50 Century Hill Drive, Latham, NY 12110 518.786.7400 FAX 518.786.7299 ctmale@ctmale.com

September 22, 2010

Mr. Michael P. McLean, P.E. NYS Dept. of Environmental Conservation Region 5 Office 1115 NYS Route 86, PO Box 296 Ray Brook, New York 12977-0296

Re: 2010 Bi-Annual Site Management Plan Groundwater Sampling Results Former Independent Leather Tannery Site (#B-00158)
City of Gloversville, Fulton County
C.T. Male Project No. 10.1125

Dear Mike:

C.T. Male Associates, P.C. (C.T. Male) has a performed groundwater sampling event as part of the long term groundwater monitoring program at the Former Independent Leather Tannery Site in Gloversville, New York in accordance with NYSDEC approved Site Management Plan, dated January 13, 2009. This letter summarizes the results of the bi-annual (once every two years) groundwater monitoring event completed in July 2010. Also enclosed is the monitoring well location map, analytical results summary tables, groundwater contour map, and site plan summarizing the concentrations of arsenic and chromium detected in groundwater in July 2010 and previous groundwater monitoring events (July 2008, May 2007, March 2006 and May 2002).

Wells Sampled

The Monitoring Well Location Plan (Figure 1) depicts the monitoring wells that were purged and sampled for laboratory analysis for the July 22 and 23, 2010 monitoring event. The monitoring wells sampled on the Former Independent Leather Tannery Site were B-2R, B-3, MW-5 through MW-12, MW-14 and OFF35. The monitoring well sampled on the property not owned by the City was OFF33. The monitoring wells that have been abandoned or removed as a result of remedial work are still shown on the Monitoring Well Location Plan.

September 22, 2010 Mr. Michael P. McLean, P.E. Page - 2

Analytical Results

The analytical results for the July 2008 monitoring event and previous monitoring events are summarized in tabular form in Table 1, attached. Table 1 summarizes the analytical results for the on-site wells in addition to the one (1) remaining off-site well. Note that the tables list only those compounds and analytes detected above the limit of laboratory detection. The analytical results were not subjected to data validation per NYSDEC Guidance for the Development of Data Usability Summary Report (DUSR), as approved by NYSDEC.

As shown in Table 1, naphthalene, and six metals (arsenic, chromium, iron, magnesium, manganese, and sodium) were the only compounds/analytes detected at concentration which exceed there NYSDEC Water Quality Standard/Guidance Values.

Naphthalene was detected above NYSDEC regulatory standards at monitoring well MW-10 in the July 2010 sampling event. The concentration of this petroleum related compound was relatively low (360 ug/L), and has been generally decreasing in concentration since May 2002 with the exception of a slight increase when compared to the last sampling event in July 2008. The concentration of naphthalene within monitoring well MW-10 was 1,000 ug/L in May 2002, 690 ug/L in March 2006, 450 ug/L in May 2007, and 160 ug/L in July 2008.

Of the metals detected above regulatory value, arsenic and chromium are the main analytes of concern based on their historical use at the former tannery. Arsenic and chromium concentrations continue to fluctuate slightly (increase and decrease), but overall they have been relatively stable over time.

Groundwater Contour and Arsenic/Chromium Concentration Maps

Groundwater depths were collected at the monitoring wells on July 22, 2010 prior to purging the wells. Utilizing the groundwater levels and an assumed benchmark, the water level depths were converted to reference elevations to contour the water table and show the inferred direction of groundwater flow. As shown in Figure 2, the groundwater flow direction on July 22, 2010 is inferred to have both easterly and westerly flow components converging on the Cayadutta Creek.

September 22, 2010 Mr. Michael P. McLean, P.E. Page - 3

Remedial actions completed in 2005/2006 removed on-site and off-site arsenic, chromium and petroleum impacted soils; however, residual impacts to soil and groundwater remain on-site. Arsenic and chromium are present in groundwater across the site above and below NYSDEC Water Quality Standards. Figure 3 summarizes the arsenic and chromium concentrations at each well for sampling events completed to date.

Future Bi-Annual Groundwater Sampling

The next bi-annual groundwater sampling event is planned for summer/fall 2012. The wells to be sampled and the associated analytical parameters for each well are summarized in the following table, as previously approved by NYSDEC.

	Summary of Lor	Table 1 ng Term Groundw	vater Monitoring Pro	gram
Well ID	TCL VOCs	TCL SVOCs	Select Metals (1)	TCL pesticides
On-site Well 1	Locations			
B-2R			X	
B-3			X	
MW-5			X	
MW-6			X	X
MW-7	X	Χ	X	X
MW-8			X	
MW-9			X	
MW-10	X	Χ	X	X
MW-11			X	
MW-12			X	
MW-14			X	
OFF35	X	X	X	
Off-Site Well	Locations			
OFF33	X	Χ	X	

Notes:

ASP Category B Data Deliverable not required per Mike McLean of NYSDEC.

[&]quot;X" denotes the sample will be analyzed for those parameters.

[&]quot;Certain Metals" are arsenic, chromium, iron, magnesium, manganese and sodium.

⁽²⁾ Not required per Mike McLean of NYSDEC.

September 22, 2010 Mr. Michael P. McLean, P.E. Page - 4

Conclusions

The annual groundwater monitoring was performed in July 2010 in general accordance with the NYSDEC approved Site Management Plan. The analytical results show that arsenic and chromium remain the primary contaminants of concern as these metals are present in groundwater at certain on-site well locations at concentrations above NYSDEC regulatory values. The arsenic and chromium concentrations remain relatively similar with minimal upward and downward fluctuation.

Naphthalene is the only petroleum related compound that is being detected above its applicable groundwater standard at only one (1) monitoring well location, MW-10. The concentration of naphthalene was elevated at monitoring well MW-10 in 2002, but decreased in 2006, 2007 and 2008, and slightly rebounded from 160 ug/L in 2008 to 360 ug/L in 2010. Acetone was detected monitoring wells OFF33 and OFF35, respectively, but these concentrations are well below its applicable guidance value. Two pesticides, beta-BHC and delta-BHC, continue to be detected in MW-7, but their concentrations are below their applicable standard values.

The groundwater sampling and analyses events will continue on an bi-annual basis (every two years) and the next event will be performed in July 2012. The annual Site Management Plan monitoring (i.e., site visit to observe the condition of the surface cover system) will continue to be performed on an annual basis. The next annual Site Management Plan monitoring event is scheduled for the fall months of 2010.

If you have any questions, please contact me at (518) 786-7548.

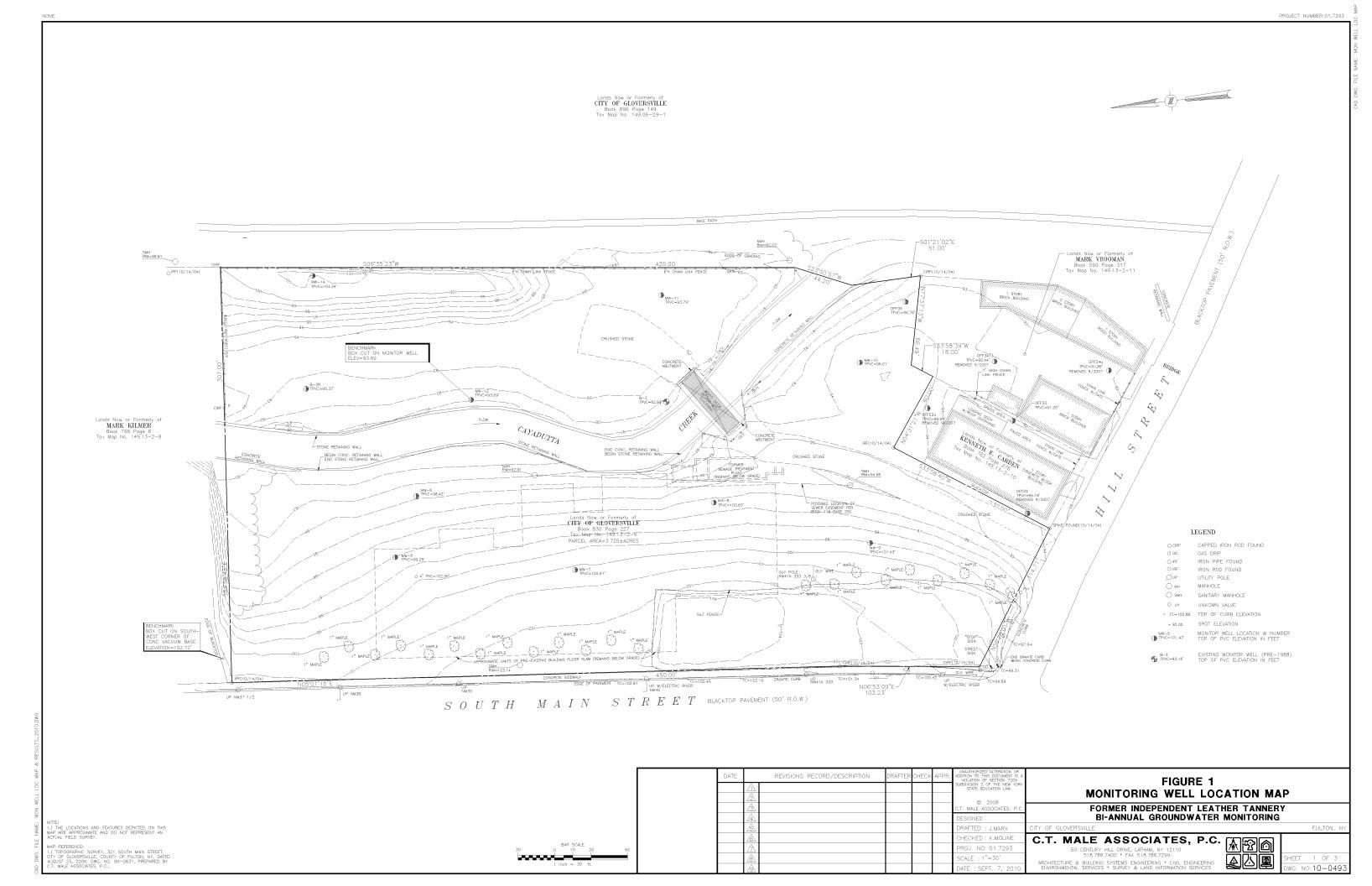
Sincerely,

C.T. MALE ASSOCIATES, P.C.

Jeffrey A. Marx, P.E.

