Matthew M. Carroll, P.E. 862 Union Street, 1D Brooklyn, NY 11215 (917) 510-6767

September 23, 2016

Hasan Ahmed, Environmental Engineer Division of Environmental Remediation NYS Department of Environmental Conservation 47-40 21st Street Long Island City, NY 11101

Re: Pre-design Soil and Groundwater Investigation and Groundwater Treatment System Design

87 Kent Avenue – Brooklyn, NY

Block 2309, Lot 5 – OER #13EHAZ248K

Dear Hasan:

I am the Remedial Engineer for the above-referenced Brownfield Cleanup Program (BCP) Site. On July 13 through 15, 2015, Tenen Environmental, LLC (Tenen), under oversight by me, conducted environmental investigation activities at the above Site. The purpose of the investigation was to conduct a pre-design delineation investigation including shallow and horizontal delineation of soil and groundwater around the "hotspot" of chlorinated solvent impacts previously detected at the Site. The investigation also included vertical delineation of groundwater to determine if the chlorinated solvents have impacted deeper groundwater intervals and soil sampling to determine if metal impacts in soil extend below development depth. A dewatering investigation to address New York City Department of Environmental Protection (NYCDEP) discharge to sewer requirements were also conducted. This letter report summarizes the findings and recommendations pertaining to the pre-design investigation.

Background

The Site, located at 87 Kent Avenue, Brooklyn, New York, is a rectangular-shaped parcel of approximately 17,000 square feet located on the east side of Kent Avenue, and extending along the south side of North 9th Street. The property has approximately 95 feet of frontage along Kent Avenue and is approximately 175 feet deep. Other addresses associated with the Site are 83-89 Kent Avenue and 44-60 North 9th Street. The tax map designation of the property is Block 2309, Lot 5. The property is currently undergoing construction with demolition of the previously building completed and some soil excavation completed.

The Site was used as farmland since at least the 1780's and was developed with buildings since at least 1868. Several industrial and commercial uses were noted at the Site, consistent with the character of the neighborhood. The following specific uses were noted at the Site in Tenen's March 13, 2014 Phase I Environmental Site Assessment (ESA), with the first recorded date noted in parenthesis: rubber factory, dwellings and shops, rope dealer, "express office", junk yard, auto house/garage, diner/luncheonette, coal yard, scrap metal storage, offices, trucking company, parking, warehouse, clothing wholesale and a restaurant supply company.

Previous Investigations

Previous investigations are detailed in the January 2014 Soil Source Investigation performed by Tenen. The Soil Source Investigation examined the source of previously detected trichloroethene (TCE) contamination. The investigation identified elevated concentrations of TCE detected in soil, soil vapor and groundwater in the

south/southeastern portion of the property. Based on the distribution of TCE impacts, it appeared that the source is on Site. These findings are in conjunction with the documented presence of a scrap yard in the area of highest TCE concentrations.

Phase II Environmental Site Investigation

Site Geology. Historic fill material is present at depths up to ten feet below grade (ft-bg) with underlying glacial deposits of fine- to medium-grain sands, silt and clay. Please note that ft-bg is from the slab of the now-demolished building and was approximately 22 feet mean sea level (ft-msl). During pre-design sampling, varying intervals of compact clay layers were observed. Due to the lithology of the soil, groundwater recharge was observed at a slow rate within the temporary monitoring wells. Groundwater elevation was observed between +8.14 ft-msl and +12.71 ft-msl. Lithologic logs are presented in Attachment 1.

The depth to bedrock is estimated at approximately 100 ft-bg based on Sheet 3 of the USGS Bedrock and Engineering Geologic Maps of New York County and Parts of Kings and Queens Counties (Baskerville, 1990).

Sampling Methodology. The methodology used to collect the soil and groundwater samples is summarized below.

Soil. Two soil borings were installed at the Site (TSB-6 and TSB-3); borings were advanced to a depth of 20 and 30 ft-bg, respectively. The pre-design soil investigation was completed within the footprint of the proposed building. Samples were collected directly below then-proposed development depth (subsequently, the proposed development depth was lowered by approximately 1 foot, 9 inches) and analyzed for total metals to supplement findings of the previous Phase II investigation as well as evaluate expected post-excavation soil conditions. Three soil samples were collected for each of the two soil boring locations.

A track-mounted geoprobe unit was used to advance the soil borings below slab and to install the temporary wells. Drilling was performed by Zebra Environmental of Lynbrook, New York.

All samples were collected using dedicated acetate liners. Soil screening using a PID indicated readings ranging from non-detect to 42.2 parts per million (ppm) in TSB-3 (20-21 feet). Soil samples were collected from the boring locations as follows:

- Three deep soil samples (15-16 feet), (16-18 feet), and (18-20 feet) were collected from boring TSB-6; and,
- Three deep soil samples (20-21 feet), (21-23 feet), and (23-25 feet) were collected from boring TSB-3.

Groundwater. Vertical and horizontal groundwater delineation sampling was attempted with the advancement of three temporary groundwater wells (TGW-2, TGW-3, TGW-4) and two vertical groundwater sampler locations (TGW-1 and TGW-5). Wells were advanced in the immediate and surrounding area of previously identified TCE contamination. Three temporary groundwater wells were advanced to a depth of 20 ft-bg. Two groundwater samplers were advanced to a maximum depth of 45 ft-bg (approximately 25 feet below the depth of excavation) in an effort to gauge vertical delineation below the proposed development depth. Groundwater sampler TGW-5 was advanced; however, the well was dry in each of the three attempted intervals (25, 35 and 45 ft-bg) and therefore unable to be sampled. The remaining groundwater sampler TGW-1, was only sampled at first water (16 to 20 ft-bg) and in the 21 to 25 ft-bg interval; sampling was attempted at depths between 25 and 45 ft-bg but groundwater was not encountered, consistent with the general lithology of the Site. One existing monitoring well MW-1, installed in February 2015 by Zebra with oversight by Tenen was also sampled.

Each sample was collected using a peristaltic pump. In addition to the groundwater samples, one grab sample of non-aqueous phase liquid (NAPL) detected in well MW-1 was collected using a 0.5-inch hand bailer. The thickness of the NAPL was non-measurable using an oil/water interface probe due to the small amount present.

A summary of sample designations, media sampled and locations is shown below. Sampling locations are shown on Figure 2.

Boring Locations, Sample Designations and Media Sampled

Sample Location	Sample Name (Depth in ft-bg)	Sample Type	Description of Location
	TSB-3 (20-21)	Soil	South end of Site.
TSB-3	TSB-3 (21-23)	Soil	
	TSB-3 (23-25)	Soil	
	TSB-6 (15-16)	Soil	Southwest corner of Site;
TSB-6	TSB-6 (16-18)	Soil	adjacent to former UST.
	TSB-6 (18-20)	Soil	
TGW-1	TGW-1 (21-25)	Groundwater	East end of Site.
10W-1	TGW-1 (16-20)	Groundwater	
TGW-2	TGW-2	Groundwater	Adjacent to south wall.
TGW-3	TGW-3	Groundwater	Middle, center of Site.
TGW-4	TGW-4	Groundwater	Northeast portion of Site.
	MW-1	Groundwater	Existing monitoring well
MW-1	MW-1 GRAB	Sample Fingerprint	located in southeast corner of Site.

ft-bg - feet below grade

Analytical Results

The samples were preserved on ice and sent under chain-of-custody documentation to Alpha Analytical, Inc. (Alpha). Alpha is certified by the New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) as LABIDs 11148 and 11627.

All soil samples were sampled for Target Analyte List (TAL) metals. Groundwater samples were analyzed for VOCs. One groundwater sample MW-1 was analyzed for VOCs, SVOCs, pesticides, PCBs and TAL metals (total and dissolved). The results of the sample analysis are presented below. One grab sample (MW-1 GRAB) was analyzed for sample fingerprint. Summaries of compounds in soil and groundwater are included in Tables 1 through 2. Laboratory deliverables are included in Attachment 2.

Soil

The soil results were compared to the New York State Department of Environmental Conservation (NYSDEC) Unrestricted Use SCOs as listed in 6 NYCRR Part 375-6.8(a) and Restricted-Residential Restricted Use (Restricted-Residential) SCOs as listed in 6 NYCRR Part 375-6.8(b).

One metal, iron, was detected above the Restricted-Residential SCO of 2,000 mg/kg in both soil borings and all sampling intervals, with concentrations ranging between 6,900 mg/kg [TSB-6 (18-20)] to 28,000 mg/kg [TSB-6 (15-16)].

Groundwater

Groundwater concentrations were compared to the NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Class GA Water Quality Standards and Guidance Values (Class GA Standards).

The results of the groundwater sampling indicate that the chlorinated solvent trichloroethene (TCE) and its degradation products cis-1,2-dichlorothene (DCE) and trans-1,2-DCE, were detected above Class GA Standards. TCE was detected in all four groundwater wells, ranging from the highest concentrations in MW-1 (9,300 ug/L, above the Class GA Standard of 5 ug/L), located in the historic approximate location of the scrap yard, and TGW-4 (5,400 ug/L), which is located downgradient of MW-1. The lowest concentration of TCE was identified in TGW-3 (540 ug/L), located cross-gradient of MW-1.

One groundwater sampler TGW-1 was sampled between the following intervals: 16-20 and 21-25 ft-bg. The results showed continuity between these varying depths, with TCE concentrations ranging between 2,700 ug/l [TGW-1 (16-20)] and 2500 ug/l [TGW-1 (21-25)]. A confining groundwater layer was identified below 25 ft-bg, as no groundwater was encountered to a depth of 45 ft-bg. A second groundwater sampler was attempted (TGW-5); however, the well was dry at all intervals between 25 and 45 ft-bg.

No pesticides or PCBs were detected in groundwater above the Class GA standards.

A NAPL sample was collected from MW-1; the sample fingerprint results identified hydraulic oil.

Findings and Conclusions

The results of the pre-design sampling indicate the following:

- A portion of the Site was historically used as a scrap yard.
- TCE was detected in all groundwater sampling locations ranging from the highest concentration in MW-1 (9,300 ug/L, above the Class GA Standard of 5 ug/L), located in the historic location of the scrap yard; the lowest concentration of TCE was identified in TGW-3 (540 ug/L), located cross-gradient of MW-1.
- The on-Site source of TCE contamination appears to be generally localized within the vicinity of MW-1, consistent with the historical location of the scrap yard.
- Groundwater flow was observed in a northeasterly direction.
- The calculated groundwater flow is to the northeast.
- Vertical delineation of TCE was attempted to depths of 45 ft-bg. Due to the lithologic conditions of the Site, including confining clay layers at approximately 25 ft-bg in the source area. The only vertical delineation sampling was completed at first water (16-20 ft-bg) and 21-25 ft-bg in well TGW-1. The results showed continuity between these varying depths and indicates that dissolved TCE concentrations are present in groundwater to the confining clay layer.
- NAPL was identified in MW-1 during field sampling; the product was sampled and later identified as hydraulic oil. NAPL was not identified in any of the other wells during the time of field activities.
- The proposed depth of excavation ranges between 25 and 29 ft-bg with documented contamination of chlorinated solvents to a depth of 25 ft-bg in the area of TGW-1.
- One metal, iron, was detected above the Restricted-Residential SCO of 2,000 mg/kg in both soil borings and all sampling intervals, up to 25 ft-bg. The sampled intervals were in native soil and are likely attributable to natural soil conditions.

Design Elements

Based on the above findings, the following remedial actions will be completed:

Soil

- Excavation of soil to a minimum 25 ft-bg, consistent with the approved April 2015 Remedial Action Work Plan (RAWP) and subsequent June 16, 2016 letter titled "Minor Modification to Proposed Excavation Depths".
- Collection of end-point samples consistent with the approved April 2015 RAWP. All samples will be collected from native material and a determination of whether the iron is naturally occurring will be made. The analysis will be completed in accordance with section 3.5.3 of the NYSDEC DER-10 Technical Guidance for Site Remediation and Investigation, specifically 3.5.3(b).
- Based on the remedial actions completed to-date, the majority of the source of TCE impacts to groundwater has been removed; additional removal will be completed in the northeast corner of the Site, below the existing truck wash pad.

Groundwater

- Installation and operation of a dewatering treatment system. The system includes an engineered well-point system, settling tank, bag filters and granulated activated carbon (GAC) tanks. The system will discharge to the New York City Department of Environmental Protection (NYCDEP) combined sewer system in accordance with their approval letters and a permit issued July 11, 2016, which were previously submitted to NYSDEC. As the capacity of the system is above 45 gallons per minute (GPM), a Long Island Well Permit equivalency has been requested from NYSDEC.
- Testing of the groundwater system effluent is required by NYCDEP on a quarterly basis.
- If small amounts of NAPL are observed in the settling tank, it will be removed using absorbent pads. If NAPL is continuously detected, an oil-water separator or oil adsorption bags.
- The well points will be installed 10 feet below development depth, which will remove the groundwater impacted with TCE. In-situ groundwater treatment is not proposed.
- Post-remedial groundwater sampling will be completed in accordance with the April 2015 RAWP.

I, Matthew Carroll, certify that I am currently a NYS registered professional engineer as defined in 6 NYCRR Part 375 and that this Remedial Design was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in full accordance with the DER-approved work plan and any DER-approved modifications.

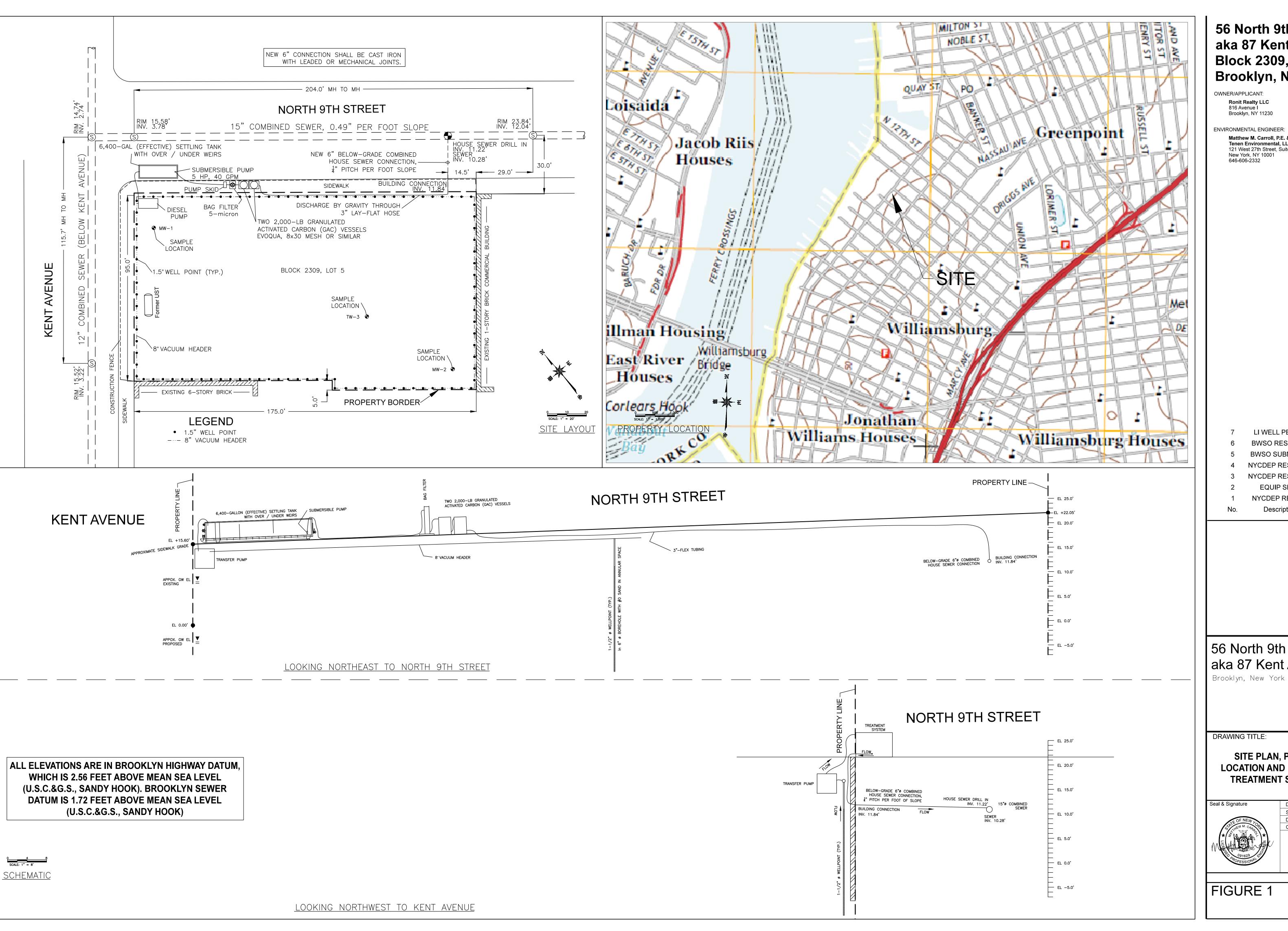
Sincerely,

Matthew Carroll, P.E. Environmental Engineer

What M Cu

Environmental Engineer

Figure 1 Site Plan, Property Location and Dewatering Treatment Schematic


Figure 2 Soil and Groundwater Sample Locations

Tables 1 through 2 Analytical Results

Attachment 1 Lithologic Logs and Purge Logs

Attachment 2 Laboratory Deliverables

Figures

56 North 9th Street aka 87 Kent Avenue **Block 2309, Lot 5** Brooklyn, NY

OWNER/APPLICANT: Ronit Realty LLC 816 Avenue I Brooklyn, NY 11230

ENVIRONMENTAL ENGINEER: Matthew M. Carroll, P.E. & Tenen Environmental, LLC 121 West 27th Street, Suite 303 New York, NY 10001 646-606-2332

LI WELL PERMIT 07/26/2016

BWSO RESUBMIT 06/02/2016

BWSO SUBMITTAL 05/09/2016

NYCDEP RESUBMIT 05/02/2016 NYCDEP RESUBMIT 04/14/2016

NYCDEP REVIEW 03/11/2016

Description

56 North 9th Street aka 87 Kent Avenue

DRAWING TITLE:

SITE PLAN, PROPERTY **LOCATION AND DEWATERING** TREATMENT SCHEMATIC

07/26/16

AS NOTED

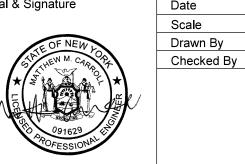
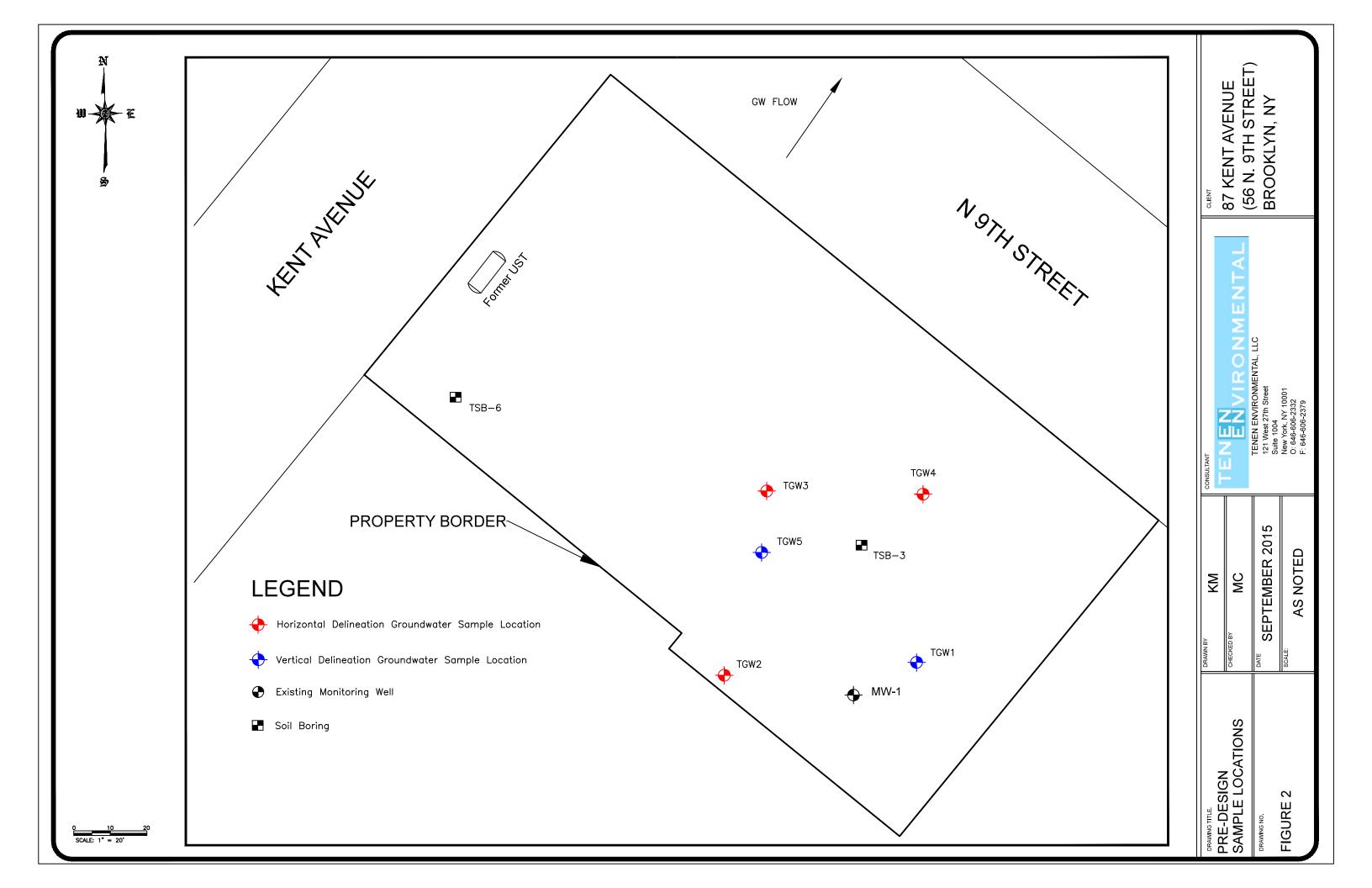



FIGURE 1

Tables

Table 1: VOCs, Petroleum Hydrocarbons, Dissolved Metals, and Total Metals in Groundwater 87 Kent Avenue, Brooklyn, NY

COLLECTION DATE: Volatile Organics Units: µg/L		7/13/15	5	7/14/20	3-01 15	L151615 7/14/20		L151615. 7/14/20		L151624 7/13/20		L151624 7/15/20		L151624 7/10/20		L151624 7/15/20	
Units: µg/L	NY-TOGS-GA	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
V 4 1 11 11		14		7		3.5		35				70					
Methylene chloride 1,1-Dichloroethane	5 5	14	U	7	U U	7.5	U J	35	U	14 14	U	70	U	0.7	U	NA NA	+
Chloroform	7	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA NA	+
Carbon tetrachloride	5	2.7	U	1.3	U	0.67	U	6.7	U	2.7	U	13	U	0.13	U	NA NA	+
1,2-Dichloropropane	1	2.7	U	1.3	U	0.66	U	6.6	U	2.7	U	13	U	0.13	U	NA	+
Dibromochloromethane	50	3	U	1.5	U	0.74	U	7.4	U	3	U	15	U	0.15	U	NA	+
1,1,2-Trichloroethane	1	10	U	5	U	2.5	U	29	J	10	U	50	U	0.5	U	NA	
Tetrachloroethene	5	3.6	U	1.8	U	0.9	U	9	U	3.6	U	18	U	0.18	U	NA	
Chlorobenzene	5	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA	
Trichlorofluoromethane	5	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA	
1,2-Dichloroethane	0.6	2.6	U	1.3	U	0.66	U	6.6	U	2.6	U	13	U	0.13	U	NA	
1,1,1-Trichloroethane	5	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA	
Bromodichloromethane	50	3.8	U	1.9	U	0.96	U	9.6	U	3.8	U	19	U	0.19	U	NA	
trans-1,3-Dichloropropene	0.4	3.3	U	1.6	U	0.82	U	8.2	U	3.3	U	16	U	0.16	U	NA	
cis-1,3-Dichloropropene	0.4	2.9	U	1.4	U	0.72	U	7.2	U	2.9	U	14	U	0.14	U	NA	+
1,3-Dichloropropene, Total	NA -	2.9	U	1.4	U	0.72	U	7.2	U	2.9	U	14	U	0.14	U	NA	+
1,1-Dichloropropene	5	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA	+
Bromoform	50 5	13 2.9	U	6.5	U	3.2 0.72	U	7.2	U	13 2.9	U	65	U	0.65	U	NA NA	+
1,1,2,2-Tetrachloroethane	1	3.2	U	1.4	U U	0.72	U	8	U	3.2	U	14 16	U U	0.14	U	NA NA	+
Benzene Toluene	5	3.2 14	U	7	U	3.5	U	35	U	14	U	70	U	0.16	U	NA NA	+
Ethylbenzene	5	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA NA	+
Chloromethane	NA NA	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA NA	+
Bromomethane	5	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA NA	+
Vinyl chloride	2	1.4	U	0.7	U	0.35	U	3.5	U	1.4	U	7	U	0.07	U	NA	_
Chloroethane	5	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA	1
1,1-Dichloroethene	5	2.8	U	1.4	U	0.71	U	7.1	U	2.8	U	14	U	0.14	U	NA	
trans-1,2-Dichloroethene	5	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA	
Trichloroethene	5	2500		1600		540		5400		2700		9300		0.18	U	NA	
1,2-Dichlorobenzene	3	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA	
1,3-Dichlorobenzene	3	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA	
1,4-Dichlorobenzene	3	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA	 '
Methyl tert butyl ether	10	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA	
p/m-Xylene	5	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA	
o-Xylene	5	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA	+
Xylenes, Total	NA 5	14	U	7 350	U	3.5 9.2	I U	35	U U	14	U	70	U U	0.7	U	NA NA	+
cis-1,2-Dichloroethene 1,2-Dichloroethene, Total	NA	77 77		350		9.2	J	35 35	U	61		70 70	U	0.7	U	NA NA	+
Dibromomethane	5	20	U	10	U	5	U	50	U	20	U	100	U	1	U	NA NA	+
1,2,3-Trichloropropane	0.04	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA	+-
Acrylonitrile	5	30	U	15	U	7.5	U	75	U	30	U	150	U	1.5	U	NA	\vdash
Styrene	930	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA	
Dichlorodifluoromethane	5	20	U	10	U	5	U	50	U	20	U	100	U	1	U	NA	
Acetone	50	42	J	20	J	9.3	J	110	J	56	J	260	J	1.5	U	NA	
Carbon disulfide	60	20	U	10	U	5	U	50	U	20	U	100	U	1	U	NA	
2-Butanone	50	39	U	19	J	9.7	U	140	J	54	J	250	J	1.9	U	NA	<u> </u>
Vinyl acetate	NA	20	U	10	U	5	U	50	U	20	U	100	U	1	U	NA	
4-Methyl-2-pentanone	NA	20	U	10	U	5	U	50	U	20	U	100	U	1	U	NA	
2-Hexanone	50	20	U	10	U	5	U	50	U	20	U	100	U	1	U	NA	+
Bromochloromethane	5	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA	+
2,2-Dichloropropane	5 0.0006	14	U	7	U U	3.5	U U	35	U	14	U U	70	U U	0.7	U	NA NA	+
1,2-Dibromoethane	0.0006	13 14	U	6.5	U II	3.2	U II	32	II.	13 14	U	65 70	U II	0.65	U	NA NA	+-
1,3-Dichloropropane 1,1,1,2-Tetrachloroethane	5	14 14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA NA	+
Bromobenzene	5	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA NA	+
n-Butylbenzene	5	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA NA	+
sec-Butylbenzene	5	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA NA	+
tert-Butylbenzene	5	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA	T
o-Chlorotoluene	5	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA	1
p-Chlorotoluene	5	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA	1
1,2-Dibromo-3-chloropropane	0.04	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA	
Hexachlorobutadiene	0.5	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA	

Table 1: VOCs, Petroleum Hydrocarbons, Dissolved Metals, and Total Metals in Groundwater 87 Kent Avenue, Brooklyn, NY

SAMPLE ID:		TGW		TGW		TGW		TGW		TGW-1 (MW-		TRIP BI		MW-1 G	
LAB ID:		L151605		L151615		L15161		L151615		L151624		L151624		L15162		L151624	
COLLECTION DATE:		7/13/	15	7/14/20	015	7/14/2	015	7/14/20	015	7/13/20	015	7/15/20	015	7/10/2	015	7/15/20	115
Volatile Organics Units: µg/L	NY-TOGS-GA	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Isopropylbenzene	5	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA	
p-Isopropyltoluene	5	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA	
Naphthalene	10	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA	
n-Propylbenzene	5	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA	
1,2,3-Trichlorobenzene	5	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA	
1,2,4-Trichlorobenzene	5	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA	
1,3,5-Trimethylbenzene	5	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA	
1,2,4-Trimethylbenzene	5	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA	
1,4-Dioxane	NA	820	U	410	U	200	U	2000	U	820	U	4100	U	41	U	NA	
p-Diethylbenzene	NA	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA	
p-Ethyltoluene	NA	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA	
1,2,4,5-Tetramethylbenzene	5	13	U	6.5	U	3.2	U	32	U	13	U	65	U	0.65	U	NA	
Ethyl ether	NA	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA	
trans-1,4-Dichloro-2-butene	5	14	U	7	U	3.5	U	35	U	14	U	70	U	0.7	U	NA	
Total VOCs		2696	-	2339	-	575.2	-	5679		2932	-	9810	-	NA		NA	
Petroleum Hydrocarbon Identification Units: µg/L																	
Total Petroleum Hydrocarbons (C9-C44)	NA	NA		NA		NA		NA		NA		NA		NA		4470000	T
Dissolved Metals Units: µg/L																	
Manganese, Dissolved	600	NA		NA		NA		NA		NA		3292		NA		NA	
Total Metals Units: µg/L																	
Iron, Total	600	NA		NA		NA		NA		NA		1960		NA		NA	
Manganese, Total	600	NA		NA		NA		NA		NA		5997		NA		NA	
General Chemistry Units: µg/L																	
Nitrogen, Nitrate	20000	NA		NA		NA		NA		NA		817		NA		NA	
Sulfate	500000	NA		NA		NA		NA		NA		320000		NA		NA	
BOD, 5 day	NA	NA		NA		NA		NA		NA		ND	NA	NA		NA	
Total Organic Carbon	NA	NA		NA		NA		NA		NA		25000		NA		NA	\perp
Iron, Ferrous	600	NA		NA		NA		NA		NA		610		NA		NA	

NY-TOGS-GA= New York TOGS 111 Groundwater Effluent Limitations criteria reflects all addendum to criteria through June 2004

Cells highlighted in yellow indicate concentrations above the NY-TOGS-GA

Cells shaded in grey indicate MDL values above the NY-TOGS-GA

DUP = designation for duplicate sample

MDL = Maximum Detection Limit

RL = Reporting Limit

Qual = Laboratory Data Qualifier

For U qualified entries, the MDL is shown

U = not detected at or above the MDL

For J qualified entries, the estimated concentration is shown J= estimated value, indicating the detected value is below the RL, but above the MDL

-- = No standard

NA = Not analyzed

Results and MDL values are in micrograms per liter (ug/l)

Table 2: Total Metals in Soil 87 Kent Avenue, Brooklyn, NY

SAMPLE ID: LAB ID:	Soil Clean	nup Objectives (SCOs)		(15-16) 6050-01		(16-18) 050-02		(18-20) 6050-03		(20-21) 6050-04	TSB-3 L1516	(21-23) 050-05		3 (23-25) 6050-06
COLLECTION DATE:				/2015		/2015		/2015		/2015		/2015		3/2015
Total Metals Units: mg/kg	NY-RESR	NY-UNRES	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Aluminum, Total	NA	NA	8600		3600		5800		5000		4200		2200	
Antimony, Total	NA	NA	0.73	U	0.72	U	0.7	U	0.76	U	0.69	U	0.74	U
Arsenic, Total	16	13	0.18	U	0.18	U	0.17	U	0.95	U	0.17	U	0.92	U
Barium, Total	350	350	70		24		31		31		32		29	
Beryllium, Total	14	7.2	0.51		0.19	J	0.22	J	0.44	J	0.38	J	0.18	J
Cadmium, Total	2.5	2.5	0.06	U	0.06	U	0.06	U	0.07	U	0.06	U	0.07	U
Calcium, Total	NA	NA	1400		930		630		840		1000		900	
Chromium, Total	NA	NA	26		16		10		20		15		9.8	
Cobalt, Total	30	NA	10		3.6		3.8		9.1		7		5.4	
Copper, Total	270	50	23		11		5.4		19		16		12	
Iron, Total	2000	NA	28000		10000		6900		21000		16000		18000	
Lead, Total	400	63	20		5		4.3	J	10		10		8.1	
Magnesium, Total	NA	NA	2900		1500		1100		1700		2000		840	
Manganese, Total	2000	1600	510		240		90		380		170		330	
Mercury, Total	0.81	0.18	0.07	J	0.02	U	0.02	U	0.02	U	0.003	U	0.02	U
Nickel, Total	140	30	14		9.1		9.4		17		10		6.1	
Potassium, Total	NA	NA	2400		580		340		1000		870		400	
Selenium, Total	36	3.9	0.28	U	0.27	U	0.26	U	0.28	U	0.26	U	0.28	U
Silver, Total	36	2	0.18	U	0.18	U	0.17	U	0.19	U	0.17	U	0.18	U
Sodium, Total	NA	NA	55	J	64	J	46	J	68	J	85	J	82	J
Thallium, Total	NA	NA	ND	0.37	0.36	U	0.35	U	0.38	U	0.34	U	0.37	U
Vanadium, Total	100	NA	37		22		11		31		33		32	
Zinc, Total	2200	109	72		15		16		31		32		20	
General Chemistry Units: mg/kg									-					
Solids, Total	NA	NA	82.9	NA	85.1	NA	89	NA	82.8	NA	87.8	NA	83.4	NA

*NY-RESR: Residential Criteria, New York Restricted use current as of 5/2007
*NY-UNRES: New York Unrestricted use Criteria current as of 5/2007

Attachment 1
Lithologic Logs and Purge Logs

TE	ENE	N۷	/IR	CONMENTAL DIV	Boring No. Sheet 1	TSB-3 of 1
Site.		or Nei	IL AVE	nue - Brooklyn, NY	Drilling Method:	Geoprobe
Date:		7/13/1			Soil Sampling Method:	Acetate liners
Weathe Observ				gress F roll, Kristen Meisner	Driller :	Zebra Environmental
Depth (feet)	PID Reading (ppm)	Soil Recovery	Soil Samples	Soil Description		
15				15-17.5: Purple sand and silt		
<u>16</u>	13.4			15-17.5. Fulpie sand and siit		
<u>17</u> 18	10.8	100%		17.5-20: Brown and black sand and	silt	
19_						
20	42.2					
<u>21</u>	6.0		TSI (20	20-25: Brown and red sand and cla	y with layers of black silt	
22 23	3.0	100%	TSB-3 (21-23)			
24_			TSB-3 (23-25)			
25				25-26.5: SAA		
26				26.5-30: Black silt.		
<u>27</u> 		100%				
29						
30 31				EOB: 30 ft-bg		
Notes:	ot Applic Same as	able above		EOB - End of Boring ft-bg - Feet Below Grade	PID - Photoionization Detector	DTW = Depth to Water GW = Groundwater

TE	NE	Ŋ,	/IP	ONMENTAL	Boring No.	TSB-6
		111		ONMENTAL	Sheet 1	of 1
Site: Date:		7/13/1		nue - Brooklyn, NY	Drilling Method: Soil Sampling Method:	Geoprobe Acetate liners
Weathe	er:			ress F	con camping monour	7 tootato inforo
Observ				roll, Kristen Meisner	Driller :	Zebra Environmental
Depth (feet)	PID Reading (ppm)	Soil Recovery	Soil Samples	Soil Description		
\bigvee_{49}						
10	1.1			10-15: Brown and black sand and silt	and ash	
11						
12						
13		45%				
14						
15						
16			TSB-6 (15-16)	15-19: Brown and black medium & co	parse sand and silt	
17			16-18)			
18		100%	TSB-6 (16-18)			
<u> 19</u>			TSB-6 (18-20)	19-20: Clay		
20			TSB-6			
04				EOB: 20 ft-bg due to refusal.		
<u>21</u>						
22 23						
24						
25						
26						
<u>27</u>						
<u>28</u>						
<u>29</u>						
30						
31						
N/A - N	First atte	cable		al at 6 ft below EOB - End of Boring ft-bg - Feet Below Grade	PID - Photoionization Detector	DTW = Depth to Water GW = Groundwater

Site Name	87 Kent Avenue	Date	7/15/15	
Well No.	MW-1	Sample ID	MW-1	

Well Diameter	4 inches	Depth to Water	ft-bg
Well Screen Interval	10 ft-bg	TOC Elevation	USGS NGVD 1929 Datum
Headspace PID	0.0 ppm	GW Elevation	USGS NGVD 1929 Datum
Weather	Clear, 90 degrees F		

Pump	Peristaltic	
Water Quality Meter	Horiba U52	
Total Volume Purged	5 gallons	

Time	Temperature	рН	ORP	Conductivity	Turbidity	Dissolved Oxygen	Total Dissolved Solids
	deg-C	SU	mV	mS/cm	NTU	mg/L	ppm
0840	16.01	4.93	103	1.14	86.9	1.20	0.730
0850	15.78	4.81	105	1.09	102.0	0.84	0.701
0900	15.66	4.86	106	1.09	+	1.97	0.695
0905	15.62	4.87	100	1.06	39.6	2.88	0.679
0915	15.73	4.91	95	1.01	16.7	2.90	0.619

Notes: NAPL detected- grab sample taken (MW-1 GRAB)

Low recovery + = unstabilized

At 0900, tubing was moved up due to clogging at bottom At 0905, well began to dry up. Waited 10 minutes to recharge

Site Name	87 Kent Avenue	Date	7/14/15	
Well No.	TGW-2	Sample ID	TGW-2	

Well Diameter	2 inches	Depth to Water	17.24 ft-bg
Well Screen Interval	10 ft-bg	TOC Elevation	20 USGS NGVD 1929 Datum
Headspace PID	0.0 ppm	GW Elevation	2.76 USGS NGVD 1929 Datum
Weather	Clear, 90 degrees F		

Pump	Peristaltic	
Water Quality Meter	Horiba U52	
Total Volume Purged	4 gallons	

Time	Temperature	рН	ORP	Conductivity	Turbidity	Dissolved Oxygen	Total Dissolved Solids
	deg-C	SU	mV	mS/cm	NTU	mg/L	ppm
0910	19.9	5.73	-25	1.13	+	4.4	0.723
0920	19.49	5.67	-39	1.14	+	3.73	0.729
0925	19.35	5.61	-53	1.14	423.0	4.04	0.726
0930	19.29	5.53	-66	1.13	104.0	3.97	0.726
0935	19.24	5.51	-68	1.13	55.6	3.92	0.726
0940	19.24	5.49	-69	1.13	45.9	3.88	0.724

Notes: No odor, no sheen.

