

Revised BCP Application – 188 East 135th Street Redevelopment Site

12.0077272.10 TOC | 1

TABLE OF CONTENTS

D	CD	ΛГ	חכ	IIC	۸ті	\cap
к	ľ	Αŀ	יאי	11(/	4 I I	()IN

ATTACHMENT 1A - TAX MAP

ATTACHMENT 1B - SITE AND TOPOGRAPHIC MAP

ATTACHMENT 1C - EN-ZONE MAP

ATTACHMENT 1D - EASEMENTS

ATTACHMENT 1E - PROPERTY DESCRIPTION AND ENVIRONMENTAL ASSESSMENT

ATTACHMENT 2A - PROJECT DEVELOPMENT

ATTACHMENT 3A - LAND USE FACTORS

ATTACHMENT 4A - PROPERTY'S ENVIRONMENTAL HISTORY

ATTACHMENT 4B – DATA TABLES

ATTACHMENT 4C - DATA FIGURES

ATTACHMENT 5A - REQUESTOR ENTITY INFORMATION

ATTACHMENT 5B - LLC MEMBERS

ATTACHMENT 6A - VOLUNTEER STATEMENT

ATTACHMENT 9A - OWNER AND OPERATOR INFORMATION

ATTACHMENT 11A – SITE CONTACT LIST

ATTACHMENT 11B - DOCUMENT REPOSITORIES' ACKNOWLEDGEMENTS

BROWNFIELD CLEANUP PROGRAM (BCP) APPLICATION FORM

Is this an application to amend an existing BCA with a major n	nodification	n? Please	refer to t	he	
application instructions for further guidance related to BCA amendr			Yes	No No	
If yes, provide existing site number:			,		
In this a marked automical and for incomplete and in a fine and in the control of				○ N-	
Is this a revised submission of an incomplete application?			Yes	No	
If yes, provide existing site number:					
BCP App Rev 13					
SECTION I: Property Information					
PROPOSED SITE NAME 188 East 135th Street Redevelopmer	nt Site				
Thorodeb one want for east 195th other redevelopmen	it Oile				
ADDRESS/LOCATION 188 East 135th Street					
CITY/TOWN New York City	ZIF	CODE 1	045°	1	
MUNICIPALITY (LIST ALL IF MORE THAN ONE) Boroug	h of 1	he B	ronx	•	
COUNTY D			CDES) C	<u> </u>	
COUNTY Bronx	31	TE SIZE (A		1.58	
LATITUDE LONGITUI	DE L				
40 ° 48 ' 40.752 " -73	° 5	5	' 55	.848	"
Provide tax map information for all tax parcels included within the p	proposed s	ite boundar	ry below.	If a porti	on
of any lot is to be included, please indicate as such by inserting "p/					
appropriate box below, and only include the acreage for that portio	n of the ta	x parcel in t	he corres	sponding	
acreage column.	DUCTION	See At	tachmen	t 1A	
ATTACH REQUIRED TAX MAPS PER THE APPLICATION INST Parcel Address	Section	Block	Lot	Acrea	200
	Occion				
188 East 135th Street		2323	13	$\mid 0.5$	Ö
	1			1	1
1. Do the proposed site boundaries correspond to tax map me			مامسمام	Y	N
If no, please attach an accurate map of the proposed site in description.	icluding a	metes and	bounds		
Is the required property map provided in electronic format was a second control of the cont	vith the an	olication?			
(Application will not be processed without a map) See Attact	hment 1B	onoution.			
3. Is the property within a designated Environmental Zone (Er		rsuant to Ta	ax Law		
04/11/010/0	, .	IC for En-zor			
If yes, identify census tract: 51				$\overline{}$	
Percentage of property in En-zone (check one): 0% 1	-49% (50-99%) 100% (ullet	
A lathe majest leasted with in a discontinual control of					
4. Is the project located within a disadvantaged community?					
See application instructions for additional information. 5. Is the project located within a NYS Department of State (NY)	(S DOS) F	Rrownfield ()nnortuni	tv	
i o. io ino prototi totatoa witilii a NTO Dobaltiitoiit Ol Otate IN?		, SWITHOU C	- pporturii	·y [🛋]	M // //

6. Is this application one of multiple applications for a large development project, where the	Υ	N
development spans more than 25 acres (see additional criteria in application instructions)?		
If yes, identify names of properties and site numbers, if available, in related BCP	\bigcirc	\odot
applications:		_
7. Is the contamination from groundwater or soil vapor solely emanating from property other		
than the site subject to the present application?	\bigcirc	\odot
8. Has the property previously been remediated pursuant to Titles 9, 13 or 14 of ECL Article 27,		_
Title 5 of ECL Article 56, or Article 12 of Navigation Law?		
If yes, attach relevant supporting documentation.	\bigcirc	O
9. Are there any lands under water?		
If yes, these lands should be clearly delineated on the site map.	\bigcirc	\odot
10. Has the property been the subject of or included in a previous BCP application?		
If yes, please provide the DEC site number:	\bigcirc	loop
11. Is the site currently listed on the Registry of Inactive Hazardous Waste Disposal Sites (Class	_	_
2, 3, or 4) or identified as a Potential Site (Class P)?	\bigcirc	
If yes, please provide the DEC site number: Class:	\mathbf{O}	
12. Are there any easements or existing rights-of-way that would preclude remediation in these		_
areas? If yes, identify each here and attach appropriate information.		
areas: If yes, identify easifficite and attach appropriate information.)	\smile
Easement/Right-of-Way Holder Description		
<u>Lascinchi rigiti-oi-vvay rioldei</u>		
SEE ATTACHMENT 1D		
SEL ATTACHIVIENT 1D		
12. List of normita issued by the DEC or LISEDA relating to the proposed site (describe below or		
13. List of permits issued by the DEC or USEPA relating to the proposed site (describe below or		
attach appropriate information):	\mathcal{O}	O
Towns Description		
<u>Type</u> <u>Issuing Agency</u> <u>Description</u>		
44 D	_	
14. Property Description and Environmental Assessment – please refer to the application		
instructions for the proper format of each narrative requested. Are the Property Description	0	\cup
and Environmental Assessment narratives included in the prescribed format? Attachment 1E		
Note: Questions 15 through 17 below pertain ONLY to proposed sites located within the five co	ounti	es
comprising New York City.		
15. Is the Requestor seeking a determination that the site is eligible for tangible property tax	Υ	N
credits?		
		\cup
If yes, Requestor must answer the Supplemental Questions for Sites Seeking Tangible		
If yes, Requestor must answer the Supplemental Questions for Sites Seeking Tangible Property Credits Located in New York City ONLY on pages 11-13 of this form.		
If yes, Requestor must answer the Supplemental Questions for Sites Seeking Tangible Property Credits Located in New York City ONLY on pages 11-13 of this form. 16. Is the Requestor now, or will the Requestor in the future, seek a determination that the		
If yes, Requestor must answer the Supplemental Questions for Sites Seeking Tangible Property Credits Located in New York City ONLY on pages 11-13 of this form. 16. Is the Requestor now, or will the Requestor in the future, seek a determination that the property is Upside Down?	0	\odot
If yes, Requestor must answer the Supplemental Questions for Sites Seeking Tangible Property Credits Located in New York City ONLY on pages 11-13 of this form. 16. Is the Requestor now, or will the Requestor in the future, seek a determination that the property is Upside Down? 17. If you have answered YES to Question 16 above, is an independent appraisal of the value of	0	<u>•</u>
If yes, Requestor must answer the Supplemental Questions for Sites Seeking Tangible Property Credits Located in New York City ONLY on pages 11-13 of this form. 16. Is the Requestor now, or will the Requestor in the future, seek a determination that the property is Upside Down?	0	\odot
If yes, Requestor must answer the Supplemental Questions for Sites Seeking Tangible Property Credits Located in New York City ONLY on pages 11-13 of this form. 16. Is the Requestor now, or will the Requestor in the future, seek a determination that the property is Upside Down? 17. If you have answered YES to Question 16 above, is an independent appraisal of the value of	0	<u>•</u>
If yes, Requestor must answer the Supplemental Questions for Sites Seeking Tangible Property Credits Located in New York City ONLY on pages 11-13 of this form. 16. Is the Requestor now, or will the Requestor in the future, seek a determination that the property is Upside Down? 17. If you have answered YES to Question 16 above, is an independent appraisal of the value of the property, as of the date of application, prepared under the hypothetical condition that the property is not contaminated, included with the application?	O the	0
If yes, Requestor must answer the Supplemental Questions for Sites Seeking Tangible Property Credits Located in New York City ONLY on pages 11-13 of this form. 16. Is the Requestor now, or will the Requestor in the future, seek a determination that the property is Upside Down? 17. If you have answered YES to Question 16 above, is an independent appraisal of the value of the property, as of the date of application, prepared under the hypothetical condition that the property is not contaminated, included with the application? NOTE: If a tangible property tax credit determination is not being requested at the time of application,		0
If yes, Requestor must answer the Supplemental Questions for Sites Seeking Tangible Property Credits Located in New York City ONLY on pages 11-13 of this form. 16. Is the Requestor now, or will the Requestor in the future, seek a determination that the property is Upside Down? 17. If you have answered YES to Question 16 above, is an independent appraisal of the value of the property, as of the date of application, prepared under the hypothetical condition that the property is not contaminated, included with the application? NOTE: If a tangible property tax credit determination is not being requested at the time of application, applicant may seek this determination at any time before issuance of a Certificate of Completion by use		0
If yes, Requestor must answer the Supplemental Questions for Sites Seeking Tangible Property Credits Located in New York City ONLY on pages 11-13 of this form. 16. Is the Requestor now, or will the Requestor in the future, seek a determination that the property is Upside Down? 17. If you have answered YES to Question 16 above, is an independent appraisal of the value of the property, as of the date of application, prepared under the hypothetical condition that the property is not contaminated, included with the application? NOTE: If a tangible property tax credit determination is not being requested at the time of application, applicant may seek this determination at any time before issuance of a Certificate of Completion by us BCP Amendment Application, except for sites seeking eligibility under the underutilized category.	sing t	0
If yes, Requestor must answer the Supplemental Questions for Sites Seeking Tangible Property Credits Located in New York City ONLY on pages 11-13 of this form. 16. Is the Requestor now, or will the Requestor in the future, seek a determination that the property is Upside Down? 17. If you have answered YES to Question 16 above, is an independent appraisal of the value of the property, as of the date of application, prepared under the hypothetical condition that the property is not contaminated, included with the application? NOTE: If a tangible property tax credit determination is not being requested at the time of application, applicant may seek this determination at any time before issuance of a Certificate of Completion by us BCP Amendment Application, except for sites seeking eligibility under the underutilized category. If any changes to Section I are required prior to application approval, a new page, initialed by experience of the property of the property is a property to application approval, a new page, initialed by experience of the property	sing t	0
If yes, Requestor must answer the Supplemental Questions for Sites Seeking Tangible Property Credits Located in New York City ONLY on pages 11-13 of this form. 16. Is the Requestor now, or will the Requestor in the future, seek a determination that the property is Upside Down? 17. If you have answered YES to Question 16 above, is an independent appraisal of the value of the property, as of the date of application, prepared under the hypothetical condition that the property is not contaminated, included with the application? NOTE: If a tangible property tax credit determination is not being requested at the time of application, applicant may seek this determination at any time before issuance of a Certificate of Completion by us BCP Amendment Application, except for sites seeking eligibility under the underutilized category. If any changes to Section I are required prior to application approval, a new page, initialed by exequestor, must be submitted with the application revisions.	sing t	0
If yes, Requestor must answer the Supplemental Questions for Sites Seeking Tangible Property Credits Located in New York City ONLY on pages 11-13 of this form. 16. Is the Requestor now, or will the Requestor in the future, seek a determination that the property is Upside Down? 17. If you have answered YES to Question 16 above, is an independent appraisal of the value of the property, as of the date of application, prepared under the hypothetical condition that the property is not contaminated, included with the application? NOTE: If a tangible property tax credit determination is not being requested at the time of application, applicant may seek this determination at any time before issuance of a Certificate of Completion by us BCP Amendment Application, except for sites seeking eligibility under the underutilized category. If any changes to Section I are required prior to application approval, a new page, initialed by experience of the property of the property is a property to application approval, a new page, initialed by experience of the property	sing t	0

SECT	ON II: Project Description		
1.	The project will be starting at: Investigation Remediation		
Repor Remed	: If the project is proposed to start at the remediation stage, at a minimum, a Remedial Invest to (RIR) must be included, resulting in a 30-day public comment period. If an Alternatives Anal dial Action Work Plan (RAWP) are also included (see <u>DER-10, Technical Guidance for Site</u> igation and Remediation for further guidance), then a 45-day public comment period is required.	ysis a	
2.	If a final RIR is included, does it meet the requirements in ECL Article 27-1415(2)?		
	Yes No NA		
3.	Have any draft work plans been submitted with the application (select all that apply)?		
	RIWP RAWP IRM No		
4.	Please provide a short description of the overall project development, including the date that remedial program is to begin, and the date by which a Certificate of Completion is expected issued. See Attachment 2A		:
	Is this information attached? Yes No See Attachment 2A		
SECT	ON III: Land Use Factors		
1.	What is the property's current municipal zoning designation? residential (R7-2) with a commercial (C2	2-4) ove	rlay
2.	What uses are allowed by the property's current zoning (select all that apply)?		
	Residential Commercial Industrial		
3.	Current use (select all that apply):		
	Residential Commercial Industrial Recreational Vacant 🗸		
4.	Please provide a summary of current business operations or uses, with an emphasis on identifying possible contaminant source areas. If operations or uses have ceased, provide the date by which the site became vacant. Is this summary included with the application?	Y (•)	N
5.	Reasonably anticipated post-remediation use (check all that apply):		
	Residential Commercial Industrial		
	If residential, does it qualify as single-family housing? N/A	\bigcirc	•
6.	Please provide a statement detailing the specific proposed post-remediation use. Is this summary attached? `See Attachment 3A	•	0
7.	Is the proposed post-remediation use a renewable energy facility? See application instructions for additional information.	0	•
8.	Do current and/or recent development patterns support the proposed use?	•	
9.	Is the proposed use consistent with applicable zoning laws/maps?		
10	Please provide a brief explanation and additional documentation if necessary. Is the proposed use consistent with applicable comprehensive community master plans,		
	local waterfront revitalization plans, or other adopted land use plans? Please provide a brief explanation and additional documentation if necessary.	•	\circ

SECTION IV: Property's Environmental History								
All applications must include an Investigation Report (perestablish that contamination of environmental media exists and Guidance (SCGs) based on the reasonably anticipated remediation. To the extent that existing information/studies attach the following (please submit information requests 1. Reports: an example of an Investigation Report is prepared in accordance with the latest American SET 1903. Please submit a separate electronic con (PDF). Please do NOT submit paper copies of ACCONTAMINANTS AND THE MEDIA WHICH ARE DATA SUMMARY TABLES SHOULD BE INCLUITABORATORY REPORTS REFERENCED AND	ed use of the ed use of the ed in th	e site ab of the sit is are av his sect se II Env for Testi ach rep pportin PTIONS VN TO H S AN A1	ove applice property vailable to vironmenta and Marcumenta bort in Pog documenta BELOW) HAVE BEI	the the cate of th	ole Standa nd that the e requeste ronic form Site Asses erials stand ble Docu ts. NOWN AFFECT T, WITH	ards, Ce site or, ple mat Oesmen dard (ment Gee Attaoor sumr	requals as a second of the control o	eria juires e Y): eport TM ermat
CONTAMINANT CATEGORY	SC	DIL	GROUN	ND	WATER	SO	IL (GAS
Petroleum							~	
Chlorinated Solvents							'	
Other VOCs				Ш			'	
SVOCs	V	_		~				
Metals	~	<u> </u>		~			Щ_	
Pesticides				Щ			Щ	
PCBs				Ш			Щ	
PFAS				~			Щ.	
1,4-dioxane								
Other – indicated below								
*Please describe other known contaminants and the med								
 3. For each impacted medium above, include a site drawing indicating: Sample location Date of sampling event Key contaminants and concentration detected For soil, highlight exceedances of reasonably anticipated use For groundwater, highlight exceedances of 6 NYCRR part 703.5 For soil gas/soil vapor/indoor air, refer to the NYS Department of Health matrix and highlight exceedances that require mitigation 								
These drawings are to be representative of all data being remediation under the BCP. Drawings should be no large electronically. These drawings should be prepared in according to the property of the propert	r than 1 ordance	1"x17" a with an	and should by guidand	o b	nly be pro			
Are the required drawings included with this application?	See Atta	chment 4		ES	() NC)	
4. Indicate Past Land Uses (check all that apply):	_							
Coal Gas Manufacturing Manufacturing	_ <i>-</i>	Agricultu	<u>iral Co-Op</u>					eaner
Salvage Yard Bulk Plant Bulk Plant			Pipeline		<u> </u>			tation
Landfill Tannery			ctroplating	_				nown
Other: Historical uses of the property included a railro supply yard, a likely dry cleaner, an auto wreck	ad yard ker, and	a, a coa d an "irc	n yard, a on and st	co ee	ntractor's l" compa	s stor ny.	age	e/

OLO II	on v. noquotor imormano	'11			
NAME Water	ront Living II LLC				
ADDR 48 Bal	ESS certown Road, Suite 500				
CITY/7 Monre	rown oe, N Y		ZIP CODE 10950		
PHON 845-7	E 74-1109	EMAIL jsofer@madisonrealtie	s.com		
1.	Is the requestor authorized to	conduct business in New Yo	rk State (NYS)?	Y (N
2. If the requestor is a Corporation, LLC, LLP or other entity requiring authorization from the NYS DOS to conduct business in NYS, the requestor's name must appear, exactly as given above, in the NYS Department of State's Corporation & Business Entity Database. A print-out of entity information from the database must be submitted with this application to document that that requestor is authorized to conduct business in NYS. Is this attached? See Attachment 5A				•	0
3.	If the requestor is an LLC, the separate attachment. Is this a	e names of the members/own attached? See Attachment 5B	ers need to be provided on a	•	0
4.	4. Individuals that will be certifying BCP documents, as well as their employers, must meet the requirements of Section 1.5 of <u>DER-10: Technical Guidance for Site Investigation and Remediation</u> and Article 145 of New York State Education Law. Do all individuals that will be certifying documents meet these requirements? Documents that are not properly certified will not be approved under the BCP.				0
0507	ON 1/1- D				_
SECTI	ON VI: Requestor Eligibility				
	vering "yes" to any of the follov entation as an attachment.	wing questions, please provide	e appropriate explanation and/or		
				Υ	N
1.	Are any enforcement actions	pending against the requesto	r regarding this site?		
2.	Is the requestor subject to an of contamination at the site?	•	ation, removal or remediation	O	•
3.	Is the requestor subject to an Any questions regarding whe with the Spill Fund Administra	ther a party is subject to a spi		0	•
4.	Has the requestor been deter in violation of (i) any provision	rmined in an administrative, ci n of the ECL Article 27; (ii) an	vil or criminal proceeding to be y order or determination; (iii) tute or regulation of the State	0	•
5.		C site number, the reason for	o? If so, please provide the site denial, and any other relevant	0	•

6. Has the requestor been found in a civil proceeding to have committed a negligent or intentionally tortious act involving the handling, storing, treating, disposing or transporting

of contaminants?

SECTION VI: Requestor Eligibility (CONTINUTED)				
 Has the requestor been convicted of a crimina treating, disposing or transporting or contaminations fraud, bribery, perjury, theft or offense against in Article 195 of the Penal Law) under Federal 	ants; or (ii) that involved a violent felony, public administration (as that term is used	Y	N •	
 8. Has the requestor knowingly falsified statements or concealed material facts in any matter within the jurisdiction of DEC, or submitted a false statement or made use of a false statement in connection with any document or application submitted to DEC? 9. Is the requestor an individual or entity of the type set forth in ECL 27-1407.9(f) that 				
committed an act or failed to act, and such act denial of a BCP application?	or failure to act could be the basis for	0	•	
10. Was the requestor's participation in any remed terminated by DEC or by a court for failure to so order?		0	•	
11. Are there any unregistered bulk storage tanks	on-site which require registration?	\bigcirc	O	
12. THE REQUESTOR MUST CERTIFY THAT HE IN ACCORDANCE WITH ECL 27-1405(1) BY		UNTE	ER	
PARTICIPANT A requestor who either (1) was the owner of the site at the time of the disposal of hazardous waste or discharge of petroleum, or (2) is otherwise a person responsible for the contamination, unless the liability arises solely as a result of ownership, operation of, or involvement with the site subsequent to the disposal of hazardous waste or discharge of petroleum.	VOLUNTEER A requestor other than a participant, includi requestor whose liability arises solely as a rownership, operation of or involvement with subsequent to the disposal of hazardous wadischarge of petroleum. NOTE: By selecting this option, a requestor liability arises solely as a result of ownershi operation of or involvement with the site cerhe/she has exercised appropriate care with to the hazardous waste found at the facility reasonable steps to: (i) stop any continuing discharge; (ii) prevent any threatened future and, (iii) prevent or limit human, environment natural resource exposure to any previously hazardous waste. If a requestor whose liability arises solel result of ownership, operation of, or involved the site, submit a statement describly you should be considered a volunteer – specific as to the appropriate care taken	result of the saste of whose p, respectively taken tak	ite ir se that ect king ase; ased	
13. If the requestor is a volunteer, is a statement of volunteer attached?		dered	a	
Yes (•) No () N/	A O OGG Attachment OA			

SECTION VI: Requestor Eligibility	(CONTINUTED)
14. Requestor relationship to the	e property (check one; if multiple applicants, check all that apply):
Previous Owner Curre	nt Owner Potential/Future Purchaser Other:
provided. Proof must show that the	wner, proof of site access sufficient to complete remediation must be requestor will have access to the property before signing the BCA and ng the ability to place an environmental easement on the site.
Is this proof attached?	Yes No N/A
Note: A purchase contract or lease	agreement does not suffice as proof of site access.
SECTION VII: Requestor Contact	Information
REQUESTOR'S REPRESENTATIV Jacob Sofer	Æ
ADDRESS 48 Bakertown Road, Suite 50	00
CITY Monroe, NY	ZIP CODE 10950
PHONE 845-774-1109	EMAIL jsofer@madisonrealties.com
REQUESTOR'S CONSULTANT (CODAvid Winslow	ONTACT NAME)
COMPANY GZA GeoEnvironmental of N	lew York
ADDRESS 55 Lane Road	
CITY Fairfield, NJ	ZIP CODE 07004
PHONE 973-774-3307	EMAIL david.winslow@gza.com
REQUESTOR'S ATTORNEY (CON George Duke	TACT NAME)
COMPANY Brown Duke & Fogel, P.C.	
ADDRESS 350 Fifth Avenue, Suite 4640	0
CITY New York, NY	ZIP CODE 10118
PHONE 646-915-0236	EMAIL gduke@bdflegal.com

SECTION VIII: Program Fee				
	ownfield Cleanup Agreement to the Dogram fee of \$50,000. Requestors ma			on
,			Υ	N
Is the requestor applying for a	a fee waiver based on demonstration	of financial hardship?	0	•
	ation to demonstrate financial hardsh on instructions for additional informat		0	0
Is the appropriate documenta	ation included with this application?			
SECTION IX: Current Property Ow	ner and Operator Information			
CURRENT OWNER				
Waterfront Living II LLC				
CONTACT NAME Jacob Sofer				
ADDRESS 48 Bakertown Road, Suite 50	00			
CITY ZIP CODE 10950				
PHONE 845-774-1109	EMAIL jsofer@madisonrealties.com			
OWNERSHIP START DATE 7/27/21	-			
CURRENT OPERATOR N/A - vacant				
CONTACT NAME				
ADDRESS				
CITY		ZIP CODE		
PHONE	EMAIL			
OPERATION START DATE				
See Attachme	ent 9A for list of previous site operators ar	nd owners		
SECTION X: Property Eligibility In	formation			
			Υ	N
Is/was the property, or any policy If yes, please provide addition	ortion of the property, listed on the Na nal information.	ational Priorities List?	0	•
	ortion of the property, listed on the NN Site pursuant to ECL 27-1305? C site number: Cl	YS Registry of Inactive ass:	0	•

SECT	ION X: Property Eligibility Information (continued)		
3.	Is/was the property subject to a permit under ECL Article 27, Title 9, other than an	Υ	N
	Interim Status facility? If yes, please provide: Permit Type: EPA ID Number:		
	Date Permit Issued: Permit Expiration Date:))
4.	If the answer to question 2 or 3 above is <i>YES</i> , is the site owned by a volunteer as defined under ECL 27-1405(1)(b), or under contract to be transferred to a volunteer? If yes, attach any available information related to previous owners or operators of the facility or property and their financial viability, including any bankruptcy filings and corporate dissolution documents.	0	0
5.	Is the property subject to a cleanup order under Navigation Law Article 12 or ECL Article 17 Title 10? If yes, please provide the order number:		•
6.	Is the property subject to a state or federal enforcement action related to hazardous waste or petroleum? If yes, please provide additional information.	0	•

SECTION XI: Site Contact List

To be considered complete, the application must include the Brownfield Site Contact List in accordance with *DER-23: Citizen Participation Handbook for Remedial Programs*. Please attach, at a minimum, the names and mailing addresses of the following:

The chief executive officer and planning board chairperson of each county, city, town and village in which the property is located.

See Attachments

• Residents, owners, and occupants of the property and adjacent properties.

11A & 11B

- Local news media from which the community typically obtains information.
- The public water supplier which services the area in which the property is located.
- Any person who has requested to be placed on the contact list.
- The administrator of any school or day care facility located on or near the property.
- The location of a document repository for the project (e.g., local library). If the site is located in a city with a population of one million or more, add the appropriate community board as an additional document repository. In addition, attach a copy of an acknowledgement from each repository indicating that it agrees to act as the document repository for the site.

SECTION XII: Statement of Certification and Signatures
(By requestor who is an individual)
If this application is approved, I hereby acknowledge and agree: (1) to execute a Brownfield Cleanup Agreement (BCA) within 60 days of the date of DEC's approval letter; (2) to the general terms and conditions set forth in the <u>DER-32</u> , <u>Brownfield Cleanup Program Applications and Agreements</u> ; and (3) that in the event of a conflict between the general terms and conditions of participation and terms contained in a site-specific BCA, the terms in the site-specific BCA shall control. Further, I hereby affirm that information provided on this form and its attachments is true and complete to the best of my knowledge and belief. I am aware that any false statement made herein is punishable as a Class A misdemeanor pursuant to section 210.45 of the Penal Law.
Date: Signature:
Print Name:
(By a requestor other than an individual) I hereby affirm that I am
 SUBMITTAL INFORMATION Two (2) copies, one unbound paper copy of the application form with original signatures and table of contents, and one complete electronic copy in final, non-fillable Portable Document Format (PDF), must be sent to: Chief, Site Control Section New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway, 11th Floor Albany, NY 12233-7020
PLEASE DO NOT SUBMIT PAPER COPIES OF SUPPORTING DOCUMENTS. Please provide a hard copy of ONLY the application form and a table of contents.
FOR DEC USE ONLY BCP SITE T&A CODE: LEAD OFFICE:

FOR SITES SEEKING TANGIBLE PROPERTY CREDITS IN NEW YORK CITY ONLY

Sufficient information to demonstrate that the site meets one or more of the criteria identified in ECL 27-1407(1-a) must be submitted if requestor is seeking this determination.

BCP App Rev 13

	e respond to the questions below and provide additional information and/or mentation as required.	Y	N
1.	Is the property located in Bronx, Kings, New York, Queens or Richmond County?	•	0
2.	Is the requestor seeking a determination that the site is eligible for the tangible property credit component of the brownfield redevelopment tax credit?	•	0
3.	Is at least 50% of the site area located within an environmental zone pursuant to NYS Tax Law 21(b)(6)?	•	0
4.	Is the property upside down or underutilized as defined below?		
	Upside down	0	•
	Underutilized		•

From ECL 27-1405(31):

"Upside down" shall mean a property where the projected and incurred cost of the investigation and remediation which is protective for the anticipated use of the property equals or exceeds seventy-five percent of its independent appraised value, as of the date of submission of the application for participation in the brownfield cleanup program, developed under the hypothetical condition that the property is not contaminated.

From 6 NYCRR 375-3.2(I) as of August 12, 2016 (Please note: Eligibility determination for the underutilized category can only be made at the time of application): 375-3.2:

- (I) "Underutilized" means, as of the date of application, real property on which no more than fifty percent of the permissible floor area of the building or buildings is certified by the applicant to have been used under the applicable base zoning for at least three years prior to the application, which zoning has been in effect for at least three years; and
 - (1) the proposed use is at least 75 percent for industrial uses; or
 - (2) at which:
 - (i) the proposed use is at least 75 percent for commercial or commercial and industrial uses:
 - (ii) the proposed development could not take place without substantial government assistance, as certified by the municipality in which the site is located; and
 - (iii) one or more of the following conditions exists, as certified by the applicant:
 - (a) property tax payments have been in arrears for at least five years immediately prior to the application;
 - (b) a building is presently condemned, or presently exhibits documented structural deficiencies, as certified by a professional engineer, which present a public health or safety hazard; or
 - (c) there are no structures.

"Substantial government assistance" shall mean a substantial loan, grant, land purchase subsidy, land purchase cost exemption or waiver, or tax credit, or some combination thereof, from a governmental entity.