Project Engineer

Att Figures


Table 1 - Analytical Summary

c: Robert Abel, City of Gloversville

Review and Approved By:

Kirk Moline Project Manager

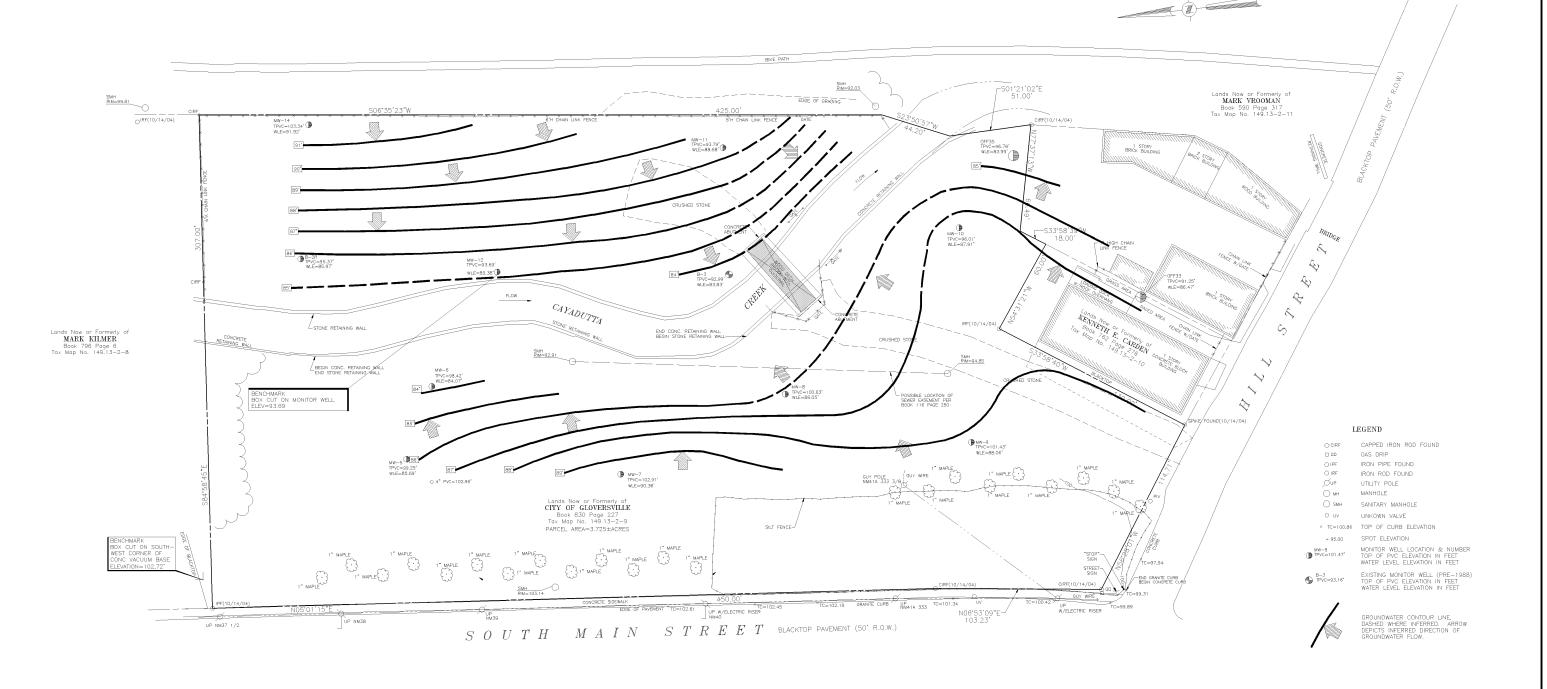

Figure 1 Monitoring Well Location Map

Figure 2 Groundwater Contour Map

- "Survey of Lands of Independent Leather MFG. Corp.," City of Gloversville, County of Fulton, NY., dated October 26, 1988, prepared by C.T. Male Associates P.C., Drawing No. 88-607.
- "Boundary Survey Former Independent Leather Mfg. Corp., 321 South Main Street, City of Gloversville, County of Fulton, NY., dated January 29, 2002, prepared by C.T. Male Associates P.C., Drawing No. 02-446.

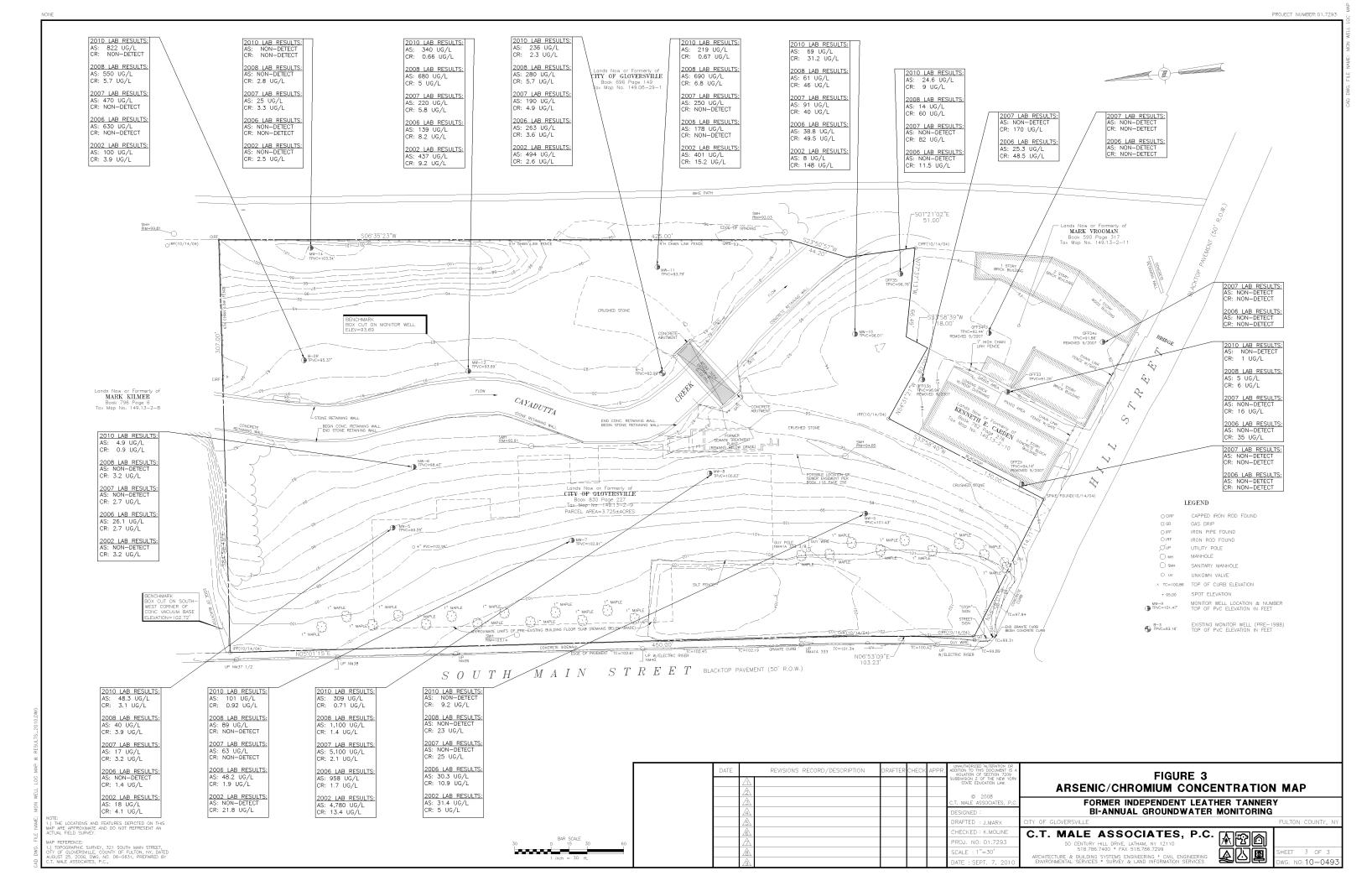
Lands Now or Formerly of CITY OF GLOVERSVILLE Book 696 Page 149

30	B. 0	AR SCALE 15 30	60
	1 inc	n = 30 ft.	

DATE		REVISIONS RECORD/DESCRIPTION	DRAFTER	CHECK	APPR.	UNAUTHORIZED 'ALTERATION OR ADDITION TO THIS DOCUMENT IS A VIOLATION OF SECTION 7209	
	\triangle					SUBDIVISION 2 OF THE NEW YORK STATE EDUCATION LAW.	
	2					© 2008	
	<u> </u>					C.T. MALE ASSOCIATES, P.C.	
	4					DESIGNED :	
	<u> </u>					DRAFTED : S.WUNSCH	CITY
	<u></u>					CHECKED : K.MOLINE	C.
	\triangle					PROJ. NO: 01.7293	
	<u> 8</u>					SCALE : 1"=30'	AF
	/g\					DATE : SEPT. 7, 2010	E

FIGURE 2 GROUNDWATER CONTOUR MAP (JULY 22, 2010)

FORMER INDEPENDENT LEATHER TANNERY BI-ANNUAL GROUNDWATER MONITORING


C.T. MALE ASSOCIATES, P.C.

50 CENTURY HILL DRIVE, LATHAM, NY 12110 518.786.7400 * FAX 518.786.7299 ARCHTECTURE & BULDING SYSTEMS ENGINEERING * CIVIL ENGINEERING ENVIRONMENTAL SERVICES * SURVEY & LAND INFORMATION SERVICES ATO SHE

