

3855 NORTH OCOEE STREET SUITE 200, CLEVELAND, TN 37312 OFFICE: (423) 336-4000 FAX: (423) 336-4166

February 29, 2008

Mr. Michael J. Hinton, P.E. Environmental Engineer II New York State Department of Environmental Conservation 270 Michigan Avenue Buffalo. New York 14203-2999

Subject:

Charles Gibson Site

NYSDEC Registry No. 9-32-063 Fifteenth Annual Report - 2007

Dear Mr. Hinton:

As requested by NYSDEC I have attached one hard copy and one electronic version (in Adobe PDF format) of the subject report. This report summarizes the activities performed during 2007 for the operation and maintenance of the containment remedy for the site and the ground water monitoring program outside of the containment area.

The following is a summary of major activities that occurred during 2007.

- Semi-annual groundwater sampling events were performed during April and September 2007.
- Annual sediment sampling was performed in September.
- Annual sampling and analysis of leachate was completed in April.
- There were 22,958 gallons of leachate discharged to the City of Niagara Falls Wastewater Treatment Facility.

The Semi-Annual Ground Water Sampling and Annual Sediment Sampling Report - September 2007, is included as Appendix A to this report. The Data Evaluation Narrative is included in this report.

Please direct any comments to me at 423/336-4587. Thank you.

Sincerely,

OLIN CORPORATION

Michael J. Bellotti

Principal Environmental Specialist

cc: C. M. Richards via e-mail

Brian Vain - Olin Niagara Falls via e-mail

Mike Walker - Sevenson Environmental Services via e-mail

Matthew Forcucci - NYSDOH Buffalo

FIFTEENTH ANNUAL REPORT

2007

CHARLES GIBSON SITE

(PINE AND TUSCARORA SITE)

NIAGARA FALLS, NEW YORK NYSDEC REGISTRY NO. 9-32-063

PREPARED BY OLIN CORPORATION

FEBRUARY 2008

Introduction

This is the fifteenth Annual Report from Olin Corporation (Olin) for the Charles Gibson Site (Pine and Tuscarora Site), located in Niagara Falls, New York. This report summarizes activities performed during 2007 for the operations and maintenance of the containment remedy for the Site and the ground water monitoring program outside of the containment area. This year's data for the Semi-Annual Ground Water and Annual Sediment Sampling, collected during September 2007 has been incorporated as part of the Annual Report.

Background

The Charles Gibson Site (Site) is located approximately four miles east of downtown Niagara Falls, New York. The Site comprises an area of approximately two acres of land in Niagara County bordered on the south by private property, on the west by Tuscarora Road and on the north and east by Cayuga Creek. The Site is a fully remediated waste site currently surrounded by a fence.

Construction of the remedy on the Site concluded in 1990. The remedy consisted of rerouting Cayuga Creek around and away from the waste, installation of a fully circumscribed soil-bentonite slurry wall barrier and installation of a double flexible membrane liner cap with a perimeter collection drain system. The first year of operations and maintenance (O&M) of the containment remedy for the Site and the ground water monitoring program began in 1993.

Waters collected in the Site perimeter collection drain system are managed by direct discharge to the City of Niagara Falls Wastewater Treatment Facility. The Site is classified as a commercial/small industrial/residential user (CSIRU) and does not require a permit.

Reports are submitted as appropriate to the New York State Department of Environmental Conservation (NYSDEC). Records of all environmental monitoring are maintained by Olin Corporation. These records are available for review and inspection by the State.

Discussion

The Stipulation and Consent Judgment, CIV 83-1400, and its modification, CIV 83-1400C, (the Agreement) listed the following elements to be included in the required remediation plan for the Site (Plan C):

- 1. Quarterly ground water monitoring for 30 years (revised in 1997 to semiannual);
- 2. Sample collection and analysis of creek water and of creek sediments annually for 30 years. During 1993 the creek water sampling was discontinued and sediment sampling was modified to collection during the low flow/dry season;
- 3. Establishment of an upward hydraulic gradient within the containment area, unless Olin can demonstrate by clear and convincing evidence the establishment of the same is unnecessary or inappropriate to the accomplishment of the goals set forth in paragraph 4(a) of the stipulation:
- 4. Acquisition by Olin of easements which would permit the required monitoring;
- 5. Provisions for protection of the Site from disturbance which might increase the threat of contamination migration, including regular inspection of the site;
- 6. Provisions for the design and implementation of a contingency plan in the event that migration of the contaminants occurs despite the implementation of the containment remediation plan;
- 7. Containment or removal of the contaminants deposited or caused to be deposited by Olin which have migrated off-Site consistent with the goals of paragraph 4(a);

Charles Gibson Site NYSDEC Registry No. 9-32-063 Fifteenth Annual Report -2007

8. Fiscal arrangements, guarantees, or the provision of financial assurances sufficient to ensure that Olin possess the financial ability to perform the containment remedial plan and monitoring. Olin's performance has been demonstrated and the financial assurance notification is no longer required.

The Agreement includes a provision in the event that after seven years following the delivery of a Release of Liability (issued December 15, 1992), Olin demonstrates that conditions at the Site are such that the stated frequency or duration of the requirements of elements 1, 2, or 5 are no longer necessary to determine whether the remediation is effective, Olin may reduce the frequency and duration of such monitoring or inspections. Modifications are noted in the discussion above.

