Semi-Annual Sampling Report

Minute Man Cleaners 89 Ocean Avenue, East Rockaway, Nassau County, New York 11518

Site # C130157

December 2018 Sampling Event

February 2019

Prepared By:

J.R. Holzmacher P.E., LLC Consulting Engineers 3555 Veterans Memorial Highway, Suite A Ronkonkoma, New York 11779-7636

CERTIFICATION

I, J. Robert Holzmacher P.E. certify that I am currently a NYS registered professional engineer as defined in 6 NYCRR Part 375 and that this Semi-Annual Sampling Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

Very Truly Yours,

J.R. Holzmacher P.E. LLC

James Robert Holzmacher P.E. Name

66054

NYS PE License Number

 $\frac{2/7/2019}{\text{Date}}$

Signature

Table of Contents

TABLE OF CONTENTS	i
EXECUTIVE SUMMARY	1
1.0 INTRODUCTION	2
2.0 SUMMARY OF SAMPLING	3
2.1 Sampling Field Activities	ś
3.0 GROUNDWATER SAMPLING RESULTS	3
3.1 On-Site Monitoring Wells	
3.2 Off-Site Monitoring Wells	5
4.0 EFFLUENT SOIL VAPOR SAMPLING RESULTS	5
5.0 CONCLUSIONS and RECOMMENDATIONS	5

List of Figures

- Figure 1 Groundwater Analytical Results 12-24-2018
- Figures 2 through 17 Trichloroethene and Tetrachloroethene Trends

List of Tables

- Table 1 Volatile Organic Chemicals EPA Method 8260
- Table 2 Volatile Organics in Air
- Table 3 Historic Volatile Organics in Air
- Table 4 SVE Air Emissions Evaluation

List of Appendix

- Appendix A Groundwater Analytical Laboratory Report
- Appendix B Effluent Soil Vapor Analytical Laboratory Report
- Appendix C Tide Chart: Monitoring Well Samples
- Appendix D Data Usability Summary Report DUSR Data Validation Summary Groundwater Samples Collected December 24, 2018
 Soil Vapor Air - Effluent Sample Collected December 26, 2018

EXECUTIVE SUMMARY

J.R. Holzmacher P.E. LLC (JRH) has prepared this Semi-Annual Sampling Report for the above referenced property. Activities under the Remedial Action Work Plan were conducted on behalf of Mr. Dennis Manley, the property and business owner, with the understanding that remediation is required to complete the Brownfield Cleanup Program agreement with the NYSDEC.

This Semi-Annual Sampling Report serves to document the remedial actions that took place at Minute Man Cleaners during the second half of the 2018 calendar year. Remedial actions included sampling of groundwater and soil gas produced by the soil vapor extraction system.

Two rounds of In-situ chemical oxidation (ISCO) treatment were completed on January 29th through February 9th and July 27th through July 31st of 2015. The September 9th, 2015 sampling indicated reduced contaminant concentrations. Contaminant concentration increases were observed in some wells in the October 21, 2015, June 29, 2016 and December 28, 2016 laboratory results. The December 20, 2017 analysis indicated an increase in contaminant concentration for seven of the wells since the June 15, 2017 sampling, with all other wells indicating a decrease in contaminant concentrations. Analysis of samples taken on June 28, 2018 showed that contaminant concentrations decreased in eleven wells and increased in five wells since the December 20, 2017 sampling event. The most recent sampling event occurred on December 24, 2018; analysis of samples collected at this time indicate an overall decrease in PCE and TCE contaminants in shallow monitoring wells and an overall increase in PCE and TCE contaminants in deep monitoring wells.

Based on the above, JRH believes that further ISCO remediation without soil remediation will be unlikely to reduce contaminants to the desired levels. Furthermore, the current SVE system is removing residual concentrations of dry cleaning solvent from the unsaturated zone. JRH believes that this may be evidence of a contaminant source that cannot be remediated using ISCO because the ISCO reagents cannot contact the unsaturated zone contamination.

NYSDEC has not approved additional soil excavation which is not covered by the approved Remedial Action Work Plan and would be highly disruptive to the business operating at the site. JRH suggested that the owner and the Department consider augmenting the current SVE system with an additional soil vapor extraction well point that could be installed from the rear (east side) of the building and piped into the existing extraction system. Installation of air sparging points paired with additional SVE extraction wells has also been recommended as a more effective method to remove the residual solvents detected in the monitoring wells.

1.0 INTRODUCTION

J.R. Holzmacher P.E. LLC (JRH) has prepared this Semi-Annual Sampling Report for the above referenced property. The Semi-Annual Sampling Report was conducted on behalf of Mr. Dennis Manley, the property and business owner, as required by the Site Management Plan approved by the NYSDEC in December 2015.

The current and intended use of the property is commercial, occupied by Minute Man Cleaners, an active dry cleaning facility. The property is located at 89 Ocean Avenue, East Rockaway, Nassau County, New York and is approximately 0.19 acres in size. The site is shown in Figure 1 and is occupied by a single-story building that has operated as a dry cleaner since 1982. The site is bordered by Atlantic Avenue to the north, Ocean Avenue to the west, Mill River to the east and a seafood restaurant to the south. Perchloroethylene (PCE), the contaminant of concern, was used in the dry cleaning process.

In 2005, an investigation by URS indicated a significant release of PCE to soil and groundwater from the dry cleaning machine. It was estimated that this release occurred from 1983 to 1987 due to seal leaks in a storage tank at the base of the machine.

Remedial work during previous years included removal of contaminated soil, installation of a soil vapor extraction/sub slab depressurization system (SVE/SSDS) and in-situ chemical oxidation (ISCO) treatments.

2.0 SUMMARY OF SAMPLING

2.1 Sampling Field Activities

Groundwater monitoring and effluent soil vapor sampling was completed on December 24, 2018 to assess the performance of the remedy implemented in July 2015. Groundwater samples were collected from thirteen on-site groundwater monitoring wells and three offsite groundwater monitoring wells and were analyzed for target compounds list volatile organic compounds (TCL VOCs). The samples were collected in accordance with procedures as described in Appendix I – Field Activities Plan in the Site Management Plan.

The effluent sample for the Soil Vapor Extraction/Sub-slab Depressurization System was collected from a sample collection port which was installed on the blower effluent pipe. The sample was collected using a one liter summa canister with a fifteen minute regulator.

Samples were placed in the appropriate laboratory-supplied glassware, put on ice, and picked up by courier and delivered to Alpha Analytical Laboratories, Long Island City, New York (NYSDOH ID #11148) for the following analysis with Category B deliverables:

Groundwater:

TCL VOCs (EPA Method 8260C, rev. 2006).

Effluent Soil Vapor:

VOCs (EPA Method TO-15).

3.0 GROUNDWATER SAMPLING RESULTS

Locations of groundwater monitoring wells are illustrated in Figure 1. The historical sample results for all of the monitoring wells are in the attached tables. Trends in PCE and TCE concentrations are illustrated in the graphs in Figures 2 to 17. The site flooded during Superstorm Sandy (October 2012), so interpretation of groundwater contaminant concentrations prior to that time may not be directly comparable to subsequent results.

3.1 On-Site Monitoring Wells

The sampling of the on-site shallow and deep monitoring wells yielded results as shown in the attached tables. The December 24, 2018 analysis indicated a decrease in PCE and TCE contaminant concentrations from the June 28, 2018 sampling in the 7 shallow monitoring wells and water table monitoring wells excluding well MW-1S, which indicated an increase in TCE contaminant concentration, and MW-5S, which indicated an increase in both PCE and TCE contaminant concentration.

The December 24, 2018 analysis indicated an increase in PCE and TCE contaminant concentrations from the June 28, 2018 sampling for all 6 deep monitoring wells excluding well MW-2D, which indicated a decrease in PCE contaminant concentration; a significant increase in PCE contaminant concentration was indicated in DB-1.

Examination of the multi-year trend charts shows that PCE and TCE concentrations in most wells remain in a long-term downtrend except wells MW-5D, MW-5S. Highlights of changes between the two most recent rounds of sampling include the following:

Shallow Monitoring Wells

XX/all	PC	Œ	TO	CE	Other VOCa
Well	6/28/18	12/24/18	6/28/18	12/24/18	Other VOCs
MW-1S	260	210	11	13	
MW-2S	140	76	3.5	2.8	
MW-3S	180	46	3.6	1.4	
MW-4S	160	130	3.6	3.7	
MW-5S	180	440	18	387	Cis 1,2 DCE increased from 6.4 to 15 PPB. MTBE decreased from 30 to 24 PPB.
					Vinyl chloride increased from 1.0 to 3.2 PPB

^{*} All results in ppb

Deep Monitoring Wells

Well	PC	CE	T	CE	Other VOCs
vven	6/28/18	12/24/18	6/28/18	12/24/18	Other VOCs
MW-1D	88	140	2.7	5.9	
MW-2D	68	60	3.0	3.6	Cis-1,2 DCE increased from 1.7 to 2.2 PPB
MW-3D	30	62	0.92	2.4	
MW-4D	81	99	1.6	2.4	
MW-5D	35	72	3.5	7.8	MTBE increased from 9.3 to 15 PPB
DB-1	21	200	2.5	26	Cis-1,2 DCE increased from 2.2 to 9.6 PPB

^{*} All results in ppb

Water Table Monitoring Wells

Well	PC	CE	TO	CE	Other VOCs
vv en	6/28/18	12/24/18	6/28/18	12/24/18	Other VOCs
MW-9	18	13	0.97	0.9	
MW-12	77	21	1.2	0.95	

^{*} All results in ppb

3.2 Off-Site Monitoring Wells

The off-site monitoring well cluster is located north of the site and near an automobile service station. The December 24, 2018 analysis indicated a marginal increase in contaminant concentration in the shallow and deep wells as compared to the June 28, 2018 samples. A marginal decrease was found in the water table well. The source of this contamination is not believed to be the Minute Man Cleaners property. Highlights of changes between the two most recent rounds of sampling include the following:

Well	PC	CE	TO	CE	Other VOCa
vv en	6/28/18	12/24/18	6/28/18	12/24/18	Other VOCs
MW-14WT	31	12	0.82	0.39	
MW-14S	0.51	2	ND	0.24	MTBE increased from 12 to 8.3 PPB
MW-14D	ND	0.19	ND	ND	

4.0 EFFLUENT SOIL VAPOR SAMPLING RESULTS

The SMP requires collection of a yearly sample of the effluent soil vapor. Prior effluent samples were collected by inserting tubing into the SVE blower discharge pipe from the top of the pipe which required a ladder and climbing on top of the roof. A less hazardous collection point was constructed on the blower discharge pipe at a point approximately three feet above the blower. A brass stop-cock was installed into this collection point, at which disposable polyethylene tubing can be inserted to collect a sample. This sample result was compared to prior soil vapor analytical data.

Results of the effluent soil vapor sampling indicated a tetrachloroethene concentration of 726 ug/m³, above the NYSDOH guidelines of 30 ug/m³. Trichloroethene was detected with a concentration of 1.6 ug/m³, below the NYSDOH guidelines of 2 ug/m³. These results are less than half the concentrations observed during December 2017. Earlier results were reported in ppb and were collected from the roof top location, possibly with greater dilution, so direct comparison with the more recent results is problematic.

5.0 CONCLUSIONS and RECOMMENDATIONS

5.1 Conclusions

• Analysis of the December 24, 2018 samples showed contaminant concentrations decreased in seven onsite wells and increased in eight onsite wells since the previous sampling event. The groundwater data collected since 2005 show that concentrations have greatly decreased to current concentration and are fluctuating within narrow ranges. JRH believes that the observed concentrations show a stable equilibrium between residual soil PCE and TCE and fluctuation in groundwater elevations, dissolving contaminants from soil into groundwater.

- The persistence of low concentrations of PCE and trace concentrations of TCE in groundwater suggests that there may be some remaining PCE in soil below the floor of the Minute Man Cleaners building. Temporal PCE and TCE fluctuations such as seen in MW-12 are likely due to changing tidal and seasonal groundwater elevations resulting in episodes of contaminant dissolution from the unsaturated zone.
- Contaminant increases were observed in most of the offsite wells north of the presumed source area, MW-5S and MW-5D. Methyl Tert-Butyl Ether (MTBE) was found in ground water samples from wells MW-5D, MW-5S, and MW-14S, however, this fuel additive is not associated with dry cleaning operations. The continued presence of MTBE as the predominant contaminant in MW-14S since at least October 2015 implicates the service station north of the site, and PCE may also be used in automotive and machine shop parts cleaning. Based on groundwater flow, it is difficult to support northward PCE migration from Minuteman Cleaners to the offsite wells.

5.2 Recommendations

There are two technical issues to be resolved before selecting further active remediation measures. The first is the mass of contamination adsorbed onto the soil matrix in the overall plume area. A Second potential contaminant source area in soil below the dry cleaning machine remaining after excavation by Brookside Environmental, Inc. (2008-07-01.IRM). Based on the available data and the results of the two previous rounds of in-situ chemical oxidation, JRH recommends the following:

- Based on the slow downtrend in contaminant concentrations in the groundwater in most wells, we recommend that the next round of groundwater sampling be conducted in the second quarter of 2019. Analytical results from the next round of groundwater sampling will be compared to the December, 2018 results and will be discussed with NYSDEC.
- JRH does not recommend further in-situ chemical treatment by potassium permanganate or other remediation products as these will not likely achieve the Record of Decision (ROD) goals. JRH provided the available data to in-situ treatment vendors and did not receive positive feedback with respect to future success. The nature of the contamination and the presence of PCE and its residual byproducts in soil above the water table puts much of the remaining contamination beyond the reach of in-situ oxidation methods.
- Additional remedial measures were discussed with NYSDEC during the first half of 2018 and a Corrective Action Plan was submitted for consideration on May 25, 2018. These measures included the use of air sparge (AS) points to introduce atmospheric oxygen into the aquifer. Air compressors will feed air to one new deep and five new shallow AS points in order to enhance the rate of contaminant removal and degradation in the aquifer.

- The new AS points will be matched with the addition of five new Soil Vapor Extraction (SVE) points to be located in the vadose zone above and in close proximity to the new AS points. This will result in the capture of any contaminants stripped out by the AS air discharges. The new SVE points will discharge air through vapor phase carbon filter drums.
- The existing SVE system can be improved by adding one or more angle drilled extraction wells with intake screens located in the dry soil below the dry cleaning unit. The new soil vapor extraction point can be connected to the existing blower and may be more effective than the existing SVE points alone. We believe that reducing the mass of VOCs in the soil has the best chance of reducing the source of continuing groundwater contamination.
- Construction of the new AS and SVE points should not take a long time to complete once NYSDEC approval is granted and a contractor can be scheduled. It is possible that some or all of the AS and SVE points may be operational prior to the next round of groundwater sampling.

Figures

drawing

J.R. HOLZMACHER P.E., LLC

The Third Generation of Excellence In Water Supply, Water Resources, Civil and Environmental Engineering

VETERANS MEMORIAL HWY RONKONKOMA, NEW YORK 11779 FAX # (631) 234-2221 E-MAIL: info@holzmacher.co

GROUNDWATER ANALYTICAL RESULTS 12/24/2018

SITE #C 130157 89 OCEAN AVE EAST ROCKAWAY, NEW YORK 11518

	DWN:	SCALE:	DATE:	PROJECT NO.:
	MFT	1:40	12/24/2018	ManlD1601
I	CHKD:	APPD:	REV.:	NOTES:
ı	AJS	JRH	=	-
	FIGURE NO.:			
]		

Figure 2
Trends Chart - MW-1D 2000.0 1800.0 --- Trichloroethene 1600.0 Tetrachloroethene 1400.0 Concentration (PPB) 1200.0 1000.0 800.0 600.0 400.0 200.0 0.0 2012 2013 2014 2015 2016 2017 Date

Figure 7
Trends Chart - MW-3S

Tables

Volatile Organic Chemicals EPA Method 8260 Table 1

Client Sample ID:		NYSDEC	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D	MW-1DDL
Screen Intervals		Groundwater	25-30'	25-30'	25-30'	25-30'	25-30'	25-30'	25-30'	25-30'	25-30'	25-30'	25-30'	25-30'
Sampling Date:		Standards	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	03/23/2015	9/25/2012	9/25/2012
Dilution Factor														50
Analyte:	Units:													
1,1,1,2-Tetrachloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	PPB	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.62J	ND
1,1-Dichloropropene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
1,2,4-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	PPB	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	PPB	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	PPB	50*	2Ј	ND	ND	ND	ND	ND	1.7BJ	4.9	ND	2.0BJ	ND	ND
Acrylonitrile	PPB	5	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA
Benzene	PPB	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Volatile Organic Chemicals EPA Method 8260 Table 1

ISCO was performed during February and July 2015

Client Sample ID:		NYSDEC	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D	MW-1DDL
Screen Intervals		Groundwater	25-30'	25-30'	25-30'	25-30'	25-30'	25-30'	25-30'	25-30'	25-30'	25-30'	25-30'	25-30'
Sampling Date:		Standards	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	03/23/2015	9/25/2012	9/25/2012
Dilution Factor														50
Analyte:	Units:													
Chloroform	PPB	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.45J	ND
cis-1,2-Dichloroethene	PPB	5	1.8J	ND	1.7J	0.73 J	4.4 J	ND	2.5	ND	0.93J	1.0J	15	ND
cis-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.55J	ND	ND
Dibromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	PPB	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	PPB	10	1J	ND	ND	ND	ND	ND	0.76J	0.97J	ND	ND	2.6	1.5
Methylene chloride	PPB	5	ND	ND	ND	ND	ND	ND	4.7B	4.5	3.6B	5.8B	ND	ND
n-Butylbenzene	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
p-Ethyltoluene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
sec-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	PPB	5	140	88	210	78	210	340	180D	89	210D	190D	1900E	1900D
Toluene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	PPB	5	5.9	2.7	5.8	1.3	9.5	11	6.1	ND	5.2	4.4	50	54D
Trichlorofluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	PPB	2	0.35J	0.15J	0.30J	0.09 J	0.58 J	ND	ND	ND	ND	ND	1.4	ND
1,4-Dioxane (EPA Method					_		_							
8270D SIM)	ng/l	50000												

Notes:

All results in ppb ND - Not detected

.... - woi ueiecieu

NS-No Standard

NA- Not Analyzed B- Analyte detected in blank

Bold-Exceeds NYS Standards

* Guidance Value

** 1,4 Dioxane <144. ng/l

Volatile Organic Chemicals EPA Method 8260 Table 1

Client Sample ID:		NYSDEC	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1SDL
Screen Intervals		Groundwater	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'
Sampling Date:		Standards	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	03/23/2015	9/25/2012	9/25/2012
Dilution Factor														25
Analyte:	Units:													
1,1,1,2-Tetrachloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	PPB	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
1,2,4-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	PPB	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	PPB	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	PPB	50*	5.5J	ND	ND	ND	ND	ND	2.0BJ	1.2BJ	1.4J	1.9BJ	ND	ND
Acrylonitrile	PPB	5	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA
Benzene	PPB	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	PPB	50*	0.68J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	PPB	50*	1.4J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Volatile Organic Chemicals EPA Method 8260 Table 1

ISCO was performed during February and July 2015

Client Sample ID:		NYSDEC	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1SDL
Screen Intervals		Groundwater	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'
Sampling Date:		Standards	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	03/23/2015	9/25/2012	9/25/2012
Dilution Factor														25
Analyte:	Units:													
Chloroform	PPB	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6J	ND
cis-1,2-Dichloroethene	PPB	5	4.8J	3.2J	2.2J	ND	4.8	ND	2.3	1.8J	1.0J	1.2J	7.3	12JD
cis-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	PPB	5	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	PPB	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	PPB	10	ND	ND	ND	ND	ND	ND	3.4	2.4	ND	0.68J	5.3	ND
Methylene chloride	PPB	5	ND	ND	ND	ND	ND	ND	4.6B	4.6B	3.6B	5.1B	ND	ND
n-Butylbenzene	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
p-Ethyltoluene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
sec-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	PPB	5	210	260	280	44	330	440	150	140	210D	190D	1700E	1900D
Toluene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	PPB	5	13	11	9.8	0.88	14	17	6.3	5.8	5.5	4.9	32	43D
Trichlorofluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	PPB	2	1.1J	0.93J	0.53J	ND	0.89 J	0.76J	ND	ND	ND	ND	ND	ND
1,4-Dioxane (EPA Method														
8270D SIM)	ng/l	50000												i I

Notes:

All results in ppb

ND - Not detected

NS-No Standard

NA- Not Analyzed

B- Analyte detected in blank

Bold-Exceeds NYS Standards

* Guidance Value

** 1,4 Dioxane <144. ng/l

Volatile Organic Chemicals EPA Method 8260 Table 1

Client Sample ID:		NYSDEC	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D	MW-2DDL
Screen Intervals		Groundwater	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'
Sampling Date:		Standards	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012	9/25/2012
Dilution Factor														10
Analyte:	Units:													
1,1,1,2-Tetrachloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	PPB	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
1,2,4-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	PPB	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	PPB	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	PPB	50*	3.9J	ND	ND	ND	ND	ND	2.1BJ	2.2BJ	ND	2.0BJ	ND	ND
Acrylonitrile	PPB	5	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA
Benzene	PPB	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	PPB	50*	2.6	3	ND	2.3	4.1	ND	ND	ND	ND	ND	ND	ND
Bromoform	PPB	50*	1.5J	1.3J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Volatile Organic Chemicals EPA Method 8260 Table 1

ISCO was performed during February and July 2015

Client Sample ID:		NYSDEC	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D	MW-2DDL
Screen Intervals		Groundwater	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'
Sampling Date:		Standards	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012	9/25/2012
Dilution Factor														10
Analyte:	Units:													
Chloroform	PPB	7	4.1	4.4	ND	4	4.6 J	ND	ND	ND	ND	ND	ND	ND
Chloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.59J	ND
cis-1,2-Dichloroethene	PPB	5	2.2J	1.7J	2.2J	3.7	ND	ND	0.86J	ND	0.88J	1.3J	1.8	ND
cis-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	PPB	5	2.5	2.4	ND	1.9	3.4	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	PPB	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	PPB	10	ND	ND	ND	0.88 J	ND	ND	ND	ND	0.55J	0.56J	0.87J	ND
Methylene chloride	PPB	5	ND	ND	ND	ND	ND	ND	4.5B	4.6B	3.9B	5.5B	ND	ND
n-Butylbenzene	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
p-Ethyltoluene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
sec-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	PPB	5	60	68	200	150	220	480	140	130	160	110	500E	480D
Toluene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	PPB	5	3.6	3	3.8	4.2	3.3	7.1	2.2	2.2	2.5	2.0	12	12D
Trichlorofluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	PPB	2	0.12J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane (EPA Method														
8270D SIM)	ng/l	50000												

Notes:

All results in ppb

ND - Not detected

NS-No Standard

NA- Not Analyzed

B- Analyte detected in blank

Bold-Exceeds NYS Standards

* Guidance Value

** 1,4 Dioxane <144. ng/l

Volatile Organic Chemicals EPA Method 8260 Table 1

Client Sample ID:		NYSDEC	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S
Screen Intervals		Groundwater	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'
Sampling Date:		Standards	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012
Dilution Factor													
Analyte:	Units:												
1,1,1,2-Tetrachloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	PPB	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2,4-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	PPB	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	PPB	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	PPB	50*	3J	ND	ND	ND	ND	ND	1.6BJ	2.2BJ	1.3J	2.1BJ	ND
Acrylonitrile	PPB	5	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA
Benzene	PPB	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	PPB	50*	2	2.5	ND	2	2.1	ND	0.61J	ND	ND	ND	ND
Bromoform	PPB	50*	4.7	1.7J	ND	ND	2.2 J	ND	ND	ND	ND	ND	ND
Bromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Volatile Organic Chemicals EPA Method 8260 Table 1

ISCO was performed during February and July 2015

Client Sample ID:		NYSDEC	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S
Screen Intervals		Groundwater	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'
Sampling Date:		Standards	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012
Dilution Factor													
Analyte:	Units:												
Chloroform	PPB	7	2.4J	3.2	ND	2.2 J	1.4 J	ND	ND	ND	ND	ND	ND
Chloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.45J
cis-1,2-Dichloroethene	PPB	5	0.82J	0.98J	0.71J	ND	ND	ND	ND	0.90J	0.81J	0.99J	1.5
cis-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	PPB	5	3.5	2.6	ND	2.5	3.1	ND	0.67J	ND	ND	ND	ND
Dibromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	PPB	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.57J
Methylene chloride	PPB	5	ND	ND	ND	ND	ND	ND	4.6B	4.9B	3.6B	5.4B	ND
n-Butylbenzene	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
p-Ethyltoluene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
sec-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	PPB	5	76	140	200	260	190	490	28	73	73	51	110
Toluene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	PPB	5	2.8	3.5	2.5	4.6	2.8	6.3	0.90J	1.8J	1.5J	1.2J	2.8
Trichlorofluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	PPB	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane (EPA Method 8270D SIM)	ng/l	50000											

Notes:

All results in ppb

ND - Not detected

NS-No Standard

NA- Not Analyzed

B- Analyte detected in blank

Bold-Exceeds NYS Standards

* Guidance Value

** 1,4 Dioxane <144. ng/l

Volatile Organic Chemicals EPA Method 8260 Table 1

Client Sample ID:		NYSDEC	MW-3D	MW-3D	MW-3D	MW-3D	MW-3D	MW-3D	MW-3D	MW-3D	MW-3D	MW-3D	MW-3D	MW-3DDL
Screen Intervals		Groundwater	24-29'	24-29'	24-29'	24-29'	24-29'	24-29'	24-29'	24-29'	24-29'	24-29'	24-29'	24-29'
Sampling Date:		Standards	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012	9/25/2012
Dilution Factor														10
Analyte:	Units:													
1,1,1,2-Tetrachloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	PPB	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
1,2,4-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	PPB	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	PPB	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	PPB	50*	4.3J	ND	ND	ND	ND	ND	2.0BJ	1.4BJ	2.3J	2.2BJ	ND	ND
Acrylonitrile	PPB	5	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA
Benzene	PPB	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	PPB	50*	0.48J	1.1	ND	0.74	1.2	ND	ND	ND	ND	ND	ND	ND
Bromoform	PPB	50*	ND	0.85J	ND	ND	1.2 J	ND	ND	ND	ND	ND	ND	ND
Bromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Volatile Organic Chemicals EPA Method 8260 Table 1

ISCO was performed during February and July 2015

Client Sample ID:		NYSDEC	MW-3D	MW-3D	MW-3D	MW-3D	MW-3D	MW-3D	MW-3D	MW-3D	MW-3D	MW-3D	MW-3D	MW-3DDL
Screen Intervals		Groundwater	24-29'	24-29'	24-29'	24-29'	24-29'	24-29'	24-29'	24-29'	24-29'	24-29'	24-29'	24-29'
Sampling Date:		Standards	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012	9/25/2012
Dilution Factor														10
Analyte:	Units:													
Chloroform	PPB	7	0.95J	1.8J	ND	1.7 J	0.89 J	ND	ND	ND	ND	ND	ND	ND
Chloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.48J	ND
cis-1,2-Dichloroethene	PPB	5	1J	ND	2.9	1 J	ND	ND	ND	ND	ND	ND	3	ND
cis-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	PPB	5	0.63	1.2	ND	0.74	1.4	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	PPB	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.87J	ND
Methylene chloride	PPB	5	ND	ND	ND	ND	ND	ND	4.5B	4.7B	4.0B	5.1B	ND	ND
n-Butylbenzene	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
p-Ethyltoluene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
sec-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	PPB	5	62	30	260E	99	64	510	94	90	78	100	860E	840D
Toluene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	PPB	5	2.4	0.92	4.9	2.1	0.95	7	1.5J	1.8	1.2J	1.9J	22	22D
Trichlorofluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	PPB	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane (EPA Method 8270D SIM)	ng/l	50000												

Notes:

All results in ppb

ND - Not detected

NS-No Standard

NA- Not Analyzed

B- Analyte detected in blank

Bold-Exceeds NYS Standards

* Guidance Value

^{** 1,4} Dioxane <144. ng/l

Volatile Organic Chemicals EPA Method 8260 Table 1

Client Sample ID:		NYSDEC	MW-3S	MW-3S	MW-3S	MW-3S	MW-3S	MW-3S	MW-3S	MW-3S	MW-3S	MW-3S	MW-3S
Screen Intervals		Groundwater	18-23'	18-23'	18-23'	18-23'	18-23'	18-23'	18-23'	18-23'	18-23'	18-23'	18-23'
Sampling Date:		Standards	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012
Dilution Factor													
Analyte:	Units:												
1,1,1,2-Tetrachloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	PPB	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2,4-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	PPB	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	PPB	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	PPB	50*	3.3J	ND	ND	ND	ND	ND	1.6BJ	1.7BJ	1.3J	1.8BJ	ND
Acrylonitrile	PPB	5	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA
Benzene	PPB	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	PPB	50*	0.22J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Volatile Organic Chemicals EPA Method 8260 Table 1

ISCO was performed during February and July 2015

Client Sample ID:		NYSDEC	MW-3S	MW-3S	MW-3S	MW-3S	MW-3S	MW-3S	MW-3S	MW-3S	MW-3S	MW-3S	MW-3S
Screen Intervals		Groundwater	18-23'	18-23'	18-23'	18-23'	18-23'	18-23'	18-23'	18-23'	18-23'	18-23'	18-23'
Sampling Date:		Standards	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012
Dilution Factor													
Analyte:	Units:												
Chloroform	PPB	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	PPB	5	ND	1.2J	1.2J	ND	ND	ND	0.73J	0.66J	1.0J	1.4J	1.7
cis-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	PPB	5	0.25J	0.53	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	PPB	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	PPB	10	ND	ND	ND	ND	ND	ND	ND	0.52J	0.56J	0.65J	0.79J
Methylene chloride	PPB	5	ND	ND	ND	ND	ND	ND	4.6B	4.5B	3.6B	5.6B	ND
n-Butylbenzene	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
p-Ethyltoluene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
sec-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	PPB	5	46	180	160	190	390	420	110	120	120	91	170
Toluene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	PPB	5	1.4	3.6	2.8	3.2	5.8	6.4	2.1	2.0J	2.3	1.9J	4.4
Trichlorofluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	PPB	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane (EPA Method													
8270D SIM)	ng/l	50000											<u> </u>

Notes:

All results in ppb ND - Not detected

NS-No Standard

NA- Not Analyzed

B- Analyte detected in blank

Bold-Exceeds NYS Standards

* Guidance Value

** 1,4 Dioxane <144. ng/l

Volatile Organic Chemicals EPA Method 8260 Table 1

Client Sample ID:		NYSDEC	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4DDL
Screen Intervals		Groundwater	23-28'	23-28'	23-28'	23-28'	23-28'	23-28'	23-28'	23-28'	23-28'	23-28'	23-28'	23-28'
Sampling Date:		Standards	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012	9/25/2012
Dilution Factor														25
Analyte:	Units:													
1,1,1,2-Tetrachloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	PPB	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
1,2,4-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	PPB	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	PPB	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	PPB	50*	2.3J	ND	ND	ND	ND	ND	1.9BJ	1.5BJ	1.4J	1.9BJ	ND	ND
Acrylonitrile	PPB	5	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA
Benzene	PPB	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	PPB	50*	0.72	0.32J	ND	ND	1.7	ND	ND	ND	ND	ND	ND	ND
Bromoform	PPB	50*	ND	ND	ND	ND	1.3 J	ND	ND	ND	ND	ND	ND	ND
Bromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Volatile Organic Chemicals EPA Method 8260 Table 1

ISCO was performed during February and July 2015

Client Sample ID:		NYSDEC	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4DDL
Screen Intervals		Groundwater	23-28'	23-28'	23-28'	23-28'	23-28'	23-28'	23-28'	23-28'	23-28'	23-28'	23-28'	23-28'
Sampling Date:		Standards	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012	9/25/2012
Dilution Factor														25
Analyte:	Units:													
Chloroform	PPB	7	1.8J	ND	ND	ND	1.6 J	ND	ND	ND	ND	ND	ND	ND
Chloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.59J	ND
cis-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	1.0J	0.54J	0.71J	0.63J	4.4	ND
cis-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	PPB	5	0.69	0.62	ND	ND	1.9	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	PPB	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1J	ND
Methylene chloride	PPB	5	ND	ND	ND	ND	ND	ND	4.8B	4.6B	4.1B	6.1B	ND	ND
n-Butylbenzene	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
p-Ethyltoluene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
sec-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	PPB	5	99	81	77	240	9.4	260	130	110	140	150	1900E	1800D
Toluene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	PPB	5	2.4	1.6	1.7	3.6	ND	3	4.1	3.0	3.6	4.0	45	42D
Trichlorofluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	PPB	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.61J	ND
1,4-Dioxane (EPA Method				-										
8270D SIM)	ng/l	50000												

Notes:

All results in ppb

ND - Not detected

NS-No Standard

NA- Not Analyzed

B- Analyte detected in blank

Bold-Exceeds NYS Standards

* Guidance Value

** 1,4 Dioxane <144. ng/l

Volatile Organic Chemicals EPA Method 8260 Table 1

Client Sample ID:		NYSDEC	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4SDL
Screen Intervals		Groundwater	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'
Sampling Date:		Standards	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012	9/25/2012
Dilution Factor														20
Analyte:	Units:													
1,1,1,2-Tetrachloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	PPB	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
1,2,4-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	PPB	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	PPB	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	PPB	50*	3.1J	ND	ND	ND	ND	ND	2.3BJ	2.6BJ	ND	1.7BJ	ND	ND
Acrylonitrile	PPB	5	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA
Benzene	PPB	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	PPB	50*	0.24J	0.21J	ND	0.92 J	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	PPB	50*	ND	ND	ND	ND	1.7 J	ND	ND	ND	ND	ND	ND	ND
Bromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Volatile Organic Chemicals EPA Method 8260 Table 1

ISCO was performed during February and July 2015

Client Sample ID:		NYSDEC	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4SDL
Screen Intervals		Groundwater	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'
Sampling Date:		Standards	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012	9/25/2012
Dilution Factor														20
Analyte:	Units:													
Chloroform	PPB	7	ND	ND	ND	2 J	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	PPB	5	1.7J	1.2J	ND	ND	ND	ND	0.79J	1.1J	ND	ND	1.4	ND
cis-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	PPB	5	0.32J	0.58	ND	0.93 J	0.65 J	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	PPB	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.54J	ND
Methylene chloride	PPB	5	ND	ND	ND	ND	ND	ND	4.8B	4.5B	3.9B	5.0B	ND	ND
n-Butylbenzene	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
p-Ethyltoluene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
sec-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	PPB	5	130	160	260E	210	180	380	100	88	94	88	450E	500D
Toluene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	PPB	5	3.7	3.6	3.2	3.8	2.6	4.8J	2.9	2.4	1.7J	1.7J	12	13JD
Trichlorofluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	PPB	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane (EPA Method 8270D SIM)	ng/l	50000		ND	ND**									

Notes:

All results in ppb

ND - Not detected

NS-No Standard

NA- Not Analyzed

B- Analyte detected in blank

Bold-Exceeds NYS Standards

* Guidance Value

^{** 1,4} Dioxane <144. ng/l

Volatile Organic Chemicals EPA Method 8260 Table 1

Client Sample ID:		NYSDEC	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D
Screen Intervals		Groundwater	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'
Sampling Date:		Standards	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012
Dilution Factor													
Analyte:	Units:												
1,1,1,2-Tetrachloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	PPB	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	PPB	5	3.1	1.4J	1.1J	3.3 J	4.5	0.94J	ND	ND	0.55J	0.96J	2.6
1,1-Dichloroethene	PPB	5	0.59	0.26J	0.29J	0.64 J	0.77	0.44J	ND	ND	ND	ND	0.52J
1,1-Dichloropropene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2,4-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	PPB	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	PPB	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	PPB	50*	3.3J	ND	ND	ND	ND	ND	2.2BJ	3.1BJ	ND	3.3BJ	ND
Acrylonitrile	PPB	5	ND	ND	ND	ND	2.8 J	ND	ND	NA	NA	NA	NA
Benzene	PPB	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.1
Bromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Volatile Organic Chemicals EPA Method 8260 Table 1

ISCO was performed during February and July 2015

Client Sample ID:		NYSDEC	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D
Screen Intervals		Groundwater	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'	22-27'
Sampling Date:		Standards	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012
Dilution Factor													
Analyte:	Units:												
Chloroform	PPB	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.47J
cis-1,2-Dichloroethene	PPB	5	2.2J	0.81J	ND	3.6 J	3.9	2Ј	0.52J	ND	ND	ND	8
cis-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	PPB	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	PPB	10	15	9.3	3	27	23	15	1.8J	7.1	1.8J	3.6	30
Methylene chloride	PPB	5	ND	ND	ND	ND	ND	ND	4.9B	4.7B	3.8B	6.2B	ND
n-Butylbenzene	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
p-Ethyltoluene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
sec-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	PPB	5	72	35	9.7	130	94	63	11	12	2.8	6.4	170
Toluene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	PPB	5	7.8	3.5	1.2	11	10	5.2	1.1J	1.4J	0.51J	0.87J	11
Trichlorofluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	PPB	2	0.49J	0.13J	ND	0.71 J	1.2	0.44J	ND	ND	ND	ND	ND
1,4-Dioxane (EPA Method													
8270D SIM)	ng/l	50000											<u> </u>

Notes:

All results in ppb

ND - Not detected

NS-No Standard

NA- Not Analyzed

B- Analyte detected in blank

Bold-Exceeds NYS Standards

* Guidance Value

^{** 1,4} Dioxane <144. ng/l

Volatile Organic Chemicals EPA Method 8260 Table 1

Client Sample ID:		NYSDEC	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5SDL
Screen Intervals		Groundwater	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'
Sampling Date:		Standards	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012	9/25/2012
Dilution Factor														10
Analyte:	Units:													
1,1,1,2-Tetrachloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	PPB	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	PPB	5	ND	ND	1.4J	ND	ND	ND	ND	ND	0.92J	1.0J	2.2	ND
1,1-Dichloroethene	PPB	5	1.2J	0.54J	ND	0.85 J	1.1	0.6J	ND	ND	0.68J	0.78J	0.7J	ND
1,1-Dichloropropene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
1,2,4-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	PPB	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	PPB	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	PPB	50*	5.8J	ND	ND	ND	ND	ND	1.9BJ	2.7BJ	ND	2.0BJ	ND	ND
Acrylonitrile	PPB	5	ND	ND	4.2J	ND	6.6 J	ND	ND	NA	NA	NA	NA	NA
Benzene	PPB	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND
Bromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Volatile Organic Chemicals EPA Method 8260 Table 1

ISCO was performed during February and July 2015

Client Sample ID:		NYSDEC	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5SDL
Screen Intervals		Groundwater	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'
Sampling Date:		Standards	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012	9/25/2012
Dilution Factor														10
Analyte:	Units:													
Chloroform	PPB	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.42J	ND
cis-1,2-Dichloroethene	PPB	5	15	6.4	11	11 J	23	14	2.4	3.5	4.8	5.8	12	12D
cis-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	PPB	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	PPB	10	24	30	30	35	50	34	5.3	23	30	32	33	28D
Methylene chloride	PPB	5	ND	ND	ND	ND	ND	ND	5.0B	4.8B	4.0B	5.0B	ND	ND
n-Butylbenzene	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
p-Ethyltoluene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
sec-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	PPB	5	440	180	190	370	260	200	69	63	150D	190D	430E	450D
Toluene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	PPB	5	38	18	18	29	26	16	3.7	6.4	13	14	25	27D
Trichlorofluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	PPB	2	3.2J	1J	1.6J	1.9 J	3.5 J	1.1J	ND	0.68J	1.2J	1.6J	ND	ND
1,4-Dioxane (EPA Method														
8270D SIM)	ng/l	50000												

Notes:

All results in ppb

ND - Not detected

NS-No Standard

NA- Not Analyzed

B- Analyte detected in blank

Bold-Exceeds NYS Standards

* Guidance Value

** 1,4 Dioxane <144. ng/l

Volatile Organic Chemicals EPA Method 8260 Table 1

Client Sample ID:		NYSDEC	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9DL
Screen Intervals		Groundwater	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'
Sampling Date:		Standards	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012	9/25/2012
Dilution Factor														10
Analyte:	Units:													
1,1,1,2-Tetrachloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	PPB	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
1,2,4-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	PPB	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	PPB	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	PPB	50*	3.4J	2.2J	ND	ND	ND	1.6	1.5BJ	1.7BJ	1.5J	2.9BJ	ND	ND
Acrylonitrile	PPB	5	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA
Benzene	PPB	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	PPB	50*	0.21J	ND	ND	0.63	0.42 J	ND	ND	0.78J	ND	ND	ND	ND
Bromoform	PPB	50*	ND	ND	ND	ND	ND	ND	ND	1.0J	ND	ND	ND	ND
Bromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Volatile Organic Chemicals EPA Method 8260 Table 1

ISCO was performed during February and July 2015

Client Sample ID:		NYSDEC	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9DL
Screen Intervals		Groundwater	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'
Sampling Date:		Standards	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012	9/25/2012
Dilution Factor														10
Analyte:	Units:													
Chloroform	PPB	7	0.98J	ND	ND	1.9 J	0.91 J	ND	ND	0.99J	ND	ND	ND	ND
Chloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.49J	ND
cis-1,2-Dichloroethene	PPB	5	1.9J	2.2J	2.0J	1.4 J	22	27	15	ND	12	14	39	35D
cis-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	PPB	5	ND	ND	ND	0.39 J	0.37 J	ND	ND	1.2J	ND	ND	ND	ND
Dibromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	0.50	ND	ND	ND	ND
Dichlorodifluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	PPB	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.47J	0.79J
Methylene chloride	PPB	5	ND	ND	ND	ND	ND	ND	4.7B	4.7B	3.7B	5.0B	ND	ND
n-Butylbenzene	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
p-Ethyltoluene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
sec-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	PPB	5	13	18	11	4.4	5.2	43	12	3.6	91	93	730E	680D
Toluene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	PPB	5	0.9	0.97	0.72	0.89	1.6	4.6	2.1	0.50J	4.8	6.9	20	18D
Trichlorofluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	PPB	2	ND	ND	ND	ND	ND	0.1J	ND	ND	ND	ND	ND	ND
1,4-Dioxane (EPA Method 8270D SIM)	ng/l	50000												

Notes:

All results in ppb

ND - Not detected

NS-No Standard

NA- Not Analyzed

B- Analyte detected in blank

Bold-Exceeds NYS Standards

* Guidance Value

** 1,4 Dioxane <144. ng/l

Volatile Organic Chemicals EPA Method 8260 Table 1

Client Sample ID:		NYSDEC	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12
Screen Intervals		Groundwater	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'
Sampling Date:		Standards	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012
Dilution Factor													
Analyte:	Units:												
1,1,1,2-Tetrachloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	PPB	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2,4-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	PPB	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	PPB	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	PPB	50*	4.8J	ND	ND	ND	ND	ND	1.6BJ	1.7BJ	1.6J	3.0BJ	ND
Acrylonitrile	PPB	5	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA
Benzene	PPB	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	PPB	50*	0.47J	ND	ND	ND	ND	ND	ND	ND	ND	0.60J	ND
Bromoform	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Volatile Organic Chemicals EPA Method 8260 Table 1

ISCO was performed during February and July 2015

Client Sample ID:		NYSDEC	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12
Screen Intervals		Groundwater	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'	3-13'
Sampling Date:		Standards	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012
Dilution Factor													
Analyte:	Units:												
Chloroform	PPB	7	0.88J	ND	ND	ND	ND	ND	ND	ND	ND	0.86J	ND
Chloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6J
cis-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	PPB	5	0.39J	ND	ND	ND	ND	ND	ND	ND	ND	0.59J	ND
Dibromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	PPB	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	PPB	5	ND	ND	ND	ND	ND	ND	4.5B	4.6B	3.8B	5.5B	ND
n-Butylbenzene	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
p-Ethyltoluene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
sec-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	PPB	5	21	77	16	15	58	26	21	15	17	15	27
Toluene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	PPB	5	0.95	1.2	0.49J	0.32 J	1.2	0.72	0.61J	0.51J	ND	ND	0.51J
Trichlorofluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	PPB	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane (EPA Method													
8270D SIM)	ng/l	50000											

Notes:

All results in ppb

ND - Not detected

NS-No Standard

NA- Not Analyzed

B- Analyte detected in blank

Bold-Exceeds NYS Standards

* Guidance Value

** 1,4 Dioxane <144. ng/l

Volatile Organic Chemicals EPA Method 8260 Table 1

Client Sample ID:		NYSDEC	MW-14 D	MW-14 D	MW-14 D	MW-14 D	MW-14 D	MW-14 D	MW-14 D	MW-14 D	MW-14 D	MW-14 D	MW-14 D
Screen Intervals		Groundwater	25-35'	25-35'	25-35'	25-35'	25-35'	25-35'	25-35'	25-35'	25-35'	25-35'	25-35'
Sampling Date:		Standards	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012
Dilution Factor													
Analyte:	Units:												
1,1,1,2-Tetrachloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	PPB	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	3.6	ND	ND	ND
1,1-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2,4-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	PPB	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	PPB	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	PPB	50*	2.2J	ND	ND	ND	ND	1.9J	2.0BJ	2.8BJ	ND	5.6B	ND
Acrylonitrile	PPB	5	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA
Benzene	PPB	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Volatile Organic Chemicals EPA Method 8260 Table 1

ISCO was performed during February and July 2015

Client Sample ID:		NYSDEC	MW-14 D	MW-14 D	MW-14 D	MW-14 D	MW-14 D	MW-14 D	MW-14 D	MW-14 D	MW-14 D	MW-14 D	MW-14 D
Screen Intervals		Groundwater	25-35'	25-35'	25-35'	25-35'	25-35'	25-35'	25-35'	25-35'	25-35'	25-35'	25-35'
Sampling Date:		Standards	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012
Dilution Factor													
Analyte:	Units:												
Chloroform	PPB	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	PPB	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	PPB	10	ND	ND	ND	ND	ND	ND	ND	7.7	ND	ND	1.7
Methylene chloride	PPB	5	ND	ND	ND	ND	ND	ND	4.9B	4.8B	4.3B	5.9B	ND
n-Butylbenzene	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
p-Ethyltoluene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
sec-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	PPB	5	0.19J	ND	ND	ND	ND	ND	ND	3.6	ND	ND	ND
Toluene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	0.54J	ND	ND	ND
Trichlorofluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	PPB	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane (EPA Method 8270D SIM)	ng/l	50000											

Notes:

All results in ppb

ND - Not detected

NS-No Standard

NA- Not Analyzed

B- Analyte detected in blank

Bold-Exceeds NYS Standards

* Guidance Value

** 1,4 Dioxane <144. ng/l

Volatile Organic Chemicals EPA Method 8260 Table 1

Client Sample ID:		NYSDEC	MW-14S	MW-14S	MW-14S	MW-14S	MW-14 S	MW-14 S	MW-14 S	MW-14 S	MW-14 S	MW-14 S	MW-14 S
Screen Intervals		Groundwater	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'
Sampling Date:		Standards	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012
Dilution Factor													
Analyte:	Units:												
1,1,1,2-Tetrachloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,1,1-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	PPB	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	PPB	5	4.3	4.8	1.6J	15	19	18	4.2	ND	1.8J	3.4	24
1,1-Dichloroethene	PPB	5	0.18J	ND	ND	0.51	0.55	0.59	ND	ND	ND	ND	1.5
1,1-Dichloropropene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2,3-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2,3-Trichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2,4,5-Tetramethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2,4-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2,4-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2-Dibromo-3-chloropropane	PPB	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2-Dibromoethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2-Dichloroethane	PPB	0.6	ND	ND	ND	ND	0.18 J	0.16J	ND	ND	ND	ND	NA
1,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,3-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,3-dichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,4-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,4-Dioxane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
2,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
2-Butanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	PPB	50*	4.4J	ND	ND	ND	ND	1.5J	ND	2.3BJ	ND	5.2B	ND
Acrylonitrile	PPB	5	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA
Benzene	PPB	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Bromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Bromodichloromethane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Volatile Organic Chemicals EPA Method 8260 Table 1

ISCO was performed during February and July 2015

Client Sample ID:		NYSDEC	MW-14S	MW-14S	MW-14S	MW-14S	MW-14 S	MW-14 S	MW-14 S	MW-14 S	MW-14 S	MW-14 S	MW-14 S
Screen Intervals		Groundwater	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'	17-22'
Sampling Date:		Standards	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012
Dilution Factor													
Analyte:	Units:												
Chloroform	PPB	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Dichlorodifluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Ethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	PPB	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Isopropylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Methyl tert-butyl ether	PPB	10	8.3	12	4.4	44	38	24	7.5	ND	5.1	12	19
Methylene chloride	PPB	5	ND	ND	ND	ND	ND	ND	5.0B	5.2B	4.0B	5.7B	ND
n-Butylbenzene	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
n-Propylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Naphthalene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
o-Xylene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
p-Ethyltoluene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
sec-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Styrene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Tetrachloroethene	PPB	5	2	0.51	0.68	3.3	7	4.9	3.2	ND	5.7	7.5	10
Toluene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.47J
trans-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	PPB	5	0.24J	ND	ND	0.42 J	0.9	0.51	ND	ND	ND	0.88J	0.93J
Trichlorofluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Vinyl acetate	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Vinyl chloride	PPB	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane (EPA Method													
8270D SIM)	ng/l	50000											

Notes:

All results in ppb

ND - Not detected

NS-No Standard

NA- Not Analyzed

B- Analyte detected in blank

Bold-Exceeds NYS Standards

* Guidance Value

^{** 1,4} Dioxane <144. ng/l

Volatile Organic Chemicals EPA Method 8260 Table 1

Client Sample ID:		NYSDEC	MW-14 WT	MW-14 WT	MW-14 WT	MW-14 WT	MW-14 WT	MW-14 WT	MW-14 WT	MW-14 WT	MW-14 WT	MW-14 WT	MW-14 WT
Screen Intervals		Groundwater	4-9'	4-9'	4-9'	4-9'	4-9'	4-9'	4-9'	4-9'	4-9'	4-9'	4-9'
Sampling Date:		Standards	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	08/02/2011
Dilution Factor													
Analyte:	Units:												
1,1,1,2-Tetrachloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,1,1-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	PPB	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2,3-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2,3-Trichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2,4,5-Tetramethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2,4-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2,4-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2-Dibromo-3-chloropropane	PPB	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2-Dibromoethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2-Dichloroethane	PPB	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,3-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,3-dichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,4-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,4-Dioxane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
2,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
2-Butanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	PPB	50*	2.7J	4.5J	ND	1.5 J	ND	ND	1.9BJ	1.7BJ	1.5J	5.3B	ND
Acrylonitrile	PPB	5	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA
Benzene	PPB	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Bromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Bromodichloromethane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	PPB	5	ND	ND	ND	1.5 J	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Volatile Organic Chemicals EPA Method 8260 Table 1

ISCO was performed during February and July 2015

Client Sample ID:		NYSDEC	MW-14 WT	MW-14 WT	MW-14 WT	MW-14 WT	MW-14 WT	MW-14 WT	MW-14 WT	MW-14 WT	MW-14 WT	MW-14 WT	MW-14 WT
Screen Intervals		Groundwater	4-9'	4-9'	4-9'	4-9'	4-9'	4-9'	4-9'	4-9'	4-9'	4-9'	4-9'
Sampling Date:		Standards	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	08/02/2011
Dilution Factor													
Analyte:	Units:												
Chloroform	PPB	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Dichlorodifluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Ethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	PPB	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Isopropylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Methyl tert-butyl ether	PPB	10	ND	2J	1.2J	1.7 J	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	PPB	5	ND	ND	ND	ND	ND	ND	5.0B	4.7B	3.8B	5.8B	15B
n-Butylbenzene	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
n-Propylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Naphthalene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
o-Xylene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
p-Ethyltoluene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
sec-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Styrene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Tetrachloroethene	PPB	5	12	31	60	92	51	26	7.3	16	12	5.2	19
Toluene	PPB	5	ND	ND	ND	ND	ND	ND	NU	ND	ND	ND	ND
trans-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	NU	ND	ND	ND	ND
trans-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	NU	ND	ND	ND	ND
Trichloroethene	PPB	5	0.39J	0.82	1.2	1.9	1.2	0.68	NU	ND	ND	ND	ND
Trichlorofluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	NU	ND	ND	ND	NA
Vinyl acetate	PPB	50*	ND	ND	ND	ND	ND	ND	NU	ND	ND	ND	NA
Vinyl chloride	PPB	2	ND	ND	ND	ND	ND	ND	NU	ND	ND	ND	ND
1,4-Dioxane (EPA Method 8270D SIM)	ng/l	50000											

Notes:

All results in ppb

ND - Not detected

NS-No Standard

NA- Not Analyzed

B- Analyte detected in blank

Bold-Exceeds NYS Standards

^{*} Guidance Value

^{** 1,4} Dioxane <144. ng/l

Volatile Organic Chemicals EPA Method 8260 Table 1

Client Sample ID:		NYSDEC	DB-1 Well	DB-1 Well	DB-1 Well	DB-1 Well	DB-1 Well	DB-1 Well DL						
Screen Intervals		Groundwater	55-65'	55-65'	55-65'	55-65'	55-65'	55-65'	55-65'	55-65'	55-65'	55-65'	55-65'	55-65'
Sampling Date:		Standards	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012	9/25/2012
Dilution Factor														25
Analyte:	Units:													
1,1,1,2-Tetrachloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	PPB	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.5	ND
1,1-Dichloroethene	PPB	5	0.54J	ND	0.96J	ND	0.34 J	ND	ND	ND	ND	ND	2.6	ND
1,1-Dichloropropene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
1,2,4-Trichlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	PPB	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	PPB	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichloropropane	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	PPB	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	PPB	50*	5.7J	ND	ND	ND	ND	ND	1.9BJ	2.6BJ	ND	4.5BJ	ND	ND
Acrylonitrile	PPB	5	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA
Benzene	PPB	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	PPB	50*	2.6	13	ND	ND	4.5	ND	ND	ND	ND	ND	ND	ND
Bromoform	PPB	50*	1.3J	3.2	ND	ND	2.5 J	ND	ND	ND	ND	ND	ND	ND
Bromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.65J	ND
Carbon tetrachloride	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Volatile Organic Chemicals EPA Method 8260 Table 1

ISCO was performed during February and July 2015

Client Sample ID:		NYSDEC	DB-1 Well	DB-1 Well	DB-1 Well	DB-1 Well	DB-1 Well	DB-1 Well DL						
Screen Intervals		Groundwater	55-65'	55-65'	55-65'	55-65'	55-65'	55-65'	55-65'	55-65'	55-65'	55-65'	55-65'	55-65'
Sampling Date:		Standards	12/24/2018	6/28/2018	12/20/2017	6/15/2017	12/28/2016	6/29/2016	10/21/2015	9/9/2015	5/4/2015	3/23/2015	9/25/2012	9/25/2012
Dilution Factor														25
Analyte:	Units:													
Chloroform	PPB	7	4.5J	17	ND	ND	4.6 J	ND	ND	ND	ND	ND	ND	ND
Chloromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6J	ND
cis-1,2-Dichloroethene	PPB	5	9.6	2.2J	6.8	18 J	5.7	19J	1.7J	18	3.5	4.3	6.3	ND
cis-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	PPB	5	2.1	8.6	ND	ND	4.4	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	PPB	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	PPB	10	4.8J	ND	20	12 J	1.5 J	7.2J	5.3	ND	3.6	0.54J	130	99D
Methylene chloride	PPB	5	ND	ND	ND	ND	ND	ND	5.1B	4.6B	4.0B	6.0B	ND	ND
n-Butylbenzene	PPB	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
p-Ethyltoluene	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
sec-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	PPB	5	200	21	280	600	140	500	46	16	170D	180D	210E	250D
Toluene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	PPB	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	PPB	5	26	2.5	46	60	17	54	5.7	2.9	13	10	31	27
Trichlorofluoromethane	PPB	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	PPB	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	PPB	2	1.9J	0.26J	2.7	4 J	1.9 J	4.5J	ND	ND	0.93J	1.1J	1.9	ND
1,4-Dioxane (EPA Method 8270D SIM)	ng/l	50000			152									

Notes:

All results in ppb

ND - Not detected

NS-No Standard

NA- Not Analyzed

B- Analyte detected in blank

Bold-Exceeds NYS Standards

* Guidance Value

^{** 1,4} Dioxane <144. ng/l

Soil Vapor EPA Method TO-15 Table 2

LOCATION			EFFLUENT
SAMPLING DATE			12/26/2018
SAMPLE TYPE			SOIL VAPOR
SAMPLE DEPTH (ft.)			-
	NY-SSC	Units	Results
1,1,1-Trichloroethane	5	ug/m3	ND
1,1,2,2-Tetrachloroethane	5	ug/m3	ND
1,1,2-Trichloro-1,2,2-Trifluoroethane	5	ug/m3	ND
1,1,2-Trichloroethane	5	ug/m3	ND
1,1-Dichloroethane	5	ug/m3	ND
1,1-Dichloroethene	5	ug/m3	ND
1,2,4-Trichlorobenzene	5	ug/m3	ND
1,2,4-Trimethylbenzene	5	ug/m3	ND
1,2-Dibromoethane	5	ug/m3	ND
1,2-Dichloro-1,1,2,2-tetrafluoroethane	5	ug/m3	ND
1,2-Dichlorobenzene	5	ug/m3	ND
1,2-Dichloroethane	5	ug/m3	ND
1,2-Dichloropropane	5	ug/m3	ND
1,3,5-Trimethylbenzene	5	ug/m3	ND
1,3-Butadiene	5	ug/m3	ND
1,3-Dichlorobenzene	5	ug/m3	ND
1,4-Dichlorobenzene	5	ug/m3	ND
1,4-Dioxane	5	ug/m3	ND
2,2,4-Trimethylpentane	5	ug/m3	ND
2-Butanone	5	ug/m3	ND
2-Hexanone	5	ug/m3	ND
3-Chloropropene	5	ug/m3	ND
4-Ethyltoluene	5	ug/m3	ND
4-Methyl-2-pentanone	5	ug/m3	ND
Acetone	5	ug/m3	ND
Benzene	5	ug/m3	ND
Benzyl chloride	5	ug/m3	ND
Bromodichloromethane	5	ug/m3	ND
Bromoform	5	ug/m3	ND
Bromomethane	5	ug/m3	ND
Carbon disulfide	5	ug/m3	ND
Carbon tetrachloride	5	ug/m3	ND
Chlorobenzene	5	ug/m3	ND
Chloroethane	5	ug/m3	ND
Chloroform	5	ug/m3	65.9
Chloromethane	5	ug/m3	ND
cis-1,2-Dichloroethene	5	ug/m3	ND

Soil Vapor EPA Method TO-15 Table 2

LOCATION			EFFLUENT
SAMPLING DATE			12/26/2018
SAMPLE TYPE			SOIL VAPOR
SAMPLE DEPTH (ft.)			_
` _	NY-SSC	Units	Results
cis-1,3-Dichloropropene	5	ug/m3	ND
Cyclohexane	5	ug/m3	ND
Dibromochloromethane	5	ug/m3	ND
Dichlorodifluoromethane	5	ug/m3	ND
Ethyl Acetate	5	ug/m3	ND
Ethyl Alcohol	5	ug/m3	ND
Ethylbenzene	5	ug/m3	ND
Heptane	5	ug/m3	ND
Hexachlorobutadiene	5	ug/m3	ND
iso-Propyl Alcohol	5	ug/m3	ND
Methyl tert butyl ether	5	ug/m3	ND
Methylene chloride	5	ug/m3	ND
n-Hexane	5	ug/m3	ND
o-Xylene	5	ug/m3	ND
p/m-Xylene	5	ug/m3	ND
Styrene	5	ug/m3	ND
tert-Butyl Alcohol	5	ug/m3	ND
Tetrachloroethene	5	ug/m3	2490
Tetrahydrofuran	5	ug/m3	ND
Toluene	5	ug/m3	ND
trans-1,2-Dichloroethene	5	ug/m3	ND
trans-1,3-Dichloropropene	5	ug/m3	ND
Trichloroethene	5	ug/m3	ND
Trichlorofluoromethane	5	ug/m3	ND
Vinyl bromide	5	ug/m3	ND
Vinyl chloride	5	ug/m3	ND

NY-SSC-A: New York DOH Matrix A Sub-slab Vapor Concentrations Criteria per Guidance for Evaluating Soil Vapor Intrusion, October 2006, and updated May 2017.

Historical Soil Vapor EPA Method TO-15 Table 3

LOCATION					EFFLUENT	EFFLUENT	EFFLUENT	EFFLUENT	EFFLUENT	EFFLUENT	EFFLUENT
SAMPLING DATE					6/28/2018	12/20/2017	12/20/2017	6/15/2017	12/28/2016	6/29/2016	6/29/2016
DILUTION FACTOR							3.507				23.08
	NY-IAC	NY-SSC	NY-AGV	Units	Results	Results	Results	Results	Results	Results	Results
1,1,1-Trichloroethane	0.25	5	NA	ug/m3	ND	ND	-	ND	3.11	ND	-
1,1,2,2-Tetrachloroethane	0.25	5	NA	ug/m3	ND	ND	-	ND	1.13	ND	-
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.25	5	NA	ug/m3	ND	ND	-	ND	ND	ND	-
1,1,2-Trichloroethane	0.25	5	NA	ug/m3	ND	ND	-	ND	ND	ND	-
1,1-Dichloroethane	0.25	5	NA	ug/m3	ND	ND	-	ND	ND	ND	-
1,1-Dichloroethene	0.25	5	NA	ug/m3	ND	ND	-	ND	ND	ND	-
1,2,4-Trichlorobenzene	0.25	5	NA	ug/m3	ND	ND	-	ND	ND	ND	-
1,2,4-Trimethylbenzene	0.25	5	NA	ug/m3	ND	ND	-	ND	ND	ND	-
1,2-Dibromoethane	0.25	5	NA	ug/m3	ND	ND	-	ND	ND	ND	-
1,2-Dichloro-1,1,2,2-tetrafluoroethane	0.25	5	NA	ug/m3	ND	ND	-	ND	10	ND	-
1,2-Dichlorobenzene	0.25	5	NA	ug/m3	ND	ND	-	ND	ND	ND	-
1,2-Dichloroethane	0.25	5	NA	ug/m3	ND	ND	-	ND	ND	ND	-
1,2-Dichloropropane	0.25	5	NA	ug/m3	ND	ND	-	ND	ND	ND	-
1,3,5-Trimethylbenzene	0.25	5	NA	ug/m3	ND	ND	-	ND	3.85	ND	-
1,3-Butadiene	0.25	5	NA	ug/m3	ND	ND	-	ND	ND	ND	-
1,3-Dichlorobenzene	0.25	5	NA	ug/m3	ND	ND	-	ND	ND	ND	-
1,4-Dichlorobenzene	0.25	5	NA	ug/m3	ND	ND	-	ND	ND	ND	-
1,4-Dioxane	0.25	5	NA	ug/m3	ND	ND	-	ND	ND	ND	-
2,2,4-Trimethylpentane	0.25	5	NA	ug/m3	ND	ND	-	ND	ND	ND	-
2-Butanone	0.25	5	NA	ug/m3	ND	ND	-	ND	ND	ND	-
2-Hexanone	0.25	5	NA	ug/m3	ND	ND	-	ND	ND	ND	-
3-Chloropropene	0.25	5	NA	ug/m3	ND	ND	-	ND	ND	ND	-
4-Ethyltoluene	0.25	5	NA	ug/m3	ND	14	-	9.24	2.44	ND	-
4-Methyl-2-pentanone	0.25	5	NA	ug/m3	ND	0.748	-	ND	ND	ND	-
Acetone	0.25	5	NA	ug/m3	3.82	ND	-	ND	ND	846	1
Benzene	0.25	5	NA	ug/m3	ND	ND	-	ND	5.6	ND	1
Benzyl chloride	0.25	5	NA	ug/m3	ND	ND	-	ND	ND	ND	1
Bromodichloromethane	0.25	5	NA	ug/m3	ND	ND	-	ND	12.4	ND	1
Bromoform	0.25	5	NA	ug/m3	ND	ND	-	ND	ND	ND	1
Bromomethane	0.25	5	NA	ug/m3	ND	ND	-	ND	ND	ND	1
Carbon disulfide	0.25	5	NA	ug/m3	ND	ND	-	ND	ND	ND	1
Carbon tetrachloride	0.25	5	NA	ug/m3	ND	ND	-	ND	ND	ND	1
Chlorobenzene	0.25	5	NA	ug/m3	ND	ND	-	ND	ND	ND	-
Chloroethane	0.25	5	NA	ug/m3	ND	0.807	-	0.958	ND	ND	-
Chloroform	0.25	5	NA	ug/m3	ND	2.53	-	1.08	ND	ND	1
Chloromethane	0.25	5	NA	ug/m3	0.64	ND	-	ND	ND	ND	1
cis-1,2-Dichloroethene	0.25	5	NA	ug/m3	1.78	ND	-	ND	ND	ND	1
cis-1,3-Dichloropropene	0.25	5	NA	ug/m3	ND	ND	-	ND	1.9	ND	ı
Cyclohexane	0.25	5	NA	ug/m3	ND	2.24	-	2.12	ND	ND	-

Historical Soil Vapor EPA Method TO-15 Table 3

LOCATION					EFFLUENT	EFFLUENT	EFFLUENT	EFFLUENT	EFFLUENT	EFFLUENT	EFFLUENT
SAMPLING DATE					6/28/2018	12/20/2017	12/20/2017	6/15/2017	12/28/2016	6/29/2016	6/29/2016
DILUTION FACTOR					0,20,202		3.507	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			23.08
	NY-IAC	NY-SSC	NY-AGV	Units	Results	Results	Results	Results	Results	Results	Results
Dibromochloromethane	0.25	5	NA	ug/m3	ND	1.8	-	12.4	ND	ND	-
Dichlorodifluoromethane	0.25	5	NA	ug/m3	1.98	12.4	-	ND	ND	ND	-
Ethyl Acetate	0.25	5	NA	ug/m3	8.07	ND	-	ND	ND	ND	-
Ethyl Alcohol	0.25	5	NA	ug/m3	21.7	ND	-	ND	9.23	ND	-
Ethylbenzene	0.25	5	NA	ug/m3	ND	ND	-	ND	ND	ND	-
Heptane	0.25	5	NA	ug/m3	ND	0.824	-	ND	ND	ND	-
Hexachlorobutadiene	0.25	5	NA	ug/m3	ND	2.13	-	ND	ND	ND	-
iso-Propyl Alcohol	0.25	5	NA	ug/m3	ND	ND	-	ND	1140	ND	-
Methyl tert butyl ether	0.25	5	NA	ug/m3	ND	ND	-	ND	ND	ND	-
Methylene chloride	0.25	5	NA	ug/m3	ND	ND	-	ND	6.3	ND	-
n-Hexane	0.25	5	NA	ug/m3	ND	0.937	-	ND	12.6	ND	-
o-Xylene	0.25	5	NA	ug/m3	ND	0.869	-	ND	ND	ND	-
p/m-Xylene	0.25	5	NA	ug/m3	ND	1.82	-	ND	ND	ND	-
Styrene	0.25	5	NA	ug/m3	ND	ND	-	ND	ND	ND	-
tert-Butyl Alcohol	0.25	5	NA	ug/m3	ND	ND	-	ND	3.65	23.7	-
Tetrachloroethene	0.25	5	30	ug/m3	726	1040E	1660	464	ND	10800E	8140
Tetrahydrofuran	0.25	5	NA	ug/m3	ND	ND	-	ND	ND	ND	-
Toluene	0.25	5	NA	ug/m3	ND	6.93	-	0.776	2.41	ND	-
trans-1,2-Dichloroethene	0.25	5	NA	ug/m3	ND	ND	-	ND	ND	ND	-
trans-1,3-Dichloropropene	0.25	5	NA	ug/m3	ND	ND	-	ND	ND	ND	-
Trichloroethene	0.25	5	2	ug/m3	1.64	2.75	-	ND	ND	26.8	-
Trichlorofluoromethane	0.25	5	NA	ug/m3	ND	1.19	-	1.13	ND	ND	-
Vinyl bromide	0.25	5	NA	ug/m3	ND	ND	-	ND	ND	ND	-
Vinyl chloride	0.25	5	NA	ug/m3	ND	ND	-	ND	ND	ND	-

Notes:

ND -The compound was not detected at the indicated concentration.

E -The reported value is estimated because of the presence of interference.

Table 4 Air Emissions (60 CFM)

Minute Man Cleaners

Soil Vapor Extraction System Blower No. 1

Jan-18

Emission rate potential from the Soil Vapor Extraction System

SAMPLING DATE 12/24/18

Flow Rates:

Air = 60 cfm = 1.699 Cu. meters/min = 101.95 Cu. meters/hour

Dimensional Conversion:

[gpm] * 3.785 l/gal * [ug/l] * 10e-9 kg/ug * 2.205 lb/kg * 60 Min/hr = [] pounds per hour

[gpm] * [ug/l] * 0.0000005

Contaminants:			ERP		Discharge Concer	ntration_	Air Guide - 1 Evaluation		ug/m3	ug/m3
							toxicity	CAS Reg	SGC	AGC
96.72% Tetrachloroethene	0.25386	g/hour	0.00056	lb/hour	2490.0	ug/cu meter	High	127-18-4	300	4 ug/cubic meter
0.46% Acetone	0.00121	g/hour	0.00000	lb/hour	11.9	ug/cu meter	Low	67-64-1	180,000	30,000 ug/cubic meter
0.35% Ethyl Acetate	0.00092	g/hour	0.00000	lb/hour	9.0	ug/cu meter	Mod	141-78-6	-	3,400 ug/cubic meter
1.83% Ethyl Alcohol	0.00480	g/hour	0.00001	lb/hour	47.1	ug/cu meter	Low	64-17-5	-	45,000 ug/cubic meter
0.19% Dichlorodifluoromethane	0.00050	g/hour	0.00000	lb/hour	4.9	ug/cu meter	-	75-71-8	-	12,000 ug/cubic meter
0.15% cis-1,2-Dichloroethene	0.00040	g/hour	0.00000	lb/hour	4.0	ug/cu meter	Mod	156-59-2	-	63 ug/cubic meter
0.08% Chloromethane	0.00021	g/hour	0.00000	lb/hour	2.1	ug/cu meter	Mod	74-87-3	22,000	90 ug/cubic meter
0.21% Trichloroethene	0.00055	g/hour	0.00000	lb/hour	5.4	ug/cu meter	High	79-01-6	20	0.20 ug/cubic meter

2574.4

Initial Ratings:

100.00%

A TetraChloroethene - refer to IV.B.1.a for emission rate < 0.1 pound per hour: can consider no control if ambient impact < AGC and SGC

0.01389

5.06876

0.00058 lb/hour

lb/day

lb/year

Appendix "B" Evaluation (1994 Edition):

Assume dimensions as follows:

building = 10 feet above grade horizontal dimension > 10 feet: squat structure

Stack = 13 feet above grade

0.262460 g/hour

2299.15075 g/year

g/day

6.29904315

Il Cavity impacts: none - stack height > 2.5 times building height and distance to the property line are > 3 times the height of the building.

III Point and Area Source Air Quality Impacts

A.1.c - discharge buoyancy

11.41 = V, exit velocity [ft/sec]
0.167 =R, stack outlet radius [feet]

513 =T, stack exit temp. [Rankine] = F +460

0.0005 =F, buoyancy flux parameter [meter**4 / sec**3] = .276 V R**2 (T-510) / T

Sheet Name:Air Emissions 12-24-18 Page 1 of 2

Table 4 Air Emissions (60 CFM)

Minute Man Cleaners Jan-18 Soil Vapor Extraction System Blower No. 1

Emission rate potential from the Soil Vapor Extraction System

A.1.d - effective stack height

13.02 = h-eff. [ft] = h-stack+7 * F**.75, for F<55

A.2 - Maximum Actual Annual Impact

1991 Formula:

Assume uniform influent for initial screening step

 $826.7820 = Ca [ug/M^{**}3] = 6 Qa / h-eff^{**}2.25,$ 44402.372 =Qa [lbs/year]

83.6784 ug/

A.3 - Maximum Potential Annual Impact

0.0943 = C-pot [ug/M**3] = 52500 Q / h-eff**2.25

0.0006 = Q [lbs/hr]

A.4 - Stack Height Reduction of Impacts

1 = multiplication factor for h-stack/h-building < 2.5

826.782 = Ca [ug/M**3]

0.094 = Cp [ug/M**3]

A.5 - Maximum Short-Term Impact

6.128 = Cst [ug/M**3] = Cp * 65

Summary for all Compounds of Interest:

Contaminants:	<u>ERP</u>					Air Guide - 1 Ap	ppendix "B" Screening	Criteria		
			A.2	A.3	A.4	AGC	Acceptable?	A.5	SGC	Acceptable?
Tetrachloroethene	0.00056	lb/hour	0.0913	0.0912	0.0912	4	YES	5.93	300	YES
Acetone	0.00000	lb/hour	0.0004	0.0004	0.0004	30,000	YES	0.03	180,000	YES
Ethyl Acetate	0.00000	lb/hour	0.0003	0.0003	0.0003	3,400	YES	0.02 -		YES
Ethyl Alcohol	0.00001	lb/hour	0.0017	0.0017	0.0017	45,000	YES	0.11 -		YES
Dichlorodifluoromethane	0.00000	lb/hour	0.0002	0.0002	0.0002	12,000	YES	0.01 -		YES
cis-1,2-Dichloroethene	0.00000	lb/hour	0.0001	0.0001	0.0001	63	YES	0.01 -		YES
Chloromethane	0.00000	lb/hour	0.0001	0.0001	0.0001	90	YES	0.00	22,000	YES
Trichloroethene	0.00000	lb/hour	0.0001	0.0001	0.0001	0	YES	0.00	22,000	YES

0.00058 lb/hour

Semi-Annual Sampling Report NYSDEC Site Number: C130157 Minute Man Cleaners 89 Ocean Avenue East Rockaway, Nassau County, New York 11518 February 2019

Appendix A – Groundwater Analytical Laboratory Report

ANALYTICAL REPORT

Lab Number: L1853137

Client: J.R. Holzmacher P.E., LLC

3555 Veterans Memorial Highway

Suite A

Ronkonkoma, NY 11779

ATTN: AJ Scheff
Phone: (631) 234-2220

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01 Report Date: 01/04/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

Lab Number: L1853137 **Report Date:** 01/04/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1853137-01	MW-1D	WATER	89 OCEAN AVE., EAST ROCKAWAY, NJ	12/24/18 14:41	12/26/18
L1853137-02	MW-1S	WATER	89 OCEAN AVE., EAST ROCKAWAY, NJ	12/24/18 14:59	12/26/18
L1853137-03	MW-2D	WATER	89 OCEAN AVE., EAST ROCKAWAY, NJ	12/24/18 13:56	12/26/18
L1853137-04	MW-2S	WATER	89 OCEAN AVE., EAST ROCKAWAY, NJ	12/24/18 14:21	12/26/18
L1853137-05	MW-3D	WATER	89 OCEAN AVE., EAST ROCKAWAY, NJ	12/24/18 12:26	12/26/18
L1853137-06	MW-3S	WATER	89 OCEAN AVE., EAST ROCKAWAY, NJ	12/24/18 12:51	12/26/18
L1853137-07	MW-4D	WATER	89 OCEAN AVE., EAST ROCKAWAY, NJ	12/24/18 11:44	12/26/18
L1853137-08	MW-4S	WATER	89 OCEAN AVE., EAST ROCKAWAY, NJ	12/24/18 12:01	12/26/18
L1853137-09	MW-5D	WATER	89 OCEAN AVE., EAST ROCKAWAY, NJ	12/24/18 10:21	12/26/18
L1853137-10	MW-5S	WATER	89 OCEAN AVE., EAST ROCKAWAY, NJ	12/24/18 10:41	12/26/18
L1853137-11	MW-9	WATER	89 OCEAN AVE., EAST ROCKAWAY, NJ	12/24/18 11:01	12/26/18
L1853137-12	MW-12	WATER	89 OCEAN AVE., EAST ROCKAWAY, NJ	12/24/18 13:21	12/26/18
L1853137-13	MW-14S	WATER	89 OCEAN AVE., EAST ROCKAWAY, NJ	12/24/18 09:41	12/26/18
L1853137-14	MW-14D	WATER	89 OCEAN AVE., EAST ROCKAWAY, NJ	12/24/18 09:16	12/26/18
L1853137-15	MW-14WT	WATER	89 OCEAN AVE., EAST ROCKAWAY, NJ	12/24/18 10:01	12/26/18
L1853137-16	TRIP BLANK	WATER	89 OCEAN AVE., EAST ROCKAWAY, NJ	12/24/18 00:00	12/26/18
L1853137-17	DB-1	WATER	89 OCEAN AVE., EAST ROCKAWAY, NJ	12/24/18 11:24	12/26/18

L1853137

Project Name: MINUTE MAN CLEANERS Lab Number:

Project Number: MANID 16-01 Report Date: 01/04/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.	

