

March 10, 2021

Robert Corcoran, P.E., DEC PM, bob.corcoran@dec.ny.gov
Richard Mustico, richard.mustico1@dec.ny.gov
Joseph Jones, joseph.jones@dec.ny.gov
Rosalie Rusinko, Esq., rosalie.rusinko@dec.ny.gov

NYSDEC

RE: C224203 Former Sterling Transformer - 510 Driggs Avenue Off-Site GW Investigation Report

Dear Ms. Rusinko and Messrs. Corcoran, Mustico, and Jones,

This report summarizes the activities conducted during the February 19, 2021 sampling event of the off-site groundwater monitoring wells at the subject site, following the approved February 4, 2021 Work Plan.

Background

The site, known as the Former Sterling Transformer, located at 510 Driggs Avenue, Brooklyn, was entered into the Brownfield Program ((Site No. C224203) to allow for the cleanup of contamination and to redevelop the site into a new 6-story mixed use building. An unrestricted use was proposed for the property.

End point samples revealed that track 1 had been achieved. Given that dewatering activities were conducted as part of the remedy, the Department requested that onsite groundwater samples be obtained to assess the groundwater quality with respect to VOCs.

A round of groundwater samples was first obtained on October 2020, from three monitoring wells (MW-A, MW-B, and MW-C). Results yielded high concentration of PCE in MWB, which was located around the deepest excavation east of the elevator pit. It was suspected that the PCE was being retrieved from an unknown offsite source due to the aggressive dewatering efforts, and the fact that a deep well was located nearby this well.

The November 2020 yielded a lower concentration of PCE in MW-B, however an increase concentration in MW-C. Once again, this was attributed to the fact that the deep well withdrawal of groundwater had been reduced, and that the concentration of PCE was not reaching MW-B, but closer to MW-C.

The December 2020 sample revealed that PCE concentration at MW-A and MW-C had increased substantially, while MW-B was decreasing, which resulted in the affirmation that PCE was being brought from an offsite source by the perimeter well point system, and that the migration of PCE-tainted groundwater should stop once dewatering ceases at the site, in another 6 months. Location of these wells and results can be found in the attached Figure 1.

In January 15, 2021 during a telephone call between the Department, the Volunteer and its Consultant, the recent discovery of tetrachloroethylene (PCE) in on-site wells and the data trends summarized above were discussed. At the time, the Department requested that the Developer / Volunteer investigate the origin of the PCE by sampling offsite wells, under the assumption that the PCE was being drawn onsite by the ongoing dewatering activities. For this purpose, a Workplan was prepared and sent to the Department which described the proposed existing monitoring wells to be sampled. The plan was approved as submitted.

Sampling Event

Six groundwater monitoring wells, MW1, MW3, MW4, MW11 through MW13, were identified to be sampled. With the exception of MW3, the rest of the MWs were sampled. MW3 was dry (depth of well screen was above GW elevation.) A copy of the revised MW logs is attached to this report.

Prior to sampling, a synoptic round of depth-to-groundwater (DTW) measurements was obtained from the wells on February 19, 2021, to determine the water table elevation and to calculate the volume of standing water in the well. A groundwater elevation map, from the Feb 19, 2021 with depth to water readings, is provided in Figure 2.

On February 19, 2021, EBC personnel mobilized onsite to retrieve groundwater samples. Samples were collected from the monitoring wells using low-flow sampling techniques and were monitored continuously until parameters stabilized. A disposable polyethylene sampling bailer was used to purge and collect samples from each well location. Samples were collected directly into precleaned laboratory supplied glassware, stored in a cooler with ice and submitted to Phoenix Environmental Laboratories of Manchester, CT, a New York State ELAP certified environmental laboratory (ELAP Certification No. 11301).

Results:

MW12, located on the eastern sidewalk of Driggs Ave., resulted in 12 ppb of PCE. This was the highest concentration found among the sampled wells. MW1, located in the SE corner of the site, yielded 1.7 ppb. MW11, MW13, and MW4, all were below 1 ppb. Results are provided in Figure 2.

Proposed Actions

None of the sampled off-site monitoring wells reveal any significant PCE presence in concentrations that could be associated with an off-site source. The last available onsite PCE reading dates from December 2020. Dewatering has been continuously ongoing, and it may be likely that dewatering activities are contributing to the groundwater remediation. To prove this concept, we are planning to resample the onsite wells in the next few days.

If the onsite wells reveal that PCE is no longer present, we would have proven that dewatering, as a remedial measure, was successful. If PCE is persistent, we will sample off-site wells at an elevation deeper that the bottom of the secant wall, to establish an off-site source.

Attachments

Table: Depth to Water and PCE results Figure 1: Onsite MWs – PCE results

Figure 2: Off Site Sampled MW wells with results

Lab Report

Revised Boring logs of the sampled existing MWs with current Depth to Water values

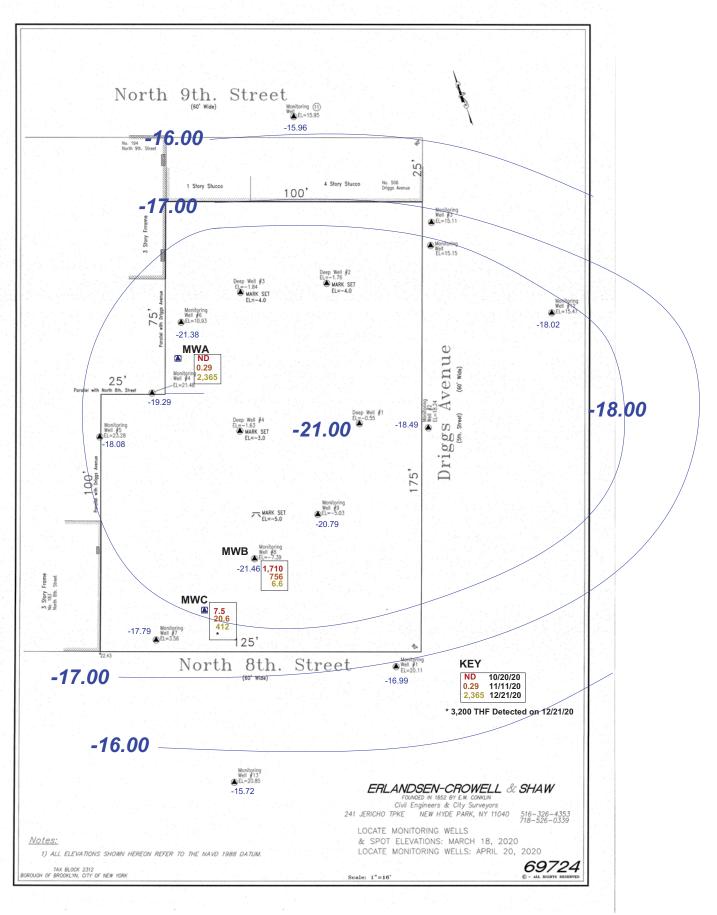
Respectfully submitted,

Ariel Czemerinski, PE

AMC Engineering, PLLC

Cc:

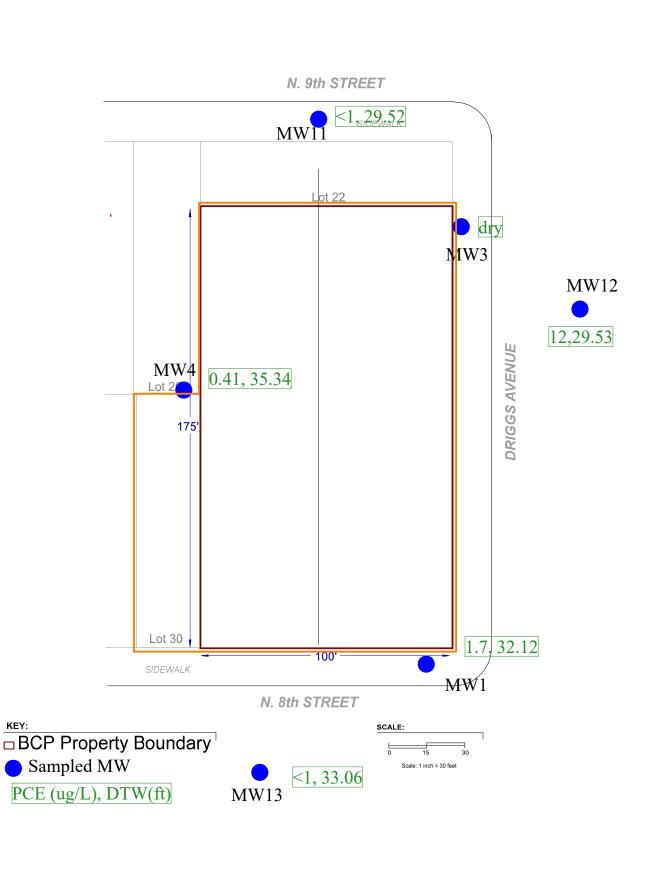
Sam Malik Linda Shaw Charles Sosik


Tables

PCE Concentration

MW#	PCE
	(ug/L)
MW1	1.7
MW3	dry
MW4	0.41
MW11	<1.0
MW12	12
MW13	<0.1

Depths To Water


MW#	Casing Elev	Screen+Riser	Bottom Screen Elev	DTW (2/19)	GW Elev.
	(ft)	(ft)	(ft)	(ft)	(ft)
MW1	20.11	40	-19.89	32.12	-12.01
MW3	15.11	17	-1.89	dry	
MW4	21.48	40	-18.52	35.34	-13.86
MW11	15.95	40	-24.05	29.52	-13.57
MW12	15.47	40	-24.53	29.53	-14.06
MW13	20.85	40	-19.15	33.06	-12.21

ENVIRONMENTAL BUSINESS CONSULTANTS

Figure No. 1

FORMER STERLING TRANSFORMER SITE Site Name: 510 DRIGGS AVENUE, BROOKLYN, NY Site Address Onsite Wells Location and PCE results Drawing Title:

