

Environmental Management & Consulting

Sent via electronic mail (michael.maccabe@dec.ny.gov)

Michael D. MacCabe, P.E. Senior Environmental Engineer Division of Environmental Remediation NYS Department of Environmental Conservation 625 Broadway, 12th Floor Albany, NY 12233-7016

Re: Annual Groundwater Monitoring Report 388 Bridge Street Site - Brooklyn, New York BCP Site #C224134

Dear Mr. MacCabe:

July 30, 2020

Fleming-Lee Shue, Inc. presents this Annual Groundwater Monitoring Report for the 388 Bridge Street property (Site) located at 388 Bridge Street in Brooklyn, NY. The Site is currently in Site Management and this groundwater monitoring event was completed in accordance with the New York State Department of Environmental Conservation (NYSDEC) approved Site Management Plan (SMP) dated December 2013 and subsequent Site Management Plan Modifications dated October 2016 and July 2019. The monitoring program frequency was reduced from semi-annual to annual in a July 2019 NYSDEC email.

Background

Results from subsurface investigations performed by FLS from 2008 to 2010 detected tetrachloroethylene (PCE) in both soil and groundwater. In August 2009, the Site was accepted into the NYSDEC Brownfield Cleanup Program (BCP). Remedial activities were conducted in accordance with the NYSDEC-approved Remedial Action Work Plan dated April 2012. The BCP Volunteer achieved a Track 2 remedy at the Site. After completion of the remedial work, residual contamination remained on-Site. Therefore, institutional and engineering controls were incorporated into the Site remedy to control exposure to the remaining contamination.

In June 2013, the SVE system was installed to remove VOCs from soil gas beneath the building slab. The system operated from 2013 through 2016 and included six extraction points (SVE-1, SVE-2, SVE-3, SVE-4, SVE-5 and SVE-6).

In 2016, after monitoring of PCE concentrations and prior approval of NYSDEC, the 2013 SVE system was downsized to limit extraction to where the bulk of the PCE mass remains (SVE-2). Each of the vapor extraction points, except for one location (SVE-2), were converted into groundwater monitoring wells (SVE-MW-1, SVE-MW-3, SVE-MW 4, SVE-MW-5 and SVE-MW-6) to monitor natural attenuation of VOCs.

In July 2016 and with the prior approval of NYSDEC (dated July 29, 2016), SVE-MW-3 and SVE-MW-6 were abandoned because they did not extend into the groundwater table and were therefore not usable as groundwater monitoring wells. Off-Site monitoring wells, MW-3 and MW-7, were destroyed during construction activities.

Once remediation is completed, extraction well SVE-2 will be converted to a groundwater monitoring well and serve as the downgradient well. Figure 2 presents the well locations and results from the last four rounds of groundwater sampling.

In its July 2019 Semi-Annual Groundwater Monitoring Report, FLS recommended a reduction in the frequency of groundwater monitoring from semi-annual to annual based on stable concentrations of PCE and TCE on-Site. NYSDEC approved this reduction in an email, dated July 18, 2019. The Site Management Plan (SMP) was updated to reflect this amendment.

Geology and Hydrogeology

Geology

Regionally, Brooklyn at the western end of Long Island is underlain by sedimentary layers that strike northeast and are inclined gently to the southeast. These layers appear at or near the surface in the vicinity of Long Island Sound, where differential erosion has left relatively tough sands and clays at elevations of more than 60 feet above sea level.

Resting on top of these sands and clays and forming the highest elevation is a belt of glacially deposited debris composed of an unsorted, unstratified mixture of boulders, sand, silt, and clay. This debris was deposited in the interval between 75,000 and 17,000 years ago when the area was covered by a massive sheet of glacial ice. In the vicinity of New York, the ice was moving in a generally southerly direction, bringing with it a huge load of detached bedrock, sediment, and soil that it had scoured from more northerly regions

The geology observed at the Site can be characterized as two major strata groups. The upper stratum is a fill material layer that ranges in thickness from 3 to 17 feet. Beneath the fill layer is a natural glacial till deposit consisting of brown to red-brown, fine- to coarse-grained sand with trace cobbles and boulders.

Hydrology

Historically, groundwater has been encountered at approximately 43 to 45 feet below ground surface. Based on past groundwater monitoring events, local groundwater flow is to the northeast. This localized groundwater flow direction may be influenced by the subway tunnels located north

and southwest of the Site and pumping operations at a Metropolitan Transportation Authority (MTA) de-watering station located within 1.5 miles northeast of the Site.

Groundwater Monitoring Program

The groundwater monitoring program for the Site began in March 2016. The groundwater monitoring program was implemented to monitor natural attenuation of volatile organic compounds (VOC) in groundwater following the downsizing of the soil vapor extraction (SVE) system. The SVE system, installed in 2013, was downsized and modified in 2016 to target the area where the bulk of the contaminant mass remains, primarily in the area of SVE well 2 (SVE-2). Selected soil vapor extraction wells were converted to monitoring wells and included in the groundwater monitoring program. The objectives of the groundwater monitoring program include the following:

- Provide a current round of groundwater analytical data from the monitoring wells;
- Evaluate the existing and time-based groundwater conditions at the Site; and
- Evaluate the time-based trends of VOCs.

The groundwater monitoring program involves the following activities:

- Measurement of groundwater field parameters including depth to water, pH, dissolved oxygen (DO), total dissolved solids (TDS), conductivity, oxidation-reduction potential (ORP), turbidity, salinity, and temperature to determine groundwater conditions;
- Collection of groundwater samples for VOCs to evaluate chlorinated VOC concentration trends and monitor natural attenuation;
- Collection of groundwater samples for geochemical parameters including nitrate, nitrite, sulfate, iron (II), total organic carbon, and dissolved organic carbon to evaluate evidence supporting natural attenuation.

Groundwater Sampling Procedures

On April 24, 2020, groundwater samples were collected from the three on-Site monitoring wells (SVE-MW-1, SVE-MW 4, and SVE-MW-5). Prior to sampling, FLS screened the headspace gases for VOCs with a MiniRAE 3000 Photoionization detector (PID) and collected depth to water measurements. Based on depth to water measurements, groundwater flow is estimated to be to the north. Groundwater samples were collected using the low-flow sampling method (EPA Low-Flow Groundwater Sampling Procedures, April 1996). Each monitoring well was purged prior to sampling using a peristaltic pump until groundwater parameters (temperature, pH, DO, conductivity, ORP, TDS, and turbidity) stabilized, or three well volumes were purged. Water-

quality measurements were monitored using a Horiba U-52 multi-parameter water-quality meter. The monitoring well purge logs are included in Appendix A.

After the stabilization of the groundwater parameters, samples were collected via dedicated pump tubing directly into laboratory-supplied containers. After sample collection each container was labeled, placed on ice in an insulated cooler and transported under chain-of-custody protocol to SGS/Accutest Laboratories of Dayton, New Jersey, a New York Environmental Laboratory Approval Program Certified Laboratory. The groundwater samples were analyzed for Target Compounds List VOCs by EPA Method 8260C and several geochemical parameters.

Summary of Analytical Results

The groundwater analytical results, from the past eight sampling events, were compared to the NYSDEC Division of Water Technical and Operational Guidance Series 1.1.1 Ambient Water Quality Standards and Guidance Values (TOGS) and are summarized in Table 1. The laboratory data report is provided in Appendix B.

The groundwater analytical results indicate that PCE remain at similar concentrations to previous events and exceed the TOGS standard of 5 μ g/L in each of the monitoring wells sampled: SVE-MW-1 (5.3 μ g/L), SVE-MW-4 (20.1 μ g/L), and SVE-MW-5 (12.7 μ g/L). With the exception of PCE, concentrations of VOCs at SVE-MW-1 were non-detect for all compounds. Trichloroethylene (TCE) and cis-1, 2-dichloroethylene concentrations continue to remain below the TOGS standard in all three monitoring wells. SVE-MW-1 remained non-detect and SVE-MW-4 and SVE-MW-5 decreased to historic low concentrations since groundwater monitoring began in March 2016. Additionally, concentrations of chloroform slightly exceeded the TOGS standard (7.0 μ g/L) in a single location, SVE-MW-5 (8.4 μ g/L).

An overview of the trends of PCE and TCE concentrations since semi-annual groundwater monitoring began in March 2016 is presented in the attached graphs. Analytical results from this event show that PCE concentrations have either greatly decreased or stayed at similar low-level concentrations at all locations. Particularly at locations SVE-MW-4 and SVE-MW-5, concentrations for PCE reduced from 46.5 μ g/L to 20.1 μ g/L, and from 36.6 μ g/L to 12.7 μ g/L, respectively. These changes represent a 56.7% and a 65.3% reduction from the previous event for the respective wells. The concentration of PCE in SVE-MW-1 decreased slightly from the previous event, from 7.3 μ g/L to 5.3 μ g/L, and has maintained a low concentration asymptotic trend since March 2018. TCE concentrations in all wells have remained below the 5 μ g/L TOGS standard since September 2017, and continue to display an asymptotic trend.

Conclusions and Recommendations

Concentrations of chlorinated VOCs either reduced or remained at low level concentrations within all wells during this sampling event. Concentrations of PCE exceeded TOGS standards at all three

well locations. However, PCE concentrations were greatly reduced in both SVE-MW-4 (56.7%) and SVE-MW-5 (65.3%), and concentrations within SVE-MW-1 remain at low levels slightly above the TOGS standard (5.3 μ g/L). However, overall PCE concentrations continue to remain well below pre-remediation conditions and have been at or approaching asymptotic levels since groundwater monitoring began in 2016.

FLS recommends continuing groundwater monitoring on an annual basis in order to monitor natural attenuation trends on Site and assess groundwater quality.

Please contact us with any comments or questions.

Sincerely,

Fleming-Lee Shue, Inc.