SHEET 2 OF 3

DWG. NO: 10-0493

Figure 3 Arsenic/Chromium Concentrations Map

Table 1 Analytical Summary Table

C.T. Male Project No. 01.7293

Sample ID		B-2		В	-2R				B-3		
Date Sampled	NYSDEC Water Quality	May-02	Mar-06 (2)	May-07	Jul-08	Jul-10	May-02	Mar-06	May-07	Jul-08	Jul-10
Parameter	Standard ⁽¹⁾	Result Qual	Result Qual	Result Qual							
VOC by EPA Method 8260, (ug	g/L)		<u> </u>			•		<u> </u>			
Acetone	50 (GV)	6 J B	ND J	ND	NS	NS	8 J M	ND	ND	NS	NS
Benzene	1.0	ND	ND J	ND	NS	NS	ND	ND	ND	NS	NS
2-Butanone (MEK)	NA	ND	ND J	ND	NS	NS	ND	ND	ND	NS	NS
Carbon disulfide	NA	ND	ND J	ND	NS	NS	ND	ND	ND	NS	NS
Chlorobenzene	5	ND	ND J	ND	NS	NS	ND	ND	ND	NS	NS
cis-1,2-Dichloroethene	5	ND	ND J	ND	NS	NS	ND	ND	ND	NS	NS
Ethylbenzene	5	ND	ND J	ND	NS	NS	ND	ND	ND	NS	NS
Methylene chloride	5	0.7 J	ND J	ND	NS	NS	0.8 J	ND	ND	NS	NS
Toluene	5	ND	ND J	ND	NS	NS	ND	ND	ND	NS	NS
Vinyl chloride	2	ND	ND J	ND	NS	NS	ND	ND	ND	NS	NS
Xylenes (total)	5	ND	ND J	ND	NS	NS	ND	ND	ND	NS	NS
Isopropylbenzene	5	ND	ND J	ND	NS	NS	ND	ND	ND	NS	NS
SVOC by EPA Method 8270, (t	0 ,										
Acenaphthene	20(GV)	ND	ND	ND	NS	NS	ND	ND	ND J	NS	NS
Anthracene	50 (GV)	ND	ND	ND	NS	NS	ND	ND	ND J	NS	NS
Benz(a)anthracene	0.002 (GV)	ND	ND	ND	NS	NS	ND	ND	ND J	NS	NS
Benzo(a)pyrene	ND	ND	ND	ND	NS	NS	ND	ND	ND J	NS	NS
Benzo(b)fluoranthene	0.002 (GV)	ND	ND	ND	NS	NS	ND	ND	ND J	NS	NS
Benzo(g,h,i)perylene	NA	ND	ND	ND	NS	NS	ND	ND	ND J	NS	NS
Benzo(k)fluoranthene	0.002 (GV)	ND	ND	ND	NS	NS	ND	ND	ND J	NS	NS
Bis(2-ethylhexyl)phthalate	50 (GV)	ND	ND	ND	NS	NS	ND	ND	ND J	NS	NS
Carbazole	5	ND	ND	ND	NS	NS	ND	ND	ND J	NS	NS
Diethyl phthalate	50	ND	ND	ND	NS	NS	ND	ND	ND J	NS	NS
Di-n-butyl phthalate	50 (GV)	ND	1 J	ND	NS	NS	ND	ND	ND J	NS	NS
Fluoranthene	50(GV)	ND	ND	ND	NS	NS	0.6 J	ND	ND J	NS	NS
Fluorene	50(GV)	ND	ND	ND	NS	NS	ND	ND	ND J	NS	NS
Naphthalene	10	ND	ND	ND	NS	NS	ND	ND	ND J	NS	NS
Pentachlorophenol	1	ND	ND	ND	NS	NS	ND	ND	ND J	NS	NS
Phenanthrene	50(GV)	ND	ND	ND	NS	NS	0.4 J	ND	ND J	NS	NS
Phenol	1.0	ND	ND	ND	NS	NS	ND	ND	ND J	NS NS	NS NS
Pyrene	50 NA	ND	ND	ND	NS NG	NS NG	1 J	ND	ND J	NS NG	NS NG
2,4,5-Trichlorophenol	NA	ND	ND	ND	NS NG	NS NG	ND	ND	ND J	NS NG	NS NG
2,4,6-Trichlorophenol	NA NA	ND	ND	ND ND	NS NS	NS NG	ND	ND	ND J	NS NC	NS NG
2,4-Dichlorophenol	NA NA	ND ND	ND	ND		NS NC	ND	ND	ND J	NS NC	NS NG
2-Methylnaphthalene	NA NA	ND ND	ND ND	ND ND	NS NC	NS NC	ND ND	ND ND	ND J ND J	NS NC	NS NC
4-Chloro-3-methylphenol 4-Methylphenol	NA No Standard	ND ND	ND ND	ND ND	NS NS	NS NS	ND ND	ND ND	ND J	NS NS	NS NS
4-Methyrphenol	างบ อเสมนสาน	ND	ND	ND	IND	IN5	ND	ND	ND J	IND	CNI

⁽¹⁾ TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent

Bold indicates value exceeded Standard Guidance Value.

J indicates an estimated value.

H indicates alternate peak selection upon analytical review.

M indicates a manually integrated compound.

B indicates value was obtained from a reading less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).

E indicates the reported value is estimate because of the presence of interference.

N indicates spiked sample recovery not within control limits. DL indicates laboratory dilution applied.

July 2008 analytical data is the only data not subjected to data validation via DUSR.

T Detections only July 2010.xls Page 1 of 14

Limitations, NYSDEC, June 1998 and Addendum, April 2000.

Based on Water Class GA, Source of Drinking Water (Groundwater).

 $[\]ensuremath{^{(2)}}$ Replacement monitoring well. Analysis conducted by Upstate Laboratories, Inc.

GV denotes Guidance Value. NA is Not Applicable. NS is Not Sampled. ND is Not Detected.

[&]quot;Qual" denotes Laboratory and Validators Qualifiers.

C.T. Male Project No. 01.7293

Sample ID						MV	V-10								MW-	-11				
Date Sampled	NYSDEC Water Quality	May	y-02	Mar	r-06	Ma	y-07	Jul	1-08	Jul	-10	Ma	y-02	Mar-06	May	r - 07	Jul-08		Jul	1-10
Parameter	Standard ⁽¹⁾	Result	Qual	Result Qual	Result	Qual	Result	Qual	Result	Qual										
VOC by EPA Method 8260, (ug	g/L)								-						*					
Acetone	50 (GV)	8	J	ND		ND		11		11	В	11		ND	ND		NS		NS	
Benzene	1.0	2	JM	1.3	J	1	J	0.78	J	1	J	ND		ND	ND		NS		NS	
2-Butanone (MEK)	NA	ND	-	ND	•	ND		1.9	J	3.5	J	ND		ND	ND		NS		NS	
Carbon disulfide	NA	ND		ND	ND		NS		NS											
Chlorobenzene	5	5		3.1	JН	2.1	J	2.7	J	4.6	J	ND		ND	ND		NS		NS	
cis-1,2-Dichloroethene	5	0.4	J	ND		ND	ND		NS		NS									
Ethylbenzene	5	10		2.7	J	1.8	J	ND		1.6	J	ND		ND	ND		NS		NS	
Methylene chloride	5	ND		0.8	J	ND	ND		NS		NS									
Toluene	5	0.8	J	0.5	J	0.36	J	ND		ND		ND		ND	ND		NS		NS	
Vinyl chloride	2	ND		0.8	J	ND	ND		NS		NS									
Xylenes (total)	5	75		4	J	3	J	ND		16		ND		ND	ND		NS		NS	
Isopropylbenzene	5	ND		ND		ND		ND		4.3	J	ND		ND	ND		NS		NS	
SVOC by EPA Method 8270, (1	ug/L)																			
Acenaphthene	20(GV)	ND		ND	ND		NS		NS											
Acenaphthene	50 (GV)	ND		ND	ND		NS		NS											
Anthracene	0.002 (GV)	ND		ND	ND		NS		NS											
Benz(a)anthracene	ND	ND		ND	ND		NS		NS											
Benzo(a)pyrene	0.002 (GV)	ND		ND	ND		NS		NS											
Benzo(b)fluoranthene	NA	ND		ND	ND		NS		NS											
Benzo(g,h,i)perylene	0.002 (GV)	ND		ND	ND		NS		NS											
Benzo(k)fluoranthene	50 (GV)	ND		ND	ND		NS		NS											
Carbazole	5	ND		ND	ND		NS		NS											
Diethyl phthalate	50	ND		ND	ND		NS		NS											
Di-n-butyl phthalate	50 (GV)	ND		ND	ND		NS		NS											
Fluoranthene	50(GV)	ND		ND	ND		NS		NS											
Fluorene	50(GV)	ND		ND	ND		NS		NS											
Naphthalene	10	1,000		690		450	J	160		360		1	J	ND	ND		NS		NS	
Pentachlorophenol	1	ND		ND	ND		NS		NS											
Phenanthrene	50(GV)	ND		ND	ND		NS		NS											
Phenol	1.0	ND		ND	ND		NS		NS											
Pyrene	50.0	ND		ND	ND		NS		NS											
2,4,5-Trichlorophenol	NA	ND		ND	ND		NS		NS											
2,4,6-Trichlorophenol	NA	ND		ND	ND		NS		NS											
2,4-Dichlorophenol	NA	ND		ND	ND		NS		NS											
2-Methylnaphthalene	NA	8	J	ND		ND	ND		NS		NS									
4-Chloro-3-methylphenol	NA	ND		ND	ND		NS		NS											
4-Methylphenol	NS	ND		ND	ND		NS		NS											

⁽¹⁾ TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent

Bold indicates value exceeded Standard Guidance Value.

J indicates an estimated value.

H indicates alternate peak selection upon analytical review.

M indicates a manually integrated compound.

B indicates value was obtained from a reading less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).

E indicates the reported value is estimate because of the presence of interference.

N indicates spiked sample recovery not within control limits. DL indicates laboratory dilution applied.

July 2008 analytical data is the only data not subjected to data validation via DUSR.

T Detections only July 2010.xls Page 2 of 14

Limitations, NYSDEC, June 1998 and Addendum, April 2000.

Based on Water Class GA, Source of Drinking Water (Groundwater).

 $[\]ensuremath{^{(2)}}$ Replacement monitoring well. Analysis conducted by Upstate Laboratories, Inc.

GV denotes Guidance Value. NA is Not Applicable. NS is Not Sampled. ND is Not Detected.

[&]quot;Qual" denotes Laboratory and Validators Qualifiers.