Friday, February 26, 2021

Attn: Mr. Charles B. Sosik, P.G. Environmental Business Consultants 1808 Middle Country Rd Ridge NY 11961-2406

Project ID: 510 DRIGGS AVE BROOKLYN NY

SDG ID: GCH66775

Sample ID#s: CH66775 - CH66779

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301

CT Lab Registration #PH-0618 MA Lab Registration #M-CT007

ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003

NY Lab Registration #11301

PA Lab Registration #68-03530

RI Lab Registration #63

UT Lab Registration #CT00007

VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

February 26, 2021

SDG I.D.: GCH66775

8260 Volatile Organics:

1,2-Dibromoethane, 1,2,3 Trichloropropane, and 1,2-Dibromo-3-chloropropane do not meet NY TOGS GA criteria, these compounds are analyzed by GC/FID method 504 or 8011 to achieve this criteria.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

February 26, 2021

SDG I.D.: GCH66775

Project ID: 510 DRIGGS AVE BROOKLYN NY

Client Id	Lab Id	Matrix
MW1	CH66775	GROUND WATER
MW4	CH66776	GROUND WATER
MW11	CH66777	GROUND WATER
MW12	CH66778	GROUND WATER
MW13	CH66779	GROUND WATER

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

February 26, 2021

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample Information Custody Information Date <u>Time</u> **GROUND WATER** Collected by: DM 02/19/21 14:05 Matrix: Received by: Location Code: **EBC** В 02/23/21 14:15

Rush Request: 72 Hour Analyzed by: see "By" below

RL/

LOD/

P.O.#:

<u>Laboratory Data</u>

SDG ID: GCH66775

Phoenix ID: CH66775

Project ID: 510 DRIGGS AVE BROOKLYN NY

Client ID: MW1

Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Volatiles								_
1,1,1,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
1,1,1-Trichloroethane	ND	5.0	0.25	ug/L	1	02/23/21	МН	SW8260C
1,1,2,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
1,1,2-Trichloroethane	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
1,1-Dichloroethane	ND	5.0	0.25	ug/L	1	02/23/21	МН	SW8260C
1,1-Dichloroethene	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
1,1-Dichloropropene	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
1,2,3-Trichloropropane	ND	0.25	0.25	ug/L	1	02/23/21	МН	SW8260C
1,2,4-Trichlorobenzene	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
1,2,4-Trimethylbenzene	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
1,2-Dibromo-3-chloropropane	ND	0.50	0.50	ug/L	1	02/23/21	МН	SW8260C
1,2-Dibromoethane	ND	0.25	0.25	ug/L	1	02/23/21	МН	SW8260C
1,2-Dichlorobenzene	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
1,2-Dichloroethane	ND	0.60	0.50	ug/L	1	02/23/21	MH	SW8260C
1,2-Dichloropropane	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,3,5-Trimethylbenzene	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
1,3-Dichlorobenzene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,3-Dichloropropane	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
1,4-Dichlorobenzene	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
2,2-Dichloropropane	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
2-Chlorotoluene	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
2-Hexanone	ND	2.5	2.5	ug/L	1	02/23/21	MH	SW8260C
2-Isopropyltoluene	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C 1
4-Chlorotoluene	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
4-Methyl-2-pentanone	ND	2.5	2.5	ug/L	1	02/23/21	МН	SW8260C

Client ID: MW1

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND	5.0	2.5	ug/L	1	02/23/21	МН	SW8260C
Acrolein	ND	5.0	2.5	ug/L	1	02/23/21	MH	SW8260C
Acrylonitrile	ND	5.0	2.5	ug/L	1	02/23/21	MH	SW8260C
Benzene	ND	0.70	0.25	ug/L	1	02/23/21	MH	SW8260C
Bromobenzene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Bromochloromethane	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Bromodichloromethane	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Bromoform	ND	5.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Bromomethane	ND	5.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Carbon Disulfide	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Carbon tetrachloride	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Chlorobenzene	ND	5.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Chloroethane	ND	5.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Chloroform	0.53	J 5.0	0.25	ug/L	1	02/23/21	МН	SW8260C
Chloromethane	ND	5.0	0.25	ug/L	1	02/23/21	МН	SW8260C
cis-1,2-Dichloroethene	2.6	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
cis-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	02/23/21	МН	SW8260C
Dibromochloromethane	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
Dibromomethane	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
Dichlorodifluoromethane	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
Ethylbenzene	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
Hexachlorobutadiene	ND	0.50	0.20	ug/L	1	02/23/21	МН	SW8260C
Isopropylbenzene	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
m&p-Xylene	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
Methyl ethyl ketone	ND	2.5	2.5	ug/L	1	02/23/21	МН	SW8260C
Methyl t-butyl ether (MTBE)	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
Methylene chloride	ND	3.0	1.0	ug/L	1	02/23/21	МН	SW8260C
Naphthalene	ND	1.0	1.0	ug/L	1	02/23/21	МН	SW8260C
n-Butylbenzene	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
n-Propylbenzene	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
o-Xylene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
p-Isopropyltoluene	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
sec-Butylbenzene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Styrene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
tert-Butylbenzene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Tetrachloroethene	1.7	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Tetrahydrofuran (THF)	ND	5.0	2.5	ug/L	1	02/23/21	MH	SW8260C
Toluene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
trans-1,2-Dichloroethene	ND	5.0	0.25	ug/L	1	02/23/21	MH	SW8260C
trans-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	02/23/21	MH	SW8260C
trans-1,4-dichloro-2-butene	ND	2.5	2.5	ug/L	1	02/23/21	MH	SW8260C
Trichloroethene	4.7	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Trichlorofluoromethane	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Trichlorotrifluoroethane	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Vinyl chloride	ND	1.0	0.25	ug/L ug/L	1	02/23/21	MH	SW8260C
QA/QC Surrogates	שויו	1.0	0.20	ug/∟		02,20,2 I	IVIII	31102000
% 1,2-dichlorobenzene-d4	102			%	1	02/23/21	МН	70 - 130 %
	95			% %	1 1	02/23/21	MH	70 - 130 % 70 - 130 %
% Bromofluorobenzene	95 97			% %	1 1	02/23/21	MH	70 - 130 % 70 - 130 %
% Dibromofluoromethane	91			70	ı	UZ/Z3/Z1	IVI□	70 - 130 76

Project ID: 510 DRIGGS AVE BROOKLYN NY

Client ID: MW1

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
raiametei	Resuit	FQL	IVIDL	UTIILS	Dilution	Date/Time	Бу	Reference
% Toluene-d8	97			%	1	02/23/21	МН	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	100		ug/l	1	02/23/21	МН	SW8260C
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	1.0		ug/L	1	02/23/21	МН	SW8260C
Acrolein	ND	5.0		ug/L	1	02/23/21	MH	SW8260C
Acrylonitrile	ND	5.0		ug/L	1	02/23/21	MH	SW8260C
Tert-butyl alcohol	ND	50		ug/L	1	02/23/21	МН	SW8260C

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

To achieve client's objectives, where the lowest calibration standard or LOD justifies lowering the RL/PQL, the RL/PQL of some compounds have been lowered to meet criteria.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

February 26, 2021

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG ID: GCH66775

Analysis Report

February 26, 2021

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample Informa	<u>tion</u>	Custody Inform	nation	<u>Date</u>	<u>Time</u>
Matrix:	GROUND WATER	Collected by:	DM	02/19/21	13:40
Location Code:	EBC	Received by:	В	02/23/21	14:15

Rush Request: 72 Hour Analyzed by: see "By" below

Project ID: Client ID: MW4

P.O.#:

Laboratory Data Phoenix ID: CH66776 510 DRIGGS AVE BROOKLYN NY

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Volatiles								
1,1,1,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
1,1,1-Trichloroethane	ND	5.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,1,2,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,1,2-Trichloroethane	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,1-Dichloroethane	ND	5.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,1-Dichloroethene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,1-Dichloropropene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,2,3-Trichloropropane	ND	0.25	0.25	ug/L	1	02/23/21	MH	SW8260C
1,2,4-Trichlorobenzene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,2,4-Trimethylbenzene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,2-Dibromo-3-chloropropane	ND	0.50	0.50	ug/L	1	02/23/21	MH	SW8260C
1,2-Dibromoethane	ND	0.25	0.25	ug/L	1	02/23/21	MH	SW8260C
1,2-Dichlorobenzene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,2-Dichloroethane	ND	0.60	0.50	ug/L	1	02/23/21	MH	SW8260C
1,2-Dichloropropane	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,3,5-Trimethylbenzene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,3-Dichlorobenzene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,3-Dichloropropane	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,4-Dichlorobenzene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
2,2-Dichloropropane	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
2-Chlorotoluene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
2-Hexanone	ND	2.5	2.5	ug/L	1	02/23/21	MH	SW8260C
2-Isopropyltoluene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
4-Chlorotoluene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
4-Methyl-2-pentanone	ND	2.5	2.5	ug/L	1	02/23/21	МН	SW8260C

