FORMER DOMSEY FIBER CORP SITE BROOKLYN, NEW YORK

Site Management Plan

NYSDEC Site Number: C224158

Prepared for: Wythe and Kent Realty LLC 144 Spencer Street Brooklyn, NY 11205

AMC Engineering PLLC 99 Jericho Turnpike, Suite 300J Jericho, NY 11753

Revisions to Final Approved Site Management Plan:

Revision #	Submitted Date	Summary of Revision	DEC Approval Date

DECEMBER 2014

TABLE OF CONTENTSSITE MANAGEMENT PLAN

CER	TIFIC	ATION PAGE	
1.0	INT	RODUCTION AND DESCRIPTION OF REMEDIAL PROGRAM	1
	1.1	INTRODUCTION	1
		1.1.1 General	1
		1.1.2 Purpose	2
		1.1.3 Revisions	
	1.2	SITE BACKGROUND	
		1.2.1 Site Location and Description	
		1.2.2 Site History	
		1.2.3 Geologic Conditions	4
	1.3	SUMMARY OF REMEDIAL INVESTIGATION FINDINGS	5
		1.3.1 Soil	5
		1.3.2 Groundwater	6
		1.3.3 Soil Vapor	7
		1.3.4 Aboveground/Underground Storage Tanks	8
	1.4	SUMMARY OF REMEDIAL ACTIONS	8
		1.4.1 AST and UST Removal	10
		1.4.2 Removal of Contaminated Materials from the Site	11
		1.4.3 Import of Backfill	16
		1.4.4 Remaining Contamination	16
2.0	ENG	GINEERING AND INSTITUTIONAL CONTROL PLAN	17
	2.1	INTRODUCTION	
		2.1.1 General	
		2.1.2 Purpose	
	2.2	ENGINEERING CONTROLS	
		2.2.1 Engineering Control Systems	
		2.2.2 Criteria for Completion of Remediation/Termination of Remedial Systems	
	2.3	INSTITUTIONAL CONTROLS	
	2.4	INSPECTIONS AND NOTIFICATIONS	
		2.4.1 Inspections	
		2.4.2 Notifications	22
	2.5	CONTINGENCY PLAN	
		2.5.1 Emergency Telephone Numbers	
		2.5.2 Map and Directions to Nearest Health Facility	24
		2.5.3 Response Procedures	24
3.0	OPI	ERATION AND MAINTENANCE PLAN	
	3.1	INTRODUCTION	
	3.2	ENGINEERING CONTROL SYSTEM OPERATION AND MAINTENANCE	
		3.2.1 SSD System Scope	
		3.2.2 SSD System Start-Up and Testing	
		3.2.3 SSD System Operation: Non-Routine Equipment Maintenance	

TABLE OF CONTENTS SITE MANAGEMENT PLAN

	3.3	ENGINEERING CONTROL SYSTEM PERFORMANCE MONITORING	
		3.3.1 SSDS Monitoring Schedule	29
		3.3.2 SSDS General Equipment Monitoring	
		3.3.3 SSDS System Monitoring Devices and Alarms	
		3.3.4 SSDS Sampling Event Protocol	
	3.4	MAINTENANCE AND PERFORMANCE MONITORING REPORTING	
		REQUIREMENTS	30
		3.4.1 Routine Maintenance Reports	
		3.4.2 Non-Routine Maintenance Reports	
4.0	INS	INSPECTIONS, REPORTING AND CERTIFICATIONS	
	4.1		
		4.1.1 Inspection Frequency	
		4.1.2 Inspection Forms, Sampling Data, and Maintenance Reports	
		4.1.3 Evaluation of Records and Reporting.	
	4.2	CERTIFICATION OF ENGINEERING AND INSTITUTIONAL CONTROLS	
	4.3	PERIODIC REVIEW REPORT	34
	4.4	CORRECTIVE MEASURES PLAN	

TABLES

 Table 1
 Summary of Phase II and Remedial Investigation Soil Vapor Detections

FIGURES

Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Spider Map - Soil Vapor Detections
Figure 4A	North Waste Characterization Soil Sampling
Figure 4B	South Waste Characterization Soil Sampling
Figure 5	North SSD System Vacuum Monitoring Locations

ATTACHMENTS

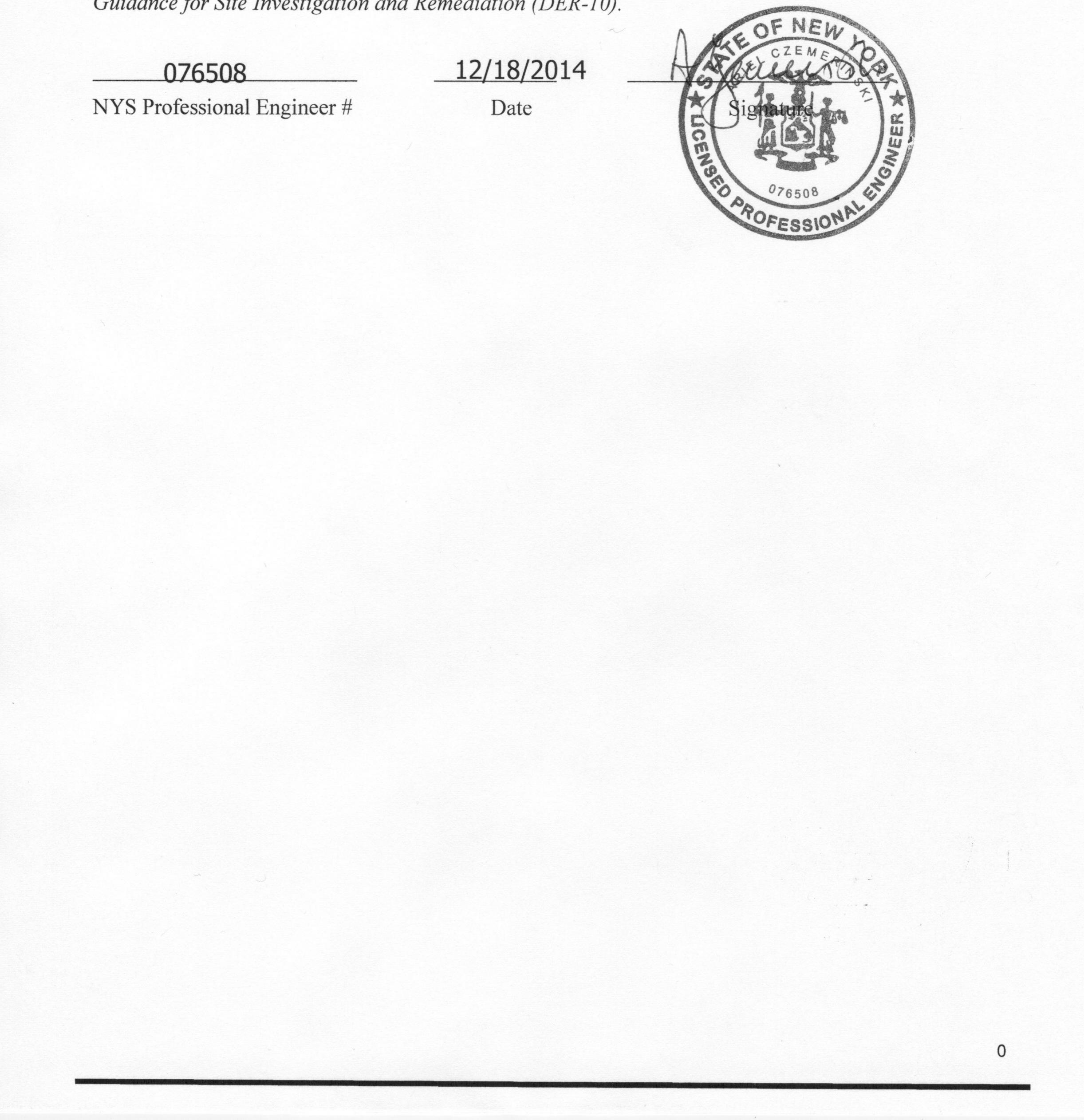
- Attachment B SSD System Details
- Attachment C Site Inspection Checklist and Inspection Forms
- Attachment D Site Survey and Metes & Bounds Description

Attachment E Environmental Easement

SITE MANAGEMENT PLAN FORMER DOMSEY FIBER CORP SITE

LIST OF ACRONYMS

E


Acronym	Definition
AMC	AMC Engineering
AWQS	Ambient Water Quality Standards
BCA	Brownfield Cleanup Agreement
BCP	Brownfield Cleanup Program
BTEX	Benzene, Toluene, Ethylbenzene and Xylene
CQMP	Construction Quality Management Plan
DUSR	Data Usability Statement Report
EBC	Environmental Business Consultants
FER	Final Engineering Report
HDPE	High Density Polyethylene
IRM	Interim Remedial Measure
NYC	New York City
NYCDEP	New York City Department of Environmental Protection
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
PS	Public School
PVC	Polyvinyl Chloride
RAO	Remedial Action Objectives
RAWP	Remedial Action Work Plan
RI	Remedial Investigation
RSCOs	Recommended Site Cleanup Objectives
SCG	Standards, Criteria, and Guidelines
SMMP	Soil/Materials Management Plan
SSDS	Sub-slab Depressurization System
SWPPP	Stormwater Pollution Prevention Plan
SVOCs	Semi-Volatile Organic Compounds
USEPA	United States Environmental Protection Agency
UST	Underground Storage Tank
VOCs	Volatile Organic Compounds

Site Management Plan

CERTIFICATIONS

I Ariel Czemerinski certify that I am currently a NYS registered professional engineer and that this Site Management Plan was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

076508

SITE MANAGEMENT PLAN

1.0 INTRODUCTION AND DESCRIPTION OF REMEDIAL PROGRAM

1.1 INTRODUCTION

This document is required as an element of the remedial program at the Former Domsey Fiber Corp (hereinafter referred to as the "Site") under the New York State (NYS) Brownfield Cleanup Program (BCP) administered by New York State Department of Environmental Conservation (NYSDEC). The site was remediated in accordance with Brownfield Cleanup Agreement (BCA) Index # C224158-05-12, which was executed on May 22, 2012, and Brownfield Cleanup Agreement Amendment dated October 23, 2012.

1.1.1 General

Wythe and Kent Realty LLC entered into a BCA with the NYSDEC to remediate a 2.56 acre property located in Brooklyn, New York. This BCA required the Remedial Party, Wythe and Kent Realty LLC to investigate and remediate contaminated media at the Site. Figures showing the Site location and boundaries of this 2.56-acre "Site" are provided in **Figures 1** and **2**. The boundaries of the Site are more fully described in the metes and bounds Site description that is part of the Environmental Easement (see **Attachment E**).

After completion of the remedial work described in the Remedial Action Work Plan, elevated concentrations of chlorinated volatile organic compounds (CVOCs) from possible off-Site sources remain in soil gas at this Site. This Site Management Plan (SMP) was prepared to manage CVOCs in soil gas at the Site until the Environmental Easement is extinguished in accordance with ECL Article 71, Title 36. All reports associated with the Site can be viewed by contacting the NYSDEC or its successor agency managing environmental issues in New York State.

This SMP was prepared by AMC Engineering, on behalf of Wythe and Kent Realty LLC, in accordance with the requirements in NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation, dated May 2010, and the guidelines provided by NYSDEC. This SMP addresses the means for implementing the Institutional Controls (ICs) and Engineering Controls (ECs) that are required by the Environmental Easement for the Site.

1.1.2 Purpose

The Site contains elevated concentrations of CVOCs in soil gas from a possible off-Site source left after completion of the remedial action. Engineering Controls have been incorporated into the Site remedy to control exposure to remaining contamination during the use of the Site to ensure protection of public health and the environment. An Environmental Easement granted to the NYSDEC, and recorded with the Kings County Clerk, will require compliance with this SMP and all ECs and ICs placed on the Site. The ICs place restrictions on Site use, and mandate operation, maintenance, monitoring and reporting measures for all ECs and ICs. This SMP specifies the methods necessary to ensure compliance with all ECs and ICs required by the Environmental Easement to manage CVOCs in soil gas at the Site. This plan has been approved by the NYSDEC, and compliance with this plan is required by the grantor of the Environmental Easement and the grantor's successors and assigns. This SMP may only be revised with the approval of the NYSDEC.

This SMP provides a detailed description of all procedures required to address off-Site soil vapor contamination at the Site after completion of the Remedial Action, including: (1) implementation and management of all Engineering and Institutional Controls; (2) operation and maintenance of all the SSD systems; (3) performance of periodic inspections, certification of results, and submittal of Periodic Review Reports; and (4) defining criteria for termination of treatment system operations.

To address these needs, this SMP includes three plans: (1) an Engineering and Institutional Control Plan for implementation and management of EC/ICs; (2) a Monitoring Plan for implementation of Site Monitoring; and (3) an Operation and Maintenance Plan for the SSD systems. If sub-slab work is conducted in the future, a Health and Safety Plan must be prepared and forwarded to NYSDEC for review.

This plan also includes a description of Periodic Review Reports for the periodic submittal of data, information, recommendations, and certifications to NYSDEC. It is important to note that:

• This SMP details the Site-specific implementation procedures that are required by the Environmental Easement. Failure to properly implement the SMP is a violation of the environmental easement, which is grounds for revocation of the Certificate of Completion (COC);

• Failure to comply with this SMP is also a violation of Environmental Conservation Law, 6NYCRR Part 375 and the BCA Index #C224158-05-12 for Site # C-241158 for the Site, and thereby subject to applicable penalties.

1.1.3 Revisions

Revisions to this plan will be proposed in writing to the NYSDEC's project manager. In accordance with the Environmental Easement for the Site, the NYSDEC will provide a notice of any approved changes to the SMP, and append these notices to the SMP that is retained in its files.

1.2 SITE BACKGROUND

1.2.1 Site Location and Description

The address for the Site is listed as 431 Kent Avenue, Brooklyn, New York 11249. The Site is located in the City of New York and Borough of Brooklyn (Kings County). A United States Geological Survey (USGS) topographical quadrangle map (**Figure 1**) shows the Site location. As noted on the October 23, 2012, Brownfield Cleanup Agreement Amendment, the Site was designated as Portion of Tax Map/Parcel No. 3-2135-1 as depicted on the revised Site Map as Exhibit A. Exhibit A depicts the Site as two sections, a 60,488.96 ft² north half, and a 51,015.63 ft² south half (**Figure 2**). The Site now consists of Lot 1 (southern half of Site), and Lots 2, 3, 4, 5, 6, 7, 8, and 9 (northern half of Site) (**Figure 2**). The boundaries of the Site are fully described in **Appendix B**: Survey Map, Metes and Bounds.

1.2.2 Site History

The Phase I report noted that the Site was developed prior to 1884. From 1884 through 1945, the property was occupied by a variety of industrial and commercial operations including a steam pump manufacturer, machine shop, leather belting manufacturer, pen manufacturer, tin shop, silver polish manufacturer, a blacksmith, coffin manufacturer, paint manufacturer, wagon maker, parking garage, auto repair, rag sorting, iron & steel storage yard, fur dressing and dyeing, plating, cut sole manufacturing, appliance manufacturing and an analytical laboratory.

By 1947, nearly all of the Site occupants had been replaced by the F&M Schaeffer Brewing Company, which utilized the older buildings as storage for their brewing operations which were conducted on the adjacent properties to the west (430 to 490 Kent Avenue). The F&M Schaeffer Brewing Company

constructed three new large storage buildings on Block 2144 in the late 1940's, and utilized the parking garage on the north side of South 10th Street as a private parking garage.

In the late 1950's, the F&M Schaeffer Brewing Company combined the properties into a single lot by constructing a large 1 and 2-story warehouse and office building that extended from South 11th Street to South 9th Street, eliminating South 10th Street. The warehouse building was utilized for storage of packaged goods. The second floor located along the Kent Avenue and South 11th Street fronts was utilized as office space. Two old buildings on the corner of South 9th Street and Wythe Avenue were not demolished, and continued to be utilized as storage and office space.

The F&M Schaeffer Brewing Company closed its Brooklyn facility in 1976. Tenants of the warehouse and office building since 1976 include Domsey Fiber Corp (a used clothing factory with on-site dry cleaning and an outlet store that operated in the mid 1980's to early 2000's), Brooklyn Sleep Products (reconditioning of used mattresses and new mattress manufacturing), and Lucky Supply, Inc. (an aluminum and plastic food storage container distributor and warehouse that operated until the building was demolished in 2014). Buildings located on the north half of the Site were demolished in 2012, and the warehouse building on the south half of the Site was demolished in 2014.

1.2.3 Geologic Conditions

Subsurface soil at the Site included a silty non-native fill material with bricks, wood and other rubble which ranged in thickness from 2 foot below the building's slab grade in the eastern part of the Site to 12 feet below grade along the western side. The varying level of fill thickness was found to be attributed to the numerous former building's foundations and cellars that were constructed on the Site prior to the warehouse building. A native fine brown silty-sand was present immediately below the fill material to a depth of approximately 14 feet below grade. The fine silty-sand layer is underlain by a fine to coarse sand and gravel layer to the water table located approximately 22 feet below grade.

Groundwater at the Site is present at a depth of approximately 17 to 23 feet below surface grade within the native silty-sand. Groundwater flow is generally from the northeast to the southwest though there is an apparent mound in the water table in the northwest portion of the Site. The mound may be related to tidal influences from the East River which is less than 450 feet to the east, subsurface structures, or poor drainage in this area of the building. The potentiometric difference between shallow and deep well couplets were essentially neutral with no upward or downward potential.

1.3 SUMMARY OF REMEDIAL INVESTIGATION FINDINGS

A Remedial Investigation (RI) was performed to characterize the nature and extent of contamination at the Site. The results of the RI are described in detail in the following reports:

The Remedial Investigation (RI) of the Site was performed by EBC on behalf of the Volunteer, Wythe and Kent Realty LLC. The field work portion of the RI was performed between January 13, 2012, and August 20, 2012, in accordance with the protocols and methods as established in the approved Remedial Investigation Work Plan (EBC, dated March 2012, Revised June 2012). EBC documented the results of the RI in a Remedial Investigation Report (RIR) dated July 2012.

The purpose of the Remedial Investigation (RI) is to collect data of sufficient quality and quantity to characterize the nature and extent of petroleum contamination in on-Site groundwater and soil vapor, to complete a qualitative exposure assessment for future occupants of the building and the surrounding community and to evaluate alternatives to remediate the contamination.

The RI included the following tasks:

- Sampling for non-petroleum contaminants such as pesticides, PCBs and metals in soil and groundwater including the analysis of soil and groundwater samples;
- Soil sampling and analysis for petroleum and other volatile and semi-volatile organic compounds in soil samples from soil boring locations;
- The installation of groundwater monitoring wells;
- The collection and analysis of groundwater samples for petroleum compounds;
- The collection of analysis of soil gas and indoor air samples for VOCs from soil gas sampling locations.

1.3.1 Soil

The results of sampling performed during the RI identified chlorinated VOCs and SVOCs in soil which are likely related to a surface spill of waste fuel oil in the northwest corner of the building.

The soil boring program successfully delineated the extent of petroleum and PCE contamination identified in the northwest corner of the site (vicinity of ZA-B3) and responsible for the NYSDEC

Spill file. The zone of impacted soil was limited to less than a 35 foot radius around the ZA-B3 boring and to a vertical depth of 15 feet.

Although this area was significantly contaminated with petroleum related to a diesel or fuel spill, it did not reach the water table and did not appear to be affecting groundwater quality. The only detection of chlorinated solvents at the Site (PCE at 2,000 μ g/kg) was also at this same location and depth. However, groundwater samples collected at this location and in the four monitoring wells within a 35 foot radius did not have significantly elevated concentrations of PCE or TCE. The highest concentrations of CVOCs in groundwater were reported in MW1s and ZA-GW1 in the northeastern corner of the lot, MW6S/6D and ZC-GW3 in the east central area and MW11S in the southwestern portion of the lot. This distribution was consistent with the general northeast to southwest flow direction observed at the Site and suggested an off-Site source. In any case, the observed distribution of CVOCs in groundwater were isolated levels of metals in three areas of the Site were isolated occurrences and did not appear to be related to a source area.

No other source areas were identified or indicated during this RI. Elevated levels of SVOCs and metals reported in shallow soil throughout the Site are characteristic of the historic fill materials present at the Site and throughout the area.

Summary tables of soil results from the Remedial Investigation are provided in Attachment A.

1.3.2 Groundwater

With the exception of 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene detected within the MW4D groundwater sample, there were no Petroleum VOC impacts to groundwater. SVOC parameters were detected in the parts per trillion range across most of the Site but appear to be representative of general groundwater quality in the area. There were some SVOC detections at the ZA-GW3 location which do appear to be related to the SVOCs reported in soil at this location. However, since the groundwater sample was collected from the same boring as the impacted soil, it is likely that the SVOCs detected in groundwater were the result of the drilling process since elevated SVOCs were not reported in the deeper soil sample from the ZA-B3 location.

CVOC impacts to groundwater were highest near the northeast corner and appear to be migrating in a southwest direction with groundwater flow. The absence of CVOCs in soil in this area and the Site-wide distribution of CVOCs in groundwater, suggests an off-Site source.

Summary tables of groundwater results from the Remedial Investigation are provided in **Attachment A**.

1.3.3 Soil Vapor

Total VOC concentrations detected in soil vapor samples collected during the RI were elevated due to high concentrations of ethanol and isopropyl alcohol reported in all samples. The origin of these alcohols is not known but based on the uniform concentrations and universal presence they are not Site related.

Total petroleum related volatile organic compounds were generally low ranging from 24 μ g/m³ in ZBSG3 located near the southwest corner of the lot to 4 μ g/m³ in ZCSG3 located in the west central area of the building. Petroleum VOCs were also low in the indoor air samples ranging from 6 to 27 μ g/m³. The levels reported are consistent with general background concentrations observed throughout the Williamsburg area of Brooklyn.

Chlorinated VOCs (CVOCs) were reported in all soil vapor samples at concentrations ranging from 10 μ g/m³ in ZA-SG1 in the northeast corner of the lot to 19,000 μ g/m³ in PSG8 near the west central property line.

TCE was reported above the maximum sub-slab value of 50 μ g/m³ (above which monitoring is recommended) in eight perimeter locations (PSG2-PSG9) and nine interior soil vapor locations (ZBSG1-3, ZCSG1-3, ZDSG1-3). PCE was reported at a maximum sub-slab value of 100 μ g/m³ (above which monitoring is recommended) in five of the perimeter locations only (PSG7-PSG11). PCE and TCE were not reported above air guidance values in any of the indoor air samples. The highest concentration (by an order of magnitude) of PCE in soil vapor was the P-SG8 location along the west property line in the southern half of the former warehouse building located on the south half of the Site. The highest concentrations of TCE in soil vapor were also in the warehouse building along the east and south property lines. This distribution does not appear to correlate with PCE and TCE distribution in groundwater in which the highest concentrations were reported in the northeast corner of the property. Elevated levels of PCE and TCE were not reported within interior or perimeter soil vapor locations within Zone A in the northwest corner of the building where the only detection of PCE in soil was reported. Therefore there also does not appear to be a correlation between PCE contamination in soil and that in soil vapor.

In general, both PCE and TCE concentrations were higher in perimeter soil vapor samples than they were in soil vapor sampling points located within the interior area of the building. Summary tables of soil vapor results from the Remedial Investigation are provided in **Attachment A**.

1.3.4 Aboveground/Underground Storage Tanks

The Site is identified in the NYSDEC Petroleum Bulk Storage database as Facility Site No. 2-349275. According to NYSDEC PBS records, prior to the remediation one 5,000 gallon aboveground storage tank (AST) was registered to the property. The aboveground storage tank was located within the one-story warehouse building on the southern half of the Site. This tank was permanently closed/removed during building demolition completed at the Site in July 2014. The tank removal was documented in accordance with 6 NYCRR Part 612.2 and 613.9 by submitting a modified Application for Petroelum Bulk Storage Registration identifying the tank and the date of permanent closure/removal.

1.4 SUMMARY OF REMEDIAL ACTIONS

The Site was remediated in accordance with the remedy selected in the NYSDEC-approved Remedial Action Work Plan (RAWP) dated October 2012 and documented in the NYSDEC's Decision Document dated October 2012.

The factors considered during the selection of the remedy are those listed in 6NYCRR 375-1.8. The following are the components of the selected remedy:

- 1. Decommissioning and removal of aboveground storage tanks (ASTs) and underground storage tanks (USTs, if encountered);
- Excavation of all soil/fill exceeding Track 1 SCOs listed in Table 1, including petroleum- and CVOC-impacted soil from an approximate 1,500 sf area in the northwest corner of the property and metal-impacted soils from several isolated areas at the Site;

- 3. Screening for indications of contamination (by visual means, odor, and monitoring with PID) of all excavated soil during any intrusive Site work;
- 4. Collection and analysis of end-point samples to evaluate the performance of the remedy with respect to attainment of Track 1 SCOs;
- 5. Appropriate off-Site disposal of all material removed from the Site in accordance with all Federal, State and local rules and regulations for handling, transport, and disposal;
- 6. Import of materials to be used for backfill and cover in compliance with: (1) chemical limits and other specifications included in Table 1, (2) all Federal, State and local rules and regulations for handling and transport of material;
- 7. Installation of a sub-slab depressurization system and vapor barrier beneath occupied areas of the building to be constructed on the Site. An SSDS was not required beneath the parking garage portions of the building as these areas are equipped with mechanical ventilation to remove vehicle fumes in accordance with NYC Mechanical Code;
- Implementation of a Site Management Plan (SMP) to ensure maintenance of the Engineering Controls;
- 9. Recording of an Environmental Easement against the Site to ensure implementation of the SMP.

(Note: In order to maintain Track 1 cleanup status, the Site Management Plan and Environmental Easement must be extinguished within 5 years of the issuance of the Certificate of Completion.)

Remedial activities, including the excavation and/or removal of USTs, historic fill to a depth of 15 feet below grade and hot-spot areas to a depth of 16 feet below grade, were completed for the north half of the Site from November 2012 through June 2013. Installation of the vapor barrier and sub-slab depressurization system below the buildings constructed on north half of the Site was completed in July 2013.

Remedial activities, including the excavation and/or removal of an AST, historic fill to a depth of 15 feet below grade and metals hot-spot areas to a depth of 16 feet below grade were completed on the southern half of the Site from September 2014 through November 2014. Installation of a vapor barrier and sub-slab depressurization system below buildings to be constructed on the southern half of the Site will be completed as part of building construction activities. The vapor barrier will extend across the

entire Site, but the sub-slab depressurization system will not extend below proposed parking garage portions of the building as they will be mechanically ventilated in accordance with NYC Mechanical Code.

1.4.1 AST and UST Removal

One 5,000-gallon No. 2 fuel oil AST was located within the warehouse located in the southern half of the Site. The AST was properly cleaned and removed in June of 2014 prior to demolition of the warehouse building.

During excavation of the northern half of the Site, sixteen USTs were encountered.

- On November 29, 2012, a 1,000-gallon No. 2 fuel oil storage tank was encountered in Grid Section A. ABC Tank Repair & Lining, Inc. removed the liquids/sludge with a vacuum truck for off-site disposal. The tank was then cleaned, removed from the ground and transported to a local scrap metal yard for recycling.
- On December 3, 2012, a 1,000-gallon No. 2 fuel oil storage tank was encountered in Grid Section
 F. On December 4, 2012, ABC Tank Repair & Lining, Inc. removed the liquids/sludge with a
 vacuum truck for off-site disposal. The tank was then cleaned, removed from the ground and
 transported to a local scrap metal yard for recycling. A slight petroleum odor, and elevated PID
 readings were reported below the tank, so the NYSDEC was contacted, and NYSDEC Spill No.
 12-13023 was assigned. The petroleum contaminated soil was excavated and properly disposed
 off-site with the historic fill excavated from Grid Section F at a facility permitted to accept
 petroleum impacted soil. Site wide endpoint soil samples collected following excavation for the
 new building confirmed complete removal of petroleum impacted soil associated with NYSDEC
 Spill No. 1213023.
- On February 8, 2013, a 3,000-gallon No. 2 fuel oil storage tank was encountered in Grid Section E. On February 19, 2013, ABC Tank Repair & Lining, Inc. removed the liquids/sludge with a vacuum truck for off-site disposal. The tank was then cleaned, removed from the ground and transported to a local scrap metal yard for recycling.

A NYSDEC PBS Application was submitted to the NYSDEC under existing PBS Number 2-349275 to indicate a "Change of Ownership" and "Closed-Removed" for the three underground storage tanks. A

separate NYSDEC PBS Application was submitted to the NYSDEC under existing PBS Number 2-349275 to indicate an "Information Change" to (a) change the removal/closure date of the 5,000 gallon aboveground storage tank to 6/18/2014, and (b) change the size of Tank No. 023 to 1,000 gallons. Tank No. 023 was incorrectly reported as a 550 gallon underground storage tank on the first PBS Application submitted to the NYSDEC, and the 5,000 gallon AST was incorrectly deregistered in 2008. In accordance with New York City regulations, tank removal affidavits were filed with the New York City Fire Department (FDNY).

1.4.2 Removal of Contaminated Materials from the Site

Historic Fill Excavation and Disposal - Northern Half of Site

In September of 2012, prior to commencement of Site excavation, test pits were performed throughout the northern half of the Site within 8 Grid Sections (A through H) as shown on Figure 4A. The test pits were performed to collect composite and grab waste characterization soil samples for all soil that required excavation for the new buildings, which included both the historic fill material layer across the northern half of the Site and the clean soil layer located below the historic fill material. Collection and analysis of the waste characterization soil samples prior to site excavation eliminated the need for stockpiling, and allowed for direct loading. Soil characterized by EBC personnel as historic fill was found throughout the northern half of the Site ranging from 3 to 4 feet below grade to depths as great as 15 feet below grade. EBC personnel characterized historic fill as soil that contained materials such as brick, concrete, glass or ceramics, cinder, etc.

All historic fill material within the northern half of the Site, with the exception of Grid Section A from a depth of 8 to 12 feet below grade, and Grid Section B from a depth of 6 to 9 feet below grade was characterized as non-hazardous, and disposed at either the Clean Earth of New Castle facility in New Castle, Delaware, the Clean Earth of Philadelphia facility in Philadelphia, Pennsylvania, the Clean Earth of Southeast Pennsylvania facility in Morrisville, Pennsylvania, or the Clean Earth of Carteret facility in Carteret, NJ. The laboratory results of the waste characterization soil samples collected from Grid Sections A(8-12) and B(6-9) (see Figure 4A) classified the historic fill material as D008 hazardous soil due to a TCLP lead concentration greater than 5.0 mg/L. Historic fill material from both A(8-12) and B(6-9) was disposed at the RCRA Part B permitted transfer, storage and disposal facility (TSDF) Clean Earth of North Jersey, located in Kearny, New Jersey.

Historic fill material across the northern half of the Site was excavated within each of the 8 Grid Sections down to the clean soil layer in lifts/depths according to the waste characterization sampling intervals and approval letters obtained from the disposal facilities. Excavation of the historic fill material and clean soil was performed by the excavation contractor (East Coast Drilling).

A total of 661.3 tons of D008 hazardous soil was excavated from A(8-12) and B(6-9) and disposed at Clean Earth of North Jersey. A summary of the non-hazardous soil transported off-Site to the designated facilities is provided below.

Disposal Facility	Non-Hazardous (Tons)	Hazardous (Tons)
Clean Earth of New Castle	14,942.17	-
Clean Earth of Carteret	6,998.69	-
Clean Earth of North Jersey	661.33	-
Clean Earth of Philadelphia	3,571.33	-
Clean Earth of Morrisville (Southeast PA)	29,495.51	-
Clean Earth of North Jersey	-	661.3

Historic Fill Excavation and Disposal - Southern Half of Site

In July of 2014, prior to commencement of Site excavation, test pits were performed throughout the southern half of the Site within 9 Grid Sections (I through Q) as shown on Figure 4B. The test pits were performed to collect composite and grab waste characterization soil samples for all soil that required excavation for the new buildings, which included both the historic fill material layer across the southern half of the Site and the clean soil layer located below the historic fill material. Collection and analysis of the waste characterization soil samples prior to Site excavation eliminated the need for stockpiling, and allowed for direct loading. Soil characterized by EBC personnel as historic fill was found throughout the southern half of the Site ranging from 3 feet below grade to depths as great as 12 feet below grade. EBC personnel characterized historic fill as soil that contained materials such as brick, concrete, glass or ceramics, cinder, etc.

All historic fill material within the southern half of the Site was characterized as non-hazardous, and disposed at either the Clean Earth of Carteret facility in Carteret, NJ, Bellmawr Waterfront Development (BWD) in Bellmawr, New Jersey, or Prospect Park property located at 100 Planten Avenue in Prospect Park, New Jersey.

Historic fill material across the southern half of the Site was excavated within each of the nine Grid Sections down to the clean soil layer in lifts/depths according to the waste characterization sampling intervals and approval letters obtained from the disposal facilities. Excavation of the historic fill material was performed by the excavation contractor (United Industries Inc.). The total quantities of soil transported each of the disposal facilities is summarized in the table below.

Disposal Facility	Tons
Clean Earth of Carteret	17,852.28
Prospect Park	4,275.46
Bellmawr	8,172.33

Following excavation of historic fill material down to the clean soil layer, endpoint soil samples were collected to confirm achievement of Track 1 Unrestricted Use SCOs.

Hot Spot CVOC and Petroleum Contaminated Soil Excavation and Disposal - Northern Half of Site

A tetrachloroethylene (PCE) hotspot was identified during the Remedial Investigation within soil sample ZAB3 (13-15 ft). The PCE concentration detected within soil sample ZAB3 (13-15 ft) was 2,000 μ g/kg. PCE was not detected within any of the follow-up soil samples collected from delineation soil borings performed around soil boring ZAB during the RI. Soil boring ZAB3 was performed in the northwest corner of the Site within the loading bay area of the Former Domsey Fiber Corp. building.

During Site excavation at a depth of approximately 13 ft, a slight odor was observed in the approximate area of soil boring ZAB3. The area was designated as "Hot Spot 4". In order to obtain soil disposal approval at the proposed soil disposal facility (Clean Earth of Southeast Pennsylvania, located at 7 Steel Road East in Morrisville, Pennsylvania), EBC collected waste characterization samples from Hot Spot 4 on February 25, 2013. EBC estimated the quantity of soil to be excavated from Hot Spot 4 to be approximately 500 cubic yards. Therefore, based on the disposal facility sampling frequency requirement, EBC collected one five point composite sample for laboratory analysis of metals, TCLP metals, RCRA Characteristics, PCBs, volatile organic compounds (VOCs), TCLP VOCs, semi-volatile organic compounds (SVOCs), TCLP SVOCs, and Redox potential, and 4 discrete grab samples for laboratory analysis of total petroleum hydrocarbons (TPH), and VOCs. PCE was only detected within one of the four grab samples (9.2 μ g/kg). No other CVOCs were detected within the grab samples. TCLP VOCs and TCLP SVOCs were non-detect for the composite sample collected. A formal request for a Contained-In Letter was prepared by EBC and forwarded to the NYSDEC on April 22, 2013, and

the NYSDEC issued a formal "Contained-In" determination on April 30, 2013 to allow the soil to be handled, transported and disposed of as non-hazardous waste.

From May 21, 2013 to May 28, 2013, a remedial contractor (Eastern Environmental Solutions, Inc.) was on-Site to excavate the hot-spot and load the soil into trucks for transport to Clean Earth of Southeast Pennsylvania. Following excavation to a depth of approximately 16 feet below grade, EBC field screened the soil at the base of the excavation and sidewalls for evidence of contamination. No physical, olfactory, or PID evidence of contamination was encountered, and EBC collected endpoint samples to verify that impacted soil was successfully removed. Tetrachloroethylene (PCE) was not reported in any of the endpoint samples and no SVOCs were detected above Unrestricted Use Soil Cleanup Objectives (SCOs) within any of the endpoint soil samples. However, elevated concentrations of several SVOCs were detected in one sidewall soil sample (but below Unrestricted Use SCOs) that skewed the method detection limit of several contaminants above Unrestricted Use SCOs, and several gasoline related volatile organic compounds were detected above Unrestricted Use SCOs within the same sidewall sample. Additional excavation from the sidewall area was performed, and a follow-up endpoint soil sample was collected confirming achievement of Unrestricted Use SCOs within the Hot Spot 4 area.

C&D Debris Removal – Northern Half of Site

C&D debris consisting of concrete slabs and concrete and brick foundation walls from the Site's former buildings were encountered during excavation of the north half of the Site. Large pieces of brick and concrete were segregated from historic fill, broken into pieces small enough to load in a truck, and stockpiled to await off-Site disposal. A total of approximately 71 truck loads of were transported to Evergreen Recycling of Corona, located at 127-50 Northern Boulevard, Flushing, New York 11368. Evergreen Recycling of Corona is a Construction and Demolition Debris Processing Facility registered with NYSEC (Registration Number 41W93) to accept uncontaminated concrete, asphalt and soil. No concrete removed from the ground at the Site exhibited visual or olfactory evidence of contamination (odor, staining, discoloration, excessive paint) and was considered clean concrete.

Clean Native Soil Removal - Northern Half of Site

Clean native soil was evaluated by EBC personnel based upon field screening results, which included visual and olfactory inspection, and the collection of multiple PID readings. Clean native soil was encountered across the northern half of the Site at depths ranging from 3 to 4 feet below grade to depths as great as 15 feet below grade. As previously noted, waste characterization soil samples were collected from the clean soil that would require excavation for construction of the new buildings prior to Site excavation. Therefore, the clean soil below the historic fill material layer that required excavation for the new building's cellar levels was excavated and loaded into trucks for transport to Malanka Landfill located in Secaucus, New Jersey.

An additional 1,000 cubic yards of clean native soil excavated from the Site was tested, confirmed clean and reused as backfill on-Site, and additional 5,000 cubic yards was used as backfill off-Site, behind the shoring constructed along the perimeter of the Site.

Following excavation of clean soil required to be excavated for construction of the new buildings' cellar levels, endpoint soil samples were collected. Within several areas, metals such as chromium and/or nickel were detected above Unrestricted Use SCOs. These areas were re-excavated and new confirmatory endpoint soil samples were collected until these metals were detected below Unrestricted Use SCOs.

<u>C&D Debris Removal – Southern Half of Site</u>

C&D debris consisting of concrete slabs and concrete and brick foundation walls from the Site's former buildings were encountered during excavation of the south half of the Site. Large pieces of brick and concrete were segregated from historic fill, broken into pieces small enough to load in a truck, and stockpiled to await off-Site disposal. A total of approximately 76 truck loads of C&D were transported to South Shore Materials, Inc., located at 60 South 4th Street, Bay Shore, New York 11706. South Shore Materials, Inc. is a Construction and Demolition Debris Processing Facility registered with NYSEC (Registration Number 52W06R) to accept uncontaminated concrete and asphalt. No concrete removed from the ground at the Site exhibited visual or olfactory evidence of contamination (odor, staining, discoloration, excessive paint) and was considered clean concrete.

Clean Native Soil Removal - Southern Half of Site

No clean native soil has been excavated within the footprint of the southern half of the Site. Clean native soil will be excavated in the future as needed for construction of the proposed new buildings.

1.4.3 Import of Backfill

Approximately 400 cubic yards of 3/4 inch diameter recycled concrete aggregate (RCA) was imported to the Site for use as backfill within the foundations of the buildings around the SSD system piping and as an underlayment for the construction of the buildings' slabs.

1.4.4 Remaining Contamination

All soil remaining within the boundaries of the Site meets Unrestricted Use SCOs as confirmed by endpoint soil sampling.

2.0 ENGINEERING AND INSTITUTIONAL CONTROL PLAN

2.1 INTRODUCTION

2.1.1 General

Since remaining contaminated soil vapor exists beneath the Site, Engineering Controls and Institutional Controls (EC/ICs) are required to protect human health and the environment. This Engineering and Institutional Control Plan describes the procedures for the implementation and management of all EC/ICs at the Site. The EC/IC Plan is one component of the SMP and is subject to revision by the NYSDEC.

A summary of the remedial strategies and EC/ICs implemented at the Site are as follows:

- 1. Decommissioning and removal of aboveground storage tanks (ASTs) and underground storage tanks (USTs, if encountered);
- Excavation of all soil/fill exceeding Track 1 SCOs listed in Table 1, including petroleum- and CVOC-impacted soil from an approximate 1,500 sf area in the northwest corner of the property and metal-impacted soils from several isolated areas at the Site;
- 3. Screening for indications of contamination (by visual means, odor, and monitoring with PID) of all excavated soil during any intrusive Site work;
- 4. Collection and analysis of end-point samples to evaluate the performance of the remedy with respect to attainment of Track 1 SCOs;
- 5. Appropriate off-Site disposal of all material removed from the Site in accordance with all Federal, State and local rules and regulations for handling, transport, and disposal;
- 6. Import of materials to be used for backfill and cover in compliance with: (1) chemical limits and other specifications included in Table 1, (2) all Federal, State and local rules and regulations for handling and transport of material;
- 7. Installation of a sub-slab depressurization system and vapor barrier beneath occupied areas of the building to be constructed on the Site. An SSDS was not required beneath the parking garage portions of the building as these areas are equipped with mechanical ventilation to remove vehicle fumes in accordance with NYC Mechanical Code;
- Implementation of a Site Management Plan (SMP) to ensure maintenance of the Engineering Controls;

9. Recording of an Environmental Easement against the Site to ensure implementation of the SMP.

(Note: In order to maintain Track 1 cleanup status, the Site Management Plan and Environmental Easement must be extinguished within 5 years of the issuance of the Certificate of Completion.

2.1.2 Purpose

This plan provides:

- A description of all EC/ICs on the Site;
- The basic implementation and intended role of each EC/IC;
- A description of the key components of the ICs set forth in the Environmental Easement;
- A description of the features to be evaluated during each required inspection and periodic review;
- A description of plans and procedures to be followed for implementation of EC/ICs;
- Any other provisions necessary to identify or establish methods for implementing the EC/ICs required by the Site remedy, as determined by the NYSDEC.

2.2 ENGINEERING CONTROLS

2.2.1 Engineering Control Systems

2.2.1.1 Vapor Mitigation System - Northern Half of Site

New York City Mechanical Code requires sub-grade parking areas to be ventilated to remove vehicle exhaust. The required ventilation functions as a vapor mitigation system. For those areas of the on-site buildings which do not have ventilated parking, a sub-slab depressurization (SSD) system and vapor barrier were designed and installed beneath the cellar levels of the new buildings constructed on the northern half of the Site.

A separate SSD system consisting of a single venting zone was installed beneath the mechanical/ utility portion of each of the basement slabs of the eight buildings constructed on the northern half of the Site. Each venting zone provides coverage of approximately 3,125 sf of slab area. This is consistent with USEPA sub-slab depressurization design specifications which recommend a separate vent loop for every 4,000 sf of slab area. The horizontal vent line is constructed with a continuous loop of perforated 4-inch HDPE pipe. In each zone, the horizontal pipe extends to an adjacent utility chaseway where it is be piped individually to the roof via a 8-inch schedule 40 PVC line. In accordance with the design plans, virgin-mined, $\frac{1}{2}$ inch to $\frac{3}{4}$ inch gravel was placed around the horizontal vent piping and in a 2 inch layer beneath the entire slab.