The approved Operation and Maintenance Manual (O&M Manual (June 2000)) provides details on the O&M of the containment remedy on the northern portion of the site and includes provisions for site control and environmental monitoring. The O&M Manual (June 2000) reflects current activities being performed for the operation and maintenance of the containment remedy for the Site and the ground water monitoring program outside the containment area. The yearly inspection and sampling schedule for the Site is included in *Attachment 1*.

The O&M Manual (2000) addresses the required elements as set forth in the Agreement. Element 4, acquisition of easements, is a completed task. Element 6, a contingency plan, is addressed in the O&M Manual. Element 7, containment of the contaminants, has been achieved and is being monitored for effectiveness. Element 8, provision of financial assurance, is being met. This report discusses elements 1, 2, 3, and 5 of the Agreement.

Element 1) Semi-annual ground water monitoring. Monitor wells MW-A3, MW-1R, MW-2, MW-4, and MW-5 were sampled on April 17 and on September 13 for the site compounds alpha-BHC, beta-BHC, gamma-BHC, delta-BHC. Analyses were performed using SW-846 Method 8080. During 2007, sampling results for all BHC isomers in all wells were either undetected (U) or tentatively detected (J) at levels below 0.1 ug/l. Since 2000, monitor wells have been sampled for hexachlorobenzene (HCB) biennially. This sampling is done in even years, which is why it was not sampled for in 2007. The next HCB sampling is scheduled for September 2008. Monitoring locations are shown on *Figure 1*.

A historic summary of semi-annual ground water monitoring data from 2000 through 2007 is provided in *Table 1. Table 1A* shows groundwater monitoring data for 2007. Since 2003, concentrations of site compounds being monitored have been undetected or estimated at concentrations below the detection levels, in all monitor wells.

Element 2) Annual creek sediment monitoring. Annual sediment sampling was performed on September 13, 2007. A historic summary of annual sediment sampling results is presented in *Table 2*. Sediment monitoring was modified in 2001 from collecting a grab sample to placement of sediment traps at the upstream and downstream locations. Sediment traps were installed for the first time during the April 2001 sampling event. All detections are similar or slightly lower than detections since 2001, for both upstream and downstream samples.

No downstream samples were taken in 2007 because the sediment trap was in an inverted position. A high water fast current situation or debris is probably the cause for the positioning. Alternative sampling techniques will be looked into to alleviate inverted position.

Element 3) Establishment of an upward (inward) hydraulic gradient. Quarterly ground water elevations were monitored at piezometer pairs P1/P2, P3/P4, and P5/P6 to document an inward hydraulic gradient in the containment area of the site. The data collected during each event are recorded on the Sampling Field Form. An evaluation of data from the piezometer pairs at the Site indicates that an inward hydraulic gradient is being maintained year round in two of the three

Charles Gibson Site NYSDEC Registry No. 9-32-063 Fifteenth Annual Report -2007

level elevations in Manhole A and Manhole B are monitored quarterly and are consistently below the 565 ft-msl level. All data are shown in *Table 3*.

There were 22,958 gallons of leachate discharged to the POTW during 2007. A summary of yearly discharge volumes for the Site is provided in *Table 4*. Since 1992 a total of 1,004,639 gallons of leachate were removed from the Site. Annual leachate sampling and analysis for BHC isomers began in 2000 to replace the POTW sampling that was previously performed. HCB is monitored every five years (started in 2000). The sampling location is Manhole B. Analytical results for 2007 are provided in *Table 5*. The next scheduled sampling is 2010.

Element 5) Site protection. Quarterly site inspections were conducted to identify any potential issues with the physical structures and to ensure that the remedial measure components are operating effectively. Routine site maintenance included fertilizing, mowing, weeding and mulching the site area.

Other non-routine repairs completed in 2007 include:

- Rip rap stone had been removed from the stream bank and placed in Cayuga Creek as a footpath. This stone was replaced on the stream banks, and warning signs placed.
- General site conditions and security status were noted on the Site Inspection Form and addressed as appropriate.

All inspection forms and field notes are included in *Attachment 2*.

Conclusions/Recommendations:

The work performed for the Site during 2007 was reviewed and found to be in accordance with the approved O&M Manual (2000). Ground water monitoring indicates there are no increased concentrations of the Site compounds being monitored. Evaluation of the ground water data generated during the 2007 monitoring year indicates that the containment remedy is effective. An evaluation of data from the piezometer pairs at the Site indicates that an inward hydraulic gradient is being maintained in the containment area of the site, but will be monitored in one zone where the gradient is level (P1/P2 area) and enhanced as necessary. Data from 2007 sediment trap monitoring were similar to prior monitoring episodes.

