Semi-Annual Sampling Report

Minute Man Cleaners 89 Ocean Avenue, East Rockaway, Nassau County, New York 11518

Site # C130157

June 2019 Sampling Event

August 2019

Prepared By:

J.R. Holzmacher P.E., LLC Consulting Engineers 3555 Veterans Memorial Highway, Suite A Ronkonkoma, New York 11779-7636

CERTIFICATION

I, J. Robert Holzmacher P.E. certify that I am currently a NYS registered professional engineer as defined in 6 NYCRR Part 375 and that this Semi-Annual Sampling Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

Very Truly Yours,

J.R. Holzmacher P.E. LLC

James Robert Holzmacher P.E. Name

66054

NYS PE License Number

08/02/2019

Table of Contents

TABLE OF CONTENTS	ii
EXECUTIVE SUMMARY	1
1.0 INTRODUCTION	2
2.0 SUMMARY OF SAMPLING	3
2.1 Sampling Field Activities	3
3.0 GROUNDWATER SAMPLING RESULTS	3
3.1 On-Site Monitoring Wells	
3.2 Off-Site Monitoring Wells	5
4.0 EFFLUENT SOIL VAPOR SAMPLING RESULTS	5
5.0 CONCLUSIONS and RECOMMENDATIONS	5

List of Figures

- Figure 1 Groundwater Analytical Results 06-19-2019
- Figures 2 through 17 Trichloroethene and Tetrachloroethene Trends

List of Tables

- Table 1 Volatile Organic Chemicals EPA Method 8260
- Table 2 Volatile Organics in Air
- Table 3 Historic Volatile Organics in Air
- Table 4 SVE Air Emissions Evaluation

List of Appendix

- Appendix A Groundwater Analytical Laboratory Report
- Appendix B Effluent Soil Vapor Analytical Laboratory Report
- Appendix C Tide Chart: Monitoring Well Samples
- Appendix D Data Usability Summary Report DUSR Data Validation Summary Groundwater Samples Collected June 19, 2019
 Soil Vapor Air - Effluent Sample Collected June 19, 2019

EXECUTIVE SUMMARY

J.R. Holzmacher P.E. LLC (JRH) has prepared this Semi-Annual Sampling Report for the above referenced property. Activities under the Remedial Action Work Plan were conducted on behalf of Mr. Dennis Manley, the property and business owner, with the understanding that remediation is required to complete the Brownfield Cleanup Program agreement with the NYSDEC.

This Semi-Annual Sampling Report serves to document the remedial actions that took place at Minute Man Cleaners during the first half of the 2019 calendar year. Remedial actions included sampling of groundwater and soil gas produced by the soil vapor extraction system.

Two rounds of In-situ chemical oxidation (ISCO) treatment were completed on January 29^{th} through February 9^{th} and July 27^{th} through July 31^{st} of 2015. The September 9^{th} , 2015 sampling indicated reduced contaminant concentrations. Contaminant concentration increases were observed in some wells in the October 21, 2015, June 29, 2016 and December 28, 2016 laboratory results. The December 20, 2017 analysis indicated an increase in contaminant concentration for seven of the wells since the June 15, 2017 sampling, with all other wells indicating a decrease in contaminant concentrations. Analysis of samples taken on June 28, 2018 showed that contaminant concentrations decreased in eleven wells and increased in five wells since the December 20, 2017 sampling event. On December 24, 2018; analysis of samples collected at this time indicate an overall decrease in PCE and TCE contaminants in shallow monitoring wells and an overall increase in PCE and TCE contaminants in deep monitoring wells. Analysis of the most recent samples taken on June 19, 2019 showed that contaminant concentration trends were similar to those taken in December 2018; there was an overall decrease in contaminants in shallow monitoring wells, and an overall increase in the deep monitoring wells. The samples taken in June also showed a noticeable increase in PCE in well DB-1.

Based on the above, JRH believes that further ISCO remediation without soil remediation will be unlikely to reduce contaminants to the desired levels. Furthermore, the current SVE system is removing residual concentrations of dry-cleaning solvent from the unsaturated zone. JRH believes that this may be evidence of a contaminant source that cannot be remediated using ISCO because the ISCO reagents cannot contact the unsaturated zone contamination.

NYSDEC has not approved additional soil excavation which is not covered by the approved Remedial Action Work Plan and would be highly disruptive to the business operating at the site. JRH suggested that the owner and the Department consider augmenting the current SVE system with an additional soil vapor extraction well point that could be installed from the rear (east side) of the building and piped into the existing extraction system. Installation of air sparging points paired with additional SVE extraction wells has also been recommended as a more effective method to remove the residual solvents detected in the monitoring wells.

1.0 INTRODUCTION

J.R. Holzmacher P.E. LLC (JRH) has prepared this Semi-Annual Sampling Report for the above referenced property. The Semi-Annual Sampling Report was conducted on behalf of Mr. Dennis Manley, the property and business owner, as required by the Site Management Plan approved by the NYSDEC in December 2015.

The current and intended use of the property is commercial, occupied by Minute Man Cleaners, an active dry-cleaning facility. The property is located at 89 Ocean Avenue, East Rockaway, Nassau County, New York and is approximately 0.19 acres in size. The site is shown in Figure 1 and is occupied by a single-story building that has operated as a dry cleaner since 1982. The site is bordered by Atlantic Avenue to the north, Ocean Avenue to the west, Mill River to the east and a seafood restaurant to the south. Perchloroethylene (PCE), the contaminant of concern, was used in the dry-cleaning process.

In 2005, an investigation by URS indicated a significant release of PCE to soil and groundwater from the dry-cleaning machine. It was estimated that this release occurred from 1983 to 1987 due to seal leaks in a storage tank at the base of the machine.

Remedial work during previous years included removal of contaminated soil, installation of a soil vapor extraction/sub slab depressurization system (SVE/SSDS) and in-situ chemical oxidation (ISCO) treatments.

2.0 SUMMARY OF SAMPLING

2.1 Sampling Field Activities

Groundwater monitoring and effluent soil vapor sampling was completed on June 19, 2019 to assess the performance of the remedy implemented in July 2015. Groundwater samples were collected from thirteen on-site groundwater monitoring wells and three offsite groundwater monitoring wells and were analyzed for target compounds list volatile organic compounds (TCL VOCs). The samples were collected in accordance with procedures as described in Appendix I – Field Activities Plan in the Site Management Plan.

The effluent sample for the Soil Vapor Extraction/Sub-slab Depressurization System was collected from a sample collection port which was installed on the blower effluent pipe. The sample was collected using a one-liter summa canister with a fifteen-minute regulator.

Samples were placed in the appropriate laboratory-supplied glassware, put on ice, and picked up by courier and delivered to Alpha Analytical Laboratories, Long Island City, New York (NYSDOH ID #11148) for the following analysis with Category B deliverables:

Groundwater:

TCL VOCs (EPA Method 8260C, rev. 2006).

Effluent Soil Vapor:

VOCs (EPA Method TO-15).

3.0 GROUNDWATER SAMPLING RESULTS

Locations of groundwater monitoring wells are illustrated in Figure 1. The historical sample results for all of the monitoring wells are in the attached tables. Trends in PCE and TCE concentrations are illustrated in the graphs in Figures 2 to 17. The site flooded during Superstorm Sandy (October 2012), so interpretation of groundwater contaminant concentrations prior to that time may not be directly comparable to subsequent results.

3.1 On-Site Monitoring Wells

The sampling of the on-site shallow, water table, and deep monitoring wells yielded results as shown in the attached tables.

The June 19, 2019 analysis indicates a decrease or an unchanged result in PCE contaminant concentrations from the December 24, 2018 sampling in all 5 shallow monitoring wells (MW-1S, MW-2S, MW-3S, MW-4S, and MW-5S) and both water table monitoring wells (MW-9 and MW-12). A decrease in PCE contaminant concentrations was found in 3 out of 6 deep monitoring wells (MW-1D, MW-2D, and MW-3D).

The June 19, 2019 analysis indicates a decrease or an unchanged result in TCE contaminant concentrations from the December 24, 2018 sampling in shallow monitoring well MW-3S, water table monitoring wells MW-9 and MW-12, and deep monitoring wells MW-1D and MW-2D. All other wells displayed a slight increase in TCE concentration not exceeding 5 ppb.

Examination of the multi-year trend charts shows that PCE and TCE concentrations in most wells remain in a long-term downtrend except wells MW-5D, MW-5S, and DB-1. Highlights of changes between the two most recent rounds of sampling include the following:

Shallow Monitoring Wells

XX7-11	PC	E	T(CE	Od VOC-
Well	12/24/18	6/19/19	12/24/18	6/19/19	Other VOCs
MW-1S	210	210	13	18	Cis 1,2 DCE increased from 4.8 to 7.2 PPB
MW-2S	76	57	2.8	3.1	
MW-3S	46	26	1.4	.96	
MW-4S	130	130	3.7	4.1	
MW-5S	440	440	38	42	Cis 1,2 DCE increased from 15 to 18 PPB. MTBE increased from 24 to 27 PPB. Vinyl chloride decreased from 3.2 to 2.3 PPB

^{*} All results in ppb

Deep Monitoring Wells

Wall	PC	E	TO	CE	Other VOCs
Well	12/24/18	6/19/19	12/24/18	6/19/19	Other VOCs
MW-1D	140	80	5.9	2.5	
MW-2D	60	58	3.6	1.5	
MW-3D	62	57	2.4	2.6	
MW-4D	99	100	2.4	2.5	
MW-5D	72	90	7.8	9.6	MTBE increased from 15 to 21 PPB
DB-1	200	330	26	43	Cis-1,2 DCE increased from 9.6 to 14 PPB
					MTBE increased from 4.8 to 10 PPB
					Vinyl chloride increased from 1.9 to 2.5 PPB

^{*} All results in ppb

Water Table Monitoring Wells

Wall	PC	EE	TO	CE	Other VOCs
Well			12/24/18	6/19/19	Other VOCs
MW-9	13	11	0.9	.47	
MW-12	21	2.3	0.95	ND	

3.2 Off-Site Monitoring Wells

The off-site monitoring well cluster is located north of the site and near an automobile service station. The June 19, 2019 analysis indicated a decrease in PCE and TCE contaminant concentrations in the shallow and deep wells as compared to the December 24, 2018 samples. A marginal increase was found in the water table well. The source of this contamination is not believed to be the Minute Man Cleaners property. Highlights of changes between the two most recent rounds of sampling include the following:

Well	PC	EE	TO	CE	Other VOCs
weii	12/24/18	6/19/19	12/24/18	6/19/19	Other VOCs
MW-14WT	12	22	0.39	.57	
MW-14S	2	.91	0.24	ND	MTBE increased from 8.3 to 15 PPB
MW-14D	0.19	ND	ND	ND	

4.0 EFFLUENT SOIL VAPOR SAMPLING RESULTS

The SMP requires collection of a yearly sample of the effluent soil vapor. Prior effluent samples were collected by inserting tubing into the SVE blower discharge pipe from the top of the pipe which required a ladder and climbing on top of the roof. A less hazardous collection point was constructed on the blower discharge pipe at a point approximately three feet above the blower. A brass stop-cock was installed into this collection point, at which disposable polyethylene tubing can be inserted to collect a sample. This sample result was compared to prior soil vapor analytical data.

Results of the effluent soil vapor sampling indicated a Tetrachloroethene concentration of 732 ug/m³, which is above the NYSDOH guidelines of 100 ug/m³. Ethyl Alcohol, 2,2,4-Trimethylpentane, Acetone, Methylene chloride, and Toluene all saw marginal increases from the December 2018 reports and are above NYS Standard as of the June 2019 lab results. Trimethylpentane and toluene are both associated with gasoline, so the SVE system may be detecting these VOCs from other sources, notably the gas station north of the site. The trend of soil vapor results shows an increase in all contaminants excluding Tetrachloroethene, which saw a decrease from 2490 to 732 ug/ m³. Earlier results were reported in ppb and were collected from the roof top location, possibly with greater dilution, so direct comparison with the more recent results is not recommended.

5.0 CONCLUSIONS and RECOMMENDATIONS

5.1 Conclusions

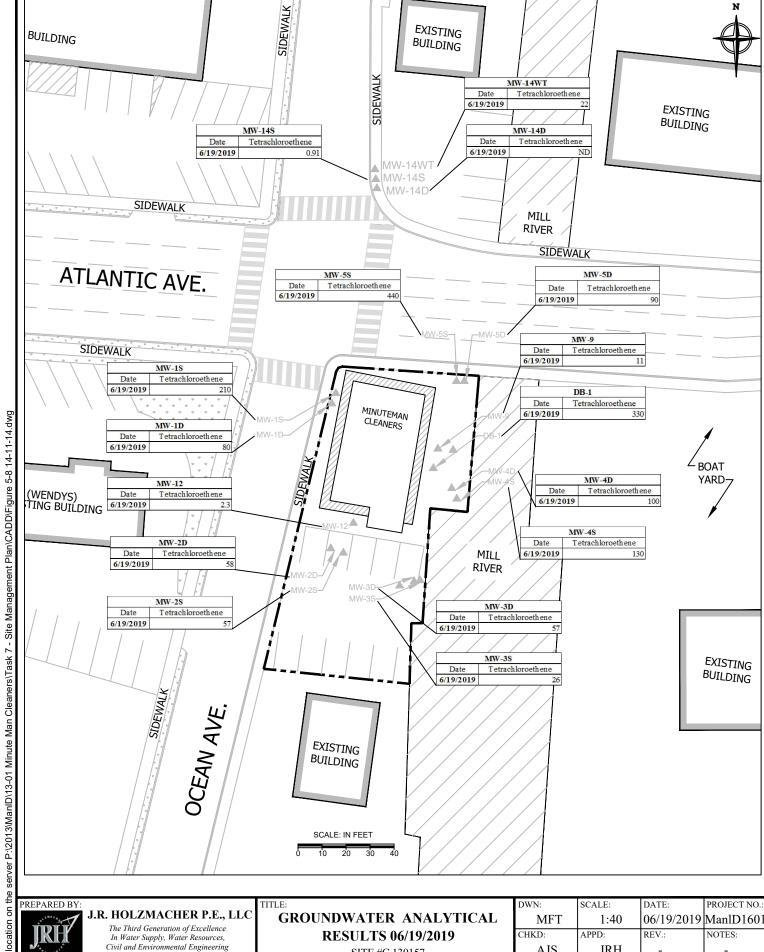
• Analysis of the June 19, 2019 samples showed PCE contaminant concentrations decreased in ten (10) onsite wells and increased in three (3) onsite wells since the

^{*} All results in ppb

previous sampling event. Samples showed TCE contaminant concentrations decreased in five (5) onsite wells and increased in eight (8) onsite wells since the previous sampling event. Analysis also showed PCE and TCE contaminant concentrations decreased in two (2) offsite wells and increased in one (1) offsite well. The groundwater data collected since 2005 show that concentrations have greatly decreased to current levels and are fluctuating within narrow ranges. JRH believes that the observed concentrations show a stable equilibrium between residual soil PCE and TCE and fluctuation in groundwater elevations, dissolving contaminants from soil into groundwater.

- The persistence of low concentrations of PCE and trace concentrations of TCE in groundwater suggests that there may be some remaining PCE in soil below the floor of the Minute Man Cleaners building. Temporal PCE and TCE fluctuations such as seen in MW-12 are likely due to changing tidal and seasonal groundwater elevations resulting in episodes of contaminant dissolution from the unsaturated zone.
- Contaminant decreases were observed in most of the offsite wells north of the presumed source area, excluding MW-14WT. Methyl Tert-Butyl Ether (MTBE) was found in ground water samples from wells MW-5D, MW-5S, MW-14S, and DB-1. However, this fuel additive is not associated with dry cleaning operations. The continued presence of MTBE as the predominant contaminant in MW-14S since at least October 2015. This implicates the service station north of the site, and PCE may also be used in automotive and machine shop parts cleaning. Based on groundwater flow, it is difficult to support northward PCE migration from Minuteman Cleaners to the offsite wells.

5.2 Recommendations


There are two technical issues to be resolved before selecting further active remediation measures. The first is the mass of contamination adsorbed onto the soil matrix in the overall plume area. A Second potential contaminant source area in soil below the dry-cleaning machine remaining after excavation by Brookside Environmental, Inc. (2008-07-01.IRM). Based on the available data and the results of the two previous rounds of in-situ chemical oxidation, JRH recommends the following:

- Based on the slow downtrend in contaminant concentrations in the groundwater in most wells, we recommend that the next round of groundwater sampling be conducted in the fourth quarter of 2019. Analytical results from the next round of groundwater sampling will be compared to the June, 2019 results and will be discussed with NYSDEC.
- JRH does not recommend further in-situ chemical treatment by potassium permanganate or other remediation products as these will not likely achieve the Brownfield Cleanup Agreement goals. JRH provided the available data to in-situ treatment vendors and did not receive positive feedback with respect to future success. The nature of the contamination and the presence of PCE and its residual byproducts in soil above the

water table puts much of the remaining contamination beyond the reach of in-situ oxidation methods.

- JRH recommends sampling only the following wells in the fourth quarter: MW-1S, MW-1D, MW-5S, MW-5D AND DB-1.
 - o Offsite wells display continuously decreasing contamination levels, but have repeatedly shown the presence of MTBE. MTBE is consistent with petroleum products and can likely be attributed to the gas station located north of the site.
 - Water table wells also display continuously decreasing contamination levels and should be removed from the list of wells to be sampled.
- JRH recommends the site be considered for delisting due to the stability of the contaminant levels and the lack of exposure vector to the public

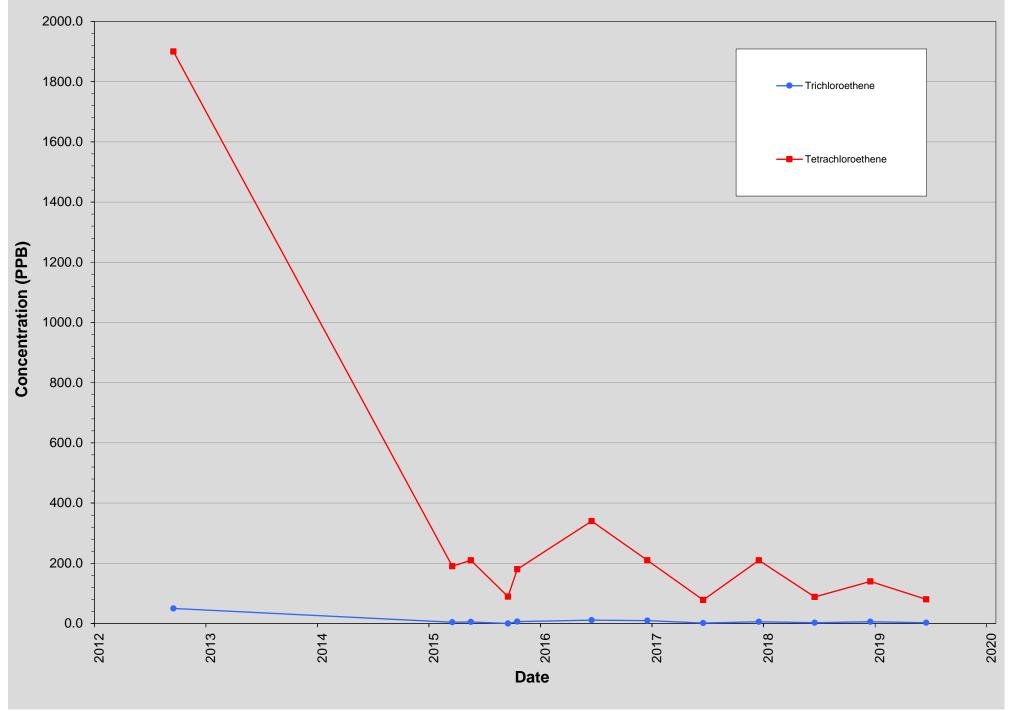
Figures

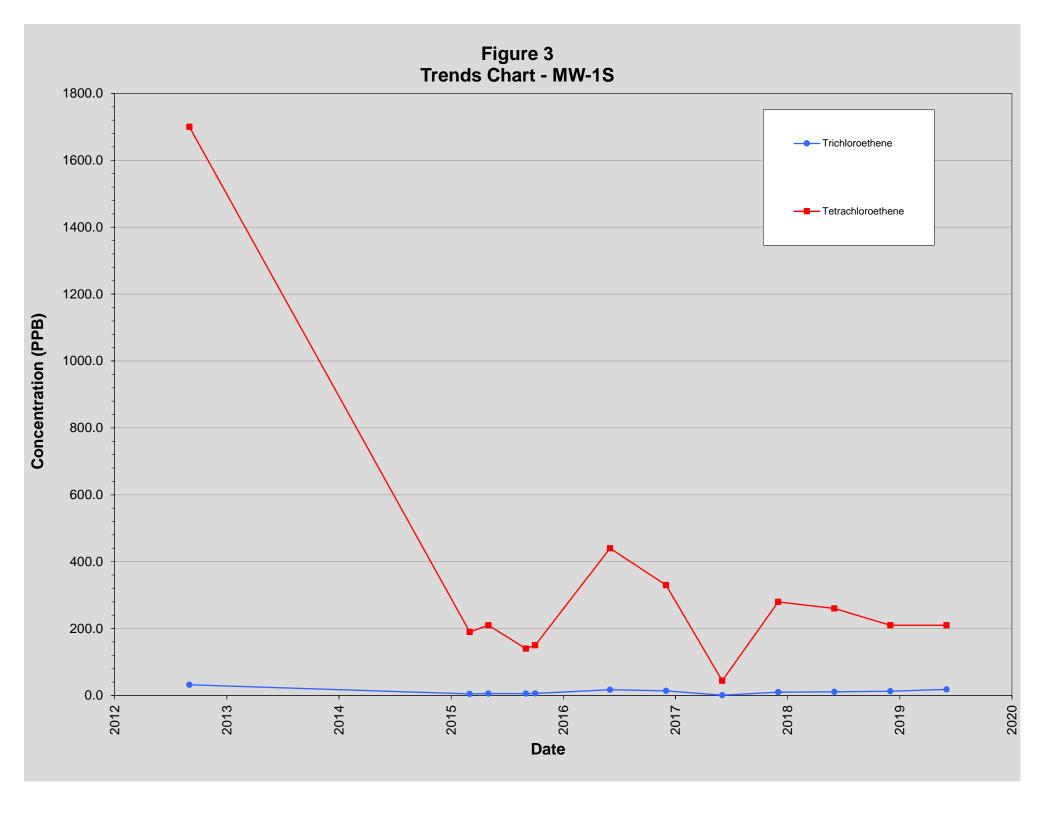
drawing

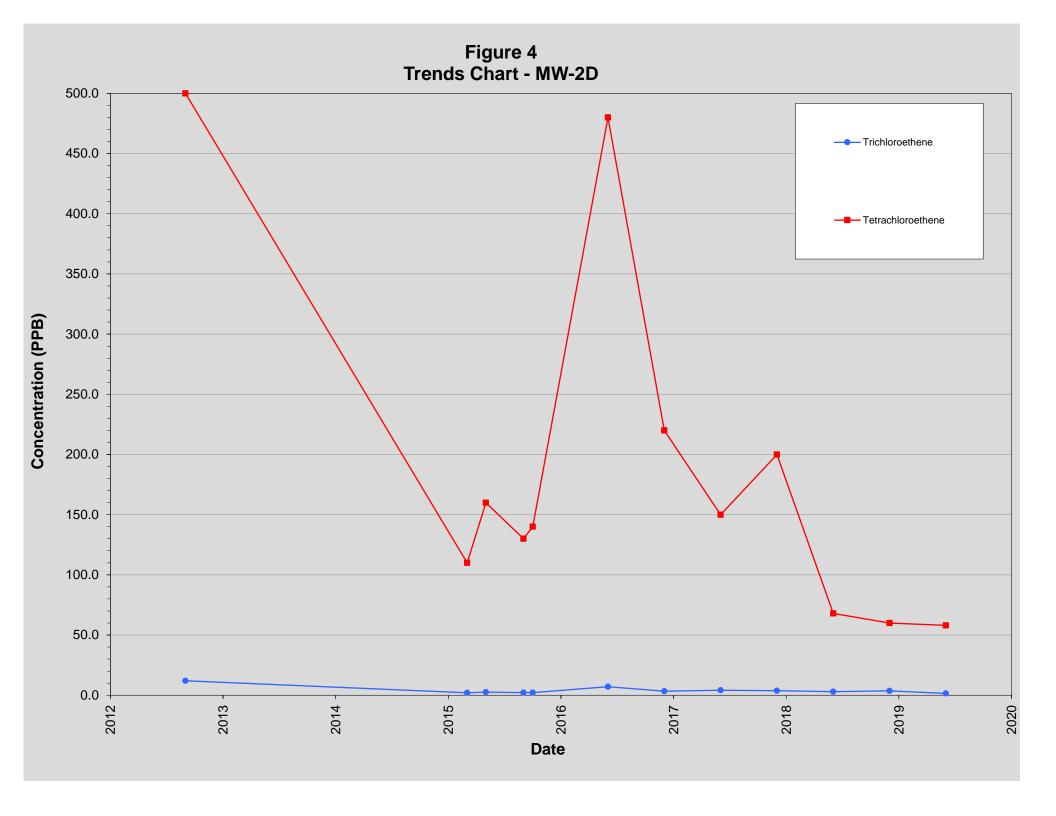
J.R. HOLZMACHER P.E., LLC

The Third Generation of Excellence In Water Supply, Water Resources, Civil and Environmental Engineering

3555 VETERANS MEMORIAL HWY RONKONKOMA, NEW YORK 11779


FAX # (631) 234-2221 E-MAIL: info@holzmacher.co


GROUNDWATER ANALYTICAL RESULTS 06/19/2019


SITE #C 130157 89 OCEAN AVE EAST ROCKAWAY, NEW YORK 11518

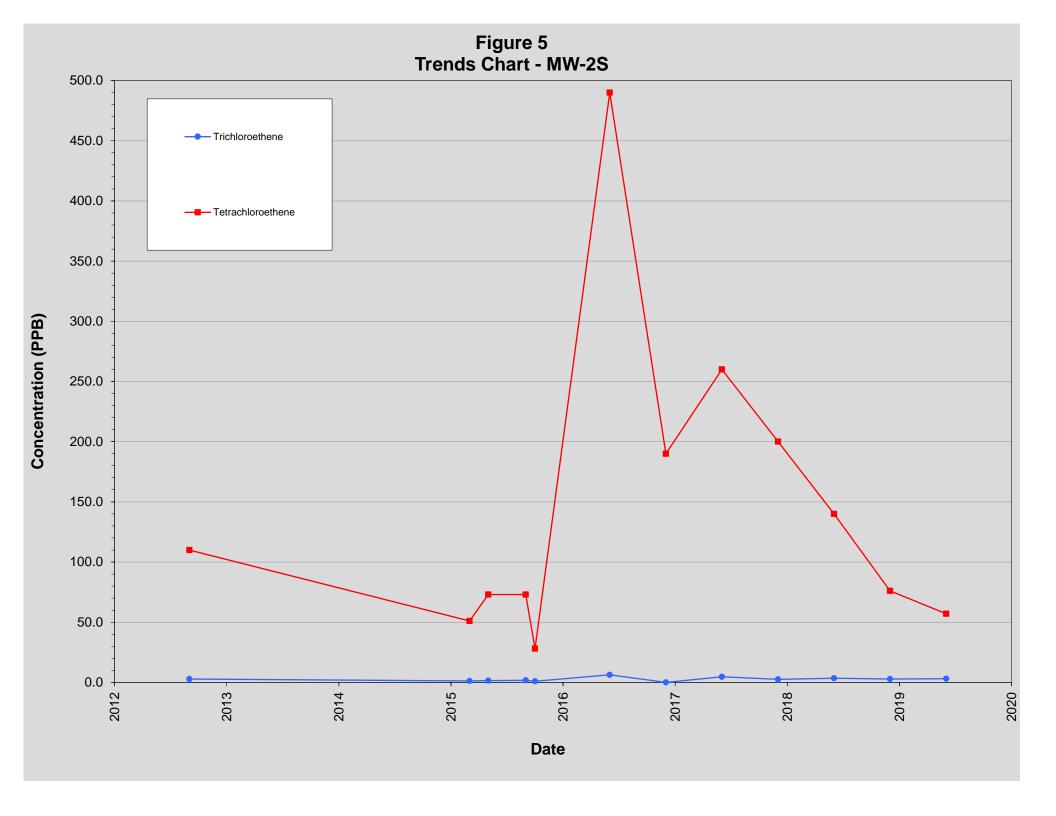
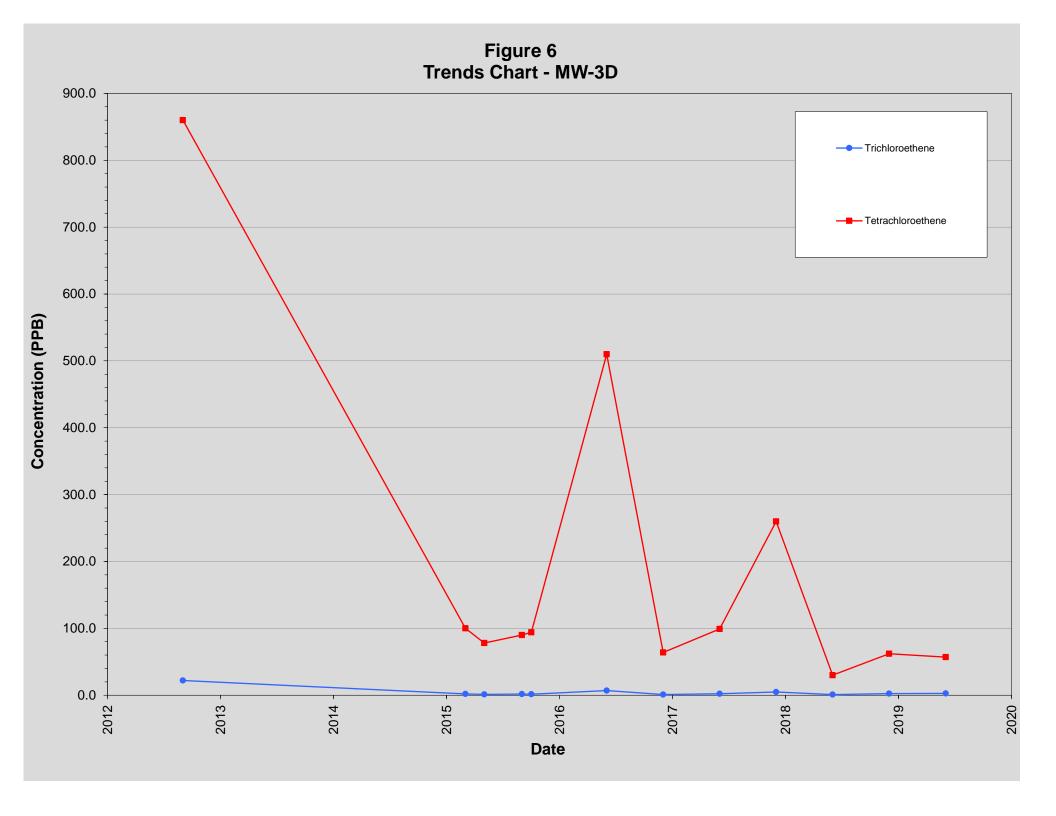
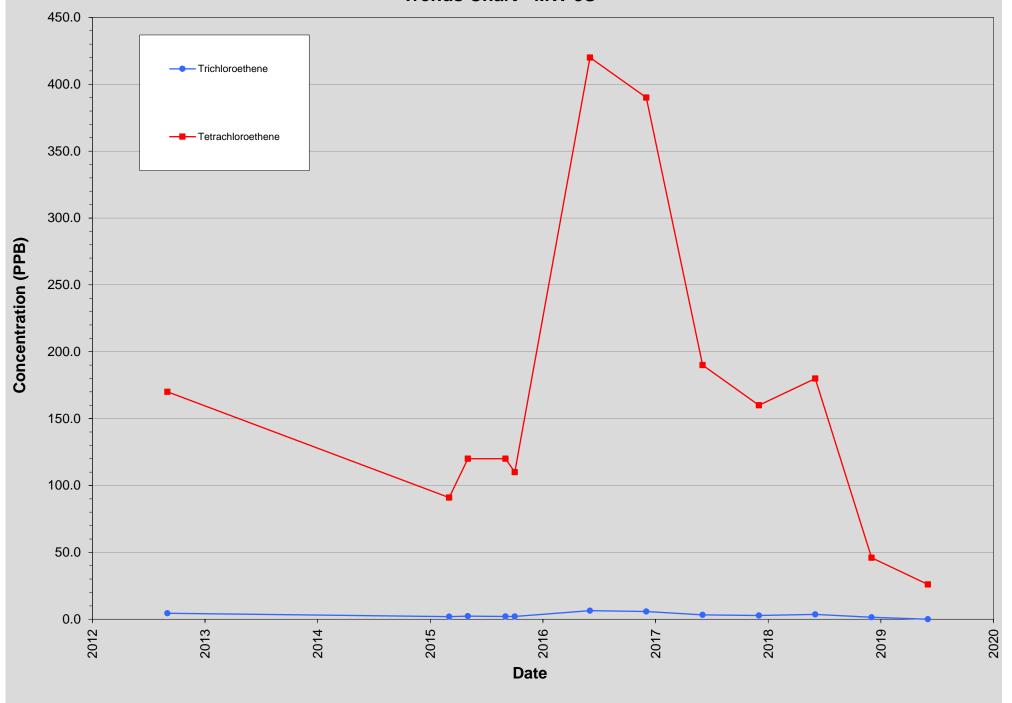
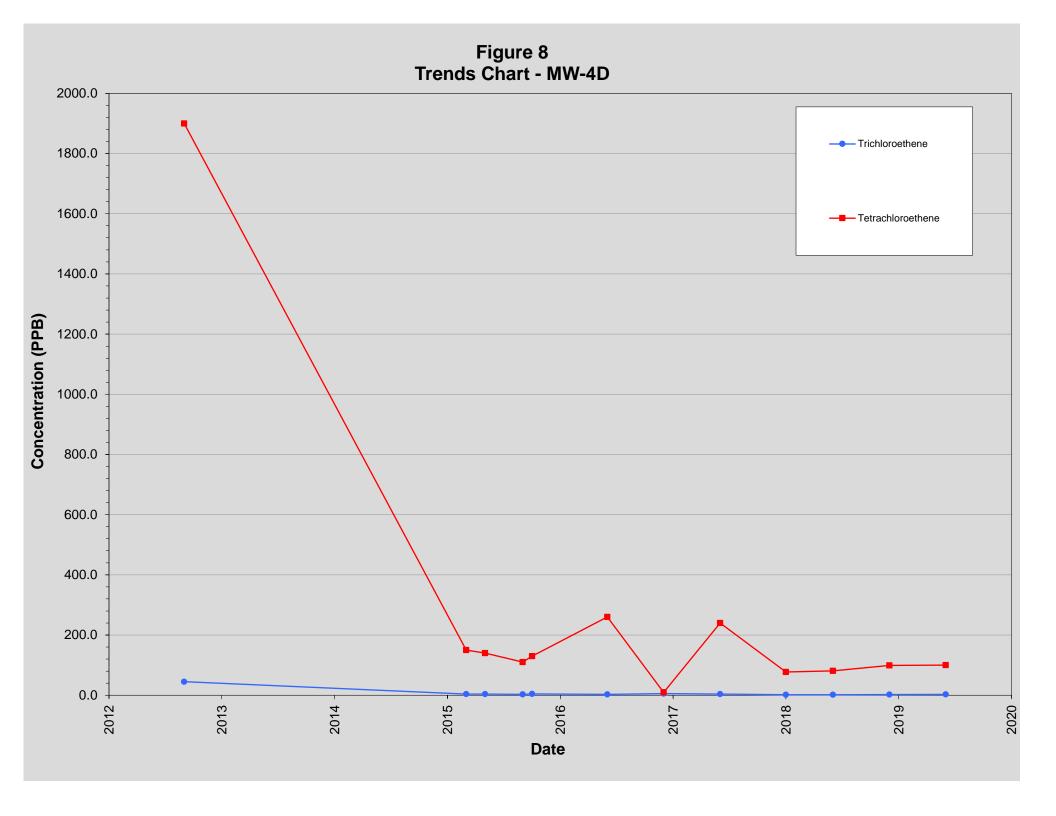
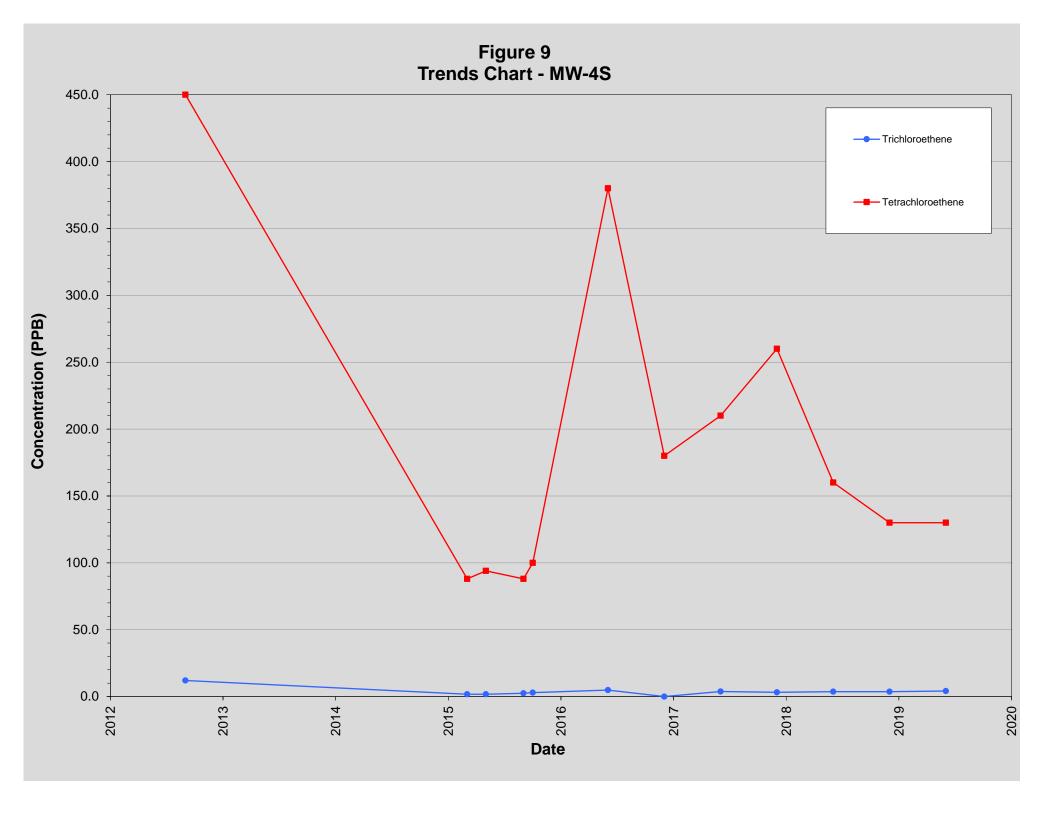
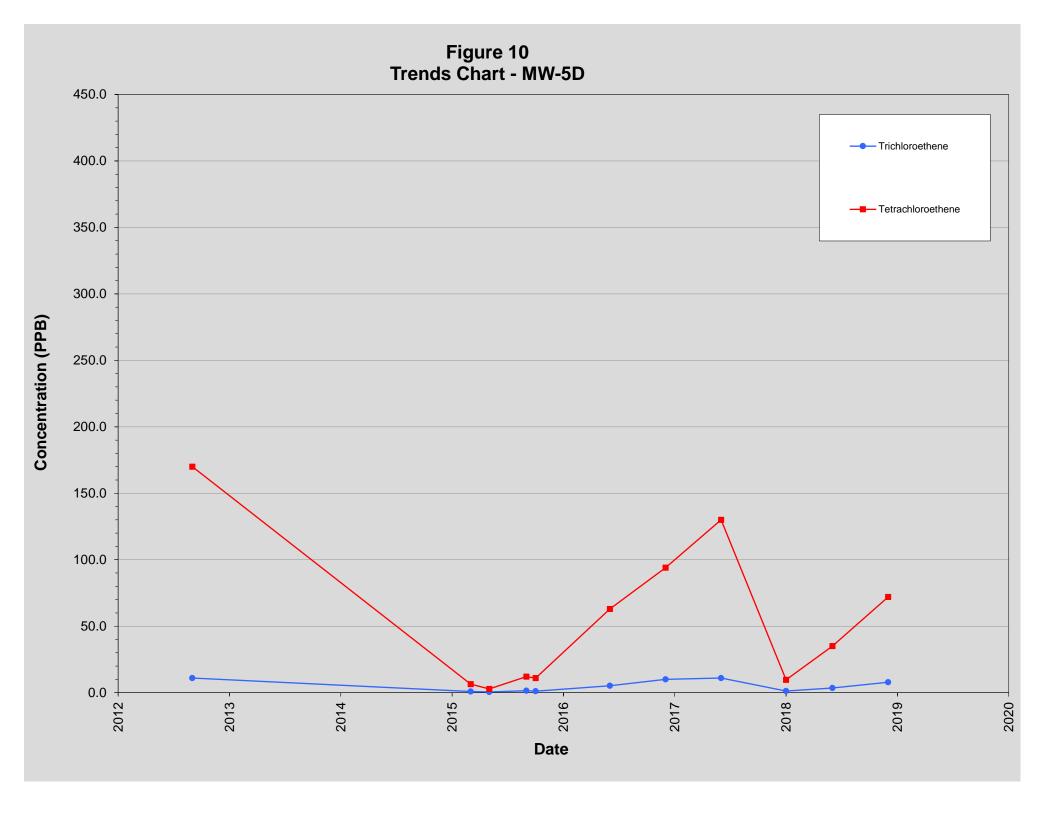
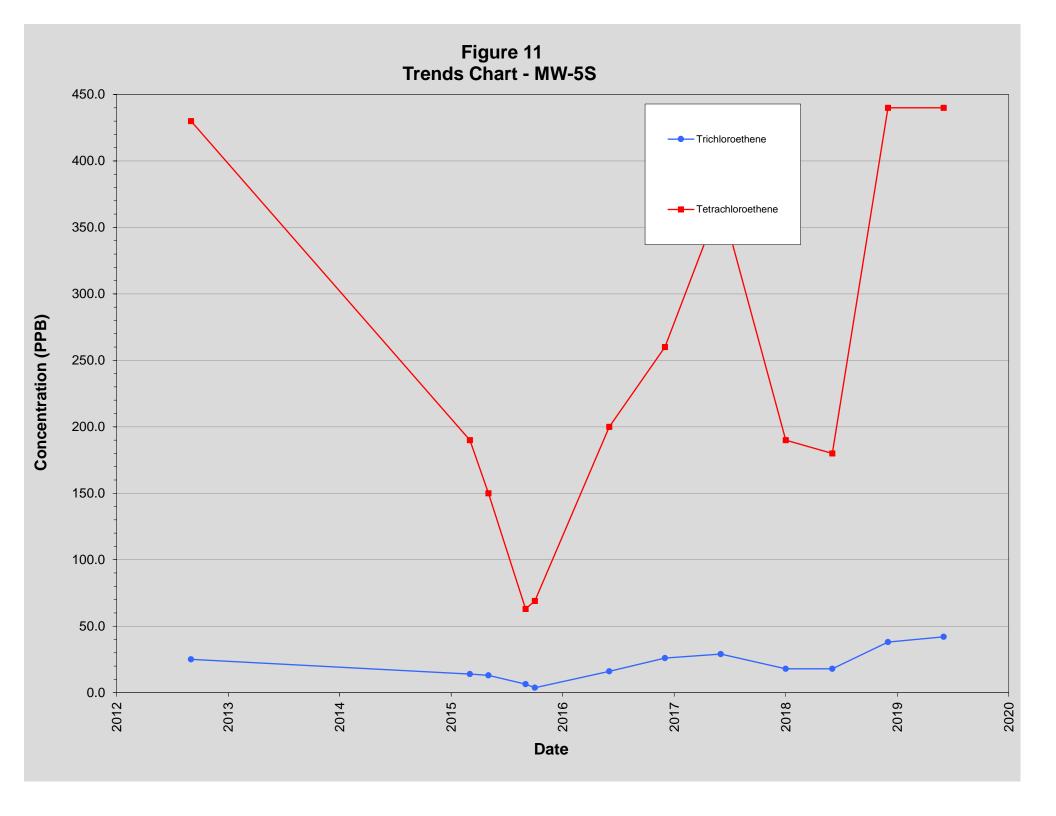
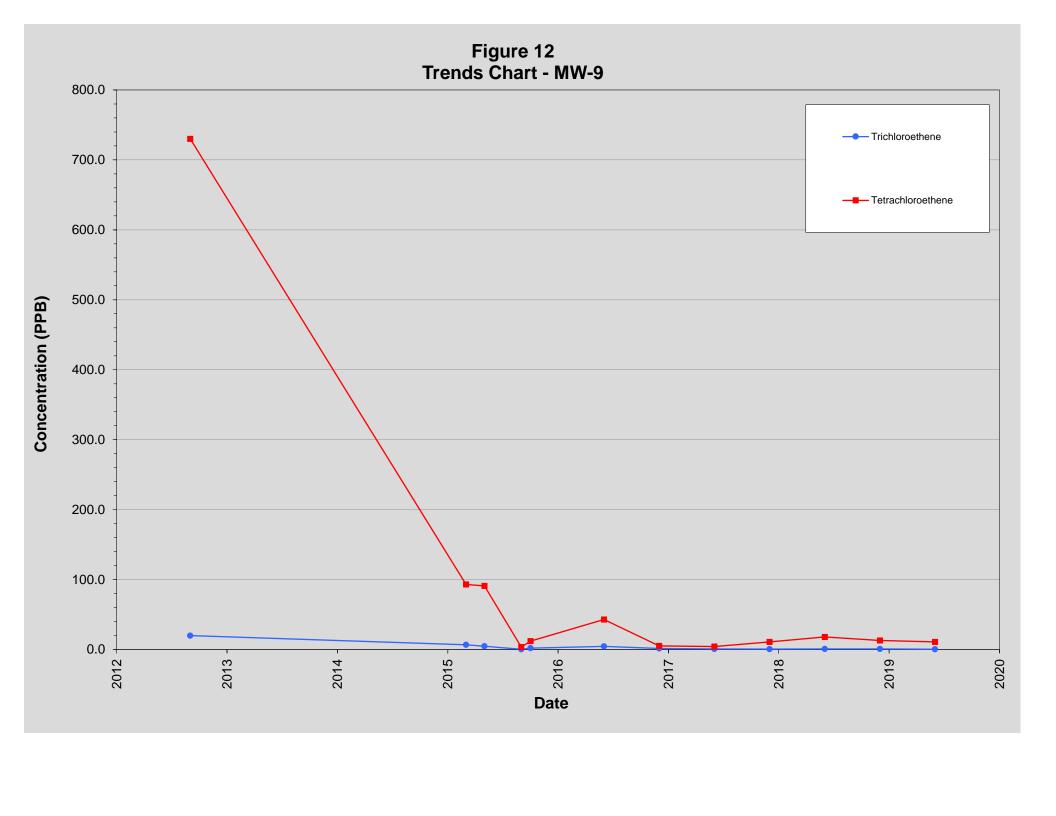

