16	LK	SW6010C	
Barium	0.229	0.010	0.001	mg/L	1	11/19/16	LK	SW6010C	
Beryllium	ND	0.001	0.001	mg/L	1	11/19/16	LK	SW6010C	
Calcium	121	0.010	0.01	mg/L	1	11/19/16	LK	SW6010C	
Cadmium	0.001	B 0.004	0.0005	mg/L	1	11/19/16	LK	SW6010C	
Cobalt	0.011	0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Chromium	0.010	0.001	0.001	mg/L	1	11/19/16	LK	SW6010C	
Copper	0.007	0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Silver (Dissolved)	ND	0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Aluminum (Dissolved)	0.005	B 0.011	0.005	mg/L	1	11/19/16	LK	SW6010C	
Arsenic, (Dissolved)	ND	0.003	0.004	mg/L	1	11/19/16	LK	SW6010C	
Barium (Dissolved)	0.175	0.011	0.001	mg/L	1	11/19/16	LK	SW6010C	
Beryllium (Dissolved)	ND	0.001	0.001	mg/L	1	11/19/16	LK	SW6010C	
Calcium (Dissolved)	122	0.01	0.01	mg/L	1	11/19/16	LK	SW6010C	В
Cadmium (Dissolved)	ND	0.004	0.0005	mg/L	1	11/19/16	LK	SW6010C	
Cobalt, (Dissolved)	0.008	0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Chromium (Dissolved)	ND	0.001	0.001	mg/L	1	11/19/16	LK	SW6010C	
Copper, (Dissolved)	ND	0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Iron, (Dissolved)	0.72	0.01	0.01	mg/L	1	11/19/16	LK	SW6010C	
Mercury (Dissolved)	ND	0.0002	0.00015	mg/L	1	11/21/16	RS	SW7470A	
Potassium (Dissolved)	9.5	0.1	0.01	mg/L	1	11/22/16	LK/MA	SW6010C	
Magnesium (Dissolved)	40.6	0.01	0.01	mg/L	1	11/19/16	LK	SW6010C	
Manganese, (Dissolved)	11.5	0.053	0.011	mg/L	10	11/19/16	LK	SW6010C	
Sodium (Dissolved)	129	1.1	0.11	mg/L	10	11/19/16	LK	SW6010C	
Nickel, (Dissolved)	0.009	0.004	0.001	mg/L	1	11/19/16	LK	SW6010C	
Lead (Dissolved)	0.001	B 0.002	0.001	mg/L	1	11/19/16	LK	SW6010C	

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
Antimony, (Dissolved)	ND	0.003	0.003	mg/L	1	11/20/16	RS	SW7010	
Selenium, (Dissolved)	ND	0.004	0.002	mg/L	1	11/18/16	RS	SW7010	
Thallium, (Dissolved)	ND	0.0005	0.0005	mg/L	1	11/18/16	RS	SW7010	
Vanadium, (Dissolved)	ND	0.011	0.001	mg/L	1	11/19/16	LK	SW6010C	
Zinc, (Dissolved)	0.005	B 0.011	0.0012	mg/L	1	11/19/16	LK	SW6010C	
Iron	18.1	0.01	0.01	mg/L	1	11/19/16	LK	SW6010C	
Mercury	ND	0.0002	0.00015	mg/L	1	11/18/16	RS	SW7470A	
Potassium	10.0	0.1	0.01	mg/L	1	11/19/16	LK	SW6010C	
Magnesium	41.4	0.010	0.01	mg/L	1	11/19/16	LK	SW6010C	
Manganese	12.7	0.050	0.010	mg/L	10	11/19/16	LK	SW6010C	
Sodium	121	1.0	0.10	mg/L	10	11/19/16	LK	SW6010C	
Nickel	0.015	0.004	0.001	mg/L	1	11/19/16	LK	SW6010C	
Lead	0.001	B 0.002	0.001	mg/L	1	11/19/16	LK	SW6010C	
Antimony	ND	0.002	0.002	mg/L	1	11/20/16	RS	SW7010	
Selenium	ND	0.002	0.001	mg/L	1	11/18/16	RS	SW7010	
Thallium - LDL	ND	0.0005	0.0005	mg/L	1	11/18/16	RS	SW7010	
Vanadium	0.007	B 0.010	0.001	mg/L	1	11/19/16	LK	SW6010C	
Zinc	0.028	0.010	0.0011	mg/L	1	11/19/16	LK	SW6010C	
Filtration	Completed	I				11/17/16	AG	0.45um Filter	
Dissolved Mercury Digestion	Completed	l				11/21/16	QW/W	SW7470A	
Mercury Digestion	Completed	l				11/18/16	QW/QV	/ SW7470A	
PCB Extraction (2 Liter)	Completed	I				11/17/16	Z/Z	SW3510C	
Extraction for Pest (2 Liter)	Completed					11/17/16	Z/Z	SW3510C	
Semi-Volatile Extraction	Completed	I				11/17/16	P/D/D	SW3520C	
Dissolved Metals Preparation	Completed					11/17/16	AG	SW3005A	
Total Metals Digestion	Completed	I				11/17/16	AG		
<u>Pesticides</u>									
4,4' -DDD	ND	0.005	0.010	ug/L	1	11/21/16	CE	SW8081B	
4,4' -DDE	ND	0.005	0.010	ug/L	1	11/21/16	CE	SW8081B	
4,4' -DDT	ND	0.005	0.010	ug/L	1	11/21/16	CE	SW8081B	
a-BHC	ND	0.005	0.005	ug/L	1	11/21/16	CE	SW8081B	
a-chlordane	ND	0.010	0.010	ug/L	1	11/21/16	CE	SW8081B	
Alachlor	ND	0.075	0.075	ug/L	1	11/21/16	CE	SW8081B	1
Aldrin	ND	0.002	0.002	ug/L	1	11/21/16	CE	SW8081B	
b-BHC	ND	0.005	0.005	ug/L	1	11/21/16	CE	SW8081B	
Chlordane	ND	0.050	0.050	ug/L	1	11/21/16	CE	SW8081B	
d-BHC	ND	0.005	0.005	ug/L	1	11/21/16	CE	SW8081B	
Dieldrin	ND	0.002	0.002	ug/L	1	11/21/16	CE	SW8081B	
Endosulfan I	ND	0.010	0.010	ug/L	1	11/21/16	CE	SW8081B	
Endosulfan II	ND	0.010	0.010	ug/L	1	11/21/16	CE	SW8081B	
Endosulfan Sulfate	ND	0.010	0.010	ug/L	1	11/21/16	CE	SW8081B	
Endrin	ND	0.010	0.010	ug/L	1	11/21/16	CE	SW8081B	
Endrin Aldehyde	ND	0.010	0.010	ug/L	1	11/21/16	CE	SW8081B	
Endrin ketone	ND	0.010	0.010	ug/L	1	11/21/16	CE	SW8081B	
g-BHC (Lindane)	ND	0.005	0.005	ug/L	1	11/21/16	CE	SW8081B	
g-chlordane	ND	0.010	0.010	ug/L	1	11/21/16	CE	SW8081B	
Heptachlor	ND	0.010	0.010	ug/L	1	11/21/16	CE	SW8081B	
Heptachlor epoxide	ND	0.010	0.010	ug/L	1	11/21/16	CE	SW8081B	
Methoxychlor	ND	0.10	0.10	ug/L	1	11/21/16	CE	SW8081B	

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Toxaphene	ND	0.20	0.20	ug/L	1	11/21/16	CE	SW8081B
QA/QC Surrogates				3				
%DCBP (Surrogate Rec)	85			%	1	11/21/16	CE	SW8081B
%TCMX (Surrogate Rec)	115			%	1	11/21/16	CE	SW8081B
	_							
Polychlorinated Bipheny	<u>'Is</u>							
PCB-1016	ND	0.050	0.050	ug/L	1	11/18/16	AW	E608/SW8082A
PCB-1221	ND	0.050	0.050	ug/L	1	11/18/16	AW	E608/SW8082A
PCB-1232	ND	0.050	0.050	ug/L	1	11/18/16	AW	E608/SW8082A
PCB-1242	ND	0.050	0.050	ug/L	1	11/18/16	AW	E608/SW8082A
PCB-1248	ND	0.050	0.050	ug/L	1	11/18/16	AW	E608/SW8082A
PCB-1254	ND	0.050	0.050	ug/L	1	11/18/16	AW	E608/SW8082A
PCB-1260	ND	0.050	0.050	ug/L	1	11/18/16	AW	E608/SW8082A
PCB-1262	ND	0.050	0.050	ug/L	1	11/18/16	AW	E608/SW8082A
PCB-1268	ND	0.050	0.050	ug/L	1	11/18/16	AW	E608/SW8082A
QA/QC Surrogates								
% DCBP	68			%	1	11/18/16	AW	40 - 140 %
% TCMX	67			%	1	11/18/16	AW	40 - 140 %
Volatiles								
1,1,1,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
1,1,1-Trichloroethane	ND	5.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
1,1,2,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
1,1,2-Trichloroethane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
1,1-Dichloroethane	ND	5.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
1,1-Dichloroethene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
1,1-Dichloropropene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
1,2,3-Trichloropropane	ND	0.25	0.25	ug/L	1	11/18/16	НМ	SW8260C
1,2,4-Trichlorobenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
1,2,4-Trimethylbenzene	3.3	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
1,2-Dibromo-3-chloropropane	ND	0.50	0.50	ug/L	1	11/18/16	НМ	SW8260C
1,2-Dibromoethane	ND	0.25	0.25	ug/L	1	11/18/16	НМ	SW8260C
1,2-Dichlorobenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
1,2-Dichloroethane	ND	0.60	0.50	ug/L	1	11/18/16	НМ	SW8260C
1,2-Dichloropropane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
1,3,5-Trimethylbenzene	0.82	J 1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
1,3-Dichlorobenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
1,3-Dichloropropane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
1,4-Dichlorobenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
2,2-Dichloropropane	ND	1.0	0.25	ug/L	1	11/18/16	HM	SW8260C
2-Chlorotoluene	ND	1.0	0.25	ug/L	1	11/18/16	HM	SW8260C
2-Hexanone	ND	2.5	2.5	ug/L	1	11/18/16	HM	SW8260C
2-Isopropyltoluene	ND	1.0	0.25	ug/L	1	11/18/16	HM	SW8260C 1
4-Chlorotoluene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
4-Methyl-2-pentanone	ND	2.5	2.5	ug/L	1	11/18/16	НМ	SW8260C
Acetone	3.4	JS 5.0	2.5	ug/L	1	11/18/16	НМ	SW8260C
Acrolein	ND	5.0	2.5	ug/L	1	11/18/16	НМ	SW8260C
Acrylonitrile	ND	5.0	2.5	ug/L	1	11/18/16	НМ	SW8260C
Benzene	0.73	0.70	0.25	ug/L	1	11/18/16	НМ	SW8260C

Parameter	Result		RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Bromobenzene	ND		1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Bromochloromethane	ND		1.0	0.25	ug/L	1	11/18/16	HM	SW8260C
Bromodichloromethane	ND		1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Bromoform	ND		5.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Bromomethane	ND		5.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Carbon Disulfide	ND		1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Carbon tetrachloride	ND		1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Chlorobenzene	ND		5.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Chloroethane	ND		5.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Chloroform	ND		5.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Chloromethane	ND		5.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
cis-1,2-Dichloroethene	0.62	J	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
cis-1,3-Dichloropropene	ND	(0.40	0.25	ug/L	1	11/18/16	НМ	SW8260C
Dibromochloromethane	ND		1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Dibromomethane	ND		1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Dichlorodifluoromethane	ND		1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Ethylbenzene	0.53	J	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Hexachlorobutadiene	ND	(0.50	0.20	ug/L	1	11/18/16	НМ	SW8260C
Isopropylbenzene	0.30	J	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
m&p-Xylene	1.7		1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Methyl ethyl ketone	ND		2.5	2.5	ug/L	1	11/18/16	НМ	SW8260C
Methyl t-butyl ether (MTBE)	50		5.0	1.3	ug/L	5	11/18/16	НМ	SW8260C
Methylene chloride	ND		3.0	1.0	ug/L	1	11/18/16	НМ	SW8260C
Naphthalene	ND		1.0	1.0	ug/L	1	11/18/16	НМ	SW8260C
n-Butylbenzene	0.38		1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
n-Propylbenzene	0.55		1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
o-Xylene	1.0		1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
p-Isopropyltoluene	ND		1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
sec-Butylbenzene	0.62	J	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Styrene	ND		1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
tert-Butylbenzene	ND		1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Tetrachloroethene	ND		1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Tetrahydrofuran (THF)	ND		5.0	2.5	ug/L	1	11/18/16	НМ	SW8260C 1
Toluene	0.87	J		0.25	ug/L	1	11/18/16	НМ	SW8260C
trans-1,2-Dichloroethene	ND		5.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
trans-1,3-Dichloropropene	ND		0.40	0.25	ug/L	1	11/18/16	НМ	SW8260C
trans-1,4-dichloro-2-butene	ND		2.5	2.5	ug/L	1	11/18/16	НМ	SW8260C
Trichloroethene	ND		1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Trichlorofluoromethane	ND		1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Trichlorotrifluoroethane	ND		1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Vinyl chloride	ND		1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
QA/QC Surrogates					9/-	•			
% 1,2-dichlorobenzene-d4	102				%	1	11/18/16	НМ	70 - 130 %
% Bromofluorobenzene	100				%	1	11/18/16	НМ	70 - 130 %
% Dibromofluoromethane	104				%	1	11/18/16	НМ	70 - 130 %
% Toluene-d8	100				%	1	11/18/16	HM	70 - 130 %
	.00				,,	·	, 10, 10		. 5 5 . 70
<u>Semivolatiles</u>									
1,2,4-Trichlorobenzene	ND		5.0	1.5	ug/L	1	11/22/16	DD	SW8270D
1,2-Dichlorobenzene	ND		1.0	1.0	ug/L	1	11/22/16	DD	SW8270D

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1,2-Diphenylhydrazine	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
1,3-Dichlorobenzene	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
1,4-Dichlorobenzene	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2,4-Dichlorophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2,4-Dimethylphenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2,4-Dinitrophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2,4-Dinitropriendi 2,4-Dinitrotoluene	ND	5.0	2.0	ug/L	1	11/22/16	DD	SW8270D
2,6-Dinitrotoluene	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
2-Chloronaphthalene	ND	5.0	1.4	ug/L ug/L	1	11/22/16	DD	SW8270D
•	ND	1.0	1.4	ug/L ug/L	1	11/22/16	DD	SW8270D SW8270D
2-Chlorophenol	ND	5.0	1.5	ug/L ug/L	1	11/22/16	DD	SW8270D SW8270D
2-Methylnaphthalene								
2-Methylphenol (o-cresol)	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2-Nitroaniline	ND	5.0	2.0	ug/L	1	11/22/16	DD	SW8270D
2-Nitrophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
3,3'-Dichlorobenzidine	ND	5.0	2.4	ug/L	1	11/22/16	DD	SW8270D
3-Nitroaniline	ND	5.0	2.0	ug/L	1	11/22/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	5.0	1.5	ug/L	1	11/22/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
4-Chloroaniline	ND	3.5	2.3	ug/L	1	11/22/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	5.0	1.7	ug/L	1	11/22/16	DD	SW8270D
4-Nitroaniline	ND	5.0	1.7	ug/L	1	11/22/16	DD	SW8270D
4-Nitrophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
Acenaphthene	ND	5.0	1.5	ug/L	1	11/22/16	DD	SW8270D
Acetophenone	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
Aniline	ND	3.5	5.0	ug/L	1	11/22/16	DD	SW8270D
Anthracene	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
Benzidine	ND	4.5	2.9	ug/L	1	11/22/16	DD	SW8270D
Benzoic acid	ND	25	10	ug/L	1	11/22/16	DD	SW8270D
Benzyl butyl phthalate	ND	5.0	1.3	ug/L	1	11/22/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	5.0	1.4	ug/L	1	11/22/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	5.0	1.4	ug/L	1	11/22/16	DD	SW8270D
Carbazole	ND	5.0	3.8	ug/L	1	11/22/16	DD	SW8270D
Dibenzofuran	ND	5.0	1.5	ug/L	1	11/22/16	DD	SW8270D
Diethyl phthalate	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
Dimethylphthalate	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
Di-n-butylphthalate	ND	5.0	1.3	ug/L	1	11/22/16	DD	SW8270D
Di-n-octylphthalate	ND	5.0	1.3	ug/L	1	11/22/16	DD	SW8270D
Fluoranthene	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
Fluorene	ND	5.0	1.7	ug/L	1	11/22/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	5.0	1.5	ug/L	1	11/22/16	DD	SW8270D
Isophorone	ND	5.0	1.4	ug/L	1	11/22/16	DD	SW8270D
Naphthalene	ND	5.0	1.4	ug/L	1	11/22/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	5.0	1.9	ug/L	1	11/22/16	DD	SW8270D
		-		Ü		-		

Client ID: GW DUP 1

CHOIR ID. GW DOI 1		RL/	LOD/						
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference	
Phenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D	
Pyrene	ND	5.0	1.7	ug/L	1	11/22/16	DD	SW8270D	
Pyridine	ND	10	1.2	ug/L	1	11/22/16	DD	SW8270D	
QA/QC Surrogates									
% 2,4,6-Tribromophenol	107			%	1	11/22/16	DD	15 - 110 %	
% 2-Fluorobiphenyl	76			%	1	11/22/16	DD	30 - 130 %	
% 2-Fluorophenol	49			%	1	11/22/16	DD	15 - 110 %	
% Nitrobenzene-d5	57			%	1	11/22/16	DD	30 - 130 %	
% Phenol-d5	65			%	1	11/22/16	DD	15 - 110 %	
% Terphenyl-d14	85			%	1	11/22/16	DD	30 - 130 %	
<u>Semivolatiles</u>									
1,2,4,5-Tetrachlorobenzene	ND	0.50	0.50	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Acenaphthylene	ND	0.10	0.10	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Benz(a)anthracene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Benzo(a)pyrene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Benzo(b)fluoranthene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Benzo(ghi)perylene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Benzo(k)fluoranthene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Bis(2-ethylhexyl)phthalate	ND	1.0	1.0	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Chrysene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Dibenz(a,h)anthracene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Hexachlorobenzene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Hexachlorobutadiene	ND	0.40	0.40	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Hexachloroethane	ND	0.50	0.50	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Indeno(1,2,3-cd)pyrene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Nitrobenzene	ND	0.10	0.10	ug/L	1	11/21/16	DD	SW8270D (SIM)	
N-Nitrosodimethylamine	ND	0.10	0.10	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Pentachloronitrobenzene	ND	0.10	0.10	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Pentachlorophenol	ND	0.80	0.80	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Phenanthrene	ND	0.10	0.10	ug/L	1	11/21/16	DD	SW8270D (SIM)	
QA/QC Surrogates									
% 2,4,6-Tribromophenol	117			%	1	11/21/16	DD	15 - 110 %	3
% 2-Fluorobiphenyl	72			%	1	11/21/16	DD	30 - 130 %	
% 2-Fluorophenol	49			%	1	11/21/16	DD	15 - 110 %	
% Nitrobenzene-d5	66			%	1	11/21/16	DD	30 - 130 %	
% Phenol-d5	67			%	1	11/21/16	DD	15 - 110 %	
% Terphenyl-d14	100			%	1	11/21/16	DD	30 - 130 %	

Phoenix I.D.: BV86889

Client ID: GW DUP 1

RL/ LOD/

Parameter Result PQL MDL Units Dilution Date/Time By Reference

- 1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.
- 3 = This parameter exceeds laboratory specified limits.
- B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

Semi-Volatile Comment:

One of the surrogate recoveries was above the upper range due to sample matrix interference. The other surrogates associated with this sample were within QA/QC criteria. No significant bias is suspected.

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 30, 2016

Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG ID: GBV86885 Phoenix ID: BV86890

Analysis Report

November 30, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: GROUND WATER Collected by: 11/16/16

Location Code: EBC Received by: LB 11/17/16 15:39

Rush Request: 72 Hour Analyzed by: see "By" below

<u>Laboratory Data</u>

Project ID: 1181 FLUSHING AVE., BROOKLYN

Client ID: GW DUP 2

P.O.#:

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
Silver	ND	0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Aluminum	0.032	0.010	0.005	mg/L	1	11/19/16	LK	SW6010C	
Arsenic - LDL	0.011	0.004	0.004	mg/L	1	11/19/16	LK	SW6010C	
Barium	0.282	0.010	0.001	mg/L	1	11/19/16	LK	SW6010C	
Beryllium	ND	0.001	0.001	mg/L	1	11/19/16	LK	SW6010C	
Calcium	49.8	0.010	0.01	mg/L	1	11/19/16	LK	SW6010C	
Cadmium	0.002	B 0.004	0.0005	mg/L	1	11/19/16	LK	SW6010C	
Cobalt	0.019	0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Chromium	ND	0.001	0.001	mg/L	1	11/19/16	LK	SW6010C	
Copper	ND	0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Silver (Dissolved)	ND	0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Aluminum (Dissolved)	ND	0.011	0.005	mg/L	1	11/19/16	LK	SW6010C	
Arsenic, (Dissolved)	ND	0.003	0.004	mg/L	1	11/19/16	LK	SW6010C	
Barium (Dissolved)	0.170	0.011	0.001	mg/L	1	11/19/16	LK	SW6010C	
Beryllium (Dissolved)	ND	0.001	0.001	mg/L	1	11/19/16	LK	SW6010C	
Calcium (Dissolved)	46.6	0.01	0.01	mg/L	1	11/19/16	LK	SW6010C	В
Cadmium (Dissolved)	0.001	B 0.004	0.0005	mg/L	1	11/19/16	LK	SW6010C	
Cobalt, (Dissolved)	0.017	0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Chromium (Dissolved)	ND	0.001	0.001	mg/L	1	11/19/16	LK	SW6010C	
Copper, (Dissolved)	ND	0.005	0.001	mg/L	1	11/19/16	LK	SW6010C	
Iron, (Dissolved)	52.3	0.01	0.01	mg/L	1	11/19/16	LK	SW6010C	
Mercury (Dissolved)	ND	0.0002	0.00015	mg/L	1	11/21/16	RS	SW7470A	
Potassium (Dissolved)	4.9	0.1	0.01	mg/L	1	11/22/16	LK/MA	SW6010C	
Magnesium (Dissolved)	14.6	0.01	0.01	mg/L	1	11/19/16	LK	SW6010C	
Manganese, (Dissolved)	3.09	0.053	0.011	mg/L	10	11/19/16	LK	SW6010C	
Sodium (Dissolved)	102	1.1	0.11	mg/L	10	11/19/16	LK	SW6010C	
Nickel, (Dissolved)	ND	0.004	0.001	mg/L	1	11/19/16	LK	SW6010C	
Lead (Dissolved)	0.003	0.002	0.001	mg/L	1	11/19/16	LK	SW6010C	

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
Antimony, (Dissolved)	ND	0.003	0.003	mg/L	1	11/20/16	RS	SW7010	
Selenium, (Dissolved)	ND	0.004	0.002	mg/L	1	11/18/16	RS	SW7010	
Thallium, (Dissolved)	ND	0.0005	0.0005	mg/L	1	11/18/16	RS	SW7010	
Vanadium, (Dissolved)	ND	0.011	0.001	mg/L	1	11/19/16	LK	SW6010C	
Zinc, (Dissolved)	0.006	B 0.011	0.0012	mg/L	1	11/19/16	LK	SW6010C	
Iron	126	0.10	0.10	mg/L	10	11/19/16	LK	SW6010C	
Mercury	ND	0.0002	0.00015	mg/L	1	11/18/16	RS	SW7470A	
Potassium	5.4	0.1	0.01	mg/L	1	11/19/16	LK	SW6010C	
Magnesium	15.5	0.010	0.01	mg/L	1	11/19/16	LK	SW6010C	
Manganese	3.47	0.050	0.010	mg/L	10	11/19/16	LK	SW6010C	
Sodium	106	1.0	0.10	mg/L	10	11/19/16	LK	SW6010C	
Nickel	0.004	B 0.004	0.001	mg/L	1	11/19/16	LK	SW6010C	
Lead	0.009	0.002	0.001	mg/L	1	11/19/16	LK	SW6010C	
Antimony	ND	0.002	0.002	mg/L	1	11/20/16	RS	SW7010	
Selenium	ND	0.002	0.001	mg/L	1	11/18/16	RS	SW7010	
Thallium - LDL	ND	0.0005	0.0005	mg/L	1	11/18/16	RS	SW7010	
Vanadium	0.001	B 0.010	0.001	mg/L	1	11/19/16	LK	SW6010C	
Zinc	0.015	0.010	0.0011	mg/L	1	11/19/16	LK	SW6010C	
Filtration	Completed	I		-		11/17/16	AG	0.45um Filter	
Dissolved Mercury Digestion	Completed					11/21/16	QW/W	SW7470A	
Mercury Digestion	Completed					11/18/16	QW/QV	/ SW7470A	
PCB Extraction (2 Liter)	Completed					11/21/16	Z/T	SW3510C	
Extraction for Pest (2 Liter)	Completed					11/21/16	Z	SW3510C	
Semi-Volatile Extraction	Completed					11/17/16	P/D/D		
Dissolved Metals Preparation	Completed					11/17/16	AG	SW3005A	
Total Metals Digestion	Completed					11/17/16	AG		
<u>Pesticides</u>									
4,4' -DDD	ND	0.005	0.010	ug/L	1	11/18/16	CE	SW8081B	
4,4' -DDE	ND	0.005	0.010	ug/L	1	11/18/16	CE	SW8081B	
4,4' -DDT	ND	0.005	0.010	ug/L	1	11/18/16	CE	SW8081B	
a-BHC	ND	0.005	0.005	ug/L	1	11/18/16	CE	SW8081B	
a-chlordane	ND	0.010	0.010	ug/L	1	11/18/16	CE	SW8081B	
Alachlor	ND	0.075	0.075	ug/L	1	11/18/16	CE	SW8081B	1
Aldrin	ND	0.005	0.005	ug/L	1	11/18/16	CE	SW8081B	
b-BHC	ND	0.005	0.005	ug/L	1	11/18/16	CE	SW8081B	
Chlordane	ND	0.050	0.050	ug/L	1	11/18/16	CE	SW8081B	
d-BHC	ND	0.005	0.005	ug/L	1	11/18/16	CE	SW8081B	
Dieldrin	ND	0.002	0.002	ug/L	1	11/18/16	CE	SW8081B	
Endosulfan I	ND	0.010	0.010	ug/L	1	11/18/16	CE	SW8081B	
Endosulfan II	ND	0.010	0.010	ug/L	1	11/18/16	CE	SW8081B	
Endosulfan Sulfate	ND	0.010	0.010	ug/L	1	11/18/16	CE	SW8081B	
Endrin	ND	0.010	0.010	ug/L	1	11/18/16	CE	SW8081B	
Endrin Aldehyde	ND	0.010	0.010	ug/L	1	11/18/16	CE	SW8081B	
Endrin ketone	ND	0.010	0.010	ug/L	1	11/18/16	CE	SW8081B	
g-BHC (Lindane)	ND	0.005	0.005	ug/L	1	11/18/16	CE	SW8081B	
g-chlordane	ND	0.003	0.003	ug/L	1	11/18/16	CE	SW8081B	
_	ND	0.010	0.010	ug/L	1	11/18/16	CE	SW8081B	
Heptachlor	ND ND	0.010	0.010		1	11/18/16	CE	SW8081B	
Heptachlor epoxide Methoxychlor	ND ND	0.010	0.010	ug/L ug/L	1	11/18/16	CE	SW8081B	

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
Toxaphene	ND	0.20	0.20	ug/L	1	11/18/16	CE	SW8081B	
QA/QC Surrogates									
%DCBP (Surrogate Rec)	Diluted Out			%	1	11/18/16	CE	SW8081B	
%TCMX (Surrogate Rec)	Diluted Out			%	1	11/18/16	CE	SW8081B	
Polychlorinated Biphen	<u>ıyls</u>								
PCB-1016	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A	
PCB-1221	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A	
PCB-1232	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A	
PCB-1242	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A	
PCB-1248	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A	
PCB-1254	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A	
PCB-1260	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A	
PCB-1262	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A	
PCB-1268	ND	0.050	0.050	ug/L	1	11/22/16	AW	E608/SW8082A	
QA/QC Surrogates									
% DCBP	21			%	1	11/22/16	AW	40 - 140 %	3
% TCMX	67			%	1	11/22/16	AW	40 - 140 %	
<u>Volatiles</u>									
1,1,1,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,1,1-Trichloroethane	ND	5.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,1,2,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,1,2-Trichloroethane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,1-Dichloroethane	ND	5.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,1-Dichloroethene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,1-Dichloropropene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,2,3-Trichloropropane	ND	0.25	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,2,4-Trichlorobenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,2,4-Trimethylbenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,2-Dibromo-3-chloropropane	ND	0.50	0.50	ug/L	1	11/18/16	НМ	SW8260C	
1,2-Dibromoethane	ND	0.25	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,2-Dichlorobenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,2-Dichloroethane	ND	0.60	0.50	ug/L	1	11/18/16	НМ	SW8260C	
1,2-Dichloropropane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,3,5-Trimethylbenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,3-Dichlorobenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,3-Dichloropropane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
1,4-Dichlorobenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
2,2-Dichloropropane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
2-Chlorotoluene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
2-Hexanone	ND	2.5	2.5	ug/L	1	11/18/16	НМ	SW8260C	
2-Isopropyltoluene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	1
4-Chlorotoluene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C	
4-Methyl-2-pentanone	ND	2.5	2.5	ug/L	1	11/18/16	НМ	SW8260C	
Acetone	ND	5.0	2.5	ug/L	1	11/18/16	НМ	SW8260C	
Acrolein	ND	5.0	2.5	ug/L	1	11/18/16	НМ	SW8260C	
Acrylonitrile	ND	5.0	2.5	ug/L	1	11/18/16	НМ	SW8260C	
Benzene	1.2	0.70	0.25	ug/L	1	11/18/16	НМ	SW8260C	

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Bromobenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Bromochloromethane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Bromodichloromethane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Bromoform	ND	5.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Bromomethane	ND	5.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Carbon Disulfide	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Carbon tetrachloride	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Chlorobenzene	ND	5.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Chloroethane	ND	5.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Chloroform	ND	5.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Chloromethane	ND	5.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
cis-1,2-Dichloroethene	1.4	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
cis-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	11/18/16	НМ	SW8260C
Dibromochloromethane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Dibromomethane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Dichlorodifluoromethane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Ethylbenzene	0.34	J 1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Hexachlorobutadiene	ND	0.50	0.20	ug/L	1	11/18/16	НМ	SW8260C
Isopropylbenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
m&p-Xylene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Methyl ethyl ketone	ND	2.5	2.5	ug/L	1	11/18/16	НМ	SW8260C
Methyl t-butyl ether (MTBE)	2.1	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Methylene chloride	ND	3.0	1.0	ug/L	1	11/18/16	НМ	SW8260C
Naphthalene	ND	1.0	1.0	ug/L	1	11/18/16	НМ	SW8260C
n-Butylbenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
n-Propylbenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
o-Xylene	0.50	J 1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
p-Isopropyltoluene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
sec-Butylbenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Styrene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
tert-Butylbenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Tetrachloroethene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Tetrahydrofuran (THF)	ND	5.0	2.5	ug/L	1	11/18/16	НМ	SW8260C 1
Toluene	0.33	J 1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
trans-1,2-Dichloroethene	ND	5.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
trans-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	11/18/16	НМ	SW8260C
trans-1,4-dichloro-2-butene	ND	2.5	2.5	ug/L	1	11/18/16	НМ	SW8260C
Trichloroethene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Trichlorofluoromethane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Trichlorotrifluoroethane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Vinyl chloride	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
QA/QC Surrogates			0.20	~g/ =	·	,,		0.1.02000
% 1,2-dichlorobenzene-d4	98			%	1	11/18/16	НМ	70 - 130 %
% Bromofluorobenzene	96			%	1	11/18/16	HM	70 - 130 %
% Dibromofluoromethane	98			%	1	11/18/16	НМ	70 - 130 %
% Toluene-d8	101			%	1	11/18/16	HM	70 - 130 %
	101			75	·	11,10,10		76 166 76
Semivolatiles 1.2.4 Tricklerehenzene	ND	F 0	4 5	~/I	4	11/00/10	רט	SW9270D
1,2,4-Trichlorobenzene	ND	5.0	1.5	ug/L	1	11/22/16	DD	SW8270D
1,2-Dichlorobenzene	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1,2-Diphenylhydrazine	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
1,3-Dichlorobenzene	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
1,4-Dichlorobenzene	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2,4-Dichlorophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2,4-Dimethylphenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2,4-Dinitrophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2,4-Dinitrotoluene	ND	5.0	2.0	ug/L	1	11/22/16	DD	SW8270D
2,6-Dinitrotoluene	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
2-Chloronaphthalene	ND	5.0	1.4	ug/L	1	11/22/16	DD	SW8270D
2-Chlorophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2-Methylnaphthalene	ND	5.0	1.5	ug/L	1	11/22/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
2-Nitroaniline	ND	5.0	2.0	ug/L	1	11/22/16	DD	SW8270D
2-Nitrophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
3,3'-Dichlorobenzidine	ND	5.0	2.4	ug/L	1	11/22/16	DD	SW8270D
3-Nitroaniline	ND	5.0	2.0	ug/L	1	11/22/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	5.0	1.5	ug/L	1	11/22/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
4-Chloroaniline	ND	3.5	2.3	ug/L	1	11/22/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	5.0	1.7	ug/L	1	11/22/16	DD	SW8270D
4-Nitroaniline	ND	5.0	1.7	ug/L	1	11/22/16	DD	SW8270D
4-Nitrophenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
Acenaphthene	ND	5.0	1.5	ug/L	1	11/22/16	DD	SW8270D
Acetophenone	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
Aniline	ND	3.5	5.0	ug/L	1	11/22/16	DD	SW8270D
Anthracene	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
Benzidine	ND	4.5	2.9	ug/L	1	11/22/16	DD	SW8270D
Benzoic acid	ND	25	10	ug/L	1	11/22/16	DD	SW8270D
Benzyl butyl phthalate	ND	5.0	1.3	ug/L	1	11/22/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	5.0	1.4	ug/L	1	11/22/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	5.0	1.4	ug/L	1	11/22/16	DD	SW8270D
Carbazole	ND	5.0	3.8	ug/L	1	11/22/16	DD	SW8270D
Dibenzofuran	ND	5.0	1.5	ug/L	1	11/22/16	DD	SW8270D
Diethyl phthalate	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
Dimethylphthalate	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
Di-n-butylphthalate	ND	5.0	1.3	ug/L	1	11/22/16	DD	SW8270D
Di-n-octylphthalate	ND	5.0	1.3	ug/L	1	11/22/16	DD	SW8270D
Fluoranthene	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
Fluorene	ND	5.0	1.7	ug/L	1	11/22/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	5.0	1.5	ug/L	1	11/22/16	DD	SW8270D
Isophorone	ND	5.0	1.4	ug/L	1	11/22/16	DD	SW8270D
Naphthalene	ND	5.0	1.4	ug/L	1	11/22/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	5.0	1.6	ug/L	1	11/22/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	5.0	1.9	ug/L	1	11/22/16	DD	SW8270D

Client ID: GW DUP 2

CHOIR ID. GW DOI 2		RL/	LOD/						
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference	
Phenol	ND	1.0	1.0	ug/L	1	11/22/16	DD	SW8270D	
Pyrene	ND	5.0	1.7	ug/L	1	11/22/16	DD	SW8270D	
Pyridine	ND	10	1.2	ug/L	1	11/22/16	DD	SW8270D	
QA/QC Surrogates									
% 2,4,6-Tribromophenol	103			%	1	11/22/16	DD	15 - 110 %	
% 2-Fluorobiphenyl	80			%	1	11/22/16	DD	30 - 130 %	
% 2-Fluorophenol	59			%	1	11/22/16	DD	15 - 110 %	
% Nitrobenzene-d5	65			%	1	11/22/16	DD	30 - 130 %	
% Phenol-d5	69			%	1	11/22/16	DD	15 - 110 %	
% Terphenyl-d14	92			%	1	11/22/16	DD	30 - 130 %	
<u>Semivolatiles</u>									
1,2,4,5-Tetrachlorobenzene	ND	0.50	0.50	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Acenaphthylene	ND	0.10	0.10	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Benz(a)anthracene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Benzo(a)pyrene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Benzo(b)fluoranthene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Benzo(ghi)perylene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Benzo(k)fluoranthene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Bis(2-ethylhexyl)phthalate	ND	1.0	1.0	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Chrysene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Dibenz(a,h)anthracene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Hexachlorobenzene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Hexachlorobutadiene	ND	0.40	0.40	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Hexachloroethane	ND	0.50	0.50	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Indeno(1,2,3-cd)pyrene	ND	0.02	0.02	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Nitrobenzene	ND	0.10	0.10	ug/L	1	11/21/16	DD	SW8270D (SIM)	
N-Nitrosodimethylamine	ND	0.10	0.10	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Pentachloronitrobenzene	ND	0.10	0.10	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Pentachlorophenol	ND	0.80	0.80	ug/L	1	11/21/16	DD	SW8270D (SIM)	
Phenanthrene	ND	0.10	0.10	ug/L	1	11/21/16	DD	SW8270D (SIM)	
QA/QC Surrogates									
% 2,4,6-Tribromophenol	112			%	1	11/21/16	DD	15 - 110 %	3
% 2-Fluorobiphenyl	78			%	1	11/21/16	DD	30 - 130 %	
% 2-Fluorophenol	59			%	1	11/21/16	DD	15 - 110 %	
% Nitrobenzene-d5	76			%	1	11/21/16	DD	30 - 130 %	
% Phenol-d5	74			%	1	11/21/16	DD	15 - 110 %	
% Terphenyl-d14	104			%	1	11/21/16	DD	30 - 130 %	

Phoenix I.D.: BV86890

Client ID: GW DUP 2

RL/ LOD/

Parameter Result PQL MDL Units Dilution Date/Time By Reference

- 1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.
- 3 = This parameter exceeds laboratory specified limits.
- B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

Pesticide Comment:

Due to a matrix interference and/or the presence of a large amount of non-target material in the sample, an elevated RL was reported for the affected compounds.

Semi-Volatile Comment:

One of the surrogate recoveries was above the upper range due to sample matrix interference. The other surrogates associated with this sample were within QA/QC criteria. No significant bias is suspected.

PCB Comment:

Poor surrogate recovery was observed for PCBs. Sample was re-extracted with similar results.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 30, 2016

Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 30, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: WATER Collected by: 11/16/16

RL/

Location Code: EBC Received by: LB 11/17/16 15:39

LOD/

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GBV86885

Phoenix ID: BV86891

Project ID: 1181 FLUSHING AVE., BROOKLYN

Client ID: TRIP BLANK

Parameter Result **PQL** MDL Units Dilution Date/Time Reference Βy Volatiles ND 1.0 0.25 ug/L 1 11/17/16 НМ SW8260C 1,1,1,2-Tetrachloroethane ND 5.0 11/17/16 SW8260C 1,1,1-Trichloroethane 0.25 ug/L 1 HM ND 1.0 0.25 ug/L 1 11/17/16 НМ SW8260C 1,1,2,2-Tetrachloroethane ND SW8260C 1,1,2-Trichloroethane 1.0 0.25 ug/L 1 11/17/16 HM ND 5.0 0.25 ug/L 1 11/17/16 HM SW8260C 1,1-Dichloroethane ND 0.25 SW8260C 1,1-Dichloroethene 1 0 ug/L 1 11/17/16 ΗМ ND 1.0 0.25 ug/L 1 11/17/16 НМ SW8260C 1,1-Dichloropropene 11/17/16 SW8260C 1,2,3-Trichlorobenzene ND 1.0 0.25 ug/L 1 HM 1,2,3-Trichloropropane ND 0.25 0.25 ug/L 1 11/17/16 HM SW8260C 1,2,4-Trichlorobenzene ND 1.0 0.25 ug/L 1 11/17/16 HM SW8260C SW8260C ND 0.25 1.0 ug/L 1 11/17/16 HM 1,2,4-Trimethylbenzene ND 0.50 1 11/17/16 НМ SW8260C 1,2-Dibromo-3-chloropropane 0.50 ug/L ND 0.25 0.25 ug/L 1 11/17/16 НМ SW8260C 1,2-Dibromoethane ND 1.0 11/17/16 SW8260C 1,2-Dichlorobenzene 0.25 ug/L 1 HM ND 0.60 0.50 ug/L 1 11/17/16 HM SW8260C 1,2-Dichloroethane ND 1.0 0.25 ug/L НМ SW8260C 1 11/17/16 1,2-Dichloropropane ND 1.0 ug/L 1 11/17/16 НМ SW8260C 1,3,5-Trimethylbenzene 0.25 ND 1.0 0.25 11/17/16 НМ SW8260C ug/L 1 1,3-Dichlorobenzene ND 1.0 0.25 ug/L 1 11/17/16 НМ SW8260C 1,3-Dichloropropane ND 1.0 0.25 ug/L 1 11/17/16 HM SW8260C 1,4-Dichlorobenzene ND 1.0 0.25 ug/L 1 11/17/16 HM SW8260C 2,2-Dichloropropane ND 1.0 0.25 ug/L 1 11/17/16 НМ SW8260C 2-Chlorotoluene ND 2.5 2.5 1 11/17/16 НМ SW8260C ug/L 2-Hexanone ND 1.0 1 11/17/16 НМ SW8260C 0.25 ug/L 2-Isopropyltoluene ND 1.0 0.25 ug/L 1 11/17/16 НМ SW8260C 4-Chlorotoluene ND 2.5 2.5 ug/L 1 11/17/16 НМ SW8260C 4-Methyl-2-pentanone

Client ID: TRIP BLANK

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND	5.0	2.5	ug/L	1	11/17/16	НМ	SW8260C
Acrolein	ND	5.0	2.5	ug/L	1	11/17/16	HM	SW8260C
Acrylonitrile	ND	5.0	2.5	ug/L	1	11/17/16	НМ	SW8260C
Benzene	ND	0.70	0.25	ug/L	1	11/17/16	HM	SW8260C
Bromobenzene	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
Bromochloromethane	ND	1.0	0.25	ug/L	1	11/17/16	HM	SW8260C
Bromodichloromethane	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
Bromoform	ND	5.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
Bromomethane	ND	5.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
Carbon Disulfide	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
Carbon tetrachloride	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
Chlorobenzene	ND	5.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
Chloroethane	ND	5.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
Chloroform	ND	5.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
Chloromethane	ND	5.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
cis-1,2-Dichloroethene	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
cis-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	11/17/16	НМ	SW8260C
Dibromochloromethane	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
Dibromomethane	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
Dichlorodifluoromethane	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
Ethylbenzene	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
Hexachlorobutadiene	ND	0.50	0.20	ug/L	1	11/17/16	НМ	SW8260C
Isopropylbenzene	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
m&p-Xylene	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
Methyl ethyl ketone	ND	2.5	2.5	ug/L	1	11/17/16	НМ	SW8260C
Methyl t-butyl ether (MTBE)	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
Methylene chloride	ND	3.0	1.0	ug/L	1	11/17/16	НМ	SW8260C
Naphthalene	ND	1.0	1.0	ug/L	1	11/17/16	НМ	SW8260C
n-Butylbenzene	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
n-Propylbenzene	ND	1.0	0.25	ug/L	1	11/17/16	HM	SW8260C
o-Xylene	ND	1.0	0.25	ug/L	1	11/17/16	HM	SW8260C
p-Isopropyltoluene	ND	1.0	0.25	ug/L	1	11/17/16	HM	SW8260C
	ND	1.0	0.25		1	11/17/16	HM	SW8260C
sec-Butylbenzene	ND	1.0	0.25	ug/L ug/L	1	11/17/16	HM	SW8260C
Styrene tart Butulbanzana	ND	1.0	0.25	ug/L	1	11/17/16	HM	SW8260C
tert-Butylbenzene Tetrachloroethene	ND	1.0	0.25	_	1	11/17/16	HM	SW8260C
	ND	5.0	2.5	ug/L ug/L	1	11/17/16	HM	SW8260C SW8260C
Tetrahydrofuran (THF)				_		11/17/16		
Toluene	ND	1.0	0.25	ug/L	1	11/17/16	HM	SW8260C
trans-1,2-Dichloroethene	ND	5.0	0.25	ug/L	1		HM	SW8260C
trans-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	11/17/16	HM	SW8260C
trans-1,4-dichloro-2-butene	ND	2.5	2.5	ug/L	1	11/17/16	HM	SW8260C
Trichloroethene	ND	1.0	0.25	ug/L	1	11/17/16	HM	SW8260C
Trichlorofluoromethane	ND	1.0	0.25	ug/L	1	11/17/16	HM	SW8260C
Trichlorotrifluoroethane	ND	1.0	0.25	ug/L	1	11/17/16	HM	SW8260C
Vinyl chloride	ND	1.0	0.25	ug/L	1	11/17/16	НМ	SW8260C
QA/QC Surrogates				2.	_	4411		70 4000/
% 1,2-dichlorobenzene-d4	95			%	1	11/17/16	HM	70 - 130 %
% Bromofluorobenzene	92			%	1	11/17/16	HM	70 - 130 %
% Dibromofluoromethane	92			%	1	11/17/16	HM	70 - 130 %

Phoenix I.D.: BV86891

Client ID: TRIP BLANK

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	98			%	1	11/17/16	НМ	70 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TRIP BLANK INCLUDED.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 30, 2016

Reviewed and Released by: Ethan Lee, Project Manager

Sample Criteria Exceedances Report GBV86885 - EBC

State: NY

State.	INT						RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BV86885	\$8260DP25R	Acetone	NY / TAGM - Volatile Organics / Groundwater Standards	290	50	50	50	ug/L
BV86885	\$8260DP25R	Naphthalene	NY / TAGM - Volatile Organics / Groundwater Standards	110	20	5	5	ug/L
BV86885	\$8260DP25R	Methyl ethyl ketone	NY / TAGM - Volatile Organics / Groundwater Standards	780	500	50	50	ug/L
BV86885	\$8260DP25R	Ethylbenzene	NY / TAGM - Volatile Organics / Groundwater Standards	440	5.0	5	5	ug/L
BV86885	\$8260DP25R	o-Xylene	NY / TAGM - Volatile Organics / Groundwater Standards	590	50	5	5	ug/L
BV86885	\$8260DP25R	Benzene	NY / TAGM - Volatile Organics / Groundwater Standards	50	5.0	0.7	0.7	ug/L
BV86885	\$8260DP25R	Methylene chloride	NY / TAGM - Volatile Organics / Groundwater Standards	ND	20	5	5	ug/L
BV86885	\$8260DP25R	Tetrachloroethene	NY / TAGM - Volatile Organics / Groundwater Standards	8.1	5.0	5	5	ug/L
BV86885	\$8260DP25R	4-Methyl-2-pentanone	NY / TAGM - Volatile Organics / Groundwater Standards	60	50	50	50	ug/L
BV86885	\$8260DP25R	Toluene	NY / TAGM - Volatile Organics / Groundwater Standards	470	5.0	5	5	ug/L
BV86885	\$8260DP25R	Trichloroethene	NY / TAGM - Volatile Organics / Groundwater Standards	7.4	5.0	5	5	ug/L
BV86885	\$8260DP25R	Vinyl chloride	NY / TAGM - Volatile Organics / Groundwater Standards	ND	5.0	2	2	ug/L
BV86885	\$8260DP25R	1,2-Dichloroethane	NY / TAGM - Volatile Organics / Groundwater Standards	ND	10	5	5	ug/L
BV86885	\$8260DP25R	1,2-Dichlorobenzene	NY / TAGM - Volatile Organics / Groundwater Standards	ND	5.0	4.7	4.7	ug/L
BV86885	\$8260DP25R	1,1,2-Trichloroethane	NY / TOGS - Water Quality / GA Criteria	ND	5.0	1	1	ug/L
BV86885	\$8260DP25R	Naphthalene	NY / TOGS - Water Quality / GA Criteria	110	20	10	10	ug/L
BV86885	\$8260DP25R	n-Butylbenzene	NY / TOGS - Water Quality / GA Criteria	9.0	5.0	5	5	ug/L
BV86885	\$8260DP25R	n-Propylbenzene	NY / TOGS - Water Quality / GA Criteria	78	5.0	5	5	ug/L
BV86885	\$8260DP25R	Tetrachloroethene	NY / TOGS - Water Quality / GA Criteria	8.1	5.0	5	5	ug/L
BV86885	\$8260DP25R	o-Xylene	NY / TOGS - Water Quality / GA Criteria	590	50	5	5	ug/L
BV86885	\$8260DP25R	Toluene	NY / TOGS - Water Quality / GA Criteria	470	5.0	5	5	ug/L
BV86885	\$8260DP25R	sec-Butylbenzene	NY / TOGS - Water Quality / GA Criteria	6.5	5.0	5	5	ug/L
BV86885	\$8260DP25R	trans-1,4-dichloro-2-butene	NY / TOGS - Water Quality / GA Criteria	ND	50	5	5	ug/L
BV86885	\$8260DP25R	Vinyl chloride	NY / TOGS - Water Quality / GA Criteria	ND	5.0	2	2	ug/L
BV86885	\$8260DP25R	trans-1,3-Dichloropropene	NY / TOGS - Water Quality / GA Criteria	ND	5.0	0.4	0.4	ug/L
BV86885	\$8260DP25R	Trichloroethene	NY / TOGS - Water Quality / GA Criteria	7.4	5.0	5	5	ug/L
BV86885	\$8260DP25R	1,2,4-Trimethylbenzene	NY / TOGS - Water Quality / GA Criteria	610	50	5	5	ug/L
BV86885	\$8260DP25R	Methylene chloride	NY / TOGS - Water Quality / GA Criteria	ND	20	5	5	ug/L
BV86885	\$8260DP25R	1,2,3-Trichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	5.0	0.04	0.04	ug/L
BV86885	\$8260DP25R	1,2-Dibromo-3-chloropropane	NY / TOGS - Water Quality / GA Criteria	ND	10	0.04	0.04	ug/L
BV86885	\$8260DP25R	1,2-Dibromoethane	NY / TOGS - Water Quality / GA Criteria	ND	5.0	0.0006	0.0006	ug/L
BV86885	\$8260DP25R	1,2-Dichloroethane	NY / TOGS - Water Quality / GA Criteria	ND	10	0.6	0.6	ug/L
BV86885	\$8260DP25R	1,2-Dichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	5.0	1	1	ug/L
BV86885	\$8260DP25R	1,3,5-Trimethylbenzene	NY / TOGS - Water Quality / GA Criteria	190	5.0	5	5	ug/L
BV86885	\$8260DP25R	1,3-Dichlorobenzene	NY / TOGS - Water Quality / GA Criteria	ND	5.0	3	3	ug/L
BV86885	\$8260DP25R	Isopropylbenzene	NY / TOGS - Water Quality / GA Criteria	29	5.0	5	5	ug/L
BV86885	\$8260DP25R	Acrolein	NY / TOGS - Water Quality / GA Criteria	ND	50	5	5	ug/L
BV86885	\$8260DP25R	Acrylonitrile	NY / TOGS - Water Quality / GA Criteria	ND	50	5	5	ug/L
BV86885	\$8260DP25R	Benzene	NY / TOGS - Water Quality / GA Criteria	50	5.0	1	1	ug/L
BV86885	\$8260DP25R	cis-1,3-Dichloropropene	NY / TOGS - Water Quality / GA Criteria	ND	5.0	0.4	0.4	ug/L
BV86885	\$8260DP25R	Ethylbenzene	NY / TOGS - Water Quality / GA Criteria	440	5.0	5	5	ug/L
BV86885	\$8260DP25R	Hexachlorobutadiene	NY / TOGS - Water Quality / GA Criteria	ND	4.0	0.5	0.5	ug/L

Sample Criteria Exceedances Report GBV86885 - EBC

State: NY

State: NY RL						Analysis		
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BV86885	\$8260DP25R	Acetone	NY / TOGS - Water Quality / GA Criteria	290	50	50	50	ug/L
BV86885	\$8260DP25R	Methyl ethyl ketone	NY / TOGS - Water Quality / GA Criteria	780	500	50	50	ug/L
BV86885	\$8270WMDPR	Chrysene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	34	0.002	0.002	ug/L
BV86885	\$8270WMDPR	Dibenzofuran	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	29	5	5	ug/L
BV86885	\$8270WMDPR	3-Nitroaniline	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	220	5	5	ug/L
BV86885	\$8270WMDPR	Hexachlorobenzene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	29	0.35	0.35	ug/L
BV86885	\$8270WMDPR	4-Chloroaniline	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	47	5	5	ug/L
BV86885	\$8270WMDPR	2-Nitroaniline	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	100	5	5	ug/L
BV86885	\$8270WMDPR	Benzo(k)fluoranthene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	33	0.002	0.002	ug/L
BV86885	\$8270WMDPR	2-Nitrophenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	63	5	5	ug/L
BV86885	\$8270WMDPR	4-Nitrophenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	45	5	5	ug/L
BV86885	\$8270WMDPR	Acenaphthene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	30	20	20	ug/L
BV86885	\$8270WMDPR	Benzo(a)pyrene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	33	0.002	0.002	ug/L
BV86885	\$8270WMDPR	Aniline	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	300	5	5	ug/L
BV86885	\$8270WMDPR	Benz(a)anthracene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	34	0.002	0.002	ug/L
BV86885	\$8270WMDPR	Benzo(ghi)perylene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	32	5	5	ug/L
BV86885	\$8270WMDPR	2-Methylphenol (o-cresol)	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	47	5	5	ug/L
BV86885	\$8270WMDPR	Naphthalene	NY / TAGM - Semi-Volatiles / Groundwater Standards	100	29	10	10	ug/L
BV86885	\$8270WMDPR	Acenaphthylene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	28	20	20	ug/L
BV86885	\$8270WMDPR	2,4-Dinitrophenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	70	5	5	ug/L
BV86885	\$8270WMDPR	Pentachlorophenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	38	1	1	ug/L
BV86885	\$8270WMDPR	2,4-Dichlorophenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	35	1	1	ug/L
BV86885	\$8270WMDPR	Nitrobenzene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	35	5	5	ug/L
BV86885	\$8270WMDPR	Phenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	32	1	1	ug/L
BV86885	\$8270WMDPR	2,6-Dinitrotoluene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	32	5	5	ug/L
BV86885	\$8270WMDPR	2,4,5-Trichlorophenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	55	1	1	ug/L
BV86885	\$8270WMDPR	Benzo(b)fluoranthene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	34	0.002	0.002	ug/L
BV86885	\$8270WMDPR	4-Chloro-3-methylphenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	35	5	5	ug/L
BV86885	\$8270WMDPR	Indeno(1,2,3-cd)pyrene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	33	0.002	0.002	ug/L
BV86885	\$8270WMDPR	1,2-Dichlorobenzene	NY / TAGM - Volatile Organics / Groundwater Standards	ND	28	4.7	4.7	ug/L
BV86885	\$8270WMDPR	Benzoic acid	NY / TAGM - Volatile Organics / Groundwater Standards	7000	2000	50	50	ug/L
BV86885	\$8270WMDPR	Naphthalene	NY / TAGM - Volatile Organics / Groundwater Standards	100	29	5	5	ug/L
BV86885	\$8270WMDPR	Nitrobenzene	NY / TOGS - Water Quality / GA Criteria	ND	35	0.4	0.4	ug/L
BV86885	\$8270WMDPR	Benzo(b)fluoranthene	NY / TOGS - Water Quality / GA Criteria	ND	34	0.002	0.002	ug/L
BV86885	\$8270WMDPR	Benzo(k)fluoranthene	NY / TOGS - Water Quality / GA Criteria	ND	33	0.002	0.002	ug/L
BV86885	\$8270WMDPR	Pentachlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	38	1	1	ug/L
BV86885	\$8270WMDPR	Phenol	NY / TOGS - Water Quality / GA Criteria	ND	32	1	1	ug/L
BV86885	\$8270WMDPR	Bis(2-chloroethyl)ether	NY / TOGS - Water Quality / GA Criteria	ND	27	1	1	ug/L
BV86885	\$8270WMDPR	Hexachloroethane	NY / TOGS - Water Quality / GA Criteria	ND	30	5	5	ug/L
BV86885	\$8270WMDPR	Bis(2-ethylhexyl)phthalate	NY / TOGS - Water Quality / GA Criteria	ND	29	5	5	ug/L
BV86885	\$8270WMDPR		NY / TOGS - Water Quality / GA Criteria	ND	34	0.002	0.002	ug/L
BV86885	\$8270WMDPR	Naphthalene	NY / TOGS - Water Quality / GA Criteria	100	29	10	10	ug/L

Sample Criteria Exceedances Report GBV86885 - EBC

State: NY

State:	NY		GB100000 EB0				RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BV86885	\$8270WMDPR	Hexachlorobenzene	NY / TOGS - Water Quality / GA Criteria	ND	29	0.04	0.04	ug/L
BV86885	\$8270WMDPR	Hexachlorobutadiene	NY / TOGS - Water Quality / GA Criteria	ND	36	0.5	0.5	ug/L
BV86885	\$8270WMDPR	Indeno(1,2,3-cd)pyrene	NY / TOGS - Water Quality / GA Criteria	ND	33	0.002	0.002	ug/L
BV86885	\$8270WMDPR	Hexachlorocyclopentadiene	NY / TOGS - Water Quality / GA Criteria	ND	31	5	5	ug/L
BV86885	\$8270WMDPR	Bis(2-chloroethoxy)methane	NY / TOGS - Water Quality / GA Criteria	ND	28	5	5	ug/L
BV86885	\$8270WMDPR	2-Chlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	28	1	1	ug/L
BV86885	\$8270WMDPR	4,6-Dinitro-2-methylphenol	NY / TOGS - Water Quality / GA Criteria	ND	110	1	1	ug/L
BV86885	\$8270WMDPR	Benzidine	NY / TOGS - Water Quality / GA Criteria	ND	59	5	5	ug/L
BV86885	\$8270WMDPR	2,4,6-Trichlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	32	1	1	ug/L
BV86885	\$8270WMDPR	2,4-Dichlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	35	1	1	ug/L
BV86885	\$8270WMDPR	2,4-Dichlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	35	5	5	ug/L
BV86885	\$8270WMDPR	2,4-Dimethylphenol	NY / TOGS - Water Quality / GA Criteria	ND	25	1	1	ug/L
BV86885	\$8270WMDPR	2,4-Dimethylphenol	NY / TOGS - Water Quality / GA Criteria	ND	25	5	5	ug/L
BV86885	\$8270WMDPR	2,4-Dinitrophenol	NY / TOGS - Water Quality / GA Criteria	ND	70	1	1	ug/L
BV86885	\$8270WMDPR	2,4-Dinitrophenol	NY / TOGS - Water Quality / GA Criteria	ND	70	5	5	ug/L
BV86885	\$8270WMDPR	2,4-Dinitrotoluene	NY / TOGS - Water Quality / GA Criteria	ND	39	5	5	ug/L
BV86885	\$8270WMDPR	2-Chloronaphthalene	NY / TOGS - Water Quality / GA Criteria	ND	28	10	10	ug/L
BV86885	\$8270WMDPR	2,4,5-Trichlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	55	1	1	ug/L
BV86885	\$8270WMDPR	2-Methylphenol (o-cresol)	NY / TOGS - Water Quality / GA Criteria	ND	47	1	1	ug/L
BV86885	\$8270WMDPR	4-Chloroaniline	NY / TOGS - Water Quality / GA Criteria	ND	47	5	5	ug/L
BV86885	\$8270WMDPR	Benz(a)anthracene	NY / TOGS - Water Quality / GA Criteria	ND	34	0.002	0.002	ug/L
BV86885	\$8270WMDPR	Aniline	NY / TOGS - Water Quality / GA Criteria	ND	300	5	5	ug/L
BV86885	\$8270WMDPR	Acenaphthene	NY / TOGS - Water Quality / GA Criteria	ND	30	20	20	ug/L
BV86885	\$8270WMDPR	2,6-Dinitrotoluene	NY / TOGS - Water Quality / GA Criteria	ND	32	5	5	ug/L
BV86885	\$8270WMDPR	4-Nitroaniline	NY / TOGS - Water Quality / GA Criteria	ND	33	5	5	ug/L
BV86885	\$8270WMDPR	2-Nitroaniline	NY / TOGS - Water Quality / GA Criteria	ND	100	5	5	ug/L
BV86885	\$8270WMDPR	4-Chloro-3-methylphenol	NY / TOGS - Water Quality / GA Criteria	ND	35	1	1	ug/L
BV86885	\$8270WMDPR	1,3-Dichlorobenzene	NY / TOGS - Water Quality / GA Criteria	ND	30	3	3	ug/L
BV86885	\$8270WMDPR	3-Nitroaniline	NY / TOGS - Water Quality / GA Criteria	ND	220	5	5	ug/L
BV86885	\$8270WMDPR	3,3'-Dichlorobenzidine	NY / TOGS - Water Quality / GA Criteria	ND	47	5	5	ug/L
BV86885	\$8270WMDPR	2-Nitrophenol	NY / TOGS - Water Quality / GA Criteria	ND	63	1	1	ug/L
BV86885	\$8270WMDPR	4-Nitrophenol	NY / TOGS - Water Quality / GA Criteria	ND	45	1	1	ug/L
BV86885	\$DPPEST_GA	Heptachlor epoxide	NY / TAGM - Pest/Herb/PCBs / Groundwater Standards	ND	0.050	0.01	0.01	ug/L
BV86885	\$DPPEST_GA	Chlordane	NY / TAGM - Pest/Herb/PCBs / Groundwater Standards	ND	0.50	0.1	0.1	ug/L
BV86885	\$DPPEST_GA	Heptachlor	NY / TAGM - Pest/Herb/PCBs / Groundwater Standards	ND	0.050	0.01	0.01	ug/L
BV86885	\$DPPEST_GA	Endrin	NY / TAGM - Pest/Herb/PCBs / Groundwater Standards	ND	0.050	0.01	0.01	ug/L
BV86885	\$DPPEST_GA	Dieldrin	NY / TAGM - Pest/Herb/PCBs / Groundwater Standards	ND	0.015	0.01	0.01	ug/L
BV86885	\$DPPEST_GA	4,4' -DDT	NY / TAGM - Pest/Herb/PCBs / Groundwater Standards	ND	0.025	0.01	0.01	ug/L
BV86885	\$DPPEST_GA	4,4' -DDD	NY / TAGM - Pest/Herb/PCBs / Groundwater Standards	ND	0.025	0.01	0.01	ug/L
BV86885	\$DPPEST_GA	4,4' -DDE	NY / TAGM - Pest/Herb/PCBs / Groundwater Standards	ND	0.025	0.01	0.01	ug/L
BV86885	\$DPPEST_GA	Aldrin	NY / TAGM - Pest/Herb/PCBs / Groundwater Standards	ND	0.020	0.01	0.01	ug/L
BV86885	\$DPPEST_GA	Chlordane	NY / TOGS - Water Quality / GA Criteria	ND	0.50	0.05	0.05	ug/L

Sample Criteria Exceedances Report GBV86885 - EBC

State: NY

State.	IN T						RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BV86885	\$DPPEST_GA	a-BHC	NY / TOGS - Water Quality / GA Criteria	ND	0.025	0.01	0.01	ug/L
BV86885	\$DPPEST_GA	Dieldrin	NY / TOGS - Water Quality / GA Criteria	ND	0.015	0.004	0.004	ug/L
BV86885	\$DPPEST_GA	Heptachlor	NY / TOGS - Water Quality / GA Criteria	ND	0.050	0.04	0.04	ug/L
BV86885	\$DPPEST_GA	Heptachlor epoxide	NY / TOGS - Water Quality / GA Criteria	ND	0.050	0.03	0.03	ug/L
BV86885	\$DPPEST_GA	Toxaphene	NY / TOGS - Water Quality / GA Criteria	ND	2.0	0.06	0.06	ug/L
BV86885	AL-WM	Aluminum	NY / TOGS - Water Quality / GA Criteria	6.04	0.010	0.1	0.1	mg/L
BV86885	BA-WMDP	Barium	NY / TOGS - Water Quality / GA Criteria	1.33	0.010	1	1	mg/L
BV86885	CD-WMDP	Cadmium	NY / TOGS - Water Quality / GA Criteria	0.018	0.004	0.005	0.005	mg/L
BV86885	DBA-WMDP	Barium (Dissolved)	NY / TOGS - Water Quality / GA Criteria	1.16	0.011	1	1	mg/L
BV86885	DCD-WMDP	Cadmium (Dissolved)	NY / TOGS - Water Quality / GA Criteria	0.015	0.004	0.005	0.005	mg/L
BV86885	DFE-WMDP	Iron, (Dissolved)	NY / TOGS - Water Quality / GA Criteria	758	0.11	0.3	0.3	mg/L
BV86885	D-MG	Magnesium (Dissolved)	NY / TOGS - Water Quality / GA Criteria	95.1	0.11	35	35	mg/L
BV86885	DMN-WMDP	Manganese, (Dissolved)	NY / TOGS - Water Quality / GA Criteria	44.8	0.53	0.3	0.3	mg/L
BV86885	D-NA	Sodium (Dissolved)	NY / TOGS - Water Quality / GA Criteria	237	1.1	20	20	mg/L
BV86885	D-PB	Lead (Dissolved)	NY / TOGS - Water Quality / GA Criteria	0.037	0.002	0.025	0.025	mg/L
BV86885	FE-WMDP	Iron	NY / TOGS - Water Quality / GA Criteria	868	0.10	0.3	0.3	mg/L
BV86885	MG-WM	Magnesium	NY / TOGS - Water Quality / GA Criteria	99.1	0.10	35	35	mg/L
BV86885	MN-WMDP	Manganese	NY / TOGS - Water Quality / GA Criteria	33.0	0.50	0.3	0.3	mg/L
BV86885	NA-WM	Sodium	NY / TOGS - Water Quality / GA Criteria	233	1.0	20	20	mg/L
BV86885	PB-WM	Lead	NY / TOGS - Water Quality / GA Criteria	0.059	0.002	0.025	0.025	mg/L
BV86886	\$8260DP25R	Benzene	NY / TAGM - Volatile Organics / Groundwater Standards	1.3	0.70	0.7	0.7	ug/L
BV86886	\$8260DP25R	1,2,3-Trichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.04	0.04	ug/L
BV86886	\$8260DP25R	1,2-Dibromo-3-chloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.50	0.04	0.04	ug/L
BV86886	\$8260DP25R	1,2-Dibromoethane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.0006	0.0006	ug/L
BV86886	\$8260DP25R	Benzene	NY / TOGS - Water Quality / GA Criteria	1.3	0.70	1	1	ug/L
BV86886	\$DP8270-SIMR	Chrysene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV86886	\$DP8270-SIMR	Indeno(1,2,3-cd)pyrene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV86886	\$DP8270-SIMR	Benzo(k)fluoranthene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV86886	\$DP8270-SIMR	Benzo(a)pyrene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV86886	\$DP8270-SIMR	Benz(a)anthracene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV86886	\$DP8270-SIMR	Benzo(b)fluoranthene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV86886	\$DP8270-SIMR	Benzo(b)fluoranthene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
BV86886	\$DP8270-SIMR	Benzo(k)fluoranthene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
BV86886	\$DP8270-SIMR	Benz(a)anthracene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
BV86886	\$DP8270-SIMR	Chrysene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
BV86886	\$DP8270-SIMR	Indeno(1,2,3-cd)pyrene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
BV86886	\$DPPEST_GA	Toxaphene	NY / TOGS - Water Quality / GA Criteria	ND	0.20	0.06	0.06	ug/L
BV86886	DFE-WMDP	Iron, (Dissolved)	NY / TOGS - Water Quality / GA Criteria	62.3	0.01	0.3	0.3	mg/L
BV86886	DMN-WMDP	Manganese, (Dissolved)	NY / TOGS - Water Quality / GA Criteria	3.37	0.053	0.3	0.3	mg/L
BV86886	D-NA	Sodium (Dissolved)	NY / TOGS - Water Quality / GA Criteria	111	1.1	20	20	mg/L
BV86886	FE-WMDP	Iron	NY / TOGS - Water Quality / GA Criteria	121	0.01	0.3	0.3	mg/L
			·					-

Sample Criteria Exceedances Report GBV86885 - EBC

State: NY

State:	NY		CD100000 ED0				RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BV86886	MN-WMDP	Manganese	NY / TOGS - Water Quality / GA Criteria	3.48	0.050	0.3	0.3	mg/L
BV86886	NA-WM	Sodium	NY / TOGS - Water Quality / GA Criteria	107	1.0	20	20	mg/L
BV86887	\$8260DP25R	1,2,3-Trichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.04	0.04	ug/L
BV86887	\$8260DP25R	1,2-Dibromo-3-chloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.50	0.04	0.04	ug/L
BV86887	\$8260DP25R	1,2-Dibromoethane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.0006	0.0006	ug/L
BV86887	\$DP8270-SIMR	Benzo(k)fluoranthene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV86887	\$DP8270-SIMR	Chrysene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV86887	\$DP8270-SIMR	Indeno(1,2,3-cd)pyrene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV86887	\$DP8270-SIMR	Benzo(a)pyrene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV86887	\$DP8270-SIMR	Benz(a)anthracene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV86887	\$DP8270-SIMR	Benzo(b)fluoranthene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV86887	\$DP8270-SIMR	Benzo(b)fluoranthene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
BV86887	\$DP8270-SIMR	Benzo(k)fluoranthene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
BV86887	\$DP8270-SIMR	Benz(a)anthracene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
BV86887		Indeno(1,2,3-cd)pyrene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
BV86887	\$DP8270-SIMR	Chrysene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
BV86887	\$DPPEST_GA	Toxaphene	NY / TOGS - Water Quality / GA Criteria	ND	0.20	0.06	0.06	ug/L
BV86887	AL-WM	Aluminum	NY / TOGS - Water Quality / GA Criteria	0.182	0.010	0.1	0.1	mg/L
BV86887	D-MG	Magnesium (Dissolved)	NY / TOGS - Water Quality / GA Criteria	39.4	0.01	35	35	mg/L
BV86887	DMN-WMDP	Manganese, (Dissolved)	NY / TOGS - Water Quality / GA Criteria	11.1	0.053	0.3	0.3	mg/L
BV86887	D-NA	Sodium (Dissolved)	NY / TOGS - Water Quality / GA Criteria	126	1.1	20	20	mg/L
BV86887	FE-WMDP	Iron	NY / TOGS - Water Quality / GA Criteria	14.6	0.01	0.3	0.3	mg/L
BV86887	MG-WM	Magnesium	NY / TOGS - Water Quality / GA Criteria	39.7	0.010	35	35	mg/L
BV86887	MN-WMDP	Manganese	NY / TOGS - Water Quality / GA Criteria	11.4	0.050	0.3	0.3	mg/L
BV86887	NA-WM	Sodium	NY / TOGS - Water Quality / GA Criteria	122	1.0	20	20	mg/L
BV86888	\$8260DP25R	Benzene	NY / TAGM - Volatile Organics / Groundwater Standards	30	1.3	0.7	0.7	ug/L
BV86888	\$8260DP25R	o-Xylene	NY / TAGM - Volatile Organics / Groundwater Standards	21	1.0	5	5	ug/L
BV86888	\$8260DP25R	Ethylbenzene	NY / TAGM - Volatile Organics / Groundwater Standards	19	1.0	5	5	ug/L
BV86888	\$8260DP25R	Ethylbenzene	NY / TOGS - Water Quality / GA Criteria	19	1.0	5	5	ug/L
BV86888	\$8260DP25R	o-Xylene	NY / TOGS - Water Quality / GA Criteria	21	1.0	5	5	ug/L
BV86888	\$8260DP25R	1,2-Dibromo-3-chloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.50	0.04	0.04	ug/L
BV86888	\$8260DP25R	1,2,4-Trimethylbenzene	NY / TOGS - Water Quality / GA Criteria	17	1.0	5	5	ug/L
BV86888	\$8260DP25R	1,2,3-Trichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.04	0.04	ug/L
BV86888	\$8260DP25R	1,2-Dibromoethane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.0006	0.0006	ug/L
BV86888	\$8260DP25R	Benzene	NY / TOGS - Water Quality / GA Criteria	30	1.3	1	1	ug/L
BV86888	\$DP8270-SIMR	Benzo(k)fluoranthene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV86888		Benz(a)anthracene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV86888		Indeno(1,2,3-cd)pyrene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV86888		Benzo(a)pyrene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV86888		Benzo(b)fluoranthene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
P A 00000	ψDF 021 0-31IVIK	Denzo(b)nuoraninene	NT / TACINI - Settii-voidules / Groundwater Standards	IND	0.02	0.002	0.002	ug

Sample Criteria Exceedances Report GBV86885 - EBC

State: NY

Criteria: NY: GW

SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	RL Criteria	Units
BV86888	\$DP8270-SIMR	Chrysene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV86888	\$DP8270-SIMR	Indeno(1,2,3-cd)pyrene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
BV86888	\$DP8270-SIMR	R Chrysene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
BV86888	\$DP8270-SIMR	Benzo(b)fluoranthene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
BV86888		Benz(a)anthracene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
BV86888	\$DP8270-SIMR	Benzo(k)fluoranthene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
BV86888	\$DPPEST_GA	Dieldrin	NY / TAGM - Pest/Herb/PCBs / Groundwater Standards	ND	0.015	0.01	0.01	ug/L
BV86888	\$DPPEST_GA	Heptachlor epoxide	NY / TAGM - Pest/Herb/PCBs / Groundwater Standards	ND	0.050	0.01	0.01	ug/L
BV86888	\$DPPEST_GA	Heptachlor	NY / TAGM - Pest/Herb/PCBs / Groundwater Standards	ND	0.050	0.01	0.01	ug/L
BV86888	\$DPPEST_GA	4,4' -DDD	NY / TAGM - Pest/Herb/PCBs / Groundwater Standards	ND	0.025	0.01	0.01	ug/L
BV86888	\$DPPEST_GA	Endrin	NY / TAGM - Pest/Herb/PCBs / Groundwater Standards	ND	0.050	0.01	0.01	ug/L
BV86888	\$DPPEST_GA	Chlordane	NY / TAGM - Pest/Herb/PCBs / Groundwater Standards	ND	0.50	0.1	0.1	ug/L
BV86888	\$DPPEST_GA	Aldrin	NY / TAGM - Pest/Herb/PCBs / Groundwater Standards	ND	0.015	0.01	0.01	ug/L
BV86888	\$DPPEST_GA	4,4' -DDT	NY / TAGM - Pest/Herb/PCBs / Groundwater Standards	ND	0.025	0.01	0.01	ug/L
BV86888	\$DPPEST_GA	4,4' -DDE	NY / TAGM - Pest/Herb/PCBs / Groundwater Standards	ND	0.025	0.01	0.01	ug/L
BV86888	\$DPPEST_GA	Heptachlor epoxide	NY / TOGS - Water Quality / GA Criteria	ND	0.050	0.03	0.03	ug/L
BV86888	\$DPPEST_GA	Toxaphene	NY / TOGS - Water Quality / GA Criteria	ND	2.0	0.06	0.06	ug/L
BV86888	\$DPPEST_GA	Heptachlor	NY / TOGS - Water Quality / GA Criteria	ND	0.050	0.04	0.04	ug/L
BV86888	\$DPPEST_GA	•	NY / TOGS - Water Quality / GA Criteria	ND	0.025	0.01	0.01	ug/L
BV86888	\$DPPEST_GA		NY / TOGS - Water Quality / GA Criteria	ND	0.015	0.004	0.004	ug/L
BV86888	\$DPPEST_GA		NY / TOGS - Water Quality / GA Criteria	ND	0.50	0.05	0.05	ug/L
BV86888	AL-WM	Aluminum	NY / TOGS - Water Quality / GA Criteria	0.119	0.010	0.1	0.1	mg/L
BV86888	DFE-WMDP	Iron, (Dissolved)	NY / TOGS - Water Quality / GA Criteria	7.14	0.01	0.3	0.3	mg/L
BV86888	DMN-WMDP	Manganese, (Dissolved)	NY / TOGS - Water Quality / GA Criteria	0.999	0.005	0.3	0.3	mg/L
BV86888	D-NA	Sodium (Dissolved)	NY / TOGS - Water Quality / GA Criteria	124	1.1	20	20	mg/L
BV86888	FE-WMDP	Iron	NY / TOGS - Water Quality / GA Criteria	47.4	0.01	0.3	0.3	mg/L
BV86888	MN-WMDP	Manganese	NY / TOGS - Water Quality / GA Criteria	1.09	0.005	0.3	0.3	mg/L
BV86888	NA-WM	Sodium	NY / TOGS - Water Quality / GA Criteria	122	1.0	20	20	mg/L
BV86889	\$8260DP25R	Benzene	NY / TAGM - Volatile Organics / Groundwater Standards	0.73	0.70	0.7	0.7	ug/L
BV86889	\$8260DP25R	1,2-Dibromoethane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.0006	0.0006	ug/L
BV86889	\$8260DP25R	1,2,3-Trichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.04	0.04	ug/L
BV86889	\$8260DP25R	1,2-Dibromo-3-chloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.50	0.04	0.04	ug/L
BV86889	•	R Benz(a)anthracene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV86889		Benzo(a)pyrene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV86889		Benzo(b)fluoranthene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV86889		Benzo(k)fluoranthene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV86889	\$DP8270-SIMR	` '	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV86889		Indeno(1,2,3-cd)pyrene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV86889		Benz(a)anthracene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
BV86889		Benzo(b)fluoranthene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
BV86889	•	Benzo(k)fluoranthene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
2.00000	\$51 0210 0HVIII	2525()	, Quality / Ort Ortiona	.,,,	0.02	0.002	0.002	~9, -

RL

Analysis

Sample Criteria Exceedances Report

State: NY

Criteria: NY: GW

GBV86885 - EBC

State:	NY		OD 100000 ED0				RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BV86889	\$DP8270-SIMR	Chrysene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
BV86889	\$DP8270-SIMR	Indeno(1,2,3-cd)pyrene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
BV86889	\$DPPEST_GA	Toxaphene	NY / TOGS - Water Quality / GA Criteria	ND	0.20	0.06	0.06	ug/L
BV86889	AL-WM	Aluminum	NY / TOGS - Water Quality / GA Criteria	2.61	0.010	0.1	0.1	mg/L
BV86889	DFE-WMDP	Iron, (Dissolved)	NY / TOGS - Water Quality / GA Criteria	0.72	0.01	0.3	0.3	mg/L
BV86889	D-MG	Magnesium (Dissolved)	NY / TOGS - Water Quality / GA Criteria	40.6	0.01	35	35	mg/L
BV86889	DMN-WMDP	Manganese, (Dissolved)	NY / TOGS - Water Quality / GA Criteria	11.5	0.053	0.3	0.3	mg/L
BV86889	D-NA	Sodium (Dissolved)	NY / TOGS - Water Quality / GA Criteria	129	1.1	20	20	mg/L
BV86889	FE-WMDP	Iron	NY / TOGS - Water Quality / GA Criteria	18.1	0.01	0.3	0.3	mg/L
BV86889	MG-WM	Magnesium	NY / TOGS - Water Quality / GA Criteria	41.4	0.010	35	35	mg/L
BV86889	MN-WMDP	Manganese	NY / TOGS - Water Quality / GA Criteria	12.7	0.050	0.3	0.3	mg/L
BV86889	NA-WM	Sodium	NY / TOGS - Water Quality / GA Criteria	121	1.0	20	20	mg/L
BV86890	\$8260DP25R	Benzene	NY / TAGM - Volatile Organics / Groundwater Standards	1.2	0.70	0.7	0.7	ug/L
BV86890	\$8260DP25R	Benzene	NY / TOGS - Water Quality / GA Criteria	1.2	0.70	1	1	ug/L
BV86890	\$8260DP25R	1,2-Dibromoethane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.0006	0.0006	ug/L
BV86890	\$8260DP25R	1,2,3-Trichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.04	0.04	ug/L
BV86890	\$8260DP25R	1,2-Dibromo-3-chloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.50	0.04	0.04	ug/L
BV86890	\$DP8270-SIMR	Benzo(b)fluoranthene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV86890	\$DP8270-SIMR	Chrysene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV86890	\$DP8270-SIMR	Indeno(1,2,3-cd)pyrene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV86890	\$DP8270-SIMR	Benzo(k)fluoranthene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV86890	\$DP8270-SIMR	Benz(a)anthracene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV86890	\$DP8270-SIMR	Benzo(a)pyrene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV86890	\$DP8270-SIMR	Benz(a)anthracene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
BV86890	\$DP8270-SIMR	Benzo(k)fluoranthene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
BV86890	\$DP8270-SIMR	Chrysene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
BV86890	\$DP8270-SIMR	Benzo(b)fluoranthene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
BV86890	\$DP8270-SIMR	Indeno(1,2,3-cd)pyrene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
BV86890	\$DPPEST_GA	Toxaphene	NY / TOGS - Water Quality / GA Criteria	ND	0.20	0.06	0.06	ug/L
BV86890	DFE-WMDP	Iron, (Dissolved)	NY / TOGS - Water Quality / GA Criteria	52.3	0.01	0.3	0.3	mg/L
BV86890	DMN-WMDP	Manganese, (Dissolved)	NY / TOGS - Water Quality / GA Criteria	3.09	0.053	0.3	0.3	mg/L
BV86890	D-NA	Sodium (Dissolved)	NY / TOGS - Water Quality / GA Criteria	102	1.1	20	20	mg/L
BV86890	FE-WMDP	Iron	NY / TOGS - Water Quality / GA Criteria	126	0.10	0.3	0.3	mg/L
BV86890	MN-WMDP	Manganese	NY / TOGS - Water Quality / GA Criteria	3.47	0.050	0.3	0.3	mg/L
BV86890	NA-WM	Sodium	NY / TOGS - Water Quality / GA Criteria	106	1.0	20	20	mg/L
BV86891	\$8260DP25R	1,2-Dibromoethane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.0006	0.0006	ug/L
BV86891	\$8260DP25R	1,2,3-Trichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.04	0.04	ug/L
BV86891	\$8260DP25R	1,2-Dibromo-3-chloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.50	0.04	0.04	ug/L

Sample Criteria Exceedances Report GBV86885 - EBC

State: NY

Criteria: NY: GW

State: NY

RL Analysis
SampNo Acode Phoenix Analyte Criteria Units
Result RL Criteria Units

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY # 11301

NY Temperature Narration

November 30, 2016

SDG I.D.: GBV86885

The samples in this delivery group were received at 3° C. (Note acceptance criteria is above freezing up to 6° C)

Phon	This section MUST be completed with Bottle Quantities.	14 14 14 14 14 14 14 14 14 14 14 14 14 1	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	10 00 00 00 00 00 00 00 00 00 00 00 00 0	NY NY 375 GWP □ Phoenix Std Report □ Phoenix Std Report □ Phoenix Std Report □ NY 375 Unrestricted □ NY 375 Residential □ NY 375 Residential □ NY 375 Residential □ Other □ Industrial □ Data Package □ NY EX EDD (ASP) □ Other □ Data Package □ NY EX EDD (ASP) □ Other □ NY EX EDD (ASP) □ Other □ NY EX EDD (ASP) □ NY EX EDD (ASP)
DF CUSTODY RECORD P.O. Box 370, Manchester, CT 06040 labs.com Fax (860) 645-0823 rices (860) 645-8726	Report to: Environmental Business Consultants Invoice to: Environmental Business Consultants	Analysis Request	37.105 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	* * 1	Time: Turnaround: NJ NY NY NY NY NY NON-Res. Criteria NY NY NY NY NY NY NY N
HWIX SERVICE TO THE SERVICE SE	Address: 1808 Middle Country Road Ridge, NY 11961	Client Sample - Information - Identification Sampler's Themes Galls Date: 11-16-16 Matrix Code: DW-Drinking Water GW-Ground Water SW-Surface Water WM=Waste Water SW-Surface Water Waste Water SL-Solidge S-Soil SD-Solid W=Wipe OIL-Oil B-Bulk L-Liquid	SAMPLE # Customer Sample Sample Date Time SAMPLE # Identification Matrix Sampled Sample Sampl	110 GW 11-16-16 110 GW 11-16-16 120 GW 11-16-16 120 GW 11-16-16 120 GW 11-16-16	Relinquished by: Accorded by: Accorded by: Accorded by: Date:

Tuesday, November 29, 2016

Attn: Mr. Charles B. Sosik, P.G. Environmental Business Consultants 1808 Middle Country Rd Ridge NY 11961-2406

Project ID: 1181 FLUSHING AVE., BROOKLYN

Sample ID#s: BV87817 - BV87825

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007

ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

November 29, 2016

SDG I.D.: GBV87817

8260 Volatile Organics:

1,2-Dibromoethane, 1,2,3 Trichloropropane, and 1,2-Dibromo-3-chloropropane do not meet NY TOGS GA criteria, these compounds are analyzed by GC/FID method 504 or 8011 to achieve this criteria.

SIM Analysis:

The lowest possible reporting limit under SIM conditions is 0.02 ug/L. The NY TOGS GA criteria for some PAHs is 0.002 ug/L. This level can not be achieved.

Toxaphene is reported to the lowest possible reporting level. The NY TOGS criteria for this compound can not be achieved.

Any compound that is not detected above the MDL/LOD is reported as ND on the report and is reported in the electronic deliverables (EDD) as <RL or U at the RL per state and EPA guidance.

Version 1: Analysis results minus raw data.

Version 2: Complete report with raw data.

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 29, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample InformationCustody InformationDateTimeMatrix:GROUND WATERCollected by:TG11/17/16Location Code:EBCReceived by:LB11/18/1615:49

DI/ LOD/

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GBV87817

Phoenix ID: BV87817

Project ID: 1181 FLUSHING AVE., BROOKLYN

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
Silver	ND	0.005	0.001	mg/L	1	11/20/16	LK	SW6010C	
Aluminum	20.9	0.010	0.005	mg/L	1	11/20/16	LK	SW6010C	
Arsenic - LDL	0.008	0.004	0.004	mg/L	1	11/20/16	LK	SW6010C	
Barium	0.539	0.010	0.001	mg/L	1	11/20/16	LK	SW6010C	
Beryllium	0.001	0.001	0.001	mg/L	1	11/20/16	LK	SW6010C	
Calcium	133	0.010	0.01	mg/L	1	11/20/16	LK	SW6010C	В
Cadmium	0.002	B 0.004	0.0005	mg/L	1	11/20/16	LK	SW6010C	
Cobalt	0.018	0.005	0.001	mg/L	1	11/20/16	LK	SW6010C	
Chromium	0.052	0.001	0.001	mg/L	1	11/20/16	LK	SW6010C	
Copper	0.053	0.005	0.001	mg/L	1	11/20/16	LK	SW6010C	
Silver (Dissolved)	ND	0.005	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Aluminum (Dissolved)	ND	0.011	0.005	mg/L	1	11/20/16	LK/MA	SW6010C	
Arsenic, (Dissolved)	ND	0.003	0.004	mg/L	1	11/20/16	LK/MA	SW6010C	
Barium (Dissolved)	0.230	0.011	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Beryllium (Dissolved)	ND	0.001	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Calcium (Dissolved)	119	0.01	0.01	mg/L	1	11/20/16	LK/MA	SW6010C	В
Cadmium (Dissolved)	ND	0.004	0.0005	mg/L	1	11/20/16	LK/MA	SW6010C	
Cobalt, (Dissolved)	0.002	B 0.005	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Chromium (Dissolved)	ND	0.001	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Copper, (Dissolved)	0.001	B 0.005	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Iron, (Dissolved)	0.03	0.01	0.01	mg/L	1	11/20/16	LK/MA	SW6010C	
Mercury (Dissolved)	ND	0.0002	0.00015	mg/L	1	11/21/16	RS	SW7470A	
Potassium (Dissolved)	40.4	0.1	0.01	mg/L	1	11/20/16	LK	SW6010C	
Magnesium (Dissolved)	25.3	0.01	0.01	mg/L	1	11/20/16	LK/MA	SW6010C	
Manganese, (Dissolved)	3.43	0.053	0.011	mg/L	10	11/20/16	LK	SW6010C	
Sodium (Dissolved)	322	1.1	0.11	mg/L	10	11/20/16	LK	SW6010C	
Nickel, (Dissolved)	0.004	B 0.004	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Lead (Dissolved)	ND	0.002	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
Antimony, (Dissolved)	ND	0.003	0.003	mg/L	1	11/20/16	RS	SW7010	
Selenium, (Dissolved)	ND	0.004	0.002	mg/L	1	11/22/16	RS	SW7010	
Thallium , (Dissolved)	ND	0.0005	0.0005	mg/L	1	11/21/16	RS	SW7010	
Vanadium, (Dissolved)	ND	0.011	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Zinc, (Dissolved)	0.002	B 0.011	0.0012	mg/L	1	11/20/16	LK/MA	SW6010C	
Iron	70.8	0.01	0.01	mg/L	1	11/20/16	LK	SW6010C	
Mercury	ND	0.0002	0.00015	mg/L	1	11/21/16	RS	SW7470A	
Potassium	45.2	0.1	0.01	mg/L	1	11/20/16	LK	SW6010C	
Magnesium	31.4	0.010	0.01	mg/L	1	11/20/16	LK	SW6010C	
Manganese	5.40	0.050	0.010	mg/L	10	11/20/16	LK	SW6010C	
Sodium	342	1.0	0.10	mg/L	10	11/20/16	LK	SW6010C	
Nickel	0.032	0.004	0.001	mg/L	1	11/20/16	LK	SW6010C	
Lead	0.051	0.002	0.001	mg/L	1	11/20/16	LK	SW6010C	
Antimony	ND	0.002	0.002	mg/L	1	11/20/16	RS	SW7010	
Selenium	ND	0.002	0.001	mg/L	1	11/22/16	RS	SW7010	
Thallium - LDL	ND	0.0005	0.0005	mg/L	1	11/21/16	RS	SW7010	
Vanadium	0.057	0.010	0.001	mg/L	1	11/20/16	LK	SW6010C	
Zinc	0.124	0.010	0.0011	mg/L	1	11/20/16	LK	SW6010C	
Filtration	Completed					11/18/16	AG	0.45um Filter	
Dissolved Mercury Digestion	Completed					11/21/16		SW7470A	
Mercury Digestion	Completed					11/21/16	Q/Q	SW7470A	
PCB Extraction (2 Liter)	Completed					11/18/16	Z/Z	SW3510C	
Extraction for Pest (2 Liter)	Completed					11/18/16	Z/Z	SW3510C	
Semi-Volatile Extraction	Completed					11/18/16	P/D/D	SW3520C	
Dissolved Metals Preparation	Completed					11/18/16	AG	SW3005A	
Total Metals Digestion	Completed					11/18/16	AG		
<u>Pesticides</u>									
4,4' -DDD	ND	0.025	0.025	ug/L	10	11/21/16	CE	SW8081B	
4,4' -DDE	ND	0.025	0.025	ug/L	10	11/21/16	CE	SW8081B	
4,4' -DDT	ND	0.025	0.025	ug/L	10	11/21/16	CE	SW8081B	
a-BHC	ND	0.025	0.025	ug/L	10	11/21/16	CE	SW8081B	
a-chlordane	ND	0.10	0.10	ug/L	10	11/21/16	CE	SW8081B	
Alachlor	ND	0.75	0.75	ug/L	10	11/21/16	CE	SW8081B	1
Aldrin	ND	0.015	0.015	ug/L	10	11/21/16	CE	SW8081B	
b-BHC	ND	0.050	0.050	ug/L	10	11/21/16	CE	SW8081B	
Chlordane	ND	0.50	0.50	ug/L	10	11/21/16	CE	SW8081B	
d-BHC	ND	0.025	0.025	ug/L	10	11/21/16	CE	SW8081B	
Dieldrin	ND	0.015	0.015	ug/L	10	11/21/16	CE	SW8081B	
Endosulfan I	ND	0.10	0.10	ug/L	10	11/21/16	CE	SW8081B	
Endosulfan II	ND	0.10	0.10	ug/L	10	11/21/16	CE	SW8081B	
Endosulfan Sulfate	ND	0.10	0.10	ug/L	10	11/21/16	CE	SW8081B	
Endrin	ND	0.050	0.050	ug/L	10	11/21/16	CE	SW8081B	
Endrin Aldehyde	ND	0.10	0.10	ug/L	10	11/21/16	CE	SW8081B	
Endrin ketone	ND	0.10	0.10	ug/L	10	11/21/16	CE	SW8081B	
g-BHC (Lindane)	ND	0.050	0.050	ug/L	10	11/21/16	CE	SW8081B	
g-chlordane	ND	0.10	0.10	ug/L	10	11/21/16	CE	SW8081B	
Heptachlor	ND	0.050	0.050	ug/L	10	11/21/16	CE	SW8081B	
Heptachlor epoxide	ND	0.050	0.050	ug/L	10	11/21/16	CE	SW8081B	
Methoxychlor	ND	1.0	1.0	ug/L	10	11/21/16	CE	SW8081B	

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Toxaphene	ND	2.0	2.0	ug/L	10	11/21/16	CE	SW8081B
QA/QC Surrogates								
%DCBP (Surrogate Rec)	Diluted Out			%	10	11/21/16	CE	SW8081B
%TCMX (Surrogate Rec)	Diluted Out			%	10	11/21/16	CE	SW8081B
Polychlorinated Biphen	<u>yls</u>							
PCB-1016	ND	0.050	0.050	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1221	ND	0.050	0.050	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1232	ND	0.050	0.050	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1242	ND	0.050	0.050	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1248	ND	0.050	0.050	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1254	ND	0.050	0.050	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1260	ND	0.050	0.050	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1262	ND	0.050	0.050	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1268	ND	0.050	0.050	ug/L	1	11/21/16	AW	E608/SW8082A
QA/QC Surrogates								
% DCBP	45			%	1	11/21/16	AW	40 - 140 %
% TCMX	62			%	1	11/21/16	AW	40 - 140 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
1,1,1-Trichloroethane	ND	5.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
1,1,2,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
1,1,2-Trichloroethane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
1,1-Dichloroethane	ND	5.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
1,1-Dichloroethene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
1,1-Dichloropropene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
1,2,3-Trichloropropane	ND	0.25	0.25	ug/L	1	11/19/16	НМ	SW8260C
1,2,4-Trichlorobenzene	ND	1.0	0.25	ug/L	1	11/19/16	HM	SW8260C
1,2,4-Trimethylbenzene	140	5.0	2.5	ug/L	10	11/21/16	HM	SW8260C
1,2-Dibromo-3-chloropropane	ND	0.50	0.50	ug/L	1	11/19/16	НМ	SW8260C
1,2-Dibromoethane	ND	0.25	0.25	ug/L	1	11/19/16	НМ	SW8260C
1,2-Dichlorobenzene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
1,2-Dichloroethane	ND	0.60	0.50	ug/L	1	11/19/16	НМ	SW8260C
1,2-Dichloropropane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
1,3,5-Trimethylbenzene	18	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
1,3-Dichlorobenzene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
1,3-Dichloropropane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
1,4-Dichlorobenzene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
2,2-Dichloropropane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
2-Chlorotoluene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
2-Hexanone	ND	2.5	2.5	ug/L	1	11/19/16	НМ	SW8260C
2-Isopropyltoluene	1.0	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C 1
4-Chlorotoluene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
4-Methyl-2-pentanone	ND	2.5	2.5	ug/L	1	11/19/16	НМ	SW8260C
Acetone	ND	5.0	2.5	ug/L	1	11/19/16	НМ	SW8260C
Acrolein	ND	5.0	2.5	ug/L	1	11/19/16	НМ	SW8260C
Acrylonitrile	ND	5.0	2.5	ug/L	1	11/19/16	НМ	SW8260C
Benzene	64	2.5	2.5	ug/L	10	11/21/16	НМ	SW8260C

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Bromobenzene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Bromochloromethane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Bromodichloromethane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Bromoform	ND	5.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Bromomethane	ND	5.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Carbon Disulfide	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Carbon tetrachloride	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Chlorobenzene	ND	5.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Chloroethane	ND	5.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Chloroform	ND	5.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Chloromethane	ND	5.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
cis-1,2-Dichloroethene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
cis-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	11/19/16	НМ	SW8260C
Dibromochloromethane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Dibromomethane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Dichlorodifluoromethane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Ethylbenzene	440	13	13	ug/L	50	11/22/16	НМ	SW8260C
Hexachlorobutadiene	ND	0.50	0.20	ug/L	1	11/19/16	НМ	SW8260C
Isopropylbenzene	26	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
m&p-Xylene	290	10	2.5	ug/L	10	11/21/16	НМ	SW8260C
Methyl ethyl ketone	ND	2.5	2.5	ug/L	1	11/19/16	НМ	SW8260C
Methyl t-butyl ether (MTBE)	0.50	J 1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Methylene chloride	ND	3.0	1.0	ug/L	1	11/19/16	НМ	SW8260C
Naphthalene	58	10	10	ug/L	10	11/21/16	НМ	SW8260C
n-Butylbenzene	2.2	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
n-Propylbenzene	44	5.0	2.5	ug/L	10	11/21/16	НМ	SW8260C
o-Xylene	70	5.0	2.5	ug/L	10	11/21/16	НМ	SW8260C
p-Isopropyltoluene	1.3	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
sec-Butylbenzene	3.1	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Styrene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
tert-Butylbenzene	0.38	J 1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Tetrachloroethene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Tetrahydrofuran (THF)	ND	5.0	2.5	ug/L	1	11/19/16	НМ	SW8260C 1
Toluene	24	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
trans-1,2-Dichloroethene	ND	5.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
trans-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	11/19/16	НМ	SW8260C
trans-1,4-dichloro-2-butene	ND	2.5	2.5	ug/L	1	11/19/16	НМ	SW8260C
Trichloroethene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Trichlorofluoromethane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Trichlorotrifluoroethane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Vinyl chloride	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
QA/QC Surrogates			0.20	~g/ =	·	,,		0.1.02000
% 1,2-dichlorobenzene-d4	97			%	1	11/19/16	НМ	70 - 130 %
% Bromofluorobenzene	99			%	1	11/19/16	HM	70 - 130 %
% Dibromofluoromethane	93			%	1	11/19/16	HM	70 - 130 %
% Toluene-d8	102			%	1	11/19/16	HM	70 - 130 %
	102			70	,	11, 10, 10	1 1171	. 0 100 /0
Semivolatiles 1,2,4,5-Tetrachlorobenzene	ND	5.0	1.8	ug/L	1	11/23/16	DD	SW8270D
	ND	5.0 5.0	1.5	ug/L ug/L	1	11/23/16	DD	SW8270D SW8270D
1,2,4-Trichlorobenzene	טאו	5.0	1.0	ug/L	ļ	11/23/10	טט	3440Z10D

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1,2-Dichlorobenzene	ND	4.7	1.4	ug/L	1	11/23/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D
1,3-Dichlorobenzene	ND	3.0	1.5	ug/L	1	11/23/16	DD	SW8270D
1,4-Dichlorobenzene	ND	5.0	1.5	ug/L	1	11/23/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	2.7	2.7	ug/L	1	11/23/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	1.6	1.6	ug/L	1	11/23/16	DD	SW8270D
2,4-Dichlorophenol	ND	1.8	1.8	ug/L	1	11/23/16	DD	SW8270D
2,4-Dimethylphenol	4.2	1.2	1.2	ug/L	1	11/23/16	DD	SW8270D
2,4-Dinitrophenol	ND	3.5	3.5	ug/L	1	11/23/16	DD	SW8270D
2,4-Dinitrotoluene	ND	5.0	2.0	ug/L	1	11/23/16	DD	SW8270D
2,6-Dinitrotoluene	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D
2-Chloronaphthalene	ND	5.0	1.4	ug/L	1	11/23/16	DD	SW8270D
2-Chlorophenol	ND	1.4	1.4	ug/L	1	11/23/16	DD	SW8270D
2-Methylnaphthalene	3.2	J 5.0	1.5	ug/L	1	11/23/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	2.4	2.4	ug/L	1	11/23/16	DD	SW8270D
2-Nitroaniline	ND	5.1	5.1	ug/L	1	11/23/16	DD	SW8270D
2-Nitrophenol	ND	3.2	3.2	ug/L	1	11/23/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	5.0	2.0	ug/L	1	11/23/16	DD	SW8270D
3,3'-Dichlorobenzidine	ND	5.0	2.4	ug/L	1	11/23/16	DD	SW8270D
3-Nitroaniline	ND	11	11	ug/L	1	11/23/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	5.4	5.4	ug/L	1	11/23/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	5.0	1.5	ug/L	1	11/23/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	1.8	1.8	ug/L	1	11/23/16	DD	SW8270D
4-Chloroaniline	ND	5.0	2.3	ug/L	1	11/23/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	5.0	1.7	ug/L	1	11/23/16	DD	SW8270D
4-Nitroaniline	ND	5.0	1.7	ug/L	1	11/23/16	DD	SW8270D
4-Nitrophenol	ND	2.3	2.3	ug/L	1	11/23/16	DD	SW8270D
Acenaphthene	ND	5.0	1.5	ug/L	1	11/23/16	DD	SW8270D
Acenaphthylene	ND	5.0	1.4	ug/L	1	11/23/16	DD	SW8270D
Acetophenone	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D
Aniline	ND	15	15	ug/L	1	11/23/16	DD	SW8270D
Anthracene	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D
Benz(a)anthracene	ND	1.7	1.7	ug/L	1	11/23/16	DD	SW8270D
Benzidine	ND	5.0	2.9	ug/L	1	11/23/16	DD	SW8270D
Benzo(a)pyrene	ND	1.6	1.6	ug/L	1	11/23/16	DD	SW8270D
Benzo(b)fluoranthene	ND	1.7	1.7	ug/L	1	11/23/16	DD	SW8270D
Benzo(ghi)perylene	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D
Benzo(k)fluoranthene	ND	1.7	1.7	ug/L	1	11/23/16	DD	SW8270D
Benzoic acid	ND	25	10	ug/L	1	11/23/16	DD	SW8270D
Benzyl butyl phthalate	ND	5.0	1.3	ug/L	1	11/23/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	5.0	1.4	ug/L	1	11/23/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	1.4	1.4	ug/L	1	11/23/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	5.0	1.4	ug/L	1	11/23/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	5.0	1.4	ug/L	1	11/23/16	DD	SW8270D
Carbazole	ND	25	3.8	ug/L	1	11/23/16	DD	SW8270D
Chrysene	ND	1.7	1.7	ug/L	1	11/23/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D
Dibenzofuran	ND	5.0	1.5	ug/L	1	11/23/16	DD	SW8270D
Diethyl phthalate	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Dimethylphthalate	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D
Di-n-butylphthalate	ND	5.0	1.3	ug/L	1	11/23/16	DD	SW8270D
Di-n-octylphthalate	ND	5.0	1.3	ug/L	1	11/23/16	DD	SW8270D
Fluoranthene	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D
Fluorene	ND	5.0	1.7	ug/L	1	11/23/16	DD	SW8270D
Hexachlorobenzene	ND	1.5	1.5	ug/L	1	11/23/16	DD	SW8270D
Hexachlorobutadiene	ND	1.8	1.8	ug/L	1	11/23/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	5.0	1.5	ug/L	1	11/23/16	DD	SW8270D
Hexachloroethane	ND	5.0	1.5	ug/L	1	11/23/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	1.7	1.7	ug/L	1	11/23/16	DD	SW8270D
Isophorone	ND	5.0	1.4	ug/L	1	11/23/16	DD	SW8270D
Naphthalene	51	5.0	1.4	ug/L	1	11/23/16	DD	SW8270D
Nitrobenzene	ND	1.8	1.8	ug/L	1	11/23/16	DD	SW8270D
N-Nitrosodimethylamine	ND	5.0	1.4	ug/L	1	11/23/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	5.0	1.9	ug/L	1	11/23/16	DD	SW8270D
Pentachloronitrobenzene	ND	5.0	1.9	ug/L	1	11/23/16	DD	SW8270D
Pentachlorophenol	ND	1.9	1.9	ug/L	1	11/23/16	DD	SW8270D
Phenanthrene	ND	5.0	1.4	ug/L	1	11/23/16	DD	SW8270D
Phenol	ND	1.6	1.6	ug/L	1	11/23/16	DD	SW8270D
Pyrene	ND	5.0	1.7	ug/L	1	11/23/16	DD	SW8270D
Pyridine	ND	5.0	1.2	ug/L	1	11/23/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	115			%	1	11/23/16	DD	15 - 110 %
% 2-Fluorobiphenyl	78			%	1	11/23/16	DD	30 - 130 %
% 2-Fluorophenol	41			%	1	11/23/16	DD	15 - 110 %
% Nitrobenzene-d5	87			%	1	11/23/16	DD	30 - 130 %
% Phenol-d5	63			%	1	11/23/16	DD	15 - 110 %
% Terphenyl-d14	75			%	1	11/23/16	DD	30 - 130 %

Client ID: MW1

RL/ LOD/

Parameter Result PQL MDL Units Dilution Date/Time By Reference

- 1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.
- 3 = This parameter exceeds laboratory specified limits.
- B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

Pesticide Comment:

Due to a matrix interference and/or the presence of a large amount of non-target material in the sample, an elevated RL was reported for the affected compounds.

Semi-Volatile Comment:

One of the surrogate recoveries was above the upper range due to sample matrix interference. The other surrogates associated with this sample were within QA/QC criteria. No significant bias is suspected.

Semi-Volatile Comment:

Due to a matrix interference and/or the presence of a large amount of non-target material in the sample, a dilution was required resulting in an elevated RL for the semivolatile analysis.

Semi-Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 29, 2016

Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 29, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample InformationCustody InformationDateTimeMatrix:GROUND WATERCollected by:TG11/17/16Location Code:EBCReceived by:LB11/18/1615:49

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GBV87817

Phoenix ID: BV87818

Project ID: 1181 FLUSHING AVE., BROOKLYN

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
Silver	ND	0.005	0.001	mg/L	1	11/20/16	LK	SW6010C	
Aluminum	5.02	0.010	0.005	mg/L	1	11/20/16	LK	SW6010C	
Arsenic - LDL	ND	0.004	0.004	mg/L	1	11/20/16	LK	SW6010C	
Barium	0.211	0.010	0.001	mg/L	1	11/20/16	LK	SW6010C	
Beryllium	ND	0.001	0.001	mg/L	1	11/20/16	LK	SW6010C	
Calcium	113	0.010	0.01	mg/L	1	11/20/16	LK	SW6010C	В
Cadmium	0.001	B 0.004	0.0005	mg/L	1	11/20/16	LK	SW6010C	
Cobalt	0.005	B 0.005	0.001	mg/L	1	11/20/16	LK	SW6010C	
Chromium	0.012	0.001	0.001	mg/L	1	11/20/16	LK	SW6010C	
Copper	0.012	0.005	0.001	mg/L	1	11/20/16	LK	SW6010C	
Silver (Dissolved)	ND	0.005	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Aluminum (Dissolved)	ND	0.011	0.005	mg/L	1	11/20/16	LK/MA	SW6010C	
Arsenic, (Dissolved)	ND	0.003	0.004	mg/L	1	11/20/16	LK/MA	SW6010C	
Barium (Dissolved)	0.137	0.011	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Beryllium (Dissolved)	ND	0.001	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Calcium (Dissolved)	112	0.01	0.01	mg/L	1	11/20/16	LK/MA	SW6010C	В
Cadmium (Dissolved)	ND	0.004	0.0005	mg/L	1	11/20/16	LK/MA	SW6010C	
Cobalt, (Dissolved)	ND	0.005	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Chromium (Dissolved)	ND	0.001	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Copper, (Dissolved)	ND	0.005	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Iron, (Dissolved)	0.12	0.01	0.01	mg/L	1	11/20/16	LK/MA	SW6010C	
Mercury (Dissolved)	ND	0.0002	0.00015	mg/L	1	11/21/16	RS	SW7470A	
Potassium (Dissolved)	9.5	0.1	0.01	mg/L	1	11/20/16	LK	SW6010C	
Magnesium (Dissolved)	29.3	0.01	0.01	mg/L	1	11/20/16	LK/MA	SW6010C	
Manganese, (Dissolved)	6.75	0.053	0.011	mg/L	10	11/20/16	LK	SW6010C	
Sodium (Dissolved)	245	1.1	0.11	mg/L	10	11/20/16	LK	SW6010C	
Nickel, (Dissolved)	0.001	B 0.004	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Lead (Dissolved)	0.002	0.002	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Antimony, (Dissolved)	ND	0.003	0.003	mg/L	1	11/20/16	RS	SW7010
Selenium, (Dissolved)	ND	0.004	0.002	mg/L	1	11/22/16	RS	SW7010
Thallium, (Dissolved)	ND	0.0005	0.0005	mg/L	1	11/21/16	RS	SW7010
Vanadium, (Dissolved)	ND	0.011	0.001	mg/L	1	11/20/16	LK/MA	SW6010C
Zinc, (Dissolved)	ND	0.011	0.0012	mg/L	1	11/20/16	LK/MA	SW6010C
Iron	19.3	0.01	0.01	mg/L	1	11/20/16	LK	SW6010C
Mercury	ND	0.0002	0.00015	mg/L	1	11/21/16	RS	SW7470A
Potassium	10.5	0.1	0.01	mg/L	1	11/20/16	LK	SW6010C
Magnesium	30.9	0.010	0.01	mg/L	1	11/20/16	LK	SW6010C
Manganese	6.91	0.050	0.010	mg/L	10	11/20/16	LK	SW6010C
Sodium	232	1.0	0.10	mg/L	10	11/20/16	LK	SW6010C
Nickel	0.007	0.004	0.001	mg/L	1	11/20/16	LK	SW6010C
Lead	ND	0.002	0.001	mg/L	1	11/20/16	LK	SW6010C
Antimony	ND	0.002	0.002	mg/L	1	11/20/16	RS	SW7010
Selenium	ND	0.002	0.001	mg/L	1	11/22/16	RS	SW7010
Thallium - LDL	ND	0.0005	0.0005	mg/L	1	11/21/16	RS	SW7010
Vanadium	0.014	0.010	0.001	mg/L	1	11/20/16	LK	SW6010C
Zinc	0.028	0.010	0.0011	mg/L	1	11/20/16	LK	SW6010C
Filtration	Completed					11/18/16	AG	0.45um Filter
Dissolved Mercury Digestion	Completed					11/21/16	QW/W	SW7470A
Mercury Digestion	Completed					11/21/16	Q/Q	SW7470A
PCB Extraction (2 Liter)	Completed					11/18/16	Z/Z	SW3510C
Extraction for Pest (2 Liter)	Completed					11/18/16	Z/Z	SW3510C
Semi-Volatile Extraction	Completed					11/18/16	P/D/D	SW3520C
Dissolved Metals Preparation	Completed					11/18/16	AG	SW3005A
Total Metals Digestion	Completed					11/18/16	AG	
<u>Pesticides</u>								
4,4' -DDD	ND	0.005	0.010	ug/L	1	11/22/16	CE	SW8081B
4,4' -DDE	ND	0.005	0.010	ug/L	1	11/22/16	CE	SW8081B
4,4' -DDT	ND	0.005	0.010	ug/L	1	11/22/16	CE	SW8081B
a-BHC	ND	0.005	0.005	ug/L	1	11/22/16	CE	SW8081B
a-chlordane	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B
Alachlor	ND	0.075	0.075	ug/L	1	11/22/16	CE	SW8081B 1
Aldrin	ND	0.002	0.002	ug/L	1	11/22/16	CE	SW8081B
b-BHC	ND	0.040	0.040	ug/L	1	11/22/16	CE	SW8081B
Chlordane	ND	0.050	0.050	ug/L	1	11/22/16	CE	SW8081B
d-BHC	ND	0.005	0.005	ug/L	1	11/22/16	CE	SW8081B
Dieldrin	ND	0.002	0.002	ug/L	1	11/22/16	CE	SW8081B
Endosulfan I	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B
Endosulfan II	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B
Endosulfan Sulfate	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B
Endrin	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B
Endrin Aldehyde	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B
Endrin ketone	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B
g-BHC (Lindane)	ND	0.005	0.005	ug/L	1	11/22/16	CE	SW8081B
g-chlordane	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B
Heptachlor	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B
Heptachlor epoxide	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B
Methoxychlor	ND	0.10	0.10	ug/L	1	11/22/16	CE	SW8081B

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Toxaphene	ND	0.20	0.20	ug/L	1	11/22/16	CE	SW8081B
QA/QC Surrogates								
%DCBP (Surrogate Rec)	46			%	1	11/22/16	CE	SW8081B
%TCMX (Surrogate Rec)	74			%	1	11/22/16	CE	SW8081B
Polychlorinated Bipheny	<u>ıls</u>							
PCB-1016	ND	0.050	0.050	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1221	ND	0.050	0.050	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1232	ND	0.050	0.050	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1242	ND	0.050	0.050	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1248	ND	0.050	0.050	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1254	ND	0.050	0.050	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1260	ND	0.050	0.050	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1262	ND	0.050	0.050	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1268	ND	0.050	0.050	ug/L	1	11/21/16	AW	E608/SW8082A
QA/QC Surrogates								
% DCBP	48			%	1	11/21/16	AW	40 - 140 %
% TCMX	65			%	1	11/21/16	AW	40 - 140 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
1,1,1-Trichloroethane	ND	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
1,1,2,2-Tetrachloroethane	ND	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
1,1,2-Trichloroethane	ND	1.3	1.3	ug/L	5	11/21/16	НМ	SW8260C
1,1-Dichloroethane	ND	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
1,1-Dichloroethene	ND	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
1,1-Dichloropropene	ND	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
1,2,3-Trichlorobenzene	ND	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
1,2,3-Trichloropropane	ND	1.3	1.3	ug/L	5	11/21/16	НМ	SW8260C
1,2,4-Trichlorobenzene	ND	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
1,2,4-Trimethylbenzene	300	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
1,2-Dibromo-3-chloropropane	ND	2.5	2.5	ug/L	5	11/21/16	НМ	SW8260C
1,2-Dibromoethane	ND	1.3	1.3	ug/L	5	11/21/16	НМ	SW8260C
1,2-Dichlorobenzene	ND	4.7	1.3	ug/L	5	11/21/16	НМ	SW8260C
1,2-Dichloroethane	ND	2.5	2.5	ug/L	5	11/21/16	НМ	SW8260C
1,2-Dichloropropane	ND	1.3	1.3	ug/L	5	11/21/16	НМ	SW8260C
1,3,5-Trimethylbenzene	110	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
1,3-Dichlorobenzene	ND	3.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
1,3-Dichloropropane	ND	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
1,4-Dichlorobenzene	ND	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
2,2-Dichloropropane	ND	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
2-Chlorotoluene	ND	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
2-Hexanone	ND	13	13	ug/L	5	11/21/16	НМ	SW8260C
2-Isopropyltoluene	1.5	J 5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C 1
4-Chlorotoluene	ND	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
4-Methyl-2-pentanone	ND	13	13	ug/L	5	11/21/16	НМ	SW8260C
Acetone	53	S 25	13	ug/L	5	11/21/16	НМ	SW8260C
Acrolein	ND	13	13	ug/L	5	11/21/16	НМ	SW8260C
Acrylonitrile	ND	13	13	ug/L	5	11/21/16	НМ	SW8260C
Benzene	2.3	1.3	1.3	ug/L	5	11/21/16	НМ	SW8260C

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Bromobenzene	ND	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
Bromochloromethane	ND	5.0	1.3	ug/L	5	11/21/16	HM	SW8260C
Bromodichloromethane	ND	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
Bromoform	ND	25	1.3	ug/L	5	11/21/16	НМ	SW8260C
Bromomethane	ND	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
Carbon Disulfide	ND	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
Carbon tetrachloride	ND	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
Chlorobenzene	ND	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
Chloroethane	ND	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
Chloroform	ND	7.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
Chloromethane	ND	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
cis-1,2-Dichloroethene	ND	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
cis-1,3-Dichloropropene	ND	1.3	1.3	ug/L	5	11/21/16	НМ	SW8260C
Dibromochloromethane	ND	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
Dibromomethane	ND	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
Dichlorodifluoromethane	ND	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
Ethylbenzene	230	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Hexachlorobutadiene	ND	1.0	1.0	ug/L	5	11/21/16	НМ	SW8260C
Isopropylbenzene	22	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
m&p-Xylene	720	20	5.0	ug/L	20	11/19/16	НМ	SW8260C
Methyl ethyl ketone	ND	13	13	ug/L	5	11/21/16	НМ	SW8260C
Methyl t-butyl ether (MTBE)	ND	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
Methylene chloride	ND	5.0	5.0	ug/L	5	11/21/16	НМ	SW8260C
Naphthalene	73	5.0	5.0	ug/L	5	11/21/16	НМ	SW8260C
n-Butylbenzene	9.3	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
n-Propylbenzene	53	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
o-Xylene	210	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
p-Isopropyltoluene	2.6	J 5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
sec-Butylbenzene	6.7	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
Styrene	ND	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
tert-Butylbenzene	ND	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
Tetrachloroethene	ND	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
Tetrahydrofuran (THF)	29	25	13	ug/L	5	11/21/16	НМ	SW8260C 1
Toluene	30	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
trans-1,2-Dichloroethene	ND	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
trans-1,3-Dichloropropene	ND	1.3	1.3	ug/L	5	11/21/16	НМ	SW8260C
trans-1,4-dichloro-2-butene	ND	13	13	ug/L	5	11/21/16	НМ	SW8260C
Trichloroethene	ND	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
Trichlorofluoromethane	ND	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
Trichlorotrifluoroethane	ND	5.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
Vinyl chloride	ND	2.0	1.3	ug/L	5	11/21/16	НМ	SW8260C
QA/QC Surrogates				**•3r =	-			
% 1,2-dichlorobenzene-d4	96			%	5	11/21/16	НМ	70 - 130 %
% Bromofluorobenzene	95			%	5	11/21/16	НМ	70 - 130 %
% Dibromofluoromethane	96			%	5	11/21/16	НМ	70 - 130 %
% Toluene-d8	99			%	5	11/21/16	HM	70 - 130 %
				,,	ŭ			3 /
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	5.0	1.8	ug/L	1	11/23/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	5.0	1.5	ug/L	1	11/23/16	DD	SW8270D

1,2-Dichlorobenzene 1,2-Diphenylhydrazine 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,4,5-Trichlorophenol	ND ND ND ND ND	4.7 5.0 3.0 5.0 2.7	1.4 1.6 1.5	ug/L ug/L	1	11/23/16	DD	SW8270D
1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,4,5-Trichlorophenol	ND ND ND ND	3.0 5.0		ug/L				
1,4-Dichlorobenzene 2,4,5-Trichlorophenol	ND ND ND	5.0	1.5		1	11/23/16	DD	SW8270D
2,4,5-Trichlorophenol	ND ND			ug/L	1	11/23/16	DD	SW8270D
•	ND	2.7	1.5	ug/L	1	11/23/16	DD	SW8270D
		2.1	2.7	ug/L	1	11/23/16	DD	SW8270D
2,4,6-Trichlorophenol		1.6	1.6	ug/L	1	11/23/16	DD	SW8270D
2,4-Dichlorophenol	ND	1.8	1.8	ug/L	1	11/23/16	DD	SW8270D
2,4-Dimethylphenol	1.6	1.2	1.2	ug/L	1	11/23/16	DD	SW8270D
2,4-Dinitrophenol	ND	3.5	3.5	ug/L	1	11/23/16	DD	SW8270D
2,4-Dinitrotoluene	ND	5.0	2.0	ug/L	1	11/23/16	DD	SW8270D
2,6-Dinitrotoluene	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D
2-Chloronaphthalene	ND	5.0	1.4	ug/L	1	11/23/16	DD	SW8270D
2-Chlorophenol	ND	1.4	1.4	ug/L	1	11/23/16	DD	SW8270D
2-Methylnaphthalene	11	5.0	1.5	ug/L	1	11/23/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	2.4	2.4	ug/L	1	11/23/16	DD	SW8270D
2-Nitroaniline	ND	5.1	5.1	ug/L	1	11/23/16	DD	SW8270D
2-Nitrophenol	ND	3.2	3.2	ug/L	1	11/23/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	5.0	2.0	ug/L	1	11/23/16	DD	SW8270D
3,3'-Dichlorobenzidine	ND	5.0	2.4	ug/L	1	11/23/16	DD	SW8270D
3-Nitroaniline	ND	11	11	ug/L	1	11/23/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	5.4	5.4	ug/L	1	11/23/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	5.0	1.5	ug/L	1	11/23/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	1.8	1.8	ug/L	1	11/23/16	DD	SW8270D
4-Chloroaniline	ND	5.0	2.3	ug/L	1	11/23/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	5.0	1.7	ug/L	1	11/23/16	DD	SW8270D
4-Nitroaniline	ND	5.0	1.7	ug/L	1	11/23/16	DD	SW8270D
4-Nitrophenol	ND	2.3	2.3	ug/L	1	11/23/16	DD	SW8270D
Acenaphthene	ND	5.0	1.5	ug/L	1	11/23/16	DD	SW8270D
Acenaphthylene	ND	5.0	1.4	ug/L	1	11/23/16	DD	SW8270D
Acetophenone	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D
Aniline	ND	15	15	ug/L	1	11/23/16	DD	SW8270D
Anthracene	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D
Benz(a)anthracene	ND	1.7	1.7	ug/L	1	11/23/16	DD	SW8270D
Benzidine	ND	5.0	2.9	ug/L	1	11/23/16	DD	SW8270D
Benzo(a)pyrene	ND	1.6	1.6	ug/L	1	11/23/16	DD	SW8270D
Benzo(b)fluoranthene	ND	1.7	1.7	ug/L	1	11/23/16	DD	SW8270D
Benzo(ghi)perylene	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D
Benzo(k)fluoranthene	ND	1.7	1.7	ug/L	1	11/23/16	DD	SW8270D
Benzoic acid	ND	25	10	ug/L	1	11/23/16	DD	SW8270D
Benzyl butyl phthalate	ND	5.0	1.3	ug/L	1	11/23/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	5.0	1.4	ug/L	1	11/23/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	1.4	1.4	ug/L	1	11/23/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	5.0	1.4	ug/L	1	11/23/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	5.0	1.4	ug/L	1	11/23/16	DD	SW8270D
Carbazole	ND	25	3.8	ug/L	1	11/23/16	DD	SW8270D
Chrysene	ND	1.7	1.7	ug/L	1	11/23/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D
Dibenzofuran	ND	5.0	1.5	ug/L	1	11/23/16	DD	SW8270D
Diethyl phthalate	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Dimethylphthalate	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D
Di-n-butylphthalate	ND	5.0	1.3	ug/L	1	11/23/16	DD	SW8270D
Di-n-octylphthalate	ND	5.0	1.3	ug/L	1	11/23/16	DD	SW8270D
Fluoranthene	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D
Fluorene	ND	5.0	1.7	ug/L	1	11/23/16	DD	SW8270D
Hexachlorobenzene	ND	1.5	1.5	ug/L	1	11/23/16	DD	SW8270D
Hexachlorobutadiene	ND	1.8	1.8	ug/L	1	11/23/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	5.0	1.5	ug/L	1	11/23/16	DD	SW8270D
Hexachloroethane	ND	5.0	1.5	ug/L	1	11/23/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	1.7	1.7	ug/L	1	11/23/16	DD	SW8270D
Isophorone	ND	5.0	1.4	ug/L	1	11/23/16	DD	SW8270D
Naphthalene	40	5.0	1.4	ug/L	1	11/23/16	DD	SW8270D
Nitrobenzene	ND	1.8	1.8	ug/L	1	11/23/16	DD	SW8270D
N-Nitrosodimethylamine	ND	5.0	1.4	ug/L	1	11/23/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	5.0	1.9	ug/L	1	11/23/16	DD	SW8270D
Pentachloronitrobenzene	ND	5.0	1.9	ug/L	1	11/23/16	DD	SW8270D
Pentachlorophenol	ND	1.9	1.9	ug/L	1	11/23/16	DD	SW8270D
Phenanthrene	ND	5.0	1.4	ug/L	1	11/23/16	DD	SW8270D
Phenol	ND	1.6	1.6	ug/L	1	11/23/16	DD	SW8270D
Pyrene	ND	5.0	1.7	ug/L	1	11/23/16	DD	SW8270D
Pyridine	ND	5.0	1.2	ug/L	1	11/23/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	92			%	1	11/23/16	DD	15 - 110 %
% 2-Fluorobiphenyl	72			%	1	11/23/16	DD	30 - 130 %
% 2-Fluorophenol	43			%	1	11/23/16	DD	15 - 110 %
% Nitrobenzene-d5	72			%	1	11/23/16	DD	30 - 130 %
% Phenol-d5	56			%	1	11/23/16	DD	15 - 110 %
% Terphenyl-d14	75			%	1	11/23/16	DD	30 - 130 %

Client ID: MW2

RL/ LOD/

Parameter Result PQL MDL Units Dilution Date/Time By Reference

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Volatile Comment:

Elevated reporting limits for volatiles due to the presence of target and/or non-target compounds.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

Pesticide Comment:

Due to a matrix interference and/or the presence of a large amount of non-target material in the sample, an elevated RL was reported for the affected compounds.

Semi-Volatile Comment:

Due to a matrix interference and/or the presence of a large amount of non-target material in the sample, a dilution was required resulting in an elevated RL for the semivolatile analysis.

Semi-Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 29, 2016

Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG ID: GBV87817

Phoenix ID: BV87819

Analysis Report

November 29, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G. Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: GROUND WATER Collected by: TG 11/17/16

Location Code: EBC Received by: LB 11/18/16 15:49

Rush Request: 72 Hour Analyzed by: see "By" below

Laboratory Data

Project ID: 1181 FLUSHING AVE., BROOKLYN

Client ID: MW3

P.O.#:

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
Silver	ND	0.005	0.001	mg/L	1	11/20/16	LK	SW6010C	
Aluminum	9.91	0.010	0.005	mg/L	1	11/20/16	LK	SW6010C	
Arsenic - LDL	ND	0.004	0.004	mg/L	1	11/20/16	LK	SW6010C	
Barium	0.292	0.010	0.001	mg/L	1	11/20/16	LK	SW6010C	
Beryllium	ND	0.001	0.001	mg/L	1	11/20/16	LK	SW6010C	
Calcium	110	0.010	0.01	mg/L	1	11/20/16	LK	SW6010C	В
Cadmium	0.001	B 0.004	0.0005	mg/L	1	11/20/16	LK	SW6010C	
Cobalt	0.012	0.005	0.001	mg/L	1	11/20/16	LK	SW6010C	
Chromium	0.027	0.001	0.001	mg/L	1	11/20/16	LK	SW6010C	
Copper	0.029	0.005	0.001	mg/L	1	11/20/16	LK	SW6010C	
Silver (Dissolved)	ND	0.005	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Aluminum (Dissolved)	ND	0.011	0.005	mg/L	1	11/20/16	LK/MA	SW6010C	
Arsenic, (Dissolved)	ND	0.003	0.004	mg/L	1	11/20/16	LK/MA	SW6010C	
Barium (Dissolved)	0.181	0.011	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Beryllium (Dissolved)	ND	0.001	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Calcium (Dissolved)	96.9	0.01	0.01	mg/L	1	11/20/16	LK/MA	SW6010C	В
Cadmium (Dissolved)	ND	0.004	0.0005	mg/L	1	11/20/16	LK/MA	SW6010C	
Cobalt, (Dissolved)	0.002	B 0.005	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Chromium (Dissolved)	ND	0.001	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Copper, (Dissolved)	0.001	B 0.005	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Iron, (Dissolved)	ND	0.01	0.01	mg/L	1	11/20/16	LK/MA	SW6010C	
Mercury (Dissolved)	ND	0.0002	0.00015	mg/L	1	11/21/16	RS	SW7470A	
Potassium (Dissolved)	13.4	0.1	0.01	mg/L	1	11/20/16	LK	SW6010C	
Magnesium (Dissolved)	16.2	0.01	0.01	mg/L	1	11/20/16	LK/MA	SW6010C	
Manganese, (Dissolved)	5.54	0.053	0.011	mg/L	10	11/20/16	LK	SW6010C	
Sodium (Dissolved)	343	1.1	0.11	mg/L	10	11/20/16	LK	SW6010C	
Nickel, (Dissolved)	0.002	B 0.004	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Lead (Dissolved)	0.003	0.002	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Antimony, (Dissolved)	ND	0.003	0.003	mg/L	1	11/20/16	RS	SW7010
Selenium, (Dissolved)	ND	0.004	0.002	mg/L	1	11/22/16	RS	SW7010
Thallium , (Dissolved)	ND	0.0005	0.0005	mg/L	1	11/21/16	RS	SW7010
Vanadium, (Dissolved)	ND	0.011	0.001	mg/L	1	11/20/16	LK/MA	SW6010C
Zinc, (Dissolved)	ND	0.011	0.0012	mg/L	1	11/20/16	LK/MA	SW6010C
Iron	30.4	0.01	0.01	mg/L	1	11/20/16	LK	SW6010C
Mercury	ND	0.0002	0.00015	mg/L	1	11/21/16	RS	SW7470A
Potassium	17.1	0.1	0.01	mg/L	1	11/20/16	LK	SW6010C
Magnesium	20.7	0.010	0.01	mg/L	1	11/20/16	LK	SW6010C
Manganese	6.36	0.050	0.010	mg/L	10	11/20/16	LK	SW6010C
Sodium	350	1.0	0.10	mg/L	10	11/20/16	LK	SW6010C
Nickel	0.017	0.004	0.001	mg/L	1	11/20/16	LK	SW6010C
Lead	0.011	0.002	0.001	mg/L	1	11/20/16	LK	SW6010C
Antimony	ND	0.002	0.002	mg/L	1	11/20/16	RS	SW7010
Selenium	ND	0.002	0.001	mg/L	1	11/22/16	RS	SW7010
Thallium - LDL	ND	0.0005	0.0005	mg/L	1	11/21/16	RS	SW7010
Vanadium	0.031	0.010	0.001	mg/L	1	11/20/16	LK	SW6010C
Zinc	0.049	0.010	0.0011	mg/L	1	11/20/16	LK	SW6010C
Filtration	Completed					11/18/16	AG	0.45um Filter
Dissolved Mercury Digestion	Completed					11/21/16	QW/W	SW7470A
Mercury Digestion	Completed					11/21/16	Q/Q	SW7470A
PCB Extraction (2 Liter)	Completed					11/18/16	Z/Z	SW3510C
Extraction for Pest (2 Liter)	Completed					11/18/16	Z/Z	SW3510C
Semi-Volatile Extraction	Completed					11/18/16	P/D/D	SW3520C
Dissolved Metals Preparation	Completed					11/18/16	AG	SW3005A
Total Metals Digestion	Completed					11/18/16	AG	
<u>Pesticides</u>								
4,4' -DDD	ND	0.006	0.011	ug/L	1	11/22/16	CE	SW8081B
4,4' -DDE	ND	0.006	0.011	ug/L	1	11/22/16	CE	SW8081B
4,4' -DDT	ND	0.006	0.011	ug/L	1	11/22/16	CE	SW8081B
a-BHC	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B
a-chlordane	ND	0.011	0.011	ug/L	1	11/22/16	CE	SW8081B
Alachlor	ND	0.082	0.082	ug/L	1	11/22/16	CE	SW8081B
Aldrin	ND	0.002	0.002	ug/L	1	11/22/16	CE	SW8081B
b-BHC	ND	0.030	0.030	ug/L	1	11/22/16	CE	SW8081B
Chlordane	ND	0.055	0.055	ug/L	1	11/22/16	CE	SW8081B
d-BHC	ND	0.006	0.006	ug/L	1	11/22/16	CE	SW8081B
Dieldrin	ND	0.002	0.002	ug/L	1	11/22/16	CE	SW8081B
Endosulfan I	ND	0.011	0.011	ug/L	1	11/22/16	CE	SW8081B
Endosulfan II	ND	0.011	0.011	ug/L	1	11/22/16	CE	SW8081B
Endosulfan Sulfate	ND	0.011	0.011	ug/L	1	11/22/16	CE	SW8081B
Endrin	ND	0.006	0.006	ug/L	1	11/22/16	CE	SW8081B
Endrin Aldehyde	ND	0.011	0.011	ug/L	1	11/22/16	CE	SW8081B
Endrin ketone	ND	0.011	0.011	ug/L	1	11/22/16	CE	SW8081B
g-BHC (Lindane)	ND	0.006	0.006	ug/L	1	11/22/16	CE	SW8081B
g-chlordane	ND	0.011	0.011	ug/L	1	11/22/16	CE	SW8081B
Heptachlor	ND	0.006	0.006	ug/L	1	11/22/16	CE	SW8081B
Heptachlor epoxide	ND	0.006	0.006	ug/L	1	11/22/16	CE	SW8081B
Methoxychlor	ND	0.11	0.11	ug/L	1	11/22/16	CE	SW8081B

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Toxaphene	ND	0.22	0.22	ug/L	1	11/22/16	CE	SW8081B
QA/QC Surrogates				-				
%DCBP (Surrogate Rec)	58			%	1	11/22/16	CE	SW8081B
%TCMX (Surrogate Rec)	90			%	1	11/22/16	CE	SW8081B
Polychlorinated Bipheny	ıls							
PCB-1016	ND	0.055	0.055	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1221	ND	0.055	0.055	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1232	ND	0.055	0.055	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1242	ND	0.055	0.055	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1248	ND	0.055	0.055	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1254	ND	0.055	0.055	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1260	ND	0.055	0.055	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1262	ND	0.055	0.055	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1268	ND	0.055	0.055	ug/L	1	11/21/16	AW	E608/SW8082A
QA/QC Surrogates				J				
% DCBP	77			%	1	11/21/16	AW	40 - 140 %
% TCMX	83			%	1	11/21/16	AW	40 - 140 %
Volatiles								
	ND	5.0	5.0	/1	20	44/40/40	1.15.4	CMOCCOC
1,1,1,2-Tetrachloroethane	ND	5.0	5.0	ug/L	20	11/19/16	HM	SW8260C
1,1,1-Trichloroethane	ND	5.0	5.0	ug/L	20	11/19/16	HM	SW8260C
1,1,2,2-Tetrachloroethane	ND	5.0	5.0	ug/L	20	11/19/16	HM	SW8260C
1,1,2-Trichloroethane	ND	5.0	5.0	ug/L	20	11/19/16	HM	SW8260C
1,1-Dichloroethane	ND	5.0	5.0	ug/L	20	11/19/16	HM	SW8260C
1,1-Dichloroethene	ND	5.0	5.0	ug/L	20	11/19/16	HM	SW8260C
1,1-Dichloropropene	ND	5.0	5.0	ug/L	20	11/19/16	HM	SW8260C
1,2,3-Trichlorobenzene	ND	20	5.0	ug/L	20	11/19/16	HM	SW8260C
1,2,3-Trichloropropane	ND	5.0	5.0	ug/L	20	11/19/16	HM	SW8260C
1,2,4-Trichlorobenzene	ND	20	5.0	ug/L	20	11/19/16	HM	SW8260C
1,2,4-Trimethylbenzene	730 ND	13	13 10	ug/L	50	11/21/16 11/19/16	HM HM	SW8260C SW8260C
1,2-Dibromo-3-chloropropane	ND	10 5.0	5.0	ug/L	20 20	11/19/16	HM	SW8260C SW8260C
1,2-Dibromoethane	ND	5.0		ug/L			НМ	SW8260C SW8260C
1,2-Dichlorobenzene	ND	10	5.0 10	ug/L ug/L	20 20	11/19/16 11/19/16	НМ	SW8260C SW8260C
1,2-Dichloroethane	ND	5.0	5.0	ug/L ug/L	20	11/19/16	НМ	SW8260C SW8260C
1,2-Dichloropropane	280	5.0	5.0	ug/L ug/L	20	11/19/16	HM	SW8260C
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	ND	5.0	5.0	ug/L ug/L	20	11/19/16	HM	SW8260C
	ND	5.0	5.0	ug/L ug/L	20	11/19/16	HM	SW8260C
1,3-Dichloropropane 1,4-Dichlorobenzene	ND	5.0	5.0	ug/L ug/L	20	11/19/16	HM	SW8260C
2,2-Dichloropropane	ND	5.0	5.0	ug/L ug/L	20	11/19/16	HM	SW8260C
2-Chlorotoluene	ND	5.0	5.0	ug/L ug/L	20	11/19/16	HM	SW8260C
2-Hexanone	ND	50	50	ug/L ug/L	20	11/19/16	HM	SW8260C
2-Isopropyltoluene	ND	5.0	5.0	ug/L ug/L	20	11/19/16	HM	SW8260C 1
4-Chlorotoluene	ND	5.0	5.0	ug/L ug/L	20	11/19/16	HM	SW8260C
	ND	50	50	ug/L ug/L	20	11/19/16	HM	SW8260C
4-Methyl-2-pentanone Acetone	ND	50	50 50	ug/L ug/L	20	11/19/16	HM	SW8260C
Acrolein	ND	50	50 50	ug/L ug/L	20	11/19/16	HM	SW8260C
Acrylonitrile	ND	50	50 50	ug/L ug/L	20	11/19/16	HM	SW8260C
Benzene	170	5.0	5.0	ug/L ug/L	20	11/19/16	HM	SW8260C
Delizelle	170	3.0	5.0	ug/L	20	11/13/10	ı IIVI	3 V V O Z O O O

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Bromobenzene	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Bromochloromethane	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Bromodichloromethane	ND	20	5.0	ug/L	20	11/19/16	НМ	SW8260C
Bromoform	ND	50	5.0	ug/L	20	11/19/16	НМ	SW8260C
Bromomethane	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Carbon Disulfide	ND	20	5.0	ug/L	20	11/19/16	НМ	SW8260C
Carbon tetrachloride	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Chlorobenzene	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Chloroethane	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Chloroform	ND	7.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Chloromethane	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
cis-1,2-Dichloroethene	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
cis-1,3-Dichloropropene	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Dibromochloromethane	ND	20	5.0	ug/L	20	11/19/16	НМ	SW8260C
Dibromomethane	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Dichlorodifluoromethane	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Ethylbenzene	570	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Hexachlorobutadiene	ND	4.0	4.0	ug/L	20	11/19/16	НМ	SW8260C
Isopropylbenzene	79	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
m&p-Xylene	540	20	5.0	ug/L	20	11/19/16	НМ	SW8260C
Methyl ethyl ketone	ND	50	50	ug/L	20	11/19/16	НМ	SW8260C
Methyl t-butyl ether (MTBE)	ND	20	5.0	ug/L	20	11/19/16	НМ	SW8260C
Methylene chloride	ND	20	20	ug/L	20	11/19/16	НМ	SW8260C
Naphthalene	190	20	20	ug/L	20	11/19/16	НМ	SW8260C
n-Butylbenzene	20	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
n-Propylbenzene	200	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
o-Xylene	130	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
p-Isopropyltoluene	5.2	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
sec-Butylbenzene	13	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Styrene	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
tert-Butylbenzene	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Tetrachloroethene	5.4	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Tetrahydrofuran (THF)	ND	50	50	ug/L	20	11/19/16	НМ	SW8260C 1
Toluene	91	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
trans-1,2-Dichloroethene	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
trans-1,3-Dichloropropene	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
trans-1,4-dichloro-2-butene	ND	50	50	ug/L	20	11/19/16	НМ	SW8260C
Trichloroethene	6.6	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Trichlorofluoromethane	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Trichlorotrifluoroethane	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Vinyl chloride	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
QA/QC Surrogates				· ·				
% 1,2-dichlorobenzene-d4	100			%	20	11/19/16	НМ	70 - 130 %
% Bromofluorobenzene	95			%	20	11/19/16	НМ	70 - 130 %
% Dibromofluoromethane	95			%	20	11/19/16	НМ	70 - 130 %
% Toluene-d8	99			%	20	11/19/16	НМ	70 - 130 %
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	26	9.3	ug/L	5	11/23/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	26	7.9	ug/L	5	11/23/16	DD	SW8270D

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1,2-Dichlorobenzene	ND	7.4	7.4	ug/L	5	11/23/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	26	8.6	ug/L	5	11/23/16	DD	SW8270D
1,3-Dichlorobenzene	ND	7.8	7.8	ug/L	5	11/23/16	DD	SW8270D
1,4-Dichlorobenzene	ND	7.8	7.8	ug/L	5	11/23/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	14	14	ug/L	5	11/23/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	8.4	8.4	ug/L	5	11/23/16	DD	SW8270D
2,4-Dichlorophenol	ND	9.3	9.3	ug/L	5	11/23/16	DD	SW8270D
2,4-Dimethylphenol	ND	6.5	6.5	ug/L	5	11/23/16	DD	SW8270D
2,4-Dinitrophenol	ND	18	18	ug/L	5	11/23/16	DD	SW8270D
2,4-Dinitrotoluene	ND	10	10	ug/L	5	11/23/16	DD	SW8270D
2,6-Dinitrotoluene	ND	8.3	8.3	ug/L	5	11/23/16	DD	SW8270D
2-Chloronaphthalene	ND	10	7.5	ug/L	5	11/23/16	DD	SW8270D
2-Chlorophenol	ND	7.5	7.5	ug/L	5	11/23/16	DD	SW8270D
2-Methylnaphthalene	15	J 26	7.8	ug/L	5	11/23/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	12	12	ug/L	5	11/23/16	DD	SW8270D
2-Nitroaniline	ND	27	27	ug/L	5	11/23/16	DD	SW8270D
2-Nitrophenol	ND	17	17	ug/L	5	11/23/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	26	10	ug/L	5	11/23/16	DD	SW8270D
3,3'-Dichlorobenzidine	ND	12	12	ug/L	5	11/23/16	DD	SW8270D
3-Nitroaniline	ND	57	57	ug/L	5	11/23/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	28	28	ug/L	5	11/23/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	26	7.7	ug/L	5	11/23/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	9.3	9.3	ug/L	5	11/23/16	DD	SW8270D
4-Chloroaniline	ND	12	12	ug/L	5	11/23/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	26	8.8	ug/L	5	11/23/16	DD	SW8270D
4-Nitroaniline	ND	8.8	8.8	ug/L	5	11/23/16	DD	SW8270D
4-Nitrophenol	ND	12	12	ug/L	5	11/23/16	DD	SW8270D
Acenaphthene	ND	20	8.0	ug/L	5	11/23/16	DD	SW8270D
Acenaphthylene	ND	20	7.4	ug/L	5	11/23/16	DD	SW8270D
Acetophenone	ND	26	8.2	ug/L	5	11/23/16	DD	SW8270D
Aniline	ND	79	79	ug/L	5	11/23/16	DD	SW8270D
Anthracene	ND	26	8.6	ug/L	5	11/23/16	DD	SW8270D
Benz(a)anthracene	ND	8.8	8.8	ug/L	5	11/23/16	DD	SW8270D
Benzidine	ND	15	15	ug/L	5	11/23/16	DD	SW8270D
Benzo(a)pyrene	ND	8.6	8.6	ug/L	5	11/23/16	DD	SW8270D
Benzo(b)fluoranthene	ND	9.0	9.0	ug/L	5	11/23/16	DD	SW8270D
Benzo(ghi)perylene	ND	8.5	8.5	ug/L	5	11/23/16	DD	SW8270D
Benzo(k)fluoranthene	ND	8.7	8.7	ug/L	5	11/23/16	DD	SW8270D
Benzoic acid	ND	53	53	ug/L	5	11/23/16	DD	SW8270D
Benzyl butyl phthalate	ND	26	6.8	ug/L	5	11/23/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	7.3	7.3	ug/L	5	11/23/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	7.1	7.1	ug/L	5	11/23/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	26	7.3	ug/L	5	11/23/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	7.6	7.6	ug/L	5	11/23/16	DD	SW8270D
Carbazole	ND	130	20	ug/L	5	11/23/16	DD	SW8270D
Chrysene	ND	8.8	8.8	ug/L	5	11/23/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	26	8.5	ug/L	5	11/23/16	DD	SW8270D
Dibenzofuran	ND	7.7	7.7	ug/L	5	11/23/16	DD	SW8270D
Diethyl phthalate	ND	26	8.3	ug/L	5	11/23/16	DD	SW8270D

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Dimethylphthalate	ND	26	8.2	ug/L	5	11/23/16	DD	SW8270D
Di-n-butylphthalate	ND	26	7.0	ug/L	5	11/23/16	DD	SW8270D
Di-n-octylphthalate	ND	26	6.8	ug/L	5	11/23/16	DD	SW8270D
Fluoranthene	ND	26	8.5	ug/L	5	11/23/16	DD	SW8270D
Fluorene	ND	26	8.7	ug/L	5	11/23/16	DD	SW8270D
Hexachlorobenzene	ND	7.7	7.7	ug/L	5	11/23/16	DD	SW8270D
Hexachlorobutadiene	ND	9.5	9.5	ug/L	5	11/23/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	8.1	8.1	ug/L	5	11/23/16	DD	SW8270D
Hexachloroethane	ND	7.9	7.9	ug/L	5	11/23/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	8.7	8.7	ug/L	5	11/23/16	DD	SW8270D
Isophorone	ND	26	7.4	ug/L	5	11/23/16	DD	SW8270D
Naphthalene	130	7.6	7.6	ug/L	5	11/23/16	DD	SW8270D
Nitrobenzene	ND	9.2	9.2	ug/L	5	11/23/16	DD	SW8270D
N-Nitrosodimethylamine	ND	26	7.4	ug/L	5	11/23/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	26	8.5	ug/L	5	11/23/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	26	10	ug/L	5	11/23/16	DD	SW8270D
Pentachloronitrobenzene	ND	26	9.8	ug/L	5	11/23/16	DD	SW8270D
Pentachlorophenol	ND	9.9	9.9	ug/L	5	11/23/16	DD	SW8270D
Phenanthrene	ND	26	7.5	ug/L	5	11/23/16	DD	SW8270D
Phenol	ND	8.4	8.4	ug/L	5	11/23/16	DD	SW8270D
Pyrene	ND	26	9.1	ug/L	5	11/23/16	DD	SW8270D
Pyridine	ND	26	6.5	ug/L	5	11/23/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	100			%	5	11/23/16	DD	15 - 110 %
% 2-Fluorobiphenyl	73			%	5	11/23/16	DD	30 - 130 %
% 2-Fluorophenol	43			%	5	11/23/16	DD	15 - 110 %
% Nitrobenzene-d5	72			%	5	11/23/16	DD	30 - 130 %
% Phenol-d5	61			%	5	11/23/16	DD	15 - 110 %
% Terphenyl-d14	71			%	5	11/23/16	DD	30 - 130 %

Client ID: MW3

RL/ LOD/

Parameter Result PQL MDL Units Dilution Date/Time By Reference

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time. B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Volatile Comment:

Elevated reporting limits for volatiles due to the presence of target and/or non-target compounds.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

Pesticide Comment:

Due to a matrix interference and/or the presence of a large amount of non-target material in the sample, an elevated RL was reported for the affected compounds.

Semi-Volatile Comment:

Due to a matrix interference and/or the presence of a large amount of non-target material in the sample, a dilution was required resulting in an elevated RL for the semivolatile analysis.

Semi-Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 29, 2016

Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 29, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G. **Environmental Business Consultants**

1808 Middle Country Rd Ridge NY 11961-2406

Sample Information Custody Information Date <u>Time</u> **GROUND WATER** Collected by: TG 11/17/16 Matrix: Received by: Location Code: **EBC** LB 11/18/16 15:49

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GBV87817 Phoenix ID: BV87820

1181 FLUSHING AVE., BROOKLYN Project ID:

Client ID:

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
Silver	ND	0.005	0.001	mg/L	1	11/20/16	LK	SW6010C	
Aluminum	32.7	0.10	0.050	mg/L	10	11/20/16	LK	SW6010C	
Arsenic - LDL	0.012	0.004	0.004	mg/L	1	11/20/16	LK	SW6010C	
Barium	0.507	0.010	0.001	mg/L	1	11/20/16	LK	SW6010C	
Beryllium	0.002	0.001	0.001	mg/L	1	11/20/16	LK	SW6010C	
Calcium	118	0.010	0.01	mg/L	1	11/20/16	LK	SW6010C	В
Cadmium	0.003	B 0.004	0.0005	mg/L	1	11/20/16	LK	SW6010C	
Cobalt	0.041	0.005	0.001	mg/L	1	11/20/16	LK	SW6010C	
Chromium	0.097	0.001	0.001	mg/L	1	11/20/16	LK	SW6010C	
Copper	0.069	0.005	0.001	mg/L	1	11/20/16	LK	SW6010C	
Silver (Dissolved)	ND	0.005	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Aluminum (Dissolved)	ND	0.011	0.005	mg/L	1	11/20/16	LK/MA	SW6010C	
Arsenic, (Dissolved)	ND	0.003	0.004	mg/L	1	11/20/16	LK/MA	SW6010C	
Barium (Dissolved)	0.205	0.011	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Beryllium (Dissolved)	ND	0.001	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Calcium (Dissolved)	105	0.01	0.01	mg/L	1	11/20/16	LK/MA	SW6010C	В
Cadmium (Dissolved)	ND	0.004	0.0005	mg/L	1	11/20/16	LK/MA	SW6010C	
Cobalt, (Dissolved)	0.011	0.005	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Chromium (Dissolved)	ND	0.001	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Copper, (Dissolved)	ND	0.005	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Iron, (Dissolved)	8.95	0.01	0.01	mg/L	1	11/20/16	LK/MA	SW6010C	
Mercury (Dissolved)	ND	0.0002	0.00015	mg/L	1	11/21/16	RS	SW7470A	
Potassium (Dissolved)	10.8	0.1	0.01	mg/L	1	11/20/16	LK	SW6010C	
Magnesium (Dissolved)	27.9	0.01	0.01	mg/L	1	11/20/16	LK/MA	SW6010C	
Manganese, (Dissolved)	9.87	0.053	0.011	mg/L	10	11/20/16	LK	SW6010C	
Sodium (Dissolved)	145	1.1	0.11	mg/L	10	11/20/16	LK	SW6010C	
Nickel, (Dissolved)	0.005	0.004	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Lead (Dissolved)	0.002	B 0.002	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Antimony, (Dissolved)	ND	0.003	0.003	mg/L	1	11/20/16	RS	SW7010
Selenium, (Dissolved)	ND	0.004	0.002	mg/L	1	11/22/16	RS	SW7010
Thallium, (Dissolved)	ND	0.0005	0.0005	mg/L	1	11/21/16	RS	SW7010
Vanadium, (Dissolved)	ND	0.011	0.001	mg/L	1	11/20/16	LK/MA	SW6010C
Zinc, (Dissolved)	0.002	B 0.011	0.0012	mg/L	1	11/20/16	LK/MA	SW6010C
Iron	133	0.10	0.10	mg/L	10	11/20/16	LK	SW6010C
Mercury	ND	0.0002	0.00015	mg/L	1	11/21/16	RS	SW7470A
Potassium	17.5	0.1	0.01	mg/L	1	11/20/16	LK	SW6010C
Magnesium	37.8	0.010	0.01	mg/L	1	11/20/16	LK	SW6010C
Manganese	12.1	0.050	0.010	mg/L	10	11/20/16	LK	SW6010C
Sodium	148	1.0	0.10	mg/L	10	11/20/16	LK	SW6010C
Nickel	0.069	0.004	0.001	mg/L	1	11/20/16	LK	SW6010C
Lead	0.021	0.002	0.001	mg/L	1	11/20/16	LK	SW6010C
Antimony	ND	0.002	0.002	mg/L	1	11/20/16	RS	SW7010
Selenium	ND	0.002	0.001	mg/L	1	11/22/16	RS	SW7010
Thallium - LDL	ND	0.0005	0.0005	mg/L	1	11/21/16	RS	SW7010
Vanadium	0.088	0.010	0.001	mg/L	1	11/20/16	LK	SW6010C
Zinc	0.118	0.010	0.0011	mg/L	1	11/20/16	LK	SW6010C
Filtration	Completed					11/18/16	AG	0.45um Filter
Dissolved Mercury Digestion	Completed					11/21/16	QW/W	SW7470A
Mercury Digestion	Completed					11/21/16	Q/Q	SW7470A
PCB Extraction (2 Liter)	Completed					11/22/16	TZ/Z	SW3510C
Extraction for Pest (2 Liter)	Completed					11/22/16	TZ/Z	SW3510C
Semi-Volatile Extraction	Completed					11/18/16	P/D/D	SW3520C
Dissolved Metals Preparation	Completed					11/18/16	AG	SW3005A
Total Metals Digestion	Completed					11/18/16	AG	
<u>Pesticides</u>								
4,4' -DDD	ND	0.005	0.010	ug/L	1	11/23/16	CE	SW8081B
4,4' -DDE	ND	0.005	0.010	ug/L	1	11/23/16	CE	SW8081B
4,4' -DDT	ND	0.005	0.010	ug/L	1	11/23/16	CE	SW8081B
a-BHC	ND	0.005	0.005	ug/L	1	11/23/16	CE	SW8081B
a-chlordane	ND	0.010	0.010	ug/L	1	11/23/16	CE	SW8081B
Alachlor	ND	0.075	0.075	ug/L	1	11/23/16	CE	SW8081B 1
Aldrin	ND	0.010	0.010	ug/L	1	11/23/16	CE	SW8081B
b-BHC	ND	0.005	0.005	ug/L	1	11/23/16	CE	SW8081B
Chlordane	ND	0.050	0.050	ug/L	1	11/23/16	CE	SW8081B
d-BHC	ND	0.005	0.005	ug/L	1	11/23/16	CE	SW8081B
Dieldrin	ND	0.002	0.002	ug/L	1	11/23/16	CE	SW8081B
Endosulfan I	ND	0.010	0.010	ug/L	1	11/23/16	CE	SW8081B
Endosulfan II	ND	0.010	0.010	ug/L	1	11/23/16	CE	SW8081B
Endosulfan Sulfate	ND	0.010	0.010	ug/L	1	11/23/16	CE	SW8081B
Endrin	ND	0.010	0.010	ug/L	1	11/23/16	CE	SW8081B
Endrin Aldehyde	ND	0.010	0.010	ug/L	1	11/23/16	CE	SW8081B
Endrin ketone	ND	0.010	0.010	ug/L	1	11/23/16	CE	SW8081B
g-BHC (Lindane)	ND	0.005	0.005	ug/L	1	11/23/16	CE	SW8081B
g-chlordane	ND	0.010	0.010	ug/L	1	11/23/16	CE	SW8081B
Heptachlor	ND	0.010	0.010	ug/L	1	11/23/16	CE	SW8081B
Heptachlor epoxide	ND	0.010	0.010	ug/L	1	11/23/16	CE	SW8081B
Methoxychlor	ND	0.10	0.10	ug/L	1	11/23/16	CE	SW8081B

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
Toxaphene	ND	0.20	0.20	ug/L	1	11/23/16	CE	SW8081B	
QA/QC Surrogates									
%DCBP (Surrogate Rec)	41			%	1	11/23/16	CE	SW8081B	
%TCMX (Surrogate Rec)	60			%	1	11/23/16	CE	SW8081B	
Polychlorinated Bipheny	ıls								
PCB-1016	ND	0.050	0.050	ug/L	1	11/23/16	KCA	E608/SW8082A	
PCB-1221	ND	0.050	0.050	ug/L	1	11/23/16	KCA	E608/SW8082A	
PCB-1232	ND	0.050	0.050	ug/L	1	11/23/16	KCA	E608/SW8082A	
PCB-1242	ND	0.050	0.050	ug/L	1	11/23/16	KCA	E608/SW8082A	
PCB-1248	ND	0.050	0.050	ug/L	1	11/23/16	KCA	E608/SW8082A	
PCB-1254	ND	0.050	0.050	ug/L	1	11/23/16	KCA	E608/SW8082A	
PCB-1260	ND	0.050	0.050	ug/L	1	11/23/16	KCA	E608/SW8082A	
PCB-1262	ND	0.050	0.050	ug/L	1	11/23/16	KCA	E608/SW8082A	
PCB-1268	ND	0.050	0.050	ug/L	1	11/23/16	KCA	E608/SW8082A	
QA/QC Surrogates									
% DCBP	39			%	1	11/23/16	KCA	40 - 140 %	3
% TCMX	57			%	1	11/23/16	KCA	40 - 140 %	
Volatiles									
	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C	
1,1,1,2-Tetrachloroethane	ND ND	5.0	0.25	ug/L ug/L	1	11/21/16	НМ	SW8260C	
1,1,1-Trichloroethane							НМ		
1,1,2,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	11/21/16		SW8260C SW8260C	
1,1,2-Trichloroethane	ND	1.0	0.25	ug/L	1	11/21/16	HM		
1,1-Dichloroethane	ND	5.0	0.25	ug/L	1	11/21/16 11/21/16	HM	SW8260C SW8260C	
1,1-Dichloroethene	ND	1.0	0.25	ug/L	1		HM HM		
1,1-Dichloropropene	ND ND	1.0 1.0	0.25 0.25	ug/L	1	11/21/16 11/21/16	НМ	SW8260C SW8260C	
1,2,3-Trichlorobenzene	ND ND		0.25	ug/L ug/L	1	11/21/16	НМ	SW8260C	
1,2,3-Trichloropropane		0.25	0.25	ug/L ug/L	1	11/21/16	НМ	SW8260C	
1,2,4-Trichlorobenzene	ND ND	1.0 1.0	0.25	-	1	11/21/16	НМ	SW8260C	
1,2,4-Trimethylbenzene	ND ND	0.50	0.23	ug/L ug/L	1	11/21/16	НМ	SW8260C	
1,2-Dibromo-3-chloropropane	ND	0.30	0.30		1	11/21/16	НМ	SW8260C	
1,2-Dibromoethane	ND ND	1.0		ug/L	1		НМ	SW8260C	
1,2-Dichlorobenzene	ND ND	0.60	0.25 0.50	ug/L ug/L	1 1	11/21/16 11/21/16	НМ	SW8260C	
1,2-Dichloroethane	ND	1.0		ug/L	1	11/21/16	HM	SW8260C	
1,2-Dichloropropane			0.25	ug/L ug/L	1	11/21/16	НМ		
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	0.61 ND	J 1.0 1.0	0.25 0.25	ug/L	1	11/21/16	HM	SW8260C SW8260C	
	ND	1.0	0.25	ug/L	1	11/21/16	HM	SW8260C	
1,3-Dichloropropane	ND	1.0		ug/L		11/21/16	HM		
1,4-Dichlorobenzene	ND ND		0.25 0.25	ug/L ug/L	1	11/21/16	НМ	SW8260C	
2,2-Dichloropropane	ND ND	1.0	0.25	-	1	11/21/16	НМ	SW8260C SW8260C	
2-Chlorotoluene		1.0		ug/L	1				
2-Hexanone	ND	2.5	2.5	ug/L	1	11/21/16	HM	SW8260C	1
2-Isopropyltoluene	ND	1.0	0.25	ug/L	1	11/21/16	HM	SW8260C	'
4-Chlorotoluene	ND 5.6	1.0	0.25	ug/L	1	11/21/16	HM	SW8260C	
4-Methyl-2-pentanone	5.6	2.5	2.5	ug/L	1	11/21/16	HM	SW8260C	
Acetone	46 ND	S 25	13	ug/L	5	11/21/16	HM	SW8260C	
Acrolein	ND	5.0	2.5	ug/L	1	11/21/16	HM	SW8260C	
Acrylonitrile	ND	5.0	2.5	ug/L	1	11/21/16	HM	SW8260C	
Benzene	1.7	0.70	0.25	ug/L	1	11/21/16	НМ	SW8260C	

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Bromobenzene	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Bromochloromethane	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Bromodichloromethane	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Bromoform	ND	5.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Bromomethane	ND	5.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Carbon Disulfide	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Carbon tetrachloride	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Chlorobenzene	ND	5.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Chloroethane	ND	5.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Chloroform	ND	5.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Chloromethane	ND	5.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
cis-1,2-Dichloroethene	0.42	J 1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
cis-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	11/21/16	НМ	SW8260C
Dibromochloromethane	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Dibromomethane	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Dichlorodifluoromethane	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Ethylbenzene	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Hexachlorobutadiene	ND	0.50	0.20	ug/L	1	11/21/16	НМ	SW8260C
Isopropylbenzene	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
m&p-Xylene	0.34	J 1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Methyl ethyl ketone	26	2.5	2.5	ug/L	1	11/21/16	НМ	SW8260C
Methyl t-butyl ether (MTBE)	0.64	J 1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Methylene chloride	ND	3.0	1.0	ug/L	1	11/21/16	НМ	SW8260C
Naphthalene	ND	1.0	1.0	ug/L	1	11/21/16	НМ	SW8260C
n-Butylbenzene	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
n-Propylbenzene	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
o-Xylene	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
p-Isopropyltoluene	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
sec-Butylbenzene	0.25	J 1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Styrene	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
tert-Butylbenzene	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Tetrachloroethene	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Tetrahydrofuran (THF)	ND	5.0	2.5	ug/L	1	11/21/16	НМ	SW8260C 1
Toluene	0.79	J 1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
trans-1,2-Dichloroethene	ND	5.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
trans-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	11/21/16	НМ	SW8260C
trans-1,4-dichloro-2-butene	ND	2.5	2.5	ug/L	1	11/21/16	НМ	SW8260C
Trichloroethene	0.26	J 1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Trichlorofluoromethane	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Trichlorotrifluoroethane	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Vinyl chloride	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
QA/QC Surrogates				-9-	•			
% 1,2-dichlorobenzene-d4	97			%	1	11/21/16	НМ	70 - 130 %
% Bromofluorobenzene	96			%	1	11/21/16	НМ	70 - 130 %
% Dibromofluoromethane	101			%	1	11/21/16	НМ	70 - 130 %
% Toluene-d8	99			%	1	11/21/16	НМ	70 - 130 %
				,,	•	, 2 ,, 10		. 5 5 . 7
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	110	38	ug/L	20	11/23/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	110	33	ug/L	20	11/23/16	DD	SW8270D

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1,2-Dichlorobenzene	ND	30	30	ug/L	20	11/23/16	DD	SW8270D
1,2-Dichloroberizerie 1,2-Diphenylhydrazine	ND	110	35	ug/L ug/L	20	11/23/16	DD	SW8270D
1,3-Dichlorobenzene	ND	32	32	ug/L	20	11/23/16	DD	SW8270D
1,4-Dichlorobenzene	ND	32	32	ug/L	20	11/23/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	59	59	ug/L	20	11/23/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	35	35	ug/L	20	11/23/16	DD	SW8270D
2,4-Dichlorophenol	ND	38	38	ug/L	20	11/23/16	DD	SW8270D
2,4-Dimethylphenol	ND	27	27	ug/L	20	11/23/16	DD	SW8270D
2,4-Dinitrophenol	ND	76	76	ug/L	20	11/23/16	DD	SW8270D
2,4-Dinitrotoluene	ND	43	43	ug/L	20	11/23/16	DD	SW8270D
2,6-Dinitrotoluene	ND	34	34	ug/L	20	11/23/16	DD	SW8270D
2-Chloronaphthalene	ND	31	31	ug/L	20	11/23/16	DD	SW8270D
2-Chlorophenol	ND	31	31	ug/L	20	11/23/16	DD	SW8270D
2-Methylnaphthalene	ND	50	32	ug/L	20	11/23/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	51	51	ug/L	20	11/23/16	DD	SW8270D
2-Nitroaniline	ND	110	110	ug/L	20	11/23/16	DD	SW8270D
2-Nitrophenol	ND	69	69	ug/L	20	11/23/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	110	43	ug/L	20	11/23/16	DD	SW8270D
3,3'-Dichlorobenzidine	ND	51	51	ug/L	20	11/23/16	DD	SW8270D
3-Nitroaniline	ND	240	240	ug/L	20	11/23/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	120	120	ug/L	20	11/23/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	110	32	ug/L	20	11/23/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	38	38	ug/L	20	11/23/16	DD	SW8270D
4-Chloroaniline	ND	50	50	ug/L	20	11/23/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	110	36	ug/L	20	11/23/16	DD	SW8270D
4-Nitroaniline	ND	36	36	ug/L	20	11/23/16	DD	SW8270D
4-Nitrophenol	ND	49	49	ug/L	20	11/23/16	DD	SW8270D
Acenaphthene	ND	33	33	ug/L	20	11/23/16	DD	SW8270D
Acenaphthylene	ND	30	30	ug/L	20	11/23/16	DD	SW8270D
Acetophenone	ND	110	34	ug/L	20	11/23/16	DD	SW8270D
Aniline	ND	320	320	ug/L	20	11/23/16	DD	SW8270D
Anthracene	ND	50	35	ug/L	20	11/23/16	DD	SW8270D
Benz(a)anthracene	ND	36	36	ug/L	20	11/23/16	DD	SW8270D
Benzidine	ND	64	64	ug/L	20	11/23/16	DD	SW8270D
Benzo(a)pyrene	ND	35	35	ug/L	20	11/23/16	DD	SW8270D
Benzo(b)fluoranthene	ND	37	37	ug/L	20	11/23/16	DD	SW8270D
Benzo(ghi)perylene	ND	35	35	ug/L	20	11/23/16	DD	SW8270D
Benzo(k)fluoranthene	ND	36	36	ug/L	20	11/23/16	DD	SW8270D
Benzoic acid	360	220	220	ug/L	20	11/23/16	DD	SW8270D
Benzyl butyl phthalate	ND	50	28	ug/L	20	11/23/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	30	30	ug/L	20	11/23/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	29	29	ug/L	20	11/23/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	110	30	ug/L	20	11/23/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	31	31	ug/L	20	11/23/16	DD	SW8270D
Carbazole	ND	540	82	ug/L	20	11/23/16	DD	SW8270D
Chrysene	ND	36	36	ug/L	20	11/23/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	50	35	ug/L	20	11/23/16	DD	SW8270D
Dibenzofuran	ND	32	32	ug/L	20	11/23/16	DD	SW8270D
Diethyl phthalate	ND	50	34	ug/L	20	11/23/16	DD	SW8270D

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Dimethylphthalate	ND	50	34	ug/L	20	11/23/16	DD	SW8270D
Di-n-butylphthalate	ND	50	29	ug/L	20	11/23/16	DD	SW8270D
Di-n-octylphthalate	ND	50	28	ug/L	20	11/23/16	DD	SW8270D
Fluoranthene	ND	50	35	ug/L	20	11/23/16	DD	SW8270D
Fluorene	ND	50	36	ug/L	20	11/23/16	DD	SW8270D
Hexachlorobenzene	ND	32	32	ug/L	20	11/23/16	DD	SW8270D
Hexachlorobutadiene	ND	39	39	ug/L	20	11/23/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	33	33	ug/L	20	11/23/16	DD	SW8270D
Hexachloroethane	ND	32	32	ug/L	20	11/23/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	36	36	ug/L	20	11/23/16	DD	SW8270D
Isophorone	ND	50	30	ug/L	20	11/23/16	DD	SW8270D
Naphthalene	ND	31	31	ug/L	20	11/23/16	DD	SW8270D
Nitrobenzene	ND	38	38	ug/L	20	11/23/16	DD	SW8270D
N-Nitrosodimethylamine	ND	110	30	ug/L	20	11/23/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	110	35	ug/L	20	11/23/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	50	42	ug/L	20	11/23/16	DD	SW8270D
Pentachloronitrobenzene	ND	110	40	ug/L	20	11/23/16	DD	SW8270D
Pentachlorophenol	ND	41	41	ug/L	20	11/23/16	DD	SW8270D
Phenanthrene	ND	50	31	ug/L	20	11/23/16	DD	SW8270D
Phenol	ND	35	35	ug/L	20	11/23/16	DD	SW8270D
Pyrene	ND	50	37	ug/L	20	11/23/16	DD	SW8270D
Pyridine	ND	50	27	ug/L	20	11/23/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	Diluted Out			%	20	11/23/16	DD	15 - 110 %
% 2-Fluorobiphenyl	Diluted Out			%	20	11/23/16	DD	30 - 130 %
% 2-Fluorophenol	Diluted Out			%	20	11/23/16	DD	15 - 110 %
% Nitrobenzene-d5	Diluted Out			%	20	11/23/16	DD	30 - 130 %
% Phenol-d5	Diluted Out			%	20	11/23/16	DD	15 - 110 %
% Terphenyl-d14	Diluted Out			%	20	11/23/16	DD	30 - 130 %

Client ID: MW4

RL/ LOD/

Parameter Result PQL MDL Units Dilution Date/Time By Reference

- 1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.
- 3 = This parameter exceeds laboratory specified limits.
- B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

Semi-Volatile Comment:

Due to a matrix interference and/or the presence of a large amount of non-target material in the sample, a dilution was required resulting in an elevated RL for the semivolatile analysis.