C.T. Male Project No. 01.7293

Sample ID				MW-12					MW-14		
Date Sampled	NYSDEC Water Quality Standard (1)	May-02	Mar-06	May-07	Jul-08	Jul-10	May-02	Mar-06	May-07	Jul-08	Jul-10
Parameter	Standard '	Result Qual	Result Qual	Result Q	ual Result Qual	Result Qual					
VOC by EPA Method 8260, (ug	/L)		1			<u> </u>				•	•
Acetone	50 (GV)	7 J	ND	ND	NS	NS	5 J	ND	NS	NS	NS
Benzene	1.0	ND	ND	ND	NS	NS	ND	ND	NS	NS	NS
2-Butanone (MEK)	NA	ND	ND	ND	NS	NS	ND	ND	NS	NS	NS
Carbon disulfide	NA	ND	ND	ND	NS	NS	ND	ND	NS	NS	NS
Chlorobenzene	5	ND	ND	ND	NS	NS	ND	ND	NS	NS	NS
cis-1,2-Dichloroethene	5	ND	ND	ND	NS	NS	ND	ND	NS	NS	NS
Ethylbenzene	5	ND	ND	ND	NS	NS	ND	ND	NS	NS	NS
Methylene chloride	5	ND	ND	ND	NS	NS	0.5 J	ND	NS	NS	NS
Toluene	5	ND	ND	ND	NS	NS	ND	ND	NS	NS	NS
Vinyl chloride	2	ND	ND	ND	NS	NS	ND	ND	NS	NS	NS
Xylenes (total)	5	ND	ND	ND	NS	NS	ND	ND	NS	NS	NS
Isopropylbenzene	5	ND	ND	ND	NS	NS	ND	ND	NS	NS	NS
SVOC by EPA Method 8270, (u	g/L)										
Acenaphthene	20(GV)	ND	ND	ND	NS	NS	ND	ND	NS	NS	NS
Acenaphthene	50 (GV)	ND	ND	ND	NS	NS	ND	ND	NS	NS	NS
Anthracene	0.002 (GV)	ND	ND	ND	NS	NS	ND	ND	NS	NS	NS
Benz(a)anthracene	ND	ND	ND	ND	NS	NS	ND	ND	NS	NS	NS
Benzo(a)pyrene	0.002 (GV)	ND	ND	ND	NS	NS	ND	ND	NS	NS	NS
Benzo(b)fluoranthene	NA	ND	ND	ND	NS	NS	ND	ND	NS	NS	NS
Benzo(g,h,i)perylene	0.002 (GV)	ND	ND	ND	NS	NS	ND	ND	NS	NS	NS
Benzo(k)fluoranthene	50 (GV)	ND	ND	ND	NS	NS	ND	ND	NS	NS	NS
Carbazole	5	ND	ND	ND	NS	NS	ND	ND	NS	NS	NS
Diethyl phthalate	50	ND	ND	ND	NS	NS	ND	ND	NS	NS	NS
Di-n-butyl phthalate	50 (GV)	ND	ND	ND	NS	NS	ND	ND	NS	NS	NS
Fluoranthene	50(GV)	ND	ND	ND	NS	NS	ND	ND	NS	NS	NS
Fluorene	50(GV)	ND	ND	ND	NS	NS	ND	ND	NS	NS	NS
Naphthalene	10	11	4 J	ND	NS	NS	ND	ND	NS	NS	NS
Pentachlorophenol	1	ND	ND	ND	NS	NS	ND	ND	NS	NS	NS
Phenanthrene	50(GV)	ND	ND	ND	NS	NS	ND	ND	NS	NS	NS
Phenol	1.0	ND	ND	ND	NS	NS	ND	ND	NS	NS	NS
Pyrene	50	ND	ND	ND	NS	NS	ND	ND	NS	NS	NS
2,4,5-Trichlorophenol	NA	ND	ND	ND	NS	NS	ND	ND	NS	NS	NS
2,4,6-Trichlorophenol	NA	ND	ND	ND	NS	NS	ND	ND	NS	NS	NS
2,4-Dichlorophenol	NA	ND	ND	ND	NS	NS	ND	ND	NS	NS	NS
2-Methylnaphthalene	NA	0.5 J	ND	ND	NS	NS	ND	ND	NS	NS	NS
4-Chloro-3-methylphenol	NA	ND	ND	ND	NS	NS	ND	ND	NS	NS	NS
4-Methylphenol	NS	ND	ND	ND	NS	NS	ND	ND	NS	NS	NS

⁽¹⁾ TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent

Bold indicates value exceeded Standard Guidance Value.

J indicates an estimated value.

H indicates alternate peak selection upon analytical review.

M indicates a manually integrated compound.

B indicates value was obtained from a reading less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).

July 2008 analytical data is the only data not subjected to data validation via DUSR.

T Detections only July 2010.xls Page 3 of 14

Limitations, NYSDEC, June 1998 and Addendum, April 2000.

Based on Water Class GA, Source of Drinking Water (Groundwater).

 $^{^{(2)}}$ Replacement monitoring well. Analysis conducted by Upstate Laboratories, Inc.

GV denotes Guidance Value. NA is Not Applicable. NS is Not Sampled. ND is Not Detected.

[&]quot;Qual" denotes Laboratory and Validators Qualifiers.

E indicates the reported value is estimate because of the presence of interference.

N indicates spiked sample recovery not within control limits. DL indicates laboratory dilution applied.

C.T. Male Project No. 01.7293

Sample ID						MW-5					MW-6			
Date Sampled	NYSDEC Water Quality	May	y-02	Mar	-06	May-07	Jul-08	Jul-10	May-02	Mar-06	May-07	Jul-08	Jul-1	10
Parameter	Standard (1)	Result	Qual	Result	Qual	Result	Qual							
VOC by EPA Method 8260,	(ug/L)		1		•	<u> </u>		•			<u>'</u>			
Acetone	50 (GV)	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	
Benzene	1.0	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	
2-Butanone (MEK)	NA	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	•
Carbon disulfide	NA	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	
Chlorobenzene	5	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	
cis-1,2-Dichloroethene	5	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	
Ethylbenzene	5	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	
Methylene chloride	5	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	
Toluene	5	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	
Vinyl chloride	2	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	
Xylenes (total)	5	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	
Isopropylbenzene	5	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	
SVOC by EPA Method 827), (ug/L)													
Acenaphthene	20(GV)	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	•
Acenaphthene	50 (GV)	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	
Anthracene	0.002 (GV)	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	
Benz(a)anthracene	ND	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	
Benzo(a)pyrene	0.002 (GV)	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	
Benzo(b)fluoranthene	NA	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	
Benzo(g,h,i)perylene	0.002 (GV)	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	
Benzo(k)fluoranthene	50 (GV)	ND		4	J	NS	NS	NS	ND	ND	NS	NS	NS	
Carbazole	5	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	
Diethyl phthalate	50	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	
Di-n-butyl phthalate	50 (GV)	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	
Fluoranthene	50(GV)	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	
Fluorene	50(GV)	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	
Naphthalene	10	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	
Pentachlorophenol	1	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	
Phenanthrene	50(GV)	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	
Phenol	1.0	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	
Pyrene	50	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	
2,4,5-Trichlorophenol	NA	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	
2,4,6-Trichlorophenol	NA	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	
2,4-Dichlorophenol	NA	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	
2-Methylnaphthalene	NA	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	
4-Chloro-3-methylphenol	NA	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	
4-Methylphenol	NS	ND		ND		NS	NS	NS	ND	ND	NS	NS	NS	

⁽¹⁾ TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent

Bold indicates value exceeded Standard Guidance Value.

J indicates an estimated value.

H indicates alternate peak selection upon analytical review.

M indicates a manually integrated compound.

B indicates value was obtained from a reading less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).

E indicates the reported value is estimate because of the presence of interference.

N indicates spiked sample recovery not within control limits. DL indicates laboratory dilution applied.

July 2008 analytical data is the only data not subjected to data validation via DUSR.

T Detections only July 2010.xls Page 4 of 14

Limitations, NYSDEC, June 1998 and Addendum, April 2000.

Based on Water Class GA, Source of Drinking Water (Groundwater).

 $^{^{(2)}}$ Replacement monitoring well. Analysis conducted by Upstate Laboratories, Inc.

GV denotes Guidance Value. NA is Not Applicable. NS is Not Sampled. ND is Not Detected.

[&]quot;Qual" denotes Laboratory and Validators Qualifiers.

C.T. Male Project No. 01.7293

Sample ID						MW-	7									M	W-8				
Date Sampled	NYSDEC Water Quality	May	y-02	Mar	-06	Ma	y-07	Jul-	-08	Jul-10		May-	-02	Mar	:-06	May	-07	Jul-	-08	Jul	l-10
Parameter	Standard ⁽¹⁾	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
VOC by EPA Method 8260, (u	ıg/L)			•	-		-	•		<u> </u>										1	
Acetone	50 (GV)	40	Н	ND		ND		1.3	J	ND		8	J	1.7	J	NS		NS		NS	
Benzene	1.0	ND		ND		ND		ND		ND		ND		ND		NS		NS		NS	
2-Butanone (MEK)	NA	ND		ND		ND		ND		ND		ND		ND		NS		NS		NS	
Carbon disulfide	NA	ND		ND		ND		ND		ND		ND		ND		NS		NS		NS	
Chlorobenzene	5	ND		ND		ND		ND		ND		ND		ND		NS		NS		NS	
cis-1,2-Dichloroethene	5	ND		ND		ND		ND		ND		ND		ND		NS		NS		NS	
Ethylbenzene	5	3	J	1.1	J	2.2	J	ND		ND		ND		ND		NS		NS		NS	
Methylene chloride	5	ND		ND		ND		ND		ND		ND		ND		NS		NS		NS	
Toluene	5	ND		ND		ND		ND		ND		ND		ND		NS		NS		NS	
Vinyl chloride	2	ND		ND		ND		ND		ND		ND		ND		NS		NS		NS	
Xylenes (total)	5	9		7		15		ND		ND		ND		ND		NS		NS		NS	
Isopropylbenzene	5	ND		ND		ND		ND		ND		ND		ND		NS		NS		NS	
SVOC by EPA Method 8270,	(ug/L)																				•
Acenaphthene	20(GV)	0.5	J M	ND		ND		ND		ND		ND		ND		NS		NS		NS	
Acenaphthene	50 (GV)	ND		ND		ND		ND		ND		ND		ND		NS		NS		NS	
Anthracene	0.002 (GV)	ND		ND		ND		ND		ND		ND		ND		NS		NS		NS	
Benz(a)anthracene	ND	ND		ND		ND		ND		ND		ND		ND		NS		NS		NS	
Benzo(a)pyrene	0.002 (GV)	ND		ND		ND		ND		ND		ND		ND		NS		NS		NS	
Benzo(b)fluoranthene	NA	ND		ND		ND		ND		ND		ND		ND		NS		NS		NS	
Benzo(g,h,i)perylene	0.002 (GV)	ND		ND		ND		ND		ND		ND		ND		NS		NS		NS	
Benzo(k)fluoranthene	50 (GV)	ND		ND		ND		ND		ND		ND		ND		NS		NS		NS	
Carbazole	5	ND		ND		ND		ND		ND		ND		ND		NS		NS		NS	
Diethyl phthalate	50	22		ND		ND		ND		ND		ND		ND		NS		NS		NS	
Di-n-butyl phthalate	50 (GV)	ND		ND		ND		ND		ND		ND		ND		NS		NS		NS	
Fluoranthene	50(GV)	ND		ND		ND		ND		ND		ND		ND		NS		NS		NS	
Fluorene	50(GV)	0.5	JН	ND		ND		ND		ND		ND		ND		NS		NS		NS	
Naphthalene	10	15		4	J	11		ND		ND		ND		ND		NS		NS		NS	
Pentachlorophenol	1	3	J	ND		ND		ND		ND		ND		ND		NS		NS		NS	
Phenanthrene	50(GV)	ND		ND		0.57	J	ND		ND		ND		ND		NS		NS		NS	
Phenol	1.0	ND		ND		ND		ND		ND		ND		ND		NS		NS		NS	
Pyrene	50.0	ND		ND		ND		ND		ND		ND		ND		NS		NS		NS	
2,4,5-Trichlorophenol	NA	ND		ND		ND		ND		ND		ND		ND		NS		NS		NS	
2,4,6-Trichlorophenol	NA	2	J	ND		ND		ND		ND		ND		ND		NS		NS		NS	
2,4-Dichlorophenol	NA	ND		ND		ND		ND		ND		ND		ND		NS		NS		NS	
2-Methylnaphthalene	NA	3	J	ND		ND		ND		ND		ND		ND		NS		NS		NS	
4-Chloro-3-methylphenol	NA NG	ND		ND		ND		ND		ND		ND		ND		NS		NS		NS	
4-Methylphenol	NS Cuality Standards and Cuid	4	J	ND		ND		ND		ND		ND		ND		NS		NS		NS	

⁽¹⁾ TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent

Bold indicates value exceeded Standard Guidance Value.