A vapor barrier was installed over the gravel bed prior to pouring the concrete slab of each of the eight buildings constructed on the northern half of the Site. The vapor barrier consists of a 20 mil polyethylene/EVOH resin liner system as manufactured by Raven Industries. The vapor barrier extends throughout the occupied area of each of the new buildings. All seams and perforations in the vapor barrier were sealed using tape as supplied by the manufacturer and a liquid membrane sealer.

Procedures for operating and maintaining the SSD system are documented in the Operation and Maintenance Plan (Section 4 of this SMP). Procedures for monitoring the system are included in the Monitoring Plan (Section 3 of this SMP). The Monitoring Plan also addresses severe condition inspections in the event that a severe condition, which may affect controls at the Site, occurs.

Detailed specifications of the SSD system, and an as-built drawing detailing the SSD system are provided **Attachment B**.

2.2.1.2 Vapor Mitigation System – Southern Half of Site

Redevelopment of the southern half of the Site has not commenced as of the date of this Site Management Plan. All new buildings constructed on the southern half of the Site will be required to have either ventilated parking or an active SSDS to address vapor mitigation in the entire building(s). The installation of the SSD systems will be completed as part of the Site Management.

2.2.2 Criteria for Completion of Remediation/Termination of Remedial Systems

Generally, remedial processes are considered completed when effectiveness monitoring indicates that the remedy has achieved the remedial action objectives identified by the decision document. The framework for determining when remedial processes are complete is provided in Section 6.6 of NYSDEC DER-10.

2.2.2.1 Vapor Barrier and Sub-slab Depressurization System (SSDS)

The vapor barrier is a permanent control.

The active SSD systems will not be discontinued unless prior written approval is granted by the

NYSDEC. In the event that monitoring data indicates that the SSD systems are no longer required, a proposal to discontinue the SSD systems will be submitted by the property owner to the NYSDEC and NYSDOH. In order to determine if the SSD systems can be discontinued, a separate Work Plan will be provided within the first Periodic Review Report that will include specifications for evaluating the status of the migration of contaminants in groundwater and soil vapor onto the Site.

2.3 INSTITUTIONAL CONTROLS

The intent of this project is to achieve Track 1 Cleanup criteria on one or both parcels which comprise the Site, however, since residually contaminated groundwater and soil vapor may remain on the Site following the remedial action, an Engineering Control in the form of an SSDS is required, at least initially, for this remedy. Operation of the active SSDS must be terminated within 5 years to maintain the Track 1 status. Since an Engineering Control in the form of active vapor mitigation is required for this remedy, Institutional Controls are also required to: (1) implement, maintain and monitor Engineering Control systems; and (2) limit the use and development of the to residential uses only. Adherence to these Institutional Controls on the Site is required by the Environmental Easement and will be implemented under this Site Management Plan.

These Institutional Controls are:

- Compliance with the Environmental Easement by the Grantor and the Grantor's successors and assigns with all elements of this SMP;
- All Engineering Controls must be operated and maintained as specified in this SMP;
- A soil vapor mitigation system consisting of an active sub-slab depressurization system/vapor barrier under each building must be inspected, certified, operated and maintained as required in this SMP;
- Data and information pertinent to Site Management for the Controlled Property must be reported at the frequency and in a manner defined in this SMP;
- Engineering Controls may not be discontinued without an amendment or the extinguishment of this Environmental Easement.

Institutional Controls identified in the Environmental Easement may not be discontinued without an amendment to or extinguishment of the Environmental Easement.

The Site has a series of Institutional Controls in the form of Site restrictions. Adherence to these Institutional Controls is required by the Environmental Easement. Site restrictions that apply to the Controlled Property are:

- Use of groundwater underlying the Controlled Property is prohibited without treatment rendering it safe for intended purpose;
- A soil vapor mitigation system consisting of an active sub slab depressurization system under the occupied area of the building must be inspected, certified, operated and maintained as required by the SMP;
- Compliance with the Environmental Easement by the Grantee and the Grantee's successors and adherence of all elements of the SMP is required;
- All Engineering Controls must be operated and maintained as specified in the SMP;
- Grantor agrees to submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP.
- NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time that NYSDEC may allow. This statement must be certified by an expert that the NYSDEC finds acceptable. The property may only be used for residential, restricted residential, commercial or industrial use provided that the long-term Engineering and Institutional Controls included in this SMP are employed. The property may not be used for a higher level of use, such as unrestricted use, without amendment of the Environmental Easement, as approved by the NYSDEC;

2.4 INSPECTIONS AND NOTIFICATIONS

2.4.1 Inspections

Inspections of all remedial components installed at the Site will be conducted at the frequency specified in the SMP Monitoring Plan schedule. A comprehensive Site-wide inspection will be conducted annually, regardless of the frequency of the Periodic Review Report. The inspections will determine and document the following:

- Whether Engineering Controls continue to perform as designed;
- If these controls continue to be protective of human health and the environment;
- Compliance with requirements of this SMP and the Environmental Easement;
- Achievement of remedial performance criteria;
- Sampling and analysis of appropriate media during monitoring events;
- If site records are complete and up to date; and
- Changes, or needed changes, to the remedial or monitoring system;

Inspections will be conducted in accordance with the procedures set forth in the Monitoring Plan of this SMP (Section 3). The reporting requirements are outlined in the Periodic Review Reporting section of this plan (Section 5).

If an emergency, such as a natural disaster or an unforeseen failure of any of the ECs occurs, an inspection of the Site will be conducted within 5 days of the event to verify the effectiveness of the EC/ICs implemented at the site by a qualified environmental professional as determined by NYSDEC.

2.4.2 Notifications

Notifications will be submitted by the property owner to the NYSDEC as needed for the following reasons:

- 60-day advance notice of any proposed changes in Site use that are required under the terms of the Brownfield Cleanup Agreement (BCA).
- Notice within 48-hours of any damage or defect to the foundations structures that reduces or has the potential to reduce the effectiveness of other Engineering Controls and likewise any action to be taken to mitigate the damage or defect.
- Verbal notice by noon of the following day of any emergency, such as a fire, flood, or earthquake that reduces or has the potential to reduce the effectiveness of Engineering Controls in place at the Site, with written confirmation within 7 days that includes a summary of actions taken, or to be taken, and the potential impact to the environment and the public.
- Follow-up status reports on actions taken to respond to any emergency event requiring ongoing responsive action shall be submitted to the NYSDEC within 45 days and shall describe and document actions taken to restore the effectiveness of the ECs.

Any change in the ownership of the Site or the responsibility for implementing this SMP will include the following notifications:

- At least 60 days prior to the change, the NYSDEC will be notified in writing of the proposed change. This will include a certification that the prospective purchaser has been provided with a copy of the Brownfield Cleanup Agreement (BCA), and all approved work plans and reports, including this SMP.
- Within 15 days after the transfer of all or part of the Site, the new owner's name, contact representative, and contact information will be confirmed in writing.

2.5 CONTINGENCY PLAN

Emergencies may include injury to personnel, fire or explosion, environmental release, or serious weather conditions.

2.5.1 Emergency Telephone Numbers

In the event of any environmentally related situation or unplanned occurrence requiring assistance the Owner or Owner's representative(s) should contact the appropriate party from the contact list below. For emergencies, appropriate emergency response personnel should be contacted. Prompt contact should also be made to a qualified environmental professional. These emergency contact lists must be maintained in an easily accessible location at the Site.

Medical, Fire, and Police:	911
One Call Center:	(800) 272-4480(3 day notice required for utility markout)
Poison Control Center:	(800) 222-1222
Pollution Toxic Chemical Oil Spills:	(800) 424-8802
NYSDEC Spills Hotline	(800) 457-7362

Emergency Contact Numbers

Site Contact Numbers

Building Superintendant: To be Determined	
Owner Contact: Joel Braver	(718) 625-2000

Environmental Consultant: EBC	(631) 504-6000
NYSDEC Project Manager: Shaun Bollers	(718) 482-4096

* Note: Contact numbers subject to change and should be updated as necessary

2.5.2 Map and Directions to Nearest Health Facility

Site Location:	431 Kent Avenue, Brooklyn, NY
Nearest Hospital Name:	Woodhull Medical Center
Hospital Location:	760 Broadway, Brooklyn, New York 11206
Hospital Telephone:	(718) 963-8000

2.5.3 Response Procedures

As appropriate, the fire department and other emergency response group will be notified immediately by telephone of the emergency. The emergency telephone number list is found at the beginning of this Contingency Plan. The list will also be posted prominently at the Site and made readily available to all personnel at all times.

All environmental releases shall be contained as close to the source as possible. Whenever possible, the MSDS will be consulted to assist in determining the best means of containment and cleanup. For small spills, sorbent materials such as sand, sawdust or commercial sorbents should be placed directly on the substance to contain the spill and aid recovery. Any acid spills should be diluted or neutralized carefully prior to attempting recovery. Berms of earthen or sorbent materials can be used to contain the leading edge of the spills. Drains or drainage areas should be blocked. All spill containment materials will be properly disposed. An exclusion zone of 50 to 100 feet around the spill area should be established depending on the size of the spill. The following steps should be taken by the Emergency Coordinator:

- Determine the nature, identity and amounts of major spill components;
- If a flammable liquid, gas or vapor is involved, remove all ignition sources and use nonsparking and/or explosive proof equipment to contain or clean up the spill (diesel only vehicles, air operated pumps, etc.);
- Make sure all unnecessary persons are removed from the spill area;
- Take action to stop or minimize the spill; such as shutting down equipment,
- Notify appropriate response teams and authorities;
- Use proper PPE in handling of the spill;
- If possible, try to stop the leak with appropriate material; and,
- Remove all surrounding materials that can react or compound with the spill.
- Ensure spilled material, containment material and PPE are contained for proper disposal.

In order to mobilize the manpower resources and equipment necessary to cope with a fire or other emergency, a clear chain of authority should be established. The local fire department will take charge of all emergency response activities and dictate the procedures that will be followed for the duration of the emergency. The fire department will report immediately to the scene of the emergency, assess the seriousness of the situation, and direct whatever efforts are necessary until the emergency response units arrive. All project personnel will be instructed on proper emergency response procedures and locations of emergency telephone numbers. If an emergency occurs, including but not limited to fire, explosion or significant release of fuel, all heavy equipment will be shut down and all personnel will evacuate the work areas and assemble at an evacuation meeting point.

The emergency responders will give directions for implementing whatever actions are necessary. If traffic control is necessary, as in the event of a fire or explosion, a project team member, who has been trained in these procedures and designated at the Site safety meeting, will take over these duties until local police and fire fighters arrive. Any future amendments to the Contingency Plan will be included in this section.

3.0 OPERATION AND MAINTENANCE PLAN

3.1 INTRODUCTION

This Operation and Maintenance Plan describes the measures necessary to operate, monitor and maintain the mechanical components of the active SSD systems installed below the eight buildings constructed on the northern half of the Site, and the active SSD systems that will be installed below the buildings planned for constructed on the southern half of the Site. This Operation and Maintenance Plan:

- Includes the steps necessary to allow individuals unfamiliar with the Site to operate and maintain the SSD systems;
- Includes an operation and maintenance contingency plan; and,
- Will be updated periodically to reflect changes in site conditions or the manner in which the SSD systems are operated and maintained.

A copy of this Operation and Maintenance Plan, along with the complete SMP, will be kept at the Site. This Operation and Maintenance Plan is not to be used as a stand-alone document, but as a component document of the SMP.

3.2 ENGINEERING CONTROL SYSTEM OPERATION AND MAINTENANCE

3.2.1 SSD System Scope

The SSD systems installed below the eight buildings constructed on the northern half of the Site and SSD systems to be installed below the new buildings constructed on the southern half of the Site will operate 24/7, with no maintenance requirements. Periodic annual inspections will be performed to assure that the system is continuing to operate properly. Each fan is/will be fitted with a pressure switch which will activate a visual and audible alarm if the fan stops operating. Each building's SSDS alarm is located within the basement, near the stairwell. A laminated sign is posted next to each alarm that provides notification information in case the alarm sounds. A copy of the sign is included in Appendix B. In addition, the building superintendent will be responsible for periodically checking SSDS alarms to determine if an alarm(s) has sounded.

3.2.2 SSD System Start-Up and Testing

The start-up test procedure for the eight SSD systems located on the north half of the Site consisted of a visual inspection to make sure all of the system components were installed properly. On November 26, 2014, each SSD system was started individually and checked for leaks and adequate pressure at the discharge stack. Power to each blower was then cut in sequence to verify that each warning alarm was functioning properly. Vacuum readings were taken from two locations within each building from below the cellar slab using a digital manometer. The sub-slab vacuum reading locations are shown on **Figure 5**. Vacuum readings ranging from -0.13" of water to -1.26" of water were recorded, indicating sub-slab soil vapor is being drawn to the SSD system piping, and the system is operating as designed. Certification of system start-up and proper operation are included in **Attachment B**. Each of the sub-slab vacuum sampling locations were created by drilling a hole through the concrete slab and vapor barrier to allow access for a 3/8 inch diameter sampling tube which is sealed to the concrete slab. The tube was then connected to a digital manometer to provide a vacuum reading and demonstrate negative pressure. Following collection of the vacuum readings, each sampling port was permanently sealed to prevent preferential pathway for vapor intrusion. If the system defaults and is required to be re-started, the sampling ports will be re-installed in the same location, sampled and sealed in the same manner.

3.2.3 SSD System Operation: Non-Routine Equipment Maintenance

The SSD systems are maintenance free. The fans should only stop operating in the event of a power outage or a severe blockage. The visual/audible alarm is triggered when negative pressure is not maintained in the vertical vent system piping. In the event that one of the system alarms trips, the owner, owner's representative or owner's environmental consultant must be contacted for repairs. If the system cannot be returned to immediate operation or if the system has or will remain off for more than 48 hours, the NYSDEC project manager will be notified to determine if further actions are necessary to evaluate impacts to indoor air. Details regarding the extent of repairs, system downtime and subsequent testing will be submitted to the NYSDEC and documented in the Periodic Review Report.

3.3 ENGINEERING CONTROL SYSTEM PERFORMANCE MONITORING

An SSD system has been installed to mitigate possible soil vapor intrusion into occupied areas of the new building. Effectiveness of the SSD systems has been confirmed by taking pressure readings at two

locations beneath the concrete slab of each of the eight new buildings on the north half of the Site with a digital manometer. The sub-slab vacuum readings were collected from the within each building upon system start up in accordance with USEPA and NYSDOH guidance.

Negative pressure readings ranging from -0.12" to - 1.26" of water were recorded below the slab of the occupied portions of the building, indicating sub-slab soil vapor is being drawn to the SSD system piping. System designs are described in the Engineering and Institutional Control Plan. Detailed specifications of the SSD system, and an as-built drawing detailing the SSD system are provided in **Attachment B**.

3.3.1 SSDS Monitoring Schedule

The components of the SSD system will be inspected by a qualified environmental professional on an annual basis to ensure that the system is functioning properly.

Inspection frequency is subject to change by NYSDEC and NYSDOH. Unscheduled inspections and/or sampling may take place when a suspected failure of the SSD system has been reported or an emergency occurs that is deemed likely to affect the operation of the system. Monitoring deliverables for the SSD system are specified later in this Plan.

3.3.2 SSDS General Equipment Monitoring

A visual inspection of the complete system will be conducted during the monitoring event. SSD system components to be monitored include, but are not limited to, the following:

- o Vacuum blower
- o General system piping
- o Vacuum gauges
- o Control switches and system alarms

A complete list of components to be checked is provided in the Inspection Checklist, presented in **Attachment C**. If any equipment readings are not within their typical range, any equipment is observed to be malfunctioning, or the system is not performing within specifications, maintenance and repair as per the Operation and Maintenance Plan are required immediately, and the SSD system restarted.

3.3.3 SSDS System Monitoring Devices and Alarms

The SSD system has a warning device to indicate that the system is not operating properly. Each building has it's own SSDS and has its own warning device (alarm). The alarms are located within the basement of each building, near the stairwell. In the event that the alarm is activated, applicable maintenance and repairs will be conducted, as specified in the Operation and Maintenance Plan, and the SSD system restarted. It will be the responsibility of the owner to report SSDS alarms to the environmental consultant - Environmental Business Consultants - (631) 504-6000. Operational problems will be noted in the annual Site Management Report.

3.4 MAINTENANCE AND PERFORMANCE MONITORING REPORTING REQUIREMENTS

Maintenance reports and any other information generated during regular operations at the Site will be kept on-file on Site. All reports, forms, and other relevant information generated will be available upon request to the NYSDEC and submitted as part of the Periodic Review Report, as specified in the Section 5 of this SMP.

3.4.1 Routine Maintenance Reports

Checklists or forms (see **Attachment C**) will be completed during each routine maintenance event. Checklists/forms will include, but not be limited to the following information:

- Date;
- Name, company, and position of person(s) conducting maintenance activities;
- Maintenance activities conducted;
- Any modifications to the system;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents noted (included either on the checklist/form or on an attached sheet); and,
- Other documentation such as copies of invoices for maintenance work, receipts for replacement equipment, etc., (attached to the checklist/form).

3.4.2 Non-Routine Maintenance Reports

During each non-routine maintenance event, a form will be completed which will include, but not be limited to, the following information:

- Date;
- Name, company, and position of person(s) conducting non-routine maintenance/repair activities;
- Presence of leaks;
- Date of leak repair;
- Other repairs or adjustments made to the system;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents (included either on the form or on an attached sheet); and
- Other documentation such as copies of invoices for repair work, receipts for replacement equipment, etc. (attached to the checklist/form).

4.0 INSPECTIONS, REPORTING AND CERTIFICATIONS

4.1 SITE INSPECTIONS

4.1.1 Inspection Frequency

All inspections will be conducted at the frequency specified in the schedules provided in Section 3 Monitoring Plan and Section 4 Operation and Maintenance Plan of this SMP. At a minimum, a Sitewide inspection will be conducted annually. Inspections of remedial components will also be conducted when a breakdown of any treatment system component has occurred or whenever a severe condition has taken place, such as an erosion or flooding event that may affect the ECs.

4.1.2 Inspection Forms, Sampling Data, and Maintenance Reports

All inspections and monitoring events will be recorded on the appropriate forms which are contained in **Attachment C**. Additionally, a general site-wide inspection form will be completed during the sitewide inspection (see **Attachment C**). These forms are subject to NYSDEC revision.

All applicable inspection forms and other records, including all media sampling data and system maintenance reports, generated for the site during the reporting period will be provided in electronic format in the Periodic Review Report.

4.1.3 Evaluation of Records and Reporting

The results of the inspection and Site monitoring data will be evaluated as part of the EC/IC certification to confirm that the:

- EC/ICs are in place, are performing properly, and remain effective;
- The Monitoring Plan is being implemented;
- Operation and maintenance activities are being conducted properly; and, based on the above items,
- The Site remedy continues to be protective of public health and the environment and is performing as designed in the RAWP and FER.

4.2 CERTIFICATION OF ENGINEERING AND INSTITUTIONAL CONTROLS

After the last inspection of the reporting period, a qualified environmental professional or Professional Engineer licensed to practice in New York State (depending on the need to evaluate engineering systems) will prepare the following certification:

For each Institutional Control or Engineering Control identified for the Site, I certify that all of the following statements are true:

- The inspection of the Site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under my direction;
- The institutional control and/or engineering control employed at this Site is unchanged from the date the control was put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any site management plan for this control;
- Access to the Site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- Use of the Site is compliant with the environmental easement;
- The engineering control systems are performing as designed and are effective;
- To the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program and generally accepted engineering practice]; and
- The information presented in this report is accurate and complete.
- I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, [name], of [business address], am certifying as [Owner or Owner's Designated Site Representative] for the Site; and
- No new information has come to the remedial party's attention, including groundwater monitoring data from wells located at the Site boundary, if any, to indicate that the assumptions made in the qualitative exposure assessment of off-site contamination are no longer valid.

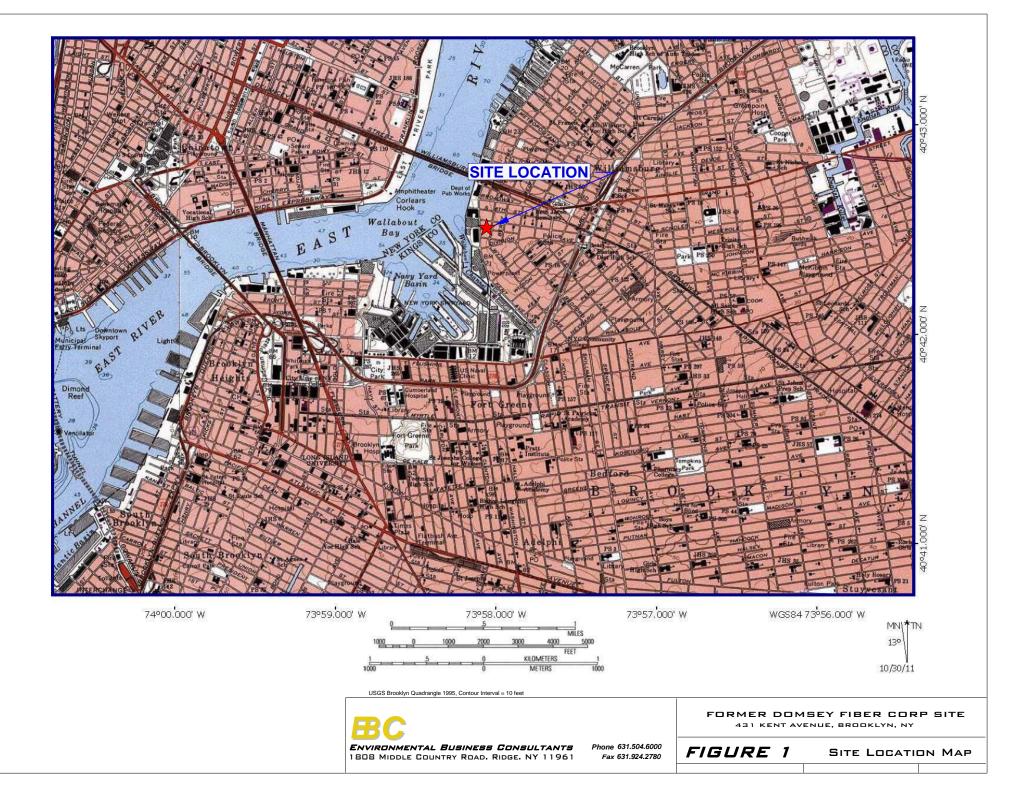
Every five years the following certification will be added:

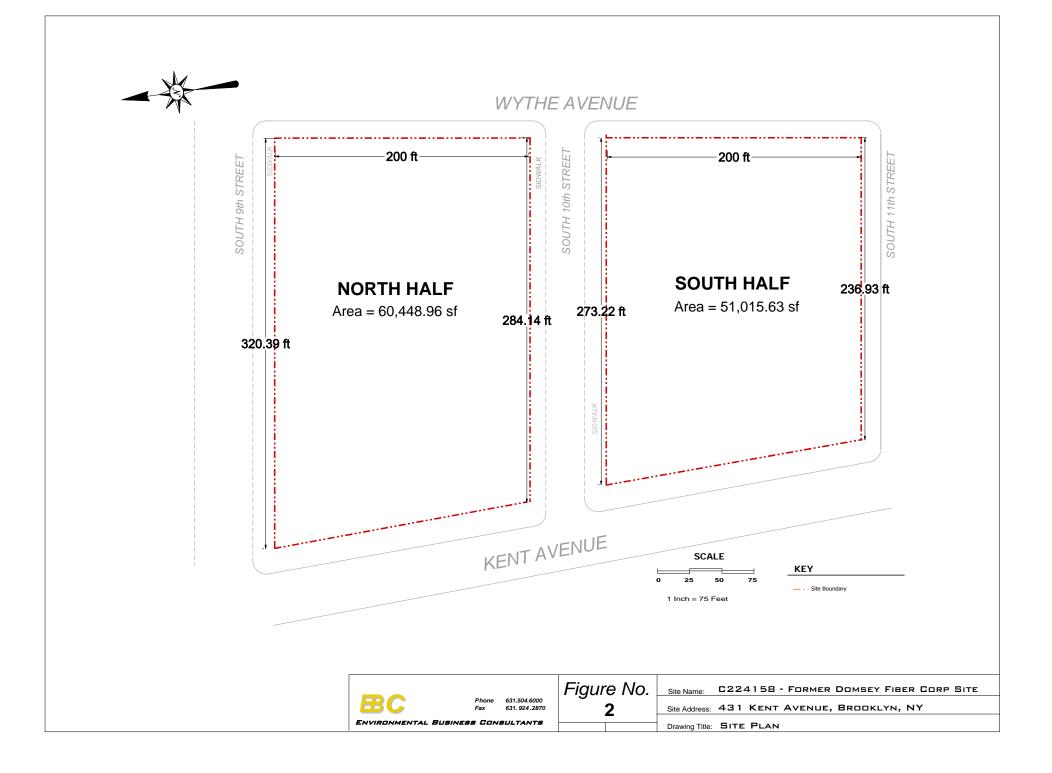
• The assumptions made in the qualitative exposure assessment remain valid.

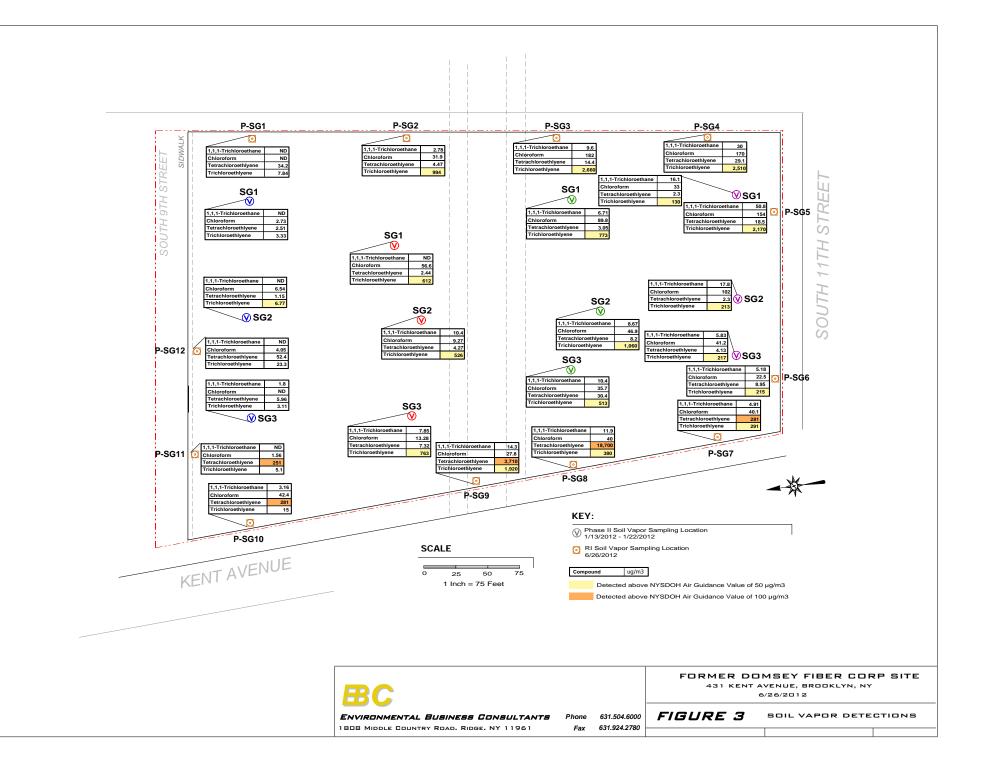
The signed certification will be included in the Periodic Review Report described below.

4.3 **PERIODIC REVIEW REPORT**

A Periodic Review Report will be submitted to the Department every year, beginning eighteen months after the Certificate of Completion is issued. In the event that the Site is subdivided into separate parcels with different ownership, a single Periodic Review Report will be prepared that addresses the site described in **Attachment D** (Metes and Bounds). The report will be prepared in accordance with NYSDEC DER-10 and submitted within 45 days of the end of each certification period. Media sampling results will also incorporated into the Periodic Review Report. The report will include:

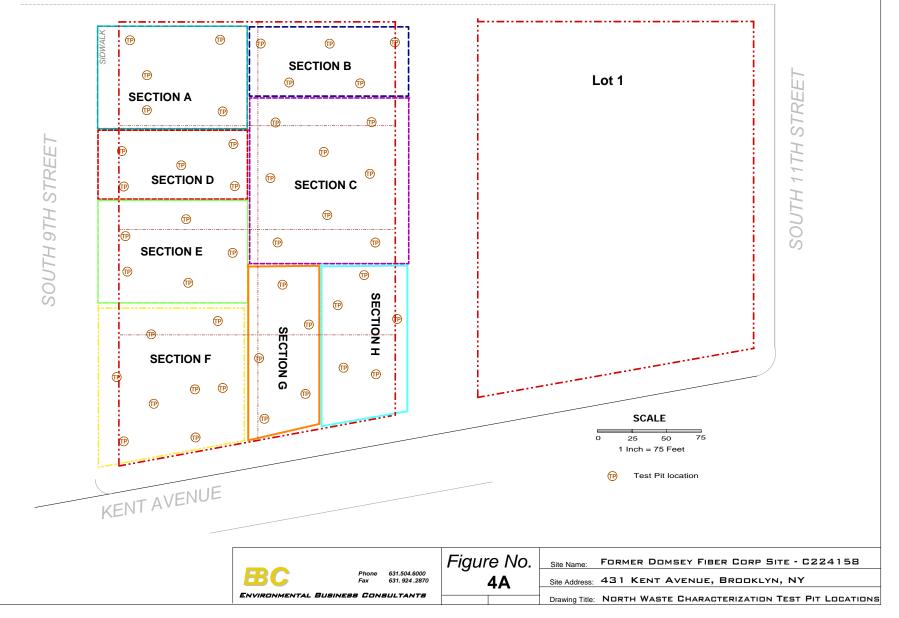

- Identification, assessment and certification of all ECs/ICs required by the remedy for the Site; Results of the required annual Site inspections and severe condition inspections, if applicable;
- All applicable inspection forms and other records generated for the Site during the reporting period in electronic format;
- A summary of any discharge monitoring data and/or information generated during the reporting period with comments and conclusions;
- Data summary tables and graphical representations of contaminants of concern by media (soil vapor), which include a listing of all compounds analyzed, along with the applicable standards, with all exceedances highlighted. These will include a presentation of past data as part of an evaluation of contaminant concentration trends;
- Results of all analyses, copies of all laboratory data sheets, and the required laboratory data deliverables for all samples collected during the reporting period will be submitted electronically in a NYSDEC-approved format;
- A Site evaluation, which includes the following:
 - The compliance of the remedy with the requirements of the site-specific RAWP, ROD or Decision Document;
 - The operation and the effectiveness of all treatment units, etc., including identification of any needed repairs or modifications;
 - Any new conclusions or observations regarding site contamination based on inspections or data generated by the Monitoring Plan for the media being monitored;
 - Recommendations regarding any necessary changes to the remedy and/or Monitoring Plan; and
 - The overall performance and effectiveness of the remedy.

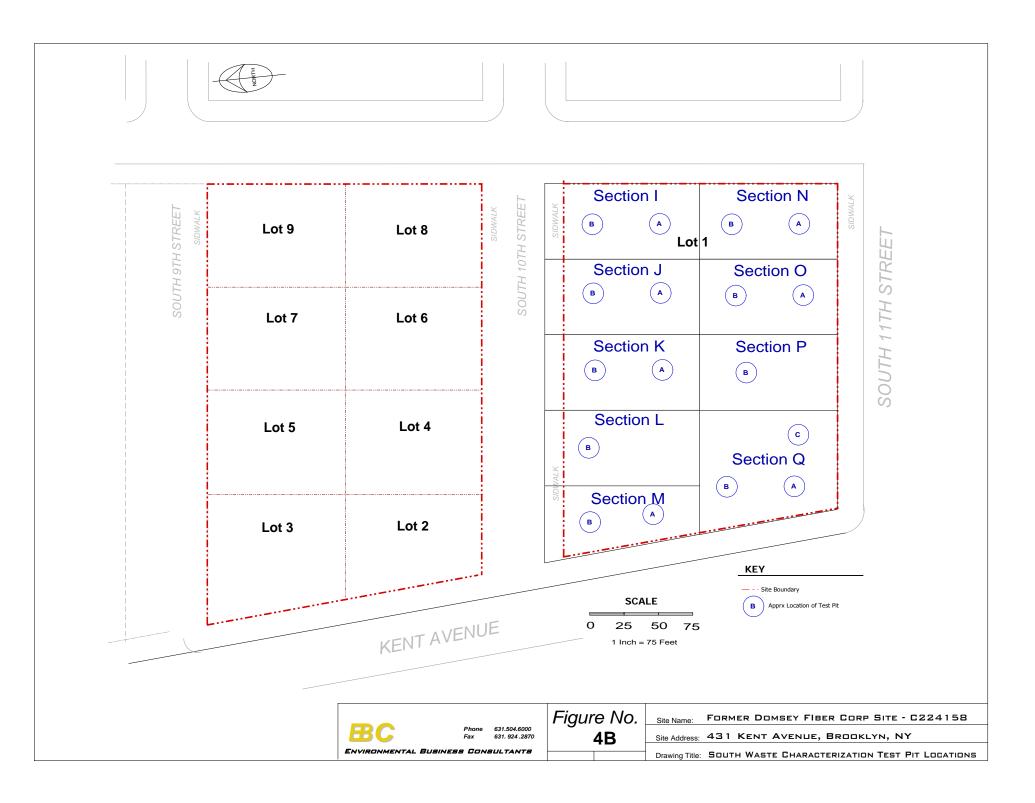

The Periodic Review Report will be submitted, in hard-copy format, to the NYSDEC Regional Office in which the Site is located, and in electronic format to NYSDEC Regional Office and the NYSDOH Bureau of Environmental Exposure Investigation.

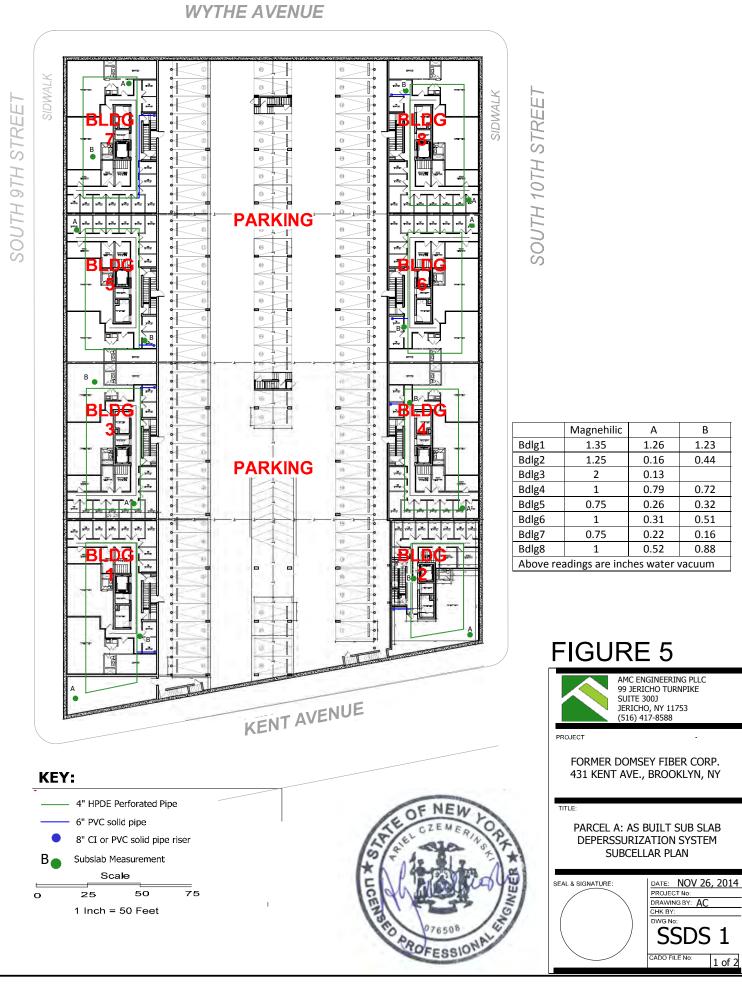

4.4 CORRECTIVE MEASURES PLAN

If any component of the remedy is found to have failed, or if the periodic certification cannot be provided due to the failure of an institutional or engineering control, a corrective measures plan will be submitted to the NYSDEC for approval. This plan will explain the failure and provide the details and schedule for performing work necessary to correct the failure. Unless an emergency condition exists, no work will be performed pursuant to the corrective measures plan until it is approved by the NYSDEC.

FIGURES







WYTHE AVENUE

TABLES

TABLE 1 431 Kent Avenue, Brooklyn, New York Soil Vapor Analytical Results Volatile Organic Compounds JUNE 2012

										JUNE	2012										E 0040					
				1				JANUA	RY 2012								1			JUN	E 2012			1		
	NYSDOH Maximum Sub-	NYSDOH Soil NYSDOH Maximum Outdoor Background	Zone A	Zone A	Zone A	Zone B	Zone B	Zone B	Zone C	Zone C	Zone C	Zone D	Zone D	Zone D	PSG1	PSG2	PSG3	PSG4	PSG5	PSG6	PSG7	PSG8	PSG9	PSG10	PSG11	PSG12
COMPOUNDS	Slab Value (µg/m ³) ^(a)	Indoor Air Value (µg/m ³) ^(a) (µg/m ³) ^(b)	SG1 (µg/m ³)	SG2 (µg/m ³)	SG3 (µg/m ³)	SG1 (µg/m ³)	SG2 (μg/m ³)	SG3 (µg/m ³)	SG1 (µg/m ³)	SG2 (µg/m ³)	SG3 (µg/m ³)	SG1 (µq/m ³)	SG2 (µg/m ³)	SG3 (µg/m ³)	(µg/m ³)	(µq/m ³)	(µg/m ³)									
1,1,1,2-Tetrachloroethane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND											
1,1,1-Trichloroethane	100	<2.0 - 2.8	ND	ND	1.8	ND	10.4	7.85	6.71	8.67	10.4	16.1	17.8	5.83	ND	2.78	9.6	30	50.8	5.18	4.91	11.9	14.3	3.16	ND	ND
1,1,2,2-Tetrachloroethane		<1.5	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND									
1,1,2-Trichloroethane		<1.0	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND
1.1-Dichloroethene		<1.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND											
1,2,4-Trichlorobenzene		NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND											
1,2,4-Trimethylbenzene		<1.0	1.23	ND	1.08	3.65	1.33	1.13	1.33	1.47	1.33	1.18	1.23	1.18	3.39	2.8	2.46	3.19	3.14	2.65	2.41	1.92	3.24	1.42	2.06	2.36
1,2-Dibromoethane		<1.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND											
1,2-Dichlorobenzene 1,2-Dichloroethane		<2.0	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND
1,2-Dichloroethane		<1.0 NA	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND
1.2-Dichlorotetrafluoroethane		NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND											
1,3,5-Trimethylbenzene		<1.0	ND	ND	ND	1.42	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
1,3-Butadiene		NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND											
1,3-Dichlorobenzene		<2.0	ND	2.4	ND	1.44	2.28	ND	4.14	1.02	ND	ND	ND	ND	ND											
1,4-Dichlorobenzene	1	NA	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND							
1,4-Dioxane 2-Hexanone		ł	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND											
4-Ethyltoluene	1	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND											
4-Isopropyltoluene	1		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND											
4-Methyl-2-pentanone			1.27	ND	1.06	1.92	2.05	1.64	2.01	1.88	1.68	1.8	1.31	2.05	13.4	15.9	18.6	20	20.2	15.3	17.8	14.9	18.9	18	13.4	17.2
Acetone		NA	35.6	16.5	75.7	31.8	20.3	29.4	95.9	60.8	106	188	212	69.6	32.3	34.2	57.2	234	22.6	134	31.3		73.1	39.4	32.3	31.6
Acrylonitrile		10.17	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND											
Benzene Benzyl Chloride		<1.6 - 4.7 NA	2.04	1.21	1.28	1.53	1.72	2.08	1.63	1.6	5.24	1.5	1.82	1.88	17.6	1.4	1.18	1.56	1.05	1.53	ND	4.09	2.9	ND	ND	ND
Bromodichloromethane		NA <5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND											
Bromoform		<1.0	ND	1.14	ND																					
Bromomethane		<1.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND											
Carbon Disulfide		NA	8.28	ND	2.77	1.31	17.8	3.33	ND	ND	55.7	ND	2.64	4.14	5.16	1.99	1.28	3.33	5.13	3.55	1.12	1.56	5.01	13.9	ND	ND
Carbon Tetrachloride	50	<3.1	0.377	0.377	0.377	1.51	0.692	0.44	1.13	1.07	0.817	0.692	1.76	0.629	0.44	2.01	2.58	1.63	1.95	0.377	0.754	0.88	1	0.566	0.44	0.503
Chlorobenzene Chloroethane		<2.0 NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND											
Chloroform		NA <2.4	2.73	6.54	ND	56.6	9.27	13.8	89.8	46.9	35.7	33	102	41.2	ND	ND 31.9	ND 182	ND 170	ND 154	22.5	40.1	ND 40	27.8	42.4	ND 1.56	4.05
Chloromethane		<1.0 - 1.4	ND	ND	ND	13.4	ND	ND	ND	40.3 ND	ND	4.11	5.32	ND	ND	ND	ND	ND	4.48	ND						
cis-1,2-Dichloroethene		<1.0	ND	ND	ND	9.03	ND	ND	38.4	11.8	ND	20.2	14.6	1.27	ND	3.21	33.1	35.9	25.9	ND	ND	8.96	2.18	ND	ND	ND
cis-1,3-Dichloropropene		NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND											
Cyclohexane		NA	1.07	ND	ND	ND	1.2	ND	0.998	ND	ND	ND	1.31	1.24	ND	1.93	ND	3.34	ND	ND						
Dibromochloromethane Dichlorodifluromethane		<5.0 NA	ND 2.22	ND 1.19	ND 2.22	ND 3.21	ND 3.26	ND 2.87	ND 3.16	ND 2.82	ND 4.05	ND 2.47	ND 2.67	ND 2.47	ND 2.87	ND 3.16	ND 3.9	ND 3.76	ND 2.67	ND 2.72	2.82	ND 3.76	ND 3.36	ND 2.96	ND 2.96	ND 3.06
Ethanol		NA	E 657	E 444	E 506	416	552	497	3.16	576	4.05	740	518	2.47	45.9	73.8	5.9 E 106	3.76 96.4	59.1	50.8	56.7	57.8	3.36	67.8	2.96	53.1
Ethyl Acetate		NA	1.44	1.26	1.19	1.58	1.84	1.3	1.8	1.94	ND	ND	2.27	2.23	ND											
Ethylbenzene		<4.3	ND	ND	ND	1.17	1.22	ND	1.04	1.26	1.13	1.08	1.26	1.17	1.6	1.52	ND	1.26	1.22	1.52	1.04		1.52	1.17	ND	1.13
Heptane		NA	ND	ND	ND	ND	2.78	ND	ND	ND	10.3	ND	ND	1.23	3.89	1.1	ND	2.5	1.47	3.19	1.27	1.96	1.64	5.49	ND	ND
Hexachlorobutadiene Hexane		NA <1.5	ND 3.14	ND 1.34	ND 1.16	ND	ND 11.4	ND 2.29	ND ND	ND 2.64	ND 68	ND 2.29	ND 3.45	ND 3.91	ND 2.99	ND 2.4	ND 2.75	ND 6.3	ND 3.56	ND 1.41	ND 1.02	ND 1.41	ND 2.78	ND 5.92	ND 5.42	ND ND
Isopropylalcohol		NA	3.14 ND	1.34 ND	6.51	ND	11.4 ND	18.2	ND	2.04	ND.	2.29 ND	3.45 ND	3.91 ND	9.41	8.94	2./3 ND	6.3 ND	3.36 ND	8.55	8.72		34.6	5.92	5.42	9.26
Isopropylbenzene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND											
Xylene (m&p)		<4.3	2.69	2.17	2.21	3.56	3.69	2.6	2.95	3.69	3.21	3.17	3.21	3.38	3.56	3.12	2.17	2.52	2.56	3.25	2.26		3.17	2.43	2.04	2.56
Methyl Ethyl Ketone			2.65	1.8	1.83	2.62	2.15	1.68	2.15	2.03	ND	2.03	2.71	3.48	3.3	3.42	3.15	9.22	3.09	5.95	3.04	4.45	5.3	4.13	2.95	3.18
MTBE	1	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND											
Methylene Chloride n-Butylbenzene		60 <3.4	3.58	ND	ND	ND 1.26	ND 1.54	ND	ND	ND	ND	ND 1.48	ND	ND	1.14	ND	1.04	ND	1.04	ND	2.26	2.43	1.01	1.25	10.8	1.22
Xylene (o)	1	<4.3	1.08	ND	ND	1.26	1.54	1.08	1.13	1.39	1.17	1.46	1.26	1.34	1.39	1.34	0.998	1.26	1.13	1.34	ND	1.17	1.39	0.998	ND	1.13
Propylene		NA	139	3.11	2.87	4.56	11.1	16.4	10.2	5.18	121	9.49	15.4	27.9	3.22	ND	ND	66.2	ND	ND	ND	ND	ND	15.5	ND	ND
sec-Butylbenzene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND											
Styrene		<1.0	ND	ND	ND	1.28	1.4	ND	1.62	2	1.49	1.96	2.13	1.49	ND	ND	1.02	ND	1.19	ND	ND	ND	1.02	ND	ND	ND
Tetrachloroethene	100	100	2.51	1.15	5.96	2.44	4.27	7.32	3.05	8.2	30.4	2.3	2.3	4.13	34.2	4.47	14.4	29.1	18.5	8.95	281	18,700	3,710	281	251	52.4
Tetrahydrofuran Toluene	1	NA 1.0 - 6.1	4.24	3.48 7.19	3.65 6.97	4.57 11.3	6.13 11.8	3.06 9.19	3.71 11.7	5.25 12.4	5.69 13.4	5.04 11.1	3.89 14	5.75 13.1	2.39 29.2	2.83 6.25	2.98 6.85	3.01 3.88	2.8 7.57	2.77 26.5	3.06 18	2.53 19.2	3.3 4.9	3.09 15.8	2.71 4.26	2.77 4.74
trans-1.2-Dichloroethene		NA	7.42 ND	7.19 ND	6.97 ND	11.3 ND	ND	9.19 ND	2.85	12.4 ND	13.4 ND	8.72	1.58	13.1 ND	29.2 ND	6.25 ND	1.94	3.00	4.24	26.5 ND	ND	2.93	4.9 ND	13.6 ND	4.20 ND	4.74 ND
trans-1,3-Dichloropropene	İ	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND											
Trichloroethene	50	5 <1.7	3.33	6.77	3.11	612	526	763	773	1,060	513	130	213	217	7.84	994	2,660	2,510	2,170	215	292	380	1,920	15	5.1	23.3
Trichlorofluoromethane		NA	1.68	1.8	1.4	2.08	3.7	6.51	2.81	4.66	19.4	4.83	4.6	3.76	2.19	2.58	3.26	3.7	5.22	4.55	6.79	41	10.6	2.13	1.85	1.63
Trichlorotrifluoroethane	+	-4.0	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND									
Vinyl Chloride	1	<1.0	ND	NŬ	ND	ND	ND	ND	NŬ	ND	ND	ND	ND	NĎ	ND	ND	ND	ND	ND							
Total PVOCs	1		162	15	23	33	10	4	39	42	226	34	45	57	95	51	42	121	49	74	59	69	85	87	42	44
Total CVOCs			102	11	10	623	530	770	824	42	554	169	248	228	42	1002	2708	2575	2214	224	573	19089	3857	296	256	76
Total VOCs			885	499.9	629.1	1,191	1,210.4	1,392.2	1,863	1,823.7	1,563.1	1,194	1,153.5	1,011.5	197	1171	3063	3020	2552	392	748		5885	518	380	184
	•	·																								

Notes: NA No guidance value or standard available

(a) Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York. October 2006. New York State Department of Health. (b) NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, February 2005, Summary of Background Levels for Selected Compounds (NYSDOH Database, Outdoor values) Value detected above NYSDOH Air Guidance Value of 50 µg/m3, which according to Soil Vapor/Indoor Air Matrix 1 would require at a minimum, monitoring. Value detected above NYSDOH Air Guidance Value of 100 µg/m3, which according to Soil Vapor/Indoor Air Matrix 2 would require at a minimum, monitoring.

