
SITE INVESTIGATION/ REMEDIAL ALTERNATIVES REPORT FORMER JONAS AUTOMOTIVE FACILITY NEWBURGH, ORANGE COUNTY, NEW YORK

ENVIRONMENTAL RESTORATION PROJECT No. B00136-3

SITE INVESTIGATION/
REMEDIAL ALTERNATIVES REPORT
FORMER JONAS AUTOMOTIVE FACILITY
86 WISNER AVENUE
NEWBURGH, ORANGE COUNTY, NEW YORK 12550

ENVIRONMENTAL RESTORATION PROJECT No. B00136-3

Prepared for:

City of Newburgh

83 Broadway

Newburgh, New Y ork 12550

Prepared by:

First Environment 90 Riverdale Road

Riverdale, NJ 07457

FEBRUARY 2003

TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
INTRODUCTION	3
ENVIRONMENTAL SETTING	
SITE DESCRIPTION REGIONAL GEOLOGY AND HYDROGEOLOGY SITE GEOLOGY AND HYDROGEOLOGY TOPOGRAPHY AND DRAINAGE	4 5
SITE HISTORY AND PRIOR USE	7
REMEDIAL INVESTIGATION PROCEDURES	9
SOIL BORINGS SOIL SAMPLING MONITORING WELL INSTALLATION GROUNDWATER SAMPLING GROUNDWATER ELEVATION MEASUREMENTS AQUIFER TESTING	9 10 11
QUALITY ASSURANCE / QUALITY CONTROL	
LABORATORY ANALYTICAL METHODSDATA VALIDATION	
INVESTIGATION FINDINGS	14
AREA 1 – DRUM STORAGE AREASAMPLE COLLECTION	
ANALYTICAL RESULTS	15
AREA 2 - OVERHEAD CRANE AREASAMPLE COLLECTION	
ANALYTICAL RESULTS	18
AREA 3 – LOW-LYING GROUND AREA	
ANALYTICAL RESULTS	20
AREA 4 – DRY WELL AND LEACHFIELD	
ANALYTICAL RESULTS	21
AREA 5 – CATCH BASIN	າາ

ANALYTICAL RESULTS	SAMPLE COLLECTION	23
SAMPLE COLLECTION 24 ANALYTICAL RESULTS 24 AREA 7 – ABOVEGROUND STORAGE TANK 25 SAMPLE COLLECTION 25 ANALYTICAL RESULTS 25 AREA 8 BUILDING INTERIOR, DRAINS AND SUMPS 25 AREA 9 - GROUNDWATER 26 MONITORING WELL INSTALLATION 26 SAMPLE COLLECTION 26 ANALYTICAL RESULTS 27 GROUNDWATER FLOW CHARACTERISTICS 29 WATER-WELL SURVEY 30 EXPOSURE ASSESSMENT 31 CONTAMINANT SOURCES 31 CONTAMINANT RELEASE AND TRANSPORT MECHANISMS 32 POINT OF EXPOSURE/ROUTE OF EXPOSURE 32 RECEPTOR POPULATION 33 SUMMARY OF FINDINGS 33 REMEDIATION ALTERNATIVES EVALUATION 35 SOIL REMEDIATION TECHNOLOGIES 36 EXTENT AND NATURE OF SOIL CONTAMINATION 36 EVALUATION OF TECHNOLOGIES TO ADDRESS IMPACTED SOIL 37 NO FURTHER ACTION FOR IMPACTED SOILS 37 Overall Protection of Human Health and the Environment 38 Short Term Impacts and Effectiveness 38 <td>ANALYTICAL RESULTS</td> <td>23</td>	ANALYTICAL RESULTS	23
AREA 7 – ABOVEGROUND STORAGE TANK		
SAMPLE COLLECTION 25 ANALYTICAL RESULTS 25 AREA 8 BUILDING INTERIOR, DRAINS AND SUMPS 25 AREA 9 - GROUNDWATER 26 MONITORING WELL INSTALLATION 26 SAMPLE COLLECTION 26 ANALYTICAL RESULTS 27 GROUNDWATER FLOW CHARACTERISTICS 29 WATER-WELL SURVEY 30 EXPOSURE ASSESSMENT 31 CONTAMINANT SOURCES 31 CONTAMINANT RELEASE AND TRANSPORT MECHANISMS 32 POINT OF EXPOSURE/ROUTE OF EXPOSURE 32 RECEPTOR POPULATION 33 SUMMARY OF FINDINGS 33 REMEDIATION ALTERNATIVES EVALUATION 35 SOIL REMEDIATION TECHNOLOGIES 36 EXTENT AND NATURE OF SOIL CONTAMINATION 36 EVALUATION OF TECHNOLOGIES TO ADDRESS IMPACTED SOIL 37 NO FURTHER ACTION FOR IMPACTED SOILS 37 Overall Protection of Human Health and the Environment 38 Short Term Impacts and Effectiveness 38 Long Term Effectiveness and Permanence 38 Reduction of Toxicity, Mobility and Volume 38	ANALYTICAL RESULTS	24
AREA 8 BUILDING INTERIOR, DRAINS AND SUMPS	AREA 7 – ABOVEGROUND STORAGE TANKSAMPLE COLLECTION	25 25
AREA 9 - GROUNDWATER. 26 MONITORING WELL INSTALLATION 26 SAMPLE COLLECTION 26 ANALYTICAL RESULTS 27 GROUNDWATER FLOW CHARACTERISTICS 29 WATER-WELL SURVEY 30 EXPOSURE ASSESSMENT 31 CONTAMINANT SOURCES 31 CONTAMINANT RELEASE AND TRANSPORT MECHANISMS 32 POINT OF EXPOSURE/ROUTE OF EXPOSURE 32 RECEPTOR POPULATION 33 SUMMARY OF FINDINGS 33 REMEDIATION ALTERNATIVES EVALUATION 35 SOIL REMEDIATION TECHNOLOGIES 36 EXTENT AND NATURE OF SOIL CONTAMINATION 36 EVALUATION OF TECHNOLOGIES TO ADDRESS IMPACTED SOIL 37 NO FURTHER ACTION FOR IMPACTED SOILS 37 SELECTION CRITERIA 37 Compliance with New York Standards, Criteria and Guidelines (SCGs) 37 Overall Protection of Human Health and the Environment 38 Short Term Impacts and Effectiveness 38 Long Term Effectiveness and Permanence 38 Reduction of Toxicity, Mobility and Volume 38 Implementability 38 <td>ANALYTICAL RESULTS</td> <td>25</td>	ANALYTICAL RESULTS	25
ANALYTICAL RESULTS	AREA 9 - GROUNDWATER	26
GROUNDWATER FLOW CHARACTERISTICS 29 WATER-WELL SURVEY 30 EXPOSURE ASSESSMENT 31 CONTAMINANT SOURCES 31 CONTAMINANT RELEASE AND TRANSPORT MECHANISMS 32 POINT OF EXPOSURE/ROUTE OF EXPOSURE 32 RECEPTOR POPULATION 33 SUMMARY OF FINDINGS 33 REMEDIATION ALTERNATIVES EVALUATION 35 SOIL REMEDIATION TECHNOLOGIES 36 EXTENT AND NATURE OF SOIL CONTAMINATION 36 EVALUATION OF TECHNOLOGIES TO ADDRESS IMPACTED SOIL 37 NO FURTHER ACTION FOR IMPACTED SOILS 37 SELECTION CRITERIA 37 Compliance with New York Standards, Criteria and Guidelines (SCGs) 37 Overall Protection of Human Health and the Environment 38 Short Term Impacts and Effectiveness 38 Long Term Effectiveness and Permanence 38 Reduction of Toxicity, Mobility and Volume 38 Implementability 38	SAMPLE COLLECTION	26
WATER-WELL SURVEY 30 EXPOSURE ASSESSMENT 31 CONTAMINANT SOURCES 31 CONTAMINANT RELEASE AND TRANSPORT MECHANISMS 32 POINT OF EXPOSURE/ROUTE OF EXPOSURE 32 RECEPTOR POPULATION 33 SUMMARY OF FINDINGS 33 REMEDIATION ALTERNATIVES EVALUATION 35 SOIL REMEDIATION TECHNOLOGIES 36 EXTENT AND NATURE OF SOIL CONTAMINATION 36 EVALUATION OF TECHNOLOGIES TO ADDRESS IMPACTED SOIL 37 NO FURTHER ACTION FOR IMPACTED SOILS 37 SELECTION CRITERIA 37 Compliance with New York Standards, Criteria and Guidelines (SCGs) 37 Overall Protection of Human Health and the Environment 38 Short Term Impacts and Effectiveness 38 Long Term Effectiveness and Permanence 38 Reduction of Toxicity, Mobility and Volume 38 Implementability 38	ANALYTICAL RESULTS	27
CONTAMINANT SOURCES 31 CONTAMINANT RELEASE AND TRANSPORT MECHANISMS 32 POINT OF EXPOSURE/ROUTE OF EXPOSURE 32 RECEPTOR POPULATION 33 SUMMARY OF FINDINGS 33 REMEDIATION ALTERNATIVES EVALUATION 35 SOIL REMEDIATION TECHNOLOGIES 36 EXTENT AND NATURE OF SOIL CONTAMINATION 36 EVALUATION OF TECHNOLOGIES TO ADDRESS IMPACTED SOIL 37 NO FURTHER ACTION FOR IMPACTED SOILS 37 SELECTION CRITERIA 37 Compliance with New York Standards, Criteria and Guidelines (SCGs) 37 Overall Protection of Human Health and the Environment 38 Short Term Impacts and Effectiveness 38 Long Term Effectiveness and Permanence 38 Reduction of Toxicity, Mobility and Volume 38 Implementability 38		
CONTAMINANT RELEASE AND TRANSPORT MECHANISMS. 32 POINT OF EXPOSURE/ROUTE OF EXPOSURE. 32 RECEPTOR POPULATION. 33 SUMMARY OF FINDINGS. 33 REMEDIATION ALTERNATIVES EVALUATION. 35 SOIL REMEDIATION TECHNOLOGIES. 36 EXTENT AND NATURE OF SOIL CONTAMINATION. 36 EVALUATION OF TECHNOLOGIES TO ADDRESS IMPACTED SOIL. 37 NO FURTHER ACTION FOR IMPACTED SOILS. 37 SELECTION CRITERIA. 37 Compliance with New York Standards, Criteria and Guidelines (SCGs) 37 Overall Protection of Human Health and the Environment 38 Short Term Impacts and Effectiveness 38 Long Term Effectiveness and Permanence 38 Reduction of Toxicity, Mobility and Volume. 38 Implementability. 38	EXPOSURE ASSESSMENT	31
SOIL REMEDIATION TECHNOLOGIES EXTENT AND NATURE OF SOIL CONTAMINATION	CONTAMINANT RELEASE AND TRANSPORT MECHANISMS POINT OF EXPOSURE/ROUTE OF EXPOSURE RECEPTOR POPULATION	32 32 33
EXTENT AND NATURE OF SOIL CONTAMINATION	REMEDIATION ALTERNATIVES EVALUATION	35
NO FURTHER ACTION FOR IMPACTED SOILS		
SELECTION CRITERIA	EVALUATION OF TECHNOLOGIES TO ADDRESS IMPACTED SOIL	37
Compliance with New York Standards, Criteria and Guidelines (SCGs) 37 Overall Protection of Human Health and the Environment 38 Short Term Impacts and Effectiveness 38 Long Term Effectiveness and Permanence 38 Reduction of Toxicity, Mobility and Volume 38 Implementability 38	NO FURTHER ACTION FOR IMPACTED SOILS	37
Overall Protection of Human Health and the Environment 38 Short Term Impacts and Effectiveness 38 Long Term Effectiveness and Permanence 38 Reduction of Toxicity, Mobility and Volume 38 Implementability 38	SELECTION CRITERIA	37
	Overall Protection of Human Health and the Environment Short Term Impacts and Effectiveness Long Term Effectiveness and Permanence Reduction of Toxicity, Mobility and Volume	38 38 38 38

EXCAVATION AND OFF-SITE TREATMENT/DISPOSAL OF ALL IMPACTED SOILS

BEYOND RSCOS	39
SELECTION CRITERIA	39
Compliance with New York Standards, Criteria and Guidelines (SCGs)	39
Overall Protection of Human Health and the Environment	40
Short Term Impacts and Effectiveness	
Long Term Effectiveness and Permanence	
Reduction of Toxicity, Mobility and Volume	
Implementability	
CostINSTITUTIONAL AND ENGINEERING CONTROLS (DEED RESTRICTION AND S	41
CAPPING)	41
SELECTION CRITERIA	42
Compliance with New York Standards, Criteria and Guidelines (SCGs)	42
Overall Protection of Human Health and the Environment	42
Short Term Impacts and Effectiveness	
Long Term Effectiveness and Permanence	
Reduction of Toxicity, Mobility and Volume	
Implementability	
Cost	
EXCAVATION OF IMPACTED SOILS FROM HOT SPOTS WITH INSTITUTIONAL	_ AND
ENGINEERING CONTROLS (DEED RESTRICTION AND SITE CAPPING)	44
SELECTION CRITERIA	45
	4.5
Compliance with New York Standards, Criteria and Guidelines (SCGs)	
Overall Protection of Human Health and the Environment	
Short Term Impacts and Effectiveness	
Long Term Effectiveness and Permanence	
Reduction of Toxicity, Mobility and Volume	40
Implementability	
RECOMMENDED REMEDIAL ALTERNATIVE OBJECTIVE	40
RECOMMENDED REMEDIAL ALTERNATIVE SELECTION	47
GROUNDWATER REMEDIATION TECHNOLOGIES	47
EXTENT AND NATURE OF GROUNDWATER CONTAMINATION	
EVALUATION OF TECHNOLOGIES	48
NO ACTION	48
SELECTION CRITERIA	48

Compliance with New York Standards, Criteria and Guidelines (SCGs)	
Overall Protection of Human Health and the Environment	
Short Term Impacts and Effectiveness	
Long Term Effectiveness and Permanence	
Reduction of Toxicity, Mobility and Volumelmplementability	
Cost	
INSTITUTIONAL CONTROLS AND GROUNDWATER MONITORING	
INSTITUTIONAL CONTROLS AND GROUNDWATER MONITORING	50
SELECTION CRITERIA	50
Compliance with New York Standards, Criteria and Guidelines (SCGs)	50
Overall Protection of Human Health and the Environment	51
Short Term Impacts and Effectiveness	51
Long Term Effectiveness and Permanence	
Reduction of Toxicity, Mobility and Volume	
Implementability	
Cost	
RECOMMENDED REMEDIAL ALTERNATIVE OBJECTIVE	52
RECOMMENDED REMEDIAL ALTERNATIVE SELECTION	52
SUMMARY AND CONCLUSIONS	53
RECOMMENDATIONS	54

TABLES

- 1. Soil Sampling Results
- 2. Groundwater Sampling Results
- 3. Groundwater Elevation Measurements
- 4. Aquifer Test Results
- 5. Well Search Results
- 6. Drum/Container Inventory
- 7. Preliminary Screening of Soil and Groundwater Remedial Alternatives
- 8. Summary of Costs for Remedial Alternatives

FIGURES

- 1. Site Location
- 2. Site Plan
- 3. Sample Location Map
- 4A. Groundwater Flow Map August 28, 2001
- 4B Groundwater Flow Map September 5, 2002
- 5 Well Search Results
- 6 Proposed Areas of Remediation

APPENDICES

- 1. Boring Logs
- 2. Aquifer Slug Test Data
- 3. Quality Assurance/Quality Control Plan
- 4. Data Usability Summary Reports for Analytical Data
- 5. Manifests
- 6. Well Search Information

EXECUTIVE SUMMARY

First Environment, Inc. ("First Environment") has completed the investigation and initial remedial actions at the Former Jonas Automotive Facility on behalf of the City of Newburgh, who acquired the subject Site as a result of tax foreclosure. The work was completed as part of the municipal assistance environmental restoration projects "Brownfields Project." The subject Site has been assigned Environmental Restoration Project Number B00136-3 by the New York State Department of Environmental Conservation (NYSDEC).

Based on the soil and groundwater investigations conducted to date, it has been determined that soil and groundwater at the Former Jonas Automotive Facility located at 86 Wisner Avenue in Newburgh, New York has been impacted to levels that exceed recommended soil cleanup objectives and groundwater standards respectively.

Groundwater underlying the Site has been impacted with the chlorinated volatile organic compound tetrachloroethene (PCE) and methyl tertiary butyl ether (MTBE). PCE was detected at concentrations marginally above the regulatory standard of five parts per billion (ppb). However, based on the calculated groundwater flow direction and the results from a downgradient monitoring well, it appears that the PCE is not migrating offsite. MTBE was not detected above the 10 ppb guidance value during the August 2001 sampling event but was detected at 1,200 ppb during the September 2002 event at one monitoring well (MW-3). The September 2002 sampling event result for MTBE at MW-3 was suspect due to the fluctuation in concentration from the previous event, therefore, it was re-sampled in December 2003 at which time MTBE was identified at 29 ppb. No samples from any other wells, including downgradient wells MW-5 and MW-6, contained MTBE above the groundwater standard of 10 ppb. Metals were detected in groundwater above regulatory levels during the August 2001 sampling event. However, the metals in groundwater were attributed to sample turbidity rather than naturally occurring conditions. This was verified during the September 2002 sampling event in which additional measures were taken to minimize turbidity, the results being no metals concentrations detected above the groundwater standards or guidance values in any of the groundwater samples.

Soils at the Site have been found to be impacted with metals above applicable standards, primarily lead and mercury. It has not been determined if the metals concentrations in the soil

are the result of past practices at the Site, historic filling operations at the Site, or background conditions. No ongoing sources of organic compounds such as petroleum or volatile organic compounds that could contaminate groundwater were identified as remaining onsite.

Remedial activities completed at the Site to date have been effective in removing potential sources of contamination, thereby preventing further degradation of Site conditions. The remedial activities conducted at the Site consisted of the removal of an underground storage tank, an aboveground storage tank, and various containers which consist primarily of drums containing various liquids that had been discarded at the Site.

Based on the levels and limited extent of groundwater contaminants identified, no active remediation of groundwater is recommended. Rather, the implementation of institutional controls prohibiting future use of untreated groundwater at the Site is proposed. Furthermore, to confirm that natural attenuation is occurring the City is proposing to conduct semi-annual groundwater monitoring for VOCs.

In the event that elevated metals concentrations that could potentially impact human health or the environment are present in soil across the Site, remedial actions will be necessary. The recommended remedial alternative for metals contaminated soils onsite consists of the excavation and off-site disposal of the lead contaminated soils at the former drum storage area, and a limited area of mercury contaminated soil on the south side of the Site, combined with the implementation of engineering and/or institutional controls for the entire Site. Excavated soils would be replaced with clean fill. The determination of the engineering controls will be dependent on the extent of contaminants present and the proposed future use of the Site. For the purposes of estimating remedial costs, it is assumed the entire Site will be capped with 75 percent being asphalt and 25 percent being approximately 12 inches of clean fill for unpaved areas. A demarcation barrier, such as a geotextile fabric, would be placed under the cover to delineate the level of contaminated soils.

INTRODUCTION

This Site Investigation/Remedial Alternatives Report (SI/RAR) has been prepared by First Environment, Inc. (First Environment) on behalf of the City of Newburgh for the Former Jonas Automotive Facility (Site). The City of Newburgh has conducted the activities onsite as part of the municipal assistance environmental restoration projects "Brownfields program" (project number B00136-3). The New York State Department of Environmental Conservation (NYSDEC) administered the investigation.

The investigation and remedial activities were conducted as described in the Site Investigation / Remedial Action Workplan SI/RAW prepared for the Site by First Environment. Based on comments received from the NYSDEC on the January 2002 draft SI/RAR, additional site investigation activities were conducted. This report documents the investigation and remedial actions conducted to date at the Site.

The introduction provides the regulatory framework and identifies the entities involved in the project. The environmental setting section provides information regarding the Site including regional and site geology and hydrogeology, as well as Site history. The site investigation and remediation activities are discussed including all field activities and quality assurance and quality control procedures. The specific activities are detailed on an area-by-area basis including the results of laboratory testing in relation to applicable regulatory standards or guidelines. A discussion of possible remedial alternatives for contaminants remaining onsite is provided followed by conclusions and recommendations for further activities. Separate test data and backup documentation are provided as Appendices to this report, as necessary.

ENVIRONMENTAL SETTING

SITE DESCRIPTION

The site is located at 86 Wisner Avenue in the City of Newburgh, Orange County, New York (Figure 1). The site is located in a mixed-use area of commercial and residential parcels. Adjacent properties to the north and west of the Site are primarily residential, although there is a vehicle inspection station north of the Site that appears to conduct automobile repair operations. The adjacent properties to the south consist of an industrial facility (Prime, Inc.), a restaurant (Planet Wings) and a car dealer (Nissan Used Car Authority). To the east is an open, undeveloped, low-lying area.

The Site consists of approximately 1.5 acres of fairly level land. With the exception of the areas occupied by the buildings, the Site is unpaved and covered with fill consisting of gravel and cinders with vegetation in the less traveled areas.

There are two buildings onsite, a 1,500 square foot garage and a 16,000 square foot former foundry building (Figure 2). The garage is a single story building constructed of concrete block. The former foundry building is a slab on grade, brick and steel framed building consisting primarily of one large story with an overhead crane traversing the center of the building and mezzanines running along either side. The overhead crane extends out the east end of the building to encompass a covered area. An abandoned railroad spur is located east of the building.

The other notable features on the Site are an abandoned school bus located on the northeast corner of the Site, an abandoned pickup truck located in the garage, and an abandoned tractor truck (without trailer) west of the garage. There is a chain link fence on the north and west sides of the Site, with a gate on the driveway located at the northwest corner of the property.

REGIONAL GEOLOGY AND HYDROGEOLOGY

The former Jonas site lies within the Valley and Ridge Physiographic Province. The predominant features associated with this province are narrow valleys and ridges formed as a result of differential erosion of the underlying sandstone and shale formations. Specifically, the

Newburgh area is characterized by alluvial deposits underlain by meta-sedimentary and sedimentary bedrock formations.

Alluvium in the area is comprised of flood plain sediments (sand, silt and clay) associated with the Hudson River. Glacial deposition in the area consists primarily of till and unsorted outwash. The outwash is predominantly a mixture of gravel, sand, silt and clay. The bedrock underlying this region consists of middle Ordovician Taconian Sequence, primarily shales and graywackes.

Regionally, groundwater occurs in both the overburden and bedrock under confined or unconfined conditions. Regional groundwater flow in the Newburgh area is to the east, towards the Hudson River.

As identified in the water well survey, conducted as part of this investigation, wells were identified within one mile of the Site with groundwater occurring in either sand and gravel and lake deposit units in the overburden, or the Onondaga limestone bedrock.

SITE GEOLOGY AND HYDROGEOLOGY

The discussion of the Site geology is based on observations by First Environment during drilling and excavation activities conducted during investigation and remediation activities. Site investigation locations are shown in Figure 3. Based on observations during monitoring well installation, the Site is underlain by approximately 2.5 to 7 feet of fill consisting of varying amounts of sand, silt and gravel with occasional brick fragments and cinders. Underlying the fill is silt near the southwest end of the Site (MW-1) and varying amounts of sand, gravel and cobbles at other parts of the Site (MW-2 through MW-6). Intrusive activities did not extend below a depth of 17 feet and bedrock was not encountered. Boring logs are presented in Appendix 1.

Based on observations during the site investigation, groundwater occurs at the Site at depths ranging from approximately 6 to 14 feet depending on location and seasonal variations. A decrease in water level of approximately 1.5 feet was observed in four of the five monitoring wells onsite between September 27 2001 and November 7, 2001. This decrease was likely attributable to a lack of precipitation during that time. By September 2002 groundwater elevations had returned to the levels observed in September 2001.

Based on the groundwater elevations measured, local groundwater flows to the southeast as shown in Figures 4A and 4B. Based on the hydraulic conductivity testing completed and hydraulic gradients measured, an average groundwater velocity of 8.9 x 10⁻⁴ ft/day was calculated. A more detailed discussion of field activities and findings regarding aquifer characteristics is provided in a subsequent section.

TOPOGRAPHY AND DRAINAGE

The Site is located approximately 175 feet above mean sea level and is relatively flat, with a gentle slope to the east. Stormwater that does not infiltrate the unpaved areas of the Site is expected to runoff to the low-lying area east of the Site. Some stormwater reportedly enters a catch basin located adjacent to the main building onsite, the catch basin discharges to the leachfield near the east end of the Site identified on Figure 2.

SITE HISTORY AND PRIOR USE

The Site history is based on information provided during a site inspection with the NYSDEC, information presented in the Environmental Data Resources (EDR) Radius Search for the site, and City of Newburgh tax records.

Poughkeepsie Iron Fabricators operated on the Site from 1963 until the early 1990s. Poughkeepsie Iron Fabricators are believed to have fabricated large iron structural members, such as those used in major bridge construction. Poughkeepsie Iron Fabricators is listed in the underground storage tank (UST) and aboveground storage tank (AST) databases. A 1,000-gallon gasoline UST was installed in August 1962. ASTs identified in the database consist of two 1,000-gallon (diesel and waste fluids), one 500-gallon gasoline, and one 275-gallon waste oil.

Poughkeepsie Trim and Steel operated the Site from the early 1990s until 1993 and is listed on the New York State Spills database. However, the spill event occurred in 1994 and the release was attributed to Jonas Automotive Rebuilders, as discussed below.

Jonas Automotive Rebuilders (Jonas) operated at the facility from August 1993 through March 1999. The operations conducted by Jonas reportedly included dismantling vehicles. Jonas is listed as the "spiller" in NYSDEC Spill case number 9404697. The release was the result of engine blocks being dumped on a concrete pad with engine fluids contaminating adjacent soils. According to the report, a willing responsible party existed, corrective action was taken and the spill case was closed on July 11, 1994.

Jonas Automotive is also listed in the Spills database for an incident reported by a citizen to the NYSDEC on March 2, 1998. The report was of engine blocks being dumped in the rear of the property with fluids visible on the ground. The case was assigned number 9713317. The EDR report stated the responsible party stockpiled the contaminated soil on the Site and filed to properly dispose of it. The disposal of this soil is presented in more detail in the discussion of the overhead crane area later in this report. In March 1999, the City of Newburgh acquired the property through property tax foreclosure.

During a site inspection on February 8, 2000, First Environment identified one 275-gallon (fuel oil) AST and one 275-gallon cutting oil AST as shown on Figure 2. In addition, one 1,000-gallon AST used to store waste fluids was located on the Jonas Property behind the main building. The other 500 and 1,000-gallon ASTs, listed in the EDR Report, were not identified on the property.

REMEDIAL INVESTIGATION PROCEDURES

Activities conducted at the Site were completed in accordance with the NYSDEC-approved RI/RAW. A description of the specific procedures field procedures is provided below.

SOIL BORINGS

Soil borings were advanced by geoprobe direct push method. The geoprobe borings were advanced by First Environment. Hollow stem auger borings for monitoring wells were advanced by Aquifer Drilling and Testing of Troy or New Hyde Park, New York. During the drilling of soil borings, split spoon soil samples were screened for organic vapors using a photoionization detector (PID) and logged by a First Environment geologist continuously to the completed depth of each boring. Soil description, groundwater level, visual and olfactory observations were recorded. Soil boring logs are presented in Appendix 1.

SOIL SAMPLING

Soil samples were collected from either soil borings during investigative activities, from surface locations or directly from excavation areas and exploratory activities. Soil sample depth intervals were based on field observations, PID readings, staining and/or odors. Soil samples were placed in laboratory-supplied containers and cooled to 4°C. The soil samples were then transported to the analytical laboratory under chain of custody procedures. Soil sampling locations are presented on Figure 3. Soil sampling results are presented in Table 1 and discussed later in this report.

MONITORING WELL INSTALLATION

All monitoring wells were installed using a hollow stem auger drill rig. The monitoring wells were constructed of two-inch diameter schedule 40, threaded, flush joint, PVC casings and slotted screens. Upon completion of the borings, a 10-foot long section of 0.010-inch slotted well screen was installed through the hollow stem augers, typically from approximately five feet below to five feet above the water table. The remainder of the well consisted of two-inch casing, which extended to the ground surface. Clean filter sand was placed in the annulus between the screen and the borehole to a level of at least one to two feet above the top of the screen as the

augers were removed. A bentonite pellet seal was placed on top of the filter sand. The remainder of the annulus was grouted with a cement bentonite grout appropriate for use in monitoring wells. The surface protection for all monitoring wells consisted of flush-mount, steel road boxes. All monitoring wells were secured with locking caps. Boring logs with well construction information are presented in Appendix 1.

Upon the completion of the monitoring well installation, each well was developed by either pumping or bailing. The wells were repeatedly purged until dry and allowed to recharge, however, some suspended sediment still remained in the purge water. The development removed fines generated during the installation and ensured that hydraulic continuity was established between the well and the aquifer. Lanc & Tully of Goshen, New York, a New York Licensed Surveyor surveyed each monitoring well. The top of the inner PVC casing (excluding the cap) was surveyed to the nearest 0.01 foot. The survey point was the highest point of the casing and was marked on each well.

GROUNDWATER SAMPLING

In order to prevent possible cross contamination, disposable sampling equipment (bailers, tubing) was used where possible. Equipment that was reused (submersible pumps) was thoroughly decontaminated between locations.

All monitoring wells were purged prior to sampling. The purging during the August 2001 sampling event consisted of the removal of a minimum of three well volumes of standing water from the well in order to ensure groundwater representative of the surrounding aquifer was sampled. After removal of each well volume, the discharge water was field tested for dissolved oxygen, pH, temperature and conductivity to confirm that conditions had stabilized, verifying the groundwater to be sampled was representative of the surrounding aquifer rather than stagnant groundwater from the well casing.

During the September 2002 groundwater sampling event, wells were sampled using low flow purging procedures. Purging rates were reduced to 50 milliliters per minute and wells were purged until specific conductance, pH and dissolved oxygen stabilized. This procedure was effective in reducing turbidity, with final turbidity at the time of sampling for each location being approximately 50 Nephelometric Turbidity Units (NTUs) or less as shown on Table 2.

Monitoring well MW-3 was re-sampled for VOCs only in December 2002 to evalute the presence of MTBE identified in the September 2002 event. No other wells were sampled during this event.

After purging, samples were collected using disposable Teflon bailers and were placed into laboratory-provided sample bottles. The samples were preserved according to the requirements of the specific analytical methods and cooled to 4°C. The samples were then transported to the analytical laboratory under chain of custody procedures. Groundwater sampling results are presented in Table 2 and discussed later in this report.

GROUNDWATER ELEVATION MEASUREMENTS

In order to determine groundwater flow direction and hydraulic gradient, First Environment collected synoptic (same day) rounds of water level measurements. Water level measurements were conducted on the same dates as groundwater sampling (August 28, 2001 and September 5, 2002) and aquifer testing (September 27, 2001 and November 7, 2001). The synoptic rounds were conducted in order to determine groundwater flow in the shallow overburden.

Prior to recording water level measurements, the wells were opened and allowed to equilibrate to atmospheric pressure. The water level and total depth for each monitoring well was measured from the top of the PVC casing using an electronic water level indicator to an accuracy of 0.01 foot. The groundwater elevation at each well was calculated by subtracting the measured depth to groundwater from the surveyed elevation of the PVC casing. Groundwater elevations are presented in Table 3. Groundwater elevation contours and estimated groundwater flow direction for August 28, 2001 and September 5, 2002 for the overburden aquifer, are presented on Figures 4A and 4B, respectively and show groundwater flowing to the southeast. The groundwater flow direction and hydraulic gradients for September and November 2001 were similar to that shown on Figures 4A and 4B.

AQUIFER TESTING

In order to determine the site-specific hydraulic conductivity of the overburden, First Environment conducted rising head, in-situ hydraulic conductivity tests (slug tests) at four of the

five monitoring wells onsite. Monitoring well MW-1 could not be tested because there was insufficient water within the well to effectively stress the aquifer. Falling head aquifer tests were not conducted because it would be an inappropriate test for partially penetrating wells screened across the water table, as are present onsite.

Prior to testing each well, all down-hole equipment (pressure transducer and slug) was thoroughly decontaminated to prevent potential cross contamination between wells. The field permeability testing consisted of inserting a pressure transducer, connected to an In-Situ Hermit datalogger, into the well to be tested to a depth immediately above the base of the well. A sealed, sand-filled PVC pipe one-inch diameter by five feet long (slug) was then inserted into the well. The groundwater level in the well was permitted to recover to approximately 80 to 90 percent of the initial groundwater level displacement. The slug was then removed and the water level was again permitted to recover to approximately 90 percent of the initial water level displacement (rising head test) as water level data was being recorded by the data logger.

Aqtesolv for Windows Version 3.0 using the Bouwer and Rice Method was utilized to calculate the hydraulic conductivity (permeability) for each well. The results of the hydraulic conductivity analysis are presented in Table 4 and Appendix 2. Well construction information and estimates of aquifer thickness based on available information were used for the hydraulic conductivity calculations.

QUALITY ASSURANCE / QUALITY CONTROL

The Quality Assurance/Quality Control QA/QC procedures were conducted as described in the QA/QC plan included as Appendix 3 of this report. Laboratory analytical methods and data validation procedures are summarized below.

LABORATORY ANALYTICAL METHODS

All sample containers were provided by and chemical analysis was conducted by Chemtech, of Mountainside, New Jersey, or Hampton Clarke-Veritech Laboratories of Fairfield, New Jersey, both New York State Department of Health ELAP-Certified laboratories. Semi-volatile organic compounds were analyzed by method 8270. Metals were analyzed by method 6010 except for mercury, which was analyzed by method 7471. Volatile organic compounds were analyzed by methods 8260 or 8021 for soil samples and by method 8260 for groundwater samples. PCBs were analyzed by method 8082.

DATA VALIDATION

The analytical data packages were reviewed in order to determine compliance with the NYSDEC requirements. The review of the analytical data identified the data as useable although some sample spike recoveries and calibrations were slightly outside of the QC limits. All holding times for the samples were met. Data Usability Summary Reports for each sample package are presented in Appendix 4 of this report. Analytical data packages are available upon request.

INVESTIGATION FINDINGS

The purpose of the investigation and remedial action were to evaluate site conditions and to remediate potential sources of ongoing contamination. Activities conducted onsite consisted of the investigation and/or remediation of environmental concerns previously identified in nine study areas identified in the SI/RAW. The findings and results for these areas are discussed in the following sections. The findings of the well search are presented in Table 5.

AREA 1 – DRUM STORAGE AREA

During a site inspection, 14 drums were identified along the north side of the main building and two drums were identified along the east side of the building in the vicinity of the dry well. During the February 8, 2000 site inspection by First Environment and the NYDEC, one drum was identified as leaking a petroleum material. This drum was identified as a potential threat to the environment and was over-packed on February 20, 2000.

A number of other containers ranging in size from small containers to drums were identified within the building as listed on Table 6. All containers were characterized and consolidated into drums between August 22 and September 9, 2000 by Code Environmental Services, Inc. of Carteret, New Jersey (Code) in accordance with the procedures identified in the RI/RAW under the direct oversight of First Environment. Code sampled the drums and First Environment submitted the samples to the laboratory for analysis. Based on the results of the chemical analyses, the drums were segregated, properly labeled and manifested as hazardous or non-hazardous, as appropriate.

The drums from the consolidation of containers within the building, as well as those identified during the initial inspection, were manifested and removed from the Site on November 9, 2000 by Waste Management, Inc. Manifests for the disposal of the drums and other wastes removed from the Site are included in Appendix 5.

The exterior drum storage area was located on the north side of the main building as shown in Figure 2. A small concrete pad is located in this area. Soil samples were collected at the perimeter of the concrete pad in order to evaluate whether there had been adverse impacts from possible past releases from the drums.

SAMPLE COLLECTION

In order to investigate the exterior drum storage area, five soil samples (S-1 through S-5) were collected from a depth of 0 to 6 inches. Based on elevated photo-ionization detector (PID) readings recorded at boring S-3, an additional soil sample was collected from this location at a depth of 6.5 to 7 feet. The shallow soil samples were analyzed for base/neutral extractable organics (BNs), polychlorinated biphenyls (PCBs) and metals. The deeper sample from boring S-3 was analyzed for volatile organic compounds (VOCs) and BNs.

In order to further evaluate the extent of lead detected in soil samples from the drum area in the initial (2001) sampling, samples were collected from seven additional locations on August 12, 2002. Five samples were collected from four locations (SS-10 through SS-13) for total lead analysis. In addition, three samples (SS-7 through SS-9) were collected and analyzed for toxicity characteristic leaching procedure (TCLP) lead to determine if the soil may be a characteristic hazardous waste if excavated.

ANALYTICAL RESULTS

Soil sampling analytical results were compared to the NYSDEC Technical Administrative Guidance Series (TAGM) 4046 Recommended Soil Cleanup Objectives (RSCOs). As stated in the TAGM, "Recommended soil cleanup objectives should be utilized in the development of final cleanup levels through the Feasibility Study (FS) process." "After the detailed evaluation of the preferred remedial action, the final cleanup levels which can be achieved using the preferred remedial action must be established." Analytical results for the soil sampling from Area 1 are presented on Table 1 and discussed below.

One soil sample (S-3 from 6.5 to 7 feet) was analyzed for VOCs. The only VOCs detected were ethylbenzene at 810 ppb, below the RSCO of 5,500 ppb and total xylenes at 1,400 ppb slightly above the RSCO of 1,200 ppb.

The only BN analytes detected above the RSCOs in shallow soil samples were dibenz(a,h)anthracene at 101 ppb at SB-1, and benzo(a)pyrene detected at estimated

concentrations of 260 ppb at SB-2. All of the other detected compounds were below the RSCOs.

The five surface soil samples from the drum storage area were analyzed for PCBs. Based on the results, the PCB arochlor 1254 was detected in four of the five soil samples at concentrations ranging from 18 to 48 ppb, all below the RSCO for surface soils of 1 ppm (1,000 ppb).

The RSCOs for most metals list a value or site background (SB), however, there has not been any site background sampling conducted to date. Therefore, in order to put the values into some context, the detections identified were to be compared to the RSCOs listed and the Eastern USA background values listed in TAGM 4046.

The five soil samples from the drum storage area were analyzed for metals. Metals including cadmium, chromium, copper, lead, mercury, nickel and zinc were detected in one or more samples at levels above both the RSCOs and the listed Eastern USA background values. Most notably were lead and zinc detected at concentrations of 834 to 6,600 ppm and 364 to 697 ppm respectively.

The additional soil sampling from this area demonstrated that the vertical and horizontal extent of lead-impacted soil is limited. Specifically, all concentrations were near the range of typical background levels, with the highest, SS-12 (0-0.2 feet) at 750 ppm, and concentrations at SS-10 dropping off to 240 ppm at 1 to 1.2 feet and 29 ppm at 2.3 to 2.5 feet. The TCLP testing of one of the three soil samples analyzed demonstrated levels above the RCRA limit for the toxicity characteristic for lead of 5 mg/l. Based on this information, soil excavated from this area would be expected to be hazardous for lead.

AREA 2 - OVERHEAD CRANE AREA

The overhead crane area refers to the area at the east end of the main building that has a roof, but is otherwise open to the elements. Presumably, this area was constructed to allow large pieces of iron or steel to be moved to and from the main building. The area contains a concrete pad and a loading dock, with the balance of the area being unpaved. The concrete pad was

previously used to store automotive parts including engines. Soil below the crane and adjacent to the concrete pad appeared to have been impacted by petroleum.

Based on discussions with Mr. Larry Ricci, formerly of the NYSDEC, during the site inspection, the area under the overhead crane historically received runoff and was prone to flooding. According to the NYSDEC, runoff of engine fluids flowed from the concrete pad, through a trough around the concrete pad and into an adjacent catch basin (Area 5). Stormwater runoff from the concrete pad area sometimes overflowed to a dry well (Area 4) located adjacent to the loading dock. The drywell subsequently discharged to a leachfield located 96 feet east of the drywell.

Due to past poor housekeeping practices, the concrete pad was observed to have significant amounts of free product and product staining with some product staining also observed in the adjacent shallow soil. According to Mr. Ricci, the stained soil adjacent to the concrete pad was excavated under his direction as part of an emergency action by the NYSDEC. The contaminated soil was stockpiled onsite for future disposal. The stockpiled soil was subsequently sampled by First Environment and characterized as non-hazardous. 122.79 tons of petroleum-contaminated soil was disposed of off-site at Mt. Hope Recycling of Wharton, New Jersey on December 6, 1999. Bills of lading for the soil disposal are included in Appendix 5. It should be noted that the spill was attributed to waste oil from past operations, not unleaded gasoline from an underground storage tank as listed on the Bills of lading.

SAMPLE COLLECTION

Additional soil sampling was conducted in order to determine if this area had been impacted by past releases. Soil samples were collected from six locations (S-6 through S-11) at the overhead crane area. Soil samples were collected from a depth of 0 to 6 inches, and based on the analytical results of the shallow samples; analyses were conducted on deeper (18 to 24 inch) interval samples. The shallow samples were analyzed for BNs, PCBs and metals. The deeper samples were analyzed for VOCs, and depending on the results of the shallow samples, were also analyzed for BNs.

In addition, as requested by the NYSDEC, to further delineate general soil conditions onsite, including those in the general vicinity of the overhead crane area, four surface samples (SS-1, SS-2, SS-3 and SS-6) were collected on August 12, 2002 and analyzed for metals and SVOCs.

ANALYTICAL RESULTS

Trace concentrations of the VOCs chloroform, methylene chloride and/or tetrachloroethene (PCE) were detected in one or more of the samples, but all at concentrations well below the RSCOs. The results of the soil investigation of Area 2 are presented on Table 1.

PCB analyses identified arochlor 1254 in two of the five samples at concentrations of 28 ppb and 78 ppb, both well below the RSCO of 1 ppm (1,000 ppb).

Based on the results of the shallow sample BN analysis discussed below; samples from the deeper (18 to 24 inch) interval from three borings were selected for BN analysis. Exceedances of the RSCO for one or more PAH compound were detected in the surface samples from S-6, S-7, S-9 and S-11, therefore, contingent analysis was conducted at S-6, S-9 and S-11. The only analyte exceeding the RSCO at S-7 was benzo(a)pyrene at 84 ppb, only slightly above the RSCO of 61 ppb, therefore no contingent analysis was conducted form the deeper sample interval at this location.

Six PAHs were detected above the RSCOs from Sample S-6 (0 to 6 inches) collected between the main building and the concrete pad, while the 18 to 24-inch interval sample from the same location detected only two of the PAHs, benzo(a)anthracene and benzo(a)pyrene, above the RSCOs, although at lower concentrations then those detected from the 0 to 6-inch depth interval. The 0 to 6-inch sample at S-9 revealed concentrations of benzo(a)anthracene and benzo(a)pyrene above the RSCOs, however, no targeted BNs were detected in the 18 to 24-inch sample interval. The 0 to 6-inch sample interval from S-11 detected only benzo(a)pyrene above the RSCOs, however, the 18 to 24-inch interval detected benzo(a)pyrene and three other PAH compounds at higher concentrations and above the RSCOs. All samples collected from this area contained benzo(a)pyrene above the RSCO, although all below 1 ppm, and two samples SS-2 and SS-6 marginally exceeded the RSCO for benzo(a)anthracene.

Based on the results of the metals analysis, the following metals were identified above the RSCOs and eastern USA background levels; arsenic was detected at S-6 at 26 ppm, chromium was detected at S-6 and S-7 at 54.5 and 46.5 ppm, respectively. Mercury was detected at S-6 through S-8 at concentrations ranging from 0.32 to 0.46 ppm, and zinc was detected at S-6 and S-7 at 2,070 and 223 ppm, respectively. An evaluation of the metals analysis from the August 12, 2002 sampling identified levels of one or more of the following in each of the four samples collected north and south of the overhead crane area as above regional background levels: cadmium, copper, chromium, lead, mercury, nickel and zinc. The most notable detection was mercury which ranged from 48 ppm at SS-1 to 3.8 ppm at SS-3 located south of the building. No mercury was detected at SS-6 located north of the building.

AREA 3 - LOW-LYING GROUND AREA

A low-lying area is located east of the overhead crane area as shown on Figure 2. According to the NYSDEC, this area was observed to have flooded in the past. It is suspected that the flooding included surface run off from the Site, including the overhead crane area that could have potentially impacted this area. The area identified as the low-lying ground area may extend onto the adjacent parcel to the east.

SAMPLE COLLECTION

As requested by the NYSDEC, the low-lying area was investigated through the collection of soil samples from three locations (S-12 through S-14). Soil samples were collected from a depth of 0 to 6 inches, and based on the analytical results of the shallow samples; contingent analyses were conducted on deeper (18 to 24 inches) interval samples. The shallow samples were analyzed for BNs and metals, the deeper samples were analyzed for VOCs and depending on the results of the shallow samples, were also analyzed for BNs. In addition, two samples SS-4 and SS-5 were collected from the low-lying ground area on August 12, 2002 and analyzed for metals and SVOCs.

ANALYTICAL RESULTS

The results of the soil investigation of Area 3 are presented in Table 1 and discussed below. The only targeted VOC detected in any of the samples from the low-lying area was PCE at S-14 at a concentration of 3.9 ppb, below the RSCO of 1400 ppb.

The only BN detected above the RSCOs was benzo(a)pyrene at 920 ppb at SS-4. The surface samples from S-13 and S-14 had concentrations above the RSCOs for six PAHs including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene and dibenz(a,h)anthracene.

No PCBs were detected in the surface samples from S-12, S-13 and S-14.

One or more metals were detected above the RSCOs in each of the five surface soil samples, specifically zinc. Other metals detected above the RSCOs and/or the eastern USA background levels in one or more samples were arsenic, cadmium, chromium, copper, lead, mercury and nickel.

AREA 4 - DRY WELL AND LEACHFIELD

Based on discussions with the NYSDEC, the drywell (Area 4) and the east end of the main building historically received runoff from the concrete pad. The dry well (a concrete catch basin) was piped to a leachfield located 96 feet to the east. According to the NYSDEC, the catch basin would receive runoff potentially including petroleum-impacted stormwater from the concrete pad.

SAMPLE COLLECTION

Soil samples were collected from three locations, S-15 through S-17, at a depth of 0 to 6 inches and submitted for analysis for BNs and metals. Based on the analytical results of the shallow samples, contingent analysis was conducted for BNs on deeper (18 to 24 inches) interval samples. In addition, the deeper samples were all analyzed for VOCs. One sample (S-18) was also collected from the sediment within the drywell and analyzed for BNs, PCBs and metals.

02/06/2003

The depth and location of the leachfield was identified by excavating the length of the pipe starting at the drywell and continuing eastward to the terminus of the pipe at the leachfield as shown on Figure 2. The pipe was constructed of four-inch diameter schedule 80 PVC and the pipe appeared to be in good condition with no cracks or perforations. The length of the pipe was field screened with a PID and one soil sample (S-32) was collected from the six-inch interval underlying the midpoint of the pipe and analyzed for VOCs, BNs and metals. The drainage pipe was left in place and after collecting the soil sample, the excavation was backfilled with the excavated soil.

The leachfield, located 96 feet south of the drywell, consisted of cobble-sized rocks extending to a depth of approximately 5.5 feet. The leachfield was investigated through the collection of one soil sample from immediately beneath the cobbles. The soil sample (S-33) was analyzed for VOCs, BNs and metals. After sampling, the leachfield excavation was backfilled with the excavated material.

ANALYTICAL RESULTS

The results of the soil investigation of Area 4, including the drywell, piping and leachfield are presented in Table 1 and discussed below.

The results of the VOC soil sample analysis from the area of the drywell revealed PCE at one location (S-15) at a concentration of 7.6 ppb, which is below the RSCO. No VOCs were detected in the soil samples collected from the leachfield area or associated piping (S-32 and S-33).

No BNs were detected above the RSCOs in any of the three surface samples collected from the drywell area. Two BNs were detected in the soil sample collected beneath the pipe draining to the leachfield (S-32) at concentrations slightly above the RSCOs. The compounds detected were benzo(a)anthracene at 230 ppb and benzo(a)pyrene at 220 ppb. The soil sample from beneath the leachfield (S-33) revealed a concentration of benzo(a)pyrene at 110 ppb, which is slightly above the RSCO of 61 ppb.

No PCBs were detected in any of the shallow soil samples from the drywell area.

02/06/2003

Although several metals were detected in surface soil samples from the dry well area, most were within the typical background range expected for the eastern USA. Zinc was detected slightly above the expected background with concentrations ranging from 51.5 ppm to 83.3 ppm. Metals detected in sample S-32 above the published background ranges, include mercury (0.62 ppb), nickel (40.2 ppb) and zinc (137 ppb). Metals concentrations exceeding the eastern background concentration for the soil sample S-31, collected from beneath the leachfield include chromium (78.8 ppb), copper (56.8 ppb), lead (973 ppb), mercury (0.28 ppb), nickel (35.6 ppb) and zinc (359 ppb).

Benzo(a)pyrene was detected in the sample of the sediment collected from within the dry well (S-18) at a concentration of 130 ppb. Metals detected in the sediment sample above the RSCOs include copper (110 ppm), lead (438 ppm) and zinc (282 ppm). The sediment was subsequently removed from the site on June 22, 2001 by Clean Harbors.

AREA 5 - CATCH BASIN

Based on discussions with the NYSDEC during the site inspection, the catch basin area located along the rear of the facility (overhead crane area) historically received run off and was prone to flooding. In addition, as a result of poor housekeeping, this area was observed to have product staining in the shallow soil and catch basin area. According to Mr. Ricci, petroleum impacted storm water would enter the catch basin during periods of high precipitation. Based on past operations conducted at the Site, the visual observations made at the time of the site inspection and the descriptions provided by Mr. Ricci, this area may have been impacted by petroleum products. This area also received petroleum that had run off the concrete slab from past operations.

The catch basin was cleaned on June 22, 2001 by Clean Harbors of Newburgh, New York and inspected by First Environment to determine its structural integrity. The contents of the catch basin were drummed and ultimately disposed of off-site.

The catch basin measures 3.5 feet by 4.5 feet by 3.75 feet deep and is constructed of concrete. The catch basin had a single four-inch diameter PVC pipe entering the catch basin from the south, with no outlet pipe. The concrete was in good condition with no evidence of cracks or leaks observed.

SAMPLE COLLECTION

The area of the catch basin was further investigated through the collection of soil samples from three locations, S-19 through S-21. Soil samples were collected from a depth of 0 to 6 inches, and based on the analytical results of the shallow samples, contingent analysis was conducted on deeper (18 to 24 inch, 30 to 36 inch or 72 to 78 inch) interval samples. The shallow samples were analyzed for BNs and metals, the deeper samples were analyzed for VOCs, and depending on the results of the shallow samples were also analyzed for BNs and/or metals.

ANALYTICAL RESULTS

The results of the soil investigation of Area 5 are presented in Table 1. The VOCs detected in soil samples from the catch basin area included ethylbenzene, toluene, xylenes and PCE. However, no VOCs were detected in any of the soil samples above the RSCOs, and no VOCs were detected in the deepest soil sample collected from this area (S-19 from 72 to 78 inches).

No PCBs were detected in either of the surface soil samples (S-19 and S-20) collected from the catch basin area.

Benzo(a) pyrene was detected above the RSCO of 61 ppb at S-19 (0-0.5) S-20 (0-0.5) and S-21 (2.5-3.0) at concentrations of 110 ppb, 320 ppb and 88 ppb, respectively. Chrysene was detected at S-20 (0-0.5) at 610 ppb, which is above the RSCO of 400 ppb. No other PAHs were detected in any of the soil samples from this area above the RSCOs.

Metals detected in the surface samples from S-19 and S-20 and the 1.5 to 2.0 foot interval sample from S-21 were typically either below the RSCOs or within the range of background concentration for the eastern USA.

Sample S-22, collected from the sediment within the catch basin had elevated concentrations of chromium (60.7), copper (470), lead (862) and zinc (1480). As previously discussed, the catch basin was cleaned and the sediment was removed from the Site for off-site disposal.

AREA 6 - UNDERGROUND STORAGE TANK

A gasoline dispenser pump was identified on the south side of the main building during the site inspection. The pump previously dispensed gasoline from an adjacent 1,000-gallon underground storage tank (UST). Based on the registration information, the UST was reported to have been installed in August 1962.

The UST was removed from the Site on June 21, 2001 by Clean Harbors under the direct supervision of First Environment.

The 1,000-gallon gasoline UST dispenser pump and associated piping were removed in accordance with the procedures outlined in Appendix A of the September 2000 SI/RAW and as discussed below. Prior to removing the UST, approximately 1.5 inches of gasoline remaining in the tank was pumped out for off-site disposal and the UST was inerted to an oxygen-deficient atmosphere. The UST was then opened and cleaned prior to being removed. The UST was inspected and no holes were identified. The excavation was also inspected for evidence of a release such as staining or odors with none detected. The location of each soil sample was field screened with a PID for organic vapors. No organic vapors were detected in the sidewall samples, however, the soil sample from the base of the excavation had a PID reading of 38 parts per million (ppm).

SAMPLE COLLECTION

A total of five post-excavation soil samples, S-23 through S-27, were collected from the base and sidewalls of the excavation. In addition, one soil sample (S-28) was collected from beneath an elbow on the discharge pipe from the UST to the dispenser pump. Each soil sample was analyzed for STARS list VOCs using USEPA method 8021.

ANALYTICAL RESULTS

The results of the soil analysis for Area 6 are presented in Table 1. No VOCs were detected in five of the six soil samples from the UST area. The only soil sample from the area with detectable VOCs was S-27, collected from the base of the excavation, with concentrations of

sec-butylbenzene (14 ppb), n-butylbenzene (240 ppb) and naphthalene (88 ppb). All of the concentrations were below the applicable RSCOs.

AREA 7 – ABOVEGROUND STORAGE TANK

During the site inspection, a 1,000-gallon aboveground storage tank (AST) was identified near the east end of the main building. According to NYSDEC personnel, the 1,000-gallon AST was used to containerize waste engine fluids.

A total of approximately 700 gallons of product/water was pumped from the 1,000-gallon waste oil AST on June 21, 2001 by Clean Harbors and disposed of off-site. The AST appeared to be in good condition, free of holes, or other signs of leakage. The empty AST was then taken off-site by Clean Harbors to be recycled as scrap metal.

SAMPLE COLLECTION

Three soil samples, S-29 through S-31, were collected from the location of the former 1,000-gallon AST. Soil samples were proposed to be collected from 0 to 2 inches, however due to the presence of gravel, samples were collected immediately below the gravel at a depth of 8 to 12 inches. The soil samples were analyzed for BNs. In addition, sample S-29 was analyzed for VOCs.

ANALYTICAL RESULTS

The results of the soil analysis for Area 6 are presented in Table 1. No VOCs were detected in sample S-29. The BN analysis identified a single PAH, benzo(a)pyrene at S-31 with a concentration of 230 ppb above the RSCO of 61 ppb. No other PAHs were detected above the RSCOs in any of other samples from this area.

AREA 8 BUILDING INTERIOR, DRAINS AND SUMPS

The main building was investigated for the presence of floor drains and sumps. Accessible areas were investigated, however, an area adjacent to the engine trough was covered with a steel plate and was inaccessible. The trough formerly accepted run off of engine fluids from the

dismantling/repair of automobile engines and the trough emptied into a 275-gallon AST, discussed below, which was used as a collection tank for the waste engine fluids. The area under the trough and adjacent areas were examined and found to contain a significant buildup of oily residues. The residues were not readily accessible during the field activities, but should be addressed as part of future remedial actions. The cleaning of the oil residues will require removal of the metal trough to allow access to the underlying areas.

One sump was identified at the west end of the conveyor. This sump was pumped out by Clean Harbors on June 21, 2001. The sump was observed to be in good condition, however, a small pipe was observed discharging to the sump after the sump was pumped out. The origin of this pipe is unknown. No other pipes were observed in the sump. No additional investigation of this area was conducted.

Two 275-gallon ASTs were removed from within the building. One of the 275-gallon ASTs was on its side at the end of the production line trough and contained approximately 200 gallons of a petroleum product/water mixture. The second 275-gallon AST was upright and contained approximately 150 gallons of a petroleum product/water mixture. Both ASTs were pumped clean and no holes or evidence of leakage were observed at either 275-gallon AST. Since the two ASTs were observed to be free of holes, and the underlying concrete appeared to be in good condition, no soil sampling was conducted.

