APPENDIX F **Historical Groundwater Quality Tables** # FYN PAINT & LACQUER COMPANY 230 KENT AVENUE BROOKLYN, NEW YORK # Summary of Ground-Water Quality, Volatile Organic Compounds Collected November 17, 2000 | Parameter | | Concentration (ug/l) | | |------------------------|-----------|----------------------|---------| | Parameter | TW-1 | TW-2 | TW-3 | | Ethylbenzene | 6,357 | 7,289 | 74,258 | | Chloroethane | <2,500 | <2,500 | <12,500 | | 1,2-dichlorobenzene | <2,500 | <2,500 | <12,500 | | 1,1,1-trichloroethane | <2,500 | <2,500 | <12,500 | | Tetrachloroethene | <2,500 | <2,500 | <12,500 | | Toluene | 241,037 | 175,131 | 125,718 | | Isopropylbenzene | <2,500 | <2,500 | <12,500 | | Trichloroethene | <2,500 | <2,500 | <12,500 | | n-Propylbenzene | <2,500 | <2,500 | <12,500 | | 1,3,5-trimethylbenzene | <2,500 | <2,500 | <12,500 | | 1,2,4-trimethylbenzene | <2,500 | <2,500 | <12,500 | | Methylene Chloride | 7,784 | 6,633 | <12,500 | | Acetone | 5,006,000 | 10,558,250 | 365,208 | | Xylenes (total) | 37,737 | 43,457 | 452,653 | | 1,1,-dichloroethane | <2,500 | <2,500 | <12,500 | | 1,1,-dichloroethene | <2,500 | <2,500 | <12,500 | | cis-1,2-dichloroethene | <2,500 | <2,500 | <12,500 | Data from Fenley & Nicol Environmental, Inc. Report dated December 6, 2000 ug/l - micrograms per liter #### FYN PAINT & LACQUER COMPANY 230 KENT AVENUE BROOKLYN, NEW YORK #### Summary of Ground-Water Quality, Volatile Organic Compounds & SVOCs Sampled June 7, 2001 | | | | | | | | Concentra | ation (ug/l) 1 |) | | | | | | |----------------------------|-----------|-----------|------|------|------|------|-----------|----------------|--------|------|------|------|------|--| | Parameter | CE-1 | CE-2 | CE-4 | GP-1 | GP-2 | MW-1 | MW-2 | MW-3 | MW-4 | MW-5 | MW-6 | MW-7 | MW-8 | NYSDEC ⁴⁾ TOGS GWQS ⁵⁾ | | Ethylbenzene | 380,000 | 440,000 | <1 | <1 | <1 | <1 | 5 | <1 | 3,400 | <1 | 55 | <1 | <1 | 5 | | Chloroethane | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 17 | <1 | <1 | <1 | <1 | 5 | | 1,2-dichlorobenzene | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 5 | <1 | <1 | <1 | <1 | 3 | | 1,1,1-trichloroethane | <1 | <1 | 5 | <1 | <1 | <1 | <1 | <1 | <1 | 600 | <1 | 9 | <1 | 5 | | Tetrachloroethene (PCE) | 960 | 1,400 | 8 | <1 | <1 | <1 | <1 | <1 | 6 | 280 | 29 | <1 | <1 | 5 | | Toluene | 180,000 | 450,000 | <1 | <1 | <1 | 6 | 8 | <1 | 18,000 | <1 | 61 | 16 | <1 | 5 | | Isopropylbenzene | <1 | <1 | <1 | <1 | <1 | < 1 | <1 | <1 | 32 | <1 | <1 | <1 | <1 | 5 | | Trichloroethene (TCE) | <1 | <1 | <1 | <1 | <1 | < 1 | <1 | <1 | 11 | 66 | 76 | <1 | <1 | 5 | | n-Propylbenzene | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 12 | <1 | <1 | <1 | <1 | 5 | | 1,3,5-trimethylbenzene | 3,800 | 3,600 | <1 | <1 | <1 | <1 | <1 | <1 | 14 | <1 | <1 | <1 | <1 | 5 | | 1,2,4-trimethylbenzene | 530 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 45 | <1 | <1 | <1 | <1 | 5 | | Methylene Chloride | 14,000 | 17,000 | <1 | <1 | <1 | <1 | <1 | <1 | 48 | <1 | <1 | <1 | <1 | 5 | | Acetone | <1 | 120,000 | < 1 | <1 | <1 | <1 | <1 | <1 | 14,000 | <1 | <1 | 65 | <1 | 5 | | Xylenes (total) | 1,200,000 | 1,400,000 | 10 | 7 | 12 | 11 | 17 | <1 | 14,000 | 10 | 200 | 6 | 8 | 5 | | 1,1,-dichloroethane | <1 | <1 | 12 | <1 | <1 | <1 | <1 | <1 | 33 | 26 | 7 | 9 | <1 | 5 | | 1,1,-dichloroethene | <1 | <1 | 10 | <1 | <1 | <1 | <1 | <1 | <1 | 440 | <1 | <1 | <1 | 5 | | cis-1,2-dichloroethene | <1 | <1 | < 1 | <1 | <1 | <1 | <1 | <1 | 16 | 14 | 100 | <1 | 17 | 5 | | 2-Butanone (MEK) | <1 | ND 2) | < 1 | < 1 | <1 | < 1 | <1 | <1 | 610 | < 1 | <1 | < 1 | <1 | 50 | | 4-Methyl-2-Pentanone | <1 | ND | <1 | <1 | <1 | <1 | <1 | <1 | 900 | <1 | <1 | <1 | <1 | NE 6) | | Carbon Tetrachloride | <1 | ND | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 54 | <1 | <1 | <1 | 5 | | Chloroform | <1 | ND | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 21 | <1 | <1 | <1 | 7 | | 1,2-dichloropropane | <1 | ND | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 13 | <1 | <1 | <1 | 1 | | Vinyl Chloride | ND | ND | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 22 | 2 | | 1,4-dichlorobenzene | < 50 | NS 3) | <5 | < 5 | <5 | < 5 | < 5 | < 5 | < 5 | <5 | < 5 | < 5 | 6 | 3 | | N-Nitrosodi-N-Propyl Amine | < 50 | NS | <5 | < 5 | <5 | < 5 | < 5 | < 5 | <5 | < 5 | <5 | <5 | 11 | 50 | | 1,2,4-trichlorobenzene | < 50 | NS | <5 | <5 | <5 | <5 | < 5 | <5 | <5 | < 5 | <5 | <5 | 10 | 5 | | Acenaphthene | < 50 | NS | <5 | < 5 | <5 | <5 | < 5 | < 5 | <5 | < 5 | <5 | < 5 | 11 | 20 | | Pyrene | < 50 | NS | < 5 | < 5 | < 5 | < 5 | < 5 | < 5 | < 5 | < 5 | < 5 | < 5 | 14 | 50 | | Benzene | <1 | ND | <1 | <1 | <1 | <1 | <1 | <1 | 72 | <1 | <1 | <1 | <1 | 0.7 | 1) - micrograms per liter 3) - Not Sampled4) - New York State Department of Environmental Conservation 2) - Not detected 3) - Not Sampled 5) - Technical & Operational Guidance Series Ground Water Quality Standards 6) - Not Established #### FYN PAINT & LACQUER COMPANY 230 KENT AVENUE GREENPOINT, BROOKLYN, NEW YORK Summary of Ground-Water Quality, Volatile Organic Compounds Sampled August 19 and 21, 2003 | Conc | centration (| (ug/l) |--------------------------|-------|-------|------|------|------|------|--------|--------|----------|----------|-----------|------------|---------|-------|-------|---------|------------|------------|-----------|------------|------------|--------------|--------------|---------|---------|---------|---------|-------------|------------|-----------|------------|---------|---------|---------|---------|---------|---------|--------|-----------|-----------|----------------------| | G 1 | CD 1 | CD 2 | CD 2 | CE 1 | CE 4 | CT 2 | CE 4 | AXX 1 | N 6737 A | N 6337 2 | | T7 4 | MW-5 | MAN | MW-7 | NAME OF | MW-9A | MW-9A | MW-9A | MW-9A | MW-9A | MW-9A | MW-10 | 0 MW-10 | MW-10 | MW-11 | MW-11 | MW-12 | MW-12 | MW-12 | MW-12 | MW-13 | MW-13 | MW-13 | MW-14 | MW-14 | MW-14 | NAW 15 | MW 16 | MW-16 | | | Compound | GP-I | GP-2 | GP-3 | CE-I | CE-2 | CE-3 | CE-4 N | VI W-1 | W - 2 | MW-3 | MV | V-4 | MW-5 | MW-6 | MW-7 | MW-8 | (17-19 ftb | g) (17-19) | (21-23) | (21-23) | (25-27) | (25-27) | (11-13) | (18-20) | (25-27) | (15-17) | (23-25) | (13-15 ftbg | (13-15) | (21-23) | (21-23) | (19-21) | (24-26) | (28-30) | (13-15) | (20-22) | (25-27) | MW-15 | MW-16 | MW-16 | NYSDEC
GWQS or GV | | | DF=1 | DF=1 | | | | | DF=1 | DF=1 | DF=1 | DF=1 | DF=50 | DF=200 | DF=1 | DF=1 | DF=1 | DF=1 | DF=100 | DF=500 | DF=10 | DF=500 | DF=10 | DF=500 | DF=1 | DF=1 | DF=1 | DF=10 | DF=25 | DF=1 | DF=250 | DF=1 | DF=250 | DF=1 DF=10 | DF=50 | dwys or dv | | 1,1,1-trichloroethane | < 10 | 4 (J) | NS | NS | NS | NS | < 10 | < 10 | < 10 | < 10 | < 500 | < 2,000 | 220 (E) | < 10 | 9 (J) | < 10 | < 1,000 | < 5,000 | < 100 | < 5,000 | < 100 | < 5,000 | < 10 | < 10 | < 10 | < 100 | < 250 | < 10 | < 2,500 | < 10 | < 2,500 | < 10 | < 10 | < 10 | 3 (J) | 3 (J) | 3 (J) | NS | < 100 | < 500 | 5 | | 1,1,2-trichloroethane | 4 (J) | < 10 | NS | NS | NS | NS | < 10 | < 10 | < 10 | < 10 | < 500 | < 2,000 | < 10 | < 10 | < 10 | < 10 | < 1,000 | < 5,000 | < 100 | < 5,000 | < 100 | < 5,000 | < 10 | < 10 | < 10 | < 100 | < 250 | < 10 | < 2,500 | < 10 | < 2,500 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | NS | < 100 | < 500 | 1 | | 1,1-dichloroethane | < 10 | 8 (J) | NS | NS | NS | NS | < 10 | < 10 | < 10 | < 10 | < 500 | < 2,000 | 20 | 6 (J) | 6 (J) | 4 (J) | < 1,000 | < 5,000 | < 100 | < 5,000 | < 100 | < 5,000 | < 10 | < 10 | < 10 | < 100 | < 250 | 18 | < 2,500 | 29 | < 2,500 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | NS | < 100 | < 500 | 5 | | 1,1-dichloroethene | < 10 | 9 (J) | NS | NS | NS | NS | < 10 | < 10 | < 10 | < 10 | < 500 | < 2,000 | 230 (E) | < 10 | 1 (J) | < 10 | < 1,000 | < 5,000 | < 100 | < 5,000 | < 100 | < 5,000 | < 10 | < 10 | < 10 | < 100 | < 250 | < 10 | < 2,500 | < 10 | < 2,500 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | NS | < 100 | < 500 | 5 | | 1,2,3-trichloropropane | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 10 | < 10 | < 10 | < 500 | < 2,000 | < 10 | < 10 | < 10 | < 10 | < 1,000 | < 5,000 | < 100 | < 5,000 | < 100 | < 5,000 | < 10 | 8 (J) | 8 (J) | < 100 | < 250 | < 10 | < 2,500 | < 10 | < 2,500 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | NS | < 100 | < 500 | 0.04 | | 1,2,4-trimethylbenzene | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 10 | < 10 | < 10 | < 500 | < 2,000 | < 10 | < 10 | < 10 | 6 (J) | <1,000 | < 5,000 | 19 (J) | < 5,000 | 14 (J) | < 5,000 | < 10 | < 10 | < 10 | 11 (J) | < 250 | 44 | < 2,500 | 58 | < 2,500 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | NS | < 100 | < 500 | 5 | | 1,2-dichlorobenzene | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 10 | < 10 | < 10 | < 500 | < 2,000 | < 10 | < 10 | < 10 | < 10 | < 1,000 | < 5,000 | < 100 | < 5,000 | < 100 | < 5,000 | 1 (J) | 2 (J) | 2 (J) | < 100 | < 250 | < 10 | < 2,500 | < 10 | < 2,500 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | NS | < 100 | < 500 | 3 | | 1,3,5-trimethylbenzene | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 10 | < 10 | < 10 | < 500 | < 2,000 | < 10 | < 10 | < 10 | < 10 | < 1,000 | < 5,000 | < 100 | < 5,000 | < 100 | < 5,000 | < 10 | < 10 | < 10 | < 100 | < 250 | 15 | < 2,500 | 21 | <2,500 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | NS | < 100 | < 500 | 5 | | 2-butanone (MEK) | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 10 | < 10 | < 10 | < 500 | < 2,000 | < 10 | < 10 | < 10 | < 10 | < 1,000 | < 5,000 | < 100 | < 5,000 | < 100 | < 5,000 | < 10 | < 10 | < 10 | < 100 | < 250 | < 10 | < 2,500 | < 10 | < 2,500 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | NS | < 100 | < 500 | 50 | | 2-hexanone | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 10 | < 10 | < 10 | < 500 | < 2,000 | < 10 | < 10 | < 10 | < 10 | < 1,000 | < 5,000 | < 100 | < 5,000 | < 100 | < 5,000 | < 10 | < 10 | < 10 | < 100 | < 250 | < 10 | < 2,500 | < 10 | < 2,500 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | NS | < 100 | < 500 | 50 | | 4-methyl-2-pentanone | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 10 | < 10 | < 10 | < 500 | < 2,000 | < 10 | < 10 | < 10 | < 10 | < 1,000 | < 5,000 |
< 100 | < 5,000 | < 100 | < 5,000 | < 10 | < 10 | < 10 | < 100 | < 250 | 11 | < 2,500 | 19 | < 2,500 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | NS | < 100 | < 500 | | | Acetone | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 10 | < 10 | 14 | 9,300 | 9,500 (D) | < 10 | < 10 | < 10 | < 10 | < 1,000 | < 5,000 | < 100 | < 5,000 | < 100 | < 5,000 | < 10 | < 10 | < 10 | < 100 | < 250 | 120 | < 2,500 | 340 (E) | <2,500 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | NS | / | 2,200 (D) | 50 | | Benzene | 2 (J) | < 10 | NS | NS | NS | NS | < 10 | < 10 | < 10 | < 10 | < 500 | < 2,000 | 1 (J) | < 10 | < 10 | 6 (J) | < 1,000 | < 5,000 | 21 (J) | < 5,000 | 14 (J) | < 5,000 | < 10 | < 10 | < 10 | < 100 | < 250 | 20 | < 2,500 | 26 | <2,500 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | NS | < 100 | < 500 | 1 | | Carbon tetrachloride | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 10 | < 10 | < 10 | < 500 | < 2,000 | 10 | < 10 | < 10 | < 10 | < 1,000 | < 5,000 | < 100 | < 5,000 | < 100 | < 5,000 | < 10 | < 10 | < 10 | < 100 | < 250 | < 10 | < 2,500 | < 10 | < 2,500 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | NS | < 100 | < 500 | 5 | | Chlorobenzene | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 10 | < 10 | < 10 | < 500 | < 2,000 | < 10 | < 10 | < 10 | < 10 | < 1,000 | < 5,000 | < 100 | < 5,000 | < 100 | < 5,000 | < 10 | 2 (J) | 2 (J) | < 100 | < 250 | < 10 | < 2,500 | < 10 | < 2,500 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | NS | < 100 | < 500 | 5 | | Chloroethane | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 10 | < 10 | < 10 | < 500 | < 2,000 | < 10 | < 10 | < 10 | < 10 | < 1,000 | < 5,000 | < 100 | < 5,000 | < 100 | < 5,000 | < 10 | < 10 | < 10 | < 100 | < 250 | < 10 | < 2,500 | 3 (J) | < 2,500 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | NS | < 100 | < 500 | 5 | | Chloroform | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 10 | < 10 | < 10 | < 500 | < 2,000 | 8 (J) | < 10 | < 10 | < 10 | < 1,000 | < 5,000 | < 100 | < 5,000 | < 100 | < 5,000 | < 10 | < 10 | < 10 | < 100 | < 250 | < 10 | < 2,500 | < 10 | < 2,500 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | NS | < 100 | < 500 | 7 | | cis-1,2-dichloroethene | 2 (J) | 12 | NS | NS | NS | NS | < 10 | < 10 | < 10 | < 10 | < 500 | < 2,000 | 9 (J) | 11 | < 10 | 42 | <1,000 | < 5,000 | 230 | < 5,000 | 330 | < 5,000 | 5 (J) | 6 (J) | 6 (J) | < 100 | < 250 | < 10 | < 2,500 | 43 | <2,500 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | NS | < 100 | < 500 | 5 | | Ethylbenzene | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 10 | < 10 | < 10 | 4,100 | 4,700 (D) | < 10 | < 10 | < 10 | 20 | 5,700 | 6,600 (D) | 3,300 (E) | 4,400 (DJ) | 2,200 (E) | 2,700 (DJ |) <10 | < 10 | < 10 | 550 | 1,400 | 5,300 (E) | >,700 (D) | 4,600 (E) | 9,300 (D) | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | NS | 1,100 | 1,100 (D) | 5 | | Isopropylbenzene | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 10 | < 10 | < 10 | < 500 | <2,000 | < 10 | < 10 | < 10 | 2 (J) | < 1,000 | < 5,000 | 22 (J) | < 5,000 | 14 (J) | < 5,000 | < 10 | < 10 | < 10 | < 100 | < 250 | 33 | < 2,500 | 45 | <2,500 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | NS | < 100 | < 500 | 5 | | Methyl tert-butyl-ether | < 10 | 7 (J) | NS | NS | NS | NS | < 10 | < 10 | < 10 | < 10 | < 500 | < 2,000 | 1 (J) | < 10 | < 10 | 2 (J) | < 1,000 | < 5,000 | < 100 | < 5,000 | < 100 | < 5,000 | 1 (J) | < 10 | 1 (J) | < 100 | < 250 | < 10 | < 2,500 | < 10 | <2,500 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | NS | < 100 | < 500 | 10 | | Methylene chloride | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 10 | < 10 | < 10 | < 500 | < 2,000 | < 10 | < 10 | < 10 | < 10 | < 1,000 | < 5,000 | < 100 | < 5,000 | < 100 | < 5,000 | < 10 | < 10 | < 10 | < 100 | < 250 | < 10 | < 2,500 | 21 | < 2,500 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | NS | < 100 | < 500 | 5 | | n-propylbenzene | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 10 | < 10 | < 10 | < 500 | < 2,000 | < 10 | < 10 | < 10 | < 10 | <1,000 | < 5,000 | < 100 | < 5,000 | < 100 | < 5,000 | < 10 | < 10 | < 10 | < 100 | < 250 | 23 | < 2,500 | 28 | <2,500 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | NS | < 100 | < 500 | 5 | | Naphthalene | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 10 | < 10 | < 10 | < 500 | < 2,000 | < 10 | < 10 | < 10 | < 10 | <1,000 | < 5,000 | < 100 | < 5,000 | < 100 | < 5,000 | < 10 | < 10 | < 10 | < 100 | < 250 | < 10 | < 2,500 | 2 (J) | < 2,500 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | NS | < 100 | < 500 | 10 | | Styrene | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 10 | < 10 | < 10 | < 500 | < 2,000 | < 10 | < 10 | < 10 | < 10 | < 1,000 | < 5,000 | < 100 | < 5,000 | < 100 | < 5,000 | < 10 | < 10 | < 10 | < 100 | < 250 | < 10 | < 2,500 | < 10 | < 2,500 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | NS | < 100 | < 500 | 5 | | Tetrachloroethene | < 10 | 14 | NS | NS | NS | NS | < 10 | < 10 | < 10 | < 10 | < 500 | < 2,000 | 180 | 21 | < 10 | < 10 | < 1,000 | < 5,000 | < 100 | < 5,000 | 11 (J) | < 5,000 | < 10 | 1 (J) | 1 (J) | < 100 | < 250 | 15 | < 2,500 | 21 | <2,500 | < 10 | < 10 | < 10 | 1 (J) | 1 (J) | 1 (J) | NS | < 100 | < 500 | 5 | | Toluene | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 10 | < 10 | <10 1 | 8,000 (E) | 21,000 (D) | < 10 | < 10 | < 10 | < 10 | 69,000 (E | 87,000 (D) | 27,000 (E | 57,000 (D | 20,000 (E) | 35,000 (D |) <10 | < 10 | < 10 | 95 (J) | 46 (J) | 6,200 (E) | 29,000 (D) | 5,400 (E) | 29,000 (D) | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | NS | 3,900 (E) | 3,700 (D) | 5 | | Trans-1,2-dichloroethene | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 10 | < 10 | < 10 | < 500 | < 2,000 | < 10 | < 10 | < 10 | 1 (J) | < 1,000 | < 5,000 | < 100 | < 5,000 | < 100 | < 5,000 | < 10 | < 10 | < 10 | < 100 | < 250 | < 10 | < 2,500 | < 10 | < 2,500 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | NS | < 100 | < 500 | 5 | | Trichloroethene | < 10 | 7 (J) | NS | NS | NS | NS | < 10 | < 10 | < 10 | < 10 | < 500 | < 2,000 | 34 | 29 | 3 (J) | < 10 | < 1,000 | < 5,000 | 26 (J) | < 5,000 | 42 (J) | < 5,000 | 14 | 20 | 20 | < 100 | < 250 | 5 (J) | < 2,500 | 9 (J) | < 2,500 | < 10 | < 10 | < 10 | 5 (J) | 5 (J) | 5 (J) | NS | < 100 | < 500 | 5 | | Vinly chloride | < 10 | 2 (J) | NS | NS | NS | NS | < 10 | < 10 | < 10 | < 10 | < 500 | < 2,000 | 2 (J) | < 10 | < 10 | 31 | <1,000 | < 5,000 | < 100 | < 5,000 | < 100 | < 5,000 | < 10 | < 10 | < 10 | < 100 | < 250 | 6 (J) | < 2,500 | 6 (J) | <2,500 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | NS | < 100 | < 500 | 2 | | Xylenes | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 10 | < 10 | < 10 | 20,000 | 24,000 (D) | < 10 | < 10 | < 10 | 140 | 31,000 | 38,000 (D) | 15,000 (E | 25,000 (D | 10,000 (E) | 15,000 (D | < 10 | < 10 | < 10 | 4,100 | 3,600 | 7,700 (E) | 56,000 (D) | 6,700 (E) | 51,000 (D) | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | NS | 6,300 (E) | 7,000 (D) | 5 | ft bg = feet below grade NYSDEC GWQS or GV = New York State Department of Environmental Conservation Ground-Water Quality Standards or Guidance Values DF = dilution factor ug/I = micrograms per liter (J) = indicates an estimated value. data indicate the presence of a compound less than the sample quantitation limit (B) = analyte is found in the associated blank as well as in the sample (E) = compound concentration exceeds the calibration range of the GC/MS (D) = compound identified in an analysis at a secondary dilution factor exceeds GWQS #### FYN PAINT & LACQUER COMPANY 230 KENT AVENUE GREENPOINT, BROOKLYN, NEW YORK #### Summary of Ground-Water Quality, Semi-Volatile Organic Compounds Sampled August 2003 | (| Concentratio | on (ug/l) | | | | | | | | | | | | | | | | |------------------------------|--------|--------|------|------|------|------|----------|----------|---------|---------|--------|---------|---------|---------|---------|---------|----------|----------------------| | Compound | GP-1 | CD 2 | GP-3 | CE-1 | CE-2 | CE-3 | C | E-4 | MW 1 | MW 2 | MW-3 | MW 4 | MW 5 | MW 6 | MW-7 | MW 8 | MW-9A | MW-9A | MW-9A | MW-9A | MW-9A | MW-9A | MW-10 | MW-10 | MW-10 | MW-11 | MW-11 | MW-12 | MW-12 | MW-13 | MW-13 | MW-13 | MW-14 | MW-14 | MW-14 | - MW-16 | | | | GI-I | G1-2 | GI-5 | CE-1 | CE-2 | CE-3 | Cı | L-4 | 14144-1 | 1/1//-2 | MW-3 | 17177-4 | 14144-3 | 14144-0 | 14144-7 | 14144-9 | (17-19
ftbg) | (17-19
ftbg) | (21-23
ftbg) | (21-23
ftbg) | (25-27
ftbg) | (25-27
ftbg) | (11-13
ftbg) | (18-20
ftbg) | (25-27
ftbg) | (15-17
ftbg) | (23-25
ftbg) | (13-15
ftbg) | (21-23
ftbg) | (19-21
ftbg) | (24-26
ftbg) | (28-30
ftbg) | (13-15
ftbg) | (20-22
ftbg) | (25-27
ftbg) | 14144-10 | NYSDEC GWQS
or GV | | | DF=1 | DF=1 | | | | | DF=1 | DF=10 | DF=1 DF=10 | DF=1 | DF=10 | DF=1 | DF=10 | DF=1 | | Benzyl alcohol | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 100 | < 10 | < 10 | < 10 | 3 (J) | < 10 | < 10 | < 10 | < 10 | 54 | 50 (DJ) | 29 | 26 (DJ) | < 10 | 16 (DJ) | < 10 | < 10 | <10 | < 10 | <10 | < 10 | < 10 | <10 | < 10 | < 10 | < 10 | <10 | < 10 | <10 | | | 2-methylphenol | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 100 | < 10 | < 10 | < 10 | 12 | < 10 | < 10 | < 10 | < 10 | 530 (E) | 510 (D) | 360 (E) | 350 (D) | 890 (E) | 890 (DE) | < 10 | < 10 | < 10 | 2 (J) | 2 (J) | 65 | 34 | <10 | <10 | < 10 | < 10 | <10 | < 10 | 8 (J) | | | 4-methylphenol | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 100 | < 10 | < 10 | < 10 | 25 | < 10 | < 10 | < 10 | < 10 | 36 | < 100 | 28 | < 100 | < 10 | < 100 | < 10 | < 10 | <10 | < 10 | <10 | 57 | 30 | <10 | <10 | < 10 | < 10 | <10 | < 10 | 11 | | | 2,4-dimethylphenol | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 100 | < 10 | < 10 | < 10 | 12 | < 10 | < 10 | < 10 | < 10 | 17 | 19 (DJ) | 11 | 12 (DJ) | 8 (J) | < 100 | < 10 | < 10 | < 10 | 51 | 90 (E) | 79 | 41 | < 10 | < 10 |
