2021 Hazardous Waste Scanning Project

File Form Naming Convention.

(*File_Type*).(*Program*).(*Site_Number*).(*YYYY-MM-DD*).(*File_Name*).pdf

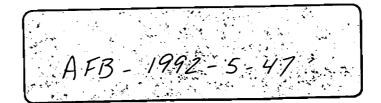
RI-FS

.pdf

Note 1: Each category is separated by a period "." Note 2: Each word within category is separated by an underscore "_"

Specific File Naming Convention Label:

Report. HW, 932106.1992-04-01, Limited - WAANAA


LIMITED REMEDIAL INVESTIGATION/ FEASIBILITY STUDY (RI/FS) FIRE TRAINING AREA NO. 1, IRP SITE 10 NIAGARA FALLS INTERNATIONAL AIRPORT (IAP) NEW YORK PRELIMINARY SUMMARY REPORT

Prepared For 914 TACTICAL AIRLIFT GROUP (AFRES)/LGC Niagara Falls IAP, New York

April 1992

WEHRAN-NEW YORK, INC. Grand Island, New York and BABINSKY KLEIN ENGINEERING, P.C. Amherst, New York

Environmental Engineers • Scientists • Constructors

LIMITED REMEDIAL INVESTIGATION/ FEASIBILITY STUDY (RI/FS) FIRE TRAINING AREA NO. 1, IRP SITE 10 NIAGARA FALLS INTERNATIONAL AIRPORT (IAP), NEW YORK PRELIMINARY SUMMARY REPORT

Prepared for

914 TACTICAL AIRLIFT GROUP (AFRES)/LGC Niagara Falls IAP, New York

Prepared by

WEHRAN-NEW YORK, INC. 345 Lang Boulevard, Suite 1 Grand Island, New York 14072 and BABINSKY KLEIN ENGINEERING, P.C. 150 Creekside Drive Amherst, New York 14228

WE Project No. 00640.02

April 1992

914 TACTICAL AIRLIFT GROUP LIMITED REMEDIAL INVESTIGATION/ FEASIBILITY STUDY (RI/FS) PRELIMINARY SUMMARY REPORT TABLE OF CONTENTS (Page 1)

1.0	INTF	RODUG		1-1
	1.1 1.2 1.3	DESCI	DSE OF THE LIMITED RI/FS PROGRAM	1-2
2.0	ENV	IRON		2-1
3.0	FIEL	.D INV	ESTIGATION PROGRAM	3-1
	3.1 3.2		DIAL INVESTIGATION OVERVIEW	
		3.2.1 3.2.2	Program Scheduling	
	3.3	INVES		3-3
		3.3.1	Drilling and Well Installation Procedures	3-3
	3.4	SAMP	LING	3-7
		3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.4.6	Soil Samples (Split Spoon) Drummed Cuttings Groundwater Sampling Surface Sediment Field Quality Assurance/Quality Control Program Laboratory Program	3-10 3-10 3-11 3-11
4.0	DISC	CUSSI	ON OF RESULTS	4-1
	4.1	SITE	SPECIFIC GEOLOGY	4-1
		4.1.1 4.1.2 4.1.3	Glaciolacustrine Silt, Sand and Clay	4-1

Page Number

20.4/92.00640.B

914 TACTICAL AIRLIFT GROUP LIMITED REMEDIAL INVESTIGATION/ FEASIBILITY STUDY (RI/FS) PRELIMINARY SUMMARY REPORT TABLE OF CONTENTS (Page 2)

Page Number

 		EOLOGY	
4.3.1	Significar	ace of Findings	4-15
		Sediment Analysis	

LIST OF TABLES

	Chronology of RI Field Investigation Program	
Table 3-2	Monitoring Well Construction Detail Summary	3-8
Table 4-1	Summary of Boring Data	4-2
Table 4-2	Summary of Water Levels	4-6
Table 4-3	Sampling and Analyses	4-10
Table 4-4	Analytical Results: Sediments	4-11
Table 4-5	Analytical Results - Groundwater	4-12
Table 4-6	Field Water Quality Data	4-13
Table 4-7	Analytical Results - Drill Cuttings	4-14

LIST OF FIGURES

Figure 1-1	Site Locations at Niagara Falls IAP	1-3
Figure 1-2	Existing Site Conditions Map	1-4
Figure 4-1	Structural Contours of the Bedrock Surface	4-4
Figure 4-2	Overburden Water Level Contour Map	4-7
Figure 4-3	Bedrock Water Level Contour Map	4-8

APPENDICES

Appendix A	Boring Logs
Appendix B	Well Development Data
Appendix C	Analytical Results

1.0 INTRODUCTION

1.1 PURPOSE OF THE LIMITED RI/FS PROGRAM

In September 1987, Science Applications International Corporation (SAIC) was contracted by the United States Air Force to perform an Installation Restoration Program (IRP) Remedial Investigation/Feasibility Study (RI/FS) at Niagara Falls International Airport, (IAP), Niagara Falls, New York. The purpose of the program was to determine the extent and magnitude of environmental contamination that has occurred at the Base as a result of waste disposal practices, fuel spills, and fire training activities; perform a risk assessment based on analytical findings; and provide a preliminary screening of remedial technologies. The first draft of the IRP RI/FS report was published in August 1990. This Draft Report was subsequently revised to address comments from the 914 Tactical Airlift Group (AFRES) and issued as a final draft in October 1990.

In September 1990, Babinsky-Klein Engineering, P.C. (BKE) was requested to perform a Limited RI/FS for Site 10 - Fire Training Area No. 1 under their existing architectural/engineering contract with the AFRES at Niagara Falls IAP, New York. Wehran-New York, Inc. (Wehran) was subsequently retained by BKE to provide the required environmental services to perform the Limited RI/FS.

The initial work performed under this contract consisted of revising the existing approved RI/FS Work Plan, Quality Assurance Project Plan (QAPP) and Health and Safety Plan prepared by SAIC, dated June 1989, to address the scope of work, methodologies and field procedures, and health and safety aspects for the supplemental field activities planned for Fire Training Area No. 1.

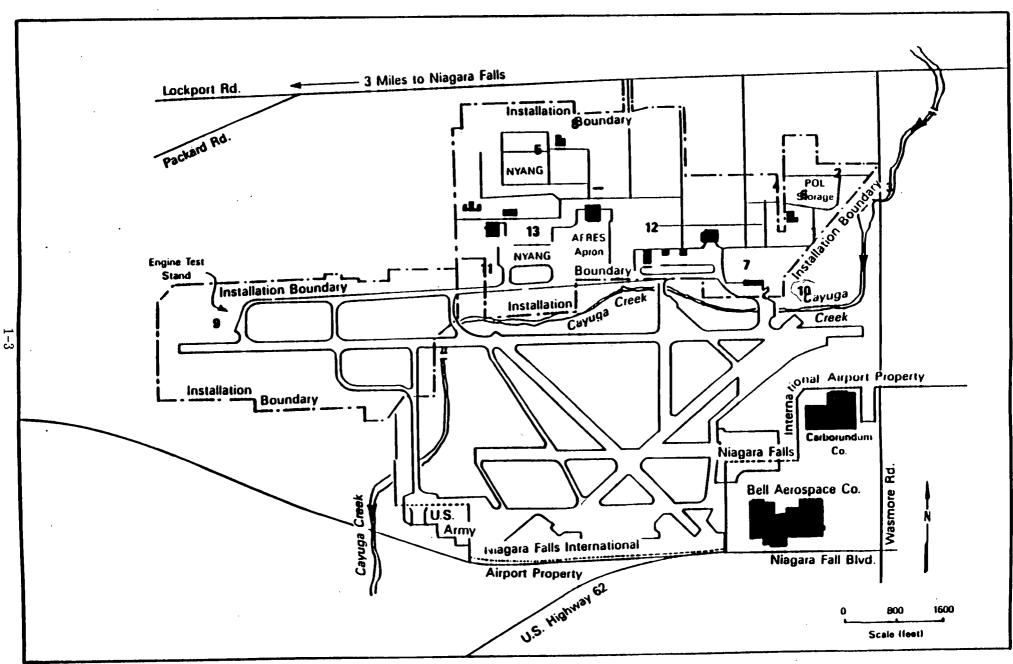
The revised documents were submitted to the AFRES for review and comment in February 1991. Following review by the AFRES, New York State Department of Environmental Conservation (NYSDEC) and United States Environmental Protection Agency (USEPA), all the applicable comments were incorporated with the final revised documents being issued in February 1991.

The IRP RI/FS Draft Report was completed at Niagara Falls IAP, New York, by SAIC in October 1990. This study consisted of the installation of monitoring wells and analytical testing of soil and groundwater samples to provide data on the magnitude and extent of contamination at Fire Training Area No. 1. The report provided data on the subsurface conditions and hydrogeology of the site and identified potential health/environmental risks.

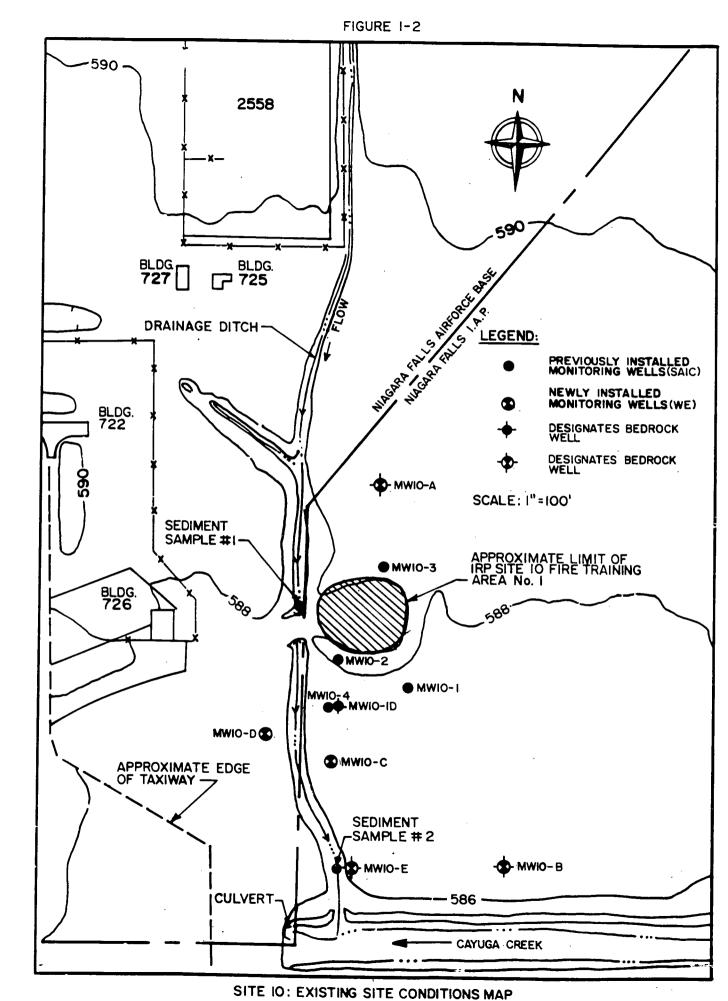
The objectives of the Limited RI Study at Niagara Falls IAP are:

- Further define the extent and type of groundwater and sediment contamination.
- Provide supplemental data on hydrogeology and geology of the site.
- Perform additional analytical sampling to characterize type of contamination.~

This preliminary summary report has been prepared in accordance with Section 6.2 of the Limited RI/FS Work Plan and presents the findings of the Limited RI. This report, which has been specifically prepared as a supplement to the IRP RI/FS report, includes a summary of all field and laboratory work completed to date as part of the Limited RI.


The interpretation and evaluation of any new data and the impact on the RI or Risk Assessment will be subsequently presented in the Limited RI/FS Report. Additionally, a discussion of available remedial technologies and alternatives, and a description of any additional proposed work with data quality objectives will be included in the final report.

The site investigation activities conducted during the Limited RI included:


- Drilling and installation of two overburden and two bedrock wells downgradient of the site and one bedrock well upgradient of the site;
- Collection and analysis of groundwater samples from the five new and five existing monitoring wells (total of ten samples);
- Collection of two sediment samples from the drainage ditch downgradient of Fire Training Area No. 1;
- Analysis of groundwater and sediment samples; and
- Collection and analysis of a composite sample of the drummed drill cuttings for chemical characterization.

1.2 DESCRIPTION AND HISTORY OF SITE 10

IRP Site 10 - Fire Training Area No. 1 (the site) is located in the extreme northeast corner of Niagara Falls IAP, just east of the Niagara Falls Air Force Base in the Town of Wheatfield as shown on Figure 1-1. More specifically, the site is located east of Building 726 as shown on Figure 1-2. The site which is generally flat with a gentle slope to the south is covered with heavy grasses and weeds. Cayuga Creek passes within about 1,000

(Source: IRP RI/FS Workplan -SAIC 6/89) Figure 1-1 Site Locations at Niagara Falls IAP

1-4

feet east and 400 feet south of the site. A drainage swale runs from north to south approximately 50 feet west of the site. Surface drainage flows to the south in this swale and discharges into Cayuga Creek which flows west and then south across the Niagara Falls IAP.

The site served as the base's principal fire training area during the late 1950's and early 1960's. A variety of combustible oils, solvents and jet fuel (JP-4) were burned in the pit and extinguished with fire-fighting foams during training exercises.

1.3 PREVIOUS FINDINGS

A brief description of the waste types and concentrations detected at the site during the Phase II, Stage 1 field investigation and the IRP RI/FS is provided in the following section. A more detailed discussion is provided in the IRP RI/FS Report dated October 1990.

The results of the Phase II, Stage I Field Investigation indicated that the oil and grease levels in groundwater samples were less than 1 mg/L. Elevated levels of TOC (71.2 and 64.2 mg/L) were detected in two groundwater samples. TDS and TOX levels in the surface water were higher upstream of the site than downstream. Oil and grease levels in the sediment samples were high both upstream and downstream; however, the concentrations downstream were nearly triple the upstream values. Elevated oil and grease levels in the sediment may be attributable to run-off from the hardstand area just west of the stream.

The results of the IRP RI/FS indicate that the soils at Site 10 contain elevated levels of zinc, although they fall within the range established by the background borings. Chromium levels were elevated in the downgradient boring (650 mg/kg). Cadmium was also detected at levels above background (1.55 mg/kg). Beryllium and boron were detected at 0.556 and 76.2 mg/kg respectively at Site 10 but did not appear in background borings. Other parameters which were detected at levels above those in the background borings include: barium (1420 mg/kg); lead (56.6 mg/kg); total petroleum hydrocarbons; and trichloroethene (0.010 - 0.190 mg/kg).

Groundwater samples collected from wells at the site indicated a number of volatile organic compounds above background levels, with the highest concentrations detected downgradient of the fire pit. Benzene, total xylenes, toluene, trichloroethene, and vinyl chloride were detected in nearly all downgradient wells. Additionally, several metals (total) were detected at levels above background. These include: iron, manganese, lead, chromium, nickel, barium, copper, zinc, cobalt, molybdenum and vanadium.

The pattern of contamination found in the unconsolidated water bearing zone suggests the development of a plume with its major axis aligned parallel to the groundwater flow direction. There is reason to speculate that an independent plume of perhaps greater extent, as a consequence of higher flow velocities, may have formed in the upper bedrock water bearing zone. Although this has not been verified.

Contaminants migrating south southwest away from Site 10 would be intercepted by Cayuga Creek to the south. In any event, Cayuga Creek would likely act as a hydrogeological barrier to dissolved contaminants migrating via the shallow water bearing zone.

The potential pathways identified at the site for contaminant migration include surface water, groundwater, and the drainage swale. As mentioned above, the likely discharge point for contaminants would be Cayuga Creek south of the site.

2.0 ENVIRONMENTAL SETTING

A very comprehensive discussion of the site's environmental setting has been previously presented in Section 2.0 of the IRP RI/FS Report, dated October 26, 1990 on pages 2-1 through 2-58.

3.0 FIELD INVESTIGATION PROGRAM

3.1 REMEDIAL INVESTIGATION OVERVIEW

The remedial investigation consisted of several field activities as outlined below:

- Subsurface soil and bedrock sampling using hollow stem augers and rock coring techniques;
- Installation of shallow (overburden) and deep (bedrock) groundwater monitoring wells;
- Surface sediment sampling of on-site drainage swale;
- Groundwater sampling of the five new monitoring and the five existing monitoring wells;
- Composite sampling of drummed drill cuttings; and
- Surveying of new and existing wells.

Tasks performed during the RI were designed to provide additional field and analytical data to confirm or supplement data generated during the IRP RI/FS. This data will subsequently be used to further delineate the extent and type of contamination at the site and in the development of remedial alternatives.

The procedures and methodologies employed during the Limited RI are summarized below and presented in detail in the Limited RI/FS Work Plan and QAPP.

3.2 SUMMARY OF FIELD PROGRAM ACTIVITIES

Section 3.1 provides an overview of the activities completed during the Limited RI at Site 10 and Table 4-3 summarizes the analytical testing conducted in support of the field activities. Figure 1-2 shows the locations of the new monitoring wells and sample collection points relative to the previously completed borings/monitoring wells.

3.2.1 Program Scheduling

The limited RI/FS program performed at IRP Site 10 proceeded in the following chronology as indicated in Table 3-1:

TABLE 3-1

CHRONOLOGY OF RI FIELD INVESTIGATION PROGRAM

IRP SITE 10 NIAGARA FALLS IAP

TASK	PERIOD OF PERFORMANCE	TOTAL NUMBER OF DAYS
Subsurface Soil Borings	11/18 - 11/26, 1991	7
Bedrock Borings and Monitoring Well	11/18 - 11/26, 1991	7
Installations	11/18 - 11/26, 1991	7
Well Development	11/27/91, 12/02/91	2
Groundwater Level Measurements	12/09/91, 12/18/91	2
Groundwater and Sediment Sample Collection	12/09/91, 12/10/91	2
Surveying	11/21/91, 12/01/91	1
Drum Sampling	12/23/91	1

- Notice to proceed;
- Work Plan preparation;
- QAPP preparation;
- Health and Safety Plan preparation;
- Notice to proceed with field work;
- RI Field Program; and
- Data analysis.

3.2.2 Identification and Role of Subcontractors

The following subcontractors were utilized during the Limited RI at Site 10:

- Parratt Wolff, Syracuse, New York
 Soil and rock boring and shallow/deep monitoring well installations.
- General Testing Corporation, Rochester, New York
 Groundwater and sediment sample collection, laboratory analytical services.

3.3 INVESTIGATION PROCEDURES

Prior to initiation of field activities, an initial walkover of the site was conducted with Base personnel to acquaint Wehran field geologists with the site and the existing monitoring well locations. Additionally, the proposed locations of the five new borings were also checked for accessibility.

A digging permit was obtained from the AFRES and a check was made with the local utility companies to confirm that no utilities existed within the study area. The Decontamination Area and Staging Area for drummed cuttings and containerized development/purge water were also identified.

3.3.1 Drilling and Well Installation Procedures

As indicated previously, a total of five new monitoring wells were installed during the Limited RI. Two of these wells (MW10-C and MW10-D) were installed in the overburden downgradient of the site and the existing monitoring wells in the direction of the suspected contaminant plume. The remaining three wells were installed in the upper portion of the bedrock to investigate the possibility of contamination and to provide additional information on groundwater flow in the rock. Monitoring well MW10-A was located approximately 100 feet upgradient of the site and wells MW10-B and MW10-E were positioned downgradient about 350 and 300 feet southeast and south of the site respectively. The locations of the five new wells and the five existing wells are shown on Figure 1-2.

In general, the procedures outlined in the Limited RI/FS QAPP were followed. However, it was necessary to modify some of the methods based on field conditions. All borings were advanced through the soil (overburden) utilizing four and one quarter inch ID hollow stem augers. Bedrock was drilled using a nominal four inch OD HQ-size core barrel. The depths of the borings ranged from 9.5 to 25.1 feet below ground surface. The specific procedures followed for drilling and installing the overburden and bedrock monitoring wells are described separately below.

- 1. The drill rig was set up over the staked location and plumbed.
- 2. The first split spoon sample was collected in accordance with ASTM Method D-1586 from zero to two feet and the plugged augers were advanced to the top of the next interval to be sampled.
- 3. The auger plug was removed and the next two foot long sample was collected. This procedure was repeated in a manner so that the soil was continuously sampled until the top of bedrock was reached. All samples collected were described according to the "Standard Practice for Description and Identification of Soils" and classified according to the Unified Soil Classification System. Additionally, during sampling, each split spoon soil sample was scanned with an HNu photoionization detector (PID). The results are included on the soil boring logs which are presented in Appendix A.
- 4. Once the borehole had been drilled to completion depth, the auger plug was removed and a PVC well screen with a bottom plug and an appropriate length of riser was installed (two-inch ID, PVC Schedule 40). All screens and risers were threaded flush joint. The screens were all Schedule 40 PVC with 0.02 inch factory cut slots. All well screen and casing was steam cleaned prior to installation in the borehole. The screen interval was set at a suitable depth to allow for fluctuation in the groundwater table elevation and to allow any

free-floating petroleum, oils, and lubricants to enter the well during sampling. The well screen lengths varied from three to five feet based on the field conditions at each location. All screens extend to the top of bedrock. The top of the PVC casings extended from approximately one and a half feet to two and a half feet above ground elevation.

- 5. Once the well assembly was placed in the borehole, the augers were raised gradually while silica sand of a grain size distribution compatible with the screen and the formation was placed into the annulus by the Tremie method. Sand was maintained at a level inside the augers throughout installation. This process was continued until the sand pack extended a minimum of one foot above the top of the screen. A six inch layer of finer sand was then installed above the filter pack to prevent the downward migration of the bentonite or cement bentonite grout.
- 6. After the sand pack had been tremied in place and measurements taken to ensure the proper location of the sand pack, approximately two to three feet of a bentonite seal was placed on top of the sand pack. Seal thickness was adjusted in the field, depending on thickness of overburden to allow well installation.
- 7. After the bentonite seal was in place, and had been allowed to hydrate, and measurements were taken to ensure its proper location, a cement and bentonite grout was placed by the Tremie method from the top of the seal to the land surface. This was accomplished in such a manner that a tight, continuous grout seal was ensured through the entire interval. Cement and bentonite grout mixtures consisted of potable water, bentonite, and Type I or II Portland cement with 94 pounds of cement and five pounds of bentonite per six and one half gallons of water. The grout was allowed to set a least 72 hours before the well was developed.
- 8. Prior to development, the water level was measured to the nearest 0.01 foot below the top of the casing.
- 9. Each well was developed using a bottom-filling bailer until the Supervisory Geologist determined that the specific conductance pH, and conductivity had stabilized and showed no further changes with continued development. The

total volume of removed water was estimated and recorded. All purge/development water was containerized at the boring locations, then transported to the on-site staging area designated by Base personnel where it was transferred to a common holding tank. Based on field observations (visual), field screening (organic vapor analyzer results), and analytical data, the purge/development water will be characterized and disposal options recommended to Base personnel. Conditions and observations noted during development were recorded and are presented in Appendix B.

All wells were completed having the PVC casing extended two to two and one 10. half feet above land surface (ALS). An end plug was placed on each well, along with a screw-type casing cap. The PVC casing was covered by a six inch diameter steel casing with a locking lid seated in a two foot diameter by four inch thick concrete surface pad. In order to minimize the deleterious effects of frost action, the concrete pads were constructed with galvanized steel reinforcing fibers which will impart a greater durability to the well pads. The pads were sloped away from the steel casing. A slot was cut in the side of the protective casing near the concrete pad to permit drainage. The drilling subcontractor provided and installed keyed-alike locks. Three, three inch diameter by six foot cement-filled steel guard posts were installed radially around each well. These guard posts were recessed approximately two feet into the ground and set in concrete. The posts were placed around, but not in, the concrete pad placed at the well base. The well number was marked on the steel casing using paint.

The procedures for drilling the bedrock monitoring wells were initially the same as those described for overburden monitoring well drilling (Steps 1 through 3). Steps 1 through 3 were repeated until the Lockport Dolomite was reached. The following procedures were then followed:

4. Once the top of the bedrock was encountered, the augers were advanced approximately six more inches into the bedrock. The auger plug was removed and a two foot thick bentonite seal was placed in the bottom of the boring.

3-6

Once the seal was placed, the augers were removed from the boring and a six inch diameter black steel casing was pushed through to the top of rock and hammered into place to assure a tight seal.

- 5. The remainder of the hole around the steel casing was then backfilled with uncontaminated cuttings. The bentonite seals were then allowed to hydrate usually overnight before proceeding with the coring activity.
- 6. After allowing the bentonite to hydrate, an HQ-size double tube core barrel was used to advance the hole to the desired depth in the Lockport Dolomite.
- 7. All rock cores recovered were thoroughly examined and logged by the geologist for both lithology and jointing/fracture information. The cores were placed in wooden core boxes, properly labeled and retained for future reference.

Steps eight through ten of the overburden monitoring well installation procedures were then followed. Monitoring well construction details are summarized on Table 3-2.

OVERBURDEN WELLS

In accordance with the QAPP the ambient air was monitored with an HNu during all drilling operations. Additionally, the drill cuttings were screened with the HNu with the intention of separating the cuttings which exhibited elevated readings (indicative of VOC's) from those cutting with no elevated readings. Since no elevated readings were observed for any of the drill cuttings they were all containerized in pre-cleaned 55 gallon metal drums without any separation. The drums were properly labelled and moved to the designated staging area located in a fuel tank storage area just north of the site.

3.4 SAMPLING

Media sampled as part of the Limited RI/FS for Fire Training Area No. 1, IRP Site 10 included soil, groundwater, surface sediments and drummed drill cuttings (soil). The types and number of samples collected are presented in Table 4-3.

WELL/	GROUND	TOTAL BORING DEPTH	FILTER PACK D	MENSIONS	BENTONITE SEAL	DIMENSIONS	SCREENED	NTERVAL	TOP OF CASING
PIEZ.	SURFACE		BOTTOM	TOP	BOTTOM	TOP	BOTTOM	TOP	ELEVATIONS (FEET)
<u></u>	ELEV. (FT)	DEPTH / ELEVATION	DEPTH / ELEVATION	DEPTH / ELEVATION	DEPTH / ELEVATION	DEPTH / ELEVATION	DEPTH / ELEVATION	DEPTH / ELEVATION	INNER / OUTER
		(FT)	(FT)	(FT)	(FD)	(FT)	(FT)	(FT)	(FT)
MW10A	569.08	20.00 / 568.08	20.00 / 568.08	7.60 / 580.48	7.00 / 580.48	5.60 / 582.48	19.90 / 568.18	9.00 / 676.18	590.12 / 590.55
MW108	586.71	19.20 / 567.51	19.20 / 667.51	9.50 / 677.21	9.50 / 677.21	7.50 / 579.21	19.00 / 667.71	11.50 / 675.21	688.84 / 588.99
MWIOC	586.95	9.60 / 577.35	9.60 / 677.35	3.00 / 563.95	3.00 / 583.95	1.00 / 685.96	9.30 / 677.85	4.30 / 582.85	689.11 / 689.57
MW10D	587,49	9.50 / 677.99	9.50 / 577.99	4.00 / 583.49	4.00 / 583.49	1.60 / 585.99	9.00 / 678.49	6.00 / 581.49	589.49 / 589.66
MW10E	686.52	25.10 / 561.42	25.10 / 561.42	12.30 / 574.22	12.30 / 574.22	9.60 / 577.02	24.65 / 561.67	15.10 / 571.42	588.24 / 588.41

TABLE 3-2 NIAGARA FALLS INTERNATIONAL AIRPORT LIMITED RI/FS, SITE 10 MONITORING WELL CONSTRUCTION DETAIL SUMMARY

3.4.1 Soil Samples (Split Spoon)

Soil samples were collected continuously in each boring for lithologic purposes and to allow field screening of VOC's. No soil samples were retained for analytical testing (in accordance with the work plan). Soil samples were collected utilizing a standard two foot long, two inch OD split spoon sampler in accordance with ASTM D-1586 Procedures.Upan removal from the boring the split spoon was opened and the required soil scanned with a HNu Model PI-101 Photoionization Detector (PID) to determine if any VOC's were present. The readings were recorded on the boring logs. The soil was then logged by the geologist with the description recorded on the field log form.

Soil samples were examined, prior to their containment, for various characteristics including, but not limited to:

- PID Monitoring Results;
- Recovery;
- Lithology;
- Visual Grain Size;
- Color;
- Texture;
- Consistency;
- Density;
- Moisture.

Soil descriptions were used to characterize the sample and recorded on the borehole log (Appendix A).

A representative sample from each split spoon was placed in a pre-cleaned, properly labeled glass jar and retained for archival purposes. The remaining portion of each soil sample was disposed in a pre-cleaned 55 gallon steel drum. In accordance with the work plan, the soil samples and drill cuttings which exhibited any elevated (above background levels) readings with the PID were to be segregated from the non-volatile portion. However, since none of the drill cutting or soil samples exhibited elevated readings, they were all co-disposed and labelled as non-volatile.

3.4.2 Drummed Cuttings

As indicated above, all drill cuttings as well as the excess split spoon samples were placed in pre-cleaned 55 gallon steel drums. On the basis of PID monitoring of drill cuttings and split spoon samples, all the samples and cuttings were considered to be non-volatile and co-disposed in appropriately labeled drums.

The drums were placed in the designated staging area to await final disposal.

In order to characterize the containerized cuttings for proper disposal, a single composite sample consisting of soils from all the drums was taken for analysis. The procedures utilized to produce the composite sample are as follows:

- Drums containing borehole cuttings were opened and screened for volatile organics using a PID meter, (no elevated levels were recorded);
- Samples of the cuttings were obtained from varied depths in each drum using a small diameter stainless steel hand auger and placed in a stainless steel bowl;
- Once sampling was completed for all drums, the samples were mixed in the stainless steel bowl to form a composite sample for analysis;
- The composite sample was placed in appropriately labeled laboratory jars, in accordance with the QAPP and sent to the analytical laboratory; and
- All sampling tools were decontaminated between each drum in accordance with the QAPP.

3.4.3 Groundwater Sampling

Groundwater samples were collected within 24 hours after purging three to five well volumes from each of the five new wells and the five previously installed wells. Stainless steel bailers were used for both purging and sampling. The decontaminated stainless steel bailer was lowered into to the well to a point below the static water level in order to collect a representative groundwater sample. The wells were purged and sampled beginning with the upgradient wells and progressing to the downgradient wells.

During sample collection, the stainless steel bailer was filled, removed from the well and the groundwater dispensed into the appropriate containers in order of volatilization sensitivity. Preservatives were added in the field in order to meet analytical protocol. One additional groundwater sample was collected from each of the five new wells and field filtered through a 0.45 micron filter. These samples were to be utilized in comparison testing for soluble metals. The samples were packaged and placed in ice filled cooler chests which were maintained at 4 degree C or less until they were delivered to the lab at the end of the day. All sampling and purging equipment were properly decontaminated between wells.

3.4.4 Surface Sediment

Surface sediment was collected from two locations within the drainage ditch to the west of the site (see Figure 1-2). Sampling was performed using a stainless steel trowel that was decontaminated between sampling locations. The sediments were placed directly into appropriately labelled sample containers, and then packed in ice filled coolers. The samples were maintained at 4 degree C or below until they were delivered to the laboratory at the end of the day.

3.4.5 Field Quality Assurance/Quality Control Program

Prior to initiation of the field investigation and sampling program at Site 10, a Quality Assurance Project Plan (QAPP) was prepared and approved. The procedures outlined in this document were followed rigorously to that the data quality objectives were achieved.

Additionally as specified in the work plan the following QC samples were collected during the field sampling program:

- 1 Trip Blank
- 1 Field Blank
- 1 Equipment Blank
- 1 Field Duplicates

3.4.6 Laboratory Program

All analytical testing was performed in accordance with the methods and protocols outlined in Section 1.8 of the QAPP. As indicated, CLP Protocols were not required for the Limited RI/FS Program.

4.0 DISCUSSION OF RESULTS

4.1 SITE SPECIFIC GEOLOGY

Data obtained from the recent investigations generally tends to substantiate the previous description of the site geology as presented in the IRP RI/FS Report. As previously indicated the site is covered with a thin veneer of glacially derived sediments consisting of glaciolacustrine silts, sands and clay and glacial till. The unconsolidated deposits vary in thickness across the site with a minimum thickness of 5.2 feet at well MW10-A and a maximum thickness of 9.9 feet at well MW10-3, Table 4-1. The glacial till forms the lowermost unit and rests unconformably on the Lockport Dolostone Surface. The glaciolacustrine deposits overlie the glacial tills and form the uppermost unit at the site.