AREA 9 - GROUNDWATER

MONITORING WELL INSTALLATION

Monitoring wells MW-1 through MW-5 were installed between August 7 and August 8, 2001 and MW-6 was installed on August 12, 2002 by Aquifer Drilling & Testing Inc., of Troy New York under the supervision of a First Environment geologist as previously discussed.

SAMPLE COLLECTION

The monitoring wells (MW-1 through MW-5) were sampled on August 28, 2001 in accordance with the procedures outlined in the RI/RAW, and as summarized below. It should be noted that despite efforts to limit turbidity, such as reduced pumping rates, and allowing the wells to rest

between purging and sampling, turbidity above desired levels was observed. Turbidity levels are presented in Table 2. As directed by the NYSDEC, only unfiltered samples were analyzed during this sampling event. During the 2001 groundwater sampling event, samples were analyzed for VOCs by method 8260, BNs by method 8270 and target analyte list (TAL) metals by appropriate USEPA methods.

In order to evaluate the impact of turbidity on metals in groundwater, the monitoring wells (MW-1 through MW-6) were purged by the low flow technique and sampled September 6, 2002. Turbidity levels were dramatically reduced, as shown on Table 2. These samples were analyzed for VOCs by method 8260 and priority pollutant metals by appropriate USEPA methods.

In order to evaluate potential impacts from site operations, groundwater samples from MW-1, MW-2, MW-4 and MW-6 during the 2002 sampling event were analyzed for total petroleum hydrocarbons (TPH) by method 418.1.

Based on an apparently anomalous VOC analytical result at MW-3 from the September 2002 sampling event, this well was resampled for VOCs in December 2002.

ANALYTICAL RESULTS

The results of the groundwater sampling is presented Table 2 and discussed below.

The results of the 2001 VOC analysis of groundwater identified PCE at four of the five locations, however, it only exceeded the groundwater standard of 5 ppb at two locations, MW-2 and MW-4 at 7.2 ppb and 8.7 ppb, respectively. No other VOCs were detected above the groundwater standard. Trichloroethene (TCE) was detected at MW-4 at 1.1 ppb, below the groundwater standard of 5 ppb. Methyl tertiary-butyl ether (MTBE) was detected in MW-3 at 2.9 ppb and MW-5 at 1.2 ppb, both below the groundwater standard. Acetone, which was detected in the field blank, trip blank and method blank, indicating laboratory contamination, was detected at concentrations below the groundwater standards in all groundwater samples. Methylene chloride, another common laboratory contaminant, was detected in the field and trip blanks and at MW-1 below the groundwater standard.

02/06/2003

The 2002 VOC analysis were nearly identical to the 2001 except PCE in MW-1 increased from 4.1 to 5.9 ppb in MW-1 and MTBE in MW-3 had increased from 2.9 ppb to 1,200 ppb, now above the groundwater standard of 10 ppb. MTBE is almost exclusively used as a gasoline additive, however, other gasoline components, specifically benzene, toluene, ethylbenzene and xylenes (BTEX) were not detected in groundwater onsite. MTBE is known to travel faster than BTEX compounds in groundwater, therefore, MW-3 is suspected to be at the leading edge of a plume of gasoline impacted groundwater. Based on the relatively high concentration of MTBE (1,200 ppb) and no detectable BTEX, it was suspected that the detection for MTBE was anomalous and/or the source area for the detected VOCs is a significant distance from MW-3 that would allow for this level of separation of MTBE from BTEX, indicating a possible off-site source, northwest of the Site. The December 2002 re-sampling of MW-3 for VOCs detected MTBE at 29 ppb, still above the groundwater standard of 10 ppb, but believed to be representative of site conditions unlike the concentration of 1200 ppb detected in September 2002. Once again, no BTEX compounds were detected at this location.

No BNs were detected in any of the groundwater samples above groundwater standards during the 2001 sampling event. The only targeted BNs detected in groundwater were bis(2-ethylhexyl)phthalate at 2.5 ppb in MW-2 and diethylphthalate at 1.3 ppb in MW-3. Both of the compounds were below their respective groundwater standards of 5 and 50 ppb.

Metals were detected above the groundwater standards at four of the five monitoring wells onsite during the 2001 sampling event. Lead was detected just above the groundwater standard of 25 ppb in MW-1 at 25.1 ppb, MW-3 at 46 ppb and in MW-5 at 83.8 ppb. Thallium was detected above the groundwater guidance value of 0.5 ppb in MW-3 at 13 ppb and in MW-4 at 10.9 ppb. Other metals detected in MW-5 which exceeded their applicable standards included arsenic, chromium, copper and nickel. During the 2002 sampling event, on which sample turbidity was minimized, no metals were detected except barium which was detected at up to 110 ppb, well below the groundwater standard of 1000 ppb.

Based on the results of the two sampling events, the metals concentrations detected in the groundwater samples in 2001 are attributable to turbidity in groundwater and are not representative of Site conditions. The groundwater samples from 2002 demonstrate that there are no impacts to groundwater underlying Site due to metals observed in the soil.

No petroleum hydrocarbons were detected in the four monitoring wells, MW-1, MW-2, MW-4 and MW-6, analyzed for TPH during the 2002 sampling event.

GROUNDWATER FLOW CHARACTERISTICS

The hydraulic gradient at the Site was established based on measured groundwater elevations. Groundwater elevations were established based on depth to groundwater measurements collected on August 28, 2001 from surveyed elevations at each well. Groundwater levels measured during subsequent field activities on September 27, 2001 and November 11, 2001 confirmed the initial results. Groundwater elevations and groundwater flow direction for the August 28, 2001 and September 6, 2002 measurements are presented on Figure 4A and 4B, respectively. Based on the groundwater elevation measurements, groundwater flows to the southeast at a gradient of 0.025 ft/ft. Therefore, monitoring well MW-4 is the most upgradient and monitoring wells MW-5 and MW-6 are the downgradient wells onsite.

Aquifer characteristics were evaluated through in-situ hydraulic conductivity tests (slug tests) conducted at each well. The procedure was as outlined in the SI/RAW and conducted as described below. The SI/RAW proposed doing both slug in (falling head) and slug out (rising head) tests for each location, however, due to well construction only slug out tests were conducted. The slug in (falling head) tests is not valid for wells screened across the water table. The slug tests were conducted on September 27, 2001 using a one-inch diameter slug to displace the groundwater within each well. The measurements were collected using an In-Situ® pressure transducer and recorded by an In-Situ® Hermit 3000 Environmental Data Logger.

The hydraulic conductivity values were calculated using Aqtesolv for windows software. The slug test calculations are presented in Appendix 2 and summarized in Table 4. Based on the slug test data, the average hydraulic conductivity values onsite ranged from 1.07×10^{-4} ft/day (5.44 x 10^{-5} cm/sec) at MW-2 to 1.42×10^{-3} ft/day (7.19X10⁻⁴ cm/sec) at MW-4. Based on the hydraulic gradient identified and the hydraulic conductivities listed above and an assumed porosity of 0.3 the estimated groundwater velocity across the site is 8.9×10^{-4} ft/day.

WATER-WELL SURVEY

As part of the site investigation, a water well survey was conducted to evaluate whether or not groundwater in the immediate vicinity of the Site is used as a potable source. In order to determine the number and locations of wells near the subject property, local, county and state agencies were contacted and the federal, United States Geological Survey (USGS) database, was reviewed.

The City of Newburgh was also contacted. Since the City does not have a Health Department, our inquiry was directed to the City Plumbing Inspector, Mr. Jim Nugent. Mr. Nugent was not aware of any water wells in use nor was he aware of any being installed in the last five years. However, his department is not responsible for maintaining records on wells. The City of Newburgh public water supply originates from surface water from Lake Washington located over a mile southwest of the site. No on-site wells were identified for any adjacent or nearby property owners. The State records for new supply wells cover only the last two years.

Mr. Steven Collins at the Orange County Environmental Health Department was contacted and was unaware of any supply wells or domestic wells in the City of Newburgh.

Based on a review of the USGS and EDR databases, 14 wells were identified within one mile of the subject site. The information identified in the USGS database was crosschecked against the information provided in the EDR database. Available information on each well is presented in Table 5. The exact address, owner and current status of the wells are not known. The well locations, based on the coordinates provided by the USGS, are presented on Figure 5. Based on a review of the well locations, the wells appear to be either upgradient or sidegradient of the subject property. Furthermore, all wells appear to be located approximately 2,000 feet or more from the subject property. Therefore, based on the analyte concentrations detected, it is unlikely that the subject property would impact any of these wells.

Based on the finding of the water-well search, no supply wells or domestic wells were identified that are expected to be impacted by groundwater conditions onsite.

EXPOSURE ASSESSMENT

In order to evaluate potential exposure to the contaminants of concern onsite, a qualitative exposure assessment was performed. The exposure assessment evaluated the physical environment and potentially exposed human population and identified exposure pathways as well as contaminant fate and transport. An exposure pathway consists of five elements: a contaminant source; contaminant release and transport mechanisms; a point of exposure; a route of exposure; and a receptor population, each of which is described below. An exposure pathway is complete, only when all five elements are present.

CONTAMINANT SOURCES

The source(s) of soil contamination have not been fully identified, however, the extent of contamination present has been adequately defined. Elevated lead concentrations detected underlying the drum storage area are believed attributable to historic releases of materials that had been stored in that area. The source(s) of metals, including mercury detected across other areas of the site, is unknown but suspected to be related to the placement of fill. The source of fill onsite in not known. The presence of BN compounds, specifically PAHs onsite, are likely due to historic releases of petroleum onsite but also may be related to the placement of fill. In lieu of not knowing the specific source, the existing soil will be evaluated as the source.

The groundwater impacts onsite, specifically VOCs above the groundwater standards, are believed attributable to separate sources. The PCE detected just slightly above the groundwater standard of 5 ppb at MW-1, MW-2 and MW-4 are suspected to be related to past operations onsite which may have included parts cleaning that may have occurred in or around the main building onsite. This theory could not be verified as no specific locations for parts cleaning could be identified since no containers of PCE were identified, as listed on Table 6.

The source of the MTBE detected at MW-3 is unknown, but suspected to be from an off-site source north or northwest of the site. MTBE is found as an additive to gasoline, however, no BTEX compounds, the primary constituents of gasoline, have been detected in any groundwater samples collected onsite. In addition, since MTBE will migrate faster in groundwater than BTEX, the detection of MTBE without any BTEX indicates that it likely represents the leading edge of a contaminant plume some distance from the source due to the apparent separation of

the MTBE from the BTEX. Again in lieu of a specific source, the impacted groundwater will be evaluated as a source.

CONTAMINANT RELEASE AND TRANSPORT MECHANISMS

The most common transport mechanism for surface soils is erosion by wind and surface water run-off. This could include airborne dust generated by vehicle traffic onsite that could disturb surface soils. Exposure could potentially occur through dermal contact, ingestion of surface soils, or inhalation of windblown dust.

The VOCs detected in groundwater are dissolved, therefore are subject to migration with the flow of groundwater to the southeast, as previously described and presented on Figures 4A and 4B. As previously discussed, an average groundwater velocity of 8.9 x 10⁻⁴ ft/day was calculated for the site. Based on the analytical results from the groundwater sampling conducted, impacted groundwater identified is not migrating offsite, but is attenuating before reaching the southeast end of the Site.

POINT OF EXPOSURE/ROUTE OF EXPOSURE

Potential for exposure to impacted soils, although minimal, could occur through dermal contact with impacted soils, ingestion of surface soils or inhalation of windblown dust. Incidental ingestion of impacted surface soils could also occur. Inhalation of air born dust could result if wind or vehicles were to agitate contaminants in surface soil sufficiently to get them airborne. In addition, workers onsite could potentially be exposed during excavation activities, including those associated with site remediation.

Since groundwater occurs at depths of greater than six feet, direct contact with impacted groundwater is unlikely with the exception of significant excavation for Site redevelopment or through the use of Site groundwater. In the event of excavation of impacted areas onsite to depths greater than six feet, there is some potential for dermal contact or incidental ingestion of impacted groundwater. In addition, in the event that a shallow supply well were to be installed onsite within the areas of impacted groundwater, there would be the potential for ingestion or dermal contact with impacted groundwater. It should be noted that the City of Newburgh is

supplied with public water and no potable wells were identified in the vicinity of the Site, as presented in Table 5.

RECEPTOR POPULATION

The receptor population for the impacted soils could include residents, workers or trespassers onsite who could come into contact with impacted soils through direct dermal contact, inhalation, or incidental ingestion.

The receptor population for impacted groundwater would include workers onsite that could potentially encounter groundwater through excavation at depths greater than six feet within areas of impacted groundwater. In addition, if a shallow supply well were to be installed onsite, users of that well could come into contact with impacted groundwater through ingestion or dermal contact. Since impacted groundwater does not appear to be migrating offsite and no potable wells were identified in the vicinity of the site, no offsite receptor populations for impacted groundwater were identified.

SUMMARY OF FINDINGS

Based on the findings of the exposure assessment, the presence of metals, specifically lead and mercury, and PAHs in surface soils and VOCs in groundwater warrant further evaluation. Specifically, methods to break the exposure pathways to these contaminants must be determined.

The pathways to impacted soils can be terminated through the removal of all impacted soils, capping impacted soils, or a combination of removal and capping. Furthermore, institutional controls could significantly reduce the potential for exposures. Institutional controls would consist of a deed restriction on the property to eliminate the potential for future residential development as well as direction on how to handle excavated soils in the event they needed to be disturbed in the future.

The pathways to impacted groundwater can be terminated through the remediation of all VOC impacted groundwater onsite or through either remediation of impacted groundwater or a deed restriction prohibiting future use of groundwater onsite. In addition groundwater monitoring

could be continued to ensure impacted groundwater identified onsite is attenuating and is not migrating offsite. If in the future, impacted groundwater is identified as migrating offsite, then additional measures may be warranted to ensure off-site populations are not exposed to impacted groundwater.

REMEDIATION ALTERNATIVES EVALUATION

A remedial alternatives analysis was competed to identify and evaluate potential remedial alternatives for addressing soil and groundwater contamination at the site. The objective of the analysis was to determine and recommend the remedial alternatives that will be most effective in achieving approved cleanup criteria as well as having the most beneficial environmental impacts.

Soil sampling conducted at the Site has identified concentrations of metals, most significantly lead and mercury, and semi-volatile organic compounds, primarily polynuclear aromatic hydrocarbons (PAHs) above the NYSDEC recommended soil cleanup objectives.

Based on the results of the investigation, tetrachloroethylene (PCE) was detected slightly above the regulatory standard in three of the six monitoring wells onsite. In addition, MTBE was detected in one monitoring well onsite above the regulatory standard. Metals concentrations detected in groundwater during the first round of sampling were due to sample turbidity as demonstrated in the second round of sampling. Therefore, the metals in groundwater have not been identified as a concern warranting remediation.

Several remedial technologies were evaluated to address the contamination of soil and groundwater identified onsite. The technologies included both in-situ and ex-situ technologies. The effectiveness and timeliness of each technology were evaluated based on its ability to meet the appropriate cleanup criteria.

A summary of the remedial alternatives evaluated and recommended for the soil and groundwater contamination is presented in Table 7 and provided below. Based on a review of the technologies, the recommended remedial alternative for soil is the limited removal of the area of highest lead and mercury concentrations and the implementation of institutional and engineering controls. The recommended remedial option for the MTBE and PCE in groundwater is no active remediation, but rather institutional controls in the form of a deed restriction and groundwater monitoring. A discussion of how each remedial alternative meets the Remedial Action Selection Criteria is discussed in a subsequent section of this report. Estimated costs for each alternative are provided in Table 8.

SOIL REMEDIATION TECHNOLOGIES

EXTENT AND NATURE OF SOIL CONTAMINATION

The soil contamination identified above RSCOs at the Site consists primarily of metals and PAHs, although a minor exceedance of one VOC was identified at one location.

Total xylenes, were detected at one soil sample location, S-3, at the drum storage area at a depth of 6.5 to 7.0 feet. The concentration of xylenes was 1,400 ppb, just above the RSCO of 1,200 ppb. No xylenes were detected in any groundwater samples collected from the Site. Therefore, it is not believed xylenes are impacting groundwater quality. Since there has been no impact from the xylene and the fact that xylene is readily amenable to attenuation, it is not considered to be an issue for the Site.

The metals detected onsite above regional background levels consisted primarily of arsenic, cadmium, chromium, lead, mercury and zinc. The highest metals concentrations identified (samples S-1 through S-5) were located in the vicinity of Area 1, the drum storage area. At this location, surface samples identified lead from 834 to 6,600 ppm, mercury up to 0.21 ppm, and zinc up to 697 ppm. Mercury was detected at 48 ppm at SS-1 located in the unpaved area south of the building. In addition, elevated concentrations of arsenic (26 ppm), cadmium (6.1 ppm) and zinc (2,070 ppm) were detected in sample S-6 in the overhead crane area. Elevated concentrations of arsenic (104 ppm) and lead (1,120 ppm) were also detected in sample S-13 collected from the low-lying ground area (Area 3). The vertical and horizontal extent of lead contamination in the drum storage area has been largely delineated and indicates the contamination is mainly confined to the upper foot of soil as demonstrated at SS-10. Other metals detected onsite, specifically mercury, appear to be widespread and not attributed to any single source or process. However, the highest mercury concentrations identified in surface soils is clearly in the area of SS-1 where they are nearly 10 times higher than the next highest detection.

Several PAHs were detected at one or more locations in excess of the RSCOs. The highest concentrations of PAHs were identified in surface samples in the vicinity of the overhead crane area in samples S-6, S-9 and S-11 and at the low-lying ground area at S-12, S-13 and S-14.

Other PAH concentrations were identified slightly above the RSCO for benzo(a)pyrene at the aboveground tank area, the leachfield area and the drum storage area.

In addition, an oily residue was observed on the floor and within a process trench at the Site. The cost associated with the removal of the oily residue is included in each of the technologies evaluated.

EVALUATION OF TECHNOLOGIES TO ADDRESS IMPACTED SOIL

Several technologies were evaluated for remediating the soil contamination at the Jonas site. The technologies available to treat both the metals and PAHs are limited. For this study, the remedial options evaluated were narrowed to no further action, ex-situ remediation of the soil (excavation and off-site disposal or treatment), in-situ management of the soil through a combination of institutional (deed restriction) and engineering controls (capping), or a combination of soil removal for the most impacted soils, combined with engineering and institutional controls for less contaminated soils left onsite. The biological and chemical remedial alternatives typically identified to remediate organic contaminants are not effective on inorganic contaminants (metals) and therefore are not discussed.

NO FURTHER ACTION FOR IMPACTED SOILS

The No Further Action alternative for impacted soils was included as a procedural requirement and as a basis for comparison. Past remedial action conducted has been effective in removing potential contaminant source material from the Site.

SELECTION CRITERIA

Compliance with New York Standards, Criteria and Guidelines (SCGs)

The applicable SCGs for the soil onsite include soil cleanup objectives (TAGM 4046) and if applicable, RCRA regulations relating to the handling of hazardous waste, for excavated soils. Since soils exist onsite at the surface above the TAGM 4046 objectives that could result in potential exposure, the no action option does not comply with the SCGs.

Overall Protection of Human Health and the Environment

The No Further Action alternative provides no protection to human health for the potential exposure to impacted surface soils, therefore, this option does not satisfy the requirements of being protective of human health and the environment.

Short Term Impacts and Effectiveness

Since the No Further Action option would not disturb the Site, it would not create any new potential exposure routes for impacted soils as a result of remedial actions, however, it will not achieve the remedial response objectives.

Long Term Effectiveness and Permanence

The No Further Action option provides no reduction in potential exposure risk and provides no additional controls for the contaminant in soil at the Site.

Reduction of Toxicity, Mobility and Volume

The No Further Action option provides for no reduction in toxicity, mobility or volume of contaminants in soil onsite.

Implementability

There are no issues related to the implementability of the No Further Action option for soils

Cost

There are no costs associated with the No Further Action option.

02/06/2003

EXCAVATION AND OFF-SITE TREATMENT/DISPOSAL OF ALL IMPACTED SOILS BEYOND RSCOs

The excavation and off-site treatment or disposal of all metals and PAH-contaminated soils would consist of excavating the impacted soils and transporting them offsite for treatment and/or disposal. Based on the extent of impacted soil identified to date, this technology would be applied to nearly the entire Site, estimated to a depth of up to two feet. The full extent of soils exceeding the RSCOs has not been determined. However, marginal exceedances of one or more metal or PAH was observed across most of the Site. Two areas of the Site have been identified to have relatively high concentrations of lead or mercury and could be hazardous. Further sampling would likely be required for waste classification prior to transporting any material offsite. The excavation and off-site treatment and/or disposal of contaminated soils is a proven technology that could be completed in a timely manner. The cost of the remediation would depend on the extent of soil requiring removal, however, based on excavating the entire Site to two feet, a conservative assumption, the estimated cost for this option is approximately \$765,000 as shown on Table 8.

SELECTION CRITERIA

Compliance with New York Standards, Criteria and Guidelines (SCGs)

The applicable SCGs for the soil onsite include soil cleanup objectives (TAGM 4046) and if applicable, RCRA regulations relating to the handling of hazardous waste for excavated soils. The removal and off-site disposal or treatment of all impacted soils would be effective in complying with the requirements of TAGM 4046, therefore, this option complies with the SCGs. Since some soils have been found to exceed the RCRA standard for lead toxicity (TCLP lead analysis greater than 5 mg/L) soil excavated from the former drum storage area would likely be classified as a hazardous waste for lead, code D008.

Overall Protection of Human Health and the Environment

The excavation and off-site disposal of impacted soils is protective of human health and the

environment as it removes the contaminants from the Site. The extent of excavation of all soil

impacted beyond the RSCOs would be protective of human health and the environment.

Short Term Impacts and Effectiveness

The potential exposures to workers and the community during excavation activities, specifically

dust, can be minimized or eliminated through the use of proper monitoring equipment and

engineering controls. The duration of field activities related the excavation of the entire Site is

expected to take approximately one month to complete.

Long Term Effectiveness and Permanence

The excavation and off-site treatment/disposal of all impacted soil would permanently remove

the contaminants from the affected area of the Site.

Reduction of Toxicity, Mobility and Volume

Depending on the off-site treatment or disposal options, excavation and off-site disposal may be

effective in reducing the mobility of contaminants, if the excavated soil requires treatment for

lead prior to disposal.

<u>Implementability</u>

Excavation and off-site treatment/disposal of contaminated soils is a technically feasible option

that is well proven. There are numerous facilities permitted and available to accept D008 coded

lead contaminated soils. Equipment and personnel are readily available to conduct the

excavation and off-site treatment/disposal.

G:\DATA\Project\Jonas\OfficialReportFolder\02_03 SI-RAR\Report.doc

02/06/2003

Cost

The estimated cost associated with the excavation of the entire Site is estimated to be approximately \$765,000. This estimate is believed to be conservative and the actual cost will be largely dictated by the extent of soil requiring removal.

INSTITUTIONAL AND ENGINEERING CONTROLS (DEED RESTRICTION AND SITE CAPPING)

Based on the future use of the Site, an alternative remedial approach would be to leave soil contaminated above the applicable unrestricted use remedial criteria in place and establish institutional and engineering controls to protect future users of the Site. This would require conducting a risk assessment to identify the contaminant concentrations that are suitable to be left in place based on the designated engineering control and future use of the Site.

The institutional control would consist of a deed restriction prohibiting future residential development of the property. By restricting the property to non-residential use, less stringent remediation criteria could be applied to the Site thereby reducing the scope and cost of the remediation. The deed restriction would identify the nature and extent of soil and groundwater contamination onsite, such that future landowners could be aware of the impacts to future development and the proper handling of impacted soils in the event that excavation of the Site was necessary for future development or to install or maintain subsurface utilities.

The engineering controls that could be implemented onsite are intended to prevent exposure to contaminants remaining above regulatory guidelines. The engineering control would most likely be in the form of a cap covering areas of shallow soil contamination (estimated to be 75 percent of the Site) and gravel or soil and seeded landscape areas (estimated to be 25 percent of the Site). The specific construction of a cap would be based on the extent of soil to be covered and the future use of the property. For the purposes of this estimation, the cap is assumed to be constructed of asphalt over a gravel sub base. Underlying the cap material would be a demarcation barrier, typically a geotextile fabric or similar material. It is anticipated that a future commercial or industrial use of the Site would require parking areas, therefore the cap could potentially be constructed of asphalt pavement to facilitate parking areas. It is also anticipated

that some re-grading of the low-lying area at the east end of the Site would be necessary prior to capping.

SELECTION CRITERIA

Compliance with New York Standards, Criteria and Guidelines (SCGs)

By instituting institutional controls (deed restrictions) and constructing engineering controls (capping), exposure to impacted soils onsite can be eliminated. Therefore, the institutional and engineering controls will meet the basis for soil cleanup objectives as described in (TAGM 4046). In addition, if soils are not excavated, then no hazardous wastes would be generated, therefore, the RCRA regulations relating to the handling of hazardous waste would no longer be applicable.

Overall Protection of Human Health and the Environment

By eliminating the potential exposures to the impacted soil, this remediation option, engineering and institutional controls, will be protective of human health and the environment. In addition, since no groundwater impacts have been identified related to the soil impacts, leaving impacted soil onsite would not contribute to degradation of groundwater quality. Furthermore, if the proposed cap were to be impervious, the potential for leaching of contaminants from soil to groundwater would be further reduced. A soil management plan would be prepared directing future Site owners or operators on care to be taken in the event that future soil excavation is necessary.

Short Term Impacts and Effectiveness

The potential exposures to workers and the community during capping activities, specifically dust, can be minimized or eliminated through the use of proper monitoring equipment and engineering controls. The duration of field activities related capping would be short term and expected to last a few weeks, therefore, impacts would be minimal. Based on this information, the short-term impacts from implementing engineering controls can be readily mitigated.

02/06/2003

Long Term Effectiveness and Permanence

Institutional controls, specifically a deed restriction, are typically permanently binding on the property. The engineering controls, specifically a cap, would require inspection and maintenance on a regular basis. Depending on cap design and construction, it would require inspection and, as necessary, maintenance and annual certification to the NYSDEC to ensure its integrity. The soil management plan would ensure soil excavation activities follow all necessary precautions.

Reduction of Toxicity, Mobility and Volume

Institutional controls will have no affect on reducing toxicity, mobility or volume of contaminants present onsite. Engineering controls will aid in reducing contaminant mobility by eliminating the potential for surface soils to be transported by wind or surface water, and may reduce future leaching, but will have no affect on toxicity or volume.

Implementability

As owner of the property, the City of Newburgh has the ability to institute deed restrictions on the property. Since the anticipated use of the property is for non-residential use, instituting a deed restriction should not have a significant impact on the property's value. Constructing engineering controls, specifically capping of the Site, can be conducted using conventional construction means associated with Site paving operations. The same considerations would have to be considered for constructing a parking lot, most significantly design loads for vehicles using the area to determine sub base and pavement requirements and stormwater management issues to address stormwater runoff from the Site.

Cost

The costs associated with implementing institutional controls are minimal and consist of conducting a property survey and preparation and review of the actual deed restriction. It is anticipated the costs to develop and file the deed restriction would be approximately \$5,000.

The costs associated with cap construction cannot be determined until the future demands of the Site are identified. Once the future needs of the Site are identified, the appropriate cap construction can be determined, likely either clean fill and/or asphalt pavement, and appropriate costs can then be calculated. Assuming 75 percent of the Site is paved with asphalt and 25 percent of the Site is covered in clean fill or gravel, the estimated cost for this option is approximately \$150,000, including the \$5,000 listed above for preparation and filing a deed restriction. It is anticipated that if asphalt pavement is selected as the appropriate option, that some of the costs can be combined with those for Site redevelopment since the resulting paved area would be used for Site parking/access.

EXCAVATION OF IMPACTED SOILS FROM HOT SPOTS WITH INSTITUTIONAL AND ENGINEERING CONTROLS (DEED RESTRICTION AND SITE CAPPING)

The excavation and off-site treatment or disposal of the potentially hazardous metal-contaminated soils would consist of excavating the impacted soils and transporting them offsite for treatment and/or disposal. Based on the extent of impacted soil identified to date, this technology would be applied to the former drum storage area where elevated lead concentrations were observed and the area south of the building in the immediate vicinity of sample SS-1 where high levels of mercury were observed. Based on the analytical results to date, it does appear some of the soils encountered at the former drum storage area are hazardous for lead. Based on the total mercury detected at SS-1, (48 mg/kg) this location has the potential to be hazardous for mercury. However, additional testing would likely be required for waste classification prior to transporting any material offsite. The excavation and off-site treatment and/or disposal of contaminated soils is a proven technology that cold be completed in a timely manner.

The cost of the remediation would depend on the extent of soil requiring removal. For this Site, cleanup objectives of 1,000 ppm for lead and 1 ppm for mercury have been established to address the impacts identified at the drum storage area and the location of SS-1, respectively. These cleanup objectives were established by the NYSDEC in conjunction with the capping alternative to address metals impacted soils identified onsite. Prior to backfilling the excavated areas with clean fill, a demarcation barrier such as a geotextile fabric would be placed in the excavations.

As previously discussed, institutional and engineering controls are effective and implementable.

SELECTION CRITERIA

Compliance with New York Standards, Criteria and Guidelines (SCGs)

The applicable SCGs for the soil onsite include soil cleanup objectives (TAGM 4046) and if applicable, RCRA regulations relating to the handling of hazardous waste for excavated soils. The removal and off-site disposal or treatment of impacted soils in conjunction with institutional and engineering controls would be effective in complying with the requirements of TAGM 4046, therefore, this option complies with the SCGs. Since some soils have been found to exceed the RCRA standard for lead toxicity (TCLP lead analysis greater than 5 mg/L) soil excavated from the former drum storage area would likely be classified as a hazardous waste for lead, code D008 and from the area of SS-1, potentially hazardous for mercury, code D009.

Overall Protection of Human Health and the Environment

The excavation and off-site disposal of impacted soils combined with institutional and engineering controls is protective of human health and the environment as it removes the most significant contaminants from the Site, then provides protection in the form of a cap and deed restriction. The extent of excavation to be conducted would determine the degree of protection to human health and the environment. The excavation of hot spots, identified as the former drum storage area and SS-1 will eliminate the identified hazardous levels of lead and potentially hazardous mercury from the Site, however, concentrations of one or more PAH or metal were detected above the RSCOs in nearly every shallow soil sample analyzed, and would remain onsite.

Based on the groundwater samples collected, impacted soil is not affecting groundwater quality onsite.

Short Term Impacts and Effectiveness

The potential exposures to workers and the community during excavation and capping activities, specifically dust, can be minimized or eliminated through the use of proper monitoring

equipment and engineering controls. The duration of field activities related to hot spot excavation would be limited to a few days, and capping would be a couple of weeks, therefore impacts would be minimal.

Long Term Effectiveness and Permanence

The excavation and off-site treatment/disposal of impacted soil would permanently remove the contaminants from the affected area of the Site. The deed restriction would be permanent, but the cap or cover would require regular inspection and maintenance.

Reduction of Toxicity, Mobility and Volume

Depending on the off-site treatment or disposal options, excavation and off-site disposal may be effective in reducing the mobility of contaminants, if the excavated soil requires treatment for lead prior to disposal. Capping has the potential to reduce future leaching from the Site.

Implementability

Excavation and off-site treatment/disposal of contaminated soils is a technically feasible option that is well proven. There are numerous facilities permitted and available to accept D008 coded lead contaminated soils as well as mercury-contaminated soils. Equipment and personnel are readily available to conduct the excavation and off-site treatment/disposal. Institutional and Engineering controls are also readily implementable.

Cost

The estimated cost associated with the excavation of lead contaminated soils from the former drum storage area, mercury contaminated soil near SS-1 and the implementing of institutional and engineering controls and cleaning of oily residues from within the main building on site is estimated to be approximately \$208,000, including the preparation and filing of a deed restriction as detailed in Table 8. Nearly half of this cost is related to the covering and/or capping of the site.

RECOMMENDED REMEDIAL ALTERNATIVE OBJECTIVE

The objective of the remedial action is to protect human health and the environment through the prevention of exposure to contaminated soils onsite.

RECOMMENDED REMEDIAL ALTERNATIVE SELECTION

Based on an evaluation of the advantages, disadvantages, effectiveness and the ability to implement, three remedial methods were evaluated for this Site. Based on the information available, a combination of remediation methods is applicable to the Site. Since the extent of mostly high lead and mercury-impacted soils appears to be limited, the excavation and off-site treatment/disposal is the preferred option. However, for other areas of the Site where fairly low levels of metals contamination above the RSCOs appears to be widespread, the remediation of the Site is recommended to consist of institutional controls to restrict the future use of the Site to non-residential use through a deed restriction and further preventing potential exposure through engineering controls, specifically capping.

GROUNDWATER REMEDIATION TECHNOLOGIES

EXTENT AND NATURE OF GROUNDWATER CONTAMINATION

The groundwater sampling identified two VOCs above the NYSDEC standards. PCE was detected above the guideline of 5 ppb during the most recent (September 2002) sampling event at MW-1 (5.9 ppb), MW-2 (6.6 ppb) and MW-4 (9.7 ppb). No PCE was detected in MW-5 or MW-6, which are hydraulically downgradient of MW-1, MW-2 and MW-4.

During the September 2002 sampling event, MTBE was detected at MW-3 at 1,200 ppb, above the NYSDEC guideline of 10 ppb while the previous (August 2001) sampling event identified MTBE at this location at 2.9 ppb. Since the September 2002 MTBE results were so varied from the August 2001 event, MW-3 was re-sampled in December 2002 and MTBE was identified at 29 ppb, which is believed to be representative of Site conditions. The reason for the high MTBE detection at MW-3 in September 2002 has not been determined, but may be attributable to cross contamination of either sampling or laboratory equipment. The only other detections for MTBE during the September 2002 sampling event were 3.9 ppb and 3.4 ppb at MW-5 and MW-

02/06/2003

6 respectively. Based on the concentration of MTBE detected, combined with the fact that no BTEX compounds were detected, it is suspected that this is the leading edge of a plume related to a gasoline release some distance northwest of MW-3, potentially offsite.

Metals detected in groundwater during the August 2001 sampling event were due to sample turbidity and were not representative of Site conditions. This was verified during the September 2002 sampling event when turbidity was controlled and all metals were either not detected, or detected at concentrations below NYSDEC standards.

EVALUATION OF TECHNOLOGIES

Several technologies were evaluated for remediating the groundwater contamination at the Jonas site. The technologies evaluated to remediate VOCs in groundwater included air sparging/vacuum extraction, groundwater extraction and treatment, chemical oxidation, and institutional controls. In addition, the option of no action was evaluated as a procedural requirement and as a basis for comparison. Due to the limited extent of VOC impacts in groundwater, specifically no concentrations of VOCs in groundwater in the downgradient wells above NYSDEC standards, air sparging/vacuum extraction, groundwater extraction and treatment, and chemical oxidation were eliminated in the preliminary screening. The remaining options of no action and institutional controls, both with semi-annual monitoring, are described below.

NO ACTION

The no action alternative for groundwater was included as a procedural requirement and as a basis for comparison. The No Action alternative provides for three years of semi-annual groundwater monitoring, but no active remediation.

SELECTION CRITERIA

Compliance with New York Standards, Criteria and Guidelines (SCGs)

The applicable SCGs for the groundwater onsite include the technical and operational guidance series 1.1.1 (TOGs) groundwater quality standards and guidelines. Although the No Action

option does not address the TOGs guidelines onsite, analyte concentrations appear, however, to decrease to below the TOGs standards and guidelines below groundwater migrates off-site.

Overall Protection of Human Health and the Environment

The No Action alternative provides no additional protection to human health for the potential exposure to impacted groundwater. However, the groundwater levels are only marginally above standard for PCE and the MTBE detected in MW-3 is not likely to be Site related. Based on the low levels observed, continued monitoring would be considered protective of human health. In addition, since the migration of groundwater is monitored, there is minimal potential for it to migrate off site unchecked and potentially impacting off-site receptors.

Short Term Impacts and Effectiveness

Since the No Action option would not disturb the Site, it would not create any new potential exposure routes for impacted groundwater as a result of remedial actions, however, the remedial response objectives would not be met.

Long Term Effectiveness and Permanence

The No Action option provides no reduction in potential exposure risk and provides no additional controls for the impacted groundwater at the Site.

Reduction of Toxicity, Mobility and Volume

The No Action option provides for no reduction in toxicity, mobility or volume of contaminants in groundwater onsite. Contaminants in groundwater would be expected to be reduced over time due to natural attenuation. This would be evaluated through the semi-annual monitoring program.

Implementability

There are no issues related to the implementability of the No Action option for groundwater. Groundwater monitoring can be readily implemented on a semi-annual basis.

Cost

The costs associated with the No Action option is estimated to be \$49,000 for semi-annual groundwater monitoring and reporting.

INSTITUTIONAL CONTROLS AND GROUNDWATER MONITORING

Institutional controls for groundwater on the Site are expected to consist of a deed restriction prohibiting the use of untreated groundwater at the Site. The Site is served by public water by the City of Newburgh, therefore the prohibition on the use of groundwater should not be an issue. Groundwater monitoring as described above will provide for an evaluation of natural attenuation of groundwater occurring onsite

The groundwater concentrations for PCE during the September 2002 sampling event of 5.9 ppb, 6.6 ppb and 9.7 ppb, in monitoring wells MW-1, MW-2 and MW-4, respectively, are only marginally higher than the NYSDEC Technical and Operational Guidance Series (TOGs) standard of 5 ppb. Furthermore, the groundwater samples from monitoring wells MW-5 and MW-6, located downgradient of MW-1, MW-2 and MW-4, contained no PCE indicating natural attenuation is occurring at the Site. Although MTBE was detected at MW-3 at 1200 ppb, it was not detected at downgradient wells MW-5 and MW-6 above the TOGs guideline of 10 ppb demonstrating the MTBE is not currently migrating offsite at concentrations above the TOGs guideline.

Semi-annual groundwater monitoring can be implemented to evaluate the migration of impacted groundwater. In the event that Site conditions change indicating the possible off-site migration of impacted groundwater, additional remediation measures can be implemented.

SELECTION CRITERIA

Compliance with New York Standards, Criteria and Guidelines (SCGs)

The applicable SCGs for the groundwater onsite include the technical and operational guidance series 1.1.1 (TOGs) groundwater quality standards and guidelines. Institutional controls,

 $\label{lem:conditional} G: \DATA\Project\Jonas\Official\Report\Folder\O2_03\ SI-RAR\Report.doc$

combined with groundwater monitoring, address groundwater impacted beyond the TOGs standards from the Site. Based on current data it would appear to be effective in preventing the unchecked migration of impacted groundwater from the Site.

Overall Protection of Human Health and the Environment

The implementation of institutional controls onsite and groundwater monitoring provides for the protection of human health and the environment by preventing human exposure to groundwater onsite and by verifying impacted groundwater above the TOGs guidelines is not migrating offsite. Since impacted groundwater remains onsite, there is some potential for human exposure during excavation activities. However, this can be minimized through institutional controls identifying the impacted groundwater and appropriate precautions to be taken for current and future property owners.

Short Term Impacts and Effectiveness

Since the institutional controls and groundwater monitoring option would not disturb the Site, it would not create any new potential exposure routes for impacted groundwater as a result of remedial actions.

Long Term Effectiveness and Permanence

The monitored natural attenuation option provides no reduction in potential exposure risk onsite, except as described above through institutional controls. However, groundwater monitoring would be effective in identifying groundwater quality leaving the Site. The natural attenuation of groundwater is effective in permanently reducing groundwater contaminant levels.

Reduction of Toxicity, Mobility and Volume

The monitored natural attenuation option provides for limited reduction in volume and concentration of contaminants in groundwater over time. Although it is not effective in reducing the mobility of contaminants in groundwater, the mobility of contaminants can be monitored and evaluated.

Implementability

The use of institutional controls and groundwater monitoring is readily implementable. The City of Newburgh owns the Site and therefore can dictate deed restrictions, and potable water is provided by public water from the City of Newburgh. Groundwater monitoring can be conducted using the six existing monitoring wells onsite.

Cost

The estimated cost for the institutional control (deed restriction) and three years of semi-annual groundwater monitoring for VOCs is \$55,000 as shown on Table 8.

RECOMMENDED REMEDIAL ALTERNATIVE OBJECTIVE

The objective of the remedial action is to prevent exposure to impacted groundwater and to prevent its off-site migration.

RECOMMENDED REMEDIAL ALTERNATIVE SELECTION

Based on an evaluation of the advantages, disadvantages, effectiveness and the ability to implement, institutional controls to prevent the use of groundwater onsite combined with semi-annual groundwater monitoring is the recommended alternative to address the groundwater contamination present. Through the sampling of the existing groundwater monitoring wells onsite, it has been shown that the PCE contamination identified at monitoring wells MW-1, MW-2 and MW-4 is not migrating offsite and therefore appears to be attenuating prior to reaching downgradient monitoring wells MW-5 and MW-6.

Additional groundwater monitoring for VOCs is recommended on a semi-annual basis to verify the attenuation of the PCE and MTBE. In the event that elevated PCE or MTBE concentrations above the TOGs standard are identified at MW-5 or MW-6 in the future, an alternative groundwater remediation method may be warranted.

02/06/2003

SUMMARY AND CONCLUSIONS

The remediation activities conducted at the Site to date have been effective in removing the potential sources of contamination identified. The potential sources of contamination identified consisted of the stockpiled petroleum contaminated soil, the underground gasoline tank and associated piping, the three aboveground storage tanks, and the drums and other miscellaneous containers that had been discarded at the Site. The proper removal and off-site disposal of these concerns has ensured conditions at the Site will not degrade further in the future.

The delineation of contaminated soils has been conducted. Based on the results of the sampling, soil impacts exist above the RSCOs for metals and PAHs. The recommended remedial approach to address the impacted soils is excavation and off-site treatment or disposal for the lead-impacted soils at the former drum storage area and mercury contaminated soils in the area of sample SS-1, and the implementation of institutional and engineering controls for the balance of the Site. The removal of soils from these areas will reduce potential future exposures during any Site excavation that may happen in the future. The specific construction of the engineering controls will depend on the extent contamination present as well as any future plans for the redevelopment of the Site.

Based on the calculated groundwater flow direction and the groundwater analytical data, the downgradient extent of PCE and MTBE in groundwater has been delineated. Since no PCE or MTBE have been identified in the downgradient monitoring wells MW-5 and MW-6, institutional controls combined with groundwater monitoring represents the most feasible and cost effective remedial option for the groundwater at the Site.

RECOMMENDATIONS

The impacted soils immediately adjacent to the drum storage area and sample SS-1 should be excavated and removed from the Site to prevent potential exposures or possible degradation of groundwater quality. A deed restriction should be implemented identifying the extent of soil impacts identified and directing current and future owners of necessary precautions to take to prevent exposures. The Site should be capped to prevent exposures to contaminants remaining after removal of the above listed areas. The design and construction of the cap will be dependent on the future use of the Site, but is expected to be some combination of asphalt cap and gravel-covered or landscaped areas.

Institutional controls (deed restriction prohibiting use of groundwater) and semi-annual groundwater monitoring for VOCs is warranted in order to prevent possible exposure to contaminated groundwater and to verify the effectiveness of natural attenuation.

The abandoned vehicles onsite should be removed to ensure fluids that may be present do not impact the Site. In addition, the property should be secured to prevent future dumping at the Site.

TABLE 1 (Page 1 of 11) SOIL SAMPLING ANALYTICAL RESULTS FORMER JONAS AUTOMOTIVE FACILITY NEWBURGH, NEW YORK

Sample Date		1124	VBURGH, NI						
Sample Date	Sample Location		S-1	S-2	S-3	S-3	S-4	S-5	S-6
Sample Depth (Near)		TA C14 December 4 Self Classic	06/13/01	06/13/01	06/13/01	06/13/01	06/13/01	06/13/01	06/13/01
Sitely Area	•		0'-0.5'	0'-0.5'	0'-0.5'	6.5'-7.0'	0'-0.5'	0'-0.5'	0'-0.5'
PARAMETER (units)		Objectives		1	1	1	1	1	2
VOCS- (LgrKq) Benzere 60			'						
Benzence 60 ND ND ND ND ND ND ND N									
Bermodichitoromethane			l ND	NO.	ND	NO I	ND	NO	ND.
			1			1			
Sec-Bulybenzinen	Bromodichloromethane		1		l				ı
Colsorform 300	n-Butylbenzne		NA	NA				1	
Chicordorm 300	sec-Butylbenznene	_	NA	NA	NA	NA	NA	NA NA	NA NA
Elltythenzene		300	NA	NA	NA NA	ND	NA	NA	NA
Methylene Chloride				NA	NA	810	NA	NA	NA NA
Naphinalene	,	.,	1					NA	l NA
Tetrachiorcerbinene			110						
Tolusine Tolusines Tolusin									
Total Xylenes									l
NA NA NA B430			1						
SVICIS - Light SVICIS - L	Total Xylenes	1,200	NA	NA	NA	1400	NA	NA	NA NA
SVOCS - LogNED SVOCS TIC SVOCS T						The state of the s			
SVOCS - Log/RG Access A	VOCs TIC		NA NA	NA	NA	8430 J	NA	NA	NA
2-Methyringhthialene		_							
Acenaphthylene S0,000 ND		36 400	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene			1						
No. Proceedings Proceeding Proceedin									
Senzo(a)anthracene									
Semilor Semi			1			1			
Benzo(p) Nucranthene 1,100	Benzo(a)anthracene	224				1			PROPERTY AND ADDRESS OF A
Benzo(philucranthene	Benzo(a)pyrene	61	57 J	260 J	ND	J ND			1,200
Benzo(g,h,)perylene S0,000 280 J 370 J ND ND S1 J ND 440			160 J	250 J	ND	ND	37 J	ND	1,200
Berzo(k)(horanthene 1,100	` '						1	ND	440 J
Bis(2-Ethyfhexyl)phthalate S0,000 770 S20 300 J ND 370 610 49 J Butybenzylphthalate S0,000 ND 110 J ND ND ND ND ND ND Butybenzylphthalate S0,000 ND 110 J ND ND ND ND ND ND ND Dibenzo(a,h)anthracene 14 101 J ND ND ND ND ND ND ND ND	13. 17. 7	·	1						1,200
Bulythenzyphthalaite		· ·							to the last of the last of the last of the
Chrysene									
Dibertzo(a,h)anthracene	Butylbenzylphthalate								
Detrylphthialate	Chrysene	400	100 J			1	,		to be the second of the second
Diethylphthalate	Dibenzo(a,h)anthracene	14	101 J	ND	ND	ND	ND	ND	61 J
Di-n-Octylphthalate		7,100	102 J	ND	ND	ND	ND	ND	ND
Di-n-octylphthalate	, , ,		103 J	ND	ND	ND	ND	ND	ND
Fluoranthene So,000 105 J 160 J ND 930 J ND 49 J 2,800 Fluorene So,000 106 J 53 J ND 8,200 ND ND ND ND ND ND ND		· ·	1			ND	NO	ND	ND
Fluorene									
Indeno(1,2,3-cd)pyrene									
Naphalene		·	1				,		
Phenanthrene	Indeno(1,2,3-cd)pyrene					The same of the sa			
Pyrene	Napihalene	13,000				PUREAUCKLY SELECT			
SVOCs TIC 2870 J 3902 J 20460 J 133710 J 2138 J 3567 J 3124 PCBs - (ug/Kg) AROCLOR 1016 ND ND ND ND ND ND ND N	Phenanthrene	50,000	109 J	250 J	ND	11,000	ND	38 J	1,700
SVOCs TIC 2870 J 3902 J 20460 J 133710 J 2136 J 3567 J 3124	Pyrene	50,000	260 J	660	41 J	1100 J	50 J	84 J	2,300
PCBs - (ug/Kg) AROCLOR 1016 AROCLOR 1221 AROCLOR 1232 AROCLOR 1232 AROCLOR 1242 AROCLOR 1242 AROCLOR 1244 AROCLOR 1244 AROCLOR 1245 AROCLOR 1246 AROCLOR 1246 AROCLOR 1246 AROCLOR 1247 AROCLOR 1248 AROCLOR 1254 AROCLOR 1254 AROCLOR 1254 AROCLOR 1254 AROCLOR 1256 AROCLOR 1260 Metals - (mg/Kg) Arimony A	,,								
PCBs - (ug/Kg)	SVOC- TIC		2870 1	3902 1	20460 .1	133710 .	2136.1	3567.1	3124 J
AROCLOR 1016 AROCLOR 1221 AROCLOR 1232 AROCLOR 1242 AROCLOR 1244 AROCLOR 1244 AROCLOR 1246 AROCLOR 1246 AROCLOR 1254 AROCLOR 1254 AROCLOR 1254 AROCLOR 1254 AROCLOR 1254 AROCLOR 1254 AROCLOR 1256 AROCLOR 1260 Metals - (mg/Kg) Arsenic SB (Not Available) Arsenic 3	SVOCS NC		20703	3902 3	20400 3	155710 5	2,000	000,0	01240
AROCLOR 1016 AROCLOR 1221 AROCLOR 1232 AROCLOR 1242 AROCLOR 1244 AROCLOR 1244 AROCLOR 1246 AROCLOR 1246 AROCLOR 1254 AROCLOR 1254 AROCLOR 1254 AROCLOR 1254 AROCLOR 1254 AROCLOR 1254 AROCLOR 1256 AROCLOR 1260 Metals - (mg/Kg) Arsenic SB (Not Available) Arsenic 3									
AROCLOR 1221 AROCLOR 1232 AROCLOR 1242 AROCLOR 12442 AROCLOR 12448 AROCLOR 1254 AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Arimony Arsenic Barium 0.16(HEAST) or SB(0 to 1.75) Cadmium Chromium Chromium Chromium 10 or SB(1.5 to 40) Aroclor 1260 ND	PCBs - (ug/Kg)	1,000 Total PCBs	J						ĺ
AROCLOR 1232 AROCLOR 1242 AROCLOR 1244 AROCLOR 1248 AROCLOR 1254 AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) AROCLOR 1260 Metals - (mg/Kg) AROCLOR 1260 Metals - (mg/Kg) AROCLOR 1260 Metals - (mg/Kg) AROCLOR 1260 Metals - (mg/Kg) AROCLOR 1260 RSCO (Eastern USA Background) SB (Not Available) Arsenic Ar	AROCLOR 1016	I							
AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1254 AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Arsenic 7.5 or SB (3 to 12) Barium Beryllium 0.16(HEAST) or SB(0 to 1.75) Cadmium 1 or SB (0.1 to 1) 1 or SB(1.5 to 40) Capper 25 or SB(1 to 50) Agricular 25 or SB(1 to 50) SB(200 to 500) SB(201 to 5.9) SB(201 to 5.9) SB(201 to 5.9) SB(201 to 3.9) SB	AROCLOR 1221	1	ND	ND	ND	NA	ND	1	
AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1256 AROCLOR 1260 Metals - (mg/Kg) AROCLOR 1260 Metals - (mg/Kg) Aritimony Antimony Antimony Arsenic Barium Beryllium 0.16(HEAST) or SB(0 to 1.75) Cadmium 10 or SB(1.5 to 40) 10 or SB(1.5 to 40) 25 or SB(1 to 50) Area Copper 25 or SB(1 to 50) 38 Agas Agas Agas Agas Agas Agas Agas Agas	AROCLOR 1232		ND	ND	ND	NA	ND	ND	ON
AROCLOR 1248 AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic Barium Beryllium O.16(HEAST) or SB(0 to 1.75) Cadmium Chromium C						1	ND	ND	ND
AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic Barium Beryllium O.16(HEAST) or SB(0 to 1.75) Cadmium 1 or SB(1.5 to 40) Copper SB(0.5 to 500) SB(0.5 to 500) Necroury O.1 (0.001 to 0.2) Necroury Necrour			1		ı				
Metals - (mg/Kg) RSCO (Eastern USA Background) 3 B 3.6 B 3.9 B NA 5.5 B 3.8 B 4.8 B Arsenic 7.5 or SB (3 to 12) 6.3 6.3 5.9 NA 5.2 7.1 .26 Barium 300 or SB (15 to 600) NA <			1			1		1	
Metals - (mg/Kg) RSCO (Eastern USA Background) 3 B 3.6 B 3.9 B NA 5.5 B 3.8 B 4.8 B Antimony SB (Not Available) 3 B 3.6 B 3.9 B NA 5.5 B 3.8 B 4.8 B Arsenic 7.5 or SB (3 to 12) 6.3 6.3 5.9 NA 5.2 7.1 26 Barium 300 or SB (15 to 600) NA NA <t< td=""><td></td><td></td><td>1</td><td></td><td>l .</td><td>1</td><td>1</td><td>1</td><td></td></t<>			1		l .	1	1	1	
Antimony Arsenic Arsenic Arsenic Barium Beryllium 0.16(HEAST) or SB(0 to 1.75) Cadmium 10 or SB(1.5 to 600) 11 or SB(0.0 to 1.75) Cadmium 10 or SB(1.5 to 40) Capper 25 or SB(1 to 50) Assertic Basium Beryllium 0.16(HEAST) or SB(0 to 1.75) Cadmium 10 or SB(1.5 to 40) Capper 25 or SB(1 to 50) Capper Cappe	AROCLOR 1260		ND ND	ND	ND	NA NA	טא	ND	NO
Antimony Arsenic Arsenic Arsenic Barium Beryllium 0.16(HEAST) or SB(0 to 1.75) Cadmium 10 or SB(1.5 to 600) 11 or SB(0.0 to 1.75) Cadmium 10 or SB(1.5 to 40) Capper 25 or SB(1 to 50) Assertic Basium Beryllium 0.16(HEAST) or SB(0 to 1.75) Cadmium 10 or SB(1.5 to 40) Capper 25 or SB(1 to 50) Capper Cappe						ļ			_
Antimony Antimony Arsenic Arsenic Barium 300 or SB (15 to 600) Barium 0.16(HEAST) or SB(0 to 1.75) Cadmium 1 or SB (0.1 to 1) 1.5 1.4 0.64 Cadmium 10 or SB(1.5 to 40) Cadmium 10 or SB(1.5 to 40) Capper 25 or SB(1 to 50) Capper 26 or SB(1 to 50) Capper 27.3 32.8 32.1 NA 26.1 40.2 53 Capper 38 (0.1 to 3.9) Capper 38 (0.1 to 3.9) Capper 39 or SB (Not Available) Capper 30 or SB (Not Available) Capper 30 or SB (9 to 50) Capper 30 or									
Antimony Arsenic Arsenic Arsenic Barium Beryllium 0.16(HEAST) or SB(0 to 1.75) Cadmium 10 or SB(1.5 to 600) 11 or SB(0.0 to 1.75) Cadmium 10 or SB(1.5 to 40) Capper 25 or SB(1 to 50) Assertic Basium Beryllium 0.16(HEAST) or SB(0 to 1.75) Cadmium 10 or SB(1.5 to 40) Capper 25 or SB(1 to 50) Capper Cappe	Metals - (mg/Kg)	RSCO (Eastern USA Background)	I	I		1	}	I	}
Arsenic 7.5 or SB (3 to 12) 6.3 6.3 5.9 NA 5.2 7.1 28 Barium 300 or SB (15 to 600) NA			3 B	3.6 B	3.98	NA	5.5 B	3.8 B	4.8 B
Barium 300 or SB (15 to 600) NA									
Beryllium 0.16(HEAST) or \$B(0 to 1.75) 0.20 B 0.19 B 0.15 B NA 0.14 B 0.2 0.50 I Cadmium 1 or \$B(0.1 to 1) 1.5 1.4 0.64 NA 0.52 B 1.8 6.1 Chromium 10 or \$B(1.5 to 40) 49.7 104 93.1 NA 394 100 54.5 Copper 25 or \$B(1 to 50) 77.9 85.5 71.1 NA 52.5 113 24.7 Lead \$B(200 to 500) 834 2400 6600 NA 6330 1;250 441 Mercury 0.1 (0.001 to 0.2) 0.21 0.04 0.02 NA 0.06 0.05 0.32 Nickel 13 or \$B (0.5 to 25) 27.3 32.8 32.1 NA 26.1 40.2 53 Selenium \$B (0.1 to 3.9) ND ND ND ND NA ND									
Cadmium 1 or SB (0.1 to 1) 1.5 1.4 0.64 NA 0.52 B 1.8 6.1 Chromium 10 or SB(1.5 to 40) 49.7 104 93.1 NA 394 100 54.5 Copper 25 or SB(1 to 50) 77.9 85.5 71.1 NA 52.5 113 217 Lead SB(200 to 500) 834 2400 6600 NA 6330 1250 441 Mercury 0.1 (0.001 to 0.2) 0.21 0.04 0.02 NA 0.06 0.05 0.32 Nickel 13 or SB (0.5 to 25) 27.3 32.8 32.1 NA 26.1 40.2 53 Selenium SB (0.1 to 3.9) ND ND ND ND NA NB ND 0.531 Silver SB (Not Available) 3.5 24.4 3.7 NA 2.8 6.3 4.5 Thallium SB (Not Available) ND ND ND ND ND ND <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>l .</td><td></td><td></td></t<>							l .		
Chromium 10 or SB(1.5 to 40) 49.7 104 93.1 NA 394 100 54.5 Copper 25 or SB(1 to 50) 77.9 85.5 71.1 NA 52.5 113 217 Lead SB(200 to 500) 834 2400 6600 NA 6330 11250 441 Mercury 0.1 (0.001 to 0.2) 0.21 0.04 0.02 NA 0.06 0.05 0.32 Nickel 13 or SB (0.5 to 25) 27.3 32.8 32.1 NA 26.1 40.2 53 Selenium SB (0.1 to 3.9) ND ND <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>with the second section and the second</td></t<>									with the second section and the second
Copper 25 or SB(1 to 50) 77.9 85.5 71.1 NA 52.5 113 217 Lead SB(200 to 500) 834 2400 6600 NA 6330 1:250 441 Mercury 0.1 (0.001 to 0.2) 0.21 0.04 0.02 NA 0.06 0.05 0.32 Nickel 13 or SB (0.5 to 25) 27.3 32.8 32.1 NA 26.1 40.2 53 Selenium SB (0.1 to 3.9) ND ND ND ND ND ND ND ND ND 0.53 I Silver SB (Not Available) 3.5 24.4 3.7 NA 2.8 6.3 4.5 Thallium SB (Not Available) ND ND <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>05.5240854.24405654</td></t<>									05.5240854.24405654
Lead SB(200 to 500) 834 2400 6600 NA 6330 1:250 441 Mercury 0.1 (0.001 to 0.2) 0.21 0.04 0.02 NA 0.06 0.05 0.32 Nickel 13 or SB (0.5 to 25) 27.3 32.8 32.1 NA 26.1 40.2 53 Selenium SB (0.1 to 3.9) ND ND ND ND NA ND ND 0.53 I Silver SB (Not Available) 3.5 24.4 3.7 NA 2.8 6.3 4.5 Thallium SB (Not Available) ND ND <td>Chromium</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Chromium								
Lead SB(200 to 500) 834 2400 6600 NA 6330 1:250 441 Mercury 0.1 (0.001 to 0.2) 0.21 0.04 0.02 NA 0.06 0.05 0.32 Nickel 13 or SB (0.5 to 25) 27.3 32.8 32.1 NA 26.1 40.2 53 Selenium SB (0.1 to 3.9) ND ND ND ND ND ND ND ND ND 0.53 to 24.4 3.7 NA 2.8 6.3 4.5 4.5 1.7 NA ND N	Copper	25 or SB(1 to 50)	77.9	85.5		NA			Section of Administration of the Property of t
Mercury 0.1 (0.001 to 0.2) 0.21 0.04 0.02 NA 0.06 0.05 0.32 Nickel 13 or SB (0.5 to 25) 27.3 32.8 32.1 NA 26.1 40.2 53 Selenium SB (0.1 to 3.9) ND N		SB(200 to 500)	834	2400	6600	NA I	6330	1:250	441
Nickel 13 or SB (0.5 to 25) 27.3 32.8 32.1 NA 26.1 40.2 53 Selenium SB (0.1 to 3.9) ND 0.53 f 0.55 f 0									0.32
Selenium SB (0.1 to 3.9) ND ND </td <td></td> <td></td> <td></td> <td>A CONTRACTOR OF THE PARTY OF TH</td> <td></td> <td></td> <td></td> <td>and principles of the property of principles</td> <td></td>				A CONTRACTOR OF THE PARTY OF TH				and principles of the property of principles	
Silver SB (Not Available) 3.5 24.4 3.7 NA 2.8 6.3 4.5 Thallium SB (Not Available) ND ND ND NA ND							Charles Company of the Company of th	Later 200 March College and the later	
Thallium SB (Not Available) ND ND ND NA ND N								ſ	
Zinc 20 or SB (9 to 50) 364 697 406 NA 399 460 2070							1		
					And the second residence to the second state of				
	Zinc	20 or SB (9 to 50)	364	697	406	NA	399	460	2070
TCLP Lead (mg / L) 5 (RCRA) NA NA NA NA NA NA									
	TCLP Lead (mo / L)	5 (RCRA)	NA	NA	NA	NA	NA	NA	NA
		1		l					
See Notes on Final Page of this table.									