DWN:	SCALE:	DATE:	PROJECT NO.:
MFT	1:40	06/19/2019	ManlD1601
CHKD:	APPD:	REV.:	NOTES:
AJS	JRH	-	-
FIGURE NO.:			
	1	l	

Figure 2 Trends Chart - MW-1D


Figure 7
Trends Chart - MW-3S



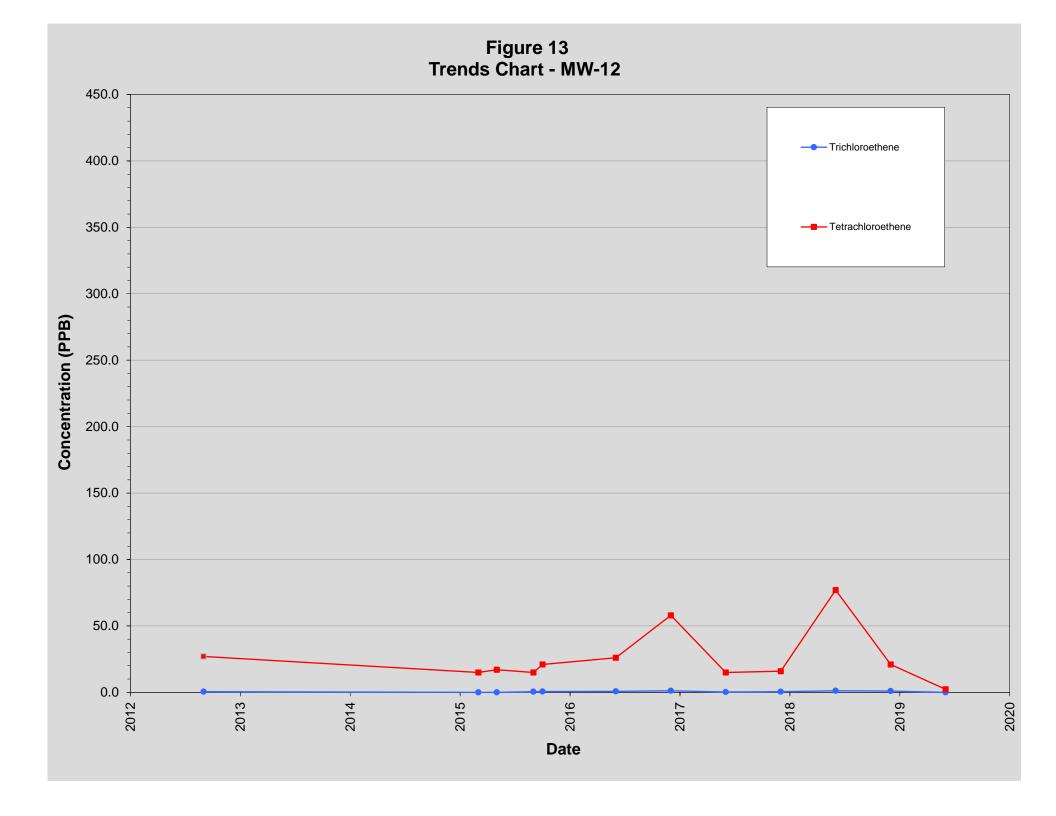


Figure 14 Trends Chart - MW-14D 450.0 --- Trichloroethene 400.0 Tetrachloroethene 350.0 300.0 Concentration (PPB) 250.0 200.0 150.0 100.0 50.0 0.0 2017 -2018 -2019 -**Date** 2012 2013

Figure 15 Trends Chart - MW-14S 450.0 --- Trichloroethene 400.0 Tetrachloroethene 350.0 300.0 Concentration (PPB) 250.0 200.0 150.0 100.0 50.0 0.0 **Date** 2019 2012 2017

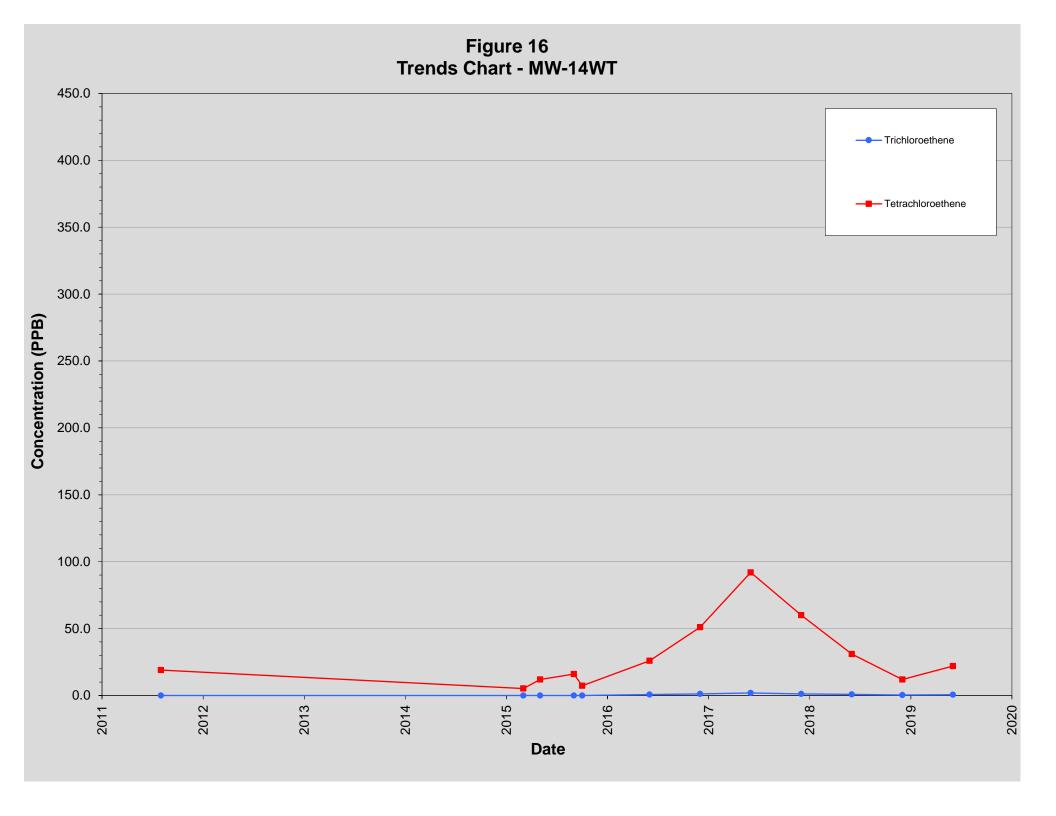


Figure 17 Trends Chart - DB-1 --- Trichloroethene 600.0 --- Tetrachloroethene 500.0 Concentration (PPB) 400.0 300.0 200.0 100.0 0.0 2012 Date

Tables

Volatile Organic Chemicals EPA Method 8260 Table 1

Client Sample ID:		NYSDEC	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D	MW-1DDL
Screen Intervals		Groundwater	25-30'	25-30'	25-30'	25-30'	25-30'	25-30'	25-30'	25-30'	25-30'	25-30'	25-30'	25-30'	25-30'
Sampling Date:		Standards	6/19/2019	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	03/23/2015	9/25/2012	9/25/2012
Dilution Factor															50
Analyte:	Units:														
1,1,1,2-Tetrachloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	PPB	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.62J	ND
1,1-Dichloropropene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
1,2,4-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	PPB	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	PPB	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	PPB	50*	ND	2J	ND	ND	ND	ND	ND	1.7BJ	4.9	ND	2.0BJ	ND	ND
Acrylonitrile	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA
Benzene	PPB	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Volatile Organic Chemicals EPA Method 8260 Table 1

ISCO was performed during February and July 2015

Client Sample ID:		NYSDEC	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D	MW-1DDL
Screen Intervals		Groundwater	25-30'	25-30'	25-30'	25-30'	25-30'	25-30'	25-30'	25-30'	25-30'	25-30'	25-30'	25-30'	25-30'
Sampling Date:		Standards	6/19/2019	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	03/23/2015	9/25/2012	9/25/2012
Dilution Factor															50
Analyte:	Units:														
Chloroform	PPB	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.45J	ND
cis-1,2-Dichloroethene	PPB	5	ND	1.8J	ND	1.7J	0.73 J	4.4 J	ND	2.5	ND	0.93J	1.0J	15	ND
cis-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.55J	ND	ND
Dibromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	PPB	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	PPB	10	1.5J	1J	ND	ND	ND	ND	ND	0.76J	0.97J	ND	ND	2.6	1.5
Methylene chloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	4.7B	4.5	3.6B	5.8B	ND	ND
n-Butylbenzene	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
p-Ethyltoluene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
sec-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	PPB	5	80	140	88	210	78	210	340	180D	89	210D	190D	1900E	1900D
Toluene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	PPB	5	2.5	5.9	2.7	5.8	1.3	9.5	11	6.1	ND	5.2	4.4	50	54D
Trichlorofluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	PPB	2	ND	0.35J	0.15J	0.30J	0.09 J	0.58 J	ND	ND	ND	ND	ND	1.4	ND
1,4-Dioxane (EPA Method 8270D SIM)	ng/l	50000													

Notes:

All results in ppb

ND - Not detected

NS-No Standard

NA- Not Analyzed

B- Analyte detected in blank

Bold-Exceeds NYS Standards

* Guidance Value

** 1,4 Dioxane <144. ng/l

Volatile Organic Chemicals EPA Method 8260 Table 1

Client Sample ID:		NYSDEC	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1SDL
Screen Intervals		Groundwater	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'
Sampling Date:		Standards	6/19/2019	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	03/23/2015	9/25/2012	9/25/2012
Dilution Factor															25
Analyte:	Units:														
1,1,1,2-Tetrachloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	PPB	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	PPB	5	0.24J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
1,2,4-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	PPB	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	PPB	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	PPB	50*	ND	5.5J	ND	ND	ND	ND	ND	2.0BJ	1.2BJ	1.4J	1.9BJ	ND	ND
Acrylonitrile	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA
Benzene	PPB	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	PPB	50*	ND	0.68J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	PPB	50*	ND	1.4J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Volatile Organic Chemicals EPA Method 8260 Table 1

ISCO was performed during February and July 2015

Client Sample ID:		NYSDEC	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1SDL
Screen Intervals		Groundwater	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'
Sampling Date:		Standards	6/19/2019	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	03/23/2015	9/25/2012	9/25/2012
Dilution Factor															25
Analyte:	Units:														
Chloroform	PPB	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6J	ND
cis-1,2-Dichloroethene	PPB	5	7.2	4.8J	3.2J	2.2J	ND	4.8	ND	2.3	1.8J	1.0J	1.2J	7.3	12JD
cis-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	PPB	5	ND	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	PPB	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	PPB	10	1J	ND	ND	ND	ND	ND	ND	3.4	2.4	ND	0.68J	5.3	ND
Methylene chloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	4.6B	4.6B	3.6B	5.1B	ND	ND
n-Butylbenzene	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
p-Ethyltoluene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
sec-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	PPB	5	210	210	260	280	44	330	440	150	140	210D	190D	1700E	1900D
Toluene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	PPB	5	18	13	11	9.8	0.88	14	17	6.3	5.8	5.5	4.9	32	43D
Trichlorofluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	PPB	2	0.39J	1.1J	0.93J	0.53J	ND	0.89 J	0.76J	ND	ND	ND	ND	ND	ND
1,4-Dioxane (EPA Method															
8270D SIM)	ng/l	50000													

Notes:

All results in ppb

ND - Not detected

NS-No Standard

NA- Not Analyzed

B- Analyte detected in blank

Bold-Exceeds NYS Standards

* Guidance Value

** 1,4 Dioxane <144. ng/l

Volatile Organic Chemicals EPA Method 8260 Table 1

Client Sample ID:		NYSDEC	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D	MW-2DDL
Screen Intervals		Groundwater	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'
Sampling Date:		Standards	6/19/2019	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012	9/25/2012
Dilution Factor															10
Analyte:	Units:														
1,1,1,2-Tetrachloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	PPB	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
1,2,4-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	PPB	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	PPB	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	PPB	50*	ND	3.9J	ND	ND	ND	ND	ND	2.1BJ	2.2BJ	ND	2.0BJ	ND	ND
Acrylonitrile	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA
Benzene	PPB	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	PPB	50*	0.61	2.6	3	ND	2.3	4.1	ND	ND	ND	ND	ND	ND	ND
Bromoform	PPB	50*	0.67J	1.5J	1.3J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Volatile Organic Chemicals EPA Method 8260 Table 1

ISCO was performed during February and July 2015

Client Sample ID:		NYSDEC	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D	MW-2DDL
Screen Intervals		Groundwater	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'
Sampling Date:		Standards	6/19/2019	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012	9/25/2012
Dilution Factor															10
Analyte:	Units:														
Chloroform	PPB	7	0.7J	4.1	4.4	ND	4	4.6 J	ND	ND	ND	ND	ND	ND	ND
Chloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.59J	ND
cis-1,2-Dichloroethene	PPB	5	ND	2.2J	1.7J	2.2J	3.7	ND	ND	0.86J	ND	0.88J	1.3J	1.8	ND
cis-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	PPB	5	0.82	2.5	2.4	ND	1.9	3.4	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	PPB	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	PPB	10	ND	ND	ND	ND	0.88 J	ND	ND	ND	ND	0.55J	0.56J	0.87J	ND
Methylene chloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	4.5B	4.6B	3.9B	5.5B	ND	ND
n-Butylbenzene	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
p-Ethyltoluene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
sec-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	PPB	5	58	60	68	200	150	220	480	140	130	160	110	500E	480D
Toluene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	PPB	5	1.5	3.6	3	3.8	4.2	3.3	7.1	2.2	2.2	2.5	2.0	12	12D
Trichlorofluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	PPB	2	ND	0.12J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane (EPA Method 8270D SIM)	ng/l	50000		-	-	-	-			-	-	-	-	-	•

Notes:

All results in ppb

ND - Not detected

NS-No Standard

NA- Not Analyzed

B- Analyte detected in blank

Bold-Exceeds NYS Standards

* Guidance Value

^{** 1,4} Dioxane <144. ng/l

Volatile Organic Chemicals EPA Method 8260 Table 1

Client Sample ID:		NYSDEC	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S
Screen Intervals		Groundwater	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'
Sampling Date:		Standards	6/19/2019	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012
Dilution Factor														
Analyte:	Units:													
1,1,1,2-Tetrachloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	PPB	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2,4-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	PPB	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	PPB	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	PPB	50*	ND	3J	ND	ND	ND	ND	ND	1.6BJ	2.2BJ	1.3J	2.1BJ	ND
Acrylonitrile	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA
Benzene	PPB	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	PPB	50*	1.5	2	2.5	ND	2	2.1	ND	0.61J	ND	ND	ND	ND
Bromoform	PPB	50*	1.1J	4.7	1.7J	ND	ND	2.2 J	ND	ND	ND	ND	ND	ND
Bromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Volatile Organic Chemicals EPA Method 8260 Table 1

ISCO was performed during February and July 2015

Client Sample ID:		NYSDEC	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S
Screen Intervals		Groundwater	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'
Sampling Date:		Standards	6/19/2019	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012
Dilution Factor														
Analyte:	Units:													
Chloroform	PPB	7	1.3J	2.4J	3.2	ND	2.2 J	1.4 J	ND	ND	ND	ND	ND	ND
Chloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.45J
cis-1,2-Dichloroethene	PPB	5	1.7J	0.82J	0.98J	0.71J	ND	ND	ND	ND	0.90J	0.81J	0.99J	1.5
cis-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	PPB	5	1.9	3.5	2.6	ND	2.5	3.1	ND	0.67J	ND	ND	ND	ND
Dibromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	PPB	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.57J
Methylene chloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	4.6B	4.9B	3.6B	5.4B	ND
n-Butylbenzene	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
p-Ethyltoluene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
sec-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	PPB	5	57	76	140	200	260	190	490	28	73	73	51	110
Toluene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	PPB	5	3.1	2.8	3.5	2.5	4.6	2.8	6.3	0.90J	1.8J	1.5J	1.2J	2.8
Trichlorofluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	PPB	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane (EPA Method 8270D SIM)	ng/l	50000	-		-		-	-	_		-		-	

Notes:

All results in ppb

ND - Not detected

NS-No Standard

NA- Not Analyzed

B- Analyte detected in blank

Bold-Exceeds NYS Standards

^{** 1,4} Dioxane <144. ng/l

Volatile Organic Chemicals EPA Method 8260 Table 1

Client Sample ID:		NYSDEC	MW-3D	MW-3D	MW-3D	MW-3D	MW-3D	MW-3D	MW-3D	MW-3D	MW-3D	MW-3D	MW-3D	MW-3D	MW-3DDL
Screen Intervals		Groundwater	24-29'	24-29'	24-29'	24-29'	24-29'	24-29'	24-29'	24-29'	24-29'	24-29'	24-29'	24-29'	24-29'
Sampling Date:		Standards	6/19/2019	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012	9/25/2012
Dilution Factor															10
Analyte:	Units:														
1,1,1,2-Tetrachloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	PPB	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
1,2,4-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	PPB	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	PPB	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	PPB	50*	ND	4.3J	ND	ND	ND	ND	ND	2.0BJ	1.4BJ	2.3J	2.2BJ	ND	ND
Acrylonitrile	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA
Benzene	PPB	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	PPB	50*	0.3J	0.48J	1.1	ND	0.74	1.2	ND	ND	ND	ND	ND	ND	ND
Bromoform	PPB	50*	ND	ND	0.85J	ND	ND	1.2 J	ND	ND	ND	ND	ND	ND	ND
Bromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Volatile Organic Chemicals EPA Method 8260 Table 1

ISCO was performed during February and July 2015

Client Sample ID:		NYSDEC	MW-3D	MW-3D	MW-3D	MW-3D	MW-3D	MW-3D	MW-3D	MW-3D	MW-3D	MW-3D	MW-3D	MW-3D	MW-3DDL
Screen Intervals		Groundwater	24-29'	24-29'	24-29'	24-29'	24-29'	24-29'	24-29'	24-29'	24-29'	24-29'	24-29'	24-29'	24-29'
Sampling Date:		Standards	6/19/2019	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012	9/25/2012
Dilution Factor															10
Analyte:	Units:														
Chloroform	PPB	7	ND	0.95J	1.8J	ND	1.7 J	0.89 J	ND	ND	ND	ND	ND	ND	ND
Chloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.48J	ND
cis-1,2-Dichloroethene	PPB	5	1.5J	1J	ND	2.9	1 J	ND	ND	ND	ND	ND	ND	3	ND
cis-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	PPB	5	0.58	0.63	1.2	ND	0.74	1.4	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	PPB	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.87J	ND
Methylene chloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	4.5B	4.7B	4.0B	5.1B	ND	ND
n-Butylbenzene	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
p-Ethyltoluene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
sec-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	PPB	5	57	62	30	260E	99	64	510	94	90	78	100	860E	840D
Toluene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	PPB	5	2.6	2.4	0.92	4.9	2.1	0.95	7	1.5J	1.8	1.2J	1.9J	22	22D
Trichlorofluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	PPB	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane (EPA Method											-				
8270D SIM)	ng/l	50000													

Notes:

All results in ppb

ND - Not detected

NS-No Standard

NA- Not Analyzed

B- Analyte detected in blank

Bold-Exceeds NYS Standards

^{** 1,4} Dioxane <144. ng/l

Volatile Organic Chemicals EPA Method 8260 Table 1

Client Sample ID:		NYSDEC	MW-3S	MW-3S	MW-3S	MW-3S	MW-3S	MW-3S	MW-3S	MW-3S	MW-3S	MW-3S	MW-3S	MW-3S
Screen Intervals		Groundwater	18-23'	18-23'	18-23'	18-23'	18-23'	18-23'	18-23'	18-23'	18-23'	18-23'	18-23'	18-23'
Sampling Date:		Standards	6/19/2019	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012
Dilution Factor														
Analyte:	Units:													
1,1,1,2-Tetrachloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	PPB	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2,4-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	PPB	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	PPB	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	PPB	50*	ND	3.3J	ND	ND	ND	ND	ND	1.6BJ	1.7BJ	1.3J	1.8BJ	ND
Acrylonitrile	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA
Benzene	PPB	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	PPB	50*	ND	0.22J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Volatile Organic Chemicals EPA Method 8260 Table 1

ISCO was performed during February and July 2015

Client Sample ID:		NYSDEC	MW-3S	MW-3S	MW-3S	MW-3S	MW-3S	MW-3S	MW-3S	MW-3S	MW-3S	MW-3S	MW-3S	MW-3S
Screen Intervals		Groundwater	18-23'	18-23'	18-23'	18-23'	18-23'	18-23'	18-23'	18-23'	18-23'	18-23'	18-23'	18-23'
Sampling Date:		Standards	6/19/2019	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012
Dilution Factor														
Analyte:	Units:													
Chloroform	PPB	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	PPB	5	ND	ND	1.2J	1.2J	ND	ND	ND	0.73J	0.66J	1.0J	1.4J	1.7
cis-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	PPB	5	ND	0.25J	0.53	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	PPB	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	0.52J	0.56J	0.65J	0.79J
Methylene chloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	4.6B	4.5B	3.6B	5.6B	ND
n-Butylbenzene	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
p-Ethyltoluene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
sec-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	PPB	5	26	46	180	160	190	390	420	110	120	120	91	170
Toluene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	PPB	5	0.96	1.4	3.6	2.8	3.2	5.8	6.4	2.1	2.0J	2.3	1.9J	4.4
Trichlorofluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	PPB	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane (EPA Method 8270D SIM)	ng/l	50000												

Notes:

All results in ppb

ND - Not detected

NS-No Standard

NA- Not Analyzed

B- Analyte detected in blank

Bold-Exceeds NYS Standards

* Guidance Value

** 1,4 Dioxane <144. ng/l

Volatile Organic Chemicals EPA Method 8260 Table 1

Client Sample ID:		NYSDEC	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4DDL
Screen Intervals		Groundwater	23-28'	23-28'	23-28'	23-28'	23-28'	23-28'	23-28'	23-28'	23-28'	23-28'	23-28'	23-28'	23-28'
Sampling Date:		Standards	6/19/2019	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012	9/25/2012
Dilution Factor															25
Analyte:	Units:														
1,1,1,2-Tetrachloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	PPB	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
1,2,4-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	PPB	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	PPB	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	PPB	50*	ND	2.3J	ND	ND	ND	ND	ND	1.9BJ	1.5BJ	1.4J	1.9BJ	ND	ND
Acrylonitrile	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA
Benzene	PPB	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	PPB	50*	0.32J	0.72	0.32J	ND	ND	1.7	ND	ND	ND	ND	ND	ND	ND
Bromoform	PPB	50*	ND	ND	ND	ND	ND	1.3 J	ND	ND	ND	ND	ND	ND	ND
Bromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Volatile Organic Chemicals EPA Method 8260 Table 1

ISCO was performed during February and July 2015

Client Sample ID:		NYSDEC	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4DDL
Screen Intervals		Groundwater	23-28'	23-28'	23-28'	23-28'	23-28'	23-28'	23-28'	23-28'	23-28'	23-28'	23-28'	23-28'	23-28'
Sampling Date:		Standards	6/19/2019	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012	9/25/2012
Dilution Factor															25
Analyte:	Units:														
Chloroform	PPB	7	ND	1.8J	ND	ND	ND	1.6 J	ND	ND	ND	ND	ND	ND	ND
Chloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.59J	ND
cis-1,2-Dichloroethene	PPB	5	0.78J	ND	ND	ND	ND	ND	ND	1.0J	0.54J	0.71J	0.63J	4.4	ND
cis-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	PPB	5	0.35J	0.69	0.62	ND	ND	1.9	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	PPB	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1J	ND
Methylene chloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	4.8B	4.6B	4.1B	6.1B	ND	ND
n-Butylbenzene	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
p-Ethyltoluene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
sec-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	PPB	5	100	99	81	77	240	9.4	260	130	110	140	150	1900E	1800D
Toluene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	PPB	5	2.5	2.4	1.6	1.7	3.6	ND	3	4.1	3.0	3.6	4.0	45	42D
Trichlorofluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	PPB	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.61J	ND
1,4-Dioxane (EPA Method 8270D SIM)	ng/l	50000													

Notes:

All results in ppb

ND - Not detected

NS-No Standard

NA- Not Analyzed

B- Analyte detected in blank

Bold-Exceeds NYS Standards

^{** 1,4} Dioxane <144. ng/l

Volatile Organic Chemicals EPA Method 8260 Table 1

Client Sample ID:		NYSDEC	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4SDL
Screen Intervals		Groundwater	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'
Sampling Date:		Standards	6/19/2019	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012	9/25/2012
Dilution Factor															20
Analyte:	Units:														
1,1,1,2-Tetrachloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	PPB	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
1,2,4-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	PPB	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	PPB	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	PPB	50*	ND	3.1J	ND	ND	ND	ND	ND	2.3BJ	2.6BJ	ND	1.7BJ	ND	ND
Acrylonitrile	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA
Benzene	PPB	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	PPB	50*	ND	0.24J	0.21J	ND	0.92 J	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	PPB	50*	ND	ND	ND	ND	ND	1.7 J	ND	ND	ND	ND	ND	ND	ND
Bromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Volatile Organic Chemicals EPA Method 8260 Table 1

ISCO was performed during February and July 2015

Client Sample ID:		NYSDEC	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4SDL
Screen Intervals		Groundwater	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'
Sampling Date:		Standards	6/19/2019	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012	9/25/2012
Dilution Factor															20
Analyte:	Units:														
Chloroform	PPB	7	ND	ND	ND	ND	2 J	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	PPB	5	2J	1.7J	1.2J	ND	ND	ND	ND	0.79J	1.1J	ND	ND	1.4	ND
cis-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	PPB	5	ND	0.32J	0.58	ND	0.93 J	0.65 J	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	PPB	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.54J	ND
Methylene chloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	4.8B	4.5B	3.9B	5.0B	ND	ND
n-Butylbenzene	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
p-Ethyltoluene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
sec-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	PPB	5	130	130	160	260E	210	180	380	100	88	94	88	450E	500D
Toluene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	PPB	5	4.1	3.7	3.6	3.2	3.8	2.6	4.8J	2.9	2.4	1.7J	1.7J	12	13JD
Trichlorofluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	PPB	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane (EPA Method 8270D SIM)	ng/l	50000			ND	ND**									

Notes:

All results in ppb

ND - Not detected

NS-No Standard

NA- Not Analyzed

B- Analyte detected in blank

Bold-Exceeds NYS Standards

^{** 1,4} Dioxane <144. ng/l

Volatile Organic Chemicals EPA Method 8260 Table 1

Client Sample ID:		NYSDEC	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D
Screen Intervals		Groundwater	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'
Sampling Date:		Standards	6/19/2019	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012
Dilution Factor														
Analyte:	Units:													
1,1,1,2-Tetrachloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	PPB	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	PPB	5	2.9	3.1	1.4J	1.1J	3.3 J	4.5	0.94J	ND	ND	0.55J	0.96J	2.6
1,1-Dichloroethene	PPB	5	0.58	0.59	0.26J	0.29J	0.64 J	0.77	0.44J	ND	ND	ND	ND	0.52J
1,1-Dichloropropene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2,4-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	PPB	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	PPB	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	PPB	50*	ND	3.3J	ND	ND	ND	ND	ND	2.2BJ	3.1BJ	ND	3.3BJ	ND
Acrylonitrile	PPB	5	ND	ND	ND	ND	ND	2.8 J	ND	ND	NA	NA	NA	NA
Benzene	PPB	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.1
Bromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Volatile Organic Chemicals EPA Method 8260 Table 1

ISCO was performed during February and July 2015

Client Sample ID:		NYSDEC	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D
Screen Intervals		Groundwater	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'
Sampling Date:		Standards	6/19/2019	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012
Dilution Factor														
Analyte:	Units:													
Chloroform	PPB	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.47J
cis-1,2-Dichloroethene	PPB	5	2.5	2.2J	0.81J	ND	3.6 J	3.9	2J	0.52J	ND	ND	ND	8
cis-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	PPB	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	PPB	10	21	15	9.3	3	27	23	15	1.8J	7.1	1.8J	3.6	30
Methylene chloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	4.9B	4.7B	3.8B	6.2B	ND
n-Butylbenzene	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
p-Ethyltoluene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
sec-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	PPB	5	90	72	35	9.7	130	94	63	11	12	2.8	6.4	170
Toluene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	PPB	5	9.6	7.8	3.5	1.2	11	10	5.2	1.1J	1.4J	0.51J	0.87J	11
Trichlorofluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	PPB	2	0.49J	0.49J	0.13J	ND	0.71 J	1.2	0.44J	ND	ND	ND	ND	ND
1,4-Dioxane (EPA Method 8270D SIM)	ng/l	50000							-		-			

Notes:

All results in ppb

ND - Not detected

NS-No Standard

NA- Not Analyzed

B- Analyte detected in blank

Bold-Exceeds NYS Standards

^{** 1,4} Dioxane <144. ng/l

Volatile Organic Chemicals EPA Method 8260 Table 1

Client Sample ID:		NYSDEC	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5SDL
Screen Intervals		Groundwater	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'
Sampling Date:		Standards	6/19/2019	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012	9/25/2012
Dilution Factor				•											10
Analyte:	Units:														
1,1,1,2-Tetrachloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	PPB	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	PPB	5	ND	ND	ND	1.4J	ND	ND	ND	ND	ND	0.92J	1.0J	2.2	ND
1,1-Dichloroethene	PPB	5	0.84J	1.2J	0.54J	ND	0.85 J	1.1	0.6J	ND	ND	0.68J	0.78J	0.7J	ND
1,1-Dichloropropene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
1,2,4-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	PPB	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	PPB	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	PPB	50*	ND	5.8J	ND	ND	ND	ND	ND	1.9BJ	2.7BJ	ND	2.0BJ	ND	ND
Acrylonitrile	PPB	5	ND	ND	ND	4.2J	ND	6.6 J	ND	ND	NA	NA	NA	NA	NA
Benzene	PPB	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND
Bromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Volatile Organic Chemicals EPA Method 8260 Table 1

ISCO was performed during February and July 2015

Client Sample ID:		NYSDEC	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5SDL
Screen Intervals		Groundwater	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'
Sampling Date:		Standards	6/19/2019	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012	9/25/2012
Dilution Factor															10
Analyte:	Units:														
Chloroform	PPB	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.42J	ND
cis-1,2-Dichloroethene	PPB	5	18	15	6.4	11	11 J	23	14	2.4	3.5	4.8	5.8	12	12D
cis-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	PPB	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	PPB	10	27	24	30	30	35	50	34	5.3	23	30	32	33	28D
Methylene chloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	5.0B	4.8B	4.0B	5.0B	ND	ND
n-Butylbenzene	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
p-Ethyltoluene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
sec-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	PPB	5	440	440	180	190	370	260	200	69	63	150D	190D	430E	450D
Toluene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	PPB	5	42	38	18	18	29	26	16	3.7	6.4	13	14	25	27D
Trichlorofluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	PPB	2	2.3J	3.2J	1J	1.6J	1.9 J	3.5 J	1.1J	ND	0.68J	1.2J	1.6J	ND	ND
1,4-Dioxane (EPA Method 8270D SIM)	ng/l	50000													

Notes:

All results in ppb

ND - Not detected

NS-No Standard

NA- Not Analyzed

B- Analyte detected in blank

Bold-Exceeds NYS Standards

^{** 1,4} Dioxane <144. ng/l

Volatile Organic Chemicals EPA Method 8260 Table 1

Client Sample ID:		NYSDEC	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9DL
Screen Intervals		Groundwater	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'
Sampling Date:		Standards	6/19/2019	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012	9/25/2012
Dilution Factor				•											10
Analyte:	Units:														
1,1,1,2-Tetrachloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	PPB	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
1,2,4-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	PPB	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	PPB	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	PPB	50*	ND	3.4J	2.2J	ND	ND	ND	1.6	1.5BJ	1.7BJ	1.5J	2.9BJ	ND	ND
Acrylonitrile	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA
Benzene	PPB	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	PPB	50*	ND	0.21J	ND	ND	0.63	0.42 J	ND	ND	0.78J	ND	ND	ND	ND
Bromoform	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	1.0J	ND	ND	ND	ND
Bromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Volatile Organic Chemicals EPA Method 8260 Table 1

ISCO was performed during February and July 2015

Client Sample ID:		NYSDEC	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9DL
Screen Intervals		Groundwater	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'
Sampling Date:		Standards	6/19/2019	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012	9/25/2012
Dilution Factor															10
Analyte:	Units:														
Chloroform	PPB	7	ND	0.98J	ND	ND	1.9 J	0.91 J	ND	ND	0.99J	ND	ND	ND	ND
Chloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.49J	ND
cis-1,2-Dichloroethene	PPB	5	ND	1.9J	2.2J	2.0J	1.4 J	22	27	15	ND	12	14	39	35D
cis-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	PPB	5	ND	ND	ND	ND	0.39 J	0.37 J	ND	ND	1.2J	ND	ND	ND	ND
Dibromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	0.50	ND	ND	ND	ND
Dichlorodifluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	PPB	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.47J	0.79J
Methylene chloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	4.7B	4.7B	3.7B	5.0B	ND	ND
n-Butylbenzene	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
p-Ethyltoluene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
sec-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	PPB	5	11	13	18	11	4.4	5.2	43	12	3.6	91	93	730E	680D
Toluene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	PPB	5	0.47J	0.9	0.97	0.72	0.89	1.6	4.6	2.1	0.50J	4.8	6.9	20	18D
Trichlorofluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	PPB	2	ND	ND	ND	ND	ND	ND	0.1J	ND	ND	ND	ND	ND	ND
1,4-Dioxane (EPA Method 8270D SIM)	ng/l	50000													

Notes:

All results in ppb

ND - Not detected

NS-No Standard

NA- Not Analyzed

B- Analyte detected in blank

Bold-Exceeds NYS Standards

^{** 1,4} Dioxane <144. ng/l

Volatile Organic Chemicals EPA Method 8260 Table 1

Client Sample ID:		NYSDEC	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12
Screen Intervals		Groundwater	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'
Sampling Date:		Standards	6/19/2019	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012
Dilution Factor														
Analyte:	Units:													
1,1,1,2-Tetrachloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	PPB	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2,4-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	PPB	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	PPB	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	PPB	50*	ND	4.8J	ND	ND	ND	ND	ND	1.6BJ	1.7BJ	1.6J	3.0BJ	ND
Acrylonitrile	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA
Benzene	PPB	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	PPB	50*	ND	0.47J	ND	ND	ND	ND	ND	ND	ND	ND	0.60J	ND
Bromoform	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Volatile Organic Chemicals EPA Method 8260 Table 1

ISCO was performed during February and July 2015

Client Sample ID:		NYSDEC	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12
Screen Intervals		Groundwater	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'
Sampling Date:		Standards	6/19/2019	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012
Dilution Factor														
Analyte:	Units:													
Chloroform	PPB	7	ND	0.88J	ND	ND	ND	ND	ND	ND	ND	ND	0.86J	ND
Chloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6J
cis-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	PPB	5	ND	0.39J	ND	ND	ND	ND	ND	ND	ND	ND	0.59J	ND
Dibromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	PPB	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	4.5B	4.6B	3.8B	5.5B	ND
n-Butylbenzene	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
p-Ethyltoluene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
sec-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	PPB	5	2.3	21	77	16	15	58	26	21	15	17	15	27
Toluene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	PPB	5	ND	0.95	1.2	0.49J	0.32 J	1.2	0.72	0.61J	0.51J	ND	ND	0.51J
Trichlorofluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	PPB	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane (EPA Method 8270D SIM)	ng/l	50000		-				-	-	-	-			

Notes:

All results in ppb

ND - Not detected

NS-No Standard

NA- Not Analyzed

B- Analyte detected in blank

Bold-Exceeds NYS Standards

^{** 1,4} Dioxane <144. ng/l

Volatile Organic Chemicals EPA Method 8260 Table 1

Client Sample ID:		NYSDEC	MW-14 D	MW-14 D	MW-14 D	MW-14 D	MW-14 D	MW-14 D						
Screen Intervals		Groundwater	25-35'	25-35'	25-35'	25-35'	25-35'	25-35'	25-35'	25-35'	25-35'	25-35'	25-35'	25-35'
Sampling Date:		Standards	6/19/2019	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012
Dilution Factor														
Analyte:	Units:													
1,1,1,2-Tetrachloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	PPB	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	3.6	ND	ND	ND
1,1-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2,4-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	PPB	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	PPB	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	PPB	50*	ND	2.2J	ND	ND	ND	ND	1.9J	2.0BJ	2.8BJ	ND	5.6B	ND
Acrylonitrile	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA
Benzene	PPB	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Volatile Organic Chemicals EPA Method 8260 Table 1

ISCO was performed during February and July 2015

Client Sample ID:		NYSDEC	MW-14 D	MW-14 D	MW-14 D	MW-14 D	MW-14 D	MW-14 D						
Screen Intervals		Groundwater	25-35'	25-35'	25-35'	25-35'	25-35'	25-35'	25-35'	25-35'	25-35'	25-35'	25-35'	25-35'
Sampling Date:		Standards	6/19/2019	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012
Dilution Factor														
Analyte:	Units:													
Chloroform	PPB	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	PPB	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	7.7	ND	ND	1.7
Methylene chloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	4.9B	4.8B	4.3B	5.9B	ND
n-Butylbenzene	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
p-Ethyltoluene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
sec-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	PPB	5	ND	0.19J	ND	ND	ND	ND	ND	ND	3.6	ND	ND	ND
Toluene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	0.54J	ND	ND	ND
Trichlorofluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	PPB	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane (EPA Method														
8270D SIM)	ng/l	50000												

Notes:

All results in ppb

ND - Not detected

NS-No Standard

NA- Not Analyzed

B- Analyte detected in blank

Bold-Exceeds NYS Standards

^{*} Guidance Value

^{** 1,4} Dioxane <144. ng/l

Volatile Organic Chemicals EPA Method 8260 Table 1

Client Sample ID:		NYSDEC	MW-14S	MW-14S	MW-14S	MW-14S	MW-14S	MW-14 S	MW-14 S	MW-14 S	MW-14 S	MW-14 S	MW-14 S	MW-14 S
Screen Intervals		Groundwater	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'
Sampling Date:		Standards	6/19/2019	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012
Dilution Factor														
Analyte:	Units:													
1,1,1,2-Tetrachloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,1,1-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	PPB	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	PPB	5	4.9	4.3	4.8	1.6J	15	19	18	4.2	ND	1.8J	3.4	24
1,1-Dichloroethene	PPB	5	ND	0.18J	ND	ND	0.51	0.55	0.59	ND	ND	ND	ND	1.5
1,1-Dichloropropene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2,3-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2,3-Trichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2,4,5-Tetramethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2,4-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2,4-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2-Dibromo-3-chloropropane	PPB	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2-Dibromoethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2-Dichloroethane	PPB	0.6	ND	ND	ND	ND	ND	0.18 J	0.16J	ND	ND	ND	ND	NA
1,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,3-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,3-dichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,4-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,4-Dioxane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
2,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
2-Butanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	PPB	50*	ND	4.4J	ND	ND	ND	ND	1.5J	ND	2.3BJ	ND	5.2B	ND
Acrylonitrile	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA
Benzene	PPB	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Bromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Bromodichloromethane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Volatile Organic Chemicals EPA Method 8260 Table 1

ISCO was performed during February and July 2015

Client Sample ID:		NYSDEC	MW-14S	MW-14S	MW-14S	MW-14S	MW-14S	MW-14 S	MW-14 S	MW-14 S	MW-14 S	MW-14 S	MW-14 S	MW-14 S
Screen Intervals		Groundwater	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'
Sampling Date:		Standards	6/19/2019	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012
Dilution Factor														
Analyte:	Units:													
Chloroform	PPB	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Dichlorodifluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Ethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	PPB	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Isopropylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Methyl tert-butyl ether	PPB	10	15	8.3	12	4.4	44	38	24	7.5	ND	5.1	12	19
Methylene chloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	5.0B	5.2B	4.0B	5.7B	ND
n-Butylbenzene	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
n-Propylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Naphthalene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
o-Xylene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
p-Ethyltoluene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
sec-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Styrene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Tetrachloroethene	PPB	5	0.91	2	0.51	0.68	3.3	7	4.9	3.2	ND	5.7	7.5	10
Toluene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.47J
trans-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	PPB	5	ND	0.24J	ND	ND	0.42 J	0.9	0.51	ND	ND	ND	0.88J	0.93J
Trichlorofluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Vinyl acetate	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Vinyl chloride	PPB	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane (EPA Method 8270D SIM)	ng/l	50000	-	-	-	-								