+ = unstabilized

Site Name	87 Kent Avenue	Date	7/14/15	
Well No.	TGW-3	Sample ID	TGW-3	

Well Diameter	2 inches	Depth to Water	18.46 ft-bg
Well Screen Interval	10 ft-bg	TOC Elevation	20 USGS NGVD 1929 Datum
Headspace PID	0.0 ppm	GW Elevation	1.54 USGS NGVD 1929 Datum
Weather	Clear, 90 degrees F	-	

Pump	Peristaltic	
Water Quality Meter	Horiba U52	
Total Volume Purged	2 gallons	

Time	Temperature	рН	ORP	Conductivity	Turbidity	Dissolved Oxygen	Total Dissolved Solids
	deg-C	SU	mV	mS/cm	NTU	mg/L	ppm
1025	18.73	5.74	-73	1.44	237.0	7.80	0.920
1030	18.16	5.70	-76	1.44	132.0	7.78	0.920
1035	17.71	5.64	-80	1.44	53.9	7.82	0.919
1040	17.41	5.59	-80	1.43	28.6	7.99	0.919

Notes: Sheen and odor Low recovery

Site Name	87 Kent Avenue	Date	7/14/15	
Well No.	TGW-4	Sample ID	TGW-4	

Well Diameter	2 inches	Depth to Water	19.1 ft-bg
Well Screen Interval	10 ft-bg	TOC Elevation	20 USGS NGVD 1929 Datum
Headspace PID	0.0 ppm	GW Elevation	0.9 USGS NGVD 1929 Datum
Weather	Clear, 90 degrees F		

Pump	Peristaltic	
Water Quality Meter	Horiba U52	
Total Volume Purged	2 gallons	

Time	Temperature	рН	ORP	Conductivity	Turbidity	Dissolved Oxygen	Total Dissolved Solids
	deg-C	SU	mV	mS/cm	NTU	mg/L	ppm
1105	17.03	5.50	-23	1.11	90.0	6.39	0.707
1110	16.60	5.49	-26	1.10	11.5	6.59	0.704
1115	16.40	5.48	-30	1.09	4.20	7.77	0.699

Notes: No sheen, no odor Low recovery

Attachment 2 *Laboratory Deliverables*

ANALYTICAL REPORT

Lab Number: L1506337

Client: Tenen Environmental, LLC

121 West 27th Street

Suite 1004

New York City, NY

87 KENT AVENUE

ATTN: Matt Carroll
Phone: (646) 606-2332

Project Number: 87 KENT

Project Name:

Report Date: 04/07/15

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:04071517:30

Project Name: 87 KENT AVENUE

Project Number: 87 KENT

Lab Number:

L1506337

Report Date:

04/07/15

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1506337-01	MW-1	WATER	BROOKLYN, NY	03/31/15 10:00	03/31/15

L1506337

Project Name: 87 KENT AVENUE Lab Number:

Project Number: 87 KENT Report Date: 04/07/15

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: 87 KENT AVENUE Lab Number: L1506337

Project Number: 87 KENT Report Date: 04/07/15

Case Narrative (continued)

Report Submission

The field pH result (6.42) and temperature (9.7C) were determined by field sampling personnel.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L1506337-01 has elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

The WG774006-1 LCS recovery for benzene (119%), associated with L1506337-01, is outside Alpha's acceptance criteria, but within the acceptance criteria specified in the method.

Metals

The WG772844-4 MS recoveries, performed on L1506337-01, are outside the acceptance criteria for cadmium (126%) and copper (131%). A post digestion spike was performed and yielded unacceptable recoveries for cadmium (124%) and copper (121%). This has been attributed to sample matrix.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 04/07/15

ORGANICS

VOLATILES

Serial_No:04071517:30

Project Name: 87 KENT AVENUE

Project Number: 87 KENT

Lab Number: L1506337

Report Date: 04/07/15

SAMPLE RESULTS

Lab ID: L1506337-01 D

Client ID: MW-1

Sample Location: BROOKLYN, NY

Matrix: Water Analytical Method: 5,624

Analytical Date: 04/06/15 14:11

Analyst: GT Date Collected: 03/31/15 10:00 Date Received: 03/31/15 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Chloroform	ND		ug/l	60	12.	40
Carbon tetrachloride	ND		ug/l	40	13.	40
Tetrachloroethene	ND		ug/l	60	15.	40
1,1,1-Trichloroethane	ND		ug/l	80	12.	40
Benzene	ND		ug/l	40	12.	40
Toluene	ND		ug/l	40	14.	40
Ethylbenzene	ND		ug/l	40	13.	40
1,4-Dichlorobenzene	ND		ug/l	200	34.	40
p/m-Xylene	ND		ug/l	80	27.	40
o-Xylene	ND		ug/l	40	12.	40
Xylene (Total)	ND		ug/l	40	12.	40
Methyl tert butyl ether	ND		ug/l	400	23.	40

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Pentafluorobenzene	102		80-120
Fluorobenzene	102		80-120
4-Bromofluorobenzene	102		80-120

Project Name: 87 KENT AVENUE

Project Number: 87 KENT Lab Number: L1506337

Report Date: 04/07/15

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: 5,624

04/06/15 11:41

Analyst: GT

Parameter	Result	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS - V	estborough Lab	o for sample(s): 01	Batch:	WG774006-2	
Chloroform	ND	ug/l	1.5	0.29	
Carbon tetrachloride	ND	ug/l	1.0	0.33	
Tetrachloroethene	ND	ug/l	1.5	0.38	
1,1,1-Trichloroethane	ND	ug/l	2.0	0.30	
Benzene	ND	ug/l	1.0	0.31	
Toluene	ND	ug/l	1.0	0.35	
Ethylbenzene	ND	ug/l	1.0	0.33	
1,4-Dichlorobenzene	ND	ug/l	5.0	0.85	
p/m-Xylene	ND	ug/l	2.0	0.66	
o-Xylene	ND	ug/l	1.0	0.30	
Xylene (Total)	ND	ug/l	1.0	0.30	
Methyl tert butyl ether	ND	ug/l	10	0.58	

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
Pentafluorobenzene	104		80-120	
Fluorobenzene	103		80-120	
4-Bromofluorobenzene	98		80-120	

Lab Control Sample Analysis Batch Quality Control

Project Name: 87 KENT AVENUE

Project Number: 87 KENT

Lab Number: L1506337

Report Date: 04/07/15

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
platile Organics by GC/MS - Wes	stborough Lab Associated s	ample(s): 0	1 Batch: WG7	74006-1					
Chloroform	101		-		86-111	-		30	
Carbon tetrachloride	106		-		60-112	-		30	
Tetrachloroethene	100		-		80-126	-		30	
1,1,1-Trichloroethane	105		-		72-109	-		30	
Benzene	119	Q	-		84-116	-		30	
Toluene	103		-		83-121	-		30	
Ethylbenzene	106		-		84-123	-		30	
1,4-Dichlorobenzene	102		-		77-125	-		30	
p/m-Xylene	106		-		81-121	-		30	
o-Xylene	103		-		81-124	-		30	
Methyl tert butyl ether	97		-		57-126	-		30	

	LCS		LCSD		Acceptance
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria
Pentafluorobenzene	107				80-120
Fluorobenzene	120				80-120
4-Bromofluorobenzene	101				80-120

Matrix Spike Analysis Batch Quality Control

Project Name: 87 KENT AVENUE

Project Number: 87 KENT

Lab Number:

L1506337

Report Date:

04/07/15

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS -	- Westborough	Lab Associa	ted sample(s):	01 QC Bato	h ID: WG7	74006-4	QC Sample:	L15063	337-01 CI	ient ID:	MW-1	
Chloroform	ND	800	830	103		-	-		86-111	-		30
Carbon tetrachloride	ND	800	850	106		-	-		60-112	-		30
Tetrachloroethene	ND	800	780	98		-	-		80-126	-		30
1,1,1-Trichloroethane	ND	800	800	100		-	-		72-109	-		30
Benzene	ND	800	850	107		-	-		84-116	-		30
Toluene	ND	800	800	100		-	-		83-121	-		30
Ethylbenzene	ND	800	850	106		-	-		84-123	-		30
1,4-Dichlorobenzene	ND	800	810	102		-	-		77-125	-		30
p/m-Xylene	ND	1600	1600	104		-	-		81-121	-		30
o-Xylene	ND	800	790	99		-	-		81-124	-		30
Methyl tert butyl ether	ND	800	760	95		-	-		57-126	-		30

	MS	3	M	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
4-Bromofluorobenzene	99				80-120	
Fluorobenzene	105				80-120	
Pentafluorobenzene	98				80-120	

Lab Duplicate Analysis Batch Quality Control

Project Name: 87 KENT AVENUE

Project Number: 87 KENT

ality Control Lab Number: L1506337

Report Date: 04/07/15

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits	
platile Organics by GC/MS - Westborough Lab	Associated sample(s): 01	QC Batch ID: WG774	006-3 QC Sar	nple: L1506	337-01 Client ID: MW-1	
Chloroform	ND	ND	ug/l	NC	30	
Carbon tetrachloride	ND	ND	ug/l	NC	30	
Tetrachloroethene	ND	ND	ug/l	NC	30	
1,1,1-Trichloroethane	ND	ND	ug/l	NC	30	
Benzene	ND	ND	ug/l	NC	30	
Toluene	ND	ND	ug/l	NC	30	
Ethylbenzene	ND	ND	ug/l	NC	30	
1,4-Dichlorobenzene	ND	ND	ug/l	NC	30	
p/m-Xylene	ND	ND	ug/l	NC	30	
o-Xylene	ND	ND	ug/l	NC	30	
Xylene (Total)	ND	ND	ug/l	NC	30	
Methyl tert butyl ether	ND	ND	ug/l	NC	30	

			Acceptance
Surrogate	%Recovery	Qualifier %Recovery	Qualifier Criteria
Pentafluorobenzene	102	101	80-120
Fluorobenzene	102	103	80-120
4-Bromofluorobenzene	102	103	80-120

SEMIVOLATILES

Serial_No:04071517:30

Project Name: 87 KENT AVENUE **Lab Number:** L1506337

Project Number: 87 KENT Report Date: 04/07/15

SAMPLE RESULTS

Lab ID: Date Collected: 03/31/15 10:00

Client ID: MW-1 Date Received: 03/31/15

Sample Location: BROOKLYN, NY Field Prep: Not Specified Matrix: Water Extraction Method: EPA 625

Analytical Method: 5,625 Extraction Date: 04/03/15 02:25
Analytical Date: 04/05/15 22:04

Analyst: JB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westborough Lab							
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.21	1	
Naphthalene	ND		ug/l	5.0	0.33	1	
Phenol	ND		ug/l	7.0	0.27	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	38		21-120
Phenol-d6	26		10-120
Nitrobenzene-d5	82		23-120
2-Fluorobiphenyl	99		43-120
2,4,6-Tribromophenol	117		10-120
4-Terphenyl-d14	122	Q	33-120

Project Name: 87 KENT AVENUE

Project Number: 87 KENT Lab Number: L1506337

Report Date: 04/07/15

Method Blank Analysis Batch Quality Control

Analytical Method:

5,625

Analytical Date:

04/05/15 19:45

Extraction Method: EPA 625

Extraction Date:

04/03/15 02:25

Analyst:	JB

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS -	Westborough	Lab for sa	mple(s):	01	Batch:	WG773146-1	
1,2,4-Trichlorobenzene	ND		ug/l		5.0	0.21	
Naphthalene	ND		ug/l		5.0	0.33	
Phenol	ND		ug/l		7.0	0.27	

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2 Fluorenhand	26	24 420
2-Fluorophenol	36	21-120
Phenol-d6	22	10-120
Nitrobenzene-d5	77	23-120
2-Fluorobiphenyl	88	43-120
2,4,6-Tribromophenol	97	10-120
4-Terphenyl-d14	98	33-120

Lab Control Sample Analysis Batch Quality Control

Project Name: 87 KENT AVENUE

Project Number: 87 KENT

Lab Number:

L1506337

Report Date:

04/07/15

Parameter	LCS %Recovery	LCS Qual %Reco		%Recovery Limits	RPD	RPD Qual Limits	;
Semivolatile Organics by GC/MS - We	estborough Lab Associat	ed sample(s): 01 E	Batch: WG773146	6-2			
1,2,4-Trichlorobenzene	68	-		39-98	-	30	
Naphthalene	74	-		40-140	-	30	
Phenol	26	-		12-110	-	30	

		LCSD		Acceptance
%Recovery	Qual	%Recovery	Qual	Criteria
34				21-120
24				10-120
78				23-120
88				43-120
97				10-120
106				33-120
	34 24 78 88 97	34 24 78 88 97	34 24 78 88 97	34 24 78 88 97

Matrix Spike Analysis Batch Quality Control

Project Name: 87 KENT AVENUE

Project Number: 87 KENT

Lab Number:

L1506337

Report Date: 04/07/15

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery G	Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by G	C/MS - Westbor	ough Lab As	sociated samp	ole(s): 01 Q0	C Batch ID	: WG77314	6-3 QC Samp	le: L1506338-01	Client	ID: MS Sample
1,2,4-Trichlorobenzene	ND	40	33	83		-	-	39-98	-	30
Naphthalene	ND	40	34	85		-	-	40-140	-	30
Phenol	ND	40	12	30		-	-	12-110	-	30

	MS	3	MS	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
2,4,6-Tribromophenol	113				10-120	
2-Fluorobiphenyl	96				43-120	
2-Fluorophenol	37				21-120	
4-Terphenyl-d14	106				33-120	
Nitrobenzene-d5	83				23-120	
Phenol-d6	27				10-120	

Lab Duplicate Analysis Batch Quality Control

Lab Number:

L1506337

Report Date:

04/07/15

Parameter	Native Sample	Duplicate Sample	e Units	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westborough Lab	Associated sample(s): 0	1 QC Batch ID: \	WG773146-4	QC Sample:	L1506337-01	Client ID: MW-1
1,2,4-Trichlorobenzene	ND	ND	ug/l	NC		30
Naphthalene	ND	ND	ug/l	NC		30
Phenol	ND	ND	ug/l	NC		30

Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	38		42		21-120	
Phenol-d6	26		28		10-120	
Nitrobenzene-d5	82		95		23-120	
2-Fluorobiphenyl	99		107		43-120	
2,4,6-Tribromophenol	117		125	Q	10-120	
4-Terphenyl-d14	122	Q	123	Q	33-120	

Project Name:

Project Number: 87 KENT

87 KENT AVENUE

PCBS

Serial_No:04071517:30

04/02/15

Cleanup Date:

Project Name: 87 KENT AVENUE Lab Number: L1506337

Project Number: 87 KENT Report Date: 04/07/15

SAMPLE RESULTS

Lab ID: Date Collected: 03/31/15 10:00

Client ID: MW-1 Date Received: 03/31/15

Sample Location: BROOKLYN, NY Field Prep: Not Specified Matrix: Extraction Method: EPA 608

Analytical Method: 5,608 Extraction Date: 04/02/15 08:22

Analytical Date: 04/06/15 14:17 Cleanup Method: EPA 3665A
Analyst: JT Cleanup Date: 04/02/15
Cleanup Method: EPA 3660B

Qualifier MDL **Parameter** Result Units RL**Dilution Factor** Column Polychlorinated Biphenyls by GC - Westborough Lab ND 0.050 1 В Aroclor 1016 ug/l 0.021 ND Aroclor 1221 0.050 0.028 1 В ug/l ND 0.012 Aroclor 1232 0.050 1 В ug/l Aroclor 1242 ND 0.050 0.014 1 В ug/l Aroclor 1248 ND 0.050 0.014 1 ug/l В 1 Aroclor 1254 ND 0.050 0.022 В ug/l Aroclor 1260 ND 0.050 0.023 ug/l 1 В

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	52		30-150	В
Decachlorobiphenyl	41		30-150	В

Project Name: 87 KENT AVENUE

Project Number: 87 KENT Lab Number:

L1506337

Report Date: 04/07/15

Method Blank Analysis Batch Quality Control

Analytical Method:

5,608

Analytical Date:

04/03/15 14:45

Analyst:

JΤ

Extraction Method: EPA 608

Extraction Date:

04/02/15 08:22 EPA 3665A

Cleanup Method: Cleanup Date:

04/02/15

Cleanup Method: Cleanup Date:

EPA 3660B 04/02/15

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - V	Vestboroug	h Lab for s	ample(s):	01 Batch:	WG772854-1	
Aroclor 1016	ND		ug/l	0.050	0.021	В
Aroclor 1221	ND		ug/l	0.050	0.028	В
Aroclor 1232	ND		ug/l	0.050	0.012	В
Aroclor 1242	ND		ug/l	0.050	0.014	В
Aroclor 1248	ND		ug/l	0.050	0.014	В
Aroclor 1254	ND		ug/l	0.050	0.022	В
Aroclor 1260	ND		ug/l	0.050	0.023	В

			Acceptance	•
Surrogate	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	63		30-150	В
Decachlorobiphenyl	97		30-150	В

Matrix Spike Analysis Batch Quality Control

Project Name: 87 KENT AVENUE

Project Number: 87 KENT

Lab Number:

L1506337

Report Date: 04/07/15

Parameter	Native Sample	MS Added	MS Found	MS %Recover	y Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits	<u>Colum</u> n
Polychlorinated Biphenyls by	GC - Westbor	ough Lab As	sociated samp	ple(s): 01 C	QC Batch ID	: WG7728	54-3 QC Sar	mple: L18	506203-01	Client	ID: MS	Sample	
Aroclor 1016	ND	0.529	0.117	22	Q	-	-		40-126	-		30	В
Aroclor 1260	ND	0.529	0.090	17	Q	-	-		40-127	-		30	В

	MS	6	MS	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	26	Q			30-150	В
Decachlorobiphenyl	21	Q			30-150	В

Lab Control Sample Analysis Batch Quality Control

Project Name: 87 KENT AVENUE

Project Number: 87 KENT

Lab Number:

L1506337

Report Date:

04/07/15

Parameter	LCS %Recoverv	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
rarameter	/errecovery	Quai	70110001019	Quai	Lillits	KFD	Quai	Lillito	Column
Polychlorinated Biphenyls by GC - Westbo	orough Lab Associa	ated sample(s)	: 01 Batch	: WG772854-2)				
Aroclor 1016	58		-		40-126	-		30	В
Aroclor 1260	70		-		40-127	-		30	В

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	51				30-150	В
Decachlorobiphenyl	79				30-150	В

Lab Duplicate Analysis Batch Quality Control

Project Name: 87 KENT AVENUE Batch Quality (

Lab Number:

L1506337

Project Number: 87 KENT

Report Date: 04/07/15

Parameter	Native Sample	Duplicate Sample	e Units	RPD	Qual	RPD Limits	
Polychlorinated Biphenyls by GC - Westborough Lab Sample	Associated sample(s): 0	1 QC Batch ID: \	WG772854-4	QC Sample:	L1506325-01	Client ID:	DUP
Aroclor 1016	ND	ND	ug/l	NC		30	В
Aroclor 1221	ND	ND	ug/l	NC		30	В
Aroclor 1232	ND	ND	ug/l	NC		30	В
Aroclor 1242	ND	ND	ug/l	NC		30	В
Aroclor 1248	ND	ND	ug/l	NC		30	В
Aroclor 1254	ND	ND	ug/l	NC		30	В
Aroclor 1260	ND	ND	ug/l	NC		30	В
PCBs, Total	ND	ND	ug/l	NC		30	В

					Acceptance	
Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	53		65		30-150	В
Decachlorobiphenyl	34		44		30-150	В

METALS

Serial_No:04071517:30

L1506337

Project Name: 87 KENT AVENUE Lab Number:

Project Number: 87 KENT Report Date: 04/07/15

SAMPLE RESULTS

Lab ID: L1506337-01

Client ID: MW-1

Sample Location: BROOKLYN, NY

Matrix: Water

Date Collected: 03/31/15 10:00 Date Received: 03/31/15

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Wes	stborough L	_ab									
Cadmium, Total	ND		mg/l	0.005	0.001	1	04/02/15 10:07	7 04/07/15 09:49	EPA 3005A	19,200.7	JH
Copper, Total	0.007	J	mg/l	0.010	0.002	1	04/02/15 10:07	7 04/07/15 09:49	EPA 3005A	19,200.7	JH
Lead, Total	0.005	J	mg/l	0.010	0.002	1	04/02/15 10:07	7 04/07/15 09:49	EPA 3005A	19,200.7	JH
Mercury, Total	0.00013	J	mg/l	0.00020	0.00006	1	04/01/15 13:40	0 04/01/15 15:38	EPA 245.1	3,245.1	МС
Nickel, Total	0.0090	J	mg/l	0.025	0.004	1	04/02/15 10:07	7 04/07/15 09:49	EPA 3005A	19,200.7	JH
Zinc, Total	0.019	J	mg/l	0.050	0.007	1	04/02/15 10:07	7 04/07/15 09:49	EPA 3005A	19,200.7	JH

Serial_No:04071517:30

Project Name: 87 KENT AVENUE

Project Number: 87 KENT

Lab Number:

L1506337

Report Date: 04/07/15

Method Blank Analysis Batch Quality Control

Parameter	Result (Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - W	estborough Lab fo	or sample(s): 01	Batch: W	G77263	0-1				
Mercury, Total	ND	mg/l	0.00020	0.00006	5 1	04/01/15 13:40	04/01/15 16:43	3,245.1	MC

Prep Information

Digestion Method: EPA 245.1

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Westborou	ugh Lab	for sample(s	s): 01	Batch: W	G77284	14-1				
Cadmium, Total	ND		mg/l	0.005	0.001	1	04/02/15 10:07	04/07/15 09:42	19,200.7	JH
Copper, Total	ND		mg/l	0.010	0.002	1	04/02/15 10:07	04/07/15 09:42	19,200.7	JH
Lead, Total	ND		mg/l	0.010	0.002	1	04/02/15 10:07	04/07/15 09:42	19,200.7	JH
Nickel, Total	ND		mg/l	0.025	0.004	1	04/02/15 10:07	04/07/15 09:42	19,200.7	JH
Zinc, Total	ND		mg/l	0.050	0.007	1	04/02/15 10:07	04/07/15 09:42	19,200.7	JH

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: 87 KENT AVENUE

Project Number: 87 KENT

Lab Number: L1506337

Report Date: 04/07/15

Parameter	LCS %Recovery C	LCSD Qual %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Westborough Lab Associated sam	nple(s): 01 Batch:	: WG772630-2					
Mercury, Total	91	-		85-115	-		
Fotal Metals - Westborough Lab Associated sam	nple(s): 01 Batch:	: WG772844-2					
Cadmium, Total	114	-		85-115	-		
Copper, Total	103	-		85-115	-		
Lead, Total	113	-		85-115	-		
Nickel, Total	103	-		85-115	-		
Zinc, Total	106	-		85-115	_		

Matrix Spike Analysis Batch Quality Control

Project Name: 87 KENT AVENUE

Project Number: 87 KENT

Lab Number: L1506337

Report Date: 04/07/15

Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Q	Recovery ual Limits	RPD Qual	RPD Limits
ab Associated s	sample(s): 01	QC Bat	ch ID: WG772	:630-4	QC Samp	ole: L1506288-01	Client ID: MS	Sample	
0.00007J	0.005	0.00555	111		-	-	70-130	-	20
_ab Associated s	sample(s): 01	QC Bat	ch ID: WG772	844-4	QC Samp	ole: L1506337-01	Client ID: MW	'-1	
ND	0.051	0.064	126	Q	-	-	75-125	-	20
0.007J	0.25	0.327	131	Q	-	-	75-125	-	20
0.005J	0.51	0.635	124		-	-	75-125	-	20
0.0090J	0.5	0.571	114		-	-	75-125	-	20
0.019J	0.5	0.612	122		-	-	75-125		20
	Sample ab Associated solution of the control of th	Sample Added .ab Associated sample(s): 01 0.00007J .ab Associated sample(s): 01 ND ND 0.051 0.007J 0.25 0.005J 0.51 0.0090J 0.5	Sample Added Found .ab Associated sample(s): 01 QC Bat 0.00007J 0.005 0.00555 .ab Associated sample(s): 01 QC Bat 0.0064 0.007J 0.051 0.064 0.007J 0.25 0.327 0.035 0.635 0.0090J 0.5 0.571 0.571	Sample Added Found %Recovery .ab Associated sample(s): 01 QC Batch ID: WG772 0.00007J 0.005 0.00555 111 .ab Associated sample(s): 01 QC Batch ID: WG772 ND 0.051 0.064 126 0.007J 0.25 0.327 131 0.005J 0.51 0.635 124 0.0090J 0.5 0.571 114	Sample Added Found %Recovery Qual .ab Associated sample(s): 01 QC Batch ID: WG772630-4 0.00007J 0.005 0.00555 111 .ab Associated sample(s): 01 QC Batch ID: WG772844-4 ND 0.051 0.064 126 Q 0.007J 0.25 0.327 131 Q 0.005J 0.51 0.635 124 0.0090J 0.5 0.571 114	Sample Added Found %Recovery Qual Found .ab Associated sample(s): 01 QC Batch ID: WG772630-4 QC Sample QC Sa	Sample Added Found %Recovery Qual Found %Recovery Q .ab Associated sample(s): 01 QC Batch ID: WG772630-4 QC Sample: L1506288-01	Sample Added Found %Recovery Qual Found %Recovery Qual Limits .ab Associated sample(s): 01 QC Batch ID: WG772630-4 QC Sample: L1506288-01 Client ID: MS 0.00007J 0.005 0.00555 111 - - - 70-130 .ab Associated sample(s): 01 QC Batch ID: WG772844-4 QC Sample: L1506337-01 Client ID: MW ND 0.051 0.064 126 Q - - 75-125 0.007J 0.25 0.327 131 Q - - 75-125 0.005J 0.51 0.635 124 - - 75-125 0.0090J 0.5 0.571 114 - - - 75-125	Sample Added Found %Recovery Qual Found %Recovery Qual Limits RPD Qual .ab Associated sample(s): 01 QC Batch ID: WG772630-4 QC Sample: L1506288-01 Client ID: MS Sample .ab Associated sample(s): 01 QC Batch ID: WG772844-4 QC Sample: L1506337-01 Client ID: MW-1 ND 0.051 0.064 126 Q - - 75-125 - 0.007J 0.25 0.327 131 Q - - 75-125 - 0.005J 0.51 0.635 124 - - 75-125 - 0.0090J 0.5 0.571 114 - - - 75-125 -

Lab Duplicate Analysis Batch Quality Control

Project Name: 87 KENT AVENUE

Project Number: 87 KENT

Lab Number:

L1506337

Report Date:

04/07/15

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Westborough Lab Associated sample(s): 0	1 QC Batch ID:	WG772630-3 QC Sample:	L1506288-01	Client ID:	DUP Samp	ole
Mercury, Total	0.00007J	0.00007J	mg/l	NC		20
Total Metals - Westborough Lab Associated sample(s): 0	1 QC Batch ID:	WG772844-3 QC Sample:	L1506337-01	Client ID:	MW-1	
Cadmium, Total	ND	ND	mg/l	NC		20
Copper, Total	0.007J	0.008J	mg/l	NC		20
Lead, Total	0.005J	0.005J	mg/l	NC		20
Nickel, Total	0.0090J	0.009J	mg/l	NC		20
Zinc, Total	0.019J	0.021J	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Serial_No:04071517:30

Project Name: 87 KENT AVENUE

Project Number: 87 KENT

Lab Number:

L1506337

Report Date: 04/07/15

SAMPLE RESULTS

Lab ID: L1506337-01

Client ID: MW-1

Sample Location: BROOKLYN, NY

Matrix: Water

Date Collected: 03/31/15 10:00

Date Received: 03/31/15 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westb	orough Lat)								
Solids, Total	710		mg/l	10	NA	1	-	04/01/15 11:40	30,2540B	DW
Solids, Total Suspended	61.		mg/l	5.0	NA	1	-	04/01/15 08:45	30,2540D	DW
Chloride	41.		mg/l	1.0	0.20	1	-	04/01/15 09:43	30,4500CL-E	LA
pH (H)	6.4		SU	-	NA	1	-	04/01/15 03:00	30,4500H+-B	LH
Nitrogen, Nitrate/Nitrite	1.3		mg/l	0.10	0.019	1	-	04/02/15 00:52	44,353.2	DE
Total Nitrogen	1.9		mg/l	0.30	0.30	1	-	04/06/15 10:41	41,-	JO
Nitrogen, Total Kjeldahl	0.628		mg/l	0.300	0.093	1	04/02/15 20:00	04/03/15 21:40	30,4500N-C	AT
CBOD, 5 day	ND		mg/l	2.0	NA	1	04/01/15 22:30	04/06/15 16:45	30,5210B	RP
Non-Polar Material by EPA 1664	ND		mg/l	4.00	1.24	1	04/01/15 18:30	04/02/15 00:30	74,1664A	KE
Flash Point	>150		deg F	70	NA	1	-	04/06/15 09:40	1,1010A	MP
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	04/01/15 01:35	04/01/15 01:54	30,3500CR-B	LH

Serial_No:04071517:30

Project Name: 87 KENT AVENUE

Project Number: 87 KENT

Lab Number: L1

L1506337

Report Date: 04/07/15

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	Vestborough Lab	for sam	ple(s): 01	Batch:	WG77	2448-1				
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	04/01/15 01:35	04/01/15 01:54	30,3500CR-B	LH
General Chemistry - W	Vestborough Lab	for sam	ple(s): 01	Batch:	WG77	2503-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	04/01/15 08:45	30,2540D	DW
General Chemistry - V	Vestborough Lab	for sam	ple(s): 01	Batch:	WG77	2504-1				
Solids, Total	ND		mg/l	10	NA	1	-	04/01/15 11:40	30,2540B	DW
General Chemistry - V	Vestborough Lab	for sam	ple(s): 01	Batch:	WG77	2524-1				
Chloride	ND		mg/l	1.0	0.20	1	-	04/01/15 09:34	30,4500CL-E	LA
General Chemistry - V	Vestborough Lab	for sam	ple(s): 01	Batch:	WG77	2716-1				
Non-Polar Material by EPA 16	64 ND		mg/l	4.00	1.24	1	04/01/15 18:30	04/02/15 00:30	74,1664A	KE
General Chemistry - V	Vestborough Lab	for sam	ple(s): 01	Batch:	WG77	2741-1				
Nitrogen, Nitrate/Nitrite	ND		mg/l	0.10	0.019	1	-	04/01/15 23:34	44,353.2	DE
General Chemistry - V	Vestborough Lab	for sam	ple(s): 01	Batch:	WG77	2745-1				
CBOD, 5 day	ND		mg/l	2.0	NA	1	04/01/15 22:30	04/06/15 16:45	30,5210B	RP
General Chemistry - W	Vestborough Lab	for sam	ple(s): 01	Batch:	WG77	3107-1				
Nitrogen, Total Kjeldahl	0.148	J	mg/l	0.300	0.031	1	04/02/15 20:00	04/03/15 21:25	30,4500N-C	AT

Lab Control Sample Analysis Batch Quality Control

Project Name: 87 KENT AVENUE

Project Number: 87 KENT

Lab Number:

L1506337

Report Date:

04/07/15

Parameter	LCS %Recovery Qua	LCSD al %Recovery	%Recovery Qual Limits	RPD	Qual RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG772448-2			
Chromium, Hexavalent	98	-	85-115	-	20
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG772459-1			
рН	100	-	99-101	-	5
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG772504-2			
Solids, Total	95	-	81-113	-	
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG772524-2			
Chloride	100	-	90-110	-	
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG772716-2			
Non-Polar Material by EPA 1664	75	-	64-132	-	34
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG772741-2			
Nitrogen, Nitrate/Nitrite	103	-	90-110	-	
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG772745-2			
CBOD, 5 day	76	-	47-104	-	49

Lab Control Sample Analysis Batch Quality Control

Project Name: 87 KENT AVENUE

Project Number: 87 KENT

Lab Number:

L1506337

Report Date:

04/07/15

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG773107-2			
Nitrogen, Total Kjeldahl	95	-	78-122	-	
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG773705-1			
Flash Point	100	-		-	

Matrix Spike Analysis Batch Quality Control

Project Name: 87 KENT AVENUE

Project Number: 87 KENT

Lab Number:

L1506337

Report Date: 04/07/15

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Foun	INIOD	Recovery Limits I	RPD Qual	RPD Limits
General Chemistry - Westboro	ugh Lab Assoc	ciated samp	ole(s): 01	QC Batch ID:	WG772448-4	QC Sample: L1506337-01	Client ID:	MW-1	
Chromium, Hexavalent	ND	0.1	0.101	101	-	-	85-115	-	20
General Chemistry - Westboro	ugh Lab Assoc	ciated samp	ole(s): 01	QC Batch ID:	WG772524-4	QC Sample: L1506282-02	Client ID:	MS Sample)
Chloride	40.	20	58	90	-	-	58-140	-	7
General Chemistry - Westboro	ugh Lab Assoc	ciated samp	ole(s): 01	QC Batch ID:	WG772716-4	QC Sample: L1506337-01	Client ID:	MW-1	
Non-Polar Material by EPA 1664	ND	20.4	15.8	77	-	-	64-132	-	34
General Chemistry - Westboro	ugh Lab Assoc	ciated samp	ole(s): 01	QC Batch ID:	WG772741-4	QC Sample: L1506379-01	Client ID:	MS Sample)
Nitrogen, Nitrate/Nitrite	1.2	4	5.4	103	-	-	80-120	-	20
General Chemistry - Westboro	ugh Lab Assoc	ciated samp	ole(s): 01	QC Batch ID:	WG772745-4	QC Sample: L1506337-01	Client ID:	MW-1	
CBOD, 5 day	ND	100	75	75		-	36-125	-	49
General Chemistry - Westboro	ugh Lab Assoc	ciated samp	le(s): 01	QC Batch ID:	WG773107-4	QC Sample: L1506304-02	Client ID:	MS Sample)
Nitrogen, Total Kjeldahl	0.639	8	8.66	100	-	•	77-111	-	24

Lab Duplicate Analysis Batch Quality Control

Project Name: 87 KENT AVENUE

Project Number: 87 KENT

Lab Number:

L1506337

Report Date:

04/07/15

Parameter	Native Sample	Duplicate Sa	mple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated	sample(s): 01 QC Batch ID:	WG772448-3	QC Sample: L1506337	7-01 Clie	ent ID: M	IVV-1
Chromium, Hexavalent	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab Associated	sample(s): 01 QC Batch ID:	WG772459-2	QC Sample: L1506337	7-01 Clie	ent ID: M	IVV-1
pH (H)	6.4	6.4	SU	0		5
General Chemistry - Westborough Lab Associated	sample(s): 01 QC Batch ID:	WG772503-2	QC Sample: L1506282	2-01 Clie	ent ID: D	UP Sample
Solids, Total Suspended	190	190	mg/l	0		29
General Chemistry - Westborough Lab Associated	sample(s): 01 QC Batch ID:	WG772504-3	QC Sample: L1506282	2-01 Clie	ent ID: D	UP Sample
Solids, Total	1200	820	mg/l	38	Q	16
General Chemistry - Westborough Lab Associated	sample(s): 01 QC Batch ID:	WG772524-3	QC Sample: L1506282	2-02 Clie	ent ID: D	UP Sample
Chloride	40.	40	mg/l	0		7
General Chemistry - Westborough Lab Associated	sample(s): 01 QC Batch ID:	WG772716-3	QC Sample: L1506338	3-01 Clie	ent ID: D	UP Sample
Non-Polar Material by EPA 1664	2.14J	2.04J	mg/l	NC		34
General Chemistry - Westborough Lab Associated	sample(s): 01 QC Batch ID:	WG772741-3	QC Sample: L1506379	9-01 Clie	ent ID: D	UP Sample
Nitrogen, Nitrate/Nitrite	1.2	1.3	mg/l	0		20
General Chemistry - Westborough Lab Associated	sample(s): 01 QC Batch ID:	WG772745-3	QC Sample: L1506414	1-02 Clie	ent ID: D	UP Sample
CBOD, 5 day	150	140	mg/l	7		49
General Chemistry - Westborough Lab Associated	sample(s): 01 QC Batch ID:	WG773107-3	QC Sample: L1506304	1-02 Clie	ent ID: D	UP Sample
Nitrogen, Total Kjeldahl	0.639	0.708	mg/l	10		24

Serial_No:04071517:30

Project Name: **87 KENT AVENUE**

Lab Number: L1506337 **Report Date:** 04/07/15 Project Number: 87 KENT

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal

Cooler

Absent Α В Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1506337-01A	Vial Na2S2O3 preserved	Α	N/A	3.7	Υ	Absent	624-NYDEP(3)
L1506337-01B	Vial Na2S2O3 preserved	Α	N/A	3.7	Υ	Absent	624-NYDEP(3)
L1506337-01C	Vial Na2S2O3 preserved	Α	N/A	3.7	Υ	Absent	624-NYDEP(3)
L1506337-01D	Plastic 250ml HNO3 preserved	Α	<2	3.7	Y	Absent	NI-UI(180),ZN-UI(180),HG- U(28),CD-UI(180),CU- UI(180),PB-UI(180)
L1506337-01E	Plastic 250ml H2SO4 preserved	Α	<2	3.7	Υ	Absent	TKN-4500(28),NO3/NO2- 353(28),TNITROGEN(28)
L1506337-01F	Plastic 950ml unpreserved	Α	7	3.7	Υ	Absent	TSC-2540(7),CL- 4500(28),CBOD5(2)
L1506337-01G	Plastic 950ml unpreserved	Α	7	3.7	Υ	Absent	TSS-2540(7)
L1506337-01H	Plastic 950ml unpreserved	Α	7	3.7	Υ	Absent	HEXCR-3500(1),PH-4500(.01)
L1506337-01I	Amber 1000ml Na2S2O3	Α	7	3.7	Υ	Absent	NYPCB-608-2L(7)
L1506337-01J	Amber 1000ml Na2S2O3	Α	7	3.7	Υ	Absent	NYPCB-608-2L(7)
L1506337-01K	Amber 1000ml Na2S2O3	Α	7	3.7	Υ	Absent	625-NYDEP(7)
L1506337-01L	Amber 1000ml Na2S2O3	Α	7	3.7	Υ	Absent	625-NYDEP(7)
L1506337-01M	Amber 1000ml HCl preserved	Α	N/A	3.7	Υ	Absent	NYTPH-1664(28)
L1506337-01N	Amber 1000ml HCl preserved	Α	N/A	3.7	Υ	Absent	NYTPH-1664(28)
L1506337-01O	Amber 500ml unpreserved	Α	7	3.7	Υ	Absent	FLASH()

Project Name: 87 KENT AVENUE Lab Number: L1506337

Project Number: 87 KENT Report Date: 04/07/15

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

SRM

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

Report Format: DU Report with 'J' Qualifiers

Project Name:87 KENT AVENUELab Number:L1506337Project Number:87 KENTReport Date:04/07/15

Data Qualifiers

- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name: 87 KENT AVENUE Lab Number: L1506337

Project Number: 97 KENT Page: 04/07/15

Project Number: 87 KENT Report Date: 04/07/15

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.
- 41 Alpha Analytical Labs Internally-developed Performance-based Method.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised December 16, 2014

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.

EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, lodomethane (methyl iodide), Methyl methacrylate,

Azobenzene

EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine.

EPA 625: 4-Chloroaniline, 4-Methylphenol.

SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.

EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility

EPA 8270D: Biphenyl. EPA 2540D: TSS

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C,

SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC,

SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4,

SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT,

Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

CHAIN OF CU	STO	ΣΥ	PAGE 1 OF	1	Date	Rec'd ii	n Lab:	ъ	_ _	ις		65 19 65 65	ALP	HA Jo	ob #:	L 1	506337	7
ALPHA Proje	ect Inform	nation			Rep	ort in	form	ation	Data l	Deliv	erabl	es		ng Inf				
ANALYTICAL						☐ FAX ☐ EMAIL				L	☐ Same as Client info PO #:							
Westborough, MA Mansfield, MA Project TEL: 508-898-9220 TEL: 508-822-9300 Project	ot Name:				☐ Add'l Deliverables				∍s									
	0 - 1 - 1					Regulatory Requirements/Report Limits												
		Brook	()/ (, /V	· *		/Fed Pr							Criter					
	ot# 87		· <u>'</u>		NYC Sanitary and Combined Sewer Discharge NYC-SEWER MCP PRESUMPTIVE CERTAINTY-CT REASONABLE CONFIDENCE PROTOCOLS							18						
Address: 121 West 27 the Street Proje	ct Manager	Matt	Carro	11														
Swite 1004, NY NY 1000/ ALPH	A Quote #:							I No								otocols) Reguired?	
Phone: 646-606-2332 Turn	-Around	Time			ANA	LYSI	S							,			2.150.5.11110.1110	T O
	andard	☐ Rus	h (ONLY IF PR	E-APPROVED)				ł		}		ļ					SAMPLE HANDLING Filtration	A
Emaily Carroll @tenenenv. Com						۵							씸				☐ Done ☐ Not Needed	#
☐ These samples have been Previously analyzed by Alpha Due [Date: 4-7	Time:			st)	1 List)	sp			·		st)	65ppt				☐ Lab to do	В
Other Project Specific Requirements/Comments/Detec	tion Limits	3:			Attached List)	Attached	Solids	<u>"</u>		1664		625 (See Attached List)	ře 65				Preservation ☐ Lab to do	O T
Please see attached list.	.	- 1 - 3			ache		Total	Solids		١ ١		ache	acheve				(Please specify	Ļ
PCB reporting limit must be 65ppt. See attached list. Final PH and temp yeadings or	4.6.4	Zan 9.73	(o 1) 1 00	<u>Se</u>	e Att	See	r , OK) ped	ے	teria	8	≯Att	ısta				below)	S
inconforate These readings in	The Lo	eb ro	Port.		(Sec) sle	CBOD,	beuc	hror	Ma	NE	(Sec	- Must	ŧ			- 1 (A) (A)	
ALPHA Lab ID Sample ID	Colle		Sample	Sampler's	624	Metals	ide,	Sus	exC	Pola	ĝ	625	809	ı Point				
(Lab Use Only)	Date	Time	Matrix	Initials	VOC 624 (See	Total	Chloride,	Total Suspended	pH, HexChrom	Non Polar Material	TKN, NO3/NO2	ABN	PCB	Flash			Sample Specific Comments	
06337-01 10747-1	201	10) 00	144.7	1/1/0	Ø		Ø				X		$\overline{\boxtimes}$					16
A MAN A AHLE MY	5-51 3-8-61	10.00	Water	An Alli				N	区		X		豆	X	\exists	\exists		1
- Committee	3/3/	2004					$\widehat{\Box}$											
				1.														
																	wateria in the second second for the second second	2550,005,226
PLEASE ANSWER QUESTIONS ABOVE!			Co	ntainer Type	٧	Р	Þ	Р	Р	Α	ρ	A	Α	Α	-	-	Please print clearly, legib	าเบ
·				Preservative	Н	С	Α	A	Α	₿	D	Н	Н	-	-	-	and completely. Sample not be logged in and	s can
IS YOUR PROJECT	Relinquished By:				Date/Time Received By:				111	Date/Time				turnaround time clock will start until any ambiguities	Inot sare			
MA MCP or CT RCP?					25	<u>اځاړا</u>	700 जाता	O Red Warner KAGE				440	3/3//5/70			100	resolved. All samples submitted are subject to	
FORM NO: 01-01(I) (rev. 30-JUL-07)	VIXU				313/1) / - Me	<u> 700 -</u>	70		10	WX U		د	12/ Un.	40	815	Alpha's Payment Terms.	
	- Bar	-1 (ON)			1-15				M.M	<u>~\</u>) —	1 , ,		•,	enderam estim stambase in the	-95-25-255-26

TABLE A

LIMITATIONS FOR EFFLUENT TO SANITARY OR COMBINED SEWERS

Parameter ¹	Daily Limit	Units	Sample Type	Monthly Limit	
Non-polar material ²	50	mg/l	Instantaneous		
pH	5-11	SU's	Instantaneous		
Temperature	< 150	Degree F	Instantaneous		
Flash Point	> 140	Degree F	Instantaneous		
Cadmium	2	mg/l	Instantaneous		
	0.69	mg/l	Composite		
Chromium (VI)	5	mg/l	Instantaneous		
Copper	5	mg/l	Instantaneous		
Lead	2	mg/l	Instantaneous		No:04071517:30
Mercury	0.05	mg/l	Instantaneous	Sena	<u> N0.04071517.30</u>
Nickel	3	mg/l	Instantaneous	ļ	
Zinc	5	mg/l	Instantaneous		
Benzene	134	ppb	Instantaneous	57	
Carbontetrachloride			Composite		
Chloroform			Composite		
1,4 Dichlorobenzene			Composite		
Ethylbenzene	380	ppb	Instantaneous	142	
MTBE (Methyl-Tert-	50	ppb	Instantaneous		
Butyl-Ether)					
Naphthalene	47	ppb	Composite	19	
Phenol			Composite		
Tetrachloroethylene	20	ppb	Instantaneous		,
(Perc)					
Toluene	74	ppb	Instantaneous	28	
1,2,4			Composite		
Trichlorobenzene					
1,1,1			Composite		
Trichloroethane					
Xylenes (Total)	74	ppb	Instantaneous	28	
PCB's (Total)3	1	ppb	Composite		
Total Suspended	350 ⁴	mg/l	Instantaneous		
Solids (TSS)					
CBOD ⁵			Composite		
Chloride ⁵			Instantaneous		
Total Nitrogen ⁵			Composite		
Total Solids ⁵			Instantaneous		
Other					

- All handling and preservation of collected samples and laboratory analyses of samples shall be performed in 1 and place value of the control of th applicable regulatory discharge limit. If a parameter does not have a limit, then the detection level is defined as the least of the Practical Quantitation Limits identified in NYSDEC's <u>Analytical Detectability and Quantitation Guidelines</u> for Selected Environmental Parameters, December 1988
- 2 Analysis for non-polar materials must be done by EPA method 1664 Rev. A. Non-Polar Material shall mean that portion of the oil and grease that is not eliminated from a solution containing N-Hexane, or any other extraction solvent the EPA shall prescribe, by silica gel absorption.
- Analysis for PCB=s is required if both conditions listed below are met: 3
 - Analysis for PCB=s is required in 20th Containing listed below are free.

 1) if proposed discharge ≥ 10,000 gpd;
 2) if duration of a discharge > 10 days.

 Analysis for PCB=s must be done by EPA method 608 with MDL=<65 ppt. PCB's (total) is the sum of PCB-1242 (Arochlor 1242), PCB-1254 (Arochlor 1254), PCB-1221 (Arochlor 1221), PCB-1232 (Arochlor 1232), PCB-1248 (Arochlor 1248), PCB-1260 (Arochlor 1260) and PCB-1016 (Arochlor 1016).
- For discharge ≥ 10,000 gpd, the TSS limit is 350 mg/l. For discharge < 10,000gpd, the limit is determined on a case by case basis.
- Analysis for Carbonaceous Biochemical Oxygen Demand (CBOD), Chloride, Total Solids and Total Nitrogen are 5 required if proposed discharge ≥ 10,000 gpd. Total Nitrogen = Total Kjeldahl Nitrogen (TKN) + Nitrite (NO₂) + Nitrate (NO₃).

ANALYTICAL REPORT

Lab Number: L1516050

Client: Tenen Environmental, LLC

121 West 27th Street

Suite 303

New York City, NY 10001

ATTN: Matt Carroll
Phone: (646) 606-2332

Project Name: 87 KENT AVENUE

Project Number: 87 KENT AVENUE

Report Date: 07/20/15

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 87 KENT AVENUE
Project Number: 87 KENT AVENUE

Lab Number: L1516050 **Report Date:** 07/20/15

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1516050-01	TSB-6 (15-16)	SOIL	87 KENT AVENUE	07/13/15 10:30	07/13/15
L1516050-02	TSB-6 (16-18)	SOIL	87 KENT AVENUE	07/13/15 10:30	07/13/15
L1516050-03	TSB-6 (18-20)	SOIL	87 KENT AVENUE	07/13/15 10:30	07/13/15
L1516050-04	TSB-3 (20-21)	SOIL	87 KENT AVENUE	07/13/15 11:45	07/13/15
L1516050-05	TSB-3 (21-23)	SOIL	87 KENT AVENUE	07/13/15 11:45	07/13/15
L1516050-06	TSB-3 (23-25)	SOIL	87 KENT AVENUE	07/13/15 11:45	07/13/15
L1516050-07	TGW-1	WATER	87 KENT AVENUE	07/13/15 15:05	07/13/15

Project Name:87 KENT AVENUELab Number:L1516050Project Number:87 KENT AVENUEReport Date:07/20/15

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:87 KENT AVENUELab Number:L1516050Project Number:87 KENT AVENUEReport Date:07/20/15

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Metals

L1516050-01 through -06 have elevated detection limits for all elements, with the exception of mercury, due to the dilutions required by matrix interferences encountered during analysis.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 07/20/15

King L. Wisters Lisa Westerlind

ALPHA

ORGANICS

VOLATILES

Project Name: 87 KENT AVENUE **Lab Number:** L1516050

Project Number: 87 KENT AVENUE **Report Date:** 07/20/15

SAMPLE RESULTS

Lab ID: L1516050-07 D

Client ID: TGW-1

Sample Location: 87 KENT AVENUE

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 07/15/15 22:55

Analyst: PD

Date Collected: 07/13/15 15:05
Date Received: 07/13/15

Field Prep: Not Specified

Volatile Organics by GC/MS - Westboroug Methylene chloride 1,1-Dichloroethane	gh Lab ND ND	ug/l			
1,1-Dichloroethane		ua/l			
	ND	ug, i	50	14.	20
		ug/l	50	14.	20
Chloroform	ND	ug/l	50	14.	20
Carbon tetrachloride	ND	ug/l	10	2.7	20
1,2-Dichloropropane	ND	ug/l	20	2.7	20
Dibromochloromethane	ND	ug/l	10	3.0	20
1,1,2-Trichloroethane	ND	ug/l	30	10.	20
Tetrachloroethene	ND	ug/l	10	3.6	20
Chlorobenzene	ND	ug/l	50	14.	20
Trichlorofluoromethane	ND	ug/l	50	14.	20
1,2-Dichloroethane	ND	ug/l	10	2.6	20
1,1,1-Trichloroethane	ND	ug/l	50	14.	20
Bromodichloromethane	ND	ug/l	10	3.8	20
trans-1,3-Dichloropropene	ND	ug/l	10	3.3	20
cis-1,3-Dichloropropene	ND	ug/l	10	2.9	20
1,3-Dichloropropene, Total	ND	ug/l	10	2.9	20
1,1-Dichloropropene	ND	ug/l	50	14.	20
Bromoform	ND	ug/l	40	13.	20
1,1,2,2-Tetrachloroethane	ND	ug/l	10	2.9	20
Benzene	ND	ug/l	10	3.2	20
Toluene	ND	ug/l	50	14.	20
Ethylbenzene	ND	ug/l	50	14.	20
Chloromethane	ND	ug/l	50	14.	20
Bromomethane	ND	ug/l	50	14.	20
Vinyl chloride	ND	ug/l	20	1.4	20
Chloroethane	ND	ug/l	50	14.	20
1,1-Dichloroethene	ND	ug/l	10	2.8	20
trans-1,2-Dichloroethene	ND	ug/l	50	14.	20
Trichloroethene	2500	ug/l	10	3.5	20
1,2-Dichlorobenzene	ND	ug/l	50	14.	20

Project Name: 87 KENT AVENUE Lab Number: L1516050

Project Number: 87 KENT AVENUE Report Date: 07/20/15

SAMPLE RESULTS

Lab ID: L1516050-07 D Date Collected: 07/13/15 15:05

Client ID: TGW-1 Date Received: 07/13/15
Sample Location: 87 KENT AVENUE Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab ND 50 14. 20 1,3-Dichlorobenzene ug/l 1,4-Dichlorobenzene ND ug/l 50 14. 20 Methyl tert butyl ether ND ug/l 50 14. 20 p/m-Xylene ND 50 14. 20 ug/l o-Xylene ND 50 14. 20 ug/l ND Xylenes, Total 50 14. 20 ug/l cis-1,2-Dichloroethene 77 50 14. 20 ug/l 77 1,2-Dichloroethene, Total 50 14. 20 ug/l Dibromomethane ND 100 20. 20 ug/l 1,2,3-Trichloropropane ND 50 14. 20 ug/l Acrylonitrile ND ug/l 100 30. 20 Styrene ND 50 14. 20 ug/l Dichlorodifluoromethane ND 100 20. 20 ug/l 42 J Acetone ug/l 100 29. 20 Carbon disulfide ND 100 20. 20 ug/l 2-Butanone ND 100 39. 20 ug/l Vinyl acetate ND 100 20. 20 ug/l 4-Methyl-2-pentanone ND 100 20. 20 ug/l 2-Hexanone ND 100 20. 20 ug/l Bromochloromethane ND 50 14. 20 ug/l ND 50 14. 20 2,2-Dichloropropane ug/l 1,2-Dibromoethane ND ug/l 40 13. 20 ND 20 1,3-Dichloropropane ug/l 50 14 1,1,1,2-Tetrachloroethane ND 50 14. 20 ug/l Bromobenzene ND 50 14. 20 ug/l n-Butylbenzene ND 50 14. 20 ug/l sec-Butylbenzene ND 50 14. 20 ug/l tert-Butylbenzene ND ug/l 50 14. 20 ND o-Chlorotoluene 50 14. 20 ug/l p-Chlorotoluene ND ug/l 50 14. 20 1,2-Dibromo-3-chloropropane ND ug/l 50 14. 20 ND 50 14. 20 Hexachlorobutadiene ug/l Isopropylbenzene ND ug/l 50 14. 20 ND p-Isopropyltoluene ug/l 50 14. 20 Naphthalene ND 50 14. 20 ug/l n-Propylbenzene ND 50 14. 20 ug/l 1,2,3-Trichlorobenzene ND 50 14. 20 ug/l ND 1,2,4-Trichlorobenzene 50 14. 20 ug/l ND 1,3,5-Trimethylbenzene ug/l 50 14. 20

Project Name: 87 KENT AVENUE Lab Number: L1516050

Project Number: 87 KENT AVENUE Report Date: 07/20/15

SAMPLE RESULTS

Lab ID: L1516050-07 D

Client ID: TGW-1

Sample Location: 87 KENT AVENUE

Date Collected: 07/13/15 15:05

Date Received: 07/13/15

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbord	ough Lab						
1,2,4-Trimethylbenzene	ND		ug/l	50	14.	20	
1,4-Dioxane	ND		ug/l	5000	820	20	
p-Diethylbenzene	ND		ug/l	40	14.	20	
p-Ethyltoluene	ND		ug/l	40	14.	20	
1,2,4,5-Tetramethylbenzene	ND		ug/l	40	13.	20	
Ethyl ether	ND		ug/l	50	14.	20	
trans-1,4-Dichloro-2-butene	ND		ug/l	50	14.	20	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	95		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	89		70-130	
Dibromofluoromethane	102		70-130	

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/15/15 13:17

Analyst: PD

Parameter	Result	Qualifier	Units		RL	MDL
/olatile Organics by GC/MS	- Westborough Lab	for sampl	e(s):	07	Batch:	WG803260-3
Methylene chloride	ND		ug/l		2.5	0.70
1,1-Dichloroethane	ND		ug/l		2.5	0.70
Chloroform	ND		ug/l		2.5	0.70
Carbon tetrachloride	ND		ug/l		0.50	0.13
1,2-Dichloropropane	ND		ug/l		1.0	0.13
Dibromochloromethane	ND		ug/l		0.50	0.15
1,1,2-Trichloroethane	ND		ug/l		1.5	0.50
Tetrachloroethene	ND		ug/l		0.50	0.18
Chlorobenzene	ND		ug/l		2.5	0.70
Trichlorofluoromethane	ND		ug/l		2.5	0.70
1,2-Dichloroethane	ND		ug/l		0.50	0.13
1,1,1-Trichloroethane	ND		ug/l		2.5	0.70
Bromodichloromethane	ND		ug/l		0.50	0.19
trans-1,3-Dichloropropene	ND		ug/l		0.50	0.16
cis-1,3-Dichloropropene	ND		ug/l		0.50	0.14
1,3-Dichloropropene, Total	ND		ug/l		0.50	0.14
1,1-Dichloropropene	ND		ug/l		2.5	0.70
Bromoform	ND		ug/l		2.0	0.65
1,1,2,2-Tetrachloroethane	ND		ug/l		0.50	0.14
Benzene	ND		ug/l		0.50	0.16
Toluene	ND		ug/l		2.5	0.70
Ethylbenzene	ND		ug/l		2.5	0.70
Chloromethane	ND		ug/l		2.5	0.70
Bromomethane	ND		ug/l		2.5	0.70
Vinyl chloride	ND		ug/l		1.0	0.07
Chloroethane	ND		ug/l		2.5	0.70
1,1-Dichloroethene	ND		ug/l		0.50	0.14
trans-1,2-Dichloroethene	ND		ug/l		2.5	0.70
Trichloroethene	ND		ug/l		0.50	0.18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/15/15 13:17

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lal	b for sampl	e(s): 07	Batch:	WG803260-3
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70
Methyl tert butyl ether	ND		ug/l	2.5	0.70
p/m-Xylene	ND		ug/l	2.5	0.70
o-Xylene	ND		ug/l	2.5	0.70
Xylene (Total)	ND		ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70
1,2-Dichloroethene (total)	ND		ug/l	2.5	0.70
Dibromomethane	ND		ug/l	5.0	1.0
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70
Acrylonitrile	ND		ug/l	5.0	1.5
Styrene	ND		ug/l	2.5	0.70
Dichlorodifluoromethane	ND		ug/l	5.0	1.0
Acetone	ND		ug/l	5.0	1.5
Carbon disulfide	ND		ug/l	5.0	1.0
2-Butanone	ND		ug/l	5.0	1.9
Vinyl acetate	ND		ug/l	5.0	1.0
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0
2-Hexanone	ND		ug/l	5.0	1.0
Bromochloromethane	ND		ug/l	2.5	0.70
2,2-Dichloropropane	ND		ug/l	2.5	0.70
1,2-Dibromoethane	ND		ug/l	2.0	0.65
1,3-Dichloropropane	ND		ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70
Bromobenzene	ND		ug/l	2.5	0.70
n-Butylbenzene	ND		ug/l	2.5	0.70
sec-Butylbenzene	ND		ug/l	2.5	0.70
tert-Butylbenzene	ND		ug/l	2.5	0.70

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/15/15 13:17

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	o for sample(s): 07	Batch:	WG803260-3
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	41.
1,4-Diethylbenzene	ND	ug/l	2.0	0.70
4-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.65
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	95		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	90		70-130	
Dibromofluoromethane	103		70-130	

Project Name: 87 KENT AVENUE **Project Number:** 87 KENT AVENUE

Lab Number: L1516050

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	07 Batch: WG8	03260-1	WG803260-2			
Methylene chloride	105		94		70-130	11	20	
1,1-Dichloroethane	99		93		70-130	6	20	
Chloroform	97		91		70-130	6	20	
Carbon tetrachloride	105		98		63-132	7	20	
1,2-Dichloropropane	104		96		70-130	8	20	
Dibromochloromethane	112		103		63-130	8	20	
1,1,2-Trichloroethane	110		101		70-130	9	20	
Tetrachloroethene	112		106		70-130	6	20	
Chlorobenzene	105		96		75-130	9	20	
Trichlorofluoromethane	93		92		62-150	1	20	
1,2-Dichloroethane	98		91		70-130	7	20	
1,1,1-Trichloroethane	96		91		67-130	5	20	
Bromodichloromethane	99		90		67-130	10	20	
trans-1,3-Dichloropropene	108		99		70-130	9	20	
cis-1,3-Dichloropropene	104		94		70-130	10	20	
1,1-Dichloropropene	93		87		70-130	7	20	
Bromoform	110		100		54-136	10	20	
1,1,2,2-Tetrachloroethane	99		92		67-130	7	20	
Benzene	109		100		70-130	9	20	
Toluene	102		96		70-130	6	20	
Ethylbenzene	100		91		70-130	9	20	

Project Name: 87 KENT AVENUE **Project Number:** 87 KENT AVENUE

Lab Number: L1516050

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): (07 Batch: WG	803260-1	WG803260-2		
Chloromethane	70		62	Q	64-130	12	20
Bromomethane	55		49		39-139	12	20
Vinyl chloride	77		71		55-140	8	20
Chloroethane	108		99		55-138	9	20
1,1-Dichloroethene	100		96		61-145	4	20
trans-1,2-Dichloroethene	107		99		70-130	8	20
Trichloroethene	98		91		70-130	7	20
1,2-Dichlorobenzene	99		90		70-130	10	20
1,3-Dichlorobenzene	98		89		70-130	10	20
1,4-Dichlorobenzene	97		89		70-130	9	20
Methyl tert butyl ether	106		101		63-130	5	20
p/m-Xylene	104		94		70-130	10	20
o-Xylene	104		94		70-130	10	20
cis-1,2-Dichloroethene	104		96		70-130	8	20
Dibromomethane	109		101		70-130	8	20
1,2,3-Trichloropropane	97		91		64-130	6	20
Acrylonitrile	106		96		70-130	10	20
Styrene	109		98		70-130	11	20
Dichlorodifluoromethane	146		137		36-147	6	20
Acetone	101		92		58-148	9	20
Carbon disulfide	92		84		51-130	9	20

Project Name: 87 KENT AVENUE **Project Number:** 87 KENT AVENUE

Lab Number: L1516050

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s): 0	7 Batch: WG	803260-1	WG803260-2			
2-Butanone	115		101		63-138	13	20	
Vinyl acetate	76		72		70-130	5	20	
4-Methyl-2-pentanone	99		93		59-130	6	20	
2-Hexanone	76		72		57-130	5	20	
Bromochloromethane	115		107		70-130	7	20	
2,2-Dichloropropane	100		95		63-133	5	20	
1,2-Dibromoethane	108		99		70-130	9	20	
1,3-Dichloropropane	107		100		70-130	7	20	
1,1,1,2-Tetrachloroethane	111		102		64-130	8	20	
Bromobenzene	102		94		70-130	8	20	
n-Butylbenzene	83		76		53-136	9	20	
sec-Butylbenzene	87		81		70-130	7	20	
tert-Butylbenzene	88		82		70-130	7	20	
o-Chlorotoluene	88		80		70-130	10	20	
p-Chlorotoluene	90		82		70-130	9	20	
1,2-Dibromo-3-chloropropane	86		78		41-144	10	20	
Hexachlorobutadiene	89		82		63-130	8	20	
Isopropylbenzene	89		83		70-130	7	20	
p-Isopropyltoluene	91		83		70-130	9	20	
Naphthalene	84		83		70-130	1	20	
n-Propylbenzene	90		83		69-130	8	20	

Project Name: 87 KENT AVENUE **Project Number:** 87 KENT AVENUE

Lab Number: L1516050

Parameter	LCS %Recovery	Qual	LCSI %Recov		%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	07 Batch:	WG803260-1	WG803260-2			
1,2,3-Trichlorobenzene	89		85		70-130	5		20
1,2,4-Trichlorobenzene	90		84		70-130	7		20
1,3,5-Trimethylbenzene	93		85		64-130	9		20
1,2,4-Trimethylbenzene	92		86		70-130	7		20
1,4-Dioxane	146		111		56-162	27	Q	20
p-Diethylbenzene	90		83		70-130	8		20
p-Ethyltoluene	93		86		70-130	8		20
1,2,4,5-Tetramethylbenzene	91		83		70-130	9		20
Ethyl ether	122		115		59-134	6		20
trans-1,4-Dichloro-2-butene	93		83		70-130	11		20

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	93		95		70-130	
Toluene-d8	101		101		70-130	
4-Bromofluorobenzene	89		90		70-130	
Dibromofluoromethane	100		101		70-130	

METALS

SAMPLE RESULTS

 Lab ID:
 L1516050-01
 Date Collected:
 07/13/15 10:30

 Client ID:
 TSB-6 (15-16)
 Date Received:
 07/13/15

Sample Location: 87 KENT AVENUE Field Prep: Not Specified

Matrix: Soil
Percent Solids: 83%

Dilution Date Date Prep Analytical Method Factor **Prepared Analyzed** Method Qualifier RL MDL **Parameter** Result Units Analyst Total Metals - Westborough Lab Aluminum, Total 8600 mg/kg 9.2 1.8 2 07/14/15 12:12 07/17/15 19:53 EPA 3050B 1,6010C TT ND 0.73 1,6010C Antimony, Total mg/kg 4.6 2 07/14/15 12:12 07/17/15 19:53 EPA 3050B TT 2 07/14/15 12:12 07/17/15 19:53 EPA 3050B ND 0.92 0.18 1,6010C TT Arsenic, Total mg/kg Barium, Total 70 mg/kg 0.92 0.28 2 07/14/15 12:12 07/17/15 19:53 EPA 3050B 1,6010C TT 0.51 0.09 2 1,6010C Beryllium, Total mg/kg 0.46 07/14/15 12:12 07/17/15 19:53 EPA 3050B TT ND 0.92 0.06 2 07/14/15 12:12 07/17/15 19:53 EPA 3050B 1,6010C Cadmium, Total mg/kg TT Calcium, Total 1400 9.2 2.8 2 07/14/15 12:12 07/17/15 19:53 EPA 3050B 1,6010C TT mg/kg Chromium, Total 26 mg/kg 0.92 0.18 2 07/14/15 12:12 07/17/15 19:53 EPA 3050B 1,6010C TT 2 07/14/15 12:12 07/17/15 19:53 EPA 3050B 1,6010C TT Cobalt, Total 10 mg/kg 1.8 0.46 Copper, Total 23 0.92 0.18 2 07/14/15 12:12 07/17/15 19:53 EPA 3050B 1,6010C TT mg/kg Iron, Total 28000 4.6 1.8 2 07/14/15 12:12 07/17/15 19:53 EPA 3050B 1,6010C TT mg/kg Lead, Total 20 4.6 0.18 2 07/14/15 12:12 07/17/15 19:53 EPA 3050B 1,6010C TT mg/kg Magnesium, Total 2900 9.2 0.92 2 07/14/15 12:12 07/17/15 19:53 EPA 3050B 1,6010C mg/kg TT Manganese, Total 510 mg/kg 0.92 0.18 2 07/14/15 12:12 07/17/15 19:53 EPA 3050B 1.6010C TT Mercury, Total J 1 0.07 0.08 0.02 07/17/15 06:23 07/17/15 13:27 EPA 7471B 1,7471B DB mg/kg Nickel, Total 14 mg/kg 2.3 0.37 2 07/14/15 12:12 07/17/15 19:53 EPA 3050B 1,6010C TT 07/14/15 12:12 07/17/15 19:53 EPA 3050B 2400 230 37. 2 1.6010C Potassium, Total mg/kg TT 2 Selenium, Total ND mg/kg 1.8 0.28 07/14/15 12:12 07/17/15 19:53 EPA 3050B 1,6010C TT Silver, Total ND mg/kg 0.92 0.18 2 07/14/15 12:12 07/17/15 19:53 EPA 3050B 1,6010C TT Sodium, Total 55 J mg/kg 180 28. 2 07/14/15 12:12 07/17/15 19:53 EPA 3050B 1,6010C TT ND 0.37 2 1,6010C Thallium, Total mg/kg 1.8 07/14/15 12:12 07/17/15 19:53 EPA 3050B TT 37 0.92 0.09 2 07/14/15 12:12 07/17/15 19:53 EPA 3050B 1,6010C Vanadium, Total mg/kg TT 72 4.6 0.64 2 07/14/15 12:12 07/17/15 19:53 EPA 3050B 1.6010C TT Zinc, Total mg/kg