FOR SITES SEEKING TANGIBLE PROPERTY CREDITS IN NEW YORK CITY ONLY (continued)

5. If you are seeking a formal determination as to whether your project is eligible for Tangible Property Tax Credits based in whole or in part on its status as an affordable housing project (defined below), you must attach the regulatory agreement with the appropriate housing agency (typically, these would be with the New York City Department of Housing, Preservation and Development; the New York State Housing Trust Fund Corporation; the New York State Department of Housing and Community Renewal; or the New York State Housing Finance Agency, though other entities may be acceptable pending Department review).

Check appropriate box below:

Project is an Affordable Housing Project – regulatory agreement attached

Project is planned as Affordable Housing, but agreement is not yet available*

*Selecting this option will result in a "pending" status. The regulatory agreement will need to be provided to the Department and the Brownfield Cleanup Agreement will need to be amended prior to issuance of the CoC in order for a positive determination to be made.

This is not an Affordable Housing Project

From 6 NYCRR 375-3.2(a) as of August 12, 2016:

- (a) "Affordable housing project" means, for purposes of this part, title fourteen of article twenty-seven of the environmental conservation law and section twenty-one of the tax law only, a project that is developed for residential use or mixed residential use that must include affordable residential rental units and/or affordable home ownership units.
 - (1) Affordable residential rental projects under this subdivision must be subject to a federal, state, or local government housing agency's affordable housing program, or a local government's regulatory agreement or legally binding restriction, which defines (i) a percentage of the residential rental units in the affordable housing project to be dedicated to (ii) tenants at a defined maximum percentage of the area median income based on the occupants' household's annual gross income.
 - (2) Affordable home ownership projects under this subdivision must be subject to a federal, state, or local government housing agency's affordable housing program, or a local government's regulatory agreement or legally binding restriction, which sets affordable units aside for homeowners at a defined maximum percentage of the area median income.
 - (3) "Area median income" means, for purposes of this subdivision, the area median income for the primary metropolitan statistical area, or for the county if located outside a metropolitan statistical area, as determined by the United States department of housing and urban development, or its successor, for a family of four, as adjusted for family size.

FOR SITES SEEKING TANGIBLE PROPERTY CREDITS IN NEW YORK CITY ONLY (continued)
6. Is the site a planned renewable energy facility site as defined below?
Yes – planned renewable energy facility site
No – not a planned renewable energy facility site
If yes, please provide any documentation available to demonstrate that the property is planned to be developed as a renewable energy facility site.
From ECL 27-1405(33) as of April 9, 2022:
"Renewable energy facility site" shall mean real property (a) this is used for a renewable energy system, as defined in section sixty-six-p of the public service law; or (b) any co-located system storing energy generated from such a renewable energy system prior to delivering it to the bulk transmission, subtransmission, or distribution system.
From Public Service Law Article 4 Section 66-p as of April 23, 2021:
(b) "renewable energy systems" means systems that generate electricity or thermal energy through use of the following technologies: solar thermal, photovoltaics, on land and offshore wind, hydroelectric, geothermal electric, geothermal ground source heat, tidal energy, wave energy, ocean thermal, and fuel cells which do not utilize a fossil fuel resource in the process of generating electricity.
7. Is the site located within a disadvantaged community, within a designated Brownfield Opportunity Area, and meets the conformance determinations pursuant to subdivision ten of section nine-hundred-seventy-r of the general municipal law?
Yes
○ No
From ECL 75-0111 as of April 9, 2022:
(5) "Disadvantaged communities" means communities that bear the burdens of negative public health effects, environmental pollution, impacts of climate change, and possess certain socioeconomic criteria, or comprise high-concentrations of low- and moderate-income households, as identified pursuant to section 75-0111 of this article.

THIS PAGE INTENTIONALLY LEFT BLANK

Redevelopment Site	Street				
	SITE ADDRESS 188 East 135th Street				
New York City COUNTY Bronx	ZIP 10451				
REQUESTOR NAME Waterfront Living II LLC REQUESTOR ADDRESS 48 Bake	ertown Road, Suite 500				
CITY Monroe, NY ZIP 10950 EMAIL jsofer	@madisonrealties.com				

PROPERTY ADDRESS	SECTION	BLOCK	LOT
188 East 135th Street		2323	13

REQUESTOR'S REPRESENTATIVE		
NAME Jacob Sofer	ADDRESS	48 Bakertown Road, Suite 500
CITY Monroe, NY	^{ZIP} 10950	EMAIL jsofer@madisonrealties.com
REQUESTOR'S ATTORNEY		
NAME George Duke	ADDRESS	350 Fifth Avenue, Suite 4640
CITY New York, NY	^{ZIP} 10118	EMAIL gduke@bdflegal.com
REQUESTOR'S CONSULTANT		
NAME David Winslow	ADDRESS	55 Lane Road
CITY Fairfield, NJ	^{ZIP} 07004	EMAIL david.winslow@gza.com

REQUESTOR'S REQUESTED STATUS	PARTICIPANT	VOLUNTEER	-
DEC DETERMINATION	AGREE	DISAGREE	
[T.,	VI	
APPLIED FOR FEE WAIVER	YES) NO	

DEDOENTAGE WITHIN AN EN ZONE	00/	.500/	7 7	50,000/	
			\sim		\sim
				1	
ELIGIBLE FOR FEE WAIVER	YES		_	NO	
AFFEILD I OIL I EL WAIVEIL	ILO			110	

BCP APPLICATION SUMMARY (FOR DEC USE ONLY) (CONTINUED)							
FOR SITES IN NEW YORK CITY ONLY							
IS THE REQUESTOR SEEKING TANGIBLE PROPERTY CREDITS?	YES	•	NO	0			
UPSIDE DOWN	YES	0	NO	0			
DEC DETERMINATION	AGREE		DISAGREE	Ξ 			
							
UNDERUTILIZED	YES	0	NO	0			
DEC DETERMINATION	AGREE		DISAGREE	<u> </u>			
AFFORDABLE HOUSING STATUS PLANNED	YES	0	NO	0			
DEC DETERMINATION	AGREE		DISAGREE	Ξ			
DISADVANTAGED COMMUNITY AND CONFORMING BOA	YES	•	NO	0			
DEC DETERMINATION	AGREE		DISAGREE	Ξ			
RENEWABLE ENERGY FACILITY SITE	YES	0	NO	0			
DEC DETERMINATION	AGREE		DISAGREE	Ξ			
NOTES:							

ATTACHMENT 1A – TAX MAP

NYC Digital Tax Map

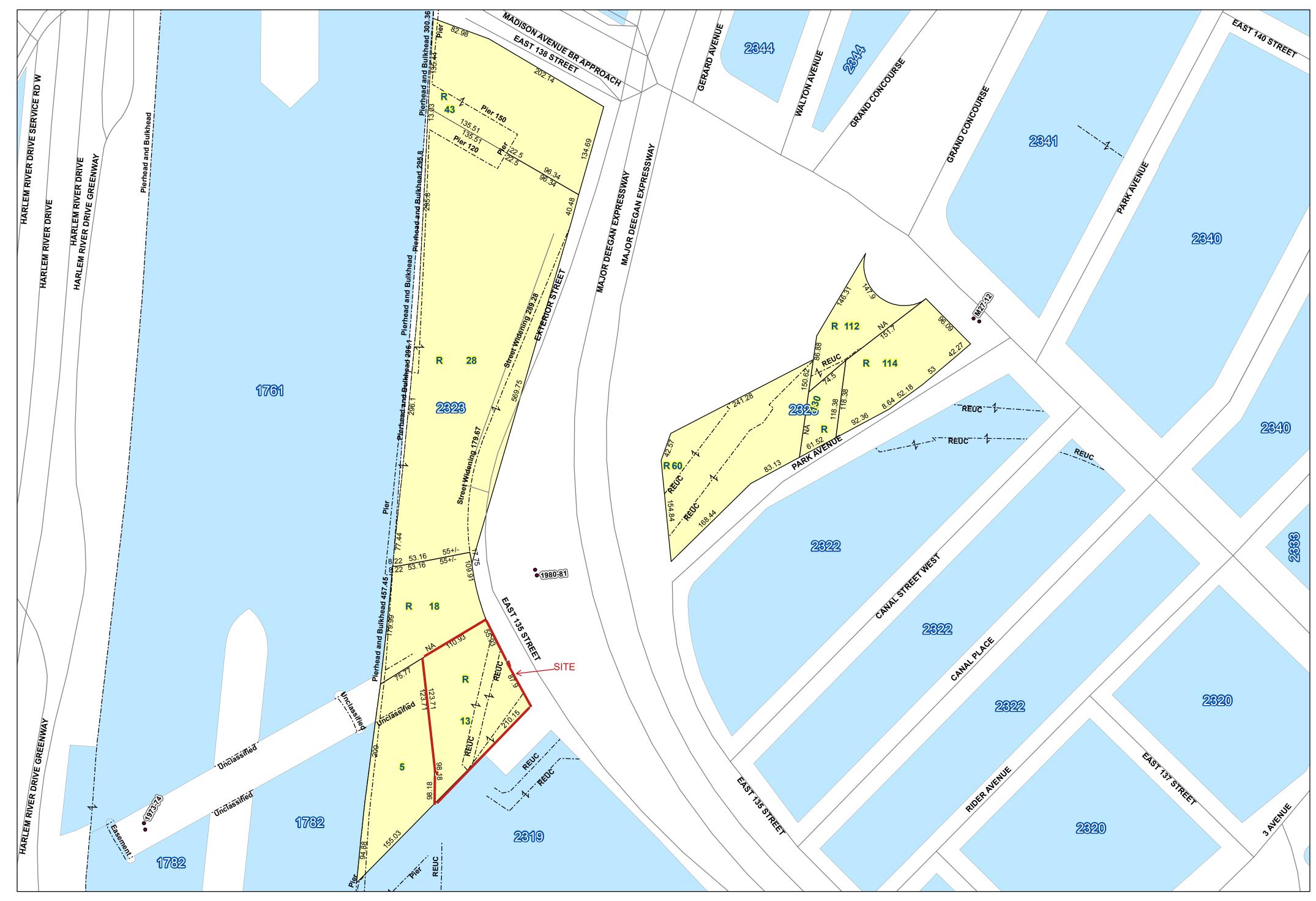
Effective Date : 05-02-2013 09:30:58 End Date : 02-02-2022 09:09:44

Bronx Block: 2323

Legend

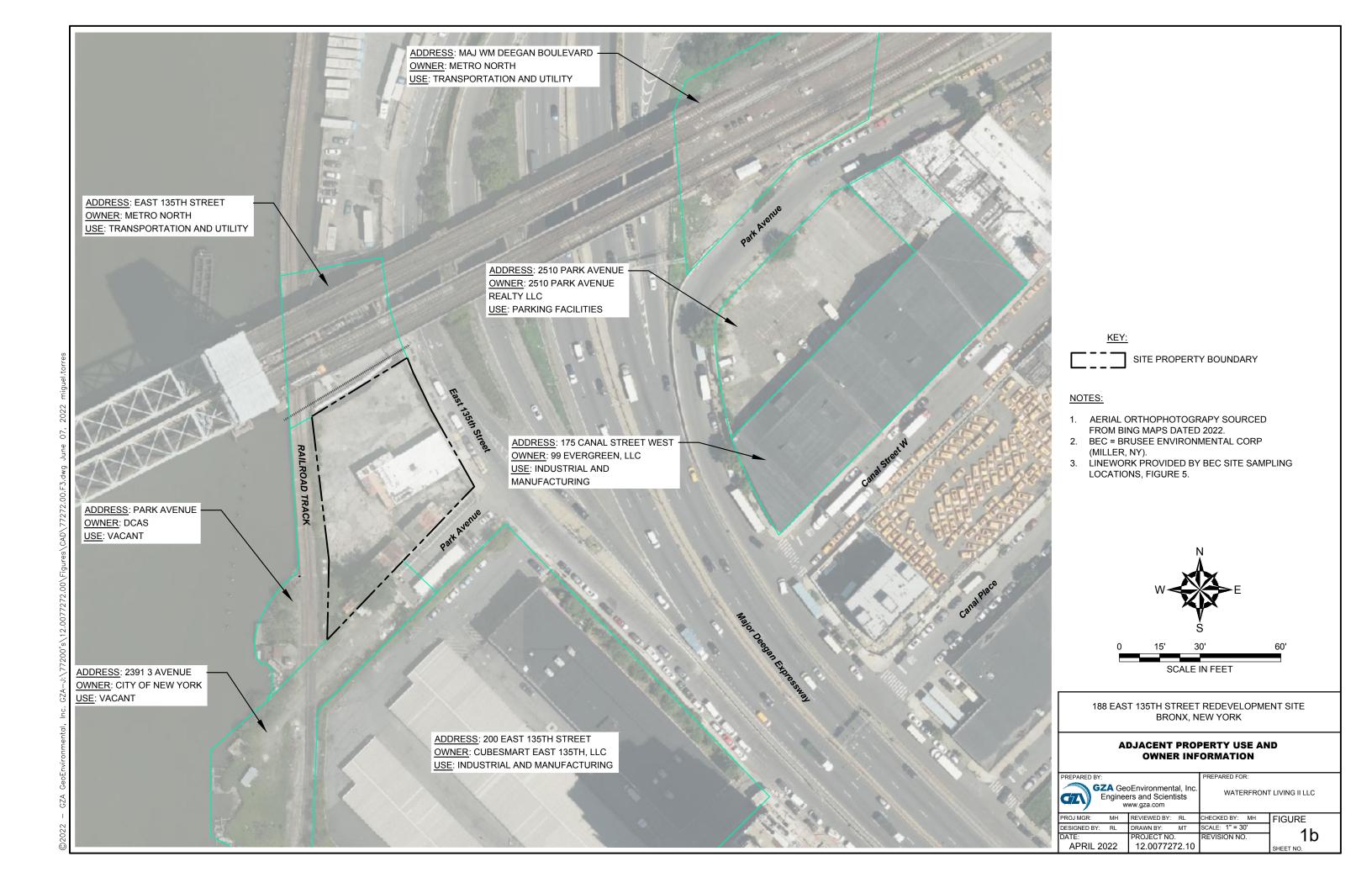
- Streets

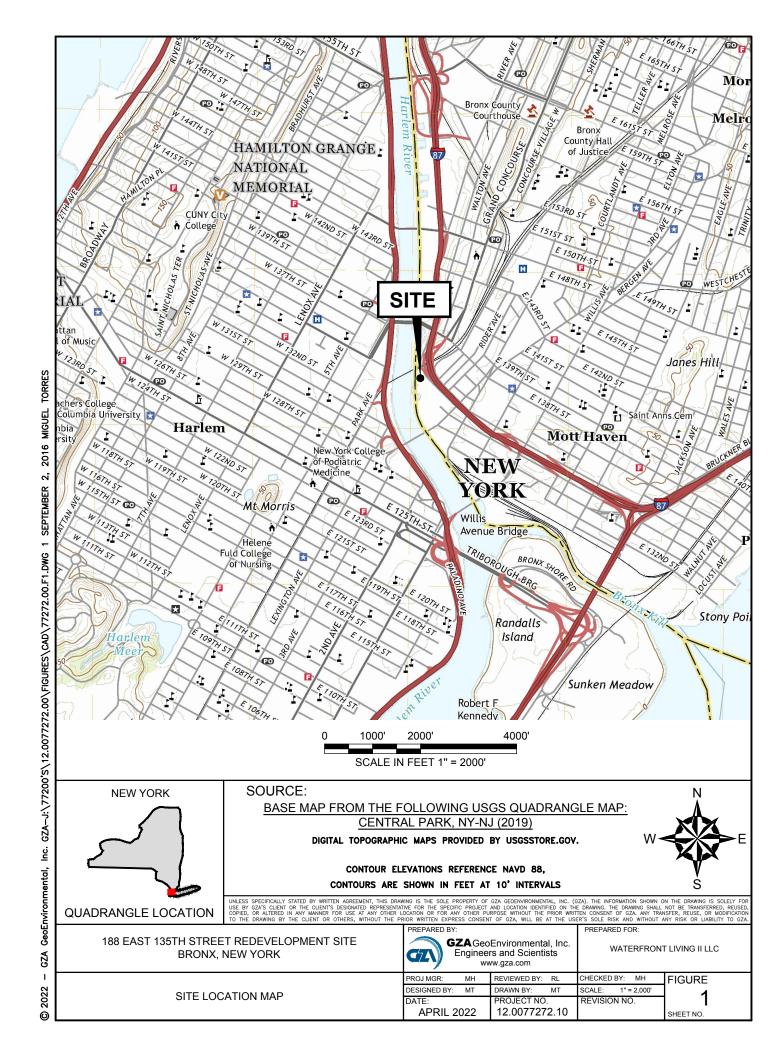

Miscellaneous TextPossession HooksBoundary Lines

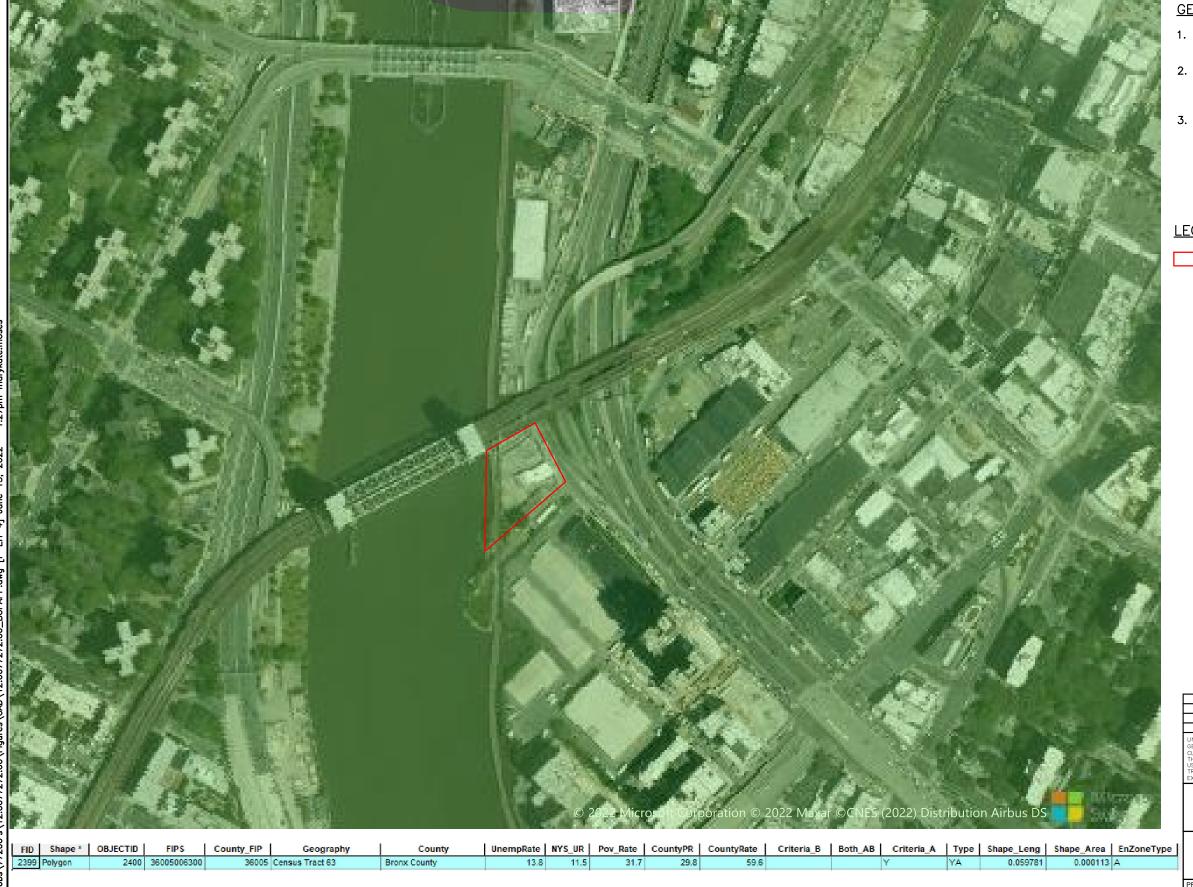

Lot Face Possession Hooks
Regular

----- Underwater

Tax Lot Polygon Condo Number


Tax Block Polygon




ATTACHMENT 1B – SITE AND TOPOGRAPHIC MAP

ATTACHMENT 1C - EN-ZONE MAP

GENERAL NOTES

- 1. BASE MAP DEVELOPED FROM MICROSOFT CORPORATION 2022
- GREEN SHADING REPRESENTS THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION EN-ZONE BOUNDARY (2013).
- 3. THE PURPOSE OF THIS DRAWING IS TO LOCATE, DESCRIBE, AND REPRESENT THE POSITIONS OF THE SURROUNDING AREA IN RELATION TO THE SUBJECT SITE. THIS DRAWING IS NOT CONSIDERED A LAND SURVEY. THE LOCATIONS SHOWN SHOULD BE CONSIDERED ACCURATE ONLY TO THE DEGREE IMPLIED BY THE METHOD USED.

LEGEND

APPROXIMATE SITE BOUNDARY

ISSUE/DESCRIPTION	BY	DATE
	ISSUE/DESCRIPTION	ISSUE/DESCRIPTION BY

LESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS THE SOLE PROPERTY OF GZA DENVIRONMENTAL, INC. (GZA). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR USE BY GZA'S ENT OR THE CLEUN'S DESIGNATED REPRESENTATIVE FOR THE SPECIFE PROJECT AND LOCATION IDENTIFIED ON E DRAWING. THE DRAWING SHALL NOT BE TRANSFERRED, REUSED, COPIED, OR ALTERED IN ANY MANNER FOR E AT ANY OTHER LOCATION OR FOR ANY OTHER PURPOSE WITHOUT THE PRIOR WRITTEN CONSENT OF GZA. ANY INSFER, REUSE, OR MODIFICATION TO THE DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTEN

> 188 EAST 135TH STREET BRONX, NY 10451

EN-ZONE MAP

PREPARED BY:			PREPARED FO	R:		
GZA GeoEnvironmental, INC. Engineers and Scientists www.gza.com				95 PINI	E STREE	CHARTER SCHOOLS ET, 6TH FLOOR C, NY 10005
PROJ MGR:	RM	REVIEWED BY:	SK	CHECKED BY:	SK	FIGURE

©2022 — GZA GeoEnvironmental of NY. GZA-1\GZAHAM1\Johs\77200's\12.0077272.00\Figures\CAD\12.0077272.00 BCPAPP.d

ATTACHMENT 1D - EASEMENTS

EASEMENTS AND RIGHT-OF WAYS

TUNNEL EASEMENT

Holder: The New York & Harlem Railroad Company and The New York Central and Hudson River Railroad Company, railroad corporations respectively organized and existing under the laws of the State of New York.

Description: Easement for subway tunnel under Park Avenue. Easement location depicted on tax map and Site survey.

SEWER EASEMENT

Holder: The City of New York a municipal corporation of the State of New York.

Description: Easement for sewer line traversing underneath Site. Easement location depicted on tax map and Site survey.

ATTACHMENT 1E	– PROPERTY DESCR	RIPTION AND ENV	/IRONMENTAL A	SSESSMENT

14. PROPERTY DESCRIPTION AND ENVIRONMENTAL ASSESSMENT

LOCATION

The Site is located at 188 East 135th Street in the Mott Haven neighborhood of Bronx, NY and is identified as Block 2323, Lot 13 on the New York City Tax Map. The Site is partially overgrown with tall weeds, small trees, and shrubbery along the perimeter of the Site and through cracks in the asphalt. A sewer line traverses the southern portion of the Site, and a subway tunnel is located underneath Park Avenue and a portion of the southern section of the Site.

SITE FEATURES

The property is approximately 25,464 square-feet (SF) and is currently developed with a vacant, 6,500 SF single-story building located on the east-central portion of the parcel with the building's front entrance facing East 135th Street to the north. The remainder of the Site consists of asphalt-paved parking lot and a small unpaved yard area.

CURRENT ZONING AND LAND USE

The Site is currently inactive and current zoning designation is residential (R7-2) with a commercial (C2-4) overlay. The proposed use of the new building is consistent with existing zoning for the property. The surrounding properties are generally industrial and commercial in usage or are vacant land. An evaluation of the United States Geological Survey (USGS) 7-½ Minute Topographic Map containing the property did not indicate any sensitive receptors located within a 0.125-mile radius of the Site other than the Harlem River. According to the United States Fish & Wildlife Service (FWS)'s National Wetland Inventory web application (https://www.fws.gov/program/national-wetlands-inventory) the Harlem River is classified as an estuarine and deep water habitat (E1UBL).

PAST USE OF THE SITE

Historic uses of the property included a railroad yard, a coal yard, a contractor's storage/supply yard, a likely dry cleaner, an auto wrecker, and an "iron and steel" company. The Site was developed with a rail spur associated the adjacent elevated railroad tracks by at least 1891. The rail spur was removed by 1908 and the Site remained undeveloped until 1923, when it was developed with the existing one-story commercial building, occupied by a pipe cutter. By the mid-1930s, northern and western portions were developed with several small one-story structures identified as a coal yard. By 1944, a truck scale was installed adjacent to the pipe cutting building. The coal company buildings were demolished between 1951 and 1968 and the pipe cutters building occupied by an auto wrecker. A small storage shed is also located north of the auto wrecker building. City directories indicated the Site was occupied by a "iron and steel" company in the early 1960s. By the late-1970s, the Site was occupied by a moving and storage company from until at least 2010. The Site was listed in the city directories as being occupied by Emerald Dry Cleaning in 2000. Several trucks operated by Emerald Dry Cleaners were observed in the yard areas of the Site during a 2018 Site inspection; however, the building was not accessible at the time of the inspection and the nature of Emerald's operations could not be confirmed.

SITE GEOLOGY AND HYDROGEOLOGY

The bedrock in this area of the Bronx is Inwood marble of early Cambrian to lower Ordovician age. Unconsolidated sediments overlie the bedrock and consist of Pleistocene-aged variable texture, typically poorly sorted till materials deposited by glacial-fluvial activity. Subsurface soils at the Site consist primarily of brown, dark brown and gray/brown silt-sand mixtures with brick fragments, gravel and pockets of crushed rock to depths as great as nine feet below grade. Deeper soils from approximately 6 to 10 feet below grade consisted primarily of brown and dark brown silt-sand mixtures

SECTION I PROPERTY INFORMATION

12.0077272.10

1D | 2

with gravel and rock. Groundwater at the Site was encountered at approximately eight to nine feet below ground surface (bgs) and likely flows generally to the west towards the Harlem River.

ENVIRONMENTAL ASSESSMENT

Based on investigations conducted to date, the primary contaminants of concern for the Site include lead in soil and volatile organic compounds (VOCs) in soil vapor (specifically tetrachloroethene [PCE] and methyl ethyl ketone [MEK]).

Soil

Contaminated soil/fill was identified throughout the Site to a depth up to at least 10 ft bgs. Contaminants including semivolatile organic compounds (SVOCs) (mostly polycyclic aromatic hydrocarbons [PAHs]) and metals were detected in soil samples at concentrations exceeding the Restricted Residential Soil Cleanup Objectives (RRSCOs) throughout the Site. With the exception of lead, exceedances were generally less than one order of magnitude above the RRSCO. Elevated lead concentrations (>2,000 mg/kg) were detected at several soil sample locations. Based on these results, further investigation to delineate and further evaluate lead concentrations in soil is warranted.

Groundwater

Groundwater impacts are generally related to background conditions at the Site or are naturally occurring. Contaminants detected in groundwater above applicable Ambient Water Quality Standards (AWQS) generally included metals (antimony, iron, lead, magnesium, manganese, and sodium). PAHs (maximum concentration of $0.64~\mu g/L$) and other metals (arsenic, beryllium, cadmium, chromium, copper, nickel, and thallium) were detected in one groundwater sample from a temporary well point (20MW2) in the northeast corner of the Site. Lead was detected at a concentration of 876 $\mu g/L$ at this location.

Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) were detected in the three groundwater samples (20MW1 to 20MW3) exceeding the NYSDEC Draft PFAS guidance values of 6.7 ng/L and 2.7 ng/L, respectively.