Notes:

All results in ppb

ND - Not detected

NS-No Standard

NA- Not Analyzed

B- Analyte detected in blank

Bold-Exceeds NYS Standards

* Guidance Value

** 1,4 Dioxane <144. ng/l

Volatile Organic Chemicals EPA Method 8260 Table 1

Client Sample ID:		NYSDEC	MW-14 WT	MW-14 WT	MW-14 WT	MW-14 WT	MW-14 WT	MW-14 WT						
Screen Intervals		Groundwater	4-9'	4-9'	4-9'	4-9'	4-9'	4-9'	4-9'	4-9'	4-9'	4-9'	4-9'	4-9'
Sampling Date:		Standards	6/19/2019	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	08/02/2011
Dilution Factor														
Analyte:	Units:													
1,1,1,2-Tetrachloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,1,1-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	PPB	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2,3-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2,3-Trichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2,4,5-Tetramethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2,4-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2,4-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2-Dibromo-3-chloropropane	PPB	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2-Dibromoethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2-Dichloroethane	PPB	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,3-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,3-dichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,4-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,4-Dioxane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
2,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
2-Butanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	PPB	50*	ND	2.7J	4.5J	ND	1.5 J	ND	ND	1.9BJ	1.7BJ	1.5J	5.3B	ND
Acrylonitrile	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA
Benzene	PPB	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Bromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Bromodichloromethane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	PPB	5	ND	ND	ND	ND	1.5 J	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Volatile Organic Chemicals EPA Method 8260 Table 1

ISCO was performed during February and July 2015

Client Sample ID:		NYSDEC	MW-14 WT	MW-14 WT	MW-14 WT	MW-14 WT	MW-14 WT	MW-14 WT						
Screen Intervals		Groundwater	4-9'	4-9'	4-9'	4-9'	4-9'	4-9'	4-9'	4-9'	4-9'	4-9'	4-9'	4-9'
Sampling Date:		Standards	6/19/2019	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	08/02/2011
Dilution Factor														
Analyte:	Units:													
Chloroform	PPB	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Dichlorodifluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Ethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	PPB	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Isopropylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Methyl tert-butyl ether	PPB	10	ND	ND	2J	1.2J	1.7 J	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	5.0B	4.7B	3.8B	5.8B	15B
n-Butylbenzene	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
n-Propylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Naphthalene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
o-Xylene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
p-Ethyltoluene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
sec-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Styrene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Tetrachloroethene	PPB	5	22	12	31	60	92	51	26	7.3	16	12	5.2	19
Toluene	PPB	5	ND	ND	ND	ND	ND	ND	ND	NU	ND	ND	ND	ND
trans-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	NU	ND	ND	ND	ND
trans-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	NU	ND	ND	ND	ND
Trichloroethene	PPB	5	0.57	0.39J	0.82	1.2	1.9	1.2	0.68	NU	ND	ND	ND	ND
Trichlorofluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	NU	ND	ND	ND	NA
Vinyl acetate	PPB	50*	ND	ND	ND	ND	ND	ND	ND	NU	ND	ND	ND	NA
Vinyl chloride	PPB	2	ND	ND	ND	ND	ND	ND	ND	NU	ND	ND	ND	ND
1,4-Dioxane (EPA Method 8270D SIM)	ng/l	50000												

Notes:

All results in ppb

ND - Not detected

NS-No Standard

NA- Not Analyzed

B- Analyte detected in blank

Bold-Exceeds NYS Standards

^{** 1,4} Dioxane <144. ng/l

Volatile Organic Chemicals EPA Method 8260 Table 1

Client Sample ID:		NYSDEC	DB-1 Well	DB-1 Well	DB-1 Well	DB-1 Well	DB-1 Well	DB-1 Well	DB-1 Well DL						
Screen Intervals		Groundwater	55-65'	55-65'	55-65'	55-65'	55-65'	55-65'	55-65'	55-65'	55-65'	55-65'	55-65'	55-65'	55-65'
Sampling Date:		Standards	6/19/2019	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012	9/25/2012
Dilution Factor															25
Analyte:	Units:														
1,1,1,2-Tetrachloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	PPB	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.5	ND
1,1-Dichloroethene	PPB	5	0.84J	0.54J	ND	0.96J	ND	0.34 J	ND	ND	ND	ND	ND	2.6	ND
1,1-Dichloropropene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
1,2,4-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	PPB	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	PPB	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	PPB	50*	ND	5.7J	ND	ND	ND	ND	ND	1.9BJ	2.6BJ	ND	4.5BJ	ND	ND
Acrylonitrile	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA
Benzene	PPB	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	PPB	50*	0.44J	2.6	13	ND	ND	4.5	ND	ND	ND	ND	ND	ND	ND
Bromoform	PPB	50*	ND	1.3J	3.2	ND	ND	2.5 J	ND	ND	ND	ND	ND	ND	ND
Bromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.65J	ND
Carbon tetrachloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Volatile Organic Chemicals EPA Method 8260 Table 1

ISCO was performed during February and July 2015

Client Sample ID:		NYSDEC	DB-1 Well	DB-1 Well	DB-1 Well	DB-1 Well	DB-1 Well	DB-1 Well	DB-1 Well DL						
Screen Intervals		Groundwater	55-65'	55-65'	55-65'	55-65'	55-65'	55-65'	55-65'	55-65'	55-65'	55-65'	55-65'	55-65'	55-65'
Sampling Date:		Standards	6/19/2019	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012	9/25/2012
Dilution Factor															25
Analyte:	Units:														
Chloroform	PPB	7	ND	4.5J	17	ND	ND	4.6 J	ND	ND	ND	ND	ND	ND	ND
Chloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6J	ND
cis-1,2-Dichloroethene	PPB	5	14	9.6	2.2J	6.8	18 J	5.7	19J	1.7J	18	3.5	4.3	6.3	ND
cis-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	PPB	5	ND	2.1	8.6	ND	ND	4.4	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	PPB	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	PPB	10	10	4.8J	ND	20	12 J	1.5 J	7.2J	5.3	ND	3.6	0.54J	130	99D
Methylene chloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	5.1B	4.6B	4.0B	6.0B	ND	ND
n-Butylbenzene	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
p-Ethyltoluene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
sec-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	PPB	5	330	200	21	280	600	140	500	46	16	170D	180D	210E	250D
Toluene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	PPB	5	43	26	2.5	46	60	17	54	5.7	2.9	13	10	31	27
Trichlorofluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	PPB	2	2.5	1.9J	0.26J	2.7	4 J	1.9 J	4.5J	ND	ND	0.93J	1.1J	1.9	ND
1,4-Dioxane (EPA Method	-	50000				152									
8270D SIM)	ng/l	50000				152									

Notes:

All results in ppb

ND - Not detected

NS-No Standard

NA- Not Analyzed

B- Analyte detected in blank

Bold-Exceeds NYS Standards

* Guidance Value

** 1,4 Dioxane <144. ng/l

Soil Vapor EPA Method TO-15 Table 2

	Table 2	1	1
LOCATION			EFFLUENT
SAMPLE DATE			6/19/2019
SAMPLE TYPE			SOIL_VAPOR
SAMPLE DEPTH (ft.)			
	NY-SCC	UNITS	Results
ANALYTE			
VOLATILE ORGANICS IN AIR			
1,1,1-Trichloroethane	5	ug/m3	ND
1,1,2,2-Tetrachloroethane	5	ug/m3	ND
1,1,2-Trichloro-1,2,2-Trifluoroethane	5	ug/m3	ND
1,1,2-Trichloroethane	5	ug/m3	ND
1,1-Dichloroethane	5	ug/m3	ND
1,1-Dichloroethene	5	ug/m3	ND
1,2,4-Trichlorobenzene	5	ug/m3	ND
1,2,4-Trimethylbenzene	5	ug/m3	2.06
1,2-Dibromoethane	5	ug/m3	ND
1,2-Dichloro-1,1,2,2-tetrafluoroethane	5	ug/m3	ND
1,2-Dichlorobenzene	5	ug/m3	ND
1,2-Dichloroethane	5	ug/m3	ND
1,2-Dichloroethene (total)	5	ug/m3	ND
1,2-Dichloropropane	5	ug/m3	ND
1,3,5-Trimethylbenzene	5	ug/m3	ND
1,3-Butadiene	5	ug/m3	ND
1,3-Dichlorobenzene	5	ug/m3	ND
1,3-Dichloropropene, Total	5	ug/m3	ND
1,4-Dichlorobenzene	5	ug/m3	ND
1,4-Dioxane	5	ug/m3	ND
2,2,4-Trimethylpentane	5	ug/m3	5.46
2-Butanone	5	ug/m3	ND
2-Hexanone	5	ug/m3	ND
3-Chloropropene	5	ug/m3	ND
4-Ethyltoluene	5	ug/m3	ND
4-Methyl-2-pentanone	5	ug/m3	ND
Acetone	5	ug/m3	6.25
Benzene	5	ug/m3	1.36
Benzyl chloride	5	ug/m3	ND
Bromodichloromethane	5	ug/m3	ND
Bromoform	5	ug/m3	ND
Bromomethane	5	ug/m3	ND
Carbon disulfide	5	ug/m3	ND
Carbon tetrachloride	5	ug/m3	ND
Chlorobenzene	5	ug/m3	ND
Chloroethane	5	ug/m3	ND
Chloroform	5	ug/m3	ND

Soil Vapor EPA Method TO-15 Table 2

LOCATION			EFFLUENT
SAMPLE DATE			6/19/2019
SAMPLE TYPE			SOIL_VAPOR
SAMPLE DEPTH (ft.)			
	NY-SCC	UNITS	Results
ANALYTE			
Chloromethane	5	ug/m3	0.871
cis-1,2-Dichloroethene	5	ug/m3	ND
cis-1,3-Dichloropropene	5	ug/m3	ND
Cyclohexane	5	ug/m3	2.18
Dibromochloromethane	5	ug/m3	ND
Dichlorodifluoromethane	5	ug/m3	2.15
Ethyl Acetate	5	ug/m3	ND
Ethyl Alcohol	5	ug/m3	55.2
Ethylbenzene	5	ug/m3	ND
Heptane	5	ug/m3	1.96
Hexachlorobutadiene	5	ug/m3	ND
iso-Propyl Alcohol	5	ug/m3	ND
Methyl tert butyl ether	5	ug/m3	ND
Methylene chloride	5	ug/m3	12.4
n-Hexane	5	ug/m3	4.79
o-Xylene	5	ug/m3	ND
p/m-Xylene	5	ug/m3	ND
Styrene	5	ug/m3	ND
tert-Butyl Alcohol	5	ug/m3	ND
Tetrachloroethene	5	ug/m3	732
Tetrahydrofuran	5	ug/m3	ND
Toluene	5	ug/m3	7.73
trans-1,2-Dichloroethene	5	ug/m3	ND
trans-1,3-Dichloropropene	5	ug/m3	ND
Trichloroethene	5	ug/m3	ND
Trichlorofluoromethane	5	ug/m3	ND
Vinyl bromide	5	ug/m3	ND
Vinyl chloride	5	ug/m3	ND
Xylene (Total)	5	ug/m3	ND

NY-SSC-A: New York DOH Matrix A Sub-slab Vapor Concentrations Criteria per Guidance for Evaluating Soil Vapor Intrusion, October 2006, and updated May 2017.

Historical Soil Vapor EPA Method TO-15 Table 3

LOCATION					EFFLUENT	EFFLUENT	EFFLUENT	EFFLUENT	EFFLUENT	EFFLUENT	EFFLUENT	EFFLUENT
SAMPLING DATE					12/26/2018	6/28/2018	12/20/2017	12/20/2017	6/15/2017	12/28/2016	6/29/2016	6/29/2016
DILUTION FACTOR								3.507				23.08
	NY-IAC	NY-SSC	NY-AGV	Units	Results	Results	Results	Results	Results	Results	Results	Results
1,1,1-Trichloroethane	0.25	5	NA	ug/m3	ND	ND	ND	-	ND	3.11	ND	-
1,1,2,2-Tetrachloroethane	0.25	5	NA	ug/m3	ND	ND	ND	-	ND	1.13	ND	-
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.25	5	NA	ug/m3	ND	ND	ND	-	ND	ND	ND	-
1,1,2-Trichloroethane	0.25	5	NA	ug/m3	ND	ND	ND	-	ND	ND	ND	-
1,1-Dichloroethane	0.25	5	NA	ug/m3	ND	ND	ND	-	ND	ND	ND	-
1,1-Dichloroethene	0.25	5	NA	ug/m3	ND	ND	ND	-	ND	ND	ND	-
1,2,4-Trichlorobenzene	0.25	5	NA	ug/m3	ND	ND	ND	-	ND	ND	ND	-
1,2,4-Trimethylbenzene	0.25	5	NA	ug/m3	ND	ND	ND	-	ND	ND	ND	-
1,2-Dibromoethane	0.25	5	NA	ug/m3	ND	ND	ND	-	ND	ND	ND	-
1,2-Dichloro-1,1,2,2-tetrafluoroethane	0.25	5	NA	ug/m3	ND	ND	ND	-	ND	10	ND	-
1,2-Dichlorobenzene	0.25	5	NA	ug/m3	ND	ND	ND	-	ND	ND	ND	-
1,2-Dichloroethane	0.25	5	NA	ug/m3	ND	ND	ND	-	ND	ND	ND	-
1,2-Dichloropropane	0.25	5	NA	ug/m3	ND	ND	ND	-	ND	ND	ND	-
1,3,5-Trimethylbenzene	0.25	5	NA	ug/m3	ND	ND	ND	-	ND	3.85	ND	-
1,3-Butadiene	0.25	5	NA	ug/m3	ND	ND	ND	-	ND	ND	ND	-
1,3-Dichlorobenzene	0.25	5	NA	ug/m3	ND	ND	ND	-	ND	ND	ND	-
1,4-Dichlorobenzene	0.25	5	NA	ug/m3	ND	ND	ND	-	ND	ND	ND	-
1,4-Dioxane	0.25	5	NA	ug/m3	ND	ND	ND	-	ND	ND	ND	-
2,2,4-Trimethylpentane	0.25	5	NA	ug/m3	ND	ND	ND	-	ND	ND	ND	-
2-Butanone	0.25	5	NA	ug/m3	ND	ND	ND	-	ND	ND	ND	-
2-Hexanone	0.25	5	NA	ug/m3	ND	ND	ND	-	ND	ND	ND	-
3-Chloropropene	0.25	5	NA	ug/m3	ND	ND	ND	-	ND	ND	ND	-
4-Ethyltoluene	0.25	5	NA	ug/m3	ND	ND	14	-	9.24	2.44	ND	-
4-Methyl-2-pentanone	0.25	5	NA	ug/m3	ND	ND	0.748	-	ND	ND	ND	-
Acetone	0.25	5	NA	ug/m3	ND	3.82	ND	-	ND	ND	846	-
Benzene	0.25	5	NA	ug/m3	ND	ND	ND	1	ND	5.6	ND	1
Benzyl chloride	0.25	5	NA	ug/m3	ND	ND	ND	-	ND	ND	ND	-
Bromodichloromethane	0.25	5	NA	ug/m3	ND	ND	ND		ND	12.4	ND	-
Bromoform	0.25	5	NA	ug/m3	ND	ND	ND	-	ND	ND	ND	-
Bromomethane	0.25	5	NA	ug/m3	ND	ND	ND	-	ND	ND	ND	-
Carbon disulfide	0.25	5	NA	ug/m3	ND	ND	ND	-	ND	ND	ND	-
Carbon tetrachloride	0.25	5	NA	ug/m3	ND	ND	ND	-	ND	ND	ND	-
Chlorobenzene	0.25	5	NA	ug/m3	ND	ND	ND	-	ND	ND	ND	-
Chloroethane	0.25	5	NA	ug/m3	ND	ND	0.807	-	0.958	ND	ND	-
Chloroform	0.25	5	NA	ug/m3	65.9	ND	2.53	-	1.08	ND	ND	-
Chloromethane	0.25	5	NA	ug/m3	ND	0.64	ND	-	ND	ND	ND	-
cis-1,2-Dichloroethene	0.25	5	NA	ug/m3	ND	1.78	ND	-	ND	ND	ND	-
cis-1,3-Dichloropropene	0.25	5	NA	ug/m3	ND	ND	ND	-	ND	1.9	ND	-
Cyclohexane	0.25	5	NA	ug/m3	ND	ND	2.24	-	2.12	ND	ND	-

Historical Soil Vapor EPA Method TO-15 Table 3

LOCATION					EFFLUENT	EFFLUENT	EFFLUENT	EFFLUENT	EFFLUENT	EFFLUENT	EFFLUENT	EFFLUENT
SAMPLING DATE					12/26/2018	6/28/2018	12/20/2017	12/20/2017	6/15/2017	12/28/2016	6/29/2016	6/29/2016
DILUTION FACTOR								3.507				23.08
	NY-IAC	NY-SSC	NY-AGV	Units	Results	Results	Results	Results	Results	Results	Results	Results
Dibromochloromethane	0.25	5	NA	ug/m3	ND	ND	1.8	-	12.4	ND	ND	-
Dichlorodifluoromethane	0.25	5	NA	ug/m3	ND	1.98	12.4	-	ND	ND	ND	-
Ethyl Acetate	0.25	5	NA	ug/m3	ND	8.07	ND	1	ND	ND	ND	-
Ethyl Alcohol	0.25	5	NA	ug/m3	ND	21.7	ND	-	ND	9.23	ND	-
Ethylbenzene	0.25	5	NA	ug/m3	ND	ND	ND	1	ND	ND	ND	-
Heptane	0.25	5	NA	ug/m3	ND	ND	0.824	-	ND	ND	ND	-
Hexachlorobutadiene	0.25	5	NA	ug/m3	ND	ND	2.13	-	ND	ND	ND	-
iso-Propyl Alcohol	0.25	5	NA	ug/m3	ND	ND	ND	1	ND	1140	ND	-
Methyl tert butyl ether	0.25	5	NA	ug/m3	ND	ND	ND	-	ND	ND	ND	-
Methylene chloride	0.25	5	NA	ug/m3	ND	ND	ND	-	ND	6.3	ND	-
n-Hexane	0.25	5	NA	ug/m3	ND	ND	0.937	1	ND	12.6	ND	-
o-Xylene	0.25	5	NA	ug/m3	ND	ND	0.869	-	ND	ND	ND	-
p/m-Xylene	0.25	5	NA	ug/m3	ND	ND	1.82	1	ND	ND	ND	-
Styrene	0.25	5	NA	ug/m3	ND	ND	ND	1	ND	ND	ND	-
tert-Butyl Alcohol	0.25	5	NA	ug/m3	ND	ND	ND	1	ND	3.65	23.7	-
Tetrachloroethene	0.25	5	30	ug/m3	2490	726	1040E	1660	464	ND	10800E	8140
Tetrahydrofuran	0.25	5	NA	ug/m3	ND	ND	ND	1	ND	ND	ND	-
Toluene	0.25	5	NA	ug/m3	ND	ND	6.93	1	0.776	2.41	ND	-
trans-1,2-Dichloroethene	0.25	5	NA	ug/m3	ND	ND	ND	1	ND	ND	ND	-
trans-1,3-Dichloropropene	0.25	5	NA	ug/m3	ND	ND	ND	-	ND	ND	ND	-
Trichloroethene	0.25	5	2	ug/m3	ND	1.64	2.75	1	ND	ND	26.8	-
Trichlorofluoromethane	0.25	5	NA	ug/m3	ND	ND	1.19	1	1.13	ND	ND	-
Vinyl bromide	0.25	5	NA	ug/m3	ND	ND	ND	1	ND	ND	ND	-
Vinyl chloride	0.25	5	NA	ug/m3	ND	ND	ND	1	ND	ND	ND	-

Notes:

ND -The compound was not detected at the indicated concentration.

E -The reported value is estimated because of the presence of interference.

Table 4 Air Emissions (60 CFM)

Minute Man Cleaners

Soil Vapor Extraction System Blower No. 1

Emission rate potential from the Soil Vapor Extraction System

SAMPLING DATE 6/19/2019

Flow Rates:

Air = 60 cfm = 1.699 Cu. meters/min = 101.95 Cu. meters/hour

Dimensional Conversion:

[gpm] * 3.785 l/gal * [ug/l] * 10e-9 kg/ug * 2.205 lb/kg * 60 Min/hr = [] pounds per hour [gpm] * [ug/l] * 0.0000005

0.00299

0.015384

134.763359 g/year

0.36921468

Contaminants:			<u>ERP</u>		<u>Discharge Concer</u>	<u>ntration</u>	<u> Air Guide - 1 Eva</u>	<u>luation</u>		
							toxicity	CAS Reg	SGC	AGC
71.57% Tetrachloroethene	0.01101	g/hour	0.00002	lb/hour	108	ug/cu meter	High	127-18-4	300	4 ug/cubic meter
0.00% p/m-Xylene	0.00000	g/hour	0.00000	lb/hour	0	ug/cu meter	Mod	1330-20-7	22,000	100 ug/cubic meter
0.90% n-Hexane	0.00014	g/hour	0.00000	lb/hour	1.36	ug/cu meter	Mod	110-54-3	-	700 ug/cubic meter
1.74% Acetone	0.00027	g/hour	0.00000	lb/hour	2.63	ug/cu meter	Low	67-64-1	180,000	30,000 ug/cubic meter
2.37% Methylene Chloride	0.00036	g/hour	0.00000	lb/hour	3.57	ug/cu meter	-	75-09-2	-	 ug/cubic meter
0.28% Benzene	0.00004	g/hour	0.00000	lb/hour	0.426	ug/cu meter	Hlgh	71-43-2	1,300	 ug/cubic meter
0.42% Cyclohexane	0.00006	g/hour	0.00000	lb/hour	0.634	ug/cu meter	Low	110-82-7	-	6,000 ug/cubic meter
0.78% 2,2,4-Trimethylpentane	0.00012	g/hour	0.00000	lb/hour	1.17	ug/cu meter	-	540-84-1	-	 ug/cubic meter
1.36% Toluene	0.00021	g/hour	0.00000	lb/hour	2.05	ug/cu meter	Low	108-88-3	37,000	5,000.000 ug/cubic meter
0.00% Ethylbenzene	0.00000	g/hour	0.00000	lb/hour	0	ug/cu meter	Mod	100-41-4	-	1,000 ug/cubic meter
0.00% Tetrahydrofuran	0.00000	g/hour	0.00000	lb/hour	0	ug/cu meter	Mod	109-99-9	30,000	350 ug/cubic meter
0.00% Tertiary butyl Alcohol	0.00000	g/hour	0.00000	lb/hour	0.0	ug/cu meter	-	75-65-0	-	720 ug/cubic meter
0.00% o-Xylene	0.00000	g/hour	0.00000	lb/hour	0	ug/cu meter	Mod	95-47-6	22,000	100 ug/cubic meter
0.29% Dichlorodifluoromethane	0.00004	g/hour	0.00000	lb/hour	0.434	ug/cu meter	-	75-71-8	-	12,000 ug/cubic meter
0.00% cis-1,2-Dichloroethene	0.00000	g/hour	0.00000	lb/hour	0	ug/cu meter	Mod	156-59-2	-	63 ug/cubic meter
0.28% 1,2,4-Trimethylbenzene	0.00004	g/hour	0.00000	lb/hour	0.42	ug/cu meter	-	95-63-6	-	6 ug/cubic meter
0.32% Heptane	0.00005	g/hour	0.00000	lb/hour	0.478	ug/cu meter	Mod	142-82-5	210,000	3,900 ug/cubic meter
0.28% Chloromethane	0.00004	g/hour	0.00000	lb/hour	0.422	ug/cu meter	Mod	74-87-3	22,000	90 ug/cubic meter
0.00% Trichlorofluoromethane	0.00000	g/hour	0.00000	lb/hour	0	ug/cu meter				

29.3

150.9

ug/cu meter

Initial Ratings:

100.00%

19.42% Ethanol

A TetraChloroethene - refer to IV.B.1.a for emission rate < 0.1 pound per hour: can consider no control if ambient impact < AGC and SGC

0.00001

0.00003

0.00081398

0.297102592

lb/hour

lb/hour

lb/year

Appendix "B" Evaluation (1994 Edition):

Assume dimensions as follows:

building = 10 feet above grade horizontal dimension > 10 feet: squat structure

Stack = 13 feet above grade

g/hour

g/hour

g/day

Il Cavity impacts: none - stack height > 2.5 times building height and distance to the property line are > 3 times the height of the building.

Table 4 Air Emissions (60 CFM)

Minute Man Cleaners Jul-19 Soil Vapor Extraction System Blower No. 1

Emission rate potential from the Soil Vapor Extraction System

III Point and Area Source Air Quality Impacts

A.1.c - discharge buoyancy

11.41 = V, exit velocity [ft/sec]

0.167 =R, stack outlet radius [feet]

513 =T, stack exit temp. [Rankine] = F +460

0.0005 =F, buoyancy flux parameter [meter**4 / sec**3] = .276 V R**2 (T-510) / T

A.1.d - effective stack height

13.02 = h-eff. [ft] = h-stack+7 * F**.75, for F<55

A.2 - Maximum Actual Annual Impact

1991 Formula:

Assume uniform influent for initial screening step

 $0.0000 = \text{Ca} [\text{ug/M}^{**}3] = 6 \text{ Qa / h-eff}^{**}2.25,$

0.0000 ug/

0.000 =Qa [lbs/year]

A.3 - Maximum Potential Annual Impact

0.0000 =C-pot [ug/M**3] = 52500 Q / h-eff**2.25

0.0000 = Q [lbs/hr]

A.4 - Stack Height Reduction of Impacts

1 = multiplication factor for h-stack/h-building < 2.5

0.000 = Ca [ug/M**3]

0.000 = Cp [ug/M**3]

A.5 - Maximum Short-Term Impact

0.000 = Cst [ug/M**3] = Cp * 65

Summary for all Compounds of Interest:

Contaminants:	<u>ERP</u>				Air Guide - 1 A	Appendix "B" Screening	Criteria		
		A.2	A.3	A.4	AGC	Acceptable?	A.5	SGC	Acceptable?
Tetrachloroethene	0.00002 lb/h	nour 0.0040	0.0040	0.0040	4	YES	0.26	300	YES
p/m-Xylene	0.00000 lb/h	nour 0.0000	0.0000	0.0000	100.0000	YES	0.00	22,000	YES
n-Hexane	0.00000 lb/h	nour 0.0000	0.0000	0.0000	700.0000	YES	0.00 -		YES
Acetone	0.00000 lb/h	nour 0.0001	0.0001	0.0001	30,000	YES	0.01	180,000	YES
Toluene	0.00000 lb/h	nour 0.0001	0.0001	0.0001	5,000.0000	YES	0.00	37,000	YES
Ethylbenzene	0.00000 lb/h	nour 0.0000	0.0000	0.0000	1,000	YES	0.00 -		YES
Tetrahydrofuran	0.00000 lb/h	nour 0.0000	0.0000	0.0000	350	YES	0.00	30,000	YES
Tertiary butyl Alcohol	0.00000 lb/h	nour 0.0000	0.0000	0.0000	720	YES	0.00 -		YES
o-Xylene	0.00000 lb/h	nour 0.0000	0.0000	0.0000	100	YES	0.00	22,000	YES
Dichlorodifluoromethane	0.00000 lb/h	nour 0.0000	0.0000	0.0000	12,000	YES	0.00 -		YES
cis-1,2-Dichloroethene	0.00000 lb/h	nour 0.0000	0.0000	0.0000	63	YES	0.00 -		YES
1,2,4-Trimethylbenzene	0.00000 lb/h	nour 0.0000	0.0000	0.0000	6	YES	0.00 -		YES
Heptane	0.00000 lb/h	nour 0.0000	0.0000	0.0000	3,900	YES	0.00	210,000	YES
Chloromethane	0.00000 lb/h	nour 0.0000	0.0000	0.0000	90	YES	0.00	22,000	YES

0.00003 lb/hour

Semi-Annual Sampling Report NYSDEC Site Number: C130157 Minute Man Cleaners 89 Ocean Avenue East Rockaway, Nassau County, New York 11518 August 2, 2019

Appendix A – Groundwater Analytical Laboratory Report

ANALYTICAL REPORT

Lab Number: L1926579

Client: J.R. Holzmacher P.E., LLC

3555 Veterans Memorial Highway

Suite A

Ronkonkoma, NY 11779

ATTN: AJ Scheff
Phone: (631) 234-2220

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01 Report Date: 07/01/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01

Lab Number: L1926579 **Report Date:** 07/01/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1926579-01	TRIP BLANK	WATER	89 OCEAN AVE., E. ROCKAWAY, NY	06/19/19 00:00	06/19/19
L1926579-02	MW-1S	WATER	89 OCEAN AVE., E. ROCKAWAY, NY	06/19/19 13:54	06/19/19
L1926579-03	MW-1D	WATER	89 OCEAN AVE., E. ROCKAWAY, NY	06/19/19 13:39	06/19/19
L1926579-04	MW-2S	WATER	89 OCEAN AVE., E. ROCKAWAY, NY	06/19/19 13:24	06/19/19
L1926579-05	MW-2D	WATER	89 OCEAN AVE., E. ROCKAWAY, NY	06/19/19 13:09	06/19/19
L1926579-06	MW-3S	WATER	89 OCEAN AVE., E. ROCKAWAY, NY	06/19/19 12:10	06/19/19
L1926579-07	MW-3D	WATER	89 OCEAN AVE., E. ROCKAWAY, NY	06/19/19 11:55	06/19/19
L1926579-08	MW-4S	WATER	89 OCEAN AVE., E. ROCKAWAY, NY	06/19/19 11:40	06/19/19
L1926579-09	MW-4D	WATER	89 OCEAN AVE., E. ROCKAWAY, NY	06/19/19 11:25	06/19/19
L1926579-10	MW-5S	WATER	89 OCEAN AVE., E. ROCKAWAY, NY	06/19/19 10:33	06/19/19
L1926579-11	MW-5D	WATER	89 OCEAN AVE., E. ROCKAWAY, NY	06/19/19 10:18	06/19/19
L1926579-12	MW-9	WATER	89 OCEAN AVE., E. ROCKAWAY, NY	06/19/19 10:55	06/19/19
L1926579-13	MW-12	WATER	89 OCEAN AVE., E. ROCKAWAY, NY	06/19/19 12:54	06/19/19
L1926579-14	MW-14S	WATER	89 OCEAN AVE., E. ROCKAWAY, NY	06/19/19 09:41	06/19/19
L1926579-15	MW-14D	WATER	89 OCEAN AVE., E. ROCKAWAY, NY	06/19/19 09:26	06/19/19
L1926579-16	MW-14WT	WATER	89 OCEAN AVE., E. ROCKAWAY, NY	06/19/19 09:56	06/19/19
L1926579-17	DB-1	WATER	89 OCEAN AVE., E. ROCKAWAY, NY	06/19/19 11:10	06/19/19

L1926579

Lab Number:

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01 Report Date: 07/01/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:07011916:50

L1926579

Lab Number:

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01 Report Date: 07/01/19

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L1926579-02: The collection date and time on the chain of custody was 19-JUN-19 13:39; however, the collection date/time on the container label was 19-JUN-19 13:54. At the client's request, the collection date/time is reported as 19-JUN-19 13:54.

L1926579-03: The collection date and time on the chain of custody was 19-JUN-19 13:54; however, the collection date/time on the container label was 19-JUN-19 13:39. At the client's request, the collection date/time is reported as 19-JUN-19 13:39.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Kun L. Winter Lisa Westerlind

Authorized Signature:

Title: Technical Director/Representative

Date: 07/01/19

ORGANICS

VOLATILES

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01

SAMPLE RESULTS

Lab Number: L1926579

Report Date: 07/01/19

Lab ID: Date Collected: 06/19/19 00:00 L1926579-01

Client ID: Date Received: 06/19/19 TRIP BLANK

Field Prep: Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 06/27/19 19:43

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: MIN MAN CLEANERS L1926579

Project Number: Report Date: MANID 16-01 07/01/19

SAMPLE RESULTS

Lab ID: L1926579-01 Date Collected: 06/19/19 00:00

Client ID: TRIP BLANK Date Received: 06/19/19 Field Prep: Not Specified

Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: MIN MAN CLEANERS Lab Number: L1926579

Project Number: MANID 16-01 Report Date: 07/01/19

SAMPLE RESULTS

Lab ID: L1926579-01 Date Collected: 06/19/19 00:00

Client ID: TRIP BLANK Date Received: 06/19/19
Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	103	70-130	

06/19/19 13:54

Not Specified

06/19/19

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01

SAMPLE RESULTS

Lab Number: L1926579

Report Date: 07/01/19

Date Collected:

Date Received:

Field Prep:

Lab ID: L1926579-02

Client ID: MW-1S

Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 06/27/19 20:11

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	270	E	ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.39	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	0.24	J	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L1926579

07/01/19

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01

SAMPLE RESULTS

Lab ID: L1926579-02

Client ID: MW-1S

Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY

Date Collected: 06/19/19 13:54

Lab Number:

Report Date:

Date Received: 06/19/19

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Trichloroethene	18		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	1.0	J	ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	7.2		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	7.2		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: MIN MAN CLEANERS Lab Number: L1926579

Project Number: MANID 16-01 Report Date: 07/01/19

SAMPLE RESULTS

Lab ID: L1926579-02 Date Collected: 06/19/19 13:54

Client ID: MW-1S Date Received: 06/19/19
Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westl	oorough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	101	70-130	

Project Name: MIN MAN CLEANERS Lab Number: L1926579

Project Number: MANID 16-01 Report Date: 07/01/19

SAMPLE RESULTS

Lab ID: L1926579-02 D Date Collected: 06/19/19 13:54

Client ID: MW-1S Date Received: 06/19/19

Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 06/29/19 14:29

Analyst: KJD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Tetrachloroethene	210		ug/l	2.5	0.90	5	
					Acce	eptance	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	79	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	97	70-130	

L1926579

06/19/19 13:39

Not Specified

06/19/19

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01

SAMPLE RESULTS

Lab Number:

Date Collected:

Date Received:

Field Prep:

Report Date: 07/01/19

Lab ID: L1926579-03

Client ID: MW-1D

Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 06/27/19 20:38

1,1-Dichloroethane	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
ND	Volatile Organics by GC/MS - West	borough Lab					
Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane 80 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 <t< td=""><td>Methylene chloride</td><td>ND</td><td></td><td>ug/l</td><td>2.5</td><td>0.70</td><td>1</td></t<>	Methylene chloride	ND		ug/l	2.5	0.70	1
Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1.2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1.1,2-Trichloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1-Trichloroethane ND ug/l 0.50 0.13 1 Romadichloromethane ND ug/l 0.50 0.19 1 Romadichloromethane ND ug/l 0.50 0.19 1 Romadichloropropene ND ug/l 0.50 0.14	1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 1-tetrachloroethane 80 ug/l 0.50 0.18 1 1-tetrachloroethane ND ug/l 2.5 0.70 1 1-tetrachloroethane ND ug/l 2.5 0.70 1 1-tetrachloroethane ND ug/l 0.50 0.13 1 1-tetrachloroethane ND ug/l 0.50 0.13 1 1-tetrachloroethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.16 1 Bromodichloropropene ND ug/l 0.50 0.14 1 1-ta-1,3-Dichloropropene ND ug/l 2.5 </td <td>Chloroform</td> <td>ND</td> <td></td> <td>-</td> <td>2.5</td> <td>0.70</td> <td>1</td>	Chloroform	ND		-	2.5	0.70	1
Dibromochloromethane ND	Carbon tetrachloride	ND			0.50	0.13	1
1,1,2-Trichloroethane ND Ug/l 1.5 0.50 1 1 1 1 1 1 1 1 1	1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Tetrachloroethene 80 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.19 1 Bromodichloropropene ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 0.50 0.17 1 1,1-1,2,2-Tetrachloroethane ND ug/l 2.5 </td <td>Dibromochloromethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>0.15</td> <td>1</td>	Dibromochloromethane	ND		ug/l	0.50	0.15	1
ND	1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
ND	Tetrachloroethene	80		ug/l	0.50	0.18	1
1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 1 1,1-Trichloroethane ND ug/l 0.50 0.19 1 1 1 1 1 1 1 1 1	Chlorobenzene	ND		ug/l	2.5	0.70	1
1,1,1-Trichloroethane	Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane ND	1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
ND	1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
ND	Bromodichloromethane	ND		ug/l	0.50	0.19	1
1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1 1 1 1 1 1 1 1	trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
1,1-Dichloropropene ND	cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
ND	1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
ND	Bromoform	ND		ug/l	2.0	0.65	1
Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Benzene	ND		ug/l	0.50	0.16	1
Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Toluene	ND		ug/l	2.5	0.70	1
Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Ethylbenzene	ND		ug/l	2.5	0.70	1
Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Chloromethane	ND		ug/l	2.5	0.70	1
ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Bromomethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene ND ug/l 0.50 0.17 1	Vinyl chloride	ND		ug/l	1.0	0.07	1
-9	Chloroethane	ND		ug/l	2.5	0.70	1
crans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
	trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L1926579

07/01/19

Project Name: MIN MAN CLEANERS

MW-1D

L1926579-03

Project Number: MANID 16-01 Report Date:

89 OCEAN AVE., E. ROCKAWAY, NY

SAMPLE RESULTS

Date Collected: 06/19/19 13:39

Date Received: 06/19/19

Lab Number:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Trichloroethene	2.5		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	1.5	J	ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: MIN MAN CLEANERS L1926579

Project Number: Report Date: MANID 16-01 07/01/19

SAMPLE RESULTS

Lab ID: L1926579-03 Date Collected: 06/19/19 13:39

Client ID: Date Received: 06/19/19 MW-1D Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY Field Prep: Not Specified

Volatile Organics by GC/MS - Westborough Lab n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1 trans-1,4-Dichloro-2-butene ND ug/l 2.5 0.70 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	Volatile Organics by GC/MS - Wes	tborough Lab						
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,4-Dioxane	ND		ug/l	250	61.	1	
1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
Ethyl ether ND ug/l 2.5 0.70 1	p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
	1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
trans-1,4-Dichloro-2-butene ND ug/l 2.5 0.70 1	Ethyl ether	ND		ug/l	2.5	0.70	1	
	trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	104	70-130	

L1926579

06/19/19 13:24

Not Specified

06/19/19

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01

SAMPLE RESULTS

Lab Number:

Date Collected:

Date Received:

Field Prep:

Report Date: 07/01/19

Lab ID: L1926579-04

Client ID: MW-2S

Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 06/27/19 21:06

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	jh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	1.3	J	ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	1.9		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	57		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	1.5		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	1.1	J	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L1926579

07/01/19

Project Name: MIN MAN CLEANERS

MW-2S

L1926579-04

89 OCEAN AVE., E. ROCKAWAY, NY

Project Number: MANID 16-01

SAMPLE RESULTS

Date Collected: 06/19/19 13:24

Date Received: 06/19/19

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Trichloroethene	3.1		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	1.7	J	ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	1.7	J	ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: MIN MAN CLEANERS Lab Number: L1926579

Project Number: MANID 16-01 Report Date: 07/01/19

SAMPLE RESULTS

Lab ID: L1926579-04 Date Collected: 06/19/19 13:24

Client ID: MW-2S Date Received: 06/19/19
Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	104	70-130	
Dibromofluoromethane	102	70-130	

06/19/19 13:09

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01

SAMPLE RESULTS

Lab Number: L1926579

Report Date: 07/01/19

Lab ID: L1926579-05

Client ID: MW-2D

Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY Date Received: 06/19/19 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 06/27/19 21:34

			Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	0.70	J	ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	0.82		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	58		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	0.61		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	0.67	J	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L1926579

Project Name: Lab Number: MIN MAN CLEANERS

Project Number: Report Date: MANID 16-01 07/01/19

SAMPLE RESULTS

Lab ID: L1926579-05 Date Collected: 06/19/19 13:09

Client ID: Date Received: 06/19/19 MW-2D

Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Trichloroethene	1.5		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: MIN MAN CLEANERS L1926579

Project Number: Report Date: MANID 16-01 07/01/19

SAMPLE RESULTS

Lab ID: L1926579-05 Date Collected: 06/19/19 13:09

Client ID: Date Received: 06/19/19 MW-2D Sample Location: Field Prep: Not Specified 89 OCEAN AVE., E. ROCKAWAY, NY

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	102	70-130	

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01

SAMPLE RESULTS

Lab Number: L1926579

Report Date: 07/01/19

Lab ID: L1926579-06

Client ID: MW-3S

Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY Field Prep:

Date Collected:

Date Received:

06/19/19 12:10 06/19/19 Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 06/27/19 22:02

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	26		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01

SAMPLE RESULTS

Date Collected: 06/19/19 12:10

Lab ID: L1926579-06

Client ID: MW-3S

Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY

Date Received: 06/19/19

Lab Number:

Report Date:

Field Prep: Not Specified

L1926579

07/01/19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Trichlanathana	0.00			0.50	0.40	4
Trichloroethene	0.96		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	<u> </u>
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: MIN MAN CLEANERS L1926579

Project Number: Report Date: MANID 16-01 07/01/19

SAMPLE RESULTS

Lab ID: L1926579-06 Date Collected: 06/19/19 12:10

Client ID: Date Received: 06/19/19 MW-3S Field Prep: Not Specified

Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	104	70-130	

L1926579

06/19/19 11:55

Not Specified

06/19/19

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01

SAMPLE RESULTS

Lab Number:

Date Collected:

Date Received:

Field Prep:

Report Date: 07/01/19

Lab ID: L1926579-07

Client ID: MW-3D

Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 06/27/19 22:30

1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 0.50 0.14 1 Dibromochloromethane 0.58 ug/l 0.50 0.14 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Titchlorothane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1-Dichloropropene ND ug/l 0.50 0.16	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane	Volatile Organics by GC/MS - Wes	tborough Lab					
1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 0.50 0.14 1 Dibromochloromethane 0.58 ug/l 0.50 0.14 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane 0.30 J ug/l 0.50 0.13 1 Bromodichloromethane 0.30 J ug/l 0.50 0.14 1 trans-1,3-Dichloropropene ND <td< td=""><td>Methylene chloride</td><td>ND</td><td></td><td>ug/l</td><td>2.5</td><td>0.70</td><td>1</td></td<>	Methylene chloride	ND		ug/l	2.5	0.70	1
Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane 0.58 ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane 57 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane 0.30 J ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND	1,1-Dichloroethane	ND			2.5	0.70	1
1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane 0.58 ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane 57 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,1-Trichloroethane ND ug/l 2.5 0.70 1 1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane 0.30 J ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l <td>Chloroform</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.5</td> <td>0.70</td> <td>1</td>	Chloroform	ND		ug/l	2.5	0.70	1
Dibromochloromethane 0.58 ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 1 1,1,2-Trichloroethane 57 ug/l 0.50 0.18 1 1 1,1,2-Trichloroethane ND ug/l 2.5 0.70 1 1 1,1,1-Trichloromethane ND ug/l 2.5 0.70 1 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1 1,1,1-Trichloroethane ND ug/l 0.50 0.19 1 1 1 1 1 1 1 1 1	Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethene 57 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane 0.30 J ug/l 0.50 0.19 1 Bromodichloromethane 0.30 J ug/l 0.50 0.16 1 Itans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 us-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,1-1-Dichloropropene ND ug/l 0.50 0.17 1 Benzene ND	1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Tetrachloroethene 57 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane 0.30 J ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.5 0.70 1 Benzene ND ug/l 0.50 0.17 1 Benzene ND ug/l 2.5 0.	Dibromochloromethane	0.58		ug/l	0.50	0.15	1
Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane 0.30 J ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.5 0.70 1 Bromoform ND ug/l 0.50 0.16 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 <td>1,1,2-Trichloroethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>1.5</td> <td>0.50</td> <td>1</td>	1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane 0.30 J ug/l 0.50 0.19 1 Bromodichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 <td< td=""><td>Tetrachloroethene</td><td>57</td><td></td><td>ug/l</td><td>0.50</td><td>0.18</td><td>1</td></td<>	Tetrachloroethene	57		ug/l	0.50	0.18	1
1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane 0.30 J ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.5 0.70 1 Benzene ND ug/l 0.50 0.17 1 Toluene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70	Chlorobenzene	ND		ug/l	2.5	0.70	1
1,1,1-Trichloroethane ND	Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane 0.30 J ug/l 0.50 0.19 1	1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.16 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Stromomethane ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1	1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Bromodichloromethane	0.30	J	ug/l	0.50	0.19	1
1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
ND	Bromoform	ND		ug/l	2.0	0.65	1
Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Benzene	ND		ug/l	0.50	0.16	1
Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Toluene	ND		ug/l	2.5	0.70	1
Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Ethylbenzene	ND		ug/l	2.5	0.70	1
Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Chloromethane	ND		ug/l	2.5	0.70	1
Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Bromomethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene ND ug/l 0.50 0.17 1	Vinyl chloride	ND		ug/l	1.0	0.07	1
	Chloroethane	ND		ug/l	2.5	0.70	1
trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
	trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L1926579