Figure 1 Site Aerial and Monitoring Points

CHARLES GIBSON SITE

(PINE AND TUSCARORA SITE)

NIAGARA FALLS, NEW YORK

NYSDEC Registry No. 9-32-063

TABLES

TABLE 1 CHARLES GIBSON SITE NIAGARA FALLS, NEW YORK

ANALYTICAL SUMMARY SEMI-ANNUAL GROUND WATER SAMPLING 2000-2007

ONITOR WELL: MW-A3

2007	September				,	NR
2	April	.048U	.048U	.048U	.048U	RN
2006	September	.032	.014J	.048U	LE0.	F6
2	April	.049U	.049U	.049U	.049U	NR
2005	September	.048U	.048U	.048U	.048U	NR
20	April	.047U	.047U	.047U	.047U	NR
2004	September	.0470	.047U	.047U	. 047U	NR
5C	April	.048U	.048U	.048U	.048U	100
03	September	.035	U630.	N650.	U630.	NR
2003	April	.048U	.048U	.048U	.048U	NR
2002	September	.029	.016J	.050	.050U	NR
20	April	.050U	.050U	.050U	.050U	A.
2001	October	.050U	.050U	.050U	.050U	NR.
20	April	.050U	.050	.050	.050U	100
2000	October	.054U	.054U	.054U	.054U	NR
2	May	.050U	.012	.050U	.050	110
	Parameter	Alpha-BHC	Beta-BHC	Gamma-BHC	Delta-BHC	Hexachlorobenzene

ONITOR WELL: MW-1R

		2000	2001	71	2002	72	2003	3	20	2004	2005	35	50	2006	2	2007
Parameter	May	October	April	October	April	September	April	September	April	September	April	September	April	September	April	September
Alpha-BHC	.028	.054U/.052U	.0501/.050U	090'/660'	.070/.061	.055/.030J	.014J/.015U	.052U	.049U/.049	.026J/.048U	.040J/.049U	.047U/.048U	.037.1	.032	.041.5	.029
Beta-BHC	0.12	.038J/.052U	.12J/.050U	.19/.15	.10/.050U	.13/.095	7507/052	.052U	.049U/.065	.090U/.024J	.050U/.049U	.047U/.048U	L9E0.	.0220	.035	.024
Gamma-BHC	.051U	.054U/.052U	.0501/.050	.063J/.058U	.050U/.050U	.055U	.049U	.052U	.049U/.049U	.048U/.048U	.036J/.049U	.047U/.048U	.050U	.048U	.048U	.048U
Delta-BHC	.051U	.054U/.052U	.050U/.050U	.061U/.058U	.050U/.053	.0550	.049U	.052U	.049U/.049	.048U/.048U	.050U/.049U	.047U/.048U	.050	.034J	.048U	.048U
Hexachlorobenzene	100	NR	1001/100	NR	NR	NR	W.	R	NR	NR	A.	NR.	Ä	100	R	NR.

IONITOR WELL: MW-2

	, v	2000	2001	21	72	2002	2003	03	2	2004	20	2005	Š	2006	2	2007
Parameter	May	October	April	October	April	September										
Alpha-BHC	.029	.053U	.050U	.054U	.050U	.050U	.050U	0050.	.050	.050U	.050U	.050U	.050U	.048U	.048U	.047U
Beta-BHC	0.098	.053U	.050U	.054U	.050U	.050U	N050'	.050	.050U	.050U	.050U	.050	.050U	.048U	.048U	.047U
Gamma-BHC	.052U	.053U	.050U	.054U	.050U	.050U	N050'	.030	.050U	.030	.050U	.050U	.050U	.048U	.048U	.047U
Delta-BHC	.052U	.053U	.050U	.054U	.050U	.050U	.050U	.050U	.050U	.050U	.050U	.050U	.050U	,030J	.048U	.047U
Hexachlorobenzene	100	NR	100	NR	NR	NR	NR	NR	100	NR	NR	NR	NR	100	NR	NR

Notes: Concentration in ug/l
- insufficient sample
U Undetected
J Estimated value
NR Not required

TABLE 1 CHARLES GIBSON SITE NIAGARA FALLS, NEW YORK

ANALYTICAL SUMMARY SEMI-ANNUAL GROUND WATER SAMPLING 2000-2007

MONITOR WELL: MW-4

2006 2007	ber April September April September	.049U .041J .042J	.0223 .0443 .0333	.049U .048U .048U	.030J .036J .048U	L
2005	April September	.047U .047U	.047U .036J	.047U .047U	.047U .047U	NR NR
2004	September	.048U	. 037.1	.048U	.048U	06
2	April	.048U	.048U	.048U	.048U	A.
2003	September	0.056	.026	.033	.050	W.
2	April	.049U	.049U	.049U	.049U	NR RB
2002	September	.050U	.033	.050U	U030.	N.
2	April	.050U	.041J	.071J	.050U	A.R
2001	October	L6900.	.047	.050U	.050U	NR
20	April	.050U	.050U	.050U	.050U	100
_	October	.054U	.054U	.054U	.054U	NR.
2000	May	.051U/.052U	.045J/.062	.051U/.052U	.051U/.052U	100
	Parameter	Alpha-BHC	Beta-BHC	Gamma-BHC	Delta-BHC	Hexachlorobenzene

MONITOR WELL: MW-5

7	September	.026J	.048U	.048U	.048U	a a
2007	April	.0413	.025J	.047U	.047U	ON N
2006	September	.032	.015	.048U	.030	an
50	April	.049U	.049U	.049U	0490	an N
2005	September	.047UJ	.047UJ	.047UJ	.047UJ	an
20	April	.047U	.047U	.047U	.047U	N.
2004	September	.048U	.048U	.048U	.048U	NR.
2(April	.048U	.048U	.048U	.048U	101
2003	September	.049U	.049U	.049U	.049U	AR
20	April	.048U	.048U	.048U	.048U	NR.
2002	September	.050U	.050U	.050	.050U	æ
2	April	.050U	.050U	.050U	.050U	ZZ.
01	October	.013J	.022J	.055U	.055U	N.
200.	April	.050U	.050U	.050U	.050U	1001
	October	.054U	.054U	.054U	.054U	ž
2000	May	.010	.031J	052U	.052U	100
	Parameter	Alpha-BHC	Beta-BHC	Gamma-BHC	Delta-BHC	Hexachlorobenzene