Serial_No:01041910:06

Project Name: MINUTE MAN CLEANERS Lab Number: L1853137

Project Number: MANID 16-01 Report Date: 01/04/19

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 01/04/19

Melissa Cripps Melissa Cripps

ORGANICS

VOLATILES

L1853137

01/04/19

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

SAMPLE RESULTS

Date Collected: 12/24/18 14:41

Lab Number:

Report Date:

Lab ID: L1853137-01

Client ID: MW-1D

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ

Date Received: 12/26/18

Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 01/02/19 13:33

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	ı Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	140		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.35	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: MINUTE MAN CLEANERS Lab Number: L1853137

Project Number: MANID 16-01 Report Date: 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-01 Date Collected: 12/24/18 14:41

Client ID: MW-1D Date Received: 12/26/18

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Trichloroethene	5.9		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	1.0	J	ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	1.8	J	ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	1.8	J	ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	2.0	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: MINUTE MAN CLEANERS Lab Number: L1853137

Project Number: MANID 16-01 Report Date: 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-01 Date Collected: 12/24/18 14:41

Client ID: Date Received: 12/26/18

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	92	70-130	
4-Bromofluorobenzene	88	70-130	
Dibromofluoromethane	109	70-130	

L1853137

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

SAMPLE RESULTS

Date Collected: 12/24/18 14:59

Report Date: 01/04/19

Lab Number:

Lab ID: L1853137-02 D

Client ID: MW-1S

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ

Date Received: 12/26/18
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 01/02/19 13:55

Valatila Organias by CC/MS Mostborous						Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
Methylene chloride	ND		ug/l	5.0	1.4	2
1,1-Dichloroethane	ND		ug/l	5.0	1.4	2
Chloroform	ND		ug/l	5.0	1.4	2
Carbon tetrachloride	ND		ug/l	1.0	0.27	2
1,2-Dichloropropane	ND		ug/l	2.0	0.27	2
Dibromochloromethane	1.0		ug/l	1.0	0.30	2
1,1,2-Trichloroethane	ND		ug/l	3.0	1.0	2
Tetrachloroethene	210		ug/l	1.0	0.36	2
Chlorobenzene	ND		ug/l	5.0	1.4	2
Trichlorofluoromethane	ND		ug/l	5.0	1.4	2
1,2-Dichloroethane	ND		ug/l	1.0	0.26	2
1,1,1-Trichloroethane	ND		ug/l	5.0	1.4	2
Bromodichloromethane	0.68	J	ug/l	1.0	0.38	2
trans-1,3-Dichloropropene	ND		ug/l	1.0	0.33	2
cis-1,3-Dichloropropene	ND		ug/l	1.0	0.29	2
1,3-Dichloropropene, Total	ND		ug/l	1.0	0.29	2
1,1-Dichloropropene	ND		ug/l	5.0	1.4	2
Bromoform	1.4	J	ug/l	4.0	1.3	2
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.33	2
Benzene	ND		ug/l	1.0	0.32	2
Toluene	ND		ug/l	5.0	1.4	2
Ethylbenzene	ND		ug/l	5.0	1.4	2
Chloromethane	ND		ug/l	5.0	1.4	2
Bromomethane	ND		ug/l	5.0	1.4	2
Vinyl chloride	1.1	J	ug/l	2.0	0.14	2
Chloroethane	ND		ug/l	5.0	1.4	2
1,1-Dichloroethene	ND		ug/l	1.0	0.34	2
trans-1,2-Dichloroethene	ND		ug/l	5.0	1.4	2

Project Name: MINUTE MAN CLEANERS Lab Number: L1853137

Project Number: MANID 16-01 Report Date: 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-02 D Date Collected: 12/24/18 14:59

Client ID: MW-1S Date Received: 12/26/18

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Trichloroethene	13		ug/l	1.0	0.35	2
1,2-Dichlorobenzene	ND		ug/l	5.0	1.4	2
1,3-Dichlorobenzene	ND		ug/l	5.0	1.4	2
1,4-Dichlorobenzene	ND		ug/l	5.0	1.4	2
Methyl tert butyl ether	ND		ug/l	5.0	1.4	2
p/m-Xylene	ND		ug/l	5.0	1.4	2
o-Xylene	ND		ug/l	5.0	1.4	2
Xylenes, Total	ND		ug/l	5.0	1.4	2
cis-1,2-Dichloroethene	4.8	J	ug/l	5.0	1.4	2
1,2-Dichloroethene, Total	4.8	J	ug/l	5.0	1.4	2
Dibromomethane	ND		ug/l	10	2.0	2
1,2,3-Trichloropropane	ND		ug/l	5.0	1.4	2
Acrylonitrile	ND		ug/l	10	3.0	2
Styrene	ND		ug/l	5.0	1.4	2
Dichlorodifluoromethane	ND		ug/l	10	2.0	2
Acetone	5.5	J	ug/l	10	2.9	2
Carbon disulfide	ND		ug/l	10	2.0	2
2-Butanone	ND		ug/l	10	3.9	2
Vinyl acetate	ND		ug/l	10	2.0	2
4-Methyl-2-pentanone	ND		ug/l	10	2.0	2
2-Hexanone	ND		ug/l	10	2.0	2
Bromochloromethane	ND		ug/l	5.0	1.4	2
2,2-Dichloropropane	ND		ug/l	5.0	1.4	2
1,2-Dibromoethane	ND		ug/l	4.0	1.3	2
1,3-Dichloropropane	ND		ug/l	5.0	1.4	2
1,1,1,2-Tetrachloroethane	ND		ug/l	5.0	1.4	2
Bromobenzene	ND		ug/l	5.0	1.4	2
n-Butylbenzene	ND		ug/l	5.0	1.4	2
sec-Butylbenzene	ND		ug/l	5.0	1.4	2
tert-Butylbenzene	ND		ug/l	5.0	1.4	2
o-Chlorotoluene	ND		ug/l	5.0	1.4	2
p-Chlorotoluene	ND		ug/l	5.0	1.4	2
1,2-Dibromo-3-chloropropane	ND		ug/l	5.0	1.4	2
Hexachlorobutadiene	ND		ug/l	5.0	1.4	2
Isopropylbenzene	ND		ug/l	5.0	1.4	2
p-Isopropyltoluene	ND		ug/l	5.0	1.4	2
Naphthalene	ND		ug/l	5.0	1.4	2

Project Name: MINUTE MAN CLEANERS Lab Number: L1853137

Project Number: MANID 16-01 Report Date: 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-02 D Date Collected: 12/24/18 14:59

Client ID: MW-1S Date Received: 12/26/18
Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	5.0	1.4	2	
1,2,3-Trichlorobenzene	ND		ug/l	5.0	1.4	2	
1,2,4-Trichlorobenzene	ND		ug/l	5.0	1.4	2	
1,3,5-Trimethylbenzene	ND		ug/l	5.0	1.4	2	
1,2,4-Trimethylbenzene	ND		ug/l	5.0	1.4	2	
1,4-Dioxane	ND		ug/l	500	120	2	
p-Diethylbenzene	ND		ug/l	4.0	1.4	2	
p-Ethyltoluene	ND		ug/l	4.0	1.4	2	
1,2,4,5-Tetramethylbenzene	ND		ug/l	4.0	1.1	2	
Ethyl ether	ND		ug/l	5.0	1.4	2	
trans-1,4-Dichloro-2-butene	ND		ug/l	5.0	1.4	2	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	91	70-130	
4-Bromofluorobenzene	73	70-130	
Dibromofluoromethane	109	70-130	

L1853137

01/04/19

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

SAMPLE RESULTS

Date Collected: 12/24/18 13:56

Lab ID: L1853137-03

Client ID: MW-2D

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ

Date Received: 12/26/18
Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 01/02/19 14:16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	4.1		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	2.5		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	60		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	2.6		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	1.5	J	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.12	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: MINUTE MAN CLEANERS Lab Number: L1853137

Project Number: MANID 16-01 Report Date: 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-03 Date Collected: 12/24/18 13:56

Client ID: MW-2D Date Received: 12/26/18

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Trichloroethene	3.6		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	2.2	J	ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	2.2	J	ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	3.9	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: MINUTE MAN CLEANERS L1853137

Project Number: Report Date: MANID 16-01 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-03 Date Collected: 12/24/18 13:56

Client ID: Date Received: 12/26/18 MW-2D

Field Prep: Not Specified Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westh	orough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	99		70-130	
Toluene-d8	93		70-130	
4-Bromofluorobenzene	91		70-130	
Dibromofluoromethane	108		70-130	

L1853137

01/04/19

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

SAMPLE RESULTS

Date Collected: 12/24/18 14:21

Lab ID: L1853137-04

Client ID: MW-2S

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ

Date Received: 12/26/18

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 01/02/19 14:38

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	2.4	J	ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	3.5		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	76		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	2.0		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	4.7		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: MINUTE MAN CLEANERS Lab Number: L1853137

Project Number: MANID 16-01 Report Date: 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-04 Date Collected: 12/24/18 14:21

Client ID: MW-2S Date Received: 12/26/18

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Trichloroethene	2.8		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	0.82	J	ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	0.82	J	ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	3.0	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: MINUTE MAN CLEANERS L1853137

Project Number: Report Date: MANID 16-01 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-04 Date Collected: 12/24/18 14:21

Client ID: MW-2S Date Received: 12/26/18

Field Prep: Not Specified Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westh	orough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	92	70-130	
4-Bromofluorobenzene	90	70-130	
Dibromofluoromethane	111	70-130	

L1853137

12/24/18 12:26

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

SAMPLE RESULTS

Report Date: 01/04/19

Lab Number:

Date Collected:

Lab ID: L1853137-05

Client ID: MW-3D

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Date Received: 12/26/18 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 01/02/19 21:24

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	0.95	J	ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	0.63		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	62		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	0.48	J	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: MINUTE MAN CLEANERS Lab Number: L1853137

Project Number: MANID 16-01 Report Date: 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-05 Date Collected: 12/24/18 12:26

Client ID: MW-3D Date Received: 12/26/18

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Trichloroethene	2.4		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	1.0	J	ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	1.0	J	ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	4.3	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: MINUTE MAN CLEANERS Lab Number: L1853137

Project Number: MANID 16-01 Report Date: 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-05 Date Collected: 12/24/18 12:26

Client ID: MW-3D Date Received: 12/26/18

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	91	70-130	
Dibromofluoromethane	115	70-130	

L1853137

Project Name: Lab Number: MINUTE MAN CLEANERS

Project Number: Report Date: MANID 16-01

01/04/19

SAMPLE RESULTS

Lab ID: L1853137-06 Date Collected: 12/24/18 12:51

Client ID: Date Received: MW-3S 12/26/18

Field Prep: Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 01/02/19 15:00

Analyst: PΚ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	0.25	J	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	46		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	0.22	J	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: MINUTE MAN CLEANERS Lab Number: L1853137

Project Number: MANID 16-01 Report Date: 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-06 Date Collected: 12/24/18 12:51

Client ID: MW-3S Date Received: 12/26/18

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbord	ough Lab					
Trichloroethene	1.4		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	3.3	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: MINUTE MAN CLEANERS L1853137

Project Number: Report Date: MANID 16-01 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-06 Date Collected: 12/24/18 12:51

Client ID: Date Received: 12/26/18 MW-3S

Field Prep: Not Specified Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westh	orough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	93	70-130	
4-Bromofluorobenzene	87	70-130	
Dibromofluoromethane	110	70-130	

L1853137

12/24/18 11:44

Not Specified

12/26/18

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

SAMPLE RESULTS

1 01/01/10

Report Date: 01/04/19

Lab Number:

Date Collected:

Date Received:

Field Prep:

SAMI LE RESOL

Lab ID: L1853137-07 Client ID: MW-4D

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 01/02/19 15:22

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	1.8	J	ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	0.69		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	99		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	0.72		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: MINUTE MAN CLEANERS Lab Number: L1853137

Project Number: MANID 16-01 Report Date: 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-07 Date Collected: 12/24/18 11:44

Client ID: MW-4D Date Received: 12/26/18

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Trichloroethene	2.4		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	2.3	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: MINUTE MAN CLEANERS Lab Number: L1853137

Project Number: MANID 16-01 Report Date: 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-07 Date Collected: 12/24/18 11:44

Client ID: MW-4D Date Received: 12/26/18

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	61.	1
p-Diethylbenzene	ND		ug/l	2.0	0.70	1
p-Ethyltoluene	ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	92	70-130	
Dibromofluoromethane	110	70-130	

L1853137

01/04/19

Project Name: MINUTE MAN CLEANERS

89 OCEAN AVE., EAST ROCKAWAY, NJ

L1853137-08

MW-4S

Project Number: MANID 16-01

SAMPLE RESULTS

Date Collected: 12/24/18 12:01

Date Received: 12/26/18

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Location:

Sample Depth:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260C 01/02/19 15:44

Analytical Date: Analyst: PΚ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	0.32	J	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	130		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	0.24	J	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: MINUTE MAN CLEANERS Lab Number: L1853137

Project Number: MANID 16-01 Report Date: 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-08 Date Collected: 12/24/18 12:01

Client ID: MW-4S Date Received: 12/26/18

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Field Prep: Not Specified

Volatile Organics by GC/MS - Westborough Lab Trichloroethene 3.7 ug/l 0.50 0.18 1 1,2-Dichlorobenzene ND ug/l 2.5 0.70 1 1,3-Dichlorobenzene ND ug/l 2.5 0.70 1 1,4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert buly lether ND ug/l 2.5 0.70 1 mrxylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 xylenes, Total ND ug/l 2.5 0.70 1 xylenes, Total ND ug/l 2.5 0.70 1 xylenes, Total 1.7 J ug/l 2.5 0.70 1 1,2-Dichloroethene 1.7 J ug/l 2.5 0.70 1 1,2-Dichloroethene ND ug/l 2.5 0.70 1 1,2-Dichloroethene<	tor
1,2-Dichlorobenzene ND	
1,2-Dichlorobenzene ND ug/l 2.5 0.70 1 1,3-Dichlorobenzene ND ug/l 2.5 0.70 1 1,4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl terb Lutyl ether ND ug/l 2.5 0.70 1 Methyl terb Lutyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 c-Xylene ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene 1.7 J ug/l 2.5 0.70 1 1,2-Dichloroethene, Total 1.7 J ug/l 2.5 0.70 1 1,2-Dichloroethene, Total 1.7 J ug/l 5.0 1.0 1 1,2-Dichloroethene, Total 1.7 J ug/l 5.0 1.0 1 1,2-Simple	
1,3-Dichlorobenzene ND ug/l 2.5 0.70 1 1,4-Dichlorobenzene ND ug/l 2.5 0.70 1 1 Methyl tert butyl ether ND ug/l 2.5 0.70 1 1 Methyl tert butyl ether ND ug/l 2.5 0.70 1 1 prm-Xylene ND ug/l 2.5 0.70 1 0 xylene ND ug/l 2.5 0.70 1 1 Xylenes, Total ND ug/l 2.5 0.70 1 1 Xylenes, Total ND ug/l 2.5 0.70 1 1 2-Dichloroethene 1.7 J ug/l 2.5 0.70 1 1 1,2-Dichloroethene 1.7 J ug/l 2.5 0.70 1 1 1,2-Dichloroethene ND ug/l 2.5 0.70 1 1 1,2-Strichloropropane ND ug/l 2.5 0.70 1 1 1,2-Strichloropropane ND ug/l 5.0 1.0 1 1 Styrene ND ug/l 5.0 1.5 1 1 Styrene ND ug/l 5.0 1.5 1 1 Styrene ND ug/l 5.0 1.5 1 1 Carbon disulfide ND ug/l 5.0 1.0 1 1 Carbon disulfide ND ug/l 5.0 1.0 1 1 2-Butanone ND ug/l 5.0 1.0 1 1 2-Butanone ND ug/l 5.0 1.0 1 1 2-Hexanone ND ug/l 5.0 1.0 1 1 2-Hexanone ND ug/l 5.0 1.0 1 1 2-Hexanone ND ug/l 5.0 1.0 1 1 2-Dichloropropane ND ug/l 5.0 1.0 1 1 2-Dichloromethane ND ug/l 5.0 1.0 1 1 2-Dichloropropane ND ug/l 5.0 1.0 1 1 3-Dichloropropane ND ug/l 5.0 0.70 1	
1,4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 Xylenes, Total 1.7 J ug/l 2.5 0.70 1 L2-Dichloroethene, Total 1.7 J ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 1,2-Dichloropropane ND ug/l 5.0 1.0 1 1,2-3-Trichloropropane ND ug/l 5.0 1.0 1 1,2-3-Trichloropropane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Styrene ND ug/l 5.0 1.0	
Methyl tert butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene 1.7 J ug/l 2.5 0.70 1 1,2-Dichloroethene, Total 1.7 J ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 1,2-3-Trichloropropane ND ug/l 5.0 1.0 1 Actylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 1.5 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 3.1 J ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0	
p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene 1.7 J ug/l 2.5 0.70 1 1,2-Dichloroethene, Total 1.7 J ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 1,2-3-Trichloropropane ND ug/l 5.0 1.5 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 1.5 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 3.1 J ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0	
o-Xylene ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene 1.7 J ug/l 2.5 0.70 1 1,2-Dichloroethene, Total 1.7 J ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 1,2,3-Trichloropropane ND ug/l 5.0 0.70 1 Acrylonitrile ND ug/l 5.0 0.70 1 Styrene ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 1.0 1 Acetone 3.1 J ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0 <	
Xylenes, Total ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene 1.7 J ug/l 2.5 0.70 1 1,2-Dichloroethene, Total 1.7 J ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 1,2,3-Trichloropropane ND ug/l 2.5 0.70 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 1.5 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 3.1 J ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 2.5	
cis-1,2-Dichloroethene 1.7 J ug/l 2.5 0.70 1 1,2-Dichloroethene, Total 1.7 J ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 1,2,3-Trichloropropane ND ug/l 2.5 0.70 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 1.5 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 3.1 J ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 <	
1,2-Dichloroethene, Total 1.7	
Dibromomethane ND ug/l 5.0 1.0 1 1,2,3-Trichloropropane ND ug/l 2.5 0.70 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 3.1 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hearnene ND ug/l 5.0 1.0 1 2-Hearnene ND ug/l 2.5 0.70 1 2-Pichloropropane ND ug/l 2.5 0.70 1 <	
1,2,3-Trichloropropane ND	
Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 3.1 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1	
Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 3.1 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1	
Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 3.1 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1	
Acetone 3.1 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 <td></td>	
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 <td></td>	
2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 5.0 1.0 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 1-Debromoethane ND ug/l 2.5 0.70 1	
Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1	
4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 1,n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1	
2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1	
Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1	
2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1	
1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1	
1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1	
1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1	
Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1	
n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1	
sec-Butylbenzene ND ug/l 2.5 0.70 1	
· ·	
tert-Butylhenzene ND uz/l 25 0.70 1	
ter Daty 100 1 2.0 0.70 1	
o-Chlorotoluene ND ug/l 2.5 0.70 1	
p-Chlorotoluene ND ug/l 2.5 0.70 1	
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1	
Hexachlorobutadiene ND ug/l 2.5 0.70 1	
Isopropylbenzene ND ug/l 2.5 0.70 1	
p-Isopropyltoluene ND ug/l 2.5 0.70 1	
Naphthalene ND ug/l 2.5 0.70 1	

Project Name: Lab Number: MINUTE MAN CLEANERS L1853137

Project Number: Report Date: MANID 16-01 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-08 Date Collected: 12/24/18 12:01

Client ID: Date Received: 12/26/18 MW-4S

Field Prep: Not Specified Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westh	orough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	93	70-130	
4-Bromofluorobenzene	93	70-130	
Dibromofluoromethane	110	70-130	

L1853137

01/04/19

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

SAMPLE RESULTS

Date Collected: 12/24/18 10:21

Lab ID: L1853137-09

Client ID: MW-5D

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ

Date Received: 12/26/18

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 01/02/19 16:06

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	3.1		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	72		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.49	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	0.59		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: MINUTE MAN CLEANERS Lab Number: L1853137

Project Number: MANID 16-01 Report Date: 01/04/19

SAMPLE RESULTS

Lab ID: Date Collected: 12/24/18 10:21

Client ID: MW-5D Date Received: 12/26/18

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Trichloroethene	7.8		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	15		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	2.2	J	ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	2.2	J	ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	3.3	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: MINUTE MAN CLEANERS Lab Number: L1853137

Project Number: MANID 16-01 Report Date: 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-09 Date Collected: 12/24/18 10:21

Client ID: MW-5D Date Received: 12/26/18

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	91	70-130	
4-Bromofluorobenzene	88	70-130	
Dibromofluoromethane	110	70-130	

Project Name: MINUTE MAN CLEANERS Lab Number: L1853137

Project Number: MANID 16-01 Report Date: 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-10 D Date Collected: 12/24/18 10:41

Client ID: MW-5S Date Received: 12/26/18

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 01/02/19 16:28

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Methylene chloride	ND		ug/l	10	2.8	4	
1,1-Dichloroethane	ND		ug/l	10	2.8	4	
Chloroform	ND		ug/l	10	2.8	4	
Carbon tetrachloride	ND		ug/l	2.0	0.54	4	
1,2-Dichloropropane	ND		ug/l	4.0	0.55	4	
Dibromochloromethane	ND		ug/l	2.0	0.60	4	
1,1,2-Trichloroethane	ND		ug/l	6.0	2.0	4	
Tetrachloroethene	440		ug/l	2.0	0.72	4	
Chlorobenzene	ND		ug/l	10	2.8	4	
Trichlorofluoromethane	ND		ug/l	10	2.8	4	
1,2-Dichloroethane	ND		ug/l	2.0	0.53	4	
1,1,1-Trichloroethane	ND		ug/l	10	2.8	4	
Bromodichloromethane	ND		ug/l	2.0	0.77	4	
trans-1,3-Dichloropropene	ND		ug/l	2.0	0.66	4	
cis-1,3-Dichloropropene	ND		ug/l	2.0	0.58	4	
1,3-Dichloropropene, Total	ND		ug/l	2.0	0.58	4	
1,1-Dichloropropene	ND		ug/l	10	2.8	4	
Bromoform	ND		ug/l	8.0	2.6	4	
1,1,2,2-Tetrachloroethane	ND		ug/l	2.0	0.67	4	
Benzene	ND		ug/l	2.0	0.64	4	
Toluene	ND		ug/l	10	2.8	4	
Ethylbenzene	ND		ug/l	10	2.8	4	
Chloromethane	ND		ug/l	10	2.8	4	
Bromomethane	ND		ug/l	10	2.8	4	
Vinyl chloride	3.2	J	ug/l	4.0	0.28	4	
Chloroethane	ND		ug/l	10	2.8	4	
1,1-Dichloroethene	1.2	J	ug/l	2.0	0.68	4	
trans-1,2-Dichloroethene	ND		ug/l	10	2.8	4	

Project Name: MINUTE MAN CLEANERS Lab Number: L1853137

Project Number: MANID 16-01 Report Date: 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-10 D Date Collected: 12/24/18 10:41

Client ID: MW-5S Date Received: 12/26/18

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Trichloroethene	38		ug/l	2.0	0.70	4		
1,2-Dichlorobenzene	ND		ug/l	10	2.8	4		
1,3-Dichlorobenzene	ND		ug/l	10	2.8	4		
1,4-Dichlorobenzene	ND		ug/l	10	2.8	4		
Methyl tert butyl ether	24		ug/l	10	2.8	4		
p/m-Xylene	ND		ug/l	10	2.8	4		
o-Xylene	ND		ug/l	10	2.8	4		
Xylenes, Total	ND		ug/l	10	2.8	4		
cis-1,2-Dichloroethene	15		ug/l	10	2.8	4		
1,2-Dichloroethene, Total	15		ug/l	10	2.8	4		
Dibromomethane	ND		ug/l	20	4.0	4		
1,2,3-Trichloropropane	ND		ug/l	10	2.8	4		
Acrylonitrile	ND		ug/l	20	6.0	4		
Styrene	ND		ug/l	10	2.8	4		
Dichlorodifluoromethane	ND		ug/l	20	4.0	4		
Acetone	5.8	J	ug/l	20	5.8	4		
Carbon disulfide	ND		ug/l	20	4.0	4		
2-Butanone	ND		ug/l	20	7.8	4		
Vinyl acetate	ND		ug/l	20	4.0	4		
4-Methyl-2-pentanone	ND		ug/l	20	4.0	4		
2-Hexanone	ND		ug/l	20	4.0	4		
Bromochloromethane	ND		ug/l	10	2.8	4		
2,2-Dichloropropane	ND		ug/l	10	2.8	4		
1,2-Dibromoethane	ND		ug/l	8.0	2.6	4		
1,3-Dichloropropane	ND		ug/l	10	2.8	4		
1,1,1,2-Tetrachloroethane	ND		ug/l	10	2.8	4		
Bromobenzene	ND		ug/l	10	2.8	4		
n-Butylbenzene	ND		ug/l	10	2.8	4		
sec-Butylbenzene	ND		ug/l	10	2.8	4		
tert-Butylbenzene	ND		ug/l	10	2.8	4		
o-Chlorotoluene	ND		ug/l	10	2.8	4		
p-Chlorotoluene	ND		ug/l	10	2.8	4		
1,2-Dibromo-3-chloropropane	ND		ug/l	10	2.8	4		
Hexachlorobutadiene	ND		ug/l	10	2.8	4		
Isopropylbenzene	ND		ug/l	10	2.8	4		
p-Isopropyltoluene	ND		ug/l	10	2.8	4		
Naphthalene	ND		ug/l	10	2.8	4		

Project Name: MINUTE MAN CLEANERS Lab Number: L1853137

Project Number: MANID 16-01 Report Date: 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-10 D Date Collected: 12/24/18 10:41

Client ID: MW-5S Date Received: 12/26/18

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
n-Propylbenzene	ND		ug/l	10	2.8	4			
1,2,3-Trichlorobenzene	ND		ug/l	10	2.8	4			
1,2,4-Trichlorobenzene	ND		ug/l	10	2.8	4			
1,3,5-Trimethylbenzene	ND		ug/l	10	2.8	4			
1,2,4-Trimethylbenzene	ND		ug/l	10	2.8	4			
1,4-Dioxane	ND		ug/l	1000	240	4			
p-Diethylbenzene	ND		ug/l	8.0	2.8	4			
p-Ethyltoluene	ND		ug/l	8.0	2.8	4			
1,2,4,5-Tetramethylbenzene	ND		ug/l	8.0	2.2	4			
Ethyl ether	ND		ug/l	10	2.8	4			
trans-1,4-Dichloro-2-butene	ND		ug/l	10	2.8	4			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	92		70-130	
4-Bromofluorobenzene	89		70-130	
Dibromofluoromethane	108		70-130	

L1853137

01/04/19

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

SAMPLE RESULTS

Date Collected: 12/24/18 11:01

Lab Number:

Report Date:

Lab ID: L1853137-11

Client ID: Date Received: MW-9 12/26/18 Field Prep: Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 01/02/19 16:50

Analyst: PΚ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	0.98	J	ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	13		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	0.21	J	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: MINUTE MAN CLEANERS Lab Number: L1853137

Project Number: MANID 16-01 Report Date: 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-11 Date Collected: 12/24/18 11:01

Client ID: MW-9 Date Received: 12/26/18

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Trichloroethene	0.90		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	1.9	J	ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	1.9	J	ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	3.4	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: MINUTE MAN CLEANERS L1853137

Project Number: Report Date: MANID 16-01 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-11 Date Collected: 12/24/18 11:01

Client ID: Date Received: 12/26/18 MW-9

Field Prep: Not Specified Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
n-Propylbenzene	ND		ug/l	2.5	0.70	1			
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1			
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1			
1,4-Dioxane	ND		ug/l	250	61.	1			
p-Diethylbenzene	ND		ug/l	2.0	0.70	1			
p-Ethyltoluene	ND		ug/l	2.0	0.70	1			
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1			
Ethyl ether	ND		ug/l	2.5	0.70	1			
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	94		70-130	
4-Bromofluorobenzene	89		70-130	
Dibromofluoromethane	112		70-130	

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

SAMPLE RESULTS

Date Collected: 12/24/18 13:21

Lab ID: L1853137-12

Client ID: MW-12

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ

Date Received: 12/26/18

Field Prep:

Lab Number:

Report Date:

Not Specified

L1853137

01/04/19

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 01/02/19 17:11

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborou	Volatile Organics by GC/MS - Westborough Lab									
Methylene chloride	ND		ug/l	2.5	0.70	1				
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1				
Chloroform	0.88	J	ug/l	2.5	0.70	1				
Carbon tetrachloride	ND		ug/l	0.50	0.13	1				
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1				
Dibromochloromethane	0.39	J	ug/l	0.50	0.15	1				
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1				
Tetrachloroethene	21		ug/l	0.50	0.18	1				
Chlorobenzene	ND		ug/l	2.5	0.70	1				
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1				
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1				
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1				
Bromodichloromethane	0.47	J	ug/l	0.50	0.19	1				
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1				
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1				
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1				
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1				
Bromoform	ND		ug/l	2.0	0.65	1				
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1				
Benzene	ND		ug/l	0.50	0.16	1				
Toluene	ND		ug/l	2.5	0.70	1				
Ethylbenzene	ND		ug/l	2.5	0.70	1				
Chloromethane	ND		ug/l	2.5	0.70	1				
Bromomethane	ND		ug/l	2.5	0.70	1				
Vinyl chloride	ND		ug/l	1.0	0.07	1				
Chloroethane	ND		ug/l	2.5	0.70	1				
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1				
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1				

Project Name: MINUTE MAN CLEANERS Lab Number: L1853137

Project Number: MANID 16-01 Report Date: 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-12 Date Collected: 12/24/18 13:21

Client ID: MW-12 Date Received: 12/26/18

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab					
Trichloroethene	0.95		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	4.8	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: MINUTE MAN CLEANERS Lab Number: L1853137

Project Number: MANID 16-01 Report Date: 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-12 Date Collected: 12/24/18 13:21

Client ID: MW-12 Date Received: 12/26/18

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	93	70-130	
4-Bromofluorobenzene	88	70-130	
Dibromofluoromethane	112	70-130	

L1853137

01/04/19

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

SAMPLE RESULTS

Date Collected: 12/24/18 09:41

Lab Number:

Report Date:

Lab ID: L1853137-13

Client ID: MW-14S

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ

Date Received: 12/26/18
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 01/02/19 17:33

Analyst: PK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	4.3		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	2.0		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	0.18	J	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: MINUTE MAN CLEANERS Lab Number: L1853137

Project Number: MANID 16-01 Report Date: 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-13 Date Collected: 12/24/18 09:41

Client ID: MW-14S Date Received: 12/26/18

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Trichloroethene	0.24	J	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	8.3		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	4.4	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: MINUTE MAN CLEANERS L1853137

Project Number: Report Date: MANID 16-01 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-13 Date Collected: 12/24/18 09:41

Client ID: Date Received: 12/26/18 MW-14S

Field Prep: Not Specified Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westh	orough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	100	70-130
Toluene-d8	103	70-130
4-Bromofluorobenzene	90	70-130
Dibromofluoromethane	108	70-130

L1853137

01/04/19

12/24/18 09:16

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

SAMPLE RESULTS

Lab ID: L1853137-14

Client ID: MW-14D

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Date Received: 12/26/18 Field Prep: Not Specified

Lab Number:

Report Date:

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 01/02/19 17:55

Analyst: PΚ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	0.19	J	ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

Project Name: MINUTE MAN CLEANERS Lab Number: L1853137

Project Number: MANID 16-01 Report Date: 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-14 Date Collected: 12/24/18 09:16

Client ID: MW-14D Date Received: 12/26/18

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	2.2	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: MINUTE MAN CLEANERS L1853137

Project Number: Report Date: MANID 16-01 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-14 Date Collected: 12/24/18 09:16

Client ID: Date Received: 12/26/18 MW-14D

Field Prep: Not Specified Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westh	orough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	88		70-130	
Dibromofluoromethane	110		70-130	

L1853137

01/04/19

Not Specified

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

SAMPLE RESULTS

Date Collected: 12/24/18 10:01

Lab Number:

Report Date:

Field Prep:

Lab ID: L1853137-15

Client ID: MW-14WT

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ

Date Received: 12/26/18

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 01/02/19 18:17

Analyst: PK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	12		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: MINUTE MAN CLEANERS Lab Number: L1853137

Project Number: MANID 16-01 Report Date: 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-15 Date Collected: 12/24/18 10:01

Client ID: MW-14WT Date Received: 12/26/18

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Trichloroethene	0.39	J	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	2.7	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: MINUTE MAN CLEANERS Lab Number: L1853137

Project Number: MANID 16-01 Report Date: 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-15 Date Collected: 12/24/18 10:01

Client ID: MW-14WT Date Received: 12/26/18

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
n-Propylbenzene	ND		ug/l	2.5	0.70	1		
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1		
1,4-Dioxane	ND		ug/l	250	61.	1		
p-Diethylbenzene	ND		ug/l	2.0	0.70	1		
p-Ethyltoluene	ND		ug/l	2.0	0.70	1		
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1		
Ethyl ether	ND		ug/l	2.5	0.70	1		
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	87	70-130	
Dibromofluoromethane	109	70-130	

L1853137

12/24/18 00:00

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

SAMPLE RESULTS

01/04/19

Report Date:

Lab ID: L1853137-16

Client ID: TRIP BLANK

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Date Received: 12/26/18 Field Prep: Not Specified

Lab Number:

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 1,8260C 01/02/19 20:59 Analytical Date:

Analyst: NLK

Parameter	Result	Qualifier l	Jnits	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
Methylene chloride	ND	1	ug/l	2.5	0.70	1			
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1			
Chloroform	ND	-	ug/l	2.5	0.70	1			
Carbon tetrachloride	ND		ug/l	0.50	0.13	1			
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1			
Dibromochloromethane	ND	ı	ug/l	0.50	0.15	1			
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1			
Tetrachloroethene	ND	ı	ug/l	0.50	0.18	1			
Chlorobenzene	ND	ı	ug/l	2.5	0.70	1			
Trichlorofluoromethane	ND	ı	ug/l	2.5	0.70	1			
1,2-Dichloroethane	ND	ı	ug/l	0.50	0.13	1			
1,1,1-Trichloroethane	ND	ı	ug/l	2.5	0.70	1			
Bromodichloromethane	ND	ı	ug/l	0.50	0.19	1			
trans-1,3-Dichloropropene	ND	ı	ug/l	0.50	0.16	1			
cis-1,3-Dichloropropene	ND	ı	ug/l	0.50	0.14	1			
1,3-Dichloropropene, Total	ND	ı	ug/l	0.50	0.14	1			
1,1-Dichloropropene	ND	ı	ug/l	2.5	0.70	1			
Bromoform	ND	ı	ug/l	2.0	0.65	1			
1,1,2,2-Tetrachloroethane	ND	ı	ug/l	0.50	0.17	1			
Benzene	ND	ı	ug/l	0.50	0.16	1			
Toluene	ND	ı	ug/l	2.5	0.70	1			
Ethylbenzene	ND	ı	ug/l	2.5	0.70	1			
Chloromethane	ND		ug/l	2.5	0.70	1			
Bromomethane	ND		ug/l	2.5	0.70	1			
Vinyl chloride	ND		ug/l	1.0	0.07	1			
Chloroethane	ND		ug/l	2.5	0.70	1			
1,1-Dichloroethene	ND	-	ug/l	0.50	0.17	1			

ug/l

2.5

0.70

ND

1

trans-1,2-Dichloroethene

Project Name: MINUTE MAN CLEANERS Lab Number: L1853137

Project Number: MANID 16-01 Report Date: 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-16 Date Collected: 12/24/18 00:00

Client ID: TRIP BLANK Date Received: 12/26/18

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Trichloroethene	ND		a/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND ND		ug/l	2.5	0.70	1
<u> </u>	ND ND		ug/l	2.5	0.70	1
Xylenes, Total			ug/l			
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane .	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: MINUTE MAN CLEANERS Lab Number: L1853137

Project Number: MANID 16-01 Report Date: 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-16 Date Collected: 12/24/18 00:00

Client ID: TRIP BLANK Date Received: 12/26/18

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	89	70-130	
Dibromofluoromethane	111	70-130	

L1853137

01/04/19

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

SAMPLE RESULTS

12/24/18 11:24

Lab Number:

Report Date:

Lab ID: L1853137-17 D Date Collected:

Client ID: Date Received: DB-1 12/26/18 Field Prep: Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 01/02/19 18:39

Analyst: PΚ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	5.0	1.4	2
1,1-Dichloroethane	ND		ug/l	5.0	1.4	2
Chloroform	4.5	J	ug/l	5.0	1.4	2
Carbon tetrachloride	ND		ug/l	1.0	0.27	2
1,2-Dichloropropane	ND		ug/l	2.0	0.27	2
Dibromochloromethane	2.1		ug/l	1.0	0.30	2
1,1,2-Trichloroethane	ND		ug/l	3.0	1.0	2
Tetrachloroethene	200		ug/l	1.0	0.36	2
Chlorobenzene	ND		ug/l	5.0	1.4	2
Trichlorofluoromethane	ND		ug/l	5.0	1.4	2
1,2-Dichloroethane	ND		ug/l	1.0	0.26	2
1,1,1-Trichloroethane	ND		ug/l	5.0	1.4	2
Bromodichloromethane	2.6		ug/l	1.0	0.38	2
trans-1,3-Dichloropropene	ND		ug/l	1.0	0.33	2
cis-1,3-Dichloropropene	ND		ug/l	1.0	0.29	2
1,3-Dichloropropene, Total	ND		ug/l	1.0	0.29	2
1,1-Dichloropropene	ND		ug/l	5.0	1.4	2
Bromoform	1.3	J	ug/l	4.0	1.3	2
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.33	2
Benzene	ND		ug/l	1.0	0.32	2
Toluene	ND		ug/l	5.0	1.4	2
Ethylbenzene	ND		ug/l	5.0	1.4	2
Chloromethane	ND		ug/l	5.0	1.4	2
Bromomethane	ND		ug/l	5.0	1.4	2
Vinyl chloride	1.9	J	ug/l	2.0	0.14	2
Chloroethane	ND		ug/l	5.0	1.4	2
1,1-Dichloroethene	0.54	J	ug/l	1.0	0.34	2
trans-1,2-Dichloroethene	ND		ug/l	5.0	1.4	2

Project Name: MINUTE MAN CLEANERS Lab Number: L1853137

Project Number: MANID 16-01 Report Date: 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-17 D Date Collected: 12/24/18 11:24

Client ID: DB-1 Date Received: 12/26/18

Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Trichloroethene	26		ug/l	1.0	0.35	2
1,2-Dichlorobenzene	ND		ug/l	5.0	1.4	2
1,3-Dichlorobenzene	ND		ug/l	5.0	1.4	2
1,4-Dichlorobenzene	ND		ug/l	5.0	1.4	2
Methyl tert butyl ether	4.8	J	ug/l	5.0	1.4	2
p/m-Xylene	ND		ug/l	5.0	1.4	2
o-Xylene	ND		ug/l	5.0	1.4	2
Xylenes, Total	ND		ug/l	5.0	1.4	2
cis-1,2-Dichloroethene	9.6		ug/l	5.0	1.4	2
1,2-Dichloroethene, Total	9.6		ug/l	5.0	1.4	2
Dibromomethane	ND		ug/l	10	2.0	2
1,2,3-Trichloropropane	ND		ug/l	5.0	1.4	2
Acrylonitrile	ND		ug/l	10	3.0	2
Styrene	ND		ug/l	5.0	1.4	2
Dichlorodifluoromethane	ND		ug/l	10	2.0	2
Acetone	5.7	J	ug/l	10	2.9	2
Carbon disulfide	ND		ug/l	10	2.0	2
2-Butanone	ND		ug/l	10	3.9	2
Vinyl acetate	ND		ug/l	10	2.0	2
4-Methyl-2-pentanone	ND		ug/l	10	2.0	2
2-Hexanone	ND		ug/l	10	2.0	2
Bromochloromethane	ND		ug/l	5.0	1.4	2
2,2-Dichloropropane	ND		ug/l	5.0	1.4	2
1,2-Dibromoethane	ND		ug/l	4.0	1.3	2
1,3-Dichloropropane	ND		ug/l	5.0	1.4	2
1,1,1,2-Tetrachloroethane	ND		ug/l	5.0	1.4	2
Bromobenzene	ND		ug/l	5.0	1.4	2
n-Butylbenzene	ND		ug/l	5.0	1.4	2
sec-Butylbenzene	ND		ug/l	5.0	1.4	2
tert-Butylbenzene	ND		ug/l	5.0	1.4	2
o-Chlorotoluene	ND		ug/l	5.0	1.4	2
p-Chlorotoluene	ND		ug/l	5.0	1.4	2
1,2-Dibromo-3-chloropropane	ND		ug/l	5.0	1.4	2
Hexachlorobutadiene	ND		ug/l	5.0	1.4	2
Isopropylbenzene	ND		ug/l	5.0	1.4	2
p-Isopropyltoluene	ND		ug/l	5.0	1.4	2
Naphthalene	ND		ug/l	5.0	1.4	2

Project Name: MINUTE MAN CLEANERS Lab Number: L1853137

Project Number: MANID 16-01 Report Date: 01/04/19

SAMPLE RESULTS

Lab ID: L1853137-17 D Date Collected: 12/24/18 11:24

Client ID: DB-1 Date Received: 12/26/18
Sample Location: 89 OCEAN AVE., EAST ROCKAWAY, NJ Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
n-Propylbenzene	ND		ug/l	5.0	1.4	2			
1,2,3-Trichlorobenzene	ND		ug/l	5.0	1.4	2			
1,2,4-Trichlorobenzene	ND		ug/l	5.0	1.4	2			
1,3,5-Trimethylbenzene	ND		ug/l	5.0	1.4	2			
1,2,4-Trimethylbenzene	ND		ug/l	5.0	1.4	2			
1,4-Dioxane	ND		ug/l	500	120	2			
p-Diethylbenzene	ND		ug/l	4.0	1.4	2			
p-Ethyltoluene	ND		ug/l	4.0	1.4	2			
1,2,4,5-Tetramethylbenzene	ND		ug/l	4.0	1.1	2			
Ethyl ether	ND		ug/l	5.0	1.4	2			
trans-1,4-Dichloro-2-butene	ND		ug/l	5.0	1.4	2			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	92	70-130	
4-Bromofluorobenzene	89	70-130	
Dibromofluoromethane	113	70-130	

Project Name: MINUTE MAN CLEANERS Lab Number:

Project Number: MANID 16-01 Report Date: 01/04/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 01/02/19 11:22

Analyst: PD

Parameter	Result	Qualifier Units	RL RL	MDL	
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-04,06-15,17	Batch: V	VG1194219-5
Methylene chloride	ND	ug/l	2.5	0.70	
1,1-Dichloroethane	ND	ug/l	2.5	0.70	
Chloroform	ND	ug/l	2.5	0.70	
Carbon tetrachloride	ND	ug/l	0.50	0.13	
1,2-Dichloropropane	ND	ug/l	1.0	0.14	
Dibromochloromethane	ND	ug/l	0.50	0.15	
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	
Tetrachloroethene	ND	ug/l	0.50	0.18	
Chlorobenzene	ND	ug/l	2.5	0.70	
Trichlorofluoromethane	ND	ug/l	2.5	0.70	
1,2-Dichloroethane	ND	ug/l	0.50	0.13	
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	
Bromodichloromethane	ND	ug/l	0.50	0.19	
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14	
1,1-Dichloropropene	ND	ug/l	2.5	0.70	
Bromoform	ND	ug/l	2.0	0.65	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	
Benzene	ND	ug/l	0.50	0.16	
Toluene	ND	ug/l	2.5	0.70	
Ethylbenzene	ND	ug/l	2.5	0.70	
Chloromethane	ND	ug/l	2.5	0.70	
Bromomethane	ND	ug/l	2.5	0.70	
Vinyl chloride	ND	ug/l	1.0	0.07	
Chloroethane	ND	ug/l	2.5	0.70	
1,1-Dichloroethene	ND	ug/l	0.50	0.17	
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Trichloroethene	ND	ug/l	0.50	0.18	

Project Name: MINUTE MAN CLEANERS Lab Number:

Project Number: MANID 16-01 Report Date: 01/04/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 01/02/19 11:22

Analyst: PD

Parameter	Result	Qualifier Un	nits	RL	MDL	
Volatile Organics by GC/MS	· Westborough Lal	o for sample(s)): (01-04,06-15,17	Batch:	WG1194219-5
1,2-Dichlorobenzene	ND	U	ıg/l	2.5	0.70)
1,3-Dichlorobenzene	ND	U	ıg/l	2.5	0.70)
1,4-Dichlorobenzene	ND	u	ıg/l	2.5	0.70)
Methyl tert butyl ether	ND	u	ıg/l	2.5	0.70)
p/m-Xylene	ND	u	ıg/l	2.5	0.70)
o-Xylene	ND	u	ıg/l	2.5	0.70)
Xylenes, Total	ND	U	ıg/l	2.5	0.70)
cis-1,2-Dichloroethene	ND	U	ıg/l	2.5	0.70)
1,2-Dichloroethene, Total	ND	U	ıg/l	2.5	0.70)
Dibromomethane	ND	U	ıg/l	5.0	1.0	
1,2,3-Trichloropropane	ND	U	ıg/l	2.5	0.70)
Acrylonitrile	ND	U	ıg/l	5.0	1.5	
Styrene	ND	U	ıg/l	2.5	0.70)
Dichlorodifluoromethane	ND	U	ıg/l	5.0	1.0	
Acetone	ND	U	ıg/l	5.0	1.5	
Carbon disulfide	ND	U	ıg/l	5.0	1.0	
2-Butanone	ND	U	ıg/l	5.0	1.9	
Vinyl acetate	ND	U	ıg/l	5.0	1.0	
4-Methyl-2-pentanone	ND	U	ıg/l	5.0	1.0	
2-Hexanone	ND	U	ıg/l	5.0	1.0	
Bromochloromethane	ND	U	ıg/l	2.5	0.70)
2,2-Dichloropropane	ND	U	ıg/l	2.5	0.70)
1,2-Dibromoethane	ND	U	ıg/l	2.0	0.65	5
1,3-Dichloropropane	ND	U	ıg/l	2.5	0.70)
1,1,1,2-Tetrachloroethane	ND	U	ıg/l	2.5	0.70)
Bromobenzene	ND	u	ıg/l	2.5	0.70)
n-Butylbenzene	ND	U	ıg/l	2.5	0.70)
sec-Butylbenzene	ND	u	ıg/l	2.5	0.70)
tert-Butylbenzene	ND	U	ıg/l	2.5	0.70)

Lab Number:

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01 Report Date: 01/04/19

Method Blank Analysis
Batch Quality Control

Batch Quality Control

1,8260C

01/02/19 11:22

Analyst: PD

Analytical Method:

Analytical Date:

Parameter	Result	Qualifier Units	s RL	MDL	
olatile Organics by GC/MS - V	Vestborough Lat	o for sample(s):	01-04,06-15,17	Batch: WG119	94219-5
o-Chlorotoluene	ND	ug/l	2.5	0.70	
p-Chlorotoluene	ND	ug/l	2.5	0.70	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Hexachlorobutadiene	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
p-Isopropyltoluene	ND	ug/l	2.5	0.70	
Naphthalene	ND	ug/l	2.5	0.70	
n-Propylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,4-Dioxane	ND	ug/l	250	61.	
p-Diethylbenzene	ND	ug/l	2.0	0.70	
p-Ethyltoluene	ND	ug/l	2.0	0.70	
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54	
Ethyl ether	ND	ug/l	2.5	0.70	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	

		Acceptance	
Surrogate	%Recovery	Qualifier Criteria	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	90	70-130	
Dibromofluoromethane	104	70-130	

Lab Number:

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01 Report Date: 01/04/19

Method Blank Analysis Batch Quality Control

Analytical Date: 01/02/19 20:34 Analyst: KJD

1,8260C

Analytical Method:

Parameter	Result	Qualifier Units	s RL	MDL	
olatile Organics by GC/MS	- Westborough La	b for sample(s):	05,16 Batch:	WG1194409-5	
Methylene chloride	ND	ug/	1 2.5	0.70	
1,1-Dichloroethane	ND	ug/	1 2.5	0.70	
Chloroform	ND	ug/	l 2.5	0.70	
Carbon tetrachloride	ND	ug/	0.50	0.13	
1,2-Dichloropropane	ND	ug/	I 1.0	0.14	
Dibromochloromethane	ND	ug/	0.50	0.15	
1,1,2-Trichloroethane	ND	ug/	l 1.5	0.50	
Tetrachloroethene	ND	ug/	0.50	0.18	
Chlorobenzene	ND	ug/	l 2.5	0.70	
Trichlorofluoromethane	ND	ug/	l 2.5	0.70	
1,2-Dichloroethane	ND	ug/	0.50	0.13	
1,1,1-Trichloroethane	ND	ug/	l 2.5	0.70	
Bromodichloromethane	ND	ug/	0.50	0.19	
trans-1,3-Dichloropropene	ND	ug/	0.50	0.16	
cis-1,3-Dichloropropene	ND	ug/	0.50	0.14	
1,3-Dichloropropene, Total	ND	ug/	0.50	0.14	
1,1-Dichloropropene	ND	ug/	l 2.5	0.70	
Bromoform	ND	ug/	I 2.0	0.65	
1,1,2,2-Tetrachloroethane	ND	ug/	0.50	0.17	
Benzene	ND	ug/	0.50	0.16	
Toluene	ND	ug/	l 2.5	0.70	
Ethylbenzene	ND	ug/	l 2.5	0.70	
Chloromethane	ND	ug/	l 2.5	0.70	
Bromomethane	ND	ug/	l 2.5	0.70	
Vinyl chloride	ND	ug/	I 1.0	0.07	
Chloroethane	ND	ug/	l 2.5	0.70	
1,1-Dichloroethene	ND	ug/	0.50	0.17	
trans-1,2-Dichloroethene	ND	ug/	l 2.5	0.70	
Trichloroethene	ND	ug/	0.50	0.18	

Project Name: MINUTE MAN CLEANERS Lab Number:

Project Number: MANID 16-01 Report Date: 01/04/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 01/02/19 20:34

Analyst: KJD

Parameter	Result	Qualifier Units	3	RL	MDL
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	05,16	Batch:	WG1194409-5
1,2-Dichlorobenzene	ND	ug/l		2.5	0.70
1,3-Dichlorobenzene	ND	ug/l		2.5	0.70
1,4-Dichlorobenzene	ND	ug/l		2.5	0.70
Methyl tert butyl ether	ND	ug/l		2.5	0.70
p/m-Xylene	ND	ug/l		2.5	0.70
o-Xylene	ND	ug/l		2.5	0.70
Xylenes, Total	ND	ug/l		2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l		2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l		2.5	0.70
Dibromomethane	ND	ug/l		5.0	1.0
1,2,3-Trichloropropane	ND	ug/l		2.5	0.70
Acrylonitrile	ND	ug/l		5.0	1.5
Styrene	ND	ug/l		2.5	0.70
Dichlorodifluoromethane	ND	ug/l		5.0	1.0
Acetone	ND	ug/l		5.0	1.5
Carbon disulfide	ND	ug/l		5.0	1.0
2-Butanone	ND	ug/l		5.0	1.9
Vinyl acetate	ND	ug/l		5.0	1.0
4-Methyl-2-pentanone	ND	ug/l		5.0	1.0
2-Hexanone	ND	ug/l		5.0	1.0
Bromochloromethane	ND	ug/l		2.5	0.70
2,2-Dichloropropane	ND	ug/l		2.5	0.70
1,2-Dibromoethane	ND	ug/l		2.0	0.65
1,3-Dichloropropane	ND	ug/l		2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l		2.5	0.70
Bromobenzene	ND	ug/l		2.5	0.70
n-Butylbenzene	ND	ug/l		2.5	0.70
sec-Butylbenzene	ND	ug/l		2.5	0.70
tert-Butylbenzene	ND	ug/l		2.5	0.70

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

Report Date: 01/04/19

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C

Analytical Date: 01/02/19 20:34

Analyst: KJD

Parameter	Result	Qualifier Units	s RL	MDL	
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	05,16 Batch:	WG1194409-5	
o-Chlorotoluene	ND	ug/l	2.5	0.70	
p-Chlorotoluene	ND	ug/l	2.5	0.70	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Hexachlorobutadiene	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
p-Isopropyltoluene	ND	ug/l	2.5	0.70	
Naphthalene	ND	ug/l	2.5	0.70	
n-Propylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,4-Dioxane	ND	ug/l	250	61.	
p-Diethylbenzene	ND	ug/l	2.0	0.70	
p-Ethyltoluene	ND	ug/l	2.0	0.70	
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54	
Ethyl ether	ND	ug/l	2.5	0.70	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	

		Acceptance	
Surrogate	%Recovery	Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	88	70-130	
Dibromofluoromethane	109	70-130	

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

Lab Number: L1853137

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qua	%Recove al Limits	ery RP	D	RPD Qual Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-04,06-15,17	Batch:	WG1194219-3	WG1194219	-4	
Methylene chloride	120		110		70-130	9)	20
1,1-Dichloroethane	110		110		70-130	()	20
Chloroform	100		100		70-130	()	20
Carbon tetrachloride	100		96		63-132	4	1	20
1,2-Dichloropropane	100		100		70-130	()	20
Dibromochloromethane	100		100		63-130	()	20
1,1,2-Trichloroethane	110		100		70-130	1	0	20
Tetrachloroethene	100		100		70-130	()	20
Chlorobenzene	110		110		75-130	()	20
Trichlorofluoromethane	93		88		62-150	(3	20
1,2-Dichloroethane	97		97		70-130	()	20
1,1,1-Trichloroethane	97		95		67-130	2	2	20
Bromodichloromethane	100		99		67-130	•		20
trans-1,3-Dichloropropene	92		90		70-130	2	2	20
cis-1,3-Dichloropropene	96		94		70-130	2	2	20
1,1-Dichloropropene	100		97		70-130	;	3	20
Bromoform	99		110		54-136	1	1	20
1,1,2,2-Tetrachloroethane	98		100		67-130	2	2	20
Benzene	110		100		70-130	1	0	20
Toluene	110		110		70-130	()	20
Ethylbenzene	100		100		70-130	()	20
Chloromethane	87		88		64-130			20
Bromomethane	90		83		39-139		3	20

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

Lab Number: L1853137

Parameter	LCS %Recover	/ Qual	LCSD %Recovery	Qua	%Recove I Limits	ery RPD	Qual	RPD Limits
/olatile Organics by GC/MS	- Westborough Lab Associat	ed sample(s):	01-04,06-15,17	Batch:	WG1194219-3	WG1194219-4		
Vinyl chloride	96		94		55-140	2		20
Chloroethane	110		110		55-138	0		20
1,1-Dichloroethene	110		100		61-145	10		20
trans-1,2-Dichloroethene	110		110		70-130	0		20
Trichloroethene	110		100		70-130	10		20
1,2-Dichlorobenzene	100		110		70-130	10		20
1,3-Dichlorobenzene	100		110		70-130	10		20
1,4-Dichlorobenzene	100		110		70-130	10		20
Methyl tert butyl ether	91		90		63-130	1		20
p/m-Xylene	110		105		70-130	5		20
o-Xylene	105		105		70-130	0		20
cis-1,2-Dichloroethene	110		100		70-130	10		20
Dibromomethane	100		100		70-130	0		20
1,2,3-Trichloropropane	97		100		64-130	3		20
Acrylonitrile	110		110		70-130	0		20
Styrene	110		110		70-130	0		20
Dichlorodifluoromethane	80		74		36-147	8		20
Acetone	100		99		58-148	1		20
Carbon disulfide	110		110		51-130	0		20
2-Butanone	94		92		63-138	2		20
Vinyl acetate	110		110		70-130	0		20
4-Methyl-2-pentanone	84		87		59-130	4		20
2-Hexanone	73		76		57-130	4		20

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

Lab Number: L1853137

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qua	%Recove I Limits	•	D	RPD Qual Limits	
olatile Organics by GC/MS	- Westborough Lab Associated	sample(s):	01-04,06-15,17	Batch:	WG1194219-3	WG1194219	-4		
Bromochloromethane	110		110		70-130)	20	
2,2-Dichloropropane	89		84		63-133		3	20	
1,2-Dibromoethane	100		100		70-130)	20	
1,3-Dichloropropane	100		100		70-130)	20	
1,1,1,2-Tetrachloroethane	100		100		64-130)	20	
Bromobenzene	100		100		70-130)	20	
n-Butylbenzene	100		100		53-136)	20	
sec-Butylbenzene	100		100		70-130)	20	
tert-Butylbenzene	85		88		70-130	;	3	20	
o-Chlorotoluene	100		100		70-130)	20	
p-Chlorotoluene	100		100		70-130)	20	
1,2-Dibromo-3-chloropropane	90		96		41-144		3	20	
Hexachlorobutadiene	92		94		63-130		2	20	
Isopropylbenzene	98		100		70-130		2	20	
p-Isopropyltoluene	99		100		70-130			20	
Naphthalene	81		85		70-130		5	20	
n-Propylbenzene	100		100		69-130)	20	
1,2,3-Trichlorobenzene	92		97		70-130		5	20	
1,2,4-Trichlorobenzene	91		95		70-130		ļ	20	
1,3,5-Trimethylbenzene	100		100		64-130)	20	
1,2,4-Trimethylbenzene	98		100		70-130		2	20	
1,4-Dioxane	128		132		56-162		3	20	
p-Diethylbenzene	91		95		70-130		1	20	

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

Lab Number: L1853137

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Quai	%Recove I Limits	ry RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-04,06-15,17	Batch:	WG1194219-3	WG1194219-4		
p-Ethyltoluene	100		100		70-130	0		20
1,2,4,5-Tetramethylbenzene	84		86		70-130	2		20
Ethyl ether	110		110		59-134	0		20
trans-1,4-Dichloro-2-butene	79		80		70-130	1		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	92	92	70-130
Toluene-d8	100	98	70-130
4-Bromofluorobenzene	89	90	70-130
Dibromofluoromethane	99	100	70-130

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

Lab Number: L1853137

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	05,16 Batch:	WG1194409-3	WG1194409-4			
Methylene chloride	100		100		70-130	0	20	
1,1-Dichloroethane	94		95		70-130	1	20	
Chloroform	100		100		70-130	0	20	
Carbon tetrachloride	110		110		63-132	0	20	
1,2-Dichloropropane	91		93		70-130	2	20	
Dibromochloromethane	100		100		63-130	0	20	
1,1,2-Trichloroethane	94		94		70-130	0	20	
Tetrachloroethene	110		110		70-130	0	20	
Chlorobenzene	96		96		75-130	0	20	
Trichlorofluoromethane	120		120		62-150	0	20	
1,2-Dichloroethane	100		98		70-130	2	20	
1,1,1-Trichloroethane	110		110		67-130	0	20	
Bromodichloromethane	100		100		67-130	0	20	
trans-1,3-Dichloropropene	90		89		70-130	1	20	
cis-1,3-Dichloropropene	96		98		70-130	2	20	
1,1-Dichloropropene	100		100		70-130	0	20	
Bromoform	100		97		54-136	3	20	
1,1,2,2-Tetrachloroethane	86		84		67-130	2	20	
Benzene	92		94		70-130	2	20	
Toluene	94		96		70-130	2	20	
Ethylbenzene	91		92		70-130	1	20	
Chloromethane	73		74		64-130	1	20	
Bromomethane	76		82		39-139	8	20	

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

Lab Number: L1853137

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	05,16 Batch:	WG1194409-3	WG1194409-4		
Vinyl chloride	85		85		55-140	0	20
Chloroethane	99		100		55-138	1	20
1,1-Dichloroethene	110		110		61-145	0	20
trans-1,2-Dichloroethene	100		100		70-130	0	20
Trichloroethene	110		110		70-130	0	20
1,2-Dichlorobenzene	93		92		70-130	1	20
1,3-Dichlorobenzene	94		94		70-130	0	20
1,4-Dichlorobenzene	95		94		70-130	1	20
Methyl tert butyl ether	100		100		63-130	0	20
p/m-Xylene	100		100		70-130	0	20
o-Xylene	95		100		70-130	5	20
cis-1,2-Dichloroethene	99		100		70-130	1	20
Dibromomethane	100		100		70-130	0	20
1,2,3-Trichloropropane	83		95		64-130	13	20
Acrylonitrile	100		100		70-130	0	20
Styrene	95		95		70-130	0	20
Dichlorodifluoromethane	84		82		36-147	2	20
Acetone	120		120		58-148	0	20
Carbon disulfide	100		100		51-130	0	20
2-Butanone	100		100		63-138	0	20
Vinyl acetate	100		100		70-130	0	20
4-Methyl-2-pentanone	86		82		59-130	5	20
2-Hexanone	75		75		57-130	0	20

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

Lab Number: L1853137

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recover Qual Limits	y RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	05,16 Batch: V	VG1194409-3 WG11944	.09-4	
Bromochloromethane	110		110	70-130	0	20
2,2-Dichloropropane	110		110	63-133	0	20
1,2-Dibromoethane	97		95	70-130	2	20
1,3-Dichloropropane	90		88	70-130	2	20
1,1,1,2-Tetrachloroethane	99		100	64-130	1	20
Bromobenzene	97		97	70-130	0	20
n-Butylbenzene	84		84	53-136	0	20
sec-Butylbenzene	88		89	70-130	1	20
tert-Butylbenzene	78		78	70-130	0	20
o-Chlorotoluene	84		81	70-130	4	20
p-Chlorotoluene	85		86	70-130	1	20
1,2-Dibromo-3-chloropropane	94		96	41-144	2	20
Hexachlorobutadiene	100		100	63-130	0	20
Isopropylbenzene	87		88	70-130	1	20
p-lsopropyltoluene	89		89	70-130	0	20
Naphthalene	80		79	70-130	1	20
n-Propylbenzene	86		86	69-130	0	20
1,2,3-Trichlorobenzene	92		88	70-130	4	20
1,2,4-Trichlorobenzene	89		88	70-130	1	20
1,3,5-Trimethylbenzene	87		87	64-130	0	20
1,2,4-Trimethylbenzene	86		86	70-130	0	20
1,4-Dioxane	156		156	56-162	0	20
p-Diethylbenzene	85		85	70-130	0	20

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

Lab Number: L1853137

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	05,16 Batch:	WG1194409-3	WG1194409-4			
p-Ethyltoluene	87		88		70-130	1		20
1,2,4,5-Tetramethylbenzene	79		80		70-130	1		20
Ethyl ether	110		110		59-134	0		20
trans-1,4-Dichloro-2-butene	81		76		70-130	6		20

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	
1,2-Dichloroethane-d4	105	104	70-130	
Toluene-d8	95	95	70-130	
4-Bromofluorobenzene	89	89	70-130	
Dibromofluoromethane	111	111	70-130	

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

Lab Number: L1853137 **Report Date:** 01/04/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1853137-01A	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-01B	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-01C	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-02A	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-02B	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-02C	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-03A	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-03B	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-03C	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-04A	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-04B	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-04C	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-05A	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-05B	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-05C	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-06A	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-06B	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-06C	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-07A	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-07B	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-07C	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-08A	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-08B	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)

YES

Lab Number: L1853137

Report Date: 01/04/19

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1853137-08C	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-09A	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-09B	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-09C	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-10A	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-10B	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-10C	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-11A	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-11B	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-11C	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-12A	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-12B	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-12C	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-13A	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-13B	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-13C	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-14A	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-14B	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-14C	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-15A	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-15B	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-15C	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-16A	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-16B	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-17A	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-17B	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)
L1853137-17C	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260(14)

Project Name: Lab Number: MINUTE MAN CLEANERS L1853137 **Project Number: MANID 16-01 Report Date:** 01/04/19

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample is toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Report Format: DU Report with 'J' Qualifiers

Project Name:MINUTE MAN CLEANERSLab Number:L1853137Project Number:MANID 16-01Report Date:01/04/19

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:MINUTE MAN CLEANERSLab Number:L1853137Project Number:MANID 16-01Report Date:01/04/19

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide
Department: Quality Assurance

Department: Quality Assurance
Title: Certificate/Approval Program Summary

Published Date: 10/9/2018 4:58:19 PM

Page 1 of 1

Revision 12

ID No.:17873

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan III, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo	lay	5	Page \ of	7	3.00	70 - 10 1 1 1 1 1 1	126/18		ALPHA Job # L/853/37
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	Project Information Project Name:	ate Man	[dans	~!			P-A	ASP-	- 4	Same as Client Info
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: 89	Ocean A	CICONCI	Butter	. NY		ulS (1 File)	EQuis	Secretary 1	PO#
Client Information	ARTHUR STATE	Project # \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	6-01	OC FAIT	11001010	-y 1- (To		_		
Client: TA Holz	2016	(Use Project name as Pr	- January				-	ry Requireme	nt		Disposal Site Information
		Project Manager: AJ					STATE AND DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN T	TOGS	NY Pa	rt 375	Please identify below location of
Runtuntuna		ALPHAQuote #:	20-1011	Pa. Boro	W.		□ AW	Q Standards	☐ NY CF		applicable disposal facilities.
Phone: 611 234		Turn-Around Time	NEW YORK	DI MINOS	AND THE	WE STOR	□ NY	Restricted Use	Other	_	Disposal Facility:
Fax: 631 234		Standard	X	Due Date:			□ NY	Unrestricted Us	e 77.7.	at. B	□ NJ □ NY
Email: ATO Holz		Rush (only if pre approved		# of Days:			□ NY	C Sewer Discha			Other:
These samples have to	The same of the sa	ed by Alpha					ANALYS	SIS			Sample Filtration
Other project specifi			8 =								□ Done t
		10.00					0				Lab to do
51 16 18 4 1							360				Lab to do
Please specify Metal	s or IAL.						8				(Please Specify below)
ALPHA Lab ID		16 185	Colle	ection	Sample	Sampler's	D				
(Lab Use Only)	Sa	ample ID	Date	Time	Matrix	Initials	III				Sample Specific Comments
53137-01	MW-10		12/29/18	1441	GW	1	X				3
02	17W-15			1459	1	N	70				
03	NW-20			1156		1	P				
04	שב-טמן			1421		1	X				
05	mw-30			1226		1	4				
26	NV-35			1251		1	×				
(IT	MW-4P			1144		1	70				
08	mw-45	3		1201		1	4				
09	MW. 50	8		107		1	4				
10	MW-50		4	1041	1	~	7				1
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification I Mansfield: Certification I				tainer Type Preservative	VI				Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are
E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other	C = Cube O = Other E = Encore D = BOD Bottle	Relinguished 19 NA 0 - Santo		2/24/15 12/26/1	7Time 500 8 8 2230	TO S	Received	1	12/4/	Physical Distriction	resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S
Form No: 01-25 HC (rev.	30-Sept-2013)			1 1							

<u> </u>	NEW YORK CHAIN OF CUSTODY	Service Centers Matwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Con	lay	95	Page			in Lab	126/1	8		ALPHA Job # (_/853/35)	
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information				D DOWN	Deliver	Control of the Contro				Billing Information	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: Min-	ate pun	Cleanes				SP-A	_	ASP-B		Same as Client Info	
1730 000 000	THE PERSON NAMED IN COLUMN NAM	Project Location: 80 0	rean Au	L ENT A	octany	m	-	QuIS (1 File)	1	QuIS (4	File)	PO#	
Client Information		Project #					Name of Street, or other Designation of the last of th	ther					
Client: JA Holz	num	(Use Project name as Pr	oject#)				Regula	tory Requirem	ent	An An		Disposal Site Information	44
Address: 3555 Vc	trans Huy Smite	Project Manager:					_ N	Y TOGS		NY Part 3	75	Please identify below location of	of
Runtonton	· MY 11719	ALPHAQuote #:	tax char				_ A	WQ Standards		NY CP-51	Bi N	applicable disposal facilities.	
Phone: 631 234	2220	Turn-Around Time					Research	Y Restricted Use	-			Disposal Facility:	
Fax: 671 274		Standard	S C	Due Date	:		□ N	Y Unrestricted U	se M.	4. Cut	B	NJ NY	
Email: ATO HOLZ		Rush (only if pre approved		# of Days	4			YC Sewer Disch	arge			Other:	
	peen previously analyz	ed by Alpha 🔀					ANALY	/SIS				Sample Filtration	T
	c requirements/comm						П		\Box			Done	1
Please specify Metal	s or TAL.						8760 t					Lab to do Preservation Lab to do (Please Specify below)	a I B o t
ALPHA Lab ID	9	ample ID	Coll	ection	Sample	Sampler's	5		1 1				
(Lab Use Only)	3.0	шире по	Date	Time	Matrix	Initials	177					Sample Specific Comments	е
53137-10	mw-9	V.	12/29/18	Noi	GW	11	X						3
-12	12 mw-12		1	1371		111	X						i
13	17W-16			0941		h	X						
14	MW-16	7		0916		M	14						
15	Mr- 1		1	1001	1	1	7	-12					1
16	Tris Ronte	1.1.1	Lak	Lap	aw	1	9						2
19	DB-I		12/14/18	1124	エ	1	X		\neg				7
			1	1,,,,			1						
					 		\Box						
WINTER WE			-				\vdash		\top				\top
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification Mansfield: Certificati		.1		ntainer Type Preservative	-					Please print clearly, legi and completely. Sample not be logged in and turnaround time clock w start until any ambiguitie	es can
F = MeOH	C = Cube	Relinquished	Bv:	Date	/Time		Receive	ed By:	\top	Date/Ti	me	resolved. BY EXECUTII	
$G = NaHSO_4$ $H = Na_2S_2O_3$ K/E = Zn Ac/NaOH O = Other	O = Other E = Encore D = BOD Bottle	D. Santos	AAL -	12/26/10 12/26/10	e Ita	lue	Sant	11	12/	26/18	1th	THIS COC, THE CLIEN HAS READ AND AGRE TO BE BOUND BY ALF TERMS & CONDITION: (See reverse side.)	ES PHA'S
Form No: 01-25 HC (rev.	30-Sept-2013)	, ,	8 ===	1.1.	4	8 8						(See reverse side.)	

Semi-Annual Sampling Report NYSDEC Site Number: C130157 Minute Man Cleaners 89 Ocean Avenue East Rockaway, Nassau County, New York 11518 February 2019

Appendix B – Effluent Soil Vapor Analytical Laboratory Report

ANALYTICAL REPORT

Lab Number: L1853159

Client: J.R. Holzmacher P.E., LLC

3555 Veterans Memorial Highway

Suite A

Ronkonkoma, NY 11779

MINUTE MAN CLEANERS

ATTN: AJ Scheff
Phone: (631) 234-2220

(--,

Project Number: MANID 16-01

Report Date: 01/04/19

Project Name:

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

Lab Number:

L1853159

Report Date:

01/04/19

Alpha Sample ID Client ID Matrix Soll_VAPOR 89 OCEAN AVE Collection Date/Time Receive Date

L1853159

Project Name: MINUTE MAN CLEANERS Lab Number:

Project Number: MANID 16-01 Report Date: 01/04/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.	

Project Name:MINUTE MAN CLEANERSLab Number:L1853159Project Number:MANID 16-01Report Date:01/04/19

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on December 10, 2018. The canister certification results are provided as an addendum.