TABLE 1 (Page 2 of 11) SOIL SAMPLING ANALYTICAL RESULTS FORMER JONAS AUTOMOTIVE FACILITY NEWBURGH, NEW YORK

	NEW	/BURGH, N	EW YORK					
Sample Location		S-6	S-7	S-7	Ş-8	S-8	S-9	S-9
Sample Date		06/13/01	06/13/01	06/13/01	06/13/01	06/13/01	06/13/01	06/13/01
Sample Depth (feet)	TAGM Recommended Soil Cleanup	1.5'-2.0'	0'-0.5'	1.5'-2.0'	0'-0.5'	1.5'-2.0'	0'-0.5'	1.5'-2.0'
Study Area	Objectives	2	2	2	2	2	2	2
PARAMETER (units)		_	_					
VOCs - (µg/Kg)	60	ND	ND	ND	ND	ND	ND	ND
Benzene)	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane				NA NA	NA I	NA NA	NA NA	NA
n-Butylbenzne	_	NA	NA	1	1	NA NA	NA NA	NA NA
sec-Butylbenznene	_	NA	NA	NA	NA		1	ND
Chloroform	300	2.6 J	NA NA	ND	NA	ND	NA	
Ethylbenzene	5,500	ND	NA NA	ND	NA	ND	NA NA	ND
Methylene Chloride	100	5 J	NA	4.8 J	NA	4.4 J	NA NA	3.4 J
Naphthalene	1,300	NA NA	NA	NA NA	NA	NA	NA NA	NA
Tetrachioroethene	1,400	ND	NA	15	NA	12	NA	8.6
Toluene	1,500	ND	NA	ND ND	NA .	ND	NA	ND
	1,200	ND	NA	ND	NA	ND	NA	ND
Total Xylenes	1,200	"	136	""				
	1	40.1	NA	ND	NA	5.7 J	NA	1100 J
VOCs TIC		10 J	NA	ND	140	3.7 3	116	11000
SVOCs - (ug/Kg)		l		[,,,,	N: A	ND	ND
2-Methylnapththalene	36,400	ND	ND	NA	ND	NA NA		1
Acenaphthalene	41,000	58 J	ND	NA	ND	NA	170 J	ND
Acenaphthylene	50,000	63 J	ND	NA	ND	NA	94 J	ND
Anthracene	50,000	74 J	ND	NA	ND	NA	380	ND
Benzo(a)anthracene	224	200 J	76 J	NA	ND	NA	490	ИĎ
Benzo(a)pyrene	61	250 J	84 J	NA	NO	NA	510	ND
	1,100	210 J	89 J	NA	ND	NA	380	ND
Benzo(b)fluoranthene	50,000	140 J	63 J	NA NA	ND	NA	320 J	ND
Benzo(g,h,l)perylene	·	280 J	82 J	NA NA	ND	NA	550	ND
Benzo(k)fluoranthene	1,100					NA NA	580	ND
Bis(2-Ethylhexyl)phthalate	50,000	ND	180 J	NA	110 J	1	1	1
Butylbenzylphthalate	50,000	ND	ND	NA	ND	NA	ND	ND
Chrysene	400	270 J	95 J	NA NA	ND	NA	590	ND
Dibenzo(a,h)anthracene	14	QN	ND	NA	ND	NA	ND	ND
Diethylphthalate	7,100	ND	ND	NA	ND	NA	ND	ND
Di-n-butylphthalate	8,100	ND	ND	NA NA	ND	NA	ND	ND
Di-n-octylphthalate	50,000	ND	ND	NA NA	ND	NA	ND	ND
	50,000	550	150 J	NA	ND	NA	1,100	ND
Fluoranthene		58 J	ND	NA.	ND	NA	200 J	ND
Fluorene	50,000	130 J	ND	NA NA	ND	NA	310 J	ND
Indeno(1,2,3-cd)pyrene	3,200			1	ND I	NA NA	140 J	ND
Napthalene	13,000	46 J	ND	NA		1	(
Phenanthrene	50,000	530 J	74 J	NA NA	ND	NA	1,600	ND
Pyrene	50,000	400	140 J] NA	ND	NA NA	2,300	ND
SVOCs TIC		2142	1570 J	NA	535 J	NA	1317 J	3526
34063 116								
PCBs - (ug/Kg)	1,000 Total PCBs							
	1,000 10(8) 7 003	NA NA	ND	NA NA	ND	NA	ND	NA
AROCLOR 1016		1		1	ND	NA.	ND	NA
AROCLOR 1221		NA NA	ND	NA NA		ı	ND	NA NA
AROCLOR 1232	1	NA NA	ND	NA	ND	NA NA	_	
AROCLOR 1242	1	NA	ND	NA	ND	NA	ND	NA
AROCLOR 1248	1	NA	ND	NA NA	ND	NA	ND	NA
AROCLOR 1254		NA	78	NA	ND	NA	ND	NA
AROCLOR 1260	(NA	ND	NA	ND	NA	ND	NA
		-						
Metals - (mg/Kg)	RSCO (Eastern USA Background)	1		I				
Antimony	SB (Not Available)	NA	2.2 B	NA	1.4 B	NA	2.18	NA
Arsenic	7.5 or SB (3 to 12)	NA NA	7.3	NA NA	6.9	NA	9	NA
		NA NA	NA NA	NA NA	NA	NA	NA NA	NA
Barium	300 or SB (15 to 600)		0.50 B	NA NA	0.48 B	NA.	0.52 B	NA
Beryllium	0.16(HEAST) or SB(0 to 1.75)	NA NA	1	1		1	0.32 B	NA NA
Cadmium	1 or SB (0.1 to 1)	NA	0.50 B	NA	0.46 B	NA NA]	
Chromium	10 or SB(1.5 to 40)	NA	46.5	NA NA	21.3	NA	22.9	NA NA
Copper	25 or SB(1 to 50)	NA NA	44.5	NA NA	43.4	NA	56.8	NA
Lead	SB(200 to 500)	NA	584	NA	79.7	NA	105	NA
Mercury	0.1 (0.001 to 0.2)	NA	0.47	NA	0.4	NA	0.16	NA
	13 or SB (0.5 to 25)	NA	20.5	NA	24.1	NA	23.7	NA
INICKEI		NA	ND	NA	ND	NA	ND	NA
Nickel Selecium	SB (0.1 to 3.9)	1 , ", "		NA.	1.1	NA	1.2	NA
Selenium	SB (0.1 to 3.9)	NΔ						
Selenium Silver	SB (Not Available)	NA NA	1.2					
Selenium Silver Thallium	SB (Not Available) SB (Not Available)	NA	ND	NA	ND	NA	ND	NA
Selenium Silver	SB (Not Available)	1						
Selenium Silver Thallium Zinc	SB (Not Available) SB (Not Available) 20 or SB (9 to 50)	NA NA	ND 223	NA NA	ND 99.2	NA NA	ND 132	NA NA
Selenium Silver Thallium	SB (Not Available) SB (Not Available)	NA	ND	NA	ND	NA	ND	NA

TABLE 1 (Page 3 of 11) SOIL SAMPLING ANALYTICAL RESULTS FORMER JONAS AUTOMOTIVE FACILITY NEWBURGH, NEW YORK

Camalo I postion		BURGEI, N						
Sample Location		S-10	S-10	S-11	S-11	S-12	S-12	S-13
Sample Date		06/13/01	06/13/01	06/13/01	06/13/01	06/13/01	06/13/01	06/13/01
,	TAGM Recommended Soil Cleanup	0'-0.5'	1.5'-2.0'	0'-0.5'	1.5'-2.0'	0'-0.5'	1.0'-1.5'	0'-0.5'
Sample Depth (feet)	Objectives			2	2	3	3	3
Study Area		2	2	4		, ,	, ,	"
PARAMETER (units)								
VOCs - (µg/Kg)						1		l
Benzene	60	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	_	ND	ND	ND	ND	ND	ND	ND
		I	ı	NA NA	NA	NA	NA	NA
n-Butylbenzne		NA	NA	ı			1	
sec-Butylbenznene	_	NA	NA NA	NA	NA	NA	NA NA	NA NA
Chloroform	300	NA	ND	NA	ND	NA	ND	NA NA
Ethylbenzene	5,500	NA	ND	NA NA	ND	NA	ND	NA NA
		ı	3.5 J	NA NA	ND	NA	ND	NA
Methylene Chloride	100	NA						1
Naphthalene	1,300	NA	NA	NA NA	NA	NA	NA	NA
Tetrachloroethene	1,400	NA NA	4.8 J	NA NA	ND	NA	ND	NA NA
Toluene	1,500	NA	ND	NA	ND	NA	ND	NA
	1,200	NA	ND	NA	ND	NA	ND	NA
Total Xylenes	1,200	1 116	"		,			
		l			ND	NIA.	l ND	NA.
VOCs TIC		NA_	7.8 J	NA	ND_	NA	ND_	INA
SVOCs - (ug/Kg)]	l				l
2-Methylnapththalene	36,400	ND	NA	ND	ND	ND	NA	ND
	41,000	ND	NA NA	ND	430	ND	NA	94 J
Acenaphthalene				ND	52 J	54 J	NA.	1,400
Acenaphthylene	50,000	ND	NA	ſ				
Anthracene	50,000	ND	NA	ND	720	ND	NA	1,200
Benzo(a)anthracene	224	ND	NA NA	53 J	830	120 J	NA	3,800
Benzo(a)pyrene	61	ND	NA	93 J.	860	130 J	NA	3,500
	1	ND	NA NA	110 J	520	120 J	NA	5200 D
Benzo(b)fluoranthene	1,100	1	1				NA NA	1,200
Benzo(g,h,I)perylene	50,000	ND	NA	ND	500	68 J		
Benzo(k)fluoranthene	1,100	ND	NA	95 J	1000	210 J	NA	3,800
3is(2-Ethylhexyl)phthalate	50,000	230 J	NA	190 J	ND	140 J	NA	540
	50,000	ND	NA	ND	ND	100 J	NA NA	83 J
Butyibenzylphthalate				74 J	880	150 J	NA	3,700
Chrysene	400	ND	NA					Committee of the Committee of
Dibenzo(a,h)anthracene	14	ND	NA	ND	54 J	ND	NA	220 J
Diethylphthalate	7,100	53 J	NA NA	ND	ND	ND	NA	ND
Di-n-butylphthalate	8,100	ND	NA	ND	ND	ND	NA	ND
, ,			NA NA	ND	ND	ND	NA	ND
Di-n-octylphthalate	50,000	ND	ı				NA NA	10000 0
Fluoranthene	50,000	ND	NA NA	91 J	1700	280 J		
Fluorene	50,000	ND	NA	ND	430	ND	NA	520 J
ndeno(1,2,3-cd)pyrene	3,200	DN	NA	150 J	410	ND	NA	770
	13,000	ND	NA	ND	190 J	ND	NA	97 J
Napthalene	·	1			1900	140 J	NA	390
Phenanthrene	50,000	ND	NA	57 J				
Pyrene	50,000	47 J	NA	290 J	1400	240 J	NA	8400 D
•				l				ſ
01.100 - TIC		6420 J	NA	603 J	3586	13730 J	NA NA	18470 .
SVOCs TIC		04203	140	000 0	0000	107000	,,,,	
PCBs - (ug/Kg)	1,000 Total PCBs		1	ĺ				1
AROCLOR 1016		ND	NA NA	ND	NA	ND	NA	DИ
AROCLOR 1221		ND	NA	ND	NA	ND	NA	ND
		ſ	NA NA	ND	NA	ND	NA NA	ND
AROCLOR 1232	1	ND	1	l			,	
AROCLOR 1242		ND	NA NA	ND	NA	ND	NA	ND
AROCLOR 1248	[ND	NA	ND	NA	ND	NA	ND
	I	ı	NA	28	NA	ND	NA	ND
	1	[41]						
AROCLOR 1254		ND	1			ND	NA NA	ND.
AROCLOR 1254		ND	NA	ND	NA	ND	NA	ND
AROCLOR 1254			1			ND	NA ——	ND
AROCLOR 1254			1			ND	NA —	ND
AROCLOR 1254 AROCLOR 1260	RSCO (Eastern USA Background)		1	ND	NA		_	
AROCLOR 1254 AROCLOR 1260 ————————————————————————————————————			1			ND 4.5 B	NA NA	6.7 B
AROCLOR 1254 AROCLOR 1260	SB (Not Available)	ND	NA NA	ND	NA NA	4.5 B	NA	
AROCLOR 1254 AROCLOR 1260	SB (Not Available) 7.5 or SB (3 to 12)	1.3 B 8.6	NA NA NA	ND 1.4 B 5.9	NA NA NA	4.5 B 12.3	NA NA	6.7 B
AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic Barium	SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600)	1.3 B 8.6 NA	NA NA NA NA	1.4 B 5.9 NA	NA NA NA	4.5 B 12.3 NA	NA NA NA	6.7 B 104 NA
AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic Barium	SB (Not Available) 7.5 or SB (3 to 12)	1.3 B 8.6 NA 0.34 B	NA NA NA NA	1.4 B 5.9 NA 0.48 B	NA NA NA NA	4.5 B 12.3 NA 0.4 B	NA NA NA NA	6.7 B 104 NA 0.67 B
AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic Barium Beryllium	SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600)	1.3 B 8.6 NA	NA NA NA NA	1.4 B 5.9 NA	NA NA NA	4.5 B 12.3 NA	NA NA NA	6.7 B 104 NA 0.67 B 3.4
AROCLOR 1254 AROCLOR 1260	SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1)	1.3 B 8.6 NA 0.34 B 0.81	NA NA NA NA NA	1.4 B 5.9 NA 0.48 B 0.39 B	NA NA NA NA	4.5 B 12.3 NA 0.4 B	NA NA NA NA	6.7 B 104 NA 0.67 B
AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic Barium Beryllium Cadmium Chromium	SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40)	1.3 B 8.6 NA 0.34 B 0.81 18.5	NA NA NA NA NA NA	1.4 B 5.9 NA 0.48 B 0.39 B 33	NA NA NA NA NA NA NA	4.5 B 12.3 NA 0.4 B 2 66.9	NA NA NA NA NA	6.7 B 104 NA 0.67 B 3.4 105
AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic Barium Beryllium Cadmium Chromium Copper	SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40) 25 or SB(1 to 50)	1.3 B 8.6 NA 0.34 B 0.81 18.5 42.5	NA NA NA NA NA NA	1.4 B 5.9 NA 0.48 B 0.39 B 33 29.1	NA NA NA NA NA NA NA	4.5 B 12.3 NA 0.4 B 2 66.9 143	NA NA NA NA NA NA	6.7 B 104 NA 0.67 B 3.4 105
AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic Barium Beryllium Cadmium Chopper Lead	SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40) 25 or SB(1 to 50) SB(200 to 500)	1.3 B 8.6 NA 0.34 B 0.81 18.5 42.5 46.8	NA NA NA NA NA NA NA	1.4 B 5.9 NA 0.48 B 0.39 B 33 29.1 169	NA NA NA NA NA NA NA NA NA	4.5 B 12.3 NA 0.4 B 2 66.9 143 435	NA NA NA NA NA NA	6.7 B 104 NA 0.67 B 3.4 105 171
AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic Barium Beryllium Cadmium Chopper Lead	SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40) 25 or SB(1 to 50)	1.3 B 8.6 NA 0.34 B 0.81 18.5 42.5	NA NA NA NA NA NA	1.4 B 5.9 NA 0.48 B 0.39 B 33 29.1 169 0.13	NA	4.5 B 12.3 NA 0.4 B 2 66.9 143 435 0.32	NA NA NA NA NA NA NA	6.7 B 104 NA 0.67 B 3.4 105 171 1120 6.2
AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic Barium Beryllium Cadmium Chromium Coopper Lead Mercury	SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40) 25 or SB(1 to 50) SB(200 to 500) 0.1 (0.001 to 0.2)	1.3 B 8.6 NA 0.34 B 0.81 18.5 42.5 46.8 0.02	NA NA NA NA NA NA NA NA	1.4 B 5.9 NA 0.48 B 0.39 B 33 29.1 169	NA NA NA NA NA NA NA NA NA	4.5 B 12.3 NA 0.4 B 2 66.9 143 435	NA NA NA NA NA NA	6.7 B 104 NA 0.67 B 3.4 105 171
AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic Barium Beryllium Cadmium Chromium Copper Lead Mercury Nickel	SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40) 25 or SB(1 to 50) SB(200 to 500) 0.1 (0.001 to 0.2) 13 or SB (0.5 to 25)	1.3 B 8.6 NA 0.34 B 0.81 18.5 42.5 46.8 0.02 20.4	NA NA NA NA NA NA NA NA	1.4 B 5.9 NA 0.48 B 0.39 B 33 29.1 169 0.13 26.4	NA NA A A A A A A A A A A A A A A A A A	4.5 B 12.3 NA 0.4 B 2 66.9 143 435 0.32 41.1	NA NA NA NA NA NA NA	6.7 B 104 NA 0.67 B 3.4 105 171 1120 6.2 50.6
AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic Barium Beryllium Cadmium Chromium Copper Lead Mercury Vickel Selenium	SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40) 25 or SB(1 to 50) SB(200 to 500) 0.1 (0.001 to 0.2) 13 or SB (0.5 to 25) SB (0.1 to 3.9)	1.3 B 8.6 NA 0.34 B 0.81 18.5 42.5 46.8 0.02 20.4 ND	NA NA NA NA NA NA NA NA NA	1,4 B 5.9 NA 0.48 B 0.39 B 33 29.1 169 0.13 26.4 ND	N A A A A A A A A A A A A A A A A A A A	4.5 B 12.3 NA 0.4 B 2 66.9 143 435 0.32 41.1	NA NA NA NA NA NA NA NA	6.7 B 104 NA 0.67 B 3.4 105 171 1120 6.2 50.6 ND
AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic Barium Beryllium Cadmium Chromium Chromium Copper Lead Mercury Nickel Selenium Silver	SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40) 25 or SB(1 to 50) SB(200 to 500) 0.1 (0.001 to 0.2) 13 or SB (0.5 to 25) SB (0.1 to 3.9) SB (Not Available)	ND 1.3 B 8.6 NA 0.34 B 0.81 18.5 42.5 46.8 0.02 20.4 ND ND	NA	ND 1.4 B 5.9 NA 0.48 B 0.39 B 33 29.1 169 0.13 26.4 ND 1.2	A A A A A A A A A A A A A A A A A A A	4.5 B 12.3 NA 0.4 B 2 66.9 143 435 0.32 41.1 0.98 10.2	NA N	6.7 B 104 NA 0.67 B 3.4 105 171 1120 6.2 50.6 ND 8
AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic Barium Beryllium Cadmium Chromium Chromium Copper Lead Mercury Nickel Selenium Silver	SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40) 25 or SB(1 to 50) SB(200 to 500) 0.1 (0.001 to 0.2) 13 or SB (0.5 to 25) SB (0.1 to 3.9)	1.3 B 8.6 NA 0.34 B 0.81 18.5 42.5 46.8 0.02 20.4 ND	NA NA NA NA NA NA NA NA NA	1,4 B 5.9 NA 0.48 B 0.39 B 33 29.1 169 0.13 26.4 ND	2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4.5 B 12.3 NA 0.4 B 2 86.9 143 435 0.32 41.1 0.98 10.2 ND	NA	6.7 B 104 NA 0.67 B 3.4 105 171 1120 6.2 50.6 ND 8 0.76 B
AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver Thallium	SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40) 25 or SB(1 to 50) SB(200 to 500) 0.1 (0.001 to 0.2) 13 or SB (0.5 to 25) SB (0.1 to 3.9) SB (Not Available) SB (Not Available)	ND 1.3 B 8.6 NA 0.34 B 0.81 18.5 42.5 46.8 0.02 20.4 ND ND	NA	ND 1.4 B 5.9 NA 0.48 B 0.39 B 33 29.1 169 0.13 26.4 ND 1.2	A A A A A A A A A A A A A A A A A A A	4.5 B 12.3 NA 0.4 B 2 66.9 143 435 0.32 41.1 0.98 10.2	NA N	6.7 B 104 NA 0.67 B 3.4 105 171 1120 6.2 50.6 ND
AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic Barium Beryllium Cadmium Chromium Chromium Copper Lead Mercury Nickel Selenium Silver	SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40) 25 or SB(1 to 50) SB(200 to 500) 0.1 (0.001 to 0.2) 13 or SB (0.5 to 25) SB (0.1 to 3.9) SB (Not Available)	1.3 B 8.6 NA 0.34 B 0.81 18.5 42.5 46.8 0.02 20.4 ND ND	NA N	1.4 B 5.9 NA 0.48 B 0.39 B 33 29.1 169 0.13 26.4 ND 1.2	2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4.5 B 12.3 NA 0.4 B 2 86.9 143 435 0.32 41.1 0.98 10.2 ND	NA	6.7 B 104 NA 0.67 B 3.4 105 171 1120 6.2 50.6 ND 8 0.76 B
AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic Barium Beryllium Cadmium Chromium Copper Lead Mercury Vickel Selenium Silver Challium	SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40) 25 or SB(1 to 50) SB(200 to 500) 0.1 (0.001 to 0.2) 13 or SB (0.5 to 25) SB (0.1 to 3.9) SB (Not Available) SB (Not Available)	1.3 B 8.6 NA 0.34 B 0.81 18.5 42.5 46.8 0.02 20.4 ND ND	NA N	1.4 B 5.9 NA 0.48 B 0.39 B 33 29.1 169 0.13 26.4 ND 1.2	2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4.5 B 12.3 NA 0.4 B 2 86.9 143 435 0.32 41.1 0.98 10.2 ND	NA	6.7 B 104 NA 0.67 B 3.4 105 171 1120 6.2 50.6 ND 8 0.76 B

TABLE 1 (Page 4 of 11) SOIL SAMPLING ANALYTICAL RESULTS FORMER JONAS AUTOMOTIVE FACILITY NEWBURGH, NEW YORK

	145,4	VBUKGA, IVI						
Sample Location		S-13	S-14	S-14	S-15	S-15	S-16	S-16
Sample Date	1	06/13/01	06/13/01	06/13/01	06/13/01	06/13/01	06/13/01	06/13/01
Sample Depth (feet)	TAGM Recommended Soil Cleanup	1.0'-1.5'	0'-0.5'	1.0'-1.5'	0'-0.5'	1.5'-2.0'	0'-0.5'	1.5'-2.0'
	Objectives	3	3	3	3	3	4	4
Study Area	1	3	3	3	°	3	*	-
PARAMETER (units)								
VOCs - (μg/Kg)			J		ĺ	1	ľ	
Benzene	60	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	1	ND	ND	ND	ND	ND	ND	ND
		1				1	1	
n-Butylbenzne		NA	NA	NA	NA	NA	NA	NA
sec-Butylbenznene	-	NA NA	NA	NA NA	NA NA	NA	NA	NA
Chloroform	300	ND	NA	ND	NA	ND	NA	ND
Ethylbenzene	5,500	ND	NA	ND	NA	ND	NA	ND
	'		NA NA	ND	· NA	ND	NA	ND
Methylene Chloride	100	ND			1	l	J	1
Naphthalene	1,300	NA	NA NA	NA NA	NA	NA NA	NA	NA
Tetrachloroethene	1,400	ND	NA	3.9	NA	7.6	NA	GN
Toluene	1,500	ND	NA NA	ND	NA	ND	NA NA	ND
Total Xylenes	1,200	ND	NA	ND	NA	ND	NA NA	ND
Total Aylettes	1,200	110	1471	""		,,,	""	
							١	
VOCs TIC		22 J	NA	7.8 J	NA	ND_	NA	ND
SVOCs - (ug/Kg)								ł
2-Methylnapththalene	36,400	NA NA	ND	NA	ND	NA NA	ND	NA
- 1	41,000	NA.	260 J	NA.	ND	NA	ND	NA
Acenaphthalene						ı	ı	1
Acenaphthylene	50,000	NA	160 J	NA	ND	NA	ND	NA
Anthracene	50,000	NA	660	NA	ND	NA	ND	NA
Benzo(a)anthracene	224	NA	1,300	NA	ND	NA NA	ND	NA
	61	NA.	1,200	NA	ND	NA	ND	NA
Benzo(a)pyrene							ND ND	NA NA
Benzo(b)fluoranthene	1,100	NA	1,300	NA	ND	NA NA	_	
Benzo(g,h,l)perylene	50,000	NA NA	360 J	NA NA	ND	NA NA	ND	NA
Benzo(k)fluoranthene	1,100	NA	1,200	NA	ND	NA NA	ND	, NA
Bis(2-Ethylhexyl)phthalate	50,000	NA NA	190 J	NA	57 J	. NA	ND	NA NA
	·	NA NA	53 J	NA NA	ND	NA NA	ND ND	NA
Butylbenzylphthalate	50,000					ı		1
Chrysene	400	NA NA	1,500	NA	ND	NA	ΝĎ	NA
Dibenzo(a,h)anthracene	14	NA NA	51 J	NA	ND	NA NA	ND	NA NA
Diethylphthalate	7,100	NA	54 J	NA	ND	NA	ND	NA
	8,100	NA NA	ND	NA NA	ND	NA	ND	NA
Di-n-butylphthalate	·					NA NA	ND	NA NA
Di-n-octylphthalate	50,000	NA	ND	NA	ND			ı
Fluoranthene	50,000	NA	3,000	NA	ND	NA NA	ND	NA NA
Fluorene	50,000	NA	300 J	NA	ND	NA	ND	NA
Indeno(1,2,3-cd)pyrene	3,200	NA	220 J	NA	ND	NA NA	ND	NA
		NA.	81 J	NA I	ND	NA	ND	NA
Napthalene	13,000							
Phenanthrene	50,000	NA	2,600	NA	ND	NA	ND	NA
Pyrene	50,000	NA	2,700	NA	ND	NA	ND	NA
,	· ·						•	ł
CVOC- TIO		NA NA	10952 J	NA	2907 J	NA	7355 J	NA
SVOCs TIC		NA.	10932 3	1474	2507 3	130	73333	110
PCBs - (ug/Kg)	1,000 Total PCBs							l
AROCLOR 1016		NA	ND	NA	ND	NA	ND	NA
AROCLOR 1221		NA.	ND	NA .	ND	NA	ND	NA
								ı
AROCLOR 1232		NA	ND	NA	ND	NA	ND	NA
AROCLOR 1242		NA	ND	NA ,	ND	NA	ND	NA
AROCLOR 1248		NA	ND .	NA	ND	NA .	ND	NA
AROCLOR 1254		NA I	ND	NA	ND	NA	ND	NA
					ND	NA	ND	NA NA
AROCLOR 1260		NA	ND	NA	ND	1444	ואט	1474
		1						1
Metals - (mg/Kg)	RSCO (Eastern USA Background)		[j l	
Antimony	SB (Not Available)	NA	1.7 B	NA	1.6 B	NA	1.0 B	NA
			WHEN THE STREET WAS DESCRIBED THE		8.7	NA	5.4	NA
Arsenic	7.5 or SB (3 to 12)	NA	14.5	NA				1
Barium	300 or SB (15 to 600)	NA	NΑ	NA	NA	NA	NA_	NA
Beryllium	0.16(HEAST) or SB(0 to 1.75)	NA	0.44 B	NA	0.49 B	NA	0.41 B	NA
Cadmium	1 or SB (0.1 to 1)	NA	0.49 B	NA	0.27 B	NA	0.06 B	NA
Chromium	10 or SB(1.5 to 40)	NA ,	21.1	NA	17.5	. NA	16	NA
								1
Copper	25 or SB(1 to 50)	NA	33.4	NA	54.2	NA	16.2	NA
Lead	SB(200 to 500)	NA	265	NA	39.6	. NA	9.6	NA
Mercury	0.1 (0.001 to 0.2)	NA	0.19	NA	ND	NA	0.02	NA
Nickel	13 or SB (0.5 to 25)	NA	20.2	NA	21.4	NA	13.6	NA
	,				ND	NA	ND	NA
Selenium	SB (0.1 to 3.9)	NA	ND	NA I				
Silver	SB (Not Available)	NA NA	5.5	NA	0.95 B	NA	0.79 B	NA
Theffices	SB (Not Available)	NA I	0.58 B	NA.	ND	NA.	0.56 B	NA
rnamum		NA	140	NA	83.3	NA	51.5	NA
Thallium Zinc	20 or SB (9 to 50)	''''	The second second					
Zinc				N/A	NA	A1 ^	NA	NIA.
	5 (RCRA)	NA NA	NA	NA	NA	NA	NA	NA

TABLE 1 (Page 5 of 11) SOIL SAMPLING ANALYTICAL RESULTS FORMER JONAS AUTOMOTIVE FACILITY NEWBURGH, NEW YORK

Sample Location Sample Date Sample Depth (feet)								
Sample Date		S-16	S-17	S-17	S-18 (DW)	S-19	S-19	S-19
	}	06/13/01	06/13/01	06/13/01	06/13/01	06/13/01	06/13/01	06/13/01
	TAGM Recommended Soil Cleanup	7.0'-7.5'	0'-0.5'	1.5'-2.0'	(Sediment)	0'-0.5'	1.5'-2.0'	7.0'-7.5'
	Objectives				, ,			5
Study Area		4	4	4	4	5	5	5
PARAMETER (units)								
VOCs - (μg/Kg)								l
Benzene	60	ND	ND	ND	ND I	ND	ND	ND
	1		1	ND	ND	ND	ND	ND
Bromodichloromethane	_	ND	ND					
n-Butylbenzne		NA	NA NA	NA	NA	NA	NA	NA
sec-Butylbenznene	_	NA NA	NA	NA	NA	NA	NA NA	NA
Chloroform	300	ND	NA	ND	NA I	NA	ND	ND
		1		ND	NA NA	NA	ND	ND
Ethylbenzene	5,500	ND	NA		, ,		ı	
Methylene Chloride	100	ND	NA	ND	NA	NA	ND	ND
Naphthalene	1,300	NA	NA NA	NA	NA	NA	NA	NA
Tetrachloroethene	1,400	ND	NA NA	ND	NA	NA	6.3	ND
l .	1,500	ND	NA	ND	NA	NA	ND	ND
Toluene	1		,				ND	ND
Total Xylenes	1,200	ND	NA	ND	NA	NA	ND	ND
		1						
VOCs TIC		ND	NA NA	ND	NA	NA	26.7 J	16 J
SVOCs - (ug/Kg)								
	20,400	NO.	AID.	NA	ND	ND	NA	DN
2-Methylnapththalene	36,400	ND	ND	NA				
Acenaphthalene	41,000	ND	ND	NA	ND	ND	NA	ND
Acenaphthylene	50,000	ND	ND	NA	ND	81 J	NA	ND
Anthracene	50,000	ND	ND	NA	ND	ND	NA	ND
		ND	ND	NA	110 J	ND	NA	ND
Benzo(a)anthracene	224				CONTRACTOR OF THE PROPERTY.	and the spiriture of proper property		
Benzo(a)pyrene	61	ND	ND	NA	130 J	110 J	NA	ND
Benzo(b)fluoranthene	1,100	ND	ND	NA	100 J	120 J	NA	ND
Benzo(g,h,l)perylene	50,000	ND	ND	NA	ND	ND	NA	ND
		ND	ND	NA	180 J	190 J	NA	ND
Benzo(k)fluoranthene	1,100							
Bis(2-Ethylhexyl)phthalate	50,000	ND	ND	NA	990	1,400	NA	260 J
Butylbenzylphthalate	50,000	ND	ND	NA	510 J	ND	NA	ND
Chrysene	400	ND	ND	NA	140 J	ND	NA	ND
	1	ND	ND	NA	ND I	ND	NA	ND
Dibenzo(a,h)anthracene	14	I						
Diethylphthalate	7,100	ND	ND	NA	ND	ND	NA	ND
Di-n-butylphthalate	8,100	ND	ND	NA	ND	ND	NA	ND
Di-n-octylphthalate	50,000	ND	ND	NA	91 J	ND	NA	ND
		ND	44 J	NA	220 J	ND	NA	ND
Fluoranthene	50,000		f					
Fluorene	50,000	ND	ND	NA	ND	ND	NA	ND
Indeno(1,2,3-cd)pyrene	3,200	ND	ND	NA	ND	100 J	NA	ND
Napthalene	13,000	ND .	ND	NA	ND	ND	NA .	78 J
1 .	50,000	ND	ND	NA	170 J	45 J	NA	58 J
Phenanthrene								57 J
Pyrene	50,000	ND	ND	NA	320 J	180 J	NA	2/1
			i I					
		1005 1	4470.0			0000 1		25340 J
SVOCe TIC		4205 3		NA	I 14663 J I	3526 J	NA	
SVOCs TIC		4205 J	4470 B	NA	14663 J	3526 J	NA	
		4205 J	4470 B	NA	14663 J	3526 J	NA	
SVOCs TIC PCBs - (ug/Kg)	1,000 Total PCBs							
	1,000 Total PCBs	4205 J	4470 B	NA NA	14663 J	3526 J	NA NA	NA NA
PCBs - (ug/Kg) AROCLOR 1016	1,000 Total PCBs	NA	ND	NA	ND	ND	NA	NA NA
PCBs - (ug/Kg) AROCLOR 1016 AROCLOR 1221	1,000 Total PCBs	NA NA	ND ND	NA NA	ND ND	ND ND	NA NA	NA
PCBs - (ug/Kg) AROCLOR 1016 AROCLOR 1221 AROCLOR 1232	1,000 Total PCBs	NA NA NA	ND ND ND	NA NA NA	ND ND ND	ND ND ND	NA NA NA	NA NA
PCBs - (ug/Kg) AROCLOR 1016 AROCLOR 1221	1,000 Total PCBs	NA NA NA NA	ND ND ND ND	NA NA NA	ND ND ND ND	ND ND ND ND	NA NA NA	NA NA NA
PCBs - (ug/Kg) AROCLOR 1016 AROCLOR 1221 AROCLOR 1232	1,000 Total PCBs	NA NA NA	ND ND ND	NA NA NA	ND ND ND	ND ND ND	NA NA NA	NA NA NA NA
PCBs - (ug/Kg) AROCLOR 1016 AROCLOR 1221 AROCLOR 1232 AROCLOR 1242 AROCLOR 1248	1,000 Total PCBs	NA NA NA NA	ND ND ND ND	NA NA NA	ND ND ND ND	ND ND ND ND	NA NA NA	NA NA NA
PCBs - (ug/Kg) AROCLOR 1016 AROCLOR 1221 AROCLOR 1232 AROCLOR 1242 AROCLOR 1248 AROCLOR 1254	1,000 Total PCBs	NA NA NA NA NA	ND ND ND ND ND	NA NA NA NA NA	ND ND ND ND ND ND	ND ND ND ND ND	NA NA NA NA NA	NA NA NA NA
PCBs - (ug/Kg) AROCLOR 1016 AROCLOR 1221 AROCLOR 1232 AROCLOR 1242 AROCLOR 1248	1,000 Total PCBs	NA NA NA NA	ND ND ND ND	NA NA NA NA	ND ND ND ND	ND ND ND ND	NA NA NA NA	NA NA NA NA
PCBs - (ug/Kg) AROCLOR 1016 AROCLOR 1221 AROCLOR 1232 AROCLOR 1242 AROCLOR 1248 AROCLOR 1254	1,000 Total PCBs	NA NA NA NA NA	ND ND ND ND ND	NA NA NA NA NA	ND ND ND ND ND ND	ND ND ND ND ND	NA NA NA NA NA	NA NA NA NA
PCBs - (ug/Kg) AROCLOR 1016 AROCLOR 1221 AROCLOR 1232 AROCLOR 1242 AROCLOR 1248 AROCLOR 1254	1,000 Total PCBs	NA NA NA NA NA	ND ND ND ND ND	NA NA NA NA NA	ND ND ND ND ND ND	ND ND ND ND ND	NA NA NA NA NA	NA NA NA NA
PCBs - (ug/Kg) AROCLOR 1016 AROCLOR 1221 AROCLOR 1232 AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1260	1,000 Total PCBs RSCO (Eastern USA Background)	NA NA NA NA NA	ND ND ND ND ND	NA NA NA NA NA	ND ND ND ND ND ND	ND ND ND ND ND	NA NA NA NA NA	NA NA NA NA
PCBs - (ug/Kg) AROCLOR 1016 AROCLOR 1221 AROCLOR 1232 AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg)	RSCO (Eastern USA Background)	NA NA NA NA NA NA	ND ND ND ND ND ND	NA NA NA NA NA	ND ND ND ND ND ND	ND ND ND ND ND	NA NA NA NA NA	NA NA NA NA
PCBs - (ug/Kg) AROCLOR 1016 AROCLOR 1221 AROCLOR 1232 AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony	RSCO (Eastern USA Background) SB (Not Available)	NA NA NA NA NA NA	ND ND ND ND ND ND	2 4 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ND N	ND ND ND ND ND ND ND	2 4 4 4 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	NA NA NA NA NA
PCBs - (ug/Kg) AROCLOR 1016 AROCLOR 1221 AROCLOR 1232 AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic	RSCO (Eastern USA Background) SB (Not Available) 7.5 or SB (3 to 12)	NA NA NA NA NA NA NA	ND ND ND ND ND ND ND	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	NA NA NA NA NA NA
PCBs - (ug/Kg) AROCLOR 1016 AROCLOR 1221 AROCLOR 1232 AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic Barium	RSCO (Eastern USA Background) SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600)	NA N	ND N	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ND N	ND ND ND ND ND ND ND ND	2 4 4 4 4 5 7 7 8 4 4 4 5 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	NA NA NA NA NA NA
PCBs - (ug/Kg) AROCLOR 1016 AROCLOR 1221 AROCLOR 1232 AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic	RSCO (Eastern USA Background) SB (Not Available) 7.5 or SB (3 to 12)	NA NA NA NA NA NA NA NA NA	ND ND ND ND ND ND ND ND ND	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	NA NA NA NA NA NA NA
PCBs - (ug/Kg) AROCLOR 1016 AROCLOR 1221 AROCLOR 1232 AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic Barium Beryllium	RSCO (Eastern USA Background) SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75)	NA N	ND N	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ND N	ND ND ND ND ND ND ND ND	2 4 4 4 4 5 7 7 8 4 4 4 5 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	NA NA NA NA NA NA
PCBs - (ug/Kg) AROCLOR 1016 AROCLOR 1221 AROCLOR 1232 AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic Barium Beryilium Cadmium	RSCO (Eastern USA Background) SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1)	NA	ND ND ND ND ND ND ND ND ND ND ND ND ND N	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ND ND ND ND ND ND ND ND 0.77 NA 0.78 B	ND ND ND ND ND ND ND ND ND ND	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	NA NA NA NA NA NA NA NA NA
PCBs - (ug/Kg) AROCLOR 1016 AROCLOR 1221 AROCLOR 1232 AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic Barium Beryllium Cadmium Chromium	RSCO (Eastern USA Background) SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40)	NA N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	NA NA NA NA NA NA NA NA NA
PCBs - (ug/Kg) AROCLOR 1016 AROCLOR 1221 AROCLOR 1222 AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic Barium Beryillum Cadmium Chromium Copper	RSCO (Eastern USA Background) SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40) 25 or SB(1 to 50)	NA	ND ND ND ND ND ND ND ND ND 0.50 B 0.08 B 20 24	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ND ND ND ND ND ND ND ND ND ND ND 10.7 NA 0.78 B 0.98 54.3 110	ND ND ND ND ND ND ND ND ND ND ND ND ND N	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	NA
PCBs - (ug/Kg) AROCLOR 1016 AROCLOR 1221 AROCLOR 1232 AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic Barium Beryllium Cadmium Chromium	RSCO (Eastern USA Background) SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40) 25 or SB(1 to 50) SB(200 to 500)	NA N	ND ND ND ND ND ND ND ND 0.50 B 0.08 B 20 24	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ND ND ND ND ND ND ND ND ND ND 3.6 B 10.7 NA 0.78 B 0.98 54.3 110 438	ND ND ND ND ND ND ND ND ND ND 0.59 0.46 8 160 83.9 160	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	NA
PCBs - (ug/Kg) AROCLOR 1016 AROCLOR 1221 AROCLOR 1232 AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic Barium Beryllium Cadmium Chromium Copper Lead	RSCO (Eastern USA Background) SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40) 25 or SB(1 to 50)	NA	ND ND ND ND ND ND ND ND ND 0.50 B 0.08 B 20 24	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ND ND ND ND ND ND ND ND ND ND ND 10.7 NA 0.78 B 0.98 54.3 110	ND ND ND ND ND ND ND ND ND ND ND ND ND N	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	NA NA NA NA NA NA NA NA NA
PCBs - (ug/Kg) AROCLOR 1016 AROCLOR 1221 AROCLOR 1232 AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic Barium Beryilium Cadmium Chromium Copper Lead Mercury	RSCO (Eastern USA Background) SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40) 25 or SB(1 to 50) SB(200 to 500) 0.1 (0.001 to 0.2)	NA	ND ND ND ND ND ND ND ND 0.50 B 0.08 B 20 24 200 0.06	244444 44444444444444444444444444444444	ND ND ND ND ND ND ND ND ND 3.6 B 10.7 NA 0.78 B 0.95 54.3 110 438 0.08	ND ND ND ND ND ND ND ND ND 0.59 0.46 8 160 83.9 160 0.09	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	NA N
PCBs - (ug/Kg) AROCLOR 1016 AROCLOR 1221 AROCLOR 1221 AROCLOR 1232 AROCLOR 1242 AROCLOR 1254 AROCLOR 1256 Metals - (mg/Kg) Antimony Arsenic Barium Beryllium Cadmium Chromium Copper Lead Mercury Nickel	RSCO (Eastern USA Background) SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40) 25 or SB(1 to 50) SB(200 to 500) 0.1 (0.001 to 0.2) 13 or SB (0.5 to 25)	NA A A A A A A A A A A A A A A A A A A	ND N	244444444444444444444444444444444444444	ND ND ND ND ND ND ND ND ND ND ND 10.7 NA 0.78 B 0.98 54.3 110 438 0.08 32.0	ND ND ND ND ND ND ND ND ND ND ND ND ND 10.1 NA 0.59 0.46 8 160 83.9 160 0.09 31.8	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	NA N
PCBs - (ug/Kg) AROCLOR 1016 AROCLOR 1221 AROCLOR 1221 AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic Barium Beryillum Cadmium Chromium Copper Lead Mercury Nickel Selenium	RSCO (Eastern USA Background) SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40) 25 or SB(1 to 50) SB(200 to 500) 0.1 (0.001 to 0.2) 13 or SB (0.5 to 25) SB (0.1 to 3.9)	NA A A A A A A A A A A A A A A A A A A	ND N	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ND ND ND ND ND ND ND ND ND ND ND 3.6 B 10.7 NA 0.78 B 0.95 54.3 110 438 0.08 32.0 ND	ND N	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	NA N
PCBs - (ug/Kg) AROCLOR 1016 AROCLOR 1221 AROCLOR 1232 AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 12560 Metals - (mg/Kg) Antimony Arsenic Barium Beryllium Cadmium Chromium Copper Lead Mercury Nickel	RSCO (Eastern USA Background) SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40) 25 or SB(1 to 50) SB(200 to 500) 0.1 (0.001 to 0.2) 13 or SB (0.5 to 25)	NA A A A A A A A A A A A A A A A A A A	ND N	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ND ND ND ND ND ND ND ND ND 10.7 NA 0.78 B 0.98 54.3 110 438 0.08 32.0 ND	ND ND ND ND ND ND ND ND ND 10.11 NA 0.59 0.46 8 160 0.09 31.8 ND	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	NA N
PCBs - (ug/Kg) AROCLOR 1016 AROCLOR 1221 AROCLOR 1221 AROCLOR 1242 AROCLOR 1242 AROCLOR 1254 AROCLOR 1254 AROCLOR 1256 Metals - (mg/Kg) Antimony Arsenic Barium Beryillium Chomium Chromium Copper Lead Mercury Nickel Selenium	RSCO (Eastern USA Background) SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40) 25 or SB(1 to 50) SB(200 to 500) 0.1 (0.001 to 0.2) 13 or SB (0.5 to 25) SB (0.1 to 3.9)	NA A A A A A A A A A A A A A A A A A A	ND N	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ND ND ND ND ND ND ND ND ND ND ND 3.6 B 10.7 NA 0.78 B 0.95 54.3 110 438 0.08 32.0 ND	ND N	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	NA N
PCBs - (ug/Kg) AROCLOR 1016 AROCLOR 1211 AROCLOR 1221 AROCLOR 1232 AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic Barium Beryilium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver Thallium	RSCO (Eastern USA Background) SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40) 25 or SB(1 to 50) SB(200 to 500) 0.1 (0.001 to 0.2) 13 or SB (0.5 to 25) SB (0.1 to 3.9) SB (Not Available) SB (Not Available)	NA A A A A A A A A A A A A A A A A A A	ND ND ND ND ND ND ND ND 1.2 B 6.7 NA 0.50 B 0.08 B 20 24 200 0.06 16.4 ND	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ND ND ND ND ND ND ND ND ND 10.7 NA 0.78 B 0.98 54.3 110 438 0.08 32.0 ND	ND ND ND ND ND ND ND ND ND 10.11 NA 0.59 0.46 8 160 0.09 31.8 ND	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	NA N
PCBs - (ug/Kg) AROCLOR 1016 AROCLOR 1221 AROCLOR 1222 AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic Barium Beryilium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver	RSCO (Eastern USA Background) SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40) 25 or SB(1 to 50) SB(200 to 500) 0.1 (0.001 to 0.2) 13 or SB (0.5 to 25) SB (0.1 to 3.9) SB (Not Available)	NA A A A A A A A A A A A A A A A A A A	ND N	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ND ND ND ND ND ND ND ND ND 10.77 NA 0.78 B 0.98 54.3 110 438 0.08 32.0 ND	ND ND ND ND ND ND ND ND ND ND 10.11 NA 0.59 0.46 8 160 0.09 31.8 ND	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	NA N
PCBs - (ug/Kg) AROCLOR 1016 AROCLOR 1221 AROCLOR 1232 AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic Barium Beryllium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver Thallium	RSCO (Eastern USA Background) SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40) 25 or SB(1 to 50) SB(200 to 500) 0.1 (0.001 to 0.2) 13 or SB (0.5 to 25) SB (0.1 to 3.9) SB (Not Available) SB (Not Available)	NA A A A A A A A A A A A A A A A A A A	ND N	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ND ND ND ND ND ND ND ND ND 10.77 NA 0.78 B 0.98 54.3 110 438 0.08 32.0 ND	ND ND ND ND ND ND ND ND ND ND 10.11 NA 0.59 0.46 8 160 0.09 31.8 ND	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	NA N

TABLE 1 (Page 6 of 11) SOIL SAMPLING ANALYTICAL RESULTS FORMER JONAS AUTOMOTIVE FACILITY NEWBURGH, NEW YORK

	NEWBURG	JH, NEW YO	JKK				
Sample Location		S-20	S-20	S-21	S-22 (CB)	S-23	S-24
Sample Date		06/13/01	06/13/01	06/13/01	06/20/01	06/21/01	06/21/0
Sample Depth (feet)	TAGM Recommended Soil Cleanup	0'-0.5'	1.5'-2.0'	2.5'-3.0'	(Sediment)	6.5'-7.0'	6.5'-7.0
	Objectives	5	5	5	5	6	6
Study Area		5			"		
PARAMETER (units)							
VOCs - (μg/Kg)				١	470		,,,,
Benzene	60	ND	ND	ND	170	ND	ND
Bromodichloromethane	-	ND	ND	ND	ND	NA NA	NA NA
n-Butylbenzne		NA I	NA	NA	NA	ND	ND
sec-Butylbenznene		NA	NA	NA NA	NA	ND	ND
Chloroform	300	NA.	ND	ND	ND I	NA	NA
	1	NA.	23	ND	560	ND	ND
Ethylbenzene	5,500				180 B	NA.	NA NA
Methylene Chloride	100	NA	ND	ND		1	
Naphthalene	1,300	NA	NA	NA NA	NA	ND	ND
Tetrachloroethene	1,400	NA	10	87	50 J	NA	NA
Toluene	1,500	NA	6.2	ND	1500	ND	ND
Total Xylenes	1,200	NA	164	ND	3900	ND	ND
Total Aylanda	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
MOG- TIG		NA	1300 J	38 J	28,200 J	ND	ND
VOCs TIC		INA	1300 3	30 3	20,200 0	110	
SVOCs - (ug/Kg)		.,_		No.	1 2600	N/A	B.I.A
2-Methylnapththalene	36,400	ND	NA	ND	2,600	NA	NA
Acenaphthalene	41,000	ND	NA	ND	ND	NA	NA
Acenaphthylene	50,000	150 J	NA	ND	ND	NA	NA
Anthracene	50,000	150 J	NA	47 J	910	NA	NA
Benzo(a)anthracene	224	ND	NA	84 J	ND	NA	NA
. ,	61	320 J	NA	88 J	ND	NA.	NA.
Benzo(a)pyrene		THE PERSON NAMED IN POST OF		the same of the same of the same of	ND	NA	NA
Benzo(b)fluoranthene	1,100	190 J	NA	79 J			ı
Benzo(g,h,l)perylene	50,000	250 J	NA	64 J	99 J	NA	NA
Benzo(k)fluoranthene	1,100	340 J	NA	110 J	ND	NA	NA
Bis(2-Ethylhexyl)phthalate	50,000	2,600	NA	ND	4400 D	NA	NA
Butylbenzylphthalate	50,000	ND	NA	ND	4,200	NA	NA
	400	610	NA	99 J	ND	NA	NA
Chrysene		ND	NA.	ND	ND	NA	NA
Dibenzo(a,h)anthracene	14	1			ND	NA	NA
Diethylphthalate	7,100	ND	NA	ND	, ,		
Di-n-butylphthalate	8,100	ND	NA	ND	160 J	NA	NA
Di-n-octylphthalate	50,000	ND	NA	ND	ND	NA	NA
Fluoranthene	50,000	ND	NA	200 J	ND	NA	NA
Fluorene	50,000	ND	NA	ND	500 J	NA	NA
Indeno(1,2,3-cd)pyrene	3,200	340 J	NA	ND	ND	NA	NA
	13,000	220 J	NA	- ND	1,100	-NA	. NA
Napthalene	1	640	NA	160 J	930	NA	NA.
Phenanthrene	50,000						NA NA
Pyrene	50,000	2,000	NA	200 J	1,100	NA	INA
SVOCs TIC		6830 J	NA	5880 J	17270 J	NA	NA
PCBs - (ug/Kg)	1,000 Total PCBs		_				
	1,000 / 5(8) / 505	ND I	NA	NA	NA	NA	NA.
AROCLOR 1016		1		NA NA	NA NA	NA.	NA NA
AROCLOR 1221	1	ND	NA				ı
AROCLOR 1232]	ND	NA	NA	NA	NA	NA NA
AROCLOR 1242		ND	NA	NA	NA	NA	NA
AROCLOR 1248	1	ND	NA	NA	NA NA	NA	NA
AROCLOR 1254	}	ND	NA	NA	NA .	NA	NA
		ND	NA	NA	NA	NA	NA
AROCLOR 1260			, ,,,				'
		_					
		J		l			1
Metals - (mg/Kg)	RSCO (Eastern USA Background)			465	ا مما	N/A	ALA.
Antimony	SB (Not Available)	1.9 B	NA	1.6 B	6.0 B	NA	NA
Arsenic	7.5 or SB (3 to 12)	9.8	NA	6.7	6.6	NA	NA
Barium	300 or SB (15 to 600)	NA I	NA	NA	NA	NA	NA.
Beryllium	0.16(HEAST) or SB(0 to 1.75)	0.44 B	NA	0.50 B	0.91	NA	NA
Cadmium	1 or SB (0.1 to 1)	0.51 B	NA	1.6	13.8	NA	NA
	10 or SB(1.5 to 40)	20.0	NA	17.6	60.7	NA	NA
Chromium		Annual Street or Annual Conference of the		43.5	470	NA	NA.
Copper	25 or SB(1 to 50)	53.8	NA	H 5000 0000	CONTRACTOR CARCOLINA		ı
Lead	SB(200 to 500)	196	NA	140	862	NA	NA
Marauni	0.1 (0.001 to 0.2)	0.20	NA	0.38	0.21	NA	NA
iviercury	13 or SB (0.5 to 25)	17.5	NA	18.1	71	NA	NA
		0.55 B	NA	ND	0.58 B	NA	NA
Nickel	SB (0.1 to 3.9)				5	NA	NA
Nickel Selenium	SB (0.1 to 3.9)	23,405,40	NΔ	14 '			
Nickel Selenium Silver	SB (Not Available)	1.1	NA NA	1.4 ND			1
Nickel Selenium Silver Thallium	SB (Not Available) SB (Not Available)	1.1 ND	NA	ND	1.0 B	NA	NA
Selenium Silver	SB (Not Available)	1.1					1
Nickel Selenium Silver Thallium Zinc	SB (Not Available) SB (Not Available) 20 or SB (9 to 50)	1.1 ND 199	NA NA	ND 236	1.0 B 1480	NA NA	NA NA
Nickel Setenium Silver Thallium	SB (Not Available) SB (Not Available)	1.1 ND	NA	ND	1.0 B	NA	NA