Both units are similar in color and vary only slightly in texture, which makes it difficult to distinguish between them. However, an attempt was made to define the contact between the units. The units are described in greater detail in the following sections.

4.1.1 Glaciolacustrine Silt, Sand and Clay

The entire site appears to be covered with a layer of Glaciolacustrine Silt, Sand and Clay ranging in thickness from approximately four feet at MW10-A and MW10-C to 6.3 feet at MW10-B. This unit is characterized by thin bedded to laminated, gray brown to reddish brown mottled silty clays. A general field description of this material is as follows: Red brown Silt, some clay, trace very fine sand to Red brown Silt and very fine sand, damp, medium dense.

The boring logs in Appendix A present more specific and detailed soil descriptions across the site.

4.1.2 Glacial Till

Underlying the glaciolacustrine unit and immediately overlying the bedrock is a thin layer of Glacial Till. This layer varies in thickness from 1.2 feet at MW10-A to 5.4 feet at MW10-C. A general field description of this unit is as follows: Red brown Silt and very fine sand, little clay, trace fine Gravel, moist and soft to medium stiff. Gravel found in this unit generally consists of sub-rounded to sub-angular clasts of dolomite, shale, and

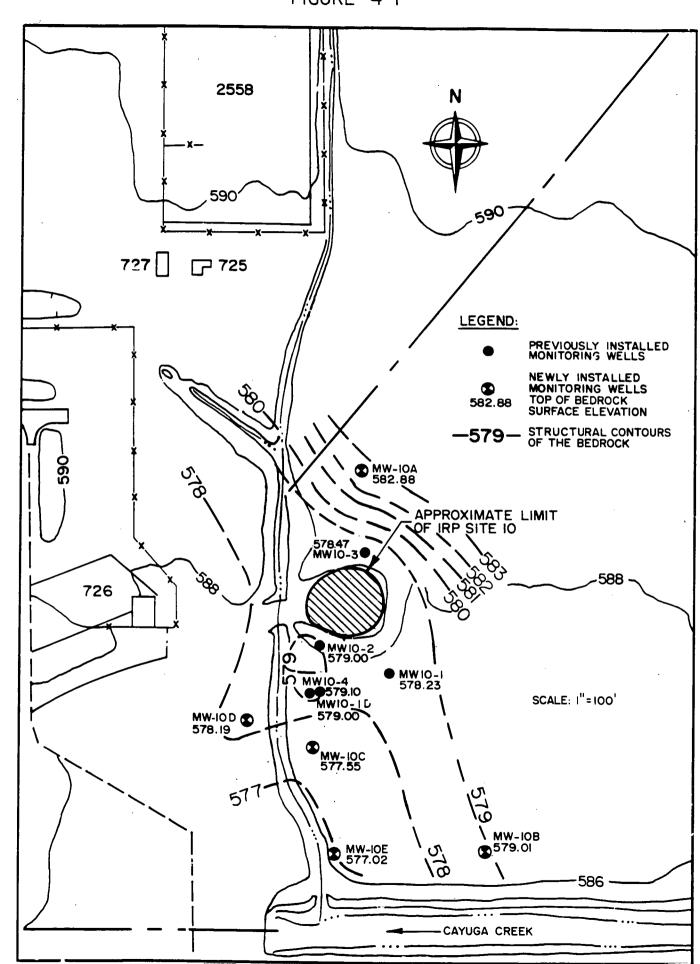
TABLE 4-1 NIAGARA FALLS INTERNATIONAL AIRPORT LIMITED RI/FS - SITE 10 SUMMARY OF BORING DATA

BORING	GROUND	TOTAL BORING	TOP OF GLACIOLACUSTRINE	TOP OF GLACIAL TILL	TOP OF BEDROCK
	SURFACE	DEPTH	SILT AND CLAY		
	ELEVATION	DEPTH / ELEVATION	DEPTH / ELEVATION	DEPTH / ELEVATION	DEPTH / ELEVATION
	(FT)	(FT)	(FT)	(FT)	(FT)
MW10A	588.08	20.00 / 568.08	0.00 / 588.08	4.00 / 584.08	5.20 / 582.88
MW10B	586.71	19.20 / 567.51	0.00 / 586.71	6.30 / 580.41	7.70 / 579.01
MW10C	586.95	9.60 / 577.35	0.00 / 586.95	4.00 / 582.95	9.40 / 577.55
MW10D	587.49	9.50 / 577.99	0.00 / 587.49	5.10 / 582.39	9.30 / 578.19
MW10E	586.52	25.10 / 561.42	0.00 / 586.52	4.50 / 582.02	9.50 / 577.02

crystalline rock. The boring logs in Appendix A present more specific and detailed soil descriptions across the site.

4.1.3 Lockport Dolostone

The entire site and surrounding area is underlain by the Lockport Dolostone which reportedly is approximately 180 feet thick in this area of Niagara Falls. As described by Johnston (1964), the Lockport is a dark gray to grayish brown dolomite, massive to thin bedded locally containing algal reefs and small masses of gypsum. The lower portion of the unit tends to be gray to brown dolomite, locally containing gypsum and light gray coarse grained limestone with shale dolomite at the base.


Bedrock thickness of 14.8, 11.5 and 15.6 feet was cored in borings MW10-A, MW10-B and MW10-E respectively. Based on the core samples, the dolostone bedrock is generally gray to dark gray, porous or vuggy (with gypsum), fossiliferous and massive.

In all bedrock borings the rock quality designation (RQD), which is a measure of the overall competency of the rock, was moderate to high averaging 85 percent for all nine core runs. As indicated in the boring logs, the majority of the fractures are perpendicular to the core axis along bedding planes. The upper five to ten feet is generally more fractured showing increasing competence with depth.

A contour map of the bedrock surface (Figure 4-1) was constructed utilizing data from all the borings on site. Boring logs for the five new wells are contained in Appendix A. The logs for the previous wells are presented in the earlier IRP RI/FS reports.

As indicated on Figure 4-1, the bedrock surface is somewhat irregular, but overall exhibits a general slope to the southwest at approximately 0.02 - 0.04 ft/ft. Bedrock elevations range from a maximum of 582.88 feet at MW10-A to a minimum of 577.02 feet at MW10-E. The apparent irregularities in the rock surface may be natural, but are more likely reflective of the criteria utilized during the various drilling programs to define the "top of bedrock". During the initial boring program (MW-10-1, 2 and 3) soil samples were collected at five foot intervals. Consequently, the split-spoon samples were planned for zero to two feet, five to seven feet and 10-12 feet. Since the bedrock is typically at eight to ten feet below ground surface, it falls within a non-sampling interval. This means that the augers were advanced following collection of the second split-spoon at the five foot level with the intent of stopping at ten feet for the third sample. It is not indicated on the logs

for these holes, but it appears likely that the augers were advanced to "refusal", with this depth being considered the "top-of-bedrock". Considering the fractured and weathered condition of the upper portion of the bedrock, as evidenced in the recent borings, it is probable that the augers could have been advanced a few inches to as much as a foot into the bedrock before reaching refusal. This would result in the reported top-of-bedrock in these holes being shown at elevations lower than the actual top-of-rock.

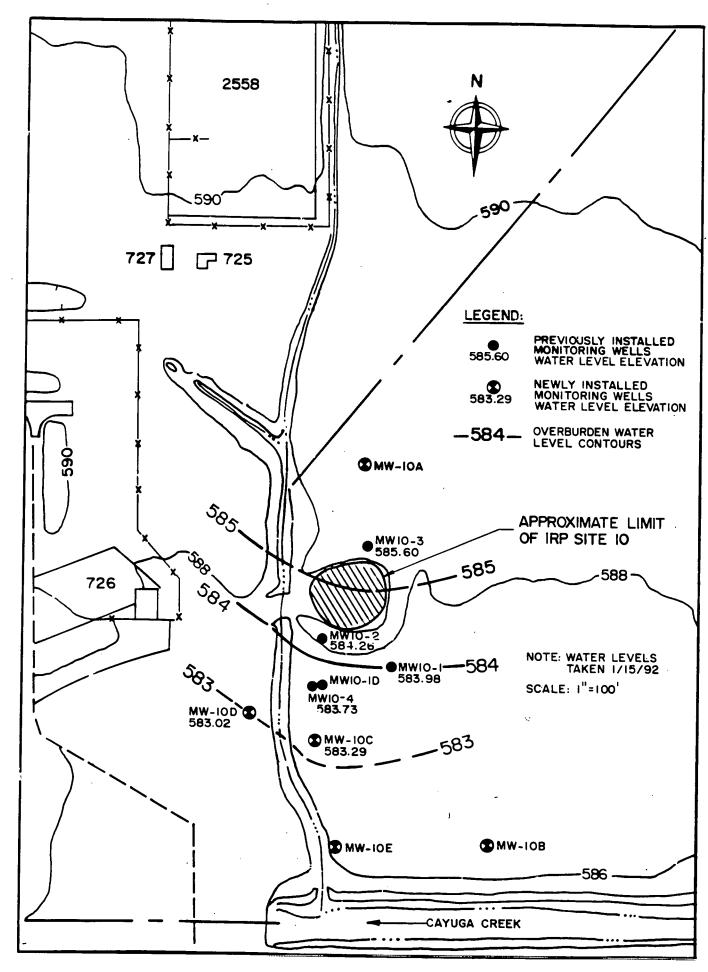
This problem was eliminated in the more recent borings (MW10-4, -10, -10A, -B, -C, -D and -E) in that continuous split-spoon sampling was utilized to define the stratigraphy and the top-of-bedrock.

4.2 SITE HYDROGEOLOGY

As indicated in the IRP RI/FS Report "The first potential water bearing zone encountered was the thin silty-clay horizon containing some gravel which rests directly on the bedrock surface. This horizon represents a slightly more permeable section of till. All other materials penetrated generally lacked sufficient permeability to serve as viable waterbearing formations and collectively function as an aquitard."

The data from the borings installed during this limited RI/FS tend to support this conclusion. However, the three additional wells installed in the under portion of the bedrock indicate that this zone is fractured and jointed and also water-bearing. Initially, individual maps were prepared based on water level readings obtained on December 18, 1991 and January 15, 1992 (Table 4-2) to present the potentiometric surface in the overburden and shallow bedrock zones, Figures 4-2 and 4-3 respectively.

These maps indicated that there is essentially no difference between the two potentiometric surfaces. Additionally, the water elevations in wells MW10-1D and MW10-4 which are located adjacent to one another and screened in the bedrock and overburden respectively to form a couplet, are almost identical. The water surface in the overburden well MW10-4 ranged from 0.25 to 0.15 feet above the water level in the bedrock well MW10-1D between the December 18, 1991 and January 15, 1992 readings. This indicates a very slight vertical downward gradient from the overburden aquifer to the bedrock aquifer. An examination of the two water surfaces also indicates that they are reflective of the bedrock topography as opposed to the surface topography. The water levels recorded


TABLE 4–2 NIAGARA FALLS INTERNATIONAL AIRPORT LIMITED RI/FS – SITE 10 SUMMARY OF WATER LEVELS

		-		Dec. 1	<u>8, 1991</u>	<u>Jan. 1</u>	<u>5, 1992</u>
Well	T.O.C.	Ground	Well	Depth	Water	Depth	Water
No.	Elev.	Elev.	Depth	To Water	Elev.	To Water	Elev.
			(ft)	(ft)	(ft)	(ft)	(ft)
MW-10A *	590.12	588.08	19.90	4.17	585.95	3.40	586.72
MW-10B *	588.84	586.71	19.20	9.61	579.23	7.68	581.16
MW-10C	589.11	586.95	9.60	7.27	581.84	5.82	583.29
MW-10D	589.49	587.49	10.00	7.24	582.25	6.47	583.02
MW-10E *	588.24	586.52	25.10	8.27	579.97	6.95	581.29
MW-10-1	589.92	587.39	8.80	7.8	582.12	5.94	583.98
MW-10-1D *	589.69	587.28	32.90	7.24	582.45	6.10	583.59
MW-10-2	590.46	587.99	9.00	7.3	583.16	6.20	584.26
MW-10-3	590.76	588.25	9.90	5.85	584.91	5.16	585.60
MW-10-4	589.65	587.08	7.90	6.95	582.70	5.92	583.73

* Denotes Well Installed in the Bedrock

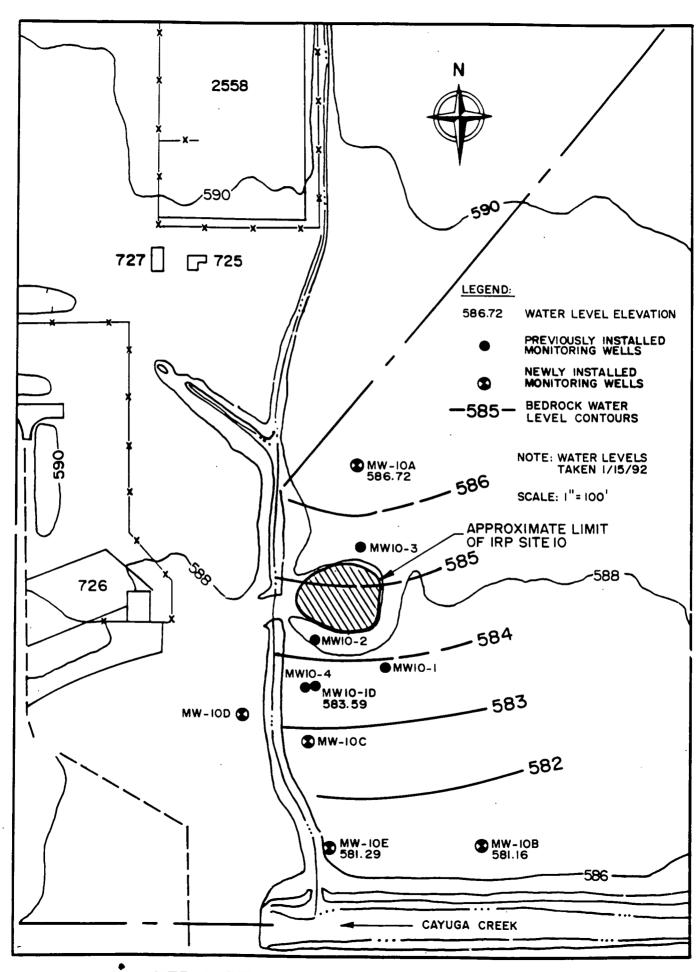

Tab4-2.wk1

FIGURE 4-2

SITE IO : OVERBURDEN WATER LEVEL CONTOUR MAP

FIGURE 4-3

SITE 10: BEDROCK WATER LEVEL CONTOUR MAP

4-8

in December 1991 and January 1992 show that the potentiometric surface in both zones is roughly three feet above the bedrock surface and parallel to it.

The glaciolacustrine deposits and the upper portion of the glacial till exhibit low permeabilities and collectively act as a confining layer to the water bearing zones in the lower portion of the till and the upper bedrock. There is no confining layer between the two water-bearing zones, which results in the two zones being highly interconnected and essentially acting as a single unit in that groundwater flow direction is the same. Groundwater flow in both systems is to the south, with a hydraulic gradient of approximately 0.014 ft/ft. This is consistent with the value of 0.0101 ft/ft stated in the IRP RI/FS report.

Although the two zones act as a single unit, the estimated flow velocities in the two zones are considerably different. As indicated in the IRP RI/FS report, horizontal groundwater flow velocities were estimated to be 7.7 x 10^{-2} to 7.7 x 10^{-1} ft/year for the unconsolidated aquifer and 6.3 x 10^{-1} ft/day or 230 ft/year for the upper bedrock aquifer. This higher flow velocity in the upper bedrock is related directly to the higher permeability of this zone as a result of the fracturing and open horizontal bedding planes/joints present.

4.3 ANALYTICAL RESULTS

Analytical testing was performed on groundwater samples collected from all ten monitoring wells, sediment samples from two locations and one composite sample of the drummed drill cuttings. Table 4-3 provides a summary of the number and type of analyses performed for each matrix. The analytical results for all samples are contained in Appendix C. The matrix-specific results are presented in Tables 4-4, 4-5, 4-6, and 4-7.

Organic Analysis

Two sediment samples, and one composite sample of the drill cuttings which was subjected to TCLP, were analyzed for volatile organics and semi-volatile organics. Ten groundwater samples and associated field QC blanks were analyzed for purgeable halocarbons and purgeable aromatics. Additionally, the composite sample of drill cuttings was analyzed for pesticides and herbicides.

TABLE 4-3 NIAGARA FALLS INTERNATIONAL AIRPORT LIMITED RI/FS - SITE 10 SAMPLING AND ANALYSES

		Groundwater Sedi									Drill Cuttings	
	Analytical	New	Existing	QC Samples				Analytical	Drainage	Analytical	Non-Volatile	Volatile
PARAMETER	Method	Wells (No.)	Wells (No.)	Duplicate	Equip. Blank	Fleid Blank	Trip Blank	Methods	Ditch (No.)	Methods	Soils	Solls
Alkalinity – Carbonate Bicarbonate & Hydroxide	A403	5		1	1	• 1						
Common Anoins (Choride, Flouride, Nitrate, Sulfate, Orthophosphate)	A429	5		1	1	1						
Common Cations (Calium, Magnesium, Sodium, Potassium)	SW 3050/ SW 6010	5		1	1	1						
Specific Conductance (Field)	E 120.1	5		- 1	1	1						
pH (Field)	E 150.1	5		1	1	1			1			
Total Dissolved Solids	E 160.1	5		1	1	1			1 1			
Temperature	E 170.1	5		1	1	1						
Metal Screen (Total Metals) (Zinc, Chromium, Iron, Manganese, Barlum, Aluminumm Copper, Nickel, Potassium, Silicon, Boron)	E 200.7	5		1	1	1					-	
Metal Screen (Dissolved Metals) Test for any parameters which exceeds part 703 standards based on total concentration results.	E 200.7	5										

Tab4-3.wk1

20.4/92.00640.JMcC

12

.

.

TABLE 4-3 (continued) NIAGARA FALLS INTERNATIONAL AIRPORT LIMITED RI/FS - SITE 10 SAMPLING AND ANALYSES

				Groundwater							Drill Cuttings	
	Analytical	New	Existing		QC S	amples		Analytical	Drainage	Analytical	Non-Volatile	Volatile
PARAMETER	Method	Wells	Wells		Equip.	Field	Trip	Methods	Ditch	Methods	Soils	Soils
		(No.)	(No.)	Duplicate	Blank	Blank	Blank		(No.)			l
Lead	E 239.2	5		1	1	1						
Petroleum Hydrocarbons	E 418.1	5		1	1	1		SW 3550/E 418.1	2			1
Purgeable Halocarbons	SW 5030/8021	5	5	1	1	1	1					1
Purgeable Aromatics	SW 5030/8020	5	5	1	1	1	1					1
Volatile Organic compounds								SW 8240	2			1
Semi-Volatile Organic compounds								SW 3550/SW 8270	2			l
TCLP ANALYSIS				1 1								1
Metals (As, Ba, Cd,											1	NA
Cr, Pb, Hg, Se, Ag)												
Volatile Organics										SW 8240	1	NA
Semi-Volatile										SW 3550/	1	NA
Organic Compounds										8270		
Pesticides						•				SW 8080	1	NA
Herbicides										SW 8150	1	NA
Herbicides										SW 8150	1	N

Tab4-3.wk1

20.4/92.00640.JMcC

·		• · · · · · · · · · · · ·	······································	
:				
· · · · · · · · · · · · · · · · · · ·	•			
		29 		
				\$

TABLE 4-4 NIAGARA FALLS INTERNATIONAL AIRPORT LIMITED RI/FS - SITE 10 ANALYTICAL RESULTS : SEDIMENTS

.

.

	DETECTION	SAMPLE FIELD I.D.				
PARAMETER (units)	LIMITS	SEDIMENT 1	SEDIMENT 2			
EPA Method SW3550/E418.1 PETROLEUM HYDROCARBONS (ug/g)		192	50.9			
EPA Method SW 8240 VOLATILE ORGANICS (ug/kg)	SEE APPENDIX C	ND	ND			
EPA Method SW 3550/8270 SEMIVOLATILE ORGANICS (ug/kg)	SEE APPENDIX C					
PYRENE OTHERS	330	ND ND	340 ND			

ND - Not Detected

.

.

TABLE 4-5 NIAGARA FALLS INTERNATIONAL AIRPORT LIMITED RI/FS - SITE 10

ANALYTICAL RESULTS - GROUNDWATER

DETECTION											[]	MW10-E	EQUIP.	FIELD	TRIP
LIMITS	ARARs	MW10-1	MW10-2	MW10-3	MW10-4	MW10-1D	MW10-A	MW10-B	MW10-C	MW10-D	MW10-E	DUPLICATE	BLANK	BLANK	BLANK
2 1 1 1 1 1 1 5EE APPENDIX C	2 5.0	76.3 202 ND ND ND 6.95 ND	ND 7530 ND ND ND (20800) ND ND	ND 73.3 42.6 1.73 9.96 3.17 124 1.14 ND	ND 3210 ND ND ND 3450 ND	1160 13100 ND ND ND 1720 ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	20 121- 20 20 20 20 20 20 20 20 20 20 20 20 20	ND ND ND ND ND ND ND	ND 6.81 ND ND ND ND ND	ND 11.1 1.76 1.97 1.15 ND 1.36 1.78 ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND
2 2 SEE	ND 2000	8.04 4.32 ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
0.1 0.1 0.25 0.5 0.01 0.01 0.05	0.10 1.0 0.05 0.20 0.30						35.2 0.52 0.250 U 337 0.0484 0.107 41.5	20.3 0.38 0.250 U 480 0.0279 0.0308 18.2	6.81 0.21 0.250 U 228 0.017 0.01 U 5.68	8.23 0.24 0.250 U 415 0.0185 0.01 U 7.25	3.51 0.27 0.250 U 543 0.0108 0.01 U 3.09	15.6 0.33 0.250 U 833 0.0342 0.0954 15.1	0.10 U 0.10 U 0.25 U 0.50 U 0.01 U 0.01 U 0.05 U	0.10 U 0.10 U 0.25 U 0.50 U 0.01 U 0.01 U 0.05 U	
	LIMITS 2 1 1 1 1 1 1 1 5 EE APPENDIX C 2 2 2 SEE APPENDIX C 0.1 0.1 0.1 0.25 0.5 0.01 0.01	LIMITS ARARs 2 2 1 1 1 1 1 5.0 1 5.0 SEE APPENDIX C 2 2000 SEE APPENDIX C 0.1 0.10 0.25 1.0 0.5 0.01 0.01 0.05 0.01 0.20	LIMITS ARARs MW10-1 2 2 76.3 1 202 202 1 202 ND 1 5.0 6.95 1 5.0 6.95 1 5.0 6.95 1 5.0 4.32 APPENDIX C ND 8.04 2 2000 4.32 APPENDIX C ND ND 0.1 0.10 0.01 0.25 1.0 0.05 0.01 0.05 0.01	LIMITS ARARs MW10-1 MW10-2 2 2 76.3 ND 1 202 7530 1 202 7530 1 ND ND 1 ND ND 1 5.0 6.95 (20800) 1 5.0 6.95 (20800) 1 5.0 6.95 (20800) 1 5.0 6.95 (20800) 1 5.0 8.04 ND APPENDIX C ND ND ND 0.1 0.10 0.10 ND 0.1 0.10 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01	LIMITS ARARs MW10-1 MW10-2 MW10-3 2 2 76.3 ND ND 1 202 7530 73.3 1 ND ND 42.6 1 ND ND 42.6 1 ND ND 1.73 1 5.0 6.95 (20800) 1 5.0 6.95 (20800) 1 ND ND ND 2 ND AND ND 2 ND 8.04 ND ND 2 ND 8.04 ND ND 2 2000 4.32 ND ND ND 0.1 0.10 0.1 0.00 ND ND ND 0.1 0.10 0.05 0.01 0.05 0.01 0.05 0.01 0.05	LIMITS AFARs MW10-1 MW10-2 MW10-3 MW10-4 2 2 76.3 ND ND ND 1 202 7530 73.3 3210 1 ND ND 42.6 ND 1 ND ND 9.96 ND 1 5.0 6.95 (20800) 124 3450 1 5.0 6.95 (20800) 124 3450 1 5.0 6.95 (20800) 124 3450 ND ND ND ND ND ND SEE ND ND ND ND ND APPENDIX C ND 8.04 ND ND ND 2 ND 4.32 ND ND ND ND 2 2000 4.32 ND ND ND ND 0.1 0.10 0.10 0.10 0.10 0.10 0.10 0.10 <td>LIMITS AFARs MW10-1 MW10-2 MW10-3 MW10-4 MW10-1D 2 2 76.3 ND ND ND ND 1160 1 202 7530 73.3 3210 13100 1 ND ND MD 42.6 ND ND 1 ND ND 1.73 ND ND 1 ND ND 9.96 ND ND 1 5.0 6.95 (20800) 124 3450 1720 ND ND ND ND ND ND ND ND SEE ND ND ND ND ND ND ND 2 2000 4.32 ND ND ND ND ND 2 ND 8.04 ND ND ND ND ND 2 2000 4.32 ND ND ND ND ND</td> <td>LIMITS AFARS MW10-1 MW10-2 MW10-3 MW10-4 MW10-1D MW10-A 2 2 76.3 ND ND ND ND 1160 ND 1 202 7530 73.3 3210 13100 ND 1 ND ND 42.6 ND ND ND 1 ND ND 1.73 ND ND ND 1 ND ND 9.96 ND ND ND 1 5.0 6.95 (20800) 124 3450 1720 ND 1 5.0 6.95 (20800) 124 3450 1720 ND SEE ND ND ND ND ND ND ND APPENDIX C 8.04 ND ND ND ND ND ND 0.1 0.10 8.04 ND ND ND ND ND ND 0.1</td> <td>LIMITS ARARs MW10-1 MW10-2 MW10-3 MW10-4 MW10-1D MW10-A MW10-B 2 2 76.3 ND ND</td> <td>LIMITS APARs MW10-1 MW10-2 MW10-3 MW10-4 MW10-10 MW10-A MW10-B MW10-C 2 2 2 76.3 ND ND<td>LIMITS ARARs MW10-1 MW10-2 MW10-3 MW10-4 MW10-1D MW10-A MW10-B MW10-C MW10-C 2 2 2 76.3 ND N</td><td>LIMITS AFARs MW10-1 MW10-2 MW10-3 MW10-4 MW10-10 MW10-4 MW10-6 MW10-6 MW10-6 MW10-6 MW10-6 MW10-6 MW10-7 MW10-7<</td><td>LBMITS AFARs MW10-1 MW10-2 MW10-3 MW10-4 MW10-1D MW10-8 MW10-C MW10-0 MW10-6 DIPLICATE 2 2 2 76.3 ND ND ND 1160 ND ND</td><td>LIMITS APARs MW10-1 MW10-2 MW10-3 MW10-4 MW10-10 MW10-6 MW10-0 MW10-10 MU10-10 MU10-10 MU10-10</td><td>LIMITS APARes MW10-1 MW10-2 MW10-3 MW10-4 MW10-4 MW10-8 MW10-8 MW10-6 MW10-6 BLANK 2 2 76.3 ND ND ND 1160 ND ND</td></td>	LIMITS AFARs MW10-1 MW10-2 MW10-3 MW10-4 MW10-1D 2 2 76.3 ND ND ND ND 1160 1 202 7530 73.3 3210 13100 1 ND ND MD 42.6 ND ND 1 ND ND 1.73 ND ND 1 ND ND 9.96 ND ND 1 5.0 6.95 (20800) 124 3450 1720 ND ND ND ND ND ND ND ND SEE ND ND ND ND ND ND ND 2 2000 4.32 ND ND ND ND ND 2 ND 8.04 ND ND ND ND ND 2 2000 4.32 ND ND ND ND ND	LIMITS AFARS MW10-1 MW10-2 MW10-3 MW10-4 MW10-1D MW10-A 2 2 76.3 ND ND ND ND 1160 ND 1 202 7530 73.3 3210 13100 ND 1 ND ND 42.6 ND ND ND 1 ND ND 1.73 ND ND ND 1 ND ND 9.96 ND ND ND 1 5.0 6.95 (20800) 124 3450 1720 ND 1 5.0 6.95 (20800) 124 3450 1720 ND SEE ND ND ND ND ND ND ND APPENDIX C 8.04 ND ND ND ND ND ND 0.1 0.10 8.04 ND ND ND ND ND ND 0.1	LIMITS ARARs MW10-1 MW10-2 MW10-3 MW10-4 MW10-1D MW10-A MW10-B 2 2 76.3 ND ND	LIMITS APARs MW10-1 MW10-2 MW10-3 MW10-4 MW10-10 MW10-A MW10-B MW10-C 2 2 2 76.3 ND ND <td>LIMITS ARARs MW10-1 MW10-2 MW10-3 MW10-4 MW10-1D MW10-A MW10-B MW10-C MW10-C 2 2 2 76.3 ND N</td> <td>LIMITS AFARs MW10-1 MW10-2 MW10-3 MW10-4 MW10-10 MW10-4 MW10-6 MW10-6 MW10-6 MW10-6 MW10-6 MW10-6 MW10-7 MW10-7<</td> <td>LBMITS AFARs MW10-1 MW10-2 MW10-3 MW10-4 MW10-1D MW10-8 MW10-C MW10-0 MW10-6 DIPLICATE 2 2 2 76.3 ND ND ND 1160 ND ND</td> <td>LIMITS APARs MW10-1 MW10-2 MW10-3 MW10-4 MW10-10 MW10-6 MW10-0 MW10-10 MU10-10 MU10-10 MU10-10</td> <td>LIMITS APARes MW10-1 MW10-2 MW10-3 MW10-4 MW10-4 MW10-8 MW10-8 MW10-6 MW10-6 BLANK 2 2 76.3 ND ND ND 1160 ND ND</td>	LIMITS ARARs MW10-1 MW10-2 MW10-3 MW10-4 MW10-1D MW10-A MW10-B MW10-C MW10-C 2 2 2 76.3 ND N	LIMITS AFARs MW10-1 MW10-2 MW10-3 MW10-4 MW10-10 MW10-4 MW10-6 MW10-6 MW10-6 MW10-6 MW10-6 MW10-6 MW10-7 MW10-7<	LBMITS AFARs MW10-1 MW10-2 MW10-3 MW10-4 MW10-1D MW10-8 MW10-C MW10-0 MW10-6 DIPLICATE 2 2 2 76.3 ND ND ND 1160 ND ND	LIMITS APARs MW10-1 MW10-2 MW10-3 MW10-4 MW10-10 MW10-6 MW10-0 MW10-10 MU10-10 MU10-10 MU10-10	LIMITS APARes MW10-1 MW10-2 MW10-3 MW10-4 MW10-4 MW10-8 MW10-8 MW10-6 MW10-6 BLANK 2 2 76.3 ND ND ND 1160 ND ND

NA - Not Appilicable

U or ND - Not Detected

N - Spiked sample recovery not within control limits.