L1853159-01: The sample has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

The WG1194514-3 LCS recoveries for dichlorofluoromethane (143%), acetone (131%), 3-chloropropene (139%), undecane (132%) and dodecane (c12) (143%) are above the upper 130% acceptance limit. All samples associated with this LCS do not have reportable amounts of these analytes.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Galle Por Elizabeth Porta

Authorized Signature:

Title: Technical Director/Representative

ΔLPHA

Date: 01/04/19

AIR

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

Lab Number: L1853159

Report Date: 01/04/19

SAMPLE RESULTS

Lab ID: L1853159-01 D

Client ID: EFFLUENT Sample Location: 89 OCEAN AVE

Date Collected: 12/26/18 13:41
Date Received: 12/26/18
Field Prep: Not Specified

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 01/04/19 09:05

Analyst: MB

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab							
Dichlorodifluoromethane	ND	1.00		ND	4.94			5
Chloromethane	ND	1.00		ND	2.07			5
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	1.00		ND	6.99			5
Vinyl chloride	ND	1.00		ND	2.56			5
1,3-Butadiene	ND	1.00		ND	2.21			5
Bromomethane	ND	1.00		ND	3.88			5
Chloroethane	ND	1.00		ND	2.64			5
Ethyl Alcohol	ND	25.0		ND	47.1			5
Vinyl bromide	ND	1.00		ND	4.37			5
Acetone	ND	5.00		ND	11.9			5
Trichlorofluoromethane	ND	1.00		ND	5.62			5
iso-Propyl Alcohol	ND	2.50		ND	6.15			5
1,1-Dichloroethene	ND	1.00		ND	3.96			5
tert-Butyl Alcohol	ND	2.50		ND	7.58			5
Methylene chloride	ND	2.50		ND	8.69			5
3-Chloropropene	ND	1.00		ND	3.13			5
Carbon disulfide	ND	1.00		ND	3.11			5
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	1.00		ND	7.66			5
trans-1,2-Dichloroethene	ND	1.00		ND	3.96			5
1,1-Dichloroethane	ND	1.00		ND	4.05			5
Methyl tert butyl ether	ND	1.00		ND	3.61			5
2-Butanone	ND	2.50		ND	7.37			5
cis-1,2-Dichloroethene	ND	1.00		ND	3.96			5

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

Lab Number:

L1853159

Report Date:

01/04/19

SAMPLE RESULTS

Lab ID: L1853159-01 D
Client ID: EFFLUENT

Sample Location: 89 OCEAN AVE

Date Collected: 12/26/18 13:41 Date Received: 12/26/18

Field Prep: Not Specified

		ppbV		ug/m3		Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab							
Ethyl Acetate	ND	2.50		ND	9.01			5
Chloroform	13.5	1.00		65.9	4.88			5
Tetrahydrofuran	ND	2.50		ND	7.37			5
1,2-Dichloroethane	ND	1.00		ND	4.05			5
n-Hexane	ND	1.00		ND	3.52			5
1,1,1-Trichloroethane	ND	1.00		ND	5.46			5
Benzene	ND	1.00		ND	3.19			5
Carbon tetrachloride	ND	1.00		ND	6.29			5
Cyclohexane	ND	1.00		ND	3.44			5
1,2-Dichloropropane	ND	1.00		ND	4.62			5
Bromodichloromethane	ND	1.00		ND	6.70			5
Xylene (Total)	ND	1.00		ND	4.34			5
1,4-Dioxane	ND	1.00		ND	3.60			5
Frichloroethene	ND	1.00		ND	5.37			5
2,2,4-Trimethylpentane	ND	1.00		ND	4.67			5
Heptane	ND	1.00		ND	4.10			5
cis-1,3-Dichloropropene	ND	1.00		ND	4.54			5
4-Methyl-2-pentanone	ND	2.50		ND	10.2			5
rans-1,3-Dichloropropene	ND	1.00		ND	4.54			5
1,1,2-Trichloroethane	ND	1.00		ND	5.46			5
Toluene	ND	1.00		ND	3.77			5
1,2-Dichloroethene (total)	ND	1.00		ND	3.96			5
2-Hexanone	ND	1.00		ND	4.10			5
1,3-Dichloropropene, Total	ND	1.00		ND	4.54			5
Dibromochloromethane	ND	1.00		ND	8.52			5
1,2-Dibromoethane	ND	1.00		ND	7.69			5

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

Lab Number:

L1853159

Report Date: 01/04/19

SAMPLE RESULTS

Lab ID: L1853159-01 D
Client ID: EFFLUENT

Sample Location: 89 OCEAN AVE

Date Collected: 12/26/18 13:41

Date Received: 12/26/18
Field Prep: Not Specified

оатрю верт.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Tetrachloroethene	367	1.00		2490	6.78			5
Chlorobenzene	ND	1.00		ND	4.61			5
Ethylbenzene	ND	1.00		ND	4.34			5
p/m-Xylene	ND	2.00		ND	8.69			5
Bromoform	ND	1.00		ND	10.3			5
Styrene	ND	1.00		ND	4.26			5
1,1,2,2-Tetrachloroethane	ND	1.00		ND	6.87			5
o-Xylene	ND	1.00		ND	4.34			5
4-Ethyltoluene	ND	1.00		ND	4.92			5
1,3,5-Trimethylbenzene	ND	1.00		ND	4.92			5
1,2,4-Trimethylbenzene	ND	1.00		ND	4.92			5
Benzyl chloride	ND	1.00		ND	5.18			5
1,3-Dichlorobenzene	ND	1.00		ND	6.01			5
1,4-Dichlorobenzene	ND	1.00		ND	6.01			5
1,2-Dichlorobenzene	ND	1.00		ND	6.01			5
1,2,4-Trichlorobenzene	ND	1.00		ND	7.42			5
Hexachlorobutadiene	ND	1.00		ND	10.7			5

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	73		60-140
Bromochloromethane	81		60-140
chlorobenzene-d5	82		60-140

Project Name: MINUTE MAN CLEANERS Lab Number: L1853159

Project Number: MANID 16-01 Report Date: 01/04/19

Method Blank Analysis Batch Quality Control

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 01	Batch:	WG1194514-	4			
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethyl Alcohol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
iso-Propyl Alcohol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
tert-Butyl Alcohol	ND	0.500		ND	1.52			1

Project Name: MINUTE MAN CLEANERS Lab Number: L1853159

Project Number: MANID 16-01 Report Date: 01/04/19

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab for samp	ole(s): 01	Batch:	WG1194514-	4			
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
Xylene (Total)	ND	0.200		ND	0.869			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Isopropyl Ether	ND	0.200		ND	0.836			1
Ethyl-Tert-Butyl-Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	0.200		ND	0.793			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,3-Dichloropropene, Total	ND	0.200		ND	0.908			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1

Project Name: MINUTE MAN CLEANERS Lab Number: L1853159

Project Number: MANID 16-01 Report Date: 01/04/19

Method Blank Analysis Batch Quality Control

Parameter Volatile Organics in Air - Mansfield La Cyclohexane Tertiary-Amyl Methyl Ether	Results ab for samp ND ND ND	0.200	MDL Batch:		RL 4	MDL	Qualifier	Factor
Cyclohexane Tertiary-Amyl Methyl Ether	ND ND	0.200			4			
Tertiary-Amyl Methyl Ether	ND							
		0.000		ND	0.688			1
	ND	0.200		ND	0.836			1
Dibromomethane	110	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl Acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1

Project Name: MINUTE MAN CLEANERS Lab Number: L1853159

Project Number: MANID 16-01 Report Date: 01/04/19

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3		<u> </u>	Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab for samp	ole(s): 01	Batch:	WG1194514-	4			
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane (C9)	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
o-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
p-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane (C10)	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1

Project Name: MINUTE MAN CLEANERS Lab Number: L1853159

Project Number: MANID 16-01 Report Date: 01/04/19

Method Blank Analysis Batch Quality Control

		ppbV		u	ıg/m3		-	Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	_ab for samp	ole(s): 01	Batch:	WG1194514-4				
Undecane	ND	0.200		ND	1.28			1
Dodecane (C12)	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

Lab Number: L1853159

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	01 Batc	h: WG1194514-3					
Chlorodifluoromethane	89		-		70-130	-		
Propylene	116		-		70-130	-		
Propane	89		-		70-130	-		
Dichlorodifluoromethane	107		-		70-130	-		
Chloromethane	93		-		70-130	-		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	104		-		70-130	-		
Methanol	83		-		70-130	-		
Vinyl chloride	129		-		70-130	-		
1,3-Butadiene	105		-		70-130	-		
Butane	114		-		70-130	-		
Bromomethane	130		-		70-130	-		
Chloroethane	122		-		70-130	-		
Ethyl Alcohol	103		-		70-130	-		
Dichlorofluoromethane	143	Q	-		70-130	-		
Vinyl bromide	106		-		70-130	-		
Acrolein	92		-		70-130	-		
Acetone	131	Q	-		70-130	-		
Acetonitrile	121		-		70-130	-		
Trichlorofluoromethane	128		-		70-130	-		
iso-Propyl Alcohol	116		-		70-130	-		
Acrylonitrile	91		-		70-130	-		
Pentane	97		-		70-130	-		
Ethyl ether	79		-		70-130	-		

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

Lab Number: L1853159

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Ass	ociated sample(s)	: 01 B	atch: WG1194514-3					
1,1-Dichloroethene	129		-		70-130	-		
tert-Butyl Alcohol	117		-		70-130	-		
Methylene chloride	98		-		70-130	-		
3-Chloropropene	139	Q	-		70-130	-		
Carbon disulfide	90		-		70-130	-		
1,1,2-Trichloro-1,2,2-Trifluoroethane	121		-		70-130	-		
trans-1,2-Dichloroethene	118		-		70-130	-		
1,1-Dichloroethane	105		-		70-130	-		
Methyl tert butyl ether	90		-		70-130	-		
Vinyl acetate	108		-		70-130	-		
2-Butanone	104		-		70-130	-		
cis-1,2-Dichloroethene	116		-		70-130	-		
Ethyl Acetate	118		-		70-130	-		
Chloroform	111		-		70-130	-		
Tetrahydrofuran	104		-		70-130	-		
2,2-Dichloropropane	90		-		70-130	-		
1,2-Dichloroethane	122		-		70-130	-		
n-Hexane	108		-		70-130	-		
Isopropyl Ether	98		-		70-130	-		
Ethyl-Tert-Butyl-Ether	100		-		70-130	-		
1,2-Dichloroethene (total)	117		-			-		
1,2-Dichloroethene (total)	117		-			-		
1,1,1-Trichloroethane	99		-		70-130	-		

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

Lab Number: L1853159

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Asso	ociated sample(s)	: 01 Batch	: WG1194514-3					
1,1-Dichloropropene	88		-		70-130	-		
Benzene	90		-		70-130	-		
Carbon tetrachloride	100		-		70-130	-		
Cyclohexane	108		-		70-130	-		
Tertiary-Amyl Methyl Ether	83		-		70-130	-		
Dibromomethane	97		-		70-130	-		
1,2-Dichloropropane	104		-		70-130	-		
Bromodichloromethane	107		-		70-130	-		
1,4-Dioxane	110		-		70-130	-		
Trichloroethene	98		-		70-130	-		
2,2,4-Trimethylpentane	112		-		70-130	-		
Methyl Methacrylate	109		-		70-130	-		
Heptane	102		-		70-130	-		
cis-1,3-Dichloropropene	94		-		70-130	-		
4-Methyl-2-pentanone	106		-		70-130	-		
trans-1,3-Dichloropropene	82		-		70-130	-		
1,1,2-Trichloroethane	98		-		70-130	-		
Toluene	103		-		70-130	-		
1,3-Dichloropropane	87		-		70-130	-		
2-Hexanone	107		-		70-130	-		
Dibromochloromethane	112		-		70-130	-		
1,2-Dibromoethane	96		-		70-130	-		
Butyl Acetate	86		-		70-130	-		

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

Lab Number:

L1853159

Report Date:

01/04/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab	Associated sample(s):	01 Bato	ch: WG1194514-3					
Octane	102		-		70-130	-		
Tetrachloroethene	101		-		70-130	-		
1,1,1,2-Tetrachloroethane	97		-		70-130	-		
Chlorobenzene	104		-		70-130	-		
Ethylbenzene	108		-		70-130	-		
p/m-Xylene	112		-		70-130	-		
Bromoform	117		-		70-130	-		
Styrene	100		-		70-130	-		
1,1,2,2-Tetrachloroethane	121		-		70-130	-		
o-Xylene	118		-		70-130	-		
1,2,3-Trichloropropane	98		-		70-130	-		
Nonane (C9)	101		-		70-130	-		
Isopropylbenzene	102		-		70-130	-		
Bromobenzene	101		-		70-130	-		
o-Chlorotoluene	105		-		70-130	-		
n-Propylbenzene	111		-		70-130	-		
p-Chlorotoluene	108		-		70-130	-		
4-Ethyltoluene	107		-		70-130	-		
1,3,5-Trimethylbenzene	110		-		70-130	-		
tert-Butylbenzene	116		-		70-130	-		
1,2,4-Trimethylbenzene	112		-		70-130	-		
Decane (C10)	122		-		70-130	-		
Benzyl chloride	123		-		70-130	-		

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

Lab Number:

L1853159

Report Date:

01/04/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Asso	ociated sample(s):	01 Batch:	: WG1194514-3					
1,3-Dichlorobenzene	120		-		70-130	-		
1,4-Dichlorobenzene	116		-		70-130	-		
sec-Butylbenzene	104		-		70-130	-		
p-Isopropyltoluene	110		-		70-130	-		
1,2-Dichlorobenzene	118		-		70-130	-		
n-Butylbenzene	127		-		70-130	-		
1,2-Dibromo-3-chloropropane	105		-		70-130	-		
Undecane	132	Q	-		70-130	-		
Dodecane (C12)	143	Q	-		70-130	-		
1,2,4-Trichlorobenzene	111		-		70-130	-		
Naphthalene	105		-		70-130	-		
1,2,3-Trichlorobenzene	110		-		70-130	-		
Hexachlorobutadiene	125		-		70-130	-		

Lab Duplicate Analysis Batch Quality Control

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

Lab Number:

L1853159

Parameter	Native Sample	e Duplicate Sample	Units	RPD	RPD Qual Limits	
Volatile Organics in Air - Mansfield Lab	Associated sample(s): 01	QC Batch ID: WG1194514-5	QC Sample:	L1853436-01	Client ID: DUP Sample	
Dichlorodifluoromethane	0.500	0.528	ppbV	5	25	
Chloromethane	0.418	0.430	ppbV	3	25	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	ND	ppbV	NC	25	
1,3-Butadiene	ND	ND	ppbV	NC	25	
Bromomethane	ND	ND	ppbV	NC	25	
Chloroethane	ND	ND	ppbV	NC	25	
Ethyl Alcohol	ND	ND	ppbV	NC	25	
Vinyl bromide	ND	ND	ppbV	NC	25	
Trichlorofluoromethane	0.597	0.590	ppbV	1	25	
iso-Propyl Alcohol	ND	ND	ppbV	NC	25	
tert-Butyl Alcohol	ND	ND	ppbV	NC	25	
Methylene chloride	ND	ND	ppbV	NC	25	
3-Chloropropene	ND	ND	ppbV	NC	25	
Carbon disulfide	ND	ND	ppbV	NC	25	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ND	ppbV	NC	25	
trans-1,2-Dichloroethene	ND	ND	ppbV	NC	25	
1,1-Dichloroethane	ND	ND	ppbV	NC	25	
Methyl tert butyl ether	ND	ND	ppbV	NC	25	
2-Butanone	ND	ND	ppbV	NC	25	
Ethyl Acetate	ND	ND	ppbV	NC	25	
Chloroform	ND	ND	ppbV	NC	25	

Lab Duplicate Analysis Batch Quality Control

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01 Lab Number: L1853159

01/04/19 Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits	
Volatile Organics in Air - Mansfield Lab	Associated sample(s): 01	QC Batch ID: WG1194514-5	QC Sample:	L1853436-01	Client ID: DUP Sample	
Tetrahydrofuran	ND	ND	ppbV	NC	25	
1,2-Dichloroethane	ND	ND	ppbV	NC	25	
n-Hexane	ND	ND	ppbV	NC	25	
Benzene	ND	ND	ppbV	NC	25	
Cyclohexane	ND	ND	ppbV	NC	25	
1,2-Dichloropropane	ND	ND	ppbV	NC	25	
Bromodichloromethane	ND	ND	ppbV	NC	25	
1,4-Dioxane	ND	ND	ppbV	NC	25	
2,2,4-Trimethylpentane	ND	ND	ppbV	NC	25	
Heptane	ND	ND	ppbV	NC	25	
cis-1,3-Dichloropropene	ND	ND	ppbV	NC	25	
4-Methyl-2-pentanone	ND	ND	ppbV	NC	25	
Xylene (Total)	ND	ND	ppbV	NC	25	
trans-1,3-Dichloropropene	ND	ND	ppbV	NC	25	
1,1,2-Trichloroethane	ND	ND	ppbV	NC	25	
Toluene	5.54	5.48	ppbV	1	25	
2-Hexanone	ND	ND	ppbV	NC	25	
Dibromochloromethane	ND	ND	ppbV	NC	25	
1,2-Dibromoethane	ND	ND	ppbV	NC	25	
Chlorobenzene	ND	ND	ppbV	NC	25	
Ethylbenzene	ND	ND	ppbV	NC	25	

L1853159

Lab Duplicate Analysis Batch Quality Control

Project Name: MINUTE MAN CLEANERS

Project Number: MANID 16-01

Lab Number:

arameter	Native Sample	e Duplicate Sample	Units	RPD	Qual	RPD Limits
platile Organics in Air - Mansfield Lab Ass	sociated sample(s): 01	QC Batch ID: WG1194514-5	QC Sample:	L1853436-01	Client ID:	DUP Sample
p/m-Xylene	ND	ND	ppbV	NC		25
1,2-Dichloroethene (total)	ND	ND	ppbV	NC		25
Bromoform	ND	ND	ppbV	NC		25
1,3-Dichloropropene, Total	ND	ND	ppbV	NC		25
Styrene	ND	ND	ppbV	NC		25
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC		25
o-Xylene	ND	ND	ppbV	NC		25
4-Ethyltoluene	ND	ND	ppbV	NC		25
1,3,5-Trimethylbenzene	ND	ND	ppbV	NC		25
1,2,4-Trimethylbenzene	ND	ND	ppbV	NC		25
Benzyl chloride	ND	ND	ppbV	NC		25
1,3-Dichlorobenzene	ND	ND	ppbV	NC		25
1,4-Dichlorobenzene	ND	ND	ppbV	NC		25
1,2-Dichlorobenzene	ND	ND	ppbV	NC		25
1,2,4-Trichlorobenzene	ND	ND	ppbV	NC		25
Hexachlorobutadiene	ND	ND	ppbV	NC		25

MINUTE MAN CLEANERS Lab Number: L1853159

Project Number: MANID 16-01 Report Date: 01/04/19

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L1853159-01	EFFLUENT	0741	Flow 1	12/10/18	279579		-	-	-	Pass	200	211	5
L1853159-01	EFFLUENT	465	2.7L Can	12/10/18	279579	L1849865-02	Pass	-28.6	-2.5	-	-		

Project Name:

L1849865

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 01/04/19

Air Canister Certification Results

Lab ID: L1849865-02 Date Collected: 12/05/18 16:00

Client ID: CAN 388 SHELF 2 Date Received: 12/06/18

Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air
Anaytical Method: 48,TO-15
Analytical Date: 12/06/18 19:26

Analyst: MB

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield I	Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L1849865

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 01/04/19

Air Canister Certification Results

Lab ID: L1849865-02
Client ID: CAN 388 SHELF 2

Sample Location:

Date Collected: 12/05/18 16:00 Date Received: 12/06/18

Field Prep: Not Specified

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
rans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
/inyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
sis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
etrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
ert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
,1,1-Trichloroethane	ND	0.200		ND	1.09			1
,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
ert-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
,2-Dichloropropane	ND	0.200		ND	0.924			1

L1849865

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 01/04/19

Air Canister Certification Results

Lab ID: L1849865-02 Date Collected:
Client ID: CAN 388 SHELF 2 Date Received:

Sample Location:

Date Collected: 12/05/18 16:00
Date Received: 12/06/18

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab								
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1

L1849865

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 01/04/19

Air Canister Certification Results

 Lab ID:
 L1849865-02
 Date Collected:
 12/05/18 16:00

 Client ID:
 CAN 388 SHELF 2
 Date Received:
 12/06/18

Client ID: CAN 388 SHELF 2 Date Received: 12/06/18
Sample Location: Field Prep: Not Specified

оапріє Беріп.		ppbV		ug/m3			Dilutio	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab								
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: BATCH CANISTER CERTIFICATION Lab Number:

Lab Number: L1849865

Project Number: CANISTER QC BAT Report Date: 01/04/19

Air Canister Certification Results

Lab ID: L1849865-02

Client ID: CAN 388 SHELF 2

Sample Location:

Date Collected:

12/05/18 16:00

Date Received:

12/06/18

Field Prep:

Not Specified

Sample Depth:

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air - Mansfield Lab

Results Qualifier Units RDL Dilution Factor

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	96		60-140
Bromochloromethane	96		60-140
chlorobenzene-d5	97		60-140

L1849865

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 01/04/19

Air Canister Certification Results

Lab ID: L1849865-02 Date Collected: 12/05/18 16:00

Client ID: CAN 388 SHELF 2 Date Received: 12/06/18
Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 12/06/18 19:26

Analyst: MB

		ppbV		ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

L1849865

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 01/04/19

Air Canister Certification Results

Lab ID: L1849865-02
Client ID: CAN 388 SHELF 2

Sample Location:

Date Collected: 12/05/18 16:00

Date Received: 12/06/18
Field Prep: Not Specified

Sample Depth.		ppbV			ug/m3			-
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Dilution Factor
Volatile Organics in Air by SIM - M								
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L1849865

Project Number: CANISTER QC BAT Report Date: 01/04/19

Air Canister Certification Results

 Lab ID:
 L1849865-02
 Date Collected:
 12/05/18 16:00

 Client ID:
 CAN 388 SHELF 2
 Date Received:
 12/06/18

Client ID: CAN 388 SHELF 2 Date Received: 12/06/18
Sample Location: Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	RL MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	90		60-140
bromochloromethane	90		60-140
chlorobenzene-d5	89		60-140

Lab Number: L1853159

Report Date: 01/04/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

MINUTE MAN CLEANERS

Cooler Information

Project Name:

Custody Seal Cooler

N/A Absent

Project Number: MANID 16-01

Container Information					Final	Temp		Frozen		
	Container ID	Container Type	Cooler	r pH	рН	deg C Pres	Seal	Date/Time	Analysis(*)	
	L1853159-01A	Canister - 1 Liter	N/A	NA		Υ	Absent		TO15-LL(30)	

YES

Project Name:MINUTE MAN CLEANERSLab Number:L1853159Project Number:MANID 16-01Report Date:01/04/19

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample is toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Report Format: Data Usability Report

Project Name:MINUTE MAN CLEANERSLab Number:L1853159Project Number:MANID 16-01Report Date:01/04/19

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- $\label{eq:MCPCAM} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Serial_No:01041918:02

Project Name:MINUTE MAN CLEANERSLab Number:L1853159Project Number:MANID 16-01Report Date:01/04/19

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:01041918:02

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 12

Published Date: 10/9/2018 4:58:19 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ALPH	AIR A CHAIN OF CUSTODY				PAGE	OF	Date	Rec'd in I	Lab: 1	212	7/18		A	LPH	A Jo	_No:010419 b #:	853159
320 Forbes Blvd,	Mansfield, MA 02048		t Informa				Rep	ort Infor	mation	- Data	Delive	rables	В	illing	Info	rmation	1
CONTRACTOR OF THE PARTY.	000 FAX: 508-822-3288	Project	Name:	linate	Man C	lenned	O F	AX			11.16			_		ient info PO	#
Client Informat		Project	Location: 8	gocen	Avel	Rote	J. SA	DEx	. = 1				1			1,0	<i>**</i> **
Client: TA	totemaker	Project	# Man	1D 16-0	1	a replica	7	Criteria C		quiatory C	Criteria Indic	dad)		_			
ddress: 3557 V	Eteran Huy Cute A		Manager:				-	Other For	mats:			ancesy.					
Bunton to.	~ My 11779	ALPHA		,- ,,			DA	MAIL (stan dditional D	dard pd eliverab	f report les:)			egula ste/Fe			its/Report Lin
hone: 671 04	1234 1220		Around Ti	me				rt to: (if differ					-	J-		Program	Res / Com
×: 671	234 2221									our stanage	9		1		,	-ut p	
nail: ATO L	noturnatur. com	Standa	ard [RUSH	y confirmed if pre-	approved')											
These samples h	ave been previously analyzed by Alpha	Date Du	0.		-									A	NAL	YSIS	
ther Project S	Specific Requirements/Comm	nents:	u.		Time:								1	///		10///	
	c Target Compound List:												//	1 Page	11	8///	
at a anne architeration	- ranger compound List. a											/	/	Jan	Sales A		
	AI	I Col	umn	s Be	low I	Must	Be	Fillo	10	-		_/	/2/	Ses	Second Second	//	
LPHA Lab ID ab Use Only)	Sample ID		001	LEGILO						1000		25/	APH SIM	Fixed Gases	Antipoles & Albert	//	
		4 4	Start Time	End Time	Vacuum	Final Vacuum	Matrix*	Sampler's Initials	Size	Can	I D - Flow Controlle	70.75	4	Fixe		Sample Co	omments (i.e. PI
159-01	Efflorent	12 holis	1330	1341	-29.33	-3.61	SU	1	14	465	0741	X					the transfer of the transfer o
									-	100	1 11				1		
								-				1					
*SAMPLE	: MATRIX CODES SV =	= Ambient = Soil Vapo er = Please S	Air (Indoor/ r/Landfill Gi	Outdoor)				Co	ntainer	Туре	CS					Please print cle	arly, legibly and
*SAMPLE	MATRIX CODES SV = Othe	Soil Vapo	r/Landfill Gr pecify	Outdoor) as/SVE	Date	/Time				Туре	CS					completely. Sa logged in and to	mples can not be
*SAMPLE	MATRIX CODES SV = Othe	= Soil Vapo er = Please S	r/Landfill Gr pecify	Outdoor)	Date/	10.16	17.17	Co Receiv		Туре	CS	Dat	e/Time			completely. Sa logged in and to clock will not st guities are reso	mples can not be urnaround time art until any ambi- lved. All samples
*SAMPLE	Othe	= Soil Vapo er = Please S	r/Landfill Gr pecify	Outdoor)	12/26	Time	12/2			Type	cs of	Dat	e/Time	Jsu Jsu	× v	completely. Sa logged in and to clock will not st guities are reso	mples can not be urnaround time art until any ambi- lved. All samples ubject to Alpha's ditions.

Semi-Annual Sampling Report NYSDEC Site Number: C130157 Minute Man Cleaners 89 Ocean Avenue East Rockaway, Nassau County, New York 11518 February 2019

Appendix C – Tide Chart: Monitoring Well Samples

Minute Man Cleaners 89 Ocean Ave East Rockaway, NY Site #C130157

APPENDIX C
Tide Chart: Monitoring Well Samples

Monitoring Well	6/28/2018	Time	12/24/2018	Time
MW-1S	1.5 ft	13:34	-0.3 ft	14:59
MW-1D	1.4 ft	13:45	-0.2 ft	14:41
MW-2S	1.9ft	12:53	0.2 ft	14:21
MW-2D	1.6 ft	13:13	0.5 ft	13:56
MW-3S	2.8 ft	11:47	1.5 ft	12:51
MW-3D	2.5 ft	12:10	2.5 ft	12:26
MW-4S	3.0 ft	11:05	2.9 ft	12:01
MW-4D	2.8 ft	11:25	3.2 ft	11:44
MW-5S	3.8 ft	9:40	4.3 ft	10:41
MW-5D	3.8 ft	9:59	4.7 ft	10:21
MW-9	3.6 ft	10:20	4.0 ft	11:01
MW-12	2.0 ft	12:33	1.3 ft	13:21
MW-14S	3.7 ft	8:53	4.9 ft	8:53
MW-14D	3.7 ft	8:34	4.9 ft	9:41
MW-14WT	3.8 ft	9:15	4.8 ft	10:01
DB-1	3.6 ft	10:43	3.8 ft	11:24

6/28/2017

12/26/2018

Semi-Annual Sampling Report NYSDEC Site Number: C130157 Minute Man Cleaners 89 Ocean Avenue East Rockaway, Nassau County, New York 11518 February 2019

Appendix D - Data Usability Summary Report – DUSR Data Validation Summary

DATA USABILITY SUMMARY REPORT – DUSR DATA VALIDATION SUMMARY

VOLATILES BY GC/MS METHOD 8260C

For Groundwater Samples Collected
December 24, 2018
Minuteman Cleaners
From 89 Ocean Avenue, East Rockaway, New York
Collected by J.R. Holzmacher P.E., LLC
Project # ManID 16-01

SAMPLE DELIVERY GROUP NUMBER: L1853137 ALPHA ANALYTICAL - (ELAP #11148)

SUBMITTED TO:

Ms. Patricia Zalak J.R. Holzmacher P.E., LLC 3555 Veterans Memorial Highway, Suite A Ronkonkoma, NY 11779

January 10, 2019

PREPARED BY:

Lori A. Beyer/President L.A.B. Validation Corp. 14 West Point Drive East Northport, NY 11731

four a suyer

Minuteman Cleaners; 89 Ocean Avenue, East Rockaway, New York – Data Usability Summary Report (Data Validation): December 2018 Groundwater Sampling Event; - Volatiles by SW846 Method 8260C.

Table of Contents:

Introduction
Data Qualifier Definitions
Sample Receipt

- 1.0 Volatile Organics by GC/MS SW846 Method 8260C
 - 1.1 Holding Time
 - 1.2 System Monitoring Compound (Surrogate) Recovery
 - 1.3 Matrix Spikes (MS), Matrix Spike Duplicates (MSD)
 - 1.4 Laboratory Control Sample/Blank Spikes
 - 1.5 Blank Contamination
 - 1.6 GC/MS Instrument Performance Check (Tuning)
 - 1.7 Initial and Continuing Calibrations
 - 1.8 Internal Standards
 - 1.9 Field Duplicates
 - 1.10 Target Compound List Identification
 - 1.11 Compound Quantification and Reported Detection Limits
 - 1.12 Overall System Performance

APPENDICES:

- A. Chain of Custody Documents
- B. Case Narrative
- C. Validated Form I's with Qualifications

Introduction:

A validation was performed on groundwater samples and the associated quality control sample (Trip Blank) for organic analysis for samples collected under chain of custody documentation by J.R. Holzmacher and submitted to Alpha Analytical for subsequent analysis. This report contains the laboratory and validation results for the field samples itemized below. Analysis was performed in accordance with requested tests per the chain of custody documents by Alpha, utilizing SW846 Methods for the associated analytical methodologies employed. The analytical testing for groundwater samples consisted of Volatile Organics by 5030C/8260D.

The data was evaluated in accordance with EPA Region II National Functional Guidelines for Organic Data Review and EPA Region II SOPs for 8260 and in conjunction with the analytical methodologies for which the samples were analyzed, where applicable and relevant.

Sample ID	Lab ID	Matrix	Date Collected/Date Received
MW-1D	L1853137-01	Groundwater	12/24/2018, 12/26/2018
MW-1S	L1853137-02	Groundwater	12/24/2018, 12/26/2018
MW-2D	L1853137-03	Groundwater	12/24/2018, 12/26/2018
MW-2S	L1853137-04	Groundwater	12/24/2018, 12/26/2018
MW-3D	L1853137-05	Groundwater	12/24/2018, 12/26/2018

MW-3S	L1853137-06	Groundwater	12/24/2018, 12/26/2018
MW-4D	L1853137-07	Groundwater	12/24/2018, 12/26/2018
MW-4S	L1853137-08	Groundwater	12/24/2018, 12/26/2018
MW-5D	L1853137-09	Groundwater	12/24/2018, 12/26/2018
MW-5S	L1853137-10	Groundwater	12/24/2018, 12/26/2018
MW-9	L1853137-11	Groundwater	12/24/2018, 12/26/2018
MW-12	L1853137-12	Groundwater	12/24/2018, 12/26/2018
MW-14S	L1853137-13	Groundwater	12/24/2018, 12/26/2018
MW-14D	L1853137-14	Groundwater	12/24/2018, 12/26/2018
MW14-WT	L1853137-15	Groundwater	12/24/2018, 12/26/2018
Trip Blank	L1853137-16	Aqueous	12/24/2018, 12/26/2018
DB-1	L1853137-17	Groundwater	12/24/2018, 12/26/2018

Data Qualifier Definitions:

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate quantity.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- D Analyte concentration is from diluted analysis.

Sample Receipt:

The Chain of Custody document indicates that the samples were received at Alpha Analytical via laboratory courier upon completion of the sampling event on December 26, 2019. Sample login notes were generated. The cooler temperature for the aqueous sample receipts were recorded upon receipt at Alpha and determined to be acceptable (<6.0 degrees C) for the sample cooler. The actual temperature 5.6 degrees C is recorded on the sample receipt checklist provided in Appendix B of this report.

No problems and/or discrepancies were noted, consequently, the integrity of the groundwater samples has been assumed to be good.

The Form I's and EQUIS deliverables include all usable (qualified) and unusable (rejected) results for the samples identified above. The validated spreadsheets and Form I's summarize the detailed narrative section of the report.

NOTE:

L.A.B. Validation Corp. believes it is appropriate to note that the data validation criteria utilized for data evaluation is different than the method requirements utilized by the laboratory. Qualified data does not necessarily mean that the laboratory was non-compliant in the analysis that was performed.

1.0 Volatile Organics by GC/MS SW846 Method 8260C

The following method criteria were reviewed: holding times, SMCs, MS, MSD, LCS, Laboratory Spiked Blanks, Method Blanks, Tunes, Calibrations, Internal Standards, Target Component Identification, Quantitation, Reported Quantitation Limits and Overall System Performance. The Volatile results are valid and usable except for 1,4-Dioxane non-detects in all samples and Acrylonitrile in MW-3D and the Trip Blank which were rejected, "R" due to low calibration response as noted within the following text:

1.1 Holding Time

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

Samples pertaining to this SDG were performed within the Method required holding times as well as the technical holding times for data validation of 14 days from collection to analysis for HCL preserved vials. No data validation qualifiers were required based upon holding time.

1.2 System Monitoring Compound (Surrogate) Recovery

All samples are spiked with surrogate compounds prior to sample analysis to evaluate overall laboratory performance and efficiency of the analytical technique. If the measure of surrogate concentrations is outside contract specification, qualifications are required to be applied to associated samples and analytes.

Surrogate recoveries (%R) for Dibromofluoromethane, 1,2-Dichloroethane-d4, Toluene-d8 and 4-Bromofluorobenzene were found to be within acceptable limits for surrogate compounds for all analyses pertaining to this SDG.

1.3 Matrix Spikes (MS)/ Matrix Spike Duplicates (MSD)

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The MS/MSD may be used in conjunction with other QC criteria for additional qualification of data.

LCS/LCS Duplicate was performed in lieu of MS/MSD.

The National Functional Guidelines and EPA Region 2 SOPs state that "No qualifications to the data is necessary based on MS data <u>alone.</u>"

1.4 Laboratory Control Sample/Blank Spikes

The LCS data for laboratory control samples (LCS) are generated to provide information on the accuracy of the analytical method and on the laboratory performance.

LCS/LCS Duplicates were analyzed for each sequence. Recovery values were acceptable for all spiked analytes.

1.5 Blank Contamination

Quality assurance (QA) blanks; i.e. method, trip and field blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field blanks measure cross-contamination of samples during field operations.

The following table was utilized to qualify target analyte results due to contamination. The largest value from all the associated blanks is required to be utilized:

Blank Type	Blank Result	Sample Result	Action for Samples
Method, Storage, field,	Detects	Not Detected	No qualification required
Trip, Instrument	<crql*< td=""><td><crql*< td=""><td>Report CRQL value with a U</td></crql*<></td></crql*<>	<crql*< td=""><td>Report CRQL value with a U</td></crql*<>	Report CRQL value with a U
		>/= CRQL* and <2x the CRQL**	No qualification required
	>CRQL*	= CROL*</td <td>Report CRQL value with a U</td>	Report CRQL value with a U
		>/=CRQL* and = blank concentration</td <td>Report blank value for sample concentration with a U</td>	Report blank value for sample concentration with a U
		>/= CRQL* and > blank concentration	No qualification required
	=CRQL*	= CRQL*</td <td>Report CRQL value with a U</td>	Report CRQL value with a U
		>CRQL*	No qualification required
	Gross Contamination**	Detects	Report blank value for sample concentration with a U

^{*2}x the CRQL for methylene chloride, 2-butanone and acetone.

Below is a summary of the compounds in the sample and the associated qualifications that have been applied:

A) Method Blank Contamination:

No target analytes were detected in the method blanks associated sample analysis.

- B) Field Blank Contamination: Field Blank was not submitted for Volatile analysis.
- C) Trip Blank Contamination:
 No target analytes were detected in the Trip Blank.

^{**4}x the CRQL for methylene chloride, 2-butanone, and acetone

^{***}Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed 100 ug/L.

*Acetone was detected in all field samples but could not be negated due to lack of presence in the corresponding method blanks. The end user should use caution when making decisions based on common laboratory contaminants. Detected concentrations are within common lab contamination levels.

1.6 GC/MS Instrument Performance Check

Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The Tuning standard for volatile organics is Bromofluorobenzene (BFB).

Instrument performance was generated within acceptable limits and frequency for Bromofluorobenzene (BFB) for all analyses conducted for this SDG.

1.7 Initial and Continuing Calibrations

Satisfactory instrument calibration is established to ensure that the instrument can produce acceptable quantitative data. An initial calibration demonstrates that the instrument can give acceptable performance at the beginning of an experimental sequence.

The continuing calibration checks document that the instrument is giving satisfactory daily performance. Initial calibration verification met acceptance criteria.

A) Response Factor GC/MS:

The response factor measures the instrument's response to specific chemical compounds. The response factor for all compounds must be >/= 0.05 in both initial and continuing calibrations. A value <0.05 indicates a serious detection and quantitation problem (poor sensitivity). Analytes detected in the sample will be qualified as estimated, "J". All non-detects for that compound in the corresponding samples will be rejected, "R". Method 8260C allows for a minimum response factor of 0.1 for Acetone and 2-Butanone. Validation criteria allows response factor to be /=>0.01 for poor responders (Acetone, MEK, Carbon Disulfide, Chloroethane, Chloromethane, Cyclohexane, 1,2-Dibromoethane, Dichlorodifluoromethane, cis-1,2-Dichloroethene, 1,2-Dichloropropane,

1,2-Dibromo-3-chloropropane, Isopropylbenzene, Methyl Acetate, Methylene Chloride, Methylcyclohexane, MTBE, trans-1,2-Dichloroethene, 4-Methyl-2-Pentanone, 2-Hexanone, Trichlorofluoromethane, 1,1,2-Trichloro-1,2,2-Trifluoroethane.

All the response factors for the target analytes reported were found to be within acceptable limits (>/=0.05) and (>/= 0.01 for poor responders) and minimum response criteria in Table 4 of Method 8260C, for the initial and continuing calibrations for all reported analytes except for 1,4-Dioxane (0.001) associated with all initial and continuing calibrations. Non-detects for this compound in all samples have been rejected, "R." Acrylonitrile (0.026) has also been rejected, "R" in Trip Blank and MW-3D due to low response.

B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D):

Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentrations. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be <20% and %D must be <20%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and non-detects are flagged "UJ". If %RSD and %D grossly exceed QC criteria, non-detect data may be qualified, "R", unusable. Additionally, in cases where the %RSD is >20% and eliminating either the high or the low point of the curve does not restore the %RSD to less than or equal to 20% then positive results are qualified, "J". In cases where removal of either the low or high point restores the linearity, then only low or high-level results will be qualified, "J" in the portion of the curve where non-linearity exists. Closing CCV must meet 30% criteria. Poor responders must be </= 40%. Analytes detected in the sample will be qualified as estimated, "J+" (biased high). All non-detects for that compound in the corresponding samples will be rejected, "R". Method 8260C allows for a minimum response factor of 0.1 for Acetone and 2-Butanone. Validation criteria allows an RRF of >0.010 without qualifications for these analytes.

*Method 8260C allows for several analytes to be outside requirements due to the large number of compounds.

Initial Calibrations: The initial calibrations provided and the %RSD were within acceptable limits (20%) and (40% for poor responders) for all reported compounds.

