FORMER EAST COAST INDUSTRIAL UNIFORMS SITE

BCP SITE NO. C-224156

39 SKILLMAN STREET BROOKLYN, NEW YORK Block 1886 Lot 10

REMEDIAL INVESTIGATION REPORT

JUNE 2012

Prepared for: 39 Skillman Street LLC 331 Rutledge Street Suite 209 Brooklyn, NY 11211

Prepared By:

ENVIRONMENTAL BUBINESS CONSULTANTS 1808 Middle Country Road Ridge, NY 11961

TABLE OF CONTENTS Remedial Investigation Report Former East Coast Industrial Uniforms Site

1.0	INTF	RODUCI	TION	1			
	1.1	Projec	t Background	1			
	1.2	0	ocation and Description				
	1.3		elopment Plans				
	1.4		ary of Previous Investigations				
		1.4.1	February 2012 - Site Characterization Report (National Grid)				
		1.4.2	October 2011 - Limited Subsurface Investigation Report (EBC)				
• •							
2.0			INVESTIGATION				
	2.1		nvestigation				
	2.2		ions from the Remedial Investigation Work Plan				
	2.3		Line Investigation				
	2.4		mpling				
		2.4.1	Test Pits				
		2.4.2	Soil Borings	6			
	2.5	Monit	oring Well Installation	6			
		2.5.1	Groundwater Sampling	7			
	2.6	Soil Va	apor Sampling	7			
		2.6.1	Installation of Soil Vapor Implants				
		2.6.2	Surface Seal Test Procedure				
		2.6.3	Soil Gas Sample Collection	8			
		2.6.4	Outdoor Ambient Air Sample Collection				
	2.7	*					
		2.7.1	Analytical Results - Soil Samples				
		2.7.2	Analytical Results - Groundwater Samples				
		2.7.2	Analytical Results - Soil Gas Samples				
3.0	HYDI		LOGIC ASSESSMENT AND PHYSICAL SETTING				
	3.1	Site To	opography	13			
	3.2	Surrou	unding Land Use	13			
	3.3	Regior	1al Geology / Hydrogeology	13			
	3.4	Site G	eology / Hydrogeology	13			
4.0	ΝΔΤ	IIRE AN	D EXTENT OF CONTAMINATION	15			
T •U	4.1		fication of Source Areas				
	4.2		dwater Impacts				
	4. 2		I Contraction of the second seco				
	4.3 4.4	Soil Gas and Indoor Air Impacts Site Conceptual Model					
	4.4	Sile Co		10			
5.0	-		VE EXPOSURE ASSESSMENT				
	5.1		minant Areas				
	5.2		minant Release and Transport Mechanism				
	5.3	Point of	of Exposure, Route of Exposure and Potentially Exposed Populations	18			
6.0	CON	CLUSIO	ONS AND RECOMENDATIONS	20			
7.0	REF	ERENCI	ES	22			

TABLE OF CONTENTSRemedial Investigation ReportFormer East Coast Industrial Uniforms Site

TABLES

Table 1	Summary of Sampling Program Rationale and Analysis
Table 2	Monitoring Well Specifications and Elevation
Table 3	Laboratory Results – Soil Samples (VOCs)
Table 4	Laboratory Results – Soil Samples (SVOCs)
Table 5	Laboratory Results – Soil Samples (Pesticides / PCBs)
Table 6	Laboratory Results – Soil Samples (Metals)
Table 7	Laboratory Results – Groundwater Samples (VOCs)
Table 8	Laboratory Results – Groundwater Samples (SVOCs)
Table 9	Laboratory Results – Groundwater Samples (Pesticides / PCBs)
Table 10	Laboratory Results – Groundwater Samples (Total & Dissolved Metals)
Table 11	Laboratory Results – Soil Gas and Outdoor Samples
Table 12	Parameters Detected Above Track 1 Soil Cleanup Objectives
Table 13	Parameters Detected Above Ambient Groundwater Standards

FIGURES

Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Soil Boring Locations
Figure 4	Monitoring Well Locations
Figure 5	Groundwater Elevation Map
Figure 6	Soil Gas & Outdoor Air Sampling Locations
Figure 7	Posted Soil Results above Unrestricted / Restricted Residential SCOs
Figure 8	Posted Groundwater VOC / SVOC Results above AWQS
Figure 9	Posted Groundwater Metals Results above AWQS
Figure 10	Soil Gas & Outdoor Air Detections

APPENDICES

Appendix A	Soil Boring Logs
------------	------------------

- Appendix B Well Construction Logs
- Appendix C Well Purge Sheets
- Appendix D Soil Gas Sampling Log
- Appendix E Laboratory Reports (Digital Copy)

LIST OF ACRONYMS

Acronym Definition				
AOC	Area of Concern			
BCP	Brownfields Cleanup Program			
BCA	Brownfield Site Cleanup Agreement			
ESA	Environmental Site Assessment			
EBC	Environmental Business Consultants			
IRM	Interim Remedial Measure Work Plan			
NYCDEP	New York City Department of Environmental Protection			
NYSDEC	New York State Department of Environmental Conservation			
NYSDOH New York State Department of Health				
PID	Photo-Ionization Detector			
RI	Remedial Investigation			
RIWR	Remedial Investigation Work Plan			
SVOC	Semi-Volatile Organic Compound			
UST	Underground Storage Tank			
VOC	C Volatile Organic Compound			

1.0 INTRODUCTION

1.1 Project Background

This Remedial Investigation Report (RIR) was prepared on behalf of 39 Skillman Street LLC for the property located at 139 Skillman Street, in the Bedford-Stuyvesant section of Brooklyn, New York. On November 25, 2011, 39 Skillman Street LLC filed an application with the New York State Department of Environmental Conservation (NYSDEC), to admit the Project Site into the New York State Brownfield Cleanup Program (BCP). The application was deemed complete by the NYSDEC on December 7, 2011. On March 15th, 2012, the NYSDEC informed 39 Skillman Street LLC that the project had been accepted into the BCP with 39 Skillman Street LLC classified as a "Volunteer". The Brownfield Cleanup Agreement was executed by NYSDEC on March 27, 2012 (Site No. C224156).

The purpose of the Remedial Investigation (RI) is to collect data of sufficient quality and quantity to characterize the nature and extent of petroleum contamination in on-site groundwater and soil gas, to complete a qualitative exposure assessment for future occupants of the building and the surrounding community and to evaluate alternatives to remediate the contamination.

The overall objectives of the project are to prepare the site for unrestricted use as defined in the Brownfield Cleanup Agreement and to remediate known and unknown environmental conditions at the site to the satisfaction of the NYSDEC and the New York State Department of Health (NYSDOH).

The field work portion of the RI was conducted by EBC from June 4th to June 19th 2012, in accordance with the protocols and methods as established in the approved Remedial Investigation Work Plan (EBC 5/12).

1.2 Site Location and Description

The address for the subject property is 39 Skillman Street, Brooklyn, New York 11205. The subject property is designated as Block 1886, Lot 10 by the New York City Department of Assessment. The subject property is located in the City of New York and Borough of Brooklyn (Kings County) as shown on **Figure 1**. The lot has 250 feet of frontage on Skillman Street and is 100 feet deep for a total lot area of 25,000 square feet.

The lot is developed with three attached buildings and a parking area formerly used by the East Coast Industrial Uniform laundry facility. All buildings are currently vacant. A figure showing the lot, buildings and parking area is provided as **Figure 2**. The parking area is located on the southern end of the lot and consists of an asphalt cover. Building 1 is a one-story brick building located north of the parking area. The building contains an aboveground 2,000-gallon No. 2 fuel oil storage tank in the rear and a boiler room (empty) in the front of the building.

Building 2, a second one-story brick building, is located north of the first, and consists of an open area with a concrete lined trenches cut through the southeast end of the building. The trenches were likely used to channel wash water from washing machines to a sump pit located in a small utility

room in the southeast corner of the building. An area in the northeastern part of this building is labeled with signage as "hazardous waste storage". An underground storage tank (abandoned-inplace) is located near the roll-up gate entrance to the building. The underground storage tank is believed to be the 3,000-gallon No. 2 fuel oil tank identified on the NYSDEC PBS database Facility No. 2-055468).

Building 3, the northern most building is a vacant two-story brick building which was used for sorting, ironing, folding and storage of clothing/uniforms, etc. This building contains bathrooms and employee lunch room and a loading area. There is a second floor in the northern third of the building that was used for office space.

The elevation of the property ranges from approximately 22 to 28 feet above the National Geodetic Vertical Datum (NGVD) feet. The depth to groundwater beneath the site, as determined from field measurements, is approximately 20 feet below grade. Based on regional groundwater contour maps, groundwater flow is expected to be northwest toward the East River.

1.3 Redevelopment Plans

Redevelopment plans for the Site include demolishing the existing 26,000 square foot (combined) buildings and replacing them with three new 6-story residential apartment buildings. Current plans call for each building to have 16 apartments with a mix of 3, 4 and 5 bedroom units to better serve the needs of the community. Each building will feature a partial below grade (7 ft) basement level with utility rooms, residential living space, and 8-9 parking spaces and outdoor recreation areas on the roof.

1.4 Summary of Previous Investigations

Two Subsurface environmental investigations were performed on the Site as follows:

- Site Characterization Report, 39 Skillman Street, Brooklyn, NY. National Grid, February, 2012.
- Limited Subsurface Investigation Report, 39 Skillman Street, Brooklyn, NY. EBC, October 2011.

A summary of the investigations performed is provided in the following sections.

1.4.1 February 2012 – Site Characterization Report (National Grid)

A prior subsurface investigation was performed within the northern-most two-story building (Building 3) by GEI Consultants, Inc., on behalf of National Grid in May of 2011. The Site Characterization Report (SCR) was performed for two former gas holding facilities (OUI and OUII) under an Administrative Order on Consent with NYSDEC to investigate and remediate former manufactured gas plant sites. OUII was assigned to on-Site Building 3. OUI was located within an off-site building located approximately 100 feet north of the Site at 7 Skillman Street.

The investigation was performed in accordance with the NYSDEC and New York State Department of Health (NYSDOH)-approved *Site Characterization Work Plan for the Skillman Street Former Holder Station Site* dated July 2007 and associated Work Plan Change Notice dated August 16, 2010. The on-Site portion of the investigation included the installation of four soil borings and one groundwater sampling point in Building 3. In addition one soil boring and one groundwater monitoring well installed in the sidewalk along Skillman Street adjacent to Building 1. Soil samples were retained from 2 to 3 intervals at each boring. All soil and groundwater samples were submitted for laboratory analysis for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), metals, and total cyanide.

GEI noted no visual evidence of soil contamination for any of the subsurface soil samples retained at the site, and the laboratory results of the soil samples contained no VOCs above NYSDEC Part 375.6 Unrestricted Use Soil Cleanup Objectives (UUSCOs). However, GEI noted the presence of several polycyclic aromatic hydrocarbons (PAHs) and metals (barium, copper, lead, mercury, and zinc) at a concentration above their corresponding UUSCO. Benzo(a)pyrene, was also detected at a concentration above the NYSDEC Part 375.6 Industrial Use Soil Cleanup Objective.

The deep soil sample (20-22 feet below grade) collected from the soil boring performed closest to the formerly abandoned 3,000-gallon No. 2 oil underground storage tank in Building 2 contained elevated concentrations of SVOCs associated with No. 2 fuel oil.

For the temporary groundwater sampling location, GEI noted the presence of benzene (8.1 ppb), cisl,2-dichloroethene (8.1 ppb), sodium, and total cyanide at concentrations above the their corresponding NYSDEC Ambient Water Quality Standard. Other compounds detected within the groundwater sample include trans1,2-Dichloroethylene (1.0 ppb), trichloroethylene (1.3 ppb), and tetrachloroethylene (3.3 ppb). Results from the monitoring well adjacent to Building 1 reported PCE at 7.9 ppb.

Off-site groundwater samples collected adjacent to the at the OUII location, reported high levels of chlorinated solvents including PCE at 9,400 ppb, cis-DCE at 8,000 ppb, TCE at 1,900 ppb and vinyl chloride at 380 ppb. GEI reported the presence of groundwater divide along Skillman Street with the groundwater flow to the northwest on the west side of Street and southeast along the east side.

1.4.2 October 2011 Limited Subsurface Investigation Report (EBC)

A total of four borings were advanced at the Site on September 22, 2011. Each of the four soil boring locations was chosen to gain representative soil and groundwater quality information from areas identified by EBC as areas of concern. The areas of concern include (1) the formerly abandoned 3,000-gallon No. 2 fuel oil storage tank located near the front entrance of the one-story brick laundry washing building, (2) the area labeled as "hazardous waste" in the northeast corner of the same building and (3) the concrete trenches used to contain and transport wash water from the former washing machines. Two of the four soil borings (B1 and B2) were performed adjacent to the underground storage tank, one was performed in the "hazardous waste" storage area (B3), and the fourth soil boring (B4) was performed down gradient of the trenches.

A total of 5 soil and 4 groundwater samples were submitted for analysis of volatile organic compounds (VOCs), and/or semi-volatile organic compounds (SVOCs) depending on location and physical observations. Petroleum VOCs were detected in soil above their corresponding NYSDEC

Part 375.6 unrestricted soil cleanup objectives. Petroleum VOCs, SVOCs and chlorinated VOCs were reported in groundwater above standards as follows: *VOCs*

Several VOCs were detected within the deep soil samples (20-25 feet below grade) at a concentration above their corresponding NYSDEC Part 375.6 UUSCO. 1,2,4-Trimethylbenzene was detected at a concentration ranging from 5,900 ppb to 8,100 ppb in all four deep soil samples, which exceeds the UUSCO of 3,600 ppb. In addition, ethylbenzene was detected within B4(20-25') at 1,000 ppb, which is the same as the UUSCO of 1,000 ppb, p&m-Xylenes were detected within B3(20-25') at 480 ppb and B4(20-25') at 1,100 ppb, which exceeds the UUSCO of 260 ppb, and o-Xylene was detected within B4(20-25') at 770 ppb, which exceeds the UUSCO of 260 ppb. VOCs were detected at concentrations above their corresponding NYSDEC GQS within the three of the four groundwater samples submitted for analysis. 1,2,4-trimethylbenzene was detected in samples B1 and B4 at concentrations of 26 and 19 μ g/L respectively. The chlorinated compound tetrachloroethylene (PCE) was also detected within groundwater samples B1 at 8.6 ppb and B3 at 12 ppb. Groundwater sample B1 also contained an exceedance of naphthalene (14 ppb). An exceedence of sec-butylbenzene (5.2 ppb) was also detected in groundwater sample B3.

SVOCs

Several SVOCs were detected within the deep soil samples, but none were detected at a concentration above their corresponding NYSDEC Part 375.6 UUSCO within any soil samples. One SVOC, acenaphthene, was detected at concentrations above its corresponding NYSDEC GQS of 5 ppb within the three of the four groundwater samples submitted for analysis. Acenaphthene was detected in groundwater sample B1 at 50 ppb, B2 at 25 ppb, and B4 at 140 ppb. Due to the petroleum contaminated soil encountered during the site investigation, EBC contacted the NYSDEC Spills Hotline. NYSDEC Spill No. 11-08026 was assigned to the site.

The report concluded that, "The former use of the site as a laundry facility and the presence of chlorinated solvents (PCE) in groundwater noted during both this subsurface investigation within the one-story building and the subsurface investigation performed by GEI Consultants, Inc. in May of 2011, suggests an onsite source of chlorinated VOCs not identified during this brief property transaction Phase II." "Additional soil and groundwater sampling will be necessary to identify the source of the chlorinated VOC contamination."

The report further concluded that, "Although no soil contamination was observed within the soil immediately below the abandoned-in-place 3,000-gallon No. 2 fuel oil underground storage tank, petroleum contaminated soil including VOCs and SVOCs was encountered at the groundwater interface. The VOCs and SVOCs in soil have impacted groundwater at the site."

2.0 REMEDIAL INVESTIGATION

2.1 Field Investigation

The field work portion of the RI was conducted by EBC from June 4th to June 19th 2012, in accordance with the protocols and methods as established in the approved Remedial Investigation Work Plan (EBC 5/12). The field investigation consisted of the environmental sampling, field observations and measurements to determine:

- Local geologic/hydrogeologic conditions
- Definition of source areas
- Potential migration of contaminants from the site to surrounding areas
- Overall characterization of site-related contamination in all media

The field effort included the collection and analysis of soil, groundwater and soil gas samples. Drilling services were provided by Eastern Environmental Services (Eastern) of Manorville, NY and DK Drilling of Bayside, NY. Laboratory services were provided by Phoenix Environmental Laboratories of Manchester, CT. A sample matrix showing the number, type and analysis of samples collected during the Remedial Investigation is provided as **Table 1**.

2.2 Deviations from the Remedial Investigation Work Plan

Advancement of soil boring SB15 in the northwest corner of the site repeatedly encountered rejection at a depth of 25 feet below surface using the Geoprobe equipment. Several attempts were made to shift the location 5 to 10 feet in several directions with similar results. To complete the boring and planned monitoring wells (MW9S, MW9D in this area, a CME 75 rotary drill rig with hollow stem augers and a solid center bit were used. As a result soil samples from 25 to 30 feet were collected using 2-inch diameter by 2-foot long split core-barrel (split spoon) samplers in 2 foot intervals. As a result of the hollow stem augers 2-inch diameter wells were installed at the MW9 locations instead of 1-inch diameter wells.

The summa canister connected to the SG3 vapor implant failed to show a change in vacuum over the sampling period. The problem was traced to the pre-calibrated valve and could not be corrected in the field. Under these circumstances the SG3 sample could not be analyzed.

2.3 Drain Line Investigation

The drain line connected to the wash-water discharge trench located in the laundry building (Building 2) was traced by excavating using a mini-track excavator. The results of this investigation found that a 5-inch steel drainage pipe was connected to the western end of the trench. The drain line ran due west from the trench to the western property line where it connected to the City sewer system.

2.4 Soil Sampling

2.4.1 Test Pits

Fifteen test pits were advanced across the site to collect composite waste characterization samples

for use in classifying soils for off-site disposal during remediation activity. Test pits were divided into three groups consisting of five test pits each as follows: TP1A-TP1E, TP2A-TP2E and TP3A-TP3E. Six composite samples were then created from each group in two separate intervals representing 0 to 3 feet and 3 to 6 feet. Each of the 6 composite samples were analyzed for VOCs / SVOCs by EPA methods 8260 / 8270, pesticides / PCBs by EPA 8081 / 8082, herbicides by EPA 8151, total metals, TCLP metals, RCRA characteristics and total petroleum hydrocarbons by NJQAM-025.

In addition 6 grab samples were collected for VOCs by EPA 8250.

2.4.2 Soil Borings

A total of 15 soil borings (SB1-SB15) were advanced to evaluate the extent and degree of impact in the identified source area and to obtain general soil quality information both within and below the fill materials present at the site. Soil borings were advanced on June 4, 5 and 14, 2012.

At soil boring locations SB1 to SB14, soil samples were collected continuously in 5-foot intervals using a track-mounted GeoprobeTM model 66DT sampling system. The GeoprobeTM uses a direct push hydraulic percussion system to drive and retrieve core samplers. Soil samples were retrieved using a 2-inch diameter, 5-foot long macro-core sampler with disposable acetate liners. At each soil boring location, sampling was conducted to a depth of 30 feet below building slab grade.

Rejection was encountered at a depth or 25 feet below grade at location SB15 despite repeated attempts within the same general area. A CME 75 rotary drill rig with hollow stem augers was mobilized to the site on June 14 to complete the boring. After boring through an obstruction at 25 feet using a roller cone center bit, soil samples were collected using a 140 lb drop hammer and 2-inch diameter by 2-foot long split core barrel samplers to a depth of 33 feet.

Each soil sample recovered from the soil borings was characterized by an experienced geologist and field screened for the presence of VOCs using a photo-ionization detector (PID). The geologist's field observations and PID readings were recorded for each boring in a soil boring log (see **Appendix A**). The location of soil borings are shown on **Figure 3**.

Three to five samples were retained from each of the 15 soil boring locations for a total of 51 soil samples. Retained soil samples were submitted for laboratory analysis of VOCs by EPA Method 8260 and SVOCs by EPA Method 8270. In addition to VOC and SVOC analysis, 22 samples were submitted for analysis of Target Analyte List (TAL) metals, and Pesticides/PCBs by Method 8081/8082.

2.5 Monitoring Well Installation

A total of 9 shallow (MW1S, MW2, MW3, MW4S, MW5, MW6S, MW7, MW8, MW9S) and 4 deep (MW1D, MW4D, MW6D, MW9D) groundwater monitoring wells were installed on June 6 and June 14, 2012 to establish general groundwater quality at the site and the groundwater flow direction.

Monitoring wells MW1-MW8 (shallow and deep) were constructed of 1-inch diameter PVC casing and fifteen feet of 0.010 inch slotted PVC well screen. MW9S and 9D were constructed of 2-inch diameter PVC casing and fifteen feet of 0.010 inch slotted PVC well screen. At each well a No.00 morie filter sand was placed in the borehole to within 2 feet above the top of the screen. A 1-foot

hydrated bentonite seal was then placed on top of the filter sand and the remainder of the borehole was backfilled to grade. Well construction logs are provided in **Appendix B**. Following installation, each of the wells was surveyed to determine relative casing elevation to the nearest 0.01 ft and horizontal position to the nearest 0.1 ft (**Table 2**).

Prior to sampling, a synoptic round of depth-to-groundwater (DTW) measurements was obtained from the wells on June 13, 2012 to determine the water table elevation and to calculate the volume of standing water in the well. Monitoring well locations are shown on **Figure 4**. A groundwater elevation map is provided in **Figure 5**.

2.5.1 Groundwater Sampling

Groundwater samples were obtained from temporary probe points installed at locations SB6, SB8, SB10 and SB12 on June 6, 2012 and from locations SB2 and SB4 on June 8, 2012. Groundwater samples were collected from all shallow (MW1-MW9) and deep (MW1D, MW4D, MW6D and MW9D) on June 18 and 19, 2012.

Samples were collected in accordance with the procedures outlined in Section 2.2 of the approved RIWP. A peristaltic pump and polyethylene sampling tubing fitted with a stainless steel check valve was used to purge and collect samples from each well / temporary probe location. Sample tubing and the silicone pump tubing was replaced between each sample location. Samples were collected directly into pre-cleaned laboratory supplied glassware, stored in a cooler with ice and submitted to Phoenix Environmental Laboratories of Manchester, CT, a New York State ELAP certified environmental laboratory (ELAP Certification No. 11301). All purging and sampling data was recorded on dedicated well sampling forms (**Appendix C**).

All groundwater samples from the shallow monitoring wells were analyzed for VOCs / SVOCs by EPA method 8260 / 8270, target analyte list (TAL) metals (total, dissolved) and pesticides/PCBs by Method 8081/8082. Groundwater samples from the temporary probe points were analyzed for VOCs / SVOCs only while groundwater samples from the deep monitoring wells were analyzed for VOCs only.

2.6 Sub-Slab Soil Vapor and Ambient Air Sampling

To assess the presence of VOCs in soil gas beneath the site, eight soil gas samples (SG1-SG8) and one outdoor control sample (OA1) were collected over a 2 hr sampling period in June 17, 2012 (see **Figure 6**). The canister connected to the SG3 vapor implant failed to show a change in vacuum over the sampling period. The problem was traced to the pre-calibrated valve and could not be corrected in the field. Under these circumstances the SG3 sample could not be analyzed.

Soil vapor and outdoor ambient air samples were collected in accordance with the procedures as described in section 2.4 of the approved RIWP and the *Guidance for Evaluating Soil Vapor Intrusion in the State of New York (NYSDOH 10/06)*.

2.6.1 Installation of Soil Gas Implants

Eight soil vapor implants were installed on June 8, 2012, using GeoprobeTM equipment. All of the implants were installed utilizing the same technique to minimize possible discrepancies. The vapor implants (GeoprobeTM Model AT86 series), were constructed of a 6-inch length of double woven stainless steel wire. The vapor implants at all locations were installed to a depth of 7 feet below the

surface and attached to $\frac{1}{4}$ inch polyethylene tubing which extended approximately 24 inches beyond that needed to reach the surface. The tubing was capped with a $\frac{1}{4}$ inch plastic end to prevent the infiltration of foreign particles into the tube. Coarse sand was placed around the vapor implant to a height of approximately 1 foot above the bottom of the implant. The remainder of the borehole was sealed with a bentonite slurry to the surface. The tubing and borehole were then sealed at the surface with hydrated granular bentonite and a 12" x 12" (approx.) plastic sheet.

2.6.2 Surface Seal Test Procedure

In accordance with NYSDOH guidance, a tracer gas (helium) was used as a quality assurance/quality control device to verify the integrity of the sampling point seal prior to collecting the samples. This was accomplished by enriching the air space above the seal with a tracer gas (helium) while continuously monitoring air drawn from the implant with a helium detector (Dielectric Model MGD-2002, Multi-Gas Detector).

The tracer gas test procedure was employed at all 8 soil gas sampling locations. All seals tested tight with no infiltration of helium through the surface.

2.6.3 Soil Gas Sample Collection

Following verification that the surface seal was tight, one to three volumes (i.e., the volume of the sample probe and tube) were purged with a handheld vacuum pump prior to collecting the samples to ensure samples collected were representative. After purging, a 6-liter summa canister, fitted with a 2-hour flow regulator was attached to the surface tube of each of the sampling points and the valve opened to initiate sampling. Sample identification, date, start time, start vacuum, end time and end vacuum were recorded on tags attached to each canister and on a sample log sheet (**Appendix D**). When the remaining vacuum in the canisters was between 5 and 8 inches Hg, (approximately 2 hrs) the valve was closed and the canisters were detached from the sampling tube.

Sample canisters were returned to the EBC office and picked up the following day by a Phoenix laboratory courier and delivered to the laboratory for analysis of VOCs by USEPA Method TO-15.

2.6.4 Outdoor Ambient Air Sample Collection

One outdoor ambient air sample (OA1) was collected at the same time as the soil gas sampling. The outdoor ambient air sample was collected in a 6-liter summa canister fitted with a 2-hr flow regulator. The valve of the flow regulator was opened to initiate sampling. Sample identification, date, start time, start vacuum, end time and end vacuum were recorded on the tag attached to the canister and on a sample log sheet (**Appendix D**). When the remaining vacuum in the canister was between 5 and 8 inches Hg, (approximately 2 hrs) the valve was closed. The sample canister was returned to the EBC office and picked up the following day by a Phoenix laboratory courier and delivered to the laboratory for analysis of VOCs by USEPA Method TO-15.

2.7 Laboratory Analysis

Data tables summarizing the laboratory results are provided in **Tables 3** through **11** and copies of the laboratory reports (with chains-of-custody) are included as **Appendix E**. Soil sample results were compared to both Unrestricted Use and Restricted Residential Soil Cleanup Objectives (SCOs) as promulgated in 6 NYCRR Subpart 375-6. Since there was a correlation between some of the VOC / SVOC parameters reported in soil and those reported groundwater, soil results were also compared

to the Groundwater Protection SCOs. Groundwater results were compared to NYSDEC Division of Water, Technical & Operational Guidance Series 1.1.1, Ambient Water Quality Standards and Guidance Values (AWQS), June 1998. Soil gas analytical results were compared to Outdoor Background Levels for Selected Compounds and sub-slab guidance levels as presented in the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006, 2002). **Table 12** contains a list of parameters detected above Track 1 unrestricted soil cleanup objectives and the range in detections. **Table 13** contains a list of parameters detected above ambient groundwater standards and the range in detections.

2.7.1 Analytical Results – Soil Samples

A total of 25 soil samples were collected from 15 soil borings for laboratory analysis of the following: VOCs (EPA Method 8260), SVOCs (EPA Method 8270) TAL metals, and Pesticides/PCBs (Method 8081/8082). All results above Unrestricted Use SCOs are posted on **Figure 7.**

As shown in **Table 3**, VOCs were detected at concentrations above Unrestricted Use SCOs in the following samples:

SB5 (23-25ft) –	1,2,4-Trimethylbenzene (4,100 µg/kg)
SB6 (23-25ft) –	1,2,4-Trimethylbenzene (16,000 µg/kg), m&p xylenes (650 µg/kg), 0 xylene
	$(790 \mu g/kg)$
SB10 (23-25ft) –	1,2,4-Trimethylbenzene (10,000 μ g/kg)
SB11 (23-25ft) –	1,2,4-Trimethylbenzene (14,000 μ g/kg), naphthalene (18,000 μ g/kg)
SB12 (23-25ft) –	1,2,4-Trimethylbenzene (9,600 μ g/kg)
SB13 (23-25ft) –	1,2,4-Trimethylbenzene (12,000 µg/kg), m&p xylenes (640 µg/kg), 0 xylene
	$(590 \mu g/kg)$

Methylene chloride and acetone were also reported in reported above SCOs in many of the samples. However, these compounds are common laboratory introduced contaminants and based on the frequency of detections they are not associated with contaminants released at the site.

As shown in **Table 4**, SVOCs were detected at concentrations above Unrestricted Use SCOs in the following samples:

SB14 (12-15ft) –	Benzo(k)fluoranthene (980 μ g/kg), Chrysene (3,200 μ g/kg)
SB15 (20-25ft) –	Chysene $(1,200 \mu g/kg)$

SVOCs were detected at concentrations above Restricted Residential SCOs in the following samples:

SB14 (12-15ft) –	Benzo(a)anthracene (3,300 µg/kg), Benzo(a)pyrene (2,600 µg/kg)			
	Benzo(b)fluoranthene $(3,100 \mu\text{g/kg})$, Dibenzo (a,h) anthracene $(370 \mu\text{g/kg})$, I			
	Dibenzofuran (670 µg/kg), Indeno(1,2,3-cd)pyrene (1,100 µg/kg)			
SB15 (20-25ft) –	Benzo(a)anthracene (1,300 μ g/kg), Benzo(b)fluoranthene (1,300 μ g/kg)			
•	Indeno $(1,2,3$ -cd)pyrene (570 µg/kg)			

As shown in **Table 5**, there were no PCBs reported above Unrestricted Use SCOs in any of the samples. Pesticides were reported above Unrestricted Use SCOs in the following samples.

SB5 (0-5ft)	_	4,4-DDT (4.3 μg/kg)
SB11 (0-1ft)	_	4,4-DDE (14 µg/kg), 4,4-DDT (55 µg/kg)
SB12 (0-1ft)	_	4,4-DDE (5.6 μg/kg), 4,4-DDT (23 μg/kg)

As shown in **Table 6**, Metals were detected at concentrations above Unrestricted Use SCOs in the following samples:

SB3 (0-1ft)	_	Copper (65 mg/kg), Lead (253 mg/kg), Zinc (237 mg/kg)
SB4 (0-4ft)	_	Mercury (0.25 mg/kg), Lead (244 mg/kg), Zinc (181 mg/kg)
SB5 (0-5ft)	_	Lead (315 mg/kg), Zinc (272 mg/kg)
SB6 (0-5ft)	_	Mercury (0.42 mg/kg), Zinc (555 mg/kg)
SB11 (0-1ft)	_	Zinc (474 mg/kg)
SB12 (0-1ft)	_	Lead (238 mg/kg), Zinc (234 mg/kg)
SB12 (8-10ft)	_	Zinc (118 mg/kg)
SB14 (7-10ft)	_	Lead (189 mg/kg)
SB5 (8-10ft)	—	Mercury (0.36 mg/kg), Lead (220 mg/kg)

Metals were detected at concentrations above Restricted Residential SCOs in the following samples:

SB1 (7-9ft)	_	Cadmium (1,260 mg/kg)
SB3 (0-1ft)	_	Cadmium (22,700 mg/kg), Mercury (1.55 mg/kg)
SB5 (0-5ft)	_	Mercury (1.52 mg/kg)
SB6 (0-5ft)	_	Lead (1,110 mg/kg)
SB11 (0-1ft)	_	Barium (592 mg/kg), Lead (1,220 mg/kg)

Figure 7 shows all soil sample results for parameters above Track 1 Cleanup Objectives.