Moul Hetes

Mark Hutson, P.G. Associate

cc:	Roger Fortune Jennifer Cogh Arnold F. Fle	ılan, Esq.	Stahl Realty Sive, Paget & Riesel Fleming-Lee-Shue, Inc.				
enc:	Table 1	Groundwater Samplin	ng Analytical Results				
	Figure 1 Figure 2	Site Location Map Site Plan and Ground	water Sampling Results				
	Graphs	PCE and TCE Conce	ntration Trends				
	Appendix A Appendix B	Monitoring Well Purg Laboratory Analytica	ng Well Purge Logs ry Analytical Data Report				

Tables

Table 1 - Groundwater Analytical Results Annual Groundwater Report 388 Bridge Street, Brooklyn NY

Client Sample ID:		SVE-MW-1							SVE-MW-4					SVE-MW-5												
Lab Sample ID:	Units	NY TOGS Class GA GW	JC17514-1	JC28127-3	JC39116-1	JC51891-1	JC62395-1	JC62395-1	JC87667-1	JD6496-1	JC17514-2	JC28127-2	JC39116-2	JC51891-2	JC62395-3	JC62395-3	JC87667-2	JD6496-2	JC17514-3	JC28127-1	JC39116-3	JC51891-3	JC62395-2	JC73688-3	JC87667-3	JD6496-3
Date Sampled:	Onits	Standards	3/31/2016	9/20/2016	3/17/2017	9/26/2017	3/14/2018	9/12/2018	5/7/2019	4/24/2020	3/31/2016	9/20/2016	3/17/2017	9/26/2017	3/14/2018	9/12/2018	5/7/2019	4/24/2020	3/31/2016	9/20/2016	3/17/2017	9/26/2017	3/14/2018	9/12/2018	5/7/2019	4/24/2020
Matrix:						Groun	idwater				Groundwater					Groundwater										
GC/MS Volatiles (SW846 8260C)																										
Acetone Benzene	ug/l ug/l	-	ND (3.3) ND (0.24)	ND (5.0) ND (0.14)	ND (5.0) ND (0.14)	ND (5.0) ND (0.17)	ND (5.0) ND (0.17)	ND (6.0) ND (0.43)	ND (6.0) ND (0.43)	ND (6.0) ND (0.43)	ND (3.3) ND (0.24)	ND (5.0) ND (0.14)	ND (5.0) ND (0.14)	ND (5.0) ND (0.17)	ND (5.0) ND (0.17)	ND (6.0) ND (0.43)	ND (6.0) ND (0.43)	ND (6.0) ND (0.43)	ND (3.3) ND (0.24)	ND (5.0) ND (0.14)	ND (5.0) ND (0.14)	ND (5.0) ND (0.17)	ND (5.0) ND (0.17)	ND (6.0) ND (0.43)	ND (6.0) ND (0.43)	ND (6.0) ND (0.43)
Bromochloromethane	ug/l	5	ND (0.24) ND (0.37)	ND (0.14)	ND (0.46)	ND (0.38)	ND (0.38)	ND (0.43)	ND (0.43)	ND (0.48)	ND (0.24) ND (0.37)	ND (0.14) ND (0.46)	ND (0.14) ND (0.46)	ND (0.38)	ND (0.38)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.24) ND (0.37)	ND (0.14) ND (0.46)	ND (0.46)	ND (0.38)	ND (0.38)	ND (0.43) ND (0.48)	ND (0.43) ND (0.48)	ND (0.43) ND (0.48)
Bromodichloromethane	ug/l	-	ND (0.23)	ND (0.55)	ND (0.55)	ND (0.22)	ND (0.22)	ND (0.58)	ND (0.58)	ND (0.58)	ND (0.23)	ND (0.55)	ND (0.55)	ND (0.22)	ND (0.22)	ND (0.58)	ND (0.58)	ND (0.58)	ND (0.23)	ND (0.55)	ND (0.55)	ND (0.22)	ND (0.22)	ND (0.58)	ND (0.58)	ND (0.58)
Bromoform	ug/l	-	ND (0.23)	ND (0.34)	ND (0.34)	ND (0.42)	ND (0.42)	ND (0.63)	ND (0.63)	ND (0.63)	ND (0.23)	ND (0.34)	ND (0.34)	ND (0.42)	ND (0.42)	ND (0.63)	ND (0.63)	ND (0.63)	ND (0.23)	ND (0.34)	ND (0.34)	ND (0.42)	ND (0.42)	ND (0.63)	ND (0.63)	ND (0.63)
Bromomethane 2-Butanone (MEK)	ug/l ug/l	5	ND (0.42) ND (5.6)	ND (0.46) ND (1.9)	ND (0.46) ND (1.9)	ND (1.4) ND (4.8)	ND (1.4) ND (4.8)	ND (1.6) ND (6.9)	ND (1.6) ND (6.9)	ND (1.6) a ND (6.9)	ND (0.42) ND (5.6)	ND (0.46) ND (1.9)	ND (0.46) ND (1.9)	ND (1.4) ND (4.8)	ND (1.4) ND (4.8)	ND (1.6) ND (6.9)	ND (1.6) ND (6.9)	ND (1.6) a ND (6.9)	ND (0.42) ND (5.6)	ND (0.46) ND (1.9)	ND (0.46) ND (1.9)	ND (1.4) ND (4.8)	ND (1.4) ND (4.8)	ND (1.6) ND (6.9)	ND (1.6) ND (6.9)	ND (1.6) a ND (6.9)
Carbon disulfide	ug/l	60	ND (0.25)	ND (0.33)	ND (0.33)	ND (0.23)	ND (0.50)	ND (0.95)	ND (0.95)	ND (0.95)	ND (0.25)	ND (0.33)	ND (0.33)	ND (0.23)	ND (0.50)	ND (0.95)	ND (0.95)	ND (0.95)	ND (0.25)	ND (0.33)	ND (0.33)	ND (0.23)	ND (0.50)	ND (0.95)	ND (0.95)	ND (0.95)
Carbon tetrachloride	ug/l	5	ND (0.22)	ND (0.54)	ND (0.54)	ND (0.34)	ND (0.34)	ND (0.55)	ND (0.55)	ND (0.55)	ND (0.22)	ND (0.54)	ND (0.54)	ND (0.34)	ND (0.34)	ND (0.55)	ND (0.55)	ND (0.55)	ND (0.22)	ND (0.54)	ND (0.54)	ND (0.34)	ND (0.34)	ND (0.55)	ND (0.55)	ND (0.55)
Chlorobenzene	ug/l	5	ND (0.19)	ND (0.17)	ND (0.17)	ND (0.24)	ND (0.24)	ND (0.56)	ND (0.56)	ND (0.56)	ND (0.19)	ND (0.17)	ND (0.17)	ND (0.24)	ND (0.24)	ND (0.56)	ND (0.56)	ND (0.56)	ND (0.19)	ND (0.17)	ND (0.17)	ND (0.24)	ND (0.24)	ND (0.56)	ND (0.56)	ND (0.56)
Chloroethane Chloroform	ug/l ug/l	5	ND (0.34) 1.7	ND (0.44)	ND (0.44)	ND (0.59) ^a ND (0.29)	ND (0.59) 1.2	ND (0.73) 2.9	ND (0.73)	ND (0.73) ND (0.50)	ND (0.34) 0.89 J	ND (0.44) 1.3	ND (0.44) 0.93 J	ND (0.59) ^a 3.6	ND (0.59) 10.7	ND (0.73) 5 7	ND (0.73) 7.1	ND (0.73) 1 7	ND (0.34) 0.79 J	ND (0.44) 0.85 J	ND (0.44) 0.71 J	ND (0.59) ^a 9.9	ND (0.59) 9.9	ND (0.73)	ND (0.73) 3.8	ND (0.73) 8.4
Chloromethane	ug/l	5	ND (0.41)	ND (0.96)	ND (0.96)	ND (0.53) ^a	ND (0.53)	ND (0.76)	ND (0.76)	ND (0.76)	ND (0.41)	ND (0.96)	ND (0.96)	ND (0.53) ^a	ND (0.53)	ND (0.76)	ND (0.76)	ND (0.76)	ND (0.41)	ND (0.96)	ND (0.96)	ND (0.53) ^a	ND (0.53)	ND (0.76)	ND (0.76)	ND (0.76)
Cyclohexane	ug/l	-	ND (0.28)	ND (0.73)	ND (0.73)	ND (0.63)	ND (0.63)	ND (0.78)	ND (0.78)	ND (0.78)	ND (0.28)	ND (0.73)	ND (0.73)	ND (0.63)	ND (0.63)	ND (0.78)	ND (0.78)	ND (0.78)	ND (0.28)	ND (0.73)	ND (0.73)	ND (0.63)	ND (0.63)	ND (0.78)	ND (0.78)	ND (0.78)
1,2-Dibromo-3-chloropropane	ug/l	0.04	ND (0.99)	ND (0.69)	ND (0.69)	ND (0.69)	ND (0.69)	ND (1.2) a	ND (1.2)	ND (1.2)	ND (0.99)	ND (0.69)	ND (0.69)	ND (0.69)	ND (0.69)	ND (1.2) a	ND (1.2)	ND (1.2)	ND (0.99)	ND (0.69)	ND (0.69)	ND (0.69)	ND (0.69)	ND (1.2) ^a	ND (1.2)	ND (1.2)
Dibromochloromethane	ug/l	-	ND (0.15) ND (0.23)	ND (0.23)	ND (0.23) ND (0.22)	ND (0.16) ND (0.21)	ND (0.16) ND (0.21)	ND (0.56) ND (0.48)	ND (0.56) ND (0.48)	ND (0.56) ND (0.48)	ND (0.15) ND (0.23)	ND (0.23)	ND (0.23) ND (0.22)	ND (0.16) ND (0.21)	ND (0.16) ND (0.21)	ND (0.56) ND (0.48)	ND (0.56) ND (0.48)	ND (0.56) ND (0.48)	ND (0.15) ND (0.23)	ND (0.23)	ND (0.23) ND (0.22)	ND (0.16) ND (0.21)	ND (0.16) ND (0.21)	ND (0.56) ND (0.48)	ND (0.56)	ND (0.56)
1,2-Dibromoethane 1,2-Dichlorobenzene	ug/l ug/l	0.0006 3	ND (0.23) ND (0.19)	ND (0.22) ND (0.23)	ND (0.22) ND (0.23)	ND (0.21) ND (0.50)	ND (0.21) ND (0.50)	ND (0.48) ND (0.53)	ND (0.48) ND (0.53)	ND (0.48) ND (0.53)	ND (0.23) ND (0.19)	ND (0.22) ND (0.23)	ND (0.22) ND (0.23)	ND (0.21) ND (0.50)	ND (0.21) ND (0.50)	ND (0.48) ND (0.53)	ND (0.48) ND (0.53)	ND (0.48) ND (0.53)	ND (0.23) ND (0.19)	ND (0.22) ND (0.23)	ND (0.22) ND (0.23)	ND (0.21) ND (0.50)	ND (0.21) ND (0.50)	ND (0.48) ND (0.53)	ND (0.48) ND (0.53)	ND (0.48) ND (0.53)
1,3-Dichlorobenzene	ug/l	3	ND (0.23)	ND (0.19)	ND (0.19)	ND (0.50)	ND (0.50)	ND (0.54)	ND (0.54)	ND (0.54)	ND (0.23)	ND (0.19)	ND (0.19)	ND (0.50)	ND (0.50)	ND (0.54)	ND (0.54)	ND (0.54)	ND (0.23)	ND (0.19)	ND (0.19)	ND (0.50)	ND (0.50)	ND (0.54)	ND (0.54)	ND (0.54)
1,4-Dichlorobenzene	ug/l	3	ND (0.27)	ND (0.21)	ND (0.21)	ND (0.50)	ND (0.50)	ND (0.51)	ND (0.51)	ND (0.51)	ND (0.27)	ND (0.21)	ND (0.21)	ND (0.50)	ND (0.50)	ND (0.51)	ND (0.51)	ND (0.51)	ND (0.27)	ND (0.21)	ND (0.21)	ND (0.50)	ND (0.50)	ND (0.51)	ND (0.51)	ND (0.51)
Dichlorodifluoromethane	ug/l	5	ND (0.90) ND (0.17)	ND (0.70)	ND (0.70) ND (0.21)	ND (1.9) ^a ND (0.21)	ND (1.9) ND (0.21)	ND (1.4) ND (0.57)	ND (1.4) ND (0.57)	ND (1.4) ND (0.57)	ND (0.90) ND (0.17)	ND (0.70)	ND (0.70) ND (0.21)	ND (1.9) ^a ND (0.21)	ND (1.9) ND (0.21)	ND (1.4) ND (0.57)	ND (1.4) ND (0.57)	ND (1.4) ND (0.57)	ND (0.90) ND (0.17)	ND (0.70)	ND (0.70) ND (0.21)	ND (1.9) ^a ND (0.21)	ND (1.9) ND (0.21)	ND (1.4)	ND (1.4)	ND (1.4)
1,1-Dichloroethane 1,2-Dichloroethane	ug/l ug/l	5 0.6	ND (0.17) ND (0.18)	ND (0.21) ND (0.39)	ND (0.21) ND (0.39)	ND (0.21) ND (0.20)	ND (0.21) ND (0.20)	ND (0.60)	ND (0.57) ND (0.60)	ND (0.60)	ND (0.17) ND (0.18)	ND (0.21) ND (0.39)	ND (0.21) ND (0.39)	ND (0.21) ND (0.20)	ND (0.21) ND (0.20)	ND (0.60)	ND (0.57) ND (0.60)	ND (0.60)	ND (0.17) ND (0.18)	ND (0.21) ND (0.39)	ND (0.21) ND (0.39)	ND (0.21) ND (0.20)	ND (0.21) ND (0.20)	ND (0.57) ND (0.60)	ND (0.57) ND (0.60)	ND (0.57) ND (0.60)
1,1-Dichloroethene	ug/l	5	ND (0.51)	ND (0.20)	ND (0.20)	ND (0.47)	ND (0.47)	ND (0.59)	ND (0.59)	ND (0.59)	ND (0.51)	ND (0.20)	ND (0.20)	ND (0.47)	ND (0.47)	ND (0.59)	ND (0.59)	ND (0.59)	ND (0.51)	ND (0.20)	ND (0.20)	ND (0.47)	ND (0.47)	ND (0.59)	ND (0.59)	ND (0.59)
cis-1,2-Dichloroethene	ug/l	5	ND (0.27)	ND (0.31)	ND (0.31)	ND (0.50)	ND (0.50)	ND (0.51)	ND (0.51)	ND (0.51)	0.85 J	1.6	0.79 J	1.3	0.68 J	6.8	3	ND (0.51)	0.34 J	ND (0.31)	ND (0.31)	1.4	0.52 J	2.3	1.3	ND (0.51)