< 10 | < 10 | <10 | < 10 | < 10 | 50 | | Naphthalene | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 100 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 100 | < 10 | < 100 | < 10 | < 100 | < 10 | < 10 | <10 | 2 (J) | 2 (J) | < 10 | < 10 | < 10 | < 10 | <10 | < 10 | <10 | < 10 | < 10 | 10 | | 2-methylnathphalene | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 100 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 100 | < 10 | < 100 | < 10 | < 100 | < 10 | < 10 | <10 | < 10 | < 10 | 1 (J) | < 10 | < 10 | < 10 | <10 | < 10 | < 10 | < 10 | < 10 | | | Acenaphthene | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 100 | 5 (J) | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 100 | < 10 | < 100 | < 10 | < 100 | < 10 | < 10 | <10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | <10 | < 10 | < 10 | < 10 | < 10 | 20 | | Diethylphthalate | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 100 | < 10 | < 10 | < 10 | 3 (J) | < 10 | < 10 | < 10 | < 10 | 1 (J) | < 100 | 1 (J) | < 100 | < 10 | < 100 | < 10 | < 10 | < 10 | 2 (J) | 1 (J) | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | <10 | < 10 | < 10 | 50 | | Phenanthrene | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 100 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 100 | < 10 | < 100 | < 10 | < 100 | < 10 | < 10 | <10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | <10 | < 10 | < 10 | < 10 | < 10 | 50 | | Anthracene | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 100 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 100 | < 10 | < 100 | < 10 | < 100 | < 10 | < 10 | <10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | <10 | < 10 | < 10 | < 10 | < 10 | 50 | | Di-n-butylphthalate | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 100 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 100 | < 10 | < 100 | < 10 | < 100 | < 10 | < 10 | <10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | <10 | < 10 | < 10 | < 10 | 2 (J) | | | Fluoranthene | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 100 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 100 | < 10 | < 100 | < 10 | < 100 | < 10 | < 10 | <10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | <10 | < 10 | < 10 | < 10 | < 10 | 50 | | Pyrene | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 100 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 100 | < 10 | < 100 | < 10 | < 100 | < 10 | < 10 | <10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | <10 | < 10 | < 10 | < 10 | < 10 | 50 | | Benz (a) anthracene | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 100 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 100 | < 10 | < 100 | < 10 | < 100 | < 10 | < 10 | <10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | <10 | < 10 | < 10 | < 10 | < 10 | 0.002 | | Chrysene | < 10 | < 10 | NS | NS | NS | NS | <10 | < 100 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 100 | < 10 | < 100 | < 10 | < 100 | < 10 | < 10 | <10 | < 10 | < 10 | < 10 | < 10 | <10 | < 10 | <10 | < 10 | < 10 | < 10 | <10 | 0.002 | | Bis (2-ethylhexyl) phthalate | 3 (BJ) | 4 (BJ) | NS | NS | NS | NS | 210 (EB) | 200 (DB) | 1 (BJ) | < 10 | 2 (BJ) | < 10 | 2 (BJ) | <10 | < 10 | 3 (BJ) | < 10 | < 100 | < 10 | < 100 | < 10 | < 100 | 2 (BJ) | < 10 | 1 (BJ) | < 10 | < 10 | < 10 | 4 (BJ) | <10 | <10 | < 10 | 2 (BJ) | 1 (BJ) | 1 (BJ) | 1 (J) | 5 | | Benzo (b) fluoranthene | < 10 | < 10 | NS | NS | NS | NS | <10 | < 100 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 100 | < 10 | < 100 | < 10 | < 100 | < 10 | < 10 | <10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | <10 | < 10 | < 10 | < 10 | < 10 | 0.002 | | Benzo (k) fluoranthene | < 10 | < 10 | NS | NS | NS | NS | <10 | < 100 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 100 | < 10 | < 100 | < 10 | < 100 | < 10 | < 10 | <10 | < 10 | < 10 | < 10 | < 10 | <10 | < 10 | <10 | < 10 | < 10 | < 10 | <10 | 0.002 | | Benzo (a) pyrene | < 10 | < 10 | NS | NS | NS | NS | <10 | < 100 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 100 | < 10 | < 100 | < 10 | < 100 | < 10 | < 10 | <10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | <10 | < 10 | < 10 | < 10 | <10 | <mdl< td=""></mdl<> | | Indeno (1,2,3-cd) pyrene | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 100 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 100 | < 10 | < 100 | < 10 | < 100 | < 10 | < 10 | <10 | < 10 | < 10 | < 10 | < 10 | <10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | 0.002 | | Benzo (g,h,i) perylene | < 10 | < 10 | NS | NS | NS | NS | < 10 | < 100 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 100 | < 10 | < 100 | < 10 | < 100 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | <10 | < 10 | < 10 | < 10 | < 10 | | ft bg = feet below grade NYSDEC GWQS or GV = New York State Department of Environmental Conservation Ground-Water Quality Standards or Guidance Values DF = dilution factor ug/l = micrograms per liter (J) = indicates an estimated value. data indicate the presence of a compound less than the sample quantitation limit (B) = analyte is found in the associated blank as well as in the sample $\label{eq:compound} \begin{tabular}{ll} (E) = compound concentration exceeds the calibration range of the GC/MS \\ (D) = compound identified in an analysis at a secondary dilution factor \\ \end{tabular}$ exceeds GWQS #### FYN PAINT & LACQUER COMPANY 230 KENT AVENUE BROOKLYN, NEW YORK Summary of Ground-Water Quality, Target Analyte List Metals + Cyanide Sampled Between August 7 and August 25, 2003 | | | | | Concentr | ration (ug/l) | | | | |-----------|----------|---------------|---------------|---------------|---------------|---------------|---------|------------| | Metal | | MW-9A | MW-11 | MW-12 | MW-13 | MW-14 | | NYSDEC | | | MW-5 | (21-23 ft bg) | (15-17 ft bg) | (13-15 ft bg) | (24-26 ft bg) | (13-15 ft bg) | MW-16 | GWQS or GV | | Aluminum | 2,470 | 11,100 | 1,600 | 13,400 | 17,100 | 12,100 | 2,600 | | | Antimony | 4.9 (B) | 7.5 (B) | 3.2 (B) | 1.6 (B) | 2 (B) | 3.3 (B) | <1.5 | 3 | | Arsenic | <1.3 | 4.3 (B) | 4.1 (B) | 5.9 (B) | 5.4 (B) | 2.6 (B) | 9.3 (B) | 25 | | Barium | 138 (B) | 323 | 150 (B) | 254 | 599 | 334 | 953 | 1,000 | | Beryllium | 0.55 (B) | 1.4 (B) | 0.43 (B) | 1.4 (B) | 2 (B) | 1.5 (B) | < 0.4 | 3 | | Cadmium | < 0.4 | 3.4 (B) | 1.3 (B) | 6.6 | 5 | 2.2 (B) | 2.2 (B) | 5 | | Calcium | 130,000 | 72,100 | 111,000 | 108,000 | 176,000 | 176,000 | 103,000 | | | Chromium | 5.4 (B) | 56.1 | 8.1 (B) | 113 | 58 | 34.7 | 7.5 (B) | 50 | | Cobalt | 4.2 (B) | 17.7 (B) | 5.2 (B) | 19.8 (B) | 24.6 (B) | 16.6 (B) | 6.2 (B) | | | Copper | 6.2 (B) | 49.2 | 6.4 (B) | 47.2 | 52.3 | 44.1 | 7.2 (B) | 200 | | Iron | 4,380 | 38,600 | 17,200 | 65,900 | 50,700 | 27,400 | 31,800 | 300 | | Lead | 3.5 | 30.2 | 9.9 | 30.5 | 29.6 | 34.8 | 7.0 | 25 | | Magnesium | 18,600 | 27,300 | 16,000 | 22,400 | 19,700 | 49,100 | 7,150 | 35,000 | | Manganese | 794 | 5,720 | 3,020 | 4,220 | 4,130 | 2,500 | 2,010 | 300 | | Mercury | < 0.2 | 0.32 | < 0.2 | 0.25 | 0.30 | 0.40 | < 0.2 | 0.7 | | Nickel | 8 (B) | 44.7 | 8.4 (B) | 85.8 | 50 | 32.1 (B) | 9.2 (B) | 100 | | Potassium | 8,070 | 17,900 (E) | 3,650 (BE) | 22,500 | 43,900 (E) | 35,500 | 74,900 | | | Selenium | 4.2 (B) | 5.2 | 2.6 (B) | 4.5 (B) | 3.9 (B) | 8.4 | 4.2 (B) | 10 | | Silver | < 0.4 | < 0.4 | < 0.4 | < 0.4 | < 0.4 | < 0.4 | < 0.4 | 50 | | Sodium | 240,000 | 321,000 | 26,600 (E) | 942,000 | < 0.5 | 1,780,000 | 946,000 | 20,000 | | Thallium | 9.0 (B) | 13.4 | 23.3 | 3.5 (B) | 29.8 | <2.8 | 5.9 (B) | 0.5 | | Vanadium | 3.0 (B) | 44.6 (B) | 2.8 (B) | 48.2 (B) | 64.1 | 36.6 (B) | 4.1 (B) | | | Zinc | 45.9 | 2,290 | 2,030 | 5,680 | 3,680 | 5,950 | 82.6 | 2,000 | | Cyanide | < 9.9 | < 9.9 | < 9.9 | < 9.9 | < 9.9 | < 9.9 | < 9.9 | 200 | ug/l = micrograms per liter ft bg = feet below grade NYSDEC GWQS or GV = New York State Department of Environmental Conservation Ground-Water Quality Standards or Guidance Values (B) = analyte is found in the associated blank as well as in the sample (E) = compound concentration exceeds the calibration range of the GC/MS exceeds GWQS or GV #### FYN PAINT & LACQUER COMPANY 230 KENT AVENUE GREENPOINT, BROOKLYN, NEW YORK # Summary of Ground-Water Quality, Volatile Organic Compounds Sampled between February 18 and February 23, 2004 | | | | | | | | | | | | | Cor | ncentratio | n (ug/l) | | | | | | | | | | | |--------------------------|------|------|------|---------|------|------|------|------|------|------|------|------|------------|----------|------|-------|-------|-------|---------|-------|-------|-------|---------|----------------------| | Compound | GP-1 | GP-2 | GP-3 | CE-1 | CE-2 | CE-3 | CE-4 | MW-1 | MW-2 | MW-3 | MW-4 | MW-5 | MW-6 | MW-7 | MW-8 | MW-9A | MW-10 | MW-11 | MW-12 | MW-13 | MW-14 | MW-15 | MW-16 | NYSDEC
GWQS or GV | | 1,1,1-trichloroethane | < 1 | 9.2 | NS | <1 | NS | NS | <1 | <1 | <1 | <1 | <1 | <1 | 1.9 | 8 | <1 | NS | <1 | <1 | <1 | <1 | 3.5 | NS | 3.7 | 5 | | 1,1,2-trichloroethane | < 1 | <1 | NS | < 1 | NS | NS | < 1 | <1 | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | NS | <1 | < 1 | < 1 | < 1 | <1 | NS | < 1 | 1 | | 1,1-dichloroethane | < 1 | 20 | NS | < 1 | NS | NS | < 1 | < 1 | < 1 | < 1 | 3.8 | < 1 | 13 | < 1 | < 1 | NS | <1 | < 1 | 59 | < 1 | < 1 | NS | 11 | 5 | | 1,1-dichloroethene | < 1 | 36 | NS | < 1 | NS | NS | < 1 | < 1 | < 1 | < 1 | <1 | <1 | < 1 | 3.3 | < 1 | NS | <1 | < 1 | <1 | < 1 | < 1 | NS | < 1 | 5 | | 1,2,3-trichloropropane | < 1 | <1 | NS | < 1 | NS | NS | < 1 | < 1 | < 1 | < 1 | <1 | <1 | < 1 | < 1 | < 1 | NS | 3.5 | < 1 | <1 | < 1 | < 1 | NS | < 1 | 0.04 | | 1,2,4-trimethylbenzene | < 1 | <1 | NS | < 1 | NS | NS | < 1 | <1 | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | NS | <1 | < 1 | 32 | <1 | < 1 | NS | 8.4 | 5 | | 1,2-dichlorobenzene | < 1 | <1 | NS | < 1 | NS | NS | < 1 | <1 | <1 | < 1 | 2.3 | < 1 | <1 | < 1 | < 1 | NS | < 1 | < 1 | < 1 | <1 | <1 | NS | < 1 | 3 | | 1,3,5-trimethylbenzene | < 1 | <1 | NS | < 1 | NS | NS | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | NS | <
1 | < 1 | 77 | < 1 | < 1 | NS | 38 | 5 | | 2-butanone (MEK) | < 1 | <1 | NS | < 1 | NS | NS | < 1 | <1 | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | NS | < 1 | < 1 | < 1 | < 1 | < 1 | NS | 310 | 50 | | 2-hexanone | < 1 | <1 | NS | < 1 | NS | NS | < 1 | <1 | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | NS | < 1 | < 1 | < 1 | < 1 | < 1 | NS | < 1 | 50 | | 4-methyl-2-pentanone | < 1 | < 1 | NS | < 1 | NS | NS | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | NS | <1 | < 1 | < 1 | < 1 | <1 | NS | 360 | | | Acetone | < 1 | < 1 | NS | < 1 | NS | NS | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | NS | < 1 | < 1 | 1,300 | < 1 | < 1 | NS | 5,300* | 50 | | Benzene | < 1 | <1 | NS | < 1 | NS | NS | < 1 | < 1 | < 1 | < 1 | < 1 | <1 | < 1 | < 1 | < 1 | NS | <1 | < 1 | 45 | < 1 | < 1 | NS | 170 | 1 | | Carbon tetrachloride | < 1 | <1 | NS | < 1 | NS | NS | <1 | < 1 | < 1 | < 1 | <1 | <1 | < 1 | <1 | < 1 | NS | <1 | < 1 | <1 | < 1 | < 1 | NS | < 1 | 5 | | Carbon disulfide | < 1 | <1 | NS | <1 | NS | NS | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | < 1 | NS | <1 | < 1 | < 1 | <1 | <1 | NS | 83 | | | Chlorobenzene | <1 | <1 | NS | <1 | NS | NS | <1 | <1 | < 1 | <1 | <1 | <1 | < 1 | <1 | < 1 | NS | <1 | < 1 | <1 | < 1 | < 1 | NS | < 1 | 5 | | Chloroethane | < 1 | <1 | NS | <1 | NS | NS | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | < 1 | NS | <1 | < 1 | 12 | <1 | <1 | NS | <1 | 5 | | Chloroform | < 1 | <1 | NS | <1 | NS | NS | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | < 1 | NS | <1 | < 1 | <1 | <1 | <1 | NS | < 1 | 7 | | cis-1,2-dichloroethene | < 1 | 18 | NS | <1 | NS | NS | <1 | <1 | <1 | <1 | 11 | < 1 | 16 | <1 | < 1 | NS | 8.8 | < 1 | 110 | <1 | 1.3 | NS | 10 | 5 | | Ethylbenzene | < 1 | <1 | NS | 11,000* | NS | NS | <1 | <1 | <1 | <1 | 15 | < 1 | <1 | <1 | < 1 | NS | <1 | 20 | 16,000* | <1 | <1 | NS | 5,700* | 5 | | Isopropyl acetate | < 1 | <1 | NS | NS | NS | NS | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | NS | <1 | < 1 | < 1 | < 1 | <1 | NS | 28 | | | Isopropylbenzene | < 1 | <1 | NS | 110 | NS | NS | < 1 | < 1 | < 1 | < 1 | <1 | <1 | < 1 | < 1 | < 1 | NS | <1 | 3.4 | 75 | < 1 | < 1 | NS | 35 | 5 | | Methyl tert-butyl-ether | < 1 | <1 | NS | < 1 | NS | NS | < 1 | < 1 | < 1 | < 1 | 2.9 | < 1 | 5.9 | < 1 | < 1 | NS | 3.1 | < 1 | <1 | < 1 | < 1 | NS | 7.4 | 10 | | Methylene chloride | < 1 | <1 | NS | <1 | NS | NS | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | < 1 | NS | <1 | < 1 | 37 | <1 | <1 | NS | 210 | 5 | | n-propylbenzene | < 1 | <1 | NS | 32 | NS | NS | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | < 1 | NS | <1 | < 1 | 23 | <1 | <1 | NS | 9.9 | 5 | | n-butylbenzene | < 1 | 0.6 | NS | < 1 | NS | NS | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | NS | <1 | < 1 | < 1 | < 1 | <1 | NS | < 1 | 5 | | sec-Butylbenzene | < 1 | < 1 | NS | < 1 | NS | NS | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | NS | < 1 | < 1 | 4.3 | < 1 | < 1 | NS | 22 | 5 | | tert-Butylbenzene | < 1 | <1 | NS | <1 | NS | NS | < 1 | <1 | < 1 | < 1 | < 1 | <1 | < 1 | < 1 | < 1 | NS | <1 | < 1 | 14 | < 1 | <1 | NS | <1 | 5 | | Naphthalene | < 1 | <1 | NS | 2.2 | NS | NS | < 1 | < 1 | < 1 | < 1 | <1 | <1 | < 1 | < 1 | < 1 | NS | < 1 | < 1 | 1.4 | < 1 | <1 | NS | < 1 | 10 | | p-Ethyltoluene | < 1 | <1 | NS | < 1 | NS | NS | < 1 | < 1 | < 1 | < 1 | < 1 | <1 | < 1 | < 1 | < 1 | NS | <1 | < 1 | 33 | < 1 | <1 | NS | < 1 | | | Styrene | < 1 | <1 | NS | 10 | NS | NS | < 1 | < 1 | < 1 | < 1 | <1 | <1 | < 1 | < 1 | < 1 | NS | < 1 | < 1 | < 1 | < 1 | <1 | NS | < 1 | 5 | | Tetrachloroethene | < 1 | 14 | NS | 13 | NS | NS | < 1 | < 1 | <1 | <1 | <1 | <1 | 13 | < 1 | < 1 | NS | < 1 | < 1 | 11 | <1 | < 1 | NS | 1.4 | 5 | | Toluene | < 1 | <1 | NS | 5,200* | NS | NS | < 1 | < 1 | 1.8 | <1 | 9.5 | < 1 | <1 | < 1 | < 1 | NS | < 1 | 16 | 46,000* | <1 | < 1 | NS | 33,000* | 5 | | Trans-1,2-dichloroethene | < 1 | <1 | NS | <1 | NS | NS | < 1 | <1 | < 1 | < 1 | <1 | <1 | < 1 | < 1 | < 1 | NS | <1 | < 1 | <1 | <1 | <1 | NS | 2.4 | 5 | | Trichloroethene | < 1 | 6.3 | NS | < 1 | NS | NS | < 1 | < 1 | < 1 | < 1 | 21 | < 1 | 24 | 2.3 | < 1 | NS | 16 | < 1 | 5.2 | < 1 | 4.6 | NS | < 1 | 5 | | Vinly chloride | < 1 | 2.8 | NS | < 1 | NS | NS | < 1 | < 1 | <1 | < 1 | <1 | < 1 | < 1 | < 1 | < 1 | NS | <1 | < 1 | 8.1 | <1 | <1 | NS | < 1 | 2 | | Xylenes | <2 | <2 | NS | 62,000* | NS | NS | <2 | <2 | 2.2 | <2 | 120 | <2 | <2 | <2 | <2 | NS | <2 | 58 | 80,000* | <2 | <2 | NS | 36,100* | <u> </u> | | Trichlorofluoromethane | < 1 | <1 | NS | <1 | NS | NS | < 1 | <1 | <1 | <1 | 18 | < 1 | <1 | < 1 | < 1 | NS | <1 | <1 | <1 | <1 | < 1 | NS | <1 | 5 | NYSDEC GWQS or GV = New York State Department of Environmental Conservation Ground-Water Quality Standards or Guidance Values All concentrations in micrograms per liter (ug/l) unless noted * = Dilution factor of 20 exceeds GWQS #### FYN PAINT & LACQUER COMPANY 230 KENT AVENUE BROOKLYN, NEW YORK Summary of Ground-Water Quality, Semivolatile Organic Compounds Sampled between February 18 and February 23, 2004 | | | Concentra | ation (ug/l) | | |------------------------------|-------|-----------|--------------|----------------------| | Compound | MW-11 | MW-12 | CE-4 | NYSDEC
GWQS or GV | | Benzyl alcohol | <10 | < 6.2 | < 6.2 | | | 2-methylphenol | < 10 | 62 | < 6.2 | | | 4-methylphenol | < 10 | 93 | < 6.2 | | | 2,4-dimethylphenol | < 10 | 73 | < 6.2 | 50 | | Naphthalene | < 10 | < 6.2 | < 6.2 | 10 | | 2-methylnathphalene | <10 | < 6.2 | < 6.2 | | | Acenaphthene | <10 | < 6.2 | < 6.2 | 20 | | Diethylphthalate | < 10 | < 6.2 | < 6.2 | 50 | | Phenanthrene | <10 | < 6.2 | < 6.2 | 50 | | Anthracene | < 10 | < 6.2 | < 6.2 | 50 | | Di-n-butylphthalate | < 10 | < 6.2 | < 6.2 | | | Fluoranthene | <10 | < 6.2 | < 6.2 | 50 | | Pyrene | < 10 | < 6.2 | < 6.2 | 50 | | Benz (a) anthracene | <10 | < 6.2 | < 6.2 | 0.002 | | Chrysene | < 10 | < 6.2 | < 6.2 | 0.002 | | Bis (2-ethylhexyl) phthalate | < 10 | < 6.2 | 190 | 5 | | Benzo (b) fluoranthene | <10 | < 6.2 | < 6.2 | 0.002 | | Benzo (k) fluoranthene | <10 | < 6.2 | < 6.2 | 0.002 | | Benzo (a) pyrene | <10 | < 6.2 | < 6.2 | <mdl< td=""></mdl<> | | Indeno (1,2,3-cd) pyrene | <10 | < 6.2 | < 6.2 | 0.002 | | Benzo (g,h,i) perylene | <10 | < 6.2 | < 6.2 | | NYSDEC - New York State Department of Environmental Conservation GWQS or GV - Ground-Water Quality Standards or Guidance Values ug/l - micrograms per liter (ug/l) # FYN PAINT & LACQUER COMPANY 230 KENT AVENUE BROOKLYN, NEW YORK Summary of Ground-Water Quality, Dissolved Target Analyte List (TAL) Metals Sampled between February 18 and February 23, 2004 | | (| Concentration (mg | /l) | |-----------|----------|-------------------|----------------------| | Compound | MW-4 | MW-12 | NYSDEC
GWQS or GV | | Aluminum | 0.0234 | 0.028 | | | Antimony | < 0.0250 | < 0.0250 | 0.003 | | Arsenic | < 0.0250 | < 0.0250 | 0.025 | | Barium | 0.196 | 0.437 | 1 | | Beryllium | < 0.0200 | < 0.0200 | 0.003 | | Cadmium | < 0.0100 | < 0.0100 | 0.005 | | Calcium | 97.2 | 160 | | | Chromium | < 0.0200 | < 0.0200 | 0.05 | | Cobalt | < 0.0200 | < 0.0200 | | | Copper | < 0.0200 | < 0.0200 | 0.2 | | Iron | 0.43 | 9.24 | 0.3 | | Lead | < 0.0150 | < 0.0150 | 0.025 | | Magnesium | 33 | 25.5 | 35 | | Manganese | 5.27 | 5.25 | 0.3 | | Nickel | 0.015 | 0.0256 | 0.1 | | Potassium | 14 | 37.9 | | | Selenium | < 0.0250 | < 0.0250 | 0.01 | | Silver | < 0.0200 | < 0.0200 | 0.05 | | Sodium | 95.3 | 179 | 20 | | Thallium | < 0.0150 | < 0.0150 | 0.0005 | | Vanadium | < 0.0200 | 0.011 | | | Zinc | 0.014 | < 0.0200 | 2 | NYSDEC - New York State Department of Environmental Conservation GWQS or GV - Ground-Water Quality Standards or Guidance Values mg/l - milligrams per liter ### GREENPOINT, BROOKLYN, NEW YORK Ground-Water Quality Summary - EPA Method 8260 Modified to Include MTBE¹⁾ Collected December 27, 28 & 29, 2005 | | | | | | | | | | | | | | C | oncentra | tion (ug/l | l) ²⁾ | | | | | | | | | | | | | |--|---------|---------|---------|--------------|-----------------|-------------|------------|------------|---------------|--------------|------------------------|--------------------|--------------------|--------------------|---------------------|------------------|-----------------|------------------|------------------------|------------------------|------------------------|-------------------|-----------------|-----------------------|------------------------|-------------------------|--------------------|----------------| | Well
Identification | Acetone | Вепхепе | Toluene | Ethylbenzene | Xylenes (total) | Naphthalene | 2-Butanone | Chloroform | Chlorobenzene | Chloroethane | cis-1,2-Dichloroethene | 1,1-Dichloroethene | 1,1-Dichloroethane | 1,2-Dichloroethane | 1,2-Dichlorobenzene | Isopropylbenzene | n-propylbenzene | sec-Butylbenzene | 1,2,3-Trichloropropane | 1,2,4-Trimethlybenzene | 1,3,5-Trimethlybenzene | Tetrachloroethene | Trichloroethene | 1,1,1-Trichloroethane | Trichlorofluoromethane | Methyl tert-butyl ether | Methylene Chloride | Vinyl Chloride | | MW-1 | 2.9 J | ND 3) | 44 | 1.5 J | 10.3 | ND | MW-2 | ND | ND | 22 | 1.0 J | 5.3 J | ND | MW-3 | 3.8 J | ND | MW-4 | ND | 0.9 J | 5.5 | 15 | 72.6 | ND | ND | ND | 2.1 | ND | 6.5 | ND | 2.3 | 1.1 J | 3.2 | ND | ND | ND | 1.6 J | ND | ND | ND | 17 | ND | 2.9 | 1.6 J | ND | ND | | MW-5 | ND | MW-7 | ND | ND | 98 | 11 | 72 | ND | ND | ND | ND | ND | ND | 0.83 J | 3.3 | ND 0.72 J | 2.9 | 3.7 | ND | ND | ND | ND | | MW-8 | ND | ND | 70 | 11 | 58 | ND 0.54 J | ND | ND | ND | ND | ND | ND | | MW-9A | 21 | 75 | 160,000 | 8,900 | 51,000 | ND | ND | ND | ND | ND | 11 | ND | 3.2 | ND | ND | 37 | 10 | ND | ND | 35 | 11 | 6.4 | 8 | 28 | ND | 2.0 J | 5.2 | 6.5 | | MW-10 | ND | ND | 170 | 6 | 31.4 | ND | ND | ND | 0.88 J | ND | 4.4 | ND | 0.69 J | ND | 1.0 J | ND | ND | ND | 4.9 | ND | ND | 0.72 J | 12 | ND | ND | 1.6 J | ND | ND | | MW-11 | ND | ND | 17 | 0.76 J | 4.2 J | ND | MW-12 | 9.6 J | 36 | 17,000 | 9,300 | 46,500 | ND | ND | ND | ND | 32 | 6.6 | ND | 7.3 | ND | ND | 36 | 10 | ND | ND |
43 | 14 | 1.4 | 1.2 | ND | ND | 2.3 | 4.5 J | 15 | | MW-14 | ND | ND | 2.8 | 1.6 J | 7.6 J | ND 0.6 J | 1.8 J | 2.2 | ND | ND | ND | ND | | MW-20 | ND | MW-21 | 69,000 | 180 | 310,000 | - | 27,300 | ND | 810 J | ND 80 J | ND | 860 | ND | ND | | MW-23 | ND | 2.1 | _ | 11,000 | 62,000 | 1.7 | ND | ND | ND | ND | 7.1 | ND | 9.5 | ND | ND | 60 | 19 | ND | ND | 23 | 10 | 17 | 1.9 J | 21 | ND | ND | ND | 0.71 J | | MW-24 | ND | 36 | 45,000 | 1,600 | 6,600 | ND 8.5 J | ND | MW-26 | 2.7 J | ND | 22 | 2 | 10.1 | ND | ND | 0.85 J | ND 1.4 J | 1.4 J | ND | ND | ND | ND | ND | | MW-27 | ND | ND | 12 | 3 | 15.4 | ND | GP-2 | ND | 2.8 | ND | ND | ND | ND | ND | 7.4 | ND | ND | 17 | 130 | 47 | ND 92 | 20 | 220 | ND | 4.2 | ND | 13 | | EW-1 | 7,100 | 130 | 50,000 | | 9,800 | 46 | 74 | ND | ND | 5.4 | 2.8 | ND | 5.7 | ND | ND | 22 | 17 | 1.1 J | ND | 55 | 22 | 3 | 3.8 | 1 J | ND | 6.1 | 200 | 1.9 J | | EW-2 | 1,700 | 30 | 29,000 | 9,400 | 50,000 | ND | 48 J | ND | ND | ND | 8 J | ND | 58 | ND | ND | 48 | 13 J | ND | ND | 30 | 12 J | 9.2 J | 6.6 J | ND | ND | ND | 16 J | ND | | NYSDEC ⁴⁾ TOGS GWQS ⁵⁾ | 5 | 1 | 5 | 5 | 5 | 10 | 5 | 7 | 5 | 5 | 5 | 5 | 5 | 0.6 | 3 | 5 | 5 | 5 | 0.04 | 5 | 5 | 5 | 5 | 5 | 5 | 10 | 5 | 2 | - 1) Methyl tert-butyl ether - 2) Micrograms per liter - 3) Not detected - 4) New York State Department of Environmental Conservation - 5) Technical & Operational Guidance Series Ground Water Quality Standards - J Indicates an estimated va #### FYN PAINT & LACQUER COMPANY 230 KENT AVENUE BROOKLYN, NEW YORK Ground-Water Quality Summary - EPA Method 8260 Modified to Include MTBE¹⁾ Collected May 17, 18 and 19, 2006 | | | | | | | | | | | | | | | | | Coi | ncentrati | ion (ug/l) | ²⁾ | | | | | | | | | | | | | | | | | |---|---------|---------|---------|--------------|--------------------|-------------|------------|-------------------|-----------------|-----------------------|-------------------------|--------------------|----------------|------------------------|------------------------|--------------------|------------------------|----------------------|---------------|---------------|--------------|---------------|--------------------------|--------------------|--------------------|---------------------|---------------------|---------------|------------------|--------------------|------------------|-----------------|------------------|------------------------|------------------------| | Well
Identification | Acetone | Вепхепе | Toluene | Ethylbenzene | Xylenes
(total) | Naphthalene | 2-Butanone | Tetrachloroethene | Trichloroethene | 1,1,1-Trichloroethane | Methyl tert-butyl ether | Methylene Chloride | Vinyl Chloride | 1,2,4-Trimethlybenzene | 1,3,5-Trimethlybenzene | 1,1-Dichloroethane | cis-1,2-Dichloroethene | Carbon Tetrachloride | Chloroform | Chlorobenzene | Chloroethane | Chloromethane | trans-1,2-Dichloroethene | 1,1-Dichloroethene | 1,2-Dichloroethane | 1,2-Dichlorobenzene | 1,2-Dichloropropane | Diethyl ether | Carbon Disulfide | 4-Isopropy koluene | Isopropylbenzene | n-propylbenzene | sec-Butylbenzene | 1,2,3-Trichloropropane | Trichlorofluoromethane | | MW-1 | NS 3) | NS 3) | NS | MW-2 | NS | MW-3 | 11 | ND 4) | ND | ND | 1.0 J | ND 4) | ND 1.3 J | ND | ND | ND | ND | ND | ND | | MW-4 | ND | 0.89 J | 1.3 J | 29 | 46.0 | ND | ND | 0.98 J | 31 | ND | 1.9 J | ND | ND | ND | ND | 3.1 | 10 | ND | ND | 6.3 | ND | ND | ND | ND | ND | 4.3 | ND 0.72 J | ND | | MW-5 | ND | ND | ND | ND | 0.99 J | ND | MW-7 | ND 3 | 3.1 | ND | ND | ND | ND | ND | 2.9 | ND 0.86 J | ND | MW-8 | ND | ND | ND | ND | 0.64 J | ND | ND | 0.5 J | ND | MW-9A | NS | MW-10 | ND | ND | ND | ND | 0.59 J | ND | ND | 0.55 J | 12 | ND | 1.2 J | ND | ND | ND | ND | 0.77 J | 3.4 | ND | ND | 0.96 J | ND | ND | ND | ND | ND | 0.96 J | ND 4.5 | ND | | MW-11 | ND | MW-12 | 150 | 38 | 15,000 | 7,300 | 42,800 | 1.1 J | ND | 4 | 1.1 J | ND | 2.1 | 2.8 J | 15 | 45 | 14 | 16 | 7.9 | ND | ND | ND | 20 | ND 37 | 9.3 | ND | ND | ND | | MW-14 | ND 0.68 J | 2.9 | 2.2 | ND | MW-16 | 290 | 100 | 15,000 | 3,100 | 21,700 | 6.3 | 24 | ND | ND | ND | 4.8 | 13 | 1.2 J | 17 | 6.9 | 1.4 J | 3.3 | ND | ND | 1.1 J | ND 26 | 0.7 J | ND | 12 | 4.7 | ND | ND | ND | | MW-20 | ND | ND | 1.6 J | 0.72 J | 4.6 J | ND | MW-21 | NS | MW-22 | NS | MW-23 | 200 | ND | 28,000 | 9,600 | 60,000 | ND | ND | 8.6 J | ND | 15 J | ND | ND | ND | 22 | 10 J | 7.5 J | 9.3 J | ND 48 | 14 J | ND | ND | ND | | MW-24 | 15 | 26 | 5,200 | 1,100 | 4,440 | 2.5 J | ND | ND | ND | ND | ND | ND | 0.81 J | 3.4 | 1.2 J | ND | 1.5 J | ND 9.6 | 2.0 J | ND | ND | ND | | MW-26 | ND | ND | ND | ND | 0.96 J | ND | ND | 1.8 J | 1.3 J | ND | MW-27 | ND | ND | 1.6 J | ND | 2.0 J | ND 0.94 J | ND | CE-4 | ND | ND | 250 | 26 | 255 | ND 0.73 J | ND | GP-1 | ND | 1 | ND 1.9 J | ND | ND | ND | 8.6 | ND | GP-2 | ND | 1.8 | 0.5 J | ND | 1.1 J | ND | ND | 77 | 18 | 200 | 3.5 | ND | 12 | ND | ND | 41 | 15 | 3.2 | 7.1 | ND | ND | ND | ND | 130 | ND | ND | 2.4 | ND | EW-1 | 6,200 | 210 | 66,000 | 2,700 | 21,000 | 130 | 97 | 3.6 | 2.7 | 3 | 5.4 | 280 | 2.1 | 100 | 41 | 9 | 8.1 | ND | ND | ND | 4.6 J | 2.0 J | ND | ND | ND | 0.61 J | ND | 1.5 J | ND | 0.77 J | 31 | 28 | 1.3 J | ND | ND | | EW-2 | 2,800 | 47 | 45,000 | 9,100 | 62,000 | 1.4 J | 28 | 9.7 | 5.9 | 4.8 | 4.1 | 20 | 2.3 | 41 | 15 | 90 | 19 | ND | ND | ND | 4.7 J | ND | 0.79 J | 1.7 | ND | ND | ND | 3.0 J | ND | ND | 34 | 8.8 | ND | ND | ND | | Trip Blank | ND | ND | 0.55 J | ND | 0.82 J | ND | NYSDEC ⁵⁾