Soil Vapor

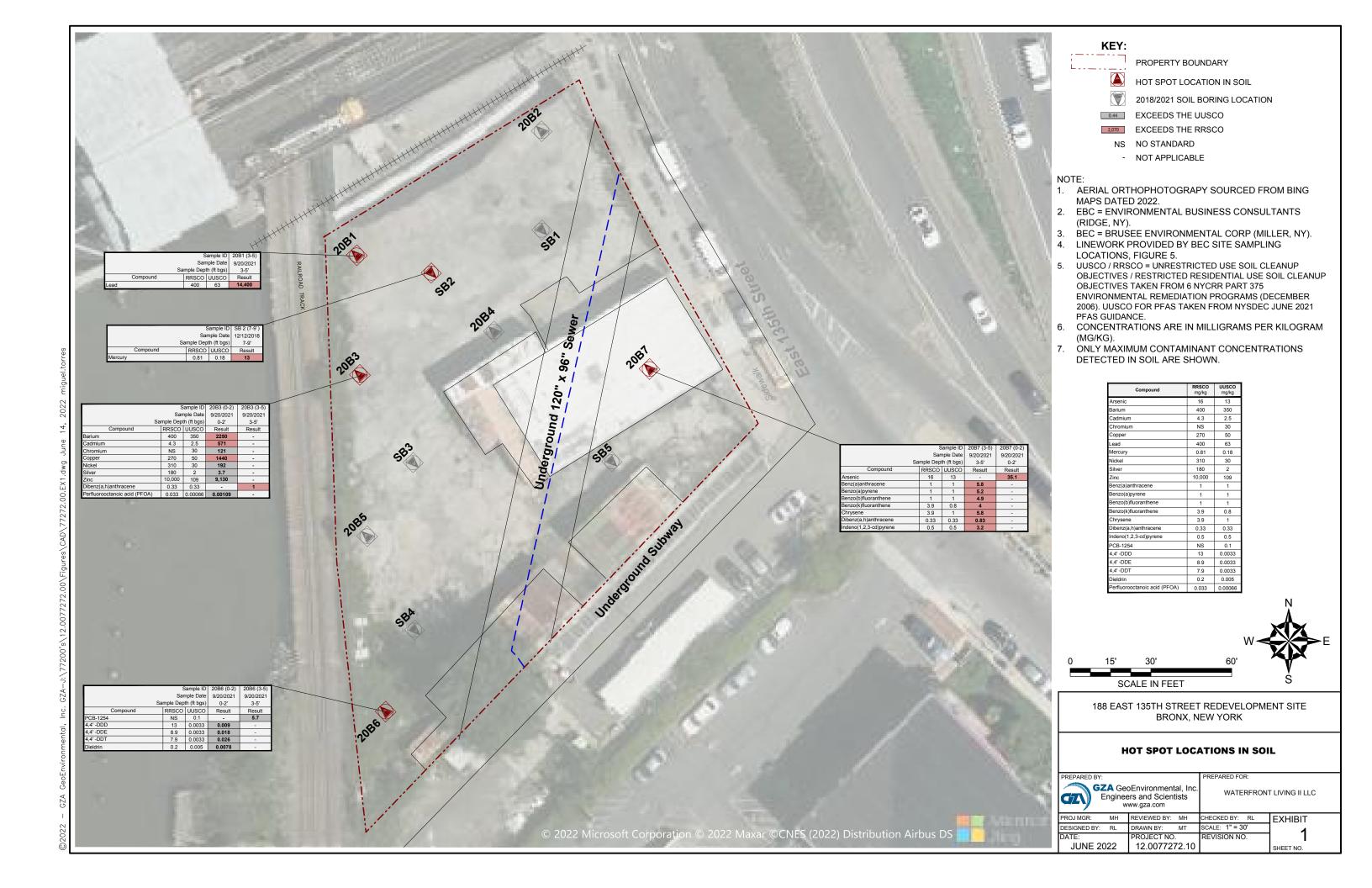
VOCs were detected in soil vapor and one sub-slab sample. Concentrations of petroleum-related VOCs (benzene, toluene, ethyl benzene, and xylenes [BTEX]) ranged from 16.5 $\mu g/m^3$ (20SV3) to 57.71 $\mu g/m^3$ (SS1). Concentrations of chlorinated VOCs (cVOCs) ranged from 1.11 $\mu g/m^3$ (SV2) to 488.6 $\mu g/m^3$ (20SV2). PCE was detected in one soil vapor sample (20SV2) at a concentration of 487 $\mu g/m^3$. Total VOCs in soil vapor ranged from 280.93 $\mu g/m^3$ (SS1) to 9,640.91 $\mu g/m^3$ (20SV2).

Concentrations of VOCs in the sub-slab sample were below the lowest sub-slab vapor matrix concentration provided in the New York State Department of Health (NYSDOH) Guidance for Evaluating Soil Vapor Intrusion in New York State, October 2006 (updated May 2017). NYSDOH only provides guidance values for sub-slab and indoor air samples collected concurrently. The potential need to include vapor mitigation as part of building construction will be discussed in the future Remedial Action Work Plan (RAWP).

Summary of Environmental Conditions

Exhibit 1 of this attachment depicts the "hot spot" locations in soil where the greatest exceedances of each respective contaminant were detected. The primary PAHs and metals of concern, their respective maximum concentrations compared to the RRSCOs, and depth of exceedances are summarized in the following table:

Contaminants of Concern	RRSCO (mg/kg)	Maximum Concentration (mg/kg)	Depth of RRSCO Exceedances (Range, ft bgs)
Benz(a)anthracene	1.0	5.8	0-12'
Benzo(a)pyrene	1.0	5.2	0-12'
Benzo(b)fluoranthene	1.0	4.9	0-12'
Benzo(k)fluoranthene	3.9	4	3-5′
Chrysene	3.9	5.8	3-5′
Dibenz(a,h)anthracene	0.33	1	0-12'
Indeno(1,2,3-cd)pyrene	0.5	3.2	0-12'
Arsenic	16	35.1	0-5'
Barium	400	2,250	0-5′
Cadmium	4.3	571	0-5′
Copper	270	1,440	0-12'
Lead	400	14,400	0-12'
Mercury	0.81	13	0-12'



12.0077272.10

1D | 4

EXHIBIT 1
Hot Spot Location Map

ATTACHMENT 2A – PROJECT DEVELOPMENT

4. DESCRIPTION OF DEVELOPMENT PROJECT

The redevelopment project consists of constructing a new 11-story mixed use (residential and commercial) building at the Site. The new building will consist of a 16,308 square-foot (SF) irregular-shaped slab-on-grade foundation constructed on the east side of the Site (along East 135th Street). The first and second floors will have a 16,308 SF footprint and the remaining floors will have an 8,700 SF footprint. Narrow side yard areas will be present along Park Avenue on the east side of the Site and along Metro North's Harlem River Railroad Bridge on the north side of the Site. A rear yard area consisting of a 40-foot wide shore public walkway will be located on the west side of the Site between the Harlem River and the railroad tracks.

The first floor will include a 6,400.24 SF retail space, 2,763.88 SF residential lobby, 2,528.98 SF recreation space, 2,631.57 SF mechanical room, and 1,983.33 SF parking entry with ramp leading to the second-floor parking garage. The second floor will consist of a parking garage for 53 vehicles, a bicycle storage area, elevator shafts, a stairwell and a ramp which will slope towards the main entrance/exit at the northeast corner of the Site. The remaining floors will consist of 8,700 SF of residential space divided into 11 apartments on each level.

The proposed building's slab-on-grade foundation will be constructed one to three feet above sidewalk grade. The foundation for the slab on grade building will consist of pile caps which will require excavation for each pile cap to depths varying between five and six ft below grade, and grade beams between the pile caps which will require excavation to approximately four feet below grade. Piles will also be installed along both sides of the sewer that runs across the middle of the Site, and excavation for the pile caps on either side of the sewer will be excavated to approximately 15 feet below grade. Excavation above the sewer to a depth of 10 feet will then be performed to install deep grade beams that will span over the sewer and connect the pile caps installed on either side of the sewer. Additional excavation to a depth of approximately five feet below grade will be performed for the elevator pit. Gravel, recycled concrete aggregate (RCA), and/or soil will then be imported to backfill around the pile caps, grade beams, and to raise grade to construct the building slab one to three ft above sidewalk grade.

The side yards to be constructed along both sides of the building and the rear shore public walkway to be constructed behind the rear of the building may require limited excavation (up to two feet) to install a cover system comprised of an asphalt paved walkway and precast paver walkway, and a layer of two feet of imported clean soil installed above a demarcation barrier.

The current zoning designation is residential (R7-2) with a commercial (C2-4) overlay. The proposed use of the new building is consistent with existing zoning for the property. The water table is present at a depth of approximately eight to nine feet below grade and dewatering will likely be required.

An estimated project schedule is as follows:

August 2022 Execution of Brownfield Cleanup Agreement

September 2022 Implementation of Remedial Investigation Work Plan

November 2022 Submit Remedial Investigation Report/Remedial Action Work Plan

April 2023 Approval of Remedial Investigation Report/Remedial Action Work Plan

May 2023 Implementation of Remedial Action Work Plan/Start of Construction

SECTION II PROJECT DESCRIPTION

12.0077272.10

2A | 2

May 2025

Completion of Building Construction

July 2025

Submission of Final Engineering Report

December 2025

Certificate of Completion

ATTACHMENT 3A – LAND USE FACTORS

4. CURRENT BUSINESS OPERATIONS/USES

The Site and existing 6,500 SF building have been vacant since the Site was purchased on July 27, 2021.

6. PROPOSED POST-REMEDIATION USE

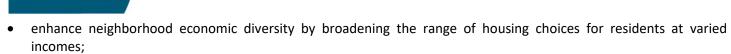
The redevelopment project consists of constructing a new 11-story mixed use (residential and commercial) building at the Site. Narrow side yard areas will be present along Park Avenue on the east side of the Site and along Metro North's Harlem River Railroad Bridge on the north side of the Site. A rear yard area consisting of a 40-foot wide shore public walkway will be located on the west side of the Site between the Harlem River and the railroad tracks.

The first floor will include a 6,400.24 SF retail space, 2,763.88 SF residential lobby, 2,528.98 SF recreation space, 2,631.57 SF mechanical room, and 1,983.33 SF parking entry with ramp leading to the second-floor parking garage. The second floor will consist of a parking garage for 53 vehicles, a bicycle storage area, elevator shafts, a stairwell and a ramp which will slope towards the main entrance/exit at the northeast corner of the Site. The remaining floors will consist of 8,700 SF of residential space divided into 11 apartments on each level.

9. CONSISTENCY WITH ZONING

The Site is currently zoned within the residential (R7-2) with a commercial (C2-4) overlay district, allowing for both residential and commercial development. Accordingly, the proposed post-remediation use is consistent with the applicable zoning.

10. CONSISTENCY WITH LAND USE PLANS


The Site is in the "Special Harlem River Waterfront District" which is designed to:

- maintain and reestablish physical and visual public access to and along the waterfront;
- create a lively and attractive built environment that will provide amenities and services for the use and enjoyment of
 area residents, workers and visitors;
- promote the pedestrian orientation of ground floor uses in appropriate locations, and thus safeguard a traditional quality of higher density areas of the City;
- encourage well-designed development that complements the built character of the neighborhood;
- take advantage of the Harlem River waterfront and provide an open space network comprised of parks, public open space and public access areas;
- provide flexibility of architectural design within limits established to assure adequate access of light and air to streets and public access areas, and thus encourage more attractive and economic building forms;

SECTION III LAND USE FACTORS

3A | 2

- encourage investment in mixed residential and industrial neighborhoods by permitting expansion and new development of a wide variety of uses in a manner that will safeguard the health and safety of people using the area; and
- promote the most desirable use of land and building development in accordance with the District Plan for the Harlem River waterfront and thus conserve the value of land and buildings and thereby protect City tax revenues.

To address these goals the redevelopment project includes the construction of a 40-foot wide (6,442 SF) shore public walkway on the west side of the Site. A voluntary public access area (2,547 SF) is located on the south side of the Site along Park Avenue.

ATTACHMENT 4A – PROPERTY'S ENVIRONMENTAL HISTORY

1.0 PREVIOUS SITE INVESTIGATIONS

1.1 PHASE I ENVIRONMENTAL SCREENING REPORT, JANUARY 2018

The 2018 Phase I identified several RECs and other environmental concerns related to the historic use of the property, including a railroad yard, a coal yard, a contractor's storage/supply yard, its likely use as a dry cleaner¹, and the historic industrial use of the surrounding properties. Other site uses/operations included an auto wrecker and an "iron and steel company." The Phase I indicated the property was assigned an E-designation (E-227) for Hazmat and Noise during the Lower Concourse Rezoning and Related Actions completed by the City in June 2009 (CEQR 08DCP071X).

1.2 <u>LIMITED PHASE II INVESTIGATION REPORT, JANUARY 2019</u>

In December 2018, EBC performed a limited Phase II subsurface investigation to evaluate the RECs identified during its January 2018 Phase I. The results of the investigation were documented within a January 2019 Limited Phase II Investigation Report. EBC performed the following activities:

- Advancement of five soil borings (SB1 to SB5) and collection of five soil samples for chemical analyses (volatile organic compounds [VOCs], semi-volatile organic compounds [SVOCs], and total metals).
- Installation of three temporary groundwater monitoring wells (GW1 to GW3) and collection of three groundwater samples for chemical analysis (VOCs only).
- Collection of two sub-surface soil vapor samples (SV1 and SV2) and one sub-slab soil vapor sample (SS1) from beneath
 the central portion of the Site building for VOC chemical analysis.

During the 2018 Phase II subsurface investigation, depth to groundwater ranged from approximately 10 to 12 ft bgs. Soils consisted generally of brown to black silty sand, with fill material (concrete, brick, and asphalt) extending to a depth of 10 ft bgs. At borings SB3 and SB5, some clay and silty clay were present at depths below 8 to 10 ft.

Results of the soil sampling are summarized as follows:

- SVOCs, including benzo(a)anthracene (3.4 mg/kg), benzo(a)pyrene (3.2 mg/kg), benzo(b)fluoranthene (3.0 mg/kg), benzo(k)fluoranthene (2.7 mg/kg), chrysene (3.4 mg/kg), dibenz(a,h)anthracene (0.72 mg/kg), and indeno(1,2,3-cd)pyrene (2.1 mg/kg), were detected above their respective Unrestricted Use Soil Cleanup Objectives (UUSCOs) at a depth of 10 to 12 ft bgs at soil boring location SB1. Of these SVOCs, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene also exceeded their respective Restricted Residential Soil Cleanup Objectives (RRSCOs).
- Metals, including arsenic (maximum [max.] concentration 15.8 mg/kg), cadmium (max. concentration 3.44 mg/kg), chromium (max. concentration 46.4 mg/kg), copper (max. concentration 308 mg/kg), lead (max. concentration 959 mg/kg), mercury (max. concentration 13 mg/kg), and zinc (max. concentration 877 mg/kg), were detected above their

¹ The Phase I indicates the Site address (188 East 135th Street) was listed in the city directories as being occupied by Emerald Dry Cleaning in 2000. Several trucks operated by Emerald Dry Cleaners were observed in the yard areas of the Site during the 2018 Site inspection; however, the building was not accessible at the time of the inspection and the nature of Emerald's operations could not be confirmed.

SECTION IV PROPERTY'S ENVIRONMENTAL HISTORY

4A | 2

respective UUSCOs at soil boring locations SB1 (10 to 12 ft bgs), SB2 (7 to 9 ft bgs), SB3 (7 to 9 ft bgs), and SB4 (8 to 10 ft bgs). Of these metals, copper, lead, and mercury also exceeded the respective RRSCOs.

- Concentrations of VOCs were non-detect (ND) or detected below the applicable SCOs in all five soil samples.
- All contaminant concentrations were ND or detected below the applicable SCOs in soil sample SB5 (8 to 10 ft bgs).

Findings of the groundwater sampling are summarized as follows:

Concentrations of VOCs were ND or were detected below the applicable Ambient Water Quality Standards (AWQS) in all three groundwater samples.

Findings of the soil vapor sampling are summarized as follows:

- Concentrations of petroleum-related VOCs (benzene, toluene, ethyl benzene, and xylenes [BTEX]) ranged from 29.45 $\mu g/m^3$ (SV2) to 57.71 $\mu g/m^3$ (SS1).
- Concentrations of chlorinated VOCs (cVOCs) ranged from 1.11 µg/m³ (SV2) to 6.41 µg/m³ (SS1).
- Total VOCs ranged from 280.93 μ g/m³ (SS1) to 606.62 μ g/m³ (SV1).
- Concentrations of VOCs in the sub-slab sample were below the lowest sub-slab vapor matrix concentration provided in the New York State Department of Health (NYSDOH) Guidance for Evaluating Soil Vapor Intrusion in New York State, October 2006 (updated May 2017).

1.3 REMEDIAL INVESTIGATION REPORT, NOVEMBER 2021

In September and October 2021, BEC performed a RI designed to collect additional soil data in preparation of the proposed Site redevelopment. The findings of September 2021 investigation were reported in the November 2021 RIR. BEC performed the following activities:

- Site inspection to identify areas of concern (AOCs) and physical obstructions (i.e., structures, buildings, etc.).
- Completion of a geophysical survey at the Site via ground penetrating radar (GPR).
- Advancement of seven soil borings (20B1 to 20B7) and collection of 15 soil samples (including one field duplicate at 20B7) for chemical analyses (VOCs, SVOCs, total metals, pesticides, polychlorinated biphenyls [PCBs], and 1,4dioxane). Soil samples were collected from two depths: 0 to 2 ft bgs (surface samples) and 3 to 5 ft bgs (representative of the excavation depth required for pile caps for the proposed redevelopment). BEC also collected groundwater and soil vapor samples during the RI. Soil sample 20SB3 (0 to 2 ft bgs) was additionally analyzed for per- and polyfluoroalkyl substances (PFAS).
- Installation of four temporary groundwater monitoring wells (20MW1 to 20MW4) and collection of five groundwater samples (including one field duplicate at 20MW4) for chemical analyses (VOCs, SVOCs, total and dissolved metals, pesticides, and PCBs). Groundwater samples 20MW1 to 20MW3 were additionally analyzed for PFAS and 1,4-dioxane.
- Collection of five sub-surface soil vapor samples (20SV1 and 20SV5) and one sub-slab soil gas sample (20SV1) from beneath the vacant Site building, for VOC analysis.

SECTION IV PROPERTY'S ENVIRONMENTAL HISTORY

12.0077272.10

4A | 3

During the 2021 RI depth to groundwater ranged from approximately 8 to 9 ft bgs. Regional groundwater flow is expected to be towards the west in the direction of the Harlem River which is located approximately 20 ft to the west of the Site. The stratigraphy of the Site generally consisted of brown, dark brown and gray/brown silt-sand mixtures with brick fragments, gravel and pockets of crushed rock to 9 ft bgs, followed by brown to dark brown sandy silt with some gravel.

Findings of the soil sampling are summarized as follows:

- SVOCs, including benzo(a)anthracene (max. concentration 5.8 mg/kg), benzo(a)pyrene (max. concentration 5.2 mg/kg), benzo(b)fluoranthene (max. concentration 4.9 mg/kg), benzo(k)fluoranthene (max concentration 4.0 mg/kg), chrysene (max. concentration 5.8 mg/kg), dibenz(a,h)anthracene (max. concentration 1.0 mg/kg), and indeno(1,2,3-cd)pyrene (max. concentration 3.2 mg/kg), were detected above their respective RRSCOs and/or UUSCOs at most soil sample locations collected from both the surface (0 to 2 ft bgs) and deeper interval (3 to 5 ft bgs).
- Benzene was detected at 0.14 mg/kg in soil sample 20B6 (3 to 5 ft bgs), which exceeds the applicable UUSCO but is below the RRSCO. No other VOCs were detected above UUSCOs or RRSCOs.
- Metals, including arsenic (max. concentration 35.1 mg/kg), barium (max. concentration 2,250 mg/kg), cadmium (max. concentration 571 mg/kg), chromium (max. concentration 138 mg/kg), copper (max. concentration 1,440 mg/kg), lead (max. concentration 14,400 mg/kg), mercury (max. concentration 8.05 mg/kg), nickel (max. concentration 192 mg/kg), silver (max. concentration 3.7 mg/kg), and zinc (max. concentration 9,130 mg/kg), were detected above their respective RRSCOs and/or UUSCOs at most soil sample locations collected from both the surface (0 to 2 ft bgs) and deeper interval (3 to 5 ft bgs).
- Elevated concentrations of lead (>2,000 mg/kg) were identified in soil samples 20B1 (3 to 5 ft bgs; 14,400 mg/kg), 20B3 (0 to 2 ft bgs; 6,530 mg/kg), 20B4 (0 to 2 ft bgs; 2,070 mg/kg), 20B5 (0 to 2 ft bgs; 6,970 mg/kg), and 20B7 (0 to 2 ft bgs; 3,360 mg/kg).
- PCB-1254 was detected at concentrations above the applicable UUSCO in soil samples 20B3 (0 to 2 ft bgs; 4.7 mg/kg),
 20B6 (3 to 5 ft bgs; 5.7 mg/kg), and 20B5 (0 to 2 ft bgs; 1.9 mg/kg).
- Pesticides, including 4,4'-DDD (0.009 mg/kg), 4,4'-DDE (0.018 mg/kg), 4,4'-DDT (0.026 mg/kg), and dieldrin (0.0078 mg/kg), were detected above the respective UUSCOs in soil sample 20B6 (0 to 2 ft bgs).
- Concentrations of 1,4-dioxane were ND in the 15 soil samples.
- Six PFAS compounds were detected in soil sample 20SB3 (0 to 2 ft bgs), totaling 9.027 nanograms per gram (ng/g). These detections included perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), for which guidance values exist in the June 2021 PFAS guidance. PFOA was detected in soil sample 20SB3 (0-2') at 1.09 ng/g, which exceeds the Unrestricted Use guidance value of 0.66 ng/g. PFOS was detected in soil sample 20SB3 (0-2') at 0.524 ng/g, which is lower than the guidance value.

Findings of the groundwater sampling are summarized as follows:

- SVOCs, including benzo(a)anthracene (0.49 ug/L), benzo(a)pyrene (0.64 ug/L), benzo(b)fluoranthene (0.57 ug/L), benzo(k)fluoranthene (0.49 ug/L), chrysene (0.49 ug/L), and indeno(1,2,3-cd)pyrene (0.64 ug/L), were detected above the applicable AWQS in groundwater sample 20MW2.
- VOC concentrations were ND or were detected below the applicable AWQS in all five groundwater samples.

SECTION IV PROPERTY'S ENVIRONMENTAL HISTORY

- Total/dissolved metals, including antimony (max. concentration 10.6 ug/L), arsenic (max. concentration 33 ug/L), beryllium (max. concentration 11 ug/L), cadmium (max. concentration 8 ug/L), chromium (max. concentration 191 ug/L), copper (max. concentration 358 ug/L), iron (max. concentration 203,000 ug/L), lead (max. concentration 876 ug/L), magnesium (max. concentration 87,700 ug/L), manganese (max. concentration 7,540 ug/L), nickel (max. concentration 165 ug/L), sodium (max. concentration 369,000 ug/L), and thallium (max. concentration 2 ug/L), were detected above the applicable AWQS in most of the groundwater samples collected.
- Pesticide concentrations were ND in all five groundwater samples.
- PCB concentrations were ND in all five groundwater samples.
- 1,4-dioxane concentrations were ND in groundwater samples 20MW to 20MW3.
- PFOA and PFAS were detected in the three groundwater samples (20MW1 to 20MW3) exceeding the PFAS guidance value of 10 ng/L. No other PFAS compounds were detected above the guidance value of 100 ng/L and the total PFAS concentration was below the screening level of 500 ng/L.

Findings of the soil vapor sampling are summarized as follows:

- Concentrations of petroleum-related VOCs (BTEX) ranged from 16.5 μg/m³ (20SV3) to 41.53 μg/m³ (20SV1).
- Concentrations of cVOCs ranged from 2.75 μ g/m³ (20SV1) to 488.6 μ g/m³ (20SV2). Concentrations of PCE detected in 20SV2 (487 μ g/m³) were above the NYSDOH air guideline value of 100 μ g/m³.
- Total concentrations of VOCs ranged from 3,252.3 μg/m³ (20SV4) to 9,640.91 μg/m³ (20SV2).
- Concentrations of methylene chloride and TCE were ND or were detected below the NYSDOH air guideline values.

1.4 SUMMARY OF PREVIOUS INVESTIGATIONS

Contaminated soils were identified throughout the Site to a depth up to 10 ft bgs. Native soils at the Site below 10 ft bgs were not specifically described or characterized by EBC or BEC in 2018/2021. Contaminants, including SVOCs and metals, were detected in soil samples at concentrations exceeding the RRSCOs and/or UUSCOs at the sample locations on the Site. Elevated lead concentrations (>2,000 mg/kg) were detected at several soil sample locations during the 2021 RI. Based on these results, further investigation to delineate and further evaluate lead concentrations in soil is warranted.

Contaminants were also identified in the 2018/2021 groundwater and soil vapor samples. VOCs were detected in soil vapor and the sub-slab sample. NYSDOH only provides guidance values for sub-slab and indoor air samples collected concurrently. The potential need to include vapor mitigation as part of building construction will be discussed in the future Remedial Action Work Plan (RAWP). GZA does not propose further investigation of groundwater or soil vapor at the Site.

ATTACHMENT 4B – DATA TABLES

Attachment 4B - Table 1a Soil Data Summary Table (RRSCO)

188 East 135th Street Redevelopment Site Bronx, New York

Analytes >RRSCO	Detections >RRSCO	Max. Detection (ppm)	RRSCO (ppm)
Metals			
Arsenic	4	35.1	16
Barium	5	2,250	400
Cadmium	3	571	4.3
Copper	3	1,440	270
Lead	9	14,400	400
Mercury	9	13	0.81
Volatile Organic Compo	unds		
	No detections >	RRSCO.	
Semivolatile Organic Co	ompounds		
Benz(a)anthracene	9	5.8	1.0
Benzo(a)pyrene	10	5.2	1.0
Benzo(b)fluoranthene	10	4.9	1.0
Benzo(k)fluoranthene	1	4	3.9
Chrysene	2	5.8	3.9
Dibenz(a,h)anthracene	9	1	0.33
Indeno(1,2,3-cd)pyrene	10	3.2	0.5
Polychlorinated Biphen	yls		
	No detections >	RRSCO.	
Pesticides			
	No detections >	RRSCO.	
Emerging Contaminants	3		
	No detections >	RRSCO.	