trans-1,2-Dichloroethene 1,2-Dichloropropane	ug/l ug/l	5	ND (0.65) ND (0.39)	ND (0.36) ND (0.33)	ND (0.36) ND (0.33)	ND (0.40) ND (0.24)	ND (0.40) ND (0.24)	ND (0.54) ND (0.51)	ND (0.54) ND (0.51)	ND (0.54) ND (0.51)	ND (0.65) ND (0.39)	ND (0.36) ND (0.33)	ND (0.36) ND (0.33)	ND (0.40) ND (0.24)	ND (0.40) ND (0.24)	ND (0.54) ND (0.51)	ND (0.54) ND (0.51)	ND (0.54) ND (0.51)	ND (0.65) ND (0.39)	ND (0.36) ND (0.33)	ND (0.36) ND (0.33)	ND (0.40) ND (0.24)	ND (0.40) ND (0.24)	ND (0.54) ND (0.51)	ND (0.54) ND (0.51)	ND (0.54) ND (0.51)
cis-1,3-Dichloropropene	ug/l	-	ND (0.21)	ND (0.33)	ND (0.19)	ND (0.25)	ND (0.25)	ND (0.47)	ND (0.47)	ND (0.47)	ND (0.21)	ND (0.19)	ND (0.19)	ND (0.24)	ND (0.24)	ND (0.47)	ND (0.47)	ND (0.47)	ND (0.21)	ND (0.33)	ND (0.19)	ND (0.25)	ND (0.24)	ND (0.47)	ND (0.31)	ND (0.47)
trans-1,3-Dichloropropene	ug/l	-	ND (0.19)	ND (0.26)	ND (0.26)	ND (0.22)	ND (0.22)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.19)	ND (0.26)	ND (0.26)	ND (0.22)	ND (0.22)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.19)	ND (0.26)	ND (0.26)	ND (0.22)	ND (0.22)	ND (0.43)	ND (0.43)	ND (0.43)
1,4-Dioxane	ug/l	-	ND (41)	ND (32)	ND (32) ND (0.20)	ND (52)	ND (52)	ND (69) ND (0.60)	ND (69)	ND (69)	ND (41)	ND (32)	ND (32)	ND (52)	ND (52)	ND (69)	ND (69) ND (0.60)	ND (69)	ND (41)	ND (32)	ND (32)	ND (52)	ND (52)	ND (69)	ND (69)	ND (69)
Ethylbenzene Freon 113	ug/l ug/l	5 5	ND (0.27) ND (0.52)	ND (0.20) ND (1.2)	ND (0.20) ND (1.2)	ND (0.22) ND (1.2)	ND (0.22) ND (1.2)	ND (0.60) ND (1.9)	ND (0.60) ND (1.9)	ND (0.60) ND (1.9)	ND (0.27) ND (0.52)	ND (0.20) ND (1.2)	ND (0.20) ND (1.2)	ND (0.22) ND (1.2)	ND (0.22) ND (1.2)	ND (0.60) ND (1.9)	ND (0.60) ND (1.9)	ND (0.60) ND (1.9)	ND (0.27) ND (0.52)	ND (0.20) ND (1.2)	ND (0.20) ND (1.2)	ND (0.22) ND (1.2)	ND (0.22) ND (1.2)	ND (0.60) ND (1.9)	ND (0.60) ND (1.9)	ND (0.60) ND (1.9)
2-Hexanone	ug/l	-	ND (1.7)	ND (1.5)	ND (1.5)	ND (3.3)	ND (3.3)	ND (2.0)	ND (2.0)	ND (2.0)	ND (1.7)	ND (1.5)	ND (1.5)	ND (3.3)	ND (3.3)	ND (2.0)	ND (2.0)	ND (2.0)	ND (1.7)	ND (1.5)	ND (1.5)	ND (3.3)	ND (3.3)	ND (2.0)	ND (2.0)	ND (2.0)
Isopropylbenzene	ug/l	5	ND (0.23)	ND (0.16)	ND (0.16)	ND (0.25)	ND (0.25)	ND (0.65)	ND (0.65)	ND (0.65)	ND (0.23)	ND (0.16)	ND (0.16)	ND (0.25)	ND (0.25)	ND (0.65)	ND (0.65)	ND (0.65)	ND (0.23)	ND (0.16)	ND (0.16)	ND (0.25)	ND (0.25)	ND (0.65)	ND (0.65)	ND (0.65)
Methyl Acetate Methylcyclohexane	ug/l ug/l	-	ND (1.9) ND (0.22)	ND (1.5) ND (0.78)	ND (1.5) ND (0.78)	ND (3.1) ND (1.8)	ND (3.1) ND (1.8)	ND (0.80) ND (0.60)	ND (0.80) ND (0.60)	ND (0.80) ND (0.60)	ND (1.9) 0.31 J	ND (1.5) ND (0.78)	ND (1.5) ND (0.78)	ND (3.1) ND (1.8)	ND (3.1) ND (1.8)	ND (0.80) ND (0.60)	ND (0.80) ND (0.60)	ND (0.80) ND (0.60)	ND (1.9) ND (0.22)	ND (1.5) ND (0.78)	ND (1.5) ND (0.78)	ND (3.1) ND (1.8)	ND (3.1) ND (1.8)	ND (0.80) ND (0.60)	ND (0.80) ND (0.60)	ND (0.80) ND (0.60)
Methyl Tert Butyl Ether	ug/l	10	ND (0.24)	ND (0.34)	ND (0.34)	ND (0.25)	ND (0.25)	ND (0.51)	ND (0.51)	ND (0.51)	0.24 J	ND (0.34)	ND (0.34)	ND (0.25)	ND (0.25)	ND (0.51)	ND (0.51)	ND (0.51)	ND (0.24)	ND (0.34)	ND (0.34)	ND (0.25)	ND (0.25)	ND (0.51)	ND (0.51)	ND (0.51)
4-Methyl-2-pentanone(MIBK)	ug/l	-	ND (1.0)	ND (1.2)	ND (1.2)	ND (3.0)	ND (3.0)	ND (1.9)	ND (1.9)	ND (1.9)	ND (1.0)	ND (1.2)	ND (1.2)	ND (3.0)	ND (3.0)	ND (1.9)	ND (1.9)	ND (1.9)	ND (1.0)	ND (1.2)	ND (1.2)	ND (3.0)	ND (3.0)	ND (1.9)	ND (1.9)	ND (1.9)
Methylene chloride Styrene	ug/l	5	ND (0.73) ND (0.27)	ND (1.0) ND (0.27)	ND (1.0) ND (0.27)	ND (1.0) ND (0.24)	ND (1.0) ND (0.24)	ND (1.0) ND (0.70)	ND (1.0) ND (0.70)	ND (1.0) ND (0.70)	ND (0.73) ND (0.27)	ND (1.0) ND (0.27)	ND (1.0) ND (0.27)	ND (1.0) ND (0.24)	ND (1.0) ND (0.24)	ND (1.0) ND (0.70)	ND (1.0) ND (0.70)	ND (1.0) ND (0.70)	ND (0.73) ND (0.27)	ND (1.0) ND (0.27)	ND (1.0) ND (0.27)	ND (1.0) ND (0.24)	ND (1.0) ND (0.24)	ND (1.0) ND (0.70)	ND (1.0) ND (0.70)	ND (1.0) ND (0.70)
1,1,2,2-Tetrachloroethane	ug/l ug/l	5	ND (0.21)	ND (0.27)	ND (0.39)	ND (0.24)	ND (0.24)	ND (0.65)	ND (0.70)	ND (0.65)	ND (0.21)	ND (0.27)	ND (0.27) ND (0.39)	ND (0.24) ND (0.17)	ND (0.24) ND (0.17)	ND (0.65)	ND (0.65)	ND (0.65)	ND (0.21)	ND (0.27)	ND (0.39)	ND (0.17)	ND (0.24)	ND (0.70) ND (0.65)	ND (0.70) ND (0.65)	ND (0.65)
Tetrachloroethene	ug/l	5	11.9	11.8	9.7	2.4	7.4	7.3	7.3	5.3	12.5	11.9	11.6	34.6	28.7	72	46.5	20.1	12.1	11.3	6.6	32	21.5	39.3	36.6	12.7
Toluene	ug/l	5	ND (0.16)	ND (0.23)	ND (0.23)	ND (0.25)	ND (0.25)	ND (0.53)	ND (0.53)	ND (0.53)	ND (0.16)	ND (0.23)	ND (0.23)	ND (0.25)	ND (0.25)	ND (0.53)	ND (0.53)	ND (0.53)	ND (0.16)	ND (0.23)	ND (0.23)	ND (0.25)	ND (0.25)	ND (0.53)	ND (0.53)	ND (0.53)
1,2,3-Trichlorobenzene	ug/l	5	ND (0.23)	ND (0.20)	ND (0.50) ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50) a ND (0.50) a	ND (0.50)	ND (0.50) ND (0.50)	ND (0.23)	ND (0.20)	ND (0.50)	ND (0.50)	ND (0.50) ND (0.50)	ND (0.50) a	ND (0.50)	ND (0.50) ND (0.50)	ND (0.23)	ND (0.20)	ND (0.50)	ND (0.50)	ND (0.50) ND (0.50)	ND (0.50) ^a	ND (0.50)	ND (0.50)
1,2,4-Trichlorobenzene 1,1,1-Trichloroethane	ug/l ug/l	о 5	ND (0.21) ND (0.25)	ND (0.25) ND (0.22)	ND (0.50) ND (0.22)	ND (0.50) ND (0.25)	ND (0.50) ND (0.25)	ND (0.50) a ND (0.54)	ND (0.50) ND (0.54)	ND (0.50) ND (0.54)	ND (0.21) ND (0.25)	ND (0.25) ND (0.22)	ND (0.50) ND (0.22)	ND (0.50) ND (0.25)	ND (0.50) ND (0.25)	ND (0.50) a ND (0.54)	ND (0.50) ND (0.54)	ND (0.50) ND (0.54)	ND (0.21) ND (0.25)	ND (0.25) ND (0.22)	ND (0.50) ND (0.22)	ND (0.50) ND (0.25)	ND (0.50) ND (0.25)	ND (0.50) ^a ND (0.54)	ND (0.50) ND (0.54)	ND (0.50) ND (0.54)
1,1,2-Trichloroethane	ug/l	1	ND (0.21)	ND (0.22)	ND (0.28)	ND (0.24)	ND (0.24)	ND (0.53)	ND (0.53)	ND (0.53)	ND (0.21)	ND (0.28)	ND (0.28)	ND (0.24)	ND (0.24)	ND (0.53)	ND (0.53)	ND (0.53)	ND (0.21)	ND (0.28)	ND (0.28)	ND (0.24)	ND (0.24)	ND (0.53)	ND (0.53)	ND (0.53)
Trichloroethene	ug/l	5	0.49 J	0.40 J	0.46 J	ND (0.27)	0.28 J	ND (0.53)	ND (0.53)	ND (0.53)	7.8	8.8	7.2	2	1.9	4.7	3.2	1.4	3.3	2.6	1.4	2.9	1.7	3.0	2.2	0.85 J
Trichlorofluoromethane	ug/l	5	ND (0.43) ND (0.15)	ND (0.58)	ND (0.58) ND (0.33)	ND (0.60) ND (0.62) ^a	ND (0.60) ND (0.62)	ND (0.84) ND (0.79)	ND (0.84) ND (0.79)	ND (0.84) ND (0.79)	ND (0.43) ND (0.15)	ND (0.58)	ND (0.58) ND (0.33)	ND (0.60) ND (0.62) ^a	ND (0.60) ND (0.62)	ND (0.84) ND (0.79)	ND (0.84) ND (0.79)	ND (0.84) ND (0.79)	ND (0.43) ND (0.15)	ND (0.58)	ND (0.58) ND (0.33)	ND (0.60) ND (0.62) ^a	ND (0.60) ND (0.62)	ND (0.84)	ND (0.84)	ND (0.84)
Vinyl chloride m,p-Xylene	ug/l ug/l	-	ND (0.15) ND (0.38)	ND (0.33) ND (0.42)	ND (0.33) ND (0.42)	ND (0.62) ND (0.43)	ND (0.62) ND (0.43)	ND (0.79) ND (0.78)	ND (0.79) ND (0.78)	ND (0.79) ND (0.78)	ND (0.15) ND (0.38)	ND (0.33) ND (0.42)	ND (0.33) ND (0.42)	ND (0.62) ND (0.43)	ND (0.62) ND (0.43)	ND (0.79) ND (0.78)	ND (0.79) ND (0.78)	ND (0.79) ND (0.78)	ND (0.15) ND (0.38)	ND (0.33) ND (0.42)	ND (0.33) ND (0.42)	ND (0.62) ND (0.43)		ND (0.79) ND (0.78)	ND (0.79) ND (0.78)	ND (0.79) ND (0.78)
o-Xylene	ug/l	5	ND (0.17)	ND (0.21)	ND (0.21)	ND (0.22)	ND (0.22)	ND (0.59)	ND (0.59)	ND (0.59)	ND (0.17)	ND (0.21)	ND (0.21)	ND (0.22)	ND (0.22)	ND (0.59)	ND (0.59)	ND (0.59)	ND (0.17)	ND (0.21)	ND (0.21)	ND (0.22)	ND (0.22)	ND (0.59)	ND (0.59)	ND (0.59)
Xylene (total)	ug/l	5	ND (0.17)	ND (0.21)	ND (0.21)	ND (0.22)	ND (0.22)	ND (0.59)	ND (0.59)	ND (0.59)	ND (0.17)	ND (0.21)	ND (0.21)	ND (0.22)	ND (0.22)	ND (0.59)	ND (0.59)	ND (0.59)	ND (0.17)	ND (0.21)	ND (0.21)	ND (0.22)	ND (0.22)	ND (0.59)	ND (0.59)	ND (0.59)
General Chemistry Dissolved Organic Carbon*	ma/l		1	<10	-	1.5	1.2	4.8	<1.0	1.5		<10	-	1.4	1.4	1.1	<10	1.6		< 10	-	1.4	<10	12	1 1	<10
Iron, Ferrous	mg/l mg/l	-		<1.0 <0.20	<0.20 ^a	1.0	<0.20	4.0 <0.20 b	<0.20 ^a	<0.20 b		<0.20	- <0.20 ^a	1.4	<0.20	<0.20 b	<0.20 ^a	<0.20 ^b		<1.0 <0.20	<0.20 ^a	1.4	<0.20	<0.20 ^b	<0.20 a	<0.20 b
Nitrogen, Nitrate	mg/l	10	l .	12.2	10.3 ^b	15.8 ^b	10.20	9.2 c	7.8 ^b	4.6 c	-	6.7	8.1 ^b	10 ^b	4.9	9.2 c	10.8 ^b	3.8 c	-	9.4	23.2 ^b	6.3 ^b	5.7	10.6 °	13.0 b	<0.11 c
Nitrogen, Nitrate + Nitrite	mg/l	10	-	12.2	10.3	15.8	10.6	9.2	7.8	4.6	-	6.7	8.1	10	4.9	9.2	10.8	3.8	-	9.4	23.2	6.3	5.7	10.6	13	<0.10
Nitrogen, Nitrite	mg/l	1	-	< 0.010	<0.010	ND (0.010)	<0.010	< 0.010	< 0.010	0.014	-	<0.010	< 0.010	0.017	< 0.010	< 0.010	< 0.010	< 0.010	-	<0.010	<0.010	ND (0.010)	< 0.010	< 0.010	< 0.010	<0.010
Sulfate Total Organic Carbon	mg/l mg/l	250		95.7 <1.0	88.3 1.2	62.7	114 1.2	98.2 1.4	115 <1.0	46.3 1.4	-	94.4 1	96.6 1	74.7	40.9 1.6	78.4 1.2	94.7 <1.0	123 1.9	-	75 <1.0	108 1.3	39.5	40.8 <1.0	102 1.2	72.7 <1.0	<2.0 <1.0
	iiig/i	-	-	1 1.0		I			1.0		-		•				1.0		-	×1.0		1				