Continuing Calibrations: The continuing calibrations provided and the %D was within acceptable limits (25%) and (40% for poor responders) for all reported compounds.

1.8 Internal Standards

Internal Standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of 2 (-50% to +100%) from the associated continuing calibration standard. The retention time of the internal standard must not vary more than +/-30 seconds from the associated continuing calibration standard. If the area count is outside the (-50% to +100%) range of the associated standard, all the positive results for compounds quantitated using that IS are qualified as estimated, "J", and all non-detects as "UJ", or "R" if there is a severe loss of sensitivity.

If an internal standard retention time varies by more than 30 seconds, professional judgment will be used to determine either partial or total rejection of the data for that sample fraction.

All samples were spiked with the internal standards Fluorobenzene, Chlorobenzene-d5 and 1,4-Dichlorobenzene-d4 prior to sample analysis. The area responses and retention time of each internal standard met QC criteria in all samples associated with this SDG.

1.9 Field Duplicates

Field duplicate samples are collected and analyzed as an indication of overall precision. These results are expected to have more variability than laboratory duplicate samples.

An acceptable RPD is 50% as documented in EPA Region 2 SOP HW33. Professional judgment is utilized for analytes that demonstrate high percent difference.

A Field duplicate was not collected for this sampling event.

1.10 Target Compound List Identification

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra

obtained from known standards. For the results to be a positive hit, the sample peak must be within =/- 0.06RRT units of the standard compound and have an ion spectrum which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound.

GC/MS spectra met the qualitative criteria for identification. All retention times were within required specifications.

1.11 Compound Quantification and Reported Detection Limits

GC/MS quantitative analysis is acceptable. Correct internal standards per SW846, response factors were used to calculate final concentrations.

As required, the laboratory reported "J" values between the reporting limits (RL) and Method Detection Limits (MDLs). This is consistent with common laboratory practices and a requirement of the National Environmental Laboratory Approval Program (NELAP).

All samples were all analyzed undiluted at 10mls except for MW-1S (1:2), MW-5S (1:4) and DB-1 (1:2). Raw Tetrachloroethene concentrations were within the upper half of the linear calibration range. Dilutions have determined to be acceptable. There is potential that some lower level hits were lost in dilutions.

1.12 Overall System Performance

Good resolution and chromatographic performance were observed.

Reviewer's Signature Loui a Bly Date 01/10/2019

Appendix A
Chain of Custody
Documents

AH-HA	CHAIN OF CUSTODY	Mairweh, NJ 07430; 35 Whitney Rd, Suite S. Albany, NY 12205; 14 Weliter Way Tonawanda, NY 14150; 275 Cooper Ave, Suite 195	Rd, Suite 5 ay per Ave, Suite 19	10	of of	4	Date Rec'd In Lab	12/26/18	ALPHA JOB#
Westborough, MA 01581	Mansfield, MA 02048	Project Information		T Stranger			Deliverables	S	Billing Information
TEL. 508-698-9220 FAX: 508-898-9193	TEL: 508-822-3258	(L	5 8	Avo. East Rustan	Rocken	72	ASP-A SQUIS (1 File)	☐ ASP-B ☐ EQuIS (4 File)	Same as Client Info
Chent mormations		0	1 1				Other		
Client ナイトマアスタ	Machel	(Use Project name as Project #)	oject #)				Regolatory Requirement	10.	Disposal Site Information
Address: 7555 Lettery	try July	AProject Manager. AT	97 SCHEFF				NY TOGS	NY Part 375	Plasse identify below location of
Runtuntuntun	MY (1774	ALPHAQuote #:					AWO Standards	□ NY CP-51	applicable disposal facilities.
Phone: 611 334	مرب	Turn-Around Time					NY Restricted Use	X Other	Disposal Facility:
	1222	Standard N	X	Due Date:	27 1		NY Unrestricted Use		N C
These samples have	These camples have been praviously analyzed by Alpha	A hy Alpha		# Croads			ANALYSIS	200	/tration
Other project specif	Other project specific requirements/comments:								
							0		Lab to do
Please specify Metals or TAL.	ls or TAL.						9 C 8		Lab to do
							4		(Please Specify below)
(Lab Use Only)	Sa	Sample ID	Colle	Collection	Sample	Sampler's Initials	613 E16		Sample Specific Comments
53/37-01	MW-ID		12/24/18	222	3	3	X		
	いっつに			1250	•	1	2		
10	MV-2			1356		7	2		
100	らたってい			177		1	又		
	MW-70			1226		1	_ _	X	
200	SEAN			15-21		7	7		
	Mr. 40			177		7	9.		
6.1	いからん			1201		7	9		
100	MV:53			1691	1	1	ーーメ		
CI S	SS-MW		1	hal	+	{	9-		
Preservative Code: A = None B = HCI	Container Code P = Plastic A = Amber Glass	Westboro: Certification No: MA935 Mansfleid: Certification No: MA015	to: MA935		වි	Container Type			Please print clearly, legibly and completely, Samples can not be loaned in and
D=H,SO,	G = Glass B = Bacteria Cup					Preservative			turnaround time clock will not start until any ambiguities are
F = MeOH	C = Cube	Relinguished By:	By:	Date	Date/Time	Arra la	Received By:		resolved, BY EXECUTING
H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other	E = Encore D = BOD Bottle	STONE OF THE PARTY	\$	2000	Yu.	1	Santos Age	12 14 15 14 1938	1012
	100000	1000	2 (1111	1000	S C C	3	10000	1000 1000	(See reverse side.)

ALPHA Job#	Billing Information	Same as Client Info		Disposal Site Information	Please identify below location of	applicable disposal facilities.	Disposal Facility:	N	Itration	Done	Lab to do		(Please Specify below)		Sample Specific Comments	7				4]	ત	7	Please print clearly, legibly and completely. Samples can	not be logged in and turnaround time clock will not	resolved. BY EXECUTING	THIS COC, THE CLIENT HAS READ AND AGREES	TERMS & CONDITIONS.	See reverse side.)
		ASP-8 S S Pow		Disco	NY Part 375 Please	NY CP-61 applica	Other Dispos	My Cat. B I N	Samp	ď			(Plea		Samp								Pie	0 3 6	Date/Time	2/10 1/20	7	0
In Lab 12/36/19	Deliverables	ASP-A EQUIS (1 File)	Other	Regulatory Reguliement	NY TOGS	AWQ Standards	NY Restricted Use	NY Unrestricted Use NYC Sewer Discharge	ANALYSIS																Received By:	1 AM 12	パープルが	
2	Delive			Reigu					ANA		es	76	9	Sampler's	Elitels (X	X	7	11/1/4	X	1/8	XX	Container Type	Preservative 7	Recei		Time	
Page		Ent harkany						Due Date:						Ĭ	Time Matrix	101 (01)	- - -	044	1 1 2160	1001	140 GV	アイ	8		, Date/Time	024) 31/32/2	12. hd/8 2250	
y Rd, Suthe 5 Nay oper Ave, Suthe 185		run 6		roject #)				ĎΩΓ						Collection	Date	12 124 1/2		0		ーナー	LAR L	12ha(12	No: MA935	CLOCK TON	1 BV:		AN IN	
Service Centers Mahwah, NJ 0743b: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 195	Project Information	Project Location: 89 000		(Use Project name as Project #)	「一七人 Project Manager:	ALPHAQuote #;	Turn-Around Time	Standard Standard Standard Standard	d by Aloha					Clampia II	T and			S	0)	WT			Westboro: Certification No: MA935	waisiaa. Caracaad	Refinduished By:	るし	R. Santos)
NEW YORK CHAIN OF CUSTODY	Mansfield, MA 02048	TEL. 508-822-6300 FAX: 508-822-3288		الافاسار	1	1 1	2220	1727	een previously analyze	requirements/comm		or TAL.		id S	5	MW-9	ピープレー	コープレ	アン・ゴ	그	ということ	1-110	Container Code P = Plastic	V = Vial G = Glass	C = Cube	E = Encore D = BOD Bottle	200	0-Sept-2013)
Оценя	Westborough, MA 01551	TEL: 508-898-9220 FAX: 508-698-9193	Client Information	Client: JA Holoman	Address: JSF5 Uch	Runtunkon	Phone: 63 314	Fax 671 274 1751 Framely 4700 Hours	4	Other project specific requirements/comments:		Please specify Metals or TAL.		ALPHA Lab ID	(Lab Use Only)	5313 HS	-1/3	13	N N	18	100		Preservative Code:	C = HNO ₃ D = H ₂ SO ₄	E = NaOH F = MeOH	G = NaHSO, H = Na ₂ S ₂ O ₃	O = Other	Form No: 01-25 HC (rev. 30-Sept-2013)

Sample Delivery Group Summary

Alpha Job Number: L1853137

Received Reviewer : 26-DEC-2018 : Alex Murphy

Account Name

3 J.R. Holzmacher P.E., LLC

Project Number # MAN1D 16-01

Project Name

MINUTE MAN CLEANERS

Delivery Information

Samples Delivered By: Alpha Courier

Chain of Custody

: Present

Cooler Information

Cooler Seal/Seal# Absent/

Preservation

Temperature(°C) Additional Information

lce

Condition Information

1) All samples on COC received?

YES

2) Extra samples received?

NO

3) Are there any sample container discrepancies?

NO

4) Are there any discrepancies between sample labels & COC?

NO

5) Are samples in appropriate containers for requested analysis?

YES YES

6) Are samples properly preserved for requested analysis? 7) Are samples within holding time for requested analysis?

YES

8) All sampling equipment returned?

NA

Volatile Organics/VPH

1) Reagent Water Vials Frozen by Client?

NO

Appendix B Case Narrative

Project Name: MINU

MINUTE MAN CLEANERS

Project Number: MANID 16-01

Lab Number:

L1853137

Report Date:

01/04/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:

MINUTE MAN CLEANERS

Project Number:

MANID 16-01

Lab Number:

L1853137

Report Date:

01/04/19

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Melissa Cripps Melissa Cripps

Report Date: 01/04/19

Title: Technical Director/Representative

Appendix C Validated Form I's With Qualifications

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-01 Client ID : MW-1D

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A11

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137
Project Number : MANID 16-01
Date Collected : 12/24/18 14:41

Date Received : 12/26/18
Date Analyzed : 01/02/19 13:33

Dilution Factor : 1
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2,5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
 78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	140	0.50	0.18	
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	บ
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	U
74-83-9	Bromomethane	ND	2.5	0.70	U
75-01-4	Vinyl chloride	0.35	1.0	0.07	J
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-01 Client ID : MW-1D

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A11

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137
Project Number : MANID 16-01
Date Collected : 12/24/18 14:41
Date Received : 12/36/18

Date Received : 12/26/18
Date Analyzed : 01/02/19 13:33

Dilution Factor : 1
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

		-	ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U
79-01-6	Trichloroethene	5.9	0.50	0.18	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	1.0	2.5	0.70	J
179601-23-1	p/m-Xylene	ND	2.5	0.70	U
95-47-6	o-Xylene	ND	2.5	0.70	U
1330-20-7	Xylenes, Total	ND	2.5	0.70	U
156-59-2	cis-1,2-Dichloroethene	1.8	2.5	0.70	J
540-59-0	1,2-Dichloroethene, Total	1.8	2.5	0.70	J
74-95-3	Dibromomethane	ND	5.0	1.0	U
06-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U
107-13-1	Acrylonitrile	ND	5.0	1.5	U
100-42-5	Styrene	ND	2.5	0.70	U
75-71-8	Dichtorodifluoromethane	ND	5.0	1.0	U
7-64-1	Acetone	2.0	5.0	1.5	J
′5-15 - 0	Carbon disulfide	ND	5.0	1.0	U
'8 - 93-3	2-Butanone	ND	5.0	1.9	U
08-05-4	Vinyl acetate	ND	5.0	1.0	U
08-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
91-78-6	2-Hexanone	ND	5.0	1.0	U
4-97-5	Bromochloromethane	ND	2.5	0.70	U
94-20-7	2,2-Dichloropropane	ND	2.5	0.70	U
06-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
42-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
30-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-01 Client ID : MW-1D

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A11

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137

Project Number : MANID 16-01

Date Collected : 12/24/18 14:41

Date Received : 12/26/18

: 01/02/19 13:33

Dilution Factor : 1
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

Date Analyzed

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	NĐ	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
37-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
98-82-8	Isopropylbenzene	ND	2.5	0.70	U
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
103-65-1	n-Propylbenzene	ND	2.5	0.70	U
37-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
123-91-1	1,4-Dioxane	ND	250	61.	J R
105-05-5	p-Diethylbenzene	ND	2.0	0.70	U
622-96-8	p-Ethyltoluene	ND	2.0	0.70	U
5-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
60-29-7	Ethyl ether	ND	2.5	0.70	υ
110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.70	U

Client : J.R. Holzmacher P.E., LLC Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-02D

Client ID : MW-1S

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A12

Sample Amount : 5 ml Level : LOW Extract Volume (MeOH) : N/A

 Lab Number
 : L1853137

 Project Number
 : MANID 16-01

 Date Collected
 : 12/24/18 14:59

 Date Received
 : 12/26/18

Date Analyzed : 01/02/19 13:55
Dilution Factor : 2
Analyst : PK
Instrument ID : VOA108

: RTX-502.2

%Solids : N/A Injection Volume : N/A

GC Column

04040			ug/L	Mod	O. P.C.
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	5.0	1.4	U
75-34-3	1,1-Dichloroethane	ND	5.0	1,4	U
67-66-3	Chloroform	ND	5.0	1.4	U
56-23-5	Carbon tetrachloride	ND	1.0	0.27	U
78-87-5	1,2-Dichloropropane	ND	2.0	0.27	U
124-48-1	Dibromochloromethane	1.0	1.0	0.30	
79-00-5	1,1,2-Trichloroethane	ND	3.0	1.0	U
127-18-4	Tetrachloroethene	210	1.0	0.36	
108-90-7	Chlorobenzene	ND	5.0	1.4	U
75-69-4	Trichlorofluoromethane	ND	5.0	1.4	U
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	U
71-55-6	1,1,1-Trichloroethane	ND	5.0	1.4	U
75-27-4	Bromodichloromethane	0.68	1.0	0.38	J
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.33	U
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	U
542-75-6	1,3-Dichloropropene, Total	ND	1.0	0.29	U
563-58-6	1,1-Dichloropropene	ND	5.0	1.4	U
75-25-2	Bromoform	1.4	4.0	1.3	J
79-34-5	1,1,2,2-Tetrachloroethane	ND	1,0	0.33	U
71-43-2	Benzene	ND	1.0	0.32	U
108-88-3	Toluene	ND	5.0	1.4	U
100-41-4	Ethylbenzene	ND	5.0	1.4	U
'4-87-3	Chloromethane	ND	5.0	1.4	U
'4-83-9	Bromomethane	ND	5.0	1.4	U
'5-01 - 4	Vinyl chloride	1.1	2.0	0.14	J
'5-00-3	Chloroethane	ND	5.0	1.4	U
5-35-4	1,1-Dichloroethene	ND	1.0	0.34	U

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-02D

Client ID : MW-1S

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A12

Sample Amount : 5 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137

Project Number : MANID 16-01

Date Collected : 12/24/18 14:59

Date Received : 12/26/18

Date Analyzed : 01/02/19 13:55
Dilution Factor : 2
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

CAS NO.	Parameter	Results	ug/L RL	MDL	Qualifier
156-60-5	trans-1,2-Dichloroethene	ND	5.0	1.4	U
79-01-6	Trichloroethene	13	1.0	0.35	
95-50-1	1,2-Dichlorobenzene	ND	5.0	1.4	U
541-73-1	1,3-Dichlorobenzene	ND	5.0	1.4	U
106-46-7	1,4-Dichlorobenzene	ND	5.0	1.4	U
1634-04-4	Methyl tert butyl ether	ND	5.0	1.4	U
179601-23-1	p/m-Xylene	ND	5.0	1.4	U
95-47-6	o-Xylene	ND	5.0	1.4	U
1330-20-7	Xylenes, Total	ND	5.0	1.4	U
156-59-2	cis-1,2-Dichloroethene	4.8	5.0	1.4	J
540-59-0	1,2-Dichloroethene, Total	4.8	5.0	1.4	J
74-95-3	Dibromomethane	ND	10	2.0	U
96-18-4	1,2,3-Trichloropropane	ND	5.0	1.4	U
107-13-1	Acrylonitrile	ND	10	3.0	U
100-42-5	Styrene	ND	5.0	1.4	U
75-71-8	Dichlorodifluoromethane	ND	10	2.0	υ
67-64-1	Acetone	5.5	10	2.9	J
75-15-0	Carbon disulfide	ND	10	2.0	U
78-93-3	2-Butanone	ND	10	3.9	U
08-05-4	Vinyl acetate	ND	10	2.0	U
08-10-1	4-Methyl-2-pentanone	ND	10	2.0	U
91-78-6	2-Hexanone	ND	10	2.0	U
'4-97-5	Bromochloromethane	ND	5.0	1.4	U
94-20-7	2,2-Dichloropropane	ND	5.0	1.4	U
06-93-4	1,2-Dibromoethane	ND	4.0	1.3	U
42-28-9	1,3-Dichloropropane	ND	5.0	1.4	U
30-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	1.4	U

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-02D

Client ID : MW-1S

Sample Location 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A12

Sample Amount : 5 ml Level : LOW Extract Volume (MeOH) : N/A

 Lab Number
 : L1853137

 Project Number
 : MANID 16-01

 Date Collected
 : 12/24/18 14:59

 Date Received
 : 12/26/18

Date Analyzed : 01/02/19 13:55

Dilution Factor : 2
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

	Parameter	ug/L				
CAS NO.		Results	RL	MDL	Qualifier	
108-86-1	Bromobenzene	ND	5.0	1.4	U	
104-51-8	n-Butylbenzene	ND	5.0	1.4	U	
135-98-8	sec-Butylbenzene	ND	5.0	1.4	U	
98-06-6	tert-Butylbenzene	ND	5.0	1.4	U	
95-49-8	o-Chlorotoluene	ND	5.0	1.4	U	
106-43-4	p-Chlorotoluene	ND	5.0	1.4	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.4	U	
87-68-3	Hexachlorobutadiene	ND	5.0	1.4	U	
98-82-8	Isopropylbenzene	ND	5.0	1.4	U	
99-87-6	p-Isopropyltoluene	ND	5.0	1.4	U	
91-20-3	Naphthalene	ND	5.0	1.4	U	
103-65-1	n-Propylbenzene	ND	5.0	1.4	U	
37-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.4	U	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	1.4	U	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	1.4	U	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	1.4	U	
123-91-1	1,4-Dioxane	ND	500	120	WR	
105-05-5	p-Diethylbenzene	ND	4.0	1.4	U	
522-96-8	p-Ethyltoluene	ND	4.0	1.4	U	
5-93-2	1,2,4,5-Tetramethylbenzene	ND	4.0	1.1	U	
60-29-7	Ethyl ether	ND	5.0	1.4	U	
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0	1.4	U	

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-03 Client ID : MW-2D

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A13

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137
Project Number : MANID 16-01
Date Collected : 12/24/18 13:56

Date Received : 12/26/18
Date Analyzed : 01/02/19 14:16

Dilution Factor : 1
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

	/ 	ug/L		
Parameter	Results	RL	MDL	Qualifier
Methylene chloride	ND	25	0.70	U
				U
* **				U
			0.14	U
Dibromochloromethane	2.5	0.50	0.15	
1,1,2-Trichloroethane	ND	1.5	0.50	U
Tetrachloroethene	60	0.50	0.18	
Chlorobenzene	ND	2.5	0.70	U
Trichlorofluoromethane	ND	2.5	0.70	U
1,2-Dichloroethane	ND	0.50	0.13	U
1,1,1-Trichloroethane	ND	2.5	0.70	U
Bromodichloromethane	2.6	0.50	0.19	
trans-1,3-Dichloropropene	ND	0.50	0.16	U
cis-1,3-Dichloropropene	ND	0.50	0.14	U
1,3-Dichloropropene, Total	ND	0.50	0.14	U
1,1-Dichloropropene	ND	2.5	0.70	U
Bromoform	1.5	2.0	0.65	J
1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
Benzene	ND	0.50	0.16	U
Toluene	ND	2.5	0.70	U
Ethylbenzene	ND	2.5	0.70	U
Chloromethane	ND	2.5	0.70	U
Bromomethane	ND	2.5	0.70	U
Vinyl chloride	0.12	1.0	0.07	J
Chloroethane	ND	2.5	0.70	U
1,1-Dichloroethene	ND	0.50	0.17	U
	Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichloroftuoromethane 1,2-Dichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene 1,3-Dichloropropene 1,3-Dichloropropene Trichloropropene Esromoform 1,1,2,2-Tetrachloroethane Benzene Toluene Ethylbenzene Chloromethane Bromomethane Bromomethane Bromomethane Bromomethane Bromomethane Chloromethane Bromomethane	Methylene chloride ND 1,1-Dichloroethane ND Chloroform 4.1 Carbon tetrachloride ND 1,2-Dichloropropane ND Dibromochloromethane ND Tetrachloroethane ND Tetrachloroethane ND Trichloroffuoromethane ND 1,2-Dichloroethane ND 1,2-Dichloroethane ND Bromodichloromethane 2.6 trans-1,3-Dichloropropene ND cis-1,3-Dichloropropene ND 1,3-Dichloropropene, Total ND 1,1-Dichloropropene ND Bromoform 1.5 1,1,2,2-Tetrachloroethane ND Benzene ND Toluene ND Ethylbenzene ND Chloromethane ND Vinyl chloride 0.12 Chloroethane ND	Parameter Results RL Methylene chloride ND 2.5 1,1-Dichloroethane ND 2.5 Chloroform 4.1 2.5 Carbon tetrachloride ND 0.50 1,2-Dichloropropane ND 1.0 Dibromochloromethane 2.5 0.50 1,1,2-Trichloroethane ND 1.5 Tetrachloroethane 60 0.50 Chlorobenzene ND 2.5 Trichloroffuoromethane ND 2.5 1,2-Dichloroethane ND 0.50 1,1,1-Trichloroethane ND 0.50 Bromodichloromethane 2.6 0.50 trans-1,3-Dichloropropene ND 0.50 1,3-Dichloropropene, Total ND 0.50 1,1-Dichloropropene ND 2.5 Bromoform 1.5 2.0 1,1,2,2-Tetrachloroethane ND 0.50 Benzene ND 0.50 Toluene ND 2.5 Eth	Parameter Results RL MDL Methylene chloride ND 2.5 0.70 1,1-Dichloroethane ND 2.5 0.70 Chloroform 4.1 2.5 0.70 Carbon tetrachloride ND 0.50 0.13 1,2-Dichloropropane ND 1.0 0.14 Dibromochloromethane 2.5 0.50 0.15 1,1,2-Trichloroethane ND 1.5 0.50 Tetrachloroethane 60 0.50 0.18 Chlorobenzene ND 2.5 0.70 Trichloroffuoromethane ND 2.5 0.70 Trichloroethane ND 0.50 0.13 1,1,2-Dichloromethane ND 2.5 0.70 Bromodichloromethane 2.6 0.50 0.19 trans-1,3-Dichloropropene ND 0.50 0.14 1,1-Dichloropropene, Total ND 0.50 0.14 1,1-Dichloropropene, Total ND 0.50 0.17

Client : J.R. Holzmacher P.E., LLC **Project Name** : MINUTE MAN CLEANERS

Lab ID : L1853137-03 **Client ID** : MW-2D

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER **Analytical Method** : 1,8260C Lab File ID : V08190102A13

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) :: N/A

Lab Number : L1853137 Project Number : MANID 16-01 Date Collected : 12/24/18 13:56
Date Received : 12/26/18

Date Analyzed : 01/02/19 14:16

Dilution Factor : 1 : PK Analyst Instrument ID : VOA108 GC Column : RTX-502.2

			ug/L	-	
CAS NO.	Parameter	Results	RL	MDL	Qualifier
156 60 E	trans 1.3 Dichleroothone	ND	2.5	0.70	U
156-60-5	trans-1,2-Dichloroethene				-
79-01-6	Trichloroethene	3.6	0.50	0,18	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1 	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U
179601-23-1	p/m-Xylene	ND	2.5	0.70	U
95-47-6	o-Xylene	ND	2.5	0.70	U
1330-20-7	Xylenes, Total	ND	2.5	0.70	U
156-59-2	cis-1,2-Dichloroethene	2.2	2.5	0.70	J
540-59-0	1,2-Dichloroethene, Total	2.2	2.5	0.70	J
74-95-3	Dibromomethane	ND	5.0	1.0	U
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U
107-13-1	Acrylonitrile	ND	5.0	1.5	U
100-42-5	Styrene	ND	2.5	0.70	U
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U
67-64-1	Acetone	3.9	5.0	1.5	J
75-15-0	Carbon disulfide	ND	5.0	1.0	U
78-93-3	2-Butanone	ND	5.0	1.9	U
108-05-4	Vinyl acetate	ND	5.0	1.0	U
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
591-78-6	2-Hexanone	ND	5.0	1.0	U
74-97-5	Bromochloromethane	ND	2.5	0.70	U
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	U
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-03 Client ID : MW-2D

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A13

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137

Project Number : MANID 16-01

Date Collected : 12/24/18 13:56

Date Received : 12/26/18

Date Analyzed : 01/02/19 14:16

Dilution Factor : 1
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

CAS NO.	Parameter		ug/L		
		Results	RL	MDL	Qualifier
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
06-43-4	p-Chlorotoluene	ND	2.5	0.70	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
37-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
98-82-8	Isopropylbenzene	ND	2.5	0.70	U
99-87-6	p-Isopropyttoluene	ND	2.5	0.70	U
1-20-3	Naphthalene	ND	2.5	0.70	U
103-65-1	n-Propylbenzene	ND	2,5	0.70	U
7-61-6	1,2,3-Trichlorobenzene	ND	2.5	0,70	U
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
08-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
5-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
23-91-1	1,4-Dioxane	ND	250	61.	u R
05-05-5	p-Diethylbenzene	ND	2,0	0.70	U
22-96-8	p-Ethyltoluene	ND	2.0	0.70	U
5-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
0-29-7	Ethyl ether	ND	2.5	0.70	U
10-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.70	U

Client : J.R. Holzmacher P.E., LLC Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-04 Client ID : MW-2S

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A14

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137

Project Number : MANID 16-01

Date Collected : 12/24/18 14:21

Date Received : 12/26/18

Date Analyzed : 01/02/19 14:38

Dilution Factor : 1
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

		ug/L		
Parameter	Results	RL	MDL	Qualifier
Methylene chloride	ND	2.5	0.70	U
1,1-Dichloroethane	ND	2.5	0.70	U
Chloroform	2.4	2.5	0.70	J
Carbon tetrachloride	ND	0,50	0.13	U
1,2-Dichloropropane	ND	1.0	0.14	U
Dibromochloromethane	3.5	0.50	0.15	
1,1,2-Trichloroethane	ND	1.5	0.50	U
Tetrachloroethene	76	0.50	0.18	
Chlorobenzene	ND	2.5	0.70	U
Trichlorofluoromethane	ND	2.5	0.70	U
1,2-Dichloroethane	ND	0.50	0.13	U
1,1,1-Trichloroethane	ND	2.5	0.70	U
Bromodichloromethane	2.0	0.50	0.19	
trans-1,3-Dichloropropene	ND	0.50	0.16	U
cis-1,3-Dichloropropene	ND	0.50	0.14	U
1,3-Dichloropropene, Total	ND	0.50	0.14	U
1,1-Dichloropropene	ND	2.5	0.70	U
Bromoform	4.7	2.0	0.65	
1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
Benzene	ND	0.50	0.16	U
Toluene	ND	2.5	0.70	U
Ethylbenzene	ND	2.5	0.70	U
Chloromethane	ND	2.5	0.70	U
Bromomethane	ND	2.5	0.70	U
Vinyl chloride	ND	1.0	0.07	U
Chloroethane	ND	2.5	0.70	U
1,1-Dichloroethene	ND	0.50	0.17	U
	1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichloroffluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene 1,3-Dichloropropene Bromoform 1,1,2,2-Tetrachloroethane Benzene Toluene Ethylbenzene Chloromethane Bromomethane Bromomethane Bromomethane Bromomethane Chloroethane	Methylene chloride ND 1,1-Dichloroethane ND Chloroform 2.4 Carbon tetrachloride ND 1,2-Dichloropropane ND Dibromochloromethane ND Tetrachloroethane ND Tetrachloroethene 76 Chlorobenzene ND Trichlorofluoromethane ND 1,2-Dichloroethane ND Bromodichloromethane 2.0 trans-1,3-Dichloropropene ND cis-1,3-Dichloropropene ND 1,3-Dichloropropene, Total ND 1,1-Dichloropropene ND Bromoform 4.7 1,1,2,2-Tetrachloroethane ND Benzene ND Toluene ND Ethylbenzene ND Chloromethane ND Vinyl chloride ND Chloroethane ND	Parameter Results RL Methylene chloride ND 2.5 1,1-Dichloroethane ND 2.5 Chloroform 2.4 2.5 Carbon tetrachloride ND 0.50 1,2-Dichloropropane ND 1.0 Dibromochloromethane 3.5 0.50 1,1,2-Trichloroethane ND 1.5 Tetrachloroethane ND 2.5 Chlorobenzene ND 2.5 Trichlorofluoromethane ND 2.5 1,2-Dichloroethane ND 0.50 1,1,1-Trichloroethane ND 0.50 Bromodichloromethane 2.0 0.50 trans-1,3-Dichloropropene ND 0.50 1,3-Dichloropropene ND 0.50 1,3-Dichloropropene ND 0.50 Bromotorm 4.7 2.0 1,1-Dichloropropene ND 0.50 Bromotorm 4.7 2.0 1,1-2,2-Tetrachloroethane ND 0.50	Parameter Results RL MDL Methylene chloride ND 2.5 0.70 1,1-Dichloroethane ND 2.5 0.70 Chloroform 2.4 2.5 0.70 Carbon tetrachloride ND 0.50 0.13 1,2-Dichloropropane ND 1.0 0.14 Dibromochloromethane 3.5 0.50 0.15 1,1,2-Trichloroethane ND 1.5 0.50 Tetrachloroethane ND 2.5 0.70 Trichlorofluoromethane ND 2.5 0.70 Trichloroethane ND 0.50 0.13 1,1,1-Trichloroethane ND 2.5 0.70 Bromodichloromethane 2.0 0.50 0.19 trans-1,3-Dichloropropene ND 0.50 0.14 1,3-Dichloropropene, Total ND 0.50 0.14 1,1-2,2-Tetrachloroethane ND 0.50 0.14 1,1-2,2-Tetrachloroethane ND 0.50 0.17

Client : J.R. Holzmacher P.E., LLC Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-04 Client ID : MW-2S

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A14

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137

Project Number : MANID 16-01

Date Collected : 12/24/18 14:21

Date Received : 12/26/18

Date Analyzed : 01/02/19 14:38

Dilution Factor : 1
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

	Parameter		ug/L		
CAS NO.		Results	RL	MDL	Qualifier
450.00.5	A d o Divil	ND	0.5	0.70	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U
79-01-6	Trichloroethene	2,8	0.50	0.18	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73 - 1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U
179601-23-1	p/m-Xylene	ND	2.5	0.70	U
95-47-6	o-Xylene	ND	2.5	0.70	U
1330-20-7	Xylenes, Total	ND	2.5	0.70	U
156-59-2	cis-1,2-Dichloroethene	0.82	2.5	0.70	J
540-59-0	1,2-Dichloroethene, Total	0.82	2.5	0.70	J
74-95-3	Dibromomethane	ND	5.0	1.0	U
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U
107-13-1	Acrylonitrile	ND	5.0	1.5	U
100-42-5	Styrene	ND	2.5	0.70	U
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U
67-64-1	Acetone	3.0	5.0	1.5	J
75-15-0	Carbon disulfide	ND	5.0	1.0	U
78-93-3	2-Butanone	ND	5.0	1.9	U
108-05-4	Vinyl acetate	ND	5.0	1.0	U
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
591-78-6	2-Hexanone	ND	5.0	1.0	U
74-97-5	Bromochloromethane	ND	2,5	0.70	U
94-20-7	2,2-Dichloropropane	ND	2.5	0.70	U
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U

Client : J.R. Holzmacher P.E., LLC Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-04 Client ID : MW-2S

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A14

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137

Project Number : MANID 16-01

Date Collected : 12/24/18 14:21

Date Received : 12/26/18

Date Analyzed : 01/02/19 14:38

Dilution Factor : 1
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

CAS NO.	Parameter		ug/L			
		Results	RL	MDL	Qualifier	
108-86-1	Bromobenzene	ND	2.5	0.70	U	
104-51-8	n-Butylbenzene	ND	2.5	0.70	U	
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U	
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U	
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U	
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	
37-68-3	Hexachlorobutadiene	ND	2.5	0.70	U	
98-82-8	Isopropylbenzene	ND	2.5	0.70	U	
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U	
91-20-3	Naphthalene	ND	2.5	0.70	U	
103-65-1	n-Propylbenzene	ND	2.5	0.70	U	
37-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U	
20-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
123-91-1	1,4-Dioxane	ND	250	61.	w K	
105-05-5	p-Diethylbenzene	ND	2.0	0.70	U	
522-96-8	p-Ethyltoluene	NÐ	2.0	0.70	U	
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U	
60-29-7	Ethyl ether	ND	2.5	0.70	U	
110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.70	U	

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-05 Client ID : MW-3D

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V05190102N07

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137
Project Number : MANID 16-01
Date Collected : 12/24/18 12:26
Date Received : 12/26/18

Date Analyzed : 01/02/19 21:24 Dilution Factor : 1

Analyst : NLK
Instrument ID : VOA105
GC Column : RTX-502.2
%Solids : N/A

Injection Volume :: N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	0.95	2.5	0.70	J
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	0.63	0.50	0.15	
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	62	0.50	0.18	
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	0.48	0.50	0.19	J
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
0061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
663-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
08-88-3	Toluene	ND	2.5	0.70	U
00-41-4	Ethylbenzene	ND	2.5	0.70	U
4-87-3	Chloromethane	ND	2.5	0.70	U
'4-83 - 9	Bromomethane	ND	2.5	0.70	U
75-01-4	Vinyl chloride	ND	1.0	0.07	U
'5-00 - 3	Chloroethane	ND	2.5	0.70	U
'5-35-4	1,1-Dichloroethene	ND	0.50	0.17	U

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-05 Client ID : MW-3D

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V05190102N07

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137
Project Number : MANID 16-01
Date Collected : 12/24/18 12:26

Date Received : 12/26/18
Date Analyzed : 01/02/19 21:24

Dilution Factor : 1
Analyst : NLK
Instrument ID : VOA105
GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U	
79-01-6	Trichloroethene	2.4	0.50	0.18		
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2,5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	
1330-20-7	Xylenes, Total	ND	2.5	0.70	U	
156-59-2	cis-1,2-Dichloroethene	1.0	2.5	0.70	J	
540-59-0	1,2-Dichloroethene, Total	1.0	2.5	0.70	J	
74-95-3	Dibromomethane	ND	5.0	1.0	U	
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U	
107-13-1	Acrylonitrile	ND	5.0	1.5	UR	
00-42-5	Styrene	ND	2.5	0.70	U	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U	
67-64-1	Acetone	4.3	5.0	1.5	J	
75-15-0	Carbon disulfide	ND	5.0	1.0	U	
78-93-3	2-Butanone	ND	5.0	1.9	U	
08-05-4	Vinyl acetate	ND	5.0	1.0	U	
08-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	
91-78-6	2-Hexanone	ND	5.0	1.0	U	
4-97-5	Bromochloromethane	ND	2.5	0.70	U	
94-20-7	2,2-Dichloropropane	ND	2.5	0.70	U	
06-93-4	1,2-Dibromoethane	ND	2.0	0.65	U	
42-28-9	1,3-Dichloropropane	ND	2.5	0.70	U	
30-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U	

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-05 Client ID : MW-3D

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V05190102N07

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A

 Lab Number
 : L1853137

 Project Number
 : MANID 16-01

 Date Collected
 : 12/24/18 12:26

 Date Received
 : 12/26/18

Date Analyzed : 01/02/19 21:24
Dilution Factor : 1
Analyst : NLK
Instrument ID : VOA105

: RTX-502.2

%Solids : N/A Injection Volume : N/A

GC Column

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	2,5	0.70	U
87-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
98-82-8	Isopropylbenzene	ND	2.5	0.70	U
99-87 - 6	p-Isopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
103-65-1	n-Propylbenzene	ND	2.5	0.70	U
37-61-6	1,2,3-Trichlorobenzene	ND	2,5	0.70	U
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
123-91-1	1,4-Dioxane	ND	250	61.	JE R
105-05-5	p-Diethylbenzene	ND	2.0	0.70	U
522-96-8	p-Ethyltoluene	ND	2.0	0.70	U
5-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
60-29-7	Ethyl ether	ND	2.5	0.70	U
110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.70	U