Semi-Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 29, 2016

Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

P.O.#:

November 29, 2016

Attn: Mr. Charles B. Sosik, P.G. FOR:

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample Information Custody Information Date <u>Time</u>

TG Matrix: **GROUND WATER** Collected by: 11/17/16

EBC Received by: LB **Location Code:** 11/18/16 15:49

Rush Request: 72 Hour Analyzed by: see "By" below

ND

0.002

0.001

mg/L

1181 FLUSHING AVE., BROOKLYN Project ID: Client ID: MW5

_aboratory Data

SDG ID: GBV87817 Phoenix ID: BV87821

11/20/16

LK/MA SW6010C

Oliciti ID.									
Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
	ND	0.005	0.001	mg/L	1	11/20/16	LK	SW6010C	
Silver Aluminum	1.05	0.003	0.001	mg/L	1	11/20/16	LK	SW6010C	
	ND	0.010	0.003	mg/L	1	11/20/16	LK	SW6010C	
Arsenic - LDL	0.155	0.004	0.004	_	•	11/20/16	LK	SW6010C SW6010C	
Barium				mg/L	1				
Beryllium	ND	0.001	0.001	mg/L	1	11/20/16	LK	SW6010C	В
Calcium	98.0	0.010	0.01	mg/L	1	11/20/16	LK	SW6010C	Ь
Cadmium	0.001	B 0.004	0.0005	mg/L	1	11/20/16	LK	SW6010C	
Cobalt	0.002	B 0.005	0.001	mg/L	1	11/20/16	LK	SW6010C	
Chromium	0.003	0.001	0.001	mg/L	1	11/20/16	LK	SW6010C	
Copper	0.004	B 0.005	0.001	mg/L	1	11/20/16	LK	SW6010C	
Silver (Dissolved)	ND	0.005	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Aluminum (Dissolved)	ND	0.011	0.005	mg/L	1	11/20/16	LK/MA	SW6010C	
Arsenic, (Dissolved)	ND	0.003	0.004	mg/L	1	11/20/16	LK/MA	SW6010C	
Barium (Dissolved)	0.085	0.011	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Beryllium (Dissolved)	ND	0.001	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Calcium (Dissolved)	87.4	0.01	0.01	mg/L	1	11/20/16	LK/MA	SW6010C	В
Cadmium (Dissolved)	ND	0.004	0.0005	mg/L	1	11/20/16	LK/MA	SW6010C	
Cobalt, (Dissolved)	ND	0.005	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Chromium (Dissolved)	ND	0.001	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Copper, (Dissolved)	ND	0.005	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Iron, (Dissolved)	0.39	0.01	0.01	mg/L	1	11/20/16	LK/MA	SW6010C	
Mercury (Dissolved)	ND	0.0002	0.00015	mg/L	1	11/21/16	RS	SW7470A	
Potassium (Dissolved)	4.3	0.1	0.01	mg/L	1	11/20/16	LK	SW6010C	
Magnesium (Dissolved)	30.1	0.01	0.01	mg/L	1	11/20/16	LK/MA	SW6010C	
Manganese, (Dissolved)	4.56	0.053	0.011	mg/L	10	11/20/16	LK	SW6010C	
Sodium (Dissolved)	128	1.1	0.11	mg/L	10	11/20/16	LK	SW6010C	
Nickel, (Dissolved)	ND	0.004	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	

Lead (Dissolved)

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Antimony, (Dissolved)	ND	0.003	0.003	mg/L	1	11/20/16	RS	SW7010
Selenium, (Dissolved)	ND	0.004	0.002	mg/L	1	11/22/16	RS	SW7010
Thallium , (Dissolved)	ND	0.0005	0.0005	mg/L	1	11/21/16	RS	SW7010
Vanadium, (Dissolved)	ND	0.011	0.001	mg/L	1	11/20/16	LK/MA	SW6010C
Zinc, (Dissolved)	ND	0.011	0.0012	mg/L	1	11/20/16	LK/MA	SW6010C
Iron	28.2	0.01	0.01	mg/L	1	11/20/16	LK	SW6010C
Mercury	ND	0.0002	0.00015	mg/L	1	11/21/16	RS	SW7470A
Potassium	4.8	0.1	0.01	mg/L	1	11/20/16	LK	SW6010C
Magnesium	33.5	0.010	0.01	mg/L	1	11/20/16	LK	SW6010C
Manganese	5.19	0.050	0.010	mg/L	10	11/20/16	LK	SW6010C
Sodium	130	1.0	0.10	mg/L	10	11/20/16	LK	SW6010C
Nickel	0.002	B 0.004	0.001	mg/L	1	11/20/16	LK	SW6010C
Lead	0.006	0.002	0.001	mg/L	1	11/20/16	LK	SW6010C
Antimony	ND	0.002	0.002	mg/L	1	11/20/16	RS	SW7010
Selenium	ND	0.002	0.001	mg/L	1	11/22/16	RS	SW7010
Thallium - LDL	ND	0.0005	0.0005	mg/L	1	11/21/16	RS	SW7010
Vanadium	0.004	B 0.010	0.001	mg/L	1	11/20/16	LK	SW6010C
Zinc	0.010	0.010	0.0011	mg/L	1	11/20/16	LK	SW6010C
Filtration	Completed					11/18/16	AG	0.45um Filter
Dissolved Mercury Digestion	Completed					11/21/16	QW/W	SW7470A
Mercury Digestion	Completed					11/21/16	Q/Q	SW7470A
PCB Extraction (2 Liter)	Completed					11/18/16	Z/Z	SW3510C
Extraction for Pest (2 Liter)	Completed					11/18/16	Z/Z	SW3510C
Semi-Volatile Extraction	Completed					11/18/16	P/D/D	SW3520C
Dissolved Metals Preparation	Completed					11/18/16	AG	SW3005A
Total Metals Digestion	Completed					11/18/16	AG	
<u>Pesticides</u>								
4,4' -DDD	ND	0.005	0.010	ug/L	1	11/22/16	CE	SW8081B
4,4' -DDE	ND	0.005	0.010	ug/L	1	11/22/16	CE	SW8081B
4,4' -DDT	ND	0.005	0.010	ug/L	1	11/22/16	CE	SW8081B
a-BHC	ND	0.005	0.005	ug/L	1	11/22/16	CE	SW8081B
a-chlordane	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B
Alachlor	ND	0.077	0.077	ug/L	1	11/22/16	CE	SW8081B 1
Aldrin	ND	0.002	0.002	ug/L	1	11/22/16	CE	SW8081B
b-BHC	ND	0.005	0.005	ug/L	1	11/22/16	CE	SW8081B
Chlordane	ND	0.052	0.052	ug/L	1	11/22/16	CE	SW8081B
d-BHC	ND	0.005	0.005	ug/L	1	11/22/16	CE	SW8081B
Dieldrin	ND	0.002	0.002	ug/L	1	11/22/16	CE	SW8081B
Endosulfan I	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B
Endosulfan II	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B
Endosulfan Sulfate	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B
Endrin	ND	0.005	0.005	ug/L	1	11/22/16	CE	SW8081B
Endrin Aldehyde	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B
Endrin ketone	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B
g-BHC (Lindane)	ND	0.005	0.005	ug/L	1	11/22/16	CE	SW8081B
g-chlordane	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B
Heptachlor	ND	0.005	0.005	ug/L	1	11/22/16	CE	SW8081B
Heptachlor epoxide	ND	0.005	0.005	ug/L	1	11/22/16	CE	SW8081B
Methoxychlor	ND	0.10	0.10	ug/L	1	11/22/16	CE	SW8081B

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Toxaphene	ND	0.21	0.21	ug/L	1	11/22/16	CE	SW8081B
QA/QC Surrogates								
%DCBP (Surrogate Rec)	49			%	1	11/22/16	CE	SW8081B
%TCMX (Surrogate Rec)	69			%	1	11/22/16	CE	SW8081B
Polychlorinated Bipheny	<u>ıls</u>							
PCB-1016	ND	0.052	0.052	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1221	ND	0.052	0.052	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1232	ND	0.052	0.052	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1242	ND	0.052	0.052	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1248	ND	0.052	0.052	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1254	ND	0.052	0.052	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1260	ND	0.052	0.052	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1262	ND	0.052	0.052	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1268	ND	0.052	0.052	ug/L	1	11/21/16	AW	E608/SW8082A
QA/QC Surrogates				•				
% DCBP	41			%	1	11/21/16	AW	40 - 140 %
% TCMX	65			%	1	11/21/16	AW	40 - 140 %
Volatiles								
1,1,1,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
1,1,1-Trichloroethane	ND	5.0	0.25	ug/L	1	11/21/16	HM	SW8260C
	ND	1.0	0.25	ug/L	1	11/21/16	HM	SW8260C
1,1,2,2-Tetrachloroethane	ND ND	1.0	0.25	ug/L ug/L	1	11/21/16	НМ	SW8260C SW8260C
1,1,2-Trichloroethane 1,1-Dichloroethane	0.53	J 5.0	0.25	ug/L ug/L	1	11/21/16	HM	SW8260C
1,1-Dichloroethene	ND	1.0	0.25	ug/L ug/L	1	11/21/16	HM	SW8260C
	ND	1.0	0.25	ug/L ug/L	1	11/21/16	HM	SW8260C
1,1-Dichloropropene 1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L ug/L	1	11/21/16	HM	SW8260C
1,2,3-Trichloropropane	ND	0.25	0.25	ug/L	1	11/21/16	HM	SW8260C
1,2,4-Trichlorobenzene	ND	1.0	0.25	ug/L	1	11/21/16	HM	SW8260C
1,2,4-Trimethylbenzene	1.3	1.0	0.25	ug/L	1	11/21/16	HM	SW8260C
1,2-Dibromo-3-chloropropane	ND	0.50	0.50	ug/L	1	11/21/16	HM	SW8260C
1,2-Dibromoethane	ND	0.25	0.25	ug/L	1	11/21/16	HM	SW8260C
1,2-Dichlorobenzene	ND	1.0	0.25	ug/L	1	11/21/16	HM	SW8260C
1,2-Dichloroethane	ND	0.60	0.50	ug/L	1	11/21/16	HM	SW8260C
1,2-Dichloropropane	ND	1.0	0.25	ug/L	1	11/21/16	HM	SW8260C
1,3,5-Trimethylbenzene	ND	1.0	0.25	ug/L	1	11/21/16	HM	SW8260C
1,3-Dichlorobenzene	ND	1.0	0.25	ug/L	1	11/21/16	HM	SW8260C
1,3-Dichloropropane	ND	1.0	0.25	ug/L	1	11/21/16	HM	SW8260C
1,4-Dichlorobenzene	ND	1.0	0.25	ug/L	1	11/21/16	HM	SW8260C
2,2-Dichloropropane	ND	1.0	0.25	ug/L	1	11/21/16	HM	SW8260C
2-Chlorotoluene	ND	1.0	0.25	ug/L	1	11/21/16	HM	SW8260C
2-Hexanone	ND	2.5	2.5	ug/L	1	11/21/16	HM	SW8260C
2-Isopropyltoluene	ND	1.0	0.25	ug/L	1	11/21/16	HM	SW8260C 1
4-Chlorotoluene	ND	1.0	0.25	ug/L	1	11/21/16	HM	SW8260C
4-Chlorotoluene 4-Methyl-2-pentanone	ND ND	2.5	2.5	ug/L ug/L	1	11/21/16	НМ	SW8260C
Acetone	4.7	JS 5.0	2.5	ug/L ug/L	1	11/21/16	HM	SW8260C
Acrolein	4.7 ND	5.0	2.5	ug/L ug/L	1	11/21/16	НМ	SW8260C
	ND	5.0	2.5	ug/L ug/L	1	11/21/16	HM	SW8260C
Acrylonitrile					1		нм	SW8260C
Benzene	0.73	0.70	0.25	ug/L	ı	11/21/16	ΠIVI	37702000

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Bromobenzene	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Bromochloromethane	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Bromodichloromethane	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Bromoform	ND	5.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Bromomethane	ND	5.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Carbon Disulfide	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Carbon tetrachloride	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Chlorobenzene	ND	5.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Chloroethane	ND	5.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Chloroform	ND	5.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Chloromethane	ND	5.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
cis-1,2-Dichloroethene	1.4	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
cis-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	11/21/16	НМ	SW8260C
Dibromochloromethane	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Dibromomethane	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Dichlorodifluoromethane	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Ethylbenzene	1.1	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Hexachlorobutadiene	ND	0.50	0.20	ug/L	1	11/21/16	НМ	SW8260C
Isopropylbenzene	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
m&p-Xylene	3.6	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Methyl ethyl ketone	ND	2.5	2.5	ug/L	1	11/21/16	НМ	SW8260C
Methyl t-butyl ether (MTBE)	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Methylene chloride	ND	3.0	1.0	ug/L	1	11/21/16	НМ	SW8260C
Naphthalene	ND	1.0	1.0	ug/L	1	11/21/16	НМ	SW8260C
n-Butylbenzene	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
n-Propylbenzene	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
o-Xylene	1.1	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
p-Isopropyltoluene	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
sec-Butylbenzene	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Styrene	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
tert-Butylbenzene	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Tetrachloroethene	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Tetrahydrofuran (THF)	ND	5.0	2.5	ug/L	1	11/21/16	НМ	SW8260C 1
Toluene	0.48	J 1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
trans-1,2-Dichloroethene	0.74	J 5.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
trans-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	11/21/16	НМ	SW8260C
trans-1,4-dichloro-2-butene	ND	2.5	2.5	ug/L	1	11/21/16	НМ	SW8260C
Trichloroethene	1.3	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Trichlorofluoromethane	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Trichlorotrifluoroethane	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
Vinyl chloride	ND	1.0	0.25	ug/L	1	11/21/16	НМ	SW8260C
QA/QC Surrogates				9/-	·			
% 1,2-dichlorobenzene-d4	97			%	1	11/21/16	НМ	70 - 130 %
% Bromofluorobenzene	95			%	1	11/21/16	НМ	70 - 130 %
% Dibromofluoromethane	98			%	1	11/21/16	НМ	70 - 130 %
% Toluene-d8	100			%	1	11/21/16	НМ	70 - 130 %
<u>Semivolatiles</u>								
1,2,4-Trichlorobenzene	ND	5.0	1.5	ug/L	1	11/23/16	DD	SW8270D
1,2-Dichlorobenzene	ND	1.0	1.0	ug/L	1	11/23/16	DD	SW8270D

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1,2-Diphenylhydrazine	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D
1,3-Dichlorobenzene	ND	1.0	1.0	ug/L	1	11/23/16	DD	SW8270D
1,4-Dichlorobenzene	ND	1.0	1.0	ug/L	1	11/23/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	1.0	1.0	ug/L	1	11/23/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	1.0	1.0	ug/L	1	11/23/16	DD	SW8270D
2,4-Dichlorophenol	ND	1.0	1.0	ug/L	1	11/23/16	DD	SW8270D
2,4-Dimethylphenol	ND	1.0	1.0	ug/L	1	11/23/16	DD	SW8270D
2,4-Dinitrophenol	ND	1.0	1.0	ug/L	1	11/23/16	DD	SW8270D
2,4-Dinitrotoluene	ND	5.0	2.0	ug/L	1	11/23/16	DD	SW8270D
2,6-Dinitrotoluene	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D
2-Chloronaphthalene	ND	5.0	1.4	ug/L	1	11/23/16	DD	SW8270D
2-Chlorophenol	ND	1.0	1.0	ug/L	1	11/23/16	DD	SW8270D
2-Methylnaphthalene	ND	5.0	1.5	ug/L	1	11/23/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	1.0	1.0	ug/L	1	11/23/16	DD	SW8270D
2-Nitroaniline	ND	5.0	2.0	ug/L	1	11/23/16	DD	SW8270D
2-Nitrophenol	ND	1.0	1.0	ug/L	1	11/23/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	1.0	1.0	ug/L	1	11/23/16	DD	SW8270D
3,3'-Dichlorobenzidine	ND	5.0	2.4	ug/L	1	11/23/16	DD	SW8270D
3-Nitroaniline	ND	5.0	2.0	ug/L	1	11/23/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	1.0	1.0	ug/L	1	11/23/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	5.0	1.5	ug/L	1	11/23/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	1.0	1.0	ug/L	1	11/23/16	DD	SW8270D
4-Chloroaniline	ND	3.5	2.3	ug/L	1	11/23/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	5.0	1.7	ug/L	1	11/23/16	DD	SW8270D
4-Nitroaniline	ND	5.0	1.7	ug/L	1	11/23/16	DD	SW8270D
4-Nitrophenol	ND	1.0	1.0	ug/L	1	11/23/16	DD	SW8270D
Acenaphthene	ND	5.0	1.5	ug/L	1	11/23/16	DD	SW8270D
Acetophenone	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D
Aniline	ND	3.5	5.0	ug/L	1	11/23/16	DD	SW8270D
Anthracene	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D
Benzidine	ND	4.5	2.9	ug/L	1	11/23/16	DD	SW8270D
Benzoic acid	ND	25	10	ug/L	1	11/23/16	DD	SW8270D
Benzyl butyl phthalate	ND	5.0	1.3	ug/L	1	11/23/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	5.0	1.4	ug/L	1	11/23/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	1.0	1.0	ug/L	1	11/23/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	5.0	1.4	ug/L	1	11/23/16	DD	SW8270D
Carbazole	ND	5.0	3.8	ug/L	1	11/23/16	DD	SW8270D
Dibenzofuran	ND	5.0	1.5	ug/L	1	11/23/16	DD	SW8270D
Diethyl phthalate	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D
Dimethylphthalate	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D
Di-n-butylphthalate	ND	5.0	1.3	ug/L	1	11/23/16	DD	SW8270D
Di-n-octylphthalate	ND	5.0	1.3	ug/L	1	11/23/16	DD	SW8270D
Fluoranthene	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D
Fluorene	ND	5.0	1.7	ug/L ug/L	1	11/23/16	DD	SW8270D
	ND	5.0	1.7	ug/L ug/L	1	11/23/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	5.0	1.3	ug/L ug/L	1	11/23/16	DD	SW8270D SW8270D
Isophorone Naphthalana	ND	5.0	1.4	ug/L ug/L	1	11/23/16	DD	SW8270D SW8270D
Naphthalene	ND	5.0 5.0					DD	SW8270D SW8270D
N-Nitrosodi-n-propylamine			1.6	ug/L	1	11/23/16		
N-Nitrosodiphenylamine	ND	5.0	1.9	ug/L	1	11/23/16	DD	SW8270D

Client ID: MW5

RL/ LOD/ Parameter Result **PQL** MDL Units Dilution Date/Time By Reference ND 1 Phenol 1.0 1.0 ug/L 11/23/16 DD SW8270D ND 1 5.0 1.7 ug/L 11/23/16 DD SW8270D Pyrene Pyridine ND 10 1.2 ug/L 1 11/23/16 DD SW8270D **QA/QC Surrogates** 86 % 1 11/23/16 DD 15 - 110 % % 2,4,6-Tribromophenol % 2-Fluorobiphenyl 65 % 1 11/23/16 DD 30 - 130 % 1 66 % DD 15 - 110 % % 2-Fluorophenol 11/23/16 72 1 % Nitrobenzene-d5 % 11/23/16 DD 30 - 130 % 71 % 1 11/23/16 DD 15 - 110 % % Phenol-d5 1 % Terphenyl-d14 61 % 11/23/16 DD 30 - 130 % **Semivolatiles** 1,2,4,5-Tetrachlorobenzene ND 0.50 0.50 ug/L 1 11/22/16 DD SW8270D (SIM) Acenaphthylene ND 0.10 0.10 ug/L 1 11/22/16 DD SW8270D (SIM) ND 0.02 ug/L 1 DD Benz(a)anthracene 0.02 11/22/16 SW8270D (SIM) 1 ND 0.02 ug/L DD Benzo(a)pyrene 0.02 11/22/16 SW8270D (SIM) ND 0.02 0.02 ug/L 1 11/22/16 DD SW8270D (SIM) Benzo(b)fluoranthene ND 0.02 0.02 ug/L 1 11/22/16 DD SW8270D (SIM) Benzo(ghi)perylene Benzo(k)fluoranthene ND 0.02 0.02 ug/L 1 11/22/16 DD SW8270D (SIM) ND 1.0 1.0 ug/L 1 11/22/16 DD SW8270D (SIM) Bis(2-ethylhexyl)phthalate ND 0.02 1 SW8270D (SIM) Chrysene 0.02 ug/L 11/22/16 DD ND 0.02 0.02 ug/L 1 DD SW8270D (SIM) 11/22/16 Dibenz(a,h)anthracene Hexachlorobenzene ND 0.02 0.02 ug/L 1 11/22/16 DD SW8270D (SIM) Hexachlorobutadiene ND 0.40 0.40 ug/L 1 11/22/16 DD SW8270D (SIM) ND 0.50 ug/L 1 11/22/16 DD SW8270D (SIM) Hexachloroethane 0.50 ND 0.02 0.02 ug/L 1 11/22/16 DD SW8270D (SIM) Indeno(1,2,3-cd)pyrene ND 0.10 ug/L 1 DD SW8270D (SIM) Nitrobenzene 0.10 11/22/16 ND 0.10 ug/L 1 11/22/16 DD SW8270D (SIM) N-Nitrosodimethylamine 0.10 ug/L Pentachloronitrobenzene ND 0.10 0.10 1 11/22/16 DD SW8270D (SIM) Pentachlorophenol ND 0.80 0.80 ug/L 1 11/22/16 DD SW8270D (SIM) ND 0.10 1 11/22/16 DD SW8270D (SIM) Phenanthrene 0.10 ug/L **QA/QC Surrogates** 100 % 1 11/22/16 DD 15 - 110 % % 2,4,6-Tribromophenol % 2-Fluorobiphenyl 80 % 1 11/22/16 DD 30 - 130 % 78 1 11/22/16 DD 15 - 110 % % 2-Fluorophenol % % Nitrobenzene-d5 87 % 1 11/22/16 DD 30 - 130 % 84 % 1 11/22/16 DD 15 - 110 % % Phenol-d5 % Terphenyl-d14 101 % 1 11/22/16 DD 30 - 130 %

Phoenix I.D.: BV87821

Client ID: MW5

RL/ LOD/

Parameter Result PQL MDL Units Dilution Date/Time By Reference

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time. B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 29, 2016

Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 29, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample Information Custody Information Date <u>Time</u> TG Matrix: **GROUND WATER** Collected by: 11/17/16

Received by: **EBC** LB 11/18/16 **Location Code:** 15:49

Rush Request: 72 Hour Analyzed by: see "By" below

1181 FLUSHING AVE., BROOKLYN Project ID: Client ID: 8WM

P.O.#:

_aboratory Data

SDG ID: GBV87817 Phoenix ID: BV87822

		RL/	LOD/						
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference	
Silver	ND	0.005	0.001	mg/L	1	11/20/16	LK	SW6010C	
Aluminum	6.20	0.010	0.005	mg/L	1	11/20/16	LK	SW6010C	
Arsenic - LDL	0.035	0.004	0.004	mg/L	1	11/20/16	LK	SW6010C	
Barium	0.450	0.010	0.001	mg/L	1	11/20/16	LK	SW6010C	
Beryllium	ND	0.001	0.001	mg/L	1	11/20/16	LK	SW6010C	
Calcium	162	0.10	0.10	mg/L	10	11/20/16	LK	SW6010C	В
Cadmium	0.003	B 0.004	0.0005	mg/L	1	11/20/16	LK	SW6010C	
Cobalt	0.012	0.005	0.001	mg/L	1	11/20/16	LK	SW6010C	
Chromium	0.021	0.001	0.001	mg/L	1	11/20/16	LK	SW6010C	
Copper	0.022	0.005	0.001	mg/L	1	11/20/16	LK	SW6010C	
Silver (Dissolved)	ND	0.005	0.001	mg/L	1	11/22/16	LK/MA	SW6010C	
Aluminum (Dissolved)	ND	0.011	0.005	mg/L	1	11/22/16	LK/MA	SW6010C	
Arsenic, (Dissolved)	0.014	0.003	0.004	mg/L	1	11/22/16	LK/MA	SW6010C	
Barium (Dissolved)	0.272	0.011	0.001	mg/L	1	11/22/16	LK/MA	SW6010C	
Beryllium (Dissolved)	ND	0.001	0.001	mg/L	1	11/22/16	LK/MA	SW6010C	
Calcium (Dissolved)	155	0.01	0.01	mg/L	1	11/22/16	LK/MA	SW6010C	В
Cadmium (Dissolved)	0.002	B 0.004	0.0005	mg/L	1	11/22/16	LK/MA	SW6010C	
Cobalt, (Dissolved)	0.006	0.005	0.001	mg/L	1	11/22/16	LK/MA	SW6010C	
Chromium (Dissolved)	ND	0.001	0.001	mg/L	1	11/22/16	LK/MA	SW6010C	
Copper, (Dissolved)	ND	0.005	0.001	mg/L	1	11/22/16	LK/MA	SW6010C	
Iron, (Dissolved)	79.1	0.01	0.01	mg/L	1	11/22/16	LK/MA	SW6010C	
Mercury (Dissolved)	ND	0.0002	0.00015	mg/L	1	11/21/16	RS	SW7470A	
Potassium (Dissolved)	20.6	1.1	0.11	mg/L	10	11/20/16	LK	SW6010C	
Magnesium (Dissolved)	26.8	0.01	0.01	mg/L	1	11/22/16	LK/MA	SW6010C	
Manganese, (Dissolved)	3.14	0.053	0.011	mg/L	10	11/23/16	LK	SW6010C	
Sodium (Dissolved)	151	1.1	0.11	mg/L	10	11/20/16	LK	SW6010C	
Nickel, (Dissolved)	0.013	0.004	0.001	mg/L	1	11/22/16	LK/MA	SW6010C	
Lead (Dissolved)	ND	0.002	0.001	mg/L	1	11/22/16	LK/MA	SW6010C	

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
Antimony, (Dissolved)	ND	0.003	0.003	mg/L	1	11/20/16	RS	SW7010	_
Selenium, (Dissolved)	ND	0.004	0.002	mg/L	1	11/22/16	RS	SW7010	
Thallium , (Dissolved)	ND	0.0005	0.0005	mg/L	1	11/21/16	RS	SW7010	
Vanadium, (Dissolved)	0.003	B 0.011	0.001	mg/L	1	11/22/16	LK/MA	SW6010C	
Zinc, (Dissolved)	0.011	B 0.011	0.0012	mg/L	1	11/22/16	LK/MA	SW6010C	
Iron	151	0.10	0.10	mg/L	10	11/20/16	LK	SW6010C	
Mercury	ND	0.0002	0.00015	mg/L	1	11/21/16	RS	SW7470A	
Potassium	25.2	0.1	0.01	mg/L	1	11/20/16	LK	SW6010C	
Magnesium	28.7	0.010	0.01	mg/L	1	11/20/16	LK	SW6010C	
Manganese	3.87	0.050	0.010	mg/L	10	11/20/16	LK	SW6010C	
Sodium	151	1.0	0.10	mg/L	10	11/20/16	LK	SW6010C	
Nickel	0.025	0.004	0.001	mg/L	1	11/20/16	LK	SW6010C	
Lead	0.018	0.002	0.001	mg/L	1	11/20/16	LK	SW6010C	
Antimony	ND	0.002	0.002	mg/L	1	11/20/16	RS	SW7010	
Selenium	ND	0.002	0.001	mg/L	1	11/22/16	RS	SW7010	
Thallium - LDL	ND	0.0005	0.0005	mg/L	1	11/21/16	RS	SW7010	
Vanadium	0.028	0.010	0.001	mg/L	1	11/20/16	LK	SW6010C	
Zinc	0.064	0.010	0.0011	mg/L	1	11/20/16	LK	SW6010C	
	Completed			J		11/18/16	AG	0.45um Filter	
	Completed					11/21/16		SW7470A	
, ,	Completed					11/21/16	Q/Q	SW7470A	
, 0	Completed					11/22/16	TZ/Z	SW3510C	
· · · · · · · · · · · · · · · · · · ·	Completed					11/22/16	TZ/Z	SW3510C	
	Completed					11/18/16		SW3520C	
	Completed					11/18/16	AG	SW3005A	
	Completed					11/18/16	AG		
<u>Pesticides</u>									
4,4' -DDD	ND	0.006	0.012	ug/L	1	11/23/16	CE	SW8081B	
4,4' -DDE	ND	0.006	0.012	ug/L	1	11/23/16	CE	SW8081B	
4,4' -DDT	ND	0.006	0.012	ug/L	1	11/23/16	CE	SW8081B	
a-BHC	ND	0.006	0.006	ug/L	1	11/23/16	CE	SW8081B	
a-chlordane	ND	0.012	0.012	ug/L	1	11/23/16	CE	SW8081B	
Alachlor	ND	0.089	0.089	ug/L	1	11/23/16	CE	SW8081B	1
Aldrin	ND	0.002	0.002	ug/L	1	11/23/16	CE	SW8081B	
b-BHC	ND	0.006	0.006	ug/L	1	11/23/16	CE	SW8081B	
Chlordane	ND	0.060	0.060	ug/L	1	11/23/16	CE	SW8081B	
d-BHC	ND	0.006	0.006	ug/L	1	11/23/16	CE	SW8081B	
Dieldrin	ND	0.002	0.002	ug/L	1	11/23/16	CE	SW8081B	
Endosulfan I	ND	0.012	0.012	ug/L	1	11/23/16	CE	SW8081B	
Endosulfan II	ND	0.012	0.012	ug/L	1	11/23/16	CE	SW8081B	
Endosulfan Sulfate	ND	0.012	0.012	ug/L	1	11/23/16	CE	SW8081B	
Endrin	ND	0.006	0.006	ug/L	1	11/23/16	CE	SW8081B	
Endrin Aldehyde	ND	0.012	0.012	ug/L	1	11/23/16	CE	SW8081B	
Endrin ketone	ND	0.012	0.012	ug/L	1	11/23/16	CE	SW8081B	
g-BHC (Lindane)	ND	0.006	0.006	ug/L	1	11/23/16	CE	SW8081B	
g-chlordane	ND	0.012	0.012	ug/L	1	11/23/16	CE	SW8081B	
Heptachlor	ND	0.006	0.006	ug/L	1	11/23/16	CE	SW8081B	
Heptachlor epoxide	ND	0.006	0.006	ug/L	1	11/23/16	CE	SW8081B	
Methoxychlor	ND	0.12	0.12	ug/L	1	11/23/16	CE	SW8081B	

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
Toxaphene	ND	0.24	0.24	ug/L	1	11/23/16	CE	SW8081B	
QA/QC Surrogates				-					
%DCBP (Surrogate Rec)	14			%	1	11/23/16	CE	SW8081B	
%TCMX (Surrogate Rec)	21			%	1	11/23/16	CE	SW8081B	
Delyablesinated Binhamy	da								
Polychlorinated Bipheny		0.000	0.000		4	44/00/40	I/O A	F000/0\M0000A	
PCB-1016	ND	0.060	0.060	ug/L	1	11/23/16	KCA	E608/SW8082A	
PCB-1221	ND	0.060	0.060	ug/L	1	11/23/16	KCA	E608/SW8082A	
PCB-1232	ND	0.060	0.060	ug/L	1	11/23/16	KCA	E608/SW8082A	
PCB-1242	ND	0.060	0.060	ug/L	1	11/23/16	KCA	E608/SW8082A	
PCB-1248	ND	0.060	0.060	ug/L	1	11/23/16	KCA	E608/SW8082A	
PCB-1254	ND	0.060	0.060	ug/L	1	11/23/16	KCA	E608/SW8082A	
PCB-1260	ND	0.060	0.060	ug/L	1	11/23/16	KCA	E608/SW8082A	
PCB-1262	ND	0.060	0.060	ug/L	1	11/23/16	KCA	E608/SW8082A	
PCB-1268	ND	0.060	0.060	ug/L	1	11/23/16	KCA	E608/SW8082A	
QA/QC Surrogates	0.4			0.4		4.4/00/4.0	1404	40 440 07	•
% DCBP	21			%	1	11/23/16	KCA		3
% TCMX	31			%	1	11/23/16	KCA	40 - 140 %	3
<u>Volatiles</u>									
1,1,1,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C	
1,1,1-Trichloroethane	ND	5.0	0.25	ug/L	1	11/19/16	НМ	SW8260C	
1,1,2,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C	
1,1,2-Trichloroethane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C	
1,1-Dichloroethane	ND	5.0	0.25	ug/L	1	11/19/16	НМ	SW8260C	
1,1-Dichloroethene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C	
1,1-Dichloropropene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C	
1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C	
1,2,3-Trichloropropane	ND	0.25	0.25	ug/L	1	11/19/16	НМ	SW8260C	
1,2,4-Trichlorobenzene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C	
1,2,4-Trimethylbenzene	5.4	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C	
1,2-Dibromo-3-chloropropane	ND	0.50	0.50	ug/L	1	11/19/16	НМ	SW8260C	
1,2-Dibromoethane	ND	0.25	0.25	ug/L	1	11/19/16	НМ	SW8260C	
1,2-Dichlorobenzene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C	
1,2-Dichloroethane	ND	0.60	0.50	ug/L	1	11/19/16	НМ	SW8260C	
1,2-Dichloropropane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C	
1,3,5-Trimethylbenzene	1.7	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C	
1,3-Dichlorobenzene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C	
1,3-Dichloropropane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C	
1,4-Dichlorobenzene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C	
2,2-Dichloropropane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C	
2-Chlorotoluene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C	
2-Hexanone	ND	2.5	2.5	ug/L	1	11/19/16	НМ	SW8260C	
2-Isopropyltoluene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C	1
4-Chlorotoluene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C	
4-Methyl-2-pentanone	30	2.5	2.5	ug/L	1	11/19/16	НМ	SW8260C	
Acetone	180	S 50	25	ug/L	10	11/21/16	НМ	SW8260C	
Acrolein	ND	5.0	2.5	ug/L	1	11/19/16	НМ	SW8260C	
Acrylonitrile	ND	5.0	2.5	ug/L	1	11/19/16	НМ	SW8260C	
Benzene	5.5	0.70	0.25	ug/L	1	11/19/16	НМ	SW8260C	

Bromochoromethane	Parameter Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Bromodichloromethane ND	Bromobenzene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Bromoform	Bromochloromethane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Bromomethane	Bromodichloromethane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Carbon Disulfide 0.94 J 10 0.25 ugL 1 11/19/16 HM SW8280C Carbon tetrachloride ND 1.0 0.25 ugL 1 11/19/16 HM SW8280C Chlorosehane ND 5.0 0.25 ugL 1 11/19/16 HM SW8280C Chloromethane ND 5.0 0.25 ugL 1 11/19/16 HM SW8280C Chloromethane ND 5.0 0.25 ugL 1 11/19/16 HM SW8280C Chloromethane ND 0.40 0.25 ugL 1 11/19/16 HM SW8280C Dibromomethane ND 1.0 0.25 ugL 1 11/19/16 HM SW8280C Eithylbenzene 4.1 1.0 0.25 ugL 1 11/19/16 HM SW8280C Eithylbenzene 9.7 1.0 0.25 ugL 1 11/19/16 HM SW8280C	Bromoform	ND	5.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Carbon tetrachloride	Bromomethane	ND	5.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Chlorobenzene	Carbon Disulfide	0.94	J 1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Chloroethane	Carbon tetrachloride	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Chloroform	Chlorobenzene	ND	5.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Chloromethane	Chloroethane	ND	5.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
cis-1,2-Dichloroethene 0.55 J 1.0 0.25 ug/L 1 11/19/16 HM SW8260C cis-1,3-Dichloropropene ND 0.40 0.25 ug/L 1 11/19/16 HM SW8260C Dibromochromethane ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Dibromomethane ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Eithylbenzene 4.1 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Hexachlorobutadiene ND 0.50 0.20 ug/L 1 11/19/16 HM SW8260C Hexachlorobutadiene ND 0.50 0.20 ug/L 1 11/19/16 HM SW8260C Hexachlorobutadiene 0.41 J 0.0 0.50 ug/L 1 11/19/16 HM SW8260C Methyle char ME 3.0 0.25 ug/L 1 11/19/16	Chloroform	ND	5.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
cis-1,3-Dichloropropene ND 0.40 0.25 ug/L 1 11/19/16 HM SW8260C Dibromomethane ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Dibromomethane ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Ethylbenzene 4.1 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Hexachlorobutadiene ND 0.50 0.20 ug/L 1 11/19/16 HM SW8260C Isopropylbenzene 0.41 J 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Isopropylbenzene 0.41 J 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Methyl ethyl ketone 130 25 25 ug/L 1 11/19/16 HM SW8260C Methyl ethyl ether (MTBE) 8.8 1.0 0.25 ug/L 1 11/19/16 HM	Chloromethane	ND	5.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Dibromochloromethane	cis-1,2-Dichloroethene	0.55	J 1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Dibromomethane	cis-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	11/19/16	НМ	SW8260C
Dichlorodifluoromethane	Dibromochloromethane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Ethylbenzene	Dibromomethane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Hexachlorobutadiene	Dichlorodifluoromethane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Hexachlorobutadiene	Ethylbenzene	4.1	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
m&p-Xylene 9.7 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Methyl ethyl ketone 130 25 25 ug/L 10 11/21/16 HM SW8260C Methyl ethyl ether (MTBE) 8.8 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Methylene chloride ND 3.0 1.0 ug/L 1 11/19/16 HM SW8260C Naphthalene 2.7 1.0 1.0 ug/L 1 11/19/16 HM SW8260C n-Butylbenzene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C o-Xylene 5.5 1.0 0.25 ug/L 1 11/19/16 HM SW8260C O-Xylene 5.5 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Styrene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C	-	ND	0.50	0.20	ug/L	1	11/19/16	НМ	SW8260C
m&p-Xylene 9.7 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Methyl ethyl ketone 130 25 25 ug/L 10 11/12/16 HM SW8260C Methyl t-butyl ether (MTBE) 8.8 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Methylene chloride ND 3.0 1.0 ug/L 1 11/19/16 HM SW8260C Naphthalene 2.7 1.0 1.0 ug/L 1 11/19/16 HM SW8260C n-Butylbenzene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C o-Xylene 5.5 1.0 0.25 ug/L 1 11/19/16 HM SW8260C o-Xylene 5.5 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Styrene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C	Isopropylbenzene	0.41	J 1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Methyl ethyl ketone 130 25 25 ug/L 10 11/21/16 HM SW8260C Methyl t-butyl ether (MTBE) 8.8 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Methylene chloride ND 3.0 1.0 ug/L 1 11/19/16 HM SW8260C Naphthalene 2.7 1.0 1.0 ug/L 1 11/19/16 HM SW8260C n-Butylbenzene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C n-Propylbenzene 0.55 J 1.0 0.25 ug/L 1 11/19/16 HM SW8260C p-Isopropyltoluene 5.5 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Styrene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Styrene ND 1.0 0.25 ug/L 1 11/19/16 HM SW		9.7	1.0	0.25	-	1	11/19/16	НМ	SW8260C
Methyl t-butyl ether (MTBE) 8.8 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Methylene chloride ND 3.0 1.0 ug/L 1 11/19/16 HM SW8260C Naphthalene 2.7 1.0 1.0 ug/L 1 11/19/16 HM SW8260C n-Butylbenzene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C n-Propylbenzene 0.55 J 1.0 0.25 ug/L 1 11/19/16 HM SW8260C o-Xylene 5.5 1.0 0.25 ug/L 1 11/19/16 HM SW8260C p-Isopropyltoluene 0.30 J 1.0 0.25 ug/L 1 11/19/16 HM SW8260C sec-Butylbenzene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Styrene ND 1.0 0.25 ug/L 1 11/19/16 HM		130	25	25		10	11/21/16	НМ	SW8260C
Methylene chloride ND 3.0 1.0 ug/L 1 11/19/16 HM SW8260C Naphthalene 2.7 1.0 1.0 ug/L 1 11/19/16 HM SW8260C n-Butylbenzene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C n-Propylbenzene 0.55 J 1.0 0.25 ug/L 1 11/19/16 HM SW8260C o-Xylene 5.5 1.0 0.25 ug/L 1 11/19/16 HM SW8260C p-Isopropyltoluene 0.30 J 1.0 0.25 ug/L 1 11/19/16 HM SW8260C sec-Butylbenzene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Styrene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Tetrabytylbenzene ND 1.0 0.25 ug/L 1 11/19/16 HM	-	8.8	1.0	0.25		1	11/19/16	НМ	SW8260C
Naphthalene		ND	3.0	1.0		1	11/19/16	НМ	SW8260C
n-Butylbenzene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C n-Propylbenzene 0.55 J 1.0 0.25 ug/L 1 11/19/16 HM SW8260C o-Xylene 5.5 1.0 0.25 ug/L 1 11/19/16 HM SW8260C p-Isopropyltoluene 0.30 J 1.0 0.25 ug/L 1 11/19/16 HM SW8260C sec-Butylbenzene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Styrene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Tetrachloroethene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Tetrahydrofuran (THF) ND 5.0 2.5 ug/L 1 11/19/16 HM SW8260C Tetrahydrofuran (THF) ND 5.0 0.25 ug/L 1 11/19/16	-	2.7	1.0	1.0		1	11/19/16	НМ	SW8260C
n-Propylbenzene 0.55 J 1.0 0.25 ug/L 1 11/19/16 HM SW8260C o-Xylene 5.5 1.0 0.25 ug/L 1 11/19/16 HM SW8260C p-Isopropyltoluene 0.30 J 1.0 0.25 ug/L 1 11/19/16 HM SW8260C sec-Butylbenzene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Styrene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Styrene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Tetrachloroethene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Tetrachloroethene ND 5.0 2.5 ug/L 1 11/19/16 HM SW8260C Tetrachlorotethene ND 5.0 0.25 ug/L 1 11/19/16 HM SW8260C <	-	ND	1.0	0.25		1	11/19/16	НМ	SW8260C
o-Xylene 5.5 1.0 0.25 ug/L 1 11/19/16 HM SW8260C p-Isopropyltoluene 0.30 J 1.0 0.25 ug/L 1 11/19/16 HM SW8260C sec-Butylbenzene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Styrene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Tetrabutylbenzene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Tetrachloroethene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Tetrahydrofuran (THF) ND 5.0 2.5 ug/L 1 11/19/16 HM SW8260C Tetrahydrofuran (THF) ND 5.0 0.25 ug/L 1 11/19/16 HM SW8260C Toluene 15 1.0 0.25 ug/L 1 11/19/16 HM SW8260		0.55	J 1.0	0.25		1	11/19/16	НМ	SW8260C
p-Isopropyltoluene 0.30 J 1.0 0.25 ug/L 1 11/19/16 HM SW8260C sec-Butylbenzene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Styrene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Tetrabutylbenzene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Tetrachloroethene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Tetrahydrofuran (THF) ND 5.0 0.25 ug/L 1 11/19/16 HM SW8260C Toluene 15 1.0 0.25 ug/L 1 11/19/16 HM SW8260C trans-1,2-Dichloroethene ND 5.0 0.25 ug/L 1 11/19/16 HM SW8260C trans-1,3-Dichloroporpopene ND 0.40 0.25 ug/L 1 11/19/16 HM		5.5	1.0	0.25		1	11/19/16	НМ	SW8260C
sec-Butylbenzene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Styrene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C tert-Butylbenzene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Tetrachloroethene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Tetrahydrofuran (THF) ND 5.0 2.5 ug/L 1 11/19/16 HM SW8260C Toluene 15 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Toluene 15 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Toluene 15 1.0 0.25 ug/L 1 11/19/16 HM SW8260C trans-1,3-Dichloropethene ND 0.40 0.25 ug/L 1 11/19/16 HM SW8260C		0.30	J 1.0	0.25		1	11/19/16	НМ	SW8260C
Styrene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C tert-Butylbenzene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Tetrachloroethene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Tetrahydrofuran (THF) ND 5.0 2.5 ug/L 1 11/19/16 HM SW8260C Toluene 15 1.0 0.25 ug/L 1 11/19/16 HM SW8260C trans-1,2-Dichloroethene ND 5.0 0.25 ug/L 1 11/19/16 HM SW8260C trans-1,3-Dichloropropene ND 0.40 0.25 ug/L 1 11/19/16 HM SW8260C trans-1,4-dichloro-2-butene ND 2.5 2.5 ug/L 1 11/19/16 HM SW8260C Trichloroethene ND 1.0 0.25 ug/L 1 11/19/16 HM		ND	1.0	0.25		1	11/19/16	НМ	SW8260C
tert-Butylbenzene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Tetrachloroethene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Tetrahydrofuran (THF) ND 5.0 2.5 ug/L 1 11/19/16 HM SW8260C Toluene 15 1.0 0.25 ug/L 1 11/19/16 HM SW8260C trans-1,2-Dichloroethene ND 5.0 0.25 ug/L 1 11/19/16 HM SW8260C trans-1,4-dichloro-2-butene ND 0.40 0.25 ug/L 1 11/19/16 HM SW8260C Trichloroethene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Trichlorofluoromethane ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Vinyl chloride ND 1.0 0.25 ug/L 1 11/19/16 HM		ND	1.0	0.25		1	11/19/16	НМ	SW8260C
Tetrachloroethene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Tetrahydrofuran (THF) ND 5.0 2.5 ug/L 1 11/19/16 HM SW8260C Toluene 15 1.0 0.25 ug/L 1 11/19/16 HM SW8260C trans-1,2-Dichloroethene ND 5.0 0.25 ug/L 1 11/19/16 HM SW8260C trans-1,3-Dichloropropene ND 0.40 0.25 ug/L 1 11/19/16 HM SW8260C trans-1,4-dichloro-2-butene ND 2.5 2.5 ug/L 1 11/19/16 HM SW8260C Trichloroethene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Trichlorofluoromethane ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Vinyl chloride ND 1.0 0.25 ug/L 1 11/19/16 HM	-	ND	1.0	0.25		1	11/19/16	НМ	SW8260C
Tetrahydrofuran (THF) ND 5.0 2.5 ug/L 1 11/19/16 HM SW8260C Toluene 15 1.0 0.25 ug/L 1 11/19/16 HM SW8260C trans-1,2-Dichloroethene ND 5.0 0.25 ug/L 1 11/19/16 HM SW8260C trans-1,3-Dichloropropene ND 0.40 0.25 ug/L 1 11/19/16 HM SW8260C trans-1,4-dichloro-2-butene ND 2.5 2.5 ug/L 1 11/19/16 HM SW8260C Trichloroethene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Trichloroffluoromethane ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Vinyl chloride ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C QA/QC Surrogates S % 1 11/19/16 HM 70 - 130 %	-	ND	1.0	0.25		1	11/19/16	НМ	SW8260C
Toluene 15 1.0 0.25 ug/L 1 11/19/16 HM SW8260C trans-1,2-Dichloroethene ND 5.0 0.25 ug/L 1 11/19/16 HM SW8260C trans-1,3-Dichloropropene ND 0.40 0.25 ug/L 1 11/19/16 HM SW8260C trans-1,4-dichloro-2-butene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Trichloroethene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Trichlorotrifluoromethane ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Vinyl chloride ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C QA/QC Surrogates Vinyl chloride ND 1.0 0.25 ug/L 1 11/19/16 HM 70 - 130 % % Bromofluorobenzene-d4 100 % 1 11/19/16 HM		ND	5.0	2.5		1	11/19/16	НМ	SW8260C 1
trans-1,2-Dichloroethene ND 5.0 0.25 ug/L 1 11/19/16 HM SW8260C trans-1,3-Dichloropropene ND 0.40 0.25 ug/L 1 11/19/16 HM SW8260C trans-1,4-dichloro-2-butene ND 2.5 2.5 ug/L 1 11/19/16 HM SW8260C Trichloroethene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Trichlorotrifluoroethane ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Vinyl chloride ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Vinyl chloride ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C QA/QC Surrogates 8 1 11/19/16 HM 70 - 130 % 8 8 1 11/19/16 HM 70 - 130 % 9 1 11/19/16 HM 70 - 130 % 1		15	1.0	0.25		1	11/19/16	НМ	
trans-1,3-Dichloropropene ND 0.40 0.25 ug/L 1 11/19/16 HM SW8260C trans-1,4-dichloro-2-butene ND 2.5 2.5 ug/L 1 11/19/16 HM SW8260C Trichloroethene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Trichlorotrifluoromethane ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Vinyl chloride ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Vinyl chloride ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Vinyl chloride ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C QA/QC Surrogates V 1 11/19/16 HM 70 - 130 % 1 11/19/16 HM 70 - 130 % 1 11/19/16 HM 70 - 130 % 1 11/19/16 HM 70 - 130		ND	5.0	0.25		1	11/19/16	НМ	SW8260C
trans-1,4-dichloro-2-butene ND 2.5 2.5 ug/L 1 11/19/16 HM SW8260C Trichloroethene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Trichlorofluoromethane ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Trichlorotrifluoroethane ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Vinyl chloride ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Vinyl chloride ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C QA/QC Surrogates % 1,2-dichlorobenzene-d4 100 % 1 11/19/16 HM 70 - 130 % % Bromofluorobenzene 95 % 1 11/19/16 HM 70 - 130 % % Dibromofluoromethane 94 % 1 11/19/16 HM 70 - 130 % % Toluene-d8 100 % 1 11/19/16 HM 70 - 130 %					-	1		НМ	
Trichloroethene ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Trichlorofluoromethane ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Trichlorotrifluoroethane ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Vinyl chloride ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C QA/QC Surrogates Surrogates 8 1 11/19/16 HM 70 - 130 % % Bromofluorobenzene delloromethane 95 % 1 11/19/16 HM 70 - 130 % % Dibromofluoromethane 94 % 1 11/19/16 HM 70 - 130 % % Toluene-d8 100 % 1 11/19/16 HM 70 - 130 %	• •					1		НМ	
Trichlorofluoromethane ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Trichlorotrifluoroethane ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Vinyl chloride ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C QA/QC Surrogates Surrogates V 1 11/19/16 HM 70 - 130 % % Bromofluorobenzene 95 % 1 11/19/16 HM 70 - 130 % % Dibromofluoromethane 94 % 1 11/19/16 HM 70 - 130 % % Toluene-d8 100 % 1 11/19/16 HM 70 - 130 %	, and the second					1			
Trichlorotrifluoroethane ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C Vinyl chloride ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C QA/QC Surrogates Surrogates Value 1 11/19/16 HM 70 - 130 % % Bromofluorobenzene 95 % 1 11/19/16 HM 70 - 130 % % Dibromofluoromethane 94 % 1 11/19/16 HM 70 - 130 % % Toluene-d8 100 % 1 11/19/16 HM 70 - 130 %		ND				1	11/19/16	НМ	
Vinyl chloride ND 1.0 0.25 ug/L 1 11/19/16 HM SW8260C QA/QC Surrogates % 1 11/19/16 HM 70 - 130 % % Bromofluorobenzene 95 % 1 11/19/16 HM 70 - 130 % % Dibromofluoromethane 94 % 1 11/19/16 HM 70 - 130 % % Toluene-d8 100 % 1 11/19/16 HM 70 - 130 %						1			
QA/QC Surrogates % 1,2-dichlorobenzene-d4 100 % 1 11/19/16 HM 70 - 130 % % Bromofluorobenzene 95 % 1 11/19/16 HM 70 - 130 % % Dibromofluoromethane 94 % 1 11/19/16 HM 70 - 130 % % Toluene-d8 100 % 1 11/19/16 HM 70 - 130 %						1		НМ	
% 1,2-dichlorobenzene-d4 100 % 1 11/19/16 HM 70 - 130 % % Bromofluorobenzene 95 % 1 11/19/16 HM 70 - 130 % % Dibromofluoromethane 94 % 1 11/19/16 HM 70 - 130 % % Toluene-d8 100 % 1 11/19/16 HM 70 - 130 %					3				
% Bromofluorobenzene 95 % 1 11/19/16 HM 70 - 130 % % Dibromofluoromethane 94 % 1 11/19/16 HM 70 - 130 % % Toluene-d8 100 % 1 11/19/16 HM 70 - 130 %		100			%	1	11/19/16	НМ	70 - 130 %
% Dibromofluoromethane 94 % 1 11/19/16 HM 70 - 130 % % Toluene-d8 100 % 1 11/19/16 HM 70 - 130 %	· ·								
% Toluene-d8 100 % 1 11/19/16 HM 70 - 130 %									
Somivolatiles									
JEHHYUIAU1E3	<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene ND 110 39 ug/L 20 11/23/16 DD SW8270D		ND	110	39	ua/I	20	11/23/16	חח	SW8270D
1,2,4-Trichlorobenzene ND 110 34 ug/L 20 11/23/16 DD SW8270D									

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1,2-Dichlorobenzene	ND	31	31	ug/L	20	11/23/16	DD	SW8270D
1,2-Diphenylhydrazine	ND	110	36	ug/L	20	11/23/16	DD	SW8270D
1,3-Dichlorobenzene	ND	33	33	ug/L	20	11/23/16	DD	SW8270D
1,4-Dichlorobenzene	ND	33	33	ug/L	20	11/23/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	61	61	ug/L	20	11/23/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	36	36	ug/L	20	11/23/16	DD	SW8270D
2,4-Dichlorophenol	ND	39	39	ug/L	20	11/23/16	DD	SW8270D
2,4-Dimethylphenol	ND	28	28	ug/L	20	11/23/16	DD	SW8270D
2,4-Dinitrophenol	ND	78	78	ug/L	20	11/23/16	DD	SW8270D
2,4-Dinitrotoluene	ND	44	44	ug/L	20	11/23/16	DD	SW8270D
2,6-Dinitrotoluene	ND	35	35	ug/L	20	11/23/16	DD	SW8270D
2-Chloronaphthalene	ND	32	32	ug/L	20	11/23/16	DD	SW8270D
2-Chlorophenol	ND	32	32	ug/L	20	11/23/16	DD	SW8270D
2-Methylnaphthalene	ND	50	33	ug/L	20	11/23/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	52	52	ug/L	20	11/23/16	DD	SW8270D
2-Nitroaniline	ND	110	110	ug/L	20	11/23/16	DD	SW8270D
2-Nitrophenol	ND	70	70	ug/L	20	11/23/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	60	J 110	44	ug/L	20	11/23/16	DD	SW8270D
3,3'-Dichlorobenzidine	ND	52	52	ug/L	20	11/23/16	DD	SW8270D
3-Nitroaniline	ND	240	240	ug/L	20	11/23/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	120	120	ug/L	20	11/23/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	110	33	ug/L	20	11/23/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	39	39	ug/L	20	11/23/16	DD	SW8270D
4-Chloroaniline	ND	52	52	ug/L	20	11/23/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	110	37	ug/L	20	11/23/16	DD	SW8270D
4-Nitroaniline	ND	37	37	ug/L	20	11/23/16	DD	SW8270D
4-Nitrophenol	ND	50	50	ug/L	20	11/23/16	DD	SW8270D
Acenaphthene	ND	34	34	ug/L	20	11/23/16	DD	SW8270D
Acenaphthylene	ND	31	31	ug/L	20	11/23/16	DD	SW8270D
Acetophenone	ND	110	35	ug/L	20	11/23/16	DD	SW8270D
Aniline	ND	330	330	ug/L	20	11/23/16	DD	SW8270D
Anthracene	ND	50	36	ug/L	20	11/23/16	DD	SW8270D
Benz(a)anthracene	ND	37	37	ug/L	20	11/23/16	DD	SW8270D
Benzidine	ND	65	65	ug/L	20	11/23/16	DD	SW8270D
Benzo(a)pyrene	ND	36	36	ug/L	20	11/23/16	DD	SW8270D
Benzo(b)fluoranthene	ND	38	38	ug/L	20	11/23/16	DD	SW8270D
Benzo(ghi)perylene	ND	36	36	ug/L	20	11/23/16	DD	SW8270D
Benzo(k)fluoranthene	ND	37	37	ug/L	20	11/23/16	DD	SW8270D
Benzoic acid	3300	2200	2200	ug/L	200	11/23/16	DD	SW8270D
Benzyl butyl phthalate	ND	50	29	ug/L	20	11/23/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	31	31	ug/L	20	11/23/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	30	30	ug/L	20	11/23/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	110	31	ug/L	20	11/23/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	32	32	ug/L	20	11/23/16	DD	SW8270D
Carbazole	ND	560	84	ug/L	20	11/23/16	DD	SW8270D
Chrysene	ND	37	37	ug/L	20	11/23/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	50	36	ug/L	20	11/23/16	DD	SW8270D
Dibenzofuran	ND	32	32	ug/L	20	11/23/16	DD	SW8270D
Diethyl phthalate	ND	50	35	ug/L	20	11/23/16	DD	SW8270D
• •				-				

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Dimethylphthalate	ND	50	34	ug/L	20	11/23/16	DD	SW8270D
Di-n-butylphthalate	ND	50	30	ug/L	20	11/23/16	DD	SW8270D
Di-n-octylphthalate	ND	50	29	ug/L	20	11/23/16	DD	SW8270D
Fluoranthene	ND	50	36	ug/L	20	11/23/16	DD	SW8270D
Fluorene	ND	50	37	ug/L	20	11/23/16	DD	SW8270D
Hexachlorobenzene	ND	32	32	ug/L	20	11/23/16	DD	SW8270D
Hexachlorobutadiene	ND	40	40	ug/L	20	11/23/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	34	34	ug/L	20	11/23/16	DD	SW8270D
Hexachloroethane	ND	33	33	ug/L	20	11/23/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	37	37	ug/L	20	11/23/16	DD	SW8270D
Isophorone	ND	50	31	ug/L	20	11/23/16	DD	SW8270D
Naphthalene	ND	32	32	ug/L	20	11/23/16	DD	SW8270D
Nitrobenzene	ND	39	39	ug/L	20	11/23/16	DD	SW8270D
N-Nitrosodimethylamine	ND	110	31	ug/L	20	11/23/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	110	36	ug/L	20	11/23/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	50	43	ug/L	20	11/23/16	DD	SW8270D
Pentachloronitrobenzene	ND	110	41	ug/L	20	11/23/16	DD	SW8270D
Pentachlorophenol	ND	42	42	ug/L	20	11/23/16	DD	SW8270D
Phenanthrene	ND	50	32	ug/L	20	11/23/16	DD	SW8270D
Phenol	ND	36	36	ug/L	20	11/23/16	DD	SW8270D
Pyrene	ND	50	38	ug/L	20	11/23/16	DD	SW8270D
Pyridine	ND	50	27	ug/L	20	11/23/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	Diluted Out			%	20	11/23/16	DD	15 - 110 %
% 2-Fluorobiphenyl	Diluted Out			%	20	11/23/16	DD	30 - 130 %
% 2-Fluorophenol	Diluted Out			%	20	11/23/16	DD	15 - 110 %
% Nitrobenzene-d5	Diluted Out			%	20	11/23/16	DD	30 - 130 %
% Phenol-d5	Diluted Out			%	20	11/23/16	DD	15 - 110 %
% Terphenyl-d14	Diluted Out			%	20	11/23/16	DD	30 - 130 %

Client ID: MW8

RL/ LOD/

Parameter Result PQL MDL Units Dilution Date/Time By Reference

- 1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.
- 3 = This parameter exceeds laboratory specified limits.
- B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

Semi-Volatile Comment:

Due to a matrix interference and/or the presence of a large amount of non-target material in the sample, a dilution was required resulting in an elevated RL for the semivolatile analysis.

Semi-Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

PCB Comment:

Poor surrogate recovery was observed for PCBs. Sample was re-extracted with similar results.

Pesticide Comment:

Poor surrogate recovery was observed. Sample was re-extracted with similar results.

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 29, 2016

Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 29, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample InformationCustody InformationDateTimeMatrix:GROUND WATERCollected by:TG11/17/16Location Code:EBCReceived by:LB11/18/1615:49

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GBV87817
Phoenix ID: BV87823

Project ID: 1181 FLUSHING AVE., BROOKLYN

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
Silver	ND	0.005	0.001	mg/L	1	11/20/16	LK	SW6010C	
Aluminum	1.25	0.010	0.005	mg/L	1	11/20/16	LK	SW6010C	
Arsenic - LDL	0.009	0.004	0.004	mg/L	1	11/20/16	LK	SW6010C	
Barium	0.318	0.010	0.001	mg/L	1	11/20/16	LK	SW6010C	
Beryllium	ND	0.001	0.001	mg/L	1	11/20/16	LK	SW6010C	
Calcium	211	0.10	0.10	mg/L	10	11/20/16	LK	SW6010C	В
Cadmium	0.004	B 0.004	0.0005	mg/L	1	11/20/16	LK	SW6010C	
Cobalt	0.002	B 0.005	0.001	mg/L	1	11/20/16	LK	SW6010C	
Chromium	0.005	0.001	0.001	mg/L	1	11/20/16	LK	SW6010C	
Copper	0.001	B 0.005	0.001	mg/L	1	11/20/16	LK	SW6010C	
Silver (Dissolved)	ND	0.005	0.001	mg/L	1	11/22/16	LK/MA	SW6010C	
Aluminum (Dissolved)	0.008	B 0.011	0.005	mg/L	1	11/22/16	LK/MA	SW6010C	
Arsenic, (Dissolved)	0.005	0.003	0.004	mg/L	1	11/22/16	LK/MA	SW6010C	
Barium (Dissolved)	0.203	0.011	0.001	mg/L	1	11/22/16	LK/MA	SW6010C	
Beryllium (Dissolved)	ND	0.001	0.001	mg/L	1	11/22/16	LK/MA	SW6010C	
Calcium (Dissolved)	196	0.11	0.11	mg/L	10	11/23/16	LK	SW6010C	В
Cadmium (Dissolved)	0.001	B 0.004	0.0005	mg/L	1	11/22/16	LK/MA	SW6010C	
Cobalt, (Dissolved)	ND	0.005	0.001	mg/L	1	11/22/16	LK/MA	SW6010C	
Chromium (Dissolved)	ND	0.001	0.001	mg/L	1	11/22/16	LK/MA	SW6010C	
Copper, (Dissolved)	ND	0.005	0.001	mg/L	1	11/22/16	LK/MA	SW6010C	
Iron, (Dissolved)	46.9	0.01	0.01	mg/L	1	11/22/16	LK/MA	SW6010C	
Mercury (Dissolved)	ND	0.0002	0.00015	mg/L	1	11/21/16	RS	SW7470A	
Potassium (Dissolved)	13.8	1.1	0.11	mg/L	10	11/20/16	LK	SW6010C	
Magnesium (Dissolved)	29.5	0.01	0.01	mg/L	1	11/22/16	LK/MA	SW6010C	
Manganese, (Dissolved)	13.5	0.053	0.011	mg/L	10	11/23/16	LK	SW6010C	
Sodium (Dissolved)	282	1.1	0.11	mg/L	10	11/20/16	LK	SW6010C	
Nickel, (Dissolved)	ND	0.004	0.001	mg/L	1	11/22/16	LK/MA	SW6010C	
Lead (Dissolved)	ND	0.002	0.001	mg/L	1	11/22/16	LK/MA	SW6010C	

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Antimony, (Dissolved)	ND	0.003	0.003	mg/L	1	11/20/16	RS	SW7010
Selenium, (Dissolved)	ND	0.004	0.002	mg/L	1	11/22/16	RS	SW7010
Thallium , (Dissolved)	ND	0.0005	0.0005	mg/L	1	11/21/16	RS	SW7010
Vanadium, (Dissolved)	ND	0.011	0.001	mg/L	1	11/22/16	LK/MA	SW6010C
Zinc, (Dissolved)	0.007	B 0.011	0.0012	mg/L	1	11/22/16	LK/MA	SW6010C
Iron	158	0.10	0.10	mg/L	10	11/20/16	LK	SW6010C
Mercury	ND	0.0002	0.00015	mg/L	1	11/21/16	RS	SW7470A
Potassium	17.9	0.1	0.01	mg/L	1	11/20/16	LK	SW6010C
Magnesium	30.4	0.010	0.01	mg/L	1	11/20/16	LK	SW6010C
Manganese	14.3	0.050	0.010	mg/L	10	11/20/16	LK	SW6010C
Sodium	279	1.0	0.10	mg/L	10	11/20/16	LK	SW6010C
Nickel	0.004	0.004	0.001	mg/L	1	11/20/16	LK	SW6010C
Lead	0.009	0.002	0.001	mg/L	1	11/20/16	LK	SW6010C
Antimony	ND	0.002	0.002	mg/L	1	11/20/16	RS	SW7010
Selenium	ND	0.002	0.001	mg/L	1	11/22/16	RS	SW7010
Thallium - LDL	ND	0.0005	0.0005	mg/L	1	11/21/16	RS	SW7010
Vanadium	0.005	B 0.010	0.001	mg/L	1	11/20/16	LK	SW6010C
Zinc	0.026	0.010	0.0011	mg/L	1	11/20/16	LK	SW6010C
Filtration	Completed					11/18/16	AG	0.45um Filter
Dissolved Mercury Digestion	Completed					11/21/16	QW/W	SW7470A
Mercury Digestion	Completed					11/21/16	Q/Q	SW7470A
PCB Extraction (2 Liter)	Completed					11/22/16	TZ/Z	SW3510C
Extraction for Pest (2 Liter)	Completed					11/22/16	TZ/Z	SW3510C
Semi-Volatile Extraction	Completed					11/18/16	P/D/D	SW3520C
Dissolved Metals Preparation	Completed					11/18/16	AG	SW3005A
Total Metals Digestion	Completed					11/18/16	AG	
<u>Pesticides</u>								
4,4' -DDD	ND	0.005	0.010	ug/L	1	11/23/16	CE	SW8081B
4,4' -DDE	ND	0.005	0.010	ug/L	1	11/23/16	CE	SW8081B
4,4' -DDT	ND	0.007	0.007	ug/L	1	11/23/16	CE	SW8081B
a-BHC	ND	0.020	0.020	ug/L	1	11/23/16	CE	SW8081B
a-chlordane	ND	0.010	0.010	ug/L	1	11/23/16	CE	SW8081B
Alachlor	ND	0.078	0.078	ug/L	1	11/23/16	CE	SW8081B 1
Aldrin	ND	0.003	0.003	ug/L	1	11/23/16	CE	SW8081B
b-BHC	ND	0.020	0.020	ug/L	1	11/23/16	CE	SW8081B
Chlordane	ND	0.052	0.052	ug/L	1	11/23/16	CE	SW8081B
d-BHC	ND	0.010	0.010	ug/L	1	11/23/16	CE	SW8081B
Dieldrin	ND	0.005	0.005	ug/L	1	11/23/16	CE	SW8081B
Endosulfan I	ND	0.010	0.010	ug/L	1	11/23/16	CE	SW8081B
Endosulfan II	ND	0.010	0.010	ug/L	1	11/23/16	CE	SW8081B
Endosulfan Sulfate	ND	0.010	0.010	ug/L	1	11/23/16	CE	SW8081B
Endrin	ND	0.005	0.005	ug/L	1	11/23/16	CE	SW8081B
Endrin Aldehyde	ND	0.010	0.010	ug/L	1	11/23/16	CE	SW8081B
Endrin ketone	ND	0.010	0.010	ug/L	1	11/23/16	CE	SW8081B
g-BHC (Lindane)	ND	0.005	0.005	ug/L	1	11/23/16	CE	SW8081B
g-chlordane	ND	0.030	0.030	ug/L	1	11/23/16	CE	SW8081B
Heptachlor	ND	0.005	0.005	ug/L	1	11/23/16	CE	SW8081B
Heptachlor epoxide	ND	0.005	0.005	ug/L	1	11/23/16	CE	SW8081B
Methoxychlor	ND	0.10	0.10	ug/L	1	11/23/16	CE	SW8081B

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
	ND	0.21	0.21	ug/L	1	11/23/16	CE	SW8081B
Toxaphene QA/QC Surrogates	ND	0.21	0.21	ug/L	'	11/23/10	CL	3000010
%DCBP (Surrogate Rec)	29			%	1	11/23/16	CE	SW8081B
%TCMX (Surrogate Rec)	51			%	1	11/23/16	CE	SW8081B
70 TOWN (Guirogate Rec)	01			70	'	11/20/10	OL.	GWOOOTB
Polychlorinated Bipheny	<u>/ls</u>							
PCB-1016	0.16	0.052	0.052	ug/L	1	11/23/16	KCA	E608/SW8082A
PCB-1221	ND	0.052	0.052	ug/L	1	11/23/16	KCA	E608/SW8082A
PCB-1232	ND	0.052	0.052	ug/L	1	11/23/16	KCA	E608/SW8082A
PCB-1242	ND	0.052	0.052	ug/L	1	11/23/16	KCA	E608/SW8082A
PCB-1248	ND	0.052	0.052	ug/L	1	11/23/16	KCA	E608/SW8082A
PCB-1254	ND	0.052	0.052	ug/L	1	11/23/16	KCA	E608/SW8082A
PCB-1260	ND	0.052	0.052	ug/L	1	11/23/16	KCA	E608/SW8082A
PCB-1262	ND	0.052	0.052	ug/L	1	11/23/16	KCA	E608/SW8082A
PCB-1268	ND	0.052	0.052	ug/L	1	11/23/16	KCA	E608/SW8082A
QA/QC Surrogates								
% DCBP	72			%	1	11/23/16	KCA	
% TCMX	73			%	1	11/23/16	KCA	40 - 140 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
1,1,1-Trichloroethane	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
1,1,2,2-Tetrachloroethane	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
1,1,2-Trichloroethane	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
1,1-Dichloroethane	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
1,1-Dichloroethene	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
1,1-Dichloropropene	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
1,2,3-Trichlorobenzene	ND	20	5.0	ug/L	20	11/19/16	НМ	SW8260C
1,2,3-Trichloropropane	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
1,2,4-Trichlorobenzene	ND	20	5.0	ug/L	20	11/19/16	НМ	SW8260C
1,2,4-Trimethylbenzene	1400	50	50	ug/L	200	11/21/16	НМ	SW8260C
1,2-Dibromo-3-chloropropane	ND	10	10	ug/L	20	11/19/16	НМ	SW8260C
1,2-Dibromoethane	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
1,2-Dichlorobenzene	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
1,2-Dichloroethane	ND	10	10	ug/L	20	11/19/16	HM	SW8260C
1,2-Dichloropropane	ND	5.0	5.0	ug/L	20	11/19/16	HM	SW8260C
1,3,5-Trimethylbenzene	400	5.0	5.0	ug/L	20	11/19/16	HM	SW8260C
1,3-Dichlorobenzene	ND	5.0	5.0	ug/L	20	11/19/16	HM	SW8260C
1,3-Dichloropropane	ND	5.0	5.0	ug/L	20	11/19/16	HM	SW8260C
1,4-Dichlorobenzene	ND	5.0	5.0	ug/L	20	11/19/16	HM	SW8260C
2,2-Dichloropropane	ND	5.0	5.0	ug/L	20	11/19/16	HM	SW8260C
2-Chlorotoluene	ND	5.0	5.0	ug/L	20	11/19/16	HM	SW8260C
2-Hexanone	ND	50	50	ug/L	20	11/19/16	HM	SW8260C
2-Isopropyltoluene	ND	5.0	5.0	ug/L	20	11/19/16	HM	SW8260C 1
4-Chlorotoluene	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
4-Methyl-2-pentanone	ND	50	50	ug/L	20	11/19/16	НМ	SW8260C
Acetone	ND	50	50	ug/L	20	11/19/16	НМ	SW8260C
Acrolein	ND	50	50	ug/L	20	11/19/16	НМ	SW8260C
Acrylonitrile	ND	50	50	ug/L	20	11/19/16	НМ	SW8260C
Benzene	380	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Bromobenzene	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Bromochloromethane	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Bromodichloromethane	ND	20	5.0	ug/L	20	11/19/16	НМ	SW8260C
Bromoform	ND	50	5.0	ug/L	20	11/19/16	НМ	SW8260C
Bromomethane	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Carbon Disulfide	12	J 20	5.0	ug/L	20	11/19/16	НМ	SW8260C
Carbon tetrachloride	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Chlorobenzene	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Chloroethane	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Chloroform	ND	7.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Chloromethane	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
cis-1,2-Dichloroethene	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
cis-1,3-Dichloropropene	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Dibromochloromethane	ND	20	5.0	ug/L	20	11/19/16	НМ	SW8260C
Dibromomethane	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Dichlorodifluoromethane	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Ethylbenzene	940	50	50	ug/L	200	11/21/16	НМ	SW8260C
Hexachlorobutadiene	ND	4.0	4.0	ug/L	20	11/19/16	НМ	SW8260C
Isopropylbenzene	64	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
m&p-Xylene	3700	200	50	ug/L	200	11/21/16	НМ	SW8260C
Methyl ethyl ketone	ND	50	50	ug/L	20	11/19/16	НМ	SW8260C
Methyl t-butyl ether (MTBE)	ND	20	5.0	ug/L	20	11/19/16	НМ	SW8260C
Methylene chloride	ND	20	20	ug/L	20	11/19/16	НМ	SW8260C
Naphthalene	250	20	20	ug/L	20	11/19/16	НМ	SW8260C
n-Butylbenzene	16	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
n-Propylbenzene	170	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
o-Xylene	1500	50	50	ug/L	200	11/21/16	НМ	SW8260C
p-Isopropyltoluene	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
sec-Butylbenzene	12	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Styrene	6.9	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
tert-Butylbenzene	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Tetrachloroethene	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Tetrahydrofuran (THF)	ND	50	50	ug/L	20	11/19/16	НМ	SW8260C 1
Toluene	1100	50	50	ug/L	200	11/21/16	НМ	SW8260C
trans-1,2-Dichloroethene	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
trans-1,3-Dichloropropene	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
trans-1,4-dichloro-2-butene	ND	50	50	ug/L	20	11/19/16	НМ	SW8260C
Trichloroethene	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Trichlorofluoromethane	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Trichlorotrifluoroethane	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
Vinyl chloride	ND	5.0	5.0	ug/L	20	11/19/16	НМ	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	98			%	20	11/19/16	НМ	70 - 130 %
% Bromofluorobenzene	94			%	20	11/19/16	НМ	70 - 130 %
% Dibromofluoromethane	96			%	20	11/19/16	НМ	70 - 130 %
% Toluene-d8	100			%	20	11/19/16	НМ	70 - 130 %
<u>Semivolatiles</u>								
1,2,4,5-Tetrachlorobenzene	ND	100	35	ug/L	20	11/23/16	DD	SW8270D
1,2,4-Trichlorobenzene	ND	100	30	ug/L	20	11/23/16	DD	SW8270D

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1,2-Dichlorobenzene	ND	28	28	ug/L	20	11/23/16	DD	SW8270D
1,2-Dichloroberizerie 1,2-Diphenylhydrazine	ND	100	33	ug/L	20	11/23/16	DD	SW8270D
1,3-Dichlorobenzene	ND	30	30	ug/L	20	11/23/16	DD	SW8270D
1,4-Dichlorobenzene	ND	30	30	ug/L	20	11/23/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	55	55	ug/L	20	11/23/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	32	32	ug/L	20	11/23/16	DD	SW8270D
2,4-Dichlorophenol	ND	35	35	ug/L	20	11/23/16	DD	SW8270D
2,4-Dimethylphenol	ND	25	25	ug/L	20	11/23/16	DD	SW8270D
2,4-Dinitrophenol	ND	70	70	ug/L	20	11/23/16	DD	SW8270D
2,4-Dinitrotoluene	ND	39	39	ug/L	20	11/23/16	DD	SW8270D
2,6-Dinitrotoluene	ND	32	32	ug/L	20	11/23/16	DD	SW8270D
2-Chloronaphthalene	ND	28	28	ug/L	20	11/23/16	DD	SW8270D
2-Chlorophenol	ND	28	28	ug/L	20	11/23/16	DD	SW8270D
2-Methylnaphthalene	67	50	30	ug/L	20	11/23/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	47	47	ug/L	20	11/23/16	DD	SW8270D
2-Nitroaniline	ND	100	100	ug/L	20	11/23/16	DD	SW8270D
2-Nitrophenol	ND	63	63	ug/L	20	11/23/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	100	39	ug/L	20	11/23/16	DD	SW8270D
3,3'-Dichlorobenzidine	ND	47	47	ug/L	20	11/23/16	DD	SW8270D
3-Nitroaniline	ND	220	220	ug/L	20	11/23/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	110	110	ug/L	20	11/23/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	100	29	ug/L	20	11/23/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	35	35	ug/L	20	11/23/16	DD	SW8270D
4-Chloroaniline	ND	47	47	ug/L	20	11/23/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	100	34	ug/L	20	11/23/16	DD	SW8270D
4-Nitroaniline	ND	33	33	ug/L	20	11/23/16	DD	SW8270D
4-Nitrophenol	ND	45	45	ug/L	20	11/23/16	DD	SW8270D
Acenaphthene	ND	30	30	ug/L	20	11/23/16	DD	SW8270D
Acenaphthylene	ND	28	28	ug/L	20	11/23/16	DD	SW8270D
Acetophenone	ND	100	31	ug/L	20	11/23/16	DD	SW8270D
Aniline	ND	300	300	ug/L	20	11/23/16	DD	SW8270D
Anthracene	ND	50	33	ug/L	20	11/23/16	DD	SW8270D
Benz(a)anthracene	ND	34	34	ug/L	20	11/23/16	DD	SW8270D
Benzidine	ND	59	59	ug/L	20	11/23/16	DD	SW8270D
Benzo(a)pyrene	ND	33	33	ug/L	20	11/23/16	DD	SW8270D
Benzo(b)fluoranthene	ND	34	34	ug/L	20	11/23/16	DD	SW8270D
Benzo(ghi)perylene	ND	32	32	ug/L	20	11/23/16	DD	SW8270D
Benzo(k)fluoranthene	ND	33	33	ug/L	20	11/23/16	DD	SW8270D
Benzoic acid	3700	2000	2000	ug/L	200	11/23/16	DD	SW8270D
Benzyl butyl phthalate	ND	50	26	ug/L	20	11/23/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	28	28	ug/L	20	11/23/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	27	27	ug/L	20	11/23/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	100	28	ug/L	20	11/23/16	DD	SW8270D
Bis(2-ethylhexyl)phthalate	ND	29	29	ug/L	20	11/23/16	DD	SW8270D
Carbazole	ND	500	76	ug/L	20	11/23/16	DD	SW8270D
Chrysene	ND	34	34	ug/L	20	11/23/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	50	32	ug/L	20	11/23/16	DD	SW8270D
Dibenzofuran	ND	29	29	ug/L	20	11/23/16	DD	SW8270D
Diethyl phthalate	ND	50	32	ug/L	20	11/23/16	DD	SW8270D

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Dimethylphthalate	ND	50	31	ug/L	20	11/23/16	DD	SW8270D
Di-n-butylphthalate	ND	50	27	ug/L	20	11/23/16	DD	SW8270D
Di-n-octylphthalate	ND	50	26	ug/L	20	11/23/16	DD	SW8270D
Fluoranthene	ND	50	32	ug/L	20	11/23/16	DD	SW8270D
Fluorene	ND	50	33	ug/L	20	11/23/16	DD	SW8270D
Hexachlorobenzene	ND	29	29	ug/L	20	11/23/16	DD	SW8270D
Hexachlorobutadiene	ND	36	36	ug/L	20	11/23/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	31	31	ug/L	20	11/23/16	DD	SW8270D
Hexachloroethane	ND	30	30	ug/L	20	11/23/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	33	33	ug/L	20	11/23/16	DD	SW8270D
Isophorone	ND	50	28	ug/L	20	11/23/16	DD	SW8270D
Naphthalene	260	29	29	ug/L	20	11/23/16	DD	SW8270D
Nitrobenzene	ND	35	35	ug/L	20	11/23/16	DD	SW8270D
N-Nitrosodimethylamine	ND	100	28	ug/L	20	11/23/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	100	32	ug/L	20	11/23/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	50	38	ug/L	20	11/23/16	DD	SW8270D
Pentachloronitrobenzene	ND	100	37	ug/L	20	11/23/16	DD	SW8270D
Pentachlorophenol	ND	38	38	ug/L	20	11/23/16	DD	SW8270D
Phenanthrene	ND	50	29	ug/L	20	11/23/16	DD	SW8270D
Phenol	ND	32	32	ug/L	20	11/23/16	DD	SW8270D
Pyrene	ND	50	34	ug/L	20	11/23/16	DD	SW8270D
Pyridine	ND	50	25	ug/L	20	11/23/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	Diluted Out			%	20	11/23/16	DD	15 - 110 %
% 2-Fluorobiphenyl	Diluted Out			%	20	11/23/16	DD	30 - 130 %
% 2-Fluorophenol	Diluted Out			%	20	11/23/16	DD	15 - 110 %
% Nitrobenzene-d5	Diluted Out			%	20	11/23/16	DD	30 - 130 %
% Phenol-d5	Diluted Out			%	20	11/23/16	DD	15 - 110 %
% Terphenyl-d14	Diluted Out			%	20	11/23/16	DD	30 - 130 %

Client ID: MW14

RL/ LOD/

Parameter Result PQL MDL Units Dilution Date/Time By Reference

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Volatile Comment:

Elevated reporting limits for volatiles due to the presence of target and/or non-target compounds.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

Semi-Volatile Comment:

Due to a matrix interference and/or the presence of a large amount of non-target material in the sample, a dilution was required resulting in an elevated RL for the semivolatile analysis.

Semi-Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

Pesticide Comment:

Sample was evaluated against an external standard.

Pesticide Comment:

Poor surrogate recovery was observed. Sample was re-extracted with similar results.

Pesticide Comment:

Due to a matrix interference and/or the presence of a large amount of non-target material in the sample, an elevated RL was reported for the affected compounds.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 29, 2016

Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 29, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample Information Custody Information Date <u>Time</u>

GROUND WATER TG 11/17/16 Matrix: Collected by:

RL/

Received by: Location Code: **EBC** LB 11/18/16 15:49

LOD/

Rush Request: 72 Hour Analyzed by: see "By" below

Client ID: **MW15**

P.O.#:

Project ID:

Laboratory Data	SDG ID: GBV87817
<u> </u>	Phoenix ID: BV87824
1181 FLUSHING AVE., BROOKLYN	

Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference	
Silver	ND	0.005	0.001	mg/L	1	11/20/16	LK	SW6010C	
Aluminum	0.048	0.010	0.005	mg/L	1	11/22/16	LK/MA	SW6010C	
Arsenic - LDL	ND	0.004	0.004	mg/L	1	11/20/16	LK	SW6010C	
Barium	0.151	0.010	0.001	mg/L	1	11/20/16	LK	SW6010C	
Beryllium	ND	0.001	0.001	mg/L	1	11/20/16	LK	SW6010C	
Calcium	151	0.10	0.10	mg/L	10	11/20/16	LK	SW6010C	В
Cadmium	0.001	B 0.004	0.0005	mg/L	1	11/20/16	LK	SW6010C	
Cobalt	0.005	0.005	0.001	mg/L	1	11/20/16	LK	SW6010C	
Chromium	ND	0.001	0.001	mg/L	1	11/20/16	LK	SW6010C	
Copper	0.004	B 0.005	0.001	mg/L	1	11/20/16	LK	SW6010C	
Silver (Dissolved)	ND	0.005	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Aluminum (Dissolved)	0.005	B 0.011	0.005	mg/L	1	11/20/16	LK/MA	SW6010C	
Arsenic, (Dissolved)	ND	0.003	0.004	mg/L	1	11/20/16	LK/MA	SW6010C	
Barium (Dissolved)	0.142	0.011	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Beryllium (Dissolved)	ND	0.001	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Calcium (Dissolved)	141	0.01	0.01	mg/L	1	11/20/16	LK/MA	SW6010C	В
Cadmium (Dissolved)	ND	0.004	0.0005	mg/L	1	11/20/16	LK/MA	SW6010C	
Cobalt, (Dissolved)	0.005	0.005	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Chromium (Dissolved)	ND	0.001	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Copper, (Dissolved)	0.002	B 0.005	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Iron, (Dissolved)	0.12	0.01	0.01	mg/L	1	11/20/16	LK/MA	SW6010C	
Mercury (Dissolved)	ND	0.0002	0.00015	mg/L	1	11/21/16	RS	SW7470A	
Potassium (Dissolved)	19.6	0.1	0.01	mg/L	1	11/20/16	LK	SW6010C	
Magnesium (Dissolved)	36.2	0.01	0.01	mg/L	1	11/20/16	LK/MA	SW6010C	
Manganese, (Dissolved)	11.9	0.053	0.011	mg/L	10	11/20/16	LK	SW6010C	
Sodium (Dissolved)	159	1.1	0.11	mg/L	10	11/20/16	LK	SW6010C	
Nickel, (Dissolved)	0.003	B 0.004	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	
Lead (Dissolved)	0.002	B 0.002	0.001	mg/L	1	11/20/16	LK/MA	SW6010C	

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Antimony, (Dissolved)	ND	0.003	0.003	mg/L	1	11/20/16	RS	SW7010
Selenium, (Dissolved)	ND	0.004	0.002	mg/L	1	11/22/16	RS	SW7010
Thallium , (Dissolved)	ND	0.0005	0.0005	mg/L	1	11/21/16	RS	SW7010
Vanadium, (Dissolved)	ND	0.011	0.001	mg/L	1	11/20/16	LK/MA	SW6010C
Zinc, (Dissolved)	0.001	B 0.011	0.0012	mg/L	1	11/20/16	LK/MA	SW6010C
Iron	1.35	0.01	0.01	mg/L	1	11/20/16	LK	SW6010C
Mercury	ND	0.0002	0.00015	mg/L	1	11/21/16	RS	SW7470A
Potassium	20.7	0.1	0.01	mg/L	1	11/20/16	LK	SW6010C
Magnesium	39.5	0.010	0.01	mg/L	1	11/20/16	LK	SW6010C
Manganese	12.1	0.050	0.010	mg/L	10	11/20/16	LK	SW6010C
Sodium	161	1.0	0.10	mg/L	10	11/20/16	LK	SW6010C
Nickel	0.003	B 0.004	0.001	mg/L	1	11/20/16	LK	SW6010C
Lead	ND	0.002	0.001	mg/L	1	11/20/16	LK	SW6010C
Antimony	ND	0.002	0.002	mg/L	1	11/20/16	RS	SW7010
Selenium	ND	0.002	0.001	mg/L	1	11/22/16	RS	SW7010
Thallium - LDL	ND	0.0005	0.0005	mg/L	1	11/21/16	RS	SW7010
Vanadium	ND	0.010	0.001	mg/L	1	11/20/16	LK	SW6010C
Zinc	0.002	B 0.010	0.0011	mg/L	1	11/20/16	LK	SW6010C
Filtration	Completed			J		11/18/16	AG	0.45um Filter
Dissolved Mercury Digestion	Completed					11/21/16		SW7470A
Mercury Digestion	Completed					11/21/16	Q/Q	SW7470A
PCB Extraction (2 Liter)	Completed					11/18/16	Z/Z	SW3510C
Extraction for Pest (2 Liter)	Completed					11/18/16	Z/Z	SW3510C
Semi-Volatile Extraction	Completed					11/18/16		SW3520C
Dissolved Metals Preparation	Completed					11/18/16	AG	SW3005A
Total Metals Digestion	Completed					11/18/16	AG	
<u>Pesticides</u>								
4,4' -DDD	ND	0.005	0.010	ug/L	1	11/22/16	CE	SW8081B
4,4' -DDE	ND	0.005	0.010	ug/L	1	11/22/16	CE	SW8081B
4,4' -DDT	ND	0.005	0.010	ug/L	1	11/22/16	CE	SW8081B
a-BHC	ND	0.005	0.005	ug/L	1	11/22/16	CE	SW8081B
a-chlordane	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B
Alachlor	ND	0.075	0.075	ug/L	1	11/22/16	CE	SW8081B 1
Aldrin	ND	0.002	0.002	ug/L	1	11/22/16	CE	SW8081B
b-BHC	ND	0.002	0.010	ug/L	1	11/22/16	CE	SW8081B
Chlordane	ND	0.050	0.050	ug/L	1	11/22/16	CE	SW8081B
d-BHC	ND	0.005	0.005	ug/L	1	11/22/16	CE	SW8081B
Dieldrin	ND	0.003	0.003	ug/L ug/L	1	11/22/16	CE	SW8081B
Endosulfan I	ND	0.002	0.002	ug/L ug/L	1	11/22/16	CE	SW8081B
	ND	0.010	0.010	ug/L ug/L	1	11/22/16	CE	SW8081B
Endosulfan II	ND	0.010	0.010	_		11/22/16	CE	SW8081B
Endosulfan Sulfate				ug/L	1	11/22/16		
Endrin	ND	0.010	0.010	ug/L	1		CE	SW8081B
Endrin Aldehyde	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B
Endrin ketone	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B
g-BHC (Lindane)	ND	0.005	0.005	ug/L	1	11/22/16	CE	SW8081B
g-chlordane	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B
Heptachlor	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B
Heptachlor epoxide	ND	0.010	0.010	ug/L	1	11/22/16	CE	SW8081B
Methoxychlor	ND	0.10	0.10	ug/L	1	11/22/16	CE	SW8081B

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Toxaphene	ND	0.20	0.20	ug/L	1	11/22/16	CE	SW8081B
QA/QC Surrogates								
%DCBP (Surrogate Rec)	57			%	1	11/22/16	CE	SW8081B
%TCMX (Surrogate Rec)	75			%	1	11/22/16	CE	SW8081B
Polychlorinated Bipheny	<u>ıls</u>							
PCB-1016	ND	0.050	0.050	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1221	ND	0.050	0.050	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1232	ND	0.050	0.050	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1242	ND	0.050	0.050	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1248	ND	0.050	0.050	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1254	ND	0.050	0.050	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1260	ND	0.050	0.050	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1262	ND	0.050	0.050	ug/L	1	11/21/16	AW	E608/SW8082A
PCB-1268	ND	0.050	0.050	ug/L	1	11/21/16	AW	E608/SW8082A
QA/QC Surrogates								
% DCBP	57			%	1	11/21/16	AW	40 - 140 %
% TCMX	64			%	1	11/21/16	AW	40 - 140 %
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
1,1,1-Trichloroethane	ND	5.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
1,1,2,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
1,1,2-Trichloroethane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
1,1-Dichloroethane	ND	5.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
1,1-Dichloroethene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
1,1-Dichloropropene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
1,2,3-Trichloropropane	ND	0.25	0.25	ug/L	1	11/19/16	НМ	SW8260C
1,2,4-Trichlorobenzene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
1,2,4-Trimethylbenzene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
1,2-Dibromo-3-chloropropane	ND	0.50	0.50	ug/L	1	11/19/16	НМ	SW8260C
1,2-Dibromoethane	ND	0.25	0.25	ug/L	1	11/19/16	НМ	SW8260C
1,2-Dichlorobenzene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
1,2-Dichloroethane	ND	0.60	0.50	ug/L	1	11/19/16	НМ	SW8260C
1,2-Dichloropropane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
1,3,5-Trimethylbenzene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
1,3-Dichlorobenzene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
1,3-Dichloropropane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
1,4-Dichlorobenzene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
2,2-Dichloropropane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
2-Chlorotoluene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
2-Hexanone	ND	2.5	2.5	ug/L	1	11/19/16	НМ	SW8260C
2-Isopropyltoluene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C 1
4-Chlorotoluene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
4-Methyl-2-pentanone	ND	2.5	2.5	ug/L	1	11/19/16	НМ	SW8260C
Acetone	ND	5.0	2.5	ug/L	1	11/19/16	НМ	SW8260C
Acrolein	ND	5.0	2.5	ug/L	1	11/19/16	НМ	SW8260C
Acrylonitrile	ND	5.0	2.5	ug/L	1	11/19/16	НМ	SW8260C
Benzene	ND	0.70	0.25	ug/L	1	11/19/16	НМ	SW8260C

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Bromobenzene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Bromochloromethane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Bromodichloromethane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Bromoform	ND	5.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Bromomethane	ND	5.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Carbon Disulfide	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Carbon tetrachloride	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Chlorobenzene	ND	5.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Chloroethane	ND	5.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Chloroform	ND	5.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Chloromethane	ND	5.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
cis-1,2-Dichloroethene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
cis-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	11/19/16	НМ	SW8260C
Dibromochloromethane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Dibromomethane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Dichlorodifluoromethane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Ethylbenzene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Hexachlorobutadiene	ND	0.50	0.20	ug/L	1	11/19/16	НМ	SW8260C
Isopropylbenzene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
m&p-Xylene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Methyl ethyl ketone	ND	2.5	2.5	ug/L	1	11/19/16	НМ	SW8260C
Methyl t-butyl ether (MTBE)	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Methylene chloride	ND	3.0	1.0	ug/L	1	11/19/16	НМ	SW8260C
Naphthalene	ND	1.0	1.0	ug/L	1	11/19/16	НМ	SW8260C
n-Butylbenzene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
n-Propylbenzene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
o-Xylene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
p-Isopropyltoluene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
sec-Butylbenzene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Styrene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
tert-Butylbenzene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Tetrachloroethene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Tetrahydrofuran (THF)	ND	5.0	2.5	ug/L	1	11/19/16	НМ	SW8260C 1
Toluene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
trans-1,2-Dichloroethene	ND	5.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
trans-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	11/19/16	НМ	SW8260C
trans-1,4-dichloro-2-butene	ND	2.5	2.5	ug/L	1	11/19/16	НМ	SW8260C
Trichloroethene	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Trichlorofluoromethane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Trichlorotrifluoroethane	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
Vinyl chloride	ND	1.0	0.25	ug/L	1	11/19/16	НМ	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	98			%	1	11/19/16	НМ	70 - 130 %
% Bromofluorobenzene	94			%	1	11/19/16	НМ	70 - 130 %
% Dibromofluoromethane	94			%	1	11/19/16	НМ	70 - 130 %
% Toluene-d8	100			%	1	11/19/16	НМ	70 - 130 %
<u>Semivolatiles</u>								
	ND	5 O	1 5	ua/I	4	11/23/16	חח	SW8370D
1,2,4-Trichlorobenzene	ND	5.0	1.5	ug/L	1		DD	SW8270D
1,2-Dichlorobenzene	ND	1.0	1.0	ug/L	1	11/23/16	DD	SW8270D

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1,2-Diphenylhydrazine	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D
1,3-Dichlorobenzene	ND	1.0	1.0	ug/L	1	11/23/16	DD	SW8270D
1,4-Dichlorobenzene	ND	1.0	1.0	ug/L	1	11/23/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	1.0	1.0	ug/L	1	11/23/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	1.0	1.0	ug/L	1	11/23/16	DD	SW8270D
2,4-Dichlorophenol	ND	1.0	1.0	ug/L	1	11/23/16	DD	SW8270D
2,4-Dimethylphenol	ND	1.0	1.0	ug/L	1	11/23/16	DD	SW8270D
2,4-Dinitrophenol	ND	1.0	1.0	ug/L	1	11/23/16	DD	SW8270D
2,4-Dinitrotoluene	ND	5.0	2.0	ug/L	1	11/23/16	DD	SW8270D
2,6-Dinitrotoluene	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D
2-Chloronaphthalene	ND	5.0	1.4	ug/L	1	11/23/16	DD	SW8270D
2-Chlorophenol	ND	1.0	1.0	ug/L	1	11/23/16	DD	SW8270D
2-Methylnaphthalene	ND	5.0	1.5	ug/L	1	11/23/16	DD	SW8270D
2-Methylphenol (o-cresol)	ND	1.0	1.0	ug/L	1	11/23/16	DD	SW8270D
2-Nitroaniline	ND	5.0	2.0	ug/L	1	11/23/16	DD	SW8270D
2-Nitrophenol	ND	1.0	1.0	ug/L	1	11/23/16	DD	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	1.0	1.0	ug/L	1	11/23/16	DD	SW8270D
3,3'-Dichlorobenzidine	ND	5.0	2.4	ug/L	1	11/23/16	DD	SW8270D
3-Nitroaniline	ND	5.0	2.0	ug/L	1	11/23/16	DD	SW8270D
4,6-Dinitro-2-methylphenol	ND	1.0	1.0	ug/L	1	11/23/16	DD	SW8270D
4-Bromophenyl phenyl ether	ND	5.0	1.5	ug/L	1	11/23/16	DD	SW8270D
4-Chloro-3-methylphenol	ND	1.0	1.0	ug/L	1	11/23/16	DD	SW8270D
4-Chloroaniline	ND	3.5	2.3	ug/L	1	11/23/16	DD	SW8270D
4-Chlorophenyl phenyl ether	ND	5.0	1.7	ug/L	1	11/23/16	DD	SW8270D
4-Nitroaniline	ND	5.0	1.7	ug/L	1	11/23/16	DD	SW8270D
4-Nitrophenol	ND	1.0	1.0	ug/L	1	11/23/16	DD	SW8270D
Acenaphthene	ND	5.0	1.5	ug/L	1	11/23/16	DD	SW8270D
Acetophenone	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D
Aniline	ND	3.5	5.0	ug/L	1	11/23/16	DD	SW8270D
Anthracene	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D
Benzidine	ND	4.5	2.9	ug/L	1	11/23/16	DD	SW8270D
Benzoic acid	ND	25	10	ug/L	1	11/23/16	DD	SW8270D
Benzyl butyl phthalate	ND	5.0	1.3	ug/L	1	11/23/16	DD	SW8270D
Bis(2-chloroethoxy)methane	ND	5.0	1.4	ug/L	1	11/23/16	DD	SW8270D
Bis(2-chloroethyl)ether	ND	1.0	1.0	ug/L	1	11/23/16	DD	SW8270D
Bis(2-chloroisopropyl)ether	ND	5.0	1.4	ug/L	1	11/23/16	DD	SW8270D
Carbazole	ND	5.0	3.8	ug/L	1	11/23/16	DD	SW8270D
Dibenzofuran	ND	5.0	1.5	ug/L	1	11/23/16	DD	SW8270D
Diethyl phthalate	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D
Dimethylphthalate	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D
Di-n-butylphthalate	ND	5.0	1.3	ug/L	1	11/23/16	DD	SW8270D
Di-n-octylphthalate	ND	5.0	1.3	ug/L	1	11/23/16	DD	SW8270D
Fluoranthene	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D
Fluorene	ND	5.0	1.7	ug/L	1	11/23/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	5.0	1.5	ug/L	1	11/23/16	DD	SW8270D
Isophorone	ND	5.0	1.4	ug/L	1	11/23/16	DD	SW8270D
Naphthalene	ND	5.0	1.4	ug/L	1	11/23/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	5.0	1.6	ug/L	1	11/23/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	5.0	1.9	ug/L	1	11/23/16	DD	SW8270D

Client ID: MW15

RL/ LOD/ Parameter Result **PQL** MDL Units Dilution Date/Time By Reference ND 1 Phenol 1.0 1.0 ug/L 11/23/16 DD SW8270D ND 1 5.0 1.7 ug/L 11/23/16 DD SW8270D Pyrene Pyridine ND 10 1.2 ug/L 1 11/23/16 DD SW8270D **QA/QC Surrogates** 95 % 1 11/23/16 DD 15 - 110 % % 2,4,6-Tribromophenol 73 % 2-Fluorobiphenyl % 1 11/23/16 DD 30 - 130 % 1 87 % 11/23/16 DD 15 - 110 % % 2-Fluorophenol 77 1 % Nitrobenzene-d5 % 11/23/16 DD 30 - 130 % 80 % 1 11/23/16 DD 15 - 110 % % Phenol-d5 1 % Terphenyl-d14 73 % 11/23/16 DD 30 - 130 % **Semivolatiles** 1,2,4,5-Tetrachlorobenzene ND 0.50 0.50 ug/L 1 11/22/16 DD SW8270D (SIM) Acenaphthylene ND 0.10 0.10 ug/L 1 11/22/16 DD SW8270D (SIM) ND 0.02 ug/L 1 DD Benz(a)anthracene 0.02 11/22/16 SW8270D (SIM) 1 ND 0.02 ug/L DD Benzo(a)pyrene 0.02 11/22/16 SW8270D (SIM) ND 0.02 0.02 ug/L 1 11/22/16 DD SW8270D (SIM) Benzo(b)fluoranthene ND 0.02 0.02 ug/L 1 11/22/16 DD SW8270D (SIM) Benzo(ghi)perylene Benzo(k)fluoranthene ND 0.02 0.02 ug/L 1 11/22/16 DD SW8270D (SIM) ND 1.0 1.0 ug/L 1 11/22/16 DD SW8270D (SIM) Bis(2-ethylhexyl)phthalate ND 0.02 1 SW8270D (SIM) Chrysene 0.02 ug/L 11/22/16 DD ND 0.02 0.02 ug/L 1 DD SW8270D (SIM) 11/22/16 Dibenz(a,h)anthracene Hexachlorobenzene ND 0.02 0.02 ug/L 1 11/22/16 DD SW8270D (SIM) Hexachlorobutadiene ND 0.40 0.40 ug/L 1 11/22/16 DD SW8270D (SIM) ND 0.50 ug/L 1 11/22/16 DD SW8270D (SIM) Hexachloroethane 0.50 ND 0.02 0.02 ug/L 1 11/22/16 DD SW8270D (SIM) Indeno(1,2,3-cd)pyrene ND 0.10 ug/L 1 DD SW8270D (SIM) Nitrobenzene 0.10 11/22/16 ND 0.10 ug/L 1 11/22/16 DD SW8270D (SIM) N-Nitrosodimethylamine 0.10 ug/L Pentachloronitrobenzene ND 0.10 0.10 1 11/22/16 DD SW8270D (SIM) Pentachlorophenol ND 0.80 0.80 ug/L 1 11/22/16 DD SW8270D (SIM) ND 0.10 1 11/22/16 DD SW8270D (SIM) Phenanthrene 0.10 ug/L **QA/QC Surrogates** 101 % 1 11/22/16 DD 15 - 110 % % 2,4,6-Tribromophenol % 2-Fluorobiphenyl 83 % 1 11/22/16 DD 30 - 130 % 82 % 1 11/22/16 DD 15 - 110 % % 2-Fluorophenol % Nitrobenzene-d5 87 % 1 11/22/16 DD 30 - 130 % 87 % 1 11/22/16 DD 15 - 110 % % Phenol-d5 % Terphenyl-d14 109 % 1 11/22/16 DD 30 - 130 %

Phoenix I.D.: BV87824

Client ID: MW15

RL/ LOD/

Parameter Result PQL MDL Units Dilution Date/Time By Reference

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 29, 2016

Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 29, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: WATER Collected by: TG 11/17/16

RL/

Location Code: EBC Received by: LB 11/18/16 15:49

LOD/

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GBV87817

Phoenix ID: BV87825

Project ID: 1181 FLUSHING AVE., BROOKLYN

Client ID: TRIP BLANK

Parameter Result **PQL** MDL Units Dilution Date/Time Reference Βy Volatiles ND 1.0 0.25 ug/L 1 11/18/16 НМ SW8260C 1,1,1,2-Tetrachloroethane ND 5.0 11/18/16 SW8260C 1,1,1-Trichloroethane 0.25 ug/L 1 HM ND 1.0 0.25 ug/L 1 11/18/16 НМ SW8260C 1,1,2,2-Tetrachloroethane ND 11/18/16 SW8260C 1,1,2-Trichloroethane 1.0 0.25 ug/L 1 HM ND 5.0 0.25 ug/L 1 11/18/16 HM SW8260C 1,1-Dichloroethane ND 11/18/16 SW8260C 1,1-Dichloroethene 1 0 0.25 ug/L 1 ΗМ ND 1.0 0.25 ug/L 1 11/18/16 НМ SW8260C 1,1-Dichloropropene 11/18/16 SW8260C 1,2,3-Trichlorobenzene ND 1.0 0.25 ug/L 1 HM 1,2,3-Trichloropropane ND 0.25 0.25 ug/L 1 11/18/16 HM SW8260C 1,2,4-Trichlorobenzene ND 1.0 0.25 ug/L 1 11/18/16 HM SW8260C ND 0.25 SW8260C 1.0 ug/L 1 11/18/16 HM 1,2,4-Trimethylbenzene ND 0.50 11/18/16 НМ SW8260C 1,2-Dibromo-3-chloropropane 0.50 ug/L 1 ND 0.25 0.25 ug/L 1 11/18/16 НМ SW8260C 1,2-Dibromoethane ND 1.0 11/18/16 SW8260C 1,2-Dichlorobenzene 0.25 ug/L 1 HM ND 0.60 0.50 ug/L 1 11/18/16 HM SW8260C 1,2-Dichloroethane ND 1.0 0.25 ug/L 11/18/16 SW8260C 1 HM 1,2-Dichloropropane ND 1.0 ug/L 1 11/18/16 SW8260C 1,3,5-Trimethylbenzene 0.25 HM ND 1.0 0.25 11/18/16 НМ SW8260C ug/L 1 1,3-Dichlorobenzene ND 1.0 0.25 ug/L 1 11/18/16 НМ SW8260C 1,3-Dichloropropane ND 1.0 0.25 ug/L 1 11/18/16 HM SW8260C 1,4-Dichlorobenzene ND 1.0 0.25 ug/L 1 11/18/16 HM SW8260C 2,2-Dichloropropane ND 1.0 0.25 ug/L 1 11/18/16 НМ SW8260C 2-Chlorotoluene ND 2.5 2.5 1 11/18/16 НМ SW8260C ug/L 2-Hexanone ND 1.0 1 11/18/16 НМ SW8260C 0.25 ug/L 2-Isopropyltoluene ND 1.0 0.25 ug/L 1 11/18/16 НМ SW8260C 4-Chlorotoluene ND 2.5 2.5 ug/L 1 11/18/16 НМ SW8260C 4-Methyl-2-pentanone

Client ID: TRIP BLANK

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND	5.0	2.5	ug/L	1	11/18/16	HM	SW8260C
Acrolein	ND	5.0	2.5	ug/L	1	11/18/16	НМ	SW8260C
Acrylonitrile	ND	5.0	2.5	ug/L	1	11/18/16	НМ	SW8260C
Benzene	ND	0.70	0.25	ug/L	1	11/18/16	НМ	SW8260C
Bromobenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Bromochloromethane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Bromodichloromethane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Bromoform	ND	5.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Bromomethane	ND	5.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Carbon Disulfide	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Carbon tetrachloride	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Chlorobenzene	ND	5.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Chloroethane	ND	5.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Chloroform	ND	5.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Chloromethane	ND	5.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
cis-1,2-Dichloroethene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
cis-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	11/18/16	НМ	SW8260C
Dibromochloromethane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Dibromomethane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Dichlorodifluoromethane	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Ethylbenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Hexachlorobutadiene	ND	0.50	0.20	ug/L	1	11/18/16	НМ	SW8260C
Isopropylbenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
m&p-Xylene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Methyl ethyl ketone	ND	2.5	2.5	ug/L	1	11/18/16	НМ	SW8260C
Methyl t-butyl ether (MTBE)	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Methylene chloride	ND	3.0	1.0	ug/L	1	11/18/16	НМ	SW8260C
Naphthalene	ND	1.0	1.0	ug/L	1	11/18/16	HM	SW8260C
n-Butylbenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
n-Propylbenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
o-Xylene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
p-lsopropyltoluene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
sec-Butylbenzene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
Styrene	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
tert-Butylbenzene	ND	1.0	0.25	ug/L	1	11/18/16	HM	SW8260C
Tetrachloroethene	ND	1.0	0.25	ug/L	1	11/18/16	HM	SW8260C
Tetrahydrofuran (THF)	ND	5.0	2.5	ug/L	1	11/18/16	HM	SW8260C 1
Toluene	ND	1.0	0.25	ug/L	1	11/18/16	HM	SW8260C
trans-1,2-Dichloroethene	ND	5.0	0.25	ug/L	1	11/18/16	HM	SW8260C
trans-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	11/18/16	HM	SW8260C
trans-1,4-dichloro-2-butene	ND	2.5	2.5	ug/L	1	11/18/16	HM	SW8260C
Trichloroethene	ND	1.0	0.25	ug/L	1	11/18/16	HM	SW8260C
Trichlorofluoromethane	ND	1.0	0.25	ug/L	1	11/18/16	HM	SW8260C
Trichlorotrifluoroethane	ND	1.0	0.25	ug/L	1	11/18/16	HM	SW8260C
Vinyl chloride	ND	1.0	0.25	ug/L	1	11/18/16	НМ	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	99			%	1	11/18/16	НМ	70 - 130 %
% Bromofluorobenzene	95			%	1	11/18/16	НМ	70 - 130 %
% Dibromofluoromethane	96			%	1	11/18/16	НМ	70 - 130 %

Client ID: TRIP BLANK

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	100			%	1	11/18/16	НМ	70 - 130 %

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TRIP BLANK INCLUDED.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 29, 2016

Reviewed and Released by: Ethan Lee, Project Manager

Criteria: NY: GW

Sample Criteria Exceedances Report

GBV87817 - EBC

State: NY RL**Analysis** SampNo Acode Phoenix Analyte Criteria Result RI Criteria Criteria Units \$8260DP25R BV87817 Naphthalene NY / TAGM - Volatile Organics / Groundwater Standards 58 10 5 5 ug/L BV87817 \$8260DP25R 70 5 5 o-Xvlene NY / TAGM - Volatile Organics / Groundwater Standards 5.0 ua/L BV87817 \$8260DP25R Toluene NY / TAGM - Volatile Organics / Groundwater Standards 24 1.0 5 5 ug/L BV87817 \$8260DP25R NY / TAGM - Volatile Organics / Groundwater Standards 64 2.5 0.7 Benzene 0.7 ua/L BV87817 \$8260DP25R Ethylbenzene NY / TAGM - Volatile Organics / Groundwater Standards 440 13 5 5 ug/L 5 BV87817 \$8260DP25R 1.3.5-Trimethylbenzene NY / TOGS - Water Quality / GA Criteria 18 1.0 ua/L BV87817 \$8260DP25R Isopropylbenzene NY / TOGS - Water Quality / GA Criteria 26 1.0 5 5 ug/L BV87817 \$8260DP25R 1,2,3-Trichloropropane NY / TOGS - Water Quality / GA Criteria ND 0.25 0.04 0.04 ug/L BV87817 \$8260DP25R 1,2,4-Trimethylbenzene NY / TOGS - Water Quality / GA Criteria 140 5.0 5 5 ug/L BV87817 \$8260DP25R 1.2-Dibromoethane NY / TOGS - Water Quality / GA Criteria ND 0.25 0.0006 0.0006 ua/L Naphthalene BV87817 \$8260DP25R NY / TOGS - Water Quality / GA Criteria 58 10 10 10 ug/L BV87817 \$8260DP25R Ethylbenzene NY / TOGS - Water Quality / GA Criteria 440 13 5 5 ug/L BV87817 \$8260DP25R Toluene NY / TOGS - Water Quality / GA Criteria 24 1.0 5 5 ug/L 70 5 BV87817 \$8260DP25R o-Xylene TOGS - Water Quality / GA Criteria 5.0 ug/L BV87817 \$8260DP25R n-Propylbenzene NY / TOGS - Water Quality / GA Criteria 44 5.0 5 5 ug/L BV87817 \$8260DP25R Benzene NY / TOGS - Water Quality / GA Criteria 64 2.5 1 1 ug/L BV87817 \$8260DP25R 1,2-Dibromo-3-chloropropane NY / TOGS - Water Quality / GA Criteria ND 0.50 0.04 0.04 ug/L BV87817 \$8270WMDPR Benzo(a)pyrene TAGM - Semi-Volatiles / Groundwater Standards ND 1.6 0.002 0.002 ug/L BV87817 \$8270WMDPR Benzo(b)fluoranthene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 1.7 0.002 0.002 ua/L BV87817 \$8270WMDPR Benzo(k)fluoranthene TAGM - Semi-Volatiles / Groundwater Standards ND 1.7 0.002 0.002 ua/L BV87817 \$8270WMDPR Chrysene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 1.7 0.002 0.002 ug/L BV87817 \$8270WMDPR Hexachlorobenzene TAGM - Semi-Volatiles / Groundwater Standards ND 1.5 0.35 0.35 ug/L BV87817 \$8270WMDPR Naphthalene NY / TAGM - Semi-Volatiles / Groundwater Standards 51 5.0 10 10 ug/L BV87817 \$8270WMDPR Phenol TAGM - Semi-Volatiles / Groundwater Standards ND 1.6 1 1 ug/L BV87817 \$8270WMDPR Benz(a)anthracene TAGM - Semi-Volatiles / Groundwater Standards ND 1.7 0.002 0.002 ug/L BV87817 \$8270WMDPR Indeno(1,2,3-cd)pyrene TAGM - Semi-Volatiles / Groundwater Standards ND 1.7 0.002 0.002 ug/L \$8270WMDPR Pentachlorophenol BV87817 TAGM - Semi-Volatiles / Groundwater Standards ND 1.9 1 1 ug/L BV87817 \$8270WMDPR 2,4,5-Trichlorophenol TAGM - Semi-Volatiles / Groundwater Standards ND 2.7 1 1 ug/L BV87817 \$8270WMDPR Aniline NY / TAGM - Semi-Volatiles / Groundwater Standards ND 15 5 5 ug/L BV87817 \$8270WMDPR 2,4-Dichlorophenol TAGM - Semi-Volatiles / Groundwater Standards ND 1.8 1 ug/L BV87817 ND 11 5 5 \$8270WMDPR 3-Nitroaniline NY / TAGM - Semi-Volatiles / Groundwater Standards ug/L 5 BV87817 \$8270WMDPR 2-Nitroaniline NY / TAGM - Semi-Volatiles / Groundwater Standards ND 5.1 ug/L BV87817 \$8270WMDPR Naphthalene 5.0 5 5 NY / TAGM - Volatile Organics / Groundwater Standards 51 ug/L BV87817 \$8270WMDPR 2,4-Dinitrophenol NY / TOGS - Water Quality / GA Criteria ND 3.5 ug/L ND 1.9 BV87817 \$8270WMDPR Pentachlorophenol NY / TOGS - Water Quality / GA Criteria 1 1 ug/L BV87817 \$8270WMDPR Phenol NY / TOGS - Water Quality / GA Criteria ND 1.6 1 1 ug/L \$8270WMDPR Aniline ND 15 5 5 BV87817 NY / TOGS - Water Quality / GA Criteria ug/L \$8270WMDPR Indeno(1,2,3-cd)pyrene BV87817 NY / TOGS - Water Quality / GA Criteria ND 1.7 0.002 0.002 ug/L ND 5.1 5 5 BV87817 \$8270WMDPR 2-Nitroaniline NY / TOGS - Water Quality / GA Criteria ug/L BV87817 \$8270WMDPR 2-Chlorophenol NY / TOGS - Water Quality / GA Criteria ND 1.4 1 1 ug/L BV87817 \$8270WMDPR 2,4-Dimethylphenol NY / TOGS - Water Quality / GA Criteria 4.2 1.2 1 1 ug/L NY / TOGS - Water Quality / GA Criteria BV87817 \$8270WMDPR 2,4-Dichlorophenol ND 1.8 1 1 ug/L

Sample Criteria Exceedances Report GBV87817 - EBC

State: NY

Criteria: NY: GW

SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	RL Criteria	Units
BV87817	\$8270WMDPR	2,4,6-Trichlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	1.6	1	1	ug/L
BV87817	\$8270WMDPR	2,4,5-Trichlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	2.7	1	1	ug/L
BV87817	\$8270WMDPR	2-Methylphenol (o-cresol)	NY / TOGS - Water Quality / GA Criteria	ND	2.4	1	1	ug/L
BV87817	\$8270WMDPR	3-Nitroaniline	NY / TOGS - Water Quality / GA Criteria	ND	11	5	5	ug/L
BV87817	\$8270WMDPR	Naphthalene	NY / TOGS - Water Quality / GA Criteria	51	5.0	10	10	ug/L
BV87817	\$8270WMDPR	2-Nitrophenol	NY / TOGS - Water Quality / GA Criteria	ND	3.2	1	1	ug/L
BV87817	\$8270WMDPR	Benz(a)anthracene	NY / TOGS - Water Quality / GA Criteria	ND	1.7	0.002	0.002	ug/L
BV87817	\$8270WMDPR	4-Nitrophenol	NY / TOGS - Water Quality / GA Criteria	ND	2.3	1	1	ug/L
BV87817	\$8270WMDPR	Benzo(b)fluoranthene	NY / TOGS - Water Quality / GA Criteria	ND	1.7	0.002	0.002	ug/L
BV87817	\$8270WMDPR	4-Chloro-3-methylphenol	NY / TOGS - Water Quality / GA Criteria	ND	1.8	1	1	ug/L
BV87817	\$8270WMDPR	Hexachlorobenzene	NY / TOGS - Water Quality / GA Criteria	ND	1.5	0.04	0.04	ug/L
BV87817	\$8270WMDPR	Benzo(k)fluoranthene	NY / TOGS - Water Quality / GA Criteria	ND	1.7	0.002	0.002	ug/L
BV87817	\$8270WMDPR	Nitrobenzene	NY / TOGS - Water Quality / GA Criteria	ND	1.8	0.4	0.4	ug/L
BV87817	\$8270WMDPR	Bis(2-chloroethyl)ether	NY / TOGS - Water Quality / GA Criteria	ND	1.4	1	1	ug/L
BV87817	\$8270WMDPR	4,6-Dinitro-2-methylphenol	NY / TOGS - Water Quality / GA Criteria	ND	5.4	1	1	ug/L
BV87817	\$8270WMDPR	Chrysene	NY / TOGS - Water Quality / GA Criteria	ND	1.7	0.002	0.002	ug/L
BV87817	\$DPPEST_GA	Heptachlor	NY / TAGM - Pest/Herb/PCBs / Groundwater Standards	ND	0.050	0.01	0.01	ug/L
BV87817	\$DPPEST_GA	Dieldrin	NY / TAGM - Pest/Herb/PCBs / Groundwater Standards	ND	0.015	0.01	0.01	ug/L
BV87817	\$DPPEST_GA	4,4' -DDD	NY / TAGM - Pest/Herb/PCBs / Groundwater Standards	ND	0.025	0.01	0.01	ug/L
BV87817	\$DPPEST_GA	Chlordane	NY / TAGM - Pest/Herb/PCBs / Groundwater Standards	ND	0.50	0.1	0.1	ug/L
BV87817	\$DPPEST_GA	Heptachlor epoxide	NY / TAGM - Pest/Herb/PCBs / Groundwater Standards	ND	0.050	0.01	0.01	ug/L
BV87817	\$DPPEST_GA	4,4' -DDT	NY / TAGM - Pest/Herb/PCBs / Groundwater Standards	ND	0.025	0.01	0.01	ug/L
BV87817	\$DPPEST_GA	4,4' -DDE	NY / TAGM - Pest/Herb/PCBs / Groundwater Standards	ND	0.025	0.01	0.01	ug/L
BV87817	\$DPPEST_GA	Endrin	NY / TAGM - Pest/Herb/PCBs / Groundwater Standards	ND	0.050	0.01	0.01	ug/L
BV87817	\$DPPEST_GA	Aldrin	NY / TAGM - Pest/Herb/PCBs / Groundwater Standards	ND	0.015	0.01	0.01	ug/L
BV87817	\$DPPEST_GA	Heptachlor epoxide	NY / TOGS - Water Quality / GA Criteria	ND	0.050	0.03	0.03	ug/L
BV87817	\$DPPEST_GA	Toxaphene	NY / TOGS - Water Quality / GA Criteria	ND	2.0	0.06	0.06	ug/L
BV87817	\$DPPEST_GA	Heptachlor	NY / TOGS - Water Quality / GA Criteria	ND	0.050	0.04	0.04	ug/L
BV87817	\$DPPEST_GA	Dieldrin	NY / TOGS - Water Quality / GA Criteria	ND	0.015	0.004	0.004	ug/L
BV87817	\$DPPEST_GA	Chlordane	NY / TOGS - Water Quality / GA Criteria	ND	0.50	0.05	0.05	ug/L
BV87817	\$DPPEST_GA		NY / TOGS - Water Quality / GA Criteria	ND	0.050	0.04	0.04	ug/L
BV87817	\$DPPEST_GA	a-BHC	NY / TOGS - Water Quality / GA Criteria	ND	0.025	0.01	0.01	ug/L
BV87817	\$DPPEST_GA	Alachlor	NY / TOGS - Water Quality / GA Criteria	ND	0.75	0.5	0.5	ug/L
BV87817	AL-WM	Aluminum	NY / TOGS - Water Quality / GA Criteria	20.9	0.010	0.1	0.1	mg/L
BV87817	CR-WM	Chromium	NY / TOGS - Water Quality / GA Criteria	0.052	0.001	0.05	0.05	mg/L
BV87817	DMN-WMDP	Manganese, (Dissolved)	NY / TOGS - Water Quality / GA Criteria	3.43	0.053	0.3	0.3	mg/L
BV87817	D-NA	Sodium (Dissolved)	NY / TOGS - Water Quality / GA Criteria	322	1.1	20	20	mg/L
BV87817	FE-WMDP	Iron	NY / TOGS - Water Quality / GA Criteria	70.8	0.01	0.3	0.3	mg/L
BV87817	MN-WMDP	Manganese	NY / TOGS - Water Quality / GA Criteria	5.40	0.050	0.3	0.3	mg/L
BV87817	NA-WM	Sodium	NY / TOGS - Water Quality / GA Criteria	342	1.0	20	20	mg/L
BV87817	PB-WM	Lead	NY / TOGS - Water Quality / GA Criteria	0.051	0.002	0.025	0.025	mg/L

RL

Analysis

Sample Criteria Exceedances Report GBV87817 - EBC

State: NY

State.	INT						RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BV87818	\$8260DP25R	o-Xylene	NY / TAGM - Volatile Organics / Groundwater Standards	210	5.0	5	5	ug/L
BV87818	\$8260DP25R	Benzene	NY / TAGM - Volatile Organics / Groundwater Standards	2.3	1.3	0.7	0.7	ug/L
BV87818	\$8260DP25R	Toluene	NY / TAGM - Volatile Organics / Groundwater Standards	30	5.0	5	5	ug/L
BV87818	\$8260DP25R	Naphthalene	NY / TAGM - Volatile Organics / Groundwater Standards	73	5.0	5	5	ug/L
BV87818	\$8260DP25R	Ethylbenzene	NY / TAGM - Volatile Organics / Groundwater Standards	230	5.0	5	5	ug/L
BV87818	\$8260DP25R	Acetone	NY / TAGM - Volatile Organics / Groundwater Standards	53	25	50	50	ug/L
BV87818	\$8260DP25R	Ethylbenzene	NY / TOGS - Water Quality / GA Criteria	230	5.0	5	5	ug/L
BV87818	\$8260DP25R	Hexachlorobutadiene	NY / TOGS - Water Quality / GA Criteria	ND	1.0	0.5	0.5	ug/L
BV87818	\$8260DP25R	Isopropylbenzene	NY / TOGS - Water Quality / GA Criteria	22	5.0	5	5	ug/L
BV87818	\$8260DP25R	Naphthalene	NY / TOGS - Water Quality / GA Criteria	73	5.0	10	10	ug/L
BV87818	\$8260DP25R	n-Propylbenzene	NY / TOGS - Water Quality / GA Criteria	53	5.0	5	5	ug/L
BV87818	\$8260DP25R	o-Xylene	NY / TOGS - Water Quality / GA Criteria	210	5.0	5	5	ug/L
BV87818	\$8260DP25R	sec-Butylbenzene	NY / TOGS - Water Quality / GA Criteria	6.7	5.0	5	5	ug/L
BV87818	\$8260DP25R	trans-1,3-Dichloropropene	NY / TOGS - Water Quality / GA Criteria	ND	1.3	0.4	0.4	ug/L
BV87818	\$8260DP25R	trans-1,4-dichloro-2-butene	NY / TOGS - Water Quality / GA Criteria	ND	13	5	5	ug/L
BV87818	\$8260DP25R	n-Butylbenzene	NY / TOGS - Water Quality / GA Criteria	9.3	5.0	5	5	ug/L
BV87818	\$8260DP25R	1,2-Dichloroethane	NY / TOGS - Water Quality / GA Criteria	ND	2.5	0.6	0.6	ug/L
BV87818	\$8260DP25R	1,1,2-Trichloroethane	NY / TOGS - Water Quality / GA Criteria	ND	1.3	1	1	ug/L
BV87818	\$8260DP25R	1,2,3-Trichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	1.3	0.04	0.04	ug/L
BV87818	\$8260DP25R	1,2,4-Trimethylbenzene	NY / TOGS - Water Quality / GA Criteria	300	5.0	5	5	ug/L
BV87818	\$8260DP25R	Toluene	NY / TOGS - Water Quality / GA Criteria	30	5.0	5	5	ug/L
BV87818	\$8260DP25R	1,2-Dibromoethane	NY / TOGS - Water Quality / GA Criteria	ND	1.3	0.0006	0.0006	ug/L
BV87818	\$8260DP25R	1,2-Dibromo-3-chloropropane	NY / TOGS - Water Quality / GA Criteria	ND	2.5	0.04	0.04	ug/L
BV87818	\$8260DP25R	1,2-Dichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	1.3	1	1	ug/L
BV87818	\$8260DP25R	1,3,5-Trimethylbenzene	NY / TOGS - Water Quality / GA Criteria	110	5.0	5	5	ug/L
BV87818	\$8260DP25R	Acetone	NY / TOGS - Water Quality / GA Criteria	53	25	50	50	ug/L
BV87818	\$8260DP25R	Acrolein	NY / TOGS - Water Quality / GA Criteria	ND	13	5	5	ug/L
BV87818	\$8260DP25R	Acrylonitrile	NY / TOGS - Water Quality / GA Criteria	ND	13	5	5	ug/L
BV87818	\$8260DP25R	Benzene	NY / TOGS - Water Quality / GA Criteria	2.3	1.3	1	1	ug/L
BV87818	\$8260DP25R	cis-1,3-Dichloropropene	NY / TOGS - Water Quality / GA Criteria	ND	1.3	0.4	0.4	ug/L
BV87818	\$8270WMDPR	Naphthalene	NY / TAGM - Semi-Volatiles / Groundwater Standards	40	5.0	10	10	ug/L
BV87818	\$8270WMDPR	2-Nitroaniline	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	5.1	5	5	ug/L
BV87818	\$8270WMDPR	3-Nitroaniline	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	11	5	5	ug/L
BV87818	\$8270WMDPR	Benz(a)anthracene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	1.7	0.002	0.002	ug/L
BV87818	\$8270WMDPR	Hexachlorobenzene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	1.5	0.35	0.35	ug/L
BV87818	\$8270WMDPR	2,4,5-Trichlorophenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	2.7	1	1	ug/L
BV87818	\$8270WMDPR	Indeno(1,2,3-cd)pyrene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	1.7	0.002	0.002	ug/L
BV87818	\$8270WMDPR	Benzo(a)pyrene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	1.6	0.002	0.002	ug/L
BV87818	\$8270WMDPR	Pentachlorophenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	1.9	1	1	ug/L
BV87818	\$8270WMDPR	2,4-Dichlorophenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	1.8	1	1	ug/L
BV87818	\$8270WMDPR	Aniline	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	15	5	5	ug/L
BV87818	\$8270WMDPR	Phenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	1.6	1	1	ug/L

Sample Criteria Exceedances Report GBV87817 - EBC

State: NY

State:	NY						RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BV87818	\$8270WMDPR	Chrysene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	1.7	0.002	0.002	ug/L
BV87818	\$8270WMDPR	Benzo(k)fluoranthene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	1.7	0.002	0.002	ug/L
BV87818	\$8270WMDPR	Benzo(b)fluoranthene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	1.7	0.002	0.002	ug/L
BV87818	\$8270WMDPR	Naphthalene	NY / TAGM - Volatile Organics / Groundwater Standards	40	5.0	5	5	ug/L
BV87818	\$8270WMDPR	Chrysene	NY / TOGS - Water Quality / GA Criteria	ND	1.7	0.002	0.002	ug/L
BV87818	\$8270WMDPR	Hexachlorobenzene	NY / TOGS - Water Quality / GA Criteria	ND	1.5	0.04	0.04	ug/L
BV87818	\$8270WMDPR	Hexachlorobutadiene	NY / TOGS - Water Quality / GA Criteria	ND	1.8	0.5	0.5	ug/L
BV87818	\$8270WMDPR	Indeno(1,2,3-cd)pyrene	NY / TOGS - Water Quality / GA Criteria	ND	1.7	0.002	0.002	ug/L
BV87818	\$8270WMDPR	Phenol	NY / TOGS - Water Quality / GA Criteria	ND	1.6	1	1	ug/L
BV87818	\$8270WMDPR	Nitrobenzene	NY / TOGS - Water Quality / GA Criteria	ND	1.8	0.4	0.4	ug/L
BV87818	\$8270WMDPR	Pentachlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	1.9	1	1	ug/L
BV87818	\$8270WMDPR	Bis(2-chloroethyl)ether	NY / TOGS - Water Quality / GA Criteria	ND	1.4	1	1	ug/L
BV87818	\$8270WMDPR	2,4-Dinitrophenol	NY / TOGS - Water Quality / GA Criteria	ND	3.5	1	1	ug/L
BV87818	\$8270WMDPR	Naphthalene	NY / TOGS - Water Quality / GA Criteria	40	5.0	10	10	ug/L
BV87818	\$8270WMDPR	2-Nitroaniline	NY / TOGS - Water Quality / GA Criteria	ND	5.1	5	5	ug/L
BV87818	\$8270WMDPR	2,4,5-Trichlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	2.7	1	1	ug/L
BV87818	\$8270WMDPR	2,4,6-Trichlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	1.6	1	1	ug/L
BV87818	\$8270WMDPR	2,4-Dichlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	1.8	1	1	ug/L
BV87818	\$8270WMDPR	2-Methylphenol (o-cresol)	NY / TOGS - Water Quality / GA Criteria	ND	2.4	1	1	ug/L
BV87818	\$8270WMDPR	2-Chlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	1.4	1	1	ug/L
BV87818	\$8270WMDPR	Benzo(k)fluoranthene	NY / TOGS - Water Quality / GA Criteria	ND	1.7	0.002	0.002	ug/L
BV87818	\$8270WMDPR	2-Nitrophenol	NY / TOGS - Water Quality / GA Criteria	ND	3.2	1	1	ug/L
BV87818	\$8270WMDPR	3-Nitroaniline	NY / TOGS - Water Quality / GA Criteria	ND	11	5	5	ug/L
BV87818	\$8270WMDPR	4,6-Dinitro-2-methylphenol	NY / TOGS - Water Quality / GA Criteria	ND	5.4	1	1	ug/L
BV87818	\$8270WMDPR	4-Chloro-3-methylphenol	NY / TOGS - Water Quality / GA Criteria	ND	1.8	1	1	ug/L
BV87818	\$8270WMDPR	4-Nitrophenol	NY / TOGS - Water Quality / GA Criteria	ND	2.3	1	1	ug/L
BV87818	\$8270WMDPR	Aniline	NY / TOGS - Water Quality / GA Criteria	ND	15	5	5	ug/L
BV87818	\$8270WMDPR	Benz(a)anthracene	NY / TOGS - Water Quality / GA Criteria	ND	1.7	0.002	0.002	ug/L
BV87818	\$8270WMDPR	Benzo(b)fluoranthene	NY / TOGS - Water Quality / GA Criteria	ND	1.7	0.002	0.002	ug/L
BV87818	\$8270WMDPR	2,4-Dimethylphenol	NY / TOGS - Water Quality / GA Criteria	1.6	1.2	1	1	ug/L
BV87818	\$DPPEST_GA	Toxaphene	NY / TOGS - Water Quality / GA Criteria	ND	0.20	0.06	0.06	ug/L
BV87818	AL-WM	Aluminum	NY / TOGS - Water Quality / GA Criteria	5.02	0.010	0.1	0.1	mg/L
BV87818	DMN-WMDP	Manganese, (Dissolved)	NY / TOGS - Water Quality / GA Criteria	6.75	0.053	0.3	0.3	mg/L
BV87818	D-NA	Sodium (Dissolved)	NY / TOGS - Water Quality / GA Criteria	245	1.1	20	20	mg/L
BV87818	FE-WMDP	Iron	NY / TOGS - Water Quality / GA Criteria	19.3	0.01	0.3	0.3	mg/L
BV87818	MN-WMDP	Manganese	NY / TOGS - Water Quality / GA Criteria	6.91	0.050	0.3	0.3	mg/L
BV87818	NA-WM	Sodium	NY / TOGS - Water Quality / GA Criteria	232	1.0	20	20	mg/L
BV87819	\$8260DP25R	Toluene	NY / TAGM - Volatile Organics / Groundwater Standards	91	5.0	5	5	ug/L
BV87819	\$8260DP25R	Methylene chloride	NY / TAGM - Volatile Organics / Groundwater Standards	ND	20	5	5	ug/L
BV87819	\$8260DP25R	Ethylbenzene	NY / TAGM - Volatile Organics / Groundwater Standards	570	5.0	5	5	ug/L
BV87819	\$8260DP25R	Benzene	NY / TAGM - Volatile Organics / Groundwater Standards	170	5.0	0.7	0.7	ug/L

Sample Criteria Exceedances Report GBV87817 - EBC

State: NY

BV87819 \$8260DP25R Naphthalene NY / TAGM - Volatile Organics / Groundwater Standards 190 20 5 5 ug/L	State.	INT						RL	Analysis
BV87819 SEZ00P25R Telachlorothene NY / TAGM - Volatile Organics / Groundwater Standards 5.4 5.0 5 5 0gL	SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BV87819 SEZ00P25R Telachlorothene NY / TAGM - Volatile Organics / Groundwater Standards 5.4 5.0 5 5 0gL	BV87819	\$8260DP25R	Naphthalene	NY / TAGM - Volatile Organics / Groundwater Standards	190	20	5	5	ug/L
BV87819 \$8260DP25R C. Dohloroschane N.Y. TAGM - Volatile Organics Groundwater Standards ND	BV87819	\$8260DP25R	Tetrachloroethene	NY / TAGM - Volatile Organics / Groundwater Standards	5.4	5.0	5	5	
BV87819 \$28200P228R 1-7-inchloroothenceme N.Y 7AGM - Volatile Organics Groundwater Standards 6.6 5.0 5 5 ugl.	BV87819	\$8260DP25R	o-Xylene	NY / TAGM - Volatile Organics / Groundwater Standards	130	5.0	5	5	
BV87819 \$8260DP25R Trichloroethene NY / TAGM - Volatile Organics / Groundwater Standards 6.6 5.0 5 5 ugl. BV87819 \$8260DP25R trans-1,3-Dichloropropene NY / TOGS - Water Quality / GA Criteria ND 5.0 0.4 0.4 ugl. BV87819 \$8260DP25R Toluene NY / TOGS - Water Quality / GA Criteria ND 5.0 5 5 ugl. BV87819 \$8260DP25R trans-1,3-Dichloropropene NY / TOGS - Water Quality / GA Criteria ND 5.0 5 5 ugl. BV87819 \$8260DP25R trans-1,3-Dichloropropene NY / TOGS - Water Quality / GA Criteria ND 5.0 5 5 ugl. BV87819 \$8260DP25R trans-1,4-Dichloropropene NY / TOGS - Water Quality / GA Criteria 13 5.0 5 5 ugl. BV87819 \$8260DP25R trans-1,4-Dichloropropene NY / TOGS - Water Quality / GA Criteria 5.2 5.0 5 5 ugl. BV87819 \$8260DP25R trans-1,4-Dichloropropene NY / TOGS - Water Quality / GA Criteria 5.2 5.0 5 5 ugl. BV87819 \$8260DP25R trans-1,4-Dichloropropene NY / TOGS - Water Quality / GA Criteria 6.6 5.0 5 5 ugl. BV87819 \$8260DP25R trans-1,4-Dichloropropene NY / TOGS - Water Quality / GA Criteria 200 5.0 5 5 ugl. BV87819 \$8260DP25R trans-1,4-Dichloropropene NY / TOGS - Water Quality / GA Criteria 20 5.0 5 5 ugl. BV87819 \$8260DP25R trans-1,4-Dichloropropene NY / TOGS - Water Quality / GA Criteria 190 20 10 10 ugl. BV87819 \$8260DP25R trans-1,4-Dichloropropene NY / TOGS - Water Quality / GA Criteria 190 20 10 10 ugl. BV87819 \$8260DP25R trans-1,4-Dichloropropene NY / TOGS - Water Quality / GA Criteria 190 20 10 10 ugl. BV87819 \$8260DP25R trans-1,4-Dichloropropene NY / TOGS - Water Quality / GA Criteria 10 5.0 5 5 ugl. BV87819 \$8260DP25R trans-1,4-Dichloropropene NY / TOGS - Water Quality / GA Criteria ND 5.0 0.04 ugl. BV87819 \$8260DP25R trans-1,4-Dichloropropene NY / TOGS - Water Quality / GA Criteria ND 5.0 0.04 0.04 ugl. BV87819 \$8260	BV87819	\$8260DP25R	1,2-Dichloroethane	NY / TAGM - Volatile Organics / Groundwater Standards	ND	10	5	5	ug/L
BV87819 S8260DP25R Vinyl chloride	BV87819	\$8260DP25R	1,2-Dichlorobenzene	NY / TAGM - Volatile Organics / Groundwater Standards	ND	5.0	4.7	4.7	ug/L
BV87819 \$8260DP25R trans-1,3-Dichtorpropene NY / TOGS - Water Quality / GA Criteria 91 5.0	BV87819	\$8260DP25R	Trichloroethene	NY / TAGM - Volatile Organics / Groundwater Standards	6.6	5.0	5	5	ug/L
Syz800P25R Syz800P25R Toluene NY / TOGS - Water Quality / GA Criteria 91 5.0 5 5 ug/L	BV87819	\$8260DP25R	Vinyl chloride	NY / TAGM - Volatile Organics / Groundwater Standards	ND	5.0	2	2	ug/L
BV87819 \$8260DP25R trans-1.4-clinbloro-2-butene NY / TOGS - Water Quality / GA Criteria 13 5.0 5 5 ug/L	BV87819	\$8260DP25R	trans-1,3-Dichloropropene	NY / TOGS - Water Quality / GA Criteria	ND	5.0	0.4	0.4	ug/L
BV87819 \$8260DP25R sec-Bulybenzene NY / TOGS - Water Quality / GA Criteria 13 5.0 5 5 ug/L	BV87819	\$8260DP25R	Toluene	NY / TOGS - Water Quality / GA Criteria	91	5.0	5	5	ug/L
SAZ60DPZSR P-Isopropylotulene NY / TOGS - Water Quality / GA Criteria 5.2 5.0 5 5 ug/L	BV87819	\$8260DP25R	trans-1,4-dichloro-2-butene	NY / TOGS - Water Quality / GA Criteria	ND	50	5	5	ug/L
BV87819 S8260DP25R	BV87819	\$8260DP25R	sec-Butylbenzene	NY / TOGS - Water Quality / GA Criteria	13	5.0	5	5	ug/L
BV87819 \$8260DP25R	BV87819	\$8260DP25R	p-Isopropyltoluene	NY / TOGS - Water Quality / GA Criteria	5.2	5.0	5	5	ug/L
BV87819 \$8260DP25R Viryl chloride	BV87819	\$8260DP25R	n-Propylbenzene	NY / TOGS - Water Quality / GA Criteria	200	5.0	5	5	ug/L
BV87819 \$8260DP25R n-Butylbenzene NY / TOGS - Water Quality / GA Criteria 20 5.0 5 5 ug/L	BV87819	\$8260DP25R	Trichloroethene	NY / TOGS - Water Quality / GA Criteria	6.6	5.0	5	5	ug/L
BV87819 \$8260DP25R Aphthalene NY / TOGS - Water Quality / GA Criteria 190 20 10 10 ug/L	BV87819	\$8260DP25R	Vinyl chloride	NY / TOGS - Water Quality / GA Criteria	ND	5.0	2	2	ug/L
BV87819 \$8260DP25R Tetrachloroethene NY / TOGS - Water Quality / GA Criteria 730 13 5 5 ug/L BV87819 \$8260DP25R 1,2,4-Trimethylbenzene NY / TOGS - Water Quality / GA Criteria 130 5.0 5 5 ug/L BV87819 \$8260DP25R 1,2,2-Trichloropropane NY / TOGS - Water Quality / GA Criteria ND 5.0 0.04 0.04 ug/L BV87819 \$8260DP25R 1,2-Dibromo-3-chloropropane NY / TOGS - Water Quality / GA Criteria ND 10 0.04 0.04 ug/L BV87819 \$8260DP25R 1,2-Dibromo-3-chloropropane NY / TOGS - Water Quality / GA Criteria ND 10 0.04 0.04 ug/L BV87819 \$8260DP25R 1,2-Dibrlorophane NY / TOGS - Water Quality / GA Criteria ND 5.0 0.0006 0.0006 ug/L BV87819 \$8260DP25R 1,2-Dichlorophane NY / TOGS - Water Quality / GA Criteria ND 5.0 1 1 ug/L BV87819 \$8260DP25R 1,2-Dichlorophane NY / TOGS - Water Quali	BV87819	\$8260DP25R	n-Butylbenzene	NY / TOGS - Water Quality / GA Criteria	20	5.0	5	5	ug/L
BV87819 \$8260DP25R 1,2,4-Trimethylbenzene NY / TOGS - Water Quality / GA Criteria 730 13 5 5 ug/L BV87819 \$8260DP25R -Xylene NY / TOGS - Water Quality / GA Criteria ND 5.0 0.04 0.04 ug/L BV87819 \$8260DP25R 1,2,3-Trichloropropane NY / TOGS - Water Quality / GA Criteria ND 20 5 5 ug/L BV87819 \$8260DP25R Methylene chloride NY / TOGS - Water Quality / GA Criteria ND 10 0.04 0.04 0.04 ug/L BV87819 \$8260DP25R 1,2-Dichromo-shane NY / TOGS - Water Quality / GA Criteria ND 10 0.04 0.04 ug/L BV87819 \$8260DP25R 1,2-Dichloroptopane NY / TOGS - Water Quality / GA Criteria ND 10 0.6 0.6 ug/L BV87819 \$8260DP25R 1,2-Dichloroptopane NY / TOGS - Water Quality / GA Criteria ND 5.0 5 5 ug/L BV87819 \$8260DP25R 1,3-Trimethylbenzene NY / TOGS - Water Quality / GA	BV87819	\$8260DP25R	Naphthalene	NY / TOGS - Water Quality / GA Criteria	190	20	10	10	ug/L
BV87819 \$8260DP25R 0-Xylene NY / TOGS - Water Quality / GA Criteria 130 5.0 5 5 ug/L BV87819 \$8260DP25R 1.2,3-Trichloropropane NY / TOGS - Water Quality / GA Criteria ND 5.0 0.04 0.04 0.04 ug/L BV87819 \$8260DP25R Methylene chloride NY / TOGS - Water Quality / GA Criteria ND 10 0.04 0.04 ug/L BV87819 \$8260DP25R 1,2-Dibromo-3-chloropropane NY / TOGS - Water Quality / GA Criteria ND 10 0.04 0.04 ug/L BV87819 \$8260DP25R 1,2-Dibrloroethane NY / TOGS - Water Quality / GA Criteria ND 10 0.6 0.6 ug/L BV87819 \$8260DP25R 1,2-Dichloropropane NY / TOGS - Water Quality / GA Criteria ND 5.0 5 5 ug/L BV87819 \$8260DP25R 1,3-5-Trimethylbenzene NY / TOGS - Water Quality / GA Criteria ND 5.0 5 5 ug/L BV87819 \$8260DP25R 1,3-Dichlorobenzene NY / TOGS - Water Qua	BV87819	\$8260DP25R	Tetrachloroethene	NY / TOGS - Water Quality / GA Criteria	5.4	5.0	5	5	
BV87819 \$8260DP25R 1,2,3-Trichloropropane NY / TOGS - Water Quality / GA Criteria ND 5.0 0.04 0.04 ug/L BV87819 \$8260DP25R 14,2-Dibromo-3-chloropropane NY / TOGS - Water Quality / GA Criteria ND 10 0.04 0.04 ug/L BV87819 \$8260DP25R 1,2-Dibromo-sholropropane NY / TOGS - Water Quality / GA Criteria ND 10 0.06 0.0006 ug/L BV87819 \$8260DP25R 1,2-Dichloropthane NY / TOGS - Water Quality / GA Criteria ND 10 0.6 0.6 ug/L BV87819 \$8260DP25R 1,2-Dichloroptopane NY / TOGS - Water Quality / GA Criteria ND 5.0 1 1 ug/L BV87819 \$8260DP25R 1,3,5-Trimethylbenzene NY / TOGS - Water Quality / GA Criteria ND 5.0 5 5 ug/L BV87819 \$8260DP25R 1,3,5-Trimethylbenzene NY / TOGS - Water Quality / GA Criteria ND 5.0 1 1 ug/L BV87819 \$8260DP25R 1,3-Dichlorobenzene NY / TOGS - Water Qu	BV87819	\$8260DP25R	1,2,4-Trimethylbenzene	NY / TOGS - Water Quality / GA Criteria	730	13	5	5	ug/L
BV87819 \$8260DP25R Methylene chloride NY / TOGS - Water Quality / GA Criteria ND 20 5 5 ug/L BV87819 \$8260DP25R 1,2-Dibromo-3-chloropropane NY / TOGS - Water Quality / GA Criteria ND 10 0.04 0.04 ug/L BV87819 \$8260DP25R 1,2-Dibromoethane NY / TOGS - Water Quality / GA Criteria ND 10 0.6 0.6 0.6 ug/L BV87819 \$8260DP25R 1,2-Dichloropropane NY / TOGS - Water Quality / GA Criteria ND 5.0 1 1 ug/L BV87819 \$8260DP25R 1,2-Dichloropropane NY / TOGS - Water Quality / GA Criteria ND 5.0 1 1 ug/L BV87819 \$8260DP25R Hy - TOGS - Water Quality / GA Criteria ND 4.0 0.5 0.5 ug/L BV87819 \$8260DP25R Hy - TOGS - Water Quality / GA Criteria ND 5.0 1 1 ug/L BV87819 \$8260DP25R 1,3-Dichlorobenzene NY / TOGS - Water Quality / GA Criteria ND 5.0 5 </td <td>BV87819</td> <td>\$8260DP25R</td> <td>o-Xylene</td> <td>NY / TOGS - Water Quality / GA Criteria</td> <td>130</td> <td>5.0</td> <td>5</td> <td>5</td> <td>•</td>	BV87819	\$8260DP25R	o-Xylene	NY / TOGS - Water Quality / GA Criteria	130	5.0	5	5	•
BV87819 \$8260DP25R 1,2-Dibromo-3-chloropropane NY / TOGS - Water Quality / GA Criteria ND 10 0.04 0.04 ug/L BV87819 \$8260DP25R 1,2-Dibromoethane NY / TOGS - Water Quality / GA Criteria ND 5.0 0.0006 0.0006 ug/L BV87819 \$8260DP25R 1,2-Dichloroptopane NY / TOGS - Water Quality / GA Criteria ND 5.0 1 1 ug/L BV87819 \$8260DP25R 1,2-Dichloroptopane NY / TOGS - Water Quality / GA Criteria ND 5.0 1 1 ug/L BV87819 \$8260DP25R 1,3,5-Trimethylbenzene NY / TOGS - Water Quality / GA Criteria ND 4.0 0.5 0.5 ug/L BV87819 \$8260DP25R Hexachlorobutadiene NY / TOGS - Water Quality / GA Criteria ND 5.0 1 1 ug/L BV87819 \$8260DP25R 1,1,2-Trichloroethane NY / TOGS - Water Quality / GA Criteria ND 5.0 3 3 ug/L BV87819 \$8260DP25R Isopropylbenzene NY / TOGS - Water Quality / GA Criter	BV87819	\$8260DP25R	1,2,3-Trichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	5.0	0.04	0.04	
BV87819 \$8260DP25R 1,2-Dibromoethane NY / TOGS - Water Quality / GA Criteria ND 5.0 0.0006 0.0006 ug/L BV87819 \$8260DP25R 1,2-Dichloroethane NY / TOGS - Water Quality / GA Criteria ND 10 0.6 0.6 0.6 ug/L BV87819 \$8260DP25R 1,2-Dichloropropane NY / TOGS - Water Quality / GA Criteria ND 5.0 1 1 ug/L BV87819 \$8260DP25R 1,3-Frimethylbenzene NY / TOGS - Water Quality / GA Criteria 280 5.0 5 5 ug/L BV87819 \$8260DP25R Hexachlorobutadiene NY / TOGS - Water Quality / GA Criteria ND 4.0 0.5 0.5 ug/L BV87819 \$8260DP25R Hexachlorobutadiene NY / TOGS - Water Quality / GA Criteria ND 5.0 1 1 ug/L BV87819 \$8260DP25R 1,3-Dichlorobenzene NY / TOGS - Water Quality / GA Criteria ND 5.0 5 5 ug/L BV87819 \$8260DP25R Ethylbenzene NY / TOGS - Water Quality / GA Cri	BV87819	\$8260DP25R	Methylene chloride	NY / TOGS - Water Quality / GA Criteria	ND	20	5	5	ug/L
BV87819 \$8260DP25R 1,2-Dichloroethane NY / TOGS - Water Quality / GA Criteria ND 10 0.6 0.6 ug/L BV87819 \$8260DP25R 1,2-Dichloropropane NY / TOGS - Water Quality / GA Criteria ND 5.0 1 1 ug/L BV87819 \$8260DP25R 1,3,5-Trimethylbenzene NY / TOGS - Water Quality / GA Criteria 280 5.0 5 5 ug/L BV87819 \$8260DP25R Hexachlorobutadiene NY / TOGS - Water Quality / GA Criteria ND 4.0 0.5 0.5 ug/L BV87819 \$8260DP25R 1,1,2-Trichloroethane NY / TOGS - Water Quality / GA Criteria ND 5.0 1 1 ug/L BV87819 \$8260DP25R Isopropylbenzene NY / TOGS - Water Quality / GA Criteria ND 5.0 5 5 ug/L BV87819 \$8260DP25R Ethylbenzene NY / TOGS - Water Quality / GA Criteria ND 5.0 5 5 ug/L BV87819 \$8260DP25R Etnylbenzene NY / TOGS - Water Quality / GA Criteria ND	BV87819	\$8260DP25R	1,2-Dibromo-3-chloropropane	·	ND	10	0.04	0.04	ug/L
BV87819 \$8260DP25R 1,2-Dichloropropane NY / TOGS - Water Quality / GA Criteria ND 5.0 1 1 ug/L BV87819 \$8260DP25R 1,3,5-Trimethylbenzene NY / TOGS - Water Quality / GA Criteria 280 5.0 5 5 ug/L BV87819 \$8260DP25R Hexachlorobutadiene NY / TOGS - Water Quality / GA Criteria ND 4.0 0.5 0.5 ug/L BV87819 \$8260DP25R 1,1,2-Trichloroethane NY / TOGS - Water Quality / GA Criteria ND 5.0 1 1 ug/L BV87819 \$8260DP25R 1,3-Dichlorobenzene NY / TOGS - Water Quality / GA Criteria ND 5.0 3 3 ug/L BV87819 \$8260DP25R Isopropylbenzene NY / TOGS - Water Quality / GA Criteria 79 5.0 5 5 ug/L BV87819 \$8260DP25R Citylbenzene NY / TOGS - Water Quality / GA Criteria ND 5.0 5 5 ug/L BV87819 \$8260DP25R Benzene NY / TOGS - Water Quality / GA Criteria ND <td< td=""><td>BV87819</td><td>\$8260DP25R</td><td>1,2-Dibromoethane</td><td>NY / TOGS - Water Quality / GA Criteria</td><td>ND</td><td>5.0</td><td>0.0006</td><td>0.0006</td><td>ug/L</td></td<>	BV87819	\$8260DP25R	1,2-Dibromoethane	NY / TOGS - Water Quality / GA Criteria	ND	5.0	0.0006	0.0006	ug/L
BV87819 \$8260DP25R 1,3,5-Trimethylbenzene NY / TOGS - Water Quality / GA Criteria 280 5.0 5 5 ug/L BV87819 \$8260DP25R Hexachlorobutadiene NY / TOGS - Water Quality / GA Criteria ND 4.0 0.5 0.5 ug/L BV87819 \$8260DP25R 1,1,2-Trichloroethane NY / TOGS - Water Quality / GA Criteria ND 5.0 1 1 ug/L BV87819 \$8260DP25R 1,3-Dichlorobenzene NY / TOGS - Water Quality / GA Criteria ND 5.0 3 3 ug/L BV87819 \$8260DP25R Isopropylbenzene NY / TOGS - Water Quality / GA Criteria 79 5.0 5 5 ug/L BV87819 \$8260DP25R Ethylbenzene NY / TOGS - Water Quality / GA Criteria 570 5.0 5 5 ug/L BV87819 \$8260DP25R Ethylbenzene NY / TOGS - Water Quality / GA Criteria ND 5.0 0.4 0.4 ug/L BV87819 \$8260DP25R Acrylonitrile NY / TOGS - Water Quality / GA Criteria ND	BV87819	\$8260DP25R	1,2-Dichloroethane	NY / TOGS - Water Quality / GA Criteria	ND	10	0.6	0.6	ug/L
BV87819 \$8260DP25R Hexachlorobutadiene NY / TOGS - Water Quality / GA Criteria ND 4.0 0.5 0.5 ug/L BV87819 \$8260DP25R 1,1,2-Trichloroethane NY / TOGS - Water Quality / GA Criteria ND 5.0 1 1 ug/L BV87819 \$8260DP25R 1,3-Dichlorobenzene NY / TOGS - Water Quality / GA Criteria ND 5.0 3 3 ug/L BV87819 \$8260DP25R Isopropylbenzene NY / TOGS - Water Quality / GA Criteria 79 5.0 5 5 ug/L BV87819 \$8260DP25R Ethylbenzene NY / TOGS - Water Quality / GA Criteria 570 5.0 5 5 ug/L BV87819 \$8260DP25R cis-1,3-Dichloropropene NY / TOGS - Water Quality / GA Criteria ND 5.0 1 1 ug/L BV87819 \$8260DP25R Acrylonitrile NY / TOGS - Water Quality / GA Criteria ND 50 5 5 ug/L BV87819 \$8260DP25R Acrolein NY / TOGS - Water Quality / GA Criteria ND 50 </td <td>BV87819</td> <td>\$8260DP25R</td> <td>1,2-Dichloropropane</td> <td>NY / TOGS - Water Quality / GA Criteria</td> <td>ND</td> <td>5.0</td> <td>1</td> <td>1</td> <td>ug/L</td>	BV87819	\$8260DP25R	1,2-Dichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	5.0	1	1	ug/L
BV87819 \$8260DP25R 1,1,2-Trichloroethane NY / TOGS - Water Quality / GA Criteria ND 5.0 1 1 ug/L BV87819 \$8260DP25R 1,3-Dichlorobenzene NY / TOGS - Water Quality / GA Criteria ND 5.0 3 3 ug/L BV87819 \$8260DP25R Isopropylbenzene NY / TOGS - Water Quality / GA Criteria 79 5.0 5 5 ug/L BV87819 \$8260DP25R Ethylbenzene NY / TOGS - Water Quality / GA Criteria 570 5.0 5 5 ug/L BV87819 \$8260DP25R Cis-1,3-Dichloropropene NY / TOGS - Water Quality / GA Criteria ND 5.0 0.4 0.4 ug/L BV87819 \$8260DP25R Benzene NY / TOGS - Water Quality / GA Criteria 170 5.0 1 1 ug/L BV87819 \$8260DP25R Acrylonitrile NY / TOGS - Water Quality / GA Criteria ND 50 5 5 ug/L BV87819 \$8260DP25R Acrolein NY / TAGM - Semi-Volatiles / Groundwater Standards ND 50 </td <td>BV87819</td> <td>\$8260DP25R</td> <td>1,3,5-Trimethylbenzene</td> <td>NY / TOGS - Water Quality / GA Criteria</td> <td>280</td> <td>5.0</td> <td>5</td> <td>5</td> <td>-</td>	BV87819	\$8260DP25R	1,3,5-Trimethylbenzene	NY / TOGS - Water Quality / GA Criteria	280	5.0	5	5	-
BV87819 \$8260DP25R 1,3-Dichlorobenzene NY / TOGS - Water Quality / GA Criteria ND 5.0 3 3 ug/L BV87819 \$8260DP25R Isopropylbenzene NY / TOGS - Water Quality / GA Criteria 79 5.0 5 5 ug/L BV87819 \$8260DP25R Ethylbenzene NY / TOGS - Water Quality / GA Criteria 570 5.0 5 5 ug/L BV87819 \$8260DP25R cis-1,3-Dichloropropene NY / TOGS - Water Quality / GA Criteria ND 5.0 0.4 0.4 ug/L BV87819 \$8260DP25R Benzene NY / TOGS - Water Quality / GA Criteria 170 5.0 1 1 ug/L BV87819 \$8260DP25R Acrylonitrile NY / TOGS - Water Quality / GA Criteria ND 50 5 5 ug/L BV87819 \$8260DP25R Acrolein NY / TOGS - Water Quality / GA Criteria ND 50 5 5 ug/L BV87819 \$8270WMDPR Acrolein NY / TAGM - Semi-Volatiles / Groundwater Standards ND 27 <t< td=""><td>BV87819</td><td>\$8260DP25R</td><td>Hexachlorobutadiene</td><td>•</td><td>ND</td><td>4.0</td><td>0.5</td><td>0.5</td><td>ug/L</td></t<>	BV87819	\$8260DP25R	Hexachlorobutadiene	•	ND	4.0	0.5	0.5	ug/L
BV87819 \$8260DP25R Isopropylbenzene NY / TOGS - Water Quality / GA Criteria 79 5.0 5 5 ug/L BV87819 \$8260DP25R Ethylbenzene NY / TOGS - Water Quality / GA Criteria 570 5.0 5 5 ug/L BV87819 \$8260DP25R cis-1,3-Dichloropropene NY / TOGS - Water Quality / GA Criteria ND 5.0 0.4 0.4 ug/L BV87819 \$8260DP25R Benzene NY / TOGS - Water Quality / GA Criteria 170 5.0 1 1 ug/L BV87819 \$8260DP25R Acrylonitrile NY / TOGS - Water Quality / GA Criteria ND 50 5 5 ug/L BV87819 \$8260DP25R Acrolein NY / TOGS - Water Quality / GA Criteria ND 50 5 5 ug/L BV87819 \$8260DP25R Acrolein NY / TAGM - Semi-Volatiles / Groundwater Standards ND 27 5 5 ug/L BV87819 \$8270WMDPR Benzo(b)fluoranthene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 7.7 <td>BV87819</td> <td>\$8260DP25R</td> <td>1,1,2-Trichloroethane</td> <td>NY / TOGS - Water Quality / GA Criteria</td> <td>ND</td> <td>5.0</td> <td>1</td> <td>1</td> <td>ug/L</td>	BV87819	\$8260DP25R	1,1,2-Trichloroethane	NY / TOGS - Water Quality / GA Criteria	ND	5.0	1	1	ug/L
BV87819 \$8260DP25R Ethylbenzene NY / TOGS - Water Quality / GA Criteria 570 5.0 5 5 ug/L BV87819 \$8260DP25R cis-1,3-Dichloropropene NY / TOGS - Water Quality / GA Criteria ND 5.0 0.4 0.4 ug/L BV87819 \$8260DP25R Benzene NY / TOGS - Water Quality / GA Criteria 170 5.0 1 1 ug/L BV87819 \$8260DP25R Acrylonitrile NY / TOGS - Water Quality / GA Criteria ND 50 5 5 ug/L BV87819 \$8260DP25R Acrolein NY / TOGS - Water Quality / GA Criteria ND 50 5 5 ug/L BV87819 \$8260DP25R Acrolein NY / TOGS - Water Quality / GA Criteria ND 50 5 5 ug/L BV87819 \$8270WMDPR 2-Nitroaniline NY / TAGM - Semi-Volatiles / Groundwater Standards ND 27 5 5 ug/L BV87819 \$8270WMDPR Chrysene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 7.7 0	BV87819	\$8260DP25R	1,3-Dichlorobenzene	NY / TOGS - Water Quality / GA Criteria	ND	5.0	3	3	ug/L
BV87819 \$8260DP25R cis-1,3-Dichloropropene NY / TOGS - Water Quality / GA Criteria ND 5.0 0.4 0.4 ug/L BV87819 \$8260DP25R Benzene NY / TOGS - Water Quality / GA Criteria 170 5.0 1 1 ug/L BV87819 \$8260DP25R Acrylonitrile NY / TOGS - Water Quality / GA Criteria ND 50 5 5 ug/L BV87819 \$8260DP25R Acrolein NY / TOGS - Water Quality / GA Criteria ND 50 5 5 ug/L BV87819 \$8270WMDPR 2-Nitroaniline NY / TAGM - Semi-Volatiles / Groundwater Standards ND 27 5 5 ug/L BV87819 \$8270WMDPR Benzo(b)fluoranthene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 9.0 0.002 0.002 ug/L BV87819 \$8270WMDPR Chrysene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 7.7 0.35 0.35 ug/L BV87819 \$8270WMDPR Dibenzofuran NY / TAGM - Semi-Volatiles / Groundwater Standards	BV87819	\$8260DP25R	Isopropylbenzene	NY / TOGS - Water Quality / GA Criteria	79	5.0	5	5	ug/L
BV87819 \$8260DP25R Benzene NY / TOGS - Water Quality / GA Criteria 170 5.0 1 1 ug/L BV87819 \$8260DP25R Acrylonitrile NY / TOGS - Water Quality / GA Criteria ND 50 5 5 ug/L BV87819 \$8260DP25R Acrolein NY / TOGS - Water Quality / GA Criteria ND 50 5 5 ug/L BV87819 \$8270WMDPR 2-Nitroaniline NY / TAGM - Semi-Volatiles / Groundwater Standards ND 27 5 5 ug/L BV87819 \$8270WMDPR Benzo(b)fluoranthene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 9.0 0.002 0.002 ug/L BV87819 \$8270WMDPR Chrysene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 7.7 0.35 0.35 ug/L BV87819 \$8270WMDPR Dibenzofuran NY / TAGM - Semi-Volatiles / Groundwater Standards ND 7.7 0.35 0.35 ug/L	BV87819	\$8260DP25R	Ethylbenzene	NY / TOGS - Water Quality / GA Criteria	570	5.0	5	5	-
BV87819 \$8260DP25R Acrylonitrile NY / TOGS - Water Quality / GA Criteria ND 50 5 5 ug/L BV87819 \$8260DP25R Acrolein NY / TOGS - Water Quality / GA Criteria ND 50 5 5 ug/L BV87819 \$8270WMDPR 2-Nitroaniline NY / TAGM - Semi-Volatiles / Groundwater Standards ND 27 5 5 ug/L BV87819 \$8270WMDPR Benzo(b)fluoranthene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 9.0 0.002 0.002 ug/L BV87819 \$8270WMDPR Chrysene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 7.7 0.35 0.35 ug/L BV87819 \$8270WMDPR Dibenzofuran NY / TAGM - Semi-Volatiles / Groundwater Standards ND 7.7 0.35 0.35 ug/L	BV87819	\$8260DP25R	cis-1,3-Dichloropropene	NY / TOGS - Water Quality / GA Criteria	ND	5.0	0.4	0.4	
BV87819 \$8260DP25R Acrolein NY / TOGS - Water Quality / GA Criteria ND 50 5 5 ug/L BV87819 \$8270WMDPR 2-Nitroaniline NY / TAGM - Semi-Volatiles / Groundwater Standards ND 27 5 5 ug/L BV87819 \$8270WMDPR Benzo(b)fluoranthene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 9.0 0.002 0.002 ug/L BV87819 \$8270WMDPR Chrysene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 8.8 0.002 0.002 ug/L BV87819 \$8270WMDPR Hexachlorobenzene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 7.7 0.35 0.35 ug/L BV87819 \$8270WMDPR Dibenzofuran NY / TAGM - Semi-Volatiles / Groundwater Standards ND 7.7 5 5 ug/L	BV87819	\$8260DP25R	Benzene	NY / TOGS - Water Quality / GA Criteria	170	5.0	1	1	ug/L
BV87819 \$8270WMDPR 2-Nitroaniline NY / TAGM - Semi-Volatiles / Groundwater Standards ND 27 5 5 ug/L BV87819 \$8270WMDPR Benzo(b)fluoranthene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 9.0 0.002 0.002 ug/L BV87819 \$8270WMDPR Chrysene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 8.8 0.002 0.002 ug/L BV87819 \$8270WMDPR Hexachlorobenzene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 7.7 0.35 0.35 ug/L BV87819 \$8270WMDPR Dibenzofuran NY / TAGM - Semi-Volatiles / Groundwater Standards ND 7.7 5 5 5 ug/L	BV87819	\$8260DP25R	Acrylonitrile	NY / TOGS - Water Quality / GA Criteria	ND	50	5	5	-
BV87819 \$8270WMDPR Benzo(b)fluoranthene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 9.0 0.002 0.002 ug/L BV87819 \$8270WMDPR Chrysene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 8.8 0.002 0.002 ug/L BV87819 \$8270WMDPR Hexachlorobenzene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 7.7 0.35 0.35 ug/L BV87819 \$8270WMDPR Dibenzofuran NY / TAGM - Semi-Volatiles / Groundwater Standards ND 7.7 5 5 ug/L	BV87819	\$8260DP25R	Acrolein	NY / TOGS - Water Quality / GA Criteria	ND	50	5	5	ug/L
BV87819 \$8270WMDPR Chrysene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 8.8 0.002 0.002 ug/L BV87819 \$8270WMDPR Hexachlorobenzene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 7.7 0.35 0.35 ug/L BV87819 \$8270WMDPR Dibenzofuran NY / TAGM - Semi-Volatiles / Groundwater Standards ND 7.7 5 5 ug/L	BV87819	\$8270WMDPR	2-Nitroaniline	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	27	5	5	ug/L
BV87819 \$8270WMDPR Hexachlorobenzene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 7.7 0.35 0.35 ug/L BV87819 \$8270WMDPR Dibenzofuran NY / TAGM - Semi-Volatiles / Groundwater Standards ND 7.7 5 5 5 ug/L	BV87819	\$8270WMDPR	Benzo(b)fluoranthene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	9.0	0.002	0.002	ug/L
BV87819 \$8270WMDPR Dibenzofuran NY / TAGM - Semi-Volatiles / Groundwater Standards ND 7.7 5 5 ug/L	BV87819	\$8270WMDPR	Chrysene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	8.8	0.002	0.002	ug/L
·	BV87819	\$8270WMDPR	Hexachlorobenzene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	7.7	0.35	0.35	ug/L
DIVIZIONO MODZONINIADED O NEL CONTRACTOR DE LA CONTRACTOR	BV87819	\$8270WMDPR	Dibenzofuran	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	7.7	5	5	ug/L
BV87819 \$8270WMDPR 3-Nitroaniline NY / TAGM - Semi-Volatiles / Groundwater Standards ND 57 5 5 ug/L	BV87819	\$8270WMDPR	3-Nitroaniline	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	57	5	5	ug/L

Sample Criteria Exceedances Report GBV87817 - EBC

State: NY

State.		D	0.11	5 "	D.	0.1.	RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BV87819	\$8270WMDPR	2-Nitrophenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	17	5	5	ug/L
BV87819	\$8270WMDPR	4-Chloro-3-methylphenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	9.3	5	5	ug/L
BV87819	\$8270WMDPR	4-Chloroaniline	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	12	5	5	ug/L
BV87819	\$8270WMDPR	4-Nitrophenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	12	5	5	ug/L
BV87819	\$8270WMDPR	Benz(a)anthracene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	8.8	0.002	0.002	ug/L
BV87819	\$8270WMDPR	Benzo(k)fluoranthene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	8.7	0.002	0.002	ug/L
BV87819	\$8270WMDPR	2-Methylphenol (o-cresol)	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	12	5	5	ug/L
BV87819	\$8270WMDPR	Aniline	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	79	5	5	ug/L
BV87819	\$8270WMDPR	Naphthalene	NY / TAGM - Semi-Volatiles / Groundwater Standards	130	7.6	10	10	ug/L
BV87819	\$8270WMDPR	2,6-Dinitrotoluene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	8.3	5	5	ug/L
BV87819	\$8270WMDPR	Nitrobenzene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	9.2	5	5	ug/L
BV87819	\$8270WMDPR	Pentachlorophenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	9.9	1	1	ug/L
BV87819	\$8270WMDPR	2,4-Dinitrophenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	18	5	5	ug/L
BV87819	\$8270WMDPR	2,4-Dichlorophenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	9.3	1	1	ug/L
BV87819	\$8270WMDPR	2,4,5-Trichlorophenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	14	1	1	ug/L
BV87819	\$8270WMDPR	Benzo(ghi)perylene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	8.5	5	5	ug/L
BV87819	\$8270WMDPR	Phenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	8.4	1	1	ug/L
BV87819	\$8270WMDPR	Indeno(1,2,3-cd)pyrene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	8.7	0.002	0.002	ug/L
BV87819	\$8270WMDPR	Benzo(a)pyrene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	8.6	0.002	0.002	ug/L
BV87819	\$8270WMDPR	Benzoic acid	NY / TAGM - Volatile Organics / Groundwater Standards	ND	53	50	50	ug/L
BV87819	\$8270WMDPR	1,2-Dichlorobenzene	NY / TAGM - Volatile Organics / Groundwater Standards	ND	7.4	4.7	4.7	ug/L
BV87819	\$8270WMDPR	Naphthalene	NY / TAGM - Volatile Organics / Groundwater Standards	130	7.6	5	5	ug/L
BV87819	\$8270WMDPR	Benzo(k)fluoranthene	NY / TOGS - Water Quality / GA Criteria	ND	8.7	0.002	0.002	ug/L
BV87819	\$8270WMDPR	Pentachlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	9.9	1	1	ug/L
BV87819	\$8270WMDPR	Phenol	NY / TOGS - Water Quality / GA Criteria	ND	8.4	1	1	ug/L
BV87819	\$8270WMDPR	Bis(2-chloroethoxy)methane	NY / TOGS - Water Quality / GA Criteria	ND	7.3	5	5	ug/L
BV87819	\$8270WMDPR	Bis(2-chloroethyl)ether	NY / TOGS - Water Quality / GA Criteria	ND	7.1	1	1	ug/L
BV87819	\$8270WMDPR	Nitrobenzene	NY / TOGS - Water Quality / GA Criteria	ND	9.2	0.4	0.4	ug/L
BV87819	\$8270WMDPR	Chrysene	NY / TOGS - Water Quality / GA Criteria	ND	8.8	0.002	0.002	ug/L
BV87819	\$8270WMDPR	Naphthalene	NY / TOGS - Water Quality / GA Criteria	130	7.6	10	10	ug/L
BV87819	\$8270WMDPR	Hexachlorobenzene	NY / TOGS - Water Quality / GA Criteria	ND	7.7	0.04	0.04	ug/L
BV87819	\$8270WMDPR	Indeno(1,2,3-cd)pyrene	NY / TOGS - Water Quality / GA Criteria	ND	8.7	0.002	0.002	ug/L
BV87819	\$8270WMDPR	Hexachlorobutadiene	NY / TOGS - Water Quality / GA Criteria	ND	9.5	0.5	0.5	ug/L
BV87819	\$8270WMDPR	Hexachlorocyclopentadiene	NY / TOGS - Water Quality / GA Criteria	ND	8.1	5	5	ug/L
BV87819	\$8270WMDPR	Hexachloroethane	NY / TOGS - Water Quality / GA Criteria	ND	7.9	5	5	ug/L
BV87819	\$8270WMDPR	Bis(2-ethylhexyl)phthalate	NY / TOGS - Water Quality / GA Criteria	ND	7.6	5	5	ug/L
BV87819	\$8270WMDPR	2,4-Dinitrotoluene	NY / TOGS - Water Quality / GA Criteria	ND	10	5	5	ug/L
BV87819	\$8270WMDPR	Benzo(b)fluoranthene	NY / TOGS - Water Quality / GA Criteria	ND	9.0	0.002	0.002	ug/L
BV87819	\$8270WMDPR	Benzidine	NY / TOGS - Water Quality / GA Criteria	ND	15	5	5	ug/L
BV87819	\$8270WMDPR	1,3-Dichlorobenzene	NY / TOGS - Water Quality / GA Criteria	ND	7.8	3	3	ug/L
BV87819	\$8270WMDPR	2,4,5-Trichlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	14	1	1	ug/L
BV87819		2,4,6-Trichlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	8.4	1	1	ug/L
		•	•					-

Sample Criteria Exceedances Report GBV87817 - EBC

State: NY

State.							RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BV87819	\$8270WMDPR	2,4-Dichlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	9.3	1	1	ug/L
BV87819	\$8270WMDPR	2,4-Dichlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	9.3	5	5	ug/L
BV87819	\$8270WMDPR	2,4-Dimethylphenol	NY / TOGS - Water Quality / GA Criteria	ND	6.5	1	1	ug/L
BV87819	\$8270WMDPR	2,4-Dimethylphenol	NY / TOGS - Water Quality / GA Criteria	ND	6.5	5	5	ug/L
BV87819	\$8270WMDPR	2,4-Dinitrophenol	NY / TOGS - Water Quality / GA Criteria	ND	18	5	5	ug/L
BV87819	\$8270WMDPR	2,6-Dinitrotoluene	NY / TOGS - Water Quality / GA Criteria	ND	8.3	5	5	ug/L
BV87819	\$8270WMDPR	2-Chlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	7.5	1	1	ug/L
BV87819	\$8270WMDPR	4-Chloroaniline	NY / TOGS - Water Quality / GA Criteria	ND	12	5	5	ug/L
BV87819	\$8270WMDPR	Benz(a)anthracene	NY / TOGS - Water Quality / GA Criteria	ND	8.8	0.002	0.002	ug/L
BV87819	\$8270WMDPR	Aniline	NY / TOGS - Water Quality / GA Criteria	ND	79	5	5	ug/L
BV87819	\$8270WMDPR	2,4-Dinitrophenol	NY / TOGS - Water Quality / GA Criteria	ND	18	1	1	ug/L
BV87819	\$8270WMDPR	4-Nitroaniline	NY / TOGS - Water Quality / GA Criteria	ND	8.8	5	5	ug/L
BV87819	\$8270WMDPR	2-Methylphenol (o-cresol)	NY / TOGS - Water Quality / GA Criteria	ND	12	1	1	ug/L
BV87819	\$8270WMDPR	4-Chloro-3-methylphenol	NY / TOGS - Water Quality / GA Criteria	ND	9.3	1	1	ug/L
BV87819	\$8270WMDPR	4,6-Dinitro-2-methylphenol	NY / TOGS - Water Quality / GA Criteria	ND	28	1	1	ug/L
BV87819	\$8270WMDPR	3-Nitroaniline	NY / TOGS - Water Quality / GA Criteria	ND	57	5	5	ug/L
BV87819	\$8270WMDPR	3,3'-Dichlorobenzidine	NY / TOGS - Water Quality / GA Criteria	ND	12	5	5	ug/L
BV87819	\$8270WMDPR	2-Nitrophenol	NY / TOGS - Water Quality / GA Criteria	ND	17	1	1	ug/L
BV87819	\$8270WMDPR	2-Nitroaniline	NY / TOGS - Water Quality / GA Criteria	ND	27	5	5	ug/L
BV87819	\$8270WMDPR	4-Nitrophenol	NY / TOGS - Water Quality / GA Criteria	ND	12	1	1	ug/L
BV87819	\$DPPEST_GA	Chlordane	NY / TOGS - Water Quality / GA Criteria	ND	0.055	0.05	0.05	ug/L
BV87819	\$DPPEST_GA	Toxaphene	NY / TOGS - Water Quality / GA Criteria	ND	0.22	0.06	0.06	ug/L
BV87819	AL-WM	Aluminum	NY / TOGS - Water Quality / GA Criteria	9.91	0.010	0.1	0.1	mg/L
BV87819	DMN-WMDP	Manganese, (Dissolved)	NY / TOGS - Water Quality / GA Criteria	5.54	0.053	0.3	0.3	mg/L
BV87819	D-NA	Sodium (Dissolved)	NY / TOGS - Water Quality / GA Criteria	343	1.1	20	20	mg/L
BV87819	FE-WMDP	Iron	NY / TOGS - Water Quality / GA Criteria	30.4	0.01	0.3	0.3	mg/L
BV87819	MN-WMDP	Manganese	NY / TOGS - Water Quality / GA Criteria	6.36	0.050	0.3	0.3	mg/L
BV87819	NA-WM	Sodium	NY / TOGS - Water Quality / GA Criteria	350	1.0	20	20	mg/L
BV87820	\$8260DP25R	Benzene	NY / TAGM - Volatile Organics / Groundwater Standards	1.7	0.70	0.7	0.7	ug/L
BV87820	\$8260DP25R	1,2-Dibromo-3-chloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.50	0.04	0.04	ug/L
BV87820	\$8260DP25R	Benzene	NY / TOGS - Water Quality / GA Criteria	1.7	0.70	1	1	ug/L
BV87820	\$8260DP25R	1,2-Dibromoethane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.0006	0.0006	ug/L
BV87820	\$8260DP25R	1,2,3-Trichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.04	0.04	ug/L
BV87820	\$8270WMDPR	Chrysene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	36	0.002	0.002	ug/L
BV87820	\$8270WMDPR	Acenaphthene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	33	20	20	ug/L
BV87820	\$8270WMDPR	4-Nitrophenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	49	5	5	ug/L
BV87820	\$8270WMDPR	2,4-Dichlorophenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	38	1	1	ug/L
BV87820	\$8270WMDPR	Acenaphthylene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	30	20	20	ug/L
BV87820	\$8270WMDPR	4-Chloro-3-methylphenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	38	5	5	ug/L
BV87820	\$8270WMDPR	Aniline	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	320	5	5	ug/L
BV87820	\$8270WMDPR	3-Nitroaniline	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	240	5	5	ug/L

Sample Criteria Exceedances Report GBV87817 - EBC

State: NY

State.	INT						RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BV87820	\$8270WMDPR	2,4-Dinitrophenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	76	5	5	ug/L
BV87820	\$8270WMDPR	2-Nitrophenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	69	5	5	ug/L
BV87820	\$8270WMDPR	2-Nitroaniline	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	110	5	5	ug/L
BV87820	\$8270WMDPR	2-Methylphenol (o-cresol)	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	51	5	5	ug/L
BV87820	\$8270WMDPR	2,6-Dinitrotoluene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	34	5	5	ug/L
BV87820	\$8270WMDPR	4-Chloroaniline	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	50	5	5	ug/L
BV87820	\$8270WMDPR	2,4,5-Trichlorophenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	59	1	1	ug/L
BV87820	\$8270WMDPR	Benz(a)anthracene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	36	0.002	0.002	ug/L
BV87820	\$8270WMDPR	Benzo(a)pyrene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	35	0.002	0.002	ug/L
BV87820	\$8270WMDPR	Nitrobenzene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	38	5	5	ug/L
BV87820	\$8270WMDPR	Benzo(b)fluoranthene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	37	0.002	0.002	ug/L
BV87820	\$8270WMDPR	Benzo(ghi)perylene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	35	5	5	ug/L
BV87820	\$8270WMDPR	Hexachlorobenzene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	32	0.35	0.35	ug/L
BV87820	\$8270WMDPR	Benzo(k)fluoranthene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	36	0.002	0.002	ug/L
BV87820	\$8270WMDPR	Indeno(1,2,3-cd)pyrene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	36	0.002	0.002	ug/L
BV87820	\$8270WMDPR	Dibenzofuran	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	32	5	5	ug/L
BV87820	\$8270WMDPR	Phenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	35	1	1	ug/L
BV87820	\$8270WMDPR	Pentachlorophenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	41	1	1	ug/L
BV87820	\$8270WMDPR	Benzoic acid	NY / TAGM - Volatile Organics / Groundwater Standards	360	220	50	50	ug/L
BV87820	\$8270WMDPR	2,4-Dinitrotoluene	NY / TOGS - Water Quality / GA Criteria	ND	43	5	5	ug/L
BV87820	\$8270WMDPR	2,4-Dinitrophenol	NY / TOGS - Water Quality / GA Criteria	ND	76	5	5	ug/L
BV87820	\$8270WMDPR	2,4-Dinitrophenol	NY / TOGS - Water Quality / GA Criteria	ND	76	1	1	ug/L
BV87820	\$8270WMDPR	2,6-Dinitrotoluene	NY / TOGS - Water Quality / GA Criteria	ND	34	5	5	ug/L
BV87820	\$8270WMDPR	2,4,5-Trichlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	59	1	1	ug/L
BV87820	\$8270WMDPR	2,4-Dimethylphenol	NY / TOGS - Water Quality / GA Criteria	ND	27	1	1	ug/L
BV87820	\$8270WMDPR	2,4-Dichlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	38	5	5	ug/L
BV87820	\$8270WMDPR	2,4-Dichlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	38	1	1	ug/L
BV87820	\$8270WMDPR	2,4,6-Trichlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	35	1	1	ug/L
BV87820	\$8270WMDPR	2,4-Dimethylphenol	NY / TOGS - Water Quality / GA Criteria	ND	27	5	5	ug/L
BV87820	\$8270WMDPR	Benzidine	NY / TOGS - Water Quality / GA Criteria	ND	64	5	5	ug/L
BV87820	\$8270WMDPR	Phenol	NY / TOGS - Water Quality / GA Criteria	ND	35	1	1	ug/L
BV87820	\$8270WMDPR	Pentachlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	41	1	1	ug/L
BV87820	\$8270WMDPR	Nitrobenzene	NY / TOGS - Water Quality / GA Criteria	ND	38	0.4	0.4	ug/L
BV87820	\$8270WMDPR	Indeno(1,2,3-cd)pyrene	NY / TOGS - Water Quality / GA Criteria	ND	36	0.002	0.002	ug/L
BV87820	\$8270WMDPR	Hexachloroethane	NY / TOGS - Water Quality / GA Criteria	ND	32	5	5	ug/L
BV87820	\$8270WMDPR	Hexachlorocyclopentadiene	NY / TOGS - Water Quality / GA Criteria	ND	33	5	5	ug/L
BV87820	\$8270WMDPR	Hexachlorobenzene	NY / TOGS - Water Quality / GA Criteria	ND	32	0.04	0.04	ug/L
BV87820	\$8270WMDPR	Chrysene	NY / TOGS - Water Quality / GA Criteria	ND	36	0.002	0.002	ug/L
BV87820	\$8270WMDPR	Bis(2-ethylhexyl)phthalate	NY / TOGS - Water Quality / GA Criteria	ND	31	5	5	ug/L
BV87820		Bis(2-chloroethyl)ether	NY / TOGS - Water Quality / GA Criteria	ND	29	1	1	ug/L
BV87820		Bis(2-chloroethoxy)methane	NY / TOGS - Water Quality / GA Criteria	ND	30	5	5	ug/L
BV87820	\$8270WMDPR	2-Chloronaphthalene	NY / TOGS - Water Quality / GA Criteria	ND	31	10	10	ug/L
		•	•					-

Sample Criteria Exceedances Report GBV87817 - EBC

State: NY

State.							RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BV87820	\$8270WMDPR	Benzo(b)fluoranthene	NY / TOGS - Water Quality / GA Criteria	ND	37	0.002	0.002	ug/L
BV87820	\$8270WMDPR	3-Nitroaniline	NY / TOGS - Water Quality / GA Criteria	ND	240	5	5	ug/L
BV87820	\$8270WMDPR	2-Chlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	31	1	1	ug/L
BV87820	\$8270WMDPR	2-Methylphenol (o-cresol)	NY / TOGS - Water Quality / GA Criteria	ND	51	1	1	ug/L
BV87820	\$8270WMDPR	2-Nitroaniline	NY / TOGS - Water Quality / GA Criteria	ND	110	5	5	ug/L
BV87820	\$8270WMDPR	2-Nitrophenol	NY / TOGS - Water Quality / GA Criteria	ND	69	1	1	ug/L
BV87820	\$8270WMDPR	Benzo(k)fluoranthene	NY / TOGS - Water Quality / GA Criteria	ND	36	0.002	0.002	ug/L
BV87820	\$8270WMDPR	4,6-Dinitro-2-methylphenol	NY / TOGS - Water Quality / GA Criteria	ND	120	1	1	ug/L
BV87820		Benz(a)anthracene	NY / TOGS - Water Quality / GA Criteria	ND	36	0.002	0.002	ug/L
BV87820	\$8270WMDPR	4-Chloro-3-methylphenol	NY / TOGS - Water Quality / GA Criteria	ND	38	1	1	ug/L
BV87820	\$8270WMDPR	4-Chloroaniline	NY / TOGS - Water Quality / GA Criteria	ND	50	5	5	ug/L
BV87820	\$8270WMDPR	4-Nitroaniline	NY / TOGS - Water Quality / GA Criteria	ND	36	5	5	ug/L
BV87820	\$8270WMDPR	4-Nitrophenol	NY / TOGS - Water Quality / GA Criteria	ND	49	1	1	ug/L
BV87820	\$8270WMDPR	Acenaphthene	NY / TOGS - Water Quality / GA Criteria	ND	33	20	20	ug/L
BV87820	\$8270WMDPR	Aniline	NY / TOGS - Water Quality / GA Criteria	ND	320	5	5	ug/L
BV87820	\$8270WMDPR	3,3'-Dichlorobenzidine	NY / TOGS - Water Quality / GA Criteria	ND	51	5	5	ug/L
BV87820	\$DPPEST_GA	Toxaphene	NY / TOGS - Water Quality / GA Criteria	ND	0.20	0.06	0.06	ug/L
BV87820	AL-WM	Aluminum	NY / TOGS - Water Quality / GA Criteria	32.7	0.10	0.1	0.1	mg/L
BV87820	CR-WM	Chromium	NY / TOGS - Water Quality / GA Criteria	0.097	0.001	0.05	0.05	mg/L
BV87820	DFE-WMDP	Iron, (Dissolved)	NY / TOGS - Water Quality / GA Criteria	8.95	0.01	0.3	0.3	mg/L
BV87820	DMN-WMDP	Manganese, (Dissolved)	NY / TOGS - Water Quality / GA Criteria	9.87	0.053	0.3	0.3	mg/L
BV87820	D-NA	Sodium (Dissolved)	NY / TOGS - Water Quality / GA Criteria	145	1.1	20	20	mg/L
BV87820	FE-WMDP	Iron	NY / TOGS - Water Quality / GA Criteria	133	0.10	0.3	0.3	mg/L
BV87820	MG-WM	Magnesium	NY / TOGS - Water Quality / GA Criteria	37.8	0.010	35	35	mg/L
BV87820	MN-WMDP	Manganese	NY / TOGS - Water Quality / GA Criteria	12.1	0.050	0.3	0.3	mg/L
BV87820	NA-WM	Sodium	NY / TOGS - Water Quality / GA Criteria	148	1.0	20	20	mg/L
BV87821	\$8260DP25R	Benzene	NY / TAGM - Volatile Organics / Groundwater Standards	0.73	0.70	0.7	0.7	ug/L
BV87821	\$8260DP25R	1,2-Dibromo-3-chloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.50	0.04	0.04	ug/L
BV87821	\$8260DP25R	1,2,3-Trichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.04	0.04	ug/L
BV87821	\$8260DP25R	1,2-Dibromoethane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.0006	0.0006	ug/L
BV87821	\$DP8270-SIMR	Chrysene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV87821	\$DP8270-SIMR	Benz(a)anthracene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV87821	\$DP8270-SIMR	Indeno(1,2,3-cd)pyrene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV87821	\$DP8270-SIMR	Benzo(a)pyrene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV87821	\$DP8270-SIMR	Benzo(b)fluoranthene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV87821	\$DP8270-SIMR	Benzo(k)fluoranthene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV87821	\$DP8270-SIMR	Indeno(1,2,3-cd)pyrene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
BV87821	\$DP8270-SIMR	Benzo(b)fluoranthene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
BV87821	\$DP8270-SIMR	Benz(a)anthracene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
BV87821	\$DP8270-SIMR	Chrysene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
BV87821	\$DP8270-SIMR	Benzo(k)fluoranthene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
			•					=

Sample Criteria Exceedances Report GBV87817 - EBC

State: NY

State.	INT						RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BV87821	\$DPPEST GA	Chlordane	NY / TOGS - Water Quality / GA Criteria	ND	0.052	0.05	0.05	ug/L
BV87821	\$DPPEST_GA	Toxaphene	NY / TOGS - Water Quality / GA Criteria	ND	0.21	0.06	0.06	ug/L
BV87821	AL-WM	Aluminum	NY / TOGS - Water Quality / GA Criteria	1.05	0.010	0.1	0.1	mg/L
BV87821	DFE-WMDP	Iron, (Dissolved)	NY / TOGS - Water Quality / GA Criteria	0.39	0.01	0.3	0.3	mg/L
BV87821	DMN-WMDP	Manganese, (Dissolved)	NY / TOGS - Water Quality / GA Criteria	4.56	0.053	0.3	0.3	mg/L
BV87821	D-NA	Sodium (Dissolved)	NY / TOGS - Water Quality / GA Criteria	128	1.1	20	20	mg/L
BV87821	FE-WMDP	Iron	NY / TOGS - Water Quality / GA Criteria	28.2	0.01	0.3	0.3	mg/L
BV87821	MN-WMDP	Manganese	NY / TOGS - Water Quality / GA Criteria	5.19	0.050	0.3	0.3	mg/L
BV87821	NA-WM	Sodium	NY / TOGS - Water Quality / GA Criteria	130	1.0	20	20	mg/L
BV87822	\$8260DP25R	Benzene	NY / TAGM - Volatile Organics / Groundwater Standards	5.5	0.70	0.7	0.7	ug/L
BV87822	\$8260DP25R	o-Xylene	NY / TAGM - Volatile Organics / Groundwater Standards	5.5	1.0	5	5	ug/L
BV87822	\$8260DP25R	Toluene	NY / TAGM - Volatile Organics / Groundwater Standards	15	1.0	5	5	ug/L
BV87822	\$8260DP25R	Methyl ethyl ketone	NY / TAGM - Volatile Organics / Groundwater Standards	130	25	50	50	ug/L
BV87822	\$8260DP25R	Acetone	NY / TAGM - Volatile Organics / Groundwater Standards	180	50	50	50	ug/L
BV87822	\$8260DP25R	1,2,4-Trimethylbenzene	NY / TOGS - Water Quality / GA Criteria	5.4	1.0	5	5	ug/L
BV87822	\$8260DP25R	o-Xylene	NY / TOGS - Water Quality / GA Criteria	5.5	1.0	5	5	ug/L
BV87822	\$8260DP25R	1,2,3-Trichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.04	0.04	ug/L
BV87822	\$8260DP25R	Methyl ethyl ketone	NY / TOGS - Water Quality / GA Criteria	130	25	50	50	ug/L
BV87822	\$8260DP25R	1,2-Dibromo-3-chloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.50	0.04	0.04	ug/L
BV87822	\$8260DP25R	Benzene	NY / TOGS - Water Quality / GA Criteria	5.5	0.70	1	1	ug/L
BV87822	\$8260DP25R	1,2-Dibromoethane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.0006	0.0006	ug/L
BV87822	\$8260DP25R	Acetone	NY / TOGS - Water Quality / GA Criteria	180	50	50	50	ug/L
BV87822	\$8260DP25R	Toluene	NY / TOGS - Water Quality / GA Criteria	15	1.0	5	5	ug/L
BV87822	\$8270WMDPR		NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	110	5	5	ug/L
BV87822	\$8270WMDPR	Aniline	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	330	5	5	ug/L
BV87822	\$8270WMDPR	Chrysene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	37	0.002	0.002	ug/L
BV87822	\$8270WMDPR	•	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	70	5	5	ug/L
BV87822	\$8270WMDPR		NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	240	5	5	ug/L
BV87822		4-Chloro-3-methylphenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	39	5	5	ug/L
BV87822		4-Chloroaniline	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	52	5	5	ug/L
BV87822		Benzo(k)fluoranthene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	37	0.002	0.002	ug/L
BV87822		Benzo(ghi)perylene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	36	5	5	ug/L
BV87822		Benzo(a)pyrene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	36	0.002	0.002	ug/L
BV87822	\$8270WMDPR	Acenaphthylene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	31	20	20	ug/L
BV87822	\$8270WMDPR	Hexachlorobenzene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	32	0.35	0.35	ug/L
BV87822		Benzo(b)fluoranthene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	38	0.002	0.002	ug/L
BV87822		Benz(a)anthracene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	37	0.002	0.002	ug/L
BV87822	\$8270WMDPR	Acenaphthene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	34	20	20	ug/L
BV87822	\$8270WMDPR	Indeno(1,2,3-cd)pyrene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	37	0.002	0.002	ug/L
BV87822	\$8270WMDPR	2,4,5-Trichlorophenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	61	1	1	ug/L
BV87822	\$8270WMDPR	Phenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	36	1	1	ug/L

Sample Criteria Exceedances Report GBV87817 - EBC

State: NY

State.	IN T						RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BV87822	\$8270WMDPR	2,4-Dichlorophenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	39	1	1	ug/L
BV87822	\$8270WMDPR	Pentachlorophenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	42	1	1	ug/L
BV87822	\$8270WMDPR	Nitrobenzene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	39	5	5	ug/L
BV87822	\$8270WMDPR	2-Methylphenol (o-cresol)	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	52	5	5	ug/L
BV87822	\$8270WMDPR	2,4-Dinitrophenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	78	5	5	ug/L
BV87822	\$8270WMDPR	Dibenzofuran	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	32	5	5	ug/L
BV87822	\$8270WMDPR	2,6-Dinitrotoluene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	35	5	5	ug/L
BV87822	\$8270WMDPR	4-Nitrophenol	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	50	5	5	ug/L
BV87822	\$8270WMDPR	Benzoic acid	NY / TAGM - Volatile Organics / Groundwater Standards	3300	2200	50	50	ug/L
BV87822	\$8270WMDPR	Phenol	NY / TOGS - Water Quality / GA Criteria	ND	36	1	1	ug/L
BV87822	\$8270WMDPR	Chrysene	NY / TOGS - Water Quality / GA Criteria	ND	37	0.002	0.002	ug/L
BV87822	\$8270WMDPR	Pentachlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	42	1	1	ug/L
BV87822	\$8270WMDPR	Benzo(b)fluoranthene	NY / TOGS - Water Quality / GA Criteria	ND	38	0.002	0.002	ug/L
BV87822	\$8270WMDPR	Benzo(k)fluoranthene	NY / TOGS - Water Quality / GA Criteria	ND	37	0.002	0.002	ug/L
BV87822	\$8270WMDPR	Nitrobenzene	NY / TOGS - Water Quality / GA Criteria	ND	39	0.4	0.4	ug/L
BV87822	\$8270WMDPR	Bis(2-chloroethoxy)methane	NY / TOGS - Water Quality / GA Criteria	ND	31	5	5	ug/L
BV87822	\$8270WMDPR	Hexachlorocyclopentadiene	NY / TOGS - Water Quality / GA Criteria	ND	34	5	5	ug/L
BV87822	\$8270WMDPR	Indeno(1,2,3-cd)pyrene	NY / TOGS - Water Quality / GA Criteria	ND	37	0.002	0.002	ug/L
BV87822	\$8270WMDPR	Bis(2-ethylhexyl)phthalate	NY / TOGS - Water Quality / GA Criteria	ND	32	5	5	ug/L
BV87822	\$8270WMDPR	Bis(2-chloroethyl)ether	NY / TOGS - Water Quality / GA Criteria	ND	30	1	1	ug/L
BV87822	\$8270WMDPR	Hexachloroethane	NY / TOGS - Water Quality / GA Criteria	ND	33	5	5	ug/L
BV87822	\$8270WMDPR	Hexachlorobenzene	NY / TOGS - Water Quality / GA Criteria	ND	32	0.04	0.04	ug/L
BV87822	\$8270WMDPR	2-Chloronaphthalene	NY / TOGS - Water Quality / GA Criteria	ND	32	10	10	ug/L
BV87822	\$8270WMDPR	2,4,5-Trichlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	61	1	1	ug/L
BV87822	\$8270WMDPR	2,4,6-Trichlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	36	1	1	ug/L
BV87822	\$8270WMDPR	2,4-Dichlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	39	1	1	ug/L
BV87822	\$8270WMDPR	2,4-Dichlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	39	5	5	ug/L
BV87822	\$8270WMDPR	2,4-Dimethylphenol	NY / TOGS - Water Quality / GA Criteria	ND	28	1	1	ug/L
BV87822	\$8270WMDPR	2,4-Dimethylphenol	NY / TOGS - Water Quality / GA Criteria	ND	28	5	5	ug/L
BV87822	\$8270WMDPR	2,4-Dinitrophenol	NY / TOGS - Water Quality / GA Criteria	ND	78	1	1	ug/L
BV87822	\$8270WMDPR	2,4-Dinitrophenol	NY / TOGS - Water Quality / GA Criteria	ND	78	5	5	ug/L
BV87822	\$8270WMDPR	4-Nitroaniline	NY / TOGS - Water Quality / GA Criteria	ND	37	5	5	ug/L
BV87822	\$8270WMDPR	2,6-Dinitrotoluene	NY / TOGS - Water Quality / GA Criteria	ND	35	5	5	ug/L
BV87822	\$8270WMDPR	Benzidine	NY / TOGS - Water Quality / GA Criteria	ND	65	5	5	ug/L
BV87822	\$8270WMDPR	2-Chlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	32	1	1	ug/L
BV87822	\$8270WMDPR	4-Nitrophenol	NY / TOGS - Water Quality / GA Criteria	ND	50	1	1	ug/L
BV87822	\$8270WMDPR	Benz(a)anthracene	NY / TOGS - Water Quality / GA Criteria	ND	37	0.002	0.002	ug/L
BV87822	\$8270WMDPR	2,4-Dinitrotoluene	NY / TOGS - Water Quality / GA Criteria	ND	44	5	5	ug/L
BV87822	\$8270WMDPR	Acenaphthene	NY / TOGS - Water Quality / GA Criteria	ND	34	20	20	ug/L
BV87822		2-Methylphenol (o-cresol)	NY / TOGS - Water Quality / GA Criteria	ND	52	1	1	ug/L
BV87822	·	4-Chloroaniline	NY / TOGS - Water Quality / GA Criteria	ND	52	5	5	ug/L
BV87822	\$8270WMDPR	4-Chloro-3-methylphenol	NY / TOGS - Water Quality / GA Criteria	ND	39	1	1	ug/L

Sample Criteria Exceedances Report GBV87817 - EBC

State:	NY		OBVOION EBO				RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BV87822	\$8270WMDPR	4,6-Dinitro-2-methylphenol	NY / TOGS - Water Quality / GA Criteria	ND	120	1	1	ug/L
BV87822	\$8270WMDPR	3-Nitroaniline	NY / TOGS - Water Quality / GA Criteria	ND	240	5	5	ug/L
BV87822	\$8270WMDPR	3,3'-Dichlorobenzidine	NY / TOGS - Water Quality / GA Criteria	ND	52	5	5	ug/L
BV87822	\$8270WMDPR	2-Nitrophenol	NY / TOGS - Water Quality / GA Criteria	ND	70	1	1	ug/L
BV87822	\$8270WMDPR	2-Nitroaniline	NY / TOGS - Water Quality / GA Criteria	ND	110	5	5	ug/L
BV87822	\$8270WMDPR	Aniline	NY / TOGS - Water Quality / GA Criteria	ND	330	5	5	ug/L
BV87822	\$DPPEST_GA	Chlordane	NY / TOGS - Water Quality / GA Criteria	ND	0.060	0.05	0.05	ug/L
BV87822	\$DPPEST_GA	Toxaphene	NY / TOGS - Water Quality / GA Criteria	ND	0.24	0.06	0.06	ug/L
BV87822	AL-WM	Aluminum	NY / TOGS - Water Quality / GA Criteria	6.20	0.010	0.1	0.1	mg/L
BV87822	AS-WMDP	Arsenic - LDL	NY / TOGS - Water Quality / GA Criteria	0.035	0.004	0.025	0.025	mg/L
BV87822	DFE-WMDP	Iron, (Dissolved)	NY / TOGS - Water Quality / GA Criteria	79.1	0.01	0.3	0.3	mg/L
BV87822	DMN-WMDP	Manganese, (Dissolved)	NY / TOGS - Water Quality / GA Criteria	3.14	0.053	0.3	0.3	mg/L
BV87822	D-NA	Sodium (Dissolved)	NY / TOGS - Water Quality / GA Criteria	151	1.1	20	20	mg/L
BV87822	FE-WMDP	Iron	NY / TOGS - Water Quality / GA Criteria	151	0.10	0.3	0.3	mg/L
BV87822	MN-WMDP	Manganese	NY / TOGS - Water Quality / GA Criteria	3.87	0.050	0.3	0.3	mg/L
BV87822	NA-WM	Sodium	NY / TOGS - Water Quality / GA Criteria	151	1.0	20	20	mg/L
BV87823	\$8260DP25R	1,2-Dichloroethane	NY / TAGM - Volatile Organics / Groundwater Standards	ND	10	5	5	ug/L
BV87823	\$8260DP25R	Ethylbenzene	NY / TAGM - Volatile Organics / Groundwater Standards	940	50	5	5	ug/L
BV87823	\$8260DP25R	Naphthalene	NY / TAGM - Volatile Organics / Groundwater Standards	250	20	5	5	ug/L
BV87823	\$8260DP25R	Benzene	NY / TAGM - Volatile Organics / Groundwater Standards	380	5.0	0.7	0.7	ug/L
BV87823	\$8260DP25R	o-Xylene	NY / TAGM - Volatile Organics / Groundwater Standards	1500	50	5	5	ug/L
BV87823	\$8260DP25R	Methylene chloride	NY / TAGM - Volatile Organics / Groundwater Standards	ND	20	5	5	ug/L
BV87823	\$8260DP25R	Toluene	NY / TAGM - Volatile Organics / Groundwater Standards	1100	50	5	5	ug/L
BV87823	\$8260DP25R	1,2-Dichlorobenzene	NY / TAGM - Volatile Organics / Groundwater Standards	ND	5.0	4.7	4.7	ug/L
BV87823	\$8260DP25R	Vinyl chloride	NY / TAGM - Volatile Organics / Groundwater Standards	ND	5.0	2	2	ug/L
BV87823	\$8260DP25R	Naphthalene	NY / TOGS - Water Quality / GA Criteria	250	20	10	10	ug/L
BV87823	\$8260DP25R	Styrene	NY / TOGS - Water Quality / GA Criteria	6.9	5.0	5	5	ug/L
BV87823	\$8260DP25R	sec-Butylbenzene	NY / TOGS - Water Quality / GA Criteria	12	5.0	5	5	ug/L
BV87823	\$8260DP25R	o-Xylene	NY / TOGS - Water Quality / GA Criteria	1500	50	5	5	ug/L
BV87823	\$8260DP25R	trans-1,3-Dichloropropene	NY / TOGS - Water Quality / GA Criteria	ND	5.0	0.4	0.4	ug/L
BV87823	\$8260DP25R	trans-1,4-dichloro-2-butene	NY / TOGS - Water Quality / GA Criteria	ND	50	5	5	ug/L
BV87823	\$8260DP25R	n-Butylbenzene	NY / TOGS - Water Quality / GA Criteria	16	5.0	5	5	ug/L
BV87823	\$8260DP25R	Vinyl chloride	NY / TOGS - Water Quality / GA Criteria	ND	5.0	2	2	ug/L
BV87823	\$8260DP25R	Methylene chloride	NY / TOGS - Water Quality / GA Criteria	ND	20	5	5	ug/L
BV87823	\$8260DP25R	Toluene	NY / TOGS - Water Quality / GA Criteria	1100	50	5	5	ug/L
BV87823	\$8260DP25R	1,2-Dichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	5.0	1	1	ug/L
BV87823	\$8260DP25R	1,1,2-Trichloroethane	NY / TOGS - Water Quality / GA Criteria	ND	5.0	1	1	ug/L
BV87823	\$8260DP25R	n-Propylbenzene	NY / TOGS - Water Quality / GA Criteria	170	5.0	5	5	ug/L
BV87823	\$8260DP25R	Isopropylbenzene	NY / TOGS - Water Quality / GA Criteria	64	5.0	5	5	ug/L
BV87823	\$8260DP25R	1,2,4-Trimethylbenzene	NY / TOGS - Water Quality / GA Criteria	1400	50	5	5	ug/L
BV87823	\$8260DP25R	1,2-Dibromo-3-chloropropane	NY / TOGS - Water Quality / GA Criteria	ND	10	0.04	0.04	ug/L