<u>ATTACHMENT A</u> Remedial Investigation Summary Tables

TABLE 1 SUMMARY OF SAMPLING PROGRAM RATIONALE AND ANALYSIS

Matrix	Location	Number of Samples	Rationale for Sampling	Laboratory Analysis
Shallow Subsurface soil (0 to 2 and/or 2-4 feet bgs)	4 borings in Zone A, 7 borings in Zone B, 6 borings in Zone C and 4 borings in Zone D.	21	Evaluate quality of fill and identify source areas.	VOCs EPA Method 8260B and SVOCs EPA Method 8270
Shallow Subsurface soil (0 to 2 and/or 2-4 feet bgs)	4 borings in Zone A, 10 borings in Zone B, 6 borings in Zone C and 4 borings in Zone D.	24	Evaluate quality of fill and identify source areas.	TAL Metals
Shallow Subsurface soil (0 to 2 and/or 2-4 feet bgs)	7 borings in Zone A, 8 borings in Zone B, 6 borings in Zone C and 4 borings in Zone D.	25	Evaluate quality of fill and identify source areas.	Pesticides and PCBs
Deep Subsurface soil (8 ft or greater)	8 borings in Zone A, 8 borings in Zone B, 5 borings in Zone C and 4 borings in Zone D.	29	Evaluate quality of native soil and delineate vertical extent of petroleum and chlorinated solvents at and below water table.	VOCs EPA Method 8260B and SVOCs EPA Method 8270
Deep Subsurface soil (8 ft or greater)	6 borings in Zone A, 6 borings in Zone B, 9 borings in Zone C and 4 borings in Zone D.	34	Evaluate quality of native soil and delineate vertical extent of metals above unrestricted SCOs.	TAL Metals
Deep Subsurface soil (8 ft or greater)	4 borings in Zone A, 5 borings in Zone B, 5 borings in Zone C and 4 borings in Zone D.	18	Evaluate quality of native soil.	Pesticides and PCBs
Total (Soils)	·	151	All Parameters	·
Shallow Groundwater (water table)	From 33 shallow monitoring wells installed across the Site.	33	To determine general groundwater quality and delineate VOC and petroleum affected groundwater.	VOCs EPA Method 8260B, SVOCs EPA Method 8270, pesticides / PCBs, TAL metals (dissolved & total)
Deep Groundwater (13-18 ft below water table)	From 4 monitoring wells installed at shallow well locations MW3, MW4, MW6 and MW7.	4	To supplement previous sampling and delineate VOC and petroleum affected groundwater.	
Total (Groundwater)		37	All Parameters	
Soil Gas (12 ft below existing slab)	12 interior and 13 perimiter soil gas implants insalled at the Site.	25	Evaluate soil gas in iterior portions and perimeter of Site.	VOCs EPA Method TO15
Indoor Air / Outdoor Air	4 interior locations within operating warehouse. 1 exterior control sample in loading dock area.	5	Evaluate indoor air quality in ocupied portion of site	VOCs EPA Method TO15
Total (Air)		30		
MS/MSD	Matrix spike and Matrix spike duplicates at the rate 5%	5	To meet requirements of QA / QC program	VOCs EPA Method 8260B, SVOCs EPA Method 8270 BN and / or chromium, hexavalent chromium, manganese, silver and nickel
Trip Blanks	One laboratory prepared trip blank to accompany samples each time they are delivered to the laboratory.	5	To meet requirements of QA / QC program	VOCs EPA Method 8260B
Total (QA / QC Samples)		10		

Table 2 Former Domsey Fiber Corp. Site Brooklyn, NY Monitoring Well Construction Information

	Well	Total Well	Screened	Corrected	DTW	GW ELV	Potentiometric
Well No.	Diameter (in)	Depth (ft)	Interval (ft)	Elevation	6/13/2012	6/18/2012	Difference
MW1S	1	30	20-30	24.83	23.10	1.73	
MW2S	1	30	20-30	23.14	21.41	1.73	
MW3S	1	30	20-30	18.78	17.04	1.74	
MW3D	1	40	35-40	20.04	18.31	1.73	0.01
MW4S	1	30	20-30	18.93	17.17	1.76	
MW4D	1	40	35-40	18.95	17.20	1.75	-0.01
MW5S	1	30	20-30	20.08	18.38	1.70	
MW6S	1	30	20-30	23.12	21.36	1.76	
MW6D	1	40	35-40	23.21	21.44	1.77	-0.01
MW7S	1	30	20-30	23.15	21.35	1.80	
MW7D	1	40	35-40	23.28	21.47	1.81	-0.01
MW8S	1	30	20-30	23.06	21.41	1.65	
MW9S	1	30	20-30	22.9	21.30	1.60	
MW10S	1	30	20-30	23.06	21.43	1.63	
MW11S	1	30	20-30	22.9	21.41	1.49	

TABLE 3 431 Kent Avenue, Brooklyn, New York ZONE A Soil Analytical Results Volatile Organic Compounds JANUARY 2012

		NYSDEC Part 375.6	Zene A	7	7	7	7	7	Zama A	7	Zene A
	NYSDEC Part 375.6	Restricted	Zone A	Zone A	Zone A	Zone A	Zone A	Zone A	Zone A	Zone A B4(2-4')	Zone A B4(13-15')
COMPOUND	Unrestricted Use Soi Cleanup Objectives	Residential Soil	B1(0-2')	B1(13-15')	B2(0-2')	B2(13-15')	B3(0-2')	B3(10-12')	B3(13-15')	PCB3	PCB3
	oleanap objectives	Cleanup Objectives*	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg
1,1,1,2-Tetrachlorothane			ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	680	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1-Dichloroethane	270	26,000	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	330	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene			ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene			ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane			ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	0.000	50.000	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	3,600	52,000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dichlorobenzene	1,100	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	20	3,100	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane			ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	52,000	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	2,400	4,900	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane 1,4-Dichlorobenzene	1,800	13,000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,2-Dichloropropane	1,000	13,000	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorotoluene			ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone (Methyl Butyl Ketone)			ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Isopropyltoluene			ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chlorotoluene			ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		100	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50	100,000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Acrylonitrile Benzene	60	4,800	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	00	4,000	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane			ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane			ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform			ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane			ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide Carbon tetrachloride	760	2,400	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chlorobenzene	1,100	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	1,100	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	370	49,000	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane			ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	250	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene			ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane Dibromoethane			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Dibromomethane			ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane			ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	41,000	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene			ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene			ND	ND	ND	ND	ND	ND	ND	ND	ND
m&p-Xylenes Mathyl Ethyl Katona (2-Butanona)	260	100.000	ND	ND	ND	ND	ND	ND	ND	ND ND	ND
Methyl Ethyl Ketone (2-Butanone) Methyl t-butyl ether (MTBE)	120 930	100,000 100,000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND
Methylene chloride	50	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	12,000	100,000	ND	ND	ND	ND	ND	2,500	ND	ND	ND
n-Butylbenzene	12,000	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	3,900	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	260	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-IsopropyItoluene	11,000	100,000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
sec-Butylbenzene Styrene	11,000	100,000	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND ND
tert-Butylbenzene	5,900	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	1,300	19,000	ND	ND	ND	ND	14	2,000	ND	ND	ND
Tetrahydrofuran (THF)			ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	700	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Xylenes	400	400.000	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	190	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene trabs-1,4-dichloro-2-butene			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Trichloroethene	470	21,000	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane			ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorotrifluoroethane			ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	20	900	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total BTEX Concentration				0.0	0.0	0.0					0.0
Total VOCs Concentration			0.0	0.0	0.0	0.0	0.0	0.0 4,500.0	0.0	0.0	0.0

Notes:

** - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives ND - Not-detected

TABLE 4 431 Kent Avenue, Brooklyn, New York ZONE A - SUPPLEMENTAL Soil Analytical Results Volatile Organic Compounds JUNE 2012

COMPOUND	NYSDEC Part 375.6	NYDEC Part 375.6	ZA	·B7	ZA	-B8	ZA	-B9	ZA-	B10
	Unrestricted Use Soil Cleanup Objectives	Restricted Residential Soil Cleanup Objectives*	(19-22) µg/Kg	(28-30) µg/Kg	(17-20) µg/Кg	(23-25) µg/Kg	(19-21) µg/Kg	(23-25) µg/Kg	(21-23) µg/Кg	<mark>(24-25)</mark> µg/Kg
1,1,1,2-Tetrachlorothane 1,1,1-Trichloroethane	680	100,000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,2,2-Tetrachloroethane	000	100,000	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane			ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	270	26,000	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	330	100,000	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene			ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene			ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane			ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene			ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	52,000	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane			ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromomethane	4.400	400.000	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene 1,2-Dichloroethane	1,100	100,000 3,100	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dichloropropane	20	3,100	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	52,000	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	2,400	4,900	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane	,	,	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1,800	13,000	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane			ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorotoluene			ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone (Methyl Butyl Ketone)			ND	ND	ND	ND	ND	ND	ND	ND
2-Isopropyltoluene			ND	ND	ND	ND	ND	ND	ND	ND
4-Chlorotoluene			ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone			ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50	100,000	ND	ND	ND	ND	ND	ND	ND	ND
Acrylonitrile			ND	ND	ND	ND	ND	ND	ND	ND
Benzene	60	4,800	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene			ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane			ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane			ND	ND	ND	ND	ND	ND	ND	ND
Bromoform			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bromomethane Carbon Disulfide			ND	ND	ND	ND	ND	ND	ND	ND
Carbon bisunde Carbon tetrachloride	760	2,400	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	1,100	100,000	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	1,100	100,000	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	370	49,000	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane			ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	250	100,000	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene			ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane			ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane			ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane		100,000	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	41,000	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene			ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene			ND	ND	ND	ND	ND	ND	ND	ND
m&p-Xylenes	260		ND	ND	ND	ND	ND	ND	ND	ND
Methyl Ethyl Ketone (2-Butanone)	120	100,000	ND	ND	ND	ND	ND	ND	ND	ND
Methyl t-butyl ether (MTBE)	930 50	100,000 100,000	ND 3.1 JS	ND 3.0 JS	ND 3.8 JS	ND 2.9 JS	ND 3.2 JS	ND 2.8 JS	ND 2.1 JS	ND 2.8 JS
Methylene chloride Naphthalene	12,000	100,000	3.1 JS ND	3.0 JS ND	3.0 JS ND	2.9 JS ND	3.2 JS ND	2.0 JS ND	2.1 JS ND	2.0 JS ND
n-Butylbenzene	12,000	100,000	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	3,900	100,000	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	260	100,000	ND	ND	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene		,	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	11,000	100,000	ND	ND	ND	ND	ND	ND	ND	ND
Styrene			ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	100,000	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	1,300	19,000	ND	ND	ND	1.7 J	ND	ND	ND	ND
Tetrahydrofuran (THF)			ND	ND	ND	ND	ND	ND	ND	ND
Toluene	700	100,000	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	190	100,000	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene			ND	ND	ND	ND	ND	ND	ND	ND
trabs-1,4-dichloro-2-butene			ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	470	21,000	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane		<u>↓ </u>	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorotrifluoroethane		000	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	20	900	ND	ND	ND	ND	ND	ND	ND	ND
Total DTEX Componentian										
Total BTEX Concentration Total VOCs Concentration			0 3.1	0 3.0	0 3.8	0 4.6	0 3.2	0 2.8	0 2.1	0 2.8

Notes:

** - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

ND - Not-detected

ND - Nou-released J - The value is estimated. This flag is used: a) on form 1 when the compound is reported above the MDL, but below the PQL, and b) on the Tentatively Identified Compounds (TIC) form for all compounds identified. S - This compound is a solvent that is used in the laboratory. Laboratory contamination is suspected if concentration is less than five times the reporting level. N - The concentration is based on the response for the nearest internal. This flag is used on the TIC form for all compounds identified. Bold/highlighted- Indicated exceedance of the NYSDE CURSCO Guidance Value Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

TABLE 5 431 Kent Avenue, Brooklyn, New York ZONE B Soil Analytical Results Volatile Organic Compounds

							JANUARY	2012										
COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil Cleanup	NYDEC Part 375.6 Restricted Residential Soil	Zone B B1(0-2')	Zone B B1(13-15')	Zone B B2(0-2') T2	Zone B B2(13-15') T2	Zone B B3(0-2') A1	Zone B B3(13-15') A1	Zone B B4(0-2') Ben	Zone B B4(13-15') Ben	Zone B B5(0-2') P2	Zone B B6(0-2') P1	Zone B B6(0-2') P1	Zone B B7(13-15')	Field Duplicate	Zone B Tank 1 (20-22')	Zone B Tank 3 (20-22')	Zone B B3(8')
	Objectives	Cleanup Objectives*	µg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	µg/Kg	µg/Kg	(C) μg/Kg
1,1,1,2-Tetrachlorothane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		- Harria	ND
1,1,1-Trichloroethane	680	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		-	ND
1,1,2,2-Tetrachloroethane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND
1,1,2-Trichloroethane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND
1,1-Dichloroethane	270	26,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	ND
1,1-Dichloroethene 1,1-Dichloropropene	330	100,000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		-	ND ND
1,2,3-Trichlorobenzene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		-	ND
1,2,3-Trichloropropane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		-	ND
1,2,4-Trichlorobenzene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	ND
1,2,4-Trimethylbenzene	3,600	52,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane 1.2-Dichlorobenzene	1,100	100.000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND			ND ND
1,2-Dichlorobenzene 1,2-Dichloroethane	20	3,100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND
1,2-Dichloropropane	10	0,100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		-	ND
1,3,5-Trimethylbenzene	8,400	52,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	2,400	4,900	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	ND
1,3-Dichloropropane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND
1,4-Dichlorobenzene	1,800	13,000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND			ND ND
2,2-Dichloropropane 2-Chlorotoluene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND ND
2-Hexanone (Methyl Butyl Ketone)			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		-	ND
2-Isopropyltoluene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND
4-Chlorotoluene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND
4-Methyl-2-Pentanone			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND
Acetone	50	100,000	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	-	-	ND
Acrylonitrile Benzene	60	4.800	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	- ND	- ND	ND ND
Bromobenzene	60	4,800	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	ND
Bromochloromethane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		-	ND
Bromodichloromethane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	ND
Bromoform			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	ND
Bromomethane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		-	ND
Carbon Disulfide Carbon tetrachloride	760	2.400	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND			ND ND
Carbon tetrachioride Chlorobenzene	1,100	2,400	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND
Chloroethane	1,100	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		-	ND
Chloroform	370	49,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	ND
Chloromethane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	ND
cis-1,2-Dichloroethene	250	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	ND
cis-1,3-Dichloropropene Dibromochloromethane			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-		ND ND
Dibromoethane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND
Dibromomethane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		-	ND
Dichlorodifluoromethane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	ND
Ethylbenzene	1,000	41,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND
Isopropylbenzene	000		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m&p-Xylenes Methyl Ethyl Ketone (2-Butanone)	260	100,000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND
Methyl t-butyl ether (MTBE)	930	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND -	ND	ND
Methylene chloride	50	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND
Naphthalene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	12,000	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	3,900 260	100,000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
o-Xylene p-lsopropyltoluene	200	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	11,000	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND
Styrene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	1,300	19,000	ND	ND	ND	ND	ND	ND	ND	ND	5.6	ND	ND	ND	ND			ND
Tetrahydrofuran (THF) Toluene	700	100,000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	- ND	- ND	ND ND
Total Xylenes	/00	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
trans-1,2-Dichloroethene	190	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	ND
trans-1,3-Dichloropropene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-		ND
trabs-1,4-dichloro-2-butene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND
Trichloroethene	470	21,000	97	ND	160	ND	55	ND	ND	ND	ND	ND	9.2	ND	ND	-	-	ND
Trichlorofluoromethane	-		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND
Trichlorotrifluoroethane	20	900	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		-	ND ND
Vinyl Chloride Total BTEX Concentration	20	900	0.0	0.0	0.0	0.0	ND 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	- 0.0	0.0
Total VOCs Concentration			97.0	0.0	160.0	0.0	55.0	0.0	0.0	0.0	5.6	0.0	9.2	0.0	0.0	0.0	0.0	0.0
			97.0	0.0	100.0	0.0	55.0	0.0	0.0	0.0	0.0	0.0	3.2	0.0	0.0	0.0	0.0	0.0

Notes: ** - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

ND - Not-detected "-" - Not Analyzed

TABLE 6 431 Kent Avenue, Brooklyn, New York ZONE C Soil Analytical Results Volatile Organic Compounds JANUARY 2012

	NYSDEC Part 375.6	NYDEC Part 375.6	Zone C	Zone C	Zone C	Zone C	Zone C	Zone C	Zone C	Zone C	Zone C	Zone C	Zone C
COMPOUND	Unrestricted Use Soil Cleanup Objectives	Restricted Residential Soil Cleanup Objectives*	B1(0-2')	B1(13-15')	B2(0-2')	B2(13-15')	B3(0-2')	B3(13-15')	B4(0-2')	B5(0-2')	B5(13-15')	B6(0-2')	B6(13-15')
	Cleanup Objectives	Cleanup Objectives	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg
1,1,1,2-Tetrachlorothane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	680	100,000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,2,2-Tetrachioroethane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	270	26,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	330	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane 1,2,4-Trichlorobenzene			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2,4-Trimethylbenzene	3,600	52,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	1,100	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	20	3,100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane 1,3,5-Trimethylbenzene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5- I rimethylbenzene 1,3-Dichlorobenzene	8,400 2,400	52,000 4,900	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,3-Dichloropropane	2,400	4,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1,800	13,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorotoluene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone (Methyl Butyl Ketone)			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-Isopropyltoluene 4-Chlorotoluene			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND
4-Chiorotoluene 4-Methyl-2-Pentanone			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acrylonitrile			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	60	4,800	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane Bromodichloromethane			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bromoform			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	760	2,400	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	1,100	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane Chloroform	370	49,000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chloromethane	5/0	43,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	250	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromoethane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane Dichlorodifluoromethane			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ethylbenzene	1,000	41,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene		1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m&p-Xylenes	260		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl Ethyl Ketone (2-Butanone) Methyl t-butyl ether (MTBE)	120 930	100,000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Methylene chloride	50	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene		,000	ND	ND	9.7	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	12,000	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	3,900	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	260	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene sec-Butylbenzene	11.000	100.000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Styrene	11,000	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	1,300	19,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	130	ND
Tetrahydrofuran (THF)			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	700	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Xylenes trans-1.2-Dichloroethene	190	100,000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	190	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trabs-1,4-dichloro-2-butene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	470	21,000	160	ND	77	ND	63	ND	110	ND	ND	ND	ND
Trichlorofluoromethane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorotrifluoroethane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride Total BTEX Concentration	20	900	ND 0.0	ND 0.0	ND	ND 0.0	ND 0.0	ND 0.0	ND	ND	ND	ND 0.0	ND 0.0
Total BTEX Concentration Total VOCs Concentration			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	.30.0	0.0

Notes:

** - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

O NO CAR Fail 3/30 Meinedal Flografi 301 Celarity Orgenites
 Do Not-detected
 Bold/highlighted-Indicated exceedance of the NYSDEC UUSCO Guidance Value
 Bold/highlighted-Indicated exceedance of the NYSDEC RRSCO Guidance Value

TABLE 7 431 Kent Avenue, Brooklyn, New York ZONE D Soil Analytical Results Volatile Organic Compounds JANUARY 2012

CANCOUNDProvince of the standard of	Zone D			Zone D								
CharacterizationControlControlMot<	B4(13-15')	Zone D B4(0-2)	Zone D B3(10-12')							Residential Soil	Unrestricted Use Soil	COMPOUND
11.3.4.5.4.5.4.5.4.5.4.5.4.5.4.5.4.5.4.5.4	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	Cleanup Objectives*		
11.2.3.7.2.1.2.3.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3	ND	ND	ND				ND		ND			1,1,1,2-Tetrachlorothane
1)2-Toolsondame1)2-Toolsonda	ND									100,000	680	
1)Decompande<	ND											
11.0ebds/engames/NoN	ND									00.000	070	
1)Debicomponent1)Debicompone	ND ND											
12.3-TransparsementInterpretationNo. <t< td=""><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>100,000</td><td>330</td><td></td></t<>	ND									100,000	330	
13.1.Text/stransmap13.1.TextNo<	ND											
13.1.F. Max13.1. The sector13.0.14.0.	ND											
j.b.Disconstantion-solution j.b.Disconstantionintin	ND	ND	ND	ND	ND	ND	ND	ND	ND			1,2,4-Trichlorobenzene
13.0640eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee	ND									52,000	3,600	
13.013.0N	ND											
13.Disk13.Disk14.Disk<	ND											
13.5-Took13.6.114.00 <td>ND ND</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3,100</td> <td>20</td> <td></td>	ND ND									3,100	20	
1.3.Dichloregongene2.4004.000NO </td <td>ND</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>52 000</td> <td>8 400</td> <td></td>	ND									52 000	8 400	
j.DeitergroupenenImageImageNm <td>ND</td> <td></td>	ND											
1.4.Delotopension1.5001	ND									.,	_,	
22-DefinitionspreameInc	ND									13,000	1,800	
2+beannes (baryopy discussione)(mod)<	ND											
24.apcgroubuneImpIm	ND											
4-ChitorobieneINDINDINDINDINDINDINDINDINDINDAcetore50100,000ND <t< td=""><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	ND											
4 MetryA-brannanceNNN </td <td>ND</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td>	ND											
Acetosine500100.000NDNDNDNDNDNDNDNDNDBenzohenzone6004.800ND<	ND											
Acryonitric baryonitric baryonetron(m)<	ND ND									100.000	50	
Banzanen1604,800ND <td>ND</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>100,000</td> <td>50</td> <td></td>	ND									100,000	50	
BromochloremethaneNDNDNDNDNDNDNDNDNDNDBromochloremethaneNDN	ND									4 800	60	,
BronnolehoromethaneIND <th< td=""><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>.,,</td><td></td><td></td></th<>	ND									.,,		
Bromorem Bromorem Bromorem Bromorem 	ND											
BromonshaneIncomeIncomeNDNDNDNDNDNDNDCarbon terschloride7602,400ND<	ND	ND	ND	ND	ND	ND	ND	ND	ND			Bromodichloromethane
Carbon bisuitideImageIma	ND											Bromoform
Carbon tetrachloride7602,00NDNDNDNDNDNDNDNDNDNDNDChlorothanen1,00100,000ND<	ND											
Chloroderane1,100100,000ND <th< td=""><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	ND											
ChloroethaneNDNDNDNDNDNDNDNDNDNDNDChloroftana37049,000ND <td>ND ND</td> <td></td>	ND ND											
Chloroform37049,000ND </td <td>ND</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>100,000</td> <td>1,100</td> <td></td>	ND									100,000	1,100	
ChloromethaneMDMDMDMDMDMDMDMDMDMDMDcis1-J.2bichloropropene250100,000ND<	ND									49.000	370	
cis-12-Dichloroethene250100,000ND<	ND											
DibromochloromethaneND <th< td=""><td>ND</td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td>100,000</td><td>250</td><td></td></th<>	ND			ND						100,000	250	
DibromeethaneND <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td></td> <td></td> <td>cis-1,3-Dichloropropene</td>	ND	ND	ND	ND	ND	ND	ND	ND	ND			cis-1,3-Dichloropropene
DibromomethaneImage: black bl	ND											Dibromochloromethane
DichlorodifluoromethaneImage: Mice and Mi	ND											
Ethylbenzene 1,000 41,000 ND ND <td>ND</td> <td></td>	ND											
HexachlorobutadieneImage: NDNDNDNDNDNDNDNDNDNDNDIsoproylbenzeneImage: ND<	ND ND									44,000	4 000	
Isopropylbenzene ND	ND									41,000	1,000	
m&p-Xylenes260NDNDNDNDNDNDNDNDNDNDMethyl Ethyl Ketone (2-Butanone)120100,000ND <td>ND</td> <td></td>	ND											
Methyl Ethyl Ketone (2-Butanone)120100,000ND<	ND										260	
Methyl +butyl ether (MTBE) 930 100,000 ND	ND									100,000		
Naphthalene 0 9.9 ND 25 ND ND ND ND ND ND n-Butylbenzene 12,000 100,000 ND	ND											
n-Butylbenzene 12,000 100,000 ND	ND									100,000	50	Methylene chloride
n-Propylenzene 3,900 100,000 ND ND<	ND											
o-Xylene 260 100,000 ND	ND											
p-sopropytoluene Image: constraint of the sector of the sect	ND											
sec-Butylbenzene 11,000 100,000 ND	ND ND									100,000	260	
Styrene ND ND <t< td=""><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>100.000</td><td>11.000</td><td></td></t<>	ND									100.000	11.000	
tert-Butylbenzene 5,900 100,000 ND	ND									100,000	11,000	
Tetrachloroethene 1,300 19,000 ND N	ND									100,000	5,900	
	ND											
	ND	ND	ND	ND	ND	ND	ND	ND	ND			Tetrahydrofuran (THF)
Toluene 700 100,000 ND	ND	ND			ND		ND		ND	100,000	700	Toluene
Total Xylenes ND	ND											
trans-1,2-Dichloroethene 190 100,000 ND	ND									100,000	190	
trans-1,3-Dichloropropene ND	ND											
trabs-1,4-dichloro-2-butene ND ND <t< td=""><td>ND ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>21.000</td><td>470</td><td></td></t<>	ND ND									21.000	470	
Trichloroethene 470 21,000 ND ND 170 ND ND 32 ND 6.3 Trichloroffuoromethane ND ND </td <td>ND</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>21,000</td> <td>4/0</td> <td></td>	ND									21,000	4/0	
Incluionariane ND	ND											
Ning Children 20 900 ND	ND									900	20	
Total BTEX Concentration 0.0 <td>0.0</td> <td></td>	0.0											
Total VOCs Concentration 0.0 0.0 0.0 0.0 32.0 0.0 0.0	0.0	0.0		32.0	0.0	0.0	0.0	0.0	0.0			

Notes:

** - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

ON COR Pair 375 or Reinedia Program Son Cleanup Objectives
 Not Addresced
 Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value
 Bold/highlighted- Indicated exceedance of the NYSDEC RSCO Guidance Value

TABLE 8 431 Kent Avenue, Brooklyn, New York ZONE A Soil Analytical Results Semi-Volatile Organic Compounds JANUARY 2012

	NYSDEC Part 375.6	NYDEC Part 375.6	Zone A	Zone A	Zone A	Zone A	Zone A	Zone A	Zone A	Zone A	
COMPOUND	Unrestricted Use Soil Cleanup Objectives	Restricted Residential Soil Cleanup Objectives*	B1(0-2')	B1(13-15')	B2(0-2')	B2(13-15')	B3(0-2')	B3(10-12')	B3(13-15')	B4(2-4') PCB3	Zone A B4(13 15') PCB3
	cleanup objectives	Son cleanup objectives	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg
1,2,4,5-Tetrachlorobenzene			ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene			ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene			ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene			ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene			ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,5-Trichlorophenol			ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol			ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dichlorophenol			ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol			ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dinitrophenol			ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dinitrotoluene			ND	ND	ND	ND	ND	ND	ND	ND	ND
2,6-Dinitrotoluene			ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chloronaphthalene			ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorophenol			ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene			ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylphenol (o-cresol)	330	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Nitroaniline			ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Nitrophenol			ND	ND	ND	ND	ND	ND	ND	ND	ND
3&4-Methylphenol (m&p-cresol)	330	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND
3,3'-Dichlorobenzidine			ND	ND	ND	ND	ND	ND	ND	ND	ND
3-Nitroaniline			ND	ND	ND	ND	ND	ND	ND	ND	ND
4,6-Dinitro-2-methylphenol			ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether			ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chloro-3-methylphenol			ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chloroaniline			ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether			ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitroaniline			ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitrophenol			ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	20,000	100,000	ND	ND	ND	ND	600	64,000	ND	ND	ND
Acenaphthylene	100,000	100,000	ND ND	ND ND	ND	ND ND	ND	ND 180,000	ND ND	ND	ND ND
Acetophenone				=	ND		ND			ND	
Aniline			ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	100,000	100,000	ND	ND	390	ND	1,800	280,000	ND	370	ND
Azobenzene			ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene Benzidine	1,000	1,000	610 ND	ND ND	1,500	ND ND	9,400 ND	280,000 ND	ND ND	1,500 ND	ND ND
					4 200						
Benzo(a)pyrene	1,000	1,000	560 810	ND	1,300 2,000	ND	9,300	240,000	ND	1,400	ND
Benzo(b)fluoranthene	1,000	1,000		ND	660	ND	12,000	300,000	ND	2,000	ND
Benzo(g,h,i)perylene	100,000 800	100,000 3,900	430 ND	ND ND	850	ND ND	3,200 3,400	110,000 100,000	ND ND	600 600	ND ND
Benzo(k)fluoranthene Benzoic Acid	800	3,900	ND	ND	ND	ND	3,400 ND	100,000 ND	ND	600 ND	ND
Butyl benzyl phthalate			ND	ND	ND	ND		ND	ND	ND	ND
							ND				
Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bis(2-chloroisopropyl)ether			ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate			ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbazole			ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbazole Chrysene	1,000	3,900	690	ND	1,300	ND	ND 8,600	ND 230,000	ND	1,700	ND
	1,000		690 ND	ND ND	1,300 ND	ND ND	8,600	230,000	ND	1,700 ND	ND ND
Dibenzo(a,h)anthracene Dibenzofuran	330	330	ND	ND	ND	ND ND	270	29,000	ND	ND	ND
Diethyl phthalate			ND	ND	ND	ND	270 ND	54,000 ND	ND	ND	ND
Dimethyl phthalate			ND	ND	ND	ND	ND	ND	ND	ND	ND
		1	NU	ND				ND	ND		
				ND	ND	ND				ND	
Di-n-butylphthalate			ND	ND	ND	ND	ND			ND	ND
Di-n-butylphthalate Di-n-octylphthalate	100.000	100.000	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-butyiphthalate Di-n-octyiphthalate Fluoranthene	100,000	100,000	ND ND 1,300	ND ND	ND 2,600	ND ND	ND 18,000	ND 660,000	ND ND	ND 3,400	ND ND
Di-n-butylphthalate Di-n-octylphthalate Fluoranthene Fluorene	100,000 30,000	100,000	ND ND 1,300 ND	ND ND ND	ND 2,600 ND	ND ND ND	ND 18,000 450	ND 660,000 67,000	ND ND ND	ND 3,400 ND	ND ND ND
Di-n-butylphthalate Di-n-octylphthalate Fluoranthene Fluorene Hexachlorobenzene			ND ND 1,300 ND ND	ND ND ND ND	ND 2,600 ND ND	ND ND ND ND	ND 18,000 450 ND	ND 660,000 67,000 ND	ND ND ND ND	ND 3,400 ND ND	ND ND ND
Di-n-butylphthalate Di-n-octylphthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene			ND ND 1,300 ND ND ND	ND ND ND ND ND	ND 2,600 ND ND ND	ND ND ND ND ND	ND 18,000 450 ND ND	ND 660,000 67,000 ND ND	ND ND ND ND	ND 3,400 ND ND ND	ND ND ND ND ND
Di-n-butylphthalate Di-n-octylphthalate Fluoranthene Fluorantene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene			ND ND 1,300 ND ND ND ND	ND ND ND ND ND ND	ND 2,600 ND ND ND ND	ND ND ND ND ND ND	ND 18,000 450 ND ND ND	ND 660,000 67,000 ND ND ND	ND ND ND ND ND	ND 3,400 ND ND ND ND	ND ND ND ND ND ND
Di-n-octylphthalate Di-n-octylphthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocethane	30,000	100,000	ND ND 1,300 ND ND ND ND ND	ND ND ND ND ND ND ND	ND 2,600 ND ND ND	ND ND ND ND ND ND ND	ND 18,000 450 ND ND	ND 660,000 67,000 ND ND	ND ND ND ND ND ND ND	ND 3,400 ND ND ND	ND ND ND ND ND ND ND
Di-n-butylphthalate Di-n-octylphthalate Fluoranthene Hexachlorobenzene Hexachlorobutadiene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene			ND ND 1,300 ND ND ND ND 350	ND ND ND ND ND ND ND	ND 2,600 ND ND ND ND 550	ND ND ND ND ND ND ND	ND 18,000 450 ND ND ND ND 3,100	ND 660,000 67,000 ND ND ND ND 100,000	ND ND ND ND ND ND ND ND	ND 3,400 ND ND ND ND ND 560	ND ND ND ND ND ND ND
Di-n-butylphthalate Di-n-octylphthalate Fluorantene Fluorantene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocthane Indeno(1,2,3-cd)pyrene Isophorone	30,000	100,000 500	ND ND 1,300 ND ND ND ND 350 ND	ND ND ND ND ND ND ND ND	ND 2,600 ND ND ND ND ND ND 550 ND	ND ND ND ND ND ND ND ND ND ND	ND 18,000 450 ND ND ND ND 3,100 ND	ND 660,000 07,000 ND ND ND ND 100,000 ND	ND ND ND ND ND ND ND ND ND	ND 3,400 ND ND ND ND 560 ND	ND ND ND ND ND ND ND ND ND
Di-n-octylphthalate Di-n-octylphthalate Fluoranthene Fluoranthene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocethane Indeno(1,2,3-cd)pyrene Isophorone Naphthalene	30,000	100,000	ND ND 1,300 ND ND ND ND 350 ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND 2,600 ND ND ND ND 550 ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND 18,000 450 ND ND ND 3,100 ND 290	ND 660,000 67,000 ND ND ND 100,000 ND 35,000	ND ND ND ND ND ND ND ND ND ND ND	ND 3,400 ND ND ND ND 560 ND ND	ND ND ND ND ND ND ND ND ND ND ND
Di-n-butylphthalate Di-n-octylphthalate Fluoranthene Fluoranthene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocethane lindeno(1,2,3-cd)pyrene lsophorone Naphthalene Nitrobenzene	30,000	100,000 500	ND ND 1,300 ND ND ND 350 ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND 2,600 ND ND ND ND 550 ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND 18,000 450 ND ND ND 3,100 ND 290 ND	ND 660,000 67,000 ND ND ND 100,000 ND 35,000 ND	ND ND ND ND ND ND ND ND ND ND ND	ND 3,400 ND ND ND ND 560 ND ND ND	ND ND ND ND ND ND ND ND ND ND ND
Di-n-octylphthalate Di-n-octylphthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocthane Indeno(1,2,3-cd)pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodimethylamine	30,000	100,000 500	ND ND 1,300 ND ND ND 350 ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND 2,600 ND ND ND S50 ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND 18,000 450 ND ND ND 3,100 ND 290 ND ND	ND 660,000 67,000 ND ND ND 100,000 ND 35,000 ND ND	ND ND ND ND ND ND ND ND ND ND ND	ND 3,400 ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND
Di-n-butylphthalate Di-n-octylphthalate Fluoranthene Fluoranthene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Indeno(1,2,3-cd)pyrene Isophorone Naphthalene Nitrosodimethylamine N-Nitrosodi-n-propylamine	30,000	100,000 500	ND ND 1,300 ND ND ND 350 ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND 2,600 ND ND ND ND S50 ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND 18,000 ND ND ND ND ND 290 ND ND ND ND	ND 660,000 67,000 ND ND 100,000 ND 35,000 ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND 3,400 ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND
Di-n-butylphthalate Di-n-butylphthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorobutadiene Hexachlorocyclopentadiene Indeno(1,2,3-cd)pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodin-propylamine N-Nitrosodin-propylamine	30,000	100,000 500	ND ND 1,300 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND 2,600 ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND 18,000 ND ND ND ND 3,100 ND ND ND ND ND ND	ND 660,000 ND ND ND 100,000 ND 35,000 ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND 3,400 ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND
Di-n-butylphthalate Di-n-butylphthalate Fluoranthene Fluoranthene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Nexachlorochane Indeno(1,2,3-cd)pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodimethylamine N-Nitrosodimeth	30,000 500 12,000	100,000 500 100,000	ND ND 1,300 ND ND ND 350 ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 2,600 ND ND ND S50 ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND	ND 18,000 ND ND ND 3,100 ND 290 ND ND ND ND ND ND ND	ND 660,000 67,000 ND ND 100,000 ND 35,000 ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 3,400 ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N
Di-n-butylphthalate Di-n-octylphthalate Fluoranthene Fluoranthene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Indeno(1,2,3-cd)pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodi-n-propylamine N-Nitrosodi-n-propylamine Pentachlorophenol	30,000 500 12,000 800	100,000 500 100,000 6,700	ND ND 1,300 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 2,600 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 18,000 450 ND ND ND 290 ND ND ND ND ND ND ND ND	ND 660,000 07,000 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 3,400 ND	ND ND ND ND ND ND ND ND ND ND ND ND ND
Di-n-octylphthalate Di-n-octylphthalate Fluoranthene Fluoranthene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Nathorocentane Naphthalene Nitrobenzene N-Nitrosodi-n-propylamine N-Nitrosodi-n-propylamine Pentachloronitrobenzene Pentachlorophenol Phenanthrene	30,000 500 12,000 800 100,000	100,000 500 100,000 6,700 100,000	ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 2,600 ND ND ND S50 ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 18,000 450 ND ND ND 3,100 ND ND ND ND ND ND ND ND ND 10,000	ND 660,000 67,000 ND ND ND 100,000 ND ND ND ND ND ND ND ND ND	ND ND	ND 3,400 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N
Di-n-octylphthalate Di-n-octylphthalate Di-n-octylphthalate Fluoranthene Fluoranthene Hexachlorobenzene Hexachlorocyclopentadiene Hexachlorocethane Indeno(1,2,3-cd)pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodimethylamine N-Nitrosodimethylamine N-Nitrosodimethylamine Pentachlorophenol Phenanthrene Phenol	30,000 500 12,000 800 100,000 330	100,000 500 100,000 6,700 100,000 100,000	ND ND 1,300 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 2,600 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 18,000 460 ND ND ND 3,100 ND 290 ND ND ND ND ND ND ND ND ND ND	ND 660,000 67,000 ND ND 100,000 ND 35,000 ND ND ND ND ND ND ND ND ND ND	ND ND	ND 3,400 ND ND	ND ND
Di-n-butylphthalate Di-n-octylphthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorobutadiene Hexachlorobutadiene Indenc(1,2,3-cd)pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodi-n-propylamine N-Nitrosodi-n-propylamine Pentachloronitrobenzene Pentachlorophenol Phenanthrene	30,000 500 12,000 800 100,000	100,000 500 100,000 6,700 100,000	ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 2,600 ND ND ND S50 ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 18,000 450 ND ND ND 3,100 ND ND ND ND ND ND ND ND ND 10,000	ND 660,000 67,000 ND ND ND 100,000 ND ND ND ND ND ND ND ND ND	ND ND	ND 3,400 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N