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND	5.0	2.5	ug/L	1	02/23/21	МН	SW8260C
Acrolein	ND	5.0	2.5	ug/L	1	02/23/21	MH	SW8260C
Acrylonitrile	ND	5.0	2.5	ug/L	1	02/23/21	MH	SW8260C
Benzene	ND	0.70	0.25	ug/L	1	02/23/21	MH	SW8260C
Bromobenzene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Bromochloromethane	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Bromodichloromethane	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Bromoform	ND	5.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Bromomethane	ND	5.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Carbon Disulfide	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Carbon tetrachloride	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
Chlorobenzene	ND	5.0	0.25	ug/L	1	02/23/21	МН	SW8260C
Chloroethane	ND	5.0	0.25	ug/L	1	02/23/21	МН	SW8260C
Chloroform	1.4	J 5.0	0.25	ug/L	1	02/23/21	МН	SW8260C
Chloromethane	ND	5.0	0.25	ug/L	1	02/23/21	МН	SW8260C
cis-1,2-Dichloroethene	1.9	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
cis-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	02/23/21	МН	SW8260C
Dibromochloromethane	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
Dibromomethane	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
Dichlorodifluoromethane	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Ethylbenzene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Hexachlorobutadiene	ND	0.50	0.20	ug/L	1	02/23/21	MH	SW8260C
Isopropylbenzene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
m&p-Xylene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Methyl ethyl ketone	ND	2.5	2.5	ug/L	1	02/23/21	MH	SW8260C
Methyl t-butyl ether (MTBE)	ND	1.0	0.25	ug/L	' 1	02/23/21	MH	SW8260C
Methylene chloride	ND	3.0	1.0	ug/L	' 1	02/23/21	MH	SW8260C
Naphthalene	ND	1.0	1.0	ug/L	1	02/23/21	MH	SW8260C
n-Butylbenzene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
<u>-</u>	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
n-Propylbenzene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
o-Xylene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
p-Isopropyltoluene								
sec-Butylbenzene	ND ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Styrene		1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
tert-Butylbenzene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Tetrachloroethene	0.41	J 1.0	0.25	ug/L	1	02/23/21	MH	SW8260C SW8260C
Tetrahydrofuran (THF)	ND	5.0	2.5	ug/L	1	02/23/21	MH	0.1.02000
Toluene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
trans-1,2-Dichloroethene	ND	5.0	0.25	ug/L	1	02/23/21	MH	SW8260C
trans-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	02/23/21	MH	SW8260C
trans-1,4-dichloro-2-butene	ND	2.5	2.5	ug/L	1	02/23/21	MH	SW8260C
Trichloroethene	1.8	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Trichlorofluoromethane	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Trichlorotrifluoroethane	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Vinyl chloride	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	103			%	1	02/23/21	MH	70 - 130 %
% Bromofluorobenzene	96			%	1	02/23/21	MH	70 - 130 %
% Dibromofluoromethane	99			%	1	02/23/21	МН	70 - 130 %

Project ID: 510 DRIGGS AVE BROOKLYN NY Phoenix I.D.: CH66776

Client ID: MW4

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	96			%	1	02/23/21	МН	70 - 130 %
1,4-dioxane 1,4-dioxane Volatiles	ND	100		ug/l	1	02/23/21	МН	SW8260C
1,1,1,2-Tetrachloroethane	ND	1.0		ug/L	1	02/23/21	MH	SW8260C
Acrolein	ND	5.0		ug/L	1	02/23/21	MH	SW8260C
Acrylonitrile	ND	5.0		ug/L	1	02/23/21	MH	SW8260C
Tert-butyl alcohol	ND	50		ug/L	1	02/23/21	MH	SW8260C

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

To achieve client's objectives, where the lowest calibration standard or LOD justifies lowering the RL/PQL, the RL/PQL of some compounds have been lowered to meet criteria.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

February 26, 2021

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

February 26, 2021

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample Information Custody Information Date <u>Time</u> **GROUND WATER** Collected by: DM 02/19/21 Matrix: 10:15 Received by: Location Code: **EBC** В 02/23/21 14:15

Rush Request: 72 Hour Analyzed by: see "By" below

RL/

P.O.#:

Laboratory Data

LOD/

SDG ID: GCH66775

Phoenix ID: CH66777

Project ID: 510 DRIGGS AVE BROOKLYN NY

Client ID: MW11

Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Volatiles								
1,1,1,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	02/24/21	МН	SW8260C
1,1,1-Trichloroethane	ND	5.0	0.25	ug/L	1	02/24/21	МН	SW8260C
1,1,2,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	02/24/21	МН	SW8260C
1,1,2-Trichloroethane	ND	1.0	0.25	ug/L	1	02/24/21	МН	SW8260C
1,1-Dichloroethane	ND	5.0	0.25	ug/L	1	02/24/21	МН	SW8260C
1,1-Dichloroethene	ND	1.0	0.25	ug/L	1	02/24/21	МН	SW8260C
1,1-Dichloropropene	ND	1.0	0.25	ug/L	1	02/24/21	МН	SW8260C
1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L	1	02/24/21	МН	SW8260C
1,2,3-Trichloropropane	ND	0.25	0.25	ug/L	1	02/24/21	МН	SW8260C
1,2,4-Trichlorobenzene	ND	1.0	0.25	ug/L	1	02/24/21	МН	SW8260C
1,2,4-Trimethylbenzene	ND	1.0	0.25	ug/L	1	02/24/21	МН	SW8260C
1,2-Dibromo-3-chloropropane	ND	0.50	0.50	ug/L	1	02/24/21	МН	SW8260C
1,2-Dibromoethane	ND	0.25	0.25	ug/L	1	02/24/21	МН	SW8260C
1,2-Dichlorobenzene	ND	1.0	0.25	ug/L	1	02/24/21	МН	SW8260C
1,2-Dichloroethane	ND	0.60	0.50	ug/L	1	02/24/21	МН	SW8260C
1,2-Dichloropropane	ND	1.0	0.25	ug/L	1	02/24/21	МН	SW8260C
1,3,5-Trimethylbenzene	ND	1.0	0.25	ug/L	1	02/24/21	МН	SW8260C
1,3-Dichlorobenzene	ND	1.0	0.25	ug/L	1	02/24/21	МН	SW8260C
1,3-Dichloropropane	ND	1.0	0.25	ug/L	1	02/24/21	МН	SW8260C
1,4-Dichlorobenzene	ND	1.0	0.25	ug/L	1	02/24/21	МН	SW8260C
2,2-Dichloropropane	ND	1.0	0.25	ug/L	1	02/24/21	МН	SW8260C
2-Chlorotoluene	ND	1.0	0.25	ug/L	1	02/24/21	МН	SW8260C
2-Hexanone	ND	2.5	2.5	ug/L	1	02/24/21	МН	SW8260C
2-Isopropyltoluene	ND	1.0	0.25	ug/L	1	02/24/21	МН	SW8260C 1
4-Chlorotoluene	ND	1.0	0.25	ug/L	1	02/24/21	МН	SW8260C
4-Methyl-2-pentanone	ND	2.5	2.5	ug/L	1	02/24/21	МН	SW8260C

Client ID: MW11

Parameter Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND	5.0	2.5	ug/L	1	02/24/21	МН	SW8260C
Acrolein	ND	5.0	2.5	ug/L	1	02/24/21	MH	SW8260C
Acrylonitrile	ND	5.0	2.5	ug/L	1	02/24/21	MH	SW8260C
Benzene	ND	0.70	0.25	ug/L	1	02/24/21	MH	SW8260C
Bromobenzene	ND	1.0	0.25	ug/L	1	02/24/21	MH	SW8260C
Bromochloromethane	ND	1.0	0.25	ug/L	1	02/24/21	MH	SW8260C
Bromodichloromethane	ND	1.0	0.25	ug/L	1	02/24/21	MH	SW8260C
Bromoform	ND	5.0	0.25	ug/L	1	02/24/21	MH	SW8260C
Bromomethane	ND	5.0	0.25	ug/L	1	02/24/21	MH	SW8260C
Carbon Disulfide	0.85	J 1.0	0.25	ug/L	1	02/24/21	MH	SW8260C
Carbon tetrachloride	ND	1.0	0.25	ug/L	1	02/24/21	MH	SW8260C
Chlorobenzene	ND	5.0	0.25	ug/L	1	02/24/21	MH	SW8260C
Chloroethane	ND	5.0	0.25	ug/L	1	02/24/21	MH	SW8260C
Chloroform	ND	5.0	0.25	ug/L	1	02/24/21	MH	SW8260C
Chloromethane	ND	5.0	0.25	ug/L	1	02/24/21	MH	SW8260C
cis-1,2-Dichloroethene	5.8	1.0	0.25	ug/L	1	02/24/21	MH	SW8260C
cis-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	02/24/21	MH	SW8260C
Dibromochloromethane	ND	1.0	0.25	ug/L	1	02/24/21	MH	SW8260C
Dibromomethane	ND	1.0	0.25	ug/L	1	02/24/21	MH	SW8260C
Dichlorodifluoromethane	ND	1.0	0.25	ug/L	1	02/24/21	MH	SW8260C
Ethylbenzene	ND	1.0	0.25	ug/L	1	02/24/21	МН	SW8260C
Hexachlorobutadiene	ND	0.50	0.20	ug/L	1	02/24/21	МН	SW8260C
Isopropylbenzene	ND	1.0	0.25	ug/L	1	02/24/21	МН	SW8260C
m&p-Xylene	ND	1.0	0.25	ug/L	1	02/24/21	МН	SW8260C
Methyl ethyl ketone	ND	2.5	2.5	ug/L	1	02/24/21	МН	SW8260C
Methyl t-butyl ether (MTBE)	0.40	J 1.0	0.25	ug/L	1	02/24/21	МН	SW8260C
Methylene chloride	ND	3.0	1.0	ug/L	1	02/24/21	МН	SW8260C
Naphthalene	ND	1.0	1.0	ug/L	1	02/24/21	МН	SW8260C
n-Butylbenzene	ND	1.0	0.25	ug/L	1	02/24/21	МН	SW8260C
n-Propylbenzene	ND	1.0	0.25	ug/L	1	02/24/21	МН	SW8260C
o-Xylene	ND	1.0	0.25	ug/L	1	02/24/21	МН	SW8260C
p-Isopropyltoluene	ND	1.0	0.25	ug/L	1	02/24/21	МН	SW8260C
sec-Butylbenzene	ND	1.0	0.25	ug/L	1	02/24/21	МН	SW8260C
Styrene	ND	1.0	0.25	ug/L	1	02/24/21	МН	SW8260C
tert-Butylbenzene	ND	1.0	0.25	ug/L	1	02/24/21	МН	SW8260C
Tetrachloroethene	ND	1.0	0.25	ug/L	1	02/24/21	МН	SW8260C
Tetrahydrofuran (THF)	ND	5.0	2.5	ug/L	1	02/24/21	МН	SW8260C 1
Toluene	ND	1.0	0.25	ug/L	1	02/24/21	МН	SW8260C
trans-1,2-Dichloroethene	ND	5.0	0.25	ug/L	1	02/24/21	МН	SW8260C
trans-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	02/24/21	МН	SW8260C
trans-1,4-dichloro-2-butene	ND	2.5	2.5	ug/L	1	02/24/21	МН	SW8260C
Trichloroethene	2.1	1.0	0.25	ug/L	1	02/24/21	МН	SW8260C
Trichlorofluoromethane	ND	1.0	0.25	ug/L	1	02/24/21	MH	SW8260C
Trichlorotrifluoroethane	ND	1.0	0.25	ug/L	1	02/24/21	MH	SW8260C
Vinyl chloride	ND	1.0	0.25	ug/L	1	02/24/21	MH	SW8260C
QA/QC Surrogates	,,,,	0	3.20	√9 , –	•	J_, _ , , _ 1		
% 1,2-dichlorobenzene-d4	96			%	1	02/24/21	МН	70 - 130 %
% 1,2-dicfilorobenzene-d4 % Bromofluorobenzene	95			%	1	02/24/21	MH	70 - 130 % 70 - 130 %
% Dibromofluoromethane	103			%	1	02/24/21	MH	70 - 130 % 70 - 130 %
	100			70	,	<i>02,2</i>	1411 1	. 5 100 /5