J indicates an estimated value.

H indicates alternate peak selection upon analytical review.

M indicates a manually integrated compound.

B indicates value was obtained from a reading less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).

E indicates the reported value is estimate because of the presence of interference.

N indicates spiked sample recovery not within control limits. DL indicates laboratory dilution applied.

July 2008 analytical data is the only data not subjected to data validation via DUSR.

T Detections only July 2010.xls Page 5 of 14

Limitations, NYSDEC, June 1998 and Addendum, April 2000.

Based on Water Class GA, Source of Drinking Water (Groundwater).

 $^{^{(2)}}$ Replacement monitoring well. Analysis conducted by Upstate Laboratories, Inc.

GV denotes Guidance Value. NA is Not Applicable. NS is Not Sampled. ND is Not Detected.

[&]quot;Qual" denotes Laboratory and Validators Qualifiers.

C.T. Male Project No. 01.7293

Sample ID						MV	V-9								0	FF33			
Date Sampled	NYSDEC Water Quality Standard ⁽¹⁾	May	y-02	Mar	-06	May	y-07	Jul	-08	Jul	-10	Feb/Marc	h 2006	Apr	-07	Jul-	08	Jul-	10
Parameter	Standard	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
VOC by EPA Method 8260, (ug	/L)			<u>"</u>					•	•									
Acetone	50 (GV)	ND		ND		NS		NS		NS		ND		ND		1.5	J	1.5	J
Benzene	1.0	ND		ND		NS		NS		NS		ND		ND		ND		ND	
2-Butanone (MEK)	NA	ND		ND		NS		NS		NS		ND		ND		ND		ND	
Carbon disulfide	NA	ND		ND		NS		NS		NS		ND		ND		ND		ND	
Chlorobenzene	5	ND		ND		NS		NS		NS		ND		ND		ND		ND	
cis-1,2-Dichloroethene	5	ND		ND		NS		NS		NS		ND		ND		ND		ND	
Ethylbenzene	5	ND		ND		NS		NS		NS		ND		ND		ND		ND	
Methylene chloride	5	ND		ND		NS		NS		NS		ND		ND		ND		ND	
Toluene	5	ND		ND		NS		NS		NS		ND		ND		ND		ND	
Vinyl chloride	2	ND		ND		NS		NS		NS		ND		ND		ND		ND	
Xylenes (total)	5	ND		ND		NS		NS		NS		ND	J	ND		ND		ND	
Isopropylbenzene	5	ND		ND		NS		NS		NS		ND	J	ND		ND		ND	
SVOC by EPA Method 8270, (u	g/L)								•										
Acenaphthene	20(GV)	ND		ND		NS		NS		NS		ND		ND		ND		ND	
Acenaphthene	50 (GV)	ND		ND		NS		NS		NS		ND		0.65	J	ND		ND	
Anthracene	0.002 (GV)	ND		ND		NS		NS		NS		ND		1.9	J	ND		ND	
Benz(a)anthracene	ND	ND		ND		NS		NS		NS		ND		1.5	J	ND		ND	
Benzo(a)pyrene	0.002 (GV)	ND		ND		NS		NS		NS		ND		2	J	ND		ND	
Benzo(b)fluoranthene	NA	ND		ND		NS		NS		NS		ND		0.85	J	ND		ND	
Benzo(g,h,i)perylene	0.002 (GV)	ND		ND		NS		NS		NS		ND		0.96	J	ND		ND	
Benzo(k)fluoranthene	50 (GV)	ND		ND		NS		NS		NS		ND		ND		ND		ND	
Carbazole	5	ND		ND		NS		NS		NS		ND		ND		ND		ND	
Diethyl phthalate	50	ND		ND		NS		NS		NS		ND		ND		ND		ND	
Di-n-butyl phthalate	50 (GV)	ND		ND		NS		NS		NS		ND		ND		ND		ND	
Fluoranthene	50(GV)	ND		ND		NS		NS		NS		ND		3.5	J	ND		ND	
Fluorene	50(GV)	ND		ND		NS		NS		NS		ND		ND		ND		ND	
Naphthalene	10	ND		ND		NS		NS		NS		ND		ND		ND		ND	
Pentachlorophenol	1	ND		ND		NS		NS		NS		ND	J	ND		ND		ND	
Phenanthrene	50(GV)	ND		ND		NS		NS		NS		ND		2.4	J	ND		ND	
Phenol	1.0	ND		ND		NS		NS		NS		ND		ND		ND		ND	
Pyrene	50	ND		ND		NS		NS		NS		ND		3.2	J	ND		ND	
2,4,5-Trichlorophenol	NA	ND		ND		NS		NS		NS		ND		ND		ND		ND	
2,4,6-Trichlorophenol	NA	ND		ND		NS		NS		NS		ND		ND		ND		ND	
2,4-Dichlorophenol	NA	ND		ND		NS		NS		NS		ND		ND		ND		ND	
2-Methylnaphthalene	NA	ND		ND		NS		NS		NS		ND		ND		ND		ND	
4-Chloro-3-methylphenol	NA	ND		ND		NS		NS		NS		ND		ND		ND		ND	
4-Methylphenol	NS	ND		ND		NS		NS		NS		ND		ND		ND		ND	

⁽¹⁾ TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent

Bold indicates value exceeded Standard Guidance Value.

J indicates an estimated value.

H indicates alternate peak selection upon analytical review.

M indicates a manually integrated compound.

B indicates value was obtained from a reading less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).

E indicates the reported value is estimate because of the presence of interference.

N indicates spiked sample recovery not within control limits. DL indicates laboratory dilution applied.

July 2008 analytical data is the only data not subjected to data validation via DUSR.

T Detections only July 2010.xls Page 6 of 14

Limitations, NYSDEC, June 1998 and Addendum, April 2000.

Based on Water Class GA, Source of Drinking Water (Groundwater).

 $^{^{(2)}}$ Replacement monitoring well. Analysis conducted by Upstate Laboratories, Inc.

GV denotes Guidance Value. NA is Not Applicable. NS is Not Sampled. ND is Not Detected.

[&]quot;Qual" denotes Laboratory and Validators Qualifiers.

Table 1 Groundwater Analytical Results (Detections Only) Independent Leather C.T. Male Project No. 01.7293

Sample ID	NIVODECIMAL O 114				Ol	FF35			
Date Sampled	NYSDEC Water Quality Standard (1)	Feb/Ma	rch 2006	Apı	r-07	Jul	-08	Jul-	10
Parameter	Standard **	Result	Qual	Result	Qual	Result	Qual	Result	Qual
VOC by EPA Method 8260,	(ug/L)								
Acetone	50 (GV)	ND	J	ND		1.1	J	1.1	J
Benzene	1.0	ND		ND		ND		ND	
2-Butanone (MEK)	NA	ND		ND		ND		ND	
Carbon disulfide	NA	ND		ND		ND		ND	
Chlorobenzene	5	ND		ND		ND		ND	
cis-1,2-Dichloroethene	5	ND		ND		ND		ND	
Ethylbenzene	5	ND		ND		ND		ND	
Methylene chloride	5	ND		ND		ND		ND	
Toluene	5	ND		ND		ND		ND	
Vinyl chloride	2	ND		ND		ND		ND	
Xylenes (total)	5	ND		ND		ND		ND	
Isopropylbenzene	5	ND		ND		ND		ND	
SVOC by EPA Method 8270), (ug/L)								
Acenaphthene	20(GV)	ND		ND		ND		ND	
Acenaphthene	50 (GV)	ND		ND		ND		ND	
Anthracene	0.002 (GV)	ND		ND		ND		ND	
Benz(a)anthracene	ND	ND		ND		ND		ND	
Benzo(a)pyrene	0.002 (GV)	ND		ND		ND		ND	
Benzo(b)fluoranthene	NA	ND		ND		ND		ND	
Benzo(g,h,i)perylene	0.002 (GV)	ND		ND		ND		ND	
Benzo(k)fluoranthene	50 (GV)	ND		ND		ND		ND	
Carbazole	5	ND		ND		ND		ND	
Diethyl phthalate	50	ND		ND		ND		ND	
Di-n-butyl phthalate	50 (GV)	1	J	ND		ND		ND	
Fluoranthene	50(GV)	ND		ND		ND		ND	
Fluorene	50(GV)	ND		ND		ND		ND	
Naphthalene	10	ND		ND		ND		ND	
Pentachlorophenol	1	ND	J	ND		ND		ND	
Phenanthrene	50(GV)	ND		ND		ND		ND	
Phenol	1.0	ND		ND		ND		ND	
Pyrene	50	ND		ND		ND		ND	
2,4,5-Trichlorophenol	NA	ND		ND		ND		ND	
2,4,6-Trichlorophenol	NA	ND		ND		ND		ND	·
2,4-Dichlorophenol	NA	ND		ND		ND		ND	
2-Methylnaphthalene	NA	ND		ND		ND		ND	
4-Chloro-3-methylphenol	NA	ND		ND		ND		ND	
4-Methylphenol	NS	ND		ND		ND		ND	

⁽¹⁾ TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent

Bold indicates value exceeded Standard Guidance Value.

J indicates an estimated value.

H indicates alternate peak selection upon analytical review.

M indicates a manually integrated compound.

B indicates value was obtained from a reading less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).

E indicates the reported value is estimate because of the presence of interference.

N indicates spiked sample recovery not within control limits. DL indicates laboratory dilution applied.

July 2008 analytical data is the only data not subjected to data validation via DUSR.

T Detections only July 2010.xls Page 7 of 14

Limitations, NYSDEC, June 1998 and Addendum, April 2000.

Based on Water Class GA, Source of Drinking Water (Groundwater).

 $^{^{(2)}}$ Replacement monitoring well. Analysis conducted by Upstate Laboratories, Inc.

GV denotes Guidance Value. NA is Not Applicable. NS is Not Sampled. ND is Not Detected.

[&]quot;Qual" denotes Laboratory and Validators Qualifiers.