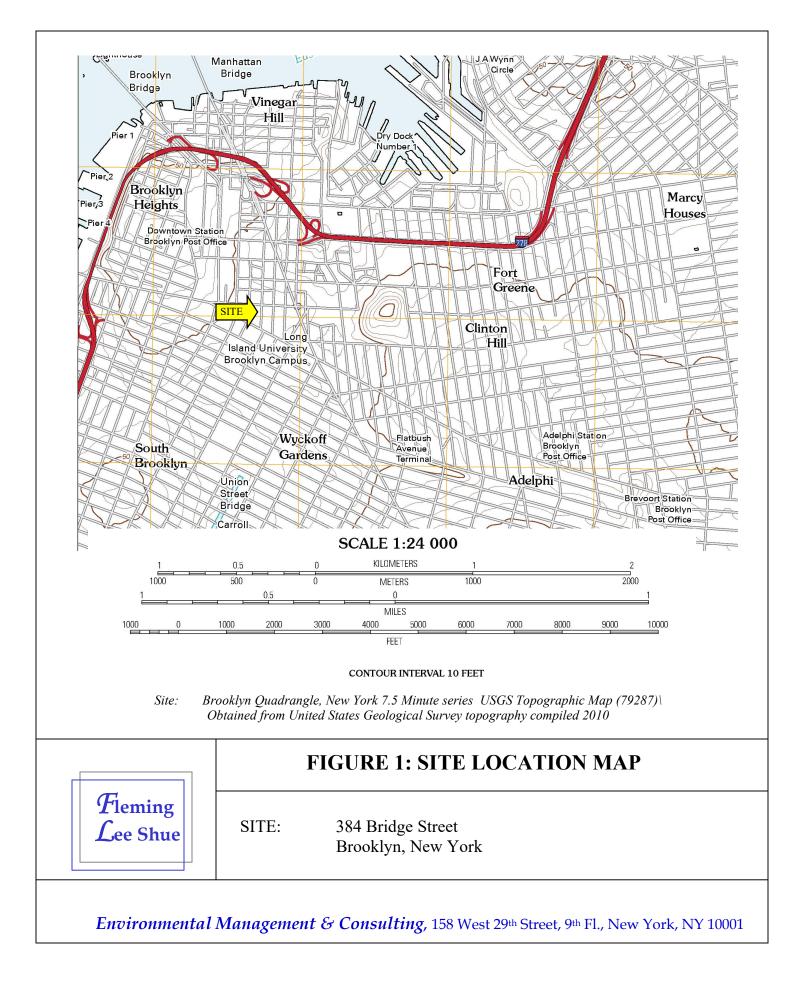
Notes:

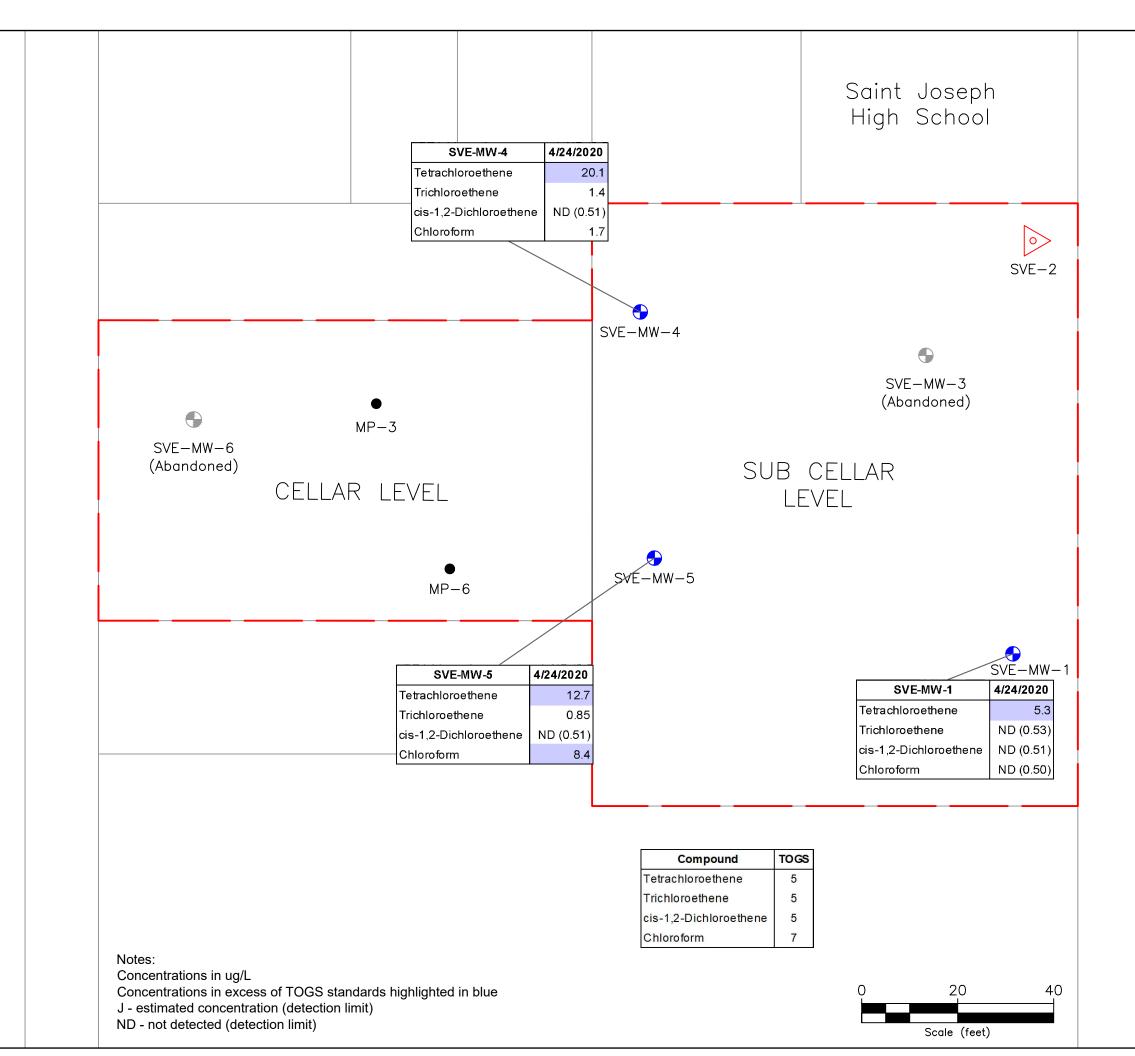
ND - not detected

J - estimated concentration

^a Associated CCV outside of control limits high, sample was ND

^b Field analysis required. Received out of hold time and analyzed by request.


^c Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)


* Groundwater filtered

Exceedances of a standard are highlighted in yellow and bolded
Detection of a compound is highlighted in blue

Figures

Environmental Management & Consulting

158 West 29th Street, 9th Fl. New York, NY 10001

388 Bridge Street Brooklyn, NY BCP Site # C224134

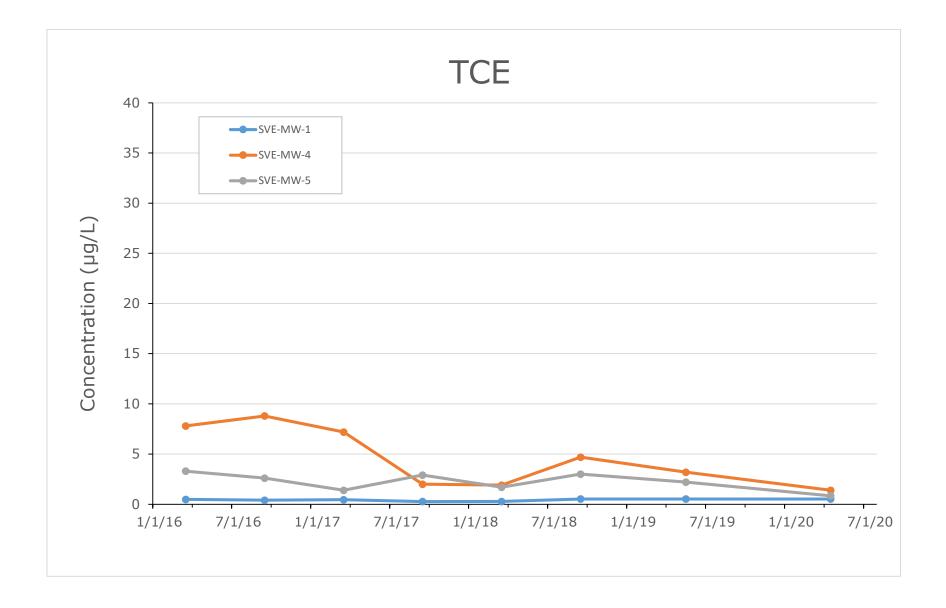
Figure 2

Site Plan and Chlorinated VOCs in Groundwater

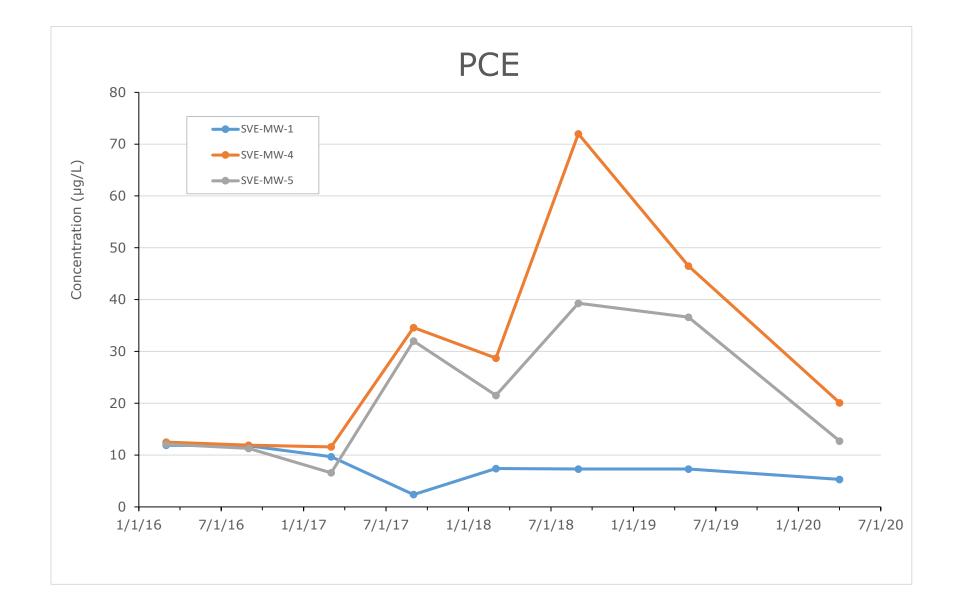
May 2020

Project Number 10149-001

LEGEND


- --- Site Boundary
- Lot Lines
- Active SVE Well
- Groundwater Monitoring Well
- Vacuum Monitoring Point

Bridge St


Graphs

Graphs – Contaminant Concentration Trends Annual Groundwater Report 388 Bridge Street, Brooklyn, NY

Graphs – Contaminant Concentration Trends Annual Groundwater Report 388 Bridge Street, Brooklyn, NY

Appendix A

Monitoring Well Purge Logs

Well Purge Log Project: Stahl Real Estate Project Location: 388 Bridge St, Brooklyn, NY

Monitoring Well:	SVE-MW-1	Well Volume :	0.96	gal	Initial Depth to Water:	17.77	ft-btc
Date:	4/24/2020	Total Gallons Purged:	2.33	gal	Depth to Product:		ft-btc
Time Pump On:	9:35	Average Purge Rate:	212.7	mL/min	Total Depth:	19.24	ft-btc
Time of Sample Collection:	10:15	Purge Method:	Peristaltic	-	Water Column:	1.47	_ft
Time Pump Off:	10:27	PID Reading:	0.0	ppm	Well Diameter	4	in

Time	Elapsed Time (min.)	DTW (ft-btc)	Well Volume Purged (gal)	Total Volume Purged (gal)	Temp (°C)	рН (s.u.)	ORP (mV)	Cond (mS/cm)	Turbidity (NTUs)	D.O. (mg/L)	TDS (g/l)	Sal (%)	Odor/Color
9:35	0				21.5	5.41	333	0.000	603	10.44	0.000	0.00	-
9:40	5				19.41	6.67	196	0.818	1000	6.70	0.529	0.04	No Odor / Turbid brown silt
9:45	10				18.15	6.94	225	0.812	0.0	4.10	0.519	0.04	No Odor / Turbid brown silt
9:50	15				18.09	6.95	195	0.797	0.0	3.97	0.510	0.04	No Odor / Slightly turbid
9:55	20				18.07	6.95	194	0.802	0.0	4.05	0.513	0.04	No Odor / No Color
10:00	25				18.06	6.95	194	0.809	0.0	3.81	0.518	0.04	No Odor / No Color
10:05	30				18.06	6.95	194	0.813	0.0	3.96	0.521	0.04	No Odor / No Color
10:10	35				18.05	6.94	192	,818	0.0	4.01	0.524	0.04	No Odor / No Color
		Allowable Fluct	uations:		3%	± 0.1	± 10 mV	3%	10% if > 5 NTU	10% if >0.5 mg/L			

Notes:

- ppm = parts per million min = minutes DTW = depth to water ft-btc = feet below top of casing gal = gallons T = temperature 'C= degrees celsius
- s.u.=standard units ORP=oxidation reduction potential mV=millivolts Cond=conductivity mS/cm= milliSiemens per centimeter NTUs=Nephelemetric Turbidity Units mg/L = milligrams per liter

mL/min = milliliters per minute TDS = Total Dissolved Solids g/L = grams per liter Sal= Salinity wc = water column

 Well Volume (gal) = 5.8752 * D²* WC, where D = well diameter (feet)

 Well diameter
 1"
 2"
 4"

Well diameter	1"	2"	4"
Multiply wc by	0.041	0.163	0.653

Well Purge Log Project: Stahl Real Estate Project Location: 388 Bridge St, Brooklyn, NY