TABLE 1 (Page 7 of 11) SOIL SAMPLING ANALYTICAL RESULTS FORMER JONAS AUTOMOTIVE FACILITY NEWBURGH, NEW YORK

	NEWBURG	GH, NEW Y	ORK				
Sample Location		S-25	S-26	S-27	S-28	Ş-29	S-30
Sample Date		06/21/01	06/21/01	06/21/01	06/21/01	06/20/01	06/20/01
Sample Depth (feet)	TAGM Recommended Soil Cleanup	6.5'-7.0'	6.5'-7.0'	6.5'-7.0'	2.0'-2.5'	0.6'-1.0'	0.6'-1.0'
Study Area	Objectives	6	6	6	6	7	7
PARAMETER (units)		•					
VOCs - (µg/Kg)							
	60	ND ND	ND	ND I	ND	ND	ND
Benzene			(ı	ND ND	ND
Bromodichloromethane	-	NA	NA	NA NA	NA		ı
n-Butylbenzne		ND	ND	240	ND	NA	NA
sec-Butylbenznene	-	ND	ND	14	ND	NA	NA
Chloroform	300	NA NA	NA	NA	NA NA	ND	NA
Ethylbenzene	5,500	ND	ND	ND	ND	ND	NA
Methylene Chloride	100	NA	NA NA	NA	NA	ND	NA NA
Naphthalene	1,300	ND	ND	88	ND	NA	NA NA
Tetrachloroethene	1,400	NA	NA	NA	NA NA	סא	NA NA
I	1,500	ND	ND ND	ND	ND	ND	NA
Toluene	,	I	ND	ND	ND	ND	NA NA
Total Xylenes	1,200	ND	I NO	IND	140	IND	I IXA
VOCs TIC		ND	ND	342	ND	ND	NA
SVOCs - (ug/Kg)							
2-Methylnapththalene	36,400	NA	NA	NA	NA	56 J	ND
Acenaphthalene	41,000	NA	NA NA	NA	NA	NO	ND
Acenaphthylene	50,000	NA	NA	NA	NA	ND	ND
Anthracene	50,000	NA NA	NA	NA	NA	ND	ND
1	224	NA NA	NA NA	NA NA	NA NA	ND	ND
Benzo(a)anthracene		1	NA NA	NA NA	NA NA	ND	ND
Benzo(a)pyrene	61	NA	l .		I)
Benzo(b)fluoranthene	1,100	NA	NA	NA	NA	ND	ND
Benzo(g,h,l)perylene	50,000	NA	NA	NA	NA	130 J	ND
Benzo(k)fluoranthene	1,100	NA	NA	NA	NA	ND	ND
Bis(2-Ethylhexyl)phthalate	50,000	NA	NA	NA	NA	3500 D	97 J
Butylbenzylphthalate	50,000	NA NA	NA	NA	NA	840	ND
Chrysene	400	NA	NA	NA I	NA	ND	ND
	14	NA.	NA.	NA	NA.	ND	ND
Dibenzo(a,h)anthracene	1 1		NA NA	NA	NA.	ND	75 J
Diethylphthalate	7,100	NA	1		NA NA	ND	ND
Di-n-butylphthalate	8,100	NA	NA	NA			ı
Di-n-octylphthalate	50,000	NA	NA	NA	NA	ND	ND
Fluoranthene	50,000	NA NA	NA NA	NA	NA	ND	ND
Fluorene	50,000	NA NA	NA NA	NA NA	NA	ND	ND
Indeno(1,2,3-cd)pyrene	3,200	NA	NA	NA	NA	47 J	ND
Napthalene	13,000	NA.	NA	NA	NA	ND	ND
Phenanthrene	50,000	NA	NA	NA	NA	ND	ND
Pyrene	50,000	NA	NA	NA	NA	1,200	ND
Fyrene	30,000	1 170	(''''	, ,,,		.,200	
l		١		NA I	NA	7565 J	3160 J
SVOCs TIC		NA	NA	NA	NA NA	7303 J	31007
PCBs - (ug/Kg)	1,000 Total PCBs		}				
AROCLOR 1016		NA	NA	NA	NA	NA	NA
AROCLOR 1221		NA	NA	NA	NA	NA	NA
AROCLOR 1232		NA	NA NA	NA	NA	NA	NA
AROCLOR 1242	1	NA	NA	NA	NA	NA	NA
AROCLOR 1242 AROCLOR 1248		NA NA	NA NA	NA.	NA NA	NA NA	NA
	1	NA NA	NA NA	NA NA	NA	NA NA	NA.
AROCLOR 1254		I	NA NA	NA NA	NA	NA	NA NA
AROCLOR 1260		NA	I NA	I IVM	INA	144	14/
		ſ					
Metals - (mg/Kg)	RSCO (Eastern USA Background)						
Antimony	SB (Not Available)	NA NA	NA	NA	NA	NA	NA
Arsenic	7.5 or SB (3 to 12)	NA	NA	NA NA	NA	NA	NA
Barium	300 or SB (15 to 600)	NA	NA	NA	NA	NA	NA
Beryllium	0.16(HEAST) or SB(0 to 1.75)	NA	NA	NA	NA	NA I	NA
Cadmium	1 or SB (0.1 to 1)	NA	NA	NA	NA	NA	NA
Chromium	10 or SB(1.5 to 40)	NA.	NA	NA	NA	NA	NA
1		NA NA	NA NA	NA I	NA NA	NA NA	NA
Copper	25 or SB(1 to 50)	ı	NA NA	NA	NA	NA NA	NA
Lead	SB(200 to 500)	NA NA	I				
Mercury	0.1 (0.001 to 0.2)	NA	NA	NA	NA	NA	NA
I M Gertral	13 or SB (0.5 to 25)	NA	NA	NA I	NA	NA	NA
Nickel		NA	NA	NA	NA	NA NA	NA
Selenium	SB (0.1 to 3.9)	l .		1	814	ALA .	A14
	SB (0.1 to 3.9) SB (Not Available)	NA	NA	NA	NA	NA	NA
Selenium		l .	NA NA	NA NA	NA NA	NA NA	NA NA
Selenium Silver Thallium	SB (Not Available) SB (Not Available)	NA	1				
Selenium Silver	SB (Not Available)	NA NA	NA	NA	NA	NA	NA
Selenium Silver Thallium Zinc	SB (Not Available) SB (Not Available) 20 or SB (9 to 50)	NA NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Selenium Silver Thallium	SB (Not Available) SB (Not Available)	NA NA	NA	NA	NA	NA	NA

TABLE 1 (Page 8 of 11) SOIL SAMPLING ANALYTICAL RESULTS FORMER JONAS AUTOMOTIVE FACILITY NEWBURGH, NEW YORK

	NEWBURG	3H, NEW Y	JRK				
Sample Location		S-31	S-32	S-33	SS-1	SS-2	SS-3
Sample Date		06/20/01	06/20/01	06/20/01	08/12/02	08/12/02	08/12/02
Sample Depth (feet)	TAGM Recommended Soil Cleanup	0.6'-1.0'	5.5'-6.0'	5.5'-6.0'	0.2'-0.3'	0.3'-0.4'	0.2'-0.3'
Study Area	Objectives	7	6	6			
PARAMETER (units)						1	
VOCs - (µg/Kg)							
Benzene	60	ND	ND	ND	NA NA	NA NA	NA
Bromodichloromethane	-	ND	12	ND	NA	NA NA	NA
n-Butylbenzne	_	NA NA	NA	NA	NA	NA	NA NA
, ,		NA	NA NA	NA NA	NA	NA	NA.
sec-Butylbenznene	300	NA NA	57	57	NA	NA NA	NA
Chloroform	-	NA NA	ND ND	ND	NA NA	NA NA	NA
Ethylbenzene	5,500		4.2 B	3.8 B	NA NA	NA NA	NA.
Methylene Chloride	100	NA NA		NA	NA NA	NA NA	NA NA
Naphthalene	1,300	NA NA	NA NB		NA NA	NA NA	NA NA
Tetrachloroethene	1,400	NA	ND	ND	,	ı	NA NA
Toluene	1,500	NA	ND	ND	NA	NA	1
Total Xylenes	1,200	NA	ND	ND	NA	NA	NΑ
1/00- TIC		NA	ND	ND	NA	NA	NA
VOCs TIC	_	INA	ND	NU	UA.	110	- 14/1
SVOCs - (ug/Kg)	26 400	56 J	ND	ND	ND	ND	38 J
2-Methylnapththalene	36,400		ND ND	ND ND	ND	ND	ND
Acenaphthalene	41,000	ND		ND	ND	79 J	43 J
Acenaphthylene	50,000	77 J	ND 70.1		ND	79 J	65 J
Anthracene	50,000	84 J	72 J	ND 440 I	90 J	330 J	180 J
Benzo(a)anthracene	224	190 J	230 J	110 J	THE PARTY OF STREET		A STREET OF STREET OF STREET
Benzo(a)pyrene	61	230 J	220 J	110 J	110 J	350 J	220 J
Benzo(b)fluoranthene	1,100	250 J	230 J	140 J	140 J	530	360
Benzo(g,h,l)perylene	50,000	140 J	120 J	ND	86 J	140 J	120 J
Benzo(k)fluoranthene	1,100	330 J	140 J	91 J	81 J	260 J	170 J
Bis(2-Ethylhexyl)phthalate	50,000	330 J	ND	64 J	47 J	130 J	170 J
Butylbenzylphthalate	50,000	78 J	ND	ND	ND	ND	48 J
Chrysene	400	260 J	250 J	120 J	120 J	370	240 J
Dibenzo(a,h)anthracene	14	ND	ND	ND	ND	ND	ΝD
Diethylphthalate	7,100	ND	ND	ND	ND	ND	ND
Di-n-butylphthalate	8,100	ND	49 J	ND	NО	38 JB	77 JB
Di-n-octylphthalate	50,000	ND	ND	ND	ND	ND	37 J
	50,000	280 J	480	170 J	190 J	740	420
Fluoranthene	50,000	ND	ND	ND	ND	ND	ND
Fluorene		52 J	110 J	DO	81 J	140 J	98 J
Indeno(1,2,3-cd)pyrene	3,200	40 J	ND -	ND	ND	ND	ND
Napthalene	13,000		270 J	110 J	93 J	300 J	200 J
Phenanthrene	50,000	200 J				570	350 J
Pyrene	50,000	480	440	190 J	160 J	570	330 3
SVOCs TIC		11280 J	1454 J	2851 J	1,400 J ¹	5,650 J ^{1,2}	5,447 J ^{1,3}
DOD (-#/-)	1 000 T-1-1 BCS:						
PCBs - (ug/Kg)	1,000 Total PCBs	A I A	N/A	NA	NA	NA	NA
AROCLOR 1016		NA NA	NA NA		NA NA	NA NA	NA NA
AROCLOR 1221		NA	NA NA	NA NA		NA NA	NA NA
AROCLOR 1232		NA	NA	NA	NA		,
AROCLOR 1242		NA	NA	NA NA	NA	NA NA	NA NA
AROCLOR 1248		NA	NA	NA	NA	NA	NA NA
AROCLOR 1254		NA	NA	NA	NA	NA	NA
AROCLOR 1260		NA	NA	NA	NA	NA	NA
-			_				
Metals - (mg/Kg)	RSCO (Eastern USA Background)					MA	
Antimony	SB (Not Available)	NA	ND	ND	ND	ND	ND
Arsenic	7.5 or SB (3 to 12)	NA	8.1	10.7	8.7	12	11
Barium	300 or SB (15 to 600)	NA	NA	NA	74	97	79
Beryllium	0.16(HEAST) or SB(0 to 1.75)	NA	0.50 B	0.51 B	ND	ND	ND
Cadmium	1 or SB (0.1 to 1)	NA	ND	ND	ND	1.7	1.4
Chromium	10 or SB(1.5 to 40)	NA	29	78.8	36	59	51
	25 or SB(1 to 50)	NA	43	56.8	50	140	84
Copper I	SB(200 to 500)	NA	296	973	290	450	330
		NA	0.62	0.28	48	5.6	3.8
Lead	0.1 (0.001 to 0.2)		7.01	PACKET OF THE PA	31	50	43
Lead Mercury	0.1 (0.001 to 0.2) 13 or SB (0.5 to 25)		40.2	33.0	ACT OF THE OWNER, AND	30	
Lead Mercury Nickel	13 or SB (0.5 to 25)	NA	40.2 ND	35.6 ND	ND	ND	ND
Lead Mercury Nickel Selenium	13 or SB (0.5 to 25) SB (0.1 to 3.9)	NA NA	ND	ND	ND	ND	ND
Lead Mercury Nickel Selenium Silver	13 or SB (0.5 to 25) SB (0.1 to 3.9) SB (Not Available)	NA NA NA	ND ND	ND ND	ND ND	ND ND	ND ND
Mercury Nickel Selenium Silver Thallium	13 or SB (0.5 to 25) SB (0.1 to 3.9) SB (Not Available) SB (Not Available)	NA NA NA NA	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Lead Mercury Nickel Selenium Silver	13 or SB (0.5 to 25) SB (0.1 to 3.9) SB (Not Available)	NA NA NA	ND ND	ND ND	ND ND	ND ND	ND ND

TABLE 1 (Page 9 of 11) SOIL SAMPLING ANALYTICAL RESULTS FORMER JONAS AUTOMOTIVE FACILITY NEWBURGH, NEW YORK

		SH, INCAA 10					
Sample Location		SS-4	SS-5	S-5 (DNDp	SS-6	SS-7	SS-8
Sample Date	TACAA Decemberded Seil Classus	08/12/02	08/12/02	08/12/02	08/12/02	08/12/02	08/12/0
Sample Depth (feet)	TAGM Recommended Soil Cleanup	0'-0.2'	0'-0.2'	0'-0.2'	0.3'-0.4'	0'-0.2'	0'-0.2'
Study Area	Objectives						
PARAMETER (units)							
VOCs - (µg/Kg)							
Benzene	60	NA	NA	NA	NA	NA	NA
	_	NA NA	NA.	NA	NA	NA	NA NA
Bromodichloromethane	_	NA NA	NA	NA NA	NA	NA	NA
n-Butylbenzne			NA.	NA NA	NA	NA	NA
sec-Butylbenznene		NA				ł	NA NA
Chloroform	300	NA	NA	NA	NA	NA	
Ethylbenzene	5,500	NA	NA	NA	NA	NA	NA
Methylene Chloride	100	NA	NA	NA	NA	NA	NA
Naphthalene	1,300	NA	NA	NA	NA	NA	NA
Tetrachioroethene	1,400	NA	NA	NA	NA	NA	NA
Toluene	1,500	NA	NA	NA	NA	NA NA	NA
Total Xvienes	1,200	NA	NA	NA	NA	NA	NA
Total Aylenes	1,200						
VOCs TIC		NA	NA	NA	NA	NA	NA
SVOCs - (ug/Kg)		101		7			
	36,400	GN	ND	ND	ND	NA	NA
2-Methylnapththalene		ND	ND	ND I	ND	NA	NA
Acenaphthalene	41,000		ı	38 J	45 J	NA NA	NA NA
Acenaphthylene	50,000	300 J	41 J			1	NA NA
Anthracene	50,000	150 J	72 J	68 J	47 J	NA NA	(
Benzo(a)anthracene	224	770	230 J	190 J	290 J	NA	NA
Benzo(a)pyrene	61	920	260 J	210 J	300 J	NA	NA
Benzo(b)fluoranthene	1,100	1,300	350 J	300 J	530	NA	NA
Benzo(g,h,l)perylene	50,000	330 J	100 J	82 J	130 J	NA I	NA
Benzo(k)fluoranthene	1,100	600	180 J	150 J	170 J	NA	NA
	· ·	89 J	91 J	74 J	390	NA	NA.
Bis(2-Ethylhexyl)phthalate	50,000	ND ND	ND	ND ND	ND	NA NA	NA NA
Butylbenzylphthalate	50,000	A CONTRACTOR OF THE PARTY OF TH			320 J	NA NA	NA NA
Chrysene	400	800	290 J	240 J			
Dibenzo(a,h)anthracene	14	54 J	ND	ND	ND	NA	NA
Diethylphthalate	7,100	ND	ND	ND	ND	NA	NA
Di-n-butylphthalate	8,100	43 JB	39 JB	ND	ND	NA	NA
Di-n-octylphthalate	50,000	ND	ND	ND	ND	NA	NA NA
Fluoranthene	50,000	1,200	520	490	630	NA	NA
	50,000	44 J	ND	ND	ND	NA	NA
Fluorene		340 J	100 J	84 J	120 J	NA	NA
ndeno(1,2,3-cd)pyrene	3,200		ı	ND ND	ND	NA NA	NA.
Napthalene	13,000	ND	ND				
Phenanthrene	50,000	440	340 J	310 J	210 J	NA	NA.
Pyrene	50,000	1,100	430	360	550	NA	NA
SVOCs TIC		6,607 J ^{1.2}	9,630 J ¹	10,360 J ¹	9,080 J¹	NA	NA
PCBs - (ug/Kg)	1,000 Total PCBs						
AROCLOR 1016		NA	NA	NA	NA	NA	NA
AROCLOR 1221		NA	NA	NA	NA	NA NA	NA.
11.00LUN 1221						I NA	
NDOCLOD 1222	[1				NA NA	NA
		NA	NA	NA	NA	NA	NA
AROCLOR 1242		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AROCLOR 1242 AROCLOR 1248		NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA
AROCLOR 1242 AROCLOR 1248 AROCLOR 1254		NA NA NA NA	NA NA NA	NA NA NA NA	NA NA NA	NA NA NA NA	NA NA NA NA
AROCLOR 1242 AROCLOR 1248 AROCLOR 1254		NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA
AROCLOR 1242 AROCLOR 1248 AROCLOR 1254		NA NA NA NA	NA NA NA	NA NA NA NA	NA NA NA	NA NA NA NA	NA NA NA NA
AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1260 ————————————————————————————————————	RSCO (Eastern USA Background)	NA NA NA NA	NA NA NA NA	NA NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA NA
AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1260 ————————————————————————————————————	SB (Not Available)	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA
AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1260	SB (Not Available) 7.5 or SB (3 to 12)	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA
AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic	SB (Not Available)	NA NA NA NA NA	NA NA NA NA NA ND 8.7	NA NA NA NA NA ND 8.3 110	NA NA NA NA NA ND 7.1	NA NA NA NA NA NA	NA NA NA NA NA NA
AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1260 ————————————————————————————————————	SB (Not Available) 7.5 or SB (3 to 12)	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA ND 8.3 110 ND	NA NA NA NA NA ND 7.1 130 ND	NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA
AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic Barium Beryllium	SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600)	NA NA NA NA NA ND 11	NA NA NA NA NA ND 8.7	NA NA NA NA NA ND 8.3 110	NA NA NA NA NA ND 7.1	NA NA NA NA NA NA	NA NA NA NA NA
AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic Barium Beryllium Cadmium	SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1)	NA NA NA NA NA ND 11 99 ND	NA NA NA NA NA ND 8.7 120 ND	NA NA NA NA NA ND 8.3 110 ND	NA NA NA NA NA ND 7.1 130 ND	NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA
AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic Barium Beryllium Cadmium Chromium	SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40)	NA ND 11 99 ND ND ND 51	NA N	NA NA NA NA NA ND 8.3 110 ND	NA NA NA NA ND 7.1 130 ND	NA NA NA NA NA NA NA NA NA	NA N
AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1260 Metals - (mg/Kg) Antimony Arsenic Barium Beryllium Cardmium Chromium Copper	SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40) 25 or SB(1 to 50)	NA N	NA N	NA N	NA N	NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA
AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1250 Metals - (mg/Kg) Antimony Arsenic Barium Beryllium Cadmium Chromium Copper Lead	SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40) 25 or SB(1 to 50) SB(200 to 500)	NA N	NA N	NA ND 8.3 110 ND ND 63 51 750	NA N	NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA
AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1250 Metals - (mg/Kg) Antimony Arsenic Barium Beryllium Cadmium Chromium Coopper Lead Mercury	SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40) 25 or SB(1 to 50) SB(200 to 500) 0.1 (0.001 to 0.2)	NA NA NA NA NA ND 11 99 ND ND 51 81 510 2.7	NA NA NA NA NA ND 8.7 120 ND ND 58 57 710	NA NA NA NA NA ND 8.3 110 ND ND 63 51 750 0.78	NA N	NA N	NA
AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1250 Metals - (mg/Kg) Antimony Arsenic Barium Beryllium Cadmium Chromium Copper Lead Mercury Nickel	SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40) 25 or SB(1 to 50) SB(200 to 500) 0.1 (0.001 to 0.2) 13 or SB (0.5 to 25)	NA ND 11 99 ND ND 51 81 510 2.7 39	NA N	NA NA NA NA NA ND 8.3 110 ND 63 51 750 0.78	NA N	NA N	NA
AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1250 Metals - (mg/Kg) Antimony Arsenic Barium Beryllium Cardmium Chromium Copper Lead Mercury Nickel Selenium	SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40) 25 or SB(1 to 50) SB(200 to 500) 0.1 (0.001 to 0.2) 13 or SB (0.5 to 25) SB (0.1 to 3.9)	NA N	NA N	NA NA NA NA NA NA ND 8.3 110 ND 63 51 750 0.78 27 ND	NA N	NA N	NA
AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1250 Metals - (mg/Kg) Antimony Arsenic Barium Beryllium Cardmium Chromium Copper Lead Mercury Nickel Selenium	SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40) 25 or SB(1 to 50) SB(200 to 500) 0.1 (0.001 to 0.2) 13 or SB (0.5 to 25)	NA N	NA N	NA N	NA N	NA N	NA
AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1250 Metals - (mg/Kg) Antimony Arsenic Barium Beryllium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver	SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40) 25 or SB(1 to 50) SB(200 to 500) 0.1 (0.001 to 0.2) 13 or SB (0.5 to 25) SB (0.1 to 3.9)	NA N	NA N	NA N	NA N	NA N	NA N
AROCLOR 1232 AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1250 Metals - (mg/Kg) Antimony Arsenic Barium Beryllium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver Thallium Zinc	SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40) 25 or SB(1 to 50) SB(200 to 500) 0.1 (0.001 to 0.2) 13 or SB (0.5 to 25) SB (0.1 to 3.9) SB (Not Available)	NA N	NA N	NA N	NA N	NA N	NA N
AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1250 Metals - (mg/Kg) Antimony Artsenic Barium Beryllium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver Thallium	SB (Not Available) 7.5 or SB (3 to 12) 300 or SB (15 to 600) 0.16(HEAST) or SB(0 to 1.75) 1 or SB (0.1 to 1) 10 or SB(1.5 to 40) 25 or SB(1 to 50) SB(200 to 500) 0.1 (0.001 to 0.2) 13 or SB (0.5 to 25) SB (0.1 to 3.9) SB (Not Available) SB (Not Available)	NA N	NA N	NA N	NA N	NA N	NA N

TABLE 1 (Page 10 of 11) SOIL SAMPLING ANALYTICAL RESULTS FORMER JONAS AUTOMOTIVE FACILITY NEWBURGH, NEW YORK

	NEWBURG	SH, NEVV YO	JKK				
Sample Location		SS-9	SS-10	SS-10	SS-11	SS-12	SS-13
Sample Date	T. C	08/12/02	08/12/02	08/12/02	08/12/02	08/12/02	08/12/02
Sample Depth (feet)	TAGM Recommended Soil Cleanup	0'-0.2'	1.0'-1.2'	2.3'-2.5'	0.2'-0.3'	0'-0.2'	0.3'-0.4
Study Area	Objectives					i l	
PARAMETER (units)							
VOCs - (µg/Kg)							
Benzene	60	NA	NA .	NA NA	NA	NA NA	NA
Bromodichloromethane	_	NA	NA	NA	NA	NA I	NA NA
		NA.	NA	NA	NA	NA	NA
n-Butylbenzne	-	NA NA	NA.	NA NA	NA.	NA	NA
sec-Butylbenznene	300	NA NA	NA NA	NA NA	NA NA	NA NA	NA.
Chloroform	=		NA NA	NA NA	NA NA	NA NA	NA NA
Ethylbenzene	5,500	NA		NA NA	NA NA	NA NA	NA NA
Methylene Chloride	100	NA	NA				NA NA
Naphthalene	1,300	NA	NA	NA	NA	NA NA	
Tetrachloroethene	1,400	NA	NA	NA	NA	NA NA	NA
Toluene	1,500	NA	NA	NA	NA NA	NA	NA
Total Xylenes	1,200	NA	NA	NA	NA	NA	NA
-							
VOCs TIC		NA	NA	NA	NA	NA	NA
SVOCs - (ug/Kg)							
2-Methylnapththalene	36,400	NA	NA	NA	NA	NA	NA
Acenaphthalene	41,000	NA	NA	NA	NA	NA	NA
Acenaphthylene	50,000	NA	NA	NA	NA	NA	NA
Anthracene	50,000	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene	224	NA	NA.	NA	NA	NA	NA
Benzo(a)anthracene Benzo(a)pyrene	61	NA NA	NA NA	NA	NA	NA NA	NA
	1,100	NA NA	NA NA	NA NA	NA	NA NA	NA.
Benzo(b)fluoranthene		NA NA	NA NA	NA NA	NA NA	NA NA	NA.
Benzo(g,h,l)perylene	50,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA.
Benzo(k)fluoranthene	1,100			NA NA	NA NA	NA NA	NA.
Bis(2-Ethylhexyl)phthalate	50,000	NA	NA	1	NA NA	NA NA	NA NA
Butylbenzylphthalate	50,000	NA	NA	NA	,		
Chrysene	400	NA	NA	NA	NA	NA NA	NA NA
Dibenzo(a,h)anthracene	14	NA	NA	NA	NA	NA	NA
Diethylphthalate	7,100	NA	NA	NA	NA	NA	NA
Di-n-butylphthalate	8,100	NA	NA .	NA	NA	NA	NA
Di-n-octylphthalate	50,000	NA	NA	NA NA	NA NA	NA NA	NA
Fluoranthene	50,000	NA	NA	NA NA	NA NA	NA	NA
Fluorene	50,000	NA	NA	NA	NA NA	NA	NA
Indeno(1,2,3-cd)pyrene	3,200	NA	NA	NA NA	NA	NA	NA
Napthalene	13,000	NA	NA	NA	NA	NA	NA
Phenanthrene	50,000	NA	NA	NA	NA	NA I	NA
	50,000	NA	NA	NA	NA	NA	NA
Pyrene	30,000	1473		1			
SVOCs TIC		NA	NA	NA	NA	NA	NA
PCBs - (ug/Kg)	1,000 Total PCBs	-					
AROCLOR 1016	,,555 ,510/ , 520	NA	NA	NA	NA	NA	NA
AROCLOR 1010 AROCLOR 1221		NA	NA NA	NA	NA	NA I	NA
		NA NA	NA NA	NA NA	NA NA	NA NA	NA
AROCLOR 1232		NA NA	NA NA	NA NA	NA NA	NA I	NA.
AROCLOR 1242			NA NA	NA NA	NA NA	NA NA	NA
AROCLOR 1248		NA NA			NA NA	NA NA	NA NA
AROCLOR 1254		NA NA	NA NA	NA NA		NA NA	NA NA
AROCLOR 1260		NA	NA	NA	NA	NA .	NA .
Metals - (mg/Kg)	RSCO (Eastern USA Background)						
Antimony	SB (Not Available)	NA	NA	NΑ	NA	NA	NA
Arsenic	7.5 or SB (3 to 12)	NA.	NA.	NA NA	NA	NA	NA
Arsenic Barium	300 or SB (15 to 600)	NA NA	NA	NA NA	NA	NA NA	NA
	0.16(HEAST) or SB(0 to 1.75)	NA NA	NA NA	NA NA	NA	NA	NA
Beryllium	1 or SB (0.1 to 1)	NA NA	NA NA	NA	NA	NA NA	NA
Cadmium	, ,	NA NA	NA NA	NA NA	NA NA	NA NA	NA
Chromium	10 or SB(1.5 to 40)	NA NA	NA NA	NA NA	NA NA	NA NA	NA
Copper	25 or SB(1 to 50)			29	80	750	440
Lead	SB(200 to 500)	NA NA	240			Charles to a contract of	
Mercury	0.1 (0.001 to 0.2)	NA	NA	NA NA	NA NA	NA NA	NA NA
Nickel	13 or SB (0.5 to 25)	NA	NA	NA	NA	NA	NA
Colonium	SB (0.1 to 3.9)	NA	NA	NA	NA	NA I	NA
Seterituri	00 111-1 4 11-61-1	NA	NA	NA	NA	NA	NA
	SB (Not Available)						
Selenium Silver Thallium	SB (Not Available) SB (Not Available)	NA	NA	NA	NA	NA	NA
Silver			NA NA	NA NA	NA NA	NA NA	NA NA

TABLE 1 (Page 11 of 11) SOIL SAMPLING ANALYTICAL RESULTS FORMER JONAS AUTOMOTIVE FACILITY NEWBURGH, NEW YORK

Notes

NA - Analysis not run for parameter indicated

ND - Parameter not detected above laboratory method detection limit.

SB - Site Background

TIC - Tentatively Identified Compound

RSCO - Recommended Soil Cleanup Objective

-- No RSCO identified

Shaded values exceed RSCO or Eastern USA Background

- ¹ Soil samples SS1 to SS6 had significant TICs detected which were also detected in the blanks. Those TICs found in the blanks are NOT included in the above reported totals
- ²- Carbazole was reported by the laboratory in SS2 to SS4 as a listed SVOC. In previous sampling (S-1 to S-33) Carbazole was reported as an SVOC TIC. For consistency, Carbazole detected in samples SS2 to SS4 has been added to the SVOC TICs reported. There is no RSCO for Carbazole.

TABLE 2
GROUNDWATER SAMPLING ANALYTICAL RESULTS - ORGANICS
FORMER JONAS AUTOMOTIVE FACILITY
NEWBURGH, NEW YORK

SAMPLE ID	GROUND			MW-1	1-1	MW-2	V-2	W	MW-3
LABORATORY SAMPLE NUMBER SAMPLE DATE	WATER STANDARD	MDL 08/28/01 0	20/90/60	001 08/28/01	AB67366 09/06/02	003 08/28/01	AB67368 09/06/02	004 08/28/01	AB67370 09/06/02
Volatile Organic Compounds									
Acetone	50 (GV)		20	17 B	QN	9.1 B	QN	6.6 B	Q
Methylene Chloride	5 (S)	1.7	5.0	0.5 J	QN	QN	Q	QN	QN
cis-1,2-Dichloroethene	5 (S)	1.8	5.0	QN	QN	QN	S	0.6 J	QN
Trichloroethene	5 (S)	2.8	5.0	QN	QN	QN	Ω	Q	Q.
Tetrachloroethene	5 (S)	1.6	5.0	4.1	5.9	7.2	9.9	1.3 J	Q
Methyl tert-butyl ether	10 (G)	1.0	1.0	2	QN	Q	QN	2.9	1200
TOTAL VOC's				4.6	5.9	7.2	9.9	4.8	1200
TOTAL TIC's				38	7.1 J	QN	6.6 J	QN	58 J
TOTAL VOC's & TIC's				42.6	13.0 J	7.2	13.2 J	4.8	1258 J
Semivolatile Organic Compounds									
Diethylphthalate	50 (GV)	10		Q	NA	QN	N	1.3 J	NA
bis(2-Ethylhexyl)phthalate	5 (S)	10		Q	NA	2.5 J	NA	QN	NA
TOTAL BN's				Q	AN	2.5 J	Ϋ́	1.3 J	N A
TOTAL TIC's				21.24 BJ	Ϋ́	Q	Ϋ́	93.9 JB	AN
TOTAL BN's & TIC's				21.24 BJ	N A	2.5 J	NA	95.2 JB	AN
Total Petroleum Hydrocarbons				NA NA	QN	AN	CN	ΔN	ΔN
							;		CAI

GROUNDWATER SAMPLING ANALYTICAL RESULTS - ORGANICS FORMER JONAS AUTOMOTIVE FACILITY NEWBURGH, NEW YORK TABLE 2

SAMPLE ID	GROUND			MW-1	V-1	MIV	MW-2	M	MW-3
LABORATORY SAMPLE NUMBER SAMPLE DATE	WATER STANDARD	MDE 08/28/01 0	MDL 08/28/01 09/06/02	001 08/28/01	AB67366 09/06/02	003	AB67368 09/06/02	004 08/28/01	AB67370 09/06/02
() () () () () () () () () ()									
Wetals	ć	c	ć	(1	STATE STREET, STATE OF STATE OF STREET, STATE OF STATE OF STREET, STATE OF STAT	!
Antimony	3 (3)	ກ ສັ	50	ON N	QN	ON N	2	9.9 B	Q
Arsenic	25 (S)	6.2	&	8.6 B	Q	ND	Q	18.3	6.1
Barium	1000 (S)		200	ΑN	32	ΑN	QN	AN	38
Beryllium	3 (GV)		20	0.69 B	Q	0.34 B	QN	0.92 B	QN
Cadmium	5 (S)	9.0	2	0.82 B	QN	QN	Q	QN	ΩN
Chromium	(S) 0S		10	18.7	QN	7.4 B	QN	25.2	QN
Copper	200 (S)		1000	59.9	QN	47.6	QN	92.6	N
Lead	25 (S)		10	25.1	Q	13.5	QN	46	Q
Mercury	0.7 (S)	0.2	0.5	ND	۵	QN	Q	QN	ΩN
Nickel	100 (S)	1.6	10	22.2 B	QN	6 B	QN	33.5 B	QN
Selenium	10 (S)	9.1	10	5.9	QN	2.6 B	QN	QN	QN
Silver	(S) 0S	1.7	2	QN	QN	QN	QN	QV	QN
Thallium	0.5 (GV)	4.3	10	ND	QN	QN	QN	13	QV
Zinc	2000 (GV)		30	130 E	Q	80.1 E	ΩN	200 E	QN
Turbidity (NTUs)				549	14.4	1,000	27.4	1,000	38.8

B = Compound detected in Lab blank

BN = Base / Nuetral Semivolatile Compound

TIC = Tentatively Identified Compound

NA = Not analyzed

J = The concentration was detected at a value below the MDL

E = Sample Dilution required, original analysis beyond instrument

calibration range

Shaded values Analyte detected in excess of groundwater standard or

guideline

All compounds measured in parts per billion (ppb)

Turbidity measured in field, not measured at MW-6 dur to malfunction

TABLE 2
GROUNDWATER SAMPLING ANALYTICAL RESULTS - ORGANICS
FORMER JONAS AUTOMOTIVE FACILITY
NEWBURGH, NEW YORK

SAMPLEID	GROUND			MW-4	4/	MW-5	V-5	MW-6	Field Blank	Trip Blank
LABORATORY SAMPLE NUMBER SAMPLE DATE	WATER STANDARD	MDL 08/28/01 09/06/02	JL 09/06/02	005 08/28/01	AB67372 09/06/02	002 08/28/01	AB67374 09/06/02	AB67376 09/06/02	AB67378 09/06/02	AB67379 09/06/02
Volatile Organic Compounds Acetone	50 (GV)		50	13 B	C	15 B	C	Š	S	2
Methylene Chloride	5(S)	1.1	5.0		2		Q	2 2) O	
cis-1,2-Dichloroethene	5 (S)	1.8	5.0	QN	N	QN	QN	Q	Q	Q
Trichloroethene	5(S)	2.8	2.0	1.1 J	QV	QN	QN	QN	QN	QN N
Nethyl tert-hutyl ether	5 (S)	1.6	2.0	8.7 CIN	9.7 CIN	S :	Q S	9 Z	2 5	Q S
	(2)	<u>.</u>	<u>.</u>	2	אַ	7.1	بى ئ	3.4	ON O	ON N
TOTAL VOC's				8.6	9.7	1.2	3.9	3.4	QN	QN
TOTAL TIC's				QN	8.1 J	QN	11.4 J	7.6 J	3.4 J	10 J
IOIAL VOC's & TIC's				8.6	17.8 J	1.2	15.3 J	11.0 J	3.4 J	10 کا
Semivolatile Organic Compounds Diethylphthalate	50 (GV)	10		CN	Ą		ΔN	ΔN	V V	<u> </u>
bis(2-Ethylhexyl)phthalate	5(S)	10		Q	N A	2	N A	S S	S Z	 Z Z
TOTAL BN's				QN	∀ Z	Q	ΑN	NA	 ∠	- V
TOTAL TIC's				48 JB	AN		ΑN	ΑN	AN	ĄN
IOIAL BN's & TIC's				48 JB	NA		NA	NA	N A	Ą
Total Petroleum Hydrocarbons				¥N	Q.	Ą	NA	QN	\delta \d	AN

TABLE 2
GROUNDWATER SAMPLING ANALYTICAL RESULTS - ORGANICS
FORMER JONAS AUTOMOTIVE FACILITY
NEWBURGH, NEW YORK

SAMPLEID	GROUND			M	MW-4	MW-5	1-5	MW-6	Field Blank	Trip Blank
LABORATORY SAMPLE NUMBER SAMPLE DATE	WATER STANDARD	MDI 08/28/01	MDL 728/01 09/06/02	005 08/28/01	AB67372 09/06/02	002 08/28/01	AB67374 09/06/02	AB67376 09/06/02	AB67378 09/06/02	AB67379 09/06/02
Metals										
Antimony	3 (S)	8.9	20	QN	QN	9.6 B	Q.	QN	ı	1
Arsenic	25 (S)	6.2	80	ΩN	QN	41.6	QN	QN	ì	1
Barium	1000 (S)		200	N A N	27	Ą	30	110	i	ı
Beryllium	3 (GV)		20	0.1 B	ΩN	2.2 B	ΩN	QN	I	i
Cadmium	5 (S)	9.0	7	0.72 B	QN	QN	ND	QN	1	1
Chromium	(S) 0S		10	8.2 B	Q		QN	QN	ł	;
Copper	200 (S)		1000	15.5 B	Q	215	ND	ND	ı	1
Lead	25 (S)		10	7.6	Q	83.8	ND	QN	;	ı
Mercury	0.7 (S)	0.2	0.5	QN	QN	Q	QN	ND	ł	ı
Nickel	100 (S)	1.6	10	QN	QN	109	ND	ND	ì	ı
Selenium	10 (S)	1.6	10	4.2 B	QN	QN	QN	ND	1	ļ
Silver	20 (S)	1.7	2	Q	QN	1.8 B	QN	QN	1	
Thallium	0.5 (GV)	4.3	10	10.9	QN	QN	ΩN	CZ	1	ł
Zinc	2000 (GV)		30	78.3 E	ND	510 E	Q	QN	ı	1
Turbidity (NTUs)				>1,000	53.8	>1,000	1.3	ΣZ		

B = Compound detected in Lab blank BN = Base / Nuetral Semivolatile Compound

TIC = Tentatively Identified Compound

NA = Not analyzed

J = The concentration was detected at a value below the MDL E = Sample Dilution required, original analysis beyond instrument

calibration range

Shaded values Analyte detected in excess of groundwater standard or guideline

All compounds measured in parts per billion (ppb)

Turbidity measured in field, not measured at MW-6 dur to malfunction

TABLE 3 GROUNDWATER ELEVATION DATA FORMER JONAS AUTOMOTIVE FACILITY NEWBURGH, NEW YORK

ber 2002	Groundwater	Elevation	164.67	165.71	165.11	166.82	163.68	163.59
5 September 2002	Depth to	Groundwater	12.25	6.25	8.64	9.00	60.6	11.02
ber 2001	Groundwater	Elevation	162.84	164.08	163.31	166.40	161.52	1
7 November 2001	Depth to	Groundwater	14.08	7.88	10.44	9.42	11.25	;
nber 2001	Groundwater	Elevation	164.45	165.61	165.08	167.93	163.61	;
27 September 2001	Depth to	Groundwater	12.47	6.35	8.67	68.7	9.16	;
gust 2001	Groundwater	Elevation	163.89	165.09	164.45	167.04	163.03	1
28 Augu	Depth to	Groundwater	13.03	6.87	9.30	8.78	9.74	1
Inner	Casing	Elevation	176.92	171.96	173.75	175.82	172.77	174.61
Monitoring	Well ID		MW-1	MW-2	MW-3	MW-4	MW-5	9-MW

Notes:

All measurements are in feet MW-6 was installed 12 August 2002

TABLE 4 HYDRAULIC CONDUCTIVITY VALUES SUMMARY FORMER JONAS AUTOMOTIVE FACILITY NEWBURGH, NY

Well I.D.	Hydraulic Cond	ductivity	Average	Average
	ft/min	cm/sec	ft/day	cm/sec
MW-1	~	~	~	~
MW-2	1.07E-04	5.436E-05	1.07E-04	5.44E-05
MW-3	3.68E-04	1.87E-04	4.21E-04	2.14E-04
	4.73E-04	2.40E-04	4.216-04	2.146-04
MW-4	1.89E-03	9.60E-04	1.42E-03	7.19E-04
	9.42E-04	4.79E-04	1.4212-03	7.13L=04
MW-5	1.26E-03	6.40E-04	8.22E-04	4.18E-04
	3.84E-04	1.95E-04	0.226-04	4.10L-04
MW-6	~	~	~	~

Average Site Hydraulic Conductivity =

3.51E-04 cm/sec

8.86E-04 ft/day

Note:

~ Indicates there is no data available.

FORMER JONAS AUTOMOTIVE FACILITY NEWBURGH, NEW YORK TABLE 5 WELL SEARCH RESULTS

							_								
	Use	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown
Depth to	Groundwater (ft)	18.1	6.7	2.8	-	9.9	8	Unknown	Unknown	Unknown	7.5	Unknown	20	38	9
	Unit Screened	Sand and Gravel	Unknown	Unknown	Sand and Gravel	Sand and Gravel	Sand and Gravel	Lake Deposits	Unknown	Unknown	Sand and Gravel	Onondaga Limestone	Onondaga Limestone	Onondaga Limestone	Onondaga Limestone
	Depth	29	37	32	24	33	38	54	25	20	33	285	92	22	409
	Longitude Surface Elevation (ft)	140	140	110	110	125	135	130	110	130	120	200	250	260	200
	Longitude	74° 01' 46"	74° 01' 47"	74° 01' 48"	74° 01' 49"	74° 01' 50"	74° 01' 45"	74° 01' 46"	74°01'47"	74° 01' 46"	74°01'45"	74° 02' 30"	74° 03' 05"	74° 03' 06"	74° 02' 25"
	Latitude	41°29'20"	41°29'20"	41°29'20"	41°29'20"	41°29'20"	41°29'21"	41°29'21"	41°29'21"	41°29'22"	41°29'28"	41° 29' 55"	41°29'55"	41° 29' 55"	41°30'25"
	Well Number Latitude	1	2	3	4	9	9	7	8	6	10	11	12	13	14

Information provided by the United States Geological Survey Latitude and Longitude are based on NAD 1927

Elevation is based on NGVD 1929 *Depths to groundwater listed were measured between 1963 and 1965, no other data was identified

TABLE 6 DRUM / CONTAINER INVENTORY FORMER JONAS AUTOMOTIVE FACILITY NEWBURGH, NEW YORK

Waste Description	Quantity	Container Size
Drum #J-1 RQ Waste Flammable Liquid, N.O.S., 3,	1	30gal
UN1992, II		
Air break antifreeze and conditioner w/methanol		
3X1gal D001		
Mineral spirits 1X1gal D001		
Fiberglass resin – polyester resin in solvent 1X8oz		
D001		}
Cleaning fluid containing: petroleum distillates	•	
1X4oz D001		
Brake fluid-poly-glycol 1X12oz		
Murphy's oil soap 1X1gal		
Drum #J-2 Waste packaged Laboratory Chemicals	1	55gal
non-regulated		
by DOT/RCRA		
Roof tar-asphalt, Stoddard solvent, cellulose fiber,		
calcium		
carbonate 3X5gall		
Murphy's oil Soap – solidified 1X1gal		
Castrol bearing crease 1X16oz		
Drum #J-3 Darmex MG-2 Synthetic metallic	1	15gal
bearing grease		
Drum J-4, J-5 Soil contaminated with oil	2	55gal
Drum #J-6 -J-9, J-11, Used oil and water	5	55gal
Drum #J-10 Mixed oil, diesel fuel & water	11	55gal
Drum #J-12 Lube oil	1	85gal Overpack
Drum #J-13, 14, 19 Oil contaminated speedi-dry &	3	55gal
debris		
Drum #J-16, 18 Oil contaminated speedi-dry &	2	85gal Overpack
debris		
Drum #J-20 Used oil and water	1	85gal Overpack
Drum #J-15 Alcohol based fuel treatment D001	1	55gal
Drum #J-17 Oil/water spill cleanup	1	55gal
Empty Drums	44	55gal_
Empty Drums	1	20gal

TABLE 7 PRELIMINARY SCREENING OF SOIL AND GROUNDWATER REMEDIAL ALTERNATIVES FORMER JONAS AUTOMOTIVE FACILITY NEWBURGH, NEW YORK

Remedial Alternatives For Soil:

General Response Action	\neg	Description	Comments
No Further Action	No Further Action	As name implies, this alternative	Technically feasible, will not prevent
		would include no further remedial	potential exposure to soils above
		activities beyond those already	TAGM 4046 RSCOs
		completed at the site	
Remove All Soils Above	Excavation and off-site disposal /	Excavated most of the site to a	Technically feasible
TAGM 4046 RSCOs	treatment	depth of approximately 2 feet,	
	1 1	Dackilli With Imported dealt ill	مجاهجها والمامية والمامية والمامية والا
	Excavation and on-site treatment Excavated most of the site to a // reuse	Excavated most of the site to a depth of approximately 2 feet, treat	Not technically reasible, technologies are not available to cost-effectively
		soil on site for reuse	treat soils to applicable standards.
			This technology not retained for soil
			treatment
Engineering Control: Site	Prevent potential exposure to	Site cap/cover would be dependent	Technically feasible, future site use
Capping/Cover	impacted soils by installing cap	on future use, assume a combination would dictate paving/cover	would dictate paving/cover
	or cover over site	of 75% asphalt paving and 25% (12- requirements	requirements
		inch depth) imported clean soil or	
		gravel cover over entire site	
Institutional Controls	Deed Restriction	Legal and/or administrative controls	Technically Feasible, in combination
		that mitigate potential exposure to	with other technologies
		impacted soils by detailing the	
		presence of impacted soils on site	
		and describing the handling of	
		excavated soils in the future.	
Chemical Treatment	Chemical Oxidation	Oxidizing Agents such as hydrogen	Not technically feasible as it will not
		peroxide or potassium permangante	address metals, PAHs in soil are not
一日 一日 日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本		are added to soil to react with	readily treated by this technology.
STATE OF THE PARTY		organic compound, breaking them	This technology not retained for soil
		down chemically	treatment
Biodegradation	Biodegradation of contaminants	Organic constituents are degraded	Not technically feasible as it will not
	lin soil	(1) microorganisms, often enhanced	address metals, and is slow to affect
		through the introduction of oxygen or PAHs identified in soils. This	PAHs identified in soils. This
		nutrients. Not applicable to	technology not retained for soil
	TO SECURITY OF THE PARTY OF THE	inorganics (metals)	treatment.