TOGS GWQS ⁶⁾ | 5 | 1 | 5 | 5 | 5 | 10 | 5 | 5 | 5 | 5 | 10 | 5 | 2 | 5 | 5 | 5 | 5 | 5 | 7 | 5 | 5 | 5 | 5 | 5 | 0.6 | 3 | 1 | NA 7) | NA | 5 | 5 | 5 | 5 | 0.04 | 5 | - 1) Methyl tert-butyl ether 2) Micrograms per liter 3) Not sampled - 4) Not detected - 5) New York State Department of Environmental Conservation - 6) Technical & Operational Guidance Series Ground Water Quality Standards 7) - Not Available # FYN PAINT & LACQUER COMPANY 230 KENT AVENUE **BROOKLYN, NEW YORK** Ground-Water Quality Summary - EPA Method 8260 Modified to Include MTBE¹⁾ Collected September 26, 27, 28 & 29, 2006 | | | | | | | | | | | | | | Conce | ntration | (ug/l) 2) | | | | | | | | | | | | | |--|---------|---------|---------|--------------|--------------------|-------------|------------|----------------------|------------|---------------|------------------------|--------------------|--------------------|---------------------|---------------------|------------------|-----------------|----------------------|------------------------|------------------------|------------------------|-------------------|-----------------|-----------------------|-------------------------|--------------------|----------------| | Well
Identification | Acetone | Benzene | Toluene | Ethylbenzene | Xylenes
(total) | Naphthalene | 2-Butanone | Carbon Tetrachloride | Chloroform | Chlorobenzene | cis-1,2-Dichloroethene | 1,1-Dichloroethene | 1,1-Dichloroethane | 1,2-Dichloropropane | 1,2-Dichlorobenzene | Isopropylbenzene | n-propylbenzene | 4-Methyl-2-Pentanone | 1,2,3-Trichloropropane | 1,2,4-Trimethlybenzene | 1,3,5-Trimethlybenzene | Tetrachloroethene | Trichloroethene | 1,1,1-Trichloroethane | Methyl tert-butyl ether | Methylene Chloride | Vinyl Chloride | | MW-1 | ND 3) | ND | MW-2 | ND | MW-3 | ND | MW-4 | ND | 1 | ND | 3.7 | 40 | ND | ND | ND | ND | 6.8 | 14 | ND | 4.2 | ND | 4.4 | ND 33 | ND | 2 | ND | ND | | MW-5 | ND | 2.2 | ND | ND | ND | ND | ND | 2.7 | 9.8 | ND | 23 | 150 | 38 | 2.4 | ND 110 | 24 | 200 | 3.6 | ND | 19 | | MW-7 | ND | MW-8 | ND | MW-9A | 280 | 32 | 150000 | 10000 | 69000 | ND 44 | ND | ND | ND | 42 | ND | MW-10 | ND 4.3 | ND 5.6 | ND | ND | ND | 12 | ND | ND | ND | ND | | MW-11 | ND | MW-12 | ND | MW-14 | ND 4.9 | ND | ND | ND | ND | | MW-16 | 31000 | 110 | 29000 | 4400 | 27700 | ND | 2000 | ND 440 | ND | 22 | ND | MW-20 | ND | MW-21 | 29000 | 190 | 230000 | 3900 | 21500 | 81 | 440 | ND 27 | 29 | 400 | ND | 110 | 36 | ND | ND | 82 | ND | 460 | ND | | MW-23 | ND | ND | 32000 | 9500 | 58000 | ND 43 | ND 110 | ND | | MW-24 | ND | 15 | ND | 590 | 800 | ND | MW-26 | ND 2.3 | ND | MW-27 | ND | GP-1 | ND | 1.1 | ND 6.9 | ND | GP-2 | ND | 2.1 | ND | ND | ND | ND | ND | 2.8 | 11 | ND | 23 | 150 | 39 | ND 110 | 24 | 210 | 3.8 | ND | 18 | | EW-1 | 1300 | 230 | 31000 | 2400 | 13100 | 140 | ND 34 | 40 | ND | ND | 160 | 59 | ND | ND | ND | ND | ND | ND | | EW-2 | 1100 | ND | 36000 | 7300 | 42800 | ND | CE-4 | ND | ND | 150 | 3.5 | 17.5 | ND | NYSDEC ⁴⁾ TOGS GWQS ⁵⁾ | 5 | 0.7 | 5 | 5 | 5 | 10 | 5 | 5 | 7 | 5 | 5 | 5 | 5 | 1 | 3 | 5 | 5 | NA | 0.04 | 5 | 5 | 5 | 5 | 5 | 10 | 5 | 2 | ^{1) -} Methyl tert-butyl ether ^{2) -} Micrograms per liter ^{3) -} Not detected ^{3) -} Not detected ^{4) -} New York State Department of Environmental Conservation ^{5) -} Technical & Operational Guidance Series Ground Water Quality Standards Notes : Samples analyzed by EPA Method 8260 #### WILLIAMSBURG, BROOKLYN, NEW YORK Ground-Water Quality Summary - EPA Method 8260 Modified to Include MTBE 1) Collected December 16, 18, 19 & 20, 2006 | | | | | | | | | | | | | • | C | oncentra | tion (ug/l |) 2) | • | | | | • | | | | | | | | |------------------------|---------|---------|---------|--------------|-----------------|-------------|------------|----------------------|------------|---------------|------------------------|--------------------|--------------------|---------------------|---------------------|---------------|------------------|-----------------|----------------------|------------------------|------------------------|------------------------|-------------------|-----------------|-----------------------|-------------------------|--------------------|----------------| | Well
Identification | Acetone | Benzene | Toluene | Ethylbenzene | Xylenes (total) | Naphthalene | 2-Butanone | Carbon Tetrachloride | Chloroform | Chlorobenzene | cis-1,2-Dichloroethene | 1,1-Dichloroethene | 1,1-Dichloroethane | 1,2-Dichloropropane
 1,2-Dichlorobenzene | Diethyl Ether | Isopropylbenzene | n-propylbenzene | 4-Methyl-2-Pentanone | 1,2,3-Trichloropropane | 1,2,4-Trimethlybenzene | 1,3,5-Trimethlybenzene | Tetrachloroethene | Trichloroethene | 1,1,1-Trichloroethane | Methyl tert-butyl ether | Methylene Chloride | Vinyl Chloride | | MW-1 | ND 3) | ND | MW-2 | ND | MW-3 | ND | MW-4 | ND 8.1 | 11 | ND | 2.7 | ND | 5.4 | ND 31 | ND | ND | ND | 2.3 | | MW-5 | ND | MW-7 | ND 1 | 2.4 | ND 3.2 | 4.5 | ND | ND | ND | | MW-8 | ND | MW-9A | NS 4) | NS | MW-10 | ND | 11 | ND 3.9 | ND 6 | ND | ND | ND | ND | ND | 2.1 | ND | ND | | MW-11 | ND | ND | 8.4 | ND | 9.8 | ND | MW-12 | ND | ND | 4,100 | 10,000 | 48,100 | ND | MW-14 | ND 5 | ND | ND | ND | ND | | MW-16 | 22,000 | 120 | 40,000 | 5,100 | 36,600 | 6.7 | 1,600 | ND | ND | ND | 8.9 | ND | 7.9 | ND | ND | 42 | 9.2 | 2.6 | ND | ND | 13 | 3.9 | 2.4 | ND | 4.3 | 5.1 | 38 | 2.9 | | MW-20 | ND | MW-21 | NS | MW-22 | NS | MW-23 | ND | ND | 22,000 | 7,800 | 45,000 | ND | MW-24 | ND | 9.8 | ND | 430 | 541 | ND 6.2 | ND | MW-26 | ND | MW-27 | ND | ND | 2.7 | ND | 4 | ND | GP-1 | ND | 1.1 | ND 4.5 | ND 2.1 | | GP-2 | ND | 1.6 | ND | ND | ND | ND | ND | ND | 4.2 | ND | 22 | 110 | 33 | ND 120 | 24 | 80 | 2.5 | ND | 18 | | EW-1 | NS | EW-2 | ND | ND | 28,000 | 9,000 | 51,000 | ND | CE-4 | ND | ND | ND | ND | 2.7 | ND | NYSDEC 5) TOGS GWQS 6) | 5 | 0.7 | 5 | 5 | 5 | 10 | 5 | 5 | 7 | 5 | 5 | 5 | 5 | 1 | 3 | NA | 5 | 5 | NA | 0.04 | 5 | 5 | 5 | 5 | 5 | 10 | 5 | 2 | - 1) Methyl tert-butyl ether - 2) Micrograms per liter3) Not detected - 3) Not detected - 4) Not Sampled Due to Pumps and/or Product5) New York State Department of Environmental Conservation 6) - Technical & Operational Guidance Series Ground Water Quality Standards Notes : Samples analyzed by EPA Method 8260 ### WILLIAMSBURG, BROOKLYN, NEW YORK Ground-Water Quality Summary - EPA Method 8260 Modified to Include MTBE¹⁾ Collected March 28, 29 & 30, 2007 | | | | | | | | | | | | | | C | oncentra | tion (ug/l |) 2) | | | | | | | | | | | | | |------------------------|---------|---------|---------|--------------|--------------------|-------------|------------|----------------------|------------|---------------|------------------------|--------------------|--------------------|---------------------|---------------------|---------------|------------------|-----------------|----------------------|------------------------|------------------------|------------------------|-------------------|-----------------|-----------------------|-------------------------|--------------------|----------------| | Well
Identification | Acetone | Benzene | Toluene | Ethylbenzene | Xylenes
(total) | Naphthalene | 2-Butanone | Carbon Tetrachloride | Chloroform | Chlorobenzene | cis-1,2-Dichloroethene | 1,1-Dichloroethene | 1,1-Dichloroethane | 1,2-Dichloropropane | 1,2-Dichlorobenzene | Diethyl Ether | Isopropylbenzene | n-propylbenzene | 4-Methyl-2-Pentanone | 1,2,3-Trichloropropane | 1,2,4-Trimethlybenzene | 1,3,5-Trimethlybenzene | Tetrachloroethene | Trichloroethene | 1,1,1-Trichloroethane | Methyl tert-butyl ether | Methylene Chloride | Vinyl Chloride | | MW-1 | ND 3) | ND | MW-2 | ND | MW-3 | ND | MW-4 | ND | ND | 25 | 99 | 430 | ND | ND | ND | ND | 5.2 | 7.9 | ND | 2.8 | ND | 4.1 | ND 26 | ND | ND | ND | ND | | MW-5 | ND | MW-7 | ND 2.1 | ND 2.2 | 4.7 | ND | ND | ND | | MW-8 | ND | MW-9A | ND | ND | 90,000 | 11,000 | 100,000 | ND | MW-10 | ND 2.7 | ND 3.2 | ND | ND | ND | 5.9 | ND | ND | ND | ND | | MW-11 | ND | MW-12 | ND | ND | 18,000 | 12,000 | 58,200 | ND | MW-14 | ND | MW-16 | 1,700 | 120 | 14,000 | 3,500 | 28,000 | ND | MW-20 | ND | MW-21 | NS 4) | NS | MW-22 | NS | MW-23 | ND | ND | 14 | 230 | 790 | ND 8.6 | ND | MW-24 | ND | 7.5 | ND | 110 | 146 | ND 4.4 | ND | MW-26 | ND 2.4 | ND | MW-27 | ND | GP-1 | ND 2.9 | ND | GP-2 | ND 2.6 | ND | 18 | 65 | 25 | ND 95 | 19 | 41 | 2 | ND | 16 | | EW-1 | 35,000 | ND | 33,000 | 1,400 | 7,700 | ND | EW-2 | ND | ND | 22,000 | 6,500 | 37,800 | ND | CE-4 | ND | Trip Blank | ND | NYSDEC 5) TOGS GWQS 6) | 5 | 0.7 | 5 | 5 | 5 | 10 | 5 | 5 | 7 | 5 | 5 | 5 | 5 | 1 | 3 | NA | 5 | 5 | NA | 0.04 | 5 | 5 | 5 | 5 | 5 | 10 | 5 | 2 | - 1) -Methyl tert-butyl ether - 2) Micrograms per liter3) Not detected - 4) Not Sampled 5) New York State Department of Environmental Conservation 6) Technical & Operational Guidance Series Ground Water Quality Standards # FYN PAINT & LACQUER COMPANY 230 KENT AVENUE WILLIAMSBURG, BROOKLYN, NEW YORK # Ground-Water Quality Summary - EPA Method 8260 Modified to Include MTBE¹⁾ Collected October 30 & 31 and November 1 & 2, 2007 | | | | | | | | | | | | | | | Conce | ntration | (ug/l) 2) | | | | | | | | | | | | | | |------------------------|---------|---------|---------|--------------|-----------------|-------------|------------|----------------------|------------|---------------|------------------------|--------------------|--------------------|---------------------|---------------------|---------------|------------------|-----------------|----------------------|------------------------|------------------------|------------------------|-------------------|-----------------|-----------------------|------------------------|---------------------------------------|--------------------|----------------| | Well
Identification | Acetone | Benzene | Toluene | Ethylbenzene | Xylenes (total) | Naphthalene | 2-Butanone | Carbon Tetrachloride | Chloroform | Chlorobenzene | cis-1,2-Dichloroethene | 1,1-Dichloroethene | 1,1-Dichloroethane | 1,2-Dichloropropane | 1,2-Dichlorobenzene | Diethyl Ether | Isopropylbenzene | n-propylbenzene | 4-Methyl-2-Pentanone | 1,2,3-Trichloropropane | 1,2,4-Trimethlybenzene | 1,3,5-Trimethlybenzene | Tetrachloroethene | Trichloroethene | 1,1,1-Trichloroethane | Trichlorofluoromethane | Methyl tert-butyl ether ³⁾ | Methylene Chloride | Vinyl Chloride | | MW-1 | ND 3) | ND | MW-2 | ND | MW-3 | ND | MW-4 | ND | ND | ND | ND | 3.9 | ND | ND | ND | ND | 20 | 22 | ND | 3.9 | ND | 6.4 | ND 4.3 | 57 | ND | ND | 2.5 | ND | 4.3 | | MW-5 | ND | MW-7 | ND 6.5 | ND | ND | ND | ND | | MW-8 | ND | MW-9A | ND | ND | 19000 | 3200 | 23200 | ND | MW-10 | ND 7.4 | ND | 2 | ND | ND | ND | ND | ND | ND | 3.3 | ND | ND | ND | 12 | ND | 3.4 | ND | ND | ND | | MW-11 | ND | MW-12 | ND | ND | 780 | 9000 | 35100 | ND | MW-14 | ND 2.3 | 2.6 | ND | ND | ND | ND | | MW-16 | ND | ND | 28000 | 900 | 4060 | ND | MW-20 | ND | MW-21 | NS 4) | NS | MW-22 | NS | MW-23 | ND | ND | 12000 | 6200 | 40100 | ND 40 | ND | ND | ND | 21 | ND | MW-24 | ND | 16 | ND | 270 | 835 | ND 10 | ND | ND | ND | 4.9 | ND | MW-26 | ND | MW-27 | ND | GP-1 | NS | GP-2 | ND 3.7 | ND | 21 | 72 | 20 | ND 140 | 28 | 40 | ND | 2.2 | ND | 12 | | EW-1 | NS | EW-2 | ND | ND | 30000 | 12000 | 63000 | ND | CE-4 | ND | Trip Blank | ND | NYSDEC 5) TOGS GWQS 6) | 5 | 0.7 | 5 | 5 | 5 | 10 | 5 | 5 | 7 | 5 | 5 | 5 | 5 | 1 | 3 | NA | 5 | 5 | NA | 0.04 | 5 | 5 | 5 | 5 | 5 | 5 | 10 | 5 | 2 | - 1) -Methyl tert-butyl ether 2) Micrograms per liter - 3) Not detected - 4) Not Sampled 5) New York State Department of Environmental Conservation 6) Technical & Operational Guidance Series Ground Water Quality Standards - Notes: Samples analyzed by EPA Method 8260 $WILLIAMS BURG, BROOKLYN, NEW\ YORK$ Ground-Water Quality Summary - EPA Method 8260 Modified to Include MTBE¹⁾ Collected February 5, 6, 7 & 8, 2008 | | | | | | | | | | | | | | | Conce | ntration | (ug/l) 2) | | | | | | | | | | | | | | |------------------------|---------|---------|---------|--------------|--------------------|-------------|------------|----------------------|------------|---------------|------------------------|--------------------|---------------------|---------------------|---------------------|---------------|------------------|-----------------|----------------------|------------------------|------------------------|------------------------|-------------------|-----------------|-----------------------|------------------------|-------------------------|--------------------|----------------| | Well
Identification | Acetone | Benzene | Toluene | Ethylbenzene | Xylenes
(total) | Naphthalene | 2-Butanone | Carbon Tetrachloride | Chloroform | Chlorobenzene | cis-1,2-Dichloroethene | 1,1-Dichloroethene | 1,1-Dichlor oethane | 1,2-Dichloropropane | 1,2-Dichlorobenzene | Diethyl Ether | Isopropylbenzene | n-propylbenzene | 4-Methyl-2-Pentanone | 1,2,3-Trichloropropane | 1,2,4-Trimethlybenzene | 1,3,5-Trimethlybenzene | Tetrachloroethene | Trichloroethene | 1,1,1-Trichloroethane | Trichlorofluoromethane | Methyl tert-butyl ether | Methylene Chloride | Vinyl Chloride | | MW-1 | ND 3) | ND | MW-2 | ND | MW-3 | 10 | ND | MW-4 | ND 6.1 | 8.2 | ND | 3.1 | ND | 2 | ND 2.5 | 37 | ND | ND | ND | ND | ND | | MW-5 | ND | MW-7 | | | | | | | | | | | Not Sam | pled - Ply | wod Barr | ier Imped | ing Acce | ss (Buildi | ng Demol | lition/Con | struction) | | | | | | | | | | | | MW-8 | ND | MW-9A | ND | ND | 540 | 440 | 1370 | ND | MW-10 | ND 2.9 | ND | ND | ND | | MW-11 | ND | MW-12 | ND | ND | 7800 | 10000 | 45000 | ND | MW-14 | ND | MW-16 | ND | ND | 12000 | 590 | 2330 | ND | MW-20 | ND 4.6 | ND 3.5 | ND | ND | ND | 8.3 | ND | ND | 2 | ND | ND | | MW-21 | | | | | | | | | | | | | | Not S | Sampled - | - Dry | | | | | | | | | | | | | | | MW-22 | | | | | | | | | | | | | | Not 3 | Sampled - | - Dry | | | | | | | | | | | | | | | MW-23 | ND | ND | 1700 | 2600 | 13700 | ND | MW-24 | 110 | 17 | 5200 | 160 | 720 | ND | MW-26 | ND 3.2 | ND | MW-27 | ND | GP-1 | | | | | | | | | | | | | Not San | npled - St | eel Fence | Impedin | g Access | | | | | | | | | | | | | | GP-2 | ND | ND | 2.2 | ND | 2.1 | ND | ND | ND | 2.1 | ND | 19 | 53 | 23 | ND 110 | 24 | 29 | ND | 2.5 | ND | 17 | | EW-1 | 34,000 | ND | 94,000 | 4,900 | 28,400 | ND | EW-2 | ND | ND | 9600 | 4200 | 24600 | ND | CE-4 | ND | Trip Blank | ND | NYSDEC 4) TOGS GWQS 5) | 5 | 0.7 | 5 | 5 | 5 | 10 | 5 | 5 | 7 | 5 | 5 | 5 | 5 | 1 | 3 | NA | 5 | 5 | NA | 0.04 | 5 | 5 | 5 | 5 | 5 | 5
| 10 | 5 | 2 | ^{1) -}Methyl tert-butyl ether 2) Micrograms per liter ^{4) -} New York State Department of Environmental Conservation ^{5) -} Technical & Operational Guidance Series Ground Water Quality Standards WILLIAMSBURG, BROOKLYN, NEW YORK Ground-Water Quality Summary - EPA Method 8260 Modified to Include $MTBE^{1)}$ Collected May 5, 6, 7 and 8, 2008 | 7 | | | | | | | | | | | | | | Concentra | ation (uş | <u>(/l)</u> 2) | | | | | | | | | | | | | | |------------------------|-----------|---------|---------|--------------|--------------------|-------------|------------|----------------------|------------|---------------|------------------------|--------------------|--------------------|---------------------|----------------------|----------------|------------------|-----------------|----------------------|------------------------|------------------------|------------------------|-------------------|-----------------|-----------------------|------------------------|-------------------------|--------------------|----------------| | Well
Identification | Acetone | Benzene | Toluene | Ethylbenzene | Xylenes
(total) | Naphthalene | 2-Butanone | Carbon Tetrachloride | Chloroform | Chlorobenzene | cis-1,2-Dichloroethene | 1,1-Dichloroethene | 1,1-Dichloroethane | 1,2-Dichloropropane | 1,2-Dichlor obenzene | Diethyl Ether | Isopropylbenzene | n-propylbenzene | 4-Methyl-2-Pentanone | 1,2,3-Trichloropropane | 1,2,4-Trimethlybenzene | 1,3,5-Trimethlybenzene | Tetrachloroethene | Trichloroethene | 1,1,1-Trichloroethane | Trichlorofluoromethane | Methyl tert-butyl ether | Methylene Chloride | Vinyl Chloride | | MW-1 | ND 3) | ND | MW-2 | ND | MW-3 | ND | MW-4 | ND | 3 | 120 | 150 | 763 | ND | ND | ND | ND | ND | 2.6 | ND | 7.1 | ND 4.3 | ND | ND | ND | ND | ND | | MW-5 | ND 7.5 | ND 7.8 | ND | 7.7 | ND | ND | ND | ND | | MW-7 | | | | | | | | | | No | ot Sample | d - Plywc | od Barrier | Impeding | Access (| (Building | Demolitic | on/Constru | uction) | | | | | | | | | | | | MW-8 | ND | MW-9A | 170 | ND | 1,700 | 120 | 620 | ND | MW-10 | ND 4.7 | ND 3.9 | ND | ND | ND | 8.3 | ND | 2.9 | 2.5 | ND | ND | | MW-11 | ND | MW-12 | ND | ND | 5,800 | 12,000 | 49,700 | ND | MW-14 | ND 3.1 | 4.7 | ND | ND | ND | ND | ND | | MW-16 | ND | ND | 21,000 | 1,800 | 9,400 | ND | MW-20 | ND | MW-21 | 230,000 | 120 | 340,000 | 6,100 | 43,000 | ND | MW-22 | | | | | | | | | | | | | Not | t Sampled | - Product | Present | | | | | | | | | | | | | | | MW-23 | ND | ND | 21,000 | 11,000 | 63,000 | ND | MW-24 | 2,700 | 29 | 15,000 | 240 | 2,970 | ND | MW-26 | ND 3.3 | ND | MW-27 | ND | ND | 2.0 | ND | GP-1 | | | - | | | | | | | | | N | Not Sample | ed - Steel | Fence In | apeding A | ccess | | | | | - | | | | | | | | | GP-2 | ND 15 | 17 | 18 | ND 35 | 14 | 7 | ND | ND | ND | 7.1 | | EW-1 | 1,600,000 | 110 | 190,000 | 8,400 | 52,000 | ND | 5800 | ND 1200 | ND | | EW-2 | ND | ND | 41,000 | 12,000 | 71,000 | ND | CE-4 | ND | Trip Blank | ND | NYSDEC 4) TOGS GWQS 5) | 5 | 0.7 | 5 | 5 | 5 | 10 | 5 | 5 | 7 | 5 | 5 | 5 | 5 | 1 | 3 | NA | 5 | 5 | NA | 0.04 | 5 | 5 | 5 | 5 | 5 | 5 | 10 | 5 | 2 | ^{1) -}Methyl tert-butyl ether 3) Not detected Notes: Samples analyzed by EPA Method 8260 EW-1 was sampled as part of the system sampling event on February 4, 2008 (Influent) ²⁾ Micrograms per liter ^{4) -} New York State Department of Environmental Conservation ^{5) -} Technical & Operational Guidance Series Ground Water Quality Standards #### WILLIAMSBURG, BROOKLYN, NEW YORK Groundwater Quality Summary - EPA Method 8260 Modified to Include MTBE¹⁾ Collected August 11, 12, 13 and 14, 2008 | | | | | | | | | | | | | | | Concentr | ation (ug | (/l) ²⁾ | | | | | | | | | | | | | | |------------------------|---------|---------|---------|--------------|-----------------|-------------|------------|----------------------|------------|---------------|------------------------|--------------------|--------------------|---------------------|---------------------|--------------------|------------------|-----------------|----------------------|------------------------|------------------------|------------------------|-------------------|-----------------|-----------------------|------------------------|-------------------------|--------------------|----------------| | Well
Identification | Acetone | Benzene | Toluene | Ethylbenzene | Xylenes (total) | Naphthalene | 2-Butanone | Carbon Tetrachloride | Chloroform | Chlorobenzene | cis-1,2-Dichloroethene | 1,1-Dichloroethene | 1,1-Dichloroethane | 1,2-Dichloropropane | 1,2-Dichlorobenzene | Diethyl Ether | Isopropylbenzene | n-propylbenzene | 4-Methyl-2-Pentanone | 1,2,3-Trichloropropane | 1,2,4-Trimethylbenzene | 1,3,5-Trimethylbenzene | Tetrachloroethene | Trichloroethene | 1,1,1-Trichloroethane | Trichlorofluoromethane | Methyl tert-butyl ether | Methylene Chloride | Vinyl Chloride | | MW-1 | ND 3) | ND | MW-2 | ND | MW-3 | ND | MW-4 | ND | ND | ND | 2.5 | 7.5 | ND | ND | ND | ND | ND | 2.3 | ND | 13 | ND 2.2 | ND | ND | ND | ND | ND | | MW-5 | ND | MW-7 | | | | | | | | | | No | t Sampleo | l - Plywo | od Barrie | Impeding | g Access | (Building | Demolitic | on/Constr | uction) | | | | | | | | | | | | MW-8 | ND | ND | 3.8 | 2.8 | 11.7 | ND | MW-9A | ND | ND | 260 | 570 | 840 | ND | MW-10 | ND 2.7 | ND 2.2 | ND | ND | ND | ND | ND | | MW-11 | ND | ND | 7 | 3.5 | 16.4 | ND | MW-12 | ND | ND | 380 | 12,000 | 47,100 | ND | MW-14 | ND 3.8 | 3.2 | ND | ND | ND | ND | | MW-16 | ND | ND | 2,300 | 1,400 | 5,600 | ND | MW-20 | ND | MW-21 | 7,400 | ND | 150,000 | 1,800 | 12,500 | ND | MW-22 | 14,000 | ND | 180,000 | 29,000 | 155,000 | ND | MW-23 | ND | ND | 12,000 | 12,000 | 70,000 | ND | MW-24 | ND | ND | 24,000 | 800 | 3,750 | ND | MW-26 | ND 3.9 | ND | MW-27 | ND | ND | 2.6 | ND | 8.8 | ND | GP-1 | ND | 1.6 | ND | GP-2 | ND 11 | 6.4 | 8.3 | ND 18 | 7.4 | 4.1 | ND | ND | ND | 2.9 | | EW-1 | 25000 | ND | 49000 | 3200 | 17900 | ND | EW-2 | ND | ND | 21,000 | 13,000 | 75,000 | ND | CE-4 | ND | Trip Blank | ND | NYSDEC 4) TOGS GWQS 5) | 5 | 0.7 | 5 | 5 | 5 | 10 | 5 | 5 | 7 | 5 | 5 | 5 | 5 | 1 | 3 | NA | 5 | 5 | NA | 0.04 | 5 | 5 | 5 | 5 | 5 | 5 | 10 | 5 | 2 | ^{1) -}Methyl tert-butyl ether 5) - Technical & Operational Guidance Series Ground Water Quality Standards Notes: Samples analyzed by EPA Method 8260 EW-1 was sampled as part of the system sampling event on August 20, 2008 (Influent) ²⁾ Micrograms per liter ^{4) -} New York State Department of Environmental Conservation #### WILLIAMSBURG, BROOKLYN, NEW YORK Groundwater Quality Summary - EPA Method 8260 Modified to Include MTBE¹⁾ Collected November 17, 18, 19 and 20, 2008 | | | | | | | | | | | | | | | Concentr | ation (ug | g/ l) ²⁾ | | | | | | | | | | | | | | |------------------------|---------|---------|---------|--------------|--------------------|-------------|------------|----------------------|------------|---------------|------------------------|--------------------|--------------------|---------------------|---------------------|-----------------------------|------------------|-----------------|----------------------|------------------------|------------------------|------------------------|-------------------|-----------------|-----------------------|------------------------|-------------------------|--------------------|----------------| | Well
Identification | Acetone | Benzene | Toluene | Ethylbenzene | Xylenes