2.7.2 Analytical Results – Groundwater Samples

Analysis of groundwater samples included the following:

- Temporary probe points (SB2, SB4, SB6, SB8, SB10 and SB12) VOCs, SVOCs
- Shallow monitoring wells (MW1-MW9) VOCs, SVOCs, Pesticides, PCBs, Metals (total / dissolved)
- Deep monitoring wells (MW1D, MW4D, MW6D, MW9D) VOCs

Analytical results for VOCs, as summarized in **Table 7**, identified one or more petroleum VOC parameters were reported above their respective groundwater standard in 4 of the 6 temporary probe sampling locations, 5 of the 9 shallow monitoring wells and in 3 of 4 deep monitoring wells.

Total petroleum VOC concentrations ranged from non-detect in MW1 in the southeastern corner of the property to 929 μ g/L in MW6S located in Building 2 near the east property line. In addition to MW6S, total PVOCs above 100 μ g/L were reported in MW7 (185 μ g/L), SB6 (333 μ g/L), SB10 (146 μ g/L) and (288 μ g/L). All located in a west to east strip along the northern third of Building 2.

One or more chlorinated VOC compounds were reported above standards 4 of 6 temporary probe locations, 7 of 9 shallow monitoring wells and in 2 of the 4 deep monitoring wells. Total CVOCs ranged from 0.7 μ g/L in MW1S in the southwestern corner of the property to 648 μ g/L in MW7 located near the UST and west property line. In addition to MW7, total CVOCs above 25 μ g/L were reported in MW5 (42 μ g/L) near the west property line, MW8 (73 μ g/L) downgradient of MW7 and SB10 (50 μ g/L) located on the south side of the UST.

As summarized in **Table 8**, one or more SVOC parameters were detected at concentrations above water quality standards in 3 of the 9 shallow monitoring wells and in 4 of the 6 temporary probe locations. SVOCs were not reported above standards in any of the deep monitoring wells.

Total SVOC concentrations in the locations with individual parameters above standards ranged from 37 μ g/L in MW8 to 3,060 μ g/L in MW6S. In addition to MW6S, total SVOCs were reported at or above 100 μ g/L in SB10 (100 μ g/L), SB12 (143 μ g/L) and SB6 (1,206 μ g/L).

VOC and SVOC parameters reported above groundwater standards are presented in Figure 8.

As shown in **Table 9**, there were no reported detections of pesticides or PCBs above water quality standards.

The total concentration (unfiltered) of the metals arsenic, barium, beryllium, chromium, copper, iron, mercury, magnesium, manganese, sodium, lead, nickel and zinc were reported within at least one of the 9 groundwater samples above water quality standards (see **Table 10**).

The dissolved concentration of the metals iron, manganese and sodium were reported in nearly all nine of the groundwater samples above their corresponding water quality standards. These parameters are associated with background water quality throughout most of north Brooklyn.

Metals parameters reported above groundwater standards are presented in Figure 9.

2.7.3 Analytical Results – Soil Gas Samples

Since the NYSDOH has not established guidance values for VOCs in soil gas, analytical results were compared to the Summary of Background Levels for Selected Compounds (NYSDOH Database, Outdoor values, 2003) and to sub-slab guidance levels for select parameters as presented in the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006.

Multiple VOCs were detected above the laboratory method detection limit in each of the 7 soil gas samples (SG1-2, SG4-8) collected on June 17 (see **Table 12**). Total petroleum related volatile organic compounds were generally low ranging from 24.1 μ g/m³ in SG4 located near the 3,000 gallon UST to 381.7 μ g/m³ in SG2 located in the southeast corner of the parking lot. Since there were no petroleum VOCs reported in soil or groundwater samples collected from the parking lot area, there does not appear to be any correlation between PVOCs in soil and groundwater and those in soil gas. PVOCs in the outdoor control sample were also low totaling 5.6 μ g/m³

Chlorinated VOCs (CVOCs) were reported in all seven samples ranging in concentration from 70.7 μ g/m³in SG1 located in the southwest corner of the parking lot to 4,204 μ g/m³ near the UST. CVOCs above 500 μ g/m³ were reported in SG4 and SG5 located within the former wash building and in SG7 located in the northwest corner of the property. CVOCs were non-detect in the outdoor air sample.

Soil gas results are summarized in Table 11 and posted on Figure 10.

3.0 HYDROGEOLOGIC ASSESSMENT AND PHYSICAL SETTING

3.1 Site Topography

The topography of the site and surrounding area was reviewed from the USGS 7.5 minute series topographic map for the Brooklyn Quadrangle. The elevation of the property ranges from approximately 27 feet above mean sea level in the southern portion of the lot to approximately 22 feet in the northern portion. The topography of the area also slopes gradually from south to north.

3.2 Surrounding Land Use

The surrounding land use includes three new multi-family residential buildings to the east, four new multi-family residential buildings and a vacant commercial building to the west, older multi-family walk up style buildings to the south and a community/office building to the north. The area has been changing in response to the upzoning and many of the industrial/commercial buildings are being converted to, or replaced by, new residential buildings and schools.

3.3 Regional Geology / Hydrogeology

The geologic setting of Long Island is well documented and consists of crystalline bedrock overlain by layers of unconsolidated deposits. According to geologic maps of the area created by the United States Geologic Survey (USGS), the bedrock in this area of Brooklyn is an igneous intrusive classified as the Hartland formation of middle Ordovician to middle Cambrian age. Unconsolidated sediments overlie the bedrock and consist of Pleistocene aged sand, gravel and silty clays, deposited by glacial-fluvial activity. Non-native fill materials consisting of dredge spoils, rubble and / or other materials have been historically used to reinforce and extend shoreline areas and to raise and improve the drainage of low lying areas.

3.4 Site Geology / Hydrogeology

Subsurface soils at the site include an urban fill layer at the surface which varies from less than 1 foot thick in the southern portion of the property to at least 15 feet thick at location B15 in the northwest corner of the Site. According to the SCR prepared by GEI, fill materials beneath building 3, on which the former gas holder was located, extended to a depth of approximately 20 feet below the surface. Surface grade (slab) in building 3 was approximately 4 feet lower than the remainder of the Site. Although the building was demolished prior to implementation of the RI, this area of the site remained 3-4 feet below street level.

Below the fill material native soils consisting of brown sand with some gravel grading to a native fine to medium brown sand with a trace amount of silt and / or gravel was observed to and below the water table.

Groundwater at the Site is present at a depth of approximately 22 to 25 feet below surface grade within the native sands. Depth to water measurements were taken on June 13 and again on June 18 after the MW9S/D couplet was installed (see **Table 1**). The June 18 levels, which represent a more complete data set, were used to create a groundwater elevation map (**Figure 5**). As shown in the

figure, groundwater flow is generally west to east which confirms the findings of the SCR prepared by GEI. The potentiometric difference between shallow and deep well couplets indicate a downward potential in the southern part of the site changing to an upward potential in the northern part of the site.

4.0 NATURE AND EXTENT OF CONTAMINATION

4.1 Identification of Source Areas

The soil boring program successfully delineated the extent of petroleum contamination associated with the fuel oil UST located in the northwest corner of building 2. The zone of impacted soil extends throughout much of the northern half of Building 2 as defined in borings SB5-SB13. The vertical extent of contamination ranges from 8 to 25 feet below grade (17 ft thick) at SB13 in close proximity to the UST, to approximately 22 feet to 23.5 feet below grade (1.5 ft thick) at locations SB8, SB9 south of the UST area.

Despite observations of stained soils, elevated PID readings and petroleum odors in shallow soil adjacent to the UST (SB13), there were no VOC or SVOC parameters reported above unrestricted SCOs in the shallow soil sample. In fact there were no SVOC parameters reported above unrestricted SCOs in any of the soil samples collected from the SB5-SB13 locations. Although several VOC parameters (1,2.4-trimethylbenzene and / or xylenes) were reported above unrestricted SCOs in SB5, SB6 and SB10-SB13, there were no VOCs reported above restricted residential criteria.

Based on the presence of shallow visually stained soil in the vicinity of the UST, it does appear to be a source of the petroleum contamination identified in Building 2. Further confirmation of the tank as a source will be made during removal of the tank under an Interim Remedial Measure. Although trace amounts of PCE were reported in samples from SB10, SB12 and SB13 in the vicinity of the UST, there were no detections above unrestricted SCOs in any of the samples.

SVOCs above restricted residential SCOs were reported in two soil borings, SB14 and SB15, both located within the area formally occupied by the gas holder (SCR, 2/12). Both locations reported black sandy fill material with coal fragments at and/or above the water table. It is likely therefore that the elevated SVOCs are related to the coal within the fill.

No other source areas were identified or indicated during this RI. Elevated levels of metals reported in shallow soil throughout the site are characteristic of the historic fill materials present at the site and throughout the area.

4.2 Groundwater Impacts

Petroleum VOC and SVOC impacts to groundwater were highest near the eastern property line within the northern third of Building 2. Migration of dissolved VOCs and SVOCs appears to have been from the UST area due east to the property line.

In contrast, CVOC impacts to groundwater were highest near the west property line in Building 2 and appear to be migrating in a northeast direction. The absence of CVOCs in soil at the site and the identification of CVOC plume upgradient of the site, suggests an off-site source.

The different flow paths may be related to differences in the time of transport, location of the sources and fluctuations in the groundwater flow direction over time.

4.3 Soil-Gas Impacts

Total VOC concentrations detected in soil-gas samples collected during the RI were elevated due to high concentrations of ethanol and isopropylalcohol reported in all samples. The origin of these alcohols is not known but based on the uniform concentrations and universal presence they are not site related.

Total petroleum related volatile organic compounds were generally low ranging from 24.1 μ g/m³ in SG4 located near the 3,000 gallon UST to 381.7 μ g/m³ in SG2 located in the southeast corner of the parking lot. Since there were no petroleum VOCs reported in soil or groundwater samples collected from the parking lot area, there does not appear to be any correlation between PVOCs in soil and groundwater and those in soil gas.

CVOCs were reported in all seven samples ranging in concentration from 70.7 μ g/m³in SG1 located in the southwest corner of the parking lot to 4,204 μ g/m³ near the UST. CVOCs above 500 μ g/m³ were reported in SG4 and SG5 located within the former wash building and in SG7 located in the northwest corner of the property. CVOC concentrations in the SG4 and SG5 samples included PCE at 3,510 and 2,610 μ g/m³, respectively, TCE at 687 and 508 μ g/m³ and Cis-DCE at 73 and 23 μ g/m³, respectively. This contrasts with the results from the SB7 location which were composed almost entirely of PCE at 929 μ g/m³ and TCE at 5.91 μ g/m³.

Based on the absence of elevated PCE in soil, the low levels of PCE in groundwater and the absence of TCE in soil and groundwater at the site, an off-site origin is indicated for some or all of the CVOCs in reported in soil gas. Further evidence for an off-site origin is provided by the groundwater flow direction (west to east), and high concentrations of dissolved phase and vapor phase CVOCs reported off-site and upgradient of the site (SCR 2/12). Total CVOCs in groundwater were reported at a concentration of 19,680 μ g/L 250 feet north of the site with concentrations in sub-slab soil gas reported as 14,700 μ g/m³ approximately 185 feet north of the site.

4.4 Site Conceptual Model

Although the date(s) and circumstances surrounding the release of petroleum at the site are not known, it can be assumed that the petroleum VOCs reported in soil and groundwater are associated with the existing fuel oil UST. The evidence for this is the physical signs of petroleum contamination in shallow soil adjacent to the tank. The petroleum VOCs may be related to the use of common distribution systems for both gasoline and fuel oil products at MOSF facilities. This would result in lower VOC concentrations overall as they would be an incidental and minor component of the fuels composition.

The release scenario is unknown but is likely associated with some failure of the UST system. Released fuel from this area migrated vertically until it contacted the water table at a depth of approximately 22 feet below surface grade where it then migrated east with the direction of groundwater flow. Decomposition and weathering overtime succeeded in reducing residual SVOC concentrations to below unrestricted criteria and VOC concentrations to below restricted residential criteria. In any case the petroleum VOCs detected consist largely of trimethylbenzenes and xylenes suggesting an old release.

The petroleum VOCs and SVOCs in groundwater are migrating east in the direction of groundwater flow. The levels are generally low and migration in groundwater is limited by the physical properties (high sorption coefficient) of the constituents. In addition, based on the depth to water (>22 ft), and the absence of significant levels of petroleum VOCs in on-site soil gas, limited, if any, off-gassing is occurring of these compounds. Since the only SVOCs reported above unrestricted SCOs were in samples of deep fill associated with the former gas holder area, SVOCs in groundwater may be related to a release of fuel oil associated with the UST, the former gas holder or a combination of the two.

CVOCs in groundwater appear to be migrating onto the site from an off-site source west and north of the site. CVOCs are either off-gassing from affected groundwater beneath the site which is unlikely due to the low concentrations, or off-gassing from the higher concentration off-site plume and migrating onto the site in vapor form.

5.0 QUALITATIVE EXPOSURE ASSESSMENT

The objective of the qualitative exposure assessment under the BCP is to identify potential receptors to the contaminants of concern (COC) that are present at, or migrating from, the site. The identification of exposure pathways describes the route that the COC takes to travel from the source to the receptor. An identified pathway indicates that the potential for exposure exists; it does not imply that exposures actually occur. An exposure pathway has five elements; a contaminant source, release and transport mechanisms, point of exposure, route of exposure and a receptor population.

The potential exposure pathways identified below, represent both current and future exposure scenarios.

5.1 Contaminant Source

The source of the petroleum VOCs and SVOCs detected in soil and / or groundwater at the site are generally related to the existing fuel oil UST located in the northwest corner of Building 2. However, SVOCs associated with the historic fill in the former gas holder area may also be responsible for SVOCs in groundwater.

CVOCs in soil gas and groundwater beneath the site are related to an off-site groundwater plume located less than 250 feet northwest of the site.

5.2 Contaminant Release and Transport Mechanism

Impacted soil within the UST source area has previously contributed, or is continuing to contribute, to petroleum VOC and SVOC contaminant mass in groundwater. Impacted groundwater would be expected to migrate east with groundwater flow, where the highest concentrations were reported. The distribution of dissolved VOCs and SVOCs suggests that the source area contribution is no longer significant. However, removal of contaminated soil from the source area is expected to eliminate potential further contribution to groundwater.

Although petroleum VOCs present in on-site soil and / or groundwater may be volatilizing to air to some degree, significant levels of petroleum VOCs are not present in soil gas. CVOCs are present at significant concentrations in some areas of the property however and represent a potential vapor intrusion concern for the new buildings to be constructed on the site. Since the origin of the vapors is attributed to a contaminant plume northwest of the site, vapors and / or affected groundwater are migrating onto the site.

5.3 **Point of Exposure, Route of Exposure and Potentially Exposed Populations**

<u>Potential On-Site Exposures</u>: Remediation workers and construction workers engaged in the excavation of impacted and non-impacted soil at the site may be exposed to VOCs through several routes. Workers excavating impacted soil may be exposed to SVOCs and VOCs through inhalation, ingestion and dermal contact. Workers excavating non-impacted soil may be exposed to CVOCs in soil gas through inhalation. A site specific Health and Safety Plan has been developed to identify and minimize the potential hazards to on-site workers.

Under a future scenario, residents within the proposed buildings may be exposed to vapor intrusion if remediation of the source area is not completed, and if preventive measures are not incorporated into the new building design to protect against vapors migrating onto the site from an off-site source. This potential route of exposure will be reduced in response to the degree and success of source area remediation. However, vapor intrusion from off-site sources will continue to be a threat if preventive measures are not taken.

<u>Potential Off-Site Exposures</u>: The entire area is serviced by the New York City Water System which distributes water from the Croton Reservoir system. Since there are no public or private potable supply wells in the area, exposure from contact with tap water is not a concern. Off-site exposure is therefore limited to vapor intrusion from petroleum VOCs migrating from the site. Since there is no significant migration of dissolved petroleum VOCs from the site and no significant levels of petroleum VOCs in soil gas at the site, the potential for off-site exposure associated with on-site contaminants is minimal.

However, potential off-site exposure related to vapor intrusion from an off-site CVOC source is a concern. The potentially exposed population in this case would include residents and commercial workers in buildings located upgradient of the site. Off-site exposure from CVOCs in groundwater to indoor air would be expected to be greater to residential properties located upgradient of the site where concentrations in both soil gas and groundwater were reported to be considerably higher than those found to be migrating onto the site.

<u>Potential Off-Site Environmental Impacts</u>: Since VOCs and or SVOCs in shallow groundwater may be leaving the site at low concentrations in an easterly direction, the groundwater to surface water discharge pathway was evaluated. There are no surface water bodies present within several miles of the site in a northeast to southeast direction. Based on the absence of a surface water receptor, there are no expected impacts to surface water environments from contaminants at the Site.

6.0 CONCLUSIONS AND RECOMENDATIONS

The results of sampling performed during this RI, identified petroleum VOCs and SVOCs in soil and groundwater which are likely related to a previously abandoned-in-place 3,000 gallon UST located in the northwest corner of Building 2. The contaminants were found along a 50 ft x 100 ft impact zone which extended from the tank area to the eastern property line. The vertical "smear zone" within this area varies from approximately 8 ft to 25 feet below grade near the tank to 22 to 23.5 feet below grade along the southeast terminus.

The release scenario is unknown but likely involves a release from the UST system with VOCs related to incidental introduction into the fuel from the oil terminal or supplier. The released fuel migrated vertically until it contacted the water table at a depth of approximately 22 feet below surface grade where it then migrated east with the direction of groundwater flow.

Although the impact zone displayed physical evidence of contamination including both staining and petroleum odors, VOCs were reported within restricted residential SCOs and SVOCs were within unrestricted SCOs at all locations within the zone. SVOCs were reported above restricted residential SCOs in samples of the fill materials in the former gas holder area which extended to a depth of 15 to 20 feet below grade. The fill included coal fragments which may be responsible for the elevated SVOC results.

Groundwater impacts were reported for both petroleum VOCs and SVOCs at relatively low but elevated (above standards) concentrations. Petroleum VOC parameters included trimethylbenzenes, ethylbenzene and xylenes. Dissolved SVOC parameters primarily consist of naphthalene and phrenanthrene. Although these compounds are found in groundwater near the UST, they are highest at the eastern property line suggesting that source area contribution is no longer significant.

Although petroleum VOCs present in on-site soil and / or groundwater may be volatilizing to air to some degree, significant levels of petroleum VOCs are not present in soil gas and the potential for off-site vapor impacts is negligible.

CVOCs were reported at elevated concentrations in both soil gas and groundwater at the site however CVOCs in soil were only reported at trace concentrations, well below unrestricted SCOs. Based on the absence of elevated PCE in soil and the low levels of PCE and other CVOCs in groundwater at the site, an off-site origin is indicated for some or all of the CVOCs reported in groundwater and soil gas. Further evidence for an off-site origin is provided by the groundwater flow direction (west to east), and high concentrations of dissolved phase and vapor phase CVOCs reported upgradient and in close proximity to the site. Total CVOCs in groundwater were reported at a concentration of 19,680 μ g/L 250 feet north of the site with concentrations in sub-slab soil gas reported as high as14,700 μ g/m³ approximately 185 feet north of the site.

The qualitative exposure assessment identified potential completed routes of exposure to construction workers and remediation workers through inhalation, ingestion and dermal contact during excavation activities. The Health and Safety Plan prepared for the site identifies such exposures and provides instructions for on-site workers to minimize potential exposure. Occupants in the proposed on-site residential buildings may be exposed to CVOCs originating from an off-site

source through the vapor intrusion pathway if preventive measures are not incorporated into the design of the new buildings.

The exposure assessment also identified potential exposure to commercial workers and residents in buildings upgradient of the site through migrating vapors off-gassing from this upgradient, off-site plume.

Potential environmental impacts through the groundwater to surface water discharge were not expected due to minimal concentrations of site-related contaminants in groundwater leaving the site and the absence of a surface water receptor within several miles in the downgradient direction.

Fill materials containing elevated levels of heavy metals were documented throughout the site at a depth which ranged from 1 foot below the surface in the southern part of the site to 20 feet below grade in the northern third of the site. The significant increase in fill thickness in the northern portion of the site is believed to be related to backfilling of the former gas holder structure sometime during the 1920's when it was removed from service.

Recommendations include the removal of the fuel oil UST and the majority of historic fill at the site under an IRM, and reducing petroleum VOCs and SVOCs in groundwater near the east property line under a formal Remedial Action Work Plan.

Since CVOCs are migrating onto the site from an off-site source, mitigation measures such as a subslab depressurization system should be incorporated into the design of the new buildings to be constructed on the site. Further evaluation of vapor intrusion can also be performed following implementation of the IRM to determine if conditions improve to the point where active mitigation is unnecessary. The results of this evaluation and the design elements of any mitigation system should then be incorporated into the Remedial Action Work Plan for the site.

7.0 REFERENCES

6 NYCRR Part 375 Environmental Remediation Programs Subparts 375-1, 375-3 and 375-6

Environmental Business Consultants, Limited Phase I Investigation Report, 39 Skillman Street, Brooklyn, NY. October 2011.

National Grid – GEI Consultants, Site Characterization Report, Skillman Street, Former Holder Station, Brooklyn, NY. February 2012.

NYSDEC, Division of Environmental Restoration, May 2004, *Draft Brownfield Program Cleanup Guide*.

NYSDEC, Division of Environmental Restoration, December 2002, Draft DER-10, Technical Guidance for Site Investigation and Remediation.

NYSDEC, Division of Water, June 1998, Addendum April 2000, Technical and Administrative Guidance Series 1:1:1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

NYSDOH, Center for Environmental Health, October 2006, *Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York*.

TABLES

TABLE 1 SUMMARY OF SAMPLING PROGRAM RATIONALE AND ANALYSIS

Matrix	Location	Approximate Number of Samples	Rationale for Sampling	Laboratory Analysis
Subsurface soil (0 to ? feet bgs)	15 soil borings	30-45	To supplement previous sampling and delineate affected soil and groundwater.	VOCs EPA Method 8260B, SVOCs EPA Method 8270
Subsurface soil (0 to 7 feet bgs)	15 soil borings	15	To evaluate compliance with SCOs below planned excavation depth.	Pesticides/PCBs EPA Method 8081/8082, TAL metals
Subsurface Soil (0-6 ft bgs)	Composite samples from 30 test pits	6	For waste characterization and disposal facility approval	VOCs EPA Method 8260B (grab), RCRA characteristics, RCRA metals, TCLP Metals, PCBs and PAHs
Total (Soils)		51-66		
Shallow Groundwater	From temporary probe points installed at 6 of 15 of the soil boring locations	6	Define nature and extent of impacted groundwater.	VOCs EPA Method 8260B, SVOCs EPA Method 8270
Shallow Groundwater	From nine new monitoring wells installed at 9 of the remaining boring locations and from an existing well located in the sidewalk along Skillman Street (SSMW1).	10	Define nature and extent of impacted groundwater and evaluate overall groundater quality for non-COC parameters	VOCs, SVOCs, Pesticides/PCBs EPA Method 8081/8082, TAL metals
Deep Groundwater	From four new monitoring wells installed within the former hazardous wastewater trench and along the northwest property line.	4	Evaluate chlorinated solvents deeper in the aquifer	VOCs EPA Method 8260B
Total (Groundwater)		20		
Soil Gas (7 ft below existing slab)	Five soil gas implants to be installed in south buildings and parking lot	5	Evaluate soil gas across southern 2/3rds of the site	VOCs EPA Method TO15
Soil Gas (4 ft below existing slab	Three soil gas implants to be installed in north building	3	Evaluate soil gas across north 1/3rd of site	VOCs EPA Method TO15
Total (Soil Gas)		8		
MS/MSD	Matrix spike and Matrix spike duplicates at the rate 5%	3 to 4	To meet requirements of QA / QC program	VOCs EPA Method 8260B
Trip Blanks	One laboratory prepared trip blank to accompany samples each time they are delivered to the laboratory.	2 to 4	To meet requirements of QA / QC program	VOCs EPA Method 8260B
Total (QA / QC Samples)		5 to 8		

Table 2 Former East Coast Industrial Uniforms Site Brooklyn, NY Monitoring Well Construction Information

	Well	Total Well	Screened	First	Second	Corrected	DTW	DTW	GW ELV	GW ELV	Potentiometric
Well No.	Diameter (in)	Depth (ft)	Interval (ft)	Reading	Reading	Elevation	6/13/2012	6/18/2012	6/13/2012	6/18/2012	Difference
MW1S	1	30	20-30	0.97		99.03	26.58	26.31	72.45	72.72	1.72
MW1D	1	40	35-40	0.95		99.05	27.98	28.05	71.07	71.00	
MW2	1	30	20-30	3.35		96.65	24.31	24.25	72.34	72.40	
MW3	1	30	20-30	3.83		96.17	24.58	24.58	71.59	71.59	
MW4S	1	30	20-30	4.79		95.21	23.37	23.29	71.84	71.92	0.56
MW4D	1	40	35-40	5.22		94.78	23.22	23.42	71.56	71.36	
MW5	1	30	20-30	4.89		95.11	22.50	22.42	72.61	72.69	
MW6S	1	30	20-30	4.46		95.54	23.73	23.70	71.81	71.84	-0.09
MW6D	1	40	35-40	5.11		94.89	23.00	22.96	71.89	71.93	
MW7	1	30	20-30	5.05	2.71	94.95	22.44	22.37	72.51	72.58	
MW8	1	30	20-30	7.25	4.92	92.75	20.67	20.59	72.08	72.16	
MW9S	2	30	20-30		5.19	91.475		19.38		72.10	-0.88
MW9D	2	40	35-40		4.56	92.105		19.13		72.98	

TABLE 3 FORMER EAST COAST INDUSTRIAL UNIFORMS SITE Brooklyn, New York Soil Analytical Results Volatile Organic Compounds

	NYSDEC Part 375.6 Groundwater	NYSDEC Part 375.6	NYDEC Part 375.6 Restricted		SB1			SB2			SB3			SI	B4			s	85	
COMPOUND	Protection Soil Cleanup Objectives*	Unrestricted Use Soil Cleanup Objectives*	Residential Soil Cleanup Objectives*	(7-9') µg/Кg	(24-26') µg/Kg	(28-30') µg/Kg	(7-9') µg/Кg	(23-25') µg/Kg	(28-30') µg/Кg	(7-9') µg/Кg	<mark>(23-25')</mark> µg/Kg	(28-30') µg/Kg	(0-4') µg/Kg	(10-12') µg/Kg	(23-25') µg/Kg	<mark>(28-30')</mark> µg/Кg	<mark>(8-10')</mark> µg/Кg	(23-25') µg/Kg	(25-27') µg/Kg	(28-30') µg/Kg
1,1,1,2-Tetrachlorothane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	680	680	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	270	270	26,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	330	330	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane				ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND ND
1,2,4-Trichlorobenzene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	3.600	52.000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4,100	130 J	ND ND
1,2-Dibromo-3-chloropropane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	1,100	1,100	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	20	20	3,100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	8,400	52,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	430 .	ND	ND
1,3-Dichlorobenzene	2,400	2,400	4,900	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane	4 000	4 600	42.000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND ND
1,4-Dichlorobenzene 2,2-Dichloropropane	1,800	1,800	13,000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND
2,2-Dichloropropane 2-Chlorotoluene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone (Methyl Butyl Ketone)				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Isopropyltoluene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	570	ND	ND
4-Chlorotoluene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50	50	100,000	53 S	ND	ND	51 JS	ND	ND	52 JS	8.9 JS	ND	62 S	62 S	ND	ND	51 JS	ND	ND	ND
Acrylonitrile				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	60	60	4,800	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane				ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bromodichloromethane Bromoform				ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
Bromororm Bromomethane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	760	760	2.400	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	1,100	1,100	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	370	370	49,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	250	250	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane				ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Dibromomethane Dichlorodifluoromethane			100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	1,000	41,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	1,000	1,000	41,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	430	ND	ND
m&p-Xylenes	1,600	260		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl Ethyl Ketone (2-Butanone)	120	120	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl t-butyl ether (MTBE)	930	930	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	50	50	100,000	2 JS	1.7 JS	2 JS	2.1 JS	1.8 JS	1.8 JS	2.5 JS	2.5 JS	1.6 JS	3.4 JS	3.4 JS	1.5 JS	2 JS	3 JS	190 JS	190 JS	
Naphthalene	12,000	12,000	<u> </u>	ND	1.8 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2700	ND	ND
n-Butylbenzene		12,000	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3400	110 J	ND ND
n-Propylbenzene	3,900	3,900	100,000	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	1100 ND	ND	ND
o-Xylene	1,600	260	100,000		ND	ND	ND			ND		ND	ND						ND ND	ND
p-Isopropyltoluene	11.000	11.000	100.000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	2500 3300	1200	ND 6.8
sec-Butylbenzene Styrene	11,000	11,000	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3300 ND	1200 ND	0.0 ND
tert-Butylbenzene	5,900	5,900	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	1,300	1,300	19,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.3 J	1.6 J	ND	ND	ND	ND
Tetrahydrofuran (THF)	1,000	1,000	10,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
Toluene	700	700	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	190	190	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,4-dichloro-2-butene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	470	470	21,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorotrifluoroethane			ļ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	20	20	900	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total BTEX Concentration Total VOCs Concentration				0 55	0 3.5	0	0 53.1	0 1.8	0	0 54.5	0 11.4	0 1.6	0 65.4	0 65.4	0 2.8	0 3.6	0 54	2500 18720	0 1630	0 8.5

Notes: * - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives ND - Not-detected

J - The value is estimated. This flag is used: a) on form 1 when the compound is reported above the MDL, but below the PQL, and b) on the Tentatively Identified Compounds (TIC) form for all compounds identified.

S - This compound is a solvent that is used in the laboratory. Laboratory contamination is suspected if concentration is less than five times the reporting level.

N - The concentration is based on the response fo the nearest internal. This flag is used on the TIC form for all compounds identified.