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-06 Client ID : MW-3S

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A15

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137

Project Number : MANID 16-01

Date Collected : 12/24/18 12:51

Date Received : 12/26/18

Date Analyzed : 01/02/19 15:00

Dilution Factor : 1
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

		ug/L		
Parameter	Results	RL	MDL	Qualifier
Methylene chloride	ND	2.5	0.70	U
	ND	2.5	0.70	U
	ND	2.5	0.70	U
Carbon tetrachloride	ND	0.50	0.13	U
1,2-Dichloropropane	ND	1.0	0.14	U
Dibromochloromethane	0.25	0.50	0.15	J
1,1,2-Trichloroethane	ND	1.5	0.50	U
Tetrachloroethene	46	0.50	0.18	
Chlorobenzene	ND	2.5	0.70	U
Trichlorofluoromethane	ND	2.5	0.70	U
1,2-Dichloroethane	ND	0.50	0.13	U
1,1,1-Trichloroethane	ND	2.5	0.70	U
Bromodichloromethane	0,22	0.50	0.19	J
trans-1,3-Dichloropropene	ND	0.50	0.16	υ
cis-1,3-Dichloropropene	ND	0.50	0.14	U
1,3-Dichloropropene, Total	ND	0.50	0.14	U
1,1-Dichloropropene	ND	2.5	0.70	U
Bromoform	ND	2.0	0.65	U
1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
Benzene	ND	0.50	0.16	U
Toluene	ND	2.5	0.70	U
Ethylbenzene	ND	2.5	0.70	U
Chloromethane	ND	2.5	0.70	U
Bromomethane	ND	2.5	0.70	U
Vinyl chloride	ND	1.0	0.07	U
Chloroethane	ND	2.5	0.70	U
1,1-Dichloroethene	ND	0.50	0.17	U
	1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichloroffluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene 1,3-Dichloropropene 1,1-Dichloropropene Bromoform 1,1,2,2-Tetrachloroethane Benzene Toluene Ethylbenzene Chloromethane Bromomethane Bromomethane Bromomethane Vinyl chloride Chloroethane	Methylene chloride ND 1,1-Dichloroethane ND Chloroform ND Garbon tetrachloride ND 1,2-Dichloropropane ND Dibromochloromethane ND Tetrachloroethane ND Tetrachloroethene 46 Chlorobenzene ND Trichloroffluoromethane ND 1,2-Dichloroethane ND 1,1,1-Trichloroethane ND Bromodichloromethane 0,22 trans-1,3-Dichloropropene ND cis-1,3-Dichloropropene ND 1,3-Dichloropropene, Total ND 1,1-Dichloropropene ND Bromoform ND Toluene ND Ethylbenzene ND Chloromethane ND Bromomethane ND Vinyl chloride ND Chloroethane ND	Parameter Results RL Methylene chloride ND 2.5 1,1-Dichloroethane ND 2.5 Chloroform ND 2.5 Carbon tetrachloride ND 0.50 1,2-Dichloropropane ND 1.0 Dibromochloromethane 0.25 0.50 1,1,2-Trichloroethane ND 1.5 Tetrachloroethane ND 2.5 Chlorobenzene ND 2.5 Trichlorofluoromethane ND 2.5 1,2-Dichloroethane ND 0.50 1,1,1-Trichloroethane ND 0.50 1,1,1-Trichloroethane ND 0.50 trans-1,3-Dichloropropene ND 0.50 trans-1,3-Dichloropropene ND 0.50 1,3-Dichloropropene, Total ND 0.50 1,1-Dichloropropene ND 2.5 Bromoform ND 2.5 Bromoform ND 2.5 Toluene ND 2.5 Ethy	Parameter Results RL MDL Methylene chloride ND 2.5 0.70 1,1-Dichloroethane ND 2.5 0.70 Chloroform ND 2.5 0.70 Carbon tetrachloride ND 0.50 0.13 1,2-Dichloropropane ND 1.0 0.14 Dibromochloromethane 0.25 0.50 0.15 1,1,2-Trichloroethane ND 1.5 0.50 Tetrachloroethane ND 2.5 0.70 Trichlorofluoromethane ND 2.5 0.70 Trichloroethane ND 0.50 0.13 1,1,1-Trichloroethane ND 0.50 0.13 1,1,1-Trichloroethane ND 0.50 0.19 Bromodichloromethane 0.22 0.50 0.19 trans-1,3-Dichloropropene ND 0.50 0.14 1,3-Dichloropropene, Total ND 0.50 0.14 1,1,2,2-Tetrachloroethane ND 0.50 0.17

Client : J.R. Holzmacher P.E., LLC Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-06 Client ID : MW-3S

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A15

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137
Project Number : MANID 16-01
Date Collected : 12/24/18 12:51

Date Received : 12/26/18
Date Analyzed : 01/02/19 15:00

Dilution Factor : 1
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

	A	ug/L		
Parameter	Results	RL	MDL	Qualifier
trans-1,2-Dichloroethene	ND	2.5	0.70	U
Trichloroethene	1.4	0.50	0.18	
1,2-Dichlorobenzene	ND	2.5	0.70	U
1,3-Dichlorobenzene	ND	2.5	0.70	U
1,4-Dichlorobenzene	ND	2.5	0.70	U
Methyl tert butyl ether	ND	2.5	0.70	U
p/m-Xylene	ND	2.5	0.70	U
o-Xylene	ND	2.5	0.70	U
Xylenes, Total	ND	2.5	0.70	U
cis-1,2-Dichloroethene	ND	2.5	0.70	U
1,2-Dichloroethene, Total	ND	2.5	0.70	U
Dibromomethane	ND	5.0	1.0	U
1,2,3-Trichloropropane	ND	2.5	0.70	U
Acrylonitrile	ND	5.0	1.5	U
Styrene	ND	2.5	0.70	U
Dichlorodifluoromethane	ND	5.0	1.0	U
Acetone	3.3	5.0	1.5	J
Carbon disulfide	ND	5.0	1.0	U
2-Butanone	ND	5.0	1.9	U
Vinyl acetate	ND	5.0	1.0	U
4-Methyl-2-pentanone	ND	5.0	1.0	U
2-Hexanone	ND	5.0	1.0	U
Bromochloromethane	ND	2.5	0.70	U
2,2-Dichloropropane	ND	2.5	0.70	U
1,2-Dibromoethane	ND	2.0	0.65	U
1,3-Dichloropropane	ND	2.5	0.70	U
1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U
	Trichloroethene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Methyl tert butyl ether p/m-Xylene o-Xylene Xylenes, Total cis-1,2-Dichloroethene 1,2-Dichloroethene, Total Dibromomethane 1,2,3-Trichloropropane Acrylonitrile Styrene Dichlorodifluoromethane Acetone Carbon disulfide 2-Butanone Vinyl acetate 4-Methyl-2-pentanone 2-Hexanone Bromochloromethane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane	trans-1,2-Dichloroethene 1.4 1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND Methyl tert butyl ether ND p/m-Xylene ND Xylenes, Total ND 1,2-Dichloroethene, Total ND Dibromomethane ND 1,2,3-Trichloropropane ND Styrene ND Dichloroetifluoromethane ND Carbon disulfide ND 2-Butanone ND Vinyl acetate ND Bromochloroethane ND 1,2-Dichloroethane ND 2,2-Dichloroethane ND Acetone ND Carbon disulfide ND 2-Hexanone ND Bromochloromethane ND 1,2-Dichloromethane ND Acetone ND Vinyl acetate ND 4-Methyl-2-pentanone ND Bromochloromethane ND 1,2-Dichloropropane ND 1,2-Dichloropropane ND 1,2-Dichloropropane ND	Parameter Results RL trans-1,2-Dichloroethene ND 2.5 Trichloroethene 1.4 0.50 1,2-Dichlorobenzene ND 2.5 1,3-Dichlorobenzene ND 2.5 Methyl tert butyl ether ND 2.5 p/m-Xylene ND 2.5 c-Xylene ND 2.5 Xylenes, Total ND 2.5 xylenes, Total ND 2.5 cis-1,2-Dichloroethene ND 2.5 1,2-Dichloroethene, Total ND 2.5 Dibromomethane ND 5.0 1,2,3-Trichloropropane ND 5.0 Acrylonitrile ND 5.0 Styrene ND 5.0 Dichlorodifluoromethane ND 5.0 Acetone 3.3 5.0 Carbon disulfide ND 5.0 2-Butanone ND 5.0 4-Methyl-2-pentanone ND 5.0 4-Methyl-2-pentanone ND <td>Parameter Results RL MDL trans-1,2-Dichloroethene ND 2.5 0.70 Trichloroethene 1.4 0.50 0.18 1,2-Dichlorobenzene ND 2.5 0.70 1,3-Dichlorobenzene ND 2.5 0.70 Methyl tert butyl ether ND 2.5 0.70 Methyl tent butyl ether ND 2.5 0.70 p/m-Xylene ND 2.5 0.70 cylenes, Total ND 2.5 0.70 Xylenes, Total ND 2.5 0.70 Xylenes, Total ND 2.5 0.70 1,2-Dichloroethene, Total ND 2.5 0.70 Dibromomethane ND 5.0 1.0 1,2,3-Trichloropropane ND 5.0 1.0 Acrylonitrile ND 5.0 1.5 Styrene ND 5.0 1.5 Dichlorodifluoromethane ND 5.0 1.0 Acetone 3.3</td>	Parameter Results RL MDL trans-1,2-Dichloroethene ND 2.5 0.70 Trichloroethene 1.4 0.50 0.18 1,2-Dichlorobenzene ND 2.5 0.70 1,3-Dichlorobenzene ND 2.5 0.70 Methyl tert butyl ether ND 2.5 0.70 Methyl tent butyl ether ND 2.5 0.70 p/m-Xylene ND 2.5 0.70 cylenes, Total ND 2.5 0.70 Xylenes, Total ND 2.5 0.70 Xylenes, Total ND 2.5 0.70 1,2-Dichloroethene, Total ND 2.5 0.70 Dibromomethane ND 5.0 1.0 1,2,3-Trichloropropane ND 5.0 1.0 Acrylonitrile ND 5.0 1.5 Styrene ND 5.0 1.5 Dichlorodifluoromethane ND 5.0 1.0 Acetone 3.3

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-06 Client ID : MW-3S

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A15

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137

Project Number : MANID 16-01

Date Collected : 12/24/18 12:51

Date Received : 12/26/18

Date Analyzed : 01/02/19 15:00

Dilution Factor : 1
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	Ŭ
37-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
98-82-8	Isopropylbenzene	ND	2.5	0.70	U
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
103-65-1	n-Propylbenzene	ND	2.5	0.70	U
37-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
08-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
23-91-1	1,4-Dioxane	ND	250	61.	J R
105-05-5	p-Diethylbenzene	ND	2.0	0.70	U
622-96-8	p-Ethyltoluene	ND	2.0	0.70	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
60-29-7	Ethyl ether	ND	2.5	0.70	U
110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.70	U

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-07 Client ID : MW-4D

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A16

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137
Project Number : MANID 16-01
Date Collected : 12/24/18 11:44
Date Received : 12/26/18

Date Analyzed : 01/02/19 15:22

Dilution Factor : 1
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

	_		ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	1.8	2.5	0.70	J
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	0.69	0.50	0.15	
'9-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	99	0,50	0.18	
108-90-7	Chlorobenzene	ND	2.5	0.70	U
'5-69 - 4	Trichlorofluoromethane	ND	2.5	0.70	U
07-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
1-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
' 5-27-4	Bromodichloromethane	0.72	0.50	0.19	***
0061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
0061-01-5	cis-1,3-Dichtoropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
63-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
'5-25-2	Bromoform	ND	2.0	0.65	U
9-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
1-43-2	Benzene	ND	0.50	0.16	U
08-88-3	Toluene	ND	2.5	0.70	U
00-41-4	Ethylbenzene	ND	2.5	0.70	U
4-87-3	Chloromethane	ND	2.5	0.70	U
4-83-9	Bromomethane	ND	2.5	0.70	U
5-01-4	Vinyl chloride	ND	1.0	0.07	U
5-00-3	Chloroethane	ND	2.5	0.70	U
5-35-4	1,1-Dichloroethene	ND	0.50	0.17	U

: J.R. Holzmacher P.E., LLC Client : MINUTE MAN CLEANERS **Project Name**

Lab ID : L1853137-07 **Client ID** : MW-4D

: 89 OCEAN AVE., EAST ROCKAWAY, NJ Sample Location

Sample Matrix : WATER **Analytical Method** : 1,8260C Lab File ID : V08190102A16

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A

Lab Number : L1853137 Project Number : MANID 16-01 Date Collected : 12/24/18 11:44
Date Received : 12/26/18

Date Analyzed 3: 01/02/19 15:22

Dilution Factor : 1 : PK Analyst Instrument ID : VOA108 GC Column : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U
79-01-6	Trichloroethene	2.4	0.50	0.18	
95-50-1	1,2-Dichlorobenzene	ND	2,5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U
179601-23-1	p/m-Xylene	ND	2.5	0.70	υ
95-47-6	o-Xylene	ND	2.5	0.70	U
1330-20-7	Xylenes, Total	ND	2.5	0.70	U
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U
74-95-3	Dibromomethane	ND	5.0	1.0	U
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U
107-13-1	Acrylonitrile	ND	5.0	1.5	U
100-42-5	Styrene	ND	2.5	0.70	U
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U
67-64-1	Acetone	2.3	5.0	1.5	J
75-15-0	Carbon disulfide	ND	5.0	1.0	U
78-93-3	2-Butanone	ND	5.0	1.9	U
108-05-4	Vinyl acetate	ND	5.0	1.0	U
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
591-78-6	2-Hexanone	ND	5.0	1.0	U
'4- 97-5	Bromochloromethane	ND	2.5	0.70	U
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	U
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
42-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
30-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U

Client : J.R. Holzmacher P.E., LLC Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-07 Client ID : MW-4D

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A16

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137
Project Number : MANID 16-01
Date Collected : 12/24/18 11:44
Date Received : 12/26/18

Date Analyzed : 01/02/19 15:22
Dilution Factor : 1

Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2
%Solids : N/A

Injection Volume : N/A

		ug/L				
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
108-86-1	Bromobenzene	ND	2.5	0.70	U	
104-51-8	n-Butylbenzene	ND	2.5	0.70	U	
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U	
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U	
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U	
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	
37-68-3	Hexachlorobutadiene	ND	2.5	0.70	U	
98-82-8	Isopropylbenzene	ND	2.5	0.70	U	
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U	
91-20-3	Naphthalene	ND	2.5	0.70	U	
103-65-1	n-Propylbenzene	ND	2.5	0.70	U	
37-61-6	1,2,3-Trichtorobenzene	ND	2.5	0.70	U	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
23-91-1	1,4-Dioxane	ND	250	61.	JU R	
105-05-5	p-Diethylbenzene	ND	2.0	0.70	U	
522-96-8	p-Ethyltoluene	ND	2.0	0.70	U	
)5 - 93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U	
60-29-7	Ethyl ether	ND	2.5	0.70	U	
110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.70	U	

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-08 Client ID : MW-4S

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A17

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137
Project Number : MANID 16-01
Date Collected : 12/24/18 12:01

Date Received : 12/26/18
Date Analyzed : 01/02/19 15:44

Dilution Factor : 1
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

		<u> </u>	ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75 - 34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	V
56-23-5	Carbon tetrachloride	ND	0.50	0.13	V
78-87 - 5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	0.32	0.50	0.15	J
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	130	0.50	0.18	
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	0.24	0.50	0.19	J
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
08-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
'4 - 87-3	Chloromethane	ND	2.5	0.70	U
' 4-83-9	Bromomethane	ND	2.5	0.70	U
75-01-4	Vinyl chloride	ND	1.0	0.07	U
75-00-3	Chloroethane	ND	2.5	0.70	U
'5-35-4	1,1-Dichloroethene	ND	0.50	0.17	U

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-08
Client ID : MW-4S

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A17

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137

Project Number : MANID 16-01

Date Collected : 12/24/18 12:01

Date Received : 12/26/18

Date Analyzed : 01/02/19 15:44

Dilution Factor : 1
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U
79-01-6	Trichloroethene	3.7	0.50	0.18	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U
179601-23-1	p/m-Xylene	ND	2.5	0.70	U
95-47-6	o-Xylene	ND	2.5	0.70	U
1330-20-7	Xylenes, Total	ND	2.5	0.70	U
156-59-2	cis-1,2-Dichloroethene	1.7	2.5	0.70	J
540-59-0	1,2-Dichloroethene, Total	1.7	2.5	0.70	J
74-95-3	Dibromomethane	ND	5.0	1.0	U
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U
107-13-1	Acrylonitrile	ND	5.0	1.5	U
100-42-5	Styrene	ND	2.5	0.70	U
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U
67-64-1	Acetone	3.1	5.0	1.5	J
75-15 - 0	Carbon disulfide	ND	5.0	1.0	U
78-93-3	2-Butanone	ND	5.0	1.9	U
108-05-4	Vinyl acetate	ND	5.0	1.0	U
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
591-78-6	2-Hexanone	ND	5.0	1.0	U
74-97-5	Bromochloromethane	ND	2.5	0.70	U
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	U
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
530-20-6	1,1,1,2-Tetrachloroethane	ND	2,5	0.70	U

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-08 Client ID : MW-4S

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A17

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137

Project Number : MANID 16-01

Date Collected : 12/24/18 12:01

Date Received : 12/26/18

Date Analyzed : 01/02/19 15:44

Dilution Factor : 1
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

	Parameter		ug/L		
CAS NO.		Results	RL	MDL	Qualifier
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
06-43-4	p-Chlorotoluene	ND	2.5	0.70	U
)6-12- 8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
7-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
8-82-8	Isopropylbenzene	ND	2.5	0.70	U
9-87-6	p-Isopropyltoluene	ND	2.5	0.70	U
1-20-3	Naphthalene	NĐ	2.5	0.70	U
03-65-1	n-Propylbenzene	ND	2.5	0.70	U
7-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
20-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
08-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
5-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
23-91-1	1,4-Dioxane	ND	250	61.	4/
05-05-5	p-Diethylbenzene	ND	2.0	0.70	U
22-96-8	p-Ethyltoluene	ND	2.0	0.70	U
5-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
0-29-7	Ethyl ether	ND	2.5	0.70	U
10-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.70	U

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-09 Client ID : MW-5D

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A18

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A

 Lab Number
 : L1853137

 Project Number
 : MANID 16-01

 Date Collected
 : 12/24/18 10:21

 Date Received
 : 12/26/18

Date Analyzed : 01/02/19 16:06 Dilution Factor : 1

Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2
%Solids : N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-09-2	Methylene chloride	ND	2.5	0.70	U	
75-34-3	1,1-Dichloroethane	3.1	2.5	0.70		
67-66-3	Chloroform	ND	2.5	0.70	U	
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U	
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U	
124-48-1	Dibromochloromethane	ND	0.50	0.15	U	
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U	
127-18-4	Tetrachloroethene	72	0.50	0.18	***	
108-90-7	Chlorobenzene	ND	2.5	0.70	U	
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U	
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U	
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U	
75-27-4	Bromodichloromethane	ND	0.50	0.19	U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U	
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U	
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U	
75-25-2	Bromoform	ND	2.0	0.65	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U	
71-43-2	Benzene	ND	0.50	0.16	U	
108-88-3	Toluene	ND	2.5	0.70	U	
100-41-4	Ethylbenzene	ND	2.5	0.70	U	
74-87-3	Chloromethane	ND	2.5	0.70	U	
74-83 - 9	Bromomethane	ND	2.5	0.70	U	
75-01-4	Vinyl chloride	0.49	1.0	0.07	J	
75-00-3	Chloroethane	ND	2.5	0.70	U	
75-35-4	1,1-Dichloroethene	0.59	0.50	0.17		

Client : J.R. Holzmacher P.E., LLC Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-09 Client ID : MW-5D

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A18

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137
Project Number : MANID 16-01
Date Collected : 12/24/18 10:21
Date Received : 12/26/18

Date Analyzed : 01/02/19 16:06

Dilution Factor : 1
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U	
79-01-6	Trichloroethene	7.8	0.50	0.18	***************************************	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0,70	U	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
1634-04-4	Methyl tert butyl ether	15	2.5	0.70		
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	
1330-20-7	Xylenes, Total	ND	2.5	0.70	U	
156-59-2	cis-1,2-Dichloroethene	2.2	2.5	0.70	J	
540-59-0	1,2-Dichloroethene, Total	2.2	2.5	0.70	J	
74-95-3	Dibromomethane	ND	5.0	1.0	U	
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U	
107-13-1	Acrylonitrile	ND	5.0	1.5	U	
100-42-5	Styrene	ND	2.5	0.70	U	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U	
67-64-1	Acetone	3.3	5.0	1.5	J	
75-15-0	Carbon disulfide	ND	5.0	1.0	U	
78-93-3	2-Butanone	ND	5.0	1.9	U	
108-05-4	Vinyl acetate	ND	5.0	1.0	U	
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	
91-78-6	2-Hexanone	ND	5.0	1.0	U	
74-97-5	Bromochloromethane	ND	2.5	0.70	U	
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	U	
06-93-4	1,2-Dibromoethane	ND	2.0	0.65	U	
42-28-9	1,3-Dichloropropane	ND	2.5	0.70	U	
30-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U	

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-09
Client ID : MW-5D

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A18

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137
Project Number : MANID 16-01
Date Collected : 12/24/18 10:21
Date Received : 12/26/18

Date Analyzed : 01/02/19 16:06

Dilution Factor : 1
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
108-86-1	Bromobenzene	ND	2.5	0.70	U	
104-51-8	n-Butylbenzene	ND	2.5	0.70	U	
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U	
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U	
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U	
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	
87-68-3	Hexachlorobutadiene	ND	2.5	0.70	U	
98-82-8	Isopropylbenzene	ND	2.5	0.70	U	
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U	
91-20-3	Naphthalene	ND	2.5	0.70	U	
103-65-1	n-Propylbenzene	ND	2.5	0.70	U	
37-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	V	
08-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
23-91-1	1,4-Dioxane	ND	250	61.	-o- K	
105-05-5	p-Diethylbenzene	ND	2.0	0.70	U	
622-96-8	p-Ethyltoluene	ND	2.0	0.70	U	
5-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U	
0-29-7	Ethyl ether	ND	2.5	0.70	U	
110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.70	U	

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-10D

Client ID : MW-5S

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A19

Sample Amount : 2.5 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137
Project Number : MANID 16-01
Date Collected : 12/24/18 10:41
Date Received : 12/26/18

: 01/02/19 16:28

Dilution Factor : 4
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

Date Analyzed

040.110	Davamatau	·	ug/L	MDI	O Lift
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	10	2.8	U
75-34-3	1,1-Dichloroethane	ND	10	2.8	U
67-66-3	Chloroform	ND	10	2.8	υ
56-23-5	Carbon tetrachloride	ND	2.0	0.54	U
78-87-5	1,2-Dichloropropane	ND	4.0	0.55	U
124-48-1	Dibromochloromethane	ND	2.0	0.60	U
79-00-5	1,1,2-Trichloroethane	ND	6.0	2.0	U
127-18-4	Tetrachloroethene	440	2.0	0.72	
108-90-7	Chlorobenzene	ND	10	2.8	U
75-69-4	Trichlorofluoromethane	ND	10	2.8	U
107-06-2	1,2-Dichloroethane	ND	2.0	0.53	U
'1-55-6	1,1,1-Trichloroethane	ND	10	2.8	U
' 5-27-4	Bromodichloromethane	ND	2.0	0.77	U
0061-02-6	trans-1,3-Dichloropropene	ND	2.0	0.66	U
10061-01-5	cis-1,3-Dichloropropene	ND	2.0	0.58	U
542-75-6	1,3-Dichloropropene, Total	ND	2.0	0.58	U
663-58-6	1,1-Dichloropropene	ND	10	2.8	U
75-25 - 2	Bromoform	ND	8.0	2,6	U
'9 - 34-5	1,1,2,2-Tetrachloroethane	ND	2.0	0.67	U
71-43-2	Benzene	ND	2.0	0.64	U
08-88-3	Toluene	ND	10	2.8	U
00-41-4	Ethylbenzene	ND	10	2.8	U
4-87-3	Chloromethane	ND	10	2.8	U
4-83-9	Bromomethane	ND	10	2.8	U
5-01-4	Vinyl chloride	3.2	4.0	0.28	J
5-00-3	Chloroethane	ND	10	2.8	U
5-35-4	1,1-Dichloroethene	1.2	2.0	0.68	J

Client : J.R. Holzmacher P.E., LLC Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-10D

Client ID : MW-5S

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A19

Sample Amount : 2.5 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137

Project Number : MANID 16-01

Date Collected : 12/24/18 10:41

Date Received : 12/26/18

Date Analyzed : 01/02/19 16:28

Dilution Factor : 4
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

		***	ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
156-60-5	trans-1,2-Dichloroethene	ND	10	2.8	U
79-01-6	Trichloroethene	38	2.0	0.70	
95-50-1	1,2-Dichlorobenzene	ND	10	2.8	U
541-73-1	1,3-Dichlorobenzene	ND	10	2.8	U
106-46-7	1,4-Dichlorobenzene	ND	10	2.8	U
1634-04-4	Methyl tert butyl ether	24	10	2.8	
179601-23-1	p/m-Xylene	ND	10	2.8	U
95-47-6	o-Xylene	ND	10	2.8	U
1330-20-7	Xylenes, Total	ND	10	2.8	U
156-59-2	cis-1,2-Dichloroethene	15	10	2.8	
540-59-0	1,2-Dichloroethene, Total	15	10	2.8	
74-95-3	Dibromomethane	ND	20	4.0	U
96-18-4	1,2,3-Trichloropropane	ND	10	2.8	U
107-13-1	Acrylonitrile	ND	20	6.0	U
100-42-5	Styrene	ND	10	2.8	U
75-71-8	Dichlorodifluoromethane	ND	20	4.0	U
5 7-64-1	Acetone	5.8	20	5.8	J
75-15-0	Carbon disulfide	ND	20	4.0	U
78-93-3	2-Butanone	ND	20	7.8	U
108-05-4	Vinyl acetate	ND	20	4.0	U
108-10-1	4-Methyl-2-pentanone	ND	20	4.0	U
591-78-6	2-Hexanone	ND	20	4.0	U
74-97-5	Bromochloromethane	ND	10	2.8	U
594-20-7	2,2-Dichloropropane	ND	10	2.8	U
06-93-4	1,2-Dibromoethane	ND	8.0	2.6	U
42-28-9	1,3-Dichloropropane	ND	10	2.8	U
30-20-6	1,1,1,2-Tetrachloroethane	ND	10	2.8	U

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-10D

Client ID : MW-5S

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A19

Sample Amount : 2.5 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137

Project Number : MANID 16-01

Date Collected : 12/24/18 10:41

Date Received : 12/26/18

Date Analyzed : 01/02/19 16:28

Dilution Factor : 4
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
108-86-1	Bromobenzene	ND	10	2.8	U
104-51-8	n-Butylbenzene	ND	10	2.8	U
135-98-8	sec-Butylbenzene	ND	10	2.8	U
98-06-6	tert-Butylbenzene	ND	10	2.8	U
95-49-8	o-Chlorotoluene	ND	10	2.8	U
106-43-4	p-Chlorotoluene	ND	10	2.8	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	2.8	U
87-68-3	Hexachlorobutadiene	ND	10	2.8	U
98-82-8	Isopropylbenzene	ND	10	2.8	U
99-87-6	p-Isopropyttoluene	ND	10	2.8	U
91-20-3	Naphthalene	ND	10	2.8	U
103-65-1	n-Propylbenzene	ND	10	2,8	U
87-61-6	1,2,3-Trichlorobenzene	ND	10	2.8	U
120-82-1	1,2,4-Trichlorobenzene	ND	10	2.8	U
108-67-8	1,3,5-Trimethylbenzene	ND	10	2.8	U
95-63-6	1,2,4-Trimethylbenzene	ND	10	2.8	U
123-91-1	1,4-Dioxane	ND	1000	240	-0 R
105-05-5	p-Diethylbenzene	ND	8.0	2.8	U
622-96-8	p-Ethyltoluene	ND	8.0	2.8	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	8.0	2.2	U
50-29-7	Ethyl ether	ND	10	2.8	U
110-57-6	trans-1,4-Dichloro-2-butene	ND	10	2.8	U

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-11

Client ID : MW-9

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A20

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137

Project Number : MANID 16-01

Date Collected : 12/24/18 11:01

Date Received : 12/26/18

Date Analyzed : 01/02/19 16:50

Dilution Factor : 1
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
	-				
75-34-3	1,1-Dichloroethane	ND	2,5	0.70	U
67-66-3	Chloroform	0.98	2.5	0.70	J
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	13	0.50	0.18	
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	0,21	0.50	0.19	J
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	U
74-83-9	Bromomethane	ND	2.5	0.70	U
75-01-4	Vinyl chloride	ND	1.0	0.07	U
' 5-00 - 3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-11

Client ID : MW-9

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A20

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137

Project Number : MANID 16-01

Date Collected : 12/24/18 11:01

Date Received : 12/26/18

Date Analyzed : 01/02/19 16:50

Dilution Factor : 1
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

	Parameter		ug/L		
CAS NO.		Results	RL	MDL	Qualifier
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U
79-01-6	Trichloroethene	0.90	0.50	0.18	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U
179601-23-1	p/m-Xylene	ND	2.5	0.70	U
95-47-6	o-Xylene	ND	2.5	0.70	U
1330-20-7	Xylenes, Total	ND	2.5	0.70	U
156-59-2	cis-1,2-Dichloroethene	1.9	2.5	0.70	J
540-59-0	1,2-Dichloroethene, Total	1.9	2.5	0.70	J
74-95-3	Dibromomethane	ND	5.0	1.0	U
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U
107-13-1	Acrylonitrile	ND	5.0	1.5	U
100-42-5	Styrene	ND	2.5	0.70	U
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U
67-64-1	Acetone	3.4	5.0	1.5	J
75-15-0	Carbon disulfide	ND	5.0	1.0	U
78-93-3	2-Butanone	ND	5.0	1.9	U
108-05-4	Vinyl acetate	ND	5.0	1.0	U
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
591-78-6	2-Hexanone	ND	5.0	1.0	U
' 4-97-5	Bromochloromethane	ND	2.5	0.70	U
94-20-7	2,2-Dichloropropane	ND	2.5	0.70	U
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
42-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
30-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U

Client : J.R. Holzmacher P.E., LLC Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-11

Client ID : MW-9

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A20

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137

Project Number : MANID 16-01

Date Collected : 12/24/18 11:01

Date Received : 12/26/18

Date Analyzed : 01/02/19 16:50

Dilution Factor : 1
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
87-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
98-82-8	Isopropylbenzene	ND	2.5	0.70	U
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
103-65-1	n-Propylbenzene	ND	2.5	0.70	υ
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
123-91-1	1,4-Dioxane	ND	250	61.	JU R
105-05-5	p-Diethylbenzene	ND	2.0	0.70	U
622-96-8	p-Ethyltoluene	ND	2.0	0.70	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
60-29-7	Ethyl ether	ND	2.5	0.70	U
110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.70	U

Client : J.R. Holzmacher P.E., LLC Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-12 Client ID : MW-12

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A21

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137

Project Number : MANID 16-01

Date Collected : 12/24/18 13:21

Date Received : 12/26/18

Date Analyzed : 01/02/19 17:11

Dilution Factor : 1
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75.00.0	Mathydama abladda	ND	0.5	0.70	
75-09-2	Methylene chloride		2.5	0.70	
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	0.88	2.5	0.70	J
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	υ
124-48-1	Dibromochloromethane	0.39	0.50	0.15	J
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	21	0.50	0.18	
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
1-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	0.47	0.50	0.19	J
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
0061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
i42-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
63-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
75-25-2	Bromoform	ND	2.0	0.65	U
9-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
00-41-4	Ethylbenzene	ND	2.5	0.70	U
4-87-3	Chloromethane	ND	2.5	0.70	U
4-83-9	Bromomethane	ND	2.5	0.70	U
'5-01-4	Vinyl chloride	ND	1.0	0.07	U
5-00-3	Chloroethane	ND	2.5	0.70	U
′5-35 - 4	1,1-Dichloroethene	ND	0.50	0.17	U

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-12 Client ID : MW-12

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A21

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137

Project Number : MANID 16-01

Date Collected : 12/24/18 13:21

Date Received : 12/26/18

Date Analyzed : 01/02/19 17:11

Dilution Factor : 1
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U
79-01-6	Trichloroethene	0.95	0.50	0.18	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U
179601-23-1	p/m-Xylene	ND	2,5	0.70	U
95-47-6	o-Xylene	ND	2.5	0.70	U
1330-20-7	Xylenes, Total	ND	2.5	0.70	U
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U
74-95-3	Dibromomethane	ND	5.0	1.0	U
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U
107-13-1	Acrylonitrile	ND	5.0	1,5	U
100-42-5	Styrene	ND	2.5	0.70	U
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U
67-64-1	Acetone	4.8	5.0	1.5	J
75-15-0	Carbon disulfide	ND	5.0	1.0	U
78-93 - 3	2-Butanone	ND	5.0	1.9	U
108-05-4	Vinyl acetate	ND	5.0	1.0	U
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
591-78-6	2-Hexanone	ND	5.0	1.0	U
74-97- 5	Bromochloromethane	ND	2.5	0.70	U
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	U
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
42-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
30-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U

Client : J.R. Holzmacher P.E., LLC Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-12 Client ID : MW-12

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A21

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137

Project Number : MANID 16-01

Date Collected : 12/24/18 13:21

Date Received : 12/26/18

Date Analyzed : 01/02/19 17:11

Dilution Factor : 1
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

	Parameter	ug/L			
CAS NO.		Results	RL	MDL	Qualifier
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2,5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
06-43-4	p-Chlorotoluene	ND	2.5	0.70	U
96-12-8	1,2-Dibrorno-3-chloropropane	ND	2.5	0.70	U
37-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
98-82-8	Isopropylbenzene	ND	2.5	0.70	U
9-87-6	p-Isopropyltoluene	ND	2.5	0.70	U
1-20-3	Naphthalene	ND	2.5	0.70	U
03-65-1	n-Propylbenzene	ND	2.5	0.70	U
7-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
20-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
08-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
5-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
23-91-1	1,4-Dioxane	ND	250	61,	w R
05-05-5	p-Diethylbenzene	ND	2.0	0.70	U
22-96-8	p-Ethyltoluene	ND	2.0	0.70	U
5-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
0-29-7	Ethyl ether	ND	2.5	0.70	U
10-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.70	U

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-13 Client ID : MW-14S

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A22

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137

Project Number : MANID 16-01

Date Collected : 12/24/18 09:41

Date Received : 12/26/18

Date Analyzed : 01/02/19 17:33

Dilution Factor : 1
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

		114	ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	4.3	2.5	0.70	
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	υ
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	2.0	0.50	0.18	
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2,5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
75-25-2	Bromoform	ND	2.0	0.65	บ
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
08-88-3	Toluene	ND	2.5	0.70	U
00-41-4	Ethylbenzene	ND	2.5	0.70	U
4-87-3	Chloromethane	ND	2.5	0.70	U
4-83-9	Bromomethane	ND	2.5	0.70	U
75-01-4	Vinyl chloride	ND	1.0	0.07	U
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35 - 4	1,1-Dichloroethene	0.18	0.50	0.17	J

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-13 Client ID : MW-14S

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A22

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137

Project Number : MANID 16-01

Date Collected : 12/24/18 09:41

Date Received : 12/26/18

Date Analyzed : 01/02/19 17:33

Dilution Factor : 1
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

	Parameter		ug/L			
CAS NO.		Results	RL	MDL	Qualifier	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U	
79-01-6	Trichloroethene	0.24	0.50	0.18	J	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U	
541-73-1	1,3-Dichlorobenzene	ND	2,5	0.70	U	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
1634-04-4	Methyl tert butyl ether	8.3	2.5	0.70		
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	
1330-20-7	Xylenes, Total	ND	2.5	0.70	U	
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U	
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U	
74-95-3	Dibromomethane	ND	5.0	1.0	U	
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U	
107-13-1	Acrylonitrile	ND	5.0	1.5	U	
100-42-5	Styrene	ND	2.5	0.70	U	
75-71 - 8	Dichlorodifluoromethane	ND	5.0	1.0	U	
67-64-1	Acetone	4.4	5.0	1.5	J	
75-15-0	Carbon disulfide	ND	5.0	1.0	U	
78-93-3	2-Butanone	ND	5.0	1.9	U	
108-05-4	Vinyl acetate	ND	5.0	1.0	U	
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	
591-78-6	2-Hexanone	ND	5.0	1.0	U	
74-97-5	Bromochloromethane	ND	2.5	0.70	U	
94-20-7	2,2-Dichloropropane	ND	2.5	0.70	U	
06-93-4	1,2-Dibromoethane	ND	2.0	0.65	U	
42-28-9	1,3-Dichloropropane	ND	2.5	0.70	U	
530-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U	

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-13 Client ID : MW-14S

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A22

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137
Project Number : MANID 16-01
Date Collected : 12/24/18 09:41
Date Received : 12/26/18
Date Analyzed : 01/02/19 17:33

Dilution Factor : 1
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
108-86-1	Bromobenzene	ND	2.5	0.70	U	
104-51-8	n-Butylbenzene	ND	2.5	0.70	U	
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U	
8-06-6	tert-Butylbenzene	ND	2.5	0.70	U	
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U	
06-43-4	p-Chlorotoluene	ND	2.5	0.70	U	
06-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	
37-68-3	Hexachlorobutadiene	ND	2.5	0.70	U	
8-82-8	Isopropylbenzene	ND	2.5	0.70	U	
9-87-6	p-Isopropyltoluene	ND	2.5	0.70	U	
1-20-3	Naphthalene	ND	2.5	0.70	U	
03-65-1	n-Propylbenzene	ND	2.5	0.70	U	
7-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U	
20-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
08-67-8	1,3,5-Trimethylbenzene	NĐ	2.5	0.70	U	
5-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
123-91-1	1,4-Dioxane	ND	250	61.	-U-R	
05-05-5	p-Diethylbenzene	ND	2.0	0.70	U	
22-96-8	p-Ethyltoluene	ND	2.0	0.70	U	
5-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U	
0-29-7	Ethyl ether	ND	2.5	0.70	U	
110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.70	U	

Client : J.R. Holzmacher P.E., LLC Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-14 Client ID : MW-14D

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A23

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137

Project Number : MANID 16-01

Date Collected : 12/24/18 09:16

Date Received : 12/26/18

Date Analyzed : 01/02/19 17:55

Dilution Factor : 1
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5 	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0,50	U
127-18-4	Tetrachloroethene	0.19	0.50	0.18	J
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	U
74-83-9	Bromomethane	ND	2.5	0.70	U
75-01-4	Vinyl chloride	ND	1.0	0.07	U
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U