Notes:

* - NYSDEC Technical and Administative Guidance Memorandum 4046, 1994
** - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
ND - Not-detected
NA - Guidance value not available
Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value
Bold/highlighted- Indicated exceedance of the NYSDEC RSCO Guidance Value

TABLE 9 431 Kent Avenue, Brooklyn, New York ZONE A - SUPPLEMENTAL Soil Analytical Results Semi-Volatile Organic Compounds JUNE 2012

COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil	NYDEC Part 375.6 Restricted Residential	ZA	-B7	ZA	-B8	ZA	-B9	ZA-	B10
	Cleanup Objectives	Soil Cleanup Objectives*	<mark>(19-22)</mark> µg/Kg	(28-30) µg/Kg	(17-20) µg/Kg	<mark>(23-25)</mark> µg/Kg	(19-21) µg/Kg	(23-25) µg/Kg	<mark>(21-23)</mark> µg/Kg	(24-25) µg/Kg
1,2,4,5-Tetrachlorobenzene			-			-	-	-	-	-
1,2,4-Trichlorobenzene			-		-	-	· · ·	-	-	-
1,2-Dichlorobenzene 1,3-Dichlorobenzene			-	-		-	-		-	-
1,4-Dichlorobenzene			-			-		-	-	
2,4,5-Trichlorophenol										
2,4,6-Trichlorophenol			-		-	-		-	-	-
2,4-Dichlorophenol			-	-	-	-	-	-	-	-
2,4-Dimethylphenol			-	-	-	-	-	-	-	-
2,4-Dinitrophenol			-	-		-	-		-	
2,4-Dinitrotoluene			-	-	-	-	-	-	-	-
2,6-Dinitrotoluene			-	-		-	-		-	-
2-Chloronaphthalene			-	-	-	-	-	-	-	-
2-Chlorophenol 2-Methylnaphthalene			-	-		-		-	-	-
2-Methylphenol (o-cresol)	330	100,000	-	-		-		-	-	-
2-Nitroaniline	330	100,000	-	-		-				
2-Nitrophenol	İ	1	-	-	-	-	-	-	-	-
3&4-Methylphenol (m&p-cresol)	330	100,000	-	-	-	-	-	-	-	-
3,3'-Dichlorobenzidine			-		-	-	-	-	-	-
3-Nitroaniline			-	-	-	-	-	-	-	-
4,6-Dinitro-2-methylphenol			-	-	-	-		-	-	-
4-Bromophenyl phenyl ether			-	-	-	-	-	-	-	-
4-Chloro-3-methylphenol			-	-		-	-		-	-
4-Chloroaniline			-	-	-	-	-	-	-	-
4-Chlorophenyl phenyl ether 4-Nitroaniline			-				-	-	-	-
4-Nitrophenol			-		-	-		-	-	
Acenaphthene	20,000	100,000	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	100,000	100,000	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	100,000	100,000	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND
Benzidine			-	-	-	-	-	-	-	-
Benzo(a)pyrene	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	100,000	100,000	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	800	3,900	ND	ND	ND	ND	ND	ND	ND	ND
Benzoic Acid Butyl benzyl phthalate			-			-	-	-	-	-
Bis(2-chloroethoxy)methane			-	-				-	-	-
Bis(2-chloroethyl)ether					-	-		-		
Bis(2-chloroisopropyl)ether			-	-	-	-	-	-		
Bis(2-ethylhexyl)phthalate			-	-	-	-	-	-	-	-
Carbazole			-	-	-	-	-	-	-	-
Chrysene	1,000	3,900	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	330	330	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran			-	-	-	-	-	-	-	-
Diethyl phthalate			-	-	-	-	-	-	-	-
Dimethyl phthalate			-	-	-	-	-	-	-	
Di-n-butylphthalate					-	-	-	-	-	-
Di-n-octylphthalate Fluoranthene	100,000	100,000	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND
Fluorene	30,000	100,000	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobenzene	50,000	100,000	-	-	-	-	-	-	-	-
Hexachlorobutadiene			-	-	-	-	-	-	-	-
Hexachlorocyclopentadiene			-	-	-	-	-	-	-	-
Hexachloroethane					-	-	-	-	-	-
Indeno(1,2,3-cd)pyrene	500	500	ND	ND	ND	ND	ND	ND	ND	ND
Isophorone			-	-	-	-	-	-	-	-
Naphthalene	12,000	100,000	ND	ND	ND	ND	ND	ND	ND	ND
Nitrobenzene			-	-	-	-	-	-	-	-
N-Nitrosodimethylamine		ļ	-	-	-	-		-	-	-
N-Nitrosodi-n-propylamine		┟────┤	-		-	-		-	-	-
N-Nitrosodiphenylamine						-				
Pentachloronitrobenzene Pentachlorophenol	800	6,700				-			-	
Phenanthrene	100,000	6,700	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND
Pyrene	100,000	100,000	ND	ND	ND	ND	ND	ND	ND	ND
Pyridine	100,000	100,000	-	-	-	-	-	-	-	-
· ·····	1	1			-					

Notes: * - NYSDEC Technical and Administative Guidance Memorandum 4046, 1994

** - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

ND - Not-detected

Nor-indicated in the indicated is a solvent that is used in the laboratory. Laboratory contamination is suspected if concentration is less than five times the reporting level.

N - The concentration is based on the response fo the nearest internal. This flag is used on the TIC form for all compounds identified. Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value Bold/highlighted- Indicated exceedance of the NYSDEC RSCO Guidance Value

TABLE 10 431 Kent Avenue, Brooklyn, New York ZONE B Soil Analytical Results Semi-Volatile Organic Compounds JANUARY 2012

						JANUAR	Y 2012										
COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil	NYDEC Part 375.6 Restricted Residential Soil Cleanup	Zone B	Zone B	Zone B B2(0-2')	Zone B B2(13-15')	Zone B B3(0-2')	Zone B B3(13-15')	Zone B B4(0-2')	Zone B B4(13-15')	Zone B B5(0-2')	Zone B B6(0-2')	Zone B	Zone B	Field	Zone B Tank 1	Zone B Tank 3
	Cleanup Objectives	Objectives*	B1(0-2') μg/Kg	B1(13-15') μg/Kg	Т2 µg/Kg	Т2 µg/Kg	А1 µg/Kg	А1 µg/Kg	Ben µg/Kg	Ben µg/Kg	Р2 µg/Kg	Р1 µg/Kg	B7(0-2') μg/Kg	В7(13-15') µg/Kg	Duplicate µg/Kg	(20-22') µg/Kg	(20-22') µg/Kg
1,2,4,5-Tetrachlorobenzene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
1,2,4-Trichlorobenzene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
1,2-Dichlorobenzene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
1,3-Dichlorobenzene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
1,4-Dichlorobenzene	-		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
2,4,5-Trichlorophenol			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
2,4,6-Trichlorophenol 2,4-Dichlorophenol			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-	-
2,4-Dichlorophenol			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
2,4-Dinitrophenol			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
2,4-Dinitrotoluene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	
2,6-Dinitrotoluene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
2-Chloronaphthalene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
2-Chlorophenol			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
2-Methylnaphthalene			ND	ND	ND	ND	ND	ND	660	ND	ND	ND	ND	ND	ND	-	-
2-Methylphenol (o-cresol)	330	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
2-Nitroaniline			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
2-Nitrophenol	+ .		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
3&4-Methylphenol (m&p-cresol)	330	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
3,3'-Dichlorobenzidine 3-Nitroaniline	+		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		
4,6-Dinitro-2-methylphenol	1		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
4-Bromophenyl phenyl ether	1		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
4-Chloro-3-methylphenol			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
4-Chloroaniline			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
4-Chlorophenyl phenyl ether			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
4-Nitroaniline			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
4-Nitrophenol			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
Acenaphthene	20,000	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	370	ND	ND	ND	ND
Acenaphthylene	100,000	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetophenone Aniline			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-	
Anthracene	100,000	100,000	ND 310	ND	ND	ND	ND	ND	ND 540	ND	ND	ND	ND 840	ND	ND	ND .	- ND
Azobenzene	100,000	100,000	310 ND	ND	ND	ND	ND	ND	540 ND	ND	ND	ND	840 ND	ND	ND	ND	ND
Benzo(a)anthracene	1,000	1,000	860	ND	560	ND	ND	ND	1,900	ND	640	1,200	3,600	ND	ND	ND	ND
Benzidine			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
Benzo(a)pyrene	1,000	1,000	740	ND	440	ND	ND	ND	2,000	ND	620	1,200	3,500	ND	ND	ND	ND
Benzo(b)fluoranthene	1,000	1,000	1,000	ND	640	ND	ND	ND	2,800	ND	950	1,700	5,200	ND	ND	ND	ND
Benzo(g,h,i)perylene	100,000	100,000	370	ND	300	ND	ND	ND	1,300	ND	290	700	1,200	ND	ND	ND	ND
Benzo(k)fluoranthene	800	3,900	360	ND	ND	ND	ND	ND	1,100	ND	370	690	1,500	ND	ND	ND	ND
Benzoic Acid			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
Butyl benzyl phthalate			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
Bis(2-chloroethoxy)methane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-	
Bis(2-ethylhexyl)phthalate			ND	ND	ND	ND	ND	ND	ND	ND	310	ND	ND	ND	ND		
Carbazole			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
Chrysene	1,000	3,900	870	ND	640	ND	ND	ND	2,000	ND	580	1000	3,500	ND	ND	ND	ND
Dibenzo(a,h)anthracene	330	330	ND	ND	ND	ND	ND	ND	350	ND	ND	ND	370	ND	ND	ND	ND
Dibenzofuran			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
Diethyl phthalate			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
Dimethyl phthalate	+		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
Di-n-butylphthalate			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-	-
Di-n-octylphthalate Fluoranthene	100.000	100.000	ND 1900	ND ND	ND 1000	ND ND	ND ND	ND ND	4000	ND	1,000	ND 1900	7.600	ND	ND ND	- ND	- ND
Fluorene	30,000	100,000	1900 ND	ND	1000 ND	ND	ND	ND	4000 ND	ND	1,000 ND	1900 ND	290	ND	ND	ND	ND
Hexachlorobenzene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
Hexachlorobutadiene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
Hexachlorocyclopentadiene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
Hexachloroethane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
Indeno(1,2,3-cd)pyrene	500	500	330	ND	ND	ND	ND	ND	1200	ND	ND	550	1,200	ND	ND	ND	ND
Isophorone			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
Naphthalene	12,000	100,000	ND	ND	ND	ND	ND	ND	570	ND	ND	ND	ND	ND	ND	ND	ND
Nitrobenzene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
N-Nitrosodimethylamine N-Nitrosodi-n-propylamine	+		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		
N-Nitrosodiphenylamine	1		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
Pentachloronitrobenzene	1		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
Pentachlorophenol	800	6,700	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
Phenanthrene	100.000	100,000	1600	ND	610	ND	ND	ND	2800	ND	690	890	4,800	ND	ND	ND	ND
Phenol	330	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
	330 100,000	100,000 100,000	ND 1600 ND	ND ND ND	ND 940 ND	ND ND ND	ND ND ND	ND ND ND	ND 3700 ND	ND ND ND	ND 1000 ND	ND 1900 ND	ND 6,500 ND	ND ND ND	ND ND ND	- ND	- ND

Notes: * - NYSDEC Technical and Administative Guidance Memorandum 4046, 1994 ** - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

ND - Not-detected

TABLE 11 431 Kent Avenue, Brooklyn, New York ZONE C Soil Analytical Results Semi-Volatile Organic Compounds JANUARY 2012

4.4.5.8.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2														
Chrono were Description </th <th></th> <th></th> <th></th> <th>Zone C</th>				Zone C	Zone C	Zone C	Zone C	Zone C	Zone C	Zone C	Zone C	Zone C	Zone C	Zone C
InterplaymentInter	COMPOUND					B2(0-2')		B3(0-2')		B4(0-2')	B5(0-2')	B5(13-15')	B6(0-2')	B6(13-15')
d.4.1660000000000000000000000000000000000				μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg		μg/Kg	μg/Kg	μg/Kg
3.300000000000000000000000000000000000														
3-03-01.01.01.000.000.	.,_,.													
24.5 Processors1001	1,3-Dichlorobenzene													
24.4 Transmission100 <th< td=""><td>1,4-Dichlorobenzene</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	1,4-Dichlorobenzene													
24-Boltenyband	2,4,5-Trichlorophenol													
24-bendprind characterbendmode<														
44 Additections44 Additections45.010.0<														
24-bioschart														
C>belongentation<	2,4-Dinitrotoluene				ND		ND			ND	ND	ND		ND
CherrogenersCherrogenersConstraint<	2,6-Dinitrotoluene													
AdditySectorSect														
Setter planeDDD <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
Setter setting <th< td=""><td></td><td>330</td><td>100,000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		330	100,000											
Bath Mathematic matrix Decomposition				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
32 Olecohensidies53 Ole (1)500<														
Nature DescriptionNatureNat		330	100,000											
4.6.1mb4.6.1mb4.mb <td></td> <td></td> <td> </td> <td></td>														
HearseHear														
Chinosenting between seriesChino and and and and and and and and and and														
Chologent pheny etherNo	4-Chloro-3-methylphenol			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AttracemberHere <td></td> <td></td> <td> </td> <td></td>														
AttributeInterpresent <td></td> <td> </td> <td></td>														
Accompany Accompany MarcesAccos <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
Accoord AntineAccoord AntineAccoord AntineAccoord AntineAccoord AntineAccoord AntineAccoord AntineAccoord AntineAccoord AntineAccoord AntineAccoord AntineAccoord AntineAccoord AntineAccoord AntineAccoord Accoord Accoord AntineAccoord Accoo	Acenaphthene	20,000	100,000											
Anile AntinescenceImage	Acenaphthylene	100,000	100,000											
anthracene10.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
AccelerationImage<		400.000	400.000											
Benzolphinacene1,001,001400140014001500		100,000	100,000											
Benzolshiveries1.0001.00	Benzo(a)anthracene	1,000	1,000											
Benacy hyber1.0001.0001.0001.0001.0001.0001.0005.000 </td <td>Benzidine</td> <td></td> <td></td> <td>ND</td> <td></td> <td>ND</td> <td>ND</td> <td>ND</td> <td></td> <td></td> <td>ND</td> <td></td> <td>ND</td> <td></td>	Benzidine			ND		ND	ND	ND			ND		ND	
Banzo(shi)perviene100.000100.000N0SeeSeeN0SeeSeeN0SeeSeeN0SeeN0SeeN0SeeN0SeeN0SeeN0SeeN0SeeN0SeeN0SeeN0SeeN0SeeN0SeeN0SeeN0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
Beacoi (Algoranthene)9.003.00N.00 <t< td=""><td></td><td><i></i></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		<i></i>												
Benzoic Acid Bury beoxy IntrolationIntoNumN														
Buryl phthalateImage: Single Sing	Benzoic Acid													
Big2-chrosicy-propyletherINCND </td <td>Butyl benzyl phthalate</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Butyl benzyl phthalate								ND					
Bid2-chronisopropyletherIncIncND </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
Bid2-exhance/ Derived/phthalateIncIncNNN<														
CarbasoleIndND <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
Dibenzo(a)hanthracene330M30MDMDNDND1.600MDNDND1.000MDM	Carbazole													
DibergormanImage by the standImage by the	Chrysene													
Diethy phthalateND<	Dibenzo(a,h)anthracene	330	330											
Dimetry ip thalateNDN														
Din-butyphthalate ND														
Din-octyphthalateND	Di-n-butylphthalate													
Fluorene30.000100.000NDND610ND2.400NDNDNDNDR10ND<	Di-n-octylphthalate			ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
Hexachloroberzene ND	Fluoranthene													
Hexachlorobutadiene ND ND <td></td> <td>30,000</td> <td>100,000</td> <td></td>		30,000	100,000											
HexachlorodyclopentaleineND <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
Hexachloroethane ND	Hexachlorocyclopentadiene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
sophorone ND	Hexachloroethane			ND	ND			ND	ND		ND			
Naphtalene 12,000 100,000 ND ND 3700 ND 1,500 ND ND A70 ND 620 ND Nitrobenzene ND	Indeno(1,2,3-cd)pyrene	500	500											
Nitrobenzene ND		12 000	100.000											
N-Nitrosodimethy/lamine ND		12,000	100,000											
N-Nicoscipipenylamine ND ND </td <td>N-Nitrosodimethylamine</td> <td></td> <td></td> <td>ND</td>	N-Nitrosodimethylamine			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pentachiory observation ND	N-Nitrosodi-n-propylamine													
Pentachlorophenol 800 6,700 ND ND </td <td>N-Nitrosodiphenylamine</td> <td> </td> <td></td>	N-Nitrosodiphenylamine													
Phenalthrene 100,000 660 ND 5,400 ND 26,600 ND 1,300 1,300 ND 9,600 ND Phenol 330 100,000 ND		900	6 700											
Phenol 330 100,000 ND														
Pyrene 100.000 100.000 700 ND 4,000 ND 28,000 ND 770 24,000 ND 5,900 ND	Phenol													
Pyridine ND ND ND ND ND ND ND ND ND ND ND ND ND	Pyrene			700	ND	4,000	ND	26,000	ND	770	24,000	ND	5,900	ND
	Pyridine			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

* NYSDEC Technical and Administative Guidance Memorandum 4046, 1994 ** - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives ND - Not-detected

TABLE 12 431 Kent Avenue, Brooklyn, New York ZONE D Soil Analytical Results Semi-Volatile Organic Compounds JANUARY 2012

	NYSDEC Part 375.6	NYDEC Part 375.6	Zone D	Zone D	Zone D	Zone D	Zone D	Zone D	Zone D	Zone D
COMPOUND	Unrestricted Use Soil Cleanup	Restricted Residential Soil	B1(0-2')	B1(13-15')	B2(0-2')	B2(13-15')	B3(0-2')	B3(13-15')	B4(0-2)	B4(13-15')
	Objectives	Cleanup Objectives*	µg/Kg	µg/Kg	μg/Kg	μg/Kg	μg/Kg	µg/Kg	μg/Kg	µg/Kg
1,2,4,5-Tetrachlorobenzene			ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene			ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene			ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene			ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene			ND	ND	ND	ND	ND	ND	ND	ND
2,4,5-Trichlorophenol			ND	ND	ND	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol			ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dichlorophenol			ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol			ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dinitrophenol			ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dinitrotoluene			ND	ND	ND	ND	ND	ND	ND	ND
2,6-Dinitrotoluene			ND	ND	ND	ND	ND	ND	ND	ND
2-Chloronaphthalene			ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorophenol			ND	ND	ND	ND	ND	ND	ND	ND
· · ·	-			ND	440	ND	ND	ND		
2-Methylnaphthalene		400.000	410						1,300	ND
2-Methylphenol (o-cresol)	330	100,000	ND	ND	ND	ND	ND	ND	ND	ND
2-Nitroaniline	-		ND	ND	ND	ND	ND	ND	ND	ND
2-Nitrophenol			ND	ND	ND	ND	ND	ND	ND	ND
3&4-Methylphenol (m&p-cresol)	330	100,000	ND	ND	ND	ND	ND	ND	ND	ND
3,3'-Dichlorobenzidine			ND	ND	ND	ND	ND	ND	ND	ND
3-Nitroaniline			ND	ND	ND	ND	ND	ND	ND	ND
4,6-Dinitro-2-methylpheno			ND	ND	ND	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether			ND	ND	ND	ND	ND	ND	ND	ND
4-Chloro-3-methylphenol			ND	ND	ND	ND	ND	ND	ND	ND
4-Chloroaniline			ND	ND	ND	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether			ND	ND	ND	ND	ND	ND	ND	ND
4-Nitroaniline			ND	ND	ND	ND	ND	ND	ND	ND
4-Nitrophenol			ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	00.000	100,000	680	ND	770	ND	ND	ND	5,800	ND
	20,000									
Acenaphthylene	100,000	100,000	ND	ND	620	ND	ND	ND	730	ND
Acetophenone	-		ND	ND	ND	ND	ND	ND	ND	ND
Aniline			ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	100,000	100,000	1,700	ND	1,900	ND	ND	ND	9,800	ND
Azobenzene			ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	1,000	1,000	5,400	ND	7,500	ND	760	ND	19,000	ND
Benzidine			ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	1,000	1,000	5,100	ND	7,200	ND	710	ND	16,000	ND
Benzo(b)fluoranthene	1,000	1,000	5,800	ND	9,800	ND	920	ND	21,000	ND
Benzo(g,h,i)perylene	100,000	100,000	1,900	ND	2,400	ND	330	ND	3,200	ND
Benzo(k)fluoranthene	800	3,900	1,700	ND	27,000	ND	280	ND	8,400	ND
Benzoic Acid			ND	ND	ND	ND	ND	ND	ND	ND
Butyl benzyl phthalate			ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-chloroethoxy)methane			ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-chloroethyl)ether			ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-chloroisopropyl)ether			ND	ND	ND	ND	ND	ND	ND	ND
				ND					ND	
Bis(2-ethylhexyl)phthalate			ND		ND	ND	ND	ND		ND
Carbazole			ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	1,000	3,900	5,600	ND	7,900	ND	800	ND	16,000	ND
Dibenzo(a,h)anthracene	330	330	600	ND	940	ND	ND	ND	ND	ND
Dibenzofuran			480	ND	480	ND	ND	ND	ND	ND
Diethyl phthalate			ND	ND	ND	ND	ND	ND	ND	ND
Dimethyl phthalate			ND	ND	ND	ND	ND	ND	ND	ND
Di-n-butylphthalate			ND	ND	ND	ND	ND	ND	ND	ND
Di-n-octylphthalate			ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	100,000	100,000	11,000	ND	11,000	ND	930	ND	48,000	ND
Fluorene	30,000	100,000	790	ND	810	ND	ND	ND	5,900	ND
Hexachlorobenzene			ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene			ND	ND	ND	ND	ND	ND	ND	ND
	1	1	ND	ND	ND	ND	ND	ND	ND	ND
Inexacillorocyclopentadiene	1		ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene Hexachloroethane			IND.					ND	3,900	ND
Hexachloroethane	F00	500	1 700	ND		ND	940			IND ND
Hexachloroethane Indeno(1,2,3-cd)pyrene	500	500	1,700	ND	2,600	ND	310			
Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone			ND	ND	ND	ND	ND	ND	ND	ND
Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone Naphthalene	500	500	ND 840	ND ND	ND 650	ND 300	ND ND	ND ND	ND ND	ND ND
Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone Naphthalene Nitrobenzene			ND 840 ND	ND ND ND	ND 650 ND	ND 300 ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodimethylamine			ND 840 ND ND	ND ND ND ND	ND 650 ND ND	ND 300 ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND
Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodimethylamine N-Nitrosodi-n-propylamine			ND 840 ND ND ND	ND ND ND ND	ND 650 ND ND ND	ND 300 ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND
Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodimethylamine N-Nitrosodin-propylamine N-Nitrosodiphenylamine			ND 840 ND ND ND ND	ND ND ND ND ND ND	ND 650 ND ND ND ND	ND 300 ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND
Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodimethylamine N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine Pentachloronitrobenzene	12,000	100,000	ND 840 ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND 650 ND ND ND ND ND ND	ND 300 ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND
Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodimethylamine N-Nitrosodin-n-propylamine N-Nitrosodiphenylamine Pentachloronitrobenzene Pentachloronitrobenzene Pentachlorophenol	12,000 800		ND 840 ND ND ND ND	ND ND ND ND ND ND	ND 650 ND ND ND ND	ND 300 ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND
Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodimethylamine N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine Pentachloronitrobenzene	12,000	100,000	ND 840 ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND 650 ND ND ND ND ND ND	ND 300 ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND
Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodimethylamine N-Nitrosodin-n-propylamine N-Nitrosodiphenylamine Pentachloronitrobenzene Pentachloronitrobenzene Pentachlorophenol	12,000	100,000 	ND 840 ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND 650 ND ND ND ND ND ND	ND 300 ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND
Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodimethylamine N-Nitrosodin-propylamine N-Nitrosodiphenylamine Pentachloronitrobenzene Pentachlorophenol Phenanthrene Phenol	12,000 800 100,000 330	100,000 6,700 100,000 100,000	ND 840 ND ND ND ND ND ND 11,000 ND	ND ND ND ND ND ND ND ND ND	ND 650 ND ND ND ND ND 11,000 ND	ND 300 ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND 830	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND
Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodimethylamine N-Nitrosodin-propylamine N-Nitrosodiphenylamine Pentachloronitrobenzene Pentachlorophenol Phenanthrene	12,000 800 100,000	100,000 6,700 100,000	ND 840 ND ND ND ND ND 11,000	ND ND ND ND ND ND ND ND ND ND	ND 650 ND ND ND ND ND 11,000	ND 300 ND ND	ND ND ND ND ND ND ND ND 830 ND	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND 43,000	ND ND ND ND ND ND ND ND ND ND

Notes: * - NYSDEC Technical and Administative Guidance Memorandum 4046, 1994

** - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

NTC-KN Part 37-5 Remedial Program Soli Cleanup Objectives
 ND - Not-detected
 NA - Guidance value not available
 Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value
 Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

TABLE 13 431 Kent Avenue, Brooklyn, New York ZONE A Soil Analytical Results Pesticides / PCBs JANUARY 2012

COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil Cleanup Objectives	NYDEC Part 375.6 Restricted Residential Soil Cleanup Objectives*	Zone A B1(0-2') µg/Kg	Zone A B1(13-15') μg/Kg	Zone A B2(0-2') μg/Kg	Zone A B2(13-15') μg/Kg	Zone A B3(0-2') μg/Kg	Zone A B3(13-15') μg/Kg	Zone A B4(2-4') PCB3 µg/Kg	Zone A B4(13-15') PCB3 µg/Kg	Zone A PCB1(0-2') µg/Kg	Zone A PCB2(2-4') µg/Kg	Zone A PCB4(0-2') µg/Kg
PCB-1016	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1221	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1232	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1242	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1248	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1254	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1260	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1262	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1268	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,4-DDD	3.3	13,000	ND	ND	ND	ND	ND	ND	ND	ND		-	-
4,4-DDE	3.3	8,900	ND	ND	ND	ND	ND	ND	ND	ND		-	-
4,4-DDT	3.3	7,900	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-
a-BHC	20	480	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-
Alachlor			ND	ND	ND	ND	ND	ND	ND	ND	-	-	-
Aldrin	5	97	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-
b-BHC	36	360	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-
Chlordane	94	4,200	ND	ND	130	ND	ND	ND	ND	ND	-	-	-
d-BHC	40	100,000	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-
Dieldrin	5	200	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-
Endosulfan I	2,400	24,000	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-
Endosulfan II	2,400	24,000	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-
Endosulfan Sulfate	2,400	24,000	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-
Endrin	14	11,000	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-
Endrin aldehyde			ND	ND	ND	ND	ND	ND	ND	ND	-	-	-
Endrin ketone			ND	ND	ND	ND	ND	ND	ND	ND	-	-	-
gamma-BHC			ND	ND	ND	ND	ND	ND	ND	ND	-	-	-
Heptachlor	42	2,100	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-
Heptachlor epoxide			ND	ND	ND	ND	ND	ND	ND	ND	-	-	-
Methoxychlor			ND	ND	ND	ND	ND	ND	ND	ND	-	-	-
Toxaphene			ND	ND	ND	ND	ND	ND	ND	ND	-	-	-

Notes:

* - NYSDEC Technical and Administative Guidance Memorandum 4046, 1994

** - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

ND - Not-detected

"-" - Not Analyzed

NA - Guidance value not available

Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value

TABLE 14 431 Kent Avenue, Brooklyn, New York ZONE B Soil Analytical Results Pesticides / PCBs JANUARY 2012

COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil Cleanup Objectives	NYDEC Part 375.6 Restricted Residential Soil Cleanup Objectives*	Zone B B1(0-2')	Zone B B1(13-15')	Zone B B2(0-2') T2	Zone B B2(13-15') T2	Zone B B3(0-2') A1	Zone B B3(13-15') A1	Zone B B4(0-2') Ben	Zone B B4(13-15') Ben	Zone B B5(0-2') P2	Zone B B6(0-2') P1	Zone B B6(0-2') P1	Zone B B7(0-2')	Zone B B7(13-15')	Field Duplicate
			μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg
PCB-1016	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1221	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1232	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1242	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1248	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1254	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1260	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1262	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1268	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,4-DDD	3.3	13,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,4-DDE	3.3	8,900	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,4-DDT	3.3	7,900	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
a-BHC	20	480	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Alachlor			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aldrin	5	97	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
b-BHC	36	360	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlordane	94	4,200	ND	ND	ND	ND	ND	ND	ND	ND	66	69	ND	ND	ND	ND
d-BHC	40	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dieldrin	5	200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan I	2,400	24,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan II	2,400	24,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan Sulfate	2,400	24,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin	14	11,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin aldehyde			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin ketone			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
gamma-BHC			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor	42	2,100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor epoxide			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methoxychlor			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toxaphene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

* - NYSDEC Technical and Administative Guidance Memorandum 4046, 1994

** - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

ND - Not-detected

NA - Guidance value not available

TABLE 15 431 Kent Avenue, Brooklyn, New York ZONE C Soil Analytical Results Pesticides / PCBs JANUARY 2012

COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil Cleanup Objectives	NYDEC Part 375.6 Restricted Residential Soil Cleanup Objectives*	Zone C B1(0-2') μg/Kg	Zone C B1(13-15') بو/Kg	Zone C B2(0-2') μg/Kg	Zone C B2(13-15') μg/Kg	Zone C B3(0-2') μg/Kg	Zone C B3(13-15') μg/Kg	Zone C B4(0-2') μg/Kg	Zone C B5(0-2') μg/Kg	Zone C B5(13-15') μg/Kg	Zone C B6(0-2') μg/Kg	Zone C B6(13-15') μg/Kg
PCB-1016	1.000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	μ <u>g</u> , κg ND	ND
PCB-1221	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1221	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1242	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1248	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1254	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1260	1.000	1.000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1262	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1268	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,4-DDD	3.3	13,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,4-DDE	3.3	8,900	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,4-DDT	3.3	7,900	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
a-BHC	20	480	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Alachlor			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aldrin	5	97	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
b-BHC	36	360	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlordane	94	4,200	ND	ND	ND	ND	ND	ND	ND	ND	ND	270	ND
d-BHC	40	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dieldrin	5	200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan I	2,400	24,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan II	2,400	24,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan Sulfate	2,400	24,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin	14	11,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin aldehyde			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin ketone			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
gamma-BHC			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor	42	2,100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor epoxide			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methoxychlor			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toxaphene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

* - NYSDEC Technical and Administative Guidance Memorandum 4046, 1994

** - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

ND - Not-detected

"-" - Not Analyzed

NA - Guidance value not available

Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value

TABLE 16 431 Kent Avenue, Brooklyn, New York ZONE D Soil Analytical Results Pesticides / PCBs JANUARY 2012

COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil	NYDEC Part 375.6 Restricted Residential	Zone D B1(0-2')	Zone D B1(13-15')	Zone D B2(0-2')	Zone D B2(13-15')	Zone D B3(0-2')	Zone D B3(13-15')	Zone D B4(0-2)	Zone D B4(13-15')
	Cleanup Objectives	Soil Cleanup Objectives*	μg/Kg	μg/Kg	μg/Kg	μg/Kg	µg/Kg		μg/Kg	μg/Kg
PCB-1016	1,000	1,000	μ g/Kg ND	μ g/Kg ND	μ ι γκις ND	ND	μg/Kg ND	μ g/Kg ND	μg/κg ND	μ g/Rg ND
PCB-1010	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1221 PCB-1232	1,000	1,000	ND ND	ND	ND ND	ND	ND	ND	ND	ND
PCB-1232 PCB-1242	1,000	1,000	ND ND	ND	ND	ND	ND	ND	ND	ND
PCB-1242 PCB-1248	1,000	1,000	ND ND	ND	ND ND	ND	ND	ND	ND	ND
PCB-1248 PCB-1254	1,000	1,000	ND ND	ND	ND	ND	ND	ND	ND	ND
PCB-1254 PCB-1260	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1260 PCB-1262	1,000	1,000	ND ND	ND	ND ND	ND	ND	ND	ND	ND
PCB-1262 PCB-1268	1,000	1,000	ND ND	ND	ND	ND	ND	ND	ND	ND
4,4-DDD	3.3	13,000	ND ND	ND	ND ND	ND	ND	ND	ND	ND
4,4-DDD 4,4-DDE	3.3	8,900	ND ND	ND	ND	ND	ND	ND	ND	ND
4,4-DDE 4.4-DDT	3.3	7,900	ND	ND	ND	ND	ND	ND	ND	ND
a-BHC	20	480	ND	ND	ND	ND	ND	ND	ND	ND
Alachlor	20	400	ND ND	ND	ND	ND	ND	ND	ND	ND
Aldrin	5	97	ND	ND	ND	ND	ND	ND	ND	ND
b-BHC	36	360	ND	ND	ND	ND	ND	ND	ND	ND
Chlordane	94	4,200	ND	ND	ND	ND	ND	ND	ND	ND
d-BHC	40	100,000	ND	ND	ND	ND	ND	ND	ND	ND
Dieldrin	5	200	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan I	2,400	24,000	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan II	2,400	24,000	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan Sulfate	2,400	24,000	ND	ND	ND	ND	ND	ND	ND	ND
Endrin	14	11,000	ND	ND	ND	ND	ND	ND	ND	ND
Endrin aldehyde	14	11,000	ND	ND	ND	ND	ND	ND	ND	ND
Endrin ketone			ND	ND	ND	ND	ND	ND	ND	ND
gamma-BHC			ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor	42	2,100	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor epoxide	12	2,.00	ND	ND	ND	ND	ND	ND	ND	ND
Methoxychlor			ND	ND	ND	ND	ND	ND	ND	ND
Toxaphene			ND	ND	ND	ND	ND	ND	ND	ND

Notes:

* - NYSDEC Technical and Administative Guidance Memorandum 4046, 1994

** - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

ND - Not-detected

NA - Guidance value not available

Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value

TABLE 17 431 Kent Avenue, Brooklyn, New York ZONE A Soil Analytical Results Metals JANUARY 2012

COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil Cleanup Objectives	NYDEC Part 375.6 Restricted Residential Soil Cleanup Objectives*	Zone A B1(0-2') mg/Kg	Zone A B1(13-15') mg/Kg	Zone A B2(0-2') mg/Kg	Zone A B2(13-15') mg/Kg	Zone A B3(0-2') mg/Kg	Zone A B3(13-15') mg/Kg	Zone A B4(2-4') PCB3 mg/Kg	Zone A B4(13-15') PCB3 mg/Kg
Aluminum			5,860	8,940	9,630	14,700	11,800	17,100	5,410	12,300
Antimony			10.5	BDL	BDL	BDL	BDL	BDL	89	BDL
Arsenic	13	16	10.4	BDL	3.74	2.67	11.9	1.5	24.1	5.63
Barium	350	400	239	52.8	206	39.7	487	65.8	348	113
Beryllium	7.2	72	0.7	0.48	0.46	0.51	0.55	BDL	BDL	BDL
Cadmium	2.5 c	4.3	1.82	0.99	0.93	0.63	2.66	0.58	3.93	1.78
Calcium			10,800	835	14,500	935	4,540	1,200	17,800	1,250
Chromium	30 c	110	12.4	34.5	18.8	15.9	37.7	19.1	32.3	12.7
Cobalt			10.7	8.79	6.35	6.36	9.27	8.21	16.3	18.6
Copper	50	270	136	19.3	69.9	13.8	157	9.62	352	42.9
Iron			16,500	37,700	24,400	23,100	55,800	22,900	71,700	48,400
Lead	63 c	400	1,130	3.64	279	8.8	708	7.68	1,660	9
Magnesium			3,660	2,080	3,620	3,930	3,070	3,320	1,850	2,460
Manganese	1600 c	2,000	371	654	445	224	616	825	295	4,410
Mercury	0.18 c	0.81	0.3	BDL	0.87	BDL	1.96	BDL	1.91	BDL
Nickel	30	310	21.2	20.1	16.7	14.9	29.9	15.8	44	20.1
Potassium			1,410	1,640	1,460	1,240	1,430	1,510	829	925
Selenium	3.9c	180	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Silver	2	180	0.46	BDL	BDL	BDL	BDL	BDL	0.47	BDL
Sodium			290	77	427	122	426	129	302	76.3
Thallium			BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Vanadium			20.7	43.1	32.6	26.4	34.7	27.9	28.6	46.3
Zinc	109 c	10,000	608	37.3	190	40.5	684	58.7	539	81.4

Notes:

* - NYSDEC Technical and Administative Guidance Memorandum 4046, 1994

** - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

BDL - Below Detection Limit

NA - Guidance value not available

Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value

TABLE 18 431 Kent Avenue, Brooklyn, New York ZONE A - SUPPLEMENTAL Soil Analytical Results Metals JUNE 2012

	NYSDEC Part 375.6	NYDEC Part 375.6 Restricted		ZA-B5			ZA-B6	
COMPOUND	Unrestricted Use Soil Cleanup Objectives	Residential Soil Cleanup Objectives*	(13-15) mg/Kg	(15-17) mg/Kg	(17-19) mg/Kg	(13-15) mg/Kg	(15-17) mg/Kg	(17-19) mg/Kg
Aluminum			-	-	-	-	-	-
Antimony			-	-	-	-	-	-
Arsenic	13	16	-	-	-	-	-	-
Barium	350	400	-	-	-	-	-	-
Beryllium	7.2	72	-	-	-	-	-	-
Cadmium	2.5 c	4.3	-	-	-	-	-	-
Calcium			-	-	-	-	-	-
Cobalt			-	-	-	-	-	-
Chromium	30 c	180 - trivalent	32.4	15.2	9.63	-	-	-
Chromium - Hexavalent	1	110	<0.42	<0.46	<0.42	-	-	-
Copper	50	270	-	-	-	-	-	-
Iron			-	-	-	-	-	-
Lead	63 c	400	-	-	-	-	-	-
Mercury	0.18 c	0.81	-	-	-	-	-	-
Magnesium			-	-	-	-	-	-
Manganese	1600 c	2,000	-	-	-	2,360	316	393
Nickel	30	310	-	-	-	-	-	-
Potassium			-	-	-	-	-	-
Silver	2	180	-	-	-	-	-	-
Sodium			-	-	-	-	-	-
Selenium	3.9c	180	-	-	-	-	-	-
Thallium			-	-	-	-	-	-
Vanadium			-	-	-	-	-	-
Zinc	109 c	10,000	-	-	-	-	-	-

Notes:

* - NYSDEC Technical and Administative Guidance Memorandum 4046, 1994

** - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

ND - Not-detected

NA - Not analyzed

J - The value is estimated. This flag is used: a) on form 1 when the compound is reported above the MDL, but below the PQL, and b) on the Tentatively Identified Compounds (TIC) form for all compounds identified. S - This compound is a solvent that is used in the laboratory. Laboratory contamination is suspected if concentration is less than five times the reporting level.

N - The concentration is based on the response for the nearest internal. This flag is used on the TIC form for all compounds identified.