(total) | Naphthalene | 2-Butanone | Carbon Tetrachloride | Chloroform | Chlorobenzene | cis-1,2-Dichloroethene | 1,1-Dichloroethene | 1,1-Dichloroethane | 1,2-Dichloropropane | 1,2-Dichlorobenzene | Diethyl Ether | Isopropylbenzene | n-propylbenzene | 4-Methyl-2-Pentanone | 1,2,3-Trichloropropane | 1,2,4-Trimethylbenzene | 1,3,5-Trimethylbenzene | Tetrachloroethene | Trichloroethene | 1,1,1-Trichloroethane | Trichlorofluoromethane | Methyl tert-butyl ether | Methylene Chloride | Vinyl Chloride | | MW-1 | ND 3) | ND | MW-2 | ND | MW-3 | 54 | ND | MW-4 | ND | ND | ND | ND | 71 | ND | ND | ND | ND | ND | 2.8 | 11 | ND | MW-5 | | | | | | | | | | | No | t Sample | d - (No A | ccess due | to a car p | oarked ov | er monito | r well) | | | | | | | | | | | | | MW-7 | | | | | | | | | | No | t Sampleo | l - Plywo | od Barrie | r Impeding | g Access | (Building | Demolitic | on/Constr | uction) | | | | | | | | | | | | MW-8 | ND | MW-9A | ND | ND | 330 | 1,000 | 4,500 | ND | MW-10 | ND 2.8 | ND 3.1 | ND | ND | ND | ND | ND | | MW-11 | ND | MW-12 | ND | ND | 8,100 | 9,700 | 46,400 | ND | MW-14 | ND 5.9 | ND | ND | ND | ND | ND | | MW-16 | 1,700 | ND | 16,000 | 3,700 | 21,300 | ND | MW-20 | ND | MW-21 | ND | ND | 69,000 | 1,000 | 9,900 | ND | MW-22 | | | | | | | | | | | | | Not | Sampled | - Product | Present | | | | | | | | | | | | | | | MW-23 | ND | ND | 28,000 | 14,000 | 77,000 | ND | MW-24 | ND | 92 | 45,000 | 1,400 | 7,200 | ND | MW-26 | ND 2.7 | ND 3.0 | 2.0 | ND | ND | ND | ND | ND | | MW-27 | ND | GP-1 | ND | 1.4 | ND | GP-2 | ND 2.2 | 2.0 | 2.3 | ND 3.1 | ND | ND | ND | ND | 13 | ND | | EW-1 | 24,000 | ND | 110,000 | 5,000 | 26,800 | ND | EW-2 | ND | ND | 24,000 | 9,400 | 62,000 | ND | CE-4 | ND | ND | ND | ND | 2.5 | ND | Trip Blank | ND | NYSDEC 4) TOGS GWQS 5) | 5 | 0.7 | 5 | 5 | 5 | 10 | 5 | 5 | 7 | 5 | 5 | 5 | 5 | 1 | 3 | NA | 5 | 5 | NA | 0.04 | 5 | 5 | 5 | 5 | 5 | 5 | 10 | 5 | 2 | ^{1) -}Methyl tert-butyl ether Notes : Samples analyzed by EPA Method 8260 EW-1 was sampled as part of the system sampling event on December 9, 2008 (Influent) ²⁾ Micrograms per liter ³⁾ Not detected ^{4) -} New York State Department of Environmental Conservation5) - Technical & Operational Guidance Series Ground Water Quality Standards #### WILLIAMSBURG, BROOKLYN, NEW YORK Groundwater Quality Summary - EPA Method 8260 Modified to Include MTBE 1) Collected February 10, 11, 12 and 13, 2009 | | | | | | | | | | | | | | | Concentr | ation (ug | g/ l) ²⁾ | | | | | | | | | | | | | | |--|---------|---------|---------
--------------|--------------------|-------------|------------|----------------------|------------|---------------|------------------------|--------------------|--------------------|---------------------|---------------------|-----------------------------|------------------|-----------------|----------------------|------------------------|------------------------|------------------------|-------------------|-----------------|-----------------------|------------------------|-------------------------|--------------------|----------------| | Well
Identification | Acetone | Benzene | Toluene | Ethylbenzene | Xylenes
(total) | Naphthalene | 2-Butanone | Carbon Tetrachloride | Chloroform | Chlorobenzene | cis-1,2-Dichloroethene | 1,1-Dichloroethene | 1,1-Dichloroethane | 1,2-Dichloropropane | 1,2-Dichlorobenzene | Diethyl Ether | Isopropylbenzene | n-propylbenzene | 4-Methyl-2-Pentanone | 1,2,3-Trichloropropane | 1,2,4-Trimethylbenzene | 1,3,5-Trimethylbenzene | Tetrachloroethene | Trichloroethene | 1,1,1-Trichloroethane | Trichlorofluoromethane | Methyl tert-butyl ether | Methylene Chloride | Vinyl Chloride | | MW-1 | ND 3) | ND | MW-2 | ND | MW-3 | ND | MW-4 | ND | ND | ND | 6.6 | 70 | ND | ND | ND | ND | ND | 2.9 | ND | 12 | ND 2 | ND | ND | ND | ND | ND | | MW-5 | | | | | | | | | | | No | t Sample | d - (No A | ccess due | to a car p | parked ov | er monito | r well) | | | | | | | | | | | | | MW-7 | | | | | | | | | | No | t Sampleo | l - Plywo | od Barrie | Impeding | g Access | (Building | Demoliti | on/Constr | uction) | | | | | | | | | | | | MW-8 | ND | 1.3 | 800 | 58 | 310 | ND | MW-9A | ND | ND | 58 | 11 | 126 | ND | MW-10 | ND 2.7 | ND 5.6 | ND | ND | ND | ND | ND | | MW-11 | ND | MW-12 | ND | ND | 2,600 | 8,700 | 38,200 | ND | MW-14 | ND 4.1 | ND | ND | ND | ND | ND | | MW-16 | ND | ND | 5,100 | 1,000 | 4,600 | ND | MW-20 | ND | MW-21 | | | • | • | | | | | | | | | Not | Sampled | - Product | Present | • | | | | | | | | • | • | • | • | | | MW-22 | | | | | | | | | | | | | Not | Sampled | - Product | Present | | | | | | | | | | | | | | | MW-23 | ND | ND | 11,000 | 9,300 | 49,000 | ND | MW-24 | 1,100 | 160 | 94,000 | 2,100 | 9,300 | ND | MW-26 | ND | MW-27 | ND | ND | 3.2 | ND | 9.9 | ND | GP-1 | ND | 2 | ND | GP-2 | ND 1 | ND 2.2 | ND | ND | ND | ND | ND | ND | | EW-1 | 58,000 | ND | 130,000 | 3,800 | 19,600 | ND 1,200 | ND | | EW-2 | ND | ND | 39,000 | 12,000 | 60,000 | ND | CE-4 | ND | Trip Blank (2/16/09) | ND | Trip Blank (2/18/09) | ND | NYSDEC ⁴⁾ TOGS GWQS ⁵⁾ | 5 | 0.7 | 5 | 5 | 5 | 10 | 5 | 5 | 7 | 5 | 5 | 5 | 5 | 1 | 3 | NA | 5 | 5 | NA | 0.04 | 5 | 5 | 5 | 5 | 5 | 5 | 10 | 5 | 2 | Notes : Samples analyzed by EPA Method 8260 EW-1 was sampled as part of the system sampling event on February 5, 2009 ^{1) -}Methyl tert-butyl ether 2) Micrograms per liter 3) Not detected ^{4) -} New York State Department of Environmental Conservation ^{5) -} Technical & Operational Guidance Series Ground Water Quality Standards #### WILLIAMSBURG, BROOKLYN, NEW YORK Groundwater Quality Summary - EPA Method 8260 Modified to Include MTBE¹⁾ Collected May 19, 20, 21 and 22, 2009 | | | | | | | | | | | | | | | Concentr | ation (ug | (/ l) ²⁾ | | | | | | | | | | | | | | |--|---------|---------|---------|--------------|--------------------|-------------|------------|----------------------|------------|---------------|------------------------|--------------------|--------------------|---------------------|---------------------|-----------------------------|------------------|-----------------|----------------------|------------------------|------------------------|------------------------|-------------------|-----------------|-----------------------|------------------------|-------------------------|--------------------|----------------| | Well
Identification | Acetone | Benzene | Toluene | Ethylbenzene | Xylenes
(total) | Naphthalene | 2-Butanone | Carbon Tetrachloride | Chloroform | Chlorobenzene | cis-1,2-Dichloroethene | 1,1-Dichloroethene | 1,1-Dichloroethane | 1,2-Dichloropropane | 1,2-Dichlorobenzene | Diethyl Ether | Isopropylbenzene | n-propylbenzene | 4-Methyl-2-Pentanone | 1,2,3-Trichloropropane | 1,2,4-Trimethylbenzene | 1,3,5-Trimethylbenzene | Tetrachloroethene | Trichloroethene | 1,1,1-Trichloroethane | Trichlorofluoromethane | Methyl tert-butyl ether | Methylene Chloride | Vinyl Chloride | | MW-1 | ND 3) | ND | MW-2 | ND | MW-3 | | • | • | | | | | | | | • | | Not S | Sampled - | No Acces | ss to Well | | | | | | | | | | | | | | | MW-4 | ND | ND | ND | ND | 8.7 | ND | ND | ND | ND | ND | 3.6 | ND | 12 | ND 2.1 | ND | ND | ND | ND | ND | | MW-5 | ND | MW-7 | | | | | | | | | | No | t Sampleo | l - Plywo | od Barrie | r Impeding | g Access | (Building | Demolitie | on/Constr | ruction) | | | | | | | | | | | | MW-8 | ND | MW-9A | ND | 3.7 | 3 | 24 | ND | MW-10 | ND 3.3 | ND | MW-11 | ND | ND | 9.1 | 2.9 | 13.8 | ND | MW-12 | ND | ND | 13,000 | 15,000 | 59,100 | ND | MW-14 | ND 6.2 | ND | ND | ND | ND | ND | | MW-16 | ND | ND | 6,800 | 1,800 | 5,600 | ND | MW-20 | ND | MW-21 | | | | | | | | | | | | | | Not Sam | pled - Dl | RY | | | | | | | | | | | | | | | MW-22 | | | | | | | | | | | | | Not | Sampled | - Product | Present | | | | | | | | | | | | | | | MW-23 | ND | ND | 5,300 | 4,100 | 19,000 | ND | MW-24 | 1,900 | 250 | 210,000 | 3,800 | 16,500 | ND | MW-26 | ND | ND | 9.2 | 2.2 | 3 | ND 2.6 | ND | ND | ND | ND | ND | | MW-27 | ND | GP-1 | ND | 1.7 | ND | GP-2 | ND | EW-1 | 6,200 | ND | 39,000 | 4,000 | 20,900 | ND | EW-2 | ND | ND | 42,000 | 13,000 | 69,000 | ND | CE-4 | ND | Trip Blank (5/22/09) | ND | NYSDEC ⁴⁾ TOGS GWQS ⁵⁾ | 5 | 0.7 | 5 | 5 | 5 | 10 | 5 | 5 | 7 | 5 | 5 | 5 | 5 | 1 | 3 | NA | 5 | 5 | NA | 0.04 | 5 | 5 | 5 | 5 | 5 | 5 | 10 | 5 | 2 | ^{1) -}Methyl tert-butyl ether Notes : Samples analyzed by EPA Method 8260 EW-1 was sampled as part of the system sampling event on May 28, 2009 ²⁾ Micrograms per liter ³⁾ Not detected ^{4) -} New York State Department of Environmental Conservation5) - Technical & Operational Guidance Series Ground Water Quality Standards #### WILLIAMSBURG, BROOKLYN, NEW YORK Groundwater Quality Summary - EPA Method 8260 Modified to Include MTBE¹⁾ Collected August 24, 25, 26 & 27, 2009 | | | | | | | | | | | | | | | Concentr | ation (ug | g/ l) ²⁾ | | | | | | | | | | | | | | |--|---------|---------|---------|--------------|-----------------|-------------|------------|----------------------|------------|---------------|------------------------|--------------------|--------------------|---------------------|---------------------|----------------------------|------------------|-----------------|----------------------|------------------------|------------------------|------------------------|-------------------|-----------------|-----------------------|------------------------|-------------------------|--------------------|----------------| | Well
Identification | Acetone | Benzene | Toluene | Ethylbenzene | Xylenes (total) | Naphthalene | 2-Butanone | Carbon Tetrachloride | Chloroform | Chlorobenzene | cis-1,2-Dichloroethene | 1,1-Dichloroethene | 1,1-Dichloroethane | 1,2-Dichloropropane | 1,2-Dichlorobenzene | Diethyl Ether | Isopropylbenzene | n-propylbenzene | 4-Methyl-2-Pentanone | 1,2,3-Trichloropropane | 1,2,4-Trimethylbenzene | 1,3,5-Trimethylbenzene | Tetrachloroethene | Trichloroethene | 1,1,1-Trichloroethane | Trichlorofluoromethane | Methyl tert-butyl ether | Methylene Chloride | Vinyl Chloride | | MW-1 | ND 3) | ND | MW-2 | ND | MW-3 | | | | | | | | | | | | | Not S | ampled - | No Acces | ss to Well | | | | | | | | | | | | | | | MW-4 | ND | ND | ND | 15 | 23 | ND | ND | ND | ND | ND | 6.4 | ND | 18 | ND 2.6 | ND | ND | ND | ND | ND | | MW-5 | ND | MW-7 | | | | | | | | | | No | t Sampled | l - Plywo | od Barrie | Impeding | Access | (Building | Demoliti | on/Constr | uction) | | | | | | | | | | | | MW-8 | ND | MW-9A | ND | 24 | ND | 150 | 663 | ND 2.9 | ND | MW-10 | ND 3.4 | ND | MW-11 | ND | MW-12 | ND | ND | 3,000 | 14,000 | 62,100 | ND | MW-14 | ND 7.4 | ND | ND | ND | ND | ND | | MW-16 | ND | ND | 4,100 | 1,300 | 5,900 | ND | MW-20 | ND | MW-21 | | | | | | | | | | | | | | Not Sam | pled - DI | RY | | | | | | | | | | | | | | | MW-22 | | | | | | | | | | | | | Not | Sampled | Product | Present | | | | | | | | | | | | | | | MW-23 | ND | ND | 6,300 | 6,200 | 32,200 | ND | MW-24 | 2,500 | 290 | 220,000 | 3,900 | 18,400 | ND | MW-26 | ND 3.8 | 2.7 | ND | ND | ND | ND | ND | | MW-27 | ND 28 | ND 3.2 | 12 | ND | ND | 3.5 | ND | ND | | GP-1 | ND | 2.2 | ND | GP-2 | | | | | | | | | | | | | | Not 3 | Sampled | | | | | | | | | | | | | | | | EW-1 | 93,000 | 120 | 260,000 | 3,800 | 18,400 | ND | EW-2 | ND | ND | 34,000 | 13,000 | 74,000 | ND | CE-4 | ND | Method Blank | ND | NYSDEC ⁴⁾ TOGS GWQS ⁵⁾ | 5 | 0.7 | 5 | 5 | 5 | 10 | 5 | 5 | 7 | 5 | 5 | 5 | 5 | 1 | 3 | NA | 5 | 5 | NA | 0.04 | 5 | 5 | 5 | 5 | 5 | 5 | 10 | 5 | 2 | ^{1) -}Methyl tert-butyl ether 3) Not detected Notes : Samples analyzed by EPA Method 8260 EW-1 was sampled as part of the system sampling event on August 27, 2009 ²⁾ Micrograms per liter ^{4) -} New York State Department of Environmental Conservation5) - Technical & Operational Guidance Series Ground Water Quality Standards WILLIAMSBURG, BROOKLYN, NEW YORK Groundwater Quality Summary - EPA Method 8260 Modified to Include MTBE¹⁾ Collected November 16, 17, 18 & 19, 2009 | | | | | | | | | | | | | | | Cone | centration | ug/l) 2) | | | | | | | | | | | | | | | |--|---------|---------|---------|--------------|--------------------|-------------|------------|----------------------|------------|---------------|------------------------|--------------------|--------------------|---------------------|---------------------|---------------|------------------|-----------------|----------------------|------------------------
------------------------|------------------------|-------------------|-----------------|-----------------------|------------------------|-------------------------|--------------------|----------------|-----------------| | Well
Identification | Acetone | Benzene | Toluene | Ethylbenzene | Xylenes
(total) | Naphthalene | 2-Butanone | Carbon Tetrachloride | Chloroform | Chlorobenzene | cis-1,2-Dichloroethene | 1,1-Dichloroethene | 1,1-Dichloroethane | 1,2-Dichloropropane | 1,2-Dichlorobenzene | Diethyl Ether | Isopropylbenzene | n-propylbenzene | 4-Methyl-2-Pentanone | 1,2,3-Trichloropropane | 1,2,4-Trimethylbenzene | 1,3,5-Trimethylbenzene | Tetrachloroethene | Trichloroethene | 1,1,1-Trichloroethane | Trichlorofluoromethane | Methyl tert-butyl ether | Methylene Chloride | Vinyl Chloride | Tetrahydrofuran | | MW-1 | ND 3) | ND | ND | ND | ND | ND | 39 | ND 24 | | MW-2 | ND | ND | ND | ND | ND | ND | 33 | ND 20 | | MW-3 | | | | | | | | | | | | | 1 | Not Samp | led - No A | Access to | Well | | | | | | | | | | | | | | | MW-4 | ND | ND | ND | 2.7 | 10 | ND | ND | ND | ND | ND | 6.4 | ND | 17 | ND 2.6 | ND | ND | ND | ND | ND | ND | | MW-5 | ND | MW-7 | | | | | | | | | | | Not Sai | npled - P | lywood Ba | arrier Imp | eding Ac | cess (Buil | ding Dem | olition/Co | onstructio | n) | | | | | | | | | | | | MW-8 | ND | MW-9A | ND | 43 | 29,000 | 1,300 | 6,900 | ND 2.1 | ND | ND | ND | 9.9 | 2.3 | ND | ND | 8 | ND | MW-10 | ND | ND | ND | ND | ND | ND | 39 | ND | ND | ND | 3.9 | ND 24 | | MW-11 | ND | MW-12 | ND | ND | 2,400 | 9,600 | 38,200 | ND | MW-14 | ND 4.9 | ND | ND | ND | ND | ND | ND | | MW-16 | 2,200 | ND | 3,000 | 420 | 2,240 | ND | MW-20 | ND | MW-21 | ND | 120 | 280,000 | 6,300 | 39,000 | ND | MW-22 | ND | ND | 130,000 | 22,000 | 144,000 | ND | MW-23 | ND | ND | 6,700 | 6,900 | 37,700 | ND | MW-24 | ND | 220 | 89,000 | 2,900 | 13,900 | ND | MW-26 | ND 3.1 | 3.1 | ND | ND | ND | ND | ND | ND | | MW-27 | ND | ND | ND | ND | 5.2 | ND | 32 | ND | ND | ND | 24 | ND 3.4 | 11 | ND | ND | 2.6 | ND | ND | 20 | | GP-1 | ND | 6.0 | ND | GP-2 | | | | | | | | | | | | | | | Not Samp | oled | | | | | | | | | | | | | | | | EW-1 | 4,400 | ND | 65,000 | 4,700 | 25,600 | ND | EW-2 | ND | ND | 21,000 | 11,000 | 61,000 | ND | CE-4 | ND | ND | 42 | ND | 11 | ND | 35 | ND 22 | | Method Blank | ND | NYSDEC ⁴⁾ TOGS GWQS ⁵⁾ | 5 | 0.7 | 5 | 5 | 5 | 10 | 5 | 5 | 7 | 5 | 5 | 5 | 5 | 1 | 3 | NA | 5 | 5 | NA | 0.04 | 5 | 5 | 5 | 5 | 5 | 5 | 10 | 5 | 2 | 50 | 1) -Methyl tert-butyl ether 2) Micrograms per liter 3) Not detected 4) - New York State Department of Environmental Conservation5) - Technical & Operational Guidance Series Ground Water Quality Standards Notes : Samples analyzed by EPA Method 8260 EW-1 was sampled as part of the system sampling event on November 17, 2009 # FYN PAINT & LACQUER COMPANY, INC. 230 KENT AVENUE WILLIAMSBURG, BROOKLYN, NEW YORK Groundwater Quality Summary - EPA Method 8260 Modified to Include MTBE¹⁾ Collected March 3, 4 & 5, 2010 | | | | | | | | | | | | | | | Con | centratio | 1 (ug/l) 2) | | | | | | | | | | | | | | | |--|---------|---------|---------|--------------|--------------------|-------------|------------|----------------------|------------|---------------|------------------------|--------------------|--------------------|---------------------|---------------------|---------------|------------------|-----------------|----------------------|------------------------|------------------------|------------------------|-------------------|-----------------|-----------------------|------------------------|-------------------------|--------------------|----------------|-----------------| | Well
Identification | Acetone | Benzene | Toluene | Ethylbenzene | Xylenes
(total) | Naphthalene | 2-Butanone | Carbon Tetrachloride | Chloroform | Chlorobenzene | cis-1,2-Dichloroethene | 1,1-Dichloroethene | 1,1-Dichloroethane | 1,2-Dichloropropane | 1,2-Dichlorobenzene | Diethyl Ether | Isopropylbenzene | n-propylbenzene | 4-Methyl-2-Pentanone | 1,2,3-Trichloropropane | 1,2,4-Trimethylbenzene | 1,3,5-Trimethylbenzene | Tetrachloroethene | Trichloroethene | 1,1,1-Trichloroethane | Trichlorofluoromethane | Methyl tert-butyl ether | Methylene Chloride | Vinyl Chloride | Tetrahydrofuran | | MW-1 | ND 3) | ND | MW-2 | ND | MW-3 | ND | MW-4 | ND | ND | 30 | 4.4 | 27 | ND | ND | ND | ND | ND | 3.4 | ND | 11 | ND | MW-5 | ND | MW-7 | | | | | | | | | | | Not Sar | npled - Pl | ywood Ba | arrier Imp | eding Ac | cess (Buil | ding Dem | nolition/C | onstructio | n) | | | | | | | | | | | | MW-8 | ND | MW-9A | ND | ND | 4,600 | 540 | 2,180 | ND | MW-10 | ND | MW-11 | ND | MW-12 | ND | ND | 3,400 | 15,000 | 61,000 | ND | MW-14 | ND | MW-16 | 75,000 | 110 | 43,000 | 5,600 | 30,800 | ND | 1,700 | ND | ND | ND | ND | ND | 23 | ND | MW-20 | ND | MW-21 | 3,800 | 120 | 330,000 | 5,700 | 42,000 | ND | MW-22 | | | | | | | | | | | | | Not Sa | ampled - l | Product D | etected In | The Wel | 1 | | | | | | | | | | | | | | MW-23 | ND | ND | 77 | 310 | 1,270 | ND | MW-24 | ND | 160 | 62,000 | 1,900 | 7,200 | ND | MW-26 | ND 2.4 | ND | MW-27 | ND 3.5 | ND | GP-1 | | | | | | | | | | | | | | | Not Sam | pled | | | | | | | | | | | | | | | | GP-2 | | | | | | | | | | | | | | | Not Sam | pled | | | | | | | | | | | | | | | | EW-1 | ND | ND | 11,000 | 280 | 4,420 | ND | EW-2 | ND | ND | 9,200 | 4,200 | 24,300 | ND | CE-4 | ND | Trip Blank | ND | NYSDEC ⁴⁾ TOGS GWQS ⁵⁾ | 5 | 0.7 | 5 | 5 | 5 | 10 | 5 | 5 | 7 | 5 | 5 | 5 | 5 | 1 | 3 | NA | 5 | 5 | NA | 0.04 | 5 | 5 | 5 | 5 | 5 | 5 | 10 | 5 | 2 | 50 | 1) -Methyl tert-butyl ether 3) Not detected 2) Micrograms per liter 4) - New York State Department of Environmental Conservation 5) - Technical & Operational Guidance Series Ground Water Quality Standards #### WILLIAMSBURG, BROOKLYN, NEW YORK Groundwater Quality Summary - EPA Method 8260 Modified to Include MTBE¹⁾ Collected June 21, 22, 23 & 24, 2010 | | | | | | | | | | | | | | | | | Concentr | ation (ug | g/l) ²⁾ | | | | | | | | | | | | | | | | |------------------------|---------|---------|---------|--------------|--------------------|-------------|------------|----------------------|------------|---------------|------------------------|---------------------------|--------------------|--------------------|--------------------|---------------------|---------------------|--------------------|------------------|-----------------|----------------------|------------------------|------------------------|------------------------|-------------------|-----------------|-----------------------|------------------------|-------------------------|--------------------|----------------|-----------------|-------------------------| | Well
Identification | Acetone | Benzene | Toluene | Ethylbenzene | Xylenes
(total) | Naphthalene | 2-Butanone | Carbon Tetrachloride | Chloroform | Chlorobenzene | cis-1,2-Dichloroethene | trans-1, 2-Dichloroethene | 1,2 Dichloroethane | 1,1-Dichloroethene | 1,1-Dichloroethane | 1,2-Dichloropropane | 1,2-Dichlorobenzene | Diethyl Ether | Isopropylbenzene | n-propylbenzene | 4-Methyl-2-Pentanone | 1,2,3-Trichloropropane | 1,2,4-Trimethylbenzene | 1,3,5-Trimethylbenzene | Tetrachloroethene | Trichloroethene | 1,1,1-Trichloroethane | Trichlorofluoromethane | Methyl tert-butyl ether | Methylene Chloride | Vinyl Chloride | Tetrahydrofuran | Dichlorodifluoromethane | | MW-1 | | | • | | | <u>'</u> | • | <u> </u> | | • | No | t Sampled | - To Be S | Sampled A | Annually (| Concurren | t with the | Con Edis | on MOSF | Sampling | g as per N | YSDEC | | | | <u> </u> | · | | · | | · | | | | MW-2 | | | | | | | | | | | No | t Sampled | - To Be S | Sampled A | Annually (| Concurren | t with the | Con Edis | on MOSF | Sampling | g as per N | YSDEC | | | | | | | | | _ | _ | | | MW-3 | | | | | | | | | | | No | t Sampled | - To Be S | Sampled A | Annually (| Concurren | t with the | Con Edis | on MOSF | Sampling | g as per N | YSDEC | | | | | | | | | | | | | MW-4 | ND | ND | ND | 62 | 40 | ND | ND | ND | ND | 2.7 | 13.0 | 4.1 | ND | ND | 5 | ND | 4.9 | ND 16.0 | ND | ND | 2.8 | ND | ND | ND | ND | | MW-5 | | | - | | | | - | • | • | • | No | t Sampled | - To Be S | Sampled A | Annually (| Concurren | t with the | Con Edis | on MOSF | Sampling | g as per N | YSDEC | | | | | • | | • | 1 | | | | | MW-6 | ND | 2.6 | 77 | 32 | 22.4 | ND 6.6 | ND 2 | ND | ND | ND | ND | | MW-7 | ND | ND | ND | ND | 3.2 | ND | ND | ND | 7.6 | ND | 18 | ND | ND | ND | 4.8 | ND 6.6 | 5.6 | 19 | 15 | ND | ND | ND | ND | ND | 29 | 5.8 | | MW-8 | ND | ND | 2.6 | ND | MW-9A | ND | 45 | 51,000 | 3,000 | 16,200 | ND | MW-10 | ND | 2.2 | 1,100 | 1,100 | 2,470 | ND | ND | ND | ND | ND | 3.9 | ND | ND | ND | ND | ND | 4.7 | ND | 9 | ND | ND | ND | ND | ND | 3.2 | 11 | ND | MW-11 | ND | MW-12 | ND | ND | 200 | 9,000 | 37,000 | ND | MW-13 | ND | 280 | 290,000 | 6,900 | 35,500 | ND | MW-14 | ND | ND | ND | ND | 3.8 | ND | MW-15 | 30,000 | 120 | 290,000 | 4,500 | 25,000 | ND | MW-16 | 250,000 | 140 | 50,000 | 8,500 | 48,000 | ND | 4,300 | ND | MW-20 | ND | MW-21 | 360,000 | ND | 260,000 | 5,200 | 52,000 | ND | 1,100 | ND | MW-22 | | | | | | | | | | | | | | ľ | Not Samp | led - Prod | uct Detec | ted In The | Well | | | | | | | | | | | | | | | | MW-23 | ND | ND | 6,200 | 8,900 | 49,600 | ND 52 | ND | MW-24 | ND | ND | 20,000 | 1,100 | 5,160 | ND | MW-25 | | | | | | | | | | | | | | 1 | Not Samp | led - Prod | uct Detec | ted In The | Well | | | | | | | | | | | | | | | | MW-26 | ND | MW-27 | ND | MW-28 | 800,000 | 200 | 270,000 | 3,100 | 16,000 | ND | 3,500 | ND 770 | ND | ND | ND | | GP-1 | | | | • | • | • | | | • | | | | | | Not | Sampled | - Decomr | nissioned | | • | | | | | | • | • | | • | | | | | | GP-2 | | | | | | | | | | | | | | | Not | Sampled | - Decomr | nissioned | | | | | | | | | | | | | | | | | EW-1 | 230,000 | ND | 120,000 | 4,400 | 30,000 | ND | 1,200 | ND | EW-2 | ND | ND | 9,600 | 11,000 | 59,000 | ND | CE-4 |
ND 14 | ND | ASW-1 | 18 | ND | 86 | 36 | 172 | ND | ND | ND | 2.3 | ND | ND | ND | 16 | ND | Trip Blank | ND | NYSDEC 4) TOGS GWQS 5) | 5 | 0.7 | 5 | 5 | 5 | 10 | 5 | 5 | 7 | 5 | 5 | 5 | 0.6 | 5 | 5 | 1 | 3 | NA | 5 | 5 | NA | 0.04 | 5 | 5 | 5 | 5 | 5 | 5 | 10 | 5 | 2 | 50 | 5 | - -Methyl tert-butyl ether Micrograms per liter Not detected - 4) New York State Department of Environmental Conservation5) Technical & Operational Guidance Series Ground Water Quality Standards #### WILLIAMSBURG, BROOKLYN, NEW YORK Groundwater Quality Summary - EPA Method 8260 Modified to Include MTBE¹⁾ Collected September 20, 21, 22 & 23, 2010 | | | | | | | | | | | | | _ | | | | Concenti | ation (ug | /l) ²⁾ | _ | | | | | | | | | | | | | | | |------------------------|---------|---------|---------|--------------|--------------------|-------------|------------|----------------------|------------|---------------|------------------------|---------------------------|--------------------|--------------------|--------------------|---------------------|---------------------|-------------------|------------------|-----------------|----------------------|------------------------|------------------------|------------------------|-------------------|-----------------|-----------------------|------------------------|-------------------------|--------------------|----------------|-----------------|-------------------------| | Well