Tab4_5.wk1

20.4/92.00640.JMcC

TABLE 4-5 (continued) NIAGARA FALLS INTERNATIONAL AIRPORT LIMITED RI/FS - SITE 10

ANALYTICAL RESULTS - GROUNDWATER

	DETECTION											ſ	MW10-E	EQUIP.	FIELD	TRIP
PARAMETER (units)	LIMITS	ARARs	MW10-1	MW10-2	MW10-3	MW10-4	MW10-1D	MW10-A	MW10-B	MW10-C	MW10-D	MW10-E	DUPLICATE	BLANK	BLANK	BLAN
EPA METHOD E 200.7 *							1									
METALS (TOTAL) (mg/l)						1										
LEAD (Furnace)	0.005	0.03				1		0.0099 N	0.0529 N	0.0086 N	0.0096 N	0.0076 N	0.0169 N	0.005 U	0.005 U	
MAGNESIUM	0.5	35						170	158	90.2	164	121	242	0.05 U	0.05 U	
MANGANESE	0.005	0.30	1					0.783	0.606	0.544	0.409	0.193	0.854	0.005 U	0.005 U	
NICKEL	0.02							0.0563	0.02 U	0.02 U	0.02 U	0.02 U	0.0329	0.02 U	0.02 U	
POTASSIUM	0.25							12.1	59.6	3.11	4.1	1.74	3.92	0.25 U	0.25 U	
SILICA	0.004						1	4.78	5.17	5.76	7.08	4.78	5.12	0.004 U	0.004 U	
SODIUM		20						9.69	25.8	18.2	26.7	8.88	5.74	0.156	0.216	
ZINC	0.01	0.30						3.75	1.14	0.18	0.412	0.188	0.745	0.010 U	0.010 U	
METALS (SOLUABLE) (mg/l)	· · · · ·															
ALUMINUM	0.1	0.10						5.05	3.12	0.112	0.608	0.137				
IRON	0.05	0.30						3.4	2.17	0.0631	0.382	0.389				
LEAD	0.005	0.03							0.0282							
MAGNESIUM	0.5	35						59.5	76.2	74	142	104				
MANGANESE	0.005	0.30						0.101	0.104	0.361	0.189	0.0831				
SODIUM		20							8.37		27.8					
ZINC	0.01	0.30						0.4	0.175		0.147	0.0277				
EPA METHOD 418.1 (mg/l)								· ·								<u> </u>
TOTAL PETROLEUM HYDROCARBONS	0.1	NA	NA	NA	NA	NA	NA	ND	1.68	ND	0.4	ND	ND	ND	ND	
MISCELLANEOUS INORGANICS (mg/l)																
TOTAL DISSOLVED SOLIDS (E160.1) COMMON ANIONS (A429)	10	500	NA	NA	NA	NA	NA	773	1880	1020	2130	2180	2200	ND	ND	
FLOURIDE	0.1	1.5	NA	NA	NA	NA	NA	0.515	0.844	0.455	1.08	1.17	1.32	ND	ND	
CHLORIDE	1	250	NA	NA	NA	NA	NA	21.3	18.7	50.6	26.7	16.9	1.02	ND	ND	
SULFATE	0.1	250	NA	NA	NA	NA	NA	256	1040	361	1220	259	1350	ND	ND	

NOTES: • or as indicated for those metals analyzed by alternate methods

NA - Not Appilicable

U or ND - Not Detected

N - Spiked sample recovery not within control limits.

-

.

Tab4_5.wk1

20.4/92.00640.JMcC

.

TABLE 4–6 NIAGARA FALLS INTERNATIONAL AIRPORT LIMITED RI/FS – SITE 10 FIELD WATER QUALITY DATA

WELL	TEMP.	рН	SPECIFIC		WATER
NO.	°C		CONDUCTANCE	ALKALINITY	CLARITY
			(umhos/cm)	(mg/l)	
MW10-1	10	7.35	1435		Muddy
MW10-2	9.5	7.65	1245		Muddy Red
MW10-3	9	7.74	1165		Clear but Cloudy
MW10-4	9	7.82	930		Cloudy
MW10-1D	9.5	7.58	1225		Muddy
MW10-A	9	7.67	935	332	Muddy Reddish Tint
MW10-B	10	8.14	1.595	257	Muddy Greyish Tint
MW10-C	9.5	7.64	985	429	Muddy Reddish Tint
MW10-D	10	7.76	1665	327	Muddy
MW10-E	9	7.79	1545	260	Muddy
Equip. Blank	11.5	8.06	55.25	2.0 U	Clear
Field Blank	9	8.05	54.75	2.0 U	D.I. Water

Samples Collected 12/9/91

Tab4_6.wk1

1

20.4/92.00640.JMcC

TABLE 4–7 NIAGARA FALLS INTERNATIONAL AIRPORT LIMITED RI/FS – SITE 10 ANALYTICAL RESULTS – DRILL CUTTINGS

······	r	· · · · · · · · · · · · · · · · · · ·
		COMPOSITE
TCLP ANALYSIS	DETECTION	NON-VOLATILE
	LIMITS	CUTTINGS
EPA METHOD SW 8240	SEE	
TCLP VOLATILE ORGANICS	APPENDIX C	ND
EPA METHOD 8240	SEE	
TCLP SEMI-VOLATILE ORGANICS	APPENDIX C	ND
GC METHOD 8080	SEE	
TCLP PESTICIDES	APPENDIX C	ND
· · · · · · · · · · · · · · · · · · ·		
GC METHOD 8150	SEE	
TCLP HERBICIDES	APPENDIX C	ND
TCLP EXTRACTION METALS (mg/l)		
BARIUM	0.1	0.551
OTHERS	SEE	ND
	APPENDIX C	

20.4/92.00640.JMcC

Inorganic Analysis

Two sediment samples were analyzed for total petroleum hydrocarbons (TPH). One composite sample of the drill cuttings which was subjected to TCLP, was analyzed for the TCLP metals. The QC samples associated with the groundwater sampling, with the exception of the trip blank, were analyzed for metals, TPH, total dissolved solids (TDS), and common anions.

4.3.1 Significance of Findings

Groundwater, sediments and drill cuttings were investigated at Site 10 to provide additional data regarding contaminant levels and distribution in the various media to supplement the previous investigations. Tables 4-4, 4-5 and 4-6 present a comparison of the analytical results for all contaminants found with the ARARs (if applicable).

4.3.1.1 Sediment Analysis

During the on-site investigation, two sediment samples were collected from the drainage ditch located immediately west of the site (Figure 1-2). When flowing, the ditch drains southward into Cayuga Creek. At the time of sampling, no flow was observed, however, there was some localized ponding within the ditch.

Sediment Sample 1 was collected from the bottom area of the ditch, adjacent to the burn pit area. Sediment Sample 2 also collected from the bottom area of the ditch at a location approximately ten feet north of the confluence of the ditch and Cayuga Creek. All sampling was performed in accordance with procedures outlined in the Work Plan. Samples were transported to the analytical testing laboratory which were received the day after sampling. Analyses were performed on the samples as outlined in the QAPP and Work Plan.

The following presents a discussion of the analytical data for the sediments as presented in Table 4-4.

• Total petroleum hydrocarbons (TPH) were detected in both sediment samples. The sample adjacent to the fire training area exhibited a level of 192 ug/g whereas the sample at the confluence of the drainage ditch and Cayuga Creek was at 50.9 ug/g. The presence of TPH in the sediments could be related to the fuels which were burned during the fire training exercises. However, the drainage ditch collects and transports run-off from other areas of the base upgradient of Site 10, which include at least one fuel storage area.

• Pyrene was the only semi-volatile organic compound detected in the sediments in the drainage ditch. The concentration (340 ug/kg) is only slightly above the detection limit of 330 ug/kg. Pyrene was not detected in any of the previous soil or groundwater samples from Site 10 and may not be related to the fire training activities.

4.3.1.2 Groundwater Analysis

Unfiltered groundwater samples were collected from the five new wells and analyzed for 15 metals. The results as reported in Table 4-5 are very comparable to the total metal concentrations reported for groundwater samples from the five existing wells in the IRP RI/FS Report. As stated in the previous report, the elevated metal levels found in groundwater at the site are not considered to be the result of hazardous waste management activities at the site. The evidence indicates that the elevated metals concentrations are a result of naturally occurring metals found in the suspended sediment. The most common of these metals are calcium, iron, manganese, magnesium, aluminum and zinc. The basic constituents of the dolomitic bedrock are calcium and magnesium. Minerals commonly associated with the Lockport Dolomite include but are not limited to sphalerite (ZnS) and galena (PbS). Elevated levels of silica, iron and aluminum are believed to be associated with the glacial sediments at the site which consist of clay minerals (phyllosilicales) that may contain various concentrations of aluminum, silica, magnesium, calcium, sodium and other less common metals such as nickel or lithium.

In order to investigate the relationship between the metals concentrations and suspended sediment in the samples, duplicate groundwater samples were taken during the initial sampling event and filtered prior to analyses. The filtered samples were analyzed for those metals which occurred in the corresponding unfiltered sample at concentrations exceeding NYSDEC Part 703 standards for Class GA waters. The results of the analyses for soluble metals are presented in Table 4-5. As indicated, the soluble concentrations for most of the metals, with the exception of magnesium, are considerably lower than the total metals concentration for the unfiltered samples. This generally substantiates the idea that suspended sediment is the primary source of metals in the samples. The following presents a comparison of metal levels measured in groundwater at Site 10 with the ARARs.

- Total and soluble levels of aluminum exceeded the 0.10 mg/l ARAR in all five wells as established by New York State Water Quality Standards. Total concentrations varied from 35.2 mg/l in MW10-A to 3.51 mg/l in MW10-E; while soluble levels ranged from 5.05 mg/l in MW10-A to 0.112 mg/l in MW10-C.
- Iron levels in all wells for both total and soluble metals analyses exceeded the 0.300 mg/l state ARAR. Total iron levels ranged from 41.5 mg/l in MW10-A to 3.09 mg/l in MW10-E. Soluble concentrations varied from 3.40 mg/l in MW10-A to 0.382 mg/l in MW10-D.
- Total and soluble lead measured at 0.0529 mg/l and 0.0282 mg/l respectively in well MW-10B exceed the New York State ARAR 0.025 mg/l.
- Magnesium exceeds the New York State ARAR of 35 mg/l for both total and soluble levels in all wells.
- Total manganese concentration in all wells and soluble manganese in MW10-C exceed the New York State ARAR of 0.30 mg/l.
- The New York State ARAR of 20 mg/l for sodium was exceeded in MW10-B and MW10-D for the unfiltered samples and in MW10-D for the filtered samples.
- Total zinc in MW10-A, MW10-D and MW10-E (duplicate) and soluble zinc in MW10-A exceeded the New York State ARAR of 0.30 mg/l.

Groundwater samples were collected in all ten monitoring wells at Site 10. Analyses for purgeable halocarbon (GC Method 8021), for purgeable aromatics (GC Method 8020) and total petroleum hydrocarbons (Method E418.1) were performed. The analytical results are summarized in Table 4-5. As indicated, a number of volatile organic compounds and TPH were detected in some of the downgradient wells. Groundwater obtained from wells in the immediate vicinity of the burn pit showed the greatest number of parameters above detection limits. No organic parameters were detected in the upgradient well (MW10-A). The following presents a comparison of organic compounds measured in the Site 10 monitoring wells with ARARs.

- Benzene and toluene were only detected in MW10-1 at 8.04 ug/l and 4.32 ug/l, respectively. The benzene level exceeds the "non-detect" New York State Water Quality ARAR, however, the toluene levels do not exceed the ARARs.
- Trichloroethene (TCE) and 1,2-dichloroethene (a common biotransformation product of TCE) were detected in all five of the existing wells and two of the new downgradient wells. TCE concentrations were highest in MW10-2, MW10-4 and MW10-1D which are immediately downgradient of the burn pit at levels of 20,800 ug/l, 3450 ug/l and 1720 ug/l. Concentrations decrease rapidly as the distance from the burn pit increases. Although TCE was detected in MW10-E at 1.36 ug/l, this is below the New York State Water Quality ARAR of 5.0 ug/l. The highest concentrations of 1,2-dichloroethene were also found in MW10-2, MW10-4 and MW10-1D at 7530 ug/l, 3210 ug/l and 13,100 ug/l respectively. The lowest detected level of 6.81 ug/l was measured in MW10-E. No ARAR has been established for Cis-1,2-DCE in groundwater.
- Vinyl chloride, another common biotransformation product of TCE, was detected in MW10-1 and MW10-1D at 76.3 ug/l and 1160 ug/l, respectively. Both these levels exceed the New York State ARAR of 2 ug/l.
- Other organic compounds were detected in the groundwater at MW10-3 which is located on the upgradient edge of the burn pit, and the duplicate sample from MW10-E. These included chloroform; 1,1,1-trichloroethane; carbon tetrachloride and tetrachloroethene at concentrations of 42.6 ug/l - 1.76 ug/l; 1.73 ug/l - 1.97 ug/l; 9.96 ug/l - 1.15 ug/l; and, 1.14 ug/l - 1.78 ug/l, respectively. With the exception of chloroform and carbon tetrachloride in MW10-3, these values are only slightly above the detection limit of 1.0 ug/l. Additionally, 1,2-dichloropropane was measured at 3.17 ug/l in MW10-3. These values are all below the respective New York State ARARs.

Total petroleum hydrocarbons (TPH) were measured at 1.68 mg/l and 0.40 mg/l in MW10-B and MW10-D respectively. No ARAR has been established for TPH in groundwater.

The following presents a comparison of the general chemistry analyses with ARAR, if available, for groundwater samples from the five new wells.

- Total dissolved solids (TDS) ranged from 773 mg/l to 2200 mg/l in all wells, which exceeds the 500 mg/l secondary drinking water standard.
- Sulfate levels exceed the 250 mg/l New York State ARAR in all wells, ranging from 256 mg/l to 1350 mg/l.
- Chloride levels range from 15.0 mg/l to 50.6 mg/l and do not exceed the New York State ARAR of 250 mg/l.
- Flouride levels range from 0.455 mg/l to 1.32 mg/l.

As previously reported in the IRP RI/FS Report, these values are typically representative of the poor water quality in the Lockport Dolomite which is described as very hard and moderately to highly mineralized.

A composite sample of the drummed drill cuttings (soil) was collected and analyzed for TCLP, to characterize the materials for future disposal. Based on HNu readings during drilling, the soils were free of any volatiles and were consequently co-disposed. The analytical results from the TCLP testing are presented in Table 4-7. As indicated, all parameters were below detection limits with the exception of barium which was measured at 0.55 mg/l. This level is below the maximum allowable contaminant level of 100 mg/l for TCLP analysis. APPENDIX A

Boring Logs

PROJECT: Limi	ited	<u>от /с</u>			o 10					PROJECT NO	00540			SHEET 1 of :
CLIENT: Unite						FRES				PRUJELI NU	00640-	02		588.08 ft. ND: 1185.37
CONTRACTOR: Pa						T		<u> </u>	. .	RIG: D-50	, ,	- <u>r</u>		D: 1100.00
	GAOUNDW						Түр		CASING Iron	SAMPLE SS	TUBE	CORE		.EV: 590.12ft. NTED: 11/19/91
<u>QATE</u> G	W DEPTH	<u>H Gł</u>	e elev		<u>INTAKE</u>	ŀ	DIA		6"	33		<u> </u>		SHED: 11/20/91
						Ĺ	WEIG	нт	· · · · · · · · · · · ·				- OPERATOR: - GEOLOGIST	Doug Richmond : GWH
	<u> </u>			~~			FAL							·
WELL ONSTRUCT	(feet)	SAMPLE NUMBER	SAMPLE & TYPE	RECOVERY (inches)	BLOWS (per 6")	LOG	UNIFIED			FIELD	DESCRIPT	ION		REMARKS
		1	Х	10	3, 8 8, 10		ML CL)ark brow CLAY, mec	n SILT, lium densi	some (-) e, damp,	fine SANI roots.	D, trace	Cuttings and barrel at background HNu.
		5	\square	10	7, 10 17, 21					n, lamin;), damp, i		and CLA' ense.	Y, trace	
	5	З	X	12	13,24 50/0.2	ĮĮ	SM ML		noist der .ockport	ise. At 9 Dolomite	5.2 feet, 	SAND, trac weathere	ce CLAY, ed	Slight petroleu odor.
	10 15 20 25	4		0	50/0			c c	See next	sheet for	e. C descrip	otion.		Attempt spoon a 6.0 feet. Competent at 6. feet. Advanced augers to 6.5 f Bentonite seal 6.5 feet to 4.5 feet. 6-inch casing set at 6.5 feet.

I

LIENT: Un: ONTRACTOR:	ited S Parra	ntt -	Air Wolf	r Forc f		FRES			PROJECT NO: RIG: D-50	00640-0	2	N-S COOR	588.08 ft. D: 1185.37 D: 1100.00
	GROUNE	DWATER D	ATA (f	eet)				CASING	SAMPLE	TUBE	CORE		EV: 590.12ft. TED: 11/19/91
DATE	<u>GW DEP</u>	<u>PTH</u> G	W ELEV	L	<u>INTAKE</u>	-	TYP						SHED: 11/20/91
						F	DIAM WEIG		· · · · · · · · · · · · · · · · · · ·		2.5"		Doug Richmond
						┝	FAL					GEOLOGIST	: GWH
WELL ONSTRUCT	DEPTH (feet)	RUN NUMBER	SAMPLE & TYPE	RECOVERY %	RGD %	100	UNIFIED		FIELD	DESCRIPT	ION	1	REMARKS
	- - - - - - - - - - - - - - - - - - -	1		3.5 51 5.0 92	63.4			Top of Ro No sample Gray poro Dolomitic with gyps 5.5 to 5. ft., 7.27 7.85 ft. (fracture 30°); 9.0 9.2ft., 9 Lockport with free Fractures 13.46 ft. 13.65 ft. breaks. V	us, fine LIMESTON Sum and the 55 ft. (at (fracture at 45°); 95 ft. (jo 0.35 ft. DOLOMITE, uent smal at 10.8 (at 90°	of corin textured WE. Lockp in beddi ubble); 90°); 7. e at 30°) 8.8 ft. bint at C (at 90°). fossili 11 vugs a ft. (90° drill br ft., 13.9	l, vuggy oort DOLO ng. Frac 5 ft. (6 ; 8.0 ft (fractu ° to 10 ferous 1 ind gypsu); 13.12 eaks on 0 ft. as	MITE tures at , 7.2 O°); re at ft.); imestone m. ft., bedding); drill	Augered to 6.5 f Return water has petroleum odor. Rate at 5min./ft Barrel stuck in hole.
		З		5.0	100			Lockport No fractu End of ho	nes, all	hand bre		vugs.	

I

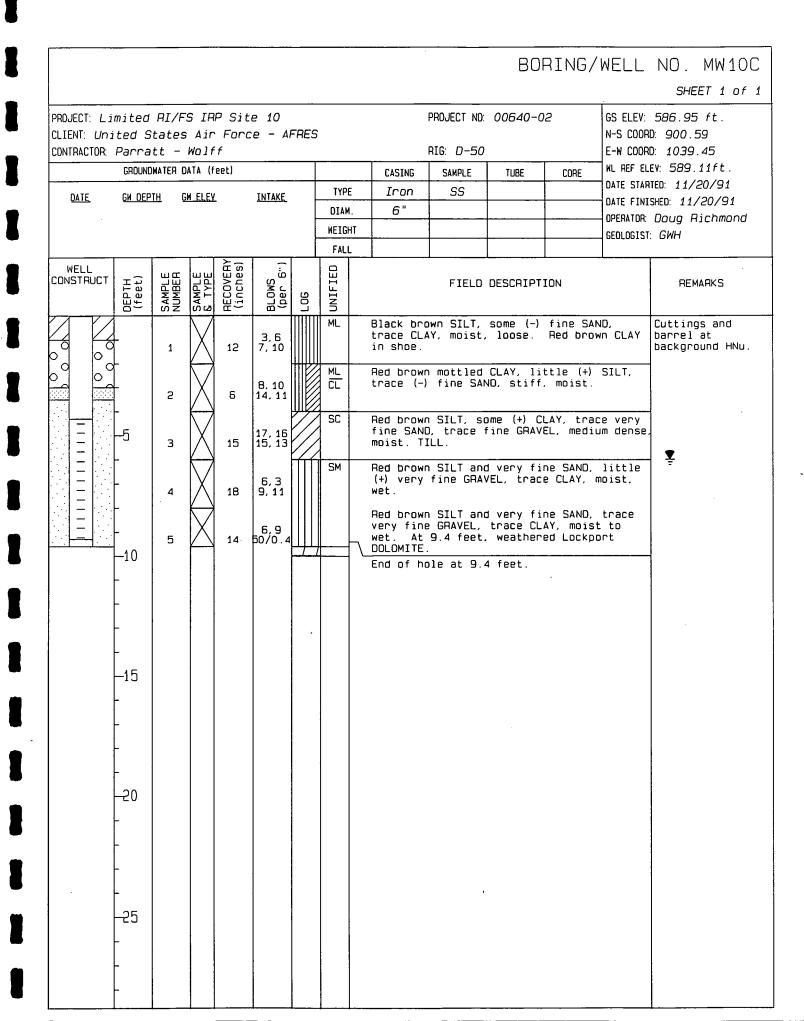
I

I

PROJECT: Li CLIENT: Uni CONTRACTOR:	ited S Parra	tates tt –	Air Wolf	Forc		FRES			PROJECT NO: RIG: <i>D-50</i>	00640-0	02	N-S COOR E-W COOR	586.71 ft. ND: 785.66 ND: 1213.00
	GRDUND	WATER D	ATA (f	eet)				CASING	SAMPLE	TUBE	CORE		.EV: 588.84ft. HTED: 11/20/91
<u>DATE</u>	<u>GW DEP</u>	<u>th G</u>	W ELEY	<u>'</u>	<u>INTAKĘ</u>	-	TYPE	Iron	SS				SHED: 11/21/91
						-	DIAM. WEIGHT	6"				- OPERATOR: GEOLOGIST	Daug Richmand : GWH
WELL CONSTRUCT	DEPTH (feet)	SAMPLE NUMBER	SAMPLE 6 TYPE	RECOVERY (inches)	BLOWS (per 6")	LOG	FALL	<u> </u>	FIELD	DESCRIPT	I ION		REMARKS
	_	1		10	3, 4 8, 10		ML CL	Dark brow dense, ro CLAY, tra	n SILT, 1 lots to 0. lce fine S	5 ft. Re	d brown 5	SILT and	Cuttings and barrel at background HNu.
	-	2	X	12	9, 13 16, 22		ML	(+) fine medium de		e (−) CL	AY, moist	t,	
	-5	З	\square	14	4, 8 9, 9		CL	moist, me	CLAY, va dium stif	f.			
	- -	4	X	12	3,3 7 50/0.4			6.3 to 7.	LT, trace	ed brown	fine SAM	ND,	Augers advanced to 8.5 feet. Bentonite seal 8.5 to 6.5 feet.
	- 10 - -	5		0	50/0.4			No recove Lockport	ry. Top o Dolostone	f Rock a	t 7.7 fea	et.	Set 6-inch casir to 8.5 feet.
	- 15 - - - 20							See next	sheet for	descrip	tion.		
	-20 - - - -25 -							End of ho	le at 20.	O feet.			

I

I


I

PROJECT: L: CLIENT: Un CONTRACTOR:	ited S Parra	tates tt -	Air Wolf	Forc f		FRES			Project no: RIG: <i>D-50</i>	00640-0)2	N-S COOR E-W COOR	586.71 ft. D: 785.66 D: 1213.00
	GROUND	WATER D	ATA (f	eet)				CASING	SAMPLE	TUBE	CORE		.EV: 588.84ft. NTED: 11/19/91
<u>OATE</u>	<u>gw dep</u>	<u>th G</u> i	A ELEV		<u>INTAKE</u>		TYPE DIAM WEIGH	6"			2.5"	DATE FINI	SHED: 11/20/91 Doug Richmond
WELL CONSTRUCT	DEPTH (feet)	RUN NUMBER	SAMPLE & TYPE	RECOVERY %	ROD %	L OG	FALL		FIELD	DESCRIPT	ION]	REMARKS
	- - - - - - - - - - - - - - - - - - -	1		1.5° 100 5.0° 97	100 99 99			Start of Lockport lams, no Fractures Gray Lock Rod drop thick has Void at 1 13.6 ft.	14.4 feet, (at 90°); 	8.5 fee porous, fracture feet (at OMITE, fo eet. Voi fractur 14.06 f	fossili s, small 30°). ssilifer d 0.15 fr es at 10 t. (bedd ith frac	<pre>vugs. pus. eet .4 ft., ing).</pre>	Petroleum odor o water and rock. Barrel locked in hole, hard to remove, some san Fell to total depth. Taped ho to 19.2 ft.

1

Ì

l

										BO	RING/	WELL	NO. MW10D
ROJECT: Li LIENT: Uni ONTRACTOR:	ted S	tates	Air	Forc		FRES	 :		PROJECT NO: RIG: D-50)2	N-S COOR	SHEET 1 of 1 587.49 ft. D: 929.60 D: 972.21
		WATER DA						CASING	SAMPLE	TUBE	CORE		EV: 589.49ft.
<u>DATE</u>	<u>GW DEP</u>	<u>th</u> GM	<u>ELEY</u>	-	INTAKE		TYP	E Iron 1. 6"	SS			DATE FINI	NTED: 11/21/91 SHED: 11/21/91 Doug Richmond
							WEIG FAL					GEOLOGIST	: GWH
WELL ONSTRUCT	DEPTH (feet)	SAMPLE NUMBER	SAMPLE & TYPE	RECOVERY (inches)	BLOWS (per 6")	907	UNIFIED		FIELD	DESCRIPT	ION	I	REMARKS
	-	1		13	2,5 6,4		ML	SAND, tr SILT, so	ace CLAY, me (+) CL/	moist, r AY, roots	oots. Ae , moist,	d brown stiff.	Cuttings and barrel at background HNu.
	-	2	X	12	9,8 9,10		CL	damp. Red brow	n CLAY, 1:	, varved	CLAY. li	ttle	
	5	3	$\left \right\rangle$	24	6,9 15,11		SM ML ML	5.1 feet Red brow little (ace (+) f n SILT, 1 LAY, mois s to 6.0	ittle (-) t, dense,	very fi	ne SAND,	
	-	4	$\left \right\rangle$	12	4,5 7,7 5,8 50/0.3			SAND, tr moist. Red brow	n SILT, 1 ace (-) m n SILT, 1	edium to ittle (+)	fine GRA CLAY, t	VEL, .race (+)	
	-10	5		8	50/0.3		<u>}</u>	moist, s	ace (-) m oft. Top ole at 9.	of rock			
	-												
,	- —15								-				
	-20												
	- - 25												
	-												

I

I

2

X

I

ROJECT: Li LIENT: Uni	ted S	tates	Air	Forc		RES				PROJECT NO: RIG: D-50	00640-0	2	N-S COOF	586.52 ft. 10: 789.17
ONTRACTOR:		WATER D				·				SAMPLE	TUBE	CORE		D: 1055.38 EV: 588.24ft.
DATE.	<u>GW DEP</u>	<u>TH</u> G	W ELEY		<u>INTAKE</u>		TYPE DIAM WEIGH	 IT	Iran 6"	SS			DATE FINI OPERATOR:	NTED: 11/22/91 ISHED: 11/25/91 Daug Richmand : GWH/GOC
WELL ONSTRUCT	DEPTH (feet)	SAMPLE NUMBER	SAMPLE & TYPE	HECOVERY (inches)	BLOWS (per 6")	 L	FALL ONIFIED	<u>. </u>]	FIELD	DESCRIPT	I	<u> </u>	REMARKS
	-	1	X	12	2, 3 5, 10		ML	SAN	1D, roo	wn SILT, ts, moist CLAY, sti	to 0.66	ft. Rec	d brown	Cuttings and barrel at background HNu.
		2	Д	8	13, 16 16, 17			mot Rec	tled. brown	SILT and SILT and	(+) CLA	Y, stiff,	damp,	
	5 F	З	Д	14	5,9 14,14		SM ML	─ <u>mot</u> Rec lit	tled, d brown	laminated SILT and) CLAY, t	i from 4.1 (-) ver	0 to 4.5 y fine SA	feet. AND,	
	-	4	Å	14	7,8 9,10 5,5			CL4	Y, tra	SILT and ce fine G SILT and	RAVEL, mi	oist, sof	ft.	
	- 10	5	\mathbb{Z}	1B 0	14 50/0			(+) 	CLAY,	trace (+ ck at 9.5 Dolostone) fine G	RAVEL, we	et, soft	6-inch casing se
	- - - - - - - - - - - - - - - - - - -									sheet for		tion.		at 10 ft. throug bentonite at 8 t 10 ft.
								Επα	i of ho	le at 25.	O feet.			

Z

PROJECT: Li CLIENT: Un: CONTRACTOR:	ited S	tates	Air	Forc		FRES			Project no: RIG: <i>D-50</i>	00640-0	2	N-S COOR	586.52 ft. D: 789.17 D: 1055.38
	GROUND	WATER D	ATA (f	eet)				CASING	SAMPLE	TUBE	CORE		EV: 588.24ft. ITED: 11/22/91
DATE	<u>GW DEP</u>	<u>th G</u>	<u>ELEY</u>	-	<u>INTAKE</u>	╞	TYP						SHED: 11/22/91
						┝	DIAN	<u> </u>			2.5"		Doug Richmond
						ł	WEIG FAL				·	GEOLOGIST	: GWH/GOC
WELL CONSTRUCT	DEPTH (feet)	RUN NUMBER	SAMPLE & TYPE	RECOVERY %	ROD %	- 100	UNIFIED		FIELD	DESCRIPT	ION	I	REMARKS
	-15 -10 -10 -110 -115 -115 -125 -125 -125 -125	1		5.0° 100 5.0° 90	50 75 76			Top of Ro No sample Dark gray Lockport 10.3 ft. 10.8 ft. 11.9 ft. clay infi 12.3 ft. 12.85 ft. 13.5 to 1 Dark gray Lockport 15.3 ft. 15.5 ft. 16.95 to norizonta gravel); 16.7 ft. 16.95 to and fine core loss Dark gray Lockport 20.1 to 2 zone); 21.5 to 2 area); 22.6 ft. - possibl End of ho	s. Start vuggy, s DOLOSTONE (irregula (irregula (irregula 1); 13.2 ft. 4.4 ft. vuggy, s DOLOSTONE (rough, a (smooth, 16.2 ft. 1, infill (smooth, 17.5 ft. gravel in). vuggy, s DOLOSTONE 0.3 ft. 1.1 ft. (smooth, e drill b	of corin comewhat ar at 30°) ar angle ar, angle ar, angle (ar, angle (ar, angle (ar, angle (drill bri comewhat (irregula ed with angle at (irregula ed with angle at (irregula (irregula (drill bri (drill bri (drill bri (broken up angle at angle at	fossilife varied v varied v e at sub at 70°); eaks). fossilife sub horizont ar, sub clay and horizont ar, some phe of po fossilife eak in vu p in vugg	erous ontal); with erous zontal); tal); tal); clay ossible erous uggy gy	Augered to 10.0 ft.

}

"]

Ĩ

APPENDIX B

1

Well Development Data

.

TABLE B1 NIAGARA FALLS AIRBASE WELL DEVELOPMENT DATA SUMMARY

Well	Amount Bailed (Gallons)	рН	Specific Conductance (umhos/m)	Description
MW10-A	25	7.37	1100	Turbid, brown with oily sheen
	45	7.28	1100	Turbid brown with oily sheen
	55	7.31	1110	Less turbid, brown with oily sheen still present
	75	7.32	1100	Less turbid, brown, still >100 NTU
MW10-B	25	6.87	2050	Turbid, brown sweet odor
	50	6.91	2050	Turbid brown still has odor
	70	6.89	2070	Turbid, brown
	90	6.85	2020	Turbid, brown
MW10-C	2	6.2	1520	Slightly turbid
	3 (to Dry)	6.98	1610	Increase of turbidity
MW10-D	3 (to Dry)	7.07	2500	Turbid, brown
MW10-E	20	7.32	2420	Turbid gray strong sulphur odor
	45	7.41	2400	Same
	75	7.38	2420	Same – less turbidity

APPENDIX C

Analytical Results

A Full Service Environmental Laboratory

January 17, 1992

Mr. Glen Combes Wehran Envirotech 345 Lang Blvd. Grand Island, NY 14072

Re: Niagara Falls Air Force Base

Dear Mr. Combes:

Enclosed please find the data package for the above referenced site. Ten monitoring wells, 2 surface waters, one equipment blank, one field blank and one trip blank were sampled by our field crew on December 10, 1991.

Analytical data can be found in Section A and the corresponding Quality Control Data is in Section B. Sections C and D contain the Analytical Chronology and Field Documentation. All data has been reviewed prior to report submittal. Should you have any questions, please contact me at 454-3760.

Thank you for your continued use of our services.

Sincerely,

GENERAL TESTING CORP.

Client Representative

Enc. SL:sm

> 710 Exchange Street • Rochester, New York 14608 • (716) 454-3760 • Fax (716) 454-1245 85 Trinity Place • Hackensack, NJ 07601 • (201) 488-5242 • Fax (201) 488-6386 435 Lawrence Bell Drive • Amherst, NY 14221 • (716) 634-0454 • Fax (716) 634-9019

5

COMPANY: WEHRAN ENVIROTECH - NIAGARA FALLS AIR FORCE BASE JOB #: R91/5639

VOLATILE ORGANICS

Wehran-water samples were analyzed for priority pollutant volatiles by method 8021 from SW-846.

The initial calibration criteria of 20% RSD was met for all analytes.

All surrogate standard recoveries were within acceptance limits for all samples.

All matrix spike, matrix spike duplicate, reference check standard recoveries, and % RPD data were within QC acceptance limits.

The equipment and field trip blanks were free of any contamination.

The trip and laboratory blanks were free of any contamination.

All required analysis holding times were met.