Monitoring Well:	SVE-MW-4	Well Volume :	2.60	gal	Initial Depth to Water:	17.89	ft-btc
Date:	4/24/2020	Total Gallons Purged:	2.0	gal	Depth to Product:		ft-btc
Time Pump On:	11:00	Average Purge Rate:	200.22	mL/min	Total Depth:	21.87	ft-btc
Time of Sample Collection:	11:40	Purge Method:	Peristaltic	-	Water Column:	3.98	ft
Time Pump Off:	11:49	PID Reading:	0.0	ppm	Well Diameter	4	in

Time	Elapsed Time (min.)	DTW (ft-btc)	Well Volume Purged (gal)	Total Volume Purged (gal)	Temp (°C)	рН (s.u.)	ORP (mV)	Cond (mS/cm)	Turbidity (NTUs)	D.O. (mg/L)	TDS (g/l)	Sal (%)	Odor/Color
11:00	0				17.26	6.69	197	0.00	264	11.69	0.000	0.00	-
11:05	5				17.63	7.6	144	1.02	18.0	3.54	0.652	0.05	No Odor / No Color
11:10	10				17.8	7.58	141	1.02	21.4	3.07	0.655	0.05	No Odor / No Color
11:15	15				17.93	7.58	139	1.02	18.8	2.84	0.656	0.05	No Odor / No Color
11:20	20				17.88	7.57	139	1.03	17.9	2.69	0.657	0.05	No Odor / No Color
11:25	25				17.97	7.56	139	1.02	18.2	2.57	0.656	0.05	No Odor / No Color
11:30	30				17.94	7.58	138	1.03	17.0	2.38	0.657	0.05	No Odor / No Color
11:35	35				17.88	7.55	140	1.03	18.2	2.37	0.657	0.05	No Odor / No Color
		Allowable Fluct	uations:		3%	± 0.1	± 10 mV	3%	10% if > 5 NTU	10% if >0.5 mg/L			

Notes:

- $\begin{array}{l} ppm = parts per million\\ min = minutes\\ DTW = depth to water\\ ft-btc = feet below top of casing\\ gal = gallons\\ T = temperature\\ `C- degrees celsius\end{array}$
- s.u.=standard units ORP=oxidation reduction potential mV=millivolts Cond=conductivity mS/cm= milliSiemens per centimeter NTUs=Nephelemetric Turbidity Units mg/L = milligrams per liter

mL/min = milliliters per minute TDS = Total Dissolved Solids g/L = grams per liter Sal= Salinity wc = water column

10% if > 5 NTU	10% if >0.5 mg/L
3 rounds if < 5 NTU	3 rounds if < 0.5mg/L

 Well Volume (gal) = 5.8752 * D²* WC, where D = well diameter (feet)

 Well diameter
 1"
 2"
 4"

Well diameter	1"	2"	4"
Multiply wc by	0.041	0.163	0.653

Well Purge Log Project: Stahl Real Estate Project Location: 388 Bridge St, Brooklyn, NY

Monitoring Well:	SVE-MW-5	Well Volume :	1.76	gal	Initial Depth to Water:	17.74	ft-btc
Date:	4/24/2020	Total Gallons Purged:	2.3	gal	Depth to Product:		ft-btc
Time Pump On:	12:15	Average Purge Rate:	215.14	mL/min	Total Depth:	20.44	ft-btc
Time of Sample Collection:	12:55	Purge Method:	Peristaltic	-	Water Column:	2.7	_ft
Time Pump Off:	13:05	PID Reading:	0.0	ppm	Well Diameter	4	_in

Time	Elapsed Time (min.)	DTW (ft-btc)	Well Volume Purged (gal)	Total Volume Purged (gal)	Temp (°C)	рН (s.u.)	ORP (mV)	Cond (mS/cm)	Turbidity (NTUs)	D.O. (mg/L)	TDS (g/l)	Sal (%)	Odor/Color
12:15	0				15.85	6.87	187	0.000	263	9.38	0.000	0.0	-
12:20	5				17.15	7.72	151	0.903	10.9	5.23	0.578	0.04	No Odor / No Color
12:25	10				17.50	7.72	151	0.906	8.3	4.70	0.58	0.04	No Odor / No Color
12:30	15				17.57	7.71	152	0.908	8.0	4.43	0.581	0.04	No Odor / No Color
12:35	20				17.59	7.71	153	0.909	7.5	4.10	0.581	0.04	No Odor / No Color
12:40	25				17.60	7.71	153	0.909	7.4	4.13	0.582	0.04	No Odor / No Color
12:45	30				17.61	7.72	154	0.910	7.4	4.14	0.582	0.04	No Odor / No Color
12:50	35				17.64	7.71	154	0.910	7.6	4.00	0.582	0.04	No Odor / No Color
		Allowable Fluct	uations:		3%	± 0.1	± 10 mV	3%	10% if > 5 NTU	10% if >0.5 mg/L			

Notes:

- $\begin{array}{l} ppm = parts per million\\ min = minutes\\ DTW = depth to water\\ ft-btc = feet below top of casing\\ gal = gallons\\ T = temperature\\ `C- degrees celsius\end{array}$
- s.u.=standard units ORP=oxidation reduction potential mV=millivolts Cond=conductivity mS/cm= milliSiemens per centimeter NTUs=Nephelemetric Turbidity Units mg/L = milligrams per liter

mL/min = milliliters per minute TDS = Total Dissolved Solids g/L = grams per liter Sal= Salinity wc = water column

10% if > 5 NTU	10% if >0.5 mg/L
3 rounds if < 5 NTU	3 rounds if < 0.5mg/L

 Well Volume (gal) = 5.8752 * D²* WC, where D = well diameter (feet)

 Well diameter
 1"
 2"
 4"

Well diameter	1"	2"	4"
Multiply wc by	0.041	0.163	0.653

Appendix B

Laboratory Analytical Data Report

Dayton, NJ

The results set forth herein are provided by SGS North America Inc.

Technical Report for

Fleming-Lee Shue, Inc. 388 Bridge Street, Brooklyn, NY

10149-001-1

SGS Job Number: JD6496

Sampling Date: 04/24/20

Report to:

Fleming-Lee Shue, Inc.

jordan@flemingleeshue.com

ATTN: Jordan Arey

Total number of pages in report: 30

SQ1

Laura Degenhardt General Manager

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Tammy McCloskey 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (ANAB L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

1 of 30

05/11/20

Automated Report

e-Hardcopy 2.0

Table of Contents

-

N

ယ

4

(J)

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Summary of Hits	7
Section 4: Sample Results	9
4.1: JD6496-1: SVE-MW-1	10
4.2: JD6496-1F: SVE-MW-1	13
4.3: JD6496-2: SVE-MW-4	14
4.4: JD6496-2F: SVE-MW-4	17
4.5: JD6496-3: SVE-MW-5	18
4.6: JD6496-3F: SVE-MW-5	21
4.7: JD6496-4: FIELD BLANK	22
4.8: JD6496-4F: FIELD BLANK	25
4.9: JD6496-5: TRIP BLANK	26
Section 5: Misc. Forms	28
5.1: Chain of Custody	29

SGS

Sample Summary

Job No:

JD6496

Fleming-Lee Shue, Inc.

388 Bridge Street, Brooklyn, NY Project No: 10149-001-1

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
This report co Organics ND		lts reported as = Not detecte			cted. The following app L	olies:
JD6496-1	04/24/20	10:15 JA	04/25/20	AQ	Ground Water	SVE-MW-1
JD6496-1F	04/24/20	10:15 JA	04/25/20	AQ	Groundwater Filtered	SVE-MW-1
JD6496-2	04/24/20	11:40 JA	04/25/20	AQ	Ground Water	SVE-MW-4
JD6496-2F	04/24/20	11:40 JA	04/25/20	AQ	Groundwater Filtered	SVE-MW-4
JD6496-3	04/24/20	12:55 JA	04/25/20	AQ	Ground Water	SVE-MW-5
JD6496-3F	04/24/20	12:55 JA	04/25/20	AQ	Groundwater Filtered	SVE-MW-5
JD6496-4	04/24/20	14:00 JA	04/25/20	AQ	Field Blank Water	FIELD BLANK
JD6496-4F	04/24/20	14:00 JA	04/25/20	AQ	Field Blank Filtered	FIELD BLANK
JD6496-5	04/24/20	14:00 JA	04/25/20	AQ	Trip Blank Water	TRIP BLANK

CASE NARRATIVE / CONFORMANCE SUMMARY

Client:	Fleming-Lee Shue, Inc.	Job No	JD6496
Site:	388 Bridge Street, Brooklyn, NY	Report Date	5/11/2020 12:41:35 P

On 04/25/2020, 5 Sample(s), 1 Trip Blank(s) and 2 Field Blank(s) were received at SGS North America Inc. at a maximum corrected temperature of 2.8 C. Samples were intact and chemically preserved, unless noted below. A SGS North America Inc. Job Number of JD6496 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Compounds qualified as out of range in the continuing calibration summary report are acceptable as per method requirements when there is a high bias but the sample result is non-detect.

MS Volatiles By Method SW846 8260C

Matrix: AQ	Batch ID: VL9513

- All samples were analyzed within the recommended method holding time.
- Sample(s) JD6487-2MS, JD6487-5DUP were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- RPD(s) for Duplicate for Cyclohexane, Ethylbenzene, m,p-Xylene, Xylene (total) are outside control limits for sample JD6487-5DUP. Outside control limits due to vial differences.
- JD6496-5 for Bromomethane: Associated CCV outside of control limits low.
- JD6496-1 for Bromomethane: Associated CCV outside of control limits low.
- JD6496-4 for Bromomethane: Associated CCV outside of control limits low.
- JD6496-3 for Bromomethane: Associated CCV outside of control limits low.
- JD6496-2 for Bromomethane: Associated CCV outside of control limits low.

General Chemistry By Method EPA 300/SW846 9056A

	Matrix: AQ	Batch ID:	GP27940
	All samples were prepared within t	he recommended metho	ad halding time
_	An samples were prepared within t	ne recommended metho	où notaing time.

- All method blanks for this batch meet method specific criteria.
- Sample(s) JD6425-5DUP, JD6425-5MS were used as the QC samples for Sulfate.

General Chemistry By Method EPA 353.2/LACHAT

Matrix: AQ	Batch ID: GP28062	
- 411 1 1 141		

All samples were prepared within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) JD6496-1DUP, JD6496-1MS were used as the QC samples for Nitrogen, Nitrate + Nitrite.

General Chemistry By Method EPA353.2/SM4500NO2B

Matrix: AQ Batch ID: R185268	
------------------------------	--

The data for EPA353.2/SM4500NO2B meets quality control requirements.

JD6496-2 for Nitrogen, Nitrate: Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Matrix: AQ Batch ID: R185269

The data for EPA353.2/SM4500NO2B meets quality control requirements.

JD6496-3 for Nitrogen, Nitrate: Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Matrix: AQ Batch ID: R185270

The data for EPA353.2/SM4500NO2B meets quality control requirements.

JD6496-4 for Nitrogen, Nitrate: Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

The data for EPA353.2/SM4500NO2B meets quality control requirements.