C.T. Male Project No. 01.7293

	_			ī					4.0	,t NO. 01.72		T									
Sample ID	NYSDEC Water Quality	В						-2R		_						B-3		•			
Date Sampled	Standard (1)	May	7-02	Mar-	·06 ⁽²⁾	Mag	y-07	Jul	1-08	Jul	-10	Mag	y-02	Ma	r-06	Ma	y-07	Jul-	-08	Jul-	10
Parameter	Standard	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Pesticides by EPA Method 80	81, (ug/L)																				
Aldrin	ND	ND		ND		NS		NS		NS		ND		ND		NS		NS		NS	
alpha-BHC	0.01	ND		ND		NS		NS		NS		ND		ND		NS		NS		NS	
beta-BHC	0.04	ND		ND		NS		NS		NS		ND		ND		NS		NS		NS	
gamma-BHC (Lindane)	0.05	ND		ND		NS		NS		NS		ND		ND		NS		NS		NS	
delta-BHC	0.04	ND		ND		NS		NS		NS		ND		ND		NS		NS		NS	
gamma-Chlordane	NA	ND		ND		NS		NS		NS		ND		ND		NS		NS		NS	
4,4'-DDE	0.2	ND		ND		NS		NS		NS		ND		ND		NS		NS		NS	
Endosulfan I	NA	ND		ND		NS		NS		NS		ND		ND		NS		NS		NS	
Endrin aldehyde	5	ND		ND		NS		NS		NS		ND		ND		NS		NS		NS	
Heptachlor	0.04	ND		ND		NS		NS		NS		ND		ND		NS		NS		NS	
Heptachlor epoxide	0.03	ND		ND		NS		NS		NS		ND		ND		NS		NS		NS	
Metals by EPA Methods 6010	and 9012, (ug/L)																				
Aluminum	2,000	ND		ND		NA		NA		NA		210	В	ND		NA		NA		NA	
Antimony	3	ND		ND		NA		NA		NA		ND		ND		NA		NA		NA	
Arsenic	25	100		630		470		550		822		494		263		190		280		236	
Barium	1,000	36.5		ND		NA		NA		NA		14.1		53.7		NA		NA		NA	
Calcium	NA	112,000		<i>77,</i> 500		NA		NA		NA		79,100		146,000		NA		NA		NA	
Chromium	50	3.9	В	ND		ND		5.7		ND		2.6	В	3.6	В	4.9	J	5.7	J	2.3	J
Cobalt	NA	1.7	В	ND		NA		NA		NA		ND		3	В	NA		NA		NA	
Copper	200	1.5	В	ND		NA		NA		NA		2.4	В	ND		NA		NA		NA	
Cyanide, Total	200	ND		ND		NA		NA		NA		ND		ND		NA		NA		NA	
Iron	300	2,430		727		960		1,190		1,700		1,090		4,480		4,000		4,900		2,640	
Lead	25	ND		ND		NA		NA		NA		ND		ND		NA		NA		NA	
Magnesium	35,000 (GV)	7,740		19,300		19,200		13,600		14,200		8,780		15,200		14,300		15,300		14,100	
Manganese	300	44.7		167		NA		184		200		160		258		NA		66		93	
Nickel	100	ND		ND		NA		NA		NA		ND		ND		NA		NA		NA	
Potassium	NA	1250		4,160		NA		NA		NA		3,820		1,870		NA		NA		NA	
Selenium	10	ND		6.22		NA		NA		NA		ND		ND		NA		NA		NA	
Sodium	20,000	6,600		50,600		36,900		18,600		27,500		98,000		11,100		8,300		7,500		8,390	
Vanadium	NA	ND		ND		NA		NA		NA		ND		2	В	NA		NA		NA	
Zinc	2,000 (GV)	88.8		19.6		NA		NA		NA		ND		50		NA		NA		NA	

⁽I) TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent

Limitations, NYSDEC, June 1998 and Addendum, April 2000.

Based on Water Class GA, Source of Drinking Water (Groundwater).

GV denotes Guidance Value.

NA is Not Applicable.

NS is Not Sampled

ND is Not Detected.

"Qual" denotes Laboratory and Validators Qualifiers.

Bold indicates value exceeded Standard Guidance Value.

VOCs analyzed using EPA Method 8260. SVOCs analyzed using EPA Method 8270.

Pesticides/PCBs analyzed using EPA Method 8082.

Metals were analyzed using EPA Method 6010 and 7471 for Mercury.

I indicates an estimated value.

H indicates alternate peak selection upon analytical review.

M indicates a manually integrated compound.

B indicates value was obtained from a reading less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).

E indicates the reported value is estimate because of the presence of interference.

N indicates spiked sample recovery not within control limits. DL indicates laboratory dilution applied.

July 2008 analytical data not subjected to data validation via DUSR.

⁽²⁾ Replacement monitoring well. Analysis conducted by Upstate Laboratories, Inc.

C.T. Male Project No. 01.7293

c 1 ID						3.67	V-10	0	a.o . 10j00	t NO. 01.72		T				MW-	111				
Sample ID	NYSDEC Water Quality						-	1						1				T			
Date Sampled	Standard (1)		y-02	Ma			y-07	Jul		· ·	-10		y-02	Ma	r-06	May	1	Jul-08		Jul-	
Parameter		Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Pesticides by EPD Method 80	81, (ug/L)																				
Aldrin	ND	ND		ND		ND		ND		ND		ND		ND		NS		NS		NS	i
alpha-BHC	0.01	ND		0.1300		0.043	NJ	ND		ND		ND		ND		NS		NS		NS	1
beta-BHC	0.04	ND		0.0240	J	ND		ND		0.017	J	ND		ND		NS		NS		NS	i
gamma-BHC (Lindane)	0.05	ND		0.0091	J	0.068	NJ	0.01	J	ND		ND		ND		NS		NS		NS	1
delta-BHC	0.04	ND		0.0028	J	0.0094	NJ	0.013	J	ND		ND		ND		NS		NS		NS	i
gamma-Chlordane	NA	ND		ND		0.3	NJ	ND		ND		ND		ND		NS		NS		NS	<u> </u>
4,4'-DDE	0.2	ND		ND		ND		ND		ND		ND		ND		NS		NS		NS	<u> </u>
Endosulfan I	NA	ND		ND		ND		ND		ND		ND		ND		NS		NS		NS	<u> </u>
Endrin aldehyde	5	0.0690	J	ND		ND		ND		ND		ND		ND		NS		NS		NS	<u> </u>
Heptachlor	0.04	ND		ND		ND		ND		ND		ND		ND		NS		NS		NS	
Heptachlor epoxide	0.03	ND		ND		ND		ND		ND		ND		ND		NS		NS		NS	1
Metals by EPD Methods 6010	and 9012, (ug/L)																				
Aluminum	2,000	1,360		100	В	NA		NA		NA		525		ND		NA		NA		NA	1
Antimony	3	ND		ND		NA		NA		NA		ND		ND		NA		NA		NA	i
Arsenic	25	8	В	38.8	В	91		61		69		401		178		250		690		219	i
Barium	1,000	93.8		86.2		NA		NA		NA		177		197		NA		NA		NA	i
Calcium	NA	222,000		244,000		NA		NA		NA		95,300		116,000		NA		NA		NA	1
Chromium	50	148		49.5		40		46		31.2		15.2		ND		ND		6.8	J	0.67	J
Cobalt	NA	4.3	В	3	В	NA		NA		NA		ND		ND		NA		NA		NA	i
Copper	200	2.1	В	ND		NA		NA		NA		2.3	В	ND		NA		NA		NA	1
Cyanide, Total	200	195		131		NA		NA		NA		ND		10.4		NA		NA		NA	i
Iron	300	3,040		12,200		6,200		4,700		4,890		3,510		7,820		10,100		21300		7,650	1
Lead	25	ND		ND		NA		NA		NA		16.3		ND		NA		NA		NA	1
Magnesium	35,000 (GV)	72,800		77,000		81,600		41,100		46,700		8,740		10,700		8,600		11000		10,500	' <u> </u>
Manganese	300	327		286		NA		150		209		345		224		NA		1400		532	1
Nickel	100	2.3	В	ND		NA		NA		NA		ND		ND		NA		NA		NA	i
Potassium	NA	16,600		10,000		NA		NA		NA		1,780		926		NA		NA		NA	
Selenium	10	ND		ND		NA		NA		NA		ND		ND		NA		NA		NA	i
Sodium	20,000	253,000		98,800		62,100		40,500		42,000		14,400		8,880		10,600		14200		10,500	
Vanadium	NA	5	В	33.9		NA		NA		NA		ND		ND		NA		NA		NA	
Zinc	2,000 (GV)	ND		ND		NA		NA		NA		19.1	В	ND		NA		NA		NA	1

Page 9 of 14

Limitations, NYSDEC, June 1998 and Addendum, April 2000.

Based on Water Class GA, Source of Drinking Water (Groundwater).

GV denotes Guidance Value.

NA is Not Applicable.

NS is Not Sampled

ND is Not Detected.

"Qual" denotes Laboratory and Validators Qualifiers.

Bold indicates value exceeded Standard Guidance Value.

VOCs analyzed using EPA Method 8260. SVOCs analyzed using EPA Method 8270.

Pesticides/PCBs analyzed using EPA Method 8082.

Metals were analyzed using EPA Method 6010 and 7471 for Mercury.

I indicates an estimated value.

H indicates alternate peak selection upon analytical review.

M indicates a manually integrated compound.

B indicates value was obtained from a reading less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).

E indicates the reported value is estimate because of the presence of interference.

N indicates spiked sample recovery not within control limits. DL indicates laboratory dilution applied.

July 2008 analytical data not subjected to data validation via DUSR.

⁽I) TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent

⁽²⁾ Replacement monitoring well. Analysis conducted by Upstate Laboratories, Inc.