SAMPLE RESULTS

 Lab ID:
 L1516050-02
 Date Collected:
 07/13/15 10:30

 Client ID:
 TSB-6 (16-18)
 Date Received:
 07/13/15

Sample Location: 87 KENT AVENUE Field Prep: Not Specified

Matrix: Soil Percent Solids: 85%

Dilution Date Date Prep Analytical Method Factor **Prepared Analyzed** Method Qualifier RL MDL **Parameter** Result Units Analyst Total Metals - Westborough Lab Aluminum, Total 3600 mg/kg 9.0 1.8 2 07/14/15 12:12 07/17/15 19:56 EPA 3050B 1,6010C TT ND 0.72 1,6010C Antimony, Total mg/kg 4.5 2 07/14/15 12:12 07/17/15 19:56 EPA 3050B TT 2 07/14/15 12:12 07/17/15 19:56 EPA 3050B ND 0.90 0.18 1,6010C TT Arsenic, Total mg/kg Barium, Total 24 mg/kg 0.90 0.27 2 07/14/15 12:12 07/17/15 19:56 EPA 3050B 1,6010C TT J 0.09 2 1,6010C Beryllium, Total 0.19 mg/kg 0.45 07/14/15 12:12 07/17/15 19:56 EPA 3050B TT ND 0.90 0.06 2 07/14/15 12:12 07/17/15 19:56 EPA 3050B 1,6010C Cadmium, Total mg/kg TT Calcium, Total 930 9.0 2.7 2 07/14/15 12:12 07/17/15 19:56 EPA 3050B 1,6010C TT mg/kg Chromium, Total 16 mg/kg 0.90 0.18 2 07/14/15 12:12 07/17/15 19:56 EPA 3050B 1,6010C TT 3.6 mg/kg 2 07/14/15 12:12 07/17/15 19:56 EPA 3050B 1,6010C TT Cobalt, Total 1.8 0.45 Copper, Total 11 0.90 0.18 2 07/14/15 12:12 07/17/15 19:56 EPA 3050B 1,6010C TT mg/kg Iron, Total 10000 1.8 2 07/14/15 12:12 07/17/15 19:56 EPA 3050B 1,6010C TT mg/kg 4.5 Lead, Total 5.0 4.5 0.18 2 07/14/15 12:12 07/17/15 19:56 EPA 3050B 1,6010C TT mg/kg Magnesium, Total 1500 9.0 0.90 2 07/14/15 12:12 07/17/15 19:56 EPA 3050B 1,6010C mg/kg TT Manganese, Total 240 mg/kg 0.90 0.18 2 07/14/15 12:12 07/17/15 19:56 EPA 3050B 1.6010C TT Mercury, Total 1 ND 0.08 0.02 07/17/15 06:23 07/17/15 13:29 EPA 7471B 1,7471B DB mg/kg Nickel, Total 9.1 mg/kg 2.2 0.36 2 07/14/15 12:12 07/17/15 19:56 EPA 3050B 1,6010C TT 07/14/15 12:12 07/17/15 19:56 EPA 3050B 580 220 36. 2 1.6010C Potassium, Total mg/kg TT 2 Selenium, Total ND mg/kg 1.8 0.27 07/14/15 12:12 07/17/15 19:56 EPA 3050B 1,6010C TT Silver, Total ND mg/kg 0.90 0.18 2 07/14/15 12:12 07/17/15 19:56 EPA 3050B 1,6010C TT Sodium, Total 64 J mg/kg 180 27. 2 07/14/15 12:12 07/17/15 19:56 EPA 3050B 1,6010C TT ND 0.36 2 1,6010C Thallium, Total mg/kg 1.8 07/14/15 12:12 07/17/15 19:56 EPA 3050B TT 0.90 0.09 2 1,6010C Vanadium, Total 22 mg/kg 07/14/15 12:12 07/17/15 19:56 EPA 3050B TT 15 4.5 0.63 2 07/14/15 12:12 07/17/15 19:56 EPA 3050B 1.6010C TT Zinc, Total mg/kg

SAMPLE RESULTS

 Lab ID:
 L1516050-03
 Date Collected:
 07/13/15 10:30

 Client ID:
 TSB-6 (18-20)
 Date Received:
 07/13/15

Sample Location: 87 KENT AVENUE Field Prep: Not Specified

Matrix: Soil Percent Solids: 89%

Dilution Date Date Prep Analytical Method Factor **Prepared Analyzed** Method Qualifier RL MDL **Parameter** Result Units Analyst Total Metals - Westborough Lab Aluminum, Total 5800 mg/kg 8.7 1.7 2 07/14/15 12:12 07/17/15 20:00 EPA 3050B 1,6010C TT ND 0.70 1,6010C Antimony, Total mg/kg 4.4 2 07/14/15 12:12 07/17/15 20:00 EPA 3050B TT 2 07/14/15 12:12 07/17/15 20:00 EPA 3050B ND 0.87 0.17 1,6010C TT Arsenic, Total mg/kg Barium, Total 31 mg/kg 0.87 0.26 2 07/14/15 12:12 07/17/15 20:00 EPA 3050B 1,6010C TT 0.22 J 0.09 2 07/14/15 12:12 07/17/15 20:00 EPA 3050B 1,6010C Beryllium, Total mg/kg 0.44 TT ND 0.87 0.06 2 07/14/15 12:12 07/17/15 20:00 EPA 3050B 1,6010C Cadmium, Total mg/kg TT Calcium, Total 630 8.7 2.6 2 07/14/15 12:12 07/17/15 20:00 EPA 3050B 1,6010C TT mg/kg Chromium, Total 10 mg/kg 0.87 0.17 2 07/14/15 12:12 07/17/15 20:00 EPA 3050B 1,6010C TT mg/kg 2 1,6010C TT Cobalt, Total 3.8 1.7 0.44 07/14/15 12:12 07/17/15 20:00 EPA 3050B Copper, Total 5.4 0.87 0.17 2 07/14/15 12:12 07/17/15 20:00 EPA 3050B 1,6010C TT mg/kg Iron, Total 6900 4.4 1.7 2 07/14/15 12:12 07/17/15 20:00 EPA 3050B 1,6010C TT mg/kg Lead, Total 4.3 J 4.4 0.17 2 07/14/15 12:12 07/17/15 20:00 EPA 3050B 1,6010C TT mg/kg Magnesium, Total 1100 8.7 0.87 2 07/14/15 12:12 07/17/15 20:00 EPA 3050B 1,6010C mg/kg TT Manganese, Total 90 mg/kg 0.87 0.17 2 07/14/15 12:12 07/17/15 20:00 EPA 3050B 1.6010C TT Mercury, Total 1 ND 0.07 0.02 07/17/15 06:23 07/17/15 13:31 EPA 7471B 1,7471B DB mg/kg Nickel, Total 9.4 mg/kg 2.2 0.35 2 07/14/15 12:12 07/17/15 20:00 EPA 3050B 1,6010C TT 220 35. 2 07/14/15 12:12 07/17/15 20:00 EPA 3050B 1.6010C Potassium, Total 340 mg/kg TT 2 1,6010C Selenium, Total ND mg/kg 1.7 0.26 07/14/15 12:12 07/17/15 20:00 EPA 3050B TT 07/14/15 12:12 07/17/15 20:00 EPA 3050B Silver, Total ND mg/kg 0.87 0.17 2 1,6010C TT Sodium, Total 46 J mg/kg 170 26. 2 07/14/15 12:12 07/17/15 20:00 EPA 3050B 1,6010C TT ND 1.7 0.35 2 1,6010C Thallium, Total mg/kg 07/14/15 12:12 07/17/15 20:00 EPA 3050B TT 0.87 0.09 2 07/14/15 12:12 07/17/15 20:00 EPA 3050B 1,6010C Vanadium, Total 11 mg/kg TT 16 4.4 0.61 2 07/14/15 12:12 07/17/15 20:00 EPA 3050B 1.6010C TT Zinc, Total mg/kg

Project Name: Lab Number: **87 KENT AVENUE** L1516050 **Project Number: 87 KENT AVENUE Report Date:** 07/20/15

SAMPLE RESULTS

Lab ID: L1516050-04 Date Collected: 07/13/15 11:45 Client ID: TSB-3 (20-21) Date Received: 07/13/15

Sample Location: **87 KENT AVENUE** Field Prep: Not Specified

Matrix: Soil 83% Percent Solids:

Dilution Date Date Prep Analytical Method Factor **Prepared Analyzed** Method Qualifier RL MDL **Parameter** Result Units Analyst Total Metals - Westborough Lab Aluminum, Total 5000 mg/kg 9.5 1.9 2 07/14/15 12:12 07/17/15 20:04 EPA 3050B 1,6010C TT ND 0.76 1,6010C Antimony, Total mg/kg 4.8 2 07/14/15 12:12 07/17/15 20:04 EPA 3050B TT 10 ND 4.8 0.95 07/14/15 12:12 07/20/15 15:25 EPA 3050B 1,6010C MC Arsenic, Total mg/kg Barium, Total 31 mg/kg 0.95 0.28 2 07/14/15 12:12 07/17/15 20:04 EPA 3050B 1,6010C TT 0.44 J 0.10 2 07/14/15 12:12 07/17/15 20:04 EPA 3050B 1,6010C Beryllium, Total mg/kg 0.48 TT ND 0.95 0.07 2 07/14/15 12:12 07/17/15 20:04 EPA 3050B 1,6010C Cadmium, Total mg/kg TT Calcium, Total 840 9.5 2.8 2 07/14/15 12:12 07/17/15 20:04 EPA 3050B 1,6010C TT mg/kg Chromium, Total 20 mg/kg 0.95 0.19 2 07/14/15 12:12 07/17/15 20:04 EPA 3050B 1,6010C TT mg/kg 2 1,6010C TT Cobalt, Total 9.1 1.9 0.48 07/14/15 12:12 07/17/15 20:04 EPA 3050B Copper, Total 19 0.95 0.19 2 07/14/15 12:12 07/17/15 20:04 EPA 3050B 1,6010C TT mg/kg Iron, Total 21000 4.8 1.9 2 07/14/15 12:12 07/17/15 20:04 EPA 3050B 1,6010C TT mg/kg Lead, Total 10 4.8 0.19 2 07/14/15 12:12 07/17/15 20:04 EPA 3050B 1,6010C TT mg/kg Magnesium, Total 1700 9.5 0.95 2 07/14/15 12:12 07/17/15 20:04 EPA 3050B 1,6010C mg/kg TT Manganese, Total 380 mg/kg 0.95 0.19 2 07/14/15 12:12 07/17/15 20:04 EPA 3050B 1.6010C TT Mercury, Total 1 ND 0.08 0.02 07/17/15 06:23 07/17/15 13:33 EPA 7471B 1,7471B DB mg/kg Nickel, Total 17 mg/kg 2.4 0.38 2 07/14/15 12:12 07/17/15 20:04 EPA 3050B 1,6010C TT 1000 240 38. 2 07/14/15 12:12 07/17/15 20:04 EPA 3050B 1.6010C Potassium, Total mg/kg TT 2 Selenium, Total ND mg/kg 1.9 0.28 07/14/15 12:12 07/17/15 20:04 EPA 3050B 1,6010C TT Silver, Total ND mg/kg 0.95 0.19 2 07/14/15 12:12 07/17/15 20:04 EPA 3050B 1,6010C TT Sodium, Total 68 J mg/kg 190 28. 2 07/14/15 12:12 07/17/15 20:04 EPA 3050B 1,6010C TT ND 0.38 2 1,6010C Thallium, Total mg/kg 1.9 07/14/15 12:12 07/17/15 20:04 EPA 3050B TT 31 0.95 0.10 2 1,6010C Vanadium, Total mg/kg 07/14/15 12:12 07/17/15 20:04 EPA 3050B TT 31 4.8 0.66 2 07/14/15 12:12 07/17/15 20:04 EPA 3050B 1.6010C TT

mg/kg

Zinc, Total

SAMPLE RESULTS

Lab ID: L1516050-05 Date Collected: 07/13/15 11:45
Client ID: TSB-3 (21-23) Date Received: 07/13/15

Sample Location: 87 KENT AVENUE Field Prep: Not Specified

Matrix: Soil Percent Solids: 88%

Dilution Date Date Prep Analytical Method Factor **Prepared Analyzed** Method Qualifier RL MDL **Parameter** Result Units Analyst Total Metals - Westborough Lab Aluminum, Total 4200 mg/kg 8.6 1.7 2 07/14/15 12:12 07/17/15 20:08 EPA 3050B 1,6010C TT ND 0.69 1,6010C Antimony, Total mg/kg 4.3 2 07/14/15 12:12 07/17/15 20:08 EPA 3050B TT 2 07/14/15 12:12 07/17/15 20:08 EPA 3050B ND 0.86 0.17 1,6010C TT Arsenic, Total mg/kg Barium, Total 32 mg/kg 0.86 0.26 2 07/14/15 12:12 07/17/15 20:08 EPA 3050B 1,6010C TT 0.38 J 0.09 2 07/14/15 12:12 07/17/15 20:08 EPA 3050B 1,6010C Beryllium, Total mg/kg 0.43 TT ND 0.86 0.06 2 07/14/15 12:12 07/17/15 20:08 EPA 3050B 1,6010C Cadmium, Total mg/kg TT Calcium, Total 1000 8.6 2.6 2 07/14/15 12:12 07/17/15 20:08 EPA 3050B 1,6010C TT mg/kg Chromium, Total 15 mg/kg 0.86 0.17 2 07/14/15 12:12 07/17/15 20:08 EPA 3050B 1,6010C TT 7.0 mg/kg 2 1,6010C TT Cobalt, Total 1.7 0.43 07/14/15 12:12 07/17/15 20:08 EPA 3050B Copper, Total 16 0.86 0.17 2 07/14/15 12:12 07/17/15 20:08 EPA 3050B 1,6010C TT mg/kg Iron, Total 16000 2 07/14/15 12:12 07/17/15 20:08 EPA 3050B 1,6010C TT mg/kg 4.3 1.7 Lead, Total 10 4.3 0.17 2 07/14/15 12:12 07/17/15 20:08 EPA 3050B 1,6010C TT mg/kg Magnesium, Total 2000 8.6 0.86 2 07/14/15 12:12 07/17/15 20:08 EPA 3050B 1,6010C mg/kg TT Manganese, Total 170 mg/kg 0.86 0.17 2 07/14/15 12:12 07/17/15 20:08 EPA 3050B 1.6010C TT Mercury, Total 1 ND 0.01 0.003 07/17/15 06:23 07/17/15 13:34 EPA 7471B 1,7471B DB mg/kg Nickel, Total 10 mg/kg 2.2 0.34 2 07/14/15 12:12 07/17/15 20:08 EPA 3050B 1,6010C TT 870 220 34. 2 07/14/15 12:12 07/17/15 20:08 EPA 3050B 1.6010C Potassium, Total mg/kg TT 2 Selenium, Total ND mg/kg 1.7 0.26 07/14/15 12:12 07/17/15 20:08 EPA 3050B 1,6010C TT Silver, Total ND mg/kg 0.86 0.17 2 07/14/15 12:12 07/17/15 20:08 EPA 3050B 1,6010C TT Sodium, Total 85 J mg/kg 170 26. 2 07/14/15 12:12 07/17/15 20:08 EPA 3050B 1,6010C TT ND 1.7 0.34 2 1,6010C Thallium, Total mg/kg 07/14/15 12:12 07/17/15 20:08 EPA 3050B TT 0.86 0.09 2 07/14/15 12:12 07/17/15 20:08 EPA 3050B 1,6010C Vanadium, Total 33 mg/kg TT 32 4.3 0.60 2 07/14/15 12:12 07/17/15 20:08 EPA 3050B 1.6010C TT Zinc, Total mg/kg

SAMPLE RESULTS

 Lab ID:
 L1516050-06
 Date Collected:
 07/13/15 11:45

 Client ID:
 TSB-3 (23-25)
 Date Received:
 07/13/15

Sample Location: 87 KENT AVENUE Field Prep: Not Specified

Matrix: Soil Percent Solids: 83%

Dilution Date Date Prep Analytical Method Factor **Prepared Analyzed** Method Qualifier RL MDL **Parameter** Result Units Analyst Total Metals - Westborough Lab Aluminum, Total 2200 mg/kg 9.2 1.8 2 07/14/15 12:12 07/17/15 20:30 EPA 3050B 1,6010C TT ND 0.74 1,6010C Antimony, Total mg/kg 4.6 2 07/14/15 12:12 07/17/15 20:30 EPA 3050B TT 10 ND 4.6 0.92 07/14/15 12:12 07/20/15 15:29 EPA 3050B 1,6010C MC Arsenic, Total mg/kg Barium, Total 29 mg/kg 0.92 0.28 2 07/14/15 12:12 07/17/15 20:30 EPA 3050B 1,6010C TT J 0.09 2 1,6010C Beryllium, Total 0.18 mg/kg 0.46 07/14/15 12:12 07/17/15 20:30 EPA 3050B TT ND 0.92 0.07 2 07/14/15 12:12 07/17/15 20:30 EPA 3050B 1,6010C Cadmium, Total mg/kg TT Calcium, Total 900 9.2 2.8 2 07/14/15 12:12 07/17/15 20:30 EPA 3050B 1,6010C TT mg/kg Chromium, Total 9.8 mg/kg 0.92 0.18 2 07/14/15 12:12 07/17/15 20:30 EPA 3050B 1,6010C TT 5.4 mg/kg 2 1,6010C TT Cobalt, Total 1.8 0.46 07/14/15 12:12 07/17/15 20:30 EPA 3050B Copper, Total 12 0.92 0.18 2 07/14/15 12:12 07/17/15 20:30 EPA 3050B 1,6010C TT mg/kg Iron, Total 18000 4.6 1.8 2 07/14/15 12:12 07/17/15 20:30 EPA 3050B 1,6010C TT mg/kg Lead, Total 8.1 4.6 0.18 2 07/14/15 12:12 07/17/15 20:30 EPA 3050B 1,6010C TT mg/kg Magnesium, Total 840 9.2 0.92 2 07/14/15 12:12 07/17/15 20:30 EPA 3050B 1,6010C mg/kg TT Manganese, Total 330 mg/kg 0.92 0.18 2 07/14/15 12:12 07/17/15 20:30 EPA 3050B 1.6010C TT Mercury, Total 1 ND 0.08 0.02 07/17/15 06:23 07/17/15 13:40 EPA 7471B 1,7471B DB mg/kg Nickel, Total 6.1 mg/kg 2.3 0.37 2 07/14/15 12:12 07/17/15 20:30 EPA 3050B 1,6010C TT 400 230 37. 2 07/14/15 12:12 07/17/15 20:30 EPA 3050B 1.6010C Potassium, Total mg/kg TT 2 Selenium, Total ND mg/kg 1.8 0.28 07/14/15 12:12 07/17/15 20:30 EPA 3050B 1,6010C TT 07/14/15 12:12 07/17/15 20:30 EPA 3050B Silver, Total ND mg/kg 0.92 0.18 2 1,6010C TT Sodium, Total 82 J mg/kg 180 28. 2 07/14/15 12:12 07/17/15 20:30 EPA 3050B 1,6010C TT ND 0.37 2 1,6010C Thallium, Total mg/kg 1.8 07/14/15 12:12 07/17/15 20:30 EPA 3050B TT 0.92 0.09 2 07/14/15 12:12 07/17/15 20:30 EPA 3050B 1,6010C Vanadium, Total 32 mg/kg TT 20 4.6 0.65 2 07/14/15 12:12 07/17/15 20:30 EPA 3050B 1.6010C TT Zinc, Total mg/kg

Project Name: 87 KENT AVENUE
Project Number: 87 KENT AVENUE

Lab Number: L1516050 **Report Date:** 07/20/15

Method Blank Analysis Batch Quality Control

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Westborou	igh Lab	for sample(s): 01-06	Batch:	WG80	2503-1				
Aluminum, Total	ND		mg/kg	4.0	0.80	1	07/14/15 12:12	07/17/15 18:11	1,6010C	TT
Antimony, Total	ND		mg/kg	2.0	0.32	1	07/14/15 12:12	07/17/15 18:11	1,6010C	TT
Arsenic, Total	ND		mg/kg	0.40	0.08	1	07/14/15 12:12	07/17/15 18:11	1,6010C	TT
Barium, Total	ND		mg/kg	0.40	0.12	1	07/14/15 12:12	07/17/15 18:11	1,6010C	TT
Beryllium, Total	ND		mg/kg	0.20	0.04	1	07/14/15 12:12	07/17/15 18:11	1,6010C	TT
Cadmium, Total	ND		mg/kg	0.40	0.03	1	07/14/15 12:12	07/17/15 18:11	1,6010C	TT
Calcium, Total	ND		mg/kg	4.0	1.2	1	07/14/15 12:12	07/17/15 18:11	1,6010C	TT
Chromium, Total	ND		mg/kg	0.40	0.08	1	07/14/15 12:12	07/17/15 18:11	1,6010C	TT
Cobalt, Total	ND		mg/kg	0.80	0.20	1	07/14/15 12:12	07/17/15 18:11	1,6010C	TT
Copper, Total	0.09	J	mg/kg	0.40	0.08	1	07/14/15 12:12	07/17/15 18:11	1,6010C	TT
Iron, Total	ND		mg/kg	2.0	0.80	1	07/14/15 12:12	07/17/15 18:11	1,6010C	TT
Lead, Total	ND		mg/kg	2.0	0.08	1	07/14/15 12:12	07/17/15 18:11	1,6010C	TT
Magnesium, Total	ND		mg/kg	4.0	0.40	1	07/14/15 12:12	07/17/15 18:11	1,6010C	TT
Manganese, Total	ND		mg/kg	0.40	0.08	1	07/14/15 12:12	07/17/15 18:11	1,6010C	TT
Nickel, Total	ND		mg/kg	1.0	0.16	1	07/14/15 12:12	07/17/15 18:11	1,6010C	TT
Potassium, Total	ND		mg/kg	100	16.	1	07/14/15 12:12	07/17/15 18:11	1,6010C	TT
Selenium, Total	ND		mg/kg	0.80	0.12	1	07/14/15 12:12	07/17/15 18:11	1,6010C	TT
Silver, Total	ND		mg/kg	0.40	0.08	1	07/14/15 12:12	07/17/15 18:11	1,6010C	TT
Sodium, Total	ND		mg/kg	80	12.	1	07/14/15 12:12	07/17/15 18:11	1,6010C	TT
Thallium, Total	ND		mg/kg	0.80	0.16	1	07/14/15 12:12	07/17/15 18:11	1,6010C	TT
Vanadium, Total	ND		mg/kg	0.40	0.04	1	07/14/15 12:12	07/17/15 18:11	1,6010C	TT
Zinc, Total	ND		mg/kg	2.0	0.28	1	07/14/15 12:12	07/17/15 18:11	1,6010C	TT

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Quali	fier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - We	estborough Lab for sai	mple(s): 01-06	Batch:	: WG80	3553-1				
Mercury, Total	ND	mg/kg	0.08	0.02	1	07/17/15 06:23	07/17/15 12:57	7 1,7471B	DB

Project Name:87 KENT AVENUELab Number:L1516050Project Number:87 KENT AVENUEReport Date:07/20/15

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7471B

Project Name: 87 KENT AVENUE **Project Number:** 87 KENT AVENUE

Lab Number: L1516050

Parameter	LCS %Recovery	Qual	LCSD %Recove	ry Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Westborough Lab Associated san	nple(s): 01-06	Batch: WG8	802503-2	SRM Lot Numbe	er: D088-540			
Aluminum, Total	75		-		48-151	-		
Antimony, Total	150		-		1-208	-		
Arsenic, Total	96		-		79-121	-		
Barium, Total	94		-		83-117	-		
Beryllium, Total	94		-		83-117	-		
Cadmium, Total	92		-		83-117	-		
Calcium, Total	90		-		81-119	-		
Chromium, Total	92		-		80-120	-		
Cobalt, Total	92		-		84-115	-		
Copper, Total	98		-		81-118	-		
Iron, Total	89		-		45-155	-		
Lead, Total	94		-		81-117	-		
Magnesium, Total	88		-		76-124	-		
Manganese, Total	91		-		81-118	-		
Nickel, Total	94		-		83-117	-		
Potassium, Total	89		-		71-129	-		
Selenium, Total	97		-		78-122	-		
Silver, Total	100		-		75-124	-		
Sodium, Total	95		-		72-127	-		
Thallium, Total	95		-		80-120	-		
Vanadium, Total	95		-		78-122	-		

Project Name: 87 KENT AVENUE **Project Number:** 87 KENT AVENUE

Lab Number: L1516050

Parameter	LCS %Recovery	LCSI %Recov		RPD	RPD Limits
Total Metals - Westborough Lab	Associated sample(s): 01-06	Batch: WG802503-2	SRM Lot Number: D088-540		
Zinc, Total	92		82-118	-	
Total Metals - Westborough Lab	Associated sample(s): 01-06	Batch: WG803553-2	SRM Lot Number: D088-540		
Mercury, Total	95		72-128	-	

Matrix Spike Analysis Batch Quality Control

Project Name: 87 KENT AVENUE **Project Number:** 87 KENT AVENUE

Lab Number: L1516050

<u>Parameter</u>	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qual	Recovery Limits	RPD Qua	RPD Limits
Total Metals - Westborough I	Lab Associated	sample(s):	01-06 QC	Batch ID: WG	802503-	4 QCS	ample: L1516031-01	Client ID:	MS Sample	
Aluminum, Total	5000	178	4700	0	Q	-	-	75-125	-	20
Antimony, Total	ND	44.6	33	74	Q	-	-	75-125	-	20
Arsenic, Total	ND	10.7	9.3	87		-	-	75-125	-	20
Barium, Total	16.	178	180	92		-	-	75-125	-	20
Beryllium, Total	0.58	4.46	4.6	90		-	-	75-125	-	20
Cadmium, Total	ND	4.55	4.4	97		-	-	75-125	-	20
Calcium, Total	1100	893	1800	78		-	-	75-125	-	20
Chromium, Total	7.4	17.8	23	87		-	-	75-125	-	20
Cobalt, Total	2.1	44.6	44	94		-	-	75-125	-	20
Copper, Total	14.	22.3	33	85		-	-	75-125	-	20
Iron, Total	15000	89.3	13000	0	Q	-	-	75-125	-	20
Lead, Total	5.2	45.5	47	92		-	-	75-125	-	20
Magnesium, Total	1200	893	1900	78		-	-	75-125	-	20
Manganese, Total	28.	44.6	69	92		-	-	75-125	-	20
Nickel, Total	10.	44.6	49	87		-	-	75-125	-	20
Potassium, Total	980	893	1700	81		-	-	75-125	-	20
Selenium, Total	ND	10.7	9.8	91		-	-	75-125	-	20
Silver, Total	ND	26.8	27	101		-	-	75-125	-	20
Sodium, Total	47.J	893	900	101		-	-	75-125	-	20
Thallium, Total	ND	10.7	9.6	90		-	-	75-125	-	20
Vanadium, Total	9.7	44.6	52	95		-	-	75-125	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: 87 KENT AVENUE **Project Number:** 87 KENT AVENUE

Lab Number: L1516050

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Westborough Lab	Associated	sample(s): 0	1-06 QC	Batch ID: WG802503-	-4 QC S	Sample: L1516031-01	Client ID:	MS Sample	
Zinc, Total	20.	44.6	59	87	-	-	75-125	-	20
Total Metals - Westborough Lab	o Associated	sample(s): 0	1-06 QC	Batch ID: WG803553-	-4 QC S	Sample: L1515815-02	Client ID:	MS Sample	
Mercury, Total	ND	0.156	0.18	116	-	-	80-120	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 87 KENT AVENUE **Project Number:** 87 KENT AVENUE

Lab Number: L1516050 **Report Date:** 07/20/15

arameter	N	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
otal Metals - Westborough Lab	Associated sample(s): 01-	-06 QC Batch ID:	WG802503-3 QC Sampl	e: L1516031-	01 Client	D: DUP S	Sample
Aluminum, Total		5000	4000	mg/kg	22	Q	20
Antimony, Total		ND	ND	mg/kg	NC		20
Arsenic, Total		ND	0.20J	mg/kg	NC		20
Barium, Total		16.	12	mg/kg	29	Q	20
Beryllium, Total		0.58	0.46	mg/kg	23	Q	20
Cadmium, Total		ND	ND	mg/kg	NC		20
Calcium, Total		1100	1000	mg/kg	10		20
Chromium, Total		7.4	5.5	mg/kg	29	Q	20
Cobalt, Total		2.1	2.5	mg/kg	17		20
Copper, Total		14.	11	mg/kg	24	Q	20
Iron, Total		15000	10000	mg/kg	40	Q	20
Lead, Total		5.2	4.1J	mg/kg	NC		20
Magnesium, Total		1200	1000	mg/kg	18		20
Manganese, Total		28.	26	mg/kg	7		20
Nickel, Total		10.	9.4	mg/kg	6		20
Potassium, Total		980	730	mg/kg	29	Q	20
Selenium, Total		ND	ND	mg/kg	NC		20
Silver, Total		ND	ND	mg/kg	NC		20
Sodium, Total		47.J	40J	mg/kg	NC		20

Lab Duplicate Analysis Batch Quality Control

Project Name: 87 KENT AVENUE **Project Number:** 87 KENT AVENUE

Lab Number:

L1516050

Report Date:

07/20/15

Parameter Nat	ive Sample	Duplicate Sample	Units	RPD	RPD	Limits
Total Metals - Westborough Lab Associated sample(s): 01-06	QC Batch ID:	WG802503-3 QC Sample	: L1516031-01	Client ID:	DUP Sample	
Thallium, Total	ND	ND	mg/kg	NC		20
Vanadium, Total	9.7	7.9	mg/kg	20		20
Zinc, Total	20.	16	mg/kg	22	Q	20
Total Metals - Westborough Lab Associated sample(s): 01-06	QC Batch ID:	WG803553-3 QC Sample	: L1515815-02	Client ID:	DUP Sample	
Mercury, Total	ND	0.02J	mg/kg	NC		20

INORGANICS & MISCELLANEOUS

Project Name: Lab Number: **87 KENT AVENUE** L1516050 Project Number: 87 KENT AVENUE

Report Date: 07/20/15

SAMPLE RESULTS

Lab ID: Date Collected: L1516050-01 07/13/15 10:30

TSB-6 (15-16) Client ID: Date Received: 07/13/15 Sample Location: 87 KENT AVENUE Not Specified Field Prep:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	82.9		%	0.100	NA	1	-	07/14/15 21:28	30,2540G	RT

Project Name:87 KENT AVENUELab Number:L1516050Project Number:87 KENT AVENUEReport Date:07/20/15

SAMPLE RESULTS

Lab ID: L1516050-02 Date Collected: 07/13/15 10:30

Client ID: TSB-6 (16-18) Date Received: 07/13/15
Sample Location: 87 KENT AVENUE Field Prep: Not Specified

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	85.1		%	0.100	NA	1	-	07/14/15 21:28	30,2540G	RT

Project Name:87 KENT AVENUELab Number:L1516050Project Number:87 KENT AVENUEReport Date:07/20/15

SAMPLE RESULTS

Lab ID: L1516050-03 Date Collected: 07/13/15 10:30

Client ID: TSB-6 (18-20) Date Received: 07/13/15
Sample Location: 87 KENT AVENUE Field Prep: Not Specified

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	89.0		%	0.100	NA	1	-	07/14/15 21:28	30,2540G	RT

Project Name: Lab Number: **87 KENT AVENUE** L1516050 Project Number: 87 KENT AVENUE

Report Date: 07/20/15

SAMPLE RESULTS

Lab ID: Date Collected: L1516050-04 07/13/15 11:45

TSB-3 (20-21) Client ID: Date Received: 07/13/15 Sample Location: 87 KENT AVENUE Not Specified Field Prep:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	82.8		%	0.100	NA	1	-	07/14/15 21:28	30,2540G	RT

Project Name: 87 KENT AVENUE Lab Number: L1516050 Project Number: 87 KENT AVENUE

Report Date: 07/20/15

SAMPLE RESULTS

Lab ID: Date Collected: L1516050-05 07/13/15 11:45 TSB-3 (21-23) Client ID: Date Received: 07/13/15

Sample Location: 87 KENT AVENUE Not Specified Field Prep:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Solids, Total	87.8		%	0.100	NA	1	-	07/14/15 21:28	30,2540G	RT

Project Name:87 KENT AVENUELab Number:L1516050Project Number:87 KENT AVENUEReport Date:07/20/15

SAMPLE RESULTS

 Lab ID:
 L1516050-06
 Date Collected:
 07/13/15 11:45

 Client ID:
 TSB-3 (23-25)
 Date Received:
 07/13/15

Sample Location: 87 KENT AVENUE Field Prep: Not Specified

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	83.4		%	0.100	NA	1	-	07/14/15 21:28	30,2540G	RT

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L1516050

Report Date:

07/20/15

Parameter	Native Sam	ple D	Ouplicate Sample	e Units	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab A	Associated sample(s): 01-06	QC Batch ID:	WG802672-1	QC Sample:	L1516025-03	Client ID:	DUP Sample	
Solids, Total	88.4		87.0	%	2		20	

Project Name:

87 KENT AVENUE

Project Number: 87 KENT AVENUE

Project Name:87 KENT AVENUELab Number:L1516050Project Number:87 KENT AVENUEReport Date:07/20/15

Sample Receipt and Container Information

Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal

Cooler

A Absent

Container Information Temp									
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)		
L1516050-01A	Glass 60mL/2oz unpreserved	A	N/A	3.3	Y	Absent	BE-TI(180),AS-TI(180),BA-TI(180),AG-TI(180),AL-TI(180),CR-TI(180),NI-TI(180),TL-TI(180),TS(7),CU-TI(180),BE-TI(180),SE-TI(180),SE-TI(180),CO-TI(180),V-TI(180),FE-TI(180),HG-T(28),MG-TI(180),MN-TI(180),CA-TI(180),CD-TI(180),K-TI(180),NA-TI(180)		
L1516050-02A	Glass 60mL/2oz unpreserved	A	N/A	3.3	Y	Absent	BE-TI(180),AS-TI(180),BA-TI(180),AG-TI(180),AL-TI(180),CR-TI(180),NI-TI(180),TL-TI(180),TS(7),CU-TI(180),PB-TI(180),SE-TI(180),SE-TI(180),CO-TI(180),V-TI(180),FE-TI(180),HG-T(28),MG-TI(180),MN-TI(180),CA-TI(180),CD-TI(180),K-TI(180),NA-TI(180)		
L1516050-03A	Glass 60mL/2oz unpreserved	A	N/A	3.3	Y	Absent	BE-TI(180),AS-TI(180),BA-TI(180),AG-TI(180),AG-TI(180),AL-TI(180),CR-TI(180),NI-TI(180),TL-TI(180),TS(7),CU-TI(180),PB-TI(180),SB-TI(180),SE-TI(180),CO-TI(180),CO-TI(180),HG-T(28),MG-TI(180),MN-TI(180),CA-TI(180),CD-TI(180),K-TI(180),NA-TI(180),CD-TI(180),K-TI(180),NA-TI(180)		
L1516050-04A	Glass 60mL/2oz unpreserved	A	N/A	3.3	Y	Absent	BE-TI(180),AS-TI(180),BA-TI(180),AG-TI(180),AL-TI(180),CR-TI(180),NI-TI(180),TL-TI(180),TS(7),CU-TI(180),PB-TI(180),SB-TI(180),SE-TI(180),CO-TI(180),V-TI(180),FE-TI(180),HG-T(28),MG-TI(180),MN-TI(180),CA-TI(180),CD-TI(180),K-TI(180),K-TI(180),NA-TI(180),K-TI(180),NA-TI(180)		

Project Name: 87 KENT AVENUE **Project Number:** 87 KENT AVENUE

Lab Number: L1516050 **Report Date:** 07/20/15

Container Information Temp										
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)			
L1516050-05A	Glass 60mL/2oz unpreserved	Α	N/A	3.3	Y	Absent	BE-TI(180),AS-TI(180),BA-TI(180),AG-TI(180),AG-TI(180),NI-TI(180),CR-TI(180),NI-TI(180),TS(7),CU-TI(180),PB-TI(180),SB-TI(180),SE-TI(180),CO-TI(180),V-TI(180),FE-TI(180),HG-T(28),MG-TI(180),MN-TI(180),CA-TI(180),CD-TI(180),K-TI(180),KA-TI(180),NA-TI(180)			
L1516050-06A	Glass 120ml/4oz unpreserved	А	N/A	3.3	Y	Absent	BE-TI(180),AS-TI(180),BA-TI(180),AG-TI(180),AL-TI(180),CR-TI(180),NI-TI(180),TS(7),CU-TI(180),PB-TI(180),SB-TI(180),CO-TI(180),V-TI(180),FE-TI(180),HG-T(28),MG-TI(180),CD-TI(180),CD-TI(180),CD-TI(180),K-TI(180),NA-TI(180)			
L1516050-07A	Vial HCI preserved	Α	N/A	3.3	Υ	Absent	NYTCL-8260(14)			
L1516050-07B	Vial HCl preserved	Α	N/A	3.3	Υ	Absent	NYTCL-8260(14)			
L1516050-07C	Vial HCl preserved	Α	N/A	3.3	Υ	Absent	NYTCL-8260(14)			

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

 Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.