Identification | Acetone | Benzene | Toluene | Ethylbenzene | Xylenes
(total) | Naphthalene | 2-Butanone | Carbon Tetrachloride | Chloroform | Chlorobenzene | cis-1,2-Dichloroethene | trans-1, 2-Dichloroethene | 1,2 Dichloroethane | 1,1-Dichloroethene | 1,1-Dichloroethane | 1,2-Dichloropropane | 1,2-Dichlorobenzene | Diethyl Ether | Isopropylbenzene | n-propylbenzene | 4-Methyl-2-Pentanone | 1,2,3-Trichloropropane | 1,2,4-Trimethylbenzene | 1,3,5-Trimethylbenzene | Tetrachloroethene | Trichloroethene | 1,1,1-Trichloroethane | Trichlorofluoromethane | Methyl tert-butyl ether | Methylene Chloride | Vinyl Chloride | Tetrahydrofuran | Dichlorodifluoromethane | | MW-1 | | | | | | | | | | | Not | Sampled | - To Be S | ampled A | nnually (| Concurren | t with the | Con Edis | on MOSI | Samplin | g as per N | YSDEC | | | | | | | | | | | | | MW-2 | | | | | | | | | | | | | - To Be S | MW-3 | | | | | | • | | | | | Not | Sampled | - To Be S | ampled A | nnually (| Concurren | t with the | Con Edis | on MOSI | Samplin | g as per N | YSDEC | • | | | | | | | | | | | | MW-4 | ND | ND | ND | 5 | 3.3 | ND | ND | ND | ND | 3.8 | 13.0 | 9.2 | ND | ND | 4.7 | ND | 5.7 | ND 4.8 | ND | ND | 2.9 | ND | ND | ND | ND | | MW-5 | | 1 | | | | | | | | | Not | Sampled | - To Be S | ampled A | nnually (| Concurren | t with the | Con Edis | on MOSI | Samplin | g as per N | YSDEC | | | T | 1 | | | , . | | | | | | MW-6 | ND | ND | 100 | 7.9 | 41.7 | ND 17 | ND 10 | ND | ND | ND | ND | ND | ND | | MW-7 | ND | ND | 57 | 4.6 | 25.9 | ND | ND | ND | 2.7 | ND | 6.2 | ND | ND | ND | 36 | ND 8.2 | 7.3 | 8.3 | ND | ND | ND | ND | ND | ND | | MW-8 | ND | ND | 19 | ND | 2.9 | ND | MW-9A | | | | | | | | | | | | | | N | lot Sampl | led - Prod | uct Detect | ed In The | Well | | | | | | | | | | | | | | | | MW-10 | ND | ND | ND | 3.8 | 2.3 | ND | ND | ND | ND | ND | 3.4 | ND 7.8 | ND | MW-11 | ND | ND | ND | ND | 2.3 | ND | MW-12 | ND | ND | 390 | 8,100 | 30,310 | ND | MW-13 | ND | 360 | 310,000 | 6,400 | 30,700 | ND | MW-14 | ND 2.1 | ND | ND | ND | ND | ND | ND | | MW-15 | 12,000 | 260 | 210,000 | 5,900 | 28,600 | ND | MW-16 | 4,400 | ND | 7,800 | 2,000 | 11,200 | ND | MW-20 | ND | ND | 30 | 19 | 106 | ND | MW-21 | | | | | | | | | | | | | | | | Not San | npled - Dl | RY | | | | | | | | | | | | | | | | | MW-22 | | | | | | | | | | | | | | N | lot Sampl | led - Prod | uct Detect | ed In The | Well | | | | | | | • | | | | | | | | | MW-23 | ND | ND | 5,800 | 10,000 | 52,700 | ND | MW-24 | 1,200 | ND | 11,000 | 340 | 1,220 | ND | MW-25 | | | | | | • | | | | | | , | | N | lot Sampl | led - Prod | uct Detect | ed In The | Well | _ | | • | • | | | | | | | | | | <u> </u> | | MW-26 | ND | ND | 110 | 2.3 | 10.7 | ND 2.8 | 2.6 | ND | MW-27 | ND | ND | ND | ND | 6.4 | ND | MW-28 ⁶⁾ | ND | ND | 16,000 | ND | 1,800 | ND | GP-1 | | | | | | | | | | | | | | | Not | Sampled | - Decomn | nissioned | | | | | | | | | | | | | | | | | GP-2 | | | | | | | | | | | | , | _ | | Not | Sampled | - Decomn | nissioned | , | _ | | | | | | _ | | | | | | | | | EW-1 | 11,000 | ND | 52,000 | 2,400 | 15,500 | | ND | EW-2 | ND | ND | 29,000 | 16,000 | 67,000 | ND | CE-4 | | | | | | | | | | | Not | Sampled | - To Be S | ampled A | • | | | | on MOSI | Samplin | g as per N | YSDEC | | | | | | | | | | | | | ASW-1 | | 1 | , | | | | | | | | | • | | , | | Sampled | | | • | | • | | | | T | 1 | T | 1 | , . | | | | | | Trip Blank | ND | NYSDEC 4) TOGS GWQS 5) | 5 | 0.7 | 5 | 5 | 5 | 10 | 5 | 5 | 7 | 5 | 5 | 5 | 0.6 | 5 | 5 | 1 | 3 | NA | 5 | 5 | NA | 0.04 | 5 | 5 | 5 | 5 | 5 | 5 | 10 | 5 | 2 | 50 | 5 | - Methyl tert-butyl ether Micrograms per liter Not detected - 4) New York State Department of Environmental Conservation 5) Technical & Operational Guidance Series Ground Water Quality Standards 6) MW-28 was sampled on September 30, 2010 as the Influent as part of the monthly treatment system sampling #### WILLIAMSBURG, BROOKLYN, NEW YORK Groundwater Quality Summary - EPA Method 8260 Modified to Include MTBE¹⁾ Collected December 9, 10 & 13, 2010 | | | | | | | | | | | | | | | | | Concentr | ation (ug | g/l) ²⁾ | | | | | | | | | | | | | | | | |------------------------|---------|---------|---------|--------------|--------------------|-------------|------------|----------------------|------------|---------------|------------------------|---------------------------|--------------------|--------------------|--------------------|---------------------|---------------------|--------------------|------------------|-----------------|----------------------|------------------------|------------------------|------------------------|-------------------|-----------------|-----------------------|------------------------|-------------------------|--------------------|----------------|-----------------|-------------------------| | Well
Identification | Acetone | Benzene | Toluene | Ethylbenzene | Xylenes
(total) | Naphthalene | 2-Butanone | Carbon Tetrachloride | Chloroform | Chlorobenzene | cis-1,2-Dichloroethene | trans-1, 2-Dichloroethene | 1,2 Dichloroethane | 1,1-Dichloroethene | 1,1-Dichloroethane | 1,2-Dichloropropane | 1,2-Dichlorobenzene | Diethyl Ether | Isopropylbenzene | n-propylbenzene | 4-Methyl-2-Pentanone | 1,2,3-Trichloropropane | 1,2,4-Trimethylbenzene | 1,3,5-Trimethylbenzene | Tetrachloroethene | Trichloroethene | 1,1,1-Trichloroethane | Trichlorofluoromethane | Methyl tert-butyl ether | Methylene Chloride | Vinyl Chloride | Tetrahydrofuran | Dichlorodifluoromethane | | MW-1 | | | | | <u> </u> | | | | | | No | t Sampled | - To Be S | Sampled A | nnually (| Concurren | with the | Con Edis | on MOSF | Sampling | g as per N | YSDEC | | | | | | | | | | | | | MW-2 | | | | | | | | | | | No | t Sampled | - To Be S | Sampled A | nnually (| Concurren | with the | Con Edis | on MOSF | Sampling | g as per N | YSDEC | | | | | | | | | | | | | MW-3 | | | | | | | | | | | No | t Sampled | - To Be S | Sampled A | nnually (| Concurren | with the | Con Edis | on MOSF | Sampling | g as per N | YSDEC | | | | | | | | | | | | | MW-4 | ND 3) | ND | ND | 2.7 | 5.5 | ND | ND | ND | ND | 2.9 | 10.0 | 7.2 | ND | ND | 4 | ND | 4.5 | ND 3.1 | ND | MW-5 | | | | | | | | | | | No | t Sampled | - To Be S | Sampled A | nnually (| Concurren | with the | Con Edis | on MOSF | Sampling | g as per N | YSDEC | | | | | | | | | | | | | MW-6 | ND 16 | ND 4.9 | ND | ND | ND | ND | ND | ND | | MW-7 | ND 19 | ND | ND | ND | 5.7 | ND 18 | 18 | 2.2 | ND | ND | ND | ND | ND | 5.4 | | MW-8 | ND | MW-9A | | | | | | | | | | | | | | ľ | lot Sampl | ed - Produ | ict Detect | ted In The | Well | | | | | | | | | | | | | | | | MW-10 | ND | ND | ND | 2.1 | ND | ND | ND | ND | ND | ND | 6.1 | ND 4.7 | ND | MW-11 | ND | ND | ND | ND | 23.2 | ND | MW-12 | ND | ND | 720 | 6,500 | 22,650 | ND | MW-13 | | • | • | • | * | | • | | | • | 3' | • | • | • | Not Samp | led - Wel | covered | by scaffol | ding | • | • | | | • | | • | • | | • | | | • | | | MW-14 | ND 2.8 | ND | MW-15 | | | | | | | | | | | | | | 1 | lot Sampl | ed - Prodi | ict Detect | ted In The | Well | | | | | | | | | | | | | | | | MW-16 | 18,000 | ND | 33,000 | 5,000 | 30,600 | ND | MW-20 | ND | ND | ND | 11 | 37 | ND | MW-21 | 51,000 | 110 | 290,000 | 4,400 | 29,200 | ND | MW-22 | | | | | | | | | | | | | | 1 | lot Sampl | ed - Produ | ict Detect | ted In The | Well | | | | | | | | | | | | | | | | MW-23 | ND | ND | 1,600 | 2,600 | 14,700 | ND | MW-24 | ND | ND | 6,500 | 420 | 1,770 | ND | MW-25 | | | | | | | | | | | | | _ | 1 | lot Sampl | ed - Produ | ict Detect | ted In The | Well | | | | | | | | | | | | | | | | MW-26 | ND 2.3 | ND | MW-27 | ND | MW-28 | 13,000 | ND | 9,900 | 380 | 1,280 | ND | GP-1 | | | | | | | | | | | | | | | Not | Sampled - | Decomn | nissioned | | | | | | | | | | | | | | | | | GP-2 | | | | | | | | | | | | | _ | | Not | Sampled | Decomn | nissioned | | | | | | | | | | | | | | | | | EW-1 | 3,400 | ND | 75,000 | 4,200 | 20,800 | ND | EW-2 | ND | ND | 13,000 | 9,100 | 48,000 | ND | CE-4 | | | | | | | | | | | No | t Sampled | - To Be S | Sampled A | nnually C | Concurren | with the | Con Edis | on MOSF | Sampling | g as per N | YSDEC | | | | | | | | | | | | | ASW-1 | | | | _ | | | | | | | | | | | Not | Sampled | - Air Spa | rge Well | | | | | | | | | | | | | | | | | Trip Blank | ND | NYSDEC 4) TOGS GWQS 5) | 5 | 0.7 | 5 | 5 | 5 | 10 | 5 | 5 | 7 | 5 | 5 | 5 | 0.6 | 5 | 5 | 1 | 3 | NA | 5 | 5 | NA | 0.04 | 5 | 5 | 5 | 5 | 5 | 5 | 10 | 5 | 2 | 50 | 5 | - Methyl tert-butyl ether Micrograms per liter Not detected - 4) New York State Department
of Environmental Conservation5) Technical & Operational Guidance Series Ground Water Quality Standards #### WILLIAMSBURG, BROOKLYN, NEW YORK Groundwater Quality Summary - EPA Method 8260 Modified to Include MTBE 1) Collected March 21, 22, 23, 24 & April 13, 2011 | | | | | | | | | | | | | | | | | Concentr | ation (ug | g/l) ²⁾ | | | | | | | | | | | | | | | | |------------------------|---------|---------|---------|--------------|-----------------|-------------|------------|----------------------|------------|---------------|------------------------|---------------------------|--------------------|--------------------|--------------------|---------------------|---------------------|--------------------|------------------|-----------------|----------------------|------------------------|------------------------|------------------------|-------------------|-----------------|-----------------------|------------------------|-------------------------|--------------------|----------------|-----------------|-------------------------| | Well
Identification | Acetone | Benzene | Toluene | Ethylbenzene | Xylenes (total) | Naphthalene | 2-Butanone | Carbon Tetrachloride | Chloroform | Chlorobenzene | cis-1,2-Dichloroethene | trans-1, 2-Dichloroethene | 1,2 Dichloroethane | 1,1-Dichloroethene | 1,1-Dichloroethane | 1,2-Dichloropropane | 1,2-Dichlorobenzene | Diethyl Ether | Isopropylbenzene | n-propylbenzene | 4-Methyl-2-Pentanone | 1,2,3-Trichloropropane | 1,2,4-Trimethylbenzene | 1,3,5-Trimethylbenzene | Tetrachloroethene | Trichloroethene | 1,1,1-Trichloroethane | Trichlorofluoromethane | Methyl tert-butyl ether | Methylene Chloride | Vinyl Chloride | Tetrahydrofuran | Dichlorodifluoromethane | | MW-1 | ND 3) | ND | MW-2 | ND | MW-3 | ND 130 | ND | | MW-4 | ND | ND | ND | 150 | 20.3 | ND | ND | ND | ND | ND | 5.6 | 4.4 | ND | ND | 3.7 | ND | 2.4 | ND | 2.7 | ND | MW-5 | ND | MW-6 | ND | ND | 1,000 | 43 | 167 | ND 12 | ND 2.5 | ND | ND | ND | ND | ND | ND | | MW-7 | ND | ND | 14 | ND 16 | ND | ND | ND | 6.1 | ND 15 | 16 | 2 | ND | ND | ND | ND | ND | ND | | MW-8 | ND | MW-9A | ND | 110 | 210,000 | 9,100 | 44,000 | ND | MW-10 | ND | ND | 600 | 8 | 64 | ND | MW-11 | ND | ND | 45 | 37 | 202 | ND | MW-12 | ND | ND | 3,500 | 9,100 | 36,200 | ND | MW-13 | ND | 240 | 400,000 | 6,400 | 26,100 | ND | MW-14 | ND | MW-15 | | • | • | • | • | • | | • | • | • | | • | | N | lot Sampl | ed - Produ | ict Detect | ted In The | Well | • | - | | • | | | | • | | • | | • | | - | | MW-16 | 76,000 | 140 | 56,000 | 8,600 | 52,000 | ND | 1,200 | ND | MW-20 | ND | ND | 5.2 | 18 | 69 | ND | MW-21 | 350,000 | ND | 350,000 | 4,800 | 37,400 | ND | MW-22 | | | • | | • | • | • | | • | • | | • | • | N | lot Sampl | ed - Produ | ict Detect | ted In The | Well | | | | • | • | • | | • | | • | • | • | | • | | MW-23 | ND | ND | 46 | 410 | 900 | ND | MW-24 | ND | ND | 22,000 | 480 | 2,050 | ND | MW-25 | | | | | | | | | | | | | | N | lot Sampl | ed - Produ | ict Detect | ted In The | Well | | | | | | | | | | | | | | | | MW-26 | ND | MW-27 | ND | ND | ND | ND | 2.1 | ND | ND | ND | ND | ND | 9.2 | ND 3.9 | ND | ND | 3.4 | ND | ND | ND | ND | | MW-28 | 23,000 | ND | 52,000 | 780 | 3,460 | ND | GP-1 | | | | | | | | | | | | | | | Not | Sampled - | Decomn | nissioned | | | | | | | | | | | | | | | | | GP-2 | | | | | | | | | | | | | | | Not | Sampled - | Decomn | nissioned | | | | | | | | | | | | | | | | | EW-1 | 38,000 | ND | 70,000 | 1,800 | 13,300 | ND | EW-2 | ND | ND | 15,000 | 7,100 | 37,300 | ND | CE-4 | ND | ND | 1,500 | 16 | 121 | ND 11 | ND | ASW-1 | | | | | | | | | | | | | | | Not | Sampled | - Air Spa | rge Well | | | | | | | | | | | | | | | | | NYSDEC 4) TOGS GWQS 5) | 50 | 1 | 5 | 5 | 5 | 10 | 50 | 5 | 7 | 5 | 5 | 5 | 0.6 | 5 | 5 | 1 | 3 | NA | 5 | 5 | NA | 0.04 | 5 | 5 | 5 | 5 | 5 | 5 | 10 | 5 | 2 | 50 | 5 | Methyl tert-butyl ether Micrograms per liter 3) Not detected Notes : Samples analyzed by EPA Method 8260 MW-5 sample collected on April 13, 2011 ⁴⁾ New York State Department of Environmental Conservation5) Technical & Operational Guidance Series Ground Water Quality Standards #### WILLIAMSBURG, BROOKLYN, NEW YORK Groundwater Quality Summary - EPA Method 8260 Modified to Include MTBE¹⁾ Collected June 20, 21 & 22, 2011 | Well MW-1 MW-2 MW-3 MW-4 MD MD ND ND ND ND ND ND | | Tetrahydrofuran | Dichlorodifluoromethane | |--|-----|-----------------|--| | MW-2 MW-3 MW-4 MW-5 MW-5 Not Sampled - To Be Sampled Annually Concurrent with the Con Edison MOSF Sampling as per NYSDEC Not Sampled - To Be Sampled Annually Concurrent with the Con Edison MOSF Sampling as per NYSDEC Not Sampled - To Be Sampled Annually Concurrent with the Con Edison MOSF Sampling as per NYSDEC Not Sampled - To Be Sampled Annually Concurrent with the Con Edison MOSF Sampling as per NYSDEC Not Sampled - To Be Sampled Annually Concurrent with the Con Edison MOSF Sampling as per NYSDEC Not Sampled - To Be Sampled Annually Concurrent with the Con Edison MOSF Sampling as per NYSDEC | ND | | | | MW-3 MW-4 MD 3 ND ND 93 15 ND | ND | | | | MW-4 ND 3 ND ND 93 15 ND | ND | NID | 1. | | MW-5 Not Sampled - To Be Sampled Annually Concurrent with the Con Edison MOSF Sampling as per NYSDEC | ND | NTD | | | | | ND | ND | | MW-6 ND ND 37 ND | | | | | | ND | ND | ND | | MW-7 ND ND 41 ND 2.3 ND | ND | ND | ND | | MW-8 ND ND ND 7.4 33 ND | ND | ND | ND | | MW-9A ND ND 150,000 6,900 39,800 ND | ND | ND | ND | | MW-10 ND | ND | ND | ND | | MW-11 ND ND ND ND 4.2 ND | ND | ND | ND | | MW-12 ND ND 400 6,800 29,470 ND | ND | ND | ND | | MW-13 ND 290 350,000 5,600 28,700 ND | ND | ND | ND | | MW-14 ND | 4.1 | ND | ND | | MW-15 | ND | ND | ND | | MW-16 | ND | ND | ND | | MW-20 ND | ND | ND | ND | | MW-21 17,000 ND 200,000 3,500 32,400 ND | ND | ND | ND | | MW-22 Not Sampled - Product Detected In The Well | | | | | MW-23 ND ND 77 460 2,090 ND | ND | ND | ND | | MW-24 11 5.8 330 7.1 26.2 ND | ND | ND | ND | | MW-25 Not Sampled - Product Detected In The Well | | | <u>, </u> | | MW-26 ND ND ND ND 6.4 ND | ND | ND | ND | | MW-27 ND | ND | ND | ND | | MW-28 6,700 ND 22,000 500 2,570 ND | ND | ND | ND | | GP-1 Not Sampled - Decommissioned | | | | | GP-2 Not Sampled - Decommissioned | | | | | EW-1 300,000 140 230,000 5,700 36,100 ND 1,800 ND | ND | ND | ND | | EW-2 ND ND 9,500 7,300 39,000 ND | | _ | ND | | CE-4 Not Sampled - To Be Sampled Annually Concurrent with the Con Edison MOSF Sampling as per NYSDEC | | | | | ASW-1 Not Sampled - Air Sparge Well | | | | | TB ND | ND | ND | ND | | NYSDEC 4) TOGS GWQS 5 50 1 5 5 5 10 50 5 7 5 5 5 0.6 5 5 1 3 NA 5 5 NA 0.04 5 5 5 5 5 5 5 5 5 2 | 50 | 50 | 5 | - Methyl tert-butyl ether Micrograms per liter Not detected - 4) New York State Department of Environmental Conservation5) Technical & Operational Guidance Series Ground Water Quality Standards #### FYN PAINT & LACQUER COMPANY, INC. 230 KENT AVENUE WILLIAMSBURG, BROOKLYN, NEW YORK Groundwater Quality Summary - EPA Method 8260 Modified to Include MTBE¹⁾ Collected September 26, 27 & 28, 2011 | | | | | | | | | | | | | | | | | Con | centration | 1 (ug/l) 2) | | | | | | | | | | | | | | | | | |------------------------|---------|---------|---------|--------------|--------------------|-------------|------------|----------------------|------------|---------------|------------------------|---------------------------|--------------------|--------------------|--------------------|---------------------|---------------------|---------------|------------------|-----------------|----------------------|------------------------|------------------------|------------------------|-------------------|-----------------|-----------------------|------------------------|-------------------------|--------------------|----------------|-----------|-----------------|------------------| | Well
Identification | Acetone | Benzene | Toluene | Ethylbenzene | Xylenes
(total) | Naphthalene | 2-Butanone | Carbon Tetrachloride | Chloroform | Chlorobenzene | cis-1,2-Dichloroethene | trans-1, 2-Dichloroethene | 1,2 Dichloroethane | 1,1-Dichloroethene | 1,1-Dichloroethane | 1,2-Dichloropropane | 1,2-Dichlorobenzene | Diethyl Ether | Isopropylbenzene | n-propylbenzene | 4-Methyl-2-Pentanone | 1,2,3-Trichloropropane | 1,2,4-Trimethylbenzene | 1,3,5-Trimethylbenzene | Tetrachloroethene | Trichloroethene | 1,1,1-Trichloroethane | Trichlorofluoromethane | Methyl tert-butyl ether | Methylene Chloride | Vinyl Chloride | Bromoform | Tetrahydrofuran | Carbon Disulfide | | MW-1 | | | | • | • | | | | | | | Not Samp | led - To | Be Sampl | ed Annual | ly Concu | rrent with | the Con | Edison M | OSF San | npling as | per NYSD | EC | | | | | • | • | • | • | | | | | MW-2 | | | | | | | | | | | | Not Samp | led - To | Be Sampl | ed Annual | ly Concu | rrent with | the Con | Edison M | 10SF San | npling as | per NYSD | EC | | | | | | | | | | | | | MW-3 | | | | | | | | | | | | Not Samp | led - To | Be Sampl | ed Annual | ly Concu | rrent with | the Con | Edison M | 10SF San | npling as | per NYSD | EC | | | | | | | | | | | | | MW-4 | ND 3) | 1.4 | 5.7 | 140 | 10 | ND | ND | ND | ND | 11 | 14 | 8.1 | ND | ND | 8 | ND | 4.2 | ND | 5.1 | ND | ND | ND | ND | ND | ND | 6.1 | ND | ND | 2.3 | ND | 3.2 | ND | ND | 2 | | MW-5 | | | | | | | _ | | | | | Not Samp | led - To | Be Sampl
 ed Annual | ly Concu | rrent with | the Con | Edison M | 10SF Sar | npling as | per NYSD | EC | | | | | | | | | | | | | MW-6 | ND | ND | 170 | ND | 8.9 | ND 16 | ND 9.6 | ND | MW-7 | ND | ND | 100 | ND | 8.2 | ND 21 | ND 4.5 | 3.8 | 8.3 | ND | MW-8 | ND | ND | 10 | 2.6 | 13.8 | ND | MW-9A | ND | ND | 100,000 | 6,300 | 38,400 | ND | MW-10 | ND | ND | 5.5 | ND | 2.4 | ND | ND | ND | ND | ND | 7.8 | ND | ND | ND | 3.8 | ND | ND | ND | ND | ND | ND | 3.8 | ND | ND | ND | 12 | ND | ND | 2.8 | ND | ND | ND | ND | ND | | MW-11 | ND | ND | 4.9 | ND | 4 | ND | MW-12 | ND | ND | ND | 5,500 | 20,000 | ND | MW-13 | ND | ND | 430,000 | 7,000 | 35,800 | ND | MW-14 | ND | ND | 6 | ND | 2.5 | ND | MW-15 | | | | | | | | | | | | | | | Not Sa | mpled - l | Product D | etected In | The We | 11 | | | | | | | | | | | | | | | | MW-16 | 210,000 | 140 | 60,000 | 10,000 | 64,000 | ND | 2,800 | ND | MW-20 | ND | ND | 5.8 | ND | 6.6 | ND | MW-21 | 61,000 | 140 | 290,000 | 5,000 | 43,000 | ND | MW-22 | 10,000 | ND | 80,000 | 34,000 | 165,000 | ND | MW-23 | ND | ND | 140 | 820 | 4,270 | ND | MW-24 | ND | 15 | 260 | 190 | 360 | ND 3 | ND | MW-25 | | | | | | | | | | | | | | | Not Sa | mpled - l | Product D | etected In | The We | 11 | | | | | | | | | | | | | | | | MW-26 | ND | ND | 6.7 | ND | 5.9 | ND 2 | ND | MW-27 | ND | MW-28 | 3,600 | ND | 25,000 | 520 | 2,680 | ND | GP-1 | | | | | | | | | | | | | | |] | Not Samp | oled - Dec | commissio | ned | | | | | | | | | | | | | | | | | GP-2 | | | | | | | | | | | | | | |] | Not Samp | oled - Dec | ommissio | ned | | | | | | | | | | | | | | | | | EW-1 | 150,000 | 110 | 200,000 | 8,000 | 50,000 | ND 780 | ND | ND | ND | ND | | EW-2 | ND | ND | 16,000 | 9,000 | 49,000 | ND | CE-4 | | | | | | | | | ' | ' | | Not Samp | led - To | Be Sampl | ed Annual | ly Concu | rrent with | the Con | Edison M | 1OSF Sar | npling as | per NYSD | EC | ' | | | | | | | | | | | | ASW-1 | | | | | | | | | | | | | | | | Not Sam | pled - Air | Sparge V | Vell | | | | | | | | | | | | | | | | | NYSDEC 4) TOGS GWQS 5) | 50 | 1 | 5 | 5 | 5 | 10 | 50 | 5 | 7 | 5 | 5 | 5 | 0.6 | 5 | 5 | 1 | 3 | NA | 5 | 5 | NA | 0.04 | 5 | 5 | 5 | 5 | 5 | 5 | 10 | 5 | 2 | 50 | 50 | NA | - Methyl tert-butyl ether Micrograms per liter Not detected 4) New York State Department of Environmental Conservation5) Technical & Operational Guidance Series Ground Water Quality Standards #### FYN PAINT & LACQUER COMPANY, INC. 230 KENT AVENUE WILLIAMSBURG, BROOKLYN, NEW YORK Groundwater Quality Summary - EPA Method 8260 Modified to Include MTBE¹⁾ Collected December 13, 14 & 15, 2011 | | | | | | | | | | | | | | | | | Conc | centration | 1 (ug/l) 2) | | | | | | | | | | | | | | | | | |------------------------|---------|---------|---------|--------------|--------------------|-------------|------------|----------------------|------------|---------------|------------------------|---------------------------|--------------------|--------------------|--------------------|---------------------|---------------------|---------------|------------------|-----------------|----------------------|------------------------|------------------------|------------------------|-------------------|-----------------|-----------------------|------------------------|-------------------------|--------------------|----------------|-----------|-----------------|------------------| | Well
Identification | Acetone | Benzene | Toluene | Ethylbenzene | Xylenes
(total) | Naphthalene | 2-Butanone | Carbon Tetrachloride | Chloroform | Chlorobenzene | cis-1,2-Dichloroethene | trans-1, 2-Dichloroethene | 1,2 Dichloroethane | 1,1-Dichloroethene | 1,1-Dichloroethane | 1,2-Dichloropropane | 1,2-Dichlorobenzene | Diethyl Ether | Isopropylbenzene | n-propylbenzene | 4-Methyl-2-Pentanone | 1,2,3-Trichloropropane | 1,2,4-Trimethylbenzene | 1,3,5-Trimethylbenzene | Tetrachloroethene | Trichloroethene | 1,1,1-Trichloroethane | Trichlorofluoromethane | Methyl tert-butyl ether | Methylene Chloride | Vinyl Chloride | Bromoform | Tetrahydrofuran | Carbon Disulfide | | MW-1 | | | | | | • | | | | | | Not Samp | led - To | Be Sampl | ed Annual | ly Concu | rrent with | the Con | Edison M | OSF Sar | npling as | per NYSD | EC | | | | | | | • | | | | | | MW-2 | | | | | | | | | | | | Not Samp | led - To | Be Sampl | ed Annual | ly Concu | rrent with | the Con | Edison M | IOSF San | npling as | per NYSD | EC | | | | | | | | | | | | | MW-3 | | | | | | | | | | | | Not Samp | led - To | Be Sampl | ed Annual | ly Concu | rrent with | the Con | Edison M | IOSF San | npling as | per NYSD | EC | | | | | | | | | | | | | MW-4 | ND 3) | ND | 31 | 16 | 11.8 | ND | ND | ND | ND | 17 | 11 | 7.8 | ND | ND | 3.8 | ND | 5.9 | ND 3.3 | ND | 2.5 | ND | ND | ND | | MW-5 | | 1 | | • | | | | • | | | | Not Samp | led - To | Be Sampl | ed Annual | ly Concu | rrent with | the Con | Edison M | OSF Sar | npling as | per NYSD | EC | • | | r | | | | | | | 1 | ,———