Client : J.R. Holzmacher P.E., LLC Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-14 Client ID : MW-14D

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A23

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137

Project Number : MANID 16-01

Date Collected : 12/24/18 09:16

Date Received : 12/26/18

Date Analyzed : 01/02/19 17:55

Dilution Factor : 1
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
450.00.5	to a d o Di Monettono	ND	0.5	0.70	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U
79-01-6	Trichloroethene	ND	0.50	0.18	U
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U
179601-23-1	p/m-Xylene	ND	2.5	0.70	U
95-47-6	o-Xylene	ND	2.5	0.70	U
1330-20-7	Xylenes, Total	ND	2.5	0.70	U
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U
74-95-3	Dibromomethane	ND	5.0	1.0	U
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U
107-13-1	Acrylonitrile	ND	5.0	1.5	U
100-42-5	Styrene	ND	2.5	0.70	U
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U
67-64-1	Acetone	2.2	5.0	1.5	J
75-15-0	Carbon disulfide	ND	5.0	1.0	U
78-93-3	2-Butanone	ND	5.0	1.9	U
108-05-4	Vinyl acetate	ND	5.0	1.0	U
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
591-78-6	2-Hexanone	ND	5.0	1.0	U
74-97-5	Bromochloromethane	ND	2.5	0.70	U
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	U
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
530-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-14 Client ID : MW-14D

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A23

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137

Project Number : MANID 16-01

Date Collected : 12/24/18 09:16

Date Received : 12/26/18

Date Analyzed : 01/02/19 17:55

Dilution Factor : 1
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
106-43-4	p-Chlorotolueпе	ND	2.5	0.70	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
87-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
98-82-8	Isopropylbenzene	ND	2.5	0.70	U
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
103-65-1	n-Propylbenzene	ND	2.5	0.70	U
8 7- 61 - 6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
123-91-1	1,4-Dioxane	ND	250	61.	w R
105-05-5	p-Diethylbenzene	ND	2.0	0.70	U
622-96-8	p-Ethyltoluene	ND	2.0	0.70	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
50-29-7	Ethyl ether	ND	2.5	0.70	U
110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.70	U

Client : J.R. Holzmacher P.E., LLC Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-15 Client ID : MW-14WT

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A24

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137
Project Number : MANID 16-01
Date Collected : 12/24/18 10:01
Date Received : 12/26/18

Date Analyzed : 01/02/19 18:17
Dilution Factor : 1
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

er	
w	
15 (m) 10	

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-15 Client ID : MW-14WT

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A24
Sample Amount : 10 ml

Level : LOW
Extract Volume (MeOH) : N/A

Lab Number : L1853137

Project Number : MANID 16-01

Date Collected : 12/24/18 10:01

Date Received : 12/26/18

Date Analyzed : 01/02/19 18:17

Dilution Factor : 1
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

		-	ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U
79-01-6	Trichloroethene	0.39	0.50	0.18	J
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U
179601-23-1	p/m-Xylene	ND	2.5	0.70	U
95-47-6	o-Xylene	ND	2.5	0.70	U
1330-20-7	Xylenes, Total	ND	2.5	0.70	U
156-59-2	cls-1,2-Dichloroethene	ND	2.5	0.70	U
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U
74-95-3	Dibromomethane	ND	5.0	1.0	U
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U
107-13-1	Acrylonitrile	ND	5.0	1.5	U
100-42-5	Styrene	ND	2.5	0.70	U
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U
67-64-1	Acetone	2.7	5.0	1.5	J
75-15-0	Carbon disulfide	ND	5.0	1.0	U
78-93-3	2-Butanone	ND	5.0	1.9	U
108-05-4	Vinyl acetate	ND	5.0	1.0	U
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
591-78-6	2-Hexanone	ND	5.0	1.0	U
74-97-5	Bromochloromethane	ND	2,5	0.70	U
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	U
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U
30-20-0	1,1,1,2-1 ettactiloroettialle		2.5	0.70	

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-15 Client ID : MW-14WT

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A24

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137
Project Number : MANID 16-01
Date Collected : 12/24/18 10:01
Date Received : 12/26/18

: 01/02/19 18:17

Dilution Factor : 1
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

Date Analyzed

	Parameter	ug/L			
CAS NO.		Results	RL	MDL	Qualifier
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U
96-12 - 8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
87-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
98-82-8	Isopropylbenzene	ND	2,5	0.70	U
9-87-6	p-Isopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
103-65-1	n-Propylbenzene	ND	2.5	0.70	U
37-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
23-91-1	1,4-Dioxane	ND	250	61.	J- R
05-05-5	p-Diethylbenzene	ND	2.0	0.70	U
22-96-8	p-Ethyltoluene	ND	2.0	0.70	U
5-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
0-29-7	Ethyl ether	ND	2.5	0.70	U
10-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.70	U

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-16 Client ID : TRIP BLANK

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V05190102N06

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137
Project Number : MANID 16-01
Date Collected : 12/24/18 00:00

Date Received : 12/26/18
Date Analyzed : 01/02/19 20:59

Dilution Factor : 1
Analyst : NLK
Instrument ID : VOA105
GC Column : RTX-502.2

CAS NO.	Parameter	Results	ug/L RL	MDL	Qualifier
SAO NO.	Turameter	Hodula	112	MDE	Qualifici
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	ND	0.50	0.18	U
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
00-41-4	Ethylbenzene	ND	2.5	0.70	U
'4-87-3	Chloromethane	ND	2.5	0.70	U
' 4-83-9	Bromomethane	ND	2.5	0.70	U
75-01-4	Vinyl chloride	ND	1.0	0.07	U
'5 - 00 - 3	Chloroethane	ND	2.5	0.70	U
'5-35-4	1,1-Dichloroethene	ND	0.50	0.17	U

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-16 Client ID : TRIP BLANK

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V05190102N06

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137
Project Number : MANID 16-01
Date Collected : 12/24/18 00:00

Date Received : 12/26/18
Date Analyzed : 01/02/19 20:59

Dilution Factor : 1
Analyst : NLK
Instrument ID : VOA105
GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U	
79-01-6	Trichloroethene	ND	0.50	0.18	U	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	
1330-20-7	Xylenes, Total	ND	2.5	0.70	U	
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U	
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U	
74-95-3	Dibromomethane	ND	5.0	1.0	U	
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U	
107-13-1	Acrylonitrile	ND	5.0	1.5	u- R	
100-42-5	Styrene	ND	2.5	0.70	U	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U	
67-64 - 1	Acetone	ND	5.0	1.5	U	
75-15-0	Carbon disulfide	ND	5.0	1.0	U	
78-93-3	2-Butanone	ND	5.0	1.9	U	
08-05-4	Vinyl acetate	ND	5.0	1.0	U	
08-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	
591-78-6	2-Hexanone	ND	5.0	1.0	U	
4-97-5	Bromochloromethane	ND	2.5	0.70	U	
94-20-7	2,2-Dichloropropane	ND	2.5	0.70	U	
06-93-4	1,2-Dibromoethane	ND	2.0	0.65	U	
42-28-9	1,3-Dichloropropane	ND	2.5	0.70	U	
30-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U	

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-16 Client ID : TRIP BLANK

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V05190102N06

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137
Project Number : MANID 16-01
Date Collected : 12/24/18 00:00
Date Received : 12/26/18

Date Analyzed : 01/02/19 20:59

Dilution Factor : 1
Analyst : NLK
Instrument ID : VOA105
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

CAS NO.			ug/L				
	Parameter	Results	RL	MDL	Qualifier		
108-86-1	Bromobenzene	ND	2.5	0.70	U		
104-51-8	n-Butylbenzene	ND	2.5	0.70	U		
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U		
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U		
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U		
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U		
96-12-8	1,2-Dibromo-3-chloropropane	ND	2,5	0.70	υ		
37 - 68 -3	Hexachlorobutadiene	ND	2.5	0.70	U		
98-82-8	Isopropylbenzene	ND	2.5	0.70	U		
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U		
91-20-3	Naphthalene	ND	2.5	0.70	U		
103-65-1	n-Propylbenzene	ND	2.5	0.70	U		
37-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U		
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U		
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U		
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U		
23-91-1	1,4-Dioxane	ND	250	61.	-or R		
05-05-5	p-Diethylbenzene	ND	2.0	0.70	U		
622-96-8	p-Ethyltoluene	ND	2.0	0.70	U		
5-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U		
0-29-7	Ethyl ether	ND	2.5	0.70	U		
110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.70	U		

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID :: L1853137-17D

Client ID : DB-1

Sample Location 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A25

Sample Amount : 5 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137
Project Number : MANID 16-01
Date Collected : 12/24/18 11:24

Date Received : 12/26/18
Date Analyzed : 01/02/19 18:39

Dilution Factor : 2
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	5.0	1.4	U
75-34-3	1,1-Dichloroethane	ND	5.0	1.4	U
67-66-3	Chloroform	4.5	5.0	1.4	J
56-23-5	Carbon tetrachloride	ND	1.0	0,27	U
78-87-5	1,2-Dichloropropane	ND	2.0	0.27	U
					-
124-48-1	Dibromochloromethane	2.1	1.0	0.30	
79-00-5	1,1,2-Trichloroethane	ND	3.0	1.0	U
127-18-4	Tetrachloroethene	200	1.0	0.36	
108-90-7	Chlorobenzene	ND	5.0	1.4	U
75-69-4	Trichlorofluoromethane	ND	5.0	1.4	U
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	U
71-55-6	1,1,1-Trichloroethane	ND	5.0	1.4	U
75-27-4	Bromodichloromethane	2.6	1.0	0.38	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.33	U
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	U
542-75-6	1,3-Dichloropropene, Total	ND	1.0	0.29	U
563-58-6	1,1-Dichloropropene	ND	5.0	1.4	U
75-25-2	Bromoform	1.3	4.0	1,3	J
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	U
71-43-2	Benzene	ND	1.0	0.32	U
108-88-3	Toluene	ND	5.0	1.4	U
100-41-4	Ethylbenzene	ND	5.0	1.4	U
74-87-3	Chloromethane	ND	5.0	1.4	U
74-83-9	Bromomethane	ND	5.0	1.4	U
75-01-4	Vinyl chloride	1.9	2.0	0.14	J
75-00-3	Chloroethane	ND	5.0	1.4	U
75-35-4	1,1-Dichloroethene	0.54	1.0	0.34	J

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-17D

Client ID : DB-1

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A25

Sample Amount : 5 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137
Project Number : MANID 16-01
Date Collected : 12/24/18 11:24

Date Received : 12/26/18
Date Analyzed : 01/02/19 18:39
Dilution Factor : 2

Dilution Factor : 2
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

CACNO	Deverates	Results	ug/L RL	MDL	Qualifier	
CAS NO.	Parameter	Results	- KL	MDL	Quaimer	
156-60-5	trans-1,2-Dichloroethene	ND	5.0	1.4	U	
79-01-6	Trichloroethene	26	1.0	0.35		
95-50-1	1,2-Dichlorobenzene	ND	5.0	1.4	U	
541-73-1	1,3-Dichlorobenzene	ND	5.0	1.4	U	
106-46-7	1,4-Dichlorobenzene	ND	5.0	1.4	U	
1634-04-4	Methyl tert butyl ether	4.8	5.0	1.4	J	
179601-23-1	p/m-Xylene	ND	5.0	1.4	U	
95-47-6	o-Xylene	ND	5.0	1.4	U	
1330-20-7	Xylenes, Total	ND	5.0	1.4	U	
156-59-2	cis-1,2-Dichloroethene	9.6	5.0	1.4		
540-59-0	1,2-Dichloroethene, Total	9.6	5.0	1.4		
74-95-3	Dibromomethane	ND	10	2.0	U	
96-18-4	1,2,3-Trichloropropane	ND	5.0	1.4	U	
107-13-1	Acrylonitrile	ND	10	3.0	U	
100-42-5	Styrene	ND	5.0	1.4	U	
75-71-8	Dichlorodifluoromethane	ND	10	2.0	U	
6 7- 64-1	Acetone	5.7	10	2.9	J	
75-15-0	Carbon disulfide	ND	10	2.0	U	
78-93-3	2-Butanone	ND	10	3.9	U	
108-05-4	Vinyl acetate	ND	10	2.0	U	
108-10-1	4-Methyl-2-pentanone	ND	10	2.0	U	
591-78-6	2-Hexanone	ND	10	2.0	U	
'4- 97-5	Bromochloromethane	ND	5.0	1.4	U	
594-20-7	2,2-Dichloropropane	ND	5.0	1.4	U	
106-93-4	1,2-Dibromoethane	ND	4.0	1.3	U	
42-28-9	1,3-Dichloropropane	ND	5.0	1.4	U	
530-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	1.4	U	

Client : J.R. Holzmacher P.E., LLC
Project Name : MINUTE MAN CLEANERS

Lab ID : L1853137-17D

Client ID : DB-1

Sample Location : 89 OCEAN AVE., EAST ROCKAWAY, NJ

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08190102A25

Sample Amount : 5 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L1853137
Project Number : MANID 16-01
Date Collected : 12/24/18 11:24
Date Received : 12/26/18

Date Analyzed : 01/02/19 18:39

Dilution Factor : 2
Analyst : PK
Instrument ID : VOA108
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
108-86-1	Bromobenzene	ND	5.0	1.4	U
104-51-8	n-Butylbenzene	ND	5.0	1,4	U
35-98-8	sec-Butylbenzene	ND	5.0	1.4	U
98-06-6	tert-Butylbenzene	ND	5.0	1.4	U
5-49-8	o-Chlorotoluene	ND	5.0	1.4	U
06-43-4	p-Chlorotoluene	ND	5.0	1.4	U
06-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.4	U
7-68-3	Hexachlorobutadiene	ND	5.0	1.4	U
8-82-8	Isopropylbenzene	ND	5.0	1.4	U
9-87-6	p-Isopropyltoluene	ND	5.0	1.4	U
1-20-3	Naphthalene	ND	5.0	1.4	U
03-65-1	n-Propylbenzene	ND	5.0	1.4	U
7-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.4	U
20-82-1	1,2,4-Trichlorobenzene	ND	5.0	1.4	U
08-67-8	1,3,5-Trimethylbenzene	ND	5.0	1.4	U
5-63-6	1,2,4-Trimethylbenzene	ND	5.0	1.4	U
23-91-1	1,4-Dioxane	ND	500	120	TR
05-05-5	p-Diethylbenzene	ND	4.0	1.4	U
22-96-8	p-Ethyltoluene	ND	4.0	1.4	U
5-93-2	1,2,4,5-Tetramethylbenzene	ND	4.0	1.1	U
0-29-7	Ethyl ether	ND	5.0	1.4	U
10-57-6	trans-1,4-Dichloro-2-butene	ND	5.0	1.4	U

DATA USABILITY SUMMARY REPORT (DUSR)

ORGANIC ANALYSIS

EPA Compendium Method TO-15 LOW LEVEL VOLATILES BY GC/MS For Soil Vapor Air - Effluent Sample Collected December 26, 2018 **Minuteman Cleaners** From 89 Ocean Avenue, East Rockaway, New York by J.R. Holzmacher P.E. LLC. Project #: ManID 16-01

> SAMPLE DELIVERY GROUP NUMBER: L1853159 Alpha Analytical (ELAP #11148)

SUBMITTED TO:

Ms. Patricia Zalak J.R. Holzmacher P.E., LLC 3555 Veterans Memorial Highway, Suite A Ronkonkoma, NY 11779

January 10, 2019

PREPARED BY:

Lori A. Beyer/President L.A.B. Validation Corp. four a self 14 West Point Drive

East Northport, NY 11731

L.A.B. Validation Corp. 14 West Point Drive, East Northport, N.Y. 11731

89 Ocean Avenue, East Rockaway, New York; December 2018. Data Validation Report: Volatile Organics

Table of Contents:

Introduction

Data Qualifier Definitions

Sample Receipt

- 1.0 Volatile Organics by GC/MS EPA Compendium Method TO-15
 - 1.1 Holding Time
 - 1.2 Surrogate Standards
 - 1.3 Matrix Spikes (MS), Matrix Spike Duplicates (MSD), Laboratory Duplicate, Field Duplicate Analysis
 - 1.4 Laboratory Control Sample
 - 1.5 Blank Contamination
 - 1.6 GC/MS Instrument Performance Check
 - 1.7 Initial and Continuing Calibrations
 - 1.8 Internal Standards
 - 1.9 Target Compound List Identification
 - 1.10 Tentatively Identified Compounds
 - 1.11 Compound Quantification and Reported Detection Limits
 - 1.12 Overall System Performance

APPENDICES:

- A. Chain of Custody Document
- B. Case Narrative
- C. Form Is with Qualifications

Introduction:

A validation was performed on an Effluent soil vapor sample for Volatile Organic analysis collected by J.R. Holzmacher, P.E., LLC and submitted to Alpha Analytical for subsequent analysis under chain of custody documentation. This report contains the laboratory and validation results for the Effluent sample collected on December 26, 2018.

The sample was analyzed by Alpha Analytical utilizing EPA Method TO-15 and in accordance with NYSDEC Analytical Services Protocol (2005) and submitted under NYSDEC ASP Category B equivalent deliverable requirements for the associated analytical methodology employed. The analytical testing consisted of the TO-15 Compound List.

The data was evaluated in accordance with the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (Publication 9240.1-05), EPA SOP #HW31 (Revision 6-Updated September 2016) and in conjunction with the analytical methodology for which the sample was analyzed, where applicable and relevant.

Data Qualifier Definitions:

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- UJ The analyte was analyzed for but not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample.
- D Analyte concentration was obtained from diluted analysis.

Sample Receipt:

The Chain of Custody document from 12/26/18 indicates that the air sample was received via laboratory courier following completion of the sampling event on 12/26/2018. Sample login notes and the chain of custody indicate that at the Validated Time of Sample Receipt (VTSR) at the laboratory no discrepancies were notated and therefore the integrity of the summa canister sample is assumed to be good.

Summa Canisters were leak tested prior to collection of each sample. Initial pressure gauge is recorded on the chain of custody and is required to be approximately 30 psi with zero air. Acceptable canister pressure was observed. The canister passed the leak check requirements; canister pressure for Hg was acceptable.

The Form I's included in Appendix C includes all usable (qualified) and unusable (rejected) results for the samples identified above and summarize the detailed narrative section of the report. All data validation qualifications have been reported on the Form I's for ease of review and verification.

NOTE:

L.A.B. Validation Corp. believes it is appropriate to note that the data validation criteria utilized for data evaluation is different than the method requirements utilized by the laboratory. Qualified data does not necessarily mean that the laboratory was non-compliant in the analysis that was performed.

Volatile Organics by EPA Compendium Method TO-15

The following method criteria were reviewed: holding times, surrogate standards, LCS, Blanks, Laboratory Duplicate, Tunes, Calibrations, Internal Standards, Target Component Identification and Quantitation, Reported Quantitation Limits and Overall System Performance. The volatile results are valid and useable as noted on the data summary Form I's in Appendix C and within the following text:

1.1 Holding Time

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

The Effluent sample was analyzed within the method and technical required holding times of thirty (30) days from sample collection for analysis. No qualifications were required based upon holding time criteria.

1.2 Surrogate Standards

All samples are spiked with surrogate compounds prior to sample analysis to evaluate overall laboratory performance and efficiency of the analytical technique. If the measure of surrogate concentrations is outside contract specifications, qualifications are required to be applied to associated samples and analytes.

Samples were not spiked with surrogate standards. Method TO15 does not mandate the addition of surrogate standards.

1.3 Matrix Spikes (MS)/ Matrix Spike Duplicates (MSD)/Laboratory Duplicate /Field Duplicate Analysis

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices.

Matrix Spike/Matrix Spike Duplicate analysis was not performed.

Batch laboratory duplicate was submitted in the data package. Data was not qualified based on non-site-specific QC.

Field Duplicate analysis was not required for this sampling event. The following criteria are utilized for Field/Lab Duplicate analysis when performed:

Criteria	Detected Compounds	Non-Detected Compounds
The RPD is within the limits of 0 and 25%	No qualification	No qualification
The RPD >25%	J in the parent and duplicate samples	Not applicable
The RPD could not be calculated since the compound was only detected in either the parent of duplicate sample. However, the detected concentration was =2x the reporting limit</td <td>No qualification</td> <td>No qualification</td>	No qualification	No qualification
The RPD could not be calculated since the compound was only detected in either the parent or duplicate sample However, the detected concentration was >2x the reporting limit.	J in the parent and duplicate sample	UJ in the parent of duplicate sample

No qualifications to the data were applied based on MS/MSD/Laboratory Duplicate and Field Duplicate analysis.

1.4 Laboratory Control Sample

The LCS data for laboratory control samples (LCS) are generated to provide information on the accuracy of the analytical method and on the laboratory performance.

The following table summarizes the LCS criteria and the data qualification guidelines for all associated field samples.

LCS	NOT QUALIFIED	J	R
% Recovery:			
Detects	70-130%	<70%,>130%	
Non-Detects	>/=130%	50-69%	<50%
Absolute RT of LCS			
Compounds:			
LCS Compounds in	+/-0 .33		>/=0.33
samples RT: (min)			

Acceptable LCS was analyzed. Recovery values for all reported compounds was determined to be >70%-<130% except for high recoveries for Dichlorodifluoromethane (143%), Acetone (131%), 3-Chloropropene (139%), Undecane (132%) and Dodecane (143%). Since these target compounds were not detected in the Effluent sample, high

recovery does not support any potential loss of detection and/or result bias. No qualifications to the data are required.

1.5 Blank Contamination

Quality assurance (QA) blanks; i.e. method, trip and field blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field blanks measure cross-contamination of samples during field operations. Storage blanks measure cross-contamination during sample storage of the field samples and are not required for TO15 analysis. Canister blanks measure cross-contamination from the sampling media.

The following table was utilized to qualify target analyte results due to method blank contamination. The largest value from all the associated blanks is required to be utilized. The largest value from all the associated blanks is required to be utilized:

Blank Type	Blank Result	Sample Result	Action for Samples
Method, Storage, field,	Detects	Not Detected	No qualification required
Trip, Instrument	<crql*< td=""><td><crql*< td=""><td>Report CRQL value with a U</td></crql*<></td></crql*<>	<crql*< td=""><td>Report CRQL value with a U</td></crql*<>	Report CRQL value with a U
		>/= CRQL* and <2x the CRQL**	No qualification required
	>CRQL*	= CRQL*</td <td>Report CRQL value with a U</td>	Report CRQL value with a U
		>/=CRQL* and = blank</td <td>Report blank value for sample concentration</td>	Report blank value for sample concentration
		concentration	with a U
		>/= CRQL* and > blank	No qualification required
		concentration	
	=CRQL*	= CRQL*</td <td>Report CRQL value with a U</td>	Report CRQL value with a U
		>CRQL*	No qualification required
	Gross Contamination**	Detects	Report blank value for sample concentration with a U

^{*2}x the CROL for methylene chloride, 2-butanone and acetone.

The table below is utilized to qualify samples with target compound results also present in certification blanks:

^{**4}x the CRQL for methylene chloride, 2-butanone, and acetone

^{***}Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed 100 ug/L. Below is a summary of the compounds in the sample and the associated qualifications that have been applied:

Certification Contamination	Sample Result	Action for Sample
>/=detect limit	>5x certification contamination	No qualification required
>/=detect limit	<detect limit<="" td=""><td>Detection limit "U"</td></detect>	Detection limit "U"
>/=detect limit	>/=detect limit and = 5x<br certification contamination level	5x certification contamination "U"
<detect limit<="" td=""><td><!--=detection limit and -->/= detection limit</td><td>No qualification</td></detect>	=detection limit and /= detection limit	No qualification

Below is a summary of the compounds in the sample and the associated qualifications that have been applied:

A) Method Blank Contamination:

Method and Canister blanks were determined to be free of any contamination.

B) Field Blank Contamination:

Field Blank analysis was not required for this SDG.

C) Trip Blank Contamination:

Trip Blank analysis was not required for this SDG.

1.6 GC/MS Instrument Performance Check

Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The Tuning standard for volatile organics is Bromofluorobenzene (BFB).

Instrument performance was generated within acceptable limits and frequency (24 hours) for Bromofluorobenzene (BFB) for all analyses conducted for this SDG.

1.7 Initial and Continuing Calibrations

Satisfactory instrument calibration is established to ensure that the instrument can produce acceptable quantitative data. An initial

Phone (516) 523-7891 email LABValidation@aol.com

calibration demonstrates that the instrument can give acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instrument is giving satisfactory daily performance.

A) Response Factor GC/MS:

The response factor measures the instrument's response to specific chemical compounds. The response factor for all compounds must be >/= 0.05 in both initial and continuing calibrations. A value <0.05 indicates a serious detection and quantitation problem (poor sensitivity). Analytes detected in the sample will be qualified as estimated, "J". All non-detects for that compound in the corresponding samples will be rejected, "R".

The following compounds can be >0.01 without qualification:

2-Butanone

Carbon Disulfide

Chloroethane

Chloromethane

1,2-Dibromoethane

1,2-Dichloropropane

1,4-Dioxane

1,2-Dibromo-3-chloropropane

Methylene Chloride

All the response factors for the target analytes reported were found to be within acceptable limits (>/=0.05) [or >/=0.01 for the 9 compounds above] and remaining analytes, for the initial and continuing calibrations.

B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D):

Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentrations. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be <30% and %D must be <30%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and non-detects are flagged "UJ". If %RSD and %D grossly exceed QC criteria (>90%), non-detect data may be qualified, "R", unusable.

Additionally, in cases where the %RSD is >30% and eliminating either the high or the low point of the curve does not restore the %RSD to less than or equal to 30% then positive results are qualified, "J". In cases where removal of either the low or high point restores the linearity, then only low or high-level results will be qualified, "J" in the portion of the curve where non-linearity exists.

Initial Calibrations: The initial calibrations provided and the %RSD was within acceptable limits (30%) and (40%) for poor responders for all requested target compounds. Initial calibration verification standard met QC requirements.

Continuing Calibrations: The continuing calibrations provided and the %D was within acceptable limits (30%) and (40%) for poor responders for all reported compounds except for Dichlorodifluoromethane (40.8%). Non-detects have been qualified, "UJ."

1.8 Internal Standards

Internal Standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of 2 (-40% to +40%) from the associated continuing calibration standard. The retention time of the internal standard must not vary more than +/-20 seconds from the associated continuing calibration standard. If the area count is outside the (-40% to +40%) range of the associated standard, all positive results for compounds quantitated using that IS are qualified as estimated, "J", and all non-detects as "UJ", or "R" if there is a severe loss of sensitivity.

If an internal standard retention time varies by more than 20 seconds, professional judgment will be used to determine either partial or total rejection of the data for that sample fraction.

Internal Standard area responses met QC requirements.

1.9 Target Compound List Identification

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within =/- 0.06RRT units of the standard compound and have an ion spectrum which has a ratio of the primary

Phone (516) 523-7891 email LABValidation@aol.com

and secondary m/e intensities within 20% of that in the standard compound.

GC/MS spectra met the qualitative criteria for identification. All retention times were within required specifications.

1.10 **Tentatively Identified Compounds (TICs)**

TICs when submitted, the identification must be considered tentative (both quantitative and qualitative) due to the lack of required compound specific response factors. Consequently, all concentrations should be considered estimated, "J" and because of the qualitative uncertainty should be qualified, "N" where an identification has been made.

TICs were not required with this data set.

1.11 Compound Quantification and Reported Detection Limits

GC/MS quantitative analysis are acceptable. Correct internal standards and response factors and air volumes were used to calculate final concentrations.

Sample results have been presented in ug/m3 as well as ppbv on the laboratory reporting forms. Effluent sample was analyzed at 50mls. Tetrachloroethene concentration is within the linear calibration range. Dilution is acceptable. There is potential that lower level hits were lost in dilutions. Reporting limits have been adjusted accordingly.

1.12 **Overall System Performance**

GC/MS analytical methodology was acceptable for this analysis. The data reported agrees with the raw data provided in the final report. The laboratory provided complete data package and reported all data using acceptable protocols and laboratory qualifiers as defined in the report package.

Reviewer's Signature 100 0 BULL Date 01/10/2019

Appendix A
Chain of Custody
Document

|--|

Sample Delivery Group Summary

Alpha Job Number: L1853159 Received : 26-DEC-2018
Reviewer: Kim L. Bailey

Account Name J.R. Holzmacher P.E., LLC

Project Number MANID 16-01

Project Name MINUTE MAN CLEANERS

Delivery Information

Samples Delivered By: Alpha Courier

Chain of Custody : Present

Cooler Information

Cooler Seal/Seal# Preservation Temperature(°C) Additional Information

N/A Absent/

Condition Information

1) All samples on COC received?

2) Extra samples received?

3) Are there any sample container discrepancies? NO

4) Are there any discrepancies between sample labels & COC? NO

5) Are samples in appropriate containers for requested analysis? NO

Please refer to information noted in Question 3 above.

6) Are samples properly preserved for requested analysis?

YES

7) Are samples within holding time for requested analysis? YES

8) All sampling equipment returned?

YES

Volatile Organics/VPH

1) Reagent Water Vials Frozen by Client?

Appendix B
Case Narrative

Project Name: MINUTE MAN CLEANERS Lab Number: L1853159

Project Number: MANID 16-01 Report Date: 01/04/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:

MINUTE MAN CLEANERS

Project Number:

MANID 16-01

Lab Number:

L1853159

Report Date:

01/04/19

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on December 10, 2018. The canister certification results are provided as an addendum.

L1853159-01: The sample has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

The WG1194514-3 LCS recoveries for dichlorofluoromethane (143%), acetone (131%), 3-chloropropene (139%), undecane (132%) and dodecane (c12) (143%) are above the upper 130% acceptance limit. All samples associated with this LCS do not have reportable amounts of these analytes.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature: Galte Pote

Report Date: 01/04/19

Title: Technical Director/Representative

Appendix C Form I's With Qualifications

Form 1 **Volatile Organics**

Client : J.R. Holzmacher P.E., LLC **Project Name** : MINUTE MAN CLEANERS

Lab ID : L1853159-01D **Client ID** : EFFLUENT Sample Location : 89 OCEAN AVE Sample Matrix : SOIL_VAPOR Analytical Method: 48,TO-15

Lab File ID : R32123 Sample Amount : 50.0 ml

Lab Number : L1853159 Project Number : MANID 16-01 Date Collected : 12/26/18 13:41 Date Received

: 12/26/18 : 01/04/19 09:05 Date Analyzed

Dilution Factor : 5 Analyst : MB

Instrument ID : AIRPIANO3

GC Column : RTX-1

Saiii	pie Amount . 50.0 mi				GC C	Julili	* B12	A-1
			ppbV			ug/m3		
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
75-71-8	Dichlorodifluoromethane	ND	1.00	-	ND	4.94	11777	JU (IT
74-87-3	Chloromethane	ND	1.00	-	ND	2.07	346	U
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethan	ND	1.00	-	ND	6.99	344	U
75-01-4	Vinyl chloride	ND	1.00	•	ND	2.56		U
106-99-0	1,3-Butadiene	ND	1.00	.77	ND	2.21	1.77	U
74-83-9	Bromomethane	ND	1.00	**	ND	3,88	(**	U
75-00 - 3	Chloroethane	ND	1.00	144	ND	2.64	122	U
64-17-5	Ethyl Alcohol	ND	25.0		ND	47.1		U
593-60-2	Vinyl bromide	ND	1.00	ent.	ND	4.37	S ST.	U
67-64-1	Acetone	ND	5.00	S 00 6	ND	11.9	100	U
75-69-4	Trichlorofluoromethane	ND	1.00	1447	ND	5.62	1722	U
67-63-0	iso-Propyl Alcohol	ND	2.50		ND	6.15		U
75-35-4	1,1-Dichloroethene	ND	1.00	inn.	ND	3.96	277	U
75-65-0	tert-Butyl Alcohol	ND	2.50	-	ND	7.58	1966	U
75-09-2	Methylene chloride	ND	2.50	221	ND	8.69	522	U
107-05-1	3-Chloropropene	ND	1.00	-	ND	3.13	-	U
75-15-0	Carbon disulfide	ND	1.00	-	ND	3.11	2 41.	U
76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	1.00	S4 5	ND	7.66	-	U
156-60-5	trans-1,2-Dichloroethene	ND	1.00		ND	3.96	-	U
75-34-3	1,1-Dichloroethane	ND	1.00		ND	4.05		U
1634-04-4	Methyl tert butyl ether	ND	1.00		ND	3.61	3 511	U
78-93-3	2-Butanone	ND	2.50	520	ND	7.37	3 88	U
156-59-2	cis-1,2-Dichloroethene	ND	1.00		ND	3.96	744	U
141-78-6	Ethyl Acetate	ND	2.50	77%	ND	9.01	25	U
67-66 - 3	Chloroform	13.5	1.00	. 	65.9	4.88	(***	
109-99-9	Tetrahydrofuran	ND	2.50	141	ND	7.37	(***)	U
107-06-2	1,2-Dichloroethane	ND	1.00		ND	4.05	-	U
10-54-3	n-Hexane	ND	1.00		ND	3.52	::::	U

Form 1 **Volatile Organics**

Client : J.R. Holzmacher P.E., LLC Project Name : MINUTE MAN CLEANERS

Lab ID : L1853159-01D Client ID : EFFLUENT Sample Location : 89 OCEAN AVE Sample Matrix : SOIL_VAPOR

Analytical Method: 48,TO-15 Lab File ID : R32123

Sample Amount : 50.0 ml Lab Number : L1853159 Project Number : MANID 16-01 Date Collected : 12/26/18 13:41

Date Received : 12/26/18 Date Analyzed : 01/04/19 09:05

Dilution Factor : 5 Analyst : MB

Instrument ID : AIRPIANO3

GC Column : RTX-1

Sample Amount . 50.0 mi						GC COldilli		V-1
		3	ppbV			ug/m3		
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
71-55-6	1,1,1-Trichloroethane	ND	1.00	1000	ND	5.46	: 	U
71-43-2	Benzene	ND	1.00		ND	3.19	-	U
56-23-5	Carbon tetrachloride	NĐ	1.00	1919	ND	6.29	94	U
110-82-7	Cyclohexane	ND	1.00		ND	3.44		U
78-87-5	1,2-Dichloropropane	ND	1.00) .	ND	4.62	S 	U
75-27-4	Bromodichloromethane	ND	1.00	Tana)	ND	6.70		U
1330-20-7	Xylene (Total)	ND	1.00	14141	ND	4.34	-	U
123-91-1	1,4-Dioxane	ND	1.00		ND	3.60	E	U
79-01-6	Trichloroethene	ND	1.00		ND	5.37		U
540-84-1	2,2,4-Trimethylpentane	ND	1.00	144	ND	4.67	: ==	U
142-82-5	Heptane	ND	1.00		ND	4.10		U
10061-01-5	cis-1,3-Dichloropropene	ND	1.00		ND	4.54	-	U
108-10-1	4-Methyl-2-pentanone	ND	2.50	-	ND	10.2	:: ****	U
10061-02-6	trans-1,3-Dichloropropene	ND	1.00	**	ND	4.54		U
79-00-5	1,1,2-Trichloroethane	ND	1.00	*	ND	5.46	-	U
108-88-3	Toluene	ND	1.00		ND	3.77	150	U
540-59-0	1,2-Dichloroethene (total)	ND	1.00	; n+ :	ND	3.96	S 30	U
591-78-6	2-Hexanone	ND	1.00	(44)	ND	4.10	:= #	U
542-75-6	1,3-Dichloropropene, Total	ND	1.00		ND	4.54	7=	U
124-48-1	Dibromochloromethane	ND	1.00	11179	ND	8.52	A.578	U
106-93-4	1,2-Dibromoethane	ND	1.00		ND	7.69	-	U
127-18-4	Tetrachloroethene	367	1.00	-	2490	6.78	194	
108-90-7	Chlorobenzene	ND	1.00		ND	4.61	-	U
00-41-4	Ethylbenzene	ND	1.00		ND	4.34	1.575	U
79601-23-1	p/m-Xylene	ND	2.00		ND	8.69		U
75-25-2	Bromoform	ND	1,00	-	ND	10,3	-	U
00-42-5	Styrene	ND	1.00	**	ND	4.26		U
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.00		ND	6.87	288	U

Form 1 **Volatile Organics**

Client : J.R. Holzmacher P.E., LLC Project Name : MINUTE MAN CLEANERS

Lab ID : L1853159-01D Client ID : EFFLUENT Sample Location : 89 OCEAN AVE Sample Matrix : SOIL_VAPOR Analytical Method : 48,TO-15

Lab File ID : R32123 Sample Amount : 50.0 ml

Lab Number : L1853159 Project Number : MANID 16-01 Date Collected : 12/26/18 13:41

Date Received : 12/26/18 Date Analyzed : 01/04/19 09:05

Dilution Factor : 5 Analyst : MB

Instrument ID : AIRPIANO3

GC Column : RTX-1

		ppbV			ug/m3				
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
95-47-6	o-Xylene	ND	1.00	8	ND	4.34	111 5	U	
622-96-8	4-Ethyltoluene	ND	1.00	3.	ND	4.92	98 3	U	
108-67-8	1,3,5-Trimethylbenzene	ND	1.00	? .	ND	4.92	us:	U	
95-63-6	1,2,4-Trimethylbenzene	ND	1.00	(ND	4.92	-	U	A.A
100-44-7	Benzyl chloride	ND	1.00	· ·	ND	5.18	Ħ≅<	U	
541-73-1	1,3-Dichlorobenzene	ND	1.00	2966	ND	6.01	W#:	U	
106-46-7	1,4-Dichlorobenzene	ND	1.00	744	ND	6.01	-	U	
95-50-1	1,2-Dichlorobenzene	ND	1.00	5 	ND	6.01	•	U	
120-82-1	1,2,4-Trichlorobenzene	ND	1.00		ND	7.42	85 0	U	
87-68-3	Hexachlorobutadiene	ND	1.00	53 44	ND	10.7	***	U	