^{1.} ppm = parts per million (mg/kg)

^{2.} RRSCO = Restricted Residential Use Soil Cleanup Criterion (6 NYCRR Part 375) or Restricted Residential Use PFAS Soil Guidance Value (June 2021)

Attachment 4B - 1b Soil Data Summary Table (UUSCO)

188 East 135th Street Redevelopment Site Bronx, New York

Analytes >UUSCO	Detections >UUSCO	Max. Detection (ppm)	UUSCO (ppm)
Metals			
Arsenic	5	35.1	13
Barium	5	2,250	350
Cadmium	6	571	2.5
Chromium	8	121	30
Copper	11	1,440	50
Lead	16	14,400	63
Mercury	18	13	0.18
Nickel	5	192	30
Silver	2	3.7	2
Zinc	15	9,130	109
Volatile Organic Compo	unds		
Benzene	1	0.14	0.06
Semivolatile Organic Co	mpounds		
Benz(a)anthracene	9	5.8	1.0
Benzo(a)pyrene	10	5.2	1.0
Benzo(b)fluoranthene	10	4.9	1.0
Benzo(k)fluoranthene	10	4	8.0
Chrysene	10	5.8	1.0
Dibenz(a,h)anthracene	9	1	0.33
Indeno(1,2,3-cd)pyrene	10	3.2	0.5
Polychlorinated Bipheny	yls		
PCB-1254	3	5.7	0.1
Pesticides			
4,4' -DDD	1	0.009	0.0033
4,4' -DDE	1	0.018	0.0033
4,4' -DDT	1	0.026	0.0033
Dieldrin	1	0.0078	0.005
Emerging Contaminants	3		
PFOA	1	0.00109	0.00066

^{1.} ppm = parts per million (mg/kg)

^{2.} UUSCO = Unrestricted Use Soil Cleanup Criterion (6 NYCRR Part 375) or Unrestricted Use PFAS Soil Guidance Value (June 2021)

^{3.} PFOA = Perfluorooctanoic acid

Attachment 4B - Table 1c Groundwater Data Summary Table

188 East 135th Street Redevelopment Site Bronx, New York

Analytes >AWQS	Detections >AWQS	Max. Detection (ppb)	AWQS (ppb)
Metals		(1-1-7)	(11-7)
Antimony (Total)	0	2.9	3
Antimony (Dissolved)	2	10.6	3
Arsenic (Total)	1	33	25
Arsenic (Dissolved)	0	6	25
Beryllium (Total)	1	11	3
Beryllium (Dissolved)	0	ND	3
Cadmium (Total)	1	8	5
Cadmium (Dissolved)	0	ND	5
Chromium (Total)	1	191	50
Chromium (Dissolved)	0	ND	50
Copper (Total)	1	358	200
Copper (Dissolved)	0	4	200
Iron (Total)	5	203,000	300
Iron (Dissolved)	0	220	300
Lead (Total)	2	876	25
Lead (Dissolved)	0	4	25
Magnesium (Total)	5	87,700	35,000
Magnesium (Dissolved)	3	40,600	35,000
Manganese (Total)	5	7540	300
Manganese (Dissolved)	4	1670	300
Nickel (Total)	1	165	100
Nickel (Dissolved)	0	4	100
Sodium (Total)	5	369,000	20,000
Sodium (Dissolved)	5	361,000	20,000
Thallium (Total)	1	2	0.5
Thallium (Dissolved)	0	ND	0.5
Volatile Organic Compo	ounds		
	No detections >	AWQS.	
Semivolatile Organic Co	ompounds		
Benz(a)anthracene	1	0.49	0.002
Benzo(b)fluoranthene	1	0.57	0.002
Benzo(k)fluoranthene	1	0.49	0.002
Chrysene	1	0.49	0.002
Indeno(1,2,3-cd)pyrene	1	0.64	0.002
Polychlorinated Biphen	-		
	No detections >	AWQS.	
Pesticides			
	No detections >	AWQS.	
Emerging Contaminant	S		
PFOA	3	0.0353	0.0067
PFOS	3	0.0255	0.0027

- 1. ppb = parts per billion (ug/L)
- 2. AWQS = Class GA Ambient Water Quality Standards or Draft Water Quality Guidance Values for Emerging Contaminants.
- 3. ND = Not Detected
- 4. PFOA = Perfluorooctanoic acid
- 5. PFOS = Perfluorooctanesulfonic acid

Attachment 4B - Table 1d Sub-slab Soil Gas & Soil Vapor Data Summary Table

188 East 135th Street Redevelopment Site Bronx, New York

Analytes	Total Detections	Max. Detection (ug/m3)	Туре
Chlorinated Volatile Org	anic Compounds		
1,1,1-Trichloroethane	1	6	Soil Vapor
Bromodichloromethane	1	6.13	Soil Vapor
Carbon Tetrachloride	1	0.33	SSSG
Chloroform	1	149	Soil Vapor
Dichlorodifluoromethane	5	9.79	Soil Vapor & SSSG
Methylene Chloride	2	64.9	Soil Vapor
Tetrachloroethene	8	487	Soil Vapor & SSSG
Trichloroethene	3	2.74	Soil Vapor & SSSG
Trichlorofluoromethane	3	11.1	Soil Vapor & SSSG
Vinyl Chloride	1	0.49	Soil Vapor

- 1. ug/m3 = micrograms per meter cubed
- 2. SSSG = Sub-slab soil gas

Attachment 4B - Table 2a Soil Sampling Results (2018-2021) - Metals

188 East 135th Street Redevelopment Site Bronx, New York

		Sample ID	SB 1 (10-12`)	SB 2 (7-9`)	SB 3 (7-9`)	SB 4 (8-10`)	SB 5 (8-10`)	20B2 (0-2)	20B2 (3-5)	20B1 (0-2)	20B1 (3-5)	20B3 (0-2)	20B3 (3-5)	20B4 (0-2)	20B4 (3-5)	20B6 (0-2)	20B6 (3-5)	20B5 (0-2)	20B5 (3-5)	20B7 (0-2)	20B7 (3-5)	20B7 (3-5)D	Number of	Number of
	Sample	Depth (ft bgs)	10-12	7-9	7-9	8-10	8-10	0-2	3-5	0-2	3-5	0-2	3-5	0-2	3-5	0-2	3-5	0-2	3-5	0-2	3-5	3-5	Samples	Samples
	C	ollection Date	12/12/2018	12/12/2018	12/12/2018	12/12/2018	12/12/2018	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	Exceeding	Exceeding
		Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	the	the
		Unit	ma/ka	ma/ka	mg/kg	ma/ka	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ma/ka	mg/kg	mg/kg	mg/kg	mg/kg	ma/ka	ma/ka	ma/ka	mg/kg	mg/kg	mg/kg	Respective UUSCO	Respective RRSCO
Compound	RRSCO	UUSCO	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	00300	RRSCO
Aluminum	NS	NS	5,850	9,320	9,190	9,910	12.400	9,160	10,600	8,870	8.190	9,050	8,370	10,500	19,900	6,560	9.150	7,120	8,730	6,540	6,860	9,240	NA	NA
Antimony	NS	NS	15.1	< 4.0	< 3.7	< 3.8	< 3.7	< 3.2	< 4.0	< 3.7	< 3.5	96.4	< 4.1	< 3.3	< 3.4	< 3.5	< 3.5	44	< 3.4	< 3.5	< 3.3	< 4.0	NA	NA
Arsenic	16	13	15.8	8.39	8.23	5.21	2.64	2.45	< 0.80	3.2	5.36	23.6	22	2.91	1.25	4.27	7.58	23.6	6.27	35.1	9.49	6.14	5	4
Barium	400	350	168	285	203	71.1	27.3	69.1	6.8	56.7	461	2,250	343	62.5	96.5	200	1,540	1,330	139	451	147	132	5	5
Beryllium	72	7.2	0.44	0.52	0.56	0.49	0.53	0.34	0.55	< 0.30	< 0.28	< 0.32	0.39	0.53	0.8	0.39	0.37	0.33	0.42	0.95	0.47	0.45	0	0
Cadmium	4.3	2.5	3.44	2.61	0.9	0.43	< 0.37	1.05	0.59	0.9	2.14	571	2.4	0.34	< 0.34	0.9	2.58	67.9	0.49	7.71	2.12	0.49	6	3
Calcium	NS	NS	48,200	44,500	6,280	1,540	7,670	166,000	227,000	13,900	45,500	32,200	15,000	46,200	26,500	32,500	23,800	26,200	7,310	48,800	14,500	6,720	NA	NA
Chromium	NS	30	46.3	23.2	34.8	17.4	17.9	16.3	14.5	21.5	21.8	121	33	16.4	35.3	34.2	26.7	138	18	34	19.4	18.7	8	NA
Cobalt	NS	NS	10.3	9.08	8.51	10.7	6.1	7.18	6.02	11.2	7.39	31.3	18.6	8.4	15.6	7.55	8.59	22.9	9.48	10	9.39	9.76	NA	NA
Copper	270	50	308	159	63.9	26.8	25.3	117	13.2	27.6	35.2	1,440	159	42	33.8	98.8	128	476	35.6	125	152	40	11	3
Iron	NS	NS	59,600	39,300	25,000	20,000	14,700	16,700	10,600	17,800	14,600	145,000	97,200	17,700	26,200	14,800	24,600	86,100	22,100	61,000	26,500	22,500	NA	NA
Lead	400	63	662	959	382	62.6	11.7	240	3.3	75.9	14,400	6,530	895	2,070	18.9	295	951	6,970	289	3,360	396	286	16	9
Magnesium	NS	NS	14,000	4,420	3,000	2,980	6,300	8,010	7,750	6,110	15,500	4,270	5,710	6,840	12,100	5,900	3,670	4,230	3,100	11,000	9,720	3,160	NA	NA
Manganese	2,000	1,600	597	398	228	293	110	240	189	268	251	954	601	238	346	247	407	590	270	437	370	363	0	0
Mercury	0.81	0.18	1.29	13	0.53	0.24	0.03	1.12	0.04	0.21	1.09	7.1	1.19	0.44	0.2	0.28	1.66	8.05	0.21	0.84	0.55	0.26	18	9
Nickel	310	30	38.3	18.5	43.2	16.3	14.4	13.4	11.7	19.2	14.4	192	28.5	18.5	28.9	28.5	23.4	91.4	16.9	25.7	54.3	18	5	0
Potassium	NS	NS	1,120	1,840	1,310	2,030	1,470	2,470	2,560	1,800	1,950	2,130	4,350	2,330	7,720	1,400	1,560	1,510	2,070	966	1,440	2,080	NA	NA
Selenium	180	3.9	< 1.5	< 1.6	< 1.5	< 1.5	< 1.5	< 1.3	< 1.6	< 1.5	< 1.4	< 1.6	< 1.6	< 1.3	< 1.4	< 1.4	< 1.4	2.1	< 1.3	2.5	< 1.3	< 1.6	0	0
Silver	180	2	< 0.37	< 0.40	< 0.37	< 0.38	< 0.37	< 0.32	< 0.40	< 0.37	< 0.35	3.7	< 0.41	< 0.33	< 0.34	< 0.35	0.4	2.38	< 0.34	< 0.35	< 0.33	< 0.40	2	0
Sodium	NS	NS	494	396	375	125	289	1,140	1,680	164	271	3,620	252	477	1,220	200	284	535	157	322	205	149	NA	NA
Thallium	NS NC	NS	< 1.5	< 1.6	< 1.5	< 1.5	< 1.5	< 1.3	< 1.6	< 1.5	< 1.4	< 1.6	< 1.6	< 1.3	< 1.4	< 1.4	< 1.4	< 1.5	< 1.3	< 1.4	< 1.3	< 1.6	NA NA	NA
Vanadium Zinc	NS 10,000	NS 109	56.3 720	25.3 877	23.5 195	26.3 85.6	22.5 64.4	17.6 232	10.5 229	28.4 85	48.8 452	9,130	46.9 437	21.7 74.5	57.7 74.2	23.6 304	55.6 873	91.3 4.610	24.3 175	2.120	23.9 677	24.6 190	NA 15	NA

All concentrations are in milligrams per kilogram (mg/kg)
All depths reported as feet below ground surface (ft bgs)

Compounds not detected are reported as less than the respective reporting limit (<RL)

Compounds detected in soil are BOLDED

NS = No Standard

NA = Not Applicable

D = Field Duplicate

= Result exceeded the respective Unrestricted Use Soil Cleanup Criterion (UUSCO) (6 NYCRR Part 375)
= Result exceeded the respective Restricted Residential Use Soil Cleanup Criterion (RRSCO) (6 NYCRR Part 375)

188 East 135th Street Redevelopment Site Bronx, New York

_		0	00.4 (40.40))	00 0 (7.0))	00 0 (7.0)	00 4 (0 40)	00.5 (0.40)	0000 (0.0)	0000 (0.5)	0004 (0.0)	0004 (0.5)	0000 (0.0)	0000 (0.5)
		•	SB 1 (10-12`)	SB 2 (7-9`)	SB 3 (7-9`)	SB 4 (8-10`)	SB 5 (8-10`)	20B2 (0-2)	20B2 (3-5)	20B1 (0-2)	20B1 (3-5)	20B3 (0-2)	20B3 (3-5)
	Sample I	Depth (ft bgs)	10-12	7-9	7-9	8-10	8-10	0-2	3-5	0-2	3-5	0-2	3-5
	Co	ollection Date	12/12/2018	12/12/2018	12/12/2018	12/12/2018	12/12/2018	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021
		Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Compound	RRSCO	UUSCO											
1,1,1,2-Tetrachloroethane	NS	NS	< 0.019	<0.0048	< 0.025	< 0.0057	< 0.005	< 0.0053	<0.0082	< 0.027	< 0.023	<0.028	< 0.0057
1,1,1-Trichloroethane	100	0.68	<0.0048	<0.0048	< 0.0063	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	< 0.0069	< 0.0057
1,1,2,2-Tetrachloroethane	NS	NS	< 0.32	<0.0048	< 0.32	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	< 0.0069	< 0.0057
1,1,2-Trichloroethane	NS	NS	<0.0048	<0.0048	< 0.0063	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	< 0.0069	< 0.0057
1,1-Dichloroethane	26	0.27	<0.0048	<0.0048	< 0.0063	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	< 0.0069	< 0.0057
1,1-Dichloroethene	100	0.33	<0.0048	<0.0048	< 0.0063	< 0.0057	< 0.005	< 0.0053	< 0.0082	<0.0068	<0.0058	< 0.0069	< 0.0057
1,1-Dichloropropene	NS	NS	<0.0048	<0.0048	< 0.0063	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	< 0.0069	< 0.0057
1,2,3-Trichlorobenzene	NS	NS	< 0.32	<0.0048	< 0.32	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	< 0.0069	< 0.0057
1,2,3-Trichloropropane	NS	NS	< 0.32	<0.0048	< 0.32	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	< 0.0069	< 0.0057
1,2,4-Trichlorobenzene	NS	NS	< 0.32	<0.0048	< 0.32	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	< 0.0069	< 0.0057
1,2,4-Trimethylbenzene	52	4	< 0.32	<0.0048	< 0.32	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	<0.0069	< 0.0057
1,2-Dibromo-3-chloropropane	NS	NS	< 0.32	<0.0048	< 0.32	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	< 0.0069	< 0.0057
1,2-Dibromoethane	NS	NS	<0.0048	<0.0048	< 0.0063	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	< 0.0069	< 0.0057
1,2-Dichlorobenzene	100	1	< 0.32	<0.0048	< 0.32	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	< 0.0069	< 0.0057
1,2-Dichloroethane	3	0.02	<0.0048	<0.0048	< 0.0063	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	< 0.0069	< 0.0057
1,2-Dichloropropane	NS	NS	<0.0048	<0.0048	< 0.0063	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	< 0.0069	< 0.0057
1,3,5-Trimethylbenzene	52	8	< 0.32	<0.0048	< 0.32	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	< 0.0069	< 0.0057
1,3-Dichlorobenzene	49	2	< 0.32	<0.0048	< 0.32	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	< 0.0069	< 0.0057
1,3-Dichloropropane	NS	NS	<0.0048	<0.0048	< 0.0063	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	< 0.0069	< 0.0057
1,4-Dichlorobenzene	13	2	< 0.32	<0.0048	< 0.32	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	< 0.0069	< 0.0057
2,2-Dichloropropane	NS	NS	<0.0048	<0.0048	< 0.0063	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	< 0.0069	< 0.0057
2-Chlorotoluene	NS	NS	< 0.32	<0.0048	< 0.32	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	< 0.0069	< 0.0057
2-Hexanone	NS	NS	<0.024	<0.024	< 0.031	<0.028	< 0.025	< 0.027	<0.041	< 0.034	< 0.029	< 0.035	<0.029
2-Isopropyltoluene	NS	NS	< 0.32	<0.0048	<0.32	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	< 0.0069	< 0.0057
4-Chlorotoluene	NS	NS	< 0.32	<0.0048	< 0.32	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	< 0.0069	< 0.0057
4-Methyl-2-pentanone	NS	NS	<0.024	<0.024	<0.031	<0.028	<0.005	<0.027	<0.041	< 0.034	<0.029	< 0.035	<0.029
Acetone	100	0.05	0.0098	0.023	0.023	0.01	0.036	< 0.027	0.01	< 0.034	<0.029	< 0.035	<0.029
Acrylonitrile	NS	NS	<0.019	<0.0096	< 0.013	<0.011	<0.02	<0.021	<0.016	< 0.027	< 0.023	<0.028	< 0.023
Benzene	5	0.06	<0.0048	<0.0048	< 0.0063	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	< 0.0069	< 0.0057
Bromobenzene	NS	NS	<0.32	<0.0048	<0.32	<0.0057	<0.005	<0.0053	<0.0082	<0.0068	<0.0058	<0.0069	<0.0057
Bromochloromethane	NS	NS	<0.0048	<0.0048	<0.0063	<0.0057	<0.005	<0.0053	<0.0082	<0.0068	<0.0058	<0.0069	<0.0057
Bromodichloromethane	romethane NS NS			<0.0048	< 0.0063	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	< 0.0069	< 0.0057
Bromoform	NS	NS	<0.0048 <0.0048	<0.0048	<0.0063	< 0.0057	<0.005	<0.0053	<0.0082	<0.0068	<0.0058	<0.0069	<0.0057
Bromomethane	NS	NS	<0.0048	<0.0048	< 0.0063	<0.0057	<0.005	<0.0053	<0.0082	<0.0068	<0.0058	<0.0069	<0.0057
Carbon Disulfide	NS	NS	<0.0048	<0.0048	<0.0063	<0.0057	<0.005	< 0.0053	<0.0082	<0.0068	<0.0058	<0.0069	<0.0057
Carbon tetrachloride	2	0.76	<0.0048	<0.0048	<0.0063	<0.0057	<0.005	<0.0053	<0.0082	<0.0068	<0.0058	<0.0069	<0.0057

188 East 135th Street Redevelopment Site Bronx, New York

		Sample ID	SB 1 (10-12`)	SB 2 (7-9`)	SB 3 (7-9`)	SB 4 (8-10`)	SB 5 (8-10`)	20B2 (0-2)	20B2 (3-5)	20B1 (0-2)	20B1 (3-5)	20B3 (0-2)	20B3 (3-5)
	Sample [Depth (ft bgs)	10-12	7-9	7-9	8-10	8-10	0-2	3-5	0-2	3-5	0-2	3-5
	-	lection Date		12/12/2018	12/12/2018	12/12/2018	12/12/2018	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021
		Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		Unit											
Compound	RRSCO	UUSCO	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
•			0.0040	0.0040	0.0000	0.0057	0.005	0.0050	0.0000	0.0000	0.0050	0.0000	0.0057
Chlorobenzene	100	1	<0.0048	<0.0048	<0.0063	<0.0057	<0.005	<0.0053	<0.0082	<0.0068	<0.0058	<0.0069	<0.0057
Chloroethane	NS 40	NS 0.07	<0.0048	<0.0048	<0.0063	<0.0057	<0.005	<0.0053	<0.0082	<0.0068	<0.0058	<0.0069	<0.0057
Chloroform	49 NO	0.37	<0.0048	<0.0048	<0.0063	<0.0057	<0.005	<0.0053	<0.0082	<0.0068	<0.0058	<0.0069	<0.0057
Chloromethane	NS	NS	<0.0048	<0.0048	<0.0063	<0.0057	<0.005	<0.0053	<0.0082	<0.0068	<0.0058	<0.0069	<0.0057
cis-1,2-Dichloroethene	100	0.25	<0.0048	<0.0048	<0.0063	<0.0057	<0.005	<0.0053	<0.0082	<0.0068	<0.0058	<0.0069	<0.0057
cis-1,3-Dichloropropene	NS	NS	<0.0048	<0.0048	<0.0063	<0.0057	<0.005	<0.0053	<0.0082	<0.0068	<0.0058	<0.0069	<0.0057
Dibromochloromethane	NS	NS	<0.0048	<0.0048	<0.0063	<0.0057	<0.005	<0.0053	<0.0082	<0.0068	<0.0058	<0.0069	<0.0057
Dibromomethane	NS	NS	<0.0048	<0.0048	<0.0063	<0.0057	<0.005	<0.0053	<0.0082	<0.0068	<0.0058	<0.0069	<0.0057
Dichlorodifluoromethane	NS	NS	<0.0048	<0.0048	<0.0063	<0.0057	<0.005	<0.0053	<0.0082	<0.0068	<0.0058	<0.0069	<0.0057
Ethylbenzene	41	1	<0.0048	<0.0048	<0.0063	<0.0057	<0.005	<0.0053	<0.0082	<0.0068	<0.0058	<0.0069	<0.0057
Hexachlorobutadiene	NS	NS	<0.32	<0.0048	<0.32	<0.0057	<0.005	< 0.0053	<0.0082	<0.0068	<0.0058	<0.0069	<0.0057
Isopropylbenzene	NS	NS	<0.32	<0.0048	<0.32	<0.0057	<0.005	< 0.0053	<0.0082	<0.0068	<0.0058	<0.0069	<0.0057
m&p-Xylene	NS	NS	<0.0048	<0.0048	< 0.0063	<0.0057	<0.005	<0.0053	<0.0082	<0.0068	<0.0058	<0.0069	<0.0057
Methyl Ethyl Ketone	100	0.12	<0.029	<0.029	<0.038	<0.034	<0.03	<0.032	<0.049	<0.041	<0.035	<0.041	<0.034
Methyl t-butyl ether (MTBE)	100	0.93	<0.0097	<0.0096	<0.013	<0.011	<0.01	<0.011	<0.016	<0.014	<0.012	<0.014	<0.011
Methylene chloride	100	0.05	<0.0048	<0.0048	<0.0063	<0.0057	<0.005	<0.0053	<0.0082	<0.0068	<0.0058	<0.0069	<0.0057
Naphthalene	100	12	<0.32	<0.0048	0.071	<0.0057	<0.005	<0.0053	<0.0082	<0.0068	<0.0058	<0.0069	<0.0057
n-Butylbenzene	100	12	< 0.32	<0.0048	< 0.32	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	<0.0069	<0.0057
n-Propylbenzene	100	4	< 0.32	<0.0048	< 0.32	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	< 0.0069	< 0.0057
o-Xylene	NS	NS	<0.0048	<0.0048	< 0.0063	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	< 0.0069	< 0.0057
p-Isopropyltoluene	NS	NS	< 0.32	<0.0048	< 0.32	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	< 0.0069	< 0.0057
sec-Butylbenzene	100	11	< 0.32	<0.0048	< 0.32	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	< 0.0069	< 0.0057
Styrene	NS	NS	<0.0048	<0.0048	< 0.0063	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	< 0.0069	< 0.0057
tert-Butylbenzene	100	6	< 0.32	<0.0048	< 0.32	< 0.0057	< 0.005	< 0.0053	< 0.0082	<0.0068	<0.0058	< 0.0069	< 0.0057
Tetrachloroethene	19	1	<0.0048	<0.0048	< 0.0063	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	< 0.0069	< 0.0057
Tetrahydrofuran (THF)	NS	NS	< 0.0097	<0.0096	< 0.013	< 0.011	<0.01	< 0.011	< 0.016	< 0.014	< 0.012	< 0.014	<0.011
Toluene	100	0.7	<0.0048	<0.0048	< 0.0063	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	< 0.0069	< 0.0057
trans-1,2-Dichloroethene	100	0.19	<0.0048	<0.0048	< 0.0063	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	<0.0069	<0.0057
trans-1,3-Dichloropropene	NS	NS	<0.0048	<0.0048	< 0.0063	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	<0.0069	<0.0057
trans-1,4-dichloro-2-butene	NS	NS	<0.64	<0.0096	<0.64	<0.011	<0.01	<0.011	<0.016	< 0.014	<0.012	< 0.014	<0.011
Trichloroethene	21	0.47	<0.0048	<0.0048	< 0.0063	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	<0.0069	< 0.0057
Trichlorofluoromethane	NS	NS	<0.0048	<0.0048	< 0.0063	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	<0.0069	< 0.0057
Trichlorotrifluoroethane	NS	NS	<0.0048	<0.0048	< 0.0063	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	<0.0069	<0.0057
Vinyl chloride	0.9	0.02	<0.0048	<0.0048	< 0.0063	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	<0.0069	<0.0057
Acrolein	NS	NS	<0.0048	<0.0048	< 0.0063	< 0.0057	< 0.005	< 0.0053	<0.0082	<0.0068	<0.0058	<0.0069	< 0.0057
Tert-butyl alcohol	NS	NS	<0.097	<0.0096	<0.13	<0.11	<0.1	<0.11	<0.16	<0.14	<0.12	<0.14	<0.11

Notes:

All concentrations are in milligrams per kilogram (mg/kg)

All depths reported as feet below ground surface (ft bgs)

Compounds not detected are reported as less than the respective reporting limit (<RL)

Compounds detected in soil are BOLDED

NS = No Standard

NA = Not Applicable

D = Field Duplicate

= Result exceeded the respective Unrestricted Use Soil Cleanup Criterion (UUSCO) (6 NYCRR Part 375)

= Result exceeded the respective Restricted Residential Use Soil Cleanup Criterion (RRSCO) (6 NYCRR Part 375)

188 East 135th Street Redevelopment Site Bronx, New York

		Sample ID	20B4 (0-2)	20B4 (3-5)	20B6 (0-2)	20B6 (3-5)	20B5 (0-2)	20B5 (3-5)	20B7 (0-2)	20B7 (3-5)	20B7 (3-5)D	Number of	Number of
	Sample I	Depth (ft bgs)	0-2	3-5	0-2	3-5	0-2	3-5	0-2	3-5	3-5	Samples	Samples
	-	ollection Date	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	Exceeding	Exceeding
		Matrix	Soil	the	the								
												Respective	Respective
Compound	RRSCO	Unit	mg/kg	UUSCO	RRSCO								
Compound 1,1,1,2-Tetrachloroethane	NS	UUSCO NS	<0.0052	<0.018	<0.0048	<0.033	<0.024	<0.027	<0.0065	<0.018	<0.03	NA	NA
1,1,1,2-1 etrachioroethane	100	0.68	<0.0052	<0.018	<0.0048	<0.033	<0.024	<0.027	<0.0065	<0.018	<0.03	0	NA 0
1.1.2.2-Tetrachloroethane	NS	NS	<0.0052	<0.0046	<0.0048	<0.0081	<0.0059	<0.0067	<0.0065	<0.0045	<0.0075	0	0
1.1.2-Trichloroethane	NS	NS NS	<0.0052	<0.0046	<0.0048	<0.0081	<0.0059	<0.0067	<0.0065	<0.0045	<0.0075	0	0
1.1-Dichloroethane	26	0.27	<0.0052	<0.0046	<0.0048	<0.0081	<0.0059	<0.0067	<0.0065	<0.0045	<0.0075	0	0
1,1-Dichloroethene	100	0.27	<0.0052	<0.0046	<0.0048	<0.0081	<0.0059	<0.0067	<0.0065	<0.0045	<0.0075	0	0
1,1-Dichloropropene	NS	NS	<0.0052	<0.0046	<0.0048	<0.0081	<0.0059	<0.0067	<0.0065	<0.0045	<0.0075	0	0
1,2,3-Trichlorobenzene	NS	NS	<0.0052	<0.0046	<0.0048	<0.0081	<0.0059	<0.0067	<0.0065	<0.0045	<0.0075	0	0
1,2,3-Trichloropropane	NS	NS	<0.0052	<0.0046	<0.0048	<0.0081	<0.0059	<0.0067	<0.0065	<0.0045	<0.0075	0	0
1,2,4-Trichlorobenzene	NS	NS	<0.0052	<0.0046	<0.0048	<0.0081	<0.0059	<0.0067	<0.0065	<0.0045	<0.0075	0	0
1,2,4-Trimethylbenzene	52	4	<0.0052	<0.0046	<0.0048	<0.0081	<0.0059	<0.0067	<0.0065	<0.0045	<0.0075	0	0
1,2-Dibromo-3-chloropropane	NS	NS	<0.0052	<0.0046	<0.0048	<0.0081	<0.0059	<0.0067	<0.0065	<0.0045	<0.0075	0	0
1.2-Dibromoethane	NS	NS	<0.0052	< 0.0046	<0.0048	<0.0081	< 0.0059	< 0.0067	<0.0065	< 0.0045	< 0.0075	0	0
1,2-Dichlorobenzene	100	1	<0.0052	<0.0046	<0.0048	<0.0081	<0.0059	<0.0067	<0.0065	<0.0045	<0.0075	0	0
1,2-Dichloroethane	3	0.02	<0.0052	<0.0046	<0.0048	<0.0081	< 0.0059	<0.0067	<0.0065	<0.0045	<0.0075	0	0
1,2-Dichloropropane	NS	NS	< 0.0052	<0.0046	<0.0048	<0.0081	< 0.0059	< 0.0067	< 0.0065	< 0.0045	< 0.0075	0	0
1,3,5-Trimethylbenzene	52	8	< 0.0052	<0.0046	<0.0048	<0.0081	< 0.0059	< 0.0067	< 0.0065	< 0.0045	< 0.0075	0	0
1,3-Dichlorobenzene	49	2	< 0.0052	<0.0046	<0.0048	<0.0081	< 0.0059	< 0.0067	< 0.0065	< 0.0045	< 0.0075	0	0
1,3-Dichloropropane	NS	NS	< 0.0052	<0.0046	<0.0048	<0.0081	< 0.0059	< 0.0067	< 0.0065	< 0.0045	< 0.0075	0	0
1,4-Dichlorobenzene	13	2	< 0.0052	<0.0046	<0.0048	<0.0081	< 0.0059	<0.0067	<0.0065	< 0.0045	< 0.0075	0	0
2,2-Dichloropropane	NS	NS	< 0.0052	<0.0046	<0.0048	<0.0081	< 0.0059	< 0.0067	< 0.0065	<0.0045	< 0.0075	0	0
2-Chlorotoluene	NS	NS	< 0.0052	<0.0046	<0.0048	<0.0081	< 0.0059	< 0.0067	< 0.0065	< 0.0045	< 0.0075	0	0
2-Hexanone	NS	NS	<0.026	<0.023	<0.024	<0.041	< 0.03	< 0.033	< 0.032	<0.023	<0.038	0	0
2-Isopropyltoluene	NS	NS	< 0.0052	<0.0046	<0.0048	<0.0081	< 0.0059	< 0.0067	< 0.0065	< 0.0045	< 0.0075	0	0
4-Chlorotoluene	NS	NS	< 0.0052	<0.0046	<0.0048	<0.0081	< 0.0059	< 0.0067	< 0.0065	< 0.0045	< 0.0075	0	0
4-Methyl-2-pentanone	NS	NS	<0.026	<0.023	<0.024	<0.041	< 0.03	<0.033	<0.032	< 0.023	<0.038	0	0
Acetone	100	0.05	0.0053	<0.023	<0.024	<0.041	0.019	0.026	<0.032	<0.023	0.035	0	0
Acrylonitrile	NS	NS	<0.021	<0.018	<0.0097	< 0.033	<0.024	<0.027	< 0.013	<0.018	< 0.03	0	0
Benzene	5	0.06	< 0.0052	<0.0046	<0.0048	0.14	< 0.0059	< 0.0067	<0.0065	< 0.0045	< 0.0075	1	0
Bromobenzene	NS	NS	< 0.0052	<0.0046	<0.0048	<0.0081	<0.0059	< 0.0067	< 0.0065	<0.0045	< 0.0075	0	0
Bromochloromethane	NS	NS	< 0.0052	<0.0046	<0.0048	<0.0081	<0.0059	<0.0067	<0.0065	<0.0045	< 0.0075	0	0
Bromodichloromethane	NS	NS	< 0.0052	<0.0046	<0.0048	<0.0081	< 0.0059	< 0.0067	< 0.0065	<0.0045	< 0.0075	0	0
Bromoform	NS	NS	< 0.0052	<0.0046	<0.0048	<0.0081	<0.0059	< 0.0067	<0.0065	< 0.0045	< 0.0075	0	0
Bromomethane	NS	NS	<0.0052	<0.0046	<0.0048	<0.0081	<0.0059	<0.0067	<0.0065	<0.0045	<0.0075	0	0
Carbon Disulfide	NS	NS	<0.0052	<0.0046	<0.0048	<0.0081	0.0022	<0.0067	<0.0065	<0.0045	< 0.0075	0	0
Carbon tetrachloride	2	0.76	<0.0052	<0.0046	<0.0048	<0.0081	<0.0059	<0.0067	<0.0065	<0.0045	< 0.0075	0	0