Report Format: DU Report with 'J' Qualifiers

Data Qualifiers

- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:87 KENT AVENUELab Number:L1516050Project Number:87 KENT AVENUEReport Date:07/20/15

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised December 16, 2014

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.

EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, lodomethane (methyl iodide), Methyl methacrylate,

Azobenzene

EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine.

EPA 625: 4-Chloroaniline, 4-Methylphenol.

SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.

EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility

EPA 8270D: Biphenyl. EPA 2540D: TSS

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C,

SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC,

SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4,

SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT,

Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193 Client Information	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Project Location: Project #	Vay oper Ave, Suite 1 Lend Av 7 /		Page / o		Deliv	Other	(1 File)	7/1] ASP			n ent Info
Client: Tenen E	All St. H33	(Use Project name as Pr		-41			Regu		Requirem	ent	LANCE	4.075	Disposal Site Info	
Address: 121 W 2	7 7. 1333	Project Manager: Manager: ALPHAQuote #:	tt Can	El1			┨╏	NY TOO AWQ S			NYC	art 375 P-51	Please identify below applicable disposal f	
Phone: 64606233	2	Turn-Around Time						NY Res	tricted Use	e 🗌	Other	•	Disposal Facility:	
Fax:		Standard		Due Date:	:			NY Unre	estricted L	Jse			□ NJ □	NY
		Rush (only if pre approved) 📗	# of Days:		11.000		-489-55	wer Disch	arge			Other:	1 70
These samples have be							ANA	LYSIS					Sample Filtration	0
Other project specific		lents:					al Metals	- VOCs					Done Lab to do Preservation Lab to do (Please Specify I	t a l B o be <i>low)</i> t
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	Colle Date	ection Time	Sample Matrix	Sampler's Initials	Tota	ブロ					Sample Specific Co	mments t
16050 -01	13B-6(15-	16)	7/13/15	1030	Soil	KM	2							
782	73B-6(16-		1',	1	i		v							
105	758-668-		1	V			V							
-09	73B-3(20-			1145	Prince 100 100 100 100 100 100 100 100 100 10		V	-						
		23)					V							
-4	T3B-3 (23-	26)	V (-)	1-	V	Ψ	~		_	-				
77	16W-1		7/13/15	1505	GW	Kila		\vee	_		_			
										-				
						-	\vdash		_	-				
The Control of Control	Container Code P = Plastic	Westboro: Certification N			Con	tainer Type	Δ	V					Please print clea	, , ,
$C = HNO_3$ $D = H_2SO_4$ E = NaOH	A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Mansfield: Certification N	o: MA015			reservative	A	В					and completely. not be logged in turnaround time start until any ar	and clock will not
F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃	C = Cube O = Other E = Encore D = BOD Bottle	Rejlinguished B	ALL	Date/ 9/3/15 7/47// 2/14/15	Time	Ton Bah	10	ed By:	H/	7-1	Date/ /3/ 	Time	resolved. BY EX THIS COC, THE HAS READ AND TO BE BOUND TERMS & CONI (See reverse sid	ECUTING COLIENT COLIEN

ANALYTICAL REPORT

Lab Number: L1516153

Client: Tenen Environmental, LLC

121 West 27th Street

Suite 303

New York City, NY 10001

ATTN: Matt Carroll
Phone: (646) 606-2332
Project Name: 87 KENT AVE

Project Number: 87 KENT AVENUE

Report Date: 07/21/15

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 87 KENT AVE

Project Number: 87 KENT AVENUE

Lab Number: L1516153 **Report Date:** 07/21/15

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1516153-01	TGW-2	WATER	87 KENT AVE	07/14/15 09:40	07/14/15
L1516153-02	TGW-3	WATER	87 KENT AVE	07/14/15 10:40	07/14/15
L1516153-03	TGW-4	WATER	87 KENT AVE	07/14/15 11:15	07/14/15

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:87 KENT AVELab Number:L1516153Project Number:87 KENT AVENUEReport Date:07/21/15

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 07/21/15

Michelle M. Morris

ORGANICS

VOLATILES

Project Name: 87 KENT AVE Lab Number: L1516153

Project Number: 87 KENT AVENUE Report Date: 07/21/15

SAMPLE RESULTS

Lab ID: L1516153-01 D Date Collected: 07/14/15 09:40

Client ID: TGW-2

Sample Location: 87 KENT AVE

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 07/16/15 15:06

Analyst: PD

Date Received: 07/14/15

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	25	7.0	10
1,1-Dichloroethane	ND		ug/l	25	7.0	10
Chloroform	ND		ug/l	25	7.0	10
Carbon tetrachloride	ND		ug/l	5.0	1.3	10
1,2-Dichloropropane	ND		ug/l	10	1.3	10
Dibromochloromethane	ND		ug/l	5.0	1.5	10
1,1,2-Trichloroethane	ND		ug/l	15	5.0	10
Tetrachloroethene	ND		ug/l	5.0	1.8	10
Chlorobenzene	ND		ug/l	25	7.0	10
Trichlorofluoromethane	ND		ug/l	25	7.0	10
1,2-Dichloroethane	ND		ug/l	5.0	1.3	10
1,1,1-Trichloroethane	ND		ug/l	25	7.0	10
Bromodichloromethane	ND		ug/l	5.0	1.9	10
trans-1,3-Dichloropropene	ND		ug/l	5.0	1.6	10
cis-1,3-Dichloropropene	ND		ug/l	5.0	1.4	10
1,3-Dichloropropene, Total	ND		ug/l	5.0	1.4	10
1,1-Dichloropropene	ND		ug/l	25	7.0	10
Bromoform	ND		ug/l	20	6.5	10
1,1,2,2-Tetrachloroethane	ND		ug/l	5.0	1.4	10
Benzene	ND		ug/l	5.0	1.6	10
Toluene	ND		ug/l	25	7.0	10
Ethylbenzene	ND		ug/l	25	7.0	10
Chloromethane	ND		ug/l	25	7.0	10
Bromomethane	ND		ug/l	25	7.0	10
Vinyl chloride	ND		ug/l	10	0.70	10
Chloroethane	ND		ug/l	25	7.0	10
1,1-Dichloroethene	ND		ug/l	5.0	1.4	10
trans-1,2-Dichloroethene	ND		ug/l	25	7.0	10
Trichloroethene	1600		ug/l	5.0	1.8	10
1,2-Dichlorobenzene	ND		ug/l	25	7.0	10

Project Name: 87 KENT AVE **Lab Number:** L1516153

Project Number: 87 KENT AVENUE Report Date: 07/21/15

SAMPLE RESULTS

Lab ID: L1516153-01 D

Client ID: TGW-2

Sample Location: 87 KENT AVE

Date Collected: 07/14/15 09:40

Date Received: 07/14/15 Field Prep: Not Specified

odinpio zoodiionii or nzimirne				1 1014 1 10	٦,	riot opcomod
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	25	7.0	10
1,4-Dichlorobenzene	ND		ug/l	25	7.0	10
Methyl tert butyl ether	ND		ug/l	25	7.0	10
p/m-Xylene	ND		ug/l	25	7.0	10
o-Xylene	ND		ug/l	25	7.0	10
Xylenes, Total	ND		ug/l	25	7.0	10
cis-1,2-Dichloroethene	350		ug/l	25	7.0	10
1,2-Dichloroethene, Total	350		ug/l	25	7.0	10
Dibromomethane	ND		ug/l	50	10.	10
1,2,3-Trichloropropane	ND		ug/l	25	7.0	10
Acrylonitrile	ND		ug/l	50	15.	10
Styrene	ND		ug/l	25	7.0	10
Dichlorodifluoromethane	ND		ug/l	50	10.	10
Acetone	20	J	ug/l	50	15.	10
Carbon disulfide	ND		ug/l	50	10.	10
2-Butanone	19	J	ug/l	50	19.	10
Vinyl acetate	ND		ug/l	50	10.	10
4-Methyl-2-pentanone	ND		ug/l	50	10.	10
2-Hexanone	ND		ug/l	50	10.	10
Bromochloromethane	ND		ug/l	25	7.0	10
2,2-Dichloropropane	ND		ug/l	25	7.0	10
1,2-Dibromoethane	ND		ug/l	20	6.5	10
1,3-Dichloropropane	ND		ug/l	25	7.0	10
1,1,1,2-Tetrachloroethane	ND		ug/l	25	7.0	10
Bromobenzene	ND		ug/l	25	7.0	10
n-Butylbenzene	ND		ug/l	25	7.0	10
sec-Butylbenzene	ND		ug/l	25	7.0	10
tert-Butylbenzene	ND		ug/l	25	7.0	10
o-Chlorotoluene	ND		ug/l	25	7.0	10
p-Chlorotoluene	ND		ug/l	25	7.0	10
1,2-Dibromo-3-chloropropane	ND		ug/l	25	7.0	10
Hexachlorobutadiene	ND		ug/l	25	7.0	10
Isopropylbenzene	ND		ug/l	25	7.0	10
p-Isopropyltoluene	ND		ug/l	25	7.0	10
Naphthalene	ND		ug/l	25	7.0	10
n-Propylbenzene	ND		ug/l	25	7.0	10
1,2,3-Trichlorobenzene	ND		ug/l	25	7.0	10
1,2,4-Trichlorobenzene	ND		ug/l	25	7.0	10
1,3,5-Trimethylbenzene	ND		ug/l	25	7.0	10

Project Name: Lab Number: L1516153 87 KENT AVE

Project Number: Report Date: 87 KENT AVENUE 07/21/15

SAMPLE RESULTS

Lab ID: L1516153-01 D

Client ID: TGW-2

Sample Location: 87 KENT AVE Date Collected: 07/14/15 09:40

Date Received: 07/14/15 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
1,2,4-Trimethylbenzene	ND		ug/l	25	7.0	10	
1,4-Dioxane	ND		ug/l	2500	410	10	
p-Diethylbenzene	ND		ug/l	20	7.0	10	
p-Ethyltoluene	ND		ug/l	20	7.0	10	
1,2,4,5-Tetramethylbenzene	ND		ug/l	20	6.5	10	
Ethyl ether	ND		ug/l	25	7.0	10	
trans-1,4-Dichloro-2-butene	ND		ug/l	25	7.0	10	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	96		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	89		70-130	
Dibromofluoromethane	105		70-130	

Project Name: 87 KENT AVE **Lab Number:** L1516153

Project Number: 87 KENT AVENUE Report Date: 07/21/15

SAMPLE RESULTS

Lab ID: L1516153-02 D Date Collected: 07/14/15 10:40

Client ID: TGW-3

Sample Location: 87 KENT AVE

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 07/16/15 15:43

Analyst: PD

Date Received: 07/14/15

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Methylene chloride	ND		ug/l	12	3.5	5
1,1-Dichloroethane	7.5	J	ug/l	12	3.5	5
Chloroform	ND		ug/l	12	3.5	5
Carbon tetrachloride	ND		ug/l	2.5	0.67	5
1,2-Dichloropropane	ND		ug/l	5.0	0.66	5
Dibromochloromethane	ND		ug/l	2.5	0.74	5
1,1,2-Trichloroethane	ND		ug/l	7.5	2.5	5
Tetrachloroethene	ND		ug/l	2.5	0.90	5
Chlorobenzene	ND		ug/l	12	3.5	5
Trichlorofluoromethane	ND		ug/l	12	3.5	5
1,2-Dichloroethane	ND		ug/l	2.5	0.66	5
1,1,1-Trichloroethane	ND		ug/l	12	3.5	5
Bromodichloromethane	ND		ug/l	2.5	0.96	5
trans-1,3-Dichloropropene	ND		ug/l	2.5	0.82	5
cis-1,3-Dichloropropene	ND		ug/l	2.5	0.72	5
1,3-Dichloropropene, Total	ND		ug/l	2.5	0.72	5
1,1-Dichloropropene	ND		ug/l	12	3.5	5
Bromoform	ND		ug/l	10	3.2	5
1,1,2,2-Tetrachloroethane	ND		ug/l	2.5	0.72	5
Benzene	ND		ug/l	2.5	0.80	5
Toluene	ND		ug/l	12	3.5	5
Ethylbenzene	ND		ug/l	12	3.5	5
Chloromethane	ND		ug/l	12	3.5	5
Bromomethane	ND		ug/l	12	3.5	5
Vinyl chloride	ND		ug/l	5.0	0.35	5
Chloroethane	ND		ug/l	12	3.5	5
1,1-Dichloroethene	ND		ug/l	2.5	0.71	5
trans-1,2-Dichloroethene	ND		ug/l	12	3.5	5
Trichloroethene	540		ug/l	2.5	0.88	5
1,2-Dichlorobenzene	ND		ug/l	12	3.5	5

07/14/15 10:40

Date Collected:

Project Name: 87 KENT AVE **Lab Number:** L1516153

Project Number: 87 KENT AVENUE Report Date: 07/21/15

SAMPLE RESULTS

Lab ID: L1516153-02 D

Client ID: TGW-3 Date Received: 07/14/15

Sample Location: 87 KENT AVE Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	12	3.5	5
1,4-Dichlorobenzene	ND		ug/l	12	3.5	5
Methyl tert butyl ether	ND		ug/l	12	3.5	5
p/m-Xylene	ND		ug/l	12	3.5	5
o-Xylene	ND		ug/l	12	3.5	5
Xylenes, Total	ND		ug/l	12	3.5	5
cis-1,2-Dichloroethene	9.2	J	ug/l	12	3.5	5
1,2-Dichloroethene, Total	9.2	J	ug/l	12	3.5	5
Dibromomethane	ND		ug/l	25	5.0	5
1,2,3-Trichloropropane	ND		ug/l	12	3.5	5
Acrylonitrile	ND		ug/l	25	7.5	5
Styrene	ND		ug/l	12	3.5	5
Dichlorodifluoromethane	ND		ug/l	25	5.0	5
Acetone	9.3	J	ug/l	25	7.3	5
Carbon disulfide	ND		ug/l	25	5.0	5
2-Butanone	ND		ug/l	25	9.7	5
Vinyl acetate	ND		ug/l	25	5.0	5
4-Methyl-2-pentanone	ND		ug/l	25	5.0	5
2-Hexanone	ND		ug/l	25	5.0	5
Bromochloromethane	ND		ug/l	12	3.5	5
2,2-Dichloropropane	ND		ug/l	12	3.5	5
1,2-Dibromoethane	ND		ug/l	10	3.2	5
1,3-Dichloropropane	ND		ug/l	12	3.5	5
1,1,1,2-Tetrachloroethane	ND		ug/l	12	3.5	5
Bromobenzene	ND		ug/l	12	3.5	5
n-Butylbenzene	ND		ug/l	12	3.5	5
sec-Butylbenzene	ND		ug/l	12	3.5	5
tert-Butylbenzene	ND		ug/l	12	3.5	5
o-Chlorotoluene	ND		ug/l	12	3.5	5
p-Chlorotoluene	ND		ug/l	12	3.5	5
1,2-Dibromo-3-chloropropane	ND		ug/l	12	3.5	5
Hexachlorobutadiene	ND		ug/l	12	3.5	5
Isopropylbenzene	ND		ug/l	12	3.5	5
p-Isopropyltoluene	ND		ug/l	12	3.5	5
Naphthalene	ND		ug/l	12	3.5	5
n-Propylbenzene	ND		ug/l	12	3.5	5
1,2,3-Trichlorobenzene	ND		ug/l	12	3.5	5
1,2,4-Trichlorobenzene	ND		ug/l	12	3.5	5
1,3,5-Trimethylbenzene	ND		ug/l	12	3.5	5

Project Name: 87 KENT AVE **Lab Number:** L1516153

Project Number: 87 KENT AVENUE **Report Date:** 07/21/15

SAMPLE RESULTS

Lab ID: L1516153-02 D Date Collected: 07/14/15 10:40

Client ID: TGW-3 Date Received: 07/14/15
Sample Location: 87 KENT AVE Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbook	ough Lab						
1,2,4-Trimethylbenzene	ND		ug/l	12	3.5	5	
1,4-Dioxane	ND		ug/l	1200	200	5	
p-Diethylbenzene	ND		ug/l	10	3.5	5	
p-Ethyltoluene	ND		ug/l	10	3.5	5	
1,2,4,5-Tetramethylbenzene	ND		ug/l	10	3.2	5	
Ethyl ether	ND		ug/l	12	3.5	5	
trans-1,4-Dichloro-2-butene	ND		ug/l	12	3.5	5	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	87		70-130	
Dibromofluoromethane	104		70-130	

Project Name: 87 KENT AVE

Project Number: 87 KENT AVENUE

SAMPLE RESULTS

Lab Number: L1516153

Report Date: 07/21/15

SAMPLE RESUL

D

Lab ID: L1516153-03

Client ID: TGW-4

Sample Location: 87 KENT AVE

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 07/17/15 12:08

Analyst: PD

Date Collected: 07/14/15 11:15

Date Received: 07/14/15
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	estborough Lab						
Methylene chloride	ND		ug/l	120	35.	50	
1,1-Dichloroethane	ND		ug/l	120	35.	50	
Chloroform	ND		ug/l	120	35.	50	
Carbon tetrachloride	ND		ug/l	25	6.7	50	
1,2-Dichloropropane	ND		ug/l	50	6.6	50	
Dibromochloromethane	ND		ug/l	25	7.4	50	
1,1,2-Trichloroethane	29	J	ug/l	75	25.	50	
Tetrachloroethene	ND		ug/l	25	9.0	50	
Chlorobenzene	ND		ug/l	120	35.	50	
Trichlorofluoromethane	ND		ug/l	120	35.	50	
1,2-Dichloroethane	ND		ug/l	25	6.6	50	
1,1,1-Trichloroethane	ND		ug/l	120	35.	50	
Bromodichloromethane	ND		ug/l	25	9.6	50	
trans-1,3-Dichloropropene	ND		ug/l	25	8.2	50	
cis-1,3-Dichloropropene	ND		ug/l	25	7.2	50	
1,3-Dichloropropene, Total	ND		ug/l	25	7.2	50	
1,1-Dichloropropene	ND		ug/l	120	35.	50	
Bromoform	ND		ug/l	100	32.	50	
1,1,2,2-Tetrachloroethane	ND		ug/l	25	7.2	50	
Benzene	ND		ug/l	25	8.0	50	
Toluene	ND		ug/l	120	35.	50	
Ethylbenzene	ND		ug/l	120	35.	50	
Chloromethane	ND		ug/l	120	35.	50	
Bromomethane	ND		ug/l	120	35.	50	
Vinyl chloride	ND		ug/l	50	3.5	50	
Chloroethane	ND		ug/l	120	35.	50	
1,1-Dichloroethene	ND		ug/l	25	7.1	50	
trans-1,2-Dichloroethene	ND		ug/l	120	35.	50	
Trichloroethene	5400		ug/l	25	8.8	50	
1,2-Dichlorobenzene	ND		ug/l	120	35.	50	

Project Name: 87 KENT AVE **Lab Number:** L1516153

Project Number: 87 KENT AVENUE Report Date: 07/21/15

SAMPLE RESULTS

Lab ID: L1516153-03 D

Client ID: TGW-4 Sample Location: 87 KENT AVE Date Collected: 07/14/15 11:15

Date Received: 07/14/15
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	120	35.	50
1,4-Dichlorobenzene	ND			120	35.	50
Methyl tert butyl ether	ND		ug/l	120	35.	50
p/m-Xylene	ND		ug/l ug/l	120	35.	50
o-Xylene	ND		ug/l	120	35.	50
Xylenes, Total	ND		ug/l	120	35.	50
cis-1,2-Dichloroethene	ND			120	35.	50
1,2-Dichloroethene, Total	ND		ug/l ug/l	120	35.	50
Dibromomethane	ND		ug/l	250	50.	50
1,2,3-Trichloropropane	ND			120	35.	50
Acrylonitrile	ND		ug/l	250	75.	50
	ND		ug/l	120	35.	50
Styrene Dichlorodifluoromethane	ND		ug/l	250	50.	50
	110	J	ug/l	250		50
Acetone Carbon disulfide	ND	J	ug/l	250	73. 50.	50
			ug/l			
2-Butanone	140	J	ug/l	250	97.	50
Vinyl acetate	ND		ug/l	250	50.	50
4-Methyl-2-pentanone	ND		ug/l	250	50.	50
2-Hexanone	ND		ug/l	250	50.	50
Bromochloromethane	ND		ug/l	120	35.	50
2,2-Dichloropropane	ND		ug/l	120	35.	50
1,2-Dibromoethane	ND		ug/l	100	32.	50
1,3-Dichloropropane	ND		ug/l	120	35.	50
1,1,1,2-Tetrachloroethane	ND		ug/l	120	35.	50
Bromobenzene	ND		ug/l	120	35.	50
n-Butylbenzene	ND		ug/l	120	35.	50
sec-Butylbenzene	ND		ug/l	120	35.	50
tert-Butylbenzene	ND		ug/l	120	35.	50
o-Chlorotoluene	ND		ug/l	120	35.	50
p-Chlorotoluene	ND		ug/l	120	35.	50
1,2-Dibromo-3-chloropropane	ND		ug/l	120	35.	50
Hexachlorobutadiene	ND		ug/l	120	35.	50
Isopropylbenzene	ND		ug/l	120	35.	50
p-Isopropyltoluene	ND		ug/l	120	35.	50
Naphthalene	ND		ug/l	120	35.	50
n-Propylbenzene	ND		ug/l	120	35.	50
1,2,3-Trichlorobenzene	ND		ug/l	120	35.	50
1,2,4-Trichlorobenzene	ND		ug/l	120	35.	50
1,3,5-Trimethylbenzene	ND		ug/l	120	35.	50

Project Name: 87 KENT AVE Lab Number: L1516153

Project Number: 87 KENT AVENUE **Report Date:** 07/21/15

SAMPLE RESULTS

Lab ID: L1516153-03 D Date Collected: 07/14/15 11:15

Client ID: TGW-4 Date Received: 07/14/15
Sample Location: 87 KENT AVE Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
1,2,4-Trimethylbenzene	ND		ug/l	120	35.	50	
1,4-Dioxane	ND		ug/l	12000	2000	50	
p-Diethylbenzene	ND		ug/l	100	35.	50	
p-Ethyltoluene	ND		ug/l	100	35.	50	
1,2,4,5-Tetramethylbenzene	ND		ug/l	100	32.	50	
Ethyl ether	ND		ug/l	120	35.	50	
trans-1,4-Dichloro-2-butene	ND		ug/l	120	35.	50	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	88		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	89		70-130	
Dibromofluoromethane	98		70-130	

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/16/15 11:29

Parameter	Result	Qualifier Units	: RL	MDL	
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-02 Batch:	WG803370-3	
Methylene chloride	ND	ug/l	2.5	0.70	
1,1-Dichloroethane	ND	ug/l	2.5	0.70	
Chloroform	ND	ug/l	2.5	0.70	
Carbon tetrachloride	ND	ug/l	0.50	0.13	
1,2-Dichloropropane	ND	ug/l	1.0	0.13	
Dibromochloromethane	ND	ug/l	0.50	0.15	
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	
Tetrachloroethene	ND	ug/l	0.50	0.18	
Chlorobenzene	ND	ug/l	2.5	0.70	
Trichlorofluoromethane	ND	ug/l	2.5	0.70	
1,2-Dichloroethane	ND	ug/l	0.50	0.13	
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	
Bromodichloromethane	ND	ug/l	0.50	0.19	
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14	
1,1-Dichloropropene	ND	ug/l	2.5	0.70	
Bromoform	ND	ug/l	2.0	0.65	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.14	
Benzene	ND	ug/l	0.50	0.16	
Toluene	ND	ug/l	2.5	0.70	
Ethylbenzene	ND	ug/l	2.5	0.70	
Chloromethane	ND	ug/l	2.5	0.70	
Bromomethane	ND	ug/l	2.5	0.70	
Vinyl chloride	ND	ug/l	1.0	0.07	
Chloroethane	ND	ug/l	2.5	0.70	
1,1-Dichloroethene	ND	ug/l	0.50	0.14	
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Trichloroethene	ND	ug/l	0.50	0.18	

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/16/15 11:29

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-02 Batch:	WG803370-3
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylene (Total)	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene (total)	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l		0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/16/15 11:29

Parameter	Result	Qualifier Units	s RL	MDL	
Volatile Organics by GC/MS -	Westborough Lab	for sample(s):	01-02 Batch	: WG803370-3	
o-Chlorotoluene	ND	ug/	l 2.5	0.70	
p-Chlorotoluene	ND	ug/	l 2.5	0.70	
1,2-Dibromo-3-chloropropane	ND	ug/	l 2.5	0.70	
Hexachlorobutadiene	ND	ug/	l 2.5	0.70	
Isopropylbenzene	ND	ug/	l 2.5	0.70	
p-Isopropyltoluene	ND	ug/	1 2.5	0.70	
Naphthalene	ND	ug/	1 2.5	0.70	
n-Propylbenzene	ND	ug/	l 2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/	l 2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/	l 2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/	l 2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/	l 2.5	0.70	
1,4-Dioxane	ND	ug/	I 250	41.	
1,4-Diethylbenzene	ND	ug/	1 2.0	0.70	
4-Ethyltoluene	ND	ug/	I 2.0	0.70	
1,2,4,5-Tetramethylbenzene	ND	ug/	l 2.0	0.65	
Ethyl ether	ND	ug/	l 2.5	0.70	
trans-1,4-Dichloro-2-butene	ND	ug/	l 2.5	0.70	

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	96		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	90		70-130	
Dibromofluoromethane	104		70-130	

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/17/15 09:43

Parameter	Result	Qualifier	Units		RL	MDL
Volatile Organics by GC/MS	- Westborough Lab	for sample	e(s):	03	Batch:	WG803746-3
Methylene chloride	ND		ug/l		2.5	0.70
1,1-Dichloroethane	ND		ug/l		2.5	0.70
Chloroform	ND		ug/l		2.5	0.70
2-Chloroethylvinyl ether	ND		ug/l		10	0.70
Carbon tetrachloride	ND		ug/l		0.50	0.13
1,2-Dichloropropane	ND		ug/l		1.0	0.13
Dibromochloromethane	ND		ug/l		0.50	0.15
1,1,2-Trichloroethane	ND		ug/l		1.5	0.50
Tetrachloroethene	ND		ug/l		0.50	0.18
Chlorobenzene	ND		ug/l		2.5	0.70
Trichlorofluoromethane	ND		ug/l		2.5	0.70
1,2-Dichloroethane	ND		ug/l		0.50	0.13
1,1,1-Trichloroethane	ND		ug/l		2.5	0.70
Bromodichloromethane	ND		ug/l		0.50	0.19
trans-1,3-Dichloropropene	ND		ug/l		0.50	0.16
cis-1,3-Dichloropropene	ND		ug/l		0.50	0.14
1,3-Dichloropropene, Total	ND		ug/l		0.50	0.14
1,1-Dichloropropene	ND		ug/l		2.5	0.70
Bromoform	ND		ug/l		2.0	0.65
1,1,2,2-Tetrachloroethane	ND		ug/l		0.50	0.14
Benzene	ND		ug/l		0.50	0.16
Toluene	ND		ug/l		2.5	0.70
Ethylbenzene	ND		ug/l		2.5	0.70
Chloromethane	ND		ug/l		2.5	0.70
Bromomethane	ND		ug/l		2.5	0.70
Vinyl chloride	ND		ug/l		1.0	0.07
Chloroethane	ND		ug/l		2.5	0.70
1,1-Dichloroethene	ND		ug/l		0.50	0.14
trans-1,2-Dichloroethene	ND		ug/l		2.5	0.70

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/17/15 09:43

Parameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS -	· Westborough La	b for sampl	e(s): 03	Batch:	WG803746-3
Trichloroethene	ND		ug/l	0.50	0.18
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70
Methyl tert butyl ether	ND		ug/l	2.5	0.70
p/m-Xylene	ND		ug/l	2.5	0.70
o-Xylene	ND		ug/l	2.5	0.70
Xylene (Total)	ND		ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70
1,2-Dichloroethene (total)	ND		ug/l	2.5	0.70
Dibromomethane	ND		ug/l	5.0	1.0
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70
Acrylonitrile	ND		ug/l	5.0	1.5
Isopropyl Ether	ND		ug/l	2.0	0.65
tert-Butyl Alcohol	ND		ug/l	10	0.90
Styrene	ND		ug/l	2.5	0.70
Dichlorodifluoromethane	ND		ug/l	5.0	1.0
Acetone	ND		ug/l	5.0	1.5
Carbon disulfide	ND		ug/l	5.0	1.0
2-Butanone	ND		ug/l	5.0	1.9
Vinyl acetate	ND		ug/l	5.0	1.0
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0
2-Hexanone	ND		ug/l	5.0	1.0
Bromochloromethane	ND		ug/l	2.5	0.70
2,2-Dichloropropane	ND		ug/l	2.5	0.70
1,2-Dibromoethane	ND		ug/l	2.0	0.65
1,3-Dichloropropane	ND		ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70
Bromobenzene	ND		ug/l	2.5	0.70

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/17/15 09:43

n-Butylbenzene sec-Butylbenzene	Westborough Lab ND ND	for sample(s): (03 Batch:	WG803746-3	
		ug/l			
sec-Butylbenzene	ND		2.5	0.70	
		ug/l	2.5	0.70	
tert-Butylbenzene	ND	ug/l	2.5	0.70	
o-Chlorotoluene	ND	ug/l	2.5	0.70	
p-Chlorotoluene	ND	ug/l	2.5	0.70	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Hexachlorobutadiene	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
p-Isopropyltoluene	ND	ug/l	2.5	0.70	
Naphthalene	ND	ug/l	2.5	0.70	
n-Propylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	
Methyl Acetate	ND	ug/l	2.0	0.23	
Ethyl Acetate	ND	ug/l	10	0.70	
Cyclohexane	ND	ug/l	10	0.27	
Ethyl-Tert-Butyl-Ether	ND	ug/l	2.5	0.70	
Tertiary-Amyl Methyl Ether	ND	ug/l	2.0	0.28	
1,4-Dioxane	ND	ug/l	250	41.	
1,1,2-Trichloro-1,2,2-Trifluoroethan	e ND	ug/l	2.5	0.70	
1,4-Diethylbenzene	ND	ug/l	2.0	0.70	
4-Ethyltoluene	ND	ug/l	2.0	0.70	
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.65	
Tetrahydrofuran	ND	ug/l	5.0	1.5	
Ethyl ether	ND	ug/l	2.5	0.70	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	
lodomethane	ND	ug/l	5.0	5.0	

Project Name: 87 KENT AVE **Lab Number:** L1516153

Project Number: 87 KENT AVENUE Report Date: 07/21/15

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/17/15 09:43

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - \	Westborough Lal	o for sample	e(s): 03	Batch:	WG803746-3	
Methyl cyclohexane	ND		ug/l	10	0.40	

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	97		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	89		70-130	
Dibromofluoromethane	103		70-130	

Project Name: 87 KENT AVE

Project Number: 87 KENT AVENUE

Lab Number: L1516153

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough I	Lab Associated	sample(s):	01-02 Batch: '	WG803370-1	WG803370-2			
Methylene chloride	105		98		70-130	7	20	
1,1-Dichloroethane	102		98		70-130	4	20	
Chloroform	100		96		70-130	4	20	
Carbon tetrachloride	111		106		63-132	5	20	
1,2-Dichloropropane	108		101		70-130	7	20	
Dibromochloromethane	109		104		63-130	5	20	
1,1,2-Trichloroethane	106		104		70-130	2	20	
Tetrachloroethene	117		113		70-130	3	20	
Chlorobenzene	105		99		75-130	6	20	
Trichlorofluoromethane	98		96		62-150	2	20	
1,2-Dichloroethane	98		93		70-130	5	20	
1,1,1-Trichloroethane	102		97		67-130	5	20	
Bromodichloromethane	100		94		67-130	6	20	
trans-1,3-Dichloropropene	105		102		70-130	3	20	
cis-1,3-Dichloropropene	105		98		70-130	7	20	
1,1-Dichloropropene	96		93		70-130	3	20	
Bromoform	108		99		54-136	9	20	
1,1,2,2-Tetrachloroethane	95		92		67-130	3	20	
Benzene	112		106		70-130	6	20	
Toluene	102		98		70-130	4	20	
Ethylbenzene	101		96		70-130	5	20	

Project Name: 87 KENT AVE

Project Number: 87 KENT AVENUE

Lab Number: L1516153

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02 Batch:	WG803370-1	WG803370-2			
Chloromethane	79		71		64-130	11	20	
Bromomethane	66		62		39-139	6	20	
Vinyl chloride	88		80		55-140	10	20	
Chloroethane	114		106		55-138	7	20	
1,1-Dichloroethene	105		103		61-145	2	20	
trans-1,2-Dichloroethene	109		105		70-130	4	20	
Trichloroethene	102		97		70-130	5	20	
1,2-Dichlorobenzene	98		92		70-130	6	20	
1,3-Dichlorobenzene	98		91		70-130	7	20	
1,4-Dichlorobenzene	97		91		70-130	6	20	
Methyl tert butyl ether	107		103		63-130	4	20	
p/m-Xylene	106		100		70-130	6	20	
o-Xylene	105		98		70-130	7	20	
cis-1,2-Dichloroethene	108		100		70-130	8	20	
Dibromomethane	113		104		70-130	8	20	
1,2,3-Trichloropropane	91		90		64-130	1	20	
Acrylonitrile	105		102		70-130	3	20	
Styrene	111		102		70-130	8	20	
Dichlorodifluoromethane	163	Q	150	Q	36-147	8	20	
Acetone	100		100		58-148	0	20	
Carbon disulfide	98		91		51-130	7	20	