Sample R91/5639-002 was analyzed at a 1/10 dilution to bring target analytes within the linear range of the system.

No analytical problems were encountered.

INORGANIC ANALYSIS

Wehran-water samples were analyzed for site specific inorganic analytes using approved EPA methodologies.

The precision analysis performed on sample R91/5639-001 for TDS and nitrite showed the % relative error to be outside QC acceptance limits. All results have been flagged with "*" accordingly.

The matrix spike recovery for the lead analysis was outside QC limits for sample R91/5639-001. The data has been flagged "N".

No other analytical or QC problems were encountered with these analysis.

COMPANY: WEHRAN ENVIROTECH-NIAGARA FALLS AIR FORCE BASE JOB #: R91/5640

VOLATILE ORGANICS

Wehran-water samples were analyzed for target compound list volatiles by method 8021 from SW-846.

The initial calibration criteria of 20% RSD was met for all analytes.

The continuing calibration criteria of 15% D was met for all analytes in all daily calibration check standards.

All surrogate standard recoveries were within acceptance limits for all samples.

All matrix spike, matrix spike duplicate, reference check standard recoveries, and % RPD data were within QC acceptance limits.

Both laboratory blanks were free of any contamination.

All required analysis holding times were met.

Sample R91/5640-002, 003 and 004 were analyzed at dilutions to bring target analytes within the linear range of the system.

No analytical problems were encountered.

CASE NARRATIVE

JOB #: R91/5641 COMPANY: WEHRAN NIAGARA FALLS AIR FORCE BASE

÷

Soil samples were analyzed for target compound list semivolatile organics by EPA method 8270. The recovery of pyrene in the matrix spike duplicate of sample 1 was outside QC limits, however the reference check recovery was within limits for this compound. The recovery of 4-Nitrophenol was outside QC limits in the reference check sample, but was within limits in the MS and MSD for this sample group. The data has been accepted.

Effective 10/1/91

••••

÷.

GTC LIST OF QUALIFIERS

- U Indicates compound was analyzed for but was not detected.
 The sample quantitation limit must be corrected for dilution and for percent moisture.
- J Indicates an estimated value. For further explanation see case narrative / cover letter.
- B This flag is used when the analyte is found in the associated blank as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range and reanalysis could not be performed.
- A This flag indicates that a TIC is a suspected aldolcondensation product.
- N Spiked sample recovery not within control limits.
 (Flag the entire batch Inorganic analytes only)
- Duplicate analysis not within control limits.
 (Flag the entire batch Inorganic analysis only)
 - Also used to qualify Organics QC data outside limits. (Only used on the QC summary sheets)
- M Duplication injection precision not met (GFA only).
- S Reported value determined by Method of Standard Additions. (MSA)
- X As specified in the case narrative.

GTC REPORT <u># WEHRAN ENVIROTECH</u> NIAGARA_FALLS_AIR_FORCE_BASE_

REPORT INDEX

SECTION A. ANALYTICAL DATA SECTION B. QUALITY CONTROL SECTION C. ANALYTICAL CHRONOLOGY SECTION D. FIELD DOCUMENTATION

.

.

GTC REPORT <u># WEHRAN ENVIROTECH</u> <u>NIAGARA FALLS AIR FORCE BASE</u>

SECTION A

ANALYTICAL DATA

Presented in this section is analytical data for the parameters requested. The following references concerning units and analytical methodology apply to the data herein

Units: see report

Analytical Methodology Obtained From:

- Federal Register, 40 CFR Part 136, Guidelines Establishing Test Procedures for the analyses of Pollutants under the Clean Water Act, 10/26/84.
- (X) SW-846, Test Methods for Evaluating Solid Waste, 3rdEdition, 9/86.
- () Other: NYS Part 360

Mr.Glen Combes Wehran Envirotech

345 Lang Blvd.

Grand Island, NY 14072

A Full Service Environmental Laboratory

LABORATORY REPORT

Job No: R91/05639

Date: JAN. 8 1992

Sample(s) Reference

Niagara Falls Air Force Base

Collected

Client:

: 12/10/91

P.O. #:

Nitrogen, Nitrite 0.047* 0.016* 0.010 U* 0.011* 0.020* 0.029* 0.010 U* 0.0 Nitrogen, Nitrite 0.050 U 0.00 0.00 0.00 0.050 U 0.050 U 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.010 U 0.010 U 0.010 U 0.010 U 0.010 U 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	
Date Collected: 12/10/91	
Date Collected: 12/10/91	
Time Collected: 09:25 10:45 11:10 11:25 11:58 12:15 13:00 11:10 pH 7.67 7.66 7.83 7.78 8.16 7.75 8.06 8.0 Spec. Cond. (umhos/cm) 926 997 1750 1540 1580 1670 55.0 54. Temperature °C -Field 9.0 9.5 9.0 9.0 10.0 10.0 11.5 9.0 Alkalinity, Total 332 429 260 267 257 327 2.0 U 2.0 Chloride 21.3 50.6 16.9 15.0 18.7 26.7 1.0 U 1.0 Fluoride 0.515 0.455 1.17 1.32 0.844 1.08 0.10 U 0.1 Nitrogen, Nitrate 0.050 U 0.050 U <t< td=""><td></td></t<>	
pH 7.67 7.66 7.83 7.78 8.16 7.75 8.06 8.0 Spec. Cond. (unhos/cm) 926 997 1750 1540 1580 1670 55.0 54. Temperature °C -Field 9.0 9.5 9.0 9.0 10.0 10.0 11.5 9.0 Alkalinity, Total 332 429 260 267 257 327 2.0 U 2.0 Chloride 21.3 50.6 16.9 15.0 18.7 26.7 1.0 U 1.0 Fluoride 0.515 0.455 1.17 1.32 0.844 1.08 0.10 U 0.1 Nitrogen, Nitrate 0.050 U 0.050 U </td <td>/91</td>	/91
pH 7.67 7.66 7.83 7.78 8.16 7.75 8.06 8.0 Spec. Cond. (umhos/cm) 926 997 1750 1540 1580 1670 55.0 54. Temperature °C -Field 9.0 9.5 9.0 9.0 10.0 10.0 11.5 9.0 Alkalinity, Total 332 429 260 267 257 327 2.0 U 2.0 Chloride 21.3 50.6 16.9 15.0 18.7 26.7 1.0 U 1.0 Fluoride 0.515 0.455 1.17 1.32 0.844 1.08 0.10 U 0.1 Nitrogen, Nitrate 0.050 U 0.050 U </td <td></td>	
Temperature °C -Field9.09.59.09.010.010.011.59.0Alkalinity, Total3324292602672573272.0 U2.0Chloride21.350.616.915.018.726.71.0 U1.0 U1.0Fluoride0.5150.4551.171.320.8441.080.10 U0.1Nitrogen, Nitrate0.050 U0.050 U0.050 U0.050 U0.050 U0.050 U0.050 U0.050 UNitrogen, Nitrite0.047*0.016*0.010 U*0.011*0.020*0.029*0.010 U*0.0Nitrogen, Nitrate/Nitrite0.050 U0.050 U0.050 U0.050 U0.050 U0.050 U0.050 U0.050 UPet. Hydrocarbons, IR0.10 U0.10 U0.10 U0.10 U0.10 U0.010 U0.010 U0.010 U0.010 UPhosphorous, Ortho as P0.03620.01800.010 U0.010 U0.010 U0.010 U0.01800.004 U0.0Solids, Dissolved a180 C773*1020*2180*2200*1880*2130*10.0 U*10.Aluminum35.26.813.5115.620.38.230.10 U0.1Barium0.420.210.270.330.380.240.10 U0.1	
Alkalinity, Total 332 429 260 267 257 327 2.0 U 2.0 Chloride 21.3 50.6 16.9 15.0 18.7 26.7 1.0 U 1.0 Fluoride 0.515 0.455 1.17 1.32 0.844 1.08 0.10 U 0.1 Nitrogen, Nitrate 0.050 U 0.050 U </td <td>;</td>	;
Chloride 21.3 50.6 16.9 15.0 18.7 26.7 1.0 U 1.0 Fluoride 0.515 0.455 1.17 1.32 0.844 1.08 0.10 U 0.1 Nitrogen, Nitrate 0.050 U 0.050 U<	
Fluoride 0.515 0.455 1.17 1.32 0.844 1.08 0.10 U 0.1 Nitrogen, Nitrate 0.050 U 0.029* 0.010 U* 0.01 0.0 Nitrogen, Nitrate/Nitrite 0.050 U 0.029* 0.010 U* 0.00 Pet. Hydrocarbons, IR 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.010 U 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	υ
Nitrogen, Nitrate 0.050 U 0.029* 0.010 U* 0.010 U* 0.011* 0.020* 0.029* 0.010 U* 0.010 U* 0.00 Nitrogen, Nitrate/Nitrite 0.050 U	U
Nitrogen, Nitrite 0.047* 0.016* 0.010 U* 0.011* 0.020* 0.029* 0.010 U* 0.0 Nitrogen, Nitrite 0.050 U 0.00 0.00 0.00 0.050 U 0.050 U 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.010 U 0.010 U 0.010 U 0.010 U 0.010 U 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <	ט נ
Nitrogen,Nitrate/Nitrite 0.050 U 0.004 U 0.010 U 0.010 U 0.010 U 0.010 U 0.010 U 0.010 U 0.004 U 0.00 0.0050 U 0.004 U 0.00 0.0050 U 0.005	50 U
Pet. Hydrocarbons, IR 0.10 U 0.10 U 0.10 U 0.10 U 1.68 0.40 0.10 U 0.1 Phosphorous, Ortho as P 0.0362 0.0180 0.010 U 0.004 U 0.00 Solids, Dissolved a180 C 773* 1020* 2180* 2200* 1880* 2130* 10.0 U* 10. Sulfate 256 361 259 1350 1040 1220 10.0 U 10. Aluminum 35.2 6.81 3.51 15.6 20.3 8.23 0.10 U 0.1 Barium 0.42 0.21 0.27 0.33 0.38 0.24 0.10 U	10 U*
Phosphorous, Ortho as P 0.0362 0.0180 0.010 U 0.010 U 0.010 U 0.010 U 0.0180 0.010 U 0.010 U 0.010 U 0.0180 0.010 U 0.004 U 0.00 Solids, Dissolved a180 C 773* 1020* 2180* 2200* 1880* 2130* 10.0 U* 10. Sulfate 256 361 259 1350 1040 1220 10.0 U 10. Aluminum 35.2 6.81 3.51 15.6 20.3 8.23 0.10 U 0.1 Barium 0.42 0.21 0.27 0.33 0.38 0.24 0.10 U 0.1	50 U
Silics, Total 4.78 5.76 4.78 5.12 5.17 7.08 0.004 U 0.0 Solids, Dissolved a180 C 773* 1020* 2180* 2200* 1880* 2130* 10.0 U* 10. Sulfate 256 361 259 1350 1040 1220 10.0 U 10. Aluminum 35.2 6.81 3.51 15.6 20.3 8.23 0.10 U 0.1 Barium 0.42 0.21 0.27 0.33 0.38 0.24 0.10 U 0.1	^ו טנ
Solids, Dissolved a180 C 773* 1020* 2180* 2200* 1880* 2130* 10.0 U* 10. Sulfate 256 361 259 1350 1040 1220 10.0 U 10. Aluminum 35.2 6.81 3.51 15.6 20.3 8.23 0.10 U 0.1 Barium 0.42 0.21 0.27 0.33 0.38 0.24 0.10 U 0.1	10 U
Sulfate 256 361 259 1350 1040 1220 10.0 U 10. Aluminum 35.2 6.81 3.51 15.6 20.3 8.23 0.10 U 0.1 Barium 0.42 0.21 0.27 0.33 0.38 0.24 0.10 U 0.1	04 U
Aluminum 35.2 6.81 3.51 15.6 20.3 8.23 0.10 U 0.1 Barium 0.42 0.21 0.27 0.33 0.38 0.24 0.10 U 0.1	0 U#
Barium 0.42 0.21 0.27 0.33 0.38 0.24 0.10 0 0.1	ט נ
	3
) U
Boron, Total 0.250 U 0	50 U
Calcium, Total 337 228 543 833 480 415 0.50 U 0.5) U
Chromium, Total 0.0484 0.017 0.0108 0.0342 0.0279 0.0185 0.010 U 0.0	10 U
Copper, Total 0.107 0.010 0.010 0.010 0.0954 0.0308 0.010 0 0.010 0 0.0	10 U
Iron, Total 41.5 5.68 3.09 15.1 18.2 7.25 0.050 U 0.0	50 U
Lead, Furnace 0.0099 N 0.0086 N 0.0076 N 0.0169 N 0.0529 N 0.0096 N 0.0050 UN 0.0	050 UN
Magnesium, Total 170 90.2 121 242 158 164 0.50 U 0.5	0 U
Manganese, Total 0.783 0.544 0.193 0.854 0.606 0.409 0.0050 U 0.0	050 U
Nickel, Total 0.0563 0.020 U 0.020 U 0.0329 0.020 U 0.	20 U
Potassium, Total 12.1 3.11 1.74 3.92 59.6 4.10 0.250 U 0.2	50 U
Sodium, Total 9.69 18.2 8.88 5.74 25.8 26.7 0.156 0.2	16
Zinc, Total 3.75 0.180 0.188 0.745 1.14 0.412 0.010 U 0.0	153

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261. NY ID# in Rochester: 10145 NJ ID# in Hackensack: 02317

NJ ID# in Rochester: 73331

NY ID# in Hackensack: 10801

Michael K. Peny

Laporatory Director

A Full Service Environmental Laboratory

LABORATORY REPORT

Job No: R91/05639

Date: JAN. 8 1992

Sample(s) Reference

P.O. #:

Niagara Falls

Mr.Glen Combes Wehran Envirotech 345 Lang Blvd. Grand Island, NY 14072

Collected

Client:

: 12/10/91

ANALYSIS * BY GC	METHOD	METHOD *8021 ANALYTICAL RESULTS - ug/1						
Sample: Location: Date Collected: Time Collected:	-001 MW-10-A 12/10/91 09:25	-002 MW-10-C 12/10/91 10:45	-003 MW-10-E 12/10/91 11:10	-004 MW-10-E Duplicate 12/10/91 11:25	-005 MW-10-8 12/10/91 11:58	-006 MJ-10-D 12/10/91 12:15	-007 Equipment Blank 12/10/91 13:00	-008 Field Blank 12/10/91 11:10
Date Analyzed: Dilution:	12/17/91 1/1	12/18/91 1/10	12/18/91 1/1	12/18/91 1/1	12/18/91 1/1	12/17/91 1/1	12/17/91 1/1	12/18/91 1/1
Chloromethane	15 U	50 U	5 U	150	1 5 0	50	150	5 U
Bromomethane	150	1 50 U	150	1 5 0	1 5 0	150	1 5 0	5 U
Vinyl Chloride	120	20 U	20	1 2 0	1 2 0	20	20	20
Chloroethane	120	1 20 U	1 2 0	1 2 0	20	20	1 2 0	20
Methylene Chloride	110	1 10 U	1 1 0	1 1 U	1 1 0	1 1 0	1 1 0	1 1 0
Trichlorofluoromethane	110	1 10 U	1 1 0	1 1 0	1 1 0	1 1 0	1 1 0	1 1 0
1,1-Dichloroethene	110	1 10 U	1 1 0	1 1 0	1 1 0	1 1 0	1 1 0	1 1 0
1,1-Dichloroethane	110	1 10 U	1 1 0	1 1 0	1 1 U	1 1 0	1 1 0	1 1 0
trans-1,2-Dichloroethene	110	100	1 1 0	1 1 0	1 1 0	1 1 0	1 1 0	1 1 0
cis-1,2-Dichloroethene	110	121	6.81	11.1	1 1 0	1 1 0	1 1 1	1 1 0
Chloroform	110	1 10 U	1 1 0	1.76	1 1 0	1 1 0	1 1 0	1 1 0
1,2-Dichloroethane	İtu	10 0	1 1 0	1 1 0	1 1 0	1 1 0	1 1 0	1 1 0
1,1,1-Trichloroethane	1 U	1 10 0	1 1 0	1.97	1 1 0	1 1 0	1 1 0	1 1 U
Carbon Tetrachloride	j 1 U	10 0	1 1 0	1.15	1 1 0	1 1 0	1 1 0	1 1 0
Bromodichloromethane	į 1 U	10 U	1 1 0	1 1 U	1 1 0	1 1 0	1 1 0	1 1 0
1,2-Dichloropropane	1 U	1 10 U	1 1 U	j 1 U	i 1 u	i 1 U	i 1 U	i 1 u
1,3-Dichloropropene-Trans	2 U	20 U	2 U	I 2 U	20	1 2 0	1 2 U	1 2 0
Trichloroethene	1 1 0	. 497	i 1 u	1.36	1 1 0	1 1 0	1 1 0	1 1 0
1,3-Dichloropropene (Cis)	1 U	10 U	1 1 0	1 1 0	1 1 0	1 1 0	1 1 0	1 1 0
Dibromochloromethane	2 U	20 U	1 2 0	1 2 0	1 2 0	20	120	120
1,1,2-Trichloroethane	20	20 U	1 2 0	1 2 0	1 2 0	1 2 0	1 2 U	120
2-Chloroethylvinyl Ether	2 U	20 U	1 2 U	1 2 0	1 2 0	1 2 0	1 2 0	1 2 0
Bromoform	2 U	20 U	i z u	1 2 U	1 2 0	1 2 U	1 2 0	
1,1,2,2-Tetrachloroethane	2 U	20 U	20	1 2 0	1 2 0	1 2 0	1 2 U	120
Tetrachloroethene	1 1 0] 20 U	i 1 u	1.78	1 1 0	1 1 0	j 1 U	1 U
Chicrobenzene	20	20 U	2 U	2 U		j 2 U	j 2 U	20
1,3-Dichlorobenzene	20	20 U	2 U	2 U	2 U	2 U	j z u	20
1,2-Dichlorobenzene	2 0	20 U	2 U	2 U	2 U	2 U	2 U	2 U
1,4-Dichlorobenzene	2 U	20 U	2 U	2 U	20	2 U	2 U	1 2 U
Benzene	2 U	20 U	2 U	2 U	2 U	2 U	20	20
Toluene	2 U	20 U	2 0	2 U	20	2 0	2 U	20
Ethylbenzene	2 U	20 U	2 U	20	20	20	2 U	2 U
Total Xylene (o,m,p)	2 U	20 U	20	2 U	20	20	2 U	20
Total Volatiles	, ND	517.01	6.81	19.12	ND	ND	ND	ND
					••••••			-

Mr.Glen Combes Wehran Envirotech

345 Lang Blvd.

Grand Island, NY 14072

A Full Service Environmental Laboratory

LABORATORY REPORT

Job No: R91/05639

: 12/10/91

Date: JAN. 8 1992

Sample(s) Reference:

P.O. #:

Niagara Falls Air Force Base

Collected

Client:

ANALYSIS * BY GC METHOD 8021 ANALYTICAL RESULTS -\$ | -001 1 -002 Sample: -003 -004 -005 1 -006 1 -007 600- 1 |MW-10-C Location: IMM-10-A MM-10-E |W-10-E |NW-10-B MW-10-D Equipment Field Duplicate Blank Blank Date Collected: 12/10/91 |12/10/91 12/10/91 12/10/91 12/10/91 12/10/91 12/10/91 12/10/91 09:25 10:45 Time Collected: 11:10 111:25 111:58 12:15 113:00 111:10 SURROGATE STANDARD RECOVERIES -----% Recovery 118% 117% Bromochloromethane 96% 107% 106% 106% 91% 98% (Acceptance Limits: 60-138%) 2-Bromo-1-chloropropane 122% 99% 99% 105% 98% 103% 105% 88% (Acceptance Limits: 60-134%) 111% a,a,a-Trifluorotoluene 84% 82% 91% 100% 97% 85X 85% (Acceptance Limits: 60-134%)

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261.

NY ID# in Rochester: 10145

NJ ID# in Rochester: 73331

NJ ID# in Hackensack: 02317

NY ID# in Hackensack: 10801

Michael K. Peny

Laboratory Director

General W	
General Testing	
Corporation	

Mr.Glen Combes Wehran Envirotech

345 Lang Blvd.

Grand Island, NY 14072

Client:

A Full Service Environmental Laboratory

LABORATORY REPORT

Job No: R91/05639

Date: JAN. 8 1992

Sample(s) Reference

Niagara Falls Air Force Base

Collected : 12/10/91 P.O. #: ANALYTICAL RESULTS - mg/l | -017 Sample: Location: [Trip Blank Date Collected: 12/10/91 Time Collected: 1--DH Spec. Cond. (umhos/cm) Temperature °C -Field Alkalinity, Total Chloride Fluoride Nitrogen, Nitrate Nitrogen, Nitrite Nitrogen, Nitrate/Nitrite Pet. Hydrocarbons, IR Phosphorous, Ortho as P Silica, Total Solids, Dissolved **3180** C Sulfate Aluminum Barium Boron, Total Calcium, Total Chromium, Total Copper, Total Iron, Total Lead, Furnace Magnesium, Total Manganese, Total Nickel, Total Potassium, Total Sodium, Total Zinc, Total Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261. NY ID# in Rochester: 10145 NJ ID# in Hackensack: 02317 Michael K. Peny NJ ID# in Rochester: 73331 NY ID# in Hackensack: 10801

Laboratory Director

Client:

Collected

A Full Service Environmental Laboratory

LABORATORY REPORT

Job No: R91/05639 Date: JAN. 8 1992

Sample(s) Reference

Niagara Falls

P.O. #:

Mr.Glen Combes Wehran Envirotech 345 Lang Blvd. Grand Island, NY 14072

: 12/10/91

ANALYSIS * BY GC METHOD *8021 ANALYTICAL RESULTS - ug/1 1 -017 Sample: Location: | Trip Blank | 12/10/91 Date Collected: Time Collected: |--| 12/18/91 Date Analyzed: Dilution: | 1/1 |5 U Chloromethane Bromomethane | S U | 2 U Vinyl Chloride Chloroethane 120 Methylene Chloride 110 Trichlorofluoromethane | 1 U 1,1-Dichloroethene 110 | 1 U 1,1-Dichloroethane trans-1,2-Dichloroethene 110 cis-1,2-Dichloroethene 110 Chloroform 110 1,2-Dichloroethane 110 1,1,1-Trichloroethane | 1 U Carbon Tetrachloride | 1 U Bromodichloromethane | 1 U 110 1,2-Dichloropropane 1,3-Dichloropropene-Trans | 2 U 110 Trichloroethene 1,3-Dichloropropene (Cis) | 1 U Dibromochloromethane 120 1,1,2-Trichloroethane | 2 U 2-Chioroethylvinyl Ether | 2 U Bromoform 120 1,1,2,2-Tetrachloroethane 2 0 Tetrachloroethene | 1 U Chlorobenzene | 2 U 1,3-Dichlorobenzene | 2 U 120 1,2-Dichlorobenzene 1,4-Dichlorobenzene | 2 U Benzene 120 Toluene 120 | 2 U Ethylbenzene Total Xylene (o,m,p) | 2 U Total Volatiles | ND

Mr.Glen Combes Wehran Envirotech

345 Lang Blvd.

Grand Island, NY 14072

Client:

1

:

A Full Service Environmental Laboratory

LABORATORY REPORT

Job No: R91/05639

Date: JAN. 8 1992

Sample(s) Reference:

Niagara Falls Air Force Base

Collected	:	: 12/10/9	91		P.O.	#:		
ANALYSIS * BY GC	METHOD	8021		ANAI	LYTICAL	RESULTS	- %	
Sample:	-017	1	1 1		1	I		
Location:	Trip	İ			ĺ	1		
	Blank	i	l		Ì	1		
Date Collected:	12/10/91	İ	1		1	i		
Time Collected:		i	i		Ì			l
0556530222222222222223222222222222222222	828882222222		===============	, 192222222222			19595555555555	26505555552202020
	ł	1	t		t	1	I	1
	1	i	1		1	1		
	1	Ì	1		1			
	1	1			l I	1	l	1
	1	1			l I	1	l	I
SURROGATE STANDARD RECOVERIES	1	1	l	l	ĺ	1	1	1
	1	1	1		1	l	l	1
X Recovery	1	I	1		l	I	I	I
	1	I	1			1		1
Bromochloromethane	79%	1	ĺ		I	1	1	1
(Acceptance Limits: 60-138%)	1	1	l		I	1	I	1
	I	1	1		1	I	I	I
,	I	I	l, s	I	l	1	I	I
2-Bromo-1-chloropropane	83%	1	1	I	I .	1	1	1
(Acceptance Limits: 60-134%)	l l	1	1	1	1	1	1	1
	I	1	Ì		1	1	1	I
	Í	Ì	Ì	ĺ	1	Ì	l	l l
a,a,a-Trifluorotoluene	77%	1	Ì	l	1	l	I	1
(Acceptance Limits: 60-134%)	1	1	l	l	l	1 I	1	1
	1	1	l	l	l	Ì	1	1
	1	1	l	· ·	1	1	1	1
	1	1	I	I	I	1	1	1
	1	1	l	I	I	1	1	ł
	1	1	l	l	I	1	l	I
	1	1	I		I	1		I
	1	1	I	1		I	l	I
Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261.								
NY ID# in Rochester: 10145								
NJ ID# in Rochester: 73331								
NJ ID# in Hackensack: 02317					•			
NY ID# in Hackensack: 10801								
					. .	A D	< \lambda	
					/M ~	i V		
					11 uch	set t	. rew	V
						al K		r
							Laboritory	Director
							randimental	DIFIECTOR

Mr. Glen Combes Wehran Envirotech

345 Lang Blvd.

Grand Island, NY 14072

Client:

A Full Service Environmental Laboratory

LABORATORY REPORT

Job No: R91/05640

Date: 30 DEC., 1991

Sample(s) Reference

NIAGARA FALLS AIR FORCE BASE

Collected	: 12/10/91				P.O.	#:	
ANALYSIS * BY GC	METHOD	8021	Al	NALYTICA	AL RESULT	25 - ug/l	
Sample:	-001	-002	-003	-004	-005	1 1	1
Location:	10-3	10-2	10-1D	10-4	10-1	l i	
	1	1	I	I	È	1	
Date Collected:	12/10/91	12/10/91	12/10/91	12/10/91	12/10/91	1 1	1
Time Collected:	09:45	09:55	10:10	10:25	12:00	I I	1
Date Analyzed:	 12/18/91	 12/19/91	12/19/91	12/19/91	12/19/91	**=====================================	======================================
Dilution :	171	1/200	1/100	1/25	1/2	i i	i
Chloromethane	5 U	1000 U	500 U	125 U	10 U	i i	
Bromomethane	5 U	j 1000 U	500 U	125 U	10 U	i i	
Vinyl Chloride	20	400 U	j 1160	50 ປ	76.3	i i	i
Chloroethane	2 U	400 U	200 U	50 υ	4 U	i i	i I
Methylene Chloride	1 1 U	200 U	j 100 U	25 U	2 U	i i	i I
Trichlorofluoromethane	1 U	200 U	j 100 U	25 U	2 U	i i	i
1,1-Dichloroethene	1 U	200 U	100 U	25 U	2 U	i i	i I
1,1-Dichloroethane	j 1 U	200 U	j 100 U	25 U	20	i i	
Chloroform	42.6	200 U	100 U	25 U	2 U	i i	i
1,2-Dichloroethane	1 U	200 U	100 U	25 U	2 U		i I
1,1,1-Trichloroethane	1.73	200 U	100 U	25 U	20	i i	i
Carbon Tetrachloride	9.96	200 U	100 U	25 U	2 0	i i	
Bromodichloromethane	1 U	200 U	100 U	25 U	2 U	l l	
1,2-Dichloropropane	3.17	200 U	100 U	25 U	2 U	i i	
1,3-Dichloropropene-Trans	2 U	400 U	200 U	50 U	4 U	l i	
Trichloroethene	124	20,800	1720	3450	6.95	i i	i I
1,3-Dichloropropene (Cis)	1 U	200 U	100 U	25 U	20	i i	i i
Dibromochloromethane	2 U	400 U	200 U	50 U	4 U	i i	i
1,1,2-Trichloroethane	2 U	400 U	200 U	50 U	4 U	i i	i l
2-Chloroethylvinyl Ether	1 2 U	400 U	200 U	50 U	4 U	i i	i
Bromoform	2 U	400 U	200 U	50 U	4 U	i i	i i
1,1,2,2-Tetrachloroethane	2 U	400 U	200 U	50 U	4 U	i i	i i
Tetrachloroethene	1.14	200 U	100 U	25 U	20	İ	i l
Chlorobenzene	2 U	400 U	200 U	50 U	4 U	i i	i i
1,3-Dichlorobenzene	2 U	400 U	200 U	50 U	4 U	i i	i l
1,2-Dichlorobenzene	2 U	400 U	200 U	50 U	4 U	i i	i i
1,4-Dichlorobenzene	2 U	400 U	200 U	50 U	4 U	i i	
Benzene	2 U	400 U	200 U	50 U	8.04		
Toluene	2 U	400 U	200 U	50 U	4.32	i i	
Ethylbenzene	2 U	400 U	200 U	50 U	4 U	i i	İ
Total Xylene (o,m,p)	2 U	400 U	200 U	j 50 υ	4 U		
cis-1,2-Dichloroethene	73.3	7530	13,100	3210	202		Ì
trans-1,2-Dichloroethene	1 U	200 U	100 U	25 U	2 U	i i	
•••••					••••••		

Mr. Glen Combes Wehran Envirotech

345 Lang Blvd.

Grand Island, NY 14072

Client:

A Full Service Environmental Laboratory

LABORATORY REPORT

Job No: R91/05640

Date: DEC. 24 1991

Sample(s) Reference:

NIAGARA FALLS AIR FORCE BASE

Collected : 12/10/91 P.O. #: ANALYTICAL RESULTS -ANALYSIS * BY GC METHOD 8021 € -001 -002 -003 Sample: -004 | -005 10-2 10-4 Location: 110-3 | 10-1D 10-1 12/10/91 Date Collected: 12/10/91 12/10/91 |12/10/91 | 12/10/91 Time Collected: 09:45 09:55 | 10:10 10:25 12:00 _____ SURROGATE STANDARD RECOVERIES % Recovery 123% Bromochloromethane 92% 106% 108% 100% (Acceptance Limits: 60-138%) 2-Bromo-1-chloropropane 112% 78% 88% 96% 91% (Acceptance Limits: 60-134%) a,a,a-Trifluorotoluene 106% 114% 127% 134% 116% (Acceptance Limits: 60-134%)

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261.