Notes: Concentration in ug/I
- insufficient sample
U Undetected
U Estimated value
NR Not required

Table 1A Olin Corp. Gibson Site Groundwater Monitoring Data: 2007

Sample ID	Sample Date	CAS No	Parameter	Flags	Result	UM	Monitor Point
MW-1R-041707	4/17/2007	319-84-6	alpha-BHC	J	0.041	UG/L	Well
MW-1R-041707	4/17/2007	319-85-7	beta-BHC	J	0.035	UG/L	Well
MW-1R-041707	4/17/2007	319-86-8	delta-BHC	U	0.048	UG/L	Well
MW-1R-041707	4/17/2007	58-89-9	gamma-BHC	U	0.048	UG/L	Well
MW-1R-091307	9/13/2007	319-84-6	alpha-BHC	J	0.029	UG/L	Well
MW-1R-091307	9/13/2007	319-85-7	beta-BHC	J	0.024	UG/L	Well
MW-1R-091307	9/13/2007	319-86-8	delta-BHC	U	0.048	UG/L	Well
MW-1R-091307	9/13/2007	58-89-9	gamma-BHC	U	0.048	UG/L	Well
MW-2-041707	4/17/2007	319-84-6	alpha-BHC	U	0.048	UG/L	Well
MW-2-041707	4/17/2007	319-85-7	beta-BHC	Ú	0.048	UG/L	Well
MW-2-041707	4/17/2007	319-86-8	delta-BHC	U	0.048	UG/L	Well
MW-2-041707	4/17/2007	58-89-9	gamma-BHC	U	0.048	UG/L	Well
MW-2-091307	9/13/2007	319-84-6	alpha-BHC	U	0.047	UG/L	Well
MW-2-091307	9/13/2007	319-85-7	beta-BHC	U	0.047	UG/L	Well
MW-2-091307	9/13/2007	319-86-8	delta-BHC	U	0.047	UG/L	Well
MW-2-091307	9/13/2007	58-89-9	gamma-BHC	U	0.047	UG/L	Well
MW-4-041707	4/17/2007	319-84-6	alpha-BHC	J	0.042	UG/L	Well
MW-4-041707	4/17/2007	319-85-7	beta-BHC	J	0.033	UG/L	Well
MW-4-041707	4/17/2007	319-86-8	delta-BHC	U	0.048	UG/L	Well
MW-4-041707	4/17/2007	58-89-9	gamma-BHC	U	0.048	UG/L	Well
MW-4-091307	9/13/2007	319-84-6	alpha-BHC	J	0.025	UG/L	Well
MW-4-091307	9/13/2007	319-85-7	beta-BHC	U	0.047	UG/L	Well
MW-4-091307	9/13/2007	319-86-8	delta-BHC	U	0.047	UG/L	Well
MW-4-091307	9/13/2007	58-89-9	gamma-BHC	U	0.047	UG/L	Well
MW-5-041707	4/17/2007	319-84-6	alpha-BHC	J	0.041	UG/L	Well
MW-5-041707	4/17/2007	319-85-7	beta-BHC	J	0.025	UG/L	Well
MW-5-041707	4/17/2007	319-86-8	delta-BHC	U	0.047	UG/L	Well
MW-5-041707	4/17/2007	58-89-9	gamma-BHC	U	0.047	UG/L	Well
MW-5-091307	9/13/2007	319-84-6	alpha-BHC	J	0.026	UG/L	Well
MW-5-091307	9/13/2007	319-85-7	beta-BHC	U	0.048	UG/L	Well
MW-5-091307	9/13/2007	319-86-8	delta-BHC	U	0.048	UG/L	Well
MW-5-091307	9/13/2007	58-89-9	gamma-BHC	U	0.048	UG/L	Well
MW-7-041707	4/17/2007	319-84-6	alpha-BHC	J	0.041	UG/L	Well
MW-7-041707	4/17/2007	319-85-7	beta-BHC	J	0.035	UG/L	Well
MW-7-041707	4/17/2007	319-86-8	delta-BHC	U	0.048	UG/L	Well
MW-7-041707	4/17/2007	58-89-9	gamma-BHC	U	0.048	UG/L	Well
MW-7-091307	9/13/2007	319-84-6	alpha-BHC	J	0.027	UG/L	Well
MW-7-091307	9/13/2007	319-85-7	beta-BHC	U	0.049	UG/L	Well
MW-7-091307	9/13/2007	319-86-8	delta-BHC	U	0.049	UG/L	Well
MW-7-091307	9/13/2007	58-89-9	gamma-BHC	U	0.049	UG/L	Well
MW-8-041707	4/17/2007	319-84-6	alpha-BHC	U	0.048	UG/L	Well
MW-8-041707	4/17/2007	319-85-7	beta-BHC	U	0.048	UG/L	Well
MW-8-041707	4/17/2007	319-86-8	delta-BHC	U	0.048	UG/L	Well
MW-8-041707	4/17/2007	58-89-9	gamma-BHC	U	0.048	UG/L	Well
MW-3-041707	4/17/2007	319-84-6	alpha-BHC	U	0.048	UG/L	Well
MW-3-041707	4/17/2007	319-85-7	beta-BHC	U	0.048	UG/L	Well
MW-3-041707	4/17/2007	319-86-8	delta-BHC	U	0.048	UG/L	Well
MW-3-041707	4/17/2007	58-89-9	gamma-BHC	U	0.048	UG/L	Well