188 East 135th Street Redevelopment Site Bronx, New York

		Sample ID	20B4 (0-2)	20B4 (3-5)	20B6 (0-2)	20B6 (3-5)	20B5 (0-2)	20B5 (3-5)	20B7 (0-2)	20B7 (3-5)	20B7 (3-5)D	Number of	Number of
	Sample [Depth (ft bgs)	0-2	3-5	0-2	3-5	0-2	3-5	0-2	3-5	3-5	Samples 	Samples
	Co	ollection Date	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	Exceeding the	Exceeding the
		Matrix	Soil	Respective	Respective								
		Unit	mg/kg	UUSCO	RRSCO								
Compound	RRSCO	UUSCO	9,9	9,9	9,9	9,9	9.1.9	9,9	9,9	9,9	9/9		
Chlorobenzene	100	1	< 0.0052	< 0.0046	<0.0048	<0.0081	< 0.0059	< 0.0067	< 0.0065	< 0.0045	< 0.0075	0	0
Chloroethane	NS	NS	<0.0052	<0.0046	<0.0048	<0.0081	<0.0059	<0.0067	<0.0065	<0.0045	<0.0075	0	0
Chloroform	49	0.37	<0.0052	<0.0046	<0.0048	<0.0081	< 0.0059	<0.0067	<0.0065	<0.0045	<0.0075	0	0
Chloromethane	NS	NS	<0.0052	<0.0046	<0.0048	<0.0081	<0.0059	< 0.0067	<0.0065	< 0.0045	< 0.0075	0	0
cis-1,2-Dichloroethene	100	0.25	< 0.0052	<0.0046	<0.0048	<0.0081	< 0.0059	< 0.0067	<0.0065	< 0.0045	< 0.0075	0	0
cis-1,3-Dichloropropene	NS	NS	< 0.0052	<0.0046	<0.0048	<0.0081	< 0.0059	< 0.0067	< 0.0065	< 0.0045	< 0.0075	0	0
Dibromochloromethane	NS	NS	< 0.0052	<0.0046	<0.0048	<0.0081	< 0.0059	< 0.0067	<0.0065	< 0.0045	< 0.0075	0	0
Dibromomethane	NS	NS	< 0.0052	<0.0046	<0.0048	<0.0081	< 0.0059	< 0.0067	<0.0065	< 0.0045	< 0.0075	0	0
Dichlorodifluoromethane	NS	NS	< 0.0052	<0.0046	<0.0048	<0.0081	< 0.0059	< 0.0067	<0.0065	< 0.0045	< 0.0075	0	0
Ethylbenzene	41	1	< 0.0052	<0.0046	<0.0048	<0.0081	< 0.0059	< 0.0067	<0.0065	< 0.0045	< 0.0075	0	0
Hexachlorobutadiene	NS	NS	< 0.0052	<0.0046	<0.0048	<0.0081	< 0.0059	< 0.0067	<0.0065	< 0.0045	< 0.0075	0	0
Isopropylbenzene	NS	NS	< 0.0052	<0.0046	<0.0048	<0.0081	< 0.0059	< 0.0067	<0.0065	< 0.0045	< 0.0075	0	0
m&p-Xylene	NS	NS	< 0.0052	<0.0046	<0.0048	<0.0081	< 0.0059	< 0.0067	<0.0065	< 0.0045	< 0.0075	0	0
Methyl Ethyl Ketone	100	0.12	<0.031	< 0.027	< 0.029	<0.049	< 0.036	< 0.04	< 0.039	< 0.027	< 0.045	0	0
Methyl t-butyl ether (MTBE)	100	0.93	<0.01	<0.0091	< 0.0097	<0.016	< 0.012	< 0.013	< 0.013	< 0.009	<0.015	0	0
Methylene chloride	100	0.05	<0.0052	<0.0046	<0.0048	<0.0081	<0.0059	< 0.0067	<0.0065	< 0.0045	< 0.0075	0	0
Naphthalene	100	12	< 0.0052	<0.0046	<0.0048	0.21	<0.0059	< 0.0067	< 0.0065	< 0.0045	< 0.0075	0	0
n-Butylbenzene	100	12	< 0.0052	<0.0046	<0.0048	<0.0081	< 0.0059	< 0.0067	<0.0065	< 0.0045	< 0.0075	0	0
n-Propylbenzene	100	4	< 0.0052	<0.0046	<0.0048	<0.0081	< 0.0059	< 0.0067	<0.0065	< 0.0045	< 0.0075	0	0
o-Xylene	NS	NS	< 0.0052	<0.0046	<0.0048	<0.0081	< 0.0059	< 0.0067	<0.0065	< 0.0045	< 0.0075	0	0
p-Isopropyltoluene	NS	NS	< 0.0052	<0.0046	<0.0048	<0.0081	< 0.0059	< 0.0067	< 0.0065	< 0.0045	< 0.0075	0	0
sec-Butylbenzene	100	11	< 0.0052	< 0.0046	<0.0048	<0.0081	< 0.0059	< 0.0067	< 0.0065	< 0.0045	< 0.0075	0	0
Styrene	NS	NS	< 0.0052	< 0.0046	<0.0048	<0.0081	< 0.0059	< 0.0067	< 0.0065	< 0.0045	< 0.0075	0	0
tert-Butylbenzene	100	6	< 0.0052	< 0.0046	<0.0048	<0.0081	< 0.0059	< 0.0067	< 0.0065	< 0.0045	< 0.0075	0	0
Tetrachloroethene	19	1	< 0.0052	<0.0046	<0.0048	<0.0081	< 0.0059	< 0.0067	<0.0065	< 0.0045	< 0.0075	0	0
Tetrahydrofuran (THF)	NS	NS	< 0.01	< 0.0091	< 0.0097	< 0.016	< 0.012	< 0.013	< 0.013	< 0.009	<0.015	0	0
Toluene	100	0.7	< 0.0052	<0.0046	<0.0048	<0.0081	< 0.0059	< 0.0067	<0.0065	< 0.0045	< 0.0075	0	0
trans-1,2-Dichloroethene	100	0.19	< 0.0052	< 0.0046	<0.0048	<0.0081	< 0.0059	< 0.0067	< 0.0065	< 0.0045	< 0.0075	0	0
trans-1,3-Dichloropropene	NS	NS	<0.0052	<0.0046	<0.0048	<0.0081	< 0.0059	< 0.0067	<0.0065	< 0.0045	<0.0075	0	0
trans-1,4-dichloro-2-butene	NS	NS	<0.01	<0.0091	<0.0097	<0.016	<0.012	<0.013	<0.013	<0.009	<0.015	0	0
Trichloroethene	21	0.47	<0.0052	<0.0046	<0.0048	<0.0081	<0.0059	<0.0067	<0.0065	<0.0045	<0.0075	0	0
Trichlorofluoromethane	NS	NS	<0.0052	<0.0046	<0.0048	<0.0081	<0.0059	<0.0067	<0.0065	<0.0045	<0.0075	0	0
Trichlorotrifluoroethane	NS	NS	<0.0052	<0.0046	<0.0048	<0.0081	<0.0059	<0.0067	<0.0065	<0.0045	<0.0075	0	0
Vinyl chloride	0.9	0.02	<0.0052	<0.0046	<0.0048	<0.0081	<0.0059	<0.0067	<0.0065	<0.0045	<0.0075	0	0
Acrolein	NS	NS	<0.0052	<0.0046	0.0048	<0.0081	<0.0059	<0.0067	<0.0065	<0.0045	<0.0075	0	0
Tert-butyl alcohol	NS	NS	<0.1	<0.091	<0.097	<0.016	<0.12	<0.13	<0.13	<0.09	<0.15	0	0

Notes:

All concentrations are in milligrams per kilogram (mg/kg)

All depths reported as feet below ground surface (ft bgs)

Compounds not detected are reported as less than the respective reporting limit (<RL)

Compounds detected in soil are BOLDED

NS = No Standard

NA = Not Applicable

D = Field Duplicate

= Result exceeded the respective Unrestricted Use Soil Cleanup Criterion (UUSCO) (6 NYCRR Part 375)

= Result exceeded the respective Restricted Residential Use Soil Cleanup Criterion (RRSCO) (6 NYCRR Part 375)

188 East 135th Street Redevelopment Site Bronx, New York

		0 1 15	DD 4 (40 46	V 00 0 (7 0)	I OD 0 (7 0))	OD 4 (0.40))	IOD 5 (0.40)	V 0000 (0.0)	0000 (0.5)	T 00D4 (0.0)	L 00D4 (0.5)	0000 (0.0)	0000 (0.5)	0004 (0.0)	T 00D 4 (0.5)	L 00B0 (0.0)	0000 (0.5)	1 0005 (0.0)	0005 (0.5))	0007 (0.5)	0007 (0.5)5	Number of	Number of
	0	Sample ID		1 - ,	SB 3 (7-9`)	, ,	SB 5 (8-10`	20B2 (0-2)	20B2 (3-5)	20B1 (0-2)	, ,	20B3 (0-2)	20B3 (3-5)	20B4 (0-2)	20B4 (3-5)	` ,	20B6 (3-5)	20B5 (0-2)	20B5 (3-5)	, , ,	20B7 (3-5)	` '	Samples	Samples
	•	Depth (ft bgs)	10-12	7-9	7-9	8-10	8-10	0-2	3-5	0-2	3-5	0-2	3-5	0-2	3-5	0-2	3-5	0-2	3-5	0-2	3-5	3-5	Exceeding	Exceeding
	Co	Ilection Date	12/12/2018	3 12/12/2018	12/12/2018	12/12/2018	12/12/2018	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	the	the
		Matrix Unit	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Respective	Respective
Compound	RRSCO	UUSCO	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	UUSCO	RRSCO
1,2,4,5-Tetrachlorobenzene	NS	NS	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	< 0.26	< 0.27	< 0.27	< 0.25	< 0.25	< 0.25	< 0.26	< 0.27	< 0.25	< 0.27	< 0.26	< 0.26	NA	NA
1,2,4-Trichlorobenzene	NS	NS	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	< 0.26	< 0.27	< 0.27	< 0.25	< 0.25	< 0.25	< 0.26	0.22	< 0.25	< 0.27	< 0.26	< 0.26	NA	NA
1,2-Dichlorobenzene	100	1.1	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	< 0.26	0.66	< 0.27	< 0.25	< 0.25	< 0.25	< 0.26	< 0.27	< 0.25	< 0.27	< 0.26	< 0.26	0	0
1,2-Diphenylhydrazine	NS	NS	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	< 0.26	< 0.27	< 0.27	< 0.25	< 0.25	< 0.25	< 0.26	< 0.27	< 0.25	< 0.27	< 0.26	< 0.26	NA	NA
1,3-Dichlorobenzene	49	2.4	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	< 0.26	< 0.27	< 0.27	< 0.25	< 0.25	< 0.25	< 0.26	< 0.27	< 0.25	< 0.27	< 0.26	< 0.26	0	0
1,4-Dichlorobenzene	13	1.8	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	< 0.26	< 0.27	< 0.27	< 0.25	< 0.25	< 0.25	< 0.26	< 0.27	< 0.25	< 0.27	< 0.26	< 0.26	0	0
2,4,5-Trichlorophenol	NS	NS	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	< 0.26	< 0.27	< 0.27	< 0.25	< 0.25	< 0.25	< 0.26	< 0.27	< 0.25	< 0.27	< 0.26	< 0.26	NA	NA
2,4,6-Trichlorophenol	NS	NS	< 0.19	< 0.19	< 0.19	< 0.18	< 0.2	< 0.18	< 0.21	< 0.19	< 0.19	< 0.19	< 0.19	< 0.18	< 0.18	< 0.18	< 0.18	< 0.19	< 0.18	< 0.19	< 0.18	< 0.18	NA	NA
2,4-Dichlorophenol	NS	NS	< 0.19	< 0.19	< 0.19	< 0.18	< 0.2	< 0.18	< 0.21	< 0.19	< 0.19	< 0.19	< 0.19	< 0.18	< 0.18	< 0.18	< 0.18	< 0.19	< 0.18	< 0.19	< 0.18	< 0.18	NA	NA
2,4-Dimethylphenol	NS	NS	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	< 0.26	< 0.27	< 0.27	< 0.25	< 0.25	< 0.25	< 0.26	< 0.27	< 0.25	< 0.27	< 0.26	< 0.26	NA	NA
2,4-Dinitrophenol	NS	NS	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	< 0.26	< 0.27	< 0.27	< 0.25	< 0.25	< 0.25	< 0.26	< 0.27	< 0.25	< 0.27	< 0.26	< 0.26	NA	NA
2,4-Dinitrotoluene	NS	NS	< 0.19	< 0.19	< 0.19	< 0.18	< 0.2	< 0.18	< 0.21	< 0.19	< 0.19	< 0.19	< 0.19	< 0.18	< 0.18	< 0.18	< 0.18	< 0.19	< 0.18	< 0.19	< 0.18	< 0.18	NA	NA
2,6-Dinitrotoluene	NS	NS	< 0.19	< 0.19	< 0.19	< 0.18	< 0.2	< 0.18	< 0.21	< 0.19	< 0.19	< 0.19	< 0.19	< 0.18	< 0.18	< 0.18	< 0.18	< 0.19	< 0.18	< 0.19	< 0.18	< 0.18	NA	NA
2-Chloronaphthalene	NS	NS	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	< 0.26	< 0.27	< 0.27	< 0.25	< 0.25	< 0.25	< 0.26	< 0.27	< 0.25	< 0.27	< 0.26	< 0.26	NA	NA
2-Chlorophenol	NS	NS	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	< 0.26	< 0.27	< 0.27	< 0.25	< 0.25	< 0.25	< 0.26	< 0.27	< 0.25	< 0.27	< 0.26	< 0.26	NA	NA
2-Methylnaphthalene	NS	NS	0.25	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	0.29	0.38	0.19	< 0.25	< 0.25	< 0.25	< 0.26	0.29	< 0.25	< 0.27	0.38	0.24	NA	NA
2-Methylphenol (o-cresol)	100	0.33	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	< 0.26	< 0.27	< 0.27	< 0.25	< 0.25	< 0.25	< 0.26	< 0.27	< 0.25	< 0.27	< 0.26	< 0.26	0	0
2-Nitroaniline	NS	NS	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	< 0.26	< 0.27	< 0.27	< 0.25	< 0.25	< 0.25	< 0.26	< 0.27	< 0.25	< 0.27	< 0.26	< 0.26	NA	NA
2-Nitrophenol	NS	NS	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	< 0.26	< 0.27	< 0.27	< 0.25	< 0.25	< 0.25	< 0.26	< 0.27	< 0.25	< 0.27	< 0.26	< 0.26	NA	NA
3&4-Methylphenol (m&p-cresol)	NS	NS	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	< 0.26	< 0.27	< 0.27	< 0.25	< 0.25	< 0.25	< 0.26	< 0.27	< 0.25	< 0.27	< 0.26	< 0.26	NA	NA
3,3'-Dichlorobenzidine	NS	NS	< 0.19	< 0.19	< 0.19	< 0.18	< 0.2	< 0.18	< 0.21	< 0.19	< 0.19	< 0.19	< 0.19	< 0.18	< 0.18	< 0.18	< 0.18	< 0.19	< 0.18	< 0.19	< 0.18	< 0.18	NA	NA
3-Nitroaniline	NS	NS	< 0.38	< 0.39	< 0.38	< 0.36	< 0.39	< 0.35	< 0.42	< 0.38	< 0.38	< 0.39	< 0.38	< 0.36	< 0.36	< 0.36	< 0.37	< 0.38	< 0.36	< 0.38	< 0.37	< 0.37	NA	NA
4,6-Dinitro-2-methylphenol	NS	NS	< 0.23	< 0.23	< 0.23	< 0.22	< 0.23	< 0.21	< 0.25	< 0.23	< 0.23	< 0.23	< 0.23	< 0.21	< 0.21	< 0.21	< 0.22	< 0.23	< 0.22	< 0.23	< 0.22	< 0.22	NA	NA
4-Bromophenyl phenyl ether	NS	NS	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	< 0.26	< 0.27	< 0.27	< 0.25	< 0.25	< 0.25	< 0.26	< 0.27	< 0.25	< 0.27	< 0.26	< 0.26	NA	NA
4-Chloro-3-methylphenol	NS NC	NS NC	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	< 0.26	< 0.27	< 0.27	< 0.25	< 0.25	< 0.25	< 0.26	< 0.27	< 0.25	< 0.27	< 0.26	< 0.26	NA NA	NA NA
4-Chloroaniline	NS NS	NS NS	< 0.3 < 0.26	< 0.31 < 0.27	< 0.3 < 0.26	< 0.29 < 0.25	< 0.31 < 0.27	< 0.28 < 0.25	< 0.34	< 0.3 < 0.26	< 0.3	< 0.31 < 0.27	< 0.31 < 0.27	< 0.28 < 0.25	< 0.28 < 0.25	< 0.29 < 0.25	< 0.29 < 0.26	< 0.3	< 0.29 < 0.25	< 0.3 < 0.27	< 0.29 < 0.26	< 0.29 < 0.26	NA NA	NA NA
4-Chlorophenyl phenyl ether 4-Nitroaniline	NS NS	NS NS	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.42	< 0.26	< 0.26	< 0.27	< 0.27	< 0.25	< 0.25	< 0.25	< 0.26	< 0.27	< 0.25	< 0.27	< 0.26	< 0.26	NA NA	NA NA
4-Nitrophenol	NS NS	NS	< 0.38	< 0.39	< 0.38	< 0.36	< 0.39	< 0.35	< 0.42	< 0.38	< 0.38	< 0.39	< 0.38	< 0.36	< 0.36	< 0.36	< 0.37	< 0.38	< 0.36	< 0.38	< 0.37	< 0.37	NA NA	NA NA
Acenaphthene	100	20	0.49	< 0.39	< 0.26	< 0.25	< 0.33	< 0.25	< 0.42	< 0.26	0.75	0.13	0.63	< 0.25	< 0.25	< 0.25	< 0.26	0.26	< 0.25	0.19	1.2	1	0	0
Acenaphthylene	100	100	0.55	< 0.27	< 0.26	< 0.25	< 0.27	0.23	< 0.3	< 0.26	0.32	1.3	0.53	< 0.25	< 0.25	< 0.25	0.89	1.2	< 0.25	0.45	0.58	< 0.26	0	0
Acetophenone	NS	NS	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	< 0.26	< 0.27	< 0.27	< 0.25	< 0.25	< 0.25	< 0.26	< 0.27	< 0.25	< 0.27	< 0.26	< 0.26	NA	NA NA
Aniline	NS	NS	< 0.3	< 0.31	< 0.3	< 0.29	< 0.31	< 0.28	< 0.34	< 0.3	< 0.3	< 0.31	< 0.31	< 0.28	< 0.28	< 0.29	< 0.29	< 0.3	< 0.29	< 0.3	< 0.29	< 0.29	NA	NA
Anthracene	100	100	1.5	< 0.27	0.14	0.38	< 0.27	0.17	< 0.3	< 0.26	1.4	0.84	1.5	< 0.25	< 0.25	0.21	0.44	1.1	0.15	0.54	2.3	1.8	0	0
Benz(a)anthracene	1.0	1.0	3.4	< 0.27	0.43	0.7	< 0.27	0.98	< 0.3	< 0.26	3	3.4	4.8	0.23	< 0.25	0.76	2	3.5	0.46	2.6	5.8	3.1	9	9
Benzidine	NS	NS	< 0.38	< 0.39	< 0.38	< 0.36	< 0.39	< 0.35	< 0.42	< 0.38	< 0.38	< 0.39	< 0.38	< 0.36	< 0.36	< 0.36	< 0.37	< 0.38	< 0.36	< 0.38	< 0.37	< 0.37	NA	NA
Benzo(a)pyrene	1.0	1.0	3.2	< 0.19	0.47	0.64	< 0.2	1.2	< 0.21	< 0.19	2.9	3.8	4.2	0.26	< 0.18	0.77	1.8	3.7	0.51	2.6	5.2	2.7	10	10
Benzo(b)fluoranthene	1.0	1.0	3	< 0.27	0.4	0.53	< 0.27	1.2	< 0.3	< 0.26	2.4	4	3.4	0.24	< 0.25	0.78	2	4	0.42	2.6	4.9	2.5	10	10
Benzo(ghi)perylene	100	100	1.8	< 0.27	0.33	0.33	< 0.27	0.8	< 0.3	< 0.26	1.6	2.7	2.8	0.33	< 0.25	0.46	1.4	2.7	0.43	1.9	2.7	1.7	0	0
Benzo(k)fluoranthene	3.9	0.8	2.7	< 0.27	0.38	0.5	< 0.27	1	< 0.3	< 0.26	2.3	3.3	2.8	0.22	< 0.25	0.77	1.8	3.6	0.47	2.1	4	2.1	10	1
Benzoic acid	NS	NS	< 1.9	< 1.9	< 1.9	< 1.8	< 2	< 1.8	< 2.1	< 1.9	< 1.9	< 1.9	< 1.9	< 1.8	< 1.8	< 1.8	< 1.8	< 1.9	< 1.8	< 1.9	< 1.8	< 1.8	NA	NA
Benzyl butyl phthalate	NS	NS	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	< 0.26	< 0.27	< 0.27	< 0.25	< 0.25	< 0.25	< 0.26	< 0.27	< 0.25	< 0.27	< 0.26	< 0.26	NA	NA
Bis(2-chloroethoxy)methane	NS	NS	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	< 0.26	< 0.27	< 0.27	< 0.25	< 0.25	< 0.25	< 0.26	< 0.27	< 0.25	< 0.27	< 0.26	< 0.26	NA	NA
Bis(2-chloroethyl)ether	NS	NS	< 0.19	< 0.19	< 0.19	< 0.18	< 0.2	< 0.18	< 0.21	< 0.19	< 0.19	< 0.19	< 0.19	< 0.18	< 0.18	< 0.18	< 0.18	< 0.19	< 0.18	< 0.19	< 0.18	< 0.18	NA	NA

188 East 135th Street Redevelopment Site Bronx, New York

		Sample ID	SB 1 (10-12	` SB 2 (7-9`)	SB 3 (7-9`)	SB 4 (8-10`	SB 5 (8-10`) 20B2 (0-2)	20B2 (3-5)	20B1 (0-2)	20B1 (3-5)	20B3 (0-2)	20B3 (3-5) 20B4 (0-2)) 20B4 (3-5)	20B6 (0-2)	20B6 (3-5)	20B5 (0-2)	20B5 (3-5)	20B7 (0-2)	20B7 (3-5)	2007 (2.5)0	Number of	Number of
	Sample F	Depth (ft bgs)	10-12	7-9	7-9	8-10	8-10	0-2	3-5	0-2	3-5	0-2	3-5	0-2	3-5	0-2	3-5	0-2	3-5	0-2	3-5	3-5	Samples	Samples
	•	llection Date		12/12/2018	12/12/2018	12/12/2018	12/12/2018	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	Exceeding	Exceeding
	CO	Matrix	Soil	Soil	Soil	Soil	Soil	Soil	9/20/2021 Soil	Soil	Soil	Soil	9/20/2021 Soil	Soil	9/20/2021 Soil	9/20/2021 Soil	Soil	Soil	9/20/2021 Soil	Soil	9/20/2021 Soil	9/20/2021 Soil	the	the
		Matrix	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	,,	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	Respective	Respective
Compound	RRSCO	UUSCO	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	IIIg/kg	mg/kg	IIIg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	UUSCO	RRSCO
Bis(2-chloroisopropyl)ether	NS	NS	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	< 0.26	< 0.27	< 0.27	< 0.25	< 0.25	< 0.25	< 0.26	< 0.27	< 0.25	< 0.27	< 0.26	< 0.26	NA	NA
Bis(2-ethylhexyl)phthalate	NS	NS	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	< 0.26	0.22	< 0.27	< 0.25	< 0.25	0.17	< 0.26	0.58	< 0.25	< 0.27	< 0.26	< 0.26	NA	NA
Carbazole	NS	NS	0.36	< 0.19	< 0.19	< 0.18	< 0.2	< 0.18	< 0.21	< 0.19	0.48	0.25	0.19	< 0.18	< 0.18	< 0.18	0.23	0.34	< 0.18	0.19	0.7	0.53	NA	NA
Chrysene	3.9	1.0	3.4	< 0.27	0.45	0.68	< 0.27	1.1	< 0.3	< 0.26	3	3.6	5.7	0.23	< 0.25	0.81	2.1	3.9	0.5	2.9	5.8	2.9	10	2
Dibenz(a,h)anthracene	0.33	0.33	0.72	< 0.19	< 0.19	< 0.18	< 0.2	0.18	< 0.21	< 0.19	0.38	0.74	1	< 0.18	< 0.18	0.13	0.37	0.64	0.12	0.52	0.83	0.41	9	9
Dibenzofuran	59	7.0	0.32	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	0.44	0.17	0.14	< 0.25	< 0.25	< 0.25	< 0.26	0.33	< 0.25	0.12	0.72	0.47	0	0
Diethyl phthalate	NS	NS	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	< 0.26	< 0.27	< 0.27	< 0.25	< 0.25	< 0.25	< 0.26	< 0.27	< 0.25	< 0.27	< 0.26	< 0.26	NA	NA
Dimethylphthalate	NS	NS	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	< 0.26	< 0.27	< 0.27	< 0.25	< 0.25	< 0.25	< 0.26	< 0.27	< 0.25	< 0.27	< 0.26	< 0.26	NA	NA
Di-n-butylphthalate	NS	NS	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	< 0.26	0.32	< 0.27	< 0.25	< 0.25	< 0.25	< 0.26	0.14	< 0.25	< 0.27	< 0.26	< 0.26	NA	NA
Di-n-octylphthalate	NS	NS	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	< 0.26	< 0.27	< 0.27	< 0.25	< 0.25	< 0.25	< 0.26	< 0.27	< 0.25	< 0.27	< 0.26	< 0.26	NA	NA
Fluoranthene	100	100	7	0.32	0.78	1.7	< 0.27	1.5	< 0.3	0.17	7.2	6.4	9.4	0.28	< 0.25	1.2	3.9	7.5	0.72	4.9	16	10	0	0
Fluorene	100	30	0.47	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	0.68	0.23	0.53	< 0.25	< 0.25	< 0.25	0.14	0.38	< 0.25	0.17	0.96	0.93	0	0
Hexachlorobenzene	1.2	0.33	< 0.19	< 0.19	< 0.19	< 0.18	< 0.2	< 0.18	< 0.21	< 0.19	< 0.19	< 0.19	< 0.19	< 0.18	< 0.18	< 0.18	< 0.18	< 0.19	< 0.18	0.19	< 0.18	< 0.18	0	0
Hexachlorobutadiene	NS	NS	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	< 0.26	< 0.27	< 0.27	< 0.25	< 0.25	< 0.25	< 0.26	< 0.27	< 0.25	< 0.27	< 0.26	< 0.26	NA	NA
Hexachlorocyclopentadiene	NS	NS	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	< 0.26	< 0.27	< 0.27	< 0.25	< 0.25	< 0.25	< 0.26	< 0.27	< 0.25	< 0.27	< 0.26	< 0.26	NA	NA
Hexachloroethane	NS	NS	< 0.19	< 0.19	< 0.19	< 0.18	< 0.2	< 0.18	< 0.21	< 0.19	< 0.19	< 0.19	< 0.19	< 0.18	< 0.18	< 0.18	< 0.18	< 0.19	< 0.18	< 0.19	< 0.18	< 0.18	NA	NA
Indeno(1,2,3-cd)pyrene	0.5	0.5	2.1	< 0.27	0.33	0.36	< 0.27	0.91	< 0.3	< 0.26	1.7	2.8	2.6	0.3	< 0.25	0.49	1.5	2.8	0.42	2.1	3.2	2	10	10
Isophorone	NS	NS	< 0.19	< 0.19	< 0.19	< 0.18	< 0.2	< 0.18	< 0.21	< 0.19	< 0.19	< 0.19	< 0.19	< 0.18	< 0.18	< 0.18	< 0.18	< 0.19	< 0.18	< 0.19	< 0.18	< 0.18	NA	NA
Naphthalene	100	12	0.21	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	0.57	0.52	0.18	< 0.25	< 0.25	< 0.25	0.11	0.59	< 0.25	0.19	0.69	0.35	0	0
Nitrobenzene	NS	NS	< 0.19	< 0.19	< 0.19	< 0.18	< 0.2	< 0.18	< 0.21	< 0.19	< 0.19	< 0.19	< 0.19	< 0.18	< 0.18	< 0.18	< 0.18	< 0.19	< 0.18	< 0.19	< 0.18	< 0.18	NA	NA
N-Nitrosodimethylamine	NS	NS	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	< 0.26	< 0.27	< 0.27	< 0.25	< 0.25	< 0.25	< 0.26	< 0.27	< 0.25	< 0.27	< 0.26	< 0.26	NA	NA
N-Nitrosodi-n-propylamine	NS	NS	< 0.19	< 0.19	< 0.19	< 0.18	< 0.2	< 0.18	< 0.21	< 0.19	< 0.19	< 0.19	< 0.19	< 0.18	< 0.18	< 0.18	< 0.18	< 0.19	< 0.18	< 0.19	< 0.18	< 0.18	NA	NA
N-Nitrosodiphenylamine	NS	NS	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	< 0.26	< 0.27	< 0.27	< 0.25	< 0.25	< 0.25	< 0.26	< 0.27	< 0.25	< 0.27	< 0.26	< 0.26	NA	NA
Pentachloronitrobenzene	NS	NS	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	< 0.26	< 0.27	< 0.27	< 0.25	< 0.25	< 0.25	< 0.26	< 0.27	< 0.25	< 0.27	< 0.26	< 0.26	NA	NA
Pentachlorophenol	6.7	0.8	< 0.23	< 0.23	< 0.23	< 0.22	< 0.23	< 0.21	< 0.25	< 0.23	< 0.23	< 0.23	< 0.23	< 0.21	< 0.21	< 0.21	< 0.22	< 0.23	< 0.22	< 0.23	< 0.22	< 0.22	0	0
Phenanthrene	100	100	5	0.3	0.52	1.3	< 0.27	0.63	< 0.3	0.12	< 9.3	3.1	10	0.13	< 0.25	0.86	2.4	3	0.6	2.5	13	9.5	0	0
Phenol	100	0.33	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	< 0.26	< 0.27	< 0.27	< 0.25	< 0.25	< 0.25	< 0.26	< 0.27	< 0.25	< 0.27	< 0.26	< 0.26	0	0
Pyrene	100	100	6.5	< 0.27	0.74	1.5	< 0.27	1.4	< 0.3	0.16	6.7	5.6	12	0.26	< 0.25	0.99	2.8	6.4	0.66	4.4	14	6.5	0	0
Pyridine	NS	NS	< 0.26	< 0.27	< 0.26	< 0.25	< 0.27	< 0.25	< 0.3	< 0.26	< 0.26	< 0.27	< 0.27	< 0.25	< 0.25	< 0.25	< 0.26	< 0.27	< 0.25	< 0.27	< 0.26	< 0.26	NA	NA