Sample Criteria Exceedances Report GBV87817 - EBC

State: NY

SampNo Acode Phoenix Analyte Criteria Criteria Criteria Criteria Criteria Units
BV87823 \$8260DP25R 1,2,3-Trichloropropane NY / TOGS - Water Quality / GA Criteria ND 5.0 0.04 0.04 ug/L BV87823 \$8260DP25R 1,3,5-Trimethylbenzene NY / TOGS - Water Quality / GA Criteria ND 5.0 0.4 0.4 ug/L BV87823 \$8260DP25R cis-1,3-Dichloropropene NY / TOGS - Water Quality / GA Criteria ND 4.0 0.5 0.5 ug/L BV87823 \$8260DP25R Hexachlorobutadiene NY / TOGS - Water Quality / GA Criteria ND 4.0 0.5 0.5 0.5 0.5 Ug/L BV87823 \$8260DP25R 1,2-Dibromoethane NY / TOGS - Water Quality / GA Criteria ND 5.0 0.0006 0.0006 ug/L BV87823 \$8260DP25R 1,3-Dichlorobenzene NY / TOGS - Water Quality / GA Criteria ND 5.0 1 1 ug/L BV87823 \$8260DP25R Acrylonitrile NY / TOGS - Water Quality / GA Criteria ND 5.0 5 5 ug/L BV87823 \$8260DP25R Acrylonitrile <t< th=""></t<>
BV87823 \$8260DP25R 1,2,3-Trichloropropane NY / TOGS - Water Quality / GA Criteria ND 5.0 0.04 0.04 ug/L BV87823 \$8260DP25R 1,3,5-Trimethylbenzene NY / TOGS - Water Quality / GA Criteria ND 5.0 0.4 0.4 ug/L BV87823 \$8260DP25R cis-1,3-Dichloropropene NY / TOGS - Water Quality / GA Criteria ND 4.0 0.5 0.5 ug/L BV87823 \$8260DP25R Hexachlorobutadiene NY / TOGS - Water Quality / GA Criteria ND 4.0 0.5 0.5 0.5 0.5 Ug/L BV87823 \$8260DP25R 1,2-Dibromoethane NY / TOGS - Water Quality / GA Criteria ND 5.0 0.0006 0.0006 ug/L BV87823 \$8260DP25R 1,3-Dichlorobenzene NY / TOGS - Water Quality / GA Criteria ND 5.0 1 1 ug/L BV87823 \$8260DP25R Acrylonitrile NY / TOGS - Water Quality / GA Criteria ND 5.0 5 5 ug/L BV87823 \$8260DP25R Acrylonitrile <t< td=""></t<>
BV87823 \$8260DP25R 1,3,5-Trimethylbenzene NY / TOGS - Water Quality / GA Criteria 400 5.0 5 5 ug/L BV87823 \$8260DP25R cis-1,3-Dichloropropene NY / TOGS - Water Quality / GA Criteria ND 5.0 0.4 0.4 ug/L BV87823 \$8260DP25R Hexachlorobutadiene NY / TOGS - Water Quality / GA Criteria ND 5.0 0.0006 0.0006 ug/L BV87823 \$8260DP25R Litylbenzene NY / TOGS - Water Quality / GA Criteria ND 5.0 5 5 ug/L BV87823 \$8260DP25R Litylbenzene NY / TOGS - Water Quality / GA Criteria ND 5.0 3 3 ug/L BV87823 \$8260DP25R Benzene NY / TOGS - Water Quality / GA Criteria ND 5.0 5 5 ug/L BV87823 \$8260DP25R Acrolein NY / TOGS - Water Quality / GA Criteria ND 50 5 5 ug/L BV87823 \$8260DP25R Acrolein NY / TAGM - Semi-Volatiles GCriteria ND
BV87823 \$8260DP25R cis-1,3-Dichloropropene NY / TOGS - Water Quality / GA Criteria ND 5.0 0.4 0.4 ug/L BV87823 \$8260DP25R Hexachlorobutadiene NY / TOGS - Water Quality / GA Criteria ND 4.0 0.5 0.5 ug/L BV87823 \$8260DP25R Hexachlorobutadiene NY / TOGS - Water Quality / GA Criteria ND 5.0 0.0006 0.0006 0.0006 BV87823 \$8260DP25R Ethylbenzene NY / TOGS - Water Quality / GA Criteria 940 50 5 5 ug/L BV87823 \$8260DP25R Ebrylbenzene NY / TOGS - Water Quality / GA Criteria ND 5.0 3 3 ug/L BV87823 \$8260DP25R Benzene NY / TOGS - Water Quality / GA Criteria ND 50 5 5 ug/L BV87823 \$8260DP25R Acrylonitrile NY / TOGS - Water Quality / GA Criteria ND 50 5 5 ug/L BV87823 \$8260DP25R Acrolein NY / TOGS - Water Quality / GA Criteria ND 50
BV87823 \$8260DP25R Hexachlorobutadiene NY / TOGS - Water Quality / GA Criteria ND 4.0 0.5 0.5 ug/L BV87823 \$8260DP25R 1,2-Dibromoethane NY / TOGS - Water Quality / GA Criteria ND 5.0 0.0006 0.0006 ug/L BV87823 \$8260DP25R Ethylbenzene NY / TOGS - Water Quality / GA Criteria ND 5.0 3 3 ug/L BV87823 \$8260DP25R Benzene NY / TOGS - Water Quality / GA Criteria ND 5.0 1 1 ug/L BV87823 \$8260DP25R Benzene NY / TOGS - Water Quality / GA Criteria ND 50 5 5 ug/L BV87823 \$8260DP25R Acrylonitrile NY / TOGS - Water Quality / GA Criteria ND 50 5 5 ug/L BV87823 \$8260DP25R Acrolein NY / TOGS - Water Quality / GA Criteria ND 50 5 5 ug/L BV87823 \$8260DP25R Acrolein NY / TOGS - Water Quality / GA Criteria ND 4 7 <td< td=""></td<>
BV87823 \$8260DP25R 1,2-Dibromoethane NY / TOGS - Water Quality / GA Criteria ND 5.0 0.0006 0.0006 ug/L BV87823 \$8260DP25R Ethylbenzene NY / TOGS - Water Quality / GA Criteria ND 5.0 3 3 ug/L BV87823 \$8260DP25R Laccompany NY / TOGS - Water Quality / GA Criteria ND 5.0 1 1 1 ug/L BV87823 \$8260DP25R Acrylonitrile NY / TOGS - Water Quality / GA Criteria ND 50 5 5 ug/L BV87823 \$8260DP25R Acrolein NY / TOGS - Water Quality / GA Criteria ND 50 5 5 ug/L BV87823 \$8260DP25R Acrolein NY / TOGS - Water Quality / GA Criteria ND 50 5 5 ug/L BV87823 \$8260DP25R Acrolein NY / TAGM - Semi-Volatiles / Groundwater Standards ND 47 5 5 ug/L BV87823 \$8270WMDPR - 2-Nitrophinol NY / TAGM - Semi-Volatiles / Groundwater Standards ND 10 <t< td=""></t<>
BV87823 \$8260DP25R Ethylbenzene NY / TOGS - Water Quality / GA Criteria 940 50 5 5 ug/L BV87823 \$8260DP25R 1,3-Dichlorobenzene NY / TOGS - Water Quality / GA Criteria ND 5.0 3 3 ug/L BV87823 \$8260DP25R Benzene NY / TOGS - Water Quality / GA Criteria 380 5.0 1 1 ug/L BV87823 \$8260DP25R Acrylonitrile NY / TOGS - Water Quality / GA Criteria ND 50 5 5 ug/L BV87823 \$8260DP25R Acrolein NY / TOGS - Water Quality / GA Criteria ND 50 5 5 ug/L BV87823 \$8270WMDPR Acrolein NY / TAGM - Semi-Volatiles / Groundwater Standards ND 47 5 5 ug/L BV87823 \$8270WMDPR 4-Chloro-3-methylphenol (o-cresol) NY / TAGM - Semi-Volatiles / Groundwater Standards ND 35 5 5 ug/L BV87823 \$8270WMDPR 2-Viltroaniline NY / TAGM - Semi-Volatiles / Groundwater Standards ND
BV87823 \$8260DP25R Benzene NY / TOGS - Water Quality / GA Criteria 380 5.0 1 1 ug/L BV87823 \$8260DP25R Acrylonitrile NY / TOGS - Water Quality / GA Criteria ND 50 5 5 ug/L BV87823 \$8260DP25R Acrolein NY / TOGS - Water Quality / GA Criteria ND 50 5 5 ug/L BV87823 \$8270WMDPR 2-Methylphenol (o-cresol) NY / TAGM - Semi-Volatiles / Groundwater Standards ND 47 5 5 ug/L BV87823 \$8270WMDPR 2-Nitroaniline NY / TAGM - Semi-Volatiles / Groundwater Standards ND 35 5 5 ug/L BV87823 \$8270WMDPR 2-Nitroaniline NY / TAGM - Semi-Volatiles / Groundwater Standards ND 100 5 5 ug/L BV87823 \$8270WMDPR 2-Nitroaniline NY / TAGM - Semi-Volatiles / Groundwater Standards ND 63 5 5 ug/L BV87823 \$8270WMDPR Dibenzofuran NY / TAGM - Semi-Volatiles / Groundwater Standards N
BV87823 \$8260DP25R Benzene NY / TOGS - Water Quality / GA Criteria 380 5.0 1 1 ug/L BV87823 \$8260DP25R Acrylonitrile NY / TOGS - Water Quality / GA Criteria ND 50 5 5 ug/L BV87823 \$8260DP25R Acrolein NY / TOGS - Water Quality / GA Criteria ND 50 5 5 ug/L BV87823 \$8270WMDPR Acrolein NY / TAGM - Semi-Volatiles / Groundwater Standards ND 47 5 5 ug/L BV87823 \$8270WMDPR 4-Chloro-3-methylphenol NY / TAGM - Semi-Volatiles / Groundwater Standards ND 35 5 5 ug/L BV87823 \$8270WMDPR 2-Nitrophenol NY / TAGM - Semi-Volatiles / Groundwater Standards ND 63 5 5 ug/L BV87823 \$8270WMDPR 2-Nitrophenol NY / TAGM - Semi-Volatiles / Groundwater Standards ND 63 5 5 ug/L BV87823 \$8270WMDPR Dibenzofuran NY / TAGM - Semi-Volatiles / Groundwater Standards ND
BV87823 \$8270WMDPR 2-Methylphenol (o-cresol) NY / TAGM - Semi-Volatiles / Groundwater Standards ND 47 5 5 ug/L BV87823 \$8270WMDPR 4-Chloro-3-methylphenol NY / TAGM - Semi-Volatiles / Groundwater Standards ND 35 5 5 ug/L BV87823 \$8270WMDPR 2-Nitroaniline NY / TAGM - Semi-Volatiles / Groundwater Standards ND 35 5 5 ug/L BV87823 \$8270WMDPR 2-Nitroaniline NY / TAGM - Semi-Volatiles / Groundwater Standards ND 100 5 5 5 ug/L BV87823 \$8270WMDPR 2-Nitrophenol NY / TAGM - Semi-Volatiles / Groundwater Standards ND 63 5 5 ug/L BV87823 \$8270WMDPR Dibenzofuran NY / TAGM - Semi-Volatiles / Groundwater Standards ND 29 5 5 ug/L BV87823 \$8270WMDPR 3-Nitroaniline NY / TAGM - Semi-Volatiles / Groundwater Standards ND 29 5 5 ug/L BV87823 \$8270WMDPR Chrysene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 20 5 5 ug/L BV87823 \$8270WMDPR Hexachlorobenzene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 29 0.35 0.35 ug/L BV87823 \$8270WMDPR 4-Chloroaniline NY / TAGM - Semi-Volatiles / Groundwater Standards ND 29 0.35 0.35 ug/L BV87823 \$8270WMDPR A-Chloroaniline NY / TAGM - Semi-Volatiles / Groundwater Standards ND 29 0.35 0.35 ug/L BV87823 \$8270WMDPR Benzo(a)pyrene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 30 0.002 0.002 ug/L BV87823 \$8270WMDPR A-Cenaphthene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 30 0.002 0.002 ug/L BV87823 \$8270WMDPR A-Cenaphthene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 30 0.002 0.002 ug/L BV87823 \$8270WMDPR A-Cenaphthene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 30 0.002 0.002 ug/L BV87823 \$8270WMDPR A-Cenaphthene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 30 0.002 0.002 ug/L BV87823 \$8270WMDPR A-Cenaphthene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 30 0.002 0.002 ug/L BV87823 \$8270WMDPR A-Cenaphthene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 30 0.002 0.002 ug/L BV87823 \$8270WMDPR A-Cenaphthene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 30 0.002 0.002 ug/L BV87823 \$8270WMDPR A-Cenaphthene NY / TAGM - Semi-Vo
BV87823 \$8270WMDPR 2-Methylphenol (o-cresol) NY / TAGM - Semi-Volatiles / Groundwater Standards ND 47 5 5 ug/L BV87823 \$8270WMDPR 4-Chloro-3-methylphenol NY / TAGM - Semi-Volatiles / Groundwater Standards ND 35 5 5 ug/L BV87823 \$8270WMDPR 2-Nitroaniline NY / TAGM - Semi-Volatiles / Groundwater Standards ND 100 5 5 ug/L BV87823 \$8270WMDPR 2-Nitrophenol NY / TAGM - Semi-Volatiles / Groundwater Standards ND 63 5 5 ug/L BV87823 \$8270WMDPR Dibenzofuran NY / TAGM - Semi-Volatiles / Groundwater Standards ND 29 5 5 ug/L BV87823 \$8270WMDPR Dibenzofuran NY / TAGM - Semi-Volatiles / Groundwater Standards ND 29 5 5 ug/L BV87823 \$8270WMDPR 3-Nitroaniline NY / TAGM - Semi-Volatiles / Groundwater Standards ND 220 5 5 ug/L BV87823 \$8270WMDPR Chrysene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 34 0.002 0.002 ug/L BV87823 \$8270WMDPR Hexachlorobenzene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 29 0.35 0.35 ug/L BV87823 \$8270WMDPR Hexachlorobenzene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 29 0.35 0.35 ug/L BV87823 \$8270WMDPR A-Chloroaniline NY / TAGM - Semi-Volatiles / Groundwater Standards ND 47 5 5 ug/L BV87823 \$8270WMDPR Benzo(a)pyrene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 33 0.002 0.002 ug/L BV87823 \$8270WMDPR A-Cenaphthene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 30 20 20 ug/L BV87823 \$8270WMDPR A-Cenaphthene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 30 20 20 ug/L BV87823 \$8270WMDPR A-Cenaphthylene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 30 20 20 ug/L
BV87823 \$8270WMDPR 2-Methylphenol (o-cresol) NY / TAGM - Semi-Volatiles / Groundwater Standards ND 47 5 5 ug/L BV87823 \$8270WMDPR 4-Chloro-3-methylphenol NY / TAGM - Semi-Volatiles / Groundwater Standards ND 35 5 5 ug/L BV87823 \$8270WMDPR 2-Nitroaniline NY / TAGM - Semi-Volatiles / Groundwater Standards ND 100 5 5 ug/L BV87823 \$8270WMDPR 2-Nitrophenol NY / TAGM - Semi-Volatiles / Groundwater Standards ND 63 5 5 ug/L BV87823 \$8270WMDPR Dibenzofuran NY / TAGM - Semi-Volatiles / Groundwater Standards ND 29 5 5 ug/L BV87823 \$8270WMDPR Dibenzofuran NY / TAGM - Semi-Volatiles / Groundwater Standards ND 29 5 5 ug/L BV87823 \$8270WMDPR 3-Nitroaniline NY / TAGM - Semi-Volatiles / Groundwater Standards ND 220 5 5 ug/L BV87823 \$8270WMDPR Chrysene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 34 0.002 0.002 ug/L BV87823 \$8270WMDPR Hexachlorobenzene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 29 0.35 0.35 ug/L BV87823 \$8270WMDPR Hexachlorobenzene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 29 0.35 0.35 ug/L BV87823 \$8270WMDPR A-Chloroaniline NY / TAGM - Semi-Volatiles / Groundwater Standards ND 47 5 5 ug/L BV87823 \$8270WMDPR Benzo(a)pyrene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 33 0.002 0.002 ug/L BV87823 \$8270WMDPR A-Cenaphthene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 30 20 20 ug/L BV87823 \$8270WMDPR A-Cenaphthene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 30 20 20 ug/L BV87823 \$8270WMDPR A-Cenaphthylene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 30 20 20 ug/L
BV87823 \$8270WMDPR 2-Nitroaniline NY / TAGM - Semi-Volatiles / Groundwater Standards ND 100 5 5 ug/L BV87823 \$8270WMDPR 2-Nitrophenol NY / TAGM - Semi-Volatiles / Groundwater Standards ND 63 5 5 ug/L BV87823 \$8270WMDPR Dibenzofuran NY / TAGM - Semi-Volatiles / Groundwater Standards ND 29 5 5 ug/L BV87823 \$8270WMDPR 3-Nitroaniline NY / TAGM - Semi-Volatiles / Groundwater Standards ND 220 5 5 ug/L BV87823 \$8270WMDPR Chrysene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 34 0.002 0.002 ug/L BV87823 \$8270WMDPR Hexachlorobenzene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 29 0.35 0.35 ug/L BV87823 \$8270WMDPR 4-Chloroaniline NY / TAGM - Semi-Volatiles / Groundwater Standards ND 47 5 5 5 ug/L BV87823 \$8270WMDPR Benzo(a)pyrene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 33 0.002 0.002 ug/L BV87823 \$8270WMDPR Acenaphthene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 30 20 20 ug/L BV87823 \$8270WMDPR Acenaphthylene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 30 20 20 ug/L BV87823 \$8270WMDPR Acenaphthylene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 30 20 20 ug/L
BV87823\$8270WMDPR2-NitrophenolNY / TAGM - Semi-Volatiles / Groundwater StandardsND6355ug/LBV87823\$8270WMDPRDibenzofuranNY / TAGM - Semi-Volatiles / Groundwater StandardsND2955ug/LBV87823\$8270WMDPR3-NitroanilineNY / TAGM - Semi-Volatiles / Groundwater StandardsND22055ug/LBV87823\$8270WMDPRChryseneNY / TAGM - Semi-Volatiles / Groundwater StandardsND340.0020.002ug/LBV87823\$8270WMDPRHexachlorobenzeneNY / TAGM - Semi-Volatiles / Groundwater StandardsND290.350.35ug/LBV87823\$8270WMDPR4-ChloroanilineNY / TAGM - Semi-Volatiles / Groundwater StandardsND4755ug/LBV87823\$8270WMDPRBenzo(a)pyreneNY / TAGM - Semi-Volatiles / Groundwater StandardsND330.0020.002ug/LBV87823\$8270WMDPRAcenaphtheneNY / TAGM - Semi-Volatiles / Groundwater StandardsND302020ug/LBV87823\$8270WMDPRAcenaphthyleneNY / TAGM - Semi-Volatiles / Groundwater StandardsND302020ug/L
BV87823 \$8270WMDPR Dibenzofuran NY / TAGM - Semi-Volatiles / Groundwater Standards ND 29 5 5 ug/L BV87823 \$8270WMDPR 3-Nitroaniline NY / TAGM - Semi-Volatiles / Groundwater Standards ND 220 5 5 ug/L BV87823 \$8270WMDPR Chrysene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 34 0.002 0.002 ug/L BV87823 \$8270WMDPR Hexachlorobenzene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 29 0.35 0.35 ug/L BV87823 \$8270WMDPR 4-Chloroaniline NY / TAGM - Semi-Volatiles / Groundwater Standards ND 47 5 5 5 ug/L BV87823 \$8270WMDPR Benzo(a)pyrene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 33 0.002 0.002 ug/L BV87823 \$8270WMDPR Acenaphthene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 30 20 20 ug/L BV87823 \$8270WMDPR Acenaphthylene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 30 20 20 ug/L
BV87823\$8270WMDPR3-NitroanilineNY / TAGM - Semi-Volatiles / Groundwater StandardsND22055ug/LBV87823\$8270WMDPRChryseneNY / TAGM - Semi-Volatiles / Groundwater StandardsND340.0020.002ug/LBV87823\$8270WMDPRHexachlorobenzeneNY / TAGM - Semi-Volatiles / Groundwater StandardsND290.350.35ug/LBV87823\$8270WMDPR4-ChloroanilineNY / TAGM - Semi-Volatiles / Groundwater StandardsND4755ug/LBV87823\$8270WMDPRBenzo(a)pyreneNY / TAGM - Semi-Volatiles / Groundwater StandardsND330.0020.002ug/LBV87823\$8270WMDPRAcenaphtheneNY / TAGM - Semi-Volatiles / Groundwater StandardsND302020ug/LBV87823\$8270WMDPRAcenaphthyleneNY / TAGM - Semi-Volatiles / Groundwater StandardsND282020ug/L
BV87823 \$8270WMDPR Chrysene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 34 0.002 0.002 ug/L BV87823 \$8270WMDPR Hexachlorobenzene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 29 0.35 0.35 ug/L BV87823 \$8270WMDPR 4-Chloroaniline NY / TAGM - Semi-Volatiles / Groundwater Standards ND 47 5 5 5 ug/L BV87823 \$8270WMDPR Benzo(a)pyrene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 33 0.002 0.002 ug/L BV87823 \$8270WMDPR Acenaphthene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 30 20 20 ug/L BV87823 \$8270WMDPR Acenaphthylene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 28 20 20 ug/L
BV87823\$8270WMDPRHexachlorobenzeneNY / TAGM - Semi-Volatiles / Groundwater StandardsND290.350.35ug/LBV87823\$8270WMDPR4-ChloroanilineNY / TAGM - Semi-Volatiles / Groundwater StandardsND4755ug/LBV87823\$8270WMDPRBenzo(a)pyreneNY / TAGM - Semi-Volatiles / Groundwater StandardsND330.0020.002ug/LBV87823\$8270WMDPRAcenaphtheneNY / TAGM - Semi-Volatiles / Groundwater StandardsND302020ug/LBV87823\$8270WMDPRAcenaphthyleneNY / TAGM - Semi-Volatiles / Groundwater StandardsND282020ug/L
BV87823\$8270WMDPR4-ChloroanilineNY / TAGM - Semi-Volatiles / Groundwater StandardsND4755ug/LBV87823\$8270WMDPRBenzo(a)pyreneNY / TAGM - Semi-Volatiles / Groundwater StandardsND330.0020.002ug/LBV87823\$8270WMDPRAcenaphtheneNY / TAGM - Semi-Volatiles / Groundwater StandardsND302020ug/LBV87823\$8270WMDPRAcenaphthyleneNY / TAGM - Semi-Volatiles / Groundwater StandardsND282020ug/L
BV87823 \$8270WMDPR Benzo(a)pyrene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 33 0.002 0.002 ug/L BV87823 \$8270WMDPR Acenaphthene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 30 20 20 ug/L BV87823 \$8270WMDPR Acenaphthylene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 28 20 20 ug/L
BV87823 \$8270WMDPR Acenaphthene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 30 20 20 ug/L BV87823 \$8270WMDPR Acenaphthylene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 28 20 ug/L
BV87823 \$8270WMDPR Acenaphthylene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 28 20 20 ug/L
BV87823 \$8270WMDPR Acenaphthylene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 28 20 20 ug/L
BV87823 \$8270WMDPR Aniline NY / TAGM - Semi-Volatiles / Groundwater Standards ND 300 5 5 1 ug/l
The state of the s
BV87823 \$8270WMDPR Benzo(k)fluoranthene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 33 0.002 0.002 ug/L
BV87823 \$8270WMDPR Benzo(ghi)perylene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 32 5 5 ug/L
BV87823 \$8270WMDPR 2-Methylnaphthalene NY / TAGM - Semi-Volatiles / Groundwater Standards 67 50 50 50 ug/L
BV87823 \$8270WMDPR Phenol NY / TAGM - Semi-Volatiles / Groundwater Standards ND 32 1 1 1 ug/L
BV87823 \$8270WMDPR Benz(a)anthracene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 34 0.002 0.002 ug/L
BV87823 \$8270WMDPR 2,4,5-Trichlorophenol NY / TAGM - Semi-Volatiles / Groundwater Standards ND 55 1 1 1 ug/L
BV87823 \$8270WMDPR 2,4-Dichlorophenol NY / TAGM - Semi-Volatiles / Groundwater Standards ND 35 1 1 1 ug/L
BV87823 \$8270WMDPR Pentachlorophenol NY / TAGM - Semi-Volatiles / Groundwater Standards ND 38 1 1 1 ug/L
BV87823 \$8270WMDPR Benzo(b)fluoranthene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 34 0.002 0.002 ug/L
BV87823 \$8270WMDPR Naphthalene NY / TAGM - Semi-Volatiles / Groundwater Standards 260 29 10 10 ug/L
BV87823 \$8270WMDPR Nitrobenzene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 35 5 5 ug/L
BV87823 \$8270WMDPR 4-Nitrophenol NY / TAGM - Semi-Volatiles / Groundwater Standards ND 45 5 5 ug/L
BV87823 \$8270WMDPR Indeno(1,2,3-cd)pyrene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 33 0.002 0.002 ug/L
BV87823 \$8270WMDPR 2,6-Dinitrotoluene NY / TAGM - Semi-Volatiles / Groundwater Standards ND 32 5 5 ug/L
BV87823 \$8270WMDPR 2,4-Dinitrophenol NY / TAGM - Semi-Volatiles / Groundwater Standards ND 70 5 5 ug/L
BV87823 \$8270WMDPR Benzoic acid NY / TAGM - Volatile Organics / Groundwater Standards 3700 2000 50 50 ug/L
BV87823 \$8270WMDPR 1,2-Dichlorobenzene NY / TAGM - Volatile Organics / Groundwater Standards ND 28 4.7 4.7 ug/L
BV87823 \$8270WMDPR Naphthalene NY / TAGM - Volatile Organics / Groundwater Standards 260 29 5 5 ug/L

Sample Criteria Exceedances Report GBV87817 - EBC

State: NY

Criteria: NY: GW

SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	RL Criteria	Units
BV87823	\$8270WMDPR	Benzo(b)fluoranthene	NY / TOGS - Water Quality / GA Criteria	ND	34	0.002	0.002	ug/L
BV87823	\$8270WMDPR	Benzo(k)fluoranthene	NY / TOGS - Water Quality / GA Criteria	ND	33	0.002	0.002	ug/L
BV87823	\$8270WMDPR	Phenol	NY / TOGS - Water Quality / GA Criteria	ND	32	1	1	ug/L
BV87823	\$8270WMDPR	Nitrobenzene	NY / TOGS - Water Quality / GA Criteria	ND	35	0.4	0.4	ug/L
BV87823	\$8270WMDPR	Pentachlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	38	1	1	ug/L
BV87823	\$8270WMDPR	Naphthalene	NY / TOGS - Water Quality / GA Criteria	260	29	10	10	ug/L
BV87823	\$8270WMDPR	Hexachlorobutadiene	NY / TOGS - Water Quality / GA Criteria	ND	36	0.5	0.5	ug/L
BV87823	\$8270WMDPR	Bis(2-chloroethyl)ether	NY / TOGS - Water Quality / GA Criteria	ND	27	1	1	ug/L
BV87823	\$8270WMDPR	Bis(2-ethylhexyl)phthalate	NY / TOGS - Water Quality / GA Criteria	ND	29	5	5	ug/L
BV87823	\$8270WMDPR	Chrysene	NY / TOGS - Water Quality / GA Criteria	ND	34	0.002	0.002	ug/L
BV87823	\$8270WMDPR	Indeno(1,2,3-cd)pyrene	NY / TOGS - Water Quality / GA Criteria	ND	33	0.002	0.002	ug/L
BV87823	\$8270WMDPR	Hexachloroethane	NY / TOGS - Water Quality / GA Criteria	ND	30	5	5	ug/L
BV87823	\$8270WMDPR	Hexachlorobenzene	NY / TOGS - Water Quality / GA Criteria	ND	29	0.04	0.04	ug/L
BV87823	\$8270WMDPR	Hexachlorocyclopentadiene	NY / TOGS - Water Quality / GA Criteria	ND	31	5	5	ug/L
BV87823	\$8270WMDPR	Bis(2-chloroethoxy)methane	NY / TOGS - Water Quality / GA Criteria	ND	28	5	5	ug/L
BV87823	\$8270WMDPR	2-Chloronaphthalene	NY / TOGS - Water Quality / GA Criteria	ND	28	10	10	ug/L
BV87823	\$8270WMDPR	4-Nitroaniline	NY / TOGS - Water Quality / GA Criteria	ND	33	5	5	ug/L
BV87823	\$8270WMDPR	1,3-Dichlorobenzene	NY / TOGS - Water Quality / GA Criteria	ND	30	3	3	ug/L
BV87823	\$8270WMDPR	2,4,5-Trichlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	55	1	1	ug/L
BV87823	\$8270WMDPR	2,4,6-Trichlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	32	1	1	ug/L
BV87823	\$8270WMDPR	2,4-Dichlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	35	1	1	ug/L
BV87823	\$8270WMDPR	2,4-Dichlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	35	5	5	ug/L
BV87823	\$8270WMDPR	2,4-Dimethylphenol	NY / TOGS - Water Quality / GA Criteria	ND	25	1	1	ug/L
BV87823	\$8270WMDPR	2,4-Dimethylphenol	NY / TOGS - Water Quality / GA Criteria	ND	25	5	5	ug/L
BV87823	\$8270WMDPR	2,4-Dinitrophenol	NY / TOGS - Water Quality / GA Criteria	ND	70	1	1	ug/L
BV87823	\$8270WMDPR	2,4-Dinitrophenol	NY / TOGS - Water Quality / GA Criteria	ND	70	5	5	ug/L
BV87823	\$8270WMDPR	Benzidine	NY / TOGS - Water Quality / GA Criteria	ND	59	5	5	ug/L
BV87823	\$8270WMDPR	2,6-Dinitrotoluene	NY / TOGS - Water Quality / GA Criteria	ND	32	5	5	ug/L
BV87823	\$8270WMDPR	4-Chloro-3-methylphenol	NY / TOGS - Water Quality / GA Criteria	ND	35	1	1	ug/L
BV87823	\$8270WMDPR	Benz(a)anthracene	NY / TOGS - Water Quality / GA Criteria	ND	34	0.002	0.002	ug/L
BV87823	\$8270WMDPR	Aniline	NY / TOGS - Water Quality / GA Criteria	ND	300	5	5	ug/L
BV87823	\$8270WMDPR	Acenaphthene	NY / TOGS - Water Quality / GA Criteria	ND	30	20	20	ug/L
BV87823	\$8270WMDPR	2,4-Dinitrotoluene	NY / TOGS - Water Quality / GA Criteria	ND	39	5	5	ug/L
BV87823	\$8270WMDPR	4-Chloroaniline	NY / TOGS - Water Quality / GA Criteria	ND	47	5	5	ug/L
BV87823	\$8270WMDPR	2-Chlorophenol	NY / TOGS - Water Quality / GA Criteria	ND	28	1	1	ug/L
BV87823	\$8270WMDPR	4,6-Dinitro-2-methylphenol	NY / TOGS - Water Quality / GA Criteria	ND	110	1	1	ug/L
BV87823	\$8270WMDPR	3-Nitroaniline	NY / TOGS - Water Quality / GA Criteria	ND	220	5	5	ug/L
BV87823	\$8270WMDPR	3,3'-Dichlorobenzidine	NY / TOGS - Water Quality / GA Criteria	ND	47	5	5	ug/L
BV87823	\$8270WMDPR	2-Nitrophenol	NY / TOGS - Water Quality / GA Criteria	ND	63	1	1	ug/L
BV87823	\$8270WMDPR	2-Nitroaniline	NY / TOGS - Water Quality / GA Criteria	ND	100	5	5	ug/L
BV87823	\$8270WMDPR	2-Methylphenol (o-cresol)	NY / TOGS - Water Quality / GA Criteria	ND	47	1	1	ug/L
BV87823	\$8270WMDPR	4-Nitrophenol	NY / TOGS - Water Quality / GA Criteria	ND	45	1	1	ug/L

RL

Analysis

Sample Criteria Exceedances Report GBV87817 - EBC

State: NY

Criteria: NY: GW

SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BV87823	\$DPPEST_GA	Toxaphene	NY / TOGS - Water Quality / GA Criteria	ND	0.21	0.06	0.06	ug/L
BV87823	\$DPPEST_GA	a-BHC	NY / TOGS - Water Quality / GA Criteria	ND	0.020	0.01	0.01	ug/L
BV87823	\$DPPEST_GA	Chlordane	NY / TOGS - Water Quality / GA Criteria	ND	0.052	0.05	0.05	ug/L
BV87823	\$DPPEST_GA	Dieldrin	NY / TOGS - Water Quality / GA Criteria	ND	0.005	0.004	0.004	ug/L
BV87823	\$PCB_WMLDL	PCB-1016	NY / TAGM - Pest/Herb/PCBs / Groundwater Standards	0.16	0.052	0.09	0.09	ug/L
BV87823	\$PCB_WMLDL	PCB-1016	NY / TOGS - Water Quality / GA Criteria	0.16	0.052	0.09	0.09	ug/L
BV87823	AL-WM	Aluminum	NY / TOGS - Water Quality / GA Criteria	1.25	0.010	0.1	0.1	mg/L
BV87823	DFE-WMDP	Iron, (Dissolved)	NY / TOGS - Water Quality / GA Criteria	46.9	0.01	0.3	0.3	mg/L
BV87823	DMN-WMDP	Manganese, (Dissolved)	NY / TOGS - Water Quality / GA Criteria	13.5	0.053	0.3	0.3	mg/L
BV87823	D-NA	Sodium (Dissolved)	NY / TOGS - Water Quality / GA Criteria	282	1.1	20	20	mg/L
BV87823	FE-WMDP	Iron	NY / TOGS - Water Quality / GA Criteria	158	0.10	0.3	0.3	mg/L
BV87823	MN-WMDP	Manganese	NY / TOGS - Water Quality / GA Criteria	14.3	0.050	0.3	0.3	mg/L
BV87823	NA-WM	Sodium	NY / TOGS - Water Quality / GA Criteria	279	1.0	20	20	mg/L
BV87824	\$8260DP25R	1,2-Dibromo-3-chloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.50	0.04	0.04	ug/L
BV87824	\$8260DP25R	1,2-Dibromoethane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.0006	0.0006	ug/L
BV87824	\$8260DP25R	1,2,3-Trichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.04	0.04	ug/L
BV87824	\$DP8270-SIMR	Benzo(a)pyrene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV87824	\$DP8270-SIMR	Chrysene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV87824	\$DP8270-SIMR	Benzo(k)fluoranthene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV87824	\$DP8270-SIMR	Indeno(1,2,3-cd)pyrene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV87824	\$DP8270-SIMR	Benzo(b)fluoranthene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV87824	\$DP8270-SIMR	Benz(a)anthracene	NY / TAGM - Semi-Volatiles / Groundwater Standards	ND	0.02	0.002	0.002	ug/L
BV87824	\$DP8270-SIMR	Benz(a)anthracene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
BV87824	\$DP8270-SIMR	Benzo(k)fluoranthene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
BV87824	\$DP8270-SIMR	Chrysene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
BV87824	\$DP8270-SIMR	Indeno(1,2,3-cd)pyrene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
BV87824	\$DP8270-SIMR	Benzo(b)fluoranthene	NY / TOGS - Water Quality / GA Criteria	ND	0.02	0.002	0.002	ug/L
BV87824	\$DPPEST_GA	Toxaphene	NY / TOGS - Water Quality / GA Criteria	ND	0.20	0.06	0.06	ug/L
BV87824	D-MG	Magnesium (Dissolved)	NY / TOGS - Water Quality / GA Criteria	36.2	0.01	35	35	mg/L
BV87824	DMN-WMDP	Manganese, (Dissolved)	NY / TOGS - Water Quality / GA Criteria	11.9	0.053	0.3	0.3	mg/L
BV87824	D-NA	Sodium (Dissolved)	NY / TOGS - Water Quality / GA Criteria	159	1.1	20	20	mg/L
BV87824	FE-WMDP	Iron	NY / TOGS - Water Quality / GA Criteria	1.35	0.01	0.3	0.3	mg/L
BV87824	MG-WM	Magnesium	NY / TOGS - Water Quality / GA Criteria	39.5	0.010	35	35	mg/L
BV87824	MN-WMDP	Manganese	NY / TOGS - Water Quality / GA Criteria	12.1	0.050	0.3	0.3	mg/L
BV87824	NA-WM	Sodium	NY / TOGS - Water Quality / GA Criteria	161	1.0	20	20	mg/L

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

RL

Analysis

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY Temperature Narration

November 29, 2016

SDG I.D.: GBV87817

The samples in this delivery group were received at 4° C. (Note acceptance criteria is above freezing up to 6° C)

		11119	2									
	ST be	1400 1400 1400 1400 1400 1400 1400 1400	BOR BIRDER	igg					-		ļ	a Format Phoenix Std Report Excel BDF GIS/Key GQUIS NJ Hazsite EDD NY EZ EDD (ASP) Other NJ Reduced Deliv.* NY Enhanced (ASP B) Other
Yes CE Bi	This section MUST be completed with Bottle Quantities.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		\vdash								Data Format Phoenix Std Report Process Process GIS/Key GIS/Key M Hazsite EDD N Hazsite EDD Other N Reduced Deliv. * N Reduced Oeliv. *
. ₩ 9 II	ection pletec tle Qu	2 3 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	437°			- -	_	- -	- -			Data Format Phoenix SI Phoenix SI Port GIS/Key GIS/Key CIS/Key CIS/Ke
Cooler: IPK Temp Loc Contact Option	rhis s com Bot		1842 X				_	Ξ.	=			
	Project P.O. This s com Bot	Transfer of the state of the st	ALO TELOS	33	$\frac{\omega}{\omega}$	+	33	-	3 6 3 6	7		GWP Inrestric Resident A/Resident I
Fax: Phone: Email:								,,,				NY NY 375 GWP Use Soil NY375 Residential Soil Commercial Industrial
	À		(43) B	igwedge	+							
	4 1 1											riteria W Soil teria Collect
040	Onsulta onsulta			$\vdash \vdash$								NUTES. Criteria Res. Criteria Non-Res. Criteria Cleanup Criteria GW Criteria
CORI ; CT 06	Avenue Brooklynusiness Consultants	1300										Non-Res. Criteria Non-Res. Criteria Impact to GW Cleanup Criteria GW Criteria
ODY RECOR 0, Manchester, CT 0 Fax (860) 645-0823	l-mlml	To the state of th										ii 6
Fax (8 (9) 645	II8 Flushing Environmental Environmental											Turnaround: Turnar
NY/NJ CHAIN OF CUSTODY RECORD 7 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Email: info@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-8726	Enviro Enviro	1/1/67										
Y/NJ CHAIN OF CU; East Middle Tumpike, P.O. Box Email: info@phoenixlabs.com Client Services (8	tto: e to:	nalysis tequest		+	4 4	+	*	'	× ~			170 H (5) H
HAIN Tumpil @phoe	Project: Report to: Invoice to:	Analysis Request		-	* *	H	×	-	x			
NJ C		₹ ₩		*	4 4	*	*	+ -	4 *	×		18. In 18
NY/I		7-16 der	Time									Date
ŭ		- 7- - 7- - - - - - - - - - - - -		\vdash	و و	3 3	9	91.	_ و و)
	<u>α</u>	Date: W=Wa	Date Sampled	91-11-11		11-17-16	11-17		9 21:11:11			
	sultan	mtificati	Sample Matrix	-	MS (MS)	SW	3	300				
s, Inc.	Road Road	on - Ide	i S ≥	9	0 0		0	3	90			itions:
WIX Exporatories,	Environmental Business Consultants 1808 Middle Country Road Ridge, NY 11961	Client Sample - Information - Identification	ample		-					¥		Segulati
bora	ddle Co	Callo	Customer Sample Identification		40	7	5	202	15/19/19	Tripblanks		as in particular in the partic
	Environmental Bu 1808 Middle Cou Ridge, NY 11961	Client Sam	Cus	M	13 Z	M	M.	MWW MILIE	M	10,1		Auriceme quireme
PHOE		Sampler's Thomation - Identification Sampler's Thomation - Identification Signature Matrix Code: Ma	 	- i	מא	0		70	17	8	+	is Real Park
	Customer: Address:	Sampler's Signature Signature Matrix Code: DW-Drinking Water RW-Raw Water SE-OIL-Oil B-Bulk L-	V USE O	-	× ×	12		186	185	185		Relinguished by
Env.	Cus Adı	Sampler's Signature Matrix Co DW=Drink RW=Raw	PHOENIX USE ONLY SAMPLE #	$\delta \varphi$			$\langle \dot{\gamma} \rangle$		o ∞	8		Relinquished by: Thorage of the comments of Regulations:

Monday, December 05, 2016

Attn: Mr. Charles B. Sosik, P.G. Environmental Business Consultants 1808 Middle Country Rd Ridge NY 11961-2406

Project ID: 1181 FLUSHING AVE., BROOKLYN

Sample ID#s: BV86876 - BV86884

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

Enclosed are revised Analysis Report pages. Please replace and discard the original pages. If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY ANALYTICAL SERVICES PROTOCOL DATA PACKAGE

Client: Environmental Business Consultants
Project: 1181 FLUSHING AVE., BROOKLYN
Laboratory Project: GBV86876

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

NY Analytical Services Protocol Format

December 05, 2016 SDG I.D.: GBV86876

Environmental Business Consultants 1181 FLUSHING AVE., BROOKLYN

Methodology Summary

Volatiles in Air

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air: Method TO-15, Second Edition, U. S. Environmental Protection Agency, January 1999.

Sample Id Cross Reference

Client Id	Lab Id	Matrix
SG6	BV86876	AIR
SG4	BV86877	AIR
SG3	BV86878	AIR
SG9	BV86879	AIR
SG7	BV86880	AIR
SG8	BV86881	AIR
SG5	BV86882	AIR
SG2	BV86883	AIR
SG1	BV86884	AIR

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

NY Analytical Services Protocol Format

December 05, 2016 SDG I.D.: GBV86876

Environmental Business Consultants 1181 FLUSHING AVE., BROOKLYN

Laboratory Chronicle

Sample	Analysis	Collection Date	Prep Date	Analysis Date	Analyst	Hold Time Met
BV86876	Volatiles (TO15)	11/16/16	11/21/16	11/21/16	KCA	Y
BV86877	Volatiles (TO15)	11/16/16	11/18/16	11/18/16	KCA	Y
BV86878	Volatiles (TO15)	11/16/16	11/21/16	11/21/16	KCA	Y
BV86879	Volatiles (TO15)	11/16/16	11/28/16	11/28/16	KCA	Y
BV86880	Volatiles (TO15)	11/16/16	11/28/16	11/28/16	KCA	Y
BV86881	Volatiles (TO15)	11/16/16	11/28/16	11/28/16	KCA	Y
BV86882	Volatiles (TO15)	11/16/16	11/28/16	11/28/16	KCA	Y
BV86883	Volatiles (TO15)	11/16/16	11/21/16	11/21/16	KCA	Y
BV86884	Volatiles (TO15)	11/16/16	11/18/16	11/18/16	KCA	Y

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

December 05, 2016

SDG I.D.: GBV86876

Any compound that is not detected above the MDL/LOD is reported as ND on the report and is reported in the electronic deliverables (EDD) as <RL or U at the RL per state and EPA guidance.

Version 1: Analysis results minus raw data.

Version 2: Complete report with raw data.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

December 05, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G. Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample Informa	<u>ition</u>	Custody Inform	nation	<u>Date</u>	<u>Time</u>
Matrix:	AIR	Collected by:		11/16/16	11:27
Location Code:	EBC	Received by:	LB	11/17/16	15:39
D 1 D 1	70.11				

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

Canister Id: 21339 Laboratory Data SDG ID: GBV86876 Phoenix ID: BV86876

Project ID: 1181 FLUSHING AVE., BROOKLYN

Client ID: SG6

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL	LOD/ MDL		Ву	Dilution	
Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	2.70	2.70	ND	18.5	18.5	11/21/16	KCA	18.5	1
1,1,1-Trichloroethane	ND	3.39	3.39	ND	18.5	18.5	11/21/16	KCA	18.5	
1,1,2,2-Tetrachloroethane	ND	2.70	2.70	ND	18.5	18.5	11/21/16	KCA	18.5	
1,1,2-Trichloroethane	ND	3.39	3.39	ND	18.5	18.5	11/21/16	KCA	18.5	
1,1-Dichloroethane	ND	4.57	4.57	ND	18.5	18.5	11/21/16	KCA	18.5	
1,1-Dichloroethene	ND	4.67	4.67	ND	18.5	18.5	11/21/16	KCA	18.5	
1,2,4-Trichlorobenzene	ND	2.49	2.49	ND	18.5	18.5	11/21/16	KCA	18.5	
1,2,4-Trimethylbenzene	ND	3.77	3.77	ND	18.5	18.5	11/21/16	KCA	18.5	
1,2-Dibromoethane(EDB)	ND	2.41	2.41	ND	18.5	18.5	11/21/16	KCA	18.5	
1,2-Dichlorobenzene	ND	3.08	3.08	ND	18.5	18.5	11/21/16	KCA	18.5	
1,2-Dichloroethane	ND	4.57	4.57	ND	18.5	18.5	11/21/16	KCA	18.5	
1,2-dichloropropane	ND	4.01	4.01	ND	18.5	18.5	11/21/16	KCA	18.5	
1,2-Dichlorotetrafluoroethane	ND	2.65	2.65	ND	18.5	18.5	11/21/16	KCA	18.5	
1,3,5-Trimethylbenzene	ND	3.77	3.77	ND	18.5	18.5	11/21/16	KCA	18.5	
1,3-Butadiene	ND	8.37	8.37	ND	18.5	18.5	11/21/16	KCA	18.5	
1,3-Dichlorobenzene	ND	3.08	3.08	ND	18.5	18.5	11/21/16	KCA	18.5	
1,4-Dichlorobenzene	ND	3.08	3.08	ND	18.5	18.5	11/21/16	KCA	18.5	
1,4-Dioxane	ND	5.14	5.14	ND	18.5	18.5	11/21/16	KCA	18.5	
2-Hexanone(MBK)	ND	4.52	4.52	ND	18.5	18.5	11/21/16	KCA	18.5	1
4-Ethyltoluene	ND	3.77	3.77	ND	18.5	18.5	11/21/16	KCA	18.5	1
4-Isopropyltoluene	ND	3.37	3.37	ND	18.5	18.5	11/21/16	KCA	18.5	1
4-Methyl-2-pentanone(MIBK)	ND	4.52	4.52	ND	18.5	18.5	11/21/16	KCA	18.5	
Acetone	ND	7.79	7.79	ND	18.5	18.5	11/21/16	KCA	18.5	
Acrylonitrile	ND	8.53	8.53	ND	18.5	18.5	11/21/16	KCA	18.5	
Benzene	240	5.79	5.79	766	18.5	18.5	11/21/16	KCA	18.5	
Benzyl chloride	ND	3.58	3.58	ND	18.5	18.5	11/21/16	KCA	18.5	

Client ID: SG6

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL	LOD/ MDL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	2.76	2.76	ND	18.5	18.5	11/21/16	KCA	18.5	
Bromoform	ND	1.79	1.79	ND	18.5	18.5	11/21/16	KCA	18.5	
Bromomethane	ND	4.77	4.77	ND	18.5	18.5	11/21/16	KCA	18.5	
Carbon Disulfide	67.3	5.95	5.95	209	18.5	18.5	11/21/16	KCA	18.5	
Carbon Tetrachloride	ND	0.734	0.734	ND	4.61	4.61	11/21/16	KCA	18.5	
Chlorobenzene	ND	4.02	4.02	ND	18.5	18.5	11/21/16	KCA	18.5	
Chloroethane	ND	7.02	7.02	ND	18.5	18.5	11/21/16	KCA	18.5	
Chloroform	ND	3.79	3.79	ND	18.5	18.5	11/21/16	KCA	18.5	
Chloromethane	ND	8.96	8.96	ND	18.5	18.5	11/21/16	KCA	18.5	
Cis-1,2-Dichloroethene	5.72	4.67	4.67	22.7	18.5	18.5	11/21/16	KCA	18.5	
cis-1,3-Dichloropropene	ND	4.08	4.08	ND	18.5	18.5	11/21/16	KCA	18.5	
Cyclohexane	975	D 26.9	26.9	3350	92.5	92.5	11/21/16	KCA	92.5	
Dibromochloromethane	ND	2.17	2.17	ND	18.5	18.5	11/21/16	KCA	18.5	
Dichlorodifluoromethane	ND	3.74	3.74	ND	18.5	18.5	11/21/16	KCA	18.5	
Ethanol	48.9	9.82	9.82	92.1	18.5	18.5	11/21/16	KCA	18.5	1
Ethyl acetate	ND	5.14	5.14	ND	18.5	18.5	11/21/16	KCA	18.5	1
Ethylbenzene	10.5	4.26	4.26	45.6	18.5	18.5	11/21/16	KCA	18.5	
Heptane	358	4.52	4.52	1470	18.5	18.5	11/21/16	KCA	18.5	
Hexachlorobutadiene	ND	1.74	1.74	ND	18.5	18.5	11/21/16	KCA	18.5	
Hexane	910	D 26.3	26.3	3210	92.6	92.6	11/21/16	KCA	92.5	
Isopropylalcohol	ND	7.53	7.53	ND	18.5	18.5	11/21/16	KCA	18.5	
Isopropylbenzene	ND	3.77	3.77	ND	18.5	18.5	11/21/16	KCA	18.5	
m,p-Xylene	5.42	4.26	4.26	23.5	18.5	18.5	11/21/16	KCA	18.5	
Methyl Ethyl Ketone	503	6.28	6.28	1480	18.5	18.5	11/21/16	KCA	18.5	
Methyl tert-butyl ether(MTBE)	ND	5.13	5.13	ND	18.5	18.5	11/21/16	KCA	18.5	
Methylene Chloride	ND	5.33	5.33	ND	18.5	18.5	11/21/16	KCA	18.5	
n-Butylbenzene	ND	3.37	3.37	ND	18.5	18.5	11/21/16	KCA	18.5	1
o-Xylene	ND	4.26	4.26	ND	18.5	18.5	11/21/16	KCA	18.5	
Propylene	620	10.8	10.8	1070	18.6	18.6	11/21/16	KCA	18.5	1
sec-Butylbenzene	ND	3.37	3.37	ND	18.5	18.5	11/21/16	KCA	18.5	1
Styrene	ND	4.35	4.35	ND	18.5	18.5	11/21/16	KCA	18.5	
Tetrachloroethene	ND	0.682	0.682	ND	4.62	4.62	11/21/16	KCA	18.5	
Tetrahydrofuran	ND	6.28	6.28	ND	18.5	18.5	11/21/16	KCA	18.5	1
Toluene	ND	4.91	4.91	ND	18.5	18.5	11/21/16	KCA	18.5	
Trans-1,2-Dichloroethene	ND	4.67	4.67	ND	18.5	18.5	11/21/16	KCA	18.5	
trans-1,3-Dichloropropene	ND	4.08	4.08	ND	18.5	18.5	11/21/16	KCA	18.5	
Trichloroethene	1.31	0.861	0.861	7.04	4.62	4.62	11/21/16	KCA	18.5	
Trichlorofluoromethane	ND	3.29	3.29	ND	18.5	18.5	11/21/16	KCA	18.5	
Trichlorotrifluoroethane	ND	2.42	2.42	ND	18.5	18.5	11/21/16	KCA	18.5	
Vinyl Chloride	11.7	1.81	1.81	29.9	4.62	4.62	11/21/16	KCA	18.5	
QA/QC Surrogates		-	-				-			
% Bromofluorobenzene	109	%	%	109	%	%	11/21/16	KCA	18.5	

Phoenix I.D.: BV86876

Project ID: 1181 FLUSHING AVE., BROOKLYN Phoenix I.D.: BV86876

Client ID: SG6

ppbv ppbv LOD/ ug/m3 ug/m3 LOD/
Parameter RL MDL Result RL MDL Date/Time By Dilution

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

An elevated reporting level was reported for TO15 due to a matrix interference of non target compounds.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

December 05, 2016

Reviewed and Released by: Jon Carlson, Project Manager

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

December 05, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G. **Environmental Business Consultants**

> 1808 Middle Country Rd Ridge NY 11961-2406

Sample Informa	<u>ation</u>	Custody Informa	<u>ation</u>	<u>Date</u>	<u>Time</u>
Matrix:	AIR	Collected by:		11/16/16	11:24
Location Code:	EBC	Received by:	LB	11/17/16	15:39
Rush Request:	72 Hour	Analyzed by:	see "By" below		

P.O.#:

Laboratory Data SDG ID: GBV86876 Canister Id: 156 Phoenix ID: BV86877

1181 FLUSHING AVE., BROOKLYN Project ID:

Client ID: SG4

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL	LOD/ MDL		Ву	Dilution	
Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	11/17/16	KCA	1	1
1,1,1-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	11/17/16	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	11/17/16	KCA	1	
1,1,2-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	11/17/16	KCA	1	
1,1-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	11/17/16	KCA	1	
1,1-Dichloroethene	ND	0.252	0.252	ND	1.00	1.00	11/17/16	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	0.135	ND	1.00	1.00	11/17/16	KCA	1	
1,2,4-Trimethylbenzene	0.357	0.204	0.204	1.75	1.00	1.00	11/17/16	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	0.130	ND	1.00	1.00	11/17/16	KCA	1	
1,2-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	11/17/16	KCA	1	
1,2-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	11/17/16	KCA	1	
1,2-dichloropropane	ND	0.217	0.217	ND	1.00	1.00	11/17/16	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	0.143	ND	1.00	1.00	11/17/16	KCA	1	
1,3,5-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	11/17/16	KCA	1	
1,3-Butadiene	ND	0.452	0.452	ND	1.00	1.00	11/17/16	KCA	1	
1,3-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	11/17/16	KCA	1	
1,4-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	11/17/16	KCA	1	
1,4-Dioxane	ND	0.278	0.278	ND	1.00	1.00	11/17/16	KCA	1	
2-Hexanone(MBK)	ND	0.244	0.244	ND	1.00	1.00	11/17/16	KCA	1	1
4-Ethyltoluene	ND	0.204	0.204	ND	1.00	1.00	11/17/16	KCA	1	1
4-Isopropyltoluene	ND	0.182	0.182	ND	1.00	1.00	11/17/16	KCA	1	1
4-Methyl-2-pentanone(MIBK)	125	D 24.4	24.4	512	100	100	11/18/16	KCA	100	
Acetone	651	D 42.1	42.1	1550	100	100	11/18/16	KCA	100	
Acrylonitrile	ND	0.461	0.461	ND	1.00	1.00	11/17/16	KCA	1	
Benzene	38.3	0.313	0.313	122	1.00	1.00	11/17/16	KCA	1	
Benzyl chloride	ND	0.193	0.193	ND	1.00	1.00	11/17/16	KCA	1	

Client ID: SG4

ppbv ppbv LOD/ ug/m3 ug/m3 LOD/ Parameter Result MDL Date/Time Dilution RL MDL Result RL Ву KCA Bromodichloromethane ND 0.149 0.149 ND 1.00 1.00 11/17/16 1 ND KCA 0.097 0.097 ND 1.00 1.00 1 **Bromoform** 11/17/16 Bromomethane ND 0.258 0.258 ND 1.00 1.00 11/17/16 **KCA** 1 Carbon Disulfide 10.5 0.321 0.321 32.7 1.00 1.00 11/17/16 **KCA** 1 ND 0.040 ND 0.25 0.25 11/17/16 **KCA** Carbon Tetrachloride 0.040 Chlorobenzene ND 0.217 0.217 ND 1.00 1.00 11/17/16 **KCA** 1 ND 0.379 ND 1.00 1.00 **KCA** Chloroethane 0.379 11/17/16 1 Chloroform ND 0.205 0.205 ND 1.00 1.00 11/17/16 **KCA** 1 ND 0.485 0.485 ND 1.00 1.00 **KCA** Chloromethane 11/17/16 1 KCA Cis-1,2-Dichloroethene 2.57 0.252 0.252 10.2 1.00 1.00 11/17/16 1 ND 0.221 0.221 ND 1.00 11/17/16 **KCA** 1 cis-1,3-Dichloropropene 1.00 Cyclohexane 195 D 29.1 29.1 671 100 100 11/18/16 **KCA** 100 Dibromochloromethane ND 0.118 0.118 ND 1.00 1.00 11/17/16 **KCA** 1 0.318 0.202 0.202 1.57 1.00 1.00 11/17/16 **KCA** 1 Dichlorodifluoromethane 506 E 0.531 953 1.00 11/17/16 KCA 1 Ethanol 0.531 1.00 Ethyl acetate ND 0.278 0.278 ND 1.00 1.00 11/17/16 KCA 1 1 2.43 0.230 0.230 10.5 1.00 1.00 11/17/16 **KCA** 1 Ethylbenzene Heptane 77.5 D 24.4 24.4 317 100 100 11/18/16 **KCA** 100 ND 0.094 0.094 ND 1.00 1.00 **KCA** Hexachlorobutadiene 11/17/16 1 708 KCA 201 DS 28.4 28.4 100 100 11/18/16 100 Hexane 13.5 0.407 0.407 33.2 1.00 1.00 11/17/16 **KCA** 1 Isopropylalcohol Isopropylbenzene 0.410 0.204 0.204 2.01 1.00 1.00 11/17/16 **KCA** 1 m,p-Xylene 3.74 0.230 0.230 16.2 1.00 1.00 11/17/16 **KCA** 1 Methyl Ethyl Ketone 402 D 33.9 33.9 1180 100 100 11/18/16 **KCA** 100 Methyl tert-butyl ether(MTBE) ND 0.278 0.278 ND 1.00 11/17/16 **KCA** 1 1.00 ND 0.288 0.288 ND 1.00 1.00 11/17/16 KCA 1 Methylene Chloride ND 0.182 0.182 ND 1.00 1.00 11/17/16 KCA 1 n-Butylbenzene o-Xylene 1.39 0.230 0.230 6.03 1.00 1.00 11/17/16 **KCA** 1 202 D 58.1 58.1 347 100 100 11/18/16 **KCA** 100 Propylene sec-Butvlbenzene ND 0.182 0.182 ND 1.00 1.00 11/17/16 **KCA** 1 1.00 Styrene ND 0.235 0.235 ND 1.00 11/17/16 **KCA** 1 0.383 0.25 0.037 0.037 2.60 0.25 11/17/16 **KCA** 1 Tetrachloroethene Tetrahydrofuran ND 0.339 0.339 ND 1.00 1.00 11/17/16 KCA 1 KCA Toluene 15.2 0.266 0.266 57.2 1.00 1.00 11/17/16 1 Trans-1,2-Dichloroethene 0.358 0.252 0.252 1.42 1.00 1.00 11/17/16 **KCA** 1 ND 1.00 1.00 trans-1,3-Dichloropropene ND 0.221 0.221 11/17/16 **KCA** 1 7.46 0.25 1.39 0.047 0.047 0.25 11/17/16 **KCA** Trichloroethene 1 ND ND 1.00 Trichlorofluoromethane 0.178 0.178 1.00 11/17/16 KCA 1 ND 0.131 0.131 ND 1.00 1.00 11/17/16 KCA 1 Trichlorotrifluoroethane 0.609 0.098 0.098 0.25 KCA Vinyl Chloride 1.56 0.25 11/17/16 1 **QA/QC Surrogates** % Bromofluorobenzene 115 % % 115 % % 11/17/16 **KCA**

Phoenix I.D.: BV86877

Project ID: 1181 FLUSHING AVE., BROOKLYN Phoenix I.D.: BV86877

Client ID: SG4

ppbv ppbv LOD/ ug/m3 ug/m3 LOD/
Parameter Result RL MDL Result RL MDL Date/Time By Dilution

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

E = Estimated value quantitated above calibration range for this compound.

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

December 05, 2016

Reviewed and Released by: Jon Carlson, Project Manager

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Fax (860) 645-0823 Tel. (860) 645-1102

Analysis Report

December 05, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample Informa	<u>ation</u>	Custody Informa	<u>ation</u>	<u>Date</u>	<u>Time</u>
Matrix:	AIR	Collected by:		11/16/16	11:20
Location Code:	EBC	Received by:	LB	11/17/16	15:39
Rush Request:	72 Hour	Analyzed by:	see "By" below		

P.O.#:

Laboratory Data SDG ID: GBV86876 Canister Id: 496 Phoenix ID: BV86878

1181 FLUSHING AVE., BROOKLYN Project ID:

Client ID: SG3

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL	LOD/ MDL		Ву	Dilution	
Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	11/21/16	KCA	1	1
1,1,1-Trichloroethane	0.187	0.183	0.183	1.02	1.00	1.00	11/21/16	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	11/21/16	KCA	1	
1,1,2-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	11/21/16	KCA	1	
1,1-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	11/21/16	KCA	1	
1,1-Dichloroethene	ND	0.252	0.252	ND	1.00	1.00	11/21/16	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	0.135	ND	1.00	1.00	11/21/16	KCA	1	
1,2,4-Trimethylbenzene	0.319	0.204	0.204	1.57	1.00	1.00	11/21/16	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	0.130	ND	1.00	1.00	11/21/16	KCA	1	
1,2-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	11/21/16	KCA	1	
1,2-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	11/21/16	KCA	1	
1,2-dichloropropane	ND	0.217	0.217	ND	1.00	1.00	11/21/16	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	0.143	ND	1.00	1.00	11/21/16	KCA	1	
1,3,5-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	11/21/16	KCA	1	
1,3-Butadiene	ND	0.452	0.452	ND	1.00	1.00	11/21/16	KCA	1	
1,3-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	11/21/16	KCA	1	
1,4-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	11/21/16	KCA	1	
1,4-Dioxane	ND	0.278	0.278	ND	1.00	1.00	11/21/16	KCA	1	
2-Hexanone(MBK)	5.91	0.244	0.244	24.2	1.00	1.00	11/21/16	KCA	1	1
4-Ethyltoluene	ND	0.204	0.204	ND	1.00	1.00	11/21/16	KCA	1	1
4-Isopropyltoluene	ND	0.182	0.182	ND	1.00	1.00	11/21/16	KCA	1	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	0.244	ND	1.00	1.00	11/21/16	KCA	1	
Acetone	26.4	0.421	0.421	62.7	1.00	1.00	11/21/16	KCA	1	
Acrylonitrile	ND	0.461	0.461	ND	1.00	1.00	11/21/16	KCA	1	
Benzene	0.522	0.313	0.313	1.67	1.00	1.00	11/21/16	KCA	1	
Benzyl chloride	ND	0.193	0.193	ND	1.00	1.00	11/21/16	KCA	1	

Client ID: SG3

Olient ID. 303	ppbv	ppbv	LOD/	ug/m3	ug/m3	LOD/				
Parameter	Result	RL	MDL	Result	RL	MDL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	0.149	ND	1.00	1.00	11/21/16	KCA	1	
Bromoform	ND	0.097	0.097	ND	1.00	1.00	11/21/16	KCA	1	
Bromomethane	ND	0.258	0.258	ND	1.00	1.00	11/21/16	KCA	1	
Carbon Disulfide	ND	0.321	0.321	ND	1.00	1.00	11/21/16	KCA	1	
Carbon Tetrachloride	ND	0.040	0.040	ND	0.25	0.25	11/21/16	KCA	1	
Chlorobenzene	ND	0.217	0.217	ND	1.00	1.00	11/21/16	KCA	1	
Chloroethane	ND	0.379	0.379	ND	1.00	1.00	11/21/16	KCA	1	
Chloroform	ND	0.205	0.205	ND	1.00	1.00	11/21/16	KCA	1	
Chloromethane	ND	0.485	0.485	ND	1.00	1.00	11/21/16	KCA	1	
Cis-1,2-Dichloroethene	ND	0.252	0.252	ND	1.00	1.00	11/21/16	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	11/21/16	KCA	1	
Cyclohexane	ND	0.291	0.291	ND	1.00	1.00	11/21/16	KCA	1	
Dibromochloromethane	ND	0.118	0.118	ND	1.00	1.00	11/21/16	KCA	1	
Dichlorodifluoromethane	0.754	0.202	0.202	3.73	1.00	1.00	11/21/16	KCA	1	
Ethanol	26.9	0.531	0.531	50.7	1.00	1.00	11/21/16	KCA	1	1
Ethyl acetate	ND	0.278	0.278	ND	1.00	1.00	11/21/16	KCA	1	1
Ethylbenzene	0.559	0.230	0.230	2.43	1.00	1.00	11/21/16	KCA	1	
Heptane	0.602	0.244	0.244	2.47	1.00	1.00	11/21/16	KCA	1	
Hexachlorobutadiene	ND	0.094	0.094	ND	1.00	1.00	11/21/16	KCA	1	
Hexane	0.885	S 0.284	0.284	3.12	1.00	1.00	11/21/16	KCA	1	
Isopropylalcohol	ND	0.407	0.407	ND	1.00	1.00	11/21/16	KCA	1	
Isopropylbenzene	ND	0.204	0.204	ND	1.00	1.00	11/21/16	KCA	1	
m,p-Xylene	1.83	0.230	0.230	7.94	1.00	1.00	11/21/16	KCA	1	
Methyl Ethyl Ketone	204	D 3.39	3.39	601	10.0	10.0	11/21/16	KCA	10	
Methyl tert-butyl ether(MTBE)	ND	0.278	0.278	ND	1.00	1.00	11/21/16	KCA	1	
Methylene Chloride	ND	0.288	0.288	ND	1.00	1.00	11/21/16	KCA	1	
n-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	11/21/16	KCA	1	1
o-Xylene	0.616	0.230	0.230	2.67	1.00	1.00	11/21/16	KCA	1	
Propylene	23.9	0.581	0.581	41.1	1.00	1.00	11/21/16	KCA	1	1
sec-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	11/21/16	KCA	1	1
Styrene	ND	0.235	0.235	ND	1.00	1.00	11/21/16	KCA	1	
Tetrachloroethene	5.06	0.037	0.037	34.3	0.25	0.25	11/21/16	KCA	1	
Tetrahydrofuran	ND	0.339	0.339	ND	1.00	1.00	11/21/16	KCA	1	1
Toluene	2.92	0.266	0.266	11.0	1.00	1.00	11/21/16	KCA	1	
Trans-1,2-Dichloroethene	ND	0.252	0.252	ND	1.00	1.00	11/21/16	KCA	1	
trans-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	11/21/16	KCA	1	
Trichloroethene	0.060	0.047	0.047	0.32	0.25	0.25	11/21/16	KCA	1	
Trichlorofluoromethane	0.786	0.178	0.178	4.41	1.00	1.00	11/21/16	KCA	1	
Trichlorotrifluoroethane	ND	0.131	0.131	ND	1.00	1.00	11/21/16	KCA	1	
Vinyl Chloride	ND	0.098	0.098	ND	0.25	0.25	11/21/16	KCA	1	
QA/QC Surrogates										
% Bromofluorobenzene	100	%	%	100	%	%	11/21/16	KCA	1	

Phoenix I.D.: BV86878

Project ID: 1181 FLUSHING AVE., BROOKLYN Phoenix I.D.: BV86878

Client ID: SG3

ppbv ppbv LOD/ ug/m3 ug/m3 LOD/
Parameter Result RL MDL Result RL MDL Date/Time By Dilution

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

December 05, 2016

Reviewed and Released by: Jon Carlson, Project Manager

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

December 05, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G. Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample InformationCustody InformationDateTimeMatrix:AIRCollected by:11/16/1611:35Location Code:EBCReceived by:LB11/17/1615:39

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

Canister Id: 21357 Laboratory Data SDG ID: GBV86876
Phoenix ID: BV86879

Project ID: 1181 FLUSHING AVE., BROOKLYN

Client ID: SG9

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL	LOD/ MDL	Date/Time	Ву	Dilution	
Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	4.37	4.37	ND	30.0	30.0	11/23/16	KCA	30	1
1,1,1-Trichloroethane	ND	5.50	5.50	ND	30.0	30.0	11/23/16	KCA	30	
1,1,2,2-Tetrachloroethane	ND	4.37	4.37	ND	30.0	30.0	11/23/16	KCA	30	
1,1,2-Trichloroethane	ND	5.50	5.50	ND	30.0	30.0	11/23/16	KCA	30	
1,1-Dichloroethane	ND	7.42	7.42	ND	30.0	30.0	11/23/16	KCA	30	
1,1-Dichloroethene	ND	7.57	7.57	ND	30.0	30.0	11/23/16	KCA	30	
1,2,4-Trichlorobenzene	ND	4.04	4.04	ND	30.0	30.0	11/23/16	KCA	30	
1,2,4-Trimethylbenzene	19.3	6.11	6.11	94.8	30.0	30.0	11/23/16	KCA	30	
1,2-Dibromoethane(EDB)	ND	3.91	3.91	ND	30.0	30.0	11/23/16	KCA	30	
1,2-Dichlorobenzene	ND	4.99	4.99	ND	30.0	30.0	11/23/16	KCA	30	
1,2-Dichloroethane	ND	7.42	7.42	ND	30.0	30.0	11/23/16	KCA	30	
1,2-dichloropropane	ND	6.50	6.50	ND	30.0	30.0	11/23/16	KCA	30	
1,2-Dichlorotetrafluoroethane	ND	4.29	4.29	ND	30.0	30.0	11/23/16	KCA	30	
1,3,5-Trimethylbenzene	15.3	6.11	6.11	75.2	30.0	30.0	11/23/16	KCA	30	
1,3-Butadiene	ND	13.6	13.6	ND	30.1	30.1	11/23/16	KCA	30	
1,3-Dichlorobenzene	ND	4.99	4.99	ND	30.0	30.0	11/23/16	KCA	30	
1,4-Dichlorobenzene	ND	4.99	4.99	ND	30.0	30.0	11/23/16	KCA	30	
1,4-Dioxane	ND	8.33	8.33	ND	30.0	30.0	11/23/16	KCA	30	
2-Hexanone(MBK)	ND	7.33	7.33	ND	30.0	30.0	11/23/16	KCA	30	1
4-Ethyltoluene	ND	6.11	6.11	ND	30.0	30.0	11/23/16	KCA	30	1
4-Isopropyltoluene	ND	5.47	5.47	ND	30.0	30.0	11/23/16	KCA	30	1
4-Methyl-2-pentanone(MIBK)	ND	7.33	7.33	ND	30.0	30.0	11/23/16	KCA	30	
Acetone	ND	12.6	12.6	ND	29.9	29.9	11/23/16	KCA	30	
Acrylonitrile	ND	13.8	13.8	ND	29.9	29.9	11/23/16	KCA	30	
Benzene	93.5	9.40	9.40	299	30.0	30.0	11/23/16	KCA	30	
Benzyl chloride	ND	5.80	5.80	ND	30.0	30.0	11/23/16	KCA	30	

Client ID: SG9

ppbv ppbv LOD/ ug/m3 ug/m3 LOD/ Parameter Result MDL Result MDL Date/Time Dilution RL RL Ву KCA Bromodichloromethane ND 4.48 4.48 ND 30.0 30.0 11/23/16 30 ND 30.0 KCA 30 2.90 2.90 ND 30.0 11/23/16 **Bromoform** Bromomethane ND 7.73 7.73 ND 30.0 30.0 11/23/16 **KCA** 30 Carbon Disulfide ND 9.64 9.64 ND 30.0 30.0 11/23/16 **KCA** 30 ND 1.19 ND 7.48 7.48 11/23/16 **KCA** 30 Carbon Tetrachloride 1.19 Chlorobenzene ND 6.52 6.52 ND 30.0 30.0 11/23/16 **KCA** 30 ND ND 30.1 11/23/16 **KCA** 30 Chloroethane 11.4 11.4 30.1 ND Chloroform 6.15 6.15 ND 30.0 30.0 11/23/16 KCA 30 ND 14.5 ND 29.9 29.9 11/23/16 **KCA** 30 Chloromethane 14.5 KCA Cis-1,2-Dichloroethene ND 7.57 7.57 ND 30.0 30.0 11/23/16 30 cis-1,3-Dichloropropene ND 6.61 ND 30.0 30.0 11/23/16 **KCA** 30 6.61 ND Cvclohexane 8.72 8.72 ND 30.0 30.0 11/23/16 **KCA** 30 ND Dibromochloromethane 3.52 3.52 ND 30.0 30.0 11/23/16 **KCA** 30 ND 6.07 6.07 ND 30.0 30.0 11/23/16 KCA 30 Dichlorodifluoromethane 23.4 15.9 44.1 29.9 29.9 11/23/16 KCA 30 Ethanol 15.9 Ethyl acetate ND 8.33 8.33 ND 30.0 30.0 11/23/16 KCA 30 1 ND 6.91 6.91 ND 30.0 30.0 11/23/16 **KCA** 30 Ethylbenzene Heptane 3930 D 65.9 65.9 16100 270 270 11/28/16 **KCA** 270 2.81 ND 30.0 30.0 11/23/16 KCA 30 Hexachlorobutadiene ND 2.81 D 76.6 38000 KCA 270 10800 76.6 270 270 11/28/16 Hexane ND 12.2 12.2 ND 30.0 30.0 11/23/16 **KCA** 30 Isopropylalcohol Isopropylbenzene ND 6.11 6.11 ND 30.0 30.0 11/23/16 **KCA** 30 m,p-Xylene 131 6.91 6.91 568 30.0 30.0 11/23/16 **KCA** 30 Methyl Ethyl Ketone ND 10.2 10.2 ND 30.1 30.1 11/23/16 **KCA** 30 Methyl tert-butyl ether(MTBE) 3150 D 74.9 74.9 11300 270 270 11/28/16 **KCA** 270 ND 8.64 8.64 ND 30.0 30.0 11/23/16 KCA 30 Methylene Chloride ND 5.47 5.47 ND 30.0 30.0 11/23/16 KCA 30 n-Butylbenzene o-Xylene 25.5 6.91 6.91 111 30.0 30.0 11/23/16 **KCA** 30 337 17.4 17.4 580 29.9 29.9 11/23/16 **KCA** 30 Propylene 11/23/16 30 sec-Butvlbenzene ND 5.47 5.47 ND 30.0 30.0 **KCA** ND ND 30.0 Styrene 7.05 7.05 30.0 11/23/16 **KCA** 30 ND ND 7.52 7.52 30 1.11 11/23/16 KCA Tetrachloroethene 1.11 Tetrahydrofuran ND 10.2 10.2 ND 30.1 30.1 11/23/16 KCA 30 ND 7.97 ND 30.0 KCA 30 Toluene 7.97 30.0 11/23/16 Trans-1,2-Dichloroethene ND 7.57 7.57 ND 30.0 30.0 11/23/16 **KCA** 30 ND ND 30.0 30.0 30 trans-1,3-Dichloropropene 6.61 6.61 11/23/16 **KCA** ND ND 7.52 7.52 30 1.40 1.40 11/23/16 **KCA** Trichloroethene ND 5.34 ND 30.0 30.0 30 Trichlorofluoromethane 5.34 11/23/16 KCA ND 3.92 3.92 ND 30.0 30.0 11/23/16 KCA 30 Trichlorotrifluoroethane 2.94 7.51 11/23/16 KCA 30 Vinyl Chloride 14.1 2.94 36.0 7.51 **QA/QC Surrogates** % 96 11/23/16 **KCA** 30 % Bromofluorobenzene 96 % % %

Phoenix I.D.: BV86879

Project ID: 1181 FLUSHING AVE., BROOKLYN Phoenix I.D.: BV86879

Client ID: SG9

ppbv ppbv LOD/ ug/m3 ug/m3 LOD/
Parameter Result RL MDL Result RL MDL Date/Time By Dilution

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

An elevated reporting level was reported for TO15 due to a matrix interference of non target compounds.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

December 05, 2016

Reviewed and Released by: Jon Carlson, Project Manager

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Fax (860) 645-0823 Tel. (860) 645-1102

Analysis Report

December 05, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G. **Environmental Business Consultants**

1808 Middle Country Rd Ridge NY 11961-2406

Sample Information		Custody Inform	Custody Information				
Matrix:	AIR	Collected by:		11/16/16	11:31		
Location Code:	EBC	Received by:	LB	11/17/16	15:39		
Rush Request:	72 Hour	Analyzed by:	see "By" below				

P.O.#:

Laboratory Data SDG ID: GBV86876 Canister Id: 357 Phoenix ID: BV86880

1181 FLUSHING AVE., BROOKLYN Project ID:

Client ID: SG7

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL	LOD/ MDL	Date/Time	Ву	Dilution	
Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	4.37	4.37	ND	30.0	30.0	11/23/16	KCA	30	1
1,1,1-Trichloroethane	ND	5.50	5.50	ND	30.0	30.0	11/23/16	KCA	30	
1,1,2,2-Tetrachloroethane	ND	4.37	4.37	ND	30.0	30.0	11/23/16	KCA	30	
1,1,2-Trichloroethane	ND	5.50	5.50	ND	30.0	30.0	11/23/16	KCA	30	
1,1-Dichloroethane	ND	7.42	7.42	ND	30.0	30.0	11/23/16	KCA	30	
1,1-Dichloroethene	ND	7.57	7.57	ND	30.0	30.0	11/23/16	KCA	30	
1,2,4-Trichlorobenzene	ND	4.04	4.04	ND	30.0	30.0	11/23/16	KCA	30	
1,2,4-Trimethylbenzene	ND	6.11	6.11	ND	30.0	30.0	11/23/16	KCA	30	
1,2-Dibromoethane(EDB)	ND	3.91	3.91	ND	30.0	30.0	11/23/16	KCA	30	
1,2-Dichlorobenzene	ND	4.99	4.99	ND	30.0	30.0	11/23/16	KCA	30	
1,2-Dichloroethane	ND	7.42	7.42	ND	30.0	30.0	11/23/16	KCA	30	
1,2-dichloropropane	ND	6.50	6.50	ND	30.0	30.0	11/23/16	KCA	30	
1,2-Dichlorotetrafluoroethane	ND	4.29	4.29	ND	30.0	30.0	11/23/16	KCA	30	
1,3,5-Trimethylbenzene	ND	6.11	6.11	ND	30.0	30.0	11/23/16	KCA	30	
1,3-Butadiene	ND	13.6	13.6	ND	30.1	30.1	11/23/16	KCA	30	
1,3-Dichlorobenzene	ND	4.99	4.99	ND	30.0	30.0	11/23/16	KCA	30	
1,4-Dichlorobenzene	ND	4.99	4.99	ND	30.0	30.0	11/23/16	KCA	30	
1,4-Dioxane	ND	8.33	8.33	ND	30.0	30.0	11/23/16	KCA	30	
2-Hexanone(MBK)	ND	7.33	7.33	ND	30.0	30.0	11/23/16	KCA	30	1
4-Ethyltoluene	ND	6.11	6.11	ND	30.0	30.0	11/23/16	KCA	30	1
4-Isopropyltoluene	ND	5.47	5.47	ND	30.0	30.0	11/23/16	KCA	30	1
4-Methyl-2-pentanone(MIBK)	ND	7.33	7.33	ND	30.0	30.0	11/23/16	KCA	30	
Acetone	ND	12.6	12.6	ND	29.9	29.9	11/23/16	KCA	30	
Acrylonitrile	ND	13.8	13.8	ND	29.9	29.9	11/23/16	KCA	30	
Benzene	194	9.40	9.40	619	30.0	30.0	11/23/16	KCA	30	
Benzyl chloride	ND	5.80	5.80	ND	30.0	30.0	11/23/16	KCA	30	

Client ID: SG7

Olient ID. 307	ppbv	ppbv	LOD/	ug/m3	ug/m3				5	
Parameter	Result	RL	MDL	Result	RL	MDL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	4.48	4.48	ND	30.0	30.0	11/23/16	KCA	30	
Bromoform	ND	2.90	2.90	ND	30.0	30.0	11/23/16	KCA	30	
Bromomethane	ND	7.73	7.73	ND	30.0	30.0	11/23/16	KCA	30	
Carbon Disulfide	ND	9.64	9.64	ND	30.0	30.0	11/23/16	KCA	30	
Carbon Tetrachloride	ND	1.19	1.19	ND	7.48	7.48	11/23/16	KCA	30	
Chlorobenzene	ND	6.52	6.52	ND	30.0	30.0	11/23/16	KCA	30	
Chloroethane	ND	11.4	11.4	ND	30.1	30.1	11/23/16	KCA	30	
Chloroform	ND	6.15	6.15	ND	30.0	30.0	11/23/16	KCA	30	
Chloromethane	ND	14.5	14.5	ND	29.9	29.9	11/23/16	KCA	30	
Cis-1,2-Dichloroethene	27.6	7.57	7.57	109	30.0	30.0	11/23/16	KCA	30	
cis-1,3-Dichloropropene	ND	6.61	6.61	ND	30.0	30.0	11/23/16	KCA	30	
Cyclohexane	4500	D 87.2	87.2	15500	300	300	11/28/16	KCA	300	
Dibromochloromethane	ND	3.52	3.52	ND	30.0	30.0	11/23/16	KCA	30	
Dichlorodifluoromethane	ND	6.07	6.07	ND	30.0	30.0	11/23/16	KCA	30	
Ethanol	ND	15.9	15.9	ND	29.9	29.9	11/23/16	KCA	30	1
Ethyl acetate	ND	8.33	8.33	ND	30.0	30.0	11/23/16	KCA	30	1
Ethylbenzene	ND	6.91	6.91	ND	30.0	30.0	11/23/16	KCA	30	
Heptane	3160	D 73.2	73.2	12900	300	300	11/28/16	KCA	300	
Hexachlorobutadiene	ND	2.81	2.81	ND	30.0	30.0	11/23/16	KCA	30	
Hexane	7950	D 85.2	85.2	28000	300	300	11/28/16	KCA	300	
Isopropylalcohol	ND	12.2	12.2	ND	30.0	30.0	11/23/16	KCA	30	
Isopropylbenzene	ND	6.11	6.11	ND	30.0	30.0	11/23/16	KCA	30	
m,p-Xylene	ND	6.91	6.91	ND	30.0	30.0	11/23/16	KCA	30	
Methyl Ethyl Ketone	57.3	10.2	10.2	169	30.1	30.1	11/23/16	KCA	30	
Methyl tert-butyl ether(MTBE)	711	8.33	8.33	2560	30.0	30.0	11/23/16	KCA	30	
Methylene Chloride	ND	8.64	8.64	ND	30.0	30.0	11/23/16	KCA	30	
n-Butylbenzene	ND	5.47	5.47	ND	30.0	30.0	11/23/16	KCA	30	1
o-Xylene	ND	6.91	6.91	ND	30.0	30.0	11/23/16	KCA	30	
Propylene	ND	17.4	17.4	ND	29.9	29.9	11/23/16	KCA	30	1
sec-Butylbenzene	ND	5.47	5.47	ND	30.0	30.0	11/23/16	KCA	30	1
Styrene	ND	7.05	7.05	ND	30.0	30.0	11/23/16	KCA	30	
Tetrachloroethene	2.13	1.11	1.11	14.4	7.52	7.52	11/23/16	KCA	30	
Tetrahydrofuran	ND	10.2	10.2	ND	30.1	30.1	11/23/16	KCA	30	1
Toluene	ND	7.97	7.97	ND	30.0	30.0	11/23/16	KCA	30	
Trans-1,2-Dichloroethene	ND	7.57	7.57	ND	30.0	30.0	11/23/16	KCA	30	
trans-1,3-Dichloropropene	ND	6.61	6.61	ND	30.0	30.0	11/23/16	KCA	30	
Trichloroethene	2.10	1.40	1.40	11.3	7.52	7.52	11/23/16	KCA	30	
Trichlorofluoromethane	ND	5.34	5.34	ND	30.0	30.0	11/23/16	KCA	30	
Trichlorotrifluoroethane	ND	3.92	3.92	ND	30.0	30.0	11/23/16	KCA	30	
Vinyl Chloride	990	2.94	2.94	2530	7.51	7.51	11/23/16	KCA	30	
•	550	2.34	2.04	2000	7.01	7.51	11/20/10	NOA	50	
<u>QA/QC Surrogates</u> % Bromofluorobenzene	98	%	%	98	%	%	11/23/16	KCA	30	
70 DIGITIONGOLODGIIZGIIG	50	70	70	50	70	70	11/20/10	NOA	50	

Phoenix I.D.: BV86880

Project ID: 1181 FLUSHING AVE., BROOKLYN Phoenix I.D.: BV86880

Client ID: SG7

ppbv ppbv LOD/ ug/m3 ug/m3 LOD/
Parameter Result RL MDL Result RL MDL Date/Time By Dilution

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

An elevated reporting level was reported for TO15 due to a matrix interference of non target compounds.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

December 05, 2016

Reviewed and Released by: Jon Carlson, Project Manager

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

December 05, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G. **Environmental Business Consultants**

> 1808 Middle Country Rd Ridge NY 11961-2406

Sample Information Custody Information Date <u>Time</u> Collected by: 11:29 Matrix: AIR 11/16/16 Received by: Location Code: **EBC** LB 11/17/16 15:39

72 Hour Rush Request: Analyzed by: see "By" below

P.O.#:

_aboratory Data SDG ID: GBV86876 Canister Id: 13650 Phoenix ID: BV86881

1181 FLUSHING AVE., BROOKLYN Project ID:

Client ID: SG8

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL	LOD/ MDL		Ву	Dilution	
Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	4.37	4.37	ND	30.0	30.0	11/23/16	KCA	30	1
1,1,1-Trichloroethane	ND	5.50	5.50	ND	30.0	30.0	11/23/16	KCA	30	
1,1,2,2-Tetrachloroethane	ND	4.37	4.37	ND	30.0	30.0	11/23/16	KCA	30	
1,1,2-Trichloroethane	ND	5.50	5.50	ND	30.0	30.0	11/23/16	KCA	30	
1,1-Dichloroethane	ND	7.42	7.42	ND	30.0	30.0	11/23/16	KCA	30	
1,1-Dichloroethene	ND	7.57	7.57	ND	30.0	30.0	11/23/16	KCA	30	
1,2,4-Trichlorobenzene	ND	4.04	4.04	ND	30.0	30.0	11/23/16	KCA	30	
1,2,4-Trimethylbenzene	ND	6.11	6.11	ND	30.0	30.0	11/23/16	KCA	30	
1,2-Dibromoethane(EDB)	ND	3.91	3.91	ND	30.0	30.0	11/23/16	KCA	30	
1,2-Dichlorobenzene	ND	4.99	4.99	ND	30.0	30.0	11/23/16	KCA	30	
1,2-Dichloroethane	ND	7.42	7.42	ND	30.0	30.0	11/23/16	KCA	30	
1,2-dichloropropane	ND	6.50	6.50	ND	30.0	30.0	11/23/16	KCA	30	
1,2-Dichlorotetrafluoroethane	ND	4.29	4.29	ND	30.0	30.0	11/23/16	KCA	30	
1,3,5-Trimethylbenzene	ND	6.11	6.11	ND	30.0	30.0	11/23/16	KCA	30	
1,3-Butadiene	ND	13.6	13.6	ND	30.1	30.1	11/23/16	KCA	30	
1,3-Dichlorobenzene	ND	4.99	4.99	ND	30.0	30.0	11/23/16	KCA	30	
1,4-Dichlorobenzene	ND	4.99	4.99	ND	30.0	30.0	11/23/16	KCA	30	
1,4-Dioxane	ND	8.33	8.33	ND	30.0	30.0	11/23/16	KCA	30	
2-Hexanone(MBK)	ND	7.33	7.33	ND	30.0	30.0	11/23/16	KCA	30	1
4-Ethyltoluene	ND	6.11	6.11	ND	30.0	30.0	11/23/16	KCA	30	1
4-Isopropyltoluene	ND	5.47	5.47	ND	30.0	30.0	11/23/16	KCA	30	1
4-Methyl-2-pentanone(MIBK)	ND	7.33	7.33	ND	30.0	30.0	11/23/16	KCA	30	
Acetone	ND	12.6	12.6	ND	29.9	29.9	11/23/16	KCA	30	
Acrylonitrile	ND	13.8	13.8	ND	29.9	29.9	11/23/16	KCA	30	
Benzene	ND	9.40	9.40	ND	30.0	30.0	11/23/16	KCA	30	
Benzyl chloride	ND	5.80	5.80	ND	30.0	30.0	11/23/16	KCA	30	

Client ID: SG8

Gliefit ID. 300	ppbv	ppbv	LOD/	ug/m3	ug/m3	LOD/				
Parameter	Result	RL	MDL	Result	RL		Date/Time	Ву	Dilution	
Bromodichloromethane	ND	4.48	4.48	ND	30.0	30.0	11/23/16	KCA	30	_
Bromoform	ND	2.90	2.90	ND	30.0	30.0	11/23/16	KCA	30	
Bromomethane	ND	7.73	7.73	ND	30.0	30.0	11/23/16	KCA	30	
Carbon Disulfide	ND	9.64	9.64	ND	30.0	30.0	11/23/16	KCA	30	
Carbon Tetrachloride	ND	1.19	1.19	ND	7.48	7.48	11/23/16	KCA	30	
Chlorobenzene	ND	6.52	6.52	ND	30.0	30.0	11/23/16	KCA	30	
Chloroethane	ND	11.4	11.4	ND	30.1	30.1	11/23/16	KCA	30	
Chloroform	ND	6.15	6.15	ND	30.0	30.0	11/23/16	KCA	30	
Chloromethane	ND	14.5	14.5	ND	29.9	29.9	11/23/16	KCA	30	
Cis-1,2-Dichloroethene	ND	7.57	7.57	ND	30.0	30.0	11/23/16	KCA	30	
cis-1,3-Dichloropropene	ND	6.61	6.61	ND	30.0	30.0	11/23/16	KCA	30	
Cyclohexane	ND	8.72	8.72	ND	30.0	30.0	11/23/16	KCA	30	
Dibromochloromethane	ND	3.52	3.52	ND	30.0	30.0	11/23/16	KCA	30	
Dichlorodifluoromethane	ND	6.07	6.07	ND	30.0	30.0	11/23/16	KCA	30	
Ethanol	16.3	15.9	15.9	30.7	29.9	29.9	11/23/16	KCA	30	1
Ethyl acetate	ND	8.33	8.33	ND	30.0	30.0	11/23/16	KCA	30	1
Ethylbenzene	ND	6.91	6.91	ND	30.0	30.0	11/23/16	KCA	30	
Heptane	ND	7.32	7.32	ND	30.0	30.0	11/23/16	KCA	30	
Hexachlorobutadiene	ND	2.81	2.81	ND	30.0	30.0	11/23/16	KCA	30	
Hexane	36.4	S 8.52	8.52	128	30.0	30.0	11/23/16	KCA	30	
Isopropylalcohol	ND	12.2	12.2	ND	30.0	30.0	11/23/16	KCA	30	
Isopropylbenzene	ND	6.11	6.11	ND	30.0	30.0	11/23/16	KCA	30	
m,p-Xylene	ND	6.91	6.91	ND	30.0	30.0	11/23/16	KCA	30	
Methyl Ethyl Ketone	79.2	10.2	10.2	233	30.1	30.1	11/23/16	KCA	30	
Methyl tert-butyl ether(MTBE)	1790	D 41.6	41.6	6450	150	150	11/28/16	KCA	150	
Methylene Chloride	ND	8.64	8.64	ND	30.0	30.0	11/23/16	KCA	30	
n-Butylbenzene	ND	5.47	5.47	ND	30.0	30.0	11/23/16	KCA	30	1
o-Xylene	ND	6.91	6.91	ND	30.0	30.0	11/23/16	KCA	30	
Propylene	ND	17.4	17.4	ND	29.9	29.9	11/23/16	KCA	30	1
sec-Butylbenzene	ND	5.47	5.47	ND	30.0	30.0	11/23/16	KCA	30	1
Styrene	ND	7.05	7.05	ND	30.0	30.0	11/23/16	KCA	30	
Tetrachloroethene	ND	1.11	1.11	ND	7.52	7.52	11/23/16	KCA	30	
Tetrahydrofuran	ND	10.2	10.2	ND	30.1	30.1	11/23/16	KCA	30	1
Toluene	12.9	7.97	7.97	48.6	30.0	30.0	11/23/16	KCA	30	
Trans-1,2-Dichloroethene	ND	7.57	7.57	ND	30.0	30.0	11/23/16	KCA	30	
trans-1,3-Dichloropropene	ND	6.61	6.61	ND	30.0	30.0	11/23/16	KCA	30	
Trichloroethene	ND	1.40	1.40	ND	7.52	7.52	11/23/16	KCA	30	
Trichlorofluoromethane	ND	5.34	5.34	ND	30.0	30.0	11/23/16	KCA	30	
Trichlorotrifluoroethane	ND	3.92	3.92	ND	30.0	30.0	11/23/16	KCA	30	
Vinyl Chloride	5.46	2.94	2.94	13.9	7.51	7.51	11/23/16	KCA	30	
QA/QC Surrogates										
% Bromofluorobenzene	100	%	%	100	%	%	11/23/16	KCA	30	

Phoenix I.D.: BV86881

Project ID: 1181 FLUSHING AVE., BROOKLYN Phoenix I.D.: BV86881

Client ID: SG8

ppbv ppbv LOD/ ug/m3 ug/m3 LOD/
Parameter Result RL MDL Result RL MDL Date/Time By Dilution

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

An elevated reporting level was reported for TO15 due to a matrix interference of non target compounds.

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

December 05, 2016

Reviewed and Released by: Jon Carlson, Project Manager

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Fax (860) 645-0823 Tel. (860) 645-1102

Analysis Report

December 05, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G. **Environmental Business Consultants**

1808 Middle Country Rd Ridge NY 11961-2406

Sample Informa	ation_	Custody Inform	<u>ation</u>	<u>Date</u>	<u>Time</u>
Matrix:	AIR	Collected by:		11/16/16	11:08
Location Code:	EBC	Received by:	LB	11/17/16	15:39
Rush Request:	72 Hour	Analyzed by:	see "By" below		

P.O.#:

Laboratory Data SDG ID: GBV86876 Canister Id: 13644 Phoenix ID: BV86882

1181 FLUSHING AVE., BROOKLYN Project ID:

Client ID: SG5

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL	LOD/ MDL		Ву	Dilution	
Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	1.46	1.46	ND	10.0	10.0	11/17/16	KCA	10	1
1,1,1-Trichloroethane	ND	1.83	1.83	ND	10.0	10.0	11/17/16	KCA	10	
1,1,2,2-Tetrachloroethane	ND	1.46	1.46	ND	10.0	10.0	11/17/16	KCA	10	
1,1,2-Trichloroethane	ND	1.83	1.83	ND	10.0	10.0	11/17/16	KCA	10	
1,1-Dichloroethane	ND	2.47	2.47	ND	10.0	10.0	11/17/16	KCA	10	
1,1-Dichloroethene	ND	2.52	2.52	ND	10.0	10.0	11/17/16	KCA	10	
1,2,4-Trichlorobenzene	ND	1.35	1.35	ND	10.0	10.0	11/17/16	KCA	10	
1,2,4-Trimethylbenzene	ND	2.04	2.04	ND	10.0	10.0	11/17/16	KCA	10	
1,2-Dibromoethane(EDB)	ND	1.30	1.30	ND	10.0	10.0	11/17/16	KCA	10	
1,2-Dichlorobenzene	ND	1.66	1.66	ND	10.0	10.0	11/17/16	KCA	10	
1,2-Dichloroethane	ND	2.47	2.47	ND	10.0	10.0	11/17/16	KCA	10	
1,2-dichloropropane	ND	2.17	2.17	ND	10.0	10.0	11/17/16	KCA	10	
1,2-Dichlorotetrafluoroethane	ND	1.43	1.43	ND	10.0	10.0	11/17/16	KCA	10	
1,3,5-Trimethylbenzene	ND	2.04	2.04	ND	10.0	10.0	11/17/16	KCA	10	
1,3-Butadiene	ND	4.52	4.52	ND	10.0	10.0	11/17/16	KCA	10	
1,3-Dichlorobenzene	ND	1.66	1.66	ND	10.0	10.0	11/17/16	KCA	10	
1,4-Dichlorobenzene	ND	1.66	1.66	ND	10.0	10.0	11/17/16	KCA	10	
1,4-Dioxane	ND	2.78	2.78	ND	10.0	10.0	11/17/16	KCA	10	
2-Hexanone(MBK)	ND	2.44	2.44	ND	10.0	10.0	11/17/16	KCA	10	1
4-Ethyltoluene	ND	2.04	2.04	ND	10.0	10.0	11/17/16	KCA	10	1
4-Isopropyltoluene	ND	1.82	1.82	ND	10.0	10.0	11/17/16	KCA	10	1
4-Methyl-2-pentanone(MIBK)	ND	2.44	2.44	ND	10.0	10.0	11/17/16	KCA	10	
Acetone	ND	4.21	4.21	ND	10.0	10.0	11/17/16	KCA	10	
Acrylonitrile	ND	4.61	4.61	ND	10.0	10.0	11/17/16	KCA	10	
Benzene	358	3.13	3.13	1140	10.0	10.0	11/17/16	KCA	10	
Benzyl chloride	ND	1.93	1.93	ND	10.0	10.0	11/17/16	KCA	10	

Client ID: SG5

Olletti ID. 303	ppbv	ppbv	LOD/	ug/m3	ug/m3	LOD/				
Parameter	Result	RL	MDL	Result	RL		Date/Time	Ву	Dilution	
Bromodichloromethane	ND	1.49	1.49	ND	10.0	10.0	11/17/16	KCA	10	
Bromoform	ND	0.968	0.968	ND	10.0	10.0	11/17/16	KCA	10	
Bromomethane	ND	2.58	2.58	ND	10.0	10.0	11/17/16	KCA	10	
Carbon Disulfide	ND	3.21	3.21	ND	10.0	10.0	11/17/16	KCA	10	
Carbon Tetrachloride	ND	0.397	0.397	ND	2.50	2.50	11/17/16	KCA	10	
Chlorobenzene	ND	2.17	2.17	ND	10.0	10.0	11/17/16	KCA	10	
Chloroethane	ND	3.79	3.79	ND	10.0	10.0	11/17/16	KCA	10	
Chloroform	ND	2.05	2.05	ND	10.0	10.0	11/17/16	KCA	10	
Chloromethane	ND	4.85	4.85	ND	10.0	10.0	11/17/16	KCA	10	
Cis-1,2-Dichloroethene	ND	2.52	2.52	ND	10.0	10.0	11/17/16	KCA	10	
cis-1,3-Dichloropropene	ND	2.20	2.20	ND	10.0	10.0	11/17/16	KCA	10	
Cyclohexane	5090	D 78.5	78.5	17500	270	270	11/28/16	KCA	270	
Dibromochloromethane	ND	1.17	1.17	ND	10.0	10.0	11/17/16	KCA	10	
Dichlorodifluoromethane	ND	2.02	2.02	ND	10.0	10.0	11/17/16	KCA	10	
Ethanol	ND	5.31	5.31	ND	10.0	10.0	11/17/16	KCA	10	1
Ethyl acetate	ND	2.78	2.78	ND	10.0	10.0	11/17/16	KCA	10	1
Ethylbenzene	33.7	2.30	2.30	146	10.0	10.0	11/17/16	KCA	10	
Heptane	1980	D 18.3	18.3	8110	75.0	75.0	11/21/16	KCA	75	
Hexachlorobutadiene	ND	0.938	0.938	ND	10.0	10.0	11/17/16	KCA	10	
Hexane	5620	D 76.6	76.6	19800	270	270	11/28/16	KCA	270	
Isopropylalcohol	ND	4.07	4.07	ND	10.0	10.0	11/17/16	KCA	10	
Isopropylbenzene	ND	2.04	2.04	ND	10.0	10.0	11/17/16	KCA	10	
m,p-Xylene	87.2	2.30	2.30	378	10.0	10.0	11/17/16	KCA	10	
Methyl Ethyl Ketone	473	D 25.4	25.4	1390	74.9	74.9	11/21/16	KCA	75	
Methyl tert-butyl ether(MTBE)	ND	2.78	2.78	ND	10.0	10.0	11/17/16	KCA	10	
Methylene Chloride	ND	2.88	2.88	ND	10.0	10.0	11/17/16	KCA	10	
n-Butylbenzene	ND	1.82	1.82	ND	10.0	10.0	11/17/16	KCA	10	1
o-Xylene	28.8	2.30	2.30	125	10.0	10.0	11/17/16	KCA	10	
Propylene	636	D 43.6	43.6	1090	75.0	75.0	11/21/16	KCA	75	1
sec-Butylbenzene	ND	1.82	1.82	ND	10.0	10.0	11/17/16	KCA	10	1
Styrene	ND	2.35	2.35	ND	10.0	10.0	11/17/16	KCA	10	
Tetrachloroethene	0.480	0.369	0.369	3.25	2.50	2.50	11/17/16	KCA	10	
Tetrahydrofuran	ND	3.39	3.39	ND	10.0	10.0	11/17/16	KCA	10	1
Toluene	313	2.66	2.66	1180	10.0	10.0	11/17/16	KCA	10	
Trans-1,2-Dichloroethene	ND	2.52	2.52	ND	10.0	10.0	11/17/16	KCA	10	
trans-1,3-Dichloropropene	ND	2.20	2.20	ND	10.0	10.0	11/17/16	KCA	10	
Trichloroethene	0.760	0.466	0.466	4.08	2.50	2.50	11/17/16	KCA	10	
Trichlorofluoromethane	ND	1.78	1.78	ND	10.0	10.0	11/17/16	KCA	10	
Trichlorotrifluoroethane	ND	1.31	1.31	ND	10.0	10.0	11/17/16	KCA	10	
Vinyl Chloride	ND	0.979	0.979	ND	2.50	2.50	11/17/16	KCA	10	
QA/QC Surrogates										
% Bromofluorobenzene	108	%	%	108	%	%	11/17/16	KCA	10	

Phoenix I.D.: BV86882

Project ID: 1181 FLUSHING AVE., BROOKLYN Phoenix I.D.: BV86882

Client ID: SG5

ppbv ppbv LOD/ ug/m3 ug/m3 LOD/
Parameter RL MDL Result RL MDL Date/Time By Dilution

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

December 05, 2016

Reviewed and Released by: Jon Carlson, Project Manager

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

December 05, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G. Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample InformationCustody InformationDateTimeMatrix:AIRCollected by:11/16/1611:16Location Code:EBCReceived by:LB11/17/1615:39

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

Canister Id: 19630 Laboratory Data SDG ID: GBV86876
Phoenix ID: BV86883

Project ID: 1181 FLUSHING AVE., BROOKLYN

Client ID: SG2

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL	LOD/ MDL		Ву	Dilution	
Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	11/21/16	KCA	1	1
1,1,1-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	11/21/16	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	11/21/16	KCA	1	
1,1,2-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	11/21/16	KCA	1	
1,1-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	11/21/16	KCA	1	
1,1-Dichloroethene	ND	0.252	0.252	ND	1.00	1.00	11/21/16	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	0.135	ND	1.00	1.00	11/21/16	KCA	1	
1,2,4-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	11/21/16	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	0.130	ND	1.00	1.00	11/21/16	KCA	1	
1,2-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	11/21/16	KCA	1	
1,2-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	11/21/16	KCA	1	
1,2-dichloropropane	ND	0.217	0.217	ND	1.00	1.00	11/21/16	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	0.143	ND	1.00	1.00	11/21/16	KCA	1	
1,3,5-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	11/21/16	KCA	1	
1,3-Butadiene	ND	0.452	0.452	ND	1.00	1.00	11/21/16	KCA	1	
1,3-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	11/21/16	KCA	1	
1,4-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	11/21/16	KCA	1	
1,4-Dioxane	ND	0.278	0.278	ND	1.00	1.00	11/21/16	KCA	1	
2-Hexanone(MBK)	ND	0.244	0.244	ND	1.00	1.00	11/21/16	KCA	1	1
4-Ethyltoluene	ND	0.204	0.204	ND	1.00	1.00	11/21/16	KCA	1	1
4-Isopropyltoluene	ND	0.182	0.182	ND	1.00	1.00	11/21/16	KCA	1	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	0.244	ND	1.00	1.00	11/21/16	KCA	1	
Acetone	15.5	0.421	0.421	36.8	1.00	1.00	11/21/16	KCA	1	
Acrylonitrile	ND	0.461	0.461	ND	1.00	1.00	11/21/16	KCA	1	
Benzene	ND	0.313	0.313	ND	1.00	1.00	11/21/16	KCA	1	
Benzyl chloride	ND	0.193	0.193	ND	1.00	1.00	11/21/16	KCA	1	

Client ID: SG2

Olient ID. 302	ppbv	ppbv	LOD/	ug/m3	ug/m3	LOD/				
Parameter	Result	RL	MDL	Result	RL	MDL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	0.149	ND	1.00	1.00	11/21/16	KCA	1	
Bromoform	ND	0.097	0.097	ND	1.00	1.00	11/21/16	KCA	1	
Bromomethane	ND	0.258	0.258	ND	1.00	1.00	11/21/16	KCA	1	
Carbon Disulfide	ND	0.321	0.321	ND	1.00	1.00	11/21/16	KCA	1	
Carbon Tetrachloride	0.081	0.040	0.040	0.51	0.25	0.25	11/21/16	KCA	1	
Chlorobenzene	ND	0.217	0.217	ND	1.00	1.00	11/21/16	KCA	1	
Chloroethane	ND	0.379	0.379	ND	1.00	1.00	11/21/16	KCA	1	
Chloroform	ND	0.205	0.205	ND	1.00	1.00	11/21/16	KCA	1	
Chloromethane	ND	0.485	0.485	ND	1.00	1.00	11/21/16	KCA	1	
Cis-1,2-Dichloroethene	ND	0.252	0.252	ND	1.00	1.00	11/21/16	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	11/21/16	KCA	1	
Cyclohexane	ND	0.291	0.291	ND	1.00	1.00	11/21/16	KCA	1	
Dibromochloromethane	ND	0.118	0.118	ND	1.00	1.00	11/21/16	KCA	1	
Dichlorodifluoromethane	0.501	0.202	0.202	2.48	1.00	1.00	11/21/16	KCA	1	
Ethanol	9.07	0.531	0.531	17.1	1.00	1.00	11/21/16	KCA	1	1
Ethyl acetate	ND	0.278	0.278	ND	1.00	1.00	11/21/16	KCA	1	1
Ethylbenzene	ND	0.230	0.230	ND	1.00	1.00	11/21/16	KCA	1	
Heptane	0.330	0.244	0.244	1.35	1.00	1.00	11/21/16	KCA	1	
Hexachlorobutadiene	ND	0.094	0.094	ND	1.00	1.00	11/21/16	KCA	1	
Hexane	1.01	S 0.284	0.284	3.56	1.00	1.00	11/21/16	KCA	1	
Isopropylalcohol	ND	0.407	0.407	ND	1.00	1.00	11/21/16	KCA	1	
Isopropylbenzene	ND	0.204	0.204	ND	1.00	1.00	11/21/16	KCA	1	
m,p-Xylene	ND	0.230	0.230	ND	1.00	1.00	11/21/16	KCA	1	
Methyl Ethyl Ketone	ND	0.339	0.339	ND	1.00	1.00	11/21/16	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	0.278	ND	1.00	1.00	11/21/16	KCA	1	
Methylene Chloride	2.11	S 0.288	0.288	7.33	1.00	1.00	11/21/16	KCA	1	
n-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	11/21/16	KCA	1	1
o-Xylene	ND	0.230	0.230	ND	1.00	1.00	11/21/16	KCA	1	
Propylene	ND	0.581	0.581	ND	1.00	1.00	11/21/16	KCA	1	1
sec-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	11/21/16	KCA	1	1
Styrene	ND	0.235	0.235	ND	1.00	1.00	11/21/16	KCA	1	
Tetrachloroethene	0.289	0.037	0.037	1.96	0.25	0.25	11/21/16	KCA	1	
Tetrahydrofuran	ND	0.339	0.339	ND	1.00	1.00	11/21/16	KCA	1	1
Toluene	0.316	0.266	0.266	1.19	1.00	1.00	11/21/16	KCA	1	
Trans-1,2-Dichloroethene	ND	0.252	0.252	ND	1.00	1.00	11/21/16	KCA	1	
trans-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	11/21/16	KCA	1	
Trichloroethene	ND	0.047	0.047	ND	0.25	0.25	11/21/16	KCA	1	
Trichlorofluoromethane	0.354	0.178	0.178	1.99	1.00	1.00	11/21/16	KCA	1	
Trichlorotrifluoroethane	ND	0.131	0.131	ND	1.00	1.00	11/21/16	KCA	1	
Vinyl Chloride	ND	0.098	0.098	ND	0.25	0.25	11/21/16	KCA	1	
QA/QC Surrogates										
% Bromofluorobenzene	101	%	%	101	%	%	11/21/16	KCA	1	

Phoenix I.D.: BV86883

Project ID: 1181 FLUSHING AVE., BROOKLYN Phoenix I.D.: BV86883

Client ID: SG2

ppbv ppbv LOD/ ug/m3 ug/m3 LOD/
Parameter Result RL MDL Result RL MDL Date/Time By Dilution

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

December 05, 2016

Reviewed and Released by: Jon Carlson, Project Manager

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

December 05, 2016

FOR: Attn: Mr. Charles B. Sosik, P.G. **Environmental Business Consultants**

> 1808 Middle Country Rd Ridge NY 11961-2406

Sample Informa	<u>ation</u>	Custody Informa	<u>ation</u>	<u>Date</u>	<u>Time</u>
Matrix:	AIR	Collected by:		11/16/16	11:18
Location Code:	EBC	Received by:	LB	11/17/16	15:39
Rush Request:	72 Hour	Analyzed by:	see "By" below		

P.O.#:

Laboratory Data SDG ID: GBV86876 Canister Id: 1493 Phoenix ID: BV86884

1181 FLUSHING AVE., BROOKLYN Project ID:

Client ID: SG1

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL	LOD/ MDL		Ву	Dilution	
Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	11/21/16	KCA	1	1
1,1,1-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	11/21/16	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	11/21/16	KCA	1	
1,1,2-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	11/21/16	KCA	1	
1,1-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	11/21/16	KCA	1	
1,1-Dichloroethene	ND	0.252	0.252	ND	1.00	1.00	11/21/16	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	0.135	ND	1.00	1.00	11/21/16	KCA	1	
1,2,4-Trimethylbenzene	0.253	0.204	0.204	1.24	1.00	1.00	11/21/16	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	0.130	ND	1.00	1.00	11/21/16	KCA	1	
1,2-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	11/21/16	KCA	1	
1,2-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	11/21/16	KCA	1	
1,2-dichloropropane	ND	0.217	0.217	ND	1.00	1.00	11/21/16	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	0.143	ND	1.00	1.00	11/21/16	KCA	1	
1,3,5-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	11/21/16	KCA	1	
1,3-Butadiene	ND	0.452	0.452	ND	1.00	1.00	11/21/16	KCA	1	
1,3-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	11/21/16	KCA	1	
1,4-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	11/21/16	KCA	1	
1,4-Dioxane	ND	0.278	0.278	ND	1.00	1.00	11/21/16	KCA	1	
2-Hexanone(MBK)	ND	0.244	0.244	ND	1.00	1.00	11/21/16	KCA	1	1
4-Ethyltoluene	ND	0.204	0.204	ND	1.00	1.00	11/21/16	KCA	1	1
4-Isopropyltoluene	ND	0.182	0.182	ND	1.00	1.00	11/21/16	KCA	1	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	0.244	ND	1.00	1.00	11/21/16	KCA	1	
Acetone	71.4	D 4.21	4.21	170	10.0	10.0	11/18/16	KCA	10	
Acrylonitrile	ND	0.461	0.461	ND	1.00	1.00	11/21/16	KCA	1	
Benzene	0.364	0.313	0.313	1.16	1.00	1.00	11/21/16	KCA	1	
Benzyl chloride	ND	0.193	0.193	ND	1.00	1.00	11/21/16	KCA	1	

Client ID: SG1

Client ID. 301	ppbv	ppbv	LOD/	ug/m3	ug/m3	LOD/				
Parameter	Result	RL	MDL	Result	RL		Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	0.149	ND	1.00	1.00	11/21/16	KCA	1	
Bromoform	ND	0.097	0.097	ND	1.00	1.00	11/21/16	KCA	1	
Bromomethane	ND	0.258	0.258	ND	1.00	1.00	11/21/16	KCA	1	
Carbon Disulfide	0.513	0.321	0.321	1.60	1.00	1.00	11/21/16	KCA	1	
Carbon Tetrachloride	ND	0.040	0.040	ND	0.25	0.25	11/21/16	KCA	1	
Chlorobenzene	ND	0.217	0.217	ND	1.00	1.00	11/21/16	KCA	1	
Chloroethane	ND	0.379	0.379	ND	1.00	1.00	11/21/16	KCA	1	
Chloroform	0.560	0.205	0.205	2.73	1.00	1.00	11/21/16	KCA	1	
Chloromethane	ND	0.485	0.485	ND	1.00	1.00	11/21/16	KCA	1	
Cis-1,2-Dichloroethene	ND	0.252	0.252	ND	1.00	1.00	11/21/16	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	11/21/16	KCA	1	
Cyclohexane	0.297	0.291	0.291	1.02	1.00	1.00	11/21/16	KCA	1	
Dibromochloromethane	ND	0.118	0.118	ND	1.00	1.00	11/21/16	KCA	1	
Dichlorodifluoromethane	1.44	0.202	0.202	7.12	1.00	1.00	11/21/16	KCA	1	
Ethanol	10.7	0.531	0.531	20.1	1.00	1.00	11/21/16	KCA	1	1
Ethyl acetate	ND	0.278	0.278	ND	1.00	1.00	11/21/16	KCA	1	1
Ethylbenzene	0.401	0.230	0.230	1.74	1.00	1.00	11/21/16	KCA	1	
Heptane	0.641	0.244	0.244	2.63	1.00	1.00	11/21/16	KCA	1	
Hexachlorobutadiene	ND	0.094	0.094	ND	1.00	1.00	11/21/16	KCA	1	
Hexane	0.323	S 0.284	0.284	1.14	1.00	1.00	11/21/16	KCA	1	
Isopropylalcohol	0.776	0.407	0.407	1.91	1.00	1.00	11/21/16	KCA	1	
Isopropylbenzene	ND	0.204	0.204	ND	1.00	1.00	11/21/16	KCA	1	
m,p-Xylene	1.36	0.230	0.230	5.90	1.00	1.00	11/21/16	KCA	1	
Methyl Ethyl Ketone	1.18	0.339	0.339	3.48	1.00	1.00	11/21/16	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	0.278	ND	1.00	1.00	11/21/16	KCA	1	
Methylene Chloride	ND	0.288	0.288	ND	1.00	1.00	11/21/16	KCA	1	
n-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	11/21/16	KCA	1	1
o-Xylene	0.462	0.230	0.230	2.00	1.00	1.00	11/21/16	KCA	1	
Propylene	1.52	0.581	0.581	2.61	1.00	1.00	11/21/16	KCA	1	1
sec-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	11/21/16	KCA	1	1
Styrene	ND	0.235	0.235	ND	1.00	1.00	11/21/16	KCA	1	
Tetrachloroethene	1.17	0.037	0.037	7.93	0.25	0.25	11/21/16	KCA	1	
Tetrahydrofuran	ND	0.339	0.339	ND	1.00	1.00	11/21/16	KCA	1	1
Toluene	1.14	0.266	0.266	4.29	1.00	1.00	11/21/16	KCA	1	
Trans-1,2-Dichloroethene	ND	0.252	0.252	ND	1.00	1.00	11/21/16	KCA	1	
trans-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	11/21/16	KCA	1	
Trichloroethene	ND	0.047	0.047	ND	0.25	0.25	11/21/16	KCA	1	
Trichlorofluoromethane	4.58	0.178	0.178	25.7	1.00	1.00	11/21/16	KCA	1	
Trichlorotrifluoroethane	ND	0.131	0.131	ND	1.00	1.00	11/21/16	KCA	1	
Vinyl Chloride	ND	0.098	0.098	ND	0.25	0.25	11/21/16	KCA	1	
QA/QC Surrogates										
% Bromofluorobenzene	101	%	%	101	%	%	11/21/16	KCA	1	

Phoenix I.D.: BV86884

Project ID: 1181 FLUSHING AVE., BROOKLYN Phoenix I.D.: BV86884

Client ID: SG1

ppbv ppbv LOD/ ug/m3 ug/m3 LOD/
Parameter Result RL MDL Result RL MDL Date/Time By Dilution

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

December 05, 2016

Reviewed and Released by: Jon Carlson, Project Manager

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG I.D.: GBV86876

QA/QC Report

December 05, 2016

QA/QC Data

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 367345 (ppbv),	QC Sam	ple No: E	3V86444	(BV868	77 (1X, 100X)	BV868	82 (10)	() , BV8	6884 (1	0X))			
Volatiles													
1,1,1,2-Tetrachloroethane	ND	0.146	ND	1.00	109	ND	ND	ND	ND	NC	70 - 130	25	
1,1,1-Trichloroethane	ND	0.183	ND	1.00	108	ND	ND	ND	ND	NC	70 - 130	25	
1,1,2,2-Tetrachloroethane	ND	0.146	ND	1.00	102	ND	ND	ND	ND	NC	70 - 130	25	
1,1,2-Trichloroethane	ND	0.183	ND	1.00	105	ND	ND	ND	ND	NC	70 - 130	25	
1,1-Dichloroethane	ND	0.247	ND	1.00	105	ND	ND	ND	ND	NC	70 - 130	25	
1,1-Dichloroethene	ND	0.252	ND	1.00	103	ND	ND	ND	ND	NC	70 - 130	25	
1,2,4-Trichlorobenzene	ND	0.135	ND	1.00	133	ND	ND	ND	ND	NC	70 - 130	25	1
1,2,4-Trimethylbenzene	ND	0.204	ND	1.00	106	ND	ND	ND	ND	NC	70 - 130	25	
1,2-Dibromoethane(EDB)	ND	0.130	ND	1.00	105	ND	ND	ND	ND	NC	70 - 130	25	
1,2-Dichlorobenzene	ND	0.166	ND	1.00	106	ND	ND	ND	ND	NC	70 - 130	25	
1,2-Dichloroethane	ND	0.247	ND	1.00	106	ND	ND	ND	ND	NC	70 - 130	25	
1,2-dichloropropane	ND	0.216	ND	1.00	104	ND	ND	ND	ND	NC	70 - 130	25	
1,2-Dichlorotetrafluoroethane	ND	0.143	ND	1.00	112	ND	ND	ND	ND	NC	70 - 130	25	
1,3,5-Trimethylbenzene	ND	0.204	ND	1.00	110	ND	ND	ND	ND	NC	70 - 130	25	
1,3-Butadiene	ND	0.452	ND	1.00	109	ND	ND	ND	ND	NC	70 - 130	25	
1,3-Dichlorobenzene	ND	0.166	ND	1.00	107	ND	ND	ND	ND	NC	70 - 130	25	
1,4-Dichlorobenzene	ND	0.166	ND	1.00	109	ND	ND	ND	ND	NC	70 - 130	25	
1,4-Dioxane	ND	0.278	ND	1.00	116	ND	ND	ND	ND	NC	70 - 130	25	
2-Hexanone(MBK)	ND	0.244	ND	1.00	109	ND	ND	ND	ND	NC	70 - 130	25	
4-Ethyltoluene	ND	0.204	ND	1.00	110	ND	ND	ND	ND	NC	70 - 130	25	
4-Isopropyltoluene	ND	0.182	ND	1.00	103	ND	ND	ND	ND	NC	70 - 130	25	
4-Methyl-2-pentanone(MIBK)	ND	0.244	ND	1.00	117	ND	ND	ND	ND	NC	70 - 130	25	
Acetone	ND	0.421	ND	1.00	101	15.9	15.9	6.71	6.68	0.4	70 - 130	25	
Acrylonitrile	ND	0.461	ND	1.00	90	ND	ND	ND	ND	NC	70 - 130	25	
Benzene	ND	0.313	ND	1.00	106	ND	ND	ND	ND	NC	70 - 130	25	
Benzyl chloride	ND	0.193	ND	1.00	114	ND	ND	ND	ND	NC	70 - 130	25	
Bromodichloromethane	ND	0.149	ND	1.00	107	ND	ND	ND	ND	NC	70 - 130	25	
Bromoform	ND	0.097	ND	1.00	106	ND	ND	ND	ND	NC	70 - 130	25	
Bromomethane	ND	0.257	ND	1.00	107	ND	ND	ND	ND	NC	70 - 130	25	
Carbon Disulfide	ND	0.321	ND	1.00	102	ND	ND	ND	ND	NC	70 - 130	25	
Carbon Tetrachloride	ND	0.040	ND	0.25	107	ND	ND	ND	ND	NC	70 - 130	25	
Chlorobenzene	ND	0.217	ND	1.00	106	ND	ND	ND	ND	NC	70 - 130	25	
Chloroethane	ND	0.379	ND	1.00	107	ND	ND	ND	ND	NC	70 - 130	25	
Chloroform	ND	0.205	ND	1.00	105	ND	ND	ND	ND	NC	70 - 130	25	
Chloromethane	ND	0.484	ND	1.00	107	ND	ND	ND	ND	NC	70 - 130	25	
Cis-1,2-Dichloroethene	ND	0.256	ND	1.01	106	ND	ND	ND	ND	NC	70 - 130	25	
cis-1,3-Dichloropropene	ND	0.220	ND	1.00	109	ND	ND	ND	ND	NC	70 - 130	25	
Cyclohexane	ND	0.291	ND	1.00	107	ND	ND	ND	ND	NC	70 - 130	25	
Dibromochloromethane	ND	0.117	ND	1.00	109	ND	ND	ND	ND	NC	70 - 130	25	
Dichlorodifluoromethane	ND	0.202	ND	1.00	110	ND	ND	ND	ND	NC	70 - 130	25	
Ethanol	ND	0.531	ND	1.00	95	17.2	16.9	9.11	8.98	1.4	70 - 130	25	

SDG I.I	D.: GB	V86876

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	I	LCS %	Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits
Ethyl acetate	ND	0.278	ND	1.00		114	ND	ND	ND	ND	NC	70 - 130	25
Ethylbenzene	ND	0.230	ND	1.00		112	ND	ND	ND	ND	NC	70 - 130	25
Heptane	ND	0.244	ND	1.00		107	ND	ND	ND	ND	NC	70 - 130	25
Hexachlorobutadiene	ND	0.094	ND	1.00		118	ND	ND	ND	ND	NC	70 - 130	25
Hexane	ND	0.284	ND	1.00		106	ND	ND	ND	ND	NC	70 - 130	25
Isopropylalcohol	ND	0.407	ND	1.00		115	2.51	2.38	1.02	0.968	NC	70 - 130	25
Isopropylbenzene	ND	0.204	ND	1.00		105	ND	ND	ND	ND	NC	70 - 130	25
m,p-Xylene	ND	0.230	ND	1.00		111	5.08	5.08	1.17	1.17	NC	70 - 130	25
Methyl Ethyl Ketone	ND	0.339	ND	1.00		135	6.34	6.04	2.15	2.05	NC	70 - 130	25 ι
Methyl tert-butyl ether(MTBE)	ND	0.277	ND	1.00		109	ND	ND	ND	ND	NC	70 - 130	25
Methylene Chloride	ND	0.288	ND	1.00		98	ND	ND	ND	ND	NC	70 - 130	25
n-Butylbenzene	ND	0.182	ND	1.00		105	ND	ND	ND	ND	NC	70 - 130	25
o-Xylene	ND	0.230	ND	1.00		106	ND	ND	ND	ND	NC	70 - 130	25
Propylene	ND	0.581	ND	1.00		109	ND	ND	ND	ND	NC	70 - 130	25
sec-Butylbenzene	ND	0.182	ND	1.00		102	ND	ND	ND	ND	NC	70 - 130	25
Styrene	ND	0.235	ND	1.00		117	ND	ND	ND	ND	NC	70 - 130	25
Tetrachloroethene	ND	0.037	ND	0.25		107	ND	ND	ND	ND	NC	70 - 130	25
Tetrahydrofuran	ND	0.339	ND	1.00		111	1.96	1.89	0.666	0.641	NC	70 - 130	25
Toluene	ND	0.266	ND	1.00		108	ND	ND	ND	ND	NC	70 - 130	25
Trans-1,2-Dichloroethene	ND	0.252	ND	1.00		104	ND	ND	ND	ND	NC	70 - 130	25
trans-1,3-Dichloropropene	ND	0.220	ND	1.00		106	ND	ND	ND	ND	NC	70 - 130	25
Trichloroethene	ND	0.047	ND	0.25		104	ND	ND	ND	ND	NC	70 - 130	25
Trichlorofluoromethane	ND	0.178	ND	1.00		108	ND	ND	ND	ND	NC	70 - 130	25
Trichlorotrifluoroethane	ND	0.131	ND	1.00		105	ND	ND	ND	ND	NC	70 - 130	25
Vinyl Chloride	ND	0.098	ND	0.25		110	ND	ND	ND	ND	NC	70 - 130	25
% Bromofluorobenzene	110	%	110	%		105	107	104	107	104	NC	70 - 130	25
QA/QC Batch 367592 (ppbv), Q BV86884)	:C Sam _l	ole No: B	V86878	(BV8687	6 (18.5X	, 92.5	5X) , BV	86878	(1X, 10	X) , BV8	36882	(75X) , B	SV86883,
<u>Volatiles</u>													
1,1,1,2-Tetrachloroethane	ND	0.146	ND	1.00		110	ND	ND	ND	ND	NC	70 - 130	25
1,1,1-Trichloroethane	ND	0.183	ND	1.00		114	1.02	1.05	0.187	0.193	NC	70 - 130	25
1,1,2,2-Tetrachloroethane	ND	0.146	ND	1.00		91	ND	ND	ND	ND	NC	70 - 130	25
1,1,2-Trichloroethane	ND	0.183	ND	1.00		103	ND	ND	ND	ND	NC	70 - 130	25
1,1-Dichloroethane	ND	0.247	ND	1.00		84	ND	ND	ND	ND	NC	70 - 130	25
1,1-Dichloroethene	ND	0.252	ND	1.00		90	ND	ND	ND	ND	NC	70 - 130	25
1,2,4-Trichlorobenzene	ND	0.135	ND	1.00		116	ND	ND	ND	ND	NC	70 - 130	25
1,2,4-Trimethylbenzene	ND	0.204	ND	1.00		94	1.57	1.53	0.319	0.312	NC	70 - 130	25
1,2-Dibromoethane(EDB)	ND	0.130	ND	1.00		101	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichlorobenzene	ND	0.166	ND	1.00		90	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichloroethane	ND	0.247	ND	1.00		110	ND	ND	ND	ND	NC	70 - 130	25
1,2-dichloropropane	ND	0.216	ND	1.00		95	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichlorotetrafluoroethane	ND	0.143	ND	1.00		109	ND	ND	ND	ND	NC	70 - 130	25
1,3,5-Trimethylbenzene	ND	0.204	ND	1.00		101	ND	ND	ND	ND	NC	70 - 130	25
1,3-Butadiene	ND	0.452	ND	1.00		95	ND	ND	ND	ND	NC	70 - 130	25
1,3-Dichlorobenzene	ND	0.166	ND	1.00		92	ND	ND	ND	ND	NC	70 - 130	25
1,4-Dichlorobenzene	ND	0.166	ND	1.00		92	ND	ND	ND	ND	NC	70 - 130	25
1,4-Dioxane	ND	0.278	ND	1.00		110	ND	ND	ND	ND	NC	70 - 130	25
2-Hexanone(MBK)	ND	0.244	ND	1.00		104	24.2	24.2	5.91	5.91	0.0	70 - 130	25
4-Ethyltoluene	ND	0.204	ND	1.00		101	ND	ND	ND	ND	NC	70 - 130	25
4-Isopropyltoluene	ND	0.182	ND	1.00		92	ND	ND	ND	ND	NC	70 - 130	25
4-Methyl-2-pentanone(MIBK)	ND	0.244	ND	1.00		114	ND	ND	ND	ND	NC	70 - 130	25
Acetone	ND	0.421	ND	1.00		92	62.7	60.8	26.4	25.6	3.1	70 - 130	25

SDG I.D.: GBV86876

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits
				_	70	ND	ND	ND	ND	NC	70 120	25
Acrylonitrile	ND ND	0.461	ND	1.00	70 104	ND	ND 1.77	ND 0.522	ND	NC NC	70 - 130 70 - 130	25 25
Benzele shloride		0.313	ND	1.00	106 96	1.67			0.555	NC		
Benzyl chloride	ND	0.193	ND	1.00		ND	ND	ND	ND		70 - 130	25
Bromodichloromethane	ND	0.149	ND	1.00	105	ND	ND	ND	ND	NC	70 - 130	25 25
Bromoform Bromomethane	ND ND	0.097 0.257	ND ND	1.00 1.00	101 96	ND ND	ND ND	ND ND	ND ND	NC NC	70 - 130 70 - 130	25 25
Carbon Disulfide	ND	0.237	ND	1.00	96 86	ND	ND	ND	ND	NC	70 - 130	25 25
Carbon Tetrachloride	ND	0.040	ND	0.25	117	ND	ND	ND	ND	NC	70 - 130	25 25
Chlorobenzene	ND	0.040	ND	1.00	102	ND	ND	ND	ND	NC	70 - 130	25 25
Chloroethane	ND	0.217	ND	1.00	87	ND	ND	ND	ND	NC	70 - 130	25 25
Chloroform	ND	0.379	ND	1.00	106	ND	ND	ND	ND	NC	70 - 130	25 25
Chloromethane	ND	0.203	ND	1.00	96	ND	ND	ND	ND	NC	70 - 130	25 25
Cis-1,2-Dichloroethene	ND	0.464	ND	1.00	100	ND	ND	ND	ND	NC	70 - 130	25 25
cis-1,3-Dichloropropene	ND	0.230	ND	1.01	100	ND	ND	ND	ND	NC	70 - 130	25 25
	ND	0.220	ND	1.00	108	ND	ND	ND	ND	NC	70 - 130	25 25
Cyclohexane Dibromochloromethane	ND	0.291	ND	1.00	110	ND	ND	ND	ND	NC		
Dichlorodifluoromethane	ND ND	0.117	ND	1.00	110	3.73	3.53	0.754	0.715	NC	70 - 130	25
Ethanol	ND	0.202	ND	1.00	75	50.7	3.33 49.9	26.9	26.5	1.5	70 - 130	25 25
					75 107	ND	49.9 ND	26.9 ND	26.5 ND	NC	70 - 130	
Ethyl acetate	ND	0.278	ND	1.00	110			0.559	0.546		70 - 130 70 - 130	25
Ethylbenzene	ND	0.230	ND	1.00	100	2.43	2.37			NC		25
Heptane	ND	0.244	ND	1.00		2.47	2.33	0.602	0.568	NC	70 - 130	25
Hexachlorobutadiene	ND	0.094	ND	1.00	120	ND	ND	ND	ND	NC	70 - 130	25
Hexane	ND	0.284	ND	1.00	100	3.12 S	2.97 S	0.885 S	0.844 S	NC	70 - 130	25
Isopropylalcohol	ND	0.407	ND	1.00	96	ND	ND	ND	ND	NC	70 - 130	25
Isopropylbenzene	ND	0.204	ND	1.00	99	ND	ND	ND	ND	NC	70 - 130	25
m,p-Xylene	ND	0.230	ND	1.00	107	7.94	7.72	1.83	1.78	2.8	70 - 130	25
Methyl Ethyl Ketone	ND	0.339	ND	1.00	120	572	557	194	189	2.6	70 - 130	25
Methyl tert-butyl ether(MTBE)	ND	0.277	ND	1.00	100	ND	ND	ND	ND	NC	70 - 130	25
Methylene Chloride	ND	0.288	ND	1.00	82	ND	ND	ND	ND	NC	70 - 130	25
n-Butylbenzene	ND	0.182	ND	1.00	88	ND	ND	ND	ND	NC	70 - 130	25
o-Xylene	ND	0.230	ND	1.00	103	2.67	2.59	0.616	0.596	NC	70 - 130	25
Propylene	ND	0.581	ND	1.00	107	41.1	37.5	23.9	21.8	9.2	70 - 130	25
sec-Butylbenzene	ND	0.182	ND	1.00	89	ND	ND	ND	ND	NC	70 - 130	25
Styrene	ND	0.235	ND	1.00	111	ND	ND	ND	ND	NC	70 - 130	25
Tetrachloroethene	ND	0.037	ND	0.25	112	34.3	34.4	5.06	5.07	0.2	70 - 130 70 - 130	25
Tetrahydrofuran	ND	0.339	ND	1.00	85	ND	ND	ND	ND	NC	70 - 130	25
Toluene Trans 1.3 Dishlarasthans	ND	0.266	ND	1.00	108	11.0	10.7	2.92	2.83	3.1		25
Trans-1,2-Dichloroethene trans-1,3-Dichloropropene	ND	0.252 0.220	ND ND	1.00 1.00	82 108	ND ND	ND ND	ND ND	ND ND	NC NC	70 - 130 70 - 130	25 25
Trichloroethene	ND	0.220	ND	0.25	106	0.32	0.30	0.060	0.055	NC	70 - 130	25 25
Trichlorofluoromethane	ND	0.047		1.00	103			0.786	0.033	NC	70 - 130	25 25
Trichlorotrifluoroethane	ND	0.176	ND ND	1.00	95	4.41 ND	4.67 ND	0.786 ND	0.631 ND	NC		
Vinyl Chloride	ND ND	0.131	ND	0.25	95 96	ND	ND	ND	ND	NC	70 - 130	25
% Bromofluorobenzene	105	0.096 %	105	%	96 95	100	104	100	104	NC	70 - 130	25
										NC	70 - 130	25
QA/QC Batch 367892 (ppbv), Q Volatiles	C Sam _l	ole No: E	3V89467	(BV86879	9 (30X) , BV8	6880 (3	0X) , B\	/86881	(30X))			
1,1,1,2-Tetrachloroethane	ND	0.146	ND	1.00	104	ND	ND	ND	ND	NC	70 120	25
1,1,1,2-Tetrachioroethane	ND ND	0.146	ND ND	1.00	104	ND ND	ND ND	ND ND	ND ND	NC NC	70 - 130	25
	ND ND	0.183	ND ND	1.00	88	ND ND	ND ND	ND ND	ND ND	NC NC	70 - 130 70 - 130	25
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	ND ND	0.146	ND	1.00	99	ND ND	ND	ND	ND	NC	70 - 130 70 - 130	25 25
1,1,2-Trichloroethane 1,1-Dichloroethane	ND ND	0.183	ND ND	1.00	99 95	ND ND	ND ND	ND ND	ND ND	NC NC	70 - 130 70 - 130	25 25
												25
1,1-Dichloroethene	ND	0.252	ND	1.00	97	ND	ND	ND	ND	NC	70 - 130	25

\sim	\sim 1		\sim D \sim \sim	~ / ~ ~ /
~ I 10		1) .	GBV	262 <i>11</i>

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits
1,2,4-Trichlorobenzene	ND	0.135	ND	1.00	86	ND	ND	ND	ND	NC	70 - 130	25
1,2,4-Trimethylbenzene	ND	0.204	ND	1.00	101	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dibromoethane(EDB)	ND	0.130	ND	1.00	107	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichlorobenzene	ND	0.166	ND	1.00	93	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichloroethane	ND	0.247	ND	1.00	100	ND	ND	ND	ND	NC	70 - 130	25
1,2-dichloropropane	ND	0.216	ND	1.00	99	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichlorotetrafluoroethane	ND	0.143	ND	1.00	93	ND	ND	ND	ND	NC	70 - 130	25
1,3,5-Trimethylbenzene	ND	0.204	ND	1.00	101	ND	ND	ND	ND	NC	70 - 130	25
1,3-Butadiene	ND	0.452	ND	1.00	87	ND	ND	ND	ND	NC	70 - 130	25
1,3-Dichlorobenzene	ND	0.166	ND	1.00	97	ND	ND	ND	ND	NC	70 - 130	25
1,4-Dichlorobenzene	ND	0.166	ND	1.00	98	ND	ND	ND	ND	NC	70 - 130	25
1,4-Dioxane	ND	0.278	ND	1.00	101	ND	ND	ND	ND	NC	70 - 130	25
2-Hexanone(MBK)	ND	0.244	ND	1.00	101	ND	ND	ND	ND	NC	70 - 130	25
4-Ethyltoluene	ND	0.204	ND	1.00	105	ND	ND	ND	ND	NC	70 - 130	25
4-Isopropyltoluene	ND	0.182	ND	1.00	114	ND	ND	ND	ND	NC	70 - 130	25
4-Methyl-2-pentanone(MIBK)	ND	0.244	ND	1.00	101	ND	ND	ND	ND	NC	70 - 130	25
Acetone	ND	0.421	ND	1.00	93	2.45 S	2.49 S	1.03 S	1.05 S	NC	70 - 130	25
Acrylonitrile	ND	0.461	ND	1.00	74	ND	ND	ND	ND	NC	70 - 130	25
Benzene	ND	0.313	ND	1.00	98	ND	ND	ND	ND	NC	70 - 130	25
Benzyl chloride	ND	0.193	ND	1.00	93	ND	ND	ND	ND	NC	70 - 130	25
Bromodichloromethane	ND	0.149	ND	1.00	102	ND	ND	ND	ND	NC	70 - 130	25
Bromoform	ND	0.097	ND	1.00	107	ND	ND	ND	ND	NC	70 - 130	25
Bromomethane	ND	0.257	ND	1.00	89	ND	ND	ND	ND	NC	70 - 130	25
Carbon Disulfide	ND	0.321	ND	1.00	96	ND	ND	ND	ND	NC	70 - 130	25
Carbon Tetrachloride	ND	0.040	ND	0.25	104	0.53	0.55	0.084	0.088	NC	70 - 130	25
Chlorobenzene	ND	0.217	ND	1.00	92	ND	ND	ND	ND	NC	70 - 130	25
Chloroethane	ND	0.379	ND	1.00	82	ND	ND	ND	ND	NC	70 - 130	25
Chloroform	ND	0.205	ND	1.00	96	ND	ND	ND	ND	NC	70 - 130	25
Chloromethane	ND	0.484	ND	1.00	85	ND	ND	ND	ND	NC	70 - 130	25
Cis-1,2-Dichloroethene	ND	0.256	ND	1.01	100	ND	ND	ND	ND	NC	70 - 130	25
cis-1,3-Dichloropropene	ND	0.220	ND	1.00	105	ND	ND	ND	ND	NC	70 - 130	25
Cyclohexane	ND	0.291	ND	1.00	99	ND	ND	ND	ND	NC	70 - 130	25
Dibromochloromethane	ND	0.117	ND	1.00	107	ND	ND	ND	ND	NC	70 - 130	25
Dichlorodifluoromethane	ND	0.202	ND	1.00	92	2.37	2.24	0.479	0.454	NC	70 - 130	25
Ethanol	ND	0.531	ND	1.00	59	1.07	ND	0.570	ND	NC	70 - 130	25
Ethyl acetate	ND	0.278	ND	1.00	111	ND	ND	ND	ND	NC	70 - 130	25
Ethylbenzene	ND	0.230	ND	1.00	108	ND	ND	ND	ND	NC	70 - 130	25
Heptane	ND	0.244	ND	1.00	100	ND	ND	ND	ND	NC	70 - 130	25
Hexachlorobutadiene	ND	0.094	ND	1.00	80	ND	ND	ND	ND	NC	70 - 130	25
Hexane	ND	0.284	ND	1.00	99	ND	ND	ND	ND	NC	70 - 130	25
Isopropylalcohol	ND	0.407	ND	1.00	81	ND	ND	ND	ND	NC	70 - 130	25
Isopropylbenzene	ND	0.204	ND	1.00	104	ND	ND	ND	ND	NC	70 - 130	25
m,p-Xylene	ND	0.230	ND	1.00	106	ND	ND	ND	ND	NC	70 - 130	25
Methyl Ethyl Ketone	ND	0.339	ND	1.00	93	ND	ND	ND	ND	NC	70 - 130	25
Methyl tert-butyl ether(MTBE)	ND	0.277	ND	1.00	102	ND	ND	ND	ND	NC	70 - 130	25
Methylene Chloride	ND	0.288	ND	1.00	86	ND	ND	ND	ND	NC	70 - 130	25
n-Butylbenzene	ND	0.182	ND	1.00	113	ND	ND	ND	ND	NC	70 - 130	25
o-Xylene	ND	0.230	ND	1.00	106	ND	ND	ND	ND	NC	70 - 130	25
Propylene	ND	0.581	ND	1.00	94	ND	ND	ND	ND	NC	70 - 130	25
sec-Butylbenzene	ND	0.182	ND	1.00	106	ND	ND	ND	ND	NC	70 - 130	25 25
Styrene	ND	0.162	ND	1.00	106	ND	ND	ND	ND	NC	70 - 130	25 25
Tetrachloroethene	ND	0.233	ND	0.25	105	ND	ND	ND	ND	NC	70 - 130	25 25
Tetrahydrofuran	ND	0.339	ND	1.00	99	ND	ND	ND	ND	NC	70 - 130	25 25
	יאט	0.337	יאט	1.00	,,	יאט	ND	יאט	ND	140	, 5 150	20

QA/QC Data

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits
Toluene	ND	0.266	ND	1.00	110	ND	ND	ND	ND	NC	70 - 130	25
Trans-1,2-Dichloroethene	ND	0.252	ND	1.00	101	ND	ND	ND	ND	NC	70 - 130	25
trans-1,3-Dichloropropene	ND	0.220	ND	1.00	110	ND	ND	ND	ND	NC	70 - 130	25
Trichloroethene	ND	0.047	ND	0.25	105	ND	ND	ND	ND	NC	70 - 130	25
Trichlorofluoromethane	ND	0.178	ND	1.00	95	1.35	1.26	0.240	0.225	NC	70 - 130	25
Trichlorotrifluoroethane	ND	0.131	ND	1.00	87	ND	ND	ND	ND	NC	70 - 130	25
Vinyl Chloride	ND	0.098	ND	0.25	88	ND	ND	ND	ND	NC	70 - 130	25
% Bromofluorobenzene	94	%	94	%	98	99	101	99	101	NC	70 - 130	25
QA/QC Batch 368150 (ppbv), Q	C Sam	ole No: E	3V90730	(BV86879	9 (270X) , BV	86880 ((300X) ,	BV868	81 (150	X) , B\	/86882	(270X))
<u>Volatiles</u>												
Cyclohexane	ND	0.291	ND	1.00	100						70 - 130	25
Heptane	ND	0.244	ND	1.00	105						70 - 130	25
Hexane	ND	0.284	ND	1.00	104						70 - 130	25
Methyl tert-butyl ether(MTBE)	ND	0.277	ND	1.00	110						70 - 130	25

I = This parameter is outside laboratory LCS/LCSD specified recovery limits.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

SDG I.D.: GBV86876

December 05, 2016

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

Monday, December 05, 2016

Sample Criteria Exceedances Report GBV86876 - EBC

Criteria: None State: NY

RL Analysis
SampNo Acode Phoenix Analyte Criteria Result RL Criteria Units

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

^{***} No Data to Display ***

I			CHZ	VIN OF	CHAIN OF CUSTODY RECORD	ODYR	ECORI			P.O. #	i		Page		g G	
Enviro	Environmental Laboratories, Inc.			AI.	AIK ANALYSES	LYSES 5426			, 	Data Delivery:	ery:					,
587 East Mir Telep	587 East Middle Tumpile, P.O. Box 370, Manchester, CT 06040 Telephone: 860.645.1102 - Fax: 860.645.0823			email:	email: greg@phoenixlabs.com	oenixlab	s.com		<u>Jupel L</u>	Fax#:	<u>ئ</u>					
Report to:	Thomas Gallo	Invoice to:	EBC					Project Name:	me:	Phone #:	Vame:	7				
								Requester	Requested Deliverable	A Page	ASP CAT B	N N				
Address:									□ dow		NJ Deliverables	les				
		Sampled by:	nomas	s Gallo	01			State when	re samples	State where samples collected:	Ž		'n	(O) əti	•	
													iA 100l	sodwo		
			Canister	Outgoing Canister Pressure	90 H 0	Flow Regulator		Sampling	Sampling	Sample	Canister Pressure at P	Canister Pressure at	bient/Ind Gas	P(C)C		
Phoenix ID #	Client Sample ID	Canister ID #		(" Hg)	—,0	*	(mL/min)		End Time			End ("Hg)	}	612	OT A	CEC
84876	S66	21339	0.9	25.	7	F.	63	9:27	11:37 11-16-16		8	7	*	1	*	
Sh877	H9S	95/		_	٩	3163		4:34	75.3		+	19	لا		*	
81818	563	965			7	9665		16:3	9-9-11-02:11	1-6-16	+	7	×		*	
21.808	S69	21357			ナー	1665		I . 🕳	11:35	1-18-12	0,0	הר	*		7	
	Did Not Use	224			<u>.</u>	3252										
	bid Not Use	4001				5707									-	
03878	567	357			4	295		9:30 (11:31 11	91-91-11	8,	9	×		×	
18898	\$68	DES			4-4	3502		9:33 11:39		91-91-11	-36	3	×		×	
81882 1	S65	559Cl	>	→	5	3578	<u>→</u>	9:88	91-91-11 80:11	91-91-1	8	3	メ		×	
	gx 61 2H-3															
Relinquished by:		Acceptedby:			1	Date:	L	Time:	Data Format:	at:			7	1		
Thomas	Melle		2			11-11	9/	9130	Excel)	×		Equis 5	DE	GISKey	, k	
	Keller	3	A	X		1-18-11	ģ		I PDF	12		Other:				
FECIAL INSTRUCT	RECIAL INSTRUCTION OC REQUIREMENS, RECULATORY INFORMATION.	1	<i>></i>	5	Requested Criteria	Criteria										
								2 2 2	I attest that all media r received in good worki back of this document:	ll media relea od working c ocument:	I attest that all media released by Phoenix Environmental Laboratories, Inc. have been received in good working condition and agree to the terms and conditions as listed on the back of this document:	ix Environm agree to the	ental Lab terms ana	oratories, I condition	lnc. have b s as listed	een on the
					Quote Number:	per:		S	Signature:					Date:		

		CHA	IN OF	CUST	ODYR	CHAIN OF CUSTODY RECORD	D								1	Г
DHOHNIY			AI	AIR ANALYSES	LYSES				P.O. #			Pa	Page	of of O	\checkmark	Т
Environmental Laboratories, Inc.			.	800-827-5426	-5426				Data Delivery: ☐ Fax #:	'ery:						
597 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Telephone: 860.645.1102 • Fax: 860.645,0823			email	email: greg@phoenixlabs.com	hoenixlal	bs.com			Email:	म्						
Donnel for	Invoice to:	14	FR				Project N	ame: Omi	Phone #:	Project Name:	7.					1
Customer:		3	3				Requesta	Requested Deliverables	able	ASP CATB	<u>\$</u>					
Address:				•	1, 20			□ WCP		NJ Deliverables	oles 🗆					
	Sampled by:	Thomas	l i	Gathe.			State who	ere sample	State where samples collected:	N		ı,	(O) əti			
Phoenix ID # Client Sample ID	Canister ID #	Canister Size (L)	Outgoing Canister Pressure (" Hg)	Incoming Canister Pressure ("Hg)	Flow Regulator ID#	Flow Controller Setting (mL/min)	Sampling Start Time	Sampling End Time	Sample Start Date	Canister Pressure at 3	Canister Pressure at End ("Hg)	Ambient/Indoor Ai	Stab (G) Compos	\$1-O1 \$1-O1		
		THIS SEC	TION FOR	THIS SECTION FOR LAB USE ONLY	ONLY							١₹	RIX	ANA	ANALYSES	Т
8688 562	05961	0.9	08-	4	3249	43	9:13	11:16	31-91-1I	8	٩	*		*		T
8188H SG1	493	0.9	ar-	4-	1875	43	4:17	11:18 11:16:16		630	れ	*		×	ļ	Ι
															-	Τ
Ç		. ,														
		-														
		ŧ													ļ	1
					,											1
2 × 61 2 40																
إ	Accepted by:				Date:		Time:	Data Format:	nat:					-	_	T
	Ku	3	1		11-11		9:35	Excel 🗗	1		Equis	S	GISI	GISKey		T
	1		X	}	11-18-16	3/~	15.3	PDF	75		Other:					1
SPECIAL INSTRUCTIONS, OCREO/IREMENTS, RECULATORY INFORMATION	ATION:	\nearrow		Requested Criteria	Criteria											
		,	`					I attest that all media i received in good worki back of this document:	all media rele 100d working 10cument:	I attest that all media released by Phoenix Environmental Laboratories, Inc. have been received in good working condition and agree to the terms and conditions as listed on the back of this document:	nix Environn d agree to the	nental La : terms ar	iboratorie 1d conditi	, Inc. hav ons as list	been d on the	
				Quote Mirmher	igh			. 3								· · · · · · · ·
				למסוג זיים	HUC1.			Signature:					Date:	ie:	1	_

... v**a**

APPENDIX - G DUSRs

DATA USABILITY SUMMARY REPORT (DUSR) SEMI-VOLATILE ORGANIC COMPOUNDS

USEPA Region II -Data Validation

Project Name: 1181 Flushing Avenue

Location: Brooklyn, New York

Project Number: 3020-026

SDG #: GBV87817

Client: Environmental Business Consultants

Date: 02/22/2017

Laboratory: Phoenix Environmental Laboratories, Inc.

Reviewer: Sherri Pullar

Summary:

- 1. Data validation was performed on the data for eight (8) water samples for Semi-volatiles by SW-846 Method 8270D [full scan and Selected Ion Monitoring (SIM)] in accordance with the NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 11/17/2016. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 11/18/2016 for analysis.
- 3. The USEPA Region-II SOP HW-35, Revision 2, March 2013, Validating Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry, SW-846 Method 8270D was used in evaluating the Semi-volatiles data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (see discussion below).

Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory	Collection	Analysis	Matrix	Sample Status
	Sample ID	Date			
MW1	BV87817	11/17/16	SVO	Water	
MW2	BV87818	11/17/16	SVO	Water	
MW3	BV87819	11/17/16	SVO	Water	
MW4	BV87820	11/17/16	SVO	Water	
MW5	BV87821	11/17/16	SVO	Water	
MW8	BV87822	11/17/16	SVO	Water	
MW14	BV87823	11/17/16	SVO	Water	
MW15	BV87824	11/17/16	SVO	Water	

Sample Conditions/Problems:

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

Holding Times:

1. All water samples were extracted within 7 days from sample collection and analyzed within 40 days following sample extraction. No qualifications were required.

GC/MS Tuning:

1. All of the DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria. No qualifications were required.

Initial Calibration:

1. Initial calibration curve analyzed on 11/02/2016 (CHEM07)-SIM Scan exhibited acceptable %RSD (\leq 40.0%) for CCC compounds and average RRF values for SPCC compounds. Also, %RSDs for all other compounds were \leq 20.0% and average RRF (>0.050). No qualifications were required.

2. Initial calibration curve analyzed on 11/17/2016 (CHEM06)-Full Scan exhibited acceptable %RSD (≤40.0%) for CCC compounds and average RRF values for SPCC compounds. Also, %RSDs for all other compounds were ≤20.0% and average RRF (>0.050) with the following exception(s):

Compound	RRF	%RSD
2-Nitrophenol	A	25.9
Benzoic Acid	A	29.5
4,6-Dinitro-2-methylphenol	A	24.4
Pentachlorophenol	A	32.1

Client Sample ID	Laboratory Sample ID	Compound	Action
MW5	BV87821	2-Nitrophenol, Benzoic Acid, 4,6-Dinitro-2-methylphenol	UJ
MW8	BV87822	2-Nitrophenol, 4,6-Dinitro-2-methylphenol, Pentachlorophenol	UJ
		Benzoic Acid	J
MW14	BV87823	2-Nitrophenol, 4,6-Dinitro-2-methylphenol, Pentachlorophenol	UJ
		Benzoic Acid	J
MW15	BV87824	2-Nitrophenol, Benzoic Acid, 4,6-Dinitro-2-methylphenol	UJ

3. Initial calibration curve analyzed on 11/22/2016 (CHEM25)-Full Scan exhibited acceptable %RSD (≤40.0%) for CCC compounds and average RRF values for SPCC compounds. Also, %RSDs for all other compounds were ≤20.0% and average RRF (>0.050) with the following exception(s):

Compound	RRF	%RSD
4,6-Dinitiro-2-methylphenol	A	24.7

Client Sample ID	Laboratory Sample ID	Compound	Action
MW1	BV87817	4,6-Dinitiro-2-methylphenol	UJ
MW2	BV87818	4,6-Dinitiro-2-methylphenol	UJ
MW3	BV87819	4,6-Dinitiro-2-methylphenol	UJ
MW4	BV87820	4,6-Dinitiro-2-methylphenol	UJ

4. Initial calibration curve analyzed on 11/15/2016 (CHEM27)-Full Scan exhibited acceptable %RSD (≤40.0%) for CCC compounds and average RRF values for SPCC compounds. Also, %RSDs for all other compounds were ≤20.0% and average RRF (>0.050). No qualifications were required.

Continuing Calibration Verification (CCV):

1. CCV analyzed on 11/23/2016 @ 08:43 (CHEM06)-Full scan exhibited acceptable %Ds (≤40.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤25.0% with the following exception(s):

Compound	%D
Benzoic Acid	-44.4
Pentachlorophenol	51.3

Client Sample ID	Laboratory Sample ID	Compound	Action
MW5	BV87821	Benzoic Acid	UJ^1
MW8	BV87822	Benzoic Acid	\mathbf{J}^1
		Pentachlorophenol	$\mathbf{U}\mathbf{J}^1$
MW14	BV87823	Benzoic Acid	\mathbf{J}^1
		Pentachlorophenol	UJ^1
MW15	BV87824	Benzoic Acid	UJ^1

⁽¹⁾ Results for these compounds were previously qualified due to ICV criteria.

2. CCV analyzed on 11/23/2016 @ 19:57 (CHEM06)-Full scan exhibited acceptable %Ds ($\leq 50.0\%$) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were $\leq 50.0\%$ with the following exception(s):

Compound	% D
Benzoic Acid	-62.1

Client Sample ID	Laboratory Sample ID	Compound	
	<u> </u>	D	T T T 1
MW5	BV87821	Benzoic Acid	UJ
MW8	BV87822	Benzoic Acid	\mathbf{J}^1
MW14	BV87823	Benzoic Acid	\mathbf{J}^1
MW15	BV87824	Benzoic Acid	UJ^1

⁽¹⁾ Results for these compounds were previously qualified due to ICV criteria.

3. CCV analyzed on 11/22/2016 @ 21:00 (CHEM25)-Full scan exhibited acceptable %Ds (≤40.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤25.0%. No qualifications were required.

- 4. CCV analyzed on 11/23/2016 @ 08:15 (CHEM25)-Full scan exhibited acceptable %Ds (≤50.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤50.0%. No qualifications were required.
- 5. CCV analyzed on 11/22/2016 @ 08:46 (CHEM07)-SIM scan exhibited acceptable %Ds (≤40.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤25.0%. No qualifications were required.
- 6. CCV analyzed on 11/22/2016 @ 19:18 (CHEM07)-SIM scan exhibited acceptable %Ds (≤50.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤50.0% with the following exception(s):

Compound	%D
N-nitrosodimethylamine	75.2
Pentachlorophenol	68.0

Client Sample ID	Laboratory Sample ID	Compound	
MW5	BV87821	N-nitrosodimethylamine, Pentachlorophenol	UJ
MW15	BV87824	N-nitrosodimethylamine, Pentachlorophenol	UJ

- 7. CCV analyzed on 11/22/2016 @ 08:43 (CHEM27)-Full scan exhibited acceptable %Ds (≤40.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤25.0%. No qualifications were required.
- 8. CCV analyzed on 11/22/2016 @ 11:01 (CHEM27)-Full scan exhibited acceptable %Ds (≤50.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤50.0%. No qualifications were required.

Surrogates:

1. All surrogate %REC values were within the QC acceptance limits for the full scan with the following exception(s):

Client Sample ID	Surrogate	%REC	Compound	Action
MW1	2,4,6-Tribromophenol	115	Hexachlorobenzene	None
			Pentachlorophenol	
			Pentachloronitrobenenze	
			Phenanthrene	
			Anthracene	
			Carbazole	
			Di-n-butylphthalate	
			Fluoranthene	

Client Sample ID	Surrogate	%REC	Compound	Action
			Benzidine	
			Pyrene	

2. All surrogate %REC values were within the QC acceptance limits for the SIM scan. No qualifications were required.

Internal Standard (IS) Area Performance:

1. All samples exhibited acceptable area count for all six internal standards with the following exception(s):

Client Sample	Laboratory	IS	Compound	Action
ID	Sample ID			
MW5	BV87821	1,4-Dichlorobenzene-d4	Pyrene, Benzidine, Fluoranthene, Di-n-butylphthalate,	None
		(high)	Carbazole, Anthracene,	
		1,4- Naphthalene-d8	4-Bromophenyl Phenyl ether,	
		(high)	N-Nitrosodiphenylamine	
		Acenaphthene-d10	4,6-Dinitro-2-meyhylphenol,	
		(high)	2-Nitroaniline, 4-Chlorophenyl phenyl ether,	
		Phenanthrene-d10	Fluorene, Diethyl phthalate, 4-Nitrophenol,	
		(high)	2,,4-Dinitrotoluene, Dibenzofuran, 2,4-Dinitrophenol,	
			Acenaphthenen, 3-Nitroaniline, Acenaphthylene,	
			2,6-Dinitrotoluene, Dimethylphthalate, 4-Nitroaniline,	
			2-Chloronaphthalene, 2,4,5-Trichlorophenol,	
			2,4,6-Trichlorophenol,	
			Hexachlorocyclopentadiene, 2-Methylnaphthalene,	
			4-chloro-3-methylphenol, 4-chloroaniline, Naphthalene,	
			1,2,4-Trichlorobenzene, 2,4-Dichlorophenol,	
			Benzoic Acid, Bis(2-chloroethoxy)methane,	
			2,4-Dimethylphenol, 2-Nitrophenol, Isophorone,	
			3&4-Methylphenol, N-nitrosodi-n-propylamine,	
			bis(2-chloroisopropyl)ether	
			2-methylphenol, 1,2-Dichlorobenzene,	
			1,4-Dichlorobenzene, 1,3-Dichlorobenzene,	
			2-chlorophenol, aniline, Bis(2-chloroethyl)ether,	
			Phenol, pyridine	

Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

- 1. Method Blank (BV86907 BLANK)-full Scan associated with the water samples extracted on 11/18/2016 and analyzed on 11/22/2016 was free of contamination. No qualifications were required.
- 2. Method Blank (BV86907 BLANK)-SIM Scan associated with the water samples extracted on 11/18/2016 and analyzed on 11/22/2016 was free of contamination. No qualifications were required.

<u>Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):</u>

- 1. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with Batch ID: BK86907-SIM were analyzed on 11/21/2016. All %RECs and RPDs were within the laboratory control limits. No qualifications were required.
- 2. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with Batch ID: BV86907 were analyzed on 11/21/2016. All %RECs and RPDs were within the laboratory control limits with the following exception(s):

Compound	%R/%R/RPD	Sample	Action
		Affected	
Aniline	A/18/128.0	MW5, MW8, MW14, MW15	UJ
Pyridine	A/A/56	MW5, MW8, MW14, MW15	UJ
Benzoic Acid	A/136/A	MW5, MW 15	None
		MW8, MW14	J^1
Hexachlorocyclopentadiene	A/A/23.9	MW5, MW8, MW14, MW15	UJ
3,3'-Dichlorobenzidine	A/A/27.1	MW5, MW8, MW14, MW15	UJ
Benzidine	A/0/NC	MW5, MW8, MW14, MW15	R

⁽¹⁾ Results for this compound were previously qualified due to ICV criteria. A=Acceptable

Field Duplicate:

1. A field duplicate pair was not submitted with this SDG.

Matrix Spike (MS)/Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS)/Matrix Spike Duplicate (MSD) were not performed on sample from this SDG.

Target Compound Identification:

- 1. All Relative Retention Times (RRTs) of the reported compounds were within \pm 0.06 RRT units of the standard (opening CCV).
- 2. Sample compound spectra were compared against the laboratory standard spectra.
- 3. No QC deviations were observed.

Compound Quantitation and Reported Detection Limits:

- 1. All sample results were reported within the linear calibration range.
- 2. Manual Calculation:

$$Cx = (Ax)(IS)(VE)(DF)$$

(Ais)(RRF)(Volume injected, μ L)(V)

Cx = concentration of analyte as ug/L

Ax = Area of the characteristic ion for the compound to be measured, counts. Ais = Area of the characteristic ion for the specific internal standard, counts.

IS = Concentration of the internal standard spiking mixture, ng

RRF= Mean relative response factor from the initial calibration.

DF = Dilution factor calculated. If no dilution is performed, DF= 1

V= Volume for liquids in ml, weight for soils/solids in grams.

VE= final volume of concentrated extract

Sample: BV86907 LCS

2,4-Dimethylphenol

Initial Volume: 1000ml Final volume: 1ml Volume injected: 1µl Dilution Factor: 1

Concentration (
$$\mu$$
g/L) = $454524 \times 40 \times 1 \text{ml} \times 1 \times 1000$ = 42.1μ g/L $1447115 \times 0.298 \times 1 \times 1000 \text{ml}$

	Laboratory	Validation	
Compound	(µg/L)	$(\mu g/L)$	%D
2,4-Dimethylphenol	42.09	42.09	0.0

Comments:

- 1. Semivolatile data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GBV87817.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GBV87817.

DATA USABILITY SUMMARY REPORT (DUSR) VOLATILE ORGANIC COMPOUNDS

USEPA Region II -Data Validation

Project Name: 1181 Flushing Avenue

Location: Brooklyn, New York

Project Number: 3020-026

SDG #: GBV87817

Client: Environmental Business Consultants

Date: 02/22/2017

Laboratory: Phoenix Environmental Laboratories, Inc.

Reviewer: Sherri Pullar

Summary:

- 1. Data validation was performed on the data for eight (8) water samples and one (1) trip blank analyzed for Volatiles by SW-846 Method 8260C in accordance to NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 11/17/2016. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 11/18/2016 for analysis.
- 3. The USEPA Region-II SOP HW-24, Revision 4, October 2014, Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry, SW-846 Method 8260C was used in evaluating the Volatiles data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (see discussion below).

Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory	Collection	Analysis	Matrix	Sample Status
	Sample ID	Date			
MW1	BV87817	11/17/16	VOA	Water	
MW2	BV87818	11/17/16	VOA	Water	
MW3	BV87819	11/17/16	VOA	Water	
MW4	BV87820	11/17/16	VOA	Water	
MW5	BV87821	11/17/16	VOA	Water	
MW8	BV87822	11/17/16	VOA	Water	
MW14	BV87823	11/17/16	VOA	Water	
MW15	BV87824	11/17/16	VOA	Water	
Trip Blank	BV87825	11/17/16	VOA	Water	Trip Blank

Sample Conditions/Problems:

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

Holding Times:

1. All water samples were analyzed within 14 days from sample collection. No qualifications were required.

GC/MS Tuning:

1. All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria. No qualifications were required.

Initial Calibration:

1. Initial calibration curve analyzed on 11/14/2016 (Chem02) exhibited acceptable %RSDs (≤20.0%) for CCC compounds and average RRF values for SPCC compounds. Also, %RSDs for all other compounds, were ≤20.0% and average RRF (>0.050) with the following exception(s):

Compound	RRF	%RSD
Bromomethane	A	26.5
Acrolein	0.014	A
Acetone	0.024	A
Acrylonitrile	0.049	A
Tetrahydrofuran	0.037	A
1,2-Dibromo-3-Chloropropane	0.041	A

A= Acceptable

Client Sample ID	Laboratory	Compound	Action
	Sample ID		
MW1	BV87817	Bromomethane, Acrolein, Acetone, Acrylonitrile,	UJ
		Tetrahydrofuran, 1,2-Dibromo-3-Chloropropane	
MW2	BV87818	Bromomethane, Acrolein, Acrylonitrile	UJ
		1,2-Dibromo-3-Chloropropane	UJ
		Acetone, Tetrahydrofuran	J
MW3	BV87819	Bromomethane, Acrolein, Acetone, Acrylonitrile,	UJ
		Tetrahydrofuran, 1,2-Dibromo-3-Chloropropane	
MW4	BV87820	Bromomethane, Acrolein, Acrylonitrile	UJ
		1,2-Dibromo-3-Chloropropane	UJ
		Tetrahydrofuran	UJ
		Acetone	J
MW5	BV87821	Bromomethane, Acrolein, Acrylonitrile	UJ
		1,2-Dibromo-3-Chloropropane	UJ
		Tetrahydrofuran	UJ
		Acetone	J
MW8	BV87822	Bromomethane, Acrolein, Acrylonitrile	UJ
		1,2-Dibromo-3-Chloropropane	UJ
		Tetrahydrofuran	UJ
		Acetone	J
MW14	BV87823	Bromomethane, Acrolein, Acetone, Acrylonitrile,	UJ
		Tetrahydrofuran, 1,2-Dibromo-3-Chloropropane	
MW15	BV87824	Bromomethane, Acrolein, Acetone, Acrylonitrile,	UJ
		Tetrahydrofuran, 1,2-Dibromo-3-Chloropropane	
Trip Blank	BV87825	Bromomethane, Acrolein, Acetone, Acrylonitrile,	UJ
		Tetrahydrofuran, 1,2-Dibromo-3-Chloropropane	

Continuing Calibration Verification (CCV):

1. CCV analyzed on 11/18/2016 @ 19:52 (CHEM02) exhibited acceptable %Ds (≤20.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤20.0% with the following exception(s):

Compound	RRF	%D
2,2-Dichloropropane	A	21.2
Naphthalene	A	20.2
1,2,3-Trichlorobenzene	A	22.9

A= Acceptable

Client Sample ID	Laboratory	Compound	Action
	Sample ID		
MW1	BV87817	2,2-Dichloropropane, 1,2,3-Trichlorobenzene	UJ
		Naphthalene	J
MW2 DL 20X	BV87818	None	None
MW3 20X	BV87819	2,2-Dichloropropane, 1,2,3-Trichlorobenzene	UJ
		Naphthalene	J
MW8	BV87822	2,2-Dichloropropane, 1,2,3-Trichlorobenzene	UJ
		Naphthalene	J
MW14 20X	BV87823	2,2-Dichloropropane, 1,2,3-Trichlorobenzene	UJ
		Naphthalene	J
MW15	BV87824	2,2-Dichloropropane, 1,2,3-Trichlorobenzene	UJ
		Naphthalene	
Trip Blank	BV87825	2,2-Dichloropropane, 1,2,3-Trichlorobenzene	UJ
		Naphthalene	

2. CCV analyzed on 11/19/2016 @ 05:47 (CHEM02) exhibited acceptable %Ds ($\leq 30.0\%$) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were $\leq 30.0\%$ with the following exception(s):

Compound	RRF	%D
Dichlorodifluoromethane	A	39.0
2,2-Dichloropropane	A	34.3

A= Acceptable

Client Sample ID	Laboratory Sample ID	Compound	Action
MW1	BV87817	Dichlorodifluoromethane, 2,2-Dichloropropane	UJ

Client Sample ID	Laboratory Sample ID	Compound	Action
MW2 DL 20X	BV87818	None	None
MW3 20X	BV87819	Dichlorodifluoromethane, 2,2-Dichloropropane	UJ
MW8	BV87822	Dichlorodifluoromethane, 2,2-Dichloropropane	UJ
MW14 20X	BV87823	Dichlorodifluoromethane, 2,2-Dichloropropane	UJ
MW15	BV87824	Dichlorodifluoromethane, 2,2-Dichloropropane	UJ
Trip Blank	BV87825	Dichlorodifluoromethane, 2,2-Dichloropropane	UJ

- 3. CCV analyzed on 11/21/2016 @ 09:11 (CHEM02) exhibited acceptable %Ds (≤20.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤20.0%. No qualifications were required.
- 4. CCV analyzed on 11/21/2016 @ 17:17 (CHEM02) exhibited acceptable %Ds (≤30.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤30.0%. No qualifications were required.
- 5. CCV analyzed on 11/22/2016 @ 11:58 (CHEM02) exhibited acceptable %Ds (≤20.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤20.0%. No qualifications were required.

Compound	RRF	%D
Naphthalene	A	22.7
1,2,3-Trichlorobenzene	A	21.8

A= Acceptable

Client Sample ID	Laboratory Sample ID	Compound	Action
MW1 DL 50X	BV87817	None	None

6. CCV analyzed on 11/22/2016 @ 20:17 (CHEM02) exhibited acceptable %Ds (≤30.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤30.0%. No qualifications were required.

Surrogates:

1. All surrogates %RECs values for all water samples and associated QC were within the laboratory control limits. No qualifications were required.

Internal Standard (IS) Area Performance:

1. All samples exhibited acceptable area count for all four internal standards within the QC limits. No qualifications were required.

Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

- 1. Method Blank (BLANK BV87805) was analyzed on 11/18/2016 was free of contamination. No qualifications were required.
- 2. Method Blank (BLANK BV87818) was analyzed on 11/21/2016 was free of contamination. No qualifications were required.
- 3. Method Blank (BLANK BV88459) was analyzed on 11/22/2016 was free of contamination. No qualifications were required.
- 4. Trip Blank (BV87825) analyzed on 11/18/2016 was free of contamination. No qualifications were required

Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):

- 1. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with Batch ID: BV87805 were analyzed on 11/18/2016. All %RECs and RPDs were within the laboratory control limits. No qualifications were required.
- **2.** Laboratory Control Sample and Laboratory Control Sample Duplicate associated with Batch ID: BV87818 were analyzed on 11/21/2016. All %RECs and RPDs were within the laboratory control limits. No qualifications were required.
- **3.** Laboratory Control Sample and Laboratory Control Sample Duplicate associated with Batch ID: BV88459 were analyzed on 11/22/2016. All %RECs and RPDs were within the laboratory control limits. No qualifications were required.

Field Duplicate:

1. A field duplicate pair was not submitted with this SDG.

Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS)/Matrix Spike Duplicate (MSD) were not performed on sample from this SDG.

Target Compound Identification:

- 1. All Relative Retention Times (RRTs) of the reported compounds were within \pm 0.06 RRT units of the standard (opening CCV).
- 2. Sample compound spectra were compared against the laboratory standard spectra.
- 3. No QC deviations were observed.

Compound Quantitation and Reported Detection Limits:

- 1. All sample results were reported within the linear calibration range. No qualifications were required.
- 2. Manual Calculation:

$$Cx = \frac{(Ax)(IS)(DF)}{(Ais)(RRF)(V)}$$

 $Cx = concentration of analyte as \mu g/L$

Ax = Area of the characteristic ion for the compound to be measured, counts.

Ais = Area of the characteristic ion for the specific internal standard, counts.

IS = Concentration of the internal standard spiking mixture, ng

RRF= Mean relative response factor from the initial calibration.

DF = Dilution factor calculated. If no dilution is performed, DF= 1

V= Volume for liquids in ml, weight for soils/solids in grams.

MW5 (BV87821)

Benzene

Sample Volume= 25ml

Volume purged=25ml

DF = 1

Concentration (
$$\mu$$
g/L)= $\underline{63580 \times 25 \times 10 \times 1}$ = 0.727 μ g/L $\underline{677996 \times 1.290 \times 25}$

	Laboratory	Validation	-
Compound	(µg/L)	$(\mu g/L)$	%D
Benzene	0.73	0.73	0.0

Comments:

- 1. Volatile data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GBV87817.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GBV87817.

DATA USABILITY SUMMARY REPORT (DUSR) POLYCHLORINATED BIPHENYLIS (PCBs)

USEPA Region II -Data Validation

Project Name: 1181 Flushing Avenue

Location: Brooklyn, New York

Project Number: 3020-026

SDG #: GBV87817

Client: Environmental Business Consultants

Date: 02/22/2017

Laboratory: Phoenix Environmental Laboratories, Inc.

Reviewer: Sherri Pullar

Summary:

- 1. Data validation was performed on the data for eight (8) water samples analyzed for PCBs by SW-846 Method 8082A in accordance with NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 11/17/2016. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 11/18/2016 for analysis.
- 3. The USEPA Region-II SOP HW-45, Revision 1, October 2006, Validating PCBs compounds by Gas Chromatography, SW-846 Method 8082A was used in evaluating the PCBs data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (see discussion below).

Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory	Collection	Analysis	Matrix	Sample Status
	Sample ID	Date			
MW1	BV87817	11/17/16	PCBs	Water	
MW2	BV87818	11/17/16	PCBs	Water	
MW3	BV87819	11/17/16	PCBs	Water	
MW4	BV87820	11/17/16	PCBs	Water	
MW5	BV87821	11/17/16	PCBs	Water	
MW8	BV87822	11/17/16	PCBs	Water	
MW14	BV87823	11/17/16	PCBs	Water	
MW15	BV87824	11/17/16	PCBs	Water	

Sample Conditions/Problems:

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

Holding Times:

1. All water samples were extracted within 7 days from sample collection and analyzed within 40 days following sample extraction. No qualifications were required.

Initial Calibration:

- 1. Initial calibration curve analyzed on 11/14/2016 (ECD1) exhibited acceptable %RSD (≤20.0%) on both columns. No qualifications were required.
- 2. Initial calibration curve analyzed on 10/24/2016 (ECD6) exhibited acceptable %RSD (≤20.0%) on both columns. No qualifications were required.

Continuing Calibration Verification (CCV):

1. All CCVs analyzed on 11/21 and 24/2016 exhibited acceptable %Ds (≤15.0% for opening and ≤50% for closing) for all compounds. No qualifications were required.

Surrogates:

1. All surrogates %RECs values for all water samples and associated QC were within the laboratory control limits (30% - 150%) with the following exception(s):

Client Sample ID	Laboratory Sample ID	Surrogate(s)	Compound	Action
MW8	BV87822	Tetrachloro-m-xylene (23%) Decachlorobiphenyl (21%/12%)	All results	UJ

Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

1. Method Blank (BV87817 BL) associated with the water samples extracted on 11/18/2016 and analyzed on 11/21/2016 was free of contamination. No qualifications were required.

<u>Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):</u>

1. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with ID: BV87817 were analyzed on 11/21/2016. All %RECs and RPDs were within the laboratory control limits (50% - 150% [30%-150% for surrogates]). No qualifications were required.

Field Duplicate:

1. A field duplicate pair was not submitted with this SDG.

Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS)/Matrix Spike Duplicate (MSD) were not performed on sample from this SDG.

Compound Quantitation, Compound Identification and Reported Detection Limits:

- 1. All sample results were reported within the linear calibration range.
- 2. Manual Calculation:

BV87817 LCS

Aroclor-1016

On Column concentration (B)= 354.616ng Sample Volume= 1000ml DF= 1 Vi= 5ml

Concentration (μ g/L) = 354.616ng x 5ml x 1 = 1.7 7 μ g/L

1000

	Laboratory	Validation	
Compound	$(\mu g/L)$	$(\mu g/L)$	%D
Aroclor-1016	1.77	1.77	0.0

Comments:

- 1. PCBs data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GBV87817.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GBV87817.

DATA USABILITY SUMMARY REPORT (DUSR) PESTICIDES

USEPA Region II -Data Validation

Project Name: 1181 Flushing Avenue

Location: Brooklyn, New York

Project Number: 3020-026

SDG #: GBV87817

Client: Environmental Business Consultants

Date: 02/23/2017

Laboratory: Phoenix Environmental Laboratories, Inc.

Reviewer: Sherri Pullar

Summary:

- 1. Data validation was performed on the data for eight (8) water samples analyzed for Pesticides by SW-846 Method 8081B in accordance with NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 11/17/2016. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 11/18/2016 for analysis.
- 3. The USEPA Region-II SOP HW-36, Revision 4, May 2013, Validating Pesticide compounds by Gas Chromatography, SW-846 Method 8081B was used in evaluating the Pesticides data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (See discussion below).

Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory	Collection	Analysis	Matrix	Sample Status
	Sample ID	Date			
MW1	BV87817	11/17/16	Pesticides	Water	
MW2	BV87818	11/17/16	Pesticides	Water	
MW3	BV87819	11/17/16	Pesticides	Water	
MW4	BV87820	11/17/16	Pesticides	Water	
MW5	BV87821	11/17/16	Pesticides	Water	
MW8	BV87822	11/17/16	Pesticides	Water	
MW14	BV87823	11/17/16	Pesticides	Water	
MW15	BV87824	11/17/16	Pesticides	Water	

Sample Conditions/Problems:

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

Holding Times:

1. All water samples were extracted within 7 days from sample collection and analyzed within 40 days following sample extraction. No qualifications were required.

GC/ECD Instrument Performance Check:

1. 4,4'-DDT and Endrin breakdown exhibited acceptable results (±20%). No qualifications were required.

Initial Calibration:

- 1. Initial calibration curve analyzed on 11/23/2016 (ECD13) exhibited acceptable %RSD (20%, [25% for alpha-BHC and delta-BHC, 30% for Toxaphene]) on column A. No qualifications are required.
- 2. Initial calibration curve analyzed on 11/21/2016 (ECD35) exhibited acceptable %RSD (20%, [25% for alpha-BHC and delta-BHC, 30% for Toxaphene]) on column A. No qualifications are required.

Continuing Calibration Verification (CCV):

1. The CCV analyzed on 11/21-23/2016 exhibited acceptable %Ds (≤20.0%) for all compounds on column A. No qualifications were required.

Surrogates:

1. All surrogates %RECs values for all water samples and associated QC were within the laboratory control limits (30%-150%) with the following exception(s):

Client Sample ID	Laboratory Sample ID	Surrogate(s)	Compound	Action
MW8	BV87822	Tetrachloro-m-xylene (21%/156%) Decachlorobiphenyl (14%/13%)	All results	UJ
MW14	BV87823	Decachlorobiphenyl (29%)	All results	UJ

Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

1. Method Blank (BV87817) associated with the water samples extracted on 11/18/2016 and analyzed on 11/21/2016 was free of contamination. No qualifications were required.

<u>Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):</u>

1. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with ID: BV87817 were extracted on 11/18/2016 and analyzed on 11/21/2016. All %RECs and RPDs were within the laboratory control limits with the following exception(s):

Compound	%R/%R/RPD	Sample	Action
		Affected	
Alpha-BHC	A/A23.9	MW1 DL, MW5, MW15, MW2, MW3	UJ
Beta-BHC	A/A/27.1	MW1 DL, MW5, MW15, MW2, MW3	UJ
Gamma-BHC	A/A/24.7	MW1 DL, MW5, MW15, MW2, MW3	UJ
Aldrin	A/A/21.7	MW1 DL, MW5, MW15, MW2, MW3	UJ
Heptachlor Epoxide	A/A/23.1	MW1 DL, MW5, MW15, MW2, MW3	UJ
Endosulfan I	A/A/22.7	MW1 DL, MW5, MW15, MW2, MW3	UJ
4,4'-DDE	A/A/26.1	MW1 DL, MW5, MW15, MW2, MW3	UJ

Compound	%R/%R/RPD	Sample	Action
		Affected	
Endosufan II	A/A/23.1	MW1 DL, MW5, MW15, MW2, MW3	UJ
4,4'-DDT	A/A/24.6	MW1 DL, MW5, MW15, MW2, MW3	UJ
Methoxychlor	A/A/24.3	MW1 DL, MW5, MW15, MW2, MW3	UJ
Endrin Ketone	A/A/21.8	MW1 DL, MW5, MW15, MW2, MW3	UJ
Endrin Aldehyde	A/A/20.4	MW1 DL, MW5, MW15, MW2, MW3	UJ
Alpha-Chlordane	A/A/24.3	MW1 DL, MW5, MW15, MW2, MW3	UJ
Gamma-Chlordane	A/A/23.4	MW1 DL, MW5, MW15, MW2, MW3	UJ

A= Acceptable

Field Duplicate:

1. A field duplicate pair was not submitted with this SDG.

Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS)/Matrix Spike Duplicate (MSD) were not performed on sample from this SDG.

Compound Quantitation, Compound Identification and Reported Detection Limits:

- 1. All sample results were reported within the linear calibration range.
- 2. Manual Calculation:

BV87817 LCS

4,4'-DDD

On Column concentration (A)= 39.9961ng Sample Volume= 1000ml DF = 1

Concentration (
$$\mu g/L$$
) = $\frac{39.9961 \text{ng x 1ml}}{1000} = 0.040 \mu g/L$

	Laboratory	Validation	
Compound	$(\mu g/L)$	$(\mu g/L)$	%D
4,4'-DDD	0.040	0.040	0.0

Comments:

- 1. Pesticides data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GBV87817.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GBV87817.

DATA USABILITY SUMMARY REPORT (DUSR) TRACE METALS

USEPA Region II –Data Validation

Project Name: 1181 Flushing Avenue

Location: Brooklyn, New York

Project Number: 3020-026

SDG #: GBV87817

Client: Environmental Business Consultants

Date: 02/22/2017

Laboratory: Phoenix Environmental Laboratories, Inc.

Reviewer: Sherri Pullar

Summary:

- 1. Data validation was performed on the data for eight (8) water samples (total and dissolved) analyzed for the following analyses:
 - 1.1 Trace Metals-ICP-AES by SW-846 Method 6010C.
 - 1.2 Thallium, antimony, and selenium by SW-846 Method 7010 (GFAA).
 - 1.3 Mercury by SW-846 Method 7470A.
- 2. The samples were collected on 11/17/2016. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 11/18/2016 for analysis.
- 3. The USEPA Region-II SOP No. HW-2a, Revision 15, December 2012, Validation of ICP-AES was used in evaluating the Trace Metals data and USEPA Region-II SOP No. HW-2c, Revision 15, December 2012, Validation of Mercury and Cyanide was used in evaluating the mercury data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (See discussion below).

Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory	Collection	Analysis	Matrix	Sample Status
	Sample ID	Date			
MW1*	BV87817	11/17/16	ICP, GFAA and CVAA	Water	
MW2*	BV87818	11/17/16	ICP, GFAA and CVAA	Water	
MW3*	BV87819	11/17/16	ICP, GFAA and CVAA	Water	
MW4*	BV87820	11/17/16	ICP, GFAA and CVAA	Water	
MW5*	BV87821	11/17/16	ICP, GFAA and CVAA	Water	
MW8*	BV87822	11/17/16	ICP, GFAA and CVAA	Water	
MW14*	BV87823	11/17/16	ICP, GFAA and CVAA	Water	
MW15*	BV87824	11/17/16	ICP, GFAA and CVAA	Water	

^{*}Total and Dissolved results for this sample.

Sample Conditions/Problems:

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

Holding Times:

- 1. All water samples were analyzed within the 6 months holding times for Trace Metals analyses by ICP-AES and GFAA. No qualifications were required.
- 2. All water samples were digested and analyzed within the 28 days holding times for Mercury analysis. No qualifications were required.

Initial and Continuing Calibration Verification (ICV and CCV):

ICP-AES and GFAA:

1. All %RECs in the ICV and CCVs were within QC limits (90-110%) for dissolved samples with the following exception(s):

Analyte	Date Analyzed	%R	Sample Affected	Action
Selenium (Dissolved)	11/22/16: 15:44	88.9	None	None

2. All %RECs in the ICV and CCVs were within QC limits (90-110%) for total samples. No qualifications were required.

Mercury:

Dissolved:

- All correlation coefficient for Mercury calibration curve analyzed were ≥0.995. No qualifications were required.
- 2. All ICVs and CCVs %REC values were within the QC limits (80-115%). No qualifications were required.

Total:

- All correlation coefficient for Mercury calibration curve analyzed were ≥0.995. No qualifications were required.
- 2. All ICVs and CCVs %REC values were within the QC limits (80-115%). No qualifications were required.

CRQL Check Standard (CRI):

Total:

1. All CRI analyzed on 1/2/2015 %RECs were within the control limits (70-130%) with the following exception(s):

Analyte	Date Analyzed	Initial %R	Final %R	Sample Affected	Action
Copper	11/20/2016:	A	134.6	MW1, MW2, MW3, MW4, MW5, MW8, MW14,	None
	20:41			MW15	
Selenium	11/22/2016:	137.4	A	MW1, MW2, MW3, MW4, MW5, MW8, MW14,	None
	10:29			MW15	

Analyte	Date	Initial	Final	Sample Affected	Action
	Analyzed	%R	%R		
Thallium	11/21/2016:	42.9	-	MW1, MW2, MW3, MW4, MW5, MW8, MW14,	UJ
	09:26			MW15	
Antimony	11/20/2016:	15.7	_	MW1, MW2, MW3, MW4, MW5, MW8, MW14,	UJ
	09:59		_	MW15	

Dissolved:

1. All CRI %RECs were within the control limits (70-130%) with the following exception(s):

Analyte	Date	Initial	Final	Sample Affected	Action
	Analyzed	%R	%R		
Copper	11/20/2016:	A	134.6	MW1, MW3, MW5	None
- 1	20:41			MW2, MW4, MW15	
Iron	11/22/2016:	A	178	MW8, MW14	J+
	06:14				
Thallium	11/21/2016:	42.9	-	MW1, MW2, MW3, MW4, MW5, MW8, MW14,	UJ
	09:26			MW15	
Selenium	11/22/2016:	137.4	-	MW1, MW2, MW3, MW4, MW5, MW8, MW14,	None
	10:29			MW15	
Antimony	11/20/2016:	15.7	_	MW1, MW2, MW3, MW4, MW5, MW8, MW14,	UJ
	09:59		_	MW15	

ICP-AES Interference Check Sample:

1. All %REC values were within the QC limits (80-120%) for ICSA and ICSAB. No qualifications were required.

Blanks (Method Blank, ICB and CCB):

ICP-AES and GFAA:

Total:

1. Method Blank-Water (total) (BV86575 BLK) (furnace) digested on 11/18/2016 was free of contamination. No qualifications were required.

- 2. Method Blank-Water (total) (BV86920 BLK) (ICP) digested on 11/18/2016 was free. No qualifications were required.
- 3. Method Blank-Water (total) (BV87824 BLK) (ICP) digested on 11/18/2016 was free of contamination with the following exception(s):

Element	Concentration (µg/L)	CRQL* (µg/L)	Sample Affected	Action
Calcium	12	10	MW2, MW3 MW1, MW4, MW5, MW8, MW14, MW15	J None

- *= If sample concentration >MDL but < Reporting limit, then sample result qualified as non-detect (U). If sample concentration greater than CRQL but less than 10x the blank result, then qualify estimated (J). If sample concentration greater than 10x the blank results or sample was not detected then no qualifications or action is required.
- 4. ICBs and CCBs (total) analyzed on 12/29/2015.

Element	Concentration	CRQL*	Sample Affected	Action
	(µg/L)	(µg/L)	_	
Aluminum	17	10	MW1, MW2, MW3, MW4, MW5	J
Calcium	37	10	MW1, MW2, MW3, MW4, MW5	J
Copper	2	5	None	None
Copper	2	5	None	None
Copper	2	5	MW1, MW2, MW3, MW4, MW5	U
Copper	2	5	MW8, MW14, MW15	U
Lead	1	2	None	None
Iron	46	10	MW1, MW2, MW3, MW5	J
Magnesium	35	10	MW1, MW2, MW3, MW4, MW5	J
Manganese	2	5	None	None
Potassium	21	100	MW1, MW2, MW3, MW4, MW5	J
Sodium	51	100	MW1, MW2	None
Sodium	32	100	MW3	None
			MW4, MW5, MW8, MW14, MW15	J
Sodium	20	100	None	None
Sodium	224	100	None	None
Calcium	17	10	None	None
Iron	13	10	MW15	J

^{*=} If sample concentration >MDL but < Reporting limit, then sample result qualified as non-detect (U). If sample concentration greater than CRQL but less than 10x the blank result, then qualify estimated (J). If sample concentration greater than 10x the blank results or sample was not detected then no qualifications or action is required.

Dissolved:

- 1. Method Blank-Water (dissolved) (BV87824 BLK) (furnace) digested on 11/18/2016 was free of contamination. No qualifications were required.
- 2. Method Blank-Water (dissolved) (BV87824 BLK) (ICP) digested on 11/18/2016 was free of contamination with the following exception(s):

Element	Concentration	CRQL*	Sample Affected	Action
	(µg/L)	(µg/L)		
Calcium	40	10	MW15, MW1, MW2, MW3, MW4, MW5	J

^{*=} If sample concentration >MDL but < Reporting limit, then sample result qualified as non-detect (U). If sample concentration greater than CRQL but less than 10x the blank result, then qualify estimated (J). If sample concentration greater than 10x the blank results or sample was not detected then no qualifications or action is required.

3. ICBs and CCBs (dissolved) analyzed on 11/20-23/2016.

Element	Concentration (µg/L)	CRQL* (µg/L)	Sample Affected	Action
Calcium	14	10	MW15	None
Copper	2	5	MW1, MW3	U
			MW2, MW4, MW5	None
Potassium	12	100	MW1, MW2, MW3, MW4, MW5	J
Sodium	11	100	MW1, MW2, MW3, MW4, MW5, MW8, MW14	None
Sodium	13	100	None	None
Sodium	51	100	None	None

^{*=} If sample concentration >MDL but < Reporting limit, then sample result qualified as non-detect (U). If sample concentration greater than CRQL but less than 10x the blank result, then qualify estimated (J). If sample concentration greater than 10x the blank results or sample was not detected then no qualifications or action is required.

Mercury:

Dissolved:

- 1. All ICB and CCBs were free of contamination. No qualifications were required.
- 2. Method Blank-Water (dissolved) (BV86888 BLK) digested on 11/21/2016 was free of contamination. No qualifications were required.

Total:

- 1. All ICB and CCBs were free of contamination. No qualifications were required.
- 2. Method Blank-Water (total) (BV87341 BLK) digested on 11/21/2016 was free of contamination. No qualifications were required.

Field Blank (FB) and Equipment Blank (EB):

1. Field Blanks were not submitted with this SDG.

Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):

ICP-AES, GFAA and CVAA:

- 1. Laboratory Control Sample (dissolved) was analyzed on 12/28-30/2015. All %RECs were within the laboratory control limits. No qualifications were required.
- 2. Laboratory Control Sample (total) was analyzed on 12/07/2015. All %RECs were within the laboratory control limits. No qualifications were required.

Field Duplicate:

Dissolved:

1. A field duplicate pair was not submitted with this SDG.

Total:

1. A field duplicate pair was not submitted with this SDG.

Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

ICP-AES, GFAA and CVAA (Total):

1. Matrix Spike (MS) was not performed on sample from this SDG.

ICP-AES, GFAA and CVAA (Dissolved):

1. Matrix Spike (MS) was performed on sample MW15 (BV87824) for dissolved metals. All %Rs were within the laboratory control limits. No qualifications were required.

Sample Duplicate:

ICP-AES, GFAA and CVAA:

- 1. Laboratory Duplicate was not performed on sample from this SDG.
- 2. Laboratory Duplicate was performed on sample MW15 (BV87824) (dissolved) for ICP-AES and GFAA. All RPDs were within the laboratory control limits. No qualifications were required.

ICP-AES Serial Dilution:

Total:

1. ICP serial dilution was not performed on sample from this SDG.

Dissolved:

1. ICP serial dilution was performed on sample MW15 (BV87824). For all results for which the concentration in the original sample is $\geq 50x$ the Method Detection Limits (MDL), the serial dilution analysis (a five-fold dilution) was within the acceptable limit (%D \pm 10%). No qualifications were required.

Verification of Instrumental Parameters:

- 1. The following Forms were present in the data package:
 - 1.1 Method Detection Limits, Form- X.
 - 1.2 ICP-AES Interelement Correction Factors, Form -XIA and Form-XIB.
 - 1.3 ICP-AES Linear Ranges, Form XII.

Compound Quantitation and Reported Detection Limits:

1. All sample results were reported within the linear calibration range.

_	3.7 1	-		
·)	Manual	Cal	011	lation:
4.	manuar	Cai	ı Cu.	iauon.

Sample: MW1 (BV87817)

Barium (total)

DF: 1

0.5385 mg/L was reported on the raw data and the laboratory reported 0.539 mg/L on Form-I.

Comments:

- 1. Trace Metals data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GBV87817.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GBV87817.