TABLE 2 Charles Gibson Site Niagara Falls, New York

ANALYTICAL SUMMARY

Annual Cayuga Creek Sediment Sampling 2001 - 2007

UPSTREAM

	2001	2002	2003	2004	2005	2006	2007
Parameter	October*	September	September	September	September	September	September
Alpha- BHC	55	19/90	28/22J	80U/86J	23J	13	40
Beta- BHC	49	37/76	48/30	20J/190	36	34	4.8
Gamma- BHC	24	31/26	12J/28	23J/56J	15J	13	4.6
Delta- BHC	3.3J	5.8U/1.6U	1.9J/26U	80U/38J	26U	3.9J	3.7

DOWNSTREAM

	2001	2002	` 2003	2004	2005	2006	2007
Parameter	October*	September	September	September	September	September	September
Alpha- BHC	55	19/90	28/22J	80U/86J	23J	8.3	NS
Beta- BHC	49	37/76	48/30	20J/190	36	22	NS
Gamma- BHC	24	31/26	12J/28	23J/56J	15J	11	NS
Delta- BHC	3.3J	5.8U/1.6U	1.9J/26U	80U/38J	26U	3.7J	NS

Notes:

U Not Detected

J Estimated value

NS No sample in trap

* Sediment traps installed April 2001

Table 3

2007 Quarterly Groundwater Elevations Summary

Piezometer Pair	2/27/2007	Inward gradient	4/17/2007	Inward gradient	9/13/2007	Inward	12/03/2007	Inward gradient
P1 outside P2 inside	565.31 565.4	Level	565.76 565.48	Level	564.81 565.22	Level	564.14 565.19	Level
P3 outside P4 inside	566.48 565.28	Inward	567.46 565.34	Inward	564.86 565.11	Level	563.79 565.33	Level
P5 outside P6 inside	568.86 567.58	inward	569.45	Inward	566.99 566.83	Level	567.05 566.55	Inward
		Below 565 ft msl		Below 565 ft msl		Below 565 ft msl		Below 565 ft msl
Manhole A Manhole B	564.39 564.46	Yes Yes	564.12 564.18	Yes Yes	564.12 564.18	Yes	564.4 564.48	Yes Yes

Notes: Measurement units are in feet above MSL.
Piezometers P1, P3, P5 are outside the slurry wall.
Piezometers P2, P4, P6 are located within the containment area.

Manhole monitoring:

- Maintain water level below 565 feet to prevent hydrostatic pressure buildup under concrete slab.
 Pump Manhole B as required to maintain an inward gradient.

Table 4 Olin Corp. Gibson Site Discharge Volumes

Summary of Yearly Discharge Volumes

Monthly Discharge Volumes

Date	Volume (gallons)
1991	104,120
1992	76,562
1993	77,797
1994	69,724
1995	56,940
1996	77,512
1997(*)	64,687
1998	51,070
1999	140,860
2000	67,236
2001	20,855
2002	0
2003 (1)	5230
2004	65,082
2005	51,115
2006	52,891
2007	22,958
TOTALS	1,004,639

	Volume
Month	(gallons)
Jan	5,800
Feb	0
Mar	5,698
Apr	5,814
May	0
Jun	5,740
Jul	0
Aug	0
Sep	0
Oct	0
Nov	0
Dec	5,646
Total	22,958

- (*) Represents start of operation of direct discharge system (1) Pumped during test of system on 4/13/2003

Table 5

Annual Manhole B Sampling

CHARLES GIBSON SITE NIAGARA FALLS, NEW YORK

ANALYTICAL RESULTS SUMMARY ANNUAL LEACHATE SAMPLING

April 17, 2007

	MANHOLE B (MHB)
PARAMETER	
alpha-BHC	.056
beta-BHC	.082
delta-BHC	.17
gamma-BHC	.039U
Hexachlorobenzene	NR

Notes:

U Undetected

Estimated value

NR Not Required Concentration in ug/l

Field blank was non-detect for all parameters of interest.

Data has been validated and judged acceptable as qualified.

Next hexachlorobenzene (HCB) sampling scheduled for October 2010

ATTACHMENT 1

INSPECTION AND SAMPLING SCHEDULE

CHARLES GIBSON SITE

(PINE AND TUSCARORA SITE)

NIAGARA FALLS, NEW YORK

NYSDEC Registry No. 9-32-063

GIBSON SITE NIAGARA FALLS, NEW YORK 2007 INSPECTION AND SAMPLING SCHEDULE

Quarterly Site Inspection (including Site Cover/Cap, Site Fence,

Creek Riprap, Site Structures, CPVC Drain/Sump

System).

Quarterly Piezometer and sump groundwater level elevation

measurements.

Semi-Annually Groundwater monitoring well sampling (April and

September) for BHC isomers.

Annually Cayuga Creek sediment sampling (September) for BHC

isomers.

Annually Leachate sample collection and analysis (Manhole B) for

BHC isomers (starting in 2000).

Annually Annual report to NYSDEC (1st Quarter).

Biennially Groundwater monitoring well sampling (starting in

April 2000) for HCB. The biennial sampling events following 2000 will alternate seasonally between April and September sampling. Next HCB sampling is

September 2006.