JD6496-1 for Nitrogen, Nitrate: Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

General Chemistry By Method SM3500FE B-11

	Matrix: AQ	Batch ID:	GN7541
-	All samples were analyzed within the recommended method holding time.		

All method blanks for this batch meet method specific criteria.

Sample(s) JD6496-1MS, JD6496-1MSD were used as the QC samples for Iron, Ferrous.

JD6496-2 for Iron, Ferrous: Field analysis required. Received out of hold time and analyzed by request.

JD6496-3 for Iron, Ferrous: Field analysis required. Received out of hold time and analyzed by request.

JD6496-4 for Iron, Ferrous: Field analysis required. Received out of hold time and analyzed by request.

JD6496-1 for Iron, Ferrous: Field analysis required. Received out of hold time and analyzed by request.

General Chemistry By Method SM4500NO2 B-11

_			
	Matrix: AQ	Batch ID:	GN7539
-	All samples were analyzed withi	n the recommended metho	od holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) JD6463-3MS, JD6463-3MSD were used as the QC samples for Nitrogen, Nitrite.

General Chemistry By Method SM5310 B-11

	Matrix: AQ	Batch ID:	GP28038
-	All samples were prepared within	the recommended metho	d holding time.
-	All method blanks for this batch n	eet method specific crite	eria.

Sample(s) JD6443-1FMS, JD6443-1FMSD were used as the QC samples for Dissolved Organic Carbon.

Matrix: AQ	Batch ID:	GP28039
All samples were prepared within	n the recommended metho	d holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) JD6496-2MS, JD6496-2MSD were used as the QC samples for Total Organic Carbon.

N

SGS North America Inc. certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

SGS North America Inc. is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by SGS North America Inc indicated via signature on the report cover

Page 3 of 3

N

Summary of Hits

Job Number:	JD6496
Account:	Fleming-Lee Shue, Inc.
Project:	388 Bridge Street, Brooklyn, NY
Collected:	04/24/20

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
JD6496-1	SVE-MW-1					
Tetrachloroethene Nitrogen, Nitrate ^a Nitrogen, Nitrate + Nitrite Nitrogen, Nitrite Sulfate Total Organic Carbon		5.3 4.6 4.6 0.014 46.3 1.4	1.0 0.11 0.10 0.010 2.0 1.0	0.90	ug/l mg/l mg/l mg/l mg/l	SW846 8260C EPA353.2/SM4500NO2B EPA 353.2/LACHAT SM4500NO2 B-11 EPA 300/SW846 9056A SM5310 B-11
JD6496-1F	SVE-MW-1					
Dissolved Organ	ic Carbon	1.5	1.0		mg/l	SM5310 B-11
JD6496-2	SVE-MW-4					
Chloroform Tetrachloroethen Trichloroethene Nitrogen, Nitrato Nitrogen, Nitrato Sulfate Total Organic Ca JD6496-2F	e ^a e + Nitrite	1.7 20.1 1.4 6.6 6.6 151 2.5	$ \begin{array}{c} 1.0\\ 1.0\\ 0.31\\ 0.30\\ 2.0\\ 1.0\\ \end{array} $	0.50 0.90 0.53	ug/l ug/l mg/l mg/l mg/l mg/l	SW846 8260C SW846 8260C SW846 8260C EPA353.2/SM4500NO2B EPA 353.2/LACHAT EPA 300/SW846 9056A SM5310 B-11
Dissolved Organ	ic Carbon	2.5	1.0		mg/l	SM5310 B-11
JD6496-3	SVE-MW-5				U	
Chloroform Tetrachloroethen Trichloroethene Nitrogen, Nitrato Nitrogen, Nitrato Sulfate Total Organic Ca	e ^a e + Nitrite	8.4 12.7 0.85 J 3.8 3.8 123 1.9	1.0 1.0 0.11 0.10 2.0 1.0	0.50 0.90 0.53	ug/l ug/l ug/l mg/l mg/l mg/l	SW846 8260C SW846 8260C SW846 8260C EPA353.2/SM4500NO2B EPA 353.2/LACHAT EPA 300/SW846 9056A SM5310 B-11
JD6496-3F	SVE-MW-5					
Dissolved Organ	ic Carbon	1.6	1.0		mg/l	SM5310 B-11
JD6496-4	FIELD BLANK					

No hits reported in this sample.

ω

SGS

Summary of Hits

Job Number:	JD6496
Account:	Fleming-Lee Shue, Inc.
Project:	388 Bridge Street, Brooklyn, NY
Collected:	04/24/20

Lab Sample ID	Client Sample ID	Result/				
Analyte		Qual	RL	MDL	Units	Method

JD6496-4F FIELD BLANK

No hits reported in this sample.

JD6496-5 TRIP BLANK

No hits reported in this sample.

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

ω

Dayton, NJ

Section 4

Sample Results

Report of Analysis

4

Client Sa Lab Sam Matrix: Method: Project:	ple ID: JD64 AQ - SW8	Ground Wa 46 8260C	ater t, Brooklyn, NY		Da	nte Sampled: 04 nte Received: 04 rcent Solids: n/	
Run #1 Run #2	File ID L321715.D	DF 1	Analyzed 04/27/20 15:22	By ED	Prep Date n/a	Prep Batch n/a	Analytical Batch VL9513
Run #1 Run #2	Purge Volun 5.0 ml	ıe					

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	6.0	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.58	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane ^a	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	6.9	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.95	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	1.2	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	1.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
123-91-1	1,4-Dioxane	ND	130	69	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	1.9	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Page 1 of 2

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Lab Sample ID:JD6496-1Matrix:AQ - Ground	_ ~ ~	
	Date Sampled:	04/24/20
	Water Date Received:	04/25/20
Method: SW846 8260	C Percent Solids:	n/a
Project: 388 Bridge S	treet, Brooklyn, NY	

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
591-78-6	2-Hexanone	ND	5.0	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.70	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	5.3	1.0	0.90	ug/l	
108-88-3	Toluene	ND	1.0	0.53	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.84	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	104%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	98%	81-124%			
2037-26-5	Toluene-D8	100%		80-12	20%	
460-00-4	4-Bromofluorobenzene	97%	80-120%			

(a) Associated CCV outside of control limits low.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

4 4

Page 2 of 2

Client Sample ID:	SVE-MW-1		
Lab Sample ID:	JD6496-1	Date Sampled:	04/24/20
Matrix:	AQ - Ground Water	Date Received:	04/25/20
		Percent Solids:	n/a
Project:	388 Bridge Street, Brooklyn, NY		

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Iron, Ferrous ^a	< 0.20	0.20	mg/l	1	04/25/20 13:20	JOO	SM3500FE B-11
Nitrogen, Nitrate ^b	4.6	0.11	mg/l	1	05/08/20 15:59	KI	EPA353.2/SM4500NO2B
Nitrogen, Nitrate + Nitrite	4.6	0.10	mg/l	1	05/08/20 15:59	KI	EPA 353.2/LACHAT
Nitrogen, Nitrite	0.014	0.010	mg/l	1	04/25/20 11:32	AM	SM4500NO2 B-11
Sulfate	46.3	2.0	mg/l	1	04/29/20 20:11	JW	EPA 300/SW846 9056A
Total Organic Carbon	1.4	1.0	mg/l	1	05/07/20 13:58	CD	SM5310 B-11

(a) Field analysis required. Received out of hold time and analyzed by request.

(b) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

4.1 **4**

Client Sample ID: Lab Sample ID: Matrix:	SVE-MW-1 JD6496-1F AQ - Groundwater Filtered					Date Sampled:04/24/20Date Received:04/25/20Percent Solids:n/a			
Project:	388 Bridg	388 Bridge Street, Brooklyn, NY							
General Chemistry									
Analyte		Result	RL	Units	DF	Analyzed	By	Method	
Dissolved Organic O	Carbon	1.5	1.0	mg/l	1	05/07/20 12:36	CD	SM5310 B-11	

Page 1 of 1

4.2 **4**

Client Sa Lab Sam Matrix: Method: Project:	ple ID: JD6 AQ SW3	MW-4 496-2 - Ground Wa 846 8260C Bridge Stree	ater t, Brooklyn, NY		Da	tte Sampled: 04 nte Received: 04 rcent Solids: n/	
Run #1 Run #2	File ID L321716.D	DF 1	Analyzed 04/27/20 15:49	By ED	Prep Date n/a	Prep Batch n/a	Analytical Batch VL9513
Run #1 Run #2	Purge Volu 5.0 ml	ne					

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	6.0	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.58	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane ^a	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	6.9	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.95	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	1.7	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	1.2	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	1.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
123-91-1	1,4-Dioxane	ND	130	69	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	1.9	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.3 **4**

Page 1 of 2

14 of 30

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	SVE-MW-4		
Lab Sample ID:	JD6496-2	Date Sampled:	04/24/20
Matrix:	AQ - Ground Water	Date Received:	04/25/20
Method:	SW846 8260C	Percent Solids:	n/a
Project:	388 Bridge Street, Brooklyn, NY		

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
591-78-6	2-Hexanone	ND	5.0	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.70	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	20.1	1.0	0.90	ug/l	
108-88-3	Toluene	ND	1.0	0.53	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	1.4	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.84	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	99%		80-1	20%	
17060-07-0	1,2-Dichloroethane-D4	96%		81-1	24%	
2037-26-5	Toluene-D8	102%		80-1	20%	
460-00-4	4-Bromofluorobenzene	97%		80-1	20%	

(a) Associated CCV outside of control limits low.

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

Page 2 of 2

SGS

15 of 30

Client Sample ID:	SVE-MW-4		
Lab Sample ID:	JD6496-2	Date Sampled:	04/24/20
Matrix:	AQ - Ground Water	Date Received:	04/25/20
		Percent Solids:	n/a
Project:	388 Bridge Street, Brooklyn, NY		

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Iron, Ferrous ^a	< 0.20	0.20	mg/l	1	04/25/20 13:20	JOO	SM3500FE B-11
Nitrogen, Nitrate ^b	6.6	0.31	mg/l	1	05/08/20 16:47	KI	EPA353.2/SM4500NO2B
Nitrogen, Nitrate + Nitrite	6.6	0.30	mg/l	3	05/08/20 16:47	KI	EPA 353.2/LACHAT
Nitrogen, Nitrite	< 0.010	0.010	mg/l	1	04/25/20 11:32	AM	SM4500NO2 B-11
Sulfate	151	2.0	mg/l	1	04/29/20 20:35	JW	EPA 300/SW846 9056A
Total Organic Carbon	2.5	1.0	mg/l	1	05/07/20 14:09	CD	SM5310 B-11

(a) Field analysis required. Received out of hold time and analyzed by request.