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
		Method	Date	Factor	,				
MW1	BV87817	7010	11/17/16	1	Antimony		mg/L	UJ	0.002
MW1	BV87817	7010	11/17/16	1	Antimony, (Dissolved)		mg/L	UJ	0.003
MW1	BV87817	7010	11/17/16	1	Selenium		mg/L	U	0.002
MW1	BV87817	7010	11/17/16	1	Selenium, (Dissolved)		mg/L	U	0.004
MW1	BV87817	7010	11/17/16	1	Thallium - LDL		mg/L	UJ	0.0005
MW1	BV87817	7010	11/17/16	1	Thallium , (Dissolved)		mg/L	UJ	0.0005
MW1	BV87817	SW6010	11/17/16	1	Aluminum	20.9	mg/L	J	0.010
MW1	BV87817	SW6010	11/17/16	1	Aluminum (Dissolved)		mg/L	U	0.011
MW1	BV87817	SW6010	11/17/16	1	Arsenic - LDL	0.008	mg/L		0.004
MW1	BV87817	SW6010	11/17/16	1	Arsenic, (Dissolved)		mg/L	U	0.003
MW1	BV87817	SW6010	11/17/16	1	Barium	0.539	mg/L		0.010
MW1	BV87817	SW6010	11/17/16	1	Barium (Dissolved)	0.230	mg/L		0.011
MW1	BV87817	SW6010	11/17/16	1	Beryllium	0.001	mg/L		0.001
MW1	BV87817	SW6010	11/17/16	1	Beryllium (Dissolved)		mg/L	U	0.001
MW1	BV87817	SW6010	11/17/16	1	Cadmium	0.002	mg/L	J	0.004
MW1	BV87817	SW6010	11/17/16	1	Cadmium (Dissolved)		mg/L	U	0.004
MW1	BV87817	SW6010	11/17/16	1	Calcium	133	mg/L	J	0.010
MW1	BV87817	SW6010	11/17/16	1	Calcium (Dissolved)	119	mg/L	J	0.01
MW1	BV87817	SW6010	11/17/16	1	Chromium	0.052	mg/L		0.001
MW1	BV87817	SW6010	11/17/16	1	Chromium (Dissolved)		mg/L	U	0.001
MW1	BV87817	SW6010	11/17/16	1	Cobalt	0.018	mg/L		0.005
MW1	BV87817	SW6010	11/17/16	1	Cobalt, (Dissolved)	0.002	mg/L	J	0.005
MW1	BV87817	SW6010	11/17/16	1	Copper	0.053	mg/L	U	0.005
MW1	BV87817	SW6010	11/17/16	1	Copper, (Dissolved)	0.001	mg/L	U	0.005
MW1	BV87817	SW6010	11/17/16	1	Iron	70.8	mg/L	J	0.01
MW1	BV87817	SW6010	11/17/16	1	Iron, (Dissolved)	0.03	mg/L		0.01
MW1	BV87817	SW6010	11/17/16	1	Lead	0.051	mg/L		0.002
MW1	BV87817	SW6010	11/17/16	1	Lead (Dissolved)		mg/L	U	0.002
MW1	BV87817	SW6010	11/17/16	1	Magnesium	31.4	mg/L	J	0.010
MW1	BV87817	SW6010	11/17/16	1	Magnesium (Dissolved)	25.3	mg/L		0.01
MW1	BV87817	SW6010	11/17/16	10	Manganese	5.40	mg/L		0.050
MW1	BV87817	SW6010	11/17/16	10	Manganese, (Dissolved)	3.43	mg/L		0.053
MW1	BV87817	SW6010	11/17/16	1	Nickel	0.032	mg/L		0.004
MW1	BV87817	SW6010	11/17/16	1	Nickel, (Dissolved)	0.004	mg/L	J	0.004
MW1	BV87817	SW6010	11/17/16	1	Potassium	45.2	mg/L	J	0.1
MW1	BV87817	SW6010	11/17/16	1	Potassium (Dissolved)	40.4	mg/L	J	0.1
MW1	BV87817	SW6010	11/17/16	1	Silver		mg/L	U	0.005
MW1	BV87817	SW6010	11/17/16	1	Silver (Dissolved)		mg/L	U	0.005
MW1	BV87817	SW6010	11/17/16	10	Sodium	342	mg/L		1.0
MW1	BV87817	SW6010	11/17/16	10	Sodium (Dissolved)	322	mg/L		1.1

SDG	GRV	V87817
BDU.	UD 1	, O / O I /

Sample Name	Lab ID	Analytical Method	Sample Date	Dilution Factor	Analyte	Result	Unit	Qualifier	RL
MW1	BV87817	SW6010	11/17/16	1	Vanadium	0.057	mg/L		0.010
MW1	BV87817	SW6010	11/17/16	1	Vanadium, (Dissolved)	0.037	mg/L	U	0.010
MW1	BV87817	SW6010	11/17/16	1	Zinc	0.124	mg/L	U	0.011
MW1	BV87817	SW6010	11/17/16	1	Zinc, (Dissolved)	0.124	mg/L	J	0.010
MW1	BV87817	SW7470	11/17/16	1	Mercury	0.002	mg/L	U	0.0002
MW1	BV87817	SW7470	11/17/16	1	Mercury (Dissolved)		mg/L	U	0.0002
MW1	BV87817	SW8081	11/17/16	10	4,4' -DDD		ug/L	U	0.0002
MW1	BV87817	SW8081	11/17/16	10	4,4' -DDE		ug/L	UJ	0.025
MW1	BV87817	SW8081	11/17/16	10	4,4' -DDT		ug/L	UJ	0.025
MW1	BV87817	SW8081	11/17/16	10	a-BHC		ug/L	UJ	0.025
MW1	BV87817	SW8081	11/17/16	10	a-chlordane		ug/L	UJ	0.023
MW1	BV87817	SW8081	11/17/16	10	Alachlor		ug/L	U	0.75
MW1	BV87817	SW8081	11/17/16	10	Aldrin		ug/L	UJ	0.75
MW1	BV87817	SW8081	11/17/16	10	b-BHC		ug/L ug/L	UJ	0.050
MW1	BV87817	SW8081	11/17/16	10	Chlordane		ug/L ug/L	U	0.50
MW1	BV87817	SW8081	11/17/16	10	d-BHC		ug/L	U	0.025
MW1	BV87817	SW8081	11/17/16	10	Dieldrin		ug/L ug/L	U	0.025
MW1	BV87817	SW8081	11/17/16	10	Endosulfan I		ug/L	UJ	0.013
MW1	BV87817	SW8081	11/17/16	10	Endosulfan II		ug/L	UJ	0.10
MW1	BV87817	SW8081	11/17/16	10	Endosulfan Sulfate		ug/L	U	0.10
MW1	BV87817	SW8081	11/17/16	10	Endrin		ug/L	U	0.050
MW1	BV87817	SW8081	11/17/16	10	Endrin Aldehyde		ug/L	UJ	0.10
MW1	BV87817	SW8081	11/17/16	10	Endrin ketone		ug/L	UJ	0.10
MW1	BV87817	SW8081	11/17/16	10	g-BHC (Lindane)		ug/L	UJ	0.050
MW1	BV87817	SW8081	11/17/16	10	g-chlordane		ug/L	UJ	0.10
MW1	BV87817	SW8081	11/17/16	10	Heptachlor	_	ug/L	U	0.050
MW1	BV87817	SW8081	11/17/16	10	Heptachlor epoxide		ug/L	UJ	0.050
MW1	BV87817	SW8081	11/17/16	10	Methoxychlor		ug/L	UJ	1.0
MW1	BV87817	SW8081	11/17/16	10	Toxaphene		ug/L	U	2.0
MW1	BV87817	SW8082	11/17/16	1	PCB-1016		ug/L	Ü	0.050
MW1	BV87817	SW8082	11/17/16	1	PCB-1221		ug/L	Ü	0.050
MW1	BV87817	SW8082	11/17/16	1	PCB-1232		ug/L	Ü	0.050
MW1	BV87817	SW8082	11/17/16	1	PCB-1242		ug/L	U	0.050
MW1	BV87817	SW8082	11/17/16	1	PCB-1248		ug/L	U	0.050
MW1	BV87817	SW8082	11/17/16	1	PCB-1254		ug/L	Ü	0.050
MW1	BV87817	SW8082	11/17/16	1	PCB-1260		ug/L	U	0.050
MW1	BV87817	SW8082	11/17/16	1	PCB-1262		ug/L	Ü	0.050
MW1	BV87817	SW8082	11/17/16	1	PCB-1268		ug/L	U	0.050
MW1	BV87817	SW8260	11/17/16	1	1,1,1,2-Tetrachloroethane		ug/L	Ü	1.0
MW1	BV87817	SW8260	11/17/16	1	1,1,1-Trichloroethane		ug/L	Ü	5.0

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
-		Method	Date	Factor	-				
MW1	BV87817	SW8260	11/17/16	1	1,1,2,2-Tetrachloroethane		ug/L	U	1.0
MW1	BV87817	SW8260	11/17/16	1	1,1,2-Trichloroethane		ug/L	U	1.0
MW1	BV87817	SW8260	11/17/16	1	1,1-Dichloroethane		ug/L	U	5.0
MW1	BV87817	SW8260	11/17/16	1	1,1-Dichloroethene		ug/L	U	1.0
MW1	BV87817	SW8260	11/17/16	1	1,1-Dichloropropene		ug/L	U	1.0
MW1	BV87817	SW8260	11/17/16	1	1,2,3-Trichlorobenzene		ug/L	U	1.0
MW1	BV87817	SW8260	11/17/16	1	1,2,3-Trichloropropane		ug/L	U	0.25
MW1	BV87817	SW8260	11/17/16	1	1,2,4-Trichlorobenzene		ug/L	U	1.0
MW1	BV87817	SW8260	11/17/16	10	1,2,4-Trimethylbenzene	140	ug/L		5.0
MW1	BV87817	SW8260	11/17/16	1	1,2-Dibromo-3-chloropropane		ug/L	UJ	0.50
MW1	BV87817	SW8260	11/17/16	1	1,2-Dibromoethane		ug/L	U	0.25
MW1	BV87817	SW8260	11/17/16	1	1,2-Dichlorobenzene		ug/L	U	1.0
MW1	BV87817	SW8260	11/17/16	1	1,2-Dichloroethane		ug/L	U	0.60
MW1	BV87817	SW8260	11/17/16	1	1,2-Dichloropropane		ug/L	U	1.0
MW1	BV87817	SW8260	11/17/16	1	1,3,5-Trimethylbenzene	18	ug/L		1.0
MW1	BV87817	SW8260	11/17/16	1	1,3-Dichlorobenzene		ug/L	U	1.0
MW1	BV87817	SW8260	11/17/16	1	1,3-Dichloropropane		ug/L	U	1.0
MW1	BV87817	SW8260	11/17/16	1	1,4-Dichlorobenzene		ug/L	U	1.0
MW1	BV87817	SW8260	11/17/16	1	2,2-Dichloropropane		ug/L	UJ	1.0
MW1	BV87817	SW8260	11/17/16	1	2-Chlorotoluene		ug/L	U	1.0
MW1	BV87817	SW8260	11/17/16	1	2-Hexanone		ug/L	U	2.5
MW1	BV87817	SW8260	11/17/16	1	2-Isopropyltoluene	1.0	ug/L		1.0
MW1	BV87817	SW8260	11/17/16	1	4-Chlorotoluene		ug/L	U	1.0
MW1	BV87817	SW8260	11/17/16	1	4-Methyl-2-pentanone		ug/L	U	2.5
MW1	BV87817	SW8260	11/17/16	1	Acetone		ug/L	UJ	5.0
MW1	BV87817	SW8260	11/17/16	1	Acrolein		ug/L	UJ	5.0
MW1	BV87817	SW8260	11/17/16	1	Acrylonitrile		ug/L	UJ	5.0
MW1	BV87817	SW8260	11/17/16	10	Benzene	64	ug/L		2.5
MW1	BV87817	SW8260	11/17/16	1	Bromobenzene		ug/L	U	1.0
MW1	BV87817	SW8260	11/17/16	1	Bromochloromethane		ug/L	U	1.0
MW1	BV87817	SW8260	11/17/16	1	Bromodichloromethane		ug/L	U	1.0
MW1	BV87817	SW8260	11/17/16	1	Bromoform		ug/L	U	5.0
MW1	BV87817	SW8260	11/17/16	1	Bromomethane		ug/L	UJ	5.0
MW1	BV87817	SW8260	11/17/16	1	Carbon Disulfide		ug/L	U	1.0
MW1	BV87817	SW8260	11/17/16	1	Carbon tetrachloride		ug/L	U	1.0
MW1	BV87817	SW8260	11/17/16	1	Chlorobenzene		ug/L	U	5.0
MW1	BV87817	SW8260	11/17/16	1	Chloroethane		ug/L	U	5.0
MW1	BV87817	SW8260	11/17/16	1	Chloroform		ug/L	U	5.0
MW1	BV87817	SW8260	11/17/16	1	Chloromethane		ug/L	U	5.0
MW1	BV87817	SW8260	11/17/16	1	cis-1,2-Dichloroethene		ug/L	U	1.0

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
-		Method	Date	Factor	-				
MW1	BV87817	SW8260	11/17/16	1	cis-1,3-Dichloropropene		ug/L	U	0.40
MW1	BV87817	SW8260	11/17/16	1	Dibromochloromethane		ug/L	U	1.0
MW1	BV87817	SW8260	11/17/16	1	Dibromomethane		ug/L	U	1.0
MW1	BV87817	SW8260	11/17/16	1	Dichlorodifluoromethane		ug/L	UJ	1.0
MW1	BV87817	SW8260	11/17/16	50	Ethylbenzene	440	ug/L		13
MW1	BV87817	SW8260	11/17/16	1	Hexachlorobutadiene		ug/L	U	0.50
MW1	BV87817	SW8260	11/17/16	1	Isopropylbenzene	26	ug/L		1.0
MW1	BV87817	SW8260	11/17/16	10	m&p-Xylene	290	ug/L		10
MW1	BV87817	SW8260	11/17/16	1	Methyl ethyl ketone		ug/L	U	2.5
MW1	BV87817	SW8260	11/17/16	1	Methyl t-butyl ether (MTBE)	0.50	ug/L	J	1.0
MW1	BV87817	SW8260	11/17/16	1	Methylene chloride		ug/L	U	3.0
MW1	BV87817	SW8260	11/17/16	10	Naphthalene	58	ug/L		10
MW1	BV87817	SW8260	11/17/16	1	n-Butylbenzene	2.2	ug/L		1.0
MW1	BV87817	SW8260	11/17/16	10	n-Propylbenzene	44	ug/L		5.0
MW1	BV87817	SW8260	11/17/16	10	o-Xylene	70	ug/L		5.0
MW1	BV87817	SW8260	11/17/16	1	p-Isopropyltoluene	1.3	ug/L		1.0
MW1	BV87817	SW8260	11/17/16	1	sec-Butylbenzene	3.1	ug/L		1.0
MW1	BV87817	SW8260	11/17/16	1	Styrene		ug/L	U	1.0
MW1	BV87817	SW8260	11/17/16	1	tert-Butylbenzene	0.38	ug/L	J	1.0
MW1	BV87817	SW8260	11/17/16	1	Tetrachloroethene		ug/L	U	1.0
MW1	BV87817	SW8260	11/17/16	1	Tetrahydrofuran (THF)		ug/L	UJ	5.0
MW1	BV87817	SW8260	11/17/16	1	Toluene	24	ug/L		1.0
MW1	BV87817	SW8260	11/17/16	1	trans-1,2-Dichloroethene		ug/L	U	5.0
MW1	BV87817	SW8260	11/17/16	1	trans-1,3-Dichloropropene		ug/L	U	0.40
MW1	BV87817	SW8260	11/17/16	1	trans-1,4-dichloro-2-butene		ug/L	U	2.5
MW1	BV87817	SW8260	11/17/16	1	Trichloroethene		ug/L	U	1.0
MW1	BV87817	SW8260	11/17/16	1	Trichlorofluoromethane		ug/L	U	1.0
MW1	BV87817	SW8260	11/17/16	1	Trichlorotrifluoroethane		ug/L	U	1.0
MW1	BV87817	SW8260	11/17/16	1	Vinyl chloride		ug/L	U	1.0
MW1	BV87817	SW8270	11/17/16	1	1,2,4,5-Tetrachlorobenzene		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	1,2,4-Trichlorobenzene		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	1,2-Dichlorobenzene		ug/L	U	4.7
MW1	BV87817	SW8270	11/17/16	1	1,2-Diphenylhydrazine		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	1,3-Dichlorobenzene		ug/L	U	3.0
MW1	BV87817	SW8270	11/17/16	1	1,4-Dichlorobenzene		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	2,4,5-Trichlorophenol		ug/L	U	2.7
MW1	BV87817	SW8270	11/17/16	1	2,4,6-Trichlorophenol		ug/L	U	1.6
MW1	BV87817	SW8270	11/17/16	1	2,4-Dichlorophenol		ug/L	U	1.8
MW1	BV87817	SW8270	11/17/16	1	2,4-Dimethylphenol	4.2	ug/L		1.2
MW1	BV87817	SW8270	11/17/16	1	2,4-Dinitrophenol		ug/L	U	3.5

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
-		Method	Date	Factor	-				
MW1	BV87817	SW8270	11/17/16	1	2,4-Dinitrotoluene		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	2,6-Dinitrotoluene		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	2-Chloronaphthalene		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	2-Chlorophenol		ug/L	U	1.4
MW1	BV87817	SW8270	11/17/16	1	2-Methylnaphthalene	3.2	ug/L	J	5.0
MW1	BV87817	SW8270	11/17/16	1	2-Methylphenol (o-cresol)		ug/L	U	2.4
MW1	BV87817	SW8270	11/17/16	1	2-Nitroaniline		ug/L	U	5.1
MW1	BV87817	SW8270	11/17/16	1	2-Nitrophenol		ug/L	U	3.2
MW1	BV87817	SW8270	11/17/16	1	3&4-Methylphenol (m&p-cresol)		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	3,3'-Dichlorobenzidine		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	3-Nitroaniline		ug/L	U	11
MW1	BV87817	SW8270	11/17/16	1	4,6-Dinitro-2-methylphenol		ug/L	UJ	5.4
MW1	BV87817	SW8270	11/17/16	1	4-Bromophenyl phenyl ether		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	4-Chloro-3-methylphenol		ug/L	U	1.8
MW1	BV87817	SW8270	11/17/16	1	4-Chloroaniline		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	4-Chlorophenyl phenyl ether		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	4-Nitroaniline		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	4-Nitrophenol		ug/L	U	2.3
MW1	BV87817	SW8270	11/17/16	1	Acenaphthene		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	Acenaphthylene		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	Acetophenone		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	Aniline		ug/L	U	15
MW1	BV87817	SW8270	11/17/16	1	Anthracene		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	Benz(a)anthracene		ug/L	U	1.7
MW1	BV87817	SW8270	11/17/16	1	Benzidine		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	Benzo(a)pyrene		ug/L	U	1.6
MW1	BV87817	SW8270	11/17/16	1	Benzo(b)fluoranthene		ug/L	U	1.7
MW1	BV87817	SW8270	11/17/16	1	Benzo(ghi)perylene		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	Benzo(k)fluoranthene		ug/L	U	1.7
MW1	BV87817	SW8270	11/17/16	1	Benzoic acid		ug/L	U	25
MW1	BV87817	SW8270	11/17/16	1	Benzyl butyl phthalate		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	Bis(2-chloroethoxy)methane		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	Bis(2-chloroethyl)ether		ug/L	U	1.4
MW1	BV87817	SW8270	11/17/16	1	Bis(2-chloroisopropyl)ether		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	Bis(2-ethylhexyl)phthalate		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	Carbazole		ug/L	U	25
MW1	BV87817	SW8270	11/17/16	1	Chrysene		ug/L	U	1.7
MW1	BV87817	SW8270	11/17/16	1	Dibenz(a,h)anthracene		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	Dibenzofuran		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	Diethyl phthalate		ug/L	U	5.0

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
•		Method	Date	Factor	,				
MW1	BV87817	SW8270	11/17/16	1	Dimethylphthalate		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	Di-n-butylphthalate		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	Di-n-octylphthalate		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	Fluoranthene		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	Fluorene		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	Hexachlorobenzene		ug/L	U	1.5
MW1	BV87817	SW8270	11/17/16	1	Hexachlorobutadiene		ug/L	U	1.8
MW1	BV87817	SW8270	11/17/16	1	Hexachlorocyclopentadiene		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	Hexachloroethane		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	Indeno(1,2,3-cd)pyrene		ug/L	U	1.7
MW1	BV87817	SW8270	11/17/16	1	Isophorone		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	Naphthalene	51	ug/L		5.0
MW1	BV87817	SW8270	11/17/16	1	Nitrobenzene		ug/L	U	1.8
MW1	BV87817	SW8270	11/17/16	1	N-Nitrosodimethylamine		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	N-Nitrosodi-n-propylamine		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	N-Nitrosodiphenylamine		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	Pentachloronitrobenzene		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	Pentachlorophenol		ug/L	U	1.9
MW1	BV87817	SW8270	11/17/16	1	Phenanthrene		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	Phenol		ug/L	U	1.6
MW1	BV87817	SW8270	11/17/16	1	Pyrene		ug/L	U	5.0
MW1	BV87817	SW8270	11/17/16	1	Pyridine		ug/L	U	5.0
MW2	BV87818	7010	11/17/16	1	Antimony		mg/L	UJ	0.002
MW2	BV87818	7010	11/17/16	1	Antimony, (Dissolved)		mg/L	UJ	0.003
MW2	BV87818	7010	11/17/16	1	Selenium		mg/L	U	0.002
MW2	BV87818	7010	11/17/16	1	Selenium, (Dissolved)		mg/L	U	0.004
MW2	BV87818	7010	11/17/16	1	Thallium - LDL		mg/L	UJ	0.0005
MW2	BV87818	7010	11/17/16	1	Thallium , (Dissolved)		mg/L	UJ	0.0005
MW2	BV87818	SW6010	11/17/16	1	Aluminum	5.02	mg/L	J	0.010
MW2	BV87818	SW6010	11/17/16	1	Aluminum (Dissolved)		mg/L	U	0.011
MW2	BV87818	SW6010	11/17/16	1	Arsenic - LDL		mg/L	U	0.004
MW2	BV87818	SW6010	11/17/16	1	Arsenic, (Dissolved)		mg/L	U	0.003
MW2	BV87818	SW6010	11/17/16	1	Barium	0.211	mg/L		0.010
MW2	BV87818	SW6010	11/17/16	1	Barium (Dissolved)	0.137	mg/L		0.011
MW2	BV87818	SW6010	11/17/16	1	Beryllium		mg/L	U	0.001
MW2	BV87818	SW6010	11/17/16	1	Beryllium (Dissolved)		mg/L	U	0.001
MW2	BV87818	SW6010	11/17/16	1	Cadmium	0.001	mg/L	J	0.004
MW2	BV87818	SW6010	11/17/16	1	Cadmium (Dissolved)		mg/L	U	0.004
MW2	BV87818	SW6010	11/17/16	1	Calcium	113	mg/L	J	0.010
MW2	BV87818	SW6010	11/17/16	1	Calcium (Dissolved)	112	mg/L	J	0.01

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
		Method	Date	Factor					
MW2	BV87818	SW6010	11/17/16	1	Chromium	0.012	mg/L		0.001
MW2	BV87818	SW6010	11/17/16	1	Chromium (Dissolved)		mg/L	U	0.001
MW2	BV87818	SW6010	11/17/16	1	Cobalt	0.005	mg/L	J	0.005
MW2	BV87818	SW6010	11/17/16	1	Cobalt, (Dissolved)		mg/L	U	0.005
MW2	BV87818	SW6010	11/17/16	1	Copper	0.012	mg/L	U	0.005
MW2	BV87818	SW6010	11/17/16	1	Copper, (Dissolved)		mg/L	U	0.005
MW2	BV87818	SW6010	11/17/16	1	Iron	19.3	mg/L	J	0.01
MW2	BV87818	SW6010	11/17/16	1	Iron, (Dissolved)	0.12	mg/L		0.01
MW2	BV87818	SW6010	11/17/16	1	Lead		mg/L	U	0.002
MW2	BV87818	SW6010	11/17/16	1	Lead (Dissolved)	0.002	mg/L		0.002
MW2	BV87818	SW6010	11/17/16	1	Magnesium	30.9	mg/L	J	0.010
MW2	BV87818	SW6010	11/17/16	1	Magnesium (Dissolved)	29.3	mg/L		0.01
MW2	BV87818	SW6010	11/17/16	10	Manganese	6.91	mg/L		0.050
MW2	BV87818	SW6010	11/17/16	10	Manganese, (Dissolved)	6.75	mg/L		0.053
MW2	BV87818	SW6010	11/17/16	1	Nickel	0.007	mg/L		0.004
MW2	BV87818	SW6010	11/17/16	1	Nickel, (Dissolved)	0.001	mg/L	J	0.004
MW2	BV87818	SW6010	11/17/16	1	Potassium	10.5	mg/L	J	0.1
MW2	BV87818	SW6010	11/17/16	1	Potassium (Dissolved)	9.5	mg/L	J	0.1
MW2	BV87818	SW6010	11/17/16	1	Silver		mg/L	U	0.005
MW2	BV87818	SW6010	11/17/16	1	Silver (Dissolved)		mg/L	U	0.005
MW2	BV87818	SW6010	11/17/16	10	Sodium	232	mg/L		1.0
MW2	BV87818	SW6010	11/17/16	10	Sodium (Dissolved)	245	mg/L		1.1
MW2	BV87818	SW6010	11/17/16	1	Vanadium	0.014	mg/L		0.010
MW2	BV87818	SW6010	11/17/16	1	Vanadium, (Dissolved)		mg/L	U	0.011
MW2	BV87818	SW6010	11/17/16	1	Zinc	0.028	mg/L		0.010
MW2	BV87818	SW6010	11/17/16	1	Zinc, (Dissolved)		mg/L	U	0.011
MW2	BV87818	SW7470	11/17/16	1	Mercury		mg/L	U	0.0002
MW2	BV87818	SW7470	11/17/16	1	Mercury (Dissolved)		mg/L	U	0.0002
MW2	BV87818	SW8081	11/17/16	1	4,4' -DDD		ug/L	U	0.005
MW2	BV87818	SW8081	11/17/16	1	4,4' -DDE		ug/L	UJ	0.005
MW2	BV87818	SW8081	11/17/16	1	4,4' -DDT		ug/L	UJ	0.005
MW2	BV87818	SW8081	11/17/16	1	a-BHC		ug/L	UJ	0.005
MW2	BV87818	SW8081	11/17/16	1	a-chlordane		ug/L	UJ	0.010
MW2	BV87818	SW8081	11/17/16	1	Alachlor		ug/L	U	0.075
MW2	BV87818	SW8081	11/17/16	1	Aldrin		ug/L	UJ	0.002
MW2	BV87818	SW8081	11/17/16	1	b-BHC		ug/L	UJ	0.040
MW2	BV87818	SW8081	11/17/16	1	Chlordane	İ	ug/L	U	0.050
MW2	BV87818	SW8081	11/17/16	1	d-BHC		ug/L	U	0.005
MW2	BV87818	SW8081	11/17/16	1	Dieldrin		ug/L	U	0.002
MW2	BV87818	SW8081	11/17/16	1	Endosulfan I		ug/L	UJ	0.010

SDG:	GBV87817	

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
1. 40.47G	D) (070.10	Method	Date	Factor	-		/1		0.040
MW2	BV87818	SW8081	11/17/16	1	Endosulfan II		ug/L	UJ	0.010
MW2	BV87818	SW8081	11/17/16	1	Endosulfan Sulfate		ug/L	U	0.010
MW2	BV87818	SW8081	11/17/16	1	Endrin		ug/L	U	0.010
MW2	BV87818	SW8081	11/17/16	1	Endrin Aldehyde		ug/L	UJ	0.010
MW2	BV87818	SW8081	11/17/16	1	Endrin ketone		ug/L	UJ	0.010
MW2	BV87818	SW8081	11/17/16	1	g-BHC (Lindane)		ug/L	UJ	0.005
MW2	BV87818	SW8081	11/17/16	1	g-chlordane		ug/L	UJ	0.010
MW2	BV87818	SW8081	11/17/16	1	Heptachlor		ug/L	U	0.010
MW2	BV87818	SW8081	11/17/16	1	Heptachlor epoxide		ug/L	UJ	0.010
MW2	BV87818	SW8081	11/17/16	1	Methoxychlor		ug/L	UJ	0.10
MW2	BV87818	SW8081	11/17/16	1	Toxaphene		ug/L	U	0.20
MW2	BV87818	SW8082	11/17/16	1	PCB-1016		ug/L	U	0.050
MW2	BV87818	SW8082	11/17/16	1	PCB-1221		ug/L	U	0.050
MW2	BV87818	SW8082	11/17/16	1	PCB-1232		ug/L	U	0.050
MW2	BV87818	SW8082	11/17/16	1	PCB-1242		ug/L	U	0.050
MW2	BV87818	SW8082	11/17/16	1	PCB-1248		ug/L	U	0.050
MW2	BV87818	SW8082	11/17/16	1	PCB-1254		ug/L	U	0.050
MW2	BV87818	SW8082	11/17/16	1	PCB-1260		ug/L	U	0.050
MW2	BV87818	SW8082	11/17/16	1	PCB-1262		ug/L	U	0.050
MW2	BV87818	SW8082	11/17/16	1	PCB-1268		ug/L	U	0.050
MW2	BV87818	SW8260	11/17/16	5	1,1,1,2-Tetrachloroethane		ug/L	U	5.0
MW2	BV87818	SW8260	11/17/16	5	1,1,1-Trichloroethane		ug/L	U	5.0
MW2	BV87818	SW8260	11/17/16	5	1,1,2,2-Tetrachloroethane		ug/L	U	5.0
MW2	BV87818	SW8260	11/17/16	5	1,1,2-Trichloroethane		ug/L	U	1.3
MW2	BV87818	SW8260	11/17/16	5	1,1-Dichloroethane		ug/L	U	5.0
MW2	BV87818	SW8260	11/17/16	5	1,1-Dichloroethene		ug/L	U	5.0
MW2	BV87818	SW8260	11/17/16	5	1,1-Dichloropropene		ug/L	U	5.0
MW2	BV87818	SW8260	11/17/16	5	1,2,3-Trichlorobenzene		ug/L	U	5.0
MW2	BV87818	SW8260	11/17/16	5	1,2,3-Trichloropropane		ug/L	U	1.3
MW2	BV87818	SW8260	11/17/16	5	1,2,4-Trichlorobenzene		ug/L	Ü	5.0
MW2	BV87818	SW8260	11/17/16	20	1,2,4-Trimethylbenzene	300	ug/L		5.0
MW2	BV87818	SW8260	11/17/16	5	1,2-Dibromo-3-chloropropane	333	ug/L	UJ	2.5
MW2	BV87818	SW8260	11/17/16	5	1,2-Dibromoethane		ug/L	U	1.3
MW2	BV87818	SW8260	11/17/16	5	1,2-Dichlorobenzene		ug/L	U	4.7
MW2	BV87818	SW8260	11/17/16	5	1,2-Dichloroethane		ug/L	Ü	2.5
MW2	BV87818	SW8260	11/17/16	5	1,2-Dichloropropane		ug/L	Ü	1.3
MW2	BV87818	SW8260	11/17/16	5	1,3,5-Trimethylbenzene	110	ug/L		5.0
MW2	BV87818	SW8260	11/17/16	5	1,3-Dichlorobenzene	1.0	ug/L	U	3.0
MW2	BV87818	SW8260	11/17/16	5	1,3-Dichloropropane		ug/L	U	5.0
MW2	BV87818	SW8260	11/17/16	5	1,4-Dichlorobenzene		ug/L	U	5.0

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
		Method	Date	Factor	,				
MW2	BV87818	SW8260	11/17/16	5	2,2-Dichloropropane		ug/L	U	5.0
MW2	BV87818	SW8260	11/17/16	5	2-Chlorotoluene		ug/L	U	5.0
MW2	BV87818	SW8260	11/17/16	5	2-Hexanone		ug/L	U	13
MW2	BV87818	SW8260	11/17/16	5	2-Isopropyltoluene	1.5	ug/L	J	5.0
MW2	BV87818	SW8260	11/17/16	5	4-Chlorotoluene		ug/L	U	5.0
MW2	BV87818	SW8260	11/17/16	5	4-Methyl-2-pentanone		ug/L	U	13
MW2	BV87818	SW8260	11/17/16	5	Acetone	53	ug/L	J	25
MW2	BV87818	SW8260	11/17/16	5	Acrolein		ug/L	UJ	13
MW2	BV87818	SW8260	11/17/16	5	Acrylonitrile		ug/L	UJ	13
MW2	BV87818	SW8260	11/17/16	5	Benzene	2.3	ug/L		1.3
MW2	BV87818	SW8260	11/17/16	5	Bromobenzene		ug/L	U	5.0
MW2	BV87818	SW8260	11/17/16	5	Bromochloromethane		ug/L	U	5.0
MW2	BV87818	SW8260	11/17/16	5	Bromodichloromethane		ug/L	U	5.0
MW2	BV87818	SW8260	11/17/16	5	Bromoform		ug/L	U	25
MW2	BV87818	SW8260	11/17/16	5	Bromomethane		ug/L	UJ	5.0
MW2	BV87818	SW8260	11/17/16	5	Carbon Disulfide		ug/L	U	5.0
MW2	BV87818	SW8260	11/17/16	5	Carbon tetrachloride		ug/L	U	5.0
MW2	BV87818	SW8260	11/17/16	5	Chlorobenzene		ug/L	U	5.0
MW2	BV87818	SW8260	11/17/16	5	Chloroethane		ug/L	U	5.0
MW2	BV87818	SW8260	11/17/16	5	Chloroform		ug/L	U	7.0
MW2	BV87818	SW8260	11/17/16	5	Chloromethane		ug/L	U	5.0
MW2	BV87818	SW8260	11/17/16	5	cis-1,2-Dichloroethene		ug/L	U	5.0
MW2	BV87818	SW8260	11/17/16	5	cis-1,3-Dichloropropene		ug/L	U	1.3
MW2	BV87818	SW8260	11/17/16	5	Dibromochloromethane		ug/L	U	5.0
MW2	BV87818	SW8260	11/17/16	5	Dibromomethane		ug/L	U	5.0
MW2	BV87818	SW8260	11/17/16	5	Dichlorodifluoromethane		ug/L	U	5.0
MW2	BV87818	SW8260	11/17/16	20	Ethylbenzene	230	ug/L		5.0
MW2	BV87818	SW8260	11/17/16	5	Hexachlorobutadiene		ug/L	U	1.0
MW2	BV87818	SW8260	11/17/16	5	Isopropylbenzene	22	ug/L		5.0
MW2	BV87818	SW8260	11/17/16	20	m&p-Xylene	720	ug/L		20
MW2	BV87818	SW8260	11/17/16	5	Methyl ethyl ketone		ug/L	U	13
MW2	BV87818	SW8260	11/17/16	5	Methyl t-butyl ether (MTBE)		ug/L	U	5.0
MW2	BV87818	SW8260	11/17/16	5	Methylene chloride		ug/L	U	5.0
MW2	BV87818	SW8260	11/17/16	5	Naphthalene	73	ug/L		5.0
MW2	BV87818	SW8260	11/17/16	5	n-Butylbenzene	9.3	ug/L		5.0
MW2	BV87818	SW8260	11/17/16	5	n-Propylbenzene	53	ug/L		5.0
MW2	BV87818	SW8260	11/17/16	20	o-Xylene	210	ug/L		5.0
MW2	BV87818	SW8260	11/17/16	5	p-Isopropyltoluene	2.6	ug/L	J	5.0
MW2	BV87818	SW8260	11/17/16	5	sec-Butylbenzene	6.7	ug/L		5.0
MW2	BV87818	SW8260	11/17/16	5	Styrene		ug/L	U	5.0

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
		Method	Date	Factor	-				
MW2	BV87818	SW8260	11/17/16	5	tert-Butylbenzene		ug/L	U	5.0
MW2	BV87818	SW8260	11/17/16	5	Tetrachloroethene		ug/L	U	5.0
MW2	BV87818	SW8260	11/17/16	5	Tetrahydrofuran (THF)	29	ug/L	J	25
MW2	BV87818	SW8260	11/17/16	5	Toluene	30	ug/L		5.0
MW2	BV87818	SW8260	11/17/16	5	trans-1,2-Dichloroethene		ug/L	U	5.0
MW2	BV87818	SW8260	11/17/16	5	trans-1,3-Dichloropropene		ug/L	U	1.3
MW2	BV87818	SW8260	11/17/16	5	trans-1,4-dichloro-2-butene		ug/L	U	13
MW2	BV87818	SW8260	11/17/16	5	Trichloroethene		ug/L	U	5.0
MW2	BV87818	SW8260	11/17/16	5	Trichlorofluoromethane		ug/L	U	5.0
MW2	BV87818	SW8260	11/17/16	5	Trichlorotrifluoroethane		ug/L	U	5.0
MW2	BV87818	SW8260	11/17/16	5	Vinyl chloride		ug/L	U	2.0
MW2	BV87818	SW8270	11/17/16	1	1,2,4,5-Tetrachlorobenzene		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	1,2,4-Trichlorobenzene		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	1,2-Dichlorobenzene		ug/L	U	4.7
MW2	BV87818	SW8270	11/17/16	1	1,2-Diphenylhydrazine		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	1,3-Dichlorobenzene		ug/L	U	3.0
MW2	BV87818	SW8270	11/17/16	1	1,4-Dichlorobenzene		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	2,4,5-Trichlorophenol		ug/L	U	2.7
MW2	BV87818	SW8270	11/17/16	1	2,4,6-Trichlorophenol		ug/L	U	1.6
MW2	BV87818	SW8270	11/17/16	1	2,4-Dichlorophenol		ug/L	U	1.8
MW2	BV87818	SW8270	11/17/16	1	2,4-Dimethylphenol	1.6	ug/L		1.2
MW2	BV87818	SW8270	11/17/16	1	2,4-Dinitrophenol		ug/L	U	3.5
MW2	BV87818	SW8270	11/17/16	1	2,4-Dinitrotoluene		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	2,6-Dinitrotoluene		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	2-Chloronaphthalene		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	2-Chlorophenol		ug/L	U	1.4
MW2	BV87818	SW8270	11/17/16	1	2-Methylnaphthalene	11	ug/L		5.0
MW2	BV87818	SW8270	11/17/16	1	2-Methylphenol (o-cresol)		ug/L	U	2.4
MW2	BV87818	SW8270	11/17/16	1	2-Nitroaniline		ug/L	U	5.1
MW2	BV87818	SW8270	11/17/16	1	2-Nitrophenol		ug/L	U	3.2
MW2	BV87818	SW8270	11/17/16	1	3&4-Methylphenol (m&p-cresol)		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	3,3'-Dichlorobenzidine		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	3-Nitroaniline		ug/L	U	11
MW2	BV87818	SW8270	11/17/16	1	4,6-Dinitro-2-methylphenol		ug/L	UJ	5.4
MW2	BV87818	SW8270	11/17/16	1	4-Bromophenyl phenyl ether		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	4-Chloro-3-methylphenol		ug/L	U	1.8
MW2	BV87818	SW8270	11/17/16	1	4-Chloroaniline		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	4-Chlorophenyl phenyl ether		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	4-Nitroaniline		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	4-Nitrophenol		ug/L	U	2.3

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
		Method	Date	Factor	,				
MW2	BV87818	SW8270	11/17/16	1	Acenaphthene		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	Acenaphthylene		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	Acetophenone		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	Aniline		ug/L	U	15
MW2	BV87818	SW8270	11/17/16	1	Anthracene		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	Benz(a)anthracene		ug/L	U	1.7
MW2	BV87818	SW8270	11/17/16	1	Benzidine		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	Benzo(a)pyrene		ug/L	U	1.6
MW2	BV87818	SW8270	11/17/16	1	Benzo(b)fluoranthene		ug/L	U	1.7
MW2	BV87818	SW8270	11/17/16	1	Benzo(ghi)perylene		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	Benzo(k)fluoranthene		ug/L	U	1.7
MW2	BV87818	SW8270	11/17/16	1	Benzoic acid		ug/L	U	25
MW2	BV87818	SW8270	11/17/16	1	Benzyl butyl phthalate		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	Bis(2-chloroethoxy)methane		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	Bis(2-chloroethyl)ether		ug/L	U	1.4
MW2	BV87818	SW8270	11/17/16	1	Bis(2-chloroisopropyl)ether		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	Bis(2-ethylhexyl)phthalate		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	Carbazole		ug/L	U	25
MW2	BV87818	SW8270	11/17/16	1	Chrysene		ug/L	U	1.7
MW2	BV87818	SW8270	11/17/16	1	Dibenz(a,h)anthracene		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	Dibenzofuran		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	Diethyl phthalate		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	Dimethylphthalate		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	Di-n-butylphthalate		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	Di-n-octylphthalate		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	Fluoranthene		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	Fluorene		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	Hexachlorobenzene		ug/L	U	1.5
MW2	BV87818	SW8270	11/17/16	1	Hexachlorobutadiene		ug/L	U	1.8
MW2	BV87818	SW8270	11/17/16	1	Hexachlorocyclopentadiene		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	Hexachloroethane		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	Indeno(1,2,3-cd)pyrene		ug/L	U	1.7
MW2	BV87818	SW8270	11/17/16	1	Isophorone		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	Naphthalene	40	ug/L		5.0
MW2	BV87818	SW8270	11/17/16	1	Nitrobenzene		ug/L	U	1.8
MW2	BV87818	SW8270	11/17/16	1	N-Nitrosodimethylamine		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	N-Nitrosodi-n-propylamine		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	N-Nitrosodiphenylamine		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	Pentachloronitrobenzene		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	Pentachlorophenol		ug/L	U	1.9

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
		Method	Date	Factor	,				
MW2	BV87818	SW8270	11/17/16	1	Phenanthrene		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	Phenol		ug/L	U	1.6
MW2	BV87818	SW8270	11/17/16	1	Pyrene		ug/L	U	5.0
MW2	BV87818	SW8270	11/17/16	1	Pyridine		ug/L	U	5.0
MW3	BV87819	7010	11/17/16	1	Antimony		mg/L	UJ	0.002
MW3	BV87819	7010	11/17/16	1	Antimony, (Dissolved)		mg/L	UJ	0.003
MW3	BV87819	7010	11/17/16	1	Selenium		mg/L	U	0.002
MW3	BV87819	7010	11/17/16	1	Selenium, (Dissolved)		mg/L	U	0.004
MW3	BV87819	7010	11/17/16	1	Thallium - LDL		mg/L	UJ	0.0005
MW3	BV87819	7010	11/17/16	1	Thallium , (Dissolved)		mg/L	UJ	0.0005
MW3	BV87819	SW6010	11/17/16	1	Aluminum	9.91	mg/L	J	0.010
MW3	BV87819	SW6010	11/17/16	1	Aluminum (Dissolved)		mg/L	U	0.011
MW3	BV87819	SW6010	11/17/16	1	Arsenic - LDL		mg/L	U	0.004
MW3	BV87819	SW6010	11/17/16	1	Arsenic, (Dissolved)		mg/L	U	0.003
MW3	BV87819	SW6010	11/17/16	1	Barium	0.292	mg/L		0.010
MW3	BV87819	SW6010	11/17/16	1	Barium (Dissolved)	0.181	mg/L		0.011
MW3	BV87819	SW6010	11/17/16	1	Beryllium		mg/L	U	0.001
MW3	BV87819	SW6010	11/17/16	1	Beryllium (Dissolved)		mg/L	U	0.001
MW3	BV87819	SW6010	11/17/16	1	Cadmium	0.001	mg/L	J	0.004
MW3	BV87819	SW6010	11/17/16	1	Cadmium (Dissolved)		mg/L	U	0.004
MW3	BV87819	SW6010	11/17/16	1	Calcium	110	mg/L	J	0.010
MW3	BV87819	SW6010	11/17/16	1	Calcium (Dissolved)	96.9	mg/L	J	0.01
MW3	BV87819	SW6010	11/17/16	1	Chromium	0.027	mg/L		0.001
MW3	BV87819	SW6010	11/17/16	1	Chromium (Dissolved)		mg/L	U	0.001
MW3	BV87819	SW6010	11/17/16	1	Cobalt	0.012	mg/L		0.005
MW3	BV87819	SW6010	11/17/16	1	Cobalt, (Dissolved)	0.002	mg/L	J	0.005
MW3	BV87819	SW6010	11/17/16	1	Copper	0.029	mg/L	U	0.005
MW3	BV87819	SW6010	11/17/16	1	Copper, (Dissolved)	0.001	mg/L	U	0.005
MW3	BV87819	SW6010	11/17/16	1	Iron	30.4	mg/L	J	0.01
MW3	BV87819	SW6010	11/17/16	1	Iron, (Dissolved)		mg/L	U	0.01
MW3	BV87819	SW6010	11/17/16	1	Lead	0.011	mg/L		0.002
MW3	BV87819	SW6010	11/17/16	1	Lead (Dissolved)	0.003	mg/L		0.002
MW3	BV87819	SW6010	11/17/16	1	Magnesium	20.7	mg/L	J	0.010
MW3	BV87819	SW6010	11/17/16	1	Magnesium (Dissolved)	16.2	mg/L		0.01
MW3	BV87819	SW6010	11/17/16	10	Manganese	6.36	mg/L		0.050
MW3	BV87819	SW6010	11/17/16	10	Manganese, (Dissolved)	5.54	mg/L		0.053
MW3	BV87819	SW6010	11/17/16	1	Nickel	0.017	mg/L		0.004
MW3	BV87819	SW6010	11/17/16	1	Nickel, (Dissolved)	0.002	mg/L	J	0.004
MW3	BV87819	SW6010	11/17/16	1	Potassium	17.1	mg/L	J	0.1
MW3	BV87819	SW6010	11/17/16	1	Potassium (Dissolved)	13.4	mg/L	J	0.1

Sample Name	Lab ID	Analytical Method	Sample Date	Dilution Factor	Analyte	Result	Unit	Qualifier	RL
MW3	BV87819	SW6010	11/17/16	1	Silver		mg/L	U	0.005
MW3	BV87819	SW6010	11/17/16	1	Silver (Dissolved)		mg/L	U	0.005
MW3	BV87819	SW6010	11/17/16	10	Sodium	350	mg/L		1.0
MW3	BV87819	SW6010	11/17/16	10	Sodium (Dissolved)	343	mg/L		1.1
MW3	BV87819	SW6010	11/17/16	1	Vanadium	0.031	mg/L		0.010
MW3	BV87819	SW6010	11/17/16	1	Vanadium, (Dissolved)		mg/L	U	0.011
MW3	BV87819	SW6010	11/17/16	1	Zinc	0.049	mg/L		0.010
MW3	BV87819	SW6010	11/17/16	1	Zinc, (Dissolved)		mg/L	U	0.011
MW3	BV87819	SW7470	11/17/16	1	Mercury		mg/L	U	0.0002
MW3	BV87819	SW7470	11/17/16	1	Mercury (Dissolved)		mg/L	U	0.0002
MW3	BV87819	SW8081	11/17/16	1	4,4' -DDD		ug/L	U	0.006
MW3	BV87819	SW8081	11/17/16	1	4,4' -DDE		ug/L	UJ	0.006
MW3	BV87819	SW8081	11/17/16	1	4,4' -DDT		ug/L	UJ	0.006
MW3	BV87819	SW8081	11/17/16	1	a-BHC		ug/L	UJ	0.010
MW3	BV87819	SW8081	11/17/16	1	a-chlordane		ug/L	UJ	0.011
MW3	BV87819	SW8081	11/17/16	1	Alachlor		ug/L	U	0.082
MW3	BV87819	SW8081	11/17/16	1	Aldrin		ug/L	UJ	0.002
MW3	BV87819	SW8081	11/17/16	1	b-BHC		ug/L	UJ	0.030
MW3	BV87819	SW8081	11/17/16	1	Chlordane		ug/L	U	0.055
MW3	BV87819	SW8081	11/17/16	1	d-BHC		ug/L	U	0.006
MW3	BV87819	SW8081	11/17/16	1	Dieldrin		ug/L	U	0.002
MW3	BV87819	SW8081	11/17/16	1	Endosulfan I		ug/L	UJ	0.011
MW3	BV87819	SW8081	11/17/16	1	Endosulfan II		ug/L	UJ	0.011
MW3	BV87819	SW8081	11/17/16	1	Endosulfan Sulfate		ug/L	U	0.011
MW3	BV87819	SW8081	11/17/16	1	Endrin		ug/L	U	0.006
MW3	BV87819	SW8081	11/17/16	1	Endrin Aldehyde		ug/L	UJ	0.011
MW3	BV87819	SW8081	11/17/16	1	Endrin ketone		ug/L	UJ	0.011
MW3	BV87819	SW8081	11/17/16	1	g-BHC (Lindane)		ug/L	UJ	0.006
MW3	BV87819	SW8081	11/17/16	1	g-chlordane		ug/L	UJ	0.011
MW3	BV87819	SW8081	11/17/16	1	Heptachlor		ug/L	U	0.006
MW3	BV87819	SW8081	11/17/16	1	Heptachlor epoxide		ug/L	UJ	0.006
MW3	BV87819	SW8081	11/17/16	1	Methoxychlor		ug/L	UJ	0.11
MW3	BV87819	SW8081	11/17/16	1	Toxaphene		ug/L	U	0.22
MW3	BV87819	SW8082	11/17/16	1	PCB-1016		ug/L	U	0.055
MW3	BV87819	SW8082	11/17/16	1	PCB-1221		ug/L	U	0.055
MW3	BV87819	SW8082	11/17/16	1	PCB-1232		ug/L	U	0.055
MW3	BV87819	SW8082	11/17/16	1	PCB-1242		ug/L	U	0.055
MW3	BV87819	SW8082	11/17/16	1	PCB-1248		ug/L	U	0.055
MW3	BV87819	SW8082	11/17/16	1	PCB-1254		ug/L	U	0.055
MW3	BV87819	SW8082	11/17/16	1	PCB-1260		ug/L	U	0.055

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
-		Method	Date	Factor	-				
MW3	BV87819	SW8082	11/17/16	1	PCB-1262		ug/L	U	0.055
MW3	BV87819	SW8082	11/17/16	1	PCB-1268		ug/L	U	0.055
MW3	BV87819	SW8260	11/17/16	20	1,1,1,2-Tetrachloroethane		ug/L	U	5.0
MW3	BV87819	SW8260	11/17/16	20	1,1,1-Trichloroethane		ug/L	U	5.0
MW3	BV87819	SW8260	11/17/16	20	1,1,2,2-Tetrachloroethane		ug/L	U	5.0
MW3	BV87819	SW8260	11/17/16	20	1,1,2-Trichloroethane		ug/L	U	5.0
MW3	BV87819	SW8260	11/17/16	20	1,1-Dichloroethane		ug/L	U	5.0
MW3	BV87819	SW8260	11/17/16	20	1,1-Dichloroethene		ug/L	U	5.0
MW3	BV87819	SW8260	11/17/16	20	1,1-Dichloropropene		ug/L	U	5.0
MW3	BV87819	SW8260	11/17/16	20	1,2,3-Trichlorobenzene		ug/L	U	20
MW3	BV87819	SW8260	11/17/16	20	1,2,3-Trichloropropane		ug/L	U	5.0
MW3	BV87819	SW8260	11/17/16	20	1,2,4-Trichlorobenzene		ug/L	U	20
MW3	BV87819	SW8260	11/17/16	50	1,2,4-Trimethylbenzene	730	ug/L		13
MW3	BV87819	SW8260	11/17/16	20	1,2-Dibromo-3-chloropropane		ug/L	UJ	10
MW3	BV87819	SW8260	11/17/16	20	1,2-Dibromoethane		ug/L	U	5.0
MW3	BV87819	SW8260	11/17/16	20	1,2-Dichlorobenzene		ug/L	U	5.0
MW3	BV87819	SW8260	11/17/16	20	1,2-Dichloroethane		ug/L	U	10
MW3	BV87819	SW8260	11/17/16	20	1,2-Dichloropropane		ug/L	U	5.0
MW3	BV87819	SW8260	11/17/16	20	1,3,5-Trimethylbenzene	280	ug/L		5.0
MW3	BV87819	SW8260	11/17/16	20	1,3-Dichlorobenzene		ug/L	U	5.0
MW3	BV87819	SW8260	11/17/16	20	1,3-Dichloropropane		ug/L	U	5.0
MW3	BV87819	SW8260	11/17/16	20	1,4-Dichlorobenzene		ug/L	U	5.0
MW3	BV87819	SW8260	11/17/16	20	2,2-Dichloropropane		ug/L	UJ	5.0
MW3	BV87819	SW8260	11/17/16	20	2-Chlorotoluene		ug/L	U	5.0
MW3	BV87819	SW8260	11/17/16	20	2-Hexanone		ug/L	U	50
MW3	BV87819	SW8260	11/17/16	20	2-Isopropyltoluene		ug/L	U	5.0
MW3	BV87819	SW8260	11/17/16	20	4-Chlorotoluene		ug/L	U	5.0
MW3	BV87819	SW8260	11/17/16	20	4-Methyl-2-pentanone		ug/L	U	50
MW3	BV87819	SW8260	11/17/16	20	Acetone		ug/L	UJ	50
MW3	BV87819	SW8260	11/17/16	20	Acrolein		ug/L	UJ	50
MW3	BV87819	SW8260	11/17/16	20	Acrylonitrile		ug/L	UJ	50
MW3	BV87819	SW8260	11/17/16	20	Benzene	170	ug/L		5.0
MW3	BV87819	SW8260	11/17/16	20	Bromobenzene		ug/L	U	5.0
MW3	BV87819	SW8260	11/17/16	20	Bromochloromethane		ug/L	U	5.0
MW3	BV87819	SW8260	11/17/16	20	Bromodichloromethane		ug/L	U	20
MW3	BV87819	SW8260	11/17/16	20	Bromoform		ug/L	U	50
MW3	BV87819	SW8260	11/17/16	20	Bromomethane		ug/L	UJ	5.0
MW3	BV87819	SW8260	11/17/16	20	Carbon Disulfide		ug/L	U	20
MW3	BV87819	SW8260	11/17/16	20	Carbon tetrachloride		ug/L	U	5.0
MW3	BV87819	SW8260	11/17/16	20	Chlorobenzene		ug/L	U	5.0

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
		Method	Date	Factor					
MW3	BV87819	SW8260	11/17/16	20	Chloroethane		ug/L	U	5.0
MW3	BV87819	SW8260	11/17/16	20	Chloroform		ug/L	U	7.0
MW3	BV87819	SW8260	11/17/16	20	Chloromethane		ug/L	U	5.0
MW3	BV87819	SW8260	11/17/16	20	cis-1,2-Dichloroethene		ug/L	U	5.0
MW3	BV87819	SW8260	11/17/16	20	cis-1,3-Dichloropropene		ug/L	U	5.0
MW3	BV87819	SW8260	11/17/16	20	Dibromochloromethane		ug/L	U	20
MW3	BV87819	SW8260	11/17/16	20	Dibromomethane		ug/L	U	5.0
MW3	BV87819	SW8260	11/17/16	20	Dichlorodifluoromethane		ug/L	UJ	5.0
MW3	BV87819	SW8260	11/17/16	20	Ethylbenzene	570	ug/L		5.0
MW3	BV87819	SW8260	11/17/16	20	Hexachlorobutadiene		ug/L	U	4.0
MW3	BV87819	SW8260	11/17/16	20	Isopropylbenzene	79	ug/L		5.0
MW3	BV87819	SW8260	11/17/16	20	m&p-Xylene	540	ug/L		20
MW3	BV87819	SW8260	11/17/16	20	Methyl ethyl ketone		ug/L	U	50
MW3	BV87819	SW8260	11/17/16	20	Methyl t-butyl ether (MTBE)		ug/L	U	20
MW3	BV87819	SW8260	11/17/16	20	Methylene chloride		ug/L	U	20
MW3	BV87819	SW8260	11/17/16	20	Naphthalene	190	ug/L		20
MW3	BV87819	SW8260	11/17/16	20	n-Butylbenzene	20	ug/L		5.0
MW3	BV87819	SW8260	11/17/16	20	n-Propylbenzene	200	ug/L		5.0
MW3	BV87819	SW8260	11/17/16	20	o-Xylene	130	ug/L		5.0
MW3	BV87819	SW8260	11/17/16	20	p-Isopropyltoluene	5.2	ug/L		5.0
MW3	BV87819	SW8260	11/17/16	20	sec-Butylbenzene	13	ug/L		5.0
MW3	BV87819	SW8260	11/17/16	20	Styrene		ug/L	U	5.0
MW3	BV87819	SW8260	11/17/16	20	tert-Butylbenzene		ug/L	U	5.0
MW3	BV87819	SW8260	11/17/16	20	Tetrachloroethene	5.4	ug/L		5.0
MW3	BV87819	SW8260	11/17/16	20	Tetrahydrofuran (THF)		ug/L	UJ	50
MW3	BV87819	SW8260	11/17/16	20	Toluene	91	ug/L		5.0
MW3	BV87819	SW8260	11/17/16	20	trans-1,2-Dichloroethene		ug/L	U	5.0
MW3	BV87819	SW8260	11/17/16	20	trans-1,3-Dichloropropene		ug/L	U	5.0
MW3	BV87819	SW8260	11/17/16	20	trans-1,4-dichloro-2-butene		ug/L	U	50
MW3	BV87819	SW8260	11/17/16	20	Trichloroethene	6.6	ug/L		5.0
MW3	BV87819	SW8260	11/17/16	20	Trichlorofluoromethane		ug/L	U	5.0
MW3	BV87819	SW8260	11/17/16	20	Trichlorotrifluoroethane		ug/L	U	5.0
MW3	BV87819	SW8260	11/17/16	20	Vinyl chloride		ug/L	U	5.0
MW3	BV87819	SW8270	11/17/16	5	1,2,4,5-Tetrachlorobenzene		ug/L	U	26
MW3	BV87819	SW8270	11/17/16	5	1,2,4-Trichlorobenzene		ug/L	U	26
MW3	BV87819	SW8270	11/17/16	5	1,2-Dichlorobenzene		ug/L	U	7.4
MW3	BV87819	SW8270	11/17/16	5	1,2-Diphenylhydrazine		ug/L	U	26
MW3	BV87819	SW8270	11/17/16	5	1,3-Dichlorobenzene		ug/L	U	7.8
MW3	BV87819	SW8270	11/17/16	5	1,4-Dichlorobenzene		ug/L	U	7.8
MW3	BV87819	SW8270	11/17/16	5	2,4,5-Trichlorophenol		ug/L	U	14

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
-		Method	Date	Factor	-				
MW3	BV87819	SW8270	11/17/16	5	2,4,6-Trichlorophenol		ug/L	U	8.4
MW3	BV87819	SW8270	11/17/16	5	2,4-Dichlorophenol		ug/L	U	9.3
MW3	BV87819	SW8270	11/17/16	5	2,4-Dimethylphenol		ug/L	U	6.5
MW3	BV87819	SW8270	11/17/16	5	2,4-Dinitrophenol		ug/L	U	18
MW3	BV87819	SW8270	11/17/16	5	2,4-Dinitrotoluene		ug/L	U	10
MW3	BV87819	SW8270	11/17/16	5	2,6-Dinitrotoluene		ug/L	U	8.3
MW3	BV87819	SW8270	11/17/16	5	2-Chloronaphthalene		ug/L	U	10
MW3	BV87819	SW8270	11/17/16	5	2-Chlorophenol		ug/L	U	7.5
MW3	BV87819	SW8270	11/17/16	5	2-Methylnaphthalene	15	ug/L	J	26
MW3	BV87819	SW8270	11/17/16	5	2-Methylphenol (o-cresol)		ug/L	U	12
MW3	BV87819	SW8270	11/17/16	5	2-Nitroaniline		ug/L	U	27
MW3	BV87819	SW8270	11/17/16	5	2-Nitrophenol		ug/L	U	17
MW3	BV87819	SW8270	11/17/16	5	3&4-Methylphenol (m&p-cresol)		ug/L	U	26
MW3	BV87819	SW8270	11/17/16	5	3,3'-Dichlorobenzidine		ug/L	U	12
MW3	BV87819	SW8270	11/17/16	5	3-Nitroaniline		ug/L	U	57
MW3	BV87819	SW8270	11/17/16	5	4,6-Dinitro-2-methylphenol		ug/L	UJ	28
MW3	BV87819	SW8270	11/17/16	5	4-Bromophenyl phenyl ether		ug/L	U	26
MW3	BV87819	SW8270	11/17/16	5	4-Chloro-3-methylphenol		ug/L	U	9.3
MW3	BV87819	SW8270	11/17/16	5	4-Chloroaniline		ug/L	U	12
MW3	BV87819	SW8270	11/17/16	5	4-Chlorophenyl phenyl ether		ug/L	U	26
MW3	BV87819	SW8270	11/17/16	5	4-Nitroaniline		ug/L	U	8.8
MW3	BV87819	SW8270	11/17/16	5	4-Nitrophenol		ug/L	U	12
MW3	BV87819	SW8270	11/17/16	5	Acenaphthene		ug/L	U	20
MW3	BV87819	SW8270	11/17/16	5	Acenaphthylene		ug/L	U	20
MW3	BV87819	SW8270	11/17/16	5	Acetophenone		ug/L	U	26
MW3	BV87819	SW8270	11/17/16	5	Aniline		ug/L	U	79
MW3	BV87819	SW8270	11/17/16	5	Anthracene		ug/L	U	26
MW3	BV87819	SW8270	11/17/16	5	Benz(a)anthracene		ug/L	U	8.8
MW3	BV87819	SW8270	11/17/16	5	Benzidine		ug/L	U	15
MW3	BV87819	SW8270	11/17/16	5	Benzo(a)pyrene		ug/L	U	8.6
MW3	BV87819	SW8270	11/17/16	5	Benzo(b)fluoranthene		ug/L	U	9.0
MW3	BV87819	SW8270	11/17/16	5	Benzo(ghi)perylene		ug/L	U	8.5
MW3	BV87819	SW8270	11/17/16	5	Benzo(k)fluoranthene		ug/L	U	8.7
MW3	BV87819	SW8270	11/17/16	5	Benzoic acid		ug/L	U	53
MW3	BV87819	SW8270	11/17/16	5	Benzyl butyl phthalate		ug/L	U	26
MW3	BV87819	SW8270	11/17/16	5	Bis(2-chloroethoxy)methane		ug/L	U	7.3
MW3	BV87819	SW8270	11/17/16	5	Bis(2-chloroethyl)ether		ug/L	Ü	7.1
MW3	BV87819	SW8270	11/17/16	5	Bis(2-chloroisopropyl)ether		ug/L	U	26
MW3	BV87819	SW8270	11/17/16	5	Bis(2-ethylhexyl)phthalate		ug/L	Ü	7.6
MW3	BV87819	SW8270	11/17/16	5	Carbazole		ug/L	Ü	130

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
·		Method	Date	Factor	•				
MW3	BV87819	SW8270	11/17/16	5	Chrysene		ug/L	U	8.8
MW3	BV87819	SW8270	11/17/16	5	Dibenz(a,h)anthracene		ug/L	U	26
MW3	BV87819	SW8270	11/17/16	5	Dibenzofuran		ug/L	U	7.7
MW3	BV87819	SW8270	11/17/16	5	Diethyl phthalate		ug/L	U	26
MW3	BV87819	SW8270	11/17/16	5	Dimethylphthalate		ug/L	U	26
MW3	BV87819	SW8270	11/17/16	5	Di-n-butylphthalate		ug/L	U	26
MW3	BV87819	SW8270	11/17/16	5	Di-n-octylphthalate		ug/L	U	26
MW3	BV87819	SW8270	11/17/16	5	Fluoranthene		ug/L	U	26
MW3	BV87819	SW8270	11/17/16	5	Fluorene		ug/L	U	26
MW3	BV87819	SW8270	11/17/16	5	Hexachlorobenzene		ug/L	U	7.7
MW3	BV87819	SW8270	11/17/16	5	Hexachlorobutadiene		ug/L	U	9.5
MW3	BV87819	SW8270	11/17/16	5	Hexachlorocyclopentadiene		ug/L	U	8.1
MW3	BV87819	SW8270	11/17/16	5	Hexachloroethane		ug/L	U	7.9
MW3	BV87819	SW8270	11/17/16	5	Indeno(1,2,3-cd)pyrene		ug/L	U	8.7
MW3	BV87819	SW8270	11/17/16	5	Isophorone		ug/L	U	26
MW3	BV87819	SW8270	11/17/16	5	Naphthalene	130	ug/L		7.6
MW3	BV87819	SW8270	11/17/16	5	Nitrobenzene		ug/L	U	9.2
MW3	BV87819	SW8270	11/17/16	5	N-Nitrosodimethylamine		ug/L	U	26
MW3	BV87819	SW8270	11/17/16	5	N-Nitrosodi-n-propylamine		ug/L	U	26
MW3	BV87819	SW8270	11/17/16	5	N-Nitrosodiphenylamine		ug/L	U	26
MW3	BV87819	SW8270	11/17/16	5	Pentachloronitrobenzene		ug/L	U	26
MW3	BV87819	SW8270	11/17/16	5	Pentachlorophenol		ug/L	U	9.9
MW3	BV87819	SW8270	11/17/16	5	Phenanthrene		ug/L	U	26
MW3	BV87819	SW8270	11/17/16	5	Phenol		ug/L	U	8.4
MW3	BV87819	SW8270	11/17/16	5	Pyrene		ug/L	U	26
MW3	BV87819	SW8270	11/17/16	5	Pyridine		ug/L	U	26
MW4	BV87820	7010	11/17/16	1	Antimony		mg/L	U	0.002
MW4	BV87820	7010	11/17/16	1	Antimony, (Dissolved)		mg/L	UJ	0.003
MW4	BV87820	7010	11/17/16	1	Selenium		mg/L	U	0.002
MW4	BV87820	7010	11/17/16	1	Selenium, (Dissolved)		mg/L	U	0.004
MW4	BV87820	7010	11/17/16	1	Thallium - LDL		mg/L	U	0.0005
MW4	BV87820	7010	11/17/16	1	Thallium, (Dissolved)		mg/L	UJ	0.0005
MW4	BV87820	SW6010	11/17/16	10	Aluminum	32.7	mg/L	J	0.10
MW4	BV87820	SW6010	11/17/16	1	Aluminum (Dissolved)		mg/L	U	0.011
MW4	BV87820	SW6010	11/17/16	1	Arsenic - LDL	0.012	mg/L		0.004
MW4	BV87820	SW6010	11/17/16	1	Arsenic, (Dissolved)		mg/L	U	0.003
MW4	BV87820	SW6010	11/17/16	1	Barium	0.507	mg/L		0.010
MW4	BV87820	SW6010	11/17/16	1	Barium (Dissolved)	0.205	mg/L		0.011
MW4	BV87820	SW6010	11/17/16	1	Beryllium	0.002	mg/L		0.001
MW4	BV87820	SW6010	11/17/16	1	Beryllium (Dissolved)		mg/L	U	0.001

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
·		Method	Date	Factor	,				
MW4	BV87820	SW6010	11/17/16	1	Cadmium	0.003	mg/L	J	0.004
MW4	BV87820	SW6010	11/17/16	1	Cadmium (Dissolved)		mg/L	U	0.004
MW4	BV87820	SW6010	11/17/16	1	Calcium	118	mg/L	J	0.010
MW4	BV87820	SW6010	11/17/16	1	Calcium (Dissolved)	105	mg/L	J	0.01
MW4	BV87820	SW6010	11/17/16	1	Chromium	0.097	mg/L		0.001
MW4	BV87820	SW6010	11/17/16	1	Chromium (Dissolved)		mg/L	U	0.001
MW4	BV87820	SW6010	11/17/16	1	Cobalt	0.041	mg/L		0.005
MW4	BV87820	SW6010	11/17/16	1	Cobalt, (Dissolved)	0.011	mg/L		0.005
MW4	BV87820	SW6010	11/17/16	1	Copper	0.069	mg/L	U	0.005
MW4	BV87820	SW6010	11/17/16	1	Copper, (Dissolved)		mg/L	U	0.005
MW4	BV87820	SW6010	11/17/16	10	Iron	133	mg/L		0.10
MW4	BV87820	SW6010	11/17/16	1	Iron, (Dissolved)	8.95	mg/L		0.01
MW4	BV87820	SW6010	11/17/16	1	Lead	0.021	mg/L		0.002
MW4	BV87820	SW6010	11/17/16	1	Lead (Dissolved)	0.002	mg/L	J	0.002
MW4	BV87820	SW6010	11/17/16	1	Magnesium	37.8	mg/L	J	0.010
MW4	BV87820	SW6010	11/17/16	1	Magnesium (Dissolved)	27.9	mg/L		0.01
MW4	BV87820	SW6010	11/17/16	10	Manganese	12.1	mg/L		0.050
MW4	BV87820	SW6010	11/17/16	10	Manganese, (Dissolved)	9.87	mg/L		0.053
MW4	BV87820	SW6010	11/17/16	1	Nickel	0.069	mg/L		0.004
MW4	BV87820	SW6010	11/17/16	1	Nickel, (Dissolved)	0.005	mg/L		0.004
MW4	BV87820	SW6010	11/17/16	1	Potassium	17.5	mg/L	J	0.1
MW4	BV87820	SW6010	11/17/16	1	Potassium (Dissolved)	10.8	mg/L	J	0.1
MW4	BV87820	SW6010	11/17/16	1	Silver		mg/L	U	0.005
MW4	BV87820	SW6010	11/17/16	1	Silver (Dissolved)		mg/L	U	0.005
MW4	BV87820	SW6010	11/17/16	10	Sodium	148	mg/L	J	1.0
MW4	BV87820	SW6010	11/17/16	10	Sodium (Dissolved)	145	mg/L		1.1
MW4	BV87820	SW6010	11/17/16	1	Vanadium	0.088	mg/L		0.010
MW4	BV87820	SW6010	11/17/16	1	Vanadium, (Dissolved)		mg/L	U	0.011
MW4	BV87820	SW6010	11/17/16	1	Zinc	0.118	mg/L		0.010
MW4	BV87820	SW6010	11/17/16	1	Zinc, (Dissolved)	0.002	mg/L	J	0.011
MW4	BV87820	SW7470	11/17/16	1	Mercury		mg/L	U	0.0002
MW4	BV87820	SW7470	11/17/16	1	Mercury (Dissolved)		mg/L	U	0.0002
MW4	BV87820	SW8081	11/17/16	1	4,4' -DDD		ug/L	U	0.005
MW4	BV87820	SW8081	11/17/16	1	4,4' -DDE		ug/L	U	0.005
MW4	BV87820	SW8081	11/17/16	1	4,4' -DDT		ug/L	U	0.005
MW4	BV87820	SW8081	11/17/16	1	a-BHC		ug/L	U	0.005
MW4	BV87820	SW8081	11/17/16	1	a-chlordane		ug/L	U	0.010
MW4	BV87820	SW8081	11/17/16	1	Alachlor		ug/L	U	0.075
MW4	BV87820	SW8081	11/17/16	1	Aldrin		ug/L	Ü	0.010
MW4	BV87820	SW8081	11/17/16	1	b-BHC		ug/L	U	0.005

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
		Method	Date	Factor	-				
MW4	BV87820	SW8081	11/17/16	1	Chlordane		ug/L	U	0.050
MW4	BV87820	SW8081	11/17/16	1	d-BHC		ug/L	U	0.005
MW4	BV87820	SW8081	11/17/16	1	Dieldrin		ug/L	U	0.002
MW4	BV87820	SW8081	11/17/16	1	Endosulfan I		ug/L	U	0.010
MW4	BV87820	SW8081	11/17/16	1	Endosulfan II		ug/L	U	0.010
MW4	BV87820	SW8081	11/17/16	1	Endosulfan Sulfate		ug/L	U	0.010
MW4	BV87820	SW8081	11/17/16	1	Endrin		ug/L	U	0.010
MW4	BV87820	SW8081	11/17/16	1	Endrin Aldehyde		ug/L	U	0.010
MW4	BV87820	SW8081	11/17/16	1	Endrin ketone		ug/L	U	0.010
MW4	BV87820	SW8081	11/17/16	1	g-BHC (Lindane)		ug/L	U	0.005
MW4	BV87820	SW8081	11/17/16	1	g-chlordane		ug/L	U	0.010
MW4	BV87820	SW8081	11/17/16	1	Heptachlor		ug/L	U	0.010
MW4	BV87820	SW8081	11/17/16	1	Heptachlor epoxide		ug/L	U	0.010
MW4	BV87820	SW8081	11/17/16	1	Methoxychlor		ug/L	U	0.10
MW4	BV87820	SW8081	11/17/16	1	Toxaphene		ug/L	U	0.20
MW4	BV87820	SW8082	11/17/16	1	PCB-1016		ug/L	U	0.050
MW4	BV87820	SW8082	11/17/16	1	PCB-1221		ug/L	U	0.050
MW4	BV87820	SW8082	11/17/16	1	PCB-1232		ug/L	U	0.050
MW4	BV87820	SW8082	11/17/16	1	PCB-1242		ug/L	U	0.050
MW4	BV87820	SW8082	11/17/16	1	PCB-1248		ug/L	U	0.050
MW4	BV87820	SW8082	11/17/16	1	PCB-1254		ug/L	U	0.050
MW4	BV87820	SW8082	11/17/16	1	PCB-1260		ug/L	U	0.050
MW4	BV87820	SW8082	11/17/16	1	PCB-1262		ug/L	U	0.050
MW4	BV87820	SW8082	11/17/16	1	PCB-1268		ug/L	U	0.050
MW4	BV87820	SW8260	11/17/16	1	1,1,1,2-Tetrachloroethane		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	1,1,1-Trichloroethane		ug/L	U	5.0
MW4	BV87820	SW8260	11/17/16	1	1,1,2,2-Tetrachloroethane		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	1,1,2-Trichloroethane		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	1,1-Dichloroethane		ug/L	U	5.0
MW4	BV87820	SW8260	11/17/16	1	1,1-Dichloroethene		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	1,1-Dichloropropene		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	1,2,3-Trichlorobenzene		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	1,2,3-Trichloropropane		ug/L	U	0.25
MW4	BV87820	SW8260	11/17/16	1	1,2,4-Trichlorobenzene		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	1,2,4-Trimethylbenzene		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	1,2-Dibromo-3-chloropropane		ug/L	UJ	0.50
MW4	BV87820	SW8260	11/17/16	1	1,2-Dibromoethane		ug/L	U	0.25
MW4	BV87820	SW8260	11/17/16	1	1,2-Dichlorobenzene		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	1,2-Dichloroethane		ug/L	Ü	0.60
MW4	BV87820	SW8260	11/17/16	1	1,2-Dichloropropane		ug/L	U	1.0

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
-		Method	Date	Factor	-				
MW4	BV87820	SW8260	11/17/16	1	1,3,5-Trimethylbenzene	0.61	ug/L	J	1.0
MW4	BV87820	SW8260	11/17/16	1	1,3-Dichlorobenzene		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	1,3-Dichloropropane		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	1,4-Dichlorobenzene		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	2,2-Dichloropropane		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	2-Chlorotoluene		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	2-Hexanone		ug/L	U	2.5
MW4	BV87820	SW8260	11/17/16	1	2-Isopropyltoluene		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	4-Chlorotoluene		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	4-Methyl-2-pentanone	5.6	ug/L		2.5
MW4	BV87820	SW8260	11/17/16	5	Acetone	46	ug/L	J	25
MW4	BV87820	SW8260	11/17/16	1	Acrolein		ug/L	UJ	5.0
MW4	BV87820	SW8260	11/17/16	1	Acrylonitrile		ug/L	UJ	5.0
MW4	BV87820	SW8260	11/17/16	1	Benzene	1.7	ug/L		0.70
MW4	BV87820	SW8260	11/17/16	1	Bromobenzene		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	Bromochloromethane		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	Bromodichloromethane		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	Bromoform		ug/L	U	5.0
MW4	BV87820	SW8260	11/17/16	1	Bromomethane		ug/L	UJ	5.0
MW4	BV87820	SW8260	11/17/16	1	Carbon Disulfide		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	Carbon tetrachloride		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	Chlorobenzene		ug/L	U	5.0
MW4	BV87820	SW8260	11/17/16	1	Chloroethane		ug/L	U	5.0
MW4	BV87820	SW8260	11/17/16	1	Chloroform		ug/L	U	5.0
MW4	BV87820	SW8260	11/17/16	1	Chloromethane		ug/L	U	5.0
MW4	BV87820	SW8260	11/17/16	1	cis-1,2-Dichloroethene	0.42	ug/L	J	1.0
MW4	BV87820	SW8260	11/17/16	1	cis-1,3-Dichloropropene		ug/L	U	0.40
MW4	BV87820	SW8260	11/17/16	1	Dibromochloromethane		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	Dibromomethane		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	Dichlorodifluoromethane		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	Ethylbenzene		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	Hexachlorobutadiene		ug/L	U	0.50
MW4	BV87820	SW8260	11/17/16	1	Isopropylbenzene		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	m&p-Xylene	0.34	ug/L	J	1.0
MW4	BV87820	SW8260	11/17/16	1	Methyl ethyl ketone	26	ug/L		2.5
MW4	BV87820	SW8260	11/17/16	1	Methyl t-butyl ether (MTBE)	0.64	ug/L	J	1.0
MW4	BV87820	SW8260	11/17/16	1	Methylene chloride		ug/L	U	3.0
MW4	BV87820	SW8260	11/17/16	1	Naphthalene		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	n-Butylbenzene		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	n-Propylbenzene		ug/L	U	1.0

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
·		Method	Date	Factor	,				
MW4	BV87820	SW8260	11/17/16	1	o-Xylene		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	p-Isopropyltoluene		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	sec-Butylbenzene	0.25	ug/L	J	1.0
MW4	BV87820	SW8260	11/17/16	1	Styrene		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	tert-Butylbenzene		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	Tetrachloroethene		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	Tetrahydrofuran (THF)		ug/L	UJ	5.0
MW4	BV87820	SW8260	11/17/16	1	Toluene	0.79	ug/L	J	1.0
MW4	BV87820	SW8260	11/17/16	1	trans-1,2-Dichloroethene		ug/L	U	5.0
MW4	BV87820	SW8260	11/17/16	1	trans-1,3-Dichloropropene		ug/L	U	0.40
MW4	BV87820	SW8260	11/17/16	1	trans-1,4-dichloro-2-butene		ug/L	U	2.5
MW4	BV87820	SW8260	11/17/16	1	Trichloroethene	0.26	ug/L	J	1.0
MW4	BV87820	SW8260	11/17/16	1	Trichlorofluoromethane		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	Trichlorotrifluoroethane		ug/L	U	1.0
MW4	BV87820	SW8260	11/17/16	1	Vinyl chloride		ug/L	U	1.0
MW4	BV87820	SW8270	11/17/16	20	1,2,4,5-Tetrachlorobenzene		ug/L	U	110
MW4	BV87820	SW8270	11/17/16	20	1,2,4-Trichlorobenzene		ug/L	U	110
MW4	BV87820	SW8270	11/17/16	20	1,2-Dichlorobenzene		ug/L	U	30
MW4	BV87820	SW8270	11/17/16	20	1,2-Diphenylhydrazine		ug/L	U	110
MW4	BV87820	SW8270	11/17/16	20	1,3-Dichlorobenzene		ug/L	U	32
MW4	BV87820	SW8270	11/17/16	20	1,4-Dichlorobenzene		ug/L	U	32
MW4	BV87820	SW8270	11/17/16	20	2,4,5-Trichlorophenol		ug/L	U	59
MW4	BV87820	SW8270	11/17/16	20	2,4,6-Trichlorophenol		ug/L	U	35
MW4	BV87820	SW8270	11/17/16	20	2,4-Dichlorophenol		ug/L	U	38
MW4	BV87820	SW8270	11/17/16	20	2,4-Dimethylphenol		ug/L	U	27
MW4	BV87820	SW8270	11/17/16	20	2,4-Dinitrophenol		ug/L	U	76
MW4	BV87820	SW8270	11/17/16	20	2,4-Dinitrotoluene		ug/L	U	43
MW4	BV87820	SW8270	11/17/16	20	2,6-Dinitrotoluene		ug/L	U	34
MW4	BV87820	SW8270	11/17/16	20	2-Chloronaphthalene		ug/L	U	31
MW4	BV87820	SW8270	11/17/16	20	2-Chlorophenol		ug/L	U	31
MW4	BV87820	SW8270	11/17/16	20	2-Methylnaphthalene		ug/L	U	50
MW4	BV87820	SW8270	11/17/16	20	2-Methylphenol (o-cresol)		ug/L	U	51
MW4	BV87820	SW8270	11/17/16	20	2-Nitroaniline		ug/L	U	110
MW4	BV87820	SW8270	11/17/16	20	2-Nitrophenol		ug/L	U	69
MW4	BV87820	SW8270	11/17/16	20	3&4-Methylphenol (m&p-cresol)		ug/L	U	110
MW4	BV87820	SW8270	11/17/16	20	3,3'-Dichlorobenzidine		ug/L	U	51
MW4	BV87820	SW8270	11/17/16	20	3-Nitroaniline		ug/L	U	240
MW4	BV87820	SW8270	11/17/16	20	4,6-Dinitro-2-methylphenol		ug/L	UJ	120
MW4	BV87820	SW8270	11/17/16	20	4-Bromophenyl phenyl ether		ug/L	U	110
MW4	BV87820	SW8270	11/17/16	20	4-Chloro-3-methylphenol		ug/L	U	38

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
		Method	Date	Factor	,				
MW4	BV87820	SW8270	11/17/16	20	4-Chloroaniline		ug/L	U	50
MW4	BV87820	SW8270	11/17/16	20	4-Chlorophenyl phenyl ether		ug/L	U	110
MW4	BV87820	SW8270	11/17/16	20	4-Nitroaniline		ug/L	U	36
MW4	BV87820	SW8270	11/17/16	20	4-Nitrophenol		ug/L	U	49
MW4	BV87820	SW8270	11/17/16	20	Acenaphthene		ug/L	U	33
MW4	BV87820	SW8270	11/17/16	20	Acenaphthylene		ug/L	U	30
MW4	BV87820	SW8270	11/17/16	20	Acetophenone		ug/L	U	110
MW4	BV87820	SW8270	11/17/16	20	Aniline		ug/L	U	320
MW4	BV87820	SW8270	11/17/16	20	Anthracene		ug/L	U	50
MW4	BV87820	SW8270	11/17/16	20	Benz(a)anthracene		ug/L	U	36
MW4	BV87820	SW8270	11/17/16	20	Benzidine		ug/L	U	64
MW4	BV87820	SW8270	11/17/16	20	Benzo(a)pyrene		ug/L	U	35
MW4	BV87820	SW8270	11/17/16	20	Benzo(b)fluoranthene		ug/L	U	37
MW4	BV87820	SW8270	11/17/16	20	Benzo(ghi)perylene		ug/L	U	35
MW4	BV87820	SW8270	11/17/16	20	Benzo(k)fluoranthene		ug/L	U	36
MW4	BV87820	SW8270	11/17/16	20	Benzoic acid	360	ug/L		220
MW4	BV87820	SW8270	11/17/16	20	Benzyl butyl phthalate		ug/L	U	50
MW4	BV87820	SW8270	11/17/16	20	Bis(2-chloroethoxy)methane		ug/L	U	30
MW4	BV87820	SW8270	11/17/16	20	Bis(2-chloroethyl)ether		ug/L	U	29
MW4	BV87820	SW8270	11/17/16	20	Bis(2-chloroisopropyl)ether		ug/L	U	110
MW4	BV87820	SW8270	11/17/16	20	Bis(2-ethylhexyl)phthalate		ug/L	U	31
MW4	BV87820	SW8270	11/17/16	20	Carbazole		ug/L	U	540
MW4	BV87820	SW8270	11/17/16	20	Chrysene		ug/L	U	36
MW4	BV87820	SW8270	11/17/16	20	Dibenz(a,h)anthracene		ug/L	U	50
MW4	BV87820	SW8270	11/17/16	20	Dibenzofuran		ug/L	U	32
MW4	BV87820	SW8270	11/17/16	20	Diethyl phthalate		ug/L	U	50
MW4	BV87820	SW8270	11/17/16	20	Dimethylphthalate		ug/L	U	50
MW4	BV87820	SW8270	11/17/16	20	Di-n-butylphthalate		ug/L	U	50
MW4	BV87820	SW8270	11/17/16	20	Di-n-octylphthalate		ug/L	U	50
MW4	BV87820	SW8270	11/17/16	20	Fluoranthene		ug/L	U	50
MW4	BV87820	SW8270	11/17/16	20	Fluorene		ug/L	U	50
MW4	BV87820	SW8270	11/17/16	20	Hexachlorobenzene		ug/L	U	32
MW4	BV87820	SW8270	11/17/16	20	Hexachlorobutadiene		ug/L	U	39
MW4	BV87820	SW8270	11/17/16	20	Hexachlorocyclopentadiene		ug/L	U	33
MW4	BV87820	SW8270	11/17/16	20	Hexachloroethane		ug/L	U	32
MW4	BV87820	SW8270	11/17/16	20	Indeno(1,2,3-cd)pyrene		ug/L	U	36
MW4	BV87820	SW8270	11/17/16	20	Isophorone		ug/L	U	50
MW4	BV87820	SW8270	11/17/16	20	Naphthalene		ug/L	U	31
MW4	BV87820	SW8270	11/17/16	20	Nitrobenzene		ug/L	U	38
MW4	BV87820	SW8270	11/17/16	20	N-Nitrosodimethylamine		ug/L	U	110

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
•		Method	Date	Factor	,				
MW4	BV87820	SW8270	11/17/16	20	N-Nitrosodi-n-propylamine		ug/L	U	110
MW4	BV87820	SW8270	11/17/16	20	N-Nitrosodiphenylamine		ug/L	U	50
MW4	BV87820	SW8270	11/17/16	20	Pentachloronitrobenzene		ug/L	U	110
MW4	BV87820	SW8270	11/17/16	20	Pentachlorophenol		ug/L	U	41
MW4	BV87820	SW8270	11/17/16	20	Phenanthrene		ug/L	U	50
MW4	BV87820	SW8270	11/17/16	20	Phenol		ug/L	U	35
MW4	BV87820	SW8270	11/17/16	20	Pyrene		ug/L	U	50
MW4	BV87820	SW8270	11/17/16	20	Pyridine		ug/L	U	50
MW5	BV87821	7010	11/17/16	1	Antimony		mg/L	U	0.002
MW5	BV87821	7010	11/17/16	1	Antimony, (Dissolved)		mg/L	UJ	0.003
MW5	BV87821	7010	11/17/16	1	Selenium		mg/L	U	0.002
MW5	BV87821	7010	11/17/16	1	Selenium, (Dissolved)		mg/L	U	0.004
MW5	BV87821	7010	11/17/16	1	Thallium - LDL		mg/L	U	0.0005
MW5	BV87821	7010	11/17/16	1	Thallium, (Dissolved)		mg/L	UJ	0.0005
MW5	BV87821	SW6010	11/17/16	1	Aluminum	1.05	mg/L	J	0.010
MW5	BV87821	SW6010	11/17/16	1	Aluminum (Dissolved)		mg/L	U	0.011
MW5	BV87821	SW6010	11/17/16	1	Arsenic - LDL		mg/L	U	0.004
MW5	BV87821	SW6010	11/17/16	1	Arsenic, (Dissolved)		mg/L	U	0.003
MW5	BV87821	SW6010	11/17/16	1	Barium	0.155	mg/L		0.010
MW5	BV87821	SW6010	11/17/16	1	Barium (Dissolved)	0.085	mg/L		0.011
MW5	BV87821	SW6010	11/17/16	1	Beryllium		mg/L	U	0.001
MW5	BV87821	SW6010	11/17/16	1	Beryllium (Dissolved)		mg/L	U	0.001
MW5	BV87821	SW6010	11/17/16	1	Cadmium	0.001	mg/L	J	0.004
MW5	BV87821	SW6010	11/17/16	1	Cadmium (Dissolved)		mg/L	U	0.004
MW5	BV87821	SW6010	11/17/16	1	Calcium	98.0	mg/L	J	0.010
MW5	BV87821	SW6010	11/17/16	1	Calcium (Dissolved)	87.4	mg/L	J	0.01
MW5	BV87821	SW6010	11/17/16	1	Chromium	0.003	mg/L		0.001
MW5	BV87821	SW6010	11/17/16	1	Chromium (Dissolved)		mg/L	U	0.001
MW5	BV87821	SW6010	11/17/16	1	Cobalt	0.002	mg/L	J	0.005
MW5	BV87821	SW6010	11/17/16	1	Cobalt, (Dissolved)		mg/L	U	0.005
MW5	BV87821	SW6010	11/17/16	1	Copper	0.004	mg/L	U	0.005
MW5	BV87821	SW6010	11/17/16	1	Copper, (Dissolved)		mg/L	U	0.005
MW5	BV87821	SW6010	11/17/16	1	Iron	28.2	mg/L	J	0.01
MW5	BV87821	SW6010	11/17/16	1	Iron, (Dissolved)	0.39	mg/L		0.01
MW5	BV87821	SW6010	11/17/16	1	Lead	0.006	mg/L	_	0.002
MW5	BV87821	SW6010	11/17/16	1	Lead (Dissolved)		mg/L	U	0.002
MW5	BV87821	SW6010	11/17/16	1	Magnesium	33.5	mg/L	J	0.010
MW5	BV87821	SW6010	11/17/16	1	Magnesium (Dissolved)	30.1	mg/L		0.01
MW5	BV87821	SW6010	11/17/16	10	Manganese	5.19	mg/L		0.050
MW5	BV87821	SW6010	11/17/16	10	Manganese, (Dissolved)	4.56	mg/L		0.053

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
·		Method	Date	Factor	•				
MW5	BV87821	SW6010	11/17/16	1	Nickel	0.002	mg/L	J	0.004
MW5	BV87821	SW6010	11/17/16	1	Nickel, (Dissolved)		mg/L	U	0.004
MW5	BV87821	SW6010	11/17/16	1	Potassium	4.8	mg/L	J	0.1
MW5	BV87821	SW6010	11/17/16	1	Potassium (Dissolved)	4.3	mg/L	J	0.1
MW5	BV87821	SW6010	11/17/16	1	Silver		mg/L	U	0.005
MW5	BV87821	SW6010	11/17/16	1	Silver (Dissolved)		mg/L	U	0.005
MW5	BV87821	SW6010	11/17/16	10	Sodium	130	mg/L	J	1.0
MW5	BV87821	SW6010	11/17/16	10	Sodium (Dissolved)	128	mg/L		1.1
MW5	BV87821	SW6010	11/17/16	1	Vanadium	0.004	mg/L	J	0.010
MW5	BV87821	SW6010	11/17/16	1	Vanadium, (Dissolved)		mg/L	U	0.011
MW5	BV87821	SW6010	11/17/16	1	Zinc	0.010	mg/L		0.010
MW5	BV87821	SW6010	11/17/16	1	Zinc, (Dissolved)		mg/L	U	0.011
MW5	BV87821	SW7470	11/17/16	1	Mercury		mg/L	U	0.0002
MW5	BV87821	SW7470	11/17/16	1	Mercury (Dissolved)		mg/L	U	0.0002
MW5	BV87821	SW8081	11/17/16	1	4,4' -DDD		ug/L	U	0.005
MW5	BV87821	SW8081	11/17/16	1	4,4' -DDE		ug/L	UJ	0.005
MW5	BV87821	SW8081	11/17/16	1	4,4' -DDT		ug/L	UJ	0.005
MW5	BV87821	SW8081	11/17/16	1	a-BHC		ug/L	UJ	0.005
MW5	BV87821	SW8081	11/17/16	1	a-chlordane		ug/L	UJ	0.010
MW5	BV87821	SW8081	11/17/16	1	Alachlor		ug/L	U	0.077
MW5	BV87821	SW8081	11/17/16	1	Aldrin		ug/L	UJ	0.002
MW5	BV87821	SW8081	11/17/16	1	b-BHC		ug/L	UJ	0.005
MW5	BV87821	SW8081	11/17/16	1	Chlordane		ug/L	U	0.052
MW5	BV87821	SW8081	11/17/16	1	d-BHC		ug/L	U	0.005
MW5	BV87821	SW8081	11/17/16	1	Dieldrin		ug/L	U	0.002
MW5	BV87821	SW8081	11/17/16	1	Endosulfan I		ug/L	UJ	0.010
MW5	BV87821	SW8081	11/17/16	1	Endosulfan II		ug/L	UJ	0.010
MW5	BV87821	SW8081	11/17/16	1	Endosulfan Sulfate		ug/L	U	0.010
MW5	BV87821	SW8081	11/17/16	1	Endrin		ug/L	U	0.005
MW5	BV87821	SW8081	11/17/16	1	Endrin Aldehyde		ug/L	UJ	0.010
MW5	BV87821	SW8081	11/17/16	1	Endrin ketone		ug/L	UJ	0.010
MW5	BV87821	SW8081	11/17/16	1	g-BHC (Lindane)		ug/L	UJ	0.005
MW5	BV87821	SW8081	11/17/16	1	g-chlordane		ug/L	UJ	0.010
MW5	BV87821	SW8081	11/17/16	1	Heptachlor		ug/L	U	0.005
MW5	BV87821	SW8081	11/17/16	1	Heptachlor epoxide		ug/L	UJ	0.005
MW5	BV87821	SW8081	11/17/16	1	Methoxychlor		ug/L	UJ	0.10
MW5	BV87821	SW8081	11/17/16	1	Toxaphene		ug/L	U	0.21
MW5	BV87821	SW8082	11/17/16	1	PCB-1016		ug/L	U	0.052
MW5	BV87821	SW8082	11/17/16	1	PCB-1221		ug/L	U	0.052
MW5	BV87821	SW8082	11/17/16	1	PCB-1232		ug/L	U	0.052

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
-		Method	Date	Factor					
MW5	BV87821	SW8082	11/17/16	1	PCB-1242		ug/L	U	0.052
MW5	BV87821	SW8082	11/17/16	1	PCB-1248		ug/L	U	0.052
MW5	BV87821	SW8082	11/17/16	1	PCB-1254		ug/L	U	0.052
MW5	BV87821	SW8082	11/17/16	1	PCB-1260		ug/L	U	0.052
MW5	BV87821	SW8082	11/17/16	1	PCB-1262		ug/L	U	0.052
MW5	BV87821	SW8082	11/17/16	1	PCB-1268		ug/L	U	0.052
MW5	BV87821	SW8260	11/17/16	1	1,1,1,2-Tetrachloroethane		ug/L	U	1.0
MW5	BV87821	SW8260	11/17/16	1	1,1,1-Trichloroethane		ug/L	U	5.0
MW5	BV87821	SW8260	11/17/16	1	1,1,2,2-Tetrachloroethane		ug/L	U	1.0
MW5	BV87821	SW8260	11/17/16	1	1,1,2-Trichloroethane		ug/L	U	1.0
MW5	BV87821	SW8260	11/17/16	1	1,1-Dichloroethane	0.53	ug/L	J	5.0
MW5	BV87821	SW8260	11/17/16	1	1,1-Dichloroethene		ug/L	U	1.0
MW5	BV87821	SW8260	11/17/16	1	1,1-Dichloropropene		ug/L	U	1.0
MW5	BV87821	SW8260	11/17/16	1	1,2,3-Trichlorobenzene		ug/L	U	1.0
MW5	BV87821	SW8260	11/17/16	1	1,2,3-Trichloropropane		ug/L	U	0.25
MW5	BV87821	SW8260	11/17/16	1	1,2,4-Trichlorobenzene		ug/L	U	1.0
MW5	BV87821	SW8260	11/17/16	1	1,2,4-Trimethylbenzene	1.3	ug/L		1.0
MW5	BV87821	SW8260	11/17/16	1	1,2-Dibromo-3-chloropropane		ug/L	UJ	0.50
MW5	BV87821	SW8260	11/17/16	1	1,2-Dibromoethane		ug/L	U	0.25
MW5	BV87821	SW8260	11/17/16	1	1,2-Dichlorobenzene		ug/L	U	1.0
MW5	BV87821	SW8260	11/17/16	1	1,2-Dichloroethane		ug/L	U	0.60
MW5	BV87821	SW8260	11/17/16	1	1,2-Dichloropropane		ug/L	U	1.0
MW5	BV87821	SW8260	11/17/16	1	1,3,5-Trimethylbenzene		ug/L	U	1.0
MW5	BV87821	SW8260	11/17/16	1	1,3-Dichlorobenzene		ug/L	U	1.0
MW5	BV87821	SW8260	11/17/16	1	1,3-Dichloropropane		ug/L	U	1.0
MW5	BV87821	SW8260	11/17/16	1	1,4-Dichlorobenzene		ug/L	U	1.0
MW5	BV87821	SW8260	11/17/16	1	2,2-Dichloropropane		ug/L	U	1.0
MW5	BV87821	SW8260	11/17/16	1	2-Chlorotoluene		ug/L	U	1.0
MW5	BV87821	SW8260	11/17/16	1	2-Hexanone		ug/L	U	2.5
MW5	BV87821	SW8260	11/17/16	1	2-Isopropyltoluene		ug/L	U	1.0
MW5	BV87821	SW8260	11/17/16	1	4-Chlorotoluene		ug/L	U	1.0
MW5	BV87821	SW8260	11/17/16	1	4-Methyl-2-pentanone		ug/L	U	2.5
MW5	BV87821	SW8260	11/17/16	1	Acetone	4.7	ug/L	J	5.0
MW5	BV87821	SW8260	11/17/16	1	Acrolein		ug/L	UJ	5.0
MW5	BV87821	SW8260	11/17/16	1	Acrylonitrile		ug/L	UJ	5.0
MW5	BV87821	SW8260	11/17/16	1	Benzene	0.73	ug/L		0.70
MW5	BV87821	SW8260	11/17/16	1	Bromobenzene		ug/L	U	1.0
MW5	BV87821	SW8260	11/17/16	1	Bromochloromethane		ug/L	U	1.0
MW5	BV87821	SW8260	11/17/16	1	Bromodichloromethane		ug/L	U	1.0
MW5	BV87821	SW8260	11/17/16	1	Bromoform		ug/L	U	5.0

Sample Name	Lab ID	Analytical Method	Sample Date	Dilution Factor	Analyte	Result	Unit	Qualifier	RL
MW5	BV87821	SW8260	11/17/16	1	Bromomethane		ug/L	UJ	5.0
MW5	BV87821	SW8260	11/17/16	1	Carbon Disulfide		ug/L	U	1.0
MW5	BV87821	SW8260	11/17/16	1	Carbon tetrachloride		ug/L	Ü	1.0
MW5	BV87821	SW8260	11/17/16	1	Chlorobenzene		ug/L	Ü	5.0
MW5	BV87821	SW8260	11/17/16	1	Chloroethane		ug/L	Ü	5.0
MW5	BV87821	SW8260	11/17/16	1	Chloroform		ug/L	Ü	5.0
MW5	BV87821	SW8260	11/17/16	1	Chloromethane		ug/L	Ü	5.0
MW5	BV87821	SW8260	11/17/16	1	cis-1,2-Dichloroethene	1.4	ug/L		1.0
MW5	BV87821	SW8260	11/17/16	1	cis-1,3-Dichloropropene		ug/L	U	0.40
MW5	BV87821	SW8260	11/17/16	1	Dibromochloromethane		ug/L	Ü	1.0
MW5	BV87821	SW8260	11/17/16	1	Dibromomethane		ug/L	Ü	1.0
MW5	BV87821	SW8260	11/17/16	1	Dichlorodifluoromethane		ug/L	Ü	1.0
MW5	BV87821	SW8260	11/17/16	1	Ethylbenzene	1.1	ug/L		1.0
MW5	BV87821	SW8260	11/17/16	1	Hexachlorobutadiene		ug/L	U	0.50
MW5	BV87821	SW8260	11/17/16	1	Isopropylbenzene		ug/L	U	1.0
MW5	BV87821	SW8260	11/17/16	1	m&p-Xylene	3.6	ug/L		1.0
MW5	BV87821	SW8260	11/17/16	1	Methyl ethyl ketone		ug/L	U	2.5
MW5	BV87821	SW8260	11/17/16	1	Methyl t-butyl ether (MTBE)		ug/L	U	1.0
MW5	BV87821	SW8260	11/17/16	1	Methylene chloride		ug/L	U	3.0
MW5	BV87821	SW8260	11/17/16	1	Naphthalene		ug/L	U	1.0
MW5	BV87821	SW8260	11/17/16	1	n-Butylbenzene		ug/L	U	1.0
MW5	BV87821	SW8260	11/17/16	1	n-Propylbenzene		ug/L	U	1.0
MW5	BV87821	SW8260	11/17/16	1	o-Xylene	1.1	ug/L		1.0
MW5	BV87821	SW8260	11/17/16	1	p-Isopropyltoluene		ug/L	U	1.0
MW5	BV87821	SW8260	11/17/16	1	sec-Butylbenzene		ug/L	U	1.0
MW5	BV87821	SW8260	11/17/16	1	Styrene		ug/L	U	1.0
MW5	BV87821	SW8260	11/17/16	1	tert-Butylbenzene		ug/L	U	1.0
MW5	BV87821	SW8260	11/17/16	1	Tetrachloroethene		ug/L	U	1.0
MW5	BV87821	SW8260	11/17/16	1	Tetrahydrofuran (THF)		ug/L	UJ	5.0
MW5	BV87821	SW8260	11/17/16	1	Toluene	0.48	ug/L	J	1.0
MW5	BV87821	SW8260	11/17/16	1	trans-1,2-Dichloroethene	0.74	ug/L	J	5.0
MW5	BV87821	SW8260	11/17/16	1	trans-1,3-Dichloropropene		ug/L	U	0.40
MW5	BV87821	SW8260	11/17/16	1	trans-1,4-dichloro-2-butene		ug/L	U	2.5
MW5	BV87821	SW8260	11/17/16	1	Trichloroethene	1.3	ug/L		1.0
MW5	BV87821	SW8260	11/17/16	1	Trichlorofluoromethane		ug/L	U	1.0
MW5	BV87821	SW8260	11/17/16	1	Trichlorotrifluoroethane		ug/L	U	1.0
MW5	BV87821	SW8260	11/17/16	1	Vinyl chloride		ug/L	U	1.0
MW5	BV87821	SW8270	11/17/16	1	1,2,4-Trichlorobenzene		ug/L	U	5.0
MW5	BV87821	SW8270	11/17/16	1	1,2-Dichlorobenzene		ug/L	U	1.0
MW5	BV87821	SW8270	11/17/16	1	1,2-Diphenylhydrazine		ug/L	U	5.0

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
		Method	Date	Factor	-				
MW5	BV87821	SW8270	11/17/16	1	1,3-Dichlorobenzene		ug/L	U	1.0
MW5	BV87821	SW8270	11/17/16	1	1,4-Dichlorobenzene		ug/L	U	1.0
MW5	BV87821	SW8270	11/17/16	1	2,4,5-Trichlorophenol		ug/L	U	1.0
MW5	BV87821	SW8270	11/17/16	1	2,4,6-Trichlorophenol		ug/L	U	1.0
MW5	BV87821	SW8270	11/17/16	1	2,4-Dichlorophenol		ug/L	U	1.0
MW5	BV87821	SW8270	11/17/16	1	2,4-Dimethylphenol		ug/L	U	1.0
MW5	BV87821	SW8270	11/17/16	1	2,4-Dinitrophenol		ug/L	U	1.0
MW5	BV87821	SW8270	11/17/16	1	2,4-Dinitrotoluene		ug/L	U	5.0
MW5	BV87821	SW8270	11/17/16	1	2,6-Dinitrotoluene		ug/L	U	5.0
MW5	BV87821	SW8270	11/17/16	1	2-Chloronaphthalene		ug/L	U	5.0
MW5	BV87821	SW8270	11/17/16	1	2-Chlorophenol		ug/L	U	1.0
MW5	BV87821	SW8270	11/17/16	1	2-Methylnaphthalene		ug/L	U	5.0
MW5	BV87821	SW8270	11/17/16	1	2-Methylphenol (o-cresol)		ug/L	U	1.0
MW5	BV87821	SW8270	11/17/16	1	2-Nitroaniline		ug/L	U	5.0
MW5	BV87821	SW8270	11/17/16	1	2-Nitrophenol		ug/L	UJ	1.0
MW5	BV87821	SW8270	11/17/16	1	3&4-Methylphenol (m&p-cresol)		ug/L	U	1.0
MW5	BV87821	SW8270	11/17/16	1	3,3'-Dichlorobenzidine		ug/L	UJ	5.0
MW5	BV87821	SW8270	11/17/16	1	3-Nitroaniline		ug/L	U	5.0
MW5	BV87821	SW8270	11/17/16	1	4,6-Dinitro-2-methylphenol		ug/L	UJ	1.0
MW5	BV87821	SW8270	11/17/16	1	4-Bromophenyl phenyl ether		ug/L	U	5.0
MW5	BV87821	SW8270	11/17/16	1	4-Chloro-3-methylphenol		ug/L	U	1.0
MW5	BV87821	SW8270	11/17/16	1	4-Chloroaniline		ug/L	U	3.5
MW5	BV87821	SW8270	11/17/16	1	4-Chlorophenyl phenyl ether		ug/L	U	5.0
MW5	BV87821	SW8270	11/17/16	1	4-Nitroaniline		ug/L	U	5.0
MW5	BV87821	SW8270	11/17/16	1	4-Nitrophenol		ug/L	U	1.0
MW5	BV87821	SW8270	11/17/16	1	Acenaphthene		ug/L	U	5.0
MW5	BV87821	SW8270	11/17/16	1	Acetophenone		ug/L	U	5.0
MW5	BV87821	SW8270	11/17/16	1	Aniline		ug/L	UJ	3.5
MW5	BV87821	SW8270	11/17/16	1	Anthracene		ug/L	U	5.0
MW5	BV87821	SW8270	11/17/16	1	Benzidine		ug/L	R	4.5
MW5	BV87821	SW8270	11/17/16	1	Benzoic acid		ug/L	UJ	25
MW5	BV87821	SW8270	11/17/16	1	Benzyl butyl phthalate		ug/L	U	5.0
MW5	BV87821	SW8270	11/17/16	1	Bis(2-chloroethoxy)methane		ug/L	U	5.0
MW5	BV87821	SW8270	11/17/16	1	Bis(2-chloroethyl)ether		ug/L	U	1.0
MW5	BV87821	SW8270	11/17/16	1	Bis(2-chloroisopropyl)ether		ug/L	U	5.0
MW5	BV87821	SW8270	11/17/16	1	Carbazole		ug/L	U	5.0
MW5	BV87821	SW8270	11/17/16	1	Dibenzofuran		ug/L	U	5.0
MW5	BV87821	SW8270	11/17/16	1	Diethyl phthalate		ug/L	U	5.0
MW5	BV87821	SW8270	11/17/16	1	Dimethylphthalate		ug/L	U	5.0
MW5	BV87821	SW8270	11/17/16	1	Di-n-butylphthalate		ug/L	U	5.0

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
·		Method	Date	Factor	•				
MW5	BV87821	SW8270	11/17/16	1	Di-n-octylphthalate		ug/L	U	5.0
MW5	BV87821	SW8270	11/17/16	1	Fluoranthene		ug/L	U	5.0
MW5	BV87821	SW8270	11/17/16	1	Fluorene		ug/L	U	5.0
MW5	BV87821	SW8270	11/17/16	1	Hexachlorocyclopentadiene		ug/L	UJ	5.0
MW5	BV87821	SW8270	11/17/16	1	Isophorone		ug/L	U	5.0
MW5	BV87821	SW8270	11/17/16	1	Naphthalene		ug/L	U	5.0
MW5	BV87821	SW8270	11/17/16	1	N-Nitrosodi-n-propylamine		ug/L	U	5.0
MW5	BV87821	SW8270	11/17/16	1	N-Nitrosodiphenylamine		ug/L	U	5.0
MW5	BV87821	SW8270	11/17/16	1	Phenol		ug/L	U	1.0
MW5	BV87821	SW8270	11/17/16	1	Pyrene		ug/L	U	5.0
MW5	BV87821	SW8270	11/17/16	1	Pyridine		ug/L	UJ	10
MW5	BV87821	SW8270C-SIM	11/17/16	1	1,2,4,5-Tetrachlorobenzene		ug/L	U	0.50
MW5	BV87821	SW8270C-SIM	11/17/16	1	Acenaphthylene		ug/L	U	0.10
MW5	BV87821	SW8270C-SIM	11/17/16	1	Benz(a)anthracene		ug/L	U	0.02
MW5	BV87821	SW8270C-SIM	11/17/16	1	Benzo(a)pyrene		ug/L	U	0.02
MW5	BV87821	SW8270C-SIM	11/17/16	1	Benzo(b)fluoranthene		ug/L	U	0.02
MW5	BV87821	SW8270C-SIM	11/17/16	1	Benzo(ghi)perylene		ug/L	U	0.02
MW5	BV87821	SW8270C-SIM	11/17/16	1	Benzo(k)fluoranthene		ug/L	U	0.02
MW5	BV87821	SW8270C-SIM	11/17/16	1	Bis(2-ethylhexyl)phthalate		ug/L	U	1.0
MW5	BV87821	SW8270C-SIM	11/17/16	1	Chrysene		ug/L	U	0.02
MW5	BV87821	SW8270C-SIM	11/17/16	1	Dibenz(a,h)anthracene		ug/L	U	0.02
MW5	BV87821	SW8270C-SIM	11/17/16	1	Hexachlorobenzene		ug/L	U	0.02
MW5	BV87821	SW8270C-SIM	11/17/16	1	Hexachlorobutadiene		ug/L	U	0.40
MW5	BV87821	SW8270C-SIM	11/17/16	1	Hexachloroethane		ug/L	U	0.50
MW5	BV87821	SW8270C-SIM	11/17/16	1	Indeno(1,2,3-cd)pyrene		ug/L	U	0.02
MW5	BV87821	SW8270C-SIM	11/17/16	1	Nitrobenzene		ug/L	U	0.10
MW5	BV87821	SW8270C-SIM	11/17/16	1	N-Nitrosodimethylamine		ug/L	UJ	0.10
MW5	BV87821	SW8270C-SIM	11/17/16	1	Pentachloronitrobenzene		ug/L	U	0.10
MW5	BV87821	SW8270C-SIM	11/17/16	1	Pentachlorophenol		ug/L	UJ	0.80
MW5	BV87821	SW8270C-SIM	11/17/16	1	Phenanthrene		ug/L	U	0.10
MW8	BV87822	7010	11/17/16	1	Antimony		mg/L	UJ	0.002
MW8	BV87822	7010	11/17/16	1	Antimony, (Dissolved)		mg/L	UJ	0.003
MW8	BV87822	7010	11/17/16	1	Selenium		mg/L	U	0.002
MW8	BV87822	7010	11/17/16	1	Selenium, (Dissolved)		mg/L	U	0.004
MW8	BV87822	7010	11/17/16	1	Thallium - LDL		mg/L	UJ	0.0005
MW8	BV87822	7010	11/17/16	1	Thallium , (Dissolved)		mg/L	UJ	0.0005
MW8	BV87822	SW6010	11/17/16	1	Aluminum	6.20	mg/L		0.010
MW8	BV87822	SW6010	11/17/16	1	Aluminum (Dissolved)		mg/L	U	0.011
MW8	BV87822	SW6010	11/17/16	1	Arsenic - LDL	0.035	mg/L		0.004
MW8	BV87822	SW6010	11/17/16	1	Arsenic, (Dissolved)	0.014	mg/L		0.003

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
		Method	Date	Factor	-				
MW8	BV87822	SW6010	11/17/16	1	Barium	0.450	mg/L		0.010
MW8	BV87822	SW6010	11/17/16	1	Barium (Dissolved)	0.272	mg/L		0.011
MW8	BV87822	SW6010	11/17/16	1	Beryllium		mg/L	U	0.001
MW8	BV87822	SW6010	11/17/16	1	Beryllium (Dissolved)		mg/L	U	0.001
MW8	BV87822	SW6010	11/17/16	1	Cadmium	0.003	mg/L	J	0.004
MW8	BV87822	SW6010	11/17/16	1	Cadmium (Dissolved)	0.002	mg/L	J	0.004
MW8	BV87822	SW6010	11/17/16	10	Calcium	162	mg/L		0.10
MW8	BV87822	SW6010	11/17/16	1	Calcium (Dissolved)	155	mg/L		0.01
MW8	BV87822	SW6010	11/17/16	1	Chromium	0.021	mg/L		0.001
MW8	BV87822	SW6010	11/17/16	1	Chromium (Dissolved)		mg/L	U	0.001
MW8	BV87822	SW6010	11/17/16	1	Cobalt	0.012	mg/L		0.005
MW8	BV87822	SW6010	11/17/16	1	Cobalt, (Dissolved)	0.006	mg/L		0.005
MW8	BV87822	SW6010	11/17/16	1	Copper	0.022	mg/L	U	0.005
MW8	BV87822	SW6010	11/17/16	1	Copper, (Dissolved)		mg/L	U	0.005
MW8	BV87822	SW6010	11/17/16	10	Iron	151	mg/L		0.10
MW8	BV87822	SW6010	11/17/16	1	Iron, (Dissolved)	79.1	mg/L	J+	0.01
MW8	BV87822	SW6010	11/17/16	1	Lead	0.018	mg/L		0.002
MW8	BV87822	SW6010	11/17/16	1	Lead (Dissolved)		mg/L	U	0.002
MW8	BV87822	SW6010	11/17/16	1	Magnesium	28.7	mg/L		0.010
MW8	BV87822	SW6010	11/17/16	1	Magnesium (Dissolved)	26.8	mg/L		0.01
MW8	BV87822	SW6010	11/17/16	10	Manganese	3.87	mg/L		0.050
MW8	BV87822	SW6010	11/17/16	10	Manganese, (Dissolved)	3.14	mg/L		0.053
MW8	BV87822	SW6010	11/17/16	1	Nickel	0.025	mg/L		0.004
MW8	BV87822	SW6010	11/17/16	1	Nickel, (Dissolved)	0.013	mg/L		0.004
MW8	BV87822	SW6010	11/17/16	1	Potassium	25.2	mg/L		0.1
MW8	BV87822	SW6010	11/17/16	10	Potassium (Dissolved)	20.6	mg/L		1.1
MW8	BV87822	SW6010	11/17/16	1	Silver		mg/L	U	0.005
MW8	BV87822	SW6010	11/17/16	1	Silver (Dissolved)		mg/L	U	0.005
MW8	BV87822	SW6010	11/17/16	10	Sodium	151	mg/L	J	1.0
MW8	BV87822	SW6010	11/17/16	10	Sodium (Dissolved)	151	mg/L		1.1
MW8	BV87822	SW6010	11/17/16	1	Vanadium	0.028	mg/L		0.010
MW8	BV87822	SW6010	11/17/16	1	Vanadium, (Dissolved)	0.003	mg/L	J	0.011
MW8	BV87822	SW6010	11/17/16	1	Zinc	0.064	mg/L		0.010
MW8	BV87822	SW6010	11/17/16	1	Zinc, (Dissolved)	0.011	mg/L	J	0.011
MW8	BV87822	SW7470	11/17/16	1	Mercury		mg/L	U	0.0002
MW8	BV87822	SW7470	11/17/16	1	Mercury (Dissolved)		mg/L	U	0.0002
MW8	BV87822	SW8081	11/17/16	1	4,4' -DDD		ug/L	UJ	0.006
MW8	BV87822	SW8081	11/17/16	1	4,4' -DDE		ug/L	UJ	0.006
MW8	BV87822	SW8081	11/17/16	1	4,4' -DDT		ug/L	UJ	0.006
MW8	BV87822	SW8081	11/17/16	1	a-BHC		ug/L	UJ	0.006

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
•		Method	Date	Factor	·				
MW8	BV87822	SW8081	11/17/16	1	a-chlordane		ug/L	UJ	0.012
MW8	BV87822	SW8081	11/17/16	1	Alachlor		ug/L	UJ	0.089
MW8	BV87822	SW8081	11/17/16	1	Aldrin		ug/L	UJ	0.002
MW8	BV87822	SW8081	11/17/16	1	b-BHC		ug/L	UJ	0.006
MW8	BV87822	SW8081	11/17/16	1	Chlordane		ug/L	UJ	0.060
MW8	BV87822	SW8081	11/17/16	1	d-BHC		ug/L	UJ	0.006
MW8	BV87822	SW8081	11/17/16	1	Dieldrin		ug/L	UJ	0.002
MW8	BV87822	SW8081	11/17/16	1	Endosulfan I		ug/L	UJ	0.012
MW8	BV87822	SW8081	11/17/16	1	Endosulfan II		ug/L	UJ	0.012
MW8	BV87822	SW8081	11/17/16	1	Endosulfan Sulfate		ug/L	UJ	0.012
MW8	BV87822	SW8081	11/17/16	1	Endrin		ug/L	UJ	0.006
MW8	BV87822	SW8081	11/17/16	1	Endrin Aldehyde		ug/L	UJ	0.012
MW8	BV87822	SW8081	11/17/16	1	Endrin ketone		ug/L	UJ	0.012
MW8	BV87822	SW8081	11/17/16	1	g-BHC (Lindane)		ug/L	UJ	0.006
MW8	BV87822	SW8081	11/17/16	1	g-chlordane		ug/L	UJ	0.012
MW8	BV87822	SW8081	11/17/16	1	Heptachlor		ug/L	UJ	0.006
MW8	BV87822	SW8081	11/17/16	1	Heptachlor epoxide		ug/L	UJ	0.006
MW8	BV87822	SW8081	11/17/16	1	Methoxychlor		ug/L	UJ	0.12
MW8	BV87822	SW8081	11/17/16	1	Toxaphene		ug/L	UJ	0.24
MW8	BV87822	SW8082	11/17/16	1	PCB-1016		ug/L	UJ	0.060
MW8	BV87822	SW8082	11/17/16	1	PCB-1221		ug/L	UJ	0.060
MW8	BV87822	SW8082	11/17/16	1	PCB-1232		ug/L	UJ	0.060
MW8	BV87822	SW8082	11/17/16	1	PCB-1242		ug/L	UJ	0.060
MW8	BV87822	SW8082	11/17/16	1	PCB-1248		ug/L	UJ	0.060
MW8	BV87822	SW8082	11/17/16	1	PCB-1254		ug/L	UJ	0.060
MW8	BV87822	SW8082	11/17/16	1	PCB-1260		ug/L	UJ	0.060
MW8	BV87822	SW8082	11/17/16	1	PCB-1262		ug/L	UJ	0.060
MW8	BV87822	SW8082	11/17/16	1	PCB-1268		ug/L	UJ	0.060
MW8	BV87822	SW8260	11/17/16	1	1,1,1,2-Tetrachloroethane		ug/L	U	1.0
MW8	BV87822	SW8260	11/17/16	1	1,1,1-Trichloroethane		ug/L	U	5.0
MW8	BV87822	SW8260	11/17/16	1	1,1,2,2-Tetrachloroethane		ug/L	U	1.0
MW8	BV87822	SW8260	11/17/16	1	1,1,2-Trichloroethane		ug/L	U	1.0
MW8	BV87822	SW8260	11/17/16	1	1,1-Dichloroethane		ug/L	U	5.0
MW8	BV87822	SW8260	11/17/16	1	1,1-Dichloroethene		ug/L	U	1.0
MW8	BV87822	SW8260	11/17/16	1	1,1-Dichloropropene		ug/L	U	1.0
MW8	BV87822	SW8260	11/17/16	1	1,2,3-Trichlorobenzene		ug/L	U	1.0
MW8	BV87822	SW8260	11/17/16	1	1,2,3-Trichloropropane		ug/L	U	0.25
MW8	BV87822	SW8260	11/17/16	1	1,2,4-Trichlorobenzene		ug/L	U	1.0
MW8	BV87822	SW8260	11/17/16	1	1,2,4-Trimethylbenzene	5.4	ug/L		1.0
MW8	BV87822	SW8260	11/17/16	1	1,2-Dibromo-3-chloropropane		ug/L	UJ	0.50

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
_		Method	Date	Factor	-				
MW8	BV87822	SW8260	11/17/16	1	1,2-Dibromoethane		ug/L	U	0.25
MW8	BV87822	SW8260	11/17/16	1	1,2-Dichlorobenzene		ug/L	U	1.0
MW8	BV87822	SW8260	11/17/16	1	1,2-Dichloroethane		ug/L	U	0.60
MW8	BV87822	SW8260	11/17/16	1	1,2-Dichloropropane		ug/L	U	1.0
MW8	BV87822	SW8260	11/17/16	1	1,3,5-Trimethylbenzene	1.7	ug/L		1.0
MW8	BV87822	SW8260	11/17/16	1	1,3-Dichlorobenzene		ug/L	U	1.0
MW8	BV87822	SW8260	11/17/16	1	1,3-Dichloropropane		ug/L	U	1.0
MW8	BV87822	SW8260	11/17/16	1	1,4-Dichlorobenzene		ug/L	U	1.0
MW8	BV87822	SW8260	11/17/16	1	2,2-Dichloropropane		ug/L	UJ	1.0
MW8	BV87822	SW8260	11/17/16	1	2-Chlorotoluene		ug/L	U	1.0
MW8	BV87822	SW8260	11/17/16	1	2-Hexanone		ug/L	U	2.5
MW8	BV87822	SW8260	11/17/16	1	2-Isopropyltoluene		ug/L	U	1.0
MW8	BV87822	SW8260	11/17/16	1	4-Chlorotoluene		ug/L	U	1.0
MW8	BV87822	SW8260	11/17/16	1	4-Methyl-2-pentanone	30	ug/L		2.5
MW8	BV87822	SW8260	11/17/16	10	Acetone	180	ug/L	J	50
MW8	BV87822	SW8260	11/17/16	1	Acrolein		ug/L	UJ	5.0
MW8	BV87822	SW8260	11/17/16	1	Acrylonitrile		ug/L	UJ	5.0
MW8	BV87822	SW8260	11/17/16	1	Benzene	5.5	ug/L		0.70
MW8	BV87822	SW8260	11/17/16	1	Bromobenzene		ug/L	U	1.0
MW8	BV87822	SW8260	11/17/16	1	Bromochloromethane		ug/L	U	1.0
MW8	BV87822	SW8260	11/17/16	1	Bromodichloromethane		ug/L	U	1.0
MW8	BV87822	SW8260	11/17/16	1	Bromoform		ug/L	U	5.0
MW8	BV87822	SW8260	11/17/16	1	Bromomethane		ug/L	UJ	5.0
MW8	BV87822	SW8260	11/17/16	1	Carbon Disulfide	0.94	ug/L	J	1.0
MW8	BV87822	SW8260	11/17/16	1	Carbon tetrachloride		ug/L	U	1.0
MW8	BV87822	SW8260	11/17/16	1	Chlorobenzene		ug/L	U	5.0
MW8	BV87822	SW8260	11/17/16	1	Chloroethane		ug/L	U	5.0
MW8	BV87822	SW8260	11/17/16	1	Chloroform		ug/L	U	5.0
MW8	BV87822	SW8260	11/17/16	1	Chloromethane		ug/L	U	5.0
MW8	BV87822	SW8260	11/17/16	1	cis-1,2-Dichloroethene	0.55	ug/L	J	1.0
MW8	BV87822	SW8260	11/17/16	1	cis-1,3-Dichloropropene		ug/L	U	0.40
MW8	BV87822	SW8260	11/17/16	1	Dibromochloromethane		ug/L	U	1.0
MW8	BV87822	SW8260	11/17/16	1	Dibromomethane		ug/L	U	1.0
MW8	BV87822	SW8260	11/17/16	1	Dichlorodifluoromethane		ug/L	UJ	1.0
MW8	BV87822	SW8260	11/17/16	1	Ethylbenzene	4.1	ug/L		1.0
MW8	BV87822	SW8260	11/17/16	1	Hexachlorobutadiene		ug/L	U	0.50
MW8	BV87822	SW8260	11/17/16	1	Isopropylbenzene	0.41	ug/L	J	1.0
MW8	BV87822	SW8260	11/17/16	1	m&p-Xylene	9.7	ug/L		1.0
MW8	BV87822	SW8260	11/17/16	10	Methyl ethyl ketone	130	ug/L		25
MW8	BV87822	SW8260	11/17/16	1	Methyl t-butyl ether (MTBE)	8.8	ug/L		1.0

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
·		Method	Date	Factor	,				
MW8	BV87822	SW8260	11/17/16	1	Methylene chloride		ug/L	U	3.0
MW8	BV87822	SW8260	11/17/16	1	Naphthalene	2.7	ug/L		1.0
MW8	BV87822	SW8260	11/17/16	1	n-Butylbenzene		ug/L	U	1.0
MW8	BV87822	SW8260	11/17/16	1	n-Propylbenzene	0.55	ug/L	J	1.0
MW8	BV87822	SW8260	11/17/16	1	o-Xylene	5.5	ug/L		1.0
MW8	BV87822	SW8260	11/17/16	1	p-Isopropyltoluene	0.30	ug/L	J	1.0
MW8	BV87822	SW8260	11/17/16	1	sec-Butylbenzene		ug/L	U	1.0
MW8	BV87822	SW8260	11/17/16	1	Styrene		ug/L	U	1.0
MW8	BV87822	SW8260	11/17/16	1	tert-Butylbenzene		ug/L	U	1.0
MW8	BV87822	SW8260	11/17/16	1	Tetrachloroethene		ug/L	U	1.0
MW8	BV87822	SW8260	11/17/16	1	Tetrahydrofuran (THF)		ug/L	UJ	5.0
MW8	BV87822	SW8260	11/17/16	1	Toluene	15	ug/L		1.0
MW8	BV87822	SW8260	11/17/16	1	trans-1,2-Dichloroethene		ug/L	U	5.0
MW8	BV87822	SW8260	11/17/16	1	trans-1,3-Dichloropropene		ug/L	U	0.40
MW8	BV87822	SW8260	11/17/16	1	trans-1,4-dichloro-2-butene		ug/L	U	2.5
MW8	BV87822	SW8260	11/17/16	1	Trichloroethene		ug/L	U	1.0
MW8	BV87822	SW8260	11/17/16	1	Trichlorofluoromethane		ug/L	U	1.0
MW8	BV87822	SW8260	11/17/16	1	Trichlorotrifluoroethane		ug/L	U	1.0
MW8	BV87822	SW8260	11/17/16	1	Vinyl chloride		ug/L	U	1.0
MW8	BV87822	SW8270	11/17/16	20	1,2,4,5-Tetrachlorobenzene		ug/L	U	110
MW8	BV87822	SW8270	11/17/16	20	1,2,4-Trichlorobenzene		ug/L	U	110
MW8	BV87822	SW8270	11/17/16	20	1,2-Dichlorobenzene		ug/L	U	31
MW8	BV87822	SW8270	11/17/16	20	1,2-Diphenylhydrazine		ug/L	U	110
MW8	BV87822	SW8270	11/17/16	20	1,3-Dichlorobenzene		ug/L	U	33
MW8	BV87822	SW8270	11/17/16	20	1,4-Dichlorobenzene		ug/L	U	33
MW8	BV87822	SW8270	11/17/16	20	2,4,5-Trichlorophenol		ug/L	U	61
MW8	BV87822	SW8270	11/17/16	20	2,4,6-Trichlorophenol		ug/L	U	36
MW8	BV87822	SW8270	11/17/16	20	2,4-Dichlorophenol		ug/L	U	39
MW8	BV87822	SW8270	11/17/16	20	2,4-Dimethylphenol		ug/L	U	28
MW8	BV87822	SW8270	11/17/16	20	2,4-Dinitrophenol		ug/L	U	78
MW8	BV87822	SW8270	11/17/16	20	2,4-Dinitrotoluene		ug/L	U	44
MW8	BV87822	SW8270	11/17/16	20	2,6-Dinitrotoluene		ug/L	U	35
MW8	BV87822	SW8270	11/17/16	20	2-Chloronaphthalene		ug/L	U	32
MW8	BV87822	SW8270	11/17/16	20	2-Chlorophenol		ug/L	U	32
MW8	BV87822	SW8270	11/17/16	20	2-Methylnaphthalene		ug/L	U	50
MW8	BV87822	SW8270	11/17/16	20	2-Methylphenol (o-cresol)		ug/L	U	52
MW8	BV87822	SW8270	11/17/16	20	2-Nitroaniline		ug/L	U	110
MW8	BV87822	SW8270	11/17/16	20	2-Nitrophenol		ug/L	UJ	70
MW8	BV87822	SW8270	11/17/16	20	3&4-Methylphenol (m&p-cresol)	60	ug/L	J	110
MW8	BV87822	SW8270	11/17/16	20	3,3'-Dichlorobenzidine		ug/L	UJ	52

Sample Name	Lab ID	Analytical Method	Sample Date	Dilution Factor	Analyte	Result	Unit	Qualifier	RL
MW8	BV87822	SW8270	11/17/16	20	3-Nitroaniline		ua/L	U	240
MW8	BV87822	SW8270	11/17/16	20	4,6-Dinitro-2-methylphenol		ug/L	UJ	120
MW8	BV87822	SW8270	11/17/16	20	4-Bromophenyl phenyl ether		ug/L	U	110
MW8	BV87822	SW8270	11/17/16	20	4-Chloro-3-methylphenol		ug/L	U	39
MW8	BV87822	SW8270	11/17/16	20	4-Chloroaniline		ug/L	Ü	52
MW8	BV87822	SW8270	11/17/16	20	4-Chlorophenyl phenyl ether		ug/L	Ü	110
MW8	BV87822	SW8270	11/17/16	20	4-Nitroaniline		ug/L	Ü	37
MW8	BV87822	SW8270	11/17/16	20	4-Nitrophenol		ug/L	Ü	50
MW8	BV87822	SW8270	11/17/16	20	Acenaphthene		ug/L	U	34
MW8	BV87822	SW8270	11/17/16	20	Acenaphthylene		ug/L	Ü	31
MW8	BV87822	SW8270	11/17/16	20	Acetophenone		ug/L	Ü	110
MW8	BV87822	SW8270	11/17/16	20	Aniline		ug/L	ÜJ	330
MW8	BV87822	SW8270	11/17/16	20	Anthracene		ug/L	U	50
MW8	BV87822	SW8270	11/17/16	20	Benz(a)anthracene		ug/L	Ü	37
MW8	BV87822	SW8270	11/17/16	20	Benzidine		ug/L	R	65
MW8	BV87822	SW8270	11/17/16	20	Benzo(a)pyrene		ug/L	U	36
MW8	BV87822	SW8270	11/17/16	20	Benzo(b)fluoranthene		ug/L	Ü	38
MW8	BV87822	SW8270	11/17/16	20	Benzo(ghi)perylene		ug/L	U	36
MW8	BV87822	SW8270	11/17/16	20	Benzo(k)fluoranthene		ug/L	Ü	37
MW8	BV87822	SW8270	11/17/16	200	Benzoic acid	3300	ug/L	J	2200
MW8	BV87822	SW8270	11/17/16	20	Benzyl butyl phthalate	3000	ug/L	Ü	50
MW8	BV87822	SW8270	11/17/16	20	Bis(2-chloroethoxy)methane		ug/L	U	31
MW8	BV87822	SW8270	11/17/16	20	Bis(2-chloroethyl)ether		ug/L	Ü	30
MW8	BV87822	SW8270	11/17/16	20	Bis(2-chloroisopropyl)ether		ug/L	Ü	110
MW8	BV87822	SW8270	11/17/16	20	Bis(2-ethylhexyl)phthalate		ug/L	U	32
MW8	BV87822	SW8270	11/17/16	20	Carbazole		ua/L	Ü	560
MW8	BV87822	SW8270	11/17/16	20	Chrysene		ua/L	U	37
MW8	BV87822	SW8270	11/17/16	20	Dibenz(a,h)anthracene		ug/L	Ü	50
MW8	BV87822	SW8270	11/17/16	20	Dibenzofuran		ug/L	Ü	32
MW8	BV87822	SW8270	11/17/16	20	Diethyl phthalate		ug/L	Ü	50
MW8	BV87822	SW8270	11/17/16	20	Dimethylphthalate		ug/L	U	50
MW8	BV87822	SW8270	11/17/16	20	Di-n-butylphthalate		ug/L	Ü	50
MW8	BV87822	SW8270	11/17/16	20	Di-n-octylphthalate		ug/L	Ü	50
MW8	BV87822	SW8270	11/17/16	20	Fluoranthene		ua/L	U	50
MW8	BV87822	SW8270	11/17/16	20	Fluorene		ug/L	Ü	50
MW8	BV87822	SW8270	11/17/16	20	Hexachlorobenzene		ua/L	U	32
MW8	BV87822	SW8270	11/17/16	20	Hexachlorobutadiene		ug/L	Ü	40
MW8	BV87822	SW8270	11/17/16	20	Hexachlorocyclopentadiene		ug/L	UJ	34
MW8	BV87822	SW8270	11/17/16	20	Hexachloroethane		ug/L	U	33
MW8	BV87822	SW8270	11/17/16	20	Indeno(1,2,3-cd)pyrene		ug/L	U	37

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
_		Method	Date	Factor	-				
MW8	BV87822	SW8270	11/17/16	20	Isophorone		ug/L	U	50
MW8	BV87822	SW8270	11/17/16	20	Naphthalene		ug/L	U	32
MW8	BV87822	SW8270	11/17/16	20	Nitrobenzene		ug/L	U	39
MW8	BV87822	SW8270	11/17/16	20	N-Nitrosodimethylamine		ug/L	U	110
MW8	BV87822	SW8270	11/17/16	20	N-Nitrosodi-n-propylamine		ug/L	U	110
MW8	BV87822	SW8270	11/17/16	20	N-Nitrosodiphenylamine		ug/L	U	50
MW8	BV87822	SW8270	11/17/16	20	Pentachloronitrobenzene		ug/L	U	110
MW8	BV87822	SW8270	11/17/16	20	Pentachlorophenol		ug/L	UJ	42
MW8	BV87822	SW8270	11/17/16	20	Phenanthrene		ug/L	U	50
MW8	BV87822	SW8270	11/17/16	20	Phenol		ug/L	U	36
MW8	BV87822	SW8270	11/17/16	20	Pyrene		ug/L	U	50
MW8	BV87822	SW8270	11/17/16	20	Pyridine		ug/L	UJ	50
MW14	BV87823	7010	11/17/16	1	Antimony		mg/L	UJ	0.002
MW14	BV87823	7010	11/17/16	1	Antimony, (Dissolved)		mg/L	UJ	0.003
MW14	BV87823	7010	11/17/16	1	Selenium		mg/L	U	0.002
MW14	BV87823	7010	11/17/16	1	Selenium, (Dissolved)		mg/L	U	0.004
MW14	BV87823	7010	11/17/16	1	Thallium - LDL		mg/L	UJ	0.0005
MW14	BV87823	7010	11/17/16	1	Thallium , (Dissolved)		mg/L	UJ	0.0005
MW14	BV87823	SW6010	11/17/16	1	Aluminum	1.25	mg/L		0.010
MW14	BV87823	SW6010	11/17/16	1	Aluminum (Dissolved)	0.008	mg/L	J	0.011
MW14	BV87823	SW6010	11/17/16	1	Arsenic - LDL	0.009	mg/L		0.004
MW14	BV87823	SW6010	11/17/16	1	Arsenic, (Dissolved)	0.005	mg/L		0.003
MW14	BV87823	SW6010	11/17/16	1	Barium	0.318	mg/L		0.010
MW14	BV87823	SW6010	11/17/16	1	Barium (Dissolved)	0.203	mg/L		0.011
MW14	BV87823	SW6010	11/17/16	1	Beryllium		mg/L	U	0.001
MW14	BV87823	SW6010	11/17/16	1	Beryllium (Dissolved)		mg/L	U	0.001
MW14	BV87823	SW6010	11/17/16	1	Cadmium	0.004	mg/L	J	0.004
MW14	BV87823	SW6010	11/17/16	1	Cadmium (Dissolved)	0.001	mg/L	J	0.004
MW14	BV87823	SW6010	11/17/16	10	Calcium	211	mg/L		0.10
MW14	BV87823	SW6010	11/17/16	10	Calcium (Dissolved)	196	mg/L		0.11
MW14	BV87823	SW6010	11/17/16	1	Chromium	0.005	mg/L		0.001
MW14	BV87823	SW6010	11/17/16	1	Chromium (Dissolved)		mg/L	U	0.001
MW14	BV87823	SW6010	11/17/16	1	Cobalt	0.002	mg/L	J	0.005
MW14	BV87823	SW6010	11/17/16	1	Cobalt, (Dissolved)		mg/L	U	0.005
MW14	BV87823	SW6010	11/17/16	1	Copper	0.001	mg/L	U	0.005
MW14	BV87823	SW6010	11/17/16	1	Copper, (Dissolved)		mg/L	U	0.005
MW14	BV87823	SW6010	11/17/16	10	Iron	158	mg/L		0.10
MW14	BV87823	SW6010	11/17/16	1	Iron, (Dissolved)	46.9	mg/L	J+	0.01
MW14	BV87823	SW6010	11/17/16	1	Lead	0.009	mg/L		0.002
MW14	BV87823	SW6010	11/17/16	1	Lead (Dissolved)		mg/L	U	0.002

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
		Method	Date	Factor	•				
MW14	BV87823	SW6010	11/17/16	1	Magnesium	30.4	mg/L		0.010
MW14	BV87823	SW6010	11/17/16	1	Magnesium (Dissolved)	29.5	mg/L		0.01
MW14	BV87823	SW6010	11/17/16	10	Manganese	14.3	mg/L		0.050
MW14	BV87823	SW6010	11/17/16	10	Manganese, (Dissolved)	13.5	mg/L		0.053
MW14	BV87823	SW6010	11/17/16	1	Nickel	0.004	mg/L		0.004
MW14	BV87823	SW6010	11/17/16	1	Nickel, (Dissolved)		mg/L	U	0.004
MW14	BV87823	SW6010	11/17/16	1	Potassium	17.9	mg/L		0.1
MW14	BV87823	SW6010	11/17/16	10	Potassium (Dissolved)	13.8	mg/L		1.1
MW14	BV87823	SW6010	11/17/16	1	Silver		mg/L	U	0.005
MW14	BV87823	SW6010	11/17/16	1	Silver (Dissolved)		mg/L	U	0.005
MW14	BV87823	SW6010	11/17/16	10	Sodium	279	mg/L	J	1.0
MW14	BV87823	SW6010	11/17/16	10	Sodium (Dissolved)	282	mg/L		1.1
MW14	BV87823	SW6010	11/17/16	1	Vanadium	0.005	mg/L	J	0.010
MW14	BV87823	SW6010	11/17/16	1	Vanadium, (Dissolved)		mg/L	U	0.011
MW14	BV87823	SW6010	11/17/16	1	Zinc	0.026	mg/L		0.010
MW14	BV87823	SW6010	11/17/16	1	Zinc, (Dissolved)	0.007	mg/L	J	0.011
MW14	BV87823	SW7470	11/17/16	1	Mercury		mg/L	U	0.0002
MW14	BV87823	SW7470	11/17/16	1	Mercury (Dissolved)		mg/L	U	0.0002
MW14	BV87823	SW8081	11/17/16	1	4,4' -DDD		ug/L	UJ	0.005
MW14	BV87823	SW8081	11/17/16	1	4,4' -DDE		ug/L	UJ	0.005
MW14	BV87823	SW8081	11/17/16	1	4,4' -DDT		ug/L	UJ	0.007
MW14	BV87823	SW8081	11/17/16	1	a-BHC		ug/L	UJ	0.020
MW14	BV87823	SW8081	11/17/16	1	a-chlordane		ug/L	UJ	0.010
MW14	BV87823	SW8081	11/17/16	1	Alachlor		ug/L	UJ	0.078
MW14	BV87823	SW8081	11/17/16	1	Aldrin		ug/L	UJ	0.003
MW14	BV87823	SW8081	11/17/16	1	b-BHC		ug/L	UJ	0.020
MW14	BV87823	SW8081	11/17/16	1	Chlordane		ug/L	UJ	0.052
MW14	BV87823	SW8081	11/17/16	1	d-BHC		ug/L	UJ	0.010
MW14	BV87823	SW8081	11/17/16	1	Dieldrin		ug/L	UJ	0.005
MW14	BV87823	SW8081	11/17/16	1	Endosulfan I		ug/L	UJ	0.010
MW14	BV87823	SW8081	11/17/16	1	Endosulfan II		ug/L	UJ	0.010
MW14	BV87823	SW8081	11/17/16	1	Endosulfan Sulfate		ug/L	UJ	0.010
MW14	BV87823	SW8081	11/17/16	1	Endrin		ug/L	UJ	0.005
MW14	BV87823	SW8081	11/17/16	1	Endrin Aldehyde		ug/L	UJ	0.010
MW14	BV87823	SW8081	11/17/16	1	Endrin ketone		ug/L	UJ	0.010
MW14	BV87823	SW8081	11/17/16	1	g-BHC (Lindane)		ug/L	UJ	0.005
MW14	BV87823	SW8081	11/17/16	1	g-chlordane		ug/L	UJ	0.030
MW14	BV87823	SW8081	11/17/16	1	Heptachlor		ug/L	UJ	0.005
MW14	BV87823	SW8081	11/17/16	1	Heptachlor epoxide		ug/L	UJ	0.005
MW14	BV87823	SW8081	11/17/16	1	Methoxychlor		ug/L	UJ	0.10

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
_		Method	Date	Factor					
MW14	BV87823	SW8081	11/17/16	1	Toxaphene		ug/L	UJ	0.21
MW14	BV87823	SW8082	11/17/16	1	PCB-1016	0.16	ug/L		0.052
MW14	BV87823	SW8082	11/17/16	1	PCB-1221		ug/L	U	0.052
MW14	BV87823	SW8082	11/17/16	1	PCB-1232		ug/L	U	0.052
MW14	BV87823	SW8082	11/17/16	1	PCB-1242		ug/L	U	0.052
MW14	BV87823	SW8082	11/17/16	1	PCB-1248		ug/L	U	0.052
MW14	BV87823	SW8082	11/17/16	1	PCB-1254		ug/L	U	0.052
MW14	BV87823	SW8082	11/17/16	1	PCB-1260		ug/L	U	0.052
MW14	BV87823	SW8082	11/17/16	1	PCB-1262		ug/L	U	0.052
MW14	BV87823	SW8082	11/17/16	1	PCB-1268		ug/L	U	0.052
MW14	BV87823	SW8260	11/17/16	20	1,1,1,2-Tetrachloroethane		ug/L	U	5.0
MW14	BV87823	SW8260	11/17/16	20	1,1,1-Trichloroethane		ug/L	U	5.0
MW14	BV87823	SW8260	11/17/16	20	1,1,2,2-Tetrachloroethane		ug/L	U	5.0
MW14	BV87823	SW8260	11/17/16	20	1,1,2-Trichloroethane		ug/L	U	5.0
MW14	BV87823	SW8260	11/17/16	20	1,1-Dichloroethane		ug/L	U	5.0
MW14	BV87823	SW8260	11/17/16	20	1,1-Dichloroethene		ug/L	U	5.0
MW14	BV87823	SW8260	11/17/16	20	1,1-Dichloropropene		ug/L	U	5.0
MW14	BV87823	SW8260	11/17/16	20	1,2,3-Trichlorobenzene		ug/L	U	20
MW14	BV87823	SW8260	11/17/16	20	1,2,3-Trichloropropane		ug/L	U	5.0
MW14	BV87823	SW8260	11/17/16	20	1,2,4-Trichlorobenzene		ug/L	U	20
MW14	BV87823	SW8260	11/17/16	200	1,2,4-Trimethylbenzene	1400	ug/L		50
MW14	BV87823	SW8260	11/17/16	20	1,2-Dibromo-3-chloropropane		ug/L	UJ	10
MW14	BV87823	SW8260	11/17/16	20	1,2-Dibromoethane		ug/L	U	5.0
MW14	BV87823	SW8260	11/17/16	20	1,2-Dichlorobenzene		ug/L	U	5.0
MW14	BV87823	SW8260	11/17/16	20	1,2-Dichloroethane		ug/L	U	10
MW14	BV87823	SW8260	11/17/16	20	1,2-Dichloropropane		ug/L	U	5.0
MW14	BV87823	SW8260	11/17/16	20	1,3,5-Trimethylbenzene	400	ug/L		5.0
MW14	BV87823	SW8260	11/17/16	20	1,3-Dichlorobenzene		ug/L	U	5.0
MW14	BV87823	SW8260	11/17/16	20	1,3-Dichloropropane		ug/L	U	5.0
MW14	BV87823	SW8260	11/17/16	20	1,4-Dichlorobenzene		ug/L	U	5.0
MW14	BV87823	SW8260	11/17/16	20	2,2-Dichloropropane		ug/L	UJ	5.0
MW14	BV87823	SW8260	11/17/16	20	2-Chlorotoluene		ug/L	U	5.0
MW14	BV87823	SW8260	11/17/16	20	2-Hexanone		ug/L	U	50
MW14	BV87823	SW8260	11/17/16	20	2-Isopropyltoluene		ug/L	U	5.0
MW14	BV87823	SW8260	11/17/16	20	4-Chlorotoluene		ug/L	U	5.0
MW14	BV87823	SW8260	11/17/16	20	4-Methyl-2-pentanone		ug/L	U	50
MW14	BV87823	SW8260	11/17/16	20	Acetone		ug/L	UJ	50
MW14	BV87823	SW8260	11/17/16	20	Acrolein		ug/L	UJ	50
MW14	BV87823	SW8260	11/17/16	20	Acrylonitrile		ug/L	UJ	50
MW14	BV87823	SW8260	11/17/16	20	Benzene	380	ug/L		5.0

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
-		Method	Date	Factor	2				
MW14	BV87823	SW8260	11/17/16	20	Bromobenzene		ug/L	U	5.0
MW14	BV87823	SW8260	11/17/16	20	Bromochloromethane		ug/L	U	5.0
MW14	BV87823	SW8260	11/17/16	20	Bromodichloromethane		ug/L	U	20
MW14	BV87823	SW8260	11/17/16	20	Bromoform		ug/L	U	50
MW14	BV87823	SW8260	11/17/16	20	Bromomethane		ug/L	UJ	5.0
MW14	BV87823	SW8260	11/17/16	20	Carbon Disulfide	12	ug/L	J	20
MW14	BV87823	SW8260	11/17/16	20	Carbon tetrachloride		ug/L	U	5.0
MW14	BV87823	SW8260	11/17/16	20	Chlorobenzene		ug/L	U	5.0
MW14	BV87823	SW8260	11/17/16	20	Chloroethane		ug/L	U	5.0
MW14	BV87823	SW8260	11/17/16	20	Chloroform		ug/L	U	7.0
MW14	BV87823	SW8260	11/17/16	20	Chloromethane		ug/L	U	5.0
MW14	BV87823	SW8260	11/17/16	20	cis-1,2-Dichloroethene		ug/L	U	5.0
MW14	BV87823	SW8260	11/17/16	20	cis-1,3-Dichloropropene		ug/L	U	5.0
MW14	BV87823	SW8260	11/17/16	20	Dibromochloromethane		ug/L	U	20
MW14	BV87823	SW8260	11/17/16	20	Dibromomethane		ug/L	U	5.0
MW14	BV87823	SW8260	11/17/16	20	Dichlorodifluoromethane		ug/L	UJ	5.0
MW14	BV87823	SW8260	11/17/16	200	Ethylbenzene	940	ug/L		50
MW14	BV87823	SW8260	11/17/16	20	Hexachlorobutadiene		ug/L	U	4.0
MW14	BV87823	SW8260	11/17/16	20	Isopropylbenzene	64	ug/L		5.0
MW14	BV87823	SW8260	11/17/16	200	m&p-Xylene	3700	ug/L		200
MW14	BV87823	SW8260	11/17/16	20	Methyl ethyl ketone		ug/L	U	50
MW14	BV87823	SW8260	11/17/16	20	Methyl t-butyl ether (MTBE)		ug/L	U	20
MW14	BV87823	SW8260	11/17/16	20	Methylene chloride		ug/L	U	20
MW14	BV87823	SW8260	11/17/16	20	Naphthalene	250	ug/L		20
MW14	BV87823	SW8260	11/17/16	20	n-Butylbenzene	16	ug/L		5.0
MW14	BV87823	SW8260	11/17/16	20	n-Propylbenzene	170	ug/L		5.0
MW14	BV87823	SW8260	11/17/16	200	o-Xylene	1500	ug/L		50
MW14	BV87823	SW8260	11/17/16	20	p-Isopropyltoluene		ug/L	U	5.0
MW14	BV87823	SW8260	11/17/16	20	sec-Butylbenzene	12	ug/L		5.0
MW14	BV87823	SW8260	11/17/16	20	Styrene	6.9	ug/L		5.0
MW14	BV87823	SW8260	11/17/16	20	tert-Butylbenzene		ug/L	U	5.0
MW14	BV87823	SW8260	11/17/16	20	Tetrachloroethene		ug/L	U	5.0
MW14	BV87823	SW8260	11/17/16	20	Tetrahydrofuran (THF)		ug/L	UJ	50
MW14	BV87823	SW8260	11/17/16	200	Toluene	1100	ug/L		50
MW14	BV87823	SW8260	11/17/16	20	trans-1,2-Dichloroethene		ug/L	U	5.0
MW14	BV87823	SW8260	11/17/16	20	trans-1,3-Dichloropropene		ug/L	U	5.0
MW14	BV87823	SW8260	11/17/16	20	trans-1,4-dichloro-2-butene		ug/L	U	50
MW14	BV87823	SW8260	11/17/16	20	Trichloroethene		ug/L	U	5.0
MW14	BV87823	SW8260	11/17/16	20	Trichlorofluoromethane		ug/L	U	5.0
MW14	BV87823	SW8260	11/17/16	20	Trichlorotrifluoroethane		ug/L	U	5.0

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
		Method	Date	Factor					
MW14	BV87823	SW8260	11/17/16	20	Vinyl chloride		ug/L	U	5.0
MW14	BV87823	SW8270	11/17/16	20	1,2,4,5-Tetrachlorobenzene		ug/L	U	100
MW14	BV87823	SW8270	11/17/16	20	1,2,4-Trichlorobenzene		ug/L	U	100
MW14	BV87823	SW8270	11/17/16	20	1,2-Dichlorobenzene		ug/L	U	28
MW14	BV87823	SW8270	11/17/16	20	1,2-Diphenylhydrazine		ug/L	U	100
MW14	BV87823	SW8270	11/17/16	20	1,3-Dichlorobenzene		ug/L	U	30
MW14	BV87823	SW8270	11/17/16	20	1,4-Dichlorobenzene		ug/L	U	30
MW14	BV87823	SW8270	11/17/16	20	2,4,5-Trichlorophenol		ug/L	U	55
MW14	BV87823	SW8270	11/17/16	20	2,4,6-Trichlorophenol		ug/L	U	32
MW14	BV87823	SW8270	11/17/16	20	2,4-Dichlorophenol		ug/L	U	35
MW14	BV87823	SW8270	11/17/16	20	2,4-Dimethylphenol		ug/L	U	25
MW14	BV87823	SW8270	11/17/16	20	2,4-Dinitrophenol		ug/L	U	70
MW14	BV87823	SW8270	11/17/16	20	2,4-Dinitrotoluene		ug/L	U	39
MW14	BV87823	SW8270	11/17/16	20	2,6-Dinitrotoluene		ug/L	U	32
MW14	BV87823	SW8270	11/17/16	20	2-Chloronaphthalene		ug/L	U	28
MW14	BV87823	SW8270	11/17/16	20	2-Chlorophenol		ug/L	U	28
MW14	BV87823	SW8270	11/17/16	20	2-Methylnaphthalene	67	ug/L		50
MW14	BV87823	SW8270	11/17/16	20	2-Methylphenol (o-cresol)		ug/L	U	47
MW14	BV87823	SW8270	11/17/16	20	2-Nitroaniline		ug/L	U	100
MW14	BV87823	SW8270	11/17/16	20	2-Nitrophenol		ug/L	UJ	63
MW14	BV87823	SW8270	11/17/16	20	3&4-Methylphenol (m&p-cresol)		ug/L	U	100
MW14	BV87823	SW8270	11/17/16	20	3,3'-Dichlorobenzidine		ug/L	UJ	47
MW14	BV87823	SW8270	11/17/16	20	3-Nitroaniline		ug/L	U	220
MW14	BV87823	SW8270	11/17/16	20	4,6-Dinitro-2-methylphenol		ug/L	UJ	110
MW14	BV87823	SW8270	11/17/16	20	4-Bromophenyl phenyl ether		ug/L	U	100
MW14	BV87823	SW8270	11/17/16	20	4-Chloro-3-methylphenol		ug/L	U	35
MW14	BV87823	SW8270	11/17/16	20	4-Chloroaniline		ug/L	U	47
MW14	BV87823	SW8270	11/17/16	20	4-Chlorophenyl phenyl ether		ug/L	U	100
MW14	BV87823	SW8270	11/17/16	20	4-Nitroaniline		ug/L	U	33
MW14	BV87823	SW8270	11/17/16	20	4-Nitrophenol		ug/L	U	45
MW14	BV87823	SW8270	11/17/16	20	Acenaphthene		ug/L	U	30
MW14	BV87823	SW8270	11/17/16	20	Acenaphthylene		ug/L	U	28
MW14	BV87823	SW8270	11/17/16	20	Acetophenone		ug/L	U	100
MW14	BV87823	SW8270	11/17/16	20	Aniline		ug/L	UJ	300
MW14	BV87823	SW8270	11/17/16	20	Anthracene		ug/L	U	50
MW14	BV87823	SW8270	11/17/16	20	Benz(a)anthracene		ug/L	U	34
MW14	BV87823	SW8270	11/17/16	20	Benzidine		ug/L	R	59
MW14	BV87823	SW8270	11/17/16	20	Benzo(a)pyrene		ug/L	U	33
MW14	BV87823	SW8270	11/17/16	20	Benzo(b)fluoranthene		ug/L	U	34
MW14	BV87823	SW8270	11/17/16	20	Benzo(ghi)perylene		ug/L	U	32

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
•		Method	Date	Factor	-				
MW14	BV87823	SW8270	11/17/16	20	Benzo(k)fluoranthene		ug/L	U	33
MW14	BV87823	SW8270	11/17/16	200	Benzoic acid	3700	ug/L	J	2000
MW14	BV87823	SW8270	11/17/16	20	Benzyl butyl phthalate		ug/L	U	50
MW14	BV87823	SW8270	11/17/16	20	Bis(2-chloroethoxy)methane		ug/L	U	28
MW14	BV87823	SW8270	11/17/16	20	Bis(2-chloroethyl)ether		ug/L	U	27
MW14	BV87823	SW8270	11/17/16	20	Bis(2-chloroisopropyl)ether		ug/L	U	100
MW14	BV87823	SW8270	11/17/16	20	Bis(2-ethylhexyl)phthalate		ug/L	U	29
MW14	BV87823	SW8270	11/17/16	20	Carbazole		ug/L	U	500
MW14	BV87823	SW8270	11/17/16	20	Chrysene		ug/L	U	34
MW14	BV87823	SW8270	11/17/16	20	Dibenz(a,h)anthracene		ug/L	U	50
MW14	BV87823	SW8270	11/17/16	20	Dibenzofuran		ug/L	U	29
MW14	BV87823	SW8270	11/17/16	20	Diethyl phthalate		ug/L	U	50
MW14	BV87823	SW8270	11/17/16	20	Dimethylphthalate		ug/L	U	50
MW14	BV87823	SW8270	11/17/16	20	Di-n-butylphthalate		ug/L	U	50
MW14	BV87823	SW8270	11/17/16	20	Di-n-octylphthalate		ug/L	U	50
MW14	BV87823	SW8270	11/17/16	20	Fluoranthene		ug/L	U	50
MW14	BV87823	SW8270	11/17/16	20	Fluorene		ug/L	U	50
MW14	BV87823	SW8270	11/17/16	20	Hexachlorobenzene		ug/L	U	29
MW14	BV87823	SW8270	11/17/16	20	Hexachlorobutadiene		ug/L	U	36
MW14	BV87823	SW8270	11/17/16	20	Hexachlorocyclopentadiene		ug/L	UJ	31
MW14	BV87823	SW8270	11/17/16	20	Hexachloroethane		ug/L	U	30
MW14	BV87823	SW8270	11/17/16	20	Indeno(1,2,3-cd)pyrene		ug/L	U	33
MW14	BV87823	SW8270	11/17/16	20	Isophorone		ug/L	U	50
MW14	BV87823	SW8270	11/17/16	20	Naphthalene	260	ug/L		29
MW14	BV87823	SW8270	11/17/16	20	Nitrobenzene		ug/L	U	35
MW14	BV87823	SW8270	11/17/16	20	N-Nitrosodimethylamine		ug/L	U	100
MW14	BV87823	SW8270	11/17/16	20	N-Nitrosodi-n-propylamine		ug/L	U	100
MW14	BV87823	SW8270	11/17/16	20	N-Nitrosodiphenylamine		ug/L	U	50
MW14	BV87823	SW8270	11/17/16	20	Pentachloronitrobenzene		ug/L	U	100
MW14	BV87823	SW8270	11/17/16	20	Pentachlorophenol		ug/L	UJ	38
MW14	BV87823	SW8270	11/17/16	20	Phenanthrene		ug/L	U	50
MW14	BV87823	SW8270	11/17/16	20	Phenol		ug/L	U	32
MW14	BV87823	SW8270	11/17/16	20	Pyrene		ug/L	U	50
MW14	BV87823	SW8270	11/17/16	20	Pyridine		ug/L	UJ	50
MW15	BV87824	7010	11/17/16	1	Antimony		mg/L	UJ	0.002
MW15	BV87824	7010	11/17/16	1	Antimony, (Dissolved)		mg/L	UJ	0.003
MW15	BV87824	7010	11/17/16	1	Selenium		mg/L	U	0.002
MW15	BV87824	7010	11/17/16	1	Selenium, (Dissolved)		mg/L	U	0.004
MW15	BV87824	7010	11/17/16	1	Thallium - LDL		mg/L	UJ	0.0005
MW15	BV87824	7010	11/17/16	1	Thallium, (Dissolved)		mg/L	UJ	0.0005

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
·		Method	Date	Factor	•				
MW15	BV87824	SW6010	11/17/16	1	Aluminum	0.048	mg/L		0.010
MW15	BV87824	SW6010	11/17/16	1	Aluminum (Dissolved)	0.005	mg/L	J	0.011
MW15	BV87824	SW6010	11/17/16	1	Arsenic - LDL		mg/L	U	0.004
MW15	BV87824	SW6010	11/17/16	1	Arsenic, (Dissolved)		mg/L	U	0.003
MW15	BV87824	SW6010	11/17/16	1	Barium	0.151	mg/L		0.010
MW15	BV87824	SW6010	11/17/16	1	Barium (Dissolved)	0.142	mg/L		0.011
MW15	BV87824	SW6010	11/17/16	1	Beryllium		mg/L	U	0.001
MW15	BV87824	SW6010	11/17/16	1	Beryllium (Dissolved)		mg/L	U	0.001
MW15	BV87824	SW6010	11/17/16	1	Cadmium	0.001	mg/L	J	0.004
MW15	BV87824	SW6010	11/17/16	1	Cadmium (Dissolved)		mg/L	U	0.004
MW15	BV87824	SW6010	11/17/16	10	Calcium	151	mg/L		0.10
MW15	BV87824	SW6010	11/17/16	1	Calcium (Dissolved)	141	mg/L	J	0.01
MW15	BV87824	SW6010	11/17/16	1	Chromium		mg/L	U	0.001
MW15	BV87824	SW6010	11/17/16	1	Chromium (Dissolved)		mg/L	U	0.001
MW15	BV87824	SW6010	11/17/16	1	Cobalt	0.005	mg/L		0.005
MW15	BV87824	SW6010	11/17/16	1	Cobalt, (Dissolved)	0.005	mg/L		0.005
MW15	BV87824	SW6010	11/17/16	1	Copper	0.004	mg/L	U	0.005
MW15	BV87824	SW6010	11/17/16	1	Copper, (Dissolved)		mg/L	J+	0.005
MW15	BV87824	SW6010	11/17/16	1	Iron		mg/L	J	0.01
MW15	BV87824	SW6010	11/17/16	1	Iron, (Dissolved)		mg/L		0.01
MW15	BV87824	SW6010	11/17/16	1	Lead		mg/L	U	0.002
MW15	BV87824	SW6010	11/17/16	1	Lead (Dissolved)	0.002	mg/L	J	0.002
MW15	BV87824	SW6010	11/17/16	1	Magnesium	39.5	mg/L		0.010
MW15	BV87824	SW6010	11/17/16	1	Magnesium (Dissolved)	36.2	mg/L		0.01
MW15	BV87824	SW6010	11/17/16	10	Manganese	12.1	mg/L		0.050
MW15	BV87824	SW6010	11/17/16	10	Manganese, (Dissolved)	11.9	mg/L		0.053
MW15	BV87824	SW6010	11/17/16	1	Nickel	0.003	mg/L	J	0.004
MW15	BV87824	SW6010	11/17/16	1	Nickel, (Dissolved)	0.003	mg/L	J	0.004
MW15	BV87824	SW6010	11/17/16	1	Potassium	20.7	mg/L		0.1
MW15	BV87824	SW6010	11/17/16	1	Potassium (Dissolved)	19.6	mg/L		0.1
MW15	BV87824	SW6010	11/17/16	1	Silver		mg/L	U	0.005
MW15	BV87824	SW6010	11/17/16	1	Silver (Dissolved)		mg/L	U	0.005
MW15	BV87824	SW6010	11/17/16	10	Sodium	161	mg/L	J	1.0
MW15	BV87824	SW6010	11/17/16	10	Sodium (Dissolved)		mg/L		1.1
MW15	BV87824	SW6010	11/17/16	1	7		mg/L	U	0.010
MW15	BV87824	SW6010	11/17/16	1			mg/L	U	0.011
MW15	BV87824	SW6010	11/17/16	1			mg/L	J	0.010
MW15	BV87824	SW6010	11/17/16	1	Zinc, (Dissolved) 0.001 mg/L		J	0.011	
MW15	BV87824	SW7470	11/17/16	1			Ü	0.0002	
MW15	BV87824	SW7470	11/17/16	1	Mercury (Dissolved)		mg/L	U	0.0002

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte R	esult	Unit	Qualifier	RL
		Method	Date	Factor					
MW15	BV87824	SW8081	11/17/16	1	4,4' -DDD		ug/L	U	0.005
MW15	BV87824	SW8081	11/17/16	1	4,4' -DDE		ug/L	UJ	0.005
MW15	BV87824	SW8081	11/17/16	1	4,4' -DDT		ug/L	UJ	0.005
MW15	BV87824	SW8081	11/17/16	1	a-BHC		ug/L	UJ	0.005
MW15	BV87824	SW8081	11/17/16	1	a-chlordane		ug/L	UJ	0.010
MW15	BV87824	SW8081	11/17/16	1	Alachlor		ug/L	U	0.075
MW15	BV87824	SW8081	11/17/16	1	Aldrin		ug/L	UJ	0.002
MW15	BV87824	SW8081	11/17/16	1	b-BHC		ug/L	UJ	0.010
MW15	BV87824	SW8081	11/17/16	1	Chlordane		ug/L	U	0.050
MW15	BV87824	SW8081	11/17/16	1	d-BHC		ug/L	U	0.005
MW15	BV87824	SW8081	11/17/16	1	Dieldrin		ug/L	U	0.002
MW15	BV87824	SW8081	11/17/16	1	Endosulfan I		ug/L	UJ	0.010
MW15	BV87824	SW8081	11/17/16	1	Endosulfan II		ug/L	UJ	0.010
MW15	BV87824	SW8081	11/17/16	1	Endosulfan Sulfate		ug/L	U	0.010
MW15	BV87824	SW8081	11/17/16	1	Endrin		ug/L	U	0.010
MW15	BV87824	SW8081	11/17/16	1	Endrin Aldehyde		ug/L	UJ	0.010
MW15	BV87824	SW8081	11/17/16	1			ug/L	UJ	0.010
MW15	BV87824	SW8081	11/17/16	1			ug/L	UJ	0.005
MW15	BV87824	SW8081	11/17/16	1			ug/L	UJ	0.010
MW15	BV87824	SW8081	11/17/16	1	Heptachlor		ug/L	U	0.010
MW15	BV87824	SW8081	11/17/16	1	Heptachlor epoxide		ug/L	UJ	0.010
MW15	BV87824	SW8081	11/17/16	1	Methoxychlor		ug/L	UJ	0.10
MW15	BV87824	SW8081	11/17/16	1	Toxaphene		ug/L	U	0.20
MW15	BV87824	SW8082	11/17/16	1	PCB-1016		ug/L	U	0.050
MW15	BV87824	SW8082	11/17/16	1	PCB-1221		ug/L	U	0.050
MW15	BV87824	SW8082	11/17/16	1	PCB-1232		ug/L	U	0.050
MW15	BV87824	SW8082	11/17/16	1	PCB-1242		ug/L	U	0.050
MW15	BV87824	SW8082	11/17/16	1	PCB-1248		ug/L	U	0.050
MW15	BV87824	SW8082	11/17/16	1	PCB-1254		ug/L	U	0.050
MW15	BV87824	SW8082	11/17/16	1	PCB-1260		ug/L	U	0.050
MW15	BV87824	SW8082	11/17/16	1	PCB-1262		ug/L	U	0.050
MW15	BV87824	SW8082	11/17/16	1	PCB-1268		ug/L	U	0.050
MW15	BV87824	SW8260	11/17/16	1	1,1,1,2-Tetrachloroethane	Ī	ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	1,1,1-Trichloroethane		ug/L	U	5.0
MW15	BV87824	SW8260	11/17/16	1	1,1,2,2-Tetrachloroethane		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	1,1,2-Trichloroethane		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	1,1-Dichloroethane		ug/L	U	5.0
MW15	BV87824	SW8260	11/17/16	1	1,1-Dichloroethene		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	1,1-Dichloropropene		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	1,2,3-Trichlorobenzene		ug/L	U	1.0

SDG:	GBV87817
------	----------

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
·		Method	Date	Factor					
MW15	BV87824	SW8260	11/17/16	1	1,2,3-Trichloropropane		ug/L	U	0.25
MW15	BV87824	SW8260	11/17/16	1	1,2,4-Trichlorobenzene		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	1,2,4-Trimethylbenzene		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	1,2-Dibromo-3-chloropropane		ug/L	UJ	0.50
MW15	BV87824	SW8260	11/17/16	1	1,2-Dibromoethane		ug/L	U	0.25
MW15	BV87824	SW8260	11/17/16	1	1,2-Dichlorobenzene		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	1,2-Dichloroethane		ug/L	U	0.60
MW15	BV87824	SW8260	11/17/16	1	1,2-Dichloropropane		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	1,3,5-Trimethylbenzene		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	1,3-Dichlorobenzene		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	1,3-Dichloropropane		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	1,4-Dichlorobenzene		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	2,2-Dichloropropane		ug/L	UJ	1.0
MW15	BV87824	SW8260	11/17/16	1	2-Chlorotoluene		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	2-Hexanone		ug/L	U	2.5
MW15	BV87824	SW8260	11/17/16	1	2-Isopropyltoluene		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1			ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	4-Methyl-2-pentanone		ug/L	U	2.5
MW15	BV87824	SW8260	11/17/16	1	Acetone		ug/L	UJ	5.0
MW15	BV87824	SW8260	11/17/16	1	Acrolein		ug/L	UJ	5.0
MW15	BV87824	SW8260	11/17/16	1	Acrylonitrile		ug/L	UJ	5.0
MW15	BV87824	SW8260	11/17/16	1	Benzene		ug/L	U	0.70
MW15	BV87824	SW8260	11/17/16	1	Bromobenzene		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	Bromochloromethane		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	Bromodichloromethane		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	Bromoform		ug/L	U	5.0
MW15	BV87824	SW8260	11/17/16	1	Bromomethane		ug/L	UJ	5.0
MW15	BV87824	SW8260	11/17/16	1	Carbon Disulfide		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	Carbon tetrachloride		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	Chlorobenzene		ug/L	U	5.0
MW15	BV87824	SW8260	11/17/16	1	Chloroethane		ug/L	U	5.0
MW15	BV87824	SW8260	11/17/16	1	Chloroform		ug/L	U	5.0
MW15	BV87824	SW8260	11/17/16	1	Chloromethane		ug/L	U	5.0
MW15	BV87824	SW8260	11/17/16	1	cis-1,2-Dichloroethene		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	cis-1,3-Dichloropropene		ug/L	U	0.40
MW15	BV87824	SW8260	11/17/16	1	· · · · · · · · · · · · · · · · · · ·		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	Dibromomethane		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	Dichlorodifluoromethane	i	ug/L	UJ	1.0
MW15	BV87824	SW8260	11/17/16	1	Ü		U	1.0	
MW15	BV87824	SW8260	11/17/16	1	Hexachlorobutadiene		ug/L	U	0.50

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte R	Result	Unit	Qualifier	RL
		Method	Date	Factor	•				
MW15	BV87824	SW8260	11/17/16	1	Isopropylbenzene		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	m&p-Xylene		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	Methyl ethyl ketone		ug/L	U	2.5
MW15	BV87824	SW8260	11/17/16	1	Methyl t-butyl ether (MTBE)		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	Methylene chloride		ug/L	U	3.0
MW15	BV87824	SW8260	11/17/16	1	Naphthalene		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	n-Butylbenzene		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	n-Propylbenzene		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	o-Xylene		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	p-Isopropyltoluene		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	sec-Butylbenzene		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	Styrene		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	tert-Butylbenzene		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	Tetrachloroethene		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	Tetrahydrofuran (THF)		ug/L	UJ	5.0
MW15	BV87824	SW8260	11/17/16	1	Toluene		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1			ug/L	U	5.0
MW15	BV87824	SW8260	11/17/16	1	trans-1,3-Dichloropropene		ug/L	U	0.40
MW15	BV87824	SW8260	11/17/16	1	trans-1,4-dichloro-2-butene		ug/L	U	2.5
MW15	BV87824	SW8260	11/17/16	1	Trichloroethene		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	Trichlorofluoromethane		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	Trichlorotrifluoroethane		ug/L	U	1.0
MW15	BV87824	SW8260	11/17/16	1	Vinyl chloride		ug/L	U	1.0
MW15	BV87824	SW8270	11/17/16	1	1,2,4-Trichlorobenzene		ug/L	U	5.0
MW15	BV87824	SW8270	11/17/16	1	1,2-Dichlorobenzene		ug/L	U	1.0
MW15	BV87824	SW8270	11/17/16	1	1,2-Diphenylhydrazine		ug/L	U	5.0
MW15	BV87824	SW8270	11/17/16	1	1,3-Dichlorobenzene		ug/L	U	1.0
MW15	BV87824	SW8270	11/17/16	1	1,4-Dichlorobenzene		ug/L	U	1.0
MW15	BV87824	SW8270	11/17/16	1	2,4,5-Trichlorophenol		ug/L	U	1.0
MW15	BV87824	SW8270	11/17/16	1	2,4,6-Trichlorophenol		ug/L	U	1.0
MW15	BV87824	SW8270	11/17/16	1	2,4-Dichlorophenol		ug/L	U	1.0
MW15	BV87824	SW8270	11/17/16	1	2,4-Dimethylphenol		ug/L	U	1.0
MW15	BV87824	SW8270	11/17/16	1	2,4-Dinitrophenol		ug/L	U	1.0
MW15	BV87824	SW8270	11/17/16	1	2,4-Dinitrotoluene		ug/L	U	5.0
MW15	BV87824	SW8270	11/17/16	1	· ·		ug/L	U	5.0
MW15	BV87824	SW8270	11/17/16	1	2-Chloronaphthalene ug/L		U	5.0	
MW15	BV87824	SW8270	11/17/16	1	2-Chlorophenol ug/L U		U	1.0	
MW15	BV87824	SW8270	11/17/16	1	2-Methylnaphthalene ug/L U		U	5.0	
MW15	BV87824	SW8270	11/17/16	1	2-Methylphenol (o-cresol) ug/L U		U	1.0	
MW15	BV87824	SW8270	11/17/16	1	2-Nitroaniline		ug/L	U	5.0

Sample Name	Lab ID	Analytical Method	Sample Date	Dilution Factor	Analyte	Result	Unit	Qualifier	RL
MW15	BV87824	SW8270	11/17/16	1	2-Nitrophenol		ug/L	UJ	1.0
MW15	BV87824	SW8270	11/17/16	1	3&4-Methylphenol (m&p-cresol)		ug/L	U	1.0
MW15	BV87824	SW8270	11/17/16	1	3,3'-Dichlorobenzidine		ug/L	UJ	5.0
MW15	BV87824	SW8270	11/17/16	1	3-Nitroaniline		ug/L	U	5.0
MW15	BV87824	SW8270	11/17/16	1	4,6-Dinitro-2-methylphenol		ug/L	UJ	1.0
MW15	BV87824	SW8270	11/17/16	1	4-Bromophenyl phenyl ether		ug/L	U	5.0
MW15	BV87824	SW8270	11/17/16	1	4-Chloro-3-methylphenol		ug/L	Ü	1.0
MW15	BV87824	SW8270	11/17/16	1	4-Chloroaniline		ug/L	U	3.5
MW15	BV87824	SW8270	11/17/16	1	4-Chlorophenyl phenyl ether		ug/L	U	5.0
MW15	BV87824	SW8270	11/17/16	1	4-Nitroaniline		ug/L	U	5.0
MW15	BV87824	SW8270	11/17/16	1	4-Nitrophenol		ug/L	U	1.0
MW15	BV87824	SW8270	11/17/16	1	Acenaphthene		ug/L	U	5.0
MW15	BV87824	SW8270	11/17/16	1	Acetophenone		ug/L	U	5.0
MW15	BV87824	SW8270	11/17/16	1	Aniline		ug/L	UJ	3.5
MW15	BV87824	SW8270	11/17/16	1	Anthracene		ug/L	U	5.0
MW15	BV87824	SW8270	11/17/16	1	Benzidine		ug/L	R	4.5
MW15	BV87824	SW8270	11/17/16	1			ug/L	UJ	25
MW15	BV87824	SW8270	11/17/16	1	Benzyl butyl phthalate		ug/L	U	5.0
MW15	BV87824	SW8270	11/17/16	1	Bis(2-chloroethoxy)methane		ug/L	U	5.0
MW15	BV87824	SW8270	11/17/16	1	Bis(2-chloroethyl)ether		ug/L	U	1.0
MW15	BV87824	SW8270	11/17/16	1	Bis(2-chloroisopropyl)ether		ug/L	U	5.0
MW15	BV87824	SW8270	11/17/16	1	Carbazole		ug/L	U	5.0
MW15	BV87824	SW8270	11/17/16	1	Dibenzofuran		ug/L	U	5.0
MW15	BV87824	SW8270	11/17/16	1	Diethyl phthalate		ug/L	U	5.0
MW15	BV87824	SW8270	11/17/16	1	Dimethylphthalate		ug/L	U	5.0
MW15	BV87824	SW8270	11/17/16	1	Di-n-butylphthalate		ug/L	U	5.0
MW15	BV87824	SW8270	11/17/16	1	Di-n-octylphthalate		ug/L	U	5.0
MW15	BV87824	SW8270	11/17/16	1	Fluoranthene		ug/L	U	5.0
MW15	BV87824	SW8270	11/17/16	1	Fluorene		ug/L	U	5.0
MW15	BV87824	SW8270	11/17/16	1	Hexachlorocyclopentadiene		ug/L	UJ	5.0
MW15	BV87824	SW8270	11/17/16	1	Isophorone		ug/L	U	5.0
MW15	BV87824	SW8270	11/17/16	1	Naphthalene		ug/L	U	5.0
MW15	BV87824	SW8270	11/17/16	1	N-Nitrosodi-n-propylamine		ug/L	U	5.0
MW15	BV87824	SW8270	11/17/16	1	N-Nitrosodiphenylamine		ug/L	U	5.0
MW15	BV87824	SW8270	11/17/16	1	Phenol		ug/L	U	1.0
MW15	BV87824	SW8270	11/17/16	1	Pyrene		ug/L	U	5.0
MW15	BV87824	SW8270	11/17/16	1	Pyridine		ug/L	UJ	10
MW15	BV87824	SW8270C-SIM	11/17/16	1	1,2,4,5-Tetrachlorobenzene		ug/L	U	0.50
MW15	BV87824	SW8270C-SIM	11/17/16	1	Acenaphthylene		ug/L	U	0.10
MW15	BV87824	SW8270C-SIM	11/17/16	1	Benz(a)anthracene		ug/L	U	0.02

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
		Method	Date	Factor	-				
MW15	BV87824	SW8270C-SIM	11/17/16	1	Benzo(a)pyrene		ug/L	U	0.02
MW15	BV87824	SW8270C-SIM	11/17/16	1	Benzo(b)fluoranthene		ug/L	U	0.02
MW15	BV87824	SW8270C-SIM	11/17/16	1	Benzo(ghi)perylene		ug/L	U	0.02
MW15	BV87824	SW8270C-SIM	11/17/16	1	Benzo(k)fluoranthene		ug/L	U	0.02
MW15	BV87824	SW8270C-SIM	11/17/16	1	Bis(2-ethylhexyl)phthalate		ug/L	U	1.0
MW15	BV87824	SW8270C-SIM	11/17/16	1	Chrysene		ug/L	U	0.02
MW15	BV87824	SW8270C-SIM	11/17/16	1	Dibenz(a,h)anthracene		ug/L	U	0.02
MW15	BV87824	SW8270C-SIM	11/17/16	1	Hexachlorobenzene		ug/L	U	0.02
MW15	BV87824	SW8270C-SIM	11/17/16	1	Hexachlorobutadiene		ug/L	U	0.40
MW15	BV87824	SW8270C-SIM	11/17/16	1	Hexachloroethane		ug/L	U	0.50
MW15	BV87824	SW8270C-SIM	11/17/16	1	Indeno(1,2,3-cd)pyrene		ug/L	U	0.02
MW15	BV87824	SW8270C-SIM	11/17/16	1	Nitrobenzene		ug/L	U	0.10
MW15	BV87824	SW8270C-SIM	11/17/16	1	N-Nitrosodimethylamine		ug/L	UJ	0.10
MW15	BV87824	SW8270C-SIM	11/17/16	1	Pentachloronitrobenzene		ug/L	U	0.10
MW15	BV87824	SW8270C-SIM	11/17/16	1	Pentachlorophenol		ug/L	UJ	0.80
MW15	BV87824	SW8270C-SIM	11/17/16	1	Phenanthrene		ug/L	U	0.10
BV87825-TB	BV87825	SW8260	11/17/16	1			ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	1,1,1-Trichloroethane		ug/L	U	5.0
BV87825-TB	BV87825	SW8260	11/17/16	1	1,1,2,2-Tetrachloroethane		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	1,1,2-Trichloroethane		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	1,1-Dichloroethane		ug/L	U	5.0
BV87825-TB	BV87825	SW8260	11/17/16	1	1,1-Dichloroethene		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	1,1-Dichloropropene		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	1,2,3-Trichlorobenzene		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	1,2,3-Trichloropropane		ug/L	U	0.25
BV87825-TB	BV87825	SW8260	11/17/16	1	1,2,4-Trichlorobenzene		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	1,2,4-Trimethylbenzene		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	1,2-Dibromo-3-chloropropane		ug/L	UJ	0.50
BV87825-TB	BV87825	SW8260	11/17/16	1	1,2-Dibromoethane		ug/L	U	0.25
BV87825-TB	BV87825	SW8260	11/17/16	1	1,2-Dichlorobenzene		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	1,2-Dichloroethane		ug/L	U	0.60
BV87825-TB	BV87825	SW8260	11/17/16	1	1,2-Dichloropropane		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	1,3,5-Trimethylbenzene		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	1,3-Dichlorobenzene		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	1,3-Dichloropropane		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	1,4-Dichlorobenzene		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	2,2-Dichloropropane		ug/L	UJ	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	2-Chlorotoluene		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	2-Hexanone		ug/L	U	2.5
BV87825-TB	BV87825	SW8260	11/17/16	1	2-Isopropyltoluene		ug/L	U	1.0

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte R	Result	Unit	Qualifier	RL
•		Method	Date	Factor	•				
BV87825-TB	BV87825	SW8260	11/17/16	1	4-Chlorotoluene		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	4-Methyl-2-pentanone		ug/L	U	2.5
BV87825-TB	BV87825	SW8260	11/17/16	1	Acetone		ug/L	UJ	5.0
BV87825-TB	BV87825	SW8260	11/17/16	1	Acrolein		ug/L	UJ	5.0
BV87825-TB	BV87825	SW8260	11/17/16	1	Acrylonitrile		ug/L	UJ	5.0
BV87825-TB	BV87825	SW8260	11/17/16	1	Benzene		ug/L	U	0.70
BV87825-TB	BV87825	SW8260	11/17/16	1	Bromobenzene		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	Bromochloromethane		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	Bromodichloromethane		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	Bromoform		ug/L	U	5.0
BV87825-TB	BV87825	SW8260	11/17/16	1	Bromomethane		ug/L	UJ	5.0
BV87825-TB	BV87825	SW8260	11/17/16	1	Carbon Disulfide		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	Carbon tetrachloride		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	Chlorobenzene		ug/L	U	5.0
BV87825-TB	BV87825	SW8260	11/17/16	1	Chloroethane		ug/L	U	5.0
BV87825-TB	BV87825	SW8260	11/17/16	1	Chloroform		ug/L	U	5.0
BV87825-TB	BV87825	SW8260	11/17/16	1			ug/L	U	5.0
BV87825-TB	BV87825	SW8260	11/17/16	1			ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	cis-1,3-Dichloropropene		ug/L	U	0.40
BV87825-TB	BV87825	SW8260	11/17/16	1	Dibromochloromethane		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	Dibromomethane		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	Dichlorodifluoromethane		ug/L	UJ	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	Ethylbenzene		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	Hexachlorobutadiene		ug/L	U	0.50
BV87825-TB	BV87825	SW8260	11/17/16	1	Isopropylbenzene		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	m&p-Xylene		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	Methyl ethyl ketone		ug/L	U	2.5
BV87825-TB	BV87825	SW8260	11/17/16	1	Methyl t-butyl ether (MTBE)		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	Methylene chloride		ug/L	U	3.0
BV87825-TB	BV87825	SW8260	11/17/16	1	Naphthalene		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	n-Butylbenzene		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	n-Propylbenzene		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	o-Xylene		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	p-Isopropyltoluene		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	sec-Butylbenzene		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	Styrene		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1			ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1			U	1.0	
BV87825-TB	BV87825	SW8260	11/17/16	1	Tetrahydrofuran (THF)		ug/L	UJ	5.0
BV87825-TB	BV87825	SW8260	11/17/16	1	Toluene		ug/L	U	1.0

Sample Name	Lab ID	Analytical Method	Sample Date	Dilution Factor			Unit	Qualifier	RL
BV87825-TB	BV87825	SW8260	11/17/16	1	trans-1,2-Dichloroethene		ug/L	U	5.0
BV87825-TB	BV87825	SW8260	11/17/16	1	trans-1,3-Dichloropropene		ug/L	U	0.40
BV87825-TB	BV87825	SW8260	11/17/16	1	trans-1,4-dichloro-2-butene		ug/L	U	2.5
BV87825-TB	BV87825	SW8260	11/17/16	1	Trichloroethene		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	Trichlorofluoromethane		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	Trichlorotrifluoroethane		ug/L	U	1.0
BV87825-TB	BV87825	SW8260	11/17/16	1	Vinyl chloride		ug/L	U	1.0

DATA USABILITY SUMMARY REPORT (DUSR) SEMI-VOLATILE ORGANIC COMPOUNDS

USEPA Region II -Data Validation

Project Name: 1181 Flushing Avenue

Location: Brooklyn, New York

Project Number: 3020-026

SDG #: GBV81835

Client: Environmental Business Consultants

Date: 02/20/2017

Laboratory: Phoenix Environmental Laboratories, Inc.

Reviewer: Sherri Pullar

Summary:

- 1. Data validation was performed on the data for seventeen (17) soil samples analyzed for Semi-volatiles by SW-846 Method 8270D in accordance with the NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 11/10/2016. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 11/11/2016 for analysis.
- 3. The USEPA Region-II SOP HW-35, Revision 2, March 2013, Validating Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry, SW-846 Method 8270D was used in evaluating the Semi-volatiles data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (see discussion below).

Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory	Collection	Analysis	Matrix	Sample Status
	Sample ID	Date			
15B5 (0-2)	BV81835	11/10/16	SVO	Soil	
15B5 (12-14)	BV81836	11/10/16	SVO	Soil	
15B5 (15-17)	BV81837	11/10/16	SVO	Soil	
15B8 (0-2)	BV81838	11/10/16	SVO	Soil	
15B8 (12-14)	BV81839	11/10/16	SVO	Soil	
15B11 (0-2)	BV81840	11/10/16	SVO	Soil	
15B11 (3-5)	BV81841	11/10/16	SVO	Soil	
15B11 (12-14)	BV81842	11/10/16	SVO	Soil	
15B12 (12-14)	BV81843	11/10/16	SVO	Soil	
15B12 (20-22)	BV81844	11/10/16	SVO	Soil	
15B13 (12-14)	BV81845	11/10/16	SVO	Soil	
15B14 (1-3)	BV81846	11/10/16	SVO	Soil	
15B14 (12-14)	BV81847	11/10/16	SVO	Soil	
15B14 (14-16)	BV81848	11/10/16	SVO	Soil	
15B20 (0-2)	BV81849	11/10/16	SVO	Soil	
15B20 (12-14)	BV81850	11/10/16	SVO	Soil	
SOIL DUPLICATE	BV81851	11/10/16	SVO	Soil	Field Duplicate to Sample 15B20 (12-14)

Sample Conditions/Problems:

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

Holding Times:

1. All soil samples were extracted within 14 days from sample collection and analyzed within 40 days following sample extraction. No qualifications were required.

GC/MS Tuning:

1. All of the DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria. No qualifications were required.

Initial Calibration:

1. Initial calibration curve analyzed on 11/10/2016 (CHEM25) exhibited acceptable %RSDs ($\leq 30.0\%$) for CCC compounds and average RRF values for SPCC compounds. Also, %RSDs for all other compounds were $\leq 20.0\%$ and average RRF (> 0.050) with the following exception(s):

Compound	%RSD
4,6-Dinitro-2-methylphenol	21.3

Client Sample ID	Laboratory Sample ID	Compound	Action
15B5 (0-2)	BV81835	4,6-Dinitro-2-methylphenol	None
15B5 (12-14)	BV81836	4,6-Dinitro-2-methylphenol	None
15B5 (15-17)	BV21837	4,6-Dinitro-2-methylphenol	None
15B8 (0-2)	BV21838	4,6-Dinitro-2-methylphenol	None
15B8 (12-14)	BV81839	4,6-Dinitro-2-methylphenol	None
15B11 (0-2)	BV81840	4,6-Dinitro-2-methylphenol	None
15B11 (12-14)	BV81842	4,6-Dinitro-2-methylphenol	None

2. Initial calibration curve analyzed on 10/24/2016 (CHEM29) exhibited acceptable %RSDs ($\leq 30.0\%$) for CCC compounds and average RRF values for SPCC compounds. Also, %RSDs for all other compounds were $\leq 20.0\%$ and average RRF (> 0.050) with the following exception(s):

Compound	%RSD	
Benzoic Acid	34.4	
2,4-Dinitrophenol	27.9	

Client Sample ID	Laboratory Sample ID	Compound	Action
15B11 (3-5)	BV81841	Benzoic Acid, 2,4-Dinitrophenol	None
15B12 (12-14)	BV81843	Benzoic Acid, 2,4-Dinitrophenol	None
15B12 (20-22)	BV81844	Benzoic Acid, 2,4-Dinitrophenol	None
15B13 (12-14)	BV81845	Benzoic Acid, 2,4-Dinitrophenol	None
15B14 (1-3)	BV81846	Benzoic Acid, 2,4-Dinitrophenol	None
15B14 (12-14)	BV81847	Benzoic Acid, 2,4-Dinitrophenol	None
15B14 (14-16)	BV81848	Benzoic Acid, 2,4-Dinitrophenol	None
15B20 (0-2)	BV81849	Benzoic Acid, 2,4-Dinitrophenol	None
15B20 (12-14)	BV81850	Benzoic Acid, 2,4-Dinitrophenol	None
SOIL DUPLICATE	BV81851	Benzoic Acid, 2,4-Dinitrophenol	None

Continuing Calibration Verification (CCV):

- 1. CCV analyzed on 11/11/2016 @ 21:17 (CHEM25) exhibited acceptable %Ds (≤40.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤25.0%. No qualifications were required.
- 2. CCV analyzed on 11/12/2016 @ 08:28 (CHEM25) exhibited acceptable %Ds (≤50.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤50.0% with the following exception(s):

Compound	%D
Hexachlorocyclopentadiene	82.1
2,4-Dinitrophenol	88.4
4,6-Dinitro-2-methylphenol	82.9

Client Sample ID	Laboratory Sample ID	Compound	Action
15B5 (0-2)	BV81835	Hexachlorocyclopentadiene,	UJ
		2,4-Dinitrophenol,	
		4,6-Dinitro-2-methylphenol	
15B5 (12-14)	BV81836	Hexachlorocyclopentadiene,	UJ
		2,4-Dinitrophenol,	
		4,6-Dinitro-2-methylphenol	
15B5 (15-17)	BV21837	Hexachlorocyclopentadiene,	UJ
		2,4-Dinitrophenol,	
		4,6-Dinitro-2-methylphenol	
15B8 (0-2)	BV21838	Hexachlorocyclopentadiene,	UJ
		2,4-Dinitrophenol,	
		4,6-Dinitro-2-methylphenol	
15B8 (12-14)	BV81839	Hexachlorocyclopentadiene,	UJ
		2,4-Dinitrophenol,	
		4,6-Dinitro-2-methylphenol	
15B11 (0-2)	BV81840	Hexachlorocyclopentadiene,	UJ
		2,4-Dinitrophenol,	
		4,6-Dinitro-2-methylphenol	
15B11 (12-14)	BV81842	Hexachlorocyclopentadiene,	UJ
		2,4-Dinitrophenol,	
		4,6-Dinitro-2-methylphenol	

3. CCV analyzed on 11/11/2016 @ 22:37 (CHEM29) exhibited acceptable %Ds (≤40.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤25.0% with the following exception(s):

Compound	%D
Benzoic Acid	-33.8

Client Sample ID	Laboratory Sample ID	Compound	Action
15B11 (3-5)	BV81841	Benzoic Acid	UJ
15B12 (12-14)	BV81843	Benzoic Acid	UJ
15B12 (20-22)	BV81844	Benzoic Acid	UJ
15B13 (12-14)	BV81845	Benzoic Acid	UJ
15B14 (1-3)	BV81846	Benzoic Acid	UJ
15B14 (12-14)	BV81847	Benzoic Acid	UJ
15B14 (14-16)	BV81848	Benzoic Acid	UJ
15B20 (0-2)	BV81849	Benzoic Acid	UJ
15B20 (12-14)	BV81850	Benzoic Acid	UJ
SOIL DUPLICATE	BV81851	Benzoic Acid	UJ

4. CCV analyzed on 11/12/2016 @ 04:43 (CHEM29) exhibited acceptable %Ds (≤50.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤50.0%. No qualifications were required.

Surrogates:

1. Surrogate %REC values were within the QC acceptance limits. No qualifications were required.

Internal Standard (IS) Area Performance:

1. All samples exhibited acceptable area count for all six internal standards. No qualifications were required.

Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

1. Method Blank (BV81841 BLANK) associated with the soil samples extracted on 11/11/2016 and analyzed on 11/11/2016 was free of contamination. No qualifications were required.

Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):

1. Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD) associated with Batch ID: BV81841 were analyzed on 11/11/2016. All %RECs and RPDs were within the laboratory control limits with the following exception(s):

Compound	%R/%R/RPD	Sample	Action
		Affected	
Benzoic Acid	7/5/44.1	15B11 (3-5), 15B12 (12-14), 15B12 (20-22),	UJ
		15B13 (12-14), 15B14 (1-3), 15B14 (12-14),	
		15B14 (14-16), 15B20 (0-2), 15B20 (12-14),	
		SOIL DUPLICATE	
2,4-Dinitrophenol	22/9/87.6	15B11 (3-5), 15B12 (12-14), 15B12 (20-22),	UJ
		15B13 (12-14), 15B14 (1-3), 15B14 (12-14),	
		15B14 (14-16), 15B20 (0-2), 15B20 (12-14),	
		SOIL DUPLICATE	
4,6-Dinitro-2-methylphenol	A/28/54.5	15B11 (3-5)	J
		15B12 (12-14), 15B12 (20-22), 15B13 (12-14)	UJ
		15B14 (1-3), 15B14 (12-14), 15B14 (14-16)	UJ
		15B20 (0-2), 15B20 (12-14)	UJ
		SOIL DUPLICATE	UJ
Benzidine	12/18/40.0	15B11 (3-5), 15B12 (12-14), 15B12 (20-22),	UJ
		15B13 (12-14), 15B14 (1-3), 15B14 (12-14),	
		15B14 (14-16), 15B20 (0-2), 15B20 (12-14),	
		SOIL DUPLICATE	

A= Acceptable

Field Duplicate:

1. Sample SOIL DUPLICATE (BV81851) was collected as a field duplicate of sample 15B20 (12-14) (BV81850). Results for both samples were non-detect. No qualifications were required.

Matrix Spike (MS)/Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS)/Matrix Spike Duplicate (MSD) were not performed on sample from this SDG.

Target Compound Identification:

- 1. All Relative Retention Times (RRTs) of the reported compounds were within \pm 0.06 RRT units of the standard (opening CCV).
- 2. Sample compound spectra were compared against the laboratory standard spectra.
- 3. No QC deviations were observed.

Compound Quantitation and Reported Detection Limits:

- 1. All sample results were reported within the linear calibration range.
- 2. %Solids for all soil samples in this SDG were >50%. No qualifications were required.
- 3. Manual Calculation:

$$Cx = (Ax)(IS)(VE)(DF)$$

(Ais)(RRF)(Volume injected, μ L)(V)(%Solids)

Cx = concentration of analyte as ug/kg

Ax = Area of the characteristic ion for the compound to be measured, counts.

Ais = Area of the characteristic ion for the specific internal standard, counts.

IS = Concentration of the internal standard spiking mixture, ng

RRF= Mean relative response factor from the initial calibration.

DF = Dilution factor calculated. If no dilution is performed, DF= 1

V= Volume for liquids in ml, weight for soils/solids in grams.

VE= final volume of concentrated extract

Sample: BV81841 LCS

Pyrene

Sample weight= 15g Volume purged=1.0ml DF = 1 %Solids=NA

Concentration (
$$\mu$$
g/kg) (dry) = $\underline{1507298 \times 40 \times 1 \times 1000}$ = 2579.5 μ g/kg $\underline{1159405 \times 1.344 \times 15}$

	Laboratory	Validation	
Compound	(µg/kg)	(µg/kg)	%D
Pyrene	2579	2579	0.0

Comments:

- 1. Semivolatile data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GBV81835.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GBV81835.

DATA USABILITY SUMMARY REPORT (DUSR) VOLATILE ORGANIC COMPOUNDS

USEPA Region II -Data Validation

Project Name: 1181 Flushing Avenue

Location: Brooklyn, New York

Project Number: 3020-026

SDG #: GBV81835

Client: Environmental Business Consultants

Date: 02/20/2017

Laboratory: Phoenix Environmental Laboratories, Inc.

Reviewer: Sherri Pullar

Summary:

- 1. Data validation was performed on the data for seventeen (17) soil samples and two (2) trip blanks analyzed for Volatiles by SW-846 Method 8260C in accordance to NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 11/10/2016. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 11/11/2016 for analysis.
- 3. The USEPA Region-II SOP HW-24, Revision 4, October 2014, Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry, SW-846 Method 8260C was used in evaluating the Volatiles data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (see discussion below).

Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory Sample ID	Collection Date	Analysis	Matrix	Sample Status
15B5 (0-2)	BV81835	11/10/16	VOA	Soil	
15B5 (12-14)	BV81836	11/10/16	VOA	Soil	
15B5 (15-17)	BV81837	11/10/16	VOA	Soil	
15B8 (0-2)	BV81838	11/10/16	VOA	Soil	
15B8 (12-14)	BV81839	11/10/16	VOA	Soil	
15B11 (0-2)	BV81840	11/10/16	VOA	Soil	
15B11 (3-5)	BV81841	11/10/16	VOA	Soil	
15B11 (12-14)	BV81842	11/10/16	VOA	Soil	
15B12 (12-14)	BV81843	11/10/16	VOA	Soil	
15B12 (20-22)	BV81844	11/10/16	VOA	Soil	
15B13 (12-14)	BV81845	11/10/16	VOA	Soil	
15B14 (1-3)	BV81846	11/10/16	VOA	Soil	
15B14 (12-14)	BV81847	11/10/16	VOA	Soil	
15B14 (14-16)	BV81848	11/10/16	VOA	Soil	
15B20 (0-2)	BV81849	11/10/16	VOA	Soil	
15B20 (12-14)	BV81850	11/10/16	VOA	Soil	
SOIL DUPLICATE	BV81851	11/10/16	VOA	Soil	Field Duplicate to Sample 15B20 (12-
					14)
Trip Blank High	BV81852	11/10/16	VOA	Soil	Trip Blank
Trip Blank Low	BV81853	11/10/16	VOA	Soil	Trip Blank

Sample Conditions/Problems:

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

Holding Times:

1. All soil samples were analyzed within 14 days from sample collection. No qualifications were required.

GC/MS Tuning:

1. All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria. No qualifications were required.

Initial Calibration:

1. Initial calibration curve analyzed on 11/11/2016 (Chem03) exhibited acceptable %RSDs ($\leq 30.0\%$) for CCC compounds and average RRF values for SPCC compounds. Also, %RSDs for all other compounds were $\leq 20.0\%$ and average RRF (> 0.050) with the following exception(s):

Compound	RRF	%RSD
Chloroethane	A	25.2
Acrolein	0.036	A
Acetone	A	28.5

A= Acceptable

Client Sample	Laboratory	Compound	Action
ID	Sample ID	Compound	1100001
15B5 (0-2)	BV81835	Chloroethane, Acrolein, Acetone	UJ
15B5 (12-14)	BV81836	Chloroethane, Acrolein	UJ
		Acetone	J
15B5 (15-17)	BV21837	Chloroethane, Acrolein	UJ
		Acetone	J
15B8 (0-2)	BV21838	Chloroethane, Acrolein, Acetone	UJ
15B8 (12-14)	BV81839	Chloroethane, Acrolein	UJ
		Acetone	J
15B11 (0-2)	BV81840	Chloroethane, Acrolein	UJ
		Acetone	J
15B11 (3-5)	BV81841	Chloroethane, Acrolein	UJ
		Acetone	J
15B11 (12-14)	BV81842	Chloroethane, Acrolein	UJ
		Acetone	J
15B12 (12-14)	BV81843	Chloroethane, Acrolein, Acetone	UJ
15B12 (20-22)	BV81844	Chloroethane, Acrolein	UJ
		Acetone	J
15B13 (12-14)	BV81845	Chloroethane, Acrolein	UJ
		Acetone	J
15B14 (1-3)	BV81846	Chloroethane, Acrolein	UJ
		Acetone	J
15B14 (12-14)	BV81847	Chloroethane, Acrolein	UJ
		Acetone	J

Client Sample ID	Laboratory Sample ID	Compound	Action
15B14 (14-16)	BV81848	Chloroethane, Acrolein	UJ
		Acetone	J
15B20 (0-2)	BV81849	Chloroethane, Acrolein, Acetone	UJ
15B20 (12-14)	BV81850	Chloroethane, Acrolein, Acetone	UJ
SOIL DUPLICATE	BV81851	Chloroethane, Acrolein, Acetone	UJ
Trip Blank High	BV81852	Chloroethane, Acrolein, Acetone	UJ
Trip Blank Low	BV81853	Chloroethane, Acrolein, Acetone	UJ

Continuing Calibration Verification (CCV):

- 1. CCV analyzed on 11/13/2016 @ 07:31 (CHEM03) exhibited acceptable %Ds (≤30.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤30.0%. No qualifications were required.
- 2. CCV analyzed on 11/13/2016 @ 19:05 (CHEM03) exhibited acceptable %Ds (≤30.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤30.0% with the following exception(s):

Compound	RRF	%D
1,2,4-Trichlorobenzene	A	33.5
1,2,3-Trichlorobenzene	A	30.3

A= Acceptable

(1) Results for this compound were previously qualified due to ICV criteria.