,——— | | MW-6 | ND | ND | 5.6 | ND | 2.2 | ND 13 | ND 6.4 | ND | MW-7 | ND | ND | 5.1 | ND | 2.7 | ND | ND | ND | ND | ND | 2.7 | ND | ND | ND | 15 | ND 6.4 | 5.5 | 4.3 | ND | MW-8 | ND | ND | 49 | ND | 3.3 | ND | MW-9A | ND | ND | 180,000 | 9,500 | 56,000 | ND | MW-10 | ND 7.6 | ND | ND | ND | 7.8 | ND | ND | ND | ND | ND | ND | 3.4 | ND | ND | ND | 12 | ND | MW-11 | ND | ND | 64 | 2.6 | 16 | ND | MW-12 | ND | ND | 130 | 3,200 | 11,000 | ND | MW-13 | ND | ND | 320,000 | 4,600 | 24,800 | ND | MW-14 | ND | ND | 29 | ND | 9.8 | ND | MW-15 | | | | | | | | | | | | | | | Not Sa | mpled - I | Product D | etected In | The We | 11 | | | | | | | | | | | | | | | | MW-16 | 230,000 | 130 | 58,000 | 6,900 | 42,000 | ND | 3,900 | ND | MW-20 | ND | ND | 37 | ND | 8.2 | ND | MW-21 | 59,000 | ND | 310,000 | 3,700 | 35,300 | ND | MW-22 | ND | ND | 81,000 | 31,000 | 143,000 | ND | MW-23 | ND | ND | 24 | 240 | 1,140 | ND | MW-24 | ND | 11 | 130 | 100 | 520 | ND 3.4 | ND | MW-25 | | | | | | | | | | | | | | | Not Sa | mpled - I | Product D | etected In | The We | 11 | | | | | | | | | | | | | | | | MW-26 | ND | ND | 34 | ND | 2.6 | ND | MW-27 | ND | MW-28 | 84,000 | 120 | 230,000 | 2,600 | 13,500 | ND | GP-1 | | | | | | | | | | | | | | |] | Not Samp | oled - Dec | commissio | ned | | | | | | | | | | | | | | | | | GP-2 | | | | | | | | | | | | | | |] | Not Samp | oled - Dec | ommissio | ned | | | | | | | | | | | | | | | | | EW-1 | 30,000 | ND | 71,000 | 2,000 | 18,500 | ND | EW-2 | ND | ND | 11,000 | 4,900 | 27,100 | ND | CE-4 | | | | | | | | | ' | ' | | Not Samp | led - To | Be Sampl | ed Annual | ly Concu | rrent with | the Con | Edison M | OSF Sar | npling as | per NYSD | EC | | | | | | | | | | | | | ASW-1 | | | | | | | | | | | | | | | | Not Sam | pled - Air | Sparge V | Vell | | | | | | | | | | | | | | | | | NYSDEC 4) TOGS GWQS 5) | 50 | 1 | 5 | 5 | 5 | 10 | 50 | 5 | 7 | 5 | 5 | 5 | 0.6 | 5 | 5 | 1 | 3 | NA | 5 | 5 | NA | 0.04 | 5 | 5 | 5 | 5 | 5 | 5 | 10 | 5 | 2 | 50 | 50 | NA | - Methyl tert-butyl ether Micrograms per liter Not detected 4) New York State Department of Environmental Conservation5) Technical & Operational Guidance Series Ground Water Quality Standards #### WILLIAMSBURG, BROOKLYN, NEW YORK Groundwater Quality Summary - EPA Method 8260 Modified to Include MTBE¹⁾ Collected March 19, 20, 21 & 22, 2012 | | | | | | | | | | | | | | | | | Con | centratio | 1 (ug/l) 2) | | | | | | | | | | | | | | | | | |------------------------|---------|---------|---------|--------------|--------------------|-------------|------------|----------------------|------------|---------------|-------------------------|---------------------------|--------------------|--------------------|--------------------|---------------------|---------------------|---------------|------------------|-----------------|----------------------|------------------------|------------------------|------------------------|-------------------|-----------------|-----------------------|------------------------|-------------------------|--------------------|----------------|-----------|-----------------|------------------| | Well
Identification | Acetone | Benzene | Toluene | Ethylbenzene | Xylenes
(total) | Naphthalene | 2-Butanone | Carbon Tetrachloride | Chloroform | Chlorobenzene | cis-1,2-Dichlor oethene | trans-1, 2-Dichloroethene | 1,2 Dichloroethane | 1,1-Dichloroethene | 1,1-Dichloroethane | 1,2-Dichloropropane | 1,2-Dichlorobenzene | Diethyl Ether | Isopropylbenzene | n-propylbenzene | 4-Methyl-2-Pentanone | 1,2,3-Trichloropropane | 1,2,4-Trimethylbenzene | 1,3,5-Trimethylbenzene | Tetrachloroethene | Trichloroethene | 1,1,1-Trichloroethane | Trichlorofluoromethane | Methyl tert-butyl ether | Methylene Chloride | Vinyl Chloride | Bromoform | Tetrahydrofuran | Carbon Disulfide | | MW-1 | ND 3) | ND | 2.2 | ND | MW-2 | ND | MW-3 | | • | • | • | • | | | | • | | • | • | | • | • | Not S | Sampled - | Destroye | d | • | • | • | • | | | | | • | | • | | • | * | | | MW-4 | ND 5.9 | 3.4 | ND | ND | ND | 3.9 | ND | MW-5 | ND | MW-6 | ND | ND | 53 | 2.5 | 16 | ND 9.5 | ND | MW-7 | ND | ND | ND | ND | 3.3 | ND | ND | ND | ND | ND | 6.3 | ND | ND | ND | 12 | ND 12 | 10 | 2.1 | ND | MW-8 | ND | MW-9A | | | | | | | | | | | | | | | Not S | ampled - | Product D | etected In | n The Wel | 1 | | | | | | | | | | | | | | | | MW-10 | ND 8.2 | ND | ND | ND | 5.9 | ND | ND | ND | ND | ND | ND | 2.3 | ND | ND | ND | 13 | ND | MW-11 | ND | MW-12 | ND | ND | 11,000 | 12,000 | 61,200 | ND | MW-13 | ND | ND | 300,000 | 5,400 | 27,400 | ND | MW-14 | ND 3.6 | ND | MW-15 | | | | | | | | | | | | | | | Not S | ampled - | Product D | etected In | n The Wel | 1 | | | | | | | | | | | | | | | | MW-16 | 210,000 | 170 | 62,000 | 7,500 | 46,000 | ND | 3,200 | ND | MW-20 | ND | MW-21 | 81,000 | 130 | 300,000 | 3,700 | 33,500 | ND | MW-22 | | | | | | | | | | | | | | | Not S | ampled - | Product D | etected In | n The Wel | 1 | | | | | | | | | | | | | | | | MW-23 | ND | ND | 1,500 | 5,700 | 33,400 | ND 46 | ND | MW-24 | ND | 19 | ND | ND | 430 | ND 4.4 | ND |
ND | ND | 2.3 | ND | MW-25 | | | | | | | | | | | • | | | | Not S | ampled - | Product D | etected I | n The Wel | 1 | | | | | | | | | | | | | | | | MW-26 | ND | MW-27 | ND | MW-28 | 88,000 | 140 | 280,000 | 2,800 | 14,500 | ND | GP-1 | | | | • | | | | | | | | • | | | | Not Sam | pled - Dec | commissio | oned | | | | • | | | | | | | | | | • | | | GP-2 | | | | | | | | | | | | | | | | Not Sam | pled - Dec | commissio | oned | | | | | | | | | | | | | • | | | | EW-1 | 110,000 | 100 | 140,000 | 3,800 | 30,800 | ND | EW-2 | ND | ND | 34,000 | 12,000 | 69,000 | ND | CE-4 | ND | ND | 4.7 | ND 10 | ND | ASW-1 | | • | | 1 | | | | | | | | • | | • | • | Not San | npled - Air | Sparge V | Well | • | • | • | 1 | | | | 1 | | | 1 | | · | · | | | Trip Blank | 36 | ND 21 | ND | ND | 12 | ND | | NYSDEC 4) TOGS GWQS 5) | 50 | 1 | 5 | 5 | 5 | 10 | 50 | 5 | 7 | 5 | 5 | 5 | 0.6 | 5 | 5 | 1 | 3 | NA | 5 | 5 | NA | 0.04 | 5 | 5 | 5 | 5 | 5 | 5 | 10 | 5 | 2 | 50 | 50 | NA | - Methyl tert-butyl ether Micrograms per liter Not detected - 4) New York State Department of Environmental Conservation5) Technical & Operational Guidance Series Ground Water Quality Standards #### WILLIAMSBURG, BROOKLYN, NEW YORK Groundwater Quality Summary - EPA Method 8260 Modified to Include MTBE¹⁾ Collected June 13, 14 & 15, 2012 | | | | | | | | | | | | | | | | | Con | centratio | n (ug/l) 2) | 1 | | | | | | | | | | | | | | | | |------------------------|---------|---------|---------|--------------|--------------------|-------------|------------|----------------------|------------|---------------|------------------------|---------------------------|--------------------|--------------------|--------------------|---------------------|---------------------|---------------|------------------|-----------------|----------------------|------------------------|------------------------|------------------------|-------------------|-----------------|-----------------------|------------------------|-------------------------|--------------------|----------------|-----------|-----------------|------------------| | Well
Identification | Acetone | Вепzепе | Toluene | Ethylbenzene | Xylenes
(total) | Naphthalene | 2-Butanone | Carbon Tetrachloride | Chloroform | Chlorobenzene | cis-1,2-Dichloroethene | trans-1, 2-Dichloroethene | 1,2 Dichloroethane | 1,1-Dichloroethene | 1,1-Dichloroethane | 1,2-Dichloropropane | 1,2-Dichlorobenzene | Diethyl Ether | Isopropylbenzene | n-propylbenzene | 4-Methyl-2-Pentanone | 1,2,3-Trichloropropane | 1,2,4-Trimethylbenzene | 1,3,5-Trimethylbenzene | Tetrachloroethene | Trichloroethene | 1,1,1-Trichloroethane | Trichlorofluoromethane | Methyl tert-butyl ether | Methylene Chloride | Vinyl Chloride | Bromoform | Tetrahydrofuran | Carbon Disulfide | | MW-1 | | | | | | | | | | | | Not Samp | led - To | Be Samp | ed Annua | lly Concu | urrent wit | the Con | Edison N | MOSF Sai | mpling as | per NYS | DEC | | | | - | | | | | | | | | MW-2 | | | | | | | | | | | | Not Samp | led - To | Be Samp | ed Annua | lly Concu | urrent wit | n the Con | Edison N | MOSF Sai | mpling as | per NYS | DEC | | | | | | | | | | | | | MW-3 | | | | | | | | | | | | | | | | Not S | Sampled - | Destroye | d | | | | | | | | | | | | | | | | | MW-4 | ND 3) | 1.2 | ND | 190 | 71 | ND | ND | ND | ND | 6.8 | 10 | 5.2 | ND | ND | 3.8 | ND | 2.4 | ND | MW-5 | | | | | | | | | | | | Not Samp | led - To | Be Samp | ed Annua | lly Conci | urrent wit | the Con | Edison N | MOSF Sai | mpling as | per NYS | DEC | | | | | | | | | | | | | MW-6 | ND | ND | 48 | ND | 3.4 | ND 8.1 | ND 2.3 | ND | MW-7 | ND | ND | 23 | ND | 2.1 | ND | ND | ND | ND | ND | 5.4 | ND | ND | ND | 11 | ND 13 | 9.5 | ND | MW-8 | ND | MW-9A | | | | | | | | | | | | | | | Not Sa | mpled - | Product I | etected I | n The We | ell | | | | | | | | | | | | | | | | MW-10 | ND | ND | 2.1 | ND | 3.1 | ND | ND | ND | ND | ND | 8.7 | ND | ND | ND | 4.6 | ND 11 | ND | MW-11 | ND | MW-12 | ND | ND | 510 | 9,100 | 35,970 | ND | MW-13 | ND | ND | 280,000 | 7,600 | 37,200 | ND | MW-14 | ND | MW-15 | | | | | | | | | | | | | | | Not Sa | mpled - | Product I | etected I | n The We | :11 | | | | | | | | | | | | | | | | MW-16 | 100,000 | ND | 58,000 | 8,100 | 47,000 | ND | MW-20 | ND | MW-21 | 44,000 | ND | 400,000 | 4,600 | 37,600 | ND | MW-22 | ND | ND | 81,000 | 14,000 | 104,000 | ND | MW-23 | ND | ND | 62 | 430 | 2,250 | ND | MW-24 | ND | 30 | ND | ND | 670 | ND 5.2 | ND | ND | ND | 4.0 | ND | MW-25 | | 1 | 1 | | | | 1 | 1 | 1 | | | T | | | | mpled - | Product I | etected I | n The We | | 1 | 1 | | | | | | 1 | 1 | | 1 | | | | | MW-26 | ND | ND | 6.3 | 2.2 | 13 | ND | MW-27 | ND | MW-28 | 61,000 | ND | 260,000 | 3,500 | 17,200 | ND | MW-29 | | | | | 1 | | 1 | ı | | | | 1 | | | Not Sa | | Product I | | | | | ı | | | 1 | | 1 | | 1 | | П | | | | | MW-30 | ND | ND | 45,000 | 14,000 | , | ND | MW-31 | 1,600 | 150 | 250,000 | 9,900 | 52,000 | ND 870 | ND | ND | ND | ND | | MW-32 | ND | ND | 30,000 | 6,600 | 38,000 | ND | GP-1 | | | | | | | | | | | | | | | | | pled - De | | | | | | | | | | | | | | | | | | | GP-2 | | 1 | | | | | 1 | I | T | | 1 | 1 | | 1 | | | pled - De | | | 1 | 1 | ı | | 1 | | | 1 | 1 | 1 | | ı | | | , | | EW-1 | ND | ND | 4,200 | 250 | 2,790 | ND | EW-2 | ND | ND | 25,000 | 11,000 | 59,000 | ND | CE-4 | | | | | | | | | | | | Not Samp | led - To | Be Samp | | | | | | MOSF Sai | mpling as | per NYS | DEC | | | | | | | | | | | | | ASW-1 | | | | | | | | | | | | | | | | Not Sam | npled - Air | | Well | | | | | | | | | | | | | | | | | NYSDEC 4) TOGS GWQS 5) | 50 | 1 | 5 | 5 | 5 | 10 | 50 | 5 | 7 | 5 | 5 | 5 | 0.6 | 5 | 5 | 1 | 3 | NA | 5 | 5 | NA | 0.04 | 5 | 5 | 5 | 5 | 5 | 5 | 10 | 5 | 2 | 50 | 50 | NA | Methyl tert-butyl ether Micrograms per liter Not detected 4) New York State Department of Environmental Conservation 5) Technical & Operational Guidance Series Ground Water Quality Standards #### WILLIAMSBURG, BROOKLYN, NEW YORK Groundwater Quality Summary - EPA Method 8260 Modified to Include $\mathrm{MTBE}^{1)}$ Collected September 24, 25, 26 & 27, 2012 | | 1 | | | | | | | | | | | | | | | | , | / /m 20 | | | | | | | | | | | | | | | | | |------------------------|----------|----------|---------|--------------|--------------------|-------------|------------|----------------------|------------|---------------|------------------------|---------------------------|--------------------|--------------------|--------------------|---------------------|---------------------|---------------|------------------|-----------------|----------------------|------------------------|------------------------|------------------------|-------------------|-----------------|-----------------------|------------------------|-------------------------|--------------------|----------------|-----------|-----------------|------------------| | | | | 1 | 1 | I | 1 | | | 1 | | 1 | 1 | | 1 | I | Con | centration | (ug/l) 2) | 1 | 1 | 1 | 1 | I | I | | | | | | I | 1 | | т т | | | Well
Identification | Acetone | Benzene | Toluene | Ethylbenzene | Xylenes
(total) | Naphthalene | 2-Butanone | Carbon Tetrachloride | Chloroform | Chlorobenzene | cis-1,2-Dichloroethene | trans-1, 2-Dichloroethene | 1,2 Dichloroethane | 1,1-Dichloroethene | 1,1-Dichloroethane | 1,2-Dichloropropane | 1,2-Dichlorobenzene | Diethyl Ether | Isopropylbenzene | n-propylbenzene | 4-Methyl-2-Pentanone | 1,2,3-Trichloropropane | 1,2,4-Trimethylbenzene | 1,3,5-Trimethylbenzene | Tetrachloroethene | Trichloroethene | 1,1,1-Trichloroethane | Trichlorofluoromethane | Methyl tert-butyl ether | Methylene Chloride | Vinyl Chloride | Bromoform | Tetrahydrofuran | Carbon Disulfide | | MW-1 | | | | 1 | | | | | I | | | Not Sam | pled - To | Be Samp | led Annua | lly Conci | urrent with | the Con | Edison N | IOSF San | npling as | per NYSI | DEC | | | | | | | | | | <u></u> | | | MW-2 | | | | | | | | | | | | Not Sam | pled - To | Be Samp | led Annua | lly Conci | urrent with | the Con | Edison M | OSF San | npling as | per NYSI | DEC | | | | | | | | | | | | | MW-3 | | | | | | | | | | | | | | | | Not S | Sampled - | Destroyed | i | | | | | | | | | | | | | | | | | MW-4 | ND 3) | ND | ND | ND | 3.3 | ND | ND | ND | ND | 9.4 | 19 | 7.6 | ND | 1.4 | 3.6 | ND | 6.2 | ND 14 | ND | ND | 2.6 | ND | 2.1 | ND | ND | ND | | MW-5 | | | | | | | | | | | | Not Sam | pled - To | Be Samp | led Annua | lly Conci | arrent with | the Con | Edison M | IOSF San | npling as | er NYSI | DEC | | | | | | | | | | | | | MW-6 | ND 10 | ND 5.2 | ND | MW-7 | ND 5.7 | ND | ND | ND | ND | ND | 22 | ND 5.9 | ND | MW-8 | ND | MW-9A | | ı | | | | ı | | | ı | | ı | | | ı | Not S | ampled - | Product D | etected In | The We | 11 | 1 | ı | ı | ı | | | | ı | , | ı | | | | | | MW-10 | ND | ND | 26 | ND | 3.9 | ND | ND | ND | ND | ND | 5.0 | ND 8.7 | ND | ND | 3 | ND | ND | ND | ND | ND | | MW-11 | ND | ND | 15 | ND | 2.3 | ND | MW-12 | ND | ND | ND | 6,100 | 20,000 | ND | MW-13 | 8,700 | 400 | 360,000 | 5,200 | 25,300 | ND | MW-14 | ND 2.9 | ND | MW-15 | 16,000 | 150 | 270,000 | 4,200 | 21,000 | ND | MW-16 | 130,000 | 130 | 48,000 | 6,900 | 38,800 | ND | 3,000 | ND | MW-20 | ND | MW-21 | 16 | ND | 500 | 73 | 327 | ND | MW-22 | | T | | | | l | I | | l | | T | T | | T | 1 | | Product D | | 1 | 1 | T | T | l | l | l | | T | | T | l | T | | T T | | | MW-23 | ND | ND | 2,900 | 12,000 | 69,000 | ND | MW-24 | ND | 24 | 39 | ND | 1,205 | ND 8.5 | ND | ND | ND | 6.9 | ND | MW-25 | ND | ND | ND. | l vib | N.D. | ND | ND. | ND | ND. | ND | ND | l vib | ND | ND | | | Product D | | 1 | 1 | ND | NID | ND | ND | ND. | ND | ND | ND | N.D. | ND | l vib | ND | | | | MW-26
MW-27 | ND
ND | ND
ND | ND 52 | ND
150 | ND
960 | ND
ND | MW-28 | 130.000 | 120 | 290,000 | 3,600 | 18,400 | ND ND
ND | ND | MW-29 | 130,000 | 120 | 290,000 | 3,000 | 16,400 | ND | | Product D | | l . | | ND | MW-30 | | | | | | | | | | | | | | | | | Product D | | | | | | | | | | | | | | | | | | | MW-31 | | | | | | | | | | | | | | | | | Product D | | | | | | | | | | | |
					MW-32	ND	ND	16,000	4.600	21,200	ND	GP-1	1,12	1,10	10,000	.,000	21,200	.,,,	1,12	1,10	1,1	1,12	1,12	1	.,,,	1,12			pled - Dec			1,12	1 .,,,	1	1	1 .12	1,10		1.12	1	.,,,,	1 .12	1		1.2			GP-2																	pled - Dec																			EW-1	57,000	120	210,000	3,800	30,300	ND 540	ND	ND	ND	ND		EW-2	ND	ND	20,000		51,000		ND	CE-4		1		1		ı			I	1	l	<u> </u>					urrent with		l			l .		l .	I		1	1	1	l .	1					ASW-1																	pled - Air				/															Trip Blank	ND	NYSDEC 4) TOGS GWQS 5)	50	1	5	5	5	10	50	5	7	5	5	5	0.6	5	5	1	3	NA	5	5	NA	0.04	5	5	5	5	5	5	10	5	2	50	50	NA																																					Methyl tert-butyl ether Micrograms per liter Not detected 4) New York State Department of Environmental Conservation5) Technical & Operational Guidance Series Ground Water Quality Standards #### WILLIAMSBURG, BROOKLYN, NEW YORK Groundwater Quality Summary - EPA Method 8260 Modified to Include $\mathrm{MTBE}^{1)}$ Collected December 10, 11, 12 & 13, 2012																	Conc	entration	(ug/l) 2)																1		------------------------	---------	---------	---------	--------------	-----------------	-------------	------------	----------------------	------------	---------------	------------------------	---------------------------	--------------------	--------------------	--------------------	---------------------	---------------------	----------------------	------------------	-----------------	----------------------	------------------------	--	------------------------	-------------------	-----------------	-----------------------	------------------------	-------------------------	--------------------	----------------	-----------	-----------------	------------------		Well Identification	Acetone	Вепzепе	Toluene	Ethylbenzene	Xylenes (total)	Naphthalene	2-Butanone	Carbon Tetrachloride	Chloroform	Chlorobenzene	cis-1,2-Dichloroethene	trans-1, 2-Dichloroethene	1,2 Dichloroethane	1,1-Dichloroethene	1,1-Dichloroethane	1,2-Dichloropropane	1,2-Dichlorobenzene	Diethyl Ether	Isopropylbenzene	n-propylbenzene	4-Methyl-2-Pentanone	1,2,3-Trichloropropane	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Tetrachloroethene	Trichloroethene	1,1,1-Trichloroethane	Trichlorofluoromethane	Methyl tert-butyl ether	Methylene Chloride	Vinyl Chloride	Bromoform	Tetrahydrofuran	Carbon Disulfide		MW-1	ND 3)	ND	MW-2	ND	MW-3				1	II.			l								Not Sa	ampled - I	Destroyed							l							<u>I</u>				MW-4	ND	ND	11	18	6.4	ND	ND	ND	ND	9.8	19	8.5	ND	1.5	3.6	ND	5.2	ND 8.7	ND	ND	2.4	ND	2.3	ND	ND	ND		MW-5	ND	ND	2,000	74	558	ND 3.3	ND	MW-6	ND	ND	30	ND	5.2	ND 9.8	ND	MW-7	ND	ND	14	ND	2.1	ND	ND	ND	ND	ND	3	ND	ND	ND	21	ND 6.4	5.7	4	ND	MW-8	ND	ND	4	ND	3.2	ND	MW-9A		1	•	1		1								1	Not Sar	npled - F	Product D	etected In	The Wel	1	1	1	<u>. </u>		1	1	l	1	1	!	l	ı				MW-10	ND 5.4	ND 9.8	ND	ND	3.6	ND	ND	ND	ND	ND		MW-11	ND	ND	3.1	ND	MW-12	ND	ND	ND	6,100	25,230	ND	MW-13	ND	ND	340,000	6,400	34,300	ND	MW-14	ND	ND	8.8	ND	3.2	ND 3.6	ND	MW-15	ND	ND	310,000	5,400	29,200	ND	MW-16	63,000	140	56,000	8,700	51,000	ND	MW-20	ND	ND	34	ND	4.7	ND	MW-21	ND	ND	22,000	490	3,770	ND	MW-22		1	,		-,							1 1			l			etected In										1								MW-23	ND	ND	820	5,300	28,800	ND	MW-24	ND	14	ND	ND	27	ND 6.5	ND	MW-25	112	- 1	112	T(D	27	112	112	T(D	T\D	110	1112	112	112	TUD	l l			etected In			TID	TID	TID	112	112	T\D	110	112	T(D	112	T(D	112	110	T(D		MW-26	ND	ND	7.1	ND	3.4	ND ND	ND ND	ND	ND ND	3	2.4	ND	MW-27	ND	ND	22	130	750	ND	MW-28	96,000	120	240,000	2,500	14,100	ND	MW-29	70,000	120	210,000	2,500	17,100	עויו	עויו	עויג	עויי	עויג	עוי	עויו	עויג	עוז	<u> </u>			etected In			עויו	עויו	עויי	עוי	עויו	עוי	עויי	עויו	עויו	עויו	עויז	עויו	עויג	עויז		MW-29 MW-30																•		etected In																		MW-31																_		etected In																		MW-31 MW-32	1,300	ND	16,000	4.400	23,700	ND ND	ND		ND ND		GP-1	1,300	עאו	10,000	4,400	25,700	ND	עאו	ND	ND	ND	עאו	עאו	ND	MD				ommissio		עאו	מא	ND	מא	עאו	אח	מא	מאו	ND	עאו	מאו	עאו	עאו	ND	מאו																				ommissio ommissio																		GP-2	150,000	ND	270,000	5 400	27,000	ND	ND	ND	MD	ND	ND	ND	ND	NID						ND	ND	NID	ND	ND	NID	ND	ND	NID	ND	ND	ND	ND	MD	ND		EW-1	150,000	ND	270,000		37,000	ND ND ND		EW-2	ND	ND	21,000	12,000		ND		CE-4	ND ND Sparse V	9.3	ND	ASW-1	177	1		177		1775	N	1170	170	1.77		\ \rac{1}{2}		3.775	ı			Sparge W			175).TD	3.175	1775		N	175	175		175	.	1170	115		Trip Blank	ND	NYSDEC 4) TOGS GWQS 5)	50	1	5	5	5	10	50	5	7	5	5	5	0.6	5	5	1	3	NA	5	5	NA	0.04	5	5	5	5	5	5	10	5	2	50	50	NA	Methyl tert-butyl ether Micrograms per liter 3) Not detected 4) New York State Department of Environmental Conservation5) Technical & Operational Guidance Series Ground Water Quality Standards #### FYN PAINT & LACQUER COMPANY, INC. 230 KENT AVENUE WILLIAMSBURG, BROOKLYN, NEW YORK Groundwater Quality Summary - EPA Method 8260 Modified to Include $\mathrm{MTBE}^{1)}$ Collected March 25, 26 & 27, 2013																	Conc	centration	(ug/l) 2)																		--	---------	---------	---------	--------------	-----------------	-------------	------------	----------------------	------------	---------------	------------------------	---------------------------	--------------------	--------------------	--	---------------------	---------------------	---------------	------------------	-----------------	----------------------	------------------------	------------------------	------------------------	-------------------	-----------------	-----------------------	------------------------	-------------------------	--------------------	----------------	-----------	-----------------	------------------		Well Identification	Acetone	Benzene	Toluene	Ethylbenzene	Xylenes (total)	Naphthalene	2-Butanone	Carbon Tetrachloride	Chloroform	Chlorobenzene	cis-1,2-Dichloroethene	trans-1, 2-Dichloroethene	1,2 Dichloroethane	1,1-Dichloroethene	1,1-Dichloroethane	1,2-Dichloropropane	1,2-Dichlorobenzene	Diethyl Ether	Isopropylbenzene	n-propylbenzene	4-Methyl-2-Pentanone	1,2,3-Trichloropropane	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Tetrachloroethene	Trichloroethene	1,1,1-Trichloroethane	Trichlorofluoromethane	Methyl tert-butyl ether	Methylene Chloride	Vinyl Chloride	Bromoform	Tetrahydrofuran	Carbon Disulfide		MW-1	ND 3)	ND	5.3	ND	MW-2	ND	ND	4.4	ND	MW-3																	ampled - 1															<u> </u>	<u> </u>			MW-4	ND	1.2	32	290	20.9	ND 5.7	ND	MW-5	ND	ND	4.4	ND 2.6	ND	MW-6	ND	ND	50	2.8	16.5	ND 6.6	ND	MW-7	ND 7.9	ND 5	4.6	ND	MW-8	ND	MW-9A	ND	ND	60,000	3,800	26,800	ND	MW-10	ND	ND	8.7	ND 3.2	ND 7.4	ND	ND	2	ND	ND	ND	ND	ND		MW-11	ND	ND	2.7	7.2	23	ND	ND	ND	6.6	ND	MW-12	ND	ND	970	6,200	20,600	ND	MW-13	ND	230	270,000	8,500	40,800	ND	MW-14	ND 8	ND	MW-15	ND	ND	330,000	8,000	43,200	ND	MW-16	210,000	130	94,000	14,000	61,000	ND	2,200	ND 760	ND	ND	ND	ND		MW-20	ND	ND	3.8	ND	MW-21	ND	ND	7,000	ND	910	ND	MW-22	ND	ND	83,000	14,000	92,000	ND	MW-23	ND	ND	260	1,600	7,900	ND	MW-24	67	1.8	96	71	680	30	ND	ND	4.6	ND 3.3	ND	ND	ND	31	4.7	ND	ND	ND	ND	ND	6	ND	ND	ND	ND		MW-25												I			Not San	npled - F	Product D	etected In	The Wel	11		1				1		1				l	l			MW-26	ND	ND	ND	ND	275	ND 29	7.3	ND	ND	110	16	2.3	ND	MW-27	ND	MW-28	1,100	ND	110,000	3,600	20,200	ND	MW-29				<u> </u>		l .	II					I			Not Sar	npled - F	Product D	etected In	The Wel	11					<u>l</u>	I		1		1		I	I			MW-30															Not Sar	npled - F	Product D	etected In	The Wel	11																MW-31	45,000	ND	84,000	4,200	22,300	ND	ND	MW-32	ND	ND	170	230	1,490		ND 	ND	GP-1	1						1					<u>'</u>	<u> </u>	l			oled - Dec								l .	l		1				I .	I .			GP-2																	oled - Dec															