(b) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

4.3 **4**

Client Sample ID: Lab Sample ID: Matrix:	SVE-MW-4 JD6496-2F AQ - Groundwater Filtered					Date Sampled:04/24/20Date Received:04/25/20Percent Solids:n/a		
Project:	388 Bridge Street, Brooklyn, NY							
General Chemistry								
Analyte		Result	RL	Units	DF	Analyzed	By	Method
Dissolved Organic O	Carbon	2.5	1.0	mg/l	1	05/07/20 12:48	CD	SM5310 B-11

Page 1 of 1

4.4 **4**

Client Sa Lab Sam Matrix: Method: Project:	ple ID: JD6 AQ SW8	SVE-MW-5 JD6496-3 AQ - Ground Water SW846 8260C 388 Bridge Street, Brooklyn, NY			Date Sampled:04/24/20Date Received:04/25/20Percent Solids:n/a			
Run #1 Run #2	File ID L321717.D	DF 1	Analyzed 04/27/20 16:16	By ED	Prep Date n/a	Prep Batch n/a	Analytical Batch VL9513	
Run #1 Run #2	Purge Volur 5.0 ml	ne						

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	6.0	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.58	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane ^a	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	6.9	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.95	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	8.4	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	1.2	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	1.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
123-91-1	1,4-Dioxane	ND	130	69	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	1.9	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Page 1 of 2

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	SVE-MW-5		
Lab Sample ID:	JD6496-3	Date Sampled:	04/24/20
Matrix:	AQ - Ground Water	Date Received:	04/25/20
Method:	SW846 8260C	Percent Solids:	n/a
Project:	388 Bridge Street, Brooklyn, NY		

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
591-78-6	2-Hexanone	ND	5.0	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.70	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	12.7	1.0	0.90	ug/l	
108-88-3	Toluene	ND	1.0	0.53	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	0.85	1.0	0.53	ug/l	J
75-69-4	Trichlorofluoromethane	ND	2.0	0.84	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	101%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	98%		81-12	24%	
2037-26-5	Toluene-D8	103%		80-12	20%	
460-00-4	4-Bromofluorobenzene	96%		80-12	20%	

(a) Associated CCV outside of control limits low.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

19 of 30

Client Sample ID:	SVE-MW-5		
Lab Sample ID:	JD6496-3	Date Sampled:	04/24/20
Matrix:	AQ - Ground Water	Date Received:	04/25/20
		Percent Solids:	n/a
Project:	388 Bridge Street, Brooklyn, NY		

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Iron, Ferrous ^a	< 0.20	0.20	mg/l	1	04/25/20 13:20	JOO	SM3500FE B-11
Nitrogen, Nitrate ^b	3.8	0.11	mg/l	1	05/08/20 16:01	KI	EPA353.2/SM4500NO2B
Nitrogen, Nitrate + Nitrite	3.8	0.10	mg/l	1	05/08/20 16:01	KI	EPA 353.2/LACHAT
Nitrogen, Nitrite	< 0.010	0.010	mg/l	1	04/25/20 11:32	AM	SM4500NO2 B-11
Sulfate	123	2.0	mg/l	1	04/29/20 20:59	JW	EPA 300/SW846 9056A
Total Organic Carbon	1.9	1.0	mg/l	1	05/07/20 15:13	CD	SM5310 B-11

(a) Field analysis required. Received out of hold time and analyzed by request.

(b) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

4.5 **4**

RL = Reporting Limit

Client Sample ID:SVE-MW-5Lab Sample ID:JD6496-3FMatrix:AQ - Groundwater Filtered					Date Sampled Date Received Percent Solids	: 04	/24/20 /25/20 a		
Project:	oject: 388 Bridge Street, Brooklyn, NY								
General Chemistry									
Analyte		Result	RL	Units	DF	Analyzed	By	Method	
Dissolved Organic (Carbon	1.6	1.0	mg/l	1	05/07/20 12:59	CD	SM5310 B-11	

Page 1 of 1

4.6 **4**

Client Sa Lab Samj Matrix: Method: Project:	ple ID: JD64 AQ - SW8	Field Blank 46 8260C			Da	nte Sampled: 04 nte Received: 04 rcent Solids: n/	
Run #1 Run #2	File ID L321713.D	DF 1	Analyzed 04/27/20 14:28	By ED	Prep Date n/a	Prep Batch n/a	Analytical Batch VL9513
Run #1 Run #2	Purge Volum 5.0 ml	le					

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	6.0	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.58	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane ^a	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	6.9	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.95	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	1.2	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	1.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
123-91-1	1,4-Dioxane	ND	130	69	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	1.9	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 2

22 of 30

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	FIELD BLANK	
Lab Sample ID:	JD6496-4 Date Sampled:	04/24/20
Matrix:	AQ - Field Blank Water Date Received:	04/25/20
Method:	SW846 8260C Percent Solids:	n/a
Project:	388 Bridge Street, Brooklyn, NY	

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
591-78-6	2-Hexanone	ND	5.0	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.70	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l	
108-88-3	Toluene	ND	1.0	0.53	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.84	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	100%		80-1	20%	
17060-07-0	1,2-Dichloroethane-D4	97%		81-1	24%	
2037-26-5	Toluene-D8	101%		80-1	20%	
460-00-4	4-Bromofluorobenzene	94%		80-1	20%	

(a) Associated CCV outside of control limits low.

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

Page 2 of 2

Client Sample ID:	FIELD BLANK		
Lab Sample ID:	JD6496-4	Date Sampled:	04/24/20
Matrix:	AQ - Field Blank Water	Date Received:	04/25/20
		Percent Solids:	n/a
Project:	388 Bridge Street, Brooklyn, NY		

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Iron, Ferrous ^a	< 0.20	0.20	mg/l	1	04/25/20 13:20	JOO	SM3500FE B-11
Nitrogen, Nitrate ^b	< 0.11	0.11	mg/l	1	05/08/20 16:02	KI	EPA353.2/SM4500NO2B
Nitrogen, Nitrate + Nitrite	< 0.10	0.10	mg/l	1	05/08/20 16:02	KI	EPA 353.2/LACHAT
Nitrogen, Nitrite	< 0.010	0.010	mg/l	1	04/25/20 11:32	AM	SM4500NO2 B-11
Sulfate	< 2.0	2.0	mg/l	1	04/29/20 21:23	JW	EPA 300/SW846 9056A
Total Organic Carbon	< 1.0	1.0	mg/l	1	05/07/20 15:26	CD	SM5310 B-11

(a) Field analysis required. Received out of hold time and analyzed by request.

(b) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

4.7

4

Client Sample ID:FIELD BLANKLab Sample ID:JD6496-4FMatrix:AQ - Field Blank Filtered					Date Sampled Date Received Percent Solids	: 04	/24/20 /25/20 a		
Project:	388 Bridg	ooklyn, NY							
General Chemistry									
Analyte		Result	RL	Units	DF	Analyzed	By	Method	
Dissolved Organic C	Carbon	< 1.0	1.0	mg/l	1	05/07/20 13:27	CD	SM5310 B-11	

Page 1 of 1

4.8 4

Client Sa Lab Sam Matrix: Method: Project:	ple ID: JD(AQ SW	IP BLANK 5496-5 - Trip Blank 846 8260C Bridge Stree	Water t, Brooklyn, NY		Date Sampled:04/24/20Date Received:04/25/20Percent Solids:n/a			
Run #1 Run #2	File ID L321714.D	DF 1	Analyzed 04/27/20 14:55	By ED	Prep Date n/a	Prep Batch n/a	Analytical Batch VL9513	
Run #1 Run #2	Purge Volu 5.0 ml	me						

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	6.0	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.58	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane ^a	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	6.9	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.95	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	1.2	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	1.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
123-91-1	1,4-Dioxane	ND	130	69	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	1.9	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 2

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Lab Sample ID: J	JD6496-5 Date Sampled:	04/24/20
Matrix: A	AQ - Trip Blank Water Date Received:	04/25/20
Method: S	SW846 8260C Percent Solids:	n/a
Project: 3	388 Bridge Street, Brooklyn, NY	

VOA TCL List (SOM0 1.1)

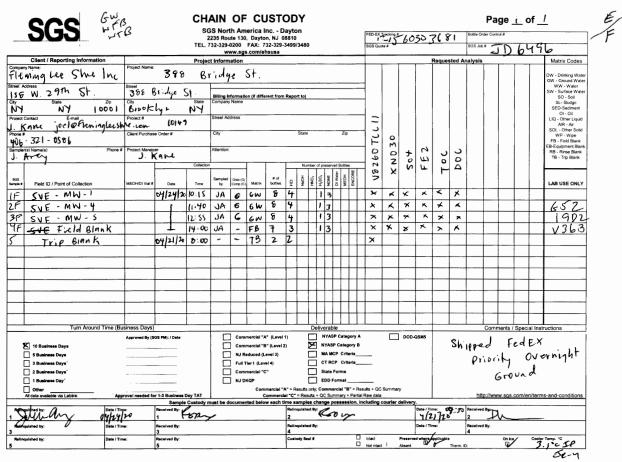
CAS No.	Compound	Result	RL	MDL	Units	Q
591-78-6	2-Hexanone	ND	5.0	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.70	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l	
108-88-3	Toluene	ND	1.0	0.53	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.84	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	99%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	94%		81-12	24%	
2037-26-5	Toluene-D8	102%		80-12	20%	
460-00-4	4-Bromofluorobenzene	97%		80-12	20%	

(a) Associated CCV outside of control limits low.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

27 of 30


Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

Initial Assessment_36-

Label Verification_

A-QAC-0023-02-FORM-Dayton - Standard COC.xtsx

JD6496: Chain of Custody Page 1 of 2

5<u>.</u>4 S

SGS Sample Receipt Summary

Job Number: JD6496 Client: FLEMING-LEE SHUE,			FLEMING-LEE SHUE, INC.	Project: 388 BRIDGE STREET, BROOKLYN, NY				
Date / Time Received: 4/25/2020 9:30:00 AM		Delivery Method:	hod: Airbill #'s:					
Cooler Temps (Raw Measu Cooler Temps (Correc	ted) °C: Co		Y N		Y			
1. Custody Seals Present:	<u>Yor N</u> ✓ □ ✓ □ <u>Yor</u>	3. COC Pr 4. Smpl Date <u>N</u>		Sample Integrity - Documentation 1. Sample labels present on bottles: 2. Container labeling complete: 3. Sample container label / COC agree:	<u>Y</u> or N ✓ □ ✓ □			
 Temp criteria achieved: Cooler temp verification: Cooler media: No. Coolers: 	IR 0	Bag)		Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for: 3. Condition of sample:	Y or N ✓ □ Intact			
Quality Control Preservation 1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Samples preserved property 4. VOCs headspace free:	✓ ✓			Sample Integrity - Instructions 1. Analysis requested is clear: 2. Bottles received for unspecified tests 3. Sufficient volume recvd for analysis: 4. Compositing instructions clear:	Y or N V □ V □ V □ V □ V □	<u>N/A</u>		
Test Strip Lot #s:	oH 1-12:	229517	pH 12+:	5. Filtering instructions clear: 208717 Other: (Specify)		✓		
Comments								

SM089-03 Rev. Date 12/7/17

JD6496: Chain of Custody Page 2 of 2

5.<u>1</u>

G