TABLE 7 PRELIMINARY SCREENING OF SOIL AND GROUNDWATER REMEDIAL ALTERNATIVES FORMER JONAS AUTOMOTIVE FACILITY NEWBURGH, NEW YORK

Remedial Alternatives For Groundwater:		NEWBURGH, NEW YORK	
General Response Action	General Response Action Remedial Technology Process	Description	Comments
No action	No active	No active remediation of groundwater would be conducted, groundwater monitoring would continue to evaluate extent of migration.	Technically feasible, contaminant levels would be expected to decrease through natural attenuation
Institutional Controls	Deed Restriction	Legal and/or administrative controls that mitigate potential exposure to impacted groundwater by detailing the presence of impacts on site and prohibiting future use of groundwater	Technically feasible, may be used in combination with other technologies. Should be combined with groundwater monitoring.
Chemical Treatment	Chemical Oxidation	Oxidizing Agents such as hydrogen peroxide or potassium permangante are added to groundwater to react with organic compound, breaking them down chemically	Although technically feasible, this technology does not appear applicable for low levels of PCE detected. In addition, MTBE appears to be from an off-site source. This technology not retained for groundwater treatment
Ex-situ Treatment	Extraction and ex-situ treatment of groundwater (pump and treat)	Groundwater is pumped to the surface from extraction wells or recovery trenches, treated aboveground and then discharged either back to the ground or to a sewer system	Although technically feasible, this technology does not appear applicable for low levels of PCE detected. In addition, MTBE appears to be from an off-site source. This technology not retained for groundwater treatment
In-Situ Stripping of VOCs	Air Sparging/Soil Vapor Extraction	Air is bubbled through the groundwater, stripping the VOCs from the aqueous phase. The VOCs are then removed from the soil through vapor extraction wells using a blower which then typically directs the vapor stream for treatment of groundwater treatment.	Although technically feasible, this technology does not appear applicable for low levels of PCE detected. In addition, MTBE appears to be from an off-site source. This technology not retained for groundwater treatment
T. T. L. L.	determined wat to Leafer the		

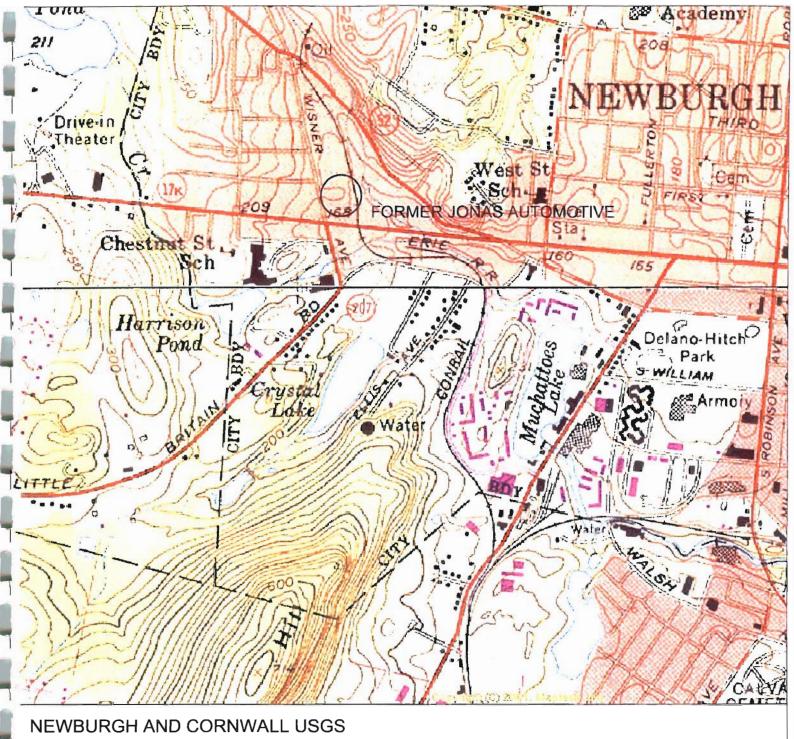
=Technology determined not to be feasible

TABLE 8 SUMMARY COSTS FOR REMEDIAL ALTERNATIVES FORMER JONAS AUTOMOTIVE FACILITY NEWBURGH, NEW YORK

TECHNOLOGY: Impacted Soils

Excavate all impacted soils, backfill with clean fill	Quantity	Units	Unit Rate	Line Item Tota
Develop Remedial Action Workplan	1	Lump Sum	\$6,000	\$6,000
Mobilization/Permits	1	Lump Sum	\$5,000	\$5,000
Excavate All Impacted Soil (Assume excavate all areas of site not covered with				
buildings (54,000 sq ft) excluding lead and mercury impacted soils, to a depth of two	6,000	Tons	\$20	\$120,000
feet)	,,,,,,		*	
Transportation and Disposal of Impacted Soil (non hazardous)	6,000	Tons	\$65	\$390,000
Excavate Impacted soil (Assume Hazardous for lead or mercury)	180	Tons	\$40	\$7,200
Transportation and Disposal of Hazardous Soil (lead impacted soils, assume and area				
10' by 15' by 2' deep assumes 1.5 tons per cubic yard)	20	Tons	\$180	\$3,600
10 by 10 by 2 doep documes 1.5 tone per dadio yardy				
Transportation and Disposal of Hazardous Soil (mercury impacted soils, assume and	160	Tons	\$210	\$33,600
area with radius of 30' around SS-1 to a depth of 1', assumes 1.5 tons/cubic yard)	100	10115	\$210	\$33,000
Import and Place Clean Fill to Backfill Excavations	6,180	Tons	\$20	\$123,600
Cleaning of Oily Residue in Building				
Disposal of Oily Residues from Building	5 20	Days	\$2,000	\$10,000 \$5,000
		Drums	\$250	
Engineering Oversight	30	Days	\$700	\$21,000
Equipment/Expenses	30	Days	\$75	\$2,250
Post Excavation Sampling	150	Samples	\$200	\$30,000
Report Preparation	11	Lump Sum	\$7,500	\$7,500
Total				\$764,750
Con Site 1759/ Daysmant 259/ Clean Fill		11.3	11.25	
Cap Site (75% Pavement, 25% Clean Fill)	Quantity	Units		Line Item Tota
Develop Remedial Action Workplan	1	Lump Sum	\$8,000	\$8,000
Mobilization/Permits	1	Lump Sum	\$5,000	\$5,000
Regrading East End of Site (Low Lying Area)	3	Days	\$1,500	\$4,500
Import and Place Clean Fill for Cover (13,500 square feet by 1' deep, assumes 1.5	750	Tons	\$20	\$15,000
tons/cubic yard)				
Install Asphalt Cap (Assume 37,800 square feet)	4,200	Square Yards	\$18	\$75,600
Engineering Oversight	15	Days	\$700	\$10,500
Equipment/Expenses	15	Days	\$75	\$1,125
Soil Management Plan	11	Lump Sum	\$3,000	\$3,000
Cleaning of Oily Residue in Building	5	Days	\$2,000	\$10,000
Disposal of Oily Residues from Building	20	Drums	\$250	\$5,000
Preparation/Filing of Deed Restriction for Land	1	Lump Sum	\$5,000	\$5,000
Report Preparation	1	Lump Sum	\$7,500	\$7,500
Total				\$150,225
Excavate Hot Spots, Cap Site (75% pavement, 25% Clean Fill)				
Develop Remedial Action Workplan	1	Lump Sum	\$6,000	\$6,000
Mobilization/Permits	1	Lump Sum	\$5,000	\$5,000
Regrading East End of Site (Low Lying Area)	3	Days	\$1,500	\$4,500
Excavate Impacted soil (Assume Hazardous for Metals)	180	Tons	\$40	\$7,200
Transportation and Disposal of Hazardous Soil (lead impacted soils, assume and area		-	0400	
10' by 15' by 2' deep assumes 1.5 tons per cubic yard)	20	Tons	\$180	\$3,600
Transportation and Disposal of Hazardous Soil (mercury impacted soils, assume and	160	Tons	\$210	\$33,600
area with radius of 30' around SS-1 to a depth of 1', assumes 1.5 tons/cubic yard)	,,,,	'00	Ψ2.10	Ψ00,000
Post Excavation Sampling	25	Samples	\$80	\$2,000
mport and Place Clean Fill to Backfill Excavations	180	Tons	\$20	\$3,600
mport and Place Clean Fill for Cover (13,500 square feet by 1' deep, assumes 1.5				
cons/cubic vard)	750	Tons	\$20	\$15,000
nstall Asphalt Cap (Assume 37,800 square feet)	4,600	Square Yards	\$18	\$82,800
Equipment/Expenses	18	Days	\$75	\$1,350
Engineering Oversight	18	Days	\$700	\$12,600
Soil Management Plan	1	Lump Sum		
Cleaning of Oily Residue in Building	5		\$3,000	\$3,000
Disposal of Oily Residue in Building	20	Days	\$2,000	\$10,000
Preparation/Filing of Deed Restriction for Land		Drums	\$250	\$5,000
Report Preparation	1	Lump Sum	\$5,000	\$5,000
	1	Lump Sum	\$7,500	\$7,500
Total			I	\$207,750

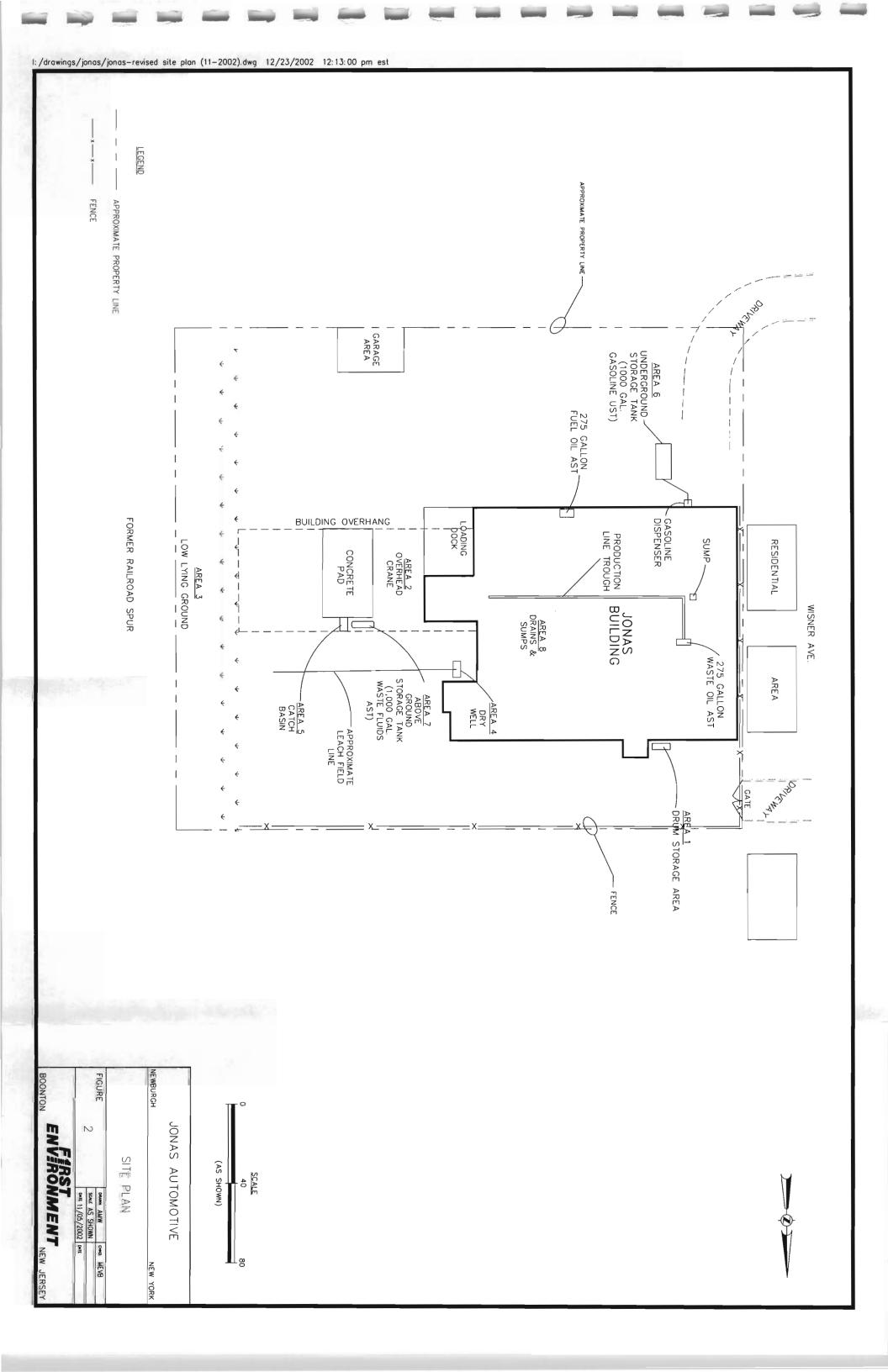
TABLE 8 SUMMARY COSTS FOR REMEDIAL ALTERNATIVES FORMER JONAS AUTOMOTIVE FACILITY NEWBURGH, NEW YORK

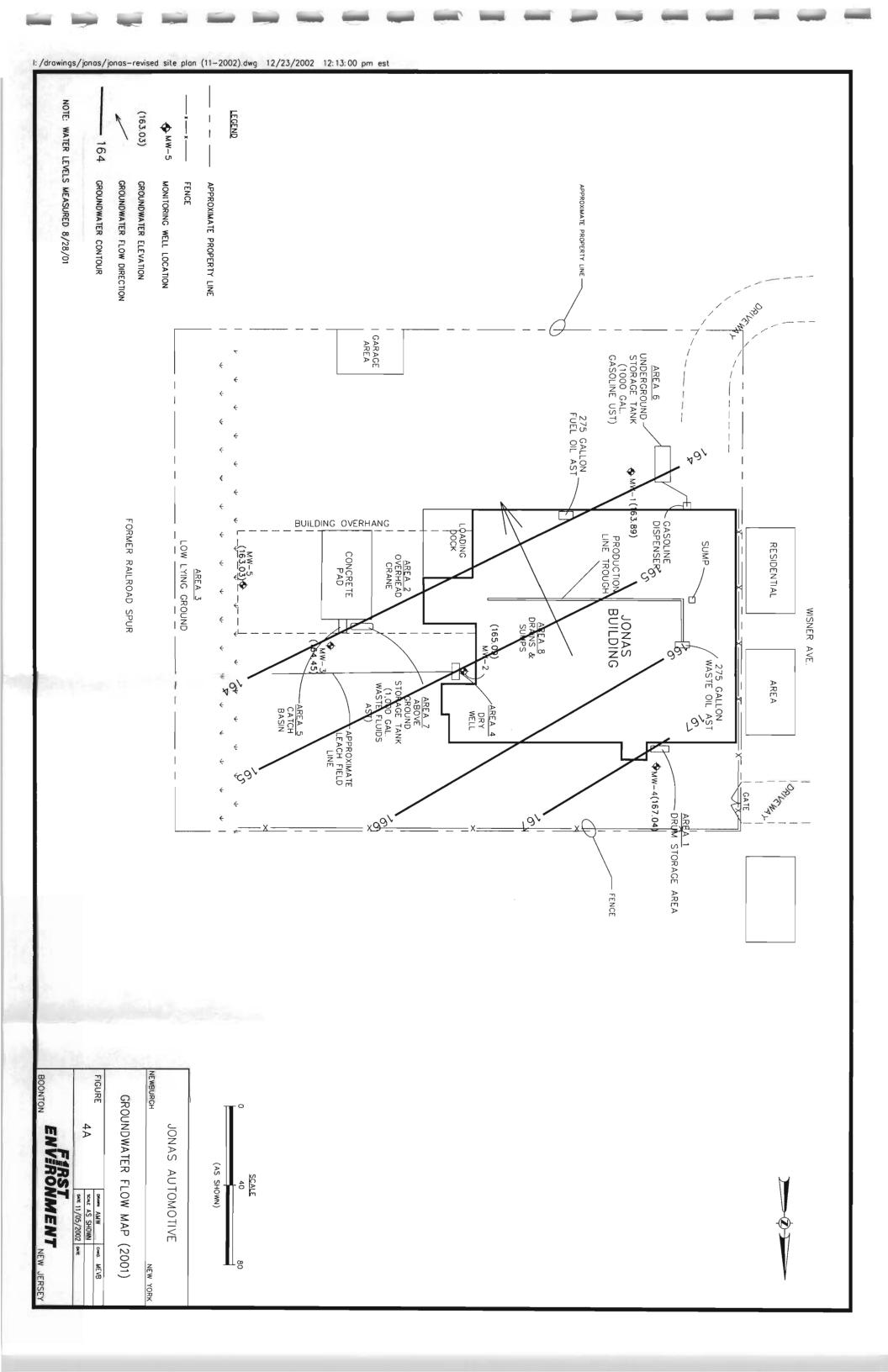

TECHNOLOGY: Impacted Groundwater

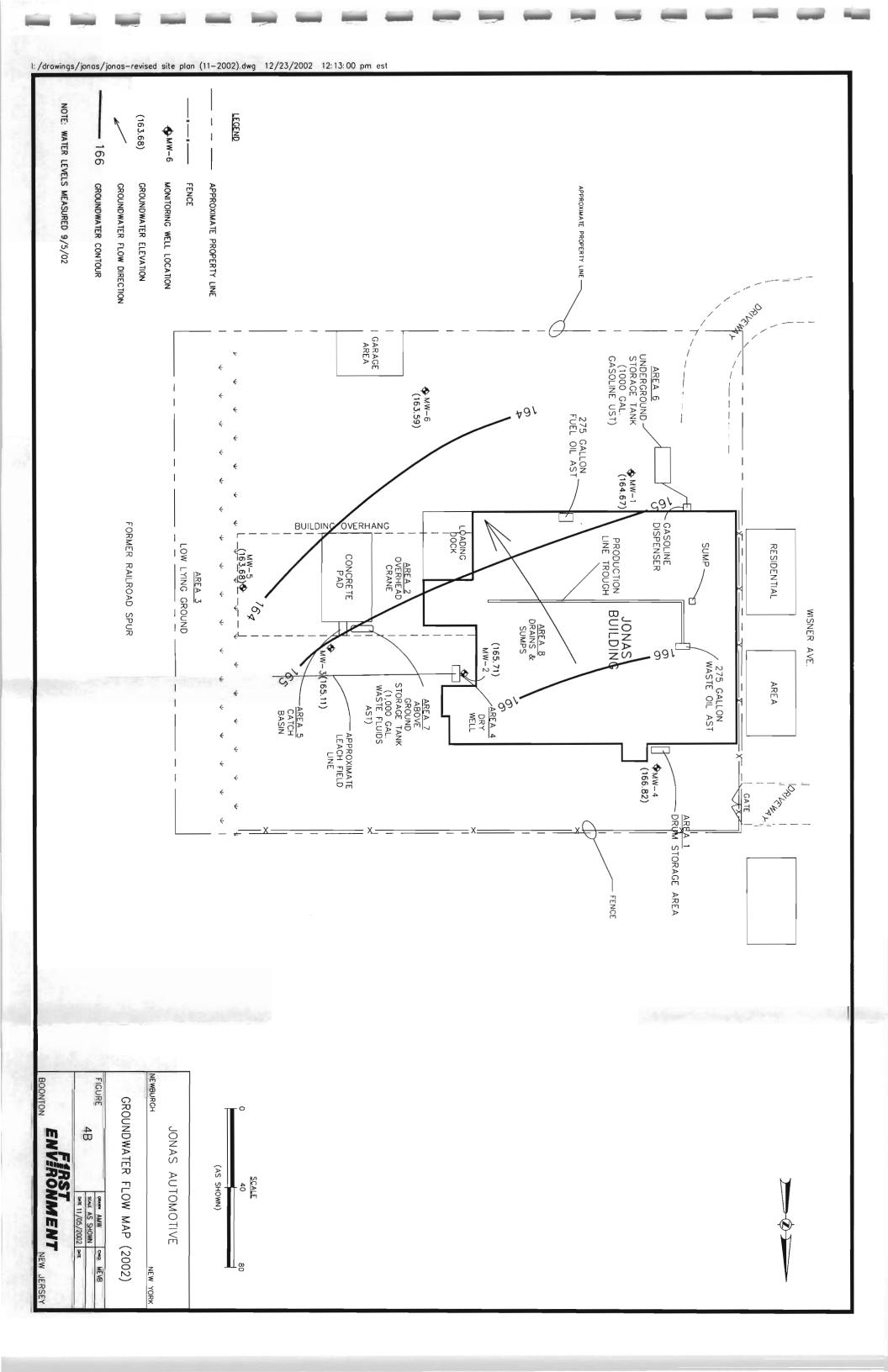
No Action, Monitor Groundwater Semi-Annually (3 Years)	Quantity	Units	Unit Rate	Line Item Total
Develop Groundwater Monitoring Plan	1	Lump Sum	\$5,000	\$5,000
Groundwater Sampling (Labor, Equipment, Expenses)	6	Per Event	\$3,000	\$16,394*
Groundwater Sample Analysis (VOCs only)	6	Per Event	\$1,000	\$5,464*
Groundwater Monitoring Report	6	Per Event	\$4,000	\$21,858*
Total				\$48,716

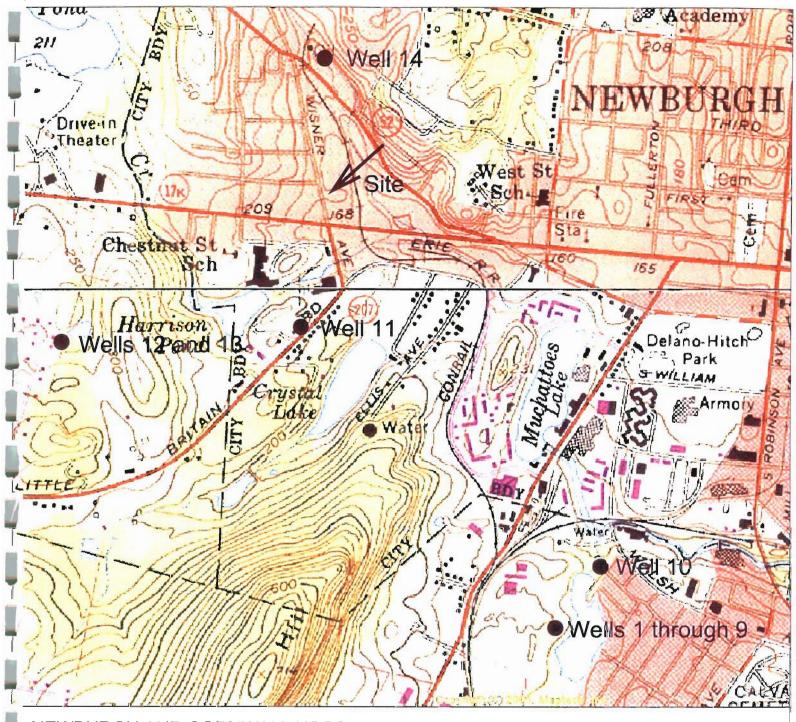
Institutional Control, Monitor Groundwater Semi-Annually (3 Years)	Quantity	Units	Unit Rate	Line Item Total
Prepare/File Deed Restriction	1	Lump Sum	\$6,000	\$6,000
Develop Groundwater Monitoring Plan	1	Lump Sum	\$5,000	\$5,000
Groundwater Sampling (Labor, Equipment, Expenses)	6	Per Event	\$3,000	\$16,394*
Groundwater Sample Analysis (VOCs only)	6	Per Event	\$1,000	\$5,464*
Groundwater Monitoring Report	6	Per Event	\$4,000	\$21,858*
Total				\$54,716

Note: Costs are estimated based on site conditions identified to date. Actual costs will be dependent on specific end use of site and extent of remediation warranted

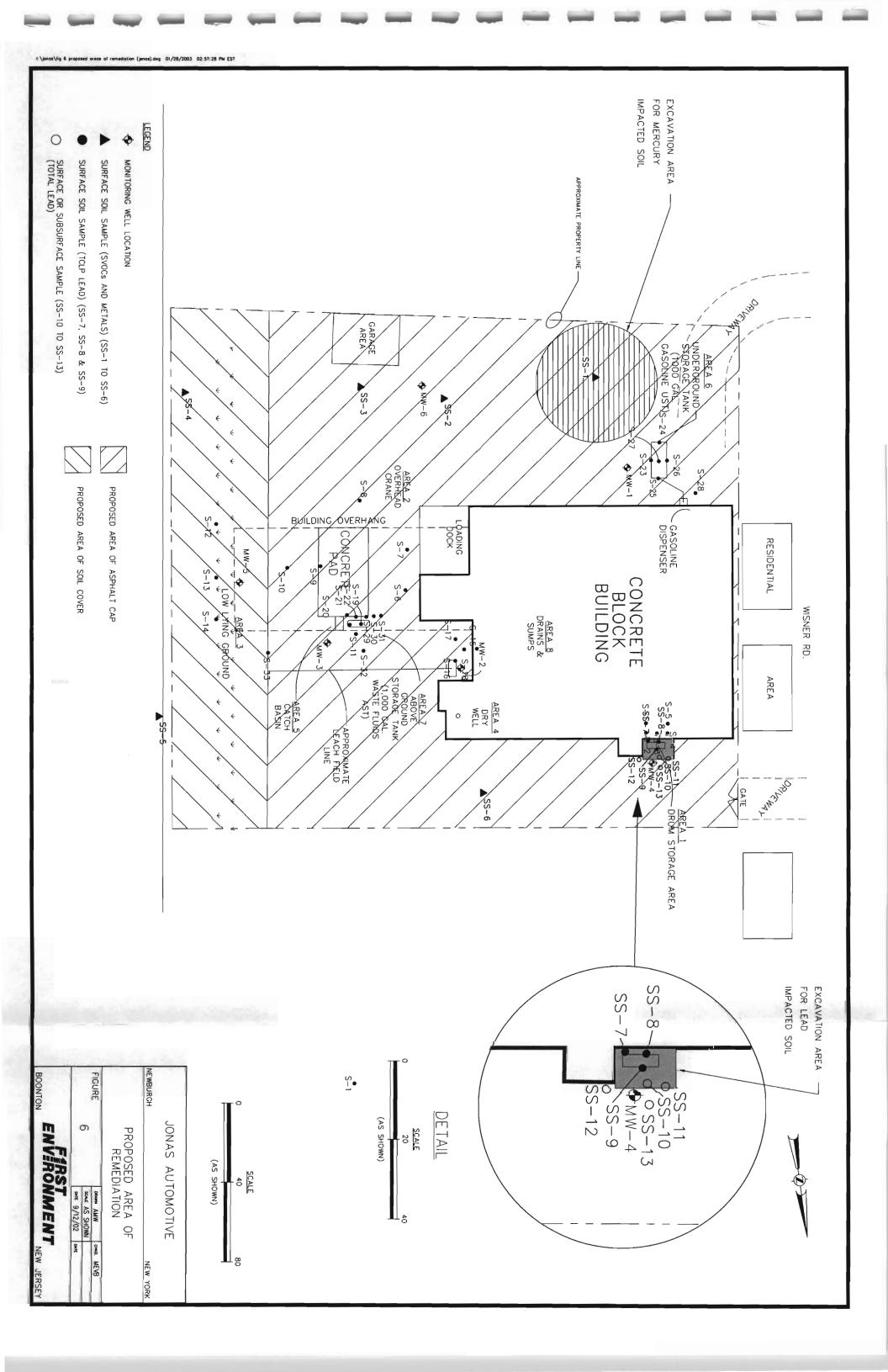

^{*} Cost represents present worth cost assuming a 5% interest rate




NEWBURGH AND CORNWALL USGS 7.5 MIN QUADRANGLES 1:24,000, NA DATUM 1927 DATED 1957, PHOTO REVISED 1981


FIGURE 1

SITE LOCATION MAP FORMER JONAS AUTOMOTIVE FACILITY NEWBURGH, NEW YORK



NEWBURGH AND CORNWALL USGS 7.5 MIN QUADRANGLES 1:24,000, NA DATUM 1927 DATED 1957, PHOTO REVISED 1981

FIGURE 5

WELL SEARCH RESULTS FORMER JONAS AUTOMOTIVE FACILITY NEWBURGH, NEW YORK

Monitoring Well ID.: MW-1

Project: Jonas Automotive

Client: City of Newburgh

Permit No.:

Site Location: Newburgh, NY

Geologist: Chris Viani

First Environment, Inc. 91 Fulton Street Boonton, NJ 07005

		SUBSURFACE PROFILE			S	ΑM	PLE		
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Туре	Blows/ft	Recovery	PID Reading (ppm)	Well Completion Details
0-		Ground Surface					£		
1-	No.	FINE SAND (FILL) Dark brown fine sand; some silt; little fine angular gravel. No staining/odor.	0.0		SS	R			Concrete S
3-1		SILT (FILL) Brown silt; little fine angular gravel. No staining/odor.	2.0		SS			60	Bentonite 2" PVC — ACCUPATE OF THE PORT OF
5 6 6					SS			2	
7-1		SILT Light reddish brown silt; trace to little fine sand;	7.0		SS			32	
9-1		occaisional gray laminae. No staining/odor. Stiff. Wet at 8'.			ss			800	#1 Sand —
11-					SS				#1 Sand — ** .010 Slot — ** Screen
13-1					SS			57	.010 Slot
[[]		End of Borehole	14.0						
15-	1						- 1		
16									
18-									

Driller: ADT

Drilling Method: Hollow-stem auger

Well Completion Date:

Notes:

Borehole Diameter: 8"

Monitoring Well ID.: MW-2

Project: Jonas Automotive

Client: City of Newburgh

Permit No.:

Site Location: Newburgh, NY

Geologist: Chris Viani

First Environment, Inc. 91 Fulton Street Boonton, NJ 07005

		SUBSURFACE PROFILE							
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Type	Blows/ft	Recovery	PID Reading (ppm)	Well Completion Details
0-	10000000	Ground Surface	0.0						
1-		SAND and GRAVEL (FILL) Dark gray fine sand and very angular gravel. No staining/odors. FILL.	0.0		SS				Concrete S
=	್ಟಿಂ								Bentonite 🙀 🐰
4-15-		SAND and GRAVEL Brown fine to coarse sand and fine to medium subrounded gravel; little to some silt. Very moist, to wet at 10'. No staining/odors.	3.0						2" PVC Asing
6-					ss				
8 9									#1 Sand — ** .010 Slot — ** Screen
10-	°Z0								#1 Sand —
111-					ss				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
12-	00°0								
13									.010 Slot
14-									
15		End of Borehole	15.0						L1I
16-									
16- 17- 18-									

Driller: ADT

Drilling Method: Hollow-stem auger

Well Completion Date: 8/8/1

Notes:

Borehole Diameter: 8"

Monitoring Well ID.: MW-3

Project: Jonas Automotive

Client: City of Newburgh

Permit No.:

Site Location: Newburgh, NY

Geologist: Chris Viani

First Environment, Inc. 91 Fulton Street Boonton, NJ 07005

SAMPLE SUBSURFACE PROFILE PID Reading (ppm) Well Completion Depth/Elev. Details Recovery Depth (ft) Description Number Blows/ft Symbol Type Ground Surface 0.0 SAND, SILT and GRAVEL (FILL) Brown to dark brown sand, silt, and angular fine SS 0 to medium gravel. FILL. Concrete -2-Bentonite SS 3. 3.0 2" PVC MEDIUM to COARSE SAND Brown medium to coarse sand; some rounded Casing 4 fine to medium gravel; trace to little silt. Loose. Wet at 9'. No staining/odors. SS 0 5-6-SS 0 8-9. SS 0 #1 Sand -10-SS 0 11 11.0 MEDIUM SAND Brown medium sand; trace to little fine sand; 12trace silt; trace fine well-rounded gravel. Wet. No staining/odor. .010 Slot SS 0 13-Screen 14 SS 15 15.0 End of Borehole 16-17 18

Driller: ADT

Drilling Method: Hollow-stem auger

Well Completion Date: 8/7/1

Notes: Auger and split-spoon refusal at 15'.

Borehole Diameter: 8"

Monitoring Well ID.: MW-4

Project: Jonas Automotive

Client: City of Newburgh

Permit No.:

Site Location: Newburgh, NY

Geologist: Chris Viani

First Environment, Inc. 91 Fulton Street Boonton, NJ 07005

		SUBSURFACE PROFILE							
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Туре	Blows/ft	Recovery	PID Reading (ppm)	Well Completion Details
0-		Ground Surface						ğ 15	[]
1-		SILT (FILL) Brown silt; little to some angular gravel, w/ brick fragments and cinders. No staining/odor. FILL.	0.0		ss			And Andrews	Concrete Concrete
3-		SILT Brown silt; little fine to coarse sand; little fine rounded gravel. No staining/odor.	2.5 3.5		SS				Bentonite 2" PVC Casing
5-		FINE SAND Light reddish brown fine sand; trace silt; with rust, gray, and brown mottles. No staining/odors.	5.5		SS				
7-		SILT Reddish brown silt and fine sand to silt with some sand; with brown and gray mottles. Finely laminated in some intervals. Very moist. No staining/odors.			SS				#1 Sand — ** .010 Slot — ** Screen
9-	% 	SAND and GRAVEL Brown fine to coarse sand and fine to medium rounded gravel; little silt. Wet. No	9.0		SS				#1 Sand —>
11-		staining/odors.			ss				
13-					SS		and the		.010 Slot
15-116-117-118-118-118-118-118-118-118-118-118		End of Borehole	14.0						

Driller: ADT

Drilling Method: Hollow-stem auger

Well Completion Date: 8/8/1

Notes:

Borehole Diameter: 8"

Monitoring Well ID.: MW-5

Project: Jonas Automotive

Client: City of Newburgh

Permit No.:

Site Location: Newburgh, NY

Geologist: Chris Viani

First Environment, Inc. 91 Fulton Street Boonton, NJ 07005

		SUBSURFACE PROFILE			S	AM	PLE		
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Туре	Blows/ft	Recovery	PID Reading (ppm)	Well Completion Details
0-	2000000	Ground Surface	0.0						
1-		SAND, SILT, and GRAVEL (FILL) Brown to black sand, silt, and angular fine to coarse gravel. FILL.	0.0		SS			0	Concrete S
3-	00 00 00 00				SS			0	2" PVC O SO S
5-		COBBLES Cobbles. Very poor split-spoon recovery. Wet at 11'.	4.0		SS				Bentonite -
6-					SS		MELEC		
7-					-				
9-					ss				#1 Sand — *
10-						_	MESSA!		#1 Sand — 🔻
11-					SS				
12-							160002	ĺ	
13					ss				.010 Slot Screen
14-		SAND	14.0						
15		Brown fine to coarse sand with occ. gray mottles; little rounded fine to medium gravel;			\dashv	-	0.01812		
16		trace silt. Wet. No staining/odor.			ss			0	
17-		End of Borehole	17.0						<u>::::1== ::::</u>

Driller: ADT

Drilling Method: Hollow-stem auger

Well Completion Date: 8/7/1

Notes:

Borehole Diameter: 8"

Monitoring Well ID.: MW-6

Project: Jonas Automotive

Client: City of Newburgh

Permit No.:

Site Location: Newburgh, NY

Geologist: Mike Van Brunt

First Environment, Inc. 91 Fulton Street Boonton, NJ 07005

		SUBSURFACE PROFILE							
Depth (ft)	Symbol	Description	Depth/Elev.	Number Type Blows/ft Recovery PID Reading (ppm)			Recovery	PID Reading (ppm)	Well Completion Details
0-		Ground Surface Fill gray f GRAVEL	0.0				anninia Wales		PG PJ
1-		Brown f-m Sandy SILT moist Brown with trace black streaks Clayey SILT moist	0.6 1.2 1.6	1	SS	3 11 8 6			Concrete
3-		Brown Sllty f-m SAND trace f gravel moist							Bentonite Bentonite
4-									
5-		Brown f-m SAND some silt moist	5.0			3			
6-				2	SS	3 2 4			2" PVC
7-							(RESERVE):		Casing
8-		Brown Slity f SAND trace clay wet	7.4	3	ss	6 5 7 7			
10		Brown Silty CLAY trace f sand wet	9.6	4	ss	5 5 4 5			#1 Sand
11-				5	ss	4 3 16 45			2" PVC Casing #1 Sand #0 Slot Screen
13-		Brown f-c GRAVEL wet at 13 feet very little recovery	13.0	6	SS	12 16 20 15	Andrew St. An		.010 Slot
15-		End of Borehole	15.0			15			
17-									

Driller: ADT

Drilling Method: Hollow-stem auger Well Completion Date: 12 August 2002

Notes:

Borehole Diameter: 8"

Soil Boring ID.: S-1

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

		SUBSURFACE PROFILE			SA	AMP	LE	
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Туре	Blows/ft	Recovery	PID Reading (ppm)
0-		Ground Surface	0.0					
-		SW Dark Brown to Brown f to c SAND, trace Silt	-0.5	S-1	мс			
-		End of Borehole						
1-								
2-								
3-								
4-								
5								

Driller:

Drilling Method: Hand Auger Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Datum:

Sheet: 1 of 1

Monitoring Well ID.: MW-1

Project: Jonas Automotive

Client: City of Newburgh

Permit No.:

Site Location: Newburgh, NY

Geologist: Chris Viani

First Environment, Inc. 91 Fulton Street Boonton, NJ 07005

		SUBSURFACE PROFILE			S	ΑM	PLE		
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Туре	Blows/ft	Recovery	PID Reading (ppm)	Well Completion Details
0-		Ground Surface					£		
1-	No.	FINE SAND (FILL) Dark brown fine sand; some silt; little fine angular gravel. No staining/odor.	0.0		SS	R			Concrete S
3-1		SILT (FILL) Brown silt; little fine angular gravel. No staining/odor.	2.0		SS			60	Bentonite 2" PVC — ACCUPATE OF THE PORT OF
5 6 6					SS			2	
7-1		SILT Light reddish brown silt; trace to little fine sand;	7.0		SS			32	
9-1		occaisional gray laminae. No staining/odor. Stiff. Wet at 8'.			ss			800	#1 Sand —
11-					SS				#1 Sand — ** .010 Slot — ** Screen
13-1					SS			57	.010 Slot
[[]		End of Borehole	14.0						
15-	1						- 1		
16									
18-									

Driller: ADT

Drilling Method: Hollow-stem auger

Well Completion Date:

Notes:

Borehole Diameter: 8"

Monitoring Well ID.: MW-2

Project: Jonas Automotive

Client: City of Newburgh

Permit No.:

Site Location: Newburgh, NY

Geologist: Chris Viani

First Environment, Inc. 91 Fulton Street Boonton, NJ 07005

		SUBSURFACE PROFILE							
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Type	Blows/ft	Recovery	PID Reading (ppm)	Well Completion Details
0-	10000000	Ground Surface	0.0						
1-		SAND and GRAVEL (FILL) Dark gray fine sand and very angular gravel. No staining/odors. FILL.	0.0		SS				Concrete S
=	್ಟಿಂ								Bentonite 🙀 🐰
4-15-		SAND and GRAVEL Brown fine to coarse sand and fine to medium subrounded gravel; little to some silt. Very moist, to wet at 10'. No staining/odors.	3.0						2" PVC Asing
6-					ss				
8 9									#1 Sand — ** .010 Slot — ** Screen
10-	°Z0								#1 Sand —
111-					ss				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
12-	°2°								
13									.010 Slot
14-									
15		End of Borehole	15.0						L1I
16-									
16- 17- 18-									

Driller: ADT

Drilling Method: Hollow-stem auger

Well Completion Date: 8/8/1

Notes:

Borehole Diameter: 8"

Monitoring Well ID.: MW-3

Project: Jonas Automotive

Client: City of Newburgh

Permit No.:

Site Location: Newburgh, NY

Geologist: Chris Viani

First Environment, Inc. 91 Fulton Street Boonton, NJ 07005

SAMPLE SUBSURFACE PROFILE PID Reading (ppm) Well Completion Depth/Elev. Details Recovery Depth (ft) Description Number Blows/ft Symbol Type Ground Surface 0.0 SAND, SILT and GRAVEL (FILL) Brown to dark brown sand, silt, and angular fine SS 0 to medium gravel. FILL. Concrete -2-Bentonite SS 3. 3.0 2" PVC MEDIUM to COARSE SAND Brown medium to coarse sand; some rounded Casing 4 fine to medium gravel; trace to little silt. Loose. Wet at 9'. No staining/odors. SS 0 5-6-SS 0 8-9. SS 0 #1 Sand -10-SS 0 11 11.0 MEDIUM SAND Brown medium sand; trace to little fine sand; 12trace silt; trace fine well-rounded gravel. Wet. No staining/odor. .010 Slot SS 0 13-Screen 14 SS 15 15.0 End of Borehole 16-17 18

Driller: ADT

Drilling Method: Hollow-stem auger

Well Completion Date: 8/7/1

Notes: Auger and split-spoon refusal at 15'.

Borehole Diameter: 8"

Monitoring Well ID.: MW-4

Project: Jonas Automotive

Client: City of Newburgh

Permit No.:

Site Location: Newburgh, NY

Geologist: Chris Viani

First Environment, Inc. 91 Fulton Street Boonton, NJ 07005

		SUBSURFACE PROFILE							
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Туре	Blows/ft	Recovery	PID Reading (ppm)	Well Completion Details
0-		Ground Surface						ğ 15	[]
1-		SILT (FILL) Brown silt; little to some angular gravel, w/ brick fragments and cinders. No staining/odor. FILL.	0.0		ss			And Andrews	Concrete Concrete
3-		SILT Brown silt; little fine to coarse sand; little fine rounded gravel. No staining/odor.	2.5 3.5		SS				Bentonite 2" PVC Casing
5-		FINE SAND Light reddish brown fine sand; trace silt; with rust, gray, and brown mottles. No staining/odors.	5.5		SS				
7-		SILT Reddish brown silt and fine sand to silt with some sand; with brown and gray mottles. Finely laminated in some intervals. Very moist. No staining/odors.			SS				#1 Sand — ** .010 Slot — ** Screen
9-	% 	SAND and GRAVEL Brown fine to coarse sand and fine to medium rounded gravel; little silt. Wet. No	9.0		SS				#1 Sand —>
11-		staining/odors.			ss				
13-					SS		and the		.010 Slot
15-116-117-118-118-118-118-118-118-118-118-118		End of Borehole	14.0						

Driller: ADT

Drilling Method: Hollow-stem auger

Well Completion Date: 8/8/1

Notes:

Borehole Diameter: 8"

Monitoring Well ID.: MW-5

Project: Jonas Automotive

Client: City of Newburgh

Permit No.:

Site Location: Newburgh, NY

Geologist: Chris Viani

First Environment, Inc. 91 Fulton Street Boonton, NJ 07005

		SUBSURFACE PROFILE			S	AM	PLE		
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Туре	Blows/ft	Recovery	PID Reading (ppm)	Well Completion Details
0-	2000000	Ground Surface	0.0						
1-		SAND, SILT, and GRAVEL (FILL) Brown to black sand, silt, and angular fine to coarse gravel. FILL.	0.0		SS			0	Concrete S
3-	00 00 00 00				SS			0	2" PVC O SO S
5-		COBBLES Cobbles. Very poor split-spoon recovery. Wet at 11'.	4.0		SS				Bentonite -
6-					SS		MELEC		
7-					-				
9-					ss				#1 Sand — *
10-						_	MESSA!		#1 Sand — 🔻
11-					SS				
12-							160002	ĺ	
13					ss				.010 Slot Screen
14-		SAND	14.0						
15		Brown fine to coarse sand with occ. gray mottles; little rounded fine to medium gravel;			\dashv	-	0.01812		
16		trace silt. Wet. No staining/odor.			ss			0	
17-		End of Borehole	17.0						<u>::::1== ::::</u>

Driller: ADT

Drilling Method: Hollow-stem auger

Well Completion Date: 8/7/1

Notes:

Borehole Diameter: 8"

Soil Boring ID.: S-1

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

		SUBSURFACE PROFILE			SA	AMP	LE	
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Туре	Blows/ft	Recovery	PID Reading (ppm)
0-		Ground Surface	0.0					
-		SW Dark Brown to Brown f to c SAND, trace Silt	-0.5	S-1	мс			
-		End of Borehole						
1-								
2-								
3-								
4-								
5								

Driller:

Drilling Method: Hand Auger Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Datum:

Sheet: 1 of 1

Soil Boring ID.: S-2

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

SUBSURFACE PROFILE					SAMPLE					
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Type	Blows/ft	Recovery	PID Reading (ppm)		
0-		Ground Surface	0.0							
-		SW Dark Brown to Brown f to c SAND, trace Silt		S-2	МС					
1-										
-										
2-										
3-										
-										
5-										

Driller:

Drilling Method: Hand Auger Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Datum: Sheet: 1 of 1

Soil Boring ID.: S-3

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

SUBSURFACE PROFILE					SAMPLE					
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Type	Blows/ft	Recovery	PID Reading (ppm)		
0-		Ground Surface	0.0					0		
1-		SW Dark Brown to Brown f to c SAND, trace Silt	-2.0	S-3	MC			0 0 530		
3		SC Brown, f SAND, trace Silt and Clay (fill material)	-3.5					141 132 0 0		
5-16-1		SC Olive/Gray f SAND, some Silt, trace Clay moist soil @ 7.0 ft bgs saturated @ 8.0 ft bgs increasing clay content with depth						730 250 340 200 95 40		
8-				S-3	MC			53 510 0 830 820 440		
10-		Refusal @ 11.0 ft bgs, weathered gravel	-10.5					0 0 0		
12-										
14-										

Driller: Probe Support, Inc.

Drilling Method: GeoProbe

Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Datum:

Sheet: 1 of 1

Soil Boring ID.: S-2

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

SUBSURFACE PROFILE					SAMPLE					
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Type	Blows/ft	Recovery	PID Reading (ppm)		
0-		Ground Surface	0.0							
-		SW Dark Brown to Brown f to c SAND, trace Silt		S-2	МС					
1-										
-										
2-										
3-										
-										
5-										

Driller:

Drilling Method: Hand Auger Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Datum: Sheet: 1 of 1

Soil Boring ID.: S-3

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

SUBSURFACE PROFILE					SAMPLE					
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Type	Blows/ft	Recovery	PID Reading (ppm)		
0-		Ground Surface	0.0					0		
1-		SW Dark Brown to Brown f to c SAND, trace Silt	-2.0	S-3	MC			0 0 530		
3		SC Brown, f SAND, trace Silt and Clay (fill material)	-3.5					141 132 0 0		
5-16-1		SC Olive/Gray f SAND, some Silt, trace Clay moist soil @ 7.0 ft bgs saturated @ 8.0 ft bgs increasing clay content with depth						730 250 340 200 95 40		
8-				S-3	MC			53 510 0 830 820 440		
10-		Refusal @ 11.0 ft bgs, weathered gravel	-10.5					0 0 0		
12-										
14-										

Driller: Probe Support, Inc.

Drilling Method: GeoProbe

Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Datum:

Sheet: 1 of 1

Soil Boring ID.: S-4

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

	SUBSURFACE PROFILE						E	
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Туре	Blows/ft	Recovery	PID Reading (ppm)
		Ground Surface	0.0					
0-		Ground Surface SW Dark Brown to Brown f to c SAND, trace Silt	0.0	S-4	MC			
4-								

Driller:

Drilling Method: Hand Auger Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Datum:

Soil Boring ID.: S-5

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

	SUBSURFACE PROFILE						-E	
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Туре	Blows/ft	Recovery	PID Reading (ppm)
		Ground Surface	0.0					
0-		Ground Surface SW Dark Brown to Brown f to c SAND, trace Silt		S-5	MC			
4-								

Driller:

Drilling Method: Hand Auger Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Soil Boring ID.: S-6

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

	SUBSURFACE PROFILE						E	
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Type	Blows/ft	Recovery	PID Reading (ppm)
0-		Ground Surface	0.0					0
-		GP Gravel/Crushed Stone (Surface Cover)	-0.5	S-6	MC			0
1-		SW Brown, m SAND and SILT. Debris present (fill material)						0
-				S-6	MC			0
2-								0 -
-		ML	-2.5					0
3-	<u>]</u>	Brown/Tan, f SAND, Silt, trace Clay			ĺĺ			0
-	.ii	increasing Brown to Dark Brown with depth with gravel, weathered rock fragments @ 8.0 ft bgs.						0
4-								0
-								0
5-								0
								0
6-								0
-								0
7-								0
								0
8-								0

Driller: Probe Support, Inc.
Drilling Method: GeoProbe

Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Soil Boring ID.: S-7

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

		SUBSURFACE PROFILE			SA	MPI	Ē	
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Туре	Blows/ft	Recovery	PID Reading (ppm)
0-		Ground Surface	0.0					0
-		GP Gravel/Crushed Stone (Surface Cover)	-0.5	S-7	мс			0
1-		SW Brown, m SAND and SILT. Debris present (fill material)						0
2-			-2.5	S-7	МС			0
3-		Brown/Tan, f SAND, Silt, trace Clay gravel, weathered rock fragments present						0
4-								0
5-								

Driller: Probe Support, Inc. Drilling Method: GeoProbe

Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Soil Boring ID.: S-8

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

		SUBSURFACE PROFILE			S	AMPI	E	
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Type	Blows/ft	Recovery	PID Reading (ppm)
0-		Ground Surface	0.0					0
-		GP Gravel/Crushed Stone (Surface Cover)	-0.5	S-8	мс			
-		SW Brown, m SAND and SILT. Debris present (fill material)						0
1-								0
-				S-8	МС			0
2-			-2.5					0
-		ML Brown/Tan, f SAND, Silt, trace Clay gravel, weathered rock fragments present	2.0					0
3-								0
4-								0

Driller: Probe Support, Inc.
Drilling Method: GeoProbe
Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Soil Boring ID.: S-9

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

SUBSURFACE PROFILE SAMPLE PID Reading (ppm) Depth/Elev. Recovery Depth (ft) Number Blows/ft Description Symbol 0.0 Ground Surface Gravel/Crushed Stone (Surface Cover) S-9 MC -0.5 0 Brown, m SAND and SILT. Debris present (fill material) 0 0 S-9 MC 0. 2--2.5 0 Brown/Tan, f SAND, Silt, trace Clay gravel, weathered rock fragments present 0 0 0

Driller: Probe Support, Inc. Drilling Method: GeoProbe

Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Datum:

Soil Boring ID.: S-10

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

		SUBSURFACE PROFILE		S	AMP	LE		
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Туре	Blows/ft	Recovery	PID Reading (ppm)
0-		Ground Surface	0.0					0
	-	GP Gravel/Crushed Stone (Surface Cover)	-0.5	S-10	МС			0
1-		SW Brown, m SAND and SILT. Debris present (fill material)						0
2-				S-10	мс			0
-		ML Brown/Tan, f SAND, Silt, trace Clay	-2.5					0
3-		gravel, weathered rock fragments present						0
								0
4-								0

Driller: Probe Support, Inc.

Drilling Method: GeoProbe

Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Datum:

Soil Boring ID.: S-11

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

		SUBSURFACE PROFILE		SAMPLE						
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Type	Blows/ft	Recovery	PID Reading (ppm)		
0-		Ground Surface	0.0					0		
-		GP Gravel/Crushed Stone (Surface Cover)	-0.5	S-11	мс			0		
1-		Brown, m SAND and SILT. Debris present (fill material)						0		
-				S-11	MC			0		
2-			-2.5					0		
3-		ML Brown/Tan, f SAND, Silt, trace Clay gravel, weathered rock fragments present	_							
3-								0		
4-								0		
5-										

Driller: Probe Support, Inc.

Drilling Method: GeoProbe Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Datum:

Soil Boring ID.: S-15

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

		SUBSURFACE PROFILE			S	AMPI	Ε	
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Type	Blows/ft	Recovery	PID Reading (ppm)
0-		Ground Surface	0.0					0
-		GP Gravel/Crushed Stone (Surface Cover)		S-15	МС			0
_			4.0					
1-		SM Brown/Tan, f SAND, Silt	-1.0					0
-		gravel, weathered rock fragments present						0
				S-15	МС			
2								0
-								0
3-								0
-								0
4-								0
- - -								
5-					1100			

Driller: Probe Support, Inc.

Drilling Method: GeoProbe Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Datum:

Soil Boring ID.: S-16

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

		SUBSURFACE PROFILE	SAMPLE						
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Туре	Blows/ft	Recovery	PID Reading (ppm)	
0-		Ground Surface	0.0					0	
-		Brown f to c SAND, trace Silt (Top Soil)	-0.5	S-16	МС			0	
1-		GM Gravel/Crushed Stone (Fill Material)						0	
-								0	
2-		SW	-2.0	S-16	МС			0	
		Brown, f SAND and SILT, trace Clay						0	
3-		gravel, weathered rock fragments present @ 6.5 to 7.0 ft bgs.						0	
								0	
4-								0	
								0	
5-								0	
=								0	
6-								0	
]			7.0					0	
7-		SW Brown, m to c SAND and SILT	-7.0	S-16	MC			0	
-		saturated @ 7.5 ft bgs.						0	
8-	333							0	

Driller: Probe Support, Inc.
Drilling Method: GeoProbe
Completion Date: June 14, 20

Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Datum:

Soil Boring ID.: S-17

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

		SUBSURFACE PROFILE			SA	AMPI	E	
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Туре	Blows/ft	Recovery	PID Reading (ppm)
. 0-		Ground Surface	0.0					0
-		GP Gravel/Crushed Stone (Surface Cover)		S-17	МС		_	0
1_			-1.0					0
- '-		SM Brown/Tan, f SAND, Silt gravel, weathered rock fragments present						
-		3.2.0. , πουπουστικός μεταγούς μ		S-17	мс			0
2-						_		0
3-								0
-								0
4-						·		0
-								
5-								

Driller: Probe Support, Inc.

Drilling Method: GeoProbe Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Datum:

Soil Boring ID.: S-19

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

	SUBSURFACE PROFILE						_E	
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Туре	Blows/ft	Recovery	PID Reading (ppm)
0-		Ground Surface	0.0					0
-		Gravel/Crushed Stone (Surface Cover)	-0.5	S-19	MC			0
1-		SW Brown, f to m SAND, trace Silt. Debris present (Fill Material).						0
-				S-19	МС			0
2-								0
=			2.0					0
3-		ML Olive/Brown f SAND, trace Silt, trace Clay	-3.0					0
-		Onverbrown For true, trace only trace oray						0
4-								0
-								0
5-								0
-								0
6-								0
								0
7-								0
				S-19	MC		_	0
8-								0

Driller: Probe Support, Inc.
Drilling Method: GeoProbe
Completion Date: June 14, 200

Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Datum:

Monitoring Well ID.: MW-1

Project: Jonas Automotive

Client: City of Newburgh

Permit No.:

Site Location: Newburgh, NY

Geologist: Chris Viani

First Environment, Inc. 91 Fulton Street Boonton, NJ 07005

		SUBSURFACE PROFILE			S	ΑM	PLE		
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Туре	Blows/ft	Recovery	PID Reading (ppm)	Well Completion Details
0-		Ground Surface					£		
1-	No.	FINE SAND (FILL) Dark brown fine sand; some silt; little fine angular gravel. No staining/odor.	0.0		SS	R			Concrete S
3-1		SILT (FILL) Brown silt; little fine angular gravel. No staining/odor.	2.0		SS			60	Bentonite 2" PVC — ACASING
5 6 6					SS			2	
7-1		SILT Light reddish brown silt; trace to little fine sand;	7.0		SS			32	
9-1		occaisional gray laminae. No staining/odor. Stiff. Wet at 8'.			ss			800	#1 Sand —
11-					SS				#1 Sand — ** .010 Slot — ** Screen
13-1					SS			57	.010 Slot
[[]		End of Borehole	14.0						
15-	1						- 1		
16									
18-									

Driller: ADT

Drilling Method: Hollow-stem auger

Well Completion Date:

Notes:

Borehole Diameter: 8"

Monitoring Well ID.: MW-2

Project: Jonas Automotive

Client: City of Newburgh

Permit No.:

Site Location: Newburgh, NY

Geologist: Chris Viani

First Environment, Inc. 91 Fulton Street Boonton, NJ 07005

		SUBSURFACE PROFILE			S	ΑM	PLE		
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Туре	Blows/ft	Recovery	PID Reading (ppm)	Well Completion Details
0-		Ground Surface							
1-		SAND and GRAVEL (FILL) Dark gray fine sand and very angular gravel. No staining/odors. FILL.	0.0		SS				Concrete S
-=	್ಲಿಂ								Bentonite 🙀 🐰
4 5		SAND and GRAVEL Brown fine to coarse sand and fine to medium subrounded gravel; little to some silt. Very moist, to wet at 10'. No staining/odors.	3.0						2" PVC → Casing
5	್ದಂ								
6-					SS				
7=									
8=									
9									
10=									#1 Sand —
11=					SS				
12-	م ⁵ 0								
13	00°								#1 Sand ————————————————————————————————————
14-	00 00 00								JOI BELL
15	_ಶ Oc	End of Borehole	15.0						
16-		Lift of bolefiole							
17-									
18-									

Driller: ADT

Drilling Method: Hollow-stem auger

Well Completion Date: 8/8/1

Notes:

Borehole Diameter: 8"

Monitoring Well ID.: MW-3

Project: Jonas Automotive

Client: City of Newburgh

Permit No.:

Site Location: Newburgh, NY

Geologist: Chris Viani

First Environment, Inc. 91 Fulton Street Boonton, NJ 07005

SAMPLE SUBSURFACE PROFILE PID Reading (ppm) Well Completion Depth/Elev. Details Recovery Depth (ft) Description Number Blows/ft Symbol Type Ground Surface 0.0 SAND, SILT and GRAVEL (FILL) Brown to dark brown sand, silt, and angular fine SS 0 to medium gravel. FILL. Concrete -2-Bentonite SS 3. 3.0 2" PVC MEDIUM to COARSE SAND Brown medium to coarse sand; some rounded Casing 4 fine to medium gravel; trace to little silt. Loose. Wet at 9'. No staining/odors. SS 0 5-6-SS 0 8-9. SS 0 #1 Sand -10-SS 0 11 11.0 MEDIUM SAND Brown medium sand; trace to little fine sand; 12trace silt; trace fine well-rounded gravel. Wet. No staining/odor. .010 Slot SS 0 13-Screen 14 SS 15 15.0 End of Borehole 16-17 18

Driller: ADT

Drilling Method: Hollow-stem auger

Well Completion Date: 8/7/1

Notes: Auger and split-spoon refusal at 15'.

Borehole Diameter: 8"

Monitoring Well ID.: MW-4

Project: Jonas Automotive

Client: City of Newburgh

Permit No.:

Site Location: Newburgh, NY

Geologist: Chris Viani

First Environment, Inc. 91 Fulton Street Boonton, NJ 07005

		SUBSURFACE PROFILE	.,		S	AM	PLE		
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Type	Blows/ft	Recovery	PID Reading (ppm)	Well Completion Details
0-		Ground Surface	0.0				-		
1-1		SILT (FILL) Brown silt; little to some angular gravel, w/ brick fragments and cinders. No staining/odor. FILL.	0.0		ss				Concrete 6
2 -									Dantanita 🛱
3-1		SILT Brown silt; little fine to coarse sand; little fine rounded gravel. No staining/odor.	3.5		SS				Bentonite 2" PVC Casing
5		FINE SAND Light reddish brown fine sand; trace silt; with rust, gray, and brown mottles. No staining/odors.	5.5		SS				
6-		SILT	0.0				RECEIVE !		
7		Reddish brown silt and fine sand to silt with some sand; with brown and gray mottles. Finely laminated in some intervals. Very moist. No staining/odors.			SS				
9 7	:0°	SAND and GRAVEL	9.0		ss				#1 Sand — ** .010 Slot - ** Screen
10=	٥٥٩	Brown fine to coarse sand and fine to medium rounded gravel; little silt. Wet. No							#1 Sand
11-	% ∴ •0•	staining/odors.			SS				
12-	ိုင္ငံ						to supremute		
13-	% 000 000				SS				.010 Slot -
14=	Λ.ο.	End of Borehole	14.0						
15		Lift of Bolefiole							
\dashv									
16-									
17-									
∃									
18-									

Driller: ADT

Drilling Method: Hollow-stem auger

Well Completion Date: 8/8/1

Notes:

Borehole Diameter: 8"

Monitoring Well ID.: MW-5

Project: Jonas Automotive

Client: City of Newburgh

Permit No.:

Site Location: Newburgh, NY

Geologist: Chris Viani

First Environment, Inc. 91 Fulton Street Boonton, NJ 07005

		SUBSURFACE PROFILE			S	AM	PLE		
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Type	Blows/ft	Recovery	PID Reading (ppm)	Well Completion Details
0-	°∕) ¢	Ground Surface	0.0	_					
1 2		SAND, SILT, and GRAVEL (FILL) Brown to black sand, silt, and angular fine to coarse gravel. FILL.	0.0		ss			0	Concrete S
3	00°				SS			0	2" PVC Solver Casing
5-1		COBBLES Cobbles. Very poor split-spoon recovery. Wet at 11'.	4.0		SS				Bentonite -
6-	000				ss		estra		
7-					-				
-									
8 9					SS				#1 Sand ————————————————————————————————————
10-							MEDA		#1 Sand ——▶
11					SS				
12-							Maner		
13-					SS				.010 Slot Screen
14-		SAND	14.0						
15-		Brown fine to coarse sand with occ. gray mottles; little rounded fine to medium gravel;					DESCRIPTION OF THE PROPERTY OF		
16		trace silt. Wet. No staining/odor.			ss			0	
17-		End of Borehole	17.0				\neg		<u> </u>
18-									

Driller: ADT

Drilling Method: Hollow-stem auger

Well Completion Date: 8/7/1

Notes:

Borehole Diameter: 8"

Monitoring Well ID.: MW-6

Project: Jonas Automotive

Client: City of Newburgh

Permit No.:

Site Location: Newburgh, NY

Geologist: Mike Van Brunt

First Environment, Inc. 91 Fulton Street Boonton, NJ 07005

		SUBSURFACE PROFILE			S	ΑM	PLE		
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Type	Blows/ft	Recovery	PID Reading (ppm)	Well Completion Details
0- 1- 2-		Ground Surface Fill gray f GRAVEL Brown f-m Sandy SILT moist Brown with trace black streaks Clayey SILT moist	0.0 0.6 1.2 1.6	1	SS	3 11 8 6			Concrete Bentonite
3-		Brown Silty f-m SAND trace f gravel moist							
6-		Brown f-m SAND some silt moist	5.0	2	SS	3 2 4	10.00		2" PVC —>
8-		Brown Slity f SAND trace clay wet	7.4	3	ss	6 5 7 7			2" PVC → BETTER STATE OF THE S
10		Brown Silty CLAY trace f sand wet	9.6	4	ss	5 4 5			#1 Sand →
12		Brown f-c GRAVEL wet at 13 feet	13.0	5	SS	3 16 45			.010 Slot
14-		very little recovery End of Borehole	15.0	6	ss	16 20 15			Screen
16-		End of Borefiole							

Driller: ADT

Drilling Method: Hollow-stem auger Well Completion Date: 12 August 2002

Notes:

Borehole Diameter: 8"

Soil Boring ID.: S-1

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

		SUBSURFACE PROFILE			SA	AMP	LE	
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Туре	Blows/ft	Recovery	PID Reading (ppm)
0-		Ground Surface	0.0					
-		SW Dark Brown to Brown f to c SAND, trace Silt	-0.5	S-1	мс			
-		End of Borehole						
1-								
2-								
3-								
4-								
5								

Driller:

Drilling Method: Hand Auger Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Datum:

Soil Boring ID.: S-2

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

		SUBSURFACE PROFILE			SA	MPI	Ε	
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Type	Blows/ft	Recovery	PID Reading (ppm)
0-		Ground Surface	0.0					
-		SW Dark Brown to Brown f to c SAND, trace Silt		S-2	мс	_		
1-								
-						1		
2-								
3-								
-								
4-								
- - 5-								

Driller:

Drilling Method: Hand Auger Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Soil Boring ID.: S-3

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

		SUBSURFACE PROFILE			S	AMPI	E	
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Type	Blows/ft	Recovery	PID Reading (ppm)
0-		Ground Surface	0.0					0
1-		SW Dark Brown to Brown f to c SAND, trace Silt	-2.0	S-3	MC	_		0 0 530
3		SC Brown, f SAND, trace Silt and Clay (fill material)	-3.5					141 132 0 0
5		SC Olive/Gray f SAND, some Silt, trace Clay moist soil @ 7.0 ft bgs saturated @ 8.0 ft bgs increasing clay content with depth						730 250 340 200 95 40
8-				S-3	MC			53 510 0 830 820 440
10-		Refusal @ 11.0 ft bgs, weathered gravel	-10.5					0 0 0
12-								
14-								

Driller: Probe Support, Inc.