Every Five Years Leachate sample collection and analysis (Manhole B) (for HCB)

(starting in 2000). Next leachate sampling for HCB is 2010.

APPENDIX A

Data Evaluation Narrative April and September- 2007

CHARLES GIBSON SITE

(PINE AND TUSCARORA SITE)

NIAGARA FALLS, NEW YORK

NYSDEC Registry No. 9-32-063

Data Evaluation Narrative

Charles Gibson - April 2007 Groundwater Sampling Event

Matrix: Groundwater

SDG: A-07-3784 - Severn Trent Laboratories (STL), Amherst, NY

Deliverables

The data packages as submitted to Olin Corporation are complete as stipulated under the Quality Assurance Project Plan (OAPP) for United States Environmental Protection Agency (USEPA) Methods 8081A.

Sample Integrity

Samples within this sample delivery group (SDG) were submitted to the STL Laboratory in Amherst, NY (Buffalo) for chlorinated pesticide analyses. The sample cooler received at the laboratory measured 2.0° C which is within the required limit of 4° C $\pm 2^{\circ}$. The proper bottles and preservatives were used, the Chain of Custody was properly relinquished, and the correct analytical method was employed.

Sample Identification

This SDG contains the following water and quality control (QC) samples, collected on April 17, 2007:

SDG A-07-37847

| Sample ID |
|-----------|-----------|-----------|-----------|-----------|-----------|
| MHB | MW-1R | MW-2 | MW-2 Dup | MW-4 | MW-5 |
| MW-7 | MW-8 | MW-3 | | | |

Chlorinated Pesticides (8081A)

The samples in this SDG were submitted for chlorinated pesticides by USEPA Method 8081A.

Holding Times

The extraction and analytical logs indicate that applicable holding times were met for samples submitted for chlorinated pesticide analyses.

Practical Quantitation Limits

The practical quantitation limits (PQLs) as stipulated in the QAPP were met for the analysis of chlorinated pesticides by USEPA Method 8081A.

Calibration

The initial and continuing calibration data for this SDG indicates that the applicable initial calibration criteria were met for samples submitted for chlorinated pesticide analyses. However, several compounds exceeded the 15% difference requirement. The average of all of the analytes was within the 15% criteria and within laboratory QC protocols. Therefore, no additional qualification of the data was required.

Blank Summary

The analytical results of the laboratory method blanks indicate that chlorinated pesticides were not detected.

Laboratory Control Sample and Standard Reference Material Check

The laboratory control sample (LCS) (ongoing precision and recovery [OPR] sample) spike recoveries and the standard reference material (SRM) check are within the applicable QC advisory limits as specified in the QAPP.

Matrix Spike/Matrix Spike Duplicate

The results of the MS/MSD analyses were within acceptable QC limits as stipulated in the QAPP.

Sampling Accuracy

The data was within applicable QC advisory limits; therefore no qualification was required.

Laboratory Duplicate Samples

No samples were selected by the laboratory for duplicate analyses.

Field Duplicate Samples

Samples from MW-2/A7387404 and MW-2Dup/A7387405 were submitted to the laboratory for duplicate analyses. The relative percent difference for the field duplicate samples could not be assessed because no target compounds were detected in either sample. No additional qualifications were required.

Overall Site Evaluation and Professional Judgment Flagging Changes

The data within these SDG's were compared to site data and edits to the DQE flags were not required based on professional judgment.

Monitoring period completeness, which is the percentage of analytical results judged to be valid, including estimated values, was 100 percent for the April 2007 sampling event. Typically, project objectives are met when completeness is 90 percent or better.

Prepared by:	Date:
--------------	-------

Data Evaluation Narrative

Charles Gibson – April 2007 Groundwater Sampling Event

Matrix: Groundwater & Soil

SDG: A-07-A337 - Test America Laboratories (STL), Amherst, NY

Deliverables

The data packages as submitted to Olin Corporation are complete as stipulated under the Quality Assurance Project Plan (QAPP) for United States Environmental Protection Agency (USEPA) Methods 8081A.

Sample Integrity

Samples within this sample delivery group (SDG) were submitted to the Test America laboratory in Amherst, NY (Buffalo) for chlorinated pesticide analyses. The sample cooler received at the laboratory measured 2.0° C which is within the required limit of 4° C $\pm 2^{\circ}$. The proper bottles and preservatives were used, the Chain of Custody was properly relinquished, and the correct analytical method was employed.

Sample Identification

This SDG contains the following water, soil and quality control (QC) samples, collected on April 17, 2007:

SDG A-07-A377

Sample ID	Sample ID	Sample ID	Sample ID	Sample ID
MA-1-091307	MW-1R-091307	MW-2-091307	MW4-091307	MW-5-091307
MW-7-0913-07	US-1-0913-07		·	

Chlorinated Pesticides (8081A)

The samples in this SDG were submitted for chlorinated pesticides by USEPA Method 8081A.

Holding Times

The extraction and analytical logs indicate that applicable holding times were met for samples submitted for chlorinated pesticide analyses.

Practical Quantitation Limits

The practical quantitation limits (PQLs) as stipulated in the QAPP were met for the analysis of chlorinated pesticides by USEPA Method 8081A.

Calibration

The initial and continuing calibration data for this SDG indicates that the applicable initial calibration criteria were met for samples submitted for chlorinated pesticide analyses. However, several compounds exceeded the 15% difference requirement. The average of all of the analytes was within the 15% criteria and within laboratory QC protocols. Therefore, no additional qualification of the data was required.