Client Sample ID	Laboratory Sample ID	Compound	Action
15B5 (12-14) LL	BV81836	1,2,4-Trichlorobenzene, 1,2,3-Trichlorobenzene	UJ
15B8 (0-2)	BV21838	1,2,4-Trichlorobenzene, 1,2,3-Trichlorobenzene	UJ
15B11 (3-5)	BV81841	1,2,4-Trichlorobenzene, 1,2,3-Trichlorobenzene	UJ
15B14 (1-3) LL	BV81846	1,2,4-Trichlorobenzene, 1,2,3-Trichlorobenzene	UJ
15B14 (12-14)	BV81847	1,2,4-Trichlorobenzene, 1,2,3-Trichlorobenzene	UJ
15B12 (12-14)	BV81843	1,2,4-Trichlorobenzene, 1,2,3-Trichlorobenzene	UJ
DL			
15B11 (0-2) DL	BV81840	1,2,4-Trichlorobenzene, 1,2,3-Trichlorobenzene	UJ

3. CCV analyzed on 11/14/2016 @ 06:08 (CHEM03) exhibited acceptable %Ds (≤20.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤20.0% with the following exception(s):

Compound	RRF	%D
Acetone ¹	A	21.6
Methyl Ethyl Ketone	A	36.5
1,2,4-Trichlorobenzene	A	23.0

A= Acceptable

(1) Results for this compound were previously qualified due to ICV criteria.

Client Sample	Laboratory	Compound	Action
ID	Sample ID		
15B5 (12-14) LL	BV81836	Acetone, 1,2,4-Trichlorobenzene	UJ
		Methyl Ethyl Ketone	J
15B8 (0-2)	BV21838	Acetone, 1,2,4-Trichlorobenzene,	UJ
		Methyl Ethyl Ketone	
15B11 (3-5)	BV81841	Acetone, 1,2,4-Trichlorobenzene,	UJ
		Methyl Ethyl Ketone	J
15B14 (1-3) LL	BV81846	Acetone, 1,2,4-Trichlorobenzene,	UJ
		Methyl Ethyl Ketone	
15B14 (12-14)	BV81847	Acetone, 1,2,4-Trichlorobenzene,	UJ
		Methyl Ethyl Ketone	
15B12 (12-14)	BV81843	Acetone, 1,2,4-Trichlorobenzene,	UJ
DL		Methyl Ethyl Ketone	
15B11 (0-2) DL	BV81840	Acetone, 1,2,4-Trichlorobenzene,	UJ
		Methyl Ethyl Ketone	

- 4. CCV analyzed on 11/14/2016 @ 08:01 (CHEM03) exhibited acceptable %Ds (≤30.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤30.0%. No qualifications were required.
- 5. CCV analyzed on 11/14/2016 @ 19:35 (CHEM03) exhibited acceptable %Ds ($\leq 20.0\%$) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were $\leq 20.0\%$ with the following exception(s):

Compound	RRF	%D
Dichlorodifluoromethane	A	22.5
Chloromethane	A	23.2
Acrolein	A	27.8
Acetone	A	24.7
Methyl Ethyl Ketone	A	24.7
1,3-Dichlorobenzene	A	20.8
1,4-Dichlorobenzene	A	21.2
1,2,4-Trichlorobenzene	A	25.1
1,2,3-Trichlorobenzene	A	22.1

A= Acceptable

Client Sample ID	Laboratory Sample ID	Compound	
15B13 (12-14)	BV81845	Acetone	T ¹
13013 (12 11)	D V 010 13	Dichlorodifluoromethane, Chloromethane, Acrolein,	UJ
		Methyl Ethyl Ketone, 1,3-Dichlorobenzene,	UJ
		1,4-Dichlorobenzene, 1,2,4-Trichlorobenzene,	UJ
		1,2,3-Trichlorobenzene	UJ

⁽¹⁾ Results for this compound were previously qualified due to ICV criteria.

Surrogates:

1. All surrogates %RECs values for all soil samples and associated QC were within the laboratory control limits. No qualifications were required.

Internal Standard (IS) Area Performance:

1. All samples exhibited acceptable area count for all three internal standards within the QC limits. No qualifications were required.

Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

- 1. Method Blank (BV78555 Blank) analyzed on 11/14/2016 was free of contamination. No qualifications were required.
- 2. Method Blank (BV81838 Blank) analyzed on 11/13/2016 was free of contamination. No qualifications were required.
- 3. Method Blank (BV81851 Blank) analyzed on 11/13/2016 was free of contamination. No qualifications were required.
- 4. Trip Blank High (BV81852) analyzed on 11/13/2016 was free of contamination. No qualifications were required.
- 5. Trip Blank Low (BV81853) analyzed on 11/13/2016 was free of contamination. No qualifications were required.

Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):

1. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with Sample ID: BV78555 were analyzed on 11/14/2016. All %RECs and RPDs were within the laboratory control limits with the following exception(s):

Compound	%R/%R/RPD	Sample Affected	Action
Acetone	66/69/A	15B13 (12-14)	\mathbf{J}^1

A= Acceptable

- (1) Results for this compound were previously qualified due to ICV/CCV criteria.
- 2. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with Sample ID: BV81838 were analyzed on 11/13/2016. All %RECs and RPDs were within the laboratory control limits with the following exception(s):

Compound	%R/%R/RPD	Sample	Action
		Affected	
Acetone	60/66/A	15B5 (12-14) LL, 15B8 (0-2) HL, 15B8 (0-2),	UJ/J^1
		15B11 (3-5), 15B14 (1-3) LL, 15B14 (12-14),	
		15B12 (12-14) DL, 15B11 (0-2) DL	
Methyl Ethyl Ketone	66/A/A	15B8 (0-2) HL, 15B8 (0-2), 15B14 (1-3) LL,	UJ^1
		15B14 (12-14), 15B12 (12-14) DL, 15B11 (0-2)	UJ^1
		DL	\mathbf{J}^1
		15B11 (3-5), 15B5 (12-14) LL	

A= Acceptable

- (1) Results for this compound were previously qualified due to CCV criteria.
- 3. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with Sample ID: BV81851 were analyzed on 11/13/2016. All %RECs and RPDs were within the laboratory control limits with the following exception(s):

Compound	%R/%R/RPD	Sample Affected	Action
Acetone	65/67/A	Trip Blank Low, Trip Blank High, 15B5 (0-2), 15B5 (15-17), 15B8 (12-14), 15B11 (12-14), 15B12 (20-22), 15B14 (14-16), 15B20 (0-2), 15B20 (12-14), SOIL DUPLICATE, 15B5 (12-14) HL, 15B11 (0-2), 15B12 (12-14), 15B14 (1-3) HL	UJ/J ¹
Methyl Ethyl Ketone	66/A/A	Trip Blank Low, Trip Blank High, 15B5 (0-2), 15B5 (15-17), 15B8 (12-14), 15B11 (12-14), 15B12 (20-22), 15B14 (14-16), 15B20 (0-2), 15B20 (12-14), SOIL DUPLICATE, 15B5 (12-14) HL, 15B11 (0-2), 15B12 (12-14), 15B14 (1-3) HL	UJ

A= Acceptable

(1) Results for this compound were previously qualified due to CCV criteria.

Field Duplicate:

1. Sample SOIL DUPLICATE (BV81851) was collected as a field duplicate of sample 15B20 (12-14) (BV81850). Results for both samples were non-detect. No qualifications were required.

Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS) was performed on sample 15B8 (0-2) (BV21838). All %RECs were within the laboratory control limits with the following exception(s):

Compound	%R	Sample	Action
_		Affected	
Chloroethane	45/46/A	15B6 (12-14)	UJ^1
Trichlorofluoromethane	31/30/A	15B6 (12-14)	UJ
Acetone	43/41/A	15B6 (12-14)	UJ^1

A= Acceptable

- (1) Results for these compounds were qualified previously due to ICV/CCV criteria.
- 2. Matrix Spike (MS) was performed on sample SOIL DUPLICATE (BV81851). All %RECs were within the laboratory control limits with the following exception(s):

Compound	%R	Sample	Action
		Affected	
Methyl Ethyl Ketone	62/60/A	SOIL DUPLICATE	\mathbf{J}^1
4-Methyl-2-Pentanone	A/69/A	SOIL DUPLICATE	UJ^1
2-Hexanone	69/68/A	SOIL DUPLICATE	UJ
1,2,4-Trichlorobenzene	67/62/A	SOIL DUPLICATE	UJ
1,2,3-Trichlorobenzene	A/66/A	SOIL DUPLICATE	UJ

A= Acceptable

(1) Results for this compound was qualified previously due to ICV/CCV criteria.

Target Compound Identification:

- 1. All Relative Retention Times (RRTs) of the reported compounds were within \pm 0.06 RRT units of the standard (opening CCV).
- 2. Sample compound spectra were compared against the laboratory standard spectra.
- 3. No QC deviations were observed.

Compound Quantitation and Reported Detection Limits:

- 1. All sample results were reported within the linear calibration range. No qualifications were required.
- 2. %Solids for all soil samples in this SDG were >50%. No qualifications were required.
- 3. Manual Calculation:

 $Cx = \frac{(Ax)(IS)(DF)}{(Ais)(RRF)(V)(\%Solids)}$

Cx = concentration of analyte as ug/kg

Ax = Area of the characteristic ion for the compound to be measured, counts.

Ais = Area of the characteristic ion for the specific internal standard, counts.

IS = Concentration of the internal standard spiking mixture, ng

RRF= Mean relative response factor from the initial calibration.

DF = Dilution factor calculated. If no dilution is performed, DF= 1

V= Volume for liquids in ml, weight for soils/solids in grams.

BV78555 LCS

Carbon disulfide

Sample weight= 5.0g Volume purged=5.0ml DF = 1 %Solids=NA

Concentration (
$$\mu$$
g/kg) (dry) = $\frac{291083 \times 50 \times 1 \times 5.0}{286511 \times 0.999 \times 5.0}$ = 50.85μ g/kg

	Laboratory Validation		
Compound	(µg/kg)	$(\mu g/kg)$	%D
Carbon disulfide	51	51	0.0

Comments:

- 1. Volatile data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GBV81835.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GBV81835.

DATA USABILITY SUMMARY REPORT (DUSR) POLYCHLORINATED BIPHENYLIS (PCBs)

USEPA Region II -Data Validation

Project Name: 1181 Flushing Avenue

Location: Brooklyn, New York

Project Number: 3020-026

SDG #: GBV82267

Client: Environmental Business Consultants

Date: 02/17/2017

Laboratory: Phoenix Environmental Laboratories, Inc.

Reviewer: Sherri Pullar

Summary:

- 1. Data validation was performed on the data for eight (8) soil samples analyzed for PCBs by SW-846 Method 8082A in accordance with NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 11/10/2016. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 11/11/2016 for analysis.
- 3. The USEPA Region-II SOP HW-37, Revision 3, May 2013, Validating PCBs compounds by Gas Chromatography, SW-846 Method 8082A was used in evaluating the PCBs data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (see discussion below).

Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory	Collection	Analysis	Matrix	Sample Status
	Sample ID	Date			
15B5 (0-2)	BV81835	11/10/16	PCBs	Soil	
15B8 (12-14)	BV81839	11/10/16	PCBs	Soil	
15B11 (0-2)	BV81840	11/10/16	PCBs	Soil	
15B12 (12-14)	BV81843	11/10/16	PCBs	Soil	
15B13 (12-14)	BV81845	11/10/16	PCBs	Soil	
15B14 (1-3)	BV81846	11/10/16	PCBs	Soil	
15B20 (0-2)	BV81849	11/10/16	PCBs	Soil	
SOIL DUPLICATE	BV81851	11/10/16	PCBs	Soil	Field Duplicate to Sample
					15B20 (0-2)

Sample Conditions/Problems:

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

Holding Times:

1. All soil samples were extracted within 14 days from sample collection and analyzed within 40 days following sample extraction. No qualifications were required.

Initial Calibration:

1. Initial calibration curve analyzed on 11/14/2016 (ECD24) exhibited acceptable %RSD (≤20.0%) on both columns. No qualifications were required.

Continuing Calibration Verification (CCV):

1. All CCVs analyzed on 11/15-16/2016 exhibited acceptable %Ds (≤15.0%) for all compounds. No qualifications were required.

Surrogates:

1. All surrogates %RECs values for all soil samples and associated QC were within the laboratory control limits. No qualifications were required.

Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

1. Method Blank (BV82268 BL) associated with the soil samples extracted on 11/14/2016 and analyzed on 11/15/2016 was free of contamination. No qualifications were required.

Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):

- 1. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with ID: BV81728 were analyzed on 11/14/2016. All %RECs and RPDs were within the laboratory control limits. No qualifications were required.
- 2. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with ID: BV81845 were analyzed on 11/14/2016. All %RECs and RPDs were within the laboratory control limits. No qualifications were required.

Field Duplicate:

1. Sample SOIL DUPLICATE (BV81851) was collected as a field duplicate of sample 15B20 (12-14) (BV81850). Both samples were non-detect for PCBS. No qualifications were required.

Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS)/Matrix Spike Duplicate (MSD) were performed on sample 15B13 (12-14) (BV81845). All %RECs/RPDs were within the control limits. No qualifications were required.

Compound Quantitation, Compound Identification and Reported Detection Limits:

- 1. All sample results were reported within the linear calibration range.
- 2. %Solids for all soil samples in this SDG were >50%. No qualifications were required.
- 3. Manual Calculation:

BV81728 LCS

Aroclor-1016

On Column concentration (B)= 339.259ng Sample weight= 15.0g DF= 10 Vi= 5ml %Solids= 100%

Concentration (
$$\mu$$
g/kg) (dry) = $\frac{405.415 \text{ng x 5ml x}10}{15.0 \text{g}} = 1351.3 \mu$ g/kg

	Laboratory Validation		
Compound	(µg/kg)	(µg/kg)	%D
Aroclor-1016	1350	1350	0.0

Comments:

- 1. PCBs data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GBV81835.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GBV81835.

DATA USABILITY SUMMARY REPORT (DUSR) PESTICIDES

USEPA Region II -Data Validation

Project Name: 1181 Flushing Avenue

Location: Brooklyn, New York

Project Number: 3020-026

SDG #: GBV81835

Client: Environmental Business Consultants

Date: 02/20/2017

Laboratory: Phoenix Environmental Laboratories, Inc.

Reviewer: Sherri Pullar

Summary:

- 1. Data validation was performed on the data for eight (8) soil samples analyzed for Pesticides by SW-846 Method 8081B in accordance with NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 11/10/2016. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 11/11/2016 for analysis.
- 3. The USEPA Region-II SOP HW-44, Revision 1, October 2006, Validating Pesticide compounds by Gas Chromatography, SW-846 Method 8081B was used in evaluating the Pesticides data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (See discussion below).

Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory	Collection	Analysis	Matrix	Sample Status
	Sample ID	Date			
15B5 (0-2)	BV81835	11/10/16	Pesticides	Soil	
15B8 (12-14)	BV81839	11/10/16	Pesticides	Soil	
15B11 (0-2)	BV81840	11/10/16	Pesticides	Soil	
15B12 (12-14)	BV81843	11/10/16	Pesticides	Soil	
15B13 (12-14)	BV81845	11/10/16	Pesticides	Soil	
15B14 (1-3)	BV81846	11/10/16	Pesticides	Soil	
15B20 (0-2)	BV81849	11/10/16	Pesticides	Soil	
SOIL	BV81851	11/10/16	Pesticides	Soil	Field Duplicate to Sample
DUPLICATE					15B20 (0-2)

Sample Conditions/Problems:

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

Holding Times:

1. All soil samples were extracted within 14 days from sample collection and analyzed within 40 days following sample extraction. No qualifications were required.

GC/ECD Instrument Performance Check:

1. 4,4'-DDT and Endrin breakdown exhibited acceptable results (±20%). No qualifications were required.

Initial Calibration:

1. Initial calibration curve analyzed on 11/15/2016 (ECD35) exhibited acceptable %RSD on both columns. No qualifications were required.

Continuing Calibration Verification (CCV):

1. All CCVs analyzed on 11/15/2016 exhibited acceptable %Ds (≤20.0%) for all compounds. No qualifications were required.

Surrogates:

1. All surrogates %RECs values for all soil samples were within the laboratory control limits. No qualifications were required.

Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

- 1. Method Blank (BV81728 BL) associated with the soil samples extracted on 11/11/2016 and analyzed on 11/15/2016 was free of contamination. No qualifications were required.
- 2. Method Blank (BV81845 BL) associated with the soil samples extracted on 11/11/2016 and analyzed on 11/16/2016 was free of contamination. No qualifications were required.

Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):

- 1. Laboratory Control Sample associated with ID: BV81728 LCS was analyzed on 11/15/2016. All %RECs were within the laboratory control limits. No qualifications were required.
- 2. Laboratory Control Sample associated with ID: BV81728 LCS was analyzed on 11/15/2016. All %RECs were within the laboratory control limits. No qualifications were required.

Field Duplicate:

1. Sample SOIL DUPLICATE (BV81851) was collected as a field duplicate of sample 15B20 (12-14) (BV81850). Both samples were non-detect for PCBS. No qualifications were required.

Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS)/Matrix Spike Duplicate (MSD) were performed on sample 15B13 (12-14) (BV81845). All %RECs/RPDs were within the laboratory control. No qualifications were required.

Compound Quantitation, Compound Identification and Reported Detection Limits:

- 1. All sample results were reported within the linear calibration range.
- 2. %Solids for all soil samples in this SDG were >50%. No qualifications were required.
- 3. Manual Calculation:

BV82268 LCS

Alpha-BHC

On Column concentration (A) = 49.6055ng Sample Weight= 15.0g DF = 2 Vi= 5ml %Solids= 100%

Concentration ($\mu g/kg$)(dry) = $\frac{49.6055 \text{ng x 5ml x 2}}{15.0 \text{g}} = 33.07 \mu g/kg$

	Laboratory Validation		
Compound	$(\mu g/kg)$	$(\mu g/kg)$	%D
Alpha-BHC	33.1	33.1	0.0

Comments:

- 1. Pesticides data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GBV81835.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GBV81835.

DATA USABILITY SUMMARY REPORT (DUSR) TRACE METALS

USEPA Region II -Data Validation

Project Name: 1181 Flushing Avenue

Location: Brooklyn, New York

Project Number: 3020-026

SDG #: GBV81835

Client: Environmental Business Consultants

ODate: 02/20/2017

Laboratory: Phoenix Environmental Laboratories, Inc.

Reviewer: Sherri Pullar

Summary:

- 1. Data validation was performed on the data for seventeen (17) soil samples analyzed for the following analyses:
 - 1.1 Trace Metals-ICP-AES by SW-846 Method 6010C.
 - 1.2 Mercury by SW-846 Method 7471A.
- 2. The samples were collected on 11/10/2016. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 11/11/2016 for analysis.
- 3. The USEPA Region-II SOP No. HW-2a, Revision 15, December 2012, Validation of ICP-AES was used in evaluating the Trace Metals data and USEPA Region-II SOP No. HW-2c, Revision 15, December 2012, Validation of Mercury and Cyanide was used in evaluating the mercury data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (See discussion below).

Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory	Collection	Analysis	Matrix	Sample Status
	Sample ID	Date			
15B5 (0-2)	BV81835	11/10/16	ICP, CVAA	Soil	
15B5 (12-14)	BV81836	11/10/16	ICP, CVAA	Soil	
15B5 (15-17)	BV81837	11/10/16	ICP, CVAA	Soil	
15B8 (0-2)	BV81838	11/10/16	ICP, CVAA	Soil	
15B8 (12-14)	BV81839	11/10/16	ICP, CVAA	Soil	
15B11 (0-2)	BV81840	11/10/16	ICP, CVAA	Soil	
15B11 (3-5)	BV81841	11/10/16	ICP, CVAA	Soil	
15B11 (12-14)	BV81842	11/10/16	ICP, CVAA	Soil	
15B12 (12-14)	BV81843	11/10/16	ICP, CVAA	Soil	
15B12 (20-22)	BV81844	11/10/16	ICP, CVAA	Soil	
15B13 (12-14)	BV81845	11/10/16	ICP, CVAA	Soil	
15B14 (1-3)	BV81846	11/10/16	ICP, CVAA	Soil	
15B14 (12-14)	BV81847	11/10/16	ICP, CVAA	Soil	
15B14 (14-16)	BV81848	11/10/16	ICP, CVAA	Soil	
15B20 (0-2)	BV81849	11/10/16	ICP, CVAA	Soil	
15B20 (12-14)	BV81850	11/10/16	ICP, CVAA	Soil	
SOIL DUPLICATE	BV81851	11/10/16	ICP, CVAA	Soil	Field Duplicate to
					Sample
					15B20 (12-14)

Sample Conditions/Problems:

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

Holding Times:

- 1. All soil samples were analyzed within the 6 months holding times for Trace Metals analysis by ICP-AES. No qualifications were required.
- 2. All soil samples were digested and analyzed within the 28 days holding times for Mercury analysis. No qualifications were required.

Initial and Continuing Calibration Verification (ICV and CCV):

ICP-AES:

1. All %RECs in the ICV and CCVs were within QC limits (90-110). No qualifications were required.

Mercury:

- All correlation coefficient for Mercury calibration curve analyzed were \geq 0.995. No qualifications were required.
- 2. All ICVs and CCVs %REC values were within the QC limits (80-120%). No qualifications were required.

CRQL Check Standard (CRI):

1. All CRI analyzed %RECs were within the control limits (70-130%) with the following exception(s):

Analyte	Date	Initial	Final	Sample Affected	Action
	Analyzed	%R	%R		
Iron	11/13/2016:	199.2	-	15B5 (15-17), 15B12 (12-14), 15B12 (20-22),	J
	18:58			15B13 (12-14), 15B14 (14-16), 15B20 (12-14),	
				SOIL DUPLICATE	
	11/15/2016:	161.8	A	None	None
	06:56				
Copper	11/15/2016:	68.4	Α	None	None
	06:56				
Mercury	11/14/2016:	64.4	A	15B5 (0-2), 15B8 (0-2), 15B11 (0-2), 15B14 (1-3)	J
	09:34			15B20 (0-2)	J
				15B5 (12-14), 15B5 (15-17), 15B8 (12-14)	UJ
				15B11 (3-5), 15B11 (12-14), 15B12 (12-14)	UJ
				15B12 (20-22), 15B13 (12-14), 15B14 (12-14)	UJ
				15B14 (14-16), 15B20 (12-14)	UJ
				SOIL DUPLICATE	UJ

A=Acceptable

ICP-AES Interference Check Sample:

1. All %REC values were within the QC limits (80-120%) for ICSA and ICSAB. No qualifications were required.

Blanks (Method Blank, ICB and CCB):

ICP-AES:

- 1. Method Blank-Soil (BV81940) digested on 11/14/2016 was free of contamination. No qualifications were required.
- 2. All ICB and CCBs were free of contamination with the following exception(s):

Element	Concentration (µg/L)	CRQL* (µg/L)	Sample Affected	Action
Calcium	79	50	None	None

^{*=} If sample concentration >MDL but < Reporting limit, then sample result qualified as non-detect (U). If sample concentration greater than CRQL but less than 10x the blank result, then qualify estimated (J). If sample concentration greater than 10x the blank results or sample was not detected then no qualifications or action is required.

Mercury:

- 1. All ICB and CCBs were free of contamination. No qualifications were required.
- 2. Method Blank (BV80886) digested on 11/14/2016 was free of contamination. No qualifications were required.
- 3. Method Blank (BV80887) digested on 11/14/2016 was free of contamination. No qualifications were required.

Field Blank (FB) and Equipment Blank (EB):

1. Field Blanks were not submitted with this SDG.

Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):

ICP-AES and Mercury:

1. Laboratory Control Sample %RECs were within the laboratory control limits (75-125%). No qualifications were required.

Field Duplicate:

1. Sample SOIL DUPLICATE (BV81851) was collected as a field duplicate of sample 15B20 (12-14) (BV81850). All of the RPDs were ≤50% (or difference >2XCRDL) with the exception of manganese.

Field Sample	Analyte	Analytical Method	Result	Units	Field Duplicate	Result	Units	Difference	RPD	Qualifier
15B20 (12-14)	Aluminum	SW8466010B	3090	mg/Kg	SOIL DUPLICATE	3140	mg/Kg	NA	1.6	None
15B20 (12-14)	Barium	SW8466010B	20.0	mg/Kg	SOIL DUPLICATE	18.5	mg/Kg	NA	7.8	None
15B20 (12-14)	Beryllium	SW8466010B	0.15	mg/Kg	SOIL DUPLICATE	0.15	mg/Kg	NA	0.0	None
15B20 (12-14)	Calcium	SW8466010B	423	mg/Kg	SOIL DUPLICATE	468	mg/Kg	NA	10.1	None
15B20 (12-14)	Chromium	SW8466010B	5.66	mg/Kg	SOIL DUPLICATE	5.49	mg/Kg	NA	3.0	None
15B20 (12-14)	Cobalt	SW8466010B	3.22	mg/Kg	SOIL DUPLICATE	3.40	mg/Kg	NA	5.4	None
15B20 (12-14)	Copper	SW8466010B	5.90	mg/Kg	SOIL DUPLICATE	6.22	mg/Kg	NA	5.3	None
15B20 (12-14)	Iron	SW8466010B	7000	mg/Kg	SOIL DUPLICATE	7510	mg/Kg	NA	7.0	None
15B20 (12-14)	Lead	SW8466010B	1.2	mg/Kg	SOIL DUPLICATE	1.0	mg/Kg	0.2	NA	None
15B20 (12-14)	Magnesium	SW8466010B	1240	mg/Kg	SOIL DUPLICATE	1230	mg/Kg	NA	0.8	None
15B20 (12-14)	Manganese	SW8466010B	82.1	mg/Kg	SOIL DUPLICATE	219	mg/Kg	NA	90.9	J
15B20 (12-14)	Nickel	SW8466010B	6.18	mg/Kg	SOIL DUPLICATE	6.41	mg/Kg	NA	3.7	None
15B20 (12-14)	Potassium	SW8466010B	377	mg/Kg	SOIL DUPLICATE	344	mg/Kg	NA	9.2	None
15B20 (12-14)	Sodium	SW8466010B	60	mg/Kg	SOIL DUPLICATE	59	mg/Kg	NA	1.7	None
15B20 (12-14)	Vanadium	SW8466010B	7.69	mg/Kg	SOIL DUPLICATE	8.92	mg/Kg	NA	14.8	None
15B20 (12-14)	Zinc	SW8466010B	11.9	mg/Kg	SOIL DUPLICATE	12.3	mg/Kg	NA	3.3	None

Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

ICP-AES and Mercury:

1. Matrix Spike (MS) was not performed on sample from this SDG.

Sample Duplicate:

ICP-AES and Mercury:

1. Laboratory Duplicate was not performed on sample from this SDG.

ICP-AES Serial Dilution:

1. ICP serial dilution was not performed on sample from this SDG.

Verification of Instrumental Parameters:

- 1. The following Forms were present in the data package:
 - 1.1 Method Detection Limits, Form- X.
 - 1.2 ICP-AES Interelement Correction Factors, Form -XIA and Form-XIB.
 - 1.3 ICP-AES Linear Ranges, Form XII.

Compound Quantitation and Reported Detection Limits:

- 1. All sample results were reported within the linear calibration range.
- 2. %Solids for all soil samples in this SDG were >50%. No qualifications were required.
- 3. Manual calculation:

Sample: 15B5 (0-2) (BV81835)

Lead

Concentration (mg/Kg) (dry wt.)= $\underline{C \times V \times DF \times 1Lx \times 1000gx \times 1mg}$ W x S x 1000ml x 1 kg x 1000ug

V= 50ml W= 0.75g %Solids =91.0 DF=10.0

Concentration (mg/Kg) (dry wt.)= $\frac{311.493 \text{ug/L} \times 50 \times 10.0 \times 11 \times 1000 \text{gx 1mg}}{0.75 \times 0.91 \times 1000 \text{ml x 1 kg x 1000 ug}} = 228.2 \text{ mg/kg}$

	Laboratory	Validation	
Compound	(mg/kg)	(mg/kg)	%D
Lead	228	228	0.0

Comments:

- 1. Trace Metals data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GBV81835.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GBV81835.

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B5 (0-2)	BV81835	E160.3	11/10/2016	1	SOLIDS, PERCENT	91	%			
15B5 (0-2)	BV81835	SW6010	11/10/2016	10	Aluminum	6370	mg/Kg		7.3	37
15B5 (0-2)	BV81835	SW6010	11/10/2016	1	Antimony		mg/Kg	U	1.9	1.9
15B5 (0-2)	BV81835	SW6010	11/10/2016	1	Arsenic	5.88	mg/Kg		0.73	0.73
15B5 (0-2)	BV81835	SW6010	11/10/2016	1	Barium	91.2	mg/Kg		0.37	0.7
15B5 (0-2)	BV81835	SW6010	11/10/2016	1	Beryllium	0.36	mg/Kg		0.15	0.29
15B5 (0-2)	BV81835	SW6010	11/10/2016	1	Cadmium	0.98	mg/Kg		0.37	0.37
15B5 (0-2)	BV81835	SW6010	11/10/2016	10	Calcium	15400	mg/Kg		34	37
15B5 (0-2)	BV81835	SW6010	11/10/2016	1	Chromium	15.1	mg/Kg		0.37	0.37
15B5 (0-2)	BV81835	SW6010	11/10/2016	1	Cobalt	5.15	mg/Kg		0.37	0.37
15B5 (0-2)	BV81835	SW6010	11/10/2016	1	Copper	71.0	mg/Kg		0.37	0.37
15B5 (0-2)	BV81835	SW6010	11/10/2016	10	Iron	15300	mg/Kg		37	37
15B5 (0-2)	BV81835	SW6010	11/10/2016	10	Lead	228	mg/Kg		3.7	7.3
15B5 (0-2)	BV81835	SW6010	11/10/2016	1	Magnesium	5190	mg/Kg		3.7	3.7
15B5 (0-2)	BV81835	SW6010	11/10/2016	10	Manganese	309	mg/Kg		3.7	3.7
15B5 (0-2)	BV81835	SW6010	11/10/2016	1	Nickel	13.9	mg/Kg		0.37	0.37
15B5 (0-2)	BV81835	SW6010	11/10/2016	1	Potassium	710	mg/Kg		2.9	7
15B5 (0-2)	BV81835	SW6010	11/10/2016	1	Selenium		mg/Kg	U	1.2	1.5
15B5 (0-2)	BV81835	SW6010	11/10/2016	1	Silver		mg/Kg	U	0.37	0.37
15B5 (0-2)	BV81835	SW6010	11/10/2016	1	Sodium	132	mg/Kg		3.2	7
15B5 (0-2)	BV81835	SW6010	11/10/2016	1	Thallium		mg/Kg	U	1.5	1.5
15B5 (0-2)	BV81835	SW6010	11/10/2016	1	Vanadium	20.6	mg/Kg		0.37	0.37
15B5 (0-2)	BV81835	SW6010	11/10/2016	10	Zinc	261	mg/Kg		3.7	7.3
15B5 (0-2)	BV81835	SW7471	11/10/2016	1	Mercury	0.49	mg/Kg	J	0.02	0.03
15B5 (0-2)	BV81835	SW8081	11/10/2016	10	4,4' -DDD	100	ug/Kg		11	11
15B5 (0-2)	BV81835	SW8081	11/10/2016	2	4,4' -DDE	72	ug/Kg		2.2	2.2
15B5 (0-2)	BV81835	SW8081	11/10/2016	10	4,4' -DDT	76	ug/Kg		11	11
15B5 (0-2)	BV81835	SW8081	11/10/2016	2	a-BHC		ug/Kg	U	7.2	7.2
15B5 (0-2)	BV81835	SW8081	11/10/2016	2	a-Chlordane		ug/Kg	U	3.6	3.6
15B5 (0-2)	BV81835	SW8081	11/10/2016	2	Aldrin		ug/Kg	U	3.6	3.6
15B5 (0-2)	BV81835	SW8081	11/10/2016	2	b-BHC		ug/Kg	U	7.2	7.2
15B5 (0-2)	BV81835	SW8081	11/10/2016	2	Chlordane		ug/Kg	U	36	36
15B5 (0-2)	BV81835	SW8081	11/10/2016	2	d-BHC		ug/Kg	U	7.2	7.2
15B5 (0-2)	BV81835	SW8081	11/10/2016	2	Dieldrin		ug/Kg	U	3.6	3.6
15B5 (0-2)	BV81835	SW8081	11/10/2016	2	Endosulfan I		ug/Kg	U	7.2	7.2
15B5 (0-2)	BV81835	SW8081	11/10/2016	2	Endosulfan II		ug/Kg	U	7.2	7.2
15B5 (0-2)	BV81835	SW8081	11/10/2016	2	Endosulfan sulfate		ug/Kg	U	7.2	7.2
15B5 (0-2)	BV81835	SW8081	11/10/2016	2	Endrin		ug/Kg	U	7.2	7.2

Page 1 of 90

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B5 (0-2)	BV81835	SW8081	11/10/2016	2	Endrin aldehyde		ug/Kg	U	7.2	7.2
15B5 (0-2)	BV81835	SW8081	11/10/2016	2	Endrin ketone		ug/Kg	Ū	7.2	7.2
15B5 (0-2)	BV81835	SW8081	11/10/2016	2	g-BHC		ug/Kg	Ū	1.4	1.4
15B5 (0-2)	BV81835	SW8081	11/10/2016	2	g-Chlordane		ug/Kg	Ū	3.6	3.6
15B5 (0-2)	BV81835	SW8081	11/10/2016	2	Heptachlor		ug/Kg	U	7.2	7.2
15B5 (0-2)	BV81835	SW8081	11/10/2016	2	Heptachlor epoxide		ug/Kg	U	7.2	7.2
15B5 (0-2)	BV81835	SW8081	11/10/2016	2	Methoxychlor		ug/Kg	U	36	36
15B5 (0-2)	BV81835	SW8081	11/10/2016	2	Toxaphene		ug/Kg	U	140	140
15B5 (0-2)	BV81835	SW8082	11/10/2016	2	PCB-1016		ug/Kg	U	72	72
15B5 (0-2)	BV81835	SW8082	11/10/2016	2	PCB-1221		ug/Kg	U	72	72
15B5 (0-2)	BV81835	SW8082	11/10/2016	2	PCB-1232		ug/Kg	U	72	72
15B5 (0-2)	BV81835	SW8082	11/10/2016	2	PCB-1242		ug/Kg	U	72	72
15B5 (0-2)	BV81835	SW8082	11/10/2016	2	PCB-1248		ug/Kg	U	72	72
15B5 (0-2)	BV81835	SW8082	11/10/2016	2	PCB-1254		ug/Kg	U	72	72
15B5 (0-2)	BV81835	SW8082	11/10/2016	2	PCB-1260		ug/Kg	U	72	72
15B5 (0-2)	BV81835	SW8082	11/10/2016	2	PCB-1262		ug/Kg	U	72	72
15B5 (0-2)	BV81835	SW8082	11/10/2016	2	PCB-1268		ug/Kg	U	72	72
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	0.86	17
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	1,1,1-Trichloroethane		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	0.86	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	1,1,2-Trichloroethane		ug/Kg	U	0.86	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	1,1-Dichloroethane		ug/Kg	U	0.86	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	1,1-Dichloroethene		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	1,1-Dichloropropene		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	1,2,3-Trichlorobenzene		ug/Kg	U	0.86	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	1,2,3-Trichloropropane		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	0.86	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	1,2,4-Trimethylbenzene		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	0.86	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	1,2-Dibromoethane		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	1,2-Dichlorobenzene		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	1,2-Dichloroethane		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	1,2-Dichloropropane		ug/Kg	U	0.86	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	1,3,5-Trimethylbenzene		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	1,3-Dichlorobenzene		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	1,3-Dichloropropane		ug/Kg	U	0.86	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	1,4-Dichlorobenzene		ug/Kg	U	0.43	4.3

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	1,4-dioxane		ug/Kg	U	34	64
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	2,2-Dichloropropane		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	2-Chlorotoluene		ug/Kg	U	0.86	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	2-Hexanone		ug/Kg	U	4.3	21
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	2-Isopropyltoluene		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	4-Chlorotoluene		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	4-Methyl-2-pentanone		ug/Kg	U	4.3	21
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Acetone		ug/Kg	UJ	4.3	21
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Acrolein		ug/Kg	UJ	2.1	17
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Acrylonitrile		ug/Kg	U	0.43	17
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Benzene		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Bromobenzene		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Bromochloromethane		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Bromodichloromethane		ug/Kg	U	0.86	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Bromoform		ug/Kg	U	0.86	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Bromomethane		ug/Kg	U	1.7	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Carbon Disulfide		ug/Kg	U	0.86	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Carbon tetrachloride		ug/Kg	U	0.86	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Chlorobenzene		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Chloroethane		ug/Kg	UJ	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Chloroform		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Chloromethane		ug/Kg	U	0.86	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	cis-1,2-Dichloroethene		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	cis-1,3-Dichloropropene		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Dibromochloromethane		ug/Kg	U	0.86	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Dibromomethane		ug/Kg	U	0.86	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Dichlorodifluoromethane		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Ethylbenzene		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Hexachlorobutadiene		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Isopropylbenzene		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	m&p-Xylene		ug/Kg	U	0.86	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Methyl Ethyl Ketone		ug/Kg	UJ	4.3	26
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Methyl t-butyl ether (MTBE)		ug/Kg	U	0.86	8.6
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Methylene chloride		ug/Kg	U	4.3	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Naphthalene		ug/Kg	U	0.86	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	n-Butylbenzene		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	n-Propylbenzene		ug/Kg	U	0.86	4.3

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	o-Xylene		ug/Kg	U	0.86	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	p-Isopropyltoluene		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	sec-Butylbenzene		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Styrene		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Tert-butyl alcohol		ug/Kg	U	17	86
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	tert-Butylbenzene		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Tetrachloroethene		ug/Kg	U	0.86	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Tetrahydrofuran (THF)		ug/Kg	U	2.1	8.6
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Toluene		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	trans-1,2-Dichloroethene		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	trans-1,3-Dichloropropene		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	trans-1,4-dichloro-2-butene		ug/Kg	U	2.1	8.6
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Trichloroethene		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Trichlorofluoromethane		ug/Kg	U	0.86	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Trichlorotrifluoroethane		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8260	11/10/2016	1	Vinyl chloride		ug/Kg	U	0.43	4.3
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	130	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	110	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	1,2-Dichlorobenzene		ug/Kg	U	100	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	120	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	1,3-Dichlorobenzene		ug/Kg	U	110	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	1,4-Dichlorobenzene		ug/Kg	U	110	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	2,4,5-Trichlorophenol		ug/Kg	U	200	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	120	180
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	2,4-Dichlorophenol		ug/Kg	U	130	180
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	2,4-Dimethylphenol		ug/Kg	U	90	250
15B5 (0-2)	BV81835	SW8270	11/10/2016		2,4-Dinitrophenol		ug/Kg	U	250	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	2,4-Dinitrotoluene		ug/Kg	U	140	180
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	2,6-Dinitrotoluene		ug/Kg	U	110	180
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	2-Chloronaphthalene		ug/Kg	U	100	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	2-Chlorophenol		ug/Kg	U	100	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	2-Methylnaphthalene	420	ug/Kg		110	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	170	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	2-Nitroaniline		ug/Kg	U	250	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	2-Nitrophenol		ug/Kg	U	230	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	140	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	170	180

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	3-Nitroaniline		ug/Kg	U	720	360
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	4,6-Dinitro-2-methylphenol		ug/Kg	U	72	220
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	110	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	130	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	4-Chloroaniline		ug/Kg	U	170	290
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	120	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	4-Nitroaniline		ug/Kg	U	120	360
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	4-Nitrophenol		ug/Kg	U	160	360
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Acenaphthene	120	ug/Kg	J	110	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Acenaphthylene	240	ug/Kg	J	100	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Acetophenone		ug/Kg	U	110	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Aniline		ug/Kg	U	290	290
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Anthracene	250	ug/Kg	J	120	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Benz(a)anthracene	550	ug/Kg		120	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Benzidine		ug/Kg	U	210	360
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Benzo(a)pyrene	700	ug/Kg		120	180
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Benzo(b)fluoranthene	800	ug/Kg		120	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Benzo(ghi)perylene	390	ug/Kg		120	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Benzo(k)fluoranthene	700	ug/Kg		120	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Benzoic acid		ug/Kg	U	720	1800
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Benzyl butyl phthalate	440	ug/Kg		93	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	100	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	98	180
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	100	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Bis(2-ethylhexyl)phthalate	110	ug/Kg	J	100	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Carbazole		ug/Kg	U	140	180
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Chrysene	690	ug/Kg		120	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Dibenz(a,h)anthracene	120	ug/Kg	J	120	180
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Dibenzofuran	160	ug/Kg	J	110	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Diethyl phthalate		ug/Kg	U	110	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Dimethylphthalate		ug/Kg	U	110	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Di-n-butylphthalate		ug/Kg	U	96	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Di-n-octylphthalate		ug/Kg	U	93	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Fluoranthene	620	ug/Kg		120	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Fluorene	140	ug/Kg	J	120	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Hexachlorobenzene		ug/Kg	U	110	180
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Hexachlorobutadiene		ug/Kg	U	130	250

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Hexachlorocyclopentadiene		ug/Kg	U	110	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Hexachloroethane		ug/Kg	U	110	180
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Indeno(1,2,3-cd)pyrene	530	ug/Kg		120	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Isophorone		ug/Kg	U	100	180
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Naphthalene	520	ug/Kg		100	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Nitrobenzene		ug/Kg	U	130	180
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	N-Nitrosodimethylamine		ug/Kg	U	100	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	120	180
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	140	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Pentachloronitrobenzene		ug/Kg	U	130	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Pentachlorophenol		ug/Kg	U	140	220
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Phenanthrene	620	ug/Kg		100	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Phenol		ug/Kg	U	120	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Pyrene	650	ug/Kg		120	250
15B5 (0-2)	BV81835	SW8270	11/10/2016	1	Pyridine		ug/Kg	U	89	250
15B5 (12-14)	BV81836	E160.3	11/10/2016	1	SOLIDS, PERCENT	90	%			
15B5 (12-14)	BV81836	SW6010	11/10/2016	10	Aluminum	4610	mg/Kg		7.6	38
15B5 (12-14)	BV81836	SW6010	11/10/2016	1	Antimony		mg/Kg	U	1.8	1.8
15B5 (12-14)	BV81836	SW6010	11/10/2016	1	Arsenic	0.89	mg/Kg		0.76	0.76
15B5 (12-14)	BV81836	SW6010	11/10/2016	1	Barium	24.6	mg/Kg		0.38	0.8
15B5 (12-14)	BV81836	SW6010	11/10/2016	1	Beryllium	0.22	mg/Kg	J	0.15	0.30
15B5 (12-14)	BV81836	SW6010	11/10/2016	1	Cadmium		mg/Kg	U	0.38	0.38
15B5 (12-14)	BV81836	SW6010	11/10/2016	1	Calcium	1070	mg/Kg		3.5	3.8
15B5 (12-14)	BV81836	SW6010	11/10/2016	1	Chromium	9.97	mg/Kg		0.38	0.38
15B5 (12-14)	BV81836	SW6010	11/10/2016	1	Cobalt	9.15	mg/Kg		0.38	0.38
15B5 (12-14)	BV81836	SW6010	11/10/2016	1	Copper	6.78	mg/Kg		0.38	0.38
15B5 (12-14)	BV81836	SW6010	11/10/2016	10	Iron	12100	mg/Kg		38	38
15B5 (12-14)	BV81836	SW6010	11/10/2016	1	Lead	1.4	mg/Kg		0.36	0.7
15B5 (12-14)	BV81836	SW6010	11/10/2016	1	Magnesium	2050	mg/Kg		3.8	3.8
15B5 (12-14)	BV81836	SW6010	11/10/2016	10	Manganese	694	mg/Kg		3.8	3.8
15B5 (12-14)	BV81836	SW6010	11/10/2016	1	Nickel	8.26	mg/Kg		0.38	0.38
15B5 (12-14)	BV81836	SW6010	11/10/2016	1	Potassium	844	mg/Kg		3.0	8
15B5 (12-14)	BV81836	SW6010	11/10/2016	1	Selenium		mg/Kg	U	1.3	1.5
15B5 (12-14)	BV81836	SW6010	11/10/2016	1	Silver		mg/Kg	U	0.38	0.38
15B5 (12-14)	BV81836	SW6010	11/10/2016	1	Sodium	108	mg/Kg		3.3	8
15B5 (12-14)	BV81836	SW6010	11/10/2016	1	Thallium		mg/Kg	U	1.5	1.5
15B5 (12-14)	BV81836	SW6010	11/10/2016	1	Vanadium	12.6	mg/Kg		0.38	0.38

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B5 (12-14)	BV81836	SW6010	11/10/2016	1	Zinc	19.6	mg/Kg		0.38	0.8
15B5 (12-14)	BV81836	SW7471	11/10/2016	1	Mercury	10.0	mg/Kg	UJ	0.02	0.03
15B5 (12-14)	BV81836	SW8082	11/10/2016	2	PCB-1016		ug/Kg	U	74	74
15B5 (12-14)	BV81836	SW8082	11/10/2016	2	PCB-1221		ug/Kg	Ü	74	74
15B5 (12-14)	BV81836	SW8082	11/10/2016	2	PCB-1232		ug/Kg	Ū	74	74
15B5 (12-14)	BV81836	SW8082	11/10/2016	2	PCB-1242		ug/Kg	Ü	74	74
15B5 (12-14)	BV81836	SW8082	11/10/2016	2	PCB-1248		ug/Kg	U	74	74
15B5 (12-14)	BV81836	SW8082	11/10/2016	2	PCB-1254		ug/Kg	U	74	74
15B5 (12-14)	BV81836	SW8082	11/10/2016	2	PCB-1260		ug/Kg	U	74	74
15B5 (12-14)	BV81836	SW8082	11/10/2016	2	PCB-1262		ug/Kg	U	74	74
15B5 (12-14)	BV81836	SW8082	11/10/2016	2	PCB-1268		ug/Kg	U	74	74
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	0.66	13
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	1,1,1-Trichloroethane		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	0.66	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	1,1,2-Trichloroethane		ug/Kg	U	0.66	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	1,1-Dichloroethane		ug/Kg	U	0.66	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	1,1-Dichloroethene		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	1,1-Dichloropropene		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	1,2,3-Trichlorobenzene		ug/Kg	UJ	0.66	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	1,2,3-Trichloropropane		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	1,2,4-Trichlorobenzene		ug/Kg	UJ	0.66	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	1,2,4-Trimethylbenzene		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	0.66	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	1,2-Dibromoethane		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	1,2-Dichlorobenzene		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	1,2-Dichloroethane		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	1,2-Dichloropropane		ug/Kg	U	0.66	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	1,3,5-Trimethylbenzene		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	1,3-Dichlorobenzene		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	1,3-Dichloropropane		ug/Kg	U	0.66	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	1,4-Dichlorobenzene		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	1,4-dioxane		ug/Kg	U	26	49
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	2,2-Dichloropropane		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	2-Chlorotoluene		ug/Kg	U	0.66	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	2-Hexanone		ug/Kg	U	3.3	16
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	2-Isopropyltoluene		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	4-Chlorotoluene		ug/Kg	U	0.33	3.3

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	4-Methyl-2-pentanone	9.7	ug/Kg	J	3.3	16
15B5 (12-14)	BV81836	SW8260	11/10/2016	50	Acetone	560	ug/Kg	J	260	260
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	Acrolein		ug/Kg	UJ	1.6	13
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	Acrylonitrile		ug/Kg	U	0.33	13
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	Benzene		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	Bromobenzene		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	Bromochloromethane		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	Bromodichloromethane		ug/Kg	U	0.66	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	Bromoform		ug/Kg	U	0.66	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	Bromomethane		ug/Kg	U	1.3	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	Carbon Disulfide	1.9	ug/Kg	J	0.66	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	Carbon tetrachloride		ug/Kg	U	0.66	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	Chlorobenzene		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	Chloroethane		ug/Kg	UJ	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	Chloroform		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	Chloromethane		ug/Kg	U	0.66	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	cis-1,2-Dichloroethene		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	cis-1,3-Dichloropropene		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	Dibromochloromethane		ug/Kg	U	0.66	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	Dibromomethane		ug/Kg	U	0.66	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	Dichlorodifluoromethane		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	Ethylbenzene		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	Hexachlorobutadiene		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	Isopropylbenzene		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	m&p-Xylene		ug/Kg	U	0.66	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	Methyl Ethyl Ketone	19	ug/Kg	J	3.3	20
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	Methyl t-butyl ether (MTBE)		ug/Kg	U	0.66	6.6
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	Methylene chloride		ug/Kg	U	3.3	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	Naphthalene		ug/Kg	U	0.66	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	n-Butylbenzene		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	n-Propylbenzene		ug/Kg	U	0.66	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	o-Xylene		ug/Kg	U	0.66	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	p-Isopropyltoluene		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	sec-Butylbenzene		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	Styrene		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	Tert-butyl alcohol		ug/Kg	U	13	66
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	tert-Butylbenzene		ug/Kg	U	0.33	3.3

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	Tetrachloroethene		ug/Kg	U	0.66	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	Tetrahydrofuran (THF)		ug/Kg	U	1.6	6.6
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	Toluene		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	trans-1,2-Dichloroethene		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	trans-1,3-Dichloropropene		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	trans-1,4-dichloro-2-butene		ug/Kg	U	1.6	6.6
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	Trichloroethene		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	Trichlorofluoromethane		ug/Kg	U	0.66	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	Trichlorotrifluoroethane		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8260	11/10/2016	1	Vinyl chloride		ug/Kg	U	0.33	3.3
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	130	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	110	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	1,2-Dichlorobenzene		ug/Kg	U	100	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	120	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	1,3-Dichlorobenzene		ug/Kg	U	110	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	1,4-Dichlorobenzene		ug/Kg	U	110	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	2,4,5-Trichlorophenol		ug/Kg	U	200	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	120	180
15B5 (12-14)	BV81836	SW8270	11/10/2016		2,4-Dichlorophenol		ug/Kg	U	130	180
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	2,4-Dimethylphenol		ug/Kg	U	89	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	2,4-Dinitrophenol		ug/Kg	U	250	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	2,4-Dinitrotoluene		ug/Kg	U	140	180
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	2,6-Dinitrotoluene		ug/Kg	U	110	180
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	2-Chloronaphthalene		ug/Kg	U	100	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	2-Chlorophenol		ug/Kg	U	100	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	2-Methylnaphthalene		ug/Kg	U	110	250
15B5 (12-14)	BV81836	SW8270	11/10/2016		2-Methylphenol (o-cresol)		ug/Kg	U	170	250
15B5 (12-14)	BV81836	SW8270	11/10/2016		2-Nitroaniline		ug/Kg	U	250	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	2-Nitrophenol		ug/Kg	U	230	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	140	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	170	180
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	3-Nitroaniline		ug/Kg	U	720	360
15B5 (12-14)	BV81836	SW8270	11/10/2016		4,6-Dinitro-2-methylphenol		ug/Kg	U	72	220
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	110	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	130	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	4-Chloroaniline		ug/Kg	U	170	290
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	120	250

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	4-Nitroaniline		ug/Kg	U	120	360
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	4-Nitrophenol		ug/Kg	U	160	360
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Acenaphthene		ug/Kg	U	110	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Acenaphthylene		ug/Kg	U	100	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Acetophenone		ug/Kg	U	110	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Aniline		ug/Kg	U	290	290
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Anthracene		ug/Kg	U	120	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Benz(a)anthracene		ug/Kg	U	120	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Benzidine		ug/Kg	U	210	360
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Benzo(a)pyrene		ug/Kg	U	120	180
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Benzo(b)fluoranthene		ug/Kg	U	120	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Benzo(ghi)perylene		ug/Kg	U	120	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Benzo(k)fluoranthene		ug/Kg	U	120	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Benzoic acid		ug/Kg	U	720	1800
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Benzyl butyl phthalate		ug/Kg	U	93	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	100	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	97	180
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	100	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	100	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Carbazole		ug/Kg	U	140	180
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Chrysene		ug/Kg	U	120	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Dibenz(a,h)anthracene		ug/Kg	U	120	180
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Dibenzofuran		ug/Kg	U	110	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Diethyl phthalate		ug/Kg	U	110	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Dimethylphthalate		ug/Kg	U	110	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Di-n-butylphthalate		ug/Kg	U	96	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Di-n-octylphthalate		ug/Kg	U	93	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Fluoranthene		ug/Kg	U	120	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Fluorene		ug/Kg	U	120	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Hexachlorobenzene		ug/Kg	U	110	180
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Hexachlorobutadiene		ug/Kg	U	130	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Hexachlorocyclopentadiene		ug/Kg	U	110	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Hexachloroethane		ug/Kg	U	110	180
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Indeno(1,2,3-cd)pyrene		ug/Kg	U	120	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Isophorone		ug/Kg	U	100	180
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Naphthalene		ug/Kg	U	100	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Nitrobenzene		ug/Kg	U	130	180

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	N-Nitrosodimethylamine		ug/Kg	U	100	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	120	180
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	140	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Pentachloronitrobenzene		ug/Kg	U	130	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Pentachlorophenol		ug/Kg	U	140	220
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Phenanthrene		ug/Kg	U	100	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Phenol		ug/Kg	U	120	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Pyrene		ug/Kg	U	120	250
15B5 (12-14)	BV81836	SW8270	11/10/2016	1	Pyridine		ug/Kg	U	89	250
15B5 (15-17)	BV81837	E160.3	11/10/2016	1	SOLIDS, PERCENT	85	%			
15B5 (15-17)	BV81837	SW6010	11/10/2016	10	Aluminum	2810	mg/Kg		7.9	40
15B5 (15-17)	BV81837	SW6010	11/10/2016	1	Antimony		mg/Kg	U	1.9	1.9
15B5 (15-17)	BV81837	SW6010	11/10/2016	1	Arsenic		mg/Kg	U	0.79	0.79
15B5 (15-17)	BV81837	SW6010	11/10/2016	1	Barium	16.2	mg/Kg		0.40	8.0
15B5 (15-17)	BV81837	SW6010	11/10/2016	1	Beryllium		mg/Kg	U	0.16	0.32
15B5 (15-17)	BV81837	SW6010	11/10/2016	1	Cadmium		mg/Kg	U	0.40	0.40
15B5 (15-17)	BV81837	SW6010	11/10/2016	1	Calcium	317	mg/Kg		3.7	4.0
15B5 (15-17)	BV81837	SW6010	11/10/2016	1	Chromium	5.31	mg/Kg		0.40	0.40
15B5 (15-17)	BV81837	SW6010	11/10/2016	1	Cobalt	2.69	mg/Kg		0.40	0.40
15B5 (15-17)	BV81837	SW6010	11/10/2016	1	Copper	4.65	mg/Kg		0.40	0.40
15B5 (15-17)	BV81837	SW6010	11/10/2016	1	Iron	5430	mg/Kg	J	4.0	4.0
15B5 (15-17)	BV81837	SW6010	11/10/2016	1	Lead	0.7	mg/Kg	J	0.40	0.8
15B5 (15-17)	BV81837	SW6010	11/10/2016	1	Magnesium	1160	mg/Kg		4.0	4.0
15B5 (15-17)	BV81837	SW6010	11/10/2016	1	Manganese	106	mg/Kg		0.40	0.40
15B5 (15-17)	BV81837	SW6010	11/10/2016	1	Nickel	5.23	mg/Kg		0.40	0.40
15B5 (15-17)	BV81837	SW6010	11/10/2016	1	Potassium	351	mg/Kg		3.1	8
15B5 (15-17)	BV81837	SW6010	11/10/2016	1	Selenium		mg/Kg	U	1.4	1.6
15B5 (15-17)	BV81837	SW6010	11/10/2016	1	Silver		mg/Kg	U	0.40	0.40
15B5 (15-17)	BV81837	SW6010	11/10/2016	1	Sodium	69	mg/Kg		3.4	8
15B5 (15-17)	BV81837	SW6010	11/10/2016	1	Thallium		mg/Kg	U	1.6	1.6
15B5 (15-17)	BV81837	SW6010	11/10/2016	1	Vanadium	6.39	mg/Kg		0.40	0.40
15B5 (15-17)	BV81837	SW6010	11/10/2016	1	Zinc	10.9	mg/Kg		0.40	0.8
15B5 (15-17)	BV81837	SW7471	11/10/2016		Mercury		mg/Kg	UJ	0.02	0.03
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	0.92	18
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	1,1,1-Trichloroethane		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	0.92	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	1,1,2-Trichloroethane		ug/Kg	U	0.92	4.6

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	1,1-Dichloroethane		ug/Kg	U	0.92	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	1,1-Dichloroethene		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	1,1-Dichloropropene		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	1,2,3-Trichlorobenzene		ug/Kg	U	0.92	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	1,2,3-Trichloropropane		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	0.92	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	1,2,4-Trimethylbenzene		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	0.92	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	1,2-Dibromoethane		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	1,2-Dichlorobenzene		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	1,2-Dichloroethane		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	1,2-Dichloropropane		ug/Kg	U	0.92	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	1,3,5-Trimethylbenzene		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	1,3-Dichlorobenzene		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	1,3-Dichloropropane		ug/Kg	U	0.92	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	1,4-Dichlorobenzene		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	1,4-dioxane		ug/Kg	U	37	69
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	2,2-Dichloropropane		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	2-Chlorotoluene		ug/Kg	U	0.92	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	2-Hexanone		ug/Kg	U	4.6	23
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	2-Isopropyltoluene		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	4-Chlorotoluene		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	4-Methyl-2-pentanone		ug/Kg	U	4.6	23
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	Acetone	12	ug/Kg	J	4.6	23
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	Acrolein		ug/Kg	UJ	2.3	18
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	Acrylonitrile		ug/Kg	U	0.46	18
15B5 (15-17)	BV81837	SW8260	11/10/2016		Benzene		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	Bromobenzene		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	Bromochloromethane		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	Bromodichloromethane		ug/Kg	U	0.92	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	Bromoform		ug/Kg	U	0.92	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	Bromomethane		ug/Kg	U	1.8	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	Carbon Disulfide		ug/Kg	U	0.92	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	Carbon tetrachloride		ug/Kg	U	0.92	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	Chlorobenzene		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	Chloroethane		ug/Kg	UJ	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	Chloroform		ug/Kg	U	0.46	4.6

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	Chloromethane		ug/Kg	U	0.92	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	cis-1,2-Dichloroethene		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	cis-1,3-Dichloropropene		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	Dibromochloromethane		ug/Kg	U	0.92	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	Dibromomethane		ug/Kg	U	0.92	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	Dichlorodifluoromethane		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	Ethylbenzene		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	Hexachlorobutadiene		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	Isopropylbenzene		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	m&p-Xylene		ug/Kg	U	0.92	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	Methyl Ethyl Ketone		ug/Kg	UJ	4.6	28
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	Methyl t-butyl ether (MTBE)		ug/Kg	U	0.92	9.2
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	Methylene chloride		ug/Kg	U	4.6	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	Naphthalene		ug/Kg	U	0.92	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	n-Butylbenzene		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	n-Propylbenzene		ug/Kg	U	0.92	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	o-Xylene		ug/Kg	U	0.92	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	p-Isopropyltoluene		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	sec-Butylbenzene		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	Styrene		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	Tert-butyl alcohol		ug/Kg	U	18	92
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	tert-Butylbenzene		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	Tetrachloroethene		ug/Kg	U	0.92	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	Tetrahydrofuran (THF)		ug/Kg	U	2.3	9.2
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	Toluene		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	trans-1,2-Dichloroethene		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016		trans-1,3-Dichloropropene		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	trans-1,4-dichloro-2-butene		ug/Kg	U	2.3	9.2
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	Trichloroethene		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	Trichlorofluoromethane		ug/Kg	U	0.92	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	Trichlorotrifluoroethane		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8260	11/10/2016	1	Vinyl chloride		ug/Kg	U	0.46	4.6
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	140	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	120	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	1,2-Dichlorobenzene		ug/Kg	U	110	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	130	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	1,3-Dichlorobenzene		ug/Kg	U	110	270

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	1,4-Dichlorobenzene		ug/Kg	U	110	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	2,4,5-Trichlorophenol		ug/Kg	Ū	210	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	2,4,6-Trichlorophenol		ug/Kg	Ū	120	190
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	2,4-Dichlorophenol		ug/Kg	Ū	140	190
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	2,4-Dimethylphenol		ug/Kg	U	96	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	2,4-Dinitrophenol		ug/Kg	U	270	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	2,4-Dinitrotoluene		ug/Kg	U	150	190
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	2,6-Dinitrotoluene		ug/Kg	U	120	190
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	2-Chloronaphthalene		ug/Kg	U	110	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	2-Chlorophenol		ug/Kg	U	110	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	2-Methylnaphthalene		ug/Kg	U	110	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	180	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	2-Nitroaniline		ug/Kg	U	270	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	2-Nitrophenol		ug/Kg	U	240	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	150	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	180	190
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	3-Nitroaniline		ug/Kg	U	770	390
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	4,6-Dinitro-2-methylphenol		ug/Kg	U	77	230
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	110	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	140	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	4-Chloroaniline		ug/Kg	U	180	310
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	130	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	4-Nitroaniline		ug/Kg	U	130	390
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	4-Nitrophenol		ug/Kg	U	170	390
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Acenaphthene		ug/Kg	U	120	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Acenaphthylene		ug/Kg	U	110	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Acetophenone		ug/Kg	U	120	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Aniline		ug/Kg	U	310	310
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Anthracene		ug/Kg	U	130	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Benz(a)anthracene		ug/Kg	U	130	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Benzidine		ug/Kg	U	230	390
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Benzo(a)pyrene		ug/Kg	U	130	190
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Benzo(b)fluoranthene		ug/Kg	U	130	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Benzo(ghi)perylene		ug/Kg	U	120	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Benzo(k)fluoranthene		ug/Kg	U	130	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Benzoic acid		ug/Kg	U	770	1900
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Benzyl butyl phthalate		ug/Kg	U	99	270

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	110	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	100	190
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	110	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	110	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Carbazole		ug/Kg	U	150	190
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Chrysene		ug/Kg	U	130	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Dibenz(a,h)anthracene		ug/Kg	U	120	190
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Dibenzofuran		ug/Kg	U	110	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Diethyl phthalate		ug/Kg	U	120	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Dimethylphthalate		ug/Kg	U	120	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Di-n-butylphthalate		ug/Kg	U	100	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Di-n-octylphthalate		ug/Kg	U	99	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Fluoranthene		ug/Kg	U	120	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Fluorene		ug/Kg	U	130	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Hexachlorobenzene		ug/Kg	U	110	190
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Hexachlorobutadiene		ug/Kg	U	140	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Hexachlorocyclopentadiene		ug/Kg	U	120	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Hexachloroethane		ug/Kg	U	120	190
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Indeno(1,2,3-cd)pyrene		ug/Kg	U	130	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Isophorone		ug/Kg	U	110	190
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Naphthalene		ug/Kg	U	110	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Nitrobenzene		ug/Kg	U	130	190
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	N-Nitrosodimethylamine		ug/Kg	U	110	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	120	190
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	150	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Pentachloronitrobenzene		ug/Kg	U	140	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Pentachlorophenol		ug/Kg	U	150	230
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Phenanthrene		ug/Kg	U	110	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Phenol		ug/Kg	U	120	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Pyrene		ug/Kg	U	130	270
15B5 (15-17)	BV81837	SW8270	11/10/2016	1	Pyridine		ug/Kg	U	95	270
15B8 (0-2)	BV81838	E160.3	11/10/2016	1	SOLIDS, PERCENT	88	%			
15B8 (0-2)	BV81838	SW6010	11/10/2016	10	Aluminum	7470	mg/Kg		7.4	37
15B8 (0-2)	BV81838	SW6010	11/10/2016	1	Antimony		mg/Kg	U	1.9	1.9
15B8 (0-2)	BV81838	SW6010	11/10/2016	1	Arsenic	6.00	mg/Kg		0.74	0.74
15B8 (0-2)	BV81838	SW6010	11/10/2016	1	Barium	76.4	mg/Kg		0.37	0.7
15B8 (0-2)	BV81838	SW6010	11/10/2016	1	Beryllium	0.44	mg/Kg		0.15	0.30

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B8 (0-2)	BV81838	SW6010	11/10/2016	1	Cadmium	0.67	mg/Kg	- Cuanto	0.37	0.37
15B8 (0-2)	BV81838	SW6010	11/10/2016	1	Calcium	1870	mg/Kg		3.4	3.7
15B8 (0-2)	BV81838	SW6010	11/10/2016	1	Chromium	14.9	mg/Kg		0.37	0.37
15B8 (0-2)	BV81838	SW6010	11/10/2016	1	Cobalt	5.99	mg/Kg		0.37	0.37
15B8 (0-2)	BV81838	SW6010	11/10/2016	1	Copper	68.1	mg/Kg		0.37	0.37
15B8 (0-2)	BV81838	SW6010	11/10/2016	10	Iron	13500	mg/Kg		37	37
15B8 (0-2)	BV81838	SW6010	11/10/2016	10	Lead	196	mg/Kg		3.7	7.4
15B8 (0-2)	BV81838	SW6010	11/10/2016	1	Magnesium	1470	mg/Kg		3.7	3.7
15B8 (0-2)	BV81838	SW6010	11/10/2016	10	Manganese	271	mg/Kg		3.7	3.7
15B8 (0-2)	BV81838	SW6010	11/10/2016	1	Nickel	14.7	mg/Kg		0.37	0.37
15B8 (0-2)	BV81838	SW6010	11/10/2016	1	Potassium	570	mg/Kg		2.9	7
15B8 (0-2)	BV81838	SW6010	11/10/2016	1	Selenium		mg/Kg	U	1.3	1.5
15B8 (0-2)	BV81838	SW6010	11/10/2016	1	Silver		mg/Kg	U	0.37	0.37
15B8 (0-2)	BV81838	SW6010	11/10/2016	1	Sodium	91	mg/Kg		3.2	7
15B8 (0-2)	BV81838	SW6010	11/10/2016	1	Thallium		mg/Kg	U	1.5	1.5
15B8 (0-2)	BV81838	SW6010	11/10/2016	1	Vanadium	16.0	mg/Kg		0.37	0.37
15B8 (0-2)	BV81838	SW6010	11/10/2016	10	Zinc	269	mg/Kg		3.7	7.4
15B8 (0-2)	BV81838	SW7471	11/10/2016	1	Mercury	0.45	mg/Kg	J	0.02	0.03
15B8 (0-2)	BV81838	SW8082	11/10/2016	2	PCB-1016		ug/Kg	U	75	75
15B8 (0-2)	BV81838	SW8082	11/10/2016	2	PCB-1221		ug/Kg	U	75	75
15B8 (0-2)	BV81838	SW8082	11/10/2016	2	PCB-1232		ug/Kg	U	75	75
15B8 (0-2)	BV81838	SW8082	11/10/2016	2	PCB-1242		ug/Kg	U	75	75
15B8 (0-2)	BV81838	SW8082	11/10/2016	2	PCB-1248		ug/Kg	U	75	75
15B8 (0-2)	BV81838	SW8082	11/10/2016	2	PCB-1254		ug/Kg	U	75	75
15B8 (0-2)	BV81838	SW8082	11/10/2016	2	PCB-1260		ug/Kg	U	75	75
15B8 (0-2)	BV81838	SW8082	11/10/2016	2	PCB-1262		ug/Kg	U	75	75
15B8 (0-2)	BV81838	SW8082	11/10/2016	2	PCB-1268		ug/Kg	U	75	75
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	1.1	21
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	1,1,1-Trichloroethane		ug/Kg	U	0.53	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	1.1	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	1,1,2-Trichloroethane		ug/Kg	U	1.1	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	1,1-Dichloroethane		ug/Kg	U	1.1	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	1,1-Dichloroethene		ug/Kg	U	0.53	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	1,1-Dichloropropene		ug/Kg	U	0.53	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	1,2,3-Trichlorobenzene		ug/Kg	UJ	1.1	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	1,2,3-Trichloropropane		ug/Kg	U	0.53	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	1,2,4-Trichlorobenzene		ug/Kg	UJ	1.1	5.3

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B8 (0-2)	BV81838	SW8260	11/10/2016	50	1,2,4-Trimethylbenzene	520	ug/Kg		33	330
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	1.1	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	1,2-Dibromoethane		ug/Kg	Ū	0.53	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	1,2-Dichlorobenzene		ug/Kg	U	0.53	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	1,2-Dichloroethane		ug/Kg	U	0.53	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	1,2-Dichloropropane		ug/Kg	U	1.1	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	50	1,3,5-Trimethylbenzene	350	ug/Kg		33	330
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	1,3-Dichlorobenzene		ug/Kg	U	0.53	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	1,3-Dichloropropane		ug/Kg	U	1.1	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	1,4-Dichlorobenzene		ug/Kg	U	0.53	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	1,4-dioxane		ug/Kg	U	43	80
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	2,2-Dichloropropane		ug/Kg	U	0.53	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	2-Chlorotoluene		ug/Kg	U	1.1	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	2-Hexanone		ug/Kg	U	5.3	27
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	2-Isopropyltoluene		ug/Kg	U	0.53	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	4-Chlorotoluene		ug/Kg	U	0.53	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	4-Methyl-2-pentanone		ug/Kg	U	5.3	27
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	Acetone		ug/Kg	UJ	5.3	27
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	Acrolein		ug/Kg	UJ	2.7	21
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	Acrylonitrile		ug/Kg	U	0.53	21
15B8 (0-2)	BV81838	SW8260	11/10/2016	50	Benzene	110	ug/Kg		33	60
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	Bromobenzene		ug/Kg	U	0.53	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	Bromochloromethane		ug/Kg	U	0.53	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	Bromodichloromethane		ug/Kg	U	1.1	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	Bromoform		ug/Kg	U	1.1	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	Bromomethane		ug/Kg	U	2.1	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	Carbon Disulfide		ug/Kg	U	1.1	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	Carbon tetrachloride		ug/Kg	U	1.1	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	Chlorobenzene		ug/Kg	U	0.53	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	Chloroethane		ug/Kg	UJ	0.53	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	Chloroform		ug/Kg	U	0.53	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	Chloromethane		ug/Kg	U	1.1	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	cis-1,2-Dichloroethene		ug/Kg	U	0.53	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	cis-1,3-Dichloropropene		ug/Kg	U	0.53	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	Dibromochloromethane		ug/Kg	U	1.1	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	Dibromomethane		ug/Kg	U	1.1	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	Dichlorodifluoromethane		ug/Kg	U	0.53	5.3

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B8 (0-2)	BV81838	SW8260	11/10/2016	50	Ethylbenzene	220	ug/Kg	J	33	330
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	Hexachlorobutadiene		ug/Kg	U	0.53	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	50	Isopropylbenzene	61	ug/Kg	J	33	330
15B8 (0-2)	BV81838	SW8260	11/10/2016	50	m&p-Xylene	580	ug/Kg		67	330
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	Methyl Ethyl Ketone		ug/Kg	UJ	5.3	32
15B8 (0-2)	BV81838	SW8260	11/10/2016	50	Methyl t-butyl ether (MTBE)	140	ug/Kg	J	67	670
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	Methylene chloride		ug/Kg	U	5.3	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	Naphthalene		ug/Kg	U	1.1	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	n-Butylbenzene		ug/Kg	U	0.53	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	n-Propylbenzene		ug/Kg	U	1.1	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	50	o-Xylene	100	ug/Kg	J	67	330
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	p-Isopropyltoluene		ug/Kg	U	0.53	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	sec-Butylbenzene		ug/Kg	U	0.53	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	Styrene		ug/Kg	U	0.53	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	Tert-butyl alcohol		ug/Kg	U	21	110
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	tert-Butylbenzene		ug/Kg	U	0.53	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	Tetrachloroethene		ug/Kg	U	1.1	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	Tetrahydrofuran (THF)		ug/Kg	U	2.7	11
15B8 (0-2)	BV81838	SW8260	11/10/2016	50	Toluene	85	ug/Kg	J	33	330
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	trans-1,2-Dichloroethene		ug/Kg	U	0.53	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	trans-1,3-Dichloropropene		ug/Kg	U	0.53	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	trans-1,4-dichloro-2-butene		ug/Kg	U	2.7	11
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	Trichloroethene		ug/Kg	U	0.53	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	Trichlorofluoromethane		ug/Kg	UJ	1.1	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	Trichlorotrifluoroethane		ug/Kg	U	0.53	5.3
15B8 (0-2)	BV81838	SW8260	11/10/2016	1	Vinyl chloride		ug/Kg	U	0.53	5.3
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	130	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	110	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	1,2-Dichlorobenzene		ug/Kg	U	100	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	120	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	1,3-Dichlorobenzene		ug/Kg	U	110	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	1,4-Dichlorobenzene		ug/Kg	U	110	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	2,4,5-Trichlorophenol		ug/Kg	U	200	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	120	190
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	2,4-Dichlorophenol		ug/Kg	U	130	190
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	2,4-Dimethylphenol		ug/Kg	U	92	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	2,4-Dinitrophenol		ug/Kg	U	260	260

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	2,4-Dinitrotoluene		ug/Kg	U	150	190
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	2,6-Dinitrotoluene		ug/Kg	U	120	190
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	2-Chloronaphthalene		ug/Kg	U	110	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	2-Chlorophenol		ug/Kg	U	110	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	2-Methylnaphthalene		ug/Kg	U	110	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	170	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	2-Nitroaniline		ug/Kg	U	260	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	2-Nitrophenol		ug/Kg	U	230	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	150	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	170	190
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	3-Nitroaniline		ug/Kg	U	740	370
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	4,6-Dinitro-2-methylphenol		ug/Kg	U	74	220
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	110	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	130	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	4-Chloroaniline		ug/Kg	U	170	300
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	120	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	4-Nitroaniline		ug/Kg	U	120	370
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	4-Nitrophenol		ug/Kg	U	170	370
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Acenaphthene		ug/Kg	U	110	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Acenaphthylene		ug/Kg	U	100	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Acetophenone		ug/Kg	U	120	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Aniline		ug/Kg	U	300	300
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Anthracene		ug/Kg	U	120	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Benz(a)anthracene	230	ug/Kg	J	120	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Benzidine		ug/Kg	U	220	370
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Benzo(a)pyrene	240	ug/Kg		120	190
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Benzo(b)fluoranthene	220	ug/Kg	J	130	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Benzo(ghi)perylene		ug/Kg	U	120	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Benzo(k)fluoranthene	220	ug/Kg	J	120	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Benzoic acid		ug/Kg	U	740	1900
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Benzyl butyl phthalate		ug/Kg	U	96	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	100	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	100	190
15B8 (0-2)	BV81838	SW8270	11/10/2016		Bis(2-chloroisopropyl)ether		ug/Kg	U	100	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	110	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Carbazole		ug/Kg	U	150	190
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Chrysene	280	ug/Kg		120	260

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Dibenz(a,h)anthracene		ug/Kg	U	120	190
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Dibenzofuran		ug/Kg	U	110	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Diethyl phthalate		ug/Kg	U	120	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Dimethylphthalate		ug/Kg	U	110	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Di-n-butylphthalate		ug/Kg	U	99	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Di-n-octylphthalate		ug/Kg	U	96	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Fluoranthene	510	ug/Kg		120	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Fluorene		ug/Kg	U	120	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Hexachlorobenzene		ug/Kg	U	110	190
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Hexachlorobutadiene		ug/Kg	U	130	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Hexachlorocyclopentadiene		ug/Kg	U	110	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Hexachloroethane		ug/Kg	U	110	190
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Indeno(1,2,3-cd)pyrene	150	ug/Kg	J	120	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Isophorone		ug/Kg	U	100	190
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Naphthalene		ug/Kg	U	110	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Nitrobenzene		ug/Kg	U	130	190
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	N-Nitrosodimethylamine		ug/Kg	U	100	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	120	190
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	140	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Pentachloronitrobenzene		ug/Kg	U	140	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Pentachlorophenol		ug/Kg	U	140	220
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Phenanthrene	530	ug/Kg		110	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Phenol		ug/Kg	U	120	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Pyrene	460	ug/Kg		130	260
15B8 (0-2)	BV81838	SW8270	11/10/2016	1	Pyridine		ug/Kg	U	91	260
15B8 (12-14)	BV81839	E160.3	11/10/2016	1	SOLIDS, PERCENT	82	%			
15B8 (12-14)	BV81839	SW6010	11/10/2016	10	Aluminum	4390	mg/Kg		8.4	42
15B8 (12-14)	BV81839	SW6010	11/10/2016	1	Antimony		mg/Kg	U	2.1	2.1
15B8 (12-14)	BV81839	SW6010	11/10/2016	1	Arsenic	1.11	mg/Kg		0.84	0.84
15B8 (12-14)	BV81839	SW6010	11/10/2016	1	Barium	38.6	mg/Kg		0.42	0.8
15B8 (12-14)	BV81839	SW6010	11/10/2016	1	Beryllium	0.21	mg/Kg	J	0.17	0.33
15B8 (12-14)	BV81839	SW6010	11/10/2016	1	Cadmium		mg/Kg	U	0.42	0.42
15B8 (12-14)	BV81839	SW6010	11/10/2016	1	Calcium	1100	mg/Kg		3.8	4.2
15B8 (12-14)	BV81839	SW6010	11/10/2016	1	Chromium	9.81	mg/Kg		0.42	0.42
15B8 (12-14)	BV81839	SW6010	11/10/2016	1	Cobalt	4.95	mg/Kg		0.42	0.42
15B8 (12-14)	BV81839	SW6010	11/10/2016	1	Copper	8.44	mg/Kg		0.42	0.42
15B8 (12-14)	BV81839	SW6010	11/10/2016	10	Iron	10700	mg/Kg		42	42

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B8 (12-14)	BV81839	SW6010	11/10/2016	1	Lead	1.2	mg/Kg		0.41	0.8
15B8 (12-14)	BV81839	SW6010	11/10/2016	1	Magnesium	2030	mg/Kg		4.2	4.2
15B8 (12-14)	BV81839	SW6010	11/10/2016		Manganese	199	mg/Kg		4.2	4.2
15B8 (12-14)	BV81839	SW6010	11/10/2016	1	Nickel	9.57	mg/Kg		0.42	0.42
15B8 (12-14)	BV81839	SW6010	11/10/2016	1	Potassium	909	mg/Kg		3.3	8
15B8 (12-14)	BV81839	SW6010	11/10/2016	1	Selenium		mg/Kg	U	1.4	1.7
15B8 (12-14)	BV81839	SW6010	11/10/2016	1	Silver		mg/Kg	U	0.42	0.42
15B8 (12-14)	BV81839	SW6010	11/10/2016	1	Sodium	109	mg/Kg		3.6	8
15B8 (12-14)	BV81839	SW6010	11/10/2016	1	Thallium		mg/Kg	U	1.7	1.7
15B8 (12-14)	BV81839	SW6010	11/10/2016	1	Vanadium	15.3	mg/Kg		0.42	0.42
15B8 (12-14)	BV81839	SW6010	11/10/2016	1	Zinc	21.0	mg/Kg		0.42	0.8
15B8 (12-14)	BV81839	SW7471	11/10/2016	1	Mercury		mg/Kg	UJ	0.02	0.03
15B8 (12-14)	BV81839	SW8081	11/10/2016	2	4,4' -DDD		ug/Kg	U	2.4	2.4
15B8 (12-14)	BV81839	SW8081	11/10/2016	2	4,4' -DDE		ug/Kg	U	2.4	2.4
15B8 (12-14)	BV81839	SW8081	11/10/2016	2	4,4' -DDT		ug/Kg	U	2.4	2.4
15B8 (12-14)	BV81839	SW8081	11/10/2016	2	a-BHC		ug/Kg	U	7.9	7.9
15B8 (12-14)	BV81839	SW8081	11/10/2016	2	a-Chlordane		ug/Kg	U	3.9	3.9
15B8 (12-14)	BV81839	SW8081	11/10/2016	2	Aldrin		ug/Kg	U	3.9	3.9
15B8 (12-14)	BV81839	SW8081	11/10/2016	2	b-BHC		ug/Kg	U	7.9	7.9
15B8 (12-14)	BV81839	SW8081	11/10/2016	2	Chlordane		ug/Kg	U	39	39
15B8 (12-14)	BV81839	SW8081	11/10/2016	2	d-BHC		ug/Kg	U	7.9	7.9
15B8 (12-14)	BV81839	SW8081	11/10/2016	2	Dieldrin		ug/Kg	U	3.9	3.9
15B8 (12-14)	BV81839	SW8081	11/10/2016	2	Endosulfan I		ug/Kg	U	7.9	7.9
15B8 (12-14)	BV81839	SW8081	11/10/2016	2	Endosulfan II		ug/Kg	U	7.9	7.9
15B8 (12-14)	BV81839	SW8081	11/10/2016	2	Endosulfan sulfate		ug/Kg	U	7.9	7.9
15B8 (12-14)	BV81839	SW8081	11/10/2016	2	Endrin		ug/Kg	U	7.9	7.9
15B8 (12-14)	BV81839	SW8081	11/10/2016	2	Endrin aldehyde		ug/Kg	U	7.9	7.9
15B8 (12-14)	BV81839	SW8081	11/10/2016		Endrin ketone		ug/Kg	U	7.9	7.9
15B8 (12-14)	BV81839	SW8081	11/10/2016	2	g-BHC		ug/Kg	U	1.6	1.6
15B8 (12-14)	BV81839	SW8081	11/10/2016	2	g-Chlordane		ug/Kg	U	3.9	3.9
15B8 (12-14)	BV81839	SW8081	11/10/2016	2	Heptachlor		ug/Kg	U	7.9	7.9
15B8 (12-14)	BV81839	SW8081	11/10/2016	2	Heptachlor epoxide		ug/Kg	U	7.9	7.9
15B8 (12-14)	BV81839	SW8081	11/10/2016		Methoxychlor		ug/Kg	U	39	39
15B8 (12-14)	BV81839	SW8081	11/10/2016	2	Toxaphene		ug/Kg	U	160	160
15B8 (12-14)	BV81839	SW8082	11/10/2016		PCB-1016		ug/Kg	U	79	79
15B8 (12-14)	BV81839	SW8082	11/10/2016		PCB-1221		ug/Kg	U	79	79
15B8 (12-14)	BV81839	SW8082	11/10/2016	2	PCB-1232		ug/Kg	U	79	79

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B8 (12-14)	BV81839	SW8082	11/10/2016	2	PCB-1242		ug/Kg	U	79	79
15B8 (12-14)	BV81839	SW8082	11/10/2016	2	PCB-1248		ug/Kg	U	79	79
15B8 (12-14)	BV81839	SW8082	11/10/2016	2	PCB-1254		ug/Kg	U	79	79
15B8 (12-14)	BV81839	SW8082	11/10/2016	2	PCB-1260		ug/Kg	U	79	79
15B8 (12-14)	BV81839	SW8082	11/10/2016	2	PCB-1262		ug/Kg	U	79	79
15B8 (12-14)	BV81839	SW8082	11/10/2016	2	PCB-1268		ug/Kg	U	79	79
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	1.1	21
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	1,1,1-Trichloroethane		ug/Kg	U	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	1.1	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	1,1,2-Trichloroethane		ug/Kg	U	1.1	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	1,1-Dichloroethane		ug/Kg	U	1.1	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	1,1-Dichloroethene		ug/Kg	U	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	1,1-Dichloropropene		ug/Kg	U	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	1,2,3-Trichlorobenzene		ug/Kg	U	1.1	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	1,2,3-Trichloropropane		ug/Kg	U	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	1.1	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	1,2,4-Trimethylbenzene		ug/Kg	U	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	1.1	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	1,2-Dibromoethane		ug/Kg	U	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	1,2-Dichlorobenzene		ug/Kg	U	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	1,2-Dichloroethane		ug/Kg	U	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	1,2-Dichloropropane		ug/Kg	U	1.1	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	1,3,5-Trimethylbenzene		ug/Kg	U	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	1,3-Dichlorobenzene		ug/Kg	U	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	1,3-Dichloropropane		ug/Kg	U	1.1	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	1,4-Dichlorobenzene		ug/Kg	U	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	1,4-dioxane		ug/Kg	U	42	80
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	2,2-Dichloropropane		ug/Kg	U	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	2-Chlorotoluene		ug/Kg	U	1.1	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	2-Hexanone		ug/Kg	U	5.3	27
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	2-Isopropyltoluene		ug/Kg	U	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	4-Chlorotoluene		ug/Kg	U	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	4-Methyl-2-pentanone		ug/Kg	U	5.3	27
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Acetone	9.5	ug/Kg	J	5.3	27
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Acrolein		ug/Kg	UJ	2.7	21
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Acrylonitrile		ug/Kg	U	0.53	21
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Benzene		ug/Kg	U	0.53	5.3

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Bromobenzene		ug/Kg	U	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Bromochloromethane		ug/Kg	U	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Bromodichloromethane		ug/Kg	U	1.1	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Bromoform		ug/Kg	U	1.1	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Bromomethane		ug/Kg	U	2.1	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Carbon Disulfide		ug/Kg	U	1.1	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Carbon tetrachloride		ug/Kg	U	1.1	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Chlorobenzene		ug/Kg	U	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Chloroethane		ug/Kg	UJ	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Chloroform		ug/Kg	U	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Chloromethane		ug/Kg	U	1.1	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	cis-1,2-Dichloroethene		ug/Kg	U	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	cis-1,3-Dichloropropene		ug/Kg	U	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Dibromochloromethane		ug/Kg	U	1.1	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Dibromomethane		ug/Kg	U	1.1	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Dichlorodifluoromethane		ug/Kg	U	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Ethylbenzene		ug/Kg	U	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Hexachlorobutadiene		ug/Kg	U	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Isopropylbenzene		ug/Kg	U	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	m&p-Xylene		ug/Kg	U	1.1	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Methyl Ethyl Ketone		ug/Kg	UJ	5.3	32
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Methyl t-butyl ether (MTBE)	2.2	ug/Kg	J	1.1	11
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Methylene chloride		ug/Kg	U	5.3	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Naphthalene		ug/Kg	U	1.1	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	n-Butylbenzene		ug/Kg	U	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	n-Propylbenzene		ug/Kg	U	1.1	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	o-Xylene		ug/Kg	U	1.1	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	p-Isopropyltoluene		ug/Kg	U	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	sec-Butylbenzene		ug/Kg	U	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Styrene		ug/Kg	U	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Tert-butyl alcohol		ug/Kg	U	21	110
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	tert-Butylbenzene		ug/Kg	U	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Tetrachloroethene		ug/Kg	U	1.1	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Tetrahydrofuran (THF)		ug/Kg	U	2.7	11
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Toluene		ug/Kg	U	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	trans-1,2-Dichloroethene		ug/Kg	U	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	trans-1,3-Dichloropropene		ug/Kg	U	0.53	5.3

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	trans-1,4-dichloro-2-butene		ug/Kg	U	2.7	11
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Trichloroethene		ug/Kg	Ū	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Trichlorofluoromethane		ug/Kg	U	1.1	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Trichlorotrifluoroethane		ug/Kg	U	0.53	5.3
15B8 (12-14)	BV81839	SW8260	11/10/2016	1	Vinyl chloride		ug/Kg	U	0.53	5.3
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	140	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	120	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	1,2-Dichlorobenzene		ug/Kg	U	110	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	130	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	1,3-Dichlorobenzene		ug/Kg	U	120	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	1,4-Dichlorobenzene		ug/Kg	U	120	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	2,4,5-Trichlorophenol		ug/Kg	U	220	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	130	200
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	2,4-Dichlorophenol		ug/Kg	U	140	200
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	2,4-Dimethylphenol		ug/Kg	U	100	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	2,4-Dinitrophenol		ug/Kg	U	280	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	2,4-Dinitrotoluene		ug/Kg	U	160	200
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	2,6-Dinitrotoluene		ug/Kg	U	130	200
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	2-Chloronaphthalene		ug/Kg	U	110	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	2-Chlorophenol		ug/Kg	U	110	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	2-Methylnaphthalene		ug/Kg	U	120	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	190	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	2-Nitroaniline		ug/Kg	U	280	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	2-Nitrophenol		ug/Kg	U	250	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	160	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	190	200
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	3-Nitroaniline		ug/Kg	U	800	400
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	4,6-Dinitro-2-methylphenol		ug/Kg	U	80	240
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	120	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	140	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	4-Chloroaniline		ug/Kg	U	190	320
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	140	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	4-Nitroaniline		ug/Kg	U	130	400
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	4-Nitrophenol		ug/Kg	U	180	400
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Acenaphthene		ug/Kg	U	120	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Acenaphthylene		ug/Kg	U	110	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Acetophenone		ug/Kg	U	130	280

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Aniline		ug/Kg	U	320	320
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Anthracene		ug/Kg	Ū	130	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Benz(a)anthracene		ug/Kg	Ū	140	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Benzidine		ug/Kg	Ū	240	400
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Benzo(a)pyrene		ug/Kg	U	130	200
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Benzo(b)fluoranthene		ug/Kg	U	140	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Benzo(ghi)perylene		ug/Kg	U	130	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Benzo(k)fluoranthene		ug/Kg	U	130	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Benzoic acid		ug/Kg	U	800	2000
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Benzyl butyl phthalate		ug/Kg	U	100	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	110	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	110	200
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	110	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	120	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Carbazole		ug/Kg	U	160	200
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Chrysene		ug/Kg	U	140	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Dibenz(a,h)anthracene		ug/Kg	U	130	200
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Dibenzofuran		ug/Kg	U	120	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Diethyl phthalate		ug/Kg	U	130	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Dimethylphthalate		ug/Kg	U	120	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Di-n-butylphthalate		ug/Kg	U	110	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Di-n-octylphthalate		ug/Kg	U	100	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Fluoranthene		ug/Kg	U	130	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Fluorene		ug/Kg	U	130	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Hexachlorobenzene		ug/Kg	U	120	200
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Hexachlorobutadiene		ug/Kg	U	150	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Hexachlorocyclopentadiene		ug/Kg	U	120	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Hexachloroethane		ug/Kg	U	120	200
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Indeno(1,2,3-cd)pyrene		ug/Kg	U	130	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Isophorone		ug/Kg	U	110	200
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Naphthalene		ug/Kg	U	120	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Nitrobenzene		ug/Kg	U	140	200
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	N-Nitrosodimethylamine		ug/Kg	U	110	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	130	200
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	150	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Pentachloronitrobenzene		ug/Kg	U	150	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Pentachlorophenol		ug/Kg	U	150	240

SDO	ጉ:	GBV	81	835
$\omega \boldsymbol{\nu}$	•	\mathbf{u}	$\mathbf{o}_{\mathbf{A}}$	UJJ

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Phenanthrene		ug/Kg	U	110	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Phenol		ug/Kg	Ü	130	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Pyrene		ug/Kg	Ü	140	280
15B8 (12-14)	BV81839	SW8270	11/10/2016	1	Pyridine		ug/Kg	Ū	99	280
15B11 (0-2)	BV81840	E160.3	11/10/2016	1	SOLIDS, PERCENT	89	%			
15B11 (0-2)	BV81840	SW6010	11/10/2016	10	Aluminum	7940	mg/Kg		6.9	34
15B11 (0-2)	BV81840	SW6010	11/10/2016	1	Antimony	7.5	mg/Kg		1.7	1.7
15B11 (0-2)	BV81840	SW6010	11/10/2016	1	Arsenic	7.69	mg/Kg		0.69	0.69
15B11 (0-2)	BV81840	SW6010	11/10/2016	1	Barium	446	mg/Kg		0.34	0.7
15B11 (0-2)	BV81840	SW6010	11/10/2016	1	Beryllium	0.39	mg/Kg		0.14	0.27
15B11 (0-2)	BV81840	SW6010	11/10/2016	1	Cadmium	7.67	mg/Kg		0.34	0.34
15B11 (0-2)	BV81840	SW6010	11/10/2016	1	Calcium	6970	mg/Kg		3.2	3.4
15B11 (0-2)	BV81840	SW6010	11/10/2016	1	Chromium	31.9	mg/Kg		0.34	0.34
15B11 (0-2)	BV81840	SW6010	11/10/2016	1	Cobalt	8.49	mg/Kg		0.34	0.34
15B11 (0-2)	BV81840	SW6010	11/10/2016	10	Copper	266	mg/Kg		3.4	3.4
15B11 (0-2)	BV81840	SW6010	11/10/2016	10	Iron	25900	mg/Kg		34	34
15B11 (0-2)	BV81840	SW6010	11/10/2016	10	Lead	754	mg/Kg		3.4	6.9
15B11 (0-2)	BV81840	SW6010	11/10/2016	1	Magnesium	2380	mg/Kg		3.4	3.4
15B11 (0-2)	BV81840	SW6010	11/10/2016	10	Manganese	403	mg/Kg		3.4	3.4
15B11 (0-2)	BV81840	SW6010	11/10/2016	1	Nickel	29.0	mg/Kg		0.34	0.34
15B11 (0-2)	BV81840	SW6010	11/10/2016	1	Potassium	861	mg/Kg		2.7	7
15B11 (0-2)	BV81840	SW6010	11/10/2016	1	Selenium		mg/Kg	U	1.2	1.4
15B11 (0-2)	BV81840	SW6010	11/10/2016	1	Silver	0.72	mg/Kg		0.34	0.34
15B11 (0-2)	BV81840	SW6010	11/10/2016	1	Sodium	189	mg/Kg		2.9	7
15B11 (0-2)	BV81840	SW6010	11/10/2016	1	Thallium		mg/Kg	U	1.4	1.4
15B11 (0-2)	BV81840	SW6010	11/10/2016	1	Vanadium	25.6	mg/Kg		0.34	0.34
15B11 (0-2)	BV81840	SW6010	11/10/2016	10	Zinc	1100	mg/Kg		3.4	6.9
15B11 (0-2)	BV81840	SW7471	11/10/2016	1	Mercury	0.81	mg/Kg	J	0.02	0.03
15B11 (0-2)	BV81840	SW8081	11/10/2016	2	4,4' -DDD		ug/Kg	U	30	30
15B11 (0-2)	BV81840	SW8081	11/10/2016	2	4,4' -DDE		ug/Kg	U	15	15
15B11 (0-2)	BV81840	SW8081	11/10/2016	2	4,4' -DDT		ug/Kg	U	20	20
15B11 (0-2)	BV81840	SW8081	11/10/2016	2	a-BHC		ug/Kg	U	10	10
15B11 (0-2)	BV81840	SW8081	11/10/2016	2	a-Chlordane		ug/Kg	U	3.7	3.7
15B11 (0-2)	BV81840	SW8081	11/10/2016	2	Aldrin		ug/Kg	U	3.7	3.7
15B11 (0-2)	BV81840	SW8081	11/10/2016	2	b-BHC		ug/Kg	U	7.5	7.5
15B11 (0-2)	BV81840	SW8081	11/10/2016	2	Chlordane		ug/Kg	U	37	37
15B11 (0-2)	BV81840	SW8081	11/10/2016	2	d-BHC		ug/Kg	U	7.5	7.5

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B11 (0-2)	BV81840	SW8081	11/10/2016	2	Dieldrin		ug/Kg	U	10	10
15B11 (0-2)	BV81840	SW8081	11/10/2016	2	Endosulfan I		ug/Kg	U	7.5	7.5
15B11 (0-2)	BV81840	SW8081	11/10/2016	2	Endosulfan II		ug/Kg	U	7.5	7.5
15B11 (0-2)	BV81840	SW8081	11/10/2016	2	Endosulfan sulfate		ug/Kg	U	7.5	7.5
15B11 (0-2)	BV81840	SW8081	11/10/2016	2	Endrin		ug/Kg	U	7.5	7.5
15B11 (0-2)	BV81840	SW8081	11/10/2016	2	Endrin aldehyde		ug/Kg	U	20	20
15B11 (0-2)	BV81840	SW8081	11/10/2016	2	Endrin ketone		ug/Kg	U	7.5	7.5
15B11 (0-2)	BV81840	SW8081	11/10/2016	2	g-BHC		ug/Kg	U	1.5	1.5
15B11 (0-2)	BV81840	SW8081	11/10/2016	2	g-Chlordane		ug/Kg	U	3.7	3.7
15B11 (0-2)	BV81840	SW8081	11/10/2016	2	Heptachlor		ug/Kg	U	7.5	7.5
15B11 (0-2)	BV81840	SW8081	11/10/2016	2	Heptachlor epoxide		ug/Kg	U	7.5	7.5
15B11 (0-2)	BV81840	SW8081	11/10/2016	2	Methoxychlor		ug/Kg	U	37	37
15B11 (0-2)	BV81840	SW8081	11/10/2016	2	Toxaphene		ug/Kg	U	150	150
15B11 (0-2)	BV81840	SW8082	11/10/2016	2	PCB-1016		ug/Kg	U	75	75
15B11 (0-2)	BV81840	SW8082	11/10/2016	2	PCB-1221		ug/Kg	U	75	75
15B11 (0-2)	BV81840	SW8082	11/10/2016	2	PCB-1232		ug/Kg	U	75	75
15B11 (0-2)	BV81840	SW8082	11/10/2016	2	PCB-1242		ug/Kg	U	75	75
15B11 (0-2)	BV81840	SW8082	11/10/2016	2	PCB-1248		ug/Kg	U	75	75
15B11 (0-2)	BV81840	SW8082	11/10/2016	2	PCB-1254		ug/Kg	U	75	75
15B11 (0-2)	BV81840	SW8082	11/10/2016	2	PCB-1260	350	ug/Kg		75	75
15B11 (0-2)	BV81840	SW8082	11/10/2016	2	PCB-1262		ug/Kg	U	75	75
15B11 (0-2)	BV81840	SW8082	11/10/2016	2	PCB-1268		ug/Kg	U	75	75
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	1,1,1,2-Tetrachloroethane		ug/Kg	U	72	1400
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	1,1,1-Trichloroethane		ug/Kg	U	36	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	1,1,2,2-Tetrachloroethane		ug/Kg	U	72	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	1,1,2-Trichloroethane		ug/Kg	U	72	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	1,1-Dichloroethane		ug/Kg	U	72	270
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	1,1-Dichloroethene		ug/Kg	U	36	330
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	1,1-Dichloropropene		ug/Kg	U	36	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	1,2,3-Trichlorobenzene		ug/Kg	UJ	72	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	1,2,3-Trichloropropane		ug/Kg	U	36	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	1,2,4-Trichlorobenzene		ug/Kg	UJ	72	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	250	1,2,4-Trimethylbenzene	16000	ug/Kg		180	1800
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	1,2-Dibromo-3-chloropropane		ug/Kg	U	72	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	1,2-Dibromoethane		ug/Kg	U	36	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	1,2-Dichlorobenzene		ug/Kg	U	36	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	1,2-Dichloroethane		ug/Kg	U	36	36

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	1,2-Dichloropropane		ug/Kg	U	72	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	1,3,5-Trimethylbenzene	7100	ug/Kg		36	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	1,3-Dichlorobenzene		ug/Kg	U	36	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	1,3-Dichloropropane		ug/Kg	U	72	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	1,4-Dichlorobenzene		ug/Kg	U	36	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	1,4-dioxane		ug/Kg	U	2900	2900
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	2,2-Dichloropropane		ug/Kg	U	36	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	2-Chlorotoluene		ug/Kg	U	72	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	2-Hexanone		ug/Kg	U	360	1800
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	2-Isopropyltoluene	82	ug/Kg	J	36	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	4-Chlorotoluene		ug/Kg	U	36	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	4-Methyl-2-pentanone		ug/Kg	U	360	1800
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	Acetone	920	ug/Kg	J	360	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	Acrolein		ug/Kg	UJ	180	1400
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	Acrylonitrile		ug/Kg	U	36	1400
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	Benzene	1900	ug/Kg		36	60
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	Bromobenzene		ug/Kg	U	36	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	Bromochloromethane		ug/Kg	U	36	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	Bromodichloromethane		ug/Kg	U	72	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	Bromoform		ug/Kg	U	72	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	Bromomethane		ug/Kg	U	140	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	Carbon Disulfide		ug/Kg	U	72	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	Carbon tetrachloride		ug/Kg	U	72	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	Chlorobenzene		ug/Kg	U	36	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	Chloroethane		ug/Kg	UJ	36	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	Chloroform		ug/Kg	U	36	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	Chloromethane		ug/Kg	U	72	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	250	cis-1,2-Dichloroethene	27000	ug/Kg		180	250
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	cis-1,3-Dichloropropene		ug/Kg	U	36	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	Dibromochloromethane		ug/Kg	U	72	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	Dibromomethane		ug/Kg	U	72	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	Dichlorodifluoromethane		ug/Kg	U	36	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	Ethylbenzene	4500	ug/Kg		36	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	Hexachlorobutadiene		ug/Kg	U	36	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	Isopropylbenzene	600	ug/Kg		36	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	m&p-Xylene	9600	ug/Kg		72	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	Methyl Ethyl Ketone		ug/Kg	UJ	360	360

		Analytical	Collection	Dilution				I		
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	Methyl t-butyl ether (MTBE)		ug/Kg	U	72	720
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	Methylene chloride		ug/Kg	U	360	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	Naphthalene	3400	ug/Kg	_	72	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	n-Butylbenzene	820	ug/Kg		36	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	n-Propylbenzene	1600	ug/Kg		72	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	o-Xylene	5600	ug/Kg		72	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	p-Isopropyltoluene	440	ug/Kg		36	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	sec-Butylbenzene	450	ug/Kg		36	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	Styrene	96	ug/Kg	J	36	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	Tert-butyl alcohol		ug/Kg	U	1400	7200
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	tert-Butylbenzene		ug/Kg	U	36	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	Tetrachloroethene	2400	ug/Kg		72	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	Tetrahydrofuran (THF)		ug/Kg	U	180	720
15B11 (0-2)	BV81840	SW8260	11/10/2016	250	Toluene	15000	ug/Kg		180	700
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	trans-1,2-Dichloroethene	2300	ug/Kg		36	190
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	trans-1,3-Dichloropropene		ug/Kg	U	36	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	trans-1,4-dichloro-2-butene		ug/Kg	U	180	720
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	Trichloroethene	410	ug/Kg		36	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	Trichlorofluoromethane		ug/Kg	U	72	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	Trichlorotrifluoroethane		ug/Kg	U	36	360
15B11 (0-2)	BV81840	SW8260	11/10/2016	50	Vinyl chloride	3000	ug/Kg		36	36
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	130	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	110	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	1,2-Dichlorobenzene		ug/Kg	U	110	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	120	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	1,3-Dichlorobenzene		ug/Kg	U	110	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	1,4-Dichlorobenzene		ug/Kg	U	110	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	2,4,5-Trichlorophenol		ug/Kg	U	210	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	120	190
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	2,4-Dichlorophenol		ug/Kg	U	130	190
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	2,4-Dimethylphenol		ug/Kg	U	93	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	2,4-Dinitrophenol		ug/Kg	U	260	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	2,4-Dinitrotoluene		ug/Kg	U	150	190
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	2,6-Dinitrotoluene		ug/Kg	U	120	190
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	2-Chloronaphthalene		ug/Kg	U	110	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	2-Chlorophenol		ug/Kg	U	110	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	2-Methylnaphthalene	330	ug/Kg		110	260

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	180	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	2-Nitroaniline		ug/Kg	U	260	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	2-Nitrophenol		ug/Kg	U	240	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	150	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	180	190
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	3-Nitroaniline		ug/Kg	U	750	370
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	4,6-Dinitro-2-methylphenol		ug/Kg	U	75	220
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	110	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	130	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	4-Chloroaniline		ug/Kg	U	170	300
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	130	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	4-Nitroaniline		ug/Kg	U	130	370
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	4-Nitrophenol		ug/Kg	U	170	370
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Acenaphthene		ug/Kg	U	110	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Acenaphthylene	190	ug/Kg	J	100	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Acetophenone		ug/Kg	U	120	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Aniline		ug/Kg	U	300	300
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Anthracene	170	ug/Kg	J	120	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Benz(a)anthracene	480	ug/Kg		130	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Benzidine		ug/Kg	U	220	370
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Benzo(a)pyrene	870	ug/Kg		120	190
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Benzo(b)fluoranthene	920	ug/Kg		130	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Benzo(ghi)perylene	620	ug/Kg		120	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Benzo(k)fluoranthene	770	ug/Kg		120	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Benzoic acid		ug/Kg	U	750	1900
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Benzyl butyl phthalate		ug/Kg	U	97	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	100	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	100	190
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	100	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Bis(2-ethylhexyl)phthalate	5000	ug/Kg		110	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Carbazole		ug/Kg	U	150	190
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Chrysene	670	ug/Kg		130	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Dibenz(a,h)anthracene	170	ug/Kg	J	120	190
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Dibenzofuran		ug/Kg	U	110	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Diethyl phthalate		ug/Kg	U	120	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Dimethylphthalate		ug/Kg	U	120	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Di-n-butylphthalate		ug/Kg	U	100	260

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Di-n-octylphthalate		ug/Kg	U	97	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Fluoranthene	950	ug/Kg	_	120	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Fluorene		ug/Kg	U	120	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Hexachlorobenzene		ug/Kg	U	110	190
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Hexachlorobutadiene		ug/Kg	U	140	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Hexachlorocyclopentadiene		ug/Kg	U	110	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Hexachloroethane		ug/Kg	U	110	190
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Indeno(1,2,3-cd)pyrene	720	ug/Kg		120	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Isophorone		ug/Kg	U	100	190
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Naphthalene	280	ug/Kg		110	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Nitrobenzene		ug/Kg	U	130	190
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	N-Nitrosodimethylamine		ug/Kg	U	110	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	120	190
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	140	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Pentachloronitrobenzene		ug/Kg	U	140	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Pentachlorophenol		ug/Kg	U	140	220
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Phenanthrene	620	ug/Kg		110	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Phenol		ug/Kg	U	120	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Pyrene	1500	ug/Kg		130	260
15B11 (0-2)	BV81840	SW8270	11/10/2016	1	Pyridine		ug/Kg	U	92	260
15B11 (3-5)	BV81841	E160.3	11/10/2016	1	SOLIDS, PERCENT	93	%			
15B11 (3-5)	BV81841	SW6010	11/10/2016	10	Aluminum	6140	mg/Kg		7.6	38
15B11 (3-5)	BV81841	SW6010	11/10/2016	1	Antimony		mg/Kg	U	1.8	1.8
15B11 (3-5)	BV81841	SW6010	11/10/2016	1	Arsenic	1.15	mg/Kg		0.76	0.76
15B11 (3-5)	BV81841	SW6010	11/10/2016	1	Barium	20.0	mg/Kg		0.38	0.8
15B11 (3-5)	BV81841	SW6010	11/10/2016	1	Beryllium	0.22	mg/Kg	J	0.15	0.30
15B11 (3-5)	BV81841	SW6010	11/10/2016	1	Cadmium		mg/Kg	U	0.38	0.38
15B11 (3-5)	BV81841	SW6010	11/10/2016	1	Calcium	908	mg/Kg		3.5	3.8
15B11 (3-5)	BV81841	SW6010	11/10/2016	1	Chromium	11.3	mg/Kg		0.38	0.38
15B11 (3-5)	BV81841	SW6010	11/10/2016	1	Cobalt	4.35	mg/Kg		0.38	0.38
15B11 (3-5)	BV81841	SW6010	11/10/2016	1	Copper	8.58	mg/Kg		0.38	0.38
15B11 (3-5)	BV81841	SW6010	11/10/2016	1	Iron	9030	mg/Kg		3.8	3.8
15B11 (3-5)	BV81841	SW6010	11/10/2016	1	Lead	1.8	mg/Kg		0.36	0.7
15B11 (3-5)	BV81841	SW6010	11/10/2016	1	Magnesium	1920	mg/Kg		3.8	3.8
15B11 (3-5)	BV81841	SW6010	11/10/2016	1	Manganese	145	mg/Kg		0.38	0.38
15B11 (3-5)	BV81841	SW6010	11/10/2016	1	Nickel	9.50	mg/Kg		0.38	0.38
15B11 (3-5)	BV81841	SW6010	11/10/2016	1	Potassium	356	mg/Kg		3.0	8

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B11 (3-5)	BV81841	SW6010	11/10/2016	1	Selenium		mg/Kg	U	1.3	1.5
15B11 (3-5)	BV81841	SW6010	11/10/2016	1	Silver		mg/Kg	U	0.38	0.38
15B11 (3-5)	BV81841	SW6010	11/10/2016	1	Sodium	129	mg/Kg		3.3	8
15B11 (3-5)	BV81841	SW6010	11/10/2016	1	Thallium		mg/Kg	U	1.5	1.5
15B11 (3-5)	BV81841	SW6010	11/10/2016	1	Vanadium	12.3	mg/Kg		0.38	0.38
15B11 (3-5)	BV81841	SW6010	11/10/2016	1	Zinc	18.5	mg/Kg		0.38	0.8
15B11 (3-5)	BV81841	SW7471	11/10/2016	1	Mercury		mg/Kg	UJ	0.02	0.03
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	0.66	13
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	1,1,1-Trichloroethane		ug/Kg	U	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	0.66	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	1,1,2-Trichloroethane		ug/Kg	U	0.66	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	1,1-Dichloroethane		ug/Kg	U	0.66	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	1,1-Dichloroethene		ug/Kg	U	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	1,1-Dichloropropene		ug/Kg	U	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	1,2,3-Trichlorobenzene		ug/Kg	UJ	0.66	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	1,2,3-Trichloropropane		ug/Kg	U	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	1,2,4-Trichlorobenzene		ug/Kg	UJ	0.66	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	1,2,4-Trimethylbenzene	1.5	ug/Kg	J	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	0.66	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	1,2-Dibromoethane		ug/Kg	U	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	1,2-Dichlorobenzene		ug/Kg	U	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	1,2-Dichloroethane		ug/Kg	U	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	1,2-Dichloropropane		ug/Kg	U	0.66	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	1,3,5-Trimethylbenzene	0.55	ug/Kg	J	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	1,3-Dichlorobenzene		ug/Kg	U	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	1,3-Dichloropropane		ug/Kg	U	0.66	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	1,4-Dichlorobenzene		ug/Kg	U	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	1,4-dioxane		ug/Kg	U	26	49
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	2,2-Dichloropropane		ug/Kg	U	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	2-Chlorotoluene		ug/Kg	U	0.66	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	2-Hexanone		ug/Kg	U	3.3	16
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	2-Isopropyltoluene		ug/Kg	U	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	4-Chlorotoluene		ug/Kg	U	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	4-Methyl-2-pentanone		ug/Kg	U	3.3	16
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Acetone	36	ug/Kg	J	3.3	16
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Acrolein		ug/Kg	UJ	1.6	13
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Acrylonitrile		ug/Kg	U	0.33	13

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Benzene		ug/Kg	U	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Bromobenzene		ug/Kg	U	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Bromochloromethane		ug/Kg	U	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Bromodichloromethane		ug/Kg	U	0.66	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Bromoform		ug/Kg	U	0.66	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Bromomethane		ug/Kg	U	1.3	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Carbon Disulfide		ug/Kg	U	0.66	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Carbon tetrachloride		ug/Kg	U	0.66	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Chlorobenzene		ug/Kg	U	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Chloroethane		ug/Kg	UJ	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Chloroform		ug/Kg	U	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Chloromethane		ug/Kg	U	0.66	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	cis-1,2-Dichloroethene		ug/Kg	U	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	cis-1,3-Dichloropropene		ug/Kg	U	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Dibromochloromethane		ug/Kg	U	0.66	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Dibromomethane		ug/Kg	U	0.66	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Dichlorodifluoromethane		ug/Kg	U	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Ethylbenzene	0.38	ug/Kg	J	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Hexachlorobutadiene		ug/Kg	U	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Isopropylbenzene		ug/Kg	U	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	m&p-Xylene		ug/Kg	U	0.66	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Methyl Ethyl Ketone	6.5	ug/Kg	J	3.3	20
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Methyl t-butyl ether (MTBE)	1.1	ug/Kg	J	0.66	6.6
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Methylene chloride		ug/Kg	U	3.3	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Naphthalene		ug/Kg	U	0.66	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	n-Butylbenzene		ug/Kg	U	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	n-Propylbenzene		ug/Kg	U	0.66	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	o-Xylene		ug/Kg	U	0.66	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	p-Isopropyltoluene		ug/Kg	U	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	sec-Butylbenzene		ug/Kg	U	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Styrene		ug/Kg	U	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Tert-butyl alcohol	17	ug/Kg	J	13	66
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	tert-Butylbenzene		ug/Kg	U	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Tetrachloroethene		ug/Kg	U	0.66	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Tetrahydrofuran (THF)		ug/Kg	U	1.6	6.6
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Toluene		ug/Kg	U	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	trans-1,2-Dichloroethene		ug/Kg	U	0.33	3.3

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	trans-1,3-Dichloropropene		ug/Kg	U	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	trans-1,4-dichloro-2-butene		ug/Kg	U	1.6	6.6
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Trichloroethene		ug/Kg	U	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Trichlorofluoromethane		ug/Kg	U	0.66	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Trichlorotrifluoroethane		ug/Kg	U	0.33	3.3
15B11 (3-5)	BV81841	SW8260	11/10/2016	1	Vinyl chloride		ug/Kg	U	0.33	3.3
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	120	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	110	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	1,2-Dichlorobenzene		ug/Kg	U	99	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	110	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	1,3-Dichlorobenzene		ug/Kg	U	100	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	1,4-Dichlorobenzene		ug/Kg	U	100	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	2,4,5-Trichlorophenol		ug/Kg	U	190	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	110	180
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	2,4-Dichlorophenol		ug/Kg	U	120	180
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	2,4-Dimethylphenol		ug/Kg	U	87	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	2,4-Dinitrophenol		ug/Kg	UJ	250	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	2,4-Dinitrotoluene		ug/Kg	U	140	180
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	2,6-Dinitrotoluene		ug/Kg	U	110	180
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	2-Chloronaphthalene		ug/Kg	U	100	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	2-Chlorophenol		ug/Kg	U	100	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	2-Methylnaphthalene		ug/Kg	U	100	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	170	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	2-Nitroaniline		ug/Kg	U	250	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	2-Nitrophenol		ug/Kg	U	220	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	140	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	170	180
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	3-Nitroaniline		ug/Kg	U	700	350
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	4,6-Dinitro-2-methylphenol	130	ug/Kg	J	70	210
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	100	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	120	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	4-Chloroaniline		ug/Kg	U	160	280
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	120	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	4-Nitroaniline		ug/Kg	U	120	350
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	4-Nitrophenol		ug/Kg	U	160	350
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Acenaphthene		ug/Kg	U	110	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Acenaphthylene		ug/Kg	U	98	250

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Acetophenone		ug/Kg	U	110	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Aniline		ug/Kg	U	280	280
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Anthracene		ug/Kg	U	120	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Benz(a)anthracene		ug/Kg	U	120	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Benzidine		ug/Kg	UJ	210	350
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Benzo(a)pyrene		ug/Kg	U	110	180
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Benzo(b)fluoranthene		ug/Kg	U	120	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Benzo(ghi)perylene		ug/Kg	U	110	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Benzo(k)fluoranthene		ug/Kg	U	120	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Benzoic acid		ug/Kg	UJ	700	1800
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Benzyl butyl phthalate		ug/Kg	U	91	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	97	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	95	180
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	98	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	100	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Carbazole		ug/Kg	U	140	180
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Chrysene		ug/Kg	U	120	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Dibenz(a,h)anthracene		ug/Kg	U	110	180
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Dibenzofuran		ug/Kg	U	100	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Diethyl phthalate		ug/Kg	U	110	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Dimethylphthalate		ug/Kg	U	110	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Di-n-butylphthalate		ug/Kg	U	93	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Di-n-octylphthalate		ug/Kg	U	91	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Fluoranthene		ug/Kg	U	110	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Fluorene		ug/Kg	U	120	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Hexachlorobenzene		ug/Kg	U	100	180
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Hexachlorobutadiene		ug/Kg	U	130	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Hexachlorocyclopentadiene		ug/Kg	U	110	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Hexachloroethane		ug/Kg	U	110	180
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Indeno(1,2,3-cd)pyrene		ug/Kg	U	120	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Isophorone		ug/Kg	U	98	180
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Naphthalene		ug/Kg	U	100	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Nitrobenzene		ug/Kg	U	120	180
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	N-Nitrosodimethylamine		ug/Kg	U	99	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	110	180
15B11 (3-5)	BV81841	SW8270	11/10/2016		N-Nitrosodiphenylamine		ug/Kg	U	130	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Pentachloronitrobenzene		ug/Kg	U	130	250

SDG:	CRV	7Q1	225
DD(T:	(TD V	01	のここ

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Pentachlorophenol		ug/Kg	U	130	210
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Phenanthrene		ug/Kg	Ū	100	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Phenol		ug/Kg	Ū	110	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Pyrene		ug/Kg	Ū	120	250
15B11 (3-5)	BV81841	SW8270	11/10/2016	1	Pyridine		ug/Kg	U	86	250
15B11 (12-14)	BV81842	E160.3	11/10/2016	1	SOLIDS, PERCENT	83	%			
15B11 (12-14)	BV81842	SW6010	11/10/2016	10	Aluminum	4620	mg/Kg		8.3	41
15B11 (12-14)	BV81842	SW6010	11/10/2016	1	Antimony		mg/Kg	U	1.9	1.9
15B11 (12-14)	BV81842	SW6010	11/10/2016	1	Arsenic	1.43	mg/Kg		0.83	0.83
15B11 (12-14)	BV81842	SW6010	11/10/2016	1	Barium	21.5	mg/Kg		0.41	0.8
15B11 (12-14)	BV81842	SW6010	11/10/2016	1	Beryllium	0.22	mg/Kg	J	0.17	0.33
15B11 (12-14)	BV81842	SW6010	11/10/2016	1	Cadmium		mg/Kg	U	0.41	0.41
15B11 (12-14)	BV81842	SW6010	11/10/2016	1	Calcium	663	mg/Kg		3.8	4.1
15B11 (12-14)	BV81842	SW6010	11/10/2016	1	Chromium	11.6	mg/Kg		0.41	0.41
15B11 (12-14)	BV81842	SW6010	11/10/2016	1	Cobalt	5.14	mg/Kg		0.41	0.41
15B11 (12-14)	BV81842	SW6010	11/10/2016	1	Copper	8.73	mg/Kg		0.41	0.41
15B11 (12-14)	BV81842	SW6010	11/10/2016	10	Iron	10800	mg/Kg		41	41
15B11 (12-14)	BV81842	SW6010	11/10/2016	1	Lead	1.1	mg/Kg		0.39	8.0
15B11 (12-14)	BV81842	SW6010	11/10/2016	1	Magnesium	1990	mg/Kg		4.1	4.1
15B11 (12-14)	BV81842	SW6010	11/10/2016	10	Manganese	208	mg/Kg		4.1	4.1
15B11 (12-14)	BV81842	SW6010	11/10/2016	1	Nickel	10.6	mg/Kg		0.41	0.41
15B11 (12-14)	BV81842	SW6010	11/10/2016	1	Potassium	798	mg/Kg		3.2	8
15B11 (12-14)	BV81842	SW6010	11/10/2016	1	Selenium		mg/Kg	U	1.4	1.7
15B11 (12-14)	BV81842	SW6010	11/10/2016	1	Silver		mg/Kg	U	0.41	0.41
15B11 (12-14)	BV81842	SW6010	11/10/2016	1	Sodium	84	mg/Kg		3.5	8
15B11 (12-14)	BV81842	SW6010	11/10/2016	1	Thallium		mg/Kg	U	1.7	1.7
15B11 (12-14)	BV81842	SW6010	11/10/2016	1	Vanadium	13.2	mg/Kg		0.41	0.41
15B11 (12-14)	BV81842	SW6010	11/10/2016	1	Zinc	19.9	mg/Kg		0.41	8.0
15B11 (12-14)	BV81842	SW7471	11/10/2016	1	Mercury		mg/Kg	UJ	0.02	0.03
15B11 (12-14)	BV81842	SW8082	11/10/2016	2	PCB-1016		ug/Kg	U	78	78
15B11 (12-14)	BV81842	SW8082	11/10/2016	2	PCB-1221		ug/Kg	U	78	78
15B11 (12-14)	BV81842	SW8082	11/10/2016	2	PCB-1232		ug/Kg	U	78	78
15B11 (12-14)	BV81842	SW8082	11/10/2016	2	PCB-1242		ug/Kg	U	78	78
15B11 (12-14)	BV81842	SW8082	11/10/2016	2	PCB-1248		ug/Kg	U	78	78
15B11 (12-14)	BV81842	SW8082	11/10/2016	2	PCB-1254		ug/Kg	U	78	78
15B11 (12-14)	BV81842	SW8082	11/10/2016	2	PCB-1260		ug/Kg	U	78	78
15B11 (12-14)	BV81842	SW8082	11/10/2016	2	PCB-1262		ug/Kg	U	78	78

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B11 (12-14)	BV81842	SW8082	11/10/2016	2	PCB-1268		ug/Kg	U	78	78
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	Ū	1.0	20
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	1,1,1-Trichloroethane		ug/Kg	Ū	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	1.0	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	1,1,2-Trichloroethane		ug/Kg	U	1.0	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	1,1-Dichloroethane		ug/Kg	U	1.0	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	1,1-Dichloroethene		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	1,1-Dichloropropene		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	1,2,3-Trichlorobenzene		ug/Kg	U	1.0	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	1,2,3-Trichloropropane		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	1.0	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	1,2,4-Trimethylbenzene		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	1.0	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	1,2-Dibromoethane		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	1,2-Dichlorobenzene		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	1,2-Dichloroethane		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	1,2-Dichloropropane		ug/Kg	U	1.0	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	1,3,5-Trimethylbenzene		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	1,3-Dichlorobenzene		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	1,3-Dichloropropane		ug/Kg	U	1.0	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	1,4-Dichlorobenzene		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	1,4-dioxane		ug/Kg	U	40	76
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	2,2-Dichloropropane		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	2-Chlorotoluene		ug/Kg	U	1.0	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	2-Hexanone		ug/Kg	U	5.1	25
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	2-Isopropyltoluene		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	4-Chlorotoluene		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	4-Methyl-2-pentanone		ug/Kg	U	5.1	25
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Acetone	27	ug/Kg	J	5.1	25
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Acrolein		ug/Kg	UJ	2.5	20
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Acrylonitrile		ug/Kg	U	0.51	20
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Benzene		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Bromobenzene		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Bromochloromethane		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Bromodichloromethane		ug/Kg	U	1.0	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Bromoform		ug/Kg	U	1.0	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Bromomethane		ug/Kg	U	2.0	5.1

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Carbon Disulfide	1.3	ug/Kg	J	1.0	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Carbon tetrachloride		ug/Kg	U	1.0	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Chlorobenzene		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Chloroethane		ug/Kg	UJ	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Chloroform		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Chloromethane		ug/Kg	U	1.0	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	cis-1,2-Dichloroethene		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	cis-1,3-Dichloropropene		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Dibromochloromethane		ug/Kg	U	1.0	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Dibromomethane		ug/Kg	U	1.0	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Dichlorodifluoromethane		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Ethylbenzene		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Hexachlorobutadiene		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Isopropylbenzene		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	m&p-Xylene		ug/Kg	U	1.0	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Methyl Ethyl Ketone		ug/Kg	UJ	5.1	30
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Methyl t-butyl ether (MTBE)	22	ug/Kg		1.0	10
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Methylene chloride		ug/Kg	U	5.1	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Naphthalene		ug/Kg	U	1.0	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	n-Butylbenzene		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	n-Propylbenzene		ug/Kg	U	1.0	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	o-Xylene		ug/Kg	U	1.0	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	p-Isopropyltoluene		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	sec-Butylbenzene		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Styrene		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Tert-butyl alcohol	32	ug/Kg	J	20	100
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	tert-Butylbenzene		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Tetrachloroethene		ug/Kg	U	1.0	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Tetrahydrofuran (THF)		ug/Kg	U	2.5	10
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Toluene		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	trans-1,2-Dichloroethene		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	trans-1,3-Dichloropropene		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	trans-1,4-dichloro-2-butene		ug/Kg	U	2.5	10
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Trichloroethene		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Trichlorofluoromethane		ug/Kg	U	1.0	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Trichlorotrifluoroethane		ug/Kg	U	0.51	5.1
15B11 (12-14)	BV81842	SW8260	11/10/2016	1	Vinyl chloride		ug/Kg	U	0.51	5.1

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	140	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	120	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	1,2-Dichlorobenzene		ug/Kg	U	110	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	130	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	1,3-Dichlorobenzene		ug/Kg	U	120	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	1,4-Dichlorobenzene		ug/Kg	U	120	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	2,4,5-Trichlorophenol		ug/Kg	U	220	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	130	200
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	2,4-Dichlorophenol		ug/Kg	U	140	200
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	2,4-Dimethylphenol		ug/Kg	U	98	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	2,4-Dinitrophenol		ug/Kg	U	280	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	2,4-Dinitrotoluene		ug/Kg	U	160	200
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	2,6-Dinitrotoluene		ug/Kg	U	120	200
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	2-Chloronaphthalene		ug/Kg	U	110	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	2-Chlorophenol		ug/Kg	U	110	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	2-Methylnaphthalene		ug/Kg	U	120	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	190	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	2-Nitroaniline		ug/Kg	U	280	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	2-Nitrophenol		ug/Kg	U	250	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	160	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	190	200
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	3-Nitroaniline		ug/Kg	U	790	390
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	4,6-Dinitro-2-methylphenol		ug/Kg	U	79	240
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	120	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	140	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	4-Chloroaniline		ug/Kg	U	180	320
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	130	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	4-Nitroaniline		ug/Kg	U	130	390
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	4-Nitrophenol		ug/Kg	U	180	390
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Acenaphthene		ug/Kg	U	120	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Acenaphthylene		ug/Kg	U	110	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Acetophenone		ug/Kg	U	120	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Aniline		ug/Kg	U	320	320
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Anthracene		ug/Kg	U	130	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Benz(a)anthracene		ug/Kg	U	130	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Benzidine		ug/Kg	U	230	390
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Benzo(a)pyrene		ug/Kg	U	130	200

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Benzo(b)fluoranthene		ug/Kg	U	130	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Benzo(ghi)perylene		ug/Kg	U	130	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Benzo(k)fluoranthene		ug/Kg	U	130	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Benzoic acid		ug/Kg	U	790	2000
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Benzyl butyl phthalate		ug/Kg	U	100	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	110	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	110	200
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	110	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	110	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Carbazole		ug/Kg	U	160	200
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Chrysene		ug/Kg	U	130	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Dibenz(a,h)anthracene		ug/Kg	U	130	200
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Dibenzofuran		ug/Kg	U	120	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Diethyl phthalate		ug/Kg	U	120	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Dimethylphthalate		ug/Kg	U	120	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Di-n-butylphthalate		ug/Kg	U	100	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Di-n-octylphthalate		ug/Kg	U	100	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Fluoranthene		ug/Kg	U	130	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Fluorene		ug/Kg	U	130	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Hexachlorobenzene		ug/Kg	U	120	200
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Hexachlorobutadiene		ug/Kg	U	140	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Hexachlorocyclopentadiene		ug/Kg	U	120	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Hexachloroethane		ug/Kg	U	120	200
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Indeno(1,2,3-cd)pyrene		ug/Kg	U	130	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Isophorone		ug/Kg	U	110	200
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Naphthalene		ug/Kg	U	110	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Nitrobenzene		ug/Kg	U	140	200
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	N-Nitrosodimethylamine		ug/Kg	U	110	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	130	200
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	150	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Pentachloronitrobenzene		ug/Kg	U	150	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Pentachlorophenol		ug/Kg	U	150	240
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Phenanthrene		ug/Kg	U	110	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Phenol		ug/Kg	U	130	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Pyrene		ug/Kg	U	140	280
15B11 (12-14)	BV81842	SW8270	11/10/2016	1	Pyridine		ug/Kg	U	97	280
15B12 (12-14)	BV81843	E160.3	11/10/2016	1	SOLIDS, PERCENT	85	%			

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B12 (12-14)	BV81843	SW6010	11/10/2016	10	Aluminum	3660	mg/Kg		7.4	37
15B12 (12-14)	BV81843	SW6010	11/10/2016	1	Antimony		mg/Kg	U	2.0	2.0
15B12 (12-14)	BV81843	SW6010	11/10/2016	1	Arsenic		mg/Kg	U	0.74	0.74
15B12 (12-14)	BV81843	SW6010	11/10/2016	1	Barium	17.6	mg/Kg		0.37	0.7
15B12 (12-14)	BV81843	SW6010	11/10/2016	1	Beryllium	0.16	mg/Kg	J	0.15	0.29
15B12 (12-14)	BV81843	SW6010	11/10/2016	1	Cadmium		mg/Kg	U	0.37	0.37
15B12 (12-14)	BV81843	SW6010	11/10/2016	1	Calcium	705	mg/Kg		3.4	3.7
15B12 (12-14)	BV81843	SW6010	11/10/2016	1	Chromium	10.3	mg/Kg		0.37	0.37
15B12 (12-14)	BV81843	SW6010	11/10/2016	1	Cobalt	3.00	mg/Kg		0.37	0.37
15B12 (12-14)	BV81843	SW6010	11/10/2016	1	Copper	6.54	mg/Kg		0.37	0.37
15B12 (12-14)	BV81843	SW6010	11/10/2016	1	Iron	6240	mg/Kg	J	3.7	3.7
15B12 (12-14)	BV81843	SW6010	11/10/2016	1	Lead	1.9	mg/Kg		0.40	0.8
15B12 (12-14)	BV81843	SW6010	11/10/2016	1	Magnesium	1400	mg/Kg		3.7	3.7
15B12 (12-14)	BV81843	SW6010	11/10/2016	1	Manganese	84.1	mg/Kg		0.37	0.37
15B12 (12-14)	BV81843	SW6010	11/10/2016	1	Nickel	6.72	mg/Kg		0.37	0.37
15B12 (12-14)	BV81843	SW6010	11/10/2016	1	Potassium	559	mg/Kg		2.9	7
15B12 (12-14)	BV81843	SW6010	11/10/2016	1	Selenium		mg/Kg	U	1.3	1.5
15B12 (12-14)	BV81843	SW6010	11/10/2016	1	Silver		mg/Kg	U	0.37	0.37
15B12 (12-14)	BV81843	SW6010	11/10/2016	1	Sodium	94	mg/Kg		3.2	7
15B12 (12-14)	BV81843	SW6010	11/10/2016	1	Thallium		mg/Kg	U	1.5	1.5
15B12 (12-14)	BV81843	SW6010	11/10/2016	1	Vanadium	11.6	mg/Kg		0.37	0.37
15B12 (12-14)	BV81843	SW6010	11/10/2016	1	Zinc	13.6	mg/Kg		0.37	0.7
15B12 (12-14)	BV81843	SW7471	11/10/2016		Mercury		mg/Kg	UJ	0.02	0.03
15B12 (12-14)	BV81843	SW8081	11/10/2016	2	4,4' -DDD		ug/Kg	U	2.3	2.3
15B12 (12-14)	BV81843	SW8081	11/10/2016	2	4,4' -DDE		ug/Kg	U	2.3	2.3
15B12 (12-14)	BV81843	SW8081	11/10/2016	2	4,4' -DDT		ug/Kg	U	2.3	2.3
15B12 (12-14)	BV81843	SW8081	11/10/2016	2	a-BHC		ug/Kg	U	7.7	7.7
15B12 (12-14)	BV81843	SW8081	11/10/2016	2	a-Chlordane		ug/Kg	U	3.9	3.9
15B12 (12-14)	BV81843	SW8081	11/10/2016		Aldrin		ug/Kg	U	3.9	3.9
15B12 (12-14)	BV81843	SW8081	11/10/2016	2	b-BHC		ug/Kg	U	7.7	7.7
15B12 (12-14)	BV81843	SW8081	11/10/2016	2	Chlordane		ug/Kg	U	39	39
15B12 (12-14)	BV81843	SW8081	11/10/2016	2	d-BHC		ug/Kg	U	7.7	7.7
15B12 (12-14)	BV81843	SW8081	11/10/2016	2	Dieldrin		ug/Kg	U	3.9	3.9
15B12 (12-14)	BV81843	SW8081	11/10/2016	2	Endosulfan I		ug/Kg	U	7.7	7.7
15B12 (12-14)	BV81843	SW8081	11/10/2016	2	Endosulfan II		ug/Kg	U	7.7	7.7
15B12 (12-14)	BV81843	SW8081	11/10/2016	2	Endosulfan sulfate		ug/Kg	U	7.7	7.7
15B12 (12-14)	BV81843	SW8081	11/10/2016	2	Endrin		ug/Kg	U	7.7	7.7

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B12 (12-14)	BV81843	SW8081	11/10/2016	2	Endrin aldehyde		ug/Kg	U	7.7	7.7
15B12 (12-14)	BV81843	SW8081	11/10/2016	2	Endrin ketone		ug/Kg	U	7.7	7.7
15B12 (12-14)	BV81843	SW8081	11/10/2016	2	g-BHC		ug/Kg	U	1.5	1.5
15B12 (12-14)	BV81843	SW8081	11/10/2016	2	g-Chlordane		ug/Kg	U	3.9	3.9
15B12 (12-14)	BV81843	SW8081	11/10/2016	2	Heptachlor		ug/Kg	U	7.7	7.7
15B12 (12-14)	BV81843	SW8081	11/10/2016	2	Heptachlor epoxide		ug/Kg	U	7.7	7.7
15B12 (12-14)	BV81843	SW8081	11/10/2016	2	Methoxychlor		ug/Kg	U	39	39
15B12 (12-14)	BV81843	SW8081	11/10/2016	2	Toxaphene		ug/Kg	U	150	150
15B12 (12-14)	BV81843	SW8082	11/10/2016	2	PCB-1016		ug/Kg	U	77	77
15B12 (12-14)	BV81843	SW8082	11/10/2016	2	PCB-1221		ug/Kg	U	77	77
15B12 (12-14)	BV81843	SW8082	11/10/2016	2	PCB-1232		ug/Kg	U	77	77
15B12 (12-14)	BV81843	SW8082	11/10/2016	2	PCB-1242		ug/Kg	U	77	77
15B12 (12-14)	BV81843	SW8082	11/10/2016	2	PCB-1248		ug/Kg	U	77	77
15B12 (12-14)	BV81843	SW8082	11/10/2016	2	PCB-1254		ug/Kg	U	77	77
15B12 (12-14)	BV81843	SW8082	11/10/2016	2	PCB-1260		ug/Kg	U	77	77
15B12 (12-14)	BV81843	SW8082	11/10/2016	2	PCB-1262		ug/Kg	U	77	77
15B12 (12-14)	BV81843	SW8082	11/10/2016	2	PCB-1268		ug/Kg	U	77	77
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	1,1,1,2-Tetrachloroethane		ug/Kg	U	63	1300
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	1,1,1-Trichloroethane		ug/Kg	U	31	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	1,1,2,2-Tetrachloroethane		ug/Kg	U	63	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	1,1,2-Trichloroethane		ug/Kg	U	63	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	1,1-Dichloroethane		ug/Kg	U	63	270
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	1,1-Dichloroethene		ug/Kg	U	31	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	1,1-Dichloropropene		ug/Kg	U	31	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	1,2,3-Trichlorobenzene		ug/Kg	UJ	63	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	1,2,3-Trichloropropane		ug/Kg	U	31	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	1,2,4-Trichlorobenzene		ug/Kg	UJ	63	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	100	1,2,4-Trimethylbenzene	14000	ug/Kg		63	630
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	1,2-Dibromo-3-chloropropane		ug/Kg	U	63	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	1,2-Dibromoethane		ug/Kg	U	31	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	1,2-Dichlorobenzene		ug/Kg	U	31	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	1,2-Dichloroethane		ug/Kg	U	31	31
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	1,2-Dichloropropane		ug/Kg	U	63	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	1,3,5-Trimethylbenzene	4200	ug/Kg		31	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	1,3-Dichlorobenzene		ug/Kg	U	31	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	1,3-Dichloropropane		ug/Kg	U	63	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	1,4-Dichlorobenzene		ug/Kg	U	31	310

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	1,4-dioxane		ug/Kg	U	2500	2500
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	2,2-Dichloropropane		ug/Kg	U	31	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	2-Chlorotoluene		ug/Kg	U	63	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	2-Hexanone		ug/Kg	U	310	1600
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	2-Isopropyltoluene	37	ug/Kg	J	31	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	4-Chlorotoluene		ug/Kg	U	31	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	4-Methyl-2-pentanone		ug/Kg	U	310	1600
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	Acetone		ug/Kg	UJ	310	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	Acrolein		ug/Kg	UJ	160	1300
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	Acrylonitrile		ug/Kg	U	31	1300
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	Benzene	650	ug/Kg		31	60
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	Bromobenzene		ug/Kg	U	31	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	Bromochloromethane		ug/Kg	U	31	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	Bromodichloromethane		ug/Kg	U	63	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	Bromoform		ug/Kg	U	63	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	Bromomethane		ug/Kg	U	130	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	Carbon Disulfide		ug/Kg	U	63	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	Carbon tetrachloride		ug/Kg	U	63	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	Chlorobenzene		ug/Kg	U	31	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	Chloroethane		ug/Kg	UJ	31	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	Chloroform		ug/Kg	U	31	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	Chloromethane		ug/Kg	U	63	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	cis-1,2-Dichloroethene		ug/Kg	U	31	250
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	cis-1,3-Dichloropropene		ug/Kg	U	31	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	Dibromochloromethane		ug/Kg	U	63	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	Dibromomethane		ug/Kg	U	63	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	Dichlorodifluoromethane		ug/Kg	U	31	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	Ethylbenzene	3900	ug/Kg		31	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	Hexachlorobutadiene		ug/Kg	U	31	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	Isopropylbenzene	940	ug/Kg		31	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	m&p-Xylene	16000	ug/Kg		63	310
15B12 (12-14)	BV81843	SW8260	11/10/2016		Methyl Ethyl Ketone		ug/Kg	UJ	310	310
15B12 (12-14)	BV81843	SW8260	11/10/2016		Methyl t-butyl ether (MTBE)	290	ug/Kg	J	63	630
15B12 (12-14)	BV81843	SW8260	11/10/2016		Methylene chloride		ug/Kg	U	310	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	Naphthalene	4400	ug/Kg		63	310
15B12 (12-14)	BV81843	SW8260	11/10/2016		n-Butylbenzene	810	ug/Kg		31	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	n-Propylbenzene	1800	ug/Kg		63	310

SDG:	CDY	701	925
DD(T:	(TD)	701	೧೨၁

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	o-Xylene	6700	ug/Kg		63	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	p-Isopropyltoluene	230	ug/Kg	J	31	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	sec-Butylbenzene	380	ug/Kg	<u> </u>	31	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	Styrene		ug/Kg	U	31	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	Tert-butyl alcohol		ug/Kg	Ū	1300	6300
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	tert-Butylbenzene		ug/Kg	Ü	31	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	Tetrachloroethene		ug/Kg	U	63	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	Tetrahydrofuran (THF)		ug/Kg	U	160	630
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	Toluene	470	ug/Kg		31	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	trans-1,2-Dichloroethene		ug/Kg	U	31	190
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	trans-1,3-Dichloropropene		ug/Kg	U	31	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	trans-1,4-dichloro-2-butene		ug/Kg	U	160	630
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	Trichloroethene		ug/Kg	U	31	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	Trichlorofluoromethane		ug/Kg	U	63	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	Trichlorotrifluoroethane		ug/Kg	U	31	310
15B12 (12-14)	BV81843	SW8260	11/10/2016	50	Vinyl chloride		ug/Kg	U	31	31
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	140	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	120	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	1,2-Dichlorobenzene		ug/Kg	U	110	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	130	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	1,3-Dichlorobenzene		ug/Kg	U	110	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	1,4-Dichlorobenzene		ug/Kg	U	110	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	2,4,5-Trichlorophenol		ug/Kg	U	210	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	120	190
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	2,4-Dichlorophenol		ug/Kg	U	140	190
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	2,4-Dimethylphenol		ug/Kg	U	96	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	2,4-Dinitrophenol		ug/Kg	UJ	270	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	2,4-Dinitrotoluene		ug/Kg	U	150	190
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	2,6-Dinitrotoluene		ug/Kg	U	120	190
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	2-Chloronaphthalene		ug/Kg	U	110	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	2-Chlorophenol		ug/Kg	U	110	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	2-Methylnaphthalene	1300	ug/Kg		110	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	180	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	2-Nitroaniline		ug/Kg	U	270	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	2-Nitrophenol		ug/Kg	U	240	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	150	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	180	190

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	3-Nitroaniline		ug/Kg	U	770	390
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	4,6-Dinitro-2-methylphenol		ug/Kg	UJ	77	230
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	110	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	140	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	4-Chloroaniline		ug/Kg	U	180	310
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	130	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	4-Nitroaniline		ug/Kg	U	130	390
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	4-Nitrophenol		ug/Kg	U	170	390
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Acenaphthene		ug/Kg	U	120	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Acenaphthylene		ug/Kg	U	110	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Acetophenone		ug/Kg	U	120	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Aniline		ug/Kg	U	310	310
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Anthracene		ug/Kg	U	130	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Benz(a)anthracene		ug/Kg	U	130	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Benzidine		ug/Kg	UJ	230	390
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Benzo(a)pyrene		ug/Kg	U	130	190
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Benzo(b)fluoranthene		ug/Kg	U	130	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Benzo(ghi)perylene		ug/Kg	U	120	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Benzo(k)fluoranthene		ug/Kg	U	130	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Benzoic acid		ug/Kg	UJ	770	1900
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Benzyl butyl phthalate		ug/Kg	U	99	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	110	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	100	190
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	110	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Bis(2-ethylhexyl)phthalate	970	ug/Kg		110	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Carbazole		ug/Kg	U	150	190
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Chrysene		ug/Kg	U	130	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Dibenz(a,h)anthracene		ug/Kg	U	120	190
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Dibenzofuran		ug/Kg	U	110	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Diethyl phthalate		ug/Kg	U	120	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Dimethylphthalate		ug/Kg	U	120	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Di-n-butylphthalate		ug/Kg	U	100	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Di-n-octylphthalate		ug/Kg	U	99	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Fluoranthene		ug/Kg	U	120	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Fluorene		ug/Kg	U	130	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Hexachlorobenzene		ug/Kg	U	110	190
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Hexachlorobutadiene		ug/Kg	U	140	270

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Hexachlorocyclopentadiene		ug/Kg	U	120	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Hexachloroethane		ug/Kg	U	120	190
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Indeno(1,2,3-cd)pyrene		ug/Kg	U	130	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Isophorone		ug/Kg	U	110	190
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Naphthalene	770	ug/Kg		110	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Nitrobenzene		ug/Kg	U	130	190
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	N-Nitrosodimethylamine		ug/Kg	U	110	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	120	190
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	150	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Pentachloronitrobenzene		ug/Kg	U	140	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Pentachlorophenol		ug/Kg	U	150	230
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Phenanthrene		ug/Kg	U	110	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Phenol		ug/Kg	U	120	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Pyrene		ug/Kg	U	130	270
15B12 (12-14)	BV81843	SW8270	11/10/2016	1	Pyridine		ug/Kg	U	95	270
15B12 (20-22)	BV81844	E160.3	11/10/2016	1	SOLIDS, PERCENT	80	%			
15B12 (20-22)	BV81844	SW6010	11/10/2016	10	Aluminum	3230	mg/Kg		7.4	37
15B12 (20-22)	BV81844	SW6010	11/10/2016	1	Antimony		mg/Kg	U	1.9	1.9
15B12 (20-22)	BV81844	SW6010	11/10/2016	1	Arsenic		mg/Kg	U	0.74	0.74
15B12 (20-22)	BV81844	SW6010	11/10/2016	1	Barium	17.9	mg/Kg		0.37	0.7
15B12 (20-22)	BV81844	SW6010	11/10/2016	1	Beryllium	0.17	mg/Kg	J	0.15	0.30
15B12 (20-22)	BV81844	SW6010	11/10/2016	1	Cadmium		mg/Kg	U	0.37	0.37
15B12 (20-22)	BV81844	SW6010	11/10/2016	1	Calcium	949	mg/Kg		3.4	3.7
15B12 (20-22)	BV81844	SW6010	11/10/2016	1	Chromium	8.47	mg/Kg		0.37	0.37
15B12 (20-22)	BV81844	SW6010	11/10/2016	1	Cobalt	4.47	mg/Kg		0.37	0.37
15B12 (20-22)	BV81844	SW6010	11/10/2016	1	Copper	7.31	mg/Kg		0.37	0.37
15B12 (20-22)	BV81844	SW6010	11/10/2016	1	Iron	8380	mg/Kg	J	3.7	3.7
15B12 (20-22)	BV81844	SW6010	11/10/2016	1	Lead	1.5	mg/Kg		0.39	8.0
15B12 (20-22)	BV81844	SW6010	11/10/2016	1	Magnesium	1290	mg/Kg		3.7	3.7
15B12 (20-22)	BV81844	SW6010	11/10/2016	10	Manganese	202	mg/Kg		3.7	3.7
15B12 (20-22)	BV81844	SW6010	11/10/2016	1	Nickel	7.67	mg/Kg		0.37	0.37
15B12 (20-22)	BV81844	SW6010	11/10/2016	1	Potassium	456	mg/Kg		2.9	7
15B12 (20-22)	BV81844	SW6010	11/10/2016	1	Selenium		mg/Kg	U	1.3	1.5
15B12 (20-22)	BV81844	SW6010	11/10/2016	1	Silver		mg/Kg	U	0.37	0.37
15B12 (20-22)	BV81844	SW6010	11/10/2016	1	Sodium	93	mg/Kg		3.2	7
15B12 (20-22)	BV81844	SW6010	11/10/2016	1	Thallium		mg/Kg	U	1.5	1.5
15B12 (20-22)	BV81844	SW6010	11/10/2016	1	Vanadium	12.9	mg/Kg		0.37	0.37

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B12 (20-22)	BV81844	SW6010	11/10/2016	1	Zinc	13.8	mg/Kg		0.37	0.7
15B12 (20-22)	BV81844	SW7471	11/10/2016	1	Mercury		mg/Kg	UJ	0.02	0.03
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	0.91	18
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	1,1,1-Trichloroethane		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	0.91	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	1,1,2-Trichloroethane		ug/Kg	U	0.91	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	1,1-Dichloroethane		ug/Kg	U	0.91	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	1,1-Dichloroethene		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	1,1-Dichloropropene		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	1,2,3-Trichlorobenzene		ug/Kg	U	0.91	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	1,2,3-Trichloropropane		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	0.91	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	1,2,4-Trimethylbenzene	0.67	ug/Kg	J	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	0.91	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	1,2-Dibromoethane		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	1,2-Dichlorobenzene		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	1,2-Dichloroethane		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	1,2-Dichloropropane		ug/Kg	U	0.91	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	1,3,5-Trimethylbenzene		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	1,3-Dichlorobenzene		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	1,3-Dichloropropane		ug/Kg	U	0.91	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	1,4-Dichlorobenzene		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	1,4-dioxane		ug/Kg	U	37	68
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	2,2-Dichloropropane		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	2-Chlorotoluene		ug/Kg	U	0.91	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	2-Hexanone		ug/Kg	U	4.6	23
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	2-Isopropyltoluene		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	4-Chlorotoluene		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	4-Methyl-2-pentanone		ug/Kg	U	4.6	23
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Acetone	16	ug/Kg	J	4.6	23
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Acrolein		ug/Kg	UJ	2.3	18
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Acrylonitrile		ug/Kg	U	0.46	18
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Benzene		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Bromobenzene		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Bromochloromethane		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Bromodichloromethane		ug/Kg	U	0.91	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Bromoform		ug/Kg	U	0.91	4.6

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Bromomethane		ug/Kg	U	1.8	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Carbon Disulfide	2.9	ug/Kg	J	0.91	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Carbon tetrachloride		ug/Kg	U	0.91	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Chlorobenzene		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Chloroethane		ug/Kg	UJ	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Chloroform		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Chloromethane		ug/Kg	U	0.91	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	cis-1,2-Dichloroethene		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	cis-1,3-Dichloropropene		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Dibromochloromethane		ug/Kg	U	0.91	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Dibromomethane		ug/Kg	U	0.91	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Dichlorodifluoromethane		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Ethylbenzene		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Hexachlorobutadiene		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Isopropylbenzene		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	m&p-Xylene		ug/Kg	U	0.91	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Methyl Ethyl Ketone		ug/Kg	UJ	4.6	27
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Methyl t-butyl ether (MTBE)		ug/Kg	U	0.91	9.1
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Methylene chloride		ug/Kg	U	4.6	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Naphthalene		ug/Kg	U	0.91	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	n-Butylbenzene		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	n-Propylbenzene		ug/Kg	U	0.91	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	o-Xylene		ug/Kg	U	0.91	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	p-Isopropyltoluene		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	sec-Butylbenzene		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Styrene		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Tert-butyl alcohol		ug/Kg	U	18	91
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	tert-Butylbenzene		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Tetrachloroethene		ug/Kg	U	0.91	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Tetrahydrofuran (THF)		ug/Kg	U	2.3	9.1
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Toluene		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	trans-1,2-Dichloroethene		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	trans-1,3-Dichloropropene		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	trans-1,4-dichloro-2-butene		ug/Kg	U	2.3	9.1
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Trichloroethene		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Trichlorofluoromethane		ug/Kg	U	0.91	4.6
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Trichlorotrifluoroethane		ug/Kg	U	0.46	4.6

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B12 (20-22)	BV81844	SW8260	11/10/2016	1	Vinyl chloride		ug/Kg	U	0.46	4.6
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	140	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	120	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	1,2-Dichlorobenzene		ug/Kg	U	110	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	130	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	1,3-Dichlorobenzene		ug/Kg	U	120	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	1,4-Dichlorobenzene		ug/Kg	U	120	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	2,4,5-Trichlorophenol		ug/Kg	U	220	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	130	200
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	2,4-Dichlorophenol		ug/Kg	U	140	200
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	2,4-Dimethylphenol		ug/Kg	U	100	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	2,4-Dinitrophenol		ug/Kg	UJ	280	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	2,4-Dinitrotoluene		ug/Kg	U	160	200
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	2,6-Dinitrotoluene		ug/Kg	U	130	200
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	2-Chloronaphthalene		ug/Kg	U	120	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	2-Chlorophenol		ug/Kg	U	120	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	2-Methylnaphthalene		ug/Kg	U	120	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	190	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	2-Nitroaniline		ug/Kg	U	280	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	2-Nitrophenol		ug/Kg	U	260	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	160	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	190	200
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	3-Nitroaniline		ug/Kg	U	810	410
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	4,6-Dinitro-2-methylphenol		ug/Kg	UJ	81	240
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	120	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	140	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	4-Chloroaniline		ug/Kg	U	190	320
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	140	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	4-Nitroaniline		ug/Kg	U	140	410
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	4-Nitrophenol		ug/Kg	U	180	410
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Acenaphthene		ug/Kg	U	120	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Acenaphthylene		ug/Kg	U	110	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Acetophenone		ug/Kg	U	130	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Aniline		ug/Kg	U	320	320
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Anthracene		ug/Kg	U	130	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Benz(a)anthracene		ug/Kg	U	140	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Benzidine		ug/Kg	UJ	240	410

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Benzo(a)pyrene		ug/Kg	U	130	200
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Benzo(b)fluoranthene		ug/Kg	U	140	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Benzo(ghi)perylene		ug/Kg	U	130	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Benzo(k)fluoranthene		ug/Kg	U	130	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Benzoic acid		ug/Kg	UJ	810	2000
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Benzyl butyl phthalate		ug/Kg	U	100	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	110	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	110	200
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	110	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	120	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Carbazole		ug/Kg	U	160	200
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Chrysene		ug/Kg	U	140	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Dibenz(a,h)anthracene		ug/Kg	U	130	200
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Dibenzofuran		ug/Kg	U	120	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Diethyl phthalate		ug/Kg	U	130	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Dimethylphthalate		ug/Kg	U	130	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Di-n-butylphthalate		ug/Kg	U	110	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Di-n-octylphthalate		ug/Kg	U	100	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Fluoranthene		ug/Kg	U	130	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Fluorene		ug/Kg	U	130	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Hexachlorobenzene		ug/Kg	U	120	200
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Hexachlorobutadiene		ug/Kg	U	150	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Hexachlorocyclopentadiene		ug/Kg	U	120	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Hexachloroethane		ug/Kg	U	120	200
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Indeno(1,2,3-cd)pyrene		ug/Kg	U	130	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Isophorone		ug/Kg	U	110	200
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Naphthalene		ug/Kg	U	120	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Nitrobenzene		ug/Kg	U	140	200
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	N-Nitrosodimethylamine		ug/Kg	U	110	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	130	200
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	160	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Pentachloronitrobenzene		ug/Kg	U	150	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Pentachlorophenol		ug/Kg	U	150	240
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Phenanthrene		ug/Kg	U	120	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Phenol		ug/Kg	U	130	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Pyrene		ug/Kg	U	140	280
15B12 (20-22)	BV81844	SW8270	11/10/2016	1	Pyridine		ug/Kg	U	100	280

SDC	GBV81835	
DUIT.	CLD VOIOUS	

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B13 (12-14)	BV81845	E160.3	11/10/2016	1	SOLIDS, PERCENT	82	%			
15B13 (12-14)	BV81845	SW6010	11/10/2016	10	Aluminum	4020	mg/Kg		7.8	39
15B13 (12-14)	BV81845	SW6010	11/10/2016	1	Antimony		mg/Kg	U	1.9	1.9
15B13 (12-14)	BV81845	SW6010	11/10/2016	1	Arsenic		mg/Kg	U	0.78	0.78
15B13 (12-14)	BV81845	SW6010	11/10/2016	1	Barium	13.3	mg/Kg		0.39	0.8
15B13 (12-14)	BV81845	SW6010	11/10/2016	1	Beryllium		mg/Kg	U	0.16	0.31
15B13 (12-14)	BV81845	SW6010	11/10/2016	1	Cadmium		mg/Kg	U	0.39	0.39
15B13 (12-14)	BV81845	SW6010	11/10/2016	1	Calcium	820	mg/Kg		3.6	3.9
15B13 (12-14)	BV81845	SW6010	11/10/2016	1	Chromium	7.79	mg/Kg		0.39	0.39
15B13 (12-14)	BV81845	SW6010	11/10/2016	1	Cobalt	3.77	mg/Kg		0.39	0.39
15B13 (12-14)	BV81845	SW6010	11/10/2016	1	Copper	8.09	mg/Kg		0.39	0.39
15B13 (12-14)	BV81845	SW6010	11/10/2016	1	Iron	7020	mg/Kg	J	3.9	3.9
15B13 (12-14)	BV81845	SW6010	11/10/2016	1	Lead	1.1	mg/Kg		0.38	8.0
15B13 (12-14)	BV81845	SW6010	11/10/2016	1	Magnesium	1910	mg/Kg		3.9	3.9
15B13 (12-14)	BV81845	SW6010	11/10/2016	10	Manganese	225	mg/Kg		3.9	3.9
15B13 (12-14)	BV81845	SW6010	11/10/2016	1	Nickel	7.95	mg/Kg		0.39	0.39
15B13 (12-14)	BV81845	SW6010	11/10/2016	1	Potassium	440	mg/Kg		3.0	8
15B13 (12-14)	BV81845	SW6010	11/10/2016	1	Selenium		mg/Kg	U	1.3	1.6
15B13 (12-14)	BV81845	SW6010	11/10/2016	1	Silver		mg/Kg	U	0.39	0.39
15B13 (12-14)	BV81845	SW6010	11/10/2016	1	Sodium	127	mg/Kg		3.4	8
15B13 (12-14)	BV81845	SW6010	11/10/2016	1	Thallium		mg/Kg	U	1.6	1.6
15B13 (12-14)	BV81845	SW6010	11/10/2016	1	Vanadium	9.78	mg/Kg		0.39	0.39
15B13 (12-14)	BV81845	SW6010	11/10/2016	1	Zinc	14.8	mg/Kg		0.39	0.8
15B13 (12-14)	BV81845	SW7471	11/10/2016	1	Mercury		mg/Kg	UJ	0.02	0.03
15B13 (12-14)	BV81845	SW8081	11/10/2016	2	4,4' -DDD		ug/Kg	U	2.4	2.4
15B13 (12-14)	BV81845	SW8081	11/10/2016		4,4' -DDE		ug/Kg	U	2.4	2.4
15B13 (12-14)	BV81845	SW8081	11/10/2016		4,4' -DDT		ug/Kg	U	2.4	2.4
15B13 (12-14)	BV81845	SW8081	11/10/2016		a-BHC		ug/Kg	U	8.1	8.1
15B13 (12-14)	BV81845	SW8081	11/10/2016	2	a-Chlordane		ug/Kg	U	4.0	4.0
15B13 (12-14)	BV81845	SW8081	11/10/2016	2	Aldrin		ug/Kg	U	4.0	4.0
15B13 (12-14)	BV81845	SW8081	11/10/2016	2	b-BHC		ug/Kg	U	8.1	8.1
15B13 (12-14)	BV81845	SW8081	11/10/2016	2	Chlordane		ug/Kg	U	40	40
15B13 (12-14)	BV81845	SW8081	11/10/2016	2	d-BHC		ug/Kg	U	8.1	8.1
15B13 (12-14)	BV81845	SW8081	11/10/2016	2	Dieldrin		ug/Kg	U	4.0	4.0
15B13 (12-14)	BV81845	SW8081	11/10/2016		Endosulfan I		ug/Kg	U	8.1	8.1
15B13 (12-14)	BV81845	SW8081	11/10/2016	2	Endosulfan II		ug/Kg	U	8.1	8.1
15B13 (12-14)	BV81845	SW8081	11/10/2016	2	Endosulfan sulfate		ug/Kg	U	8.1	8.1

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B13 (12-14)	BV81845	SW8081	11/10/2016	2	Endrin		ug/Kg	U	8.1	8.1
15B13 (12-14)	BV81845	SW8081	11/10/2016	2	Endrin aldehyde		ug/Kg	Ū	8.1	8.1
15B13 (12-14)	BV81845	SW8081	11/10/2016	2	Endrin ketone		ug/Kg	Ū	8.1	8.1
15B13 (12-14)	BV81845	SW8081	11/10/2016	2	g-BHC		ug/Kg	U	1.6	1.6
15B13 (12-14)	BV81845	SW8081	11/10/2016	2	g-Chlordane		ug/Kg	U	4.0	4.0
15B13 (12-14)	BV81845	SW8081	11/10/2016	2	Heptachlor		ug/Kg	U	8.1	8.1
15B13 (12-14)	BV81845	SW8081	11/10/2016	2	Heptachlor epoxide		ug/Kg	U	8.1	8.1
15B13 (12-14)	BV81845	SW8081	11/10/2016	2	Methoxychlor		ug/Kg	U	40	40
15B13 (12-14)	BV81845	SW8081	11/10/2016	2	Toxaphene		ug/Kg	U	160	160
15B13 (12-14)	BV81845	SW8082	11/10/2016	2	PCB-1016		ug/Kg	U	81	81
15B13 (12-14)	BV81845	SW8082	11/10/2016	2	PCB-1221		ug/Kg	U	81	81
15B13 (12-14)	BV81845	SW8082	11/10/2016	2	PCB-1232		ug/Kg	U	81	81
15B13 (12-14)	BV81845	SW8082	11/10/2016	2	PCB-1242		ug/Kg	U	81	81
15B13 (12-14)	BV81845	SW8082	11/10/2016	2	PCB-1248		ug/Kg	U	81	81
15B13 (12-14)	BV81845	SW8082	11/10/2016	2	PCB-1254		ug/Kg	U	81	81
15B13 (12-14)	BV81845	SW8082	11/10/2016	2	PCB-1260		ug/Kg	U	81	81
15B13 (12-14)	BV81845	SW8082	11/10/2016	2	PCB-1262		ug/Kg	U	81	81
15B13 (12-14)	BV81845	SW8082	11/10/2016	2	PCB-1268		ug/Kg	U	81	81
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	1.1	22
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	1,1,1-Trichloroethane		ug/Kg	U	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	1.1	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	1,1,2-Trichloroethane		ug/Kg	U	1.1	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	1,1-Dichloroethane		ug/Kg	U	1.1	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	1,1-Dichloroethene		ug/Kg	U	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	1,1-Dichloropropene		ug/Kg	U	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	1,2,3-Trichlorobenzene		ug/Kg	UJ	1.1	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	1,2,3-Trichloropropane		ug/Kg	U	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	1,2,4-Trichlorobenzene		ug/Kg	UJ	1.1	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	1,2,4-Trimethylbenzene		ug/Kg	U	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	1.1	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	1,2-Dibromoethane		ug/Kg	U	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	1,2-Dichlorobenzene		ug/Kg	U	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	1,2-Dichloroethane		ug/Kg	U	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	1,2-Dichloropropane		ug/Kg	U	1.1	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	1,3,5-Trimethylbenzene		ug/Kg	U	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	1,3-Dichlorobenzene		ug/Kg	UJ	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	1,3-Dichloropropane		ug/Kg	U	1.1	5.5

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	1,4-Dichlorobenzene		ug/Kg	UJ	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	1,4-dioxane		ug/Kg	U	44	83
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	2,2-Dichloropropane		ug/Kg	U	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	2-Chlorotoluene		ug/Kg	U	1.1	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	2-Hexanone		ug/Kg	U	5.5	28
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	2-Isopropyltoluene		ug/Kg	U	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	4-Chlorotoluene		ug/Kg	U	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	4-Methyl-2-pentanone		ug/Kg	U	5.5	28
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Acetone	43	ug/Kg	J	5.5	28
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Acrolein		ug/Kg	UJ	2.8	22
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Acrylonitrile		ug/Kg	U	0.55	22
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Benzene		ug/Kg	U	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Bromobenzene		ug/Kg	U	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Bromochloromethane		ug/Kg	U	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Bromodichloromethane		ug/Kg	U	1.1	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Bromoform		ug/Kg	U	1.1	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Bromomethane		ug/Kg	U	2.2	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Carbon Disulfide	1.3	ug/Kg	J	1.1	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Carbon tetrachloride		ug/Kg	U	1.1	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Chlorobenzene		ug/Kg	U	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Chloroethane		ug/Kg	UJ	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Chloroform		ug/Kg	U	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Chloromethane		ug/Kg	UJ	1.1	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	cis-1,2-Dichloroethene		ug/Kg	U	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	cis-1,3-Dichloropropene		ug/Kg	U	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Dibromochloromethane		ug/Kg	U	1.1	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Dibromomethane		ug/Kg	U	1.1	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Dichlorodifluoromethane		ug/Kg	UJ	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Ethylbenzene		ug/Kg	U	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Hexachlorobutadiene		ug/Kg	U	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Isopropylbenzene		ug/Kg	U	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	m&p-Xylene		ug/Kg	U	1.1	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Methyl Ethyl Ketone		ug/Kg	UJ	5.5	33
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Methyl t-butyl ether (MTBE)	70	ug/Kg		1.1	11
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Methylene chloride		ug/Kg	U	5.5	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Naphthalene	1.3	ug/Kg	J	1.1	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	n-Butylbenzene		ug/Kg	U	0.55	5.5

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	n-Propylbenzene		ug/Kg	U	1.1	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	o-Xylene		ug/Kg	U	1.1	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	p-Isopropyltoluene		ug/Kg	U	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	sec-Butylbenzene		ug/Kg	U	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Styrene		ug/Kg	U	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Tert-butyl alcohol		ug/Kg	U	22	110
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	tert-Butylbenzene		ug/Kg	U	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Tetrachloroethene		ug/Kg	U	1.1	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Tetrahydrofuran (THF)		ug/Kg	U	2.8	11
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Toluene		ug/Kg	U	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	trans-1,2-Dichloroethene		ug/Kg	U	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	trans-1,3-Dichloropropene		ug/Kg	U	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	trans-1,4-dichloro-2-butene		ug/Kg	U	2.8	11
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Trichloroethene		ug/Kg	U	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Trichlorofluoromethane		ug/Kg	U	1.1	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Trichlorotrifluoroethane		ug/Kg	U	0.55	5.5
15B13 (12-14)	BV81845	SW8260	11/10/2016	1	Vinyl chloride		ug/Kg	U	0.55	5.5
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	140	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	120	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	1,2-Dichlorobenzene		ug/Kg	U	110	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	130	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	1,3-Dichlorobenzene		ug/Kg	U	120	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	1,4-Dichlorobenzene		ug/Kg	U	120	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	2,4,5-Trichlorophenol		ug/Kg	U	220	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	130	200
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	2,4-Dichlorophenol		ug/Kg	U	140	200
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	2,4-Dimethylphenol		ug/Kg	U	99	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	2,4-Dinitrophenol		ug/Kg	UJ	280	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	2,4-Dinitrotoluene		ug/Kg	U	160	200
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	2,6-Dinitrotoluene		ug/Kg	U	130	200
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	2-Chloronaphthalene		ug/Kg	U	110	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	2-Chlorophenol		ug/Kg	U	110	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	2-Methylnaphthalene		ug/Kg	U	120	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	190	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	2-Nitroaniline		ug/Kg	U	280	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	2-Nitrophenol		ug/Kg	U	250	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	160	280

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	190	200
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	3-Nitroaniline		ug/Kg	U	790	400
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	4,6-Dinitro-2-methylphenol		ug/Kg	UJ	79	240
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	120	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	140	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	4-Chloroaniline		ug/Kg	U	190	320
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	130	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	4-Nitroaniline		ug/Kg	U	130	400
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	4-Nitrophenol		ug/Kg	U	180	400
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Acenaphthene		ug/Kg	U	120	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Acenaphthylene		ug/Kg	U	110	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Acetophenone		ug/Kg	U	120	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Aniline		ug/Kg	U	320	320
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Anthracene		ug/Kg	U	130	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Benz(a)anthracene		ug/Kg	U	130	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Benzidine		ug/Kg	UJ	230	400
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Benzo(a)pyrene		ug/Kg	U	130	200
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Benzo(b)fluoranthene		ug/Kg	U	140	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Benzo(ghi)perylene		ug/Kg	U	130	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Benzo(k)fluoranthene		ug/Kg	U	130	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Benzoic acid		ug/Kg	UJ	790	2000
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Benzyl butyl phthalate		ug/Kg	U	100	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	110	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	110	200
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	110	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	110	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Carbazole		ug/Kg	U	160	200
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Chrysene		ug/Kg	U	130	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Dibenz(a,h)anthracene		ug/Kg	U	130	200
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Dibenzofuran		ug/Kg	U	120	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Diethyl phthalate		ug/Kg	U	130	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Dimethylphthalate		ug/Kg	U	120	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Di-n-butylphthalate		ug/Kg	U	110	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Di-n-octylphthalate		ug/Kg	U	100	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Fluoranthene		ug/Kg	U	130	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Fluorene		ug/Kg	U	130	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Hexachlorobenzene		ug/Kg	U	120	200

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Hexachlorobutadiene		ug/Kg	U	140	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Hexachlorocyclopentadiene		ug/Kg	U	120	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Hexachloroethane		ug/Kg	U	120	200
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Indeno(1,2,3-cd)pyrene		ug/Kg	U	130	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Isophorone		ug/Kg	U	110	200
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Naphthalene		ug/Kg	U	110	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Nitrobenzene		ug/Kg	U	140	200
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	N-Nitrosodimethylamine		ug/Kg	U	110	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	130	200
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	150	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Pentachloronitrobenzene		ug/Kg	U	150	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Pentachlorophenol		ug/Kg	U	150	240
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Phenanthrene		ug/Kg	U	110	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Phenol		ug/Kg	U	130	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Pyrene		ug/Kg	U	140	280
15B13 (12-14)	BV81845	SW8270	11/10/2016	1	Pyridine		ug/Kg	U	98	280
15B14 (1-3)	BV81846	E160.3	11/10/2016	1	SOLIDS, PERCENT	91	%			
15B14 (1-3)	BV81846	SW6010	11/10/2016	10	Aluminum	6260	mg/Kg		7.5	38
15B14 (1-3)	BV81846	SW6010	11/10/2016	1	Antimony	1.8	mg/Kg		1.8	1.8
15B14 (1-3)	BV81846	SW6010	11/10/2016	1	Arsenic	13.7	mg/Kg		0.75	0.75
15B14 (1-3)	BV81846	SW6010	11/10/2016	1	Barium	105	mg/Kg		0.38	0.8
15B14 (1-3)	BV81846	SW6010	11/10/2016	1	Beryllium	0.35	mg/Kg		0.15	0.30
15B14 (1-3)	BV81846	SW6010	11/10/2016	1	Cadmium	1.27	mg/Kg		0.38	0.38
15B14 (1-3)	BV81846	SW6010	11/10/2016	1	Calcium	6040	mg/Kg		3.5	3.8
15B14 (1-3)	BV81846	SW6010	11/10/2016	1	Chromium	24.5	mg/Kg		0.38	0.38
15B14 (1-3)	BV81846	SW6010	11/10/2016	1	Cobalt	7.77	mg/Kg		0.38	0.38
15B14 (1-3)	BV81846	SW6010	11/10/2016	1	Copper	146	mg/Kg		0.38	0.38
15B14 (1-3)	BV81846	SW6010	11/10/2016	10	Iron	24400	mg/Kg		38	38
15B14 (1-3)	BV81846	SW6010	11/10/2016	10	Lead	232	mg/Kg		3.8	7.5
15B14 (1-3)	BV81846	SW6010	11/10/2016	1	Magnesium	1890	mg/Kg		3.8	3.8
15B14 (1-3)	BV81846	SW6010	11/10/2016	10	Manganese	276	mg/Kg		3.8	3.8
15B14 (1-3)	BV81846	SW6010	11/10/2016	1	Nickel	21.3	mg/Kg		0.38	0.38
15B14 (1-3)	BV81846	SW6010	11/10/2016	1	Potassium	789	mg/Kg		2.9	8
15B14 (1-3)	BV81846	SW6010	11/10/2016	1	Selenium		mg/Kg	U	1.3	1.5
15B14 (1-3)	BV81846	SW6010	11/10/2016	1	Silver		mg/Kg	U	0.38	0.38
15B14 (1-3)	BV81846	SW6010	11/10/2016	1	Sodium	228	mg/Kg		3.2	8
15B14 (1-3)	BV81846	SW6010	11/10/2016	1	Thallium		mg/Kg	U	1.5	1.5

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B14 (1-3)	BV81846	SW6010	11/10/2016	1	Vanadium	21.9	mg/Kg		0.38	0.38
15B14 (1-3)	BV81846	SW6010	11/10/2016	10	Zinc	677	mg/Kg		3.8	7.5
15B14 (1-3)	BV81846	SW7471	11/10/2016	1	Mercury	0.47	mg/Kg	J	0.02	0.03
15B14 (1-3)	BV81846	SW8081	11/10/2016	2	4,4' -DDD		ug/Kg	U	10	10
15B14 (1-3)	BV81846	SW8081	11/10/2016	2	4,4' -DDE		ug/Kg	U	3.0	3.0
15B14 (1-3)	BV81846	SW8081	11/10/2016	2	4,4' -DDT		ug/Kg	U	2.1	2.1
15B14 (1-3)	BV81846	SW8081	11/10/2016	2	a-BHC		ug/Kg	U	7.2	7.2
15B14 (1-3)	BV81846	SW8081	11/10/2016	2	a-Chlordane		ug/Kg	U	3.6	3.6
15B14 (1-3)	BV81846	SW8081	11/10/2016	2	Aldrin		ug/Kg	U	3.6	3.6
15B14 (1-3)	BV81846	SW8081	11/10/2016	2	b-BHC		ug/Kg	U	7.2	7.2
15B14 (1-3)	BV81846	SW8081	11/10/2016	2	Chlordane		ug/Kg	U	36	36
15B14 (1-3)	BV81846	SW8081	11/10/2016	2	d-BHC		ug/Kg	U	7.2	7.2
15B14 (1-3)	BV81846	SW8081	11/10/2016	2	Dieldrin		ug/Kg	U	3.6	3.6
15B14 (1-3)	BV81846	SW8081	11/10/2016	2	Endosulfan I		ug/Kg	U	7.2	7.2
15B14 (1-3)	BV81846	SW8081	11/10/2016	2	Endosulfan II		ug/Kg	U	7.2	7.2
15B14 (1-3)	BV81846	SW8081	11/10/2016	2	Endosulfan sulfate		ug/Kg	U	7.2	7.2
15B14 (1-3)	BV81846	SW8081	11/10/2016	2	Endrin		ug/Kg	U	7.2	7.2
15B14 (1-3)	BV81846	SW8081	11/10/2016	2	Endrin aldehyde		ug/Kg	U	7.2	7.2
15B14 (1-3)	BV81846	SW8081	11/10/2016	2	Endrin ketone		ug/Kg	U	7.2	7.2
15B14 (1-3)	BV81846	SW8081	11/10/2016	2	g-BHC		ug/Kg	U	1.4	1.4
15B14 (1-3)	BV81846	SW8081	11/10/2016	2	g-Chlordane		ug/Kg	U	3.6	3.6
15B14 (1-3)	BV81846	SW8081	11/10/2016	2	Heptachlor		ug/Kg	U	7.2	7.2
15B14 (1-3)	BV81846	SW8081	11/10/2016	2	Heptachlor epoxide		ug/Kg	U	7.2	7.2
15B14 (1-3)	BV81846	SW8081	11/10/2016	2	Methoxychlor		ug/Kg	U	36	36
15B14 (1-3)	BV81846	SW8081	11/10/2016	2	Toxaphene		ug/Kg	U	140	140
15B14 (1-3)	BV81846	SW8082	11/10/2016	2	PCB-1016		ug/Kg	U	72	72
15B14 (1-3)	BV81846	SW8082	11/10/2016	2	PCB-1221		ug/Kg	U	72	72
15B14 (1-3)	BV81846	SW8082	11/10/2016	2	PCB-1232		ug/Kg	U	72	72
15B14 (1-3)	BV81846	SW8082	11/10/2016	2	PCB-1242		ug/Kg	U	72	72
15B14 (1-3)	BV81846	SW8082	11/10/2016	2	PCB-1248		ug/Kg	U	72	72
15B14 (1-3)	BV81846	SW8082	11/10/2016	2	PCB-1254	72	ug/Kg		72	72
15B14 (1-3)	BV81846	SW8082	11/10/2016	2	PCB-1260		ug/Kg	U	72	72
15B14 (1-3)	BV81846	SW8082	11/10/2016	2	PCB-1262		ug/Kg	U	72	72
15B14 (1-3)	BV81846	SW8082	11/10/2016	2	PCB-1268		ug/Kg	U	72	72
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	0.89	18
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	1,1,1-Trichloroethane		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	0.89	4.5

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	1,1,2-Trichloroethane		ug/Kg	U	0.89	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	1,1-Dichloroethane		ug/Kg	U	0.89	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	1,1-Dichloroethene		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	1,1-Dichloropropene		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	1,2,3-Trichlorobenzene		ug/Kg	UJ	0.89	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	1,2,3-Trichloropropane		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	1,2,4-Trichlorobenzene		ug/Kg	UJ	0.89	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	1,2,4-Trimethylbenzene		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	0.89	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	1,2-Dibromoethane		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	1,2-Dichlorobenzene		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	1,2-Dichloroethane		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	1,2-Dichloropropane		ug/Kg	U	0.89	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	1,3,5-Trimethylbenzene		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	1,3-Dichlorobenzene		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	1,3-Dichloropropane		ug/Kg	U	0.89	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	1,4-Dichlorobenzene		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	1,4-dioxane		ug/Kg	U	36	67
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	2,2-Dichloropropane		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	2-Chlorotoluene		ug/Kg	U	0.89	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	2-Hexanone		ug/Kg	U	4.5	22
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	2-Isopropyltoluene		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	4-Chlorotoluene		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	4-Methyl-2-pentanone		ug/Kg	U	4.5	22
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	Acetone	64	ug/Kg	J	4.5	22
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	Acrolein		ug/Kg	UJ	2.2	18
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	Acrylonitrile		ug/Kg	U	0.45	18
15B14 (1-3)	BV81846	SW8260	11/10/2016	50	Benzene	240	ug/Kg		31	60
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	Bromobenzene		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	Bromochloromethane		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	Bromodichloromethane		ug/Kg	U	0.89	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	Bromoform		ug/Kg	U	0.89	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	Bromomethane		ug/Kg	U	1.8	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	Carbon Disulfide		ug/Kg	U	0.89	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	Carbon tetrachloride		ug/Kg	U	0.89	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	Chlorobenzene		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	Chloroethane		ug/Kg	UJ	0.45	4.5

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	Chloroform		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	Chloromethane		ug/Kg	U	0.89	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	cis-1,2-Dichloroethene		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	cis-1,3-Dichloropropene		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	Dibromochloromethane		ug/Kg	U	0.89	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	Dibromomethane		ug/Kg	U	0.89	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	Dichlorodifluoromethane		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	Ethylbenzene		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	Hexachlorobutadiene		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	Isopropylbenzene		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	m&p-Xylene		ug/Kg	U	0.89	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	Methyl Ethyl Ketone		ug/Kg	UJ	4.5	27
15B14 (1-3)	BV81846	SW8260	11/10/2016	50	Methyl t-butyl ether (MTBE)	760	ug/Kg		61	610
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	Methylene chloride		ug/Kg	U	4.5	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	Naphthalene		ug/Kg	U	0.89	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	n-Butylbenzene		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	n-Propylbenzene		ug/Kg	U	0.89	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	o-Xylene		ug/Kg	U	0.89	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	p-Isopropyltoluene		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	sec-Butylbenzene		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	Styrene		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	Tert-butyl alcohol		ug/Kg	U	18	89
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	tert-Butylbenzene		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	Tetrachloroethene		ug/Kg	U	0.89	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	Tetrahydrofuran (THF)		ug/Kg	U	2.2	8.9
15B14 (1-3)	BV81846	SW8260	11/10/2016	50	Toluene	120	ug/Kg	J	31	310
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	trans-1,2-Dichloroethene		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016		trans-1,3-Dichloropropene		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	trans-1,4-dichloro-2-butene		ug/Kg	U	2.2	8.9
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	Trichloroethene		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	Trichlorofluoromethane		ug/Kg	U	0.89	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	Trichlorotrifluoroethane		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8260	11/10/2016	1	Vinyl chloride		ug/Kg	U	0.45	4.5
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	130	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	110	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	1,2-Dichlorobenzene		ug/Kg	U	100	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	120	260

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	1,3-Dichlorobenzene		ug/Kg	U	110	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	1,4-Dichlorobenzene		ug/Kg	U	110	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	2,4,5-Trichlorophenol		ug/Kg	U	200	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	120	180
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	2,4-Dichlorophenol		ug/Kg	U	130	180
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	2,4-Dimethylphenol		ug/Kg	U	91	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	2,4-Dinitrophenol		ug/Kg	UJ	260	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	2,4-Dinitrotoluene		ug/Kg	U	140	180
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	2,6-Dinitrotoluene		ug/Kg	U	120	180
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	2-Chloronaphthalene		ug/Kg	U	100	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	2-Chlorophenol		ug/Kg	U	100	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	2-Methylnaphthalene		ug/Kg	U	110	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	170	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	2-Nitroaniline		ug/Kg	U	260	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	2-Nitrophenol		ug/Kg	U	230	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	140	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	170	180
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	3-Nitroaniline		ug/Kg	U	730	370
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	4,6-Dinitro-2-methylphenol		ug/Kg	UJ	73	220
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	110	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	130	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	4-Chloroaniline		ug/Kg	U	170	290
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	120	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	4-Nitroaniline		ug/Kg	U	120	370
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	4-Nitrophenol		ug/Kg	U	170	370
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Acenaphthene		ug/Kg	U	110	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Acenaphthylene		ug/Kg	U	100	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Acetophenone		ug/Kg	U	110	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Aniline		ug/Kg	U	290	290
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Anthracene		ug/Kg	U	120	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Benz(a)anthracene	330	ug/Kg		120	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Benzidine		ug/Kg	UJ	220	370
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Benzo(a)pyrene	300	ug/Kg		120	180
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Benzo(b)fluoranthene	380	ug/Kg		130	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Benzo(ghi)perylene	180	ug/Kg	J	120	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Benzo(k)fluoranthene	300	ug/Kg		120	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Benzoic acid		ug/Kg	UJ	730	1800

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Benzyl butyl phthalate		ug/Kg	U	94	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	100	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	99	180
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	100	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Bis(2-ethylhexyl)phthalate	170	ug/Kg	J	110	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Carbazole		ug/Kg	U	150	180
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Chrysene	420	ug/Kg		120	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Dibenz(a,h)anthracene		ug/Kg	U	120	180
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Dibenzofuran		ug/Kg	U	110	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Diethyl phthalate		ug/Kg	U	120	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Dimethylphthalate		ug/Kg	U	110	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Di-n-butylphthalate		ug/Kg	U	97	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Di-n-octylphthalate		ug/Kg	U	94	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Fluoranthene	530	ug/Kg		120	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Fluorene		ug/Kg	U	120	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Hexachlorobenzene		ug/Kg	U	110	180
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Hexachlorobutadiene		ug/Kg	U	130	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Hexachlorocyclopentadiene		ug/Kg	U	110	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Hexachloroethane		ug/Kg	U	110	180
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Indeno(1,2,3-cd)pyrene	180	ug/Kg	J	120	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Isophorone	910	ug/Kg		100	180
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Naphthalene	130	ug/Kg	J	110	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Nitrobenzene		ug/Kg	U	130	180
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	N-Nitrosodimethylamine		ug/Kg	U	100	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	120	180
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	140	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Pentachloronitrobenzene		ug/Kg	U	140	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Pentachlorophenol		ug/Kg	U	140	220
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Phenanthrene	500	ug/Kg		100	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Phenol		ug/Kg	U	120	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Pyrene	580	ug/Kg		130	260
15B14 (1-3)	BV81846	SW8270	11/10/2016	1	Pyridine		ug/Kg	U	90	260
15B14 (12-14)	BV81847	E160.3	11/10/2016	1	SOLIDS, PERCENT	83	%			
15B14 (12-14)	BV81847	SW6010	11/10/2016	10	Aluminum	4300	mg/Kg		7.2	36
15B14 (12-14)	BV81847	SW6010	11/10/2016	1	Antimony		mg/Kg	U	1.8	1.8
15B14 (12-14)	BV81847	SW6010	11/10/2016	1	Arsenic	1.16	mg/Kg		0.72	0.72
15B14 (12-14)	BV81847	SW6010	11/10/2016	1	Barium	22.4	mg/Kg		0.36	0.7

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B14 (12-14)	BV81847	SW6010	11/10/2016	1	Beryllium	0.21	mg/Kg	J	0.14	0.29
15B14 (12-14)	BV81847	SW6010	11/10/2016	1	Cadmium		mg/Kg	U	0.36	0.36
15B14 (12-14)	BV81847	SW6010	11/10/2016	1	Calcium	826	mg/Kg		3.3	3.6
15B14 (12-14)	BV81847	SW6010	11/10/2016	1	Chromium	11.3	mg/Kg		0.36	0.36
15B14 (12-14)	BV81847	SW6010	11/10/2016	1	Cobalt	4.08	mg/Kg		0.36	0.36
15B14 (12-14)	BV81847	SW6010	11/10/2016	1	Copper	9.43	mg/Kg		0.36	0.36
15B14 (12-14)	BV81847	SW6010	11/10/2016	10	Iron	11400	mg/Kg		36	36
15B14 (12-14)	BV81847	SW6010	11/10/2016	1	Lead	1.1	mg/Kg		0.37	0.7
15B14 (12-14)	BV81847	SW6010	11/10/2016	1	Magnesium	1670	mg/Kg		3.6	3.6
15B14 (12-14)	BV81847	SW6010	11/10/2016	10	Manganese	257	mg/Kg		3.6	3.6
15B14 (12-14)	BV81847	SW6010	11/10/2016	1	Nickel	9.18	mg/Kg		0.36	0.36
15B14 (12-14)	BV81847	SW6010	11/10/2016	1	Potassium	476	mg/Kg		2.8	7
15B14 (12-14)	BV81847	SW6010	11/10/2016	1	Selenium		mg/Kg	U	1.2	1.4
15B14 (12-14)	BV81847	SW6010	11/10/2016	1	Silver		mg/Kg	U	0.36	0.36
15B14 (12-14)	BV81847	SW6010	11/10/2016	1	Sodium	104	mg/Kg		3.1	7
15B14 (12-14)	BV81847	SW6010	11/10/2016	1	Thallium		mg/Kg	U	1.4	1.4
15B14 (12-14)	BV81847	SW6010	11/10/2016	1	Vanadium	15.2	mg/Kg		0.36	0.36
15B14 (12-14)	BV81847	SW6010	11/10/2016	1	Zinc	45.1	mg/Kg		0.36	0.7
15B14 (12-14)	BV81847	SW7471	11/10/2016		Mercury		mg/Kg	UJ	0.02	0.03
15B14 (12-14)	BV81847	SW8082	11/10/2016		PCB-1016		ug/Kg	U	80	80
15B14 (12-14)	BV81847	SW8082	11/10/2016		PCB-1221		ug/Kg	U	80	80
15B14 (12-14)	BV81847	SW8082	11/10/2016	2	PCB-1232		ug/Kg	U	80	80
15B14 (12-14)	BV81847	SW8082	11/10/2016	2	PCB-1242		ug/Kg	U	80	80
15B14 (12-14)	BV81847	SW8082	11/10/2016	2	PCB-1248		ug/Kg	U	80	80
15B14 (12-14)	BV81847	SW8082	11/10/2016	2	PCB-1254		ug/Kg	U	80	80
15B14 (12-14)	BV81847	SW8082	11/10/2016	2	PCB-1260		ug/Kg	U	80	80
15B14 (12-14)	BV81847	SW8082	11/10/2016	2	PCB-1262		ug/Kg	U	80	80
15B14 (12-14)	BV81847	SW8082	11/10/2016	2	PCB-1268		ug/Kg	U	80	80
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	0.77	15
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	1,1,1-Trichloroethane		ug/Kg	U	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	0.77	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	1,1,2-Trichloroethane		ug/Kg	U	0.77	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	1,1-Dichloroethane		ug/Kg	U	0.77	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	1,1-Dichloroethene		ug/Kg	U	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	1,1-Dichloropropene		ug/Kg	U	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	1,2,3-Trichlorobenzene		ug/Kg	UJ	0.77	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	1,2,3-Trichloropropane		ug/Kg	U	0.39	3.9

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	1,2,4-Trichlorobenzene		ug/Kg	UJ	0.77	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	1,2,4-Trimethylbenzene	9.2	ug/Kg		0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	0.77	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	1,2-Dibromoethane		ug/Kg	U	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	1,2-Dichlorobenzene		ug/Kg	U	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	1,2-Dichloroethane		ug/Kg	U	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	1,2-Dichloropropane		ug/Kg	U	0.77	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	1,3,5-Trimethylbenzene	2.4	ug/Kg	J	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	1,3-Dichlorobenzene		ug/Kg	U	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	1,3-Dichloropropane		ug/Kg	U	0.77	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	1,4-Dichlorobenzene		ug/Kg	U	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	1,4-dioxane		ug/Kg	U	31	58
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	2,2-Dichloropropane		ug/Kg	U	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	2-Chlorotoluene		ug/Kg	U	0.77	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	2-Hexanone		ug/Kg	U	3.9	19
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	2-Isopropyltoluene		ug/Kg	U	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	4-Chlorotoluene		ug/Kg	U	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	4-Methyl-2-pentanone		ug/Kg	U	3.9	19
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	Acetone	19	ug/Kg	J	3.9	19
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	Acrolein		ug/Kg	UJ	1.9	15
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	Acrylonitrile		ug/Kg	U	0.39	15
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	Benzene	0.99	ug/Kg	J	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	Bromobenzene		ug/Kg	U	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	Bromochloromethane		ug/Kg	U	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	Bromodichloromethane		ug/Kg	U	0.77	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	Bromoform		ug/Kg	U	0.77	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016		Bromomethane		ug/Kg	U	1.5	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	Carbon Disulfide	1.4	ug/Kg	J	0.77	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	Carbon tetrachloride		ug/Kg	U	0.77	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	Chlorobenzene		ug/Kg	U	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	Chloroethane		ug/Kg	UJ	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	Chloroform		ug/Kg	U	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	Chloromethane		ug/Kg	U	0.77	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	cis-1,2-Dichloroethene		ug/Kg	U	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	cis-1,3-Dichloropropene		ug/Kg	U	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	Dibromochloromethane		ug/Kg	U	0.77	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	Dibromomethane		ug/Kg	U	0.77	3.9

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	Dichlorodifluoromethane		ug/Kg	U	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	Ethylbenzene		ug/Kg	U	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	Hexachlorobutadiene		ug/Kg	U	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	Isopropylbenzene		ug/Kg	U	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	m&p-Xylene	5.6	ug/Kg		0.77	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	Methyl Ethyl Ketone		ug/Kg	UJ	3.9	23
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	Methyl t-butyl ether (MTBE)	49	ug/Kg		0.77	7.7
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	Methylene chloride		ug/Kg	U	3.9	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	Naphthalene		ug/Kg	U	0.77	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	n-Butylbenzene		ug/Kg	U	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	n-Propylbenzene		ug/Kg	U	0.77	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	o-Xylene	2.4	ug/Kg	J	0.77	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	p-Isopropyltoluene		ug/Kg	U	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	sec-Butylbenzene		ug/Kg	U	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	Styrene		ug/Kg	U	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	Tert-butyl alcohol		ug/Kg	U	15	77
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	tert-Butylbenzene		ug/Kg	U	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	Tetrachloroethene		ug/Kg	U	0.77	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	Tetrahydrofuran (THF)		ug/Kg	U	1.9	7.7
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	Toluene		ug/Kg	U	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	trans-1,2-Dichloroethene		ug/Kg	U	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	trans-1,3-Dichloropropene		ug/Kg	U	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	trans-1,4-dichloro-2-butene		ug/Kg	U	1.9	7.7
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	Trichloroethene		ug/Kg	U	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	Trichlorofluoromethane		ug/Kg	U	0.77	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	Trichlorotrifluoroethane		ug/Kg	U	0.39	3.9
15B14 (12-14)	BV81847	SW8260	11/10/2016	1	Vinyl chloride		ug/Kg	U	0.39	3.9
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	140	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	120	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	1,2-Dichlorobenzene		ug/Kg	U	110	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	130	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	1,3-Dichlorobenzene		ug/Kg	U	120	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	1,4-Dichlorobenzene		ug/Kg	U	120	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	2,4,5-Trichlorophenol		ug/Kg	U	220	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	130	200
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	2,4-Dichlorophenol		ug/Kg	U	140	200
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	2,4-Dimethylphenol		ug/Kg	U	97	270