		EW-1	19,000	200	360,000	6,900	42,400	ND 1	ND	EW-2	ND	ND	22,000	- /	50,000		ND 	ND	CE-4	ND	ND	5.9	ND	3	ND 	ND 1	ND	ND	ND	ND	ND	ND		ASW-1	1				1 -					.=	,_	,-	· -		<u> </u>		pled - Air							.=												Trip Blank	ND	ND	NYSDEC ⁴⁾ TOGS GWQS ⁵⁾	50	1	5	5	5	10	50	5	7	5	5	5	0.6	5	5	1	3	NA	5	5	NA	0.04	5	5	5	5	5	5	10	5	2	50	50	NA		110000 011 Q3						1																J.V.							1						3) Not detected 4) New York State Department of Environmental Conservation5) Technical & Operational Guidance Series Ground Water Quality Standards Methyl tert-butyl ether Micrograms per liter #### WILLIAMSBURG, BROOKLYN, NEW YORK Groundwater Quality Summary - EPA Method 8260 Modified to Include $\mathrm{MTBE}^{1)}$ Collected June 24, 25, 26 & 27, 2013									-			-			Conce	entration	(ug/l) 2)																		---	---------	-----------	-----------------	-------------	------------	----------------------	------------	---------------	------------------------	---------------------------	--------------------	--------------------	--------------------	---------------------	---------------------	---------------	------------------	-----------------	----------------------	------------------------	------------------------	------------------------	-------------------	-----------------	-----------------------	------------------------	-------------------------	--------------------	----------------	-----------	-----------------	------------------																		(8)																		Well Jdentification A Personal Agenzence	Toluene	Toluene	Xylenes (total)	Naphthalene	2-Butanone	Carbon Tetrachloride	Chloroform	Chlorobenzene	cis-1,2-Dichloroethene	trans-1, 2-Dichloroethene	1,2 Dichloroethane	1,1-Dichloroethene	1,1-Dichloroethane	1,2-Dichloropropane	1,2-Dichlorobenzene	Diethyl Ether	Isopropylbenzene	n-propylbenzene	4-Methyl-2-Pentanone	1,2,3-Trichloropropane	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Tetrachloroethene	Trichloroethene	1,1,1-Trichloroethane	Trichlorofluoromethane	Methyl tert-butyl ether	Methylene Chloride	Vinyl Chloride	Bromoform	Tetrahydrofuran	Carbon Disulfide		MW-1 NS 3) NS	S NS	NS N	IS NS		MW-2 NS NS	S NS	NS N	IS NS		MW-3						•	·	•		•				Not Sa	mpled - E	Destroyed										•								MW-4 ND ⁴⁾ NE) NI	ND 1	.9 77.2	ND	ND	ND	ND	6.2	9	5.2	ND	ND	3.8	ND	3.9	ND 3.5	ND	ND	ND	ND	ND		MW-5 NS NS	S NS	NS N	IS NS		MW-6 ND NE) 11	11 N	ID 2.3	ND 10	ND 2.8	ND	MW-7 ND NE) NI	ND N	ID ND	7.8	ND 2.8	2.1	ND	MW-8 ND NE) NI	ND 6	.6 26	ND	MW-9A ND NE	140,0	0,000 7,3	700 56,000	ND	MW-10 ND NE) NI	ND N	ID ND	ND	ND	ND	ND	ND	2	ND 3	ND	MW-11 ND NI) NI	ND N	ID ND		MW-12 ND NE	370	70 6,4	400 25,400	ND	MW-13 ND NI	240,0	0,000 8,0	600 43,500	ND	MW-14 ND NI) NI	ND 1	.0 41	ND	ND	ND	7.4	ND	MW-15 10,000 NI	330,0	0,000 6,0	500 35,400	ND	MW-16 95,000 NE	90,0	,000 10,	000 57,000	ND	MW-20 ND NE) NI	ND N	ID ND		MW-21 ND 1.2	620	20 2	28 117	ND	MW-22 ND NE	95,0	,000 16,	000 130,000) ND		MW-23 ND NE	90	90 6	10 3,250	ND	MW-24 ND NE) NI	ND 4	19 58	ND 2.6	ND	ND	ND	9.6	ND	MW-25													Not Sam	pled - P	roduct De	tected In	The Wel	1																MW-26 ND NE) NI	ND N	ID ND	2.4	ND	MW-27 ND NE) NI	ND N	ID ND		MW-28 ND NE	160,0	0,000 2,9	900 15,600	ND	MW-29								•					Not Sam	pled - P	roduct De	tected In	The Wel	1							•									MW-30													Not Sam	pled - P	roduct De	tected In	The Wel	1																MW-31 26,000 NI	10,0	,000 5,3	300 28,300	ND	MW-32 ND NI	53	53 3:	50 342	ND	GP-1	•	•		-		I.				Į.		Į.	No	ot Sampl	led - Deco	ommission	ned				I .					ı			Į.		II.			GP-2													No	ot Sampl	led - Deco	ommission	ned																	EW-1 26,000 NI	270,0	0,000 4,5	500 29,200	ND	EW-2 ND NI	15,0	,000,	800 49,000	ND	CE-4 NS NS	S NS	NS N	IS NS		ASW-1	•	•	•	•		I.				Į.		Į.	N	ot Samp	led - Air	Sparge W	/ell				1		l.	I.		I.		l.	Į.	l.	II.			Trip Blank ND NI) NI	ND N	ID ND		NYSDEC ⁴⁾ TOGS GWQS ⁵⁾ 50 1	5	5 :	5 5	10	50	5	7	5	5	5	0.6	5	5	1	3	NA	5	5	NA	0.04	5	5	5	5	5	5	10	5	2	50	50	NA	Methyl tert-butyl ether Micrograms per liter Not sampled ⁴⁾ New York State Department of Environmental Conservation5) Technical & Operational Guidance Series Ground Water Quality Standards # WILLIAMSBURG, BROOKLYN, NEW YORK Groundwater Quality Summary - EPA Method 8260 Modified to Include $\mathrm{MTBE}^{1)}$ Collected September 23, 24, 25 & 26, 2013		1															Core	entration	(ug/l) ²⁾																		------------------------	---------	---------	---------	--------------	--------------------	-------------	------------	----------------------	------------	---------------	------------------------	---------------------------	--------------------	--------------------	--------------------	---------------------	---------------------	----------------------	------------------	-----------------	----------------------	------------------------	------------------------	------------------------	-------------------	-----------------	-----------------------	------------------------	-------------------------	--------------------	----------------	-----------	-----------------	------------------																		Conc	ciiti atioi	(ug/I)																		Well Identification	Acetone	Benzene	Toluene	Ethylbenzene	Xylenes (total)	Naphthalene	2-Butanone	Carbon Tetrachloride	Chloroform	Chlorobenzene	cis-1,2-Dichloroethene	trans-1, 2-Dichloroethene	1,2 Dichloroethane	1,1-Dichloroethene	1,1-Dichloroethane	1,2-Dichloropropane	1,2-Dichlorobenzene	Diethyl Ether	Isopropylbenzene	n-propylbenzene	4-Methyl-2-Pentanone	1,2,3-Trichloropropane	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Tetrachloroethene	Trichloroethene	1,1,1-Trichloroethane	Trichlorofluoromethane	Methyl tert-butyl ether	Methylene Chloride	Vinyl Chloride	Bromoform	Tetrahydrofuran	Carbon Disulfide		MW-1	NS 3)	NS	MW-2	NS	MW-3		l		l	1	<u>I</u>	1					1		l		Not Sa	ampled - l	Destroyed					<u>I</u>		l	ı		ı	L		L	l				MW-4	ND 4)	ND	2.2	63	204	ND	ND	ND	ND	12	7.8	2.8	ND	ND	2.1	ND	5.8	ND 4.8	ND	MW-5	NS	MW-6	ND	ND	46	ND	4.6	ND 8.6	ND	MW-7	ND	ND	14	ND	ND	ND	ND	ND	2	ND	ND	ND	ND	ND	14	ND 3.1	2.3	2.5	ND	MW-8	ND	MW-9A															Not Sai	npled - I	Product D	etected In	The Wel	11						•		•	•	•	•					MW-10	ND 3.3	ND 5.2	ND	MW-11	ND	ND	ND	20	63	ND	MW-12	ND	18	ND	4,700	14,250	ND 23	ND	MW-13	ND	190	240,000	9,800	45,000	ND	MW-14	ND 4.6	ND 2	ND	MW-15															Not Sai	npled - I	Product D	etected In	The Wel	11																MW-16	52,000	130	110,000	13,000	70,000	ND	MW-20	ND	ND	3.6	ND	3.1	ND	MW-21	ND	ND	120	7.5	63	ND	MW-22	ND	ND	90,000	21,000	149,000	ND	MW-23	ND	ND	820	9,500	51,400	ND 84	37	ND	ND	35	ND	MW-24	17	ND	6.4	ND 2.8	ND	MW-25															Not Sai	npled - I	Product D	etected In	The Wel	11																MW-26	ND 2.2	ND	MW-27	ND	ND	96	12	81	ND	MW-28	5,200	ND	180,000	3,300	17,100	ND	MW-29															Not Sai	npled - I	Product D	etected In	The Wel	11																MW-30															Not Sai	npled - I	Product D	etected In	The Wel	1																MW-31	45,000	110	140,000	6,800	34,000	ND	MW-32	ND	6.2	87	600	294	ND	ND	ND	ND	ND	2	ND 16	ND	ND	ND	3	ND	GP-1															N	Not Samp	oled - Dec	ommissio	ned																	GP-2															N	Not Samp	oled - Dec	ommissio	ned																	EW-1	17,000	150	270,000	6,500	37,100	ND	EW-2	ND	ND	15,000	9,900	52,000	ND	CE-4	NS	ASW-1															1	Not Samp	oled - Air	Sparge W	Vell				-													Trip Blank	ND	NYSDEC 5) TOGS GWQS 6)	50	1	5	5	5	10	50	5	7	5	5	5	0.6	5	5	1	3	NA	5	5	NA	0.04	5	5	5	5	5	5	10	5	2	50	50	NA	Methyl tert-butyl ether Micrograms per liter Not sampled 4) Not detected above lab detection limit 5) New York State Department of Environmental Conservation 6) Technical & Operational Guidance Series Ground Water Quality Standards # WILLIAMSBURG, BROOKLYN, NEW YORK Groundwater Quality Summary - EPA Method 8260 Modified to Include MTBE¹⁾ Collected December 5, 6, 9 & 10, 2013																	Conc	entration	(ug/l) 2)																																																																													
											--	---------	---------	---------	--------------	--------------------	-------------	------------	----------------------	------------	---------------	------------------------	---------------------------	--------------------	--------------------	--------------------	---------------------	---------------------	---------------	------------------	-----------------	----------------------	------------------------	------------------------	------------------------	-------------------	-----------------	-----------------------	------------------------	-------------------------	--------------------	----------------	-----------	-----------------	------------------		Well Identification	Acetone	Benzene	Toluene	Ethylbenzene	Xylenes (total)	Naphthalene	2-Butanone	Carbon Tetrachloride	Chloroform	Chlorobenzene	cis-1,2-Dichloroethene	trans-1, 2-Dichloroethene	1,2 Dichloroethane	1,1-Dichloroethene	1,1-Dichloroethane	1,2-Dichloropropane	1,2-Dichlorobenzene	Diethyl Ether	Isopropylbenzene	n-propylbenzene	4-Methyl-2-Pentanone	1,2,3-Trichloropropane	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Tetrachloroethene	Trichloroethene	1,1,1-Trichloroethane	Trichlorofluoromethane	Methyl tert-butyl ether	Methylene Chloride	Vinyl Chloride	Bromoform	Tetrahydrofuran	Carbon Disulfide		MW-1	NS 3)	NS	MW-2	NS	MW-3			•													Not Sa	mpled - 1	Destroyed		•	•					•										MW-4	ND 4)	ND 14	7.9	ND	ND	ND	2.1	ND	6.8	ND 10	ND	ND	2.6	ND	ND	ND	ND	ND		MW-5	NS	MW-6	ND	ND	2,200	150	630	ND 5.4	ND	MW-7	ND	ND	54	2.1	9.9	ND 22	ND 3.8	3.1	2.6	ND	MW-8	ND	ND	100	ND	5.6	ND	MW-9A															Not San	pled - P	roduct D	etected In	The Wel	11																MW-10	ND 5.3	ND 5.4	ND	ND	2.1	ND	ND	ND	ND	ND		MW-11	ND	MW-12	ND	16	ND	3,000	8,300	ND 22	ND	MW-13	ND	ND	200,000	14,000	64,000	ND	MW-14	ND	ND	28	4.2	18.5	ND	ND	ND	2.4	ND 4.5	ND	MW-15					•		•		<u> </u>						Not San	ipled - P	roduct D	etected In	The Wel	11																MW-16	32,000	ND	99,000	13,000	66,000	ND	MW-20	ND	MW-21	ND	ND	100	9.2	78	ND	MW-22															Not San	pled - P	roduct D	etected In	The Wel	11																MW-23	ND	ND	2,900	13,000	60,000	ND	MW-24	ND	ND	36	ND	5.5	ND	MW-25			•			•								•	Not San	ipled - P	roduct D	etected In	The Wel	11	•	•														MW-26	ND	ND	28	ND 2.5	ND	MW-27	ND	ND	4.4	4.8	28.2	ND	MW-28	7,100	ND	180,000	3,100	16,900	ND	MW-29															Not San	pled - P	roduct D	etected In	The Wel	11																MW-30															Not San	pled - P	roduct D	etected In	The Wel	11																MW-31	14,000	ND	98,000	5,500	27,800	ND	MW-32	ND	ND	280	570	740	ND 20	ND	GP-1									· ·			'.			N	ot Samp	led - Dec	ommissio	ned				'.													GP-2															N	ot Samp	led - Dec	ommissio	ned																	EW-1	15,000	ND	270,000	6,300	37,900	ND	EW-2	ND	ND	13,000	11,000	55,000	ND	CE-4	NS	ASW-1									· ·			'.			N	ot Samp	oled - Air	Sparge W	Vell				'.													Trip Blank	ND	NYSDEC ⁵⁾ TOGS GWQS ⁶⁾	50	1	5	5	5	10	50	5	7	5	5	5	0.6	5	5	1	3	NA	5	5	NA	0.04	5	5	5	5	5	5	10	5	2	50	50	NA	Methyl tert-butyl ether Micrograms per liter Not sampled 4) Not detected above lab detection limit 5) New York State Department of Environmental Conservation 6) Technical & Operational Guidance Series Ground Water Quality Standards #### FYN PAINT & LACQUER COMPANY, INC. 230 KENT AVENUE WILLIAMSBURG, BROOKLYN, NEW YORK #### Groundwater Quality Summary - EPA Method 8260 Modified to Include MTBE¹⁾ Collected March 17, 18, 19 & 20, 2014		1															Con	centratio	n (ug/l) 2)																		--	------------------	----------	-------------------	----------------	--------------------	-------------	------------	----------------------	------------	---------------	------------------------	---------------------------	--------------------	--------------------	--------------------	---------------------	---------------------	---------------	------------------	-----------------	----------------------	------------------------	------------------------	------------------------	-------------------	-----------------	-----------------------	------------------------	-------------------------	--------------------	----------------	-----------	-----------------	------------------		Well Identification	Acetone	Benzene	Toluene	Ethylbenzene	Xylenes (total)	Naphthalene	2-Butanone	Carbon Tetrachloride	Chloroform	Chlorobenzene	cis-1,2-Dichloroethene	trans-1, 2-Dichloroethene	1,2 Dichloroethane	1,1-Dichloroethene	1,1-Dichloroethane	1,2-Dichloropropane	1,2-Dichlorobenzene	Diethyl Ether	Isopropylbenzene	n-propylbenzene	4-Methyl-2-Pentanone	1,2,3-Trichloropropane	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Tetrachloroethene	Trichloroethene	1,1,1-Trichloroethane	Trichlorofluoromethane	Methyl tert-butyl ether	Methylene Chloride	Vinyl Chloride	Bromoform	Tetrahydrofuran	Carbon Disulfide		MW-1	ND ³⁾	ND	MW-2	ND	MW-3										•	•	•				Not S	Sampled -	Destroyed	i		•															MW-4	ND	ND	ND	3.2	ND	ND	ND	ND	ND	8.7	6.2	ND	ND	ND	2.1	ND	4.8	ND 6.2	ND	MW-5	ND 2.3	ND	MW-6	ND 6.6	ND	MW-7	ND 15	ND 3.5	3.5	2.1	ND	MW-8	ND ND 	ND	MW-9A	ND.	ND	N.D.	110	1 110	N.T.	NTD	N.T.	170	NTD.	1770	N.T.D.	ND.	N.T.	1		Product D			1	ND	170	MD	N.T.D.	ND	NTD.	1170	1 170	ND.	N.D.	N.T.	NTD	- ND	ND		MW-10	ND ND ND	ND	ND	ND	ND ND	ND 30	ND ND		MW-11 MW-12	ND ND	ND	ND	5.1	16.2	ND ND ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND		ND	ND ND		MW-12 MW-13	ND ND	ND ND	2,000 190,000	6,000 7,800	31,200 36,400	ND ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND		MW-14	ND ND	ND	ND	7,800 ND	ND	MW-15	112	TUD	T(D	T,D	T\D	TID	TVD	T\D	T(D	TUD	TUD	TUD	TIE.	T\D	l .	l	Product D			l .	TUD	1.12	T(D	TVD	TUD	TUD	I (D	TID.	THE	T\D	TUD	TVD		110		MW-16	34,000	ND	92,000	11.000	59,000	ND	MW-20	ND	MW-21	ND	ND	140	6.8	66	ND	MW-22	ND	ND	88,000	14,000	112,000	ND	MW-23	ND	ND	290	4,900	26,600	ND	MW-24	ND	ND	15	ND	6.9	ND	MW-25															Not S	ampled -	Product D	etected In	The We	11	•															MW-26	ND 2.3	2.1	ND	MW-27	ND	MW-28	5,100	ND	170,000	2,500	13,200	ND	MW-29															Not S	ampled -	Product D	etected In	The We	11																MW-30		1				•	1	1	П	Г	1	1		1	Not S	ampled -	Product D	etected In	The We	11	1		1	1	1	Г	1	1		1	1	1				MW-31	13,000	ND	95,000	7,700	39,700	ND	MW-32	ND	18	430		10,300	ND 41	ND	ND	ND	42	11	ND	MW-33	ND	ND	1,100	5,800	33,700	ND ND · ·	51	ND	ND	ND	33	ND	GP-1	1																pled - Dec																			GP-2	0 000	NID	210,000	5 200	20, 400	ND	MD	NID	ND	MD	NID	NID	NID	NID	1	1	pled - Dec			NID	MID	NID	NID	MD	VID	NTD	NID	NID	NID	MD	ND	MD	NID	NID		EW-1 EW-2	8,800 ND	ND ND	310,000 18,000	5,200 8,700	30,400 43,700	ND ND	CE-4	ND ND	ND ND	ND	8,700 ND	43,700	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND		ASW-1	ND	אט	ND	ND	_ +	אט	ND	ND	עאו	עוא	עויו	אט	עויו	עא	עויו		ipled - Aii			ND	ND	עואו	אוא	עויו	אט	עויו	עויו	עויו	עויו	אויי	ND	ND		110		Trip Blank	ND ND		NYSDEC ⁴⁾ TOGS GWQS ⁵⁾	50	1	5	5	5	10	50	5	7	5	5	5	0.6	5	5	11	3	NA NA	5	5	NA NA	0.04	5	5	5	5	5	5	10	5	2	50	50	NA		MISDEC TOOS GWQS	30	1	3	3	3	10	50	3	7)	,	3	0.0	,		1	3	IVA	3	3	IVA	0.04	3	3	3	3	,	3	10	3		50	30	IVA	Methyl tert-butyl ether Micrograms per liter Not detected above lab detection limit 4) New York State Department of Environmental Conservation 5) Technical & Operational Guidance Series Ground Water Quality Standards ## WILLIAMSBURG, BROOKLYN, NEW YORK Groundwater Quality Summary - EPA Method 8260 Modified to Include MTBE¹⁾ Collected June 30 and July 1 and 2, 2014																	Cor	ncentration	1 (ug/l) 2)																																																																																																																					
--|------------------|---------|-------------|--------------|--------------------|-------------|------------|----------------------|------------|---------------|------------------------|---------------------------|--------------------|--------------------|--------------------|---------------------|---------------------|---------------|------------------|-----------------|----------------------|------------------------|------------------------|------------------------|-------------------|-----------------|-----------------------|------------------------|-------------------------|--------------------|----------------|-----------|-----------------|------------------| | Well
Identification | Acetone | Benzene | Toluene | Ethylbenzene | Xylenes
(total) | Naphthalene | 2-Butanone | Carbon Tetrachloride | Chloroform | Chlorobenzene | cis-1,2-Dichloroethene | trans-1, 2-Dichloroethene | 1,2 Dichloroethane | 1,1-Dichloroethene | 1,1-Dichloroethane | 1,2-Dichloropropane | 1,2-Dichlorobenzene | Diethyl Ether | Isopropylbenzene | n-propylbenzene | 4-Methyl-2-Pentanone | 1,2,3-Trichloropropane | 1,2,4-Trimethylbenzene | 1,3,5-Trimethylbenzene | Tetrachloroethene | Trichloroethene | 1,1,1-Trichloroethane | Trichlorofluoromethane | Methyl tert-butyl ether | Methylene Chloride | Vinyl Chloride | Bromoform | Tetrahydrofuran | Carbon Disulfide | | MW-1 | ND ³⁾ | ND | MW-2 | ND | MW-4 | ND | ND | ND | 5.2 | 2.1 | ND 4.3 | ND | MW-5 | ND | MW-6 | | 1 | I. | ı | 1 | | l | | | <u>I</u> | | l | | Not Sam | pled - Du | ie to Dra | wdown Le | vel and M | Iud in Bo | ottom of V | Vell | | | | | Į. | 1 | | | l | <u> </u> | | | | | MW-7 | ND 14 | ND | MW-8 | ND | ND | 3.7 | ND | MW-9A | | | | 4 | * | • | | • | | | | Į. | | | Not Sa | ampled - | Product D | etected In | The We | ell | | • | | | | , | | | | | , | | | | | MW-10 | ND | ND | 2.4 | ND | MW-11 | ND | MW-12 | ND | ND | 20,000 | 13,000 | 62,800 | ND | MW-13 | | l l | | | | | | I | | I | | 1 | | | Not Sa | ampled - | Product D | etected In | The We | :11 | | | | | | | l l | | | I | ı | I. | | | | MW-14 | ND 6.8 | ND | MW-15 | | l | l | 1 | ı | | I | | | | | 1 | 1 | | Not Sa | ampled - | Product D | etected In | The We | :11 | | 1 | | | 1 | | l | | | ı | Į | | | | | MW-16 | 21,000 | ND | 110,000 | 11,000 | 63,000 | ND | MW-20 | ND | MW-21 | ND | 2.8 | 3,500 | 280 | 1,390 | ND | MW-22 | | | | | | | I | I | | | | | ı | | | <u> </u> | Product D | | | 1 | | 1 | | | ı | |] | | | Į. | | | | | | MW-23 | ND | ND | 3,600 | 2,500 | 13,700 | ND | MW-24 | ND | 1.8 | 10 | ND | 2 | ND | MW-25 | | | | | II. | <u> </u> | <u>l</u> | | | <u>l</u> | | . | J | | Not Sa | ampled - | Product D | etected In | | :11 | | <u> </u> | | | J | I | l l | | | ļ Į | | | | | | MW-26 | ND | ND | 2.6 | ND 2.1 | 2.5 | ND | MW-27 | ND | ND | 2.4 | ND 2.6 | ND | MW-28 | ND | ND | 200,000 | 4,700 | | ND | MW-29 | | l l | · · · · · · | <u> </u> | 1 ' | | <u>l</u> | | | <u>l</u> | | . | J | | Not Sa | ampled - | Product D | etected In | The We | :11 | | <u> </u> | | | J | <u> </u> | l l | | | ļ Į | | | | | | MW-30 | | | | | | | | | | | | | | | | | Product D | | | | | | | | | | | | | | | | | | | MW-31 | 38,000 | ND | 230,000 | 11,000 | 59,000 | ND | MW-32 | ND | 40 | 5,200 | 3,500 | | | ND 33 | ND | ND | ND | 31 | ND | MW-33 | ND | ND | 1,400 | | 28,300 | | ND | EW-1 | ND | ND | 240,000 | | 19,600 | | ND | EW-2 | ND | ND | 24,000 | - | 51,000 | | ND | CE-4 | ND | ND | 3.4 | ND | ASW-1 | | 1,10 | 2., | 1 112 | 1.12 | 1,10 | 1,10 | 1,10 | 1,10 | 1,10 | | 1.12 | 1,10 | .,,, | | l | npled - Air | | | 1,12 | 112 | 1,10 | 1,10 | 1,10 | 1,10 | 1,2 | 1,10 | 1,10 | 1,10 | 1,10 | 1,2 | 1,10 | .,. | 1,2 | | ASW-2 | | | | | | | | | | | | | | | | | npled - Air | | | | | | | | | | | | | | | | | | | Trip Blank | ND ND | | NYSDEC ⁴⁾ TOGS GWQS ⁵⁾ | 50 | 1 | 5 | 5 | 5 | 10 | 50 | 5 | 7 | 5 | 5 | 5 | 0.6 | 5 | 5 | 1 | 3 | NA | 5 | 5 | NA | 0.04 | 5 | 5 | 5 | 5 | 5 | 5 | 10 | 5 | 2 | 50 | 50 | NA | Methyl tert-butyl ether Micrograms per liter Not detected above lab detection limit 4) New York State Department of Environmental Conservation5) Technical & Operational Guidance Series Ground Water Quality Standards #### WILLIAMSBURG, BROOKLYN, NEW YORK Groundwater Quality Summary - EPA Method 8260 Modified to Include MTBE $^{1)}$ Collected September 22, 23 & 24, 2014 | | | | | | | | | | | | | | | | | Conc | centratio | 1 (ug/l) 2) | | | | | | | | | | | | | | | | | |------------------------|------------------|---------|---------|--------------|--------------------|-------------|------------|----------------------|------------|---------------|------------------------|---------------------------|--------------------|--------------------|--------------------|---------------------|---------------------|---------------|------------------|-----------------|----------------------|------------------------|------------------------|------------------------|-------------------|-----------------|-----------------------|------------------------|-------------------------|--------------------|----------------|-----------|-----------------|------------------| | Well
Identification | Acetone | Вепхепе | Toluene | Ethylbenzene | Xylenes
(total) | Naphthalene | 2-Butanone | Carbon Tetrachloride | Chloroform | Chlorobenzene | cis-1,2-Dichloroethene | trans-1, 2-Dichloroethene | 1,2 Dichloroethane | 1,1-Dichloroethene | 1,1-Dichloroethane | 1,2-Dichloropropane | 1,2-Dichlorobenzene | Diethyl Ether | Isopropylbenzene | n-propylbenzene | 4-Methyl-2-Pentanone | 1,2,3-Trichloropropane | 1,2,4-Trimethylbenzene | 1,3,5-Trimethylbenzene | Tetrachloroethene | Trichloroethene | 1,1,1-Trichloroethane | Trichlorofluoromethane | Methyl tert-butyl ether | Methylene Chloride | Vinyl Chloride | Bromoform | Tetrahydrofuran | Carbon Disulfide | | MW-1 | ND ³⁾ | ND | 7.8 | ND | 2.1 | ND | MW-2 | ND | MW-4 | ND | ND | 21 | 6 | 26.1 | ND 3.2 | ND | MW-5 | ND | 1.4 | ND 5.7 | ND | ND | 6.7 | 6.8 | ND 23 | 6.3 | 2.1 | ND | MW-6 | | | | | | | | | | | | | | Not San | ıpled - Du | e to Draw | vdown Le | vel and M | Iud in Bo | ttom of W | ell ell | | | | | | | | | | | | | | | MW-7 | ND | ND | 22 | ND | 2.2 | ND 20 | ND 2.4 | 2.6 | 2.7 | ND | MW-8 | ND | ND | 5.2 | ND | 7.4 | ND | MW-9A | ND | ND | 180,000 | 6,900 | 38,000 | ND | MW-10 | ND | ND | 5.2 | ND | MW-11 | 17 | ND | 340 | 1,500 | 8,300 | ND 13 | 2.3 | ND | ND | 5.4 | 2.8 | ND | MW-12 | ND | ND | 20,000 | 11,000 | 52,000 | ND | MW-13 | | | | | | | | | | | | | | | Not Sa | ampled - I | Product D | etected Ir | The We | 11 | | | | | | | | | | | | | | | | MW-14 | ND | ND | 41 | 4.6 | 26.8 | ND 7.4 | ND | MW-15 | 10,000 | 160 | 240,000 | 6,200 | 31,400 | ND | MW-16 | 13,000 | ND | 89,000 | 8,400 | 47,000 | ND | MW-20 | | | | | | | | | | | | | | | | No | t Sample | l - Dry | | | | | | | | | | | | | | | | | | MW-21 | | | | | | | | | | | | | | | | No | t Sample | l - Dry | | | | | | | | | | | | | | | | | | MW-22 | | | | | | | | | | | | | | | | No | t Sample | l - Dry | | | | | | | | | | | | | | | | | | MW-23 | ND | ND | 940 | 140 | 1,960 | ND | MW-24 | ND | ND | 5.7 | ND | 2.1 | ND | MW-25 | | | | | | | | | | | | | | | Not Sa | ampled - I | Product D | etected Ir | The We | 11 | | | | | | | | | | | | | | | | MW-26 | ND | 38 | 21 | 3 | 26.4 | ND | MW-27 | ND | MW-28 | ND | ND | 200,000 | 3,700 | 18,700 | ND | MW-29 | | | | | | | | | | | | | | | | No | t Sample | l - Dry | | | | | | | | | | | | | | | | | | MW-30 (Low Flow) | 7,700 | 120 | 51,000 | 11,000 | 56,000 | ND | MW-30 (Direct Grab) | 16,000 | ND | 26,000 | 7,100 | 34,600 | ND | MW-31 | 44,000 | ND | 260,000 | 3,200 | 16,100 | ND | MW-32 | ND | ND | 3,900 | 1,900 | 8,800 | ND | MW-33 | ND | ND | 580 | 2,500 | 11,600 | ND | EW-1 | 45,000 | ND | 310,000 | 4,700 | 23,000 | ND | EW-2 | ND | ND | 63,000 | 10,000 | 57,000 | ND | CE-4 | ND | ASW-1 | | | | | | | | | | | | | | | | Not Samp | pled - Air | Sparge V | Vell | | | | | | | | | | | | | | | | | ASW-2 | | | | | | | | | | | | | | | | Not Samp | pled - Air | Sparge V | Vell | | | | | | | | | | | | | | | | | Trip Blank | ND | NYSDEC 4) TOGS GWQS 5) | 50 | 1 | 5 | 5 | 5 | 10 | 50 | 5 | 7 | 5 | 5 | 5 | 0.6 | 5 | 5 | 1 | 3 | NA | 5 | 5 | NA | 0.04 | 5 | 5 | 5 | 5 | 5 | 5 | 10 | 5 | 2 | 50 | 50 | NA | - Methyl tert-butyl ether Micrograms per liter Not detected above lab recordable limit - 4) New York State Department of Environmental Conservation5) Technical & Operational Guidance Series Ground Water Quality Standards # FYN PAINT & LACQUER COMPANY 230 KENT AVENUE WILLIAMSBURG, BROOKLYN, NEW YORK Ground-Water Quality Summary - EPA Method 8260 Modified to Include MTBE 1) | Co | oncentrati | on (ug/l) | 2) |--|--------------------------------|-------------------------|---|--------------------------------|-------------------------|---|--------------------------------|-------------------------|---|--------------------------------|-------------------------|---|--------------------------------|-------------------------|---|--------------------------------|-------------------------|---|--------------------------------|-------------------------|---|--------------------------------|-------------------------|---|--------------------------------|-------------------------|---|--------------------------------|-------------------------|---|--------------------------------|-------------------------|-----|--------------------------------