NY ID# in Rochester: 10145

NJ ID# in Rochester: 73331

NJ ID# in Hackensack: 02317

NY ID# in Hackensack: 10801

Milal K. Peny

an an an an an Ara

Labor Dry Director

LABORATORY REPORT

Job No: R91/05641

Date: JAN. 22 1992

Client:

Mr. Glen Combes Wehran Envirotech 345 Lang Blvd. Grand Island, NY 14072

Niagara Falls Air Force Base ***CORRECTED COPY***

Sample(s) Reference:

Collected : 12/10/91 P.O. #: ANALYTICAL UNITS - ug/g Wet Wt. -001 Sample: -002 Location: Sediment Sediment Sample 1 Sample 2 Date Collected: 12/10/91 12/10/91 Time Collected: 13:15 13:45 Pet. Hydrocarbons, IR 192 50.9 Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261. NY ID# in Rochester: 10145 NJ ID# in Rochester: 73331

NJ ID# in Hackensack: 02317

NY ID# in Hackensack: 10801

Michael K Perry Laboratory Director

LABORATORY REPORT

Job No: R91/05641

Date: JAN. 22 1992

Client:

Mr. Glen Combes Wehran Envirotech 345 Lang Blvd. Grand Island, NY 14072

Niagara Falls Air Force Base ***CORRECTED COPY***

Sample(s) Reference

Collected		: 12/10	/91					
HSL VOLATILES H	BY EPA M	ETHOD 8	240*	ANALY	TICAL RE	SULTS -	ug/kg	Wet Wt.
Sample:	-001	-002	I	I	1	I	I	I
Location:	Sediment	Sediment	I	I	ł	1	I	I
	Sample 1	Sample 2	1	1	I	1	1	1
Date Collected:	12/10/91	12/10/91			I	l	I	l
Time Collected:	13:15	13:45					 	l
Date Analyzed:	12/20/91	12/20/91						
Dilution:	1/1	1/1	i	i	i	i	i	i
	Ì	İ	i	i	i	i	i	i
Chloromethane	[5 U	5 U	1	1	I	I	l	l l
Bromomethane	5 U	5 U	1	l	1	I	l l	I
Vinyl Chloride	5 U	5 U	1.	1	1		I	I
Chloroethane	5 U	5 U	1	F	1	I	I	1
Nethylene Chloride	5 U	5 U	1	i	ł	I	I	I
Acetone	20 U	20 U	ł	I	ł	I	1	1
Carbon Disulfide	10 U	10 U	l		ł	I	1	1
Trichlorofluoromethane	5 U	5 U	1	1	1	I	1	1
Vinyl Acetate	10 U	10 U	1		ł	I	· •	1
1,1-Dichloroethene	`[5 U	5 U	1	1	I	I	1	1
1,1-Dichloroethane	5 U	5 U	1	I	I	I	1	1
trans-1,2-Dichloroethene	5 U	5 U	1		I	ł	1	1
cis-1,2-Dichloroethene	5 U	5 U	1		I	I	1	I
Chloroform	5 U	5 U	I		ļ	I	1	1
2-Butanone (MEK)	10 U	10 U	I		ł	I	1	1
1,2-Dichloroethane	5 U	5 U	1	I	1	I	1	1
1,1,1-Trichloroethane	5 U	5 U	1		I	I	1	I
Carbon Tetrachloride	5 U	5 U	I	ł	I	I	1	
Bromodichloromethane	5 U	5 U	I		l	I	1	l
1,2-Dichloropropane	5 U	5 U	I	1	ł	1	1	1
1,3-Dichloropropene (Trans)	•	<u>5</u> U	I	l	ŀ	I	1	I
Trichloroethene	5 U	5 U	1	1	I	I	1	I
Dibromochloromethane	5 U	5 U	1		I (1	1	1
1,1,2-Trichloroethane	5 U	5 U	I	I	. 1	1	l	1
Benzene	5 U	5 U	I	I	I	I	I	1
1,3-Dichloropropene(Cis)	5 U	5 U	1		I	ł	1	1
Bromoform	5 U	5 U	1	I	I		I	1
4-Methyl-2-pentanone(MIBK)	10 U	10 U	1	1	I	F	I	1
2-Hexanone	10 U	10 U	1	1	1	I	I	1
Tetrachloroethene	5 U	5 U	1	1	1		1	l I
1,1,2,2-Tetrachloroethane	5 U	5 U	1	1	1	I	1	F
Toluene	5 U	5 U	I	-	I	I	1	I
Chlorobenzene	5 U	5 U	1	ł	1	1	1	1

General Testing Corporation Client: Mr. Glen Comb Wehran Enviro	es otech	A Full Service Environmental Laborato LABORATORY REPORT Job No: R91/05641 Date: JAN. 22 1992 Sample(s) Reference Niagara Falls Air Force									
345 Lang Blvd Grand Island,		072	Base 72 ***CORRECTED COPY***								
Collected	:	: 12/10/	91		P.O.	#:					
HSL VOLATILES BY EPA METHOD 8240* ANALYTICAL RESULTS - ug/kg Wet W											
Date Collected:	-001 Sediment Sample 1 12/10/91 13:15	-002 Sediment Sample 2 12/10/91 13:45	 	 	 	 					
	12/20/91 1/1 	12/20/91 1/1 	 	 	 1	 	 				
Ethylbenzene Styrene Total Xylene (o,m,p)	5 U 5 U 5 U 5 U	5 U 5 U 5 U 	• 		, 	, 					
Surrogate Standard Recoveries	 				+ 	 					
1,2-Dichloroethane-d4 (Acceptance limits: 73-116%) Toluene d8 (Acceptance limits 80-114%) 4-Bromofluorobenzene (Acceptance limits 78-116%)	 106X 102X 95X 	111x 106x 91x				1 					
						1 		 			

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261.

NY ID# in Rochester: 10145 NJ ID# in Rochester: 73331 NJ ID# in Hackensack: 02317 NY ID# in Hackensack: 10801

Michael K. Perry Laboratory Director

General Testing Corporation

A Full Service Environmental Laboratory

LABORATORY REPORT

Job No: R91/05641

Date: JAN. 22 1992

Client:

Mr. Glen Combes Wehran Envirotech 345 Lang Blvd. Grand Island, NY 14072 Sample(s) Reference

Niagara Falls Air Force Base ***CORRECTED COPY***

Coll	ected
------	-------

: 12/10/91

P.O. #:

HSL ACID EXTRACTAN	BLES BY	EPA I	METHOD	8270*	ANALYTICAL	RESULTS	- ug/kg	Wet	Wt
Sample:	-001	-002	ł	1	1	1	1	1	
Location:	Sediment	Sedimer	nt	1	1	Ì	i		
	Sample 1	Sample	2	1	Ì	I	1		
Date Collected:	12/10/91	12/10/9	1	1	Í	I	Ì		
Time Collected:	13:15	13:45	1	L	I	L		l	
Date Extracted:	12/12/91	12/12/9	naaaaaa 21	383238888 		======================================		1888235: 	822
Date Analyzed:	12/13/91	12/16/9	21 İ	i	i	i	i	i	
Dilution:	1/2	1/2	i	i	İ	İ	i	i	
	ł	1	Ì	i	i	İ	i		
Phenol	660 U	660 U	Ì	Í	Í	i	i	ĺ	
2-Chlorophenol	660 U	660 U	Í	Í	i	i	i -	i	
2-Nitrophenol	660 U	660 U	Ì	Í	Ì	Ì	i		
2,4-Dimethylphenol	660 U	660 U	Í	Í	I	Ì	i		
2,4-Dichlorophenol	660 U	660 U	Ì	Í	Í	i	i	ĺ	
4-Chloro-3-methylphenol	 66 0 U	660 U	Í	Í	Ì	i	i		
2,4,6-Trichlorophenol	660 U	660 U	Ì	Í	ĺ	Ì	i		
2,4-Dinitrophenol	1320 U	1320 U	Í	Í	İ	i	i		
4-Nitrophenol	1320 U	1320 U	1	Í	Í	Í	i		
2-Methyl-4,6-dinitrophenol	1320 U	1320 U	Í	Í	Í	Ì	i		
Pentachlorophenol	j1320 U	1320 U	Ì	Í	· ·	i	i		
2-Methylphenol	660 U	660 U	Í	İ	Í	Ì	İ		
4-Methylphenol	660 U	660 U	i	i	· 1	i	i		
Benzoic Acid	3300 U	3300 U	i	i	İ	i	1		
2,4,5-Trichlorophenol	(660, U	660 U	Í	İ	I		İ		
SURROGATE STANDARD RECOVERIES	1 . 1	1	1		1	1	ŀ		
2-Fluorophenol	 65%	 80%	ľ	1					
Acceptance Limits: 16-122%)		1	1	1	1		1		
Phenol-d6	62%	80%	1.	l l	1				
Acceptance Limits: 30-100%)		1	1	l l	1		1	1	
2,4,6-TriBromophenol	59%	80%		I I	1		1		
(Acceptance Limits: 24-143%)									

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261. NY ID# in Rochester: 10145

NJ ID# in Rochester: 73331 NJ ID# in Hackensack: 02317

NY ID# in Hackensack: 10801

. .

Michael K. Perry Laboratory Director

LABORATORY REPORT

Job No: R91/05641

Date: JAN. 22 1992

Client:

Mr. Glen Combes Wehran Envirotech 345 Lang Blvd. Grand Island, NY 14072

Niagara Falls Air Force Base ***CORRECTED COPY***

Collected

: 12/10/91

.

P.O. #:


Sample(s) Reference

HSL BASE NEUTRALS	S BY EPA	METHOD	8270*	ANALYTIC	CAL RESU	ULTS – u	g/kg We	t Wt.
Sample:	-001	-002		1	I	İ	1	
	•	Sediment		1	ł	1	1	
	:	Sample 2			, ,	1	1	
		12/10/91		i	, [1	
		13:45			1	1	1	
				, =========================	, 8233320822223	, 43323333332802	 	,
Date Extracted:	12/12/91	12/12/91		1	1 ·	1		1
Date Analyzed:	· .	12/16/91		i	I	I	ł	
		1/2		i	i	I	i	
N-Nitrosodimethylamine	•	330 U		i	i		1	
Bis(2-chloroethyl) ether		330 U		i	i	i	1	
1,3 Dichlorobenzene	330 U	330 U		1		i	i	i
	•	[330 U]		i	i	Ì	I	i l
-	•	330 U		i	İ	Ì	i	i l
bis(-2-chloroisopropyl)ether	330 U	330 U j		i	İ	i	i	
	-	330 U		Ì	İ	İ	I	i i
Hexachloroethane	330 U	330 U		i	İ		i	İ
Nitrobenzene	330 U	330 U		İ	1	i	i	İ
Isophorone	330 U	330 U		i	1	İ	i	1
bis(-2-chloroethoxy)methane	330 U	330 U		i	Ì	i	Ì	1
1,2,4-Trichlorobenzene	330 U	330 U		1	1	Ì	Ì	1
Naphthalene	330 U	330 U		1	1	Ì	İ	
Hexach Lorobutadiene	330 U	330 U		i	i	Ì	İ	1
Hexachlorocyclopentadiene	 330 . U	330 U		i	Ì	İ	İ	1
2-Chloronaphthalene	330 U	330 U		i	İ	İ	i	
Dimethyl phthalate	330 U	330 U		i	İ	i	Ì	ł
Acenaphthylene	330 U	330 U		i	İ	İ	i	i
Acenaphthene	330 U	330 U		i	l	Ì	İ	1
2,4-Dinitrotoluene	330 U	330 U		i	1	Ì	İ	Ì
2,6-Dinitrotoluene	330 U	330 U		i	Ì	İ	1	1
Diethyl phthalate	330 U	330 U			Ì	Ì	Ì	i l
4-Chlorophenyl-phenyl-ether	330 U	330 U		i	Ì	Ì	i ·	1
Fluorene	330 U	330 U			l	Ì	· .	1
1,2-Diphenylhydrazine	330 U	330 U			t	İ	ļ	
	330 U	330 U		i i	I	1		
4-Bromophenyl-phenylether	330 U	330 U		i	Ì	İ		1
Hexachlorobenzene	330 U	330 U		Ì	1	ŀ	ĺ	i l
Phenanthrene	330 U	330 U		1	l	Ì	1	j l
Anthracene		330 U		ł	ĺ	1		i l
Di-n-butyl phthalate		330 U		Ì	İ	I		
Benzidine	3300 U	3300 U		1	1	Ì		
Fluoranthene	330 U	330 U		1	1	Ì	Ì	i l
Pyrene	330 U	340		Ì		Ì	Ì	
				•	•	• •		•

General Testing			A Full Service Environmental Laborator									
Testing V	V			LAB	ORATOR	Y REPO	DRT					
Corporat	ion J	ob Numbe	er: R91	/05641	Dat	e: JAN.	22 1992					
Client:			Sample(s) Reference									
Mr. Glen Comb				N. d. a. a		lin Ro						
Wehran Enviro 345 Lang Blvo				Base	ara Falls	AIT FO	rce					
Grand Island,		072	:		ORRECTED	COPY***						
Collected		:	12/10	/91	P.O.	#:						
HSL BASE NEUTRALS	BY EPA	METHOD	8270*	ANALYTICAI	RESULTS	- ug/kg	Wet Wt.					
Sample:	-001	-002			1							
Location:	Sediment	Sediment			1							
Location:	•	Sample 2				ļ						
Date Collected:	Sample 1 12/10/91	Sample 2 12/10/91	1			1						
						1						
Time Collected:	13:15 ====================================	13:45 ==========				 						
Date Extracted:	12/12/91	12/12/91	1	1 1		1	1					
Date Analyzed:	12/13/91	12/16/91	i	i i	İ	i	i					
Dilution:	1/2	1/2	i	i i	i	i	i					
Butyl benzyl phthalate	330 U	j 330 υ	i	i i	i	i	i					
	1330 U	330 U	i	i i	i	i	i					
-	330 U	330 ບ	i	i i	i	i						
Bis(2-ethylhexyl)phthalate	•	330 U	i	i i	1	1	i					
	330 U	330 U	i	i i	l l	i	i i					
-	330 U	330 U	i	i i	ľ	i	i					
	330 U	330 υ	i	i i		i	i					
	330 U	330 υ	i I	i i	•		i					
	330 U	Ι 330 υ	i	i i			i					
••	1330 U	330 U	1									
Dibenzo(a,h)anthracene	1330 U	330 U					1					
Benzo(g,h,i)perylene	330 U	330 U	i			ł	1					
Benzyl Alcohol	1320 U	1320 U				1	1					
4-Chloroaniline	660 U	660 U				1						
2-Methyl Naphthalene	660 U	660 U	1									
2-Nitroaniline	1320 U	1320 U	1				1					
	1320 U	1320 U	1		1		1					
Dibenzofuran	660 U	660 U	1		1		1					
4-Nitroaniline	3300 U	3300 U	1	i i	l l	•	i					
SURROGATE STANDARD RECOVERIES	 .	1			1	.						
Nitzahanzara	 614	 744			1	1						
Nitrobenzene-dő	61%	76%			1							
(Acceptance Limits: 19-103%)	[]	1 074			1		1					
2-Fluorobiphenyl	64%	82%			1		I I					
(Acceptance Limits: 26-119%)	744	1			1							
Terphenyl-d14	76%	118%										
(Acceptance Limits: 18-142%)	1	1	1	I I		1	1					

.

Muchael	K	Penn
		Laboratory Director

,

GTC REPORT <u># WEHRAN ENVIROTECH</u> NIAGARA FALLS AIR FORCE BASE

SECTION __B__

LABORATORY QUALITY CONTROL DATA

Presented in this section is Quality Control Associated with the data provided in Section $_A_$ of this report.

Quality Control Explanations:

- (1) RUN QUALITY CONTROL Selected QC data from the analytical run in which your sample(s) were involved.
- (2) JOB SPECIFIC QUALITY CONTROL QC data specific to your set of samples.
- (3) DUPLICATES Replicate analyses of a given sample used to monitor precision. Relative Percent Difference is calculated as the difference divided by the average, times 100.
- (4) MATRIX SPIKES Addition of a known amount of analyte to a sample. Recovery is calculated by subtracting original value attributable to the sample from the combined value. The difference is then divided by the amount added to calculate percent recovery. Poor recoveries may indicate analytical interference due to the matrix of the sample. Any other samples of this matrix may also have been affected, high or low as indicated by the percent recovery.
- (5) LABORATORY CONTAMINANTS Laboratory de-ionized water used to monitor for contamination during analysis.
- (6) BLANK SPIKES Same as item #4 but analyte is added to laboratory de-ionized water. This indicates the accuracy of analysis.
- (7) REFERENCE CHECK SAMPLES Samples from an outside source having a known concentration of analyte. Used as a measure of analytical accuracy.

When possible, all components of the above listed QC protocol are performed during an analytical run. The resulting data is compared to historical records when evaluating the quality of analytical runs. The data provided in your report has passed our Quality Assurance review.

Quality Control Notes:

USTOMER: Weh	ıran Envir	otech		JOL	3 # : R91/	05639		U	NITS: mg/l					REF	PORT TYP	E: Job S	pecific	
 PARAMETER			DUPLICATE RESULT										ACCEPT. LIMITS %		FERENCE #		PERCENT RECOVERY	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	///////		* PRECISI	ON		 	* MATRI	X SPIKING		[BLANK	SPIKES			REFE	RENCE ST	ANDARD	
PH	-001		17.67	0.0%	* +	7.67	NA	ļ		NA I				 NA 				
Spec.Cond.	-001	926	 935	 1.0%	_1 *+	 926	. I NA	_] 	11	 NA	ł 	.1 	 	 NA 		 	 	
Temperature	-001	9.0	9.0	0.0%	_ *+	 9.0	. NA	 		 NA	! !	 		<u> </u>		1		
Alkalinity	-001	332	335	0.9%	10	 332	 100	102%	82-126	 2.0 U	 20.0 	100%	88-123	REF	STD	196	100%	90-115
Chloride	-001	21.3	 21.4	 0.5%	10	 21.3	 25.0	107%	68-132	 1.0 U	 5.0 	95% 	82-121	 REF 	STD	 65.0 	101%	90-110
Fluoride	-001	0.515	0.494	 4.1X	10	0.515	0.500	 104 X	67-133	0.10 U	0.500	107%	85-115	 REF 	STD	 1.81 	106%	85-115
NO2	-001	0.0470	0.0530	12.0%*	10	 0.0470	0.500	102%	84-126	 0.010 U	 0.050 	102 X	85-115	REF	STD	0.900 	102%	90-110
N03/N02	-001	 0.050 U	 0.050 U	 NC	10	0.050 U	0.500	101%	75-131	0.050 U	 0.250 	100%	85-115	 REF 	STD	1.80	101%	90-111
Pet. Hydro	-002	1	131	 5.5	36.6	 NA	. 	-!	 	 0.010 U	 4.238 	62.3 	<u></u> 61.1-113	REF	STD	<u></u> 124.5	124	99.6
Phos. Ortho	-001	0.0362	0.0362	0.0%	10	0.0362	0.100	94%	70-130	0.010 U	0.050	106%	70-130	REF	STD	0.900	101%	80-120
Silica	-001	0.0478	0.0469	1.9%	10	 0.0478	0.040	100%	81-124	 0.0040 U	0.020	104%	<u> </u>	REF	STD	1 0.0500	99%	88-110
Solids, Dis	-001	773	665	15.0%*		 773	 NA	 	 	 NA	 	-! 	.; 	I REF	STD	1240	98 X	90-110
Sulfate	-001		26.0	1.6%	_ 10	 25.6		 101X	69-130	 10.0 U	 20.0	98%	 79-116	 REF	STD	236	97%	77-114
Aluminum	-001	 35.2	. 34.9	. 0.9%		 35.2	 0.50	_ v	60-140	 0.10 U	 0.50	102%	. 70-130	 REF	STD	<u> </u>	99%	80-120

**Reference Check samples are not available for all analyses.

***+Currently no limits established.**

GTC LABORATORY QUALITY CONTROL REPORT

......

ACRONT TYPE

GTC LABORATORY QUALITY CONTROL REPORT

CUSTOMER: Wehran Envirotech

JOB # : R91/05639

UNITS: mg/l

REPORT TYPE: Job Specific

PARAMETER	•			X REL. ERROR									T <mark> ACCEPT. </mark> Y LIMITS %	REFERENCE		•	ACCEPT.
///////////////////////////////////////			* PRECISI	ON	·····	1		SPIKING		 		SPIKES		1	RENCE ST	ANDARD	· !
Barium	-001	0.42	0.47	11.2%	30	 0.42	10.50	104 %	60-135 1	0.10 U	0.50 	98% 	70-123 	REF STD	4.00 	101 %	 80-12 0
Boron	-001	0.250 U	0.250 U		30	0.250 U	50.0	<u></u> 96%	80-120 	0.250 U	5.0	98%	80-120	REF STD	5.00	100%	90-110
Calcium	-001	 337	336	0.3%	20	337	10.0		(<u></u> 80-120	0.50 U	2.00	103%	80-120	REF STD	50.0	103%	90-110
Chromium	 -001	0.0484	0.0426	12.7%	30	0.0484	0.250	 92 %	 80-120	0.010 U	 0.250	106%	80-120	REF STD	5.00	100%	90-110
Copper	 -001	0.107	. 0.104	2.8%	20	0.107	0.100	 100 %	 80-120	0.010 U	0.100	103%	80-120	REF STD	5.00	101 X	90-110
Iron	 -001	41.5		4.7%	20	41.5	0.250		 80-120	. 0.050 U	 0.250	108%	80-120	REF STD	5.00	100%	90-110
Lead, Furn	 -001	0.0099	0.0094	 5.2%	30	0.0099	0.020	 164 X*	50-150	0.0050 U	0.020	109%	70-130	REF STD	0.030	102%	80-120
Magnesium	 -001	 170	169	 0.6%	20	 170	10.0	-! V	80-120	0.50 U	 2.00	 100%	80-120	REF STD	<u>-</u> 50.0	99%	90-110
Manganese	 -001	0.783	0.762	 2.7%		 0.783	0.0500	 V	 80-120	0.0050 U	 0.050	100%	80-120	REF STD	5.00	100%	<u></u> 90-110
Nickel		0.0563	0.0482	15.5 X	 30	0.0563	1	93X	. 80-120	 0.020 U	0.200	102%	80-120	REF STD	-1 5.00	100%	 90-110
Potassium	 -001	 12.1	_ 12.1	 0.0%			10.0	72%	 60-140	0.250 U	2.00	96%	_ 80-128	REF STD	4.00	99%	<u>80-120</u>
Sodium	 -001	 9.69	9.90	 2.1%	_ 20	9.69	10.0	79%	 60-140	 0.10 U	2.00	100%	83-119		_1 4.00	99%	 80-117
Zinc	 -001	 3.75	3.60	 4.1X		 3.75	0.0500	 v	 80-120	 0.010 U	0.050	99%	80-120	REF STD	_[1.00	102%	90-110
			_		_		.	_	.	_	.		_		_	_	l

**Reference Check samples are not available for all analyses.

Mr.Glen Combes

345 Lang Blvd.

Collected

A Full Service Environmental Laboratory

LABORATORY REPORT

Job No: R91/05639 Date: JAN. 8 1992

Sample(s) Reference

Niagara Falls

Wehran Envirotech

: 12/10/91

Grand Island, NY 14072

P.O. #:

ANALYSIS * BY GC	METHOD	*8021		ANALYTICAL	RESULTS	- ug/l	
Sample:							
	-018	-019		l			
Location:	Lab Meth.	•			1 1		
	Blank	8lank	1 1		I		
ate Collected:			l E		1		
Time Collected:					1		
		행상대방방 승규는 승규는 승규는 승규는 승규는 승규는 승규는 승규는 승규는 승규는		***********************		***********	************
Date Analyzed:	12/16/91	12/17/91		1	1		
Dilution:	1/1	1/1	1 1	1			
Chloromethane	ļ5 U	5 U		1	•		
Bromomethane	5 U	5 U			i	i I	
Vinyl Chloride	2 U	2 U					
Chloroethane	2 U	2 U		I	1		
Methylene Chloride	1 U	1 1 U	I I	1	1		
Trichlorofluoromethane	1 U	1 U	I I		1		
1,1-Dichloroethene	1 U	1 U		l l			
1,1-Dichloroethane	1 U	1 U			1		
trans-1,2-Dichloroethene	1 U	1 U	1	1	1		
Cis-1,2-Dichloroethene	1 U	1 U	1 1		Í		
Chloroform	1 U	1 U	l İ		Í.		
1,2-Dichloroethane	110	1 U			Ì		
1,1,1-Trichloroethane	110	1 U		l	1		
Carbon Tetrachloride	110	1 U	l İ	ĺ	Ì		
Bromodichloromethane	1 U	1 U	1 1		i	Ì	
1,2-Dichloropropane	1 U	1 U	i i		i		
1,3-Dichloropropene-Trans	2 U	2 U	1		Í	1	
Trichloroethene	1 U	1 U			Ì		
1,3-Dichloropropene (Cis)	1 U	1 U	l İ	Ì	Ì		
Dibromochloromethane	2 U	2 U		ĺ	Ì	1	
1,1,2-Trichloroethane	1 2 0	2 U			1	1	
2-Chloroethylvinyl Ether	2 U	2 U			1	1	
Bromoform	2 U	2 U	l İ	Í	1		
1,1,2,2-Tetrachloroethane	2 U	2 U	i i	Í	1	1	
Tetrachloroethene	1 U	1 U	i i	Í	İ	Ì	
Chlorobenzene	2 U	2 U	Í	Í	Ì	Ì	
1,3-Dichlorobenzene	2 U	2 U	İİ	Í	i	l	
1,2-Dichlorobenzene	2 U	2 U	i i	l	i	1	
1,4-Dichlorobenzene	2 0	2 U	i i	İ	Ì	į	
Benzene	20	2 U	1 1	i	Ì	Ì	
Toluene	2 U	2 U	i i	i	i		
Ethylbenzene	2 U	2 U	i i	i	i	1	
Total Xylene (o,m,p)	2 0	20	i i	i	i	1	
Total Volatiles	ND	ND		i	i		
				-		-	

LABORATORY REPORT

Job No: R91/05639

Date: JAN. 8 1992

Sample(s) Reference:

Niagara Falls Air Force Base

Client: Mr.Glen Combes Wehran Envirotech 345 Lang Blvd. Grand Island, NY 14072

P.O. #:

Collected	· .	: 12/10,	/91		P.O.	#:		
ANALYSIS * BY GC	METHOD	8021		ANAI	LYTICAL	RESULTS	- %	
Sample:	-018	-019	1	Ì I	I	1	l	1
Location:	Lab Meth.	Lab Meth.	l l	1	1		l	1
	Blank	Blank		1	I	1	I	l
Date Collected:			1	l	1	ļ	l	1
Time Collected:	l			1			l	l .
			I	1	I	1	1	l
	I	1	1	1	I	1	1	I
	I	1	I	1	l	l	I	1
	1	I	1	l	1	1	l .	1
SURROGATE STANDARD RECOVERIES	1	ļ	1	I	l	1	1	1
				1	1		l	1
X Recovery		1		1		1		!
.	76%		1		}	1	1	1
Bromochloromethane	107	96%	1		1	1	1	1
(Acceptance Limits: 60-138X)		1			1	1	1	1
	1				1	1	1	1
2-Bromo-1-chloropropane	70%	1 89%	1	1	1	1	1	1
(Acceptance Limits: 60-134%)	1	074	1	1	1		1	1
					1	1	1	1
	1	1	1		+ 	i	1	
a,a,a-Trifluorotoluene	92%	79%	i	i	i	i	1	Ì
(Acceptance Limits: 60-134%)	Ì	i	Ì	i	i	i		i
	Ì	Ì	Ì	i	l ·	i	1	Ì
	L	1	1	1	1	1	1	1
	1	1	1	1	1	1	l	I
	1 ·	1	1	1	1	1	1	1
	1.	1	1	1	1	1	I	I
1	1		1	1	1	1		1
	1	ŀ	l	1		1		1
Unless otherwise noted, analyt	ical method	ology has be	en obtained f	from referenc	es as cited	in 40 CFR, p	arts #136 &	#261.
NY ID# in Rochester: 10145								
NJ ID# in Rochester: 73331								
NJ ID# in Hackensack: 02317			-					
NY ID# in Hackensack: 10801								

Michael K. Peny

BA - WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY
Lab Name: General Testing Corp. Contract: ______
Lab Code: _____ Case No.: ____ SAS No.: ____ SDG No.: ____
Matrix Spike - EPA Sample No. : R91/05639 -001

COMPOUND	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENT.	%	LIMITS
	(ug/l)	(ug/1)	(ug/1)	REC #	REC.
1,1-Dichloroethene	19.8	0.00	24.1	122%	28-167
Frichloroethene	21.4	0.00	27.7	130%	35-146
Benzene	20.0	0.00	23.5	118%	39-150
Toluene	19.7	0.00	24.9	127%	46-148
Chlorobenzene	20.2	0.00	24.7	122%	55-135

MSD SPIKE MSD 8 QC LIMITS ADDED CONCENT. ¥ REC # RPD # RPD REC. COMPOUND (ug/1)(ug/1)و بینی برای میں ملک میں دیار _____ ____ ____ 30 28-167 19.8 25.5 129% 5.8% ,1-Dichloroethene 35-146 137% 5.7% 30 Trichloroethene 21.4 29.4 39-150 20.0 23.7 119% 0.9% 30 Benzene **Toluene** 0.7% 30 46-148 19.7 25.1 128% 1.0% 55-135 hlorobenzene 1238 30 20.2 24.9

Columns to be used to flag recovery and RPD values with an asterik

Values outside of QC limits

RPD:	0	out	of _	5		outside	limits	
Spike	Recove	ry:_	_0	out	of	10	outside	limits

COMMENTS:

pge 1 of 1

FORM III VOA-1 NYSDEC B-85

2.

Mr. Glen Combes Wehran Envirotech

345 Lang Blvd.

Grand Island, NY 14072

A Full Service Environmental Laboratory

LABORATORY REPORT

Job No: R91/05640

Date: 30 DEC., 1991

Sample(s) Reference

NIAGARA FALLS AIR FORCE BASE

Collected	:	: 12/10/93	L	P	.0. #:		
ANALYSIS * BY GO	METHOD	8021	ANAL	YTICAL RE	SULTS -	ug/l	
Sample:	-006	-007	I	I	Ι	I	l
Location:	Lab Meth.	Lab Meth.	1	1	I	I	
	Blank	Blank	1	1	I	1	1
Date Collected:				I	ł	I	I
Time Collected:							
Date Analyzed:	12/17/91	12/18/91	 			l	ļ
Dilution :	1/1	1/1	1	1	I	I	
Chloromethane	5 U	5 U	I	l	I	I	
Bromomethane	5 U	50	1	1	l	1	1
Vinyl Chloride	2 U	2 U _	i	1	I	I	
Chloroethane	2 U	2 U	1	1	I	l	
Methylene Chloride	1 U	1 U	1	1	1	l	
Trichlorofluoromethane	1 U	1 U	1	1	I	l.	
1,1-Dichloroethene	1 U	1 U	1	1	I	l	
1,1-Dichloroethane	1 U	1 U	1	t ·	1	I	
Chloroform	1 U	1 U	I	l	1	I	
1,2-Dichloroethane	1 U	1 U	ļ	l l	I	1	
1,1,1-Trichloroethane	1 U	1 U	1		I	1	
Carbon Tetrachloride	1 U	1 U	1	l l	I	1	
Bromodichloromethane	1 U	1 U	1	1	I	I	
1,2-Dichloropropane	1 U	1 U	I	l	I	1	
1,3-Dichloropropene-Trans	2 U	2 U	1	l l	I	1	
Trichloroethene	1 U	1 U	1	1	I	I	
1,3-Dichloropropene (Cis)	1 U	1 U	1	I	I	I	
Dibromochloromethane	2 U	2 U	1	I	I	I	
1,1,2-Trichloroethane	2 U	20	1	l	I		
2-Chloroethylvinyl Ether	2 U	20	1	I	I	1	
Bromoform	2 U	20	1	I	I	1	
1,1,2,2-Tetrachloroethane	2 U	20	1	I	I	1	
Tetrachloroethene	1 U	1 U	1	l l	I I	1	1
Chlorobenzene	2 U	2 U	1	1	1	1	
1,3-Dichlorobenzene	20	20	i	l l	Í	Í	
1,2-Dichlorobenzene	2 U	20	i		Í	i ·	
1,4-Dichlorobenzene	2 U	20	i	l l	i	i	
Benzene	2 0	20	i	l	i	İ	l
Toluene	2 U	20	İ	l	i	ĺ	ţ.
Ethylbenzene	2 U	20 1	i	İ	i	ĺ	l
Total Xylene (o,m,p)	2 U	20	İ	l	İ	I	
cis-1,2-Dichloroethene	1 1 U	j 1 u j	, i	i	i	İ	
trans-1,2-Dichloroethene	1 U	j 1 U j		i	i	İ	1

х,

Mr. Glen Combes

lient:

A Full Service Environmental Laboratory

LABORATORY REPORT

Job No: R91/05640 Date: DEC. 24 1991

Sample(s) Reference:

NIAGARA FALLS AIR FORCE BASE

P.O. #: collected : 12/10/91 ANALYSIS * BY GC METHOD 8021 ANALYTICAL RESULTS -₽ -006 j -007 Sample: Location: Lab Meth. Lab Meth. Blank Blank Date Collected: |--1--1-ime Collected: 1--********* ______ URROGATE STANDARD RECOVERIES % Recovery 96% Bromochloromethane 98% (Acceptance Limits: 60-138%) | 2-Bromo-1-chloropropane 89% 112% Acceptance Limits: 60-134%) | a,a,a-Trifluorotoluene 79% 104% Acceptance Limits: 60-134%) | Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261. ID# in Rochester: 10145 ID# in Rochester: 73331 NJ ID# in Hackensack: 02317 ID# in Hackensack: 10801

Michael K. Peny Laboratory Director

Wehran Envirotech 345 Lang Blvd. Grand Island, NY 14072

COMPOUND	ADDED (ug/1)	SAMPLE CONCENTRATION (ug/l)	MS CONCENT. (ug/1)	MS % REC #	QC LIMITS REC.
1,1-Dichloroethene	19.8	0.0	20.1	101%	28-167
Trichloroethene	21.4	124	131	V	35-146
Benzene	20.0	0.0	15.5	78%	39-150
Toluene	19.6	0.0	15.6	80%	46-148
Chlorobenzene	20.2	0.0	18.8	93%	55-135

COMPOUND	SPIKE ADDED (ug/l)	MSD CONCENT. (ug/1)	MSD % REC #	ہ RPD #		LIMITS
	==================				=======	
1,1-Dichloroethene	19.8	21.8	110%	8.4%	30	28-167
Trichloroethene	21.4	125	v	4.18	30	35-146
Benzene	20.0	16.8	848	7.98	30	39-150
Toluene	19.6	16.2	828	3.5%	30	46-148
Chlorobenzene	20.2	20.1	998	6.48	30	55-135
		20.1	550	0.40		33 133
* Values outside of QC RFS: 0 out of 5 Spike Recovery: 0 out	limits outside	limits		vith an a	asterik	
	<u> </u>	outside IIm.	lus			
COMENTS:						
ge 1 of 1						

÷.