Project Name: 87 KENT AVE

Project Number: 87 KENT AVENUE

Lab Number: L1516153

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02 Batch:	WG803370-1	WG803370-2			
2-Butanone	113		112		63-138	1	20	
Vinyl acetate	80		74		70-130	8	20	
4-Methyl-2-pentanone	94		94		59-130	0	20	
2-Hexanone	68		72		57-130	6	20	
Bromochloromethane	117		111		70-130	5	20	
2,2-Dichloropropane	112		107		63-133	5	20	
1,2-Dibromoethane	104		102		70-130	2	20	
1,3-Dichloropropane	103		101		70-130	2	20	
1,1,1,2-Tetrachloroethane	111		105		64-130	6	20	
Bromobenzene	100		94		70-130	6	20	
n-Butylbenzene	86		80		53-136	7	20	
sec-Butylbenzene	90		85		70-130	6	20	
tert-Butylbenzene	89		84		70-130	6	20	
o-Chlorotoluene	90		82		70-130	9	20	
p-Chlorotoluene	91		86		70-130	6	20	
1,2-Dibromo-3-chloropropane	79		77		41-144	3	20	
Hexachlorobutadiene	89		87		63-130	2	20	
Isopropylbenzene	91		86		70-130	6	20	
p-Isopropyltoluene	93		87		70-130	7	20	
Naphthalene	83		81		70-130	2	20	
n-Propylbenzene	92		87		69-130	6	20	

Project Name: 87 KENT AVE

Project Number: 87 KENT AVENUE

Lab Number: L1516153

Parameter	LCS %Recovery	Qual		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-02	Batch:	WG803370-1	WG803370-2			
1,2,3-Trichlorobenzene	86			84		70-130	2		20
1,2,4-Trichlorobenzene	89			84		70-130	6		20
1,3,5-Trimethylbenzene	94			88		64-130	7		20
1,2,4-Trimethylbenzene	94			87		70-130	8		20
1,4-Dioxane	115			111		56-162	4		20
p-Diethylbenzene	93			87		70-130	7		20
p-Ethyltoluene	95			89		70-130	7		20
1,2,4,5-Tetramethylbenzene	94			86		70-130	9		20
Ethyl ether	122			118		59-134	3		20
trans-1,4-Dichloro-2-butene	88			87		70-130	1		20

	LCS	LCS	D	Acceptance	
Surrogate	%Recovery	Qual %Recov	ery Qual	Criteria	
1,2-Dichloroethane-d4	95	93		70-130	
Toluene-d8	98	101		70-130	
4-Bromofluorobenzene	88	89		70-130	
Dibromofluoromethane	101	101		70-130	

Project Name: 87 KENT AVE

Project Number: 87 KENT AVENUE

Lab Number: L1516153

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	3 Batch: WG8	03746-1	WG803746-2		
Methylene chloride	103		102		70-130	1	20
1,1-Dichloroethane	100		98		70-130	2	20
Chloroform	99		98		70-130	1	20
2-Chloroethylvinyl ether	89		92		70-130	3	20
Carbon tetrachloride	109		110		63-132	1	20
1,2-Dichloropropane	102		103		70-130	1	20
Dibromochloromethane	102		102		63-130	0	20
1,1,2-Trichloroethane	102		102		70-130	0	20
Tetrachloroethene	111		112		70-130	1	20
Chlorobenzene	100		100		75-130	0	20
Trichlorofluoromethane	98		99		62-150	1	20
1,2-Dichloroethane	94		92		70-130	2	20
1,1,1-Trichloroethane	98		100		67-130	2	20
Bromodichloromethane	96		95		67-130	1	20
trans-1,3-Dichloropropene	98		99		70-130	1	20
cis-1,3-Dichloropropene	102		99		70-130	3	20
1,1-Dichloropropene	95		95		70-130	0	20
Bromoform	95		97		54-136	2	20
1,1,2,2-Tetrachloroethane	86		88		67-130	2	20
Benzene	110		108		70-130	2	20
Toluene	99		99		70-130	0	20

Project Name: 87 KENT AVE

Project Number: 87 KENT AVENUE

Lab Number: L1516153

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 03	Batch: WG80	03746-1	WG803746-2			
Ethylbenzene	98		98		70-130	0		20
Chloromethane	86		82		64-130	5		20
Bromomethane	70		70		39-139	0		20
Vinyl chloride	90		89		55-140	1		20
Chloroethane	112		111		55-138	1		20
1,1-Dichloroethene	102		106		61-145	4		20
trans-1,2-Dichloroethene	106		108		70-130	2		20
Trichloroethene	98		98		70-130	0		20
1,2-Dichlorobenzene	92		92		70-130	0		20
1,3-Dichlorobenzene	92		91		70-130	1		20
1,4-Dichlorobenzene	92		91		70-130	1		20
Methyl tert butyl ether	97		100		63-130	3		20
p/m-Xylene	102		101		70-130	1		20
o-Xylene	102		100		70-130	2		20
cis-1,2-Dichloroethene	106		105		70-130	1		20
Dibromomethane	105		104		70-130	1		20
1,2,3-Trichloropropane	84		86		64-130	2		20
Acrylonitrile	97		99		70-130	2		20
Isopropyl Ether	86		87		70-130	1		20
tert-Butyl Alcohol	91		105		70-130	14		20
Styrene	106		104		70-130	2		20

Project Name: 87 KENT AVE

Project Number: 87 KENT AVENUE

Lab Number: L1516153

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	3 Batch: WG8	303746-1	WG803746-2		
Dichlorodifluoromethane	162	Q	159	Q	36-147	2	20
Acetone	96		94		58-148	2	20
Carbon disulfide	94		93		51-130	1	20
2-Butanone	105		112		63-138	6	20
Vinyl acetate	72		72		70-130	0	20
4-Methyl-2-pentanone	81		91		59-130	12	20
2-Hexanone	61		64		57-130	5	20
Bromochloromethane	111		112		70-130	1	20
2,2-Dichloropropane	110		111		63-133	1	20
1,2-Dibromoethane	97		98		70-130	1	20
1,3-Dichloropropane	97		99		70-130	2	20
1,1,1,2-Tetrachloroethane	106		106		64-130	0	20
Bromobenzene	94		93		70-130	1	20
n-Butylbenzene	81		80		53-136	1	20
sec-Butylbenzene	85		84		70-130	1	20
tert-Butylbenzene	84		84		70-130	0	20
o-Chlorotoluene	86		82		70-130	5	20
p-Chlorotoluene	86		85		70-130	1	20
1,2-Dibromo-3-chloropropane	72		72		41-144	0	20
Hexachlorobutadiene	84		84		63-130	0	20
Isopropylbenzene	86		86		70-130	0	20

Project Name: 87 KENT AVE

Project Number: 87 KENT AVENUE

Lab Number: L1516153

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	3 Batch: WG8	03746-1	WG803746-2			
p-Isopropyltoluene	88		87		70-130	1		20
Naphthalene	70		74		70-130	6		20
n-Propylbenzene	88		87		69-130	1		20
1,2,3-Trichlorobenzene	74		77		70-130	4		20
1,2,4-Trichlorobenzene	80		80		70-130	0		20
1,3,5-Trimethylbenzene	90		88		64-130	2		20
1,2,4-Trimethylbenzene	89		87		70-130	2		20
Methyl Acetate	91		92		70-130	1		20
Ethyl Acetate	86		88		70-130	2		20
Cyclohexane	99		101		70-130	2		20
Ethyl-Tert-Butyl-Ether	94		95		70-130	1		20
Tertiary-Amyl Methyl Ether	92		94		66-130	2		20
1,4-Dioxane	89		105		56-162	16		20
1,1,2-Trichloro-1,2,2-Trifluoroethane	108		112		70-130	4		20
1,4-Diethylbenzene	88		87		70-130	1		20
4-Ethyltoluene	91		89		70-130	2		20
1,2,4,5-Tetramethylbenzene	86		84		70-130	2		20
Ethyl ether	111		115		59-134	4		20
trans-1,4-Dichloro-2-butene	81		83		70-130	2		20
lodomethane	40	Q	58	Q	70-130	37	Q	20
Methyl cyclohexane	103		103		70-130	0		20

Project Name: 87 KENT AVE

Lab Number:

L1516153

Project Number: 87 KENT AVENUE

Report Date:

ort Date: 07/21/15

LCS LCSD %Recovery RPD
Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 03 Batch: WG803746-1 WG803746-2

	LCS		LCSD		Acceptance	
Surrogate	%Recovery Qual		%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	93		93		70-130	
Toluene-d8	99		100		70-130	
4-Bromofluorobenzene	89		90		70-130	
Dibromofluoromethane	101		102		70-130	

Project Name:87 KENT AVELab Number: L1516153Project Number:87 KENT AVENUEReport Date: 07/21/15

Sample Receipt and Container Information

Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal

Cooler

A Absent

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1516153-01A	Vial HCl preserved	Α	N/A	2.3	Υ	Absent	NYTCL-8260(14)
L1516153-01B	Vial HCI preserved	Α	N/A	2.3	Υ	Absent	NYTCL-8260(14)
L1516153-01C	Vial HCI preserved	Α	N/A	2.3	Υ	Absent	NYTCL-8260(14)
L1516153-02A	Vial HCI preserved	Α	N/A	2.3	Υ	Absent	NYTCL-8260(14)
L1516153-02B	Vial HCI preserved	Α	N/A	2.3	Υ	Absent	NYTCL-8260(14)
L1516153-02C	Vial HCI preserved	Α	N/A	2.3	Υ	Absent	NYTCL-8260(14)
L1516153-03A	Vial HCI preserved	Α	N/A	2.3	Υ	Absent	NYTCL-8260(14)
L1516153-03B	Vial HCI preserved	Α	N/A	2.3	Υ	Absent	NYTCL-8260(14)
L1516153-03C	Vial HCl preserved	Α	N/A	2.3	Υ	Absent	NYTCL-8260(14)

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.

Report Format: DU Report with 'J' Qualifiers

Data Qualifiers

- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:87 KENT AVELab Number:L1516153Project Number:87 KENT AVENUEReport Date:07/21/15

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised December 16, 2014

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.

EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, lodomethane (methyl iodide), Methyl methacrylate,

Azobenzene.

EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine.

EPA 625: 4-Chloroaniline, 4-Methylphenol.

SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.

EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility

EPA 8270D: Biphenyl. EPA 2540D: TSS

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene,

Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C,

SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC,

SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4,

SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT,

Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Phone: 146 bbb Fax: Email: Marrolle	2332 lean-env.(on	Project Location: Project # (Use Project name as Project Manager: / New ALPHAQuote #: Turn-Around Time Standard Rush (only if pre approved	Vent A il oject #)	ve	Page / oi	-/-	Deliv	Other Jatory NY TO AWQ S NY Re NY Un NYC S	ab A S (1 File Require	ement ss Jse	NY Pa	-B IS (4 F art 375 P-51		ALPHA Job # LISIGIS 3 Billing Information Same as Client Info PO # Disposal Site Information Please identify below location of applicable disposal facilities. Disposal Facility: NJ NY Other:
These samples have be							ANA	LYSIS		-		_		o o
Other project specific		ents:					75							Done Lab to do Preservation Lab to do (Please Specify below)
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	Date	ection Time	Sample Matrix	Sampler's Initials	70							Sample Specific Comments e
	**************************************		7/14/15		GW	Ki-	V			-	+			Sample Specific Comments e
16153 -=1	76-W-2 76-W-3		7/19/1)	1040	GW.	ilir	V		-		+			
-62	16-W 3		1	1115	GW	Www		2		\neg	+	-		
-05	T6W-4			1113	1700	11/11	10							
<u>, , , , , , , , , , , , , , , , , , , </u>							<u> </u>	\Box			1			
								\Box						
											1			
											\top			
														1
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification N Mansfield: Certification N				tainer Type	VB							Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are
E = NaOH F = MeOH	C = Cube	Relinguished	Bv	Dáte/7	Гime		Receiv	/ed By:			Date	/Time		resolved. BY EXECUTING
G = NaHSO ₄	O = Other E = Encore	(LUI) IE)	2/14/1		17-1	7	11	A CONTRACT OF THE PARTY OF THE	7/	14/1) je	THIS COC, THE CLIENT
$H = Na_2S_2O_3$ K/E = Zn Ac/NaOH	D = BOD Bottle	17-1001-	- /	7/14/12	1900	Pan	1	set l	~	7-11	1-15	1	100	HAS READ AND AGREES TO BE BOUND BY ALPHA'S
O = Other		Tom Take	7	1 1	0100	Grahe	-	Phill		7/1	5/15	Glo	òò	TERMS & CONDITIONS. (See reverse side.)
Form No: 01-25 HC (rev. 3	0-Sept-2013)	,												(Coe reverse side.)

ANALYTICAL REPORT

Lab Number: L1516245

Client: Tenen Environmental, LLC

121 West 27th Street

87 KENT AVENUE

Suite 303

New York City, NY 10001

ATTN: Matt Carroll
Phone: (646) 606-2332

Project Name: 87 KENT AVENUE

Report Date: 07/22/15

Project Number:

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 87 KENT AVENUE
Project Number: 87 KENT AVENUE

Lab Number: L1516245 **Report Date:** 07/22/15

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1516245-01	TGW-1 (16/20)	WATER	87 KENT AVENUE	07/13/15 15:30	07/15/15
L1516245-02	MW-1	WATER	87 KENT AVENUE	07/15/15 09:15	07/15/15
L1516245-04	TRIP BLANK	WATER	87 KENT AVENUE	07/10/15 00:00	07/15/15
L1516245-05	N/A	WATER	87 KENT AVENUE		07/15/15

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

A Trip Blank was received in the laboratory but not listed on the Chain of Custody. At the client's request, the Trip Blank was analyzed.

Containers were received for sample "N/A" (L1516245-05), but were not listed on the chain of custody. The analyses were canceled at the client's request.

Sample "MW-1" (L1516245-02) was received without the container for Total Organic Carbon analysis. An aliquot was taken from an unpreserved container and preserved appropriately.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

King L. Wisters Lisa Westerlind

Authorized Signature:

Title: Technical Director/Representative

Date: 07/22/15

ORGANICS

VOLATILES

Project Name: 87 KENT AVENUE **Lab Number:** L1516245

Project Number: 87 KENT AVENUE Report Date: 07/22/15

SAMPLE RESULTS

Lab ID: L1516245-01 D

Client ID: TGW-1 (16/20)
Sample Location: 87 KENT AVENUE

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 07/17/15 14:31

Analyst: PD

Date Collected: 07/13/15 15:30

Date Received: 07/15/15 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	50	14.	20
1,1-Dichloroethane	ND		ug/l	50	14.	20
Chloroform	ND		ug/l	50	14.	20
Carbon tetrachloride	ND		ug/l	10	2.7	20
1,2-Dichloropropane	ND		ug/l	20	2.7	20
Dibromochloromethane	ND		ug/l	10	3.0	20
1,1,2-Trichloroethane	ND		ug/l	30	10.	20
Tetrachloroethene	ND		ug/l	10	3.6	20
Chlorobenzene	ND		ug/l	50	14.	20
Trichlorofluoromethane	ND		ug/l	50	14.	20
1,2-Dichloroethane	ND		ug/l	10	2.6	20
1,1,1-Trichloroethane	ND		ug/l	50	14.	20
Bromodichloromethane	ND		ug/l	10	3.8	20
trans-1,3-Dichloropropene	ND		ug/l	10	3.3	20
cis-1,3-Dichloropropene	ND		ug/l	10	2.9	20
1,3-Dichloropropene, Total	ND		ug/l	10	2.9	20
1,1-Dichloropropene	ND		ug/l	50	14.	20
Bromoform	ND		ug/l	40	13.	20
1,1,2,2-Tetrachloroethane	ND		ug/l	10	2.9	20
Benzene	ND		ug/l	10	3.2	20
Toluene	ND		ug/l	50	14.	20
Ethylbenzene	ND		ug/l	50	14.	20
Chloromethane	ND		ug/l	50	14.	20
Bromomethane	ND		ug/l	50	14.	20
Vinyl chloride	ND		ug/l	20	1.4	20
Chloroethane	ND		ug/l	50	14.	20
1,1-Dichloroethene	ND		ug/l	10	2.8	20
trans-1,2-Dichloroethene	ND		ug/l	50	14.	20
Trichloroethene	2700		ug/l	10	3.5	20
1,2-Dichlorobenzene	ND		ug/l	50	14.	20

Project Name: 87 KENT AVENUE **Lab Number:** L1516245

Project Number: 87 KENT AVENUE Report Date: 07/22/15

SAMPLE RESULTS

Lab ID: L1516245-01 D Date Collected: 07/13/15 15:30

Client ID: TGW-1 (16/20) Date Received: 07/15/15
Sample Location: 87 KENT AVENUE Field Prep: Not Specified

Cample Location. Of NEIVI AV	LINOL			i iciu i ic	ρ.	Not Specified
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	50	14.	20
1,4-Dichlorobenzene	ND		ug/l	50	14.	20
Methyl tert butyl ether	ND		ug/l	50	14.	20
p/m-Xylene	ND		ug/l	50	14.	20
o-Xylene	ND		ug/l	50	14.	20
Xylenes, Total	ND		ug/l	50	14.	20
cis-1,2-Dichloroethene	61		ug/l	50	14.	20
1,2-Dichloroethene, Total	61		ug/l	50	14.	20
Dibromomethane	ND		ug/l	100	20.	20
1,2,3-Trichloropropane	ND		ug/l	50	14.	20
Acrylonitrile	ND		ug/l	100	30.	20
Styrene	ND		ug/l	50	14.	20
Dichlorodifluoromethane	ND		ug/l	100	20.	20
Acetone	56	J	ug/l	100	29.	20
Carbon disulfide	ND		ug/l	100	20.	20
2-Butanone	54	J	ug/l	100	39.	20
Vinyl acetate	ND		ug/l	100	20.	20
4-Methyl-2-pentanone	ND		ug/l	100	20.	20
2-Hexanone	ND		ug/l	100	20.	20
Bromochloromethane	ND		ug/l	50	14.	20
2,2-Dichloropropane	ND		ug/l	50	14.	20
1,2-Dibromoethane	ND		ug/l	40	13.	20
1,3-Dichloropropane	ND		ug/l	50	14.	20
1,1,1,2-Tetrachloroethane	ND		ug/l	50	14.	20
Bromobenzene	ND		ug/l	50	14.	20
n-Butylbenzene	ND		ug/l	50	14.	20
sec-Butylbenzene	ND		ug/l	50	14.	20
tert-Butylbenzene	ND		ug/l	50	14.	20
o-Chlorotoluene	ND		ug/l	50	14.	20
p-Chlorotoluene	ND		ug/l	50	14.	20
1,2-Dibromo-3-chloropropane	ND		ug/l	50	14.	20
Hexachlorobutadiene	ND		ug/l	50	14.	20
Isopropylbenzene	ND		ug/l	50	14.	20
p-Isopropyltoluene	ND		ug/l	50	14.	20
Naphthalene	ND		ug/l	50	14.	20
n-Propylbenzene	ND		ug/l	50	14.	20
1,2,3-Trichlorobenzene	ND		ug/l	50	14.	20
1,2,4-Trichlorobenzene	ND		ug/l	50	14.	20
1,3,5-Trimethylbenzene	ND		ug/l	50	14.	20
			-			

Project Name: 87 KENT AVENUE Lab Number: L1516245

Project Number: 87 KENT AVENUE Report Date: 07/22/15

SAMPLE RESULTS

Lab ID: L1516245-01 D Date Collected: 07/13/15 15:30

Client ID: TGW-1 (16/20) Date Received: 07/15/15
Sample Location: 87 KENT AVENUE Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
1,2,4-Trimethylbenzene	ND		ug/l	50	14.	20	
1,4-Dioxane	ND		ug/l	5000	820	20	
p-Diethylbenzene	ND		ug/l	40	14.	20	
p-Ethyltoluene	ND		ug/l	40	14.	20	
1,2,4,5-Tetramethylbenzene	ND		ug/l	40	13.	20	
Ethyl ether	ND		ug/l	50	14.	20	
trans-1,4-Dichloro-2-butene	ND		ug/l	50	14.	20	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	91		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	88		70-130	
Dibromofluoromethane	99		70-130	

Not Specified

Project Name: Lab Number: **87 KENT AVENUE** L1516245

Project Number: Report Date: **87 KENT AVENUE** 07/22/15

SAMPLE RESULTS

Lab ID: D Date Collected: 07/15/15 09:15 L1516245-02

Client ID: MW-1

Sample Location: **87 KENT AVENUE**

Matrix: Water Analytical Method: 1,8260C Analytical Date: 07/17/15 15:07

Analyst: PD Date Received: 07/15/15 Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	250	70.	100
1,1-Dichloroethane	ND		ug/l	250	70.	100
Chloroform	ND		ug/l	250	70.	100
Carbon tetrachloride	ND		ug/l	50	13.	100
1,2-Dichloropropane	ND		ug/l	100	13.	100
Dibromochloromethane	ND		ug/l	50	15.	100
1,1,2-Trichloroethane	ND		ug/l	150	50.	100
Tetrachloroethene	ND		ug/l	50	18.	100
Chlorobenzene	ND		ug/l	250	70.	100
Trichlorofluoromethane	ND		ug/l	250	70.	100
1,2-Dichloroethane	ND		ug/l	50	13.	100
1,1,1-Trichloroethane	ND		ug/l	250	70.	100
Bromodichloromethane	ND		ug/l	50	19.	100
trans-1,3-Dichloropropene	ND		ug/l	50	16.	100
cis-1,3-Dichloropropene	ND		ug/l	50	14.	100
1,3-Dichloropropene, Total	ND		ug/l	50	14.	100
1,1-Dichloropropene	ND		ug/l	250	70.	100
Bromoform	ND		ug/l	200	65.	100
1,1,2,2-Tetrachloroethane	ND		ug/l	50	14.	100
Benzene	ND		ug/l	50	16.	100
Toluene	ND		ug/l	250	70.	100
Ethylbenzene	ND		ug/l	250	70.	100
Chloromethane	ND		ug/l	250	70.	100
Bromomethane	ND		ug/l	250	70.	100
Vinyl chloride	ND		ug/l	100	7.0	100
Chloroethane	ND		ug/l	250	70.	100
1,1-Dichloroethene	ND		ug/l	50	14.	100
trans-1,2-Dichloroethene	ND		ug/l	250	70.	100
Trichloroethene	9300		ug/l	50	18.	100
1,2-Dichlorobenzene	ND		ug/l	250	70.	100

Project Name: 87 KENT AVENUE **Lab Number:** L1516245

Project Number: 87 KENT AVENUE Report Date: 07/22/15

SAMPLE RESULTS

Lab ID: L1516245-02 D Date Collected: 07/15/15 09:15

Client ID: MW-1 Date Received: 07/15/15
Sample Location: 87 KENT AVENUE Field Prep: Not Specified

campic zocalioni or reziri / tri				0.0	٦,	not opcomed	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
1,3-Dichlorobenzene	ND		ug/l	250	70.	100	
1,4-Dichlorobenzene	ND		ug/l	250	70.	100	
Methyl tert butyl ether	ND		ug/l	250	70.	100	
p/m-Xylene	ND		ug/l	250	70.	100	
o-Xylene	ND		ug/l	250	70.	100	
Xylenes, Total	ND		ug/l	250	70.	100	
cis-1,2-Dichloroethene	ND		ug/l	250	70.	100	
1,2-Dichloroethene, Total	ND		ug/l	250	70.	100	
Dibromomethane	ND		ug/l	500	100	100	
1,2,3-Trichloropropane	ND		ug/l	250	70.	100	
Acrylonitrile	ND		ug/l	500	150	100	
Styrene	ND		ug/l	250	70.	100	
Dichlorodifluoromethane	ND		ug/l	500	100	100	
Acetone	260	J	ug/l	500	150	100	
Carbon disulfide	ND		ug/l	500	100	100	
2-Butanone	250	J	ug/l	500	190	100	
Vinyl acetate	ND		ug/l	500	100	100	
4-Methyl-2-pentanone	ND		ug/l	500	100	100	
2-Hexanone	ND		ug/l	500	100	100	
Bromochloromethane	ND		ug/l	250	70.	100	
2,2-Dichloropropane	ND		ug/l	250	70.	100	
1,2-Dibromoethane	ND		ug/l	200	65.	100	
1,3-Dichloropropane	ND		ug/l	250	70.	100	
1,1,1,2-Tetrachloroethane	ND		ug/l	250	70.	100	
Bromobenzene	ND		ug/l	250	70.	100	
n-Butylbenzene	ND		ug/l	250	70.	100	
sec-Butylbenzene	ND		ug/l	250	70.	100	
tert-Butylbenzene	ND		ug/l	250	70.	100	
o-Chlorotoluene	ND		ug/l	250	70.	100	
p-Chlorotoluene	ND		ug/l	250	70.	100	
1,2-Dibromo-3-chloropropane	ND		ug/l	250	70.	100	
Hexachlorobutadiene	ND		ug/l	250	70.	100	
Isopropylbenzene	ND		ug/l	250	70.	100	
p-Isopropyltoluene	ND		ug/l	250	70.	100	
Naphthalene	ND		ug/l	250	70.	100	
n-Propylbenzene	ND		ug/l	250	70.	100	
1,2,3-Trichlorobenzene	ND		ug/l	250	70.	100	
1,2,4-Trichlorobenzene	ND		ug/l	250	70.	100	
1,3,5-Trimethylbenzene	ND		ug/l	250	70.	100	

07/15/15 09:15

07/15/15

Date Collected:

Date Received:

Project Name: 87 KENT AVENUE **Lab Number:** L1516245

Project Number: 87 KENT AVENUE Report Date: 07/22/15

SAMPLE RESULTS

Lab ID: L1516245-02 D

Client ID: MW-1

Sample Location: 87 KENT AVENUE Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	rough Lab						
1,2,4-Trimethylbenzene	ND		ug/l	250	70.	100	
1,4-Dioxane	ND		ug/l	25000	4100	100	
p-Diethylbenzene	ND		ug/l	200	70.	100	
p-Ethyltoluene	ND		ug/l	200	70.	100	
1,2,4,5-Tetramethylbenzene	ND		ug/l	200	65.	100	
Ethyl ether	ND		ug/l	250	70.	100	
trans-1,4-Dichloro-2-butene	ND		ug/l	250	70.	100	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	91		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	89		70-130	
Dibromofluoromethane	101		70-130	

L1516245

Project Name: Lab Number: **87 KENT AVENUE**

Project Number: Report Date: **87 KENT AVENUE** 07/22/15

SAMPLE RESULTS

L1516245-04 Date Collected:

Client ID: TRIP BLANK

Sample Location: **87 KENT AVENUE**

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 07/16/15 18:08

Analyst: PD

Lab ID:

07/10/15 00:00 Date Received: 07/15/15 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.13	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.14	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: 87 KENT AVENUE **Lab Number:** L1516245

Project Number: 87 KENT AVENUE **Report Date:** 07/22/15

SAMPLE RESULTS

Lab ID: Date Collected: 07/10/15 00:00

Client ID: TRIP BLANK Date Received: 07/15/15
Sample Location: 87 KENT AVENUE Field Prep: Not Specified

Campio Eccationi or RETT 7112				0.40	٠,	riot opcomod	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
Xylenes, Total	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1	
Dibromomethane	ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1	
Acrylonitrile	ND		ug/l	5.0	1.5	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
Vinyl acetate	ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1	
Bromobenzene	ND		ug/l	2.5	0.70	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
o-Chlorotoluene	ND		ug/l	2.5	0.70	1	
p-Chlorotoluene	ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	

Project Name: 87 KENT AVENUE Lab Number: L1516245

Project Number: 87 KENT AVENUE Report Date: 07/22/15

SAMPLE RESULTS

Lab ID: Date Collected: 07/10/15 00:00

Client ID: TRIP BLANK Date Received: 07/15/15
Sample Location: 87 KENT AVENUE Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboro	ugh Lab						
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	41.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.65	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	87		70-130	
Dibromofluoromethane	106		70-130	

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/16/15 11:29

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS	- Westborough Lab	for samp	e(s): 0	4 Batch:	WG803370-3	
Methylene chloride	ND		ug/l	2.5	0.70	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	
Chloroform	ND		ug/l	2.5	0.70	
Carbon tetrachloride	ND		ug/l	0.50	0.13	
1,2-Dichloropropane	ND		ug/l	1.0	0.13	
Dibromochloromethane	ND		ug/l	0.50	0.15	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	
Tetrachloroethene	ND		ug/l	0.50	0.18	
Chlorobenzene	ND		ug/l	2.5	0.70	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	
Bromodichloromethane	ND		ug/l	0.50	0.19	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	
Bromoform	ND		ug/l	2.0	0.65	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.14	
Benzene	ND		ug/l	0.50	0.16	
Toluene	ND		ug/l	2.5	0.70	
Ethylbenzene	ND		ug/l	2.5	0.70	
Chloromethane	ND		ug/l	2.5	0.70	
Bromomethane	ND		ug/l	2.5	0.70	
Vinyl chloride	ND		ug/l	1.0	0.07	
Chloroethane	ND		ug/l	2.5	0.70	
1,1-Dichloroethene	ND		ug/l	0.50	0.14	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	
Trichloroethene	ND		ug/l	0.50	0.18	

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/16/15 11:29

Parameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lal	b for sampl	e(s): 04	Batch:	WG803370-3
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70
Methyl tert butyl ether	ND		ug/l	2.5	0.70
p/m-Xylene	ND		ug/l	2.5	0.70
o-Xylene	ND		ug/l	2.5	0.70
Xylene (Total)	ND		ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70
1,2-Dichloroethene (total)	ND		ug/l	2.5	0.70
Dibromomethane	ND		ug/l	5.0	1.0
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70
Acrylonitrile	ND		ug/l	5.0	1.5
Styrene	ND		ug/l	2.5	0.70
Dichlorodifluoromethane	ND		ug/l	5.0	1.0
Acetone	ND		ug/l	5.0	1.5
Carbon disulfide	ND		ug/l	5.0	1.0
2-Butanone	ND		ug/l	5.0	1.9
Vinyl acetate	ND		ug/l	5.0	1.0
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0
2-Hexanone	ND		ug/l	5.0	1.0
Bromochloromethane	ND		ug/l	2.5	0.70
2,2-Dichloropropane	ND		ug/l	2.5	0.70
1,2-Dibromoethane	ND		ug/l	2.0	0.65
1,3-Dichloropropane	ND		ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70
Bromobenzene	ND		ug/l	2.5	0.70
n-Butylbenzene	ND		ug/l	2.5	0.70
sec-Butylbenzene	ND		ug/l	2.5	0.70
tert-Butylbenzene	ND		ug/l	2.5	0.70

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/16/15 11:29

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	04 Batch:	WG803370-3
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	41.
1,4-Diethylbenzene	ND	ug/l	2.0	0.70
4-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.65
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

		Acceptance				
Surrogate	%Recovery	Qualifier	Criteria			
1,2-Dichloroethane-d4	96		70-130			
Toluene-d8	100		70-130			
4-Bromofluorobenzene	90		70-130			
Dibromofluoromethane	104		70-130			

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/17/15 09:43

Parameter	Result	Qualifier Units	s RL	MDL
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-02 Batch:	WG803746-3
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
2-Chloroethylvinyl ether	ND	ug/l	10	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.13
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.14
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.14
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/17/15 09:43

Parameter	Result	Qualifier Units	3	RL	MDL	
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-02	Batch:	WG803746-3	
Trichloroethene	ND	ug/l		0.50	0.18	
1,2-Dichlorobenzene	ND	ug/l		2.5	0.70	
1,3-Dichlorobenzene	ND	ug/l		2.5	0.70	
1,4-Dichlorobenzene	ND	ug/l		2.5	0.70	
Methyl tert butyl ether	ND	ug/l		2.5	0.70	
p/m-Xylene	ND	ug/l		2.5	0.70	
o-Xylene	ND	ug/l		2.5	0.70	
Xylene (Total)	ND	ug/l		2.5	0.70	
cis-1,2-Dichloroethene	ND	ug/l		2.5	0.70	
1,2-Dichloroethene (total)	ND	ug/l		2.5	0.70	
Dibromomethane	ND	ug/l		5.0	1.0	
1,2,3-Trichloropropane	ND	ug/l		2.5	0.70	
Acrylonitrile	ND	ug/l		5.0	1.5	
Isopropyl Ether	ND	ug/l		2.0	0.65	
tert-Butyl Alcohol	ND	ug/l		10	0.90	
Styrene	ND	ug/l		2.5	0.70	
Dichlorodifluoromethane	ND	ug/l		5.0	1.0	
Acetone	ND	ug/l		5.0	1.5	
Carbon disulfide	ND	ug/l		5.0	1.0	
2-Butanone	ND	ug/l		5.0	1.9	
Vinyl acetate	ND	ug/l		5.0	1.0	
4-Methyl-2-pentanone	ND	ug/l		5.0	1.0	
2-Hexanone	ND	ug/l		5.0	1.0	
Bromochloromethane	ND	ug/l		2.5	0.70	
2,2-Dichloropropane	ND	ug/l		2.5	0.70	
1,2-Dibromoethane	ND	ug/l		2.0	0.65	
1,3-Dichloropropane	ND	ug/l		2.5	0.70	
1,1,1,2-Tetrachloroethane	ND	ug/l		2.5	0.70	
Bromobenzene	ND	ug/l		2.5	0.70	

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/17/15 09:43

Parameter	Result	Qualifier Units	3	RL	MDL
olatile Organics by GC/MS -	· Westborough Lab	for sample(s):	01-02	Batch:	WG803746-3
n-Butylbenzene	ND	ug/l		2.5	0.70
sec-Butylbenzene	ND	ug/l		2.5	0.70
tert-Butylbenzene	ND	ug/l		2.5	0.70
o-Chlorotoluene	ND	ug/l		2.5	0.70
p-Chlorotoluene	ND	ug/l		2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l		2.5	0.70
Hexachlorobutadiene	ND	ug/l		2.5	0.70
Isopropylbenzene	ND	ug/l		2.5	0.70
p-Isopropyltoluene	ND	ug/l		2.5	0.70
Naphthalene	ND	ug/l		2.5	0.70
n-Propylbenzene	ND	ug/l		2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l		2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l		2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l		2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l		2.5	0.70
Methyl Acetate	ND	ug/l		2.0	0.23
Ethyl Acetate	ND	ug/l		10	0.70
Cyclohexane	ND	ug/l		10	0.27
Ethyl-Tert-Butyl-Ether	ND	ug/l		2.5	0.70
Tertiary-Amyl Methyl Ether	ND	ug/l		2.0	0.28
1,4-Dioxane	ND	ug/l		250	41.
1,1,2-Trichloro-1,2,2-Trifluoroetha	ne ND	ug/l		2.5	0.70
1,4-Diethylbenzene	ND	ug/l		2.0	0.70
4-Ethyltoluene	ND	ug/l		2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l		2.0	0.65
Tetrahydrofuran	ND	ug/l		5.0	1.5
Ethyl ether	ND	ug/l		2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l		2.5	0.70
lodomethane	ND	ug/l		5.0	5.0

L1516245

Project Name: Lab Number: **87 KENT AVENUE**

Project Number: 87 KENT AVENUE Report Date:

07/22/15

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/17/15 09:43

Parameter	Result C	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS - West	tborough Lab fo	or sample(s): 01-	-02 Batch:	WG803746-3	
Methyl cyclohexane	ND	ug/l	10	0.40	

	Acceptance						
%Recovery	Qualifier Criteria						
97	70-130						
97	70-130						
89	70-130						
103	70-130						
	97 97 89	%Recovery Qualifier Criteria 97 70-130 97 70-130 89 70-130					