Boldhishishishishishi Indicated exceedance of the NYSDEC DRWSDO Guidance Value Boldhishiighted-Indicated exceedance of the NYSDEC UUSCO Guidance Value Boldhishighted-Indicated exceedance of the NYSDEC RRSCO Guidance Value

TABLE 3 FORMER EAST COAST INDUSTRIAL UNIFORMS SITE Brooklyn, New York Soil Analytical Results Volatile Organic Compounds

Cathole Name Name Name Name <t< th=""><th></th><th>NYSDEC Part 375.6</th><th>NYSDEC Part 375.6</th><th>NYDEC Part 375.6 Restricted</th><th></th><th>SB6</th><th></th><th></th><th>SB7</th><th></th><th></th><th>SB8</th><th></th><th></th><th>SB9</th><th></th><th></th><th>SE</th><th>310</th><th></th></t<>		NYSDEC Part 375.6	NYSDEC Part 375.6	NYDEC Part 375.6 Restricted		SB6			SB7			SB8			SB9			SE	310	
Display Image Desc Desc Desc Desc <	COMPOUND	Protection Soil Cleanup	Unrestricted Use Soil Cleanup	Residential Soil Cleanup												A 1 1 1 1				(28-30')
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	1.1.1.2-Tetrachlorothane	Objectives									10.00		Pa-10	F35			10 0	10 0	10.00	ND
black black </td <td></td> <td>680</td> <td>680</td> <td>100,000</td> <td>ND</td>		680	680	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
black black </td <td>1,1,2,2-Tetrachloroethane</td> <td></td> <td></td> <td></td> <td>ND</td>	1,1,2,2-Tetrachloroethane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Choose Char Cond Cond Cond Cond <th< td=""><td>1,1,2-Trichloroethane</td><td></td><td></td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></th<>	1,1,2-Trichloroethane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
black black </td <td>.,</td> <td></td> <td>ND</td>	.,																			ND
Abbein		330	330	100,000																ND
b)-borngenne b)-borngenne<																				ND
black black </td <td></td> <td>ND</td>																				ND
Linkangene Linka Linka <thlinka< th=""> Linka Linka</thlinka<>																				ND ND
black black </td <td></td> <td>2 600</td> <td>2,600</td> <td>F2 000</td> <td></td> <td>ND</td>		2 600	2,600	F2 000																ND
black black </td <td>1,2,4-11methylbenzene 1,2,Dibromo-3-chloropropane</td> <td>3,600</td> <td>3,600</td> <td>52,000</td> <td></td> <td>ND</td>	1,2,4-11methylbenzene 1,2,Dibromo-3-chloropropane	3,600	3,600	52,000																ND
black black <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td></t<>																				ND
black black <t< td=""><td>1,2-Dichlorobenzene</td><td>1,100</td><td>1,100</td><td>100,000</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td></t<>	1,2-Dichlorobenzene	1,100	1,100	100,000	ND	ND		ND	ND			ND		ND		ND	ND		ND	ND
b)2-bowerse 1.00 1.00 1.00 1.00 0.00 0.00 0.00	1,2-Dichloroethane	20	20	3,100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Displacement Displacement<	1,2-Dichloropropane				ND		ND	ND			ND	ND	ND			ND	ND			ND
bit bit< bit< b	1,3,5-Trimethylbenzene					4100			370										2200	ND
LADecomponent Image Image Image Image		2,400	2,400	4,900																ND
bit b																				ND
Scheme		1,800	1,800	13,000																ND
bickedbick		1																		ND ND
InterpretationInter		1																		ND
char i <td></td> <td>ND</td>																				ND
identifyidenti																				ND
InterfactImage <td></td> <td>ND</td>																				ND
IntermInte		50	50	100,000	51 JS	ND	ND	32 JS	ND	ND	56 S	690 JS	ND	26 JS	ND	ND	ND	ND	ND	ND
Intendence Intendence Intende	Acrylonitrile				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
IntersectionImage<		60	60	4,800																ND
Immediate <																				ND
Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td></th<>																				ND
International Chron DentifyInternational Chron DentifyInternational 																				ND
Chancementand Chancementand																				ND ND
Checkederside1700<																				ND
DecompositionDistanceD		760	760	2 400																ND
Decomponent CharacterizationImage																				ND
Decombane 01-3D-Different																				ND
bit-3-beindegender 1 <	Chloroform	370	370	49,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Barl-Jocksympone Demonshare <br< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td></br<>																				ND
Deconscientame Image		250	250	100,000																ND
Decomposimentane Image and and any and any and any and any and any																				ND
Dehostististististististis Descentistististis ND ND<																				ND
Envipence 1.000 1.000 41.000 ND ND <td></td> <td></td> <td></td> <td>400.000</td> <td></td> <td>ND ND</td>				400.000																ND ND
base/shore/sh		1.000	1.000																	ND
IsopositicationIsopositicatio		1,000	1,000	41,000																ND
msp.sydems 1.00 2.00 ND MD MD ND		1																		ND
International (1) 100 100 ND ND <td></td> <td>1,600</td> <td>260</td> <td></td> <td>ND</td>		1,600	260																	ND
Methy: berly: berly: berly: 	Methyl Ethyl Ketone (2-Butanone)	120	120		ND	ND	ND	ND		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND
haphtaine 12.000 12.000 ND 12.000 ND ND 2200 ND ND 2300 ND 19.0 19.0 ND 21.00 17.000 ND 17.000 ND 17.000 ND ND 17.000 ND ND 17.000 ND ND 17.000 ND	Methyl t-butyl ether (MTBE)																			ND
n°b n°b n°b ND				100,000																1.7 JS
nP-roggebrane3.003.00100.0010		12,000																		ND
o-Xytene 1.600 260 100.000 ND 790 790 J ND N		2 000																		ND ND
pisopprojnoume first first ND 1500 ND A10 ND A10 I ND A10 ND A10 ND A00 A00 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td></th<>																				ND
se-description 11.00 11.00 1000 1000 1000 1000 ND		1,000	200	100,000																ND
Syran Syran Stree Stree <th< td=""><td></td><td>11 000</td><td>11.000</td><td>100.000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td></th<>		11 000	11.000	100.000																ND
Inst-Buckhoreethene 5.900 5.900 100.000 ND		11,000	11,000	100,000																ND
Tetrachycenhame 1.300 1.300 19,000 1.3 J ND <	•	5,900	5,900	100,000					ND			ND				ND	ND		ND	ND
Toluene 700 700 700 100,000 ND																				ND
times/1-20ch/corethene 190 190 190 190 190 ND ND <t< td=""><td>Tetrahydrofuran (THF)</td><td></td><td></td><td></td><td></td><td>ND</td><td>ND</td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td>ND</td></t<>	Tetrahydrofuran (THF)					ND	ND					ND					ND			ND
trans-13-Dichloropropene km k	Toluene																			ND
frames/addition/2-buttere fr		190	190	100,000																ND
Trichlorotifuscreentene 470 470 21,000 ND		+																		ND
Trichlorofluoromethane Constraint		470	470	04.000																ND
Trichiorotriluoroethane ND		470	470	21,000								11D					ND			ND ND
VinylChloride 20 20 900 ND		1																		ND ND
		20	20	900																ND
		20	20	000																0.0
		1																		1.7

Notes:

* - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives ND - Not-detected

J - The value is estimated. This flag is used: a) on form 1 when the compound is reported above the MDL, but below the PQL, and b) on the Tentatively Identified Compounds (TIC) form for all compounds identified.

S - This compound is a solvent that is used in the laboratory. Laboratory contamination is suspected if concentration is less than five times the reporting level.

N - The concentration is based on the response fo the nearest internal. This flag is used on the TIC form for all compounds identified.

Boldhighlighted-Indicated exceedance of the NYSDEC POWSCO Guidance Value Boldhighlighted-Indicated exceedance of the NYSDEC UUSCO Guidance Value Boldhighlighted-Indicated exceedance of the NYSDEC RRSCO Guidance Value

TABLE 3 FORMER EAST COAST INDUSTRIAL UNIFORMS SITE Brooklyn, New York Soil Analytical Results Volatile Organic Compounds

	NYSDEC Part 375.6	NYSDEC Part 375.6	NYDEC Part 375.6 Restricted		SB11			SB12			SB13			SB	14				SB15		
COMPOUND	Groundwater Protection Soil Cleanup Objectives*	Unrestricted Use Soil Cleanup Objectives*	Residential Soil Cleanup Objectives*	(7-9') µg/Kg	(22-25') µg/Kg	(28-30') µg/Kg	(8-10') µg/Kg	(22-25') µg/Kg	(28-30') µg/Kg	(8-10') µg/Kg	(22-25') µa/Ka	(28-30') µa/Ka	(7-10') µa/Ka	(12-15') µg/Kg	(22-25') µg/Kg	(28-30') µg/Kg	(19-20') µg/Kg	(20-23') µa/Ka	(23-25') µa/Ka	(25-27') µg/Kg	(27-29') µa/Ka
1,1,1,2-Tetrachlorothane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	680	680	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	1			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	270	270	26,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	330	330	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane				ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	83 J ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2,3-Trichlorobenzene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	3,600	52,000	ND	14,000	ND	ND	9,600	28	65 J	12,000	1.1 J	ND	3.2 J	ND	ND	7.6	3.2 J	190	ND	ND
1,2-Dibromo-3-chloropropane	0,000	0,000	02,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	1,100	1,100	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	20	20	3,100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	8,400	52,000	ND	880 J	ND	ND	1800	9.1	ND	2700	ND	ND	ND	ND	ND	1.5 J	ND	36	ND	ND
1,3-Dichlorobenzene	2,400	2,400	4,900	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1,800	1,800	13,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorotoluene 2-Hexanone (Methyl Butyl Ketone)	-			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	+			ND ND	ND 460 J	ND ND	ND ND	ND 560 J	ND J 2 J		ND 390 J				ND ND				ND 2 J	ND ND	ND ND
2-Isopropyltoluene 4-Chlorotoluene				ND	460 J ND	ND	ND	560 J ND	ND Z J	ND ND	390 J ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	Z J ND	ND	ND ND
4-Methyl-2-Pentanone				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50	50	100,000	47 JS	ND	ND	9.1 JS	ND	ND	ND	ND	17 JS	22 JS	15 JS	1,300 JS	ND	44 JS	10 JS	9.2 JS	20 JS	33 JS
Acrylonitrile	00	00	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND
Benzene	60	60	4,800	ND	ND	ND	ND	ND	3 J	ND	ND	ND	ND	ND	ND	ND	1.5 J	2.6 J	4.6 J	ND	ND
Bromobenzene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.1 J	ND	2.2 J	1.3 J	ND
Carbon tetrachloride	760	760	2,400	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	1,100	1,100	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	370			ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND
Chloroform	370	370	49,000	ND													ND				
Chloromethane cis-1,2-Dichloroethene	250	250	100,000	ND ND	ND ND	ND ND	ND ND	ND ND	ND 1.4 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
cis-1,3-Dichloropropene	250	250	100,000	ND	ND	ND	ND	ND	1.4 J ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane			100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	1,000	41,000	ND	700 J	ND	ND	1400 J	14	ND	730	ND	ND	ND	ND	ND	2.1 J	1.2 J	110	ND	ND
Hexachlorobutadiene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene				ND	880 J	ND	ND	1300 J	7	ND	910	ND	ND	ND	ND	ND	ND	ND	93	ND	ND
m&p-Xylenes	1,600	260		ND	ND	ND	ND	ND	6	ND	640	ND	ND	ND	ND	ND	ND	ND	130	ND	ND
Methyl Ethyl Ketone (2-Butanone)	120	120	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl t-butyl ether (MTBE)	930	930	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	50	50	100,000	3.8 JS	310 JS	1.8 JS	7.2 S	300 JS		130 JS	140 JS	3.1 JS	9.1 s	39 S	2.8 JS	1.8 JS	1.7 JS	1.4 JS	1.6 JS	18 s	18 s
Naphthalene	12,000	12,000	400.000	ND	18,000	3.7 JS	ND	11000	450	98 J	12000 2400	2.9 J	ND	2100	3.1 J	2.6 J	860	3.5 J	810	ND	1.8 JS
n-Butylbenzene n-Propylbenzene	3 900	12,000	100,000	ND ND	2700 2100	ND ND	ND ND	3300 ND	6.9 9.3	ND ND	2400	ND ND	ND ND	ND ND	ND ND	ND ND	ND 1.4.1	ND ND	9.3 45	ND ND	ND ND
o-Xvlene	1,600	260	100,000	ND	2100 ND	ND	ND	ND	9.1	ND	590	ND	ND	ND	ND	ND	ND	ND	43	ND	ND
p-lsopropyltoluene	1,000	200	100,000	ND	1700	ND	ND	2000	3.1 J	ND	1400	ND	ND	ND	ND	ND	ND	ND	13	ND	ND
sec-Butylbenzene	11,000	11,000	100,000	ND	2400	ND	ND	3100	8.6	ND	2500	ND	ND	ND	ND	ND	1.4 J	ND	4.1 J	ND	ND
Styrene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	5,900	100,000	ND	ND	ND	ND	ND	ND	ND	130 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	1,300	1,300	19,000	ND	ND	ND	1.6 J	ND	120	ND	140 J	ND	ND	ND	ND	ND	1.8 J	ND	2 J	ND	ND
Tetrahydrofuran (THF)				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	700	700	100,000	ND	ND	0.98 JS	ND	ND	5.5 J	ND	ND	ND	ND	1.1 J	ND	5 J	5.2 J	0.92 J	6.9	ND	ND
trans-1,2-Dichloroethene	190	190	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,4-dichloro-2-butene	-			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	470	470	21,000	ND	ND	ND	ND	ND	1.3 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorotrifluoroethane			000	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND
Vinyl Chloride Total BTEX Concentration	20	20	900	ND 0	ND 2400	ND 0.98	ND 0	ND 3400	ND	ND 0		ND 0	ND 0	ND 1.1	ND 0	ND	ND 7.3	ND 2.12	ND 163.9	ND 0	ND 0
Total BTEX Concentration	-			50.8	2400 44130	0.98	17.9	3400	31.7 686.1	293	2720 38553	24.1	31.1	1.1 2158.3	0 1305.9	9.4	7.3	2.12 22.82	163.9	39.3	52.8
	1			0.00	44130	0.46	17.9	34300	000.1	293	300003	24.1	31.1	2130.3	1303.9	3.4	930.3	22.02	1302.9	39.3	32.0

Notes:

* - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives ND - Not-detected

J - The value is estimated. This flag is used: a) on form 1 when the compound is reported above the MDL, but below the PQL, and b) on the Tentatively Identified Compounds (TIC) form for all compounds identified.

S - This compound is a solvent that is used in the laboratory. Laboratory contamination is suspected if concentration is less than five times the reporting level.

N - The concentration is based on the response fo the nearest internal. This flag is used on the TIC form for all compounds identified.

Boldhighlighted-Indicated exceedance of the NYSDEC PGWSCO Guidance Value Boldhighlighted-Indicated exceedance of the NYSDEC UUSCO Guidance Value Bold/highlighted-Indicated exceedance of the NYSDEC RRSCO Guidance Value

TABLE 4 FORMER EAST COAST INDUSTRIAL UNIFORMS SITE Brooklyn, New York Soil Analytical Results Semi-Volatile Organic Compounds

							Seni-vo	platile Organic (compounds										
COMPOUND	NYSDEC Part 375.6 Groundwater	NYSDEC Part 375.6	NYDEC Part 375.6 Restricted		SB1			SB2			SB3			SB4			s	iB5	
	Protection Soil Cleanup	Unrestricted Use Soil Cleanup	Residential Soil Cleanup	(7-9')	(24-26')	(28-30')	(7-9')	(23-25')	(28-30')	(7-9')	(23-25')	(28-30')	(10-12')	(23-25')	(28-30')	(8-10')	(23-25')	(25-27')	(28-30')
	Objectives*	Objectives*	Objectives*	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg
1,2-Dichlorobenzene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Diphenylhydrazine				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dinitrotoluene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,6-Dinitrotoluene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chloronaphthalene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	14000	ND	ND
2-Nitroaniline				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3,3'-Dichlorobenzidine				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-Nitroaniline				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,6-Dinitro-2-methylphenol				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chloroaniline	1			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitroaniline		L		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	98,000	20,000	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	107,000	100,000	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1100 J	ND	ND
Anthracene	1,000,000	100,000	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	1,000	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzidine				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	22,000	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	1,700	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	100,000	100,000	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	1,700	800	3,900	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzoic Acid				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzyl alcohol				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Butyl benzyl phthalate				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-chloroethoxy)methane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-chloroethyl)ether				ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bis(2-chloroisopropyl)ether				ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND
Bis(2-ethylhexyl)phthalate				ND ND					ND						ND				
Chrysene	1,000	1,000	3,900		ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND		ND	ND	ND	ND
Dibenzo(a,h)anthracene	1,000,000	330	330	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND
Dibenzofuran	-	-				ND	ND	ND		ND	ND	ND	ND	ND				ND	ND
Diethyl phthalate Dimethyl phthalate	+	ł	1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Dinethyl phthalate	+	ł	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-octylphthalate	+	ł	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	1.000.000	100.000	100.000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	386.000	30.000	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2400 J	ND
Hexachlorobenzene	300,000	30,000	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2400 J	ND
Hexachlorobutadiene	+			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	+			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachloroethane	+			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	8,200	500	500	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isophorone	0,200	000	000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	12.000	12.000	100.000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2200 J	ND	ND
Nitrobenzene	12,000	12,000	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND
N-Nitrosodimethylamine	1	1		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-Nitrosodi-n-propylamine	1	1		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-Nitrosodiphenylamine	1	1		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	1,000,000	100,000	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	11000	ND	ND
Pyrene	1,000,000	100,000	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1,000,000	100,000	100,000	IND/	ni D	ND											UNI		ND .

Notes:

* - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

ND - Not-detected

J - The value is estimated. This flag is used: a) on form 1 when the compound is reported above the MDL, but below the PQL, and b) on the Tentatively Identified Compounds (TIC) form for all compounds identified.

S - This compound is a solvent that is used in the laboratory. Laboratory contamination is suspected if concentration is less than five times the reporting level.

N - The concentration is based on the response to the nearest internal. This flag is used on the TIC form for all compounds identified.

Bold/highlighted- Indicated exceedance of the NYSDEC PGWSCO Guidance Value Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value

Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

TABLE 4 FORMER EAST COAST INDUSTRIAL UNIFORMS SITE Brooklyn, New York Soil Analytical Results Semi-Volatile Organic Compounds

NYSDEC Part 375.6 NYSDEC Part 375.6 NYDEC Part 375.6 NYDEC Part 375.6 SB6 SB7 Groundwater Protection Soil Unrestricted Use Residential Soil Residential Soil (8-10') (23-25') (28-30') (8-10') (22-25') (28-30') (7-10')	SB8	SB9									
Unrestricted Use Residential Soil (a set) (a set)		000			SB	10					
Cleanup Cleanup	(22-25') (25-30')	(7-9') (21-24') (2	(28-30')	(7-9')	(19-21')	(22-25')	(28-30')				
Objectives* Objectives* pg/Kg µg/Kg µg/Kg µg/Kg µg/Kg µg/Kg µg/Kg µg/Kg	μg/Kg μg/Kg	µg/Kg µg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg				
1,2-Dichlorobenzene ND ND ND ND ND ND ND ND ND	ND ND	ND ND	ND	ND	ND	ND	ND				
1,2-Diphenylhydrazine ND ND ND ND ND ND ND ND	ND ND	ND ND	ND	ND	ND	ND	ND				
1,3-Dichlorobenzene ND ND ND ND ND ND ND ND ND	ND ND	ND ND	ND	ND	ND	ND	ND				
1,4-Dichlorobenzene ND ND ND ND ND ND ND ND ND	ND ND	ND ND	ND	ND	ND	ND	ND				
2,4-Dinitrotoluene ND ND ND ND ND ND ND ND	ND ND	ND ND	ND	ND	ND	ND	ND				
2,6-Dinitrotoluene ND ND ND ND ND ND ND ND	ND ND	ND ND	ND	ND	ND	ND	ND				
2-Chloronaphthalene ND ND ND ND ND ND ND ND ND	ND ND	ND ND	ND	ND	ND	ND	ND				
2-Methylnaphthalene ND	ND ND	ND ND	ND	ND	11,000	17000	ND				
2-Nitroaniline ND ND ND ND ND ND ND ND ND	ND ND	ND ND	ND	ND	ND	ND	ND				
3,3-Dichlorobenzidine ND ND ND ND ND ND ND ND	ND ND	ND ND	ND	ND	ND	ND	ND				
3-Nitroaniline ND ND ND ND ND ND ND ND ND	ND ND	ND ND	ND	ND	ND	ND	ND				
4,6-Dinitro-2-methylphenol ND ND ND ND ND ND ND ND ND	ND ND	ND ND	ND	ND	ND	ND	ND				
4-Bromophenyl phenyl ether ND	ND ND	ND ND	ND	ND	ND	ND	ND				
4-Chloroaniline ND	ND ND	ND ND	ND	ND	ND	ND	ND				
4-Chlorophenyl phenyl ether ND	ND ND	ND ND	ND	ND	ND	ND	ND				
4-Nitroaniline ND ND ND ND ND ND ND ND ND	ND ND	ND ND	ND	ND	ND	ND	ND				
Acenaphthene 98,000 20,000 100,000 ND 2000 J ND ND ND ND ND ND	ND ND	ND ND	ND	ND	ND	ND	ND				
Acenaphthylene 107,000 100,000 100,000 ND ND ND ND ND 390 ND ND	ND ND	ND ND	ND	ND	ND	810 J	ND				
Anthracene 1,000,000 100,000 100,000 ND ND ND ND ND Z70 J ND ND	ND ND	ND ND	ND	ND	ND	ND	ND				
Benzo(a)anthracene 1,000 1,000 1,000 ND ND ND ND ND ND ND	ND ND	ND ND	ND	ND	ND	ND	ND				
Benzidine ND ND ND ND ND ND ND ND	ND ND	ND ND	ND	ND	ND	ND	ND				
Benzo(a)pyrene 22,000 1,000 1,000 ND	ND ND	ND ND	ND	ND	ND	ND	ND				
Benzo(b)fluoranthene 1,700 1,000 1,000 ND	ND ND	ND ND	ND	ND	ND	ND	ND				
Benzo(g,h,i)perviene 100,000 100,000 100,000 ND	ND ND	ND ND	ND	ND	ND	ND	ND				
Benzo(k)fluoranthene 1,700 800 3,900 ND ND ND ND ND ND ND	ND ND	ND ND	ND	ND	ND	ND	ND				
Benzoic Acid ND ND ND ND ND ND ND ND ND	ND ND	ND ND	ND	ND	ND	ND	ND				
Benzyl alcohol ND	ND ND	ND ND	ND	ND	ND	ND	ND				
Butyl benzyl phthalate ND ND<	ND ND ND ND	ND ND ND ND	ND	ND ND	ND ND	ND ND	ND ND				
			ND								
Bis(2-chloroethyl)ether ND ND	ND ND ND ND	ND ND ND ND	ND ND	ND ND	ND ND	ND ND	ND ND				
Bis(2-ethylpether) NO NO NO NO NO NO NO NO NO	ND ND	ND ND	ND	ND	ND	ND	ND				
Dist_2empire_riprimate 100 1.000 3.900 ND	ND ND	ND ND	ND	ND	ND	ND	ND				
Cariyasene 1,000 1,000 ND	ND ND	ND ND	ND	ND	ND	ND	ND				
Dibenzofurina ND	ND ND	ND ND	ND	ND	ND	ND	ND				
Diethyliphthalate ND	ND ND	ND ND	ND	ND	ND	ND	ND				
Directly phrthate ND	ND ND	ND ND	ND	ND	ND	ND	ND				
Din-butyphthalate ND	ND ND	ND ND	ND	ND	ND	ND	ND				
Dimocrypithalate ND	ND ND	ND ND	ND	ND	ND	ND	ND				
Fluoranthene 1.000,000 100,000 ND ND ND ND ND 170 ND ND ND	ND ND	ND 140 J	ND	ND	ND	ND	ND				
Fluorene 386,000 30,000 100,000 ND 3800 ND ND ND ND ND ND ND ND	ND ND	ND 580	ND	ND	2,000	2100	ND				
Hexachlorobenzene ND	ND ND	ND ND	ND	ND	ND	ND	ND				
Hexachlorobutadiene ND ND ND ND ND ND ND ND ND	ND ND	ND ND	ND	ND	ND	ND	ND				
Hexachlorocyclopentadiene ND	ND ND	ND ND	ND	ND	ND	ND	ND				
Hexachloroethane ND ND	ND ND	ND ND	ND	ND	ND	ND	ND				
Indeno(1,2,3-cd)pyrene 8,200 500 500 ND ND ND ND ND ND ND ND ND	ND ND	ND ND	ND	ND	ND	ND	ND				
Isophorone ND	ND ND	ND ND	ND	ND	ND	ND	ND				
Naphthalene 12,000 12,000 ND 11000 ND ND 740 ND ND	ND ND	ND ND	ND	ND	1500 J	4000	ND				
Nitrobenzene ND	ND ND	ND ND	ND	ND	ND	ND	ND				
N-Nitrosodimethylamine ND ND<	ND ND	ND ND	ND	ND	ND	ND	ND				
N-Nitrosodi-n-propylamine ND	ND ND	ND ND	ND	ND	ND	ND	ND				
N-Nitrosodiphenylamine ND ND<	ND ND	ND ND	ND	ND	ND	ND	ND				
Phenanthrene 1,000,000 100,000 ND 9000 ND ND 3500 ND ND	2200 J ND	ND 3600	ND	ND	4600	5500	ND				
Pyrene 1,000,000 100,000 ND ND ND ND ND 300 J ND ND	ND ND	ND 330 J	ND	ND	ND	ND	ND				

Notes:

* - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

ND - Not-detected

J - The value is estimated. This flag is used: a) on form 1 when the compound is reported above the MDL, but below the PQL, and b) on the Tentatively Identified Compounds (TIC) form for all compounds identified.

S - This compound is a solvent that is used in the laboratory. Laboratory contamination is suspected if concentration is less than five times the reporting level.

N - The concentration is based on the response to the nearest internal. This flag is used on the TIC form for all compounds identified.

Bold/highlighted-Indicated exceedance of the NYSDEC PGWSCO Guidance Value Bold/highlighted-Indicated exceedance of the NYSDEC UUSCO Guidance Value

Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

TABLE 4 FORMER EAST COAST INDUSTRIAL UNIFORMS SITE Brooklyn, New York Soil Analytical Results Semi-Volatile Organic Compounds

	Semi-Volatile Organic Compounds																			
COMPOUND	NYSDEC Part 375.6 Groundwater	NYSDEC Part 375.6	NYDEC Part 375.6 Restricted		SB11		SB	12		SB13			SB14				SE	15		
	Protection Soil Cleanup	Unrestricted Use Soil Cleanup	Residential Soil Cleanup	(7-9')	(22-25')	(28-30')	(22-25')	(28-30')	(8-10')	(22-25')	(28-30')	(7-10')	(12-15')	(22-25')	(8-10')	(19-20')	(20-23')	(23-25')	(25-27')	(27-29')
	Objectives*	Objectives*	Objectives*	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg
1,2-Dichlorobenzene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,2-Diphenylhydrazine				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,3-Dichlorobenzene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,4-Dichlorobenzene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
2,4-Dinitrotoluene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
2,6-Dinitrotoluene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
2-Chloronaphthalene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
2-Methylnaphthalene				ND	44000	ND	59000	480	ND	26000	ND	ND	360 J	ND	ND	170 J	ND	830		
2-Nitroaniline				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
3,3'-Dichlorobenzidine				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
3-Nitroaniline				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
4,6-Dinitro-2-methylphenol				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
4-Bromophenyl phenyl ether 4-Chloroaniline				ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		
4-Chlorophenyl phenyl ether	+			ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND		
4-Chiorophenyi phenyi ether 4-Nitroaniline	+			ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND		
Acenaphthene	98,000	20,000	100,000	ND	ND	ND	4600	130 J	ND	ND	ND	ND	770	ND	ND	ND	ND	240 J	ND	ND
Acenaphthylene	107,000	100,000	100,000	ND	ND	ND	4000 ND	340 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	190 J	ND	ND
Anthracene	1,000,000	100,000	100,000	ND	ND	ND	1300 J	450	ND	ND	ND	ND	1800	ND	ND	ND	ND	470	330	ND
Benzo(a)anthracene	1,000	1,000	1,000	ND	ND	ND	ND 1300 3	630	ND	ND	ND	260 J	3,300	ND	150 J	270 J	160 J	1,300	1000	ND
Benzidine	1,000	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	3,300 ND	ND	ND S	ND	ND	ND	1000	140
Benzo(a)pyrene	22,000	1,000	1,000	ND	ND	ND	ND	810	ND	ND	ND	210 J	2,600	ND	140 J	280 J	150 J	1000	810	ND
Benzo(b)fluoranthene	1.700	1,000	1,000	ND	ND	ND	ND	630	ND	ND	ND	210 J	3,100	ND	170 J	350 J	190 J	1,300	930	ND
Benzo(g,h,i)perylene	100.000	100.000	100.000	ND	ND	ND	ND	410	ND	ND	ND	160 J	1300	ND	ND	180 J	ND	610	420	ND
Benzo(k)fluoranthene	1.700	800	3.900	ND	ND	ND	ND	220 J	ND	ND	ND	ND	980	ND	ND	ND	ND	550	400	ND
Benzoic Acid	1,700	000	0,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-100	
Benzyl alcohol				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Butyl benzyl phthalate				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Bis(2-chloroethoxy)methane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Bis(2-chloroethyl)ether				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	170 J	ND	ND	ND		
Bis(2-chloroisopropyl)ether				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	150 J	ND	ND	ND		
Bis(2-ethylhexyl)phthalate				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Chrysene	1,000	1,000	3,900	ND	ND	ND	ND	680	ND	ND	ND	260 J	3,200	ND	ND	260 J	150 J	1,200	960	ND
Dibenzo(a,h)anthracene	1,000,000	330	330	ND	ND	ND	ND	120 J	ND	ND	ND	ND	370	ND	ND	ND	ND	190 J	ND	ND
Dibenzofuran				ND	ND	ND	ND	ND	ND	ND	ND	ND	670	ND	ND	ND	ND	ND		
Diethyl phthalate				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Dimethyl phthalate				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Di-n-butylphthalate				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Di-n-octylphthalate				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Fluoranthene	1,000,000	100,000	100,000	ND	ND	ND	3100 J	720	ND	ND	ND	600	9700	ND	310 J	520	330 J	2100	1800	ND
Fluorene	386,000	30,000	100,000	ND	4200	ND	5400	240 J	ND	2700 J	ND	ND	930	ND	ND	ND	ND	280 J	ND	ND
Hexachlorobenzene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Hexachlorobutadiene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Hexachlorocyclopentadiene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Hexachloroethane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Indeno(1,2,3-cd)pyrene	8,200	500	500	ND	ND	ND	ND	310 J	ND	ND	ND	120 J	1,100	ND	ND	150 J	ND	570	350	ND
Isophorone				ND	ND	ND	ND	ND	ND	ND 4700	ND	ND	ND	ND	ND	ND	ND	ND	540	
Naphthalene	12,000	12,000	100,000	ND	11000	ND	3200 J	460	ND	4700	ND	ND	1600	ND	ND	760	250 J	1700	510	ND
Nitrobenzene	+			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
N-Nitrosodimethylamine				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
N-Nitrosodi-n-propylamine	+			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
N-Nitrosodiphenylamine	1 000 000	400.000	400.000	ND	ND 11000	ND	ND 18000	ND	ND 240 1	ND 8200	ND	ND 490	ND	ND	ND	ND	ND	ND 1300	050	ND.
Phenanthrene Pyrene	1,000,000	100,000	100,000	110 J		ND		1600 1900	240 J		ND		6600 8400	ND	230 J	230 J	140 J	1300	950	ND
ryrene	1,000,000	100,000	100,000	ND	1300 J	ND	2700 J	1900	130 J	ND	ND	510	8400	ND	290 J	470	280 J	2000	1700	ND

Notes:

* - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

ND - Not-detected

J - The value is estimated. This flag is used: a) on form 1 when the compound is reported above the MDL, but below the PQL, and b) on the Tentatively Identified Compounds (TIC) form for all compounds identified.

S - This compound is a solvent that is used in the laboratory. Laboratory contamination is suspected if concentration is less than five times the reporting level.

N - The concentration is based on the response fo the nearest internal. This flag is used on the TIC form for all compounds

identified. Boldhighlighted-Indicated exceedance of the NYSDEC PGWSCO Guidance Value Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

TABLE 5 FORMER EAST COAST INDUSTRIAL UNIFORMS SITE Brooklyn, New York Soil Analytical Results Pesticides / PCBs

	NYSDEC Part 375.6	NYDEC Part 375.6 Restricted	SB1	SB2	SI	B3	S	B4	SI	B5	SI	B6	SB7
COMPOUND	Unrestricted Use Soil	Residential Soil Cleanup	(7-9')	(7-9')	(0-1')	(7-9')	(0-4')	(10-12')	(0-5')	(8-10')	(0-5')	(8-10')	(8-10')
	Cleanup Objectives*	Objectives*	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg
PCB-1016	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1221	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1232	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1242	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1248	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1254	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1260	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1262	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1268	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,4-DDD	3.3	13,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,4-DDE	3.3	8,900	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,4-DDT	3.3	7,900	ND	ND	ND	ND	ND	ND	4.3	ND	ND	ND	ND
a-BHC	20	480	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
a-Chlordane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aldrin	5	97	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
b-BHC	36	360	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlordane	94	4,200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
d-BHC	40	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dieldrin	5	200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan I	2,400	24,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan II	2,400	24,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan Sulfate	2,400	24,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin	14	11,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin aldehyde			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin ketone			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
gamma-BHC			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
g-Chlordane	1		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor	42	2,100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor epoxide	1		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methoxychlor			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toxaphene	1		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

* - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

ND - Not-detected

ND Fixed-backets J - The value is estimated. This flag is used: a) on form 1 when the compound is reported above the MDL, but below the PQL, and b) on the Tentatively Identified Compounds (TIC) form for all compounds identified.