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	2,4-Dinitrophenol		ug/Kg	UJ	270	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	2,4-Dinitrotoluene		ug/Kg	U	150	200
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	2,6-Dinitrotoluene		ug/Kg	U	120	200
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	2-Chloronaphthalene		ug/Kg	U	110	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	2-Chlorophenol		ug/Kg	U	110	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	2-Methylnaphthalene		ug/Kg	U	120	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	180	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	2-Nitroaniline		ug/Kg	U	270	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	2-Nitrophenol		ug/Kg	U	250	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	150	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	190	200
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	3-Nitroaniline		ug/Kg	U	790	390
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	4,6-Dinitro-2-methylphenol		ug/Kg	UJ	79	240
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	120	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	140	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	4-Chloroaniline		ug/Kg	U	180	310
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	130	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	4-Nitroaniline		ug/Kg	U	130	390
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	4-Nitrophenol		ug/Kg	U	180	390
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Acenaphthene		ug/Kg	U	120	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Acenaphthylene		ug/Kg	U	110	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Acetophenone		ug/Kg	U	120	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Aniline		ug/Kg	U	310	310
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Anthracene		ug/Kg	U	130	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Benz(a)anthracene		ug/Kg	U	130	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Benzidine		ug/Kg	UJ	230	390
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Benzo(a)pyrene		ug/Kg	U	130	200
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Benzo(b)fluoranthene		ug/Kg	U	130	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Benzo(ghi)perylene		ug/Kg	U	130	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Benzo(k)fluoranthene		ug/Kg	U	130	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Benzoic acid		ug/Kg	UJ	790	2000
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Benzyl butyl phthalate		ug/Kg	U	100	270
15B14 (12-14)	BV81847	SW8270	11/10/2016		Bis(2-chloroethoxy)methane		ug/Kg	U	110	270
15B14 (12-14)	BV81847	SW8270	11/10/2016		Bis(2-chloroethyl)ether		ug/Kg	U	110	200
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	110	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	110	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Carbazole		ug/Kg	U	160	200

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Chrysene		ug/Kg	U	130	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Dibenz(a,h)anthracene		ug/Kg	U	130	200
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Dibenzofuran		ug/Kg	U	110	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Diethyl phthalate		ug/Kg	U	120	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Dimethylphthalate		ug/Kg	U	120	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Di-n-butylphthalate		ug/Kg	U	100	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Di-n-octylphthalate		ug/Kg	U	100	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Fluoranthene		ug/Kg	U	130	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Fluorene		ug/Kg	U	130	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Hexachlorobenzene		ug/Kg	U	110	200
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Hexachlorobutadiene		ug/Kg	U	140	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Hexachlorocyclopentadiene		ug/Kg	U	120	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Hexachloroethane		ug/Kg	U	120	200
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Indeno(1,2,3-cd)pyrene		ug/Kg	U	130	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Isophorone		ug/Kg	U	110	200
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Naphthalene		ug/Kg	U	110	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Nitrobenzene		ug/Kg	U	140	200
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	N-Nitrosodimethylamine		ug/Kg	U	110	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	130	200
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	150	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Pentachloronitrobenzene		ug/Kg	U	150	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Pentachlorophenol		ug/Kg	U	150	240
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Phenanthrene		ug/Kg	U	110	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Phenol		ug/Kg	U	130	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Pyrene		ug/Kg	U	140	270
15B14 (12-14)	BV81847	SW8270	11/10/2016	1	Pyridine		ug/Kg	U	97	270
15B14 (14-16)	BV81848	E160.3	11/10/2016	1	SOLIDS, PERCENT	83	%			
15B14 (14-16)	BV81848	SW6010	11/10/2016	10	Aluminum	3360	mg/Kg		8.4	42
15B14 (14-16)	BV81848	SW6010	11/10/2016	1	Antimony		mg/Kg	U	2.0	2.0
15B14 (14-16)	BV81848	SW6010	11/10/2016	1	Arsenic		mg/Kg	U	0.84	0.84
15B14 (14-16)	BV81848	SW6010	11/10/2016	1	Barium	18.6	mg/Kg		0.42	0.8
15B14 (14-16)	BV81848	SW6010	11/10/2016	1	Beryllium		mg/Kg	U	0.17	0.33
15B14 (14-16)	BV81848	SW6010	11/10/2016	1	Cadmium		mg/Kg	U	0.42	0.42
15B14 (14-16)	BV81848	SW6010	11/10/2016	1	Calcium	621	mg/Kg		3.8	4.2
15B14 (14-16)	BV81848	SW6010	11/10/2016	1	Chromium	6.65	mg/Kg		0.42	0.42
15B14 (14-16)	BV81848	SW6010	11/10/2016	1	Cobalt	3.63	mg/Kg		0.42	0.42
15B14 (14-16)	BV81848	SW6010	11/10/2016	1	Copper	7.14	mg/Kg		0.42	0.42

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B14 (14-16)	BV81848	SW6010	11/10/2016	1	Iron	7050	mg/Kg	J	4.2	4.2
15B14 (14-16)	BV81848	SW6010	11/10/2016	1	Lead	0.8	mg/Kg	J	0.40	0.8
15B14 (14-16)	BV81848	SW6010	11/10/2016	1	Magnesium	1370	mg/Kg		4.2	4.2
15B14 (14-16)	BV81848	SW6010	11/10/2016	1	Manganese	120	mg/Kg		0.42	0.42
15B14 (14-16)	BV81848	SW6010	11/10/2016	1	Nickel	7.35	mg/Kg		0.42	0.42
15B14 (14-16)	BV81848	SW6010	11/10/2016	1	Potassium	552	mg/Kg		3.3	8
15B14 (14-16)	BV81848	SW6010	11/10/2016	1	Selenium		mg/Kg	U	1.4	1.7
15B14 (14-16)	BV81848	SW6010	11/10/2016	1	Silver		mg/Kg	U	0.42	0.42
15B14 (14-16)	BV81848	SW6010	11/10/2016	1	Sodium	88	mg/Kg		3.6	8
15B14 (14-16)	BV81848	SW6010	11/10/2016	1	Thallium		mg/Kg	U	1.7	1.7
15B14 (14-16)	BV81848	SW6010	11/10/2016	1	Vanadium	10.6	mg/Kg		0.42	0.42
15B14 (14-16)	BV81848	SW6010	11/10/2016	1	Zinc	24.3	mg/Kg		0.42	0.8
15B14 (14-16)	BV81848	SW7471	11/10/2016	1	Mercury		mg/Kg	UJ	0.02	0.03
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	0.99	20
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	1,1,1-Trichloroethane		ug/Kg	U	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	0.99	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	1,1,2-Trichloroethane		ug/Kg	U	0.99	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	1,1-Dichloroethane		ug/Kg	U	0.99	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	1,1-Dichloroethene		ug/Kg	U	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	1,1-Dichloropropene		ug/Kg	U	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	1,2,3-Trichlorobenzene		ug/Kg	U	0.99	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	1,2,3-Trichloropropane		ug/Kg	U	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	0.99	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	1,2,4-Trimethylbenzene	1.0	ug/Kg	J	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	0.99	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	1,2-Dibromoethane		ug/Kg	U	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	1,2-Dichlorobenzene		ug/Kg	U	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	1,2-Dichloroethane		ug/Kg	U	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	1,2-Dichloropropane		ug/Kg	U	0.99	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	1,3,5-Trimethylbenzene		ug/Kg	U	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	1,3-Dichlorobenzene		ug/Kg	U	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	1,3-Dichloropropane		ug/Kg	U	0.99	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	1,4-Dichlorobenzene		ug/Kg	U	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	1,4-dioxane		ug/Kg	U	40	74
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	2,2-Dichloropropane		ug/Kg	U	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	2-Chlorotoluene		ug/Kg	U	0.99	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	2-Hexanone		ug/Kg	U	4.9	25

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	2-Isopropyltoluene		ug/Kg	U	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	4-Chlorotoluene		ug/Kg	U	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	4-Methyl-2-pentanone		ug/Kg	U	4.9	25
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Acetone	13	ug/Kg	J	4.9	25
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Acrolein		ug/Kg	UJ	2.5	20
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Acrylonitrile		ug/Kg	U	0.49	20
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Benzene	1.3	ug/Kg	J	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Bromobenzene		ug/Kg	U	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Bromochloromethane		ug/Kg	U	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Bromodichloromethane		ug/Kg	U	0.99	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Bromoform		ug/Kg	U	0.99	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Bromomethane		ug/Kg	U	2.0	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Carbon Disulfide	1.9	ug/Kg	J	0.99	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Carbon tetrachloride		ug/Kg	U	0.99	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Chlorobenzene		ug/Kg	U	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Chloroethane		ug/Kg	UJ	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Chloroform		ug/Kg	U	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Chloromethane		ug/Kg	U	0.99	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	cis-1,2-Dichloroethene		ug/Kg	U	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	cis-1,3-Dichloropropene		ug/Kg	U	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Dibromochloromethane		ug/Kg	U	0.99	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Dibromomethane		ug/Kg	U	0.99	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Dichlorodifluoromethane		ug/Kg	U	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Ethylbenzene	0.90	ug/Kg	J	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Hexachlorobutadiene		ug/Kg	U	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Isopropylbenzene		ug/Kg	U	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	m&p-Xylene	2.0	ug/Kg	J	0.99	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Methyl Ethyl Ketone		ug/Kg	UJ	4.9	30
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Methyl t-butyl ether (MTBE)	9.5	ug/Kg	J	0.99	9.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Methylene chloride		ug/Kg	U	4.9	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Naphthalene		ug/Kg	U	0.99	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	n-Butylbenzene		ug/Kg	U	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	n-Propylbenzene		ug/Kg	U	0.99	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	o-Xylene		ug/Kg	U	0.99	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	p-Isopropyltoluene		ug/Kg	U	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	sec-Butylbenzene		ug/Kg	U	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Styrene		ug/Kg	U	0.49	4.9

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Tert-butyl alcohol		ug/Kg	U	20	99
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	tert-Butylbenzene		ug/Kg	U	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Tetrachloroethene		ug/Kg	U	0.99	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Tetrahydrofuran (THF)		ug/Kg	U	2.5	9.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Toluene		ug/Kg	U	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	trans-1,2-Dichloroethene		ug/Kg	U	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	trans-1,3-Dichloropropene		ug/Kg	U	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	trans-1,4-dichloro-2-butene		ug/Kg	U	2.5	9.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Trichloroethene		ug/Kg	U	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Trichlorofluoromethane		ug/Kg	U	0.99	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Trichlorotrifluoroethane		ug/Kg	U	0.49	4.9
15B14 (14-16)	BV81848	SW8260	11/10/2016	1	Vinyl chloride		ug/Kg	U	0.49	4.9
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	140	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	120	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	1,2-Dichlorobenzene		ug/Kg	U	110	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	130	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	1,3-Dichlorobenzene		ug/Kg	U	120	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	1,4-Dichlorobenzene		ug/Kg	U	120	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	2,4,5-Trichlorophenol		ug/Kg	U	220	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	130	200
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	2,4-Dichlorophenol		ug/Kg	U	140	200
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	2,4-Dimethylphenol		ug/Kg	U	99	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	2,4-Dinitrophenol		ug/Kg	UJ	280	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	2,4-Dinitrotoluene		ug/Kg	U	160	200
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	2,6-Dinitrotoluene		ug/Kg	U	130	200
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	2-Chloronaphthalene		ug/Kg	U	110	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	2-Chlorophenol		ug/Kg	U	110	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	2-Methylnaphthalene		ug/Kg	U	120	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	190	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	2-Nitroaniline		ug/Kg	U	280	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	2-Nitrophenol		ug/Kg	U	250	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	160	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	190	200
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	3-Nitroaniline		ug/Kg	U	800	400
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	4,6-Dinitro-2-methylphenol		ug/Kg	UJ	80	240
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	120	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	140	280

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	4-Chloroaniline		ug/Kg	U	190	320
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	130	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	4-Nitroaniline		ug/Kg	U	130	400
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	4-Nitrophenol		ug/Kg	U	180	400
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Acenaphthene		ug/Kg	U	120	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Acenaphthylene		ug/Kg	U	110	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Acetophenone		ug/Kg	U	120	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Aniline		ug/Kg	U	320	320
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Anthracene		ug/Kg	U	130	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Benz(a)anthracene		ug/Kg	U	130	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Benzidine		ug/Kg	UJ	240	400
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Benzo(a)pyrene		ug/Kg	U	130	200
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Benzo(b)fluoranthene		ug/Kg	U	140	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Benzo(ghi)perylene		ug/Kg	U	130	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Benzo(k)fluoranthene		ug/Kg	U	130	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Benzoic acid		ug/Kg	UJ	800	2000
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Benzyl butyl phthalate		ug/Kg	U	100	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	110	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	110	200
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	110	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	120	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Carbazole		ug/Kg	U	160	200
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Chrysene		ug/Kg	U	130	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Dibenz(a,h)anthracene		ug/Kg	U	130	200
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Dibenzofuran		ug/Kg	U	120	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Diethyl phthalate		ug/Kg	U	130	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Dimethylphthalate		ug/Kg	U	120	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Di-n-butylphthalate		ug/Kg	U	110	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Di-n-octylphthalate		ug/Kg	U	100	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Fluoranthene		ug/Kg	U	130	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Fluorene		ug/Kg	U	130	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Hexachlorobenzene		ug/Kg	U	120	200
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Hexachlorobutadiene		ug/Kg	U	140	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Hexachlorocyclopentadiene		ug/Kg	U	120	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Hexachloroethane		ug/Kg	U	120	200
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Indeno(1,2,3-cd)pyrene		ug/Kg	U	130	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Isophorone		ug/Kg	U	110	200

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Naphthalene		ug/Kg	U	120	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Nitrobenzene		ug/Kg	U	140	200
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	N-Nitrosodimethylamine		ug/Kg	U	110	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	130	200
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	150	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Pentachloronitrobenzene		ug/Kg	U	150	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Pentachlorophenol		ug/Kg	U	150	240
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Phenanthrene		ug/Kg	U	110	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Phenol		ug/Kg	U	130	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Pyrene		ug/Kg	U	140	280
15B14 (14-16)	BV81848	SW8270	11/10/2016	1	Pyridine		ug/Kg	U	98	280
15B20 (0-2)	BV81849	E160.3	11/10/2016	1	SOLIDS, PERCENT	92	%			
15B20 (0-2)	BV81849	SW6010	11/10/2016	10	Aluminum	6120	mg/Kg		7.2	36
15B20 (0-2)	BV81849	SW6010	11/10/2016	1	Antimony		mg/Kg	U	1.7	1.7
15B20 (0-2)	BV81849	SW6010	11/10/2016	1	Arsenic	3.15	mg/Kg		0.72	0.72
15B20 (0-2)	BV81849	SW6010	11/10/2016	1	Barium	53.6	mg/Kg		0.36	0.7
15B20 (0-2)	BV81849	SW6010	11/10/2016	1	Beryllium	0.45	mg/Kg		0.14	0.29
15B20 (0-2)	BV81849	SW6010	11/10/2016	1	Cadmium	0.83	mg/Kg		0.36	0.36
15B20 (0-2)	BV81849	SW6010	11/10/2016	10	Calcium	14900	mg/Kg		33	36
15B20 (0-2)	BV81849	SW6010	11/10/2016	1	Chromium	17.5	mg/Kg		0.36	0.36
15B20 (0-2)	BV81849	SW6010	11/10/2016	1	Cobalt	7.07	mg/Kg		0.36	0.36
15B20 (0-2)	BV81849	SW6010	11/10/2016	1	Copper	41.9	mg/Kg		0.36	0.36
15B20 (0-2)	BV81849	SW6010	11/10/2016	10	Iron	22300	mg/Kg		36	36
15B20 (0-2)	BV81849	SW6010	11/10/2016	1	Lead	68.4	mg/Kg		0.36	0.7
15B20 (0-2)	BV81849	SW6010	11/10/2016	10	Magnesium	8070	mg/Kg		36	36
15B20 (0-2)	BV81849	SW6010	11/10/2016	10	Manganese	584	mg/Kg		3.6	3.6
15B20 (0-2)	BV81849	SW6010	11/10/2016	1	Nickel	13.2	mg/Kg		0.36	0.36
15B20 (0-2)	BV81849	SW6010	11/10/2016	1	Potassium	1340	mg/Kg		2.8	7
15B20 (0-2)	BV81849	SW6010	11/10/2016	1	Selenium		mg/Kg	U	1.2	1.4
15B20 (0-2)	BV81849	SW6010	11/10/2016	1	Silver		mg/Kg	U	0.36	0.36
15B20 (0-2)	BV81849	SW6010	11/10/2016	1	Sodium	361	mg/Kg		3.1	7
15B20 (0-2)	BV81849	SW6010	11/10/2016	1	Thallium		mg/Kg	U	1.4	1.4
15B20 (0-2)	BV81849	SW6010	11/10/2016	1	Vanadium	29.2	mg/Kg		0.36	0.36
15B20 (0-2)	BV81849	SW6010	11/10/2016	1	Zinc	78.4	mg/Kg		0.36	0.7
15B20 (0-2)	BV81849	SW7471	11/10/2016	1	Mercury	0.71	mg/Kg	J	0.02	0.03
15B20 (0-2)	BV81849	SW8081	11/10/2016	2	4,4' -DDD		ug/Kg	U	2.2	2.2
15B20 (0-2)	BV81849	SW8081	11/10/2016	2	4,4' -DDE		ug/Kg	U	2.2	2.2

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B20 (0-2)	BV81849	SW8081	11/10/2016	2	4,4' -DDT		ug/Kg	U	2.2	2.2
15B20 (0-2)	BV81849	SW8081	11/10/2016	2	a-BHC		ug/Kg	U	7.2	7.2
15B20 (0-2)	BV81849	SW8081	11/10/2016	2	a-Chlordane		ug/Kg	U	3.6	3.6
15B20 (0-2)	BV81849	SW8081	11/10/2016	2	Aldrin		ug/Kg	U	3.6	3.6
15B20 (0-2)	BV81849	SW8081	11/10/2016	2	b-BHC		ug/Kg	U	7.2	7.2
15B20 (0-2)	BV81849	SW8081	11/10/2016	2	Chlordane		ug/Kg	U	36	36
15B20 (0-2)	BV81849	SW8081	11/10/2016	2	d-BHC		ug/Kg	U	7.2	7.2
15B20 (0-2)	BV81849	SW8081	11/10/2016	2	Dieldrin		ug/Kg	U	3.6	3.6
15B20 (0-2)	BV81849	SW8081	11/10/2016	2	Endosulfan I		ug/Kg	U	7.2	7.2
15B20 (0-2)	BV81849	SW8081	11/10/2016	2	Endosulfan II		ug/Kg	U	7.2	7.2
15B20 (0-2)	BV81849	SW8081	11/10/2016	2	Endosulfan sulfate		ug/Kg	U	7.2	7.2
15B20 (0-2)	BV81849	SW8081	11/10/2016	2	Endrin		ug/Kg	U	7.2	7.2
15B20 (0-2)	BV81849	SW8081	11/10/2016	2	Endrin aldehyde		ug/Kg	U	7.2	7.2
15B20 (0-2)	BV81849	SW8081	11/10/2016	2	Endrin ketone		ug/Kg	U	7.2	7.2
15B20 (0-2)	BV81849	SW8081	11/10/2016	2	g-BHC		ug/Kg	U	1.4	1.4
15B20 (0-2)	BV81849	SW8081	11/10/2016	2	g-Chlordane		ug/Kg	U	3.6	3.6
15B20 (0-2)	BV81849	SW8081	11/10/2016		Heptachlor		ug/Kg	U	7.2	7.2
15B20 (0-2)	BV81849	SW8081	11/10/2016	2	Heptachlor epoxide		ug/Kg	U	7.2	7.2
15B20 (0-2)	BV81849	SW8081	11/10/2016	2	Methoxychlor		ug/Kg	U	36	36
15B20 (0-2)	BV81849	SW8081	11/10/2016	2	Toxaphene		ug/Kg	U	140	140
15B20 (0-2)	BV81849	SW8082	11/10/2016	2	PCB-1016		ug/Kg	U	72	72
15B20 (0-2)	BV81849	SW8082	11/10/2016	2	PCB-1221		ug/Kg	U	72	72
15B20 (0-2)	BV81849	SW8082	11/10/2016	2	PCB-1232		ug/Kg	U	72	72
15B20 (0-2)	BV81849	SW8082	11/10/2016	2	PCB-1242		ug/Kg	U	72	72
15B20 (0-2)	BV81849	SW8082	11/10/2016	2	PCB-1248		ug/Kg	U	72	72
15B20 (0-2)	BV81849	SW8082	11/10/2016	2	PCB-1254		ug/Kg	U	72	72
15B20 (0-2)	BV81849	SW8082	11/10/2016	2	PCB-1260		ug/Kg	U	72	72
15B20 (0-2)	BV81849	SW8082	11/10/2016	2	PCB-1262		ug/Kg	U	72	72
15B20 (0-2)	BV81849	SW8082	11/10/2016	2	PCB-1268		ug/Kg	U	72	72
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	0.50	10
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	1,1,1-Trichloroethane		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	0.50	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	1,1,2-Trichloroethane		ug/Kg	U	0.50	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	1,1-Dichloroethane		ug/Kg	U	0.50	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	1,1-Dichloroethene		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	1,1-Dichloropropene		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	1,2,3-Trichlorobenzene		ug/Kg	U	0.50	2.5

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	1,2,3-Trichloropropane		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	0.50	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	1,2,4-Trimethylbenzene		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	0.50	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	1,2-Dibromoethane		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	1,2-Dichlorobenzene		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	1,2-Dichloroethane		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	1,2-Dichloropropane		ug/Kg	U	0.50	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	1,3,5-Trimethylbenzene		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	1,3-Dichlorobenzene		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	1,3-Dichloropropane		ug/Kg	U	0.50	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	1,4-Dichlorobenzene		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	1,4-dioxane		ug/Kg	U	20	38
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	2,2-Dichloropropane		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	2-Chlorotoluene		ug/Kg	U	0.50	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	2-Hexanone		ug/Kg	U	2.5	13
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	2-Isopropyltoluene		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	4-Chlorotoluene		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	4-Methyl-2-pentanone		ug/Kg	U	2.5	13
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Acetone		ug/Kg	UJ	2.5	13
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Acrolein		ug/Kg	UJ	1.3	10
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Acrylonitrile		ug/Kg	U	0.25	10
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Benzene		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Bromobenzene		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Bromochloromethane		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Bromodichloromethane		ug/Kg	U	0.50	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Bromoform		ug/Kg	U	0.50	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Bromomethane		ug/Kg	U	1.0	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Carbon Disulfide		ug/Kg	U	0.50	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Carbon tetrachloride		ug/Kg	U	0.50	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Chlorobenzene		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Chloroethane		ug/Kg	UJ	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Chloroform		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Chloromethane		ug/Kg	U	0.50	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	cis-1,2-Dichloroethene		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	cis-1,3-Dichloropropene		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Dibromochloromethane		ug/Kg	U	0.50	2.5

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Dibromomethane		ug/Kg	U	0.50	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Dichlorodifluoromethane		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Ethylbenzene		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Hexachlorobutadiene		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Isopropylbenzene		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	m&p-Xylene		ug/Kg	U	0.50	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Methyl Ethyl Ketone		ug/Kg	UJ	2.5	15
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Methyl t-butyl ether (MTBE)		ug/Kg	U	0.50	5.0
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Methylene chloride		ug/Kg	U	2.5	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Naphthalene		ug/Kg	U	0.50	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	n-Butylbenzene		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	n-Propylbenzene		ug/Kg	U	0.50	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	o-Xylene		ug/Kg	U	0.50	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	p-Isopropyltoluene		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	sec-Butylbenzene		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Styrene		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Tert-butyl alcohol		ug/Kg	U	10	50
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	tert-Butylbenzene		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Tetrachloroethene		ug/Kg	U	0.50	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Tetrahydrofuran (THF)		ug/Kg	U	1.3	5.0
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Toluene		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016		trans-1,2-Dichloroethene		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	trans-1,3-Dichloropropene		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	trans-1,4-dichloro-2-butene		ug/Kg	U	1.3	5.0
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Trichloroethene		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Trichlorofluoromethane		ug/Kg	U	0.50	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Trichlorotrifluoroethane		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8260	11/10/2016	1	Vinyl chloride		ug/Kg	U	0.25	2.5
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	130	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	110	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	1,2-Dichlorobenzene		ug/Kg	U	100	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	120	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	1,3-Dichlorobenzene		ug/Kg	U	110	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	1,4-Dichlorobenzene		ug/Kg	U	110	250
15B20 (0-2)	BV81849	SW8270	11/10/2016		2,4,5-Trichlorophenol		ug/Kg	U	200	250
15B20 (0-2)	BV81849	SW8270	11/10/2016		2,4,6-Trichlorophenol		ug/Kg	U	110	180
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	2,4-Dichlorophenol		ug/Kg	U	130	180

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	2,4-Dimethylphenol		ug/Kg	U	89	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	2,4-Dinitrophenol		ug/Kg	UJ	250	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	2,4-Dinitrotoluene		ug/Kg	U	140	180
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	2,6-Dinitrotoluene		ug/Kg	U	110	180
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	2-Chloronaphthalene		ug/Kg	U	100	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	2-Chlorophenol		ug/Kg	U	100	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	2-Methylnaphthalene		ug/Kg	U	110	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	170	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	2-Nitroaniline		ug/Kg	U	250	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	2-Nitrophenol		ug/Kg	U	230	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	140	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	170	180
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	3-Nitroaniline		ug/Kg	U	710	360
15B20 (0-2)	BV81849	SW8270	11/10/2016		4,6-Dinitro-2-methylphenol		ug/Kg	UJ	71	210
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	100	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	130	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	4-Chloroaniline		ug/Kg	U	170	290
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	120	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	4-Nitroaniline		ug/Kg	U	120	360
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	4-Nitrophenol		ug/Kg	U	160	360
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Acenaphthene		ug/Kg	U	110	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Acenaphthylene		ug/Kg	U	100	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Acetophenone		ug/Kg	U	110	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Aniline		ug/Kg	U	290	290
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Anthracene		ug/Kg	U	120	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Benz(a)anthracene		ug/Kg	U	120	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Benzidine		ug/Kg	UJ	210	360
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Benzo(a)pyrene		ug/Kg	U	120	180
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Benzo(b)fluoranthene		ug/Kg	U	120	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Benzo(ghi)perylene		ug/Kg	U	120	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Benzo(k)fluoranthene		ug/Kg	U	120	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Benzoic acid		ug/Kg	UJ	710	1800
15B20 (0-2)	BV81849	SW8270	11/10/2016		Benzyl butyl phthalate		ug/Kg	U	92	250
15B20 (0-2)	BV81849	SW8270	11/10/2016		Bis(2-chloroethoxy)methane		ug/Kg	U	99	250
15B20 (0-2)	BV81849	SW8270	11/10/2016		Bis(2-chloroethyl)ether		ug/Kg	U	96	180
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	99	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	100	250

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Carbazole		ug/Kg	U	140	180
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Chrysene		ug/Kg	U	120	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Dibenz(a,h)anthracene		ug/Kg	U	120	180
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Dibenzofuran		ug/Kg	U	100	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Diethyl phthalate		ug/Kg	U	110	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Dimethylphthalate		ug/Kg	U	110	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Di-n-butylphthalate		ug/Kg	U	95	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Di-n-octylphthalate		ug/Kg	U	92	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Fluoranthene	160	ug/Kg	J	120	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Fluorene		ug/Kg	U	120	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Hexachlorobenzene		ug/Kg	U	100	180
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Hexachlorobutadiene		ug/Kg	U	130	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Hexachlorocyclopentadiene		ug/Kg	U	110	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Hexachloroethane		ug/Kg	U	110	180
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Indeno(1,2,3-cd)pyrene		ug/Kg	U	120	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Isophorone		ug/Kg	U	100	180
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Naphthalene		ug/Kg	U	100	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Nitrobenzene		ug/Kg	U	120	180
15B20 (0-2)	BV81849	SW8270	11/10/2016		N-Nitrosodimethylamine		ug/Kg	U	100	250
15B20 (0-2)	BV81849	SW8270	11/10/2016		N-Nitrosodi-n-propylamine		ug/Kg	U	120	180
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	140	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Pentachloronitrobenzene		ug/Kg	U	130	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Pentachlorophenol		ug/Kg	U	130	210
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Phenanthrene		ug/Kg	U	100	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Phenol		ug/Kg	U	110	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Pyrene	160	ug/Kg	J	120	250
15B20 (0-2)	BV81849	SW8270	11/10/2016	1	Pyridine		ug/Kg	U	88	250
15B20 (12-14)	BV81850	E160.3	11/10/2016	1	SOLIDS, PERCENT	87	%			
15B20 (12-14)	BV81850	SW6010	11/10/2016	10	Aluminum	3090	mg/Kg		7.4	37
15B20 (12-14)	BV81850	SW6010	11/10/2016	1	Antimony		mg/Kg	U	2.0	2.0
15B20 (12-14)	BV81850	SW6010	11/10/2016	1	Arsenic		mg/Kg	U	0.74	0.74
15B20 (12-14)	BV81850	SW6010	11/10/2016	1	Barium	20.0	mg/Kg		0.37	0.7
15B20 (12-14)	BV81850	SW6010	11/10/2016	1	Beryllium	0.15	mg/Kg	J	0.15	0.29
15B20 (12-14)	BV81850	SW6010	11/10/2016	1	Cadmium		mg/Kg	U	0.37	0.37
15B20 (12-14)	BV81850	SW6010	11/10/2016	1	Calcium	423	mg/Kg		3.4	3.7
15B20 (12-14)	BV81850	SW6010	11/10/2016	1	Chromium	5.66	mg/Kg		0.37	0.37
15B20 (12-14)	BV81850	SW6010	11/10/2016	1	Cobalt	3.22	mg/Kg		0.37	0.37

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B20 (12-14)	BV81850	SW6010	11/10/2016	1	Copper	5.90	mg/Kg		0.37	0.37
15B20 (12-14)	BV81850	SW6010	11/10/2016	1	Iron	7000	mg/Kg	J	3.7	3.7
15B20 (12-14)	BV81850	SW6010	11/10/2016	1	Lead	1.2	mg/Kg		0.39	0.8
15B20 (12-14)	BV81850	SW6010	11/10/2016	1	Magnesium	1240	mg/Kg		3.7	3.7
15B20 (12-14)	BV81850	SW6010	11/10/2016	1	Manganese	82.1	mg/Kg	J	0.37	0.37
15B20 (12-14)	BV81850	SW6010	11/10/2016	1	Nickel	6.18	mg/Kg		0.37	0.37
15B20 (12-14)	BV81850	SW6010	11/10/2016	1	Potassium	377	mg/Kg		2.9	7
15B20 (12-14)	BV81850	SW6010	11/10/2016	1	Selenium		mg/Kg	U	1.3	1.5
15B20 (12-14)	BV81850	SW6010	11/10/2016	1	Silver		mg/Kg	U	0.37	0.37
15B20 (12-14)	BV81850	SW6010	11/10/2016	1	Sodium	60	mg/Kg		3.2	7
15B20 (12-14)	BV81850	SW6010	11/10/2016	1	Thallium		mg/Kg	U	1.5	1.5
15B20 (12-14)	BV81850	SW6010	11/10/2016	1	Vanadium	7.69	mg/Kg		0.37	0.37
15B20 (12-14)	BV81850	SW6010	11/10/2016	1	Zinc	11.9	mg/Kg		0.37	0.7
15B20 (12-14)	BV81850	SW7471	11/10/2016		Mercury		mg/Kg	UJ	0.02	0.03
15B20 (12-14)	BV81850	SW8082	11/10/2016	2	PCB-1016		ug/Kg	U	76	76
15B20 (12-14)	BV81850	SW8082	11/10/2016		PCB-1221		ug/Kg	U	76	76
15B20 (12-14)	BV81850	SW8082	11/10/2016	2	PCB-1232		ug/Kg	U	76	76
15B20 (12-14)	BV81850	SW8082	11/10/2016	2	PCB-1242		ug/Kg	U	76	76
15B20 (12-14)	BV81850	SW8082	11/10/2016	2	PCB-1248		ug/Kg	U	76	76
15B20 (12-14)	BV81850	SW8082	11/10/2016	2	PCB-1254		ug/Kg	U	76	76
15B20 (12-14)	BV81850	SW8082	11/10/2016		PCB-1260		ug/Kg	U	76	76
15B20 (12-14)	BV81850	SW8082	11/10/2016	2	PCB-1262		ug/Kg	U	76	76
15B20 (12-14)	BV81850	SW8082	11/10/2016	2	PCB-1268		ug/Kg	U	76	76
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	0.85	17
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	1,1,1-Trichloroethane		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	0.85	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	1,1,2-Trichloroethane		ug/Kg	U	0.85	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	1,1-Dichloroethane		ug/Kg	U	0.85	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	1,1-Dichloroethene		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	1,1-Dichloropropene		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	1,2,3-Trichlorobenzene		ug/Kg	U	0.85	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	1,2,3-Trichloropropane		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	0.85	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	1,2,4-Trimethylbenzene		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	0.85	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	1,2-Dibromoethane		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	1,2-Dichlorobenzene		ug/Kg	U	0.43	4.3

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	1,2-Dichloroethane		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	1,2-Dichloropropane		ug/Kg	U	0.85	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	1,3,5-Trimethylbenzene		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	1,3-Dichlorobenzene		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	1,3-Dichloropropane		ug/Kg	U	0.85	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	1,4-Dichlorobenzene		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	1,4-dioxane		ug/Kg	U	34	64
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	2,2-Dichloropropane		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	2-Chlorotoluene		ug/Kg	U	0.85	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	2-Hexanone		ug/Kg	U	4.3	21
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	2-Isopropyltoluene		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	4-Chlorotoluene		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	4-Methyl-2-pentanone		ug/Kg	U	4.3	21
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	Acetone		ug/Kg	UJ	4.3	21
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	Acrolein		ug/Kg	UJ	2.1	17
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	Acrylonitrile		ug/Kg	U	0.43	17
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	Benzene		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	Bromobenzene		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	Bromochloromethane		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	Bromodichloromethane		ug/Kg	U	0.85	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	Bromoform		ug/Kg	U	0.85	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	Bromomethane		ug/Kg	U	1.7	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	Carbon Disulfide		ug/Kg	U	0.85	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	Carbon tetrachloride		ug/Kg	U	0.85	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	Chlorobenzene		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	Chloroethane		ug/Kg	UJ	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	Chloroform		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	Chloromethane		ug/Kg	U	0.85	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016		cis-1,2-Dichloroethene		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	cis-1,3-Dichloropropene		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	Dibromochloromethane		ug/Kg	U	0.85	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	Dibromomethane		ug/Kg	U	0.85	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016		Dichlorodifluoromethane		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016		Ethylbenzene		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	Hexachlorobutadiene		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	Isopropylbenzene		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	m&p-Xylene		ug/Kg	U	0.85	4.3

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	Methyl Ethyl Ketone		ug/Kg	UJ	4.3	26
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	Methyl t-butyl ether (MTBE)		ug/Kg	U	0.85	8.5
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	Methylene chloride		ug/Kg	U	4.3	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	Naphthalene		ug/Kg	U	0.85	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	n-Butylbenzene		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	n-Propylbenzene		ug/Kg	U	0.85	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	o-Xylene		ug/Kg	U	0.85	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	p-Isopropyltoluene		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	sec-Butylbenzene		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	Styrene		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	Tert-butyl alcohol		ug/Kg	U	17	85
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	tert-Butylbenzene		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	Tetrachloroethene		ug/Kg	U	0.85	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	Tetrahydrofuran (THF)		ug/Kg	U	2.1	8.5
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	Toluene		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	trans-1,2-Dichloroethene		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	trans-1,3-Dichloropropene		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	trans-1,4-dichloro-2-butene		ug/Kg	U	2.1	8.5
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	Trichloroethene		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	Trichlorofluoromethane		ug/Kg	U	0.85	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	Trichlorotrifluoroethane		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8260	11/10/2016	1	Vinyl chloride		ug/Kg	U	0.43	4.3
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	130	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	110	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	1,2-Dichlorobenzene		ug/Kg	U	100	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	120	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	1,3-Dichlorobenzene		ug/Kg	U	110	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	1,4-Dichlorobenzene		ug/Kg	U	110	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	2,4,5-Trichlorophenol		ug/Kg	U	200	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	120	190
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	2,4-Dichlorophenol		ug/Kg	U	130	190
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	2,4-Dimethylphenol		ug/Kg	U	92	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	2,4-Dinitrophenol		ug/Kg	UJ	260	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	2,4-Dinitrotoluene		ug/Kg	U	150	190
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	2,6-Dinitrotoluene		ug/Kg	U	120	190
15B20 (12-14)	BV81850	SW8270	11/10/2016		2-Chloronaphthalene		ug/Kg	U	110	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	2-Chlorophenol		ug/Kg	U	110	260

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte Res		Unit	Qualifier	MDL	RL
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	2-Methylnaphthalene		ug/Kg	U	110	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	170	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	2-Nitroaniline		ug/Kg	U	260	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	2-Nitrophenol		ug/Kg	U	240	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	150	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	180	190
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	3-Nitroaniline		ug/Kg	U	740	370
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	4,6-Dinitro-2-methylphenol		ug/Kg	UJ	74	220
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	110	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	130	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	4-Chloroaniline		ug/Kg	U	170	300
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	120	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	4-Nitroaniline		ug/Kg	U	120	370
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	4-Nitrophenol		ug/Kg	U	170	370
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Acenaphthene		ug/Kg	U	110	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Acenaphthylene		ug/Kg	U	100	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Acetophenone		ug/Kg	U	120	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Aniline		ug/Kg	U	300	300
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Anthracene		ug/Kg	U	120	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Benz(a)anthracene		ug/Kg	U	120	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Benzidine		ug/Kg	UJ	220	370
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Benzo(a)pyrene		ug/Kg	U	120	190
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Benzo(b)fluoranthene		ug/Kg	U	130	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Benzo(ghi)perylene		ug/Kg	U	120	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Benzo(k)fluoranthene		ug/Kg	U	120	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Benzoic acid		ug/Kg	UJ	740	1900
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Benzyl butyl phthalate		ug/Kg	U	96	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	100	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	100	190
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	100	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	110	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Carbazole		ug/Kg	U	150	190
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Chrysene		ug/Kg	U	120	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Dibenz(a,h)anthracene		ug/Kg	U	120	190
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Dibenzofuran		ug/Kg	U	110	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Diethyl phthalate		ug/Kg	U	120	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Dimethylphthalate		ug/Kg	U	120	260

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte Res		Unit	Qualifier	MDL	RL
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Di-n-butylphthalate		ug/Kg	U	99	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Di-n-octylphthalate		ug/Kg	U	96	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Fluoranthene		ug/Kg	U	120	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Fluorene		ug/Kg	U	120	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Hexachlorobenzene		ug/Kg	U	110	190
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Hexachlorobutadiene		ug/Kg	U	130	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Hexachlorocyclopentadiene		ug/Kg	U	110	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Hexachloroethane		ug/Kg	U	110	190
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Indeno(1,2,3-cd)pyrene		ug/Kg	U	120	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Isophorone		ug/Kg	U	100	190
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Naphthalene		ug/Kg	U	110	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Nitrobenzene		ug/Kg	U	130	190
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	N-Nitrosodimethylamine		ug/Kg	U	100	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	120	190
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	140	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Pentachloronitrobenzene		ug/Kg	U	140	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Pentachlorophenol		ug/Kg	U	140	220
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Phenanthrene		ug/Kg	U	110	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Phenol		ug/Kg	U	120	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Pyrene		ug/Kg	U	130	260
15B20 (12-14)	BV81850	SW8270	11/10/2016	1	Pyridine		ug/Kg	U	91	260
SOIL DUPLICATE	BV81851	E160.3	11/10/2016	1	SOLIDS, PERCENT	87	%			
SOIL DUPLICATE	BV81851	SW6010	11/10/2016	10	Aluminum	3140	mg/Kg		7.2	36
SOIL DUPLICATE	BV81851	SW6010	11/10/2016	1	Antimony		mg/Kg	U	2.0	2.0
SOIL DUPLICATE	BV81851	SW6010	11/10/2016	1	Arsenic		mg/Kg	U	0.72	0.72
SOIL DUPLICATE	BV81851	SW6010	11/10/2016	1	Barium	18.5	mg/Kg		0.36	0.7
SOIL DUPLICATE	BV81851	SW6010	11/10/2016	1	Beryllium	0.15	mg/Kg	J	0.14	0.29
SOIL DUPLICATE	BV81851	SW6010	11/10/2016	1	Cadmium		mg/Kg	U	0.36	0.36
SOIL DUPLICATE	BV81851	SW6010	11/10/2016	1	Calcium	468	mg/Kg		3.3	3.6
SOIL DUPLICATE	BV81851	SW6010	11/10/2016	1	Chromium	5.49	mg/Kg		0.36	0.36
SOIL DUPLICATE	BV81851	SW6010	11/10/2016	1	Cobalt	3.40	mg/Kg		0.36	0.36
SOIL DUPLICATE	BV81851	SW6010	11/10/2016	1	Copper	6.22	mg/Kg		0.36	0.36
SOIL DUPLICATE	BV81851	SW6010	11/10/2016	1	Iron	7510	mg/Kg	J	3.6	3.6
SOIL DUPLICATE	BV81851	SW6010	11/10/2016	1	Lead	1.0	mg/Kg		0.39	8.0
SOIL DUPLICATE	BV81851	SW6010	11/10/2016	1	Magnesium	1230	mg/Kg		3.6	3.6
SOIL DUPLICATE	BV81851	SW6010	11/10/2016	10	Manganese	219	mg/Kg	J	3.6	3.6
SOIL DUPLICATE	BV81851	SW6010	11/10/2016	1	Nickel	6.41	mg/Kg		0.36	0.36

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SOIL DUPLICATE	BV81851	SW6010	11/10/2016	1	Potassium	344	mg/Kg		2.8	7
SOIL DUPLICATE	BV81851	SW6010	11/10/2016	1	Selenium		mg/Kg	U	1.2	1.4
SOIL DUPLICATE	BV81851	SW6010	11/10/2016	1	Silver		mg/Kg	Ü	0.36	0.36
SOIL DUPLICATE	BV81851	SW6010	11/10/2016	1	Sodium	59	mg/Kg	_	3.1	7
SOIL DUPLICATE	BV81851	SW6010	11/10/2016	1	Thallium		mg/Kg	U	1.4	1.4
SOIL DUPLICATE	BV81851	SW6010	11/10/2016	1	Vanadium	8.92	mg/Kg		0.36	0.36
SOIL DUPLICATE	BV81851	SW6010	11/10/2016	1	Zinc	12.3	mg/Kg		0.36	0.7
SOIL DUPLICATE	BV81851	SW7471	11/10/2016	1	Mercury		mg/Kg	UJ	0.02	0.03
SOIL DUPLICATE	BV81851	SW8081	11/10/2016	2	4,4' -DDD		ug/Kg	U	2.2	2.2
SOIL DUPLICATE	BV81851	SW8081	11/10/2016	2	4,4' -DDE		ug/Kg	U	2.2	2.2
SOIL DUPLICATE	BV81851	SW8081	11/10/2016	2	4,4' -DDT		ug/Kg	U	2.2	2.2
SOIL DUPLICATE	BV81851	SW8081	11/10/2016	2	a-BHC		ug/Kg	U	7.4	7.4
SOIL DUPLICATE	BV81851	SW8081	11/10/2016	2	a-Chlordane		ug/Kg	U	3.7	3.7
SOIL DUPLICATE	BV81851	SW8081	11/10/2016	2	Aldrin		ug/Kg	U	3.7	3.7
SOIL DUPLICATE	BV81851	SW8081	11/10/2016	2	b-BHC		ug/Kg	U	7.4	7.4
SOIL DUPLICATE	BV81851	SW8081	11/10/2016	2	Chlordane		ug/Kg	U	37	37
SOIL DUPLICATE	BV81851	SW8081	11/10/2016	2	d-BHC		ug/Kg	U	7.4	7.4
SOIL DUPLICATE	BV81851	SW8081	11/10/2016	2	Dieldrin		ug/Kg	U	3.7	3.7
SOIL DUPLICATE	BV81851	SW8081	11/10/2016	2	Endosulfan I		ug/Kg	U	7.4	7.4
SOIL DUPLICATE	BV81851	SW8081	11/10/2016	2	Endosulfan II		ug/Kg	U	7.4	7.4
SOIL DUPLICATE	BV81851	SW8081	11/10/2016	2	Endosulfan sulfate		ug/Kg	U	7.4	7.4
SOIL DUPLICATE	BV81851	SW8081	11/10/2016	2	Endrin		ug/Kg	U	7.4	7.4
SOIL DUPLICATE	BV81851	SW8081	11/10/2016	2	Endrin aldehyde		ug/Kg	U	7.4	7.4
SOIL DUPLICATE	BV81851	SW8081	11/10/2016	2	Endrin ketone		ug/Kg	U	7.4	7.4
SOIL DUPLICATE	BV81851	SW8081	11/10/2016	2	g-BHC		ug/Kg	U	1.5	1.5
SOIL DUPLICATE	BV81851	SW8081	11/10/2016	2	g-Chlordane		ug/Kg	U	3.7	3.7
SOIL DUPLICATE	BV81851	SW8081	11/10/2016	2	Heptachlor		ug/Kg	U	7.4	7.4
SOIL DUPLICATE	BV81851	SW8081	11/10/2016	2	Heptachlor epoxide		ug/Kg	U	7.4	7.4
SOIL DUPLICATE	BV81851	SW8081	11/10/2016	2	Methoxychlor		ug/Kg	U	37	37
SOIL DUPLICATE	BV81851	SW8081	11/10/2016	2	Toxaphene		ug/Kg	U	150	150
SOIL DUPLICATE	BV81851	SW8082	11/10/2016	2	PCB-1016		ug/Kg	U	74	74
SOIL DUPLICATE	BV81851	SW8082	11/10/2016	2	PCB-1221		ug/Kg	U	74	74
SOIL DUPLICATE	BV81851	SW8082	11/10/2016	2	PCB-1232		ug/Kg	U	74	74
SOIL DUPLICATE	BV81851	SW8082	11/10/2016	2	PCB-1242		ug/Kg	U	74	74
SOIL DUPLICATE	BV81851	SW8082	11/10/2016	2	PCB-1248		ug/Kg	U	74	74
SOIL DUPLICATE	BV81851	SW8082	11/10/2016	2	PCB-1254		ug/Kg	U	74	74
SOIL DUPLICATE	BV81851	SW8082	11/10/2016	2	PCB-1260		ug/Kg	U	74	74

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte Re		Unit	Qualifier	MDL	RL
SOIL DUPLICATE	BV81851	SW8082	11/10/2016	2	PCB-1262		ug/Kg	U	74	74
SOIL DUPLICATE	BV81851	SW8082	11/10/2016	2	PCB-1268		ug/Kg	Ü	74	74
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	Ü	0.93	19
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	1,1,1-Trichloroethane		ug/Kg	Ü	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	Ū	0.93	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	1,1,2-Trichloroethane		ug/Kg	Ū	0.93	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	1,1-Dichloroethane		ug/Kg	U	0.93	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	1,1-Dichloroethene		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	1,1-Dichloropropene		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	1,2,3-Trichlorobenzene		ug/Kg	UJ	0.93	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	1,2,3-Trichloropropane		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	1,2,4-Trichlorobenzene		ug/Kg	UJ	0.93	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	1,2,4-Trimethylbenzene		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	0.93	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	1,2-Dibromoethane		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	1,2-Dichlorobenzene		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	1,2-Dichloroethane		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	1,2-Dichloropropane		ug/Kg	U	0.93	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	1,3,5-Trimethylbenzene		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	1,3-Dichlorobenzene		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	1,3-Dichloropropane		ug/Kg	U	0.93	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	1,4-Dichlorobenzene		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	1,4-dioxane		ug/Kg	U	37	70
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	2,2-Dichloropropane		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	2-Chlorotoluene		ug/Kg	U	0.93	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	2-Hexanone		ug/Kg	UJ	4.7	23
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	2-Isopropyltoluene		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	4-Chlorotoluene		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	4-Methyl-2-pentanone		ug/Kg	UJ	4.7	23
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Acetone		ug/Kg	UJ	4.7	23
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Acrolein		ug/Kg	UJ	2.3	19
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Acrylonitrile		ug/Kg	U	0.47	19
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Benzene		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Bromobenzene		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Bromochloromethane		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Bromodichloromethane		ug/Kg	U	0.93	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Bromoform		ug/Kg	U	0.93	4.7

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte Resul		Unit	Qualifier	MDL	RL
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Bromomethane		ug/Kg	U	1.9	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Carbon Disulfide		ug/Kg	Ū	0.93	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Carbon tetrachloride		ug/Kg	Ū	0.93	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Chlorobenzene		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Chloroethane		ug/Kg	UJ	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Chloroform		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Chloromethane		ug/Kg	U	0.93	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	cis-1,2-Dichloroethene		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	cis-1,3-Dichloropropene		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Dibromochloromethane		ug/Kg	U	0.93	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Dibromomethane		ug/Kg	U	0.93	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Dichlorodifluoromethane		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Ethylbenzene		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Hexachlorobutadiene		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Isopropylbenzene		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	m&p-Xylene		ug/Kg	U	0.93	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Methyl Ethyl Ketone		ug/Kg	UJ	4.7	28
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Methyl t-butyl ether (MTBE)		ug/Kg	U	0.93	9.3
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Methylene chloride		ug/Kg	U	4.7	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Naphthalene		ug/Kg	U	0.93	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	n-Butylbenzene		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	n-Propylbenzene		ug/Kg	U	0.93	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	o-Xylene		ug/Kg	U	0.93	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	p-Isopropyltoluene		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	sec-Butylbenzene		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Styrene		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Tert-butyl alcohol		ug/Kg	U	19	93
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	tert-Butylbenzene		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Tetrachloroethene		ug/Kg	U	0.93	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Tetrahydrofuran (THF)		ug/Kg	U	2.3	9.3
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Toluene		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	trans-1,2-Dichloroethene		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	trans-1,3-Dichloropropene		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	trans-1,4-dichloro-2-butene		ug/Kg	U	2.3	9.3
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Trichloroethene		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Trichlorofluoromethane		ug/Kg	U	0.93	4.7
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Trichlorotrifluoroethane		ug/Kg	U	0.47	4.7

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SOIL DUPLICATE	BV81851	SW8260	11/10/2016	1	Vinyl chloride		ug/Kg	U	0.47	4.7
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	130	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	1,2,4-Trichlorobenzene		ug/Kg	Ū	110	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	1,2-Dichlorobenzene		ug/Kg	U	110	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	120	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	1,3-Dichlorobenzene		ug/Kg	U	110	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	1,4-Dichlorobenzene		ug/Kg	U	110	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	2,4,5-Trichlorophenol		ug/Kg	U	210	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	120	190
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	2,4-Dichlorophenol		ug/Kg	U	130	190
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	2,4-Dimethylphenol		ug/Kg	U	93	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	2,4-Dinitrophenol		ug/Kg	UJ	260	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	2,4-Dinitrotoluene		ug/Kg	U	150	190
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	2,6-Dinitrotoluene		ug/Kg	U	120	190
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	2-Chloronaphthalene		ug/Kg	U	110	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	2-Chlorophenol		ug/Kg	U	110	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	2-Methylnaphthalene		ug/Kg	U	110	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	180	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	2-Nitroaniline		ug/Kg	U	260	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	2-Nitrophenol		ug/Kg	U	240	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	150	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	180	190
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	3-Nitroaniline		ug/Kg	U	750	380
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	4,6-Dinitro-2-methylphenol		ug/Kg	UJ	75	230
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	110	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	130	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	4-Chloroaniline		ug/Kg	U	180	300
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	130	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	4-Nitroaniline		ug/Kg	U	130	380
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	4-Nitrophenol		ug/Kg	U	170	380
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Acenaphthene		ug/Kg	U	110	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Acenaphthylene		ug/Kg	U	110	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Acetophenone		ug/Kg	U	120	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Aniline		ug/Kg	U	300	300
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Anthracene		ug/Kg	U	120	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Benz(a)anthracene		ug/Kg	U	130	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Benzidine		ug/Kg	UJ	220	380

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte Resul		Unit	Qualifier	MDL	RL
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Benzo(a)pyrene		ug/Kg	U	120	190
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Benzo(b)fluoranthene		ug/Kg	U	130	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Benzo(ghi)perylene		ug/Kg	U	120	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Benzo(k)fluoranthene		ug/Kg	U	120	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Benzoic acid		ug/Kg	UJ	750	1900
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Benzyl butyl phthalate		ug/Kg	U	97	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	100	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	100	190
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	100	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	110	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Carbazole		ug/Kg	U	150	190
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Chrysene		ug/Kg	U	130	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Dibenz(a,h)anthracene		ug/Kg	U	120	190
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Dibenzofuran		ug/Kg	U	110	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Diethyl phthalate		ug/Kg	U	120	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Dimethylphthalate		ug/Kg	U	120	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Di-n-butylphthalate		ug/Kg	U	100	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Di-n-octylphthalate		ug/Kg	U	97	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Fluoranthene		ug/Kg	U	120	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Fluorene		ug/Kg	U	120	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Hexachlorobenzene		ug/Kg	U	110	190
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Hexachlorobutadiene		ug/Kg	U	140	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Hexachlorocyclopentadiene		ug/Kg	U	120	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Hexachloroethane		ug/Kg	U	110	190
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Indeno(1,2,3-cd)pyrene		ug/Kg	U	120	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Isophorone		ug/Kg	U	110	190
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Naphthalene		ug/Kg	U	110	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Nitrobenzene		ug/Kg	U	130	190
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	N-Nitrosodimethylamine		ug/Kg	U	110	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	120	190
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	140	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Pentachloronitrobenzene		ug/Kg	U	140	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Pentachlorophenol		ug/Kg	U	140	230
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Phenanthrene		ug/Kg	U	110	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Phenol		ug/Kg	U	120	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Pyrene		ug/Kg	U	130	260
SOIL DUPLICATE	BV81851	SW8270	11/10/2016	1	Pyridine		ug/Kg	U	93	260

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte Result		Unit	Qualifier	MDL	RL
BV81852-TB	BV81852	SW8260	11/10/2016	50	1,1,1,2-Tetrachloroethane		ug/Kg	U	50	1000
BV81852-TB	BV81852	SW8260	11/10/2016	50	1,1,1-Trichloroethane		ug/Kg	U	25	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	1,1,2,2-Tetrachloroethane		ug/Kg	U	50	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	1,1,2-Trichloroethane		ug/Kg	U	50	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	1,1-Dichloroethane		ug/Kg	U	50	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	1,1-Dichloroethene		ug/Kg	U	25	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	1,1-Dichloropropene		ug/Kg	U	25	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	1,2,3-Trichlorobenzene		ug/Kg	U	50	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	1,2,3-Trichloropropane		ug/Kg	U	25	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	1,2,4-Trichlorobenzene		ug/Kg	U	50	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	1,2,4-Trimethylbenzene		ug/Kg	U	25	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	1,2-Dibromo-3-chloropropane		ug/Kg	U	50	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	1,2-Dibromoethane		ug/Kg	U	25	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	1,2-Dichlorobenzene		ug/Kg	U	25	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	1,2-Dichloroethane		ug/Kg	U	25	25
BV81852-TB	BV81852	SW8260	11/10/2016	50	1,2-Dichloropropane		ug/Kg	U	50	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	1,3,5-Trimethylbenzene		ug/Kg	U	25	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	1,3-Dichlorobenzene		ug/Kg	U	25	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	1,3-Dichloropropane		ug/Kg	U	50	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	1,4-Dichlorobenzene		ug/Kg	U	25	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	1,4-dioxane		ug/Kg	U	2000	2000
BV81852-TB	BV81852	SW8260	11/10/2016	50	2,2-Dichloropropane		ug/Kg	U	25	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	2-Chlorotoluene		ug/Kg	U	50	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	2-Hexanone		ug/Kg	U	250	1300
BV81852-TB	BV81852	SW8260	11/10/2016	50	2-Isopropyltoluene		ug/Kg	U	25	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	4-Chlorotoluene		ug/Kg	U	25	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	4-Methyl-2-pentanone		ug/Kg	U	250	1300
BV81852-TB	BV81852	SW8260	11/10/2016	50	Acetone		ug/Kg	UJ	250	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	Acrolein		ug/Kg	UJ	130	1000
BV81852-TB	BV81852	SW8260	11/10/2016	50	Acrylonitrile		ug/Kg	U	25	1000
BV81852-TB	BV81852	SW8260	11/10/2016	50	Benzene		ug/Kg	U	25	60
BV81852-TB	BV81852	SW8260	11/10/2016	50	Bromobenzene		ug/Kg	U	25	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	Bromochloromethane		ug/Kg	U	25	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	Bromodichloromethane		ug/Kg	U	50	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	Bromoform		ug/Kg	U	50	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	Bromomethane		ug/Kg	U	100	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	Carbon Disulfide		ug/Kg	U	50	250

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte Result		Unit	Qualifier	MDL	RL
BV81852-TB	BV81852	SW8260	11/10/2016	50	Carbon tetrachloride		ug/Kg	U	50	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	Chlorobenzene		ug/Kg	Ū	25	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	Chloroethane		ug/Kg	UJ	25	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	Chloroform		ug/Kg	U	25	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	Chloromethane		ug/Kg	U	50	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	cis-1,2-Dichloroethene		ug/Kg	U	25	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	cis-1,3-Dichloropropene		ug/Kg	U	25	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	Dibromochloromethane		ug/Kg	U	50	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	Dibromomethane		ug/Kg	U	50	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	Dichlorodifluoromethane		ug/Kg	U	25	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	Ethylbenzene		ug/Kg	U	25	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	Hexachlorobutadiene		ug/Kg	U	25	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	Isopropylbenzene		ug/Kg	U	25	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	m&p-Xylene		ug/Kg	U	50	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	Methyl Ethyl Ketone		ug/Kg	UJ	250	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	Methyl t-butyl ether (MTBE)		ug/Kg	U	50	500
BV81852-TB	BV81852	SW8260	11/10/2016	50	Methylene chloride		ug/Kg	U	250	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	Naphthalene		ug/Kg	U	50	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	n-Butylbenzene		ug/Kg	U	25	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	n-Propylbenzene		ug/Kg	U	50	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	o-Xylene		ug/Kg	U	50	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	p-Isopropyltoluene		ug/Kg	U	25	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	sec-Butylbenzene		ug/Kg	U	25	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	Styrene		ug/Kg	U	25	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	Tert-butyl alcohol		ug/Kg	U	1000	5000
BV81852-TB	BV81852	SW8260	11/10/2016	50	tert-Butylbenzene		ug/Kg	U	25	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	Tetrachloroethene		ug/Kg	U	50	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	Tetrahydrofuran (THF)		ug/Kg	U	130	500
BV81852-TB	BV81852	SW8260	11/10/2016	50	Toluene		ug/Kg	U	25	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	trans-1,2-Dichloroethene		ug/Kg	U	25	190
BV81852-TB	BV81852	SW8260	11/10/2016	50	trans-1,3-Dichloropropene		ug/Kg	U	25	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	trans-1,4-dichloro-2-butene		ug/Kg	U	130	500
BV81852-TB	BV81852	SW8260	11/10/2016	50	Trichloroethene		ug/Kg	U	25	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	Trichlorofluoromethane		ug/Kg	U	50	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	Trichlorotrifluoroethane		ug/Kg	U	25	250
BV81852-TB	BV81852	SW8260	11/10/2016	50	Vinyl chloride		ug/Kg	U	25	25
BV81853-TB	BV81853	SW8260	11/10/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	1.0	20

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte Result		Unit	Qualifier	MDL	RL
BV81853-TB	BV81853	SW8260	11/10/2016	1	1,1,1-Trichloroethane		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	1.0	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	1,1,2-Trichloroethane		ug/Kg	U	1.0	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	1,1-Dichloroethane		ug/Kg	U	1.0	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	1,1-Dichloroethene		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	1,1-Dichloropropene		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	1,2,3-Trichlorobenzene		ug/Kg	U	1.0	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	1,2,3-Trichloropropane		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	1.0	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	1,2,4-Trimethylbenzene		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	1.0	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	1,2-Dibromoethane		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	1,2-Dichlorobenzene		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	1,2-Dichloroethane		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	1,2-Dichloropropane		ug/Kg	U	1.0	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	1,3,5-Trimethylbenzene		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	1,3-Dichlorobenzene		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	1,3-Dichloropropane		ug/Kg	U	1.0	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	1,4-Dichlorobenzene		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	1,4-dioxane		ug/Kg	U	40	75
BV81853-TB	BV81853	SW8260	11/10/2016	1	2,2-Dichloropropane		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	2-Chlorotoluene		ug/Kg	U	1.0	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	2-Hexanone		ug/Kg	U	5.0	25
BV81853-TB	BV81853	SW8260	11/10/2016	1	2-Isopropyltoluene		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	4-Chlorotoluene		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	4-Methyl-2-pentanone		ug/Kg	U	5.0	25
BV81853-TB	BV81853	SW8260	11/10/2016	1	Acetone		ug/Kg	UJ	5.0	25
BV81853-TB	BV81853	SW8260	11/10/2016	1	Acrolein		ug/Kg	UJ	2.5	20
BV81853-TB	BV81853	SW8260	11/10/2016	1	Acrylonitrile		ug/Kg	U	0.50	20
BV81853-TB	BV81853	SW8260	11/10/2016	1	Benzene		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	Bromobenzene		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	Bromochloromethane		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	Bromodichloromethane		ug/Kg	U	1.0	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	Bromoform		ug/Kg	U	1.0	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	Bromomethane		ug/Kg	U	2.0	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	Carbon Disulfide		ug/Kg	U	1.0	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	Carbon tetrachloride		ug/Kg	U	1.0	5.0

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte Result		Unit	Qualifier	MDL	RL
BV81853-TB	BV81853	SW8260	11/10/2016	1	Chlorobenzene		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	Chloroethane		ug/Kg	UJ	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	Chloroform		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	Chloromethane		ug/Kg	U	1.0	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	cis-1,2-Dichloroethene		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	cis-1,3-Dichloropropene		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	Dibromochloromethane		ug/Kg	U	1.0	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	Dibromomethane		ug/Kg	U	1.0	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	Dichlorodifluoromethane		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	Ethylbenzene		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	Hexachlorobutadiene		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	Isopropylbenzene		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	m&p-Xylene		ug/Kg	U	1.0	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	Methyl Ethyl Ketone		ug/Kg	UJ	5.0	30
BV81853-TB	BV81853	SW8260	11/10/2016	1	Methyl t-butyl ether (MTBE)		ug/Kg	U	1.0	10
BV81853-TB	BV81853	SW8260	11/10/2016	1	Methylene chloride		ug/Kg	U	5.0	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	Naphthalene		ug/Kg	U	1.0	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	n-Butylbenzene		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	n-Propylbenzene		ug/Kg	U	1.0	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	o-Xylene		ug/Kg	U	1.0	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	p-Isopropyltoluene		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	sec-Butylbenzene		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	Styrene		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	Tert-butyl alcohol		ug/Kg	U	20	100
BV81853-TB	BV81853	SW8260	11/10/2016	1	tert-Butylbenzene		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	Tetrachloroethene		ug/Kg	U	1.0	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	Tetrahydrofuran (THF)		ug/Kg	U	2.5	10
BV81853-TB	BV81853	SW8260	11/10/2016	1	Toluene		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	trans-1,2-Dichloroethene		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	trans-1,3-Dichloropropene		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	trans-1,4-dichloro-2-butene		ug/Kg	U	2.5	10
BV81853-TB	BV81853	SW8260	11/10/2016	1	Trichloroethene		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	Trichlorofluoromethane		ug/Kg	U	1.0	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	Trichlorotrifluoroethane		ug/Kg	U	0.50	5.0
BV81853-TB	BV81853	SW8260	11/10/2016	1	Vinyl chloride		ug/Kg	U	0.50	5.0

DATA USABILITY SUMMARY REPORT (DUSR) SEMI-VOLATILE ORGANIC COMPOUNDS

USEPA Region II -Data Validation

Project Name: 1181 Flushing Avenue

Location: Brooklyn, New York

Project Number: 3020-026

SDG #: GBV82267

Client: Environmental Business Consultants

Date: 02/17/2017

Laboratory: Phoenix Environmental Laboratories, Inc.

Reviewer: Sherri Pullar

Summary:

- 1. Data validation was performed on the data for six (6) soil samples analyzed for Semi-volatiles by SW-846 Method 8270D in accordance with the NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 11/11/2016. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 11/14/2016 for analysis.
- 3. The USEPA Region-II SOP HW-35, Revision 2, March 2013, Validating Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry, SW-846 Method 8270D was used in evaluating the Semi-volatiles data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (see discussion below).

Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory	Collection	Analysis	Matrix	Sample Status
	Sample ID	Date			
15B6 (5-7)	BV82267	11/11/16	SVO	Soil	
15B6 (12-14)	BV82268	11/11/16	SVO	Soil	
15B7 (12-14)	BV82270	11/11/16	SVO	Soil	
15B7 (18-20)	BV82271	11/11/16	SVO	Soil	
15B7 (23-25)	BV82272	11/11/16	SVO	Soil	
SOIL DUPLICATE 2	BV82274	11/11/16	SVO	Soil	Field Duplicate to Sample
					15B7 (12-14)

Sample Conditions/Problems:

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

Holding Times:

1. All soil samples were extracted within 14 days from sample collection and analyzed within 40 days following sample extraction. No qualifications were required.

GC/MS Tuning:

1. All of the DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria. No qualifications were required.

Initial Calibration:

1. Initial calibration curve analyzed on 11/04/2016 (CHEM05) exhibited acceptable %RSDs (≤30.0%) for CCC compounds and average RRF values for SPCC compounds. Also, %RSDs for all other compounds were ≤20.0% and average RRF (>0.050) with the following exception(s):

Compound	%RSD
2,4-Dinitrophenol	41.5
Pentachlorophenol	34.3

Client Sample ID	Laboratory Sample ID	Compound	Action
15B6 (5-7)	BV82267	2,4-Dinitrophenol, Pentachlorophenol	None

2. Initial calibration curve analyzed on 10/24/2016 (CHEM19) exhibited acceptable %RSDs (≤30.0%) for CCC compounds and average RRF values for SPCC compounds. Also, %RSDs for all other compounds were ≤20.0% and average RRF (>0.050) with the following exception(s):

Compound	%RSD
Benzoic Acid	20.9
2,4-Dinitrophenol	20.7

Client Sample ID	Laboratory Sample ID	Compound	Action
15B6 (12-14)	BV82268	Benzoic Acid, 2,4-Dinitrophenol	None
15B7 (12-14)	BV82270	Benzoic Acid, 2,4-Dinitrophenol	None
15B7 (18-20)	BV82271	Benzoic Acid, 2,4-Dinitrophenol	None
15B7 (23-25)	BV82272	Benzoic Acid	J
		2,4-Dinitrophenol	None
SOIL DUPLICATE 2	BV82274	Benzoic Acid, 2,4-Dinitrophenol	None

Continuing Calibration Verification (CCV):

1. CCV analyzed on 11/15/2016 @ 09:26 (CHEM05) exhibited acceptable %Ds (≤40.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤25.0% with the following exception(s):

Compound	% D
Pentachlorophenol	-27.2

Client Sample ID	Laboratory Sample ID	Compound	Action
15B6 (5-7)	BV82267	Pentachlorophenol	UJ

- 2. CCV analyzed on 11/15/2016 @ 20:36 (CHEM05) exhibited acceptable %Ds (≤50.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤50.0%. No qualifications were required.
- 3. CCV analyzed on 11/14/2016 @ 19:06 (CHEM19) exhibited acceptable %Ds (≤40.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤25.0%. No qualifications were required.

4. CCV analyzed on 11/14/2016 @ 23:51 (CHEM19) exhibited acceptable %Ds (≤50.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤50.0%. No qualifications were required.

Surrogates:

1. Surrogate %REC values were within the QC acceptance limits. No qualifications were required.

Internal Standard (IS) Area Performance:

1. All samples exhibited acceptable area count for all six internal standards. No qualifications were required.

Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

1. Method Blank (BV82268 BLANK) associated with the soil samples extracted on 11/14/2016 and analyzed on 11/14/2016 was free of contamination. No qualifications were required.

Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):

1. Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD) associated with Batch ID: BV82268 were analyzed on 11/14/2016. All %RECs and RPDs were within the laboratory control limits with the following exception(s):

Compound	%R/%R/RPD	Sample	Action
		Affected	
1,3-Dichlorobenzene	43/49/A	15B6 (12-14), 15B7 (12-14), 15B7 (18-20),	UJ
		15B7 (23-25), SOIL DUPLICATE 2	
1,4-Dichlorobenzene	48/56/A	15B6 (12-14), 15B7 (12-14), 15B7 (18-20),	UJ
		15B7 (23-25), SOIL DUPLICATE 2	
1,2-Dichlorobenzene	52/57/A	15B6 (12-14), 15B7 (12-14), 15B7 (18-20),	UJ
		15B7 (23-25), SOIL DUPLICATE 2	
Benzoic Acid	9/3/109.6	15B6 (12-14), 15B7 (12-14), 15B7 (18-20)	UJ
		SOIL DUPLICATE 2	UJ
		15B7 (23-25)	J
Naphthalene	61/66/A	15B6 (12-14), 15B7 (12-14), 15B7 (18-20),	UJ
		15B7 (23-25), SOIL DUPLICATE 2	
2,4-Dinitrophenol	16/7/74.7	15B6 (12-14), 15B7 (12-14), 15B7 (18-20),	UJ
		15B7 (23-25), SOIL DUPLICATE 2	
4,6-Dinitro-2-methylphenol	A/25/55.1	15B6 (12-14), 15B7 (12-14), 15B7 (18-20),	UJ

Compound	%R/%R/RPD	Sample	Action
		Affected	
		15B7 (23-25), SOIL DUPLICATE 2	
Benzidine	17/19/A	15B6 (12-14), 15B7 (12-14), 15B7 (18-20),	UJ
		15B7 (23-25), SOIL DUPLICATE 2	

A= Acceptable

Field Duplicate:

1. Sample SOIL DUPLICATE 2 (BV82274) was collected as a field duplicate of sample 15B7 (12-14) (BV82270). Both samples were non-detect for SVOCs. No qualifications were required.

Matrix Spike (MS)/Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS) was performed on sample 15B6 (12-14) (BV82268). All %RECs were within the laboratory control limits with the following exception(s):

Compound	%R	Sample Affected	Action
1,3-Dichlorobenzene	50/48/A	15B6 (12-14)	$\mathbf{U}\mathbf{J}^{\scriptscriptstyle 1}$
1,4-Dichlorobenzene	56/53/A	15B6 (12-14)	$\mathbf{U}\mathbf{J}^1$
			-
1,2-Dichlorobenzene	61/57/A	15B6 (12-14)	$\mathbf{U}\mathbf{J}^{\scriptscriptstyle 1}$
Naphthalene	A/67/A	15B6 (12-14)	UJ^1
Benzidine	6/5/A	15B6 (12-14)	UJ^1

A= Acceptable

(1) Results for these compounds were qualified previously due to LCS recovery criteria.

Target Compound Identification:

- 1. All Relative Retention Times (RRTs) of the reported compounds were within \pm 0.06 RRT units of the standard (opening CCV).
- 2. Sample compound spectra were compared against the laboratory standard spectra.
- 3. No QC deviations were observed.

Compound Quantitation and Reported Detection Limits:

1. All sample results were reported within the linear calibration range.

- 2. %Solids for all soil samples in this SDG were >50%. No qualifications were required.
- 3. Manual Calculation:

$$Cx = \frac{(Ax)(IS)(VE)(DF)}{(Ais)(RRF)(Volume injected, \mu L)(V)(\%Solids)}$$

Cx = concentration of analyte as ug/kg

Ax = Area of the characteristic ion for the compound to be measured, counts.

Ais = Area of the characteristic ion for the specific internal standard, counts.

IS = Concentration of the internal standard spiking mixture, ng

RRF= Mean relative response factor from the initial calibration.

DF = Dilution factor calculated. If no dilution is performed, DF= 1

V= Volume for liquids in ml, weight for soils/solids in grams.

VE= final volume of concentrated extract

Sample: BV82268 LCS

Pyrene

Sample weight= 15g Volume purged=1.0ml

DF = 1

%Solids=NA

Concentration (
$$\mu$$
g/kg) (dry) = $\underline{677203 \times 40 \times 1 \times 1000}$ = 2466.7 μ g/kg $\underline{503616 \times 1.454 \times 15}$

	Laboratory	Validation	
Compound	(µg/kg)	$(\mu g/kg)$	%D
Pyrene	2467	2467	0.0

Comments:

- 1. Semivolatile data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GBV82267.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GBV82267.

DATA USABILITY SUMMARY REPORT (DUSR) VOLATILE ORGANIC COMPOUNDS

USEPA Region II -Data Validation

Project Name: 1181 Flushing Avenue

Location: Brooklyn, New York

Project Number: 3020-026

SDG #: GBV82267

Client: Environmental Business Consultants

Date: 02/17/2017

Laboratory: Phoenix Environmental Laboratories, Inc.

Reviewer: Sherri Pullar

Summary:

- 1. Data validation was performed on the data for six (6) soil samples and two (2) trip blanks analyzed for Volatiles by SW-846 Method 8260C in accordance to NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 11/11/2016. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 11/14/2016 for analysis.
- 3. The USEPA Region-II SOP HW-24, Revision 4, October 2014, Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry, SW-846 Method 8260C was used in evaluating the Volatiles data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (see discussion below).

Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory	Collection	Analysis	Matrix	Sample Status
	Sample ID	Date			
15B6 (5-7)	BV82267	11/11/16	VOA	Soil	
15B6 (12-14)	BV82268	11/11/16	VOA	Soil	
15B7 (12-14)	BV82270	11/11/16	VOA	Soil	
15B7 (18-20)	BV82271	11/11/16	VOA	Soil	
15B7 (23-25)	BV82272	11/11/16	VOA	Soil	
SOIL DUPLICATE 2	BV82274	11/11/16	VOA	Soil	Field Duplicate to Sample
					15B7 (12-14)
Trip Blank High	BV82275	11/11/16	VOA	Soil	
Trip Blank Low	BV82276	11/11/16	VOA	Soil	

Sample Conditions/Problems:

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

Holding Times:

1. All soil samples were analyzed within 14 days from sample collection. No qualifications were required.

GC/MS Tuning:

1. All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria. No qualifications were required.

Initial Calibration:

1. Initial calibration curve analyzed on 11/11/2016 (Chem03) exhibited acceptable %RSDs ($\leq 30.0\%$) for CCC compounds and average RRF values for SPCC compounds. Also, %RSDs for all other compounds were $\leq 20.0\%$ and average RRF (> 0.050) with the following exception(s):

Compound	RRF	%RSD
Chloroethane	A	25.2
Acrolein	0.036	A
Acetone	A	28.5

A= Acceptable

Client Sample ID	Laboratory Sample ID	Compound			
Trip Blank Low	BV82276	Chloroethane, Acrolein, Acetone	UJ		
Trip Blank High	BV82275	Chloroethane, Acrolein, Acetone	UJ		
15B6 (5-7)	BV82267	Chloroethane, Acrolein	UJ		
		Acetone	J		
15B7 (18-20)	BV82271	Chloroethane, Acrolein, Acetone	UJ		
15B7 (23-25) HL	BV82272	Chloroethane, Acrolein	UJ		
		Acetone	J		
15B6 (5-7) DL	BV82267	Chloroethane, Acrolein	UJ		
		Acetone	J		
15B7 (12-14)	BV82270	Chloroethane, Acrolein			
		Acetone			
15B7 (23-25) LL	BV82272	Chloroethane, Acrolein	UJ		
		Acetone			
SOIL	BV82274	Chloroethane, Acrolein	UJ		
DUPLICATE 2		Acetone	J		
15B6 (12-14)	BV82268	Chloroethane, Acrolein			
		Acetone	J		

Continuing Calibration Verification (CCV):

- 1. CCV analyzed on 11/14/2016 @ 19:35 (CHEM03) exhibited acceptable %Ds (≤30.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤30.0%. No qualifications were required.
- 2. CCV analyzed on 11/15/2016 @ 06:37 (CHEM03) exhibited acceptable %Ds ($\leq 20.0\%$) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were $\leq 20.0\%$ with the following exception(s):

Compound	RRF	%D
Acrolein ¹	A	25.0
Acetone ¹	A	30.9
Tetrahydrofuran	A	22.5
Methyl Ethyl Ketone	A	36.5
4-Methyl-2-Pentanone	A	27.3
2-Hexanone	A	29.4

A= Acceptable

(1) Results for this compound were previously qualified due to ICV criteria.

Client Sample ID	Laboratory Sample ID	Compound	
Trip Blank Low	BV82276	Acrolein, Acetone, Tetrahydrofuran, Methyl Ethyl Ketone, 4-Methyl-2-Pentanone, 2-Hexanone	UJ
Trip Blank High	BV82275	Acrolein, Acetone, Tetrahydrofuran, Methyl Ethyl Ketone, 4-Methyl-2-Pentanone, 2-Hexanone	UJ
15B6 (5-7)	BV82267	Acrolein, Tetrahydrofuran, Methyl Ethyl Ketone,	UJ
		4-Methyl-2-Pentanone, 2-Hexanone	UJ
		Acetone	J
15B7 (18-20)	BV82271	Acrolein, Acetone, Tetrahydrofuran, Methyl Ethyl Ketone,	UJ
		4-Methyl-2-Pentanone, 2-Hexanone	
15B7 (23-25) HL	BV82272	Acetone	J

- 3. CCV analyzed on 11/15/2016 @ 09:30 (CHEM03) exhibited acceptable %Ds (≤30.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤30.0%. No qualifications were required.
- 4. CCV analyzed on 11/15/2016 @ 20:12 (CHEM03) exhibited acceptable %Ds (≤20.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤20.0% with the following exception(s):

Compound	RRF	%D
Acetone	A	22.7
Methyl Ethyl Ketone	A	24.2

A= Acceptable

Client Sample ID	Laboratory Sample ID	Compound	Action
15B6 (5-7) DL	BV82267	None	None
15B7 (12-14)	BV82270	Acetone	\mathbf{J}^1
		Methyl Ethyl Ketone	
15B7 (23-25) LL	BV82272	Acetone	
		Methyl Ethyl Ketone	J
SOIL	BV82274	Acetone	
DUPLICATE 2		Methyl Ethyl Ketone	UJ
15B6 (12-14)	BV82268	Acetone	\mathbf{J}^1
		Methyl Ethyl Ketone	J

⁽¹⁾ Results for this compound were previously qualified due to ICV criteria.

Surrogates:

1. All surrogates %RECs values for all soil samples and associated QC were within the laboratory control limits. No qualifications were required.

Internal Standard (IS) Area Performance:

1. All samples exhibited acceptable area count for all three internal standards within the QC limits. No qualifications were required.

Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

- 1. Method Blank (BV82268 Blank) analyzed on 11/15/2016 was free of contamination. No qualifications were required.
- 2. Method Blank (BV82544 Blank) analyzed on 11/14/2016 was free of contamination. No qualifications were required.
- 3. Trip Blank High (BV82275) analyzed on 11/14/2016 was free of contamination. No qualifications were required.
- 4. Trip Blank Low (BV82276) analyzed on 11/14/2016 was free of contamination. No qualifications were required.

Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):

1. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with Sample ID: BV82268 were analyzed on 11/15/2016. All %RECs and RPDs were within the laboratory control limits with the following exception(s):

Compound	%R/%R/RPD	Sample	Action
		Affected	
Acetone	61/68/A	15B6 (5-7) DL	J^1
		15B7 (12-14), 15B7 (23-25) LL, SOIL	
		DUPLICATE 2, 15B6 (12-14)	
Methyl Ethyl Ketone	66/A/A	15B6 (5-7) DL, 15B7 (12-14)	UJ^1
		SOIL DUPLICATE 2	UJ^1
		15B7 (23-25) LL, 15B6 (12-14)	\mathbf{J}^1
1,2,3-Trichlorobenzene	66/A/A	15B6 (5-7) DL,	UJ
		15B6 (12-14), 15B7 (12-14), 15B7 (23-25) LL,	
		SOIL DUPLICATE 2	

A= Acceptable

- (1) Results for this compound were previously qualified due to ICV/CCV criteria.
- 2. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with Sample ID: BV82544 were analyzed on 11/14/2016. All %RECs and RPDs were within the laboratory control limits with the following exception(s):

Compound	%R/%R/RPD	Sample	Action
		Affected	
Acetone	65/66/A	Trip Blank Low, Trip Blank High, 15B6 (5-7),	UJ^1
		15B7 (18-20), 15B7 (23-25) HL	
Methyl Ethyl Ketone	67/A/A	Trip Blank Low, Trip Blank High, 15B6 (5-7)	UJ^1
		15B7 (18-20)	UJ^1
		15B7 (23-25) HL	J^1

A= Acceptable

(1) Results for this compound were previously qualified due to CCV criteria.

Field Duplicate:

1. Sample SOIL DUPLICATE 2 (BV82274) was collected as a field duplicate of sample 15B7 (12-14) (BV82270). All RPDs were <50% with the following exception(s):

Field Sample	Analyte	Analytical Method	Result	Units	Field Duplicate	Result	Units	RPD	Qualifier
15B7 (12-14)	1,2,4-Trimethylbenzene	SW-846 8260	2.3	μg/Kg	Soil Duplicate 2	1.0	μg/Kg	78.8	J
15B7 (12-14)	1,3,5-Trimethylbenzene	SW-846 8260	0.81	μg/Kg	Soil Duplicate 2	ND	μg/Kg	NC	J/UJ
15B7 (12-14)	Acetone	SW-846 8260	24	μg/Kg	Soil Duplicate 2	26	μg/Kg	8.0	None
15B7 (12-14)	Benzene	SW-846 8260	1.9	μg/Kg	Soil Duplicate 2	0.86	μg/Kg	75.4	J
15B7 (12-14)	Ethylbenzene	SW-846 8260	2.8	μg/Kg	Soil Duplicate 2	1.3	μg/Kg	73.2	J
15B7 (12-14)	M&p-Xylene	SW-846 8260	4.9	μg/Kg	Soil Duplicate 2	2.1	μg/Kg	80.0	J
15B7 (12-14)	Methyl t-butyl ether	SW-846 8260	7.5	μg/Kg	Soil Duplicate 2	5.1	μg/Kg	38.1	None
15B7 (12-14)	Naphthalene	SW-846 8260	1.1	μg/Kg	Soil Duplicate 2	ND	μg/Kg	NC	J/UJ
15B7 (12-14)	o-xylene	SW-846 8260	2.7	μg/Kg	Soil Duplicate 2	ND	μg/Kg	NC	J/UJ
15B7 (12-14)	Tert-butyl alcohol	SW-846 8260	200	μg/Kg	Soil Duplicate 2	300	μg/Kg	40	None

ND = Non-detect

NC = Not calculated

Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS) was performed on sample 15B6 (12-14) (BV82268). All %RECs were within the laboratory control limits with the following exception(s):

Compound	%R	Sample	Action
		Affected	
Acetone	A/A/52.6	15B6 (12-14)	\mathbf{J}^1
Methyl Ethyl Ketone	A/69/A	15B6 (12-14)	J^1
1,3,5-Trimethylbenzene	146/A/31.7	15B6 (12-14)	J
1,2,4-Trimethylbenzene	263/A/83.6	15B6 (12-14)	J
Naphthalene	327/132/85	15B6 (12-14)	J
Tert-butyl alcohol	A/132/A	15B6 (12-14)	None
1,4-Dioxane	A/139/A	15B6 (12-14)	None

A= Acceptable

(1) Results for these compounds were qualified previously due to LCS recovery criteria

Target Compound Identification:

- 1. All Relative Retention Times (RRTs) of the reported compounds were within \pm 0.06 RRT units of the standard (opening CCV).
- 2. Sample compound spectra were compared against the laboratory standard spectra.
- 3. No QC deviations were observed.

Compound Quantitation and Reported Detection Limits:

- 1. All sample results were reported within the linear calibration range. No qualifications were required.
- 2. %Solids for all soil samples in this SDG were >50%. No qualifications were required.
- 3. Manual Calculation:
- $Cx = \frac{(Ax)(IS)(DF)}{(Ais)(RRF)(V)(\%Solids)}$

Cx = concentration of analyte as ug/kg

Ax = Area of the characteristic ion for the compound to be measured, counts.

Ais = Area of the characteristic ion for the specific internal standard, counts.

IS = Concentration of the internal standard spiking mixture, ng

RRF= Mean relative response factor from the initial calibration.

DF = Dilution factor calculated. If no dilution is performed, DF= 1

V= Volume for liquids in ml, weight for soils/solids in grams.

BV83365 LCS

Carbon disulfide

Sample weight= 5.0g Volume purged=5.0ml DF = 1 %Solids=NA

Concentration (
$$\mu$$
g/kg) (dry) = $\frac{331522 \times 50 \times 1 \times 5.0}{279626 \times 0.999 \times 5.0}$ = 59.34 μ g/kg

	Laboratory	Validation	
Compound	(µg/kg)	$(\mu g/kg)$	%D
Carbon disulfide	59	59	0.0

Comments:

- 1. Volatile data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GBV82267.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GBV82267.

DATA USABILITY SUMMARY REPORT (DUSR) PESTICIDES

USEPA Region II -Data Validation

Project Name: 1181 Flushing Avenue

Location: Brooklyn, New York

Project Number: 3020-026

SDG #: GBV82267

Client: Environmental Business Consultants

Date: 02/17/2017

Laboratory: Phoenix Environmental Laboratories, Inc.

Reviewer: Sherri Pullar

Summary:

- 1. Data validation was performed on the data for three (3) soil samples analyzed for Pesticides by SW-846 Method 8081B in accordance with NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 11/11/2016. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 11/14/2016 for analysis.
- 3. The USEPA Region-II SOP HW-44, Revision 1, October 2006, Validating Pesticide compounds by Gas Chromatography, SW-846 Method 8081B was used in evaluating the Pesticides data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (See discussion below).

Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory Sample ID	Collection Date	Analysis	Matrix	Sample Status
15B6 (12-14)	BV82268	11/11/16	Pesticides	Soil	
15B7 (12-14)	BV82270	11/11/16	Pesticides	Soil	
SOIL DUPLICATE 2	BV82274	11/11/16	Pesticides	Soil	Field Duplicate to Sample 15B7 (12-14)

Sample Conditions/Problems:

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

Holding Times:

1. All soil samples were extracted within 14 days from sample collection and analyzed within 40 days following sample extraction. No qualifications were required.

GC/ECD Instrument Performance Check:

1. 4,4'-DDT and Endrin breakdown exhibited acceptable results (±20%). No qualifications were required.

Initial Calibration:

1. Initial calibration curve analyzed on 11/14/2016 (ECD13) exhibited acceptable %RSD on both columns. No qualifications were required.

Continuing Calibration Verification (CCV):

1. All CCVs analyzed on 11/15/2016 exhibited acceptable %Ds (≤20.0%) for all compounds. No qualifications were required.

Surrogates:

1. All surrogates %RECs values for all soil samples were within the laboratory control limits. No qualifications were required.

Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

1. Method Blank (BJ87752 BL) associated with the soil samples extracted on 11/14/2016 and analyzed on 11/16/2016 was free of contamination. No qualifications were required.

Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):

1. Laboratory Control Sample associated with ID: BV82268 LCS was analyzed on 11/16/2016. All %RECs were within the laboratory control limits. No qualifications were required.

Field Duplicate:

1. Sample SOIL DUPLICATE 2 (BV82274) was collected as a field duplicate of sample 15B7 (12-14) (BV82270). Both samples were non-detect for PCBS. No qualifications were required.

Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS)/Matrix Spike Duplicate (MSD) were performed on sample 15B6 (12-14) (BV82268). All %RECs/RPDs were within the laboratory control. No qualifications were required.

Compound Quantitation, Compound Identification and Reported Detection Limits:

- 1. All sample results were reported within the linear calibration range.
- 2. %Solids for all soil samples in this SDG were >50%. No qualifications were required.
- 3. Manual Calculation:

BV82268 LCS

Alpha-BHC

On Column concentration (A) = 35.4369ng Sample Weight= 15.0g DF = 2 Vi= 5ml %Solids= 100%

Concentration (
$$\mu$$
g/kg)(dry) = $\frac{35.4369$ ng x 5ml x 2 = 23.6 μ g/kg 15.0g

	Laboratory	Validation	
Compound	(µg/kg)	$(\mu g/kg)$	%D
Alpha-BHC	23.6	23.6	0.0

Comments:

- 1. Pesticides data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GBV82267.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GBV82267.

DATA USABILITY SUMMARY REPORT (DUSR) POLYCHLORINATED BIPHENYLIS (PCBs)

USEPA Region II -Data Validation

Project Name: 1181 Flushing Avenue

Location: Brooklyn, New York

Project Number: 3020-026

SDG #: GBV82267

Client: Environmental Business Consultants

Date: 02/17/2017

Laboratory: Phoenix Environmental Laboratories, Inc.

Reviewer: Sherri Pullar

Summary:

- 1. Data validation was performed on the data for three (3) soil samples analyzed for PCBs by SW-846 Method 8082A in accordance with NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 11/11/2016. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 11/14/2016 for analysis.
- 3. The USEPA Region-II SOP HW-37, Revision 3, May 2013, Validating PCBs compounds by Gas Chromatography, SW-846 Method 8082A was used in evaluating the PCBs data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (see discussion below).

Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory Sample ID	Collection Date	Analysis	Matrix	Sample Status
15B6 (12-14)	BV82268	11/11/16	PCBs	Soil	
15B7 (12-14)	BV82270	11/11/16	PCBs	Soil	
SOIL DUPLICATE 2	BV82274	11/11/16	PCBs	Soil	Field Duplicate to Sample 15B7 (12-14)

Sample Conditions/Problems:

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

Holding Times:

1. All soil samples were extracted within 14 days from sample collection and analyzed within 40 days following sample extraction. No qualifications were required.

Initial Calibration:

1. Initial calibration curve analyzed on 11/14/2016 (ECD24) exhibited acceptable %RSD (≤20.0%) on both columns. No qualifications were required.

Continuing Calibration Verification (CCV):

1. All CCVs analyzed on 11/14-15/2016 exhibited acceptable %Ds (≤15.0%) for all compounds. No qualifications were required.

Surrogates:

1. All surrogates %RECs values for all soil samples and associated QC were within the laboratory control limits. No qualifications were required.

Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

1. Method Blank (BV82268 BL) associated with the soil samples extracted on 11/14/2016 and analyzed on 11/15/2016 was free of contamination. No qualifications were required.

Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):

1. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with ID: BV82268 were analyzed on 11/15/2016. All %RECs and RPDs were within the laboratory control limits. No qualifications were required.

Field Duplicate:

1. Sample SOIL DUPLICATE 2 (BV82274) was collected as a field duplicate of sample 15B7 (12-14) (BV82270). Both samples were non-detect for PCBs. No qualifications were required.

Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS)/Matrix Spike Duplicate (MSD) were performed on sample 15B6 (12-14) (BV82268). All %RECs/RPDs were within the control limits. No qualifications were required.

Compound Quantitation, Compound Identification and Reported Detection Limits:

- 1. All sample results were reported within the linear calibration range.
- 2. % Solids for all soil samples in this SDG were >50%. No qualifications were required.
- 3. Manual Calculation:

BV82268 LCS

Aroclor-1016

On Column concentration (B)= 339.259ng Sample weight= 15.0g DF= 10 Vi= 5ml

%Solids= 100%

Concentration (μ g/kg) (dry) = $\frac{339.259 \text{ng x 5ml x}10}{15.0 \text{g}} = 1130.9 \mu$ g/kg

	Laboratory	Validation	
Compound	(µg/kg)	$(\mu g/kg)$	%D
Aroclor-1016	1130	1130	0.0

Comments:

- 1. PCBs data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GBV82267.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GBV82267.

DATA USABILITY SUMMARY REPORT (DUSR) TRACE METALS

USEPA Region II –Data Validation

Project Name: 1181 Flushing Avenue

Location: Brooklyn, New York

Project Number: 3020-026

Client: Environmental Business Consultants

ODate: 02/20/2017

Laboratory: Phoenix Environmental Laboratories, Inc.

Reviewer: Sherri Pullar

Summary:

- 1. Data validation was performed on the data for six (6) soil samples analyzed for the following analyses:
 - 1.1 Trace Metals-ICP-AES by SW-846 Method 6010C.
 - 1.2 Mercury by SW-846 Method 7471A.
- 2. The samples were collected on 11/11/2016. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 11/14/2016 for analysis.
- 3. The USEPA Region-II SOP No. HW-2a, Revision 15, December 2012, Validation of ICP-AES was used in evaluating the Trace Metals data and USEPA Region-II SOP No. HW-2c, Revision 15, December 2012, Validation of Mercury and Cyanide was used in evaluating the mercury data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (See discussion below).

Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory	Collection	Analysis	Matrix	Sample Status
	Sample ID	Date			
15B6 (5-7)	BV82267	11/11/16	ICP, CVAA	Soil	
15B6 (12-14)	BV82268	11/11/16	ICP, CVAA	Soil	
15B7 (12-14)	BV82270	11/11/16	ICP, CVAA	Soil	
15B7 (18-20)	BV82271	11/11/16	ICP, CVAA	Soil	
15B7 (23-25)	BV82272	11/11/16	ICP, CVAA	Soil	
SOIL DUPLICATE 2	BV82274	11/11/16	ICP, CVAA	Soil	Field Duplicate to
					Sample
					15B7 (12-14)

Sample Conditions/Problems:

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

Holding Times:

- 1. All soil samples were analyzed within the 6 months holding times for Trace Metals analysis by ICP-AES. No qualifications were required.
- 2. All soil samples were digested and analyzed within the 28 days holding times for Mercury analysis. No qualifications were required.

Initial and Continuing Calibration Verification (ICV and CCV):

ICP-AES:

1. All %RECs in the ICV and CCVs were within QC limits (90-110). No qualifications were required.

Mercury:

All correlation coefficient for Mercury calibration curve analyzed were ≥ 0.995 . No qualifications were required.

2. All ICVs and CCVs %REC values were within the QC limits (80-120%). No qualifications were required.

CRQL Check Standard (CRI):

1. All CRI analyzed %RECs were within the control limits (70-130%) with the following exception(s):

Analyte	Date Analyzed	Initial %R	Final %R	Sample Affected	Action
Iron	11/15/2016:	A	236.3	15B7 (23-25)	J
	10:16/14:24			15B6 (5-7), 15B6 (12-14), 15B7 (12-14),	
				15B7 (18-20), SOIL DUPLICATE 2	

A=Acceptable

ICP-AES Interference Check Sample:

1. All %REC values were within the QC limits (80-120%) for ICSA and ICSAB. No qualifications were required.

Blanks (Method Blank, ICB and CCB):

ICP-AES:

1. Method Blank-Soil (BV82268) digested on 11/14/2016 was free of contamination with the following exception(s):

Element	Concentration (mg/Kg)	CRQL* (µg/L)	Sample Affected	Action
Copper	0.76	5	15B7 (23-25)	U
			15B6 (5-7), 15B6 (12-14), 15B7 (12-14), 15B7 (18-20)	None
			SOIL DUPLICATE 2	None
Zinc	0.34	10	15B7 (23-25)	None
			15B6 (5-7), 15B6 (12-14), 15B7 (12-14), 15B7 (18-20)	
			SOIL DUPLICATE 2	

*= If sample concentration >MDL but < Reporting limit, then sample result qualified as non-detect (U). If sample concentration greater than CRQL but less than 10x the blank result, then qualify estimated (J). If sample concentration greater than 10x the blank results or sample was not detected then no qualifications or action is required.

2. All ICB and CCBs were free of contamination with the following exception(s):

Element	Concentration (µg/L)	CRQL* (µg/L)	Sample Affected	Action
Aluminum	99	50	None	None

^{*=} If sample concentration >MDL but < Reporting limit, then sample result qualified as non-detect (U). If sample concentration greater than CRQL but less than 10x the blank result, then qualify estimated (J). If sample concentration greater than 10x the blank results or sample was not detected then no qualifications or action is required.

Mercury:

- 1. All ICB and CCBs were free of contamination. No qualifications were required.
- 2. Method Blank (BV82268) digested on 11/15/2016 was free of contamination. No qualifications were required.

Field Blank (FB) and Equipment Blank (EB):

1. Field Blanks were not submitted with this SDG.

Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):

ICP-AES and Mercury:

1. Laboratory Control Sample %RECs were within the laboratory control limits (75-125%). No qualifications were required.

Field Duplicate:

1. Sample SOIL DUPLICATE 2 (BV82274) was collected as a field duplicate of sample 15B7 (12-14) (BV82270). All of the RPDs were ≤50% (or difference >2XCRDL). No qualifications were required.

Field Sample	Analyte	Analytical Method	Result	Units	Field Duplicate	Result	Units	Difference	RPD	Qualifier
					SOIL DUPLICATE					
15B7 (12-14)	Aluminum	SW8466010B	7000	mg/Kg	2	5940	mg/Kg	NA	16.4	None
					SOIL DUPLICATE					
15B7 (12-14)	Arsenic	SW8466010B	1.21	mg/Kg	2	1.17	mg/Kg	0.0	NA	None
					SOIL DUPLICATE					
15B7 (12-14)	Barium	SW8466010B	29.2	mg/Kg	2	24.3	mg/Kg	NA	18.3	None
					SOIL DUPLICATE					
15B7 (12-14)	Beryllium	SW8466010B	0.31	mg/Kg	2	0.25	mg/Kg	0.1	NA	None

Field Sample	Analyte	Analytical Method	Result	Units	Field Duplicate	Result	Units	Difference	RPD	Oualifier
Tiera Sampie	linaryte	Method	resure	CIIII	SOIL DUPLICATE	Resure	Cinto	Difference	III D	Quantier
15B7 (12-14)	Calcium	SW8466010B	911	mg/Kg	2	814	mg/Kg	NA	11.2	None
1357 (12 11)	Culcium	B 11 0 100010B	711	mg/11g	SOIL DUPLICATE	011	mg/11g	1111	11.2	TTORE
15B7 (12-14)	Chromium	SW8466010B	21.7	mg/Kg	2	18.0	mg/Kg	NA	18.6	None
					SOIL DUPLICATE					
15B7 (12-14)	Cobalt	SW8466010B	6.08	mg/Kg	2	5.43	mg/Kg	NA	11.3	None
					SOIL DUPLICATE					
15B7 (12-14)	Copper	SW8466010B	10.5	mg/Kg	2	8.44	mg/Kg	NA	21.8	None
					SOIL DUPLICATE					
15B7 (12-14)	Iron	SW8466010B	13500	mg/Kg	2	11400	mg/Kg	NA	16.9	None
					SOIL DUPLICATE					
15B7 (12-14)	Lead	SW8466010B	1.3	mg/Kg	2	1.3	mg/Kg	0	NA	None
					SOIL DUPLICATE					
15B7 (12-14)	Magnesium	SW8466010B	2300	mg/Kg	2	2000	mg/Kg	NA	14.0	None
1505 (10.14)		CIVIO 4 CCO 1 O.D.	201		SOIL DUPLICATE	2.45		37.1	10.5	3.7
15B7 (12-14)	Manganese	SW8466010B	301	mg/Kg	2	247	mg/Kg	NA	19.7	None
1507 (12.14)	Nr. 1 1	CIVIO 4 C CO 1 O D	0.64	mz	SOIL DUPLICATE	0.54	/TZ	NIA	10.1	N
15B7 (12-14)	Nickel	SW8466010B	9.64	mg/Kg	2	8.54	mg/Kg	NA	12.1	None
15B7 (12-14)	Potassium	SW8466010B	799	ma/V a	SOIL DUPLICATE	649	ma/V a	NA	20.7	None
13B/ (12-14)	Potassium	SW 8400010D	199	mg/Kg	SOIL DUPLICATE	049	mg/Kg	INA	20.7	None
15B7 (12-14)	Sodium	SW8466010B	182	mg/Kg	2	161	mg/Kg	NA	12.2	None
1367 (12-14)	Soutum	5 W 0-00010D	102	mg/Kg	SOIL DUPLICATE	101	mg/Kg	11//	14.4	TAOHC
15B7 (12-14)	Vanadium	SW8466010B	25.1	mg/Kg	2	18.6	mg/Kg	NA	29.7	None
1027 (12 11)	, and all	55.30010B	23.1		SOIL DUPLICATE	10.0		2,72	->.1	1.0110
15B7 (12-14)	Zinc	SW8466010B	24.7	mg/Kg	2	20.6	mg/Kg	NA	18.1	None

Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

ICP-AES and Mercury:

1. Matrix Spike (MS) was performed on sample 15B6 (12-14) (BV82268) for total metals and mercury. All %Rs were within the laboratory control limits with the following exception(s):

Compound	%R/Post %R	Sample	Action
		Affected	
Potassium	133/A	15B6 (12-14)	J
Manganese	26.3/A	15B6 (12-14)	J
Sodium	139/A	15B6 (12-14)	J

A= Acceptable

Sample Duplicate:

ICP-AES and Mercury:

1. Laboratory Duplicate was performed on sample 15B6 (12-14) (BV82268) (total) for ICP-AES, GFAA, and mercury. All RPDs were within the laboratory control limits. No qualifications were required.

ICP-AES Serial Dilution:

1. ICP serial dilution was performed on sample 15B6 (12-14) (BV82268). For all results for which the concentration in the original sample is $\geq 50x$ the Method Detection Limits (MDL), the serial dilution analysis (a five-fold dilution) was within the acceptable limit (%D \pm 10%). No qualifications were required.

Verification of Instrumental Parameters:

- 1. The following Forms were present in the data package:
 - 1.1 Method Detection Limits, Form- X.
 - 1.2 ICP-AES Interelement Correction Factors, Form -XIA and Form-XIB.
 - 1.3 ICP-AES Linear Ranges, Form XII.

Compound Quantitation and Reported Detection Limits:

- 1. All sample results were reported within the linear calibration range.
- 2. %Solids for all soil samples in this SDG were >50%. No qualifications were required.
- 3. Manual calculation:

Sample: 15B7 (12-14) (BV82270)

Lead

Concentration (mg/Kg) (dry wt.)= $\underline{C \times V \times DF \times 1Lx \ 1000gx \ 1mg}$ W x S x 1000ml x 1 kg x 1000ug

Concentration (mg/Kg) (dry wt.)= $\underline{15.99 \text{ug/L} \times 50 \times 1.0 \times 11 \times 1000 \text{gx 1mg}} = 1.251 \text{ mg/kg}$ $0.77 \times 0.83 \times 1000 \text{ml} \times 1 \text{ kg} \times 1000 \text{ug}$

	Laboratory	Validation	
Compound	(mg/kg)	(mg/kg)	%D
Lead	1.3	1.3	0.0

Comments:

- 1. Trace Metals data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GBV82267.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GBV82267.

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	1,1,1,2-Tetrachloroethane		ug/Kg	U	62	1200
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	1,1,1-Trichloroethane		ug/Kg	U	31	310
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	1,1,2,2-Tetrachloroethane		ug/Kg	U	62	310
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	1,1,2-Trichloroethane		ug/Kg	U	62	310
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	1,1-Dichloroethane		ug/Kg	U	62	270
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	1,1-Dichloroethene		ug/Kg	U	31	310
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	1,1-Dichloropropene		ug/Kg	U	31	310
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	1,2,3-Trichlorobenzene		ug/Kg	UJ	62	310
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	1,2,3-Trichloropropane		ug/Kg	U	31	310
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	1200	2400
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	1,2,4-Trichlorobenzene		ug/Kg	U	62	310
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	1,2,4-Trichlorobenzene		ug/Kg	U	1000	2400
15B6 (5-7)	BV82267	SW8260	11/11/2016	500	1,2,4-Trimethylbenzene	56000	ug/Kg	D	320	3200
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	1,2-Dibromo-3-chloropropane		ug/Kg	U	62	310
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	1,2-Dibromoethane		ug/Kg	U	31	310
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	1,2-Dichlorobenzene		ug/Kg	U	31	310
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	1,2-Dichlorobenzene		ug/Kg	U	970	2400
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	1,2-Dichloroethane		ug/Kg	U	31	31
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	1,2-Dichloropropane		ug/Kg	U	62	310
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	1,2-Diphenylhydrazine		ug/Kg	U	1100	2400
15B6 (5-7)	BV82267	SW8260	11/11/2016	500	1,3,5-Trimethylbenzene	15000	ug/Kg	D	320	3200
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	1,3-Dichlorobenzene		ug/Kg	U	31	310
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	1,3-Dichlorobenzene		ug/Kg	U	1000	2400
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	1,3-Dichloropropane		ug/Kg	U	62	310
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	1,4-Dichlorobenzene		ug/Kg	U	31	310
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	1,4-Dichlorobenzene		ug/Kg	U	1000	2400
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	1,4-dioxane		ug/Kg	U	2500	2500
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	2,2-Dichloropropane		ug/Kg	U	31	310
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	2,4,5-Trichlorophenol		ug/Kg	U	1900	2400
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	2,4,6-Trichlorophenol		ug/Kg	U	1100	1700
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	2,4-Dichlorophenol		ug/Kg	U	1200	1700
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	2,4-Dimethylphenol		ug/Kg	U	850	2400
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	2,4-Dinitrophenol		ug/Kg	U	2400	2400
15B6 (5-7)	BV82267	SW8270	11/11/2016		2,4-Dinitrotoluene		ug/Kg	U	1400	1700
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	2,6-Dinitrotoluene		ug/Kg	U	1100	1700
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	2-Chloronaphthalene		ug/Kg	U	980	2400
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	2-Chlorophenol		ug/Kg	U	980	2400
15B6 (5-7)	BV82267	SW8260	11/11/2016		2-Chlorotoluene		ug/Kg	U	62	310

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	2-Hexanone		ug/Kg	UJ	310	1600
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	2-Isopropyltoluene	110	ug/Kg	J	31	310
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	2-Methylnaphthalene	6900	ug/Kg		1000	2400
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	2-Methylphenol (o-cresol)		ug/Kg	U	1600	1600
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	2-Nitroaniline		ug/Kg	U	2400	2400
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	2-Nitrophenol		ug/Kg	U	2200	2400
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	1400	2400
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	3,3'-Dichlorobenzidine		ug/Kg	U	1600	1700
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	3-Nitroaniline		ug/Kg	U	6900	3400
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	4,6-Dinitro-2-methylphenol		ug/Kg	U	690	2100
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	4-Bromophenyl phenyl ether		ug/Kg	U	1000	2400
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	4-Chloro-3-methylphenol		ug/Kg	U	1200	2400
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	4-Chloroaniline		ug/Kg	U	1600	2700
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	4-Chlorophenyl phenyl ether		ug/Kg	U	1200	2400
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	4-Chlorotoluene		ug/Kg	U	31	310
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	4-Methyl-2-pentanone		ug/Kg	UJ	310	1600
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	4-Nitroaniline		ug/Kg	U	1100	3400
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	4-Nitrophenol		ug/Kg	U	1600	3400
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Acenaphthene		ug/Kg	U	1000	2400
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Acenaphthylene		ug/Kg	U	960	2400
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	Acetone	550	ug/Kg	J	310	310
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Acetophenone		ug/Kg	U	1100	2400
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	Acrolein		ug/Kg	UJ	160	1200
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	Acrylonitrile		ug/Kg	U	31	1200
15B6 (5-7)	BV82267	SW6010	11/11/2016	10	Aluminum	4400	mg/Kg		6.2	31
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Aniline		ug/Kg	U	2700	2700
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Anthracene		ug/Kg	U	1100	2400
15B6 (5-7)	BV82267	SW6010	11/11/2016	1	Antimony		mg/Kg	U	1.6	1.6
15B6 (5-7)	BV82267	SW6010	11/11/2016	1	Arsenic	1.25	mg/Kg		0.62	0.62
15B6 (5-7)	BV82267	SW6010	11/11/2016	1	Barium	12.5	mg/Kg		0.31	0.6
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Benz(a)anthracene		ug/Kg	U	1200	1200
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	Benzene		ug/Kg	U	31	60
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Benzidine		ug/Kg	U	2000	3400
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Benzo(a)pyrene		ug/Kg	U	1100	1100
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Benzo(b)fluoranthene		ug/Kg	U	1200	1200
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Benzo(ghi)perylene		ug/Kg	U	1100	2400
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Benzo(k)fluoranthene		ug/Kg	U	1100	1100

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Benzoic acid		ug/Kg	U	6900	17000
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Benzyl butyl phthalate		ug/Kg	U	890	2400
15B6 (5-7)	BV82267	SW6010	11/11/2016	1	Beryllium	0.20	mg/Kg	J	0.12	0.25
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Bis(2-chloroethoxy)methane		ug/Kg	U	950	2400
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Bis(2-chloroethyl)ether		ug/Kg	U	930	1700
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Bis(2-chloroisopropyl)ether		ug/Kg	U	950	2400
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Bis(2-ethylhexyl)phthalate	2600	ug/Kg		990	2400
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	Bromobenzene		ug/Kg	U	31	310
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	Bromochloromethane		ug/Kg	U	31	310
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	Bromodichloromethane		ug/Kg	U	62	310
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	Bromoform		ug/Kg	U	62	310
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	Bromomethane		ug/Kg	U	120	310
15B6 (5-7)	BV82267	SW6010	11/11/2016	1	Cadmium		mg/Kg	U	0.31	0.31
15B6 (5-7)	BV82267	SW6010	11/11/2016	1	Calcium	655	mg/Kg		2.9	3.1
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Carbazole		ug/Kg	U	1400	1700
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	Carbon Disulfide		ug/Kg	U	62	310
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	Carbon tetrachloride		ug/Kg	U	62	310
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	Chlorobenzene		ug/Kg	U	31	310
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	Chloroethane		ug/Kg	UJ	31	310
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	Chloroform		ug/Kg	U	31	310
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	Chloromethane		ug/Kg	U	62	310
15B6 (5-7)	BV82267	SW6010	11/11/2016	1	Chromium	8.72	mg/Kg		0.31	0.31
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Chrysene		ug/Kg	U	1200	1200
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	cis-1,2-Dichloroethene		ug/Kg	U	31	250
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	cis-1,3-Dichloropropene		ug/Kg	U	31	310
15B6 (5-7)	BV82267	SW6010	11/11/2016	1	Cobalt	3.45	mg/Kg		0.31	0.31
15B6 (5-7)	BV82267	SW6010	11/11/2016	1	Copper	9.27	mg/Kg		0.31	0.31
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Dibenz(a,h)anthracene		ug/Kg	U	1100	1100
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Dibenzofuran		ug/Kg	U	1000	2400
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	Dibromochloromethane		ug/Kg	U	62	310
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	Dibromomethane		ug/Kg	U	62	310
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	Dichlorodifluoromethane		ug/Kg	U	31	310
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Diethyl phthalate		ug/Kg	U	1100	2400
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Dimethylphthalate		ug/Kg	U	1100	2400
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Di-n-butylphthalate		ug/Kg	U	910	2400
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Di-n-octylphthalate		ug/Kg	U	890	2400
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	Ethylbenzene	4700	ug/Kg		31	310

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Fluoranthene		ug/Kg	U	1100	2400
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Fluorene		ug/Kg	U	1100	2400
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Hexachlorobenzene		ug/Kg	U	1000	1700
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	Hexachlorobutadiene		ug/Kg	U	31	310
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Hexachlorobutadiene		ug/Kg	U	1200	2400
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Hexachlorocyclopentadiene		ug/Kg	U	1100	2400
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Hexachloroethane		ug/Kg	U	1000	1700
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Indeno(1,2,3-cd)pyrene		ug/Kg	U	1100	1100
15B6 (5-7)	BV82267	SW6010	11/11/2016	1	Iron	7640	mg/Kg	J	3.1	3.1
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Isophorone		ug/Kg	U	960	1700
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	Isopropylbenzene	1600	ug/Kg		31	310
15B6 (5-7)	BV82267	SW6010	11/11/2016	1	Lead	1.6	mg/Kg		0.31	0.6
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	m&p-Xylene	24000	ug/Kg		62	310
15B6 (5-7)	BV82267	SW6010	11/11/2016	1	Magnesium	1710	mg/Kg		3.1	3.1
15B6 (5-7)	BV82267	SW6010	11/11/2016	1	Manganese	73.8	mg/Kg		0.31	0.31
15B6 (5-7)	BV82267	SW7471	11/11/2016	1	Mercury		mg/Kg	U	0.02	0.03
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	Methyl Ethyl Ketone		ug/Kg	UJ	310	310
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	Methyl t-butyl ether (MTBE)		ug/Kg	U	62	620
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	Methylene chloride		ug/Kg	U	310	310
15B6 (5-7)	BV82267	SW8260	11/11/2016	500	Naphthalene	11000	ug/Kg	D	650	3200
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Naphthalene	5600	ug/Kg		990	2400
15B6 (5-7)	BV82267	SW8260	11/11/2016	500	n-Butylbenzene	3400	ug/Kg	D	320	3200
15B6 (5-7)	BV82267	SW6010	11/11/2016	1	Nickel	7.91	mg/Kg		0.31	0.31
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Nitrobenzene		ug/Kg	U	1200	1700
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	N-Nitrosodimethylamine		ug/Kg	U	970	2400
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	N-Nitrosodi-n-propylamine		ug/Kg	J	1100	1700
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	N-Nitrosodiphenylamine		ug/Kg	J	1300	2400
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	n-Propylbenzene	4900	ug/Kg		62	310
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	o-Xylene	9100	ug/Kg		62	310
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Pentachloronitrobenzene		ug/Kg	U	1300	2400
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Pentachlorophenol		ug/Kg	UJ	1300	1300
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Phenanthrene		ug/Kg	U	980	2400
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Phenol		ug/Kg	U	1100	1100
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	p-Isopropyltoluene	800	ug/Kg		31	310
15B6 (5-7)	BV82267	SW6010	11/11/2016	1	Potassium	598	mg/Kg		2.4	6
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Pyrene		ug/Kg	U	1200	2400
15B6 (5-7)	BV82267	SW8270	11/11/2016	10	Pyridine		ug/Kg	U	840	2400

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	sec-Butylbenzene	1000	ug/Kg		31	310
15B6 (5-7)	BV82267	SW6010	11/11/2016	1	Selenium		mg/Kg	U	1.1	1.2
15B6 (5-7)	BV82267	SW6010	11/11/2016	1	Silver		mg/Kg	U	0.31	0.31
15B6 (5-7)	BV82267	SW6010	11/11/2016	1	Sodium	89	mg/Kg		2.7	6
15B6 (5-7)	BV82267	E160.3	11/11/2016	1	SOLIDS, PERCENT	97	%			
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	Styrene		ug/Kg	U	31	310
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	Tert-butyl alcohol		ug/Kg	U	1200	6200
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	tert-Butylbenzene	32	ug/Kg	J	31	310
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	Tetrachloroethene		ug/Kg	U	62	310
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	Tetrahydrofuran (THF)		ug/Kg	UJ	160	620
15B6 (5-7)	BV82267	SW6010	11/11/2016	1	Thallium		mg/Kg	U	1.2	1.2
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	Toluene	390	ug/Kg		31	310
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	trans-1,2-Dichloroethene		ug/Kg	U	31	190
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	trans-1,3-Dichloropropene		ug/Kg	U	31	310
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	trans-1,4-dichloro-2-butene		ug/Kg	U	160	620
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	Trichloroethene		ug/Kg	U	31	310
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	Trichlorofluoromethane		ug/Kg	U	62	310
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	Trichlorotrifluoroethane		ug/Kg	U	31	310
15B6 (5-7)	BV82267	SW6010	11/11/2016	1	Vanadium	12.1	mg/Kg		0.31	0.31
15B6 (5-7)	BV82267	SW8260	11/11/2016	50	Vinyl chloride		ug/Kg	U	31	31
15B6 (5-7)	BV82267	SW6010	11/11/2016	1	Zinc	37.0	mg/Kg		0.31	0.6
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	0.90	18
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	1,1,1-Trichloroethane		ug/Kg	U	0.45	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	0.90	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	1,1,2-Trichloroethane		ug/Kg	U	0.90	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	1,1-Dichloroethane		ug/Kg	U	0.90	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	1,1-Dichloroethene		ug/Kg	U	0.45	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	1,1-Dichloropropene		ug/Kg	U	0.45	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	1,2,3-Trichlorobenzene		ug/Kg	UJ	0.90	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	1,2,3-Trichloropropane		ug/Kg	U	0.45	4.5
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	140	280
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	0.90	4.5
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	120	280
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	1,2,4-Trimethylbenzene	75	ug/Kg	J	0.45	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	0.90	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	1,2-Dibromoethane		ug/Kg	U	0.45	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	1,2-Dichlorobenzene		ug/Kg	U	0.45	4.5

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	1,2-Dichlorobenzene		ug/Kg	UJ	110	280
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	1,2-Dichloroethane		ug/Kg	U	0.45	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	1,2-Dichloropropane		ug/Kg	U	0.90	4.5
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	130	280
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	1,3,5-Trimethylbenzene	19	ug/Kg	J	0.45	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	1,3-Dichlorobenzene		ug/Kg	U	0.45	4.5
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	1,3-Dichlorobenzene		ug/Kg	UJ	120	280
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	1,3-Dichloropropane		ug/Kg	U	0.90	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	1,4-Dichlorobenzene		ug/Kg	U	0.45	4.5
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	1,4-Dichlorobenzene		ug/Kg	UJ	120	280
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	1,4-dioxane		ug/Kg	U	36	68
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	2,2-Dichloropropane		ug/Kg	U	0.45	4.5
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	2,4,5-Trichlorophenol		ug/Kg	U	220	280
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	130	200
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	2,4-Dichlorophenol		ug/Kg	U	140	200
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	2,4-Dimethylphenol		ug/Kg	U	98	280
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	2,4-Dinitrophenol		ug/Kg	UJ	280	280
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	2,4-Dinitrotoluene		ug/Kg	U	160	200
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	2,6-Dinitrotoluene		ug/Kg	U	130	200
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	2-Chloronaphthalene		ug/Kg	U	110	280
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	2-Chlorophenol		ug/Kg	U	110	280
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	2-Chlorotoluene		ug/Kg	U	0.90	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	2-Hexanone		ug/Kg	U	4.5	23
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	2-Isopropyltoluene		ug/Kg	U	0.45	4.5
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	2-Methylnaphthalene		ug/Kg	U	120	280
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	190	280
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	2-Nitroaniline		ug/Kg	U	280	280
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	2-Nitrophenol		ug/Kg	U	250	280
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	160	280
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	190	200
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	3-Nitroaniline		ug/Kg	U	790	400
15B6 (12-14)	BV82268	SW8081	11/11/2016	2	4,4' -DDD		ug/Kg	U	2.4	2.4
15B6 (12-14)	BV82268	SW8081	11/11/2016	2	4,4' -DDE		ug/Kg	U	2.4	2.4
15B6 (12-14)	BV82268	SW8081	11/11/2016	2	4,4' -DDT		ug/Kg	U	2.4	2.4
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	4,6-Dinitro-2-methylphenol		ug/Kg	UJ	79	240
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	120	280
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	140	280

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	4-Chloroaniline		ug/Kg	U	180	320
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	130	280
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	4-Chlorotoluene		ug/Kg	U	0.45	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	4-Methyl-2-pentanone		ug/Kg	U	4.5	23
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	4-Nitroaniline		ug/Kg	U	130	400
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	4-Nitrophenol		ug/Kg	U	180	400
15B6 (12-14)	BV82268	SW8081	11/11/2016	2	a-BHC		ug/Kg	U	7.9	7.9
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Acenaphthene		ug/Kg	U	120	280
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Acenaphthylene		ug/Kg	U	110	280
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Acetone	28	ug/Kg	J	4.5	23
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Acetophenone		ug/Kg	U	120	280
15B6 (12-14)	BV82268	SW8081	11/11/2016	2	a-Chlordane		ug/Kg	U	3.9	3.9
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Acrolein		ug/Kg	UJ	2.3	18
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Acrylonitrile		ug/Kg	U	0.45	18
15B6 (12-14)	BV82268	SW8081	11/11/2016	2	Aldrin		ug/Kg	U	3.9	3.9
15B6 (12-14)	BV82268	SW6010	11/11/2016	10	Aluminum	6630	mg/Kg		7.4	37
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Aniline		ug/Kg	U	320	320
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Anthracene		ug/Kg	U	130	280
15B6 (12-14)	BV82268	SW6010	11/11/2016	1	Antimony		mg/Kg	U	1.9	1.9
15B6 (12-14)	BV82268	SW6010	11/11/2016	1	Arsenic	1.24	mg/Kg		0.74	0.74
15B6 (12-14)	BV82268	SW6010	11/11/2016	1	Barium	37.0	mg/Kg		0.37	0.7
15B6 (12-14)	BV82268	SW8081	11/11/2016	2	b-BHC		ug/Kg	U	7.9	7.9
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Benz(a)anthracene		ug/Kg	U	130	280
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Benzene	4.6	ug/Kg		0.45	4.5
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Benzidine		ug/Kg	UJ	230	400
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Benzo(a)pyrene		ug/Kg	U	130	200
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Benzo(b)fluoranthene		ug/Kg	U	140	280
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Benzo(ghi)perylene		ug/Kg	U	130	280
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Benzo(k)fluoranthene		ug/Kg	U	130	280
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Benzoic acid		ug/Kg	UJ	790	2000
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Benzyl butyl phthalate		ug/Kg	U	100	280
15B6 (12-14)	BV82268	SW6010	11/11/2016	1	Beryllium	0.33	mg/Kg		0.15	0.30
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	110	280
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	110	200
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	110	280
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	110	280
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Bromobenzene		ug/Kg	U	0.45	4.5

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Bromochloromethane		ug/Kg	U	0.45	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Bromodichloromethane		ug/Kg	U	0.90	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Bromoform		ug/Kg	U	0.90	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Bromomethane		ug/Kg	U	1.8	4.5
15B6 (12-14)	BV82268	SW6010	11/11/2016	1	Cadmium		mg/Kg	U	0.37	0.37
15B6 (12-14)	BV82268	SW6010	11/11/2016	1	Calcium	1030	mg/Kg		3.4	3.7
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Carbazole		ug/Kg	U	160	200
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Carbon Disulfide	2.2	ug/Kg	J	0.90	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Carbon tetrachloride		ug/Kg	U	0.90	4.5
15B6 (12-14)	BV82268	SW8081	11/11/2016	2	Chlordane		ug/Kg	U	39	39
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Chlorobenzene		ug/Kg	U	0.45	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Chloroethane		ug/Kg	UJ	0.45	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Chloroform		ug/Kg	U	0.45	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Chloromethane		ug/Kg	U	0.90	4.5
15B6 (12-14)	BV82268	SW6010	11/11/2016	1	Chromium	20.0	mg/Kg		0.37	0.37
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Chrysene		ug/Kg	U	130	280
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	cis-1,2-Dichloroethene		ug/Kg	U	0.45	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	cis-1,3-Dichloropropene		ug/Kg	U	0.45	4.5
15B6 (12-14)	BV82268	SW6010	11/11/2016	1	Cobalt	7.14	mg/Kg		0.37	0.37
15B6 (12-14)	BV82268	SW6010	11/11/2016	1	Copper	10.9	mg/Kg		0.37	0.37
15B6 (12-14)	BV82268	SW8081	11/11/2016	2	d-BHC		ug/Kg	U	7.9	7.9
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Dibenz(a,h)anthracene		ug/Kg	U	130	200
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Dibenzofuran		ug/Kg	U	120	280
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Dibromochloromethane		ug/Kg	U	0.90	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Dibromomethane		ug/Kg	U	0.90	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Dichlorodifluoromethane		ug/Kg	U	0.45	4.5
15B6 (12-14)	BV82268	SW8081	11/11/2016	2	Dieldrin		ug/Kg	U	3.9	3.9
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Diethyl phthalate		ug/Kg	U	130	280
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Dimethylphthalate		ug/Kg	U	120	280
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Di-n-butylphthalate		ug/Kg	U	110	280
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Di-n-octylphthalate		ug/Kg	U	100	280
15B6 (12-14)	BV82268	SW8081	11/11/2016	2	Endosulfan I		ug/Kg	U	7.9	7.9
15B6 (12-14)	BV82268	SW8081	11/11/2016	2	Endosulfan II		ug/Kg	U	7.9	7.9
15B6 (12-14)	BV82268	SW8081	11/11/2016	2	Endosulfan sulfate		ug/Kg	U	7.9	7.9
15B6 (12-14)	BV82268	SW8081	11/11/2016	2	Endrin		ug/Kg	U	7.9	7.9
15B6 (12-14)	BV82268	SW8081	11/11/2016	2	Endrin aldehyde		ug/Kg	U	7.9	7.9
15B6 (12-14)	BV82268	SW8081	11/11/2016	2	Endrin ketone		ug/Kg	U	7.9	7.9

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Ethylbenzene	16	ug/Kg		0.45	4.5
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Fluoranthene		ug/Kg	U	130	280
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Fluorene		ug/Kg	U	130	280
15B6 (12-14)	BV82268	SW8081	11/11/2016	2	g-BHC		ug/Kg	U	1.6	1.6
15B6 (12-14)	BV82268	SW8081	11/11/2016	2	g-Chlordane		ug/Kg	U	3.9	3.9
15B6 (12-14)	BV82268	SW8081	11/11/2016	2	Heptachlor		ug/Kg	U	7.9	7.9
15B6 (12-14)	BV82268	SW8081	11/11/2016	2	Heptachlor epoxide		ug/Kg	U	7.9	7.9
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Hexachlorobenzene		ug/Kg	U	120	200
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Hexachlorobutadiene		ug/Kg	U	0.45	4.5
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Hexachlorobutadiene		ug/Kg	U	140	280
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Hexachlorocyclopentadiene		ug/Kg	U	120	280
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Hexachloroethane		ug/Kg	U	120	200
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Indeno(1,2,3-cd)pyrene		ug/Kg	U	130	280
15B6 (12-14)	BV82268	SW6010	11/11/2016	10	Iron	13800	mg/Kg	J	37	37
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Isophorone		ug/Kg	U	110	200
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Isopropylbenzene	1.7	ug/Kg	J	0.45	4.5
15B6 (12-14)	BV82268	SW6010	11/11/2016	1	Lead	1.5	mg/Kg		0.37	0.7
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	m&p-Xylene	75	ug/Kg		0.90	4.5
15B6 (12-14)	BV82268	SW6010	11/11/2016	1	Magnesium	2510	mg/Kg		3.7	3.7
15B6 (12-14)	BV82268	SW6010	11/11/2016	10	Manganese	525	mg/Kg	J	3.7	3.7
15B6 (12-14)	BV82268	SW7471	11/11/2016	1	Mercury		mg/Kg	U	0.02	0.03
15B6 (12-14)	BV82268	SW8081	11/11/2016	2	Methoxychlor		ug/Kg	U	39	39
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Methyl Ethyl Ketone	5.5	ug/Kg	J	4.5	27
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Methyl t-butyl ether (MTBE)	4.6	ug/Kg	J	0.90	9.0
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Methylene chloride		ug/Kg	U	4.5	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Naphthalene	37	ug/Kg	J	0.90	4.5
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Naphthalene		ug/Kg	UJ	110	280
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	n-Butylbenzene		ug/Kg	U	0.45	4.5
15B6 (12-14)	BV82268	SW6010	11/11/2016	1	Nickel	11.9	mg/Kg		0.37	0.37
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Nitrobenzene		ug/Kg	U	140	200
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	N-Nitrosodimethylamine		ug/Kg	U	110	280
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	130	200
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	150	280
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	n-Propylbenzene	3.4	ug/Kg	J	0.90	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	o-Xylene	26	ug/Kg		0.90	4.5
15B6 (12-14)	BV82268	SW8082	11/11/2016	2	PCB-1016		ug/Kg	U	79	79
15B6 (12-14)	BV82268	SW8082	11/11/2016	2	PCB-1221		ug/Kg	U	79	79

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B6 (12-14)	BV82268	SW8082	11/11/2016	2	PCB-1232		ug/Kg	U	79	79
15B6 (12-14)	BV82268	SW8082	11/11/2016	2	PCB-1242		ug/Kg	Ü	79	79
15B6 (12-14)	BV82268	SW8082	11/11/2016	2	PCB-1248		ug/Kg	Ü	79	79
15B6 (12-14)	BV82268	SW8082	11/11/2016	2	PCB-1254		ug/Kg	Ü	79	79
15B6 (12-14)	BV82268	SW8082	11/11/2016	2	PCB-1260		ug/Kg	Ū	79	79
15B6 (12-14)	BV82268	SW8082	11/11/2016	2	PCB-1262		ug/Kg	Ü	79	79
15B6 (12-14)	BV82268	SW8082	11/11/2016	2	PCB-1268		ug/Kg	U	79	79
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Pentachloronitrobenzene		ug/Kg	U	150	280
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Pentachlorophenol		ug/Kg	U	150	240
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Phenanthrene		ug/Kg	U	110	280
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Phenol		ug/Kg	U	130	280
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	p-Isopropyltoluene		ug/Kg	U	0.45	4.5
15B6 (12-14)	BV82268	SW6010	11/11/2016	1	Potassium	1240	mg/Kg	J	2.9	7
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Pyrene		ug/Kg	U	140	280
15B6 (12-14)	BV82268	SW8270	11/11/2016	1	Pyridine		ug/Kg	U	98	280
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	sec-Butylbenzene		ug/Kg	U	0.45	4.5
15B6 (12-14)	BV82268	SW6010	11/11/2016	1	Selenium		mg/Kg	U	1.3	1.5
15B6 (12-14)	BV82268	SW6010	11/11/2016	1	Silver		mg/Kg	U	0.37	0.37
15B6 (12-14)	BV82268	SW6010	11/11/2016	10	Sodium	146	mg/Kg	J	32	74
15B6 (12-14)	BV82268	E160.3	11/11/2016	1	SOLIDS, PERCENT	84	%			
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Styrene		ug/Kg	U	0.45	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Tert-butyl alcohol		ug/Kg	U	18	90
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	tert-Butylbenzene		ug/Kg	U	0.45	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Tetrachloroethene		ug/Kg	U	0.90	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Tetrahydrofuran (THF)		ug/Kg	U	2.3	9.0
15B6 (12-14)	BV82268	SW6010	11/11/2016	1	Thallium		mg/Kg	U	1.5	1.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Toluene	2.2	ug/Kg	J	0.45	4.5
15B6 (12-14)	BV82268	SW8081	11/11/2016	2	Toxaphene		ug/Kg	U	160	160
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	trans-1,2-Dichloroethene		ug/Kg	U	0.45	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	trans-1,3-Dichloropropene		ug/Kg	U	0.45	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	trans-1,4-dichloro-2-butene		ug/Kg	U	2.3	9.0
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Trichloroethene		ug/Kg	U	0.45	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Trichlorofluoromethane		ug/Kg	U	0.90	4.5
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Trichlorotrifluoroethane		ug/Kg	U	0.45	4.5
15B6 (12-14)	BV82268	SW6010	11/11/2016	1	Vanadium	27.1	mg/Kg		0.37	0.37
15B6 (12-14)	BV82268	SW8260	11/11/2016	1	Vinyl chloride		ug/Kg	U	0.45	4.5
15B6 (12-14)	BV82268	SW6010	11/11/2016	1	Zinc	27.8	mg/Kg		0.37	0.7

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	0.95	19
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	1,1,1-Trichloroethane		ug/Kg	U	0.48	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	0.95	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	1,1,2-Trichloroethane		ug/Kg	U	0.95	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	1,1-Dichloroethane		ug/Kg	U	0.95	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	1,1-Dichloroethene		ug/Kg	U	0.48	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	1,1-Dichloropropene		ug/Kg	U	0.48	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	1,2,3-Trichlorobenzene		ug/Kg	UJ	0.95	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	1,2,3-Trichloropropane		ug/Kg	U	0.48	4.8
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	140	280
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	0.95	4.8
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	120	280
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	1,2,4-Trimethylbenzene	2.3	ug/Kg	J	0.48	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	0.95	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	1,2-Dibromoethane		ug/Kg	U	0.48	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	1,2-Dichlorobenzene		ug/Kg	U	0.48	4.8
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	1,2-Dichlorobenzene		ug/Kg	UJ	110	280
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	1,2-Dichloroethane		ug/Kg	U	0.48	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	1,2-Dichloropropane		ug/Kg	U	0.95	4.8
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	130	280
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	1,3,5-Trimethylbenzene	0.81	ug/Kg	J	0.48	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	1,3-Dichlorobenzene		ug/Kg	U	0.48	4.8
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	1,3-Dichlorobenzene		ug/Kg	UJ	120	280
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	1,3-Dichloropropane		ug/Kg	U	0.95	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	1,4-Dichlorobenzene		ug/Kg	U	0.48	4.8
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	1,4-Dichlorobenzene		ug/Kg	UJ	120	280
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	1,4-dioxane		ug/Kg	U	38	71
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	2,2-Dichloropropane		ug/Kg	U	0.48	4.8
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	2,4,5-Trichlorophenol		ug/Kg	U	220	280
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	130	200
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	2,4-Dichlorophenol		ug/Kg	U	140	200
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	2,4-Dimethylphenol		ug/Kg	U	99	280
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	2,4-Dinitrophenol		ug/Kg	UJ	280	280
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	2,4-Dinitrotoluene		ug/Kg	U	160	200
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	2,6-Dinitrotoluene		ug/Kg	U	130	200
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	2-Chloronaphthalene		ug/Kg	U	110	280
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	2-Chlorophenol		ug/Kg	U	110	280

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	2-Chlorotoluene		ug/Kg	U	0.95	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	2-Hexanone		ug/Kg	U	4.8	24
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	2-Isopropyltoluene		ug/Kg	U	0.48	4.8
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	2-Methylnaphthalene		ug/Kg	U	120	280
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	190	280
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	2-Nitroaniline		ug/Kg	U	280	280
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	2-Nitrophenol		ug/Kg	U	250	280
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	160	280
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	190	200
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	3-Nitroaniline		ug/Kg	U	800	400
15B7 (12-14)	BV82270	SW8081	11/11/2016	2	4,4' -DDD		ug/Kg	U	2.4	2.4
15B7 (12-14)	BV82270	SW8081	11/11/2016	2	4,4' -DDE		ug/Kg	U	2.4	2.4
15B7 (12-14)	BV82270	SW8081	11/11/2016	2	4,4' -DDT		ug/Kg	U	2.4	2.4
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	4,6-Dinitro-2-methylphenol		ug/Kg	UJ	80	240
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	120	280
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	140	280
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	4-Chloroaniline		ug/Kg	U	190	320
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	130	280
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	4-Chlorotoluene		ug/Kg	U	0.48	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	4-Methyl-2-pentanone		ug/Kg	U	4.8	24
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	4-Nitroaniline		ug/Kg	U	130	400
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	4-Nitrophenol		ug/Kg	U	180	400
15B7 (12-14)	BV82270	SW8081	11/11/2016	2	a-BHC		ug/Kg	U	7.8	7.8
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Acenaphthene		ug/Kg	U	120	280
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Acenaphthylene		ug/Kg	U	110	280
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Acetone	24	ug/Kg	J	4.8	24
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Acetophenone		ug/Kg	U	120	280
15B7 (12-14)	BV82270	SW8081	11/11/2016	2	a-Chlordane		ug/Kg	U	3.9	3.9
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Acrolein		ug/Kg	UJ	2.4	19
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Acrylonitrile		ug/Kg	U	0.48	19
15B7 (12-14)	BV82270	SW8081	11/11/2016	2	Aldrin		ug/Kg	U	3.9	3.9
15B7 (12-14)	BV82270	SW6010	11/11/2016	10	Aluminum	7000	mg/Kg		7.8	39
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Aniline		ug/Kg	U	320	320
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Anthracene		ug/Kg	U	130	280
15B7 (12-14)	BV82270	SW6010	11/11/2016	1	Antimony		mg/Kg	U	2.0	2.0
15B7 (12-14)	BV82270	SW6010	11/11/2016	1	Arsenic	1.21	mg/Kg		0.78	0.78
15B7 (12-14)	BV82270	SW6010	11/11/2016	1	Barium	29.2	mg/Kg		0.39	8.0

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B7 (12-14)	BV82270	SW8081	11/11/2016	2	b-BHC		ug/Kg	U	7.8	7.8
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Benz(a)anthracene		ug/Kg	U	130	280
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Benzene	1.9	ug/Kg	J	0.48	4.8
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Benzidine		ug/Kg	UJ	240	400
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Benzo(a)pyrene		ug/Kg	U	130	200
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Benzo(b)fluoranthene		ug/Kg	U	140	280
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Benzo(ghi)perylene		ug/Kg	U	130	280
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Benzo(k)fluoranthene		ug/Kg	U	130	280
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Benzoic acid		ug/Kg	UJ	800	2000
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Benzyl butyl phthalate		ug/Kg	U	100	280
15B7 (12-14)	BV82270	SW6010	11/11/2016	1	Beryllium	0.31	mg/Kg		0.16	0.31
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	110	280
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	110	200
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	110	280
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	120	280
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Bromobenzene		ug/Kg	U	0.48	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Bromochloromethane		ug/Kg	U	0.48	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Bromodichloromethane		ug/Kg	U	0.95	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Bromoform		ug/Kg	U	0.95	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Bromomethane		ug/Kg	U	1.9	4.8
15B7 (12-14)	BV82270	SW6010	11/11/2016	1	Cadmium		mg/Kg	U	0.39	0.39
15B7 (12-14)	BV82270	SW6010	11/11/2016	1	Calcium	911	mg/Kg		3.6	3.9
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Carbazole		ug/Kg	U	160	200
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Carbon Disulfide		ug/Kg	U	0.95	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Carbon tetrachloride		ug/Kg	U	0.95	4.8
15B7 (12-14)	BV82270	SW8081	11/11/2016	2	Chlordane		ug/Kg	U	39	39
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Chlorobenzene		ug/Kg	U	0.48	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Chloroethane		ug/Kg	UJ	0.48	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Chloroform		ug/Kg	U	0.48	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Chloromethane		ug/Kg	U	0.95	4.8
15B7 (12-14)	BV82270	SW6010	11/11/2016	1	Chromium	21.7	mg/Kg		0.39	0.39
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Chrysene		ug/Kg	U	130	280
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	cis-1,2-Dichloroethene		ug/Kg	U	0.48	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	cis-1,3-Dichloropropene		ug/Kg	U	0.48	4.8
15B7 (12-14)	BV82270	SW6010	11/11/2016	1	Cobalt	6.08	mg/Kg		0.39	0.39
15B7 (12-14)	BV82270	SW6010	11/11/2016	1	Copper	10.5	mg/Kg		0.39	0.39
15B7 (12-14)	BV82270	SW8081	11/11/2016	2	d-BHC		ug/Kg	U	7.8	7.8

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Dibenz(a,h)anthracene		ug/Kg	U	130	200
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Dibenzofuran		ug/Kg	U	120	280
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Dibromochloromethane		ug/Kg	U	0.95	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Dibromomethane		ug/Kg	U	0.95	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Dichlorodifluoromethane		ug/Kg	U	0.48	4.8
15B7 (12-14)	BV82270	SW8081	11/11/2016	2	Dieldrin		ug/Kg	U	3.9	3.9
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Diethyl phthalate		ug/Kg	U	130	280
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Dimethylphthalate		ug/Kg	U	120	280
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Di-n-butylphthalate		ug/Kg	U	110	280
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Di-n-octylphthalate		ug/Kg	U	100	280
15B7 (12-14)	BV82270	SW8081	11/11/2016	2	Endosulfan I		ug/Kg	U	7.8	7.8
15B7 (12-14)	BV82270	SW8081	11/11/2016	2	Endosulfan II		ug/Kg	U	7.8	7.8
15B7 (12-14)	BV82270	SW8081	11/11/2016	2	Endosulfan sulfate		ug/Kg	U	7.8	7.8
15B7 (12-14)	BV82270	SW8081	11/11/2016	2	Endrin		ug/Kg	U	7.8	7.8
15B7 (12-14)	BV82270	SW8081	11/11/2016	2	Endrin aldehyde		ug/Kg	U	7.8	7.8
15B7 (12-14)	BV82270	SW8081	11/11/2016	2	Endrin ketone		ug/Kg	U	7.8	7.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Ethylbenzene	2.8	ug/Kg	J	0.48	4.8
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Fluoranthene		ug/Kg	U	130	280
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Fluorene		ug/Kg	U	130	280
15B7 (12-14)	BV82270	SW8081	11/11/2016	2	g-BHC		ug/Kg	U	1.6	1.6
15B7 (12-14)	BV82270	SW8081	11/11/2016	2	g-Chlordane		ug/Kg	U	3.9	3.9
15B7 (12-14)	BV82270	SW8081	11/11/2016	2	Heptachlor		ug/Kg	U	7.8	7.8
15B7 (12-14)	BV82270	SW8081	11/11/2016	2	Heptachlor epoxide		ug/Kg	U	7.8	7.8
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Hexachlorobenzene		ug/Kg	U	120	200
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Hexachlorobutadiene		ug/Kg	U	0.48	4.8
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Hexachlorobutadiene		ug/Kg	U	140	280
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Hexachlorocyclopentadiene		ug/Kg	U	120	280
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Hexachloroethane		ug/Kg	U	120	200
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Indeno(1,2,3-cd)pyrene		ug/Kg	U	130	280
15B7 (12-14)	BV82270	SW6010	11/11/2016	10	Iron	13500	mg/Kg	J	39	39
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Isophorone		ug/Kg	U	110	200
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Isopropylbenzene		ug/Kg	U	0.48	4.8
15B7 (12-14)	BV82270	SW6010	11/11/2016	1	Lead	1.3	mg/Kg		0.39	8.0
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	m&p-Xylene	4.9	ug/Kg		0.95	4.8
15B7 (12-14)	BV82270	SW6010	11/11/2016	1	Magnesium	2300	mg/Kg		3.9	3.9
15B7 (12-14)	BV82270	SW6010	11/11/2016	10	Manganese	301	mg/Kg		3.9	3.9
15B7 (12-14)	BV82270	SW7471	11/11/2016	1	Mercury		mg/Kg	U	0.02	0.03

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B7 (12-14)	BV82270	SW8081	11/11/2016	2	Methoxychlor		ug/Kg	U	39	39
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Methyl Ethyl Ketone		ug/Kg	UJ	4.8	29
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Methyl t-butyl ether (MTBE)	7.5	ug/Kg	J	0.95	9.5
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Methylene chloride		ug/Kg	U	4.8	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Naphthalene	1.1	ug/Kg	J	0.95	4.8
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Naphthalene		ug/Kg	UJ	120	280
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	n-Butylbenzene		ug/Kg	U	0.48	4.8
15B7 (12-14)	BV82270	SW6010	11/11/2016	1	Nickel	9.64	mg/Kg		0.39	0.39
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Nitrobenzene		ug/Kg	U	140	200
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	N-Nitrosodimethylamine		ug/Kg	U	110	280
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	130	200
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	150	280
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	n-Propylbenzene		ug/Kg	U	0.95	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	o-Xylene	2.7	ug/Kg	J	0.95	4.8
15B7 (12-14)	BV82270	SW8082	11/11/2016	2	PCB-1016		ug/Kg	U	78	78
15B7 (12-14)	BV82270	SW8082	11/11/2016	2	PCB-1221		ug/Kg	U	78	78
15B7 (12-14)	BV82270	SW8082	11/11/2016	2	PCB-1232		ug/Kg	U	78	78
15B7 (12-14)	BV82270	SW8082	11/11/2016	2	PCB-1242		ug/Kg	U	78	78
15B7 (12-14)	BV82270	SW8082	11/11/2016	2	PCB-1248		ug/Kg	U	78	78
15B7 (12-14)	BV82270	SW8082	11/11/2016	2	PCB-1254		ug/Kg	U	78	78
15B7 (12-14)	BV82270	SW8082	11/11/2016	2	PCB-1260		ug/Kg	U	78	78
15B7 (12-14)	BV82270	SW8082	11/11/2016	2	PCB-1262		ug/Kg	U	78	78
15B7 (12-14)	BV82270	SW8082	11/11/2016	2	PCB-1268		ug/Kg	U	78	78
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Pentachloronitrobenzene		ug/Kg	U	150	280
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Pentachlorophenol		ug/Kg	U	150	240
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Phenanthrene		ug/Kg	U	110	280
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Phenol		ug/Kg	U	130	280
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	p-Isopropyltoluene		ug/Kg	U	0.48	4.8
15B7 (12-14)	BV82270	SW6010	11/11/2016	1	Potassium	799	mg/Kg		3.1	8
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Pyrene		ug/Kg	U	140	280
15B7 (12-14)	BV82270	SW8270	11/11/2016	1	Pyridine		ug/Kg	U	98	280
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	sec-Butylbenzene		ug/Kg	U	0.48	4.8
15B7 (12-14)	BV82270	SW6010	11/11/2016	1	Selenium		mg/Kg	U	1.3	1.6
15B7 (12-14)	BV82270	SW6010	11/11/2016	1	Silver		mg/Kg	U	0.39	0.39
15B7 (12-14)	BV82270	SW6010	11/11/2016	1	Sodium	182	mg/Kg		3.4	8
15B7 (12-14)	BV82270	E160.3	11/11/2016	1	SOLIDS, PERCENT	83	%			
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Styrene		ug/Kg	U	0.48	4.8

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Tert-butyl alcohol	200	ug/Kg		19	95
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	tert-Butylbenzene		ug/Kg	U	0.48	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Tetrachloroethene		ug/Kg	U	0.95	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Tetrahydrofuran (THF)		ug/Kg	U	2.4	9.5
15B7 (12-14)	BV82270	SW6010	11/11/2016	1	Thallium		mg/Kg	U	1.6	1.6
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Toluene		ug/Kg	U	0.48	4.8
15B7 (12-14)	BV82270	SW8081	11/11/2016	2	Toxaphene		ug/Kg	U	160	160
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	trans-1,2-Dichloroethene		ug/Kg	U	0.48	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	trans-1,3-Dichloropropene		ug/Kg	U	0.48	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	trans-1,4-dichloro-2-butene		ug/Kg	U	2.4	9.5
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Trichloroethene		ug/Kg	U	0.48	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Trichlorofluoromethane		ug/Kg	U	0.95	4.8
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Trichlorotrifluoroethane		ug/Kg	U	0.48	4.8
15B7 (12-14)	BV82270	SW6010	11/11/2016	1	Vanadium	25.1	mg/Kg		0.39	0.39
15B7 (12-14)	BV82270	SW8260	11/11/2016	1	Vinyl chloride		ug/Kg	U	0.48	4.8
15B7 (12-14)	BV82270	SW6010	11/11/2016	1	Zinc	24.7	mg/Kg		0.39	8.0
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	1,1,1,2-Tetrachloroethane		ug/Kg	U	93	1900
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	1,1,1-Trichloroethane		ug/Kg	U	46	460
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	1,1,2,2-Tetrachloroethane		ug/Kg	U	93	460
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	1,1,2-Trichloroethane		ug/Kg	U	93	460
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	1,1-Dichloroethane		ug/Kg	U	93	270
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	1,1-Dichloroethene		ug/Kg	U	46	330
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	1,1-Dichloropropene		ug/Kg	U	46	460
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	1,2,3-Trichlorobenzene		ug/Kg	U	93	460
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	1,2,3-Trichloropropane		ug/Kg	U	46	460
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	140	280
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	1,2,4-Trichlorobenzene		ug/Kg	U	93	460
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	120	280
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	1,2,4-Trimethylbenzene	1200	ug/Kg		46	460
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	1,2-Dibromo-3-chloropropane		ug/Kg	U	93	460
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	1,2-Dibromoethane		ug/Kg	U	46	460
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	1,2-Dichlorobenzene		ug/Kg	U	46	460
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	1,2-Dichlorobenzene		ug/Kg	UJ	110	280
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	1,2-Dichloroethane		ug/Kg	U	46	46
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	1,2-Dichloropropane		ug/Kg	U	93	460
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	130	280
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	1,3,5-Trimethylbenzene		ug/Kg	U	46	460

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	1,3-Dichlorobenzene		ug/Kg	U	46	460
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	1,3-Dichlorobenzene		ug/Kg	UJ	120	280
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	1,3-Dichloropropane		ug/Kg	U	93	460
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	1,4-Dichlorobenzene		ug/Kg	U	46	460
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	1,4-Dichlorobenzene		ug/Kg	UJ	120	280
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	1,4-dioxane		ug/Kg	U	3700	3700
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	2,2-Dichloropropane		ug/Kg	U	46	460
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	2,4,5-Trichlorophenol		ug/Kg	U	220	280
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	130	200
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	2,4-Dichlorophenol		ug/Kg	U	140	200
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	2,4-Dimethylphenol		ug/Kg	U	98	280
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	2,4-Dinitrophenol		ug/Kg	UJ	280	280
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	2,4-Dinitrotoluene		ug/Kg	U	160	200
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	2,6-Dinitrotoluene		ug/Kg	U	120	200
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	2-Chloronaphthalene		ug/Kg	U	110	280
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	2-Chlorophenol		ug/Kg	U	110	280
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	2-Chlorotoluene		ug/Kg	U	93	460
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	2-Hexanone		ug/Kg	UJ	460	2300
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	2-Isopropyltoluene		ug/Kg	U	46	460
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	2-Methylnaphthalene		ug/Kg	U	120	280
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	180	280
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	2-Nitroaniline		ug/Kg	U	280	280
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	2-Nitrophenol		ug/Kg	U	250	280
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	160	280
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	190	200
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	3-Nitroaniline		ug/Kg	U	790	390
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	4,6-Dinitro-2-methylphenol		ug/Kg	UJ	79	240
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	120	280
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	140	280
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	4-Chloroaniline		ug/Kg	U	180	310
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	130	280
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	4-Chlorotoluene		ug/Kg	U	46	460
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	4-Methyl-2-pentanone		ug/Kg	UJ	460	2300
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	4-Nitroaniline		ug/Kg	U	130	390
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	4-Nitrophenol		ug/Kg	U	180	390
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Acenaphthene		ug/Kg	U	120	280
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Acenaphthylene		ug/Kg	U	110	280

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Acetone		ug/Kg	UJ	460	460
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Acetophenone		ug/Kg	U	120	280
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Acrolein		ug/Kg	UJ	230	1900
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Acrylonitrile		ug/Kg	U	46	1900
15B7 (18-20)	BV82271	SW6010	11/11/2016	10	Aluminum	4270	mg/Kg		7.3	36
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Aniline		ug/Kg	U	310	310
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Anthracene		ug/Kg	U	130	280
15B7 (18-20)	BV82271	SW6010	11/11/2016	1	Antimony		mg/Kg	U	1.8	1.8
15B7 (18-20)	BV82271	SW6010	11/11/2016	1	Arsenic	0.90	mg/Kg		0.73	0.73
15B7 (18-20)	BV82271	SW6010	11/11/2016	1	Barium	22.5	mg/Kg		0.36	0.7
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Benz(a)anthracene		ug/Kg	U	130	280
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Benzene	53	ug/Kg	J	46	60
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Benzidine		ug/Kg	UJ	230	390
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Benzo(a)pyrene		ug/Kg	U	130	200
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Benzo(b)fluoranthene		ug/Kg	U	130	280
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Benzo(ghi)perylene		ug/Kg	U	130	280
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Benzo(k)fluoranthene		ug/Kg	U	130	280
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Benzoic acid		ug/Kg	UJ	790	2000
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Benzyl butyl phthalate		ug/Kg	U	100	280
15B7 (18-20)	BV82271	SW6010	11/11/2016	1	Beryllium	0.21	mg/Kg	J	0.15	0.29
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	110	280
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	110	200
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	110	280
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	110	280
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Bromobenzene		ug/Kg	U	46	460
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Bromochloromethane		ug/Kg	U	46	460
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Bromodichloromethane		ug/Kg	U	93	460
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Bromoform		ug/Kg	U	93	460
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Bromomethane		ug/Kg	U	190	460
15B7 (18-20)	BV82271	SW6010	11/11/2016	1	Cadmium		mg/Kg	U	0.36	0.36
15B7 (18-20)	BV82271	SW6010	11/11/2016	1	Calcium	969	mg/Kg		3.3	3.6
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Carbazole		ug/Kg	U	160	200
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Carbon Disulfide		ug/Kg	U	93	460
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Carbon tetrachloride		ug/Kg	U	93	460
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Chlorobenzene		ug/Kg	U	46	460
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Chloroethane		ug/Kg	UJ	46	460
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Chloroform		ug/Kg	U	46	370

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Chloromethane		ug/Kg	U	93	460
15B7 (18-20)	BV82271	SW6010	11/11/2016	1	Chromium	11.8	mg/Kg		0.36	0.36
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Chrysene		ug/Kg	U	130	280
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	cis-1,2-Dichloroethene		ug/Kg	U	46	250
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	cis-1,3-Dichloropropene		ug/Kg	U	46	460
15B7 (18-20)	BV82271	SW6010	11/11/2016	1	Cobalt	5.53	mg/Kg		0.36	0.36
15B7 (18-20)	BV82271	SW6010	11/11/2016	1	Copper	8.59	mg/Kg		0.36	0.36
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Dibenz(a,h)anthracene		ug/Kg	U	130	200
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Dibenzofuran		ug/Kg	U	110	280
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Dibromochloromethane		ug/Kg	U	93	460
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Dibromomethane		ug/Kg	U	93	460
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Dichlorodifluoromethane		ug/Kg	U	46	460
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Diethyl phthalate		ug/Kg	U	120	280
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Dimethylphthalate		ug/Kg	U	120	280
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Di-n-butylphthalate		ug/Kg	U	100	280
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Di-n-octylphthalate		ug/Kg	U	100	280
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Ethylbenzene	520	ug/Kg		46	460
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Fluoranthene		ug/Kg	U	130	280
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Fluorene		ug/Kg	U	130	280
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Hexachlorobenzene		ug/Kg	U	110	200
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Hexachlorobutadiene		ug/Kg	U	46	460
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Hexachlorobutadiene		ug/Kg	U	140	280
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Hexachlorocyclopentadiene		ug/Kg	U	120	280
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Hexachloroethane		ug/Kg	U	120	200
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Indeno(1,2,3-cd)pyrene		ug/Kg	U	130	280
15B7 (18-20)	BV82271	SW6010	11/11/2016	10	Iron	11100	mg/Kg	J	36	36
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Isophorone		ug/Kg	U	110	200
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Isopropylbenzene	160	ug/Kg	J	46	460
15B7 (18-20)	BV82271	SW6010	11/11/2016	1	Lead	3.5	mg/Kg		0.36	0.7
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	m&p-Xylene	530	ug/Kg		93	460
15B7 (18-20)	BV82271	SW6010	11/11/2016	1	Magnesium	2060	mg/Kg		3.6	3.6
15B7 (18-20)	BV82271	SW6010	11/11/2016	10	Manganese	149	mg/Kg		3.6	3.6
15B7 (18-20)	BV82271	SW7471	11/11/2016	1	Mercury		mg/Kg	U	0.02	0.03
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Methyl Ethyl Ketone		ug/Kg	UJ	460	460
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Methyl t-butyl ether (MTBE)		ug/Kg	U	93	930
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Methylene chloride		ug/Kg	U	460	460
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Naphthalene		ug/Kg	U	93	460

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Naphthalene		ug/Kg	UJ	110	280
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	n-Butylbenzene	6300	ug/Kg		46	460
15B7 (18-20)	BV82271	SW6010	11/11/2016	1	Nickel	9.72	mg/Kg		0.36	0.36
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Nitrobenzene		ug/Kg	U	140	200
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	N-Nitrosodimethylamine		ug/Kg	U	110	280
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	130	200
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	150	280
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	n-Propylbenzene	910	ug/Kg		93	460
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	o-Xylene	380	ug/Kg	J	93	460
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Pentachloronitrobenzene		ug/Kg	U	150	280
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Pentachlorophenol		ug/Kg	U	150	240
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Phenanthrene		ug/Kg	U	110	280
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Phenol		ug/Kg	U	130	280
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	p-Isopropyltoluene	2100	ug/Kg		46	460
15B7 (18-20)	BV82271	SW6010	11/11/2016	1	Potassium	870	mg/Kg		2.8	7
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Pyrene		ug/Kg	U	140	280
15B7 (18-20)	BV82271	SW8270	11/11/2016	1	Pyridine		ug/Kg	U	97	280
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	sec-Butylbenzene	4200	ug/Kg		46	460
15B7 (18-20)	BV82271	SW6010	11/11/2016	1	Selenium		mg/Kg	U	1.2	1.5
15B7 (18-20)	BV82271	SW6010	11/11/2016	1	Silver		mg/Kg	U	0.36	0.36
15B7 (18-20)	BV82271	SW6010	11/11/2016	1	Sodium	162	mg/Kg		3.1	7
15B7 (18-20)	BV82271	E160.3	11/11/2016	1	SOLIDS, PERCENT	84	%			
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Styrene		ug/Kg	U	46	460
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Tert-butyl alcohol		ug/Kg	U	1900	9300
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	tert-Butylbenzene		ug/Kg	U	46	460
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Tetrachloroethene		ug/Kg	U	93	460
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Tetrahydrofuran (THF)		ug/Kg	UJ	230	930
15B7 (18-20)	BV82271	SW6010	11/11/2016	1	Thallium		mg/Kg	U	1.5	1.5
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Toluene	610	ug/Kg		46	460
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	trans-1,2-Dichloroethene		ug/Kg	U	46	190
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	trans-1,3-Dichloropropene		ug/Kg	U	46	460
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	trans-1,4-dichloro-2-butene		ug/Kg	U	230	930
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Trichloroethene		ug/Kg	U	46	460
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Trichlorofluoromethane		ug/Kg	U	93	460
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Trichlorotrifluoroethane		ug/Kg	U	46	460
15B7 (18-20)	BV82271	SW6010	11/11/2016	1	Vanadium	17.6	mg/Kg		0.36	0.36
15B7 (18-20)	BV82271	SW8260	11/11/2016	50	Vinyl chloride		ug/Kg	U	46	46

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B7 (18-20)	BV82271	SW6010	11/11/2016	1	Zinc	21.3	mg/Kg		0.36	0.7
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	0.88	18
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	1,1,1-Trichloroethane		ug/Kg	U	0.44	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	0.88	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	1,1,2-Trichloroethane		ug/Kg	U	0.88	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	1,1-Dichloroethane		ug/Kg	U	0.88	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	1,1-Dichloroethene		ug/Kg	U	0.44	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	1,1-Dichloropropene		ug/Kg	U	0.44	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	1,2,3-Trichlorobenzene		ug/Kg	UJ	0.88	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	1,2,3-Trichloropropane		ug/Kg	U	0.44	4.4
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	140	280
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	0.88	4.4
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	120	280
15B7 (23-25)	BV82272	SW8260	11/11/2016	50	1,2,4-Trimethylbenzene	280	ug/Kg		44	250
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	0.88	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	1,2-Dibromoethane		ug/Kg	U	0.44	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	1,2-Dichlorobenzene		ug/Kg	U	0.44	4.4
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	1,2-Dichlorobenzene		ug/Kg	UJ	110	280
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	1,2-Dichloroethane		ug/Kg	U	0.44	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	1,2-Dichloropropane		ug/Kg	U	0.88	4.4
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	130	280
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	1,3,5-Trimethylbenzene	80	ug/Kg		0.44	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	1,3-Dichlorobenzene		ug/Kg	U	0.44	4.4
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	1,3-Dichlorobenzene		ug/Kg	UJ	120	280
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	1,3-Dichloropropane		ug/Kg	U	0.88	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	1,4-Dichlorobenzene		ug/Kg	U	0.44	4.4
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	1,4-Dichlorobenzene		ug/Kg	UJ	120	280
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	1,4-dioxane		ug/Kg	U	35	66
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	2,2-Dichloropropane		ug/Kg	U	0.44	4.4
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	2,4,5-Trichlorophenol		ug/Kg	U	220	280
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	130	200
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	2,4-Dichlorophenol		ug/Kg	U	140	200
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	2,4-Dimethylphenol		ug/Kg	U	99	280
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	2,4-Dinitrophenol		ug/Kg	UJ	280	280
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	2,4-Dinitrotoluene		ug/Kg	U	160	200
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	2,6-Dinitrotoluene		ug/Kg	U	130	200
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	2-Chloronaphthalene		ug/Kg	U	110	280

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	2-Chlorophenol		ug/Kg	U	110	280
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	2-Chlorotoluene		ug/Kg	U	0.88	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	2-Hexanone		ug/Kg	U	4.4	22
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	2-Isopropyltoluene	0.56	ug/Kg	J	0.44	4.4
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	2-Methylnaphthalene		ug/Kg	U	120	280
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	190	280
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	2-Nitroaniline		ug/Kg	U	280	280
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	2-Nitrophenol		ug/Kg	U	250	280
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	160	280
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	190	200
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	3-Nitroaniline		ug/Kg	U	800	400
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	4,6-Dinitro-2-methylphenol		ug/Kg	UJ	80	240
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	120	280
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	140	280
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	4-Chloroaniline		ug/Kg	U	190	320
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	130	280
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	4-Chlorotoluene		ug/Kg	U	0.44	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	4-Methyl-2-pentanone	21	ug/Kg	J	4.4	22
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	4-Nitroaniline		ug/Kg	U	130	400
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	4-Nitrophenol		ug/Kg	U	180	400
15B7 (23-25)	BV82272	SW8270	11/11/2016		Acenaphthene		ug/Kg	U	120	280
15B7 (23-25)	BV82272	SW8270	11/11/2016		Acenaphthylene		ug/Kg	U	110	280
15B7 (23-25)	BV82272	SW8260	11/11/2016	50	Acetone	500	ug/Kg	J	440	440
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Acetophenone		ug/Kg	U	120	280
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	Acrolein		ug/Kg	UJ	2.2	18
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	Acrylonitrile		ug/Kg	U	0.44	18
15B7 (23-25)	BV82272	SW6010	11/11/2016		Aluminum	4250	mg/Kg		8.3	41
15B7 (23-25)	BV82272	SW8270	11/11/2016		Aniline		ug/Kg	U	320	320
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Anthracene		ug/Kg	U	130	280
15B7 (23-25)	BV82272	SW6010	11/11/2016	1	Antimony		mg/Kg	U	2.1	2.1
15B7 (23-25)	BV82272	SW6010	11/11/2016	1	Arsenic	0.97	mg/Kg		0.83	0.83
15B7 (23-25)	BV82272	SW6010	11/11/2016	1	Barium	21.3	mg/Kg		0.41	0.8
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Benz(a)anthracene		ug/Kg	U	130	280
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	Benzene	7.4	ug/Kg		0.44	4.4
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Benzidine		ug/Kg	UJ	230	400
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Benzo(a)pyrene		ug/Kg	U	130	200
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Benzo(b)fluoranthene		ug/Kg	U	140	280

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Benzo(ghi)perylene		ug/Kg	U	130	280
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Benzo(k)fluoranthene		ug/Kg	U	130	280
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Benzoic acid	3300	ug/Kg	J	800	2000
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Benzyl butyl phthalate		ug/Kg	U	100	280
15B7 (23-25)	BV82272	SW6010	11/11/2016	1	Beryllium	0.20	mg/Kg	J	0.17	0.33
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	110	280
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	110	200
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	110	280
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	110	280
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	Bromobenzene		ug/Kg	U	0.44	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	Bromochloromethane		ug/Kg	U	0.44	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	Bromodichloromethane		ug/Kg	U	0.88	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	Bromoform		ug/Kg	U	0.88	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	Bromomethane		ug/Kg	U	1.8	4.4
15B7 (23-25)	BV82272	SW6010	11/11/2016	1	Cadmium		mg/Kg	U	0.41	0.41
15B7 (23-25)	BV82272	SW6010	11/11/2016	1	Calcium	1390	mg/Kg		3.8	4.1
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Carbazole		ug/Kg	U	160	200
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	Carbon Disulfide	4.3	ug/Kg	J	0.88	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	Carbon tetrachloride		ug/Kg	U	0.88	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	Chlorobenzene		ug/Kg	U	0.44	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	Chloroethane		ug/Kg	UJ	0.44	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	Chloroform		ug/Kg	U	0.44	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	Chloromethane		ug/Kg	U	0.88	4.4
15B7 (23-25)	BV82272	SW6010	11/11/2016	1	Chromium	9.84	mg/Kg		0.41	0.41
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Chrysene		ug/Kg	U	130	280
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	cis-1,2-Dichloroethene	1.5	ug/Kg	J	0.44	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	cis-1,3-Dichloropropene		ug/Kg	U	0.44	4.4
15B7 (23-25)	BV82272	SW6010	11/11/2016	1	Cobalt	4.33	mg/Kg		0.41	0.41
15B7 (23-25)	BV82272	SW6010	11/11/2016	1	Copper	6.65	mg/Kg	U	0.41	0.41
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Dibenz(a,h)anthracene		ug/Kg	U	130	200
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Dibenzofuran		ug/Kg	U	120	280
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	Dibromochloromethane		ug/Kg	U	0.88	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	Dibromomethane		ug/Kg	U	0.88	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	Dichlorodifluoromethane		ug/Kg	U	0.44	4.4
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Diethyl phthalate		ug/Kg	U	130	280
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Dimethylphthalate		ug/Kg	U	120	280
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Di-n-butylphthalate		ug/Kg	U	110	280

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Di-n-octylphthalate		ug/Kg	U	100	280
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	Ethylbenzene	34	ug/Kg		0.44	4.4
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Fluoranthene		ug/Kg	U	130	280
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Fluorene		ug/Kg	U	130	280
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Hexachlorobenzene		ug/Kg	U	120	200
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	Hexachlorobutadiene		ug/Kg	U	0.44	4.4
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Hexachlorobutadiene		ug/Kg	U	140	280
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Hexachlorocyclopentadiene		ug/Kg	U	120	280
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Hexachloroethane		ug/Kg	U	120	200
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Indeno(1,2,3-cd)pyrene		ug/Kg	U	130	280
15B7 (23-25)	BV82272	SW6010	11/11/2016	10	Iron	14400	mg/Kg	J	41	41
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Isophorone		ug/Kg	U	110	200
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	Isopropylbenzene	5.9	ug/Kg		0.44	4.4
15B7 (23-25)	BV82272	SW6010	11/11/2016	1	Lead	1.2	mg/Kg		0.41	0.8
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	m&p-Xylene	99	ug/Kg		0.88	4.4
15B7 (23-25)	BV82272	SW6010	11/11/2016	1	Magnesium	1850	mg/Kg		4.1	4.1
15B7 (23-25)	BV82272	SW6010	11/11/2016	10	Manganese	678	mg/Kg		4.1	4.1
15B7 (23-25)	BV82272	SW7471	11/11/2016	1	Mercury		mg/Kg	U	0.02	0.03
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	Methyl Ethyl Ketone	160	ug/Kg	J	4.4	26
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	Methyl t-butyl ether (MTBE)	4.7	ug/Kg	J	0.88	8.8
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	Methylene chloride		ug/Kg	U	4.4	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	Naphthalene	57	ug/Kg		0.88	4.4
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Naphthalene		ug/Kg	UJ	110	280
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	n-Butylbenzene		ug/Kg	U	0.44	4.4
15B7 (23-25)	BV82272	SW6010	11/11/2016	1	Nickel	8.72	mg/Kg		0.41	0.41
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Nitrobenzene		ug/Kg	U	140	200
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	N-Nitrosodimethylamine		ug/Kg	U	110	280
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	130	200
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	150	280
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	n-Propylbenzene	14	ug/Kg		0.88	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	o-Xylene	24	ug/Kg		0.88	4.4
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Pentachloronitrobenzene		ug/Kg	U	150	280
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Pentachlorophenol		ug/Kg	U	150	240
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Phenanthrene		ug/Kg	U	110	280
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Phenol		ug/Kg	U	130	280
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	p-Isopropyltoluene	1.0	ug/Kg	J	0.44	4.4
15B7 (23-25)	BV82272	SW6010	11/11/2016	1	Potassium	842	mg/Kg		3.2	8

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Pyrene		ug/Kg	U	140	280
15B7 (23-25)	BV82272	SW8270	11/11/2016	1	Pyridine		ug/Kg	U	98	280
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	sec-Butylbenzene	3.3	ug/Kg	J	0.44	4.4
15B7 (23-25)	BV82272	SW6010	11/11/2016	1	Selenium		mg/Kg	U	1.4	1.7
15B7 (23-25)	BV82272	SW6010	11/11/2016	1	Silver		mg/Kg	U	0.41	0.41
15B7 (23-25)	BV82272	SW6010	11/11/2016	1	Sodium	160	mg/Kg		3.5	8
15B7 (23-25)	BV82272	E160.3	11/11/2016	1	SOLIDS, PERCENT	83	%			
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	Styrene		ug/Kg	U	0.44	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	Tert-butyl alcohol	20	ug/Kg	J	18	88
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	tert-Butylbenzene		ug/Kg	U	0.44	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	Tetrachloroethene		ug/Kg	U	0.88	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	Tetrahydrofuran (THF)		ug/Kg	U	2.2	8.8
15B7 (23-25)	BV82272	SW6010	11/11/2016	1	Thallium		mg/Kg	U	1.7	1.7
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	Toluene	14	ug/Kg		0.44	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	trans-1,2-Dichloroethene		ug/Kg	U	0.44	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	trans-1,3-Dichloropropene		ug/Kg	U	0.44	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	trans-1,4-dichloro-2-butene		ug/Kg	U	2.2	8.8
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	Trichloroethene	0.79	ug/Kg	J	0.44	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	Trichlorofluoromethane		ug/Kg	U	0.88	4.4
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	Trichlorotrifluoroethane		ug/Kg	U	0.44	4.4
15B7 (23-25)	BV82272	SW6010	11/11/2016	1	Vanadium	13.7	mg/Kg		0.41	0.41
15B7 (23-25)	BV82272	SW8260	11/11/2016	1	Vinyl chloride		ug/Kg	U	0.44	4.4
15B7 (23-25)	BV82272	SW6010	11/11/2016	1	Zinc	19.3	mg/Kg		0.41	8.0
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	1.0	21
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	1,1,1-Trichloroethane		ug/Kg	U	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	1.0	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	1,1,2-Trichloroethane		ug/Kg	U	1.0	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	1,1-Dichloroethane		ug/Kg	U	1.0	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	1,1-Dichloroethene		ug/Kg	U	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	1,1-Dichloropropene		ug/Kg	U	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	1,2,3-Trichlorobenzene		ug/Kg	UJ	1.0	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	1,2,3-Trichloropropane		ug/Kg	U	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	140	270
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	1.0	5.2
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	120	270
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	1,2,4-Trimethylbenzene	1.0	ug/Kg	J	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	1.0	5.2

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	1,2-Dibromoethane		ug/Kg	U	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	1,2-Dichlorobenzene		ug/Kg	Ü	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	1,2-Dichlorobenzene		ug/Kg	UJ	110	270
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	1,2-Dichloroethane		ug/Kg	Ü	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	1,2-Dichloropropane		ug/Kg	Ū	1.0	5.2
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	1,2-Diphenylhydrazine		ug/Kg	Ū	130	270
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	1,3,5-Trimethylbenzene		ug/Kg	U	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	1,3-Dichlorobenzene		ug/Kg	U	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	1,3-Dichlorobenzene		ug/Kg	UJ	110	270
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	1,3-Dichloropropane		ug/Kg	U	1.0	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	1,4-Dichlorobenzene		ug/Kg	U	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	1,4-Dichlorobenzene		ug/Kg	UJ	110	270
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	1,4-dioxane		ug/Kg	U	42	79
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	2,2-Dichloropropane		ug/Kg	U	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	2,4,5-Trichlorophenol		ug/Kg	U	210	270
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	120	190
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	2,4-Dichlorophenol		ug/Kg	U	140	190
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	2,4-Dimethylphenol		ug/Kg	U	96	270
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	2,4-Dinitrophenol		ug/Kg	UJ	270	270
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	2,4-Dinitrotoluene		ug/Kg	U	150	190
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	2,6-Dinitrotoluene		ug/Kg	U	120	190
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	2-Chloronaphthalene		ug/Kg	U	110	270
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	2-Chlorophenol		ug/Kg	U	110	270
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	2-Chlorotoluene		ug/Kg	U	1.0	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	2-Hexanone		ug/Kg	U	5.2	26
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	2-Isopropyltoluene		ug/Kg	U	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	2-Methylnaphthalene		ug/Kg	U	120	270
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	180	270
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	2-Nitroaniline		ug/Kg	U	270	270
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	2-Nitrophenol		ug/Kg	U	240	270
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	150	270
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	180	190
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	3-Nitroaniline		ug/Kg	U	770	390
SOIL DUPLICATE 2	BV82274	SW8081	11/11/2016	2	4,4' -DDD		ug/Kg	U	2.3	2.3
SOIL DUPLICATE 2	BV82274	SW8081	11/11/2016	2	4,4' -DDE		ug/Kg	U	2.3	2.3
SOIL DUPLICATE 2	BV82274	SW8081	11/11/2016	2	4,4' -DDT		ug/Kg	U	2.3	2.3
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	4,6-Dinitro-2-methylphenol		ug/Kg	UJ	77	230

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	110	270
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	4-Chloro-3-methylphenol		ug/Kg	Ü	140	270
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	4-Chloroaniline		ug/Kg	Ū	180	310
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	Ū	130	270
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	4-Chlorotoluene		ug/Kg	U	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	4-Methyl-2-pentanone		ug/Kg	U	5.2	26
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	4-Nitroaniline		ug/Kg	U	130	390
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	4-Nitrophenol		ug/Kg	U	170	390
SOIL DUPLICATE 2	BV82274	SW8081	11/11/2016	2	a-BHC		ug/Kg	U	7.8	7.8
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Acenaphthene		ug/Kg	U	120	270
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Acenaphthylene		ug/Kg	U	110	270
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Acetone	26	ug/Kg	J	5.2	26
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Acetophenone		ug/Kg	U	120	270
SOIL DUPLICATE 2	BV82274	SW8081	11/11/2016	2	a-Chlordane		ug/Kg	U	3.9	3.9
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Acrolein		ug/Kg	UJ	2.6	21
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Acrylonitrile		ug/Kg	U	0.52	21
SOIL DUPLICATE 2	BV82274	SW8081	11/11/2016	2	Aldrin		ug/Kg	U	3.9	3.9
SOIL DUPLICATE 2	BV82274	SW6010	11/11/2016	10	Aluminum	5940	mg/Kg		7.1	35
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Aniline		ug/Kg	U	310	310
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Anthracene		ug/Kg	U	130	270
SOIL DUPLICATE 2	BV82274	SW6010	11/11/2016	1	Antimony		mg/Kg	U	1.8	1.8
SOIL DUPLICATE 2	BV82274	SW6010	11/11/2016	1	Arsenic	1.17	mg/Kg		0.71	0.71
SOIL DUPLICATE 2	BV82274	SW6010	11/11/2016	1	Barium	24.3	mg/Kg		0.35	0.7
SOIL DUPLICATE 2	BV82274	SW8081	11/11/2016	2	b-BHC		ug/Kg	U	7.8	7.8
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Benz(a)anthracene		ug/Kg	U	130	270
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Benzene	0.86	ug/Kg	J	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Benzidine		ug/Kg	UJ	230	390
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Benzo(a)pyrene		ug/Kg	U	130	190
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Benzo(b)fluoranthene		ug/Kg	U	130	270
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Benzo(ghi)perylene		ug/Kg	U	130	270
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Benzo(k)fluoranthene		ug/Kg	U	130	270
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Benzoic acid		ug/Kg	UJ	770	1900
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Benzyl butyl phthalate		ug/Kg	U	100	270
SOIL DUPLICATE 2	BV82274	SW6010	11/11/2016	1	Beryllium	0.25	mg/Kg	J	0.14	0.28
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	110	270
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	100	190
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	110	270

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	110	270
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Bromobenzene		ug/Kg	U	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Bromochloromethane		ug/Kg	U	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Bromodichloromethane		ug/Kg	U	1.0	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Bromoform		ug/Kg	U	1.0	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Bromomethane		ug/Kg	U	2.1	5.2
SOIL DUPLICATE 2	BV82274	SW6010	11/11/2016	1	Cadmium		mg/Kg	U	0.35	0.35
SOIL DUPLICATE 2	BV82274	SW6010	11/11/2016	1	Calcium	814	mg/Kg		3.3	3.5
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Carbazole		ug/Kg	U	150	190
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Carbon Disulfide	1.2	ug/Kg	J	1.0	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Carbon tetrachloride		ug/Kg	U	1.0	5.2
SOIL DUPLICATE 2	BV82274	SW8081	11/11/2016	2	Chlordane		ug/Kg	U	39	39
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Chlorobenzene		ug/Kg	U	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Chloroethane		ug/Kg	UJ	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Chloroform		ug/Kg	U	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Chloromethane		ug/Kg	U	1.0	5.2
SOIL DUPLICATE 2	BV82274	SW6010	11/11/2016	1	Chromium	18.0	mg/Kg		0.35	0.35
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Chrysene		ug/Kg	U	130	270
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	cis-1,2-Dichloroethene		ug/Kg	U	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	cis-1,3-Dichloropropene		ug/Kg	U	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW6010	11/11/2016	1	Cobalt	5.43	mg/Kg		0.35	0.35
SOIL DUPLICATE 2	BV82274	SW6010	11/11/2016	1	Copper	8.44	mg/Kg		0.35	0.35
SOIL DUPLICATE 2	BV82274	SW8081	11/11/2016	2	d-BHC		ug/Kg	U	7.8	7.8
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Dibenz(a,h)anthracene		ug/Kg	U	130	190
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Dibenzofuran		ug/Kg	U	110	270
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Dibromochloromethane		ug/Kg	U	1.0	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Dibromomethane		ug/Kg	U	1.0	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Dichlorodifluoromethane		ug/Kg	U	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW8081	11/11/2016	2	Dieldrin		ug/Kg	U	3.9	3.9
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Diethyl phthalate		ug/Kg	U	120	270
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Dimethylphthalate		ug/Kg	U	120	270
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Di-n-butylphthalate		ug/Kg	U	100	270
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Di-n-octylphthalate		ug/Kg	U	100	270
SOIL DUPLICATE 2	BV82274	SW8081	11/11/2016	2	Endosulfan I		ug/Kg	U	7.8	7.8
SOIL DUPLICATE 2	BV82274	SW8081	11/11/2016	2	Endosulfan II		ug/Kg	U	7.8	7.8
SOIL DUPLICATE 2	BV82274	SW8081	11/11/2016	2	Endosulfan sulfate		ug/Kg	U	7.8	7.8
SOIL DUPLICATE 2	BV82274	SW8081	11/11/2016	2	Endrin		ug/Kg	U	7.8	7.8

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SOIL DUPLICATE 2	BV82274	SW8081	11/11/2016	2	Endrin aldehyde	11000110	ug/Kg	U	7.8	7.8
SOIL DUPLICATE 2	BV82274	SW8081	11/11/2016	2	Endrin ketone		ug/Kg	Ü	7.8	7.8
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Ethylbenzene	1.3	ug/Kg	J	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Fluoranthene		ug/Kg	Ü	130	270
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Fluorene		ug/Kg	Ū	130	270
SOIL DUPLICATE 2	BV82274	SW8081	11/11/2016	2	g-BHC		ug/Kg	U	1.6	1.6
SOIL DUPLICATE 2	BV82274	SW8081	11/11/2016	2	g-Chlordane		ug/Kg	U	3.9	3.9
SOIL DUPLICATE 2	BV82274	SW8081	11/11/2016	2	Heptachlor		ug/Kg	U	7.8	7.8
SOIL DUPLICATE 2	BV82274	SW8081	11/11/2016	2	Heptachlor epoxide		ug/Kg	U	7.8	7.8
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Hexachlorobenzene		ug/Kg	U	110	190
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Hexachlorobutadiene		ug/Kg	U	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Hexachlorobutadiene		ug/Kg	U	140	270
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Hexachlorocyclopentadiene		ug/Kg	U	120	270
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Hexachloroethane		ug/Kg	U	120	190
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Indeno(1,2,3-cd)pyrene		ug/Kg	U	130	270
SOIL DUPLICATE 2	BV82274	SW6010	11/11/2016	10	Iron	11400	mg/Kg	J	35	35
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Isophorone		ug/Kg	U	110	190
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Isopropylbenzene		ug/Kg	U	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW6010	11/11/2016	1	Lead	1.3	mg/Kg		0.35	0.7
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	m&p-Xylene	2.1	ug/Kg	J	1.0	5.2
SOIL DUPLICATE 2	BV82274	SW6010	11/11/2016	1	Magnesium	2000	mg/Kg		3.5	3.5
SOIL DUPLICATE 2	BV82274	SW6010	11/11/2016	10	Manganese	247	mg/Kg		3.5	3.5
SOIL DUPLICATE 2	BV82274	SW7471	11/11/2016	1	Mercury		mg/Kg	U	0.02	0.03
SOIL DUPLICATE 2	BV82274	SW8081	11/11/2016	2	Methoxychlor		ug/Kg	U	39	39
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Methyl Ethyl Ketone		ug/Kg	UJ	5.2	31
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Methyl t-butyl ether (MTBE)	5.1	ug/Kg	J	1.0	10
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Methylene chloride		ug/Kg	U	5.2	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Naphthalene		ug/Kg	U	1.0	5.2
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Naphthalene		ug/Kg	UJ	110	270
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	n-Butylbenzene		ug/Kg	U	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW6010	11/11/2016	1	Nickel	8.54	mg/Kg		0.35	0.35
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Nitrobenzene		ug/Kg	U	140	190
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	N-Nitrosodimethylamine		ug/Kg	U	110	270
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	130	190
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	150	270
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	n-Propylbenzene		ug/Kg	U	1.0	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	o-Xylene		ug/Kg	U	1.0	5.2

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SOIL DUPLICATE 2	BV82274	SW8082	11/11/2016	2	PCB-1016	IXCOUR	ug/Kg	U	78	78
SOIL DUPLICATE 2	BV82274	SW8082	11/11/2016	2	PCB-1221		ug/Kg ug/Kg	U	78	78
SOIL DUPLICATE 2	BV82274	SW8082	11/11/2016	2	PCB-1221		ug/Kg ug/Kg	U	78	78
SOIL DUPLICATE 2	BV82274	SW8082	11/11/2016	2	PCB-1232		ug/Kg ug/Kg	U	78	78
SOIL DUPLICATE 2	BV82274	SW8082	11/11/2016	2	PCB-1248		ug/Kg	U	78	78
SOIL DUPLICATE 2	BV82274	SW8082	11/11/2016	2	PCB-1254		ug/Kg	U	78	78
SOIL DUPLICATE 2	BV82274	SW8082	11/11/2016	2	PCB-1260		ug/Kg	U	78	78
SOIL DUPLICATE 2	BV82274	SW8082	11/11/2016	2	PCB-1262		ug/Kg ug/Kg	U	78	78
SOIL DUPLICATE 2	BV82274	SW8082	11/11/2016	2	PCB-1268		ug/Kg ug/Kg	U	78	78
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Pentachloronitrobenzene		ug/Kg ug/Kg	U	140	270
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Pentachlorophenol		ug/Kg ug/Kg	U	150	230
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Phenanthrene		ug/Kg ug/Kg	U	110	270
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Phenol		ug/Kg	U	120	270
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	p-Isopropyltoluene		ug/Kg ug/Kg	U	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW6010	11/11/2016	1	Potassium	649	mg/Kg		2.8	7
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Pyrene	0.10	ug/Kg	U	130	270
SOIL DUPLICATE 2	BV82274	SW8270	11/11/2016	1	Pyridine		ug/Kg	U	95	270
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	sec-Butylbenzene		ug/Kg	Ü	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW6010	11/11/2016	1	Selenium		mg/Kg	Ü	1.2	1.4
SOIL DUPLICATE 2	BV82274	SW6010	11/11/2016	1	Silver		mg/Kg	Ü	0.35	0.35
SOIL DUPLICATE 2	BV82274	SW6010	11/11/2016	1	Sodium	161	mg/Kg		3.0	7
SOIL DUPLICATE 2	BV82274	E160.3	11/11/2016	1	SOLIDS, PERCENT	84	%		0.0	
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Styrene	<u> </u>	ug/Kg	U	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Tert-butyl alcohol	300	ug/Kg	_	21	100
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	tert-Butylbenzene		ug/Kg	U	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Tetrachloroethene		ug/Kg	Ū	1.0	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Tetrahydrofuran (THF)		ug/Kg	U	2.6	10
SOIL DUPLICATE 2	BV82274	SW6010	11/11/2016	1	Thallium		mg/Kg	U	1.4	1.4
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Toluene		ug/Kg	U	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW8081	11/11/2016	2	Toxaphene		ug/Kg	U	160	160
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	trans-1,2-Dichloroethene		ug/Kg	U	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	trans-1,3-Dichloropropene		ug/Kg	U	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	trans-1,4-dichloro-2-butene		ug/Kg	U	2.6	10
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Trichloroethene		ug/Kg	U	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Trichlorofluoromethane		ug/Kg	U	1.0	5.2
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Trichlorotrifluoroethane		ug/Kg	U	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW6010	11/11/2016	1	Vanadium	18.6	mg/Kg		0.35	0.35

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SOIL DUPLICATE 2	BV82274	SW8260	11/11/2016	1	Vinyl chloride		ug/Kg	U	0.52	5.2
SOIL DUPLICATE 2	BV82274	SW6010	11/11/2016	1	Zinc	20.6	mg/Kg	_	0.35	0.7
BV82275-TB	BV82275	SW8260	11/11/2016	50	1,1,1,2-Tetrachloroethane		ug/Kg	U	50	1000
BV82275-TB	BV82275	SW8260	11/11/2016	50	1,1,1-Trichloroethane		ug/Kg	U	25	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	1,1,2,2-Tetrachloroethane		ug/Kg	U	50	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	1,1,2-Trichloroethane		ug/Kg	U	50	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	1,1-Dichloroethane		ug/Kg	U	50	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	1,1-Dichloroethene		ug/Kg	U	25	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	1,1-Dichloropropene		ug/Kg	U	25	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	1,2,3-Trichlorobenzene		ug/Kg	U	50	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	1,2,3-Trichloropropane		ug/Kg	U	25	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	1,2,4-Trichlorobenzene		ug/Kg	U	50	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	1,2,4-Trimethylbenzene		ug/Kg	U	25	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	1,2-Dibromo-3-chloropropane		ug/Kg	U	50	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	1,2-Dibromoethane		ug/Kg	U	25	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	1,2-Dichlorobenzene		ug/Kg	U	25	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	1,2-Dichloroethane		ug/Kg	U	25	25
BV82275-TB	BV82275	SW8260	11/11/2016	50	1,2-Dichloropropane		ug/Kg	U	50	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	1,3,5-Trimethylbenzene		ug/Kg	U	25	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	1,3-Dichlorobenzene		ug/Kg	U	25	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	1,3-Dichloropropane		ug/Kg	U	50	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	1,4-Dichlorobenzene		ug/Kg	U	25	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	1,4-dioxane		ug/Kg	U	2000	2000
BV82275-TB	BV82275	SW8260	11/11/2016	50	2,2-Dichloropropane		ug/Kg	U	25	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	2-Chlorotoluene		ug/Kg	U	50	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	2-Hexanone		ug/Kg	UJ	250	1300
BV82275-TB	BV82275	SW8260	11/11/2016	50	2-Isopropyltoluene		ug/Kg	U	25	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	4-Chlorotoluene		ug/Kg	U	25	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	4-Methyl-2-pentanone		ug/Kg	UJ	250	1300
BV82275-TB	BV82275	SW8260	11/11/2016	50	Acetone		ug/Kg	UJ	250	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	Acrolein		ug/Kg	UJ	130	1000
BV82275-TB	BV82275	SW8260	11/11/2016	50	Acrylonitrile		ug/Kg	U	25	1000
BV82275-TB	BV82275	SW8260	11/11/2016	50	Benzene		ug/Kg	U	25	60
BV82275-TB	BV82275	SW8260	11/11/2016	50	Bromobenzene		ug/Kg	U	25	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	Bromochloromethane		ug/Kg	U	25	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	Bromodichloromethane		ug/Kg	U	50	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	Bromoform		ug/Kg	U	50	250

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
BV82275-TB	BV82275	SW8260	11/11/2016	50	Bromomethane		ug/Kg	U	100	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	Carbon Disulfide		ug/Kg	Ū	50	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	Carbon tetrachloride		ug/Kg	Ū	50	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	Chlorobenzene		ug/Kg	U	25	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	Chloroethane		ug/Kg	UJ	25	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	Chloroform		ug/Kg	U	25	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	Chloromethane		ug/Kg	U	50	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	cis-1,2-Dichloroethene		ug/Kg	U	25	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	cis-1,3-Dichloropropene		ug/Kg	U	25	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	Dibromochloromethane		ug/Kg	U	50	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	Dibromomethane		ug/Kg	U	50	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	Dichlorodifluoromethane		ug/Kg	U	25	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	Ethylbenzene		ug/Kg	U	25	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	Hexachlorobutadiene		ug/Kg	U	25	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	Isopropylbenzene		ug/Kg	U	25	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	m&p-Xylene		ug/Kg	U	50	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	Methyl Ethyl Ketone		ug/Kg	UJ	250	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	Methyl t-butyl ether (MTBE)		ug/Kg	U	50	500
BV82275-TB	BV82275	SW8260	11/11/2016	50	Methylene chloride		ug/Kg	U	250	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	Naphthalene		ug/Kg	U	50	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	n-Butylbenzene		ug/Kg	U	25	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	n-Propylbenzene		ug/Kg	U	50	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	o-Xylene		ug/Kg	U	50	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	p-Isopropyltoluene		ug/Kg	U	25	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	sec-Butylbenzene		ug/Kg	U	25	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	Styrene		ug/Kg	U	25	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	Tert-butyl alcohol		ug/Kg	U	1000	5000
BV82275-TB	BV82275	SW8260	11/11/2016	50	tert-Butylbenzene		ug/Kg	U	25	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	Tetrachloroethene		ug/Kg	U	50	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	Tetrahydrofuran (THF)		ug/Kg	UJ	130	500
BV82275-TB	BV82275	SW8260	11/11/2016	50	Toluene		ug/Kg	U	25	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	trans-1,2-Dichloroethene		ug/Kg	U	25	190
BV82275-TB	BV82275	SW8260	11/11/2016	50	trans-1,3-Dichloropropene		ug/Kg	U	25	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	trans-1,4-dichloro-2-butene		ug/Kg	U	130	500
BV82275-TB	BV82275	SW8260	11/11/2016	50	Trichloroethene		ug/Kg	U	25	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	Trichlorofluoromethane		ug/Kg	U	50	250
BV82275-TB	BV82275	SW8260	11/11/2016	50	Trichlorotrifluoroethane		ug/Kg	U	25	250

1181 FLUSHING AVENUE BROOKLYN, NY DATA SUMMARY TABLE SOIL

SDG: GBV82267

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
BV82275-TB	BV82275	SW8260	11/11/2016	50	Vinyl chloride		ug/Kg	U	25	25
BV82276-TB	BV82276	SW8260	11/11/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	1.0	20
BV82276-TB	BV82276	SW8260	11/11/2016	1	1,1,1-Trichloroethane		ug/Kg	U	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	1.0	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	1,1,2-Trichloroethane		ug/Kg	U	1.0	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	1,1-Dichloroethane		ug/Kg	U	1.0	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	1,1-Dichloroethene		ug/Kg	U	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	1,1-Dichloropropene		ug/Kg	U	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	1,2,3-Trichlorobenzene		ug/Kg	U	1.0	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	1,2,3-Trichloropropane		ug/Kg	U	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	1.0	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	1,2,4-Trimethylbenzene		ug/Kg	U	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	1.0	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	1,2-Dibromoethane		ug/Kg	U	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	1,2-Dichlorobenzene		ug/Kg	U	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	1,2-Dichloroethane		ug/Kg	U	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	1,2-Dichloropropane		ug/Kg	U	1.0	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	1,3,5-Trimethylbenzene		ug/Kg	U	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	1,3-Dichlorobenzene		ug/Kg	U	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	1,3-Dichloropropane		ug/Kg	U	1.0	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	1,4-Dichlorobenzene		ug/Kg	U	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	1,4-dioxane		ug/Kg	J	40	75
BV82276-TB	BV82276	SW8260	11/11/2016	1	2,2-Dichloropropane		ug/Kg	J	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	2-Chlorotoluene		ug/Kg	U	1.0	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	2-Hexanone		ug/Kg	UJ	5.0	25
BV82276-TB	BV82276	SW8260	11/11/2016	1	2-Isopropyltoluene		ug/Kg	J	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	4-Chlorotoluene		ug/Kg	J	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	4-Methyl-2-pentanone		ug/Kg	UJ	5.0	25
BV82276-TB	BV82276	SW8260	11/11/2016	1	Acetone		ug/Kg	UJ	5.0	25
BV82276-TB	BV82276	SW8260	11/11/2016	1	Acrolein		ug/Kg	UJ	2.5	20
BV82276-TB	BV82276	SW8260	11/11/2016	1	Acrylonitrile		ug/Kg	J	0.50	20
BV82276-TB	BV82276	SW8260	11/11/2016	1	Benzene		ug/Kg	U	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	Bromobenzene		ug/Kg	U	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	Bromochloromethane		ug/Kg	U	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	Bromodichloromethane		ug/Kg	U	1.0	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	Bromoform		ug/Kg	U	1.0	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	Bromomethane		ug/Kg	U	2.0	5.0

1181 FLUSHING AVENUE BROOKLYN, NY DATA SUMMARY TABLE SOIL

SDG: GBV82267

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
BV82276-TB	BV82276	SW8260	11/11/2016	1	Carbon Disulfide		ug/Kg	U	1.0	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	Carbon tetrachloride		ug/Kg	U	1.0	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	Chlorobenzene		ug/Kg	U	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	Chloroethane		ug/Kg	UJ	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	Chloroform		ug/Kg	U	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	Chloromethane		ug/Kg	U	1.0	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	cis-1,2-Dichloroethene		ug/Kg	U	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	cis-1,3-Dichloropropene		ug/Kg	U	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	Dibromochloromethane		ug/Kg	U	1.0	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	Dibromomethane		ug/Kg	U	1.0	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	Dichlorodifluoromethane		ug/Kg	U	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	Ethylbenzene		ug/Kg	U	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	Hexachlorobutadiene		ug/Kg	U	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	Isopropylbenzene		ug/Kg	U	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	m&p-Xylene		ug/Kg	U	1.0	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	Methyl Ethyl Ketone		ug/Kg	UJ	5.0	30
BV82276-TB	BV82276	SW8260	11/11/2016	1	Methyl t-butyl ether (MTBE)		ug/Kg	U	1.0	10
BV82276-TB	BV82276	SW8260	11/11/2016	1	Methylene chloride		ug/Kg	U	5.0	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	Naphthalene		ug/Kg	U	1.0	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	n-Butylbenzene		ug/Kg	U	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	n-Propylbenzene		ug/Kg	U	1.0	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	o-Xylene		ug/Kg	U	1.0	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	p-Isopropyltoluene		ug/Kg	U	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	sec-Butylbenzene		ug/Kg	U	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	Styrene		ug/Kg	U	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	Tert-butyl alcohol		ug/Kg	U	20	100
BV82276-TB	BV82276	SW8260	11/11/2016	1	tert-Butylbenzene		ug/Kg	U	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	Tetrachloroethene		ug/Kg	U	1.0	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	Tetrahydrofuran (THF)		ug/Kg	UJ	2.5	10
BV82276-TB	BV82276	SW8260	11/11/2016	1	Toluene		ug/Kg	U	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	trans-1,2-Dichloroethene		ug/Kg	U	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	trans-1,3-Dichloropropene		ug/Kg	U	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	trans-1,4-dichloro-2-butene		ug/Kg	U	2.5	10
BV82276-TB	BV82276	SW8260	11/11/2016	1	Trichloroethene		ug/Kg	U	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	Trichlorofluoromethane		ug/Kg	U	1.0	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	Trichlorotrifluoroethane		ug/Kg	U	0.50	5.0
BV82276-TB	BV82276	SW8260	11/11/2016	1	Vinyl chloride		ug/Kg	U	0.50	5.0

DATA USABILITY SUMMARY REPORT (DUSR) SEMI-VOLATILE ORGANIC COMPOUNDS

USEPA Region II -Data Validation

Project Name: 1181 Flushing Avenue

Location: Brooklyn, New York

Project Number: 3020-026

SDG #: GBV83365

Client: Environmental Business Consultants

Date: 02/21/2017

Laboratory: Phoenix Environmental Laboratories, Inc.