Blank Summary

The analytical results of the laboratory method blanks indicate that chlorinated pesticides were not detected.

Laboratory Control Sample and Standard Reference Material Check

The laboratory control sample (LCS) (ongoing precision and recovery [OPR] sample) spike recoveries and the standard reference material (SRM) check are within the applicable QC advisory limits as specified in the QAPP.

Matrix Spike/Matrix Spike Duplicate

The results of the MS/MSD analyses were within acceptable QC limits as stipulated in the QAPP.

Sampling Accuracy

The data was within applicable QC advisory limits; therefore no qualification was required.

Laboratory Duplicate Samples

No samples were selected by the laboratory for duplicate analyses.

Field Duplicate Samples

Samples from MW-2/A7387404 and MW-2Dup/A7387405 were submitted to the laboratory for duplicate analyses. The relative percent difference for the field duplicate samples could not be assessed because no target compounds were detected in either sample. No additional qualifications were required.

Overall Site Evaluation and Professional Judgment Flagging Changes

The data within these SDG's were compared to site data and edits to the DQE flags were not required based on professional judgment.

Monitoring period completeness, which is the percentage of analytical results judged to be valid, including estimated values, was 100 percent for the April 2007 sampling event. Typically, project objectives are met when completeness is 90 percent or better.

Prepared by:	Date:	
1		

Data Evaluation Narrative

Charles Gibson - September 2007 Groundwater Sampling Event

Matrix: Groundwater & Soil

SDG: A-07-A337 - Test America Laboratories (STL), Amherst, NY

Deliverables

The data packages as submitted to Olin Corporation are complete as stipulated under the Quality Assurance Project Plan (QAPP) for United States Environmental Protection Agency (USEPA) Methods 8081A.

Sample Integrity

Samples within this sample delivery group (SDG) were submitted to the Test America laboratory in Amherst, NY (Buffalo) for chlorinated pesticide analyses. The sample cooler received at the laboratory measured 2.0° C which is within the required limit of 4° C \pm 2° . The proper bottles and preservatives were used, the Chain of Custody was properly relinquished, and the correct analytical method was employed.

Sample Identification

This SDG contains the following water, soil and quality control (QC) samples, collected in September 2007:

SDG A-07-A377

Sample ID	Sample ID	Sample ID	Sample ID	Sample ID
MA-1-091307	MW-1R-091307	MW-2-091307	MW4-091307	MW-5-091307
MW-7-0913-07	US-1-0913-07			

Chlorinated Pesticides (8081A)

The samples in this SDG were submitted for chlorinated pesticides by USEPA Method 8081A.

Holding Times

The extraction and analytical logs indicate that applicable holding times were met for samples submitted for chlorinated pesticide analyses.

Practical Quantitation Limits

The practical quantitation limits (PQLs) as stipulated in the QAPP were met for the analysis of chlorinated pesticides by USEPA Method 8081A.

Calibration

The initial and continuing calibration data for this SDG indicates that the applicable initial calibration criteria were met for samples submitted for chlorinated pesticide analyses. However, several compounds exceeded the 15% difference requirement. The average of all of the analytes was within the 15% criteria and within laboratory QC protocols. Therefore, no additional qualification of the data was required.

Blank Summary

The analytical results of the laboratory method blanks indicate that chlorinated pesticides were not detected.

Laboratory Control Sample and Standard Reference Material Check

The laboratory control sample (LCS) (ongoing precision and recovery [OPR] sample) spike recoveries and the standard reference material (SRM) check are within the applicable QC advisory limits as specified in the OAPP.

Matrix Spike/Matrix Spike Duplicate

The results of the MS/MSD analyses were within acceptable QC limits as stipulated in the QAPP.

Sampling Accuracy

The data was within applicable QC advisory limits; therefore no qualification was required.

Laboratory Duplicate Samples

No samples were selected by the laboratory for duplicate analyses.

Field Duplicate Samples

Samples from MW-2/A7387404 and MW-2Dup/A7387405 were submitted to the laboratory for duplicate analyses. The relative percent difference for the field duplicate samples could not be assessed because no target compounds were detected in either sample. No additional qualifications were required.

Overall Site Evaluation and Professional Judgment Flagging Changes

The data within these SDG's were compared to site data and edits to the DQE flags were not required based on professional judgment.

Monitoring period completeness, which is the percentage of analytical results judged to be valid, including estimated values, was 100 percent for the September 2007 sampling event. Typically, project objectives are met when completeness is 90 percent or better.

Prepared by:	Date:

APPENDIX A CHAIN OF CUSTODY FORM

Chain of Custody Record

TRENT STL Severn Trent Laboratories, Inc.