06/19/19 11:55

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01

Report Date: 07/01/19

Lab Number:

SAMPLE RESULTS

Lab ID: L1926579-07 Date Collected:

Client ID: Date Received: 06/19/19 MW-3D Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Trichloroethene	2.6		ua/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND			2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
	ND		ug/l	2.5	0.70	1
p/m-Xylene o-Xylene	ND ND		ug/l	2.5	0.70	1
<u> </u>	ND ND		ug/l	2.5	0.70	1
Xylenes, Total			ug/l			
cis-1,2-Dichloroethene	1.5	J	ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	1.5	J	ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	<u> </u>
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
			-			

Project Name: MIN MAN CLEANERS Lab Number: L1926579

Project Number: MANID 16-01 Report Date: 07/01/19

SAMPLE RESULTS

Lab ID: L1926579-07 Date Collected: 06/19/19 11:55

Client ID: MW-3D Date Received: 06/19/19
Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbor	ough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	105		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	106		70-130	

L1926579

06/19/19 11:40

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01

SAMPLE RESULTS

Report Date:

07/01/19

Lab Number:

Date Collected:

Lab ID: L1926579-08

Client ID: MW-4S

Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY Date Received: 06/19/19 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 06/27/19 22:58

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	ıgh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	130		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L1926579

07/01/19

Project Name: MIN MAN CLEANERS

L1926579-08

89 OCEAN AVE., E. ROCKAWAY, NY

MW-4S

Project Number: MANID 16-01

SAMPLE RESULTS

Date Collected: 06/19/19 11:40

Date Received: 06/19/19

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Trichloroethene	4.1		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	2.0	J	ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	2.0	J	ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: MIN MAN CLEANERS Lab Number: L1926579

Project Number: MANID 16-01 Report Date: 07/01/19

SAMPLE RESULTS

Lab ID: L1926579-08 Date Collected: 06/19/19 11:40

Client ID: MW-4S Date Received: 06/19/19
Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	104	70-130	

L1926579

06/19/19 11:25

Not Specified

06/19/19

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01

SAMPLE RESULTS

Report Date: 07/01/19

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L1926579-09

Client ID: MW-4D

Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 06/27/19 23:26

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	0.35	J	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	100		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	0.32	J	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L1926579

07/01/19

Project Name: MIN MAN CLEANERS

L1926579-09

Project Number: MANID 16-01

SAMPLE RESULTS

Date Collected: 06/19/19 11:25

Lab Number:

Report Date:

57 IIII == 11=55=

Client ID: MW-4D Date Received: 06/19/19

Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Trichloroethene	2.5		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	0.78	J	ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	0.78	J	ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: MIN MAN CLEANERS Lab Number: L1926579

Project Number: MANID 16-01 Report Date: 07/01/19

SAMPLE RESULTS

Lab ID: L1926579-09 Date Collected: 06/19/19 11:25

Client ID: MW-4D Date Received: 06/19/19
Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	103	70-130	

Project Name: MIN MAN CLEANERS Lab Number: L1926579

Project Number: MANID 16-01 Report Date: 07/01/19

SAMPLE RESULTS

Lab ID: L1926579-10 D2 Date Collected: 06/19/19 10:33

Client ID: MW-5S Date Received: 06/19/19

Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 06/29/19 14:00

Analyst: KJD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Tetrachloroethene	440		ug/l	5.0	1.8	10		
					Δαα	entance		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	78	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	96	70-130	

06/19/19 10:33

Not Specified

06/19/19

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01

SAMPLE RESULTS

Lab Number: L1926579

Report Date: 07/01/19

Date Collected:

Date Received:

Field Prep:

Lab ID: L1926579-10 D

Client ID: MW-5S

Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 06/27/19 23:54

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Methylene chloride	ND		ug/l	6.2	1.8	2.5	
1,1-Dichloroethane	ND		ug/l	6.2	1.8	2.5	
Chloroform	ND		ug/l	6.2	1.8	2.5	
Carbon tetrachloride	ND		ug/l	1.2	0.34	2.5	
1,2-Dichloropropane	ND		ug/l	2.5	0.34	2.5	
Dibromochloromethane	ND		ug/l	1.2	0.37	2.5	
1,1,2-Trichloroethane	ND		ug/l	3.8	1.2	2.5	
Tetrachloroethene	510	E	ug/l	1.2	0.45	2.5	
Chlorobenzene	ND		ug/l	6.2	1.8	2.5	
Trichlorofluoromethane	ND		ug/l	6.2	1.8	2.5	
1,2-Dichloroethane	ND		ug/l	1.2	0.33	2.5	
1,1,1-Trichloroethane	ND		ug/l	6.2	1.8	2.5	
Bromodichloromethane	ND		ug/l	1.2	0.48	2.5	
trans-1,3-Dichloropropene	ND		ug/l	1.2	0.41	2.5	
cis-1,3-Dichloropropene	ND		ug/l	1.2	0.36	2.5	
1,3-Dichloropropene, Total	ND		ug/l	1.2	0.36	2.5	
1,1-Dichloropropene	ND		ug/l	6.2	1.8	2.5	
Bromoform	ND		ug/l	5.0	1.6	2.5	
1,1,2,2-Tetrachloroethane	ND		ug/l	1.2	0.42	2.5	
Benzene	ND		ug/l	1.2	0.40	2.5	
Toluene	ND		ug/l	6.2	1.8	2.5	
Ethylbenzene	ND		ug/l	6.2	1.8	2.5	
Chloromethane	ND		ug/l	6.2	1.8	2.5	
Bromomethane	ND		ug/l	6.2	1.8	2.5	
Vinyl chloride	2.3	J	ug/l	2.5	0.18	2.5	
Chloroethane	ND		ug/l	6.2	1.8	2.5	
1,1-Dichloroethene	0.84	J	ug/l	1.2	0.42	2.5	
trans-1,2-Dichloroethene	ND		ug/l	6.2	1.8	2.5	

Project Name: Lab Number: MIN MAN CLEANERS L1926579

Project Number: Report Date: MANID 16-01 07/01/19

SAMPLE RESULTS

Lab ID: L1926579-10 D Date Collected: 06/19/19 10:33

Client ID: Date Received: 06/19/19 MW-5S Not Specified

Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY Field Prep:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - V	Vestborough Lab					
Trichloroethene	42	ug/l	1.2	0.44	2.5	
1,2-Dichlorobenzene	ND	ug/l	6.2	1.8	2.5	
1,3-Dichlorobenzene	ND	ug/l	6.2	1.8	2.5	
1,4-Dichlorobenzene	ND	ug/l	6.2	1.8	2.5	
Methyl tert butyl ether	27	ug/l	6.2	1.8	2.5	
p/m-Xylene	ND	ug/l	6.2	1.8	2.5	
o-Xylene	ND	ug/l	6.2	1.8	2.5	
Xylenes, Total	ND	ug/l	6.2	1.8	2.5	
cis-1,2-Dichloroethene	18	ug/l	6.2	1.8	2.5	
1,2-Dichloroethene, Total	18	ug/l	6.2	1.8	2.5	
Dibromomethane	ND	ug/l	12	2.5	2.5	
1,2,3-Trichloropropane	ND	ug/l	6.2	1.8	2.5	
Acrylonitrile	ND	ug/l	12	3.8	2.5	
Styrene	ND	ug/l	6.2	1.8	2.5	
Dichlorodifluoromethane	ND	ug/l	12	2.5	2.5	
Acetone	ND	ug/l	12	3.6	2.5	
Carbon disulfide	ND	ug/l	12	2.5	2.5	
2-Butanone	ND	ug/l	12	4.8	2.5	
Vinyl acetate	ND	ug/l	12	2.5	2.5	
4-Methyl-2-pentanone	ND	ug/l	12	2.5	2.5	
2-Hexanone	ND	ug/l	12	2.5	2.5	
Bromochloromethane	ND	ug/l	6.2	1.8	2.5	
2,2-Dichloropropane	ND	ug/l	6.2	1.8	2.5	
1,2-Dibromoethane	ND	ug/l	5.0	1.6	2.5	
1,3-Dichloropropane	ND	ug/l	6.2	1.8	2.5	
1,1,1,2-Tetrachloroethane	ND	ug/l	6.2	1.8	2.5	
Bromobenzene	ND	ug/l	6.2	1.8	2.5	
n-Butylbenzene	ND	ug/l	6.2	1.8	2.5	
sec-Butylbenzene	ND	ug/l	6.2	1.8	2.5	
tert-Butylbenzene	ND	ug/l	6.2	1.8	2.5	
o-Chlorotoluene	ND	ug/l	6.2	1.8	2.5	
p-Chlorotoluene	ND	ug/l	6.2	1.8	2.5	
1,2-Dibromo-3-chloropropane	ND	ug/l	6.2	1.8	2.5	
Hexachlorobutadiene	ND	ug/l	6.2	1.8	2.5	
Isopropylbenzene	ND	ug/l	6.2	1.8	2.5	
p-Isopropyltoluene	ND	ug/l	6.2	1.8	2.5	
Naphthalene	ND	ug/l	6.2	1.8	2.5	

Project Name: MIN MAN CLEANERS Lab Number: L1926579

Project Number: MANID 16-01 Report Date: 07/01/19

SAMPLE RESULTS

Lab ID: L1926579-10 D Date Collected: 06/19/19 10:33

Client ID: MW-5S Date Received: 06/19/19
Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	gh Lab						
n-Propylbenzene	ND		ug/l	6.2	1.8	2.5	
1,2,3-Trichlorobenzene	ND		ug/l	6.2	1.8	2.5	
1,2,4-Trichlorobenzene	ND		ug/l	6.2	1.8	2.5	
1,3,5-Trimethylbenzene	ND		ug/l	6.2	1.8	2.5	
1,2,4-Trimethylbenzene	ND		ug/l	6.2	1.8	2.5	
1,4-Dioxane	ND		ug/l	620	150	2.5	
p-Diethylbenzene	ND		ug/l	5.0	1.8	2.5	
p-Ethyltoluene	ND		ug/l	5.0	1.8	2.5	
1,2,4,5-Tetramethylbenzene	ND		ug/l	5.0	1.4	2.5	
Ethyl ether	ND		ug/l	6.2	1.8	2.5	
trans-1,4-Dichloro-2-butene	ND		ug/l	6.2	1.8	2.5	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	108	70-130	

L1926579

06/19/19 10:18

Not Specified

06/19/19

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01

SAMPLE RESULTS

Report Date: 07/01/19

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L1926579-11

Client ID: MW-5D

Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 06/28/19 00:21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	2.9		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	90		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	0.49	J	ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	0.58		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01

SAMPLE RESULTS

Date Collected: 06/19/19 10:18

Lab ID: L1926579-11 Client ID: MW-5D

Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY Date Received: 06/19/19 Field Prep:

Lab Number:

Report Date:

Not Specified

L1926579

07/01/19

-ap.o - op						
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Trichloroethene	9.6		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	<u>.</u> 1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	<u>.</u> 1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	 1
Methyl tert butyl ether	21		ug/l	2.5	0.70	<u>.</u> 1
p/m-Xylene	ND		ug/l	2.5	0.70	 1
o-Xylene	ND		ug/l	2.5	0.70	<u>.</u> 1
Xylenes, Total	ND		ug/l	2.5	0.70	 1
cis-1,2-Dichloroethene	2.5		ug/l	2.5	0.70	<u>.</u> 1
1,2-Dichloroethene, Total	2.5		ug/l	2.5	0.70	<u>'</u> 1
Dibromomethane	ND		ug/l	5.0	1.0	<u>'</u> 1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	<u>'</u> 1
Acrylonitrile	ND		ug/l	5.0	1.5	<u>'</u> 1
Styrene	ND		ug/l	2.5	0.70	<u>'</u> 1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	<u>'</u> 1
Acetone	ND		ug/l	5.0	1.5	<u>'</u> 1
Carbon disulfide	ND		ug/l	5.0	1.0	<u>'</u> 1
2-Butanone	ND		ug/l	5.0	1.9	<u>'</u> 1
Vinyl acetate	ND		ug/l	5.0	1.0	<u>.</u> 1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	 1
2-Hexanone	ND		ug/l	5.0	1.0	<u>.</u> 1
Bromochloromethane	ND		ug/l	2.5	0.70	<u>.</u> 1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	 1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	 1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	<u>.</u> 1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	 1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	 1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	 1
o-Chlorotoluene	ND		ug/l	2.5	0.70	 1
p-Chlorotoluene	ND		ug/l	2.5	0.70	 1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	 1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	<u>'</u> 1
Isopropylbenzene	ND		ug/l	2.5	0.70	<u>'</u> 1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	 1
Naphthalene	ND		ug/l	2.5	0.70	<u>'</u> 1
	ND		ug/I	0	5.70	•

Project Name: Lab Number: MIN MAN CLEANERS L1926579

Project Number: Report Date: MANID 16-01 07/01/19

SAMPLE RESULTS

Lab ID: Date Collected: 06/19/19 10:18 L1926579-11

Client ID: Date Received: 06/19/19 MW-5D

Sample Location: Field Prep: Not Specified 89 OCEAN AVE., E. ROCKAWAY, NY

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westh	orough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	111		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	108		70-130	

06/19/19

Not Specified

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01

SAMPLE RESULTS

Lab Number: L1926579

Report Date: 07/01/19

Date Received:

Field Prep:

Lab ID: Date Collected: 06/19/19 10:55 L1926579-12

Client ID: MW-9

Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 06/28/19 00:49

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	11		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L1926579

Lab Number:

Project Name: MIN MAN CLEANERS

Project Number: Report Date: MANID 16-01 07/01/19

SAMPLE RESULTS

Lab ID: L1926579-12 Date Collected: 06/19/19 10:55

Client ID: Date Received: 06/19/19 MW-9 Sample Location: Field Prep: Not Specified

89 OCEAN AVE., E. ROCKAWAY, NY

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Trichloroethene	0.47	J	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: MIN MAN CLEANERS L1926579

Project Number: Report Date: MANID 16-01 07/01/19

SAMPLE RESULTS

Lab ID: L1926579-12 Date Collected: 06/19/19 10:55

Client ID: Date Received: 06/19/19 MW-9 Field Prep: Not Specified

Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westl	oorough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	104	70-130	

06/19/19 12:54

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01

L1926579

Lab Number:

Date Collected:

Report Date: 07/01/19

SAMPLE RESULTS

Lab ID: L1926579-13

Client ID: MW-12

Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY Date Received: 06/19/19 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 06/28/19 01:17

1,1-Dichloroethane	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane	Volatile Organics by GC/MS - West	borough Lab					
Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane 2.3 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 Bromodichloropropene ND ug/l 0.50 0.16 1 strans-1,3-Dichloropropene ND ug/l 0.50	Methylene chloride	ND		ug/l	2.5	0.70	1
ND	1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
1,2-Dichloropropane ND ug/l 1.0 0.14 1 1 1 1 1 1 1 1 1	Chloroform	ND		ug/l	2.5	0.70	1
ND	Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,1,2-Trichloroethane	1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Tetrachloroethene 2.3 ug/l 0.50 0.18 1	Dibromochloromethane	ND		ug/l	0.50	0.15	1
ND	1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
ND	Tetrachloroethene	2.3		ug/l	0.50	0.18	1
1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 1 1,1-Trichloroethane ND ug/l 0.50 0.19 1 1 1 1 1 1 1 1 1	Chlorobenzene	ND		ug/l	2.5	0.70	1
ND	Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
ND	1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
ND Ug/I 0.50 0.16 1	1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
ND	Bromodichloromethane	ND		ug/l	0.50	0.19	1
1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Chlorothane ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 0.50 0.17 1	trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
1,1-Dichloropropene ND	cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
ND	1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
ND	Bromoform	ND		ug/l	2.0	0.65	1
ND	1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Benzene	ND		ug/l	0.50	0.16	1
Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Toluene	ND		ug/l	2.5	0.70	1
Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Ethylbenzene	ND		ug/l	2.5	0.70	1
Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Chloromethane	ND		ug/l	2.5	0.70	1
Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Bromomethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene ND ug/l 0.50 0.17 1	Vinyl chloride	ND		ug/l	1.0	0.07	1
	Chloroethane	ND		ug/l	2.5	0.70	1
crans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
	trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Lab Number:

Project Name: MIN MAN CLEANERS

L1926579

Project Number: Report Date: MANID 16-01 07/01/19

SAMPLE RESULTS

Lab ID: L1926579-13 Date Collected: 06/19/19 12:54

Client ID: Date Received: 06/19/19 MW-12

Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY Field Prep: Not Specified

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab				
Trichloroethene	ND	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	1
Methyl tert butyl ether	ND	ug/l	2.5	0.70	1
p/m-Xylene	ND	ug/l	2.5	0.70	1
o-Xylene	ND	ug/l	2.5	0.70	1
Xylenes, Total	ND	ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70	1
Dibromomethane	ND	ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70	1
Acrylonitrile	ND	ug/l	5.0	1.5	1
Styrene	ND	ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	1
Acetone	ND	ug/l	5.0	1.5	1
Carbon disulfide	ND	ug/l	5.0	1.0	1
2-Butanone	ND	ug/l	5.0	1.9	1
Vinyl acetate	ND	ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	1
2-Hexanone	ND	ug/l	5.0	1.0	1
Bromochloromethane	ND	ug/l	2.5	0.70	1
2,2-Dichloropropane	ND	ug/l	2.5	0.70	1
1,2-Dibromoethane	ND	ug/l	2.0	0.65	1
1,3-Dichloropropane	ND	ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70	1
Bromobenzene	ND	ug/l	2.5	0.70	1
n-Butylbenzene	ND	ug/l	2.5	0.70	1
sec-Butylbenzene	ND	ug/l	2.5	0.70	1
tert-Butylbenzene	ND	ug/l	2.5	0.70	1
o-Chlorotoluene	ND	ug/l	2.5	0.70	1
p-Chlorotoluene	ND	ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	1
Hexachlorobutadiene	ND	ug/l	2.5	0.70	1
Isopropylbenzene	ND	ug/l	2.5	0.70	1
p-Isopropyltoluene	ND	ug/l	2.5	0.70	1
Naphthalene	ND	ug/l	2.5	0.70	1

Project Name: MIN MAN CLEANERS Lab Number: L1926579

Project Number: MANID 16-01 Report Date: 07/01/19

SAMPLE RESULTS

Lab ID: L1926579-13 Date Collected: 06/19/19 12:54

Client ID: MW-12 Date Received: 06/19/19

Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	111	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	109	70-130	

L1926579

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01

SAMPLE RESULTS

Report Date: 07/01/19

Lab ID: L1926579-14

Client ID: MW-14S

Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 06/28/19 01:45

Analyst: MKS

Date Collected:	06/19/19 09:41
Date Received:	06/19/19
Field Prep:	Not Specified

Lab Number:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westl	oorough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	4.9		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	0.91		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L1926579

Lab Number:

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01 Report Date: 07/01/19

SAMPLE RESULTS

Lab ID: L1926579-14 Date Collected: 06/19/19 09:41

Client ID: MW-14S Date Received: 06/19/19

Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	15		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: MIN MAN CLEANERS L1926579

Project Number: Report Date: MANID 16-01 07/01/19

SAMPLE RESULTS

Lab ID: L1926579-14 Date Collected: 06/19/19 09:41

Client ID: Date Received: 06/19/19 MW-14S Field Prep: Not Specified

Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westh	orough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	109	70-130	

L1926579

06/19/19 09:26

Not Specified

06/19/19

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01

Report Date: 07/01/19

Lab Number:

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L1926579-15

Client ID: MW-14D

Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 06/28/19 02:13

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L1926579

07/01/19

Project Name: MIN MAN CLEANERS

L1926579-15

89 OCEAN AVE., E. ROCKAWAY, NY

MW-14D

Project Number: MANID 16-01

SAMPLE RESULTS

Date Collected: 06/19/19 09:26

Date Received: 06/19/19

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: MIN MAN CLEANERS Lab Number: L1926579

Project Number: MANID 16-01 Report Date: 07/01/19

SAMPLE RESULTS

Lab ID: L1926579-15 Date Collected: 06/19/19 09:26

Client ID: MW-14D Date Received: 06/19/19
Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westl	oorough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	111	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	107	70-130	

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01

SAMPLE RESULTS

Lab Number: L1926579

Report Date: 07/01/19

Lab ID: Date Collected: 06/19/19 09:56 L1926579-16

Client ID: Date Received: 06/19/19 MW-14WT Field Prep: Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 06/28/19 02:42

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	22		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

L1926579

Project Name: MIN MAN CLEANERS

L1926579-16

MW-14WT

Project Number: MANID 16-01

SAMPLE RESULTS

Date Collected: 06/19/19 09:56

07/01/19

Lab Number:

Report Date:

Date Received: 06/19/19

Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Trichloroethene	0.57		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: MIN MAN CLEANERS Lab Number: L1926579

Project Number: MANID 16-01 Report Date: 07/01/19

SAMPLE RESULTS

Lab ID: L1926579-16 Date Collected: 06/19/19 09:56

Client ID: MW-14WT Date Received: 06/19/19
Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbor	ough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	112	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	109	70-130	

06/19/19 11:10

Not Specified

06/19/19

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01

SAMPLE RESULTS

Lab Number: L1926579

Report Date: 07/01/19

Date Collected:

Date Received:

Field Prep:

Lab ID: D L1926579-17

Client ID: DB-1

Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 06/28/19 03:10

Methylene chloride ND ug/l 5.0 1.4 2 1,1-Dichloroethane ND ug/l 5.0 1.4 2 Chloroform ND ug/l 5.0 1.4 2 Chloroform ND ug/l 5.0 1.4 2 Carbon tetrachloride ND ug/l 1.0 0.27 2 1,2-Dichloropropane ND ug/l 2.0 0.27 2 Dibromochloromethane ND ug/l 3.0 1.0 2 1,1-2-Trichloroethane ND ug/l 3.0 1.0 2 Chlorobenzene ND ug/l 5.0 1.4 2 1,2-Dichloroethane ND ug/l 5.0 1.4 2	
1,1-Dichloroethane ND ug/l 5.0 1.4 2 Chloroform ND ug/l 5.0 1.4 2 Carbon tetrachloride ND ug/l 1.0 0.27 2 1,2-Dichloropropane ND ug/l 1.0 0.30 2 1,1,2-Trichloroethane ND ug/l 1.0 0.30 2 Tetrachloroethane ND ug/l 1.0 0.36 2 Chlorobenzene ND ug/l 5.0 1.4 2 Trichlorofluoromethane ND ug/l 5.0 1.4 2 1,2-Dichloroethane ND ug/l 5.0 1.4 2 1,1-1-Trichloroethane ND ug/l 5.0 1.4 2 Bromodichloromethane 0.44 J ug/l 1.0 0.38 2 Bromodichloropropene ND ug/l 1.0 0.33 2 usbrobichloropropene, Total ND ug/l 1.0	
1,1-Dichloroethane ND ug/l 5.0 1.4 2 Chloroform ND ug/l 5.0 1.4 2 Carbon tetrachloride ND ug/l 1.0 0.27 2 1,2-Dichloropropane ND ug/l 2.0 0.27 2 Dibromochloromethane ND ug/l 1.0 0.30 2 1,1,2-Trichloroethane ND ug/l 3.0 1.0 2 Tetrachloroethane 330 ug/l 1.0 0.36 2 Chlorobenzene ND ug/l 5.0 1.4 2 Trichlorofluoromethane ND ug/l 5.0 1.4 2 Trichloroethane ND ug/l 1.0 0.26 2 1,1,1-Trichloroethane ND ug/l 1.0 0.38 2 Bromodichloromethane 0.44 J ug/l 1.0 0.33 2 Bromodichloropropene ND ug/l 1.0 <	
Carbon tetrachloride ND ug/l 1.0 0.27 2 1,2-Dichloropropane ND ug/l 2.0 0.27 2 Dibromochloromethane ND ug/l 1.0 0.30 2 1,1,2-Trichloroethane ND ug/l 3.0 1.0 2 Tetrachloroethane 330 ug/l 1.0 0.36 2 Chlorobenzene ND ug/l 5.0 1.4 2 Trichloroffuoromethane ND ug/l 5.0 1.4 2 1,2-Dichloroethane ND ug/l 5.0 1.4 2 1,1-Trichloroethane ND ug/l 5.0 1.4 2 Bromodichloromethane 0.44 J ug/l 1.0 0.38 2 trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 cis-1,3-Dichloropropene, Total ND ug/l 1.0 0.29 2 1,1-Dichloropropene ND ug/l	
1,2-Dichloropropane ND	
Dibromochloromethane ND ug/l 1.0 0.30 2 1,1,2-Trichloroethane ND ug/l 3.0 1.0 2 Tetrachloroethane 330 ug/l 1.0 0.36 2 Chlorobenzene ND ug/l 5.0 1.4 2 Trichlorofluoromethane ND ug/l 5.0 1.4 2 1,2-Dichloroethane ND ug/l 5.0 1.4 2 1,2-Dichloroethane ND ug/l 5.0 1.4 2 Bromodichloromethane 0.44 J ug/l 1.0 0.38 2 trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 cis-1,3-Dichloropropene ND ug/l 1.0 0.29 2 1,3-Dichloropropene, Total ND ug/l 5.0 1.4 2 Bromoform ND ug/l 4.0 1.3 2 Encycle Tetrachloroethane ND ug/l <td< td=""><td></td></td<>	
1,1,2-Trichloroethane ND	
Tetrachloroethene 330 ug/l 1.0 0.36 2 Chlorobenzene ND ug/l 5.0 1.4 2 Trichlorofluoromethane ND ug/l 5.0 1.4 2 1,2-Dichloroethane ND ug/l 1.0 0.26 2 1,1,1-Trichloroethane ND ug/l 5.0 1.4 2 Bromodichloromethane 0.44 J ug/l 1.0 0.38 2 trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 cis-1,3-Dichloropropene ND ug/l 1.0 0.29 2 1,3-Dichloropropene, Total ND ug/l 1.0 0.29 2 1,1-Dichloropropene ND ug/l 5.0 1.4 2 Bromoform ND ug/l 4.0 1.3 2 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.32 2 Toluene ND ug/l 5.0	
Chlorobenzene ND ug/l 5.0 1.4 2 Trichlorofluoromethane ND ug/l 5.0 1.4 2 1,2-Dichloroethane ND ug/l 1.0 0.26 2 1,1,1-Trichloroethane ND ug/l 5.0 1.4 2 Bromodichloromethane 0.44 J ug/l 1.0 0.38 2 trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 cis-1,3-Dichloropropene ND ug/l 1.0 0.29 2 1,3-Dichloropropene, Total ND ug/l 1.0 0.29 2 1,1-Dichloropropene ND ug/l 5.0 1.4 2 Bromoform ND ug/l 4.0 1.3 2 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.33 2 Benzene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0	
Trichlorofluoromethane ND ug/l 5.0 1.4 2 1,2-Dichloroethane ND ug/l 1.0 0.26 2 1,1,1-Trichloroethane ND ug/l 5.0 1.4 2 Bromodichloromethane 0.44 J ug/l 1.0 0.38 2 trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 cis-1,3-Dichloropropene ND ug/l 1.0 0.29 2 1,3-Dichloropropene, Total ND ug/l 1.0 0.29 2 1,1-Dichloropropene, Total ND ug/l 5.0 1.4 2 Bromoform ND ug/l 4.0 1.3 2 1,1-2,2-Tetrachloroethane ND ug/l 1.0 0.33 2 Benzene ND ug/l 5.0 1.4 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0	
1,2-Dichloroethane ND ug/l 1.0 0.26 2 1,1,1-Trichloroethane ND ug/l 5.0 1.4 2 Bromodichloromethane 0.44 J ug/l 1.0 0.38 2 trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 cis-1,3-Dichloropropene ND ug/l 1.0 0.29 2 1,3-Dichloropropene, Total ND ug/l 1.0 0.29 2 1,1-Dichloropropene ND ug/l 5.0 1.4 2 Bromoform ND ug/l 4.0 1.3 2 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.33 2 Benzene ND ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4	
1,1,1-Trichloroethane ND ug/l 5.0 1.4 2 Bromodichloromethane 0.44 J ug/l 1.0 0.38 2 trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 cis-1,3-Dichloropropene ND ug/l 1.0 0.29 2 1,3-Dichloropropene, Total ND ug/l 1.0 0.29 2 1,1-Dichloropropene ND ug/l 5.0 1.4 2 Bromoform ND ug/l 4.0 1.3 2 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2	
Bromodichloromethane 0.44 J ug/l 1.0 0.38 2 trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 cis-1,3-Dichloropropene ND ug/l 1.0 0.29 2 1,3-Dichloropropene, Total ND ug/l 1.0 0.29 2 1,1-Dichloropropene ND ug/l 5.0 1.4 2 Bromoform ND ug/l 4.0 1.3 2 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.33 2 Benzene ND ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2	
trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 cis-1,3-Dichloropropene ND ug/l 1.0 0.29 2 1,3-Dichloropropene, Total ND ug/l 1.0 0.29 2 1,1-Dichloropropene ND ug/l 5.0 1.4 2 Bromoform ND ug/l 4.0 1.3 2 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.33 2 Benzene ND ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2	
cis-1,3-Dichloropropene ND ug/l 1.0 0.29 2 1,3-Dichloropropene, Total ND ug/l 1.0 0.29 2 1,1-Dichloropropene ND ug/l 5.0 1.4 2 Bromoform ND ug/l 4.0 1.3 2 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.33 2 Benzene ND ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2	
1,3-Dichloropropene, Total ND ug/l 1.0 0.29 2 1,1-Dichloropropene ND ug/l 5.0 1.4 2 Bromoform ND ug/l 4.0 1.3 2 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.33 2 Benzene ND ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2	
1,1-Dichloropropene ND ug/l 5.0 1.4 2 Bromoform ND ug/l 4.0 1.3 2 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.33 2 Benzene ND ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2	
Bromoform ND ug/l 4.0 1.3 2 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.33 2 Benzene ND ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2	
1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.33 2 Benzene ND ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2	
Benzene ND ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2	
Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2	
Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2	
Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2	
Bromomethane ND ug/l 5.0 1.4 2	
Vinyl chloride 2.5 ug/l 2.0 0.14 2	
Chloroethane ND ug/l 5.0 1.4 2	
1,1-Dichloroethene 0.84 J ug/l 1.0 0.34 2	
trans-1,2-Dichloroethene ND ug/l 5.0 1.4 2	

Project Name: Lab Number: MIN MAN CLEANERS L1926579

Project Number: Report Date: MANID 16-01 07/01/19

SAMPLE RESULTS

Lab ID: L1926579-17 D Date Collected: 06/19/19 11:10

Client ID: Date Received: 06/19/19 DB-1 Field Prep: Not Specified

Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - V	Westborough Lab					
Trichloroethene	43	ug/l	1.0	0.35	2	
1,2-Dichlorobenzene	ND	ug/l	5.0	1.4	2	
1,3-Dichlorobenzene	ND	ug/l	5.0	1.4	2	
1,4-Dichlorobenzene	ND	ug/l	5.0	1.4	2	
Methyl tert butyl ether	10	ug/l	5.0	1.4	2	
p/m-Xylene	ND	ug/l	5.0	1.4	2	
o-Xylene	ND	ug/l	5.0	1.4	2	
Xylenes, Total	ND	ug/l	5.0	1.4	2	
cis-1,2-Dichloroethene	14	ug/l	5.0	1.4	2	
1,2-Dichloroethene, Total	14	ug/l	5.0	1.4	2	
Dibromomethane	ND	ug/l	10	2.0	2	
1,2,3-Trichloropropane	ND	ug/l	5.0	1.4	2	
Acrylonitrile	ND	ug/l	10	3.0	2	
Styrene	ND	ug/l	5.0	1.4	2	
Dichlorodifluoromethane	ND	ug/l	10	2.0	2	
Acetone	ND	ug/l	10	2.9	2	
Carbon disulfide	ND	ug/l	10	2.0	2	
2-Butanone	ND	ug/l	10	3.9	2	
Vinyl acetate	ND	ug/l	10	2.0	2	
4-Methyl-2-pentanone	ND	ug/l	10	2.0	2	
2-Hexanone	ND	ug/l	10	2.0	2	
Bromochloromethane	ND	ug/l	5.0	1.4	2	
2,2-Dichloropropane	ND	ug/l	5.0	1.4	2	
1,2-Dibromoethane	ND	ug/l	4.0	1.3	2	
1,3-Dichloropropane	ND	ug/l	5.0	1.4	2	
1,1,1,2-Tetrachloroethane	ND	ug/l	5.0	1.4	2	
Bromobenzene	ND	ug/l	5.0	1.4	2	
n-Butylbenzene	ND	ug/l	5.0	1.4	2	
sec-Butylbenzene	ND	ug/l	5.0	1.4	2	
tert-Butylbenzene	ND	ug/l	5.0	1.4	2	
o-Chlorotoluene	ND	ug/l	5.0	1.4	2	
p-Chlorotoluene	ND	ug/l	5.0	1.4	2	
1,2-Dibromo-3-chloropropane	ND	ug/l	5.0	1.4	2	
Hexachlorobutadiene	ND	ug/l	5.0	1.4	2	
Isopropylbenzene	ND	ug/l	5.0	1.4	2	
p-Isopropyltoluene	ND	ug/l	5.0	1.4	2	
Naphthalene	ND	ug/l	5.0	1.4	2	

Project Name: MIN MAN CLEANERS Lab Number: L1926579

Project Number: MANID 16-01 Report Date: 07/01/19

SAMPLE RESULTS

Lab ID: L1926579-17 D Date Collected: 06/19/19 11:10

Client ID: DB-1 Date Received: 06/19/19
Sample Location: 89 OCEAN AVE., E. ROCKAWAY, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	5.0	1.4	2	
1,2,3-Trichlorobenzene	ND		ug/l	5.0	1.4	2	
1,2,4-Trichlorobenzene	ND		ug/l	5.0	1.4	2	
1,3,5-Trimethylbenzene	ND		ug/l	5.0	1.4	2	
1,2,4-Trimethylbenzene	ND		ug/l	5.0	1.4	2	
1,4-Dioxane	ND		ug/l	500	120	2	
p-Diethylbenzene	ND		ug/l	4.0	1.4	2	
p-Ethyltoluene	ND		ug/l	4.0	1.4	2	
1,2,4,5-Tetramethylbenzene	ND		ug/l	4.0	1.1	2	
Ethyl ether	ND		ug/l	5.0	1.4	2	
trans-1,4-Dichloro-2-butene	ND		ug/l	5.0	1.4	2	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	111	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	107	70-130	

Project Name: MIN MAN CLEANERS Lab Number:

Project Number: MANID 16-01 Report Date: 07/01/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C

06/29/19 09:18

Analyst: MKS

Analytical Date:

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough La	b for sample(s): 02,1	0 Batch:	WG1254427-10
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

Lab Number:

Project Name: MIN MAN CLEANERS

Project Number: Report Date: MANID 16-01 07/01/19

Method Blank Analysis Batch Quality Control

Analytical Date: 06/29/19 09:18 Analyst: MKS

1,8260C

Analytical Method:

arameter	Result	Qualifier Units	RL RL	MDL
olatile Organics by GC/MS -	Westborough Lab	o for sample(s):	02,10 Batch:	WG1254427-10
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Project Name: MIN MAN CLEANERS Lab Number:

Project Number: MANID 16-01 Report Date: 07/01/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 06/29/19 09:18

Parameter	Result	Qualifier Unit	s RL	MDL	
Volatile Organics by GC/MS - We	stborough La	b for sample(s):	02,10 Bat	tch: WG12544	27-10
o-Chlorotoluene	ND	ug	/I 2.5	0.70	
p-Chlorotoluene	ND	ug	/I 2.5	0.70	
1,2-Dibromo-3-chloropropane	ND	ug	/I 2.5	0.70	
Hexachlorobutadiene	ND	ug	/I 2.5	0.70	
Isopropylbenzene	ND	ug	/I 2.5	0.70	
p-Isopropyltoluene	ND	ug	/I 2.5	0.70	
Naphthalene	ND	ug	/I 2.5	0.70	
n-Propylbenzene	ND	ug	/I 2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug	/I 2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug	/I 2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug	/I 2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug	/I 2.5	0.70	
1,4-Dioxane	ND	ug	/I 250	61.	
p-Diethylbenzene	ND	ug	/I 2.0	0.70	
p-Ethyltoluene	ND	ug.	/I 2.0	0.70	
1,2,4,5-Tetramethylbenzene	ND	ug	/I 2.0	0.54	
Ethyl ether	ND	ug.	/I 2.5	0.70	
trans-1,4-Dichloro-2-butene	ND	ug	/I 2.5	0.70	

		Acceptance			
Surrogate	%Recovery Qua	lifier Criteria			
1,2-Dichloroethane-d4	89	70-130			
Toluene-d8	104	70-130			
4-Bromofluorobenzene	101	70-130			
Dibromofluoromethane	99	70-130			

Project Name: MIN MAN CLEANERS Lab Number:

Project Number: MANID 16-01 Report Date: 07/01/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 06/27/19 19:15

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough La	b for sample(s): 0	1-17 Batch:	WG1254427-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

Project Name: MIN MAN CLEANERS Lab Number:

Project Number: MANID 16-01 Report Date: 07/01/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 06/27/19 19:15

arameter	Result	Qualifier	Units		RL	MDL
olatile Organics by GC/MS -	Westborough La	b for sample(s):	01-17	Batch:	WG1254427-5
1,2-Dichlorobenzene	ND		ug/l		2.5	0.70
1,3-Dichlorobenzene	ND		ug/l		2.5	0.70
1,4-Dichlorobenzene	ND		ug/l		2.5	0.70
Methyl tert butyl ether	ND		ug/l		2.5	0.70
p/m-Xylene	ND		ug/l		2.5	0.70
o-Xylene	ND		ug/l		2.5	0.70
Xylenes, Total	ND		ug/l		2.5	0.70
cis-1,2-Dichloroethene	ND		ug/l		2.5	0.70
1,2-Dichloroethene, Total	ND		ug/l		2.5	0.70
Dibromomethane	ND		ug/l		5.0	1.0
1,2,3-Trichloropropane	ND		ug/l		2.5	0.70
Acrylonitrile	ND		ug/l		5.0	1.5
Styrene	ND		ug/l		2.5	0.70
Dichlorodifluoromethane	ND		ug/l		5.0	1.0
Acetone	ND		ug/l		5.0	1.5
Carbon disulfide	ND		ug/l		5.0	1.0
2-Butanone	ND		ug/l		5.0	1.9
Vinyl acetate	ND		ug/l		5.0	1.0
4-Methyl-2-pentanone	ND		ug/l		5.0	1.0
2-Hexanone	ND		ug/l		5.0	1.0
Bromochloromethane	ND		ug/l		2.5	0.70
2,2-Dichloropropane	ND		ug/l		2.5	0.70
1,2-Dibromoethane	ND		ug/l		2.0	0.65
1,3-Dichloropropane	ND		ug/l		2.5	0.70
1,1,1,2-Tetrachloroethane	ND		ug/l		2.5	0.70
Bromobenzene	ND		ug/l		2.5	0.70
n-Butylbenzene	ND		ug/l		2.5	0.70
sec-Butylbenzene	ND		ug/l		2.5	0.70
tert-Butylbenzene	ND		ug/l		2.5	0.70

Lab Number:

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01 Report Date: 07/01/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 06/27/19 19:15

Parameter	Result	Qualifier Uni	ts	RL	MDL
Volatile Organics by GC/MS - Wes	tborough La	b for sample(s):	01-17	Batch:	WG1254427-5
o-Chlorotoluene	ND	ug	j/ l	2.5	0.70
p-Chlorotoluene	ND	ug]/	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug	1/ I	2.5	0.70
Hexachlorobutadiene	ND	ug	J /l	2.5	0.70
Isopropylbenzene	ND	ug	1 /l	2.5	0.70
p-Isopropyltoluene	ND	ug	j/ l	2.5	0.70
Naphthalene	ND	ug	j/ l	2.5	0.70
n-Propylbenzene	ND	ug	j/ l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug	j/ l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug]/	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug	1 /l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug	1 /l	2.5	0.70
1,4-Dioxane	ND	ug	1 /l	250	61.
p-Diethylbenzene	ND	ug	1 /l	2.0	0.70
p-Ethyltoluene	ND	ug	j/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug	j/ l	2.0	0.54
Ethyl ether	ND	ug	1/ I	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug	1 /l	2.5	0.70

		Acceptance
Surrogate	%Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	103	70-130
Toluene-d8	105	70-130
4-Bromofluorobenzene	99	70-130
Dibromofluoromethane	103	70-130

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01

Lab Number: L1926579

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-17 Batch: V	VG1254427-3 WG1254427-4		
Methylene chloride	110		110	70-130	0	20
1,1-Dichloroethane	110		120	70-130	9	20
Chloroform	110		120	70-130	9	20
Carbon tetrachloride	120		120	63-132	0	20
1,2-Dichloropropane	100		110	70-130	10	20
Dibromochloromethane	110		110	63-130	0	20
1,1,2-Trichloroethane	100		110	70-130	10	20
Tetrachloroethene	110		120	70-130	9	20
Chlorobenzene	110		110	75-130	0	20
Trichlorofluoromethane	110		110	62-150	0	20
1,2-Dichloroethane	110		120	70-130	9	20
1,1,1-Trichloroethane	120		120	67-130	0	20
Bromodichloromethane	110		110	67-130	0	20
trans-1,3-Dichloropropene	110		110	70-130	0	20
cis-1,3-Dichloropropene	99		100	70-130	1	20
1,1-Dichloropropene	110		120	70-130	9	20
Bromoform	110		110	54-136	0	20
1,1,2,2-Tetrachloroethane	110		110	67-130	0	20
Benzene	110		110	70-130	0	20
Toluene	100		110	70-130	10	20
Ethylbenzene	110		110	70-130	0	20
Chloromethane	100		100	64-130	0	20
Bromomethane	100		110	39-139	10	20

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01

Lab Number: L1926579

arameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-17 Batch:	WG1254427-3	WG1254427-4			
Vinyl chloride	100		100		55-140	0	20	
Chloroethane	100		110		55-138	10	20	
1,1-Dichloroethene	110		110		61-145	0	20	
trans-1,2-Dichloroethene	110		110		70-130	0	20	
Trichloroethene	110		120		70-130	9	20	
1,2-Dichlorobenzene	110		110		70-130	0	20	
1,3-Dichlorobenzene	110		120		70-130	9	20	
1,4-Dichlorobenzene	110		110		70-130	0	20	
Methyl tert butyl ether	110		120		63-130	9	20	
p/m-Xylene	110		115		70-130	4	20	
o-Xylene	110		110		70-130	0	20	
cis-1,2-Dichloroethene	110		120		70-130	9	20	
Dibromomethane	110		110		70-130	0	20	
1,2,3-Trichloropropane	110		110		64-130	0	20	
Acrylonitrile	120		120		70-130	0	20	
Styrene	105		110		70-130	5	20	
Dichlorodifluoromethane	110		110		36-147	0	20	
Acetone	120		130		58-148	8	20	
Carbon disulfide	100		110		51-130	10	20	
2-Butanone	110		110		63-138	0	20	
Vinyl acetate	110		110		70-130	0	20	
4-Methyl-2-pentanone	110		110		59-130	0	20	
2-Hexanone	110		110		57-130	0	20	