Project ID: 510 DRIGGS AVE BROOKLYN NY

Client ID: MW11

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	95			%	1	02/24/21	МН	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	100		ug/l	1	02/24/21	МН	SW8260C
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	1.0		ug/L	1	02/24/21	MH	SW8260C
Acrolein	ND	5.0		ug/L	1	02/24/21	MH	SW8260C
Acrylonitrile	ND	5.0		ug/L	1	02/24/21	MH	SW8260C
Tert-butyl alcohol	ND	50		ug/L	1	02/24/21	МН	SW8260C

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

To achieve client's objectives, where the lowest calibration standard or LOD justifies lowering the RL/PQL, the RL/PQL of some compounds have been lowered to meet criteria.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

February 26, 2021

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

February 26, 2021

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample Information Custody Information Date <u>Time</u> **GROUND WATER** Collected by: DM 02/19/21 10:50 Matrix: Received by: **EBC** В 02/23/21 14:15 **Location Code:**

Rush Request: 72 Hour Analyzed by: see "By" below

RL/

LOD/

P.O.#:

Laboratory Data

SDG ID: GCH66775

Phoenix ID: CH66778

Project ID: 510 DRIGGS AVE BROOKLYN NY

Client ID: MW12

Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Volatiles								
1,1,1,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
1,1,1-Trichloroethane	ND	5.0	0.25	ug/L	1	02/23/21	МН	SW8260C
1,1,2,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
1,1,2-Trichloroethane	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
1,1-Dichloroethane	ND	5.0	0.25	ug/L	1	02/23/21	МН	SW8260C
1,1-Dichloroethene	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
1,1-Dichloropropene	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
1,2,3-Trichloropropane	ND	0.25	0.25	ug/L	1	02/23/21	МН	SW8260C
1,2,4-Trichlorobenzene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,2,4-Trimethylbenzene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,2-Dibromo-3-chloropropane	ND	0.50	0.50	ug/L	1	02/23/21	MH	SW8260C
1,2-Dibromoethane	ND	0.25	0.25	ug/L	1	02/23/21	MH	SW8260C
1,2-Dichlorobenzene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,2-Dichloroethane	ND	0.60	0.50	ug/L	1	02/23/21	MH	SW8260C
1,2-Dichloropropane	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,3,5-Trimethylbenzene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,3-Dichlorobenzene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,3-Dichloropropane	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,4-Dichlorobenzene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
2,2-Dichloropropane	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
2-Chlorotoluene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
2-Hexanone	ND	2.5	2.5	ug/L	1	02/23/21	MH	SW8260C
2-Isopropyltoluene	0.28	J 1.0	0.25	ug/L	1	02/23/21	MH	SW8260C 1
4-Chlorotoluene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
4-Methyl-2-pentanone	ND	2.5	2.5	ug/L	1	02/23/21	МН	SW8260C

Client ID: MW12

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND	5.0	2.5	ug/L	1	02/23/21	МН	SW8260C
Acrolein	ND	5.0	2.5	ug/L	1	02/23/21	MH	SW8260C
Acrylonitrile	ND	5.0	2.5	ug/L	1	02/23/21	MH	SW8260C
Benzene	ND	0.70	0.25	ug/L	1	02/23/21	MH	SW8260C
Bromobenzene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Bromochloromethane	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Bromodichloromethane	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Bromoform	ND	5.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Bromomethane	ND	5.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Carbon Disulfide	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Carbon tetrachloride	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Chlorobenzene	ND	5.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Chloroethane	ND	5.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Chloroform	ND	5.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Chloromethane	ND	5.0	0.25	ug/L	1	02/23/21	MH	SW8260C
cis-1,2-Dichloroethene	6.7	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
cis-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	02/23/21	MH	SW8260C
Dibromochloromethane	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Dibromomethane	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
Dichlorodifluoromethane	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Ethylbenzene	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
Hexachlorobutadiene	ND	0.50	0.20	ug/L	1	02/23/21	МН	SW8260C
Isopropylbenzene	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
m&p-Xylene	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
Methyl ethyl ketone	ND	2.5	2.5	ug/L	1	02/23/21	МН	SW8260C
Methyl t-butyl ether (MTBE)	0.45	J 1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
Methylene chloride	ND	3.0	1.0	ug/L	1	02/23/21	МН	SW8260C
Naphthalene	ND	1.0	1.0	ug/L	1	02/23/21	МН	SW8260C
n-Butylbenzene	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
n-Propylbenzene	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
o-Xylene	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
p-Isopropyltoluene	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
sec-Butylbenzene	0.45	J 1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
Styrene	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
tert-Butylbenzene	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
Tetrachloroethene	12	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
Tetrahydrofuran (THF)	ND	5.0	2.5	ug/L	1	02/23/21	МН	SW8260C
Toluene	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
trans-1,2-Dichloroethene	1.3	J 5.0	0.25	ug/L	1	02/23/21	МН	SW8260C
trans-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	02/23/21	MH	SW8260C
trans-1,4-dichloro-2-butene	ND	2.5	2.5	ug/L	1	02/23/21	MH	SW8260C
Trichloroethene	3.9	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Trichlorofluoromethane	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Trichlorotrifluoroethane	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Vinyl chloride	0.48	J 1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
QA/QC Surrogates	0.40	5 1.0	5.20	<i>49,</i> ∟	•	02,20,2 I	1411 1	2.1.02000
% 1,2-dichlorobenzene-d4	99			%	1	02/23/21	МН	70 - 130 %
% Bromofluorobenzene	95 95			% %	1	02/23/21	МН	70 - 130 % 70 - 130 %
% Dibromofluoromethane	95 95			% %	1	02/23/21	МН	70 - 130 % 70 - 130 %
/• Distribution timethane	90			70	ı	UZ/Z3/Z I	IVI□	70 - 130 76

Project ID: 510 DRIGGS AVE BROOKLYN NY Phoenix I.D.: CH66778

Client ID: MW12

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	96			%	1	02/23/21	МН	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	100		ug/l	1	02/23/21	МН	SW8260C
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	1.0		ug/L	1	02/23/21	MH	SW8260C
Acrolein	ND	5.0		ug/L	1	02/23/21	MH	SW8260C
Acrylonitrile	ND	5.0		ug/L	1	02/23/21	MH	SW8260C
Tert-butyl alcohol	ND	50		ug/L	1	02/23/21	МН	SW8260C

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

To achieve client's objectives, where the lowest calibration standard or LOD justifies lowering the RL/PQL, the RL/PQL of some compounds have been lowered to meet criteria.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

February 26, 2021

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

February 26, 2021

FOR: Attn: Mr. Charles B. Sosik, P.G.

Environmental Business Consultants

1808 Middle Country Rd Ridge NY 11961-2406

Sample Information Custody Information Date <u>Time</u> **GROUND WATER** Collected by: DM 02/19/21 Matrix: 9:45 Received by: Location Code: **EBC** В 02/23/21 14:15

LOD/

Rush Request: 72 Hour Analyzed by: see "By" below

Laboratory Data

SDG ID: GCH66775
Phoenix ID: CH66779

Project ID: 510 DRIGGS AVE BROOKLYN NY

Client ID: MW13

P.O.#:

Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Volatiles								
	ND	1.0	0.25	/1	4	00/00/04	NAL I	CM6360C
1,1,1,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,1,1-Trichloroethane	ND	5.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,1,2,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,1,2-Trichloroethane	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
1,1-Dichloroethane	ND	5.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,1-Dichloroethene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,1-Dichloropropene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,2,3-Trichloropropane	ND	0.25	0.25	ug/L	1	02/23/21	MH	SW8260C
1,2,4-Trichlorobenzene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,2,4-Trimethylbenzene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,2-Dibromo-3-chloropropane	ND	0.50	0.50	ug/L	1	02/23/21	MH	SW8260C
1,2-Dibromoethane	ND	0.25	0.25	ug/L	1	02/23/21	MH	SW8260C
1,2-Dichlorobenzene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,2-Dichloroethane	ND	0.60	0.50	ug/L	1	02/23/21	MH	SW8260C
1,2-Dichloropropane	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,3,5-Trimethylbenzene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,3-Dichlorobenzene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,3-Dichloropropane	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
1,4-Dichlorobenzene	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
2,2-Dichloropropane	ND	1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
2-Chlorotoluene	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
2-Hexanone	ND	2.5	2.5	ug/L	1	02/23/21	МН	SW8260C
2-Isopropyltoluene	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C 1
4-Chlorotoluene	ND	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
4-Methyl-2-pentanone	ND	2.5	2.5	ug/L	1	02/23/21	МН	SW8260C
· ····o·····yi = portiariorio				3	-			