LABORATORY REPORT

Client: Mr. Glen Combes Wehran Envirotech 345 Lang Blvd. Grand Island, NY 14072

Job No: R91/05640 Date: 24 DEC., 1991

		REFERI	ENCE CHECK	ii	
EPA METHOD 8010/8020	· 	TRUE		 	ACCEPTANCE
	<u>II</u>	VALUE	RECOVERY	ij	LIMITS (%)
Date Analyzed: 12/18/91	 		- 	····· ····· 	
Chloromethane		40.0	131%		D - 193
Bromomethane	11	40.0	102%	- ii	D - 144
Vinyl Chloride	11	20.0	136%	- ii	28 - 163
Chloroethane	11		· · ·	ii	46 - 137
Methylene Chloride	11	20.0	121%	ii	25 - 162
Trichlorofluoromethane	11	20.0	80%	ii	21 - 156
1,1-Dichloroethene	11	20.0	120%	ii	28 - 167
1,1-Dichloroethane	11	20.0	112%	Î	47 - 132
Total 1,2-Dichloroethene	11	20.0	119%	ii	38 - 155
Chloroform	11	20.0	117%	ii	49 - 133
1,2-Dichloroethane	11	20.0	118%	ii	51 - 147
1,1,1-Trichloroethane	11	20.0	109%	ii	41 - 138
Carbon Tetrachloride	H	20.0	118%	ii	43 - 143
Bromodichloromethane	11	20.0	108%	ii	42 - 172
1,2-Dichloropropane		20.0	105%	ii	44 - 156
1,3-Dichloropropene-Trans	11	20.0	123%	ii	22 - 178
Trichloroethene	11	20.0	104%	ii	35 - 146
1,3-Dichloropropene(Cis)	П	20.0	106%	ii	22 - 178
Dibromochloromethane	11	20.0	112%	ii	24 - 191
1,1,2-Trichloroethane	- H	20.0	93%	ii	39 - 136
2-Chloroethylvinyl Ether	11			й	14 - 186
Bromoform	П.	20.0	114%	ii	13 - 159
1,1,2,2-Tetrachloroethane	Π.	20.0	119%	ii	8 - 184
Tetrachloroethene	11	20.0	102%	ii	26 - 162
Chiorobenzene	ii –	40.0	101%	ii	38 - 150
1,3-Dichlorobenzene	Π.	40.0	75%	ii	7 - 187
1,2-Dichlorobenzene	ii –	40.0	67%	й	D - 208
1,4-Dichlorobenzene	ii	40.0	81%	ii ii	42 - 143
Benzene	ii	20.0	86%	ii	39 - 150
Toluene	ii	20.0	90%	ii	46 - 148
Ethylbenzene	ii	20.0	80%	ii	32 - 160
Total Xylene (o,m,p)	ii	60.0	78%		59 - 127

						STC LABORA	tory qu	ALITY CONT	ROL REPORT								
USTOMER: Wei	n ran Envi r	otech		BOF	: # : R91,	/05641		u	NITS: ug/g	Wet Wt.				REPORT TYPI	E: Job S	pecific	
PARAMETER	SAMPLE	I MAT SPK	DUP	L ERROR	ILIMIT X	I RESULT	ADDED	IRECOVERY	LIMIT %	BLANK	ADDED	IRECOVERY	ILIMITS X	REFERENCE #	PMVAL	RECOVERY	LIMITS X
///////////////////////////////////////	· ///////	 .	* PRECISI	ON		 	* MATRI	X SPIKING	 	 	BLANK	SPIKES	 	 REFE 	RENCE ST	ANDARD	
Pet. Hydro.	-001	 708	670	5.52	18.11	 192	4238	94.4	 55.9-130	 10.0 U	4238	96.6	61.1-123	REF STD	124.5	102	*+
	 	 	[[. <u></u>	.] 	 	.1 	_! !	 		. 	.! 	-!! 	! ! !	 	 	/ } I
	 	! !	1 	.! 	. 	 	 	-! 	 · ·	 	-! !	. 	-!! 	! 	 		
	 	 	 !	.] ` 	.! 	 	. 	_! 	!! !	 	-! 	.1 	-{	! 	(
) 	.' 		11 11 11	 	! 	1 1 1			 		i i i	 	 	
	 	 	 	 			 	 	 	I		1	 	 	 	 	
	 			 	 _	 	 .	 _	 	 	 _1	 .	 _	 	 	 	
	i 	 	 	 .	 _	 	 .	 _	 	! !	 _	 .l	 	 	 	 	
		· 	l I	 .	 _1	 	 .1	 _	 	 	 _	 -	 	 	 	 .	l !
	 	 	 	 .I	 _	} 	 .	 _	 	 	 _	 -	 !-	 	 	 .	
	 		 .	 .!	 .	 	 .	 !	 	 	 _	 _	 !	 	 	 	¦
	 	 	 .	 .!	 -	 	 .	 _	 	 	 -	 _] 	l 	 	
	 	 	 .	 .	 _	 	 .	 	ا ا اا	 	 _	। .	ا ا اا	 	ı 	I 	

* Analytical results previous to accounting for dilutions.

.

** Reference Check samples are not available for all analyses. ++ Outside of Quality Control Limits.

Mr. Glen Combes Wehran Envirotech

345 Lang Blvd.

Grand Island, NY 14072

A Full Service Environmental Laboratory

LABORATORY REPORT

Job No: R91/05641 Date: DEC. 26 1991

Sample(s) Reference

Niagara Falls Air Force Base

Collected : 12/10/91 P.O. #: HSL VOLATILES BY EPA METHOD 8240* ANALYTICAL RESULTS ug/kg Wet Wt. 1 -003 Sample: Location: Lab Meth. Blank ate Collected: 1-ime Collected: 1--te Analyzed: 12/20/91 lution: 11/1 Т Chloromethane |5 U Bromomethane 15 U Vinyl Chloride |5 U Chloroethane |5 U Methylene Chloride [5 U Acetone 20 U Carbon Disulfide 10 U Trichlorofluoromethane |5 U Vinyl Acetate 10 U 1,1-Dichloroethene |5 U 1,1-Dichloroethane 15 U trans-1,2-Dichloroethene |5 U cis-1,2-Dichloroethene |5 U Chloroform |5 U 2-Butanone (MEK) |10 U 1,2-Dichloroethane |5 U 1,1,1-Trichloroethane |5 U Carbon Tetrachloride 15 U Bromodichloromethane |5 U |5 U 1,2-Dichloropropane 1.3-Dichloropropene (Trans) |5 U richloroethene |5 U Dibromochloromethane 15 U 1,1,2-Trichloroethane |5 U |5 U Benzene 1,3-Dichloropropene(Cis) |5 U Bromoform |5 U &-Methyl-2-pentanone(MIBK) |10 U 2-Hexanone 110 U |5 U Tetrachloroethene 1,1,2,2-Tetrachloroethane [5 U |5 U loluene Chlorobenzene |5 U

LABORATORY REPORT

Job No: R91/05641 Date: DEC. 26 1991

Sample(s) Reference

Client:

Mr. Glen Combes Wehran Envirotech 345 Lang Blvd. Grand Island, NY 14072

Niagara Falls Air Force

Base

Collected : 12/10/91 P.O. #: HSL VOLATILES BY EPA METHOD 8240* ANALYTICAL RESULTS - ug/kg Wet Wt. Sample: | -003 Location: Lab Meth. Blank ate Collected: 1-ime Collected: |--Date Analyzed: 12/20/91 Dilution: 11/1 L Ethylbenzene 15 U Styrene 15 U Total Xylene (o,m,p) |5 U

106%

101%

97%

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261. NY ID# in Rochester: 10145

J ID# in Rochester: 73331 J ID# in Hackensack: 02317

Surrogate Standard Recoveries

cceptance limits: 75-119%)

1,2-Dichloroethane-d4

cceptance limits 84-116%)

Toluene d8

NY ID# in Hackensack: 10801

Michael K. Peny

Laborato Director

.

VOLATILE ORGANICS - SOIL SAMPLE SOIL VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: General Testing Corp. Matrix Spike - Sample No. : R91/05641 -001

COMPOUND	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENT.	%	LIMITS
	(ug/kg)	(ug/kg)	(ug/kg)	REC #	REC.
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	50 50 50 50 50 50	0.0 0.0 0.0 0.0 0.0 0.0	46.8 37.4 40.4 43.2 42.4	94% 75% 81% 86% 85%	D-234 71-157 37-151 47-150 37-160

COMPOUND	SPIKE ADDED (ug/kg)	MSD CONCENT. (ug/kg)	MSD % REC #	% RPD #	QC	LIMITS REC.
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	50 50 50 50 50 50	48.1 39.6 42.6 45.7 44.7	96% 79% 85% 91% 89%	2.7% 5.7% 5.3% 5.6% 5.3%	30 30 30 30 30 30	D-234 71-157 37-151 47-150 37-160

Columns to be used to flag recovery and RPD values with ++. ++ = Values outside of QC limits MS QC Limits = EPA Acceptance Criteria RPD Limits = Internal Acceptance Criteria

RE ______ out of ____5____ outside limits Spike Recovery:____0___ out of ___10____ outside limits

1

MENTS:

ge 1 of 1

Mr. Glen Combes

Wehran Envirotech 345 Lang Blvd.

Grand Island, NY 14072

A Full Service Environmental Laboratory

LABORATORY REPORT

Job No: R91/05641 Date: DEC. 31 1991

Sample(s) Reference

Niagara Falls Air Force Base

P.O. #: Collected : 12/10/91 HSL ACID EXTRACTABLES BY EPA METHOD 8270* ANALYTICAL RESULTS - ug/kg Wet Wt. | -003 Sample: Lab Meth. Location: Blank ate Collected: |-ime Collected: 1 - -_____________________ 12/12/91 Date Extracted: Date Analyzed: 12/13/91 1/2 Dilution: L 660 U Phenol 660 U 2-Chlorophenol [660 U 2-Nitrophenol 2,4-Dimethylphenol 1660 U [660 U 2,4-Dichlorophenol [660 U 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 660 U 1320 U 2,4-Dinitrophenol 1320 U 4-Nitrophenol 2-Methyl-4,6-dinitrophenol |1320 U 1320 U Pentachlorophenol 2-Methylphenol 660 U 660 U 4-Methylphenol 13300 U Benzoic Acid 660 U 2,4,5-Trichlorophenol SURROGATE STANDARD RECOVERIES 72% 2-Fluorophenol Acceptance Limits: 16-122%) 71% Phenol-d6 (Acceptance Limits: 30-100%) 67% 2,4,6-TriBromophenol Acceptance Limits: 24-143%) Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261. NY ID# in Rochester: 10145

NJ ID# in Rochester: 73331

NJ ID# in Hackensack: 02317

NY ID# in Hackensack: 10801

Michael K. Perry Laboratory Director

SEMI-VOLATILE - SOIL SAMPLE

SOIL ACID EXTRACTABLE SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: General Testing Corp.

Matrix Spike - Sample No. : R91/05641 -001

COMPOUND	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENT.	CONCENT.	%	LIMITS
	(ug/kg)	(ug/kg)	(ug/kg)	REC #	REC.
Phenol	13,500	0.00	9580	71%	5-112
•Chlorophenol	13,400	0.00	10,700	80%	23-134
4-Chloro-3-methylphenol	13,400	0.00	11,800	88%	22-147
4-Nitrophenol	13,300	0.00	15,400	116%	D-132
•ntachlorophenol	13,300	0.00	14,400	108%	14-176

COMPOUND	SPIKE ADDED (ug/kg)	MSD CONCENT. (ug/kg)	MSD % REC #	ै RPD #	QC 1 RPD	LIMITS REC.
henol -Chlorophenol 4-Chloro-3-methylphenol -Nitrophenol Phtachlorophenol	13,500 13,400 13,400 13,300 13,300	9660 11,300 12,600 17,500 16,800	72% 84% 94% 132% 126%	1.4% 4.9% 6.6% 13% 15%	30 30 30 30 30 30	5-112 23-134 22-147 D-132 14-176

- Columns to be used to flag recovery and RPD values with ++.
+ - Values outside of QC limits
S QC Limits = EPA Acceptance Criteria
RPD Limits = Internal Acceptance Criteria

RF:___0___ out of ___5___ outside limits Spike Recovery:___0_ out of __10___ outside limits

COMENTS:

pge 1 of 1

LABORATORY REPORT

Client: Mr. Glen Combes Wehran Envirotech 345 Lang Blvd. Grand Island, NY 14072

Job No: R91/05641 Date: 26 DEC., 1991

1	REFERE	NCE CHECK	
Acid Extractables By	TRUE		ACCEPTANCE
EPA Nethod 8270	VALUE	RECOVERY	LIMITS (%)
Date Extracted: 12/12/91			
Date Analyzed: 12/13/91			
· · · · ·			
Phenol	13,500	64%	5 - 112
2-Chlorophenol	13,400	63%	23 - 134
4-Chloro-3-methylphenol	13,400	70%	22 - 147
4-Nitrophenol	13,300	220%*	D - 132
Pentachlorophenol	13,330	97%	14 - 176
11		i ii	
· 1		1 1	
Ĩ		1 11	
1		1	
1		1 11	
			•
		1 11	
		ļ	
		1	
11		1 11	

Michael K. Peny

4

Lab Director

LABORATORY REPORT

Job No: R91/05641 Date: DEC. 31 1991

Sample(s) Reference

Client:

Collected

Mr. Glen Combes Wehran Envirotech 345 Lang Blvd. Grand Island, NY 14072

Niagara Falls Air Force Base

: 12/10/91

P.O. #:

ISL BASE NEUTRALS BY	EPA	METHOD	8270*	ANALYTICAL	RESULTS	- ug/kg	, Wet Wt	:.
Sample:	-003	Т	I I	ı	1		I	
	Lab Neti	. l	i		1			
	Blank	1	1	1				
Date Collected:		i	i	i	1		i	
Time Collected:		i	i	i	1		i	
	12222222			, 12202222222233333	, 1953668625255:			283822223232
	12/12/9	•	I	1	l .		1	
-	12/13/9	1		1	l		l	
	1/2	1		I	1	1 1		
·	330 U	1		I	1	I I	I	
	330 U		1	I	1	1 1		
•	330 U		ļ	1				
•	330 U		l		I		l	
-	330 U			1	1		·	
bis(-2-chloroisopropyl)ether			1	I	1	1 1		
	330 U			ł	1		1	
	330 U			. 1	l		ļ	
	330 U					ļ	l	•
•	330 U					I I	l	
•	330 U			1	1	1	l	
	330 U		1	I	1		1	
	330 U		1	I	1	I I	1	
	330 U			I	1	I I	1	
	330 U		1	· 1	1	1 1	l	
•	330 U	1	1	I	1	I I	I	
	330 U	1		I	1			
	330 U		1	1	I			
	330 U			I	1			
-	330 U			I	ł			
•	330 U						l	
	330 U				I			
	330 U		1			 	ļ	
	330 U		ļ	•	I			
	330 U		ļ		1	!!!	l	
• •	330 U	ļ	ļ		1			
	330 U		ļ		1			
	330 U	1	ļ		l		1	
	330 U				I .			
	330 U	1	ļ		1	1		
	1330 U	1	l		I			
	3300 U		1	1	ļ			
	330 U	1	ļ		I			
Pyrene	330 U		<u> </u>	l'				

General Testing			A	Full S	ull Service Environmental Laborator LABORATORY REPORT 705641 Date: DEC. 31 1991						
Corporat	ion "	ob Numbe	or: 89'	1/0564							
								JI 1991			
Client: Mr. Glen Comb	bes			S	ample(s) Refere	nce				
Wehran Enviro		、			Niagar	a Falls	Air For	ce			
345 Lang Blvd Grand Island		072			Base						
Collected		:	12/10	0/91		P.O.	#:				
HSL BASE NEUTRALS	BY EPA	METHOD	8270*	ANALY	TICAL R	ESULTS -	ug/kg	Wet Wt.			
Sample:	-003	1	1	I	I	1	1	1			
Location:	Lab Meth.	1	1	Í	ĺ	l.	ĺ				
	Blank	1	1	I	1	I	I	l			
Date Collected:		1		1	I	l	I	I			
Time Collected:	· · ·				<u> </u>	}		I			
•	12/12/91			======== 	==== = 	 i	9855268866828: 	 	2281		
	12/13/91			1	1	1	1	1			
	1/2	1		i	ľ	i	i				
	330 U	i	i	i	i i	l .	1	1			
-	330 U	i	i	i	i	j	i	i			
Benzo(a)anthracene	330 U	Ì	i	i	i	i	i	i			
Bis(2-ethylhexyl)phthalate	330 U	Ì	Í	i	Í	i	i	i			
Chrysene	330 U	1	1	Ì	ĺ	ĺ	ĺ	1			
Di-n-octyl phthalate	330 U	1	1	1	1	I	Í				
Benzo(b)Fluoranthene	330 U	I	1		I	I	I	I			
	330 U	I		1	I	1	1	1			
	330 U	1	1	1	l I	I	I	1			
	330 U	1	1	_ I	l.	I	I	l I			
· • •	330 U	1		1		I	I	I.			
Benzo(g,h,i)perylene	330 U	ļ					I	l			
Benzyl Alcohol	1320 U				ļ		l	l			
4-Chloroaniline	660 U			1		ļ	ļ				
	660 U	1	1	ļ	1	l	ļ				
	1320 U		1	1			ļ				
3-Nitroaniline Dibenzofuran	1320 U 660 U			1	l	ļ	ļ				
,4-Nitroaniline	13300 U			1							
4 WILLOBI, LINE	1	l l		1			1	1			
SURROGATE STANDARD RECOVERIES	1										
Nitrobenzene-d5	65%	1	1				l l	1			
(Acceptance Limits: 19-103%)		i		ľ		ľ		i			
2-Fluorobiphenyl	71%	i	i	i	i	ľ	l l	i			
Acceptance Limits: 26-119%)	l	i	i	i	i	i	i	i			
Terphenyl-d14	86%	1	i	i	i	i	i	i			
Acceptance Limits: 18-142%)	I	I	1	İ	Ì	İ	Ì	I			
Unless otherwise noted, analyt NY ID# in Rochester: 10145 NJ ID# in Rochester: 73331	ical methodo NY ID# in Ha NJ ID# in Ha	ology has be ackensack: 1 ackensack: 0	en obtaine 0801 2317	d from re	ferences as Michae	cird in 60 c	parts #1	36 & #261.	_		
_						Lab	oratory Dire	ctor			
							<u> </u>		_		

SEMI-VOLATILE - SOIL SAMPLE

SOIL BASE/NEUTRAL MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: General Testing Corp.

Matrix Spike - Sample No. : R91/05641 -001

COMPOUND	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENT.	CONCENT.	%	LIMITS
	(ug/kg)	(ug/kg)	(ug/kg)	REC #	REC.
1,4 Dichlorobenzene	6730	0.00	5030	75%	20-124
-Nitroso-Di-n-propylamine	6410	0.00	5260	82%	D-230
,2,4-Trichlorobenzene	6730	0.00	5190	77%	44-142
Acenaphthene	5790	0.00	5094	88%	47-145
,4-Dinitrotoluene	6660	0.00	5190	78%	39-139
yrene	6330	0.00	7060	112%	52-115

Compound	SPIKE ADDED (ug/kg)	MSD CONCENT. (ug/kg)	MSD % REC #	% RPD #	QC I RPD	LIMITS
1,4 Dichlorobenzene	6730	5150	778	2.68	30	20-124
-Nitrsodi-n-propylamine	6410	5510	86%	4.8%	30	D-230
2,2,4-Trichlorobenzene	6730	5380	80%	3.8%	30	44-142
Acenaphthene	5790	5430	94%	6.6%	30	47-145
■,4-Dinitrotoluene	6660	5910	89%	13%	30	39-139
yrene	6330	7990	126**	12%	30	52-115

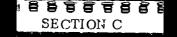
- Columns to be used to flag recovery and RPD values with ++.
++ - Values outside of QC limits
MS QC Limits = EPA Acceptance Criteria

RPD Limits = Internal Acceptance Criteria

RF ____O____ out of ___6____ outside limits Spike Recovery:___1___ out of ___12____ outside limits

CC MENTS:

pge 1 of 1


LABORATORY REPORT

Client: Mr. Glen Combes Wehran Envirotech 345 Lang Blvd. Grand Island, NY 14072

Job No: R91/05641 Date: 26 DEC., 1991

> , s

	 REFEREI		
BASE NEUTRALS BY EPA METHOD 8270	•	X RECOVERY	
Date Extracted: 12/12/91 Date Analyzed: 12/13/91 1,4 Dichlorobenzene N-Nitroso-Di-n-propylamine 1,2,4-Trichlorobenzene Acenaphthene 2,4-Dinitrotoluene Pyrene	6730 6410 6730 5790 6660 6330	83X 76X 63X 	20 - 124 D - 230 44 - 142 47 - 145 39 - 139

.

GTC REPORT <u># WEHRAN ENVIROTECH</u> NIAGARA FALLS AIR FORCE BASE

SECTION _____

ANALYTICAL CHRONOLOGY

Presented in this section is a Laboratory Chronology listing the dates of all preparations and analyses performed on the samples covered in this report. Holding times (maximum times in which to analyze a sample) are derived from the referenced methodology.

Chronology Notes:

Job No. R91/05639 Date JAN. 8 1992

Client:

Wehran Envirotech

Sample(s) Reference

Niagara Falls Air Force Base

Date Received: 12/11/91

LABORATORY CHRONICLE DATE ANALYZED									
Sample: Location:	M⊌-10-A 	MW-10-C 	MW-10-E	MW-10-E Duplicate	мw-10-в 	нw-10-р 	Equipment Blank	Blank	-017 Trip Blank ====================================
pH - Field Measured	12/10/91	 12/10/91 	 12/10/91 	 12/10/91 	 12/10/91 	 12/10/91 	 	12/10/91	
Spec. Cond. (umhos/cm)	 12/10/91	 12/10/91 	 12/10/91 	 12/10/91 	 12/10/91 	 12/10/91	 	12/10/91	
Temperature °C -Field	 12/10/91 	 12/10/91 	 12/10/91 	 12/10/91 	 12/10/91 	 12/10/91 	 	12/10/91	
Alkalinity, Total	12/24/91	 12/24/91 	 12/24/91 	 12/24/91 	 12/24/91 	 12/24/91 	 12/24/91 	 12/24/91 	 .
Chloride	 12/13/91 	 12/13/91 	 12/13/91 	 12/13/91 	 12/13/91 	 12/13/91 	 12/13/91 	 12/13/91 	
fluoride	 12/19/91 	 12/19/91 	 12/19/91 	 12/19/91 	 12/19/91 	 12/19/91 	 12/19/91 	 12/19/91 	
Nitrogen, Nitrate	 Calc.	 Calc. 	 Calc. 	 Calc. 	 Calc.	 Calc.	 Calc. 	Calc.	
Nitrogen, Nitrite	 12/11/91 	 12/11/91 	 12/11/91 	 12/11/91 	 12/11/91 	 12/11/91	 12/11/91 	 12/11/91 	
Nitrogen,Nitrate/Nitrite	 12/13/91	 12/13/91	 12/13/91 	 12/13/91 	 12/13/91 	 12/13/91 	 12/13/91 	 12/13/91 	
Pet. Hydrocarbons, IR	12/31/91	 12/31/91 	 12/31/91 	 12/31/91 	 12/31/91 	 12/31/91 	 12/31/91	 12/31/91 	
Phosphorous, Ortho as P	 12/12/91	 12/12/91	 12/12/91 	 12/12/91 	 12/12/91	 12/12/91	 12/12/91 	 12/12/91 	
Silica, Total	 12/31/91	 12/23/91	 12/23/91	 12/23/91	 12/23/91	 12/23/91	 12/23/91	 12/23/91 	

LABORATORY REPORT Job No. R91/05639 Date JAN. 2 1992

Client:

Wehran Envirotech

Sample(s) Reference

Niagara Falls Air Force Base

Date Received: 12/11/91

] -		fory ci E analy	IRONICI (ZED	.E				
•	MW-10-A	MW-10-C 	MW-10-Е 	MW-10-E Duplicate	МW-10-В 	HW-10-D 	Equipment Blank	Field	-017 Trip Blank
Solids, Dissolved 2180 C	 12/12/91 	 12/12/91 	 12/12/91 	 12/12/91 	 12/12/91 	 12/12/91 	 12/12/91 	12/12/91	
Sulfate	 12/12/91 	 12/12/91	 12/12/91 	 12/12/91 	 12/12/91 	 12/12/91 	 12/12/91	12/12/91	
Aluminum	 12/24/91 	 12/24/91 	 12/24/91 	 12/24/91 	12/24/91	 12/24/91 	 12/24/91 	 12/24/91	1
Barium	 12/18/91 	 12/18/91 	 12/18/91 	 12/18/91	 12/18/91	 12/18/91 	 12/18/91 	12/18/91	
Boron, Total	 12/20/91 	 12/20/91 	 12/20/91 	 12/20/91	 12/20/91	 12/20/91 	 12/20/91 	 12/20/91 	
Calcium, Total	 12/24/91 	 12/24/91 	 12/24/91 	 12/24/91 	 12/24/91 	 12/24/91 	 12/24/91 	12/24/91	
Chromium, Total	 12/18/91 	 12/18/91 	 12/18/91 	 12/18/91 .	 12/18/91 	 12/18/91 	 12/18/91 	 12/18/91 	 !
Copper, Total	 12/18/91 	 12/18/91 	 12/18/91 	 12/18/91 	 12/18/91 	 12/18/91 	 12/18/91 	 12/18/91	
Iron, Total	 12/19/91 	 12/19/91 	 12/19/91 	 12/19/91 	 12/19/91 	 12/19/91 	 12/19/91 	 12/19/91 	
Lead, Furnace	 12/20/91 	 12/20/91 	 12/20/91 	 12/20/91 	 12/20/91 	 12/20/91 	 12/20/91 	 12/20/91 	
Magnesium, Total	 12/24/91 	 12/24/91 	 12/24/91 	 12/24/91	 12/24/91 	 12/24/91 	 12/24/91	 12/24/91 	
Manganese, Total	 12/18/91 	 12/18/91 	 12/18/91 	 12/18/91 	 12/18/91 	 12/18/91	 12/18/91 	 12/18/91 	

LABORATORY REPORT Job No. R91/05639 Date JAN. 2 1992

Client:

Wehran Envirotech

Sample(s) Reference

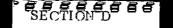
Niagara Falls Air Force Base

Date Received: 12/11/91

LABORATORY CHRONICLE DATE ANALYZED										
Sample: Location:	MW-10-A 	ны-10-с 	MW-10-Е 	MW-10-E Duplicate	МW-10-В	MW-10-D	Equipment Blank	Field Blank	-017 Trip Blank	
Nickel, Total	 12/18/91	 12/18/91 	 12/18/91 	 12/18/91 	12/18/91	12/18/91	 12/18/91 	 12/18/91 		
Potassium, Total	 12/17/91 	 12/17/91 	 12/17/91 	 12/17/91 	12/17/91	12/17/91	 12/17/91 	12/17/91		
Sodium, Total	 12/16/91 	 12/16/91 	 12/16/91 	 12/16/91 	12/16/91	 12/16/91 	 12/16/91 	 12/16/91 		
Zinc, Total	 12/18/91 	 12/18/91 	 12/18/91 	 12/18/91 	12/18/91	12/18/91	 12/18/91 	 12/18/91 	 	
	 .	 	 	 	 	 	 	 	 	
	 .	 	 	 	 		 	 	 	
,	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 !	1 1 1	 	
	 .]	 	 	[
	 .	 	 	1 		 	 	 	 	
	 	 	 1	 	 	 	 	 	 	
	 	 	. 1	 			 	 		
						•	•			

Job No: R91/05640 DATE: DEC. 26 1991

Client:


Wehran Envirotech

Sample(s) Reference

NIAGARA FALLS AIR FORCE BASE

Date Received: 12/11/91

LABORATORY CHRONICLE DATE ANALYZED											
 Sample: -001 -002 -003 -004 -005											
			-003 10-1D 								
2292669236626775266666655552247777583	03220203	 = = = = = = = = = = = = = = = = = =	 ===================================	 ===================================	=====================================	*********	222298888 	 ======== 			
8021 Scan	12/18/91	12/19/91	12/19/91 	12/19/91	12/19/91						
						1					
	 	 	 	 	! !	 		 			
	 	 	 	[
			 		 	1		 			
, <u></u>	 	 	 	 	 !	 	 	 			
) 	 	 	 	 	 	 	 	 			
		 	 :	' 	, 	 	 	 			
		 	 /	 	 	 	 	 			
	 	 	 	1 1 1	 	 	 	 	 		
		 	 	 	 	• { }	 	 			
· · ·				l 	1	1	 	1			
	<u></u>	 	 	! !	! !	 	 	! !			
	 	 	 	 	 	[
				····							

.

GTC REPORT <u># WEHRAN ENVIROTECH</u> NIAGARA FALLS AIR FORCE BASE

SECTION ____

FIELD DOCUMENTATION

Presented in this section is all support documentation requested.

Documentation Provided:

- (X) Chain of Custody Forms
- () Analytical Request Forms
- () Shipping Receipts
- () Laboratory Receipt Log
- (X) Other: FIELD FORMS

710 Exchange Rochester, NY		5 Trinity Plackensacl				ence Be NY 1422		GTC Clien	Job Ne t Proje	o. <u>/</u> ect No	9//56	- - -
	Site		ion 19. FA	iccs	Aii	base				<u> </u>		- -
Address _	Street	0 760		City			State	Clin	The	28	Zip	5
Collector_	Print	C. Tho,	w501	<u> </u>	. <u> </u>			<u>u</u>	Signa	ture	- you	2
Bottles Sh	epared by _ ipped to Cli hipped via_	ent via	57C 67C 57C		S(eal/Shipp	ing #					
Sample(s) Relinc	uished by:					eived by:				Da	te/Time	
1. Sign					1. S					<u> </u>	/	
for 2 Sign			<u> </u>	<u> </u>	fc 2. S						·	
2. Sign for					<u>2.</u> 5					+	:	
3. Sign					3. S	ign			• •	1	1	
for					fc	or					:	
Sample(s) Recei	ved in Labo	ratory by	_			5	······		121	11 19	1_@_0	? :
Client I.D.#		Location e/Time	*	Analyte	Analyte o Group(s) low for ad	Required	Sam Preserv Y N		red N	Bot (se	tle Set(s) e below)	
#/ QC	<u>mw10-</u>	_			Anali					,')	10,4,	8,2
5635	12 10 4	1925	-	<u>re</u>	quest					<u>.</u>		
#2	mω	10-C								/,3	457	8
11,5239 -002	12 10	71 10 ² 45	5									
#3	Mω	10-E			*	и				13,4	51,8	
1/259-003	12'10'	91 M 10				- <u></u>						
# 4	MW	10-E				11				34	578	
1/5639 -004	12'10'	91 11 [:] 25	<u></u>									
#5	ħω	10-13		- 1		(/				134	578	
7/5639-000	12 10	91 11:58										
Use Bottle No. f	or indicating	g type bottle	es used i	n each b	ottle set	and fill in	box with	n # of bo	ttles us	sed for	each typ	e.
Obe Bottle Hell												

Bottle No.	1	2	3	4	5	6	1	8	9		
Bottle Type	40 ml Vial	Pint Glass	Qt. Glass	4 oz. Plastic	8 oz. Plastic	16 oz. Plastic	Qt. Pl.	Gal. Pl.	Steril. Pl.	Gallon	
# of each	NX49)		2	3	2		2	2		/	

Additional Analytes

Shaded area for Lab use only; bottom copy for client; maximum of 5 samples per page.