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01

Lab Number: L1926579

arameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborough	h Lab Associated	sample(s):	01-17 Batch:	WG1254427-3	WG1254427-4			
Bromochloromethane	110		120		70-130	9	20	
2,2-Dichloropropane	120		120		63-133	0	20	
1,2-Dibromoethane	110		110		70-130	0	20	
1,3-Dichloropropane	110		110		70-130	0	20	
1,1,1,2-Tetrachloroethane	110		110		64-130	0	20	
Bromobenzene	110		110		70-130	0	20	
n-Butylbenzene	110		110		53-136	0	20	
sec-Butylbenzene	87		93		70-130	7	20	
tert-Butylbenzene	110		120		70-130	9	20	
o-Chlorotoluene	110		120		70-130	9	20	
p-Chlorotoluene	110		120		70-130	9	20	
1,2-Dibromo-3-chloropropane	110		120		41-144	9	20	
Hexachlorobutadiene	110		110		63-130	0	20	
Isopropylbenzene	110		120		70-130	9	20	
p-Isopropyltoluene	110		120		70-130	9	20	
Naphthalene	110		110		70-130	0	20	
n-Propylbenzene	110		120		69-130	9	20	
1,2,3-Trichlorobenzene	110		110		70-130	0	20	
1,2,4-Trichlorobenzene	110		110		70-130	0	20	
1,3,5-Trimethylbenzene	110		120		64-130	9	20	
1,2,4-Trimethylbenzene	110		120		70-130	9	20	
1,4-Dioxane	156		160		56-162	3	20	
p-Diethylbenzene	110		110		70-130	0	20	

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01

Lab Number:

L1926579

Report Date:

07/01/19

Parameter	LCS %Recovery	Qual		LCSD ecovery		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-17	Batch:	WG1254427-3	WG1254427-4				
p-Ethyltoluene	110			120		70-130	9		20	
1,2,4,5-Tetramethylbenzene	110			110		70-130	0		20	
Ethyl ether	110			110		59-134	0		20	
trans-1,4-Dichloro-2-butene	110			110		70-130	0		20	

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	
1,2-Dichloroethane-d4	106	106	70-130	
Toluene-d8	102	102	70-130	
4-Bromofluorobenzene	99	98	70-130	
Dibromofluoromethane	102	102	70-130	

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01

Lab Number: L1926579

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	02,10 Batch:	WG1254427-8	WG1254427-9			
Methylene chloride	120		110		70-130	9		20
1,1-Dichloroethane	110		100		70-130	10		20
Chloroform	100		100		70-130	0		20
Carbon tetrachloride	110		100		63-132	10		20
1,2-Dichloropropane	100		110		70-130	10		20
Dibromochloromethane	100		110		63-130	10		20
1,1,2-Trichloroethane	120		110		70-130	9		20
Tetrachloroethene	110		120		70-130	9		20
Chlorobenzene	110		110		75-130	0		20
Trichlorofluoromethane	100		100		62-150	0		20
1,2-Dichloroethane	94		93		70-130	1		20
1,1,1-Trichloroethane	100		100		67-130	0		20
Bromodichloromethane	100		100		67-130	0		20
trans-1,3-Dichloropropene	110		110		70-130	0		20
cis-1,3-Dichloropropene	94		100		70-130	6		20
1,1-Dichloropropene	110		110		70-130	0		20
Bromoform	110		110		54-136	0		20
1,1,2,2-Tetrachloroethane	120		120		67-130	0		20
Benzene	120		120		70-130	0		20
Toluene	110		120		70-130	9		20
Ethylbenzene	110		120		70-130	9		20
Chloromethane	89		87		64-130	2		20
Bromomethane	130		64		39-139	68	Q	20

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01

Lab Number: L1926579

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westbord	ough Lab Associated	sample(s): 02	2,10 Batch: W	G1254427-8	WG1254427-9		
Vinyl chloride	100		96		55-140	4	20
Chloroethane	100		99		55-138	1	20
1,1-Dichloroethene	120		120		61-145	0	20
trans-1,2-Dichloroethene	120		120		70-130	0	20
Trichloroethene	110		110		70-130	0	20
1,2-Dichlorobenzene	110		110		70-130	0	20
1,3-Dichlorobenzene	110		110		70-130	0	20
1,4-Dichlorobenzene	110		110		70-130	0	20
Methyl tert butyl ether	110		110		63-130	0	20
p/m-Xylene	110		120		70-130	9	20
o-Xylene	110		115		70-130	4	20
cis-1,2-Dichloroethene	120		120		70-130	0	20
Dibromomethane	100		100		70-130	0	20
1,2,3-Trichloropropane	110		110		64-130	0	20
Acrylonitrile	110		100		70-130	10	20
Styrene	105		110		70-130	5	20
Dichlorodifluoromethane	100		97		36-147	3	20
Acetone	120		100		58-148	18	20
Carbon disulfide	120		120		51-130	0	20
2-Butanone	100		100		63-138	0	20
Vinyl acetate	96		95		70-130	1	20
4-Methyl-2-pentanone	110		110		59-130	0	20
2-Hexanone	98		98		57-130	0	20

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01

Lab Number: L1926579

arameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	02,10 Batch:	WG1254427-8	WG1254427-9				
Bromochloromethane	120		110		70-130	9		20	
2,2-Dichloropropane	120		110		63-133	9		20	
1,2-Dibromoethane	110		110		70-130	0		20	
1,3-Dichloropropane	110		120		70-130	9		20	
1,1,1,2-Tetrachloroethane	100		110		64-130	10		20	
Bromobenzene	120		110		70-130	9		20	
n-Butylbenzene	120		120		53-136	0		20	
sec-Butylbenzene	92		95		70-130	3		20	
tert-Butylbenzene	120		120		70-130	0		20	
o-Chlorotoluene	120		120		70-130	0		20	
p-Chlorotoluene	120		120		70-130	0		20	
1,2-Dibromo-3-chloropropane	110		120		41-144	9		20	
Hexachlorobutadiene	100		110		63-130	10		20	
Isopropylbenzene	120		120		70-130	0		20	
p-Isopropyltoluene	120		120		70-130	0		20	
Naphthalene	100		110		70-130	10		20	
n-Propylbenzene	120		120		69-130	0		20	
1,2,3-Trichlorobenzene	100		100		70-130	0		20	
1,2,4-Trichlorobenzene	110		110		70-130	0		20	
1,3,5-Trimethylbenzene	120		120		64-130	0		20	
1,2,4-Trimethylbenzene	120		120		70-130	0		20	
1,4-Dioxane	200	Q	130		56-162	42	Q	20	
p-Diethylbenzene	120		120		70-130	0		20	

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01

Lab Number:

L1926579

Report Date:

07/01/19

Parameter	LCS %Recovery	Qual		CSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	02,10	Batch:	WG1254427-8	WG1254427-9				
p-Ethyltoluene	120			120		70-130	0		20	
1,2,4,5-Tetramethylbenzene	110			110		70-130	0		20	
Ethyl ether	120			110		59-134	9		20	
trans-1,4-Dichloro-2-butene	110			100		70-130	10		20	

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	
1,2-Dichloroethane-d4	88	87	70-130	
Toluene-d8	102	105	70-130	
4-Bromofluorobenzene	104	103	70-130	
Dibromofluoromethane	98	96	70-130	

Project Name: MIN MAN CLEANERS Lab Number: L1926579

Project Number: MANID 16-01 Report Date: 07/01/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	•	Pres	Seal	Date/Time	Analysis(*)
L1926579-01A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-01B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-02A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-02B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-02C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-03A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-03B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-03C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-04A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-04B	Vial HCI preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-04C	Vial HCI preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-05A	Vial HCI preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-05B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-05C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-06A	Vial HCI preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-06B	Vial HCI preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-06C	Vial HCI preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-07A	Vial HCI preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-07B	Vial HCI preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-07C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-08A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-08B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-08C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)

Lab Number: L1926579

Report Date: 07/01/19

Project Name: MIN MAN CLEANERS

Project Number: MANID 16-01

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1926579-09A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-09B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-09C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-10A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-10B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-10C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-11A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-11B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-11C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-12A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-12B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-12C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-13A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-13B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-13C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-14A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-14B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-14C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-15A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-15B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-15C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-16A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-16B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-16C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-17A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-17B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L1926579-17C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)

Project Name: Lab Number: MIN MAN CLEANERS L1926579 **Project Number: MANID 16-01 Report Date:** 07/01/19

GLOSSARY

Acronyms

LOD

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values. MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the RPD

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: DU Report with 'J' Qualifiers

Project Name:MIN MAN CLEANERSLab Number:L1926579Project Number:MANID 16-01Report Date:07/01/19

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- \boldsymbol{R} Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Serial_No:07011916:50

Project Name:MIN MAN CLEANERSLab Number:L1926579Project Number:MANID 16-01Report Date:07/01/19

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:07011916:50

ID No.:17873

Revision 12

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Published Date: 10/9/2018 4:58:19 PM Title: Certificate/Approval Program Summary Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Дірна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo	ву	5	Page of	ک	100000000000000000000000000000000000000	Rec'd	201	19	ALPHA JOB# 79	
Westborough, MA 01581	Mansfield, MA 02048	Project Information	ALL THE		45 5	11.50	Deliverable	THE RESERVE OF THE PARTY OF THE	THE REAL PROPERTY.	NAME OF	Billing Information	200
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300		Ma	[Henry			ASP	-A	ASP	-В	Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: 89	ocean A	Da. E	Box.Kan	an hu	EQu	IS (1 File)	D EQU	IS (4 File)	PO#	
Client Information		Project # MSID	16-01	500 0.	1 10 01000	7'	Othe					
	nachr						Section 1	Requiremen	nt	100	Disposal Site Information	N 15-3
Address: 7555 V	eterms Itus	(Use Project name as Pro	oject#) L/CI				□ NY T	STREET,		Part 375		
		Project Manager:			_		- =	Standards	□ NY C		Please identify below location applicable disposal facilities.	n of
		ALPHAQuote #:	1000000		No. of Concession, Name of Street, or other	-	=		harmed		Disposal Facility:	
Phone: 671 274 7		Turn-Around Time				NEDGE	. =	estricted Use	Othe			
Fax: 67) 174		Standard	Contract to the contract to th	Due Date:				nrestricted Use		40	□ NJ □ NY	
Email: AT (0, H	openedar.com	Rush (only if pre approved)		# of Days:				Sewer Dischar	ge CA	1 b	Other:	
These samples have be	een previously analyze	ed by Alpha 🄀					ANALYSI	5			Sample Filtration	
Other project specific	requirements/comm	ents:									Done	t
							3				Lab to do	a
							12				Preservation Lab to do	
Please specify Metals	or TAL.						000			1 1	Lab to do	В
										1 1	(Please Specify below)	t
ALPHA Lab ID			Colle	ection	Sample	Sampler's	2			1 1		t
(Lab Use Only)	Sa	mple ID	Date	Time	Matrix	Initials	711				Sample Specific Comment	s e
26579(0)	Trip Ble	in to	6/19/17		GW	10	>	\vdash				2
Married Company of the Party of	DW-15	, [C	philip	1339		N	75					3
103	19W-1D			1354	\vdash	N	7			+		1
THE RESERVE AND THE PERSON NAMED IN	MW-2		_	324	\vdash	1	7	+	_	+		-11
107				-	\vdash	1	1/2	_				-11
, 95	MW-21)	\vdash	1309	\vdash	-		+				\rightarrow
.06	MW-35			1210		10	7	-				-#
.07	12M-3D			1155	\vdash	10	70	-				
85	MW-4			1140		N	1					
,00	グト・イ	D		1125		N	+					
10	MV-53	<u>^</u>	1	033	4	~	7				77	1
Preservative Code:	Container Code	Westboro: Certification N	o: MA935	4	C	taines Toma	11				Please print clearly, le	gibly
A = None B = HCl	P = Plastic A = Amber Glass	Mansfield: Certification N	o: MA015		Cor	itainer Type	1				and completely. Samp	
C = HNO ₃	V = Vial						17				not be logged in and	
D = H ₂ SO ₄	G = Glass				F	reservative	18				turnaround time clock start until any ambigui	
E = NaOH F = MeOH	B = Bacteria Cup C = Cube	Patternotation 1	D. o	Dete	Time		Danahard C	Dur.	Do	te/Time	resolved. BY EXECUT	
G = NaHSO ₄	O = Other	Relinquished	by:	1.	Time	1	Received B		1-7-1		THIS COC, THE CLIE	
$H = Na_2S_2O_3$	E = Encore D = BOD Bottle			6/14/15	1405	~		AUC	6/14/1	1 1405	HAS READ AND AGE	
K/E = Zn Ac/NaOH	D - BOD BOING	1 A		6/19/1	11859		OG		6/19	20:10	TO BE BOUND BY AL	
O = Other		DEL	/	8/20	00:47	MI	nac	7	6/20	1900/19	TERMS & CONDITIO (See reverse side.)	NS.
Form No: 01-25 HC (rev. 30	0-Sept-2013)			/		1		X			(Occ reverse side.)	
Page 80 of 81								0				

Дірна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Co	lay	05	Page			ate Rec'd in Lab		0/1	9	ALPHA JOB# 2657
Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Project Information Project Name: Min Project Location: 84	na co	eunes Ave E	Roukin	m /~		ables SP-A QuIS (1 File	e) [ASP-B EQuIS	(4 File)	Same as Client Info
Client Information	A DESCRIPTION	Project # M []	16-01			' '	-	Other	0400301			
Client: JR HULL	74644	(Use Project name as Pr		Tell			NO STATE OF THE PERSON.	tory Require	ement	NY Part	275	Disposal Site Information
Address:			y schill				=	Y TOGS WQ Standard	. 1	NY CP-		Please identify below location of applicable disposal facilities.
Phone:		ALPHAQuote #: Turn-Around Time	100				=	Y Restricted t		Other	31	Disposal Facility:
Fax:		Standard Standard	1 🔲	Due Date	:		=	Y Unrestricted		5	Cat D	□ NJ □ NY
Email: ATC Holo	mach. Com	Rush (only if pre approved)	# of Days				YC Sewer Dis	scharge			Other:
These samples have be	en previously analyze	ed by Alpha					ANALY	/SIS		24		Sample Filtration
Other project specific Please specify Metals							09 CB 6					□ Done □ Lab to do Preservation □ Lab to do (Please Specify below)
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	Colli	ection Time	Sample Matrix	Sampler's Initials	EP					Sample Specific Comments
26574 11	MW-51		6/19/19	1018	Gw	1	X	\dashv	_	\vdash	_	
(1)	MW-9		Olivin	1055	1	11	Z			\vdash		
03	MW-12			254		1	×			\Box		
VI	MW-14.	_		094)		N	×			\Box		
15	MW-14	D		0926		1	×					
1/2	MW-14	WT		0956		1	×					
17 4	DB-1		1	1110	7	N	7					
15			3-6-5-1									The Street
6136										\sqcup		×
	Container Code	Westboro: Certification N	lo: MA935		6	1-3 T	:/	+		\vdash	_	Please print clearly, legible
B = HCI C = HNO ₃ D = H ₂ SO ₄	P = Plastic A = Amber Glass V = Vial G = Glass	Mansfield: Certification N	lo: MA015			reservative	B					and completely. Samples not be logged in and turnaround time clock will
F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃	B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle	Relinquished	Ву:	Date 6/14/14	Time 1405 1855 00,47	10	Receive	d By:	16/1		1405 20:10	start until any ambiguities resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREE TO BE BOUND BY ALPH TERMS & CONDITIONS.
Form No: 01-25 HC (rev. 30 age 81 of 81	-Sept-2013)							8				(See reverse side.)

Semi-Annual Sampling Report NYSDEC Site Number: C130157 Minute Man Cleaners 89 Ocean Avenue East Rockaway, Nassau County, New York 11518 August 2, 2019

Appendix B – Effluent Soil Vapor Analytical Laboratory Report

ANALYTICAL REPORT

Lab Number: L1926703

Client: J.R. Holzmacher P.E., LLC

3555 Veterans Memorial Highway

Suite A

Ronkonkoma, NY 11779

MINUTE MAN CLEANERS

ATTN: AJ Scheff

Project Name:

Report Date:

Phone: (631) 234-2220

Project Number: **MANID 16-01** 06/26/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

Lab Number:

L1926703

Report Date:

06/26/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1926703-01	EFFLUENT	SOIL_VAPOR	89 OCEAN AVE	06/19/19 12:48	06/19/19

Project Name:MINUTE MAN CLEANERSLab Number:L1926703Project Number:MANID 16-01Report Date:06/26/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:MINUTE MAN CLEANERSLab Number:L1926703Project Number:MANID 16-01Report Date:06/26/19

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on June 17, 2019. The canister certification results are provided as an addendum.

L1926703-01: Prior to sample analysis, the canisters were pressurized with UHP Nitrogen due to canister size. The pressurization resulted in a dilution of the sample. The reporting limits have been elevated accordingly.

L1926703-01: The Acetone result should be considered estimated due to co-elution with a non-target peak.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 06/26/19

Christopher J. Anderson

AIR

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

Lab Number: L1926703

Report Date: 06/26/19

SAMPLE RESULTS

Lab ID: L1926703-01 D

Client ID: EFFLUENT Sample Location: 89 OCEAN AVE

Date Collected: 06/19/19 12:48 Date Received: 06/19/19

Field Prep: Not Specified

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 06/25/19 17:57

Analyst: RY

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab							
Dichlorodifluoromethane	0.434	0.420		2.15	2.08			2.099
Chloromethane	0.422	0.420		0.871	0.867			2.099
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.420		ND	2.94			2.099
Vinyl chloride	ND	0.420		ND	1.07			2.099
1,3-Butadiene	ND	0.420		ND	0.929			2.099
Bromomethane	ND	0.420		ND	1.63			2.099
Chloroethane	ND	0.420		ND	1.11			2.099
Ethyl Alcohol	29.3	10.5		55.2	19.8			2.099
Vinyl bromide	ND	0.420		ND	1.84			2.099
Acetone	2.63	2.10		6.25	4.99			2.099
Trichlorofluoromethane	ND	0.420		ND	2.36			2.099
iso-Propyl Alcohol	ND	1.05		ND	2.58			2.099
1,1-Dichloroethene	ND	0.420		ND	1.67			2.099
tert-Butyl Alcohol	ND	1.05		ND	3.18			2.099
Methylene chloride	3.57	1.05		12.4	3.65			2.099
3-Chloropropene	ND	0.420		ND	1.31			2.099
Carbon disulfide	ND	0.420		ND	1.31			2.099
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.420		ND	3.22			2.099
trans-1,2-Dichloroethene	ND	0.420		ND	1.67			2.099
1,1-Dichloroethane	ND	0.420		ND	1.70			2.099
Methyl tert butyl ether	ND	0.420		ND	1.51			2.099
2-Butanone	ND	1.05		ND	3.10			2.099
cis-1,2-Dichloroethene	ND	0.420		ND	1.67			2.099

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

Lab Number:

L1926703

Report Date:

06/26/19

SAMPLE RESULTS

Lab ID: L1926703-01 D
Client ID: EFFLUENT

Client ID: EFFLUENT
Sample Location: 89 OCEAN AVE

Date Collected: 06/19/19 12:48

Date Received: 06/19/19
Field Prep: Not Specified

	ppbV ug/m3				Dilution			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
Ethyl Acetate	ND	1.05		ND	3.78			2.099
Chloroform	ND	0.420		ND	2.05			2.099
Tetrahydrofuran	ND	1.05		ND	3.10			2.099
1,2-Dichloroethane	ND	0.420		ND	1.70			2.099
n-Hexane	1.36	0.420		4.79	1.48			2.099
1,1,1-Trichloroethane	ND	0.420		ND	2.29			2.099
Benzene	0.426	0.420		1.36	1.34			2.099
Carbon tetrachloride	ND	0.420		ND	2.64			2.099
Cyclohexane	0.634	0.420		2.18	1.45			2.099
1,2-Dichloropropane	ND	0.420		ND	1.94			2.099
Kylene (Total)	ND	0.420		ND	1.82			2.099
Bromodichloromethane	ND	0.420		ND	2.81			2.099
1,4-Dioxane	ND	0.420		ND	1.51			2.099
Trichloroethene	ND	0.420		ND	2.26			2.099
2,2,4-Trimethylpentane	1.17	0.420		5.46	1.96			2.099
Heptane	0.478	0.420		1.96	1.72			2.099
cis-1,3-Dichloropropene	ND	0.420		ND	1.91			2.099
4-Methyl-2-pentanone	ND	1.05		ND	4.30			2.099
rans-1,3-Dichloropropene	ND	0.420		ND	1.91			2.099
1,1,2-Trichloroethane	ND	0.420		ND	2.29			2.099
Toluene	2.05	0.420		7.73	1.58			2.099
1,2-Dichloroethene (total)	ND	0.420		ND	1.67			2.099
2-Hexanone	ND	0.420		ND	1.72			2.099
Dibromochloromethane	ND	0.420		ND	3.58			2.099
1,3-Dichloropropene, Total	ND	0.420		ND	1.91			2.099
1,2-Dibromoethane	ND	0.420		ND	3.23			2.099

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

Lab Number:

L1926703

Report Date:

06/26/19

SAMPLE RESULTS

Lab ID: L1926703-01 D
Client ID: EFFLUENT

Sample Location: 89 OCEAN AVE

Date Collected: 06/19/19 12:48

Date Received: 06/19/19
Field Prep: Not Specified

Campio Dopuii.		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	l Lab							
Tetrachloroethene	108	0.420		732	2.85			2.099
Chlorobenzene	ND	0.420		ND	1.93			2.099
Ethylbenzene	ND	0.420		ND	1.82			2.099
p/m-Xylene	ND	0.839		ND	3.64			2.099
Bromoform	ND	0.420		ND	4.34			2.099
Styrene	ND	0.420		ND	1.79			2.099
1,1,2,2-Tetrachloroethane	ND	0.420		ND	2.88			2.099
o-Xylene	ND	0.420		ND	1.82			2.099
4-Ethyltoluene	ND	0.420		ND	2.06			2.099
1,3,5-Trimethylbenzene	ND	0.420		ND	2.06			2.099
1,2,4-Trimethylbenzene	0.420	0.420		2.06	2.06			2.099
Benzyl chloride	ND	0.420		ND	2.17			2.099
1,3-Dichlorobenzene	ND	0.420		ND	2.53			2.099
1,4-Dichlorobenzene	ND	0.420		ND	2.53			2.099
1,2-Dichlorobenzene	ND	0.420		ND	2.53			2.099
1,2,4-Trichlorobenzene	ND	0.420		ND	3.12			2.099
Hexachlorobutadiene	ND	0.420		ND	4.48			2.099

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	104		60-140
Bromochloromethane	103		60-140
chlorobenzene-d5	100		60-140

Project Name: MINUTE MAN CLEANERS Lab Number: L1926703

Project Number: MANID 16-01 Report Date: 06/26/19

Method Blank Analysis Batch Quality Control

		ppbV				Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 01	Batch:	WG1252882-	4			
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethyl Alcohol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
iso-Propyl Alcohol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
tert-Butyl Alcohol	ND	0.500		ND	1.52			1

Project Name: MINUTE MAN CLEANERS Lab Number: L1926703

Project Number: MANID 16-01 Report Date: 06/26/19

Method Blank Analysis Batch Quality Control

	ppbV					Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 01	Batch:	WG1252882-	4			
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.200		ND	1.53			1
rans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
Xylene (Total)	ND	0.200		ND	0.869			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
sopropyl Ether	ND	0.200		ND	0.836			1
Ethyl-Tert-Butyl-Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	0.200		ND	0.793			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,3-Dichloropropene, Total	ND	0.200		ND	0.908			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1

Project Name: MINUTE MAN CLEANERS Lab Number: L1926703

Project Number: MANID 16-01 Report Date: 06/26/19

Method Blank Analysis Batch Quality Control

		ppbV			_	Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 01	Batch:	WG1252882-	4			
Cyclohexane	ND	0.200		ND	0.688			1
Tertiary-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl Acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1

Project Name: MINUTE MAN CLEANERS Lab Number: L1926703

Project Number: MANID 16-01 Report Date: 06/26/19

Method Blank Analysis Batch Quality Control

		ppbV			_	Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab for samp	ole(s): 01	Batch:	WG1252882-	4			
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane (C9)	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
o-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
p-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane (C10)	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1

Project Name: MINUTE MAN CLEANERS Lab Number: L1926703

Project Number: MANID 16-01 Report Date: 06/26/19

Method Blank Analysis Batch Quality Control

		ppbV		u			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab for samp	le(s): 01	Batch:	WG1252882-4				
Undecane	ND	0.200		ND	1.28			1
Dodecane (C12)	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

Lab Number:

L1926703

Report Date:

06/26/19

arameter	LCS %Recovery	Qua	1	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab As	ssociated sample(s):	01	Batch:	WG1252882-3					
Chlorodifluoromethane	83			-		70-130	-		
Propylene	100			-		70-130	-		
Propane	84			-		70-130	-		
Dichlorodifluoromethane	92			-		70-130	-		
Chloromethane	90			-		70-130	-		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	92			-		70-130	-		
Methanol	80			-		70-130	-		
Vinyl chloride	89			-		70-130	-		
1,3-Butadiene	93			-		70-130	-		
Butane	84			-		70-130	-		
Bromomethane	88			-		70-130	-		
Chloroethane	87			-		70-130	-		
Ethyl Alcohol	86			-		40-160	-		
Dichlorofluoromethane	83			-		70-130	-		
Vinyl bromide	89			-		70-130	-		
Acrolein	85			-		70-130	-		
Acetone	73			-		40-160	-		
Acetonitrile	83			-		70-130	-		
Trichlorofluoromethane	89			-		70-130	-		
iso-Propyl Alcohol	81			-		40-160	-		
Acrylonitrile	90			-		70-130	-		
Pentane	84			-		70-130	-		
Ethyl ether	87			-		70-130	-		

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

Lab Number: L1926703

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	01 Batch	: WG1252882-3					
1,1-Dichloroethene	91		-		70-130	-		
tert-Butyl Alcohol	85		-		70-130	-		
Methylene chloride	96		-		70-130	-		
3-Chloropropene	97		-		70-130	-		
Carbon disulfide	91		-		70-130	-		
1,1,2-Trichloro-1,2,2-Trifluoroethane	95		-		70-130	-		
trans-1,2-Dichloroethene	89		-		70-130	-		
1,1-Dichloroethane	91		-		70-130	-		
Methyl tert butyl ether	93		-		70-130	-		
Vinyl acetate	100		-		70-130	-		
2-Butanone	94		-		70-130	-		
cis-1,2-Dichloroethene	93		-		70-130	-		
Ethyl Acetate	101		-		70-130	-		
Chloroform	94		-		70-130	-		
Tetrahydrofuran	93		-		70-130	-		
2,2-Dichloropropane	82		-		70-130	-		
1,2-Dichloroethane	87		-		70-130	-		
n-Hexane	91		-		70-130	-		
Isopropyl Ether	84		-		70-130	-		
Ethyl-Tert-Butyl-Ether	84		-		70-130	-		
1,2-Dichloroethene (total)	92		-			-		
1,2-Dichloroethene (total)	92		-			-		
1,1,1-Trichloroethane	93		-		70-130	-		

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

Lab Number: L1926703

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab A	Associated sample(s)	01 Batch	n: WG1252882-3					
1,1-Dichloropropene	89		-		70-130	-		
Benzene	90		-		70-130	-		
Carbon tetrachloride	100		-		70-130	-		
Cyclohexane	92		-		70-130	-		
Tertiary-Amyl Methyl Ether	84		-		70-130	-		
Dibromomethane	87		-		70-130	-		
1,2-Dichloropropane	92		-		70-130	-		
Bromodichloromethane	98		-		70-130	-		
1,4-Dioxane	92		-		70-130	-		
Trichloroethene	92		-		70-130	-		
2,2,4-Trimethylpentane	92		-		70-130	-		
Methyl Methacrylate	66		-		40-160	-		
Heptane	93		-		70-130	-		
cis-1,3-Dichloropropene	101		-		70-130	-		
4-Methyl-2-pentanone	95		-		70-130	-		
trans-1,3-Dichloropropene	86		-		70-130	-		
1,1,2-Trichloroethane	95		-		70-130	-		
Toluene	94		-		70-130	-		
1,3-Dichloropropane	89		-		70-130	-		
2-Hexanone	98		-		70-130	-		
Dibromochloromethane	110		-		70-130	-		
1,2-Dibromoethane	99		-		70-130	-		
Butyl Acetate	92		-		70-130	-		

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

Lab Number: L1926703

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab A	ssociated sample(s)	01 Batch	n: WG1252882-3					
Octane	88		-		70-130	-		
Tetrachloroethene	98		-		70-130	-		
1,1,1,2-Tetrachloroethane	95		-		70-130	-		
Chlorobenzene	98		-		70-130	-		
Ethylbenzene	96		-		70-130	-		
p/m-Xylene	96		-		70-130	-		
Bromoform	117		-		70-130	-		
Styrene	97		-		70-130	-		
1,1,2,2-Tetrachloroethane	105		-		70-130	-		
o-Xylene	97		-		70-130	-		
1,2,3-Trichloropropane	93		-		70-130	-		
Nonane (C9)	90		-		70-130	-		
Isopropylbenzene	95		-		70-130	-		
Bromobenzene	92		-		70-130	-		
o-Chlorotoluene	89		-		70-130	-		
n-Propylbenzene	90		-		70-130	-		
p-Chlorotoluene	90		-		70-130	-		
4-Ethyltoluene	100		-		70-130	-		
1,3,5-Trimethylbenzene	98		-		70-130	-		
tert-Butylbenzene	94		-		70-130	-		
1,2,4-Trimethylbenzene	103		-		70-130	-		
Decane (C10)	92		-		70-130	-		
Benzyl chloride	117		-		70-130	-		

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

Lab Number: L1926703

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab Asso	ociated sample(s):	01 Batch	: WG1252882-3					
1,3-Dichlorobenzene	106		-		70-130	-		
1,4-Dichlorobenzene	106		-		70-130	-		
sec-Butylbenzene	94		-		70-130	-		
p-Isopropyltoluene	87		-		70-130	-		
1,2-Dichlorobenzene	105		-		70-130	-		
n-Butylbenzene	98		-		70-130	-		
1,2-Dibromo-3-chloropropane	100		-		70-130	-		
Undecane	91		-		70-130	-		
Dodecane (C12)	95		-		70-130	-		
1,2,4-Trichlorobenzene	104		-		70-130	-		
Naphthalene	91		-		70-130	-		
1,2,3-Trichlorobenzene	97		-		70-130	-		
Hexachlorobutadiene	109		-		70-130	-		

Project Name: MINUTE MAN CLEANERS Lab Number: L1926703

Project Number: MANID 16-01 Report Date: 06/26/19

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L1926703-01	EFFLUENT	0336	Flow 1	06/17/19	294386		-	-	-	Pass	83	98	17
L1926703-01	EFFLUENT	818	1.0L Can	06/17/19	294386	L1923334-02	Pass	-29.0	-1.0	-	-		

L1923334

Not Specified

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 06/26/19

Air Canister Certification Results

Lab ID: L1923334-02

Date Collected: 06/03/19 09:00 Client ID: CAN 2401 SHELF 17 Date Received: 06/03/19

Sample Location: Field Prep:

Sample Depth:

Matrix: Air Anaytical Method: 48,TO-15 Analytical Date: 06/03/19 20:01

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab								
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1

L1923334

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 06/26/19

Air Canister Certification Results

Lab ID: L1923334-02

Date Collected: 06/03/19 09:00 Client ID: CAN 2401 SHELF 17 Date Received: 06/03/19

Sample Location: Field Prep: Not Specified

Затріє Беріп.	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab								
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
Xylenes, total	ND	0.600		ND	0.869			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1

L1923334

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 06/26/19

Air Canister Certification Results

Lab ID: L1923334-02

Date Collected: 06/03/19 09:00 Client ID: CAN 2401 SHELF 17 Date Received: 06/03/19

Sample Location: Field Prep: Not Specified

Sample Depth.		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Dilution Factor
Volatile Organics in Air - Mansfield Lab								
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1

L1923334

06/03/19 09:00

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 06/26/19

Air Canister Certification Results

Lab ID: L1923334-02

Date Collected: Client ID: CAN 2401 SHELF 17 Date Received:

Sample Location:

06/03/19 Field Prep: Not Specified

Запіріє Беріп.		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab							
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
o-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L1923334

Project Number: CANISTER QC BAT Report Date: 06/26/19

Air Canister Certification Results

Lab ID: L1923334-02

Client ID: CAN 2401 SHELF 17

Sample Location:

Date Collected:

06/03/19 09:00

Date Received:

06/03/19

Field Prep:

Not Specified

Sample Depth:

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air - Mansfield Lab

Dilution
Results Qualifier Units RDL Factor

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	102		60-140
Bromochloromethane	102		60-140
chlorobenzene-d5	108		60-140

L1923334

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 06/26/19

Air Canister Certification Results

Lab ID: L1923334-02

Date Collected: 06/03/19 09:00 Client ID: CAN 2401 SHELF 17 Date Received: 06/03/19

Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 06/03/19 20:01

Analyst: TS

	<u></u>	ppbV			ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air by SIM - Mansfield Lab									
Dichlorodifluoromethane	ND	0.200		ND	0.989			1	
Chloromethane	ND	0.200		ND	0.413			1	
Freon-114	ND	0.050		ND	0.349			1	
Vinyl chloride	ND	0.020		ND	0.051			1	
1,3-Butadiene	ND	0.020		ND	0.044			1	
Bromomethane	ND	0.020		ND	0.078			1	
Chloroethane	ND	0.100		ND	0.264			1	
Acetone	ND	1.00		ND	2.38			1	
Trichlorofluoromethane	ND	0.050		ND	0.281			1	
Acrylonitrile	ND	0.500		ND	1.09			1	
1,1-Dichloroethene	ND	0.020		ND	0.079			1	
Methylene chloride	ND	0.500		ND	1.74			1	
Freon-113	ND	0.050		ND	0.383			1	
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1	
1,1-Dichloroethane	ND	0.020		ND	0.081			1	
Methyl tert butyl ether	ND	0.200		ND	0.721			1	
2-Butanone	ND	0.500		ND	1.47			1	
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1	
Chloroform	ND	0.020		ND	0.098			1	
1,2-Dichloroethane	ND	0.020		ND	0.081			1	
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1	
Benzene	ND	0.100		ND	0.319			1	
Carbon tetrachloride	ND	0.020		ND	0.126			1	
1,2-Dichloropropane	ND	0.020		ND	0.092			1	

L1923334

Not Specified

Lab Number:

Field Prep:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 06/26/19

Air Canister Certification Results

Lab ID: L1923334-02

Date Collected: 06/03/19 09:00 Client ID: CAN 2401 SHELF 17 Date Received: 06/03/19

Sample Location:

•		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	· Mansfield Lab							
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1

06/03/19 09:00

Date Collected:

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L1923334

Project Number: CANISTER QC BAT **Report Date:** 06/26/19

Air Canister Certification Results

Lab ID: L1923334-02

Client ID: CAN 2401 SHELF 17 Date Received:

06/03/19 Sample Location: Field Prep: Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria		
1,4-difluorobenzene	96		60-140		
bromochloromethane	99		60-140		
chlorobenzene-d5	105		60-140		

Lab Number: L1926703

Project Number: MANID 16-01 **Report Date:** 06/26/19

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

MINUTE MAN CLEANERS

Cooler Information

Project Name:

Custody Seal Cooler

NA Absent

Container Information				Initial	Final	Temp		Frozen		
	Container ID	Container Type	Cooler pH	pН	deg C Pres	Seal	Date/Time	Analysis(*)		
	I 1926703-01A	Canister - 1 Liter	NA	NA		Υ	Absent		TO15-LL (30)	

Project Name:MINUTE MAN CLEANERSLab Number:L1926703Project Number:MANID 16-01Report Date:06/26/19

GLOSSARY

Acronyms

LOQ

MS

NP

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: Data Usability Report

Project Name:MINUTE MAN CLEANERSLab Number:L1926703Project Number:MANID 16-01Report Date:06/26/19

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detectable concentrations of the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- \boldsymbol{R} Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Serial_No:06261916:17

Project Name:MINUTE MAN CLEANERSLab Number:L1926703Project Number:MANID 16-01Report Date:06/26/19

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:06261916:17

ID No.:17873 Revision 12

Published Date: 10/9/2018 4:58:19 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

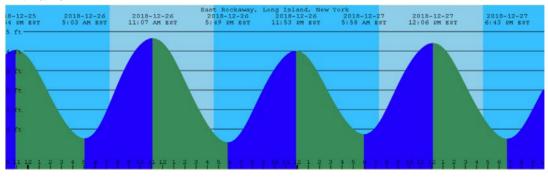
SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

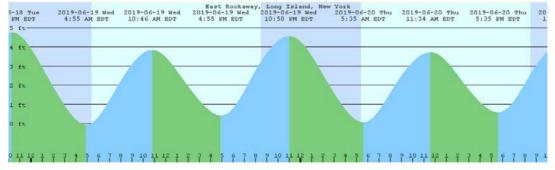
Pre-Qualtrax Document ID: 08-113 Document Type: Form

TEL: 508-822-930 Client Informati	AIR A CHAIN OF CUSTODY Mansfield, MA 02048 0 FAX: 508-822-3288 on	Project N	Informa ame: \\^{i}	tion	Au	SCIENCE.	Rep	DEx Criteria C	mation	- Data	Deliver		E	LPHA	nform	ation	26703
Address: 7555 Runkonton Phone: 671 2	vetrang Hung Sugar	Project Mi ALPHA Q	anager: / luote #: round Ti	9J S	cheff	approved)	DA	(Default ba Other For MAIL (stan iditional Do rt to: (Fuller	mats: idard pd eliverab	f report		ited)	St	legulat ate/Fed	P	equiremen Program	ts/Report Lim Res / Com
Other Project S Project-Specific ALPHA Lab ID	ve been previously analyzed by Alpha pecific Requirements/Com Target Compound List:	ments:	umn						_			128	APH SIM	Sases	ALYS	IS	
(Lab Use Only) 426703.0	Effinent	End Date	NY1	1248	Vacuum -21,40	Final Vacuum	Matrix*	Sampler's Initials	Size	(18)	O336	*	404	Fig.		Sample Co	mments (i.e, Pl
																1	
*SAMPLE	MATRIX CODES SV	a = Ambient A = Soil Vapor	ir (Indoor)	Outdoor)													
m No: 101-02 Rev. (25-Se	01	Relinquishe	ed By:	420	Date:	/Time	A	Receiv	ontainer red By:	AA 7	6/20	1/4/	te/Tim	405	ck ck gu su Te	ompletely. Sa gged in and to ock will not sta littles are reso	

Semi-Annual Sampling Report NYSDEC Site Number: C130157 Minute Man Cleaners 89 Ocean Avenue East Rockaway, Nassau County, New York 11518 August 2, 2019


Appendix C – Tide Chart: Monitoring Well Samples

Minute Man Cleaners 89 Ocean Ave East Rockaway, NY Site #C130157


APPENDIX C
Tide Chart: Monitoring Well Samples

Monitoring Well	12/24/18	Time	06/19/19	Time
MW-1S	-0.3 ft	14:59	2.0 ft	13:54
MW-1D	-0.2 ft	14:41	2.1 ft	13:39
MW-2S	0.2 ft	14:21	2.3 ft	13:24
MW-2D	0.5 ft	13:56	2.5 ft	13:09
MW-3S	1.5 ft	12:51	3.2 ft	12:10
MW-3D	2.5 ft	12:26	3.5 ft	11:55
MW-4S	2.9 ft	12:01	3.6 ft	11:40
MW-4D	3.2 ft	11:44	3.7 ft	11:25
MW-5S	4.3 ft	10:41	3.8 ft	10:33
MW-5D	4.7 ft	10:21	3.6 ft	10:18
MW-9	4.0 ft	11:01	3.8 ft	10:55
MW-12	1.3 ft	13:21	2.7 ft	12:54
MW-14S	4.9 ft	8:53	3.4 ft	9:41
MW-14D	4.9 ft	9:41	3.3 ft	9:26
MW-14WT	4.8 ft	10:01	3.6 ft	9:56
DB-1	3.8 ft	11:24	3.7 ft	11:10

12/26/18

06/19/19

Semi-Annual Sampling Report NYSDEC Site Number: C130157 Minute Man Cleaners 89 Ocean Avenue East Rockaway, Nassau County, New York 11518 August 2, 2019

Appendix D - Data Usability Summary Report – DUSR Data Validation Summary

DATA USABILITY SUMMARY REPORT – DUSR **DATA VALIDATION SUMMARY**

VOLATILES BY GC/MS METHOD 8260C

For Groundwater Samples Collected June 19, 2019 **Minuteman Cleaners** From 89 Ocean Avenue, East Rockaway, New York Collected by J.R. Holzmacher P.E., LLC Project # ManID 16-01

> SAMPLE DELIVERY GROUP NUMBER: L1926579 ALPHA ANALYTICAL - (ELAP #11148)

SUBMITTED TO:

Ms. Patricia Zalak J.R. Holzmacher P.E., LLC 3555 Veterans Memorial Highway, Suite A Ronkonkoma, NY 11779

July 13, 2019

PREPARED BY:

Lori A. Beyer/President L.A.B. Validation Corp. 14 West Point Drive East Northport, NY 11731 Minuteman Cleaners; 89 Ocean Avenue, East Rockaway, New York – Data Usability Summary Report (Data Validation): June 2019 Groundwater Sampling Event; - Volatiles by SW846 Method 8260C.

Table of Contents:

Introduction
Data Qualifier Definitions
Sample Receipt

- 1.0 Volatile Organics by GC/MS SW846 Method 8260C
 - 1.1 Holding Time
 - 1.2 System Monitoring Compound (Surrogate) Recovery
 - 1.3 Matrix Spikes (MS), Matrix Spike Duplicates (MSD)
 - 1.4 Laboratory Control Sample/Blank Spikes
 - 1.5 Blank Contamination
 - 1.6 GC/MS Instrument Performance Check (Tuning)
 - 1.7 Initial and Continuing Calibrations
 - 1.8 Internal Standards
 - 1.9 Field Duplicates
 - 1.10 Target Compound List Identification
 - 1.11 Compound Quantification and Reported Detection Limits
 - 1.12 Overall System Performance

APPENDICES:

- A. Chain of Custody Documents
- B. Case Narrative
- C. Validated Form I's with Qualifications

Introduction:

A validation was performed on groundwater samples and the associated quality control sample (Trip Blank) for organic analysis for samples collected under chain of custody documentation by J.R. Holzmacher and submitted to Alpha Analytical for subsequent analysis. This report contains the laboratory and validation results for the field samples itemized below. Analysis was performed in accordance with requested tests per the chain of custody documents by Alpha, utilizing SW846 Methods for the associated analytical methodologies employed. The analytical testing for groundwater samples consisted of Volatile Organics by 5030C/8260C.

The data was evaluated in accordance with EPA Region II National Functional Guidelines for Organic Data Review and EPA Region II SOPs for 8260 and in conjunction with the analytical methodologies for which the samples were analyzed, where applicable and relevant.