Reviewer: Sherri Pullar

Summary:

- 1. Data validation was performed on the data for seventeen (17) soil samples analyzed for Semi-volatiles by SW-846 Method 8270D in accordance with the NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 11/14/2016. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 11/15/2016 for analysis.
- 3. The USEPA Region-II SOP HW-35, Revision 2, March 2013, Validating Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry, SW-846 Method 8270D was used in evaluating the Semi-volatiles data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (see discussion below).

Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory Sample ID	Collection Date	Analysis	Matrix	Sample Status
15B19 (0-2)	BV83365	11/14/16	SVO	Soil	
15B19 (12-14)	BV83366	11/14/16	SVO	Soil	
15B19 (18-20)	BV83367	11/14/16	SVO	Soil	
15B19 (20-25)	BV83368	11/14/16	SVO	Soil	
15B4 (12-14)	BV83369	11/14/16	SVO	Soil	
15B4 (15-17)	BV83370	11/14/16	SVO	Soil	
15B4 (18-20)	BV83371	11/14/16	SVO	Soil	
15B3 (12-14)	BV83372	11/14/16	SVO	Soil	
15B1 (12-14)	BV83373	11/14/16	SVO	Soil	
15B1 (18-20)	BV83374	11/14/16	SVO	Soil	
15B2 (12-14)	BV83375	11/14/16	SVO	Soil	
15B2 (22.5-25)	BV83376	11/14/16	SVO	Soil	
15B10 (10-15)	BV83377	11/14/16	SVO	Soil	
15B9 (3-5)	BV83378	11/14/16	SVO	Soil	
15B9 (10-15)	BV83379	11/14/16	SVO	Soil	
SOIL DUPLICATE 3	BV83380	11/14/16	SVO	Soil	Field Duplicate to Sample 15B19 (0-2)
SOIL DUPLICATE 4	BV83381	11/14/16	SVO	Soil	Field Duplicate to Sample 15B2 (12-14)

Sample Conditions/Problems:

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

Holding Times:

1. All soil samples were extracted within 14 days from sample collection and analyzed within 40 days following sample extraction. No qualifications were required.

GC/MS Tuning:

1. All of the DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria. No qualifications were required.

Initial Calibration:

1. Initial calibration curve analyzed on 11/10/2016 (CHEM06) exhibited acceptable %RSDs ($\leq 30.0\%$) for CCC compounds and average RRF values for SPCC compounds. Also, %RSDs for all other compounds were $\leq 20.0\%$ and average RRF (> 0.050) with the following exception(s):

Compound	%RSD
Benzidine	22.3

Client Sample ID	Laboratory Sample ID	Compound	Action
15B19 (0-2)	BV83365	Benzidine	None
15B19 (12-14)	BV83366	Benzidine	None
15B19 (20-25)	BV83368	Benzidine	None
15B4 (12-14)	BV83369	Benzidine	None
15B4 (15-17)	BV83370	Benzidine	None
15B4 (18-20)	BV83371	Benzidine	None
15B3 (12-14)	BV83372	Benzidine	None
15B1 (12-14)	BV83373	Benzidine	None
15B1 (18-20)	BV83374	Benzidine	None
15B2 (12-14)	BV83375	Benzidine	None
15B2 (22.5-25)	BV83376	Benzidine	None
15B10 (10-15)	BV83377	Benzidine	None
15B9 (3-5)	BV83378	Benzidine	None
15B9 (10-15)	BV83379	Benzidine	None
SOIL DUPLICATE	BV83380	Benzidine	None
3			
SOIL DUPLICATE	BV83381	Benzidine	None
4			

2. Initial calibration curve analyzed on 11/15/2016 (CHEM27) exhibited acceptable %RSDs ($\leq 30.0\%$) for CCC compounds and average RRF values for SPCC compounds. Also, %RSDs for all other compounds were $\leq 20.0\%$ and average RRF (> 0.050) with the following exception(s):

Compound	%RSD
2,4-Dinitrophenol	21.0

Client Sample ID	Laboratory Sample ID	Compound	Action
15B19 (18-20)	BV83367	2,4-Dinitrophenol	None

Continuing Calibration Verification (CCV):

1. CCV analyzed on 11/15/2016 @ 20:54 (CHEM06) exhibited acceptable %Ds (≤40.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤25.0% with the following exception(s):

Compound	%D
Pentachlorophenol	26.0

Client Sample ID	Laboratory Sample ID	Compound	Action
15B19 (0-2)	BV83365	Pentachlorophenol	UJ
15B19 (12-14)	BV83366	Pentachlorophenol	UJ
15B19 (20-25)	BV83368	Pentachlorophenol	UJ
15B4 (12-14)	BV83369	Pentachlorophenol	UJ
15B4 (15-17)	BV83370	Pentachlorophenol	UJ
15B4 (18-20)	BV83371	Pentachlorophenol	UJ
15B3 (12-14)	BV83372	Pentachlorophenol	UJ
15B1 (12-14)	BV83373	Pentachlorophenol	UJ
15B1 (18-20)	BV83374	Pentachlorophenol	UJ
15B2 (12-14)	BV83375	Pentachlorophenol	UJ
15B2 (22.5-25)	BV83376	Pentachlorophenol	UJ
15B10 (10-15)	BV83377	Pentachlorophenol	UJ
15B9 (3-5)	BV83378	Pentachlorophenol	UJ
15B9 (10-15)	BV83379	Pentachlorophenol	UJ
SOIL DUPLICATE	BV83380	Pentachlorophenol	UJ
3			
SOIL DUPLICATE	BV83381	Pentachlorophenol	UJ
4			

2. CCV analyzed on 11/16/2016 @ 06:55 (CHEM06) exhibited acceptable %Ds (≤50.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤50.0% with the following exception(s):

Compound	% D
Hexachlorocyclopentadiene	81.9
2,4-Dinitrophenol	90.2
4,6-Dinitro-2-methylphenol	78.2

Client Sample ID	Laboratory Sample ID	Compound	Action
15B19 (0-2)	BV83365	Hexachlorocyclopentadiene,	UJ
		2,4-Dinitrophenol,	
		4,6-Dinitro-2-methylphenol	
15B19 (12-14)	BV83366	Hexachlorocyclopentadiene,	UJ

Client Sample ID	Laboratory Sample ID	Compound	Action
•		2,4-Dinitrophenol,	
		4,6-Dinitro-2-methylphenol	
15B19 (20-25)	BV83368	Hexachlorocyclopentadiene,	UJ
, ,		2,4-Dinitrophenol,	
		4,6-Dinitro-2-methylphenol	
15B4 (12-14)	BV83369	Hexachlorocyclopentadiene,	UJ
		2,4-Dinitrophenol,	
		4,6-Dinitro-2-methylphenol	
15B4 (15-17)	BV83370	Hexachlorocyclopentadiene,	UJ
, ,		2,4-Dinitrophenol,	
		4,6-Dinitro-2-methylphenol	
15B4 (18-20)	BV83371	Hexachlorocyclopentadiene,	UJ
, ,		2,4-Dinitrophenol,	
		4,6-Dinitro-2-methylphenol	
15B3 (12-14)	BV83372	Hexachlorocyclopentadiene,	UJ
, ,		2,4-Dinitrophenol,	
		4,6-Dinitro-2-methylphenol	
15B1 (12-14)	BV83373	Hexachlorocyclopentadiene,	UJ
, ,		2,4-Dinitrophenol,	
		4,6-Dinitro-2-methylphenol	
15B1 (18-20)	BV83374	Hexachlorocyclopentadiene,	UJ
, ,		2,4-Dinitrophenol,	
		4,6-Dinitro-2-methylphenol	
15B2 (12-14)	BV83375	Hexachlorocyclopentadiene,	UJ
		2,4-Dinitrophenol,	
		4,6-Dinitro-2-methylphenol	
15B2 (22.5-25)	BV83376	Hexachlorocyclopentadiene,	UJ
		2,4-Dinitrophenol,	
		4,6-Dinitro-2-methylphenol	
15B10 (10-15)	BV83377	Hexachlorocyclopentadiene,	UJ
		2,4-Dinitrophenol,	
		4,6-Dinitro-2-methylphenol	
15B9 (3-5)	BV83378	Hexachlorocyclopentadiene,	UJ
		2,4-Dinitrophenol,	
		4,6-Dinitro-2-methylphenol	
15B9 (10-15)	BV83379	Hexachlorocyclopentadiene,	UJ
		2,4-Dinitrophenol,	
		4,6-Dinitro-2-methylphenol	
SOIL DUPLICATE	BV83380	Hexachlorocyclopentadiene,	UJ
3		2,4-Dinitrophenol,	
		4,6-Dinitro-2-methylphenol	
SOIL DUPLICATE	BV83381	Hexachlorocyclopentadiene,	UJ
4		2,4-Dinitrophenol,	
		4,6-Dinitro-2-methylphenol	

- 3. CCV analyzed on 11/16/2016 @ 08:21 (CHEM27) exhibited acceptable %Ds (≤40.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤25.0%. No qualifications were required.
- 4. CCV analyzed on 11/14/2016 @ 13:41 (CHEM27) exhibited acceptable %Ds (≤50.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤50.0%. No qualifications were required.

Surrogates:

1. Surrogate %REC values were within the QC acceptance limits with the exception of Terphenyl-14D (136%) in Sample 15B9(3-5).

Client Sample ID	Laboratory Sample ID	Surrogate(s)	Compound	Action
15B9 (3-5)	BV83378	Terphenyl-d14	Bis(2-ethylhexyl)phthalate, Benz(a)anthracene	J
		(136%)	Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene	J
			Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene	J
			Benzo(ghi)perylene	J
			Di-n-octylphthalate, Dibenz(a,h)anthracene	UJ
			Benzyl butyl phthalate, 3,3-Dichlorobenzidine	UJ

Internal Standard (IS) Area Performance:

1. All samples exhibited acceptable area count for all six internal standards with the following exception(s):

Client Sample ID	Laboratory Sample ID	IS	Compound	Action
15B19 (18-20)	BV83367	1,4-Dichlorobenzene-d4	N-Nitrosodimethylamine, Pyridine, Phenol	UJ
		Naphthalene-d8 (low)	Bis(2-chloroethyl)ether, Aniline, 2-Chlorophenol	UJ
		1,4- (low)	1,3-Dichlorobenzene, 1,4-Dichlorobenzene	UJ
			1,2-Dichlorobenzene, 2-Methylphenol	UJ
			Bis(2-chloroisopropyl)ether	UJ
			N-Nitrosodi-n-propylamine, 3&4-Methylphenol	UJ
			Acetophenone, Hexachloroethane, Nitrobenzene	UJ
			Isophorone, 2-Nitrophenol, 2,4-Dimethylphenol	UJ
			Bis(2-chloroethoxy)methane, Benzoic Acid	UJ
			2,4-Dichlorophenol, 1,2,4-Trichlorobenzene	UJ
			4-chloroaniline, Hexachlorobutadiene	UJ
			4-chloro-3-methylphenol, hexachlorocyclopentadiene	UJ
			1,2,4,5-Tetrachlorobenzene	UJ
			Naphthalene, 2-methylnaphthalene	J

Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

1. Method Blank (BV83365 BLANK) associated with the soil samples extracted on 11/15/2016 and analyzed on 11/15/2016 was free of contamination. No qualifications were required.

Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):

1. Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD) associated with Batch ID: BV83365 were analyzed on 11/15/2016. All %RECs and RPDs were within the laboratory control limits with the following exception(s):

Compound	%R/%R/RPD	Sample	Action
2	•	Affected	
Pyridine	29/A/A	15B19 (0-2), 15B19 (12-14), 15B19 (20-25),	UJ
		15B4 (12-14), 15B4 (15-17), 15B4 (18-20),	
		15B3 (12-14), 15B1 (12-14), 15B1 (18-20),	
		15B2 (12-14), 15B2 (22.5-25), 15B10 (10-15),	
		15B9 (3-5), 15B9 (10-15), SOIL DUPLICATE	
		3, SOIL DUPLICATE 4	
1,3-Dichlorobenzene	46/54/A	15B19 (0-2), 15B19 (12-14), 15B19 (20-25),	UJ
		15B4 (12-14), 15B4 (15-17), 15B4 (18-20),	
		15B3 (12-14), 15B1 (12-14), 15B1 (18-20),	
		15B2 (12-14), 15B2 (22.5-25), 15B10 (10-15),	
		15B9 (3-5), 15B9 (10-15), SOIL DUPLICATE	
		3, SOIL DUPLICATE 4	
1,4-Dichlorobenzene	49/57/A	15B19 (0-2), 15B19 (12-14), 15B19 (20-25),	UJ
		15B4 (12-14), 15B4 (15-17), 15B4 (18-20),	
		15B3 (12-14), 15B1 (12-14), 15B1 (18-20),	
		15B2 (12-14), 15B2 (22.5-25), 15B10 (10-15),	
		15B9 (3-5), 15B9 (10-15), SOIL DUPLICATE	
		3, SOIL DUPLICATE 4	
1,2-Dichlorobenzene	49/56/A	15B19 (0-2), 15B19 (12-14), 15B19 (20-25),	UJ
		15B4 (12-14), 15B4 (15-17), 15B4 (18-20),	UJ
		15B3 (12-14), 15B1 (12-14), 15B1 (18-20),	UJ
		15B2 (12-14), 15B2 (22.5-25), 15B10 (10-15),	UJ
		15B9 (10-15), SOIL DUPLICATE 3,	UJ
		SOIL DUPLICATE 4	UJ
		15B9 (3-5)	J
Benzoic Acid	0/0/NC	15B19 (0-2), 15B19 (12-14), 15B19 (20-25),	R
		15B4 (12-14), 15B4 (15-17), 15B4 (18-20),	
		15B3 (12-14), 15B1 (12-14), 15B1 (18-20),	
		15B2 (12-14), 15B2 (22.5-25), 15B10 (10-15),	
		15B9 (3-5), 15B9 (10-15), SOIL DUPLICATE	

Compound	%R/%R/RPD	Sample Affected	Action
		3, SOIL DUPLICATE 4	
Hexachlorobutadiene	57/63/A	15B19 (0-2), 15B19 (12-14), 15B19 (20-25),	UJ
		15B4 (12-14), 15B4 (15-17), 15B4 (18-20),	
		15B3 (12-14), 15B1 (12-14), 15B1 (18-20),	
		15B2 (12-14), 15B2 (22.5-25), 15B10 (10-15),	
		15B9 (3-5), 15B9 (10-15), SOIL DUPLICATE	
		3, SOIL DUPLICATE 4	
2,4-Dinitrophenol	9/8/A	15B19 (0-2), 15B19 (12-14), 15B19 (20-25),	UJ
		15B4 (12-14), 15B4 (15-17), 15B4 (18-20),	
		15B3 (12-14), 15B1 (12-14), 15B1 (18-20),	
		15B2 (12-14), 15B2 (22.5-25), 15B10 (10-15),	
		15B9 (3-5), 15B9 (10-15), SOIL DUPLICATE	
		3, SOIL DUPLICATE 4	
4,6-Dinitro-2-methylphenol	A/28/A	15B19 (0-2), 15B19 (12-14), 15B19 (20-25),	UJ
		15B4 (12-14), 15B4 (15-17), 15B4 (18-20),	
		15B3 (12-14), 15B1 (12-14), 15B1 (18-20),	
		15B2 (12-14), 15B2 (22.5-25), 15B10 (10-15),	
		15B9 (3-5), 15B9 (10-15), SOIL DUPLICATE	
		3, SOIL DUPLICATE 4	
Benzidine	25/24/A	15B19 (0-2), 15B19 (12-14), 15B19 (20-25),	UJ
		15B4 (12-14), 15B4 (15-17), 15B4 (18-20),	
		15B3 (12-14), 15B1 (12-14), 15B1 (18-20),	
		15B2 (12-14), 15B2 (22.5-25), 15B10 (10-15),	
		15B9 (3-5), 15B9 (10-15), SOIL DUPLICATE	
		3, SOIL DUPLICATE 4	

A= Acceptable

Field Duplicate:

1. Sample SOIL DUPLICATE 3 (BV83380) was collected as a field duplicate of sample 15B19 (0-2) (BV83365). All RPDs were <50%. No qualifications were required.

Field Sample	Analyte	Analytical Method	Result	Units	Field Duplicate	Result	Units	RPD	Qualifier
15B19 (0-2)	Anthracene	SW-846 8270	230	μg/Kg	Soil Duplicate 3	210	μg/Kg	9.1	None
15B19 (0-2)	Benz(a)anthracene	SW-846 8270	910	μg/Kg	Soil Duplicate 3	980	μg/Kg	7.4	None
15B19 (0-2)	Benzo(a)pyrene	SW-846 8270	850	μg/Kg	Soil Duplicate 3	930	μg/Kg	9.0	None
15B19 (0-2)	Benzo(b)fluoranthene	SW-846 8270	680	μg/Kg	Soil Duplicate 3	730	μg/Kg	7.1	None
15B19 (0-2)	Benzo(ghi)perylene	SW-846 8270	590	μg/Kg	Soil Duplicate 3	590	μg/Kg	0.0	None
15B19 (0-2)	Benzo(k)fluoranthene	SW-846 8270	670	μg/Kg	Soil Duplicate 3	730	μg/Kg	8.6	None

Field Sample	Analyte	Analytical Method	Result	Units	Field Duplicate	Result	Units	RPD	Qualifier
15B19 (0-2)	Chrysene	SW-846 8270	970	μg/Kg	Soil Duplicate 3	1100	μg/Kg	12.6	None
15B19 (0-2)	Dibenz(a,h)anthracene	SW-846 8270	140	μg/Kg	Soil Duplicate 3	140	μg/Kg	0.0	None
15B19 (0-2)	Fluoranthene	SW-846 8270	1500	μg/Kg	Soil Duplicate 3	1900	μg/Kg	23.5	None
15B19 (0-2)	Indeno(1,2,3-cd)pyrene	SW-846 8270	600	μg/Kg	Soil Duplicate 3	610	μg/Kg	1.7	None
15B19 (0-2)	Phenanthrene	SW-846 8270	110	μg/Kg	Soil Duplicate 3	1000	μg/Kg	9.5	None
15B19 (0-2)	Pyrene	SW-846 8270	1500	μg/Kg	Soil Duplicate 3	1900	μg/Kg	23.5	None

2. Sample SOIL DUPLICATE 4 (BV83381) was collected as a field duplicate of sample 15B2 (12-14) (BV83375). All RPDs were <50%. No qualifications were required.

Field Sample	Analyte	Analytical Method	Result	Units	Field Duplicate	Result	Units	RPD	Qualifier
15B2 (12-14)	2-Methylnaphthalene	SW-846 8270	1500	μg/Kg	Soil Duplicate 4	1100	μg/Kg	30.8	None
15B2 (12-14)	Naphthalene	SW-846 8270	3000	μg/Kg	Soil Duplicate 4	1900	μg/Kg	44.9	None

Matrix Spike (MS)/Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS) was performed on sample 15B19 (0-2) (BV83365). All %RECs were within the laboratory control limits with the following exception(s):

Compound	%R	Sample	Action
		Affected	
1,3-Dichlorobenzene	55/55/A	15B19 (0-2)	UJ^1
1,4-Dichlorobenzene	59/59/A	15B19 (0-2)	UJ^1
1,2-Dichlorobenzene	60/60/A	15B19 (0-2)	UJ^1
Benzoic Acid	11/13/A	15B19 (0-2)	\mathbb{R}^1
Hexachlorobutadiene	64/63/A	15B19 (0-2)	UJ^1
Benzidine	6/4/A	15B19 (0-2)	UJ^1

A= Acceptable

(1) Results for these compounds were qualified previously due to LCS recovery criteria.

Target Compound Identification:

- 1. All Relative Retention Times (RRTs) of the reported compounds were within \pm 0.06 RRT units of the standard (opening CCV).
- 2. Sample compound spectra were compared against the laboratory standard spectra.
- 3. No QC deviations were observed.

Compound Quantitation and Reported Detection Limits:

- 1. All sample results were reported within the linear calibration range.
- 2. %Solids for all soil samples in this SDG were >50%. No qualifications were required.
- 3. Manual Calculation:

$$Cx = (Ax)(IS)(VE)(DF)$$

(Ais)(RRF)(Volume injected, μ L)(V)(%Solids)

Cx = concentration of analyte as ug/kg

Ax = Area of the characteristic ion for the compound to be measured, counts.

Ais = Area of the characteristic ion for the specific internal standard, counts.

IS = Concentration of the internal standard spiking mixture, ng

RRF= Mean relative response factor from the initial calibration.

DF = Dilution factor calculated. If no dilution is performed, DF= 1

V= Volume for liquids in ml, weight for soils/solids in grams.

VE= final volume of concentrated extract

Sample: BV83365 LCS

Pyrene

Sample weight= 15g Volume purged=1.0ml DF = 1 %Solids=NA

Concentration (
$$\mu$$
g/kg) (dry) = $\underline{1936490 \times 40 \times 1 \times 1000}$ = 2554.17 μ g/kg 1521279 x 1.329 x 15

	Laboratory	Validation	
Compound	(µg/kg)	(µg/kg)	%D
Pyrene	2555	2555	0.0

Comments:

- 1. Semivolatile data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GBV83365.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GBV83365.

DATA USABILITY SUMMARY REPORT (DUSR) VOLATILE ORGANIC COMPOUNDS

USEPA Region II -Data Validation

Project Name: 1181 Flushing Avenue

Location: Brooklyn, New York

Project Number: 3020-026

SDG #: GBV83365

Client: Environmental Business Consultants

Date: 02/21/2017

Laboratory: Phoenix Environmental Laboratories, Inc.

Reviewer: Sherri Pullar

Summary:

- 1. Data validation was performed on the data for seventeen (17) soil samples and two (2) trip blanks analyzed for Volatiles by SW-846 Method 8260C in accordance to NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 11/14/2016. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 11/15/2016 for analysis.
- 3. The USEPA Region-II SOP HW-24, Revision 4, October 2014, Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry, SW-846 Method 8260C was used in evaluating the Volatiles data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (see discussion below).

Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory Sample ID	Collection Date	Analysis	Matrix	Sample Status
15B19 (0-2)	BV83365	11/14/16	VOA	Soil	
15B19 (12-14)	BV83366	11/14/16	VOA	Soil	
15B19 (18-20)	BV83367	11/14/16	VOA	Soil	
15B19 (20-25)	BV83368	11/14/16	VOA	Soil	
15B4 (12-14)	BV83369	11/14/16	VOA	Soil	
15B4 (15-17)	BV83370	11/14/16	VOA	Soil	
15B4 (18-20)	BV83371	11/14/16	VOA	Soil	
15B3 (12-14)	BV83372	11/14/16	VOA	Soil	
15B1 (12-14)	BV83373	11/14/16	VOA	Soil	
15B1 (18-20)	BV83374	11/14/16	VOA	Soil	
15B2 (12-14)	BV83375	11/14/16	VOA	Soil	
15B2 (22.5-25)	BV83376	11/14/16	VOA	Soil	
15B10 (10-15)	BV83377	11/14/16	VOA	Soil	
15B9 (3-5)	BV83378	11/14/16	VOA	Soil	
15B9 (10-15)	BV83379	11/14/16	VOA	Soil	
SOIL DUPLICATE 3	BV83380	11/14/16	VOA	Soil	Field Duplicate to Sample 15B19 (0-2)
SOIL DUPLICATE 4	BV83381	11/14/16	VOA	Soil	Field Duplicate to Sample 15B2 (12-14)
Trip Blank High	BV83382	11/14/16	VOA	Soil	Trip Blank
Trip Blank Low	BV83383	11/14/16	VOA	Soil	Trip Blank

Sample Conditions/Problems:

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

Holding Times:

1. All soil samples were analyzed within 14 days from sample collection. No qualifications were required.

GC/MS Tuning:

1. All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria. No qualifications were required.

Initial Calibration:

1. Initial calibration curve analyzed on 11/11/2016 (Chem03) exhibited acceptable %RSDs ($\leq 30.0\%$) for CCC compounds and average RRF values for SPCC compounds. Also, %RSDs for all other compounds were $\leq 20.0\%$ and average RRF (> 0.050) with the following exception(s):

Compound	RRF	%RSD
Chloroethane	A	25.2
Acrolein	0.036	A
Acetone	A	28.5

A= Acceptable

Client Sample	Laboratory	Compound	Action
ID	Sample ID	Compound	Action
15B19 (0-2)	BV83365	Chloroethane, Acrolein, Acetone	UJ
15B19 (12-14)	BV83366	Chloroethane, Acrolein, Acetone	UJ
15B19 (18-20)	BV83367	Chloroethane, Acrolein, Acetone	UJ
15B19 (20-25)	BV83368	Chloroethane, Acrolein, Acetone	UJ
15B4 (12-14)	BV83369	Chloroethane, Acrolein, Acetone	UJ
15B4 (15-17)	BV83370	Chloroethane, Acrolein, Acetone	UJ
15B4 (18-20)	BV83371	Chloroethane, Acrolein, Acetone	UJ
15B3 (12-14)	BV83372	Chloroethane, Acrolein, Acetone	UJ
15B1 (12-14)	BV83373	Chloroethane, Acrolein, Acetone	UJ
15B1 (18-20)	BV83374	Chloroethane, Acrolein, Acetone	UJ
15B2 (12-14)	BV83375	Chloroethane, Acrolein, Acetone	UJ
15B2 (22.5-25)	BV83376	Chloroethane, Acrolein, Acetone	UJ
15B10 (10-15)	BV83377	Chloroethane, Acrolein, Acetone	UJ
15B9 (3-5)	BV83378	Chloroethane, Acrolein	UJ
		Acetone	J
15B9 (10-15)	BV83379	Chloroethane, Acrolein	UJ
		Acetone	J
SOIL	BV83380	Chloroethane, Acrolein, Acetone	UJ
DUPLICATE 3			
SOIL	BV83381	Chloroethane, Acrolein	UJ
DUPLICATE 4		Acetone	J
Trip Blank High	BV83382	Chloroethane, Acrolein, Acetone	UJ
Trip Blank Low	BV83383	Chloroethane, Acrolein	UJ
		Acetone	J

Continuing Calibration Verification (CCV):

1. CCV analyzed on 11/15/2016 @ 20:12 (CHEM03) exhibited acceptable %Ds ($\leq 30.0\%$) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were $\leq 30.0\%$ with the following exception(s):

Compound	RRF	% D
Acrolein ¹	0.036	A

A= Acceptable

(1) Results for this compound were previously qualified due to ICV criteria.

Client Sample ID	Laboratory Sample ID	Compound	Action
Trip Blank Low	BV83383	Acrolein	UJ
Trip Blank High	BV83382	Acrolein	UJ
15B19 (12-14)	BV83366	Acrolein	UJ
15B4 (12-14)	BV83369	Acrolein	UJ
15B4 (18-20)	BV83371	Acrolein	UJ
15B3 (12-14)	BV83372	Acrolein	UJ
15B1 (18-20)	BV83374	Acrolein	UJ
15B2 (22.5-25)	BV83376	Acrolein	UJ
15B10 (10-15)	BV83377	Acrolein	UJ
HL			
15B10 (10-15)	BV83377	Acrolein	UJ
LL			
SOIL	BV83380	Acrolein	UJ
DUPLICATE 3			
15B19 (18-20)	BV83367	Acrolein	UJ
15B4 (15-17)	BV83370	Acrolein	UJ
15B1 (12-14)	BV83373	Acrolein	UJ
15B2 (12-14)	BV83375	Acrolein	UJ
15B9 (3-5)	BV83378	Acrolein	UJ
SOIL	BV83381	Acrolein	UJ
DUPLICATE 4			

2. CCV analyzed on 11/16/2016 @ 07:50 (CHEM03) exhibited acceptable %Ds (≤20.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤20.0% with the following exception(s):

Compound	RRF	%D
Tetrahydrofuran	A	23.5
Acetone ¹	A	34.0

Compound	RRF	%D
Methyl Ethyl Ketone	A	36.5
4-Methyl-2-Pentanone	A	26.8
2-Hexanone	A	25.6
1,2,4-Trichlorobenzene	A	23.0
1,2,3-Trichlorobenzene	A	23.0

A= Acceptable

1 Results for this compound were previously qualified due to ICV criteria.

Client Sample	Laboratory	Compound	Action
ID	Sample ID		
Trip Blank Low	BV83383	Acetone	J
_		Tetrahydrofuran, Methyl Ethyl Ketone,	UJ
		4-Methyl-2-Pentanone, 2-Hexanone, 1,2,4-Trichlorobenzene,	UJ
		1,2,3-Trichlorobenzene	UJ
Trip Blank High	BV83382	Acetone, Tetrahydrofuran, Methyl Ethyl Ketone,	UJ
		4-Methyl-2-Pentanone, 2-Hexanone, 1,2,4-Trichlorobenzene,	
		1,2,3-Trichlorobenzene	
15B19 (12-14)	BV83366	Acetone, Tetrahydrofuran, Methyl Ethyl Ketone,	UJ
		4-Methyl-2-Pentanone, 2-Hexanone, 1,2,4-Trichlorobenzene,	
		1,2,3-Trichlorobenzene	
15B4 (12-14)	BV83369	Acetone, Tetrahydrofuran, Methyl Ethyl Ketone,	UJ
		4-Methyl-2-Pentanone, 2-Hexanone, 1,2,4-Trichlorobenzene,	
		1,2,3-Trichlorobenzene	
15B4 (18-20)	BV83371	Acetone, Tetrahydrofuran, Methyl Ethyl Ketone,	
		4-Methyl-2-Pentanone, 2-Hexanone, 1,2,4-Trichlorobenzene,	
		1,2,3-Trichlorobenzene	
15B3 (12-14)	BV83372	Acetone, Tetrahydrofuran, Methyl Ethyl Ketone,	
		4-Methyl-2-Pentanone, 2-Hexanone, 1,2,4-Trichlorobenzene,	
		1,2,3-Trichlorobenzene	
15B1 (18-20)	BV83374	Tetrahydrofuran,	
		Acetone, Methyl Ethyl Ketone,	UJ
		4-Methyl-2-Pentanone, 2-Hexanone, 1,2,4-Trichlorobenzene,	UJ
		1,2,3-Trichlorobenzene	UJ
15B2 (22.5-25)	BV83376	Acetone, Tetrahydrofuran, Methyl Ethyl Ketone,	UJ
		4-Methyl-2-Pentanone, 2-Hexanone, 1,2,4-Trichlorobenzene,	
		1,2,3-Trichlorobenzene	
15B10 (10-15)	BV83377	Acetone,	
HL		Tetrahydrofuran, Methyl Ethyl Ketone,	
		4-Methyl-2-Pentanone, 2-Hexanone, 1,2,4-Trichlorobenzene,	
		1,2,3-Trichlorobenzene UJ Acetone, Tetrahydrofuran, Methyl Ethyl Ketone, UJ	
15B10 (10-15)	BV83377	Acetone, Tetrahydrofuran, Methyl Ethyl Ketone,	
LL		4-Methyl-2-Pentanone, 2-Hexanone, 1,2,4-Trichlorobenzene,	
		1,2,3-Trichlorobenzene	

Client Sample ID	Laboratory Sample ID	Compound	Action
SOIL	BV83380	Acetone, Tetrahydrofuran, Methyl Ethyl Ketone,	UJ
DUPLICATE 3		4-Methyl-2-Pentanone, 2-Hexanone, 1,2,4-Trichlorobenzene, 1,2,3-Trichlorobenzene	
15B19 (18-20)	BV83367	Acetone, Tetrahydrofuran, Methyl Ethyl Ketone, 4-Methyl-2-Pentanone, 2-Hexanone, 1,2,4-Trichlorobenzene, 1,2,3-Trichlorobenzene	UJ
15B4 (15-17)	BV83370	Acetone, Tetrahydrofuran, Methyl Ethyl Ketone, 4-Methyl-2-Pentanone, 2-Hexanone, 1,2,4-Trichlorobenzene, 1,2,3-Trichlorobenzene	
15B1 (12-14)	BV83373	Acetone, Tetrahydrofuran, Methyl Ethyl Ketone, 4-Methyl-2-Pentanone, 2-Hexanone, 1,2,4-Trichlorobenzene, 1,2,3-Trichlorobenzene	
15B2 (12-14)	BV83375	Acetone, Tetrahydrofuran, Methyl Ethyl Ketone, 4-Methyl-2-Pentanone, 2-Hexanone, 1,2,4-Trichlorobenzene, 1,2,3-Trichlorobenzene	
15B9 (3-5)	BV83378	Acetone, Tetrahydrofuran, Methyl Ethyl Ketone, 4-Methyl-2-Pentanone, 2-Hexanone, 1,2,4-Trichlorobenzene, 1,2,3-Trichlorobenzene	
SOIL DUPLICATE 4	BV83381	Acetone, Tetrahydrofuran, Methyl Ethyl Ketone, 4-Methyl-2-Pentanone, 2-Hexanone, 1,2,4-Trichlorobenzene, 1,2,3-Trichlorobenzene	UJ

3. CCV analyzed on 11/16/2016 @ 09:25 (CHEM03) exhibited acceptable %Ds (\leq 30.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were \leq 30.0% with the following exception(s):

Compound	RRF	%D
Acrolein ¹	0.036	A
Bromoform	A	-33.7

A= Acceptable

1 Results for this compound were previously qualified due to ICV criteria.

Client Sample	Laboratory Sample ID	Compound	Action
ID	Sample 1D		
15B19 (0-2)	BV83365	Acrolein, Bromoform	UJ
15B19 (0-2)	BV83365	Acrolein, Bromoform	UJ
15B19 (18-20)	BV83367	Acrolein, Bromoform	UJ
15B4 (15-17)	BV83370	Acrolein, Bromoform	UJ
15B1 (12-14)	BV83373	Acrolein, Bromoform	UJ
15B2 (22.5-25)	BV83376	Acrolein, Bromoform	UJ
15B9 (3-5)	BV83378	Acrolein, Bromoform	UJ

Client Sample ID	Laboratory Sample ID	Compound	Action
15B9 (10-15)	BV83379	Acrolein, Bromoform	UJ
SOIL	BV83381	Acrolein, Bromoform	UJ
DUPLICATE 4			
15B19 (20-25)	BV83368	Acrolein, Bromoform	UJ

⁽¹⁾ Results for this compound were previously qualified due to ICV criteria.

4. CCV analyzed on 11/16/2016 @ 20:49 (CHEM03) exhibited acceptable %Ds (≤30.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤30.0%. No qualifications were required.

Compound	RRF	%D
Acetone ¹	A	33.0
Acrolein ¹	0.036	A
Methyl Ethyl Ketone	A	36.5

A= Acceptable

Client Sample ID	Laboratory Sample ID	Compound	Action
15B3 (12-14)	BV83372	None	None

⁽¹⁾ Results for this compound were previously qualified due to ICV criteria.

5. CCV analyzed on 11/17/2016 @ 08:09 (CHEM03) exhibited acceptable %Ds (≤20.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤20.0%. No qualifications were required.

Compound	RRF	%D
Carbon Tetrachloride	A	-26.8
Methylene Chloride	A	-23.7
Trans-1,2-Dichloroethene	A	-23.7
Carbon Tetrachloride	A	-26.8
Dibromochloromethane	A	-30.0
1,2-Dibromoethane	A	-20.7
1,1,1,2-Tetrachloroethane	A	-28.0
Bromoform	A	-41.1
1,2-Bromo-3-Chloropropane	A	-28.3

A= Acceptable

Client Sample ID	Laboratory Sample ID	Compound	Action
15B3 (12-14)	BV83372	None	None

- (1) Results for this compound were previously qualified due to ICV criteria.
- 6. CCV analyzed on 11/17/2016 @ 20:51 (CHEM03) exhibited acceptable %Ds (≤30.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤30.0%. No qualifications were required.

Compound	RRF	%D
Acrolein ¹	0.030	A

A= Acceptable

Client Sample ID	Laboratory Sample ID	Compound	Action
15B19 (20-25)	BV83368	None	None

- (1) Results for this compound were previously qualified due to ICV criteria.
- 7. CCV analyzed on 11/18/2016 @ 08:16 (CHEM03) exhibited acceptable %Ds (≤20.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤20.0% with the following exception(s):

Compound	RRF	%D
Acetone ¹	A	20.6
Acrolein ¹	0.028	22.2
Methyl Ethyl Ketone	A	20.2

A= Acceptable

Client Sample ID	Laboratory Sample ID	Compound	Action
15B19 (20-25)	BV83368	None	None

⁽¹⁾ Results for this compound were previously qualified due to ICV criteria.

Surrogates:

1. All surrogates %RECs values for all soil samples and associated QC were within the laboratory control limits with the following exception(s):

Client Sample ID	Laboratory Sample ID	Surrogate(s)	Compound	Action
15B2 (22.5-25)	BV83376	Bromofluorobenzene (132%)	All compounds with the exception of results run at a 50 dilution	UJ/J
15B1 (12-14)	BV83373 50X	Bromofluorobenzene (147%)	All compounds run at a 50x dilution	J/UJ

Internal Standard (IS) Area Performance:

1. All samples exhibited acceptable area count for all three internal standards within the QC limits. No qualifications were required.

Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

- 1. Method Blank (BV83365 Blank) analyzed on 11/16/2016 was free of contamination. No qualifications were required.
- 2. Method Blank (BV83377 Blank) analyzed on 11/15/2016 was free of contamination. No qualifications were required.
- 3. Method Blank (BV85800 Blank) analyzed on 11/16/2016 was free of contamination. No qualifications were required.
- 4. Method Blank (BV86360 Blank) analyzed on 11/17/2016 was free of contamination. No qualifications were required.
- 5. Trip Blank High (BV83382) analyzed on 11/15/2016 was free of contamination. No qualifications were required.
- 6. Trip Blank Low (BV83383) analyzed on 11/15/2016.

Laboratory	Compound	Results	Action Level	Sample	Action
Sample ID		(µg/Kg)	(2x CRQL)	L) Affected	
			(µg/Kg)		
Trip Blank Lo	Acetone	6.3	50	15B19 (0-2), 15B19 (12-14),	None
(BV83383)				15B19 (18-20), 15B19 (20-25),	None
				15B4 (12-14), 15B4 (15-17),	None
				15B4 (18-20), 15B3 (12-14),	None
				15B1 (12-14), 15B1 (18-20),	None
				15B2 (12-14), 15B2 (22.5-25),	None
				15B9 (3-5), 15B9 (10-15),	None
				SOIL DUPLICATE 3,	None
				SOIL DUPLICATE 4,	None
				15B10 (10-15)	U
	Ethylbenzene	0.71	5	15B19 (0-2),	None
				15B19 (18-20), 15B19 (20-25),	None
				15B4 (12-14), 15B4 (15-17),	None
				15B3 (12-14), 15B9 (3-5),	None
				15B1 (12-14), 15B1 (18-20),	None
				15B2 (12-14), 15B2 (22.5-25),	None

Laboratory	Compound	Results	Action Level	Sample	Action
Sample ID		(µg/Kg)	(2x CRQL)	Affected	
			(µg/Kg)		
				SOIL DUPLICATE 4,	None
				SOIL DUPLICATE 3,	U
				15B10 (10-15) 15B19 (12-14),	U
				15B4 (18-20), 15B9 (10-15)	U
	M&p-xylene	1.6	5	15B19 (0-2), 15B3 (12-14),	None
				15B19 (18-20), 15B19 (20-25),	None
				15B4 (12-14), 15B4 (15-17),	None
				15B1 (12-14), 15B9 (3-5),	None
				15B2 (12-14), 15B2 (22.5-25),	None
				SOIL DUPLICATE 4,	None
				SOIL DUPLICATE 3,	U
				15B9 (10-15),	U
				15B10 (10-15), 15B19 (12-14),	U
				15B4 (18-20), 15B1 (18-20)	U

<u>Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):</u>

- 1. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with Sample ID: BV83365 were analyzed on 11/16/2016. All %RECs and RPDs were within the laboratory control limits. No qualifications were required.
- 2. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with Sample ID: BV83377 were analyzed on 11/15/2016. All %RECs and RPDs were within the laboratory control limits.
- 3. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with Sample ID: BV85800 were analyzed on 11/16/2016. All %RECs and RPDs were within the laboratory control limits.
- 3. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with Sample ID: BV86360 were analyzed on 11/17/2016. All %RECs and RPDs were within the laboratory control limits.

Field Duplicate:

1. Sample SOIL DUPLICATE 3 (BV83380) was collected as a field duplicate of sample 15B19 (0-2) (BV83365). All RPDs were <50% with the following exception(s):

Field Sample	Analyte	Analytical Method	Result	Units	Field Duplicate	Result	Units	RPD	Qualifier
15B19 (0-2)	1,2,4-Trimethylbenzene	SW-846 8260	0.58	μg/Kg	Soil Duplicate 3	0.91	μg/Kg	0	None
15B19 (0-2)	1,3,5-Trimethylbenzene	SW-846 8260	ND	μg/Kg	Soil Duplicate 3	0.67	μg/Kg	NC	J/UJ
15B19 (0-2)	Naphthalene	SW-846 8260	210	μg/Kg	Soil Duplicate 3	0.97	μg/Kg	198.2	J

ND = Non-detect NC = Not calculated

2. Sample SOIL DUPLICATE 4 (BV83381) was collected as a field duplicate of sample 15B2 (12-14) (BV83375). All RPDs were <50% with the following exception(s):

Field Sample	Analyte	Analytical Method	Result	Units	Field Duplicate	Result	Units	RPD	Qualifier
15B2 (12-14)	1,2,4-Trimethylbenzene	SW-846 8260	260	μg/Kg	Soil Duplicate 4	17000	μg/Kg	194.0	J
15B2 (12-14)	1,3,5-Trimethylbenzene	SW-846 8260	ND	μg/Kg	Soil Duplicate 4	5200	μg/Kg	NC	UJ/J
15B2 (12-14)	2-Isopropyltoluene	SW-846 8260	150	μg/Kg	Soil Duplicate 4	100	μg/Kg	40.0	None
15B2 (12-14)	Acetone	SW-846 8260	ND	μg/Kg	Soil Duplicate 4	400	μg/Kg	NC	UJ/J
15B2 (12-14)	Ethylbenzene	SW-846 8260	420	μg/Kg	Soil Duplicate 4	3200	μg/Kg	153.6	J
15B2 (12-14)	Isopropylbenzene	SW-846 8260	600	μg/Kg	Soil Duplicate 4	1600	μg/Kg	90.9	J
15B2 (12-14)	M&p-Xylene	SW-846 8260	ND	μg/Kg	Soil Duplicate 4	2500	μg/Kg	NC	UJ/J
15B2 (12-14)	Naphthalene	SW-846 8260	490	μg/Kg	Soil Duplicate 4	3000	μg/Kg	143.8	J
15B2 (12-14)	n-Butylbenzene	SW-846 8260	410	μg/Kg	Soil Duplicate 4	1700	μg/Kg	122.3	J
15B2 (12-14)	n-Propylbenzene	SW-846 8260	2800	μg/Kg	Soil Duplicate 4	6100	μg/Kg	74.2	J
15B2 (12-14)	p-Isopropyltoluene	SW-846 8260	340	μg/Kg	Soil Duplicate 4	510	μg/Kg	40.0	None
15B2 (12-14)	Sec-Butylbenzene	SW-846 8260	2000	μg/Kg	Soil Duplicate 4	800	μg/Kg	85.7	J
15B2 (12-14)	Tert-Butylbenzene	SW-846 8260	ND	μg/Kg	Soil Duplicate 4	51	μg/Kg	NC	UJ/J

ND = Non-detect NC = Non-detect

NC = Not calculated

Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS) was performed on sample 15B19 (0-2) (BV83365). All %RECs were within the laboratory control limits with the following exception(s):

Compound	%R	Sample Affected	Action
Bromomethane	64/A/A	15B19 (0-2)	UJ
Chloroethane	40/43/A	15B19 (0-2)	UJ^1
Trichlorofluoromethane	27/31/A	15B19 (0-2)	UJ
Carbon Disulfide	67/67/A	15B19 (0-2)	UJ
Acrolein	68/A/A	15B19 (0-2)	UJ^1
Acetone	43/44/A	15B19 (0-2)	UJ^1

A= Acceptable

(1) Results for these compounds were qualified previously due to ICV/CCV criteria.

2. Matrix Spike (MS) was performed on sample 15B10 (10-15) (BV83377). All %RECs were within the laboratory control limits with the following exception(s):

Compound	%R	Sample	Action
		Affected	
Acrolein	31/28/A	15B10 (10-15)	UJ^1
Methyl Ethyl Ketone	65/66/A	15B10 (10-15)	UJ^1
Hexachlorobutadiene	64/64/A	15B10 (10-15)	UJ
1,2,4-Trichlorobenzene	62/63/A	15B10 (10-15)	UJ
1,2,3-Trichlorobenzene	62/63/A	15B10 (10-15)	UJ

A= Acceptable

(1) Results for these compounds were qualified previously due to ICV/CCV criteria

Target Compound Identification:

- 1. All Relative Retention Times (RRTs) of the reported compounds were within \pm 0.06 RRT units of the standard (opening CCV).
- 2. Sample compound spectra were compared against the laboratory standard spectra.
- 3. No QC deviations were observed.

Compound Quantitation and Reported Detection Limits:

- 1. All sample results were reported within the linear calibration range. No qualifications were required.
- 2. %Solids for all soil samples in this SDG were >50%. No qualifications were required.
- 3. Manual Calculation:
- $Cx = \frac{(Ax)(IS)(DF)}{(Ais)(RRF)(V)(\%Solids)}$

Cx = concentration of analyte as ug/kg

Ax = Area of the characteristic ion for the compound to be measured, counts.

Ais = Area of the characteristic ion for the specific internal standard, counts.

IS = Concentration of the internal standard spiking mixture, ng

RRF= Mean relative response factor from the initial calibration.

DF = Dilution factor calculated. If no dilution is performed, DF= 1

V= Volume for liquids in ml, weight for soils/solids in grams.

BV83365 LCS

Carbon disulfide

Sample weight= 5.0g Volume purged=5.0ml DF = 1 %Solids=NA

Concentration (
$$\mu$$
g/kg) (dry) = $331522 \times 50 \times 1 \times 5.0$ = 59.34 μ g/kg 279626 x 0.999 x 5.0

	Laboratory Validation		
Compound	(µg/kg)	$(\mu g/kg)$	%D
Carbon disulfide	59	59	0.0

Comments:

- 1. Volatile data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GBV83365.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GBV83365.

DATA USABILITY SUMMARY REPORT (DUSR) POLYCHLORINATED BIPHENYLIS (PCBs)

USEPA Region II -Data Validation

Project Name: 1181 Flushing Avenue

Location: Brooklyn, New York

Project Number: 3020-026

SDG #: GBV83365

Client: Environmental Business Consultants

Date: 02/21/2017

Laboratory: Phoenix Environmental Laboratories, Inc.

Reviewer: Sherri Pullar

Summary:

- 1. Data validation was performed on the data for nine (9) soil samples analyzed for PCBs by SW-846 Method 8082A in accordance with NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 11/14/2016. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 11/15/2016 for analysis.
- 3. The USEPA Region-II SOP HW-37, Revision 3, May 2013, Validating PCBs compounds by Gas Chromatography, SW-846 Method 8082A was used in evaluating the PCBs data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (see discussion below).

Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory	Collection	Analysis	Matrix	Sample Status
	Sample ID	Date			
15B19 (0-2)	BV83365	11/14/16	PCBs	Soil	
15B4 (12-14)	BV83369	11/14/16	PCBs	Soil	
15B3 (12-14)	BV83372	11/14/16	PCBs	Soil	
15B1 (12-14)	BV83373	11/14/16	PCBs	Soil	
15B2 (12-14)	BV83375	11/14/16	PCBs	Soil	
15B10 (10-15)	BV83377	11/14/16	PCBs	Soil	
15B9 (10-15)	BV83379	11/14/16	PCBs	Soil	
SOIL DUPLICATE 3	BV83380	11/14/16	PCBs	Soil	Field Duplicate to Sample
					15B19 (0-2)
SOIL DUPLICATE 4	BV83381	11/14/16	PCBs	Soil	Field Duplicate to Sample
					15B2 (12-14)

Sample Conditions/Problems:

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

Holding Times:

1. All soil samples were extracted within 14 days from sample collection and analyzed within 40 days following sample extraction. No qualifications were required.

Initial Calibration:

1. Initial calibration curve analyzed on 11/14/2016 (ECD1) exhibited acceptable %RSD (≤20.0%) on both columns. No qualifications were required.

Continuing Calibration Verification (CCV):

1. All CCVs analyzed on 11/16-18/2016 exhibited acceptable %Ds (≤15.0%) for all compounds. No qualifications were required.

Surrogates:

1. All surrogates %RECs values for all soil samples and associated QC were within the laboratory control limits. No qualifications were required.

Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

1. Method Blank (BV83365 BL) associated with the soil samples extracted on 11/15/2016 and analyzed on 11/16/2016 was free of contamination. No qualifications were required.

Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):

1. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with ID: BV83365 were analyzed on 11/16/2016. All %RECs and RPDs were within the laboratory control limits. No qualifications were required.

Field Duplicate:

- 1. Sample SOIL DUPLICATE 3 (BV83380) was collected as a field duplicate of sample 15B19 (0-2) (BV83365). Both samples were non-detect for PCBS. No qualifications were required.
- 2. Sample SOIL DUPLICATE 4 (BV83381) was collected as a field duplicate of sample 15B2 (12-14) (BV83375). Both samples were non-detect for PCBS. No qualifications were required.

Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) were performed on sample 15B19 (0-2) (BV83365). All %RECs/RPDs were within the control limits. No qualifications were required.

Compound Quantitation, Compound Identification and Reported Detection Limits:

- 1. All sample results were reported within the linear calibration range.
- 2. %Solids for all soil samples in this SDG were >50%. No qualifications were required.
- 3. Manual Calculation:

BV83365 LCS

Aroclor-1016

On Column concentration (B)= 365.9ng Sample weight= 15.0g DF= 10

Vi = 5ml

%Solids= 100%

Concentration (μ g/kg) (dry) = $\frac{365.9 \text{ng x 5ml x}10}{15.0 \text{g}} = 1219.67 \mu$ g/kg

	Laboratory Validation		
Compound	$(\mu g/kg)$	$(\mu g/kg)$	%D
Aroclor-1016	1220	1220	0.0

Comments:

- 1. PCBs data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GBV83365.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GBV83365.

DATA USABILITY SUMMARY REPORT (DUSR) PESTICIDES

USEPA Region II -Data Validation

Project Name: 1181 Flushing Avenue

Location: Brooklyn, New York

Project Number: 3020-026

SDG #: GBV83365

Client: Environmental Business Consultants

Date: 02/21/2017

Laboratory: Phoenix Environmental Laboratories, Inc.

Reviewer: Sherri Pullar

Summary:

- 1. Data validation was performed on the data for nine (9) soil samples analyzed for Pesticides by SW-846 Method 8081B in accordance with NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 11/14/2016. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 11/15/2016 for analysis.
- 3. The USEPA Region-II SOP HW-44, Revision 1, October 2006, Validating Pesticide compounds by Gas Chromatography, SW-846 Method 8081B was used in evaluating the Pesticides data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (See discussion below).

Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory Sample ID	Collection Date	Analysis	Matrix	Sample Status
15B19 (0-2)	BV83365	11/14/16	Pesticides	Soil	
15B4 (12-14)	BV83369	11/14/16	Pesticides	Soil	
15B3 (12-14)	BV83372	11/14/16	Pesticides	Soil	
15B1 (12-14)	BV83373	11/14/16	Pesticides	Soil	
15B2 (12-14)	BV83375	11/14/16	Pesticides	Soil	
15B10 (10-15)	BV83377	11/14/16	Pesticides	Soil	
15B9 (10-15)	BV83379	11/14/16	Pesticides	Soil	
SOIL	BV83380	11/14/16	Pesticides	Soil	Field Duplicate to Sample
DUPLICATE 3					15B19 (0-2)
SOIL	BV83381	11/14/16	Pesticides	Soil	Field Duplicate to Sample
DUPLICATE 4					15B2 (12-14)

Sample Conditions/Problems:

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

Holding Times:

1. All soil samples were extracted within 14 days from sample collection and analyzed within 40 days following sample extraction. No qualifications were required.

GC/ECD Instrument Performance Check:

1. 4,4'-DDT and Endrin breakdown exhibited acceptable results (±20%). No qualifications were required.

Initial Calibration:

1. Initial calibration curve analyzed on 11/14/2016 (ECD13) exhibited acceptable %RSD on both columns. No qualifications were required.

2. Initial calibration curve analyzed on 11/15/2016 (ECD35) exhibited acceptable %RSD on both columns. No qualifications were required.

Continuing Calibration Verification (CCV):

1. All CCVs analyzed on 11/16-18/2016 exhibited acceptable %Ds (≤20.0%) for all compounds. No qualifications were required.

Surrogates:

1. All surrogates %RECs values for all soil samples were within the laboratory control limits. No qualifications were required.

Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

1. Method Blank (BV83365 BL) associated with the soil samples extracted on 11/15/2016 and analyzed on 11/16/2016 was free of contamination. No qualifications were required.

<u>Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):</u>

1. Laboratory Control Sample associated with ID: BV83365 LCS was analyzed on 11/16/2016. All %RECs were within the laboratory control limits. No qualifications were required.

Field Duplicate:

- 1. Sample SOIL DUPLICATE 3 (BV83380) was collected as a field duplicate of sample 15B19 (0-2) (BV83365). Both samples were non-detect for PCBS with the exception of 4,4'-DDT in Sample 15B19 (0-2). 4,4'-DDT was not detected in the field duplicate sample. Results for 4,4'-DDT was qualified as estimated in both samples (J/UJ).
- 2. Sample SOIL DUPLICATE 4 (BV83381) was collected as a field duplicate of sample 15B2 (12-14) (BV83375). Both samples were non-detect for PCBS. No qualifications were required.

Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) were performed on sample 15B19 (0-2) (BV83365). All %RECs/RPDs were within the laboratory control. No qualifications were required.

Compound Quantitation, Compound Identification and Reported Detection Limits:

- 1. All sample results were reported within the linear calibration range.
- 2. %Solids for all soil samples in this SDG were >50%. No qualifications were required.
- 3. Manual Calculation:

BV83365LCS

Alpha-BHC

On Column concentration (A) = 42.4044ng Sample Weight= 15.0g DF = 2

Vi = 5ml

%Solids= 100%

Concentration (
$$\mu$$
g/kg)(dry) = $\frac{42.4044 \text{ng x 5ml x 2}}{15.0 \text{g}} = 28.2696 \mu$ g/kg

	Laboratory	Validation	
Compound	(µg/kg)	(µg/kg)	%D
Alpha-BHC	28.3	28.3	0.0

Comments:

- 1. Pesticides data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GBV83365.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GBV83365.

DATA USABILITY SUMMARY REPORT (DUSR) TRACE METALS

USEPA Region II -Data Validation

Project Name: 1181 Flushing Avenue

Location: Brooklyn, New York

Project Number: 3020-026

SDG #: GBV83365

Client: Environmental Business Consultants

ODate: 02/20/2017

Laboratory: Phoenix Environmental Laboratories, Inc.

Reviewer: Sherri Pullar

Summary:

- 1. Data validation was performed on the data for seventeen (17) soil samples analyzed for the following analyses:
 - 1.1 Trace Metals-ICP-AES by SW-846 Method 6010C.
 - 1.2 Mercury by SW-846 Method 7471A.
- 2. The samples were collected on 11/14/2016. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 11/15/2016 for analysis.
- 3. The USEPA Region-II SOP No. HW-2a, Revision 15, December 2012, Validation of ICP-AES was used in evaluating the Trace Metals data and USEPA Region-II SOP No. HW-2c, Revision 15, December 2012, Validation of Mercury and Cyanide was used in evaluating the mercury data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (See discussion below).

Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory	Collection	Analysis	Matrix	Sample Status
15010 (0.0)	Sample ID	Date	TOP CITY	G '1	
15B19 (0-2)	BV83365	11/14/16	ICP, CVAA	Soil	
15B19 (12-14)	BV83366	11/14/16	ICP, CVAA	Soil	
15B19 (18-20)	BV83367	11/14/16	ICP, CVAA	Soil	
15B19 (20-25)	BV83368	11/14/16	ICP, CVAA	Soil	
15B4 (12-14)	BV83369	11/14/16	ICP, CVAA	Soil	
15B4 (15-17)	BV83370	11/14/16	ICP, CVAA	Soil	
15B4 (18-20)	BV83371	11/14/16	ICP, CVAA	Soil	
15B3 (12-14)	BV83372	11/14/16	ICP, CVAA	Soil	
15B1 (12-14)	BV83373	11/14/16	ICP, CVAA	Soil	
15B1 (18-20)	BV83374	11/14/16	ICP, CVAA	Soil	
15B2 (12-14)	BV83375	11/14/16	ICP, CVAA	Soil	
15B2 (22.5-25)	BV83376	11/14/16	ICP, CVAA	Soil	
15B10 (10-15)	BV83377	11/14/16	ICP, CVAA	Soil	
15B9 (3-5)	BV83378	11/14/16	ICP, CVAA	Soil	
15B9 (10-15)	BV83379	11/14/16	ICP, CVAA	Soil	
SOIL DUPLICATE 3	BV83380	11/14/16	ICP, CVAA	Soil	Field Duplicate to
					Sample 15B19 (0-2)
SOIL DUPLICATE 4	BV83381	11/14/16	ICP, CVAA	Soil	Field Duplicate to
					Sample
					15B2 (12-14)

Sample Conditions/Problems:

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

Holding Times:

- 1. All soil samples were analyzed within the 6 months holding times for Trace Metals analysis by ICP-AES. No qualifications were required.
- 2. All soil samples were digested and analyzed within the 28 days holding times for Mercury analysis. No qualifications were required.

Initial and Continuing Calibration Verification (ICV and CCV):

ICP-AES:

1. All %RECs in the ICV and CCVs were within QC limits (90-110). No qualifications were required.

Mercury:

- All correlation coefficient for Mercury calibration curve analyzed were ≥0.995. No qualifications were required.
- 2. All ICVs and CCVs %REC values were within the QC limits (80-120%). No qualifications were required.

CRQL Check Standard (CRI):

1. All CRI analyzed %RECs were within the control limits (70-130%). No qualifications were required.

ICP-AES Interference Check Sample:

1. All %REC values were within the QC limits (80-120%) for ICSA and ICSAB. No qualifications were required.

Blanks (Method Blank, ICB and CCB):

ICP-AES:

- 1. Method Blank-Soil (BV83365) digested on 11/154/2016 was free of contamination. No qualifications were required.
- 2. All ICB and CCBs were free of contamination with the following exception(s):

Element	Concentration (µg/L)	CRQL* (µg/L)	Sample Affected	Action
Calcium	47	50	SOIL DUPLICATE 3	None

^{*=} If sample concentration >MDL but < Reporting limit, then sample result qualified as non-detect (U). If sample concentration greater than CRQL but less than 10x the blank result, then qualify estimated (J). If sample concentration greater than 10x the blank results or sample was not detected then no qualifications or action is required.

Mercury:

- 1. All ICB and CCBs were free of contamination. No qualifications were required.
- 2. Method Blank (BV83365) digested on 11/16/2016 was free of contamination. No qualifications were required.

Field Blank (FB) and Equipment Blank (EB):

1. Field Blanks were not submitted with this SDG.

Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):

ICP-AES and Mercury:

1. Laboratory Control Sample %RECs were within the laboratory control limits (75-125%). No qualifications were required.

Field Duplicate:

1. Sample SOIL DUPLICATE 3 (BV83380) was collected as a field duplicate of sample 15B19 (0-2) (BV83365). All of the RPDs were ≤50% (or difference >2XCRDL). No qualifications were required.

Field Comple	Analyta	Analytical Method	Result	Units	Field Duplicate	Resul	Units	Difference	RPD	Qualifier
Field Sample	Analyte	Method	Kesuit	Units		Kesui	Units	Difference	KPD	Quaimer
					SOIL DUPLICATE					
15B19 (0-2)	Aluminum	SW8466010B	7860	mg/Kg	3	8170	mg/Kg	NA	3.9	None
					SOIL DUPLICATE					
15B19 (0-2)	Arsenic	SW8466010B	6.59	mg/Kg	3	6.36	mg/Kg	NA	3.6	None
					SOIL DUPLICATE					
15B19 (0-2)	Barium	SW8466010B	129	mg/Kg	3	113	mg/Kg	NA	13.2	None
					SOIL DUPLICATE					
15B19 (0-2)	Beryllium	SW8466010B	0.42	mg/Kg	3	0.41	mg/Kg	0.0	NA	None
					SOIL DUPLICATE					
15B19 (0-2)	Cadmium	SW8466010B	0.68	mg/Kg	3	0.58	mg/Kg	0.1	NA	None
,					SOIL DUPLICATE					
15B19 (0-2)	Calcium	SW8466010B	7640	mg/Kg	3	6690	mg/Kg	NA	13.3	None
					SOIL DUPLICATE					
15B19 (0-2)	Chromium	SW8466010B	19.3	mg/Kg	3	20.2	mg/Kg	NA	4.6	None
					SOIL DUPLICATE					
15B19 (0-2)	Cobalt	SW8466010B	7.67	mg/Kg	3	7.23	mg/Kg	NA	5.9	None
					SOIL DUPLICATE					
15B19 (0-2)	Copper	SW8466010B	80.5	mg/Kg	3	73.7	mg/Kg	NA	8.8	None
	1 11				SOIL DUPLICATE					
15B19 (0-2)	Iron	SW8466010B	20300	mg/Kg	3	19800	mg/Kg	NA	2.5	None
					SOIL DUPLICATE					
15B19 (0-2)	Lead	SW8466010B	237	mg/Kg	3	243	mg/Kg	NA	2.5	None

Field Sample	Analyte	Analytical Method	Result	Units	Field Duplicate	Resul	Units	Difference	RPD	Qualifier
					SOIL DUPLICATE					
15B19 (0-2)	Magnesium	SW8466010B	2070	mg/Kg	3	2120	mg/Kg	NA	2.4	None
					SOIL DUPLICATE					
15B19 (0-2)	Manganese	SW8466010B	345	mg/Kg	3	386	mg/Kg	NA	11.2	None
					SOIL DUPLICATE					
15B19 (0-2)	Mercury	SW8467471	1.57	mg/Kg	3	1.04	mg/Kg	NA	40.6	None
					SOIL DUPLICATE					
15B19 (0-2)	Nickel	SW8466010B	15.7	mg/Kg	3	15.1	mg/Kg	NA	3.9	None
					SOIL DUPLICATE					
15B19 (0-2)	Potassium	SW8466010B	1120	mg/Kg	3	1120	mg/Kg	NA	0.0	None
					SOIL DUPLICATE					
15B19 (0-2)	Sodium	SW8466010B	227	mg/Kg	3	230	mg/Kg	NA	1.3	None
					SOIL DUPLICATE					
15B19 (0-2)	Vanadium	SW8466010B	24.8	mg/Kg	3	25.0	mg/Kg	NA	0.8	None
					SOIL DUPLICATE					
15B19 (0-2)	Zinc	SW8466010B	165	mg/Kg	3	160	mg/Kg	NA	3.1	None

2. Sample SOIL DUPLICATE 4 (BV83381) was collected as a field duplicate of sample 15B2 (12-14) (BV83375). All of the RPDs were \leq 50% (or difference \geq 2XCRDL) with the exception of iron.

	Analytical								
Analyte	Method	Result	Units	Field Duplicate	Result	Units	Difference	RPD	Qualifier
				SOIL DUPLICATE					
Aluminum	SW8466010B	4150	mg/Kg	4	6770	mg/Kg	NA	48.0	None
				SOIL DUPLICATE					
Arsenic	SW8466010B	1.41	mg/Kg	4	1.3	mg/Kg	0.1	NA	None
				SOIL DUPLICATE					
Barium	SW8466010B	44.3	mg/Kg	4	40.3	mg/Kg	NA	9.5	None
Beryllium	SW8466010B	0.35	mg/Kg	•	0.28	mg/Kg	0.1	NA	None
Calcium	SW8466010B	1170	mg/Kg	·	1090	mg/Kg	NA	7.1	None
Chromium	SW8466010B	19.6	mg/Kg	•	16.7	mg/Kg	NA	16.0	None
						~~			
Cobalt	SW8466010B	8.80	mg/Kg	·	7.22	mg/Kg	NA	19.7	None
~						~~			
Copper	SW8466010B	13.9	mg/Kg	•	11.6	mg/Kg	NA	18.0	None
· ·	QYY10.4.C.C0.1.0.D	0.400			1.5000		27.1	4	·
Iron	SW8466010B	8490	mg/Kg	•	15000	mg/Kg	NA	55.4	J
, ,	CM10466010D		75.7		2.0	/TZ	NY A	44.4	3.7
Lead	SW8466010B	4.4	mg/Kg	•	2.8	mg/Kg	NA	44.4	None
M	CW0466010D	1650	/IZ		2640	/17	NIA	46.2	None
Magnesium	SW 8400010B	1630	mg/Kg	•	2040	mg/Kg	NA	40.2	None
Manganaga	CW0466010D	227	ma/V a		227	ma/Va	NIA	219	None
Manganese	3 W 0400010D	237	ilig/Kg	•	337	mg/Kg	INA	34.0	None
Nickel	SW8466010B	14.8	ma/Ka		13.2	ma/Ka	NA	11.4	None
INICKCI	3 W 0400010D	14.0	mg/Kg	•	13.2	mg/Kg	INA	11.4	None
Potassium	SW8466010B	1840	ma/K a		1/110	ma/Ka	NΑ	26.5	None
1 Otassiuiii	5 W 0400010D	1040	mg/Kg	•	1410	mg/Kg	11/71	40.3	INOIIC
Sodium	SW8466010B	341	mσ/K σ		303	mg/Kg	NΔ	11.8	None
Souldin	5 W 0TOOOTOD	271	mg/ixg		303	mg/rxg	11/7	11.0	TAOHC
Vanadium	SW8466010B	29.3	mσ/K σ		25.1	mø/Kø	NA	15.4	None
, anadrani	5 11 0 1000 1 0 D	27.5	mg/ixg	•	40.1	1115/112	11/1	1.7.⊤	110110
Zinc	SW8466010B	36.2	mg/Kg		30.3	mg/Kg	NA	17.7	None
		Analyte Method Aluminum SW8466010B Arsenic SW8466010B Barium SW8466010B Beryllium SW8466010B Calcium SW8466010B Chromium SW8466010B Cobalt SW8466010B Copper SW8466010B Iron SW8466010B Lead SW8466010B Magnesium SW8466010B Nickel SW8466010B Potassium SW8466010B Sodium SW8466010B Vanadium SW8466010B	Analyte Method Result Aluminum SW8466010B 4150 Arsenic SW8466010B 1.41 Barium SW8466010B 44.3 Beryllium SW8466010B 0.35 Calcium SW8466010B 1170 Chromium SW8466010B 19.6 Cobalt SW8466010B 8.80 Copper SW8466010B 13.9 Iron SW8466010B 8490 Lead SW8466010B 4.4 Magnesium SW8466010B 1650 Manganese SW8466010B 14.8 Potassium SW8466010B 1840 Sodium SW8466010B 341 Vanadium SW8466010B 29.3	Analyte Method Result Units Aluminum SW8466010B 4150 mg/Kg Arsenic SW8466010B 1.41 mg/Kg Barium SW8466010B 44.3 mg/Kg Beryllium SW8466010B 0.35 mg/Kg Calcium SW8466010B 1170 mg/Kg Chromium SW8466010B 19.6 mg/Kg Cobalt SW8466010B 8.80 mg/Kg Copper SW8466010B 13.9 mg/Kg Iron SW8466010B 8490 mg/Kg Magnesium SW8466010B 1650 mg/Kg Manganese SW8466010B 14.8 mg/Kg Nickel SW8466010B 1840 mg/Kg Sodium SW8466010B 341 mg/Kg Vanadium SW8466010B 29.3 mg/Kg	Analyte Method Result Units Field Duplicate Aluminum SW8466010B 4150 mg/Kg 4 Arsenic SW8466010B 1.41 mg/Kg 4 Barium SW8466010B 44.3 mg/Kg 4 Beryllium SW8466010B 0.35 mg/Kg 4 Calcium SW8466010B 1170 mg/Kg 4 Chromium SW8466010B 19.6 mg/Kg 4 Cobalt SW8466010B 19.6 mg/Kg 4 Copper SW8466010B 8.80 mg/Kg 4 Copper SW8466010B 13.9 mg/Kg 4 Lead SW8466010B 8490 mg/Kg 4 Magnesium SW8466010B 4.4 mg/Kg 4 Manganese SW8466010B 1650 mg/Kg 4 Nickel SW8466010B 14.8 mg/Kg 4 Potassium SW8466010B 1840 mg/Kg 4	Analyte Method Result Units Field Duplicate Result Aluminum SW8466010B 4150 mg/Kg SOIL DUPLICATE 6770 Arsenic SW8466010B 1.41 mg/Kg 4 1.3 Barium SW8466010B 44.3 mg/Kg 4 40.3 Beryllium SW8466010B 0.35 mg/Kg 4 0.28 Calcium SW8466010B 1170 mg/Kg 4 1090 Chromium SW8466010B 19.6 mg/Kg 4 16.7 Cobalt SW8466010B 19.6 mg/Kg 4 7.22 Copper SW8466010B 8.80 mg/Kg 4 11.6 Copper SW8466010B 13.9 mg/Kg 4 15000 Lead SW8466010B 4.4 mg/Kg 4 2.8 Magnesium SW8466010B 4.4 mg/Kg 4 2640 Manganese SW8466010B 14.8 mg/Kg 4 <td>Analyte Method Result Units Field Duplicate Result Units Aluminum SW8466010B 4150 mg/Kg 4 6770 mg/Kg Arsenic SW8466010B 1.41 mg/Kg 4 1.3 mg/Kg Barium SW8466010B 44.3 mg/Kg 4 40.3 mg/Kg Beryllium SW8466010B 0.35 mg/Kg 5OIL DUPLICATE 40.3 mg/Kg Calcium SW8466010B 1170 mg/Kg 4 10.90 mg/Kg Calcium SW8466010B 1170 mg/Kg 4 10.90 mg/Kg Calcium SW8466010B 19.6 mg/Kg 4 10.90 mg/Kg Chromium SW8466010B 19.6 mg/Kg 4 7.22 mg/Kg Cobalt SW8466010B 8.80 mg/Kg 4 11.6 mg/Kg Lead SW8466010B 13.9 mg/Kg 4 15000 mg/Kg Mag</td> <td>Analyte Method Result Units Field Duplicate Result Units Difference Aluminum SW8466010B 4150 mg/Kg 4 6770 mg/Kg NA Arsenic SW8466010B 1.41 mg/Kg 4 1.3 mg/Kg 0.1 Barium SW8466010B 44.3 mg/Kg 4 40.3 mg/Kg NA Beryllium SW8466010B 0.35 mg/Kg 4 0.28 mg/Kg 0.1 Calcium SW8466010B 1170 mg/Kg 4 1090 mg/Kg NA Chromium SW8466010B 19.6 mg/Kg 4 16.7 mg/Kg NA Cobalt SW8466010B 19.6 mg/Kg 4 7.22 mg/Kg NA Copper SW8466010B 13.9 mg/Kg 4 11.6 mg/Kg NA Iron SW8466010B 8.490 mg/Kg 4 15000 mg/Kg NA</td> <td>Analyte Method Result Units Field Duplicate Result Units Difference RPD Aluminum SW8466010B 4150 mg/Kg SOIL DUPLICATE 6770 mg/Kg NA 48.0 Arsenic SW8466010B 1.41 mg/Kg SOIL DUPLICATE 1.3 mg/Kg 0.1 NA Barium SW8466010B 44.3 mg/Kg 4 40.3 mg/Kg NA 9.5 Beryllium SW8466010B 0.35 mg/Kg 4 0.28 mg/Kg 0.1 NA Calcium SW8466010B 1170 mg/Kg 4 1090 mg/Kg NA 7.1 Chromium SW8466010B 19.6 mg/Kg 4 16.7 mg/Kg NA 16.0 Cobalt SW8466010B 8.80 mg/Kg 4 7.22 mg/Kg NA 18.0 Iron SW8466010B 13.9 mg/Kg 4 11.6 mg/Kg NA 18.0 <!--</td--></td>	Analyte Method Result Units Field Duplicate Result Units Aluminum SW8466010B 4150 mg/Kg 4 6770 mg/Kg Arsenic SW8466010B 1.41 mg/Kg 4 1.3 mg/Kg Barium SW8466010B 44.3 mg/Kg 4 40.3 mg/Kg Beryllium SW8466010B 0.35 mg/Kg 5OIL DUPLICATE 40.3 mg/Kg Calcium SW8466010B 1170 mg/Kg 4 10.90 mg/Kg Calcium SW8466010B 1170 mg/Kg 4 10.90 mg/Kg Calcium SW8466010B 19.6 mg/Kg 4 10.90 mg/Kg Chromium SW8466010B 19.6 mg/Kg 4 7.22 mg/Kg Cobalt SW8466010B 8.80 mg/Kg 4 11.6 mg/Kg Lead SW8466010B 13.9 mg/Kg 4 15000 mg/Kg Mag	Analyte Method Result Units Field Duplicate Result Units Difference Aluminum SW8466010B 4150 mg/Kg 4 6770 mg/Kg NA Arsenic SW8466010B 1.41 mg/Kg 4 1.3 mg/Kg 0.1 Barium SW8466010B 44.3 mg/Kg 4 40.3 mg/Kg NA Beryllium SW8466010B 0.35 mg/Kg 4 0.28 mg/Kg 0.1 Calcium SW8466010B 1170 mg/Kg 4 1090 mg/Kg NA Chromium SW8466010B 19.6 mg/Kg 4 16.7 mg/Kg NA Cobalt SW8466010B 19.6 mg/Kg 4 7.22 mg/Kg NA Copper SW8466010B 13.9 mg/Kg 4 11.6 mg/Kg NA Iron SW8466010B 8.490 mg/Kg 4 15000 mg/Kg NA	Analyte Method Result Units Field Duplicate Result Units Difference RPD Aluminum SW8466010B 4150 mg/Kg SOIL DUPLICATE 6770 mg/Kg NA 48.0 Arsenic SW8466010B 1.41 mg/Kg SOIL DUPLICATE 1.3 mg/Kg 0.1 NA Barium SW8466010B 44.3 mg/Kg 4 40.3 mg/Kg NA 9.5 Beryllium SW8466010B 0.35 mg/Kg 4 0.28 mg/Kg 0.1 NA Calcium SW8466010B 1170 mg/Kg 4 1090 mg/Kg NA 7.1 Chromium SW8466010B 19.6 mg/Kg 4 16.7 mg/Kg NA 16.0 Cobalt SW8466010B 8.80 mg/Kg 4 7.22 mg/Kg NA 18.0 Iron SW8466010B 13.9 mg/Kg 4 11.6 mg/Kg NA 18.0 </td

Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

ICP-AES and Mercury:

1. Matrix Spike (MS) was performed on sample 15B19 (0-2) (BV83365) for total metals and mercury. All %Rs were within the laboratory control limits. No qualifications were required.

Sample Duplicate:

ICP-AES and Mercury:

1. Laboratory Duplicate was performed on sample 15B19 (0-2) (BV83365) (total) for ICP-AES, GFAA, and mercury. All RPDs were within the laboratory control limits. No qualifications were required.

ICP-AES Serial Dilution:

1. ICP serial dilution was performed on sample 15B19 (0-2) (BV83365). For all results for which the concentration in the original sample is $\geq 50x$ the Method Detection Limits (MDL), the serial dilution analysis (a five-fold dilution) was within the acceptable limit (%D \pm 10%) with the following exception(s):

Element	%D	Sample	Action
		Affected	
Sodium	11.03	15B19 (0-2)	J+

Verification of Instrumental Parameters:

- 1. The following Forms were present in the data package:
 - 1.1 Method Detection Limits, Form- X.
 - 1.2 ICP-AES Interelement Correction Factors, Form -XIA and Form-XIB.
 - 1.3 ICP-AES Linear Ranges, Form XII.

Compound Quantitation and Reported Detection Limits:

- 1. All sample results were reported within the linear calibration range.
- 2. %Solids for all soil samples in this SDG were >50%. No qualifications were required.
- 3. Manual calculation:

Sample: 15B19 (0-2) (BV83365)

Lead

Concentration (mg/Kg) (dry wt.)= $\underline{C \times V \times DF \times 1Lx \ 1000gx \ 1mg}$ W x S x 1000ml x 1 kg x 1000ug

V= 50ml W= 0.76g %Solids =91.0 DF=10.0

Concentration (mg/Kg) (dry wt.)= $\frac{327.40 \text{ug/L} \times 50 \times 10.0 \times 11 \times 1000 \text{gx 1mg}}{0.76 \times 0.91 \times 1000 \text{ml} \times 1 \text{ kg} \times 1000 \text{ug}} = 236.7 \text{ mg/kg}$

Compound	Laboratory (mg/kg)	Validation (mg/kg)	%D
Lead	237	237	0.0

Comments:

- 1. Trace Metals data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GBV83365.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GBV83365.

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	1.2	23
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	1,1,1-Trichloroethane		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	1.2	5.8
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	1,1,2-Trichloroethane		ug/Kg	U	1.2	5.8
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	1,1-Dichloroethane		ug/Kg	U	1.2	5.8
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	1,1-Dichloroethene		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	1,1-Dichloropropene		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	1,2,3-Trichlorobenzene		ug/Kg	U	1.2	5.8
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	1,2,3-Trichloropropane		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	130	250
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	1.2	5.8
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	110	250
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	1,2,4-Trimethylbenzene	0.58	ug/Kg	J	0.58	5.8
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	1.2	5.8
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	1,2-Dibromoethane		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	1,2-Dichlorobenzene		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	1,2-Dichlorobenzene		ug/Kg	UJ	100	250
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	1,2-Dichloroethane		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	1,2-Dichloropropane		ug/Kg	U	1.2	5.8
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	120	250
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	1,3,5-Trimethylbenzene		ug/Kg	UJ	0.58	5.8
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	1,3-Dichlorobenzene		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	1,3-Dichlorobenzene		ug/Kg	UJ	110	250
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	1,3-Dichloropropane		ug/Kg	U	1.2	5.8
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	1,4-Dichlorobenzene		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	1,4-Dichlorobenzene		ug/Kg	UJ	110	250
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	1,4-dioxane		ug/Kg	U	46	87
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	2,2-Dichloropropane		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	2,4,5-Trichlorophenol		ug/Kg	U	200	250
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	110	180
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	2,4-Dichlorophenol		ug/Kg	U	130	180
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	2,4-Dimethylphenol		ug/Kg	U	89	250
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	2,4-Dinitrophenol		ug/Kg	UJ	250	250
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	2,4-Dinitrotoluene		ug/Kg	U	140	180
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	2,6-Dinitrotoluene		ug/Kg	U	110	180
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	2-Chloronaphthalene		ug/Kg	U	100	250
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	2-Chlorophenol		ug/Kg	U	100	250
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	2-Chlorotoluene		ug/Kg	U	1.2	5.8

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	2-Hexanone		ug/Kg	U	5.8	29
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	2-Isopropyltoluene		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	2-Methylnaphthalene		ug/Kg	U	110	250
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	170	250
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	2-Nitroaniline		ug/Kg	U	250	250
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	2-Nitrophenol		ug/Kg	U	230	250
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	140	250
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	170	180
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	3-Nitroaniline		ug/Kg	U	720	360
15B19 (0-2)	BV83365	SW8081	11/14/2016	2	4,4' -DDD		ug/Kg	U	2.2	2.2
15B19 (0-2)	BV83365	SW8081	11/14/2016	2	4,4' -DDE		ug/Kg	U	2.2	2.2
15B19 (0-2)	BV83365	SW8081	11/14/2016	2	4,4' -DDT	7.7	ug/Kg	J	2.2	2.2
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	4,6-Dinitro-2-methylphenol		ug/Kg	UJ	72	220
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	110	250
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	130	250
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	4-Chloroaniline		ug/Kg	U	170	290
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	120	250
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	4-Chlorotoluene		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	4-Methyl-2-pentanone		ug/Kg	U	5.8	29
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	4-Nitroaniline		ug/Kg	U	120	360
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	4-Nitrophenol		ug/Kg	U	160	360
15B19 (0-2)	BV83365	SW8081	11/14/2016	2	a-BHC		ug/Kg	U	7.2	7.2
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Acenaphthene		ug/Kg	U	110	250
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Acenaphthylene		ug/Kg	U	100	250
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	Acetone		ug/Kg	UJ	5.8	29
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Acetophenone		ug/Kg	U	110	250
15B19 (0-2)	BV83365	SW8081	11/14/2016	2	a-Chlordane		ug/Kg	U	3.6	3.6
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	Acrolein		ug/Kg	UJ	2.9	23
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	Acrylonitrile		ug/Kg	U	0.58	23
15B19 (0-2)	BV83365	SW8081	11/14/2016	2	Aldrin		ug/Kg	U	3.6	3.6
15B19 (0-2)	BV83365	SW6010	11/14/2016	10	Aluminum	7860	mg/Kg		7.2	36
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Aniline		ug/Kg	U	290	290
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Anthracene	230	ug/Kg	J	120	250
15B19 (0-2)	BV83365	SW6010	11/14/2016	1	Antimony		mg/Kg	U	1.8	1.8
15B19 (0-2)	BV83365	SW6010	11/14/2016	1	Arsenic	6.59	mg/Kg		0.72	0.72
15B19 (0-2)	BV83365	SW6010	11/14/2016	1	Barium	129	mg/Kg		0.36	0.7
15B19 (0-2)	BV83365	SW8081	11/14/2016	2	b-BHC		ug/Kg	U	7.2	7.2

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Benz(a)anthracene	910	ug/Kg		120	250
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	Benzene		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Benzidine		ug/Kg	UJ	210	360
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Benzo(a)pyrene	850	ug/Kg		120	180
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Benzo(b)fluoranthene	680	ug/Kg		120	250
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Benzo(ghi)perylene	590	ug/Kg		120	250
15B19 (0-2)	BV83365	SW8270	11/14/2016		Benzo(k)fluoranthene	670	ug/Kg		120	250
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Benzoic acid		ug/Kg	R	720	1800
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Benzyl butyl phthalate		ug/Kg	U	93	250
15B19 (0-2)	BV83365	SW6010	11/14/2016	1	Beryllium	0.42	mg/Kg		0.14	0.29
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	99	250
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	97	180
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	100	250
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	100	250
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	Bromobenzene		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	Bromochloromethane		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	Bromodichloromethane		ug/Kg	U	1.2	5.8
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	Bromoform		ug/Kg	UJ	1.2	5.8
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	Bromomethane		ug/Kg	UJ	2.3	5.8
15B19 (0-2)	BV83365	SW6010	11/14/2016	1	Cadmium	0.68	mg/Kg		0.36	0.36
15B19 (0-2)	BV83365	SW6010	11/14/2016	1	Calcium	7640	mg/Kg		3.3	3.6
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Carbazole		ug/Kg	U	140	180
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	Carbon Disulfide		ug/Kg	UJ	1.2	5.8
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	Carbon tetrachloride		ug/Kg	U	1.2	5.8
15B19 (0-2)	BV83365	SW8081	11/14/2016	2	Chlordane		ug/Kg	U	36	36
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	Chlorobenzene		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	Chloroethane		ug/Kg	UJ	0.58	5.8
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	Chloroform		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	Chloromethane		ug/Kg	U	1.2	5.8
15B19 (0-2)	BV83365	SW6010	11/14/2016	1	Chromium	19.3	mg/Kg		0.36	0.36
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Chrysene	970	ug/Kg		120	250
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	cis-1,2-Dichloroethene		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	cis-1,3-Dichloropropene		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW6010	11/14/2016		Cobalt	7.67	mg/Kg		0.36	0.36
15B19 (0-2)	BV83365	SW6010	11/14/2016		Copper	80.5	mg/Kg		0.36	0.36
15B19 (0-2)	BV83365	SW8081	11/14/2016	2	d-BHC		ug/Kg	U	7.2	7.2
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Dibenz(a,h)anthracene	140	ug/Kg	J	120	180

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Dibenzofuran		ug/Kg	U	100	250
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	Dibromochloromethane		ug/Kg	U	1.2	5.8
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	Dibromomethane		ug/Kg	U	1.2	5.8
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	Dichlorodifluoromethane		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW8081	11/14/2016	2	Dieldrin		ug/Kg	U	3.6	3.6
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Diethyl phthalate		ug/Kg	U	110	250
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Dimethylphthalate		ug/Kg	U	110	250
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Di-n-butylphthalate		ug/Kg	U	96	250
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Di-n-octylphthalate		ug/Kg	U	93	250
15B19 (0-2)	BV83365	SW8081	11/14/2016	2	Endosulfan I		ug/Kg	U	7.2	7.2
15B19 (0-2)	BV83365	SW8081	11/14/2016	2	Endosulfan II		ug/Kg	U	7.2	7.2
15B19 (0-2)	BV83365	SW8081	11/14/2016	2	Endosulfan sulfate		ug/Kg	U	7.2	7.2
15B19 (0-2)	BV83365	SW8081	11/14/2016	2	Endrin		ug/Kg	U	7.2	7.2
15B19 (0-2)	BV83365	SW8081	11/14/2016	2	Endrin aldehyde		ug/Kg	U	7.2	7.2
15B19 (0-2)	BV83365	SW8081	11/14/2016	2	Endrin ketone		ug/Kg	U	7.2	7.2
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	Ethylbenzene		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Fluoranthene	1500	ug/Kg		120	250
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Fluorene		ug/Kg	U	120	250
15B19 (0-2)	BV83365	SW8081	11/14/2016	2	g-BHC		ug/Kg	U	1.4	1.4
15B19 (0-2)	BV83365	SW8081	11/14/2016		g-Chlordane		ug/Kg	U	3.6	3.6
15B19 (0-2)	BV83365	SW8081	11/14/2016		Heptachlor		ug/Kg	U	7.2	7.2
15B19 (0-2)	BV83365	SW8081	11/14/2016	2	Heptachlor epoxide		ug/Kg	U	7.2	7.2
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Hexachlorobenzene		ug/Kg	U	100	180
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	Hexachlorobutadiene		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Hexachlorobutadiene		ug/Kg	UJ	130	250
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Hexachlorocyclopentadiene		ug/Kg	UJ	110	250
15B19 (0-2)	BV83365	SW8270	11/14/2016		Hexachloroethane		ug/Kg	U	110	180
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Indeno(1,2,3-cd)pyrene	600	ug/Kg		120	250
15B19 (0-2)	BV83365	SW6010	11/14/2016	10	Iron	20300	mg/Kg		36	36
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Isophorone		ug/Kg	U	100	180
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	Isopropylbenzene		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW6010	11/14/2016	10	Lead	237	mg/Kg		3.6	7.2
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	m&p-Xylene		ug/Kg	U	1.2	5.8
15B19 (0-2)	BV83365	SW6010	11/14/2016		Magnesium	2070	mg/Kg		3.6	3.6
15B19 (0-2)	BV83365	SW6010	11/14/2016		Manganese	345	mg/Kg		3.6	3.6
15B19 (0-2)	BV83365	SW7471	11/14/2016		Mercury	1.57	mg/Kg		0.02	0.03
15B19 (0-2)	BV83365	SW8081	11/14/2016	2	Methoxychlor		ug/Kg	U	36	36

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	Methyl Ethyl Ketone		ug/Kg	U	5.8	35
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	Methyl t-butyl ether (MTBE)		ug/Kg	U	1.2	12
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	Methylene chloride		ug/Kg	U	5.8	5.8
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Naphthalene		ug/Kg	U	100	250
15B19 (0-2)	BV83365	SW8260	11/14/2016	50	Naphthalene	210	ug/Kg	J	66	330
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	n-Butylbenzene		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW6010	11/14/2016	1	Nickel	15.7	mg/Kg		0.36	0.36
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Nitrobenzene		ug/Kg	U	130	180
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	N-Nitrosodimethylamine		ug/Kg	U	100	250
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	120	180
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	140	250
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	n-Propylbenzene		ug/Kg	U	1.2	5.8
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	o-Xylene		ug/Kg	U	1.2	5.8
15B19 (0-2)	BV83365	SW8082	11/14/2016	2	PCB-1016		ug/Kg	U	72	72
15B19 (0-2)	BV83365	SW8082	11/14/2016	2	PCB-1221		ug/Kg	U	72	72
15B19 (0-2)	BV83365	SW8082	11/14/2016	2	PCB-1232		ug/Kg	U	72	72
15B19 (0-2)	BV83365	SW8082	11/14/2016	2	PCB-1242		ug/Kg	U	72	72
15B19 (0-2)	BV83365	SW8082	11/14/2016	2	PCB-1248		ug/Kg	U	72	72
15B19 (0-2)	BV83365	SW8082	11/14/2016	2	PCB-1254		ug/Kg	U	72	72
15B19 (0-2)	BV83365	SW8082	11/14/2016	2	PCB-1260		ug/Kg	U	72	72
15B19 (0-2)	BV83365	SW8082	11/14/2016	2	PCB-1262		ug/Kg	U	72	72
15B19 (0-2)	BV83365	SW8082	11/14/2016	2	PCB-1268		ug/Kg	U	72	72
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Pentachloronitrobenzene		ug/Kg	U	130	250
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Pentachlorophenol		ug/Kg	UJ	140	220
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Phenanthrene	1100	ug/Kg		100	250
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Phenol		ug/Kg	U	110	250
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	p-Isopropyltoluene		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW6010	11/14/2016	1	Potassium	1120	mg/Kg		2.8	7
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Pyrene	1500	ug/Kg		120	250
15B19 (0-2)	BV83365	SW8270	11/14/2016	1	Pyridine		ug/Kg	UJ	88	250
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	sec-Butylbenzene		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW6010	11/14/2016	1	Selenium		mg/Kg	U	1.2	1.4
15B19 (0-2)	BV83365	SW6010	11/14/2016	1	Silver		mg/Kg	U	0.36	0.36
15B19 (0-2)	BV83365	SW6010	11/14/2016	1	Sodium	227	mg/Kg	J+	3.1	7
15B19 (0-2)	BV83365	E160.3	11/14/2016	1	SOLIDS, PERCENT	91	%			
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	Styrene		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	Tert-butyl alcohol		ug/Kg	U	23	120

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	tert-Butylbenzene		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	Tetrachloroethene		ug/Kg	U	1.2	5.8
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	Tetrahydrofuran (THF)		ug/Kg	U	2.9	12
15B19 (0-2)	BV83365	SW6010	11/14/2016	1	Thallium		mg/Kg	U	1.4	1.4
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	Toluene		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW8081	11/14/2016	2	Toxaphene		ug/Kg	U	140	140
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	trans-1,2-Dichloroethene		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	trans-1,3-Dichloropropene		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	trans-1,4-dichloro-2-butene		ug/Kg	U	2.9	12
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	Trichloroethene		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	Trichlorofluoromethane		ug/Kg	UJ	1.2	5.8
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	Trichlorotrifluoroethane		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW6010	11/14/2016	10	Vanadium	24.8	mg/Kg		3.6	3.6
15B19 (0-2)	BV83365	SW8260	11/14/2016	1	Vinyl chloride		ug/Kg	U	0.58	5.8
15B19 (0-2)	BV83365	SW6010	11/14/2016	10	Zinc	165	mg/Kg		3.6	7.2
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	0.99	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	1,1,1-Trichloroethane		ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	0.99	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	1,1,2-Trichloroethane		ug/Kg	U	0.99	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	1,1-Dichloroethane		ug/Kg	U	0.99	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	1,1-Dichloroethene		ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	1,1-Dichloropropene		ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	1,2,3-Trichlorobenzene		ug/Kg	U	0.99	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	1,2,3-Trichloropropane		ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	140	280
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	0.99	4.9
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	120	280
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	1,2,4-Trimethylbenzene	0.99	ug/Kg	J	0.49	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	0.99	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	1,2-Dibromoethane		ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	1,2-Dichlorobenzene		ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	1,2-Dichlorobenzene		ug/Kg	UJ	110	280
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	1,2-Dichloroethane		ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	1,2-Dichloropropane		ug/Kg	U	0.99	4.9
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	130	280
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	1,3,5-Trimethylbenzene		ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	1,3-Dichlorobenzene		ug/Kg	U	0.49	4.9

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	1,3-Dichlorobenzene		ug/Kg	UJ	120	280
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	1,3-Dichloropropane		ug/Kg	U	0.99	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	1,4-Dichlorobenzene		ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	1,4-Dichlorobenzene		ug/Kg	UJ	120	280
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	1,4-dioxane		ug/Kg	U	40	74
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	2,2-Dichloropropane		ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	2,4,5-Trichlorophenol		ug/Kg	U	220	280
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	130	200
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	2,4-Dichlorophenol		ug/Kg	U	140	200
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	2,4-Dimethylphenol		ug/Kg	U	99	280
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	2,4-Dinitrophenol		ug/Kg	UJ	280	280
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	2,4-Dinitrotoluene		ug/Kg	U	160	200
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	2,6-Dinitrotoluene		ug/Kg	U	130	200
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	2-Chloronaphthalene		ug/Kg	U	110	280
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	2-Chlorophenol		ug/Kg	U	110	280
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	2-Chlorotoluene		ug/Kg	U	0.99	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	2-Hexanone		ug/Kg	U	4.9	25
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	2-Isopropyltoluene		ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	2-Methylnaphthalene		ug/Kg	U	120	280
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	190	280
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	2-Nitroaniline		ug/Kg	U	280	280
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	2-Nitrophenol		ug/Kg	U	250	280
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	160	280
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	190	200
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	3-Nitroaniline		ug/Kg	U	800	400
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	4,6-Dinitro-2-methylphenol		ug/Kg	UJ	80	240
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	120	280
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	140	280
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	4-Chloroaniline		ug/Kg	U	190	320
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	130	280
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	4-Chlorotoluene		ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	4-Methyl-2-pentanone		ug/Kg	U	4.9	25
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	4-Nitroaniline		ug/Kg	U	130	400
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	4-Nitrophenol		ug/Kg	U	180	400
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Acenaphthene		ug/Kg	U	120	280
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Acenaphthylene		ug/Kg	U	110	280
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Acetone		ug/Kg	UJ	4.9	25

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Acetophenone		ug/Kg	U	120	280
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Acrolein		ug/Kg	UJ	2.5	20
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Acrylonitrile		ug/Kg	U	0.49	20
15B19 (12-14)	BV83366	SW6010	11/14/2016	10	Aluminum	4690	mg/Kg		8.3	41
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Aniline		ug/Kg	U	320	320
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Anthracene		ug/Kg	U	130	280
15B19 (12-14)	BV83366	SW6010	11/14/2016	1	Antimony		mg/Kg	U	2.1	2.1
15B19 (12-14)	BV83366	SW6010	11/14/2016	1	Arsenic	1.19	mg/Kg		0.83	0.83
15B19 (12-14)	BV83366	SW6010	11/14/2016	1	Barium	22.6	mg/Kg		0.41	0.8
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Benz(a)anthracene		ug/Kg	U	130	280
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Benzene		ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Benzidine		ug/Kg	UJ	230	400
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Benzo(a)pyrene		ug/Kg	U	130	200
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Benzo(b)fluoranthene		ug/Kg	U	140	280
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Benzo(ghi)perylene		ug/Kg	U	130	280
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Benzo(k)fluoranthene		ug/Kg	U	130	280
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Benzoic acid		ug/Kg	R	800	2000
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Benzyl butyl phthalate		ug/Kg	U	100	280
15B19 (12-14)	BV83366	SW6010	11/14/2016	1	Beryllium	0.27	mg/Kg	J	0.17	0.33
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	110	280
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	110	200
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	110	280
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	110	280
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Bromobenzene		ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Bromochloromethane		ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Bromodichloromethane		ug/Kg	U	0.99	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Bromoform		ug/Kg	U	0.99	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Bromomethane		ug/Kg	U	2.0	4.9
15B19 (12-14)	BV83366	SW6010	11/14/2016	1	Cadmium		mg/Kg	U	0.41	0.41
15B19 (12-14)	BV83366	SW6010	11/14/2016	1	Calcium	909	mg/Kg		3.8	4.1
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Carbazole		ug/Kg	U	160	200
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Carbon Disulfide		ug/Kg	U	0.99	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Carbon tetrachloride		ug/Kg	U	0.99	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Chlorobenzene		ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Chloroethane		ug/Kg	UJ	0.49	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Chloroform		ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Chloromethane		ug/Kg	U	0.99	4.9

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B19 (12-14)	BV83366	SW6010	11/14/2016	1	Chromium	14.1	mg/Kg		0.41	0.41
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Chrysene		ug/Kg	U	130	280
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	cis-1,2-Dichloroethene		ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	cis-1,3-Dichloropropene		ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW6010	11/14/2016	1	Cobalt	4.82	mg/Kg		0.41	0.41
15B19 (12-14)	BV83366	SW6010	11/14/2016	1	Copper	7.07	mg/Kg		0.41	0.41
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Dibenz(a,h)anthracene		ug/Kg	U	130	200
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Dibenzofuran		ug/Kg	U	120	280
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Dibromochloromethane		ug/Kg	U	0.99	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Dibromomethane		ug/Kg	U	0.99	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Dichlorodifluoromethane		ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Diethyl phthalate		ug/Kg	U	130	280
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Dimethylphthalate		ug/Kg	U	120	280
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Di-n-butylphthalate		ug/Kg	U	110	280
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Di-n-octylphthalate		ug/Kg	U	100	280
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Ethylbenzene	4.9	ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Fluoranthene		ug/Kg	U	130	280
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Fluorene		ug/Kg	U	130	280
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Hexachlorobenzene		ug/Kg	U	120	200
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Hexachlorobutadiene		ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Hexachlorobutadiene		ug/Kg	UJ	140	280
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Hexachlorocyclopentadiene		ug/Kg	UJ	120	280
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Hexachloroethane		ug/Kg	U	120	200
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Indeno(1,2,3-cd)pyrene		ug/Kg	U	130	280
15B19 (12-14)	BV83366	SW6010	11/14/2016	10	Iron	10600	mg/Kg		41	41
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Isophorone		ug/Kg	U	110	200
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Isopropylbenzene		ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW6010	11/14/2016	1	Lead	1.4	mg/Kg		0.41	0.8
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	m&p-Xylene	4.9	ug/Kg	U	0.99	4.9
15B19 (12-14)	BV83366	SW6010	11/14/2016	1	Magnesium	1740	mg/Kg		4.1	4.1
15B19 (12-14)	BV83366	SW6010	11/14/2016	10	Manganese	170	mg/Kg		4.1	4.1
15B19 (12-14)	BV83366	SW7471	11/14/2016	1	Mercury		mg/Kg	U	0.02	0.03
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Methyl Ethyl Ketone		ug/Kg	UJ	4.9	30
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Methyl t-butyl ether (MTBE)		ug/Kg	U	0.99	9.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Methylene chloride		ug/Kg	U	4.9	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Naphthalene		ug/Kg	U	0.99	4.9
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Naphthalene		ug/Kg	U	110	280

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	n-Butylbenzene		ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW6010	11/14/2016	1	Nickel	8.75	mg/Kg		0.41	0.41
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Nitrobenzene		ug/Kg	U	140	200
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	N-Nitrosodimethylamine		ug/Kg	U	110	280
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	130	200
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	150	280
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	n-Propylbenzene		ug/Kg	U	0.99	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	o-Xylene		ug/Kg	U	0.99	4.9
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Pentachloronitrobenzene		ug/Kg	U	150	280
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Pentachlorophenol		ug/Kg	UJ	150	240
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Phenanthrene		ug/Kg	U	110	280
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Phenol		ug/Kg	U	130	280
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	p-Isopropyltoluene		ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW6010	11/14/2016	1	Potassium	792	mg/Kg		3.2	8
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Pyrene		ug/Kg	U	140	280
15B19 (12-14)	BV83366	SW8270	11/14/2016	1	Pyridine		ug/Kg	UJ	98	280
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	sec-Butylbenzene		ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW6010	11/14/2016	1	Selenium		mg/Kg	U	1.4	1.7
15B19 (12-14)	BV83366	SW6010	11/14/2016	1	Silver		mg/Kg	U	0.41	0.41
15B19 (12-14)	BV83366	SW6010	11/14/2016	1	Sodium	148	mg/Kg		3.5	8
15B19 (12-14)	BV83366	E160.3	11/14/2016	1	SOLIDS, PERCENT	83	%			
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Styrene		ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Tert-butyl alcohol		ug/Kg	U	20	99
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	tert-Butylbenzene		ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Tetrachloroethene		ug/Kg	U	0.99	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Tetrahydrofuran (THF)		ug/Kg	UJ	2.5	9.9
15B19 (12-14)	BV83366	SW6010	11/14/2016	1	Thallium		mg/Kg	U	1.7	1.7
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Toluene		ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	trans-1,2-Dichloroethene		ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	trans-1,3-Dichloropropene		ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	trans-1,4-dichloro-2-butene		ug/Kg	U	2.5	9.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Trichloroethene		ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Trichlorofluoromethane		ug/Kg	U	0.99	4.9
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Trichlorotrifluoroethane		ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW6010	11/14/2016	1	Vanadium	16.2	mg/Kg		0.41	0.41
15B19 (12-14)	BV83366	SW8260	11/14/2016	1	Vinyl chloride		ug/Kg	U	0.49	4.9
15B19 (12-14)	BV83366	SW6010	11/14/2016	1	Zinc	18.7	mg/Kg		0.41	8.0

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	1,1,1,2-Tetrachloroethane		ug/Kg	U	1600 3	31000
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	1,1,1-Trichloroethane		ug/Kg	U	780	780
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	1,1,2,2-Tetrachloroethane		ug/Kg	U		7800
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	1,1,2-Trichloroethane		ug/Kg	U	1600	7800
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	1,1-Dichloroethane		ug/Kg	U	1600	1600
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	1,1-Dichloroethene		ug/Kg	U	780	780
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	1,1-Dichloropropene		ug/Kg	U	780	7800
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	1,2,3-Trichlorobenzene		ug/Kg	U	1600	7800
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	1,2,3-Trichloropropane		ug/Kg	U	780	7800
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	1,2,4,5-Tetrachlorobenzene		ug/Kg	UJ	1400	2900
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	1,2,4-Trichlorobenzene		ug/Kg	U	1600	7800
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	1,2,4-Trichlorobenzene		ug/Kg	UJ	1200	2900
15B19 (18-20)	BV83367	SW8260	11/14/2016	20000	1,2,4-Trimethylbenzene	910000	ug/Kg		16000 1	16000
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	1,2-Dibromo-3-chloropropane		ug/Kg	U	1600	7800
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	1,2-Dibromoethane		ug/Kg	U	780	7800
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	1,2-Dichlorobenzene		ug/Kg	U	780	1100
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	1,2-Dichlorobenzene		ug/Kg	UJ	1200	2900
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	1,2-Dichloroethane		ug/Kg	U	780	780
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	1,2-Dichloropropane		ug/Kg	U	1600	7800
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	1,2-Diphenylhydrazine		ug/Kg	U		2900
15B19 (18-20)	BV83367	SW8260	11/14/2016	20000	1,3,5-Trimethylbenzene	320000	ug/Kg			16000
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	1,3-Dichlorobenzene		ug/Kg	U		2400
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	1,3-Dichlorobenzene		ug/Kg	UJ		2900
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	1,3-Dichloropropane		ug/Kg	U		7800
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	1,4-Dichlorobenzene		ug/Kg	U	780	1800
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	1,4-Dichlorobenzene		ug/Kg	UJ		2900
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	1,4-dioxane		ug/Kg	U		63000
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	2,2-Dichloropropane		ug/Kg	U		7800
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	2,4,5-Trichlorophenol		ug/Kg	U	2200	2900
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	2,4,6-Trichlorophenol		ug/Kg	U		2000
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	2,4-Dichlorophenol		ug/Kg	UJ	1400	2000
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	2,4-Dimethylphenol		ug/Kg	UJ		2900
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	2,4-Dinitrophenol		ug/Kg	U		2900
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	2,4-Dinitrotoluene		ug/Kg	U	1600	2000
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	2,6-Dinitrotoluene		ug/Kg	U		2000
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	2-Chloronaphthalene		ug/Kg	U		2900
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	2-Chlorophenol		ug/Kg	UJ	1200	2900

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	2-Chlorotoluene		ug/Kg	U	1600	7800
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	2-Hexanone		ug/Kg	U	7800	39000
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	2-Isopropyltoluene	1400	ug/Kg	J	780	7800
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	2-Methylnaphthalene	11000	ug/Kg	J	1200	2900
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	2-Methylphenol (o-cresol)		ug/Kg	UJ	1900	1900
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	2-Nitroaniline		ug/Kg	U	2900	2900
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	2-Nitrophenol		ug/Kg	UJ	2600	2900
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	3&4-Methylphenol (m&p-cresol)		ug/Kg	UJ	1600	2900
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	3,3'-Dichlorobenzidine		ug/Kg	U	1900	2000
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	3-Nitroaniline		ug/Kg	U	8200	4100
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	4,6-Dinitro-2-methylphenol		ug/Kg	U	820	2500
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	4-Bromophenyl phenyl ether		ug/Kg	U	1200	2900
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	4-Chloro-3-methylphenol		ug/Kg	UJ	1400	2900
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	4-Chloroaniline		ug/Kg	UJ	1900	3300
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	4-Chlorophenyl phenyl ether		ug/Kg	U	1400	2900
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	4-Chlorotoluene		ug/Kg	U	780	7800
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	4-Methyl-2-pentanone		ug/Kg	U	7800	39000
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	4-Nitroaniline		ug/Kg	U	1400	4100
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	4-Nitrophenol		ug/Kg	U	1800	4100
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Acenaphthene		ug/Kg	U	1200	2900
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Acenaphthylene		ug/Kg	U	1100	2900
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	Acetone		ug/Kg	UJ	7800	7800
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Acetophenone		ug/Kg	UJ	1300	2900
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	Acrolein		ug/Kg	UJ		31000
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	Acrylonitrile		ug/Kg	U	1600	16000
15B19 (18-20)	BV83367	SW6010	11/14/2016	10	Aluminum	6590	mg/Kg		8.2	41
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Aniline		ug/Kg	UJ	3300	3300
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Anthracene		ug/Kg	U	1300	2900
15B19 (18-20)	BV83367	SW6010	11/14/2016	1	Antimony		mg/Kg	U	2.1	2.1
15B19 (18-20)	BV83367	SW6010	11/14/2016	1	Arsenic	1.38	mg/Kg		0.82	0.82
15B19 (18-20)	BV83367	SW6010	11/14/2016	1	Barium	37.0	mg/Kg		0.41	0.8
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Benz(a)anthracene		ug/Kg	U	1400	1400
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	Benzene		ug/Kg	U	780	780
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Benzidine		ug/Kg	U	2400	4100
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Benzo(a)pyrene		ug/Kg	U	1300	1300
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Benzo(b)fluoranthene		ug/Kg	U	1400	1400
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Benzo(ghi)perylene		ug/Kg	U	1300	2900

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Benzo(k)fluoranthene		ug/Kg	U	1400	1400
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Benzoic acid		ug/Kg	UJ	8200	20000
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Benzyl butyl phthalate		ug/Kg	U	1100	2900
15B19 (18-20)	BV83367	SW6010	11/14/2016	1	Beryllium	0.26	mg/Kg	J	0.16	0.33
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Bis(2-chloroethoxy)methane		ug/Kg	UJ	1100	2900
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Bis(2-chloroethyl)ether		ug/Kg	UJ	1100	2000
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Bis(2-chloroisopropyl)ether		ug/Kg	UJ	1100	2900
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Bis(2-ethylhexyl)phthalate		ug/Kg	U	1200	2900
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	Bromobenzene		ug/Kg	U	780	7800
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	Bromochloromethane		ug/Kg	U	780	7800
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	Bromodichloromethane		ug/Kg	U	1600	7800
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	Bromoform		ug/Kg	UJ	1600	7800
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	Bromomethane		ug/Kg	U	3100	7800
15B19 (18-20)	BV83367	SW6010	11/14/2016	1	Cadmium		mg/Kg	U	0.41	0.41
15B19 (18-20)	BV83367	SW6010	11/14/2016	1	Calcium	1220	mg/Kg		3.8	4.1
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Carbazole		ug/Kg	U	1600	2000
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	Carbon Disulfide		ug/Kg	U	1600	7800
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	Carbon tetrachloride		ug/Kg	U	1600	1600
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	Chlorobenzene		ug/Kg	U	780	1100
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	Chloroethane		ug/Kg	UJ	780	7800
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	Chloroform		ug/Kg	U	780	780
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	Chloromethane		ug/Kg	U	1600	7800
15B19 (18-20)	BV83367	SW6010	11/14/2016	1	Chromium	16.1	mg/Kg		0.41	0.41
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Chrysene		ug/Kg	U	1400	1400
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	cis-1,2-Dichloroethene		ug/Kg	U	780	780
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	cis-1,3-Dichloropropene		ug/Kg	U	780	7800
15B19 (18-20)	BV83367	SW6010	11/14/2016	1	Cobalt	7.43	mg/Kg		0.41	0.41
15B19 (18-20)	BV83367	SW6010	11/14/2016	1	Copper	12.4	mg/Kg		0.41	0.41
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Dibenz(a,h)anthracene		ug/Kg	U	1300	1300
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Dibenzofuran		ug/Kg	U	1200	2900
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	Dibromochloromethane		ug/Kg	U	1600	7800
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	Dibromomethane		ug/Kg	U	1600	7800
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	Dichlorodifluoromethane		ug/Kg	U	780	7800
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Diethyl phthalate		ug/Kg	U	1300	2900
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Dimethylphthalate		ug/Kg	U	1300	2900
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Di-n-butylphthalate		ug/Kg	U	1100	2900
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Di-n-octylphthalate		ug/Kg	U	1100	2900

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	Ethylbenzene	190000	ug/Kg		780	1000
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Fluoranthene		ug/Kg	U	1300	2900
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Fluorene		ug/Kg	U	1300	2900
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Hexachlorobenzene		ug/Kg	U	1200	2000
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	Hexachlorobutadiene		ug/Kg	U	780	7800
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Hexachlorobutadiene		ug/Kg	UJ	1500	2900
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Hexachlorocyclopentadiene		ug/Kg	UJ	1300	2900
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Hexachloroethane		ug/Kg	UJ	1200	2000
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Indeno(1,2,3-cd)pyrene		ug/Kg	U	1400	1400
15B19 (18-20)	BV83367	SW6010	11/14/2016	10	Iron	15000	mg/Kg		41	41
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Isophorone		ug/Kg	UJ	1100	2000
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	Isopropylbenzene	42000	ug/Kg		780	7800
15B19 (18-20)	BV83367	SW6010	11/14/2016	1	Lead	8.2	mg/Kg		0.41	0.8
15B19 (18-20)	BV83367	SW8260	11/14/2016	20000	m&p-Xylene	720000	ug/Kg		31000	160000
15B19 (18-20)	BV83367	SW6010	11/14/2016	1	Magnesium	2830	mg/Kg		4.1	4.1
15B19 (18-20)	BV83367	SW6010	11/14/2016	10	Manganese	327	mg/Kg		4.1	4.1
15B19 (18-20)	BV83367	SW7471	11/14/2016	1	Mercury		mg/Kg	U	0.02	0.03
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	Methyl Ethyl Ketone		ug/Kg	UJ	7800	7800
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	Methyl t-butyl ether (MTBE)		ug/Kg	U	1600	1600
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	Methylene chloride		ug/Kg	U	7800	7800
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	Naphthalene	89000	ug/Kg		1600	7800
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Naphthalene	17000	ug/Kg	J	1200	2900
15B19 (18-20)	BV83367	SW8260	11/14/2016	20000	n-Butylbenzene	70000	ug/Kg		16000	16000
15B19 (18-20)	BV83367	SW6010	11/14/2016	1	Nickel	13.5	mg/Kg		0.41	0.41
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Nitrobenzene		ug/Kg	UJ	1400	2000
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	N-Nitrosodimethylamine		ug/Kg	U	1200	2900
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	N-Nitrosodi-n-propylamine		ug/Kg	UJ	1300	2000
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	N-Nitrosodiphenylamine		ug/Kg	UJ	1600	2900
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	n-Propylbenzene	140000	ug/Kg		1600	3900
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	o-Xylene	260000	ug/Kg		1600	7800
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Pentachloronitrobenzene		ug/Kg	U	1500	2900
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Pentachlorophenol		ug/Kg	U	1500	1500
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Phenanthrene		ug/Kg	U	1200	2900
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Phenol		ug/Kg	UJ	1300	1300
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	p-Isopropyltoluene	13000	ug/Kg		780	7800
15B19 (18-20)	BV83367	SW6010	11/14/2016	1	Potassium	1530	mg/Kg		3.2	8
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Pyrene		ug/Kg	U	1400	2900

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B19 (18-20)	BV83367	SW8270	11/14/2016	10	Pyridine		ug/Kg	UJ	1000	2900
15B19 (18-20)	BV83367	SW8260	11/14/2016	20000	sec-Butylbenzene	23000	ug/Kg		16000	16000
15B19 (18-20)	BV83367	SW6010	11/14/2016	1	Selenium		mg/Kg	U	1.4	1.6
15B19 (18-20)	BV83367	SW6010	11/14/2016	1	Silver		mg/Kg	U	0.41	0.41
15B19 (18-20)	BV83367	SW6010	11/14/2016	1	Sodium	157	mg/Kg		3.5	8
15B19 (18-20)	BV83367	E160.3	11/14/2016	1	SOLIDS, PERCENT	81	%			
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	Styrene		ug/Kg	U	780	7800
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	Tert-butyl alcohol		ug/Kg	U	31000	160000
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	tert-Butylbenzene	990	ug/Kg	J	780	5900
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	Tetrachloroethene	22000	ug/Kg		1600	1600
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	Tetrahydrofuran (THF)		ug/Kg	UJ	3900	16000
15B19 (18-20)	BV83367	SW6010	11/14/2016	1	Thallium		mg/Kg	U	1.6	1.6
15B19 (18-20)	BV83367	SW8260	11/14/2016	20000	Toluene	20000	ug/Kg		16000	16000
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	trans-1,2-Dichloroethene		ug/Kg	U	780	780
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	trans-1,3-Dichloropropene		ug/Kg	U	780	7800
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	trans-1,4-dichloro-2-butene		ug/Kg	U	3900	16000
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	Trichloroethene		ug/Kg	U	780	780
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	Trichlorofluoromethane		ug/Kg	U	1600	7800
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	Trichlorotrifluoroethane		ug/Kg	U	780	7800
15B19 (18-20)	BV83367	SW6010	11/14/2016	1	Vanadium	24.1	mg/Kg		0.41	0.41
15B19 (18-20)	BV83367	SW8260	11/14/2016	1000	Vinyl chloride		ug/Kg	U	780	780
15B19 (18-20)	BV83367	SW6010	11/14/2016	1	Zinc	30.0	mg/Kg		0.41	0.8
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	1.6	32
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	1,1,1-Trichloroethane		ug/Kg	U	0.79	7.9
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	1.6	7.9
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	1,1,2-Trichloroethane		ug/Kg	U	1.6	7.9
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	1,1-Dichloroethane		ug/Kg	U	1.6	7.9
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	1,1-Dichloroethene		ug/Kg	U	0.79	7.9
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	1,1-Dichloropropene		ug/Kg	U	0.79	7.9
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	1,2,3-Trichlorobenzene		ug/Kg	U	1.6	7.9
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	1,2,3-Trichloropropane		ug/Kg	U	0.79	7.9
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	140	290
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	1.6	7.9
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	120	290
15B19 (20-25)	BV83368	SW8260	11/14/2016	50	1,2,4-Trimethylbenzene	1400	ug/Kg		46	460
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	1.6	7.9
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	1,2-Dibromoethane		ug/Kg	U	0.79	7.9

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	1,2-Dichlorobenzene		ug/Kg	U	0.79	7.9
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	1,2-Dichlorobenzene		ug/Kg	UJ	120	290
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	1,2-Dichloroethane		ug/Kg	U	0.79	7.9
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	1,2-Dichloropropane		ug/Kg	U	1.6	7.9
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	130	290
15B19 (20-25)	BV83368	SW8260	11/14/2016	50	1,3,5-Trimethylbenzene	490	ug/Kg		46	460
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	1,3-Dichlorobenzene		ug/Kg	U	0.79	7.9
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	1,3-Dichlorobenzene		ug/Kg	UJ	120	290
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	1,3-Dichloropropane		ug/Kg	U	1.6	7.9
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	1,4-Dichlorobenzene		ug/Kg	U	0.79	7.9
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	1,4-Dichlorobenzene		ug/Kg	UJ	120	290
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	1,4-dioxane		ug/Kg	U	63	100
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	2,2-Dichloropropane		ug/Kg	U	0.79	7.9
15B19 (20-25)	BV83368	SW8270	11/14/2016		2,4,5-Trichlorophenol		ug/Kg	U	230	290
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	130	210
15B19 (20-25)	BV83368	SW8270	11/14/2016		2,4-Dichlorophenol		ug/Kg	U	140	210
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	2,4-Dimethylphenol		ug/Kg	U	100	290
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	2,4-Dinitrophenol		ug/Kg	UJ	290	290
15B19 (20-25)	BV83368	SW8270	11/14/2016		2,4-Dinitrotoluene		ug/Kg	U	160	210
15B19 (20-25)	BV83368	SW8270	11/14/2016		2,6-Dinitrotoluene		ug/Kg	U	130	210
15B19 (20-25)	BV83368	SW8270	11/14/2016		2-Chloronaphthalene		ug/Kg	U	120	290
15B19 (20-25)	BV83368	SW8270	11/14/2016		2-Chlorophenol		ug/Kg	U	120	290
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	2-Chlorotoluene		ug/Kg	U	1.6	7.9
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	2-Hexanone		ug/Kg	U	7.9	40
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	2-Isopropyltoluene	1.4	ug/Kg	J	0.79	7.9
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	2-Methylnaphthalene		ug/Kg	U	120	290
15B19 (20-25)	BV83368	SW8270	11/14/2016		2-Methylphenol (o-cresol)		ug/Kg	U	190	290
15B19 (20-25)	BV83368	SW8270	11/14/2016		2-Nitroaniline		ug/Kg	U	290	290
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	2-Nitrophenol		ug/Kg	U	260	290
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	160	290
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	190	210
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	3-Nitroaniline]	ug/Kg	U	820	410
15B19 (20-25)	BV83368	SW8270	11/14/2016		4,6-Dinitro-2-methylphenol]	ug/Kg	UJ	82	250
15B19 (20-25)	BV83368	SW8270	11/14/2016		4-Bromophenyl phenyl ether		ug/Kg	U	120	290
15B19 (20-25)	BV83368	SW8270	11/14/2016		4-Chloro-3-methylphenol		ug/Kg	U	140	290
15B19 (20-25)	BV83368	SW8270	11/14/2016		4-Chloroaniline		ug/Kg	U	190	330
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	140	290

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	4-Chlorotoluene		ug/Kg	U	0.79	7.9
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	4-Methyl-2-pentanone		ug/Kg	U	7.9	40
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	4-Nitroaniline		ug/Kg	U	140	410
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	4-Nitrophenol		ug/Kg	U	190	410
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Acenaphthene		ug/Kg	U	130	290
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Acenaphthylene		ug/Kg	U	120	290
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	Acetone		ug/Kg	UJ	7.9	40
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Acetophenone		ug/Kg	U	130	290
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	Acrolein		ug/Kg	UJ	4.0	32
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	Acrylonitrile		ug/Kg	U	0.79	32
15B19 (20-25)	BV83368	SW6010	11/14/2016	10	Aluminum	4810	mg/Kg		7.9	40
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Aniline		ug/Kg	U	330	330
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Anthracene		ug/Kg	U	130	290
15B19 (20-25)	BV83368	SW6010	11/14/2016	1	Antimony		mg/Kg	U	2.0	2.0
15B19 (20-25)	BV83368	SW6010	11/14/2016	1	Arsenic	1.28	mg/Kg		0.79	0.79
15B19 (20-25)	BV83368	SW6010	11/14/2016	1	Barium	24.3	mg/Kg		0.40	8.0
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Benz(a)anthracene		ug/Kg	U	140	290
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	Benzene	3.0	ug/Kg	J	0.79	7.9
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Benzidine		ug/Kg	UJ	240	410
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Benzo(a)pyrene		ug/Kg	U	130	210
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Benzo(b)fluoranthene		ug/Kg	U	140	290
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Benzo(ghi)perylene		ug/Kg	J	130	290
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Benzo(k)fluoranthene		ug/Kg	J	140	290
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Benzoic acid		ug/Kg	R	820	2100
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Benzyl butyl phthalate		ug/Kg	U	110	290
15B19 (20-25)	BV83368	SW6010	11/14/2016	1	Beryllium	0.21	mg/Kg	J	0.16	0.32
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	110	290
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	110	210
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	110	290
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	120	290
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	Bromobenzene		ug/Kg	U	0.79	7.9
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	Bromochloromethane		ug/Kg	U	0.79	7.9
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	Bromodichloromethane		ug/Kg	U	1.6	7.9
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	Bromoform		ug/Kg	UJ	1.6	7.9
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	Bromomethane		ug/Kg	U	3.2	7.9
15B19 (20-25)	BV83368	SW6010	11/14/2016	1	Cadmium		mg/Kg	U	0.40	0.40
15B19 (20-25)	BV83368	SW6010	11/14/2016	1	Calcium	1190	mg/Kg		3.6	4.0

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Carbazole		ug/Kg	U	160	210
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	Carbon Disulfide		ug/Kg	U	1.6	7.9
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	Carbon tetrachloride		ug/Kg	U	1.6	7.9
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	Chlorobenzene		ug/Kg	U	0.79	7.9
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	Chloroethane		ug/Kg	UJ	0.79	7.9
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	Chloroform		ug/Kg	U	0.79	7.9
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	Chloromethane		ug/Kg	U	1.6	7.9
15B19 (20-25)	BV83368	SW6010	11/14/2016	1	Chromium	13.6	mg/Kg		0.40	0.40
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Chrysene		ug/Kg	U	140	290
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	cis-1,2-Dichloroethene		ug/Kg	U	0.79	7.9
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	cis-1,3-Dichloropropene		ug/Kg	U	0.79	7.9
15B19 (20-25)	BV83368	SW6010	11/14/2016	1	Cobalt	5.56	mg/Kg		0.40	0.40
15B19 (20-25)	BV83368	SW6010	11/14/2016	1	Copper	9.46	mg/Kg		0.40	0.40
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Dibenz(a,h)anthracene		ug/Kg	U	130	210
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Dibenzofuran		ug/Kg	U	120	290
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	Dibromochloromethane		ug/Kg	U	1.6	7.9
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	Dibromomethane		ug/Kg	U	1.6	7.9
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	Dichlorodifluoromethane		ug/Kg	U	0.79	7.9
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Diethyl phthalate		ug/Kg	U	130	290
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Dimethylphthalate		ug/Kg	U	130	290
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Di-n-butylphthalate		ug/Kg	U	110	290
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Di-n-octylphthalate		ug/Kg	U	110	290
15B19 (20-25)	BV83368	SW8260	11/14/2016	50	Ethylbenzene	410	ug/Kg		46	400
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Fluoranthene		ug/Kg	U	130	290
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Fluorene		ug/Kg	U	140	290
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Hexachlorobenzene		ug/Kg	U	120	210
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	Hexachlorobutadiene		ug/Kg	U	0.79	7.9
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Hexachlorobutadiene		ug/Kg	UJ	150	290
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Hexachlorocyclopentadiene		ug/Kg	UJ	130	290
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Hexachloroethane		ug/Kg	U	120	210
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Indeno(1,2,3-cd)pyrene		ug/Kg	U	140	290
15B19 (20-25)	BV83368	SW6010	11/14/2016	10	Iron	12500	mg/Kg		40	40
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Isophorone		ug/Kg	U	120	210
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	Isopropylbenzene	15	ug/Kg		0.79	7.9
15B19 (20-25)	BV83368	SW6010	11/14/2016	1	Lead	2.3	mg/Kg		0.40	0.8
15B19 (20-25)	BV83368	SW8260	11/14/2016	50	m&p-Xylene	2000	ug/Kg		91	460
15B19 (20-25)	BV83368	SW6010	11/14/2016	1	Magnesium	2030	mg/Kg		4.0	4.0

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B19 (20-25)	BV83368	SW6010	11/14/2016	10	Manganese	203	mg/Kg		4.0	4.0
15B19 (20-25)	BV83368	SW7471	11/14/2016	1	Mercury		mg/Kg	U	0.02	0.03
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	Methyl Ethyl Ketone		ug/Kg	U	7.9	47
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	Methyl t-butyl ether (MTBE)		ug/Kg	U	1.6	16
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	Methylene chloride		ug/Kg	U	7.9	7.9
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	Naphthalene	250	ug/Kg		1.6	7.9
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Naphthalene		ug/Kg	U	120	290
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	n-Butylbenzene	19	ug/Kg		0.79	7.9
15B19 (20-25)	BV83368	SW6010	11/14/2016	1	Nickel	10.2	mg/Kg		0.40	0.40
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Nitrobenzene		ug/Kg	U	140	210
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	N-Nitrosodimethylamine		ug/Kg	U	120	290
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	130	210
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	160	290
15B19 (20-25)	BV83368	SW8260	11/14/2016		n-Propylbenzene	48	ug/Kg		1.6	7.9
15B19 (20-25)	BV83368	SW8260	11/14/2016	50	o-Xylene	640	ug/Kg		91	460
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Pentachloronitrobenzene		ug/Kg	U	150	290
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Pentachlorophenol		ug/Kg	UJ	160	250
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Phenanthrene		ug/Kg	U	120	290
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Phenol		ug/Kg	U	130	290
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	p-Isopropyltoluene	5.4	ug/Kg	J	0.79	7.9
15B19 (20-25)	BV83368	SW6010	11/14/2016	1	Potassium	992	mg/Kg		3.1	8
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Pyrene		ug/Kg	U	140	290
15B19 (20-25)	BV83368	SW8270	11/14/2016	1	Pyridine		ug/Kg	UJ	100	290
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	sec-Butylbenzene	9.6	ug/Kg		0.79	7.9
15B19 (20-25)	BV83368	SW6010	11/14/2016	1	Selenium		mg/Kg	U	1.3	1.6
15B19 (20-25)	BV83368	SW6010	11/14/2016	1	Silver		mg/Kg	U	0.40	0.40
15B19 (20-25)	BV83368	SW6010	11/14/2016	1	Sodium	150	mg/Kg		3.4	8
15B19 (20-25)	BV83368	E160.3	11/14/2016	1	SOLIDS, PERCENT	79	%			
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	Styrene		ug/Kg	U	0.79	7.9
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	Tert-butyl alcohol		ug/Kg	U	32	160
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	tert-Butylbenzene		ug/Kg	U	0.79	7.9
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	Tetrachloroethene	3.0	ug/Kg	J	1.6	7.9
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	Tetrahydrofuran (THF)		ug/Kg	U	4.0	16
15B19 (20-25)	BV83368	SW6010	11/14/2016	1	Thallium		mg/Kg	U	1.6	1.6
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	Toluene	26	ug/Kg		0.79	7.9
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	trans-1,2-Dichloroethene		ug/Kg	U	0.79	7.9
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	trans-1,3-Dichloropropene		ug/Kg	U	0.79	7.9

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	trans-1,4-dichloro-2-butene		ug/Kg	U	4.0	16
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	Trichloroethene		ug/Kg	U	0.79	7.9
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	Trichlorofluoromethane		ug/Kg	U	1.6	7.9
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	Trichlorotrifluoroethane		ug/Kg	U	0.79	7.9
15B19 (20-25)	BV83368	SW6010	11/14/2016	1	Vanadium	19.8	mg/Kg		0.40	0.40
15B19 (20-25)	BV83368	SW8260	11/14/2016	1	Vinyl chloride		ug/Kg	U	0.79	7.9
15B19 (20-25)	BV83368	SW6010	11/14/2016	1	Zinc	21.5	mg/Kg		0.40	0.8
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	0.88	18
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	1,1,1-Trichloroethane		ug/Kg	U	0.44	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	0.88	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	1,1,2-Trichloroethane		ug/Kg	U	0.88	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	1,1-Dichloroethane		ug/Kg	U	0.88	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	1,1-Dichloroethene		ug/Kg	U	0.44	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	1,1-Dichloropropene		ug/Kg	U	0.44	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	1,2,3-Trichlorobenzene		ug/Kg	U	0.88	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	1,2,3-Trichloropropane		ug/Kg	U	0.44	4.4
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	140	270
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	0.88	4.4
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	120	270
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	1,2,4-Trimethylbenzene	1.6	ug/Kg	J	0.44	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	0.88	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	1,2-Dibromoethane		ug/Kg	U	0.44	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	1,2-Dichlorobenzene		ug/Kg	U	0.44	4.4
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	1,2-Dichlorobenzene		ug/Kg	UJ	110	270
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	1,2-Dichloroethane		ug/Kg	U	0.44	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	1,2-Dichloropropane		ug/Kg	U	0.88	4.4
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	130	270
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	1,3,5-Trimethylbenzene	0.66	ug/Kg	J	0.44	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	1,3-Dichlorobenzene		ug/Kg	U	0.44	4.4
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	1,3-Dichlorobenzene		ug/Kg	UJ	120	270
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	1,3-Dichloropropane		ug/Kg	U	0.88	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	1,4-Dichlorobenzene		ug/Kg	U	0.44	4.4
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	1,4-Dichlorobenzene		ug/Kg	UJ	120	270
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	1,4-dioxane		ug/Kg	U	35	66
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	2,2-Dichloropropane		ug/Kg	U	0.44	4.4
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	2,4,5-Trichlorophenol		ug/Kg	U	210	270
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	130	200

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	2,4-Dichlorophenol		ug/Kg	U	140	200
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	2,4-Dimethylphenol		ug/Kg	U	97	270
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	2,4-Dinitrophenol		ug/Kg	UJ	270	270
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	2,4-Dinitrotoluene		ug/Kg	U	150	200
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	2,6-Dinitrotoluene		ug/Kg	U	120	200
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	2-Chloronaphthalene		ug/Kg	U	110	270
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	2-Chlorophenol		ug/Kg	U	110	270
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	2-Chlorotoluene		ug/Kg	U	0.88	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	2-Hexanone		ug/Kg	U	4.4	22
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	2-Isopropyltoluene		ug/Kg	U	0.44	4.4
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	2-Methylnaphthalene		ug/Kg	U	120	270
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	180	270
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	2-Nitroaniline		ug/Kg	U	270	270
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	2-Nitrophenol		ug/Kg	U	250	270
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	150	270
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	180	200
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	3-Nitroaniline		ug/Kg	U	780	390
15B4 (12-14)	BV83369	SW8081	11/14/2016	2	4,4' -DDD		ug/Kg	U	2.3	2.3
15B4 (12-14)	BV83369	SW8081	11/14/2016	2	4,4' -DDE		ug/Kg	U	2.3	2.3
15B4 (12-14)	BV83369	SW8081	11/14/2016		4,4' -DDT		ug/Kg	U	2.3	2.3
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	4,6-Dinitro-2-methylphenol		ug/Kg	UJ	78	230
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	110	270
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	140	270
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	4-Chloroaniline		ug/Kg	U	180	310
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	130	270
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	4-Chlorotoluene		ug/Kg	U	0.44	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016		4-Methyl-2-pentanone		ug/Kg	U	4.4	22
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	4-Nitroaniline		ug/Kg	U	130	390
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	4-Nitrophenol		ug/Kg	U	180	390
15B4 (12-14)	BV83369	SW8081	11/14/2016	2	a-BHC		ug/Kg	U	7.8	7.8
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Acenaphthene		ug/Kg	U	120	270
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Acenaphthylene		ug/Kg	U	110	270
15B4 (12-14)	BV83369	SW8260	11/14/2016		Acetone		ug/Kg	UJ	4.4	22
15B4 (12-14)	BV83369	SW8270	11/14/2016		Acetophenone		ug/Kg	U	120	270
15B4 (12-14)	BV83369	SW8081	11/14/2016	2	a-Chlordane		ug/Kg	U	3.9	3.9
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	Acrolein		ug/Kg	UJ	2.2	18
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	Acrylonitrile		ug/Kg	U	0.44	18

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B4 (12-14)	BV83369	SW8081	11/14/2016	2	Aldrin		ug/Kg	U	3.9	3.9
15B4 (12-14)	BV83369	SW6010	11/14/2016	10	Aluminum	5130	mg/Kg		7.9	40
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Aniline		ug/Kg	U	310	310
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Anthracene		ug/Kg	U	130	270
15B4 (12-14)	BV83369	SW6010	11/14/2016	1	Antimony		mg/Kg	U	2.0	2.0
15B4 (12-14)	BV83369	SW6010	11/14/2016	1	Arsenic	1.17	mg/Kg		0.79	0.79
15B4 (12-14)	BV83369	SW6010	11/14/2016	1	Barium	36.2	mg/Kg		0.40	0.8
15B4 (12-14)	BV83369	SW8081	11/14/2016	2	b-BHC		ug/Kg	U	7.8	7.8
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Benz(a)anthracene		ug/Kg	U	130	270
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	Benzene	1.5	ug/Kg	J	0.44	4.4
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Benzidine		ug/Kg	UJ	230	390
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Benzo(a)pyrene		ug/Kg	U	130	200
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Benzo(b)fluoranthene		ug/Kg	U	130	270
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Benzo(ghi)perylene		ug/Kg	U	130	270
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Benzo(k)fluoranthene		ug/Kg	U	130	270
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Benzoic acid		ug/Kg	R	780	2000
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Benzyl butyl phthalate		ug/Kg	U	100	270
15B4 (12-14)	BV83369	SW6010	11/14/2016	1	Beryllium	0.22	mg/Kg	J	0.16	0.32
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	110	270
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	110	200
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	110	270
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	110	270
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	Bromobenzene		ug/Kg	U	0.44	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	Bromochloromethane		ug/Kg	U	0.44	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	Bromodichloromethane		ug/Kg	U	0.88	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	Bromoform		ug/Kg	U	0.88	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	Bromomethane		ug/Kg	U	1.8	4.4
15B4 (12-14)	BV83369	SW6010	11/14/2016	1	Cadmium		mg/Kg	U	0.40	0.40
15B4 (12-14)	BV83369	SW6010	11/14/2016	1	Calcium	1660	mg/Kg		3.7	4.0
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Carbazole		ug/Kg	U	160	200
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	Carbon Disulfide		ug/Kg	U	0.88	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	Carbon tetrachloride		ug/Kg	U	0.88	4.4
15B4 (12-14)	BV83369	SW8081	11/14/2016	2	Chlordane		ug/Kg	U	39	39
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	Chlorobenzene		ug/Kg	U	0.44	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	Chloroethane		ug/Kg	UJ	0.44	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	Chloroform		ug/Kg	U	0.44	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	Chloromethane		ug/Kg	U	0.88	4.4

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B4 (12-14)	BV83369	SW6010	11/14/2016	1	Chromium	13.9	mg/Kg		0.40	0.40
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Chrysene		ug/Kg	U	130	270
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	cis-1,2-Dichloroethene		ug/Kg	U	0.44	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	cis-1,3-Dichloropropene		ug/Kg	U	0.44	4.4
15B4 (12-14)	BV83369	SW6010	11/14/2016	1	Cobalt	6.37	mg/Kg		0.40	0.40
15B4 (12-14)	BV83369	SW6010	11/14/2016	1	Copper	9.87	mg/Kg		0.40	0.40
15B4 (12-14)	BV83369	SW8081	11/14/2016	2	d-BHC		ug/Kg	U	7.8	7.8
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Dibenz(a,h)anthracene		ug/Kg	U	130	200
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Dibenzofuran		ug/Kg	U	110	270
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	Dibromochloromethane		ug/Kg	U	0.88	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	Dibromomethane		ug/Kg	U	0.88	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	Dichlorodifluoromethane		ug/Kg	U	0.44	4.4
15B4 (12-14)	BV83369	SW8081	11/14/2016	2	Dieldrin		ug/Kg	U	3.9	3.9
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Diethyl phthalate		ug/Kg	U	120	270
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Dimethylphthalate		ug/Kg	U	120	270
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Di-n-butylphthalate		ug/Kg	U	100	270
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Di-n-octylphthalate		ug/Kg	U	100	270
15B4 (12-14)	BV83369	SW8081	11/14/2016	2	Endosulfan I		ug/Kg	U	7.8	7.8
15B4 (12-14)	BV83369	SW8081	11/14/2016	2	Endosulfan II		ug/Kg	U	7.8	7.8
15B4 (12-14)	BV83369	SW8081	11/14/2016	2	Endosulfan sulfate		ug/Kg	U	7.8	7.8
15B4 (12-14)	BV83369	SW8081	11/14/2016	2	Endrin		ug/Kg	U	7.8	7.8
15B4 (12-14)	BV83369	SW8081	11/14/2016	2	Endrin aldehyde		ug/Kg	U	7.8	7.8
15B4 (12-14)	BV83369	SW8081	11/14/2016	2	Endrin ketone		ug/Kg	U	7.8	7.8
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	Ethylbenzene	5.3	ug/Kg		0.44	4.4
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Fluoranthene		ug/Kg	U	130	270
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Fluorene		ug/Kg	U	130	270
15B4 (12-14)	BV83369	SW8081	11/14/2016	2	g-BHC		ug/Kg	U	1.6	1.6
15B4 (12-14)	BV83369	SW8081	11/14/2016		g-Chlordane		ug/Kg	U	3.9	3.9
15B4 (12-14)	BV83369	SW8081	11/14/2016		Heptachlor		ug/Kg	U	7.8	7.8
15B4 (12-14)	BV83369	SW8081	11/14/2016	2	Heptachlor epoxide		ug/Kg	U	7.8	7.8
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Hexachlorobenzene		ug/Kg	U	110	200
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	Hexachlorobutadiene		ug/Kg	U	0.44	4.4
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Hexachlorobutadiene		ug/Kg	UJ	140	270
15B4 (12-14)	BV83369	SW8270	11/14/2016		Hexachlorocyclopentadiene		ug/Kg	UJ	120	270
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Hexachloroethane		ug/Kg	U	120	200
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Indeno(1,2,3-cd)pyrene		ug/Kg	U	130	270
15B4 (12-14)	BV83369	SW6010	11/14/2016	10	Iron	13100	mg/Kg		40	40

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Isophorone		ug/Kg	U	110	200
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	Isopropylbenzene		ug/Kg	U	0.44	4.4
15B4 (12-14)	BV83369	SW6010	11/14/2016	1	Lead	1.5	mg/Kg		0.40	0.8
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	m&p-Xylene	11	ug/Kg		0.88	4.4
15B4 (12-14)	BV83369	SW6010	11/14/2016	1	Magnesium	2250	mg/Kg		4.0	4.0
15B4 (12-14)	BV83369	SW6010	11/14/2016	10	Manganese	356	mg/Kg		4.0	4.0
15B4 (12-14)	BV83369	SW7471	11/14/2016	1	Mercury		mg/Kg	U	0.02	0.03
15B4 (12-14)	BV83369	SW8081	11/14/2016	2	Methoxychlor		ug/Kg	U	39	39
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	Methyl Ethyl Ketone		ug/Kg	UJ	4.4	26
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	Methyl t-butyl ether (MTBE)		ug/Kg	U	0.88	8.8
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	Methylene chloride		ug/Kg	U	4.4	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	Naphthalene		ug/Kg	U	0.88	4.4
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Naphthalene		ug/Kg	U	110	270
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	n-Butylbenzene		ug/Kg	U	0.44	4.4
15B4 (12-14)	BV83369	SW6010	11/14/2016	1	Nickel	11.0	mg/Kg		0.40	0.40
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Nitrobenzene		ug/Kg	U	140	200
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	N-Nitrosodimethylamine		ug/Kg	U	110	270
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	130	200
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	150	270
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	n-Propylbenzene		ug/Kg	U	0.88	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	o-Xylene	2.0	ug/Kg	J	0.88	4.4
15B4 (12-14)	BV83369	SW8082	11/14/2016	2	PCB-1016		ug/Kg	U	78	78
15B4 (12-14)	BV83369	SW8082	11/14/2016	2	PCB-1221		ug/Kg	U	78	78
15B4 (12-14)	BV83369	SW8082	11/14/2016	2	PCB-1232		ug/Kg	U	78	78
15B4 (12-14)	BV83369	SW8082	11/14/2016	2	PCB-1242		ug/Kg	U	78	78
15B4 (12-14)	BV83369	SW8082	11/14/2016	2	PCB-1248		ug/Kg	U	78	78
15B4 (12-14)	BV83369	SW8082	11/14/2016	2	PCB-1254		ug/Kg	U	78	78
15B4 (12-14)	BV83369	SW8082	11/14/2016	2	PCB-1260		ug/Kg	U	78	78
15B4 (12-14)	BV83369	SW8082	11/14/2016	2	PCB-1262		ug/Kg	U	78	78
15B4 (12-14)	BV83369	SW8082	11/14/2016	2	PCB-1268		ug/Kg	U	78	78
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Pentachloronitrobenzene		ug/Kg	U	150	270
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Pentachlorophenol		ug/Kg	UJ	150	230
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Phenanthrene		ug/Kg	U	110	270
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Phenol		ug/Kg	U	130	270
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	p-Isopropyltoluene		ug/Kg	U	0.44	4.4
15B4 (12-14)	BV83369	SW6010	11/14/2016	1	Potassium	1280	mg/Kg		3.1	8
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Pyrene		ug/Kg	U	130	270

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B4 (12-14)	BV83369	SW8270	11/14/2016	1	Pyridine		ug/Kg	UJ	96	270
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	sec-Butylbenzene		ug/Kg	U	0.44	4.4
15B4 (12-14)	BV83369	SW6010	11/14/2016	1	Selenium		mg/Kg	U	1.3	1.6
15B4 (12-14)	BV83369	SW6010	11/14/2016	1	Silver		mg/Kg	U	0.40	0.40
15B4 (12-14)	BV83369	SW6010	11/14/2016	1	Sodium	202	mg/Kg		3.4	8
15B4 (12-14)	BV83369	E160.3	11/14/2016	1	SOLIDS, PERCENT	84	%			
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	Styrene		ug/Kg	U	0.44	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	Tert-butyl alcohol		ug/Kg	U	18	88
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	tert-Butylbenzene		ug/Kg	U	0.44	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	Tetrachloroethene		ug/Kg	U	0.88	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	Tetrahydrofuran (THF)		ug/Kg	UJ	2.2	8.8
15B4 (12-14)	BV83369	SW6010	11/14/2016	1	Thallium		mg/Kg	U	1.6	1.6
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	Toluene	3.3	ug/Kg	J	0.44	4.4
15B4 (12-14)	BV83369	SW8081	11/14/2016	2	Toxaphene		ug/Kg	U	160	160
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	trans-1,2-Dichloroethene		ug/Kg	U	0.44	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	trans-1,3-Dichloropropene		ug/Kg	U	0.44	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	trans-1,4-dichloro-2-butene		ug/Kg	U	2.2	8.8
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	Trichloroethene		ug/Kg	U	0.44	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	Trichlorofluoromethane		ug/Kg	U	0.88	4.4
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	Trichlorotrifluoroethane		ug/Kg	U	0.44	4.4
15B4 (12-14)	BV83369	SW6010	11/14/2016	1	Vanadium	21.5	mg/Kg		0.40	0.40
15B4 (12-14)	BV83369	SW8260	11/14/2016	1	Vinyl chloride		ug/Kg	U	0.44	4.4
15B4 (12-14)	BV83369	SW6010	11/14/2016	1	Zinc	25.6	mg/Kg		0.40	0.8
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	0.67	13
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	1,1,1-Trichloroethane		ug/Kg	U	0.34	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	0.67	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	1,1,2-Trichloroethane		ug/Kg	U	0.67	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	1,1-Dichloroethane		ug/Kg	U	0.67	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	1,1-Dichloroethene		ug/Kg	U	0.34	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	1,1-Dichloropropene		ug/Kg	U	0.34	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	1,2,3-Trichlorobenzene		ug/Kg	U	0.67	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	1,2,3-Trichloropropane		ug/Kg	U	0.34	3.4
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	150	290
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	0.67	3.4
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	130	290
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	1,2,4-Trimethylbenzene	9.6	ug/Kg		0.34	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	0.67	3.4

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	1,2-Dibromoethane		ug/Kg	U	0.34	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	1,2-Dichlorobenzene		ug/Kg	U	0.34	3.4
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	1,2-Dichlorobenzene		ug/Kg	UJ	120	290
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	1,2-Dichloroethane		ug/Kg	U	0.34	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	1,2-Dichloropropane		ug/Kg	U	0.67	3.4
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	140	290
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	1,3,5-Trimethylbenzene	4.3	ug/Kg		0.34	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	1,3-Dichlorobenzene		ug/Kg	U	0.34	3.4
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	1,3-Dichlorobenzene		ug/Kg	UJ	120	290
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	1,3-Dichloropropane		ug/Kg	U	0.67	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	1,4-Dichlorobenzene		ug/Kg	U	0.34	3.4
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	1,4-Dichlorobenzene		ug/Kg	UJ	120	290
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	1,4-dioxane		ug/Kg	U	27	50
15B4 (15-17)	BV83370	SW8260	11/14/2016		2,2-Dichloropropane		ug/Kg	U	0.34	3.4
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	2,4,5-Trichlorophenol		ug/Kg	U	230	290
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	130	210
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	2,4-Dichlorophenol		ug/Kg	U	150	210
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	2,4-Dimethylphenol		ug/Kg	U	100	290
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	2,4-Dinitrophenol		ug/Kg	UJ	290	290
15B4 (15-17)	BV83370	SW8270	11/14/2016		2,4-Dinitrotoluene		ug/Kg	U	170	210
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	2,6-Dinitrotoluene		ug/Kg	U	130	210
15B4 (15-17)	BV83370	SW8270	11/14/2016		2-Chloronaphthalene		ug/Kg	U	120	290
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	2-Chlorophenol		ug/Kg	U	120	290
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	2-Chlorotoluene		ug/Kg	U	0.67	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	2-Hexanone		ug/Kg	U	3.4	17
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	2-Isopropyltoluene		ug/Kg	U	0.34	3.4
15B4 (15-17)	BV83370	SW8270	11/14/2016		2-Methylnaphthalene		ug/Kg	U	120	290
15B4 (15-17)	BV83370	SW8270	11/14/2016		2-Methylphenol (o-cresol)		ug/Kg	U	200	290
15B4 (15-17)	BV83370	SW8270	11/14/2016		2-Nitroaniline		ug/Kg	U	290	290
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	2-Nitrophenol		ug/Kg	U	270	290
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	170	290
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	200	210
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	3-Nitroaniline		ug/Kg	U	840	420
15B4 (15-17)	BV83370	SW8270	11/14/2016		4,6-Dinitro-2-methylphenol		ug/Kg	UJ	84	250
15B4 (15-17)	BV83370	SW8270	11/14/2016		4-Bromophenyl phenyl ether		ug/Kg	U	120	290
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	150	290
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	4-Chloroaniline		ug/Kg	U	200	340

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	140	290
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	4-Chlorotoluene		ug/Kg	U	0.34	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	4-Methyl-2-pentanone		ug/Kg	U	3.4	17
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	4-Nitroaniline		ug/Kg	U	140	420
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	4-Nitrophenol		ug/Kg	U	190	420
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Acenaphthene		ug/Kg	U	130	290
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Acenaphthylene		ug/Kg	U	120	290
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	Acetone		ug/Kg	UJ	3.4	17
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Acetophenone		ug/Kg	U	130	290
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	Acrolein		ug/Kg	UJ	1.7	13
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	Acrylonitrile		ug/Kg	U	0.34	13
15B4 (15-17)	BV83370	SW6010	11/14/2016	10	Aluminum	7580	mg/Kg		8.4	42
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Aniline		ug/Kg	U	340	340
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Anthracene		ug/Kg	U	140	290
15B4 (15-17)	BV83370	SW6010	11/14/2016	1	Antimony		mg/Kg	U	2.1	2.1
15B4 (15-17)	BV83370	SW6010	11/14/2016	1	Arsenic	1.33	mg/Kg		0.84	0.84
15B4 (15-17)	BV83370	SW6010	11/14/2016	1	Barium	42.3	mg/Kg		0.42	0.8
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Benz(a)anthracene		ug/Kg	U	140	290
15B4 (15-17)	BV83370	SW8260	11/14/2016	50	Benzene	100	ug/Kg		41	60
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Benzidine		ug/Kg	UJ	250	420
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Benzo(a)pyrene		ug/Kg	U	140	210
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Benzo(b)fluoranthene		ug/Kg	U	140	290
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Benzo(ghi)perylene		ug/Kg	U	140	290
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Benzo(k)fluoranthene		ug/Kg	U	140	290
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Benzoic acid		ug/Kg	R	840	2100
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Benzyl butyl phthalate		ug/Kg	U	110	290
15B4 (15-17)	BV83370	SW6010	11/14/2016	1	Beryllium	0.32	mg/Kg	J	0.17	0.34
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	120	290
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	110	210
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	120	290
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	120	290
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	Bromobenzene		ug/Kg	U	0.34	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	Bromochloromethane		ug/Kg	U	0.34	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	Bromodichloromethane		ug/Kg	U	0.67	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	Bromoform		ug/Kg	UJ	0.67	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	Bromomethane		ug/Kg	U	1.3	3.4
15B4 (15-17)	BV83370	SW6010	11/14/2016	1	Cadmium		mg/Kg	U	0.42	0.42

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B4 (15-17)	BV83370	SW6010	11/14/2016	1	Calcium	1300	mg/Kg		3.9	4.2
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Carbazole		ug/Kg	U	170	210
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	Carbon Disulfide		ug/Kg	U	0.67	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	Carbon tetrachloride		ug/Kg	U	0.67	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	Chlorobenzene		ug/Kg	U	0.34	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	Chloroethane		ug/Kg	UJ	0.34	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	Chloroform		ug/Kg	U	0.34	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	Chloromethane		ug/Kg	U	0.67	3.4
15B4 (15-17)	BV83370	SW6010	11/14/2016	1	Chromium	18.6	mg/Kg		0.42	0.42
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Chrysene		ug/Kg	U	140	290
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	cis-1,2-Dichloroethene		ug/Kg	U	0.34	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	cis-1,3-Dichloropropene		ug/Kg	U	0.34	3.4
15B4 (15-17)	BV83370	SW6010	11/14/2016	1	Cobalt	7.98	mg/Kg		0.42	0.42
15B4 (15-17)	BV83370	SW6010	11/14/2016	1	Copper	12.0	mg/Kg		0.42	0.42
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Dibenz(a,h)anthracene		ug/Kg	U	140	210
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Dibenzofuran		ug/Kg	U	120	290
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	Dibromochloromethane		ug/Kg	U	0.67	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	Dibromomethane		ug/Kg	U	0.67	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	Dichlorodifluoromethane		ug/Kg	U	0.34	3.4
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Diethyl phthalate		ug/Kg	U	130	290
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Dimethylphthalate		ug/Kg	U	130	290
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Di-n-butylphthalate		ug/Kg	U	110	290
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Di-n-octylphthalate		ug/Kg	U	110	290
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	Ethylbenzene	12	ug/Kg		0.34	3.4
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Fluoranthene		ug/Kg	U	140	290
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Fluorene		ug/Kg	U	140	290
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Hexachlorobenzene		ug/Kg	U	120	210
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	Hexachlorobutadiene		ug/Kg	U	0.34	3.4
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Hexachlorobutadiene		ug/Kg	UJ	150	290
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Hexachlorocyclopentadiene		ug/Kg	UJ	130	290
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Hexachloroethane		ug/Kg	U	130	210
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Indeno(1,2,3-cd)pyrene		ug/Kg	U	140	290
15B4 (15-17)	BV83370	SW6010	11/14/2016	10	Iron	16400	mg/Kg		42	42
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Isophorone		ug/Kg	U	120	210
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	Isopropylbenzene	3.6	ug/Kg		0.34	3.4
15B4 (15-17)	BV83370	SW6010	11/14/2016	1	Lead	1.9	mg/Kg		0.42	0.8
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	m&p-Xylene	57	ug/Kg		0.67	3.4

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B4 (15-17)	BV83370	SW6010	11/14/2016	1	Magnesium	3290	mg/Kg		4.2	4.2
15B4 (15-17)	BV83370	SW6010	11/14/2016	10	Manganese	441	mg/Kg		4.2	4.2
15B4 (15-17)	BV83370	SW7471	11/14/2016	1	Mercury		mg/Kg	U	0.02	0.03
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	Methyl Ethyl Ketone		ug/Kg	UJ	3.4	20
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	Methyl t-butyl ether (MTBE)		ug/Kg	U	0.67	6.7
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	Methylene chloride		ug/Kg	U	3.4	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	Naphthalene	30	ug/Kg		0.67	3.4
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Naphthalene		ug/Kg	U	120	290
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	n-Butylbenzene	1.4	ug/Kg	J	0.34	3.4
15B4 (15-17)	BV83370	SW6010	11/14/2016	1	Nickel	13.8	mg/Kg		0.42	0.42
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Nitrobenzene		ug/Kg	U	150	210
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	N-Nitrosodimethylamine		ug/Kg	U	120	290
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	140	210
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	160	290
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	n-Propylbenzene	3.1	ug/Kg	J	0.67	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	o-Xylene	17	ug/Kg		0.67	3.4
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Pentachloronitrobenzene		ug/Kg	U	160	290
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Pentachlorophenol		ug/Kg	UJ	160	250
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Phenanthrene		ug/Kg	U	120	290
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Phenol		ug/Kg	U	130	290
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	p-Isopropyltoluene	0.47	ug/Kg	J	0.34	3.4
15B4 (15-17)	BV83370	SW6010	11/14/2016	1	Potassium	1700	mg/Kg		3.3	8
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Pyrene		ug/Kg	U	140	290
15B4 (15-17)	BV83370	SW8270	11/14/2016	1	Pyridine		ug/Kg	UJ	100	290
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	sec-Butylbenzene	1.0	ug/Kg	J	0.34	3.4
15B4 (15-17)	BV83370	SW6010	11/14/2016	1	Selenium		mg/Kg	U	1.4	1.7
15B4 (15-17)	BV83370	SW6010	11/14/2016	1	Silver		mg/Kg	U	0.42	0.42
15B4 (15-17)	BV83370	SW6010	11/14/2016	1	Sodium	323	mg/Kg		3.6	8
15B4 (15-17)	BV83370	E160.3	11/14/2016	1	SOLIDS, PERCENT	79	%			
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	Styrene	0.38	ug/Kg	J	0.34	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	Tert-butyl alcohol		ug/Kg	U	13	67
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	tert-Butylbenzene		ug/Kg	U	0.34	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	Tetrachloroethene		ug/Kg	U	0.67	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	Tetrahydrofuran (THF)		ug/Kg	UJ	1.7	6.7
15B4 (15-17)	BV83370	SW6010	11/14/2016	1	Thallium		mg/Kg	U	1.7	1.7
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	Toluene	21	ug/Kg		0.34	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	trans-1,2-Dichloroethene	0.57	ug/Kg	J	0.34	3.4

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	trans-1,3-Dichloropropene		ug/Kg	U	0.34	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	trans-1,4-dichloro-2-butene		ug/Kg	U	1.7	6.7
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	Trichloroethene		ug/Kg	U	0.34	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	Trichlorofluoromethane		ug/Kg	U	0.67	3.4
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	Trichlorotrifluoroethane		ug/Kg	U	0.34	3.4
15B4 (15-17)	BV83370	SW6010	11/14/2016	1	Vanadium	27.0	mg/Kg		0.42	0.42
15B4 (15-17)	BV83370	SW8260	11/14/2016	1	Vinyl chloride		ug/Kg	U	0.34	3.4
15B4 (15-17)	BV83370	SW6010	11/14/2016	1	Zinc	35.0	mg/Kg		0.42	0.8
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	0.93	19
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	1,1,1-Trichloroethane		ug/Kg	U	0.46	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	0.93	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	1,1,2-Trichloroethane		ug/Kg	U	0.93	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	1,1-Dichloroethane		ug/Kg	U	0.93	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	1,1-Dichloroethene		ug/Kg	U	0.46	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	1,1-Dichloropropene		ug/Kg	U	0.46	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	1,2,3-Trichlorobenzene		ug/Kg	U	0.93	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	1,2,3-Trichloropropane		ug/Kg	U	0.46	4.6
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	140	280
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	0.93	4.6
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	120	280
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	1,2,4-Trimethylbenzene	2.9	ug/Kg	J	0.46	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	0.93	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	1,2-Dibromoethane		ug/Kg	U	0.46	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	1,2-Dichlorobenzene		ug/Kg	U	0.46	4.6
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	1,2-Dichlorobenzene		ug/Kg	UJ	110	280
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	1,2-Dichloroethane		ug/Kg	U	0.46	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	1,2-Dichloropropane		ug/Kg	U	0.93	4.6
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	130	280
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	1,3,5-Trimethylbenzene	1.3	ug/Kg	J	0.46	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	1,3-Dichlorobenzene		ug/Kg	U	0.46	4.6
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	1,3-Dichlorobenzene		ug/Kg	UJ	120	280
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	1,3-Dichloropropane		ug/Kg	U	0.93	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	1,4-Dichlorobenzene		ug/Kg	U	0.46	4.6
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	1,4-Dichlorobenzene		ug/Kg	UJ	120	280
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	1,4-dioxane		ug/Kg	U	37	70
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	2,2-Dichloropropane		ug/Kg	U	0.46	4.6
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	2,4,5-Trichlorophenol		ug/Kg	U	220	280

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	130	200
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	2,4-Dichlorophenol		ug/Kg	U	140	200
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	2,4-Dimethylphenol		ug/Kg	U	98	280
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	2,4-Dinitrophenol		ug/Kg	UJ	280	280
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	2,4-Dinitrotoluene		ug/Kg	U	160	200
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	2,6-Dinitrotoluene		ug/Kg	U	120	200
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	2-Chloronaphthalene		ug/Kg	U	110	280
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	2-Chlorophenol		ug/Kg	U	110	280
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	2-Chlorotoluene		ug/Kg	U	0.93	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	2-Hexanone		ug/Kg	U	4.6	23
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	2-Isopropyltoluene		ug/Kg	U	0.46	4.6
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	2-Methylnaphthalene		ug/Kg	U	120	280
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	190	280
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	2-Nitroaniline		ug/Kg	U	280	280
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	2-Nitrophenol		ug/Kg	U	250	280
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	160	280
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	190	200
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	3-Nitroaniline		ug/Kg	U	790	390
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	4,6-Dinitro-2-methylphenol		ug/Kg	UJ	79	240
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	120	280
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	140	280
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	4-Chloroaniline		ug/Kg	U	180	320
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	130	280
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	4-Chlorotoluene		ug/Kg	U	0.46	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	4-Methyl-2-pentanone		ug/Kg	U	4.6	23
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	4-Nitroaniline		ug/Kg	U	130	390
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	4-Nitrophenol		ug/Kg	U	180	390
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Acenaphthene		ug/Kg	U	120	280
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Acenaphthylene		ug/Kg	U	110	280
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	Acetone		ug/Kg	UJ	4.6	23
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Acetophenone		ug/Kg	U	120	280
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	Acrolein		ug/Kg	UJ	2.3	19
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	Acrylonitrile		ug/Kg	U	0.46	19
15B4 (18-20)	BV83371	SW6010	11/14/2016	10	Aluminum	4020	mg/Kg		7.7	39
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Aniline		ug/Kg	U	320	320
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Anthracene		ug/Kg	U	130	280
15B4 (18-20)	BV83371	SW6010	11/14/2016	1	Antimony		mg/Kg	U	1.9	1.9

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B4 (18-20)	BV83371	SW6010	11/14/2016	1	Arsenic	1.33	mg/Kg		0.77	0.77
15B4 (18-20)	BV83371	SW6010	11/14/2016	1	Barium	24.1	mg/Kg		0.39	0.8
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Benz(a)anthracene		ug/Kg	U	130	280
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	Benzene	0.62	ug/Kg	J	0.46	4.6
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Benzidine		ug/Kg	UJ	230	390
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Benzo(a)pyrene		ug/Kg	U	130	200
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Benzo(b)fluoranthene		ug/Kg	U	130	280
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Benzo(ghi)perylene		ug/Kg	U	130	280
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Benzo(k)fluoranthene		ug/Kg	U	130	280
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Benzoic acid		ug/Kg	R	790	2000
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Benzyl butyl phthalate		ug/Kg	U	100	280
15B4 (18-20)	BV83371	SW6010	11/14/2016	1	Beryllium	0.19	mg/Kg	J	0.15	0.31
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	110	280
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	110	200
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	110	280
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	110	280
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	Bromobenzene		ug/Kg	U	0.46	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	Bromochloromethane		ug/Kg	U	0.46	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	Bromodichloromethane		ug/Kg	U	0.93	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	Bromoform		ug/Kg	U	0.93	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	Bromomethane		ug/Kg	U	1.9	4.6
15B4 (18-20)	BV83371	SW6010	11/14/2016	1	Cadmium		mg/Kg	U	0.39	0.39
15B4 (18-20)	BV83371	SW6010	11/14/2016	1	Calcium	819	mg/Kg		3.6	3.9
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Carbazole		ug/Kg	U	160	200
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	Carbon Disulfide		ug/Kg	U	0.93	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	Carbon tetrachloride		ug/Kg	U	0.93	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	Chlorobenzene		ug/Kg	U	0.46	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	Chloroethane		ug/Kg	UJ	0.46	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	Chloroform		ug/Kg	U	0.46	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	Chloromethane		ug/Kg	U	0.93	4.6
15B4 (18-20)	BV83371	SW6010	11/14/2016	1	Chromium	8.39	mg/Kg		0.39	0.39
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Chrysene		ug/Kg	U	130	280
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	cis-1,2-Dichloroethene		ug/Kg	U	0.46	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	cis-1,3-Dichloropropene		ug/Kg	U	0.46	4.6
15B4 (18-20)	BV83371	SW6010	11/14/2016	1	Cobalt	4.48	mg/Kg		0.39	0.39
15B4 (18-20)	BV83371	SW6010	11/14/2016	1	Copper	7.52	mg/Kg		0.39	0.39
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Dibenz(a,h)anthracene		ug/Kg	U	130	200

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Dibenzofuran		ug/Kg	U	120	280
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	Dibromochloromethane		ug/Kg	U	0.93	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	Dibromomethane		ug/Kg	U	0.93	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	Dichlorodifluoromethane		ug/Kg	U	0.46	4.6
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Diethyl phthalate		ug/Kg	U	120	280
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Dimethylphthalate		ug/Kg	U	120	280
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Di-n-butylphthalate		ug/Kg	U	100	280
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Di-n-octylphthalate		ug/Kg	U	100	280
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	Ethylbenzene	4.6	ug/Kg	U	0.46	4.6
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Fluoranthene		ug/Kg	U	130	280
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Fluorene		ug/Kg	U	130	280
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Hexachlorobenzene		ug/Kg	U	120	200
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	Hexachlorobutadiene		ug/Kg	U	0.46	4.6
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Hexachlorobutadiene		ug/Kg	UJ	140	280
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Hexachlorocyclopentadiene		ug/Kg	UJ	120	280
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Hexachloroethane		ug/Kg	U	120	200
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Indeno(1,2,3-cd)pyrene		ug/Kg	U	130	280
15B4 (18-20)	BV83371	SW6010	11/14/2016	10	Iron	9700	mg/Kg		39	39
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Isophorone		ug/Kg	U	110	200
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	Isopropylbenzene		ug/Kg	U	0.46	4.6
15B4 (18-20)	BV83371	SW6010	11/14/2016	1	Lead	1.5	mg/Kg		0.39	0.8
15B4 (18-20)	BV83371	SW8260	11/14/2016		m&p-Xylene	4.6	ug/Kg	U	0.93	4.6
15B4 (18-20)	BV83371	SW6010	11/14/2016		Magnesium	1450	mg/Kg		3.9	3.9
15B4 (18-20)	BV83371	SW6010	11/14/2016		Manganese	156	mg/Kg		3.9	3.9
15B4 (18-20)	BV83371	SW7471	11/14/2016		Mercury		mg/Kg	U	0.02	0.03
15B4 (18-20)	BV83371	SW8260	11/14/2016		Methyl Ethyl Ketone		ug/Kg	UJ	4.6	28
15B4 (18-20)	BV83371	SW8260	11/14/2016		Methyl t-butyl ether (MTBE)		ug/Kg	U	0.93	9.3
15B4 (18-20)	BV83371	SW8260	11/14/2016		Methylene chloride		ug/Kg	U	4.6	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	Naphthalene		ug/Kg	U	0.93	4.6
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Naphthalene		ug/Kg	U	110	280
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	n-Butylbenzene		ug/Kg	U	0.46	4.6
15B4 (18-20)	BV83371	SW6010	11/14/2016	1	Nickel	8.09	mg/Kg		0.39	0.39
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Nitrobenzene		ug/Kg	U	140	200
15B4 (18-20)	BV83371	SW8270	11/14/2016		N-Nitrosodimethylamine		ug/Kg	U	110	280
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	130	200
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	150	280
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	n-Propylbenzene		ug/Kg	U	0.93	4.6

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	o-Xylene		ug/Kg	U	0.93	4.6
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Pentachloronitrobenzene		ug/Kg	U	150	280
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Pentachlorophenol		ug/Kg	UJ	150	240
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Phenanthrene		ug/Kg	U	110	280
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Phenol		ug/Kg	U	130	280
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	p-Isopropyltoluene		ug/Kg	U	0.46	4.6
15B4 (18-20)	BV83371	SW6010	11/14/2016	1	Potassium	490	mg/Kg		3.0	8
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Pyrene		ug/Kg	U	140	280
15B4 (18-20)	BV83371	SW8270	11/14/2016	1	Pyridine		ug/Kg	UJ	97	280
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	sec-Butylbenzene		ug/Kg	U	0.46	4.6
15B4 (18-20)	BV83371	SW6010	11/14/2016	1	Selenium		mg/Kg	U	1.3	1.5
15B4 (18-20)	BV83371	SW6010	11/14/2016	1	Silver		mg/Kg	U	0.39	0.39
15B4 (18-20)	BV83371	SW6010	11/14/2016	1	Sodium	123	mg/Kg		3.3	8
15B4 (18-20)	BV83371	E160.3	11/14/2016	1	SOLIDS, PERCENT	83	%			
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	Styrene		ug/Kg	U	0.46	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	Tert-butyl alcohol		ug/Kg	U	19	93
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	tert-Butylbenzene		ug/Kg	U	0.46	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	Tetrachloroethene		ug/Kg	U	0.93	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	Tetrahydrofuran (THF)		ug/Kg	UJ	2.3	9.3
15B4 (18-20)	BV83371	SW6010	11/14/2016	1	Thallium		mg/Kg	U	1.5	1.5
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	Toluene		ug/Kg	U	0.46	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	trans-1,2-Dichloroethene		ug/Kg	U	0.46	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	trans-1,3-Dichloropropene		ug/Kg	U	0.46	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	trans-1,4-dichloro-2-butene		ug/Kg	U	2.3	9.3
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	Trichloroethene		ug/Kg	U	0.46	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	Trichlorofluoromethane		ug/Kg	U	0.93	4.6
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	Trichlorotrifluoroethane		ug/Kg	U	0.46	4.6
15B4 (18-20)	BV83371	SW6010	11/14/2016	1	Vanadium	14.7	mg/Kg		0.39	0.39
15B4 (18-20)	BV83371	SW8260	11/14/2016	1	Vinyl chloride		ug/Kg	U	0.46	4.6
15B4 (18-20)	BV83371	SW6010	11/14/2016	1	Zinc	15.5	mg/Kg		0.39	0.8
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	1.1	22
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	1,1,1-Trichloroethane		ug/Kg	U	0.54	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	1.1	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	1,1,2-Trichloroethane		ug/Kg	U	1.1	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	1,1-Dichloroethane		ug/Kg	U	1.1	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	1,1-Dichloroethene		ug/Kg	U	0.54	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	1,1-Dichloropropene		ug/Kg	U	0.54	5.4

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	1,2,3-Trichlorobenzene		ug/Kg	U	1.1	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	1,2,3-Trichloropropane		ug/Kg	Ū	0.54	5.4
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	Ü	140	270
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	1.1	5.4
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	120	270
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	1,2,4-Trimethylbenzene	1.5	ug/Kg	J	0.54	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	1.1	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	1,2-Dibromoethane		ug/Kg	U	0.54	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	1,2-Dichlorobenzene		ug/Kg	U	0.54	5.4
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	1,2-Dichlorobenzene		ug/Kg	UJ	110	270
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	1,2-Dichloroethane		ug/Kg	U	0.54	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	1,2-Dichloropropane		ug/Kg	U	1.1	5.4
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	130	270
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	1,3,5-Trimethylbenzene	0.67	ug/Kg	J	0.54	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	1,3-Dichlorobenzene		ug/Kg	U	0.54	5.4
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	1,3-Dichlorobenzene		ug/Kg	UJ	110	270
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	1,3-Dichloropropane		ug/Kg	U	1.1	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	1,4-Dichlorobenzene		ug/Kg	U	0.54	5.4
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	1,4-Dichlorobenzene		ug/Kg	UJ	110	270
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	1,4-dioxane		ug/Kg	U	43	81
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	2,2-Dichloropropane		ug/Kg	U	0.54	5.4
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	2,4,5-Trichlorophenol		ug/Kg	U	210	270
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	120	190
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	2,4-Dichlorophenol		ug/Kg	U	140	190
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	2,4-Dimethylphenol		ug/Kg	U	96	270
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	2,4-Dinitrophenol		ug/Kg	UJ	270	270
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	2,4-Dinitrotoluene		ug/Kg	U	150	190
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	2,6-Dinitrotoluene		ug/Kg	U	120	190
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	2-Chloronaphthalene		ug/Kg	U	110	270
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	2-Chlorophenol		ug/Kg	U	110	270
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	2-Chlorotoluene		ug/Kg	U	1.1	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	2-Hexanone		ug/Kg	U	5.4	27
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	2-Isopropyltoluene		ug/Kg	U	0.54	5.4
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	2-Methylnaphthalene		ug/Kg	U	120	270
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	180	270
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	2-Nitroaniline		ug/Kg	U	270	270
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	2-Nitrophenol		ug/Kg	U	250	270

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	150	270
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	180	190
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	3-Nitroaniline		ug/Kg	U	770	390
15B3 (12-14)	BV83372	SW8081	11/14/2016	2	4,4' -DDD		ug/Kg	U	2.3	2.3
15B3 (12-14)	BV83372	SW8081	11/14/2016	2	4,4' -DDE		ug/Kg	U	2.3	2.3
15B3 (12-14)	BV83372	SW8081	11/14/2016	2	4,4' -DDT		ug/Kg	U	2.3	2.3
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	4,6-Dinitro-2-methylphenol		ug/Kg	UJ	77	230
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	110	270
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	140	270
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	4-Chloroaniline		ug/Kg	U	180	310
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	130	270
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	4-Chlorotoluene		ug/Kg	U	0.54	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	4-Methyl-2-pentanone		ug/Kg	U	5.4	27
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	4-Nitroaniline		ug/Kg	U	130	390
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	4-Nitrophenol		ug/Kg	U	170	390
15B3 (12-14)	BV83372	SW8081	11/14/2016	2	a-BHC		ug/Kg	U	7.6	7.6
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Acenaphthene		ug/Kg	U	120	270
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Acenaphthylene		ug/Kg	U	110	270
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	Acetone		ug/Kg	UJ	5.4	27
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Acetophenone		ug/Kg	U	120	270
15B3 (12-14)	BV83372	SW8081	11/14/2016	2	a-Chlordane		ug/Kg	U	3.8	3.8
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	Acrolein		ug/Kg	UJ	2.7	22
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	Acrylonitrile		ug/Kg	U	0.54	22
15B3 (12-14)	BV83372	SW8081	11/14/2016		Aldrin		ug/Kg	U	3.8	3.8
15B3 (12-14)	BV83372	SW6010	11/14/2016	10	Aluminum	6860	mg/Kg		8.1	40
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Aniline		ug/Kg	U	310	310
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Anthracene		ug/Kg	U	130	270
15B3 (12-14)	BV83372	SW6010	11/14/2016	1	Antimony		mg/Kg	U	2.0	2.0
15B3 (12-14)	BV83372	SW6010	11/14/2016	1	Arsenic	1.44	mg/Kg		0.81	0.81
15B3 (12-14)	BV83372	SW6010	11/14/2016	1	Barium	41.6	mg/Kg		0.40	0.8
15B3 (12-14)	BV83372	SW8081	11/14/2016	2	b-BHC		ug/Kg	U	7.6	7.6
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Benz(a)anthracene		ug/Kg	U	130	270
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	Benzene	1.0	ug/Kg	J	0.54	5.4
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Benzidine		ug/Kg	UJ	230	390
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Benzo(a)pyrene		ug/Kg	U	130	190
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Benzo(b)fluoranthene		ug/Kg	U	130	270
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Benzo(ghi)perylene		ug/Kg	U	130	270

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Benzo(k)fluoranthene		ug/Kg	U	130	270
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Benzoic acid		ug/Kg	R	770	1900
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Benzyl butyl phthalate		ug/Kg	U	100	270
15B3 (12-14)	BV83372	SW6010	11/14/2016	1	Beryllium	0.30	mg/Kg	J	0.16	0.32
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	110	270
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	100	190
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	110	270
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	110	270
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	Bromobenzene		ug/Kg	U	0.54	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	Bromochloromethane		ug/Kg	U	0.54	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	Bromodichloromethane		ug/Kg	U	1.1	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	Bromoform		ug/Kg	U	1.1	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	Bromomethane		ug/Kg	U	2.2	5.4
15B3 (12-14)	BV83372	SW6010	11/14/2016	1	Cadmium		mg/Kg	U	0.40	0.40
15B3 (12-14)	BV83372	SW6010	11/14/2016	1	Calcium	2020	mg/Kg		3.7	4.0
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Carbazole		ug/Kg	U	150	190
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	Carbon Disulfide		ug/Kg	U	1.1	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	Carbon tetrachloride		ug/Kg	U	1.1	5.4
15B3 (12-14)	BV83372	SW8081	11/14/2016	2	Chlordane		ug/Kg	U	38	38
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	Chlorobenzene		ug/Kg	U	0.54	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	Chloroethane		ug/Kg	UJ	0.54	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	Chloroform		ug/Kg	U	0.54	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	Chloromethane		ug/Kg	U	1.1	5.4
15B3 (12-14)	BV83372	SW6010	11/14/2016	1	Chromium	20.7	mg/Kg		0.40	0.40
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Chrysene		ug/Kg	U	130	270
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	cis-1,2-Dichloroethene		ug/Kg	U	0.54	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	cis-1,3-Dichloropropene		ug/Kg	U	0.54	5.4
15B3 (12-14)	BV83372	SW6010	11/14/2016	1	Cobalt	8.31	mg/Kg		0.40	0.40
15B3 (12-14)	BV83372	SW6010	11/14/2016	1	Copper	13.8	mg/Kg		0.40	0.40
15B3 (12-14)	BV83372	SW8081	11/14/2016	2	d-BHC		ug/Kg	U	7.6	7.6
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Dibenz(a,h)anthracene		ug/Kg	U	130	190
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Dibenzofuran		ug/Kg	U	110	270
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	Dibromochloromethane		ug/Kg	U	1.1	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	Dibromomethane		ug/Kg	U	1.1	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	Dichlorodifluoromethane		ug/Kg	U	0.54	5.4
15B3 (12-14)	BV83372	SW8081	11/14/2016	2	Dieldrin		ug/Kg	U	3.8	3.8
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Diethyl phthalate		ug/Kg	U	120	270

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Dimethylphthalate		ug/Kg	U	120	270
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Di-n-butylphthalate		ug/Kg	U	100	270
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Di-n-octylphthalate		ug/Kg	U	100	270
15B3 (12-14)	BV83372	SW8081	11/14/2016	2	Endosulfan I		ug/Kg	U	7.6	7.6
15B3 (12-14)	BV83372	SW8081	11/14/2016	2	Endosulfan II		ug/Kg	U	7.6	7.6
15B3 (12-14)	BV83372	SW8081	11/14/2016	2	Endosulfan sulfate		ug/Kg	U	7.6	7.6
15B3 (12-14)	BV83372	SW8081	11/14/2016	2	Endrin		ug/Kg	U	7.6	7.6
15B3 (12-14)	BV83372	SW8081	11/14/2016	2	Endrin aldehyde		ug/Kg	U	7.6	7.6
15B3 (12-14)	BV83372	SW8081	11/14/2016	2	Endrin ketone		ug/Kg	U	7.6	7.6
15B3 (12-14)	BV83372	SW8260	11/14/2016	50	Ethylbenzene	100	ug/Kg	J	42	420
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Fluoranthene		ug/Kg	U	130	270
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Fluorene		ug/Kg	U	130	270
15B3 (12-14)	BV83372	SW8081	11/14/2016	2	g-BHC		ug/Kg	U	1.5	1.5
15B3 (12-14)	BV83372	SW8081	11/14/2016	2	g-Chlordane		ug/Kg	U	3.8	3.8
15B3 (12-14)	BV83372	SW8081	11/14/2016	2	Heptachlor		ug/Kg	U	7.6	7.6
15B3 (12-14)	BV83372	SW8081	11/14/2016	2	Heptachlor epoxide		ug/Kg	U	7.6	7.6
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Hexachlorobenzene		ug/Kg	U	110	190
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	Hexachlorobutadiene		ug/Kg	U	0.54	5.4
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Hexachlorobutadiene		ug/Kg	UJ	140	270
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Hexachlorocyclopentadiene		ug/Kg	UJ	120	270
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Hexachloroethane		ug/Kg	U	120	190
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Indeno(1,2,3-cd)pyrene		ug/Kg	U	130	270
15B3 (12-14)	BV83372	SW6010	11/14/2016	10	Iron	16100	mg/Kg		40	40
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Isophorone		ug/Kg	U	110	190
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	Isopropylbenzene		ug/Kg	U	0.54	5.4
15B3 (12-14)	BV83372	SW6010	11/14/2016	1	Lead	2.2	mg/Kg		0.40	8.0
15B3 (12-14)	BV83372	SW8260	11/14/2016		m&p-Xylene	8.2	ug/Kg		1.1	5.4
15B3 (12-14)	BV83372	SW6010	11/14/2016		Magnesium	3080	mg/Kg		4.0	4.0
15B3 (12-14)	BV83372	SW6010	11/14/2016		Manganese	332	mg/Kg		4.0	4.0
15B3 (12-14)	BV83372	SW7471	11/14/2016		Mercury		mg/Kg	U	0.02	0.03
15B3 (12-14)	BV83372	SW8081	11/14/2016		Methoxychlor		ug/Kg	U	38	38
15B3 (12-14)	BV83372	SW8260	11/14/2016		Methyl Ethyl Ketone		ug/Kg	UJ	5.4	32
15B3 (12-14)	BV83372	SW8260	11/14/2016		Methyl t-butyl ether (MTBE)		ug/Kg	U	1.1	11
15B3 (12-14)	BV83372	SW8260	11/14/2016		Methylene chloride		ug/Kg	U	5.4	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016		Naphthalene		ug/Kg	U	1.1	5.4
15B3 (12-14)	BV83372	SW8270	11/14/2016		Naphthalene		ug/Kg	U	110	270
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	n-Butylbenzene		ug/Kg	U	0.54	5.4

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B3 (12-14)	BV83372	SW6010	11/14/2016	1	Nickel	14.0	mg/Kg		0.40	0.40
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Nitrobenzene		ug/Kg	U	140	190
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	N-Nitrosodimethylamine		ug/Kg	Ü	110	270
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	Ü	130	190
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	N-Nitrosodiphenylamine		ug/Kg	Ū	150	270
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	n-Propylbenzene		ug/Kg	Ū	1.1	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	o-Xylene	1.5	ug/Kg	J	1.1	5.4
15B3 (12-14)	BV83372	SW8082	11/14/2016	2	PCB-1016		ug/Kg	U	76	76
15B3 (12-14)	BV83372	SW8082	11/14/2016	2	PCB-1221		ug/Kg	U	76	76
15B3 (12-14)	BV83372	SW8082	11/14/2016	2	PCB-1232		ug/Kg	U	76	76
15B3 (12-14)	BV83372	SW8082	11/14/2016	2	PCB-1242		ug/Kg	U	76	76
15B3 (12-14)	BV83372	SW8082	11/14/2016	2	PCB-1248		ug/Kg	U	76	76
15B3 (12-14)	BV83372	SW8082	11/14/2016	2	PCB-1254		ug/Kg	U	76	76
15B3 (12-14)	BV83372	SW8082	11/14/2016	2	PCB-1260		ug/Kg	U	76	76
15B3 (12-14)	BV83372	SW8082	11/14/2016	2	PCB-1262		ug/Kg	U	76	76
15B3 (12-14)	BV83372	SW8082	11/14/2016	2	PCB-1268		ug/Kg	U	76	76
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Pentachloronitrobenzene		ug/Kg	U	140	270
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Pentachlorophenol		ug/Kg	UJ	150	230
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Phenanthrene		ug/Kg	U	110	270
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Phenol		ug/Kg	U	120	270
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	p-Isopropyltoluene		ug/Kg	U	0.54	5.4
15B3 (12-14)	BV83372	SW6010	11/14/2016	1	Potassium	1750	mg/Kg		3.1	8
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Pyrene		ug/Kg	U	130	270
15B3 (12-14)	BV83372	SW8270	11/14/2016	1	Pyridine		ug/Kg	UJ	95	270
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	sec-Butylbenzene		ug/Kg	U	0.54	5.4
15B3 (12-14)	BV83372	SW6010	11/14/2016	1	Selenium		mg/Kg	U	1.4	1.6
15B3 (12-14)	BV83372	SW6010	11/14/2016	1	Silver		mg/Kg	U	0.40	0.40
15B3 (12-14)	BV83372	SW6010	11/14/2016	1	Sodium	194	mg/Kg		3.5	8
15B3 (12-14)	BV83372	E160.3	11/14/2016	1	SOLIDS, PERCENT	85	%			
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	Styrene		ug/Kg	U	0.54	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	Tert-butyl alcohol		ug/Kg	U	22	110
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	tert-Butylbenzene		ug/Kg	U	0.54	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	Tetrachloroethene		ug/Kg	U	1.1	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	Tetrahydrofuran (THF)		ug/Kg	UJ	2.7	11
15B3 (12-14)	BV83372	SW6010	11/14/2016	1	Thallium		mg/Kg	U	1.6	1.6
15B3 (12-14)	BV83372	SW8260	11/14/2016	50	Toluene	44	ug/Kg	J	42	420
15B3 (12-14)	BV83372	SW8081	11/14/2016	2	Toxaphene		ug/Kg	U	150	150

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	trans-1,2-Dichloroethene		ug/Kg	U	0.54	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	trans-1,3-Dichloropropene		ug/Kg	U	0.54	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	trans-1,4-dichloro-2-butene		ug/Kg	U	2.7	11
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	Trichloroethene		ug/Kg	U	0.54	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	Trichlorofluoromethane		ug/Kg	U	1.1	5.4
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	Trichlorotrifluoroethane		ug/Kg	U	0.54	5.4
15B3 (12-14)	BV83372	SW6010	11/14/2016	1	Vanadium	27.9	mg/Kg		0.40	0.40
15B3 (12-14)	BV83372	SW8260	11/14/2016	1	Vinyl chloride		ug/Kg	U	0.54	5.4
15B3 (12-14)	BV83372	SW6010	11/14/2016	1	Zinc	35.0	mg/Kg		0.40	0.8
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	1,1,1,2-Tetrachloroethane		ug/Kg	UJ	71	1400
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	1,1,1-Trichloroethane		ug/Kg	UJ	36	360
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	1,1,2,2-Tetrachloroethane		ug/Kg	UJ	71	360
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	1,1,2-Trichloroethane		ug/Kg	UJ	71	360
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	1,1-Dichloroethane		ug/Kg	UJ	71	270
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	1,1-Dichloroethene		ug/Kg	UJ	36	330
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	1,1-Dichloropropene		ug/Kg	UJ	36	360
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	1,2,3-Trichlorobenzene		ug/Kg	UJ	71	360
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	1,2,3-Trichloropropane		ug/Kg	UJ	36	360
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	150	290
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	130	290
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	1,2,4-Trichlorobenzene		ug/Kg	UJ	71	360
15B1 (12-14)	BV83373	SW8260	11/14/2016	2000	1,2,4-Trimethylbenzene	65000	ug/Kg		1400	3600
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	1,2-Dibromo-3-chloropropane		ug/Kg	UJ	71	360
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	1,2-Dibromoethane		ug/Kg	UJ	36	360
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	1,2-Dichlorobenzene		ug/Kg	UJ	120	290
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	1,2-Dichlorobenzene		ug/Kg	UJ	36	360
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	1,2-Dichloroethane		ug/Kg	UJ	36	36
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	1,2-Dichloropropane		ug/Kg	UJ	71	360
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	140	290
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	1,3,5-Trimethylbenzene	570	ug/Kg	J	36	360
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	1,3-Dichlorobenzene		ug/Kg	UJ	120	290
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	1,3-Dichlorobenzene		ug/Kg	UJ	36	360
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	1,3-Dichloropropane		ug/Kg	UJ	71	360
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	1,4-Dichlorobenzene		ug/Kg	UJ	120	290
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	1,4-Dichlorobenzene		ug/Kg	UJ	36	360
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	1,4-dioxane		ug/Kg	UJ	2800	2800
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	2,2-Dichloropropane		ug/Kg	UJ	36	360