 Source Codes: Monitoring Well (W), Soil (S), Treatment Plant (T), Drinking Water (D), Leachate (L), Hazardous Waste (H), River or Stream (R), Pond (P), Industrial Discharge (I), _____(X), ____(X), ____(X), ____(Y).

GENERAL TESTING CORPORATION/CHAIN-OF-CUSTODY RE 710 Exchange Street 85 Trinity Place 435 Lawrence Bell Drive GTC Job	$\frac{1}{10000000000000000000000000000000000$
Rochester, NY 14608 Hackensack, NJ 07601 Amherst, NY 14221-7077 Client P	roject No
Sample Origination & Shipping Information	
Collection Site NIAG, FALLS Airbase	<u></u>
Address City State	7 717
Collector CiThompson Clin	
Address Street City State Cell Collector CiThompson Sig	nature
Bottles Prepared by	
Bottles Shipped to Client via GTC Seal/Shipping #	······
Samples Shipped via <u>GTC</u> Seal/Shipping #	·····
Sample(s) Relinquished by: Received by:	Date/Time
1. Sign 1. Sign	
for for	
2. Sign 2. Sign for	
for for 3. Sign 3. Sign	· · · · · · · · · · · · · · · · · · ·
for for	
	2/11/41 @ 09:00
Sample(s) Received in Laboratory by	
Client I.D.# Sample Eccation + Analyte Group(s) Required Preserved Filtered	Bottle Set(s) (see below)
Lab# Date/Time (see below for additional) Y N Y N	
# 6 MW10-D See Analitical	1,3,4,5,7,8
12 10 91 12 15 request	
	1 7 11 - 20
2 # 7 Equipt. BLAAK	1, 3, 4, 5, 7,8
E 1 3021 4015 12 10 9/ 13 00	· · · · · · · · · · · · · · · · · · ·
Field BIANK " "	
#8 MW10-E	1,3,4,5,7,8
B91 5639 -008 12 10 91 11 10	
TriaBlank 8020/8021	1
P31 5639 12'10'91 11'10 4 TripBlank 8020/8021 4 12'10'91 12'10'91	
5 / / :	
Use Bottle No. for indicating type bottles used in each bottle set and fill in box with # of bottles	s used for each type.

Bottle No.	1	2	3	4	5	6	7	8	9	10	
Bottle Type	40 ml Vial	Pint Glass	Qt. Glass	4 oz. Plastic	8 oz. Plastic	16 oz. Plastic	Qt. Pl.	Gal. Pl.	Steril. Pl.		
# of each	1984		2	3	2		2	1			ļ

Additional Analytes _

Shaded area for Lab use only; bottom copy for client; maximum of 5 samples per page.

 Source Codes: Monitoring Well (W), Soil (S), Treatment Plant (T), Drinking Water (D), Leachate (L), Hazardous Waste (H), River or Stream (R), Pond (P), Industrial Discharge (I), _____(X), _____(X), _____(X), _____(Y).

		SENERAL TESTING Street 85 Trinity Pl 14608 Hackensack	ace	435 L	awrence Be	II Drive	GTC	Job N	o. <u>£91/564</u> ect No	<u>10</u> -
	Sample Originati Collection	ion & Shipping Informati Site	ÅG.F	ALLS	Air base					-
	Address _	Street 2, Thomp Print	502	City		State	C	lint	on lloups	2000
								Signa	ture	
	Bottles Pro Bottles Sh Samples S	epared byC hipped to Client via Shipped via	GTC GTC		Rec'd by Seal/Shipp Seal/Shipp	ing #				
	Sample(s) Relind				Received by:				Date/Time	
	1. Sign			1	. Sign				/ /	
	for 2. Sign				for 2. Sign					
	for				for					
	3. Sign				3. Sign					
	for				for	·····				
	Sample(s) Recei	ived in Laboratory by			Ċ				11/91_0_09	<u>γ</u> : c
	Client I.D.#	Sample Location Date/Time	- *	Analy Analyte Grou (see below fo	o(s) Required	Sam Preserve Y N	ple Pre d Filte	p ered N	Bottle Set(s) (see below)	
	#19C	/0-3		See An	alítical		6		1	
1	FFTI STOND-	12 10 91 9 45	-	repu	alitical vest					
	#2	10-2		10	1/				1	
2	Em 5640- 002	12'10'919:55								
	#3	10-10		И	11				1	
3	RT 50-10-	12'10'91 10:10								
	#4	10-4		11	11				1	
4	1004 004	12 10 91 10 25	F							
_	#5	10-1		H	11				1	
5	891 5140 - 805	12 10 91 12 00	,		-					

Bottle No.	1	2	3	4	5	6	7	8	9	10	
Bottle Type	40 ml Vial	Pint Glass	Qt. Glass	4 oz. Plastic	8 oz. Plastic	16 oz. Plastic	Qt. Pl.	Gal. Pl.	Steril. Pl.		
# of each	4										

Additional Analytes

Shaded area for Lab use only; bottom copy for client; maximum of 5 samples per page.

* Source Codes: Monitoring Well (W), Soil (S), Treatment Plant (T), Drinking Water (D), Leachate (L), Hazardous Waste (H), River or Stream (R), Pond (P), Industrial Discharge (I), _____(X), ____(X), ____(X), ____(Y).

	Street 85 Trinity Pla 14608 Hackensack	ace	-	Bell Drive	GTC Job I	CORD No. <u></u> bject No
Sample Originat Collection	ion & Shipping Informati Site	on 104g. Fr	ALLS Airb	ase		
Address . Collector	Street Thompo Print	City SON		State	Clin	Ton Theref
					Sign	nature
Bottles P Bottles S Samples	epared byG hipped to Client via Shipped via	TC GTC GTC	Rec'd by Seal/Shi Seal/Shi	pping #		
Sample(s) Relin			Received b	y:		Date/Time
1. Sign			1. Sign			/ /
for 2. Sign			for 2. Sign			
for			for			:
3. Sign			3. Sign			1 1
for			for			
Sample(s) Rece	ived in Laboratory by	To	- Haslen	-gp	12	111191 @14
Client I.D.#	Sample Location Date/Time	- 🛨 Anal	Analyte or /te Group(s) Require below for additiona	Samp d Preserve	ble Prep d Filtered Y N	Bottle Set(s) (see below)
# / QC	SedimentBa	d :	see Analitic	a		4
E31 5691- 001	12'10'91 13:15		request			
#2	Creek					4
£9. [564]-	12'10 91 13 45		<u> </u>			
	1					
	/ / :					
	/ / :					
5	/ / :					

Bottle No.	1	2	3	4	5	6	7	8	9	10	11
Bottle Type	40 ml Vial	Pint Glass	Qt. Glass	4 oz. Plastic	8 oz. Plastic	16 oz. Plastic	Qt. Pl.	Gal. Pl.	Steril. Pl.		
# of each	• •			Glass 4							

Additional Analytes _

Shaded area for Lab use only; bottom copy for client; maximum of 5 samples per page.

 Source Codes: Monitoring Well (W), Soil (S), Treatment Plant (T), Drinking Water (D), Leachate (L), Hazardous Waste (H), River or Stream (R), Pond (P), Industrial Discharge (I), _____(X), ____(X), ____(X), ____(Y).

Site Location	Ning, FAC	us Airbas	Job Nu	umberR9	5639 11/ <u>1439</u> 4
Site Location	W IOA	(New)	Lab Nu	umber/	ac
PURGE INFORMATI	ON		Purge Metho	od Stainles	s steel bailer
Well Depth (ft)	21.7	25			
Static Water Level (ft					
Depth of Water Colu	mn (gal/ft)x	17.69			
Well Constant (gal/ft))x	,] 4		بر ارز	
Volume standing in w	vell 2.	<u>83 g</u>	allons x 5 70L	,5 = 17:13	
Start of Purge: Date	· 12,9	_/71	9:35	-9:59	
Purge Observations	Muddy	I red	900	d re Cha	rge
Total Volume Purged	<u>_15</u> gallo	ns	# of Volum	e Casings Purged	5 Vols
			tainless 3	had hailer	-
		•			_
Sample Date: 12		•		Sample Depth:	<u> </u>
Sample Appearance	: <u> </u>	COULSIN T	(<u>r</u>).[
	ENTS	Unit	Replic	natos	
• • • • • • • • • • • • • • • • • • • •					
Meter Number	Parameter	Stnd.		2	
	Parameter pH		1 7,67		
Meter Number		Stnd.	1	2	
Meter Number	рН	Stnd.	1 7,67	2 7,67	X
Meter Number 7,00 4.00	pH Spec. Cond.	Stnd. stnd umhos/cm	1 7,67 926	2 7,67 935	١
Meter Number 7,00 4.00 10.00 1,413 1,413	pH Spec. Cond. Temp Spec. Grav.	Stnd. stnd umhos/cm °Celsius	1 7,67 926 9.0 1.001	2 7,67 935 9,0	١
Meter Number 7,00 4.00 10,00 19,413 Field Filtered Y/N	pH Spec. Cond. Temp Spec. Grav. Date/Time _/ 2_ /	Stnd. stnd umhos/cm °Celsius	1 7,67 926 9.0 1.001 10:15	2 7,67 935 9,0	X
Meter Number 7,00 4,00 10,00 10,00 1,413 Field Filtered Y/N Meter Calibration: C	pH Spec. Cond. Temp Spec. Grav. Date/Time _// Date/Time _//	Stnd. stnd umhos/cm °Celsius /0 / 9/ /0 / 9/	1 7,67 926 9.0 1.001 10:15 9:20	2 7,67 935 9,0 1,001	X
Meter Number 7,00 4.00 10,00 19,413 Field Filtered Y/N	pH Spec. Cond. Temp Spec. Grav. Date/Time _// Date/Time _//	Stnd. stnd umhos/cm °Celsius /0 / 9/ /0 / 9/	1 7,67 926 9.0 1.001 10:15 9:20	2 7,67 935 9,0 1,001	, PEZE
Meter Number 7,00 4,00 10,00 10,00 1,413 Field Filtered Y/N Meter Calibration: C	pH Spec. Cond. Temp Spec. Grav. Date/Time _// Date/Time _//	Stnd. stnd umhos/cm °Celsius /0 / 9/ /0 / 9/	1 7,67 926 9.0 1.001 10:15 9:20	2 7,67 935 9,0 1,001	` PEZE
Meter Number 7,00 4.00 10.00 14.3 Field Filtered Y/N Meter Calibration: C FIELD OBSERVATIO	pH Spec. Cond. Temp Spec. Grav. Date/Time <u>12</u> / Date/Time <u>12</u> /	Stnd. stnd umhos/cm °Celsius <u>10 9 </u> <u>35° 0</u>	1 7,67 926 9.0 1.001 10:15 9:20 Verc Ast	2 7,67 935 9,0 1,001	` PEZE
Meter Number 7,00 4.00 10.00 14.3 Field Filtered Y/N Meter Calibration: C FIELD OBSERVATIO	pH Spec. Cond. Temp Spec. Grav. Date/Time _// Date/Time _//	Stnd. stnd umhos/cm °Celsius <u>10 9 </u> <u>35° 0</u>	1 7,67 926 9.0 1.001 10:15 9:20 Verc Ast	2 7,67 935 9,0 1,001	` реге
Meter Number 7,00 4.00 10.00 14.3 Field Filtered Y/N Meter Calibration: C FIELD OBSERVATIO C. I certify that sampling	pH Spec. Cond. Temp Spec. Grav. Date/Time _12_/ Date/Time _12_/ DATE/Time _12_/	Stnd. stnd umhos/cm °Celsius $\frac{10}{91}$ $\frac{10}{91}$ $\frac{35^{\circ}}{0}$	1 7,67 926 9.0 1.001 10:15 9:20 Verc Ast,	2 7,67 935 9,0 1,001 west bre	
Meter Number 7,00 4.00 10.00 14.3 Field Filtered Y/N Meter Calibration: C FIELD OBSERVATIO	pH Spec. Cond. Temp Spec. Grav. Date/Time _12_/ Date/Time _12_/ DATE/Time _12_/	Stnd. stnd umhos/cm °Celsius $\frac{10}{91}$ $\frac{10}{91}$ $\frac{35^{\circ}}{0}$ $\frac{10}{35}$	1 7,67 926 9.0 1.001 10:15 9:20 Verc Ast,	2 7,67 935 9,0 1,001 west bre	

Site Location	NiAgala	FALL AIRE	Dase Job N	umberP	11/5639
Well I.D	MW-	10c	Lab N	umber # 2	· · · · · · · · · · · · · · · · · · ·
PURGE INFORMATI	ON		Purge Meth	od Stainles	is steel bailer
Well Depth (ft)	//	· Ø 5			
Static Water Level (ft))7.	95			
Depth of Water Colur	mn (gal/ft)x <u>3</u> .	10			
Well Constant (gal/ft)	ו	16			
Volume standing in w	/ell	. 49	gallons ようvol	z = 2.48	
Start of Purge: Date	12/9	_/ Time_	12:30	-12:45	
Purge Observations					d recharge
Total Volume Purged	gallo	ns	# of Volum	e Casings Purged	5trols
SAMPLING INFORM	ATION Sam	nple Method	Jtainles	s steeld	bailer
Sample Date: 12	10,91	Time [.] 10	. 45	Sample Depth:	7.99 tt
Sample Appearance:	Mvdc	ly, readie	sh tint		
FIELD MEASUREME					
Meter Number	Parameter	Unit Stnd.	11	cates 2	
1.00	pН	stnd	7.66	7.64	
4.00	Spec. Cond.	umhos/cm	997	985	
10,00	Temp	°Celsius	9.5	9.5	
1413	Spec. Grav.		1.000	1.000	
Field Filtered ()N	Date/Time <u>12</u> /	10,91	11 .35		
Meter Calibration: D		_	10:40	_	
			a la cart	at he	
FIELD OBSERVATIO	NS: Weather	35	<u>Overchor</u>	west die	
				. <u></u>	
- <u></u>	0 Tr	0 $MO = 0$ λ	, J. W. 1/1A	ms	
	_	v	,		rate protocols
I certify that sampling Sampler (Print):	· 01	horrpson			
	0,	$\bigcap \land$	The H	10	
Date: <u>2, 10</u>	Signatur	re	mon crying		<u>,</u>

Site Location	Ning	ara FALCS	<u>Airbase</u> job N	umber	15639	
Well I.D	MW #-10	E (Neu	<u>Airbase</u> job N U)Lab N	umber <u> </u>	14	
PURGE INFORMATI	-	26.59	Purge Meth	od Stainles:	s steel ba	iler
Well Depth (ft)						
Static Water Level (ft						
Depth of Water Colu						
Well Constant (gal/ft))x	- 10		s = 17,17	7	
Volume standing in w	vell @	<u>3. 43</u>	gallons X 3 YOC	- 13'15		
Start of Purge: Date					- 1601	
Purge Observations	A		.		good leck	narge
Total Volume Purged	i <u>/ 8</u> gallo	ons	# of Volum	ne Casings Purged	5 400	~ 2
SAMPLING INFORM	IATION San	nple Method	stainless	Jtee	bailer	
Sample Date: 12			: 00			
Sample Appearance						
	·	/				
FIELD MEASUREM		Unit		cates		
FIELD MEASUREM	ENTS Parameter	Unit Stnd.	3	3	4	4
					4 7.78	4
Meter Number	Parameter	Stnd.	3	3	4 7.78 1,543	4 7.79 1545
Meter Number	Parameter pH	Stnd.	3 7.83	3 7,83		4 1.79 1.5 45 9.0
Meter Number 7.00 4.00	Parameter pH Spec. Cond.	Stnd. stnd umhos/cm	3 7.83 1,752	3 7,83 1,725	1,543	,
Meter Number 7.00 4.00 10,00 1,413 1	Parameter pH Spec. Cond. Temp Spec. Grav.	Stnd. stnd umhos/cm °Celsius	3 7.83 1,752 9.0	3 7,83 1,725 9.0	1,543 9.0	9.0
Meter Number 7.00 4.00 10.00 10.00 1.413 Field Filtered Ø/N	Parameter pH Spec. Cond. Temp Spec. Grav. Date/Time _/2_/	Stnd. stnd umhos/cm °Celsius	3 7.83 1,752 9.0 1.001	3 1,83 1,725 9.0 1.001	1,543 9.0	9.0
Meter Number	Parameter pH Spec. Cond. Temp Spec. Grav. Date/Time _/2_/ Date/Time _/2_/	Stnd. stnd umhos/cm °Celsius (3 7.83 1752 9.0 1.001 12.05 11.05	3 1,83 1,725 9.0 1.001	1,543 9.0 1.001	9.0
Meter Number 7.00 4.00 10.00 10.00 1.413 Field Filtered Ø/N	Parameter pH Spec. Cond. Temp Spec. Grav. Date/Time _/2_/ Date/Time _/2_/	Stnd. stnd umhos/cm °Celsius (3 7.83 1752 9.0 1.001 12.05 11.05	3 1,83 1,725 9.0 1.001	1,543 9.0 1.001	9.0
Meter Number	Parameter pH Spec. Cond. Temp Spec. Grav. Date/Time _/2_/ Date/Time _/2_/	Stnd. stnd umhos/cm °Celsius (3 7.83 1752 9.0 1.001 12.05 11.05	3 1,83 1,725 9.0 1.001	1,543 9.0 1.001	9.0
Meter Number	Parameter pH Spec. Cond. Temp Spec. Grav. Date/Time _/2_/ Date/Time _/2_/	Stnd. stnd umhos/cm °Celsius <u>10,91</u> <u>10,91</u> <u>35°,0</u>	3 7.83 1,752 9.0 1.001 12.05 11:05 over CAst,	3 1,725 9.0 1.001 west bre	1,543 9.0 1.001	9.0
Meter Number	Parameter pH Spec. Cond. Temp Spec. Grav. Date/Time _/2_/ Date/Time _/2_/	Stnd. stnd umhos/cm °Celsius <u>10,91</u> <u>10,91</u> <u>35°,0</u>	3 7.83 1752 9.0 1.001 12.05 11.05	3 1,725 9.0 1.001 west bre	1,543 9.0 1.001	9.0
Meter Number	Parameter pH Spec. Cond. Temp Spec. Grav. Date/Time _/2_/ Date/Time _/2_/ Date/Time _/2_/	Stnd. stnd umhos/cm °Celsius (10, 91) (10, 91	3 7.83 1,752 9.0 1.001 12.05 11.05 over CAst,	3 1,725 9.0 1.001 west bre	1,543 9.0 1.001	9.0
Meter Number	Parameter pH Spec. Cond. Temp Spec. Grav. Date/Time _/2_/ Date/Time _/2_/ Date/Time _/2_/	Stnd. stnd umhos/cm °Celsius <u>10,91</u> <u>10,91</u> <u>35°,0</u> <u>C,Thomp</u>	3 7.83 1,752 9.0 1.001 12.05 11.05 over CAst,	3 1,725 9.0 1.001 west bre	1,543 9.0 1.001	9.0

Site Location	NiAga	era FALLS A	firbase Job N	lumber <u> </u>	5639
Well I.D	mw-	10 8 (1	Vew)Lab M	lumber <u>#5</u>	
PURGE INFORMATI	ON		Purge Meth	od Stainless ster	el bailer
Well Depth (ft)	2	1.15			
Static Water Level (ft))9	. 75			
Depth of Water Colur	nn (gal/ft)x	11.4			
Well Constant (gal/ft)	x	.16			
Volume standing in w Start of Purge: Date	/ell	1.82	gallons x 5 vol	s = 9.12	
Start of Purge: Date	12,9	9/ Time_	13 : 28	- 13:43	
Purge Observations	greyish +	o red		good	recharge
Total Volume Purged		Ins	# of Volun	good	5trocs
		ente Adatha d		steel bailer	
				Sample Depth:	
•		1			<u> </u>
Sample Appearance:	IVDady	Juin J		<u>.</u>	
FIELD MEASUREME	ENTS	Unit	Repl	icates	
Meter Number	Parameter	Stnd.	1 '	2	
7.00	рН	stnd	8.16	8,14	
4.00	Spec. Cond.	umhos/cm	1585	1,595	
10.00	Temp	°Celsius	10.0	10.0	
1413	Spec. Grav.		1,001	1,00/	
Field Filtered 🕐 N	Date/Time 12	10,91	12:36		
Meter Calibration: D		_	11.45	-	
				_	
FIELD OBSERVATIO	NS: Weather	<u>35°, o</u>	vercast,	slight breeze	
	·····				
				· · · · · · · · · · · · · · · · · · ·	
	(1 nompson	s, s. will	IAMS	
•	g procedures were	in accordance wi	• •	PA, state and corporate p	rotocols.
Sampler (Print):			~A	·····	
Date: 12, 10,	<u> </u>	· Pour	In the pot		

Site Location	Ning. F.	accs Airba	SEJOB N	lumber <u> 29</u>	1/5639
Well I.D		-10 D	(NEW) Lab N	lumber#	6
PURGE INFORMATI		.96	Purge Meth	od stainles	is steel bailer
Static Water Level (ft					
Depth of Water Colur		4.38			
Well Constant (gal/ft)	x	.16			
) Volume standing in w	/ell	.70	gallons x 5 4063	= 3.50	
Start of Purge: Date	1219			_ 14:20	
Purge Observations		sh		5	slow recharge
Total Volume Purged	//agallo	ons	# of Volun	ne Casings Purgeo	slow lecherge
SAMPLING INFORM	ATION San		Stainles		
Sample Date: /2					<u>8.96</u> ft.
Sample Appearance:	Muddy	·			
FIELD MEASUREME	ENTS	Unit	Benl	icates	
		Oint	neui		
Meter Number	Parameter	Stnd.	1	2	-
Meter Number	Parameter pH	Stnd. stnd	1 7.75	2	
			1	2	
7.00	рН	stnd	1 7.75	2	
7.00 4.00	pH Spec. Cond.	stnd umhos/cm	1 7,75 1,676	2 1.76 1665	
7.00 4.00 10.00 1413	pH Spec. Cond. Temp Spec. Grav.	stnd umhos/cm °Celsius	1 7.75 1,676 10.0 1.001	2 1.76 1665 10.0 1.001	
7.00 4.00 10.00 1413 Field Filtered $\bigcirc N$	pH Spec. Cond. Temp Spec. Grav. Date/Time	stnd umhos/cm °Celsius	1 7.75 1,676 10.0	2 1.76 1665 10.0 1.001	
7.00 4.00 10.00 1413	pH Spec. Cond. Temp Spec. Grav. Date/Time) Date/Time	stnd umhos/cm °Celsius /0 / 9/	1 7.75 1,676 10.0 1.001 12:55 12:10	2 1.76 1665 10.0 1.001	<u>rcast</u>
7.50 4.50 10.00 1.413 Field Filtered $\bigcirc N$ Meter Calibration: D	pH Spec. Cond. Temp Spec. Grav. Date/Time/2_/ Pate/Time2/ PNS: Weather	stnd umhos/cm °Celsius /0 / 9/	1 7.75 1,676 10.0 1.001 12:55 12:10 Slight bie	2 1.76 1665 10.0 1.001	rcast
7.00 9.00 10.00 10.00 19.00 19.00 19.00 10.00 19.00 19.00 19.00 19.00 Field Filtered (Internet Calibration: Description: Desc	pH Spec. Cond. Temp Spec. Grav. Date/Time2/ Date/Time2/ Date/Time2/ Date/Time2/ Date/Time2/	stnd umhos/cm °Celsius 10,91 10,91 .35°, 	1 7,75 1,676 10.0 1.001 12:55 12:10 S(ight b/e . W:lliAnos th all applicable EF	2 1.76 1665 10.0 1.001	
7.00 4.00 10.00 1413 Field Filtered ON Meter Calibration: D FIELD OBSERVATIO	pH Spec. Cond. Temp Spec. Grav. Date/Time pate/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time pate/Time Date	stnd umhos/cm °Celsius 10,91 10,91 	1 7,75 1,676 10.0 1.001 12:55 12:10 S(ight b/e . W:lliAnos th all applicable EF	2 1.76 1665 10.0 1.001 $2eze_{10}et$	

Site Location	HGARA FAL	LIS AIR	BASE JOBN	lumber 1291/5	639
	MENT (BLANK	000 N		# 7
,	· · ·				
PURGE INFORMAT	ION		Purge Meth	od/H	
Well Depth (ft)		_/		/	
Static Water Level (f	t)—	/			
Depth of Water Colu	mn (gal/ft)x				
Well Constant (gal/f	t)×				
Volume standing in v	well	<u> </u>	gallons		
Start of Purge: Dat	te//	_/ Time_			
Purge Observations	!	<u> </u>		··	
Total Volume Purgeo	dgallo	ons	# of Volun	ne Casings Purged	NA
SAMPLING INFORM	MATION San	nple Method DJ	- KINSE	STAINLESS	BAIER
	10,91	Time:/_3	8. ord	Sample Depth:	N/Aft.
Sample Appearance	CLEAN	No.	ODDR	· · ·	1
FIELD MEASUREM		Unit		icates	
FIELD MEASUREM Meter Number	ENTS Parameter	Unit Stnd.	Repi 1	icates 2	
Meter Number	Parameter	Stnd.	1	2	
Meter Number	Parameter pH	Stnd.	1 8.06	2 8,06	
Meter Number <u> 1.00</u> <u> 4.00</u>	Parameter pH Spec. Cond.	Stnd. stnd umhos/cm	1 8.06 54.50	2 8,06 55,25	
Meter Number <u>1.00</u> <u>4.00</u> <u>10.00</u> <u>1,413</u>	Parameter pH Spec. Cond. Temp Spec. Grav.	Stnd. stnd umhos/cm °Celsius	1 8.06 54.50 11.5 ,999	2 8,06 55,25 11.5	
Meter Number 7.00 4.00 10.00 1,413 Field Filtered Y/N	Parameter pH Spec. Cond. Temp Spec. Grav. Date/Time/	Stnd. stnd umhos/cm °Celsius	1 8.06 54.50 11.5 ,999	2 8,06 55,25 11.5 ,999	
Meter Number <u>1.00</u> <u>4.00</u> <u>10.00</u> <u>1,413</u>	Parameter pH Spec. Cond. Temp Spec. Grav. Date/Time/	Stnd. stnd umhos/cm °Celsius	1 8.06 54.50 11.5 ,999	2 8,06 55,25 11.5 ,999	
Meter Number 7.00 4.00 10.00 1,413 Field Filtered Y/N	Parameter pH Spec. Cond. Temp Spec. Grav. Date/Time/ Date/Time/	Stnd. stnd umhos/cm °Celsius	1 8.06 54.50 11.5 ,999 12:55	2 8,06 55,25 11.5 ,999	
Meter Number 7.00 4.00 10.00 1913 Field Filtered Y/N Meter Calibration:	Parameter pH Spec. Cond. Temp Spec. Grav. Date/Time/ Date/Time/	Stnd. stnd umhos/cm °Celsius	1 8.06 54.50 11.5 ,999 12:55	2 8,06 55,25 11.5 ,999	
Meter Number 7.00 4.00 10.00 1913 Field Filtered Y/N Meter Calibration:	Parameter pH Spec. Cond. Temp Spec. Grav. Date/Time/ Date/Time/	Stnd. stnd umhos/cm °Celsius	1 8.06 54.50 11.5 ,999 12:55	2 8,06 55,25 11.5 ,999	
Meter Number 7.00 4.00 10.00 1913 Field Filtered Y/N Meter Calibration:	Parameter pH Spec. Cond. Temp Spec. Grav. Date/Time/ Date/Time/	Stnd. stnd umhos/cm °Celsius	1 8.06 54.50 11.5 ,999 12:55	2 8,06 55,25 11.5 ,999	
Meter Number	Parameter pH Spec. Cond. Temp Spec. Grav. Date/Time/ Date/Time/ Date/Time/ Date/Time/ Date/Time/ pate/Time/	Stnd. stnd umhos/cm °Celsius	1 <u>8.06</u> <u>54.50</u> <u>11.5</u> <u>999</u> <u>12:55</u>	2 8,06 55,25 11.5 ,999	prate protocols.
Meter Number	Parameter pH Spec. Cond. Temp Spec. Grav. Date/Time/ Date/Time _/ 2_/ ONS: Weather g procedures were C, Mom	Stnd. stnd umhos/cm °Celsius / /O?/ /O?/ in accordance wi QS&)	1 8.06 54.50 11.5 ,999 12:55	2 8,06 55,25 11.5 ,999	prate protocols.