Client ID: MW13

Client ID. WWW 13			RL/	LOD/					
Parameter	Result		PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Acetone	2.6	JS	5.0	2.5	ug/L	1	02/23/21	МН	SW8260C
Acrolein	ND		5.0	2.5	ug/L	1	02/23/21	MH	SW8260C
Acrylonitrile	ND		5.0	2.5	ug/L	1	02/23/21	MH	SW8260C
Benzene	ND		0.70	0.25	ug/L	1	02/23/21	MH	SW8260C
Bromobenzene	ND		1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Bromochloromethane	ND		1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Bromodichloromethane	ND		1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Bromoform	ND		5.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Bromomethane	ND		5.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Carbon Disulfide	ND		1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Carbon tetrachloride	ND		1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Chlorobenzene	ND		5.0	0.25	ug/L	1	02/23/21	МН	SW8260C
Chloroethane	ND		5.0	0.25	ug/L	1	02/23/21	МН	SW8260C
Chloroform	0.28	J	5.0	0.25	ug/L	1	02/23/21	МН	SW8260C
Chloromethane	ND		5.0	0.25	ug/L	1	02/23/21	МН	SW8260C
cis-1,2-Dichloroethene	0.53	J	1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
cis-1,3-Dichloropropene	ND		0.40	0.25	ug/L	1	02/23/21	МН	SW8260C
Dibromochloromethane	ND		1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
Dibromomethane	ND		1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
Dichlorodifluoromethane	ND		1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
Ethylbenzene	ND		1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
Hexachlorobutadiene	ND		0.50	0.20	ug/L	1	02/23/21	МН	SW8260C
Isopropylbenzene	ND		1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
m&p-Xylene	ND		1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
Methyl ethyl ketone	ND		2.5	2.5	ug/L	1	02/23/21	МН	SW8260C
Methyl t-butyl ether (MTBE)	17		1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
Methylene chloride	ND		3.0	1.0	ug/L	1	02/23/21	МН	SW8260C
Naphthalene	ND		1.0	1.0	ug/L	1	02/23/21	МН	SW8260C
n-Butylbenzene	ND		1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
n-Propylbenzene	ND		1.0	0.25	ug/L	1	02/23/21	МН	SW8260C
o-Xylene	ND		1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
p-Isopropyltoluene	ND		1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
sec-Butylbenzene	ND		1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Styrene	ND		1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
tert-Butylbenzene	ND		1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Tetrachloroethene	ND		1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Tetrahydrofuran (THF)	ND		5.0	2.5	ug/L	1	02/23/21	MH	SW8260C 1
Toluene	ND		1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
trans-1,2-Dichloroethene	ND		5.0	0.25	ug/L	1	02/23/21	MH	SW8260C
	ND		0.40	0.25	ug/L	1	02/23/21	MH	SW8260C
trans-1,3-Dichloropropene trans-1,4-dichloro-2-butene	ND		2.5	2.5	ug/L	1	02/23/21	MH	SW8260C
	1.4		1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
Trichloroethene									
Trichlorofluoromethane	ND ND		1.0 1.0	0.25 0.25	ug/L ug/L	1 1	02/23/21 02/23/21	MH MH	SW8260C SW8260C
Trichlorotrifluoroethane									
Vinyl chloride	ND		1.0	0.25	ug/L	1	02/23/21	MH	SW8260C
QA/QC Surrogates	400				0/	4	00/00/04	K 41 1	70 420 0/
% 1,2-dichlorobenzene-d4	102				%	1	02/23/21	MH	70 - 130 %
% Bromofluorobenzene	95 05				%	1	02/23/21	MH	70 - 130 %
% Dibromofluoromethane	95				%	1	02/23/21	МН	70 - 130 %

Project ID: 510 DRIGGS AVE BROOKLYN NY

Client ID: MW13

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	96			%	1	02/23/21	МН	70 - 130 %
1,4-dioxane 1,4-dioxane Volatiles	ND	100		ug/l	1	02/23/21	МН	SW8260C
1,1,1,2-Tetrachloroethane Acrolein Acrylonitrile Tert-butyl alcohol	ND ND ND ND	1.0 5.0 5.0 50		ug/L ug/L ug/L ug/L	1 1 1	02/23/21 02/23/21 02/23/21 02/23/21	MH MH MH	SW8260C SW8260C SW8260C SW8260C

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

To achieve client's objectives, where the lowest calibration standard or LOD justifies lowering the RL/PQL, the RL/PQL of some compounds have been lowered to meet criteria.

S - Laboratory solvent, contamination is possible.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

February 26, 2021

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

QA/QC Data

February 26, 2021	2021 <u>QA/QC Data</u> SDG I.D.:						.D.: 0	GCH66775				
Parameter	Blank	Blk RL	LC %		LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 564453 (ug/L),	QC Samp	le No: CH66	537 (CH66775, CH6677	6, C	CH6677	8, CH6	6779)					
Volatiles - Ground Wate	-		•				•					
1,1,1,2-Tetrachloroethane	- ND	1.0	95	5	92	3.2				70 - 130	30	
1,1,1-Trichloroethane	ND	1.0	10		99	3.0				70 - 130	30	
1,1,2,2-Tetrachloroethane	ND	0.50	97		96	1.0				70 - 130	30	
1,1,2-Trichloroethane	ND	1.0	95		93	2.1				70 - 130	30	
1,1-Dichloroethane	ND	1.0	99		96	3.1				70 - 130	30	
1,1-Dichloroethene	ND	1.0	10		102	3.8				70 - 130	30	
1,1-Dichloropropene	ND	1.0	10		95	5.1				70 - 130	30	
1,2,3-Trichlorobenzene	ND	1.0	88		100	12.8				70 - 130	30	
1,2,3-Trichloropropane	ND	1.0	96		94	2.1				70 - 130	30	
1,2,4-Trichlorobenzene	ND	1.0	91		94	3.2				70 - 130	30	
1,2,4-Trimethylbenzene	ND	1.0	97		94	3.1				70 - 130	30	
1,2-Dibromo-3-chloropropane	ND	1.0	83		85	2.4				70 - 130	30	
1,2-Dibromoethane	ND	1.0	94		92	2.2				70 - 130	30	
1,2-Dichlorobenzene	ND	1.0	97		96	1.0				70 - 130	30	
1,2-Dichloroethane	ND	1.0	97		96	1.0				70 - 130	30	
1,2-Dichloropropane	ND	1.0	95		93	2.1				70 - 130	30	
1,3,5-Trimethylbenzene	ND	1.0	98		94	4.2				70 - 130	30	
1,3-Dichlorobenzene	ND	1.0	97		94	3.1				70 - 130	30	
1,3-Dichloropropane	ND	1.0	97		94	3.1				70 - 130	30	
1,4-Dichlorobenzene	ND	1.0	97		93	4.2				70 - 130	30	
1,4-dioxane	ND	100	62		99	46.0				70 - 130	30	l,r
2,2-Dichloropropane	ND	1.0	10		105	0.9				70 - 130	30	.,.
2-Chlorotoluene	ND	1.0	10		96	4.1				70 - 130	30	
2-Hexanone	ND	5.0	96		95	1.0				70 - 130	30	
2-Isopropyltoluene	ND	1.0	10		99	4.0				70 - 130	30	
4-Chlorotoluene	ND	1.0	98		95	3.1				70 - 130	30	
4-Methyl-2-pentanone	ND	5.0	10		97	3.0				70 - 130	30	
Acetone	ND	5.0	95		98	3.1				70 - 130	30	
Acrolein	ND	5.0	96		97	1.0				70 - 130	30	
Acrylonitrile	ND	5.0	95		95	0.0				70 - 130	30	
Benzene	ND	0.70	10	0	95	5.1				70 - 130	30	
Bromobenzene	ND	1.0	96		94	2.1				70 - 130	30	
Bromochloromethane	ND	1.0	97		95	2.1				70 - 130	30	
Bromodichloromethane	ND	0.50	94		92	2.2				70 - 130	30	
Bromoform	ND	1.0	86		85	1.2				70 - 130	30	
Bromomethane	ND	1.0	11		107	3.7				70 - 130	30	
Carbon Disulfide	ND	1.0	11		105	4.7				70 - 130	30	
Carbon tetrachloride	ND	1.0	10		100	3.9				70 - 130	30	
Chlorobenzene	ND	1.0	99		96	3.1				70 - 130	30	
Chloroethane	ND	1.0	10		95	5.1				70 - 130	30	
Chloroform	ND	1.0	96		93	3.2				70 - 130	30	
					-							