Project Name: 87 KENT AVENUE **Project Number:** 87 KENT AVENUE

Lab Number: L1516245

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
platile Organics by GC/MS - Westboroug	h Lab Associated	sample(s): (04 Batch: WG	803370-1	WG803370-2			
Methylene chloride	105		98		70-130	7		20
1,1-Dichloroethane	102		98		70-130	4		20
Chloroform	100		96		70-130	4		20
Carbon tetrachloride	111		106		63-132	5		20
1,2-Dichloropropane	108		101		70-130	7		20
Dibromochloromethane	109		104		63-130	5		20
1,1,2-Trichloroethane	106		104		70-130	2		20
Tetrachloroethene	117		113		70-130	3		20
Chlorobenzene	105		99		75-130	6		20
Trichlorofluoromethane	98		96		62-150	2		20
1,2-Dichloroethane	98		93		70-130	5		20
1,1,1-Trichloroethane	102		97		67-130	5		20
Bromodichloromethane	100		94		67-130	6		20
trans-1,3-Dichloropropene	105		102		70-130	3		20
cis-1,3-Dichloropropene	105		98		70-130	7		20
1,1-Dichloropropene	96		93		70-130	3		20
Bromoform	108		99		54-136	9		20
1,1,2,2-Tetrachloroethane	95		92		67-130	3		20
Benzene	112		106		70-130	6		20
Toluene	102		98		70-130	4		20
Ethylbenzene	101		96		70-130	5		20

Project Name: 87 KENT AVENUE **Project Number:** 87 KENT AVENUE

Lab Number: L1516245

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): (04 Batch: WG8	303370-1	WG803370-2		
Chloromethane	79		71		64-130	11	20
Bromomethane	66		62		39-139	6	20
Vinyl chloride	88		80		55-140	10	20
Chloroethane	114		106		55-138	7	20
1,1-Dichloroethene	105		103		61-145	2	20
trans-1,2-Dichloroethene	109		105		70-130	4	20
Trichloroethene	102		97		70-130	5	20
1,2-Dichlorobenzene	98		92		70-130	6	20
1,3-Dichlorobenzene	98		91		70-130	7	20
1,4-Dichlorobenzene	97		91		70-130	6	20
Methyl tert butyl ether	107		103		63-130	4	20
p/m-Xylene	106		100		70-130	6	20
o-Xylene	105		98		70-130	7	20
cis-1,2-Dichloroethene	108		100		70-130	8	20
Dibromomethane	113		104		70-130	8	20
1,2,3-Trichloropropane	91		90		64-130	1	20
Acrylonitrile	105		102		70-130	3	20
Styrene	111		102		70-130	8	20
Dichlorodifluoromethane	163	Q	150	Q	36-147	8	20
Acetone	100		100		58-148	0	20
Carbon disulfide	98		91		51-130	7	20

Project Name: 87 KENT AVENUE **Project Number:** 87 KENT AVENUE

Lab Number: L1516245

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough L	_ab Associated	sample(s): 04	Batch: WG8	03370-1	WG803370-2			
2-Butanone	113		112		63-138	1		20
Vinyl acetate	80		74		70-130	8		20
4-Methyl-2-pentanone	94		94		59-130	0		20
2-Hexanone	68		72		57-130	6		20
Bromochloromethane	117		111		70-130	5		20
2,2-Dichloropropane	112		107		63-133	5		20
1,2-Dibromoethane	104		102		70-130	2		20
1,3-Dichloropropane	103		101		70-130	2		20
1,1,1,2-Tetrachloroethane	111		105		64-130	6		20
Bromobenzene	100		94		70-130	6		20
n-Butylbenzene	86		80		53-136	7		20
sec-Butylbenzene	90		85		70-130	6		20
tert-Butylbenzene	89		84		70-130	6		20
o-Chlorotoluene	90		82		70-130	9		20
p-Chlorotoluene	91		86		70-130	6		20
1,2-Dibromo-3-chloropropane	79		77		41-144	3		20
Hexachlorobutadiene	89		87		63-130	2		20
Isopropylbenzene	91		86		70-130	6		20
p-Isopropyltoluene	93		87		70-130	7		20
Naphthalene	83		81		70-130	2		20
n-Propylbenzene	92		87		69-130	6		20

Project Name: 87 KENT AVENUE **Project Number:** 87 KENT AVENUE

Lab Number: L1516245

Parameter	LCS %Recovery	Qual	LCSE %Recov		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westb	orough Lab Associated s	sample(s): 0	4 Batch:	WG803370-1	WG803370-2				
1,2,3-Trichlorobenzene	86		84		70-130	2		20	
1,2,4-Trichlorobenzene	89		84		70-130	6		20	
1,3,5-Trimethylbenzene	94		88		64-130	7		20	
1,2,4-Trimethylbenzene	94		87		70-130	8		20	
1,4-Dioxane	115		111		56-162	4		20	
p-Diethylbenzene	93		87		70-130	7		20	
p-Ethyltoluene	95		89		70-130	7		20	
1,2,4,5-Tetramethylbenzene	94		86		70-130	9		20	
Ethyl ether	122		118		59-134	3		20	
trans-1,4-Dichloro-2-butene	88		87		70-130	1		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	95		93		70-130	
Toluene-d8	98		101		70-130	
4-Bromofluorobenzene	88		89		70-130	
Dibromofluoromethane	101		101		70-130	

Project Name: 87 KENT AVENUE **Project Number:** 87 KENT AVENUE

Lab Number: L1516245

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limit	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-02 Batch:	WG803746-1	WG803746-2			
Methylene chloride	103		102		70-130	1	20	
1,1-Dichloroethane	100		98		70-130	2	20	
Chloroform	99		98		70-130	1	20	
2-Chloroethylvinyl ether	89		92		70-130	3	20	
Carbon tetrachloride	109		110		63-132	1	20	
1,2-Dichloropropane	102		103		70-130	1	20	
Dibromochloromethane	102		102		63-130	0	20	
1,1,2-Trichloroethane	102		102		70-130	0	20	
Tetrachloroethene	111		112		70-130	1	20	
Chlorobenzene	100		100		75-130	0	20	
Trichlorofluoromethane	98		99		62-150	1	20	
1,2-Dichloroethane	94		92		70-130	2	20	
1,1,1-Trichloroethane	98		100		67-130	2	20	
Bromodichloromethane	96		95		67-130	1	20	
trans-1,3-Dichloropropene	98		99		70-130	1	20	
cis-1,3-Dichloropropene	102		99		70-130	3	20	
1,1-Dichloropropene	95		95		70-130	0	20	
Bromoform	95		97		54-136	2	20	
1,1,2,2-Tetrachloroethane	86		88		67-130	2	20	
Benzene	110		108		70-130	2	20	
Toluene	99		99		70-130	0	20	

Project Name: 87 KENT AVENUE **Project Number:** 87 KENT AVENUE

Lab Number: L1516245

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02 Batch:	WG803746-1	WG803746-2			
Ethylbenzene	98		98		70-130	0		20
Chloromethane	86		82		64-130	5		20
Bromomethane	70		70		39-139	0		20
Vinyl chloride	90		89		55-140	1		20
Chloroethane	112		111		55-138	1		20
1,1-Dichloroethene	102		106		61-145	4		20
trans-1,2-Dichloroethene	106		108		70-130	2		20
Trichloroethene	98		98		70-130	0		20
1,2-Dichlorobenzene	92		92		70-130	0		20
1,3-Dichlorobenzene	92		91		70-130	1		20
1,4-Dichlorobenzene	92		91		70-130	1		20
Methyl tert butyl ether	97		100		63-130	3		20
p/m-Xylene	102		101		70-130	1		20
o-Xylene	102		100		70-130	2		20
cis-1,2-Dichloroethene	106		105		70-130	1		20
Dibromomethane	105		104		70-130	1		20
1,2,3-Trichloropropane	84		86		64-130	2		20
Acrylonitrile	97		99		70-130	2		20
Isopropyl Ether	86		87		70-130	1		20
tert-Butyl Alcohol	91		105		70-130	14		20
Styrene	106		104		70-130	2		20

Project Name: 87 KENT AVENUE **Project Number:** 87 KENT AVENUE

Lab Number: L1516245

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02 Batch:	WG803746-1	WG803746-2			
Dichlorodifluoromethane	162	Q	159	Q	36-147	2		20
Acetone	96		94		58-148	2		20
Carbon disulfide	94		93		51-130	1		20
2-Butanone	105		112		63-138	6		20
Vinyl acetate	72		72		70-130	0		20
4-Methyl-2-pentanone	81		91		59-130	12		20
2-Hexanone	61		64		57-130	5		20
Bromochloromethane	111		112		70-130	1		20
2,2-Dichloropropane	110		111		63-133	1		20
1,2-Dibromoethane	97		98		70-130	1		20
1,3-Dichloropropane	97		99		70-130	2		20
1,1,1,2-Tetrachloroethane	106		106		64-130	0		20
Bromobenzene	94		93		70-130	1		20
n-Butylbenzene	81		80		53-136	1		20
sec-Butylbenzene	85		84		70-130	1		20
tert-Butylbenzene	84		84		70-130	0		20
o-Chlorotoluene	86		82		70-130	5		20
p-Chlorotoluene	86		85		70-130	1		20
1,2-Dibromo-3-chloropropane	72		72		41-144	0		20
Hexachlorobutadiene	84		84		63-130	0		20
Isopropylbenzene	86		86		70-130	0		20

Project Name: 87 KENT AVENUE **Project Number:** 87 KENT AVENUE

Lab Number: L1516245

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-02 Batch:	WG803746-1	WG803746-2			
p-Isopropyltoluene	88		87		70-130	1		20
Naphthalene	70		74		70-130	6		20
n-Propylbenzene	88		87		69-130	1		20
1,2,3-Trichlorobenzene	74		77		70-130	4		20
1,2,4-Trichlorobenzene	80		80		70-130	0		20
1,3,5-Trimethylbenzene	90		88		64-130	2		20
1,2,4-Trimethylbenzene	89		87		70-130	2		20
Methyl Acetate	91		92		70-130	1		20
Ethyl Acetate	86		88		70-130	2		20
Cyclohexane	99		101		70-130	2		20
Ethyl-Tert-Butyl-Ether	94		95		70-130	1		20
Tertiary-Amyl Methyl Ether	92		94		66-130	2		20
1,4-Dioxane	89		105		56-162	16		20
1,1,2-Trichloro-1,2,2-Trifluoroethane	108		112		70-130	4		20
1,4-Diethylbenzene	88		87		70-130	1		20
4-Ethyltoluene	91		89		70-130	2		20
1,2,4,5-Tetramethylbenzene	86		84		70-130	2		20
Ethyl ether	111		115		59-134	4		20
trans-1,4-Dichloro-2-butene	81		83		70-130	2		20
Iodomethane	40	Q	58	Q	70-130	37	Q	20
Methyl cyclohexane	103		103		70-130	0		20

Project Name: 87 KENT AVENUE

Lab Number:

L1516245

Project Number: 87 KENT AVENUE

Report Date:

07/22/15

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-02 Batch: WG803746-1 WG803746-2

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	93		93		70-130	
Toluene-d8	99		100		70-130	
4-Bromofluorobenzene	89		90		70-130	
Dibromofluoromethane	101		102		70-130	

METALS

Project Name:87 KENT AVENUELab Number:L1516245Project Number:87 KENT AVENUEReport Date:07/22/15

SAMPLE RESULTS

Lab ID: L1516245-02

Client ID: MW-1

Sample Location: 87 KENT AVENUE

Matrix: Water

Date Collected: 07/15/15 09:15
Date Received: 07/15/15

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Westh	oorough L	ab									
Iron, Total	1.96		mg/l	0.050	0.012	1	07/16/15 10:0	5 07/17/15 20:21	EPA 3005A	1,6020A	ВМ
Manganese, Total	5.997		mg/l	0.0200	0.0060	20	07/16/15 10:09	5 07/18/15 12:06	EPA 3005A	1,6020A	KL
Dissolved Metals - V	Vestborou	ıgh Lab									
Manganese, Dissolved	3.292		mg/l	0.0200	0.0060	20	07/16/15 12:28	3 07/18/15 14:33	EPA 3005A	1,6020A	KL

Project Name: 87 KENT AVENUE
Project Number: 87 KENT AVENUE

Lab Number: L1516245 **Report Date:** 07/22/15

Method Blank Analysis Batch Quality Control

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Westb	orough Lab fo	or sample(s): 02 E	Batch: W	G80319	3-1				
Iron, Total	ND		mg/l	0.050	0.012	1	07/16/15 10:05	07/17/15 19:41	1,6020A	ВМ
Manganese, Total	0.0003	J	mg/l	0.0010	0.0003	1	07/16/15 10:05	07/17/15 19:41	1,6020A	ВМ

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Dissolved Metals - Westborough Lab for sample(s): 02 Batch: WG803231-1									
Manganese, Dissolved	ND	mg/l	0.0010	0.0003	1	07/16/15 12:28	07/18/15 13:32	1,6020A	KL

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: 87 KENT AVENUE **Project Number:** 87 KENT AVENUE

Lab Number: L1516245

Report Date:

07/22/15

Parameter	LCS %Recovery Qu	LCSD ual %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Westborough Lab Associated sa	mple(s): 02 Batch: \	NG803193-2					
Iron, Total	117	-		80-120	-		
Manganese, Total	110	-		80-120	-		
Dissolved Metals - Westborough Lab Associate	ed sample(s): 02 Ba	tch: WG803231-2					
Manganese, Dissolved	100	-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 87 KENT AVENUE **Project Number:** 87 KENT AVENUE

Lab Number: L1516245

Report Date: 07/22/15

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Q	Recovery ual Limits	RPD Qual	RPD Limits
Total Metals - Westborough Lab	Associated	sample(s): 02	QC Ba	tch ID: WG803	193-4	QC Samp	ole: L1516265-01	Client ID: MS	Sample	
Iron, Total	7.48	1	4.76	0	Q	-	-	75-125	-	20
Manganese, Total	1.346	0.5	1.236	0	Q	-	-	75-125	-	20
Dissolved Metals - Westborough	n Lab Associ	ated sample(s): 02 Q	C Batch ID: WO	S80323	1-4 QC 9	Sample: L151628	7-01 Client ID:	MS Sample	
Manganese, Dissolved	1.787	0.5	2.449	132	Q	-	-	75-125	-	20

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L1516245

Report Date:

07/22/15

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Dissolved Metals - Westborough Lab Associated sample	e(s): 02 QC Batch ID:	WG803231-3 QC Sam	ple: L1516287	7-01 Client	ID: DUP	Sample
Manganese, Dissolved	1.787	1.936	mg/l	8		20

Project Name:

87 KENT AVENUE

Project Number: 87 KENT AVENUE

INORGANICS & MISCELLANEOUS

Serial_No:07221516:56

Project Name:87 KENT AVENUELab Number:L1516245Project Number:87 KENT AVENUEReport Date:07/22/15

SAMPLE RESULTS

Lab ID: L1516245-02

Client ID: MW-1

Sample Location: 87 KENT AVENUE

Matrix: Water

Date Collected: 07/15/15 09:15

Date Received: 07/15/15 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westbe	orough Lab)								
Nitrogen, Nitrate	0.817		mg/l	0.100	0.018	1	-	07/16/15 00:59	30,4500NO3-F	MR
Sulfate	320		mg/l	250	78.	25	07/16/15 12:15	07/16/15 12:15	1,9038	MP
BOD, 5 day	ND		mg/l	2.0	NA	1	07/16/15 03:30	07/20/15 22:00	30,5210B	SE
Total Organic Carbon	25.0		mg/l	10.0	2.28	20	-	07/17/15 09:20	30,5310C	DW
Iron, Ferrous	0.61		mg/l	0.50	0.071	1	-	07/16/15 01:52	30,3500Fe-D	LH

Serial_No:07221516:56

Project Name: 87 KENT AVENUE **Project Number:** 87 KENT AVENUE

Lab Number: L1516245 **Report Date:** 07/22/15

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	/estborough Lab	for sam	ple(s): 02	Batch:	WG80	3141-1				
Nitrogen, Nitrate	ND		mg/l	0.100	0.018	1	-	07/16/15 00:34	30,4500NO3-F	MR
General Chemistry - W	/estborough Lab	for sam	ple(s): 02	Batch:	WG80	3148-1				
BOD, 5 day	ND		mg/l	2.0	NA	1	07/16/15 03:30	07/20/15 22:00	30,5210B	SE
General Chemistry - W	/estborough Lab	for sam	ple(s): 02	Batch:	WG80	3161-1				
Iron, Ferrous	ND		mg/l	0.50	0.071	1	-	07/16/15 01:51	30,3500Fe-D	LH
General Chemistry - W	/estborough Lab	for sam	ple(s): 02	Batch:	WG80	3213-1				
Sulfate	ND		mg/l	10	3.1	1	07/16/15 12:15	07/16/15 12:15	1,9038	MP
General Chemistry - W	/estborough Lab	for sam	ple(s): 02	Batch:	WG80	3593-1				
Total Organic Carbon	ND		mg/l	0.500	0.114	1	-	07/17/15 09:20	30,5310C	DW

Lab Control Sample Analysis Batch Quality Control

Project Name: 87 KENT AVENUE **Project Number:** 87 KENT AVENUE

Lab Number: L1516245

Report Date: 07/22/15

Parameter	LCS %Recovery Qu	LCSD al %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 02	Batch: WG803141-2					
Nitrogen, Nitrate	102	-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 02	Batch: WG803148-2					
BOD, 5 day	89	-		85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s): 02	Batch: WG803161-2					
Iron, Ferrous	108	-		80-120	-		
General Chemistry - Westborough Lab	Associated sample(s): 02	Batch: WG803213-2					
Sulfate	90	-		84-119	-		
General Chemistry - Westborough Lab	Associated sample(s): 02	Batch: WG803593-2					
Total Organic Carbon	98	-		90-110	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 87 KENT AVENUE **Project Number:** 87 KENT AVENUE

Lab Number: L1516245

Report Date: 07/22/15

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery 0	F Qual	Recovery Limits	RPD Qual	RPD Limits
General Chemistry - Westbore	ough Lab Assoc	iated samp	ole(s): 02	QC Batch ID: \	WG80314	41-4 C	C Sample: L1516	260-07	Client ID:	: MS Sample	
Nitrogen, Nitrate	ND	4	3.90	98		-	-		83-113	-	17
General Chemistry - Westbore	ough Lab Assoc	iated samp	ole(s): 02	QC Batch ID: \	WG80314	48-4 C	C Sample: L1516	257-01	Client ID:	: MS Sample	
BOD, 5 day	ND	100	91	91		-	-		50-145	-	35
General Chemistry - Westbore	ough Lab Assoc	iated samp	ole(s): 02	QC Batch ID: \	WG80316	61-4 C	C Sample: L1516	245-02	Client ID:	: MW-1	
Iron, Ferrous	0.61	1	1.7	105		-	-			-	20
General Chemistry - Westbore	ough Lab Assoc	iated samp	ole(s): 02	QC Batch ID: \	WG8032 ²	13-4 C	C Sample: L1516	245-02	Client ID:	: MW-1	
Sulfate	320	1000	1300	94		-	-		55-147	-	14
General Chemistry - Westbor	ough Lab Assoc	iated samp	ole(s): 02	QC Batch ID: \	WG80359	93-4 C	C Sample: L1516	492-05	Client ID:	: MS Sample	
Total Organic Carbon	7.30	8	16.2	111		-	-		80-120	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 87 KENT AVENUE **Project Number:** 87 KENT AVENUE

Lab Number:

L1516245

Report Date:

07/22/15

Parameter	Nativ	ve Sa	mple	Duplicate Sa	mple Units	RPD	Qua	I RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	02 (QC Batch ID:	WG803141-3	QC Sample: L15	516260-07 Cli	ent ID:	DUP Sample
Nitrogen, Nitrate		ND		ND	mg/l	NC		17
General Chemistry - Westborough Lab	Associated sample(s):	02 (QC Batch ID:	WG803148-3	QC Sample: L15	516245-02 Cli	ent ID:	MW-1
BOD, 5 day		ND		ND	mg/l	NC		35
General Chemistry - Westborough Lab	Associated sample(s):	02 (QC Batch ID:	WG803161-3	QC Sample: L15	516245-02 Cli	ent ID:	MW-1
Iron, Ferrous		0.61		0.57	mg/l	7		20
General Chemistry - Westborough Lab	Associated sample(s):	02 (QC Batch ID:	WG803213-3	QC Sample: L15	516245-02 Cli	ent ID:	MW-1
Sulfate		320		340	mg/l	6		14
General Chemistry - Westborough Lab	Associated sample(s):	02 (QC Batch ID:	WG803593-3	QC Sample: L15	516492-05 Cli	ent ID:	DUP Sample
Total Organic Carbon		7.30		7.77	mg/l	6		20

Serial_No:07221516:56

Project Name:87 KENT AVENUELab Number:L1516245Project Number:87 KENT AVENUEReport Date:07/22/15

Sample Receipt and Container Information

Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal

Cooler

A Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1516245-01A	Vial HCI preserved	Α	N/A	2.0	Υ	Absent	NYTCL-8260(14)
L1516245-01B	Vial HCl preserved	Α	N/A	2.0	Υ	Absent	NYTCL-8260(14)
L1516245-01C	Vial HCl preserved	Α	N/A	2.0	Υ	Absent	NYTCL-8260(14)
L1516245-02A	Vial HCl preserved	Α	N/A	2.0	Υ	Absent	NYTCL-8260(14)
L1516245-02B	Vial HCl preserved	Α	N/A	2.0	Υ	Absent	NYTCL-8260(14)
L1516245-02C	Vial HCl preserved	Α	N/A	2.0	Υ	Absent	NYTCL-8260(14)
L1516245-02F	Plastic 250ml HNO3 preserved	Α	<2	2.0	Υ	Absent	FE-6020T(180),MN-6020T(180)
L1516245-02G	Plastic 500ml unpreserved	Α	7	2.0	Υ	Absent	-
L1516245-02H	Plastic 950ml unpreserved	Α	7	2.0	Y	Absent	SO4-9038(28),NO3- 4500(2),BOD- 5210(2),FERROUS(1)
L1516245-02X	Plastic 120ml HNO3 preserved spl	Α	<2	2.0	Υ	Absent	MN-6020S(180)
L1516245-02Y	Vial H2SO4 preserved split	Α	N/A	2.0	Υ	Absent	TOC-5310(28)
L1516245-02Z	Vial H2SO4 preserved split	Α	N/A	2.0	Υ	Absent	TOC-5310(28)
L1516245-04A	Vial HCl preserved	Α	N/A	2.0	Υ	Absent	NYTCL-8260(14)
L1516245-04B	Vial HCl preserved	Α	N/A	2.0	Υ	Absent	NYTCL-8260(14)
L1516245-04C	Vial HCl preserved	Α	N/A	2.0	Υ	Absent	NYTCL-8260(14)
L1516245-04D	Vial HCl preserved	Α	N/A	2.0	Υ	Absent	NYTCL-8260(14)
L1516245-05A	Vial HCl preserved	Α	N/A	2.0	Υ	Absent	HOLD-8260(14)
L1516245-05B	Vial HCl preserved	Α	N/A	2.0	Υ	Absent	HOLD-8260(14)
L1516245-05C	Vial HCI preserved	Α	N/A	2.0	Υ	Absent	HOLD-8260(14)

Project Name:87 KENT AVENUELab Number:L1516245Project Number:87 KENT AVENUEReport Date:07/22/15

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

 SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:87 KENT AVENUELab Number:L1516245Project Number:87 KENT AVENUEReport Date:07/22/15

Data Qualifiers

- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Serial_No:07221516:56

Project Name:87 KENT AVENUELab Number:L1516245Project Number:87 KENT AVENUEReport Date:07/22/15

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised December 16, 2014

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.

EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, lodomethane (methyl iodide), Methyl methacrylate,

Azobenzene.

EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 625: 4-Chloroaniline, 4-Methylphenol.

SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.

EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility

EPA 8270D: Biphenyl. EPA 2540D: TSS

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene,

Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; **EPA 200.7**: Ba,Be,Ca,Cd,Cr,Cu,Na; **EPA 245.1**: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C,

SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC,

SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4,

SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT,

Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Дірна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	/ay	05	Page			Date in	Rec'o	7/	15.	115			ацена Job# 16245	5
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Deliv	erable	s						Billing Information	7
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: 87	Kent	AVE				ASP-	A	i nien		ASP-	В		Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Location:	100					EQul	S (1 F	ile)		EQuI:	S (4 File	∍)	PO#	
Client Information		Project #	6.5				$1 \square$	Othe	r							
Client: Teach En	avid unated	(Use Project name as Pr	oject#)				Regu	ılatory	Requi	iremer	nt				Disposal Site Information	33
	74-4303	Project Manager: M	F /1	1)800				NY TO	ogs			NY Pa	rt 375		Please identify below location of	
100 1100	114	ALPHAQuote #:	1// 000				1 🗖	AWQ	Standa	rds	$\overline{\Box}$	NY CP	-51		applicable disposal facilities.	
Phone: 646606	7.232	Turn-Around Time					ΙĒ	NY Re	estricted	d Use	П	Other		-	Disposal Facility:	
Fax:		Standard		Due Date:		The street of the state of the	1 🗖	NY Ur	restrict	ed Use	-				□ NJ □ NY	- 1
Email: MCarrolla	Harry Marin			# of Days:			lΠ	NYC S	Sewer D	Dischar	ge				Other:	- 1
These samples have be								LYSIS	and the Asset Spice			-falcilette suur		\neg	Sample Filtration	T
Other project specific								3	r'. u	200	7	П		\dashv		0
Please specify Metals							\ \ \	[west	Matri	176-00	Fingerphi				Preservation	a I B
							6 /	5.50		3	4				(Please Specify below)	0
ALPHA Lab ID		Water to the second sec	Colle	ection	Sample	Sampler's	J	5	1 6	36	3				(rioded opening selen)	t
(Lab Use Only)	Sa	mple ID	Date	Time	Matrix	Initials	>	ā	9	3	Pro			ŀ	Sample Specific Comments	1
t6 25 162450	7111-17	11 /2 0	11-1		1 10 8	Eur	1		,		~			-	campic operate comments	е
A STATE OF THE PARTY OF THE PAR	711	16420	7/13/18	0915	6-00	Kin			1	./		\vdash	_	\dashv		\dashv
46-62		200	7(15/15		an	Dia.	150		0	()·		\vdash		\dashv	1 0 0 0	\dashv
49.3	MW-16	PAB	715/15	200		(D) since					V	\vdash	_	\dashv	NAR on gov	\dashv
													_	\dashv		\dashv
									_					\dashv		\dashv
														\dashv		\dashv
														\dashv		_
									\perp					_		_
	a side													_		_
																_
	Container Code P = Plastic	Westboro: Certification N	o: MA935		Con	tainer Type			77						Please print clearly, legibly	
B = HCI	A = Amber Glass	Mansfield: Certification N	o: MA015						1						and completely. Samples ca	an
	V = Vial G = Glass				Р	reservative			(-)						not be logged in and turnaround time clock will no	ot
	B = Bacteria Cup					10301 valive		_						\Box	start until any ambiguities ar	
F = MeOH	C = Cube	Refinduished I	Зу:	,Date/1	Time	1	Receiy	ed By			~	Date/	Гіте		resolved. BY EXECUTING	
0 11011004	O = Other E = Encore	(LA)		7/15/15	1300	Low	- 6	nh			1/12	:16	13	00	THIS COC, THE CLIENT	
111-14020203	D = BOD Bottle	Sove !		lidis	1850	Tom		y se		1	-15	-15	18-	30	HAS READ AND AGREES TO BE BOUND BY ALPHA'S	
O = Other		Tom Take			2300	7/15	15	230	00 -	M	Joi	-	2	I	TERMS & CONDITIONS.	
Form No: 01-25 HC (rev. 30)-Sept-2013)	10.			200	7,15		- '	-	-	J			7	(See reverse side.)	

ANALYTICAL REPORT

Lab Number: L1516248

Client: Tenen Environmental, LLC

121 West 27th Street

87 KENT AVENUE

Suite 303

New York City, NY 10001

ATTN: Matt Carroll
Phone: (646) 606-2332

Project Name: 87 KENT AVENUE

Report Date: 07/27/15

Project Number:

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 87 KENT AVENUE Project Number: **87 KENT AVENUE**

Lab Number:

L1516248

Report Date: 07/27/15

Alpha Sample ID

L1516248-01

Client ID

MW-1 GRAB

Matrix WATER Sample Location

87 KENT AVENUE

Collection Date/Time

07/15/15 09:00

Receive Date

07/15/15

Project Name:87 KENT AVENUELab Number:L1516248Project Number:87 KENT AVENUEReport Date:07/27/15

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:87 KENT AVENUELab Number:L1516248Project Number:87 KENT AVENUEReport Date:07/27/15

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Petroleum Hydrocarbon Quantitation

Total Petroleum Hydrocarbons (TPH) by GC/FID

Sample L1516248-01 was extracted and then analyzed using a gas chromatograph equipped with a flame ionization detector (GC/FID). The temperature program and associated experimental conditions were optimized to obtain maximum resolution in an eighty minute chromatographic run representative of hydrocarbons in the n-Octane (C8) to n-Tetracontane (C40) range. Qualitative evaluation of the sample is conducted by reviewing the sample chromatogram in conjunction with a chromatogram of a normal alkane series generated with the same chromatographic conditions. Chromatograms of hydrocarbon reference materials obtained from our library of 74 reference standards are also utilized to provide the best possible sample match. Quantitative determination of the sample hydrocarbon concentration is performed in accordance with EPA Method 8015M. The sample total hydrocarbon concentration and all associated quality control data are included in the report.

All quality control parameters met the specified criteria.

The following qualitative information is based on a tentative interpretation of chromatographic pattern recognition and boiling point ranges:

Total Petroleum Hydrocarbon Identification

Sample L1516248-01 contains material eluting in the range prior to the elution of n-Tridecane (C13) to after the elution of n-Heptatriacontane (C37).

Based on the data generated sample, L1516248-01 contains material eluting in the mid to high molecular weight ranges of the chromatogram. The material present appears to be petroleum in nature and is similar to

Serial_No:07271516:42

Project Name:87 KENT AVENUELab Number:L1516248Project Number:87 KENT AVENUEReport Date:07/27/15

Case Narrative (continued)

hydraulic fluid.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Galte Por Elizabeth Porta

Authorized Signature:

Title: Technical Director/Representative

Date: 07/27/15

ORGANICS

PETROLEUM HYDROCARBONS

Serial_No:07271516:42

Project Name: 87 KENT AVENUE Lab Number: L1516248

Project Number: 87 KENT AVENUE Report Date: 07/27/15

SAMPLE RESULTS

Lab ID: L1516248-01
Client ID: MW-1 GRAB
Sample Location: 87 KENT AVENUE

Matrix: Water
Analytical Method: 1,8015D(M)
Analytical Date: 07/19/15 15:20

Analyst: NL

Date Collected: 07/15/15 09:00
Date Received: 07/15/15
Field Prep: Not Specified
Extraction Method: EPA 3510C
Extraction Date: 07/17/15 14:53

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbon Identification by GC-	FID - Mansfi	eld Lab				
Total Petroleum Hydrocarbons (C9-C44)	4470		mg/l	17.7	8.87	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
o-Terphenyl	114		50-130	
d50-Tetracosane	118		50-130	

Project Name: 87 KENT AVENUE

87 KENT AVENUE

Lab Number:

L1516248

Project Number:

Report Date:

07/27/15

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

1,8015D(M)

Analyst:

Extraction Method: EPA 3510C

07/19/15 10:44

NL

07/17/15 14:53 Extraction Date:

Parameter	Result	Qualifier	Units	RL		MDL	
Petroleum Hydrocarbon Identification WG803775-1	on by GC-F	TID - Mansfie	eld Lab f	for sample(s):	01	Batch:	
Total Petroleum Hydrocarbons (C9-C44)	ND		mg/l	0.330		0.165	

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
o-Terphenyl	94		50-130	
d50-Tetracosane	97		50-130	

Lab Control Sample Analysis Batch Quality Control

Project Name: 87 KENT AVENUE **Project Number:** 87 KENT AVENUE

Lab Number: L1516248

Report Date: 07/27/15

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Petroleum Hydrocarbon Identification by GC-I	FID - Mansfield	Lab Associate	ed sample(s): 01	1 Batch: \	WG803775-2 W	/G803775-3		
Nonane (C9)	65		76		50-130	16		30
Decane (C10)	72		85		50-130	17		30
Dodecane (C12)	80		94		50-130	16		30
Tetradecane (C14)	81		95		50-130	16		30
Hexadecane (C16)	88		101		50-130	14		30
Octadecane (C18)	91		103		50-130	12		30
Nonadecane (C19)	85		96		50-130	12		30
Eicosane (C20)	87		98		50-130	12		30
Docosane (C22)	88		99		50-130	12		30
Tetracosane (C24)	88		98		50-130	11		30
Hexacosane (C26)	87		97		50-130	11		30
Octacosane (C28)	89		99		50-130	11		30
Triacontane (C30)	89		99		50-130	11		30
Hexatriacontane (C36)	86		95		50-130	10		30

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
o-Terphenyl	92		96		50-130	
d50-Tetracosane	95		98		50-130	

Serial_No:07271516:42

Project Name:87 KENT AVENUELab Number:L1516248Project Number:87 KENT AVENUEReport Date:07/27/15

Sample Receipt and Container Information

Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal

Cooler

A Absent

Container Information

Container ID Container Type

Cooler pH deg C Pres Seal Analysis(*)

L1516248-01A Glass 250ml/8oz unpreserved A N/A 2.0 Y Absent A2-PHI(7)

Project Name:87 KENT AVENUELab Number:L1516248Project Number:87 KENT AVENUEReport Date:07/27/15

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

 SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:87 KENT AVENUELab Number:L1516248Project Number:87 KENT AVENUEReport Date:07/27/15

Data Qualifiers

- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Serial_No:07271516:42

Project Name:87 KENT AVENUELab Number:L1516248Project Number:87 KENT AVENUEReport Date:07/27/15

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised December 16, 2014

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.

EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, lodomethane (methyl iodide), Methyl methacrylate,

Azobenzene

EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine.

EPA 625: 4-Chloroaniline, 4-Methylphenol.

SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.

EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility

EPA 8270D: Biphenyl. EPA 2540D: TSS

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C,

SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC,

SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4,

SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

Endosulari i, Endosulari i, Endosulari sullate, Endini Aldenyde, Neptachior, Neptachior Epoxide, PCB

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

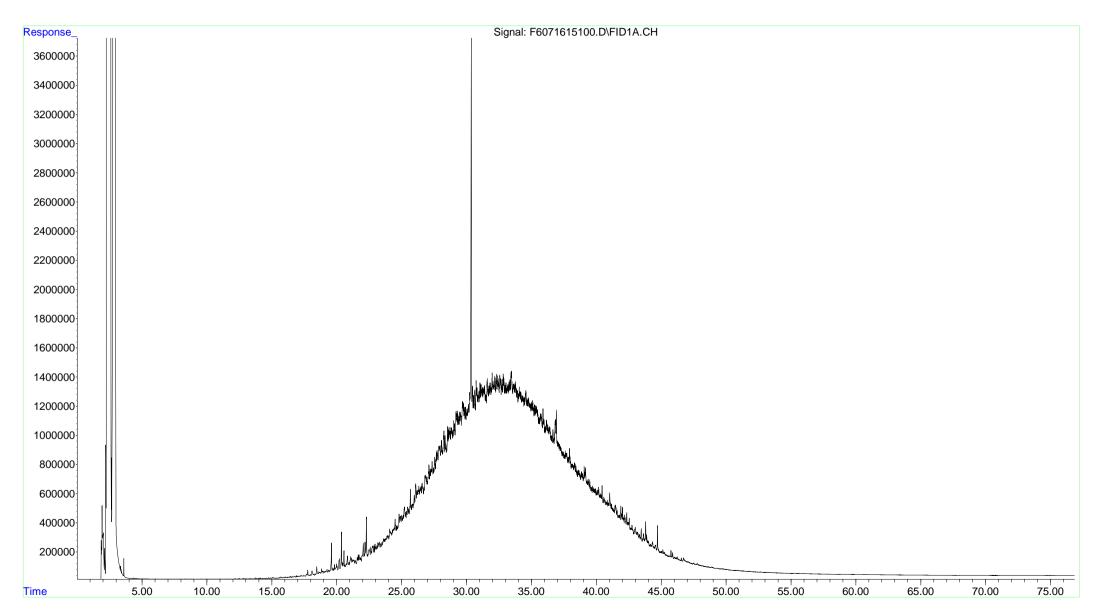
For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Bivd TEL: 508-822-9300 FAX: 508-822-3288	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 Co Project Information Project Name:	Way ooper Ave, Suite		Pag	ge of	-	verable ASP	Lab s -A	71	15	/// ASP			ALPHA Job# 6 2 Billing Information Same as Client Info
FAX: 508-898-9193	FAA: 500-622-3286	Project Location:	, (,				$oldsymbol{\square}$	EQu	IS (1 I	File)] EQu	IS (4 F	File)	PO#
Client Information	The state of the s	Project#	1.1					Othe							
Client: Tenen Co	wire nimental	(Use Project name as P	roject#) 💆				Regu	ulatory	Requ	ireme	ent _{es} s	¥,·		14×10	Disposal Site Information
Address: 12(IN 2	74-4303	Project Manager: 🖊	ett Ca	moll			-	NYT					art 375		Please identify below location o
•	NA.	ALPHAQuote #:						AWQ	Standa	ards	L	NY C			applicable disposal facilities.
Phone: 646661	2332	*Turn-Around Time				or gar.		NY Re			·	Other			Disposal Facility:
Fax:		Standar		Due Date:				NY Ur	restric	ted Us	10				□ NJ □ NY
Email: M CACCALG	Har-Chris	Rush (only if pre approved	1) 🗌	# of Days:				NYC S	Sewer	Discha	ırge				Other:
These samples have be	en previously analyze	ed by Alpha					ANA	LYSK	ì						Sample Filtration
Other project specific Please specify Metals							£	Je Je	(Motor)	10-00 d	F Finge pro				☐ Done ☐ Lab to do Preservation ☐ Lab to do (Please Specify below)
ALPHALIB ID			Coll	ection	Sample	Sampler's	出	14	1	F	7				(Please Specify below)
(Lab Use Only)	Sar	nple ID	Date	Time	Matrix	Initials		4	4	Þψ	0				Sample Specific Comments
+H-45	T6W-11	16-120	7/13/15	1520	6-00	Ein	V		- +						,
	MW-1	13,00	711515	0915	GW	Kin	150		i/	1.					······································
1627861	MW-16	PAR	#1515	200		10 m					V				NAIL on gir
										,					
7.00															
												-			
d space															
A = None	P = Plastic	Westboro: Certification No Mansfield: Certification No				tainer Type			, C						Please print clearly, legibly and completely. Samples on not be logged in and turnaround time clock will re
	B = Bacteria Cup C = Cube	77-50				<u>_</u>						<u> </u>		—	start until any ambiguities a
G = NaHSO4 C) = Other	Rafinguished E		Date/T			Receive	7		-		Date/		2,50	resolved. BY EXECUTING THIS COC, THE CLIENT
1-1102-2-3	= Encore) = BOD Bottle	1100		7/15/15	1300	1000		2/4			ار) سواد		-46	300	HAS READ AND AGREES
K/E = Zn Ac/NaOH D D = Other	שוווטם עטע - י	Tore !		lidis 1		TIME	-	12/2/2		1	75	Acres of the Park	<u> 10.</u>	34	TO BE BOUND BY ALPHA TERMS & CONDITIONS.
		70m/1000			3300	//15/		<u> 2300</u>			Joi		- O	产	(See reverse side.)
form No: 01-25 HC (rev. 30-5 Page 16 of 26	Sept-2013)			7/Iulis O	1.00	Mani	free	I da	6		7/16	1150	40		

West-brough, Mid-1954 Managerial Mid-204 20 Forestal Information	ALPHA	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker N Tonawanda, NY 14150: 275 Co	Nay	105	Pag	of /		Date in	Rec'o	7/1	514	5		ALPHA 1015/6248
TRUL SPREAD SHOP TO SHIP SEASON FAX SHOP FAX SHO			Project Information					Deliv	verable	s					
Count Trained Count Frequent Count Count Count Frequent Count	TEL: 508-898-9220	TEL: 508-822-9300		Kont	AVO			T	ASP-	-A		ASI	P-B		Same as Client Info
Collect France Collect Colle	FAX: 508-898-9193	FAX: 508-822-3288		L				1 🗆	EQuI	S (1 Fi	le)	☐ EQ	ulS (4 Fi	le)	PO#
Client Dank My Requirement Project name as Project s) Regulatory Requirement Project Manager My Part 375 Project Manager My My Project Manager My My My My My My My M	Client Information		4	6.5				1 🗆	Othe	r		207			
Activase	AND DESCRIPTION OF THE PARTY OF	enviduana to l			,	1		Regi	ulatory	Requir	ement				Disposal Site Information
ALPHAQuote #: AlphaQuote #:		24 0 4	T	of Co	20011			The same of the sa	AND THE PERSON NAMED IN	- march and and		□ NY F	Part 375		
Phone:	Address. [2]	111		GIT UK	7 (ds				1
Standard Due Date: NY Unarakted Use NY Conserved Duck NY	Phone: 641 (26	7732													Disposal Facility
Email M CACH CHandler And Rush (only if pre approved) # of Days: NYC Sewer Discharge Other: These samples have been previously analyzed by Alpha ANALYSIS Sample Filtration Other project specific requirements/comments: Done Lab to do Preservation Lab to do Preservative Lab to		C 501			Due Deter			1 1				٠	-		
These samples have been previously analyzed by Alpha Other project specific requirements/comments: ALPHA Lab ID (Lab Use Only) Sample ID Collaction Date Time Matrix Sample Samplers Initials ALPHA Lab ID (Lab Use Only) Sample Specific Comments Sample Specific Comment		06. 00 1			.=							6			F
Other project specific requirements/comments: Done Lab to do Preservation Lab to do				/	# of Days:	Name of Street,		ANA			scriarge			-	
Please specify Metals or TAL. ALPHA Lab ID (Lab Use Only) Sample ID Collection Date Time Matrix Initials Ini								ANA	LISIS	N L	. 13				
ALPHA Les ID (Lat Use Only) Sample ID Collection Date Time Matrix Initials Matrix Initials MALPHA Les ID Collection Date Time Matrix Initials MALPHA Les ID MALPHA Les ID Sample Specific Comments NAML on GW NAML on GW NAML on GW NAML on GW Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. By Excelusing By: Mansfield: Certification No: MA015 Preservative Container Type Preservative Preservative Date/Time Received By: Date/Time Received By: Date/Time To Be DOUND BY ALPHA'S TO BE DOUND BY ALPHA'S TERMA'S AC SCONDITIONS. (See reverse side.)			ents:					5	Solvelle	al Metal	750 - 5275 205	and show a			Lab to do Preservation Lab to do B
Trime Matrix Initials	AL PHA Lab ID	T		Coll	ection	Sample	Sampler's	K	5	15	200	3			t
Please print clearly, legibly and completely. Samples can not be logged in and turnaroutilime clock will not start until any ambiguities are resolved. By Executing Institute By Encore Bother Cother		Sai	mple ID			12000 10000		>	Õ	9	N S	2	1 1		Sample Specific Comments
Preservative Code: Container Code NAL on GN P = Plastic HNOs HC Glass HNOs G = Glass HNOs HNOB HNOB HNOB HNOB HNOS HNOB HNOS HNOB HNOS HNOB HNOS HNOB HNOS HNOB HNOS HNOS HNOB HNOS HNOB HNOS HNOB HNOS HNOB HNOS HNOB HNOS HNOS		7611-11	11 /2 0	7/-/-		1 5		1				-	+		Campic openio Comments
Preservative Code: Container Code Container Code Con	10 /	1000-1	16910	54 67					1.	1/		-	+		
Preservative Code: None	10 508 1		2 11	TUSICS		on		1/25		0	-	_	+-+	-	. 44
A = None P = Plastic Westbolo. Certification No. MA935 Container Type Holi A = Amber Glass Wansfield: Certification No. MA935 Container Type Mansfield: Certification No. MA935 Container Type Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. By EXECUTING E Nath No. Nath No. Ma935 Container Type Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. By EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)	16 2170	1110-16	1545	7/15/15	2400		() sin	-		-		\leftarrow	+-+	_	NHIL on go
A = None P = Plastic Westbolo. Certification No. MA935 Container Type Holi A = Amber Glass Wansfield: Certification No. MA935 Container Type Mansfield: Certification No. MA935 Container Type Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. By EXECUTING E Nath No. Nath No. Ma935 Container Type Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. By EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)													+	\dashv	
A = None P = Plastic Westbolo. Certification No. MA935 Container Type Holi A = Amber Glass Wansfield: Certification No. MA935 Container Type Mansfield: Certification No. MA935 Container Type Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. By EXECUTING E Nath No. Nath No. Ma935 Container Type Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. By EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)															
A = None P = Plastic Westbolo. Certification No. MA935 Container Type Holi A = Amber Glass Wansfield: Certification No. MA935 Container Type Mansfield: Certification No. MA935 Container Type Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. By EXECUTING E Nath No. Nath No. Ma935 Container Type Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. By EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)	<u> </u>										\dashv		\perp	_	
A = None P = Plastic Westbord. Certification No. MA935 Container Type Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. By EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)										_			-	4	
A = None P = Plastic Westbolo. Certification No. MA935 Container Type Holi A = Amber Glass Wansfield: Certification No. MA935 Container Type Mansfield: Certification No. MA935 Container Type Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. By EXECUTING E Nath No. Nath No. Ma935 Container Type Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. By EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)															
A = None P = Plastic Westbolo. Certification No. MA935 Container Type Holi A = Amber Glass Wansfield: Certification No. MA935 Container Type Mansfield: Certification No. MA935 Container Type Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. By EXECUTING E Nath No. Nath No. Ma935 Container Type Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. By EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)			*												
A = None P = Plastic Westbolo. Certification No. MA935 Container Type Holi A = Amber Glass Wansfield: Certification No. MA935 Container Type Mansfield: Certification No. MA935 Container Type Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. By EXECUTING E Nath No. Nath No. Ma935 Container Type Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. By EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)		2			2										
= MeOH	A = None B = HCI C = HNO ₃ D = H ₂ SO ₄	P = Plastic A = Amber Glass V = Vial G = Glass							-						and completely. Samples can not be logged in and turnaround time clock will not
S = NaHSO ₄ O = Other E = Encore D = BOD Bottle S = Na ₂ S ₂ O ₃ E = Encore D = BOD Bottle S = Other			1200)	Dota/T	ime		Page hir	od Pre		+	Dot-	/Time	-	
HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)	G = NaHSO ₄	O = Other	Reginquished E	sy:		-	//	6	1		17			140.00	
TERMS & CONDITIONS. (See reverse side.)	11 - 14020203		130		9/1-41-		104				<u> </u>	112/16	115	2/	HAS READ AND AGREES
orm No: 01-25 HC (rev. 30-Sept-2013)	K/E = Zn Ac/NaOH O = Other	D - BOD Bottle	Tom Table	7			7/15				1	5-15 ord	200	N N	TERMS & CONDITIONS.
)-Sept-2013)													(Oce levelse side.)

GC-FID Chromatogram

File :0:\Forensics\Data\FID6\2015\Jul\Jul16\F6071615100.D


Operator : FID6:NL

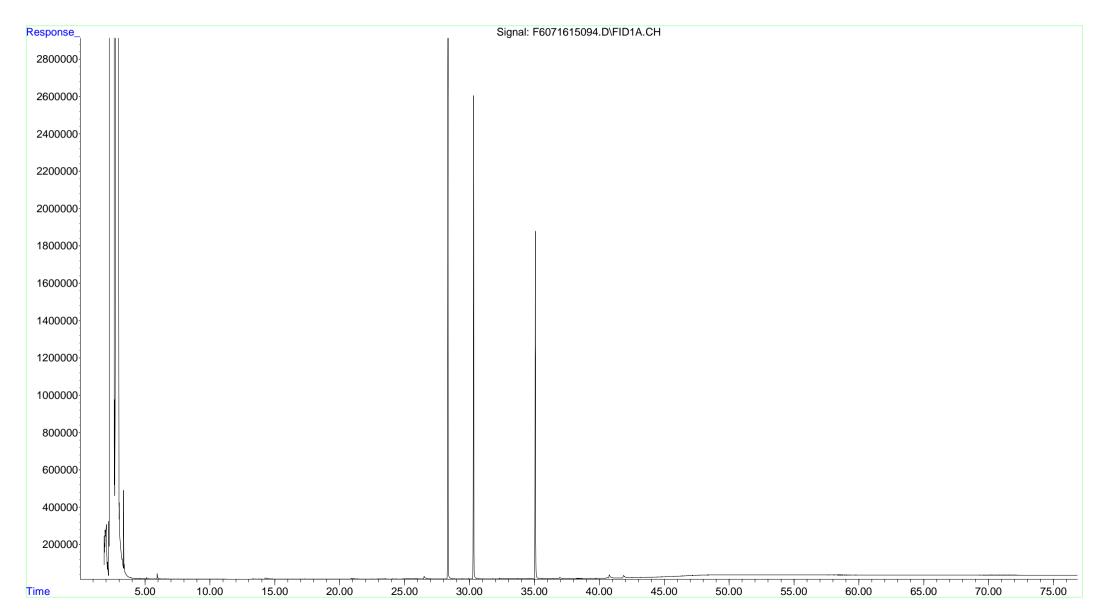
Acquired: 19 Jul 2015 3:20 pm using AcqMethod FID6A.M

Instrument: FID6

Sample : L1516248-01,42

Misc Info: WG804251, WG803775, ICAL10513

File :0:\Forensics\Data\FID6\2015\Jul\Jul16\F6071615094.D


Operator : FID6:NL

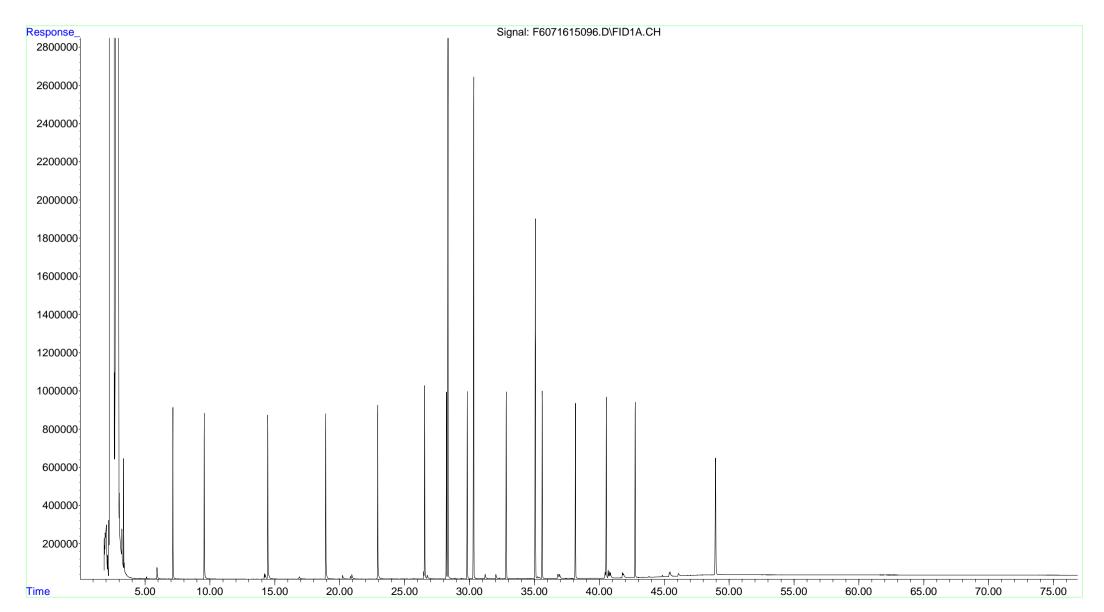
Acquired: 19 Jul 2015 10:44 am using AcqMethod FID6A.M

Instrument : FID6

Sample : WG803775-1,42

Misc Info: WG804251, WG803775, ICAL10513

File :0:\Forensics\Data\FID6\2015\Jul\Jul16\F6071615096.D


Operator : FID6:NL

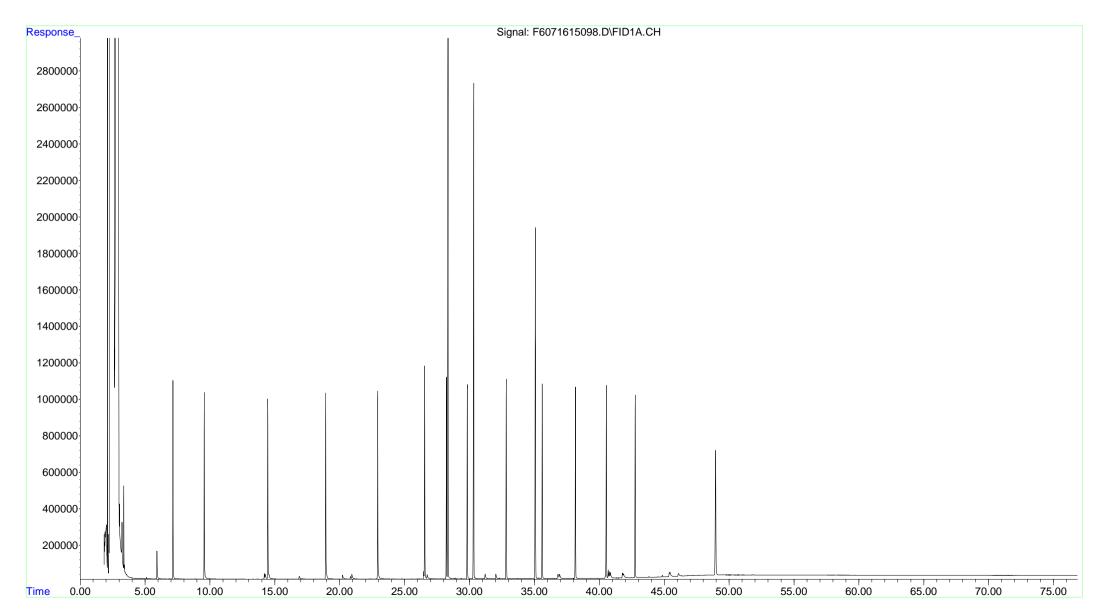
Acquired : 19 Jul 2015 12:16 pm using AcqMethod FID6A.M

Instrument: FID6

Sample : WG803775-2,42

Misc Info: WG804251, WG803775, ICAL10513

File :0:\Forensics\Data\FID6\2015\Jul\Jul16\F6071615098.D


Operator : FID6:NL

Acquired: 19 Jul 2015 1:48 pm using AcqMethod FID6A.M

Instrument: FID6

Sample : WG803775-3,42

Misc Info: WG804251, WG803775, ICAL10513

Petroleum Reference Standards

Data Path : 0:\Forensics\Data\FID6\2015\Jul\Jul16\

Data File : F6071615102.D Signal(s) : FID1A.CH

: 19 Jul 2015 4:52 pm Acq On

Operator : FID6:NL

Sample : Alkane Reference Standard (C8 - C40)

: WG804251, FRAV83 50ug/mL Misc ALS Vial : 1 Sample Multiplier: 1

Integration File: SHCINT2.E Quant Time: Jul 20 14:04:36 2015

Quant Method: 0:\Forensics\Data\FID6\2015\Jul\Jul16\HC6120314F.M

Quant Title : FID Forensics

QLast Update : Mon Jul 20 10:18:25 2015

Response via: Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

Volume Inj. : 1.0 Signal Phase : Rtx-5MS Signal Info : 0.25mm

: CCAL - CCAL Sub List

Internal Standards 1) I 5-alpha-androstane 30.328 58305358 50.000 ug/mL M4 System Monitoring Compounds 19) s ortho-terphenyl 28.343 62351536 48.298 ug/mL M4 Spiked Amount 50.000 Range 50 - 130 Recovery 96.60% 24) s d50-Tetracosane 35.074 49385032 48.579 ug/mL M4 Spiked Amount 50.000 Range 50 - 130 Recovery 97.16% Target Compounds 2) t n-Octane (C8) 5.080 44956652 46.697 ug/mL M4 3) t n-Nonane (C9) 7.166 46798668 46.514 ug/mL M4 4) t n-Decane (C10) 9.577 48708980 46.680 ug/mL M4 5) t n-Undecane (C11) 12.056 50074176 47.476 ug/mL M4 6) t n-Dodecane (C12) 14.465 51197568 47.836 ug/mL M4 7) t n-Tridecane (C13) 16.759 51706190 48.062 ug/mL M4 11) t n-Pentadecane (C14) 18.933 52311815 48.002 ug/mL M4 11) t n-Pentadecane (C15) 20.992 53414786 48.168 ug/mL M4 11) t n-Hexadecane (C16) 22.942 53429482 48.357 ug/mL M4 11) t n-Heptadecane (C17) 24.797 53350637 47.915 ug/mL M4 11) t n-Dotcadecane (C18) 26.560 54736863 48.311 ug/mL M4 11) t phytane 26.721 47947114 48.456 ug/mL M4 11) t phytane 26.721 47947114 48.456 ug/mL M4 12) t n-Heneicosane (C20) 29.845 54374555 48.595 ug/mL M4 12) t n-Docosane (C21) 31.381 54728232 48.435 ug/mL M4 12) t n-Docosane (C22) 32.852 55073082 48.355 ug/mL M4 12) t n-Heneicosane (C21) 31.381 54728232 48.435 ug/mL M4 12) t n-Heneicosane (C21) 31.381 54728232 48.435 ug/mL M4 12) t n-Heneicosane (C21) 35.620 55614890 48.227 ug/mL M4 12) t n-Hexacosane (C22) 32.852 55073082 48.435 ug/mL M4 12) t n-Hexacosane (C23) 34.263 5545608 48.382 ug/mL M4 12) t n-Hexacosane (C21) 35.620 55614890 48.227 ug/mL M4 13) t n-Tricosane (C23) 35.620 55614890 48.227 ug/mL M4 14) t n-Hexacosane (C21) 35.620 55614890 48.227 ug/mL M4 15) t n-Hexacosane (C23) 35.620 55614890 48.227 ug/mL M4 17) t n-Hexacosane (C23) 35.620 55614890 48.227 ug/mL M4 18) t n-Hoxocosane (C21) 35.620 55614890 48.227 ug/mL M4 19) t n-Hexacosane (C28) 40.566 5566795 48.439 ug/mL M4 20) t n-Hoxocosane (C28) 40.566 5566795 48.439 ug/mL M4 21) t n-Hexacosane (C28) 40.566 5566795 48.439 ug/mL M4 22) t n-Dotriacontane	Compound	R.T.	Response	Conc Units
19) s ortho-terphenyl 28.343 62351536 48.298 ug/mL M4 Spiked Amount 50.000 Range 50 - 130 Recovery = 96.60% 49385032 48.579 ug/mL M4 Spiked Amount 50.000 Range 50 - 130 Recovery = 97.16% M4 Spiked Amount 50.000 Range 50 - 130 Recovery = 97.16% M4 Spiked Amount 50.000 Range 50 - 130 Recovery = 97.16% M4 Spiked Amount 50.000 Range 50 - 130 Recovery = 97.16% M4 Spiked Amount 50.000 Range 50 - 130 Recovery = 97.16% M4 Spiked Amount 50.000 Range 50 - 130 Recovery = 97.16% M4 Spiked Amount 50.000 Range 50 - 130 Recovery = 97.16% M4 Spiked Amount 50.000 Range 50 - 130 Recovery = 97.16% M4 Spiked Amount 50.000 Range 50 - 130 Recovery = 97.16% M4 Spiked Amount 50.000 Range 50 - 130 Recovery = 97.16% M4 Spiked Amount 50.000 Range 50 - 130 Recovery = 97.16% M4 Spiked Amount 50.000 Range 50 - 130 Recovery = 97.16% M4 Spiked Amount 50.000 Range 50 - 130 Recovery = 97.16% M4 Spiked Amount 50.000 Range 50 - 130 Recovery = 97.16% M4 Spiked Spiked M4 Spiked Spiked M4 Spiked Spiked M4 Spik		30.328	58305358	50.000 ug/mL M4
2) t n-Octane (C8) 5.080 44956652 46.697 ug/mL M4 3) t n-Nonane (C9) 7.166 4678668 46.514 ug/mL M4 4) t n-Decane (C10) 9.577 48708980 46.680 ug/mL M4 5) t n-Undecane (C11) 12.056 50074176 47.476 ug/mL M4 6) t n-Dodecane (C12) 14.465 51197568 47.836 ug/mL M4 7) t n-Tridecane (C13) 16.759 51706190 48.062 ug/mL M4 9) t n-Tetradecane (C14) 18.933 52311815 48.002 ug/mL M4 11) t n-Pentadecane (C15) 20.992 53414786 48.168 ug/mL M4 12) t n-Hexadecane (C16) 22.942 53434982 48.357 ug/mL M4 14) t n-Heptadecane (C17) 24.797 53350637 47.915 ug/mL M4 15) t Pristane 24.907 54594131 48.698 ug/mL M4 16) t n-Octadecane (C18) 26.560 54736863 48.431 ug/mL M4 17) t Phytane 26.721 47947114 48.456 ug/mL M4 18) t n-Nonadecane (C19) 28.242 54112943 48.227 ug/mL M4 18) t n-Heneicosane (C20) 29.845 54374555 48.595 ug/mL M4 20) t n-Eicosane (C20) 29.845 54374555 48.595 ug/mL M4 22) t n-Docosane (C22) 32.852 55073082 48.435 ug/mL M4 22) t n-Docosane (C22) 32.852 55073082 48.435 ug/mL M4 23) t n-Tricosane (C23) 34.263 55454608 48.382 ug/mL M4 25) t n-Tetracosane (C24) 35.620 55614890 48.227 ug/mL M4 26) t n-Pentacosane (C26) 38.181 56372178 48.467 ug/mL M4 27) t n-Hexacosane (C26) 38.181 56372178 48.467 ug/mL M4 28) t n-Heptacosane (C27) 39.393 55798547 48.404 ug/mL M4 29) t n-Octacosane (C28) 41.695 55870164 48.499 ug/mL M4 30) t n-Nonacosane (C29) 41.695 55870164 48.499 ug/mL M4 31) t n-Tricacontane (C31) 43.851 56011674 48.555 ug/mL M4 33) t n-Dotriacontane (C33) 42.789 55876003 48.439 ug/mL M4 34) t n-Tritriacontane (C33) 44.878 56400268 48.553 ug/mL M4 34) t n-Tritriacontane (C33) 45.876 53194363 48.553 ug/mL M4 35) t n-Detratriacontane (C33) 45.876 53194363 48.553 ug/mL M4 36) t n-tetratriacontane (C33) 45.876 53194363 48.553 ug/mL M4 37) t n-tetratriacontane (C33) 45.876 53194363 48.553 ug/mL M4 38) t n-Dotriacontane (C33) 45.876 53194363 48.553 ug/mL M4 37) t n-tetratriacontane (C33) 45.876 53194363 48.553 ug/mL M4 38) t n-tritriacontane (C33) 45.876 53194363 48.553 ug/mL M4 38) t n-tetratriacontane (C33) 45.876 53194363 48.553 ug/m	19) s ortho-terphenyl Spiked Amount 50.000 Range 24) s d50-Tetracosane	50 - 130 35.074	Recovery = 49385032	= 96.60% 48.579 ug/mL M4
36) t n-Pentatriacontane (C35) 47.849 55846093 48.747 ug/mL M4 37) t n-Hexatriacontane (C36) 48.988 57444242 48.872 ug/mL M4 38) t n-Heptatriacontane (C37) 50.290 55999031 48.944 ug/mL M4 39) t n-Octatriacontane (C38) 51.810 54758130 48.984 ug/mL M4	2) t n-Octane (C8) 3) t n-Nonane (C9) 4) t n-Decane (C10) 5) t n-Undecane (C11) 6) t n-Dodecane (C12) 7) t n-Tridecane (C13) 9) t n-Tetradecane (C14) 11) t n-Pentadecane (C15) 12) t n-Hexadecane (C16) 14) t n-Heptadecane (C17) 15) t Pristane 16) t n-Octadecane (C18) 17) t Phytane 18) t n-Nonadecane (C19) 20) t n-Eicosane (C20) 21) t n-Heneicosane (C21) 22) t n-Docosane (C22) 23) t n-Tricosane (C23) 25) t n-Tetracosane (C24) 26) t n-Pentacosane (C26) 27) t n-Hexacosane (C26) 28) t n-Heptacosane (C27) 29) t n-Octacosane (C28) 30) t n-Nonacosane (C29) 31) t n-Triacontane (C30) 32) t n-Hentriacontane (C31) 33) t n-Dotriacontane (C32) 34) t n-Tritriacontane (C33) 35) t n-tetratriacontane (C34) 36) t n-Pentatriacontane (C36) 37) t n-Hexatriacontane (C37)	7.166 9.577 12.056 14.465 16.759 18.933 20.992 22.942 24.797 24.907 26.560 26.721 28.242 29.845 31.381 32.852 34.263 35.620 36.924 38.181 39.393 40.566 41.695 42.789 43.851 44.878 45.876 46.843 47.849 48.988 50.290	46798668 48708980 50074176 51197568 51706190 52311815 53414786 53434982 53350637 54594131 54736863 47947114 54112943 54374555 54728232 55073082 55454608 55614890 55148013 56372178 555798547 55566795 55876003 56011674 56400268 53194363 55499015 55846093 57444242 55999031	46.514 ug/mL M4 46.680 ug/mL M4 47.476 ug/mL M4 47.836 ug/mL M4 48.062 ug/mL M4 48.002 ug/mL M4 48.168 ug/mL M4 48.357 ug/mL M4 47.915 ug/mL M4 48.698 ug/mL M4 48.431 ug/mL M4 48.456 ug/mL M4 48.456 ug/mL M4 48.227 ug/mL M4 48.227 ug/mL M4 48.382 ug/mL M4 48.429 ug/mL M4 48.435 ug/mL M4 48.436 ug/mL M4 48.435 ug/mL M4 48.435 ug/mL M4 48.435 ug/mL M4 48.435 ug/mL M4 48.456 ug/mL M4 48.555 ug/mL M4 48.450 ug/mL M4 48.470 ug/mL M4 48.470 ug/mL M4 48.555 ug/mL M4 48.557 ug/mL M4 48.557 ug/mL M4 48.557 ug/mL M4 48.557 ug/mL M4 48.554 ug/mL M4 48.557 ug/mL M4

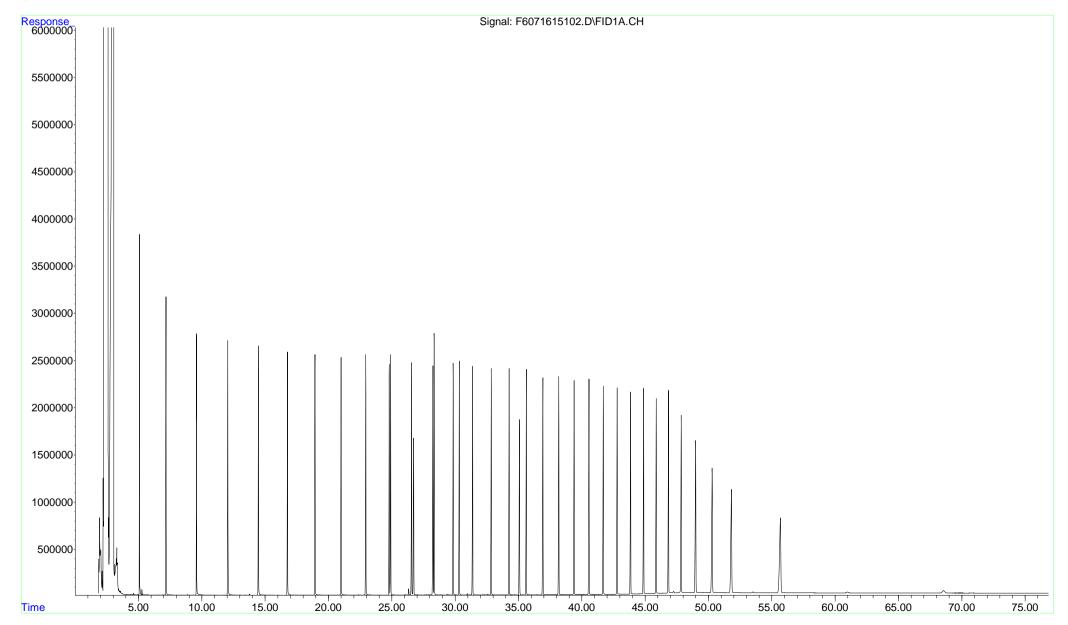
SemiQuant Compounds - Not Calibrated on this Instrument

(f)=RT Delta > 1/2 Window

(m)=manual int.

Data Path : O:\Forensics\Data\FID6\2015\Jul\Jul16\

Data File : F6071615102.D

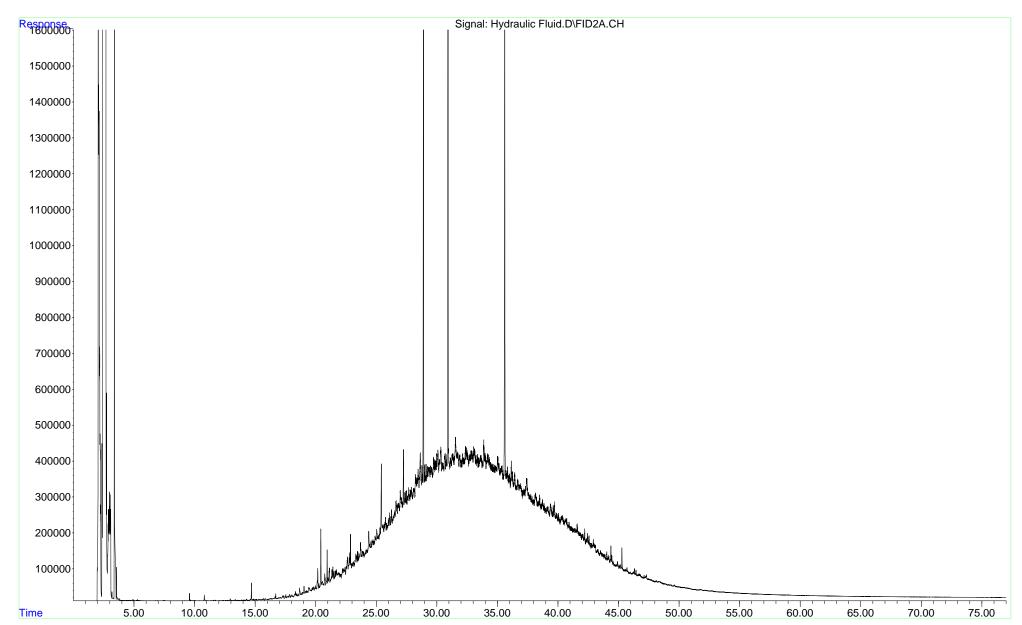

Operator : FID6:NL

Acquired : 19 Jul 2015 4:52 pm using AcqMethod FID6A.M

Instrument: FID6

Sample : Alkane Reference Standard (C8 - C40)

Misc Info: WG804251, FRAV83 50ug/mL


File :0:\FORENSICS\LIBRARY\Hydrocarbon Reference Standards\Hydraul

... ic Fluid.D
Operator : PAH2:AC
Instrument : PAH 2

Acquired : 21 Nov 2011 4:03 am using AcqMethod FRNC2AF.M

Sample : HYDRAULIC FLUID

Misc Info: F042710T