Notes:

All concentrations are in milligrams per kilogram (mg/kg)

All depths reported as feet below ground surface (ft bgs)

Compounds not detected are reported as less than the respective reporting limit (<RL)

Compounds detected in soil are BOLDED

NS = No Standard

NA = Not Applicable

D = Field Duplicate

= Result exceeded the respective Unrestricted Use Soil Cleanup Criterion (UUSCO) (6 NYCRR Part 375)

= Result exceeded the respective Restricted Residential Use Soil Cleanup Criterion (RRSCO) (6 NYCRR Part 375)

Attachment 4B - Table 2d Soil Sampling Results (2021) - Polychlorinated Biphenyls

188 East 135th Street Redevelopment Site Bronx, New York

	Co	Depth (ft bgs) Depth (ft bgs) Dilection Date Matrix Unit	9/20/2021 Soil	20B2 (3-5) 3-5 9/20/2021 Soil mg/kg	20B1 (0-2) 0-2 9/20/2021 Soil mg/kg	20B1 (3-5) 3-5 9/20/2021 Soil mg/kg	20B3 (0-2) 0-2 9/20/2021 Soil mg/kg	20B3 (3-5) 3-5 9/20/2021 Soil mg/kg	20B4 (0-2) 0-2 9/20/2021 Soil mg/kg	20B4 (3-5) 3-5 9/20/2021 Soil mg/kg	20B6 (0-2) 0-2 9/20/2021 Soil mg/kg	20B6 (3-5) 3-5 9/20/2021 Soil mg/kg	20B5 (0-2) 0-2 9/20/2021 Soil mg/kg	20B5 (3-5) 3-5 9/20/2021 Soil mg/kg	20B7 (0-2) 0-2 9/20/2021 Soil mg/kg	20B7 (3-5) 3-5 9/20/2021 Soil mg/kg	3-5 9/20/2021	Samples	Number of Samples Exceeding the Respective RRSCO
Compound	RRSCO	UUSCO																	
PCB-1016	NS	0.1	< 0.071	< 0.084	< 0.076	< 0.076	< 0.39	< 0.078	< 0.072	< 0.072	< 0.071	< 0.74	< 0.77	< 0.071	< 0.076	< 0.072	< 0.073	0	NA
PCB-1221	NS	0.1	< 0.071	< 0.084	< 0.076	< 0.076	< 0.39	< 0.078	< 0.072	< 0.072	< 0.071	< 0.74	< 0.77	< 0.071	< 0.076	< 0.072	< 0.073	0	NA
PCB-1232	NS	0.1	< 0.071	< 0.084	< 0.076	< 0.076	< 0.39	< 0.078	< 0.072	< 0.072	< 0.071	< 0.74	< 0.77	< 0.071	< 0.076	< 0.072	< 0.073	0	NA
PCB-1242	NS	0.1	< 0.071	< 0.084	< 0.076	< 0.076	< 0.39	< 0.078	< 0.072	< 0.072	< 0.071	< 0.74	< 0.77	< 0.071	< 0.076	< 0.072	< 0.073	0	NA
PCB-1248	NS	0.1	< 0.071	< 0.084	< 0.076	< 0.076	< 0.39	< 0.078	< 0.072	< 0.072	< 0.071	< 0.74	< 0.77	< 0.071	< 0.076	< 0.072	< 0.073	0	NA
PCB-1254	NS	0.1	< 0.071	< 0.084	< 0.076	< 0.076	4.7	< 0.078	< 0.072	< 0.072	< 0.071	5.7	1.9	< 0.071	< 0.076	< 0.072	< 0.073	3	NA
PCB-1260	NS	0.1	< 0.071	< 0.084	< 0.076	< 0.076	< 0.39	< 0.078	< 0.072	< 0.072	< 0.071	< 0.74	< 0.77	< 0.071	< 0.076	< 0.072	< 0.073	0	NA
PCB-1262	NS	0.1	< 0.071	< 0.084	< 0.076	< 0.076	< 0.39	< 0.078	< 0.072	< 0.072	< 0.071	< 0.74	< 0.77	< 0.071	< 0.076	< 0.072	< 0.073	0	NA
PCB-1268	NS	0.1	< 0.071	< 0.084	< 0.076	< 0.076	< 0.39	< 0.078	< 0.072	< 0.072	< 0.071	< 0.74	< 0.77	< 0.071	< 0.076	< 0.072	< 0.073	0	NA

Notes:

All concentrations are in milligrams per kilogram (mg/kg)

All depths reported as feet below ground surface (ft bgs)

Compounds not detected are reported as less than the respective reporting limit (<RL)

Compounds detected in soil are BOLDED

Reporting Limits (RLs) exceeding the respective SCO are italicized

NS = No Standard

NA = Not Applicable

D = Field Duplicate

= Result exceeded the respective Unrestricted Use Soil Cleanup Criterion (UUSCO) (6 NYCRR Part 375)

= Result exceeded the respective Restricted Residential Use Soil Cleanup Criterion (RRSCO) (6 NYCRR Part 375)

Attachment 4B - Table 2e Soil Sampling Results (2021) - Pesticides

188 East 135th Street Redevelopment Site Bronx, New York

		Sample ID	20B2 (0-2)	20B2 (3-5)	20B1 (0-2)	20B1 (3-5)	20B3 (0-2)	20B3 (3-5)	20B4 (0-2)	20B4 (3-5)	20B6 (0-2)	20B6 (3-5)	20B5 (0-2)	20B5 (3-5)	20B7 (0-2)	20B7 (3-5)	20B7 (3-5)D	Number of	Number of
	Sample I	Depth (ft bgs)	0-2	3-5	0-2	3-5	0-2	3-5	0-2	3-5	0-2	3-5	0-2	3-5	0-2	3-5	3-5	Samples	Samples
	-	,	_		_		_		_		_				_			Exceeding	Exceeding
	Co	ollection Date	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021	the	the
		Matrix	Soil	Respective	Respective														
		Unit	mg/kg	UUSCO	RRSCO														
Compound	RRSCO	UUSCO																	
4,4' -DDD	13	0.0033	< 0.0021	< 0.0025	< 0.0023	< 0.0023	< 0.09	< 0.0023	< 0.0021	< 0.0022		< 0.05	< 0.45	< 0.0021	< 0.0023	< 0.0022	< 0.0022	1	0
4,4' -DDE	8.9	0.0033	< 0.0021	< 0.0025	< 0.0023	< 0.0023	< 0.16	< 0.0023	< 0.0021	< 0.0022	0.018	< 0.11	< 0.08	< 0.0021	< 0.0023	< 0.0022	< 0.0022	1	0
4,4' -DDT	7.9	0.0033	< 0.003	< 0.0025	< 0.0023	< 0.0023	< 0.4	< 0.0023	< 0.0021	< 0.0022	0.026	< 0.5	< 0.05	< 0.0021	< 0.0023	< 0.0022	< 0.0022	1	0
a-BHC	0.48	0.02	< 0.0071	< 0.0084	< 0.0076	< 0.0076	< 0.039	< 0.0078	< 0.0072	< 0.0072	< 0.0071	< 0.0074	< 0.038	< 0.0071	< 0.0076	< 0.0072	< 0.0073	0	0
a-Chlordane	4.2	0.094	< 0.0036	< 0.0042	< 0.0038	< 0.0038	< 0.025	< 0.0039	< 0.0036	< 0.0036	< 0.005	< 0.1	< 0.019	< 0.0036	< 0.0038	< 0.0036	< 0.0036	0	0
Aldrin	0.097	0.005	< 0.0036	< 0.0042	< 0.0038	< 0.005	< 0.019	< 0.0039	< 0.0036	< 0.0036	< 0.0035	< 0.0074	< 0.019	< 0.0036	< 0.0038	< 0.0036	< 0.0036	0	0
b-BHC	0.36	0.036	< 0.0071	< 0.0084	< 0.0076	< 0.0076	< 0.039	< 0.0078	< 0.0072	< 0.0072	< 0.0071	< 0.0074	< 0.038	< 0.0071	< 0.0076	< 0.0072	< 0.0073	0	0
Chlordane	NS	NS	< 0.036	< 0.042	< 0.038	< 0.038	< 0.19	< 0.039	< 0.036	< 0.036	< 0.035	< 0.19	< 0.19	< 0.036	< 0.038	< 0.036	< 0.036	NA	NA
d-BHC	100	0.04	< 0.0071	< 0.0084	< 0.0076	< 0.0076	< 0.039	< 0.0078	< 0.0072	< 0.0072	< 0.0071	< 0.037	< 0.038	< 0.0071	< 0.0076	< 0.0072	< 0.0073	0	0
Dieldrin	0.2	0.005	< 0.0036	< 0.0042	< 0.0038	< 0.0038	< 0.019	< 0.0039	< 0.0036	< 0.0036	0.0078	< 0.0074	< 0.03	< 0.0036	< 0.0038	< 0.0036	< 0.0036	1	0
Endosulfan I	24	2.4	< 0.0071	< 0.0084	< 0.0076	< 0.0076	< 0.039	< 0.0078	< 0.0072	< 0.0072	< 0.0071	< 0.037	< 0.038	< 0.0071	< 0.0076	< 0.0072	< 0.0073	0	0
Endosulfan II	24	2.4	< 0.0071	< 0.0084	< 0.0076	< 0.0076	< 0.039	< 0.0078	< 0.0072	< 0.0072	< 0.0071	< 0.037	< 0.038	< 0.0071	< 0.0076	< 0.0072	< 0.0073	0	0
Endosulfan sulfate	24	2.4	< 0.0071	< 0.0084	< 0.0076	< 0.0076	< 0.039	< 0.0078	< 0.0072	< 0.0072	< 0.0071	< 0.037	< 0.038	< 0.0071	< 0.0076	< 0.0072	< 0.0073	0	0
Endrin	11	0.014	< 0.0071	< 0.0084	< 0.0076	< 0.0076	< 0.039	< 0.0078	< 0.0072	< 0.0072	< 0.0071	< 0.019	< 0.038	< 0.0071	< 0.0076	< 0.0072	< 0.0073	0	0
Endrin aldehyde	NS	NS	< 0.0071	< 0.0084	< 0.0076	< 0.0076	< 0.05	< 0.0078	< 0.0072	< 0.0072	< 0.0071	< 0.075	< 0.038	< 0.0071	< 0.0076	< 0.0072	< 0.0073	NA	NA
Endrin ketone	NS	NS	< 0.0071	< 0.0084	< 0.0076	< 0.0076	< 0.039	< 0.0078	< 0.0072	< 0.0072	< 0.0071	< 0.037	< 0.05	< 0.0071	< 0.0076	< 0.0072	< 0.0073	NA	NA
g-BHC	1.3	0.1	< 0.0014	< 0.0017	< 0.0015	< 0.005	< 0.0078	< 0.0016	< 0.0014	< 0.0014	< 0.0014	< 0.0074	< 0.0077	< 0.0014	< 0.0015	< 0.0014	< 0.0015	0	0
g-Chlordane	NS	NS	< 0.0036	< 0.0042	< 0.0038	< 0.0038	< 0.019	< 0.0039	< 0.0036	< 0.0036	< 0.005	< 0.019	< 0.019	< 0.0036	< 0.0038	< 0.0036	< 0.0036	NA	NA
Heptachlor	2.1	0.042	< 0.0071	< 0.0084	< 0.0076	< 0.0076	< 0.039	< 0.0078	< 0.0072	< 0.0072	< 0.0071	< 0.037	< 0.038	< 0.0071	< 0.0076	< 0.0072	< 0.0073	0	0
Heptachlor epoxide	NS	NS	< 0.0071	< 0.0084	< 0.0076	< 0.0076	< 0.039	< 0.0078	< 0.0072	< 0.0072	< 0.0071	< 0.037	< 0.038	< 0.0071	< 0.0076	< 0.0072	< 0.0073	NA	NA
Methoxychlor	NS	NS	< 0.036	< 0.042	< 0.038	< 0.038	< 0.19	< 0.039	< 0.036	< 0.036	< 0.035	< 0.19	< 0.19	< 0.036	< 0.038	< 0.036	< 0.036	NA	NA
Toxaphene	NS	NS	< 0.14	< 0.17	< 0.15	< 0.15	< 0.78	< 0.16	< 0.14	< 0.14	< 0.14	< 0.74	< 0.77	< 0.14	< 0.15	< 0.14	< 0.15	NA	NA

Notes:

All concentrations are in milligrams per kilogram (mg/kg)

All depths reported as feet below ground surface (ft bgs)

Compounds not detected are reported as less than the respective reporting limit (<RL)

Compounds detected in soil are BOLDED

Reporting Limits (RLs) exceeding the respective SCO are italicized

NS = No Standard

NA = Not Applicable

D = Field Duplicate

= Result exceeded the respective Unrestricted Use Soil Cleanup Criterion (UUSCO) (6 NYCRR Part 375)

= Result exceeded the respective Restricted Residential Use Soil Cleanup Criterion (RRSCO) (6 NYCRR Part 375)

Attachment 4B - Table 2f Soil Sampling Results (2018-2021) - Emerging Contaminants

188 East 135th Street Redevelopment Site Bronx, New York

					l ==>		l ==	l ==		T />			T ()
			•	SB 1 (10-12`)	SB 2 (7-9`)	SB 3 (7-9`)	- (/	SB 5 (8-10`)	20B2 (0-2)	20B2 (3-5)	20B1 (0-2)	20B1 (3-5)	20B3 (0-2)
			Sample Depth (ft bgs)	10-12	7-9	7-9	8-10	8-10	0-2	3-5	0-2	3-5	0-2
			Collection Date	12/12/2018	12/12/2018	12/12/2018	12/12/2018	12/12/2018	9/20/2021	9/20/2021	9/20/2021	9/20/2021	9/20/2021
			Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
1,4-dioxane	Units	RRSCO	UUSCO										•
1,4-dioxane	mg/kg	13	0.1	< 0.072	< 0.072	< 0.094	< 0.085	< 0.075	< 0.08	< 0.1	< 0.1	< 0.087	< 0.1
PFAS		RR Soil Guidance Value	UU Soil Guidance Value				•					•	
Perfluorobutanesulfonic acid (PFBS)	mg/kg	NS	NS	-	-	-	-	-	-	-	-	-	< 0.000274
Perfluorohexanoic acid (PFHxA)	mg/kg	NS	NS	-	-	-	-	-	-	-	-	-	0.000854
Perfluoroheptanoic acid (PFHpA)	mg/kg	NS	NS	-	-	-	-	-	-	-	-	-	0.000432
Perfluorohexanesulfonic acid (PFHxS)	mg/kg	NS	NS	-	-	-	-	-	-	-	-	-	< 0.000274
Perfluorooctanoic acid (PFOA)	mg/kg	0.033	0.00066	-	-	-	-	-	-	-	-	-	0.00109
Perfluorooctanesulfonic acid (PFOS)	mg/kg	0.044	0.00088	-	-	-	-	-	-	-	-	-	0.000524
Perfluorononanoic acid (PFNA)	mg/kg	NS	NS	-	-	-	-	-	-	-	-	-	< 0.000274
Perfluorodecanoic acid (PFDA)	mg/kg	NS	NS	-	-	-	-	-	-	-	-	-	< 0.000274
Perfluoroundecanoic acid (PFUnA)	mg/kg	NS	NS	-	-	-	-	-	-	-	-	-	< 0.000274
Perfluorododecanoic acid (PFDoA)	mg/kg	NS	NS	-	-	ı	-	-	-	-	-	-	< 0.000274
Perfluorotridecanoic acid (PFTrDA)	mg/kg	NS	NS	-	-	-	-	-	-	-	-	-	< 0.000274
Perfluorotetradecanoic acid (PFTA)	mg/kg	NS	NS	-	-	-	-	-	-	-	-	-	< 0.000274
N-MeFOSAA	mg/kg	NS	NS	-	-	-	-	-	-	-	-	-	< 0.000274
N-EtFOSAA	mg/kg	NS	NS	-	-	-	-	-	-	-	-	-	< 0.000274
Perfluoropentanoic acid (PFPeA)	mg/kg	NS	NS	-	-	-	-	-	-	-	-	-	0.000367
Perfluoro-1-octanesulfonamide (FOSA)	mg/kg	NS	NS	-	-	-	-	-	-	-	-	-	< 0.000274
Perfluoro-1-heptanesulfonic acid (PFHpS)	mg/kg	NS	NS	-	-	-	-	-	-	-	-	-	< 0.000274
Perfluoro-1-decanesulfonic acid (PFDS)	mg/kg	NS	NS	-	-	-	-	-	-	-	-	-	< 0.000274
1H,1H,2H,2H-Perfluorooctanesulfonic acid (6:2 FTS)	mg/kg	NS	NS	-	-	-	-	-	-	-	-	-	< 0.000274
1H,1H,2H,2H-Perfluorodecanesulfonic acid (8:2 FTS)	mg/kg	NS	NS	-	-	-	-	-	-	-	-	-	< 0.000274
Perfluoro-n-butanoic acid (PFBA)	mg/kg	NS	NS	-	-	-	-	-	-	-	-	-	0.00576

Notes:

Concentrations are in milligrams per kilogram (mg/kg)

All depths reported as feet below ground surface (ft bgs)

Compounds not detected are reported as less than the respective reporting limit (<RL)

Compounds detected in soil are BOLDED

- = Not Analyzed

NS = No Standard

NA = Not Applicable

D = Field Duplicate

= Result exceeded the respective Unrestricted Use Soil Cleanup Criterion (UUSCO) (6 NYCRR Part 375) or Unrestricted Use PFAS Soil Guidance Value (June 2021)

= Result exceeded the respective Restricted Residential Use Soil Cleanup Criterion (RRSCO) (6 NYCRR Part 375) or Restricted __Residential Use PFAS Soil Guidance Value (June 2021)

Residential Use PFAS Soil Guidance Value (June 2021)
= Result represents the maximum soil concentration of the respective compound detected at the Site

Attachment 4B - Table 2f Soil Sampling Results (2018-2021) - Emerging Contaminants

188 East 135th Street Redevelopment Site Bronx, New York

			Sample ID Sample Depth (ft bgs) Collection Date Matrix	20B3 (3-5) 3-5 9/20/2021 Soil	20B4 (0-2) 0-2 9/20/2021 Soil	20B4 (3-5) 3-5 9/20/2021 Soil	20B6 (0-2) 0-2 9/20/2021 Soil	20B6 (3-5) 3-5 9/20/2021 Soil	20B5 (0-2) 0-2 9/20/2021 Soil	20B5 (3-5) 3-5 9/20/2021 Soil	20B7 (0-2) 0-2 9/20/2021 Soil	20B7 (3-5) 3-5 9/20/2021 Soil	20B7 (3-5)D 3-5 9/20/2021 Soil	Number of Samples Exceeding the Respective UU Criterion	Number of Samples Exceeding the Respective RR Criterion
1,4-dioxane	Units	RRSCO	UUSCO												
1,4-dioxane	mg/kg	13	0.1	< 0.086	< 0.077	< 0.068	< 0.073	< 0.1	< 0.089	< 0.1	< 0.097	< 0.068	< 0.1	0	0
PFAS		RR Soil Guidance Value	UU Soil Guidance Value												
Perfluorobutanesulfonic acid (PFBS)	mg/kg	NS	NS	-	-	-	-	-	-	-	-	-	-	NA	NA
Perfluorohexanoic acid (PFHxA)	mg/kg	NS	NS	-	-	-	-	-	-	-	-	-	-	NA	NA
Perfluoroheptanoic acid (PFHpA)	mg/kg	NS	NS	-	-	-	-	-	-	-	-	-	-	NA	NA
Perfluorohexanesulfonic acid (PFHxS)	mg/kg	NS	NS	-	-	-	-	-	-	-	-	-	-	NA	NA
Perfluorooctanoic acid (PFOA)	mg/kg	0.033	0.00066	-	-	-	-	-	-	-	-	-	-	1	0
Perfluorooctanesulfonic acid (PFOS)	mg/kg	0.044	0.00088	-	-	-	-	-	-	-	-	-	-	0	0
Perfluorononanoic acid (PFNA)	mg/kg	NS	NS	-	-	-	-	-	-	-	-	-	-	NA	NA
Perfluorodecanoic acid (PFDA)	mg/kg	NS	NS	1	-	-	-	-	-	-	-	1	-	NA	NA
Perfluoroundecanoic acid (PFUnA)	mg/kg	NS	NS	-	-	-	-	-	-	-	-	-	-	NA	NA
Perfluorododecanoic acid (PFDoA)	mg/kg	NS	NS	-	-	-	-	-	-	-	-	i	-	NA	NA
Perfluorotridecanoic acid (PFTrDA)	mg/kg	NS	NS	-	-	-	-	-	-	-	-	-	-	NA	NA
Perfluorotetradecanoic acid (PFTA)	mg/kg	NS	NS	-	-	-	-	-	-	-	-	-	-	NA	NA
N-MeFOSAA	mg/kg		NS	-	-	-	-	-	-	-	-	-	-	NA	NA
N-EtFOSAA	mg/kg	NS	NS	-	-	-	-	-	-	-	-	-	-	NA	NA
Perfluoropentanoic acid (PFPeA)	mg/kg	NS	NS	-	-	-	-	-	-	-	-	-	-	NA	NA
Perfluoro-1-octanesulfonamide (FOSA)	mg/kg	NS	NS	-	-	-	-	-	-	-	-	-	-	NA	NA
Perfluoro-1-heptanesulfonic acid (PFHpS)	mg/kg	NS	NS	-	-	-	-	-	-	-	-	-	-	NA	NA
Perfluoro-1-decanesulfonic acid (PFDS)	mg/kg		NS	-	-	-	-	-	-	-	-	-	-	NA	NA
1H,1H,2H,2H-Perfluorooctanesulfonic acid (6:2 FTS)	mg/kg	NS	NS	-	-	-	-	-	-	-	-	-	-	NA	NA
1H,1H,2H,2H-Perfluorodecanesulfonic acid (8:2 FTS)	mg/kg		NS	-	-	-	-	-	-	-	-	-	-	NA	NA
Perfluoro-n-butanoic acid (PFBA)	mg/kg	NS	NS	-	-	-	-	-	-	-	-	-	-	NA	NA

Notes:

Concentrations are in milligrams per kilogram (mg/kg) or in micrograms per kilogram (ug/kg)

All depths reported as feet below ground surface (ft bgs)

Compounds not detected are reported as less than the respective reporting limit (<RL)

Compounds detected in soil are BOLDED

- = Not Analyzed

NS = No Standard

NA = Not Applicable

D = Field Duplicate

= Result exceeded the respective Unrestricted Use Soil Cleanup Criterion (UUSCO) (6 NYCRR Part 375) or Unrestricted Use PFAS Soil Guidance Value (June 2021)

= Result exceeded the respective Restricted Residential Use Soil Cleanup Criterion (RRSCO) (6 NYCRR Part 375) or Restricted ____ Residential Use PFAS Soil Guidance Value (June 2021)

Attachment 4B - Table 3a **Groundwater Sampling Results (2021) - Metals**

188 East 135th Street Redevelopment Site Bronx, New York

	Sample ID	20 MW 1	20 MW 2	20 MW 3	20 MW 4	20 MW 4D	
							Number of
	Collection Date	10/1/2021	10/1/2021	10/1/2021	10/1/2021	10/1/2021	Samples
	Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Exceeding the Respective AWQS
	Unit	ug/l	ug/l	ug/l	ug/l	ug/l	Respective Avvos
Metals, Total	AWQS	0750			00	00	N10
Aluminum	NS	3750	108000	< 20	< 20	20	NA
Arsenic	25	8	33	19	14	19	1
Barium	1000	126	679	93	96	96	0
Beryllium	3	< 1	11	< 1	< 1	< 1	1
Cadmium	5	< 4	8	< 4	< 4	< 4	1
Calcium	NS	108000	136000	100000	102000	104000	NA
Chromium	50	6	191	< 1	< 1	< 1	1
Cobalt	ND	6	84	2	2	2	0
Copper	200	19	358	16	7	6	1
Iron	300	11100	203000	5410	5950	5210	5
Lead	25	28	876	< 2	1	< 2	2
Magnesium	35000	39800	87700	43500	42800	46900	5
Manganese	300	1940	7540	1910	1930	2090	5
Mercury	0.7	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0
Nickel	100	10	165	6	6	7	1
Potassium	NS	21200	42600	22200	21800	23600	NA
Antimony	3	< 3	2.9	< 3	< 3	< 3	0
Selenium	10	1	< 10	< 10	2	< 10	0
Silver	50	5	< 5	< 5	< 5	< 5	0
Sodium	20000	308000	201000	350000	333000	369000	5
Thallium	0.5	< 0.5	2	< 0.5	< 0.5	< 0.5	1
Vanadium	NS	7	260	< 10	< 10	1	NA
Zinc	5000	43	1020	14	11	9	0
Metals, Dissolved			↓				
Aluminum (Dissolved)	NS	16	245	16	15	23	NA
Arsenic, (Dissolved)	25	4	4	6	4	6	0
Barium (Dissolved)	1000	80	49	70	72	66	0
Beryllium (Dissolved)	3	< 1	< 1	< 1	< 1	< 1	0
Cadmium (Dissolved)	5 NS	< 4 97800	< 4	< 4	< 4	< 4	0
Calcium (Dissolved)	_		63900	96200	96200	96600	NA 0
Chromium (Dissolved)	50 NS	< 1	< 1 5	< 1 1	< 1 1	< 1 1	0
Cobalt, (Dissolved) Copper, (Dissolved)	NS 200	2	$-\frac{5}{4}$	2	2	1	0
Antimony (Dissolved)	3	2.2	10.6	1.9	3.6	1.9	2
Selenium (Dissolved)	10	< 2				< 2	0
Selenium (Dissolved) Thallium (Dissolved)	0.5	< 0.3	< 2	< 2	< 2	< 2	0
Iron, (Dissolved)	300	< 10	220	< 10	< 10	< 10	0
Lead (Dissolved)	25	< 2	<u> </u>	2	< 2	1	0
Magnesium (Dissolved)	35000	34400	28600	38500	37800	40600	3
Manganese, (Dissolved)	300	1460	2600	1610	1540	1670	4
Mercury (Dissolved)	0.7	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0
Nickel, (Dissolved)	100	3	2	4	4	4	0
Potassium (Dissolved)	NS	17700	20200	19400	19000	19900	NA
Silver (Dissolved)	50	< 5	20200 < 5	< 5	< 5	< 5	0
Sodium (Dissolved)	20000	315000	84700	347000	342000	361000	5
Vanadium, (Dissolved)	NS	< 11	1	1	< 11	< 11	NA NA
Zinc. (Dissolved)	5000	3	<u> </u>	1- 1	2	< 11	0
Ziric, (Dissuiveu)	5000	L	<u> L</u>	l		< 11	U

Notes:

All concentrations are in micrograms per liter (ug/l)

Compounds not detected are reported as less than the respective Reporting Limit (RL)

Compounds detected in groundwater are BOLDED

NS = No Standard

NA = Not Applicable

D = Field Duplicate

= Result exceeded the respective Ambient Water Quality Standard (AWQS) for Class GA Waters (T.O.G.S. 1.1.1)
= Result represents the maximum groundwater concentration of the respective compound detected at the Site