S - This compound is a solvent that is used in the laboratory. Laboratory contamination is suspected if concentration is less than five times the reporting level.

N - The concentration is based on the response fo the nearest internal. This flag is used on the TIC

form for all compounds identified.

Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value

Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

TABLE 5 FORMER EAST COAST INDUSTRIAL UNIFORMS SITE Brooklyn, New York Soil Analytical Results Pesticides / PCBs

	NYSDEC Part 375.6	NYDEC Part 375.6 Restricted	SB8	SB9	SB10	SE	311	SE	312	SE	313	SB14	SB15
COMPOUND	Unrestricted Use Soil	Residential Soil Cleanup	(7-10')	(7-9')	(7-9')	(0-1')	(7-9')	(0-1')	(8-10')	(8-10')	(15-20')	(7-10')	(8-10')
	Cleanup Objectives*	Objectives*	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg
PCB-1016	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1221	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1232	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1242	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1248	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1254	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1260	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1262	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1268	1,000	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,4-DDD	3.3	13,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,4-DDE	3.3	8,900	ND	ND	ND	14	ND	5.6	ND	ND	ND	ND	ND
4,4-DDT	3.3	7,900	ND	ND	ND	55	ND	23	ND	ND	ND	ND	ND
a-BHC	20	480	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
a-Chlordane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aldrin	5	97	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
b-BHC	36	360	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlordane	94	4,200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
d-BHC	40	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dieldrin	5	200	ND	ND	ND	2.9	ND	ND	ND	ND	ND	ND	ND
Endosulfan I	2,400	24,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan II	2,400	24,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan Sulfate	2,400	24,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin	14	11,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin aldehyde			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin ketone			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
gamma-BHC			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
g-Chlordane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor	42	2,100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor epoxide			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methoxychlor			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toxaphene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

* - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

ND - Not-detected

ND - Norveiezed J - The value is estimated. This flag is used: a) on form 1 when the compound is reported above the MDL, but below the POL, and b) on the Tentatively Identified Compounds (TIC) form for all compounds identified.

S - This compound is a solvent that is used in the laboratory. Laboratory contamination is suspected if concentration is less than five times the reporting level.

N - The concentration is based on the response fo the nearest internal. This flag is used on the TIC

form for all compounds identified.

Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value

Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

TABLE 6 FOERM EAST COAST INDUSTRIAL UNIFORMS SITE Brooklyn, New York Soil Analytical Results

COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil	NYDEC Part 375.6 Restricted Residential Soil Cleanup	SB1	SB2	SB	3	SE	34	SE	35	SE	36	SB7	SB8
COMPOUND	Cleanup Objectives*	Objectives*	<mark>(7-9')</mark> mg/Kg	(7-9') mg/Kg	(0-1') mg/Kg	(7-9') mg/Kg	(0-4') mg/Kg	<mark>(10-12')</mark> mg/Kg	<mark>(0-5')</mark> μg/Kg	<mark>(8-10')</mark> μg/Kg	<mark>(0-5')</mark> µg/Kg	<mark>(8-10')</mark> μg/Kg	<mark>(8-10')</mark> µg/Kg	<mark>(7-10')</mark> mg/Kg
Silver	2	180	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aluminum			3680 N	2950 N	7850 N	3679 N	5230 N	4220 N	5330 N	4720 N	5770 N	3430 N	4000 N	3420 N
Arsenic	13	16	1.01	1.01	4.54	1.05	4.04	1.21	3.67	1.35	3.87	1.15	1.41	1.05
Barium	350	400	29.8	22.8	208	21.4	157	30	148	25.6	747	22.2	27.4	25.2
Beryllium	7.2	72	0.31	ND	0.44	0.35	ND	0.3	0.37	0.33	0.44	0.32	0.33	0.31
Calcium			0.37 N	566 N	0.41	753 N	70200 N	1090 N	24700 N	1150 N	22100	1130 N	1050 N	945 N
Cadmium	2.5 c	4.3	1,260	ND	22,700	ND	0.37	ND	0.43	ND	0.7	ND	ND	ND
Cobalt			8.34	4.43	25.7	4.21	3.91	4.07	4.46	5	7.26	3.99	5.72	4.85
Chromium	30 c	180 - trivalent	4.94	7.9	6.17	12.6	21.1	10.4	18.7	12.7	29.7	10.6	10.4	9.19
Copper	50	270	11.8	9.04	65	10.9	36.2	10.3	41.3	17.2	41.5	10.4	14	13.9
Iron			16500 N	11300 N	19700 N	14300 N	14200 N	13000 N	14700 N	17000 N	19600 N	14300 N	16300 N	15700
Mercury	0.18 c	0.81	ND	ND	1.55	ND	0.25	ND	1.52	ND	0.42	ND	ND	ND
Potassium			683	512	2290	858	845	819	940	847	1320	803	944	859
Magnesium			1190 N	1040 N	11600 N	1410 N	13000 N	1490 N	4410 N	1860 N	6880 N	1270 N	1470 N	1480 N
Manganese	1600 c	2,000	307	365	355	348	284	321	314	293	394	253	378	294 N
Sodium			106 N	44 N	480 N	51 N	258 N	195 N	113 N	131 N	351 N	89 N	92 N	708 N
Nickel	30	310	9.2	7.01	19.5	9	14.1	9.87	12.3	10.8	13.6	8.49	8.71	8.87
Lead	63 c	400	ND	ND	263	ND	244	7.13	315	ND	1,110	1.13	ND	0.358 B
Antimony			1.8	ND	ND	ND	ND	ND	ND	ND	3.6	ND	ND	ND
Selenium	3.9c	180	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Thallium			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium			23.8	11.8	30.1	18.3	21.4	16.1	22.7	22.5	27.9	19	23.7	22.4
Zinc	109 c	10,000	20.6	17.5	237	20.2	181	19	272	88.4	555	19.5	22.5	27.8

Notes:

* - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

ND - Not-detected

J - The value is estimated. This flag is used: a) on form 1 when the compound is reported above the MDL, but below the PQL, and b) on the Tentatively Identified Compounds (TIC) form for all compounds identified.

S - This compound is a solvent that is used in the laboratory. Laboratory contamination is suspected if concentration is less than five times the reporting level.

N - The concentration is based on the response fo the nearest internal. This flag is used on the TIC form for all compounds identified.

Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

TABLE 6 FOERM EAST COAST INDUSTRIAL UNIFORMS SITE Brooklyn, New York Soil Analytical Results

COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil	NYDEC Part 375.6 Restricted Residential Soil Cleanup	SB9	SB10	SB	11	SB	12	SB	13	SB14	SB15
COMPOUND	Cleanup Objectives*	Objectives*	(7-9') mg/Kg	<mark>(7-9')</mark> mg/Kg	(0-1') mg/Kg	(7-9') mg/Kg	<mark>(0-1')</mark> mg/Kg	<mark>(8-10')</mark> mg/Kg	(8-10') mg/Kg	(15-20') mg/Kg	(7-10') mg/Kg	<mark>(8-10')</mark> mg/Kg
Silver	2	180	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aluminum			3,940	4410	6920	4240	7640	8760	5830	4660	6990	7910
Arsenic	13	16	1.16	1.29	3.17	1.43	3.07	2.29	1.42	1.4	2.43	2.84
Barium	350	400	31.7	32.3	592	38.1	162	49.7	40.1	49.5	150	97.1
Beryllium	7.2	72	0.271 B	0.32	0.44	0.41	0.41	0.58	0.4	0.39	0.38	0.35
Calcium			875	953	12500	1050	39800	872	1110	1530	4980	11600
Cadmium	2.5 c	4.3	ND	ND	0.54	ND	0.5	ND	ND	ND	ND	ND
Cobalt			3.95	4.64	5.86	5.68	4.07	7.59	5.68	6.32	5.51	4.94
Chromium	30 c	180 - trivalent	11.9	11.8	19.8	11.7	13.1	17.8	14.8	13.4	16.3	13.4
Copper	50	270	12.4	15.2	28	16.3	34.3	34.5	19.1	22.7	16.5	19.8
Iron			ND	14,800	18800	16500	19600	21100	16800	22500	13700	13600
Mercury	0.18 c	0.81	ND	ND	0.12	ND	0.13	ND	ND	ND	ND	0.36
Potassium			1140 N	1470 N	1930 N	1100 N	1030 N	1440 N	1410 N	1310 N	1020 N	1130 N
Magnesium			1560	1620	2960	1680	3360	2250	2270	1700	3420	2840
Manganese	1600 c	2,000	177	298	366	459	372	468	451	317	242	228
Sodium			1.17 N	115 N	177 N	119 N	549 N	102 N	169 N	173 N	157 N	409 N
Nickel	30	310	7.86	9.4	11.6	13	10.9	14.6	11.5	18	22.3	14.9
Lead	63 c	400	2.47	4	1,220 N	5.14	238 N	16.1	2.51	4.08	189 N	220 N
Antimony			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Selenium	3.9c	180	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Thallium			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium			19.3	23.1	28.9	20.5	20.2	31.8	29.1	30	14.1	15.4
Zinc	109 c	10,000	29.2	24.3	474	27.2	234	118	31.5	31.3	57.9	87.1

Notes:

* - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

ND - Not-detected

J - The value is estimated. This flag is used: a) on form 1 when the compound is reported above the MDL, but below the PQL, and b) on the Tentatively Identified Compounds (TIC) form for all compounds identified.

S - This compound is a solvent that is used in the laboratory. Laboratory contamination is suspected if concentration is less than five times the reporting level.

N - The concentration is based on the response fo the nearest internal. This flag is used on the TIC form for all compounds identified.

Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value

Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

TABLE 7 FORMER EAST COAST INDUSTRIAL UNIFORMS SITE Brooklyn, New York Groundwater Analytical Results Volatile Organic Compounds

	NYSDEC Groundwater	MW1S	MW1D	MW2	MW3	MW4S	MW4D	MW5	MW6S	MW6D	MW7	MW8	MW9S	MW9D	SB2	SB4	SB6	SB8	SB10	SB12
Compound	Quality Standards	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μq/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
1,1,1,2-Tetrachlorothane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane 1.1-Dichloroethene	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.39 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.29 J ND
1.1-Dichloropropene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5	ND	ND	ND	ND	7.1	5.8	0.91 J	290	5.2	59	ND	ND	3	0.75 J	ND	110	7.9	60	63
1,2-Dibromo-3-chloropropane 1.2-Dichlorobenzene		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.18 J
1,2-Dichloroethane	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 10
1,2-Dichloropropane	0.94	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ND	ND	ND	0.53 J	0.33 J	0.66 J		35	0.61 J	11	ND	ND	0.54 J	ND	ND	27	1.8	9.5	6.5
1,3-Dichlorobenzene		0.25 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.23 J
2,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorotoluene		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-Hexanone (Methyl Butyl Ketone) 2-Isopropyltoluene		ND	ND	ND	ND 3	0.53 J	ND	ND 1	ND 4.4 J	0.4 J	ND 1.3 J	ND	ND ND	ND	ND	ND	ND 1.9 J	0.52 J	0.77 J	ND 1.9
4-Chlorotoluene		ND	ND	ND	ND	0.33 J	ND	ND	4.4 J ND	0.4 J ND	ND ND	ND	ND	ND	ND	ND	ND	0.52 J ND	ND ND	ND
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		12 S	ND	13 S	ND	ND	18 S	ND	ND	ND	ND	ND	ND	16	ND	ND	ND	ND	ND	ND
Acrylonitrile		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	ND	ND	ND	ND	1.7	ND	ND	2.5	ND	0.99	5.8 S	23	ND	ND	ND	ND	ND	27
Bromobenzene	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane Bromoform		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bromomethane	5	ND	ND	0.49 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	, , , , , , , , , , , , , , , , , , ,	ND	ND	ND	ND	ND	0.54 J	ND	ND	0.39 J	1.2 J	2.2	ND	1.2 J	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.82 J
Chloroform	7	0.53 J	0.38 J	ND	ND	ND	0.38 J	ND	ND	ND	ND	0.24 J	ND	8.4 J	0.53 J	0.28 J	ND	2.7 J	2.1 J	ND
Chloromethane cis-1.2-Dichloroethene	5	ND ND	ND 0.96 J	ND ND	ND 5.1	ND 6.4	ND 1.2	ND 8.5	ND 5.8	ND 9.5	ND 54	ND 24	ND 0.59 J	ND ND	ND ND	ND ND	10 3.4	0.46 J 0.32 J	5 6.8	5 0.91 J
cis-1,2-Dichloropropene	5	ND	0.96 J ND	ND	5.1 ND	0.4 ND	ND	ND	J.O ND	9.5 ND	34 ND	Z4 ND	0.39 J ND	ND	ND	ND	3.4 ND	0.32 J ND	ND	ND ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromoethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	0.22 J	1.1	ND	ND	48	1.2	10	0.43 J	0.25 J	11	ND	ND	20	0.21 J	2.6	66
Hexachlorobutadiene	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	5	ND ND	ND ND	ND ND	4.8 ND	1.9 0.69 J	0.53 J ND	ND ND	25 35	1 0.74 ј	6.3	ND ND	ND ND	ND 4.2	ND ND	ND ND	10 18	0.34 J ND	4.6 4.4	14 9.9
m&p-Xylenes Methyl Ethyl Ketone (2-Butanone)	5	ND	ND	ND	ND	0.69 J	ND	ND	ND	0.74 J	ND	ND	ND	4.2 ND	ND	ND	ND ND	ND	4.4 ND	9.9 ND
Methyl t-butyl ether (MTBE)		ND	ND	0.21 J	ND	ND	0.86 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride		ND	ND	ND	ND	ND	ND	ND	ND	ND	0.8 J	ND	ND	0.42 JS	ND	ND	ND	ND	ND	ND
Naphthalene		0.22 J	ND	0.26 J	3.6	54	7	2.1	390	10	59	34	1.5	15	1	0.81 J	110	9	48	70
n-Butylbenzene	5	ND	ND	ND	3.4	1.5	0.36 J	1.4	24	0.99 J	5.1	ND	ND	ND	ND	ND	5.6	1.1	1.9	2.9
n-Propylbenzene	5	ND	ND	ND	8.1	2.7	0.57 J	ND	46	1.4	9.2	ND	ND	ND	ND	ND	16	0.8 J	6.4	17
o-Xylene	5	ND ND	ND ND	ND ND	ND 5.2	0.49 J 0.95 J	ND ND	ND 0.95 J	6.3 14	0.94 J 0.48 J	6.8 4.6 J	ND ND	ND ND	3.3 ND	ND ND	ND ND	20 4.8	ND 0.91 J	2.1 2.1	ND 3.1
p-Isopropyltoluene sec-Butylbenzene		ND	ND	ND	5.2	0.95 J 3.1	0.78 J	0.95 J 4.1	14	0.48 J 1.8	4.6 J 8.3 J	ND	ND	ND	ND	ND	4.8	2.3	3.4	3.1
Styrene		ND	ND	ND	ND	ND ND	0.76 J	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	0.7 ND	2.3 ND	3.4 ND	ND
tert-Butylbenzene		ND	ND	ND	1.5	0.46	ND	0.56 J	1.8 J	0.24 J	ND	ND	ND	ND	ND	ND	0.94 J	0.23 J	0.3 J	0.81 J
Tetrachloroethene	5	0.46 J	13	16	ND	2.4	1.2	18	25	6.8	540	33	2.3	0.96 J	5.3	6.9	4.4	8.4	40	1.5
Tetrahydrofuran (THF)		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	0.29 J	ND	ND	0.24 J	ND	ND	ND	ND	0.3 J	0.68 J	2.1 J	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene		ND	ND	ND	0.35 J	0.38 J	ND	0.27 J	7.2 J	2.3 J	1.1 J	1.1 J	ND	ND	ND	ND	2.5 J	ND	2 J	10
trans-1,3-Dichloropropene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trabs-1,4-dichloro-2-butene Trichloroethene	5	ND ND	ND 14	ND 0.7 J	ND 2	ND 0.67 J	ND 1.7	ND 15	ND 1.9 J	ND 2	ND 53	ND 15	ND 0.74 J	ND ND	ND ND	ND 0.19 J	ND 0.9 J	ND 1.6	ND 1.7	ND 0.25 J
Trichlorofluoromethane	5	ND	ND	0.7 J	ND	0.67 J ND	ND	ND	ND I	ND	ND ND	ND	0.74 J ND	ND	ND	0.19 J ND	0.9 J ND	1.0 ND	ND	0.25 J ND
Trichlorotrifluoroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride		ND	ND	ND	ND	ND	ND	ND	1.3 J	0.56 J	1.7 J	12 J	ND	ND	ND	ND	0.46 J	ND	0.29 J	1.8
TOTAL PVOCs		0.0	0.0	0.8	41.4	74.4	18.5	8.9	929.2	24.1	185.3	35.7	8.2	62.1	1.8	0.8	332.9	25.1	146.1	288.1
TOTAL CVOCs		0.7	28.0	16.7	7.5	9.9	4.1	41.8	39.9	20.6	648.1	73.1	3.6	1.0	5.3	7.1	11.2	10.3	50.5	12.7

Notes: ND - Not detected

3 - The value is estimated. This flag is used: a) on form 1 when the compound is reported above the MDL, but below the PQL, and b) on the Tentatively Identified Compounds (TIC) form for all compounds identified. Bold/highlighted-indicated exceedance of the NYSDEC Groundwater Standard

TABLE 7 FORMER EAST COAST INDUSTRIAL UNIFORMS SITE Brooklyn, New York Groundwater Analytical Results Volatile Organic Compounds

	NYSDEC Groundwater	MW1S	MW1D	MW2	MW3	MW4S	MW4D	MW5	MW6S	MW6D	MW7	MW8	MW9S	MW9D	SB2	SB4	SB6	SB8	SB10	SB12
Compound	Quality Standards	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μq/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
1,1,1,2-Tetrachlorothane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane 1.1-Dichloroethene	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.39 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.29 J ND
1.1-Dichloropropene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5	ND	ND	ND	ND	7.1	5.8	0.91 J	290	5.2	59	ND	ND	3	0.75 J	ND	110	7.9	60	63
1,2-Dibromo-3-chloropropane 1.2-Dichlorobenzene		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.18 J
1.2-Dichloroethane	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 10
1,2-Dichloropropane	0.94	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ND	ND	ND	0.53 J	0.33 J	0.66 J		35	0.61 J	11	ND	ND	0.54 J	ND	ND	27	1.8	9.5	6.5
1,3-Dichlorobenzene		0.25 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.23 J
2,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorotoluene		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-Hexanone (Methyl Butyl Ketone) 2-Isopropyltoluene		ND	ND	ND	ND 3	0.53 J	ND	ND 1	ND 4.4 J	0.4 J	ND 1.3 J	ND	ND ND	ND	ND	ND	ND 1.9 J	0.52 J	0.77 J	ND 1.9
4-Chlorotoluene		ND	ND	ND	ND	0.33 J	ND	ND	4.4 J ND	0.4 J ND	ND ND	ND	ND	ND	ND	ND	ND	0.52 J ND	ND ND	ND
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		12 S	ND	13 S	ND	ND	18 S	ND	ND	ND	ND	ND	ND	16	ND	ND	ND	ND	ND	ND
Acrylonitrile		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	ND	ND	ND	ND	1.7	ND	ND	2.5	ND	0.99	5.8 S	23	ND	ND	ND	ND	ND	27
Bromobenzene	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane Bromoform		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bromomethane	5	ND	ND	0.49 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	, , , , , , , , , , , , , , , , , , ,	ND	ND	ND	ND	ND	0.54 J	ND	ND	0.39 J	1.2 J	2.2	ND	1.2 J	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.82 J
Chloroform	7	0.53 J	0.38 J	ND	ND	ND	0.38 J	ND	ND	ND	ND	0.24 J	ND	8.4 J	0.53 J	0.28 J	ND	2.7 J	2.1 J	ND
Chloromethane cis-1.2-Dichloroethene	5	ND ND	ND 0.96 J	ND ND	ND 5.1	ND 6.4	ND 1.2	ND 8.5	ND 5.8	ND 9.5	ND 54	ND 24	ND 0.59 J	ND ND	ND ND	ND ND	10 3.4	0.46 J 0.32 J	5 6.8	5 0.91 J
cis-1,2-Dichloropropene	5	ND	0.96 J ND	ND	5.1 ND	0.4 ND	ND	ND	3.0 ND	9.5 ND	34 ND	Z4 ND	0.39 J ND	ND	ND	ND	3.4 ND	0.32 J ND	ND	ND ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromoethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	0.22 J	1.1	ND	ND	48	1.2	10	0.43 J	0.25 J	11	ND	ND	20	0.21 J	2.6	66
Hexachlorobutadiene	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	5	ND ND	ND ND	ND ND	4.8 ND	1.9 0.69 J	0.53 J ND	ND ND	25 35	1 0.74 ј	6.3	ND ND	ND ND	ND 4.2	ND ND	ND ND	10 18	0.34 J ND	4.6 4.4	14 9.9
m&p-Xylenes Methyl Ethyl Ketone (2-Butanone)	5	ND	ND	ND	ND	0.69 J	ND	ND	ND	0.74 J	ND	ND	ND	4.2 ND	ND	ND	ND ND	ND	4.4 ND	9.9 ND
Methyl t-butyl ether (MTBE)		ND	ND	0.21 J	ND	ND	0.86 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride		ND	ND	ND	ND	ND	ND	ND	ND	ND	0.8 J	ND	ND	0.42 JS	ND	ND	ND	ND	ND	ND
Naphthalene		0.22 J	ND	0.26 J	3.6	54	7	2.1	390	10	59	34	1.5	15	1	0.81 J	110	9	48	70
n-Butylbenzene	5	ND	ND	ND	3.4	1.5	0.36 J	1.4	24	0.99 J	5.1	ND	ND	ND	ND	ND	5.6	1.1	1.9	2.9
n-Propylbenzene	5	ND	ND	ND	8.1	2.7	0.57 J	ND	46	1.4	9.2	ND	ND	ND	ND	ND	16	0.8 J	6.4	17
o-Xylene	5	ND ND	ND ND	ND ND	ND 5.2	0.49 J 0.95 J	ND ND	ND 0.95 J	6.3 14	0.94 J 0.48 J	6.8 4.6 J	ND ND	ND ND	3.3 ND	ND ND	ND ND	20 4.8	ND 0.91 J	2.1 2.1	ND 3.1
p-Isopropyltoluene sec-Butylbenzene		ND	ND	ND	5.2	0.95 J 3.1	0.78 J	0.95 J 4.1	14	0.48 J 1.8	4.6 J 8.3 J	ND	ND	ND	ND	ND	4.8	2.3	3.4	3.1
Styrene		ND	ND	ND	ND	ND ND	0.76 J	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	0.7 ND	2.3 ND	3.4 ND	ND
tert-Butylbenzene		ND	ND	ND	1.5	0.46	ND	0.56 J	1.8 J	0.24 J	ND	ND	ND	ND	ND	ND	0.94 J	0.23 J	0.3 J	0.81 J
Tetrachloroethene	5	0.46 J	13	16	ND	2.4	1.2	18	25	6.8	540	33	2.3	0.96 J	5.3	6.9	4.4	8.4	40	1.5
Tetrahydrofuran (THF)		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	0.29 J	ND	ND	0.24 J	ND	ND	ND	ND	0.3 J	0.68 J	2.1 J	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene		ND	ND	ND	0.35 J	0.38 J	ND	0.27 J	7.2 J	2.3 J	1.1 J	1.1 J	ND	ND	ND	ND	2.5 J	ND	2 J	10
trans-1,3-Dichloropropene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trabs-1,4-dichloro-2-butene Trichloroethene	5	ND ND	ND 14	ND 0.7 J	ND 2	ND 0.67 J	ND 1.7	ND 15	ND 1.9 J	ND 2	ND 53	ND 15	ND 0.74 J	ND ND	ND ND	ND 0.19 J	ND 0.9 J	ND 1.6	ND 1.7	ND 0.25 J
Trichlorofluoromethane	5	ND	ND	0.7 J	ND	0.67 J ND	ND	ND	ND I	ND	ND ND	ND	0.74 J ND	ND	ND	0.19 J ND	0.9 J ND	1.0 ND	ND	0.25 J ND
Trichlorotrifluoroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride		ND	ND	ND	ND	ND	ND	ND	1.3 J	0.56 J	1.7 J	12 J	ND	ND	ND	ND	0.46 J	ND	0.29 J	1.8
TOTAL PVOCs		0.0	0.0	0.8	41.4	74.4	18.5	8.9	929.2	24.1	185.3	35.7	8.2	62.1	1.8	0.8	332.9	25.1	146.1	288.1
TOTAL CVOCs		0.7	28.0	16.7	7.5	9.9	4.1	41.8	39.9	20.6	648.1	73.1	3.6	1.0	5.3	7.1	11.2	10.3	50.5	12.7

Notes: ND - Not detected

3 - The value is estimated. This flag is used: a) on form 1 when the compound is reported above the MDL, but below the PQL, and b) on the Tentatively Identified Compounds (TIC) form for all compounds identified. Bold/highlighted-indicated exceedance of the NYSDEC Groundwater Standard

TABLE 8 FORMER EAST COAST INDSUSTRIAL UNIFORMS SITE Brooklyn, NY Groundwater Analytical Results Semi-Volatile Organic Compounds

	NYSDEC Groundwater															
Compound	Quality Standards	MW2	MW3	MW4S	MW5	MW6S	MW6D	MW7	MW8	MW9S	SB2	SB4	SB6	SB8	SB10	SB12
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
1,2,4,5-Tetrachlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,6-Dinitrotoluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chloronaphthalene	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene	50	ND	ND	ND	ND	2000	8	ND	ND	ND	13	ND	750	18	53	75
2-Nitroaniline	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3,3'-Dichlorobenzidine	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-Nitroaniline	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chloroaniline	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitroaniline	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	20	ND	ND	ND	ND	ND	ND	ND	7.4	ND	ND	ND	ND	ND	ND	5.2
Acenaphthylene		ND	ND	ND	ND	ND	ND	4.8	ND	ND	ND	ND	ND	0.73	0.61	0.74
Anthracene	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Azobenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.3	0.067	0.022	0.21
Benzidine	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	Ŭ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.2	0.044	ND	0.12
Benzo(b)fluoranthene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.3	0.056	ND	0.18
Benzo(g,h,i)perylene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.7	0.022	ND	0.067
Benzoic Acid	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzyl Alcohol		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Butyl benzyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-chloroethoxy)methane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-chloroethyl)ether	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-chloroisopropyl)ether		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate	5	ND	ND	ND	ND	ND	ND	ND	9.8	ND	ND	ND	ND	ND	ND	ND
Chrvsene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.9	0.089	0.022	0.19
Dibenzo(a,h)anthracene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.022
Dibenzofuran		ND	ND	ND	ND	ND	ND	ND	1.7 J	ND	ND	ND	ND	ND	ND	ND
Diethylphthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dimethylphthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-butylphthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-octylphthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	50	ND	ND	ND	ND	ND	ND	ND	3.5 J	ND	ND	ND	ND	ND	ND	ND
Fluorene	50	ND	31 J	ND	2.1 J	130 J	ND	ND	4.1 J	ND	ND	ND	ND	4.1	4.1	5.3
Hexachlorobenzene	0.04	ND	ND ND	ND	2.1 J ND	ND	ND	ND	4.1 J	ND	ND	ND	ND	4.1 ND	4.1 ND	5.5 ND
Hexachlorobutadiene	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachiorocyclopentadiene Hexachioroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachioroethane Indeno(1,2,3-cd)pyrene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND 1.1	0.022	ND	0.067
Isophorone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.022 ND	ND	0.007 ND
Naphthalene	10	ND	ND	ND	ND	550	4.9 J	ND	2.9 J	ND	3.6 J	ND	290	10	35	48
Naphthalene	0.4	ND	ND	ND	ND	ND	4.9 J ND	ND	2.9 J ND	ND	3.0 J ND	ND	290 ND	ND	ND ND	40 ND
Nitrobenzene N-Nitrosodimethylamine	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-Nitrosodimetnylamine N-Nitrosodi-n-propylamine		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	50															
N-Nitrosodiphenylamine Pentachloronitrobenzene	JU	ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND
Pentachloronitrobenzene Pentachlorophenol		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	50					ND 380		ND 52			ND 2.2		ND 150			ND 7.5
Phenanthrene	50	ND	36	ND	ND		ND		4.2 3.3 J	ND		ND		6.2	6.8	
Pyrene	UC	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
TOTAL SVOCS		0	67	0	2	3060	13	57	37	0	19	0	1206	39	100	143

Notes:

ND - Not detected

J - The value is estimated. This flag is used: a) on form 1 when the compound is reported above the MDL, but below the PQL, and b) on the Tentatively Identified Compounds (TIC) form for all compounds identified.