Drilling Method: GeoProbe

Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Datum:

Soil Boring ID.: S-4

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

		SUBSURFACE PROFILE			SA	MPI	E	
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Туре	Blows/ft	Recovery	PID Reading (ppm)
		Ground Surface	0.0					
0-		Ground Surface SW Dark Brown to Brown f to c SAND, trace Silt	0.0	S-4	MC			
4-								

Driller:

Drilling Method: Hand Auger Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Datum:

Soil Boring ID.: S-5

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

		SUBSURFACE PROFILE			SA	AMPI	_E	
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Туре	Blows/ft	Recovery	PID Reading (ppm)
		Ground Surface	0.0					
0-		Ground Surface SW Dark Brown to Brown f to c SAND, trace Silt		S-5	MC			
4-								

Driller:

Drilling Method: Hand Auger Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Soil Boring ID.: S-6

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

		SUBSURFACE PROFILE			SA	AMPI	E	
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Type	Blows/ft	Recovery	PID Reading (ppm)
0-		Ground Surface	0.0					0
-		GP Gravel/Crushed Stone (Surface Cover)	-0.5	S-6	MC			0
1-		SW Brown, m SAND and SILT. Debris present (fill material)						0
-				S-6	MC			0
2-								0 -
-		ML	-2.5					0
3-	<u>]</u>	Brown/Tan, f SAND, Silt, trace Clay			ĺĺ			0
-	.ii	increasing Brown to Dark Brown with depth with gravel, weathered rock fragments @ 8.0 ft bgs.						0
4-								0
-								0
5-								0
								0
6-								0
-								0
7-								0
								0
8-								0

Driller: Probe Support, Inc.
Drilling Method: GeoProbe

Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Soil Boring ID.: S-7

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

		SUBSURFACE PROFILE			SA	MPI	Ē	
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Туре	Blows/ft	Recovery	PID Reading (ppm)
0-		Ground Surface	0.0					0
-		GP Gravel/Crushed Stone (Surface Cover)	-0.5	S-7	мс			0
1-		SW Brown, m SAND and SILT. Debris present (fill material)						0
2-			-2.5	S-7	МС			0
3-		Brown/Tan, f SAND, Silt, trace Clay gravel, weathered rock fragments present						0
4-								0
5-								

Driller: Probe Support, Inc. Drilling Method: GeoProbe

Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Soil Boring ID.: S-8

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

		SUBSURFACE PROFILE			S	AMPI	E	
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Type	Blows/ft	Recovery	PID Reading (ppm)
0-		Ground Surface	0.0					0
-		GP Gravel/Crushed Stone (Surface Cover)	-0.5	S-8	мс			
-		SW Brown, m SAND and SILT. Debris present (fill material)						0
1-								0
-				S-8	МС			0
2-			-2.5					0
-		ML Brown/Tan, f SAND, Silt, trace Clay gravel, weathered rock fragments present	2.0					0
3-								0
4-								0

Driller: Probe Support, Inc.
Drilling Method: GeoProbe
Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Soil Boring ID.: S-9

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

SUBSURFACE PROFILE SAMPLE PID Reading (ppm) Depth/Elev. Recovery Depth (ft) Number Blows/ft Description Symbol 0.0 Ground Surface Gravel/Crushed Stone (Surface Cover) S-9 MC -0.5 0 Brown, m SAND and SILT. Debris present (fill material) 0 0 S-9 MC 0. 2--2.5 0 Brown/Tan, f SAND, Silt, trace Clay gravel, weathered rock fragments present 0 0 0

Driller: Probe Support, Inc. Drilling Method: GeoProbe

Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Datum:

Soil Boring ID.: S-10

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

		SUBSURFACE PROFILE	SAMPLE					
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Туре	Blows/ft	Recovery	PID Reading (ppm)
0-		Ground Surface	0.0					0
		GP Gravel/Crushed Stone (Surface Cover)	-0.5	S-10	МС			0
1-		SW Brown, m SAND and SILT. Debris present (fill material)						0
2-				S-10	мс			0
-		ML Brown/Tan, f SAND, Silt, trace Clay	-2.5					0
3-		gravel, weathered rock fragments present						0
-								0
4-	-							0

Driller: Probe Support, Inc.

Drilling Method: GeoProbe

Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Datum:

Soil Boring ID.: S-11

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

		SUBSURFACE PROFILE			SA	AMP	E	
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Type	Blows/ft	Recovery	PID Reading (ppm)
0-		Ground Surface	0.0					0
-		GP Gravel/Crushed Stone (Surface Cover)	-0.5	S-11	МС			0
1-		SW Brown, m SAND and SILT. Debris present (fill material)						0
-				S-11	МС			0
2-			-2.5					0
3-		ML Brown/Tan, f SAND, Silt, trace Clay gravel, weathered rock fragments present						0
-								0
4								0

Driller: Probe Support, Inc.

Drilling Method: GeoProbe Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Datum:

Soil Boring ID.: S-15

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

		SUBSURFACE PROFILE			SAMPLE					
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Type	Blows/ft	Recovery	PID Reading (ppm)		
0-		Ground Surface	0.0					0		
-		GP Gravel/Crushed Stone (Surface Cover)		S-15	МС			0		
			4.0							
1-		SM Brown/Tan, f SAND, Silt	-1.0					0		
1		gravel, weathered rock fragments present						0		
				S-15	МС					
2-								0		
								0		
3-								0		
_ _ _								0		
4-								0		
5-										

Driller: Probe Support, Inc.

Drilling Method: GeoProbe Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Datum:

Soil Boring ID.: S-16

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

		SUBSURFACE PROFILE			SA	AMPI	_E	
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Туре	Blows/ft	Recovery	PID Reading (ppm)
0-		Ground Surface	0.0					0
		Brown f to c SAND, trace Silt (Top Soil)	-0.5	S-16	МС			0
1-		GM Gravel/Crushed Stone (Fill Material)						0
				S-16	мс			0
2		SW	-2.0	3-10	IVIC			0
		Brown, f SAND and SILT, trace Clay						0
3-		gravel, weathered rock fragments present @ 6.5 to 7.0 ft bgs.						0
								0
4-								0
-								0
5-								0
-								0
6-								0
1			-7.0					0
7-		SW Brown, m to c SAND and SILT	-7.0	S-16	МС			0
-		saturated @ 7.5 ft bgs.		_				0
8-								0

Driller: Probe Support, Inc.
Drilling Method: GeoProbe
Completion Date: June 14, 20

Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Datum:

Soil Boring ID.: S-19

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

		SUBSURFACE PROFILE			S	AMPL	_E	
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Туре	Blows/ft	Recovery	PID Reading (ppm)
0-	01119	Ground Surface	0.0					0
_		Gravel/Crushed Stone (Surface Cover)	-0.5	S-19	MC			0
1-		SW Brown, f to m SAND, trace Silt. Debris present (Fill Material).						0
-				0.40	NAC		-	0
2-				S-19	MC			0
								0
3-		ML	-3.0			1		0
-		Olive/Brown f SAND, trace Silt, trace Clay						0
4-								0
-								0
5-								0
								0
6-								0
								0
7-				S-19	мс	\dashv	\neg	0
				- 10		-		0
8-								0

Driller: Probe Support, Inc.
Drilling Method: GeoProbe

Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Datum:

Soil Boring ID.: S-20

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

		SUBSURFACE PROFILE			S	AMP	LE					
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Type	Blows/ft	Recovery	PID Reading (ppm)				
0-		Ground Surface	0.0					0				
-		Gravel/Crushed Stone (Surface Cover) SW	-0.5	S-20	МС	_		0				
1-		Brown, f to m SAND, trace Silt. Debris present (Fill Material).						0				
-								0				
2-				S-20	МС			0				
-								0				
3-		ML Olive/Brown f SAND, trace Silt, trace Clay	-3.0	_				0				
-		Chive Brown (Critical and Chiq adde Chiq						0				
4-								0				
-								0				
5-								0				
6-								0				
-								0				
7-								0				
-				1				0				
- 8-								0				

Driller: Probe Support, Inc. Drilling Method: GeoProbe

Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Datum:

Soil Boring ID.: S-21

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

		SUBSURFACE PROFILE			C			
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Туре	Blows/ft	Recovery	PID Reading (ppm)
0-	ини	Ground Surface Gravel/Crushed Stone (Surface Cover)	0.0					0
-		SW	-0.5					0
1-		Brown, f to m SAND, trace Silt. Debris present (Fill Material). Sample taken below invert of catchbasin						0
-								0
2-								0
-			2.0	S-21	MC			0
3-		ML Olive/Brown f SAND, trace Silt, trace Clay	-3.0					0
_								0
4-								0
5-								

Driller: Probe Support, Inc.
Drilling Method: GeoProbe
Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Soil Boring ID.: S-20

Project: Former Jonas Automotive Facility

Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl

First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005

		SUBSURFACE PROFILE			S	AMP	LE					
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Type	Blows/ft	Recovery	PID Reading (ppm)				
0-		Ground Surface	0.0					0				
-		Gravel/Crushed Stone (Surface Cover) SW	-0.5	S-20	МС	_		0				
1-		Brown, f to m SAND, trace Silt. Debris present (Fill Material).						0				
-								0				
2-				S-20	МС			0				
-								0				
3-		ML Olive/Brown f SAND, trace Silt, trace Clay	-3.0	_				0				
-		Chive Brown (Critical and Chiq adde Chiq						0				
4-								0				
-								0				
5-								0				
6-								0				
-								0				
7-								0				
-				1				0				
- 8-								0				

Driller: Probe Support, Inc. Drilling Method: GeoProbe

Completion Date: June 14, 2001

Notes:

Borehole Diameter: 2.0 in

Datum:

Soil Boring ID.: S-21

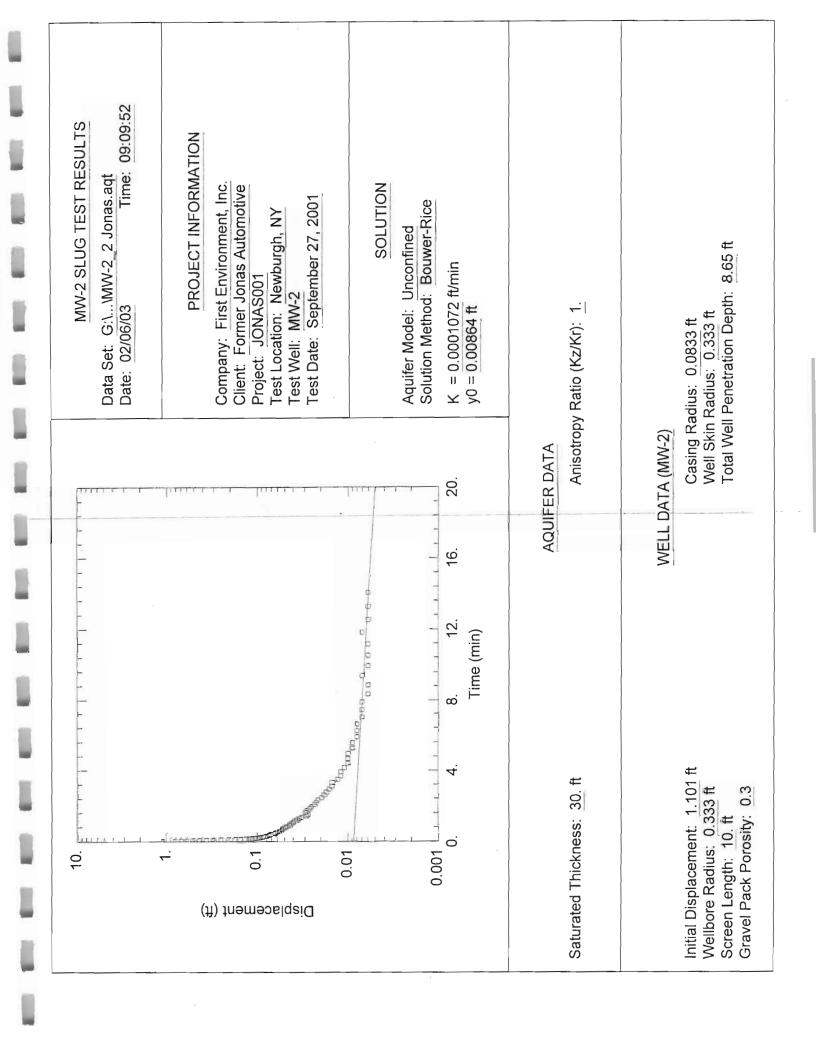
Project: Former Jonas Automotive Facility

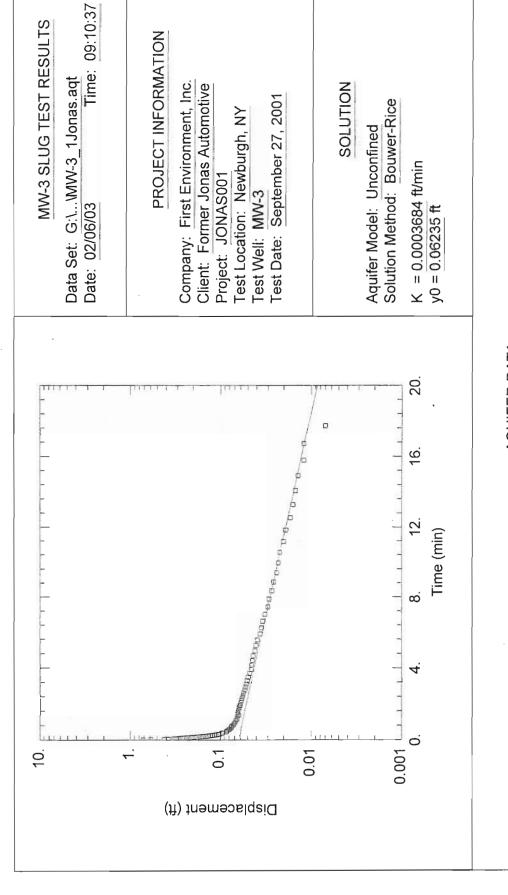
Client: City of Newburgh, New York

Permit No.: NA

Site Location: Newburgh, New York

Geologist: S. Green/J. Engdahl


First Environment, Inc. 91 Fulton Street Boonton, New Jersey 07005


		SUBSURFACE PROFILE			C			
Depth (ft)	Symbol	Description	Depth/Elev.	Number	Туре	Blows/ft	Recovery	PID Reading (ppm)
0-	ини	Ground Surface Gravel/Crushed Stone (Surface Cover)	0.0					0
-		SW	-0.5					0
1-		Brown, f to m SAND, trace Silt. Debris present (Fill Material). Sample taken below invert of catchbasin						0
-								0
2-								0
-			2.0	S-21	MC			0
3-		ML Olive/Brown f SAND, trace Silt, trace Clay	-3.0					0
_								0
4-								0
5-								

Driller: Probe Support, Inc.
Drilling Method: GeoProbe
Completion Date: June 14, 2001

Notes:

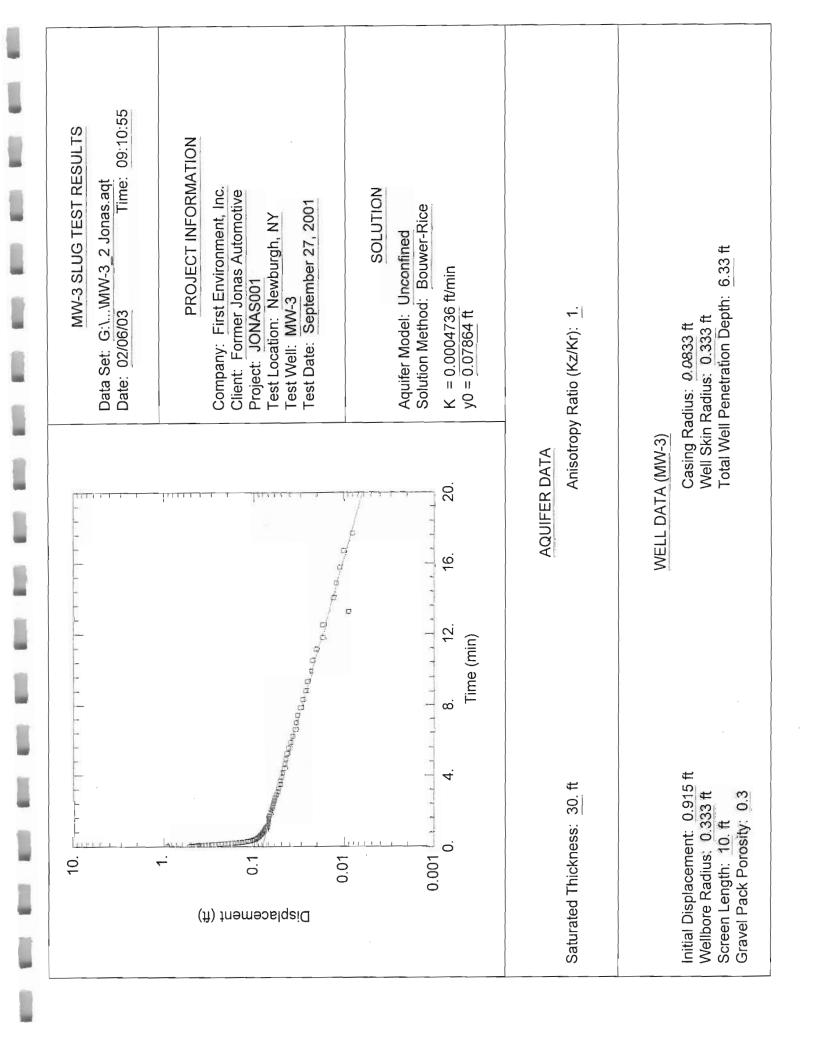
Borehole Diameter: 2.0 in

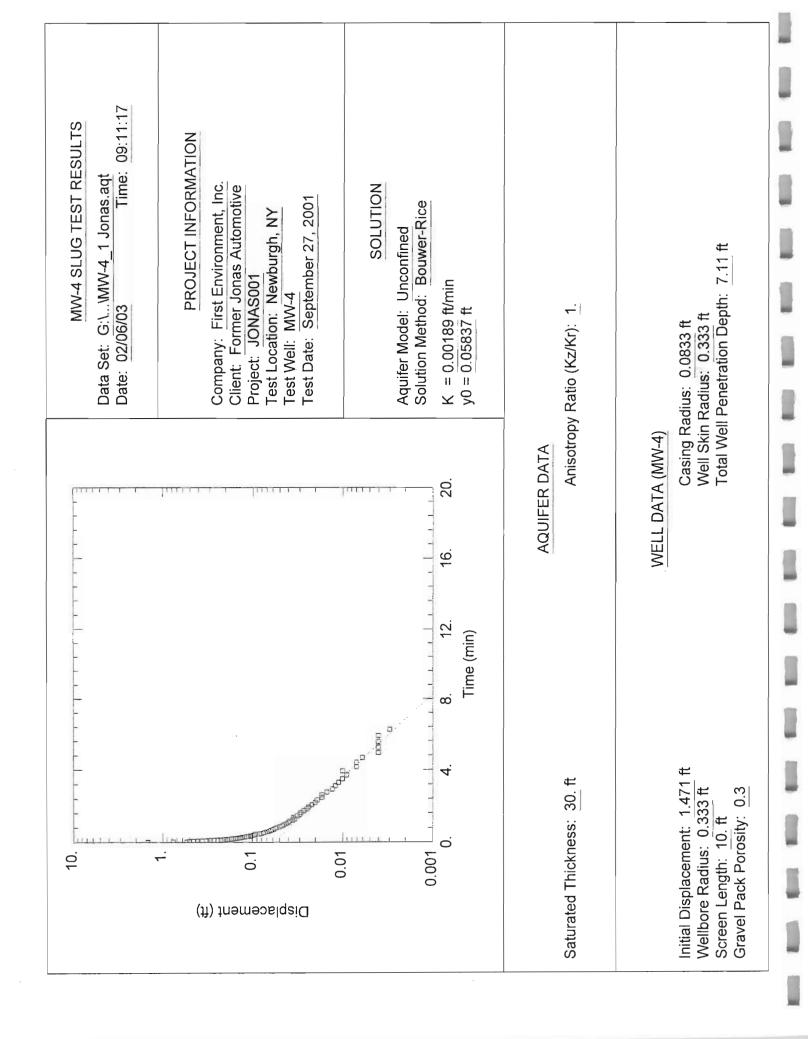
AQUIFER DATA

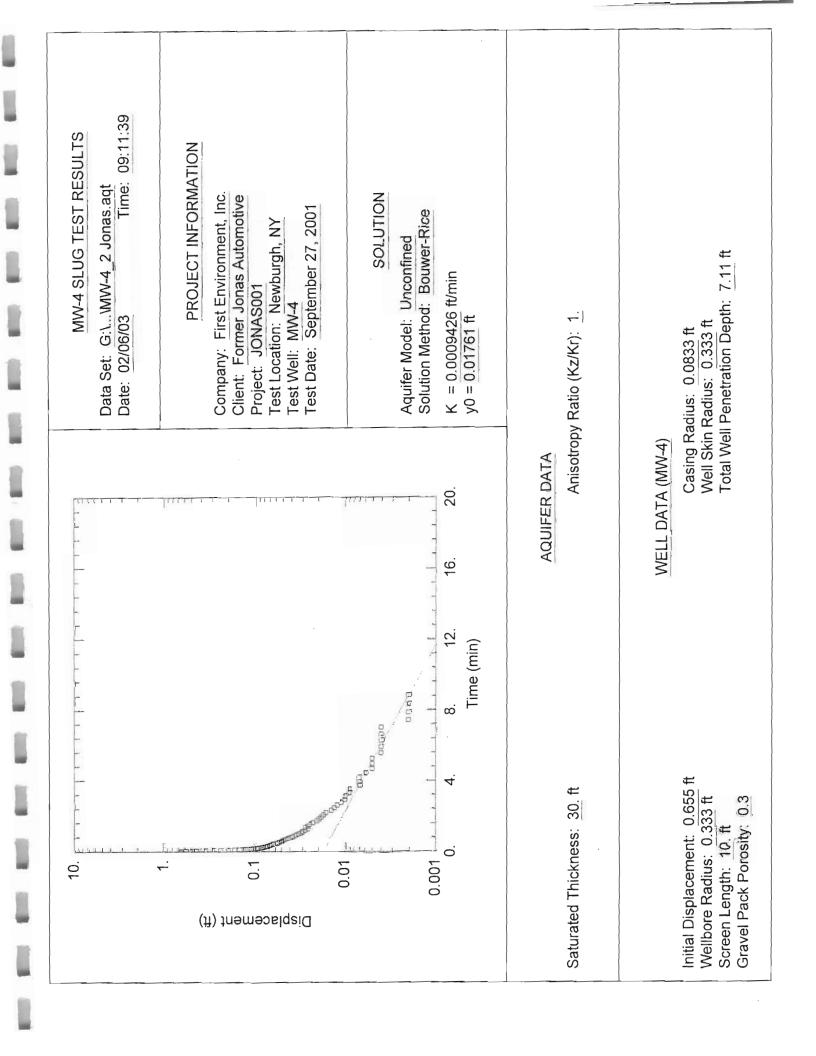
Saturated Thickness: 30. ft

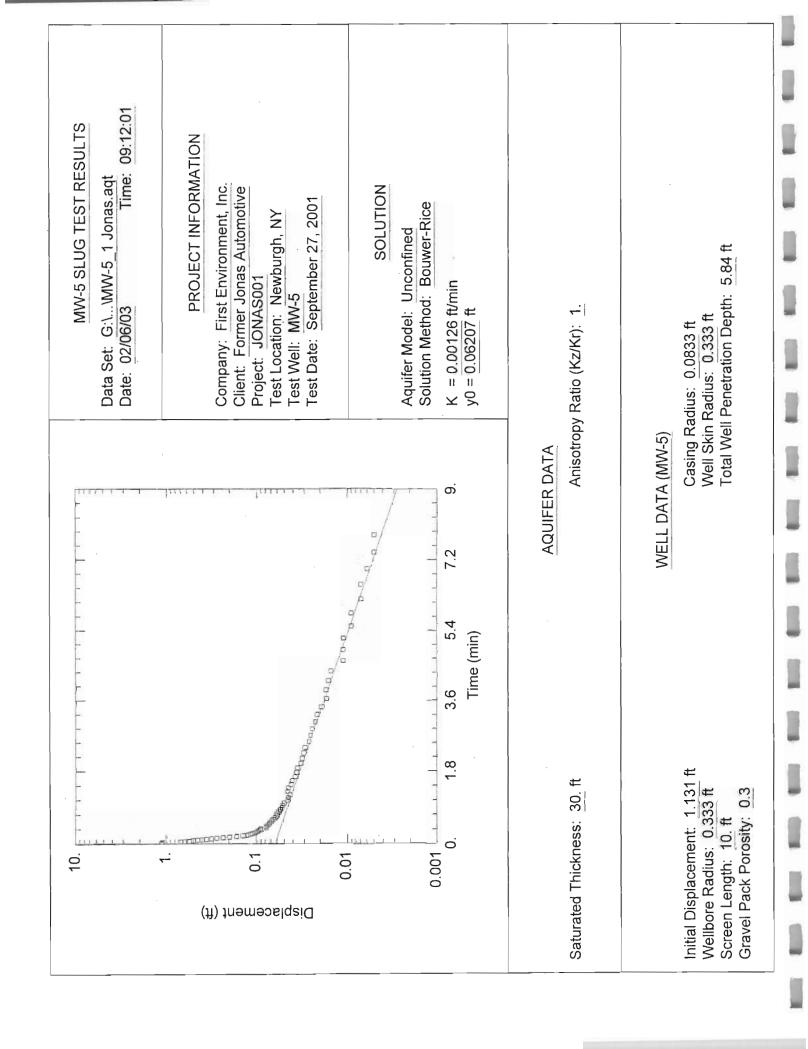
Anisotropy Ratio (Kz/Kr): 1.

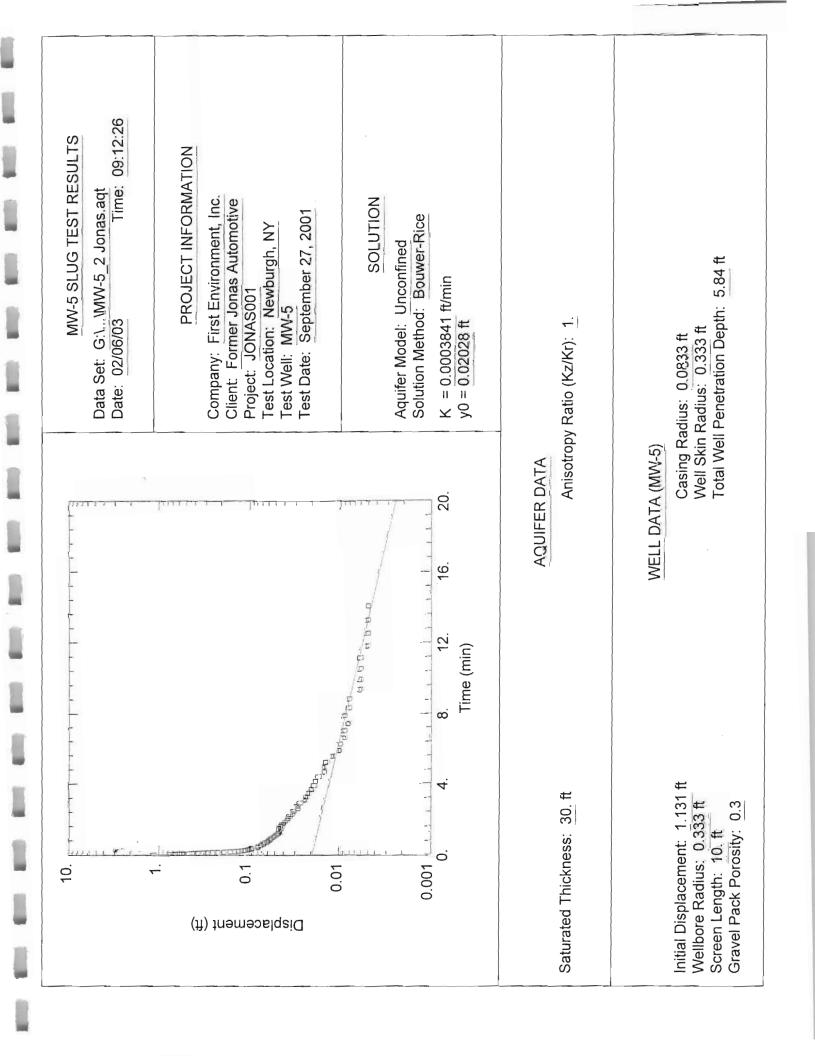
WELL DATA (MW-3)


Initial Displacement: 0.717 ft


Wellbore Radius: 0.333 ft


Gravel Pack Porosity: 0.3 Screen Length: 10. ft


Well Skin Radius: 0.333 ft Casing Radius: 0.0833 ft


Total Well Penetration Depth: 6.33 ft

QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) PLAN

The soil and groundwater, surface water and sediment sampling techniques to be employed at the Provan facility in Newburgh, New York, are detailed below. All efforts will be made to eliminate sample contamination and maximize the reliability to the analytical results. These efforts include proper use and cleaning of sampling equipment and sample containers to eliminate sample contamination, use of a quality assurance program to maximize accuracy and precision of the analytical results, proper installation of groundwater monitoring wells and the use of chain-of-custody procedures to track the samples from source to analysis and minimize the opportunity for tampering.

SAMPLING EQUIPMENT AND PROCEDURES

SAMPLING EQUIPMENT AND CLEANING PROCEDURES

The sample containers, glass jars with Teflon™ lined-plastic screw-on lids, will be provided by the contracted New York State Department of Health ELAP Certified Laboratory. Containers used to collect soil and water samples will be specifically designed for that purpose. The containers will be cleaned prior to shipment by the laboratory, using standard, in-house procedures.

Soil samples will be collected with either a hand auger, split-spoon sampler or Geoprobe Macrocore device. If a split-spoon sampler or Macrocore device is used, a drill rig will be used to drive the sampler to the required depth and obtain soil samples. The split-spoon sampler will be 24 inches in length and in accordance with ASTM D1586-67. The Macrocore will be 48 inches in length. The Macrocore sampler will be equipped with a sample retention device and acetate liner to ensure sample quality.

All soil sampling equipment will be cleaned with a wire or bristle brush to remove any clinging soils or materials. This will be followed by a washing with a phosphate-free detergent and water. The equipment will then be rinsed with clean water, distilled water, methanol (used to avoid contaminating soils with acetone), and finally, distilled water. The drilling tools will be cleaned with a steam cleaner prior to use and between work on individual boreholes.

Prior to sampling groundwater, wells will be purged by bailing or pumping, depending on well productivity. If bailing is used, one PVC bailer will be dedicated to each well for use in purging and one stainless steel, Polyethylene, or Teflon™ bailer will be dedicated to each well for use in sampling.

All purge/sampling equipment will be cleaned before transporting to the field. Bailers will be cleaned by the certified laboratory using standard in-house procedures. After drying, the bailers will be wrapped in aluminum foil for transportation to the field. Pumps used to purge wells prior to sampling will be cleaned by rinsing with detergent, potable water, distilled water, methanol and distilled water.

USE OF QUALITY ASSURANCE SAMPLES (BLANKS, DUPLICATES)

Travel blank samples, duplicates and blank samples generated in the field will serve as an independent check on the laboratory and field sampling techniques. These samples will be coded to minimize the chance of laboratory identification.

The following QA/QC samples will be collected:

- One travel/trip blank, consisting of distilled water prepared by the laboratory and analyzed for VOC analysis, will be collected for each two days of sampling.
- One field blank for each media sampled that day will be submitted for analysis for volatile organics.

SAMPLING METHODOLOGY

All subsurface work will be conducted in a manner that produces reliable information of subsurface conditions and representative soil, sediment, surface water and groundwater samples for analysis. A First Environment degreed hydrogeologist, geologist, engineer or equivalent will supervise all drilling and sampling procedures.

Soil Sample Collection Methodology

Soil Samples.

The location of each borehole will be referenced by a grid system or some other survey control. A drill rig/Geoprobe or hand auger will be used to produce boreholes at the proper depths at each predetermined sampling location. Sample depths will be measured to ensure they are correct. Samples will be taken by driving a split-spoon sampler, Macrocore or hand auger into the undisturbed material below the bottom of the borehole. The sampler will be equipped with a sample retention device.

Prior to sample collection, sample depths will be screened with Photoionzation Detector (PID) to insure that collected samples are representative of actual soil conditions. This will accomplished through head space analysis. The PID is calibrated to 100 ppm isobutylene prior to each days activities.

A soil sample will be collected from the appropriate sampler or hand auger. To prevent contamination of sample bottle by windblown soils, each bottle will remain sealed until sample collection. Upon soil collection, the sample will be split in two bottles for headspace analysis and laboratory analysis. The sample containing the highest headspace PID reading at each boring will submit the split sample to the laboratory. This sample will bottle have the following information recorded on it:

- Job Name and Location
- Sample Location
- Time and Date of Sampling
- · Depth of Sampling
- Analysis
- Boring Number

The jar will then be placed in a cooler and kept at 4°C until transported to the laboratory. This procedure will be repeated at each sample location and for successive samples at the same location.

Each sample device will be examined in the field to aid in evaluation of site stratigraphy. If boreholes are located at or near the water table, they will be sealed with a cement bentonite grout acceptable for use in monitoring wells.

Monitoring Well Installation Technique and Design

To ensure that representative samples of the groundwater are obtained, monitoring wells will be installed in accordance with NYSDEC monitoring well installation and design specifications for unconsolidated material as presented in Section 5.5.3.2 of the NYSDEC Sampling Guidelines and Protocols. All wells will be constructed of threaded, flush joint, schedule 40 PVC wells materials, supplied by the drilling contractor and will be installed using auger drilling techniques.

Upon completion of the borings, an appropriate length of 2-inch PVC, 0.010-inch slotted well screen will be installed through the hollow stem augers from approximately 10 feet below to 5 feet above the water table. Should the water table be encountered within 7 feet or less of the ground surface, the well screen will extend to within 2 feet of the ground surface. The remainder of the well will consist of 2-inch PVC casing which will extend over the ground surface. Filter sand will be placed in the annulus between the screen and the borehole to a level of at least 6 inches above the top of the screen. A bentonite pellet seal will be placed on top of the filter sand. The remainder of the annulus will be grouted with a cement bentonite ground acceptable for use in monitoring wells. The surface protection will consist of a lockable steel casing, extending approximately 2 feet above the ground surface and anchored in cement. In areas accessible to vehicular traffic, road boxes may be installed.

For the deep monitoring wells an isolation casing will be installed and grouted to the top of the clay confining layer. Drilling will be resumed through the grout, clay later and into the lower waterbearing zone (see Figure 4-7 for example of monitoring well installation using an isolation casing). If no competent clay later is encountered the wells will be installed with a single casing to a maximum depth of 35 feet.

To complete the monitoring well installation, each well will be developed by pumping, bailing or an equivalent method. This will remove fines generated during the installation and ensure that hydraulic continuity is established between the well and the aquifer.

Groundwater Flow Direction

A New York registered land surveyor will survey the reference elevation of the top of the PVC monitoring well casings. Water level measurements will be recorded to within 0.01 feet, using an electric water-level indicator. This information will be used to determine groundwater flow direction and construct groundwater contour maps.

Groundwater Sample Collection Methodology

Water samples will be collected no sooner than two weeks after development of the monitoring wells. Prior to sample collection, a minimum of three well volumes will be evacuated using a pump of dedicated bailer depending on well production. After purging, a bailer will be submerged beneath the water column in the well, filled and raised to the surface. The sample collection jar will be filled directly from the bailer. Bailing will continue until each sample jar is filled and closed. Care will be taken to ensure that samples tested for volatile organics have no air space. Sample jars will be kept closed until the time of collection, to prevent airborne contamination of the sample container. Specific conductance and pH will be measured in the field.

After closing the sample jar, the following information will be recorded on the sample container:

- Job Name
- Sample Media
- Sample Location
- Time and Date of Sampling
- Analysis

The sample will then be placed in a cooler and kept at 4°C until transported to the laboratory for analysis. This process will be repeated for each well.

A field log will also be kept and the following information recorded for each sample:

- Time and Date of Sampling
- Weather
- Name of Sampler
- Water Level Prior to Purge
- Total Well Depth
- Volume Purged
- Purging Method
- Sampler Type
- Presence and Description of any Free Product
- pH, Specific Conductance and Turbidity
- Other Characteristics (odor, color, etc.)

CHAIN-OF-CUSTODY PROCEDURES

Each sample will be recorded separately on the chain-of-custody manifest as part of the sampling procedure. The information obtained for each sample will include the following:

- Sample Identification
- Sampler's Name
- Time and Date of Sampling
- Sample Laboratory Number
- Analysis to be Performed
- Laboratory Name

Chain-of-Custody procedures will include the following:

- All samples will be listed on a chain-of-custody manifest.
- All personnel responsible for sampling, transporting and receiving samples will sign the chain-of-custody manifest.
- Analyst's name and laboratory will be recorded on the chain-of-custody manifest.
- Samples will be transported in a secured container with the chain-of-custody manifest attached.
- Samples will be kept in a locked vehicle or within sight of a custodian until received by the laboratory.

PROVISIONS FOR SPLIT SAMPLES

Approximately one week prior to soil and groundwater sampling, the department will be notified of the sampling times and dates. It will then have the option of observing or obtaining split samples.

ANALYTICAL LABORATORY AND METHODS

ANALYTICAL LABORATORY

INTEGRATED ANALYTICAL LABORATORIES (IAL)

Randolph, New Jersey 07869

ANALYTICAL METHODS

Analytical methods and detection limits are attached.

THE THE COMPLETE OF THE PARTY O		Instrument Average Mr.	Reported 2	Soil (PPb) Reported MDL, Methan	(qdd)
Accione	$\overline{}$	1.640	20	2500	
Benzene	:	0.450	5	625	
- Bromochloromethane	;	0.540	5	625	
Bromodichloromethane	1,	0.370	5	62.5	
Bromoform	7		5	62.5	
Bromomethane	- 1		5	625	
2-Butanonc(MEK)	٦,		20	. 2500	
Carbon disultide	13	0.230	5	625	
- Parbon tetrachloride	3	0.540	5	625	•
Chlorobenzenc ·	7	0,200	5	625	
L'hiorocthane	×	0.370	5	625	
Chloroform	X	0.390	5	625	
Chloromethane	2	0.730	5	625	
Eis-1.2-Dichlorgethene	Z	0,390	5	625	
. Jis-1,3-Dichloropropenc	Z	0.370	5	625	
Cyclohexane	Z			,	x MDL not available
,2-illbromo-3-chioropropane	4		5.	625 -	
Dibromochioromethane	x		5	625	
1,2-Dibromocthane/Ethylene dibromide(EDB)	×		. 5	625	
7.2-Dichloro benzone	Z		5	625	
	<u>x</u>	0.510	5	625	- .
1,4-Dichlorobenzene	×		5	625	<u>-</u> -
-iplchlorodifluoromethane	×	0.620	5	625	_
,1-Dichloroethane	_ X	0.450	5	625	-
1,2-Dichloroethane(EDC)	X	0,420	5	625	-
. I.Dichloraethene	 ×	0.280	5	625	-
_2-Dichloropropane	X Z	0.370	5	625	-
7. Chylbenzene 2-Hexanone	,	0.620	20	2500	┥・・・
iopropylbonzóne **(its hob)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.370	.5	625	-
Methyl acetate	\ \ \ \ \ \	0.070	-	023	x MDL not available
Methylcyclohcxane	1 x	-	-	 	x MDL not available
-Methyl-2-pentanone/Methyl Isobutyl Ketone (MIB	×	0,420	20	2500	
Hethylene Chloride	X	0,420	5	625	1
Methyl-tertiary-butyl ether(MTBE)	X	1.270	5	625	-
Syrene	x	0.200	5	625	
1,2,2-Tetrachloroethane	X	0.390	5	625	7
Tetrachloroethene (PERC)	x	0.310	5	625	1
oluene "	X	0.510	5	625	
- stal Xylenes ·	Z	1.160	5	625	1
rans-1,2-Dichloroethene	×	0.540	5	625	
uis-1,3-Dichloropropene	Z	0.310	5	625	
2.4-Trichlorobenzene	X	0,390	5	625	
,1,1-Trichloroethane	X	0.730	5	625 .	
1,2-Trichloroethane	x	0.450	5 .	625	
lichloroethene	X	0.340	5	625]
richlorofluoromethane	Z	0.480	5	625	
11.2-Trichlor-1,2,2-trifluorethane	X				x MDL not available
nyi Chloride	z	0.420	5	625	
					•

TCL from EPA Internet site 6/8/99. TCL changed 1/1/00, RR confirmed.

BOWPOUCHS	TOL	Instrument MDL, C	Reported MDL's,	(qda)
Acemaphthone	z	0.111	33.3	
Acenaphthylene	x	0.176	33.3	
Acetophenone	×			X - MDL Not Available
Anthracene	X	0.182	33.3	
Atrazine	X			X - MDL Not Available
Benzaldehyde	X			X - MDL Not Available
Benzo[a]anthracene	X	0.249	33.3	
Benzo[a]pyrene	Z	0,335	33.3	
Benzo[b]fluoranthene	X	0.545	33.3	7
Benzo[g,h,i]perylene	x	0.546	33.3	7
Benzo[k]fluoranthene	.x	0.690	33.3	1
1,1-Biphenyl	x			X - MDL Not Available
Bis(2-chloroethoxy)methane	X	0,161	33.3	7 .
Bis(2-chloroethyl)ether .	X	0.167	33.3	- ,
Bis(2-chloroisopropyi)ether **	x	0,548	33.3	** Compound also known as 2.2-oxybis (1-Chloropropage
Bis(2-ethylhexyl)phthalate	X	0.732	33.3	7
4-Bromophenyl-phenylether	x	0.447	33.3	1 . :
Butylbenzylphihalate	- x -	0.570	-33.5	
Caprolactam	x			X - MDL Not Available
Carbazole	x	0.289	33,3	- ,
4-Chloro-3-methylphenol	×	0.432	33.3	7
4-Chloroaniline	7.	0.563	33.3	1
2-Chloronaphthalene	x	0,295	33.3	1
2-Chlorophenol	x	0.167	33.3	<u> </u>
4-Chlorophenyl-phenylether	x	0,442	· 33.3	1
Chryscne	×	0.402	33.3	1
Olbenz[a,h]anthracene	Z.	0.421	33.3	1
Dibenzofuran	Z	0.168	. 33,3	i '
3,3'-Dichlorobenzidina	z.	0.337	33.3	1
2,4-Dichlorophenol -	T T	0.516	33.3	1
Diethylphthalate	x	0.297	33.3	1
Dimethylphthalate	×	0.248	33.3	1
2,4-Dimethylphenoi	Z	0.260	33.3	·
Di-n-butylplithalate	×	0.478	33.3	· ·
4,6-Dinitro-2-methylphenol	X	0,887	33:3	·
2,4-Dinitrophenol .	x	0.405	33.3.	
2,4-Dinitrotoluene	X	0.864	· 33.3	•
2,6-Dinitrotoluene	Z	0.444	33.3	
Di-n-octylphthalate	~	0,629	33.3	•
[luoranthene	X	0.409	33.3	
Fluorene	X .	0.372	33.3	'
Hexachlorobenzene .	×	0.502	· 33.3	
-lexachloro butadiene	×	0.418	33.3	
lexachlorocyclopentadiene	Z	0.332	. 33.3.	
Hexachloroethane	X	0.415	33.3	` .
Indeno[1,2,3-cd]pyrene	×	0.623	33.3	
sophorone .	Z	0.259	33.3	
2-Methylnaphthalene	Z	0.184	33.3	

SEMINOWARIE GOMPOUNIES	TCL	And C. C. (Acre.	Reported MDL's, Soil Co.	(qdd)
Acthylphenol (o-Cresol)	×	0.252	33.3	1
Nethylphenol (p-Cresol)	X	0.285	33.3	
apthalene	X	0.132	33.3	1 ·
Nitroaniline	X	0.510	33.3	
litroaniline	X	0.696	33.3	
Vitroaniline	x	0.929	33.3	
trobenzene	X	0.414	33.3	
'irropheno!	X	0.819	33.3	
litrophonol	X	0.687	33,3	
Nitroso-di-n-propylamine	X	0.245	33.3	ĺ
fitrosodiphenylamine	Z	0,338	.33,3	
achlorophenol	x.	0.751	33.3	
enanthrene	Z	0.146	33.3	
enol	x	0.269	33.3·	
ene	X	0.262	33.3	
5-Trichlorophenol	X	0.445	33,3	
6-Trichlorophenol	X	0.583	33.3	

COMPOUNDS	TCL 8082	Reported Aq (ppb) MDL's	Réported Sofi (PPb) MDL's	
Aroclor 1016	Х	0.2	6,68	
Araclor 1221	х	0.2	6,68	
Aroclor 1232	×	0.2	. 6.68	
Aroclor 1242	Х	0.2	6,68	
Aroclor 1248	Х.	0.2	6.68	
Aroclor 1254	х	0.2 ·	6,68	
Aroclor 1260	х	0.2	6.68	

PESTIC DES

COMPOUNDS	TCL 8081.4	Reported Aq (Pab) May	Reported Soil (Ppb)
4,4'-DDD	X	0.005	0.167
4,4'-DDE	X	0.005	0.167
4,4'-DDT	X	0.005	0.167
Aldrin	X ·	0.005	0.167
alpha-BHC	X	0.005	0.167
alpha-Chlordane	X	0.005	0.167
beta-BHC	X	0.005	0.167
delta-BHC	X	0,005	0.167
Dieldrin .	Χ.	0.005	0.167
Endosulfan I	X	0,005	0.167
Endosulfan II	X	0.005	0.167
Endosulfan sulfate	X	0,005	0.167
Endrin	X	0.005	0.167
Endrin aldehyde	X	0.005	0.167
Endrin Ketone	X	0.005	0.167
gamma-BHC (Lindane)	X	0.005	0.167
gamma-Chlordane	X	0.005	0.167
Heptachlor	X	0.005	0.167
Heptachlor Epoxide	X	0.005	.0.167
Methoxychlor	X	0.005	0.167
Toxaphene .	X	0.025	0.835

 $t \leq \tilde{c}$

COMPOUNDS	Aqueous - MDL (ppm) - ICP 6010	Monitoring Well - MDL (Ppm) - ICP/MS	Soil MDL (PPm) ICPINS BO20
Aluminum	0.1	0.1	2.0
Antimony	0.1	800.0	2,0
Arsenic	0.1	. 0.004	0.2
Barium	0.01	0.02	5.0
Beryllium	0.02	0.004	0.2
Cadmium	0.005	0.0006	0,2
Calcium	0.4	0.8	20.0
Chromium	0.01	0.02	. 0.6
Cobalt	0.02	0.04	0.4
Copper	0.02	0.04	0.4
Iron	0.05	0.10	3.0
Lead	0.004/0.029:	0:004/0:029	2.0
Magnesium	0.10		· 20.0
Manganese	0.005	0.01	0.4
Метситу	, E .	Ø	দ্র
Nickel	0.01	0.02	0.6
Potassium	0.1		20.0
Selenium ·	0.1	0.008	2.0
Silver .	0.02	0.0004	
Sodium.	0.1		20,0
Thallium	0.004	800.0	0,08
Vanadium	0.015	. 0.03	0.3
Zinc	. 0.01 .	0.02	1.0

 E
 = MDL for TCLP, Wastewater & Monitoring Well is 0.0005

 by ColdVapor and 0.0125 for Soil by Cold Vapor.

- 1.	-	Wet Chemistry	mistry]	_]]	1
-						
	SOIL - Reported	AQUEOUS - Reported				
COMPOUNDS	MDL	MDL	Aqueous Method Soil Method	Soil Method	Holding Times	
yanide, Total (ppm)	1.00	0.05	335.2	9010	14 days	

Project Name: Former Jonas Automotive

Project #: JONAS001

Laboratory: Chemtech: NYSDOH Certification No. 11376

Laboratory Report #: L4822ASP Part I VOCs

Lab Sample #	FEI Sample #	Analysis (Method)
L4822-01	S-1 (0"-6")	8260
L4822-02	S-2 (0"-6")	8260
L4822-03	S-3 (0"-6")	8260
L4822-04	S-4 (0"-6")	8260
L4822-05	S-5 (0"-6")	8260
L4822-06	S-3 (6.5'-7.0')	8260
L4822-07	S-6 (6"-6")	8260
L4822-08	S-6 (18"-24")	8260
L4822-09	S-7 (0"-6")	8260
L4822-10	S-7 (18"-24")	8260
L4822-11	S-8 (0"-6")	8260
L4822-12	S-8 (18"-24")	8260
L4822-13	S-9 (0"-6")	8260
L4822-14	S-9 (18"-24")	8260
L4822-15	S-10 (0"-6")	8260
L4822-16	S-10 (18"-24")	8260
L4822-17	S-11 (0"-6")	8260
L4822-18	S-11 (18"-24")	8260
L4822-19	S-12 (0"-6")	8260
L4822-20	S-12 (12"-18")	8260

- 1. Is the data package complete as defined under the requirements for the NYSDEC ASP Category B or USEPA CLP deliverables? Yes, based on narrative.
- 2. Have all holding times been met? Not identified in Case Narrative.
- 3. Do all the QC data: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data fall within the protocol required limits and specifications? Yes, except: Internal Standard Areas for S-11 18"-24" and S-9 18"-24". Blank sample had acetone due to laboratory contamination.
- 4. Have all of the data been generated using established and agreed upon analytical protocols? Yes, based on narrative.
- 5. Does an evaluation of the raw data confirm the results provided in the data summary sheets and quality control verification forms? Yes, based on narrative.
- 6. Have the correct data qualifiers been used? Yes, based on narrative.
- 7. Is any data rejected? If yes, specify. No data was rejected.

GCMSVO~1.DOC REV 1.2

CHEMTECH 205 CAMPUS PLAZA I, RARITAN CENTER EDISON NEW JERSEY 08837 NEW JERSEY LAB ID#: 12013 : NEW YORK LAB ID#: 11376

GC/MS VOA CONFORMANCE/NON-CONFORMANCE SUMMARY

CHI	EMTECH PROJECT NUMBER: LAST MATRIX:	soil C	low)	
	METHOD: \(\frac{\sqrt{16}}{16} \)	<u>NA</u>	<u>NO</u>	YES
1.	Chromatograms Labeled/Compounds Identified. (Field samples and Method Blanks)			
2.	GC/MS Tuning Specifications BFB Meet Criteria (NOTE THAT THERE ARE DIFFERENT CRITERIA FOR NY ASP CLP, CLP AND NJ)			
3.	GC/MS Tuning Frequency - Performed every 24 hours for 600 series and 12 hours for 8000 Series	—		
4.	GC/MS Calibration - Initial Calibration performed before sample analysis and continuing calibration performed within 24 hours of sample analysis for 600 series and 12 hours for 8000 and CLP series.			
5.	GC/MS Calibration Requirements a. Calibration Check Compounds for 8260 and CLP b. System Performance Check Compounds for 8260 and CLP 8260 CALIBRATION CRITERIA SPCC Compounds MIN RF CCC Compounds Chloromethane 0.1 1,1-Dichloroethene 1,1-Dichloroethane 0.1 Chloroform Bromoform 0.1 1,2-Dichloropropane Chlorobenzene 0.3 Toluene 1,1,2,2-Tetrachloroethane 0.3 Ethylbenzene Vinyl chloride Initial Calibration Criteria – RSD less than or equal to 30% Continuing Calibration Criteria - %D less than or equal to 20%			
6.	Blank Contamination - If yes, list compounds and concentrations in each blank:			
B	MAIK had a Aretine due to the lab	Contu.		
7.	Surrogate Recoveries Meet Criteria If not met, list those compounds and their recoveries which fall outside the acceptable ranges. a. VOA	· .		
8.	Matrix Spike/Matrix Spike Duplicate Recoveries Meet Criteria If not met, list those compounds and their recoveries which fall outside the acceptable range. a. VOA Fraction			

PAGE 1 OF 2

CHEMTECH

205 CAMPUS PLAZA I. RARITAN CENTER EDISON NEW JERSEY 08837 NEW JERSEY LAB ID#: 12013 : NEW YORK LAB ID#: 11376

GC/MS VOA CONFORMANCE/NON-CONFORMANCE SUMMARY(CONTINUED)

9.	Internal Star	ndard Area/Rete	ntion Time S	hift Meet C	'riteria				NA	NO	YES
<i>,</i>		Sample #				low	but	Æ	provi	ided	
											
10.		lding Time Met st number of da		for each sar	nple:						
								<u></u>		<u> </u>	
ADI	OITIONAL C	OMMENTS: _									
		·	_								
	•			· .							
					-		_			_	
								,			
		Shuh	_			_	· ·	067	02/01		
Ana	yst						•	'Da	te		
H	ldues	D V. Rec	100			_	8	1110			
QA I	REVIEW		<i>Y</i>					Da	te .		
	,									. •	

GCMSVO~1.DOC REV 1.2

PAGE 2 OF 2

Project Name:

Former Jonas Automotive

Project #:

JONAS001

Laboratory:

Chemtech: NYSDOH Certification No. 11376

Laboratory Report #:

L4822ASP Part II SVOCs

Lab Sample #	FEI Sample #	Analysis (Method)
L4822-01	S-1 (0"-6")	8270
L4822-02	S-2 (0"-6")	8270
L4822-03	S-3 (0"-6")	8270
L4822-04	S-4 (0"-6")	8270
L4822-05	S-5 (0"-6")	8270
L4822-06	S-3 (6.5'-7.0')	8270
L4822-07	S-6 (6"-6")	8270
L4822-08	S-6 (18"-24")	8270
L4822-09	S-7 (0"-6")	8270
L4822-10	S-7 (18"-24")	8270
L4822-11	S-8 (0"-6")	8270
L4822-12	S-8 (18"-24")	8270
L4822-13	S-9 (0"-6")	8270
L4822-14	S-9 (18"-24")	8270
L4822-15	S-10 (0"-6")	8270
L4822-16	S-10 (18"-24")	8270
L4822-17	S-11 (0"-6")	8270
L4822-18	S-11 (18"-24")	8270
L4822-19	S-12 (0"-6")	8270
L4822-20	S-12 (12"-18")	8270

- Is the data package complete as defined under the requirements for the NYSDEC ASP Category B or USEPA CLP deliverables? Yes, based on narrative.
- 2. Have all holding times been met? Yes.
- 3. Do all the QC data: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data fall within the protocol required limits and specifications? Yes, except acenaphthene MS/MSD RPD outside limits
- 4. Have all of the data been generated using established and agreed upon analytical protocols? Yes, based on narrative.
- 5. Does an evaluation of the raw data confirm the results provided in the data summary sheets and quality control verification forms? Yes, based on narrative.
- 6. Have the correct data qualifiers been used? Yes, based on narrative.
- 7. Is any data rejected? If yes, specify. No data was rejected.