Prepared for 04/22/2022 12.0077272.10 Page 1 of 1 Checked by MM 04/29/2022

188 East 135th Street Redevelopment Site Bronx, New York

	Sample ID	GW1	GW2	GW3	20 MW 1	20 MW 2	20 MW 3	20 MW 4	20 MW 4D	Number of
	Collection Date	12/12/2018	12/12/2018	12/12/2018	10/1/2021	10/1/2021	10/1/2021	10/1/2021	10/1/2021	Samples
	Matrix Unit	Groundwater ug/l	Groundwater ug/l	Groundwater ug/l	Groundwater ug/l	Groundwater ug/l	Groundwater ug/l	Groundwater ug/l	Groundwater ug/l	Exceeding the Respective AWQS
Compound	AWQS	ug/i	ug/i	ug/1	ug/1	ug/1	ugri	ug/i	ug/1	Respective Avigo
1,1,1-Trichloroethane	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	0
1,1,2,2-Tetrachloroethane	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0
1,1,2-Trichloroethane	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0
1,1-Dichloroethane 1,1-Dichloroethene	5 5	< 5.0 < 1.0	< 5.0 < 1.0	< 5.0 < 1.0	< 5.0 < 1.0	0				
1,1-Dichloropropene	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0
1,2,3-Trichlorobenzene	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA
1,2,3-Trichloropropane	0.04	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	0
1,2,4-Trichlorobenzene	NS 5	< 1.0 1.8	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 < 1.0	NA 0
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	0.04	< 0.50	< 1.0 < 0.50	< 1.0 < 0.50	< 1.0 < 0.50	< 1.0 < 0.50	< 1.0 < 0.50	< 1.0 < 0.50	< 0.50	0
1,2-Dibromoethane	0.0006	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	0
1,2-Dichlorobenzene	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA
1,2-Dichloroethane	0.6	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	0
1,2-Dichloropropane	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0
1,3,5-Trimethylbenzene	5	0.34	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0
1,3-Dichlorobenzene 1,3-Dichloropropane	3 5	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	0				
1,4-Dichlorobenzene	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA
2,2-Dichloropropane	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0
2-Chlorotoluene	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0
2-Hexanone	50	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	0
2-Isopropyltoluene 4-Chlorotoluene	5 5	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	0				
4-Methyl-2-pentanone	NS	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	NA
Acetone	50	3.9	< 5.0	3.7	3.6	3.6	< 5.0	< 5.0	< 5.0	0
Acrolein	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	0
Acrylonitrile	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	0
Benzene	1	< 0.70	< 0.70	< 0.70	< 0.70	< 0.70	< 0.70	< 0.70	< 0.70	0
Bromobenzene Bromochloromethane	5 5	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	0				
Bromodichloromethane	50	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0
Bromoform	50	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	0
Bromomethane	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	0
Carbon Disulfide	NS	0.4	< 1.0	0.39	< 1.0	0.42	< 1.0	< 1.0	< 1.0	NA
Carbon tetrachloride Chlorobenzene	5 5	< 1.0 < 5.0	< 1.0 < 5.0	< 1.0 < 5.0	< 1.0 < 5.0	0				
Chloroethane	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	0
Chloroform	7	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	0
Chloromethane	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	0
cis-1,2-Dichloroethene	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0
cis-1,3-Dichloropropene Dibromochloromethane	0.4 50	< 0.40 < 1.0	< 0.40 < 1.0	< 0.40 < 1.0	< 0.40 < 1.0	0				
Dibromomethane	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0
Dichlorodifluoromethane	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0
Ethylbenzene	5	0.32	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0
Hexachlorobutadiene	0.5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	0
Isopropylbenzene m&p-Xylene	5 NS	< 1.0 1.2	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	0 NA
Methyl ethyl ketone	50	< 2.5	< 2.5	< 2.5	< 2.5	< 1.0	< 1.0	< 1.0	< 1.0	0
Methyl t-butyl ether (MTBE)	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA NA
Methylene chloride	5	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	0
Naphthalene	10	1.6	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0
n-Butylbenzene	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0
n-Propylbenzene o-Xylene	5 5	< 1.0 0.6	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	0
p-lsopropyltoluene	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0
sec-Butylbenzene	5	1.5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0
Styrene	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0
tert-Butylbenzene	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0
Tetrachloroethene	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0
Tetrahydrofuran (THF)	50	< 5.0 1.3	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	0
Toluene trans 1.2 Dichloroothono	5	1.3 < 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	5 0.4	< 5.0 < 0.40	< 5.0 < 0.40	< 5.0 < 0.40	< 5.0 < 0.40	0				
trans-1,4-dichloro-2-butene	5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	0
Trichloroethene	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0
Trichlorofluoromethane	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0
Trichlorotrifluoroethane	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0
Vinyl chloride 1,1,1,2-Tetrachloroethane	5	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	0				
		< 1.0	< 50	< 50	< 50	< 50	< 50	< 50	< 50	NA

All concentrations are in micrograms per liter (ug/l)
Compounds not detected are reported as less than the respective Reporting Limit (RL)

Compounds detected in groundwater are BOLDED

Reporting Limits exceeding the respective AWQS are Italicized

NS = No Standard

NA = Not Applicable

D = Field Duplicate

= Result exceeded the respective Ambient Water Quality Standard (AWQS) for Class GA Waters (T.O.G.S. 1.1.1)

= Result represents the maximum groundwater concentration of the respective compound detected at the Site

12.0077272.10 Page 1 of 1

Attachment 4B - Table 3c Groundwater Sampling Results (2018-2021) - Semi-Volatile Organic Compounds

188 East 135th Street Redevelopment Site Bronx, New York

	Sample ID	20 MW 1	20 MW 2	20 MW 3	20 MW 4	20 MW 4D	Number of
	Collection Date	10/1/2021	10/1/2021	10/1/2021	10/1/2021	10/1/2021	Samples
	Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Exceeding the
	Unit	ug/l	ug/l	ug/l	ug/l	ug/l	Respective AWQS
Semivolatiles By SW8270D (SIM)	AWQS						
Acenaphthylene	NS	< 0.49	< 0.51	< 0.52	< 0.50	< 0.50	NA
Benz(a)anthracene	0.002 NS	< 0.02	0.49	< 0.02	< 0.02	< 0.02 < 0.02	1 NA
Benzo(a)pyrene Benzo(b)fluoranthene	0.002	< 0.02 < 0.02	0.64	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02	INA 1
Benzo(ghi)perylene	0.002 NS	< 0.49	0.52	< 0.52	< 0.50	< 0.02	NA
Benzo(k)fluoranthene	0.002	< 0.02	0.49	< 0.02	< 0.02	< 0.02	1
Chrysene	0.002	< 0.02	0.49	< 0.02	< 0.02	< 0.02	1
Dibenz(a,h)anthracene	NS	< 0.49	< 0.51	< 0.52	< 0.50	< 0.50	NA
Hexachlorobenzene	0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	0
Hexachlorobutadiene	0.5 5	< 0.49 < 0.49	< 0.50 < 0.51	< 0.50 < 0.52	< 0.50 < 0.50	< 0.50 < 0.50	0
Hexachlorocyclopentadiene Indeno(1,2,3-cd)pyrene	0.002	< 0.49	0.64	< 0.02	< 0.02	< 0.02	1
Nitrobenzene	0.4	< 0.39	< 0.40	< 0.40	< 0.40	< 0.40	0
N-Nitrosodimethylamine	NS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	NA
Pentachlorophenol	1	< 0.49	< 0.51	< 0.52	< 0.50	< 0.50	0
Phenanthrene	50	< 0.49	< 0.51	< 0.52	< 0.50	< 0.50	0
Semivolatiles By SW8270D 1,2,4,5-Tetrachlorobenzene	AWQS NS	< 3.4	< 3.5	< 3.6	< 3.5	< 3.5	NA
1,2,4-Trichlorobenzene	NS NS	< 3.4 < 4.9	< 3.5 < 5.1	< 5.2	< 3.5 < 5.0	< 3.5 < 5.0	NA NA
1,2-Dichlorobenzene	NS	< 0.98	< 1.0	< 1.0	< 0.99	< 1.0	NA
1,2-Diphenylhydrazine	NS	< 4.9	< 5.1	< 5.2	< 5.0	< 5.0	0
1,3-Dichlorobenzene	3	< 0.98	< 1.0	< 1.0	< 0.99	< 1.0	0
1,4-Dichlorobenzene 2,4,5-Trichlorophenol	NS 1	< 0.98 < 0.98	< 1.0 < 1.0	< 1.0 < 1.0	< 0.99 < 0.99	< 1.0 < 1.0	NA 0
2,4,6-Trichlorophenol	1	< 0.98	< 1.0	< 1.0	< 0.99	< 1.0	0
2,4-Dichlorophenol	1	< 0.98	< 1.0	< 1.0	< 0.99	< 1.0	0
2,4-Dimethylphenol	1	< 0.98	< 1.0	< 1.0	< 0.99	< 1.0	0
2,4-Dinitrophenol	1	< 0.98	< 1.0	< 1.0	< 0.99	< 1.0	0
2,4-Dinitrotoluene 2,6-Dinitrotoluene	5 5	< 4.9 < 4.9	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 < 5.0	0
2-Chloronaphthalene	10	< 4.9	< 5.1	< 5.2	< 5.0	< 5.0	0
2-Chlorophenol	1	< 0.98	< 1.0	< 1.0	< 0.99	< 1.0	0
2-Methylnaphthalene	NS	< 4.9	< 5.1	< 5.2	< 5.0	< 5.0	NA
2-Methylphenol (o-cresol) 2-Nitroaniline	5	< 0.98 < 4.9	< 1.0 < 5.0	< 1.0 < 5.0	< 0.99 < 5.0	< 1.0 < 5.0	0
2-Nitrophenol	1	< 0.98	< 1.0	< 1.0	< 0.99	< 1.0	0
3&4-Methylphenol (m&p-cresol)	NS	< 0.98	< 1.0	< 1.0	< 0.99	< 1.0	NA
3,3'-Dichlorobenzidine	5	< 4.9	< 5.0	< 5.0	< 5.0	< 5.0	0
3-Nitroaniline	5	< 4.9	< 5.0	< 5.0	< 5.0	< 5.0	0
4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether	1 NS	< 0.98 < 4.9	< 1.0 < 5.1	< 1.0 < 5.2	< 0.99 < 5.0	< 1.0 < 5.0	0 NA
4-Chloro-3-methylphenol	1	< 0.98	< 1.0	< 1.0	< 0.99	< 1.0	0
4-Chloroaniline	5	< 3.4	< 3.5	< 3.6	< 3.5	< 3.5	0
4-Chlorophenyl phenyl ether	NS	< 4.9	< 5.1	< 5.2	< 5.0	< 5.0	NA
4-Nitroaniline	5	< 4.9	< 5.0	< 5.0	< 5.0	< 5.0	0
4-Nitrophenol Acenaphthene	20	< 0.98 < 4.9	< 1.0 < 5.1	< 1.0 < 5.2	< 0.99 < 5.0	< 1.0 < 5.0	0
Acetophenone	NS	< 4.9	< 5.1	< 5.2	< 5.0	< 5.0	NA NA
Aniline	5	< 3.4	< 3.5	< 3.6	< 3.5	< 3.5	0
Anthracene	50	< 4.9	< 5.1	< 5.2	< 5.0	< 5.0	0
Benzidine Benzoic acid	5 NS	< 4.4	< 4.5 < 25	< 4.7 < 26	< 4.5	< 4.5 < 25	0 NA
Benzoic acid Benzyl butyl phthalate	50	< 25 < 4.9	< 25 < 5.1	< 26 < 5.2	< 25 < 5.0	< 25 < 5.0	0 0
Bis(2-chloroethoxy)methane	5	< 4.9	< 5.0	< 5.0	< 5.0	< 5.0	0
Bis(2-chloroethyl)ether	1	< 0.98	< 1.0	< 1.0	< 0.99	< 1.0	0
Bis(2-chloroisopropyl)ether	5	< 4.9	< 5.0	< 5.0	< 5.0	< 5.0	0
Bis(2-ethylhexyl)phthalate Carbazole	5 NS	< 0.98 < 4.9	< 1.0 < 5.1	< 1.0 < 5.2	< 0.99 < 5.0	< 1.0 < 5.0	0 NA
Dibenzofuran	NS NS	< 4.9	< 5.0	< 5.2 < 5.0	< 5.0	< 5.0	NA NA
Diethyl phthalate	50	< 4.9	< 5.1	< 5.2	< 5.0	< 5.0	0
Dimethylphthalate	50	< 4.9	< 5.1	< 5.2	< 5.0	< 5.0	0
Di-n-butylphthalate	50	< 4.9	< 5.1	< 5.2	< 5.0	< 5.0	0
Di-n-octylphthalate Fluoranthene	50 50	< 4.9 < 4.9	< 5.1 < 5.1	< 5.2 < 5.2	< 5.0 < 5.0	< 5.0 < 5.0	0
Fluorene	50	< 4.9	< 5.1 < 5.1	< 5.2 < 5.2	< 5.0 < 5.0	< 5.0 < 5.0	0
Hexachloroethane	5	< 0.98	< 1.0	< 1.0	< 0.99	< 1.0	0
Isophorone	50	< 4.9	< 5.1	< 5.2	< 5.0	< 5.0	0
Naphthalene	10 NS	< 4.9	< 5.0	< 5.0	< 5.0	< 5.0	0
N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine	NS 50	< 4.9 < 4.9	< 5.1 < 5.1	< 5.2 < 5.2	< 5.0 < 5.0	< 5.0 < 5.0	NA 0
Pentachloronitrobenzene	NS	< 2.5	< 2.5	< 2.6	< 2.5	< 2.5	NA
Phenol	1	< 0.98	< 1.0	< 1.0	< 0.99	< 1.0	0
Pyrene	50	< 4.9	< 5.1	< 5.2	< 5.0	< 5.0	0
Pyridine	50	< 9.8	< 10	< 10	< 9.9	< 10	0

Notes:

All concentrations are in micrograms per liter (ug/l)

Compounds not detected are reported as less than the respective Reporting Limit (RL)

Compounds detected in groundwater are BOLDED Reporting Limits exceeding the respective AWQS are Italicized

NS = No Standard NA = Not Applicable

D = Field Duplicate

= Result exceeded the respective Ambient Water Quality Standard (AWQS) for Class GA Waters (T.O.G.S. 1.1.1)
= Result represents the maximum groundwater concentration of the respective compound detected at the Site

12.0077272.10 Page 1 of 1

Attachment 4B - Table 3d Groundwater Sampling Results (2021) - Polychlorinated Biphenyls

188 East 135th Street Redevelopment Site Bronx, New York

	Sample ID Collection Date Matrix Unit	10/1/2021 Ground Water	20 MW 2 10/1/2021 Ground Water ug/l	20 MW 3 10/1/2021 Ground Water ug/l	20 MW 4 10/1/2021 Ground Water ug/l	20 MW 4D 10/1/2021 Ground Water ug/l	Number of Samples Exceeding the Respective AWQS
Compound	AWQS						
PCB-1016	0.09	< 0.051	< 0.052	< 0.052	< 0.051	< 0.053	0
PCB-1221	0.09	< 0.051	< 0.052	< 0.052	< 0.051	< 0.053	0
PCB-1232	0.09	< 0.051	< 0.052	< 0.052	< 0.051	< 0.053	0
PCB-1242	0.09	< 0.051	< 0.052	< 0.052	< 0.051	< 0.053	0
PCB-1248	0.09	< 0.051	< 0.052	< 0.052	< 0.051	< 0.053	0
PCB-1254	0.09	< 0.051	< 0.052	< 0.052	< 0.051	< 0.053	0
PCB-1260	0.09	< 0.051	< 0.052	< 0.052	< 0.051	< 0.053	0
PCB-1262	NS	< 0.051	< 0.052	< 0.052	< 0.051	< 0.053	0
PCB-1268	NS	< 0.051	< 0.052	< 0.052	< 0.051	< 0.053	0

Notes:

All concentrations are in micrograms per liter (ug/l)

Compounds not detected are reported as less than the respective Reporting Limit (RL)

Compounds detected in groundwater are BOLDED

NS = No Standard

NA = Not Applicable

D = Field Duplicate

= Result exceeded the respective Ambient Water Quality Standard (AWQS) for Class GA Waters (T.O.G.S. 1.1.1)
= Result represents the maximum groundwater concentration of the respective compound detected at the Site

12.0077272.10 Page 1 of 1

Attachment 4B - Table 3e Groundwater Sampling Results (2021) - Pesticides

188 East 135th Street Redevelopment Site Bronx, New York

	0	00 100 4	00.14147.0	00 1414/ 0	00 1414/4	00 MM/ 4D	
	Sample ID	20 MW 1	20 MW 2	20 MW 3	20 MW 4	20 MW 4D	Number of Samples
	Collection Date	10/1/2021	10/1/2021	10/1/2021	10/1/2021	10/1/2021	Exceeding the
	Matrix	Ground Water	Respective AWQS				
	Unit	ug/l	ug/l	ug/l	ug/l	ug/l	
Compound	AWQS						
4,4' -DDD	0.3	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0
4,4' -DDE	0.2	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0
4,4' -DDT	0.2	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0
a-BHC	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0
a-chlordane	NS	< 0.010	< 0.010	< 0.010	< 0.010	< 0.011	NA
Alachlor	0.5	< 0.077	< 0.078	< 0.078	< 0.077	< 0.079	0
Aldrin	NS	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	NA
b-BHC	0.04	< 0.010	< 0.005	< 0.005	< 0.005	< 0.005	0
Chlordane	0.05	< 0.020	< 0.021	< 0.021	< 0.020	< 0.021	0
d-BHC	0.04	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0
Dieldrin	0.004	< 0.004	< 0.002	< 0.004	< 0.002	< 0.004	0
Endosulfan I	NS	< 0.010	< 0.010	< 0.010	< 0.010	< 0.011	NA
Endosulfan II	NS	< 0.010	< 0.010	< 0.010	< 0.010	< 0.011	NA
Endosulfan Sulfate	NS	< 0.010	< 0.010	< 0.010	< 0.010	< 0.011	NA
Endrin	NS	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	NA
Endrin Aldehyde	5	< 0.010	< 0.010	< 0.010	< 0.010	< 0.011	0
Endrin ketone	5	< 0.010	< 0.010	< 0.010	< 0.010	< 0.011	0
g-BHC (Lindane)	0.05	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0
g-chlordane	NS	< 0.010	< 0.010	< 0.010	< 0.010	< 0.011	NA
Heptachlor	0.04	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0
Heptachlor epoxide	0.03	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0
Methoxychlor	35	< 0.10	< 0.10	< 0.10	< 0.10	< 0.11	0
Toxaphene	0.06	< 0.20	< 0.21	< 0.21	< 0.20	< 0.21	0

Notes:

All concentrations are in micrograms per liter (ug/l)

Compounds not detected are reported as less than the respective Reporting Limit (RL)

Compounds detected in groundwater are BOLDED

Reporting Limits exceeding the respective AWQS are Italicized

NS = No Standard

NA = Not Applicable

D = Field Duplicate

= Result exceeded the respective Ambient Water Quality Standard (AWQS) for Class GA Waters (T.O.G.S. 1.1.1)
= Result represents the maximum groundwater concentration of the respective compound detected at the Site

Attachment 4B - Table 3f **Groundwater Sampling Results (2021) - Emerging Contaminants**

188 East 135th Street Redevelopment Site Bronx, New York

		Sample ID	20 MW 1	20 MW 2	20 MW 3	Number of Samples
		Collection Date	10/1/2021	10/1/2021	10/1/2021	Exceeding the Respective
		Matrix	Groundwater	Groundwater	Groundwater	Guidance Value
4.4.1	11-16		Groundwater	Groundwater	Groundwater	
1,4-dioxane	Unit	Guidance Value				
1,4-dioxane	ng/l	350	< 200	< 400	< 200	0
PFAS	Unit	Guidance Value		1		
Perfluorobutanesulfonic acid (PFBS)	ng/l	NS	2.01	2.71	2.49	NA
Perfluorohexanoic acid (PFHxA)	ng/l	NS	3.41	8.74	4.41	NA
Perfluoroheptanoic acid (PFHpA)	ng/l	NS	3.34	8.82	3.89	NA
Perfluorohexanesulfonic acid (PFHxS)	ng/l	NS	< 1.85	< 1.85	< 1.85	NA
Perfluorooctanoic acid (PFOA)	ng/l	6.7	21.6	35.3	18.2	3
Perfluorooctanesulfonic acid (PFOS)	ng/l	2.7	25.1	25.5	24.4	3
Perfluorononanoic acid (PFNA)	ng/l	NS	5.78	3.07	4.41	NA
Perfluorodecanoic acid (PFDA)	ng/l	NS	2.01	2.46	1.88	NA
Perfluoroundecanoic acid (PFUnA)	ng/l	NS	< 1.85	< 1.85	< 1.85	NA
Perfluorododecanoic acid (PFDoA)	ng/l	NS	< 1.85	< 1.85	< 1.85	NA
Perfluorotridecanoic acid (PFTrDA)	ng/l	NS	< 1.85	< 1.85	< 1.85	NA
Perfluorotetradecanoic acid (PFTA)	ng/l	NS	< 1.85	< 1.85	< 1.85	NA
N-MeFOSAA	ng/l	NS	< 1.85	< 1.85	< 1.85	NA
N-EtFOSAA	ng/l	NS	< 1.85	< 1.85	< 1.85	NA
Perfluoropentanoic acid (PFPeA)	ng/l	NS	4.67	10.8	5.36	NA
Perfluoro-1-octanesulfonamide (FOSA)	ng/l	NS	< 1.85	< 1.85	< 1.85	NA
Perfluoro-1-heptanesulfonic acid (PFHpS)	ng/l	NS	< 1.85	< 1.85	< 1.85	NA
Perfluoro-1-decanesulfonic acid (PFDS)	ng/l	NS	< 1.85	< 1.85	< 1.85	NA
1H,1H,2H,2H-Perfluorooctanesulfonic acid (6:2 FTS)	ng/l	NS	< 4.63	< 4.63	< 4.63	NA
1H,1H,2H,2H-Perfluorodecanesulfonic acid (8:2 FTS)	ng/l	NS	< 1.85	< 1.85	< 1.85	NA
Perfluoro-n-butanoic acid (PFBA)	ng/l	NS	5.84	10	6.29	NA

Notes:

Concentrations are in nanograms per liter (ng/l)

Compounds not detected are reported as less than the respective Reporting Limit (RL)

Compounds detected in groundwater are BOLDED

Reporting Limits exceeding the respective AWQS are Italicized

NS = No Standard

NA = Not Applicable

D = Field Duplicate

= Result exceeded the respective Draft Water Quality Guidance Value for Emerging Contaminants (NYSDEC,

October 2021)

Result represents the maximum groundwater concentration of the respective compound detected at the Site

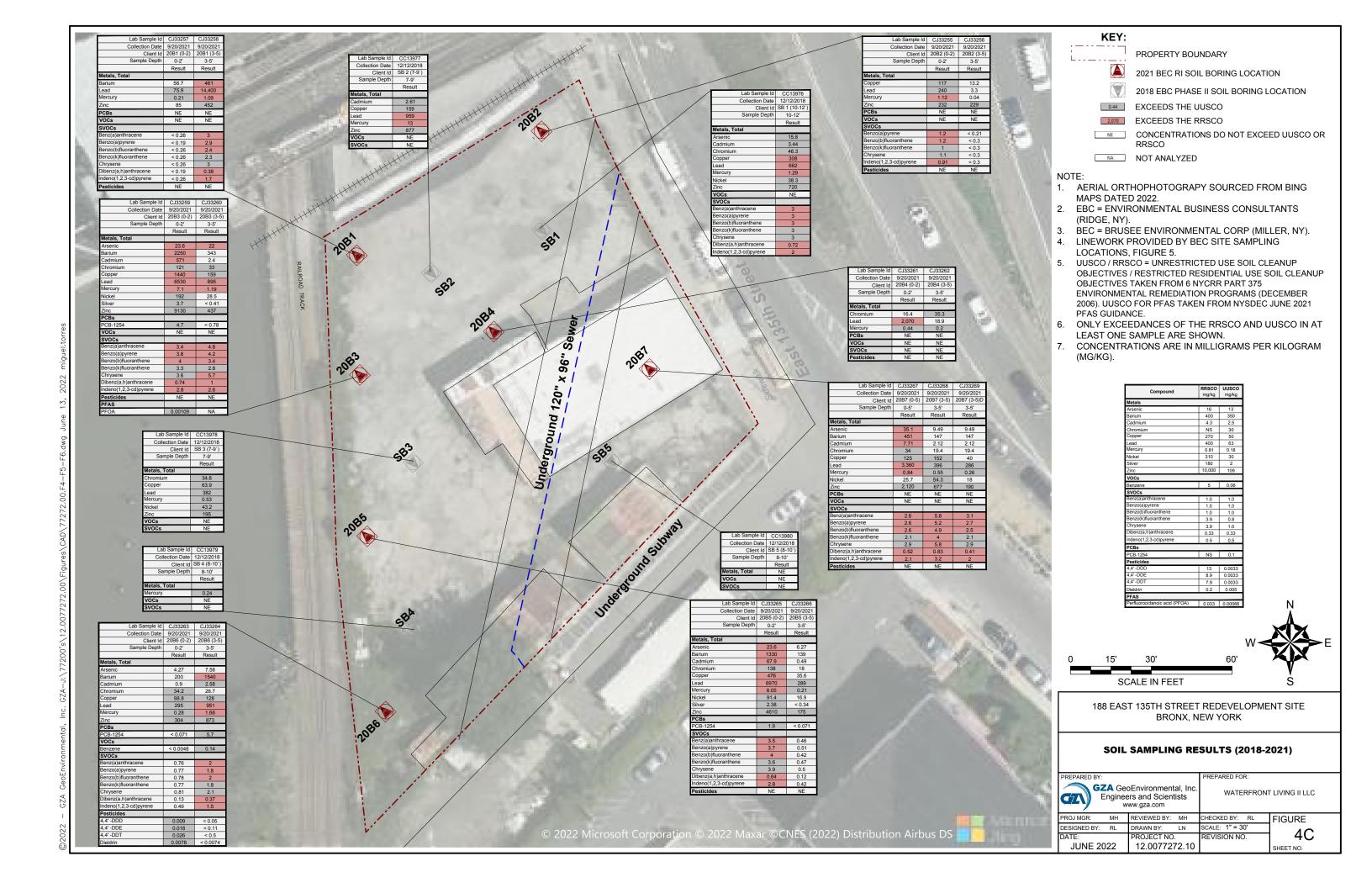
188 East 135th Street Redevelopment Site Bronx, New York