C.T.	Male	Project	No.	01.7293
------	------	---------	-----	---------

Sample ID						MW-1	2									MV	V-14				
Date Sampled	NYSDEC Water Quality	Ma	y-02	Mar	:-06	May	y-07	Jul-	08	Jul-	10	May	7-02	Mar	:-06	Ma	y-07	Jul	-08	Jul	1-10
Parameter	Standard (1)	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Pesticides by EPD Method 8	081, (ug/L)		•					-	•	•						•	•	•	•	•	
Aldrin	ND	ND		ND		NS		NS		NS		ND		ND		NS		NS		NS	
alpha-BHC	0.01	ND		ND		NS		NS		NS		ND		ND		NS		NS		NS	
beta-BHC	0.04	ND		ND		NS		NS		NS		ND		ND		NS		NS		NS	
gamma-BHC (Lindane)	0.05	ND		ND		NS		NS		NS		ND		ND		NS		NS		NS	
delta-BHC	0.04	ND		ND		NS		NS		NS		ND		ND		NS		NS		NS	
gamma-Chlordane	NA	ND		ND		NS		NS		NS		ND		ND		NS		NS		NS	
4,4'-DDE	0.2	ND		ND		NS		NS		NS		ND		ND		NS		NS		NS	
Endosulfan I	NA	ND		ND		NS		NS		NS		ND		ND		NS		NS		NS	
Endrin aldehyde	5	ND		ND		NS		NS		NS		ND		ND		NS		NS		NS	
Heptachlor	0.04	ND		ND		NS		NS		NS		ND		ND		NS		NS		NS	
Heptachlor epoxide	0.03	ND		ND		NS		NS		NS		ND		ND		NS		NS		NS	
Metals by EPD Methods 601) and 9012, (ug/L)			·																	
Aluminum	2,000	415	В	ND		NA		NA		NA		383	В	228	В	NA		NA		NA	
Antimony	3	ND		ND		NA		NA		NA		ND		ND		NA		NA		NA	
Arsenic	25	437		139		220		680		340		ND		ND		25		ND		ND	
Barium	1,000	123		122		NA		NA		NA		47.8		17.4		NA		NA		NA	
Calcium	NA	76,700		105,000		NA		NA		NA		156,000		119,000		NA		NA		NA	
Chromium	50	9.2	В	8.2	В	5.8	J	5	J	0.66	J	2.5	В	ND		3.3	J	2.8	J	ND	
Cobalt	NA	ND		ND		NA		NA		NA		ND		1.8	В	NA		NA		NA	
Copper	200	2.2	В	ND		NA		NA		NA		ND		ND		NA		NA		NA	
Cyanide, Total	200	ND		ND		NA		NA		NA		ND		ND		NA		NA		NA	
Iron	300	9,500		994		1,600		4,900		468		332		193	В	930		340		33.5	
Lead	25	ND		ND		NA		NA		NA		ND		ND		NA		NA		NA	
Magnesium	35,000 (GV)	14,400		33,800		16,000		19,600		24,300		9,450		8,210		8,000		7,000		8,140	
Manganese	300	504		365		NA		120		186		206		367		NA		1,200		223	
Nickel	100	2.3	В	2	В	NA		NA		NA		ND		ND		NA		NA		NA	
Potassium	NA	17,000		10,500		NA		NA		NA		1,770		931		NA		NA		NA	
Selenium	10	ND		ND		NA		NA		NA		ND		ND		NA		NA		NA	
Sodium	20,000	88,400		182,000		79,600		47,000		27,300		8,870		12,200		8,600		1,900		9,420	
Vanadium	NA	1.4	В	2.4	В	NA		NA		NA		ND		2.6	В	NA		NA		NA	
Zinc	2,000 (GV)	ND		ND		NA		NA		NA		ND		ND		NA		NA		NA	

⁽¹⁾ TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent

Limitations, NYSDEC, June 1998 and Addendum, April 2000.

Based on Water Class GA, Source of Drinking Water (Groundwater).

GV denotes Guidance Value.

NA is Not Applicable.

NS is Not Sampled

ND is Not Detected.

"Qual" denotes Laboratory and Validators Qualifiers.

Bold indicates value exceeded Standard Guidance Value.

VOCs analyzed using EPA Method 8260. SVOCs analyzed using EPA Method 8270.

Pesticides/PCBs analyzed using EPA Method 8082.

Metals were analyzed using EPA Method 6010 and 7471 for Mercury.

I indicates an estimated value.

H indicates alternate peak selection upon analytical review.

M indicates a manually integrated compound.

B indicates value was obtained from a reading less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).

E indicates the reported value is estimate because of the presence of interference.

N indicates spiked sample recovery not within control limits. DL indicates laboratory dilution applied.

July 2008 analytical data not subjected to data validation via DUSR.

⁽²⁾ Replacement monitoring well. Analysis conducted by Upstate Laboratories, Inc.

C.T. Male Project No. 01.7293

Sample ID						M	V-5			t NO. 01.72						MW-	6				
Date Sampled	NYSDEC Water Quality	May	v-02	Mai	r-06		y-07	Jul	-08	Jul	-10	May	v-02	Ma	r-06	May		Jul-	08	Jul-	10
Parameter	Standard (1)	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Pesticides by EPD Method 80	081, (ug/L)	1100411	Q.m.	1100411	Q.m.z	1100 011	Q.m.	1100411	Quan	1100411	Zum	1100411	Quar	1100411	Zumi	1100411	Zum	1105411	Zum	1100 011	Zum
Aldrin	ND	ND		ND		NS		NS		NS		ND		0.0160	J	ND		ND		ND	
alpha-BHC	0.01	ND		ND		NS		NS		NS		ND									
beta-BHC	0.04	ND		ND		NS		NS		NS		ND		0	J	ND		ND		ND	
gamma-BHC (Lindane)	0.05	ND		ND		NS		NS		NS		ND									
delta-BHC	0.04	ND		ND		NS		NS		NS		ND		0.0023	J	ND		ND		ND	
gamma-Chlordane	NA	ND		ND		NS		NS		NS		ND		0.0230	J	ND		ND		ND	
4,4'-DDE	0.2	ND		ND		NS		NS		NS		ND									
Endosulfan I	NA	ND		ND		NS		NS		NS		ND		0.0069	J	ND		ND		ND	
Endrin aldehyde	5	ND		ND		NS		NS		NS		ND									
Heptachlor	0.04	ND		ND		NS		NS		NS		ND									
Heptachlor epoxide	0.03	ND		ND		NS		NS		NS		ND									
Metals by EPD Methods 6010	0 and 9012, (ug/L)																				
Aluminum	2,000	258	В	857		NA		NA		NA		778		ND		NA		NA		NA	
Antimony	3	ND		ND		NA		NA		NA		ND		ND		NA		NA		NA	
Arsenic	25	18	В	ND		17	J	40		48.3		ND		26.1	В	ND		ND		4.9	J
Barium	1,000	44.4		39.5		NA		NA		NA		23.3		66.2		NA		NA		NA	
Calcium	NA	77,000		134,000		NA		NA		NA		40,700		118,000		NA		NA		NA	
Chromium	50	4.1	В	1.4	В	3.2	J	3.9	J	3.1	J	3.2	В	2.7	В	2.7	J	3.2	J	0.9	J
Cobalt	NA	ND		ND		NA		NA		NA		ND		ND		NA		NA		NA	
Copper	200	2.1	В	ND		NA		NA		NA		ND		ND		NA		NA		NA	
Cyanide, Total	200	ND		ND		NA		NA		NA		ND		ND		NA		NA		NA	
Iron	300	1,210		1,160		3,300		3,800		2,720		806		2,570		3,000		4,900		1,180	
Lead	25	9	В	ND		NA		NA		NA		ND		ND		NA		NA		NA	
Magnesium	35,000 (GV)	8,170		12,400		14,700		15,300		15,400		4170		19,300		10,800		13,700		13,800	
Manganese	300	343		89.9		NA		510		410		33.8		522		NA		180		215	
Nickel	100	2.2	В	ND		NA		NA		NA		ND		ND		NA		NA		NA	
Potassium	NA	4,440		4,160		NA		NA		NA		4,740		5,960		NA		NA		NA	
Selenium	10	ND		ND		NA		NA		NA		ND		ND		NA		NA		NA	
Sodium	20,000	76,200		38,600		76,500		72,400		106,000		52,000		97,800		28,000		63,300		75,200	
Vanadium	NA	ND		4	В	NA		NA		NA		3.7	В	ND		NA		NA		NA	
Zinc	2,000 (GV)	ND		ND		NA		NA		NA		ND		ND		NA		NA		NA	

⁽¹⁾ TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent

Limitations, NYSDEC, June 1998 and Addendum, April 2000.

Based on Water Class GA, Source of Drinking Water (Groundwater).

GV denotes Guidance Value.

NA is Not Applicable.

NS is Not Sampled

ND is Not Detected.

"Qual" denotes Laboratory and Validators Qualifiers.

Bold indicates value exceeded Standard Guidance Value.

VOCs analyzed using EPA Method 8260. SVOCs analyzed using EPA Method 8270.

Pesticides/PCBs analyzed using EPA Method 8082.

Metals were analyzed using EPA Method 6010 and 7471 for Mercury.

I indicates an estimated value.

H indicates alternate peak selection upon analytical review.

M indicates a manually integrated compound.

B indicates value was obtained from a reading less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).

E indicates the reported value is estimate because of the presence of interference.

N indicates spiked sample recovery not within control limits. DL indicates laboratory dilution applied.

July 2008 analytical data not subjected to data validation via DUSR.

⁽²⁾ Replacement monitoring well. Analysis conducted by Upstate Laboratories, Inc.

C.T. Male Project No. 01.7293

Sample ID						MW-	7									MV	V-8				
Date Sampled	NYSDEC Water Quality	Ma	y-02	Mar	-06	Ma	y-07	Jul-	08	Jul-1	10	May-	-02	Maı	:-06	May	-07	Jul-	-08	Jul-	10
Parameter	Standard (1)	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Pesticides by EPD Method 8	081, (ug/L)				1		<u> </u>	4													
Aldrin	ND	ND		ND		ND		ND		ND		ND		ND		NS		NS		NS	
alpha-BHC	0.01	ND		ND		ND		ND		ND		ND		ND		NS		NS		NS	
beta-BHC	0.04	ND		ND		0.038	NJ	0.02	J	0.033	JР	ND		ND		NS		NS		NS	
gamma-BHC (Lindane)	0.05	ND		0.0091	J	ND		ND		ND		ND		ND		NS		NS		NS	
delta-BHC	0.04	ND		0.0046	J	0.0034	NJ	0.0071	J	0.0076	JР	ND		ND		NS		NS		NS	
gamma-Chlordane	NA	ND		0.0150	J	0.016	NJ	ND		ND		ND		ND		NS		NS		NS	
4,4'-DDE	0.2	0.0710	J	0.0150	J	ND		ND		ND		ND		ND		NS		NS		NS	
Endosulfan I	NA	0.1100		ND		ND		ND		ND		ND		ND		NS		NS		NS	
Endrin aldehyde	5	ND		ND		ND		ND		ND		ND		ND		NS		NS		NS	
Heptachlor	0.04	ND		ND		0.012	NJ	ND		ND		ND		ND		NS		NS		NS	
Heptachlor epoxide	0.03	ND		0.0071	J	ND		ND		ND		ND		ND		NS		NS		NS	
Metals by EPD Methods 601	0 and 9012, (ug/L)																				
Aluminum	2,000	ND		ND		NA		NA		NA		1,210		ND		NA		NA		NA	
Antimony	3	ND		ND		NA		NA		NA		54.9		15.4	В	NA		NA		NA	
Arsenic	25	ND		48.2		63		89		101		4,780		958		5,100		1,100		309	
Barium	1,000	313		67.3		NA		NA		NA		49.4		32.3		NA		NA		NA	
Calcium	NA	396,000		81,300		NA		NA		NA		108,000		125,000		NA		NA		NA	
Chromium	50	21.8	В	1.9	В	ND		ND		0.82	J	13.4		1.7	В	2.1	J	1.4	J	0.71	J
Cobalt	NA	33,900		3.9	В	NA		NA		NA		2.9	В	ND		NA		NA		NA	
Copper	200	70,000		ND		NA		NA		NA		7.3	В	ND		NA		NA		NA	
Cyanide, Total	200	ND		ND		NA		NA		NA		ND		ND		NA		NA		NA	
Iron	300	7,420		26,200		18,500		17,000		20,400		1,340		632		3,200		2,100		2,600	
Lead	25	ND		ND		NA		NA		NA		ND		ND		NA		NA		NA	
Magnesium	35,000 (GV)	ND		14,400		11,500		12,800		9,220		4,970		9,020		9,100		8,800		9,950	
Manganese	300	ND		2,420		NA		1,500		1,330		197		723		NA		550		997	
Nickel	100	18	В	2.9	В	NA		NA		NA		8.9	В	5.1	В	NA		NA		NA	
Potassium	NA	61,100		6,030		NA		NA		NA		22500		19,900		NA		NA		NA	
Selenium	10	ND		ND		NA		NA		NA		ND		ND		NA		NA		NA	
Sodium	20,000	3,910,000		122,000		114,000		94,300		91,000		345,000		117,000		83,400		79,900		95,500	
Vanadium	NA	ND		1.6	В	NA		NA		NA		8.6		11.3		NA		NA		NA	
Zinc	2,000 (GV)	ND		ND		NA		NA		NA		ND		ND		NA		NA		NA	