Bold/highlighted- Indicated exceedance of the NYSDEC Groundwater Standard

TABLE 9 FORMER EAST COAST INDUSTRIAL UNIFORMS SITE Groundwater Results - Pesticieds / PCBs

Compound	NYSDEC Groundwater Quality Standards	MW2	MW3	MW4S	MW5	MW6S	MW7	MW8	MW9S
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
PCB-1016	0.09	ND							
PCB-1221	0.09	ND							
PCB-1232	0.09	ND							
PCB-1242	0.09	ND							
PCB-1248	0.09	ND							
PCB-1254	0.09	ND							
PCB-1260	0.09	ND							
PCB-1262	0.09	ND							
PCB-1268	0.09	ND							
4,4-DDD	0.3	ND							
4,4-DDE	0.2	ND							
4,4-DDT	0.11	ND							
a-BHC	0.94	ND							
Alachlor		ND							
Aldrin		ND							
b-BHC	0.04	ND							
Chlordane	0.05	ND							
d-BHC	0.04	ND							
Dieldrin	0.004	ND							
Endosulfan I		ND							
Endosulfan II		ND							
Endosulfan Sulfate		ND							
Endrin		ND							
Endrin aldehyde	5	ND							
Endrin ketone		ND							
gamma-BHC	0.05	ND							
Heptachlor	0.04	ND							
Heptachlor epoxide	0.03	ND							
Methoxychlor	35	ND							
Toxaphene		ND							

Notes:

ND - Non-detect

J - The value is estimated. This flag is used: a) on form 1 when the compound is reported above the MDL, but below the PQL, and b) on the Tentatively Identified Compounds (TIC) form for all compounds identif Bold/highlighted- Indicated exceedance of the NYSDEC Groundwater Standard

TABLE 10 FORMER EAST COAST INDUSTRIAL UNIFORMS SITE Groundwwater Results - Metals

	NYSDEC	MW1	MV	V2	MV	V3	MM	/4S	M	N5	MV	V6S	MM	V6D	M	N7	M	W8	MV	V9S
Compound	Groundwater	Filtered	Total	Filtered	Total	Filtered	Total	Filtered	Total	Filtered	Total	Filtered	Total	Filtered	Total	Filtered	Total	Filtered	Total	Filtered
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Silver	50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	0.8 B	<5.0	<5.0	2.1 в	0.5 в
Aluminum	NS	790	134,000	650	3,030	230 N	2,730	210 N	5,260	210 N	1,900	160 N	3,190	400 N	155,000	500	289,000	400	1,350,000	260
Arsenic	25	<3.0	11	<3.0	<3.0	3	4	<3.0	<3.0	<3.0	4	<3.0	<3.0	<3.0	20	<3.0	33	<3.0	166	<3.0
Barium	1000	49	1,680	59	214	156	465	396	286	210	184	185	100	72	2,890	86	4,480	112	7,460	235
Beryllium	3	<1.0	11	<1.0	<1.0	<1.0	<1.0	<1.0	0.03 B	<1.0	<1.0	<1.0	<1.0	<1.0	16	<0.001	22	<1.0	61	<1.0
Calcium	NS	39,600	106,000	79,000	95,100	91,900 N	77,500	75,800 N	79,200	77,500 N	52,300	49,000 N	48,700	47,500 N	73,000	34,000	288,000	74,200	958,000	397,000
Cadmium	5	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	3.5 в	<0.004	<4.0	<4.0	<4.0	<4.0
Cobalt	NS	<5.0	166	3.3 B	2.9	<5.0	11	7	15	6	5	4 B	8	3.6 B	494	21	314	<5.0	831,000	<5.0
Chromium	50	0.9 B	466	1	13	<1.0	9	<1.0	18	<1.0	8	<1.0	18	1	436	<1.0	979	<1.0	1,600	<1.0
Copper	200	2.8 B	574	3.2 B	21	2.1 в	22	1 в	31	1.3 в	10	1.1 в	16	2.4 B	632	1.9 в	1,110	1.5 в	3,780	2.6 B
Iron	500	510	362,000	710	25,400	3,570	33,100	6,250 N	25,500	1,240 N	19,000	7,680	10,300	580 N	483,000	540	791,000	330	3,000,000	760
Mercury	0.7	<0.2	<2.0	<2.0	<2.0	<2.0	<0.2	<0.2		<0.2	<0.2	<0.2	<0.2	<0.2	0.5	<0.2	1.3	<0.2	9.3	<0.2
Potassium	NS	6,100	56,000	6,400	17,400	16,500 N	16,400	16,100 N	10,800	10,000 N	8,900	9,400 N	8,000	7,600 N	43,700	8,700	80,200	16,800	220,000	25,700
Magnesium	35000	12,200	86,000	29,000	19,100	17,700 N	13,600	12,300 N	12,500	10,400 N	11,600	9,410 N	10,400	9,230 N	57,100	6,950	169,000	30,100	546,000	130,000
Manganese	300	650	12,600	2,690	1,770	1,320	5,690	5,970	10,300	9,730	5,610	6,040	3,660	3,550	49,900	7,860	32,300	2,330	92,300	8,690
Sodium	2000	74,700	102,000	109,000	47,200	48,300 N	42,200	41,200 N	43,000	40,700 N	66,600	54,200 N	25,400	25,400 N	83,800	76,100	104,000	102,000	71,100	116,000
Nickel	100	5	344	12	18	2.5 в	17	5	23	3.6 B	8	2.2 B	22	13	455	13	582	3.4 в	1,320	1.6 в
Lead	25	5	368	<2.0	16	<2.0	5	<2.0	6	2 в	47	<2.0	15	5	272	3	990	<0.002	7,070	<0.002
Antimony	3	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
Selenium	10	<4.0	<4.0	6	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Thallium	0.5	<2.0	2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Vanadium	NS	0.8 B	390	<10	10	<10	9.5 в	<10	20	<10	6.3 B	0.4 в	10	1.8 в	520	<10	710	<10	3,270	<10
Zinc	2000	5.8 B	938	5.1 в	30	6.3 B	23	8 в	41	6.8 B	55	34	37	5.9 B	845	4.8 B	1,550	2.4 B	7,540	3.2 В

TABLE 11 FORMER EAST COAST INDUSTRIAL UNIFORMS SITE Brooklyn, NY Soil Gas - Volatile Organic Compounds

COMPOUNDS	NYSDOH Outdoor Background Levels	SG1	SG2	SG4	SG5	SG6	SG7	SG8	OA1
	(µg/m ³) ^(a)	(µg/m ³)	(µg/m ³)	(µg/m ³)	(µg/m ³)	(µq/m ³)	(µg/m ³)	(µg/m ³)	(µg/m ³)
1,1,1,2-Tetrachloroethane		ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	<2.0 - 2.8	ND	ND	7.74	32.2	6.22	2.51	ND	ND
1,1,2,2-Tetrachloroethane	<1.5	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	<1.0	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane 1,1-Dichloroethene	<1.0 <1.0	ND ND	ND ND	1.09 ND	1.94 ND	ND ND	ND ND	ND ND	ND ND
1,2,4-Trichlorobenzene	<1.0 NA	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND
1,2,4-Trimethylbenzene	<1.0	1.82	6.34	1.38	1.82	1.42	1.47	1.33	ND
1,2-Dibromoethane	<1.5	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	<2.0	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	<1.0	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene	NA	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorotetrafluoroethane		ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	<1.0	ND	2.31	ND	ND	1.62	1.77	ND	ND
1,3-Butadiene	NA	ND 181	ND 78.1	ND	ND 108	ND 151	ND 108	ND 144	ND
1,3-Dichlorobenzene 1,4-Dichlorobenzene	<2.0 NA	ND	70.1 ND	63.7 ND	ND	ND	ND	144 ND	ND ND
1,4-Dioxane	NA	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone		ND	ND	ND	ND	ND	ND	ND	ND
4-Ethyltoluene	NA	ND	2.26	ND	ND	ND	ND	ND	ND
4-Isopropyltoluene		ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone		ND	ND	ND	ND	ND	ND	ND	ND
Acetone	NA	261	560	180	311	306	261	259	10.7
Acrylonitrile		ND	ND	ND	ND	ND	ND	ND	ND
Benzene	<1.6 - 4.7	ND	0.99	1.12	ND	ND	1.05	ND	ND
Benzyl Chloride	NA	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	<5.0	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform Bromomethane	<1.0 <1.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Carbon Disulfide	×1.0 NA	ND	ND	3.33	ND	ND	2.24	ND	ND
Carbon Tetrachloride	<3.1	0.314	0.44	0.503	0.44	0.44	0.314	0.503	0.566
Chlorobenzene	<2.0	ND	ND	ND	ND	ND	ND	0.505 ND	ND
Chloroethane	NA	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	<2.4	1.8	ND	17	9.03	10.2	1.27	1.37	ND
Chloromethane	<1.0 - 1.4	ND	ND	ND	ND	ND	ND	ND	1.2
cis-1,2-Dichloroethene	<1.0	ND	ND	73.3	22.7	ND	ND	ND	ND
cis-1,3-Dichloropropene	NA	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane	NA	1.68	3.3	1.79	2.3	1.17	1.2	ND	ND
Dibromochloromethane	<5.0	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluromethane	NA	2.27	2.32	2.87	2.42	2.57	2.47	2.62	2.62
Ethanol		E 1,710	E 1,830	1,300	1,840	E 1,570	E 1,430	E 1,020	15.6
Ethyl Acetate Ethylbenzene	NA <4.3	5.33 5.94	8.72 15.7	4.9 1.87	7.24 3.86	4.93 2.91	4.79 2.82	4 2.82	ND ND
Heptane	NA	1.35	3.4	ND	1.52	1.02	1.27	2.02 ND	ND
Hexachlorobutadiene	NA	ND	ND	ND	ND	ND	ND	ND	ND
Hexane	<1.5	4.12	7.5	7.43	4.79	5.14	5.64	5.04	4.02
Isopropylalcohol	NA	E 2,280	E 2,500	1,690	2,580	E 2,280	E 2,040	E 1,620	6.22
Isopropylbenzene		ND	ND	ND	ND	ND	ND	ND	ND
Xylene (m&p)	<4.3	14.6	52.9	5.29	10.7	8.38	7.64	7.77	ND
Methyl Ethyl Ketone		48.9	124	46.9	70.7	54.2	51	41.6	ND
MTBE	NA	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	<3.4	2.57	1.6	10.8	7.95	1.6	1.6	1.53	1.6
n-Butylbenzene		ND	ND	ND	ND	ND	ND	ND	ND
								3.04	ND
Xylene (o)	<4.3	4.6	13.8	2.17	4.51	3.25	2.95		
Propylene	<4.3 NA	ND	ND	ND	ND	ND	ND	ND	ND
Propylene sec-Butylbenzene	NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Propylene sec-Butylbenzene Styrene		ND ND 2	ND ND 1.23	ND ND ND	ND ND 1.58	ND ND 1.36	ND ND 1.06	ND ND 1.32	ND ND ND
Propylene sec-Butylbenzene Styrene Tetrachloroethene	NA <1.0	ND ND 2 69.1	ND ND 1.23 72.5	ND ND ND 3,510	ND ND 1.58 2,610	ND ND 1.36 271	ND ND 1.06 929	ND ND 1.32 140	ND ND ND ND
Propylene sec-Butylbenzene Styrene Tetrachloroethene Tetrahydrofuran	NA <1.0 NA	ND ND 2 69.1 43.6	ND ND 1.23 72.5 51.3	ND ND 3,510 35.4	ND ND 1.58 2,610 59.8	ND ND 1.36 271 44.5	ND ND 1.06 929 37.7	ND ND 1.32 140 36.5	ND ND ND ND ND
Propylene sec-Butylbenzene Styrene Tetrachloroethene Tetrahydrofuran Toluene	NA <1.0	ND ND 2 69.1	ND ND 1.23 72.5 51.3 273	ND ND 3,510 35.4 4.14	ND ND 1.58 2,610 59.8 6.21	ND ND 1.36 271	ND ND 1.06 929	ND ND 1.32 140	ND ND ND ND
Propylene sec-Butylbenzene Styrene Tetrachloroethene Tetrahydrofuran	NA <1.0 NA 1.0 - 6.1	ND ND 2 69.1 43.6 96.4	ND ND 1.23 72.5 51.3	ND ND 3,510 35.4	ND ND 1.58 2,610 59.8	ND ND 1.36 271 44.5 4.86	ND ND 1.06 929 37.7 15	ND ND 1.32 140 36.5 4.86	ND ND ND ND 1.62
Propylene sec-Butylbenzene Styrene Tetrachloroethene Tetrahydrofuran Toluene trans-1,2-Dichloroethene	NA <1.0 NA 1.0 - 6.1 NA	ND ND 2 69.1 43.6 96.4 ND	ND ND 1.23 72.5 51.3 273 ND	ND ND 3,510 35.4 4.14 7.21	ND ND 2,610 59.8 6.21 3.6	ND ND 1.36 271 44.5 4.86 ND	ND ND 1.06 929 37.7 15 ND	ND ND 1.32 140 36.5 4.86 ND	ND ND ND ND 1.62 ND
Propylene sec-Butylbenzene Styrene Tetrachloroethene Tetrahydrofuran Toluene trans-1,2-Dichloroethene trans-1,3-Dichloropropene	NA <1.0 NA 1.0 - 6.1 NA NA	ND ND 2 69.1 43.6 96.4 ND ND	ND ND 1.23 72.5 51.3 273 ND ND	ND ND 3,510 35.4 4.14 7.21 ND	ND ND 1.58 2,610 59.8 6.21 3.6 ND	ND ND 1.36 271 44.5 4.86 ND ND	ND ND 1.06 929 37.7 15 ND ND	ND ND 1.32 140 36.5 4.86 ND ND	ND ND ND ND 1.62 ND ND
Propylene sec-Butylbenzene Styrene Tetrachloroethene Tetrahydrofuran Toluene trans-1,2-Dichloroethene trans-1,3-Dichloropropene Trichloroethene	NA <1.0 NA 1.0 - 6.1 NA NA <1.7 NA	ND 2 69.1 43.6 96.4 ND 1.56 1.35	ND ND 1.23 72.5 51.3 273 ND ND 1.66 1.68 ND	ND ND 3,510 35.4 4.14 7.21 ND 687 3.42 ND	ND ND 1.58 2,610 59.8 6.21 3.6 ND 508 1.24 ND	ND ND 1.36 271 44.5 4.86 ND ND 0.913 1.18 ND	ND ND 1.06 929 37.7 15 ND 5.91 1.4 ND	ND ND 1.32 140 36.5 4.86 ND ND 0.591 1.35 ND	ND ND ND 1.62 ND ND ND ND 1.24 ND
Propylene sec-Butylbenzene Styrene Tetrachloroethene Tetrahydrofuran Toluene trans-1,2-Dichloroethene trans-1,3-Dichloroptopene Trichloroethene Trichloroethene Trichloroethane	NA <1.0 NA 1.0 - 6.1 NA NA <1.7	ND ND 2 69.1 43.6 96.4 ND ND 1.56 1.35	ND ND 1.23 72.5 51.3 273 ND ND 1.66 1.68	ND ND 3,510 35.4 4.14 7.21 ND 687 3.42	ND ND 1.58 2,610 59.8 6.21 3.6 ND 508 1.24	ND ND 1.36 271 44.5 4.86 ND ND 0.913 1.18	ND ND 1.06 929 37.7 15 ND ND 5.91 1.4	ND ND 1.32 140 36.5 4.86 ND ND 0.591 1.35	ND ND ND ND 1.62 ND ND ND ND 1.24
Propylene sec-Butylbenzene Styrene Tetrachloroethene Tetrahydrofuran Toluene trans-1,2-Dichloroethene trans-1,3-Dichloropropene Trichlorofluoromethane Trichlorofluoromethane Trichlorotrifluoroethane Vinyl Chloride	NA <1.0 NA 1.0 - 6.1 NA NA <1.7 NA	ND ND 2 69.1 43.6 96.4 ND 1.56 1.35 ND ND	ND ND 1.23 72.5 51.3 273 ND ND 1.66 1.68 ND ND	ND ND 3,510 35.4 4.14 7.21 ND 687 3.42 ND ND	ND ND 1.58 2,610 59.8 6.21 3.6 ND 508 1.24 ND 0.306	ND ND 271 44.5 4.86 ND ND 0.913 1.18 ND ND	ND ND 929 37.7 15 ND 5.91 1.4 ND ND	ND ND 1.32 140 36.5 4.86 ND ND 0.591 1.35 ND ND	ND ND ND ND 1.62 ND ND ND 1.24 ND ND ND
Propylene sec-Butylbenzene Styrene Tetrachloroethene Tetrachloroethene trans-1,2-Dichloroethene trans-1,3-Dichloropropene Trichloroethene Trichloroethene Trichloroethane Vinyl Chloride Total PVOCs*	NA <1.0 NA 1.0 - 6.1 NA NA <1.7 NA	ND 2 69.1 43.6 96.4 ND 1.56 1.35 ND 132.5	ND ND 1.23 72.5 51.3 273 ND ND 1.66 1.68 ND ND ND 381.7	ND ND 3,510 35.4 4.14 7.21 ND 687 3.42 ND ND 24.1	ND ND 1.58 2,610 59.8 6.21 3.6 ND 508 1.24 ND 0.306 37.3	ND ND 1.36 271 44.5 4.86 ND ND 0.913 1.18 ND ND 31.1	ND ND 1.06 929 37.7 15 ND ND 5.91 1.4 ND ND 40.8	ND ND 1.32 140 36.5 4.86 ND ND 0.591 1.35 ND ND 26.2	ND ND ND ND 1.62 ND ND 1.24 ND ND 5.6
Propylene sec-Butylbenzene Styrene Tetrachloroethene Tetrahydrofuran Toluene trans-1,2-Dichloroethene trans-1,3-Dichloropropene Trichlorofluoromethane Trichlorofluoromethane Trichlorotrifluoroethane Vinyl Chloride	NA <1.0 NA 1.0 - 6.1 NA NA <1.7 NA	ND ND 2 69.1 43.6 96.4 ND 1.56 1.35 ND ND	ND ND 1.23 72.5 51.3 273 ND ND 1.66 1.68 ND ND	ND ND 3,510 35.4 4.14 7.21 ND 687 3.42 ND ND	ND ND 1.58 2,610 59.8 6.21 3.6 ND 508 1.24 ND 0.306	ND ND 271 44.5 4.86 ND ND 0.913 1.18 ND ND	ND ND 929 37.7 15 ND 5.91 1.4 ND ND	ND ND 1.32 140 36.5 4.86 ND ND 0.591 1.35 ND ND	ND ND ND ND 1.62 ND ND ND 1.24 ND ND ND

Notes: NA No guidance value or standard available (a) NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006, Summary of Background Levels for Selected Compounds (NYSDOH Database, Outdoor values) * Petroleum Volatile Organic Compounds *** Chlorinated Volatile Organic Compounds *** Volatile Organic Compounds

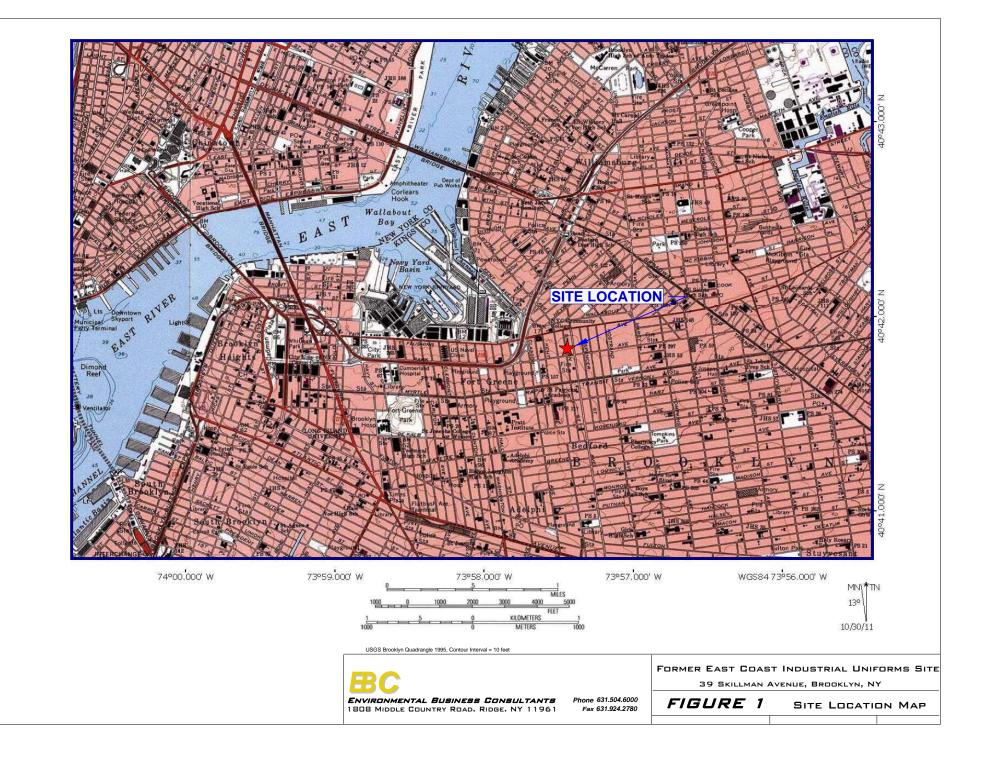
TABLE 12 FORMER EAST COAST INDUSTRIAL UNIFOMS SITE Brooklyn, NY Parameters Detected Above Track 1 Soil Cleanup Objectives

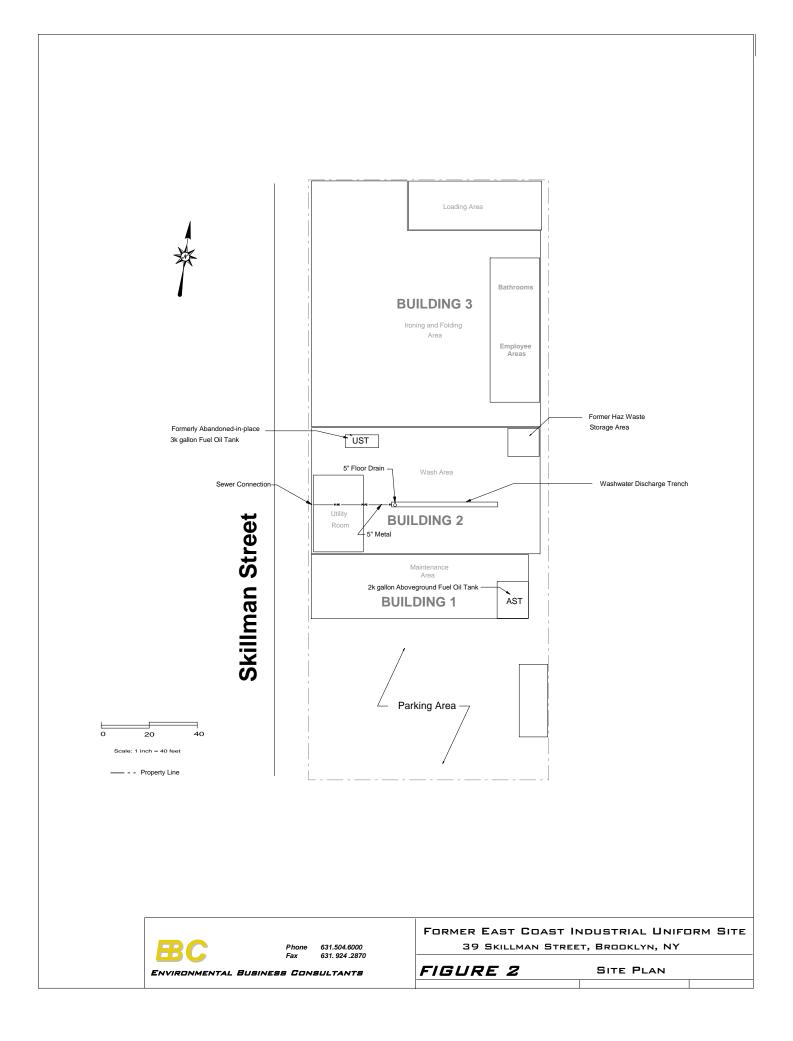
COMPOUND	Range in Exceedances	Frequency of Detection	SB1	SB2	S	B3	SI	B4		SI	B5			SB6		SB7
	Exceedances		(7-9')	(7-9')	(0-1')	(7-9')	(0-4')	(7-9')	(0-5')	(8-10')	(23-25')	(25-27')	(0-5')	(8-10')	(23-25')	(22-25')
Sample Results in µg/kg																
1,2,4-Trimethylbenzene	1,600 - 14,000	6									4,100				1,600	
Acetone	51 -690	9	53 JS	51 S		52 S		51 JS		51 JS				51 JS		
m&p-Xylenes	640-650	2													650 J	
Methylene Chloride	63-410	11									190 JS	190 JS			410 JS	5 100 JS
o-Xylenes	590-790	2													790 J	
Sample Results in µg/kg																
4,4-DDE	6-14	3														
4,4-DDT	4.3-55	2							4.3							
Sample Results in ma/ka																
Barium	592	1														
Cadmium	1,260-22,700	2	1,260		22,700											
Copper	65	1			65											
Mercury	0.25-1.55	5			1.55		0.25		1.52				0.42			
Lead	189-1,220	7			263		244		315				1,110			
Zinc	118-555	7			237		181		272				555			

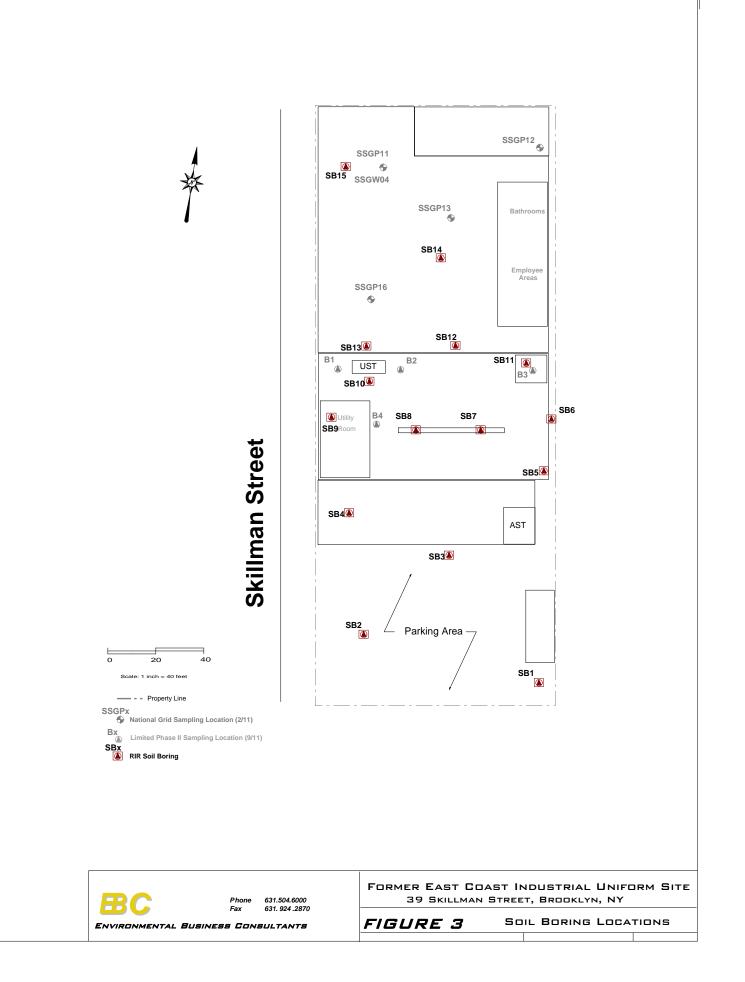
COMPOUND	Range in	Frequency of Detection	S	B8	SB9	S	B10	S	B11		SB12		SE	313		SB14		SI	B15
	Exceedances		(7-10')	(22-25')	(21-24')	(19-21')	(22-25')	(0-1')	(22-25')	(0-1')	(8-10')	(22-25')	(8-10')	(22-25')	(7-10')	(12-15')	(22-25')	(8-10')	(23-25')
Sample Results in ug/kg																			
1,2,4-Trimethylbenzene	1,600 - 14,000	6			1		10,000		14,000			9,600		12,000					1
Acetone	51 -1,300	9	56 S	690 JS													1,300 JS		
m&p-Xylenes	640-650	2												640					
Methylene Chloride	63-410	11		96 JS	63 JS	110 J	6 320 JS		310 JS			300 JS	130 JS	5 140 JS	b l				
Napthalene	18,000	1							18,000										
o-Xylenes	590-790	2												590					
Sample Results in µg/kg			000000000000000000000000000000000000000											-			100000000000000000000000000000000000000		
Benzo(a)anthracene	1,300-3300	2				1										3,300			1,300
Benzo(a)pyrene	2,600	1														2,600			
Benzo(b)fluoranthene	1,300-3100	2														3,100			1,300
Benzo(k)fluoranthene	980	1														980			
Chrysene	1,200-3200	2														3,200			1,200
Dibenzo(a,h)anthracene	370	1														370			
Dibenzofuran	670	1														670			1
Indeno(1,2,3-cd)pyrene	570-1100	2														1,100			570
Sample Results in µg/kg			000000000000000000000000000000000000000												1				0000000000000000
4,4-DDE	6-14	3						14	6						1				T
4,4-DDT	4.3-55	2						55	23										
Sample Results in mg/kg																			
Barium	592	1						592							1				T
Cadmium	1,260-22,700	2			1	i	1	1	1			1			1				1
Copper	65	1				1		1							1				1
Mercury	0.25-1.55	5			1	1		Î							Î.			0.36	1
Lead	189-1.220	7				İ		1.220 N		238 N					189 N			220 N	đ
Zinc	118-555	7		1		1		474		234	118			1		1			+

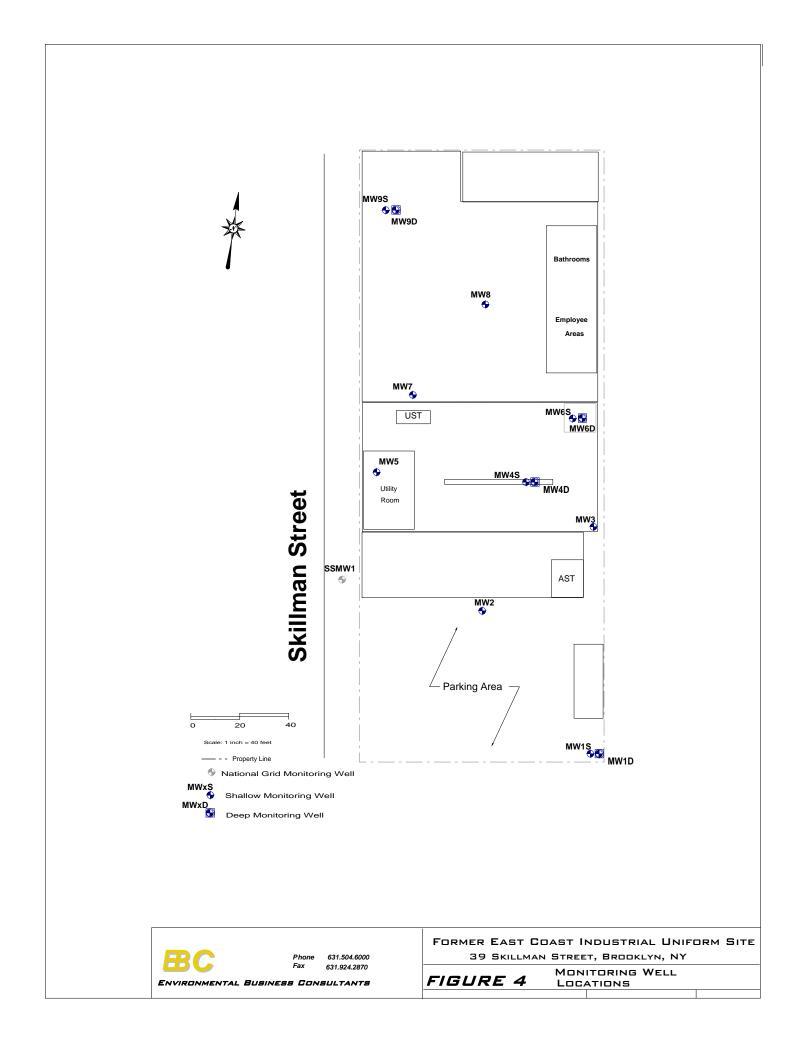
TABLE 13 FORMER EAST COAST INDUSTRIAL UNIFORMS SITE Brooklyn, NY Parameters Detected Above Ambient Water Quality Standards

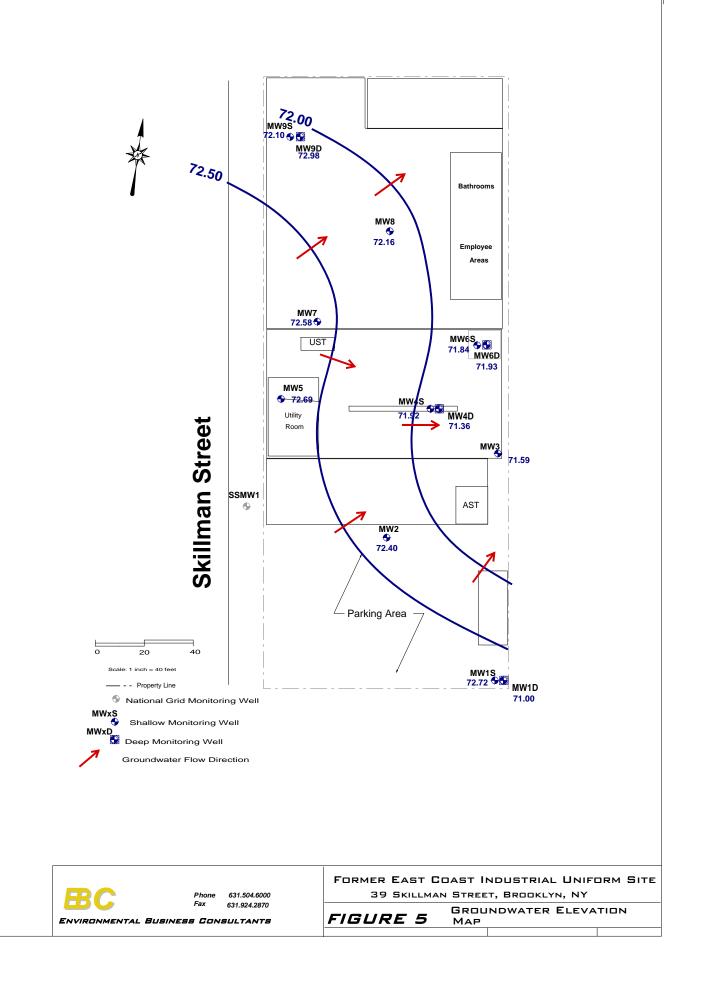
VOCs / SVOCs		-		-			-					-				-			
COMPOUND	Range in Detections	MW1D	MW2	MW3	MW4S	MW4D	MW5	MW6S	MW6D	MW7	MW8	MW9S	MW9D	SB2	SB4	SB6	SB8	SB10	SB12
Sample Results in (µg/L)																			
1,2,4-Trimethylbenzene	5.2-290				7.1	5.8		290	5.2	59						110	7.9	60	63
1,3,5-Trimethylbenzene	6.5-35							35		11						27		9.5	6.5
Benzene	1.7-23					1.7			2.5			5.8 S	23						27
Chloroform	8.4												8.4 J						
cis-1,2-Dichloroethene	5.1-54			5.1	6.4		8.5	5.8	9.5	54	24							6.8	
Ethyl Benzene	10-26							48		10			11			20			66
Isopropylbenzene	6-25							25		6						10			14
m/p-Xylenes	6.3-35							35		6.3									
n-Butylbenzene	5.1-24							24		5.1						5.6			
n-Propylbenzene	6.4-46			8.1				46		9.2						16		6.4	17
o-Xylene	6.3-20							6.3		6.8						20			
Tetrachloroethene	6.8-540		16				18	25	6.8	540	33			5.3	6.9		8.4	40	
Trichloroethene	14-53	14					15			53	15								
2-Methylnapthalene	53-2000							2000								750		53	75
Benzo(a)anthracene	0.022-33															3.3	0.067	0.022	0.21
Benzo(b)fluoranthene	0.056-33															3.3	0.056		0.18
Benzo(k)fluoranthene	0.022-1.7															1.7	0.022		0.067
Bis(2-ethylhexyl)phthalate	9.8										9.8								
Chrysene	0.022-3.9															3.9	0.089	0.022	0.19
Fluorene	130		-					130 J											i
Indeno(1,2,3-cd)pyrene	0.022-1.1															1.1	0.022		0.067
Naphthalene	290-550							550								290			
Phenanthrene	52-380							380		52						150			