CHEMTECH 284 Sheffield Street, Mountainside New Jersey 07092

NEW JERSEY LAB ID#:12013: NEW YORK LAB ID#: 11376

GC/MS ANALYSIS CONFORMANCE/NON-CONFORMANCE SUMMARY (CONTINUED)

		<u>NA</u>	NO	YES
7. Surrogate Recoveries Meet Criteria		· ——		
If not met, list those compounds and their recoveries which fall outside	e the acceptable rang	ges.		
a. B/N Fraction				
b. Acid Fraction				
8. Matrix Spike/Matrix Spike Duplicate Recoveries Meet Criteria				
If not met, list those compounds and their recoveries which fall outside				:
a. B/N Fraction See the Siemmany po	ege. B.j.	Sepo	Hed	
b. Acid Fraction				
•				
9. Internal Standard Area/Retention Time Shift Meet Criteria				
Comments:				•
10. Extraction Holding Time Met				
If not met, list number of days exceeded for each sample:				
			; -	
11. Analysis Holding Time Met				
If not met, list number of days exceeded for each sample:				
ADDITIONAL COMMENTS:				
\cap				
1 bial	7.26	\sim		
Analyst	Date			
many st	₩ale			
QA REVIEW	Date			
Ser FOT A TIT AA	Date			

3D

SOIL ŜEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: CHEMTECH Contract: FIRST ENVIRONMENTAL

Project No.: L4822 Site: FORMER J Location: LB14593 Group: S-1 0"-6"

Matrix Spike - Sample No.: Level: (low/med) LOW

	SPIKE	SAMPLE	MS	MS		QC.
	ADDED	CONCENTRATION	CONCENTRATION	%		LIMITS
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC	#	REC.
n-Nitroso-di-n-propylamine	3800	0	1900	50	X7.	(41-126)
1,2,4-Trichlorobenzene	3800	0	2500	66		(38-107)
Acenaphthene	3800	0	2200	58		(31-137)
2,4-Dinitrotoluene	3800	0	2200	58	-,	(28-89)
Pyrene	3800	0	2100	55		(35-142)
	<u> </u>				-	
_						

	SPIKE	MSD	MSD			
	ADDED	CONCENTRATION	%	%	QC I	LIMITS
COMPOUND	(ug/Kg)	(ug/Kg)	REC #	RPD #	RPD	REC.
n-Nitroso-di-n-propylamine	3800	2200	58	15	38	(41-126)
1,2,4-Trichlorobenzene	3800	2900	76	15	23	(38-107)
Acenaphthene	3800	2700	71	20 *	19	(31-137)
2,4-Dinitrotoluene	3800	2600	68	17	47	(28-89)
Pyrene	3800	2500	66	17	36	(35-142)
					100	
						-
·	781					

#	Column to	be used to	flag recover	y and RPD	values with	an asterisk
---	-----------	------------	--------------	-----------	-------------	-------------

RPD: 1 out of 5 outside limits

Spike Recovery: 0 out of 10 outside limits

Comments:			

^{*} Values outside of QC limits

Project Name:

Former Jonas Automotive

Project #:

JONAS001

Laboratory:

Chemtech: NYSDOH Certification No. 11376

Laboratory Report #:

L4822ASP Part II SVOCs

Lab Sample #	FEI Sample #	Analysis (Method)
L4822-01	S-1 (0"-6")	8270
L4822-02	S-2 (0"-6")	8270
L4822-03	S-3 (0"-6")	8270
L4822-04	S-4 (0"-6")	8270
L4822-05	S-5 (0"-6")	8270
L4822-06	S-3 (6.5'-7.0')	8270
L4822-07	S-6 (6"-6")	8270
L4822-08	S-6 (18"-24")	8270
L4822-09	S-7 (0"-6")	8270
L4822-10	S-7 (18"-24")	8270
L4822-11	S-8 (0"-6")	8270
L4822-12	S-8 (18"-24")	8270
L4822-13	S-9 (0"-6")	8270
L4822-14	S-9 (18"-24")	8270
L4822-15	S-10 (0"-6")	8270
L4822-16	S-10 (18"-24")	8270
L4822-17	S-11 (0"-6")	8270
L4822-18	S-11 (18"-24")	8270
L4822-19	S-12 (0"-6")	8270
L4822-20	S-12 (12"-18")	8270

- Is the data package complete as defined under the requirements for the NYSDEC ASP Category B or USEPA CLP deliverables? Yes, based on narrative.
- 2. Have all holding times been met? Yes.
- 3. Do all the QC data: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data fall within the protocol required limits and specifications? Yes except: Surrogate Recoveries for S-10 0"-6", S-2 0"-6", and S-3 6.5'-7.0', MS/MSD recovery of n-Nitroso-di-n-propylamine and Acenaphthene, and Internal Standard Areas for S-3 0"-6", S-11 0"-6", S-5 0"-6", S-2 0"-6", and S-3 0"-6".
- 4. Have all of the data been generated using established and agreed upon analytical protocols? Yes, based on narative.
- 5. Does an evaluation of the raw data confirm the results provided in the data summary sheets and quality control verification forms? Yes, based on narrative.
- 6. Have the correct data qualifiers been used? Yes, based on narrative.
- 7. Is any data rejected? If yes, specify. No data rejected.

CHEMIECH

CASE NARRATIVE

First Environment

Project Name: Former Jonas Automative

Project # Jonas 001

Chemtech Project # N4822ASP

A. Number of Samples and Date of Receipt

20 Soils Samples were delivered to the laboratory intact on 06/15/01.

B. Parameters

Tests requested on the Chain of Custody were Volatile Organics, Semivolatile Organics, PCBs & Metals. This data package contains results for Semi-Volatile Organics.

C. Analytical Techniques:

The analysis of Semivolatile Organics is based Method 8270. The samples were analyzed on instrument MSBNA"L"4 using GC Column RTX-5 SIMS which is 30 meters, 0.25mm ID, 0.25mm DF (crossbond 5% diphenyl-95% dimethyl polysiloxane).

D. QA/ QC Samples:

Surrogate Recoveries were within QC limits except for S-10 0"-6", S-2 0"-6", S-3 0"-6" and S-3 6.5'-7.0". Blank Spike recoveries met QC criteria. MS/MSD recovery of n-Nitroso-di-n-propylamine and Acenaphthene did not meet requirements. RPDs met requirements. Holding Times were met. Tuning Checks met requirements. Internal Standard Areas met requirements except for S-3 0"-6", S-11 0"-6", S-4 0"-6", S-1 0"-6", S-5 0"-6", S-10 0"-6", S-2 0"-6" and S-3 0"-6". Retention Times were acceptable. Calibrations met requirements. Blank analyses did not indicate the presence of contamination.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature Wildred U. Reys	Name: Mildred V. Reyes
Date: 81101	Title: QA\QC

SOIL SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:	CHEMTECH	Contract: FIRST ENVIRONMENTAL

Project No.: L4822 Site: NEWBUR Location: LB14541 Group: S-1 0"-6"

Matrix Spike - Sample No.: S-3 6.5'-7.0' Level: (low/med) LOW

	SPIKE ADDED	SAMPLE CONCENTRATION	MS CONCENTRATION	MS %		QC. LIMITS
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC	#	REC.
n-Nitroso-di-n-propylamine	4300	0	6300	147	*	(41-126)
1,2,4-Trichlorobenzene	4300	0	4100	95	711	(38-107)
Acenaphthene	4300	0	7500	174	*	(31-137)
2,4-Dinitrotoluene	4300	0	3300	77		(28-89)
Pyrene	4300	1100	4400	77		(35-142)
,					_	

	SPIKE	MSD	MSD					00
	ADDED	CONCENTRATION	%	9	6	-	QC L	IMITS
COMPOUND	(ug/Kg)	(ug/Kg)	REC	# R	PD	#	RPD	REC.
n-Nitroso-di-n-propylamine	4300	5900	137	*	7		38	(41-126)
1,2,4-Trichlorobenzene	4300	4100	95		0		23	(38-107)
Acenaphthene	4300	7400	172	*	1		19	(31-137)
2,4-Dinitrotoluene	4300	2900	67		13		47	(28-89)
Pyrene	4300	4400	81		6		36	(35-142)
	Designation of the last of	(6)		-		4		
	1			+		+		
						\top		
	-11					\neg		-

# Column to be used to flag recovery and RPD values with an asterisk	
* Values outside of QC limits	IS.
RPD: 0 out of 5 outside limits	3EC.
Spike Recovery: 10 out of 10 outside limits	F-760
Comments:	
	1.757
	FT42

FORM III SV-2

2D SOIL SEMIVOLATILE SURROGATE RECOVERY

Lab Name: CHEMTECH

Contract: FIRST ENVIRONMENTAL

Project No.: L4822

Site: NEWBURGH

Location: LB14540

Group: S-1 0"-6"

Level: (low/med) LOW

		S1	S2	S3						ТОТ
	SAMPLE NO.	(NBZ) #	(FBP) #	(TPH) #	# .	#	#	#	#	OUT
01	SBLK01	53	69	62						
02	BLKSPK-1	55	65	60						İ
03	S-11 0"-6"	49	64	98						1
04	S-12 0"-6"	47	66	71	6.6					
05	S-4 0"-6"	38	71	122	4000					.:
06	S-1 0"-6"	43	75	129						,
07	S-5 0"-6"	43	67	102						1
80	S-10 0"-6"	41	66	144 *	,					1
09	S-2 0"-6"	40	73	147 *						. 1
10	S-3 0"-6"	6 *	18 *	36						2
11	S-7 0"-6"	54	72	63						
12	S-8 0"-6"	52	68	64						
13	S-6 6"-6"	55	71	71						
14	S-9 0"-6"	52	70	115						
15	S-3 6.5'-7.0'	268 *	67	89						1
16	S-11 0"-6"RE	51	70	104						·. :
17	S-12 0"-6"RE	53	78	87						1. 1:
18	S-4 0"-6"RE	40	69	134	· Comme					
19	S-1 0"-6"RE	41	70	152 *	2.17					[1]
20	S-5 0"-6"RE	41	69	115						
21	S-10 0"-6"RE	39	71	168 *						1
22	S-3 0"-6"RE	9 *	21 *	38						2
23	S-3 6.5'-7.0'MS	149 *	70	79						; 1
24	S-3 6.5'-7.0'MS	112	74	78						
25	S-9 0"-6"RE	54	71	141 *						1
26	S-2 0"-6"RE	53	72	138 *						
27										
28										
29										,
30										\$1

S1 (NBZ) = Nitrobenzene-d5 S2 (FBP) = 2-Fluorobiphenyl S3 (TPH) = Terphenyl-d14

QC LIMITS (23-120)(30-115)

(18-137)

Column to be used to flag recovery values

* Values outside of contract required QC limits

D Surrogate diluted out

Page 1 of 1

FORM II SV-2

3/90

Project Name:

Former Jonas Automotive

Project #:

JONAS001

Laboratory:

Chemtech: NYSDOH Certification No. 11376

Laboratory Report #:

L4822ASP Part IV PCBs

Lab Sample #	FEI Sample #	Analysis (Method)
L4822-01	S-1 (0"-6")	8082
L4822-02	S-2 (0"-6")	8082
L4822-03	S-3 (0"-6")	8082
L4822-04	S-4 (0"-6")	8082
L4822-05	S-5 (0"-6")	8082
L4822-06	S-3 (6.5'-7.0')	8082
L4822-07	S-6 (6"-6")	8082
L4822-08	S-6 (18"-24")	8082
L4822-09	S-7 (0"-6")	8082
L4822-10	S-7 (18"-24")	8082
L4822-11	S-8 (0"-6")	8082
L4822-12	S-8 (18"-24")	8082
L4822-13	S-9 (0"-6")	8082
L4822-14	S-9 (18"-24")	8082
L4822-15	S-10 (0"-6")	8082
L4822-16	S-10 (18"-24")	8082
L4822-17	S-11 (0"-6")	8082
L4822-18	S-11 (18"-24")	8082
L4822-19	S-12 (0"-6")	8082
L4822-20	S-12 (12"-18")	8082

- Is the data package complete as defined under the requirements for the NYSDEC ASP Category B or USEPA CLP deliverables? Yes, based on the narrative.
- 2. Have all holding times been met? Not identified in Case Narrative
- 3. Do all the QC data: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data fall within the protocol required limits and specifications? Yes
- 4. Have all of the data been generated using established and agreed upon analytical protocols? Yes.
- Does an evaluation of the raw data confirm the results provided in the data summary sheets and quality control verification forms? Yes, based on the narrative.
- 6. Have the correct data qualifiers been used? Yes, based on the narrative.
- 7. Is any data rejected? If yes, specify. No data was rejected.

Project Name: Former Jonas Automotive

Project #: JONAS001

Laboratory: Chemtech: NYSDOH Certification No. 11376

Laboratory Report #: L4822ASP Part V Metals

Lab Sample #	FEI Sample #	Analysis (Method)
L4822-01	S-1 (0"-6")	6010, 7471
L4822-02	S-2 (0"-6")	6010, 7471
L4822-03	S-3 (0"-6")	6010, 7471
L4822-04	S-4 (0"-6")	6010, 7471
L4822-05	S-5 (0"-6")	6010, 7471
L4822-06	S-3 (6.5'-7.0')	6010, 7471
L4822-07	S-6 (6"-6")	6010, 7471
L4822-08	S-6 (18"-24")	6010, 7471
L4822-09	S-7 (0"-6")	6010, 7471
L4822-10	S-7 (18"-24")	6010, 7471
L4822-11	S-8 (0"-6")	6010, 7471
L4822-12	S-8 (18"-24")	6010, 7471
L4822-13	S-9 (0"-6")	6010, 7471
L4822-14	S-9 (18"-24")	6010, 7471
L4822-15	S-10 (0"-6")	6010, 7471
L4822-16	S-10 (18"-24")	6010, 7471
L4822-17	S-11 (0"-6")	6010, 7471
L4822-18	S-11 (18"-24")	6010, 7471
L4822-19	S-12 (0"-6")	6010, 7471
L4822-20	S-12 (12"-18")	6010, 7471

- 1. Is the data package complete as defined under the requirements for the NYSDEC ASP Category B or USEPA CLP deliverables? Yes, based on the narrative.
- 2. Have all holding times been met? Yes.
- 3. Do all the QC data: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data fall within the protocol required limits and specifications? Yes.
- 4. Have all of the data been generated using established and agreed upon analytical protocols? Yes.
- 5. Does an evaluation of the raw data confirm the results provided in the data summary sheets and quality control verification forms? Yes, based on a review of the narrative.
- 6. Have the correct data qualifiers been used? Yes, based on a review of the narrative.
- 7. Is any data rejected? If yes, specify. No data was rejected.

Former Jonas Automotive

Project #:

JONAS001

Laboratory:

Chemtech: NYSDOH Certification No. 11376

Laboratory Report #:

L4823ASP Part I VOCs (Soil)

Lab Sample #	FEI Sample #	Analysis (Method)
L4823-01	S-13 (0"-6")	8260
L4823-02	S-13 (12"-18")	8260
L4823-04	S-14 (12"-18")	8260
L4823-05	S-15 (0"-6")	8260
L4823-06	S-15 (18"-24")	8260
L4823-07	S-16 (0"-6")	8260
L4823-08	S-16 (18"-24")	8260
L4823-09	S-16 (7.0'-7.5')	8260
L4823-10	S-17 (0"-6")	8260
L4823-11	S-17 (18"-24")	8260
L4823-12	S-18	8260
L4823-13	S-19 (0"-6")	8260
L4823-14	S-19 (18"-24")	8260
L4823-15	S-19 (7.0'-7.5')	8260
L4823-16	S-20 (0"-6")	8260
L4823-17	S-20 (18"-24")	8260
L4823-18	S-21	8260
L4823-19	FIELDBLANK	8260
L4823-20	TRIPBLANK	8260

- Is the data package complete as defined under the requirements for the NYSDEC ASP Category B or USEPA CLP deliverables? Yes, based on the narrative.
- 2. Have all holding times been met? Yes.
- 3. Do all the QC data: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data fall within the protocol required limits and specifications? Yes except: System Monitoring Compounds for S-19, S-21, and S20, Matrix Spike recoveries, Matrix Spike Duplicate recoveries (1,1-DCE, benzene, TCE, toluene and chlorobenzene did meet requirements, % greater than QC range), and Internal Standard Areas for S-19 and S-21.
- 4. Have all of the data been generated using established and agreed upon analytical protocols? Yes.
- 5. Does an evaluation of the raw data confirm the results provided in the data summary sheets and quality control verification forms? Yes, based on the narrative.
- 6. Have the correct data qualifiers been used? Yes, based on the narrative.
- 7. Is any data rejected? If yes, specify. No data was rejected.

CHEMTECH

205 CAMPUS PLAZA I. RARITAN CENTER EDISON NEW JERSEY 08837 NEW JERSEY LAB ID#: 12013 : NEW YORK LAB ID#: 11376

GC/MS VOA CONFORMANCE/NON-CONFORMANCE SIJMMARY(CONTINUED)

			<u>NA</u>	<u>NO</u>	<u>YES</u>
9.	Internal Standard Area/Retention Time Shift Meet Criteria	·			
	Comments: See the Summ	nouny pogl	· t		
		<u> </u>			
10.	Analysis Holding Time Met If not met, list number of days exceeded for each sample:			<u> </u>	_
				·	
					_
ADI	DDITIONAL COMMENTS:				
	·				
_					
<u>—</u> Апа	alyst	<u> 7-2</u>	ate		
1.8	1.'0 d 0 11. Ze exe	8/5/	01		
QA	REVIEW		ate	,	
	•			• •	

GCMSVO~1.DOC REV 1.2

PAGE 2 OF 2

CHEMTECH 205 CAMPUS PLAZA I, RARITAN CENTER EDISON NEW JERSEY 08837

NEW JERSEY LAB ID#: 12013 : NEW YORK LAB ID#: 11376

GC/MS VOA CONFORMANCE/NON-CONFORMANCE SUMMARY

CH	EMTECH PROJECT NUMBER:	<u> </u>		MATRIX:	Scil		
		METHOD:_ '	9260				
				•	<u>NA</u>	<u>NO</u>	YES
1.	Chromatograms Labeled/Comp	oounds Identified	d. (Field samples and Me	thod Blanks)			_
2.	GC/MS Tuning Specifications BFB Meet Criteria (NOTE THA ASP CLP, CLP AND NJ)		E DIFFERENT CRITERL	A FOR NY			
3.	GC/MS Tuning Frequency - Pe for 8000 Series	erformed every 2	4 hours for 600 series and	1 12 hours			_
4.	GC/MS Calibration - Initial Cal continuing calibration performs and 12 hours for 8000 and CLP	ed within 24 hou					
5.	GC/MS Calibration Requirementa. Calibration Check Compounds. System Performance Check 8260 CALIBRATION CRITE SPCC Compounds M. Chloromethane 1,1-Dichloroethane Bromoform Chlorobenzene 1,1,2,2-Tetrachloroethane Initial Calibration Criteria – RS Continuing Calibration Criteria	nds for 8260 and Compounds for ERLA UN RF 0.1 0.1 0.1 0.3 0.3	8260 and CLP CCC Compounds 1,1-Dichloroethene Chloroform 1,2-Dichloropropan Toluene Ethylbenzene Vinyl chloride				
6.	Blank Contamination - If yes, li	st compounds ar	nd concentrations in each	blank:			
7.	Surrogate Recoveries Meet Crite If not met, list those compounds ranges. a. VOA	and their recove	eries which fall outside th	e acceptable			
8.	Matrix Spike/Matrix Spike Dup If not met, list those compounds range. a. VOA Fraction	and their recove		e acceptable	i Repo	- Hee	<u></u>

3B SQIL VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: CHEMTECH Contract: FIRST ENVIRONMENT

Project No.: L4823

Site: NEWBURG Location: LB14606

Group: 5970-VOA

V(05)

Matrix Spike - Sample No.:

S-19 18-24

Level: (low/med) LOW

	SPIKE	SAMPLE	MS	MS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC #	REC.
1,1-Dichloroethene	65	0 .	120	185 *	(59-172)
Benzene	65	0	100	154 *	(66-142)
Trichloroethene	65	0	120	185 *	(62-137)
Toluene	65	0	120	185 *	(59-139)
Chlorobenzene	65	0	120	185 *	(60-133)

	SPIKE	MSD	MSD			
	ADDED	CONCENTRATION	%	%	QC L	IMITS
COMPOUND	(ug/Kg)	(ug/Kg)	REC #	RPD #	RPD	REC.
1,1-Dichloroethene	65	100	154	18	22	(59-172)
Benzene	65	83	128	19	21	(66-142)
Trichloroethene	65	97	149 *	21	24	(62-137)
Toluene	65	100	154 *	18	21	(59-139)
Chlorobenzene	65	100	154 *	18	21	(60-133)

Column to be used to flag recovery and RPD values with an asterisk

*	Values	outside	of	QC	limits
---	--------	---------	----	----	--------

RPD: 0 out of 5 outside limits

Spike Recovery: 8 out of 10 outside limits

Comments:	
Comments.	

FORM III VOA-2

2B SOIL VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: CHEMTECH Contract: FIRST ENVIRONMENT

Project No.: L4823 Site: NEWBURGH Location: LB14606 Group: 5970-VOA

Level: (low/med) LOW

SAMPLE NO. (DCE) # (DBFM) # (TOL) # (BFB) # OUT VBLK01 83 89 100 98 2 \$13 12 - 18 88 90 102 102 3 \$14 12 - 18 82 87 96 88 04 \$15 18 - 24 80 86 99 99 05 \$16 18 - 24 83 87 99 96 06 \$16 7.0 - 7.5 85 94 100 96 07 \$17 18 - 24 87 91 95 95 08 \$-19 18-24 91 99 96 79 10 \$-19 18-24MSD 85 97 102 104 11 BLKSPK 86 96 101 104 12 VBLK02 100 103 106 107 13 \$19 7.0 - 7.5 88 88 89 14 \$19 18 - 24RE 97 98 81 72 * 1 15 \$21RE 110 107 48 * 65 * 2 16 \$20 18 - 24 113 111 94 107 18 \$21 111 107 84 86 26 27 28 28							
01 VBLK01 83 89 100 98 02 S 13 12 - 18 88 90 102 102 03 S 14 12 - 18 82 87 96 88 04 S 15 18 - 24 80 86 99 99 05 S 16 18 - 24 83 87 99 96 06 S 16 7.0 - 7.5 85 94 100 96 07 S 17 18 - 24 91 99 96 79 09 S -19 18 - 24MS 95 97 102 104 10 S -19 18 - 24MSD 85 91 94 97 11 BLKSPK 86 96 101 104 12 VBLK02 100 103 106 107 13 S 19 7.0 - 7.5 88 88 95 95 14 S 19 18 - 24RE 97 98 81 72 * 1 15 S 21RE 110 107 48 * 65 * 2 16 S 20 18 - 24 136 * 117 79 * 66 * 3 17 S 20 18 - 24RE 113 111 94 107 18 S 21 111 107 84 86	ſ	A CONTRACTOR OF THE PARTY OF TH	SMC1		SMC3	SMC4	TOT
02 S 13 12 - 18 88 90 102 102 03 S 14 12 - 18 82 87 96 88 04 S 15 18 - 24 80 86 99 99 05 S 16 18 - 24 83 87 99 96 06 S 16 7.0 - 7.5 85 94 100 96 07 S 17 18 - 24 87 91 95 95 08 S-19 18-24 91 99 96 79 09 S-19 18-24MS 95 97 102 104 10 S-19 18-24MSD 85 91 94 97 11 BLKSPK 86 96 101 104 12 VBLK02 100 103 106 107 13 S 19 18 - 24RE 97 98 81 72 * 1 15 S 21RE 110 107 48 * 65 * 2 16 S 20 18 - 24 136 * 117 79 * 66 * 3 17 S 20 18 - 24RE 113 111 94 107	. [SAMPLE NO.	(DCE) #	(DBFM) #	(TOL) #	(BFB) #	OUT
03 S 14 12 - 18 82 87 96 88 04 S 15 18 - 24 80 86 99 99 05 S 16 18 - 24 83 87 99 96 06 S 16 7.0 - 7.5 85 94 100 96 07 S 17 18 - 24 87 91 95 95 08 S -19 18 - 24 91 99 96 79 09 S -19 18 - 24MS 95 97 102 104 10 S -19 18 - 24MSD 85 91 94 97 11 BLKSPK 86 96 101 104 12 VBLK02 100 103 106 107 13 S 19 7.0 - 7.5 88 88 95 95 14 S 19 18 - 24RE 97 98 81 72 1 15 S 21RE 110 107 48 * 65 * 2 2 16 S 20 18 - 24 RE 113 111 94 107 18 S 21 111 10	01	VBLK01	83	- 89	100	98	
04 S 15 18 - 24 80 86 99 99 99 05 S 16 18 - 24 83 87 99 96 06 S 16 7.0 - 7.5 85 94 100 96 07 S 17 18 - 24 87 91 95 95 08 S - 19 18 - 24 91 99 96 79 09 S - 19 18 - 24 MSD 85 91 94 97 11 BLKSPK 86 96 101 104 12 VBLK02 100 103 106 107 13 S 19 7.0 - 7.5 88 88 89 95 95 14 S 19 18 - 24RE 97 98 81 72 1 15 S 21RE 110 107 48 65 2 16 S 20 18 - 24 136 117 79 66 3 17 S 20 18 - 24RE 113 111 94 107 18 S 21 111 107 84 86	02	S 13 12 - 18	. 88	90	102	102	٠:
05 S 16 18 - 24 83 87 99 96 06 S 16 7.0 - 7.5 85 94 100 96 07 S 17 18 - 24 87 91 95 95 08 S -19 18 - 24 91 99 96 79 09 S -19 18 - 24MS 95 97 102 104 10 S -19 18 - 24MSD 85 91 94 97 11 BLKSPK 86 96 101 104 12 VBLK02 100 103 106 107 13 S 19 7.0 - 7.5 88 88 95 95 14 S 19 18 - 24RE 97 98 81 72 * 1 15 S 21RE 110 107 48 * 65 * 2 16 S 20 18 - 24 136 * 117 79 * 66 * 3 17 S 20 18 - 24RE 113 111 94 107 18 S 21 111 107 84 86 20 21 22 23 24 25 26 27 28 29 29	03	S 14 12 - 18	82	87	96	88	
06 S 16 7.0 - 7.5 85 94 100 96 07 S 17 18 - 24 87 91 95 95 08 S-19 18-24 91 99 96 79 09 S-19 18-24MS 95 97 102 104 10 S-19 18-24MSD 85 91 94 97 11 BLKSPK 86 96 101 104 12 VBLK02 100 103 106 107 13 S 19 7.0 - 7.5 88 88 95 95 14 S 19 18 - 24RE 97 98 81 72 * 1 15 S 21RE 110 107 48 * 65 * 2 16 S 20 18 - 24 136 * 117 79 * 66 * 3 17 S 20 18 - 24RE 113 111 94 107 18 S 21 111 107 84 86 20 21 22 23 24 25 26 27 28 29	04	The second secon	80	86	99	99	
07 S 17 18 - 24 87 91 95 95 08 S - 19 18 - 24 91 99 96 79 09 S - 19 18 - 24 MSD 85 97 102 104 10 S - 19 18 - 24 MSD 85 91 94 97 11 BLKSPK 86 96 101 104 12 VBLK02 100 103 106 107 13 S 19 7.0 - 7.5 88 88 95 95 14 S 19 18 - 24 RE 97 98 81 72 * 1 15 S 21 RE 110 107 48 * 65 * 2 16 S 20 18 - 24 136 * 117 79 * 66 * 3 17 S 20 18 - 24 RE 113 111 94 107 18 S 21 111 107 84 86	05	S 16 18 - 24	83	87	99	96	
08	06	S 16 7.0 - 7.5	85	94	100	96	
09 S-19 18-24MS 95 97 102 104 97 101 S-19 18-24MSD 85 91 94 97 11 BLKSPK 86 96 101 104 12 VBLK02 100 103 106 107 13 S 19 7.0 - 7.5 88 88 95 95 14 S 19 18 - 24RE 97 98 81 72 * 1 15 S 21RE 110 107 48 * 65 * 2 16 S 20 18 - 24 136 * 117 79 * 66 * 3 17 S 20 18 - 24RE 113 111 94 107 18 S 21 111 107 84 86 19 19 19 10 107 107 107 107 107 107 107 107 107	07	S 17 18 - 24	87	91	95	95	
10 S-19 18-24MSD 85 91 94 97 11 BLKSPK 86 96 101 104 12 VBLK02 100 103 106 107 13 S 19 7.0 - 7.5 88 88 95 95 14 S 19 18 - 24RE 97 98 81 72 * 1 15 S 21RE 110 107 48 * 65 * 2 16 S 20 18 - 24 136 * 117 79 * 66 * 3 17 S 20 18 - 24RE 113 111 94 107 18 S 21 111 107 84 86	08	S-19 18-24	91	99	96	79	
11 BLKSPK 86 96 101 104 12	09	S-19 18-24MS	95	97	102	104	
12 VBLK02 100 103 106 107 13 S 19 7.0 - 7.5 88 88 95 95 14 S 19 18 - 24RE 97 98 81 72 * 1 15 S 21RE 110 107 48 * 65 * 2 16 S 20 18 - 24 136 * 117 79 * 66 * 3 17 S 20 18 - 24RE 113 111 94 107 18 S 21 111 107 84 86 19 20 21 22 23 24 25 26 27 28 29	10	S-19 18-24MSD	85	91	94	97	
13	11[BLKSPK	86	96	101	104	
13	12	VBLK02	100	103	106	107	A
15	13	S 19 7.0 - 7.5	88	88	95	95	
16 S 20 18 - 24 136 * 117 79 * 66 * 3 17 S 20 18 - 24RE 113 111 94 107 18 S 21 111 107 84 86 19 20 21 22 23 24 25 26 27 28 29	14		97		81	72 *	1
17 S 20 18 - 24RE 113 111 94 107 18 S 21 111 107 84 86 19 20 21 22 23 24 25 26 27 28 29	15	S 21RE	110	107	48 *	65 *	2
18 S 21 111 107 84 86 19 20 21 22 23 24 25 26 27 28 29	16	S 20 18 - 24	136 *	117	79 *	66 *	3 .
19	17	S 20 18 - 24RE	113	111	94	107	
20	18	S 21	111	107	84	86	
21 22 23 24 25 26 27 28 29	19						
22	20						
23	21					}	
24	22						
25	23						
26 27 28 29 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	24						
27 28 29	25						
28 29	26	30624					
29	27		_				
1962	28						
30	29	the st					
	30						

QC LIMITS

SMC1 (DCE) = 1,2-Dichloroethane-d4

(70-121) (80-120)

SMC2 (DBFM) = Dibromofluoromethane

(00 120)

SMC3 (TOL) = Toluene-d8

(81-117)

SMC4 (BFB) = 4-Bromofluorobenzene

(74-121)

Column to be used to flag recovery values

* Values outside of contract required QC limits

D System Monitoring Compound diluted out

Page 1 of 1

FORM II VOA-2

3/90

Project Name: Former Jonas Automotive

Project #: JONAS001

Laboratory: Chemtech: NYSDOH Certification No. 11376

Laboratory Report #: L4823ASP Part II VOCs (Water)

Lab Sample #	FEI Sample #	Analysis (Method)
L4823-01	S-13 (0"-6")	8260
L4823-02	S-13 (12"-18")	8260
L4823-04	S-14 (12"-18")	8260
L4823-05	S-15 (0"-6")	8260
L4823-06	S-15 (18"-24")	8260
L4823-07	S-16 (0"-6")	8260
L4823-08	S-16 (18"-24")	8260
L4823-09	S-16 (7.0'-7.5')	8260
L4823-10	S-17 (0"-6")	8260
L4823-11	S-17 (18"-24")	8260
L4823-12	S-18	8260
L4823-13	S-19 (0"-6")	8260
L4823-14	S-19 (18"-24")	8260
L4823-15	S-19 (7.0'-7.5')	8260
L4823-16	S-20 (0"-6")	8260
L4823-17	S-20 (18"-24")	8260
L4823-18	S-21	8260
L4823-19	FIELDBLANK	8260
L4823-20	TRIPBLANK	8260

- Is the data package complete as defined under the requirements for the NYSDEC ASP Category B or USEPA CLP deliverables? Yes, based on a review of the narrative.
- 2. Have all holding times been met? Yes.
- 3. Do all the QC data: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data fall within the protocol required limits and specifications? Yes except: System Monitoring Compound recoveries for BLKSPKMS and RPDs recovery of Benzene and Toluene.
- 4. Have all of the data been generated using established and agreed upon analytical protocols? Yes.
- 5. Does an evaluation of the raw data confirm the results provided in the data summary sheets and quality control verification forms? Yes, based on the narrative.
- 6. Have the correct data qualifiers been used? Yes, based on the narrative.
- 7. Is any data rejected? If yes, specify. No data was rejected.

CHEMTECH

205 CAMPUS PLAZA I, RARITAN CENTER EDISON NEW JERSEY 08837

NEW JERSEY LAB ID#: 12013 : NEW YORK LAB ID#: 11376

	<u>GC/MS V</u>	<u>/OA CONFORMLª</u>	ANCE/NON-CONFOR	MANCE SUMM	ARY		
CH	EMTECH PROJECT NUMBE	R. 14823)	MATRIX:	Wate	<u> </u>	. •
		METHOD:	8260	_	<u>NA</u>	<u>NO</u>	YES
1.	Chromatograms Labeled/Cor	npounds Identified	d. (Field samples and M	lethod Blanks)			
2.	GC/MS Tuning Specificatio BFB Meet Criteria (NOTE T ASP CLP, CLP AND NJ)		E DIFFERENT CRITE	RLA FOR NY			
3.	GC/MS Tuning Frequency - for 8000 Series ,	Performed every 2	24 hours for 600 series a	and 12 hours			_
4.	GC/MS Calibration - Initial Continuing calibration performand 12 hours for 8000 and Calibration Calibration (Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration - Initial Calib	med within 24 hou					_
5.	GC/MS Calibration Requirem a. Calibration Check Compo b. System Performance Check 8260 CALIBRATION CRIT SPCC Compounds Chloromethane 1,1-Dichloroethane Bromoform Chlorobenzene 1,1,2,2-Tetrachloroethane Initial Calibration Criteria – F Continuing Calibration Criteria	ounds for 8260 and ck Compounds for FERLA MIN RF 0.1 0.1 0.1 0.3 0.3	8260 and CLP CCC Compound 1,1-Dichloroethe Chloroform 1,2-Dichloroprop Toluene Ethylbenzene Vinyl chloride	ene			
6.	Blank Contamination - If yes	, list compounds an	nd concentrations in each	ch blank:			
7.	Surrogate Recoveries Meet C If not met, list those compour ranges. a. VOA	nds and their recov	eries which fall outside	-	· 		
8.	Matrix Spike/Matrix Spike Di If not met, list those compount range. a. VOA Fraction	nds and their recove	eries which fall outside	the acceptable	pilze)	= lepul	- Leol

WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: CHEMTECH Contract: FIRST ENVIRONMENTAL

Project No.: L4823 Site: NEWBURGI Location: LB14606

Group: 5970-VOA

Matrix Spike - Sample No.:

BLKSPK

	SPIKE	SAMPLE	MS	MS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC #	REC.
1,1-Dichloroethene	50	. 0	58	116	(61-145)
Benzene	50	0	57	114	(76-127)
Trichloroethene	50	0	57	114	(71-120)
Toluene	50	0	59	118	(76-125)
Chlorobenzene	50	0	52	104	(75-130)

	SPIKE	MSD	MSD			
	ADDED	CONCENTRATION	%	%	QC L	IMITS
COMPOUND	(ug/L)	(ug/L)	REC #	RPD #	RPD	REC.
1,1-Dichloroethene	50	55	110	5	14	(61-145)
Benzene	50	50	100	13 *	11	(76-127)
Trichloroethene	50	50	100	13	14	(71-120)
Toluene	50	49	98	19 *	13	(76-125)
Chlorobenzene	50	46	92	12	13	(75-130)

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 2 out of 5 outside limits

Spike Recovery: 0 out of 10 outside limits

Comments:						
		 	 		 	_

2A WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: CHEMTECH Contract: FIRST ENVIRONMENTAL

Project No.: L4823 Site: NEWBURGH Location: LB14606 Group: 5970-VOA

	200-	SMC1	SMC2	SMC3	SMC4	TOT
	SAMPLE NO.	(DCE) #	(DBFM) #	(TOL) #	(BFB) #	OUT
01	VBLK01	103	108	102	99	
02 [BLKSPKMS	113	106	111	126 *	1
03	BLKSPKMSD	113	98	97	107	
04	BLKSPK	122	98	100	104	
05	VBLK02	127	93	103	123	
06	TRIPBLANK	122	96	105	114	
07 [FIELDBLANK	123	101	109	95	
08						
09						
10						
11						
12	937					
13						
14						
15	_				·	
16						
17						
18	_					
19						
20					_	
21						
22						
23			·			
24						
25						
26						
27					_	
28						
29						
30						

QC LIMITS

SMC1 (DCE) = $1,2$ -Dichloroethane-d4	(68-135)
SMC2 (DBFM) = Dibromofluoromethane	(70-125)
SMC3 (TOL) = Toluene-d8	(70-125)
SMC4 (BFB) = 4-Bromofluorobenzene	(70-125)

Column to be used to flag recovery values

- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

Former Jonas Automotive

Project #:

JONAS001

Laboratory:

ChemtechNYSDOH Certification No. 11376

Laboratory Report #:

L4823ASP Part III SVOCs

Lab Sample #	FEI Sample #	Analysis (Method)
L4823-01	S-13 (0"-6")	8270
L4823-02	S-13 (12"-18")	8270
L4823-04	S-14 (12"-18")	8270
L4823-05	S-15 (0"-6")	8270
L4823-06	S-15 (18"-24")	8270
L4823-07	S-16 (0"-6")	8270
L4823-08	S-16 (18"-24")	8270
L4823-09	S-16 (7.0'-7.5')	8270
L4823-10	S-17 (0"-6")	8270
L4823-11	S-17 (18"-24")	8270
L4823-12	S-18	8270
L4823-13	S-19 (0"-6")	8270
L4823-14	S-19 (18"-24")	8270
L4823-15	S-19 (7.0'-7.5')	8270
L4823-16	S-20 (0"-6")	8270
L4823-17	S-20 (18"-24")	8270
L4823-18	S-21	8270
L4823-19	FIELDBLANK	8270
L4823-20	TRIPBLANK	8270

- 1. Is the data package complete as defined under the requirements for the NYSDEC ASP Category B or USEPA CLP deliverables? Yes, based on narrative.
- 2. Have all holding times been met? Yes.
- 3. Do all the QC data: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data fall within the protocol required limits and specifications? Yes except: Sample S-14 was diluted due to high concentration of target compounds, and RPDs for Acenaphthene did not meet requirements.
- 4. Have all of the data been generated using established and agreed upon analytical protocols? Yes, based on narrative.
- 5. Does an evaluation of the raw data confirm the results provided in the data summary sheets and quality control verification forms? Yes, based on narrative.
- 6. Have the correct data qualifiers been used? Yes, based on narrative.
- 7. Is any data rejected? If yes, specify. No data was rejected.

CASE NARRATIVE

First Environment
Project Name: Former Jonas Automative
Project # Jonas 001
Chemtech Project # L4823ASP

A. Number of Samples and Date of Receipt

18 Soils Samples, Field Blank Plus A Trip Blank were delivered to the laboratory intact on 06/15/01.

B. Parameters

Tests requested on the Chain of Custody were Volatile Organics (Soil), Volatile Organics (Water), Semivolatile Organics, PCBs & Metals. This data package contains results for Semi-Volatile Organics.

C. Analytical Techniques:

The analysis of Semivolatile Organic is based Method 8270. The samples were analyzed on instrument MSBNA"L"4, MSBNA B and MSBNA C using GC Column DB-5 SILMS which is 30 meters, 0.25mm ID, 0.25mm DF (crossbond 5% diphenyl-95% dimethyl polysiloxane).

D. QA/ QC Samples:

Surrogate Recoveries were within QC limits. Sample S-14 12"-18" was diluted due to high concentration of target compounds. Blank Spike recoveries met QC criteria. MS/MSD recoveries met requirements. RPDs met requirements except for Acenaphthene. Holding Times were met. Tuning Checks met requirements. Internal Standard Areas and Retention Times were acceptable. Calibrations met requirements. Blank analyses did not indicate the presence of contamination.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature Hildred U. Reys	Name: Mildred V. Reyes
	•
Date: 8/2/01	Title: QA\QC

Former Jonas Automotive

Project #:

JONAS001

Laboratory:

Chemtech: NYSDOH Certification No. 11376

Laboratory Report #:

L4823ASP Part IV SVOCs

Lab Sample #	FEI Sample #	Analysis (Method)
L4823-01	S-13 (0"-6")	8270
L4823-02	S-13 (12"-18")	8270
L4823-04	S-14 (12"-18")	8270
L4823-05	S-15 (0"-6")	8270
L4823-06	S-15 (18"-24")	8270
L4823-07	S-16 (0"-6")	8270
L4823-08	S-16 (18"-24")	8270
L4823-09	S-16 (7.0'-7.5')	8270
L4823-10	S-17 (0"-6")	8270
L4823-11	S-17 (18"-24")	8270
L4823-12	S-18	8270
L4823-13	S-19 (0"-6")	8270
L4823-14	S-19 (18"-24")	8270
L4823-15	S-19 (7.0'-7.5')	8270
L4823-16	S-20 (0"-6")	8270
L4823-17	S-20 (18"-24")	8270
L4823-18	S-21	8270
L4823-19	FIELDBLANK	8270
L4823-20	TRIPBLANK	8270

- 1. Is the data package complete as defined under the requirements for the NYSDEC ASP Category B or USEPA CLP deliverables? Yes, based on the narrative.
- 2. Have all holding times been met? Yes.
- 3. Do all the QC data: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data fall within the protocol required limits and specifications? Yes except: Sample S-13 0"-6" was diluted due to high concentration of target compounds, RPDs for Acenaphthene, and Internal Standard Areas for S-19 0"-6" and S-20 0"-6".
- 4. Have all of the data been generated using established and agreed upon analytical protocols? Yes.
- 5. Does an evaluation of the raw data confirm the results provided in the data summary sheets and quality control verification forms? Yes, based on the narrative.
- 6. Have the correct data qualifiers been used? Yes, based on the narrative.
- 7. Is any data rejected? If yes, specify. No data was rejected.

CASE NARRATIVE

First Environment

Project Name: Former Jonas Automative

Project # Jonas 001

Chemtech Project # L4823ASP

A. Number of Samples and Date of Receipt

18 Soils Samples, Field Blank Plus A Trip Blank were delivered to the laboratory intact on 06/15/01.

B. Parameters

Tests requested on the Chain of Custody were Volatile Organics (Soil), Volatile Organics (Water), Semivolatile Organics, PCBs & Metals. This data package contains results for Semi-Volatile Organics.

C. Analytical Techniques:

The analysis of Semivolatile Organic is based Method 8270. The samples were analyzed on instrument MSBNA"L"4 using GC Column RTX-5 SILMS which is 30 meters, 0.25mm ID, 0.25mm DF (crossbond 5% diphenyl-95% dimethyl polysiloxane).

D. QA/ QC Samples:

Surrogate Recoveries were within QC limits. Sample S-13 0"-6" was diluted due to high concentration of target compounds. Blank Spike recoveries met QC criteria. MS/MSD recoveries met requirements. RPDs met requirements except for Acenaphthene. Holding Times were met. Tuning Checks met requirements. Internal Standard Areas met requirement except for S-19 0"-6" and S-20 0"-6". Retention Times were acceptable. Calibrations met requirements. Blank analyses did not indicate the presence of contamination.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature <u>Uildred V. Zeys</u>	Name: Mildred V. Reyes
Date: 8/2/D/	Title: OA\OC

3D SOIL SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: CHEMTECH	Contract:	FIRST ENVIRONMENTAL	
Project No.: <u>L4823</u>	Site: NEWBURG Location:	LB14593	Group: S-13 0"
Matrix Spike - Sample No.:	S-16 7.0'-7.5'	Level: (low/med) LOW	

	SPIKE	SAMPLE	MS	MS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC #	REC.
n-Nitroso-di-n-propylamine	3800	0	1900	50	(41-126)
1,2,4-Trichlorobenzene	3800	0	2500	66	(38-107)
Acenaphthene	3800	0	2200	58	(31-137)
2,4-Dinitrotoluene	3800	0	2200	58	(28-89)
Pyrene	3800	0	2100	55	(35-142)
	_				
,					

	SPIKE	MSD	MSD			
	ADDED	CONCENTRATION	%	%	QC L	IMITS
COMPOUND	(ug/Kg)	(ug/Kg)	REC #	RPD #	RPD	REC.
n-Nitroso-di-n-propylamine	3800	2200	58	15	38	(41-126)
1,2,4-Trichlorobenzene	3800	2900	76	15	23	(38-107)
Acenaphthene	3800	2700	71	20 *	19	(31-137)
2,4-Dinitrotoluene	3800	2600	68	17	47	(28-89)
Pyrene	3800	2500	66	17	36	(35-142)
						<u> </u>

Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

	of 5 outside limits ery: 0 out of 10 outside limit	s	
Comments:			

Former Jonas Automotive

Project #:

JONAS001

Laboratory:

Chemtech: NYDOH Certification No. 11376

Laboratory Report #:

L4823ASP Part IV Metals

Lab Sample #	FEI Sample #	Analysis (Method)
L4823-01	S-13 (0"-6")	6010, 7471
L4823-02	S-13 (12"-18")	6010, 7471
L4823-04	S-14 (12"-18")	6010, 7471
L4823-05	S-15 (0"-6")	6010, 7471
L4823-06	S-15 (18"-24")	6010, 7471
L4823-07	S-16 (0"-6")	6010, 7471
L4823-08	S-16 (18"-24")	6010, 7471
L4823-09	S-16 (7.0'-7.5')	6010, 7471
L4823-10	S-17 (0"-6")	6010, 7471
L4823-11	S-17 (18"-24")	6010, 7471
L4823-12	S-18	6010, 7471
L4823-13	S-19 (0"-6")	6010, 7471
L4823-14	S-19 (18"-24")	6010, 7471
L4823-15	S-19 (7.0'-7.5')	6010, 7471
L4823-16	S-20 (0"-6")	6010, 7471
L4823-17	S-20 (18"-24")	6010, 7471
L4823-18	S-21	6010, 7471
L4823-19	FIELDBLANK	6010, 7471
L4823-20	TRIPBLANK	6010, 7471

- 1. Is the data package complete as defined under the requirements for the NYSDEC ASP Category B or USEPA CLP deliverables? Yes, based on a review of the narrative.
- 2. Have all holding times been met? Yes.
- 3. Do all the QC data: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data fall within the protocol required limits and specifications? Yes except: Spike Sample recoveries for Mercury.
- 4. Have all of the data been generated using established and agreed upon analytical protocols? Yes based on a review of the narrative.
- 5. Does an evaluation of the raw data confirm the results provided in the data summary sheets and quality control verification forms? Yes, based on the narrative.
- 6. Have the correct data qualifiers been used? Yes, based on the narrative.
- 7. Is any data rejected? If yes, specify. Based on the narrative, no data was rejected.

CHEMTECH 2015 CAMPUS PLAZA I. RARITAN CENTER EDISON NEW JERSEY 08837 NEW JERSEY LAB ID#: 12013: NEW YORK LAB ID#: 11376

METALS CONFORMANCEMON-CONFORMANCE SUMMARY

CHEMTECH PROJECT NUMBER: LY823 NJ	MATRIX:	016
METHOD: SW 846		
1. Calibration Summary meet criteria.	NA.	NO YES
ICP Interference Check Sample Results Summary Submitted Meet criteria Blank Conta	mination	
3. Serial Dilution Summary Submitted (if applicable)meet criteria		
4. Laboratory Control Sample Summary Submitted (if applicable)		
5. Blank Contamination If YES, list compounds and concentrations in each blank:		
6. Matrix Spike/Matrix Spike Duplicate Recoveries Meet Criteria If not met, list those compounds and their recoveries which fall outside	e of the acceptanc	e range:
7. Sample Duplicate Analysis Meet QC Criteria: If not met, list those compounds and their % differences which fall outs	side of the accept	ance range:
8. Digestion Holding Time Met If not met, list number of days exceeded for each sample:		
9. Analysis Holding Time Met If not met, list number of days exceeded for each sample:		
ADDITIONAL COMMENTS: matrix interf	evence	
Duf The Supervisor		129101
Milde Du Zeys	8/ Date	2/01

Former Jonas Automotive

Project #:

JONAS001

Laboratory:

Chemtech: NYSDOH Cetification No. 11376

Laboratory Report #:

L4823ASP Part V PCBs

Lab Sample #	FEI Sample #	Analysis (Method)
L4823-01	S-13 (0"-6")	8082
L4823-02	S-13 (12"-18")	8082
L4823-04	S-14 (12"-18")	8082
L4823-05	S-15 (0"-6")	8082
L4823-06	S-15 (18"-24")	8082
L4823-07	S-16 (0"-6")	8082
L4823-08	S-16 (18"-24")	8082
L4823-09	S-16 (7.0'-7.5')	8082
L4823-10	S-17 (0"-6")	8082
L4823-11	S-17 (18"-24")	8082
L4823-12	S-18	8082
L4823-13	S-19 (0"-6")	8082
L4823-14	S-19 (18"-24")	8082
L4823-15	S-19 (7.0'-7.5')	8082
L4823-16	S-20 (0"-6")	8082
L4823-17	S-20 (18"-24")	8082
L4823-18	S-21	8082
L4823-19	FIELDBLANK	8082
L4823-20	TRIPBLANK	8082

- 1. Is the data package complete as defined under the requirements for the NYSDEC ASP Category B or USEPA CLP deliverables? Yes, based on narrative.
- 2. Have all holding times been met? Yes.
- 3. Do all the QC data: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data fall within the protocol required limits and specifications? Yes.
- 4. Have all of the data been generated using established and agreed upon analytical protocols? Yes.
- 5. Does an evaluation of the raw data confirm the results provided in the data summary sheets and quality control verification forms? Yes, based on narrative.
- 6. Have the correct data qualifiers been used? Yes, based on narrative.
- 7. Is any data rejected? If yes, specify. No data was rejected.

Former Jonas Automotive

Project #:

JONAS001

Laboratory:

Chemtech: NYSDOH Certification No. 11376

Laboratory Report #:

N4923ASP Part I VOCs (Water)

Lab Sample #	FEI Sample #	Analysis (Method)
N4923-01	S-22 (CATCHBASINSEDI	8021
N4923-02	S-23 (6.5'-7.0')	8021
N4923-03	S-24 (6.5'-7.0')	8021
N4923-04	S-25 (6.5'-7.0')	8021
N4923-05	S-26 (6.5'-7.0')	8021
N4923-06	S-27 (6.5'-7.0')	8021
N4923-07	S-28 (2.0'-2.5')	8021
N4923-08	S-29 (8"-12")	8021
N4923-09	S-30 (8"-12")	8021
N4923-10	S-31 (8"-12")	8021
N4923-11	FIELDBLANK	8021
N4923-12	S-32 (5.5-6.0)	8021
N4923-13	S-33 (5.5-6.0)	8021
N4923-14	TRIPBLANK	8021

- 1. Is the data package complete as defined under the requirements for the NYSDEC ASP Category B or USEPA CLP deliverables? Yes, based on the narrative.
- 2. Have all holding times been met? Yes.
- 3. Do all the QC data: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data fall within the protocol required limits and specifications? Yes
- 4. Have all of the data been generated using established and agreed upon analytical protocols? Yes.
- 5. Does an evaluation of the raw data confirm the results provided in the data summary sheets and quality control verification forms? Yes, based on the narrative.
- 6. Have the correct data qualifiers been used? Yes, based on the narrative.
- 7. Is any data rejected? If yes, specify. No data was rejected.

Former Jonas Automotive

Project #:

N4923-13

N4923-14

JONAS001

Laboratory:

Chemtech: NYSDOH Certification No. 11376 N4923ASP Part II Volatile Organics (Soil)

Laboratory Report #:

Lab Sample # FEI Sample # Analysis (Method) N4923-01 S-22 (CATCHBASINSEDI 8260 8260 N4923-02 S-23 (6.5'-7.0') S-24 (6.5'-7.0') 8260 N4923-03 S-25 (6.5'-7.0') 8260 N4923-04 N4923-05 S-26 (6.5'-7.0') 8260 N4923-06 S-27 (6.5'-7.0') 8260 N4923-07 S-28 (2.0'-2.5') 8260 S-29 (8"-12") N4923-08 8260 S-30 (8"-12") N4923-09 8260 N4923-10 S-31 (8"-12") 8260 N4923-11 FIELDBLANK 8260 8260 N4923-12 S-32 (5.5-6.0)

1. Is the data package complete as defined under the requirements for the NYSDEC ASP Category B or USEPA CLP deliverables? Yes, based on a review of the case narrative.

8260 8260

S-33 (5.5-6.0)

TRIPBLANK

- 2. Have all holding times been met? Yes.
- 3. Do all the QC data: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data fall within the protocol required limits and specifications? Yes except: System Monitoring Compound recoveries for N4942-01MS, MS/MSD recovery of Benzene, Trichloroethene, Toluene and Chlorobenzene, above limits, RPDs for 1,1-Dechlorothene and Trichloreothene below limits, and blank analyses indicated the presence of contamination for VBLK01 and VBLK01 with Methylene Chloride.
- 4. Have all of the data been generated using established and agreed upon analytical protocols? Yes.
- 5. Does an evaluation of the raw data confirm the results provided in the data summary sheets and quality control verification forms? Yes, based on the narrative.
- 6. Have the correct data qualifiers been used? Yes, based on the narrative.
- 7. Is any data rejected? If yes, specify. No data was rejected.

CHEMITECH

CASE NARRATIVE-VOLATILE ORGANICS

First Environment

Project Name: Former Jonas Automotive

Chemtech Project # N4923ASP

A. Number of Samples and Date of Receipt

7 Aqueous Samples plus Field Blank were delivered to the laboratory intact on 06/22/01.

B. Parameters

Tests requested on the Chain of Custody were Volatile Organics (Water), Volatile Organics (Soil), GC Volatile Organics, Semivolatile Organics & Total Metals. This data package contains results for Volatile Organics (Soil).

C. Analytical Techniques:

Samples were analyzed for Volatile Organics (Soil) according to Method 8260. The analyses were performed on instruments MSVOA B, using GC column RTX624 which is 75 meters, 0.53mm ID, 3.0mm df (crossbond 6% cyanopropylphenyl-94% dimethylpolysiloxane). The Purge Trap was supplied by Supelco, VO CARB 3000, Tekmar 3000.

D. QA/ QC Samples:

System Monitoring Compound recoveries met requirements except for N4942-01MS. MS/MSD recovery of Benzene, Trichloroethene, Toluene and Chlorobenzene did not meet requirements. RPDs met requirements except for 1,1-Dichlorothene and Trichloreothene. Blank Spike recoveries met requirements. Tuning Checks met requirements. Internal Standard Areas and Retention Times met criteria. Calibrations met requirements. Blank analyses did indicate the presence of contamination except for VBLK01 and VBLK01 with Methylene Chloride.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature Mildeed W. Reiges	Name: Mildred V. Reyes
Date: 7/12/01	Title: QA/QC

2B SOIL VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: CHEMTECH Contract: FIRST ENVRIONMENT

Project No.: N4923 Site: FORMER JONAS detion: LB14824 Group: 5970-VOA

Level: (low/med) LOW

			·			
		SMC1	SMC2	SMC3	SMC4	TOT
	SAMPLE NO.	(DCE) #	(DBFM) #	(TOL) #	(BFB) #	OUT .
01	VBLK01	84	94	92	90	
02	S-22 CATCHBA	87	93	86	75	
03	S-32 5.5-60	87	93 -	86	75	
04	S-33 5.5-60	95	101	96	91	
05	VBLK02	112	117	111	112	
06	N4942-01MS	122 *	118	113	114	1
07	N4942-01MSD	117	106	100	100	
08	BLKSPK	107	102	100	99	
09						
10						
11						
12						
13						
14						
15						
16						
17	,		<u></u>			
18						
19						
20						
21						:.
22						
23						
24						
25						 ∫ á
26						
27						
28						
29						
30[

QC LIMITS

SMC1 (DCE) = 1,2-Dichloroethane-d4		(70-121)
SMC2 (DBFM) = Dibromofluoromethane	•	(80-120)
SMC3 (TOL) = Toluene-d8		(81-117)
SMC4 (BFB) = 4-Bromofluorobenzene		(74-121)

Column to be used to flag recovery values

- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

3B SOIL VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: CHEMTECH Contract: FIRST ENVRIONMENT

Project No.: N4923

Site: FORMER J Location: LB14824

Group: 5970-VOA

Matrix Spike - Sample No.:

N4942-01

Level: (low/med) LOW

	SPIKE	SAMPLE	MS	MS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC #	REC.
1,1-Dichloroethene	51	0	63	124	(59-172)
Benzene	51	0	98	192 *	(66-142)
Trichloroethene	51	0	130	255 *	(62-137)
Toluene	51	0	100	196 *	(59-139)
Chlorobenzene	51	0	100	196 *	(60-133)

1: 1A

	SPIKE	MSD	MSD			- ;
	ADDED	CONCENTRATION		- %	QCI	IMITS
COMPOUND	(ug/Kg)	(ug/Kg)	REC #	RPD #	. RPD	REC.
1,1-Dichloroethene	51	80	157	24 *	22	(59=172)
Benzene	51	92	180 *	6	21	(66-142)
Trichloroethene	51	91	178 *	35 *	24	(62-137)
Toluene	51	97	190 *	3	21	(59-1-39)
Chlorobenzene	51	99	194 *	1	21	(60~133)

Column to be used to flag recovery and RPD values with an asterisk

7-139 7-139 7-14

* Values outside of QC limits

RPD: 2 out of 5 outside limits

Spike Recovery: 8 out of 10 outside limits

Comments:

7.77± 2.142 3.137 3.138

FORM III VOA-2

- 3/90

Project Name: Former Jonas Automotive

Project #: JONAS001

Laboratory: Chemtech: NYSDOH Certification No. 11376

Laboratory Report #: N4923ASP Part III GC Volatile Organics

Lab Sample #	FEI Sample #	Analysis (Method)
N4923-01	S-22 (CATCHBASINSEDI	8021
N4923-02	S-23 (6.5'-7.0')	8021
N4923-03	S-24 (6.5'-7.0')	8021
N4923-04	S-25 (6.5'-7.0')	8021
N4923-05	S-26 (6.5'-7.0')	8021
N4923-06	S-27 (6.5'-7.0')	8021
N4923-07	S-28 (2.0'-2.5')	8021
N4923-08	S-29 (8"-12")	8021
N4923-09	S-30 (8"-12")	8021
N4923-10	S-31 (8"-12")	8021
N4923-11	FIELDBLANK	8021
N4923-12	S-32 (5.5-6.0)	8021
N4923-13	S-33 (5.5-6.0)	8021
N4923-14	TRIPBLANK	8021

- 1. Is the data package complete as defined under the requirements for the NYSDEC ASP Category B or USEPA CLP deliverables? Yes, based on the narrative.
- 2. Have all holding times been met? Yes.
- 3. Do all the QC data: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data fall within the protocol required limits and specifications? Yes except: MS/MSD %rec outside QC limits for 1,2,4-trichlorobenzene and naphthalene.
- 4. Have all of the data been generated using established and agreed upon analytical protocols? Yes.
- 5. Does an evaluation of the raw data confirm the results provided in the data summary sheets and quality control verification forms? Yes, based on the narrative.
- 6. Have the correct data qualifiers been used? Yes, based on the narrative.
- 7. Is any data rejected? If yes, specify. No data was rejected.