⁽¹⁾ TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent

Limitations, NYSDEC, June 1998 and Addendum, April 2000.

Based on Water Class GA, Source of Drinking Water (Groundwater).

GV denotes Guidance Value.

NA is Not Applicable.

NS is Not Sampled

ND is Not Detected.

"Qual" denotes Laboratory and Validators Qualifiers.

Bold indicates value exceeded Standard Guidance Value.

VOCs analyzed using EPA Method 8260. SVOCs analyzed using EPA Method 8270.

Pesticides/PCBs analyzed using EPA Method 8082.

Metals were analyzed using EPA Method 6010 and 7471 for Mercury.

I indicates an estimated value.

H indicates alternate peak selection upon analytical review.

M indicates a manually integrated compound.

B indicates value was obtained from a reading less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).

E indicates the reported value is estimate because of the presence of interference.

N indicates spiked sample recovery not within control limits. DL indicates laboratory dilution applied.

July 2008 analytical data not subjected to data validation via DUSR.

 $[\]ensuremath{^{(2)}}$ Replacement monitoring well. Analysis conducted by Upstate Laboratories, Inc.

C.T. Male Project No. 01.7293

Sample ID	and and a second					MV	V- 9								Ol	FF33			
Date Sampled	NYSDEC Water Quality Standard (1)	Ma	y-02	Maı	:-06	May	y-07	Jul	-08	Jul	-10	Feb/Mar	ch 2006	Apr	-07	Jul-	-08	Jul-	-10
Parameter	Standard \	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Pesticides by EPD Method 8	8081, (ug/L)		"			•		•		•	1		11		'		<u>'</u>		<u>"</u>
Aldrin	ND	ND		ND		NS		NS		NS		NS		NS		NS		NS	
alpha-BHC	0.01	ND		ND		NS		NS		NS		NS		NS		NS		NS	
beta-BHC	0.04	ND		ND		NS		NS		NS		NS		NS		NS		NS	
gamma-BHC (Lindane)	0.05	ND		ND		NS		NS		NS		NS		NS		NS		NS	
delta-BHC	0.04	ND		ND		NS		NS		NS		NS		NS		NS		NS	
gamma-Chlordane	NA	ND		ND		NS		NS		NS		NS		NS		NS		NS	
4,4'-DDE	0.2	ND		ND		NS		NS		NS		NS		NS		NS		NS	
Endosulfan I	NA	ND		ND		NS		NS		NS		NS		NS		NS		NS	
Endrin aldehyde	5	ND		ND		NS		NS		NS		NS		NS		NS		NS	
Heptachlor	0.04	ND		ND		NS		NS		NS		NS		NS		NS		NS	
Heptachlor epoxide	0.03	ND		ND		NS		NS		NS		NS		NS		NS		NS	
Metals by EPD Methods 601	10 and 9012, (ug/L)					•					•			•		•		•	
Aluminum	2,000	436	В	ND		NA		NA		NA		147		ND		420	J	NA	
Antimony	3	ND		ND		NA		NA		NA		ND		ND		ND		NA	
Arsenic	25	ND		ND		ND		ND		ND		ND		ND	J	5	J	ND	
Barium	1,000	31.4		30.3		NA		NA		NA		ND		80		43		NA	
Calcium	NA	146,000		185,000		NA		NA		NA		71,600		127,000		81,100		NA	
Chromium	50	5	В	10.9		25		23		9.2		35		16		6	J	1	J
Cobalt	NA	ND		ND		NA		NA		NA		ND		ND		ND		NA	
Copper	200	1.5	В	ND		NA		NA		NA		ND		ND		5.8	J	NA	
Cyanide, Total	200	ND		ND		NA		NA		NA		NA		NA		NA		NA	
Iron	300	570		ND		ND		67	J	50.3	J	1,360		ND	J	2,500		2,340	
Lead	25	ND		ND		NA		NA		NA	-	ND		8.2	Ţ	44		NA	
Magnesium	35,000 (GV)	14,400		18,800		14,500		13,500		12,300		5,900		11,900	ĺ	6,900		6,000	
Manganese	300	28.8		ND		NA		ND		2.4	I	263		9.8	I	64		60.2	I
Nickel	100	ND		ND		NA		NA		NA	,	ND		ND	,	ND		NA	,
Potassium	NA	4,250		2,750		NA		NA		NA		2,260	Ţ	3,800		4,500		NA	
Selenium	10	ND		ND		NA		NA		NA		ND	Ī	ND		ND		NA	
Sodium	20,000	21,300		15,000		14,200		29,400		24,800		16,200	,	40,500		26,600		9,380	
Vanadium	NA	ND		ND		NA		NA		NA		ND		0.81	I	3.3	Ī	NA	
Zinc	2,000 (GV)	ND		ND		NA		NA		NA		ND		73	,	58	,	NA	

⁽¹⁾ TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent

Limitations, NYSDEC, June 1998 and Addendum, April 2000.

Based on Water Class GA, Source of Drinking Water (Groundwater).

GV denotes Guidance Value.

NA is Not Applicable.

NS is Not Sampled

ND is Not Detected.

"Qual" denotes Laboratory and Validators Qualifiers.

Bold indicates value exceeded Standard Guidance Value.

VOCs analyzed using EPA Method 8260. SVOCs analyzed using EPA Method 8270.

Pesticides/PCBs analyzed using EPA Method 8082.

Metals were analyzed using EPA Method 6010 and 7471 for Mercury.

I indicates an estimated value.

H indicates alternate peak selection upon analytical review.

M indicates a manually integrated compound.

B indicates value was obtained from a reading less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).

E indicates the reported value is estimate because of the presence of interference.

N indicates spiked sample recovery not within control limits. DL indicates laboratory dilution applied.

July 2008 analytical data not subjected to data validation via DUSR.

⁽²⁾ Replacement monitoring well. Analysis conducted by Upstate Laboratories, Inc.

Table 1 Groundwater Analytical Results (Detections Only) Independent Leather C.T. Male Project No. 01.7293

Page 14 of 14

Sample ID	NIVCDEC Material Co. 19				Ol	FF35			
Date Sampled	NYSDEC Water Quality Standard (1)	Feb/Ma	rch 2006	Apı	r-07	Jul	-08	Jul-	08
Parameter	Standard V	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Pesticides by EPD Method	8081, (ug/L)	•							
Aldrin	ND	NS		NS		NS		NS	
alpha-BHC	0.01	NS		NS		NS		NS	
beta-BHC	0.04	NS		NS		NS		NS	
gamma-BHC (Lindane)	0.05	NS		NS		NS		NS	
delta-BHC	0.04	NS		NS		NS		NS	
gamma-Chlordane	NA	NS		NS		NS		NS	
4,4'-DDE	0.2	NS		NS		NS		NS	
Endosulfan I	NA	NS		NS		NS		NS	
Endrin aldehyde	5	NS		NS		NS		NS	
Heptachlor	0.04	NS		NS		NS		NS	
Heptachlor epoxide	0.03	NS		NS		NS		NS	
Metals by EPD Methods 60	10 and 9012, (ug/L)								
Aluminum	2,000	726		< 500		< 500		NA	
Antimony	3	ND		ND		ND		NA	
Arsenic	25	ND		ND	J	14	J	24.6	
Barium	1,000	ND		87		29		NA	
Calcium	NA	131,000		187,000		96,700		NA	
Chromium	50	11.5		82		60		9	
Cobalt	NA	ND		2.8	J	ND		NA	
Copper	200	ND		4.3	J	3.6	J	NA	
Cyanide, Total	200	NA		NA		NA		NA	
Iron	300	6,780		8,100		5,500		5,800	
Lead	25	< 3		ND		ND		NA	
Magnesium	35,000 (GV)	21,700		28,900		18,000		18,300	
Manganese	300	359		1,100		270		223	
Nickel	100	ND		ND		ND		NA	
Potassium	NA	1,870	J	2,600		1,600		NA	
Selenium	10	6.83	J	ND		ND		NA	
Sodium	20,000	19,700		20,500		18,200		19,100	
Vanadium	NA	ND		ND		ND		NA	
Zinc	2,000 (GV)	ND		28	J	14	J	NA	

TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent

Limitations, NYSDEC, June 1998 and Addendum, April 2000.

Based on Water Class GA, Source of Drinking Water (Groundwater).

GV denotes Guidance Value.

NA is Not Applicable.

NS is Not Sampled

ND is Not Detected.

 $"Qual"\ denotes\ Laboratory\ and\ Validators\ Qualifiers.$

Bold indicates value exceeded Standard Guidance Value.

VOCs analyzed using EPA Method 8260. SVOCs analyzed using EPA Method 8270.

Pesticides/PCBs analyzed using EPA Method 8082.

Metals were analyzed using EPA Method 6010 and 7471 for Mercury.

I indicates an estimated value.

 \boldsymbol{H} indicates alternate peak selection upon analytical review.

M indicates a manually integrated compound.

B indicates value was obtained from a reading less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).

E indicates the reported value is estimate because of the presence of interference.

N indicates spiked sample recovery not within control limits. DL indicates laboratory dilution applied.

July 2008 analytical data not subjected to data validation via DUSR.

 $[\]ensuremath{^{(2)}}$ Replacement monitoring well. Analysis conducted by Upstate Laboratories, Inc.