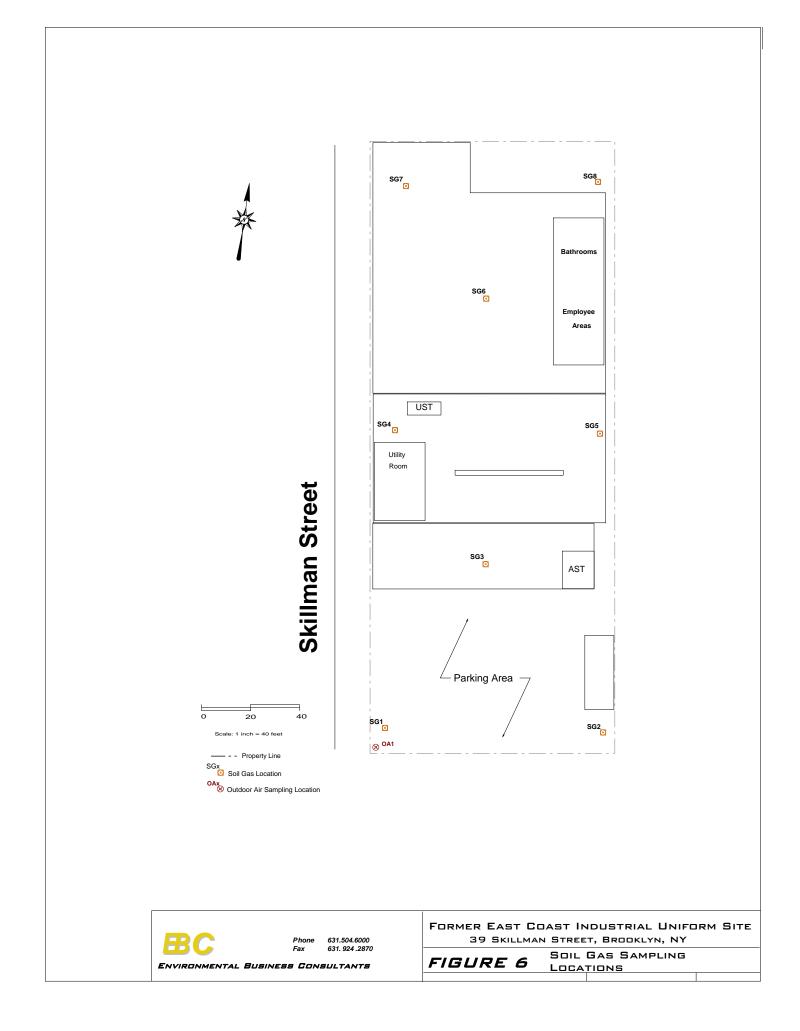

Metals (dissolved)

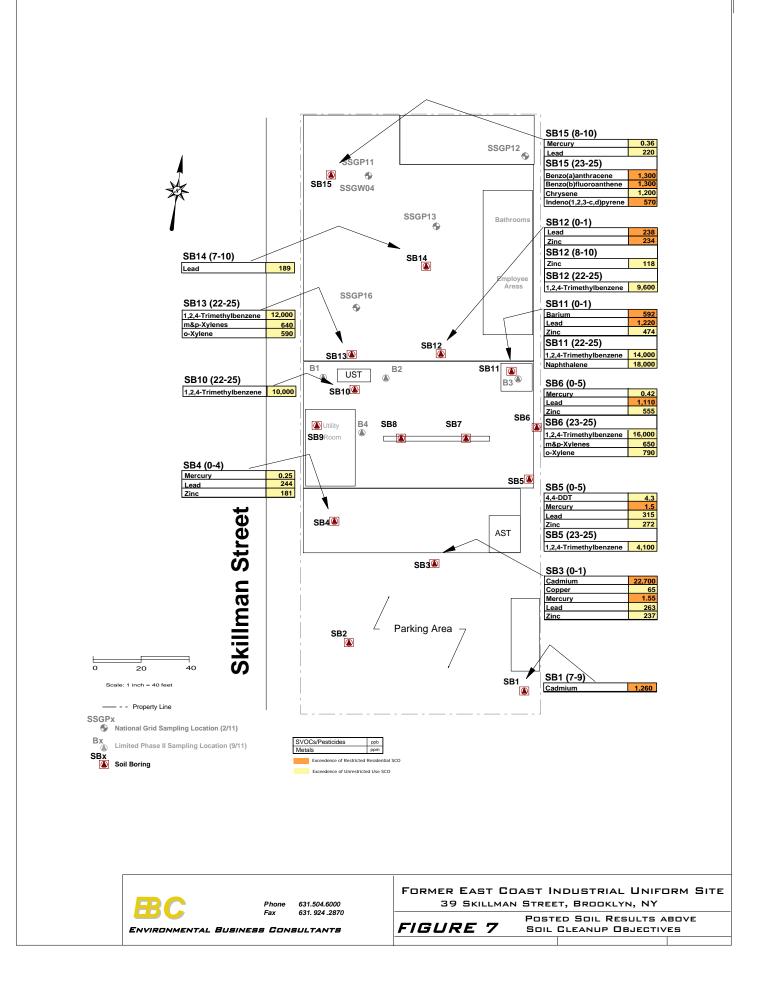

COMPOUND	Range in Detections	MW1S	MW2	MW3	MW4S	MW5	MW6S	MW6D	MW7S	MW8	MW9S
Sample Results in (µg/L)											
Iron	510-7680	510	710	3570	6250 N	1240 N	7680	580 N	540		760
Magnesium	130000										130000
Manganese	650-9730	650	2690	1320	5970	9730	6040	3550	7860	2330	8690
Sodium	25400-116000	74700	109000	48300 N	41200 N	40700 N	54200 N	25400 N	76100	102000	116000

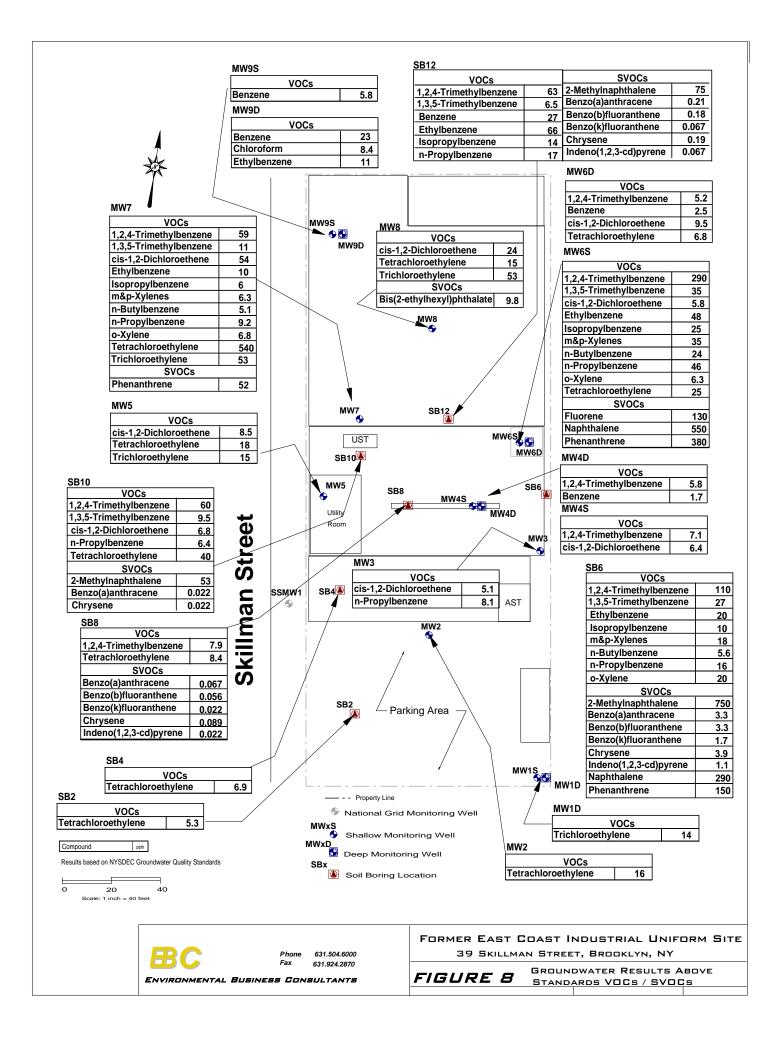

Metals (total)

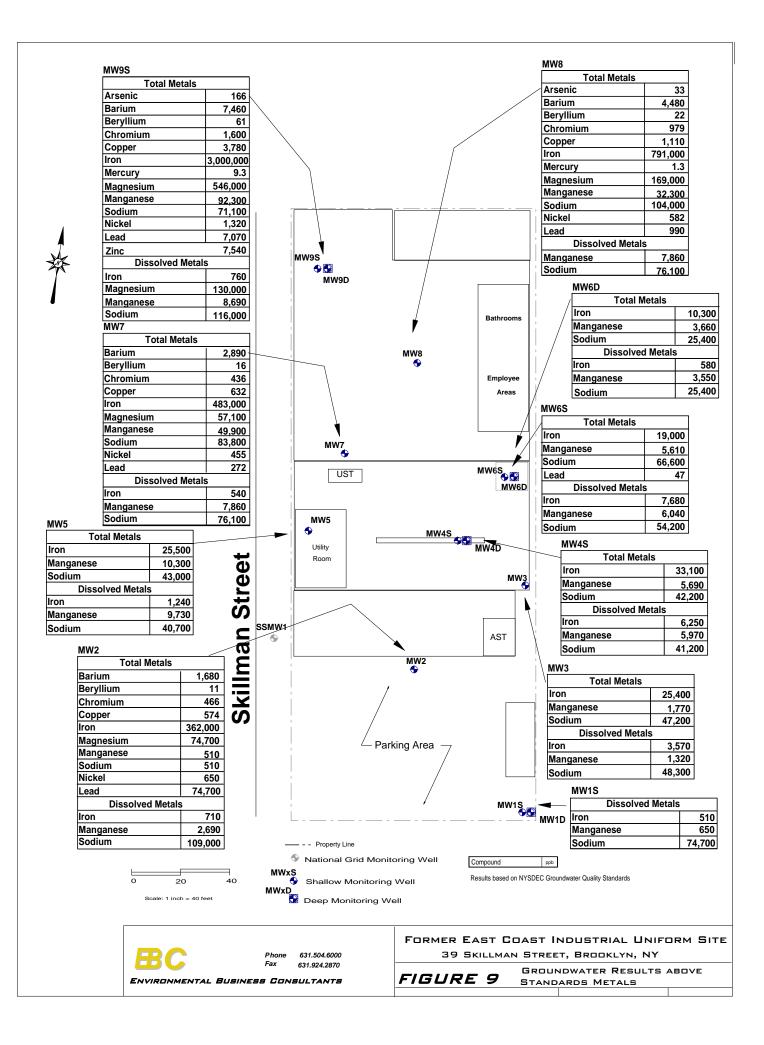

COMPOUND	Range in Detections	MW2	MW3	MW4S	MW5	MW6S	MW6D	MW7	MW8	MW9S
Sample Results in (µg/L)										
Arsenic	33								33	
Barium	1680-4480	1680						2890	4480	
Beryllium	11-22	11						16	22	
Chromium	436-979	466						436	979	
Copper	574-1110	574						632	1110	
Iron	760-791000	362000	25400	33100	25500	19000	10300	483000	791000	760
Mercury	1.3								1.3	
Magnesium	57100-169000	86000						57100	169000	130000
Manganese	1770-49900	12600	1770	5690	10300	5610	3660	49900	32300	8690
Sodium	25400-116000	102000	47200	42200	43000	66600	25400	83800	104000	116000
Nickel	344-582	344						455	582	
Lead	47-990	368				47		272	990	
Zinc	7540									7540

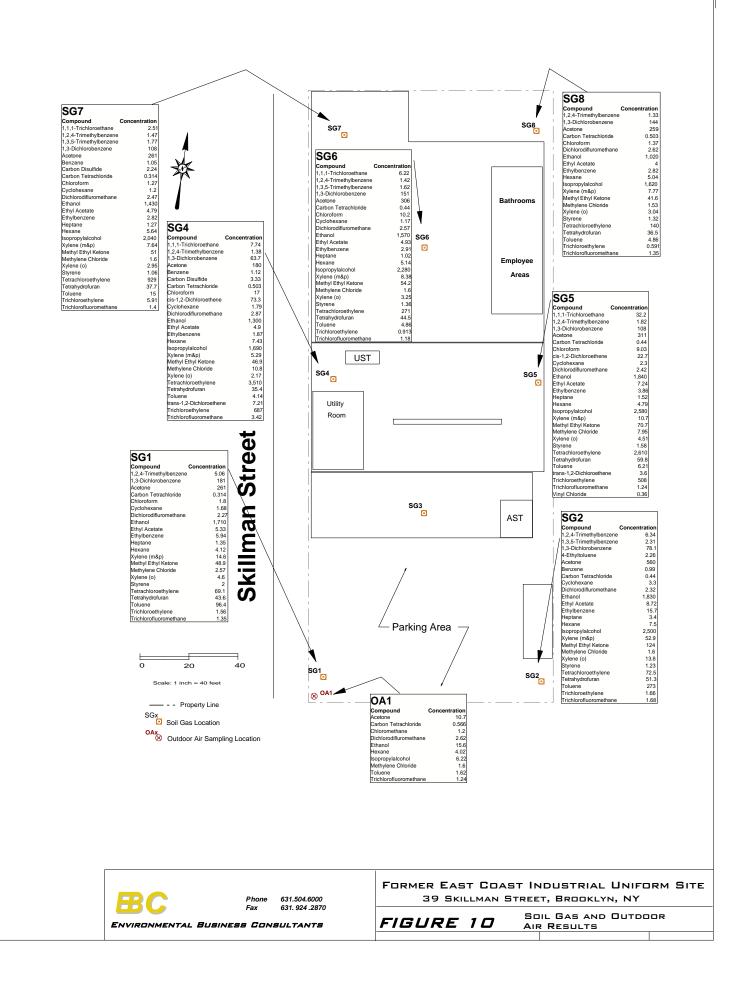

FIGURES











ENVIRONMENTAL BUSINESS CONSULTANTS

					SB1	Boring	g Log					
Location: Perf	form	ned in th	e s	southeas	<u> </u>		o Water	Site Elevation Datum				
									grade.)			
Site Name: SSL	_11()1		Address		Dreakhr		Date	DTW	Ground Elevation		
				39 SKIII	nan Street,	БГООКІУГ	1, IN I	Groun	dwater			
Drilling Compan	-				Method:				pth			
Eastern Environ	nme	ntal Sol	utio	ons	6610DT - C		е	23	Well Specifications			
Date Started:		Date Completed:										
6/4/2012	th.				6/4/2012					None		
Completion Dep 30 feet	Juri.				Geologist Dominick N	losca						
SB1		DEPTH	-		SAMPLES							
001		(ft belov		Reco-	Blow	, 		SOIL [DESCRIF	PTION		
(NTS)		grade)		very	per	PID						
· · · · ·		0 /		(in.)	6 in.	(ppm)						
	-	0										
		- 0					2" - Brov	wn sandv	fill materi	al composed primarily of		
										me gravel		
		- 5					23" - Fir	m brown	silty sand	with some gravel		
		_					1" - Brov	wn siltv sa	and with a	large red rock fragment		
		to								race silt and some gravel		
		- 10		32		0.0						
		10					*Retained	d soil same	ole SB1(7-9,)		
										e silt and some gravel		
		to								-		
		_		30		0.0						
		15										
							6" - Brov	wn sand v	with trace	silt and some fine gravel		
		to					30" - Bro	own sand	with some	e fine gravel		
		_		36		0.0						
		- 20										
							17" - Bro	own sand	with fine	gravel		
		to						ge stone		-		
		_		25		0.0	0.0 7" - Light brown fine sand with trace silt					
		25										
		0					36" - Sil	ty sand w	ith fine gra	avel - Wet at ~ 25ft		
		to										
		_		36		0.0						
		30					*Retained soil sample SB1(24-26) *Retained soil sample SB1(28-30)					
								/				
		-										
Notes:	lotes:											

Refusal was encountered at ~ 25 feet. A 2nd soil boring was performed immediately adjacent to the orginal location to collect a single discrete soil sample from the interval 25 to 30 feet.

					SB2	Boring	g Log				
Location:	Perform	ned ~ 3	32' fi	rom the s	undary	Depth t	o Water	Site Elevation Datum			
	and ~ 1	15' from	n the	e western	property bo		(ft. from	n grade.)			
Site Name	e: SSL11	01		Address	:			Date	DTW	Ground Elevation	
				39 Skillr	nan Street,	Brooklyr	n, NY				
						-		Groun	dwater		
Drilling Co	mpany:				Method:			de	pth		
		nental Solutions 6610DT - Geoprobe						23-24 Well Specifications			
Date Start					Date Comp		-				
6/4/2012					6/4/2012						
Completio	n Depth:				Geologist					None	
30 feet	-				Dominick N	<i>l</i> losca					
SB	2	DEPT	Ή		SAMPLES						
	_	(ft belo		Reco-	Blow			SOIL	DESCRI	PTION	
(NT	S)	grade		very	per	PID					
(-,	9.440	- /	(in.)	6 in.	(ppm)					
		_				<u>, , , , , , , , , , , , , , , , , , , </u>					
		0		ļ		┦──┤					
		–						-		I with fragments of	
		– to		30		0.0		e and coa		with trace gravel	
		-		50		0.0				trace silt and some gravel	
		5		1						trace sin and serie graver	
		-					40" - Bro	own sand	ly soil with	trace silt and some gravel	
		_ to								°	
				40		0.0					
		- 10					*5 / /	, .,			
		10							ole SB2(7-9		
		┝								some stones n silty sand, and a large	
		– to		30		0.0	red rock			n sity sand, and a large	
		-				0.0			and with tr	ace silt and some stones	
		15		1							
		Ľ								vith some gravel	
		– to					15" - Fir	ne brown	sand with	trace silt and some gravel	
				33		0.0				1 4	
		- 20					13" - Fir	m brown	silty sand	with some stones	
		_ 20					26" - Bri	own silty	sand with	some gravel - Wet	
		┢		1			at ~ 24 f	-			
		– to		26		0.0		-			
		Γ		1							
		25]					ole SB2(23-		
		L								gravel - Wet	
		– to		40			2" - Crushed stone - Wet				
		┝		42		0.0	0.0 14" - Brown silty sand with gravel - Wet				
		30		1			*Retained	d soil samr	ole SB2(28-	30)	
							, ciumet	a son samp		,	
		F		1							
		-				-					

					SB3	Boring	a Log					
				t from the the lot.		-	o Water grade.)	Site Elevation Datum				
Site Name: SS				Address	:: nan Street, I	Brooklyr	ı, NY	Date	DTW dwater	Ground Elevation		
Drilling Compa Eastern Enviro Date Started: 6/4/2012 Completion De 30 feet SB3	onme	ntal Sc		ons	Method: 6610DT - G Date Comp 6/5/2012 Geologist Dominick M SAMPLES	leted: losca	e	de	-24	Well Specifications Temporary 1" well installed to a depth of 60' with 10' of screen and 50' of riser.		
(NTS)		(ft belo grade	w	Reco- very (in.)	Blow per 6 in.	PID (ppm)		SOIL	DESCRIF	PTION		
		- 0 - to - 5		24		0.0	and bric	k		ial with fragments of coal trace silt and some gravel		
		to 10		26		0.0				trace silt and some gravel		
		- to - 15		28		0.0				trace silt and some gravel		
		- to - 20		34		0.0	34" - Bro	own fine s	sand with	trace silt and some gravel		
		- to - 25		35		25	followed 21" - Sa Slight pe *Retained	12" -Brown fine sand with trace silt and some grave followed by 2" crushed rock 21" - Saturated, firm brown silty sand with fine grave Slight petroleum odor. *Retained soil sample SB3(23-25)				
		- to - 30		32		11	 32" - Brown fine sand with trace silt and some gra Wet at ~21ft *Retained soil sample SB3(28-30) 					
		_										

					SB4	Boring	g Log				
Location:	Perforn	ned ~ 8	0' fi	rom the s		Depth t	o Water	Site Elevation Datum			
	and ~ 1	2' from	the	e western	property bo	bundary.		(ft. from	grade.)		
Site Name				Address				Date	DTW	Ground Elevation	
				39 Skilln	nan Street, I	Brooklyr	n, NY				
						-		Groun	dwater		
Drilling Co	ompany:				Method:				pth		
Eastern E		ental So	lutio	ons	6610DT - C	Geoprob	е		-24	Well Specifications	
Date Star					Date Comp			1			
6/4/2012					6/4/2012					Temporary 1" well	
Completic	on Depth:				Geologist					installed to a depth of	
30 feet					Dominick N	losca				approximately 30'.	
SE	34	DEPT	Н		SAMPLES						
		(ft belo		Reco-	Blow			SOIL	DESCRIP	PTION	
(NT	S)	grade		very	per	PID					
ì	,		,	(in.)	6 in.	(ppm)					
				/	-						
		0				┨──┤	20" D-		fill ment-	rial with fragments of	
		┝						own sand e, coal an	-	rial with fragments of	
		– to		20		10	CONCIER	, coai all			
		F		1							
		5	_	1					le SB4(0-5		
		Ľ	_							al with fragments of	
		– to						e, coal an			
		_		18		0.0	9" - Brov	wn fine sa	and with s	ome gravel	
		10	_								
							35" - Bi	own fine	sand with	trace silt and some gravel	
• • • • • • • • • • •		⊢.						54111116		and one and some graver	
		– to		35		0.0					
		Ľ]							
		15							le SB4(10-		
		F		ļ			34" - Bro	own fine s	and with	trace silt and some gravel	
		– to		34		0.0					
		┝		- 34		0.0					
		20		1							
							21" - Bro	own fine s	and with	trace silt and some gravel -	
		L to	_	1			moist			0	
		– to	_	40		100	19" - Gr	eyish bro	wn fine sa	and with some gravel - Wet	
							at ~ 24f				
		25					*Retained soil sample SB4(23-25)				
		┝	_				30" - Brown fine sand with trace silt and some gra Wet				
		– to		30	30 0.0						
		┝				0.0					
						*Retained soil sample SB4(28-30)					
								·	·		

				SB5	Boring	a Log					
	med ~10 5' from t		-	o Water grade.)	Site Elevation Datum						
Site Name: SSL11			Address			n, NY	Date	DTW dwater	Ground Elevation		
Drilling Company: Eastern Environme Date Started: 6/4/2012 Completion Depth:		lutio	ons	Method: 6610DT - G Date Comp 6/4/2012 Geologist		9		pth -24	Well Specifications None		
30 feet SB5 (NTS)	DEPT (ft belo grade	w	Reco- very (in.)	Dominick M SAMPLES Blow per 6 in.			SOILI	DESCRIF	PTION		
	0 to 5 to 10 10 15 to to		30 20 24		15 12 0.0	coal, coa *Retained 2" - Cru: 18" - Da *Retained 24" - Bro	ncrete, ar <u>d soil samp</u> shed stor rk brown <u>d soil samp</u> own sand	nd brick ble SB5(0-5, re sand with ble SB5(8-1) with some with some	some gravel 0) e gravel		
	20 to 25 to 30		36 40 46		0.0 800 900 40	Moist 16" - Gru some gr * <i>Retained</i> 13" - Fir Wet 33" - Bro petroleu	 16" - Grey/black stained fine sand with trace silt a some gravel - Strong odor - Wet at ~ 23 ft *Retained soil sample SB5(23-25) 13" - Fine black sand with a strong petroleum odor 				
							<u>, oon o</u> annp				

					SB6	Boring	g Log				
Location:	Perforr	ned 12	0' fr	om the so		Depth t	o Water	Site Elevation Datum			
			prop	perty line	•			(ft. from	grade.)		
Site Name				Address				Date	DTW	Ground Elevation	
				39 Skillr	nan Street,	Brooklyn	n, NY				
					·			Groun	dwater		
Drilling Co	ompany.			1	Method:			depth			
	Environmental Solutions 6610DT - Geoprobe								-24	Well Specifications	
Date Star			Jun	0110	Date Comp		<u> </u>				
6/4/2012					6/4/2012						
Completic	n Denth				Geologist			1		None	
30 feet	n Depin.				Dominick N	10000					
			-1.1	1							
SE	00	DEPT		Dest	SAMPLES	,					
/h !	-0)	(ft bel		Reco-	Blow			SOIL	DESCRI	TION	
(NT	5)	grade	∋)	very	per	PID					
				(in.)	6 in.	(ppm)					
		0									
		ΓŤ			1		13" - Bro	own sand	v fill mate	rial with fragments of	
				1				e, coal an	•		
		– to		13		0.0		-,			
		Γ		1							
		5	_						ole SB6(0-5		
		L					19" - Bro	own sand	l with som	e gravel	
		– to									
		L ~		19		0.0					
		- 10					*Deteine				
		10				+			ole SB6(8-1		
		┝		4			32 - Br	own sand	l with som	e graver	
		– to		32		0.0					
		┢		52		0.0					
		15		1							
				1	1	1 1	28" - Bro	own sand	l with som	e gravel	
		- to		1						some gravel	
		- to	_	38		0.0				-	
		Ľ	_]							
		_ 20									
		L		4						stained sand with some	
		– to				1			trong odo		
		F		48		150				e sand with some gravel -	
		- 25		4						bleum odor	
		25		 		+			ole SB6(23-		
		┝	_	4				-	oleum od	sand with some gravel -	
		– to		46		32				gravel - Wet - Slight odor	
		⊢	_	+0		52				ice silt - Wet - Slight odor	
		30		1							
	*Retained soil sample SB6(28-30)							/			
		F	_	1							
					1						

				SB6	Boring	g Log					
Location: Perfor forme			approxim	he		o Water grade.)	Site Elevation Datum				
Site Name: SSL1		1	Address 39 Skillr	s: man Street, I	Brooklyr	n, NY	Date	DTW	Ground Elevation		
Drilling Company: Eastern Environm Date Started: 6/4/2012 Completion Depth 30 feet	ental	Solut	ions	Method: 6610DT - G Date Comp 6/4/2012 Geologist Dominick M	leted:	e		pth -24	Well Specifications None		
SB6 (NTS)	(ft b	PTH elow .de)	Reco- very (in.)	SAMPLES Blow per 6 in.			SOILI	DESCRIF	PTION		
	-) _ • _ 5 _	8		0.0				ace silt and some gravel In the macrocore shoe		
	– – t	- - - - 0	27		0.0			with som			
	_	- • - 5 -	33		0.0			with som and with tr	e gravel ace silt and trace gravel		
		。 - - 0	36		0.0	36" - Bro	own sand	with som	e gravel		
	-	• – • – 5 –	42		300	28" - Gr Strong p 8" - Brov *Retained	" - Brown sand - Moist - Slight odor 8" - Grey/black stained fine sand - Wet at ~23ft - trong petroleum odor " - Brown fine sand w/trace gravel - Wet - No odo Retained soil sample SB7(23-25)				
	-	• – • –	20		100	20" - Brown fine sand - Wet - No odor 100 *Retained soil sample SB7(28-30)					
	-	_	-								

			SB8	Boring	g Log				
		e approxin			o Water	Site Elevation Datum			
former Site Name: SSL11		Address 39 Skilli	s: man Street, I	Brooklyr	ı, NY	Date	grade.) DTW	Ground Elevation	
Drilling Company: Eastern Environme Date Started:	ental Solu	itions	Method: 6610DT - C Date Comp		e	de	dwater pth -24	Well Specifications	
6/4/2012 Completion Depth: 30 feet			6/4/2012 Geologist Dominick M					None	
SB8 (NTS)	DEPTH (ft below grade)		SAMPLES Blow per 6 in.	PID (ppm)		SOIL I	DESCRIF	PTION	
	0 - to - 5	15		0.0	15" - Bro	own sand	with som	e gravel	
	to 10	21		0.0			with som		
	_ to _ 15	35		0.0			with som		
	- to - 20	35		0.0			with som	e gravel	
	_ to 	41		60	12" - Brown fine sand 18" - Grey/black stained fine sand w/some gravel - Wet at ~22ft - Strong petroleum odor 11" - Dark brown silty sand - Wet *Retained soil sample SB8(22-25)				
	to 	46		15	46" - Brown fine sand w/trace gravel - Wet - No 15 *Retained soil sample SB8(28-30)				
		_				,		·	

					SB9	Boring	g Log				
Location:	Perforr	ned c	o Water	Site Elevation Datum							
	the are	a forn	nerly	utilized a	as the utility	room.		(ft. from	grade.)		
Site Name			2	Address				Date	DTW	Ground Elevation	
				39 Skillr	nan Street,	Brooklyr	n, NY				
						•		Groundwater			
Drilling Co	mpany:				Method:			depth			
Eastern E		ental S	Soluti	ons	6610DT - C	Geoprob	e	23-24 Well Specifications			
Date Start					Date Comp		<u> </u>		- ·		
6/5/2012	ou.				6/5/2012	notou.					
Completio	n Denth:				Geologist					None	
30 feet	n Dopun				Dominick N	/losca					
SB	Q	DEP	тн		SAMPLES						
50	0	(ft be		Reco-	Blow	,		SOIL	DESCRIF	στιων	
(NT	S)	grad		very	per	PID					
	<i>.</i> ,	grad	,	(in.)	6 in.	(ppm)					
				()	0	(PPIII)					
		0									
										al with fragments of	
		– to	,					e, coal an			
		F		17		0.0	14" - Bro	own fine s	sand with	trace silt and some gravel	
		- 5		-							
		- 5		-			24" Br	own fino (and with	trace silt and trace gravel	
		F	_				24 - DR	JWITTINE	Sanu with	trace sitt and trace graver	
		– to) —	24		0.0					
		F		1 -		0.0					
		10) —				*Retained	d soil samp	ole SB9(7-9,)	
		Ľ					40" - Bro	own sand	with som	e gravel	
		- to									
		_ ~		40		0.0					
		L .,									
		[1	> _			┥──┤		anna fire a	ابنا معموم	trace eilt and erment the	
		┝	_	-			30 - Br	own fine s	sand with	trace silt and some gravel	
		– to) —	36		0.0					
		╞		- 50		0.0					
		20) —	1							
				1			12" - Bro	own sand	w/some of	gravel - Moist-Slight odor	
		L **	. —]						nd - Wet at ~23ft - Strong	
		- to	, <u> </u>	38		50	petroleu			J. J	
		L								t - No odor	
		2	5						ole SB9(21-		
		F		4						- No odor	
		– to	,	40			10" - Brown fine sand with trace silt and some grav				
		┝	_	19		0.0	Wet - N	o odor			
		- 30	n —	-			*Retaine	d soil samr	ole SB9(28-	30)	
	_	Fő		1		+	, totalliet			~~,	
		F		1							