			_		1)/A .	-
PURGE INFORMATI	`		Purge Metho	d		
Well Depth (ft)	$\overline{}$					
Static Water Level (ft)	<u></u>				
Depth of Water Colur	mn (gai/ft)x					
Well Constant (gal/ft))x					
Volume standing in w	vell		gallons			
Start of Purge: Date	e/	_/ Time_				
Purge Observations			<u></u>			
Total Volume Purged	gallo	ins	# of Volume	e Casings Purged		
		nple Method			11/A	
Sample Date: 12				Sample Depth:	~///	
Sample Appearance	:D.+.	WATEr				
FIELD MEASUREMI	ENTS					
Meter Number	Parameter	Unit Stnd.	. Replic	ates 2		
7.00	рН	stnd	8.66	8.05		
4.00	Spec. Cond.	umhos/cm	54.50	54,75		
10.00	Temp	°Celsius	q .o	9.0		
1413	Spec. Grav.		999	.999		
	<u> </u>	<u> </u>				
Field Filtered Y				_		
Meter Calibration:	Date/Time <u>2</u> /	10,91	11:05	_		
·		250	la la not	l'ant has	20	
FIELD OBSERVATIO	DNS: Weather		vercasi, s	signi piec	<u> </u>	
	. <u> </u>					
	(nomps	on , S.Wi	linns		
			•			

			ING CORPORA NITORING FIEI		
Site Location	Ning	FALLS AIT	base Job	Number <u>R9</u> Number <u>#26</u>	1/5840
Well I.D	10-3	(01	D)Lab M	Number # 10	Č
PURGE INFORMATIO	ON		Purge Meth	nod stainless	Steel bailer
Well Depth (ft)	<u> </u>	90			
Static Water Level (ft)					
Depth of Water Colur		81			
Well Constant (gal/ft)	x	.16			
Volume standing in w				ols = 4.64	
Start of Purge: Date					
Purge Observations	/	red	<u>-</u>	<i>90 od re</i> ne Casings Purged	charge +
lotal Volume Purged	<u> </u>	ons	# of Volum	ne Casings Purged _	5 Vols
SAMPLING INFORM	ATION Sa	nple Method	stainles	s steel	bailer
Sample Date:_/2/				Sample Depth:	
Sample Appearance:	CLEAR .	but cloudy			
		/			
FIELD MEASUREME	NTS Parameter	Unit Stnd.	Repl	licates 2	
7.00	рН	stnd	7.74	7,74	
4.00	Spec. Cond.	umhos/cm	1150	1165	
10.00	Temp	°Celsius	9.0	9.0	
1413	Spec. Grav.		1.000	1,000	
Field Filtered (Y)N		10,91	10.35		
Meter Calibration: D			9.40		
			······································		
FIELD OBSERVATIO	NS: Weather _	<u>35°,0</u>	lercast, u	vest preeze	
				<u> </u>	
	0.1.				
	(V, Thon	PSON, J.L	NILIAMS	· · · · · ·	
•	procedures were	in accordance wi		PA, state and corporat	e protocols.
Sampler (Print):					
Date: 12 / 10	<u>91</u> Signatu	re(lei	ulon therefor		

Site Location Ni Aq. F	ALLS Airbo	ase Job N	Number $\mathcal{R}9//$	5640
Well I.D/0 - 2		Lab N		
PURGE INFORMATION	• •	Purge Meth	nod Stainles.	s steel bailer
Well Depth (ft)/				
Static Water Level (ft)-7				
Depth of Water Column (gal/ft)x		·		
Well Constant (gal/ft)x				
Volume standing in well	• 62	gallons × 5vo	$C_{s} = 3.12$	
Start of Purge: Date 12/_9_				
Purge Observations <i>M u</i>	ddy red		5/ow rect	arge To
Total Volume Purgedgall	ons	# of Volun	ne Casings Purged _	IT tol 'DRY
SAMPLING INFORMATION Sar	mple Method	<u>Stainless</u>	steel baile	<u>^</u>
Sample Date://	Time:9	<u>: 55</u>	Sample Depth:	107ft.
Sample Appearance:				- <u>-</u>
FIELD MEASUREMENTS Meter Number Parameter	Unit Stnd.	Repi	icates	
Meter Number Parameter	Stnd.	1	2	
Meter NumberParameter7.00pH4.00Spec. Cond.Temp	Stnd.	1	2	
Meter NumberParameter7.00pH4.00Spec. Cond.	Stnd. stnd umhos/cm	1 7.67 1,233	2 7.65 1,245	
Meter NumberParameter7.00pH4.00Spec. Cond.10.00Temp	Stnd. stnd umhos/cm °Celsius	1 7.67 1,233 9.5	2 7.65 1,245 9.5	
Meter Number Parameter 7.00 pH 9.00 Spec. Cond. 10.00 Temp 10.00 Temp 1913 Spec. Grav. 1 Spec. Grav. 1 Meter Calibration: Date/Time/2_/	Stnd. stnd umhos/cm °Celsius //	1 7.67 1,233 9.5 1,000 9:50	2 7.65 1,245 9.5	е
Meter Number Parameter 7.00 pH 4.00 Spec. Cond. 10.00 Temp 10.00 Temp 1413 Spec. Grav. Field Filtered Y Date/Time Meter Calibration: Date/Time 12./ FIELD OBSERVATIONS: Weather	Stnd. stnd umhos/cm °Celsius // // // // // // // / // /	1 7.67 1,233 9.5 1,000 9:50 rercast, 5	2 7.65 1,245 9.5 1,000 	
Meter Number Parameter 7.00 pH 4.00 Spec. Cond. 10.00 Temp 1.4.00 Spec. Grav. Field Filtered Y Date/Time Meter Calibration: Date/Time Image: C.The C.The Image: C.The I certify that sampling procedures were Image: C.The	Stnd. stnd umhos/cm °Celsius // // // // // // // / // /	1 7.67 1,233 9.5 1,000 9:50 rercast, 5	2 7.65 1,245 9.5 1,000 	

Location	NiAq.	FALLS Airl	Jase Job N	Number	155640
				Number_ <u>#3</u>	
			Purao Moth	stain	less steelba
RGE INFORMAT	<u> </u>	65	Fuige Meth		
	it)— <u>7.</u>				
	ımn (gal/ft)x				
Constant (gal/f	t)x	. 16			
ume standing in	well	4.28	nallons x 5 You	Ls = 21.43	
rt of Purge: Da	te12_/_9	/ 91 Time	// 00	- 11:50	
de Observations	black +	to red	•	9000	d recharge
al Volume Purge	d 22 gallo	ons	# of Volun	ne Casings Purged	d recharge 5
J. T. J. J.					
MPLING INFORI	MATION Sar	mple Method	stainless	steel bai	ler
nple Date:	<u>10,91</u>	Time:/0	: 10	Sample Depth:	7,94
	manual				
nple Appearance	e <u>Moday</u>				
	v				
LD MEASUREM	ENTS	Unit	Repl	licates	
LD MEASUREM Meter Number	ENTS Parameter	Unit Stnd.	Repl 1	licates 2]
LD MEASUREM	ENTS	Unit	Repl	licates 2	
LD MEASUREM Meter Number	ENTS Parameter	Unit Stnd.	1 7,60 1,233	licates 2	
LD MEASUREM Meter Number フ. のつ	Parameter	Unit Stnd. stnd	Repl 1 7,60	licates 2	
LD MEASUREM Meter Number 7.00 4.00	ENTS Parameter pH Spec. Cond.	Unit Stnd. stnd umhos/cm	1 7,60 1,233	licates 2 7,58 1,2,25 9,5	
LD MEASUREM Meter Number 7.00 4.00 10.00 1913	ENTS Parameter pH Spec. Cond. Temp Spec. Grav.	Unit Stnd. stnd umhos/cm °Celsius	Repl 1 7,60 1,233 9,5	licates 2 7,58 1,2,25 9,5	
LD MEASUREM Meter Number 7.00 4.00 10.00 1913 d Filtered Y	ENTS Parameter pH Spec. Cond. Temp Spec. Grav. Date/Time _/2	Unit Stnd. stnd umhos/cm °Celsius	Repl 1 7,60 1,233 9.5 1,000 1':	2 7.58 1,2,25 9.5 1.000	
LD MEASUREM Meter Number 7.00 4.00 10.00 1913 d Filtered Y	ENTS Parameter pH Spec. Cond. Temp Spec. Grav.	Unit Stnd. stnd umhos/cm °Celsius	Repl 1 7,60 1,233 9.5 1,000 1':	2 7.58 1,2,25 9.5 1.000	
LD MEASUREM Meter Number 7.00 4.00 10.00 1913 d Filtered Y	ENTS Parameter pH Spec. Cond. Temp Spec. Grav. Date/Time _/2	Unit Stnd. stnd umhos/cm °Celsius 	Repl 7.60 1,233 9.5 1,000 1': 10.05	2 7.58 1,2,25 9.5 1.000	
LD MEASUREM Meter Number 7.00 4.00 10.00 1913 d Filtered Y	ENTS Parameter pH Spec. Cond. Temp Spec. Grav. Date/Time _/2_/ Date/Time _/2_/	Unit Stnd. stnd umhos/cm °Celsius 	Repl 7.60 1,233 9.5 1,000 1': 10.05	2 7.58 1,2,25 9.5 1.000	
LD MEASUREM Meter Number 7.00 4.00 10.00 1913 d Filtered Y	ENTS Parameter pH Spec. Cond. Temp Spec. Grav. Date/Time _/2_/ Date/Time _/2_/	Unit Stnd. stnd umhos/cm °Celsius 	Repl 7.60 1,233 9.5 1,000 1': 10.05	2 7.58 1,2,25 9.5 1.000	
LD MEASUREM Meter Number 7.00 4.00 10.00 1913 d Filtered Y	ENTS Parameter pH Spec. Cond. Temp Spec. Grav. Date/Time _/2_/ Date/Time _/2_/	Unit Stnd. umhos/cm °Celsius <u>10, 91</u> <u>35°, ovre</u>	Repl 7,60 1,233 9.5 1,000 1': 10:05 Prc#st; slight	licates 2 7,58 1,2,25 9,5 1.000 1.000 1.000	
LD MEASUREM Meter Number 7.00 4.00 10.00 1413 d Filtered Y ter Calibration: LD OBSERVATI	Parameter PH Spec. Cond. Temp Spec. Grav. Date/Time _/2 Date/Time _/2/ ONS: Weather _	Unit Stnd. stnd umhos/cm °Celsius (10, 91) 10, 91 $35^{\circ}, over0, 7h_{om}p_{3}$	1 7,60 1,233 9.5 1,000 1: 10:05	licates 2 7,58 1,2,25 9,5 1.000 1.000 1.000	Drate protocols.

Í

I,

	•			lumber	
Well I.D	mω	10-4	Lab N	lumber #_4	
PURGE INFORMATI		n. 1) (e	Purge Meth	od Stainless	steel bailer
Well Depth (ft)		~~~			
Static Water Level (ft					
Depth of Water Colu					
Well Constant (gal/ft)x		1.10	$1 = 2 \cdot 24$	
Volume standing in v	veli 2	$\frac{\cdot qq}{q_1}$	$\frac{1}{2}$		
Start of Purge: Date				•	a chu ch
1				5/0	
Total Volume Purged	gallo	ons	# of Volum	ne Casings Purged _	TODEY
	IATION Sar	nple Method	Stainle	ss steel	bailer
Sample Date:	<u>10,91</u>	Time: <u>/0</u>	: 25	Sample Depth:	7,86ft.
Sample Appearance	<u>aloudy</u>			· · · · · · · · · · · · · · · · · · ·	
)				
FIELD MEASUREM		Unit		cates	
Meter Number	Parameter	Stnd.	1	2	
7.00	рН	stnd	7.81	7.82	
4.00	Spec. Cond.	umhos/cm	925	930	
10.00	Temp	°Celsius	9.0	9,0	
1,413	Spec. Grav.		1.000	1.000	
Field Filtered 🔗/N	Date/Time /2	10,91			
Meter Calibration:		-	10.20		
FIELD OBSERVATIO	NS: Weather _	<u>.35°,0</u>	YereAst	, west bree	
	CiTromy	50N, J	·Williams		
•			h all applicable Ef	PA, state and corporat	e protocols.
Sampler (Print):		MPSON			
Date: <u> 2 10</u> /	<u>9/</u> Signatu	() ()	Im then	min	

Site Location	NiAg. F	ALLS Air	base Job N	lumber <u>291</u>	15640
Well I.D	10- 1	<u> </u>	Lab N	lumber5	
PURGE INFORMATI			Purge Meth	od Stainless	steel baile
Well Depth (ft)					
Static Water Level (ft					
Depth of Water Colur					
Well Constant (gal/ft)	x	.16			
Volume standing in w	vell	. 80	gallons * 570	$L_{S} = 4,99$	
Start of Purge: Date	<u>a</u> 1 <u>d</u> 1 <u>7</u>	_// Time_	/3 : 55	_ /3:57	
Purge Observations	muddy red	.		<u> </u>	lecharge
Total Volume Purged		ons	# of Volun	ne Casings Purged	I'yol'DR
SAMPLING INFORM		nolo Mothod	Stainlast	stool h	niler
Sample Date: 12					
-				Sample Deptn:	0.78
Sample Appearance:	///0 <i>d</i> (<i>φ</i>			· · · · · · · · · · · · · · · · · · ·
FIELD MEASUREME	ENTS		Deal		
Meter Number	Parameter	Unit Stnd.	1	icates 2	
7.00	рН	stnd	7.34	7,35	
4,00	Spec. Cond.	umhos/cm	1447	1435	
10.00	Temp	°Celsius	10.0	10.0	
1413	Spec. Grav.		1,001	1001	
	I	I <u></u>		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Field Filtered Y			;;		
Meter Calibration: D	ate/Time <u>ld /</u>		<u> </u>		
FIELD OBSERVATIO	NS: Weather	35°,	Overcast	Slight bre	°eze
•••••		7		J	
	C.Tr	10mpson ,	J. Williams		
I certify that sampling					ate protocols
Sampler (Print):	· ^ -	houpson			
	-		To the		
Date: <u> 2 / 10 /</u>	_91_ Signatur	re	tulie arka	your	

1

, _____

Site Location	NI,AGFALC	s Airb	ase	Job Number	L9	11/5641	
Well I.D	Sediment	pond		Lab Number_	# /	ac	
PURGE INFORMATI		T Scinipi	L I UA Pur	ge Method	N/	'A	
Well Depth (ft)	<u> </u>				·		
Static Water Level (ft)						
Depth of Water Colu	mn (gal/ft)x	<u> </u>					
Well Constant (gal/ft							
Volume standing in v	vell		gailons				
Start of Purge: Dat	e//	Time_	:	<u> </u>			
Purge Observations						···	
Total Volume Purgeo	igailon	S.	# (of Volume Casi	nge Purged		
SAMPLING INFORM	10,91	ble Method Time:/3	<u>Grab</u> : 15	<u>bed</u> <u>dir</u> Sampl	e Depth:	NJA	1
Sample Appearance	: <u>N</u> [A	<u></u>	<u> </u>				
FIELD MEASUREM	ENTS	Unit		Replicates			
Meter Number	Parameter	Stnd.	1		2	1	
ŧ	рН	stnd					
	Spec. Cond.	umhos/cm	<u> </u>				
	Temp	°Celsius		<u> </u>			
	Spec. Grav.						
Field Filtered Y/N Meter Calibration: (INIA					
FIELD OBSERVATIO	ONS: Weather	40,51	<u>gnt</u>	reeze	overc	Ast	
		C. Thomy	250N). Hel	illiams		
I certify that samplin Sampler (Print):			ith all appli	,		prate protocols.	
Sampler (Print)		, Ce	Tulo	Them	pson		

.

ġ.

1

1

Site Location	NIAq. F	n ALLS Airb	ase .	Job Number $\frac{R91/5641}{42}$	
	Arret Sec	limentsur	NOLO ZI	Lab Number	
weii 1.D		Nd 1/21	<u>.</u>		
PURGE INFORMATI	ON		Purge i	MethodN/A	
Well Depth (ft)					
Static Water Level (ft					
Depth of Water Colu		<u> </u>			
Well Constant (gal/ft))x				
Volume standing in v	vell	g	ailons		
Start of Purge: Date				· · · · · · · · · · · · · · · · · · ·	
Purge Observations	•			<u> </u>	
Total Volume Purged	gallc	ns ,	# of V	Volume Casings Purged	
U					
SAMPLING INFORM		nple Method			
Sample Date: <u>/2</u> Sample Appearance		Time: <u>/3</u>	: 49	Sample Depth: <u>N/A</u>	
Sample Appearance	: <u>N/4</u>	<u> </u>		<u> </u>	
FIELD MEASUREM	ENTS Parameter	Unit Stnd.	1	Replicates 2	
	pН	stnd			
	Spec. Cond.	umhos/cm			
· " " " " " "	Temp	°Celsius			
	Spec. Grav.				
Field Filtered Y/N Meter Calibration: D		X[A_ X[A	;		
FIELD OBSERVATIO)NS: Weather	40°, 51	<u>gnt br</u>	Cere, overcast	
		n.Thom	PSOA)	J.Williams	
I certify that sampling Sampler (Print):) procedures were	in accordance with	n all applicab	ble EPA, state and corporate protocols.	
Date:		re	enter	Thompso	

APPENDIX C-1

Groundwater Samples

RECEIVED FEB 1 1 1992

A Full Service Environmental Laboratory

FEB. 4 1992

Mr. Glen Combes Wehran Envirotech 345 Lang Blvd. Grand Island, NY 14072

Re: Niagara Falls Air Force Base R91/5639

Dear Mr. Glen Combes

Enclosed are the results of the analysis requested. All data has been reviewed prior to report submission. Should you have any questions please contact me at 454-3760.

Thank you for letting us provide this service.

Sincerely,

GENERAL TESTING CORPORATION

Janice Jaeger () Customer Service Representative

aa

Enc.

710 Exchange Street • Rochester, New York 14608 • (716) 454-3760 • Fax (716) 454-1245
85 Trinity Place • Hackensack, NJ 07601 • (201) 488-5242 • Fax (201) 488-6386
435 Lawrence Bell Drive • Amherst, NY 14221 • (716) 634-0454 • Fax (716) 634-9019

Effective 10/1/91

GTC LIST OF OUALIFIERS

- U Indicates compound was analyzed for but was not detected. The sample quantitation limit must be corrected for dilution and for percent moisture.
- J Indicates an estimated value. For further explanation see case narrative / cover letter.
- B This flag is used when the analyte is found in the associated blank as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range and reanalysis could not be performed.
- A This flag indicates that a TIC is a suspected aldolcondensation product.
- N Spiked sample recovery not within control limits.
 (Flag the entire batch Inorganic analytes only)
- Duplicate analysis not within control limits.
 (Flag the entire batch Inorganic analysis only)
 - Also used to qualify Organics QC data outside limits. (Only used on the QC summary sheets)
- M Duplication injection precision not met (GFA only).
- S Reported value determined by Method of Standard Additions. (MSA)
- X As specified in the case narrative.

LABORATORY REPORT

Job No: R92/00216

Date: FEB. 4 1992

Client:

Mr. Glen Combes Wehran Envirotech 345 Lang Blvd. Grand Island, NY 14072 Niagara Falls Air Force

Base R91/5639

Received

: 01/14/92

P.O. #:

Sample(s) Reference

			ANALY	TICAL R	ESULTS -	mg/l		
Sample: Location:	-001 ₩₩-10A	-002 MW-10E	-003 MW-108	-004 MW-10C	-005 MW-100			
Date Collected: Time Collected:	R91/5636-1 12/10/91 09:25	12/10/91 11:10	12/10/91 11:58	R91/5639-2 12/10/91 10:45	12/10/91 12:15			
						••••••••••••••••••••••••••••••••••••••		=======================================
Aluminum, Soluble	5.05	0.137	3.12	0.112	0.608			I
Iron, Soluble	3.40	0.389	2.17	0.0631	0.382			
Lead, Sol. (Furnace)			0.0282	1	1 .			
Magnesium, Soluble	59.5	104	76.2	74.0	142			1
Manganese, Soluble	0.101	0.0831	0.104	0.361	0.189			
Sodium, Soluble		1	8.37	I	27.8			
Zinc, Soluble	0.400	0.0277	0.175		0.147			
	l i	!	ļ		1			•
	ļ	!	I					
			1					
			1				•	
	1					1		1
	i 1	[1	1		1		1
	1	1	1	1	1	1		1
	1	1	1	1	1	1		1
	I ,	I	I	1	I	1	I	1

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261. NY ID# in Rochester: 10145

NJ ID# in Rochester: 73331

NJ ID# in Hackensack: 02317

NY ID# in Hackensack: 10801

Michael K. Peny

Laborator Director

APPENDIX C-2

Sediment Samples

RECEIVED JAN 2 9 1992

A Full Service Environmental Laboratory

JAN. 16 1992

Mr. Glen Combes Wehran Envirotech 345 Lang Blvd. Grand Island, NY 14072

Re: Niagara Falls Air Force Base

Dear Mr. Glen Combes

Enclosed are the results of the analysis requested. All data has been reviewed prior to report submission. Should you have any questions please contact me at 454-3760.

Thank you for letting us provide this service.

Sincerely,

GENERAL TESTING CORPORATION

anar

Janice Jaeger Customer Service Representative

aa

Enc.

710 Exchange Street • Rochester, New York 14608 • (716) 454-3760 • Fax (716) 454-1245 85 Trinity Place • Hackensack, NJ 07601 • (201) 488-5242 • Fax (201) 488-6386 435 Lawrence Bell Drive • Amherst, NY 14221 • (716) 634-0454 • Fax (716) 634-9019

Effective 10/1/91

GTC LIST OF QUALIFIERS

- U Indicates compound was analyzed for but was not detected. The sample quantitation limit must be corrected for dilution and for percent moisture.
- J Indicates an estimated value. For further explanation see case narrative / cover letter.
- B This flag is used when the analyte is found in the associated blank as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range and reanalysis could not be performed.
- A This flag indicates that a TIC is a suspected aldolcondensation product.
- N Spiked sample recovery not within control limits.
 (Flag the entire batch Inorganic analytes only)
- Duplicate analysis not within control limits.
 (Flag the entire batch Inorganic analysis only)
 - Also used to qualify Organics QC data outside limits. (Only used on the QC summary sheets)
- M Duplication injection precision not met (GFA only).
- S Reported value determined by Method of Standard Additions. (MSA)
- X As specified in the case narrative.

LABORATORY REPORT

Job No: R91/05981 Date: JAN. 16 1992

Sample(s) Reference

Client:

Mr. Glen Combes Wehran Envirotech 345 Lang Blvd. Grand Island, NY 14072

Niagara Falls Air Force Base

	ANALYTICAL RESULTS - mg/l						
Sample:	-001	1	1 1	ł		I	1
Location:	Drum		• •		i	ł	
	Composite	i		, i	i	i	i
ate Collected:	12/23/91	i		1	i	i	i
ime Collected:	10:30	i	i i	i	i	i	i
	BIASED	UNBIASED	X RECOVERY	İ	i	İ	i
TCLP Extraction Metals ***	1	=======================================	=======================================	199222222222222 			=====================================
Arsenic	0.50 U	0.50 U	86%	i	i	i	i
Barium	0.551	0.471	85%	i	i	i	i
Cadmium	0.10 U	0.10 U	74%	i	i	i	i
Chromium	0.10 U	0.10 U	82%	Í	i	i	İ.
Lead	0.10 U	0.10 U	71%	Í	Ì	i	l l
Mercury	0.0020 U	0.0020 U	99%	Ì	Í	i	i
Selenium	0.50 U	0.50 U	90%	I	I	Ì	1
Silver	0.10 U	0.10 U	87%	I	I	Í	1
	l	1	ł I	1	ł	1	. 1
	1	1	ł I	1	I	1	I

TCLP Toxicity Characteristic Leaching Proce ture. Federal Register, Part 261, Vol. 55, No. 126, June 29, 1990.

Data reported is biased on the above regulation.

Michael K. Peny

Laboratory Director

LABORATORY REPORT

Job No: R91/05981

Date: JAN. 16 1992

Client:

Mr. Glen Combes Wehran Envirotech 345 Lang Blvd. Grand Island, NY 14072

Niagara Falls Air Forc<mark>e</mark> Base

Sample(s) Reference

Received : 12/24/91 P.O. #: TCLP VOLATILES BY EPA METHOD 8240*** ANALYTICAL RESULTS - uq/l Sample: | -001 Location: Drum Composite Date Collected: 12/23/91 Time Collected: 10:30 BIASED UNBIASED | % RECOVERY -----Date Analyzed: 01/07/92 Dilution: 1/10 | 50 U 50 U 106%

Benzene Carbon Tetrachloride | 50 U 50 U 105% Chlorobenzene 1 50 U 50 U 107% 1 Chloroform 1 50 U 50 U 108% 1,2-Dichloroethane | 104% 1 50 U 50 U 1 1,1-Dichloroethene 50 U 50 U 102% н Methyl Ethyl Ketone I 100 U 100 U 78% Tetrachloroethene 1 50 U 50 U 1 106% Trichloroethene 50 U 50 U 112% Vinyl Chloride 50 U 50 U 106% SURROGATE STANDARD RECOVERIES 1,2-Dichloroethane-d4 100% Acceptance Limits: 75-119%) Toluene d8 100% (Acceptance Limits: 85-110%) Bromofluorobenzene 98% (Acceptance Limits: 84-116%)

nless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261. Y ID# in Rochester: 10145

J ID# in Rochester: 73331 J ID# in Hackensack: 02317

f ID# in Hackensack: 10801

*TCLP Toxicity Characteristic Leaching Procedure. Federal Register, Part 261, Vol. 55, No. 126, June 29, 1990.

Data reported is biased on the above regulation.

Michael K. Peny

Fratory Director

LABORATORY REPORT

Job No: R91/05981 Date: JAN. 16 1992

Client:

Mr. Glen Combes Wehran Envirotech 345 Lang Blvd. Grand Island, NY 14072 Sample(s) Reference

Niagara Falls Air Force Base

TCLP ACID EXTRACTA	ABLES BY	EPA M	ETHOD 8	3270***	ANAL	YTICAL R	ESULTS ·	- ug/l
Sample:	-001	I	1	I	1	1	1	I
Location:	Drum	1	1	1	1	I	- I	I
	Composite	1	1	I	I	I	1	I
	12/23/91	1	1	1	I	l		I
Time Collected:	10:30	1	1	I	1	1	l I	I
	BIASED	UNBIASED	X RECOVE	RY				
Date Extracted:	01/07/92	 			 			
Date Analyzed:	01/09/92	İ	i	i	i	i	i	i
Dilution:	l	İ	i	i	i	i	i	i
m+p-cresol	100 U	100 U	52%	i	i	i	i	i
o-cresol	100 U	100 U	20%	i	i	Í	i	i
Pentachlorophenol	200 U	200 U	50%	i	i	Í	Í	i
2,4,5-Trichlorophenol	100 U	100 U	52%	Ì	Í	Ì	Í,	İ
2,4,6-Trichlorophenol	100 U	100 U	55 %		1		ļ	l
Surrogate Standard Recoveries:	 			1				
2-Fluorophenol	 1.7%*	1						
(Acceptance Limits: 10-109%)	•	İ	1		i	1	ľ	1
Phenol - d6	 0.6%*		1					
(Acceptance Limits: 10-73%)	•	1		1		1		3
	1	1		1	1	l I	1	
2,4,6-TriBromophenol	41%				.			
(Acceptance Limits: 10-141%)	1	Ì	Ì	Í	İ	İ	i	İ

- - . - . . - -

NJ ID# in Rochester: 73331

NJ ID# in Hackensack: 02317

NY ID# in Hackensack: 10801

***TCLP Toxicity Characteristic Leaching Procedure. Federal Register, Part 261, Vol. 55, No. 126, June 29, 1990.

Data reported is biased on the above regulation.

Michael K. Peny

Laboratory Director

LABORATORY REPORT

Job No: R91/05981

Date: JAN. 16 1992

Client:

Mr. Glen Combes Wehran Envirotech 345 Lang Blvd. Grand Island, NY 14072

Niagara Falls Air Force Base

Received

: 12/24/91

P.O. #:

Sample(s) Reference

Sample:	-001	1	1			,		
Location:	•	1			1	1	1	1
Location:	Drum	1			1	1	1	1
Date Collected:	Composite	1			1	-		1
	12/23/91 10:30	1	1		1	1		
Time corrected:	BIASED	I UNBIASED	I RECOVERY	1	1	-		1
			1% RECOVERT	 ================	 =====================================			
Date Extracted:	01/07/92	1	1	 	 I	1	1	1
Date Analyzed:	01/09/92	i	1	1	i	i	i	i
	1/10	i	1	i	i	1.	i	i
1,4 Dichlorobenzene	50 υ	50 U	59%	i	i	i	i	i
2,4-Dinitrotoluene	50 U	50 U	81%	i	i	i	i	i
Hexach lorobenzene	50 U	50 U	67%	i	İ	i	i	i
Hexachloroethane	50 U	50 U	15%	i	Ì	i	i	i
Nitrobenzene	50 U	50 U	72%	i	i	i	İ	İ
Pyridine	100 U	100 U	32%	i	1	i	i	i
Hexachloro-1,3-butadiene	50 U	50 U	66%	İ		ļ	Ì	İ
Surrogate Standard Recoveries:	 		1	1		ł		1
	I		1	ł	1	1 · · ·	1	1
Nitrobenzene-d5	57%	1	1	1	1	I ·	1	1
(Acceptance Limits: 26-111%)	1	1	1	1	1	1	1	1
	1	1	1	1	I	1	1	1
2-Fluorobiphenyl	80%	I.	I	1	I	1	1	1
(Acceptance Limits: 23-131%)		1	I	1	I	1	1	1
	I	I		1	I	1	1	1
Terphenyl-d14	80%	1		1	1	1	1	1
(Acceptance Limits: 20-151%)		1	1	1	1	l	1	1

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #2 NY ID# in Rochester: 10145

NJ ID# in Rochester: 73331

NJ ID# in Hackensack: 02317

NY ID# in Hackensack: 10801

***TCLP Toxicity Characteristic Leaching Procedure. Federal Register, Part 261, Vol. 55, No. 126, June 29, 1990.

Data reported is biased on the above regulation.

Michael K. Peny

Laboratory Director

Client:

Received

A Full Service Environmental Laboratory

LABORATORY REPORT

Job No: R91/05981 Date: JAN. 16 1992

Sample(s) Reference

Niagara Falls Air Force Base

Mr. Glen Combes Wehran Envirotech 345 Lang Blvd. Grand Island, NY 14072

: 12/24/91

P.O. #:

						_	
Sample:	-001	l	1		I	ł	1
	Drum		1		1	1	1
	Composite	1	1		· •	1	1
	12/23/91	I	1	1	1	1	1
Time Collected:	10:30	I	1		1	i i	I
	BIASED	UNBIASED	X RECOVERY		!	<u> </u>	
Date Extracted:	01/08/92	 			 		
Date Analyzed:	01/10/92	İ.	1	i i	i	i	i
Dilution:	1/10	ł	1	i i	l	İ	i
Chlordane	20 U	20 U	76%	i i	Í	Í	Ì
Endrin	5.0 U	5.0 U	89%	i i	i	i	i
Heptachlor	5. 0 U	5.0 U	87%	i i	~	İ	i
Heptachlor epoxide	5. 0 U	5.0 U	75%	i i	i	Ì	i
gamma-BHC (Lindane)	5.0 U	5.0 U	90%	i i	i	Ì	i
Methoxychlor	20 U	20 U	65%	i i	i	İ	Ì
Toxaphene	100 U				ļ	Í	1
Surrogate Standard Recovery	1	1	1				1
	l	l	Ì		İ	İ	
% Recovery		 					
	1	1	1		1	1	I
Dibutylchlorendate	92%	1	1	1	1	I	I
(Acceptance Limits: 24-154)	1 .	1	I	1	1	I	I
	1	1	1	1	1	I .	I
Tetrachloro-meta-xylene	80%	I	I	I I	1	I	ł
(Acceptance Limits: 27-119)	1	I	I	I I	I	1	1

***TCLP Toxicity Characteristic Leaching Procedure. Federal Register, Part 261, Vol. 55, No. 126, June 29, 1990.

Milal K. Peny

Laboratory Pirector

Data reported is biased on the above regulation

LABORATORY REPORT

Job No: R91/05981

Date: JAN. 16 1992

Client:

Received

Mr. Glen Combes Wehran Envirotech 345 Lang Blvd. Grand Island, NY 14072

Niagara Falls Air Force Base

: 12/24/91

P.O. #:

Sample(s) Reference:

TOLD UEDBLOTDES N	INTYCTO					-	
TCLP HERBICIDES-AN		BY GC M	ETHOD 8	150 ***	ANALYTICA	L RESULTS	- ug/1
•	-001	!	1	1	ļļ	l	l
	Drum Commonitor		ļ	1		l	
	Composite		ļ	ļ		ļ	
	12/23/91		ļ	1	ł I	ļ	
	10:30		 	1		l	I
	BIASED	UNBIASED	X RECOVERY	1	1	1	I

			1			ļ	ļ
Date Extracted:	101/07/02					1	1
	01/07/92	1	!	1		!	
	01/10/92		!	!		ļ	
UTLUCION:	1/100					ļ	1
2,4-D	 50 U					ł	
2,4-0		50 U	86%			l I	
2,4,5-TP (Silvex)	I 50 U	I 50 U	 78%	1		ł	1
		1 20 0	1	1		l I	ł
	1	1	1	1 1		l I	1
	F I	1	1	1	 	l I	
SURROGATE STANDARD RECOVERIES		1	1	I		ł	
	1	1	1	1		1	
	1	1	1			1	i t
% Recovery	1	1	1			1	1
A RECOVELY	1	1	1	1			
2,4-DB	58%	1	1	\$ 1		· 1	
(Acceptance Limits 18-152)	1	1	1			1	
	1	1	1		l I	1	
	1	ł	I	1 1		1	I
Unless otherwise noted, analyti	ical methodo	logy has bee	n obtained f	rom reference	e as cited in 40	CED norte #136 8	#261
NY ID# in Rochester: 10145		(09) 1120 200	i ostanica	I Oli i Gi Gi Gi Gi Gi	3 63 VILUW III . .	Urky por co miao u	
NJ ID# in Rochester: 73331							
NJ ID# in Hackensack: 02317							
NY ID# in Hackensack: 10801							
*** TCLP Toxcity Characteristic	c Leaching P	rocedure.					
Federal Register, Part 261,							
June 29, 1990	,	,					
					•	A	
Data reported is biased on	the above r	equiation.			M-1	nvn	
·					1 helpel	L K Ko.	in a st
							and the second sec
						Laborator	Director
Data reported is biased on	the above ro	egulation.			Michael	Laboratop	Director

	G 710 Exchange Rochester, NY	Street 85	Frinity Place	е	ATION/CHAIN 435 Lawrence & Amherst, NY 14	Bell Drive	GTC Job I Client Pro	CORD No. <u>A9//598/</u> Dject No	-
	Sample Originat Collection Address _ Collector_	Site	Information Tora Lac			, State	Donge (1	Zip	- - -
	Bottles Sh Samples S	epared by hipped to Clien Shipped via	GTC via <u>Cruve</u> Feel G	<i>er</i>	Seal/Shi	pping # pping #		Date/Time	-
	Sample(s) Relind 1. Sign for 2. Sign for		n		Received b 1. Sign for 2. Sign for	y		Jale/ Ime / / / /	
	3. Sign for Sample(s) Recei	ved in Laborat Sample Lo		Tor	3. Sign for Hastin Analyte or		le Prep	/ / : : : : : : : : : : : : : : : : : :	<u>9:30</u>
1		Date/1 Drum Co	ime mposcle	(see	te Group(s) Require below for additional L TCLP 10, & 270, Meta /PCB/Herb) Y N	d Filtered Y N	(see below)	
2		12/23/ 8		Test					
3			:						
4									
5		, ,							

Use Bottle No. for indicating type bottles used in each bottle set and fill in box with # of bottles used for each type.

Bottle No.	1	2	3	4	5	6	7	8	9	10	11
Bottle Type	40 ml Vial	Pint Glass	Qt. Glass	4 oz. Plastic	8 oz. Plastic	16 oz. Plastic	Qt. Pl.	Gal. Pl.	Steril. Pl.		
# of each	۲										

Additional Analytes

Shaded area for Lab use only; bottom copy for client; maximum of 5 samples per page.

 Source Codes: Monitoring Well (W), Soil (S), Treatment Plant (T), Drinking Water (D), Leachate (L), Hazardous Waste (H), River or Stream (R), Pond (P), Industrial Discharge (I), _____(X), ____(X), ____(X), ____(Y).