TABLE 19 431 Kent Avenue, Brooklyn, New York ZONE B Soil Analytical Results Metals JABUARY 2012

COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil Cleanup Objectives	NYDEC Part 375.6 Restricted Residential Soil Cleanup Objectives*	Zone B B1(0-2') mg/Kg	Zone B B1(13-15') mg/Kg	Zone B B2(0-2') T2 mg/Kg	Zone B B2(13-15') T2 mg/Kg	Zone B B3(0-2') A1 mg/Kg	Zone B B3(13-15') A1 mg/Kg	Zone B B4(0-2') Ben mg/Kg	Zone B B4(13-15') Ben mg/Kg	Zone B B5(0-2') P2 mg/Kg	Zone B B6(0-2') P1 mg/Kg	Zone B B7(0-2') mg/Kg	Zone B B7(13-15') mg/Kg	Zone B Field Duplicate mg/Kg	Zone B Lead 1 (0-2') mg/Kg	Zone B Lead 2 (0-2') mg/Kg	Zone B Lead 3 (0-2') mg/Kg
Aluminum			15,400	3,400	5,550	7,640	14,800	6,110	9,100	12,900	7,510	8,230	7,080	28,200	4,280	12,900	11,000	11,900
Antimony			BDL	BDL	46.5	BDL	BDL	BDL	BDL	BDL	BDL	4.5	BDL	BDL	BDL	BDL	49.3	BDL
Arsenic	13	16	11.5	BDL	16.8	BDL	1.11	3.74	17.3	3.08	4.17	5.73	5.49	BDL	BDL	6.78	12.2	4.45
Barium	350	400	1,360	21.6	161	47.6	83.2	17.2	1,870	15.7	1,030	1,450	61.1	234	24.7	760	2,160	110
Beryllium	7.2	72	0.45	BDL	0.79	BDL	0.46	BDL	0.5	0.35	0.33	0.32	BDL	BDL	BDL	0.91	1.96	0.43
Cadmium	2.5 c	4.3	0.83	BDL	2.12	BDL	0.63	BDL	3.36	0.7	1.96	1.46	1.16	0.74	BDL	1.52	2.47	0.76
Calcium			1,460	509	10,100	622	24,000	349	21,800	875	19,700	41,500	13,200	4,640	493	11,400	13,900	15,400
Chromium	30 c	110	20.6	6.81	16.2	10.1	18.1	7.53	41.7	12.1	20.5	22.5	18.1	57	9.88	13.4	45.7	16.8
Cobalt			6.34	2.17	10.6	4.73	4.31	5.22	9.09	7.71	8.14	7.11	5.94	26.2	3.92	5.96	20	7.09
Copper	50	270	39.5	8.51	669	5.16	66.9	6.53	181	14	73.8	105	42.1	33.1	9.2	104	903	74.4
Iron			24,100	6,000	22,000	9,460	14,000	13,200	21,900	22,100	15,700	17,200	15,600	46,300	9,290	8,420	36,600	19,400
Lead	63 c	400	606	3.11	3,630	6.09	107	7.2	1,480	8.39	231	786	84.3	BDL	3.4	40.8	1,510	306
Magnesium			2,850	1,170	858	2,200	4,280	1,840	3,310	3,450	2,670	4,070	3,500	13,100	1,500	1,060	3,540	3,930
Manganese	1600 c	2,000	205	109	167	127	295	239	417	538	335	364	311	621	235	96.3	558	447
Mercury	0.18c	1	1.49	BDL	0.46	BDL	0.35	BDL	0.99	BDL	0.85	0.57	1.51	BDL	BDL	BDL	0.89	0.46
Nickel	30	310	16	5.79	99.5	11.1	10.7	10.8	55.8	15.8	16.7	21.9	16.4	29.3	10.5	21.8	86.2	15.6
Potassium			1,160	588	941	837	1,570	762	1,500	928	1,140	1,590	1,130	4,900	693	1,090	1,570	1,420
Selenium	3.9c	180	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Silver	2	180	0.91	BDL	3.14	BDL	BDL	BDL	BDL	BDL	0.35	0.47	BDL	3.89	BDL	0.58	0.93	BDL
Sodium			120	46.9	672	69	1,830	46.5	503	647	404	720	404	318	68.2	602	677	363
Thallium			BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Vanadium			29.6	9.55	31.9	13.8	20.8	11.6	28	19.2	29.1	22.9	18.4	126	16.9	36.9	31.7	25.7
Zinc	109 c	10,000	173	15.7	630	30.9	112	26.2	1,600	44.3	271	508	141	97	19.6	277	4,870	165

Notes:

* - NYSDEC Technical and Administative Guidance Memorandum 4046, 1994 ** - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

BDL - Below Detection Limit

NA - Guidance value not available

TABLE 20 431 Kent Avenue, Brooklyn, New York ZONE B - SUPPLEMENTAL Soil Analytical Results Metals JUNE 2012

	NYSDEC Part 375.6	NYDEC Part 375.6		ZB-B8	
COMPOUND	Unrestricted Use Soil Cleanup Objectives	Restricted Residential Soil Cleanup Objectives*	(13-15) mg/Kg	(15-17) mg/Kg	(17-19) mg/Kg
Aluminum			-	-	-
Antimony			-	-	-
Arsenic	13	16	-	-	-
Barium	350	400	-	-	-
Beryllium	7.2	72	-	-	-
Cadmium	2.5 c	4.3	-	-	-
Calcium			-	-	-
Cobalt			-	-	-
Chromium	30 c	180 - trivalent	36.8	13.2	11.7
Chromium - Hexavalent	1	110	<0.45	<0.42	<0.42
Copper	50	270	-	-	-
Iron			-	-	-
Lead	63 c	400	-	-	-
Mercury	0.18 c	0.81	-	-	-
Magnesium			-	-	-
Manganese	1600 c	2,000	-	-	-
Nickel	30	310	-	-	-
Potassium			-	-	-
Silver	2	180	<0.38	<0.37	<0.34
Sodium			-	-	-
Selenium	3.9c	180	-	-	-
Thallium			-	-	-
Vanadium			-	-	-
Zinc	109 c	10,000	-	-	-

Notes:

* - NYSDEC Technical and Administative Guidance Memorandum 4046, 1994

** - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

ND - Not-detected

NA - Not analyzed

J - The value is estimated. This flag is used: a) on form 1 when the compound is reported above the MDL, but below the PQL, and b) on the Tentatively Identif S - This compound is a solvent that is used in the laboratory. Laboratory contamination is suspected if concentration is less than five times the reporting level.

N - The concentration is based on the response for the nearest internal. This flag is used on the TIC form for all compounds identified.

TABLE 21 431 Kent Avenue, Brooklyn, New York ZONE C Soil Analytical Results Metals JANUARY 2012

COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil Cleanup Objectives	NYDEC Part 375.6 Restricted Residential Soil Cleanup Objectives*	Zone C B1(0-2') mg/Kg	Zone C B1(13-15') mg/Kg	Zone C B2(0-2') mg/Kg	Zone C B2(13-15') mg/Kg	Zone C B3(0-2') mg/Kg	Zone C B3(13-15') mg/Kg	Zone C B4(0-2') mg/Kg	Zone C B5(0-2') mg/Kg	Zone C B5(13-15') mg/Kg	Zone C B6(0-2') mg/Kg	Zone C B6(13-15') mg/Kg
Aluminum			6,360	14,200	9,820	8,850	7,690	7,310	10,300	8,930	6,690	7,290	5,990
Antimony			BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Arsenic	13	16	1.6	BDL	4.25	BDL	11	BDL	5.48	11.9	3.09	6.55	2.86
Barium	350	400	39.7	102	103	49.6	171	48.2	98.6	352	14.8	194	16.8
Beryllium	7.2	72	0.31	0.58	0.43	0.44	0.48	0.37	0.45	0.46	0.33	0.37	0.31
Cadmium	2.5 c	4.3	0.53	0.95	2.17	0.6	1.13	0.59	0.56	1.42	0.41	1.7	0.42
Calcium			4,660	2,130	22,600	458	35,200	1,020	42,700	21,400	383	24,100	206
Chromium	30 c	110	14.8	125	29.9	26.9	18.9	17.1	14.4	24	8.69	26.6	7.71
Cobalt			4.58	15.4	6.41	8.01	5.58	5.88	6.1	8.86	5.55	5.34	6.34
Copper	50	270	25.3	27.5	57.3	12.8	172	9.24	38.2	180	7.38	121	8.44
Iron			14,200	38,800	20,000	23,700	22,800	21,700	17,500	32,200	13,900	13,800	12,600
Lead	63 c	400	32.1	5.77	181	3.5	2,140	3.45	10.3	603	5.8	266	5.89
Magnesium			1,990	5,550	3,680	2,900	4,270	2,390	7,810	3,540	2,050	4,080	2,160
Manganese	1600 c	2,000	326	427	403	348	367	469	551	392	238	227	326
Mercury	0.18 c	0.81	0.27	BDL	0.4	BDL	3.47	BDL	0.09	0.98	BDL	1.41	BDL
Nickel	30	310	9.56	69.2	18.4	12.9	18.5	12.5	11.1	19.1	10.1	24.7	11.1
Potassium			1,040	1,620	1,330	2,600	1,410	1,410	2,030	1,610	861	1,270	855
Selenium	3.9c	180	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Silver	2	180	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	1.63	BDL
Sodium			190	277	375	51.5	707	88.7	1,300	833	86	1,140	142
Thallium			BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Vanadium			18.1	61.1	25.6	43.8	30.6	27.5	27.7	35.5	13.2	23.3	11.7
Zinc	109 c	10,000	53.1	79.1	115	37.3	270	22	29.7	285	24	286	27.1

Notes:

* - NYSDEC Technical and Administative Guidance Memorandum 4046, 1994

** - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

BDL - Below Detection Limit

NA - Guidance value not available

Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value

TABLE 22 431 Kent Avenue, Brooklyn, New York ZONE C - SUPPLEMENTAL Soil Analytical Results Metals JUNE 2012

	NYSDEC Part 375.6	NYDEC Part 375.6 Restricted		ZC-B7			ZC-B8			ZC-B9			ZC-B10	
COMPOUND	Unrestricted Use Soil Cleanup Objectives	Residential Soil Cleanup Objectives*	(13-15) mg/Kg	(15-17) mg/Kg	(17-19) mg/Kg	(13-15) mg/Kg	(15-17) mg/Kg	(17-19) mg/Kg	(13-15) mg/Kg	(15-17) mg/Kg	(17-19) mg/Kg	(13-15) mg/Kg	(15-17) mg/Kg	(17-19) mg/Kg
Aluminum			-	-	-	-	-	-	-	-	-	-	-	-
Antimony			-	-	-	-	-	-	-	-	-	-	-	-
Arsenic	13	16	-	-	-	-	-	-	-	-	-	-	-	-
Barium	350	400	-	-	-	-	-	-	-	-	-	-	-	-
Beryllium	7.2	72	-	-	-	-	-	-	-	-	-	-	-	-
Cadmium	2.5 c	4.3	-	-	-	-	-	-	-	-	-	-	-	-
Calcium			-	-	-	-	-	-	-	-	-	-	-	-
Cobalt			-	-	-	-	-	-	-	-	-	-	-	-
Chromium	30 c	180 - trivalent	5.08	5.03	8.66	12.2	6.70	10.7	19.8	8.64	10.1	7.13	8.22	5.00
Chromium - Hexavalent	1	110	<0.41	<0.38	<0.38	0.430	<0.39	<0.40	0.620	<0.37	<0.37	<0.36	<0.41	<0.41
Copper	50	270	-	-	-	-	-	-	-	-	-	-	-	-
Iron			-	-	-	-	-	-	-	-	-	-	-	-
Lead	63 c	400	-	-	-	-	-	-	-	-	-	-	-	-
Mercury	0.18 c	0.81	-	-	-	-	-	-	-	-	-	-	-	-
Magnesium			-	-	-	-	-	-	-	-	-	-	-	-
Manganese	1600 c	2,000	-	-	-	-	-	-	-	-	-	-	-	-
Nickel	30	310	8.98	10.2	5.37	13.4	10.1	14.3	11.8	6.69	6.88	13.7	9.77	6.22
Potassium			-	-	-	-	-	-	-	-	-	-	-	-
Silver	2	180	-	-	-	-	-	-	-	-	-	-	-	-
Sodium			-	-	-	-	-	-	-	-	-	-	-	-
Selenium	3.9c	180	-	-	-	-	-	-	-	-	-	-	-	-
Thallium			-	-	-	-	-	-	-	-	-	-	-	-
Vanadium			-	-	-	-	-	-	-	-	-	-	-	-
Zinc	109 c	10,000	-	-	-	-	-	-	-	-	-	-	-	-

Notes:

* - NYSDEC Technical and Administative Guidance Memorandum 4046, 1994

** - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

ND - Not-detected

NA - Not analyzed

J - The value is estimated. This flag is used: a) on form 1 when the compound is reported above the MDL, but below the PQL, and b) on the Tentatively Identified Compounds (TIC) form for all compounds identified.

S - This compound is a solvent that is used in the laboratory. Laboratory contamination is suspected if concentration is less than five times the reporting level.

N - The concentration is based on the response for the nearest internal. This flag is used on the TIC form for all compounds identified.

Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value

TABLE 23 431 Kent Avenue, Brooklyn, New York ZONE D Soil Analytical Results Metals JANUARY 2012

COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil Cleanup Objectives	NYDEC Part 375.6 Restricted Residential Soil Cleanup Objectives*	Zone D B1(0-2') mg/Kg	Zone D B1(13-15') mg/Kg	Zone D B2(0-2') mg/Kg	Zone D B2(13-15') mg/Kg	Zone D B3(0-2') mg/Kg	Zone D B3(13-15') mg/Kg	Zone D B4(0-2) mg/Kg	Zone D B4(13-15') mg/Kg
Aluminum			8,940	4,730	8,410	4,810	5,770	5,810	9,110	8,010
Antimony			4.5	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Arsenic	13	16	5.42	BDL	9.86	2.23	3.26	2.4	4.06	BDL
Barium	350	400	308	17.8	322	29	54.3	38.5	117	57.6
Beryllium	7.2	72	0.57	BDL	0.81	0.33	0.32	0.31	0.45	0.41
Cadmium	2.5 c	4.3	1.5	BDL	2.12	0.47	0.53	0.45	4.35	0.84
Calcium			20,800	528	37,500	592	39,300	441	54,100	890
Chromium	30 c	110	27.5	10.1	26.1	9.42	23.3	7.88	24.5	24.3
Cobalt			7.87	2.98	8.25	4.55	6.2	6.2	4.37	7.63
Copper	50	270	272	9.28	256	8.25	54.3	8.31	73	11.3
Iron			30,100	8,930	23,700	12,800	12,800	14,200	13,200	33,900
Lead	63 c	400	486	3.41	622	4	68.9	6.46	130	2.61
Magnesium			3,110	1,220	3,780	1,680	8,790	2,030	4,180	2,700
Manganese	1600 c	2,000	425	147	355	308	226	318	247	585
Mercury	0.18c	0.81	1.13	BDL	1.45	BDL	0.28	BDL	9.5	BDL
Nickel	30	310	19.1	6.96	29	11	11.3	12.2	14.9	13.1
Potassium			1,470	734	1,190	973	1,240	931	1,280	1,800
Selenium	3.9c	180	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Silver	2	180	0.53	BDL	3.41	BDL	BDL	BDL	0.83	BDL
Sodium			343	80.4	696	49.5	580	53.4	1,190	76.4
Thallium			BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Vanadium			31.2	16.3	38.3	15.5	18.6	12.2	19.1	36.9
Zinc	109 c	10,000	524	11.6	899	23.4	55.2	27.4	287	39.9

Notes:

* - NYSDEC Technical and Administative Guidance Memorandum 4046, 1994

** - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

BDL - Below Detection Limit

NA - Guidance value not available

Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value

Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

Table 24 431 Kent Avenue Brooklyn, NY ZONE A Groundwater Analaytical Results Volatile Organic Compounds JANUARY 2012

					ANUARY 2012								
Compound	NYSDEC Groundwater Quality Standards µg/L	Zone A GW1 μg/L	Zone A GW2 μg/L	Zone A GW3 μg/L	Zone B GW1 µg/L	Zone B GW2	Zone B GW3 μg/L	Zone B GW4	Zone C GW1 μg/L	Zone C GW2 μg/L	Zone C GW3 μg/L	Zone C GW4	Zone D GW1 μg/L
1,1,1,2-Tetrachlorothane	5	μg/L ND	µg/∟ ND	µg/∟ ND	μg/L ND	μg/L ND	μg/L ND	μg/L ND	µg/∟ ND	µg/∟ ND	µg/∟ ND	μg/L ND	µg/∟ ND
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene		ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane		ND ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	0.94	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,3-Dichlorobenzene 1,3-Dichloropropane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorotoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone (Methyl Butyl Ketone)	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Isopropyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chlorotoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Acetone Acrylonitrile	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide Carbon tetrachloride	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	6.5	1.6	ND	9.8	ND	1.8	1.1	8	8.8	13	9.8	5.6
Chloromethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.1	1.1	ND
cis-1,3-Dichloropropene	0.4 ^(a)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Dibromoethane Dibromomethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m&p-Xylenes	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl Ethyl Ketone (2-Butanone)	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl t-butyl ether (MTBE) Methylene chloride	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Methylene chloride Naphthalene	5	ND	ND	ND 2.9	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND ND
n-Butylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene Tetrachloroethene	5	ND 76	ND 26	ND 13	ND 4.9	ND 2.1	ND 14	ND 24	ND 15	ND 14	ND 6.1	ND 24	ND 18
Tetrachioroethene Tetrahydrofuran (THF)	5	ND	Z6 ND	ND	4.9 ND	Z.1 ND	14 ND	Z4 ND	ND	ND	6.1 ND	Z4 ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Xylenes		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	0.4 ^(a)												ND
trans-1,4-dichloro-2-butene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	0.4 ^(a)	ND 4.9	4.3	ND	6.5	25	6.9	4.1	15	25	72	16	15
Trichloroethene Trichlorofluoromethane		ND 4.9 ND	4.3 ND	ND ND	6.5 ND	25 ND	6.9 ND	4.1 ND	15 ND	25 ND	72 ND	16 ND	15 ND
Trichloroethene		ND 4.9	4.3	ND	6.5	25	6.9	4.1	15	25	72	16	15

Notes: ND - Not detected

 Bold/highlighted-Indicated exceedance of the NYSDEC Groundwater Standard
 (a) - Refers to the sum of cis and trans isomers

TABLE 25 431 Kent Avenue, Brooklyn, NY Groundwater Analytical Results Volatile Organic Compounds JUNE 2012

Compound	NYSDEC Groundwater Quality Standards	Trip Blank	MW1S	MW2S	MW3S	MW3D	MW4S	MW4D	MW5S	MW6S	MW6D	MW7S	MW7D	MW8S	MW9S	MW10S	MW11S
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
1,1,1,2-Tetrachlorothane 1,1,1-Trichloroethane	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,1-1 richloroethane 1,1,2,2-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	0.04	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	5	ND	ND	ND	ND ND	ND ND	ND	11	ND	ND ND	ND ND						
1,2-Dibromo-3-chloropropane	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromomethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	0.94	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	17 ND	ND ND	ND ND							
1,3-Dichloropropane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorotoluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone (Methyl Butyl Ketone)	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Isopropyltoluene		ND	ND	ND	ND	ND	ND	3.1	ND	0.44 J	ND						
4-Chlorotoluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone Acetone	5	ND 0.74 JS	ND 1.2 JS	ND 2.3 JS	ND 4.3 JS	ND 3.4 JS	ND 2.5 JS	ND ND	ND 2.2 JS	ND 1.3 JS	ND 2.8 JS	ND 2.0 JS	ND 1.5 JS	ND 1.8 JS	ND 3.8 JS	ND 2.4 JS	ND 3.7 JS
Acrolein		0.74 33 ND	ND	2.3 33 ND	4.3 33 ND	3.4 J3 ND	2.3 33 ND	ND	2.2 33 ND	ND	2.8 33 ND	2.0 33 ND	ND	ND	3.8 J3 ND	2.4 33 ND	3.7 33 ND
Acrylonitrile	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane Carbon Disulfide	60	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 4.6	ND ND	ND ND							
Carbon Disulide Carbon tetrachloride	5	ND	ND	ND	ND	ND	ND	4.0 ND	ND	ND							
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	6.2	0.51 J	0.52 J	1.8 J	1.8 J	ND	0.39 J	16	7.9	1.6 J	8.0	19	7.8	0.90 J	17
Chloromethane	60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND ND	0.90 J ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	1.3 ND	1.1 ND	ND ND	0.66 J	0.78 J	0.50 J	3.6 ND	2.0 ND
cis-1,3-Dichloropropene Dibromochloromethane		ND ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND
Dibromomethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	5	ND	ND	ND	ND	ND	ND	0.96 J	ND	ND							
m&p-Xylenes	5	ND	ND	ND	ND	ND 0.67 .1	ND	ND	ND	ND	ND 0.56 J	ND	ND	ND	ND	ND 0.60 J	ND
Methyl Ethyl Ketone (2-Butanone) Methyl t-butyl ether (MTBE)	10	ND ND	ND ND	ND ND	ND ND	0.67 J ND	ND ND	ND ND	ND ND	ND ND	0.56 J ND	ND ND	ND ND	ND ND	ND ND	0.60 J ND	ND ND
Methyl t-butyl ether (MTBE) Methylene chloride	5	0.35 JS	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	0.33 J3	0.21 J	ND	ND	ND	ND	3.6	ND	0.26 J	ND	ND	ND	ND	0.24 J	ND	1.7
n-Butylbenzene	5	ND	ND	ND	ND	ND	ND	4.1	ND	ND							
n-Propylbenzene	5	ND	ND	ND	ND	ND	ND	4.9	ND	ND							
o-Xylene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-lsopropyltoluene		ND	ND	ND	ND	ND	ND	14	ND	ND							
sec-Butylbenzene	5	ND	ND	ND	ND	ND	ND	6.6	ND	ND							
Styrene tort-Rutulhonzono	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 1.3 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.63 J	ND ND
tert-Butylbenzene Tetrachloroethene	5	ND ND	91	9.8	ND 13	ND 44	ND 11	1.3 J 20	ND 11	ND 64	63	ND 18	ND 48	29	ND 18	0.63 J 7.2	43
Tetrahydrofuran (THF)	Ŭ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Xylenes	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trabs-1,4-dichloro-2-butene	5	ND ND	ND 6.9	ND 1.8	ND	ND 6.5	ND 0.53 J	ND 1.5 J	ND 1.9	ND 4.2	ND 3.1	ND 6.1	ND 3.3	ND 5.6	ND 16	ND 15	ND 24
Trichloroethene Trichlorofluoromethane	5	ND ND	6.9 ND	1.8 ND	1.9 ND	6.5 ND	0.53 J ND	1.5 J ND	1.9 ND	4.2 ND	3.1 ND	6.1 ND	3.3 ND	5.6 ND	16 ND	15 ND	24 ND
Trichlorofluoromethane Trichlorotrifluoroethane	3	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes: ND - Not detected J - The value is estimated. This flag is used: a) on form 1 when the compound is reported above the MDL, but below the PQL, and b) on the Tentatively Identified Compounds (TIC) form for all compounds identified. Bold/highlighted-Indicated exceedance of the NYSDEC Groundwater Standard

Table 26 431 Kent Avenue, Brooklyn, NY ZONES A-D Groundwater Analytical Results Semi-Volatile Organic Compounds JANUARY 2012

					JANUARY	2012							
	NYSDEC Groundwater	Zone A	Zone A	Zone A	Zone B	Zone B	Zone B	Zone B	Zone C	Zone C	Zone C	Zone C	Zone D
Compound	Quality Standards	GW1	GW2	GW3	GW1	GW2	GW3	GW4	GW1	GW2	GW3	GW4	GW1
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
1,2-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,6-Dinitrotoluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chloronaphthalene	0.11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Nitroaniline	0.94	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3,3'-Dichlorobenzidine	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-Nitroaniline	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chloroaniline	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitroaniline	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	5	ND	0.03	0.16	ND	ND	ND	ND	ND	0.17	0.04	ND	ND
Anthracene	50	ND	ND	5.7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Azobenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	0.002	0.11	0.35	9.6	0.08	0.29	0.32	0.04	ND	2.7	0.33	ND	0.03
Benzidine	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene		0.1	0.32	8.7	0.07	0.27	0.3	0.03	ND	2.5	0.3	ND	ND
Benzo(b)fluoranthene	0.002	0.13	0.44	9.7	0.1	0.4	0.39	0.05	ND	3.3	0.44	ND	0.02
Benzo(g,h,i)perylene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	0.002	0.04	0.18	3.6	0.04	0.11	0.14	0.05	ND	1.1	0.14	ND	ND
Benzoic Acid		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzyl Alcohol		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Butyl benzyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-chloroethoxy)methane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-chloroethyl)ether	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-chloroisopropyl)ether		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate	5	6.1	7.9	ND	ND	ND	ND	ND	ND	ND	ND	6.7	ND
Chrysene	0.002	0.1	0.34	8.7	0.08	0.3	0.31	0.03	ND	2.7	0.34	ND	0.02
Dibenzo(a,h)anthracene		ND	0.06	1.6	ND	0.06	0.05	ND	ND	0.54	0.02	ND	ND
Dibenzofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Diethylphthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dimethylphthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-butylphthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-octylphthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	50	ND	ND	26	ND	ND	ND	ND	ND	6.8	ND	ND	ND
Fluorene	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobenzene	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
Hexachlorobutadiene	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	0.06	0.18	5.1	0.04	0.18	0.15	ND	ND	1.8	0.21	ND	ND
Isophorone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	ND	ND	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nitrobenzene	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-Nitrosodimethylamine		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-Nitrosodi-n-propylamine		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-Nitrosodiphenylamine	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	50	0.47	0.82	29	0.16	0.41	0.42	0.12	ND	5.1	1.2	0.15	0.15
Pyrene	50	ND	ND	21	ND	ND	ND	ND	ND	5.7	ND	ND	ND

Notes: ND - Not detected

Bold/highlighted- Indicated exceedance of the NYSDEC Groundwater Standard

TABLE 27 431 Kent Avenue, Brooklyn, NY Groundwater Analytical Results Semi-Volatile Organic Compounds JUNE 2012

Compound	NYSDEC Groundwater Quality Standards	MW1S	MW2S	MW3S	MW4S	MW5S	MW6S	MW7S	MW8S	MW9S	MW10S	MW11S
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
2-Methylnaphthalene		ND	ND									
Acenaphthene	20	ND	ND									
Acenaphthylene		ND	ND									
Anthracene	50	ND	ND									
Benzo(a)anthracene	0.002	0.06	0.15	0.04	0.02	0.02	ND	0.04	ND	0.11	ND	ND
Benzo(a)pyrene		ND	0.14	ND	ND	ND	ND	0.03	ND	0.11	ND	ND
Benzo(b)fluoranthene	0.002	ND	0.19	0.02	ND	ND	ND	0.03	ND	0.12	ND	ND
Benzo(g,h,i)perylene		ND	ND									
Benzo(k)fluoranthene	0.002	ND	0.07	ND	ND	ND	ND	ND	ND	0.05	ND	ND
Chrysene	0.002	0.04	0.15	0.02	ND	ND	ND	0.02	ND	0.09	ND	ND
Dibenzo(a,h)anthracene		ND	0.02	ND	ND	ND	ND	ND	ND	0.02	ND	ND
Fluoranthene	50	ND	ND									
Fluorene	50	ND	ND									
Indeno(1,2,3-cd)pyrene	0.002	ND	0.07	ND	ND	ND	ND	ND	ND	0.06	ND	ND
Naphthalene	10	ND	ND									
Phenanthrene	50	0.07	0.31	ND	ND	ND	ND	0.1	ND	0.22	ND	ND
Pyrene	50	ND	ND									
		0.17	1.1	0.08	0.02	0.02	0	0.22	0	0.78	0	

Notes:

ND - Not detected

J - The value is estimated. This flag is used: a) on form 1 when the compound is reported above the MDL, but below the PQL, and b) on the Tentatively Identified Compounds (TIC) form for all compounds identified.

Bold/highlighted- Indicated exceedance of the NYSDEC Groundwater Standard

Table 28 431 Kent Avenue, Brooklyn, NY ZONES A-D Groundwater Analytical Results Pesticides / PCBs JANUARY 2012

	NYSDEC Groundwater	Zone A	Zone A	Zone A	Zone B	Zone B	Zone B	Zone B	Zone C	Zone C	Zone C	Zone C	Zone D
Compound	Quality Standards	GW1	GW2	GW3	GW1	GW2	GW3	GW4	GW1	GW2	GW3	GW4	GW1
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
PCB-1016	0.09	ND											
PCB-1221	0.09	ND											
PCB-1232	0.09	ND											
PCB-1242	0.09	ND											
PCB-1248	0.09	ND											
PCB-1254	0.09	ND											
PCB-1260	0.09	ND											
PCB-1262	0.09	ND											
PCB-1268	0.09	ND											
4,4-DDD	0.3	ND											
4,4-DDE	0.2	ND											
4,4-DDT	0.11	ND											
a-BHC	0.94	ND											
Alachlor		ND											
Aldrin		ND											
b-BHC	0.04	ND											
Chlordane	0.05	ND											
d-BHC	0.04	ND											
Dieldrin	0.004	ND											
Endosulfan I		ND											
Endosulfan II		ND											
Endosulfan Sulfate		ND											
Endrin		ND											
Endrin aldehyde	5	ND											
Endrin ketone		ND											
gamma-BHC	0.05	ND											
Heptachlor	0.04	ND											
Heptachlor epoxide	0.03	ND											
Methoxychlor	35	ND											
Toxaphene		ND											

ND - Non-detect Bold/highlighted- Indicated exceedance of the NYSDEC Groundwater Standard

Table 29 431 Kent Avenue, Brooklyn, NY ZONES A-D Groundwater Analytical Results Metals (Total) JANUARY 2012

	NYSDEC Groundwater	Zone A	Zone A	Zone A	Zone B	Zone B	Zone B	Zone B	Zone C	Zone C	Zone C	Zone C	Zone D
Compound	Quality Standards	GW1	GW2	GW3	GW1	GW2	GW3	GW4	GW1	GW2	GW3	GW4	GW1
-	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L
Aluminum	NS	226,000	425,000	183,000	4,690	192,000	152,000	157,00	250,000	79,400	166,000	107,000	416,000
Antimony	3	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Arsenic	25	63	52	54	BDL	600	51	43	76	55	38	37	107
Barium	1000	2,09	6,410	2,060	95	2,030	2,080	1,660	3,740	1,130	2,550	2,270	3,840
Beryllium	3	14	23	12	BDL	10	15	13	17	5	100	14	26
Cadmium	5	BDL	8	12	BDL	10	2	2	BDL	4	BDL	BDL	BDL
Calcium	NS	87,200	271,000	360,000	65,700	458,000	395,000	189,000	191,000	575,000	120,000	146,000	227,000
Chromium	50	426	1,190	702	12	423	752	559	1,090	332	648	319	861
Cobalt	NS	236	917	199	5	220	866	301	427	293	575	165	436
Copper	200	647	1,100	854	18	633	670	509	1,130	1,290	619	489	1,080
Iron	500	354,000	879,000	241,000	6,610	231,000	289,000	236,000	528,000	158,000	460,000	121,000	569,000
Lead	25	223	380	4,370	13	10,100	356	94	282	5,790	278	101	429
Magnesium	35000	103,000	182,000	68,700	16,300	118,000	71,600	71,500	144,000	64,800	73,500	67,400	197,000
Manganese	300	34,300	120,000	75,600	523	148,000	51,800	39,000	54,500	17,800	34,100	13,200	42,400
Mercury	0.7	BDL	2.9	0.9	BDL	6	0.6	BDL	BDL	1.5	0.3	BDL	0.4
Nickel	100	583	1,840	576	14	376	1,010	509	956	334	432	647	2,820
Potassium	NS	35.8	107,000	35,400	4,800	45,100	31,600	34,300	45,200	27,900	30,000	21,900	54,000
Selenium	10	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Silver	50	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Sodium	2000	145,000	99,800	73,100	72,100	101,000	94,400	103,000	108,000	83,500	81,100	56,200	75,000
Thallium	0.5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Vanadium	NS	382	632	214	11	302	305	331	479,000	239	499	233	674
Zinc	2000	1,130	1,520	3,700	34	7,760	1,040	726	1,240	1,400	746	804	1,770

Notes: ND - ND NS - No Standard

Bold/highlighted- Indicated exceedance of the NYSDEC Groundwater Standard

Table 30 431 Kent Avenue, Brooklyn, NY ZONES A-D Groundwater Analytical Results Metals (Dissolved) JANUARY 2012

	NYSDEC Groundwater	Zone A	Zone A	Zone A	Zone B	Zone B	Zone B	Zone B	Zone C	Zone C	Zone C	Zone C	Zone D
Compound	Quality Standards	GW1	GW2	GW3	GW1	GW2	GW3	GW4	GW1	GW2	GW3	GW4	GW1
	μg/L	µg/L	µg/L	µg/L	μg/L	μg/L	μg/L	μg/L	µg/L	µg/L	μg/L	μg/L	μg/L
Aluminum	NS	230	390	960	20	320	100	150	280	110	830	430	240
Antimony	3	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Arsenic	25	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Barium	1000	31	32	121	54	55	11	59	65	28	62	33	89
Beryllium	3	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Cadmium	5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Calcium	NS	30,700	34,900	150,000	62,800	192,000	51,400	127,000	76,500	162,000	75,000	68,100	10,300
Chromium	50	BDL	BDL	2	BDL	BDL	BDL	BDL	BDL	2	4	BDL	BDL
Cobalt	NS	BDL	1	5	BDL	2	BDL	10	3	BDL	6	BDL	3
Copper	200	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Iron	500	200	470	856	BDL	221	66	125	269	98	1,050	387	215
Lead	25	BDL	BDL	0.008	BDL	5	BDL	BDL	BDL	2	5	BDL	BDL
Magnesium	35000	7,190	11,100	25,700	14,300	56,800	5,790	31,400	15,900	31,200	73,500	26,200	21,300
Manganese	300	788	1,100	7,110	202	796	6	5,280	4,040	8	596	322	779
Mercury	0.7	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Nickel	100	6	5	11	3	4	3	22	14	BDL	6	10	25
Potassium	NS	3,200	5,800	15,200	4,700	13,300	7000	11,200	5,400	9,500	4,300	3,100	5,000
Selenium	10	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Silver	50	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Sodium	2000	129,000	71,800	68,400	66,500	97,400	82,600	94,000	108,000	71,200	80,500	47,200	72,600
Thallium	0.5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Vanadium	NS	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	3	BDL	BDL
Zinc	2000	BDL	BDL	4	5	9	3	BDL	BDL	BDL	3	3	BDL

Notes:

ND - ND

NS - No Standard

Bold/highlighted- Indicated exceedance of the NYSDEC Groundwater Standard

Table 31 431 Kent Avenue, Brooklyn, NY ZONES A-D Air Analytical Results (Soil Gas) JANUARY 2012

	NYSDOH Air Guidance	NYSDOH Soil Outdoor	Zone A	Zone A	Zone A	Zone B	Zone B	Zone B	Zone C	Zone C	Zone C	Zone D	Zone D	Zone D
COMPOUNDS	Value	Background Levels	SG1	SG2	SG3									
	(µg/m ³) (a)	(µg/m ³) ^(b)	(µg/m ³)	(µg/m ³)	(µg/m ³)	(µg/m ³)	(µg/m ³)	(µg/m ³)	(µg/m ³)	(µg/m ³)	(µg/m ³)	(µg/m ³)	(µg/m ³)	(µg/m ³)
1,1,1,2-Tetrachloroethane			ND											
1,1,1-Trichloroethane	100	<2.0 - 2.8	ND	ND	1.8	ND	10.4	7.85	6.71	8.67	10.4	16.1	17.8	5.83
1,1,2,2-Tetrachloroethane		<1.5	ND											
1,1,2-Trichloroethane		<1.0	ND											
1,1-Dichloroethane		<1.0	ND											
1,1-Dichloroethene		<1.0	ND											
1,2,4-Trichlorobenzene		NA	ND											
1,2,4-Trimethylbenzene		<1.0	1.23	ND	1.08	3.65	1.33	1.13	1.33	1.47	1.33	1.18	1.23	1.18
1,2-Dibromoethane		<1.5	ND											
1,2-Dichlorobenzene		<2.0	ND											
1,2-Dichloroethane		<1.0	ND											
1,2-Dichloroethene		NA	ND											
1,2-Dichlorotetrafluoroethane			ND											
1,3,5-Trimethylbenzene		<1.0	ND	ND	ND	1.42	ND							
1,3-Butadiene		NA	ND											
1,3-Dichlorobenzene		<2.0	ND											
1,4-Dichlorobenzene		NA	ND											
1,4-Dioxane 2-Hexanone			ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-Ethyltoluene		NA	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND
4-Ethylioluene 4-Isopropyltoluene		N/A	ND	ND ND	ND									
4-Methyl-2-pentanone			1.27	ND	1.06	1.92	2.05	1.64	2.01	1.88	1.68	1.8	1.31	2.05
Acetone		NA	35.6	16.5	75.7	31.8	2.05	29.4	95.9	60.8	1.00	1.6	212	2.05
Acrylonitrile			ND	ND	ND	ND	20.3 ND	ND						
Benzene		<1.6 - 4.7	2.04	1.21	1.28	1.53	1.72	2.08	1.63	1.6	5.24	1.5	1.82	1.88
Benzyl Chloride		NA	ND											
Bromodichloromethane		<5.0	ND											
Bromoform		<1.0	ND	1.14										
Bromomethane		<1.0	ND											
Carbon Disulfide		NA	8.28	ND	2.77	1.31	17.8	3.33	ND	ND	55.7	ND	2.64	4.14
Carbon Tetrachloride	50	<3.1	0.377	0.377	0.377	1.51	0.692	0.44	1.13	1.07	0.817	0.692	1.76	0.629
Chlorobenzene		<2.0	ND											
Chloroethane		NA	ND											
Chloroform		<2.4	2.73	6.54	ND	56.6	9.27	13.8	89.8	46.9	35.7	33	102	41.2
Chloromethane		<1.0 - 1.4	ND	ND	ND	13.4	ND	ND	ND	ND	ND	4.11	5.32	ND
cis-1,2-Dichloroethene		<1.0	ND	ND	ND	9.03	ND	ND	38.4	11.8	ND	20.2	14.6	1.27
cis-1,3-Dichloropropene		NA	ND											
Cyclohexane		NA	1.07	ND	ND	ND	1.2	ND	0.998	ND	ND	ND	1.31	1.24
Dibromochloromethane		<5.0	ND											
Dichlorodifluromethane		NA	2.22	1.19	2.22	3.21	3.26	2.87	3.16	2.82	4.05	2.47	2.67	2.47
Ethanol			E 657	E 444	E 506	416	552	497	804	576	554	740	518	589
Ethyl Acetate		NA	1.44	1.26	1.19	1.58	1.84	1.3	1.8	1.94	ND	ND	2.27	2.23
Ethylbenzene		<4.3	ND	ND	ND	1.17	1.22	ND	1.04	1.26	1.13	1.08	1.26	1.17
Heptane		NA	ND	ND	ND	ND	2.78	ND	ND	ND	10.3	ND	ND	1.23
Hexachlorobutadiene		NA	ND											
Hexane		<1.5	3.14	1.34	1.16	ND	11.4	2.29	ND	2.64	68	2.29	3.45	3.91
Isopropylalcohol		NA	ND	ND	6.51	ND	ND	18.2	ND	ND	ND	ND	ND	ND ND
Isopropylbenzene Xylene (m&p)		<4.3	ND 2.69	ND 2.17	ND 2.21	ND 3.56	ND 3.69	ND 2.6	ND 2.95	ND 3.69	ND 3.21	ND 3.17	ND 3.21	ND 3.38
Methyl Ethyl Ketone		<4.3	2.69	2.17	2.21	2.62	2.15	2.6	2.95	2.03	3.21 ND	3.17	3.21	3.38
MTBE		NA	2.65 ND	1.8 ND	1.83 ND	2.62 ND	2.15 ND	ND	2.13 ND	2.03 ND	ND	2.03 ND	ND	3.46 ND
Methylene Chloride		<3.4	3.58	ND										
n-Butylbenzene		540.7	ND	ND	ND	1.26	1.54	ND	ND	ND	ND	1.48	ND	ND
Xylene (o)		<4.3	1.08	ND	ND	1.20	1.34	1.08	1.13	1.39	1.17	1.40	1.26	1.34
Propylene		NA	139	3.11	2.87	4.56	11.1	16.4	10.2	5.18	121	9.49	15.4	27.9
sec-Butylbenzene			ND											
Styrene		<1.0	ND	ND	ND	1.28	1.4	ND	1.62	2	1.49	1.96	2.13	1.49
Tetrachloroethylene	100		2.51	1.15	5.96	2.44	4.27	7.32	3.05	8.2	30.4	2.3	2.3	4.13
Tetrahydrofuran		NA	4.24	3.48	3.65	4.57	6.13	3.06	3.71	5.25	5.69	5.04	3.89	5.75
Toluene		1.0 - 6.1	7.42	7.19	6.97	11.3	11.8	9.19	11.7	12.4	13.4	11.1	14	13.1
trans-1,2-Dichloroethene		NA	ND	ND	ND	ND	ND	ND	2.85	ND	ND	8.72	1.58	ND
trans-1,3-Dichloropropene		NA	ND											
Trichloroethylene	50	<1.7	3.33	6.77	3.11	612	526	763	773	1,060	513	130	213	217
Trichlorofluoromethane		NA	1.68	1.8	1.4	2.08	3.7	6.51	2.81	4.66	19.4	4.83	4.6	3.76
ritchioronuoronieuriane	1		ND											
Trichlorotrifluoroethane				ND		ND								
		<1.0	ND	ND	ND	ND	ND							
Trichlorotrifluoroethane		<1.0	ND	ND	ND	ND	ND							
Trichlorotrifluoroethane		<1.0	ND 162	15	23	33	10	4	39	42	226	34	45	57
Trichlorotrifluoroethane Vinyl Chloride		<1.0												57 228

Notes: NA No guidance value or standard available E - Estimated value quantitated above calibration range for this compound. (a) Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York. October 2006. New York State Department of Health. (b) NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, February 2005, Summary of Background Levels for Selected Compounds (INYSDOH Database, Outdoor values) Value detected above NYSDOH Air Guidance Value of 100 µg/m3, which according to Soil Vapor/Indoor Air Matrix 2 would require at a minimum, monitoring.