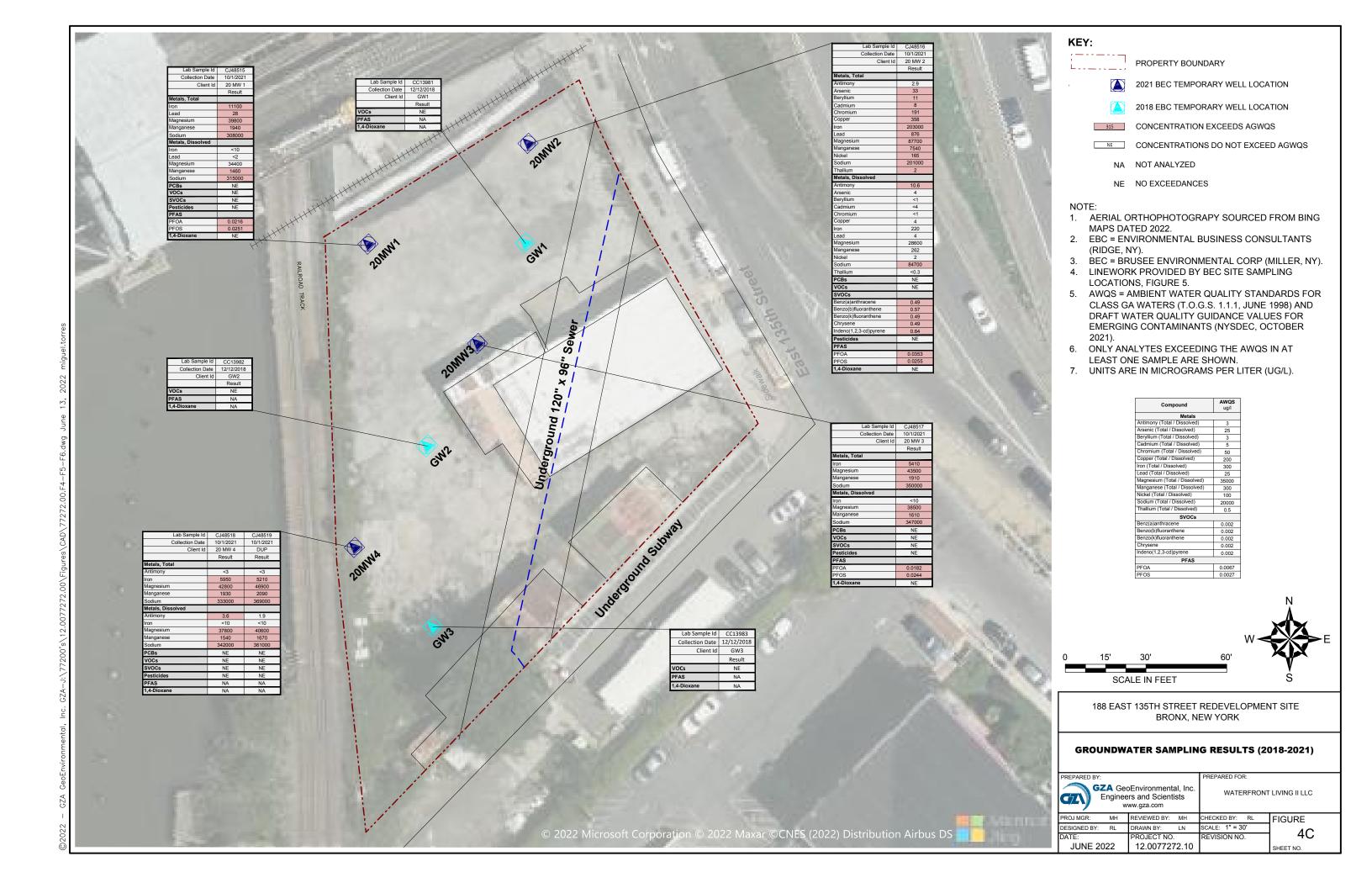
Comple ID	SV 1	CV 2	CC 1	20E\/4	2051/2	2051/2
Sample ID		SV 2 12/12/2018	SS 1 12/12/2018	205V1 10/1/2021	205V2	205V3 10/1/2021
Collection Date Matrix			SSSG		10/1/2021	Soil Vapor
Unit	Soil Vapor	Soil Vapor		Soil Vapor	Soil Vapor	
Compound	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3
1,1,1,2-Tetrachloroethane	< 1.00	< 1.00	< 1.00	< 5.00	< 5.00	< 5.00
1,1,1-Trichloroethane	< 1.00	< 1.00	< 1.00	< 5.00	< 5.00	6
1,1,2,2-Tetrachloroethane	< 1.00	< 1.00	< 1.00	< 5.00	< 5.00	< 5.00
1,1,2-Trichloroethane	< 1.00	< 1.00	< 1.00	< 5.00	< 5.00	< 5.00
1,1-Dichloroethane	< 1.00	< 1.00	< 1.00	< 5.02	< 5.02	< 5.02
1,1-Dichloroethene	< 0.20	< 0.20	< 0.20	< 1.00	< 1.00	< 1.00
1,2,4-Trichlorobenzene	< 1.00	< 1.00	< 1.00	< 5.00	< 5.00	< 5.00
1,2,4-Trimethylbenzene	2.9	2.52	4.81	12.2	12.7	9.53
1,2-Dibromoethane(EDB)	< 1.00	< 1.00	< 1.00	< 5.00	< 5.00	< 5.00
1,2-Dichlorobenzene	< 1.00	< 1.00	< 1.00	< 5.00	< 5.00	< 5.00
1,2-Dichloroethane	< 1.00	< 1.00	< 1.00	< 5.02	< 5.02	< 5.02
1,2-dichloropropane	< 1.00	< 1.00	< 1.00	< 4.99	< 4.99	< 4.99
1,2-Dichlorotetrafluoroethane	< 1.00	< 1.00	< 1.00	< 5.00	< 5.00	< 5.00
1,3,5-Trimethylbenzene	1.41	< 1.00	1.72	< 5.01	< 5.01	< 5.01
1,3-Butadiene	< 1.00	8.89	< 1.00	< 5.00	< 5.00	< 5.00
1,3-Dichlorobenzene	< 1.00	< 1.00	< 1.00	< 5.00	< 5.00	< 5.00
1,4-Dichlorobenzene	< 1.00	< 1.00	< 1.00	< 5.00	< 5.00	< 5.00
1,4-Dioxane	< 1.00	< 1.00	< 1.00	< 5.01	< 5.01	< 5.01
2-Hexanone(MBK)	< 1.00	< 1.00	< 1.00	314	259	110
4-Ethyltoluene	4.31	3.75	6.14	8.99	9.29	5.99
4-Isopropyltoluene	< 1.00	< 1.00	< 1.00	16	17.6	12.2
4-Methyl-2-pentanone(MIBK)	< 1.00	2.28	1.44	< 4.99	< 4.99	< 4.99
Acetone	287	247	148	1,770	3,510	1,640
Acrylonitrile	< 1.00	< 1.00	< 1.00	< 5.01	< 5.01	< 5.01
Benzene	5.33	2.77	5.87	< 5.01	< 5.01	< 5.01
Benzyl chloride	< 1.00	< 1.00	< 1.00	< 5.00	< 5.00	< 5.00
Bromodichloromethane	< 1.00	< 1.00	< 1.00	< 5.00	< 5.00	6.13
Bromoform	< 1.00	< 1.00	< 1.00	< 5.00	< 5.00	< 5.00
Bromomethane	< 1.00	< 1.00	< 1.00	< 5.01	< 5.01	< 5.01
Carbon Disulfide	14.7	5.13	3.64	< 5.01	28.9	< 5.01
Carbon Tetrachloride	< 0.20	< 0.20	0.33	< 1.00	< 1.00	< 1.00
Chlorobenzene	< 1.00	< 1.00	< 1.00	< 5.01	< 5.01	< 5.01
Chloroethane	< 1.00	< 1.00	< 1.00	< 5.01	< 5.01	< 5.01
Chloroform	< 1.00	< 1.00	< 1.00	< 4.98	< 4.98	149
Chloromethane Cis-1,2-Dichloroethene	< 1.00 < 0.20	< 1.00 < 0.20	< 1.00 < 0.20	< 4.99 < 1.00	< 4.99 < 1.00	< 4.99 < 1.00
cis-1,3-Dichloropropene	< 1.00	< 1.00	< 1.00	< 4.99	< 4.99	< 4.99
Cyclohexane	8.57	10.1	1.07	< 4.99	< 4.99	< 4.99
Dibromochloromethane	< 1.00	< 1.00	< 1.00	< 5.00	< 5.00	< 5.00
Dichlorodifluoromethane	1.46	1.69	1.5	< 4.99	9.79	6.33
Ethanol	27.5	42	19.8	143	369	130
Ethyl acetate	< 1.00	< 1.00	< 1.00	< 5.01	< 5.01	< 5.01
Ethylbenzene	4.02	2.5	5.47	< 4.99	< 4.99	< 4.99
Heptane	41.8	3.83	3.26	6.96	11.2	< 5.00
Hexachlorobutadiene	< 1.00	< 1.00	< 1.00	< 5.00	< 5.00	< 5.00
Hexane	77.5	5.74	1.32	< 5.00	< 5.00	< 5.00
Isopropylalcohol	< 1.00	1.74	2.87	33.2	167	49.1
Isopropylbenzene	< 1.00	< 1.00	< 1.00	< 5.01	< 5.01	< 5.01
m,p-Xylene	15.1	10.3	18.3	22.3	20.7	10.9
Methyl Ethyl Ketone	22	11.5	12.5	3,300	4,540	2,030
Methyl tert-butyl ether(MTBE)	< 1.00	< 1.00	< 1.00	< 5.01	< 5.01	< 5.01
Methylene Chloride	64.9	12.2	< 3.00	< 15.0	< 15.0	< 15.0
n-Butylbenzene	< 1.00	< 1.00	1.22	< 5.00	< 5.00	< 5.00
5.71501120110	,	1.00	┕╼╩╧┛┛	7 3.00	1 .000	7 0.00

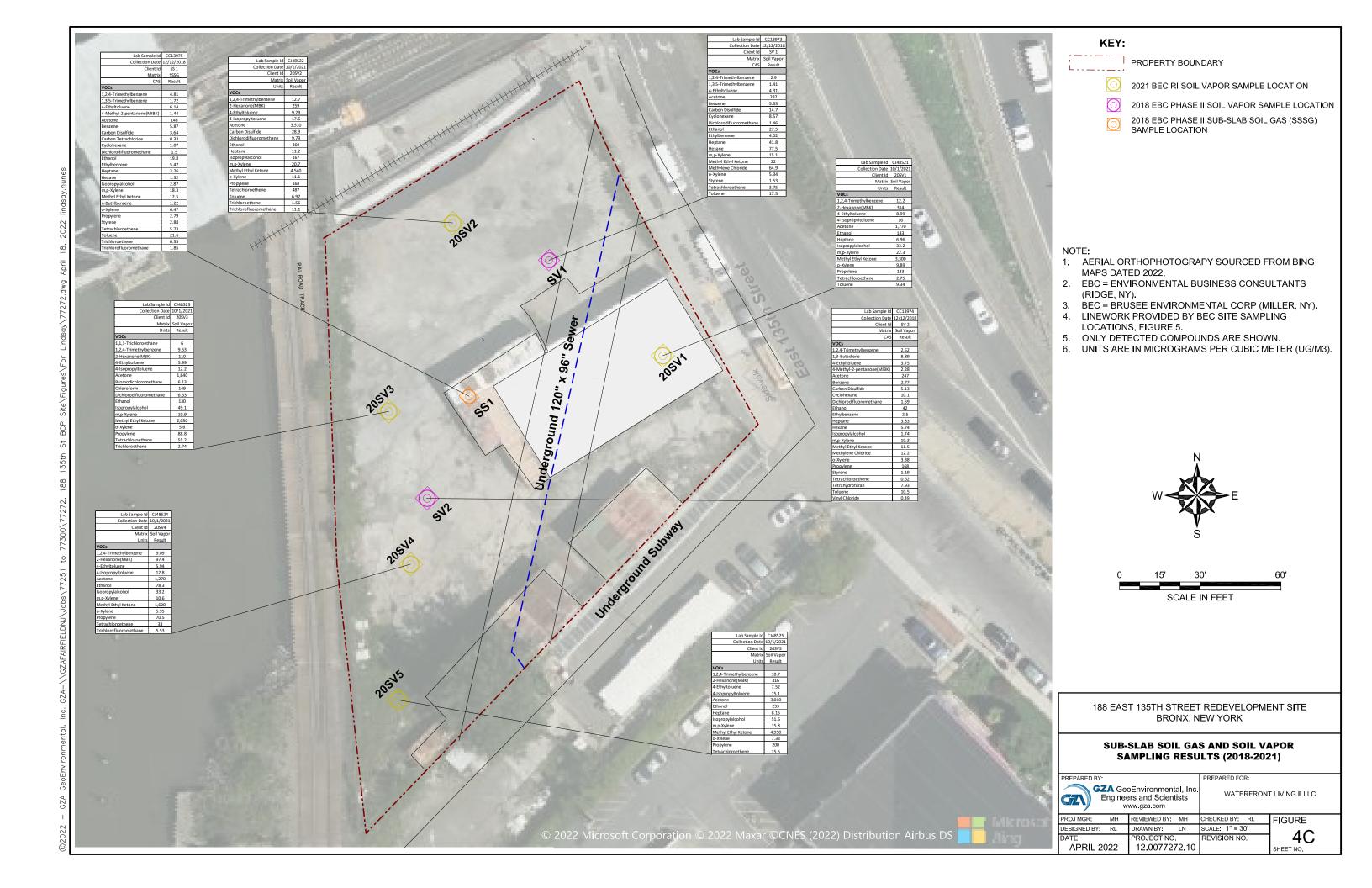
188 East 135th Street Redevelopment Site Bronx, New York

	0) / 4	0) / 0	00.4	005)//	005) (0	005) (0	005)//	005)/5
Sample ID Collection Date		SV 2 12/12/2018	SS 1 12/12/2018	205V1 10/1/2021	205V2 10/1/2021	205V3 10/1/2021	205V4 10/1/2021	205V5 10/1/2021
Matrix	Soil Vapor	Soil Vapor	SSSG	Soil Vapor				
Unit	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3
Compound	ug,e	ugrino	ug/o	ug/o	ug,e	ug/me	ug,e	ug,e
1,1,1,2-Tetrachloroethane	< 1.00	< 1.00	< 1.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00
1,1,1-Trichloroethane	< 1.00	< 1.00	< 1.00	< 5.00	< 5.00	6	< 5.00	< 5.00
1,1,2,2-Tetrachloroethane	< 1.00	< 1.00	< 1.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00
1,1,2-Trichloroethane	< 1.00	< 1.00	< 1.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00
1,1-Dichloroethane	< 1.00	< 1.00	< 1.00	< 5.02	< 5.02	< 5.02	< 5.02	< 5.02
1,1-Dichloroethene	< 0.20	< 0.20	< 0.20	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
1,2,4-Trichlorobenzene	< 1.00	< 1.00	< 1.00 4.81	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00
1,2,4-Trimethylbenzene 1,2-Dibromoethane(EDB)	2.9 < 1.00	2.52 < 1.00	< 1.00	12.2 < 5.00	12.7 < 5.00	9.53 < 5.00	9.09	10.7 < 5.00
1,2-Dibromoetriarie(EDB) 1,2-Dichlorobenzene	< 1.00	< 1.00	< 1.00	< 5.00	< 5.00	< 5.00	< 5.00 < 5.00	< 5.00
1,2-Dichloroethane	< 1.00	< 1.00	< 1.00	< 5.02	< 5.02	< 5.02	< 5.02	< 5.02
1,2-dichloropropane	< 1.00	< 1.00	< 1.00	< 4.99	< 4.99	< 4.99	< 4.99	< 4.99
1,2-Dichlorotetrafluoroethane	< 1.00	< 1.00	< 1.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00
1,3,5-Trimethylbenzene	1.41	< 1.00	1.72	< 5.01	< 5.01	< 5.01	< 5.01	< 5.01
1,3-Butadiene	< 1.00	8.89	< 1.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00
1,3-Dichlorobenzene	< 1.00	< 1.00	< 1.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00
1,4-Dichlorobenzene	< 1.00	< 1.00	< 1.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00
1,4-Dioxane	< 1.00	< 1.00	< 1.00	< 5.01	< 5.01	< 5.01	< 5.01	< 5.01
2-Hexanone(MBK) 4-Ethvltoluene	< 1.00	< 1.00	< 1.00	314	259	110	97.4	316
. ,	4.31 < 1.00	3.75	6.14	8.99	9.29	5.99 12.2	5.94 12.8	7.52
4-Isopropyltoluene		< 1.00 2.28	< 1.00 1.44	16	17.6			15.1
4-Methyl-2-pentanone(MIBK) Acetone	< 1.00 287	2.28	1.44	< 4.99 1,770	< 4.99 3,510	< 4.99 1,640	< 4.99 1,270	< 4.99 3,010
Acrylonitrile	< 1.00	< 1.00	< 1.00	< 5.01	< 5.01	< 5.01	< 5.01	< 5.01
Benzene	5.33	2.77	5.87	< 5.01	< 5.01	< 5.01	< 5.01	< 5.01
Benzyl chloride	< 1.00	< 1.00	< 1.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00
Bromodichloromethane	< 1.00	< 1.00	< 1.00	< 5.00	< 5.00	6.13	< 5.00	< 5.00
Bromoform	< 1.00	< 1.00	< 1.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00
Bromomethane	< 1.00	< 1.00	< 1.00	< 5.01	< 5.01	< 5.01	< 5.01	< 5.01
Carbon Disulfide	14.7	5.13	3.64	< 5.01	28.9	< 5.01	< 5.01	< 5.01
Carbon Tetrachloride	< 0.20	< 0.20	0.33	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Chlorobenzene	< 1.00	< 1.00	< 1.00	< 5.01	< 5.01	< 5.01	< 5.01	< 5.01
Chloroethane	< 1.00	< 1.00	< 1.00	< 5.01	< 5.01	< 5.01	< 5.01	< 5.01
Chloroform	< 1.00	< 1.00	< 1.00	< 4.98	< 4.98	149	< 4.98	< 4.98
Chloromethane	< 1.00	< 1.00	< 1.00	< 4.99	< 4.99	< 4.99	< 4.99	< 4.99
Cis-1,2-Dichloroethene cis-1,3-Dichloropropene	< 0.20 < 1.00	< 0.20 < 1.00	< 0.20 < 1.00	< 1.00 < 4.99				
Cyclohexane	8.57	10.1	1.07	< 4.99	< 4.99	< 4.99	< 4.99	< 4.99
Dibromochloromethane	< 1.00	< 1.00	< 1.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00
Dichlorodifluoromethane	1.46	1.69	1.5	< 4.99	9.79	6.33	< 4.99	< 4.99
Ethanol	27.5	42	19.8	143	369	130	78.3	233
Ethyl acetate	< 1.00	< 1.00	< 1.00	< 5.01	< 5.01	< 5.01	< 5.01	< 5.01
Ethylbenzene	4.02	2.5	5.47	< 4.99	< 4.99	< 4.99	< 4.99	< 4.99
Heptane	41.8	3.83	3.26	6.96	11.2	< 5.00	< 5.00	8.15
Hexachlorobutadiene	< 1.00	< 1.00	< 1.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00
Hexane	77.5	5.74	1.32	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00
Isopropylalcohol	< 1.00	1.74	2.87		167	49.1	33.2	51.6
Isopropylbenzene	< 1.00	< 1.00	< 1.00	< 5.01	< 5.01	< 5.01	< 5.01	< 5.01
m,p-Xylene	15.1	10.3	18.3	22.3	20.7	10.9	10.6	15.8
Methyl Ethyl Ketone	22	11.5	12.5	3,300	4,540	2,030	1,620	4,950
Methyl tert-butyl ether(MTBE)	< 1.00	< 1.00	< 1.00	< 5.01	< 5.01	< 5.01	< 5.01	< 5.01
Methylene Chloride	64.9	12.2	< 3.00	< 15.0	< 15.0	< 15.0	< 15.0	< 15.0
n-Butylbenzene	< 1.00	< 1.00	1.22	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00
o-Xylene Propylone	5.34	3.38	6.47	9.89	11.1	5.6	5.95 70.5	7.33
Propylene	< 1.00	168	2.79	133	168	88.8	70.5	200
sec-Butylbenzene Styrene	< 1.00 1.53	< 1.00 1.19	< 1.00 2.88	< 5.00 < 4.98				
Tetrachloroethene	3.75	0.62	5.73	2.75	487	55.2	33	15.5
Tetrahydrofuran	< 1.00	7.93	< 1.00	< 5.01	< 5.01	< 5.01	< 5.01	< 5.01
Toluene	17.5	10.5	21.6	9.34	6.97	< 5.01	< 5.01	< 5.01
Trans-1,2-Dichloroethene	< 1.00	< 1.00	< 1.00	< 4.99	< 4.99	< 4.99	< 4.99	< 4.99
trans-1,3-Dichloropropene	< 1.00	< 1.00	< 1.00	< 4.99	< 4.99	< 4.99	< 4.99	< 4.99
Trichloroethene	< 0.20	< 0.20	0.35	< 1.00	1.56	2.74	< 1.00	< 1.00
Trichlorofluoromethane	< 1.00	< 1.00	1.85	< 5.00	11.1	< 5.00	5.53	< 5.00
Trichlorotrifluoroethane	< 1.00	< 1.00	< 1.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00
Vinyl Chloride	< 0.20	0.49	< 0.20	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00

Notes:


SSSG = Sub-Slab Soil Gas
All concentrations are in micrograms per cubic meter (ug/m3)
Compounds not detected are reported as less than the respective Reporting Limit (RL)


Compounds detected in groundwater are BOLDED


Result represents the maximum soil vapor concentration of the respective compound detected at the Site

ATTACHMENT 4C – DATA FIGURES

ATTACHMENT 5A – REQUESTOR ENTITY INFORMATION

Department of StateDivision of Corporations

Entity Information

Return to Results

Entity Details

ENTITY NAME: WATERFRONT LIVING II LLC

FOREIGN LEGAL NAME: WATERFRONT LIVING II LLC

Return to Search

DOS ID: 6482875

FICTITIOUS NAME:

ENTITY TYPE: FOREIGN LIMITED LIABILITY COMPANY	DURATION DATE/LATEST DATE OF DISSOLUTION:		
SECTIONOF LAW: LIMITED LIABILITY COMPANY - 802 LIMITED LIABILITY COMPANY LAW - LIMITED LIABILITY COMPANY LAW	REASON FOR STATUS: INACTIVE DATE: STATEMENT STATUS: CURRENT NEXT STATEMENT DUE DATE: 05/31/2024		
DATE OF INITIAL DOS FILING: 05/11/2022			
EFFECTIVE DATE INITIAL FILING: 05/11/2022			
FOREIGN FORMATION DATE: 04/09/2021			
COUNTY: ORANGE			
JURISDICTION: DELAWARE, UNITED STATES	NFP CATEGORY:		
ENTITY DISPLAY NAME HISTORY FILING HISTORY	ORY MERGER HISTORY ASSUMED NAME HISTORY		
Service of Process Name and Address			
Name: THE LLC			
Address: 48 BAKERTOWN ROAD, SUITE 500, MONROE, NY, U	JNITED STATES, 10950		
Chief Executive Officer's Name and Address			
Name:			
Address:			
Drive in all Francisco Office Address			
Principal Executive Office Address			
Address:			
Registered Agent Name and Address			
Name:			
Address:			
Entity Primary Location Name and Address			
Littly Filliary Location Name and Address			
Name:			
Address:			
Farmcorpflag			

Is The Entity A Farm Corporation: NO				
Stock Information				
Share Value	Number Of Shares	Value Per Share		

ATTACHMENT 5B – LLC MEMBERS

NAMES OF LLC MEMBERS/OWNERS

Jacob Sofer 28 Van Buren Drive, Unit 301 Monroe, NY 10950

ATTACHMENT 6A – VOLUNTEER STATEMENT

VOLUNTEER STATEMENT

Waterfront Living II LLC ("Requestor") is a Volunteer as defined in ECL 27-1405(1)(b) since its liability for contamination on the Site arises solely out of ownership, and Requestor has exercised appropriate care with respect to the contamination by maintaining the fence around the Site and by immediately taking steps to address contamination upon taking ownership.

Under ECL § 27-1405(1)(b) and 6 NYCRR §375-3.2(c)(2), a Volunteer is defined as follows:

"Volunteer" shall mean an applicant other than a participant, including without limitation a person whose liability arises solely as a result of such person's ownership or operation of or involvement with the site subsequent to the disposal or discharge of contaminants, provided however, such person exercises appropriate care with respect to contamination found at the facility by taking reasonable steps to:

- (i) stop any continuing release;
- (ii) prevent any threatened future release; and
- (iii) prevent or limit human, environmental, or natural resource exposure to any previously released contamination.

Requestor's exercise of appropriate care on the Site is demonstrated by actions taken since its involvement with the Site. Prior to taking ownership of the Site in July 2021, the Requestor reviewed previously conducted environmental reports and data prepared by Environmental Business Consultants (including a Phase I Screening Summary dated January 2018 and a subsequent Limited Phase II Subsurface Investigation dated January 2018), which revealed contamination on the Site warranting further investigation and subsequent remediation. In anticipation of redeveloping the Site, Requestor retained Brussee Environmental Corp., to conduct a remedial investigation pursuant to the New York City Office of Environmental Remediation's Voluntary Cleanup Program ("VCP") (OER VCP # 22VCP004X) in September of 2021. A Remedial Investigation Report was submitted to OER in November of 2021. After this initial investigation of Site contamination, the Requestor now seeks entry as a Volunteer into the Brownfield Cleanup Program to further investigate and remediate the Site.

ATTACHMENT 9A – OWNER AND OPERATOR INFORMATION

Operator	Date of Operations	Nature of Operations	Relationship to Requestor
Unknown	1891 to 1908	Railroad yard; operations	None
		reportedly related to	
		adjacent elevated railroad	
		tracks	
None	1908 to 1923	Site is undeveloped	N/A
Pipe & contractor's	1920s to 1950s	Pipe cutting and coal yard	None
supply facility			
Unknown	1951 to 1968	Auto wrecking	None
Iron & Steel Company	Early 1960s	Unknown	None
Unknown	1968 to late 1970s	Non-specific commercial	None
		use	
The Padded Wagon	Early 1970s to at least 2010	Moving and storage	None
Moving & Storage		company	
Emerald Dry Cleaning	2000	Dry Cleaning (potential)	None
Crystal Clear Productions	2010, 2014	Unknown	None
None	Approximately 2014 to 2021	Site is vacant	N/A
WATERFRONT LIVING II	2021 to Present	Site is vacant	Requestor
LLC			
Owner	Date of Ownership	Operations	Relationship to Requestor
Samuel & Solomon	Unknown to 08/07/1968	Unknown	None
Cohen (d/b/a NEHOR			
REALTY CORPORATION)			
SUMMIT HOLDING CO	08/08/1968 to 08/29/1969	Unknown	None
INC			
G.A.D. Holding Corp	08/29/1969 to 11/30/2018	Unknown	None
ARNAV 188 LLC	11/30/2018 to 7/27/2021	Unknown	None
WATERFRONT LIVING II	7/27/2021 to Present	None / Site is vacant	Requestor
LLC			

Notes

^{1.} Table based on findings reported in Environmental Business Consultants' (EBC) 2018 Phase I Screening Summary and property record search through the Office of the City Register website.

ATTACHMENT 11A – SITE CONTACT LIST

SITE CONTACT LIST

CHIEF EXECUTIVE OFFICER AND PUBLIC OFFICIALS

Eric Adams City Hall New York, NY 10007

Vanessa Gibson Office of the Bronx Borough President 851 Grand Concourse, 3rd Floor Bronx, New York 10451

Dan Garodnick Chair – New York City Planning Commission 16 Court Street, 7th Floor Brooklyn, New York 11241-0103 718-780-8280

Kenneth J. Knuckles, Esq. Vice Chairman – New York City Planning Commission 16 Court Street, 7th Floor Brooklyn, New York 11241-0103 718-780-8280

OWNERS OF ADJACENT PROPERTIES:

East 135th Street

Catherine Rinaldi President MTA Metro North Railroad 420 Lexington Avenue New York, NY 10017-3739

Park Avenue

Dawn Pinnock Commissioner New York City Department of Citywide Administrative Services 1 Centre Street, 17th Floor New York, NY 10007

200 East 135th Street

CubeSmart East 135th, LLC 28 Liberty Street New York, NY 10006

2391 3 Avenue

City of New York City Hall New York, NY 10007

175 Canal Street West

99 Evergreen, LLC C/O DAVID CIAMPIETRO 27 Brucker Blvd 2nd Flr, Bronx, Ny, 10454

2510 Park Avenue

2510 Park Avenue Realty LLC C/O MACRO & SITARAS, PLLC 200 Liberty Street, 27th Floor New York, NY 10281

NEARBY SCHOOLS AND DAYCARE FACILITIES

There are no such facilities proximate to the Site.

LOCAL NEWS MEDIA:

News 12 The Bronx 930 Soundview Avenue Bronx, NY 10473

PUBLIC WATER SUPPLIER:

NYC Department of Environmental Protection 59-17 Junction Boulevard, 13th Floor Flushing, NY 11373

DOCUMENT REPOSITORY

Ana Rojas Community Coordinator Bronx Community Board 1 3024 Third Avenue Bronx, NY 10455

Mott Haven Library 321 East 140th Street Bronx, NY 10454

ATTACHMENT 11B - DOCUMENT REPOSITORIES' ACKNOWLEDGEMENTS

BRONX COMMUNITY BOARD #1

3024 THIRD AVENUE BRONX, NEW YORK 10455

(718) 585-7117 • Fax (718) 292-0558 • E-mail: brxcb1@optonline.net

SERVING PORT MORRIS • MOTT HAVEN • MELROSE

VANESSA L. GIBSON BOROUGH PRESIDENT

ARLINE PARKS CHAIRPERSON

May 2, 2022

GZA GeoEnvironmental, Inc. 55 Lane Rd. – Suite 407 Fairfield, NJ 07004

Re: Brownfield Cleanup Program Application

Waterfront Living, LLC

188 East 135th Street Redevelopment Site

Bronx, New York 10451

Dear Ms. Hayes:

Pursuant to your request regarding the above listed site, please be advised that this letter does not represent support of the project by Community Board No. 1. We encourage the developer of the property to present the project to the Economic Development Land Use Committee.

In accordance with the requirements of the New York State Department of Environmental Conservation this letter is to certify that Bronx Community Board 1 is willing to act as a document repository for the property located at 188 East 135th Street under the New York State Brownfield Cleanup Program.

Sincerely Yours,

Arline Parks

Chair

Community Board No. 1

VACANT DISTRICT MANAGER

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION

55 Lane Road

Suite 407

Fairfield, NJ 07004

T: 973-774-3300

F: 973-774-3350

www.gza.com

May 5, 2022

Mott Haven Library 321 East 140th Street Bronx, NY 10454

Re: Brownfield Cleanup Program Application
Waterfront Living, LLC
188 East 135th Street Redevelopment Site
188 East 135th Street, Bronx, NY 10451

To Whom It May Concern:

We represent our client, Waterfront Living, LLC, in their anticipated Brownfield Cleanup Program (BCP) application for the property located at 188 East 135th Street, Bronx, NY (Site). It is a requirement of the New York State Department of Environmental Conservation (NYSDEC) that we supply a letter with the BCP application certifying the local library is willing and able to serve as a repository for documents pertaining to the Site. Please sign below if you can certify that the Mott Haven Library located at 321 East 140th Street, Bronx, NY 10454 is willing and able to act as a document repository for this BCP project. If you have any questions, please contact me at (973) 774-3332 or meredith.hayes@gza.com.

Very truly yours,

GZA GEOENVIRONMENTAL, INC.

Meredith Hayes

Senior Project Manager

Mott Haven Library located at 321 East 140th Street, Bronx, NY 10454 is willing and able to act as an electronic document repository for the property located at 188 East 135th Street, Bronx under the New York State Brownfield Cleanup Program.

(Signature)

(Print Name and Title)

(Date)

GZA GeoEnvironmental, Inc.