-------------------------|---|--------------------------------|-------------------------|---|--------------------------------|-------------------------|---| | Well | | Acetone | | | Benzen | æ | | Tolueno | e | E | äthylbenzei | ıe | | Xylenes
(total) | | Ch | lorobenzei | ne | cis-1,2 | -Dichloroe | ethene | 1,2-Di | ichloroben | ızene | Isop | propylbenze | ne | Tetr | achloroeth | nene | Tri | chloroethene | | 1,1,1-T | richloroe | ethane | Metl | nylene Chi | oride | Vii | nyl Chlorid | le | | Identification | December 16, 18, 19 & 20, 2006 | March 28, 29 & 30, 2007 | October 30 & 31 and
November 1 & 2, 2007 | December 16, 18, 19 & 20, 2006 | March 28, 29 & 30, 2007 | October 30 & 31 and
November 1 & 2, 2007 | December 16, 18, 19 & 20, 2006 | March 28, 29 & 30, 2007 | October 30 & 31 and
November 1 & 2, 2007 | December 16, 18, 19 & 20, 2006 | March 28, 29 & 30, 2007 | October 30 & 31 and
November 1 & 2, 2007 | December 16, 18, 19 & 20, 2006 | March 28, 29 & 30, 2007 | October 30 & 31 and
November 1 & 2, 2007 | December 16, 18, 19 & 20, 2006 | March 28, 29 & 30, 2007 | October 30 & 31 and
November 1 & 2, 2007 | December 16, 18, 19 & 20, 2006 | March 28, 29 & 30, 2007 | October 30 & 31 and
November 1 & 2, 2007 | December 16, 18, 19 & 20, 2006 | March 28, 29 & 30, 2007 | October 30 & 31 and
November 1 & 2, 2007 | December 16, 18, 19 & 20, 2006 | March 28, 29 & 30, 2007 | October 30 & 31 and
November 1 & 2, 2007 | December 16, 18, 19 & 20, 2006 | March 28, 29 & 30, 2007 | October 30 & 31 and
November 1 & 2, 2007 | December 16, 18, 19 & 20, 2006 | March 28, 29 & 30, 2007 | | December 16, 18, 19 & 20, 2006 | March 28, 29 & 30, 2007 | October 30 & 31 and
November 1 & 2, 2007 | December 16, 18, 19 & 20, 2006 | March 28, 29 & 30, 2007 | October 30 & 31 and
November 1 & 2, 2007 | December 16, 18, 19 & 20, 2006 | March 28, 29 & 30, 2007 | October 30 & 31 and
November 1 & 2, 2007 | | MW-1 | ND 3) | ND | MW-2 | ND | MW-3 | ND | MW-4 | ND 25 | ND | ND | 99 | ND | ND | 430 | 3.9 | 8.1 | 5.2 | 20 | 11 | 7.9 | 22 | 5.4 | 4.1 | 6.4 | ND | ND | ND | ND | ND | 4.3 | 31 | 26 | 57 | ND | ND | ND | ND | ND | ND | 2.3 | ND | 4.3 | | MW-5 | ND | MW-7 | ND 3.2 | 2.2 | ND | 4.5 | 4.7 | 6.5 | ND | ND | ND | ND | ND | ND | | MW-8 | ND | MW-9A | NS 4) | ND | ND | NS | ND | ND | NS | 90,000 | 19000 | NS | 11,000 | 3200 | NS | 100,000 | 23200 | NS | ND | ND | MW-10 | ND | ND | ND | 11 | ND 3.9 | 2.7 | 7.4 | ND 5.9 | 12 | ND | MW-11 | ND | ND | ND | ND | ND | ND | 8.4 | ND | ND | ND | ND | ND | 9.8 | ND | MW-12 | ND | ND | ND | ND | ND | ND | 4,100 | 18,000 | 780 | 10,000 | 12,000 | 9000 | 48,100 | 58,200 | 35100 | ND | MW-14 | ND 5 | ND | 2.3 | ND | ND | 2.6 | ND | ND | ND | ND | ND | ND | | MW-16 | 22,000 | 1,700 | ND | 120 | 120 | ND | 40,000 | 14,000 | 28000 | 5,100 | 3,500 | 900 | 36,600 | 28,000 | 4060 | ND | ND | ND | 8.9 | ND | ND | ND | ND | ND | 9.2 | ND | ND | 2.4 | ND | ND | ND | ND | ND | 4.3 | ND | ND | 38 | ND | ND | 2.9 | ND | ND | | MW-20 | ND | MW-21 | NS | NS ⁴⁾ | NS 4) | NS | MW-22 | NS | MW-23 | ND | ND | ND | ND | ND | ND | 22,000 | 14 | 12000 | 7,800 | 230 | 6200 | 45,000 | 790 | 40100 | ND 8.6 | 40 | ND | MW-24 | ND | ND | ND | 9.8 | 7.5 | 16 | ND | ND | ND | 430 | 110 | 270 | 541 | 146 | 835 | ND 6.2 | 4.4 | 10 | ND | MW-26 | ND | MW-27 | ND | ND | ND | ND | ND | ND | 2.7 | ND | ND | ND | ND | ND | 4 | ND | GP-1 | ND | ND | NS | 1.1 | ND | NS | ND | ND | NS | 4.5 | 2.9 | NS | ND | ND | NS | 2.1 | ND | NS | | GP-2 | ND | ND | ND | 1.6 | ND 22 | 18 | 21 | ND | ND | ND | ND | ND | ND | 120 | 95 | 140 | 24 | 19 | 28 | 80 | 41 | 40 | ND | ND | ND | 18 | 16 | 12 | | EW-1 | NS | 35,000 | NS | NS | ND | NS | NS | 33,000 | NS | NS | 1,400 | NS | NS | 7,700 | NS | NS | ND | EW-2 | ND | ND | ND | ND | ND | ND | 28,000 | 22,000 | 30000 | 9,000 | 6,500 | 12000 | 51,000 | 37,800 | 63000 | ND | CE-4 | ND 2.7 | ND | NYSDEC ⁵⁾ TOGS GWQS ⁶⁾ | | 5 | | | 0.7 | | | 5 | | | 5 | | | 5 | | | 5 | | | 5 | | | 3 | | | 5 | | | 5 | | | 5 | | | 5 | | | 5 | | | 2 | | Methyl tert-butyl ether Hicrograms per liter Not detected 3) - Not detected 4) - Not Sampled - Due to Pumps and/or Product 5) - New York State Department of Environmental Conservation 6) - Technical & Operational Guidance Series Ground Water Quality Standards 'Notes : Samples analyzed by EPA Method 8260 #### FYN PAINT AND LACQUER CO., INC. BROOKYN, NEW YORK PREPARED FOR KEANE AND BEANE, P.C. _____ #### Historical VOC Concentrations in Ground-Water Data Measurements in micrograms per liter #### GP-1 | Analyte | Jun-01 | Aug-03 | Feb-04 | Dec-05 | May-06 | Sep-06 | Dec-06 | Mar-07 | October /
November
2007 | NYSDEC
GWQS | |--------------|--------|--------|--------|--------|---------------|--------|--------|--------|-------------------------------|----------------| | Acetone | <1 | < 10 | <1 | NS | ND | ND | ND | ND | NS | 50 | | Toluene | <1 | <10 | <1 | NS | ND | ND | ND | ND | NS | 5 | | Ethylbenzene | <1 | < 10 | <1 | NS | ND | ND | ND | ND | NS | 5 | | Total Xylene | 7 | < 10 | <2 | NS | ND | ND | ND | ND | NS | 5 | GP-2 | Analyte | Jun-01 | Aug-03 | Feb-04 | Dec-05 | May-06 | Sep-06 | Dec-06 | Mar-07 | October /
November
2007 | NYSDEC
GWQS | |--------------|--------|--------|--------|--------|---------------|--------|--------|--------|-------------------------------|----------------| | Acetone | <1 | < 10 | <1 | ND | ND | ND | ND | ND | ND | 50 | | Toluene | <1 | <10 | <1 | ND | 0.5 | ND | ND | ND | ND | 5 | | Ethylbenzene | <1 | < 10 | <1 | ND | ND | ND | ND | ND | ND | 5 | | Total Xylene | 12 | < 10 | <2 | ND | 1.1 | ND | ND | ND | ND | 5 | #### CE-1 | Analyte | Jun-01 | Aug-03 | Feb-04 | Dec-05 | May-06 | Sep-06 | Dec-06 | Mar-07 | October /
November
2007 | NYSDEC
GWQS | |--------------|---------|--------|--------|--------|--------|-----------|--------|--------|-------------------------------|----------------| | Acetone | <1 | NS | <1 | | | | | | | 50 | | Toluene | 180,000 | NS | 5200 | | | A D A NII | DONED | | | 5 | | Ethylbenzene | 380000 | NS | 11000 | | | ADAM | DONED | | | 5 | | Total Xylene | 1200000 | NS | 62000 | | | | | | | 5 | | Analyte | Jun-01 | Aug-03 | Feb-04 | Dec-05 | May-06 | Sep-06 | Dec-06 | Mar-07 | October /
November
2007 | NYSDEC
GWQS | |--------------|---------|--------|--------|--------|--------|-----------|--------|--------|-------------------------------|----------------| | Acetone | 120000 | NS | NS | | | | | | | 50 | | Toluene | 450000 | NS | NS | | | A D A NII | DONED | | | 5 | | Ethylbenzene | 440000 | NS | NS | | | ADANI | DONED | | | 5 | | Total Xylene | 1400000 | NS | NS | | | | | | | 5 | CE-4 | Analyte | Jun-01 | Aug-03 | Feb-04 | Dec-05 | May-06 | Sep-06 | Dec-06 | Mar-07 | October /
November
2007 | NYSDEC
GWQS | |--------------|--------|--------|--------|--------|--------|--------|--------|--------|-------------------------------|----------------| | Acetone | <1 | < 10 | <1 | NS | ND | ND | ND | ND | ND | 50 | | Toluene | <1 | < 10 | <1 | NS | 250 | 150 | ND | ND | ND | 5 | | Ethylbenzene | <1 | < 10 | <1 | NS | 26 | 3.5 | ND | ND | ND | 5 | | Total Xylene | 10 | < 10 | <2 | NS | 255 | 17.5 | 2.7 | ND | ND | 5 | EW-1 | Analyte | Jun-01 | Aug-03 | Feb-04 | Dec-05 | May-06 | Sep-06 | Dec-06 | Mar-07 | October /
November
2007 | NYSDEC
GWQS | |--------------|--------|---------------|--------|--------|--------|--------|--------|--------|-------------------------------|----------------| | Acetone | | | | 7100 | 6200 | 1300 | NS | 35000 | NS | 50 | | Toluene | N | OT INCTALL | en. | 50000 | 66000 | 31000 | NS | 33000 | NS | 5 | | Ethylbenzene | 11 | NOT INSTALLED | | | 2700 | 2400 | NS | 1400 | NS | 5 | | Total Xylene | | | | | 21000 | 13100 | NS | 7700 | NS | 5 | EW-2 | Analyte | Jun-01 | Aug-03 | Feb-04 | Dec-05 | May-06 | Sep-06 | Dec-06 | Mar-07 | October /
November
2007 | NYSDEC
GWQS | |--------------|--------|-------------|------------|--------|--------|--------|--------|--------|-------------------------------|----------------| | Acetone | | | | 1700 | 2800 | 1100 | ND | ND | ND | 50 | | Toluene | N. | OT INSTALLE | r D | 29000 | 45000 | 36000 | 28000 | 22000 | 30000 | 5 | | Ethylbenzene |] " | OI INSTALLI | a D | 9400 | 9100 | 7300 | 9000 | 6500 | 12000 | 5 | | Total Xylene | | | | 50000 | 62000 | 42800 | 51000 | 37800 | 63000 | 5 | MW-1 | Analyte | Jun-01 | Aug-03 | Feb-04 | Dec-05 | May-06 | Sep-06 | Dec-06 | Mar-07 | October /
November
2007 | NYSDEC
GWQS | |--------------|--------|--------|--------|--------|--------|--------|--------|--------|-------------------------------|----------------| | Acetone | <1 | <10 | <1 | 2.9 | NS | ND | ND | ND | ND | 50 | | Toluene | 6 | < 10 | <1 | 44 | NS | ND | ND | ND | ND | 5 | | Ethylbenzene | <1 | < 10 | <1 | 1.5 | NS | ND | ND | ND | ND | 5 | | Total Xylene | 11 | < 10 | <2 | 10.3 | NS | ND | ND | ND | ND | 5 | | Analyte | Jun-01 | Aug-03 | Feb-04 | Dec-05 | May-06 | Sep-06 | Dec-06 | Mar-07 | October /
November
2007 | NYSDEC
GWQS | |--------------|--------|--------|--------|--------|--------|--------|--------|--------|-------------------------------|----------------| | Acetone | <1 | < 10 | <1 | ND | NS | ND | ND | ND | ND | 50 | | Toluene | 8 | < 10 | 1.8 | 22 | NS | ND | ND | ND | ND | 5 | | Ethylbenzene | 5 | < 10 | <1 | 1 | NS | ND | ND | ND | ND | 5 | | Total Xylene | 17 | < 10 | 2.2 | 5.3 | NS | ND | ND | ND | ND | 5 | | Analyte | Jun-01 | Aug-03 | Feb-04 | Dec-05 | May-06 | Sep-06 | Dec-06 | Mar-07 | October /
November
2007 | NYSDEC
GWQS | |--------------|--------|--------|--------|--------|--------|--------|--------|--------|-------------------------------|----------------| | Acetone | <1 | 14 | <1 | 3.8 | 11 | ND | ND | ND | ND | 50 | | Toluene | 5 | < 10 | <1 | ND | ND | ND | ND | ND | ND | 5 | |
Ethylbenzene | <1 | < 10 | <1 | ND | ND | ND | ND | ND | ND | 5 | | Total Xylene | 11 | < 10 | <2 | ND | 1 | ND | ND | ND | ND | 5 | | Analyte | Jun-01 | Aug-03 | Feb-04 | Dec-05 | May-06 | Sep-06 | Dec-06 | Mar-07 | October /
November
2007 | NYSDEC
GWQS | |--------------|--------|--------|--------|--------|--------|--------|--------|--------|-------------------------------|----------------| | Acetone | 14000 | 9500 | <1 | ND | ND | ND | ND | ND | ND | 50 | | Toluene | 18000 | 21000 | 9.5 | 5.5 | 1.3 | ND | ND | 25 | ND | 5 | | Ethylbenzene | 3400 | 4700 | 15 | 15 | 29 | 3.7 | ND | 99 | ND | 5 | | Total Xylene | 14000 | 24000 | 120 | 72.6 | 46 | 40 | ND | 430 | 3.9 | 5 | #### MW-5 | Analyte | Jun-01 | Aug-03 | Feb-04 | Dec-05 | May-06 | Sep-06 | Dec-06 | Mar-07 | October /
November
2007 | NYSDEC
GWQS | |--------------|--------|--------|--------|--------|--------|--------|--------|--------|-------------------------------|----------------| | Acetone | <1 | < 10 | <1 | ND | ND | ND | ND | ND | ND | 50 | | Toluene | <1 | < 10 | <1 | ND | ND | ND | ND | ND | ND | 5 | | Ethylbenzene | <1 | < 10 | <1 | ND | ND | ND | ND | ND | ND | 5 | | Total Xylene | 10 | < 10 | <2 | ND | 0.99 | ND | ND | ND | ND | 5 | #### **MW-6** | Analyte | Jun-01 | Aug-03 | Feb-04 | Dec-05 | May-06 | Sep-06 | Dec-06 | Mar-07 | October /
November
2007 | NYSDEC
GWQS | |--------------|--------|--------|--------|----------------------------------|--------|--------|--------|--------|-------------------------------|----------------| | Acetone | <1 | < 10 | <1 | DESTROYED DURING SIDEWALK REPAIR | | | | | | | | Toluene | 61 | <10 | <1 | | | | | | | | | Ethylbenzene | 55 | < 10 | <1 | | | | | | | | | Total Xylene | 200 | < 10 | <2 | | | | | | | 5 | | Analyte | Jun-01 | Aug-03 | Feb-04 | Dec-05 | May-06 | Sep-06 | Dec-06 | Mar-07 | October /
November
2007 | NYSDEC
GWQS | |--------------|--------|--------|--------|--------|--------|--------|--------|--------|-------------------------------|----------------| | Acetone | 65 | < 10 | <1 | ND | ND | ND | ND | ND | ND | 50 | | Toluene | 16 | <10 | <1 | 98 | ND | ND | ND | ND | ND | 5 | | Ethylbenzene | <1 | < 10 | <1 | 11 | ND | ND | ND | ND | ND | 5 | | Total Xylene | 6 | < 10 | <2 | 72 | ND | ND | ND | ND | ND | 5 | | Analyte | Jun-01 | Aug-03 | Feb-04 | Dec-05 | May-06 | Sep-06 | Dec-06 | Mar-07 | October /
November
2007 | NYSDEC
GWQS | |--------------|--------|--------|--------|--------|--------|--------|--------|--------|-------------------------------|----------------| | Acetone | <1 | <10 | <1 | ND | ND | ND | ND | ND | ND | 50 | | Toluene | <1 | <10 | <1 | 70 | ND | ND | ND | ND | ND | 5 | | Ethylbenzene | <1 | 20 | <1 | 11 | ND | ND | ND | ND | ND | 5 | | Total Xylene | 8 | 140 | <2 | 58 | 0.64 | ND | ND | ND | ND | 5 | #### MW-9A | Analyte | Jun-01 | Aug-03 | Feb-04 | Dec-05 | May-06 | Sep-06 | Dec-06 | Mar-07 | October /
November
2007 | NYSDEC
GWQS | |--------------|--------|--------|--------|--------|--------|--------|--------|--------|-------------------------------|----------------| | Acetone | NI | < 5000 | NS | 21 | NS | 280 | NS | ND | ND | 50 | | Toluene | NI | 69000 | NS | 160000 | NS | 150000 | NS | 90000 | 19000 | 5 | | Ethylbenzene | NI | 6600 | NS | 8900 | NS | 10000 | NS | 11000 | 3200 | 5 | | Total Xylene | NI | 38000 | NS | 51000 | NS | 69000 | NS | 100000 | 23200 | 5 | | Analyte | Jun-01 | Aug-03 | Feb-04 | Dec-05 | May-06 | Sep-06 | Dec-06 | Mar-07 | October /
November
2007 | NYSDEC
GWQS | |--------------|--------|--------|--------|--------|--------|--------|--------|--------|-------------------------------|----------------| | Acetone | NI | < 10 | <1 | ND | ND | ND | ND | ND | ND | 50 | | Toluene | NI | < 10 | <1 | 170 | ND | ND | ND | ND | ND | 5 | | Ethylbenzene | NI | < 10 | <1 | 6 | ND | ND | ND | ND | ND | 5 | | Total Xylene | NI | < 10 | <2 | 31.4 | 0.59 | ND | ND | ND | ND | 5 | MW-11 | Analyte | Jun-01 | Aug-03 | Feb-04 | Dec-05 | May-06 | Sep-06 | Dec-06 | Mar-07 | October /
November
2007 | NYSDEC
GWQS | |--------------|--------|--------|--------|--------|--------|--------|--------|--------|-------------------------------|----------------| | Acetone | NI | < 100 | <1 | ND | ND | ND | ND | ND | ND | 50 | | Toluene | NI | 95 | 16 | 17 | ND | ND | 8.4 | ND | ND | 5 | | Ethylbenzene | NI | 550 | 20 | 0.76 | ND | ND | ND | ND | ND | 5 | | Total Xylene | NI | 4100 | 58 | 4.2 | ND | ND | 9.8 | ND | ND | 5 | | Analyte | Jun-01 | Aug-03 | Feb-04 | Dec-05 | May-06 | Sep-06 | Dec-06 | Mar-07 | October /
November
2007 | NYSDEC
GWQS | |--------------|--------|--------|--------|--------|--------|--------|--------|--------|-------------------------------|----------------| | Acetone | NI | < 2500 | 1300 | 9.6 | 150 | ND | ND | ND | ND | 50 | | Toluene | NI | 29000 | 46000 | 17000 | 15000 | ND | 4100 | 18000 | 780 | 5 | | Ethylbenzene | NI | 9700 | 16000 | 9300 | 7300 | ND | 10000 | 12000 | 9000 | 5 | | Total Xylene | NI | 56000 | 80000 | 46500 | 42800 | ND | 48100 | 58200 | 35100 | 5 | #### MW-13 | Analyte | Jun-01 | Aug-03 | Feb-04 | Dec-05 | May-06 | Sep-06 | Dec-06 | Mar-07 | October /
November
2007 | NYSDEC
GWQS | | |--------------|--------|--------|--------|----------------------------------|--------|--------|--------|--------|-------------------------------|----------------|--| | Acetone | NI | < 10 | <1 | | | | | | | | | | Toluene | NI | <10 | <1 | DECEDONED DUDING CIDEWALK DEDAID | | | | | | | | | Ethylbenzene | NI | < 10 | <1 | DESTROYED DURING SIDEWALK REPAIR | | | | | | | | | Total Xylene | NI | < 10 | <2 | | | | | | | 5 | | | Analyte | Jun-01 | Aug-03 | Feb-04 | Dec-05 | May-06 | Sep-06 | Dec-06 | Mar-07 | October /
November
2007 | NYSDEC
GWQS | |--------------|--------|--------|--------|--------|--------|--------|--------|--------|-------------------------------|----------------| | Acetone | NI | < 10 | <1 | ND | ND | ND | ND | ND | ND | 50 | | Toluene | NI | < 10 | <1 | 2.8 | ND | ND | ND | ND | ND | 5 | | Ethylbenzene | NI | < 10 | <1 | 1.6 | ND | ND | ND | ND | ND | 5 | | Total Xylene | NI | < 10 | <2 | 7.6 | ND | ND | ND | ND | ND | 5 | MW-15 | Analyte | Jun-01 | Aug-03 | Feb-04 | Dec-05 | May-06 | Sep-06 | Dec-06 | Mar-07 | October /
November
2007 | NYSDEC
GWQS | |--------------|--------|--------|--------|--------|--------|--------|--------|--------|-------------------------------|----------------| | Acetone | NI | NS | NS | <1 | | 50 | | | | | | Toluene | NI | NS | NS | 61 | п | 5 | | | | | | Ethylbenzene | NI | NS | NS | 55 | L | 5 | | | | | | Total Xylene | NI | NS | NS | 200 | | | | | | 5 | | Analyte | Jun-01 | Aug-03 | Feb-04 | Dec-05 | May-06 | Sep-06 | Dec-06 | Mar-07 | October /
November
2007 | NYSDEC
GWQS | |--------------|--------|--------|--------|--------|--------|--------|--------|--------|-------------------------------|----------------| | Acetone | NI | 2200 | 5300 | NS | 290 | 31000 | 22000 | 1700 | ND | 50 | | Toluene | NI | 3700 | 33000 | NS | 15000 | 29000 | 40000 | 14000 | 28000 | 5 | | Ethylbenzene | NI | 1100 | 5700 | NS | 3100 | 4400 | 5100 | 3500 | 900 | 5 | | Total Xylene | NI | 7000 | 36100 | NS | 21700 | 27700 | 36600 | 28000 | 4060 | 5 | | Analyte | Jun-01 | Aug-03 | Feb-04 | Dec-05 | May-06 | Sep-06 | Dec-06 | Mar-07 | October /
November
2007 | NYSDEC
GWQS | |--------------|--------|---------------|--------|--------|--------|--------|--------|--------|-------------------------------|----------------| | Acetone | | | | ND | ND | ND | ND | ND | ND | 50 | | Toluene | N | NOT INSTALLED | | | 1.6 | ND | ND | ND | ND | 5 | | Ethylbenzene | 110 | | | | 0.72 | ND | ND | ND | ND | 5 | | Total Xylene | | | | | 4.6 | ND | ND | ND | ND | 5 | | Analyte | Jun-01 | Aug-03 | Feb-04 | Dec-05 | May-06 | Sep-06 | Dec-06 | Mar-07 | October /
November
2007 | NYSDEC
GWQS | |--------------|--------|---------------|--------|--------|---------------|--------|--------|--------|-------------------------------|----------------| | Acetone | | | | 69000 | NS | 29000 | NS | NS | NS | 50 | | Toluene | N | OT INSTALL | ZD. | 310000 | NS | 230000 | NS | NS | NS | 5 | | Ethylbenzene | 1 | NOT INSTALLED | | | NS | 3900 | NS | NS | NS | 5 | | Total Xylene | | | | | NS | 21500 | NS | NS | NS | 5 | #### MW-22 | Analyte | Jun-01 | Aug-03 | Feb-04 | Dec-05 | May-06 | Sep-06 | Dec-06 | Mar-07 | October /
November
2007 | NYSDEC
GWQS | |--------------|--------|---------------|--------|--------|--------|--------|--------|--------|-------------------------------|----------------| | Acetone | | | | NS | NS | NS | NS | NS | NS | 50 | | Toluene | N | NOT INSTALLED | | | NS | NS | NS | NS | NS | 5 | | Ethylbenzene | 11 | | | | NS | NS | NS | NS | NS | 5 | | Total Xylene | | | | | NS | NS | NS | NS | NS | 5 | #### MW-23 | Analyte | Jun-01 | Aug-03 | Feb-04 | Dec-05 | May-06 | Sep-06 | Dec-06 | Mar-07 | October /
November
2007 | NYSDEC
GWQS | |--------------|--------|---------------|--------|--------|--------|--------|--------|--------|-------------------------------|----------------| | Acetone | | | | ND | 200 | ND | ND | ND | ND | 50 | | Toluene | N | NOT INSTALLED | | | 28000 | 32000 | 22000 | 14 | 12000 | 5 | | Ethylbenzene | 11 | | | | 9600 | 9500 | 7800 | 230 | 6200 | 5 | | Total Xylene | | | | | 60000 | 58000 | 48100 | 790 | 40100 | 5 | | Analyte | Jun-01 | Aug-03 | Feb-04 | Dec-05 | May-06 | Sep-06 | Dec-06 | Mar-07 | October /
November
2007 | NYSDEC
GWQS | |--------------|--------|---------------|--------|--------|--------|--------|--------|--------|-------------------------------|----------------| | Acetone | | | | ND | 15 | ND | ND | ND | ND | 50 | | Toluene | N | NOT INSTALLED | | | 5200 | ND | ND | ND | ND | 5 | | Ethylbenzene | 17 | | | | 1100 | 590 | 430 | 110 | 270 | 5 | | Total Xylene | | | | | 4440 | 800 | 541 | 146 | 835 | 5 | | Analyte | Jun-01 | Aug-03 | Feb-04 | Dec-05 | May-06 | Sep-06 | Dec-06 |
Mar-07 | October /
November
2007 | NYSDEC
GWQS | | |--------------|--------|-------------|------------|--------|--------|-------------|------------|--------|-------------------------------|----------------|--| | Acetone | | | | | | | | | | 50 | | | Toluene | N | OT INSTALLE | 7 D | | DESTR | OVED DUDING | G SIDEWALK | DEDAID | | 5 | | | Ethylbenzene | 17 | OI INSTALLI | SD . | | DESTRO | JIED DUKIN | G SIDEWALK | KETAIK | | 5 | | | Total Xylene | | | | | | | | | | | | #### MW-26 | Analyte | Jun-01 | Aug-03 | Feb-04 | Dec-05 | May-06 | Sep-06 | Dec-06 | Mar-07 | October /
November
2007 | NYSDEC
GWQS | |--------------|---------------|--------|--------|--------|--------|--------|--------|--------|-------------------------------|----------------| | Acetone | NOT INSTALLED | | | 2.7 | ND | ND | ND | ND | ND | 50 | | Toluene | | | | 22 | ND | ND | ND | ND | ND | 5 | | Ethylbenzene | | | | 2 | ND | ND | ND | ND | ND | 5 | | Total Xylene | | | | 10.1 | 0.96 | ND | ND | ND | ND | 5 | | Analyte | Jun-01 | Aug-03 | Feb-04 | Dec-05 | May-06 | Sep-06 | Dec-06 | Mar-07 | October /
November
2007 | NYSDEC
GWQS | |--------------|---------------|--------|--------|--------|--------|--------|--------|--------|-------------------------------|----------------| | Acetone | NOT INSTALLED | | | ND | ND | ND | ND | ND | ND | 50 | | Toluene | | | | 12 | 1.6 | ND | 2.7 | ND | ND | 5 | | Ethylbenzene | | | | 3 | ND | ND | ND | ND | ND | 5 | | Total Xylene | | | | 15.4 | 2 | ND | 4 | ND | ND | 5 |