٦		
7		
1		
]		
_	(HEMTECH 205 CAMPUS PLAZA I. RARITAN CENTER EDISON NEW JERSEY 08837
		NEW JERSEY LAB ID#: 12013 : NEW YORK LAB ID#: 11376
-		GC ANALYSIS CONFORMANCE/NON-CONFORMANCE SUMMARY
T		
_	CF	EMTECH PROJECT LAB NUMBER: NYG23 MATRIX: Stil
		METHOD: SOULSHEW
		•
		NA NO YES
-	l.	Chromatograms Labeled/Compounds Identified. (Field samples and Method Blanks)
	2.	Standards Summary Submitted
ļ	3.	Calibration - Initial Calibration performed within 30 days before sample analysis and continuing calibration performed within 24 hours of sample analysis, 12 HOURS IF 8000 SERIES METHOD
	4	Blank Contamination - If yes, list compounds and concentrations in each blank:
		VOA Fraction
		Pesticides/PCB's
		Other
		•
	5.	Surrogate Recoveries Meet Criteria
		If not met, list those compounds and their recoveries which fall outside the acceptable ranges
		VOA Fraction
		Pesticides/PCE's
		Other
	6.	Matrix Spike/Matrix Spike Duplicate Recoveries Meet Criteria.
		If not met, list those compounds and their recoveries which fall outside the acceptable range.
		VOA Fraction ylease cheek ristry Table Pesticides/PCB's
		Other
	c.c.	
	اداده	MOMOLDOC REVILL PAGE 1662

SW846 8021

Chemtech.

QC MS/MSD 50PPB Spike Sample spiked: N4992-1 5 GM Date: 7/1/01

Filename MS: 063014.RAW Filename MSD: 063015.RAW Sample ID: 063008.RAW

Batch:QCV167S Matrix:SOLID

CAS#		י שונה	Sample	MS CODG			MSD Conc		MSD	אלא	_		בב
	Analyte	Added (Conc (ppb)	qdd	% Rec	Flag	qdd	% Rec F	Flag R	RPD Flag	J Limits	Limits	Limits
5-35-4	1,1 DICHLOROETHENE	20	0	41	81	8778	41	83		2	20		50 <20%
1634-04-4	MTBE	20	0	46	91		47	94		3	20		50 <20%
1-43-2	BENZENE	20	0	44	88		44	88		1	20	_	50 <20%
108-88-3	TOLUENE	20	0	44	87		44	87		0	20		150 <20%
100-41-4	ETHYLBENZENE	90	0	42	85		42	84		-	20		150 <20%
136777-61-	- M&P XYLENES	100	0	85	85		83	83	_	2	20		150 <20%
95-47-6	O-XYLENE	20	0	46	92		44	87	-	5	20		150 <20%
100-42-5	STYRENE	20	0	38	9/		37	74		က	20		150 <20%
98-82-8	ISOPROPYLBENZENE	20	0	42	83		42	83	-	0	20		150 <20%
103-65-1	n-PROPYLBENZENE	20	0	29	133		38	9/	 -	55 *	50		150 <20%
	2-CHLORTOL+PETHYLTOLUE	100	0	83	83		83	83		-	20		150 <20%
	4CHLORTOL+135TRIMETHBE	100	0	78	87		74	74	-	5	20		150 <20%
98-06-6	TERT-BUTYLBENZENE	20	0	37	74		37	74		0	20		150 <20%
95-63-6	1,2,4-TRIMETHYLBENZENE	20	0	41	83		42	83	-	0	20		150 <20%
135-98-8	SEC-BUTYLBENZENE	20	0	38	9/		40	79		5	20		150 <20%
541-73-1	1,3 DICHLOROBENZENE	20	0	38	9/		36	72	-	4	20		150 <20%
9-87-6	ISOPROPYLTOLUENE	20	0	36	72		36	72		0	20		150 <20%
106-46-7	1,4 DICHLOROBENZENE	20	0	35	71		33	92		8	20		50 <20%
104-51-8	n-BUTYLBENZENE	20	0	27	54		33	92		19	20		150 <20%
95-50-1	1,2 DICHLOROBENZENE	20	0	36	73		34	89		8	20		50 <20%
120-82-1	1,2,4 TRICHLOROBENZENE	20	0	22	44		28	22	_	23 *	20		50 <20%
87-68-3	HEXACHLOROBUTADIENE	20	0	29	58		33	99		13	20	Ĺ	150 <20%
91-20-3	NAPHTHALENE	50	0	15	31	*	24	48 *	-	44	20		150 <20%

Project Name: Former Jonas Automotive

Project #: JONAS001

Laboratory: Chemtech: NYSDOH Certification No. 11376

Laboratory Report #: N4923ASP Part IV SVOCs

Lab Sample #	FEI Sample #	Analysis (Method)
N4923-01	S-22 (CATCHBASINSEDI	8270
N4923-02	S-23 (6.5'-7.0')	8270
N4923-03	S-24 (6.5'-7.0')	8270
N4923-04	S-25 (6.5'-7.0')	8270
N4923-05	S-26 (6.5'-7.0')	8270
N4923-06	S-27 (6.5'-7.0')	8270
N4923-07	S-28 (2.0'-2.5')	8270
N4923-08	S-29 (8"-12")	8270
N4923-09	S-30 (8"-12")	8270
N4923-10	S-31 (8"-12")	8270
N4923-11	FIELDBLANK	8270
N4923-12	S-32 (5.5-6.0)	8270
N4923-13	S-33 (5.5-6.0)	8270
N4923-14	TRIPBLANK	8270

- 1. Is the data package complete as defined under the requirements for the NYSDEC ASP Category B or USEPA CLP deliverables? Yes, based on narrative.
- 2. Have all holding times been met? Yes.
- 3. Do all the QC data: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data fall within the protocol required limits and specifications? Yes except: Surrogate recoveries did not meet requirements for Samples S-22 and S-29 which were diluted due to high concentration of target compounds; S-22, S-29, and S-31 did not meet requirements for Internal Standard Areas.
- 4. Have all of the data been generated using established and agreed upon analytical protocols? Yes, based on narrative.
- 5. Does an evaluation of the raw data confirm the results provided in the data summary sheets and quality control verification forms? Yes, based on narrative.
- 6. Have the correct data qualifiers been used? Yes, based on narrative.
- 7. Is any data rejected? If yes, specify. No data was rejected.

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH Contract: FIRST ENVIRONMENTAL

Project No.: N4923 Site: FORMER JONAScottlion: Group: S-22

Lab File ID (Standard): BB070210.D Date Analyzed: 7/2/01

Instrument ID: 5971-B . Time Analyzed: 2044

		The state of the s					
		IS4 (PHN)	<u></u>	IS5 (CRY)		IS6 (PRY)	-
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	2322388	20.13	2529289	27.56	2687263	31.26
	UPPER LIMIT	4644776	20.63	5058578	28.06	5374526	31.76
	LOWER LIMIT	1161194	19.63	1264645	27.06	1343632	30.76
	SAMPLE				i		
	NO.						·
01	S-30 8"-12"	1967010	20.11	2199150	27.55	1936819	31.25
02	S-32 5.5-6.0	1982070	20.12	2112257	27.54	2204605	31.24
03	S-22	1990431	20.25	1100959 *	27.97	926513 *	31.57
04	S-29 8"-12"	2350586	20.23	1028441 *	28.04	752567 *	31.56
05	S-33 5.5-6.0	2528544	20.13	2452584	27.54	1667938	31.25
06	S-31 8"-12"	2332049	20.14	1333282	27.72	696654 *	31.48 -
07							
80							
09							
10							
11							
12		:				· _	
13							1,
14							
15							76
16							
17							
18							ercedon de min
19							1 1 1
20							
21							11.7
22				•			

IS4 (PHN) = Phenanthrene-d10 IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag internal standard area values with an asterisk.

* Values outside of QC limits.

Page 2 of 2

FORM VIII SV

3/90

Jane 1

2C WATER SEMIVOLATILE SURROGATE RECOVERY

Lab Name: CHEMTECH Contract: FIRST ENVIRONMENTAL

Project No.: N4923 Site: FORMER JONAS ALLOTO Site: ED14702 Group: S-22

		S1	S2	S3							TOT
	SAMPLE NO.	(NBZ) #	(FBP) #	(TPH)	#	#	#	#	#	#	TUO
01 🔽	SBLK01	89	72	70							
02	L4934-01MS	70	55	60							
03 .	L4934-01MSD	73	57	57							
04	SBLK02	65	59	52							
05	BLKSPK-2	59	53	51							
06	FIELDBLANK	36	35 *	32	*						2
07 🗌	**										
08				1							
09 🗆											
10											
11				1							
12											
13				1							
14											
15			15								
16				1							7,77
17				1					-		
18				18							٠.
19				-							
20 🗆											
21											
22 🗆						1					
23						1					
24											- · · · · ·
25											
26											
27											
28											
29											
30											

QC LIMITS S1 (NBZ) = Nitrobenzene-d5 (35-114) S2 (FBP) = 2-Fluorobiphenyl (43-116) S3 (TPH) = Terphenyl-d14 (33-141)

Column to be used to flag recovery values

* Values outside of contract required QC limits

D Surrogate diluted out

Page 1 of 1

FORM II SV-1

3/90

2D SOIL SEMIVOLATILE SURROGATE RECOVERY

Lab Name: CHEMTECH Contract: FIRST ENVIRONMENTAL

Project No.: N4923 Site: FORMER JONAS ALLIGIDATION: LB14625 Group: S-22

Level: (low/med) LOW

		S1	S2	S3					· .	TOT
	SAMPLE NO.		(FBP) #		#	#	#	#	#	OUT
01	SBLK01	79	65	69						
02	L4991-02MS	61	62	73						
03	L4991-02MSD	64	58	70						
04	SBLK02	40	36	41						
05	BLKSPK	84	71	75						
06	S-30 8"-12"	37	34	38						
07	S-32 5.5-6.0	37	34	38						
80	S-22	38	41	56						
09	S-29 8"-12"	36	32	58						
10	S-33 5.5-6.0	34	34	41						
11	S-31 8"-12"	35	34	57						
12	S-22DL	37 D	36 D	46 D						
13	S-29 8"-12"DL	34 D	35 D	46 D						
14	S-31 8"-12"RE	32	33	38						
15										
16		7 Aug.								17.
17										1.67
18										
19										
20										
21										
22										
23	_			_	_					
24										
25										
26									i	
27		_								H 21 - 1999
28										
29										
30										

		QC LIMITS
S1 (NBZ) = Nitrobenzene-d5	•	(23-120)
S2 (FBP) = 2-Fluorobiphenyl		(30-115)
S3 (TPH) = Terphenyl-d14		(18-137)

Column to be used to flag recovery values

* Values outside of contract required QC limits

D Surrogate diluted out

Page 1 of 1

FORM II SV-2

3/90

CHEMITECH

CASE NARRATIVE

First Environment

Project Name: Former Jonas Automotive

Chemtech Project # N4923ASP

A. Number of Samples and Date of Receipt

7 Aqueous Samples plus Field Blank were delivered to the laboratory intact on 06/22/01.

B. Parameters

Tests requested on the Chain of Custody were Volatile Organics (Water), Volatile Organics (Soil), GC Volatile Organics, Semivolatile Organics & Total Metals. This data package contains results for Semivolatile Organics.

C. Analytical Techniques:

The analysis of Semivolatile Organics is based on Method 8270. The samples were analyzed on instrument MSBNA B, C and MSBNA using GC Column RTX-5 which is 30 meters, 0.25mm ID, 0.25mm df (crossbond 5% diphenyl-95% dimethyl polysiloxane).

D. QA/ QC Samples:

Surrogate recoveries met requirements except for Field Blank, Samples S-22 and S-29 8"-12" were diluted due to high concentration of target compounds. MS/MSD recoveries and RPDs met requirements. Blank Spike recoveries met requirements. Holding Times met requirements. Internal Standard Areas met requirements except for followings S-22, S-29 "8"-12" and S-31 8"-12". Calibrations met requirements. Blank analyses did not indicate the presence of contamination.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature Wildred V. Zeyes	Name: Mildred V. Reyes
Date: 7/12/01	Title: QA/QC

Former Jonas Automotive

Project #:

JONAS001

Laboratory:

Chemtech: NYSDOH Certification No. 11376

Laboratory Report #:

N4923ASP Part V Total Metals

Lab Sample #	FEI Sample #	Analysis (Method)
N4923-01	S-22 (CATCHBASINSEDI	6010, 7471
N4923-02	S-23 (6.5'-7.0')	6010, 7471
N4923-03	S-24 (6.5'-7.0')	6010, 7471
N4923-04	S-25 (6.5'-7.0')	6010, 7471
N4923-05	S-26 (6.5'-7.0')	6010, 7471
N4923-06	S-27 (6.5'-7.0')	6010, 7471
N4923-07	S-28 (2.0'-2.5')	6010, 7471
N4923-08	S-29 (8"-12")	6010, 7471
N4923-09	S-30 (8"-12")	6010, 7471
N4923-10	S-31 (8"-12")	6010, 7471
N4923-11	FIELDBLANK	6010, 7471
N4923-12	S-32 (5.5-6.0)	6010, 7471
N4923-13	S-33 (5.5-6.0)	6010, 7471

- 1. Is the data package complete as defined under the requirements for the NYSDEC ASP Category B or USEPA CLP deliverables? Yes, based on the narrative.
- 2. Have all holding times been met? Yes.
- 3. Do all the QC data: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data fall within the protocol required limits and specifications? Yes except: Spike Sample recoveries for Mercury, Serial Dilutions for Calcium & Zinc, and Duplicate analyses for Arsenic.
- 4. Have all of the data been generated using established and agreed upon analytical protocols? Yes.
- 5. Does an evaluation of the raw data confirm the results provided in the data summary sheets and quality control verification forms? Yes, based on the narrative.
- 6. Have the correct data qualifiers been used? Yes, based on the narrative.
- 7. Is any data rejected? If yes, specify. No data was rejected.

CHEMTECH 205 CAMPUS PLAZA I. RARITAN CENTER EDISON NEW JERSEY 08837 NEW JERSEY LAB ID#:12013 : NEW YORK LAB ID#: 11376

|--|

CHEMTECH PROJECT NUMBER: N 49 23 AJP MAT	TRIX SOIL
METHOD: SW846	
1. Calibration Summary meet criteria.	NA NO YES
ICP Interference Check Sample Results Summary Submitted Meet criteria Blank Contamination	ion
3. Serial Dilution Summary Submitted (if applicable)meet criteria	
4. Laboratory Control Sample Summary Submitted (if applicable)	
5. Blank Contamination If YES, list compounds and concentrations in each blank:	
6: Matrix Spike/Matrix Spike Duplicate Recoveries Meet Criteria If not met, list those compounds and their recoveries which fall outside of the	
Hg 64.9%	·
7. Sample Duplicate Analysis Meet QC Criteria: If not met, list those compounds and their % differences which fall outside of the same states are same same same same same same same sam	f the acceptance range:
8. Digestion Holding Time Met If not met, list number of days exceeded for each sample:	
9. Analysis Holding Time Met If not met, list number of days exceeded for each sample:	<u></u>
ADDITIONAL COMMENTS: matrix interference	
D.L. M. Supervisor	7/9/01 Date
QA REVIEW	Date

Former Jonas Automotive

Project #:

JONAS001

Laboratory:

Chemtech: NYDOH Certification No. 11376

Laboratory Report #:

N5718NJ Volatile Organics, Semi-Voaltile Organics &

Metals

Lab Sample #	FEI Sample #	Analysis (Method)
N5718-01	MW-1	8260, 8270, 6010B, 7471A
N5718-02	MW-5	8260, 8270, 6010B, 7471A
N5718-03	MW-2	8260, 8270, 6010B, 7471A
N5718-04	MW-3	8260, 8270, 6010B, 7471A
N5718-05	MW-4	8260, 8270, 6010B, 7471A
N5718-06	DUPLICATE	8260, 8270, 6010B, 7471A
N5718-07	FIELDBLANK	8260, 8270, 6010B, 7471A
N5718-08	TRIPBLANK	8260

- 1. Is the data package complete as defined under the requirements for the NYSDEC ASP Category B or USEPA CLP deliverables? Yes, based on the narrative, cursory review of report and certification by laboratory QC personnel.
- 2. Have all holding times been met? Yes.
- 3. Do all the QC data: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data fall within the protocol required limits and specifications? Yes except: MS/MS dup recovery for 1,1-DCE and chlorobenzene was outside of acceptable range, blank analyses did indicate the presence of acetone contamination.
- 4. Have all of the data been generated using established and agreed upon analytical protocols? Yes.
- 5. Does an evaluation of the raw data confirm the results provided in the data summary sheets and quality control verification forms? Yes, based on the narrative.
- 6. Have the correct data qualifiers been used? Yes, based on a review of the data and the narrative.
- 7. Is any data rejected? If yes, specify. No data was rejected.

CHEMTECH 284 Sheffield Street. Mountainside New Jersey 07092

NEW JERSEY LAB ID#:12013 : NEW YORK LAB ID#: 11376

GC/MS VOA CONFORMANCE/NON-CONFORMANCE SUMMARY

CHEMTECH PROJECT NUMBER: N5718 MATRIX: 1	ATE	R	: ———
METHOD: \$260			N
	<u>NA</u>	<u>NO</u>	YES
1. Chromatograms Labeled/Compounds Identified. (Field samples and Method Blanks)			
2. GC/MS Tuning Specifications BFB Meet Criteria (NOTE THAT THERE ARE DIFFERENT CRITERIA FOR NY ASP CLP, CLP AND NJ)			
3. GC/MS Tuning Frequency - Performed every 24 hours for 600 series and 12 hours for 8000 Series		•	
4. GC/MS Calibration - Initial Calibration performed before sample analysis and continuing calibration performed within 24 hours of sample analysis for 600 series and 12 hours for 8000 series.			
5. GC/MS Calibration Requirements a. Calibration Check Compounds for 8260 and CLP			
b. System Performance Check Compounds for 8260 and CLP			
8260 CALIBRATION CRITERIA			
SPCC CompoundsMIN RFCCC CompoundsChloromethane0.11,1-Dichloroether1,1-Dichloroethane0.1ChloroformBromoform0.11,2-Dichloroproproproproproproproproproproproprop	ene		
For CCC compounds Initial Calibration Criteria – RSD less than or equal to 30% For CCC compounds Continuing Calibration Criteria - %D less than or equal to 20%			
6. Blank Contamination - If yes, list compounds and concentrations in each blank:			
VB090603.D Acetone 7.49 49/1			
VB 091003 D Acelone 16.75 49/2			
7. Surrogate Recoveries Meet Criteria			
If not met, list those compounds and their recoveries which fall outside the acceptable range	ges.		

CHEMTECH 284 Sheffield Street, Mountainside New Jersev 07092

NEW JERSEY LAB ID#: 12013 : NEW YORK LAB ID#: 11376

GC/MS VOA CONFORMANCE/NON-CONFORMANCE SUMMARY(CONTINUED)

8. Matrix Spike/Matrix Spike Duplicate Recoveries Meet Criteria	NA NO YES
8. Mairx Spike/Mairx Spike Dupitcate Recoveries Meet Chieria	
If not met, list those compounds and their recoveries which fall outside the acceptable	e range.
See the summery page	
9. Internal Standard Area/Retention Time Shift Meet Criteria	~
Comments:	
	
10. Analysis Holding Time Met	
If not met, list number of days exceeded for each sample:	
ADDITIONAL COMMENTS:	
Ankit Analyst Date Da	9/12/01
OA REVIEW Day	10/8/1/

3A WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: CHEMTECH Contract: FIRST ENVIRONMENT

Project No. N5718 Site: FORMER J Location: LB16071 Group: 5971-VOA

Matrix Spike - Sample No.: MW-3

	SPIKE	SAMPLE	MS	MS		QC.
	ADDED	CONCENTRATION	CONCENTRATION	%		LIMITS
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC	#	REC.
1,1-Dichloroethene	50	0	26	52	*	(61-145)
Benzene	50	0	49	98		(76-127)
Trichloroethene	50	0	45	90		(71-120)
Toluene	50	0	50	100		(76-125)
Chlorobenzene	50	0	39	78		(75-130)

	SPIKE	MSD	MSD		_	
	ADDED	CONCENTRATION	%	%	QC :	LIMITS
COMPOUND	(ug/L)	(ug/L)	REC #	RPD #	RPD	REC.
1,1-Dichloroethene	50	49	98	61 *	14	(61-145)
Benzene	50	50	100	2	11	(76-127)
Trichloroethene	50	51	102	13	14	(71-120)
Toluene	50	53	106	6	!3	(76-125)
Chlorobenzene	50	45	90	14 *	13	(75-130)

- # Column to be used to flag recovery and RPD values with an asterisk
- * Values outside of QC limits

RPD: 2 out of 5 outside limits

Spike Recovery: 1 out of 10 outside limits

Comments:

Project Name:

Former Jonas Automotive

Project #:

JONAS001

Laboratory:

Veritech: NYDOH Certification No. 11408

Laboratory Report #:

08132152 SVOCs, Metals

Lab Sample #	FEI Sample #	Analysis (Method)
AB64960	SS-1	8270, 6010, 7471A
AB64961	SS-2	8270, 6010, 7471A
AB64962	SS-3	8270, 6010, 7471A
AB64963	SS-4	8270, 6010, 7471A
AB64964	SS-5	8270, 6010, 7471A
AB64965	SS-6	8270, 6010, 7471A
AB64966	SS-7	6010
AB64967	SS-8	6010
AB64968	SS-9	6010
AB64969	SS-10-1	6010
AB64970	SS-10-2	6010
AB64971	SS-11	6010
AB64972	SS-12	6010
AB64973	SS-13	6010
AB64974	Duplicate	8270, 6010, 7471A

- 1. Is the data package complete as defined under the requirements for the NYSDEC ASP Category B or USEPA CLP deliverables? Report is not in 100% concurrence with ASP requirements as the QC was completed to NYDOH-R deliverables. However, based on a review of the QC data provided, analytical data appears to have received sufficient QC and is accepted.
- 2. Have all holding times been met? Yes.
- 3. Do all the QC data: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data fall within the protocol required limits and specifications: Serial dilution for Ba, Cd. Cr, Co, Pb, Ni and V outside criteria. MS/MSD for SB outside criteria. Ba blank contamination found, but at less than 5% of regulatory limit.
- 4. Have all of the data been generated using established and agreed upon analytical protocols? Yes.
- 5. Does an evaluation of the raw data confirm the results provided in the data summary sheets and quality control verification forms? Yes.
- 6. Have the correct data qualifiers been used? Yes.
- 7. Is any data rejected? If yes, specify. Data was not rejected.

Project Name:

Former Jonas Automotive

Project #:

JONAS001

Laboratory:

Veritech: NYDOH Certification No. 11408

Laboratory Report #:

P5587 Volatile Organics

Lab Sample #	FEI Sample #	Analysis (Method)
AB67366	MW-1	8260, 418.1, 200.7, 245.1
AB67368	MW-2	8260, 418.1, 200.7, 245.1
AB67370	MW-3	8260, 200.7, 245.1
AB67372	MW-4	8260, 418.1, 200.7, 245.1
AB67374	MW-5	8260, 200.7, 245.1
AB67376	MW-6	8260, 418.1, 200.7, 245.1
AB67378	Field Blank	8260
AB67379	Trip Blank	8260

- Is the data package complete as defined under the requirements for the NYSDEC ASP Category B or USEPA CLP deliverables? Report is not in 100% concurrence with ASP requirements as the QC was completed to requirements of NYDOH-R deliverables. However, based on a review of the QC data provided, analytical data appears to have received sufficient QC and is accepted.
- 2. Have all holding times been met? Yes.
- 3. Do all the QC data: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data fall within the protocol required limits and specifications: Serial dilution for Hg did not meet criteria, matrix spike for Ca outside of range, chlorobenzene spike recovery above limit.
- 4. Have all of the data been generated using established and agreed upon analytical protocols? Yes.
- 5. Does an evaluation of the raw data confirm the results provided in the data summary sheets and quality control verification forms? Yes.
- 6. Have the correct data qualifiers been used? Yes.
- 7. Is any data rejected? If yes, specify. Data was not rejected.

Project Name:

Former Jonas Automotive

Project #:

JONAS001

Laboratory:

Chemtech: NYDOH Certification No. 11376

Laboratory Report #:

P5587 Volatile Organics

Lab Sample #	FEI Sample #	Analysis (Method)
P5587-01	MW-3	8260 (w/MTBE and TBA)

- 1. Is the data package complete as defined under the requirements for the NYSDEC ASP Category B or USEPA CLP deliverables? Report is not in 100% concurrence with ASP requirements as the single sample was analyzed to evaluate suspected results. However, based on a review of the QC data provided, analytical data appears to have received sufficient QC and is accepted.
- 2. Have all holding times been met? Yes.
- 3. Do all the QC data: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data fall within the protocol required limits and specifications? MS/MS dup recovery for 1,1-DCE above acceptable range.
- 4. Have all of the data been generated using established and agreed upon analytical protocols? Yes.
- 5. Does an evaluation of the raw data confirm the results provided in the data summary sheets and quality control verification forms? Yes.
- 6. Have the correct data qualifiers been used? Yes.
- 7. Is any data rejected? If yes, specify. No data was rejected.

NYG 2508759

STATE OF NEW YORK DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SOLID & HAZARDOUS MATERIALS

Please type or print. Do not staple

In case of emergency or spill immediately call the National Response Center (800) 424-8802 and the NYS Department of Environmental Conservation (518) 457-7362

HAZARDOUS WASTE MANIFEST P.O. Box 12820, Albany, New York 12212

(Hazardous Waste Manifest 1/5/99

WASTE MANIFEST	1. Generator's	US EPA ID No.	Manifest I	Doc. No.	2. Page			heavy bold line ederal Law.
WASTE MARKITEST	-11100	a . a .	ا بين م					
3.Generator's Name and Mailing Add	ress	00091091		· · ·			-	<u> </u>
	The	City of Member	-		.	NYG 25(187	59
		former Johas & eimer Avenue	Accesor.	74.9. B	Genero			• • • •
4. Generator's Telephone Number (- Newb	6. US EPA ID Number						O
5. Transporter 1 (Company Name) Radiac Research Co	en.	SYDO49	179			ransporter's ID orter's Telephone	176	863-1232
7 Transporter 2 (Company Name)	<u> </u>	8. US EPA ID Number	1 / 8			ransporter's ID	/ TO /	963-2233
	•		1 1 1	F.	Transpo	rter's Telephone ()	-
Designated Facility Name and Site Recent Co		10. US EPA ID Number		G	State F	So. 1st 5	5t I	Sklyn. NY
261 Kent Averse Brooklyn, NY 11211		NYDAAG	178	2 9 6		Telephone (·)	3-2233
11. US DOT Description (Including Pr	oper Shipping Na	ime, Hazard Class and ID	Number)	12. Con	tainers	13. Total	14. Unit	F-6233
	, .		,	Number	Туре	Quantity	Wt/Vol	I. Waste No.
o. () Waste Flamma	le Licuid	, EOS , J , UNI 993 ,	77			::		EPA DOOT
		, ,. ,		XXI	DM	XXIDO	P	STATE
b. (FQ) Saste Flemash	le Liquid	, MCE , 3 , UN1993 ,	II	M. d.		. العاملات		STATE DOOL
				XXI	n a	X X400	P	EPA
^c ()				1 1 1.	1 1			STATE
d.	·		<u> </u>					EPA
				1 1 1.	1 1			STATE
I Aller In the Contract	P. J. A.L.				1/2 11	U: C I (
J. Additional Descriptions for Materia	s listed Above		1 .	ı r	K. Ha	Indling Codes for	Wastes Li	sted Above
o Leb Pack	•	c		<u> </u>	a		- c	
b Balk	1 1 1			, i				
	Additional Inform	notion TN AN EMERY	CERCICAL C	**************************************		Demoke 1 0	00.42	4 0200
15. Special Handling Instructions and A) ERG# 128	Additional Inform	uquon Tut un Elancia	HENNE C	LET LPS.	LT CEN	entres 1-0	(A)-42	4~93 R0
B) ERG# 128			. •		,			
16. GENERATOR'S CERTIFICATION:								
and are classified, packed, marked an national government regulations and			condition fo	r transport	by highw	ray according to a	pplicable	international and
If I am a large quantity generator, I ce	rtify that I have a	program in place to redu					-	
to be economically practicable and the present and future threat to human he	ealth and the envi	ironment; OR if I am a sm	all quantity	generator, l				
generation and select the best waste r Printed/Typed Name	nanagement met	hod that is available to me Signature	e and that I	can afford.			Mo.	Day Year
W. W. Horas	٠	1.1.1.	, <u>\</u>	$L_{i,j-1}$	1 1 - L		11	0900
17. Transporter 1 Acknowledgement	of Receipt of Mate	rials	A Co					
Printed Typed Name NIAR TO ALC	NSD	Signature	Y			1	Mo.	Day Year
18. Transporter 2 Acknowledgement	of Receipt of Mate	rials					<u>, , , , , , , , , , , , , , , , , , , </u>	
Printed/Typed Name		Signature					Mo.	Day Year
19. Discrepancy Indication Space								
00 5 10 0 5 5 7	<u> </u>			•				
20. Facility Owner or Operator: Certif	cation of receipt	of hazardous materials co	vered by thi	s manitest e	except as	noted in Item 19.	Mo.	Day Year
	,		-	·	September 1	_	1. (A O - O
LOVES CAM	ACHO 1		Total San		_	1 .	/	1 400

GENERAL BILL OF LADING

CHEMICAL WASTE DISPOSAL RECORD

No. C 4502

CHEMICAL WASTE BIOI	COAL TILCOND	DATE
		BLDG. NO
The same of the sa		ROOM NO.
COMPANY/INSTITUTION Waste Mgt- The City	y of Newburg-Jonas	DEPT. NO.
(CONTAINER CLASSIFICAT	ION)	P/U TYPE
1-1X55 NR. (7) 5-		5 - Gallon
2-1X30 30 Flam. (18) 6-		30 - Gallon
3-1XSS PLAM BULK 1-		55 - Gallon
4- 8-		Other
Certification (49 C.F.R. 172.204) signed by shipper on bill of lading: "T properly classified, described, passing d, marked and labeled and are in applicable regulations of the Department of Transportation."	his is to certify that the above-named mate πoper condition for transportation according	rials are g to the
CUSTOMER REP	RRC REP.	
REMARKS:		
RADIAC ENVIRONMENTAL SVCS.	MANIFEST NUMBER(S)	NYG2 5087 59
261 KENT AVENUE BROOKLYN, NY 11211	CONTROL CARD NUMBER(S)	
TELEPHONE: (718) 963-2233	CONTROL CARD HUMBER(3)	ents.
LABELS APPLIED YES 49 C.F.R. 172.400 NO	PLACARDING APPLIED IF REQUIRED 49 C.F.R. 172.500	YES NO
	· · · · · · · · · · · · · · · · · · ·	

625 Mt. Hope Rd. • Wharton, NJ 07885 • Tel (973) 366-7741 Fax (973) 328-8490

Job #: 9910073

Ticket #:

33999

Customer:

Date:

12/06/99

First Environment

Time:

Generator:

Spill Location:

11:12

City of Newburgh

Former Jonas Automotive

83 Broadway NEWBURGH, NY 12550

86 Wisner Avenue NEWBURGH, NY 12550

Fuel Type:

Unleaded Gasoline

Waste Type: ID-27

Contamination Method:

Leaking Under Ground Storage

Trucking Company:

Hauler ID:

MHR100

MT. Hope Rock Products 625 Mt. Hope Road

Lic. Plate:

AE833G

Wharton, NJ 07885

Tel #:

(973) 366-7741

Contact:

Ron Callahan

Driver's Name:

GARCIA, FREDDY

License #:

X6055426800D64Z

Operator's ID:

Gross Weight:

35.87

Operator's Name:

Scale House

SCAL

Tare Weight:

13.19

Net Weight:

22:68

The undersigned certifies that the information provided on the waste manifest documentation is true, and that all DOT, EPA, and state environmental regulations have been complied with in the handling of this non-hazardous hydrocarbon contaminated soil. The undersigned further certifies that the material delivered is as represented by the laboratory analysis and material profile presented to the recycling facility during the application process.

Driver's Signature:

625 Mt. Hope Rd. • Wharton, NJ 07885 • Tel (973) 366-7741 Fax (973) 328-8490

Job #: - 9910073

Ticket #:

34002

Customer:

Date:

12/06/99

First Environment

Time:

11:52

Generator:

Spill Location:

Former Jonas Automotive

86 Wisner Avenue NEWBURGH, NY 12550

City of Newburgh 83 Broadway NEWBURGH, NY 12550

Fuel Type:

Unleaded Gasoline

Waste Type: ID-27

Contamination Method:

Leaking Under Ground Storage

Trucking Company:

Hauler ID:

MT. Hope Rock Products

Lic. Plate:

AB511Y

625 Mt. Hope Road Wharton, NJ 07885

Tel #:

(973) 366-7741

Contact:

Ron Callahan

License #:

567734506107692

Operator's ID:

Gross Weight: 36.88

Driver's Name:

Operator's Name:

Scale House

SOTO, JORGE

Tare Weight:

12.39

Net Weight:

24 - 49

The undersigned certifies that the information provided on the waste manifest documentation is true, and that all DOT, EPA, and state environmental regulations have been complied with in the handling of this non-hazardous hydrocarbon contaminated soil. The undersigned further certifies that the material delivered is as represented by the laboratory analysis and material profile presented to the recycling facility during the application process.

Driver's Signature:

625 Mt. Hope Rd. • Wharton, NJ 07885 • Tel (973) 366-7741 Fax (973) 328-8490

Job #:

9910073

Ticket #:

34003

Customer:

Generator:

Date:

12/06/99

Time:

11:53

City of Newburgh

83 Broadway

Spill Location:

Former Jones Automotive

86 Wisner Avenue... NEWBURGH, NY 12550

Fuel Type: Unleaded Gasoline

Waste Type: ID-27

Contamination Method: Leaking Under Ground Storage

Trucking Company:

MT. Hope Rock Products

625 Mt. Hope Road Wharton, NJ 07885

Tel #:

(973) 366-7741

Driver's Name:

HARRIS, SIDNEY License #: H06707107312702

Operator's ID:

Operator's Name:

Scale House

The undersigned certifies that the information provided on the waste manifest documentation is true, and that all DOT, EPA, and state environmental regulations have been complied with in the handling of this non-hazardous hydrocarbon contaminated soil. The undersigned further certifies that the material delivered is as represented by the laboratory analysis and material profile presented to the recycling facility during the application process.

Driver's Signature: ___

Sidney L. Harris

625 Mt. Hope Rd. • Wharton, NJ 07885 • Tel (973) 366-7741 Fax (973) 328-8490

Job #: 9910073 Ticket #: 34014

Customer:

First Environment

Date:

Time:

12/06/9

15:17

Generator:

City of Newburgh 83 Broadway

NEWBURGH, NY 12550

Spill Location:

Former Jonas Automotive

86 Wisner Avenue NEWBURGH, NY 12550

Fuel Type: Unleaded Gasoline

Waste Type: ID-27

Contamination Method: Leaking Under Ground Storage

Trucking Company:

MT. Hope Rock Products

Hauler ID:

625 Mt. Hope Road Wharton, NJ 07885

Lic. Plate:

AD148G

Tel#:

(973) 366-7741

Contact:

Ron Callahan

Driver's Name:

Culleny, Daniel

License #:

C9218 15383 08644

Operator's ID:

SCAL

Gross Weight:

38.64

Operator's Name:

Scale House

Tare Weight:

13.43

Net Weight:

25.21

The undersigned certifies that the information provided on the waste manifest documentation is true, and that all DOT, EPA, and state environmental regulations have been complied with in the handling of this non-hazardous hydrocarbon contaminated soil. The undersigned further certifies that the material delivered is as represented by the laboratory analysis and material profile presented to the recycling facility during the application process.

Driver's Signature:

625 Mt. Hope Rd. • Wharton, NJ 07885 • Tel (973) 366-7741 Fax (973) 328-8490

Job #: 9910073

Ticket #:

34015

Customer:

Date:

12/06/99

First Environment

Time:

15:18

Generator:

City of Newburgh

83 Broadway

NEWBURGH, NY 12550

Spill Location:

Former Jonas Automotive

86 Wisner Avenue

NEWBURGH, NY 12550

Fuel Type: Unleaded Gasoline

Waste Type: ID-27

Contamination Method: Leaking Under Ground Storage

Trucking Company:

MT. Hope Rock Products

625 Mt. Hope Road

Wharton, NJ 07885

Hauler ID:

Lic. Plate:

AC986J

Tel#:

(973) 366-7741

Ron Callahan

Driver's Name:

HARRIS, SIDNEY

License #:

H06707107312702

Operator's ID:

Operator's Name:

SCAL

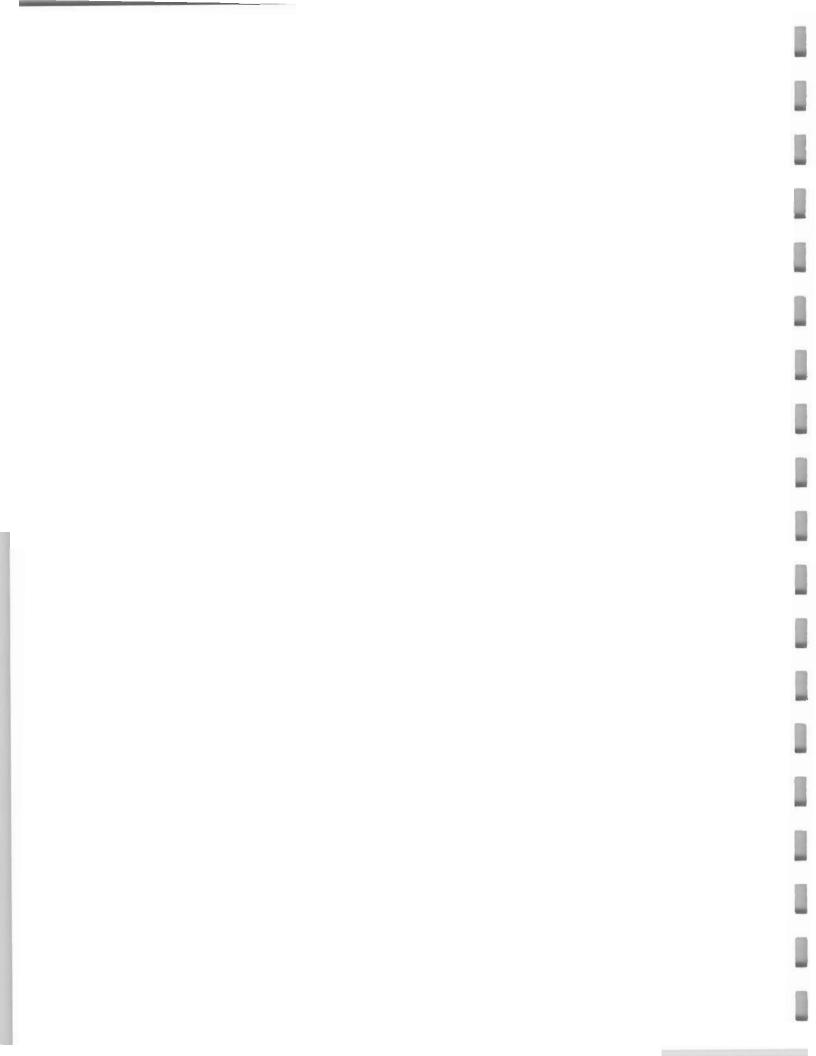
Scale House

Gross Weight:

36.33

Tare Weight:

13.67


Net Weight:

22.66

The undersigned certifies that the information provided on the waste manifest documentation is true, and that all DOT, EPA, and state environmental regulations have been complied with in the handling of this non-hazardous hydrocarbon contaminated soil. The undersigned further certifies that the material delivered is as represented by the laboratory analysis and material profile presented to the recycling facility during the application process.

Driver's Signature: _

Sidney & Harris

Water Resources

skip navigation

 Data Category:
 Geographic Area:

 Site Information ▼
 New York
 ▼

Site Inventory for New York

USGS 412920074014601 O1175

Available data for this site

Station home page

GO

1

LOCATION

Latitude 41°29'20", Longitude 74°01'46" NAD27,

Orange County, New York, Hydrologic Unit 02020008

WELL DESCRIPTION

The depth of the well is 29.0 feet below land surface. Altitude of land surface datum 140.00 feet above sea level NGVD29. This well is completed in SAND AND GRAVEL (112SDGV)

STATION DATA:

Data Type	Begin Date	End Date	Count
Ground-water levels	1965-08-12	1965-08-12	1

~ 18.1' 1305

SITE OPERATION:

Record for this site is maintained by the USGS office in New York

CONTACT INFORMATION

Email questions about this station to gs-w-ny NWISWeb Data Inquiries@usgs.gov

USGS 412920074014701 O2267

Available data for this site

Station home page

GO

LOCATION

Latitude 41°29'20", Longitude 74°01'47" NAD27, Orange County, New York, Hydrologic Unit 02020008

出艺

WELL DESCRIPTION

The depth of the well is 37.0 feet below land surface. Altitude of land surface datum 140.00 feet above sea level NGVD29.

STATION DATA:

Data Type	Begin Date	End Date	Count
Ground-water levels	1965-09-02	1965-09-02	1

~ 6.7' BGS

SITE OPERATION:

Record for this site is maintained by the USGS office in New York

CONTACT INFORMATION

Email questions about this station to gs-w-ny NWISWeb Data Inquiries@usgs.gov

USGS 412920074014801 O1176

Available data for this site

Station home page

GO

LOCATION

Latitude 41°29'20", Longitude 74°01'48" NAD27, Orange County, New York, Hydrologic Unit 02020008

11 3

WELL DESCRIPTION

The depth of the well is 32.0 feet below land surface. Altitude of land surface datum 110.00 feet above sea level NGVD29.

STATION DATA:

Data Type	Begin Date	End Date	Count
Ground-water levels	1965-01-01	1965-01-01	1

~ 2.8, BOZ

SITE OPERATION:

Record for this site is maintained by the USGS office in New York

CONTACT INFORMATION

Email questions about this station to gs-w-ny_NWISWeb_Data_Inquiries@usgs.gov

USGS 412920074014901 O1177

Available data for this site

Station home page

GO

LOCATION

Latitude 41°29'20", Longitude 74°01'49" NAD27, Orange County, New York, Hydrologic Unit 02020008

#11

WELL DESCRIPTION

The depth of the well is 24.0 feet below land surface. Altitude of land surface datum 110.00 feet above sea level NGVD29. This well is completed in SAND AND GRAVEL (112SDGV)

STATION DATA:

Data Type	Begin Date	End Date	Count
Ground-water levels	1965-01-01	1965-01-01	1

~ 1.0 365

SITE OPERATION:

Record for this site is maintained by the USGS office in New York

CONTACT INFORMATION

Email questions about this station to gs-w-

ny NWISWeb Data Inquiries@usgs.gov

USGS 412920074015001 O1178

Available data for this site

Station home page GO

LOCATION

Latitude 41°29'20", Longitude 74°01'50" NAD27, Orange County, New York, Hydrologic Unit 02020008

4

WELL DESCRIPTION

The depth of the well is 33.0 feet below land surface. Altitude of land surface datum 125.00 feet above sea level NGVD29. This well is completed in SAND AND GRAVEL (112SDGV)

STATION DATA:

Data Type	Begin Date	End Date	Count
Ground-water levels	1965-01-01	1965-01-01	1

~ 6.6 BGS

SITE OPERATION:

Record for this site is maintained by the USGS office in New York

CONTACT INFORMATION

Email questions about this station to gs-w-ny_NWISWeb_Data_Inquiries@usgs.gov

USGS 412921074014501 O1179

Available data for this site

Station home page

LOCATION

Latitude 41°29'21", Longitude 74°01'45" NAD27, Orange County, New York, Hydrologic Unit 02020008

WELL DESCRIPTION

The depth of the well is 38.0 feet below land surface. Altitude of land surface datum 135.00 feet above sea level NGVD29. This well is completed in SAND AND GRAVEL (112SDGV)

STATION DATA:

Data Type	Begin Date	End Date	Count
Ground-water levels	1965-01-01	1965-01-01	1

~ 8.0' BGS

SITE OPERATION:

Record for this site is maintained by the USGS office in New York

CONTACT INFORMATION

Email questions about this station to gs-w-ny_NWISWeb_Data_Inquiries@usgs.gov

USGS 412921074014601 O1180

Available data for this site

Station home page

GO

LOCATION

Latitude 41°29'21", Longitude 74°01'46" NAD27, Orange County, New York, Hydrologic Unit 02020008

WELL DESCRIPTION

The depth of the well is 54.0 feet below land surface. Altitude of land surface datum 130.00 feet above sea level NGVD29. This well is completed in LAKE DEPOSITS (112LAKE)

STATION DATA:

There is no data available for this site.

Wh Not Arailable

SITE OPERATION:

Record for this site is maintained by the USGS office in New York

CONTACT INFORMATION

Email questions about this station to gs-w-ny_NWISWeb_Data_Inquiries@usgs.gov

USGS 412921074014701 O1174

Available data for this site

Station home page

GC

LOCATION

Latitude 41°29'21", Longitude 74°01'47" NAD27, Orange County, New York, Hydrologic Unit 02020008

WELL DESCRIPTION

The depth of the well is 25.0 feet below land surface. Altitude of land surface datum 110.00 feet above sea level NGVD29.

STATION DATA:

There is no data available for this site.

WL Not Available

SITE OPERATION:

Record for this site is maintained by the USGS office in New York

CONTACT INFORMATION

Email questions about this station to gs-w-ny_NWISWeb_Data_Inquiries@usgs.gov

USGS 412922074014601 O1173

Available data for this site

Station home page

GO

LOCATION

Latitude 41°29'22", Longitude 74°01'46" NAD27, Orange County, New York, Hydrologic Unit 02020008

7

WELL DESCRIPTION

The depth of the well is 50.0 feet below land surface. Altitude of land surface datum 130.00 feet above sea level NGVD29.

STATION DATA:

There is no data available for this site.

WE Not Available

SITE OPERATION:

Record for this site is maintained by the USGS office in New York

CONTACT INFORMATION

Email questions about this station to gs-w-ny_NWISWeb_Data_Inquiries@usgs.gov

USGS 412928074014501 O1172

Available data for this site

Station home page

▼ GO

LOCATION

Latitude 41°29'28", Longitude 74°01'45" NAD27, Orange County, New York, Hydrologic Unit 02020008

10

WELL DESCRIPTION

The depth of the well is 33.0 feet below land surface. Altitude of land surface datum 120.00 feet above sea level NGVD29. This well is completed in SAND AND GRAVEL (112SDGV)

STATION DATA:

r				
	Data Type	Begin Date	End Date	Count
	Ground-water levels	1965-08-12	1965-08-12	1

WL = 7.81BGS

GO

SITE OPERATION:

Record for this site is maintained by the USGS office in New York

CONTACT INFORMATION

Email questions about this station to gs-w-ny NWISWeb Data Inquiries@usgs.gov

USGS 412955074023001 O1104

Available data for this site

Station home page ▼

LOCATION

Latitude 41°29'55", Longitude 74°02'30" NAD27, Orange County, New York, Hydrologic Unit 02020008

HI

WELL DESCRIPTION

The depth of the well is 285 feet below land surface. Altitude of land surface datum 200.00 feet above sea level NGVD29. This well is completed in ONONDAGA LIMESTONE (344ONDG)

STATION DATA:

There is no data available for this site.

NO WE Available

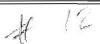
SITE OPERATION:

Record for this site is maintained by the USGS office in New York

CONTACT INFORMATION

Email questions about this station to gs-w-ny NWISWeb Data Inquiries@usgs.gov

USGS 412955074030501 O1182


Available data for this site

Station home page

GO

LOCATION

Latitude 41°29'55", Longitude 74°03'05" NAD27, Orange County, New York, Hydrologic Unit 02020008

WELL DESCRIPTION

The depth of the well is 92.0 feet below land surface. Altitude of land surface datum 250.00 feet above sea level NGVD29. This well is completed in ONONDAGA LIMESTONE (344ONDG)

STATION DATA:

Data Type	Begin Date	End Date	Count
Ground-water levels	1963-05-01	1963-05-01	1

WL = 20.0 1365

SITE OPERATION:

Record for this site is maintained by the USGS office in New York

CONTACT INFORMATION

Email questions about this station to gs-w-ny_NWISWeb_Data_Inquiries@usgs.gov

USGS 412955074030601 O1105

Available data for this site

Station home page

GO

LOCATION

Latitude 41°29'55", Longitude 74°03'06" NAD27, Orange County, New York, Hydrologic Unit 02020008

413

WELL DESCRIPTION

The depth of the well is 57.0 feet below land surface. Altitude of land surface datum 260.00 feet above sea level NGVD29. This well is completed in ONONDAGA LIMESTONE (344QNDG)

STATION DATA:

Data Type	Begin Date	End Date	Count
Ground-water levels	1965-08-03	1965-08-03	1

wh= 38.0'

SITE OPERATION:

Record for this site is maintained by the USGS office in New York

CONTACT INFORMATION

Email questions about this station to gs-w-ny NWISWeb Data Inquiries@usgs.gov

USGS 413025074022501 O1208

Available data for this site

Station home page

GO

LOCATION

Latitude 41°30'25", Longitude 74°02'25" NAD27,

Orange County, New York, Hydrologic Unit 02020008

14

WELL DESCRIPTION

The depth of the well is 409 feet below land surface. Altitude of land surface datum 200.00 feet above sea level NGVD29. This well is completed in ONONDAGA LIMESTONE (3440NDG)

STATION DATA:

Data Type	Begin Date	End Date	Count
Ground-water levels	1965-06-01	1965-06-01	1

WL= 6.8

SITE OPERATION:

Record for this site is maintained by the USGS office in New York

CONTACT INFORMATION

Email questions about this station to gs-w-ny_NWISWeb_Data_Inquiries@usgs.gov

Ouestions about data

gs-w-ny_NWISWeb_Data_Inquiries@usgs.gov

Return to top of page

Feedback on this websitegs-w-ny NWISWeb Maintainer@usgs.gov

NWIS Site Information for New York: Site Inventory

http://water.usgs.gov/ny/nwis/inventory?

Retrieved on 2001-11-07 12:07:24 EST

Department of the Interior, U.S. Geological Survey

USGS Water Resources of New York

Privacy Statement || Disclaimer || Accessibility

GEOCHECK® - PHYSICAL SETTING SOURCE MAP FINDINGS

Map ID Direction Distance

Elevation

Database

EDR ID Number

North 1/4 - 1/2 Mile

FED USGS

413025074022501

Higher

BASIC WELL DATA

Site Type: Year Constructed:

Altitude:

Single well, other than collector or Ranney type

Not Reported 200.00 ft.

County: State:

Orange New York

Well Depth: Depth to Water Table: Date Measured:

409.00 ft. 6.00 ft. 06011965

Topographic Setting: Prim. Use of Site:

Not Reported Withdrawal of water

Prim. Use of Water: Institution

South

1/4 - 1/2 Mile Higher

FED USGS

412955074023001

BASIC WELL DATA

Site Type: Year Constructed:

Altitude: Well Depth:

Date Measured:

Depth to Water Table:

Not Reported 200.00 ft. 285.00 ft. Not Reported

Not Reported

County: State:

Single well, other than collector or Ranney type

Topographic Setting: Prim. Use of Site:

Orange New York Not Reported Withdrawal of water

Prim. Use of Water: Commercial

ESE 1/4 - 1/2 Mile Lower

FED USGS

413000074020001

BASIC WELL DATA

Site Type:

Year Constructed:

Altitude: Well Depth: Depth to Water Table:

.00 ft. 409.00 ft. 2.00 ft. 01011958

Not Reported

Single well, other than collector or Ranney type County:

> State: Topographic Setting: Prim. Use of Site:

Prim. Use of Water:

Orange New York Not Reported Withdrawal of water

Institution

Date Measured:

1/2 - 1 Mile Higher

FED USGS

412955074030501

BASIC WELL DATA

Site Type: Altitude:

Single well, other than collector or Ranney type

Not Reported 250.00 ft.

County: State:

Orange New York Not Reported

Well Depth: Depth to Water Table: 92.00 ft. 20.00 ft.

Prim. Use of Site: Prim. Use of Water:

Topographic Setting: Withdrawal of water

Date Measured:

Year Constructed:

05011963

Domestic

GEOCHECK®-PHYSICAL SETTING SOURCE MAP FINDINGS

Map ID Direction Distance Elevation

Database

EDR ID Number

A5 WSW 1/2 - 1 Mile Higher

FED USGS

412955074030601

BASIC WELL DATA

Site Type:

Single well, other than collector or Ranney type

County:

Orange

Year Constructed: Altitude:

Not Reported 260.00 ft.

State:

New York

Well Depth: Depth to Water Table: 57.00 ft. 38.00 ft.

Topographic Setting: Not Reported Prim. Use of Site:

Withdrawal of water

Date Measured:

08031965

Prim. Use of Water: Domestic

Certified to ISO 14001

CORPORATE HEADQUARTERS

91 Fulton Street Boonton, NJ 07005 Tel: 973-334-0003

Fax: 973-334-0928

CARIBBEAN

P.O. Box 195365

San Juan, Puerto Rico 00919

Tel: 787-767-0838 Fax: 787-763-9597

GEORGIA

1200 Chastain Road

Suite 304

Kennesaw, GA 30144 Tel: 770-424-3344 Fax: 770-424-3399

ILLINOIS

10 South Riverside Plaza

Suite 1800

Chicago, IL 60606 Tel: 312-474-6104 Fax: 312-474-6099

MISSISSIPPI

119 Marketridge Drive Suite D/Box 6 Ridgeland, MS 39157

Tel: 601-957-8967 Fax: 601-956-2441

NEW YORK

19 Willowbrook Lane Mountainville, NY 10953 Tel: 845-534-9285

Fax: 845-534-7044

contactus@firstenvironment.com www.firstenvironment.com