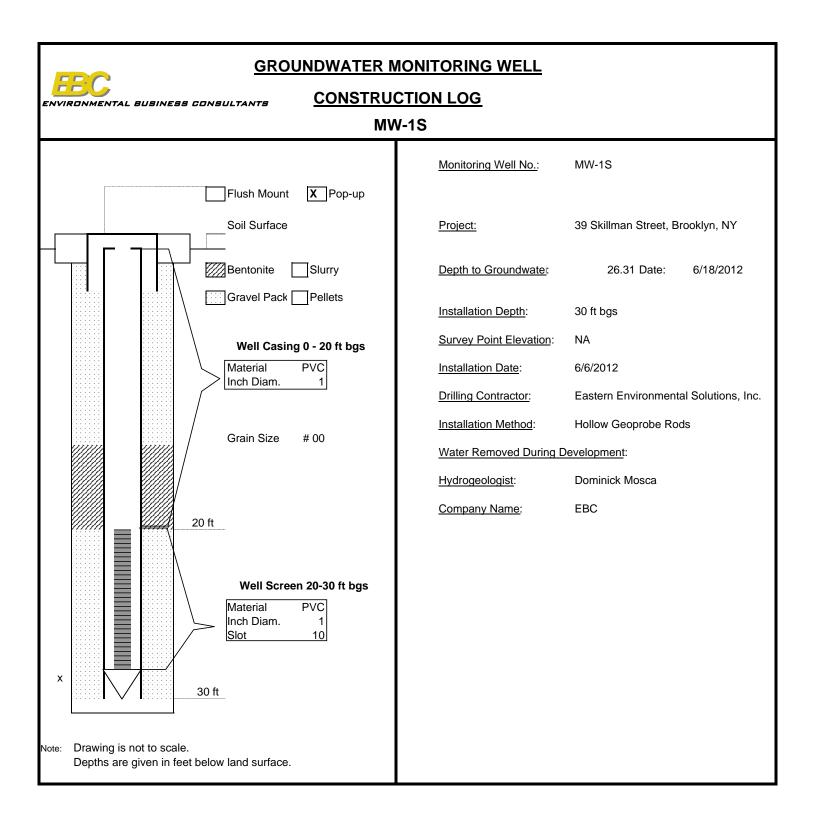
					SB10	Borin	g Log					
SB10 Boring Log Location: Performed adjacent to the UST. ~135' from the southern property boundary & 20' from the western property boundary. Depth to Water Site Elevation Datum (ft. from grade.) (ft. from grade.) Site Elevation Datum												
			-									
			-		-			(ft. from	n grade.)			
Site Name	: SSL110	01		Address	:			Date	DTW	Ground Elevation		
				39 Skillr	nan Street, I	Brooklyr	n, NY	Grour	ndwater			
Drilling Co	mpany:				Method:			de	pth			
Eastern Er	nvironme	ental So	olutio	ons	6610DT - G	Geoprob	е	23-24 Well Specifications				
Date Starte	ed:				Date Comp	leted:						
6/5/2012					6/5/2012					None		
Completion	n Depth:				Geologist					NONE		
30 feet					Dominick M	losca						
SB1	0	DEPT	Н		SAMPLES							
		(ft bel	ow	Reco-	Blow			SOIL	DESCRIF	PTION		
(NTS	S)	grad	e)	very	per	PID						
				(in.)	6 in.	(ppm)						
		0										
		F			<u> </u>	╉╌╌┨	12" - Br	wn sano	ly fill mate	rial with fragments of		
		-	_	1				e, coal an		กลา พายา กลังการการ บา		
		– to		31		0.0			with some	e gravel		
										C C		
		5										
		_					34" - Br	own sand	with som	e gravel		
		– to		34		0.0						
		-		- 34		0.0						
		10					*Retaine	d soil samı	ole SB10(7-	9)		
					1				with som			
		to								5		
		10		35		66						
		L										
		_ 15				┥──┤	00" 5		1			
		-		ł			23" - Br	own sand	with som	e gravei		
		– to	_	35		80	12" - Gr	ev staine	d sand w/	some gravel - Petroleum		
		-					odor	cy stante		Some graver i endieuni		
		20		1								
		L	_							loist - Odor - PID 80		
		to						2	stained sa	nd - Wet at ~22ft - Strong		
				40		10.0	petroleu					
		25		4						It - Wet - Strong odor		
		+ ²⁰				╉╌╴┨				9-21) and SB10(22-25) e gravel - Wet - Slight		
		_		1			petroleu			graner men engin		
		– to		19		0.0	•		and w/som	ne gravel - Wet - No odor		
]					Wet - No d			
		30					*Retaine	d soil sam	ole SB10(28	3-30)		
		_										

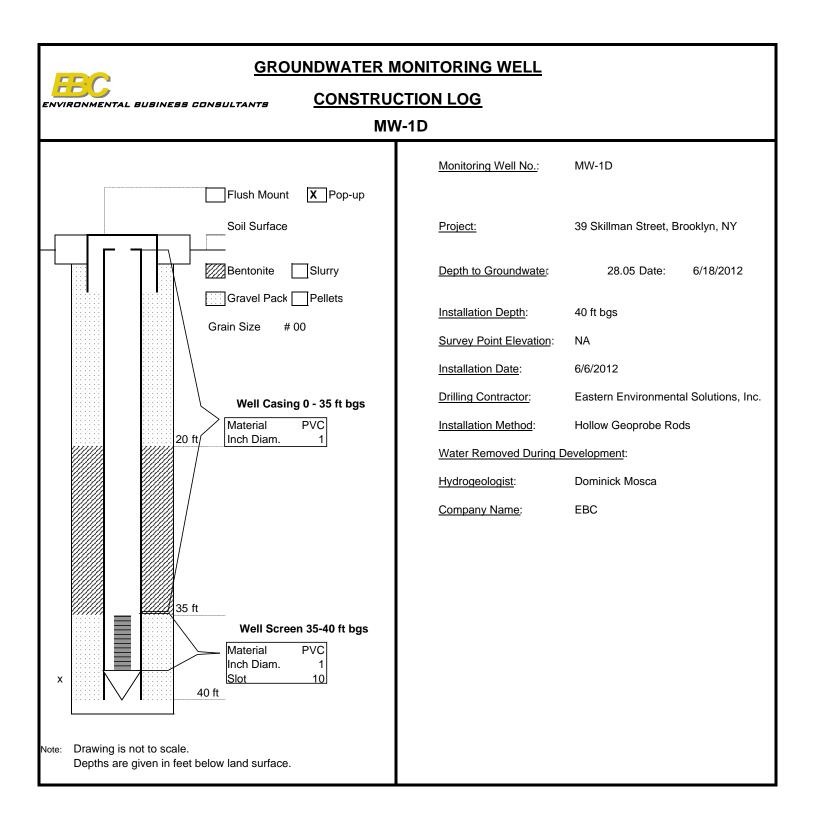
				SB1 ²	1 Bori	ng Log					
Location: Performed in the former hazardous waste storage area								Depth to Water Site Elevation Datum			
								(ft. from grade.)			
Site Name	SSL110	01	Address	:		Date	DTW	Ground Elevation			
			39 Skilln	nan Street, Brooklyn, NY							
							Groun	Groundwater			
Drilling Co				Method:			depth				
Eastern Er		ntal Soluti	ons	6610DT - G	е	23-24 Well Specifications					
Date Starte	ed:			Date Comp							
6/5/2012	-			6/5/2012				None			
Completion	Depth:			Geologist							
30 feet		DEDTU	r	Dominick M							
SB1	1	DEPTH	Dees	SAMPLES							
		(ft below	Reco-	Blow	PID		SOIL DESCRIPTION				
(NTS)	grade)	very (in.)	per 6 in.	(ppm)						
			(111.)	0 111.	(ppm)						
		0									
			-						al with fragments of		
		– to –	7		0.0	concrete	concrete, coal and brick				
					0.0						
		5				*Retained	soil sample SB11(0-1)				
						35" - Bro	own sand	with some	e gravel and some stones		
		- to									
			35		0.0						
		10	-			*Retained soil sample SB11(7-9)					
								with some			
		– to –	30				5				
					0.0						
		- 45 -	4								
		15				25" - Brown sand with some gravel	aravel				
		⊢	30			5" - Brown sand with trace gravel					
		– to –			80		5				
		20				041 0	www./black.etained.eand Wet at 22ft Otrong				
			41				21" - Grey/black stained sand - Wet at ~23ft - Strong petroleum odor 3" - Brown sand - Wet - Strong petroleum odor				
		- to		10	100						
						5 5101					
		25	1					ole SB11(22-			
		⊨ —	4						avel - Wet - Slight odor		
		— to —	40		0.0		6" - Dk brown sand w/some gravel - Wet - No odor 10" - Brown sand w/some gravel - Wet - No odor 16" - Brown fine sand w/some silt - Wet - Slight odor * <i>Retained soil sample SB11(28-30)</i>				
		30	1								
								*			

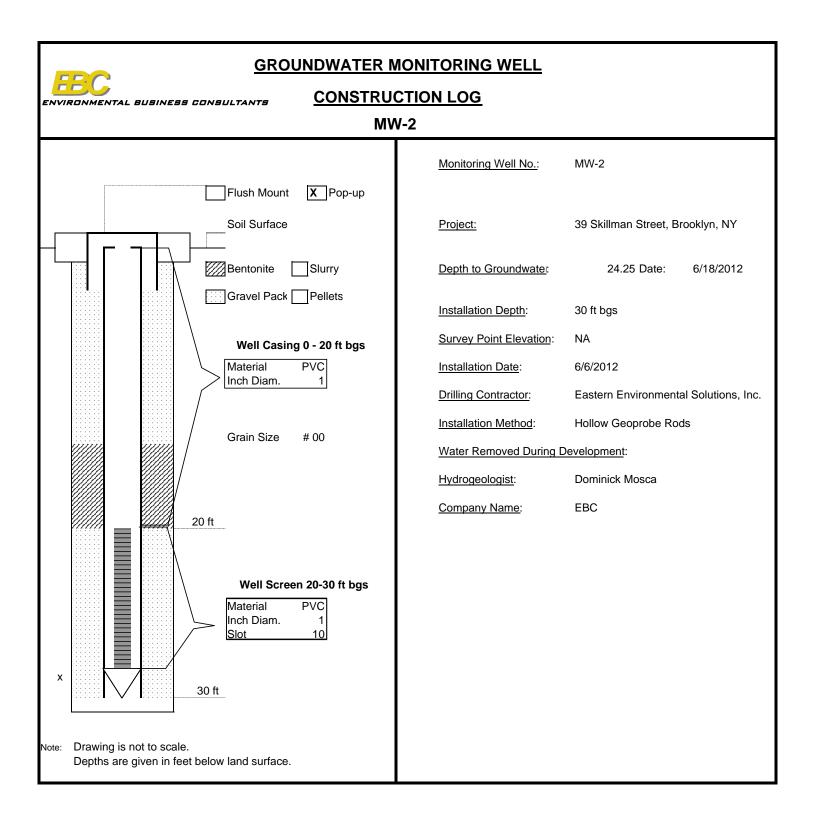
and 40ft from the eastern property boundary.(ft. from grade.)Site Name: SSL1101Address: 39 Skillman Street, Brooklyn, NYDateDTWGround ElevationDrilling Company:Method: 6610DT - GeoprobeGroundwater depthGeothDate Started: 6/5/2012Date Completed: 6/5/2012None							SB1	2 Bori	ng Log				
Site Name: SSL1101 Address: 39 Skillman Street, Brooklyn, NY Date DTW Ground Elevation Datiling Company: Eastern Environmental Solutions Method: 6610DT - Geoprobe 23-24 Well Specifications Date Started: b/5/2012 Date Completed: 6/5/2012 Solutions Date Completed: 6/5/2012 None SB12 DEPTH (rs.) Reco- grade) Blow very (in.) Pilb 6 in. SOIL DESCRIPTION (NTS) 0 - - 16° - Brown sandy fill material with fragments of concrete, coal and brick 0 - - - - 10 16 0.0 - - 10 20 0.0 - - 10 - - - - 10 - - - - 10 - - - - 10 - - - - 10 - - - - 10 - - - - 10 - - - - 10 - - - - 10 - - - - 10 - - - - 10<												Site Elevation Datum	
39 Skillman Street, Brooklyn, NY Groundwater depth Date Started: b/5/2012 Method: 6610DT - Geoprobe 23-24 Well Specifications Date Started: b/5/2012 Date Completed: 6/5/2012 Completion Depth: 30 feet DePTH (the below grade) SAMPLES SB12 DEPTH (the below grade) SAMPLES 0					n the			indary.		(ft. from			
Orilling Company: Groundwater depth Eastern Environmental Solutions 6610D T - Geoprobe 23-24 Well Specifications Date Started: bate Completed: 6/5/2012 None Completion Depth: Geologist Dominick Mosca None 30 feet DePTH SAMPLES SOIL DESCRIPTION (NTS) Image: Completed: Completion Completion SOIL DESCRIPTION (NTS) Image: Completed: Completion Completion Completion 0 Image: Completion Completion Completion Completion 0 Image: Completion Completion Completion Completion 16 0.0 Image: Completion Completion Completion 10 Image:	Site Name: SSL1101 Addres									Date	DTW	Ground Elevation	
Drilling Company: Eastern Environmental Solutions Date Started: Solutions SB12 (NTS) DEPTH (ft below grade) 0 0 16 16 20 0 16 16 16 16 16 16 16 16 16 16						39 Skillr	man Street, Brooklyn, NY						
Eastern Environmental Solutions 6610DT - Geoprobe 23-24 Well Specifications Date Started: bate Completed: bate Completed: bate Completed: bate Completed: bate Started: None S/5/2012 Geologist Dominick Mosca None None SB12 DEPTH (ft below grade) SAMPLES SOIL DESCRIPTION None (NTS) 0 If Blow error PID 6 in. SOIL DESCRIPTION None 0 0 If 0.0 If SOIL DESCRIPTION 10 16 0.0 If Pertense SOIL DESCRIPTION 10 16 0.0 If Pertense SOIL DESCRIPTION 10 16 0.0 If Pertense SOIL DESCRIPTION 10 20 0.0 If Pertense Pertense Pertense 10 20 0.0 If Pertense Pertense Pertense 10 29 0.0 If If Pertense Pertense 10 29 0.0 If If If										Groundwater			
Date Started: Date Completed: None 5/5/2012 Geologist None 30 feet DEPTH Geologist None SB12 DEPTH SAMPLES SOIL DESCRIPTION (NTS) grade) very per PID SOIL DESCRIPTION (NTS) 0 - - 16" - Brown sandy fill material with fragments of concrete, coal and brick - 16 0.0 - - - - 16 0.0 - - - - 16 0.0 - - - - 16 0.0 - - - - 10 - - - - - - 20 0.0 - - - - - - 10 - - - - - - - - 10 - - - - - - - - - - - - - - - - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td colspan="3">depth</td></td<>										depth			
6/5/2012 6/5/2012 None Completion Depth: 30 feet DePTH (ft below grade) SAMPLES SOIL DESCRIPTION (NTS) DEPTH (ft below grade) SAMPLES SOIL DESCRIPTION (NTS) 0 16" - Brown sandy fill material with fragments of concrete, coal and brick to 16 0.0 - to 16 0.0 - to 20 0.0 - to 20 0.0 - to 20 0.0 - to 20 0.0 - to 29 0.0 - to 29 0.0 - to 29 0.0 - to 33 0.0 - to 36" - Grey/black stained sand - Wet at -23ft - Petroleum odor - to 36 50 - to 36 50 - to 36 50 - to 40 30 -				ental 3	Solut	ons		е	23	-24	Well Specifications		
Completion Depth: 30 feet Geologist Dominick Mosca None SB12 Completion Depth: SAMPLES SAMPLES SOIL DESCRIPTION (NTS) Pertopic file Reco- very (in.) Blow 6 in. PID (ppm) SOIL DESCRIPTION 0 0 16" - Brown sandy fill material with fragments of concrete, coal and brick 16" - Brown sandy fill material with fragments of concrete, coal and brick 5 16 0.0 20" - Brown fine sand with trace silt and some gravel 10 20 0.0 "Retained soil sample SB12(0-1) 10 29 0.0 29" - Brown sand with some gravel and some stones 10 29 0.0 3" - Brown sand with some stones 10 3 0.0 36" - Grey/black stained sand - Wet at -23ft - Petroleum odor 10 36 50 "Retained soil sample SB12(22-25) 10 36 50 "Retained soil sample SB12(22-25) 10 30 - Black stained sand - Wet - Stong odor 20 30 - Black stained sand - Wet - Stong odor		ted	:										
Completion Depth: Geologist Dominick Mosca Solid Mosca SB12 DEPTH (ft below grade) SAMPLES SOIL DESCRIPTION (NTS) 0 Image: Solid Control of the state of	6/5/2012										None		
SB12 DEPTH (ft below grade) SAMPLES Reco- very (in.) SOIL DESCRIPTION 0 0 16" - Brown sandy fill material with fragments of concrete, coal and brick 10 16 0.0 5 16 0.0 10 20 0.0 10 20 0.0 10 20 0.0 110 20 0.0 110 20 0.0 110 20 0.0 110 20 0.0 110 20 0.0 110 29 0.0 115 3 0.0 10 3 0.0 115 36" - Grey/black stained sand - Wet at -23ft - Petroleum odor 10 36 50 10 30 30		n [Depth:									None	
(NTS) (ft below grade) Reco- very (in.) Blow per 6 in. PID (ppm) SOIL DESCRIPTION 0 0 16" - Brown sandy fill material with fragments of concrete, coal and brick 16" - Brown sandy fill material with fragments of concrete, coal and brick 10 16 0.0 20" - Brown fine sand with trace silt and some gravel 10 20 0.0 20" - Brown fine sand with trace silt and some gravel 10 29 0.0 29" - Brown sandy with some gravel and some stones 15 3" - Brown sand with some stones 3" - Brown sand with some stones 10 33 0.0 36" - Grey/black stained sand - Wet at -23ft - Petroleum odor 10 30 30 30 30	30 feet												
(NTS) grade) very (in.) per 6 in. PID (ppm) 0 0 16" - Brown sandy fill material with fragments of concrete, coal and brick 16 0.0 'Retained soil sample SB12(0-1) 20 0.0 'Retained soil sample SB12(8-10) 10 'Retained soil sample SB12(8-10) 10 'Retained soil sample SB12(8-10) 15 0.0 15 ''Retained soil sample SB12(8-10) 16 0.0 17 3" - Brown sand with some gravel and some stones 10 ''Retained soil sample SB12(8-10) 10 ''''''''''''''''''''''''''''''''''''	SB	12		DEF	РΤΗ		SAMPLES						
0 (in.) 6 in. (ppm) 0 16" - Brown sandy fill material with fragments of concrete, coal and brick 10 16 0.0 5 20 0.0 10				`						SOIL	SOIL DESCRIPTION		
$\begin{bmatrix} 0 \\ to \\ 16 \\ 5 \\ to \\ 20 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	(NT	S)				-							
to 16 0.0 16" - Brown sandy fill material with fragments of concrete, coal and brick 5 16 0.0 "Retained soil sample SB12(0-1) to 20 0.0 "Retained soil sample SB12(8-10) 10 "Retained soil sample SB12(8-10) 29" - Brown sand with some gravel and some stones to 29 0.0 3" - Brown sand with some stones to 3 0.0 3" - Brown sand with some stones to 3 0.0 36" - Grey/black stained sand - Wet at -23ft - Petroleum odor to 36 50 "Retained soil sample SB12(22-25) to 40 30 - Slight odor						(in.)	6 in.	(ppm)					
to 16 0.0 16" - Brown sandy fill material with fragments of concrete, coal and brick 5 16 0.0 "Retained soil sample SB12(0-1) to 20 0.0 "Retained soil sample SB12(8-10) 10 "Retained soil sample SB12(8-10) 29" - Brown sand with some gravel and some stones to 29 0.0 3" - Brown sand with some stones to 3 0.0 3" - Brown sand with some stones to 3 0.0 36" - Grey/black stained sand - Wet at -23ft - Petroleum odor to 36 50 "Retained soil sample SB12(22-25) to 40 30 - Slight odor				()								
$\begin{bmatrix} t_0 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -$				F Ì	_				16" - Bro	own sand	ly fill mate	rial with fragments of	
$\begin{bmatrix} 1 & 16 & 0.0 \\ -5 & -20 & 0.0 \\ -10 & 20 & 0.0 \\ -10 & -20 & 0.0 \\ -10 & -29 & 0.0 \\ -10 & -29 & 0.0 \\ -15 & -29 & 0.0 \\ -15 & -3 & 0.0 \\ $				Ľ.]					•	Ŭ	
to 20 0.0 20" - Brown fine sand with trace silt and some gravel 10				- 10 -		16		0.0					
to 20 0.0 20" - Brown fine sand with trace silt and some gravel 10				Ŀ,					*P-12 (and a 1) a second a OP (0/0, 1)				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				- '	· _	-							
$\begin{bmatrix} 10 \\ 10 \\ 10 \\ 29 \end{bmatrix} = \begin{bmatrix} 20 \\ 0.0 \\ 8etained soil sample SB12(8-10) \\ 29" - Brown sand with some gravel and some stones \\ 29" - Brown sand with some gravel and some stones \\ 29" - Brown sand with some stones \\ Rock stuck in the bottom of the macrocore shoe \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 2$				┝		-			20° - Bi	rown fine	sand with	trace slit and some gravel	
10				- to	o —	20		0.0					
to 29 0.0 29" - Brown sand with some gravel and some stones 15				F	_			0.0					
to 29 0.0 15				[1	0				*Retained	d soil samp	ole SB12(8-	10)	
15 15 15 15 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 21 225 10 25				Ľ	_				29" - Bro	own sand	with som	e gravel and some stones	
15 3 0.0 3" - Brown sand with some stones Rock stuck in the bottom of the macrocore shoe 20 3 0.0 36" - Grey/black stained sand - Wet at ~23ft - Petroleum odor 10 36 50 *Retained soil sample SB12(22-25) 10 40 30 - Black stained sand - Wet - Stong odor 32" - Brown fine sand w/some silt and trace gravel - Wet				– t	o —			0.0					
to 3 0.0 3" - Brown sand with some stones Rock stuck in the bottom of the macrocore shoe 20 36 0.0 36" - Grey/black stained sand - Wet at ~23ft - Petroleum odor to 36 50 *Retained soil sample SB12(22-25) to 40 30 - Black stained sand - Wet - Stong odor 32" - Brown fine sand w/some silt and trace gravel - Wet				╞	_	- 29		0.0					
to 3 0.0 3" - Brown sand with some stones Rock stuck in the bottom of the macrocore shoe 20 36 0.0 36" - Grey/black stained sand - Wet at ~23ft - Petroleum odor to 36 50 *Retained soil sample SB12(22-25) to 40 30 - Black stained sand - Wet - Stong odor 32" - Brown fine sand w/some silt and trace gravel - Wet				F 1	5 -	-							
to 3 0.0 Rock stuck in the bottom of the macrocore shoe 20 - 3 0.0 Rock stuck in the bottom of the macrocore shoe 20 - - 36 - - to 36 50 - - - 25 - - - - - to 40 30 - - - - Sight odor - - - - - - - to 40 30 - - - - - - Sight odor - - - - - - - -		-		⊢ '	~ <u> </u>	1			3" - Brov	wn sand v	with some	stones	
- - - 3 0.0 - 20 - - 36" - Grey/black stained sand - Wet at ~23ft - Petroleum odor to - 36 50 - - 25 - - - - - to - 36 50 - - - 25 - - - - to - 40 30 - Black stained sand - Wet - Stong odor 32" - Brown fine sand w/some silt and trace gravel - Wet - Slight odor				Ŀ.		1							
to 36 50 25 50 to 40 30 36" - Grey/black stained sand - Wet at ~23ft - Petroleum odor *Retained soil sample SB12(22-25) 8" - Black stained sand - Wet - Stong odor 32" - Brown fine sand w/some silt and trace gravel - Wet - Slight odor				Ľ		3		0.0					
to 36 50 25 50 to 40 30 36" - Grey/black stained sand - Wet at ~23ft - Petroleum odor *Retained soil sample SB12(22-25) 8" - Black stained sand - Wet - Stong odor 32" - Brown fine sand w/some silt and trace gravel - Wet - Slight odor				Ļ _		4							
to 36 50 25 - to 40 30 - Sight odor odor *Retained soil sample SB12(22-25) 8" - Black stained sand - Wet - Stong odor 32" - Brown fine sand w/some silt and trace gravel - Wet - Slight odor				⊦ ²	<u> </u>	┨────			26" 0-		atained ca	nd Wat at 22th Datralaum	
Image: constraint of the state of the s				┝		-				ey/DIACK	stained sa	nu - vvet at ~23it - Petroleum	
25 *Retained soil sample SB12(22-25) to 40 30 -Slight odor				⊢ t	o —	36		50	0001				
to 40 30 8" - Black stained sand - Wet - Stong odor 32" - Brown fine sand w/some silt and trace gravel - Wet		-		F	_	1 ~~~							
to 40 32" - Brown fine sand w/some silt and trace gravel - Wet 30 - Slight odor				2	5	1							
40 30 - Slight odor				Ľ	_								
40 30 - Slight odor				– t	o —	40					sand w/so	me silt and trace gravel - Wet	
30 *Retained soil sample SB12(28-30)				F	_	40		30	- Slight	odor			
				- 2	0 -	-			*Retainor	d soil samr	0/0 SR12/20	2-30)	
				⊢ँ	_	1			i letaii let	a son sainp	//0 0012(20	,,	
				F	_	1							

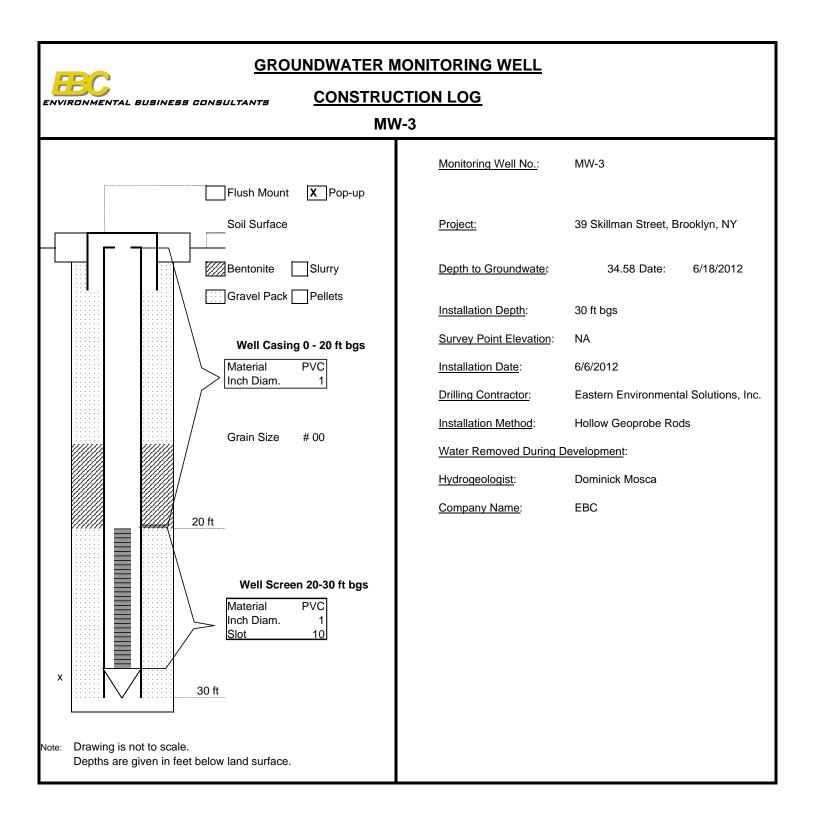
					SB1	3 Borii	ng Log			
Location:	Perform	ned ~10	Oft f	from the	e northern property boundary			Depth to Water		Site Elevation Datum
	and 20 ⁻	ft from tl	he e	eastern p	property bou		(ft. from	grade.)		
Site Name				Address			Date	DTW	Ground Elevation	
			:	39 Skillr	man Street, Brooklyn, NY					
							Groundwater			
Drilling Co	ompany:				Method:			depth		
Eastern E		ental Sol	utio	ns	6610DT - C	e		-24	Well Specifications	
Date Star					Date Comp	-				
6/5/2012					6/5/2012					
Completic	on Depth:				Geologist					None
30 feet					Dominick M					
SB	13	DEPTH	-		SAMPLES					
02		(ft belo		Reco-	Blow			SOIL DESCRIPTION		
(NT	S)	grade)		very	per	PID				
(-,			(in.)	6 in.	(ppm)				
				()	•	(PP/				
	personananan	0	\downarrow				107 -			
		_	_				13" - Bro	own fine s	sand with	some silt
		– to		13		0.0				
		5	_							
		_					18" - Br	own sand	d with som	ne stones - Odor
		- to								
		to to		18		35				
		10	_					-	ole SB13(8-	
		-	_						with some	e gravel and some stones -
		– to	_	35		150	Strong o	bdor		
		_	_	00		100				
		15								
			1				16" - Bro	own sand	with some	e stones - Strong odor
		to								-
				16		165				
		20	+			105	40" 0	ov. ot-!		
		-	-			165			u sand w/s	some gravel - Moist -
	– to	-	36		30	Petroleum odor 23" - Grey/black stained sand - Petroleum odor				
		┝	\neg	00		00	20 - 01	cy/black s	stanieu sa	
		25	\neg				*Retained	d soil samp	ole SB13(22	-25)
			1							gravel - Wet - Slight odor
		to					18" - Bro	own fine s		me silt and some gravel -
		10		40		5	Wet - No	o odor		
		30	+				*Retained	d soil samp	ole SB13(28	-30)
		-	\neg							