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	2,4,5-Trichlorophenol		ug/Kg	U	230	290
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	130	210
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	2,4-Dichlorophenol		ug/Kg	U	150	210
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	2,4-Dimethylphenol		ug/Kg	U	100	290
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	2,4-Dinitrophenol		ug/Kg	UJ	290	290
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	2,4-Dinitrotoluene		ug/Kg	U	160	210
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	2,6-Dinitrotoluene		ug/Kg	U	130	210
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	2-Chloronaphthalene		ug/Kg	U	120	290
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	2-Chlorophenol		ug/Kg	U	120	290
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	2-Chlorotoluene		ug/Kg	UJ	71	360
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	2-Hexanone		ug/Kg	UJ	360	1800
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	2-Isopropyltoluene	440	ug/Kg	J	36	360
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	2-Methylnaphthalene	1600	ug/Kg		120	290
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	200	290
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	2-Nitroaniline		ug/Kg	U	290	290
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	2-Nitrophenol		ug/Kg	U	270	290
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	160	290
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	200	210
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	3-Nitroaniline		ug/Kg	U	840	420
15B1 (12-14)	BV83373	SW8081	11/14/2016	2	4,4' -DDD		ug/Kg	U	2.5	2.5
15B1 (12-14)	BV83373	SW8081	11/14/2016	2	4,4' -DDE		ug/Kg	U	2.5	2.5
15B1 (12-14)	BV83373	SW8081	11/14/2016	2	4,4' -DDT		ug/Kg	U	2.5	2.5
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	4,6-Dinitro-2-methylphenol		ug/Kg	UJ	84	250
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	120	290
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	150	290
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	4-Chloroaniline		ug/Kg	U	190	330
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	140	290
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	4-Chlorotoluene		ug/Kg	UJ	36	360
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	4-Methyl-2-pentanone		ug/Kg	UJ	360	1800
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	4-Nitroaniline		ug/Kg	U	140	420
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	4-Nitrophenol		ug/Kg	U	190	420
15B1 (12-14)	BV83373	SW8081	11/14/2016	2	a-BHC		ug/Kg	U	8.5	8.5
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Acenaphthene		ug/Kg	U	130	290
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Acenaphthylene		ug/Kg	U	120	290
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	Acetone		ug/Kg	UJ	360	360
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Acetophenone		ug/Kg	U	130	290
15B1 (12-14)	BV83373	SW8081	11/14/2016	2	a-Chlordane		ug/Kg	U	4.2	4.2

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	Acrolein		ug/Kg	UJ	180	1400
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	Acrylonitrile		ug/Kg	UJ	36	1400
15B1 (12-14)	BV83373	SW8081	11/14/2016	2	Aldrin		ug/Kg	U	4.2	4.2
15B1 (12-14)	BV83373	SW6010	11/14/2016	10	Aluminum	12600	mg/Kg		8.0	40
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Aniline		ug/Kg	U	330	330
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Anthracene		ug/Kg	U	140	290
15B1 (12-14)	BV83373	SW6010	11/14/2016	1	Antimony		mg/Kg	U	2.0	2.0
15B1 (12-14)	BV83373	SW6010	11/14/2016	1	Arsenic	1.72	mg/Kg		0.80	0.80
15B1 (12-14)	BV83373	SW6010	11/14/2016	1	Barium	62.1	mg/Kg		0.40	0.8
15B1 (12-14)	BV83373	SW8081	11/14/2016	2	b-BHC		ug/Kg	U	8.5	8.5
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Benz(a)anthracene		ug/Kg	U	140	290
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	Benzene	90	ug/Kg	J	36	60
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Benzidine		ug/Kg	UJ	250	420
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Benzo(a)pyrene		ug/Kg	U	140	210
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Benzo(b)fluoranthene		ug/Kg	U	140	290
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Benzo(ghi)perylene		ug/Kg	U	140	290
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Benzo(k)fluoranthene		ug/Kg	U	140	290
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Benzoic acid		ug/Kg	R	840	2100
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Benzyl butyl phthalate		ug/Kg	U	110	290
15B1 (12-14)	BV83373	SW6010	11/14/2016	1	Beryllium	0.51	mg/Kg		0.16	0.32
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	120	290
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	110	210
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	120	290
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	120	290
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	Bromobenzene		ug/Kg	UJ	36	360
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	Bromochloromethane		ug/Kg	UJ	36	360
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	Bromodichloromethane		ug/Kg	UJ	71	360
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	Bromoform		ug/Kg	UJ	71	360
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	Bromomethane		ug/Kg	UJ	140	360
15B1 (12-14)	BV83373	SW6010	11/14/2016	1	Cadmium		mg/Kg	U	0.40	0.40
15B1 (12-14)	BV83373	SW6010	11/14/2016	10	Calcium	1440	mg/Kg		37	40
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Carbazole		ug/Kg	U	170	210
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	Carbon Disulfide		ug/Kg	UJ	71	360
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	Carbon tetrachloride		ug/Kg	UJ	71	360
15B1 (12-14)	BV83373	SW8081	11/14/2016	2	Chlordane		ug/Kg	U	42	42
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	Chlorobenzene		ug/Kg	UJ	36	360
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	Chloroethane		ug/Kg	UJ	36	360

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	Chloroform		ug/Kg	UJ	36	360
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	Chloromethane		ug/Kg	UJ	71	360
15B1 (12-14)	BV83373	SW6010	11/14/2016	1	Chromium	33.3	mg/Kg		0.40	0.40
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Chrysene		ug/Kg	U	140	290
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	cis-1,2-Dichloroethene		ug/Kg	UJ	36	250
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	cis-1,3-Dichloropropene		ug/Kg	UJ	36	360
15B1 (12-14)	BV83373	SW6010	11/14/2016	1	Cobalt	11.8	mg/Kg		0.40	0.40
15B1 (12-14)	BV83373	SW6010	11/14/2016	1	Copper	21.0	mg/Kg		0.40	0.40
15B1 (12-14)	BV83373	SW8081	11/14/2016	2	d-BHC		ug/Kg	U	8.5	8.5
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Dibenz(a,h)anthracene		ug/Kg	U	140	210
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Dibenzofuran		ug/Kg	U	120	290
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	Dibromochloromethane		ug/Kg	UJ	71	360
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	Dibromomethane		ug/Kg	UJ	71	360
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	Dichlorodifluoromethane		ug/Kg	UJ	36	360
15B1 (12-14)	BV83373	SW8081	11/14/2016	2	Dieldrin		ug/Kg	U	4.2	4.2
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Diethyl phthalate		ug/Kg	U	130	290
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Dimethylphthalate		ug/Kg	U	130	290
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Di-n-butylphthalate		ug/Kg	U	110	290
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Di-n-octylphthalate		ug/Kg	U	110	290
15B1 (12-14)	BV83373	SW8081	11/14/2016	2	Endosulfan I		ug/Kg	U	8.5	8.5
15B1 (12-14)	BV83373	SW8081	11/14/2016	2	Endosulfan II		ug/Kg	U	8.5	8.5
15B1 (12-14)	BV83373	SW8081	11/14/2016	2	Endosulfan sulfate		ug/Kg	U	8.5	8.5
15B1 (12-14)	BV83373	SW8081	11/14/2016	2	Endrin		ug/Kg	U	8.5	8.5
15B1 (12-14)	BV83373	SW8081	11/14/2016	2	Endrin aldehyde		ug/Kg	U	8.5	8.5
15B1 (12-14)	BV83373	SW8081	11/14/2016	2	Endrin ketone		ug/Kg	U	8.5	8.5
15B1 (12-14)	BV83373	SW8260	11/14/2016	2000	Ethylbenzene	14000	ug/Kg		1400	1400
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Fluoranthene		ug/Kg	U	140	290
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Fluorene		ug/Kg	U	140	290
15B1 (12-14)	BV83373	SW8081	11/14/2016	2	g-BHC		ug/Kg	U	1.7	1.7
15B1 (12-14)	BV83373	SW8081	11/14/2016	2	g-Chlordane		ug/Kg	U	4.2	4.2
15B1 (12-14)	BV83373	SW8081	11/14/2016	2	Heptachlor		ug/Kg	U	8.5	8.5
15B1 (12-14)	BV83373	SW8081	11/14/2016	2	Heptachlor epoxide		ug/Kg	U	8.5	8.5
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Hexachlorobenzene		ug/Kg	U	120	210
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Hexachlorobutadiene		ug/Kg	UJ	150	290
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	Hexachlorobutadiene		ug/Kg	UJ	36	360
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Hexachlorocyclopentadiene		ug/Kg	UJ	130	290
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Hexachloroethane		ug/Kg	U	130	210

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Indeno(1,2,3-cd)pyrene	İ	ug/Kg	U	140	290
15B1 (12-14)	BV83373	SW6010	11/14/2016	10	Iron	24100	mg/Kg		40	40
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Isophorone		ug/Kg	U	120	210
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	Isopropylbenzene	6300	ug/Kg	J	36	360
15B1 (12-14)	BV83373	SW6010	11/14/2016	1	Lead	7.6	mg/Kg		0.40	0.8
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	m&p-Xylene	2100	ug/Kg	J	71	360
15B1 (12-14)	BV83373	SW6010	11/14/2016	1	Magnesium	4100	mg/Kg		4.0	4.0
15B1 (12-14)	BV83373	SW6010	11/14/2016	10	Manganese	348	mg/Kg		4.0	4.0
15B1 (12-14)	BV83373	SW7471	11/14/2016	1	Mercury		mg/Kg	U	0.02	0.03
15B1 (12-14)	BV83373	SW8081	11/14/2016	2	Methoxychlor		ug/Kg	U	42	42
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	Methyl Ethyl Ketone		ug/Kg	UJ	360	360
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	Methyl t-butyl ether (MTBE)		ug/Kg	UJ	71	710
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	Methylene chloride		ug/Kg	UJ	360	360
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Naphthalene	3200	ug/Kg		120	290
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	Naphthalene	2200	ug/Kg	J	71	360
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	n-Butylbenzene	7400	ug/Kg	J	36	360
15B1 (12-14)	BV83373	SW6010	11/14/2016	1	Nickel	15.8	mg/Kg		0.40	0.40
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Nitrobenzene		ug/Kg	U	150	210
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	N-Nitrosodimethylamine		ug/Kg	U	120	290
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	140	210
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	160	290
15B1 (12-14)	BV83373	SW8260	11/14/2016	2000	n-Propylbenzene	16000	ug/Kg		2800	3900
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	o-Xylene	1000	ug/Kg	J	71	360
15B1 (12-14)	BV83373	SW8082	11/14/2016	2	PCB-1016		ug/Kg	U	85	85
15B1 (12-14)	BV83373	SW8082	11/14/2016	2	PCB-1221		ug/Kg	U	85	85
15B1 (12-14)	BV83373	SW8082	11/14/2016	2	PCB-1232		ug/Kg	U	85	85
15B1 (12-14)	BV83373	SW8082	11/14/2016	2	PCB-1242		ug/Kg	U	85	85
15B1 (12-14)	BV83373	SW8082	11/14/2016	2	PCB-1248		ug/Kg	U	85	85
15B1 (12-14)	BV83373	SW8082	11/14/2016	2	PCB-1254		ug/Kg	U	85	85
15B1 (12-14)	BV83373	SW8082	11/14/2016	2	PCB-1260		ug/Kg	U	85	85
15B1 (12-14)	BV83373	SW8082	11/14/2016	2	PCB-1262		ug/Kg	U	85	85
15B1 (12-14)	BV83373	SW8082	11/14/2016	2	PCB-1268		ug/Kg	U	85	85
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Pentachloronitrobenzene		ug/Kg	U	160	290
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Pentachlorophenol		ug/Kg	UJ	160	250
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Phenanthrene		ug/Kg	U	120	290
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Phenol		ug/Kg	U	130	290
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	p-Isopropyltoluene	2800	ug/Kg	J	36	360

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B1 (12-14)	BV83373	SW6010	11/14/2016	1	Potassium	2740	mg/Kg		3.1	8
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Pyrene		ug/Kg	U	140	290
15B1 (12-14)	BV83373	SW8270	11/14/2016	1	Pyridine		ug/Kg	UJ	100	290
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	sec-Butylbenzene	4800	ug/Kg	J	36	360
15B1 (12-14)	BV83373	SW6010	11/14/2016	1	Selenium		mg/Kg	U	1.4	1.6
15B1 (12-14)	BV83373	SW6010	11/14/2016	1	Silver		mg/Kg	U	0.40	0.40
15B1 (12-14)	BV83373	SW6010	11/14/2016	1	Sodium	313	mg/Kg		3.4	8
15B1 (12-14)	BV83373	E160.3	11/14/2016	1	SOLIDS, PERCENT	78	%			
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	Styrene		ug/Kg	UJ	36	360
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	Tert-butyl alcohol		ug/Kg	UJ	1400	7100
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	tert-Butylbenzene	270	ug/Kg	J	36	360
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	Tetrachloroethene		ug/Kg	UJ	71	360
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	Tetrahydrofuran (THF)		ug/Kg	UJ	180	710
15B1 (12-14)	BV83373	SW6010	11/14/2016	1	Thallium		mg/Kg	U	1.6	1.6
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	Toluene	96	ug/Kg	J	36	360
15B1 (12-14)	BV83373	SW8081	11/14/2016	2	Toxaphene		ug/Kg	U	170	170
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	trans-1,2-Dichloroethene		ug/Kg	UJ	36	190
15B1 (12-14)	BV83373	SW8260	11/14/2016		trans-1,3-Dichloropropene		ug/Kg	UJ	36	360
15B1 (12-14)	BV83373	SW8260	11/14/2016		trans-1,4-dichloro-2-butene		ug/Kg	UJ	180	710
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	Trichloroethene		ug/Kg	UJ	36	360
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	Trichlorofluoromethane		ug/Kg	UJ	71	360
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	Trichlorotrifluoroethane		ug/Kg	UJ	36	360
15B1 (12-14)	BV83373	SW6010	11/14/2016	1	Vanadium	37.7	mg/Kg		0.40	0.40
15B1 (12-14)	BV83373	SW8260	11/14/2016	50	Vinyl chloride		ug/Kg	UJ	36	36
15B1 (12-14)	BV83373	SW6010	11/14/2016	1	Zinc	49.4	mg/Kg		0.40	0.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	0.76	15
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	1,1,1-Trichloroethane		ug/Kg	U	0.38	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	0.76	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	1,1,2-Trichloroethane		ug/Kg	U	0.76	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	1,1-Dichloroethane		ug/Kg	U	0.76	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	1,1-Dichloroethene		ug/Kg	U	0.38	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	1,1-Dichloropropene		ug/Kg	U	0.38	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	1,2,3-Trichlorobenzene		ug/Kg	U	0.76	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	1,2,3-Trichloropropane		ug/Kg	U	0.38	3.8
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	140	280
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	120	280
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	0.76	3.8

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	1,2,4-Trimethylbenzene	1.5	ug/Kg	J	0.38	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	0.76	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	1,2-Dibromoethane		ug/Kg	U	0.38	3.8
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	1,2-Dichlorobenzene		ug/Kg	UJ	110	280
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	1,2-Dichlorobenzene		ug/Kg	U	0.38	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	1,2-Dichloroethane		ug/Kg	U	0.38	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	1,2-Dichloropropane		ug/Kg	U	0.76	3.8
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	130	280
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	1,3,5-Trimethylbenzene		ug/Kg	U	0.38	3.8
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	1,3-Dichlorobenzene		ug/Kg	UJ	120	280
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	1,3-Dichlorobenzene		ug/Kg	U	0.38	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	1,3-Dichloropropane		ug/Kg	U	0.76	3.8
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	1,4-Dichlorobenzene		ug/Kg	UJ	120	280
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	1,4-Dichlorobenzene		ug/Kg	U	0.38	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	1,4-dioxane		ug/Kg	U	30	57
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	2,2-Dichloropropane		ug/Kg	U	0.38	3.8
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	2,4,5-Trichlorophenol		ug/Kg	U	220	280
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	130	200
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	2,4-Dichlorophenol		ug/Kg	U	140	200
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	2,4-Dimethylphenol		ug/Kg	U	100	280
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	2,4-Dinitrophenol		ug/Kg	UJ	280	280
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	2,4-Dinitrotoluene		ug/Kg	U	160	200
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	2,6-Dinitrotoluene		ug/Kg	U	130	200
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	2-Chloronaphthalene		ug/Kg	U	110	280
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	2-Chlorophenol		ug/Kg	U	110	280
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	2-Chlorotoluene		ug/Kg	U	0.76	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	2-Hexanone		ug/Kg	U	3.8	19
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	2-Isopropyltoluene		ug/Kg	U	0.38	3.8
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	2-Methylnaphthalene		ug/Kg	U	120	280
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	190	280
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	2-Nitroaniline		ug/Kg	U	280	280
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	2-Nitrophenol		ug/Kg	U	260	280
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	160	280
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	190	200
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	3-Nitroaniline		ug/Kg	U	810	400
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	4,6-Dinitro-2-methylphenol		ug/Kg	UJ	81	240
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	120	280

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	140	280
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	4-Chloroaniline		ug/Kg	U	190	320
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	140	280
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	4-Chlorotoluene		ug/Kg	U	0.38	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	4-Methyl-2-pentanone		ug/Kg	U	3.8	19
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	4-Nitroaniline		ug/Kg	U	130	400
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	4-Nitrophenol		ug/Kg	U	180	400
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Acenaphthene		ug/Kg	U	120	280
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Acenaphthylene		ug/Kg	U	110	280
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	Acetone		ug/Kg	UJ	3.8	19
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Acetophenone		ug/Kg	U	130	280
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	Acrolein		ug/Kg	UJ	1.9	15
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	Acrylonitrile		ug/Kg	U	0.38	15
15B1 (18-20)	BV83374	SW6010	11/14/2016	10	Aluminum	3690	mg/Kg		7.4	37
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Aniline		ug/Kg	U	320	320
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Anthracene		ug/Kg	U	130	280
15B1 (18-20)	BV83374	SW6010	11/14/2016	1	Antimony		mg/Kg	U	1.9	1.9
15B1 (18-20)	BV83374	SW6010	11/14/2016	1	Arsenic	1.19	mg/Kg		0.74	0.74
15B1 (18-20)	BV83374	SW6010	11/14/2016	1	Barium	18.4	mg/Kg		0.37	0.7
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Benz(a)anthracene		ug/Kg	U	140	280
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	Benzene	0.84	ug/Kg	J	0.38	3.8
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Benzidine		ug/Kg	UJ	240	400
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Benzo(a)pyrene		ug/Kg	U	130	200
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Benzo(b)fluoranthene		ug/Kg	U	140	280
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Benzo(ghi)perylene		ug/Kg	U	130	280
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Benzo(k)fluoranthene		ug/Kg	U	130	280
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Benzoic acid		ug/Kg	R	810	2000
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Benzyl butyl phthalate		ug/Kg	U	100	280
15B1 (18-20)	BV83374	SW6010	11/14/2016	1	Beryllium		mg/Kg	U	0.15	0.30
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	110	280
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	110	200
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	110	280
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	120	280
15B1 (18-20)	BV83374	SW8260	11/14/2016		Bromobenzene		ug/Kg	U	0.38	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	Bromochloromethane		ug/Kg	U	0.38	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	Bromodichloromethane		ug/Kg	U	0.76	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	Bromoform		ug/Kg	U	0.76	3.8

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	Bromomethane		ug/Kg	U	1.5	3.8
15B1 (18-20)	BV83374	SW6010	11/14/2016	1	Cadmium		mg/Kg	U	0.37	0.37
15B1 (18-20)	BV83374	SW6010	11/14/2016	1	Calcium	468	mg/Kg		3.4	3.7
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Carbazole		ug/Kg	U	160	200
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	Carbon Disulfide		ug/Kg	U	0.76	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	Carbon tetrachloride		ug/Kg	U	0.76	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	Chlorobenzene		ug/Kg	U	0.38	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	Chloroethane		ug/Kg	UJ	0.38	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	Chloroform		ug/Kg	U	0.38	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	Chloromethane		ug/Kg	U	0.76	3.8
15B1 (18-20)	BV83374	SW6010	11/14/2016	1	Chromium	5.75	mg/Kg		0.37	0.37
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Chrysene		ug/Kg	U	140	280
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	cis-1,2-Dichloroethene		ug/Kg	U	0.38	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	cis-1,3-Dichloropropene		ug/Kg	U	0.38	3.8
15B1 (18-20)	BV83374	SW6010	11/14/2016	1	Cobalt	3.19	mg/Kg		0.37	0.37
15B1 (18-20)	BV83374	SW6010	11/14/2016	1	Copper	6.20	mg/Kg		0.37	0.37
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Dibenz(a,h)anthracene		ug/Kg	U	130	200
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Dibenzofuran		ug/Kg	U	120	280
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	Dibromochloromethane		ug/Kg	U	0.76	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	Dibromomethane		ug/Kg	U	0.76	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	Dichlorodifluoromethane		ug/Kg	U	0.38	3.8
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Diethyl phthalate		ug/Kg	U	130	280
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Dimethylphthalate		ug/Kg	U	120	280
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Di-n-butylphthalate		ug/Kg	U	110	280
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Di-n-octylphthalate		ug/Kg	U	100	280
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	Ethylbenzene	39	ug/Kg		0.38	3.8
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Fluoranthene		ug/Kg	U	130	280
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Fluorene		ug/Kg	U	130	280
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Hexachlorobenzene		ug/Kg	U	120	200
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Hexachlorobutadiene		ug/Kg	UJ	150	280
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	Hexachlorobutadiene		ug/Kg	U	0.38	3.8
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Hexachlorocyclopentadiene		ug/Kg	UJ	120	280
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Hexachloroethane		ug/Kg	U	120	200
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Indeno(1,2,3-cd)pyrene		ug/Kg	U	130	280
15B1 (18-20)	BV83374	SW6010	11/14/2016	10	Iron	7760	mg/Kg		37	37
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Isophorone		ug/Kg	U	110	200
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	Isopropylbenzene	3.3	ug/Kg	J	0.38	3.8

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B1 (18-20)	BV83374	SW6010	11/14/2016	1	Lead	1.0	mg/Kg		0.37	0.7
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	m&p-Xylene	3.8	ug/Kg	U	0.76	3.8
15B1 (18-20)	BV83374	SW6010	11/14/2016	10	Magnesium	1320	mg/Kg		37	37
15B1 (18-20)	BV83374	SW6010	11/14/2016	1	Manganese	74.9	mg/Kg		0.37	0.37
15B1 (18-20)	BV83374	SW7471	11/14/2016	1	Mercury		mg/Kg	U	0.02	0.03
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	Methyl Ethyl Ketone		ug/Kg	UJ	3.8	23
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	Methyl t-butyl ether (MTBE)		ug/Kg	U	0.76	7.6
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	Methylene chloride		ug/Kg	U	3.8	3.8
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Naphthalene		ug/Kg	U	120	280
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	Naphthalene		ug/Kg	U	0.76	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	n-Butylbenzene	0.64	ug/Kg	J	0.38	3.8
15B1 (18-20)	BV83374	SW6010	11/14/2016	1	Nickel	6.98	mg/Kg		0.37	0.37
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Nitrobenzene		ug/Kg	U	140	200
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	N-Nitrosodimethylamine		ug/Kg	U	110	280
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	130	200
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	150	280
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	n-Propylbenzene	5.0	ug/Kg		0.76	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	o-Xylene		ug/Kg	U	0.76	3.8
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Pentachloronitrobenzene		ug/Kg	U	150	280
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Pentachlorophenol		ug/Kg	UJ	150	240
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Phenanthrene		ug/Kg	U	120	280
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Phenol		ug/Kg	U	130	280
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	p-Isopropyltoluene		ug/Kg	U	0.38	3.8
15B1 (18-20)	BV83374	SW6010	11/14/2016	1	Potassium	436	mg/Kg		2.9	7
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Pyrene		ug/Kg	U	140	280
15B1 (18-20)	BV83374	SW8270	11/14/2016	1	Pyridine		ug/Kg	UJ	99	280
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	sec-Butylbenzene	0.85	ug/Kg	J	0.38	3.8
15B1 (18-20)	BV83374	SW6010	11/14/2016	1	Selenium		mg/Kg	U	1.3	1.5
15B1 (18-20)	BV83374	SW6010	11/14/2016	1	Silver		mg/Kg	U	0.37	0.37
15B1 (18-20)	BV83374	SW6010	11/14/2016	1	Sodium	198	mg/Kg		3.2	7
15B1 (18-20)	BV83374	E160.3	11/14/2016	1	SOLIDS, PERCENT	82	%			
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	Styrene		ug/Kg	U	0.38	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	Tert-butyl alcohol		ug/Kg	U	15	76
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	tert-Butylbenzene		ug/Kg	U	0.38	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	Tetrachloroethene		ug/Kg	U	0.76	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	Tetrahydrofuran (THF)	4.0	ug/Kg	J	1.9	7.6
15B1 (18-20)	BV83374	SW6010	11/14/2016	1	Thallium		mg/Kg	U	1.5	1.5

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	Toluene		ug/Kg	U	0.38	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	trans-1,2-Dichloroethene		ug/Kg	U	0.38	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	trans-1,3-Dichloropropene		ug/Kg	U	0.38	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	trans-1,4-dichloro-2-butene		ug/Kg	U	1.9	7.6
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	Trichloroethene		ug/Kg	U	0.38	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	Trichlorofluoromethane		ug/Kg	U	0.76	3.8
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	Trichlorotrifluoroethane		ug/Kg	U	0.38	3.8
15B1 (18-20)	BV83374	SW6010	11/14/2016	1	Vanadium	8.97	mg/Kg		0.37	0.37
15B1 (18-20)	BV83374	SW8260	11/14/2016	1	Vinyl chloride		ug/Kg	U	0.38	3.8
15B1 (18-20)	BV83374	SW6010	11/14/2016	1	Zinc	12.9	mg/Kg		0.37	0.7
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	1,1,1,2-Tetrachloroethane		ug/Kg	U	83	1700
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	1,1,1-Trichloroethane		ug/Kg	U	41	410
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	1,1,2,2-Tetrachloroethane		ug/Kg	U	83	410
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	1,1,2-Trichloroethane		ug/Kg	U	83	410
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	1,1-Dichloroethane		ug/Kg	U	83	270
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	1,1-Dichloroethene		ug/Kg	U	41	330
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	1,1-Dichloropropene		ug/Kg	U	41	410
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	1,2,3-Trichlorobenzene		ug/Kg	U	83	410
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	1,2,3-Trichloropropane		ug/Kg	U	41	410
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	140	280
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	120	280
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	1,2,4-Trichlorobenzene		ug/Kg	U	83	410
15B2 (12-14)	BV83375	SW8260	11/14/2016		1,2,4-Trimethylbenzene	260	ug/Kg	J	41	410
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	1,2-Dibromo-3-chloropropane		ug/Kg	U	83	410
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	1,2-Dibromoethane		ug/Kg	U	41	410
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	1,2-Dichlorobenzene		ug/Kg	UJ	110	280
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	1,2-Dichlorobenzene		ug/Kg	U	41	410
15B2 (12-14)	BV83375	SW8260	11/14/2016		1,2-Dichloroethane		ug/Kg	U	41	41
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	1,2-Dichloropropane		ug/Kg	U	83	410
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	130	280
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	1,3,5-Trimethylbenzene		ug/Kg	UJ	41	410
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	1,3-Dichlorobenzene		ug/Kg	UJ	120	280
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	1,3-Dichlorobenzene		ug/Kg	U	41	410
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	1,3-Dichloropropane		ug/Kg	U	83	410
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	1,4-Dichlorobenzene		ug/Kg	UJ	120	280
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	1,4-Dichlorobenzene		ug/Kg	U	41	410
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	1,4-dioxane		ug/Kg	U	3300	3300

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	2,2-Dichloropropane		ug/Kg	U	41	410
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	2,4,5-Trichlorophenol		ug/Kg	Ū	220	280
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	130	200
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	2,4-Dichlorophenol		ug/Kg	U	140	200
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	2,4-Dimethylphenol		ug/Kg	U	100	280
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	2,4-Dinitrophenol		ug/Kg	UJ	280	280
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	2,4-Dinitrotoluene		ug/Kg	U	160	200
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	2,6-Dinitrotoluene		ug/Kg	U	130	200
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	2-Chloronaphthalene		ug/Kg	U	110	280
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	2-Chlorophenol		ug/Kg	U	110	280
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	2-Chlorotoluene		ug/Kg	U	83	410
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	2-Hexanone		ug/Kg	U	410	2100
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	2-Isopropyltoluene	150	ug/Kg	J	41	410
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	2-Methylnaphthalene	1500	ug/Kg		120	280
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	190	280
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	2-Nitroaniline		ug/Kg	U	280	280
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	2-Nitrophenol		ug/Kg	U	260	280
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	160	280
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	190	200
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	3-Nitroaniline		ug/Kg	U	800	400
15B2 (12-14)	BV83375	SW8081	11/14/2016	2	4,4' -DDD		ug/Kg	U	2.4	2.4
15B2 (12-14)	BV83375	SW8081	11/14/2016	2	4,4' -DDE		ug/Kg	U	2.4	2.4
15B2 (12-14)	BV83375	SW8081	11/14/2016	2	4,4' -DDT		ug/Kg	U	2.4	2.4
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	4,6-Dinitro-2-methylphenol		ug/Kg	UJ	80	240
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	120	280
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	140	280
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	4-Chloroaniline		ug/Kg	U	190	320
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	140	280
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	4-Chlorotoluene		ug/Kg	U	41	410
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	4-Methyl-2-pentanone		ug/Kg	U	410	2100
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	4-Nitroaniline		ug/Kg	U	130	400
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	4-Nitrophenol		ug/Kg	U	180	400
15B2 (12-14)	BV83375	SW8081	11/14/2016	2	a-BHC		ug/Kg	U	8.0	8.0
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Acenaphthene		ug/Kg	U	120	280
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Acenaphthylene		ug/Kg	U	110	280
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Acetone		ug/Kg	UJ	410	410
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Acetophenone		ug/Kg	U	130	280

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B2 (12-14)	BV83375	SW8081	11/14/2016	2	a-Chlordane		ug/Kg	U	4.0	4.0
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Acrolein		ug/Kg	UJ	210	1700
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Acrylonitrile		ug/Kg	U	41	1700
15B2 (12-14)	BV83375	SW8081	11/14/2016	2	Aldrin		ug/Kg	U	4.0	4.0
15B2 (12-14)	BV83375	SW6010	11/14/2016	10	Aluminum	4150	mg/Kg		8.3	42
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Aniline		ug/Kg	U	320	320
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Anthracene		ug/Kg	U	130	280
15B2 (12-14)	BV83375	SW6010	11/14/2016	1	Antimony		mg/Kg	U	2.1	2.1
15B2 (12-14)	BV83375	SW6010	11/14/2016	1	Arsenic	1.41	mg/Kg		0.83	0.83
15B2 (12-14)	BV83375	SW6010	11/14/2016	1	Barium	44.3	mg/Kg		0.42	0.8
15B2 (12-14)	BV83375	SW8081	11/14/2016	2	b-BHC		ug/Kg	U	8.0	8.0
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Benz(a)anthracene		ug/Kg	U	140	280
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Benzene		ug/Kg	U	41	60
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Benzidine		ug/Kg	UJ	240	400
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Benzo(a)pyrene		ug/Kg	U	130	200
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Benzo(b)fluoranthene		ug/Kg	U	140	280
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Benzo(ghi)perylene		ug/Kg	U	130	280
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Benzo(k)fluoranthene		ug/Kg	U	130	280
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Benzoic acid		ug/Kg	R	800	2000
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Benzyl butyl phthalate		ug/Kg	U	100	280
15B2 (12-14)	BV83375	SW6010	11/14/2016	1	Beryllium	0.35	mg/Kg		0.17	0.33
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	110	280
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	110	200
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	110	280
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	120	280
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Bromobenzene		ug/Kg	U	41	410
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Bromochloromethane		ug/Kg	U	41	410
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Bromodichloromethane		ug/Kg	U	83	410
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Bromoform		ug/Kg	U	83	410
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Bromomethane		ug/Kg	U	170	410
15B2 (12-14)	BV83375	SW6010	11/14/2016	1	Cadmium		mg/Kg	U	0.42	0.42
15B2 (12-14)	BV83375	SW6010	11/14/2016	1	Calcium	1170	mg/Kg		3.8	4.2
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Carbazole		ug/Kg	U	160	200
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Carbon Disulfide		ug/Kg	U	83	410
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Carbon tetrachloride		ug/Kg	U	83	410
15B2 (12-14)	BV83375	SW8081	11/14/2016	2	Chlordane		ug/Kg	U	40	40
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Chlorobenzene		ug/Kg	U	41	410

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Chloroethane		ug/Kg	UJ	41	410
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Chloroform		ug/Kg	U	41	370
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Chloromethane		ug/Kg	U	83	410
15B2 (12-14)	BV83375	SW6010	11/14/2016	1	Chromium	19.6	mg/Kg		0.42	0.42
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Chrysene		ug/Kg	U	140	280
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	cis-1,2-Dichloroethene		ug/Kg	U	41	250
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	cis-1,3-Dichloropropene		ug/Kg	U	41	410
15B2 (12-14)	BV83375	SW6010	11/14/2016	1	Cobalt	8.80	mg/Kg		0.42	0.42
15B2 (12-14)	BV83375	SW6010	11/14/2016	1	Copper	13.9	mg/Kg		0.42	0.42
15B2 (12-14)	BV83375	SW8081	11/14/2016	2	d-BHC		ug/Kg	U	8.0	8.0
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Dibenz(a,h)anthracene		ug/Kg	U	130	200
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Dibenzofuran		ug/Kg	U	120	280
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Dibromochloromethane		ug/Kg	U	83	410
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Dibromomethane		ug/Kg	U	83	410
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Dichlorodifluoromethane		ug/Kg	U	41	410
15B2 (12-14)	BV83375	SW8081	11/14/2016	2	Dieldrin		ug/Kg	U	4.0	4.0
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Diethyl phthalate		ug/Kg	U	130	280
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Dimethylphthalate		ug/Kg	U	120	280
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Di-n-butylphthalate		ug/Kg	U	110	280
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Di-n-octylphthalate		ug/Kg	U	100	280
15B2 (12-14)	BV83375	SW8081	11/14/2016	2	Endosulfan I		ug/Kg	U	8.0	8.0
15B2 (12-14)	BV83375	SW8081	11/14/2016	2	Endosulfan II		ug/Kg	U	8.0	8.0
15B2 (12-14)	BV83375	SW8081	11/14/2016	2	Endosulfan sulfate		ug/Kg	U	8.0	8.0
15B2 (12-14)	BV83375	SW8081	11/14/2016	2	Endrin		ug/Kg	U	8.0	8.0
15B2 (12-14)	BV83375	SW8081	11/14/2016	2	Endrin aldehyde		ug/Kg	U	8.0	8.0
15B2 (12-14)	BV83375	SW8081	11/14/2016	2	Endrin ketone		ug/Kg	U	8.0	8.0
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Ethylbenzene	420	ug/Kg	J	41	410
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Fluoranthene		ug/Kg	U	130	280
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Fluorene		ug/Kg	U	130	280
15B2 (12-14)	BV83375	SW8081	11/14/2016	2	g-BHC		ug/Kg	U	1.6	1.6
15B2 (12-14)	BV83375	SW8081	11/14/2016	2	g-Chlordane		ug/Kg	U	4.0	4.0
15B2 (12-14)	BV83375	SW8081	11/14/2016	2	Heptachlor		ug/Kg	U	8.0	8.0
15B2 (12-14)	BV83375	SW8081	11/14/2016	2	Heptachlor epoxide		ug/Kg	U	8.0	8.0
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Hexachlorobenzene		ug/Kg	U	120	200
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Hexachlorobutadiene		ug/Kg	UJ	150	280
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Hexachlorobutadiene		ug/Kg	U	41	410
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Hexachlorocyclopentadiene		ug/Kg	UJ	120	280

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Hexachloroethane		ug/Kg	U	120	200
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Indeno(1,2,3-cd)pyrene		ug/Kg	Ū	130	280
15B2 (12-14)	BV83375	SW6010	11/14/2016	10	Iron	8490	mg/Kg	J	42	42
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Isophorone		ug/Kg	U	110	200
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Isopropylbenzene	600	ug/Kg	J	41	410
15B2 (12-14)	BV83375	SW6010	11/14/2016	1	Lead	4.4	mg/Kg		0.42	0.8
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	m&p-Xylene		ug/Kg	UJ	83	410
15B2 (12-14)	BV83375	SW6010	11/14/2016	10	Magnesium	1650	mg/Kg		42	42
15B2 (12-14)	BV83375	SW6010	11/14/2016	10	Manganese	237	mg/Kg		4.2	4.2
15B2 (12-14)	BV83375	SW7471	11/14/2016	1	Mercury		mg/Kg	U	0.02	0.03
15B2 (12-14)	BV83375	SW8081	11/14/2016	2	Methoxychlor		ug/Kg	U	40	40
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Methyl Ethyl Ketone		ug/Kg	UJ	410	410
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Methyl t-butyl ether (MTBE)		ug/Kg	U	83	830
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Methylene chloride		ug/Kg	U	410	410
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Naphthalene	3000	ug/Kg		120	280
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Naphthalene	490	ug/Kg	J	83	410
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	n-Butylbenzene	410	ug/Kg	J	41	410
15B2 (12-14)	BV83375	SW6010	11/14/2016	1	Nickel	14.8	mg/Kg		0.42	0.42
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Nitrobenzene		ug/Kg	U	140	200
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	N-Nitrosodimethylamine		ug/Kg	U	110	280
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	130	200
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	150	280
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	n-Propylbenzene	2800	ug/Kg	J	83	410
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	o-Xylene		ug/Kg	U	83	410
15B2 (12-14)	BV83375	SW8082	11/14/2016	2	PCB-1016		ug/Kg	U	80	80
15B2 (12-14)	BV83375	SW8082	11/14/2016	2	PCB-1221		ug/Kg	U	80	80
15B2 (12-14)	BV83375	SW8082	11/14/2016	2	PCB-1232		ug/Kg	U	80	80
15B2 (12-14)	BV83375	SW8082	11/14/2016	2	PCB-1242		ug/Kg	U	80	80
15B2 (12-14)	BV83375	SW8082	11/14/2016	2	PCB-1248		ug/Kg	U	80	80
15B2 (12-14)	BV83375	SW8082	11/14/2016	2	PCB-1254		ug/Kg	U	80	80
15B2 (12-14)	BV83375	SW8082	11/14/2016	2	PCB-1260		ug/Kg	U	80	80
15B2 (12-14)	BV83375	SW8082	11/14/2016	2	PCB-1262		ug/Kg	U	80	80
15B2 (12-14)	BV83375	SW8082	11/14/2016	2	PCB-1268		ug/Kg	U	80	80
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Pentachloronitrobenzene		ug/Kg	U	150	280
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Pentachlorophenol		ug/Kg	UJ	150	240
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Phenanthrene		ug/Kg	U	120	280
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Phenol		ug/Kg	U	130	280

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	p-Isopropyltoluene	340	ug/Kg	J	41	410
15B2 (12-14)	BV83375	SW6010	11/14/2016	1	Potassium	1840	mg/Kg		3.3	8
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Pyrene		ug/Kg	U	140	280
15B2 (12-14)	BV83375	SW8270	11/14/2016	1	Pyridine		ug/Kg	UJ	99	280
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	sec-Butylbenzene	2000	ug/Kg	J	41	410
15B2 (12-14)	BV83375	SW6010	11/14/2016	1	Selenium		mg/Kg	U	1.4	1.7
15B2 (12-14)	BV83375	SW6010	11/14/2016	1	Silver		mg/Kg	U	0.42	0.42
15B2 (12-14)	BV83375	SW6010	11/14/2016	1	Sodium	341	mg/Kg		3.6	8
15B2 (12-14)	BV83375	E160.3	11/14/2016	1	SOLIDS, PERCENT	81	%			
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Styrene		ug/Kg	U	41	410
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Tert-butyl alcohol		ug/Kg	U	1700	8300
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	tert-Butylbenzene		ug/Kg	UJ	41	410
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Tetrachloroethene		ug/Kg	U	83	410
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Tetrahydrofuran (THF)		ug/Kg	UJ	210	830
15B2 (12-14)	BV83375	SW6010	11/14/2016	1	Thallium		mg/Kg	U	1.7	1.7
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Toluene		ug/Kg	U	41	410
15B2 (12-14)	BV83375	SW8081	11/14/2016	2	Toxaphene		ug/Kg	U	160	160
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	trans-1,2-Dichloroethene		ug/Kg	U	41	190
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	trans-1,3-Dichloropropene		ug/Kg	U	41	410
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	trans-1,4-dichloro-2-butene		ug/Kg	U	210	830
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Trichloroethene		ug/Kg	U	41	410
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Trichlorofluoromethane		ug/Kg	U	83	410
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Trichlorotrifluoroethane		ug/Kg	U	41	410
15B2 (12-14)	BV83375	SW6010	11/14/2016	1	Vanadium	29.3	mg/Kg		0.42	0.42
15B2 (12-14)	BV83375	SW8260	11/14/2016	50	Vinyl chloride		ug/Kg	U	41	41
15B2 (12-14)	BV83375	SW6010	11/14/2016	1	Zinc	36.2	mg/Kg		0.42	0.8
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	UJ	0.89	18
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	1,1,1-Trichloroethane		ug/Kg	UJ	0.44	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	UJ	0.89	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	1,1,2-Trichloroethane		ug/Kg	UJ	0.89	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	1,1-Dichloroethane		ug/Kg	UJ	0.89	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	1,1-Dichloroethene		ug/Kg	UJ	0.44	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	1,1-Dichloropropene		ug/Kg	UJ	0.44	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	1,2,3-Trichlorobenzene		ug/Kg	UJ	0.89	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	1,2,3-Trichloropropane		ug/Kg	UJ	0.44	4.4
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	140	290
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	120	290

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	1,2,4-Trichlorobenzene		ug/Kg	UJ	0.89	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	50	1,2,4-Trimethylbenzene	480	ug/Kg		33	330
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	UJ	0.89	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	1,2-Dibromoethane		ug/Kg	UJ	0.44	4.4
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	1,2-Dichlorobenzene		ug/Kg	UJ	120	290
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	1,2-Dichlorobenzene		ug/Kg	UJ	0.44	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	1,2-Dichloroethane		ug/Kg	UJ	0.44	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	1,2-Dichloropropane		ug/Kg	UJ	0.89	4.4
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	130	290
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	50	1,3,5-Trimethylbenzene	2300	ug/Kg		33	330
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	1,3-Dichlorobenzene		ug/Kg	UJ	120	290
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	1,3-Dichlorobenzene		ug/Kg	UJ	0.44	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	1,3-Dichloropropane		ug/Kg	UJ	0.89	4.4
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	1,4-Dichlorobenzene		ug/Kg	UJ	120	290
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	1,4-Dichlorobenzene		ug/Kg	UJ	0.44	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	1,4-dioxane		ug/Kg	UJ	35	66
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	2,2-Dichloropropane		ug/Kg	UJ	0.44	4.4
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	2,4,5-Trichlorophenol		ug/Kg	U	230	290
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	130	210
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	2,4-Dichlorophenol		ug/Kg	U	140	210
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	2,4-Dimethylphenol		ug/Kg	U	100	290
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	2,4-Dinitrophenol		ug/Kg	UJ	290	290
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	2,4-Dinitrotoluene		ug/Kg	U	160	210
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	2,6-Dinitrotoluene		ug/Kg	U	130	210
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	2-Chloronaphthalene		ug/Kg	U	120	290
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	2-Chlorophenol		ug/Kg	U	120	290
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	2-Chlorotoluene		ug/Kg	UJ	0.89	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	2-Hexanone		ug/Kg	UJ	4.4	22
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	2-Isopropyltoluene	14	ug/Kg	J	0.44	4.4
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	2-Methylnaphthalene		ug/Kg	U	120	290
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	190	290
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	2-Nitroaniline		ug/Kg	U	290	290
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	2-Nitrophenol		ug/Kg	U	260	290
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	160	290
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	190	210
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	3-Nitroaniline		ug/Kg	U	820	410
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	4,6-Dinitro-2-methylphenol		ug/Kg	UJ	82	250

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	120	290
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	140	290
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	4-Chloroaniline		ug/Kg	U	190	330
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	140	290
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	4-Chlorotoluene		ug/Kg	UJ	0.44	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	4-Methyl-2-pentanone		ug/Kg	UJ	4.4	22
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	4-Nitroaniline		ug/Kg	U	140	410
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	4-Nitrophenol		ug/Kg	U	190	410
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Acenaphthene		ug/Kg	U	120	290
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Acenaphthylene		ug/Kg	U	120	290
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	Acetone		ug/Kg	UJ	4.4	22
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Acetophenone		ug/Kg	U	130	290
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	Acrolein		ug/Kg	UJ	2.2	18
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	Acrylonitrile		ug/Kg	UJ	0.44	18
15B2 (22.5-25)	BV83376	SW6010	11/14/2016	10	Aluminum	5080	mg/Kg		8.0	40
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Aniline		ug/Kg	U	330	330
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Anthracene		ug/Kg	U	130	290
15B2 (22.5-25)	BV83376	SW6010	11/14/2016	1	Antimony		mg/Kg	U	2.0	2.0
15B2 (22.5-25)	BV83376	SW6010	11/14/2016	1	Arsenic	1.09	mg/Kg		0.80	0.80
15B2 (22.5-25)	BV83376	SW6010	11/14/2016	1	Barium	25.4	mg/Kg		0.40	0.8
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Benz(a)anthracene		ug/Kg	U	140	290
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	Benzene		ug/Kg	UJ	0.44	4.4
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Benzidine		ug/Kg	UJ	240	410
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Benzo(a)pyrene		ug/Kg	U	130	210
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Benzo(b)fluoranthene		ug/Kg	U	140	290
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Benzo(ghi)perylene		ug/Kg	U	130	290
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Benzo(k)fluoranthene		ug/Kg	U	140	290
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Benzoic acid		ug/Kg	R	820	2100
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Benzyl butyl phthalate		ug/Kg	U	110	290
15B2 (22.5-25)	BV83376	SW6010	11/14/2016	1	Beryllium	0.19	mg/Kg	J	0.16	0.32
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	110	290
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	110	210
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	110	290
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	120	290
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	Bromobenzene		ug/Kg	UJ	0.44	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	Bromochloromethane		ug/Kg	UJ	0.44	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	Bromodichloromethane		ug/Kg	UJ	0.89	4.4

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	Bromoform		ug/Kg	UJ	0.89	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	Bromomethane		ug/Kg	UJ	1.8	4.4
15B2 (22.5-25)	BV83376	SW6010	11/14/2016	1	Cadmium		mg/Kg	U	0.40	0.40
15B2 (22.5-25)	BV83376	SW6010	11/14/2016	10	Calcium	750	mg/Kg		37	40
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Carbazole		ug/Kg	U	160	210
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	Carbon Disulfide	2.2	ug/Kg	J	0.89	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	Carbon tetrachloride		ug/Kg	UJ	0.89	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	Chlorobenzene		ug/Kg	UJ	0.44	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	Chloroethane		ug/Kg	UJ	0.44	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	Chloroform		ug/Kg	UJ	0.44	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	Chloromethane		ug/Kg	UJ	0.89	4.4
15B2 (22.5-25)	BV83376	SW6010	11/14/2016	1	Chromium	10.9	mg/Kg		0.40	0.40
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Chrysene		ug/Kg	U	140	290
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	cis-1,2-Dichloroethene		ug/Kg	UJ	0.44	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	cis-1,3-Dichloropropene		ug/Kg	UJ	0.44	4.4
15B2 (22.5-25)	BV83376	SW6010	11/14/2016	1	Cobalt	4.95	mg/Kg		0.40	0.40
15B2 (22.5-25)	BV83376	SW6010	11/14/2016	1	Copper	8.23	mg/Kg		0.40	0.40
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Dibenz(a,h)anthracene		ug/Kg	U	130	210
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Dibenzofuran		ug/Kg	U	120	290
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	Dibromochloromethane		ug/Kg	UJ	0.89	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	Dibromomethane		ug/Kg	UJ	0.89	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	Dichlorodifluoromethane		ug/Kg	UJ	0.44	4.4
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Diethyl phthalate		ug/Kg	U	130	290
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Dimethylphthalate		ug/Kg	U	130	290
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Di-n-butylphthalate		ug/Kg	U	110	290
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Di-n-octylphthalate		ug/Kg	U	110	290
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	50	Ethylbenzene	500	ug/Kg		33	330
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Fluoranthene		ug/Kg	U	130	290
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Fluorene		ug/Kg	U	140	290
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Hexachlorobenzene		ug/Kg	U	120	210
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Hexachlorobutadiene		ug/Kg	UJ	150	290
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	Hexachlorobutadiene		ug/Kg	UJ	0.44	4.4
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Hexachlorocyclopentadiene		ug/Kg	UJ	130	290
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Hexachloroethane		ug/Kg	U	120	210
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Indeno(1,2,3-cd)pyrene		ug/Kg	U	140	290
15B2 (22.5-25)	BV83376	SW6010	11/14/2016	10	Iron	9490	mg/Kg		40	40
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Isophorone		ug/Kg	U	120	210

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	50	Isopropylbenzene	500	ug/Kg		33	330
15B2 (22.5-25)	BV83376	SW6010	11/14/2016	1	Lead	1.4	mg/Kg		0.40	0.8
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	50	m&p-Xylene	500	ug/Kg		65	330
15B2 (22.5-25)	BV83376	SW6010	11/14/2016	1	Magnesium	1910	mg/Kg		4.0	4.0
15B2 (22.5-25)	BV83376	SW6010	11/14/2016	10	Manganese	175	mg/Kg		4.0	4.0
15B2 (22.5-25)	BV83376	SW7471	11/14/2016	1	Mercury		mg/Kg	U	0.02	0.03
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	Methyl Ethyl Ketone		ug/Kg	UJ	4.4	27
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	Methyl t-butyl ether (MTBE)		ug/Kg	UJ	0.89	8.9
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	Methylene chloride		ug/Kg	UJ	4.4	4.4
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Naphthalene		ug/Kg	U	120	290
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	50	Naphthalene	390	ug/Kg		65	330
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	50	n-Butylbenzene	1200	ug/Kg		33	330
15B2 (22.5-25)	BV83376	SW6010	11/14/2016	1	Nickel	8.76	mg/Kg		0.40	0.40
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Nitrobenzene		ug/Kg	U	140	210
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	N-Nitrosodimethylamine		ug/Kg	U	120	290
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	130	210
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	160	290
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	50	n-Propylbenzene	2000	ug/Kg		65	330
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	o-Xylene	29	ug/Kg	J	0.89	4.4
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Pentachloronitrobenzene		ug/Kg	U	150	290
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Pentachlorophenol		ug/Kg	UJ	160	250
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Phenanthrene		ug/Kg	U	120	290
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Phenol		ug/Kg	U	130	290
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	p-Isopropyltoluene	71	ug/Kg	J	0.44	4.4
15B2 (22.5-25)	BV83376	SW6010	11/14/2016	1	Potassium	943	mg/Kg		3.1	8
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Pyrene		ug/Kg	U	140	290
15B2 (22.5-25)	BV83376	SW8270	11/14/2016	1	Pyridine		ug/Kg	UJ	100	290
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	50	sec-Butylbenzene	350	ug/Kg		33	330
15B2 (22.5-25)	BV83376	SW6010	11/14/2016	1	Selenium		mg/Kg	U	1.4	1.6
15B2 (22.5-25)	BV83376	SW6010	11/14/2016	1	Silver		mg/Kg	U	0.40	0.40
15B2 (22.5-25)	BV83376	SW6010	11/14/2016	1	Sodium	168	mg/Kg		3.4	8
15B2 (22.5-25)	BV83376	E160.3	11/14/2016	1	SOLIDS, PERCENT	79	%			
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	Styrene		ug/Kg	UJ	0.44	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	Tert-butyl alcohol		ug/Kg	UJ	18	89
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	tert-Butylbenzene	8.9	ug/Kg	J	0.44	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	Tetrachloroethene		ug/Kg	UJ	0.89	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	Tetrahydrofuran (THF)		ug/Kg	UJ	2.2	8.9

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B2 (22.5-25)	BV83376	SW6010	11/14/2016	1	Thallium		mg/Kg	U	1.6	1.6
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	Toluene		ug/Kg	UJ	0.44	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	trans-1,2-Dichloroethene		ug/Kg	UJ	0.44	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	trans-1,3-Dichloropropene		ug/Kg	UJ	0.44	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	trans-1,4-dichloro-2-butene		ug/Kg	UJ	2.2	8.9
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	Trichloroethene		ug/Kg	UJ	0.44	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	Trichlorofluoromethane		ug/Kg	UJ	0.89	4.4
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	Trichlorotrifluoroethane		ug/Kg	UJ	0.44	4.4
15B2 (22.5-25)	BV83376	SW6010	11/14/2016	1	Vanadium	14.7	mg/Kg		0.40	0.40
15B2 (22.5-25)	BV83376	SW8260	11/14/2016	1	Vinyl chloride		ug/Kg	UJ	0.44	4.4
15B2 (22.5-25)	BV83376	SW6010	11/14/2016	1	Zinc	20.5	mg/Kg		0.40	0.8
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	0.71	14
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	1,1,1-Trichloroethane		ug/Kg	U	0.36	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	0.71	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	1,1,2-Trichloroethane		ug/Kg	U	0.71	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	1,1-Dichloroethane		ug/Kg	U	0.71	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	1,1-Dichloroethene		ug/Kg	U	0.36	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	1,1-Dichloropropene		ug/Kg	U	0.36	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	1,2,3-Trichlorobenzene		ug/Kg	UJ	0.71	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	1,2,3-Trichloropropane		ug/Kg	U	0.36	3.6
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	130	250
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	110	250
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	1,2,4-Trichlorobenzene		ug/Kg	UJ	0.71	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	1,2,4-Trimethylbenzene	0.66	ug/Kg	J	0.36	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	0.71	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	1,2-Dibromoethane		ug/Kg	U	0.36	3.6
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	1,2-Dichlorobenzene		ug/Kg	UJ	100	250
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	1,2-Dichlorobenzene		ug/Kg	U	0.36	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	1,2-Dichloroethane		ug/Kg	U	0.36	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	1,2-Dichloropropane		ug/Kg	U	0.71	3.6
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	120	250
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	1,3,5-Trimethylbenzene	0.51	ug/Kg	J	0.36	3.6
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	1,3-Dichlorobenzene		ug/Kg	UJ	110	250
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	1,3-Dichlorobenzene		ug/Kg	U	0.36	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	1,3-Dichloropropane		ug/Kg	U	0.71	3.6
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	1,4-Dichlorobenzene		ug/Kg	UJ	110	250
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	1,4-Dichlorobenzene		ug/Kg	U	0.36	3.6

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	1,4-dioxane		ug/Kg	U	28	53
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	2,2-Dichloropropane		ug/Kg	U	0.36	3.6
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	2,4,5-Trichlorophenol		ug/Kg	U	200	250
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	120	180
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	2,4-Dichlorophenol		ug/Kg	U	130	180
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	2,4-Dimethylphenol		ug/Kg	U	90	250
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	2,4-Dinitrophenol		ug/Kg	UJ	250	250
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	2,4-Dinitrotoluene		ug/Kg	U	140	180
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	2,6-Dinitrotoluene		ug/Kg	U	110	180
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	2-Chloronaphthalene		ug/Kg	U	100	250
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	2-Chlorophenol		ug/Kg	U	100	250
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	2-Chlorotoluene		ug/Kg	U	0.71	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	2-Hexanone		ug/Kg	U	3.6	18
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	2-Isopropyltoluene		ug/Kg	U	0.36	3.6
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	2-Methylnaphthalene		ug/Kg	U	110	250
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	170	250
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	2-Nitroaniline		ug/Kg	U	250	250
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	2-Nitrophenol		ug/Kg	U	230	250
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	140	250
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	170	180
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	3-Nitroaniline		ug/Kg	U	730	360
15B10 (10-15)	BV83377	SW8081	11/14/2016	2	4,4' -DDD		ug/Kg	U	2.2	2.2
15B10 (10-15)	BV83377	SW8081	11/14/2016	2	4,4' -DDE		ug/Kg	U	2.2	2.2
15B10 (10-15)	BV83377	SW8081	11/14/2016	2	4,4' -DDT		ug/Kg	U	2.2	2.2
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	4,6-Dinitro-2-methylphenol		ug/Kg	UJ	73	220
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	110	250
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	130	250
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	4-Chloroaniline		ug/Kg	U	170	290
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	120	250
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	4-Chlorotoluene		ug/Kg	U	0.36	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	4-Methyl-2-pentanone		ug/Kg	U	3.6	18
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	4-Nitroaniline		ug/Kg	U	120	360
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	4-Nitrophenol		ug/Kg	U	160	360
15B10 (10-15)	BV83377	SW8081	11/14/2016	2	a-BHC		ug/Kg	U	7.4	7.4
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Acenaphthene		ug/Kg	U	110	250
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Acenaphthylene		ug/Kg	U	100	250
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	Acetone	18	ug/Kg	UJ	3.6	18

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Acetophenone		ug/Kg	U	110	250
15B10 (10-15)	BV83377	SW8081	11/14/2016	2	a-Chlordane		ug/Kg	U	3.7	3.7
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	Acrolein		ug/Kg	UJ	1.8	14
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	Acrylonitrile		ug/Kg	U	0.36	14
15B10 (10-15)	BV83377	SW8081	11/14/2016	2	Aldrin		ug/Kg	U	3.7	3.7
15B10 (10-15)	BV83377	SW6010	11/14/2016	10	Aluminum	4600	mg/Kg		6.9	35
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Aniline		ug/Kg	U	290	290
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Anthracene		ug/Kg	U	120	250
15B10 (10-15)	BV83377	SW6010	11/14/2016	1	Antimony		mg/Kg	U	1.7	1.7
15B10 (10-15)	BV83377	SW6010	11/14/2016	1	Arsenic	1.28	mg/Kg		0.69	0.69
15B10 (10-15)	BV83377	SW6010	11/14/2016	1	Barium	20.0	mg/Kg		0.35	0.7
15B10 (10-15)	BV83377	SW8081	11/14/2016	2	b-BHC		ug/Kg	U	7.4	7.4
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Benz(a)anthracene		ug/Kg	U	120	250
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	Benzene		ug/Kg	U	0.36	3.6
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Benzidine		ug/Kg	UJ	210	360
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Benzo(a)pyrene		ug/Kg	U	120	180
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Benzo(b)fluoranthene		ug/Kg	U	120	250
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Benzo(ghi)perylene		ug/Kg	U	120	250
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Benzo(k)fluoranthene		ug/Kg	U	120	250
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Benzoic acid		ug/Kg	R	730	1800
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Benzyl butyl phthalate		ug/Kg	U	94	250
15B10 (10-15)	BV83377	SW6010	11/14/2016	1	Beryllium	0.19	mg/Kg	J	0.14	0.28
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	100	250
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	98	180
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	100	250
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	100	250
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	Bromobenzene		ug/Kg	U	0.36	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	Bromochloromethane		ug/Kg	U	0.36	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	Bromodichloromethane		ug/Kg	U	0.71	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	Bromoform		ug/Kg	U	0.71	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	Bromomethane		ug/Kg	U	1.4	3.6
15B10 (10-15)	BV83377	SW6010	11/14/2016	1	Cadmium		mg/Kg	U	0.35	0.35
15B10 (10-15)	BV83377	SW6010	11/14/2016	10	Calcium	1060	mg/Kg		32	35
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Carbazole		ug/Kg	U	150	180
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	Carbon Disulfide		ug/Kg	U	0.71	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	Carbon tetrachloride		ug/Kg	U	0.71	3.6
15B10 (10-15)	BV83377	SW8081	11/14/2016	2	Chlordane		ug/Kg	U	37	37

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	Chlorobenzene		ug/Kg	U	0.36	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	Chloroethane		ug/Kg	UJ	0.36	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	Chloroform		ug/Kg	U	0.36	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	Chloromethane		ug/Kg	U	0.71	3.6
15B10 (10-15)	BV83377	SW6010	11/14/2016	1	Chromium	14.9	mg/Kg		0.35	0.35
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Chrysene		ug/Kg	U	120	250
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	cis-1,2-Dichloroethene		ug/Kg	U	0.36	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	cis-1,3-Dichloropropene		ug/Kg	U	0.36	3.6
15B10 (10-15)	BV83377	SW6010	11/14/2016	1	Cobalt	4.49	mg/Kg		0.35	0.35
15B10 (10-15)	BV83377	SW6010	11/14/2016	1	Copper	8.89	mg/Kg		0.35	0.35
15B10 (10-15)	BV83377	SW8081	11/14/2016	2	d-BHC		ug/Kg	U	7.4	7.4
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Dibenz(a,h)anthracene		ug/Kg	U	120	180
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Dibenzofuran		ug/Kg	U	110	250
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	Dibromochloromethane		ug/Kg	U	0.71	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	Dibromomethane		ug/Kg	U	0.71	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	Dichlorodifluoromethane		ug/Kg	U	0.36	3.6
15B10 (10-15)	BV83377	SW8081	11/14/2016	2	Dieldrin		ug/Kg	U	3.7	3.7
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Diethyl phthalate		ug/Kg	U	110	250
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Dimethylphthalate		ug/Kg	U	110	250
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Di-n-butylphthalate		ug/Kg	U	97	250
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Di-n-octylphthalate		ug/Kg	U	94	250
15B10 (10-15)	BV83377	SW8081	11/14/2016	2	Endosulfan I		ug/Kg	U	7.4	7.4
15B10 (10-15)	BV83377	SW8081	11/14/2016	2	Endosulfan II		ug/Kg	U	7.4	7.4
15B10 (10-15)	BV83377	SW8081	11/14/2016	2	Endosulfan sulfate		ug/Kg	U	7.4	7.4
15B10 (10-15)	BV83377	SW8081	11/14/2016	2	Endrin		ug/Kg	U	7.4	7.4
15B10 (10-15)	BV83377	SW8081	11/14/2016	2	Endrin aldehyde		ug/Kg	U	7.4	7.4
15B10 (10-15)	BV83377	SW8081	11/14/2016	2	Endrin ketone		ug/Kg	U	7.4	7.4
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	Ethylbenzene	3.6	ug/Kg	U	0.36	3.6
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Fluoranthene		ug/Kg	U	120	250
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Fluorene		ug/Kg	U	120	250
15B10 (10-15)	BV83377	SW8081	11/14/2016	2	g-BHC		ug/Kg	U	1.5	1.5
15B10 (10-15)	BV83377	SW8081	11/14/2016	2	g-Chlordane		ug/Kg	U	3.7	3.7
15B10 (10-15)	BV83377	SW8081	11/14/2016		Heptachlor		ug/Kg	U	7.4	7.4
15B10 (10-15)	BV83377	SW8081	11/14/2016		Heptachlor epoxide		ug/Kg	U	7.4	7.4
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Hexachlorobenzene		ug/Kg	U	110	180
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Hexachlorobutadiene		ug/Kg	UJ	130	250
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	Hexachlorobutadiene		ug/Kg	UJ	0.36	3.6

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Hexachlorocyclopentadiene		ug/Kg	UJ	110	250
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Hexachloroethane		ug/Kg	U	110	180
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Indeno(1,2,3-cd)pyrene		ug/Kg	U	120	250
15B10 (10-15)	BV83377	SW6010	11/14/2016	10	Iron	11200	mg/Kg		35	35
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Isophorone		ug/Kg	U	100	180
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	Isopropylbenzene		ug/Kg	U	0.36	3.6
15B10 (10-15)	BV83377	SW6010	11/14/2016	1	Lead	2.2	mg/Kg		0.35	0.7
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	m&p-Xylene	3.6	ug/Kg	U	0.71	3.6
15B10 (10-15)	BV83377	SW6010	11/14/2016	1	Magnesium	1530	mg/Kg		3.5	3.5
15B10 (10-15)	BV83377	SW6010	11/14/2016	10	Manganese	180	mg/Kg		3.5	3.5
15B10 (10-15)	BV83377	SW7471	11/14/2016	1	Mercury		mg/Kg	U	0.02	0.03
15B10 (10-15)	BV83377	SW8081	11/14/2016	2	Methoxychlor		ug/Kg	U	37	37
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	Methyl Ethyl Ketone		ug/Kg	UJ	3.6	21
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	Methyl t-butyl ether (MTBE)		ug/Kg	U	0.71	7.1
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	Methylene chloride		ug/Kg	U	3.6	3.6
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Naphthalene		ug/Kg	U	100	250
15B10 (10-15)	BV83377	SW8260	11/14/2016	50	Naphthalene	240	ug/Kg		43	210
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	n-Butylbenzene		ug/Kg	U	0.36	3.6
15B10 (10-15)	BV83377	SW6010	11/14/2016	1	Nickel	9.29	mg/Kg		0.35	0.35
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Nitrobenzene		ug/Kg	U	130	180
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	N-Nitrosodimethylamine		ug/Kg	U	100	250
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	120	180
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	140	250
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	n-Propylbenzene		ug/Kg	U	0.71	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	o-Xylene		ug/Kg	U	0.71	3.6
15B10 (10-15)	BV83377	SW8082	11/14/2016	2	PCB-1016		ug/Kg	U	74	74
15B10 (10-15)	BV83377	SW8082	11/14/2016	2	PCB-1221		ug/Kg	U	74	74
15B10 (10-15)	BV83377	SW8082	11/14/2016	2	PCB-1232		ug/Kg	U	74	74
15B10 (10-15)	BV83377	SW8082	11/14/2016	2	PCB-1242		ug/Kg	U	74	74
15B10 (10-15)	BV83377	SW8082	11/14/2016	2	PCB-1248		ug/Kg	U	74	74
15B10 (10-15)	BV83377	SW8082	11/14/2016	2	PCB-1254		ug/Kg	U	74	74
15B10 (10-15)	BV83377	SW8082	11/14/2016	2	PCB-1260		ug/Kg	U	74	74
15B10 (10-15)	BV83377	SW8082	11/14/2016	2	PCB-1262		ug/Kg	U	74	74
15B10 (10-15)	BV83377	SW8082	11/14/2016	2	PCB-1268		ug/Kg	U	74	74
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Pentachloronitrobenzene		ug/Kg	U	140	250
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Pentachlorophenol		ug/Kg	UJ	140	220
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Phenanthrene		ug/Kg	U	100	250

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Phenol		ug/Kg	U	120	250
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	p-Isopropyltoluene		ug/Kg	U	0.36	3.6
15B10 (10-15)	BV83377	SW6010	11/14/2016	1	Potassium	546	mg/Kg		2.7	7
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Pyrene		ug/Kg	U	130	250
15B10 (10-15)	BV83377	SW8270	11/14/2016	1	Pyridine		ug/Kg	UJ	90	250
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	sec-Butylbenzene		ug/Kg	U	0.36	3.6
15B10 (10-15)	BV83377	SW6010	11/14/2016	1	Selenium		mg/Kg	U	1.2	1.4
15B10 (10-15)	BV83377	SW6010	11/14/2016	1	Silver		mg/Kg	U	0.35	0.35
15B10 (10-15)	BV83377	SW6010	11/14/2016	1	Sodium	131	mg/Kg		3.0	7
15B10 (10-15)	BV83377	E160.3	11/14/2016	1	SOLIDS, PERCENT	90	%			
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	Styrene		ug/Kg	U	0.36	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	Tert-butyl alcohol		ug/Kg	U	14	71
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	tert-Butylbenzene		ug/Kg	U	0.36	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	Tetrachloroethene		ug/Kg	U	0.71	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	Tetrahydrofuran (THF)		ug/Kg	UJ	1.8	7.1
15B10 (10-15)	BV83377	SW6010	11/14/2016	1	Thallium		mg/Kg	U	1.4	1.4
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	Toluene		ug/Kg	U	0.36	3.6
15B10 (10-15)	BV83377	SW8081	11/14/2016	2	Toxaphene		ug/Kg	U	150	150
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	trans-1,2-Dichloroethene		ug/Kg	U	0.36	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016		trans-1,3-Dichloropropene		ug/Kg	U	0.36	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016		trans-1,4-dichloro-2-butene		ug/Kg	U	1.8	7.1
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	Trichloroethene		ug/Kg	U	0.36	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	Trichlorofluoromethane		ug/Kg	U	0.71	3.6
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	Trichlorotrifluoroethane		ug/Kg	U	0.36	3.6
15B10 (10-15)	BV83377	SW6010	11/14/2016	1	Vanadium	17.1	mg/Kg		0.35	0.35
15B10 (10-15)	BV83377	SW8260	11/14/2016	1	Vinyl chloride		ug/Kg	U	0.36	3.6
15B10 (10-15)	BV83377	SW6010	11/14/2016	1	Zinc	18.5	mg/Kg		0.35	0.7
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	1,1,1,2-Tetrachloroethane		ug/Kg	U	72	1400
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	1,1,1-Trichloroethane		ug/Kg	U	36	360
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	1,1,2,2-Tetrachloroethane		ug/Kg	U	72	360
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	1,1,2-Trichloroethane		ug/Kg	U	72	360
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	1,1-Dichloroethane		ug/Kg	U	72	270
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	1,1-Dichloroethene		ug/Kg	U	36	330
15B9 (3-5)	BV83378	SW8260	11/14/2016		1,1-Dichloropropene		ug/Kg	U	36	360
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	1,2,3-Trichlorobenzene		ug/Kg	U	72	360
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	1,2,3-Trichloropropane		ug/Kg	U	36	360
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	130	260

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	1,2,4-Trichlorobenzene		ug/Kg	U	72	360
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	110	260
15B9 (3-5)	BV83378	SW8260	11/14/2016	1000	1,2,4-Trimethylbenzene	44000	ug/Kg		720	3600
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	1,2-Dibromo-3-chloropropane		ug/Kg	U	72	360
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	1,2-Dibromoethane		ug/Kg	U	36	360
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	1,2-Dichlorobenzene		ug/Kg	U	36	360
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	1,2-Dichlorobenzene	120	ug/Kg	J	100	260
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	1,2-Dichloroethane		ug/Kg	U	36	36
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	1,2-Dichloropropane		ug/Kg	U	72	360
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	120	260
15B9 (3-5)	BV83378	SW8260	11/14/2016	1000	1,3,5-Trimethylbenzene	13000	ug/Kg		720	7200
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	1,3-Dichlorobenzene		ug/Kg	U	36	360
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	1,3-Dichlorobenzene		ug/Kg	UJ	110	260
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	1,3-Dichloropropane		ug/Kg	U	72	360
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	1,4-Dichlorobenzene		ug/Kg	U	36	360
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	1,4-Dichlorobenzene		ug/Kg	UJ	110	260
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	1,4-dioxane		ug/Kg	U	2900	2900
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	2,2-Dichloropropane		ug/Kg	U	36	360
15B9 (3-5)	BV83378	SW8270	11/14/2016		2,4,5-Trichlorophenol		ug/Kg	U	200	260
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	120	190
15B9 (3-5)	BV83378	SW8270	11/14/2016		2,4-Dichlorophenol		ug/Kg	U	130	190
15B9 (3-5)	BV83378	SW8270	11/14/2016		2,4-Dimethylphenol	170	ug/Kg	J	92	260
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	2,4-Dinitrophenol		ug/Kg	UJ	260	260
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	2,4-Dinitrotoluene		ug/Kg	U	150	190
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	2,6-Dinitrotoluene		ug/Kg	U	120	190
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	2-Chloronaphthalene		ug/Kg	U	110	260
15B9 (3-5)	BV83378	SW8270	11/14/2016		2-Chlorophenol		ug/Kg	U	110	260
15B9 (3-5)	BV83378	SW8260	11/14/2016		2-Chlorotoluene		ug/Kg	U	72	360
15B9 (3-5)	BV83378	SW8260	11/14/2016		2-Hexanone		ug/Kg	U	360	1800
15B9 (3-5)	BV83378	SW8260	11/14/2016		2-Isopropyltoluene	160	ug/Kg	J	36	360
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	2-Methylnaphthalene	1600	ug/Kg		110	260
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	170	260
15B9 (3-5)	BV83378	SW8270	11/14/2016		2-Nitroaniline		ug/Kg	U	260	260
15B9 (3-5)	BV83378	SW8270	11/14/2016		2-Nitrophenol		ug/Kg	U	240	260
15B9 (3-5)	BV83378	SW8270	11/14/2016		3&4-Methylphenol (m&p-cresol)		ug/Kg	U	150	260
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	3,3'-Dichlorobenzidine		ug/Kg	UJ	180	190
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	3-Nitroaniline		ug/Kg	U	740	370

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	4,6-Dinitro-2-methylphenol		ug/Kg	UJ	74	220
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	110	260
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	130	260
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	4-Chloroaniline		ug/Kg	U	170	300
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	120	260
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	4-Chlorotoluene		ug/Kg	U	36	360
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	4-Methyl-2-pentanone		ug/Kg	U	360	1800
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	4-Nitroaniline		ug/Kg	U	120	370
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	4-Nitrophenol		ug/Kg	U	170	370
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Acenaphthene	410	ug/Kg		110	260
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Acenaphthylene	170	ug/Kg	J	100	260
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	Acetone	640	ug/Kg	J	360	360
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Acetophenone		ug/Kg	U	120	260
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	Acrolein		ug/Kg	UJ	180	1400
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	Acrylonitrile		ug/Kg	U	36	1400
15B9 (3-5)	BV83378	SW6010	11/14/2016	10	Aluminum	6550	mg/Kg		7.9	39
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Aniline		ug/Kg	U	300	300
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Anthracene	660	ug/Kg		120	260
15B9 (3-5)	BV83378	SW6010	11/14/2016	1	Antimony	3.3	mg/Kg		2.0	2.0
15B9 (3-5)	BV83378	SW6010	11/14/2016	1	Arsenic	7.72	mg/Kg		0.79	0.79
15B9 (3-5)	BV83378	SW6010	11/14/2016	1	Barium	261	mg/Kg		0.39	8.0
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Benz(a)anthracene	1500	ug/Kg	J	120	260
15B9 (3-5)	BV83378	SW8260	11/14/2016	1000	Benzene	800	ug/Kg		720	720
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Benzidine		ug/Kg	UJ	220	370
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Benzo(a)pyrene	1100	ug/Kg	J	120	190
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Benzo(b)fluoranthene	1100	ug/Kg	J	130	260
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Benzo(ghi)perylene	640	ug/Kg	J	120	260
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Benzo(k)fluoranthene	900	ug/Kg	J	120	260
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Benzoic acid		ug/Kg	R	740	1900
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Benzyl butyl phthalate		ug/Kg	UJ	96	260
15B9 (3-5)	BV83378	SW6010	11/14/2016	1	Beryllium	0.34	mg/Kg		0.16	0.31
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	100	260
15B9 (3-5)	BV83378	SW8270	11/14/2016		Bis(2-chloroethyl)ether		ug/Kg	U	100	190
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	100	260
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Bis(2-ethylhexyl)phthalate	1600	ug/Kg	J	110	260
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	Bromobenzene		ug/Kg	U	36	360
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	Bromochloromethane		ug/Kg	U	36	360

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	Bromodichloromethane		ug/Kg	U	72	360
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	Bromoform		ug/Kg	UJ	72	360
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	Bromomethane		ug/Kg	U	140	360
15B9 (3-5)	BV83378	SW6010	11/14/2016	1	Cadmium	1.60	mg/Kg		0.39	0.39
15B9 (3-5)	BV83378	SW6010	11/14/2016	10	Calcium	12900	mg/Kg		36	39
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Carbazole	360	ug/Kg		150	190
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	Carbon Disulfide		ug/Kg	U	72	360
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	Carbon tetrachloride		ug/Kg	U	72	360
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	Chlorobenzene		ug/Kg	U	36	360
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	Chloroethane		ug/Kg	UJ	36	360
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	Chloroform		ug/Kg	U	36	360
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	Chloromethane		ug/Kg	U	72	360
15B9 (3-5)	BV83378	SW6010	11/14/2016	1	Chromium	20.0	mg/Kg		0.39	0.39
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Chrysene	1600	ug/Kg	J	120	260
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	cis-1,2-Dichloroethene		ug/Kg	U	36	250
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	cis-1,3-Dichloropropene		ug/Kg	U	36	360
15B9 (3-5)	BV83378	SW6010	11/14/2016	1	Cobalt	6.21	mg/Kg		0.39	0.39
15B9 (3-5)	BV83378	SW6010	11/14/2016	10	Copper	170	mg/Kg		3.9	3.9
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Dibenz(a,h)anthracene		ug/Kg	UJ	120	190
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Dibenzofuran	340	ug/Kg		110	260
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	Dibromochloromethane		ug/Kg	U	72	360
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	Dibromomethane		ug/Kg	U	72	360
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	Dichlorodifluoromethane		ug/Kg	U	36	360
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Diethyl phthalate		ug/Kg	U	120	260
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Dimethylphthalate		ug/Kg	U	120	260
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Di-n-butylphthalate		ug/Kg	U	99	260
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Di-n-octylphthalate		ug/Kg	UJ	96	260
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	Ethylbenzene	8300	ug/Kg		36	360
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Fluoranthene	6100	ug/Kg		120	260
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Fluorene	590	ug/Kg		120	260
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Hexachlorobenzene		ug/Kg	U	110	190
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	Hexachlorobutadiene		ug/Kg	U	36	360
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Hexachlorobutadiene		ug/Kg	UJ	130	260
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Hexachlorocyclopentadiene		ug/Kg	UJ	110	260
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Hexachloroethane		ug/Kg	U	110	190
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Indeno(1,2,3-cd)pyrene	630	ug/Kg	J	120	260
15B9 (3-5)	BV83378	SW6010	11/14/2016	10	Iron	14800	mg/Kg		39	39

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Isophorone		ug/Kg	U	100	190
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	Isopropylbenzene	2200	ug/Kg		36	360
15B9 (3-5)	BV83378	SW6010	11/14/2016	10	Lead	399	mg/Kg		3.9	7.9
15B9 (3-5)	BV83378	SW8260	11/14/2016	1000	m&p-Xylene	32000	ug/Kg		1400	7200
15B9 (3-5)	BV83378	SW6010	11/14/2016	10	Magnesium	6810	mg/Kg		39	39
15B9 (3-5)	BV83378	SW6010	11/14/2016	1	Manganese	135	mg/Kg		0.39	0.39
15B9 (3-5)	BV83378	SW7471	11/14/2016	1	Mercury	0.65	mg/Kg		0.02	0.03
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	Methyl Ethyl Ketone		ug/Kg	UJ	360	360
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	Methyl t-butyl ether (MTBE)	99	ug/Kg	J	72	720
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	Methylene chloride		ug/Kg	U	360	360
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	Naphthalene	10000	ug/Kg		72	360
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Naphthalene	1000	ug/Kg		110	260
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	n-Butylbenzene	2700	ug/Kg		36	360
15B9 (3-5)	BV83378	SW6010	11/14/2016	1	Nickel	16.6	mg/Kg		0.39	0.39
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Nitrobenzene		ug/Kg	U	130	190
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	N-Nitrosodimethylamine		ug/Kg	U	100	260
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	120	190
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	140	260
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	n-Propylbenzene	5600	ug/Kg		72	360
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	o-Xylene	13000	ug/Kg		72	360
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Pentachloronitrobenzene		ug/Kg	U	140	260
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Pentachlorophenol		ug/Kg	UJ	140	220
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Phenanthrene	4100	ug/Kg		110	260
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Phenol		ug/Kg	U	120	260
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	p-Isopropyltoluene	1100	ug/Kg		36	360
15B9 (3-5)	BV83378	SW6010	11/14/2016	1	Potassium	1130	mg/Kg		3.1	8
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Pyrene	5500	ug/Kg		130	260
15B9 (3-5)	BV83378	SW8270	11/14/2016	1	Pyridine		ug/Kg	UJ	91	260
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	sec-Butylbenzene	1300	ug/Kg		36	360
15B9 (3-5)	BV83378	SW6010	11/14/2016	1	Selenium		mg/Kg	U	1.3	1.6
15B9 (3-5)	BV83378	SW6010	11/14/2016	1	Silver	0.46	mg/Kg		0.39	0.39
15B9 (3-5)	BV83378	SW6010	11/14/2016	1	Sodium	348	mg/Kg		3.4	8
15B9 (3-5)	BV83378	E160.3	11/14/2016	1	SOLIDS, PERCENT	87	%			
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	Styrene		ug/Kg	U	36	360
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	Tert-butyl alcohol		ug/Kg	U	1400	7200
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	tert-Butylbenzene	44	ug/Kg	J	36	360
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	Tetrachloroethene		ug/Kg	U	72	360

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	Tetrahydrofuran (THF)		ug/Kg	UJ	180	720
15B9 (3-5)	BV83378	SW6010	11/14/2016	1	Thallium		mg/Kg	U	1.6	1.6
15B9 (3-5)	BV83378	SW8260	11/14/2016	1000	Toluene	1900	ug/Kg		720	720
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	trans-1,2-Dichloroethene		ug/Kg	U	36	190
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	trans-1,3-Dichloropropene		ug/Kg	U	36	360
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	trans-1,4-dichloro-2-butene		ug/Kg	U	180	720
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	Trichloroethene		ug/Kg	U	36	360
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	Trichlorofluoromethane		ug/Kg	U	72	360
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	Trichlorotrifluoroethane		ug/Kg	U	36	360
15B9 (3-5)	BV83378	SW6010	11/14/2016	1	Vanadium	39.7	mg/Kg		0.39	0.39
15B9 (3-5)	BV83378	SW8260	11/14/2016	50	Vinyl chloride		ug/Kg	U	36	36
15B9 (3-5)	BV83378	SW6010	11/14/2016	10	Zinc	431	mg/Kg		3.9	7.9
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	0.88	18
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	1,1,1-Trichloroethane		ug/Kg	U	0.44	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	0.88	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	1,1,2-Trichloroethane		ug/Kg	U	0.88	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	1,1-Dichloroethane		ug/Kg	U	0.88	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	1,1-Dichloroethene		ug/Kg	U	0.44	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	1,1-Dichloropropene		ug/Kg	U	0.44	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	1,2,3-Trichlorobenzene		ug/Kg	U	0.88	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	1,2,3-Trichloropropane		ug/Kg	U	0.44	4.4
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	J	130	250
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	1,2,4-Trichlorobenzene		ug/Kg	J	110	250
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	0.88	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	1,2,4-Trimethylbenzene	0.86	ug/Kg	J	0.44	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	J	0.88	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	1,2-Dibromoethane		ug/Kg	J	0.44	4.4
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	1,2-Dichlorobenzene		ug/Kg	UJ	100	250
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	1,2-Dichlorobenzene		ug/Kg	U	0.44	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	1,2-Dichloroethane		ug/Kg	J	0.44	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	1,2-Dichloropropane		ug/Kg	U	0.88	4.4
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	120	250
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	1,3,5-Trimethylbenzene		ug/Kg	U	0.44	4.4
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	1,3-Dichlorobenzene		ug/Kg	UJ	110	250
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	1,3-Dichlorobenzene		ug/Kg	U	0.44	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	1,3-Dichloropropane		ug/Kg	U	0.88	4.4
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	1,4-Dichlorobenzene		ug/Kg	UJ	110	250

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	1,4-Dichlorobenzene		ug/Kg	U	0.44	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	1,4-dioxane		ug/Kg	U	35	66
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	2,2-Dichloropropane		ug/Kg	U	0.44	4.4
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	2,4,5-Trichlorophenol		ug/Kg	U	200	250
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	110	180
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	2,4-Dichlorophenol		ug/Kg	U	130	180
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	2,4-Dimethylphenol		ug/Kg	U	89	250
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	2,4-Dinitrophenol		ug/Kg	UJ	250	250
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	2,4-Dinitrotoluene		ug/Kg	U	140	180
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	2,6-Dinitrotoluene		ug/Kg	U	110	180
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	2-Chloronaphthalene		ug/Kg	U	100	250
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	2-Chlorophenol		ug/Kg	U	100	250
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	2-Chlorotoluene		ug/Kg	U	0.88	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	2-Hexanone		ug/Kg	U	4.4	22
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	2-Isopropyltoluene		ug/Kg	U	0.44	4.4
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	2-Methylnaphthalene		ug/Kg	U	110	250
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	170	250
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	2-Nitroaniline		ug/Kg	U	250	250
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	2-Nitrophenol		ug/Kg	U	230	250
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	140	250
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	170	180
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	3-Nitroaniline		ug/Kg	U	710	360
15B9 (10-15)	BV83379	SW8081	11/14/2016	2	4,4' -DDD		ug/Kg	U	2.2	2.2
15B9 (10-15)	BV83379	SW8081	11/14/2016	2	4,4' -DDE		ug/Kg	U	2.2	2.2
15B9 (10-15)	BV83379	SW8081	11/14/2016	2	4,4' -DDT		ug/Kg	U	2.2	2.2
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	4,6-Dinitro-2-methylphenol		ug/Kg	UJ	71	210
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	110	250
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	130	250
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	4-Chloroaniline		ug/Kg	U	170	290
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	120	250
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	4-Chlorotoluene		ug/Kg	U	0.44	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	4-Methyl-2-pentanone		ug/Kg	U	4.4	22
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	4-Nitroaniline		ug/Kg	U	120	360
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	4-Nitrophenol		ug/Kg	U	160	360
15B9 (10-15)	BV83379	SW8081	11/14/2016	2	a-BHC		ug/Kg	U	7.2	7.2
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Acenaphthene		ug/Kg	U	110	250
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Acenaphthylene		ug/Kg	U	100	250

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Acetone	53	ug/Kg	J	4.4	22
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Acetophenone		ug/Kg	U	110	250
15B9 (10-15)	BV83379	SW8081	11/14/2016	2	a-Chlordane		ug/Kg	U	3.6	3.6
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Acrolein		ug/Kg	UJ	2.2	18
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Acrylonitrile		ug/Kg	U	0.44	18
15B9 (10-15)	BV83379	SW8081	11/14/2016	2	Aldrin		ug/Kg	U	3.6	3.6
15B9 (10-15)	BV83379	SW6010	11/14/2016	10	Aluminum	4470	mg/Kg		7.0	35
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Aniline		ug/Kg	U	290	290
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Anthracene		ug/Kg	U	120	250
15B9 (10-15)	BV83379	SW6010	11/14/2016	1	Antimony		mg/Kg	U	1.8	1.8
15B9 (10-15)	BV83379	SW6010	11/14/2016	1	Arsenic	1.96	mg/Kg		0.70	0.70
15B9 (10-15)	BV83379	SW6010	11/14/2016	1	Barium	26.0	mg/Kg		0.35	0.7
15B9 (10-15)	BV83379	SW8081	11/14/2016	2	b-BHC		ug/Kg	U	7.2	7.2
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Benz(a)anthracene		ug/Kg	U	120	250
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Benzene		ug/Kg	U	0.44	4.4
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Benzidine		ug/Kg	UJ	210	360
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Benzo(a)pyrene		ug/Kg	U	120	180
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Benzo(b)fluoranthene		ug/Kg	U	120	250
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Benzo(ghi)perylene		ug/Kg	U	120	250
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Benzo(k)fluoranthene		ug/Kg	U	120	250
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Benzoic acid		ug/Kg	R	710	1800
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Benzyl butyl phthalate		ug/Kg	U	92	250
15B9 (10-15)	BV83379	SW6010	11/14/2016	1	Beryllium	0.21	mg/Kg	J	0.14	0.28
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	99	250
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	96	180
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	99	250
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	100	250
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Bromobenzene		ug/Kg	U	0.44	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Bromochloromethane		ug/Kg	U	0.44	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Bromodichloromethane		ug/Kg	U	0.88	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Bromoform		ug/Kg	UJ	0.88	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Bromomethane		ug/Kg	U	1.8	4.4
15B9 (10-15)	BV83379	SW6010	11/14/2016	1	Cadmium		mg/Kg	U	0.35	0.35
15B9 (10-15)	BV83379	SW6010	11/14/2016	10	Calcium	1710	mg/Kg		32	35
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Carbazole		ug/Kg	U	140	180
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Carbon Disulfide	1.6	ug/Kg	J	0.88	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Carbon tetrachloride		ug/Kg	U	0.88	4.4

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B9 (10-15)	BV83379	SW8081	11/14/2016	2	Chlordane		ug/Kg	U	36	36
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Chlorobenzene		ug/Kg	U	0.44	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Chloroethane		ug/Kg	UJ	0.44	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Chloroform		ug/Kg	U	0.44	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Chloromethane		ug/Kg	U	0.88	4.4
15B9 (10-15)	BV83379	SW6010	11/14/2016	1	Chromium	15.8	mg/Kg		0.35	0.35
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Chrysene		ug/Kg	U	120	250
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	cis-1,2-Dichloroethene		ug/Kg	U	0.44	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	cis-1,3-Dichloropropene		ug/Kg	U	0.44	4.4
15B9 (10-15)	BV83379	SW6010	11/14/2016	1	Cobalt	5.26	mg/Kg		0.35	0.35
15B9 (10-15)	BV83379	SW6010	11/14/2016	1	Copper	11.1	mg/Kg		0.35	0.35
15B9 (10-15)	BV83379	SW8081	11/14/2016	2	d-BHC		ug/Kg	U	7.2	7.2
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Dibenz(a,h)anthracene		ug/Kg	U	120	180
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Dibenzofuran		ug/Kg	U	100	250
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Dibromochloromethane		ug/Kg	U	0.88	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Dibromomethane		ug/Kg	U	0.88	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Dichlorodifluoromethane		ug/Kg	U	0.44	4.4
15B9 (10-15)	BV83379	SW8081	11/14/2016	2	Dieldrin		ug/Kg	U	3.6	3.6
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Diethyl phthalate		ug/Kg	U	110	250
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Dimethylphthalate		ug/Kg	U	110	250
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Di-n-butylphthalate		ug/Kg	U	95	250
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Di-n-octylphthalate		ug/Kg	U	92	250
15B9 (10-15)	BV83379	SW8081	11/14/2016	2	Endosulfan I		ug/Kg	U	7.2	7.2
15B9 (10-15)	BV83379	SW8081	11/14/2016	2	Endosulfan II		ug/Kg	U	7.2	7.2
15B9 (10-15)	BV83379	SW8081	11/14/2016	2	Endosulfan sulfate		ug/Kg	U	7.2	7.2
15B9 (10-15)	BV83379	SW8081	11/14/2016	2	Endrin		ug/Kg	U	7.2	7.2
15B9 (10-15)	BV83379	SW8081	11/14/2016	2	Endrin aldehyde		ug/Kg	U	7.2	7.2
15B9 (10-15)	BV83379	SW8081	11/14/2016	2	Endrin ketone		ug/Kg	U	7.2	7.2
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Ethylbenzene	4.4	ug/Kg	U	0.44	4.4
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Fluoranthene		ug/Kg	U	120	250
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Fluorene		ug/Kg	U	120	250
15B9 (10-15)	BV83379	SW8081	11/14/2016	2	g-BHC		ug/Kg	U	5.0	5.0
15B9 (10-15)	BV83379	SW8081	11/14/2016	2	g-Chlordane		ug/Kg	U	3.6	3.6
15B9 (10-15)	BV83379	SW8081	11/14/2016		Heptachlor		ug/Kg	U	7.2	7.2
15B9 (10-15)	BV83379	SW8081	11/14/2016	2	Heptachlor epoxide		ug/Kg	U	7.2	7.2
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Hexachlorobenzene		ug/Kg	U	100	180
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Hexachlorobutadiene		ug/Kg	UJ	130	250

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Hexachlorobutadiene		ug/Kg	U	0.44	4.4
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Hexachlorocyclopentadiene		ug/Kg	UJ	110	250
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Hexachloroethane		ug/Kg	U	110	180
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Indeno(1,2,3-cd)pyrene		ug/Kg	U	120	250
15B9 (10-15)	BV83379	SW6010	11/14/2016	10	Iron	12800	mg/Kg		35	35
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Isophorone		ug/Kg	U	100	180
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Isopropylbenzene		ug/Kg	U	0.44	4.4
15B9 (10-15)	BV83379	SW6010	11/14/2016	1	Lead	2.2	mg/Kg		0.35	0.7
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	m&p-Xylene	4.4	ug/Kg	U	0.88	4.4
15B9 (10-15)	BV83379	SW6010	11/14/2016	1	Magnesium	1480	mg/Kg		3.5	3.5
15B9 (10-15)	BV83379	SW6010	11/14/2016	10	Manganese	212	mg/Kg		3.5	3.5
15B9 (10-15)	BV83379	SW7471	11/14/2016	1	Mercury		mg/Kg	U	0.02	0.03
15B9 (10-15)	BV83379	SW8081	11/14/2016	2	Methoxychlor		ug/Kg	U	36	36
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Methyl Ethyl Ketone	13	ug/Kg	J	4.4	26
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Methyl t-butyl ether (MTBE)	6.7	ug/Kg	J	0.88	8.8
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Methylene chloride		ug/Kg	U	4.4	4.4
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Naphthalene		ug/Kg	U	100	250
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Naphthalene	2.5	ug/Kg	J	0.88	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	n-Butylbenzene		ug/Kg	U	0.44	4.4
15B9 (10-15)	BV83379	SW6010	11/14/2016	1	Nickel	10.1	mg/Kg		0.35	0.35
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Nitrobenzene		ug/Kg	U	130	180
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	N-Nitrosodimethylamine		ug/Kg	U	100	250
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	120	180
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	140	250
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	n-Propylbenzene		ug/Kg	U	0.88	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	o-Xylene		ug/Kg	J	0.88	4.4
15B9 (10-15)	BV83379	SW8082	11/14/2016	2	PCB-1016		ug/Kg	U	72	72
15B9 (10-15)	BV83379	SW8082	11/14/2016	2	PCB-1221		ug/Kg	U	72	72
15B9 (10-15)	BV83379	SW8082	11/14/2016	2	PCB-1232		ug/Kg	J	72	72
15B9 (10-15)	BV83379	SW8082	11/14/2016	2	PCB-1242		ug/Kg	U	72	72
15B9 (10-15)	BV83379	SW8082	11/14/2016	2	PCB-1248		ug/Kg	U	72	72
15B9 (10-15)	BV83379	SW8082	11/14/2016	2	PCB-1254		ug/Kg	U	72	72
15B9 (10-15)	BV83379	SW8082	11/14/2016	2	PCB-1260		ug/Kg	U	72	72
15B9 (10-15)	BV83379	SW8082	11/14/2016	2	PCB-1262		ug/Kg	U	72	72
15B9 (10-15)	BV83379	SW8082	11/14/2016	2	PCB-1268		ug/Kg	U	72	72
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Pentachloronitrobenzene		ug/Kg	U	130	250
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Pentachlorophenol		ug/Kg	UJ	140	210

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Phenanthrene		ug/Kg	U	100	250
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Phenol		ug/Kg	U	110	250
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	p-Isopropyltoluene		ug/Kg	U	0.44	4.4
15B9 (10-15)	BV83379	SW6010	11/14/2016	1	Potassium	671	mg/Kg		2.7	7
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Pyrene		ug/Kg	U	120	250
15B9 (10-15)	BV83379	SW8270	11/14/2016	1	Pyridine		ug/Kg	UJ	88	250
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	sec-Butylbenzene		ug/Kg	U	0.44	4.4
15B9 (10-15)	BV83379	SW6010	11/14/2016	1	Selenium		mg/Kg	U	1.2	1.4
15B9 (10-15)	BV83379	SW6010	11/14/2016	1	Silver		mg/Kg	U	0.35	0.35
15B9 (10-15)	BV83379	SW6010	11/14/2016	1	Sodium	147	mg/Kg		3.0	7
15B9 (10-15)	BV83379	E160.3	11/14/2016	1	SOLIDS, PERCENT	91	%			
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Styrene		ug/Kg	U	0.44	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Tert-butyl alcohol		ug/Kg	U	18	88
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	tert-Butylbenzene		ug/Kg	U	0.44	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Tetrachloroethene		ug/Kg	U	0.88	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Tetrahydrofuran (THF)		ug/Kg	U	2.2	8.8
15B9 (10-15)	BV83379	SW6010	11/14/2016	1	Thallium		mg/Kg	U	1.4	1.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Toluene		ug/Kg	U	0.44	4.4
15B9 (10-15)	BV83379	SW8081	11/14/2016	2	Toxaphene		ug/Kg	U	140	140
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	trans-1,2-Dichloroethene		ug/Kg	U	0.44	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	trans-1,3-Dichloropropene		ug/Kg	U	0.44	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	trans-1,4-dichloro-2-butene		ug/Kg	U	2.2	8.8
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Trichloroethene		ug/Kg	U	0.44	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Trichlorofluoromethane		ug/Kg	U	0.88	4.4
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Trichlorotrifluoroethane		ug/Kg	U	0.44	4.4
15B9 (10-15)	BV83379	SW6010	11/14/2016	1	Vanadium	30.5	mg/Kg		0.35	0.35
15B9 (10-15)	BV83379	SW8260	11/14/2016	1	Vinyl chloride		ug/Kg	U	0.44	4.4
15B9 (10-15)	BV83379	SW6010	11/14/2016	1	Zinc	22.0	mg/Kg		0.35	0.7
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	0.83	17
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	1,1,1-Trichloroethane		ug/Kg	U	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	0.83	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	1,1,2-Trichloroethane		ug/Kg	U	0.83	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	1,1-Dichloroethane		ug/Kg	U	0.83	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016		1,1-Dichloroethene		ug/Kg	U	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	1,1-Dichloropropene		ug/Kg	U	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	1,2,3-Trichlorobenzene		ug/Kg	U	0.83	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	1,2,3-Trichloropropane		ug/Kg	U	0.41	4.1

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	130	250
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	1,2,4-Trichlorobenzene		ug/Kg	Ū	0.83	4.1
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	1,2,4-Trichlorobenzene		ug/Kg	Ū	110	250
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	1,2,4-Trimethylbenzene	0.91	ug/Kg	J	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	0.83	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	1,2-Dibromoethane		ug/Kg	U	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	1,2-Dichlorobenzene		ug/Kg	U	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	1,2-Dichlorobenzene		ug/Kg	UJ	100	250
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	1,2-Dichloroethane		ug/Kg	U	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	1,2-Dichloropropane		ug/Kg	U	0.83	4.1
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	120	250
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	1,3,5-Trimethylbenzene	0.67	ug/Kg	J	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	1,3-Dichlorobenzene		ug/Kg	U	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	1,3-Dichlorobenzene		ug/Kg	UJ	110	250
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	1,3-Dichloropropane		ug/Kg	U	0.83	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	1,4-Dichlorobenzene		ug/Kg	U	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	1,4-Dichlorobenzene		ug/Kg	UJ	110	250
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	1,4-dioxane		ug/Kg	U	33	62
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	2,2-Dichloropropane		ug/Kg	U	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	2,4,5-Trichlorophenol		ug/Kg	U	200	250
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	110	180
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	2,4-Dichlorophenol		ug/Kg	U	130	180
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	2,4-Dimethylphenol		ug/Kg	U	89	250
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	2,4-Dinitrophenol		ug/Kg	UJ	250	250
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	2,4-Dinitrotoluene		ug/Kg	U	140	180
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	2,6-Dinitrotoluene		ug/Kg	U	110	180
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	2-Chloronaphthalene		ug/Kg	U	100	250
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	2-Chlorophenol		ug/Kg	U	100	250
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	2-Chlorotoluene		ug/Kg	U	0.83	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	2-Hexanone		ug/Kg	U	4.1	21
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	2-Isopropyltoluene		ug/Kg	U	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	2-Methylnaphthalene		ug/Kg	U	110	250
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	170	250
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	2-Nitroaniline		ug/Kg	U	250	250
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	2-Nitrophenol		ug/Kg	U	230	250
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	140	250
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	170	180

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	3-Nitroaniline		ug/Kg	U	720	360
SOIL DUPLICATE 3	BV83380	SW8081	11/14/2016	2	4,4' -DDD		ug/Kg	U	2.2	2.2
SOIL DUPLICATE 3	BV83380	SW8081	11/14/2016	2	4,4' -DDE		ug/Kg	U	4.0	4.0
SOIL DUPLICATE 3	BV83380	SW8081	11/14/2016	2	4,4' -DDT		ug/Kg	UJ	15	15
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	4,6-Dinitro-2-methylphenol		ug/Kg	UJ	72	210
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	110	250
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	130	250
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	4-Chloroaniline		ug/Kg	U	170	290
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	120	250
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	4-Chlorotoluene		ug/Kg	U	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	4-Methyl-2-pentanone		ug/Kg	U	4.1	21
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	4-Nitroaniline		ug/Kg	U	120	360
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	4-Nitrophenol		ug/Kg	U	160	360
SOIL DUPLICATE 3	BV83380	SW8081	11/14/2016	2	a-BHC		ug/Kg	U	7.2	7.2
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Acenaphthene		ug/Kg	U	110	250
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Acenaphthylene		ug/Kg	U	100	250
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	Acetone		ug/Kg	UJ	4.1	21
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Acetophenone		ug/Kg	U	110	250
SOIL DUPLICATE 3	BV83380	SW8081	11/14/2016	2	a-Chlordane		ug/Kg	U	3.6	3.6
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016		Acrolein		ug/Kg	UJ	2.1	17
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016		Acrylonitrile		ug/Kg	U	0.41	17
SOIL DUPLICATE 3	BV83380	SW8081	11/14/2016	2	Aldrin		ug/Kg	U	3.6	3.6
SOIL DUPLICATE 3	BV83380	SW6010	11/14/2016	10	Aluminum	8170	mg/Kg		7.5	38
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Aniline		ug/Kg	U	290	290
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Anthracene	210	ug/Kg	J	120	250
SOIL DUPLICATE 3	BV83380	SW6010	11/14/2016	1	Antimony		mg/Kg	U	1.9	1.9
SOIL DUPLICATE 3	BV83380	SW6010	11/14/2016	1	Arsenic	6.36	mg/Kg		0.75	0.75
SOIL DUPLICATE 3	BV83380	SW6010	11/14/2016	1	Barium	113	mg/Kg		0.38	8.0
SOIL DUPLICATE 3	BV83380	SW8081	11/14/2016	2	b-BHC		ug/Kg	U	7.2	7.2
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Benz(a)anthracene	980	ug/Kg		120	250
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	Benzene		ug/Kg	U	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Benzidine		ug/Kg	UJ	210	360
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Benzo(a)pyrene	930	ug/Kg		120	180
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016		Benzo(b)fluoranthene	730	ug/Kg		120	250
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016		Benzo(ghi)perylene	590	ug/Kg		120	250
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Benzo(k)fluoranthene	730	ug/Kg		120	250
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Benzoic acid		ug/Kg	R	720	1800

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Benzyl butyl phthalate		ug/Kg	U	92	250
SOIL DUPLICATE 3	BV83380	SW6010	11/14/2016	1	Beryllium	0.41	mg/Kg		0.15	0.30
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	99	250
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Bis(2-chloroethyl)ether		ug/Kg	U	97	180
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	99	250
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	100	250
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	Bromobenzene		ug/Kg	U	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	Bromochloromethane		ug/Kg	U	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	Bromodichloromethane		ug/Kg	U	0.83	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	Bromoform		ug/Kg	U	0.83	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	Bromomethane		ug/Kg	U	1.7	4.1
SOIL DUPLICATE 3	BV83380	SW6010	11/14/2016	1	Cadmium	0.58	mg/Kg		0.38	0.38
SOIL DUPLICATE 3	BV83380	SW6010	11/14/2016	1	Calcium	6690	mg/Kg		3.5	3.8
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Carbazole		ug/Kg	U	140	180
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	Carbon Disulfide		ug/Kg	U	0.83	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	Carbon tetrachloride		ug/Kg	U	0.83	4.1
SOIL DUPLICATE 3	BV83380	SW8081	11/14/2016	2	Chlordane		ug/Kg	U	36	36
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	Chlorobenzene		ug/Kg	U	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	Chloroethane		ug/Kg	UJ	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	Chloroform		ug/Kg	U	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	Chloromethane		ug/Kg	U	0.83	4.1
SOIL DUPLICATE 3	BV83380	SW6010	11/14/2016	1	Chromium	20.2	mg/Kg		0.38	0.38
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Chrysene	1100	ug/Kg		120	250
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	cis-1,2-Dichloroethene		ug/Kg	U	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	cis-1,3-Dichloropropene		ug/Kg	U	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW6010	11/14/2016	1	Cobalt	7.23	mg/Kg		0.38	0.38
SOIL DUPLICATE 3	BV83380	SW6010	11/14/2016	1	Copper	73.7	mg/Kg		0.38	0.38
SOIL DUPLICATE 3	BV83380	SW8081	11/14/2016	2	d-BHC		ug/Kg	U	7.2	7.2
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Dibenz(a,h)anthracene	140	ug/Kg	J	120	180
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Dibenzofuran		ug/Kg	U	100	250
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	Dibromochloromethane		ug/Kg	U	0.83	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	Dibromomethane		ug/Kg	U	0.83	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	Dichlorodifluoromethane		ug/Kg	U	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW8081	11/14/2016	2	Dieldrin		ug/Kg	U	3.6	3.6
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Diethyl phthalate		ug/Kg	U	110	250
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Dimethylphthalate		ug/Kg	U	110	250
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Di-n-butylphthalate		ug/Kg	U	95	250

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Di-n-octylphthalate		ug/Kg	U	92	250
SOIL DUPLICATE 3	BV83380	SW8081	11/14/2016	2	Endosulfan I		ug/Kg	Ü	7.2	7.2
SOIL DUPLICATE 3	BV83380	SW8081	11/14/2016	2	Endosulfan II		ug/Kg	Ü	7.2	7.2
SOIL DUPLICATE 3	BV83380	SW8081	11/14/2016	2	Endosulfan sulfate		ug/Kg	U	7.2	7.2
SOIL DUPLICATE 3	BV83380	SW8081	11/14/2016	2	Endrin		ug/Kg	U	7.2	7.2
SOIL DUPLICATE 3	BV83380	SW8081	11/14/2016	2	Endrin aldehyde		ug/Kg	U	7.2	7.2
SOIL DUPLICATE 3	BV83380	SW8081	11/14/2016	2	Endrin ketone		ug/Kg	U	7.2	7.2
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	Ethylbenzene	4.1	ug/Kg	U	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Fluoranthene	1900	ug/Kg		120	250
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Fluorene		ug/Kg	U	120	250
SOIL DUPLICATE 3	BV83380	SW8081	11/14/2016	2	g-BHC		ug/Kg	U	1.4	1.4
SOIL DUPLICATE 3	BV83380	SW8081	11/14/2016	2	g-Chlordane		ug/Kg	U	3.6	3.6
SOIL DUPLICATE 3	BV83380	SW8081	11/14/2016	2	Heptachlor		ug/Kg	U	7.2	7.2
SOIL DUPLICATE 3	BV83380	SW8081	11/14/2016	2	Heptachlor epoxide		ug/Kg	U	7.2	7.2
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Hexachlorobenzene		ug/Kg	U	100	180
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	Hexachlorobutadiene		ug/Kg	U	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Hexachlorobutadiene		ug/Kg	UJ	130	250
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Hexachlorocyclopentadiene		ug/Kg	UJ	110	250
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Hexachloroethane		ug/Kg	U	110	180
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Indeno(1,2,3-cd)pyrene	610	ug/Kg		120	250
SOIL DUPLICATE 3	BV83380	SW6010	11/14/2016	10	Iron	19800	mg/Kg		38	38
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Isophorone		ug/Kg	U	100	180
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	Isopropylbenzene		ug/Kg	U	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW6010	11/14/2016	10	Lead	243	mg/Kg		3.8	7.5
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	m&p-Xylene	4.1	ug/Kg	U	0.83	4.1
SOIL DUPLICATE 3	BV83380	SW6010	11/14/2016	1	Magnesium	2120	mg/Kg		3.8	3.8
SOIL DUPLICATE 3	BV83380	SW6010	11/14/2016	10	Manganese	386	mg/Kg		3.8	3.8
SOIL DUPLICATE 3	BV83380	SW7471	11/14/2016	1	Mercury	1.04	mg/Kg		0.02	0.03
SOIL DUPLICATE 3	BV83380	SW8081	11/14/2016	2	Methoxychlor		ug/Kg	U	36	36
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	Methyl Ethyl Ketone		ug/Kg	UJ	4.1	25
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	Methyl t-butyl ether (MTBE)		ug/Kg	U	0.83	8.3
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	Methylene chloride		ug/Kg	U	4.1	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	Naphthalene	0.97	ug/Kg	J	0.83	4.1
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Naphthalene		ug/Kg	U	100	250
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	n-Butylbenzene		ug/Kg	U	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW6010	11/14/2016	1	Nickel	15.1	mg/Kg		0.38	0.38
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Nitrobenzene		ug/Kg	U	130	180

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	N-Nitrosodimethylamine		ug/Kg	U	100	250
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	Ū	120	180
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	140	250
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	n-Propylbenzene		ug/Kg	U	0.83	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	o-Xylene		ug/Kg	U	0.83	4.1
SOIL DUPLICATE 3	BV83380	SW8082	11/14/2016	2	PCB-1016		ug/Kg	U	72	72
SOIL DUPLICATE 3	BV83380	SW8082	11/14/2016	2	PCB-1221		ug/Kg	U	72	72
SOIL DUPLICATE 3	BV83380	SW8082	11/14/2016	2	PCB-1232		ug/Kg	U	72	72
SOIL DUPLICATE 3	BV83380	SW8082	11/14/2016	2	PCB-1242		ug/Kg	U	72	72
SOIL DUPLICATE 3	BV83380	SW8082	11/14/2016	2	PCB-1248		ug/Kg	U	72	72
SOIL DUPLICATE 3	BV83380	SW8082	11/14/2016	2	PCB-1254		ug/Kg	U	72	72
SOIL DUPLICATE 3	BV83380	SW8082	11/14/2016	2	PCB-1260		ug/Kg	U	72	72
SOIL DUPLICATE 3	BV83380	SW8082	11/14/2016	2	PCB-1262		ug/Kg	U	72	72
SOIL DUPLICATE 3	BV83380	SW8082	11/14/2016	2	PCB-1268		ug/Kg	U	72	72
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Pentachloronitrobenzene		ug/Kg	U	130	250
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Pentachlorophenol		ug/Kg	UJ	140	210
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Phenanthrene	1000	ug/Kg		100	250
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Phenol		ug/Kg	U	110	250
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	p-Isopropyltoluene		ug/Kg	U	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW6010	11/14/2016	1	Potassium	1120	mg/Kg		2.9	8
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Pyrene	1900	ug/Kg		120	250
SOIL DUPLICATE 3	BV83380	SW8270	11/14/2016	1	Pyridine		ug/Kg	UJ	88	250
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	sec-Butylbenzene		ug/Kg	U	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW6010	11/14/2016	1	Selenium		mg/Kg	U	1.3	1.5
SOIL DUPLICATE 3	BV83380	SW6010	11/14/2016	1	Silver		mg/Kg	U	0.38	0.38
SOIL DUPLICATE 3	BV83380	SW6010	11/14/2016	1	Sodium	230	mg/Kg		3.2	8
SOIL DUPLICATE 3	BV83380	E160.3	11/14/2016	1	SOLIDS, PERCENT	92	%			
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	Styrene		ug/Kg	U	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	Tert-butyl alcohol		ug/Kg	U	17	83
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	tert-Butylbenzene		ug/Kg	U	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	Tetrachloroethene		ug/Kg	U	0.83	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	Tetrahydrofuran (THF)		ug/Kg	UJ	2.1	8.3
SOIL DUPLICATE 3	BV83380	SW6010	11/14/2016	1	Thallium		mg/Kg	U	1.5	1.5
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	Toluene		ug/Kg	U	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW8081	11/14/2016	2	Toxaphene		ug/Kg	U	140	140
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	trans-1,2-Dichloroethene		ug/Kg	U	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	trans-1,3-Dichloropropene		ug/Kg	U	0.41	4.1

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	trans-1,4-dichloro-2-butene		ug/Kg	U	2.1	8.3
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	Trichloroethene		ug/Kg	U	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	Trichlorofluoromethane		ug/Kg	U	0.83	4.1
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	Trichlorotrifluoroethane		ug/Kg	U	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW6010	11/14/2016	1	Vanadium	25.0	mg/Kg		0.38	0.38
SOIL DUPLICATE 3	BV83380	SW8260	11/14/2016	1	Vinyl chloride		ug/Kg	U	0.41	4.1
SOIL DUPLICATE 3	BV83380	SW6010	11/14/2016	10	Zinc	160	mg/Kg		3.8	7.5
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	1,1,1,2-Tetrachloroethane		ug/Kg	U	52	1000
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	1,1,1-Trichloroethane		ug/Kg	U	26	260
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	1,1,2,2-Tetrachloroethane		ug/Kg	U	52	260
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	1,1,2-Trichloroethane		ug/Kg	U	52	260
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	1,1-Dichloroethane		ug/Kg	U	52	260
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	1,1-Dichloroethene		ug/Kg	U	26	260
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	1,1-Dichloropropene		ug/Kg	U	26	260
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	1,2,3-Trichlorobenzene		ug/Kg	U	52	260
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	1,2,3-Trichloropropane		ug/Kg	U	26	260
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	140	280
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	1,2,4-Trichlorobenzene		ug/Kg	U	52	260
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	120	280
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	1000	1,2,4-Trimethylbenzene	17000	ug/Kg	J	520	3600
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	1,2-Dibromo-3-chloropropane		ug/Kg	U	52	260
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	1,2-Dibromoethane		ug/Kg	U	26	260
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	1,2-Dichlorobenzene		ug/Kg	U	26	260
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	1,2-Dichlorobenzene		ug/Kg	UJ	110	280
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	1,2-Dichloroethane		ug/Kg	U	26	26
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	1,2-Dichloropropane		ug/Kg	U	52	260
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	1,2-Diphenylhydrazine		ug/Kg	U	130	280
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	1,3,5-Trimethylbenzene	5200	ug/Kg	J	26	260
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	1,3-Dichlorobenzene		ug/Kg	U	26	260
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	1,3-Dichlorobenzene		ug/Kg	UJ	120	280
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	1,3-Dichloropropane		ug/Kg	U	52	260
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	1,4-Dichlorobenzene		ug/Kg	U	26	260
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	1,4-Dichlorobenzene		ug/Kg	UJ	120	280
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	1,4-dioxane		ug/Kg	U	2100	2100
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	2,2-Dichloropropane		ug/Kg	U	26	260
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	2,4,5-Trichlorophenol		ug/Kg	U	220	280
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	2,4,6-Trichlorophenol		ug/Kg	U	130	200

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	2,4-Dichlorophenol		ug/Kg	U	140	200
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	2,4-Dimethylphenol		ug/Kg	U	100	280
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	2,4-Dinitrophenol		ug/Kg	UJ	280	280
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	2,4-Dinitrotoluene		ug/Kg	U	160	200
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	2,6-Dinitrotoluene		ug/Kg	U	130	200
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	2-Chloronaphthalene		ug/Kg	U	110	280
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	2-Chlorophenol		ug/Kg	U	110	280
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	2-Chlorotoluene		ug/Kg	U	52	260
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	2-Hexanone		ug/Kg	U	260	1300
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	2-Isopropyltoluene	100	ug/Kg	J	26	260
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	2-Methylnaphthalene	1100	ug/Kg		120	280
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	2-Methylphenol (o-cresol)		ug/Kg	U	190	280
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	2-Nitroaniline		ug/Kg	U	280	280
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	2-Nitrophenol		ug/Kg	U	260	280
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	160	280
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	3,3'-Dichlorobenzidine		ug/Kg	U	190	200
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	3-Nitroaniline		ug/Kg	U	810	400
SOIL DUPLICATE 4	BV83381	SW8081	11/14/2016	2	4,4' -DDD		ug/Kg	U	2.4	2.4
SOIL DUPLICATE 4	BV83381	SW8081	11/14/2016	2	4,4' -DDE		ug/Kg	U	2.4	2.4
SOIL DUPLICATE 4	BV83381	SW8081	11/14/2016	2	4,4' -DDT		ug/Kg	U	2.4	2.4
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	4,6-Dinitro-2-methylphenol		ug/Kg	UJ	81	240
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	4-Bromophenyl phenyl ether		ug/Kg	U	120	280
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	4-Chloro-3-methylphenol		ug/Kg	U	140	280
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	4-Chloroaniline		ug/Kg	U	190	320
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	4-Chlorophenyl phenyl ether		ug/Kg	U	140	280
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	4-Chlorotoluene		ug/Kg	U	26	260
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	4-Methyl-2-pentanone		ug/Kg	U	260	1300
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	4-Nitroaniline		ug/Kg	U	130	400
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	4-Nitrophenol		ug/Kg	U	180	400
SOIL DUPLICATE 4	BV83381	SW8081	11/14/2016	2	a-BHC		ug/Kg	U	8.2	8.2
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Acenaphthene		ug/Kg	U	120	280
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Acenaphthylene		ug/Kg	U	110	280
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Acetone	400	ug/Kg	J	260	260
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Acetophenone		ug/Kg	U	130	280
SOIL DUPLICATE 4	BV83381	SW8081	11/14/2016	2	a-Chlordane		ug/Kg	U	4.1	4.1
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Acrolein		ug/Kg	UJ	130	1000
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Acrylonitrile		ug/Kg	U	26	1000

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SOIL DUPLICATE 4	BV83381	SW8081	11/14/2016	2	Aldrin	Itoount	ug/Kg	U	4.1	4.1
SOIL DUPLICATE 4	BV83381	SW6010	11/14/2016	10	Aluminum	6770	mg/Kg		7.4	37
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Aniline	0770	ug/Kg	U	320	320
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Anthracene		ug/Kg	Ü	130	280
SOIL DUPLICATE 4	BV83381	SW6010	11/14/2016	1	Antimony		mg/Kg	Ü	1.9	1.9
SOIL DUPLICATE 4	BV83381	SW6010	11/14/2016	1	Arsenic	1.33	mg/Kg		0.74	0.74
SOIL DUPLICATE 4	BV83381	SW6010	11/14/2016	1	Barium	40.3	mg/Kg		0.37	0.7
SOIL DUPLICATE 4	BV83381	SW8081	11/14/2016	2	b-BHC		ug/Kg	U	8.2	8.2
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Benz(a)anthracene		ug/Kg	U	140	280
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Benzene		ug/Kg	U	26	60
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Benzidine		ug/Kg	UJ	240	400
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Benzo(a)pyrene		ug/Kg	U	130	200
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Benzo(b)fluoranthene		ug/Kg	U	140	280
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Benzo(ghi)perylene		ug/Kg	U	130	280
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Benzo(k)fluoranthene		ug/Kg	U	130	280
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Benzoic acid		ug/Kg	R	810	2000
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Benzyl butyl phthalate		ug/Kg	U	100	280
SOIL DUPLICATE 4	BV83381	SW6010	11/14/2016	1	Beryllium	0.28	mg/Kg	J	0.15	0.30
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Bis(2-chloroethoxy)methane		ug/Kg	U	110	280
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Bis(2-chloroethyl)ether		ug/Kg	J	110	200
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	110	280
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	120	280
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Bromobenzene		ug/Kg	U	26	260
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Bromochloromethane		ug/Kg	U	26	260
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Bromodichloromethane		ug/Kg	U	52	260
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Bromoform		ug/Kg	UJ	52	260
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Bromomethane		ug/Kg	U	100	260
SOIL DUPLICATE 4	BV83381	SW6010	11/14/2016	1	Cadmium		mg/Kg	U	0.37	0.37
SOIL DUPLICATE 4	BV83381	SW6010	11/14/2016	10	Calcium	1090	mg/Kg		34	37
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Carbazole		ug/Kg	U	160	200
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Carbon Disulfide		ug/Kg	U	52	260
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Carbon tetrachloride		ug/Kg	U	52	260
SOIL DUPLICATE 4	BV83381	SW8081	11/14/2016	2	Chlordane		ug/Kg	U	41	41
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Chlorobenzene		ug/Kg	U	26	260
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Chloroethane		ug/Kg	UJ	26	260
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Chloroform		ug/Kg	U	26	260
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Chloromethane		ug/Kg	U	52	260

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SOIL DUPLICATE 4	BV83381	SW6010	11/14/2016	1	Chromium	16.7	mg/Kg		0.37	0.37
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Chrysene	1	ug/Kg	U	140	280
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	cis-1,2-Dichloroethene		ug/Kg	Ū	26	250
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	cis-1,3-Dichloropropene		ug/Kg	Ū	26	260
SOIL DUPLICATE 4	BV83381	SW6010	11/14/2016	1	Cobalt	7.22	mg/Kg		0.37	0.37
SOIL DUPLICATE 4	BV83381	SW6010	11/14/2016	1	Copper	11.6	mg/Kg		0.37	0.37
SOIL DUPLICATE 4	BV83381	SW8081	11/14/2016	2	d-BHC		ug/Kg	U	8.2	8.2
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Dibenz(a,h)anthracene		ug/Kg	U	130	200
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Dibenzofuran		ug/Kg	U	120	280
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Dibromochloromethane		ug/Kg	U	52	260
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Dibromomethane		ug/Kg	U	52	260
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Dichlorodifluoromethane		ug/Kg	U	26	260
SOIL DUPLICATE 4	BV83381	SW8081	11/14/2016	2	Dieldrin		ug/Kg	U	4.1	4.1
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Diethyl phthalate		ug/Kg	U	130	280
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Dimethylphthalate		ug/Kg	U	130	280
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Di-n-butylphthalate		ug/Kg	U	110	280
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Di-n-octylphthalate		ug/Kg	U	100	280
SOIL DUPLICATE 4	BV83381	SW8081	11/14/2016	2	Endosulfan I		ug/Kg	U	8.2	8.2
SOIL DUPLICATE 4	BV83381	SW8081	11/14/2016	2	Endosulfan II		ug/Kg	U	8.2	8.2
SOIL DUPLICATE 4	BV83381	SW8081	11/14/2016	2	Endosulfan sulfate		ug/Kg	U	8.2	8.2
SOIL DUPLICATE 4	BV83381	SW8081	11/14/2016	2	Endrin		ug/Kg	U	8.2	8.2
SOIL DUPLICATE 4	BV83381	SW8081	11/14/2016	2	Endrin aldehyde		ug/Kg	U	8.2	8.2
SOIL DUPLICATE 4	BV83381	SW8081	11/14/2016	2	Endrin ketone		ug/Kg	U	8.2	8.2
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Ethylbenzene	3200	ug/Kg	J	26	260
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Fluoranthene		ug/Kg	U	130	280
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Fluorene		ug/Kg	U	130	280
SOIL DUPLICATE 4	BV83381	SW8081	11/14/2016	2	g-BHC		ug/Kg	U	1.6	1.6
SOIL DUPLICATE 4	BV83381	SW8081	11/14/2016	2	g-Chlordane		ug/Kg	U	4.1	4.1
SOIL DUPLICATE 4	BV83381	SW8081	11/14/2016	2	Heptachlor		ug/Kg	U	8.2	8.2
SOIL DUPLICATE 4	BV83381	SW8081	11/14/2016	2	Heptachlor epoxide		ug/Kg	U	8.2	8.2
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Hexachlorobenzene		ug/Kg	U	120	200
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Hexachlorobutadiene		ug/Kg	U	26	260
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Hexachlorobutadiene		ug/Kg	UJ	150	280
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Hexachlorocyclopentadiene		ug/Kg	UJ	120	280
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Hexachloroethane		ug/Kg	U	120	200
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Indeno(1,2,3-cd)pyrene		ug/Kg	U	130	280
SOIL DUPLICATE 4	BV83381	SW6010	11/14/2016	10	Iron	15000	mg/Kg	J	37	37

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Isophorone		ug/Kg	U	110	200
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Isopropylbenzene	1600	ug/Kg	J	26	260
SOIL DUPLICATE 4	BV83381	SW6010	11/14/2016	1	Lead	2.8	mg/Kg		0.37	0.7
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	m&p-Xylene	2500	ug/Kg	J	52	260
SOIL DUPLICATE 4	BV83381	SW6010	11/14/2016	1	Magnesium	2640	mg/Kg		3.7	3.7
SOIL DUPLICATE 4	BV83381	SW6010	11/14/2016	10	Manganese	337	mg/Kg		3.7	3.7
SOIL DUPLICATE 4	BV83381	SW7471	11/14/2016	1	Mercury		mg/Kg	U	0.02	0.03
SOIL DUPLICATE 4	BV83381	SW8081	11/14/2016	2	Methoxychlor		ug/Kg	U	41	41
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Methyl Ethyl Ketone		ug/Kg	UJ	260	260
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Methyl t-butyl ether (MTBE)		ug/Kg	U	52	520
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Methylene chloride		ug/Kg	U	260	260
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Naphthalene	3000	ug/Kg	J	52	260
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Naphthalene	1900	ug/Kg		120	280
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	n-Butylbenzene	1700	ug/Kg	J	26	260
SOIL DUPLICATE 4	BV83381	SW6010	11/14/2016	1	Nickel	13.2	mg/Kg		0.37	0.37
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Nitrobenzene		ug/Kg	U	140	200
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	N-Nitrosodimethylamine		ug/Kg	U	110	280
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	N-Nitrosodi-n-propylamine		ug/Kg	U	130	200
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	N-Nitrosodiphenylamine		ug/Kg	U	150	280
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	1000	n-Propylbenzene	6100	ug/Kg	J	1000	3900
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	o-Xylene		ug/Kg	U	52	260
SOIL DUPLICATE 4	BV83381	SW8082	11/14/2016	2	PCB-1016		ug/Kg	U	82	82
SOIL DUPLICATE 4	BV83381	SW8082	11/14/2016	2	PCB-1221		ug/Kg	U	82	82
SOIL DUPLICATE 4	BV83381	SW8082	11/14/2016	2	PCB-1232		ug/Kg	U	82	82
SOIL DUPLICATE 4	BV83381	SW8082	11/14/2016	2	PCB-1242		ug/Kg	U	82	82
SOIL DUPLICATE 4	BV83381	SW8082	11/14/2016	2	PCB-1248		ug/Kg	U	82	82
SOIL DUPLICATE 4	BV83381	SW8082	11/14/2016	2	PCB-1254		ug/Kg	U	82	82
SOIL DUPLICATE 4	BV83381	SW8082	11/14/2016	2	PCB-1260		ug/Kg	U	82	82
SOIL DUPLICATE 4	BV83381	SW8082	11/14/2016	2	PCB-1262		ug/Kg	U	82	82
SOIL DUPLICATE 4	BV83381	SW8082	11/14/2016	2	PCB-1268		ug/Kg	U	82	82
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Pentachloronitrobenzene		ug/Kg	U	150	280
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Pentachlorophenol		ug/Kg	UJ	150	240
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Phenanthrene		ug/Kg	U	120	280
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Phenol		ug/Kg	U	130	280
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	p-Isopropyltoluene	510	ug/Kg	J	26	260
SOIL DUPLICATE 4	BV83381	SW6010	11/14/2016	1	Potassium	1410	mg/Kg		2.9	7
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Pyrene		ug/Kg	U	140	280

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SOIL DUPLICATE 4	BV83381	SW8270	11/14/2016	1	Pyridine		ug/Kg	UJ	99	280
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	sec-Butylbenzene	800	ug/Kg	J	26	260
SOIL DUPLICATE 4	BV83381	SW6010	11/14/2016	1	Selenium		mg/Kg	Ü	1.3	1.5
SOIL DUPLICATE 4	BV83381	SW6010	11/14/2016	1	Silver		mg/Kg	U	0.37	0.37
SOIL DUPLICATE 4	BV83381	SW6010	11/14/2016	1	Sodium	303	mg/Kg		3.2	7
SOIL DUPLICATE 4	BV83381	E160.3	11/14/2016	1	SOLIDS, PERCENT	81	%			
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Styrene		ug/Kg	U	26	260
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Tert-butyl alcohol		ug/Kg	U	1000	5200
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	tert-Butylbenzene	51	ug/Kg	J	26	260
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Tetrachloroethene		ug/Kg	U	52	260
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Tetrahydrofuran (THF)		ug/Kg	UJ	130	520
SOIL DUPLICATE 4	BV83381	SW6010	11/14/2016	1	Thallium		mg/Kg	U	1.5	1.5
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Toluene		ug/Kg	U	26	260
SOIL DUPLICATE 4	BV83381	SW8081	11/14/2016	2	Toxaphene		ug/Kg	U	160	160
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	trans-1,2-Dichloroethene		ug/Kg	U	26	190
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	trans-1,3-Dichloropropene		ug/Kg	U	26	260
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	trans-1,4-dichloro-2-butene		ug/Kg	U	130	520
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Trichloroethene		ug/Kg	U	26	260
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Trichlorofluoromethane		ug/Kg	U	52	260
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Trichlorotrifluoroethane		ug/Kg	U	26	260
SOIL DUPLICATE 4	BV83381	SW6010	11/14/2016	1	Vanadium	25.1	mg/Kg		0.37	0.37
SOIL DUPLICATE 4	BV83381	SW8260	11/14/2016	50	Vinyl chloride		ug/Kg	U	26	26
SOIL DUPLICATE 4	BV83381	SW6010	11/14/2016	1	Zinc	30.3	mg/Kg		0.37	0.7
BV83382-TB	BV83382	SW8260	11/14/2016	50	1,1,1,2-Tetrachloroethane		ug/Kg	U	50	1000
BV83382-TB	BV83382	SW8260	11/14/2016	50	1,1,1-Trichloroethane		ug/Kg	U	25	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	1,1,2,2-Tetrachloroethane		ug/Kg	U	50	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	1,1,2-Trichloroethane		ug/Kg	U	50	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	1,1-Dichloroethane		ug/Kg	U	50	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	1,1-Dichloroethene		ug/Kg	U	25	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	1,1-Dichloropropene		ug/Kg	U	25	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	1,2,3-Trichlorobenzene		ug/Kg	U	50	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	1,2,3-Trichloropropane		ug/Kg	U	25	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	1,2,4-Trichlorobenzene		ug/Kg	U	50	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	1,2,4-Trimethylbenzene		ug/Kg	U	25	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	1,2-Dibromo-3-chloropropane		ug/Kg	U	50	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	1,2-Dibromoethane		ug/Kg	U	25	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	1,2-Dichlorobenzene		ug/Kg	U	25	250

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
BV83382-TB	BV83382	SW8260	11/14/2016	50	1,2-Dichloroethane	i	ug/Kg	U	25	25
BV83382-TB	BV83382	SW8260	11/14/2016	50	1,2-Dichloropropane		ug/Kg	U	50	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	1,3,5-Trimethylbenzene		ug/Kg	U	25	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	1,3-Dichlorobenzene ug/		ug/Kg	U	25	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	1,3-Dichloropropane		ug/Kg	U	50	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	1,4-Dichlorobenzene		ug/Kg	U	25	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	1,4-dioxane		ug/Kg	U	2000	2000
BV83382-TB	BV83382	SW8260	11/14/2016	50	2,2-Dichloropropane		ug/Kg	U	25	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	2-Chlorotoluene		ug/Kg	U	50	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	2-Hexanone		ug/Kg	U	250	1300
BV83382-TB	BV83382	SW8260	11/14/2016	50	2-Isopropyltoluene		ug/Kg	U	25	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	4-Chlorotoluene		ug/Kg	U	25	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	4-Methyl-2-pentanone		ug/Kg	U	250	1300
BV83382-TB	BV83382	SW8260	11/14/2016	50	Acetone		ug/Kg	UJ	250	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	Acrolein		ug/Kg	UJ	130	1000
BV83382-TB	BV83382	SW8260	11/14/2016	50	Acrylonitrile		ug/Kg	U	25	1000
BV83382-TB	BV83382	SW8260	11/14/2016	50	Benzene		ug/Kg	U	25	60
BV83382-TB	BV83382	SW8260	11/14/2016	50	Bromobenzene		ug/Kg	U	25	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	Bromochloromethane		ug/Kg	U	25	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	Bromodichloromethane		ug/Kg	U	50	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	Bromoform		ug/Kg	U	50	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	Bromomethane		ug/Kg	U	100	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	Carbon Disulfide		ug/Kg	U	50	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	Carbon tetrachloride		ug/Kg	U	50	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	Chlorobenzene		ug/Kg	U	25	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	Chloroethane		ug/Kg	UJ	25	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	Chloroform		ug/Kg	U	25	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	Chloromethane		ug/Kg	U	50	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	cis-1,2-Dichloroethene		ug/Kg	U	25	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	cis-1,3-Dichloropropene		ug/Kg	U	25	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	Dibromochloromethane		ug/Kg	U	50	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	Dibromomethane		ug/Kg	U	50	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	Dichlorodifluoromethane		ug/Kg	U	25	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	Ethylbenzene		ug/Kg	U	25	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	Hexachlorobutadiene		ug/Kg	U	25	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	Isopropylbenzene		ug/Kg	U	25	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	m&p-Xylene		ug/Kg	U	50	250

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
BV83382-TB	BV83382	SW8260	11/14/2016	50	Methyl Ethyl Ketone		ug/Kg	UJ	250	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	Methyl t-butyl ether (MTBE)		ug/Kg	U	50	500
BV83382-TB	BV83382	SW8260	11/14/2016	50	Methylene chloride		ug/Kg	U	250	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	Naphthalene		ug/Kg	U	50	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	n-Butylbenzene		ug/Kg	U	25	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	n-Propylbenzene		ug/Kg	U	50	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	o-Xylene		ug/Kg	U	50	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	p-Isopropyltoluene		ug/Kg	U	25	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	sec-Butylbenzene		ug/Kg	U	25	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	Styrene		ug/Kg	U	25	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	Tert-butyl alcohol		ug/Kg	U	1000	5000
BV83382-TB	BV83382	SW8260	11/14/2016	50	tert-Butylbenzene		ug/Kg	U	25	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	Tetrachloroethene		ug/Kg	U	50	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	Tetrahydrofuran (THF)		ug/Kg	UJ	130	500
BV83382-TB	BV83382	SW8260	11/14/2016	50	Toluene		ug/Kg	U	25	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	trans-1,2-Dichloroethene		ug/Kg	U	25	190
BV83382-TB	BV83382	SW8260	11/14/2016	50	trans-1,3-Dichloropropene		ug/Kg	U	25	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	trans-1,4-dichloro-2-butene		ug/Kg	U	130	500
BV83382-TB	BV83382	SW8260	11/14/2016	50	Trichloroethene		ug/Kg	U	25	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	Trichlorofluoromethane		ug/Kg	U	50	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	Trichlorotrifluoroethane		ug/Kg	U	25	250
BV83382-TB	BV83382	SW8260	11/14/2016	50	Vinyl chloride		ug/Kg	U	25	25
BV83383-TB	BV83383	SW8260	11/14/2016	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	1.0	20
BV83383-TB	BV83383	SW8260	11/14/2016	1	1,1,1-Trichloroethane		ug/Kg	U	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	1.0	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	1,1,2-Trichloroethane		ug/Kg	U	1.0	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	1,1-Dichloroethane		ug/Kg	U	1.0	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	1,1-Dichloroethene		ug/Kg	U	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	1,1-Dichloropropene		ug/Kg	U	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	1,2,3-Trichlorobenzene		ug/Kg	U	1.0	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	1,2,3-Trichloropropane		ug/Kg	U	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	1,2,4-Trichlorobenzene		ug/Kg	U	1.0	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	1,2,4-Trimethylbenzene		ug/Kg	U	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	1.0	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	1,2-Dibromoethane		ug/Kg	U	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	1,2-Dichlorobenzene		ug/Kg	U	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	1,2-Dichloroethane		ug/Kg	U	0.50	5.0

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
BV83383-TB	BV83383	SW8260	11/14/2016	1	1,2-Dichloropropane		ug/Kg	U	1.0	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	1,3,5-Trimethylbenzene		ug/Kg	U	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	1,3-Dichlorobenzene		ug/Kg	U	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	1,3-Dichloropropane		ug/Kg	U	1.0	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	1,4-Dichlorobenzene		ug/Kg	U	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	1,4-dioxane		ug/Kg	U	40	75
BV83383-TB	BV83383	SW8260	11/14/2016	1	2,2-Dichloropropane		ug/Kg	U	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	2-Chlorotoluene		ug/Kg	U	1.0	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	2-Hexanone		ug/Kg	U	5.0	25
BV83383-TB	BV83383	SW8260	11/14/2016	1	2-Isopropyltoluene		ug/Kg	U	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	4-Chlorotoluene		ug/Kg	U	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	4-Methyl-2-pentanone		ug/Kg	U	5.0	25
BV83383-TB	BV83383	SW8260	11/14/2016	1	Acetone	6.3	ug/Kg	J	5.0	25
BV83383-TB	BV83383	SW8260	11/14/2016	1	Acrolein		ug/Kg	UJ	2.5	20
BV83383-TB	BV83383	SW8260	11/14/2016	1	Acrylonitrile		ug/Kg	U	0.50	20
BV83383-TB	BV83383	SW8260	11/14/2016	1	Benzene		ug/Kg	U	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	Bromobenzene		ug/Kg	U	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	Bromochloromethane		ug/Kg	U	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	Bromodichloromethane		ug/Kg	U	1.0	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	Bromoform		ug/Kg	U	1.0	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	Bromomethane		ug/Kg	U	2.0	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	Carbon Disulfide		ug/Kg	U	1.0	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	Carbon tetrachloride		ug/Kg	U	1.0	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	Chlorobenzene		ug/Kg	U	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	Chloroethane		ug/Kg	UJ	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	Chloroform		ug/Kg	U	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	Chloromethane		ug/Kg	U	1.0	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	cis-1,2-Dichloroethene		ug/Kg	U	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	cis-1,3-Dichloropropene		ug/Kg	U	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	Dibromochloromethane		ug/Kg	U	1.0	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	Dibromomethane		ug/Kg	U	1.0	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	Dichlorodifluoromethane		ug/Kg	U	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	Ethylbenzene	0.71	ug/Kg	J	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	Hexachlorobutadiene		ug/Kg	U	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	Isopropylbenzene		ug/Kg	U	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	m&p-Xylene	1.6	ug/Kg	J	1.0	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	Methyl Ethyl Ketone		ug/Kg	UJ	5.0	30

		Analytical	Collection	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
BV83383-TB	BV83383	SW8260	11/14/2016	1	Methyl t-butyl ether (MTBE)		ug/Kg	U	1.0	10
BV83383-TB	BV83383	SW8260	11/14/2016	1	Methylene chloride		ug/Kg	U	5.0	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	Naphthalene		ug/Kg	U	1.0	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	n-Butylbenzene		ug/Kg	U	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	n-Propylbenzene		ug/Kg	U	1.0	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	o-Xylene		ug/Kg	U	1.0	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	p-Isopropyltoluene		ug/Kg	U	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	sec-Butylbenzene		ug/Kg	U	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	Styrene		ug/Kg	U	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	Tert-butyl alcohol		ug/Kg	U	20	100
BV83383-TB	BV83383	SW8260	11/14/2016	1	tert-Butylbenzene		ug/Kg	U	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	Tetrachloroethene		ug/Kg	U	1.0	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	Tetrahydrofuran (THF)		ug/Kg	UJ	2.5	10
BV83383-TB	BV83383	SW8260	11/14/2016	1	Toluene		ug/Kg	U	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	trans-1,2-Dichloroethene		ug/Kg	U	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	trans-1,3-Dichloropropene		ug/Kg	U	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	trans-1,4-dichloro-2-butene		ug/Kg	U	2.5	10
BV83383-TB	BV83383	SW8260	11/14/2016	1	Trichloroethene		ug/Kg	U	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	Trichlorofluoromethane		ug/Kg	U	1.0	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	Trichlorotrifluoroethane		ug/Kg	U	0.50	5.0
BV83383-TB	BV83383	SW8260	11/14/2016	1	Vinyl chloride		ug/Kg	U	0.50	5.0

DATA USABILITY SUMMARY REPORT (DUSR) VOLATILE ORGANIC COMPOUNDS

USEPA Region II -Data Validation

Project Name: 1181 Flushing Avenue

Location: Brooklyn, New York

Project Number: 3020-026

SDG #: GBV86876

Client: Environmental Business Consultants

Date: 02/16/2017

Laboratory: Phoenix Environmental Laboratories, Inc.

Reviewer: Sherri Pullar

Summary:

- 1. Data validation was performed on the data for nine (9) air samples analyzed for Volatiles by TO-15 in accordance to NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 11/16/2016. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 11/17/2016 for analysis.
- 3. The USEPA Region-II SOP # HW-31, Revision 4, October 2006, Validating Air Samples Volatile Organic Analysis of Ambient Air in Canister By Method TO-15 was used in evaluating the Volatiles data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (see discussion below).

Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory	Collection	Analysis	Matrix	Sample Status
	Sample ID	Date			
SG6	BV86876	11/16/16	VOA	Air	
SG4	BV86877	11/16/16	VOA	Air	
SG3	BV86878	11/16/16	VOA	Air	
SG9	BV86879	11/16/16	VOA	Air	
SG7	BV86880	11/16/16	VOA	Air	
SG8	BV86881	11/16/16	VOA	Air	
SG5	BV86882	11/16/16	VOA	Air	
SG2	BV86883	11/16/16	VOA	Air	
SG1	BV86884	11/16/16	VOA	Air	

Sample Conditions/Problems:

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

Holding Times:

1. All air samples were analyzed within the method holding time for summa canisters (30 days). No qualifications were required.

GC/MS Tuning:

1. All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria. No qualifications were required.

Initial Calibration (IC):

1. Initial calibration (IC) curve analyzed on 11/14/2016 (Chem20) exhibited acceptable %RSDs ($\leq 30.0\%$) for all compounds and average RRF values (≥ 0.050) for all compounds with the exception of some compounds listed in section 15.5, Page 13 in SOP # HW-31, were ≥ 0.01 with the following exception(s):

Compound	%RSD
n-Butylbenzene (sim)	33.41
1,2,4-Trichlorobenzene (sim)	35.22

Client Sample ID	Laboratory Sample ID	Compound	Action
SG9	BV86879	None	None
SG7	BV86880	None	None
SG8	BV86881	None	None

2. Initial calibration (IC) curve analyzed on 11/27/2016 (Chem20) exhibited acceptable %RSDs ($\leq 30.0\%$) for all compounds and average RRF values (≥ 0.050) for all compounds with the exception of some compounds listed in section 15.5, Page 13 in SOP # HW-31, were ≥ 0.01 with the following exception(s):

Compound	%RSD
Benzyl chloride	36.96
1,2,4-Trichlorobenzene	21.59
n-Butylbenzene (sim)	34.64

Client Sample ID	Laboratory Sample ID	Compound	Action
SG9 DL 270	BV86879	Benzyl chloride, n-Butylbenzene,	UJ
		1,2,4-Trichlorobenzene	J
SG7 DL 300	BV86880	Benzyl chloride, n-Butylbenzene,	UJ
		1,2,4-Trichlorobenzene	
SG8 DL 150	BV86881	Benzyl chloride, n-Butylbenzene,	UJ
		1,2,4-Trichlorobenzene	
SG5 DL 270	BV86882	Benzyl chloride, n-Butylbenzene,	UJ
		1,2,4-Trichlorobenzene	

3. Initial calibration (IC) curve analyzed on 11/10/2016 (Chem25) exhibited acceptable %RSDs ($\leq 30.0\%$) for all compounds and average RRF values (≥ 0.050) for all compounds with the exception of some compounds listed in section 15.5, Page 13 in SOP # HW-31, were ≥ 0.01 with the following exception(s):

Compound	%RSD
Methyl Ethyl Ketone	37.42
1,2,4-Trichlorobenzene (sim)	33.30

Client Sample ID	Laboratory Sample ID	Compound	Action
SG4	BV86877	Methyl Ethyl Ketone	None

Client Sample ID	Laboratory Sample ID	Compound	Action
		1,2,4-Trichlorobenzene	J
SG5 10	BV86882	Methyl Ethyl Ketone	None
		1,2,4-Trichlorobenzene	UJ
SG4 DL 100	BV86877	Methyl Ethyl Ketone	J
		1,2,4-Trichlorobenzene	None
SG1 DL 10	BV86884	Methyl Ethyl Ketone	None
		1,2,4-Trichlorobenzene	
SG3	BV86878	Methyl Ethyl Ketone	None
		1,2,4-Trichlorobenzene	UJ
SG2	BV86883	Methyl Ethyl Ketone	UJ
		1,2,4-Trichlorobenzene	
SG1	BV86884	Methyl Ethyl Ketone	J
		1,2,4-Trichlorobenzene	
SG6 DL 92.5	BV86876	Methyl Ethyl Ketone	None
		1,2,4-Trichlorobenzene	
SG3 DL 10	BV86878	Methyl Ethyl Ketone	J
		1,2,4-Trichlorobenzene	None
SG6 18.5	BV86876	Methyl Ethyl Ketone	J
		1,2,4-Trichlorobenzene	UJ
SG5 DL 75	BV86882	Methyl Ethyl Ketone	J
		1,2,4-Trichlorobenzene	None

Continuing Calibration Verification (CCV):

1. CCV analyzed on 11/23/2016 @ 08:35 (CHEM20) exhibited acceptable %Ds (≤30.0%) for all compounds with the following exception(s):

Compound	%D
Styrene (sim)	-34.5
o-Xylene (sim)	-31.9
Benzyl chloride (sim)	-33.3
1,2,4-Trichlorobenzene (sim)	-39.1

Client Sample ID	Laboratory Sample ID	Compound	Action
SG9	BV86879	None	None
SG7	BV86880	None	None
SG8	BV86881	None	None

2. CCV analyzed on 11/23/2016 @ 09:07 (CHEM20) exhibited acceptable %Ds (≤30.0%) for all compounds. No qualifications were required.

3. CCV analyzed on 11/24/2016 @ 06:20 (CHEM20) exhibited acceptable %Ds (≤30.0%) for all compounds with the following exception(s):

Compound	%D
1,2,4-Trichlorobenzene (sim)	-33.0

Client Sample ID	Laboratory Sample ID	Compound	Action
SG9	BV86879	None	None
SG7	BV86880	None	None
SG8	BV86881	None	None

- 4. CCV analyzed on 11/24/2016 @ 06:53 (CHEM20) exhibited acceptable %Ds (≤30.0%) for all compounds. No qualifications were required.
- 5. CCV analyzed on 11/28/2016 @ 20:39 (CHEM20) exhibited acceptable %Ds (≤30.0%) for all compounds. No qualifications were required.
- 6. CCV analyzed on 11/28/2016 @ 21:12 (CHEM20) exhibited acceptable %Ds (≤30.0%) for all compounds. No qualifications were required.
- 7. CCV analyzed on 11/17/2016 @ 13:00 (CHEM24) exhibited acceptable %Ds (≤30.0%) for all compounds. No qualifications were required.
- 8. CCV analyzed on 11/17/2016 @ 13:31 (CHEM24) exhibited acceptable %Ds (≤30.0%) for all compounds with the following exception(s):

Compound	%D
1,4-Dioxane	92.8

Client Sample ID	Laboratory Sample ID	Compound	Action
SG4	BV86877	1,4-Dioxane	UJ
SG5 10	BV86882	1,4-Dioxane	UJ
SG4 DL 100	BV86877	None	None
SG1 DL 10	BV86884	None	None

9. CCV analyzed on 11/18/2016 @ 07:42 (CHEM24) exhibited acceptable %Ds (≤30.0%) for all compounds with the following exception(s):

Compound	%D
1,4-Dioxane ⁽¹⁾	47.4

(1) Results were previously qualified due to initial CCV criteria.

Client Sample ID	Laboratory Sample ID	Compound	Action
SG4	BV86877	1,4-Dioxane	UJ
SG5 10	BV86882	1,4-Dioxane	UJ
SG4 DL 100	BV86877	None	None
SG1 DL 10	BV86884	None	None

10. CCV analyzed on 11/18/2016 @ 08:13 (CHEM24) exhibited acceptable %Ds (≤30.0%) for all compounds with the following exception(s):

Compound	%D	
1,4-Dioxane ⁽¹⁾	93.5	

(1) Results were previously qualified due to initial CCV criteria.

Client Sample ID	Laboratory Sample ID	Compound	Action
SG4	BV86877	1,4-Dioxane	UJ
SG5 10	BV86882	1,4-Dioxane	UJ
SG4 DL 100	BV86877	None	None
SG1 DL 10	BV86884	None	None

11. CCV analyzed on 11/20/2016 @ 22:16 (CHEM24) exhibited acceptable %Ds (≤30.0%) for all compounds with the following exception(s):

Compound	%D
1,4-Dioxane ⁽¹⁾	36.4

(1) Results were previously qualified due to initial CCV criteria.

Client Sample ID	Laboratory Sample ID	Compound	Action
SG3	BV86878	1,4-Dioxane	UJ
SG2	BV86883	1,4-Dioxane	UJ
SG1	BV86884	1,4-Dioxane	UJ
SG6 DL 92.5	BV86876	1,4-Dioxane	None
SG3 DL 10	BV86878	1,4-Dioxane	None
SG6 18.5	BV86876	1,4-Dioxane	UJ
SG5 DL 75	BV86882	1,4-Dioxane	None

12. CCV analyzed on 11/20/2016 @ 22:48 (CHEM24) exhibited acceptable %Ds (≤30.0%) for all compounds. No qualifications were required.

Surrogates:

1. 4-Bromofluorobenzene (BFB) surrogate spike recovered within the laboratory control limits (60-140%). No qualifications were required.

Internal Standard (IS) Area Performance:

1. All samples exhibited acceptable area count for all three internal standards within the QC limits. No qualifications were required.

Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB, Equipment Blank (EB) and Canister Certification:

- 1. Method Blank (BLANK BV86444) analyzed on 11/17/16 was free of contamination. No qualifications were required.
- 2. Method Blank (BLANK BV86878) analyzed on 11/21/16 was free of contamination. No qualifications were required.
- 3. Method Blank (BLANK BV89467) analyzed on 11/23/16 was free of contamination. No qualifications were required.
- 4. Method Blank (BLANK BV90730) analyzed on 11/28/16 was free of contamination. No qualifications were required.
- 5. Canister Certification Check:

Laboratory Sample ID	Date Analyzed	Compound	Result (ppbv)	Certification Contamination Level (5x)* (ppbv)	Sample Affected	Canister ID#	Action
BLK 963	10/31/16	Ethanol	0.810	4.05	SG1 SG4 SG8 SG6 SG9 SG7 SG3	13644 156 19884 21339 21357 224 496	None
		Acetone	0.590	2.95	SG1 SG4 SG8 SG6 SG9	13644 156 19884 21339 21357	None

Laboratory Sample ID	Date Analyzed	Compound	Result (ppbv)	Certification Contamination Level (5x)* (ppbv)	Sample Affected	Canister ID#	Action
					SG7 SG3	224 496	
BLK 964	11/03/16	Ethanol	0.600	3.0	SG2 SG5	13650 357	None

^{*=} If sample concentration less than the certification contamination level (CCL), then sample result qualified as non-detect (U). If sample concentration greater than the certification contamination level (CCL) or sample result was not detected, no qualifications/action required.

<u>Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):</u>

1. Laboratory Control Sample (LCS BV86444) was analyzed on 11/17/2016. All %RECs were within the laboratory control limits with the following exceptions(s):

Compound	%R	Sample	Action
		Affected	
Methyl Ethyl Ketone	135	SG4 DL SG1 DL, SG4, SG5	J None
1,2,4-Trichlorobenzene	134	SG4, SG5, SG4 DL, SG1 DL	None

- 2. Laboratory Control Sample (LCS BV86878) was analyzed on 11/21/2016. All %RECs were within the laboratory control limits. No qualifications were required.
- 3. Laboratory Control Sample (LCS BV89467) was analyzed on 11/23/2016. All %RECs were within the laboratory control limits with the following exceptions(s):

Compound	%R	Sample Affected	Action
Ethanol	59	SG9, SG7, SG8	None
1,2,4-Trichlorobenzene	142	SG9, SG7, SG8	None

4. Laboratory Control Sample (LCS BV90730) was analyzed on 11/28/2016. All %RECs were within the laboratory control limits. No qualifications were required.

Field Duplicate:

1. A field duplicate pair was not submitted with this SDG.

Target Compound Identification:

- 1. All Relative Retention Times (RRTs) of the reported compounds were within \pm 0.06 RRT units of the standard (opening CCV).
- 2. Sample compound spectra were compared against the laboratory standard spectra.
- 3. No QC deviations were observed.

Compound Quantitation and Reported Detection Limits:

1. All sample results were reported within the linear calibration range with the following exception(s):

Client Sample ID	Laboratory Sample ID	Compound	Action
SG4	BV86877	Ethanol	J

2. Manual Calculation:

Concentration (
$$\mu g/m^3$$
) = Result (ppbv) x Molecular weight x DF 24.46

SG4 (B86877)

Toluene

Result (ppbv) = 15.2

Molecular Weight @ 25°C=92.14

DF = 1

Concentration (
$$\mu g/m^3$$
) = $\frac{15.2 \times 92.14 \times 1}{24.46}$ = 57.26 $\mu g/m^3$

	Laboratory	Validation	
Compound	$(\mu g/m^3)$	$(\mu g/m^3)$	%D
Toluene	57.2	57.2	0.0

Comments:

- 1. Volatile data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GBV86876.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GBV86876.

SDG: GBV86876

Sample Name	Lab ID	Analytical Method	Analysis Date	Dilution Factor	Analyte	Result	Unit	Qualifier	RL
SG1	BV86884	TO15	11/18/16	10	Acetone	170	ug/m3		10.0
SG1	BV86884	TO15	11/21/16	1	Ethylbenzene	1.74	ug/m3		1.00
SG1	BV86884	TO15	11/21/16	1	Styrene		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	Benzyl chloride		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	cis-1,3-Dichloropropene		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	trans-1,3-Dichloropropene		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	1,2,4-Trimethylbenzene	1.24	ug/m3	J	1.00
SG1	BV86884	TO15	11/21/16	1	1,4-Dichlorobenzene		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	1,2-Dibromoethane(EDB)		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	1,3-Butadiene		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	1,2-Dichloroethane		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	Acrylonitrile		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	4-Methyl-2-pentanone(MIBK)		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	1,3,5-Trimethylbenzene		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	Toluene	4.29	ug/m3		1.00
SG1	BV86884	TO15	11/21/16	1	Chlorobenzene		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	Tetrahydrofuran		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	Hexane	1.14	ug/m3		1.00
SG1	BV86884	TO15	11/21/16	1	Cyclohexane	1.02	ug/m3		1.00
SG1	BV86884	TO15	11/21/16	1	Propylene	2.61	ug/m3		1.00
SG4	BV86877	TO15	11/17/16	1	1,2,4-Trichlorobenzene		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	1,4-Dioxane		ug/m3	UJ	1.00
SG1	BV86884	TO15	11/21/16	1	Dibromochloromethane		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	Tetrachloroethene	7.93	ug/m3		0.25
SG1	BV86884	TO15	11/21/16	1	sec-Butylbenzene		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	Ethyl acetate		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	Heptane	2.63	ug/m3		1.00
SG1	BV86884	TO15	11/21/16	1	Cis-1,2-Dichloroethene		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	Trans-1,2-Dichloroethene		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	Methyl tert-butyl ether(MTBE)		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	m,p-Xylene	5.90	ug/m3		1.00
SG1	BV86884	TO15	11/21/16	1	1,3-Dichlorobenzene		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	Carbon Tetrachloride		ug/m3	U	0.25
SG1	BV86884	TO15	11/21/16	1	2-Hexanone(MBK)		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	4-Ethyltoluene		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	1,1,1,2-Tetrachloroethane		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	Ethanol	20.1	ug/m3		1.00

Page 1 of 17

SDG: GBV86876

Sample Name	Lab ID	Analytical Method	Analysis Date	Dilution Factor	Analyte	Result	Unit	Qualifier	RL
SG1	BV86884	TO15	11/21/16	1	Isopropylalcohol	1.91	ug/m3		1.00
SG1	BV86884	TO15	11/21/16	1	Chloroform	2.73	ug/m3		1.00
SG1	BV86884	TO15	11/21/16	1	Benzene	1.16	ug/m3		1.00
SG1	BV86884	TO15	11/21/16	1	1,1,1-Trichloroethane		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	Bromomethane		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	Chloromethane		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	Chloroethane		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	Vinyl Chloride		ug/m3	U	0.25
SG1	BV86884	TO15	11/21/16	1	Methylene Chloride		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	Carbon Disulfide	1.60	ug/m3		1.00
SG1	BV86884	TO15	11/21/16	1	Bromoform		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	Bromodichloromethane		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	1,1-Dichloroethane		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	1,1-Dichloroethene		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	Trichlorofluoromethane	25.7	ug/m3		1.00
SG1	BV86884	TO15	11/21/16	1	Dichlorodifluoromethane	7.12	ug/m3		1.00
SG1	BV86884	TO15	11/21/16	1	Trichlorotrifluoroethane		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	1,2-Dichlorotetrafluoroethane		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	1,2-dichloropropane		ug/m3	U	1.00
SG5	BV86882	TO15	11/17/16	10	1,2,4-Trichlorobenzene		ug/m3	U	10.0
SG1	BV86884	TO15	11/21/16	1	1,1,2-Trichloroethane		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	Trichloroethene		ug/m3	U	0.25
SG1	BV86884	TO15	11/21/16	1	1,1,2,2-Tetrachloroethane		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	Hexachlorobutadiene		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	o-Xylene	2.00	ug/m3		1.00
SG1	BV86884	TO15	11/21/16	1	1,2-Dichlorobenzene		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	1,2,4-Trimethylbenzene		ug/m3	UJ	1.00
SG1	BV86884	TO15	11/21/16	1	Isopropylbenzene		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	4-Isopropyltoluene		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	Ethylbenzene		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	Styrene		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	Benzyl chloride		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	cis-1,3-Dichloropropene		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	trans-1,3-Dichloropropene		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	Methyl Ethyl Ketone		ug/m3	UJ	1.00
SG2	BV86883	TO15	11/21/16	1	1,4-Dichlorobenzene		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	1,2-Dibromoethane(EDB)		ug/m3	U	1.00

Page 2 of 17

SDG: GBV86876

Sample Name	Lab ID	Analytical Method	Analysis Date	Dilution Factor	Analyte	Result	Unit	Qualifier	RL
SG2	BV86883	TO15	11/21/16	1	1,3-Butadiene		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	1,2-Dichloroethane		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	Acrylonitrile		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	4-Methyl-2-pentanone(MIBK)		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	1,3,5-Trimethylbenzene		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	Toluene	1.19	ug/m3		1.00
SG2	BV86883	TO15	11/21/16	1	Chlorobenzene		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	Tetrahydrofuran		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	Hexane	3.56	ug/m3		1.00
SG2	BV86883	TO15	11/21/16	1	Cyclohexane		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	Propylene		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	1,2,4-Trichlorobenzene		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	1,4-Dioxane		ug/m3	UJ	1.00
SG2	BV86883	TO15	11/21/16	1	Dibromochloromethane		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	Tetrachloroethene	1.96	ug/m3		0.25
SG2	BV86883	TO15	11/21/16	1	sec-Butylbenzene		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	Ethyl acetate		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	Heptane	1.35	ug/m3		1.00
SG2	BV86883	TO15	11/21/16	1	Cis-1,2-Dichloroethene		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	Trans-1,2-Dichloroethene		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	Methyl tert-butyl ether(MTBE)		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	m,p-Xylene		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	1,3-Dichlorobenzene		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	Carbon Tetrachloride	0.51	ug/m3		0.25
SG2	BV86883	TO15	11/21/16	1	2-Hexanone(MBK)		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	4-Ethyltoluene		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	1,1,1,2-Tetrachloroethane		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	Ethanol	17.1	ug/m3		1.00
SG2	BV86883	TO15	11/21/16	1	Isopropylalcohol		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	Acetone	36.8	ug/m3		1.00
SG2	BV86883	TO15	11/21/16	1	Chloroform		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	Benzene		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	1,1,1-Trichloroethane		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	Bromomethane		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	Chloromethane		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	Chloroethane		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	Vinyl Chloride		ug/m3	U	0.25

Page 3 of 17

SDG: GBV86876

Sample Name	Lab ID	Analytical Method	Analysis Date	Dilution Factor	Analyte	Result	Unit	Qualifier	RL
SG2	BV86883	TO15	11/21/16	1	Methylene Chloride	7.33	ug/m3		1.00
SG2	BV86883	TO15	11/21/16	1	Carbon Disulfide		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	Bromoform		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	Bromodichloromethane		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	1,1-Dichloroethane		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	1,1-Dichloroethene		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	Trichlorofluoromethane	1.99	ug/m3		1.00
SG2	BV86883	TO15	11/21/16	1	Dichlorodifluoromethane	2.48	ug/m3		1.00
SG2	BV86883	TO15	11/21/16	1	Trichlorotrifluoroethane		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	1,2-Dichlorotetrafluoroethane		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	1,2-dichloropropane		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	1,2,4-Trimethylbenzene	1.57	ug/m3	UJ	1.00
SG2	BV86883	TO15	11/21/16	1	1,1,2-Trichloroethane		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	Trichloroethene		ug/m3	U	0.25
SG2	BV86883	TO15	11/21/16	1	1,1,2,2-Tetrachloroethane		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	Hexachlorobutadiene		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	o-Xylene		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	1,2-Dichlorobenzene		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	10	Methyl Ethyl Ketone	601	ug/m3	J	10.0
SG2	BV86883	TO15	11/21/16	1	Isopropylbenzene		ug/m3	U	1.00
SG2	BV86883	TO15	11/21/16	1	4-Isopropyltoluene		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	Ethylbenzene	2.43	ug/m3		1.00
SG3	BV86878	TO15	11/21/16	1	Styrene		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	Benzyl chloride		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	cis-1,3-Dichloropropene		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	trans-1,3-Dichloropropene		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	1,2,4-Trimethylbenzene	1.75	ug/m3		1.00
SG3	BV86878	TO15	11/21/16	1	1,4-Dichlorobenzene		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	1,2-Dibromoethane(EDB)		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	1,3-Butadiene		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	1,2-Dichloroethane		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	Acrylonitrile		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	4-Methyl-2-pentanone(MIBK)		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	1,3,5-Trimethylbenzene		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	Toluene	11.0	ug/m3		1.00
SG3	BV86878	TO15	11/21/16	1	Chlorobenzene		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	Tetrahydrofuran		ug/m3	U	1.00

Page 4 of 17

SDG: GBV86876

Sample Name	Lab ID	Analytical Method	Analysis Date	Dilution Factor	Analyte	Result	Unit	Qualifier	RL
SG3	BV86878	TO15	11/21/16	1	Hexane	3.12	ug/m3		1.00
SG3	BV86878	TO15	11/21/16	1	Cyclohexane		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	Propylene	41.1	ug/m3		1.00
SG3	BV86878	TO15	11/21/16	1	1,2,4-Trichlorobenzene		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	1,4-Dioxane		ug/m3	UJ	1.00
SG3	BV86878	TO15	11/21/16	1	Dibromochloromethane		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	Tetrachloroethene	34.3	ug/m3		0.25
SG3	BV86878	TO15	11/21/16	1	sec-Butylbenzene		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	Ethyl acetate		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	Heptane	2.47	ug/m3		1.00
SG3	BV86878	TO15	11/21/16	1	Cis-1,2-Dichloroethene		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	Trans-1,2-Dichloroethene		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	Methyl tert-butyl ether(MTBE)		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	m,p-Xylene	7.94	ug/m3		1.00
SG3	BV86878	TO15	11/21/16	1	1,3-Dichlorobenzene		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	Carbon Tetrachloride		ug/m3	U	0.25
SG3	BV86878	TO15	11/21/16	1	2-Hexanone(MBK)	24.2	ug/m3		1.00
SG3	BV86878	TO15	11/21/16	1	4-Ethyltoluene		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	1,1,1,2-Tetrachloroethane		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	Ethanol	50.7	ug/m3		1.00
SG3	BV86878	TO15	11/21/16	1	Isopropylalcohol		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	Acetone	62.7	ug/m3		1.00
SG3	BV86878	TO15	11/21/16	1	Chloroform		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	Benzene	1.67	ug/m3		1.00
SG3	BV86878	TO15	11/21/16	1	1,1,1-Trichloroethane	1.02	ug/m3		1.00
SG3	BV86878	TO15	11/21/16	1	Bromomethane		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	Chloromethane		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	Chloroethane		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	Vinyl Chloride		ug/m3	U	0.25
SG3	BV86878	TO15	11/21/16	1	Methylene Chloride		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	Carbon Disulfide		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	Bromoform		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	Bromodichloromethane		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	1,1-Dichloroethane		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	1,1-Dichloroethene		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	Trichlorofluoromethane	4.41	ug/m3		1.00
SG3	BV86878	TO15	11/21/16	1	Dichlorodifluoromethane	3.73	ug/m3		1.00

Page 5 of 17

SDG: GBV86876

Sample Name	Lab ID	Analytical Method	Analysis Date	Dilution Factor	Analyte	Result	Unit	Qualifier	RL
SG3	BV86878	TO15	11/21/16	1	Trichlorotrifluoroethane		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	1,2-Dichlorotetrafluoroethane		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	1,2-dichloropropane		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	1,1,2-Trichloroethane		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	Trichloroethene	0.32	ug/m3		0.25
SG3	BV86878	TO15	11/21/16	1	1,1,2,2-Tetrachloroethane		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	Hexachlorobutadiene		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	o-Xylene	2.67	ug/m3		1.00
SG3	BV86878	TO15	11/21/16	1	1,2-Dichlorobenzene		ug/m3	U	1.00
SG1	BV86884	TO15	11/21/16	1	1,2,4-Trichlorobenzene		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	Isopropylbenzene		ug/m3	U	1.00
SG3	BV86878	TO15	11/21/16	1	4-Isopropyltoluene		ug/m3	U	1.00
SG5	BV86882	TO15	11/17/16	10	1,2,4-Trimethylbenzene		ug/m3	UJ	10.0
SG4	BV86877	TO15	11/17/16	1	Ethylbenzene	10.5	ug/m3		1.00
SG4	BV86877	TO15	11/17/16	1	Styrene		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	Benzyl chloride		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	cis-1,3-Dichloropropene		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	trans-1,3-Dichloropropene		ug/m3	U	1.00
SG7	BV86880	TO15	11/23/16	30	1,2,4-Trimethylbenzene		ug/m3	UJ	30.0
SG4	BV86877	TO15	11/17/16	1	1,4-Dichlorobenzene		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	1,2-Dibromoethane(EDB)		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	1,3-Butadiene		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	1,2-Dichloroethane		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	Acrylonitrile		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	1,3,5-Trimethylbenzene		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	Toluene	57.2	ug/m3		1.00
SG4	BV86877	TO15	11/17/16	1	Chlorobenzene		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	Tetrahydrofuran		ug/m3	U	1.00
SG4	BV86877	TO15	11/18/16	100	Methyl Ethyl Ketone	1180	ug/m3	J	100
SG4	BV86877	TO15	11/17/16	1	1,4-Dioxane		ug/m3	UJ	1.00
SG4	BV86877	TO15	11/17/16	1	Dibromochloromethane		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	Tetrachloroethene	2.60	ug/m3		0.25
SG4	BV86877	TO15	11/17/16	1	sec-Butylbenzene		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	Ethyl acetate		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	Cis-1,2-Dichloroethene	10.2	ug/m3		1.00
SG4	BV86877	TO15	11/17/16	1	Trans-1,2-Dichloroethene	1.42	ug/m3		1.00
SG4	BV86877	TO15	11/17/16	1	Methyl tert-butyl ether(MTBE)		ug/m3	U	1.00

Page 6 of 17

SDG: GBV86876

Sample Name	Lab ID	Analytical Method	Analysis Date	Dilution Factor	Analyte	Result	Unit	Qualifier	RL
SG4	BV86877	TO15	11/17/16	1	m,p-Xylene	16.2	ug/m3		1.00
SG4	BV86877	TO15	11/17/16	1	1,3-Dichlorobenzene		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	Carbon Tetrachloride		ug/m3	U	0.25
SG4	BV86877	TO15	11/17/16	1	2-Hexanone(MBK)		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	4-Ethyltoluene		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	1,1,1,2-Tetrachloroethane		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	Ethanol	953	ug/m3	J	1.00
SG4	BV86877	TO15	11/17/16	1	Isopropylalcohol	33.2	ug/m3		1.00
SG4	BV86877	TO15	11/17/16	1	Chloroform		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	Benzene	122	ug/m3		1.00
SG4	BV86877	TO15	11/17/16	1	1,1,1-Trichloroethane		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	Bromomethane		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	Chloromethane		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	Chloroethane		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	Vinyl Chloride	1.56	ug/m3		0.25
SG4	BV86877	TO15	11/17/16	1	Methylene Chloride		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	Carbon Disulfide	32.7	ug/m3		1.00
SG4	BV86877	TO15	11/17/16	1	Bromoform		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	Bromodichloromethane		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	1,1-Dichloroethane		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	1,1-Dichloroethene		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	Trichlorofluoromethane		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	Dichlorodifluoromethane	1.57	ug/m3		1.00
SG4	BV86877	TO15	11/17/16	1	Trichlorotrifluoroethane		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	1,2-Dichlorotetrafluoroethane		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	1,2-dichloropropane		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	1,1,2-Trichloroethane		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	Trichloroethene	7.46	ug/m3		0.25
SG4	BV86877	TO15	11/17/16	1	1,1,2,2-Tetrachloroethane		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	Hexachlorobutadiene		ug/m3	U	1.00
SG4	BV86877	TO15	11/17/16	1	o-Xylene	6.03	ug/m3		1.00
SG4	BV86877	TO15	11/17/16	1	1,2-Dichlorobenzene		ug/m3	U	1.00
SG8	BV86881	TO15	11/23/16	30	1,2,4-Trimethylbenzene		ug/m3	UJ	30.0
SG4	BV86877	TO15	11/17/16	1	Isopropylbenzene	2.01	ug/m3		1.00
SG4	BV86877	TO15	11/17/16	1	4-Isopropyltoluene		ug/m3	U	1.00
SG4	BV86877	TO15	11/18/16	100	4-Methyl-2-pentanone(MIBK)	512	ug/m3		100
SG4	BV86877	TO15	11/18/16	100	Hexane	708	ug/m3		100

Page 7 of 17

SDG: GBV86876

Sample Name	Lab ID	Analytical Method	Analysis Date	Dilution Factor	Analyte	Result	Unit	Qualifier	RL
SG4	BV86877	TO15	11/18/16	100	Cyclohexane	671	ug/m3		100
SG4	BV86877	TO15	11/18/16	100	Propylene	347	ug/m3		100
SG4	BV86877	TO15	11/18/16	100	Heptane	317	ug/m3		100
SG4	BV86877	TO15	11/18/16	100	Acetone	1550	ug/m3		100
SG5	BV86882	TO15	11/21/16	75	Methyl Ethyl Ketone	1390	ug/m3	J	74.9
SG5	BV86882	TO15	11/17/16	10	Ethylbenzene	146	ug/m3		10.0
SG5	BV86882	TO15	11/17/16	10	Styrene		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	Benzyl chloride		ug/m3	UJ	10.0
SG5	BV86882	TO15	11/17/16	10	cis-1,3-Dichloropropene		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	trans-1,3-Dichloropropene		ug/m3	U	10.0
SG9	BV86879	TO15	11/23/16	30	1,2,4-Trimethylbenzene	94.8	ug/m3	J	30.0
SG5	BV86882	TO15	11/17/16	10	1,4-Dichlorobenzene		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	1,2-Dibromoethane(EDB)		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	1,3-Butadiene		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	1,2-Dichloroethane		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	Acrylonitrile		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	4-Methyl-2-pentanone(MIBK)		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	1,3,5-Trimethylbenzene		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	Toluene	1180	ug/m3		10.0
SG5	BV86882	TO15	11/17/16	10	Chlorobenzene		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	Tetrahydrofuran		ug/m3	U	10.0
SG1	BV86884	TO15	11/21/16	1	Methyl Ethyl Ketone	3.48	ug/m3	J	1.00
SG5	BV86882	TO15	11/17/16	10	1,4-Dioxane		ug/m3	UJ	10.0
SG5	BV86882	TO15	11/17/16	10	Dibromochloromethane		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	Tetrachloroethene	3.25	ug/m3		2.50
SG5	BV86882	TO15	11/17/16	10	sec-Butylbenzene		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	Ethyl acetate		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	Cis-1,2-Dichloroethene		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	Trans-1,2-Dichloroethene		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	Methyl tert-butyl ether(MTBE)		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	m,p-Xylene	378	ug/m3		10.0
SG5	BV86882	TO15	11/17/16	10	1,3-Dichlorobenzene		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	Carbon Tetrachloride		ug/m3	U	2.50
SG5	BV86882	TO15	11/17/16	10	2-Hexanone(MBK)		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	4-Ethyltoluene		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	1,1,1,2-Tetrachloroethane		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	Ethanol		ug/m3	U	10.0

Page 8 of 17

SDG: GBV86876

Sample Name	Lab ID	Analytical Method	Analysis Date	Dilution Factor	Analyte	Result	Unit	Qualifier	RL
SG5	BV86882	TO15	11/17/16	10	Isopropylalcohol		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	Acetone		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	Chloroform		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	Benzene	1140	ug/m3		10.0
SG5	BV86882	TO15	11/17/16	10	1,1,1-Trichloroethane		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	Bromomethane		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	Chloromethane		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	Chloroethane		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	Vinyl Chloride		ug/m3	U	2.50
SG5	BV86882	TO15	11/17/16	10	Methylene Chloride		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	Carbon Disulfide		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	Bromoform		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	Bromodichloromethane		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	1,1-Dichloroethane		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	1,1-Dichloroethene		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	Trichlorofluoromethane		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	Dichlorodifluoromethane		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	Trichlorotrifluoroethane		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	1,2-Dichlorotetrafluoroethane		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	1,2-dichloropropane		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	1,1,2-Trichloroethane		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	Trichloroethene	4.08	ug/m3		2.50
SG5	BV86882	TO15	11/17/16	10	1,1,2,2-Tetrachloroethane		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	Hexachlorobutadiene		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	o-Xylene	125	ug/m3		10.0
SG5	BV86882	TO15	11/17/16	10	1,2-Dichlorobenzene		ug/m3	U	10.0
SG1	BV86884	TO15	11/21/16	1	n-Butylbenzene		ug/m3	U	1.00
SG5	BV86882	TO15	11/17/16	10	Isopropylbenzene		ug/m3	U	10.0
SG5	BV86882	TO15	11/17/16	10	4-Isopropyltoluene		ug/m3	U	10.0
SG5	BV86882	TO15	11/21/16	75	Propylene	1090	ug/m3		75.0
SG5	BV86882	TO15	11/21/16	75	Heptane	8110	ug/m3		75.0
SG6	BV86876	TO15	11/21/16	18.5	1,2,4-Trimethylbenzene		ug/m3	UJ	18.5
SG5	BV86882	TO15	11/28/16	270	Hexane	19800	ug/m3		270
SG5	BV86882	TO15	11/28/16	270	Cyclohexane	17500	ug/m3		270
SG6	BV86876	TO15	11/21/16	92.5	Hexane	3210	ug/m3		92.6
SG6	BV86876	TO15	11/21/16	92.5	Cyclohexane	3350	ug/m3		92.5
SG6	BV86876	TO15	11/21/16	18.5	Ethylbenzene	45.6	ug/m3		18.5

Page 9 of 17

SDG: GBV86876

Sample Name	Lab ID	Analytical Method	Analysis Date	Dilution Factor	Analyte	Result	Unit	Qualifier	RL
SG6	BV86876	TO15	11/21/16	18.5	Styrene		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	Benzyl chloride		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	cis-1,3-Dichloropropene		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	trans-1,3-Dichloropropene		ug/m3	U	18.5
SG2	BV86883	TO15	11/21/16	1	n-Butylbenzene		ug/m3	U	1.00
SG6	BV86876	TO15	11/21/16	18.5	1,4-Dichlorobenzene		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	1,2-Dibromoethane(EDB)		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	1,3-Butadiene		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	1,2-Dichloroethane		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	Acrylonitrile		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	4-Methyl-2-pentanone(MIBK)		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	1,3,5-Trimethylbenzene		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	Toluene		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	Chlorobenzene		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	Tetrahydrofuran		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	Propylene	1070	ug/m3		18.6
SG6	BV86876	TO15	11/21/16	18.5	1,2,4-Trichlorobenzene		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	1,4-Dioxane		ug/m3	UJ	18.5
SG6	BV86876	TO15	11/21/16	18.5	Dibromochloromethane		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	Tetrachloroethene		ug/m3	U	4.62
SG6	BV86876	TO15	11/21/16	18.5	sec-Butylbenzene		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	Ethyl acetate		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	Heptane	1470	ug/m3		18.5
SG6	BV86876	TO15	11/21/16	18.5	Cis-1,2-Dichloroethene	22.7	ug/m3		18.5
SG6	BV86876	TO15	11/21/16	18.5	Trans-1,2-Dichloroethene		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	Methyl tert-butyl ether(MTBE)		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	m,p-Xylene	23.5	ug/m3		18.5
SG6	BV86876	TO15	11/21/16	18.5	1,3-Dichlorobenzene		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	Carbon Tetrachloride		ug/m3	U	4.61
SG6	BV86876	TO15	11/21/16	18.5	2-Hexanone(MBK)		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	4-Ethyltoluene		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	1,1,1,2-Tetrachloroethane		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	Ethanol	92.1	ug/m3		18.5
SG6	BV86876	TO15	11/21/16	18.5	Isopropylalcohol		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	Acetone		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	Chloroform		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	Benzene	766	ug/m3		18.5

Page 10 of 17

SDG: GBV86876

Sample Name	Lab ID	Analytical Method	Analysis Date	Dilution Factor	Analyte	Result	Unit	Qualifier	RL
SG6	BV86876	TO15	11/21/16	18.5	1,1,1-Trichloroethane		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	Bromomethane		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	Chloromethane		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	Chloroethane		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	Vinyl Chloride	29.9	ug/m3		4.62
SG6	BV86876	TO15	11/21/16	18.5	Methylene Chloride		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	Carbon Disulfide	209	ug/m3		18.5
SG6	BV86876	TO15	11/21/16	18.5	Bromoform		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	Bromodichloromethane		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	1,1-Dichloroethane		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	1,1-Dichloroethene		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	Trichlorofluoromethane		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	Dichlorodifluoromethane		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	Trichlorotrifluoroethane		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	1,2-Dichlorotetrafluoroethane		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	1,2-dichloropropane		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	Methyl Ethyl Ketone	1480	ug/m3	J	18.5
SG6	BV86876	TO15	11/21/16	18.5	1,1,2-Trichloroethane		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	Trichloroethene	7.04	ug/m3		4.62
SG6	BV86876	TO15	11/21/16	18.5	1,1,2,2-Tetrachloroethane		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	Hexachlorobutadiene		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	o-Xylene		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	1,2-Dichlorobenzene		ug/m3	U	18.5
SG3	BV86878	TO15	11/21/16	1	n-Butylbenzene		ug/m3	U	1.00
SG6	BV86876	TO15	11/21/16	18.5	Isopropylbenzene		ug/m3	U	18.5
SG6	BV86876	TO15	11/21/16	18.5	4-Isopropyltoluene		ug/m3	U	18.5
SG7	BV86880	TO15	11/23/16	30	Ethylbenzene		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	Styrene		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	Benzyl chloride		ug/m3	UJ	30.0
SG7	BV86880	TO15	11/23/16	30	cis-1,3-Dichloropropene		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	trans-1,3-Dichloropropene		ug/m3	U	30.0
SG4	BV86877	TO15	11/17/16	1	n-Butylbenzene		ug/m3	U	1.00
SG7	BV86880	TO15	11/23/16	30	1,4-Dichlorobenzene		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	1,2-Dibromoethane(EDB)		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	1,3-Butadiene		ug/m3	U	30.1
SG7	BV86880	TO15	11/23/16	30	1,2-Dichloroethane		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	Acrylonitrile		ug/m3	U	29.9

Page 11 of 17

SDG: GBV86876

Sample Name	Lab ID	Analytical Method	Analysis Date	Dilution Factor	Analyte	Result	Unit	Qualifier	RL
SG7	BV86880	TO15	11/23/16	30	4-Methyl-2-pentanone(MIBK)		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	1,3,5-Trimethylbenzene		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	Toluene		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	Chlorobenzene		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	Tetrahydrofuran		ug/m3	U	30.1
SG7	BV86880	TO15	11/23/16	30	Propylene		ug/m3	U	29.9
SG7	BV86880	TO15	11/23/16	30	1,2,4-Trichlorobenzene		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	1,4-Dioxane		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	Dibromochloromethane		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	Tetrachloroethene	14.4	ug/m3		7.52
SG7	BV86880	TO15	11/23/16	30	sec-Butylbenzene		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	Ethyl acetate		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	Cis-1,2-Dichloroethene	109	ug/m3		30.0
SG7	BV86880	TO15	11/23/16	30	Trans-1,2-Dichloroethene		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	Methyl tert-butyl ether(MTBE)	2560	ug/m3		30.0
SG7	BV86880	TO15	11/23/16	30	m,p-Xylene		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	1,3-Dichlorobenzene		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	Carbon Tetrachloride		ug/m3	U	7.48
SG7	BV86880	TO15	11/23/16	30	2-Hexanone(MBK)		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	4-Ethyltoluene		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	1,1,1,2-Tetrachloroethane		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	Ethanol		ug/m3	U	29.9
SG7	BV86880	TO15	11/23/16	30	Isopropylalcohol		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	Acetone		ug/m3	U	29.9
SG7	BV86880	TO15	11/23/16	30	Chloroform		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	Benzene	619	ug/m3		30.0
SG7	BV86880	TO15	11/23/16	30	1,1,1-Trichloroethane		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	Bromomethane		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	Chloromethane		ug/m3	U	29.9
SG7	BV86880	TO15	11/23/16	30	Chloroethane		ug/m3	U	30.1
SG7	BV86880	TO15	11/23/16	30	Vinyl Chloride	2530	ug/m3		7.51
SG7	BV86880	TO15	11/23/16	30	Methylene Chloride		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	Carbon Disulfide		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	Bromoform		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	Bromodichloromethane		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	1,1-Dichloroethane		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	1,1-Dichloroethene		ug/m3	U	30.0

Page 12 of 17

SDG: GBV86876

Sample Name	Lab ID	Analytical Method	Analysis Date	Dilution Factor	Analyte	Result	Unit	Qualifier	RL
SG7	BV86880	TO15	11/23/16	30	Trichlorofluoromethane		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	Dichlorodifluoromethane		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	Trichlorotrifluoroethane		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	1,2-Dichlorotetrafluoroethane		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	1,2-dichloropropane		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	Methyl Ethyl Ketone	169	ug/m3		30.1
SG7	BV86880	TO15	11/23/16	30	1,1,2-Trichloroethane		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	Trichloroethene	11.3	ug/m3		7.52
SG7	BV86880	TO15	11/23/16	30	1,1,2,2-Tetrachloroethane		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	Hexachlorobutadiene		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	o-Xylene		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	1,2-Dichlorobenzene		ug/m3	U	30.0
SG5	BV86882	TO15	11/17/16	10	n-Butylbenzene		ug/m3	UJ	10.0
SG7	BV86880	TO15	11/23/16	30	Isopropylbenzene		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	4-Isopropyltoluene		ug/m3	U	30.0
SG7	BV86880	TO15	11/28/16	300	Hexane	28000	ug/m3		300
SG7	BV86880	TO15	11/28/16	300	Cyclohexane	15500	ug/m3		300
SG7	BV86880	TO15	11/28/16	300	Heptane	12900	ug/m3		300
SG8	BV86881	TO15	11/23/16	30	Ethylbenzene		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	Styrene		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	Benzyl chloride		ug/m3	UJ	30.0
SG8	BV86881	TO15	11/23/16	30	cis-1,3-Dichloropropene		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	trans-1,3-Dichloropropene		ug/m3	U	30.0
SG6	BV86876	TO15	11/21/16	18.5	n-Butylbenzene		ug/m3	U	18.5
SG8	BV86881	TO15	11/23/16	30	1,4-Dichlorobenzene		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	1,2-Dibromoethane(EDB)		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	1,3-Butadiene		ug/m3	U	30.1
SG8	BV86881	TO15	11/23/16	30	1,2-Dichloroethane		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	Acrylonitrile		ug/m3	U	29.9
SG8	BV86881	TO15	11/23/16	30	4-Methyl-2-pentanone(MIBK)		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	1,3,5-Trimethylbenzene		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	Toluene	48.6	ug/m3		30.0
SG8	BV86881	TO15	11/23/16	30	Chlorobenzene		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	Tetrahydrofuran		ug/m3	U	30.1
SG8	BV86881	TO15	11/23/16	30	Hexane	128	ug/m3		30.0
SG8	BV86881	TO15	11/23/16	30	Cyclohexane		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	Propylene		ug/m3	U	29.9

Page 13 of 17

SDG: GBV86876

Sample Name	Lab ID	Analytical Method	Analysis Date	Dilution Factor	Analyte	Result	Unit	Qualifier	RL
SG8	BV86881	TO15	11/23/16	30	1,2,4-Trichlorobenzene		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	1,4-Dioxane		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	Dibromochloromethane		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	Tetrachloroethene		ug/m3	U	7.52
SG8	BV86881	TO15	11/23/16	30	sec-Butylbenzene		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	Ethyl acetate		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	Heptane		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	Cis-1,2-Dichloroethene		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	Trans-1,2-Dichloroethene		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	m,p-Xylene		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	1,3-Dichlorobenzene		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	Carbon Tetrachloride		ug/m3	U	7.48
SG8	BV86881	TO15	11/23/16	30	2-Hexanone(MBK)		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	4-Ethyltoluene		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	1,1,1,2-Tetrachloroethane		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	Ethanol	30.7	ug/m3		29.9
SG8	BV86881	TO15	11/23/16	30	Isopropylalcohol		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	Acetone		ug/m3	U	29.9
SG8	BV86881	TO15	11/23/16	30	Chloroform		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	Benzene		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	1,1,1-Trichloroethane		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	Bromomethane		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	Chloromethane		ug/m3	U	29.9
SG8	BV86881	TO15	11/23/16	30	Chloroethane		ug/m3	U	30.1
SG8	BV86881	TO15	11/23/16	30	Vinyl Chloride	13.9	ug/m3		7.51
SG8	BV86881	TO15	11/23/16	30	Methylene Chloride		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	Carbon Disulfide		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	Bromoform		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	Bromodichloromethane		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	1,1-Dichloroethane		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	1,1-Dichloroethene		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	Trichlorofluoromethane		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	Dichlorodifluoromethane		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	Trichlorotrifluoroethane		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	1,2-Dichlorotetrafluoroethane		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	1,2-dichloropropane		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	Methyl Ethyl Ketone	233	ug/m3		30.1

Page 14 of 17

SDG: GBV86876

Sample Name	Lab ID	Analytical Method	Analysis Date	Dilution Factor	Analyte	Result	Unit	Qualifier	RL
SG8	BV86881	TO15	11/23/16	30	1,1,2-Trichloroethane		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	Trichloroethene		ug/m3	U	7.52
SG8	BV86881	TO15	11/23/16	30	1,1,2,2-Tetrachloroethane		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	Hexachlorobutadiene		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	o-Xylene		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	1,2-Dichlorobenzene		ug/m3	U	30.0
SG7	BV86880	TO15	11/23/16	30	n-Butylbenzene		ug/m3	UJ	30.0
SG8	BV86881	TO15	11/23/16	30	Isopropylbenzene		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	4-Isopropyltoluene		ug/m3	U	30.0
SG8	BV86881	TO15	11/28/16	150	Methyl tert-butyl ether(MTBE)	6450	ug/m3		150
SG9	BV86879	TO15	11/23/16	30	Ethylbenzene		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	Styrene		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	Benzyl chloride		ug/m3	UJ	30.0
SG9	BV86879	TO15	11/23/16	30	cis-1,3-Dichloropropene		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	trans-1,3-Dichloropropene		ug/m3	U	30.0
SG8	BV86881	TO15	11/23/16	30	n-Butylbenzene		ug/m3	UJ	30.0
SG9	BV86879	TO15	11/23/16	30	1,4-Dichlorobenzene		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	1,2-Dibromoethane(EDB)		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	1,3-Butadiene		ug/m3	U	30.1
SG9	BV86879	TO15	11/23/16	30	1,2-Dichloroethane		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	Acrylonitrile		ug/m3	U	29.9
SG9	BV86879	TO15	11/23/16	30	4-Methyl-2-pentanone(MIBK)		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	1,3,5-Trimethylbenzene	75.2	ug/m3		30.0
SG9	BV86879	TO15	11/23/16	30	Toluene		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	Chlorobenzene		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	Tetrahydrofuran		ug/m3	U	30.1
SG9	BV86879	TO15	11/23/16	30	Cyclohexane		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	Propylene	580	ug/m3		29.9
SG9	BV86879	TO15	11/23/16	30	1,2,4-Trichlorobenzene		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	1,4-Dioxane		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	Dibromochloromethane		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	Tetrachloroethene		ug/m3	U	7.52
SG9	BV86879	TO15	11/23/16	30	sec-Butylbenzene		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	Ethyl acetate		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	Cis-1,2-Dichloroethene		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	Trans-1,2-Dichloroethene		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	m,p-Xylene	568	ug/m3		30.0

Page 15 of 17

SDG: GBV86876

Sample Name	Lab ID	Analytical Method	Analysis Date	Dilution Factor	Analyte	Result	Unit	Qualifier	RL
SG9	BV86879	TO15	11/23/16	30	1,3-Dichlorobenzene		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	Carbon Tetrachloride		ug/m3	U	7.48
SG9	BV86879	TO15	11/23/16	30	2-Hexanone(MBK)		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	4-Ethyltoluene		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	1,1,1,2-Tetrachloroethane		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	Ethanol	44.1	ug/m3		29.9
SG9	BV86879	TO15	11/23/16	30	Isopropylalcohol		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	Acetone		ug/m3	U	29.9
SG9	BV86879	TO15	11/23/16	30	Chloroform		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	Benzene	299	ug/m3		30.0
SG9	BV86879	TO15	11/23/16	30	1,1,1-Trichloroethane		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	Bromomethane		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	Chloromethane		ug/m3	U	29.9
SG9	BV86879	TO15	11/23/16	30	Chloroethane		ug/m3	U	30.1
SG9	BV86879	TO15	11/23/16	30	Vinyl Chloride	36.0	ug/m3		7.51
SG9	BV86879	TO15	11/23/16	30	Methylene Chloride		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	Carbon Disulfide		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	Bromoform		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	Bromodichloromethane		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	1,1-Dichloroethane		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	1,1-Dichloroethene		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	Trichlorofluoromethane		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	Dichlorodifluoromethane		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	Trichlorotrifluoroethane		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	1,2-Dichlorotetrafluoroethane		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	1,2-dichloropropane		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	Methyl Ethyl Ketone		ug/m3	U	30.1
SG9	BV86879	TO15	11/23/16	30	1,1,2-Trichloroethane		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	Trichloroethene		ug/m3	U	7.52
SG9	BV86879	TO15	11/23/16	30	1,1,2,2-Tetrachloroethane		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	Hexachlorobutadiene		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	o-Xylene	111	ug/m3		30.0
SG9	BV86879	TO15	11/23/16	30	1,2-Dichlorobenzene		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	n-Butylbenzene		ug/m3	UJ	30.0
SG9	BV86879	TO15	11/23/16	30	Isopropylbenzene		ug/m3	U	30.0
SG9	BV86879	TO15	11/23/16	30	4-Isopropyltoluene		ug/m3	U	30.0
SG9	BV86879	TO15	11/28/16	270	Hexane	38000	ug/m3		270

Page 16 of 17

SDG: GBV86876

Sample Name	Lab ID	Analytical Method	Analysis Date	Dilution Factor	Analyte	Result	Unit	Qualifier	RL
SG9	BV86879	TO15	11/28/16	270	Heptane	16100	ug/m3		270
SG9	BV86879	TO15	11/28/16	270	Methyl tert-butyl ether(MTBE)	11300	ug/m3		270