QA/QC Data

SDG I.D.: GCH66775

Parameter BI	lank	BIk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
Chloromethane N	ND	1.0	98	94	4.2				70 - 130	30
cis-1,2-Dichloroethene N	ND	1.0	93	90	3.3				70 - 130	30
cis-1,3-Dichloropropene N	ND	0.40	91	89	2.2				70 - 130	30
Dibromochloromethane N	ND	0.50	96	94	2.1				70 - 130	30
Dibromomethane N	ND	1.0	94	92	2.2				70 - 130	30
Dichlorodifluoromethane N	ND	1.0	117	112	4.4				70 - 130	30
Ethylbenzene N	ND	1.0	102	97	5.0				70 - 130	30
Hexachlorobutadiene N	ND	0.40	98	102	4.0				70 - 130	30
Isopropylbenzene N	ND	1.0	102	98	4.0				70 - 130	30
m&p-Xylene N	ND	1.0	102	97	5.0				70 - 130	30
Methyl ethyl ketone	ND	5.0	101	97	4.0				70 - 130	30
Methyl t-butyl ether (MTBE)	ND	1.0	106	103	2.9				70 - 130	30
Methylene chloride N	ND	1.0	92	90	2.2				70 - 130	30
Naphthalene N	ND	1.0	88	98	10.8				70 - 130	30
n-Butylbenzene N	ND	1.0	103	100	3.0				70 - 130	30
n-Propylbenzene N	ND	1.0	103	98	5.0				70 - 130	30
o-Xylene N	ND	1.0	100	96	4.1				70 - 130	30
p-Isopropyltoluene N	ND	1.0	102	98	4.0				70 - 130	30
sec-Butylbenzene N	ND	1.0	108	105	2.8				70 - 130	30
Styrene N	ND	1.0	96	93	3.2				70 - 130	30
tert-butyl alcohol N	ND	10	90	102	12.5				70 - 130	30
tert-Butylbenzene N	ND	1.0	102	98	4.0				70 - 130	30
Tetrachloroethene N	ND	1.0	101	96	5.1				70 - 130	30
Tetrahydrofuran (THF)	ND	2.5	97	92	5.3				70 - 130	30
Toluene	ND	1.0	99	94	5.2				70 - 130	30
trans-1,2-Dichloroethene N	ND	1.0	105	102	2.9				70 - 130	30
trans-1,3-Dichloropropene N	ND	0.40	88	86	2.3				70 - 130	30
trans-1,4-dichloro-2-butene	ND	5.0	94	91	3.2				70 - 130	30
Trichloroethene N	ND	1.0	98	95	3.1				70 - 130	30
Trichlorofluoromethane N	ND	1.0	109	104	4.7				70 - 130	30
Trichlorotrifluoroethane N	ND	1.0	116	111	4.4				70 - 130	30
Vinyl chloride N	ND	1.0	102	98	4.0				70 - 130	30
% 1,2-dichlorobenzene-d4	97	%	101	100	1.0				70 - 130	30
% Bromofluorobenzene	93	%	98	99	1.0				70 - 130	30
% Dibromofluoromethane	94	%	95	100	5.1				70 - 130	30
% Toluene-d8	96	%	99	99	0.0				70 - 130	30
Comment:										

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%, 25-160% for Chloroethane-HL and Trichlorofluoromethane-HL.

QA/QC Batch 564621 (ug/L), QC Sample No: CH67181 (CH66777)

Volatiles - Ground Water

1,1,1,2-Tetrachloroethane	ND	1.0	88	89	1.1	70 - 130	30
1,1,1-Trichloroethane	ND	1.0	74	76	2.7	70 - 130	30
1,1,2,2-Tetrachloroethane	ND	0.50	93	95	2.1	70 - 130	30
1,1,2-Trichloroethane	ND	1.0	82	82	0.0	70 - 130	30
1,1-Dichloroethane	ND	1.0	84	82	2.4	70 - 130	30
1,1-Dichloroethene	ND	1.0	75	75	0.0	70 - 130	30
1,1-Dichloropropene	ND	1.0	78	79	1.3	70 - 130	30
1,2,3-Trichlorobenzene	ND	1.0	89	91	2.2	70 - 130	30
1,2,3-Trichloropropane	ND	1.0	85	87	2.3	70 - 130	30
1,2,4-Trichlorobenzene	ND	1.0	94	97	3.1	70 - 130	30

QA/QC Data

SDG I.D.: GCH66775

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
1,2,4-Trimethylbenzene	ND	1.0	94	95	1.1				70 - 130	30	
1,2-Dibromo-3-chloropropane	ND	1.0	94	95	1.1				70 - 130	30	
1,2-Dibromoethane	ND	1.0	88	90	2.2				70 - 130	30	
1,2-Dichlorobenzene	ND	1.0	93	94	1.1				70 - 130	30	
1,2-Dichloroethane	ND	1.0	81	80	1.2				70 - 130	30	
1,2-Dichloropropane	ND	1.0	85	85	0.0				70 - 130	30	
1,3,5-Trimethylbenzene	ND	1.0	93	93	0.0				70 - 130	30	
1,3-Dichlorobenzene	ND	1.0	91	94	3.2				70 - 130	30	
1,3-Dichloropropane	ND	1.0	88	89	1.1				70 - 130	30	
1,4-Dichlorobenzene	ND	1.0	92	94	2.2				70 - 130	30	
1,4-dioxane	ND	100	100	105	4.9				70 - 130	30	
2,2-Dichloropropane	ND	1.0	91	92	1.1				70 - 130	30	
2-Chlorotoluene	ND	1.0	95	97	2.1				70 - 130	30	
2-Hexanone	ND	5.0	96	95	1.0				70 - 130	30	
2-Isopropyltoluene	ND	1.0	100	100	0.0				70 - 130	30	
4-Chlorotoluene	ND	1.0	95	95	0.0				70 - 130	30	
4-Methyl-2-pentanone	ND	5.0	90	91	1.1				70 - 130	30	
Acetone	ND	5.0	82	85	3.6				70 - 130	30	
Acrolein	ND	5.0	82	79	3.7				70 - 130	30	
Acrylonitrile	ND	5.0	82	87	5.9				70 - 130	30	
Benzene	ND	0.70	85	86	1.2				70 - 130	30	
Bromobenzene	ND	1.0	94	96	2.1				70 - 130	30	
Bromochloromethane	ND	1.0	81	82	1.2				70 - 130	30	
Bromodichloromethane	ND	0.50	84	83	1.2				70 - 130	30	
Bromoform	ND	1.0	84	87	3.5				70 - 130	30	
Bromomethane	ND	1.0	79	80	1.3				70 - 130	30	
Carbon Disulfide	ND	1.0	82	82	0.0				70 - 130	30	
Carbon tetrachloride	ND	1.0	75	75	0.0				70 - 130	30	
Chlorobenzene	ND	1.0	89	90	1.1				70 - 130	30	
Chloroethane	ND	1.0	75	75	0.0				70 - 130	30	
Chloroform	ND	1.0	79	80	1.3				70 - 130	30	
Chloromethane	ND	1.0	74	75	1.3				70 - 130	30	
cis-1,2-Dichloroethene	ND	1.0	80	80	0.0				70 - 130	30	
cis-1,3-Dichloropropene	ND	0.40	88	88	0.0				70 - 130	30	
Dibromochloromethane	ND	0.50	93	94	1.1				70 - 130	30	
Dibromomethane	ND	1.0	83	83	0.0				70 - 130	30	
Dichlorodifluoromethane	ND	1.0	66	67	1.5				70 - 130	30	ı
Ethylbenzene	ND	1.0	90	91	1.1				70 - 130	30	
Hexachlorobutadiene	ND	0.40	99	100	1.0				70 - 130	30	
Isopropylbenzene	ND	1.0	97	97	0.0				70 - 130	30	
m&p-Xylene	ND	1.0	90	91	1.1				70 - 130	30	
Methyl ethyl ketone	ND	5.0	92	86	6.7				70 - 130	30	
Methyl t-butyl ether (MTBE)	ND	1.0	85	90	5.7				70 - 130	30	
Methylene chloride	ND	1.0	74	76	2.7				70 - 130	30	
Naphthalene	ND	1.0	98	105	6.9				70 - 130	30	
n-Butylbenzene	ND	1.0	98	98	0.0				70 - 130	30	
n-Propylbenzene	ND	1.0	95	96	1.0				70 - 130	30	
o-Xylene	ND	1.0	95	96	1.0				70 - 130	30	
p-Isopropyltoluene	ND	1.0	97	98	1.0				70 - 130	30	
sec-Butylbenzene	ND	1.0	97	99	2.0				70 - 130	30	
Styrene	ND	1.0	90	91	1.1				70 - 130	30	
tert-butyl alcohol	ND	10	85	89	4.6				70 - 130	30	
tert-Butylbenzene	ND	1.0	96	98	2.1				70 - 130	30	

QA/QC Data

% % Blk LCS **LCSD** LCS **RPD** MS **MSD** MS Rec RPD Blank RL % % % % **RPD** Limits Limits Parameter Tetrachloroethene ND 1.0 82 82 70 - 130 0.0 30 Tetrahydrofuran (THF) ND 2.5 70 76 8.2 70 - 130 30 ND Toluene 1.0 86 86 0.0 70 - 130 30 ND 1.0 85 84 70 - 130 30 trans-1,2-Dichloroethene 1.2 trans-1,3-Dichloropropene ND 0.40 85 84 1.2 70 - 130 30 trans-1,4-dichloro-2-butene ND 5.0 104 104 0.0 70 - 130 30 Trichloroethene ND 1.0 83 83 0.0 70 - 130 30 70 - 130 ND 1.0 Trichlorofluoromethane 65 66 1.5 30 Trichlorotrifluoroethane ND 71 72 70 - 130 30 1.0 1.4 Vinyl chloride ND 1.0 76 74 2.7 70 - 130 30 % 1,2-dichlorobenzene-d4 98 % 102 102 0.0 70 - 130 30 97 % 97 98 % Bromofluorobenzene 1.0 70 - 130 30 % Dibromofluoromethane 108 % 95 99 4.1 70 - 130 30 92 % Toluene-d8 % 101 100 1.0 70 - 130 30 Comment:

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%, 25-160% for Chloroethane-HL and Trichlorofluoromethane-HL.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

SDG I.D.: GCH66775

February 26, 2021

I = This parameter is outside laboratory LCS/LCSD specified recovery limits.

r = This parameter is outside laboratory RPD specified recovery limits.