Sample ID	Lab ID	Matrix	Date Collected/Date Received
Trip Blank	L1926579-01	Aqueous	06/19/2019
MW-1S	L1926579-02	Groundwater	06/19/2019
MW-1D	L1926579-03	Groundwater	06/19/2019
MW-2S	L1926579-04	Groundwater	06/19/2019
MW-2D	L1926579-05	Groundwater	06/19/2019

MW-3S	L1926579-06	Groundwater	06/19/2019
MW-3D	L1926579-07	Groundwater	06/19/2019
MW-4S	L1926579-08	Groundwater	06/19/2019
MW-4D	L1926579-09	Groundwater	06/19/2019
MW-5S	L1926579-10	Groundwater	06/19/2019
MW-5D	L1926579-11	Groundwater	06/19/2019
MW-9	L1926579-12	Groundwater	06/19/2019
MW-12	L1926579-13	Groundwater	06/19/2019
MW-14S	L1926579-14	Groundwater	06/19/2019
MW-14D	L1926579-15	Groundwater	06/19/2019
MW14WT	L1926579-16	Groundwater	06/19/2019
DB-1	L1926579-17	Groundwater	06/19/2019

Data Qualifier Definitions:

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate quantity.
- J+ The result is an estimated quantity, but the result may be biased high. (Equis qualified, JK)
- J- The result is an estimated quantity, but the result may be biased low. (Equis qualified, JL)
- D Analyte concentration is from diluted analysis.

Sample Receipt:

The Chain of Custody document indicates that the samples were received at Alpha Analytical via laboratory courier upon completion of the sampling event on June 19, 2019. Sample login notes were generated. The cooler temperature for the aqueous sample receipts were recorded upon receipt at Alpha and determined to be acceptable (<6.0 degrees C) for the sample cooler. The actual temperature of 3.8 degrees C is recorded on the sample receipt checklist provided in Appendix B of this report.

No unresolved problems and/or discrepancies were noted, consequently, the integrity of the groundwater samples has been assumed to be good.

The Form I's and EQUIS deliverables include all usable (qualified) and unusable (rejected) results for the samples identified above. The validated spreadsheets and Form I's summarize the detailed narrative section of the report.

NOTE:

L.A.B. Validation Corp. believes it is appropriate to note that the data validation criteria utilized for data evaluation is different than the method requirements utilized by the laboratory. Qualified data does not necessarily mean that the laboratory was non-compliant in the analysis that was performed.

1.0 Volatile Organics by GC/MS SW846 Method 8260C

The following method criteria were reviewed: holding times, SMCs, MS, MSD, LCS, Laboratory Spiked Blanks, Method Blanks, Tunes, Calibrations, Internal Standards, Target Component Identification, Quantitation, Reported Quantitation Limits and Overall System Performance. The Volatile results are valid and usable except for 1,4-Dioxane and Acrylonitrile non-detects in all samples which were rejected, "R" due to low calibration response as noted within the following text:

1.1 Holding Time

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

Samples pertaining to this SDG were performed within the Method required holding times as well as the technical holding times for data validation of 14 days from collection to analysis for HCL preserved vials. No data validation qualifiers were required based upon holding time.

1.2 System Monitoring Compound (Surrogate) Recovery

All samples are spiked with surrogate compounds prior to sample analysis to evaluate overall laboratory performance and efficiency of the analytical technique. If the measure of surrogate concentrations is outside contract specification, qualifications are required to be applied to associated samples and analytes.

Surrogate recoveries (%R) for Dibromofluoromethane, 1,2-Dichloroethane-d4, Toluene-d8 and 4-Bromofluorobenzene were found to be within acceptable limits for surrogate compounds for all analyses pertaining to this SDG.

1.3 Matrix Spikes (MS)/ Matrix Spike Duplicates (MSD)

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The MS/MSD may be used in conjunction with other QC criteria for additional qualification of data.

LCS/LCS Duplicate was performed in lieu of MS/MSD.

The National Functional Guidelines and EPA Region 2 SOPs state that "No qualifications to the data is necessary based on MS data <u>alone.</u>"

1.4 Laboratory Control Sample/Blank Spikes

The LCS data for laboratory control samples (LCS) are generated to provide information on the accuracy of the analytical method and on the laboratory performance.

LCS/LCS Duplicates were analyzed for each sequence. Recovery values were acceptable for all spiked analytes except for 1,4-Dioxane which recovered high (200%) in the LCS associated with diluted analysis of MW-5S and MW-1S. High recovery is a result of low calibration response. 1,4-Dioxane has been rejected, "R" in all samples due to low response factor (see Section 1.7 of this report). RPD for 1,4-Dioxane

(42%) and Bromomethane (68%) fell outside limits in this LCS/LCS Duplicate analysis. No qualifiers are required since associated diluted reanalysis was only required for Tetrachloroethene.

1.5 Blank Contamination

Quality assurance (QA) blanks; i.e. method, trip and field blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field blanks measure cross-contamination of samples during field operations.

The following table was utilized to qualify target analyte results due to contamination. The largest value from all the associated blanks is required to be utilized:

Blank Type	Blank Result	Sample Result	Action for Samples			
Method, Storage, field,	Detects	Not Detected	No qualification required			
Trip, Instrument	<crql*< td=""><td><crql*< td=""><td>Report CRQL value with a U</td></crql*<></td></crql*<>	<crql*< td=""><td>Report CRQL value with a U</td></crql*<>	Report CRQL value with a U			
		>/= CRQL* and <2x the CRQL**	No qualification required			
	>CRQL*	= CRQL*</td <td>Report CRQL value with a U</td>	Report CRQL value with a U			
		>/=CRQL* and = blank concentration</td <td>Report blank value for sample concentration with a U</td>	Report blank value for sample concentration with a U			
		>/= CRQL* and > blank concentration	No qualification required			
	=CRQL*	= CRQL*</td <td colspan="4">Report CRQL value with a U</td>	Report CRQL value with a U			
		>CRQL*	No qualification required			
	Gross Contamination**	Detects	Report blank value for sample concentration with a U			

^{*2}x the CRQL for methylene chloride, 2-butanone and acetone.

Below is a summary of the compounds in the sample and the associated qualifications that have been applied:

A) Method Blank Contamination: No target analytes were detected in the method blanks associated sample analysis.

B) Field Blank Contamination: Field Blank was not submitted for Volatile analysis.

^{**4}x the CRQL for methylene chloride, 2-butanone, and acetone

^{***}Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed 100 ug/L.

C) Trip Blank Contamination: No target analytes were detected in the Trip Blank.

1.6 GC/MS Instrument Performance Check

Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The Tuning standard for volatile organics is Bromofluorobenzene (BFB).

Instrument performance was generated within acceptable limits and frequency for Bromofluorobenzene (BFB) for all analyses conducted for this SDG.

1.7 Initial and Continuing Calibrations

Satisfactory instrument calibration is established to ensure that the instrument can produce acceptable quantitative data. An initial calibration demonstrates that the instrument can give acceptable performance at the beginning of an experimental sequence.

The continuing calibration checks document that the instrument is giving satisfactory daily performance. Initial calibration verification met acceptance criteria.

A) Response Factor GC/MS:

The response factor measures the instrument's response to specific chemical compounds. The response factor for all compounds must be >/= 0.05 in both initial and continuing calibrations. A value <0.05 indicates a serious detection and quantitation problem (poor sensitivity). Analytes detected in the sample will be qualified as estimated, "J". All non-detects for that compound in the corresponding samples will be rejected, "R". Method 8260C allows for a minimum response factor of 0.1 for Acetone and 2-Butanone. Validation criteria allows response factor to be /=>0.01 for poor responders (Acetone, MEK, Carbon Disulfide, Chloroethane, Chloromethane, Cyclohexane, 1,2-Dibromoethane, Dichlorodifluoromethane, cis-1,2-Dichloroethene, 1,2-Dichloropropane, 1,2-Dibromo-3-chloropropane, Isopropylbenzene, Methyl Acetate, Methylene Chloride, Methylcyclohexane, MTBE, trans-1,2-

Dichloroethene, 4-Methyl-2-Pentanone, 2-Hexanone, Trichlorofluoromethane, 1,1,2-Trichloro-1,2,2-Trifluoroethane.

All the response factors for the target analytes reported were found to be within acceptable limits (>/=0.05) and (>/= 0.01 for poor responders) and minimum response criteria in Table 4 of Method 8260C, for the initial and continuing calibrations for all reported analytes except for 1,4-Dioxane (0.001) associated with all initial and continuing calibrations. Non-detects for this compound in all samples have been rejected, "R." Acrylonitrile (0.041) has also been rejected, "R" in in all samples due to low response.

B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D): Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentrations. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be <20% and %D must be <20%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and non-detects are flagged "UJ". If %RSD and %D grossly exceed QC criteria, non-detect data may be qualified, "R", unusable. Additionally, in cases where the %RSD is >20% and eliminating either the high or the low point of the curve does not restore the %RSD to less than or equal to 20% then positive results are qualified, "J". In cases where removal of either the low or high point restores the linearity, then only low or high-level results will be qualified, "J" in the portion of the curve where non-linearity exists. Closing CCV must meet 30% criteria. Poor responders must be </= 40%. Analytes detected in the sample will be qualified as estimated, "J+" (biased high). All non-detects for that compound in the corresponding samples will be rejected, "R". Method 8260C allows for a minimum response factor of 0.1 for Acetone and 2-Butanone. Validation criteria allows an RRF of >0.010 without qualifications for these analytes.

*Method 8260C allows for several analytes to be outside requirements due to the large number of compounds.

Initial Calibrations: The initial calibrations provided and the %RSD were within acceptable limits (20%) and (40% for poor responders) for all reported compounds.

Continuing Calibrations: The continuing calibrations provided and the %D was within acceptable limits (20%) and (40% for poor responders) for all reported compounds except for 2,2-Dichloropropane (24.6%). Non-detects in all samples have been qualified, "UJ."

1.8 Internal Standards

Internal Standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of 2 (-50% to +100%) from the associated continuing calibration standard. The retention time of the internal standard must not vary more than +/-30 seconds from the associated continuing calibration standard. If the area count is outside the (-50% to +100%) range of the associated standard, all the positive results for compounds quantitated using that IS are qualified as estimated, "J", and all non-detects as "UJ", or "R" if there is a severe loss of sensitivity.

If an internal standard retention time varies by more than 30 seconds, professional judgment will be used to determine either partial or total rejection of the data for that sample fraction.

All samples were spiked with the internal standards Fluorobenzene, Chlorobenzene-d5 and 1,4-Dichlorobenzene-d4 prior to sample analysis. The area responses and retention time of each internal standard met QC criteria in all samples associated with this SDG.

1.9 Field Duplicates

Field duplicate samples are collected and analyzed as an indication of overall precision. These results are expected to have more variability than laboratory duplicate samples.

An acceptable RPD is 50% as documented in EPA Region 2 SOP HW33. Professional judgment is utilized for analytes that demonstrate high percent difference.

A Field duplicate was not collected for this sampling event.

1.10 Target Compound List Identification

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within =/- 0.06RRT units of the standard compound and have an ion spectrum which has a ratio of the primary

and secondary m/e intensities within 20% of that in the standard compound.

GC/MS spectra met the qualitative criteria for identification. All retention times were within required specifications.

1.11 Compound Quantification and Reported Detection Limits

GC/MS quantitative analysis is acceptable. Correct internal standards per SW846, response factors were used to calculate final concentrations.

As required, the laboratory reported "J" values between the reporting limits (RL) and Method Detection Limits (MDLs). This is consistent with common laboratory practices and a requirement of the National Environmental Laboratory Approval Program (NELAP).

All samples were all analyzed undiluted at 10mls except for MW-5S (1:2.5) and DB-1 (1:2). Diluted reanalysis was required for MW-1S (1:5) and MW-5S (1:10) in order to obtain raw Tetrachloroethene concentrations were within the upper half of the linear calibration range. Initial results, qualified, "E" over range by the laboratory have been rejected, "R" and diluted values qualified, "D" to assist the end user which concentration must be utilized for decision purposes. Dilutions have determined to be acceptable. There is potential that some lower level hits were lost in the initial dilution of MW-5S and DB-1.

1.12 Overall System Performance

Good resolution and chromatographic performance were observed. Method blanks were not analyzed after high concentration samples.

Reviewer's Signature Sou a Beyt Date 07/13/2019

Appendix A
Chain of Custody
Documents

A PHA	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 97430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105	r Rd, Sulte 5 Kay oper Ave, Sulte 10	S	Page	4	Date Rec'd in Lab	6/0-6/9	OC TONOCOLOR
Westborough, MA 01531	Marrafield, MA 02948	Project Information					Deliverables		Billing Information
TEL 508-498-8220	TEL - 508-822-8200	Project Name: 71.		(temes)			ASP-A	☐ ASP-B	Same as Client Info
PAC 305-665-6193	FAX: 508-622-3285	Project Location: 80	Occan,	Bre E.	gorken	1 m	Equis (1 File)	EQuIS (4 File)	# Dd
Client Information		Project # Pro D				4	Other		
Client JA Holt	Holtmachur	(Use Project name as Project #)	roject#)				Regulatory Requirement	100	Oisposal Site Information
Address: 7555 L	cterm that	Project'Manager:					□ NY TOGS	NY Part 375	Please identify below location of
Ros Kunkama	M 11719.	ALPHAQuote #:					☐ AWQ Standards	NY CP-51	applicable disposal facilities.
	مكارا	Turn Around Time					NY Restricted Use	Other C	Disposal Facility
יש: (ז) אנז (ז)	اسر	Standard		Due Date:			☐ NY Unrestricted Use	3:	¥ 🗆
Email: AT @ H	かんかんしょくのと	Rush (only if pre		# of Days:			NYC Sewer Discharge		Offiner
These samples have been previously analyzed by Alpha	sen previously analyza	ed by Alpha					ANALYSIS		Sample Filtration
Other project specific requirements/comments:	requirements/comn	nents:				1000			Done
							Q		Lab to do
							96		Preservation
Please specify Metals or TAL.	or TAL.						28		
							€		(Please Specify below)
Manage Comment			To S	Collection	Commits	Camplado	70		-
(Lab Use Only)	Š	Sample ID	Date	Time	Matrix	Initials	E		Sample Specific Comments
101012	R G'A	ANK.	6/14/17		25	1			ď
2	として		T	1339	-	Z	g.		N
103	でいた			1354		1	N		
Do.	1-WZ	5		37.7		4	1		
Y.	J-MW	0		1309		1	*		
	MV-3		-	210		7	X		
00	アンア・30			121		4	2		
E C	2.52	ר		02		4	- -		
V07:	アデュ	a		17.5		1	4		
00	NV-5	Ş	-	073	+	3	1		1
Preservative Code:	Container Code P = Plastic	Westboro: Certification No: MA935 Mansfield: Certification No: MA015	No: MA015		Con	Container Type	7		Please print clearly, legibly and completely. Samples can
O=HNO,							2		not be logged in and
0 = H ₂ SO ₄	G = Glass B = Bacteria Cup				a.	Preservative	JS		turnaround time clock will not start until any ambiguities are
HOSHIE	C = Cube	Refinquished By:	i By:	Date	Date/Time	(Received By:	Date/Time	resolved, BY EXECUTING
S = NaHSO,	E = Encore			16/14/19	1405	3	JMY	-	_
VE = Zn Ac/NaOH	D = BOD Bottle	N. C.		2//5/19	1856		ar a	6/19 20:10	TO BE BOUND BY ALPHA'S
0 = Other) (۷	6/20	847	100	lace	51,00 Bloc/ 5	
Form No. 01-25 HC (rev. 30-Sept-2013)	0-Sept-2013)			,			1		
							11		

Signal Code Signa	\	CHAIN OF	Service Centers Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonswands, NY 14150: 275 Cooper Ave, Sulte 1	Suite 5		Page	ار	Date Reo'd/ In Lab	6/20119	ALLPH	PLESTON CETA
Continue	s Welkup Dr. 1, 508-898-9220 Xt. 508-898-9230	Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Project Information Project Name:	12 CG		arknow	I	ASP-A Call ASP-A Call Call (1 File)	ASP-8		Informazion same as Cilent Info
Samples Sheet Been provided Manager. And J Class. And Arysis and Sample ID Samples Sheet Been provided by Apha And Sample ID Samples Sheet Been provided by Apha And Sample ID Samples Sheet Been provided by Apha And Sample ID S	nformation	, i haf	Project # Mm / I)					egulatory Requirent	-	Odebo	sel Site Information
All Philodologic Branched Control	01	74574	Project Manager:	Schole				NY TOGS	NY CP-51	applica	able disposal facilities.
Sample Date Date: Collection Sample Date Date Date Date Date: Collection			ALPHAQuote #:			THE THE	2012100	NY Restricted Us	ואלון		١, ١
A Collection A	:6		Turn-Arbuna Time Standard		Due Date:			NY Unrestricted	9 8		 \
Date Time Matrix Initials W Collection Sample Samp	-	moder. Com	Rush (only if pre approved)		# of Days:			ANALYSIS)	Sam	
Antuck Metals or TAL. Antuck Discourse Confedence Sample Sample's Washour. Certification No. MASIS Antuck Discourse P = Platic A Anthor Class A Anthor Cla	e samples have be rr project specific r	en previously analyz requirements/comr	Alpha								
Sample ID Sample ID Date Time Matrix Initials INITIAL INITIA								297		ËŌ	
White Date	se specify Metals	or TAL.						(8		(Ple	
Sample D Date Time Matrix Initials Watth Matrix Initials Watth Matrix Initials Watth Matrix				alloc	office	Sample	Samoler's	₩,			7
Container Code	ALPHA Lab ID	03	Sample ID		Time	Matrix	Initials	3		Sam	-
	Lab Use Unity	T. LIM	0	1	8101	GIN	4	χ,	+	\pm	
	1	100			1055		1	X'			
Thu-14D Oggs		1	4		12		1	2 3			
Difference Dif		スプード	51		250		1	1 5			
The Code: Container Code Westboro: Certification No: MA935 A = Amber Glass A = Amber Gl	510	7-1-1	40		5 2	1	1	2 5			
five Code: Container Code Container Code A = Amber Glass A = Amber Gla	1	7	INT	-	0010	1	1	7			
tive Code: Container Code Westboro: Certification No: MA035 Container Type V A = Amber Glass	計 山		•	1	0	1	1				
tive Code: Container Code Westboro: Certification No: MA935 Container Type (+	
tive Code: Container Code Westboro: Certification No: MAQ15 A = Anber Glass A									+		Diseas print clearly, legibly
A = Amber Glass	servative Code:	Container Code	Westboro: Certification !	4o: MA935		S	ntainer Type	>			and completely. Samples o
G = Glass B = Barcteria Cup C = Cube C	None HCI	P = Plastic A = Amber Glass V = Vial	Mansheld: Certification	No: MAD15			Preservative				turnaround time clock will restaut until any ambiguities
C = Cube C = Cube C = Encore C = Encore C = Cube C C C C C C C C C C	. H2SO.	G = Glass							Date/Tim	9	resolved. BY EXECUTING
E = Encore D = BOD Bottle D = BOD Bottle C F	HOSH MEOH	B = Bacteria Cup C = Cube O = Other	Relinquished	By:	Date 1,4	E	(7	Received By:	WI C	140%	THIS COC, THE CLIENT HAS READ AND AGREES
m No: 01-25 HC (rev. 30-Sept-2013)	Na ₃ S ₂ O ₃ = Zn AcNaOH = Other	E = Encore D = BOD Bottle	100 1/20 EVENT		620		1	Small Color	Bella	05.6	TERMS & CONDITIONS. (See reverse side.)
	orm No: 01-25 HC (rev.	30-Sept-2013)					1	0			i

Sample Delivery Group Summary

Alpha Job Number: L1926579

Received Reviewer : 19-JUN-2019

Account Name

J.R. Holzmacher P.E., LLC

Project Number : MANID 16-01

Project Name

MIN MAN CLEANERS

: Richard Scott

Delivery Information

Samples Delivered By: Alpha Courier

Chain of Custody

:: Present

Cooler Information

Cooler

Seal/Seal#

Preservation

Temperature(°C) Additional Information

Α

Absent/

3.8

Condition Information

1) All samples on COC received?

YES

2) Extra samples received?

NO

3) Are there any sample container discrepancies?

NO

4) Are there any discrepancies between sample labels & COC?

L1926579-02: 19-JUN-19 13:39 vs. 19-JUN-19 13:54 L1926579-03: 19-JUN-19 13:54 vs. 19-JUN-19 13:39 YES

5) Are samples in appropriate containers for requested analysis?

YES

6) Are samples properly preserved for requested analysis?

YES

7) Are samples within holding time for requested analysis?

YES

8) All sampling equipment returned?

NA

Volatile Organics/VPH

1) Reagent Water Vials Frozen by Client?

NO

Appendix B Case Narrative Project Name:

MIN MAN CLEANERS

Project Number:

MANID 16-01

Lab Number:

L1926579

Report Date:

07/01/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Jan 111119

Project Name:

MIN MAN CLEANERS

Project Number:

MANID 16-01

Lab Number:

L1926579

Report Date:

07/01/19

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L1926579-02: The collection date and time on the chain of custody was 19-JUN-19 13:39; however, the collection date/time on the container label was 19-JUN-19 13:54. At the client's request, the collection date/time is reported as 19-JUN-19 13:54.

L1926579-03: The collection date and time on the chain of custody was 19-JUN-19 13:54; however, the collection date/time on the container label was 19-JUN-19 13:39. At the client's request, the collection date/time is reported as 19-JUN-19 13:39.

formill9

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Kini l. Wasters

Report Date: 07/01/19

Title: Technical Director/Representative

ΔLPHA

Appendix C Validated Form I's With Qualifications

Client : J.R. Holzmacher P.E., LLC
Project Name : MIN MAN CLEANERS

Lab ID : L1926579-01 Client ID : TRIP BLANK

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C

Lab File ID : V22190627N05

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579
Project Number : MANID 16-01
Date Collected : 06/19/19 00:00
Date Received : 06/19/19

Date Analyzed : 06/27/19 19:43
Dilution Factor : 1
Analyst : MKS

Instrument ID : VOA122 GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1,0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1,5	0.50	U
127-18-4	Tetrachloroethene	ND	0.50	0.18	U
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	υ
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	U
74-83-9	Bromomethane	ND	2.5	0.70	U
75-01-4	Vinyl chloride	ND	1.0	0.07	U

Client : J.R. Holzmacher P.E., LLC
Project Name : MIN MAN CLEANERS

Lab ID : L1926579-01 Client ID : TRIP BLANK

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22190627N05

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579
Project Number : MANID 16-01
Date Collected : 06/19/19 00:00

Date Received : 06/19/19
Date Analyzed : 06/27/19 19:43

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

			ug/L_				
CAS NO.	Parameter	Results	RL	MDL	Qualifier		
75-00-3	Chloroethane	ND	2.5	0.70	U		
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U		
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U		
79-01-6	Trichloroethene	ND	0.50	0.18	U		
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U		
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U		
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U		
1634-04-4	Methyl tert butyl ether	ND	2,5	0.70	U		
179601-23-1	p/m-Xylene	ND	2.5	0.70	U		
95-47-6	o-Xylene	ND	2.5	0.70	U		
1330-20-7	Xylenes, Total	ND	2.5	0.70	U		
56-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U		
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U		
74-95-3	Dibromomethane	ND	5.0	1.0	U		
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U		
07-13-1	Acrylonitrile	ND	5.0	1.5	u R		
00-42-5	Styrene	ND	2.5	0.70	U		
'5-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U		
7-64-1	Acetone	ND	5.0	1.5	U		
'5-15-0	Carbon disulfide	ND	5.0	1.0	U		
8-93-3	2-Butanone	ND	5.0	1.9	U		
08-05-4	Vinyl acetate	ND	5.0	1.0	U		
08-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U		
91-78-6	2-Hexanone	ND	5.0	1.0	U		
4-97-5	Bromochloromethane	ND	2.5	0.70	U		
					office to the second se		

: J.R. Holzmacher P.E., LLC Client **Project Name** : MIN MAN CLEANERS

Lab ID : L1926579-01 Client ID : TRIP BLANK

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER **Analytical Method** : 1,8260C

Lab File ID : V22190627N05

Sample Amount : 10 ml : LOW Level Extract Volume (MeOH): N/A

Lab Number : L1926579 Project Number : MANID 16-01 Date Collected : 06/19/19 00:00

Date Received : 06/19/19 Date Analyzed : 06/27/19 19:43

Dilution Factor : 1 Analyst

: MKS Instrument ID : VOA122 GC Column : RTX-502.2

: N/A %Solids Injection Volume: N/A

			ug/L				
CAS NO.	Parameter	Results	RL	MDL	Qualifier		
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	JU UJ		
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U		
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U		
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U		
108-86-1	Bromobenzene	ND	2.5	0.70	U		
104-51-8	n-Butylbenzene	ND	2.5	0.70	U		
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U		
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U		
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U		
06-43-4	p-Chlorotoluene	ND	2.5	0.70	U		
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U		
7-68-3	Hexachlorobutadiene	ND	2.5	0.70	U		
8-82-8	Isopropylbenzene	ND	2.5	0.70	U		
99-87-6	p-Isopropyltoluene	ND	2,5	0.70	U		
91-20-3	Naphthalene	ND	2.5	0.70	U		
03-65-1	r-Propylbenzene	ND	2.5	0.70	U		
7-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U		
20-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U		
08-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U		
5-63-6	1,2,4-Trimethylbenzene	ND	2,5	0.70	U		
23-91-1	1,4-Dioxane	ND	250	61.	u R		
05-05-5	p-Diethylbenzene	ND	2.0	0.70	U		
22-96-8	p-Ethyltoluene	ND	2.0	0.70	U		
5-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U		
0-29-7	Ethyl ether	ND	2.5	0.70	U		

Client : J.R. Holzmacher P.E., LLC
Project Name : MIN MAN CLEANERS

Lab ID : L1926579-01 Client ID : TRIP BLANK

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY Sample Matrix : WATER

Analytical Method : 1,8260C Lab File ID : V22190627N05

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579 Project Number : MANID 16-01

Date Collected : 06/19/19 00:00
Date Received : 06/19/19

Date Analyzed : 06/27/19 19:43 Dilution Factor : 1

Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2
%Solids : N/A

%Solids : N/A Injection Volume : N/A

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 110-57-6
 trans-1,4-Dichloro-2-butene
 ND
 2.5
 0.70
 U

Client : J.R. Holzmacher P.E., LLC
Project Name : MIN MAN CLEANERS

Lab ID : L1926579-02 Client ID : MW-1S

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22190627N06

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579

Project Number : MANID 16-01

Date Collected : 06/19/19 13:54

Date Received : 06/19/19

Date Analyzed : 06/27/19 20:11
Dilution Factor : 1

Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	270	0.50	0.18	+ R
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
75-25-2	Bromoform	ND	2.0	0.65	Ŭ
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	U
74-83-9	Bromomethane	ND	2.5	0.70	U
75-01-4	Vinyl chloride	0.39	1.0	0.07	J

Client : J.R. Holzmacher P.E., LLC : MIN MAN CLEANERS **Project Name**

Lab ID : L1926579-02 **Client ID** : MW-1S

Sample Location **# 89 OCEAN AVE., E. ROCKAWAY, NY**

Sample Matrix : WATER **Analytical Method** : 1,8260C Lab File ID : V22190627N06

Sample Amount : 10 ml : LOW Level Extract Volume (MeOH) : N/A

Date Analyzed **Dilution Factor**

Analyst : MKS Instrument ID : VOA122 GC Column : RTX-502.2

Project Number : MANID 16-01

: 1

: L1926579

: 06/19/19

: 06/19/19 13:54

: 06/27/19 20:11

%Solids : N/A Injection Volume : N/A

Lab Number

Date Collected

Date Received

		-	ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	0.24	0.50	0.17	J
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U
79-01-6	Trichloroethene	18	0.50	0.18	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	1.0	2.5	0.70	J
179601-23-1	p/m-Xylene	ND	2.5	0.70	U
95-47-6	o-Xylene	ND	2.5	0.70	U
1330-20-7	Xylenes, Total	ND	2,5	0.70	U
156-59-2	cis-1,2-Dichloroethene	7.2	2.5	0.70	
540-59-0	1,2-Dichloroethene, Total	7.2	2.5	0.70	
74-95-3	Dibromomethane	ND	5.0	1.0	U
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U
107-13-1	Acrylonitrile	ND	5.0	1.5	NR
100-42-5	Styrene	ND	2.5	0.70	U
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U
67-64-1	Acetone	ND	5.0	1.5	U
75-15-0	Carbon disulfide	ND	5.0	1.0	U
78-93-3	2-Butanone	ND	5.0	1.9	U
108-05-4	Vinyl acetate	ND	5.0	1.0	U
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
591-78-6	2-Hexanone	ND	5.0	1.0	U
74-97-5	Bromochloromethane	ND	2.5	0.70	U

Client : J.R. Holzmacher P.E., LLC
Project Name : MIN MAN CLEANERS

Lab ID : L1926579-02 Client ID : MW-1S

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579

Project Number : MANID 16-01

Date Collected : 06/19/19 13:54

Date Received : 06/19/19

Date Analyzed : 06/27/19 20:11
Dilution Factor : 1

Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

CAS NO.	Parameter		ug/L			
		Results	RL	MDL	Qualifier	
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	T U J	
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U	
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U	
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U	
108-86-1	Bromobenzene	ND	2.5	0.70	U	
104-51-8	n-Butylbenzene	ND	2.5	0.70	U	
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U	
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U	
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U	
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	
37-68-3	Hexachlorobutadiene	ND	2.5	0.70	U	
98-82-8	Isopropylbenzene	ND	2.5	0.70	U	
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U	
91-20-3	Naphthalene	ND	2.5	0.70	U	
103-65-1	n-Propylbenzene	ND	2.5	0.70	U	
37-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U	
20-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
08-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
5-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
23-91-1	1,4-Dioxane	ND	250	61.	-t-R	
05-05-5	p-Diethylbenzene	ND	2.0	0.70	U	
622-96-8	p-Ethyltoluene	ND	2.0	0.70	U	
5-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U	
60-29-7	Ethyl ether	ND	2.5	0.70	U	

Client : J.R. Holzmacher P.E., LLC Project Name : MIN MAN CLEANERS

Lab ID : L1926579-02 Client ID : MW-1S

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22190627N06

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579
Project Number : MANID 16-01
Date Collected : 06/19/19 13:56

Date Collected : 06/19/19 13:54
Date Received : 06/19/19
Date Analyzed : 06/27/19 20:11

Dilution Factor : 1 Analyst : MKS

Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2
%Solids : N/A

Injection Volume N/A

CAS NO.	Parameter	ug/L				
		Results	RL	MDL	Qualifier	
110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.70	U	

Client : J.R. Holzmacher P.E., LLC Lab Number : L1926579

Project Name : MIN MAN CLEANERS Project Number : MANID 16-01

Lab ID : L1926579-02D Date Collected : 06/19/19 13:54

Client ID : MW-1S Date Received : 06/19/19

Date Analyzed Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY **3.** 06/29/19 14:29 Sample Matrix Dilution Factor : WATER : 5 **Analytical Method** Analyst : 1,8260C : KJD Lab File ID : V22190629A16 Instrument ID : VOA122

Sample Amount : 2 ml GC Column : RTX-502.2 Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

CAS NO. Parameter Etrachloroethene Eug/L

127-18-4 Tetrachloroethene Eug/L

Results RL MDL Qualifier

Client : J.R. Holzmacher P.E., LLC : MIN MAN CLEANERS **Project Name**

Lab ID : L1926579-03 Client ID : MW-1D

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER **Analytical Method** : 1,8260C

Lab File ID : V22190627N07

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A

Lab Number : L1926579 Project Number : MANID 16-01 **Date Collected** : 06/19/19 13:39 **Date Received** : 06/19/19

Date Analyzed : 06/27/19 20:38 **Dilution Factor** : 1 Analyst : MKS Instrument ID : VOA122

: RTX-502.2 %Solids : N/A Injection Volume: N/A

GC Column

ug/L CAS NO. **Parameter** Results MDL Qualifier RL 75-09-2 Methylene chloride ND 2.5 0.70 U 75-34-3 1,1-Dichloroethane ND 2.5 0.70 U 67-66-3 Chloroform ND 2.5 0.70 U Carbon tetrachloride ND 56-23-5 0.50 0.13 U 78-87-5 1,2-Dichloropropane ND 1.0 0.14 U 124-48-1 Dibromochloromethane ND 0.50 u 0.15 79-00-5 1,1,2-Trichloroethane ND 1.5 0.50 U 127-18-4 Tetrachloroethene 80 0.50 0.18 108-90-7 Chlorobenzene ND 0.70 U 75-69-4 Trichlorofluoromethane ND 2.5 0.70 u 107-06-2 1,2-Dichloroethane ND 0.50 0.13 U 71-55-6 U 1,1,1-Trichloroethane ND 2.5 0.70 75-27-4 Bromodichloromethane ND 0.50 0.19 U 10061-02-6 trans-1,3-Dichloropropene ND П 0.50 0.16 10061-01-5 cis-1,3-Dichloropropene ND 0.50 0.14 U 542-75-6 1,3-Dichloropropene, Total ND 0.50 0.14 U 563-58-6 1,1-Dichloropropene ND 0.70 U 75-25-2 Bromoform ND 2.0 0.65 u 79-34-5 1,1,2,2-Tetrachloroethane ND 0.50 0.17 U 71-43-2 ND 0.50 U Benzene 0.16 108-88-3 Toluene ND 2,5 0.70 U Ethylbenzene 100-41-4 ND U 2.5 0.70 74-87-3 Chloromethane ND 2.5 0.70 U Bromomethane ND 74-83-9 2.5 0.70 U 75-01-4 Vinyl chloride ND 1.0 0.07 U

Client : J.R. Holzmacher P.E., LLC Project Name : MIN MAN CLEANERS

Lab ID : L1926579-03 Client ID : MW-1D

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C

Lab File ID : V22190627N07

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579
Project Number : MANID 16-01
Date Collected : 06/19/19 13:39

Date Received : 06/19/19
Date Analyzed : 06/27/19 20:38

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-00-3	Chloroethane	ND	2.5	0,70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U
156-60-5					
	trans-1,2-Dichloroethene	ND	2.5	0.70	U
79-01-6	Trichloroethene	2.5	0.50	0.18	- 100
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	1.5	2.5	0.70	J
179601-23-1	p/m-Xylene	ND	2.5	0.70	U
95-47-6	o-Xylene	ND	2.5	0.70	U
1330-20-7	Xylenes, Total	ND	2.5	0.70	U
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U
74-95-3	Dibromomethane	ND	5.0	1.0	U
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U
107-13-1	Acrylonitrile	ND	5.0	1,5	JU R
100-42 - 5	Styrene	ND	2.5	0.70	U
7 5-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U
5 7-64-1	Acetone	ND	5.0	1.5	U
7 5-15-0	Carbon disulfide	ND	5.0	1.0	U
'8-93-3	2-Butanone	ND	5.0	1.9	U
08-05-4	Vinyl acetate	ND	5.0	1.0	U
08-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
91-78-6	2-Hexanone	ND	5.0	1.0	U
4-97-5	Bromochloromethane	ND	2.5	0.70	U

Client : J.R. Holzmacher P.E., LLC Project Name : MIN MAN CLEANERS

Lab ID : L1926579-03 Client ID : MW-1D

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C

Lab File ID : V22190627N07

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579
Project Number : MANID 16-01
Date Collected : 06/19/19 13:39

Date Collected : 06/19/19 13:39
Date Received : 06/19/19
Date Analyzed : 06/27/19 20:38

Dilution Factor : 1

Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
					_	
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	₩ U J	
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U	
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U	
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U	
108-86-1	Bromobenzene	ND	2.5	0.70	U	
104-51-8	n-Butylbenzene	ND	2.5	0.70	U	
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U	
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U	
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U	
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	
37-68-3	Hexachlorobutadiene	ND	2.5	0.70	U	
98-82-8	Isopropylbenzene	ND	2.5	0.70	U	
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U	
91-20-3	Naphthalene	ND	2.5	0.70	U	
03-65-1	n-Propylbenzene	ND	2.5	0.70	U	
37-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U	
20-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
08-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
5-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
23-91-1	1,4-Dioxane	ND	250	61.	UR	
05-05-5	p-Diethylbenzene	ND	2,0	0.70	U	
22-96-8	p-Ethyltoluene	ND	2.0	0.70	U	
5-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U	
0-29-7	Ethyl ether	ND	2.5	0.70	U	

Client ; J.R. Holzmacher P.E., LLC Lab Number : L1926579

Project Name : MIN MAN CLEANERS Project Number : MANID 16-01

Lab ID : L1926579-03 Date Collected : 06/19/19 13:39

Client ID Date Received : 06/19/19

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY Date Analyzed : 06/27/19 20:38 Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 1,8260C Analyst : MKS
Lab File ID : V22190627N07 Instrument ID : VOA122
Sample Amount : 10 ml GC Column : RTX-502.2
Level : LOW %Solids : N/A

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

CAS NO.	Parameter	ug/L				
		Results	RL	MDL	Qualifier	
440.57.0		415		. 70		
110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.70	U	

Client : J.R. Holzmacher P.E., LLC
Project Name : MIN MAN CLEANERS

Lab ID : L1926579-04 Client ID : MW-2S

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22190627N08

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579

Project Number : MANID 16-01

Date Collected : 06/19/19 13:24

Date Received : 06/19/19

: 06/27/19 21:06

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

Date Analyzed

CAS NO.	Parameter		ug/L		
		Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	1.3	2.5	0.70	J
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	1.9	0.50	0.15	
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	57	0.50	0.18	
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	1.5	0.50	0.19	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
75-25-2	Bromoform	1.1	2.0	0.65	J
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
08-88-3	Toluene	ND	2.5	0.70	U
00-41-4	Ethylbenzene	ND	2.5	0.70	U
' 4-87-3	Chloromethane	ND	2.5	0.70	U
'4-83-9	Bromomethane	ND	2.5	0.70	U
'5-01-4	Vinyl chloride	ND	1.0	0.07	U

Client : J.R. Holzmacher P.E., LLC
Project Name : MIN MAN CLEANERS

Lab ID : L1926579-04 Client ID : MW-2S

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22190627N08

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579
Project Number : MANID 16-01
Date Collected : 06/19/19 13:24
Date Received : 06/19/19

Date Analyzed : 06/27/19 21:06 Dilution Factor : 1

Analyst : MKS Instrument ID : VOA122 GC Column : RTX-502.2

CAS NO.	Parameter		ug/L_			
		Results	RL	MDL	Qualifier	
75-00-3	Chloroethane	ND	2.5	0.70	U	
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U	
79-01-6	Trichloroethene	3.1	0.50	0.18		
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	
1330-20-7	Xylenes, Total	ND	2.5	0.70	U	
156-59-2	cis-1,2-Dichloroethene	1.7	2.5	0.70	J	
540-59 -0	1,2-Dichloroethene, Total	1.7	2.5	0.70	J	
74-95-3	Dibromomethane	ND	5.0	1.0	U	
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U	
107-13-1	Acrylonitrile	ND	5.0	1.5	#R	
100-42-5	Styrene	ND	2.5	0.70	U	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U	
67-64-1	Acetone	ND	5.0	1.5	U	
75-15-0	Carbon disulfide	ND	5.0	1.0	U	
78-93-3	2-Butanone	ND	5.0	1.9	U	
108-05-4	Vinyl acetate	ND	5.0	1.0	U	
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	
591-78 - 6	2-Hexanone	ND	5.0	1.0	U	
74-97-5	Bromochloromethane	ND	2.5	0.70	U	

Client : J.R. Holzmacher P.E., LLC
Project Name : MIN MAN CLEANERS

Lab ID : L1926579-04 Client ID : MW-2S

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22190627N08

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579

Project Number : MANID 16-01

Date Collected : 06/19/19 13:24

Date Received : 06/19/19

Date Analyzed : 06/27/19 21:06

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	400
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U
6-12-8	1,2-Dibromo-3-chloropropane	ND	2,5	0.70	U
7-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
8-82-8	Isopropylbenzene	ND	2.5	0.70	U
9-87-6	p-Isopropyttoluene	ND	2.5	0.70	U
1-20-3	Naphthalene	ND	2.5	0.70	U
03-65-1	n-Propylbenzene	ND	2.5	0.70	U
7-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
20-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
08-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
5-63-6	1,2,4-Trimethylbenzene	ND	2,5	0.70	U
23-91-1	1,4-Dioxane	ND	250	61.	Ju R
05-05-5	p-Diethylbenzene	ND	2.0	0.70	U
22-96-8	p-Ethyltoluene	ND	2.0	0.70	U
5-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	Ŭ
)-29-7	Ethyl ether	ND	2,5	0.70	U
	-				

Client : J.R. Holzmacher P.E., LLC
Project Name : MIN MAN CLEANERS
Lab ID : L1926579-04

Client ID : L1926579-0

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY Sample Matrix : WATER

Analytical Method : 1,8260C
Lab File ID : V22190627N08

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579
Project Number : MANID 16-01
Pate Collected : 06/19/19 13:2

Date Collected : 06/19/19 13:24 Date Received : 06/19/19

Date Analyzed : 06/27/19 21:06
Dilution Factor : 1
Analyst : MKS

Instrument ID : VOA122 GC Column : RTX-502.2

	Parameter	ug/L				
CAS NO.		Results	RL	MDL	Qualifier	
110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.70	U	

Client : J.R. Holzmacher P.E., LLC
Project Name : MIN MAN CLEANERS

Lab ID : L1926579-05 Client ID : MW-2D

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22190627N09

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579

Project Number : MANID 16-01

Date Collected : 06/19/19 13:09

Date Received : 06/19/19

Date Analyzed : 06/27/19 21:34

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

CAS NO.	Parameter		ug/L			
		Results	RL	MDL	Qualifier	
75-09-2	All abbudance abdanisha	ND	0.5	. 70		
	Methylene chloride	ND	2.5	0.70	U	
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U	
67-66-3	Chloroform	0.70	2.5	0.70	J	
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U	
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U	
124-48-1	Dibromochloromethane	0.82	0.50	0.15		
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U	
127-18-4	Tetrachloroethene	58	0.50	0.18		
108-90-7	Chlorobenzene	ND	2.5	0.70	U	
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U	
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U	
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U	
75-27-4	Bromodichloromethane	0.61	0.50	0.19		
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U	
642-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U	
63-58-6	1,1-Dichloropropene	ND	2.5	0.70	U	
'5-25-2	Bromoform	0.67	2.0	0.65	J	
9-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U	
1-43-2	Benzene	ND	0.50	0.16	U	
08-88-3	Toluene	ND	2.5	0.70	U	
00-41-4	Ethylbenzene	ND	2.5	0.70	U	
4-87-3	Chloromethane	ND	2.5	0.70	U	
4-83-9	Bromomethane	ND	2.5	0.70	U	
5-01-4	Vinyl chloride	ND	1.0	0.07	U	
		10000				

Client : J.R. Holzmacher P.E., LLC Project Name : MIN MAN CLEANERS

Lab ID : L1926579-05 Client ID : MW-2D

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22190627N09

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579
Project Number : MANID 16-01
Date Collected : 06/19/19 13:09
Date Received : 06/19/19

Date Analyzed : 06/27/19 21:34
Dilution Factor : 1
Analyst : MKS

Instrument ID : VOA122 GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-00-3	Chloroethane	ND	2.5	0.70	U	
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U	
79-01-6	Trichloroethene	1.5	0.50	0.18		
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	
1330-20-7	Xylenes, Total	ND	2.5	0.70	U	
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U	
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U	
74-95-3	Dibromomethane	ND	5.0	1.0	U	
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U	
107-13-1	Acrylonitrile	ND	5.0	1.5	wR	
100-42-5	Styrene	ND	2.5	0.70	U	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U	
67-64-1	Acetone	ND	5.0	1.5	U	
75-15-0	Carbon disulfide	ND	5.0	1.0	U	
78-93-3	2-Butanone	ND	5.0	1.9	U	
108-05-4	Vinyl acetate	ND	5.0	1.0	U	
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	
591-78-6	2-Hexanone	ND	5.0	1.0	U	
74-97-5	Bromochloromethane	ND	2.5	0.70	U	