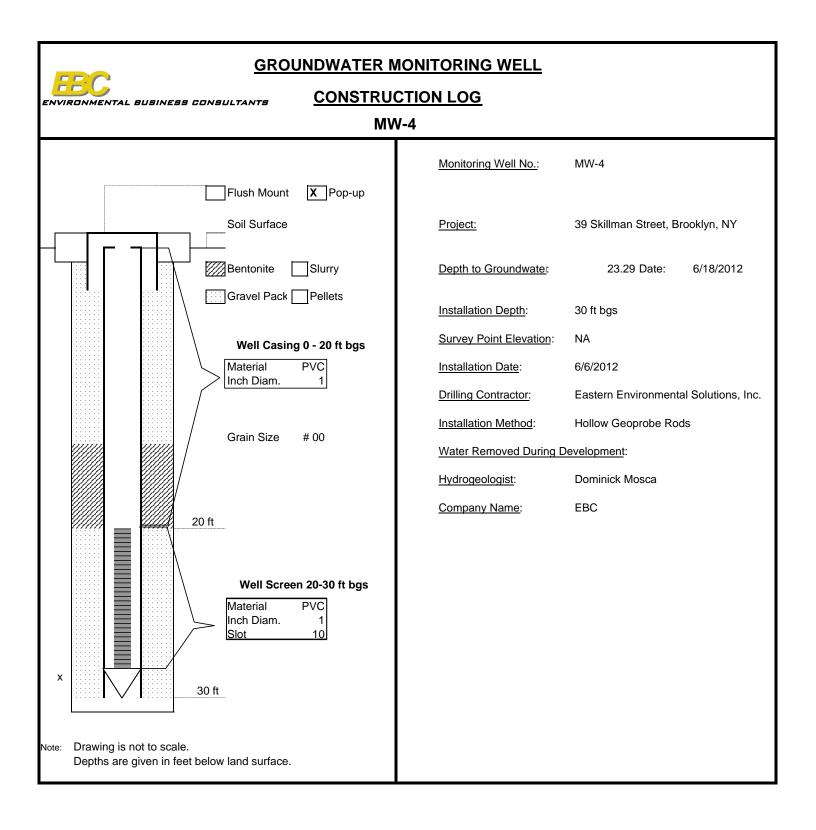
Geologic Boring Log Details

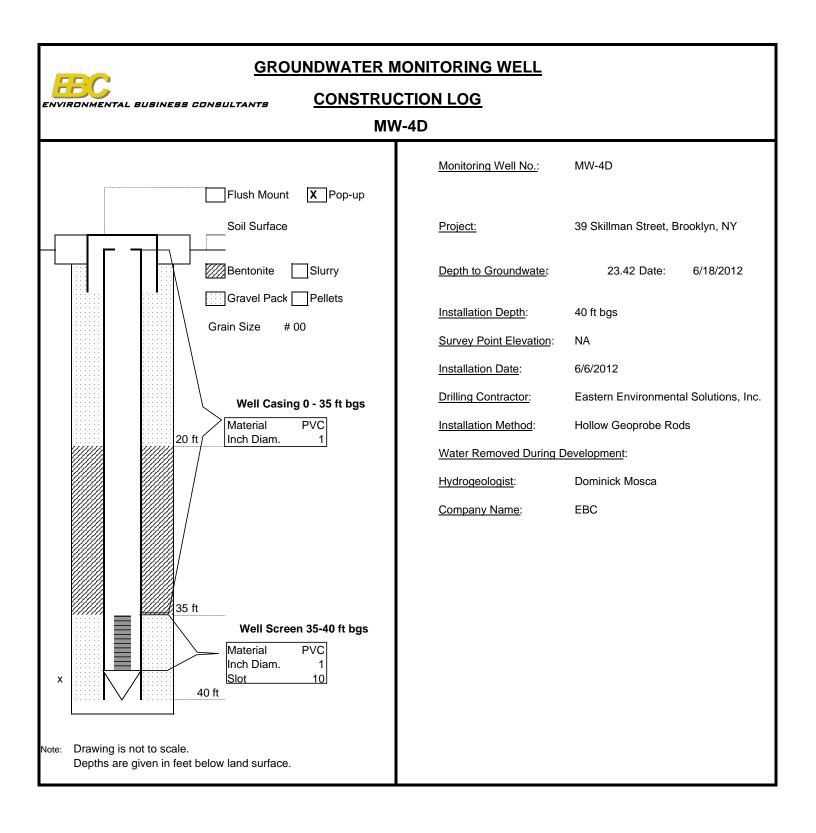

				SB14	4 Bori	ng Log					
Location:	Perforn	ned ~60ft f	rom the r	Depth t	Depth to Water Site Elevation Datum						
				property bou	ndary.			grade.)			
Site Name	: SSL11(01	Address			Date	DTW	Ground Elevation			
			39 Skilln	nan Street, E	n, NY	Groun	dwater				
Drilling Co	mpany:			Method:			de	pth			
Eastern Er		ntal Solution	ons	6610DT - G		е	23	23-24 Well Specifications			
Date Starte	ed:			Date Comp	leted:						
6/5/2012				6/5/2012			-		None		
Completion	n Depth:			Geologist							
30 feet	4	DEDTU	1	Dominick N	losca						
SB1	4	DEPTH (ft b a law)	Deee	SAMPLES							
(NTS	2)	(ft below grade)	Reco- very	Blow	PID		SOIL	DESCRIF	TION		
(111)	5)	graue)	(in.)	per 6 in.	(ppm)						
			()	0	(PPIII)						
		0									
						16" - Bro	own fine s	sand with t	race silt and some gravel		
		- to -	16		0.0						
		5									
						18" - Bro	8" - Brown fine sand with trace silt and some gravel				
		to —	15		0.0						
					0.0						
		10				*Retained soil sample SB14(7-10)					
									material with fragments of		
		- to	22		0.0	concrete	e, coal an	d brick			
			32		0.0						
		15				*Retained	d soil samp	ole SB14(12	-15)		
							-		ial with fragments of		
		to –				concrete	e, coal an	d brick			
			36		0.0						
						2" - Bla	ck sandv	fill materia	al with fragments of		
		– to –				concrete	e, coal an	d brick	-		
			36		0.0		6" -Brown sand w/some gravel - Moist				
		25						l w/gravel a ble SB14(22	and stones - Wet at ~24ft		
									race silt and some gravel -		
						Wet					
		- to	49		0.0						
						*De (= '			201		
	J	30				"Retained	a soli samp	ole SB14(28	-30)		
		<u> </u>									

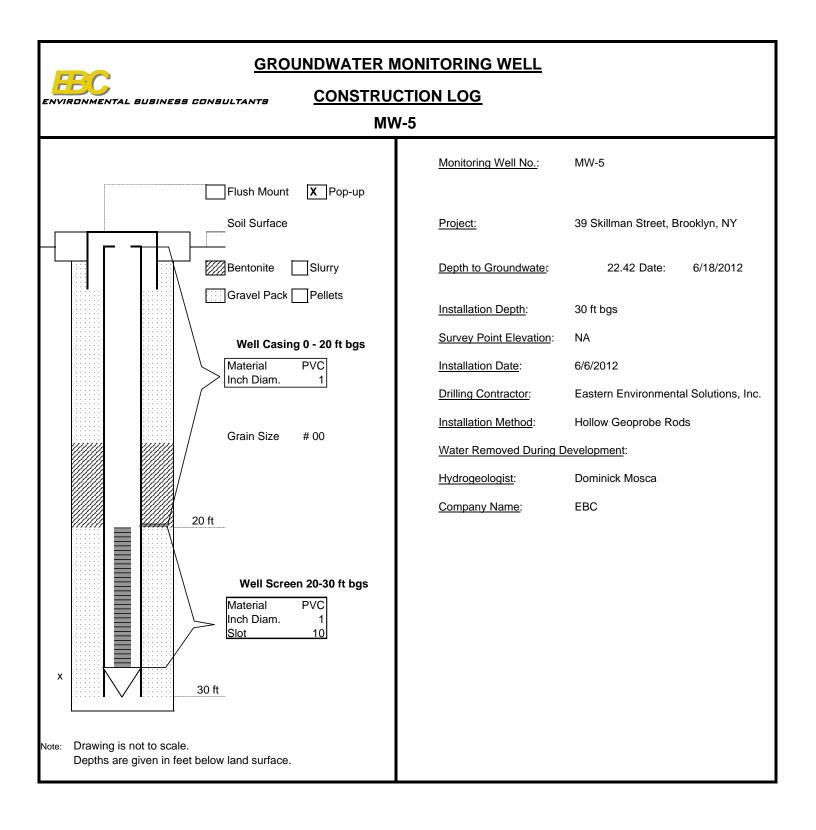

Geologic Boring Log Details

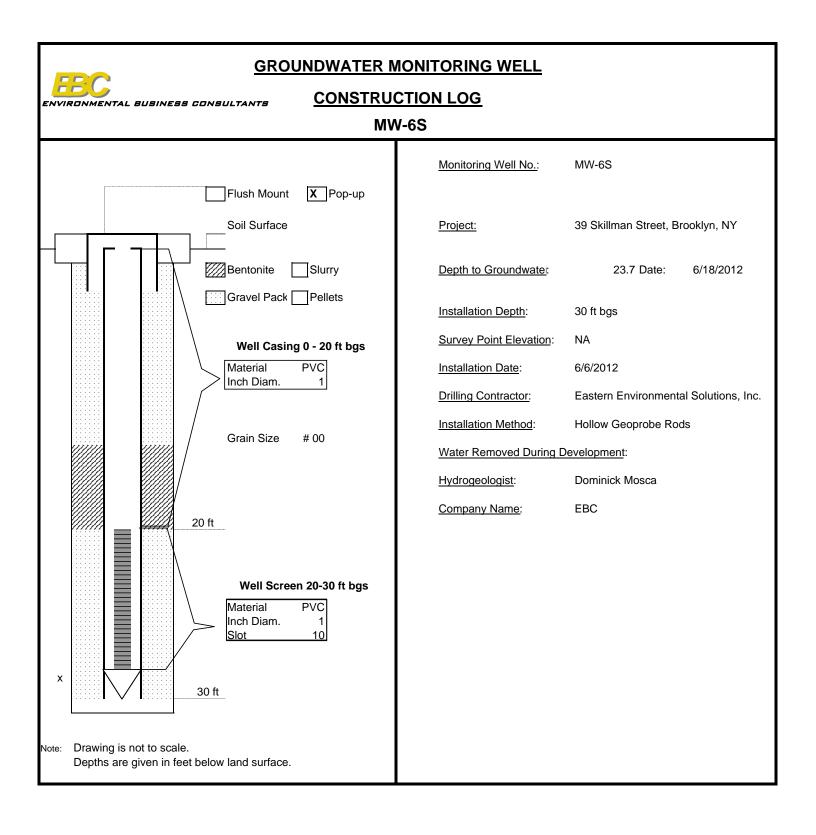


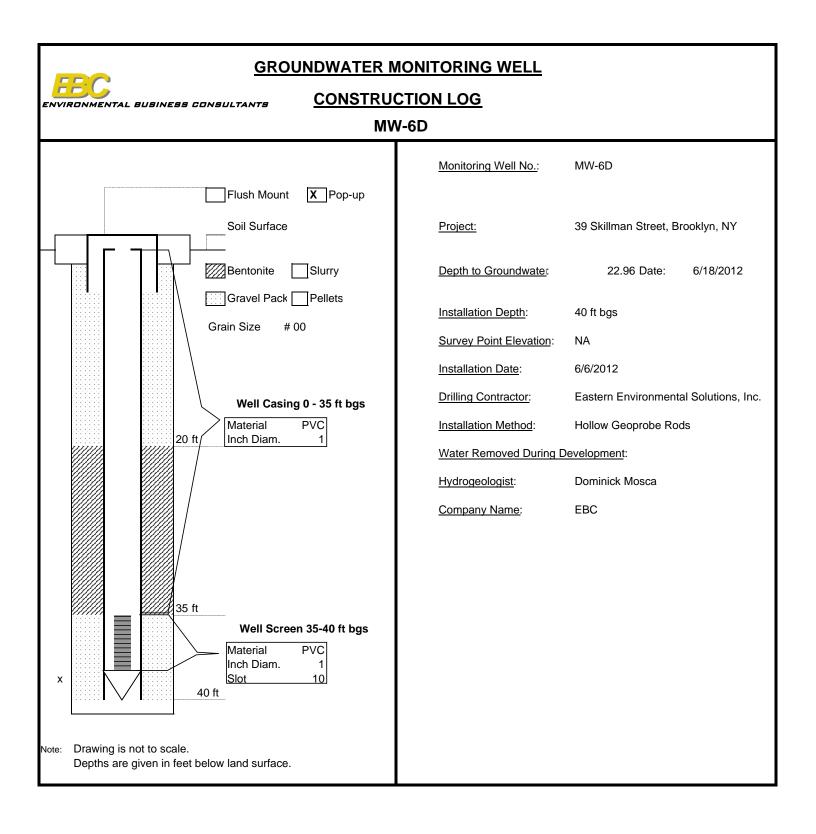

				SB1	5 Borii	ng Log					
Location:	Perforn	ned in the	northwes	<u> </u>		o Water grade.)	Site Elevation Datum				
Site Name	: SSL110	01	Address	:			Date	DTW	Ground Elevation		
			39 Skillr	nan Street, I	Brooklyr	n, NY	Groun	dwater			
Drilling Co	mpany:		4	Method:			de	pth			
Eastern Er	vironme	ental Soluti	ons	6610DT - G		е	23	-24	Well Specifications		
Date Starte	ed:			Date Comp	leted:						
6/5/2012				6/5/2012					None		
Completior	n Depth:			Geologist	_						
31 feet				Dominick M							
SB1	5	DEPTH		SAMPLES		,					
() 17		(ft below	Reco-	Blow			SOIL	DESCRIP	TION		
(NTS)		grade)	very	per	PID						
			(in.)	6 in.	(ppm)						
-		0									
		[_						•	ial with fragments of		
		– to –	10		0.0	concrete	e, coal an	d brick			
			10		0.0						
		5 -									
		- ° -				14" - Br	Brown sandy fill material with fragments of				
							ete, coal and brick				
		_ to	14		0.0						
			_								
		10						ble SB15(8-1			
							own sand e, coal an		ial with fragments of		
		– to –	12		0.0	CONCIER	e, coar an				
		15									
						12" - Bi	rown fine	sand with	trace silt and some stones		
		to —	1		0.0						
			24		0.0	12" - Bi	lack stall	ned sand	- wet		
			_			*Retaine	d soil sam	ole SB15(19	-20)		
									e sand w/trace gravel - Wet		
		– to –				at ~20ft	-		Ç		
			12		0.0						
		- or -				*De (= '*	-l :l ::				
		25 to			+				0-23) and SB15(23-25) me silt and several pieces		
		27	13		0.0				-		
		to	00		0.0	23" - D	k brown	sand with	he SB15(25-27) h some silt and several		
		29	23		0.0	pieces	of wood.	*Retained	soil sample SB15(27-29)		
		to 31	24		0.0	23" - B of wood	rown sar	nd with so	me silt and several pieces		

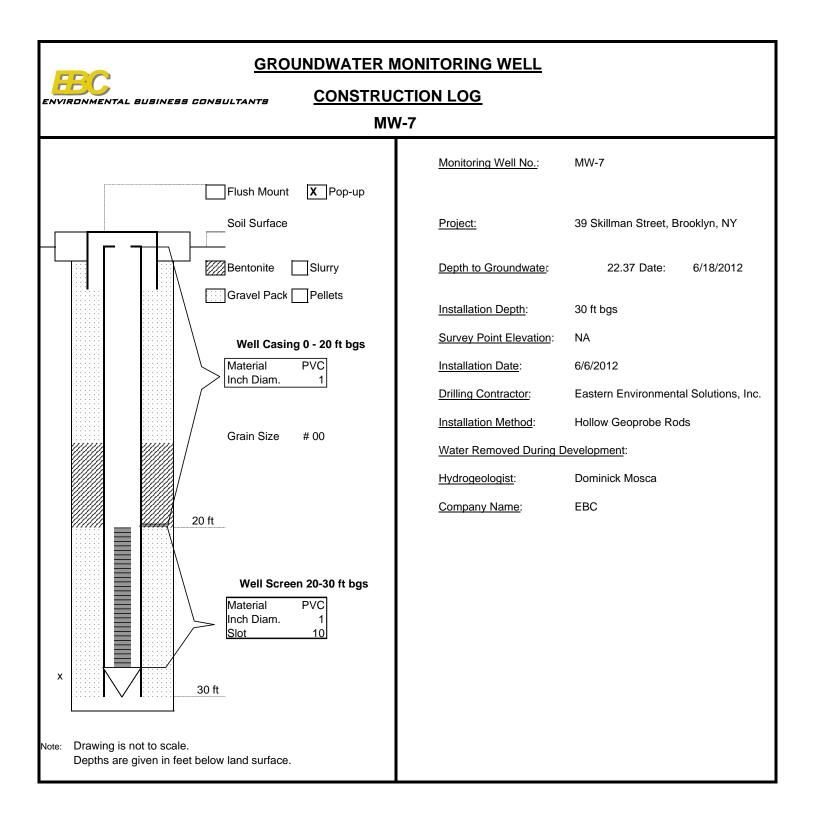

<u>APPENDIX - B</u> Well Construction Logs

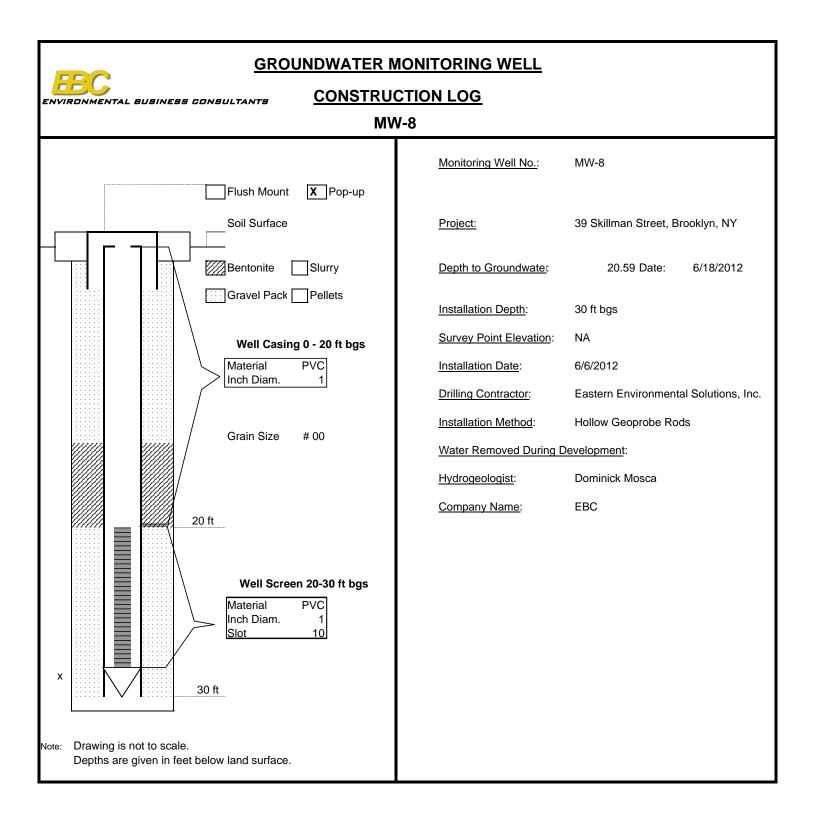


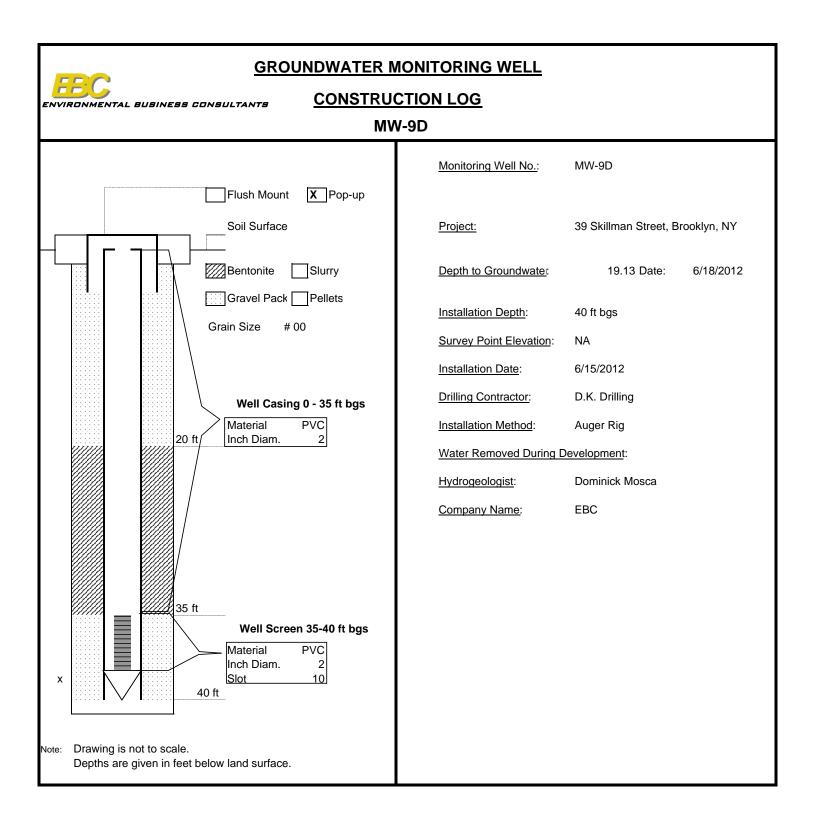












GROUNDWATER M	IONITORING WELL							
ENVIRONMENTAL BUSINESS CONSULTANTS CONSTRUCTION LOG MW-9S								
MIN-35								
Flush Mount X Pop-up	Monitoring Well No.:	MW-9S						
Soil Surface	Project:	39 Skillman Street, Brooklyn, NY						
Bentonite Slurry	Depth to Groundwate:	19.38 Date: 6/18/2012						
	Installation Depth:	30 ft bgs						
Grain Size # 00	Survey Point Elevation:	NA						
Well Casing 0 - 5 ft bgs	Installation Date:	6/14/2012						
Material PVC Inch Diam. 2	Drilling Contractor:	D.K. Drilling						
	Installation Method:	Auger Rig						
	Water Removed During D	Development:						
	Hydrogeologist:	Dominick Mosca						
20 ft	Company Name:	EBC						
Well Screen 20-30 ft bgs Material PVC								
Inch Diam. 2 Slot 10								
x 30 ft								
Note: Drawing is not to scale. Depths are given in feet below land surface.								

Well I.D.: MW1S	
Well Depth (from TOC):	30
Static Water Level (from TOC):	26.58 ft below grade
Height of Water in Well:	3.42 ft
Gallons of Water per Well Volume:	0.14 gallons
Total Required Purge Volume:	0.41 gallons
Actual Volume Purged Before Sample Collection:	0.5 gallons

Date:	6/19/2012
Equipment:	Stainless Steel Check Valve & Disposable Polyethylene Tubing

Time	Pump Rate	Gal. Removed	рН	Cond. (mS/cm)	Temp. (deg. C)	DO (mg/L)	Comments

Well I.D.: MW1D	
Well Depth (from TOC):	40
Static Water Level (from TOC):	27.98 ft below grade
Height of Water in Well:	12.02 ft
Gallons of Water per Well Volume:	0.48 gallons
Total Required Purge Volume:	1.44 gallons
Actual Volume Purged Before Sample Collection:	1.5 gallons

Date:	6/18/2012					
Equipment:	Stainless Steel Check Valve &					
	Disposable Polyethylene Tubing					

Time	Pump Rate	Gal. Removed	рН	Cond. (mS/cm)	Temp. (deg. C)	DO (mg/L)	Comments

Well I.D.: MW2	
Well Depth (from TOC):	30
Static Water Level (from TOC):	24.31 ft below grade
Height of Water in Well:	5.69 ft
Gallons of Water per Well Volume:	0.23 gallons
Total Required Purge Volume:	0.68 gallons
Actual Volume Purged Before Sample Collection:	0.75 gallons

Date:	6/19/2012
Equipment:	Stainless Steel Check Valve & Disposable Polyethylene Tubing

Time	Pump Rate	Gal. Removed	рН	Cond. (mS/cm)	Temp. (deg. C)	DO (mg/L)	Comments

Well I.D.: MW3	
Well Depth (from TOC):	30
Static Water Level (from TOC):	24.58 ft below grade
Height of Water in Well:	5.42 ft
Gallons of Water per Well Volume:	0.22 gallons
Total Required Purge Volume:	0.65 gallons
Actual Volume Purged Before Sample Collection:	0.75 gallons

Date:	6/18/2012
Equipment:	Stainless Steel Check Valve & Disposable Polyethylene Tubing

Time	Pump Rate	Gal. Removed	рН	Cond. (mS/cm)	Temp. (deg. C)	DO (mg/L)	Comments

Well I.D.: MW4S	
Well Depth (from TOC):	30
Static Water Level (from TOC):	23.37 ft below grade
Height of Water in Well:	6.63 ft
Gallons of Water per Well Volume:	0.27 gallons
Total Required Purge Volume:	0.80 gallons
Actual Volume Purged Before Sample Collection:	1 gallons

Date:	6/18/2012				
Equipment:	Stainless Steel Check Valve &				
	Disposable Polyethylene Tubing				

Time	Pump Rate	Gal. Removed	рН	Cond. (mS/cm)	Temp. (deg. C)	DO (mg/L)	Comments

Well I.D.: MW4D	
Well Depth (from TOC):	40
Static Water Level (from TOC):	23.22 ft below grade
Height of Water in Well:	16.78 ft
Gallons of Water per Well Volume:	0.67 gallons
Total Required Purge Volume:	2.01 gallons
Actual Volume Purged Before Sample Collection:	2 gallons

Date:	6/19/2012
Equipment:	Stainless Steel Check Valve & Disposable Polyethylene Tubing

Time	Pump Rate	Gal. Removed	рН	Cond. (mS/cm)	Temp. (deg. C)	DO (mg/L)	Comments

Well I.D.: MW5	
Well Depth (from TOC):	30
Static Water Level (from TOC):	22.50 ft below grade
Height of Water in Well:	7.5 ft
Gallons of Water per Well Volume:	0.30 gallons
Total Required Purge Volume:	0.90 gallons
Actual Volume Purged Before Sample Collection:	1 gallons

Date:	6/18/2012				
Equipment:	Stainless Steel Check Valve &				
	Disposable Polyethylene Tubing				

Time	Pump Rate	Gal. Removed	рН	Cond. (mS/cm)	Temp. (deg. C)	DO (mg/L)	Comments

Well I.D.: MW6S	
Well Depth (from TOC):	30
Static Water Level (from TOC):	23.73 ft below grade
Height of Water in Well:	6.27 ft
Gallons of Water per Well Volume:	0.25 gallons
Total Required Purge Volume:	0.75 gallons
Actual Volume Purged Before Sample Collection:	0.75 gallons

Date:	6/18/2012
Equipment:	Stainless Steel Check Valve & Disposable Polyethylene Tubing

Time	Pump Rate	Gal. Removed	рН	Cond. (mS/cm)	Temp. (deg. C)	DO (mg/L)	Comments

Well I.D.: MW6D	
Well Depth (from TOC):	40
Static Water Level (from TOC):	23.00 ft below grade
Height of Water in Well:	17 ft
Gallons of Water per Well Volume:	0.68 gallons
Total Required Purge Volume:	2.04 gallons
Actual Volume Purged Before Sample Collection:	2 gallons

Date:	6/18/2012			
Equipment:	Stainless Steel Check Valve &			
	Disposable Polyethylene Tubing			

Time	Pump Rate	Gal. Removed	рН	Cond. (mS/cm)	Temp. (deg. C)	DO (mg/L)	Comments

Well I.D.: MW7	
Well Depth (from TOC):	30
Static Water Level (from TOC):	22.44 ft below grade
Height of Water in Well:	7.56 ft
Gallons of Water per Well Volume:	0.30 gallons
Total Required Purge Volume:	0.91 gallons
Actual Volume Purged Before Sample Collection:	1 gallons

tainless Steel Check Valve &			
Disposable Polyethylene Tubing			

Time	Pump Rate	Gal. Removed	рН	Cond. (mS/cm)	Temp. (deg. C)	DO (mg/L)	Comments

Well I.D.: MW8	
Well Depth (from TOC):	30
Static Water Level (from TOC):	20.67 ft below grade
Height of Water in Well:	9.33 ft
Gallons of Water per Well Volume:	0.37 gallons
Total Required Purge Volume:	1.12 gallons
Actual Volume Purged Before Sample Collection:	1.25 gallons

Date:	6/19/2012
Equipment:	Stainless Steel Check Valve & Disposable Polyethylene Tubing

Time	Pump Rate	Gal. Removed	рН	Cond. (mS/cm)	Temp. (deg. C)	DO (mg/L)	Comments

Well I.D.: MW9S - 2in	
Well Depth (from TOC):	30
Static Water Level (from TOC):	19.38 ft below grade
Height of Water in Well:	10.62 ft
Gallons of Water per Well Volume:	1.73 gallons
Total Required Purge Volume:	5.19 gallons
Actual Volume Purged Before Sample Collection:	5.25 gallons

Date:	6/19/2012
Equipment:	Stainless Steel Check Valve & Disposable Polyethylene Tubing

Time	Pump Rate	Gal. Removed	рН	Cond. (mS/cm)	Temp. (deg. C)	DO (mg/L)	Comments

ENVIRONMENTAL BUSINESS CONSULTANTS

Well I.D.: MW9D - 2in	
Well Depth (from TOC):	40
Static Water Level (from TOC):	19.13 ft below grade
Height of Water in Well:	20.87 ft
Gallons of Water per Well Volume:	3.40 gallons
Total Required Purge Volume:	10.21 gallons
Actual Volume Purged Before Sample Collection:	10 gallons

-

Date:	6/19/2012
Equipment:	Stainless Steel Check Valve &
	Disposable Polyethylene Tubing

Time	Pump Rate	Gal. Removed	рН	Cond. (mS/cm)	Temp. (deg. C)	DO (mg/L)	Comments

<u>APPENDIX - D</u> Soil Gas Sampling Log

Mouled Million B.	HONNOLE FCC	SPECIAL INSTRUCTIONS, OC REO		1 HULL	aut the	weinfulwished by:	CO 354 0A1	500 SOS	00352 397	0035/ see	00350 ses	00.349 sea	×00348 500 ×	00347 sez	00346 551		Client Phoenix ID # Sample ID	Phone # 631.504.6000 ext. 114		Project Mgr: Kevin Brussee	Address: 1808 Middle Co	Report to: Environmental	Environmental Laborator	DINENT
A B	THE BOW ON WIN .	SPECIAL INSTRUCTIONS, OC REQUIREMENTS, REGULATORY INFORMATION:		March linds	1 Chillin	Accepted by:	473 6L 30 5	457 6L 30	497 6L 30	228 6L 30 ~	463 6L 30	362 6L 30 1	455 6L 30 206	11290 6L 30 -55	481 6L 30	LAB USE ONLY	Canister ID # Size (U) ("Hg) ("Hg)	. 114	the stand	Con C L	1808 Middle Country Road, Kidge, New York 12961	Environmental Business Consultants	tories, Inc.	
	+ Pinesen			X 6-19-20	6-19-20	Date:	4497	4983	4957	3414	3409	Y 4481	4492	4989	5041		ster Flow Regulator Blow Regulator Setting Blow Regulator Setting	Quote #		۹ ۲	Address: 1808 Mi	Invoice to: EBC	587 East Middle Turnpike, P.O. Box 370, Manchester, CT 06040 Email: info@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-1102	CHAIN OF CUSTODY RECORD
	30		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20 icon	20 8:10	Time:	600	545	525	532	510	520	430	500	448		ler g Sampling n) Start Time				1808 Middle Country Road, Ridge, NY		ast Middle Turnpike, P.O. Box Email: info@phoenixlabs.com Client Services (86	CUSTO
Signature:	condition and agree to	I attest that all	State where samples collected:	0	ASP B Deliverables	Criteria Requested:	 ļ		731 6	745 6	724 6	706 6	708 6	707 6	646 6		Sampling End Time S				Road, Ridge, I		e, P.O. Box 3 ixlabs.com e <mark>rvices (860)</mark>	DY REC
	agree to the te	media release	samples coll		ables	uested:	 6/17/2012	6/17/2012	6/17/2012	6/17/2012	6/17/2012	6/17/2012	6/17/2012	6/17/2012	6/17/2012		Sample J Start Date S	Sa		2		R	370, Manch Fax (860 0) 645-1102	
NC	erms and cond	ed by Phoenix	ected:				29	30	29	30	29	28	30	30	29		Canister Pressure at Start ("Hg)	Sampled by: KB	State: New York) Skillman S	Project Location:	0, Manchester, CT (Fax (860) 645-0823 645-1102	AIR ANALYSES
Date:	the terms and conditions as listed on the back of this document:	attest that all media released by Phoenix Environmental Tah	NY	MCP []	RCP []	Deliverable:	6	7	6	6	6	თ	30***	6	6		Canister Pressure at End ("Hg)	B	Ţ.	•	39 Skillman Street, Brooklyn	511:		
	on the back of this document:	pratories I	GISKey	PDF	Excel	Data Format:	 ×	×	×	×	×	×	×	×	×	1	Ambient/Indoor A Soil Gas	lir					Data Delivery: 	
	iis docume	He have he		×	٥	mat:										MATRIX	Grab (G) Compo	site (C)				<u>a Delivery:</u> Fax #	
	nt:	ion vereine		Other:	Equis		 ×	×	×	×	×	×	×	×	×	ł	TO-14 TO-15						eeebcincn	Pg
	en m Xoon	hood in book		×			 									ANALYSES							<u>v.com</u>	1 이
	Survion	marking					 									<i></i>								
																	Is Canister Retur	ned L	Jnused	1?	Y/N			

<u>APPENDIX - E</u> Laboratory Reports (Digital File on CD)