TABLE 32 431 Kent Avenue, Brooklyn, New York Air Analytical Reults (Soil Gas, Indoor / Outdoor Air) Volatile Organic Compounds

								JUNE 2012												
	NYSDOH		NYSDOH Soil																	
COMPOUNDS	Maximum Sub-		Outdoor Background	PSG1	PSG2	PSG3	PSG4	PSG5	PSG6	PSG7	PSG8	PSG9	PSG10	PSG11	PSG12	IA1	IA2	IA3	IA4	OA1
	Slab Value	Indoor Air Value	Levels				2			2								2		2
4.4.4.0 Totas able as a the set	(µg/m ³) ^(a)	(µg/m ³) ^(a)	(µg/m ³) ^(b)	(µg/m ³)	(µg/m ³)	(µg/m ³)	(µg/m ³)	(µg/m ³)	(μg/m ³)	(µg/m ³)	(μg/m ³)	(μg/m ³)	(µg/m ³)	(µg/m ³)						
1,1,1,2-Tetrachloroethane	100		<2.0 - 2.8	ND ND	ND 2.78	ND 9.6	ND 30	ND 50.8	ND 5.18	ND 4.91	ND 11.9	ND 14.3	ND 3.16	ND ND						
1.1.2.2-Tetrachloroethane	100		<1.5	ND	2.76 ND	9.0 ND	ND	50.8 ND	5.16 ND	4.91 ND	ND	14.3 ND	3.10 ND	ND						
1.1.2-Trichloroethane			<1.0	ND																
1,1-Dichloroethane			<1.0	ND																
1,1-Dichloroethene			<1.0	ND																
1,2,4-Trichlorobenzene			NA	ND																
1,2,4-Trimethylbenzene			<1.0	3.39	2.8	2.46	3.19	3.14	2.65	2.41	1.92	3.24	1.42	2.06	2.36	ND	ND	ND	ND	ND
1,2-Dibromoethane			<1.5	ND		ND														
1,2-Dichlorobenzene			<2.0	ND																
1,2-Dichloroethane			<1.0	ND																
1,2-Dichloroethene			NA	ND																
1,2-Dichlorotetrafluoroethane				ND																
1,3,5-Trimethylbenzene			<1.0	ND																
1,3-Butadiene			NA	ND																
1,3-Dichlorobenzene			<2.0	2.4	ND	1.44	2.28	ND	4.14	1.02	ND									
1,4-Dichlorobenzene			NA	ND																
1,4-Dioxane				ND																
2-Hexanone	ł		NIA	ND																
4-Ethyltoluene			NA	ND		ND														
4-Isopropyltoluene				ND 13.4	ND	ND 18.6	ND 20	ND	ND	ND	ND 14.9	ND	ND	ND	ND	ND	5.6	ND	ND	ND
4-Methyl-2-pentanone Acetone	1		NA	32.3	15.9 34.2	18.6	20	20.2 22.6	15.3 134	17.8 31.3	76.2	18.9 73.1	18 39.4	13.4 32.3	17.2 31.6	ND 18.6	ND ND	1.1 25.4	ND 12.2	ND 7.36
Acrylonitrile			INA	32.3 ND	34.2 ND	57.2 ND	234 ND	22.0 ND	134 ND	31.3 ND	76.2 ND	73.1 ND	39.4 ND	32.3 ND	31.0 ND	10.0 ND	ND	23.4 ND	12.2 ND	7.30 ND
Benzene			<1.6 - 4.7	17.6	ND 1.4	1.18	1.56	1.05	ND 1.53	ND	4.09	2.9	ND	ND	ND ND	ND	ND	ND	ND	ND
Benzyl Chloride			NA	ND	ND	ND	ND	1.05 ND	ND	ND	4.03 ND	2.3 ND	ND							
Bromodichloromethane			<5.0	ND																
Bromoform			<1.0	ND		ND														
Bromomethane			<1.0	ND		ND														
Carbon Disulfide			NA	5.16	1.99	1.28	3.33	5.13	3.55	1.12	1.56	5.01		ND						
Carbon Tetrachloride	50		<3.1	0.44	2.01	2.58	1.63	1.95	0.377	0.754	0.88	1	0.566	0.44	0.503	0.629	0.629	0.629	0.629	0.629
Chlorobenzene			<2.0	ND																
Chloroethane			NA	ND																
Chloroform			<2.4	ND	31.9	182	170	154	22.5	40.1	40	27.8	42.4	1.56	4.05	ND	ND	ND	ND	ND
Chloromethane			<1.0 - 1.4	ND	ND	ND	ND	4.48	ND	1.16	1.05	1.73	1.2	1.16						
cis-1,2-Dichloroethene			<1.0	ND	3.21	33.1	35.9	25.9	ND	ND	8.96	2.18		ND						
cis-1,3-Dichloropropene			NA	ND																
Cyclohexane			NA	ND	1.93	ND	3.34	ND												
Dibromochloromethane			<5.0	ND																
Dichlorodifluromethane			NA	2.87	3.16	3.9	3.76	2.67	2.72	2.82	3.76	3.36	2.96	2.96	3.06	2.82	2.72	2.47	2.77	2.96
Ethanol			NIA	45.9	73.8	E 106	96.4	59.1	50.8	56.7	57.8	105		65	53.1	E 476	E 163	E 3,820 2.38	32.6	7.08
Ethyl Acetate			NA <4.3	ND 1.6	ND 1.52	ND	ND 1.26	ND 1.22	ND	ND 1.04	ND	ND 1.52	ND 1.17	ND	ND	2.63	ND		ND	ND
Ethylbenzene			<4.3 NA	3.89	1.52	ND	2.5	1.22	1.52 3.19	1.04	1.17 1.96	1.52	5.49	ND	1.13	ND	ND	ND	ND	ND
Heptane Hexachlorobutadiene			NA	3.69 ND	1.1 ND	ND ND	2.3 ND	1.47 ND	3.19 ND	1.27 ND	1.90 ND	1.04 ND	5.49 ND	ND ND						
Hexane	1		<1.5	2.99	ND 2.4	2.75	6.3	3.56	ND 1.41	1.02	1.41	2.78	5.92	5.42	ND ND	ND 3.1	ND 1.58	ND ND	ND 14.3	ND 1.27
Isopropylalcohol			NA NA	9.41	8.94	2.75 ND	ND	3.30 ND	8.55	8.72	11.8	34.6	10.2	8.87	9.26	ND	ND	ND	5.92	ND
Isopropylaconol	1			ND	ND	ND	ND	ND	0.00 ND	ND	ND	54.0 ND	ND	0.07 ND	9.20 ND	ND	ND	ND	ND	ND
Xylene (m&p)	1		<4.3	3.56	3.12	2.17	2.52	2.56	3.25	2.26	2.56	3.17	2.43	2.04	2.56	ND	ND	ND	ND	ND
Methyl Ethyl Ketone	1			3.3	3.42	3.15	9.22	3.09	5.95	3.04	4.45	5.3	4.13	2.95	3.18	1.77	1.47	ND	1.83	ND
MTBE	1		NA	ND		ND														
Methylene Chloride	1	60	<3.4	1.14	ND	1.04	ND	1.04	ND	2.26	2.43	1.01		10.8	1.22	1.04	1.28	1.04	8.57	1.25
n-Butylbenzene				ND																
Xylene (o)			<4.3	1.39	1.34	0.998	1.26	1.13	1.34	ND	1.17	1.39		ND	1.13	ND	ND	ND	ND	ND
Propylene			NA	3.22	ND	ND	66.2	ND	ND	ND	ND	ND	15.5	ND	ND	2.82	ND	ND	ND	ND
sec-Butylbenzene				ND																
Styrene			<1.0	ND	ND	1.02	ND	1.19	ND	ND	ND	1.02		ND	ND	4.26	5.58	2.89	ND	ND
Tetrachloroethene	100	100		34.2	4.47	14.4	29.1	18.5	8.95	281	18,700	3,710	281	251	52.4	0.881	0.746	1.36	0.61	0.678
Tetrahydrofuran			NA	2.39	2.83	2.98	3.01	2.8	2.77	3.06	2.53	3.3	3.09	2.71	2.77	ND	ND	ND	ND	ND
Toluene			1.0 - 6.1	29.2	6.25	6.85	3.88	7.57	26.5	18	19.2	4.9		4.26	4.74	8.06	2.11	ND	4.71	1.02
trans-1,2-Dichloroethene			NA	ND	ND	1.94	12.7	4.24	ND	ND	2.93	ND		ND						
trans-1,3-Dichloropropene	50	5	NA 11.7	ND 7.94	ND	ND	ND	ND	ND 245	ND 202	ND 280	ND	ND 45	ND	ND	ND	ND	ND	ND	ND 0.000
Trichloroethene	50	5	<1.7	7.84	994	2,660	2,510	2,170	215	292	380	1,920	15	5.1	23.3	ND	ND	ND	ND	0.268
Trichlorofluoromethane			NA	2.19 ND	2.58	3.26	3.7 ND	5.22	4.55 ND	6.79	41 ND	10.6 ND	2.13 ND	1.85	1.63	1.57	ND	1.4	1.46 ND	1.46
Trichlorotrifluoroethane Vinyl Chloride	+		<1.0	ND ND																
			<1.0	ND																
Vinyi Chionde																				
2				05	51	40	101	40	74	50	60	95	07	42	44	22	16	6	27	2
Total PVOCs				95	51	42	121	49	74	59 573	69 19089	85 3857	87	42	44	23	16	6	27	2
*				95 42 197	51 1002 1171	42 2708 3063	121 2575 3020	49 2214 2552	74 224 392	59 573 748	69 19089 19320	85 3857 5885	87 296 518	42 256 380	44 76 184		16 1 186	6 1 3835	27 1 75	2 1 18

Notes:

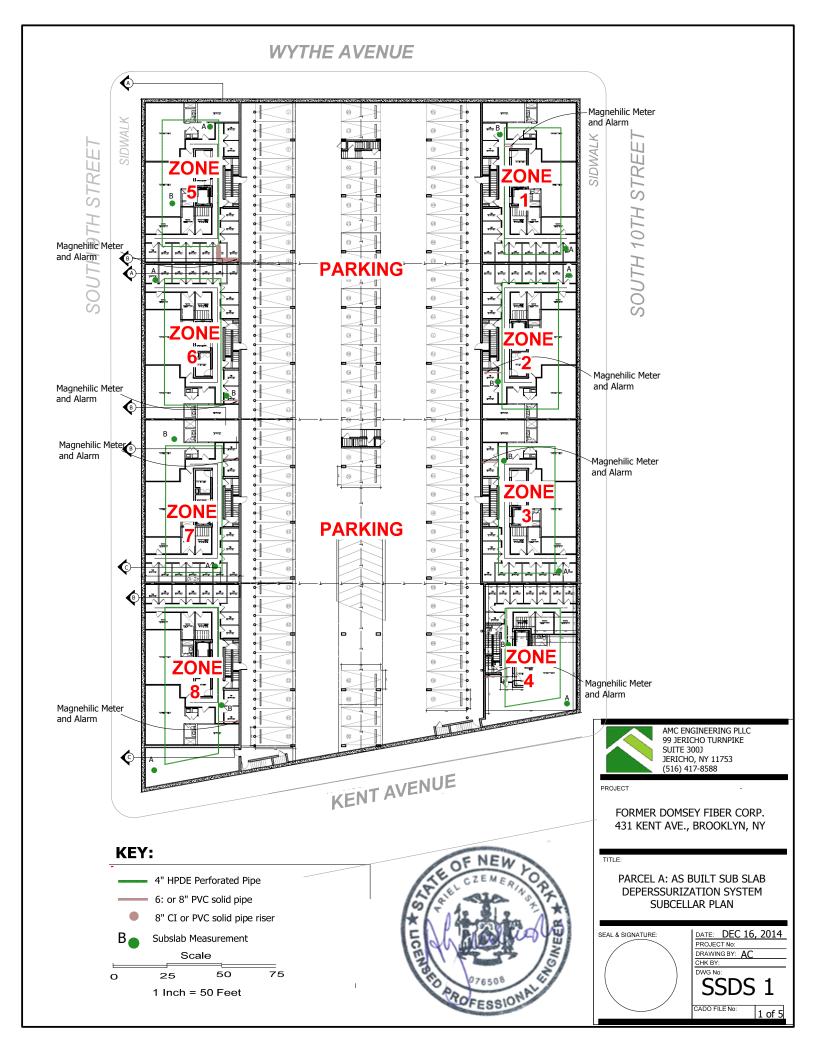
NA No guidance value or standard available

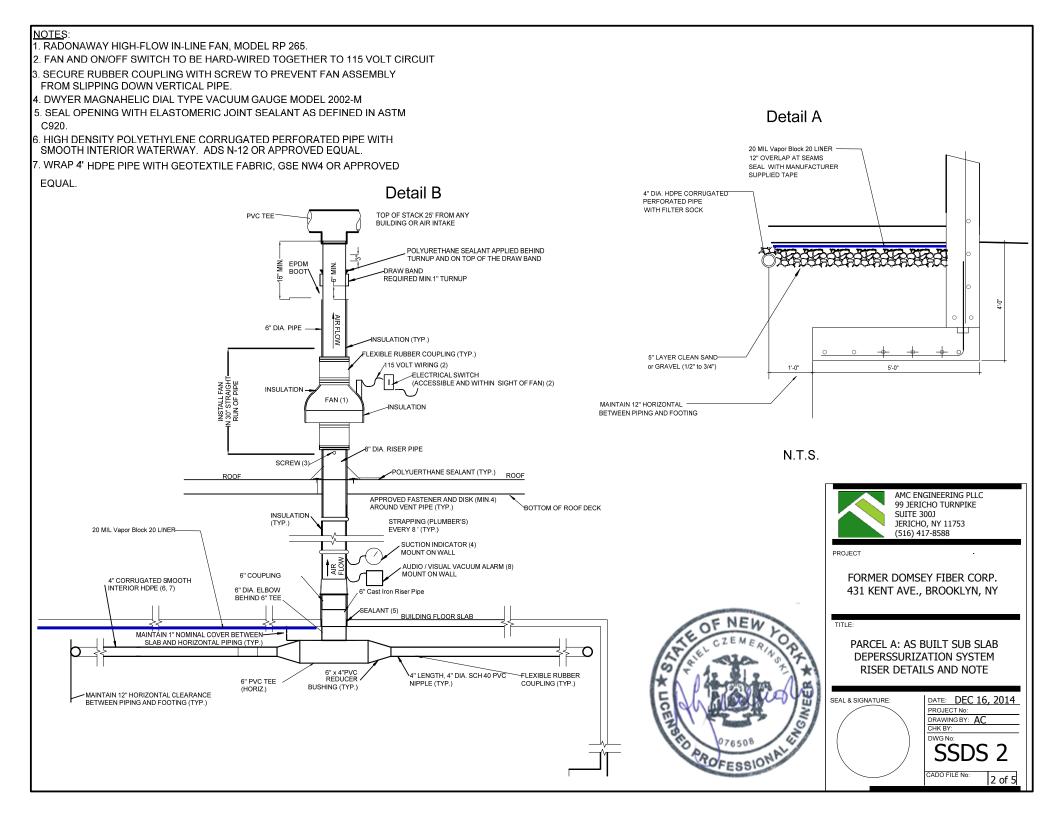
(a) Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York. October 2006. New York State Department of Health. (b) NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, February 2005, Summary of Background Levels for Selected Compounds (NYSDOH Database, Outdoor values)

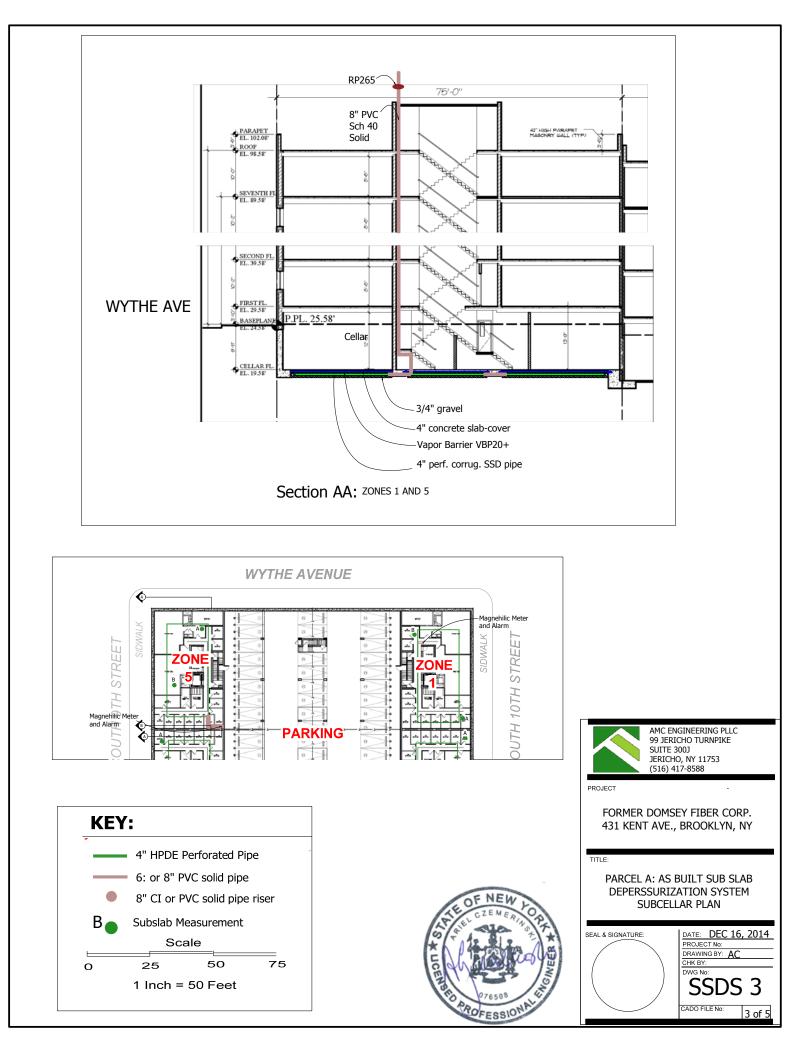
(d) N boort obtaine for Evaluating Our applications of New Fork, Petrolary 2000, administry of Background requires to Generate Compounds (N Value detected above NYSDOH Air Guidance Value of 50 µg/m3, which according to Soil Vapor/Indoor Air Matrix 1 would require at a minimum, monitoring. Value detected above NYSDOH Air Guidance Value of 100 µg/m3, which according to Soil Vapor/Indoor Air Matrix 2 would require at a minimum, monitoring. Value detected above NYSDOH Air Guidance Value of 100 µg/m3, which according to Soil Vapor/Indoor Air Matrix 2 would require at a minimum, monitoring.

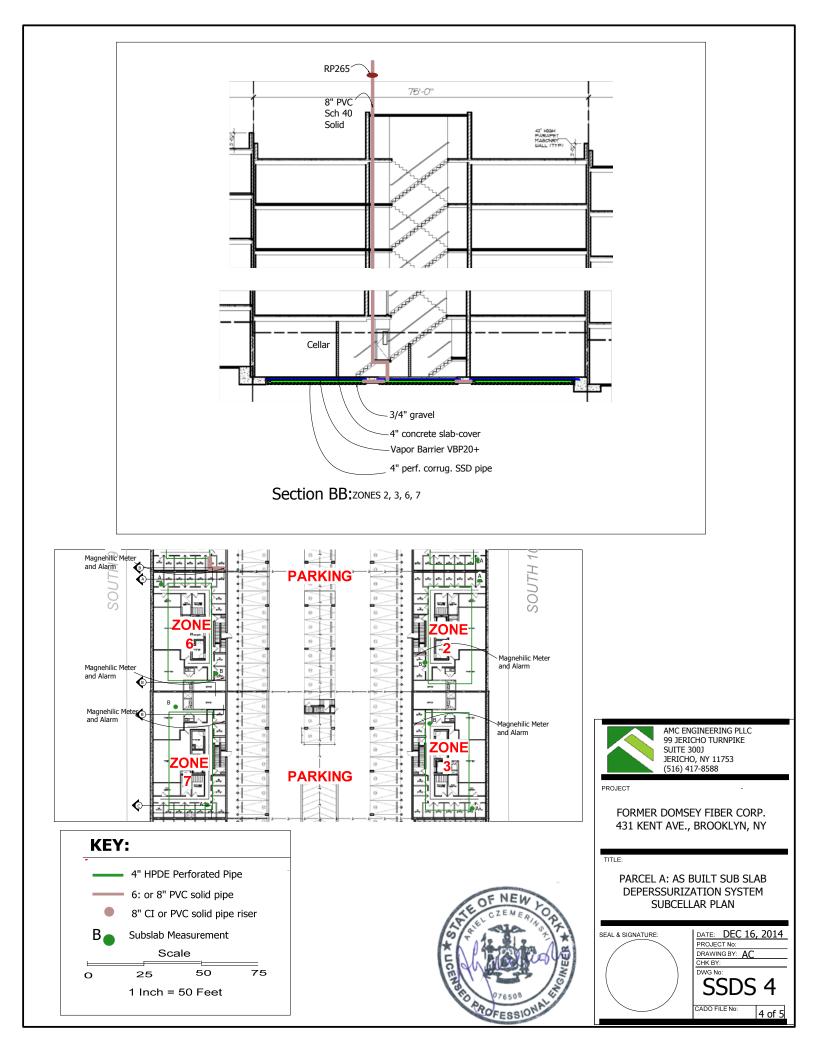
TABLE 33 431 Kent Avenue, Brooklyn, New York Parameters Dected Above Track 1 Soil Cleanup Objectives

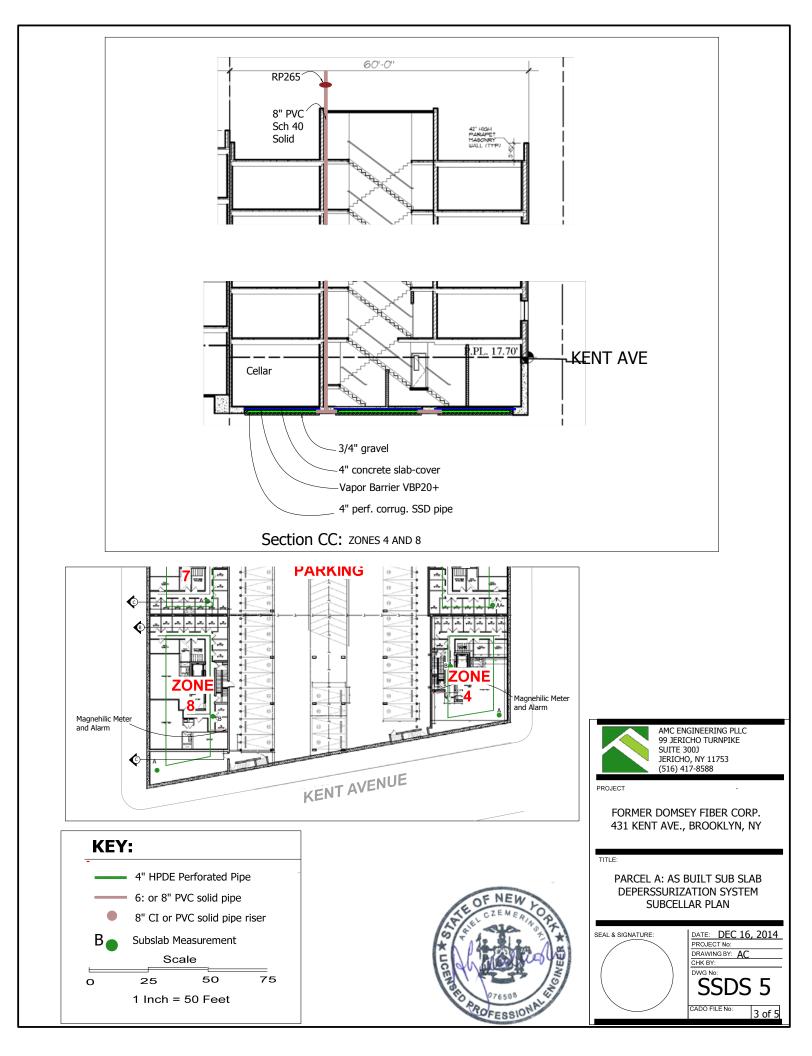
COMPOUND	Range in Exceedences	Frequency of Detection	Zone A B1(0-2') mg/Kg	Zone A B1(13-15') mg/Kg	Zone A B2(0-2') mg/Kg	Zone A B3(0-2') mg/Kg	Zone A B3(10-12') µg/Kg	Zone A B4(2-4') PCB3 mg/Kg	Zone A B4(13-15') PCB3 mg/Kg	Zone B B1(0-2') mg/Kg	Zone B B2(0-2') T2 mg/Kg	Zone B B3(0-2') A1 mg/Kg	Zone B B4(0-2') Ben mg/Kg	Zone B B5(0-2') P2 mg/Kg	Zone B B6(0-2') P1 mg/Kg	Zone B B7(0-2') mg/Kg	Zone B B7(13-15') mg/Kg	Zone B Lead 1 (0-2') mg/Kg
METALS																		
Arsenic	16.8 - 24.1	3						24.1			16.8		17.3					
Barium	487 - 1,870	7				487				1,360			1,870	1,030	1,450			760
Cadmium	2.66 - 4.35	4				2.66		3.93					3.36					í – – – – – – – – – – – – – – – – – – –
Chromium	32.3 - 125	9		34.5		37.7		32.3					41.7				57	í – – – – – – – – – – – – – – – – – – –
Copper	54.3 - 903	18	136		69.9	157		352				66.9	181	73.8	105			104
Lead	68.9 - 3,630	21	1,130		279	708		1,660		606	3,630	107	1,480	231	786	84.3		1
Manganese	4,410	1							4,410									
Mercury	0.27 - 9.5	22	0.3		0.87	1.96		1.91		1.49	0.46	0.35	0.99	0.85	0.57	1.51		
Nickel	44 - 99.5	5						44			99.5		55.8					
Silver	3.14 - 3.89	3									3.14						3.89	1
SVOCS																		
Acenaphthene	64,000	1					64,000											
Anthracene	280,000	1					280,000											1
Benzo(a)anthracene	1,200 - 280,000	14	1,500			9,400	280,000	1,500					1,900		1,200	3,600		[]
Benzo(a)pyrene	1,200 - 240,000	14	1,300			9,300	240,000	1,400					2,000		1,200	3,500		[]
Benzo(b)fluoranthene	1,700 - 300,000	14	2,000			12,000	300,000	2,000					2,800		1,700	5,200		[]
Benzo(g,h,i)perylene	110,000	1					110,000											1
Benzo(k)fluoranthene	850 - 100,000	12	850			3,400	100,000						1,100			1,500		[]
Chrysene	1,000 - 230,000	14	1,300			8,600	230,000	1,700					2,000		1000	3,500		(
Dibenzo(a,h)anthracene	350 - 29,000	9				760	29,000						350			370		(I
Fluoranthene	660,000	1					660,000											
Fluorene	67,000	1					67,000											
Indeno(1,2,3-cd)pyrene	540 - 100,000	14	550			3,100	100,000	560					1200		550	1,200		
Naphthalene	35,000	1					35,000											
Phenanthrene	700,000	1					700,000											
Pyrene	530,000	1					530,000											
vocs																		
Tetrachloroethene	2,000	1	Ì				2,000										1	
Pesticides		Ì	1				1						-				İ	
Chlordane	130 - 270	2									130							


COMPOUND	Range in Exceedences	Frequency of Detection	Zone B Lead 2 mg/Kg	Zone B Lead 3 mg/Kg	Zone C B1(0-2') mg/Kg	Zone C B1(13-15') mg/Kg	Zone C B2(0-2') mg/Kg	Zone C B3(0-2') mg/Kg	Zone C B5(0-2') mg/Kg	Zone C B6(0-2') mg/Kg	Zone D B1(0-2') mg/Kg	Zone D B2(0-2') mg/Kg	Zone D B3(0-2') mg/Kg	Zone D B4(0-2) mg/Kg	ZA-B5 (13-15) mg/Kg	ZA-B6 (13-15) mg/Kg	ZB-B8 (13-15) mg/Kg
METALS																	
Arsenic	16.8 - 24.1	3															
Barium	487 - 1,870	7	2,160														
Cadmium	2.66 - 4.35	4												4.35			
Chromium	32.3 - 125	9	45.7			125									32.4		36.8
Copper	54.3 - 903	18	903	74.4			57.3	172	180	121	272	256	54.3				
Lead	68.9 - 3,630	21	1,510	306			181	2,140	603	266	486	622	68.9	130			
Manganese	4,410	1														2,360	
Mercury	0.27 - 9.5	22	0.89	0.46	0.27		0.4	3.47	0.98	1.41	1.13	1.45	0.28	9.5			
Nickel	44 - 99.5	5	86.2			69.2											
Silver	3.14 - 3.89	3										3.41					
SVOCS																	
Acenaphthene	64,000	1															
Anthracene	280,000	1															
Benzo(a)anthracene	1,200 - 280,000	14					2,500	12,000	10,000	4,600	5,400	7,500		19,000			
Benzo(a)pyrene	1,200 - 240,000	14					2,300	10,000	9,800	4,100	5,100	7,200		16,000			
Benzo(b)fluoranthene	1,700 - 300,000	14					3,300	14,000	12,000	5,100	5,800	9,800		21,000			
Benzo(g,h,i)perylene	110,000	1															
Benzo(k)fluoranthene	850 - 100,000	12					1,300	4,400	3,600	1,600	1,700	27,000		8,400			
Chrysene	1,000 - 230,000	14					2,200	11,000	9,200	4,700	5,600	7,900		16,000			
Dibenzo(a,h)anthracene	350 - 29,000	9						1,600	1,300	720	600	940					
Fluoranthene	660,000	1															
Fluorene	67,000	1															
Indeno(1,2,3-cd)pyrene	540 - 100,000	14					540	5,600	4,200	2,200	1,700	2,600		3,900			
Naphthalene	35,000	1															
Phenanthrene	700,000	1															
Pyrene	530,000	1															
VOCS																	
Tetrachloroethene	2,000	1															
Pesticides																	
Chlordane	130 - 270	2								270							

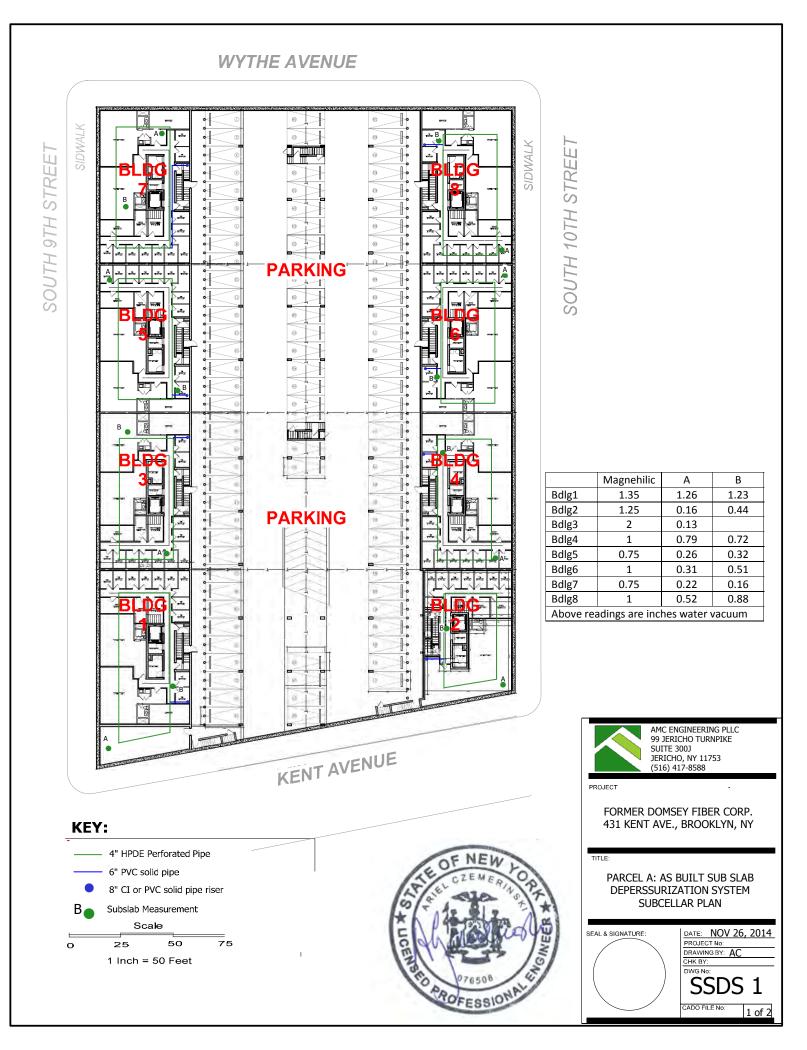

Table 34 431 Kent Avenue, Brooklyn, New York Parameters Detected Above Ambient Groundwater Standards


Compound	Range in Exceedences	Frequency of Detection	Zone A GW1 μg/L	Zone A GW2 μg/L	Zone A GW3 μg/L	Zone B GW1 μg/L	Zone B GW2 μg/L	Zone B GW3 μg/L	Zone B GW4 µg/L	Zone C GW1 μg/L	Zone C GW2 μg/L	Zone C GW3 μg/L	Zone C GW4 μg/L	Zone D GW1 μg/L
VOCS														
1,2,4-Trimethylbenzene	11	1												
1,3,5-Trimethylbenzene	17	1												
Chloroform	7.8 - 19	11				9.8				8	8.8	13	9.8	
sec-Butylbenzene	6.6	1												
Tetrachloroethene	6.1 - 91	25	76	26	13			14	24	15	14	6.1	24	18
Trichloroethene	5.6 - 72	15				6.5	25	6.9		15	25	72	16	15
SVOCS														
Benzo(a)anthracene	0.02 - 9.6	17	0.11	0.35	9.6	0.08	0.29	0.32	0.04		2.7	0.33		0.03
Benzo(b)fluoranthene	0.02 - 9.7	14	0.13	0.44	9.7	0.1	0.4	0.39	0.05		3.3	0.44		0.02
Benzo(k)fluoranthene	0.04 - 3.6	11	0.04	0.18	3.6	0.04	0.11	0.14	0.05		1.1	0.14		
Bis(2-ethylhexyl)phthalate	6.1 - 7.9	3	6.1	7.9									6.7	
Chrysene	0.02 - 8.7	15	0.1	0.34	8.7	0.08	0.3	0.31	0.03		2.7	0.34		0.02
Indeno(1,2,3-cd)pyrene	0.04 - 5.1	10	0.06	0.18	5.1	0.04	0.18	0.15			1.8	0.21		
Metals														
Iron	856	1			856									
Magnesium	56,800 - 73,500	2					56,800					73,500		
Manganese	322 - 7,110	8	788	1,100	7,110				5,280	4,040		596	322	779
Sodium	47,200 - 129,000	12	129,000	71,800	68,400	66,500	97,400	82,600	94,000	108,000	71,200	80,500	47,200	72,600


Compound	Range in Exceedences	Frequency of	MW1S	MW2S	MW3S	MW3D	MW4S	MW4D	MW5S	MW6S	MW6D	MW7S	MW7D	MW8S	MW9S	MW10S	MW11S
Compound		Detection	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
VOCS																	1
1,2,4-Trimethylbenzene	11	1						11									l l
1,3,5-Trimethylbenzene	17	1						17									i l
Chloroform	7.8 - 19	11								16	7.9		8.0	19	7.8		17
sec-Butylbenzene	6.6	1						6.6									í
Tetrachloroethene	6.1 - 91	25	91	9.8	13	44	11	20	11	64	63	18	48	29	18	7.2	43
Trichloroethene	5.6 - 72	15	6.9			6.5						6.1		5.6	16	15	24
SVOCS																	
Benzo(a)anthracene	0.02 - 9.6	17	0.06	0.15	0.04		0.02		0.02			0.04			0.11		í
Benzo(b)fluoranthene	0.02 - 9.7	14		0.19	0.02							0.03			0.12		1
Benzo(k)fluoranthene	0.04 - 3.6	11		0.07											0.05		i l
Bis(2-ethylhexyl)phthalate	6.1 - 7.9	3															i
Chrysene	0.02 - 8.7	15	0.04	0.15	0.02							0.02			0.09		-
Indeno(1,2,3-cd)pyrene	0.04 - 5.1	10		0.07											0.06		í


ATTACHMENT B SSD System Details

SITE INSPECTION CHECKLIST


Site Inspection Checklist - Subslab Depressurization System -8 Southern Buildings 431 Kent Avenue Brooklyn, NY

Date: 11/26/2014 Time: 10:00am Inspector Name/Organization: Ariel Czemerinski / AMC Engineering PLLC **Physical Inspection of Fans** Fan for Building 1: yes Fan Model No. Manufacturer: no **Operational?** Х Radonaway RP265 **Observed Leaks at Seals?** -Х x _____ Air Flow at Exhaust Stack? Other Comments / Observations Alarm Sound W/power off? X Alarm: Checkpoint II a Alarm Red W/power off? X Subslab reading A: 1.26"wc vac Vacuum Reading: 1.35 "wc Subslab reading B: 1.23"wc vac Fan for Building 2 : yes no Fan Model No. Manufacturer: **Operational?** X Radonaway RP265 **Observed Leaks at Seals?** X Air Flow at Exhaust Stack? Х Other Comments / Observations Alarm Sound W/power off? Х Alarm: Checkpoint II a Alarm Flash W/power off? X Subslab reading A: 0.16"wc vac Vacuum Reading: 1.25 "wc Subslab reading B: 0.44"wc vac Fan for Building 3 : Fan Model No. Manufacturer: yes no **Operational?** X Radonaway RP265 **Observed Leaks at Seals?** X Air Flow at Exhaust Stack? X Other Comments / Observations Alarm Sound W/power off? X Alarm: Checkpoint II a Alarm Flash W/power off? X Subslab reading A: 0.13"wc vac Vacuum Reading: 0.75" "wc Fan for Building 4: yes no Fan Model No. Manufacturer: **Operational?** X Radonaway RP265 ŝ **Observed Leaks at Seals?** X LICE Air Flow at Exhaust Stack? X Other Comments / Observations 196 Alarm Sound W/power off? X Alarm: Checkpoint II a POE Alarm Flash W/power off? X Subslab reading A: 0.79"wc vac Vacuum Reading: 0.7" 'wc Subslab reading B: 0.72"wc vac

SITE INSPECTION CHECKLIST

Fan for Building 5 :	yes	no	Fan Model No. Manufacturer:
Operational?	X		Radonaway RP265
Observed Leaks at Seals?		X	
Air Flow at Exhaust Stack?	X		Other Comments / Observations
Alarm Sound W/power off?	X		Alarm: Checkpoint II a
Alarm Flash W/power off?	X		Subslab reading A: 0.26"wc vac
Vacuum Reading: 0.8"	''wc		Subslab reading B: 0.32"wc vac
Fan for Building 6 :	yes	no	Fan Model No. Manufacturer:
Operational?	X		Radonaway RP265
Observed Leaks at Seals?		X	
Air Flow at Exhaust Stack?	X		Other Comments / Observations
Alarm Sound W/power off?	X		Alarm: Checkpoint II a
Alarm Flash W/power off?	X		Subslab reading A: 0.31"wc vac
Vacuum Reading: 0.85"	"wc		Subslab reading B: 0.51"wc vac
Fan for Building 7 :	yes	no	Fan Model No. Manufacturer:
Operational?	x		Radonaway RP265
Observed Leaks at Seals?		x	
Air Flow at Exhaust Stack?	x		Other Comments / Observations
Alarm Sound W/power off?	X		Alarm: Checkpoint II a
Alarm Flash W/power off?	x		Subslab reading A: 0.22"wc vac
Vacuum Reading: 0.75"	"wc		Subslab reading B: 0.16"wc vac
Fan for Building 8 :	yes	no	Fan Model No. Manufacturer:
Operational?	x		Radonaway RP265
Observed Leaks at Seals?		x	
Air Flow at Exhaust Stack?	x		Other Comments / Observations
Alarm Sound W/power off?	x		Alarm: Checkpoint II a
Alarm Flash W/power off?	×		Subslab reading A: 0.52"wc vac
Vacuum Reading: 0.8"	"wc		Subslab reading B: 0.88"wc vac

Repairs Needed and / or	Maintenance at this time? NEW POR
	S S S S S S S S S S S S S S S S S S S
	07650B
Signature:	Date: 12/1/2014

Do Not Unplug or Disable the Alarm.

IF THIS ALARM SOUNDS

PLEASE NOTIFY THE BUILDING SUPERINTENDENT IMMEDIATELY

The alarm does not represent an immediate health threat. The alarm indicates a ventilation fan installed on the roof of this building is not functioning and requires maintenance/repair.

Further Details Regarding this Alarm and the Building's Sub-Slab Depressurization System are Provided within the Site Management Plan Located within the Superintendent's Office.

If the Building Superintendent is not available, please contact

AMC Engineering, PLLC 99 Jericho Turnpike Suite 300J Jericho, NY 11753 (516) 417-8588

INSTALLATION & OPERATING INSTRUCTIONS Instruction P/N IN015 Rev E FOR CHECKPOINT IIa TM P/N 28001-2 & 28001-3 RADON SYSTEM ALARM

INSTALLATION INSTRUCTIONS (WALL MOUNTING)

Select a suitable wall location near a vertical section of the suction pipe. The unit should be mounted about four or five feet above the floor and as close to the suction pipe as possible. Keep in mind that with the plug-in transformer provided, the unit must also be within six feet of a 120V receptacle. **NOTE: The Checkpoint IIa is calibrated for vertical mounting, horizontal mounting will affect switchpoint calibration.**

Drill two $\frac{1}{4}$ " holes 4" apart horizontally where the unit is to be mounted.

Install the two 1/4" wall anchors provided.

Hang the CHECKPOINT IIa from the two mouting holes located on the mounting bracket. Tighten the mounting screws so the unit

fits snugly and securely against the wall.

Drill a 5/16" hole into the side of the vent pipe about 6" higher than the top of the unit.

Insert the vinyl tubing provided about 1" inside the suction pipe.

Cut a suitable length of vinyl tubing and attach it to the pressure switch connector on the CHECKPOINT IIa.

CALIBRATION AND OPERATION.

The CHECKPOINT IIa units are calibrated and sealed at the factory to alarm when the vacuum pressure falls below the factory setting and should not normally require field calibration. Factory Settings are: **28001-2** -.25" WC Vacuum **28001-3** -.10" WC Vacuum

To Verify Operation:

With the exhaust fan off or the pressure tubing disconnected and the CHECKPOINT IIa plugged in, both the red indicator light and the audible alarm should be on.

Turn the fan system on or connect the pressure tubing to the fan piping. The red light and the audible alarm should go off. The green light should come on.

Now turn the fan off. The red light and audible alarm should come on in about two or three seconds and the green light should go out.

WARRANTY INFORMATION

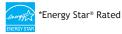
Subject to applicable consumer protection legislation, RadonAway warrants that the CHECKPOINT IIa will be free from defective material and workmanship for a period of (1) year from the date of purchase. Warranty is contingent on installation in accordance with the instructions provided. This warranty does not apply where repairs or alterations have been made or attempted by others; or the unit has been abused or misused. Warranty does not include damage in shipment unless the damage is due to the negligence of RadonAway. All other warranties, expressed or written, are not valid. To make a claim under these limited warranties, you must return the defective item to RadonAway with a copy of the purchase receipt. RadonAway is not responsible for installation or removal cost associated with this warranty. In no case is RadonAway liable beyond the repair or replacement of the defective product FOB RadonAway.

THERE ARE NO WARRANTIES WHICH EXTEND BEYOND THE DESCRIPTION ON THE FACE HEREOF. THERE IS NO WARRANTY OF MERCHANTIBILITY. ALL OTHER WARRANTIES, EXPRESSED OR WRITTEN, ARE NOT VALID.

For service under these warranties, contact RadonAway for a Return Material Authorization (RMA) number and shipping information. **No returns can be accepted without an RMA.** If factory return is required, the customer assumes all shipping costs to and from factory.

> Manufactured by: RadonAway Ward Hill, MA (978)-521-3703

RP Series

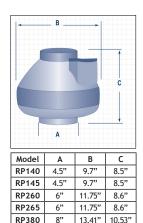

Radon Mitigation Fan

All RadonAway[™] fans are specifically designed for radon mitigation. RP Series Fans provide superb performance, run ultra-quiet and are attractive. They are ideal for most sub-slab radon mitigation systems.

Features

- Energy efficient
- Ultra-quiet operation
- Meets all electrical code requirements
- Water-hardened motorized impeller
- Seams sealed to inhibit radon leakage (RP140 & RP145 double snap sealed)
- RP140 and RP260 Energy Star[®] Rated
- ETL Listed for indoor or outdoor use
- Thermally protected motor
- Rated for commercial and residential use

MODEL	P/N	FAN DUCT		MAX.	TYPICAL CFM vs. STATIC PRESSURE WC						
MODEL	P/N	DIAMETER	WATTS	PRESSURE"WC	0"	.5"	1.0"	1.5"	2.0"		
RP140*	23029-1	4"	15-21	0.8	135	70	-	-	-		
RP145	23030-1	4"	41-72	2.1	166	126	82	41	3		
RP260*	23032-1	6"	50-75	1.6	272	176	89	13	-		
RP265	23033-1	6"	91-129	2.3	334	247	176	116	52		
RP380*	28208	8"	95-152	2.3	497	353	220	130	38		



Made in USA with US and imported parts

ETL Listed

All RadonAway inline radon fans are covered by our 5-year, hassle-free warranty

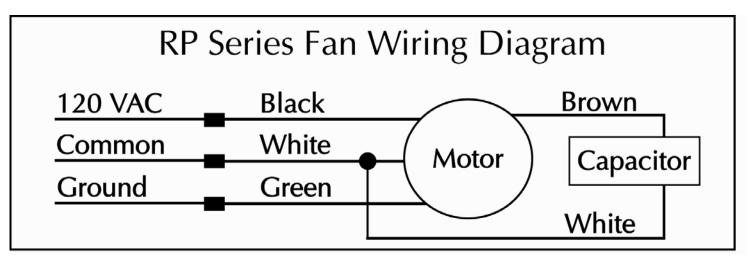
For Further Information Contact

The World's Leading Radon Fan Manufaturer

RP Series Installation Instructions

RadonAway

3 Saber Way | Ward Hill, MA 01835 www.radonaway.com


Series Fan Installation Instructions <u>Please Read and Save These Instructions.</u>

DO NOT CONNECT POWER SUPPLY UNTIL FAN IS COMPLETELY INSTALLED. MAKE SURE ELECTRICAL SERVICE TO FAN IS LOCKED IN "OFF" POSITION. DISCONNECT POWER BEFORE SERVICING FAN.