Client : J.R. Holzmacher P.E., LLC
Project Name : MIN MAN CLEANERS

Lab ID : L1926579-05 Client ID : MW-2D

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C

Lab File ID : V22190627N09

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579
Project Number : MANID 16-01
Date Collected : 06/19/19 13:09
Date Received : 06/27/19 21:34

Dilution Factor : 1

Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2
%Solids : N/A

Injection Volume : N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
594-20-7	2,2-Dichloropropane	ND	0.5	0.70	
		ND	2.5	0.70	
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
37-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
98-82-8	Isopropylbenzene	ND	2.5	0.70	U
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
03-65-1	n-Propylbenzene	ND	2.5	0.70	U
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
20-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
08-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
5-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
23-91-1	1,4-Dioxane	ND	250	61.	w R
05-05-5	p-Diethylbenzene	ND	2.0	0.70	U
22-96-8	p-Ethyltoluene	ND	2.0	0.70	U
5-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
0-29-7	Ethyl ether	ND	2.5	0.70	U

Client : J.R. Holzmacher P.E., LLC Lab Number : L1926579

Project Name : MIN MAN CLEANERS Project Number : MANID 16-01

Lab ID : L1926579-05 Date Collected : 06/19/19 13:09

Client ID : MW-2D Date Received : 06/19/19

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY Date Analyzed : 06/27/19 21:34

Sample Matrix : WATER **Dilution Factor** : 1 **Analytical Method** : 1,8260C **Analyst** : MKS Lab File ID : V22190627N09 Instrument ID : VOA122 Sample Amount : 10 ml GC Column : RTX-502.2

Level: LOW: %Solids: N/A
Extract Volume (MeOH): N/A: Injection Volume: N/A

CAS NO.	Parameter					
		Results	RL	MDL	Qualifier	_
110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.70	U	

Client : J.R. Holzmacher P.E., LLC
Project Name : MIN MAN CLEANERS

Lab ID : L1926579-06 Client ID : MW-3S

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22190627N10

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579

Project Number : MANID 16-01

Date Collected : 06/19/19 12:10

Date Received : 06/19/19

Date Analyzed : 06/27/19 22:02

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

CAS NO.			ug/L			
	Parameter	Results	RL	MDL	Qualifier	
75.00.0						
75-09-2	Methylene chloride	ND	2.5	0.70	U	
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U	
67-66-3	Chloroform	ND	2.5	0.70	U	
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U	
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U	
124-48-1	Dibromochloromethane	ND	0.50	0.15	U	
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U	
127-18-4	Tetrachloroethene	26	0.50	0.18	1111	
108-90-7	Chlorobenzene	ND	2.5	0.70	U	
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U	
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U	
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U	
75-27-4	Bromodichloromethane	ND	0.50	0.19	U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U	
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U	
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U	
75-25-2	Bromoform	ND	2.0	0.65	U	
9-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U	
1-43-2	Benzene	ND	0.50	0.16	U	
08-88-3	Toluene	ND	2.5	0.70	U	
00-41-4	Ethylbenzene	ND	2.5	0.70	U	
'4-87-3	Chloromethane	ND	2.5	0.70	U	
4-83-9	Bromomethane	ND	2.5	0.70	U	
5-01-4	Vinyl chloride	ND	1.0	0.07	U	

Client Project Name : J.R. Holzmacher P.E., LLC : MIN MAN CLEANERS

Lab ID Client ID : L1926579-06

: MW-3S

Sample Location

: 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix Analytical Method

: WATER : 1,8260C

Lab File ID

: V22190627N10

Sample Amount

: 10 ml

Level

: LOW Extract Volume (MeOH): N/A

Lab Number Project Number : MANID 16-01

: L1926579

Date Collected : 06/19/19 12:10 Date Received

: 06/19/19

Date Analyzed Dilution Factor

: 06/27/19 22:02

: 1 Analyst Instrument ID

: MKS : VOA122

GC Column %Solids

: RTX-502.2

: N/A Injection Volume : N/A

CAS NO.		·	ug/L			
	Parameter	Results	RL	MDL	Qualifier	
75-00-3	Chloroethane	ND	2.5	0,70	U	
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0,70	U	
79-01-6	Trichloroethene	0.96	0.50	0.18		
95-50-1	1,2-Dichlorobenzene	ND	2.5	0,70	U	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	Ü	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47 - 6	o-Xylene	ND	2.5	0.70	U	
1330-20-7	Xylenes, Total	ND	2.5	0.70	U	
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U	
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U	
74-95-3	Dibromomethane	ND	5.0	1.0	U	
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U	
107-13-1	Acrylonitrile	ND	5.0	1.5	J-R	
00-42-5	Styrene	ND	2.5	0.70	U	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U	
57-64-1	Acetone	ND	5.0	1.5	U	
75-15-0	Carbon disulfide	ND	5.0	1.0	U	
' 8-93-3	2-Butanone	ND	5.0	1.9	U	
08-05-4	Vinyl acetate	ND	5.0	1.0	U	
08-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	
91-78-6	2-Hexanone	ND	5.0	1.0	U	
74-97-5	Bromochloromethane	ND	2.5	0.70	U	

Client : J.R. Holzmacher P.E., LLC
Project Name : MIN MAN CLEANERS

Lab ID : L1926579-06 Client ID : MW-3S

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C

Lab File ID : V22190627N10

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579
Project Number : MANID 16-01
Date Collected : 06/19/19 12:10
Date Received : 06/27/19 22:02

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

		-	ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
					1
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	2,5	0.70	U
37-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
98-82-8	Isopropylbenzene	ND	2.5	0.70	U
99-87-6	p-isopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
103-65-1	n-Propylbenzene	ND	2.5	0.70	U
37-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
20-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
08-67 - 8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
23-91-1	1,4-Dioxane	ND	250	61.	J-R
05-05-5	p-Diethylbenzene	ND	2.0	0.70	U
522-96-8	p-Ethyltoluene	ND	2.0	0.70	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
60-29-7	Ethyl ether	ND	2.5	0.70	U

Client : J.R. Holzmacher P.E., LLC
Project Name : MIN MAN CLEANERS

Lab ID : L1926579-06 Client ID : MW-3S

Sample Location 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22190627N10

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579

Project Number: MANID 16-01
Date Collected: 06/19/19 12:10
Date Received: 06/19/19

Date Analyzed : 06/27/19 22:02 Dilution Factor : 1

Analyst : MKS Instrument ID : VOA122 GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 110-57-6
 trans-1,4-Dichloro-2-butene
 ND
 2.5
 0.70
 U

Client : J.R. Holzmacher P.E., LLC Project Name : MIN MAN CLEANERS

Lab ID : L1926579-07 Client ID : MW-3D

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22190627N11

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579

Project Number : MANID 16-01

Date Collected : 06/19/19 11:55

Date Received : 06/27/19 22:30

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

CAS NO.	Parameter	<u> </u>	ug/L		
		Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	0.58	0.50	0.15	
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	57	0.50	0.18	
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	0.30	0.50	0.19	J
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	U
74-83-9	Bromomethane	ND	2.5	0.70	U
75-01-4	Vinyl chloride	ND	1.0	0.07	U

Client : J.R. Holzmacher P.E., LLC Project Name : MIN MAN CLEANERS

Lab ID : L1926579-07 Client ID : MW-3D

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22190627N11

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579

Project Number : MANID 16-01

Date Collected : 06/19/19 11:55

Date Received : 06/27/19 22:30

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

	Parameter	-	ug/L			
CAS NO.		Results	RL	MDL	Qualifier	
75-00-3	Chloroethane	ND	2.5	0.70	U	
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U	
79-01-6	Trichloroethene	2.6	0.50	0.18		
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	^b ND	2,5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	
1330-20-7	Xylenes, Total	ND	2.5	0.70	U	
156-59-2	cis-1,2-Dichloroethene	1.5	2.5	0.70	J	
540-59-0	1,2-Dichloroethene, Total	1.5	2.5	0.70	J	
74-95-3	Dibromomethane	ND	5.0	1.0	U	
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U	
07-13-1	Acrylonitrile	ND	5.0	1.5	J-R	
100-42-5	Styrene	ND	2.5	0.70	U	
75-71- 8	Dichlorodifluoromethane	ND	5.0	1.0	U	
7-64-1	Acetone	ND	5.0	1.5	U	
75-15-0	Carbon disulfide	ND	5.0	1.0	U	
'8-93-3	2-Butanone	ND	5.0	1.9	U	
08-05-4	Vinyl acetate	ND	5.0	1.0	U	
08-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	
91-78-6	2-Hexanone	ND	5.0	1.0	U	
74-97-5	Bromochloromethane	ND	2.5	0.70	U	

Client : J.R. Holzmacher P.E., LLC
Project Name : MIN MAN CLEANERS

Lab ID : L1926579-07 Client ID : MW-3D

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22190627N11

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	40
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
37-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
98-82-8	Isopropylbenzene	ND	2.5	0.70	U
99-87-6	p-isopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
103-65-1	n-Propylbenzene	ND	2.5	0.70	U
37-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
23-91-1	1,4-Dioxane	ND	250	61.	10 R
105-05-5	p-Diethylbenzene	ND	2.0	0.70	U
522-96-8	p-Ethyltoluene	ND	2.0	0.70	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
60-29-7	Ethyl ether	ND	2,5	0.70	U

Client : J.R. Holzmacher P.E., LLC Lab Number : L1926579 **Project Name** : MIN MAN CLEANERS Project Number : MANID 16-01 Lab ID : L1926579-07 Date Collected : 06/19/19 11:55 Client ID : MW-3D Date Received : 06/19/19 Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY Date Analyzed : 06/27/19 22:30

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,8260C Analyst : MKS
Lab File ID : V22190627N11 Instrument ID : VOA122

Sample Amount : 10 ml GC Column : RTX-502.2 Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 110-57-6
 trans-1,4-Dichloro-2-butene
 ND
 2.5
 0.70
 U

Client : J.R. Holzmacher P.E., LLC
Project Name : MIN MAN CLEANERS

Lab ID : L1926579-08 Client ID : MW-4S

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22190627N12

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579

Project Number : MANID 16-01

Date Collected : 06/19/19 11:40

Date Received : 06/19/19

: 06/27/19 22:58

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

Date Analyzed

	Parameter	×	ug/L		
CAS NO.		Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2,5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	130	0.50	0.18	
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	U
74-83-9	Bromomethane	ND	2.5	0.70	U
75-01-4	Vinyl chloride	ND	1.0	0.07	U

Client : J.R. Holzmacher P.E., LLC **Project Name** : MIN MAN CLEANERS

Lab ID : L1926579-08 Client ID : MW-4S

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER Analytical Method : 1,8260C Lab File ID : V22190627N12

Sample Amount : 10 ml : LOW Level

Extract Volume (MeOH): N/A

Lab Number : L1926579 Project Number : MANID 16-01 Date Collected : 06/19/19 11:40 **Date Received** : 06/19/19 Date Analyzed : 06/27/19 22:58

Dilution Factor : 1 Analyst : MKS Instrument ID : VOA122 GC Column : RTX-502.2

	Parameter		ug/L		
CAS NO.		Results	RL	MDL	Qualifier
75 00 0	Oblavathana	ND	0.5	0.70	
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	υ
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U
79-01-6	Trichloroethene	4.1	0.50	0.18	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U
179601-23-1	p/m-Xylene	ND	2.5	0.70	U
95-47-6	o-Xylene	ND	2.5	0.70	U
1330-20-7	Xylenes, Total	ND	2.5	0.70	U
156-59-2	cis-1,2-Dichloroethene	2.0	2.5	0.70	J
540-59-0	1,2-Dichloroethene, Total	2.0	2.5	0.70	J
74-95-3	Dibromomethane	ND	5.0	1.0	U
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U
107-13-1	Acrylonitrile	ND	5.0	1.5	J- R
00-42-5	Styrene	ND	2.5	0.70	U
' 5-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U
67-64-1	Acetone	ND	5.0	1.5	U
75-15-0	Carbon disulfide	ND	5.0	1.0	U
78-93-3	2-Butanone	ND	5.0	1.9	U
08-05-4	Vinyl acetate	ND	5.0	1.0	U
08-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
591-78-6	2-Hexanone	ND	5.0	1.0	U
74-97-5	Bromochloromethane	ND	2.5	0.70	U
0.000					

: J.R. Holzmacher P.E., LLC Client **Project Name** : MIN MAN CLEANERS

Lab ID : L1926579-08 Client ID : MW-4S

: 89 OCEAN AVE., E. ROCKAWAY, NY Sample Location

Sample Matrix : WATER **Analytical Method** : 1,8260C Lab File ID : V22190627N12

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH): N/A

Date Analyzed **Dilution Factor**

: 1 Analyst : MKS Instrument ID : VOA122 GC Column : RTX-502.2

Project Number : MANID 16-01

: L1926579

: 06/19/19

: 06/19/19 11:40

: 06/27/19 22:58

%Solids : N/A Injection Volume :: N/A

Lab Number

Date Collected

Date Received

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	011
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
35-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
06-43-4	p-Chlorotoluene	ND	2.5	0.70	U
6-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
7-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
8-82-8	Isopropylbenzene	ND	2.5	0.70	U
9-87-6	p-Isopropyltoluene	ND	2.5	0.70	U
1-20-3	Naphthalene	ND	2.5	0.70	U
03-65-1	n-Propylbenzene	ND	2.5	0.70	U
7-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
20-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
08-67 - 8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
5-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
23-91-1	1,4-Dioxane	ND	250	61,	w R
05-05-5	p-Diethylbenzene	ND	2.0	0.70	U
22-96-8	p-Ethyltoluene	ND	2.0	0.70	U
5-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
0-29-7	Ethyl ether	ND	2.5	0.70	U

Client : J.R. Holzmacher P.E., LLC Lab Number : L1926579

Project Name : MIN MAN CLEANERS Project Number : MANID 16-01

Lab ID : L1926579-08 Date Collected : 06/19/19 11:40

Client ID : MW-4S Date Received : 06/19/19

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY Date Analyzed : 06/27/19 22:58 Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 1,8260C Analyst : MKS
Lab File ID : V22190627N12 Instrument ID : VOA122
Sample Amount : 10 ml GC Column : RTX-502.2

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

		ug/L				
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.70	U	
400						

Client : J.R. Holzmacher P.E., LLC
Project Name : MIN MAN CLEANERS

Lab ID : L1926579-09 Client ID : MW-4D

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22190627N

Lab File ID : V22190627N13

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579
Project Number : MANID 16-01
Date Collected : 06/19/19 11:25

Date Received : 06/19/19
Date Analyzed : 06/27/19 23:26
Dilution Factor : 1

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

	Parameter	¥	ug/L			
CAS NO.		Results	RL	MDL	Qualifier	
75-09-2	Methylene chloride	ND	2.5	0.70	ε U	
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U	
67-66-3	Chloroform	ND	2.5	0.70	U	
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U	
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U	
124-48-1	Dibromochloromethane	0.35	0.50	0.15	J	
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U	
127-18-4	Tetrachloroethene	100	0.50	0.18		
108-90-7	Chlorobenzene	ND	2.5	0.70	U	
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U	
07-06-2	1,2-Dichloroethane	ND	0.50	0.13	U	
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U	
75-27-4	Bromodichloromethane	0.32	0.50	0.19	J	
0061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U	
0061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U	
642-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U	
663-58-6	1,1-Dichloropropene	ND	2.5	0.70	U	
'5-25-2	Bromoform	ND	2.0	0.65	U	
9-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U	
1-43-2	Benzene	ND	0.50	0.16	U	
08-88-3	Toluene	ND	2.5	0.70	U	
00-41-4	Ethylbenzene	ND	2.5	0.70	U	
4-87-3	Chloromethane	ND	2.5	0.70	U	
4-83-9	Bromomethane	ND	2.5	0.70	U	
5-01-4	Vinyl chloride	ND	1.0	0.07	U	
				1110-1-111		

Client : J.R. Holzmacher P.E., LLC
Project Name : MIN MAN CLEANERS

Lab ID : L1926579-09 Client ID : MW-4D

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22190627N13

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579

Project Number : MANID 16-01

Date Collected : 06/19/19 11:25

Date Received : 06/19/19

Date Analyzed : 06/27/19 23:26
Dilution Factor : 1
Analyst : MKS

Instrument ID : VOA122 GC Column : RTX-502.2

		·	ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-00-3	Chloroethane	ND	2.5	0.70	υ	
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U	
79-01-6	Trichloroethene	2.5	0.50	0.18		
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	
1330-20-7	Xylenes, Total	ND	2.5	0.70	U	
156-59-2	cis-1,2-Dichloroethene	0.78	2.5	0.70	J	
540-59-0	1,2-Dichloroethene, Total	0.78	2.5	0.70	J	
74-95-3	Dibromomethane	ND	5.0	1.0	U	
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U	
107-13-1	Acrylonitrile	ND	5.0	1.5	J- R	
100-42-5	Styrene	ND	2.5	0.70	U	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U	
67-64-1	Acetone	ND	5.0	1.5	U	
75-15-0	Carbon disulfide	ND	5.0	1.0	U	
78-93-3	2-Butanone	ND	5.0	1.9	U	
108-05-4	Vinyl acetate	ND	5.0	1.0	U	
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	
591-78-6	2-Hexanone	ND	5.0	1.0	U	
74-97-5	Bromochloromethane	ND	2.5	0.70	U	

Client : J.R. Holzmacher P.E., LLC
Project Name : MIN MAN CLEANERS

Lab ID : L1926579-09 Client ID : MW-4D

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C

Lab File ID : V22190627N13

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579

Project Number : MANID 16-01

Date Collected : 06/19/19 11:25

Date Received : 06/19/19

: 06/27/19 23:26

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA122

GC Column : RTX-502.2 %Solids : N/A Injection Volume : N/A

Date Analyzed

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	# ())
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
37-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
98-82-8	Isopropylbenzene	ND	2.5	0.70	U
9-87-6	p-Isopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
03-65-1	n-Propylbenzene	ND	2.5	0.70	U
37-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
20-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
08-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
23-91-1	1,4-Dioxane	ND	250	61.	TR
05-05-5	p-Diethylbenzene	ND	2.0	0.70	U
622-96-8	p-Ethyltoluene	ND	2.0	0.70	U
05-93-2	1,2,4,5-Tetramethylbenzene	ND	2,0	0.54	U
0-29-7	Ethyl ether	ND	2.5	0.70	U

Client : J.R. Holzmacher P.E., LLC
Project Name : MIN MAN CLEANERS

Lab ID : L1926579-09 Client ID : MW-4D

Sample Location : 89 OCEAN AVE., E.

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22190627N13

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A

: 89 OCEAN AVE., E. ROCKAWAY, NY

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502

Lab Number

Date Received

Date Analyzed

GC Column : RTX-502.2 %Solids : N/A Injection Volume : N/A

: L1926579

: 06/19/19

: 06/27/19 23:26

Project Number : MANID 16-01

Date Collected : 06/19/19 11:25

CAS NO. Parameter Results RL MDL Qualifier

110-57-6 trans-1,4-Dichloro-2-butene ND 2.5 0.70 U

Client : J.R. Holzmacher P.E., LLC Project Name : MIN MAN CLEANERS

Lab ID : L1926579-10D Client ID : MW-5S

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22190627N14

Sample Amount : 4 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579

Project Number : MANID 16-01

Date Collected : 06/19/19 10:33

Date Received : 06/27/19 23:54

Dilution Factor : 2.5
Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

		·	ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	6.2	1.8	U
75-34-3	1,1-Dichloroethane	ND	6.2	1.8	U
67-66-3	Chloroform	ND	6.2	1.8	U
56-23-5	Carbon tetrachloride	ND	1.2	0.34	U
78-87-5	1,2-Dichloropropane	ND	2.5	0.34	U
124-48-1	Dibromochloromethane	ND	1.2	0.37	U
79-00-5	1,1,2-Trichloroethane	ND	3.8	1.2	U
127-18-4	Tetrachloroethene	510	1.2	0.45	FR
108-90-7	Chlorobenzene	ND	6.2	1.8	U
75-69-4	Trichlorofluoromethane	ND	6.2	1.8	U
07-06-2	1,2-Dichloroethane	ND	1.2	0.33	U
'1-55-6	1,1,1-Trichloroethane	ND	6.2	1.8	U
75-27-4	Bromodichloromethane	ND	1.2	0.48	U
0061-02-6	trans-1,3-Dichloropropene	ND	1.2	0.41	U
0061-01-5	cis-1,3-Dichloropropene	ND	1.2	0.36	U
42-75-6	1,3-Dichloropropene, Total	ND	1.2	0.36	U
663-58-6	1,1-Dichloropropene	ND	6.2	1.8	U
5-25-2	Bromoform	ND	5.0	1.6	U
9-34-5	1,1,2,2-Tetrachloroethane	ND	1.2	0.42	U
1-43-2	Benzene	ND ND	1.2	0.40	U
08-88-3	Toluene	ND	6.2	1.8	U
00-41-4	Ethylbenzene	ND	6.2	1.8	U
74-87-3	Chloromethane	ND	6.2	1.8	U
4-83-9	Bromomethane	ND	6.2	1.8	U
5-01-4	Vinyl chloride	2.3	2.5	0.18	J

Client : J.R. Holzmacher P.E., LLC
Project Name : MIN MAN CLEANERS

Lab ID : L1926579-10D Client ID : MW-5S

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22190627N14

Sample Amount : 4 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579
Project Number : MANID 16-01
Date Collected : 06/19/19 10:33
Date Received : 06/19/19

: 06/27/19 23:54

Dilution Factor : 2.5
Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

Date Analyzed

ug/L Results MDL CAS NO. Parameter RL Qualifier 75-00-3 Chloroethane ND 6.2 1.8 U 75-35-4 1,1-Dichloroethene 0.84 1.2 0.42 J 156-60-5 trans-1,2-Dichloroethene ND U 6.2 1.8 79-01-6 Trichloroethene 42 1.2 0.44 95-50-1 1,2-Dichlorobenzene ND 6.2 1.8 U 541-73-1 1,3-Dichlorobenzene ND 6.2 1.8 U 1,4-Dichlorobenzene U 106-46-7 ND 6.2 1.8 1634-04-4 Methyl tert butyl ether 27 6.2 1.8 179601-23-1 p/m-Xylene ND 6.2 1.8 U 95-47-6 o-Xylene ND 6.2 1.8 U 1330-20-7 Xylenes, Total ND U 6.2 1.8 156-59-2 cis-1,2-Dichloroethene 18 6.2 1.8 540-59-0 1,2-Dichloroethene, Total 18 6.2 1.8 74-95-3 Dibromomethane ND 12 2.5 96-18-4 1,2,3-Trichloropropane ND U 6.2 1.8 107-13-1 Acrylonitrile ND 12 3.8 -4 100-42-5 Styrene ND 6.2 1.8 U 75-71-8 Dichlorodifluoromethane ND 12 2.5 U ND U 67-64-1 Acetone 12 3.6 Carbon disulfide ND 75-15-0 12 2.5 U 2-Butanone ND 78-93-3 12 4.8 U 108-05-4 Vinyl acetate ND 12 2.5 U 108-10-1 4-Methyl-2-pentanone ND 12 2.5 U 591-78-6 2-Hexanone ND 12 2.5 U ND 74-97-5 Bromochloromethane 6.2 1.8 U

Client : J.R. Holzmacher P.E., LLC **Project Name** : MIN MAN CLEANERS

Lab ID : L1926579-10D Client ID : MW-5S

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER Analytical Method : 1,8260C Lab File ID : V22190627N14

Sample Amount : 4 ml : LOW Level Extract Volume (MeOH): N/A

Lab Number : L1926579 Project Number : MANID 16-01 Date Collected : 06/19/19 10:33 Date Received : 06/19/19

Date Analyzed : 06/27/19 23:54 Dilution Factor : 2.5 **Analyst** : MKS Instrument ID GC Column

: VOA122 : RTX-502.2

	Parameter		ug/L		
CAS NO.		Results	RL	MDL	Qualifier
					4008
594-20-7	2,2-Dichloropropane	ND	6.2	1.8	
106-93-4	1,2-Dibromoethane	ND	5,0	1.6	U
142-28-9	1,3-Dichloropropane	ND	6.2	1.8	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	6.2	1.8	U
108-86-1	Bromobenzene	ND	6.2	1.8	U
104-51-8	n-Butylbenzene	ND	6.2	1.8	U
135-98-8	sec-Butylbenzene	ND	6.2	1.8	U
98-06-6	tert-Butylbenzene	ND	6.2	1.8	U
95-49-8	o-Chlorotoluene	ND	6.2	1.8	U
106-43-4	p-Chlorotoluene	ND	6.2	1.8	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	6.2	1.8	U
37-68-3	Hexachlorobutadiene	ND	6.2	1.8	U
98-82-8	Isopropylbenzene	ND	6.2	1.8	U
99-87-6	p-Isopropyltoluene	ND	6.2	1.8	U
31-20-3	Naphthalene	ND	6.2	1.8	U
103-65-1	n-Propylbenzene	ND	6.2	1.8	U
37-61-6	1,2,3-Trichlorobenzene	ND	6.2	1.8	U
120-82 - 1	1,2,4-Trichlorobenzene	ND	6.2	1.8	U
108-67-8	1,3,5-Trimethylbenzene	ND	6.2	1.8	U
95-63-6	1,2,4-Trimethylbenzene	ND	6.2	1.8	U
123-91-1	1,4-Dioxane	ND	620	150	W R
05-05-5	p-Diethylbenzene	ND	5.0	1.8	U
522-96-8	p-Ethyltoluene	ND	5.0	1.8	U
05-93-2	1,2,4,5-Tetramethylbenzene	ND	5.0	1.4	U
60-29-7	Ethyl ether	ND	6.2	1.8	U

Client : J.R. Holzmacher P.E., LLC Lab Number : L1926579 : MIN MAN CLEANERS **Project Name** Project Number : MANID 16-01 Lab ID : L1926579-10D Date Collected : 06/19/19 10:33 **Client ID** : MW-5S Date Received : 06/19/19 Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY Date Analyzed : 06/27/19 23:54

Dilution Factor Sample Matrix : WATER : 2.5 **Analytical Method** : 1,8260C Analyst : MKS Instrument ID Lab File ID : V22190627N14 : VOA122 Sample Amount GC Column : 4 ml : RTX-502.2

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

CAS NO.	Parameter	ug/L				
		Results	RL	MDL	Qualifier	
110-57-6	trans-1,4-Dichloro-2-butene	ND	6.2	1.8	U	

Client ; J.R. Holzmacher P.E., LLC Lab Number : L1926579 **Project Name** : MIN MAN CLEANERS Project Number : MANID 16-01 Lab ID : L1926579-10D2 Date Collected : 06/19/19 10:33 Client ID : MW-5S Date Received : 06/19/19 Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY Date Analyzed : 06/29/19 14:00 Sample Matrix Dilution Factor : WATER : 10 **Analytical Method** : 1,8260C Analyst : KJD Lab File ID : V22190629A15 Instrument ID : VOA122 GC Column : RTX-502.2

Sample Amount : 1 ml Level : LOW %Solids Extract Volume (MeOH) : N/A Injection Volume : N/A

ug/L CAS NO. Parameter Results MDL RL Qualifier Tetrachloroethene 440 127-18-4 5.0 1.8

: N/A

Client : J.R. Holzmacher P.E., LLC Project Name : MIN MAN CLEANERS

Lab ID : L1926579-11 Client ID : MW-5D

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22190627N15

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A

 Lab Number
 : L1926579

 Project Number
 : MANID 16-01

 Date Collected
 : 06/19/19 10:18

 Date Received
 : 06/19/19

Date Analyzed : 06/28/19 00:21
Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

	Parameter		ug/L		
CAS NO.					
		Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	2.9	2.5	0.70	
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	90	0.50	0.18	
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
07-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
0061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
63-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
'5-25-2	Bromoform	ND	2.0	0.65	U
9-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
1-43-2	Benzene	ND	0.50	0.16	U
08-88-3	Toluene	ND	2.5	0.70	U
00-41-4	Ethylbenzene	ND	2.5	0.70	U
4-87-3	Chloromethane	ND	2.5	0.70	U
4-83-9	Bromomethane	ND	2.5	0.70	U
5-01-4	Vinyl chloride	0.49	1.0	0.07	J

Client : J.R. Holzmacher P.E., LLC Project Name : MIN MAN CLEANERS

Lab ID : L1926579-11 Client ID : MW-5D

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22190627N15

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579

Project Number : MANID 16-01

Date Collected : 06/19/19 10:18

Date Received : 06/19/19

Date Analyzed : 06/28/19 00:21
Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

	Parameter		ug/L		
CAS NO.		Results	RL	MDL	Qualifier
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	0.58	0.50	0.17	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U
79-01-6	Trichloroethene	9.6	0.50	0.18	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	21	2.5	0.70	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U
95-47-6	o-Xylene	ND	2.5	0.70	U
1330-20-7	Xylenes, Total	ND	2.5	0.70	U
156-59-2	cis-1,2-Dichloroethene	2.5	2.5	0.70	
540-59-0	1,2-Dichloroethene, Total	2.5	2.5	0.70	
74-95-3	Dibromomethane	ND	5.0	1.0	U
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U
07-13-1	Acrylonitrile	ND	5.0	1.5	10 R
00-42-5	Styrene	ND	2,5	0.70	U
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U
7-64-1	Acetone	ND	5.0	1.5	U
'5-15-0	Carbon disulfide	ND	5.0	1.0	U
8-93-3	2-Butanone	ND	5.0	1.9	U
08-05-4	Vinyl acetate	ND	5.0	1.0	U
08-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
91-78-6	2-Hexanone	ND	5.0	1.0	U
4-97-5	Bromochloromethane	ND	2.5	0.70	U

Client : J.R. Holzmacher P.E., LLC : MIN MAN CLEANERS **Project Name**

Lab ID : L1926579-11 **Client ID** : MW-5D

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER **Analytical Method** : 1,8260C

Lab File ID : V22190627N15

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A

Lab Number : L1926579 Project Number : MANID 16-01 Date Collected : 06/19/19 10:18 Date Received : 06/19/19

Date Analyzed : 06/28/19 00:21 **Dilution Factor 8 1** Analyst : MKS Instrument ID

: VOA122 : RTX-502.2

%Solids : N/A Injection Volume : N/A

GC Column

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	AT ())	
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U	
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U	
630-20-6	1,1,1,2-Tetrachloroethane	ND	2,5	0.70	U	
108-86-1	Bromobenzene	ND	2.5	0.70	U	
104-51-8	n-Butylbenzene	ND	2.5	0.70	U	
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U	
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U	
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U	
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	
87-68-3	Hexachlorobutadiene	ND	2.5	0.70	U	
98-82-8	Isopropylbenzene	ND	2.5	0.70	U	
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U	
91-20-3	Naphthalene	ND	2.5	0.70	U	
103-65-1	n-Propylbenzene	ND	2.5	0.70	U	
87-61-6	1,2,3-Trichlorobenzene	ND	2,5	0.70	U	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
123-91-1	1,4-Dioxane	ND	250	61.	+ R	
105-05-5	p-Diethylbenzene	ND	2.0	0.70	U	
622-96-8	p-Ethyltoluene	ND	2.0	0.70	U	
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U	
60-29-7	Ethyl ether	ND	2.5	0.70	U	

Client : J.R. Holzmacher P.E., LLC Lab Number : L1926579

Project Name : MIN MAN CLEANERS Project Number : MANID 16-01

Lab ID : L1926579-11 Date Collected : 06/19/19 10:18

Client ID : MW-5D Date Received : 06/19/19

Client ID : MW-5D Date Received : 06/19/19
Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY Date Analyzed : 06/28/19 00:21

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,8260C **Analyst** : MKS Lab File ID : V22190627N15 Instrument ID : VOA122 Sample Amount : 10 ml GC Column : RTX-502.2

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 110-57-6
 trans-1,4-Dichloro-2-butene
 ND
 2.5
 0.70
 U

Client : J.R. Holzmacher P.E., LLC **Project Name** : MIN MAN CLEANERS

Lab ID : L1926579-12 Client ID : MW-9

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER **Analytical Method** : 1,8260C Lab File ID : V22190627N16

Sample Amount : 10 ml : LOW Level

Extract Volume (MeOH): N/A

Lab Number : L1926579 Project Number : MANID 16-01 Date Collected : 06/19/19 10:55 Date Received : 06/19/19

Date Analyzed : 06/28/19 00:49 Dilution Factor : 1

Analyst : MKS Instrument ID : VOA122 GC Column : RTX-502.2

	Parameter		ug/L		
CAS NO.		Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	11	0.50	0.18	W
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	U
74-83-9	Bromomethane	ND	2.5	0.70	U
75-01-4	Vinyl chloride	ND	1.0	0.07	U

Client **Project Name** : J.R. Holzmacher P.E., LLC : MIN MAN CLEANERS

Lab ID

: L1926579-12

Client ID

: MW-9

Sample Location

: 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix **Analytical Method** : WATER : 1,8260C

Lab File ID

: V22190627N16

Sample Amount

Level

: 10 ml : LOW

Extract Volume (MeOH): N/A

Lab Number Project Number : MANID 16-01

: L1926579 Date Collected : 06/19/19 10:55

Date Received Date Analyzed

: 06/19/19 : 06/28/19 00:49

Dilution Factor : 1 Analyst

: MKS : VOA122

Instrument ID GC Column

: RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U
79-01-6	Trichloroethene	0.47	0.50	0.18	J
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U
179601-23-1	p/m-Xylene	ND	2.5	0.70	U
95-47-6	o-Xylene	ND	2.5	0.70	U
1330-20-7	Xylenes, Total	ND	2.5	0.70	U
156-59 - 2	cis-1,2-Dichloroethene	ND	2.5	0.70	U
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U
74-95-3	Dibromomethane	ND	5.0	1.0	U
96-18-4	1,2,3-Trichloropropane	NĐ	2.5	0.70	U
107-13-1	Acrylonitrile	ND	5.0	1.5	w R
100-42-5	Styrene	ND	2.5	0.70	U
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U
67-64-1	Acetone	ND	5.0	1.5	U
75-15-0	Carbon disulfide	ND	5.0	1.0	U
78-93-3	2-Butanone	ND	5.0	1.9	U
108-05-4	Vinyl acetate	ND	5.0	1.0	U
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
591-78-6	2-Hexanone	ND	5.0	1.0	U
74-97-5	Bromochloromethane	ND	2.5	0.70	U

Client : J.R. Holzmacher P.E., LLC Project Name : MIN MAN CLEANERS

Lab ID : L1926579-12 Client ID : MW-9

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C

Lab File ID : V22190627N16

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579

Project Number : MANID 16-01

Date Collected : 06/19/19 10:55

Date Received : 06/19/19

Date Analyzed : 06/28/19 00:49
Dilution Factor : 1

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	W INT
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichloropropane	ND ND	2.5	0.70	U
		* *			
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
87-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
98-82-8	Isopropylbenzene	ND	2.5	0.70	U
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
103-65-1	n-Propylbenzene	ND	2.5	0.70	U
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
123-91-1	1,4-Dioxane	ND	250	61.	+ R
105-05-5	p-Diethylbenzene	ND	2.0	0.70	U
522-96-8	p-Ethyltoluene	ND	2.0	0.70	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
60-29-7	Ethyl ether	ND	2.5	0.70	U

Client : J.R. Holzmacher P.E., LLC Lab Number : L1926579 **Project Name** : MIN MAN CLEANERS Project Number : MANID 16-01 Lab ID : L1926579-12 Date Collected : 06/19/19 10:55 Client ID : MW-9 Date Received : 06/19/19 Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY Date Analyzed : 06/28/19 00:49 Sample Matrix : WATER **Dilution Factor 3** 1

Analytical Method : 1,8260C Analyst : MKS Lab File ID : V22190627N16 Instrument ID : VOA122 Sample Amount : 10 ml GC Column : RTX-502.2 Level : LOW %Solids : N/A

Extract Volume (MeOH): N/A Injection Volume: N/A

	ug/L			
Results	RL	MDL	Qualifier	
ND	25	0.70	П	
	Results			

Client : J.R. Holzmacher P.E., LLC Project Name : MIN MAN CLEANERS

Lab ID : L1926579-13 Client ID : MW-12

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22190627N17

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579

Project Number : MANID 16-01

Date Collected : 06/19/19 12:54

Date Received : 06/19/19

Date Analyzed : 06/28/19 01:17
Dilution Factor : 1

Analyst : MKS Instrument ID : VOA122 GC Column : RTX-502.2

		72	ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2,5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	2.3	0.50	0.18	
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
07-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
'1- 55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
0061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
0061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
663-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
'5-25 - 2	Bromoform	ND	2.0	0.65	U
9-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
1-43-2	Benzene	ND	0.50	0.16	U
08-88-3	Toluene	ND	2.5	0.70	U
00-41-4	Ethylbenzene	ND	2.5	0.70	U
4-87-3	Chloromethane	ND	2.5	0.70	U
4-83-9	Bromomethane	ND	2.5	0.70	U
5-01-4	Vinyl chloride	ND	1.0	0.07	U

Client **Project Name** : J.R. Holzmacher P.E., LLC : MIN MAN CLEANERS

: L1926579-13

Lab ID **Client ID**

: MW-12

Sample Location

: 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix **Analytical Method** : WATER : 1,8260C

Lab File ID

: V22190627N17

Sample Amount

: 10 ml

: LOW Level Extract Volume (MeOH): N/A

Lab Number Project Number : MANID 16-01

: L1926579 Date Collected : 06/19/19 12:54

Date Received : 06/19/19

Date Analyzed **Dilution Factor**

: 06/28/19 01:17 (2) 1

Analyst Instrument ID GC Column

: MKS : VOA122 : RTX-502.2

%Solids : N/A

Injection Volume : N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75.00.0	Chloroethane	ND	0.5	0.70		
75-00-3	***************************************	ND	2.5	0.70	U	
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U	
79-01-6	Trichloroethene	ND	0.50	0.18	U	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	
1330-20-7	Xylenes, Total	ND	2.5	0.70	U	
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U	
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U	
74-95-3	Dibromomethane	ND	5.0	1.0	U	
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U	
107-13-1	Acrylonitrile	ND	5.0	1.5	-OR	
100-42-5	Styrene	ND	2.5	0.70	U	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U	
67-64-1	Acetone	ND	5.0	1.5	U	
75-15-0	Carbon disulfide	ND	5.0	1.0	U	
78-93-3	2-Butanone	ND	5.0	1.9	U	
108-05-4	Vinyl acetate	ND	5.0	1.0	U	
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	
591-78-6	2-Hexanone	ND	5.0	1.0	U	
74-97-5	Bromochloromethane	ND	2.5	0.70	U	

Client : J.R. Holzmacher P.E., LLC
Project Name : MIN MAN CLEANERS

Lab ID : L1926579-13 Client ID : MW-12

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22190627N17

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579

Project Number : MANID 16-01

Date Collected : 06/19/19 12:54

Date Received : 06/28/19 01:17

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	4117
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	2,5	0.70	U
87-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
98-82-8	Isopropylbenzene	ND	2.5	0.70	U
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
103-65-1	r-Propylbenzene	ND	2.5	0.70	U
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
123-91-1	1,4-Dioxane	ND	250	61.	JI-R
105-05-5	p-Diethylbenzene	ND	2.0	0.70	U
622-96-8	p-Ethyltoluene	ND	2.0	0.70	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
60-29-7	Ethyl ether	ND	2.5	0.70	U
			1111	annun minimum annun minimum mi	

Client : J.R. Holzmacher P.E., LLC Lab Number : L1926579

Project Name : MIN MAN CLEANERS Project Number : MANID 16-01

Lab ID : L1926579-13 Date Collected : 06/19/19 12:54

Client ID : MW-12 Date Received : 06/19/19

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY Date Analyzed : 06/28/19 01:17
Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 1,8260C Analyst : MKS
Lab File ID : V22190627N17 Instrument ID : VOA122
Sample Amount : 10 ml GC Column : RTX-502.2

Level: LOW: %Solids: N/A
Extract Volume (MeOH): N/A: Injection Volume: N/A

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 110-57-6
 trans-1,4-Dichloro-2-butene
 ND
 2.5
 0.70
 U

Client : J.R. Holzmacher P.E., LLC
Project Name : MIN MAN CLEANERS

Lab ID : L1926579-14 Client ID : MW-14S

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22190627N18

Lab File ID : V22190627N1: Sample Amount : 10 ml

Level : LOW
Extract Volume (MeOH) : N/A

 Lab Number
 : L1926579

 Project Number
 : MANID 16-01

 Date Collected
 : 06/19/19 09:41

Date Received : 06/19/19
Date Analyzed : 06/28/19 01:45

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	4.9	2.5	0.70	
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	0.91	0.50	0.18	500000000000000000000000000000000000000
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	U
74-83-9	Bromomethane	ND	2.5	0.70	U
75-01-4	Vinyl chloride	ND	1.0	0.07	U

Client : J.R. Holzmacher P.E., LLC Project Name : MIN MAN CLEANERS

Lab ID : L1926579-14 Client ID : MW-14S

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C

Lab File ID : V22190627N18

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A

 Lab Number
 : L1926579

 Project Number
 : MANID 16-01

 Date Collected
 : 06/19/19 09:41

 Date Received
 : 06/19/19

Date Analyzed : 06/28/19 01:45
Dilution Factor : 1
Analyst : MKS

Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U
79-01-6	Trichloroethene	ND	0.50	0.18	U
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	15	2.5	0.70	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U
95-47-6	o-Xylene	ND	2.5	0.70	U
1330-20-7	Xylenes, Total	ND	2.5	0.70	U
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U
74-95-3	Dibromomethane	ND	5.0	1.0	U
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U
107-13-1	Acrylonitrile	ND	5.0	1.5	w R
100-42-5	Styrene	ND	2.5	0.70	U
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U
67-64-1	Acetone	ND	5.0	1.5	U
75-15-0	Carbon disulfide	ND	5.0	1.0	U
78-93-3	2-Butanone	ND	5.0	1.9	U
108-05-4	Vinyl acetate	ND	5.0	1.0	U
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
591-78-6	2-Hexanone	ND	5.0	1.0	U
74-97-5	Bromochloromethane	ND	2.5	0.70	U

Client **Project Name**

J.R. Holzmacher P.E., LLC : MIN MAN CLEANERS

Lab ID **Client ID** : L1926579-14 : MW-14S

Sample Location

: 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix Analytical Method

: WATER : 1,8260C

Lab File ID

: V22190627N18

Sample Amount Level

: 10 ml

: LOW Extract Volume (MeOH) : N/A

Lab Number

: L1926579 Project Number : MANID 16-01

Date Collected : 06/19/19 09:41 Date Received

: 06/19/19

Date Analyzed Dilution Factor

: 06/28/19 01:45 : 1

Analyst Instrument ID GC Column

: VOA122 : RTX-502.2

: MKS

		-	ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	*UJ
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
87-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
98-82-8	Isopropylbenzene	ND	2.5	0.70	U
99-87 - 6	p-Isopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
103-65-1	n-Propylbenzene	ND	2.5	0.70	U
37-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
123-91-1	1,4-Dioxane	ND	250	61.	UR
105-05-5	p-Diethylbenzene	ND	2.0	0.70	U
522-96-8	p-Ethyltoluene	ND	2.0	0.70	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
60-29-7	Ethyl ether	ND	2.5	0.70	U

Client : J.R. Holzmacher P.E., LLC Lab Number : L1926579 : MIN MAN CLEANERS **Project Name** Project Number : MANID 16-01 : L1926579-14 Lab ID **Date Collected** : 06/19/19 09:41 **Client ID** : MW-14S **Date Received** : 06/19/19 Date Analyzed Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY : 06/28/19 01:45

Sample Matrix : WATER **Dilution Factor** : 1 **Analytical Method** : 1,8260C **Analyst** : MKS Lab File ID : V22190627N18 Instrument ID : VOA122 Sample Amount : 10 ml GC Column : RTX-502.2

Level : LOW %Solids : N/A
Extract Volume (MeOH) : N/A Injection Volume : N/A

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 110-57-6
 trans-1,4-Dichloro-2-butene
 ND
 2.5
 0.70
 U