Friday, February 26, 2021 Criteria: NY: GW

Sample Criteria Exceedances Report GCH66775 - EBC

State: NY

State:	NY						RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
CH66775	\$8260DP25R	1,2-Dibromo-3-chloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.50	0.04	0.04	ug/L
CH66775	\$8260DP25R	1,2-Dibromoethane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.0006	0.0006	ug/L
CH66775	\$8260DP25R	1,2,3-Trichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.04	0.04	ug/L
CH66776	\$8260DP25R	1,2,3-Trichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.04	0.04	ug/L
CH66776	\$8260DP25R	1,2-Dibromo-3-chloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.50	0.04	0.04	ug/L
CH66776	\$8260DP25R	1,2-Dibromoethane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.0006	0.0006	ug/L
CH66777	\$8260DP25R	cis-1,2-Dichloroethene	NY / TOGS - Water Quality / GA Criteria	5.8	1.0	5	5	ug/L
CH66777	\$8260DP25R	1,2,3-Trichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.04	0.04	ug/L
CH66777	\$8260DP25R	1,2-Dibromo-3-chloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.50	0.04	0.04	ug/L
CH66777	\$8260DP25R	1,2-Dibromoethane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.0006	0.0006	ug/L
CH66778	\$8260DP25R	Tetrachloroethene	NY / TAGM - Volatile Organics / Groundwater Standards	12	1.0	5	5	ug/L
CH66778	\$8260DP25R	1,2-Dibromo-3-chloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.50	0.04	0.04	ug/L
CH66778	\$8260DP25R	1,2-Dibromoethane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.0006	0.0006	ug/L
CH66778	\$8260DP25R	cis-1,2-Dichloroethene	NY / TOGS - Water Quality / GA Criteria	6.7	1.0	5	5	ug/L
CH66778	\$8260DP25R	Tetrachloroethene	NY / TOGS - Water Quality / GA Criteria	12	1.0	5	5	ug/L
CH66778	\$8260DP25R	1,2,3-Trichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.04	0.04	ug/L
CH66779	\$8260DP25R	1,2-Dibromoethane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.0006	0.0006	ug/L
CH66779	\$8260DP25R	1,2,3-Trichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.04	0.04	ug/L
CH66779	\$8260DP25R	1,2-Dibromo-3-chloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.50	0.04	0.04	ug/L

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Comments

February 26, 2021 SDG I.D.: GCH66775

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report:

VOA Narration

CHEM02 02/23/21-2: CH66775, CH66776, CH66778, CH66779

Chem02 is a 25ml purge instrument. The laboratory minimum response factor is set at 0.01 instead of 0.05 for the 25ml purge instruments. EPA method 8260D Table 4 supports this approach.

The following Initial Calibration compounds did not meet recommended response factors: Acetone 0.078 (0.1)

The following Initial Calibration compounds did not meet minimum response factors: None.

The following Continuing Calibration compounds did not meet % deviation criteria: 1.4-dioxane 35%L (30%) The following Continuing Calibration compounds did not meet Maximum % deviation criteria: None.

Up to eight compounds can be outside of ICAL %RSD criteria and up to sixteen compounds can be outside of CCAL %Dev criteria if less than 40%.

CHEM17 02/24/21-1: CH66777

Chem 17 is a 25ml purge instrument. The laboratory minimum response factor is set at 0.01 instead of 0.05 for the 25ml purge instruments. EPA method 8260D Table 4 supports this approach.

The following Initial Calibration compounds did not meet RSD% criteria: 1,2,3-Trichloropropane 21% (20%), Methylene chloride 21% (20%), Tetrahydrofuran (THF) 21% (20%)

The following Initial Calibration compounds did not meet maximum RSD% criteria: None.

The following Initial Calibration compounds did not meet recommended response factors: 1,2-Dibromo-3-chloropropane 0.045 (0.05), 2-Hexanone 0.059 (0.1), 4-Methyl-2-pentanone 0.088 (0.1), Acetone 0.039 (0.1), Acrolein 0.030 (0.05), Bromoform 0.095 (0.1), Methyl ethyl ketone 0.060 (0.1), Tetrahydrofuran (THF) 0.043 (0.05)

The following Initial Calibration compounds did not meet minimum response factors: 1,2-Dibromo-3-chloropropane 0.045 (0.05), Acetone 0.039 (0.05), Acrolein 0.030 (0.05), Tetrahydrofuran (THF) 0.043 (0.05)

The following Continuing Calibration compounds did not meet recommended response factors: 1,2-Dibromo-3-chloropropane 0.045 (0.05), Acetone 0.032 (0.05), Acrolein 0.026 (0.05), Tetrahydrofuran (THF) 0.035 (0.05)

The following Continuing Calibration compounds did not meet minimum response factors: 1,2-Dibromo-3-chloropropane 0.045 (0.05), Acetone 0.039 (0.05), Acrolein 0.030 (0.05), Tetrahydrofuran (THF) 0.043 (0.05)

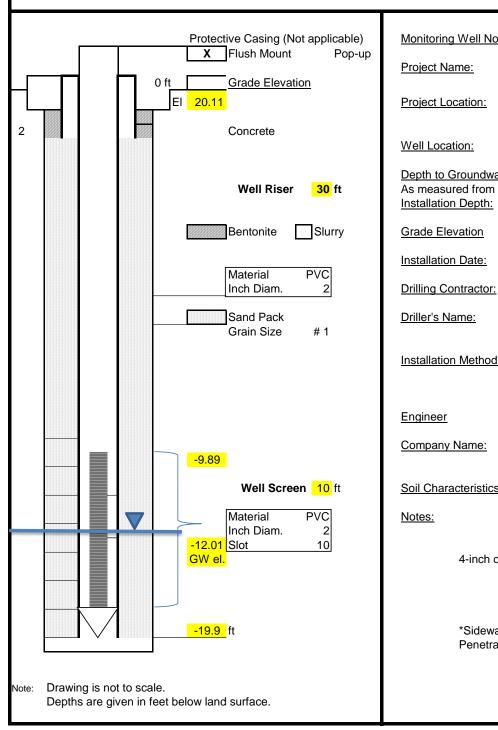
Up to eight compounds can be outside of ICAL %RSD criteria and up to sixteen compounds can be outside of CCAL %Dev criteria if less than 40%.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY # 11301

NY Temperature Narration

February 26, 2021


SDG I.D.: GCH66775

The samples in this delivery group were received at 1.1° C. (Note acceptance criteria for relevant matrices is above freezing up to 6° C)

		I/CN/YN	NY/NJ/PA CHAIN OF CUSTODY RECORD	CUSTODY R	ECORD	Coolant:	Cooler, Yes No olant: IPK ICE No Temp[, °C Pg j of]	
PHOENIX Environmental Laboratories, Inc.	Inc.	587 East Mi Email:	587 East Middle Turnpike, P.O. Box 370, Manchester, CT 06040 Email: info@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-8726	ox 370, Manchester, CT 0 m Fax (860) 645-0823 (860) 645-8726	r, CT 06040 5-0823	Phone: Fax: Kemail: File	Contact Options:	
Customer: EBC Address: 1808 Middle Cou	Ountry RJ.		Project: 5 Report to: 1 Invoice to: 2 QUOTE#:	EBC	ve Brooklyn NY	 	This section MUST be completed with Bottle Quantities.	
Sampler's Derelt Mer Journation - Identification Sampler's Signature Derelt Mer Journation - Identification Date: 2/19/2 Signature Buttix Code: DW-Drinking Water GW-Ground Water SW-Surface Water Wwerwater SE-Sediment SL-Sludge S-Soil SD-Solid W-Wipe OIL-Oil B-Bulk L-Liquid	Identification Date: Trace Water WW=Wast	e Water	Analysis Request		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A TOTAL SOLD	1001 005 1608 1608 1608 1608 1608 1608 1608 1608	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
١٫٫١	Sample Date Matrix Sampled	Time	3		OS ROSS	07/40/2	100 0 100 100 100 100 100 100 100 100 1	
1 MM SLLala	6w 219/2	17.05	**			•		
LL AM LLLOS	70	10.0	××			2 2		
13 MW 13	Siv.	Sh:6	×			\$		
Relinquished by: Accepted by: Deroit Meritage Second		Date:	1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		NU Res. Criteria	NY X TOGS GW C CP-51 SOIL 375SCO	PA Clean Fill Limits PA-GW	1
Comments, Special Requirements or Regulations		ata Format: Phoenix Std Report	EQUIS NJ Hazsite EDD NY EZ EDD (ASP)		Impact to GW soil Cleanup Criteria Impact to GW soil screen Criteria	Unrestricted Soil 375SC0 Residential Soil 375SC0 Residential Residential Restricted Soil 375SC0	Reg Fill Limits PA Soil Restricted PA Soil non-restricted State Samules Collected	C
			Other	шШ	eliv. * Other (ASP B) *	375SCO Industrial Soil	NY	

MONITORING WELL CONSTRUCTION LOG MW1

MW1 Monitoring Well No.:

510 Driggs Avenue

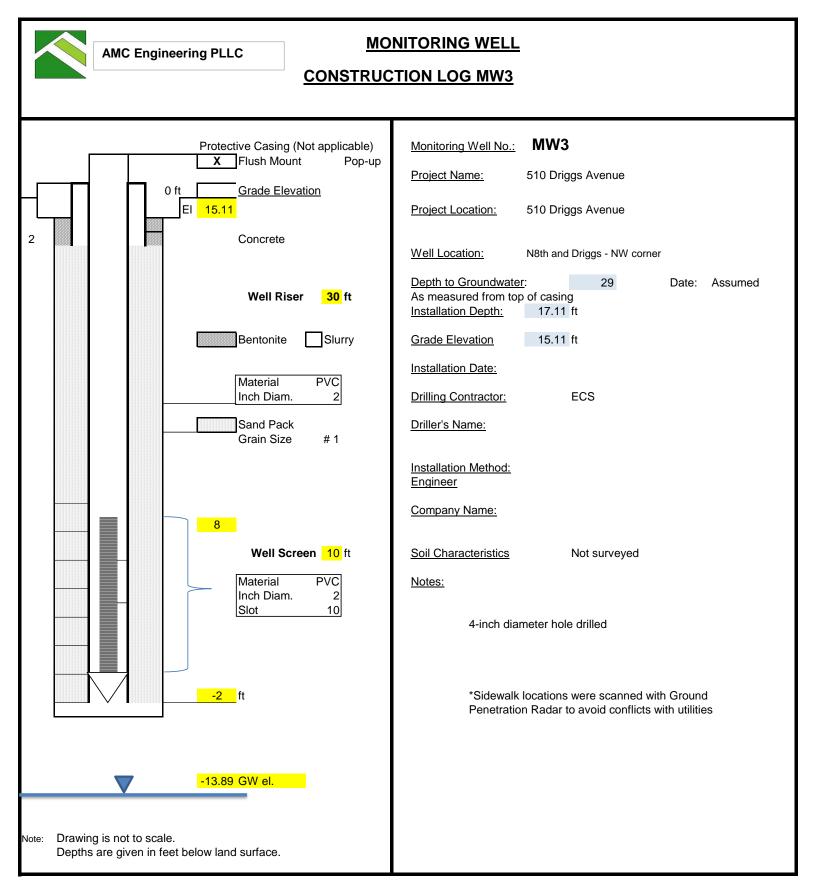
510 Driggs Avenue

N8th and Driggs - NW corner

32.12 Depth to Groundwater: Date: 2/19/2021

As measured from top of casing Installation Depth: 40 ft

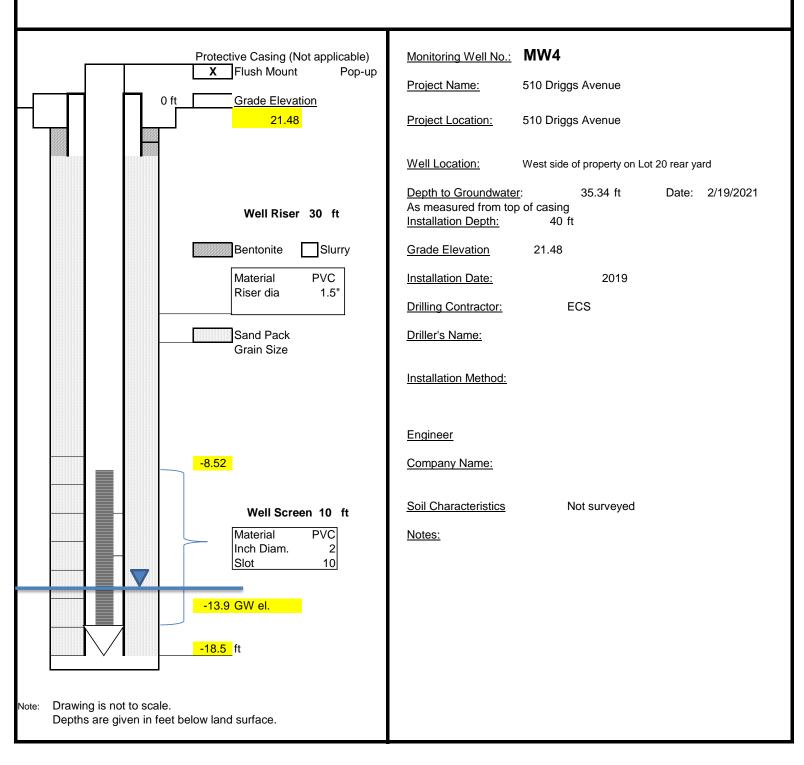
20.11 ft


ECS

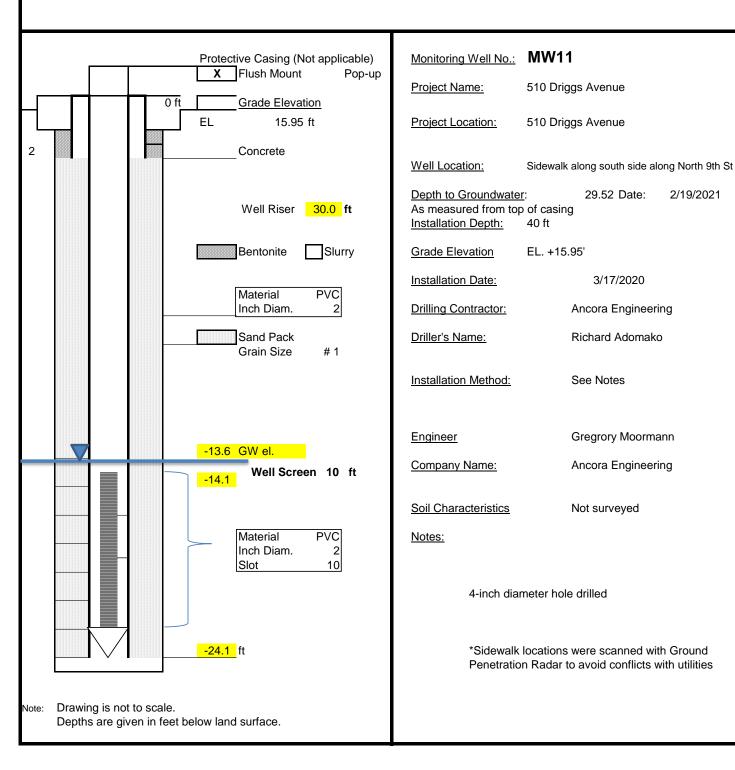

Installation Method:

Soil Characteristics Not surveyed

4-inch diameter hole drilled

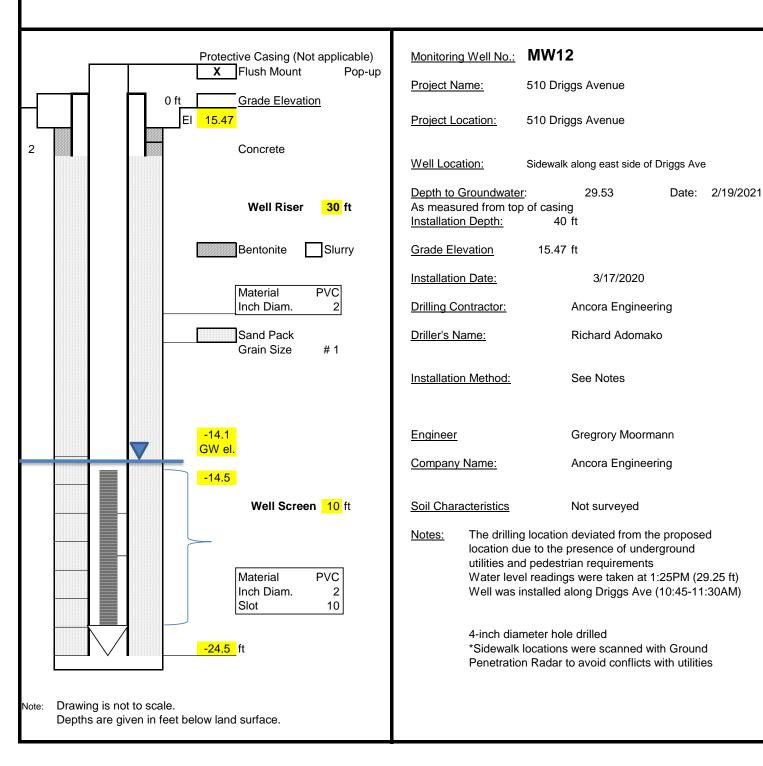

*Sidewalk locations were scanned with Ground Penetration Radar to avoid conflicts with utilities

MONITORING WELL

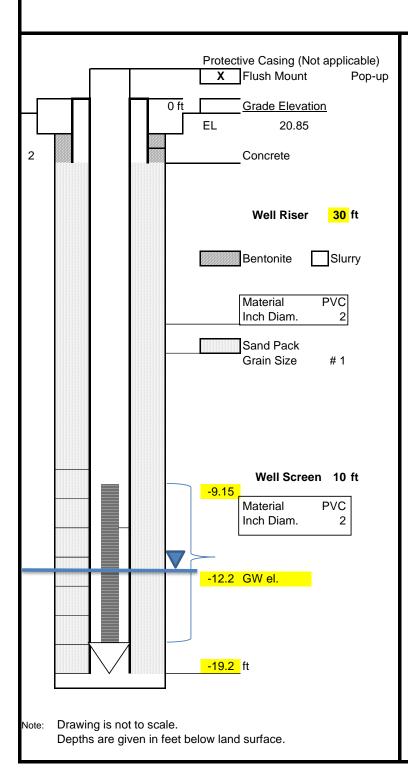

CONSTRUCTION LOG MW4



MONITORING WELL


CONSTRUCTION LOG MW11

MONITORING WELL


CONSTRUCTION LOG MW12

AMC Engineering PLLC

MONITORING WELL

CONSTRUCTION LOG MW 13

Monitoring Well No.: MW13

Project Name: 510 Driggs Avenue

Project Location: 510 Driggs Avenue

Well Location: Sidewalk along south side of North 8th St

Depth to Groundwater: 33.06 Date: 2/19/2021

As measured from top of casing Installation Depth: 40 ft

Grade Elevation EL 20.85 ft

Installation Date: 3/16/2020

<u>Drilling Contractor:</u> Ancora Engineering

<u>Driller's Name:</u> Richard Adomako

Installation Method: See Notes

<u>Engineer</u> Gregrory Moormann

Company Name: Ancora Engineering

Soil Characteristics Not surveyed

Notes: The drilling location deviated from the proposed

location due to the presence of underground

utilities and pedestrian requirements

Well was installed along N 8th St (11:10AM - 12:58PM)

4-inch diameter hole drilled

*Sidewalk locations were scanned with Ground Penetration Radar to avoid conflicts with utilities