- **1. WARNING!** Do not use fan in hazardous environments where fan electrical system could provide ignition to combustible or flammable materials.
- 2. WARNING! Do not use fan to pump explosive or corrosive gases.
- 3. WARNING! Check voltage at the fan to insure it corresponds with nameplate.
- **4. WARNING!** Normal operation of this device may affect the combustion airflow needed for safe operation of fuel burning equipment. Check for possible backdraft conditions on all combustion devices after installation.
- 5. **NOTICE!** There are no user serviceable parts located inside the fan unit. **Do NOT attempt to open.** Return unit to the factory for service.
- 6. All wiring must be performed in accordance with the National Fire Protection Association's (NFPA)"National Electrical Code, Standard #70"-current edition for all commercial and industrial work, and state and local building codes. All wiring must be performed by a qualified and licensed electrician
- 7. WARNING! Do not leave fan unit installed on system piping without electrical power for more than 48 hours. Fan failure could result from this non-operational storage.
- 8. WARNING! TO REDUCE THE RISK OF FIRE, ELECTRIC SHOCK, OR INJURY TO PERSONS, OBSERVE THE FOLLOWING:

a) Use this unit only in the manner intended by the manufacturer. If you have questions, contact the manufacturer.

b) Before servicing or cleaning unit, switch power off at service panel and lock the service disconnecting means to prevent power from being switched on accidentally. When the service disconnecting means cannot be locked, securely fasten a prominent warning device, such as a tag, to the service panel.

INSTALLATION INSTRUCTIONS IN020 Rev K

 RP Series

 RP140
 p/n 23029-1

 RP145
 p/n 23030-1

 RP260
 p/n 23032-1

 RP265
 p/n 23033-1

 RP380
 p/n 28208

1.0 SYSTEM DESIGN CONSIDERATIONS

1.1 INTRODUCTION

The RP Series Radon Fans are intended for use by trained, professional Radon mitigators. The purpose of this instruction is to provide additional guidance for the most effective use of an RP Series Fan. This instruction should be considered as a supplement to EPA standard practices, state and local building codes and state regulations. In the event of a conflict, those codes, practices and regulations take precedence over this instruction.

1.2 ENVIRONMENTALS

The RP Series Fans are designed to perform year-round in all but the harshest climates without additional concern for temperature or weather. For installations in an area of severe cold weather, please contact RadonAway for assistance. When not in operation, the fan should be stored in an area where the temperature is never less than 32 degrees F. or more than 100 degrees F.

1.3 ACOUSTICS

The RP Series Fan, when installed properly, operates with little or no noticeable noise to the building occupants. The velocity of the outgoing air should be considered in the overall system design. In some cases the "rushing" sound of the outlet air may be disturbing. In these instances, the use of a RadonAway Exhaust Muffler is recommended.

(To ensure quiet operation of ENERGY STAR qualified in-line and remote fans, each fan shall be installed using sound attenuation techniques appropriate for the installation. For bathroom and general ventilation applications, at least 8 feet of insulated flexible duct shall be installed between the exhaust or supply grille(s) and the fan).

1.4 GROUND WATER

In the event that a temporary high water table results in water at or above slab level, water may be drawn into the riser pipes thus blocking air flow to the RP Series Fan. The lack of cooling air may result in the fan cycling on and off as the internal temperature rises above the thermal cutoff and falls upon shutoff. Should this condition arise, it is recommended that the fan be turned off until the water recedes allowing for return to normal operation.

1.5 SLAB COVERAGE

The RP Series Fan can provide coverage up to 2000+ sq. ft. per slab penetration. This will primarily depend on the sub-slab material in any particular installation. In general, the tighter the material, the smaller the area covered per penetration. Appropriate selection of the RP Series Fan best suited for the sub-slab material can improve the slab coverage. The RP140/145/155 are best suited for general purpose use. The RP260 can be used where additional airflow is required and the RP265/380 is best suited for large slab, high airflow applications. Additional suction points can be added as required. It is recommended that a small pit (5 to 10 gallons in size) be created below the slab at each suction hole.

1.6 CONDENSATION & DRAINAGE

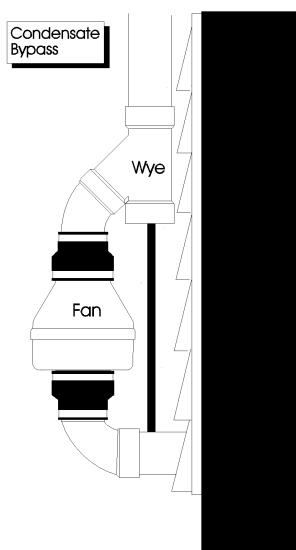
Condensation is formed in the piping of a mitigation system when the air in the piping is chilled below its dew point. This can occur at points where the system piping goes through unheated space such as an attic, garage or outside. The system design must provide a means for water to drain back to a slab hole to remove the condensation. The RP Series Fan **MUST** be mounted vertically plumb and level, with the outlet pointing up for proper drainage through the fan. Avoid mounting the fan in any orientation that will allow water to accumulate inside the fan housing. The RP Series Fans are **NOT** suitable for underground burial.

For RP Series Fan piping, the following table provides the minimum recommended pipe diameter and pitch under several system conditions.

Pipe Dia.	Minimum Rise per Ft of Run*						
	@25 CFM	@50 CFM	@100 CFM	@200 CFM	@300 CFM		
6"	-	3/16	1/4	3/8	3/4		
4"	1/8	1/4	3/8	2 3/8	-		
3"	1/4	3/8	1 1/2	-	-		

RISE

RUN


*Typical RP1xx/2xx Series Fan operational flow rate is 25 - 90 CFM 0n 3" and 4" pipe. (For more precision, determine flow rate by measuring Static Pressure, in WC, and correlate pressure to flow in the performance chart in the addendum.)

Under some circumstances in an outdoor installation a condensate bypass should be installed in the outlet ducting as shown. This may be particularly true in cold climate installations which require long lengths of outlet ducting or where the outlet ducting is likely to produce large amounts of condensation because of high soil moisture or outlet duct material. Schedule 20 piping and other thin-walled plastic ducting and Aluminum downspout will normally produce much more condensation than Schedule 40 piping.

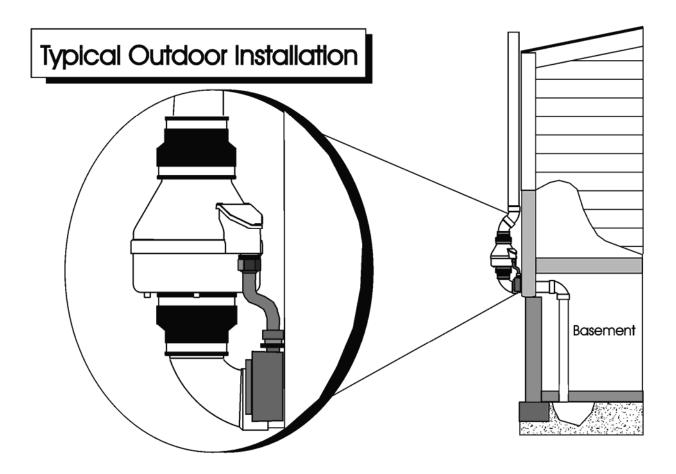
The bypass is constructed with a 45 degree Wye fitting at the bottom of the outlet stack. The bottom of the Wye is capped and fitted with a tube that connects to the inlet piping or other drain. The condensation produced in the outlet stack is collected in the Wye fitting and drained through the bypass tube. The bypass tubing may be insulated to prevent freezing.

1.7 "SYSTEM ON" INDICATOR

A properly designed system should incorporate a "System On" Indicator for affirmation of system operation. A manometer, such as a U-Tube, or a vacuum alarm is recommended for this purpose.

Page 4 of 8

1.8 ELECTRICAL WIRING


The RP Series Fans operate on standard 120V 60 Hz. AC. All wiring must be performed in accordance with the National Fire Protection Association's (NFPA)"National Electrical Code, Standard #70"-current edition for all commercial and industrial work, and state and local building codes. All wiring must be performed by a qualified and licensed electrician. Outdoor installations require the use of a U.L. listed watertight conduit. Ensure that all exterior electrical boxes are outdoor rated and properly sealed to prevent water penetration into the box. A means, such as a weep hole, is recommended to drain the box.

1.9 SPEED CONTROLS

The RP Series Fans are rated for use with electronic speed controls, however, they are generally not recommended. If used, the recommended speed control is Pass & Seymour Solid State Speed Control Cat. No. 94601-I.

2.0 INSTALLATION

The RP Series Fan can be mounted indoors or outdoors. (It is suggested that EPA recommendations be followed in choosing the fan location.) The RP Series Fan may be mounted directly on the system piping or fastened to a supporting structure by means of optional mounting bracket.

2.1 MOUNTING

Mount the RP Series Fan vertically with outlet up. Insure the unit is plumb and level. When mounting directly on the system piping assure that the fan does not contact any building surface to avoid vibration noise.

2.2 MOUNTING BRACKET (optional)

The RP Series Fan may be optionally secured with the RadonAway P/N 25007-2 (25033 for RP385) mounting bracket. Foam or rubber grommets may also be used between the bracket and mounting surface for vibration isolation.

2.3 SYSTEM PIPING

Complete piping run, using flexible couplings as means of disconnect for servicing the unit and vibration isolation.

2.4 ELECTRICAL CONNECTION

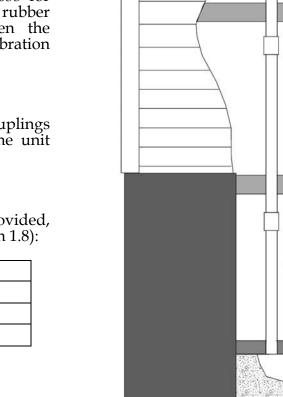
Connect wiring with wire nuts provided, observing proper connections (See Section 1.8):

Fan Wire	Connection			
Green	Ground			
Black	AC Hot			
White	AC Common			

2.5 VENT MUFFLER (optional)

Install the muffler assembly in the selected location in the outlet ducting. Solvent weld all connections. The muffler is normally installed at the end of the vent pipe.

2.6 OPERATION CHECKS


_____ Verify all connections are tight and leak-free.

_____ Insure the RP Series Fan and all ducting is secure and vibration-free.

_____ **Verify** system vacuum pressure with manometer. **Insure** vacuum pressure is **less than** maximum recommended operating pressure

(Based on sea-level operation, at higher altitudes reduce by about 4% per 1000 Feet.) (Further reduce Maximum Operating Pressure by 10% for High Temperature environments) See Product Specifications. If this is exceeded, increase the number of suction points.

_ Verify Radon levels by testing to EPA protocol.

Typical Indoor Installation

Attic

Closet

Basement

RP SERIES PRODUCT SPECIFICATIONS

	Typical CFM Vs Static Pressure "WC								
	0"	.25"	.5"	.75"	1.0"	1.25"	1.5"	1.75"	2.0"
RP140	135	103	70	14	-	-	-	-	-
RP145	166	146	126	104	82	61	41	21	3
RP260	272	220	176	138	103	57	13	-	-
RP265	334	291	247	210	176	142	116	87	52
RP380*	497	401	353	281	220	176	130	80	38

The following chart shows fan performance for the RP Series Fan:

* Tested with 6" inlet and discharge pipe.

Powe	r Consumption	Maximum Recommended
120 VAC, 60	Hz 1.5 Amp Maximum	Operating Pressure [*] (Sea Level Operation) ^{**}
RP140	17 - 21 watts	RP140 0.8" W.C.
RP145	41 - 72 watts	RP145 1.7" W.C.
RP260	52 - 72 watts	RP260 1.5" W.C.
RP265	91 - 129 watts	RP265 2.2" W.C.
RP380	95 - 152 watts	RP380 2.0" W.C.

*Reduce by 10% for High Temperature Operation

			"Reduce by 4% per 1000 feet of altitude
	Size	Weight	Inlet/Outlet
RP140	8.5H" x 9.7" Dia.	5.5 lbs.	4.5" OD (4.0" PVC Sched 40 size compatible)
RP145	8.5H" x 9.7" Dia.	5.5 lbs.	4.5" OD (4.0" PVC Sched 40 size compatible)
RP260	8.6H" x 11.75" Dia.	5.5 lbs.	6.0" OD
RP265	8.6H" x 11.75" Dia.	6.5 lbs.	6.0" OD
RP380	10.53H" x 13.41" Dia.	11.5 lbs.	8.0″ OD

Recommended ducting: 3" or 4" RP1xx/2xx, 6" RP380, Schedule 20/40 PVC Pipe

Mounting: Mount on the duct pipe or with optional mounting bracket.

Storage temperature range: 32 - 100 degrees F.

Normal operating temperature range: -20 - 120 degrees F.

Maximum inlet air temperature: 80 degrees F.

Continuous Duty

Class B Insulation

Thermally Protected

3000 RPM

Rated for Indoor or Outdoor Use

IMPORTANT INSTRUCTIONS TO INSTALLER

Inspect the GP/XP/XR/RP Series Fan for shipping damage within 15 days of receipt. Notify **RadonAway of any damages immediately**. Radonaway is not responsible for damages incurred during shipping. However, for your benefit, Radonaway does insure shipments.

There are no user serviceable parts inside the fan. **Do not attempt to open.** Return unit to factory for service.

Install the GP/XP/XR/RP Series Fan in accordance with all EPA standard practices, and state and local building codes and state regulations.

<u>ATTACHMENT C</u> Site Inspection Checklist and Inspection Forms

SITE INSPECTION CHECKLIST

Site Inspection Chec 431 Kent Avenue Brooklyn, NY	klist - Cover System					
Date:	_Time:					
Inspector Name/Orgar	nization:					
Visual Inspection of	Concrete Slabs					
Building 1 Inspect concrete slab for cracks, perforations and patching						
Describe General Condition of Slab						
Describe any Cracks c	or New Penetrations					
Describe any Patching						
Building 2	Inspect for cracks, perforations and patching					
Describe General Con	dition of Slab					
Describe any Cracks of	or New Penetrations					
Describe any Patching						
Building 3	Inspect for cracks, perforations and patching					
Describe General Con	dition of Slab					
Describe any Cracks of	or New Penetrations					
Describe any Patching						
Building 4	Inspect for cracks, perforations and patching					
Describe General Con	dition of Slab					
Describe any Cracks of	or New Penetrations					
Depariha any Datable						
Describe any Patching						

.

SITE INSPECTION CHECKLIST

Site Inspection Checklist - Cover System 431 Kent Avenue Brooklyn, NY							
Date:Time:							
Inspector Name/Organization:							
Visual Inspection of Concrete Slabs							
Building 5 Inspect concrete slab for cracks, perforations and patching							
Describe General Condition of Slab							
Describe any Cracks or New Penetrations							
Describe any Patching							
Building 6 Inspect for cracks, perforations and patching	9						
Describe General Condition of Slab							
Describe any Cracks or New Penetrations							
Describe any Patching							
Building 7 Inspect for cracks, perforations and patching	1						
Describe General Condition of Slab							
Describe any Cracks or New Penetrations							
Describe any Patching							
Building 8 Inspect for cracks, perforations and patching	1						
Describe General Condition of Slab							
Describe any Cracks or New Penetrations							
Describe any Patching							

.

Site Inspection Checklist - Subslab Depressurization System -8 Northern Buildings 431 Kent Avenue Brooklyn, NY

_____Time: Date: _____

Inspector Name/Organization:

Physical Inspection of Fans

Fan for Building 1 :	yes	no	Fan Model No. Manufacturer:	Fan for Building 5 :	yes	no	Fan Model No. Manufacturer:
Operational?			. <u> </u>	Operational?			
Observed Leaks at Seals?				Observed Leaks at Seals?			
Air Flow at Exhaust Stack?			Other Comments / Observations	Air Flow at Exhaust Stack?			Other Comments / Observations
Alarm Sound W/power off?				Alarm Sound W/power off?			
Alarm Flash W/power off?				Alarm Flash W/power off?			
Vacuum Reading:				Vacuum Reading:	_		
Fan for Building 2 :	yes	no	Fan Model No. Manufacturer:	Fan for Building 6 :	yes	no	Fan Model No. Manufacturer:
Operational?				Operational?			
Observed Leaks at Seals?				Observed Leaks at Seals?			
Air Flow at Exhaust Stack?			Other Comments / Observations	Air Flow at Exhaust Stack?			Other Comments / Observations
Alarm Sound W/power off?				Alarm Sound W/power off?			
Alarm Flash W/power off?				Alarm Flash W/power off?			
Vacuum Reading:	_			Vacuum Reading:	_		
Fan for Building 3 :	yes	no	Fan Model No. Manufacturer:	Fan for Building 7 :	yes	no	Fan Model No. Manufacturer:
Operational?				Operational?			
Observed Leaks at Seals?				Observed Leaks at Seals?			
Air Flow at Exhaust Stack?			Other Comments / Observations	Air Flow at Exhaust Stack?			Other Comments / Observations
Alarm Sound W/power off?				Alarm Sound W/power off?			
Alarm Flash W/power off?				Alarm Flash W/power off?			
Vacuum Reading:	_			Vacuum Reading:	_		
Fan for Building 4 :	yes	no	Fan Model No. Manufacturer:	Fan for Building 8 :	yes	no	Fan Model No. Manufacturer:
Operational?				Operational?			
Observed Leaks at Seals?				Observed Leaks at Seals?			
Air Flow at Exhaust Stack?			Other Comments / Observations	Air Flow at Exhaust Stack?			Other Comments / Observations
Alarm Sound W/power off?				Alarm Sound W/power off?			
Alarm Flash W/power off?				Alarm Flash W/power off?			
Vacuum Reading:				Vacuum Reading:			

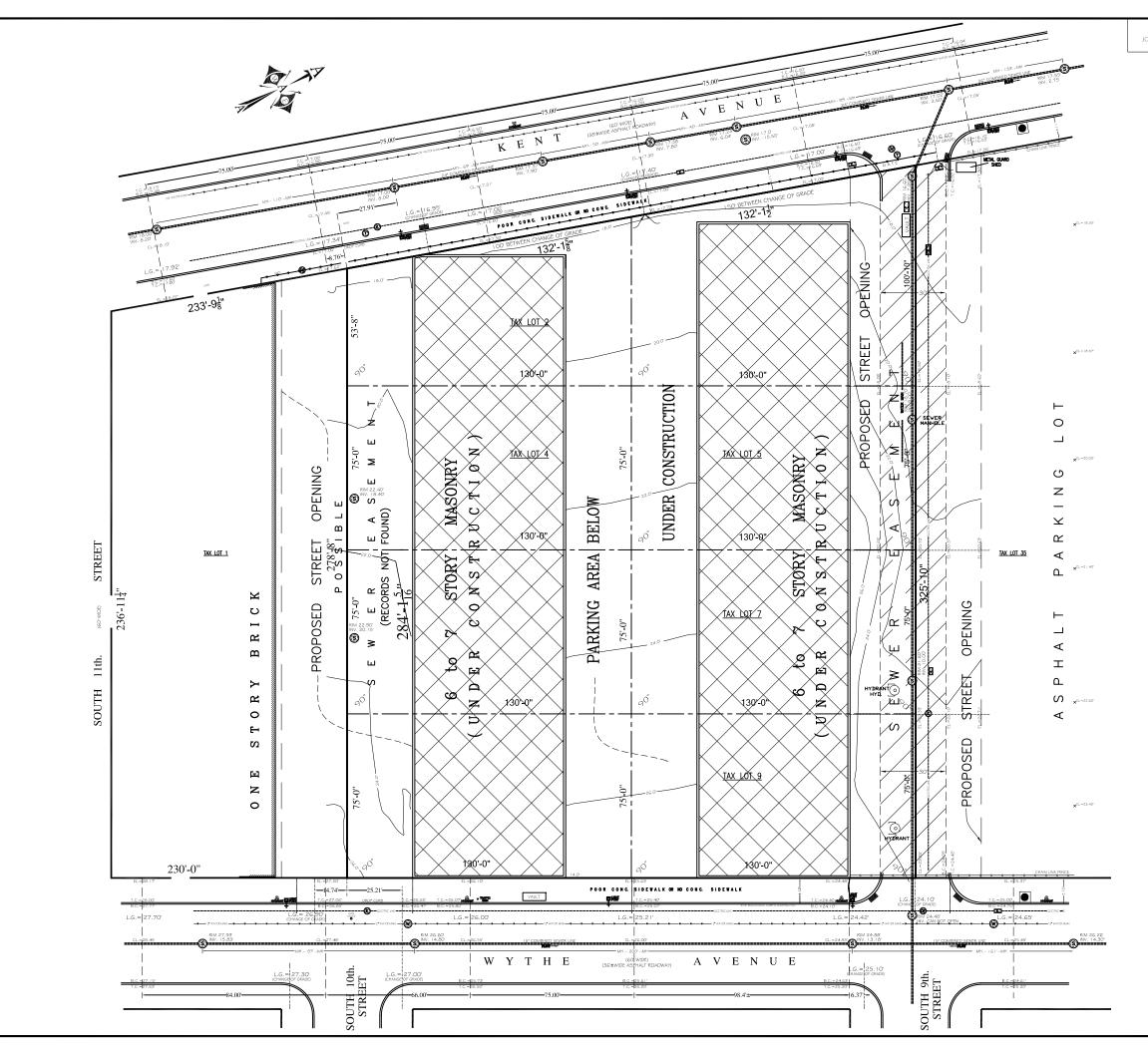
Repairs Needed and / or Maintenance at this time?

Signature: _____Date: _____

Site Inspection Checklist - Subslab Depressurization System -8 Southern Buildings 431 Kent Avenue Brooklyn, NY

_____Time: Date: _____

Inspector Name/Organization:


Physical Inspection of Fans

Fan for Building 1 :	yes	no	Fan Model No. Manufacturer:	Fan for Building 5 :	yes	no	Fan Model No. Manufacturer:
Operational?			. <u> </u>	Operational?			
Observed Leaks at Seals?				Observed Leaks at Seals?			
Air Flow at Exhaust Stack?			Other Comments / Observations	Air Flow at Exhaust Stack?			Other Comments / Observations
Alarm Sound W/power off?				Alarm Sound W/power off?			
Alarm Flash W/power off?				Alarm Flash W/power off?			
Vacuum Reading:				Vacuum Reading:	_		
Fan for Building 2 :	yes	no	Fan Model No. Manufacturer:	Fan for Building 6 :	yes	no	Fan Model No. Manufacturer:
Operational?				Operational?			
Observed Leaks at Seals?				Observed Leaks at Seals?			
Air Flow at Exhaust Stack?			Other Comments / Observations	Air Flow at Exhaust Stack?			Other Comments / Observations
Alarm Sound W/power off?				Alarm Sound W/power off?			
Alarm Flash W/power off?				Alarm Flash W/power off?			
Vacuum Reading:	_			Vacuum Reading:	_		
Fan for Building 3 :	yes	no	Fan Model No. Manufacturer:	Fan for Building 7 :	yes	no	Fan Model No. Manufacturer:
Operational?				Operational?			
Observed Leaks at Seals?				Observed Leaks at Seals?			
Air Flow at Exhaust Stack?			Other Comments / Observations	Air Flow at Exhaust Stack?			Other Comments / Observations
Alarm Sound W/power off?				Alarm Sound W/power off?			
Alarm Flash W/power off?				Alarm Flash W/power off?			
Vacuum Reading:	_			Vacuum Reading:	_		
Fan for Building 4 :	yes	no	Fan Model No. Manufacturer:	Fan for Building 8 :	yes	no	Fan Model No. Manufacturer:
Operational?				Operational?			
Observed Leaks at Seals?				Observed Leaks at Seals?			
Air Flow at Exhaust Stack?			Other Comments / Observations	Air Flow at Exhaust Stack?			Other Comments / Observations
Alarm Sound W/power off?				Alarm Sound W/power off?			
Alarm Flash W/power off?				Alarm Flash W/power off?			
Vacuum Reading:				Vacuum Reading:			
					_		

Repairs Needed and / or Maintenance at this time?

Signature: _____Date: _____

<u>ATTACHMENT D</u> <u>Site Survey and</u> <u>Metes and Bounds Description</u>

LEGEND (NOT FOR TITLE PURPOSES) 28 # K-2135-23,4,56,7,8,9 CONTOUR	O GAS VALVE ▼ TRAFFIC ♡ HYDRANT ■ LIGHT BOSS SIGN ♥ VALVE SIGN ♡ HYDRANT ■ LIGHT BOSS D.V.S
	CL. TC. BC. LC. LC. EL. CENTERLINE TOP OF CURB BOTTOM OF CURB LEGAL GRADE SPOT ELEVATION
	NOTE: BUILDINGS UNDER CONSTRUCTION, NOT LOCATED
	THE OF NEW LOB
	S * L
	CHAND SUCH
	LAND
	AAA group
	LAND SURVEYORS SERVICES 100-A BROADWAY BROOKLYN, N.Y. 11249 TEL (718) 387-9800, FAX 384-5050
	ARCHITECTURAL SURVEY
	CAUTION: BEFORE PERFORMING ANY DIGGING OR DRILLING ON THIS SITE, IT IS REQUIRED THAT SUBSURFACE SERVICES, INCLUDING THE UNDERGROUND MAINS BE MARKED AND IDEN- TIFIED BY THE UTLIFY INVOLVED IN COMPLANCE WITH IN- DUSTRIAL CODE 53 OF NEW YORK STATE. 1) ALL ELEVATIONS REFER TO BROOKLYN TOPOGRAPHICAL DATUM WHICH IS 2.560 FEET ABOVE NATIONAL GEODETIC SURVEY DATUM AT SANDY HOOK NEW JERREY.
	SURVEY DATUM AT SANOT HOOK NEW JERSET. 2) UNDERROUND UTLITY INFORMATION SHOWN WAS GETAINED FROM & RIGUS COMMANIES AND CITUAS OF COMPLETENES. 3) THIS IS TO CERTIFY THAT THERE ARE NO APPARENT AT SURVEY ON THIS SURVEY. OURSES IN THE PROPERTY AT SHOWN ON THIS SURVEY.
	SURVEY IS A VIOLATION OF SECTION 7209 OF THE NEW YORK STATE EDUCATION LAW, COPES OF THIS SURVEY MAP NOT BEARING THE LAND SURVEYOR'S INKED SEAL OR EMBOSSED SEAL SHALL NOT BE CONSIDERED TO BE A VALID TRUE COLF.
	GUARANTEES OR CERTIFICATIONS INCIGATED HEREON SHALL RUN OULY TO THE FERSON FOR WHOM THE SURVEY IS PREPARED, AND ON HIS BEHALF TO THE TITLE COMPANY, GOVERNMENTAL AGENCY AND LENNING INSTITUTION LISTED HEREON, AND SECTION: 8
	TO THE ASSIGNEES OF THE LENDING INSTITUTION. GUMANTES OR CERTIFICATION ARE NOT TRANSFERABLE TO ADDITIONAL INSTITUTIONS OR SUBSEQUENT OWNERS.

SCHEDULE "A" PROPERTY DESCRIPTION

Former Domsey Fiber Corp. Site (Block 2135, Lots 1 through 9) Kings County, New York

ALL that certain plot, piece or parcel of land, with the buildings and improvements thereon erected, situate, lying and being in the Borough of Brooklyn, County of Kings, City and State of New York, bounded and described as follows:

BEGINNING at a point on the westerly side of Wythe Avenue distant 300 feet southerly from the corner formed by the intersection of the westerly side of Wythe Avenue and the southerly side of South 8th Street;

RUNNING THENCE southerly along the westerly side of Wythe Avenue 200 feet to the northerly side of South 10th Street;

RUNNING THENCE westerly along the northerly side of South 10th Street, 284 feet 1- 5/16 inches to the easterly side of Kent Avenue;

RUNNING THENCE northerly along the easterly side of Kent Avenue, 203 feet 3-3/16inches;

RUNNING THENCE easterly parallel with South 9th Street, 320 feet 4-11/16 inches to the westerly side of Wythe Avenue, the point or place of BEGINNING.

-AND-

ALL that certain plot, piece or parcel of land, with the buildings and improvements thereon erected, situate, lying and being in the Borough of Brooklyn, County of Kings, City and State of New York, bounded and described as follows:

BEGINNING at a point on the westerly side of Wythe Avenue distant 560 feet southerly from the corner formed by the intersection of the westerly side of Wythe Avenue and the southerly side of South 8th Street;

RUNNING THENCE southerly along the westerly side of Wythe Avenue 200 feet to the northerly side of South 11th Street;

RUNNING THENCE westerly along the northerly side of South 11th Street, 236 feet 11-1/4 inches to the easterly side of Kent Avenue;

RUNNING THENCE northerly along the easterly side of Kent Avenue, 203 feet 3-3/16 inches;

RUNNING THENCE easterly parallel with South 10th Street, 273 feet 2-5/8 inches to the westerly side of Wythe Avenue, the point or place of BEGINNING.

<u>ATTACHMENT E</u> Environmental Easement

New York State Department of Environmental Conservation

Office of General Counsel, 14th Floor 625 Broadway, Albany, New York 12233-1500 Fax: (518) 402-9018 Website: <u>www.dec.ny.gov</u>

November 10, 2014

SENT VIA CERTIFIED MAIL – RETURN RECEIPT REQUESTED

Ms. Denise J. D'Ambrosio, Esq. Phillips Nizer, LLP 600 Old Country Road Garden City, NY 11530-2011

RE: Environmental Easement Former Domsey Fiber Corp. NYSDEC Site No. C224158

Dear Ms.D'Ambrosio:

Enclosed, please find the fully executed Environmental Easement, NYCRPT and TP 584 forms for the above referenced Site.

Once the Environmental Easement is recorded, the local municipality will need to be notified as well as the Notice to any parties identified as having an interest in the property, as set forth in Schedule "B" of the Title Commitment.

Please return a copy of the recorded easement marked by the County Clerk's Office with the date and location of recording, and a certified copy of the municipal notice. The information from the recorded easement and recorded notices are necessary to process the Certificate of Completion.

If you have any further questions or concerns relating to this matter, please contact our office at 518-402-9510.

Sincerely,

CEE

Benjamin Conlon Associate Attorney & Bureau Chief Remediation Bureau

Enclosures

ec: Brad Burns, Esq., NYSDEC

ENVIRONMENTAL EASEMENT GRANTED PURSUANT TO ARTICLE 71, TITLE 36

OF THE NEW YORK STATE ENVIRONMENTAL CONSERVATION LAW

THIS INDENTURE made this 6th day of Name day of Name day of Normal Street, Brooklyn, New York (s) Wythe and Kent Realty, LLC, having an office at 144 Spencer Street, Brooklyn, New York 11205, County of Kings, State of New York (the "Grantor"), and The People of the State of New York (the "Grantee."), acting through their Commissioner of the Department of Environmental Conservation (the "Commissioner", or "NYSDEC" or "Department" as the context requires) with its headquarters located at 625 Broadway, Albany, New York 12233,

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to encourage the remediation of abandoned and likely contaminated properties ("sites") that threaten the health and vitality of the communities they burden while at the same time ensuring the protection of public health and the environment; and

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to establish within the Department a statutory environmental remediation program that includes the use of Environmental Easements as an enforceable means of ensuring the performance of operation, maintenance, and/or monitoring requirements and the restriction of future uses of the land, when an environmental remediation project leaves residual contamination at levels that have been determined to be safe for a specific use, but not all uses, or which includes engineered structures that must be maintained or protected against damage to perform properly and be effective, or which requires groundwater use or soil management restrictions; and

WHEREAS, the Legislature of the State of New York has declared that Environmental Easement shall mean an interest in real property, created under and subject to the provisions of Article 71, Title 36 of the New York State Environmental Conservation Law ("ECL") which contains a use restriction and/or a prohibition on the use of land in a manner inconsistent with engineering controls which are intended to ensure the long term effectiveness of a site remedial program or eliminate potential exposure pathways to hazardous waste or petroleum; and

WHEREAS, Grantor, is the owner of real property located at the address of 431 Kent Avenue, Brooklyn, New York 11211 in the City of New York, County of Kings and State of New York, known and designated on the tax map of the County Clerk of Kings as tax map parcel numbers: Block 2135 Lots 1 through 9, being the same as that property conveyed to Grantor by deed dated June 27, 2011 and recorded in the City Register of the City of New York in Instrument No. CFRN 2011000242679. The property subject to this Environmental Easement (the "Controlled Property") comprises approximately 2.56 +/- acres, and is hereinafter more fully described in the Land Title Survey dated March 14, 2014 and revised October 6, 2014 prepared by AAA, which will be attached to the Site Management Plan. The Controlled Property description is set forth in and attached hereto as Schedule A; and

WHEREAS, the Department accepts this Environmental Easement in order to ensure the protection of public health and the environment and to achieve the requirements for remediation

established for the Controlled Property until such time as this Environmental Easement is extinguished pursuant to ECL Article 71, Title 36; and

NOW THEREFORE, in consideration of the mutual covenants contained herein and the terms and conditions of Brownfield Cleanup Agreement Index Number: C224158-05-12 as amended by Amendment #1, Grantor conveys to Grantee a permanent Environmental Easement pursuant to ECL Article 71, Title 36 in, on, over, under, and upon the Controlled Property as more fully described herein ("Environmental Easement")

1. <u>Purposes</u>. Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land in perpetuity in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the restriction of future uses of the land that are inconsistent with the above-stated purpose.

2. <u>Institutional and Engineering Controls</u>. The controls and requirements listed in the Department approved Site Management Plan ("SMP") including any and all Department approved amendments to the SMP are incorporated into and made part of this Environmental Easement. These controls and requirements apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns, and are enforceable in law or equity against any owner of the Controlled Property, any lessees and any person using the Controlled Property.

A. (1) The Controlled Property may be used for:

Residential as described in 6 NYCRR Part 375-1.8(g)(2)(i), Restricted Residential as described in 6 NYCRR Part 375-1.8(g)(2)(ii), Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv);

(2) All Engineering Controls must be operated and maintained as specified in the Site Management Plan (SMP);

(3) All Engineering Controls must be inspected at a frequency and in a manner defined in the SMP;

(4) The use of groundwater underlying the property is prohibited without necessary water quality treatment_as determined by the NYSDOH or the Kings County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;

(5) Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;

(6) Data and information pertinent to Site Management of the Controlled

Environmental Easement Page 2

Property must be reported at the frequency and in a manner defined in the SMP;

(7) All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;

(8) Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;

(9) Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy shall be performed as defined in the SMP;

(10) Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by this Environmental Easement.

B. The Controlled Property shall not be used for raising livestock or producing animal products for human consumption, and the above-stated engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement.

C. The SMP describes obligations that the Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system, and providing certified reports to the NYSDEC, is and remains a fundamental element of the Department's determination that the Controlled Property is safe for a specific use, but not all uses. The SMP may be modified in accordance with the Department's statutory and regulatory authority. The Grantor and all successors and assigns, assume the burden of complying with the SMP and obtaining an up-to-date version of the SMP from:

Site Control Section Division of Environmental Remediation NYSDEC 625 Broadway Albany, New York 12233 Phone: (518) 402-9553

D. Grantor must provide all persons who acquire any interest in the Controlled Property a true and complete copy of the SMP that the Department approves for the Controlled Property and all Department-approved amendments to that SMP.

E. Grantor covenants and agrees that until such time as the Environmental Easement is extinguished in accordance with the requirements of ECL Article 71, Title 36 of the ECL, the property deed and all subsequent instruments of conveyance relating to the Controlled Property shall state in at least fifteen-point bold-faced type:

This property is subject to an Environmental Easement held

by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the Environmental Conservation Law.

F. Grantor covenants and agrees that this Environmental Easement shall be incorporated in full or by reference in any leases, licenses, or other instruments granting a right to use the Controlled Property.

G. Grantor covenants and agrees that it shall, at such time as NYSDEC may require, submit to NYSDEC a written statement by an expert the NYSDEC may find acceptable certifying under penalty of perjury, in such form and manner as the Department may require, that:

(1) the inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under the direction of the individual set forth at 6 NYCRR Part 375-1.8(h)(3).

(2) the institutional controls and/or engineering controls employed at such site:

(i) are in-place;

(ii) are unchanged from the previous certification, or that any identified changes to the controls employed were approved by the NYSDEC and that all controls are in the Department-approved format; and

(iii) that nothing has occurred that would impair the ability of such control to protect the public health and environment;

(3) the owner will continue to allow access to such real property to evaluate the continued maintenance of such controls;

(4) nothing has occurred that would constitute a violation or failure to comply with any site management plan for such controls;

(5 the report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;

(6) to the best of his/her knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and

(7) the information presented is accurate and complete.

3. <u>Right to Enter and Inspect</u>. Grantee, its agents, employees, or other representatives of the State may enter and inspect the Controlled Property in a reasonable manner and at reasonable times to assure compliance with the above-stated restrictions.

4. <u>Reserved Grantor's Rights</u>. Grantor reserves for itself, its assigns, representatives, and successors in interest with respect to the Property, all rights as fee owner of the Property, including:

A. Use of the Controlled Property for all purposes not inconsistent with, or limited by the terms of this Environmental Easement;

B. The right to give, sell, assign, or otherwise transfer part or all of the underlying fee

Environmental Easement Page 4

interest to the Controlled Property, subject and subordinate to this Environmental Easement;

5. <u>Enforcement</u>

A. This Environmental Easement is enforceable in law or equity in perpetuity by Grantor, Grantee, or any affected local government, as defined in ECL Section 71-3603, against the owner of the Property, any lessees, and any person using the land. Enforcement shall not be defeated because of any subsequent adverse possession, laches, estoppel, or waiver. It is not a defense in any action to enforce this Environmental Easement that: it is not appurtenant to an interest in real property; it is not of a character that has been recognized traditionally at common law; it imposes a negative burden; it imposes affirmative obligations upon the owner of any interest in the burdened property; the benefit does not touch or concern real property; there is no privity of estate or of contract; or it imposes an unreasonable restraint on alienation.

B. If any person violates this Environmental Easement, the Grantee may revoke the Certificate of Completion with respect to the Controlled Property.

C. Grantee shall notify Grantor of a breach or suspected breach of any of the terms of this Environmental Easement. Such notice shall set forth how Grantor can cure such breach or suspected breach and give Grantor a reasonable amount of time from the date of receipt of notice in which to cure. At the expiration of such period of time to cure, or any extensions granted by Grantee, the Grantee shall notify Grantor of any failure to adequately cure the breach or suspected breach, and Grantee may take any other appropriate action reasonably necessary to remedy any breach of this Environmental Easement, including the commencement of any proceedings in accordance with applicable law.

D. The failure of Grantee to enforce any of the terms contained herein shall not be deemed a waiver of any such term nor bar any enforcement rights.

6. <u>Notice</u>. Whenever notice to the Grantee (other than the annual certification) or approval from the Grantee is required, the Party providing such notice or seeking such approval shall identify the Controlled Property by referencing the following information:

County, NYSDEC Site Number, NYSDEC Brownfield Cleanup Agreement, State Assistance Contract or Order Number, and the County tax map number or the Liber and Page or computerized system identification number.

Parties shall	address	correspondence	ce to:	Site Num	ber:
				Office of	Ger
					-

Site Number: C224158 Office of General Counsel NYSDEC 625 Broadway Albany New York 12233-5500

With a copy to:

Site Control Section Division of Environmental Remediation NYSDEC 625 Broadway

Environmental Easement Page 5

Albany, NY 12233

All notices and correspondence shall be delivered by hand, by registered mail or by Certified mail and return receipt requested. The Parties may provide for other means of receiving and communicating notices and responses to requests for approval.

Recordation. Grantor shall record this instrument, within thirty (30) days of execution of 7. this instrument by the Commissioner or her/his authorized representative in the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

Amendment. Any amendment to this Environmental Easement may only be executed by 8. the Commissioner of the New York State Department of Environmental Conservation or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

Extinguishment. This Environmental Easement may be extinguished only by a release by 9. the Commissioner of the New York State Department of Environmental Conservation, or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

Joint Obligation. If there are two or more parties identified as Grantor herein, the 10. obligations imposed by this instrument upon them shall be joint and several.

IN WITNESS WHEREOF, Grantor has caused this instrument to be signed in its name.

Wythe and Kent Realty LLC:

Print Name: AEANARD

Date: 10/20/14 Member Title:

Grantor's Acknowledgment

STATE OF NEW YORK)) ss: COUNTY OF $\mathcal{K}/\mathcal{V}(\mathcal{S})$

On the <u>Jo</u> day of <u>C</u>, in the year 20 <u>L</u> γ before me, the undersigned, personally appeared <u>below ALD</u> <u>Theorem</u> personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity(ies), and that by his/her/their signature(s) on the instrument, the individual(s), or the person upon behalf of which the individual(s) acted, executed the instrument.

DAVID KATZ Notary Public, State of New York Notary Public - State of New York No. 01KA6099314 Qualified in Kings County Commission Expires Cept. 29,20_/

Environmental Easement Page 7

THIS ENVIRONMENTAL EASEMENT IS HEREBY ACCEPTED BY THE PEOPLE OF THE STATE OF NEW YORK, Acting By and Through the Department of Environmental Conservation as Designee of the Commissioner,

By:

Robert W. Schick, Director Division of Environmental Remediation

Grantee's Acknowledgment

STATE OF NEW YORK)) ss: COUNTY OF ALBANY)

On the <u>(a+h)</u> day of <u>November</u>, in the year 20<u>14</u>, before me, the undersigned, personally appeared Robert W. Schick, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/ executed the same in his/her/ capacity as Designee of the Commissioner of the State of New York Department of Environmental Conservation, and that by his/her/ signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument.

Notary Public - State of New York

ANDREW O. GUGLIELMI Notary Public, State of New York No. 02GU6177593 Qualified in Albany County Commission Expires November 13, 2015

SCHEDULE "A" PROPERTY DESCRIPTION

Former Domsey Fiber Corp. Site (Block 2135, Lots 1 through 9) Kings County, New York

ALL that certain plot, piece or parcel of land, with the buildings and improvements thereon erected, situate, lying and being in the Borough of Brooklyn, County of Kings, City and State of New York, bounded and described as follows:

BEGINNING at a point on the westerly side of Wythe Avenue distant 300 feet southerly from the corner formed by the intersection of the westerly side of Wythe Avenue and the southerly side of South 8th Street;

RUNNING THENCE southerly along the westerly side of Wythe Avenue 200 feet to the northerly side of South 10th Street;

RUNNING THENCE westerly along the northerly side of South 10th Street, 284 feet 1- 5/16 inches to the easterly side of Kent Avenue;

RUNNING THENCE northerly along the easterly side of Kent Avenue, 203 feet 3-3/16inches;

RUNNING THENCE easterly parallel with South 9th Street, 320 feet 4-11/16 inches to the westerly side of Wythe Avenue, the point or place of BEGINNING.