Client : J.R. Holzmacher P.E., LLC
Project Name : MIN MAN CLEANERS

Lab ID : L1926579-15 Client ID : MW-14D

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22190627N19

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579

Project Number : MANID 16-01

Date Collected : 06/19/19 09:26

Date Received : 06/19/19

Date Analyzed : 06/28/19 02:13
Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

		-	ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	ND	0.50	0.18	U
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
07-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
1-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
' 5-27-4	Bromodichloromethane	ND	0.50	0.19	U
0061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
0061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
642-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
63-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
5-25-2	Bromoform	ND	2.0	0.65	U
9-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
1-43-2	Benzene	ND	0.50	0.16	U
08-88-3	Toluene	ND	2.5	0.70	U
00-41-4	Ethylbenzene	ND	2.5	0.70	U
4-87-3	Chloromethane	ND	2.5	0.70	U
4-83-9	Bromomethane	ND	2.5	0.70	U
5-01-4	Vinyl chloride	ND	1.0	0.07	U
	We mile infinition				

Client : J.R. Holzmacher P.E., LLC
Project Name : MIN MAN CLEANERS

Lab ID : L1926579-15 Client ID : MW-14D

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22190627N19

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579

Project Number : MANID 16-01

Date Collected : 06/19/19 09:26

Date Received : 06/19/19

Date Analyzed : 06/28/19 02:13
Dilution Factor : 1

Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U
79-01-6	Trichloroethene	ND	0.50	0.18	U
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U
179601-23-1	p/m-Xylene	ND	2.5	0.70	U
95-47-6	o-Xylene	ND	2.5	0.70	U
1330-20-7	Xylenes, Total	ND	2.5	0.70	U
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U
74-95-3	Dibromomethane	ND	5.0	1.0	U
96-18-4	1,2,3-Trichloropropane	ND	2,5	0.70	U
107-13-1	Acrylonitrile	ND	5.0	1.5	JU-R
100-42-5	Styrene	ND	2.5	0.70	U
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U
67-64-1	Acetone	ND	5.0	1.5	U
75-15-0	Carbon disulfide	ND	5.0	1.0	U
78-93-3	2-Butanone	ND	5.0	1.9	U
08-05-4	Vinyl acetate	ND	5.0	1.0	U
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
591-78-6	2-Hexanone	ND	5.0	1.0	U
74-97-5	Bromochloromethane	ND	2.5	0.70	U

Client : J.R. Holzmacher P.E., LLC
Project Name : MIN MAN CLEANERS

Lab ID : L1926579-15 Client ID : MW-14D

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22190627N19

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579
Project Number : MANID 16-01
Date Collected : 06/19/19 09:26
Date Received : 06/28/19 02:13

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	4 ()]
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
37-68-3	Hexachlorobutadiene	ND	2.5	0.70	υ
98-82-8	Isopropylbenzene	ND	2.5	0.70	U
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
03-65-1	n-Propylbenzene	ND	2.5	0.70	U
37-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
20-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
08-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
23-91-1	1,4-Dioxane	ND	250	61.	UR
05-05-5	p-Diethylbenzene	ND	2.0	0.70	U
22-96-8	p-Ethyltoluene	ND	2.0	0.70	U
5-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
0-29-7	Ethyl ether	ND	2.5	0.70	U

Client : J.R. Holzmacher P.E., LLC
Project Name : MIN MAN CLEANERS

Lab ID : L1926579-15 Client ID : MW-14D

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22190627N19

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579
Project Number : MANID 16-01
Date Collected : 06/19/19 09:26

Date Received : 06/19/19
Date Analyzed : 06/28/19 02:13
Dilution Factor : 1

Analyst : MKS Instrument ID : VOA122 GC Column : RTX-502.2

		ug/L				
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
110-57-6	trans-1 4-Dichloro-2-hutene	ND	2.5	0.70	П	
110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.70	U	

Client **Project Name** : J.R. Holzmacher P.E., LLC : MIN MAN CLEANERS

Lab ID Client ID : L1926579-16 : MW-14WT

Sample Location

: 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix Analytical Method

: 1,8260C

Lab File ID

: V22190627N20

Sample Amount Level

: 10 ml : LOW Extract Volume (MeOH): N/A

: WATER

Analyst Instrument ID GC Column %Solids

Lab Number

Date Collected

Date Received

Date Analyzed

Dilution Factor

(1) : MKS : VOA122 : RTX-502.2

: L1926579

: 06/19/19

: 06/19/19 09:56

: 06/28/19 02:42

Project Number : MANID 16-01

: N/A Injection Volume : N/A

· ·			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	22	0.50	0.18	
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0,50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	Ü
71-43-2	Benzene	ND	0.50	0.16	U
08-88-3	Toluene	ND	2.5	0.70	U
00-41-4	Ethylbenzene	ND	2,5	0.70	U
' 4-87-3	Chloromethane	ND	2.5	0.70	U
'4-83-9	Bromomethane	ND	2.5	0.70	U
75-01-4	Vinyl chloride	ND	1.0	0.07	U

Client ; J.R. Holzmacher P.E., LLC Project Name : MIN MAN CLEANERS

Lab ID : L1926579-16 Client ID : MW-14WT

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22190627N20

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579

Project Number : MANID 16-01

Date Collected : 06/19/19 09:56

Date Received : 06/28/19 02:42

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-00-3	Chloroethane	ND	2.5	0.70	11
				0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U
79-01-6	Trichloroethene	0.57	0.50	0.18	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U
179601-23-1	p/m-Xylene	ND	2.5	0.70	U
95-47-6	o-Xylene	ND	2.5	0.70	U
330-20-7	Xylenes, Total	ND	2.5	0.70	U
56-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U
74-95-3	Dibromomethane	ND	5.0	1.0	U
6-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U
107-13-1	Acrylonitrile	ND	5.0	1.5	w R
00-42-5	Styrene	ND	2.5	0.70	U
'5-71 - 8	Dichlorodifluoromethane	ND	5.0	1.0	U
7-64-1	Acetone	ND	5.0	1.5	U
'5-15-0	Carbon disulfide	ND	5.0	1.0	U
8-93-3	2-Butanone	ND	5.0	1.9	U
08-05-4	Vinyl acetate	ND	5.0	1.0	U
08-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
91-78-6	2-Hexanone	ND	5.0	1.0	U
4-97-5	Bromochloromethane	ND	2.5	0.70	U
					

Client : J.R. Holzmacher P.E., LLC
Project Name : MIN MAN CLEANERS

Lab ID : L1926579-16 Client ID : MW-14WT

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22190627N20

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579
Project Number : MANID 16-01
Date Collected : 06/19/19 09:56
Date Received : 06/28/19 02:42

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2
%Solids : N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	WIT
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51 - 8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
37-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
98-82-8	Isopropylbenzene	ND	2.5	0.70	U
99-87-6	p-isopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
103-65-1	n-Propylbenzene	ND	2.5	0.70	U
37-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
23-91-1	1,4-Dioxane	ND	250	61.	-U-R
05-05-5	p-Diethylbenzene	ND	2.0	0.70	U
522-96-8	p-Ethyltoluene	ND	2.0	0.70	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
60-29-7	Ethyl ether	ND	2.5	0.70	U
	WW				

Client ; J.R. Holzmacher P.E., LLC Lab Number : L1926579

Project Name : MIN MAN CLEANERS Project Number : MANID 16-01

Lab ID : L1926579-16 Date Collected : 06/19/19 09:56

Client ID : MW-14WT Date Received : 06/19/19

Sample Location : 89 OCEAN AVE F. ROCKAWAY NV

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY Date Analyzed : 06/28/19 02:42
Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,8260C Analyst : MKS

Analytical Method : 1,8260C Analyst : MKS
Lab File ID : V22190627N20 Instrument ID : VOA122
Sample Amount : 10 ml GC Column : RTX-502.2
Level : LOW %Solids : N/A

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

	Parameter	ug/L				
CAS NO.		Results	RL	MDL	Qualifier	
110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.70	U	

Client : J.R. Holzmacher P.E., LLC
Project Name : MIN MAN CLEANERS

Lab ID : L1926579-17D

Client ID : DB-1

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C

Lab File ID : V22190627N21

Sample Amount : 5 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579
Project Number : MANID 16-01
Date Collected : 06/19/19 11:10

Date Received : 06/19/19
Date Analyzed : 06/28/19 03:10

Dilution Factor : 2
Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-09-2	Methylene chloride	ND	5.0	1.4	U	
75-34-3	1,1-Dichloroethane	ND	5.0	1.4	U	
67-66-3	Chloroform	ND	5.0	1.4	U	
56-23-5	Carbon tetrachloride	ND	1.0	0.27	U	
78-87-5	1,2-Dichloropropane	ND	2.0	0.27	U	
124-48-1	Dibromochloromethane	ND	1.0	0.30	U	
79-00-5	1,1,2-Trichloroethane	ND	3.0	1.0	U	
127-18-4	Tetrachloroethene	330	1.0	0.36		
108-90-7	Chlorobenzene	ND	5.0	1.4	U	
75-69-4	Trichlorofluoromethane	ND	5.0	1.4	U	
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	U	,
71-55-6	1,1,1-Trichloroethane	ND	5.0	1.4	U	
75-27-4	Bromodichloromethane	0.44	1.0	0.38	J	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.33	υ	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0,29	U	
542-75-6	1,3-Dichloropropene, Total	ND	1.0	0.29	U	
563-58-6	1,1-Dichloropropene	ND	5.0	1.4	U	
75-25-2	Bromoform	ND	4.0	1.3	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	U	
71-43-2	Benzene	ND	1.0	0.32	U	
108-88-3	Toluene	ND	5.0	1.4	U	
100-41-4	Ethylbenzene	ND	5.0	1.4	U	
74-87-3	Chloromethane	ND	5.0	1.4	U	1116
74-83-9	Bromomethane	ND	5.0	1.4	U	
75-01-4	Vinyl chloride	2.5	2.0	0.14		

Client : J.R. Holzmacher P.E., LLC
Project Name : MIN MAN CLEANERS

Lab ID : L1926579-17D

Client ID : DB-1

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C

Lab File ID : V22190627N21

Sample Amount : 5 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579
Project Number : MANID 16-01
Date Collected : 06/19/19 11:10

Date Received : 06/19/19
Date Analyzed : 06/28/19 03:10

Dilution Factor : 2
Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-00-3	Chloroethane	ND	5.0	1.4	U	
75-35-4	1,1-Dichloroethene	0.84	1.0	0.34	J	
156-60-5	trans-1,2-Dichloroethene	ND	5.0	1.4	U	
79-01-6	Trichloroethene	43	1.0	0.35		
95-50-1	1,2-Dichlorobenzene	ND	5.0	1.4	U	
541-73-1	1,3-Dichlorobenzene	ND	5.0	1.4	U	
106-46-7	1,4-Dichlorobenzene	ND	5.0	1.4	U	
1634-04-4	Methyl tert butyl ether	10	5.0	1.4		
179601-23-1	p/m-Xylene	ND	5.0	1.4	U	
95-47-6	o-Xylene	ND	5.0	1.4	U	
1330-20-7	Xylenes, Total	ND	5.0	1.4	U	
156-59-2	cis-1,2-Dichloroethene	14	5.0	1.4		
540-59-0	1,2-Dichloroethene, Total	14	5.0	1.4		
74-95-3	Dibromomethane	ND	10	2,0	U	
96-18-4	1,2,3-Trichloropropane	ND	5.0	1.4	U	
107-13-1	Acrylonitrile	ND	10	3.0	-tr R	
100-42-5	Styrene	ND	5.0	1.4	U	
75-71-8	Dichlorodifluoromethane	ND	10	2.0	U	
67-64-1	Acetone	ND	10	2.9	U	
75-15-0	Carbon disulfide	ND	10	2.0	U	
78-93-3	2-Butanone	ND	10	3.9	U	
108-05-4	Vinyl acetate	ND	10	2.0	U	
108-10-1	4-Methyl-2-pentanone	ND	10	2.0	U	
591-78-6	2-Hexanone	ND	10	2.0	U	
74-97-5	Bromochloromethane	ND	5.0	1.4	U	

Client : J.R. Holzmacher P.E., LLC Project Name : MIN MAN CLEANERS

Lab ID : L1926579-17D Client ID : DB-1

Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22190627N21

Sample Amount : 5 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1926579

Project Number : MANID 16-01

Date Collected : 06/19/19 11:10

Date Received : 06/19/19

Date Analyzed : 06/28/19 03:10
Dilution Factor : 2

Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

		l	ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
594-20-7	2,2-Dichloropropane	ND	5.0	1.4	#117
	1,2-Dibromoethane	ND	4.0	1.3	U
106-93-4	·				
142-28-9	1,3-Dichloropropane	ND	5.0	1.4	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	1.4	U
108-86-1	Bromobenzene	ND	5.0	1.4	U
104-51-8	n-Butylbenzene	ND	5.0	1.4	U
135-98-8	sec-Butylbenzene	ND	5.0	1.4	U
98-06-6	tert-Butylbenzene	ND	5.0	1.4	U
95-49-8	o-Chlorotoluene	ND	5.0	1.4	U
106-43-4	p-Chlorotoluene	ND	5.0	1.4	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.4	U
87-68-3	Hexachlorobutadiene	ND	5.0	1.4	U
98-82-8	Isopropylbenzene	ND	5.0	1.4	U
99-87-6	p-Isopropyltoluene	ND	5.0	1.4	U
91-20-3	Naphthalene	ND	5.0	1.4	U
103-65-1	n-Propylbenzene	ND	5.0	1.4	U
37-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.4	U
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	1.4	U
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	1.4	U
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	1.4	υ
123-91-1	1,4-Dioxane	ND	500	120	# R
105-05-5	p-Diethylbenzene	ND	4.0	1.4	U
622-96-8	p-Ethyltoluene	ND	4.0	1.4	U
5-93-2	1,2,4,5-Tetramethylbenzene	ND	4.0	1.1	U
60-29-7	Ethyl ether	ND	5.0	1.4	U

Client : J.R. Holzmacher P.E., LLC Lab Number : L1926579 : MIN MAN CLEANERS **Project Name** Project Number : MANID 16-01 : L1926579-17D Lab ID Date Collected : 06/19/19 11:10 **Client ID** Date Received : DB-1 : 06/19/19 Sample Location : 89 OCEAN AVE., E. ROCKAWAY, NY Date Analyzed : 06/28/19 03:10

Sample Matrix : WATER **Dilution Factor** : 2 **Analytical Method** : 1,8260C Analyst : MKS Lab File ID Instrument ID : V22190627N21 : VOA122 Sample Amount : 5 ml GC Column : RTX-502.2

Level: LOW: %Solids: N/A
Extract Volume (MeOH): N/A: N/A
Injection Volume: N/A

		ug/L				
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0	1.4	U	

DATA USABILITY SUMMARY REPORT (DUSR)

ORGANIC ANALYSIS

EPA Compendium Method TO-15 LOW LEVEL VOLATILES BY GC/MS For Soil Vapor Air - Effluent Sample Collected June 19, 2019 **Minuteman Cleaners** From 89 Ocean Avenue, East Rockaway, New York by J.R. Holzmacher P.E. LLC. Project #: ManID 16-01

> SAMPLE DELIVERY GROUP NUMBER: L1926703 Alpha Analytical (ELAP #11148)

SUBMITTED TO:

Ms. Patricia Zalak J.R. Holzmacher P.E., LLC 3555 Veterans Memorial Highway, Suite A Ronkonkoma, NY 11779

July 13, 2019

PREPARED BY:

Lori A. Beyer/President L.A.B. Validation Corp. 14 West Point Drive four a. Blyll

L.A.B. Validation Corp. 14 West Point Drive, East Northport, N.Y. 11731

89 Ocean Avenue, East Rockaway, New York; June 2019. Data Validation Report: Volatile Organics

Table of Contents:

Introduction

Data Qualifier Definitions

Sample Receipt

- 1.0 Volatile Organics by GC/MS EPA Compendium Method TO-15
 - 1.1 Holding Time
 - 1.2 Surrogate Standards
 - 1.3 Matrix Spikes (MS), Matrix Spike Duplicates (MSD), Laboratory Duplicate, Field Duplicate Analysis
 - 1.4 Laboratory Control Sample
 - 1.5 Blank Contamination
 - 1.6 GC/MS Instrument Performance Check
 - 1.7 Initial and Continuing Calibrations
 - 1.8 Internal Standards
 - 1.9 Target Compound List Identification
 - 1.10 Tentatively Identified Compounds
 - 1.11 Compound Quantification and Reported Detection Limits
 - 1.12 Overall System Performance

APPENDICES:

- A. Chain of Custody Document
- B. Case Narrative
- C. Form Is with Qualifications

Introduction:

A validation was performed on an Effluent soil vapor sample for Volatile Organic analysis collected by J.R. Holzmacher, P.E., LLC and submitted to Alpha Analytical for subsequent analysis under chain of custody documentation. This report contains the laboratory and validation results for the Effluent sample collected on June 19, 2019.

The sample was analyzed by Alpha Analytical utilizing EPA Method TO-15 and in accordance with NYSDEC Analytical Services Protocol (2005) and submitted under NYSDEC ASP Category B equivalent deliverable requirements for the associated analytical methodology employed. The analytical testing consisted of the TO-15 Compound List.

The data was evaluated in accordance with the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (Publication 9240.1-05), EPA SOP #HW31 (Revision 6-Updated September 2016) and in conjunction with the analytical methodology for which the sample was analyzed, where applicable and relevant.

Data Qualifier Definitions:

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, but the result may be biased high. (Equis File qualified, JK)
- J- The result is an estimated quantity, but the result may be biased low. (Equis File qualified, JL)
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- UJ The analyte was analyzed for but not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample.
- D Analyte concentration was obtained from diluted analysis.

Sample Receipt:

The Chain of Custody document from 06/19/19 indicates that the air sample was received via laboratory courier following completion of the sampling event on 06/19/2019. Sample login notes and the chain of custody indicate that at the Validated Time of Sample Receipt (VTSR) at the laboratory no discrepancies were notated and therefore the integrity of the summa canister sample is assumed to be good.

Summa Canisters were leak tested prior to collection of each sample. Initial pressure gauge is recorded on the chain of custody and is required to be approximately 30 psi with zero air. Acceptable canister pressure was observed. The canister passed the leak check requirements; canister pressure for Hg was acceptable.

The Form I's included in Appendix C includes all usable (qualified) and unusable (rejected) results for the samples identified above and summarize the detailed narrative section of the report. All data validation qualifications have been reported on the Form I's for ease of review and verification.

NOTE:

L.A.B. Validation Corp. believes it is appropriate to note that the data validation criteria utilized for data evaluation is different than the method requirements utilized by the laboratory. Qualified data does not necessarily mean that the laboratory was non-compliant in the analysis that was performed.

Volatile Organics by EPA Compendium Method TO-15

The following method criteria were reviewed: holding times, surrogate standards, LCS, Blanks, Laboratory Duplicate, Tunes, Calibrations, Internal Standards, Target Component Identification and Quantitation, Reported Quantitation Limits and Overall System Performance. The volatile results are valid and useable as noted on the data summary Form I's in Appendix C and within the following text:

1.1 Holding Time

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

The Effluent sample was analyzed within the method and technical required holding times of thirty (30) days from sample collection for analysis. No qualifications were required based upon holding time criteria.

1.2 Surrogate Standards

All samples are spiked with surrogate compounds prior to sample analysis to evaluate overall laboratory performance and efficiency of the analytical technique. If the measure of surrogate concentrations is outside contract specifications, qualifications are required to be applied to associated samples and analytes.

Samples were not spiked with surrogate standards. Method TO15 does not mandate the addition of surrogate standards.

1.3 Matrix Spikes (MS)/ Matrix Spike Duplicates (MSD)/Laboratory Duplicate /Field Duplicate Analysis

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices.

Matrix Spike/Matrix Spike Duplicate analysis was not performed.

Batch laboratory duplicate was submitted in the data package. Data was not qualified based on non-site-specific QC.

Field Duplicate analysis was not required for this sampling event. The following criteria are utilized for Field/Lab Duplicate analysis when performed:

Criteria	Detected Compounds	Non-Detected Compounds
The RPD is within the limits of 0 and 25%	No qualification	No qualification
The RPD >25%	J in the parent and duplicate samples	Not applicable
The RPD could not be calculated since the compound was only detected in either the parent of duplicate sample. However, the detected concentration was =2x the reporting limit</td <td>No qualification</td> <td>No qualification</td>	No qualification	No qualification
The RPD could not be calculated since the compound was only detected in either the parent or duplicate sample However, the detected concentration was >2x the reporting limit.	J in the parent and duplicate sample	UJ in the parent of duplicate sample

No qualifications to the data were applied based on MS/MSD/Laboratory Duplicate and Field Duplicate analysis.

1.4 Laboratory Control Sample

The LCS data for laboratory control samples (LCS) are generated to provide information on the accuracy of the analytical method and on the laboratory performance.

The following table summarizes the LCS criteria and the data qualification guidelines for all associated field samples.

LCS	NOT QUALIFIED	J	R
% Recovery:			
Detects	70-130%	<70%,>130%	
Non-Detects	>/=130%	50-69%	<50%
Absolute RT of LCS			
Compounds:			
LCS Compounds in	+/-0 .33		>/=0.33
samples RT: (min)			

Acceptable LCS was analyzed. Recovery values for all reported compounds was determined to be >70%-<130%. No qualifications to the data are required.

1.5 Blank Contamination

Quality assurance (QA) blanks; i.e. method, trip and field blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field blanks measure cross-contamination of samples during field operations. Storage blanks measure cross-contamination during sample storage of the field samples and are not required for TO15 analysis. Canister blanks measure cross-contamination from the sampling media.

The following table was utilized to qualify target analyte results due to method blank contamination. The largest value from all the associated blanks is required to be utilized. The largest value from all the associated blanks is required to be utilized:

Blank Type	Blank Result	Sample Result	Action for Samples
Method, Storage, field,	Detects	Not Detected	No qualification required
Trip, Instrument	<crql*< td=""><td><crql*< td=""><td>Report CRQL value with a U</td></crql*<></td></crql*<>	<crql*< td=""><td>Report CRQL value with a U</td></crql*<>	Report CRQL value with a U
		>/= CRQL* and <2x the CRQL**	No qualification required
	>CRQL*	= CRQL*</td <td>Report CRQL value with a U</td>	Report CRQL value with a U
		>/=CRQL* and = blank</td <td>Report blank value for sample concentration</td>	Report blank value for sample concentration
		concentration	with a U
		>/= CRQL* and > blank	No qualification required
		concentration	
	=CRQL*	= CRQL*</td <td>Report CRQL value with a U</td>	Report CRQL value with a U
		>CRQL*	No qualification required
	Gross Contamination**	Detects	Report blank value for sample concentration with a U

^{*2}x the CRQL for methylene chloride, 2-butanone and acetone.

The table below is utilized to qualify samples with target compound results also present in certification blanks:

Certification Contamination	Sample Result	Action for Sample
>/=detect limit	>5x certification contamination	No qualification required
>/=detect limit	<detect limit<="" td=""><td>Detection limit "U"</td></detect>	Detection limit "U"
>/=detect limit	>/=detect limit and = 5x<br certification contamination level	5x certification contamination "U"
<detect limit<="" td=""><td><!--=detection limit and -->/= detection limit</td><td>No qualification</td></detect>	=detection limit and /= detection limit	No qualification

^{**4}x the CRQL for methylene chloride, 2-butanone, and acetone

^{***}Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed 100 ug/L. Below is a summary of the compounds in the sample and the associated qualifications that have been applied:

Below is a summary of the compounds in the sample and the associated qualifications that have been applied:

- A) Method Blank Contamination:

 Method and Canister blanks were determined to be free of any contamination.
- B) Field Blank Contamination: Field Blank analysis was not required for this SDG.
- C) Trip Blank Contamination:
 Trip Blank analysis was not required for this SDG.

1.6 GC/MS Instrument Performance Check

Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The Tuning standard for volatile organics is Bromofluorobenzene (BFB).

Instrument performance was generated within acceptable limits and frequency (24 hours) for Bromofluorobenzene (BFB) for all analyses conducted for this SDG.

1.7 Initial and Continuing Calibrations

Satisfactory instrument calibration is established to ensure that the instrument can produce acceptable quantitative data. An initial calibration demonstrates that the instrument can give acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instrument is giving satisfactory daily performance.

A) Response Factor GC/MS:

The response factor measures the instrument's response to specific chemical compounds. The response factor for all compounds must be >/= 0.05 in both initial and continuing calibrations. A value <0.05 indicates a serious detection and quantitation problem (poor sensitivity). Analytes detected in the sample will be qualified as

estimated, "J". All non-detects for that compound in the corresponding samples will be rejected, "R".

The following compounds can be >0.01 without qualification:

2-Butanone

Carbon Disulfide

Chloroethane

Chloromethane

1,2-Dibromoethane

1,2-Dichloropropane

1,4-Dioxane

1,2-Dibromo-3-chloropropane

Methylene Chloride

All the response factors for the target analytes reported were found to be within acceptable limits (>/=0.05) [or >/=0.01 for the 9 compounds above] and remaining analytes, for the initial and continuing calibrations.

B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D):

Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentrations. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be <30% and %D must be <30%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and non-detects are flagged "UJ". If %RSD and %D grossly exceed QC criteria (>90%), non-detect data may be qualified, "R", unusable. Additionally, in cases where the %RSD is >30% and eliminating either the high or the low point of the curve does not restore the %RSD to less than or equal to 30% then positive results are qualified, "J". In cases where removal of either the low or high point restores the linearity, then only low or high-level results will be qualified, "J" in the portion of the curve where non-linearity exists.

Initial Calibrations: The initial calibrations provided and the %RSD was within acceptable limits (30%) and (40%) for poor responders for all requested target compounds. Initial calibration verification standard met QC requirements.

Continuing Calibrations: The continuing calibrations provided and the %D was within acceptable limits (30%) and (40%) for poor responders for all reported compounds.

1.8 Internal Standards

Internal Standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of 2 (-40% to +40%) from the associated continuing calibration standard. The retention time of the internal standard must not vary more than +/-20 seconds from the associated continuing calibration standard. If the area count is outside the (-40% to +40%) range of the associated standard, all positive results for compounds quantitated using that IS are qualified as estimated, "J", and all non-detects as "UJ", or "R" if there is a severe loss of sensitivity.

If an internal standard retention time varies by more than 20 seconds, professional judgment will be used to determine either partial or total rejection of the data for that sample fraction.

Internal Standard area responses met QC requirements.

1.9 Target Compound List Identification

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within =/- 0.06RRT units of the standard compound and have an ion spectrum which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound.

GC/MS spectra met the qualitative criteria for identification. All retention times were within required specifications.

1.10 Tentatively Identified Compounds (TICs)

TICs when submitted, the identification must be considered tentative (both quantitative and qualitative) due to the lack of required compound specific response factors. Consequently, all concentrations should be considered estimated, "J" and because of the qualitative

uncertainty should be qualified, "N" where an identification has been made.

TICs were not required with this data set.

1.11 Compound Quantification and Reported Detection Limits

GC/MS quantitative analysis are acceptable. Correct internal standards and response factors and air volumes were used to calculate final concentrations.

Sample results have been presented in ug/m3 as well as ppbv on the laboratory reporting forms. Effluent sample was analyzed at 119mls since the canister was pressurized with nitrogen which resulted in a dilution of 1:2.099. Tetrachloroethene concentration is within the linear calibration range. Dilution is acceptable. There is potential that lower level hits were lost in dilution. Reporting limits have been adjusted accordingly.

The narrative indicates that the reported concentration of Acetone (6.25 ug/m3) should be considered estimated due to coelution with a non-target peak. Review of the mass spectrum and peak indicate minimal potential interference and therefore results were not qualified based on this notation by the laboratory.

1.12 Overall System Performance

GC/MS analytical methodology was acceptable for this analysis. The data reported agrees with the raw data provided in the final report. The laboratory provided complete data package and reported all data using acceptable protocols and laboratory qualifiers as defined in the report package.

Reviewer's Signature Louis Bly Date 07/13/2019

Appendix A
Chain of Custody
Document

AIR AIR OF CUSTODY	SUSTODY BRIGHT LE	- Date Rec'd in Lab: 6/20/19	ALPHA Job#: (1926703
320 Forbes Bivd, Mansfield, MA 02048 TEL: 508-822-9300 FAX: 508-822-3288 Citent Information	Project Name: Min Pro (Kend) Project Location: 99 Oce Alv. F. C. F.	A G	Billing Information Reame as Client Info Po#:
Client TR Holzmicher Project#: Manager: Address: JSSS Leten, HLy Supple Project Manager: Abone (7) 1179, ALPHA Quote #:	10 16-01 95 Set	1	latory
Fex: 67 27 27 120	Turn-Around Time RUSH corporate fun-assessments	Report to: (* affirmet than Project Managari	N. Cay-B
These samples have been proviously analyzed by Alpha Date Other Project Specific Requirements/Comments:	Date Due: Time: nents:		D Sal of and
ALPHA Lab ID Sample ID (Lab Use Only)	All Columns Below Must COLLECTION Milital Final	Be Filled Out Sample Samplers Can 1.D 10-Flow	SOSED POXI
926705.01 Eff Inent	11.0-0-12-847 my 19/19/2	SV A 10 818 0736 X	
*SAMPLE MATRIX CODES SV.	AA = Ambient Air (Indocor)Outdoor) SV = Soil Vapor/Landfill Gas/SVE Other = Pleuse Specify	Container Type	Please print clearly, legibly and completely. Samples can not be
7	Relinquished By: Date/Time	Received By: All Circ. III	ime:
Form No. 101-02 Rev. (25-Sap-15)	16/10 CHAILS IV	The state of the s	1 1

Sample Delivery Group Summary

Alpha Job Number: L1926703

Received Reviewer

: 19-JUN-2019 : Alycia Mogayzel

Account Name

J.R. Holzmacher P.E., LLC

Project Number

MANID 16-01

Project Name

MINUTE MAN CLEANERS

Delivery Information

Samples Delivered By: Alpha Courier

Chain of Custody

: Present

Cooler Information

Cooler

Seal/Seal#

Preservation

Temperature(°C) Additional Information

NA Absent/

Condition Information

1) All samples on COC received?

YES

2) Extra samples received?

NO

3) Are there any sample container discrepancies?

NO

4) Are there any discrepancies between sample labels & COC?

NO NO

5) Are samples in appropriate containers for requested analysis?

Please refer to information noted in Question 3 above.

6) Are samples properly preserved for requested analysis?

YES

7) Are samples within holding time for requested analysis?

YES

8) All sampling equipment returned?

YES

Volatile Organics/VPH

1) Reagent Water Vials Frozen by Client?

NA

Appendix B
Case Narrative

Project Name:

MINUTE MAN CLEANERS

Project Number:

MANID 16-01

Lab Number:

L1926703

Report Date:

06/26/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:

MINUTE MAN CLEANERS

Project Number:

MANID 16-01

Lab Number:

L1926703

Report Date:

06/26/19

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on June 17, 2019. The canister certification results are provided as an addendum.

L1926703-01: Prior to sample analysis, the canisters were pressurized with UHP Nitrogen due to canister size. The pressurization resulted in a dilution of the sample. The reporting limits have been elevated accordingly.

L1926703-01:The Acetone result should be considered estimated due to co-elution with a non-target peak.

fors111/19

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Christoph J Onderson

Report Date: 06/26/19

Title: Technical Director/Representative

ΔLPHA

Appendix C Form I's With Qualifications

Results Summary Form 1 Volatile Organics in Air

Client J.R. Holzmacher P.E., LLC Project Name MINUTE MAN CLEANERS

Lab ID : L1926703-01D
Client ID : EFFLUENT
Sample Location : 89 OCEAN AVE
Sample Matrix : SOIL_VAPOR
Analytical Method : 48,TO-15

Lab File ID : R1611386 Sample Amount : 119 ml Lab Number : L1926703
Project Number : MANID 16-01
Date Collected : 06/19/19 12:48

Date Received : 06/19/19
Date Analyzed : 06/25/19 17:57
Dilution Factor : 2.099

Analyst : RY
Instrument ID : AIRLAB16

GC Column : RTX-1

			ppbv			ug/m3		
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
75-71-8	Dichlorodifluoromethane	0.434	0.420	:	2.15	2.08		
74-87-3	Chloromethane	0.422	0.420	-	0.871	0.867	-#	
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethan	ND	0.420	ii iii	ND	2.94	1200	U
75-01-4	Vinyl chloride	ND	0.420		ND	1.07	-	U
106-99-0	1,3-Butadiene	ND	0.420	**	ND	0.929	: ***	U
74-83-9	Bromomethane	ND	0.420		ND	1.63	744	U
'5-00-3	Chloroethane	ND	0.420	-	ND	1.11	S. 	U
64-17-5	Ethyl Alcohol	29.3	10.5	-	55.2	19.8	: :: :	
593-60-2	Vinyl bromide	ND	0.420	N== 2	ND	1.84	-	U
67-64-1	Acetone	2.63	2.10	***	6.25	4.99	S 	
'5-69-4	Trichlorofluoromethane	ND	0.420	8.00	ND	2.36	-	U
7-63-0	iso-Propyl Alcohol	ND	1.05	8448	ND	2.58	1944	U
'5-35-4	1,1-Dichloroethene	ND	0.420	ew.	ND	1.67		U
75-65-0	tert-Butyl Alcohol	ND	1.05	5 44 0	ND	3.18	7	U
75-09-2	Methylene chloride	3.57	1.05		12.4	3.65	-	
107-05-1	3-Chloropropene	ND	0.420	(**)	ND	1.31		U
75-15-0	Carbon disulfide	ND	0.420	-	ND	1.31	-	U
'6-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.420	(700);	ND	3.22	200	U
56-60-5	trans-1,2-Dichloroethene	ND	0.420	-	ND	1.67		U
5-34-3	1,1-Dichloroethane	ND	0.420	(000)	ND	1.70	11 848	U
634-04-4	Methyl tert butyl ether	ND	0.420	-	ND	1.51	082	U
8-93-3	2-Butanone	ND	1.05	(3000.0	ND	3.10	1.99	U
56-59 - 2	cis-1,2-Dichloroethene	ND	0.420	(-)	ND	1.67	7	U
41-78-6	Ethyl Acetate	ND	1.05	((44))	ND	3.78	3,000	U
7-66-3	Chloroform	ND	0.420	741	ND	2.05	:##1	U
09-99-9	Tetrahydrofuran	ND	1.05	3 88 3	ND	3.10		U

Results Summary Form 1 Volatile Organics in Air

Client : J.R. Holzmacher P.E., LLC Project Name : MINUTE MAN CLEANERS

Lab ID : L1926703-01D
Client ID : EFFLUENT
Sample Location : 89 OCEAN AVE
Sample Matrix : SOIL_VAPOR
Analytical Method : 48,TO-15

Lab File ID : R1611386 Sample Amount : 119 ml

 Lab Number
 : L1926703

 Project Number
 : MANID 16-01

 Date Collected
 : 06/19/19 12:48

 Date Received
 : 06/19/19

Date Analyzed : 06/25/19 17:57
Dilution Factor : 2.099

Analyst : RY
Instrument ID : AIRLAB16

GC Column : RTX-1

Odini	ole Amount . 115 mil				40 00	Juliu	6 1117	X- 1
			ppbV			ug/m3		
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
107-06-2	1,2-Dichloroethane	ND	0.420	-	ND	1.70	2 00 7	U
110-54-3	n-Hexane	1.36	0.420	144	4.79	1.48	144	***
71-55-6	1,1,1-Trichloroethane	ND	0.420	-	ND	2.29		U
71-43-2	Benzene	0.426	0.420	1966	1.36	1.34	126	
56-23-5	Carbon tetrachloride	ND	0.420		ND	2.64	-	U
110-82-7	Cyclohexane	0.634	0.420		2.18	1.45		
78-87-5	1,2-Dichloropropane	ND	0.420	***	ND	1.94		U
75-27-4	Bromodichloromethane	ND	0.420		ND	2.81	(44)	U
1330-20-7	Xylene (Total)	ND	0.420		ND	1.82		U
23-91-1	1,4-Dioxane	ND	0.420	***	ND	1.51		U
'9-01-6	Trichloroethene	ND	0.420		ND	2.26		U
640-84-1	2,2,4-Trimethylpentane	1.17	0.420	**	5.46	1.96		
42-82-5	Heptane	0.478	0.420		1.96	1.72		
0061-01-5	cis-1,3-Dichloropropene	ND	0.420	-	ND	1.91	-	U
08-10-1	4-Methyl-2-pentanone	ND	1.05	-	ND	4.30		U
0061-02-6	trans-1,3-Dichloropropene	ND	0.420		ND	1.91		U
9-00-5	1,1,2-Trichloroethane	ND	0.420		ND	2.29	:445	U
08-88-3	Toluene	2.05	0.420	(51 1)	7.73	1.58	:==:	
40-59-0	1,2-Dichloroethene (total)	ND	0.420	(44)	ND	1.67	44	U
91-78-6	2-Hexanone	ND	0.420		ND	1.72		U
24-48-1	Dibromochloromethane	ND	0.420	(##:	ND	3.58		U
42-75-6	1,3-Dichloropropene, Total	ND	0.420		ND	1.91		U
06-93 - 4	1,2-Dibromoethane	ND	0.420	(90)	ND	3.23	940	U
27-18-4	Tetrachloroethene	108	0.420		732	2.85	-	
08-90-7	Chlorobenzene	ND	0.420	(**)	ND	1.93		U
00-41-4	Ethylbenzene	ND	0.420	**	ND	1.82	94	U
		and the second s	- conditioners					

Results Summary Form 1 Volatile Organics in Air

Client : J.R. Holzmacher P.E., LLC Project Name : MINUTE MAN CLEANERS

Lab ID : L1926703-01D
Client ID : EFFLUENT
Sample Location : 89 OCEAN AVE
Sample Matrix : SOIL_VAPOR

Analytical Method : 48,TO-15 Lab File ID : R1611386 Sample Amount : 119 ml Lab Number : L1926703
Project Number : MANID 16-01
Date Collected : 06/19/19 12:48

Date Received : 06/19/19
Date Analyzed : 06/25/19 17:57

Dilution Factor : 2.099 Analyst : RY

Instrument ID : AIRLAB16 GC Column : RTX-1

		ppbV		-	ug/m3		
Parameter	Results	RL	MDL	Results	RL	MDL.	Qualifier
p/m-Xylene	ND	0.839		ND	3.64		U
Bromoform	ND	0.420	1840	ND	4.34	-	U
Styrene	ND	0.420		ND	1.79		U
1,1,2,2-Tetrachloroethane	ND	0.420		ND	2.88		U
o-Xylene	ND	0.420	*	ND	1.82		U
4-Ethyltoluene	ND	0.420	98	ND	2.06	(***)	U
1,3,5-Trimethylbenzene	ND	0.420	35	ND	2.06	4	U
1,2,4-Trimethylbenzene	0.420	0.420	***	2.06	2.06	: 110 5	
Benzyl chloride	ND	0.420		ND	2.17	44	U
1,3-Dichlorobenzene	ND	0.420	:++	ND	2.53	-	U
1,4-Dichlorobenzene	ND	0.420	**	ND	2.53		U
1,2-Dichlorobenzene	ND	0.420	; ***	ND	2.53		U
1,2,4-Trichlorobenzene	ND	0.420		ND	3.12		U
Hexachlorobutadiene	ND	0.420	1909	ND	4.48	: == ;	U
	p/m-Xylene Bromoform Styrene 1,1,2,2-Tetrachloroethane o-Xylene 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene Benzyl chloride 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene	Parameter Results p/m-Xylene ND Bromoform ND Styrene ND 1,1,2,2-Tetrachloroethane ND o-Xylene ND 4-Ethyttoluene ND 1,3,5-Trimethylbenzene ND 1,2,4-Trimethylbenzene ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND 1,2-Dichlorobenzene ND 1,2,4-Trichlorobenzene ND	Parameter Results RL p/m-Xylene ND 0.839 Bromoform ND 0.420 Styrene ND 0.420 1,1,2,2-Tetrachloroethane ND 0.420 o-Xylene ND 0.420 4-Ethyttoluene ND 0.420 1,3,5-Trimethylbenzene ND 0.420 1,2,4-Trimethylbenzene 0.420 0.420 Benzyl chloride ND 0.420 1,3-Dichlorobenzene ND 0.420 1,4-Dichlorobenzene ND 0.420 1,2-Dichlorobenzene ND 0.420 1,2-Dichlorobenzene ND 0.420	Parameter Results RL MDL p/m-Xylene ND 0.839 Bromoform ND 0.420 Styrene ND 0.420 1,1,2,2-Tetrachloroethane ND 0.420 0-Xylene ND 0.420 4-Ethyltoluene ND 0.420 1,3,5-Trimethylbenzene ND 0.420 1,2,4-Trimethylbenzene 0.420 0.420 Benzyl chloride ND 0.420 1,3-Dichlorobenzene ND 0.420 1,4-Dichlorobenzene ND 0.420 1,2-Dichlorobenzene ND 0.420 1,2,4-Trichlorobenzene ND 0.420	Parameter Results RL MDL Results p/m-Xylene ND 0.839 ND Bromoform ND 0.420 ND Styrene ND 0.420 ND 1,1,2,2-Tetrachloroethane ND 0.420 ND o-Xylene ND 0.420 ND 4-Ethyltoluene ND 0.420 ND 1,3,5-Trimethylbenzene ND 0.420 ND 1,2,4-Trimethylbenzene 0.420 0.420 ND 1,3-Dichlorobenzene ND 0.420 ND 1,4-Dichlorobenzene ND 0.420 ND 1,2-Dichlorobenzene ND 0.420 ND 1,2,4-Trichlorobenzene ND 0.420 ND 1,2,4-Trichlorobenzene ND 0.420 ND	Parameter Results RL MDL Results RL p/m-Xylene ND 0.839 ND 3.64 Bromoform ND 0.420 ND 4.34 Styrene ND 0.420 ND 1.79 1,1,2,2-Tetrachloroethane ND 0.420 ND 2.88 o-Xylene ND 0.420 ND 1.82 4-Ethyltoluene ND 0.420 ND 2.06 1,3,5-Trimethylbenzene ND 0.420 ND 2.06 1,2,4-Trimethylbenzene 0.420 0.420 ND 2.17 1,3-Dichlorobenzene ND 0.420 ND 2.53 1,4-Dichlorobenzene ND 0.420 ND 2.53 1,2-Dichlorobenzene ND 0.420 ND 2.53 1,2-Hrichlorobenzene ND 0.420 ND 2.53 </td <td>Parameter Results RL MDL Results RL MDL p/m-Xylene ND 0.839 ND 3.64 Bromoform ND 0.420 ND 4.34 Styrene ND 0.420 ND 1.79 1,1,2,2-Tetrachloroethane ND 0.420 ND 2.88 o-Xylene ND 0.420 ND 1.82 4-Ethyltoluene ND 0.420 ND 2.06 1,3,5-Trimethylbenzene ND 0.420 ND 2.06 1,2,4-Trimethylbenzene 0.420 0.420 ND 2.17 Benzyl chloride ND 0.420 ND 2.53 1,3-Dichlorobenzene ND 0.420 ND 2.53 1,4-Dichlorobenzene ND 0.420</td>	Parameter Results RL MDL Results RL MDL p/m-Xylene ND 0.839 ND 3.64 Bromoform ND 0.420 ND 4.34 Styrene ND 0.420 ND 1.79 1,1,2,2-Tetrachloroethane ND 0.420 ND 2.88 o-Xylene ND 0.420 ND 1.82 4-Ethyltoluene ND 0.420 ND 2.06 1,3,5-Trimethylbenzene ND 0.420 ND 2.06 1,2,4-Trimethylbenzene 0.420 0.420 ND 2.17 Benzyl chloride ND 0.420 ND 2.53 1,3-Dichlorobenzene ND 0.420 ND 2.53 1,4-Dichlorobenzene ND 0.420