-AND-

ALL that certain plot, piece or parcel of land, with the buildings and improvements thereon erected, situate, lying and being in the Borough of Brooklyn, County of Kings, City and State of New York, bounded and described as follows:

BEGINNING at a point on the westerly side of Wythe Avenue distant 560 feet southerly from the corner formed by the intersection of the westerly side of Wythe Avenue and the southerly side of South 8th Street;

RUNNING THENCE southerly along the westerly side of Wythe Avenue 200 feet to the northerly side of South 11th Street;

RUNNING THENCE westerly along the northerly side of South 11th Street, 236 feet 11-1/4 inches to the easterly side of Kent Avenue;

RUNNING THENCE northerly along the easterly side of Kent Avenue, 203 feet 3-3/16 inches;

RUNNING THENCE easterly parallel with South 10th Street, 273 feet 2-5/8 inches to the westerly side of Wythe Avenue, the point or place of BEGINNING.

TP-584 (4/13)

New York State Department of Taxation and Finance Combined Real Estate Transfer Tax Return, Credit Line Mortgage Certificate, and Certification of Exemption from the Payment of Estimated Personal Income Tax

Recording office time stamp

See Form TP-584-I, Instructions for Form TP-584, before completing this form. Print or type. Schedule A — Information relating to conveyance

Grantor/Transferor	Name (if individual, last, first, r WYTHE AND KENT REAL			Social se	ecually number
Corporation	Mailing address 144 SPENC	ER STREET		Social s	sourity number
Estate/Trust	City	State	ZIP code	Federal	EIN
Single member LLC	BROOKLYN	NY	11205	45	2528509
7 Other	Single member's name if g	rantor is a single member LLC (see instructions	5)	Single m	ember EIN or SSN
Grantee/Transferee	Name (if individual, last, first, NEW YORK STATE DEPA	middle initial) [] check if more than one grantee RTMENT OF ENVIRONMENTAL)	Social s	ecunity number
Corporation	Mailing address CONSERV	ATION, 625 BROADWAY		Social s	ecurity number
Partnership	1	Ousts:	ZIP code	Federal	E104
🛄 Estaio/Trust	City	State			
Single member LLC	ALBANY	NY	12233	14	6013200
✓ Other	Single member's name if g	rantee is a single member LLC (see instruction	15)	Singla n	hember EIN or SSN

Location and description of property conveyed

Tax map designation - Section, block & lot (include dots and dashes)	SWIS code (six digits)	Street address		City, town, or village	County
3 - 2135 - 1	650000	431 KENT AV	ENUE	NEW YORK	BROOKLYN / KINGS
Type of property conveyed	(check applicable bo)	x)			
1 One- to three-family h	nouse 5	Commercial/Industrial	Date of conveyand		e of real property
2 Residential cooperativ	/e 6	Apartment building	10 31	1 2 2 1 4 1 7	which is residential
3 Residential condomin	ium 7	Office building	month. day	T reat prope	erty0.00 %
4 Jacant lend	8 [_ Other		{;	see instructions)
Condition of conveyance (c a. Conveyance of fee in b. Acquisition of a controll percentage acquired c. Transfer of a controlli percentage transferred d. Conveyance to coop corporation	lerest ing interest (state %) ng interest (state ed%) t	mere change of identi ownership or organiza Form TP-584.1, Schedule g. Conveyance for which previously paid will be Form TP-584.1, Schedul	ty or form of tion (attach F) credit for tax claimed (attach G) tive apartment(s)	 I. Option assignment m. Leasehold assignment n. Leasehold grant o. Conveyance of an p. Conveyance for wh from transfer tax of Schedule B, Part In 	nent or surrender easement hich exemption iaimed <i>(complet</i> e
e. 🔲 Conveyance pursual	atta or in lieu of	j, Conveyance of air rig development rights	hts or	 q. Conveyance of pro- and partiy outside 	
foreclosure or enfore interest (attach Form TF	cement of security				ant to divorce or separation
For recording officer's use	Amount received		Date received	Trans	action number
	Schedule B., Par Schedule B., Par				

Page 2 of 4 TP-584 (4/13)

Schedule B — Real estate transfer tax return (Tax Law, Article 31)			
 Part I – Computation of tax due 1 Enter amount of consideration for the conveyance (if you are claiming a total exemption from tax, check the exemption claimed box, enter consideration and proceed to Part <i>III</i>) 	1.	0	00
 2 Continuing lien deduction (see instructions if property is taken subject to mortgage or lien) 	2.	0	00
3 Taxable consideration (subtract line 2 from line 1)	3.	0	00
4 Tax: \$2 for each \$500, or fractional part thereof, of consideration on line 3	4.	0	00
 Fax: 32 for each 3500, or integrating part thereor, or consideration of the consideration of the constant of the	5.	C	00 0
6 Total tax due* (subtract line 5 from line 4)	6.	C	00 0
Part II - Computation of additional tax due on the conveyance of residential real property for \$1 million or more			
1 Enter amount of consideration for conveyance (from Part I, line 1)	1.		00 0
2 Taxable consideration (multiply line 1 by the percentage of the premises which is residential real property, as shown in Schedule A)	2.		00 0
3 Total additional transfer tax due* (multiply line 2 by 1% (.01))	3.	(00 0
Part III – Explanation of exemption claimed on Part 1, line 1 (check any boxes that apply)			
The conveyance of real property is exempt from the real estate transfer tax for the following reason:			
a. Conveyance is to the United Nations, the United States of America, the state of New York, or any of their instru agencies, or political subdivisions (or any public corporation, including a public corporation created pursuant to compact with another state or Canada)	agreement or	a	\checkmark
cumpact with another state of Ganada)			parameter a
b. Conveyance is to secure a debt or other obligation	*******	þ	
c., Conveyance is without additional consideration to confirm, correct, modify, or supplement a prior conveyance		С	
	an inclusion due of		
d. Conveyance of real property is without consideration and not in connection with a sale , including conveyances	couveaind	Ċ	
realty as bona fide gifts		ų	
e. Conveyance is given in connection with a tax sale		P	
e. Conveyance is given in connection with a tax sale		C.	<u> </u>
	Alala		
Conveyance is a mere change of identity or form of ownership or organization where there is no change in ber	iericiai		
ownership. (This exemption cannot be claimed for a conveyance to a cooperative housing corporation of real p	i ohar (A	1	-
comprising the cooperative dwelling or dwellings.) Attach Form TP-584.1, Schedule F			
g. Conveyance consists of deed of par tition		£1	
g. Conveyance consists of deed of partition		21	
h. Conveyance is given pursuant to the federal Bankruptcy Act		h	
h. Conveyance is given pursuant to the rederal Bankruptcy Act,	**********	* 1)	Lines
i. Conveyance consists of the execution of a contract to sell real property, without the use or occupancy of such	proper ty, or		1
the granting of an option to purchase real property, without the use or occupancy of such property		. 11	
j. Conveyance of an option or contract to purchase real property with the use or occupancy of such property wh	ere the		
consideration is less than \$200,000 and such property was used solely by the grantor as the grantor's person	al residence		
and consists of a one-, two-, or three-family house, an individual residential condominium unit, or the sale of s	tocik in a cooperat	live	
housing corporation in connection with the grant or transfer of a proprietary leasehold covering an individual r			
cooperative apartment	esidential		
	esidential	j	
	osidential	ĵ,	
 k. Conveyance is not a conveyance within the meaning of Tax Law, Article 31, section 1401(e) (attach documents supporting such clam) 	csidential	- 1	

*The total tax (from Part I, line 6 and Part II, line 3 above) is due within 15 days from the date conveyance. Please make check(s) payable to the county clerk where the recording is to take place. If the recording is to take place in the New York City boroughs of Manhattan, Bronx, Brooklyn, or Queens, make check(s) payable to the **NYC Department of Finance**. If a recording is not required, send this return and your check(s) made payable to the **NYS Department of Taxation and Finance**, directly to the NYS Tax Department, RETT Return Processing, PO Box 5045, Albany NY 12205-5045.

Schedule C — Credit Line Mortgage Cert	flcate (Tax Law, Ar	ticle 11)			
Complete the following only if the interest be			nterest.		
(we) certify that: (check the appropriate box)					
1. 🗹 The real property being sold or transferre	d is not subject to an o	outstanding	credit line mortga	age.	
2. The real property being sold or transferred is claimed for the following reason.	l is subject to an outst	anding credi	t line mortgage.	However, an exemp	tion from the tax
The transfer of real property is a trans real property (whether as a joint tenar	fer of a fee simple inte t, a tenant in common	rest to a per or otherwise	son or persons v e) immediately be	vho held a fee simpl efore the transfer.	e interest in the
The transfer of real property is (A) to a to one or more of the original obligors property after the transfer is held by th the benefit of a minor or the transfer to	or (B) to a person or e le transferor or such re	ntity where : elated persor	50% or more of t 1 or persons (as	he beneficial interes	st in such real
The transfer of real property is a trans	fer to a trustee in bank	kruptcy, a re	ceiver, assignee,	or other officer of a	court.
The maximum principal amount secures or transferred is not principally impro	ed by the credit line m ved nor will it be impro	ortgage is \$ oved by a on	3,000,000 or mo e- to six-family c	re, and the real prop wner-occupied resi	perty being sold dence or dwelling.
Please note: for purposes of determ above, the amounts secured by two or TSB-M-96(6)-R for more information	r more credit line mort	gages may l	pe aggregated u	red is \$3,000,000 o nder certain circums	r more as described tances. See
Other (attach detailed explanation).					
 The real property being transferred is pre following reason: A certificate of discharge of the credition 					is due for the
A check has been drawn payable for satisfaction of such mortgage will be	transmission to the cre recorded as soon as it	edit line mor is available	gagee or his age	ent for the balance o	lue, and a
4, The real property being transferred is sul	leat to an outstanding	credit line n	nortagae recorde	in in	
 I he real property being transferred is sufficiency to the real property being transferred is sufficiency to the real or other ider by the mortgage is 	ntification of the morte	lage). The n	naximum principa s claimed and the	al amount of debt of	obligation secured
is being paid herewith. (Make check pave	able to county clerk wh	iere deed wi	ll be recorded or	, if the recording is t	o take place in
New York City but not in Richmond Cou	nty, make check paya	ble to the N	YC Department	of Finance.)	
Signature (both the grantor(s) and grant	ee(s) must sign)				
			- d C including a	an intern andifical	ion schedule or
The undersigned certify that the above informat attachment, is to the test of the her knowledge, receive a copy for purposes of recording the de	true and complete, ar	nd authorize	the person(s) su	ibmitting such form	on their behalf to
F2 ()	m4 - 1		1/2	N.	OF
- this year	Mentes	-/-	Grantea sign	and the	- MIlonno.
Glador signatur	T tars	/	Benjamin	Conton	
1, and 1, and 14, and 14, and	T36		Grantee stor	nature	Tile
Grantor signature	Tille		-		
Reminder: Did you complete all of the required	information in Sched	ules A, B, ar	id C? Are you re	quired to complete	Schedule D? If you to the county clerk

2

Reminder: Did you complete all of the required information in Schedules A, B, and C/ Are you required to complete schedule D/ If you checked e, f, or g in Schedule A, did you complete Form TP-584.1? Have you attached your check(s) made payable to the county clerk where recording will take place or, if the recording is in the New York City boroughs of Manhattan, Bronx, Brooklyn, or Queens, to the NYC Department of Finance? If no recording is required, send your check(s), made payable to the Department of Taxation and Finance, directly to the NYS Tax Department, RETT Return Processing, PO Box 5045, Albany NY 12205-5045.

Page 4 of 4 TP-584 (4/13)

Schedule D - Certification of exemption from the payment of estimated personal income tax (Tax Law, Arlicle 22, section 663) Complete the following only if a fee simple interest or a cooperative unit is being transferred by an individual or estate or trust.

If the property is being conveyed by a referee pursuant to a foreclosure proceeding, proceed to Part II, and check the second box under Exemptions for nonresident transferor(s)/seller(s) and sign at bottom.

Part I - New York State residents

If you are a New York State resident transferor(s)/seller(s) listed in Schedule A of Form TP-584 (or an attachment to Form TP-584), you must sign the certification below. If one or more transferors/sellers of the real property or cooperative unit is a resident of New York State, each resident transferor/seller must sign in the space provided. If more space is needed, please photocopy this Schedule D and submit as many schedules as necessary to accommodate all resident transferors/sellers.

Certification of resident transferor(s)/seller(s)

This is to certify that at the time of the sale or transfer of the real property or cooperative unit, the transferor(s)/seller(s) as signed below was a resident of New York State, and therefore is not required to pay estimated personal income tax under Tax Law, section 663(a) upon the sale or transfer of this real property or cooperative unit.

Signature	Print full name	Date
Signature	Print full name	Date
Signatum	Print full name	Dite
Signature	Print full name	Date

Note: A resident of New York State may still be required to pay estimated tax under Tax Law, section 685(c), but not as a condition of recording a deed.

Part II - Nonresidents of New York State

If you are a nonresident of New York State listed as a transferor/seller in Schedule A of Form TP-584 (or an attachment to Form TP-584) but are not required to pay estimated personal income tax because one of the exemptions below applies under Tax Law, section 663(c), check the box of the appropriate exemption below. If any one of the exemptions below applies to the transferor(s)/seller(s), that transferor(s)/seller(s) is not required to pay estimated personal income tax to New York State under Tax Law, section 663. Each nonresident transferor/seller who qualifies under one of the exemptions below must sign in the space provided. If more space is needed, please photocopy this Schedule D and submit as many schedules as necessary to accommodate all nonresident transferor/sellers.

If none of these exemption statements apply, you must complete Form IT-2663, Nonresident Real Property Estimated Income Tax Payment Form, or Form IT-2664, Nonresident Cooperative Unit Estimated Income Tax Payment Form. For more information, see Payment of estimated personal income tax, on page 1 of Form TP-584-1.

Exemption for nonresident transferor(s)/seller(s)

This is to certify that at the time of the sale or transfer of the real property or cooperative unit, the transferor(s)/seller(s) (grantor) of this real property or cooperative unit was a nonresident of New York State, but is not required to pay estimated personal income tax under Tax Law, section 663 due to one of the following exemptions:

The real property or cooperative unit being sold or transferred qualifies in total as the transferor's/seller's principal residence (within the meaning of Internal Revenue Code, section 121) from ______ to _____ to _____ to _____

The transferor/seller is a mortgagor conveying the mortgaged property to a mortgagee in foreclosure, or in lieu of foreclosure with no additional consideration.

The transferor or transferee is an agency or authority of the United States of America, an agency or authority of the state of New York, the Federal National Mortgage Association, the Federal Home Loan Mortgage Corporation, the Government National Mortgage Association, or a private mortgage insurance company.

Signature	Print full name	Date
Signature	Print full name	Date
Signituro	Print full name	Date
Signature	Prist full name	Date

Certification of resident trans eror(s)/seller(s)

This is to certify that at the time of the sale or transfer of the real property or cooperative unit, the transferor(s)/seller(s) as signed below was a resident of New York State, and therefore is not required to pay estimated personal income tax under Tax Law, section 663(a) upon the sale or transfer of this real property or cooperative unit.

Date
Date
Date

Exemption for nonresident transferor(s)/seller(s)

This is to certify that at the time of the sale or transfer of the real property or cooperative unit, the transferor(s)/seller(s) (grantor) of this real property or cooperative unit was a nonresident of New York State, but is not required to pay estimated personal income tax under Tax Law, section 663 due to one of the following exemptions:

The real property or cooperative unit being sold or transferred qualifies in total as the transferor's/seller's principal residence (within the meaning of Internal Revenue Code, section 121) from _______ to _____ to _____ (see Instructions).

The transferor/seller is a mortgagor conveying the mortgaged property to a mortgagee in foreclosure, or in fieu of foreclosure with no additional consideration.

The transferor or transferee is an agency or authority of the United States of America, an agency or authority of the state of New York, the Federal National Mortgage Association, the Federal Home Loan Mortgage Corporation, the Government National Mortgage Association, or a private mortgage Insurance company.

Signature	Print full name	Date
Signature	Print full name	Date
Signaturo	Print full name	Date
Signature	Print full namé	Date

NYC

RPT

1

NEW YORK CITY DEPARTMENT OF FINANCE **REAL PROPERTY TRANSFER TAX RETURN** (Parsume to 'Effect 1, Chapter 21, NYC Administrative ('Edde)

.

÷.

	NTOR		Miller Martin	and the second second	THE REPORT			
Na	WYTHE AND KENT REALTY LLC	7						
	w TTTTE ACIVICIEIT REALT ELC		Te	lephone Number			DO NOT WRITE IN FOR OFFICE (THIS SPACE
Pe	and until an address after impoles (number and streat)	4 SPENCE	R STREET					
 Cit 	y and State		Ð	stade				
				11205				
	ROOKLYN, NY ployer identification number	🌰 SC	SCIAL SECURITY NUMBER					
	4 5 - 2 5 2 8 5 0 9	OR		46		• RETU	IAN NUMBER 🛦	
ene	NTEE							
🌒 Na	MEW YORK STATE DEPARTMEN	JT OF EN	VIRONMENT	AL				
	antee is a(n); 🔲 individual 🛛 🔲 partnerstrip (must comple	ete Schedule 3) T	elephone Number				
	seck one) Corporation Z other		·					
	emanent mailing address <u>alter</u> transfer (number and street)		2010 N 625 DB () A	nw A V		DEE	D SERIAL NUMBER	
	с. — С	ONSERVA	LILON, 625 BROA	DWAT				
• 0	ly und State		2	ip Code				
				12233				
	LBANY, NY api dyer identification number	9 s	OCIAL SECURITY NUMBE	R				
		OR		-	1 - 1	1		
				- (f)	(a)	• NYS	HEALESTATE IN	ANSFER TAX PAID A
ER	PERTY LOCATION	No The Local Division	and the state	「市るにした」		16 44	A DESCRIPTION	
			ATELY. ATTACH A R	DEB IF ADDITIONAL	SPACE IS REQU	PHED.	0	Assessed Value
		Apt.				# el	Square	
_	Address (number and street)	Apı, No.	Borough	Block.	Lol	# of Floors	Fend	of Property
43	KENT AVENUE					# 61		
43			Borough	Block.		# 61	Fend	of Property
43			Borough	Block.		# 61	Fend	of Property
	I KENT AVENUE	No.	Borough BROOKLYN	Block.	Lol	# GI Floors	65,511	of Propeny 2,176,650.00
•	I KENT AVENUE	No.	Borough BROOKLYN	Block.	Lol	# GI Floors	Fend	of Propeny 2,176,650.00
•	I KENT AVENUE	No.)/31/2014	Borough BROOKLYN	Biock. 2135	Lol I PERCENTAGE C	# GI Ficers 1	Fml 65,511 ST THANSFERR	of Propeny 2,176,650.00 ED: 100 %
•	I KENT AVENUE	No.)/31/2014	Borough BROOKLYN	Biock 2135 ss 5-11 of this return	Lot I PERCENTAGE C	# GI Ficers 1	Fml 65,511 ST THANSFERR	of Propeny 2,176,650.00 ED: 100 %
•	I KENT AVENUE ATE OF TRANSFER TO GRANTEE: 10 NOTION OF TRANSFER, See In Seck (/) all of the conditions that apply and fill out the Anna length transfer	No.)/31/2014	Borough BROOKLYN	Block. 2135 ss 5-11 of this return n. Correct	Lol I PERCENTAGE C . Additionally, Sc ion deed	# el Floors	Fent 65,511 ST THANSFERR and 2 must be co	• of Propeny 2,176,650.00 ED: 100 % mpleted for all transfers.
•	I KENT AVENUE ATE OF TRANSFER TO GRANTEE: 1(NOTION OF TRANSFER, See In Comparison of the conditions that apply and fill out the Anna longit transfer Transfer in exercise of optice to purchase	No.)/3 1/20 14 appropriate	Borough BROOKLYN	Block. 2135 ss 5-11 of this return n. Correct o, Transfe	Lol I PERCENTAGE C Additionally, Sc ion deed ar by or to a tax cixet	# ci Ficers 1 DF INTERE chedules1 f	Fent 65,511 ST THANSFERR and 2 must be co iten (complete School	• of Propeny 2,176,650.00 ED: 100 % mpleted for all transfers.
• C • Ch a. a. a.		No. 0/3 1/20 14 interaction appropriate	Borough BROOKLYN	Block 2135 s 5-11 of this return n. Correct o. Transfe p. D Transfe	Lol I PERCENTAGE C , Additionally, Sc ion deed ar by or to a fax exet ar of property partly	# cl Fiors 1 DF INTERE chedules1 : rapi organi2a widun and pr	Fml 65,511 ST THANSFERR and 2 must be co tion (complete School rily without NYC	• of Propeny 2,176,650.00 ED: 100 % mpleted for all transfers.
• t 00 • Ch		No.)/3 1/2014 struction appropriate appropriate appropriate appropriate appropriate	Borough BROOKLYN ONB schedules on page	Block. 2135 ss 5-11 of this return n. Correct o. Transfe p. D Transfe g. D. fransfe	Lol I PERCENTAGE C A Additionally, Sc ion deed ar by or to a fax dxel ar of property parity ar of successful bid	# cl Ficors 1 DF INTERE shedules1 : mpl organiza within and pr pursuant to fi	Fent 65,511 ST THANSFERR and 2 must be co ition (complete School rily without NYC preclosure	 of Property 2,176,650.00 ED: 100 % mpleted for all transfers. ive G page 8).
• C • Ch a. a. a.		No.)/3 1/2014 appropriato poration A page 5) divorce decre	Borough BROOKLYN ONB schedules on page	Block. 2135 s 5-11 of this return n. Correct o. Transfe g. D. Transfe t. D. Transfe such s	Lot I PERCENTAGE C Additionally, Sc ion deed ar by or to a tax oxet ar of property partly ar of successful bid or sy borrower solet aduity	# cl Fices 1 DF INTERE chedules1 i mpl organiza within and ps pursuant to fi	Fent 65,511 ST TRANSFERR and 2 must be co tion (complete School rely without NYC reclosure for a debt or a transf	of Property 2,176,650.00 ED: 100 % mpleted for all transfers. ive G paga 8) er by lender solely to return
• Ch a. a. d. c. f.		No.)/31/2014 appropriato poreticn (page 5) divorce decre lige 6)	Borough BROOKLYN one schedules on page	Block. 2135 2135 ss 5-11 of this return n. Correct o. Correct p. Correct p. Correct p. Transfe q. Correct such s ss 5 s S Correct core	Lot 1 PERCENTAGE C Additionally, Sc ion deed ar by or to a tax axet ar of property partly er of successful bid j ar by borrower solet earthy ar wholly or partly er	# cl Fiors 1 DF INTERE thedules1 if mpl organiza within and pe pursuant to fe y as security xeimpt as a m	Fent 65,511 ST TRANSFERR and 2 must be co tion (complete School rely without NYC reclosure for a debt or a transf	 of Property 2,176,650.00 ED: 100 % mpleted for all transfers. ive G paga 8).
• Ch a, a, c, d, c, f, g		No.)/3 1/2014 appropriate appropriate poreticn (page 5) divorce decre age 6) a Schedule D,	Borough BROOKLYN one schedules on page	Block. 2135 2135 es 5-11 of this return n	Lot I PERCENTAGE C Additionally, Sc ion deed ar by or to a tax cxet ar of property partly er of successful bid j ar by borrower solet adulty at wholly or partly et et Schedule M, part	# cl Fiors 1 DF INTERE thedulos1 i within and pr pursuant to fi y as security xetmpt as a m ge 9)	Fent 65,511 ST THANSFERR and 2 must be co iten (complete School rily without NYC oreclosure for a debt or a transf erre change of identi	of Property 2,176,650.00 ED: 100 % mpleted for all transfers. Size G page 8) er by lender solely to return ty or form of ownership
• Ch a. a. d. c. f.		No.)/3 1/2014 appropriate appropriate appropriate posetion A, page 5) divorce decre age 6) a Schedule D, m	Borough BROOKLYN OTTB oschedules on page page 6)	Block. 2135 2135 as 5-11 of this return n. Correct o. Transfi q. Correct q. Transfi t. Correct such s s. Transfi completer t. Correct t.	Lot I PERCENTAGE C Additionally, Sc ion deed ar by or to a tax cxet ar of property partly er of successful bid j ar by borrower solet adulty at wholly or partly et et Schedule M, part	# cl Fiors Fiors FINTERE thedulos1 i mpl organiza within and pe pursuant to fi pursuant to fi y as security xermpt as a m ge 9) concoration of	Fent 65,511 ST THANSFERR and 2 must be co itin (complete Schoo rily without NYC meclosure for a debt or a transf are change of identi-	of Property 2,176,650.00 ED: 100 % mpleted for all transfers. Size G page 8) er by lender solely to return ty or form of ownership
• Ch a, a, c, d, c, f, g		No.)/3 1/2014 appropriate appropriate appropriate posetion A, page 5) divorce decre age 6) a Schedule D, m	Borough BROOKLYN OTTB oschedules on page page 6)	Block. 2135 2135 as 5-11 of this return n. Correct o. Transfi q. Transfi r. Transfi such s s. Transfi t. Correct f. Transfi t. Correct f. Transfi t. Correct f. Transfi t. Correct f.	Lol I PERCENTAGE C , Additionally, Sc ion deed ar by or to a fax axet ar of property partly prof successful bid i ar by borrower solet examply or partly er els Schedule M, pa er to a REIT or to a	# cl Fiors Fiors FINTERE thedules1 if mpl organiza within and ps pursuant to fi pursuant to fi y as security xeimpt as a m ge 9) concorration of uges 10 and	Fent 65,511 ST THANSFERR and 2 must be co ition (complete Schoo ritly without NYC orrectosure for a debt or a transf are change of identif are change of identif are change of identif	of Property 2,176,650.00 ED: 100 % mpleted for all transfers. Sole G page 8) er by lender solely to return ty or form of ownership
CO CO Ch a a. c. d c. d c. f. g h.		No.)/3 1/2014 appropriate appropriate appropriate posetion A, page 5) divorce decre age 6) a Schedule D, m	Borough BROOKLYN OTTB oschedules on page page 6)	Block. 2135 2135 as 5-11 of this return n. Correct o. Transfi g. D. Transfi g. D. Transfi such s s. Transfi t. D. Transfi t. Correct 1. Transfi t. Correct t. Co	Lol I PERCENTAGE C Additionally, So ion deed ar by or to a tax axet ar of propedy partly ar of successful bid at by borrower solet ecurity et wholly or partly et ecurity ar of a REIT of to a lete Schedule R, pa transfer in connaction	# cl Floors 1 DF INTERE thedulos1 f mpl organiza within and ps pursuant to fi pursuant to fi y as security y as security y as security relevant as a m ge 9) corporation of uges 10 and on with finance	Fent 65,511 ST TRANSFERR and 2 must be co ion (complete Schoo rily without NYC preclosure for a debt or a transf are change of identi are change of identi are change of identi (1) ang (describe):	of Property 2,176,650.00 ED: 100 % mpleted for all transfers. tote G page 8). er by lender solely to return ty or form of ownership led by a REIT.
• CO • Ch a. a. c. d. c. f. g in.		No.)/3 1/2014 interaction appropriate appropriate poretion (appropriate poretion (appropriate (appropria	Borough BROOKLYN DDB oschedules on page o page 6) agreement or vill)	Block. 2135 2135 as 5-11 of this return n. Correct o. Transfi q. Transfi r. Transfi such s s. Transfi compl t. Transfi compl t. Transfi compl t. Correct y. D. A gra	Lol I PERCENTAGE C Additionally, Sc ion deed ar by or to a fax axel ar of property partly ar of successful bid i ar by borrower solel eachity eachity eachity or partly et cle Schedule M, pa et a AREIT or to a fete Schedule M, pa to a REIT or to a fete Schedule R pa transfer in connection	# cl Fiors 1 DF INTERE chedules1 i mpl organiza within and pe pursuant to fi y as security xermpt as a m ge 9) concoration of ges 10 and an with financ	Fent 65,511 ST THANSFERR and 2 must be co iten (complete School rily without NYC preclosure for a debt or a transf ere change of identi- ere change of identi- arg (describe): ehold interest in	of Property 2,176,650.00 ED: 100 % mpleted for all transfers. Solve G page 8) er by lender solely to return ly or form of ownership led by a REIT. a tax-free NY area
• t co • Ch a. a. d. c. f. g h. i. j.		No.)/3 1/2014 interaction appropriate appropriate poretion (appropriate poretion (appropriate (appropria	Borough BROOKLYN DDB oschedules on page o page 6) agreement or vill)	Block. 2135 2135 as 5-11 of this return n. Correct o. Transfi q. Transfi r. Transfi such s s. Transfi compl t. Transfi compl t. Transfi compl t. Correct y. D. A gra	Lol I PERCENTAGE C Additionally, Sc ion deed ar by or to a fax axel ar of property partly ar of successful bid i ar by borrower solel eachity eachity eachity or partly et cle Schedule M, pa et a AREIT or to a fete Schedule M, pa to a REIT or to a fete Schedule R pa transfer in connection	# cl Fiors 1 DF INTERE chedules1 i mpl organiza within and pe pursuant to fi y as security xermpt as a m ge 9) concoration of ges 10 and an with financ	Fent 65,511 ST TRANSFERR and 2 must be co ion (complete Schoo rily without NYC preclosure for a debt or a transf are change of identi are change of identi are change of identi (1) ang (describe):	of Property 2,176,650.00 ED: 100 % mpleted for all transfers. Solve G page 8). er by lender solely to return ty or form of ownership led by a REIT. a tax-free NY area

201410240019010102

WEARD THE FORDS

Form NYC-RPT

Page 2

TYPE OF PROPERTY (V)	TYPE OF INTEREST (2)
a. 🗍 1-3 fanilly house	Check box at LEFT if you intend to recerd a document related to this transfer. Check box at RIGHT if you do not intend to record a document related to this transfer.
 b. Individual residential condominium unit c. Individual cooperative apartment d. Individual condominium unit 	REC. NON REC. a.
 a. Commercial cooperative r. Apartment building g. Office building 	d. e. f. Development Rights
h. Industrial building i. Utility j. OTHER. (describe): COMMERCIAL REAL ESTATE	gStock

SCHEDULE 1 - DETAILS OF CONSIDERATION

COMPLETE THIS SCHEDULE FOR ALL TRANSFERS AFTER COMPLETING THE APPROPRIATE SCHEDULES ON PAGES 5 THROUGH 11. ENTER "ZERO" ON LINE 11 IF THE TRANSFER REPORTED WAS WITHOUT CONSIDERATION.

1. Cash		0 00
2. Purchase money mortgage		0.00
3. Unpaid principal of pre-existing mortgage(s)		0-00
 Accrued interest on pre-existing mortgage(s) 		00:00
5. Accrued real estate taxes		0 00
6. Amounts of other liens on property		0_00
Value of shares of stock or of partnership interest received		0_00
. Value of real or personal property received in exchange		0 00
 Amount of Real Property Transfer Tax and/or other taxes or expenses of the g which are paid by the grantee 	rantor	0 00
0, Cther (describe);		0300
 TOTAL CONSIDERATION (add lines 1 through 10 - must equal amount enter of Schedule 2) (see instructions) 	ed on line 1	0.00

See instructions for special rules relating to transfers of cooperative units, liquidations, marital settlements and transfers of property to a business entity in return for an interest in the entity.

50	HEDULE 2 - COMPUTATION OF TAX	Kerne 19	Payment Enclosed
Α.	Payment Pay amount shown on line 12 - See Instructions		
ł	Total Consideration (from line 11, above)	15	0 00
8	Excludable liens (see instructions)		0.00
	Consideration (Line 1 less line 2)		0.00
		4.	0 %
	Percentage change in beneficial ownership (see instructions)	5.	100 🦻
	Taxable consideration (multiply line 3 by line 5)		0.00
,	Tax (multiply line 6 by line 4)	7.	0 00
•	Credit (see instructions)	80	0.00
I.	Tax due (line 7 less line 8) (if the result is negative, enter zero)	9.	0.00
	Interest (see instructions)	10	0 00
	Penalty (see instructions)	11.	0 00
	Total Tax Due (add lines 9, 10 and 11)	12.	\$ 0.00

Form NYC-RPT

Attine of Attorney DENISE J. D'AMBROSIO, ESQ. OF PHILLIPS	VIZER LLP	Telephone Number	-9700
Address (number and street) 666 FIFTH AVENUE	City and State NEW YC	DRK, NY	Zip Code 10103
EMPLOYER IDENTIFICATION NUMBER	SOCIAL SECURITY NUMBER]-[

GRANTEE'S ATTORNEY

Name of Attorney BRADFORD D. BURNS, ESQ. FOR NYS DEPARTIN		ARTMENT OF	Telephone Number (999) 999	-9999
Address (mumber and street) BROADWAY	ENVIRONMENTAL CONSERVATION, 625	City and State ALBANY	Y. NY	Zip Code 12233
EMPLOYER IDENTIFICATION NUMBER	OR	SOCIAL SECURITY NUMBER		-

CERTIFICATION Y

I swear or affirm that this return, including any accompanying schedules, affidavits and attachments, has been examined by me and is, to the best of my knowledge, a true and complete return made in good faith, pursuant to Tille 11, Chapter 21 of the Administrative Code and the regulations issued thereunder.

GRANTEE GRANTOR Sworn to and subscribed to Sworn to and subscribed to 14-6013200 45-2528509 10 EMPLOYER IDENTIFICATION NUMBER OR SOCIAL SECURITY NUMBER PMPLOYER IDENTIFICATION NUMBER OR SOCIAL BECURITY NUMBER day Э. day before me on this before me on this NEW YORK STATE WYTHE AND KENT october 2014 DEPARTMENT OF JOIY REALTY LLC of of ENVIRONMENTAL Name of Grantee Name of Grantor Signature of Gran Signati of Notary Signatur ntengo scanti Drew A. Wellette Notary Public, State of New York Qualified in Schenectady Co. No. 01WE6089074 Commission Expires 03/17/ 2015 **SHIA W. GREENFELD** NOTARY PUBLIC, State of New York No. 01-GR6273115 Qualified In Kings County Commission Expires 12/03/2016

Page 4

SCHEDULE G - TRANSFER BY OR TO A TAX EXEMPT ORGANIZATION

NONPROFIT ORGANIZATIONS PLEASE REFER TO THE INSTRUCTIONS "EXEMPTIONS FROM THE TRANSFER TAX"

A transfer by or to an eligible tax exempt organization is exempt from the Real Property Transfer Tax. To be eligible, an organization must be operated exclusively for religious, charitable or educational purposes and must provide proof of the organization's tax exempt status. If claiming tax exempt status, please answer questions 1 and 2. Additionally, the organization must provide copies of any letters granting an IRS or New York State sales tax exemption or New York City exemption and ATTACH AN AFFIDAVIT stating whether such an exemption remains in effect. N

0

- Ĕ
- 1. Is the granter or grantee an organization exempt from taxation pursuant to IRS Code Section 501(c)(3)? (🗸) If "YES", attach a copy of of the letter from the U. S. Treasury Department granting the exemption.
- 2. Has the grantor or grantee received an exemption from sales tax from the NYS Department of Taxation and Finance? (✓)... □ ves If "ves", attach a copy of the letter from the NYS Department of Taxation and Finance granting the exemption.

SCHEDULE H - TRANSFER OF CONTROLLING ECONOMIC INTEREST

Az Name, address and Employer Identification Number (EIN) of entity with respect to which a controlling economic interest has been transferred;

	Name :	
	Address: Zip Code:	
	EIN	
N Q ¥ E	If the real property that is the subject of this transfer is owned by an entity other than the entity listed above, check (\checkmark) the box and attach a schedule listing the name, address and Employer Identification Number of the entity.	
Β,	Total percentage of economic interest transferred in this transaction	%
C.	Total percentage of economic interest transferred by this grantor(s) or others in related transfers or pursuant to plan (including this transaction)	%
D.	Total percentage of economic interest transferred by this grantor(s) or others within the preceding three years (including this transaction)	%
E.	Total percentage of economic interest acquired by this grantee(s) or others in related transfers or pursuant to plan (including this transaction)	%
F.	Total percentage of economic interest acquired by this grantee(s) or others within the preceding three years (including this transaction)	%
NC	If any of the above percentages is 50% or more, complete lines 1 and 2 below and Schedules 1 and 2, Attach a rider explaining apportionment of consideration.	
co	MPUTATION OF CONSIDERATION	
1	Total consideration for this transfer	

Page 8

Page 11

Form NYC-RPT			Pag
SCHEDULE R - REAL ESTATE INVESTMENT TRUST TRANSFERS - WORKSHEET FOR (
1. Add lines 1, 2, 7, 8, 9 and 10 from Form NYC-RPT, Schedule 1 and enter lotal here		1. 5 0.00	
2 a. Enter total number of REIT shares received	0		
b. Enfer maximum number of REIT shares into which ownership interests may be convertedb.	. 0		
c. Add lines a and bc.		~	
d. Enter offering price per share of REIT shares on the date of the transaction reportedd			
e. Multiply line 2c by line 2d			
f. Enter value of ownership interests received not convertible into REIT shares	0.00		
g. Add lines e and f			0,0
3. Multiply line 1 by .40 for condition 1(a) or .50 for condition 1(b)			

- If line 3 is greater than line 2g, the transaction does not qualify as a REIT transfer. DO NOT FILE THIS SCHEDULE. You must file Form NYC-RPT and compute your tax due on Schedule 2.
- If line 3 is less than or equal to line 2g, the transaction will qualify as a REIT Transfer, provided the other conditions are met. You should complete Form NYC-RPT substituting on line 4 of Schedule 2:
 - .5% instead of 1%;
 - .7125% instead of 1.425%;
 - 1.3125% instead of 2.625%

Instructions for Completing Worksheet

12

LINE 1

Where the value of the underlying property transferred or interest therein is used in determining the consideration for a REIT Transfer, you may, but are not required to, report as the value of the real property or interest therein (Form NYC-RPT, Schedule 1, line 7), the estimated market value as determined by the Department of Finance as reflected on the most recent Notice of Assessment issued by the Department. (See Statements of Audit Procedure 93-2-GCT/RPTT, 3/1/93 and 95-1-GCT/RPTT, 7/26/95) Add to the amount reported on line 1 the amount of any mortgages and other liens and encumbrances created in contemplation of the formation of the transaction reported on this Schedule R in the case of condition 1(b).

LINE 2

If the grantor received REIT shares as consideration for the transfer, enter on line 2a the number of REIT shares received. If

the grantor received interests in a partnership or corporation controlled by the REIT that may be converted into REIT shares, enter on line 2b the maximum number of REIT shares into which such interests may be converted and attach an explanation of the terms of the conversion. If the grantor received interests that may be converted into REIT shares but you believe that the offering price for the REIT shares into which such interests may be converted is not a proper measurement of the value of the interests received, do not complete line 2b. Instead, attach an explanation of the terms of the conversion and enter on line 2f the fair market value of the interests received. If the grantor received interests in a partnership or corporation controlled by the REIT that cannot be converted into REIT shares at any time, enter on line 2f the fair market value of the interests received. If you enter an amount on line 2f, attach an explanation of the method used for determining the value of the interests received.

CERTIFICATION

I swear or affirm under penalties of perjury that the granter has no present intention to transfer or convey the REIT shares or interests in a partnership or corporation controlled by the REIT received by the granter as consideration in the transaction reported on this Schedule R within two years of the date of the transfer, other than a distribution of such shares or interests to the partners or shareholders of the granter, and that, to the best of my knowledge, condition 3 above regarding the use of the cash proceeds of the REIT offering will be satisfied, if applicable. I further awear or affirm that I will file an annexided Form NYC-RPT and pay any additional tax due it any such transfer or conveyance occurs within such two-year pend or if condition 3 above, if applicable, cases to be met.

GRANTUR	GRAN NEE
Sworn to and subseribed (A before me on this J (ay of OctoSer JO(4) Signature of Notary SHIA W. GREENFELD NOTARY PUBLIC, State of New York No. 01-GR6273115 Qualified In Kings County Commission Expires 12/03/2016	Sworn to and sufficientiat to before me on this of Notember 2014 Signature of Notary Signature of Notary New YORK STATE DEPARTMENT OF NMMINIONMENTAL Senature of Grantee Drew A. Wellette Notary Public, State of New York Qualified in Schementedy Co. No. C1V EF380074 Commission Expires 03/17/ 2015

Form NYC-RPT

Page 9

SON NOTE	HEDULE 1 - TRANSFERS PURSUANT TO A SEPARATION AGREEMENT, MARITAL SETTLEMENT AGREEM The consideration for a transfer pursuant to a separation agreement, marital settlement agreement or divorce any marital rights exchanged for the property or economic interest as well as any other types of consideratio transfer. The consideration will be presumed to be equal to the fair market value of the portion of the prop unless you establish the consideration to be a different amount.	decree include: n paid by the gl	s the value of rantee for the
1.	What was the fair market value of property at the time of transfer?	\$ 0.00	
2	Is the property a 1, 2 or 3 family house, residential condominium or residential cooperative apartment?	VES	V NO
	If yes, was there a mortgage on the property at the time of transfer?	YES	NO NO
	If yes, what was the balance due? (Enter also on Schedule 2, line 2)	\$ 0.00	
3.	What was the Grantor's percentage of ownership at the time of the transfer?		0 %
4,	Rebuttable Presumption of Fair Market Value: if the marital settlement agreement, separation agreement or divorce decree specifies a value for the portion of the property or interest transferred that is different from fair market value, enter that value here. You may choose to submit relevant portions of your separation agreement, marital settlement agreement or divorce decree, or any other information in support of the value attributed to the transferred property if you have evidence that the consideration was other than fair market value.	§ 0.00	
	PLEASE LIST AND ATTACH ANY ADDITIONAL INFORMATION SUBMITTED		

SCHEDULE M - MERE CHANGE OF FORM TRANSFERS

For transfers occurring on or after June 9, 1994, a transfer that represents a mere change in identity or form of ownership or organization is not taxable to the extent the beneficial ownership of the real property or economic interest therein remains the same. (See instructions) ATTACH COPIES OF ALL RELEVANT DOCUMENTS.

- For each person or entity who, prior to the transaction being reported on this Schedule M, owned a beneficial interest in the property or economic interest therein transferred, report above the percentage of beneficial interest in that real property or economic interest therein owned by that owner before and after the transfer, and describe the relationship of each beneficial owner to the grantor and grantee. Attach additional pages, if necessary.
- If, for any owner, the amount reported in column D is less than the amount reported in column E, enter zero in column F.

A	B (otlach	rider if necessary)	D PERCENTAGE INTE	E F RESY CHANGE
1. NAME OF BENEFICIAL OWNER	RELATIONSHIP TO GRANTOR	RELATIONSHIP TO GRANTEE	BEFORE AF	ten Diminus E
			0/ /0	%
		3		
	r) turn li		