STL-4124 (0901)	4						
CHAN COLD	Project Manager	Project Manager Wile Ballo	- Holls		(0-(1-)	Chain of Custody Number 325409	
a liver As		umber (Area Cod 336	Fax Number		Lab Number	Page l of	
State	Zip Code Site Contact	K. Kent	Lab Contact	Ar	Analysis (Attach list if more space is needed)		
nd Location (State)	Carrier/Way		בייירייי יש				,
/Quote No.		Matrix	Containers & Preservatives	> <i>/</i>		Conditions of Receipt	ند ،
No. and Description ole may be combined on one line)	Date Time	suoeupA Sed.	NaOH ZnAc/ HCI HNO3 H2SO4	15		•	
MH3 -04/10)	1-17-01 1230	メ		义		12- 14th when	
-h (OLINO-11- MM				メ			
M122 - 04150 - 2 WIN	1415	/	X	×		#6x 1119a Aulos	1 20
	1 500	×	×	×		24 142	かなく
MW 5 - CU(1)0)	1530	 الح	×	メ			
MW - CHIDEL	1 2011		×	×			
MW-43-048707	1 200	\	メ	×		17	
- 04170 -	1 1600 l			ノソ		אָל	
ŀ							
Possible Hazard Identification Non-Hazard Flammable Skin Irritant Poison B	Х Опкпомп	Sample Disposal Return To Client	Disposal By Lab	Archive For	(A fee may be a	(A fee may be assessed if samples are retained longer than 1 month)	
B Required ☐ 48 Hours) ☐ ☐ 14 Days ☐ 14 Days	Days 🔲 Other	welked	Š				-
	1	11 The 25	1. Received By			Date Time	1 10
2. Helinquished By	Date	Time	2. Received By			Date	31/
3. Relinquished By	Date	Time	3. Received By			Date Time	267
Comments	The state of the s		2,000	7.6		_	
DISTRIBUTION: WHITE - Returned to Client with Report: CANARY - Stays with the Sample: PINK - Field Copy	RY - Stays with the Sample; P	INK - Field Copy					

APPENDIX B SUMMARY ANALYTICAL REPORT

STL Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

ANALYTICAL REPORT

Job#: A07-3874

STL Project#: NY3A9025 Site Name: OLIN CORPORATION Task: Charles Gibson Site

> Mr. Mike Bellotti Olin Corporation 1186 Lower River Road Charleston, TN 37310

CC: Mr. Michael Walker

STL Buffalo

Brian J. Fischer Project Manager

> Donna Besco Analyst

> > 5/7/07

STL Buffalo Current Certifications

As of 9/28/2006

STATE	Program	Cert # / Lab ID
AFCEE	AFCEE	
Arkansas	SDWA, CWA, RCRA, SOIL	88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA,NELAP CWA, RCRA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	. M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	SDWA, CWA, RCRA, CLP	NY455
New York	NELAP, AIR, SDWA, CWA, RCRA,ASP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	NELAP CWA,RCRA	68-00281
South Carolina	RCRA	91013
Tennessee	SDWA	02970
USDA	FOREIGN SOIL PERMIT	. S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	. 278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	. 252
Wisconsin	CWA, RCRA	998310390

Sample Data Summary Package

SAMPLE SUMMARY

			SAMPI	ED	RECEIVE	ED .
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A7387401	MHB-041707	LEACH			04/17/2007	
A7387402	MW-1R-041707	GW			04/17/2007	
A7387403	MW-2-041707	GW			04/17/2007	
A7387404	MW-2-MS-041707	GW			04/17/2007	
A7387405	MW-2-SD-041707	GW	04/17/2007	14:15	04/17/2007	16:45
A7387406	MW-4-041707	GW			04/17/2007	
A7387407	MW-5-041707	GW	04/17/2007	15:30	04/17/2007	16:45
A7387408	MW-7-041707	GW			04/17/2007	
A7387409	MW-8-041707	GW	04/17/2007	16:00	04/17/2007	16:45
A7387410	MWA-3-041707	GW	04/17/2007	12:00	04/17/2007	16:45

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

METHODS SUMMARY

Job#: <u>A07-3874</u>

STL Project#: NY3A9025

Site Name: Olin Corporation - Charles Gibson site

ANALYTICAL

PARAMETER

METHOD

ASP 2000- METHOD 8081 BHC'S

ASP00 8081

References:

ASP00

"Analytical Services Protocol", New York State Department of Environmental Conservation, June 2000.

The results presented in this report relate only to the analytical testing and conditions of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

SDG NARRATIVE

Job#: <u>A07-3874</u>

STL Project#: NY3A9025

Site Name: Olin Corporation - Charles Gibson site

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A07-3874

Sample Cooler(s) were received at the following temperature(s); $2.0\ ^{\circ}\text{C}$ All samples were received in good condition.

GC Extractable Data

For method 8081, several compounds exhibited a percent difference greater than 15% from the expected amount in the associated continuing calibrations. The average of all analytes is within 15% and the associated laboratory quality control recoveries are compliant. No corrective action was required.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

For method 8081 pesticides, the extracts for all samples were acid treated to minimize matrix interferences. None of the target pesticide compounds reported for this job are effected by this cleanup.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Iaboratory Manager or his/her designee, as verified by the following signature."

Brian J. Fischer Project Manager

5-8-01

Date

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

LAB NAME: SEVERN TRENT LABORATORIES, INC.

CUSTOMER SAMPLE ID	LABORATORY SAMPLE ID		ANALYTICAL REQUIREMENTS					
		VOA GC/MS	BNA GC/MS	VOA GC	PEST PCB	METALS	TCLP HERB	WATER QUALITY
MHB-041707	A7387401	•	-	- .	SW8463	-		-
MW-1R-041707	A7387402	1	-	-	SW8463	-	-	••
MW-2-041707	A7387403	•	-	-	SW8463	-	-	<u>.</u>
MW-2-MS-041707	A7387404	•	-	-	SW8463	-	<u>-</u> .	-
MW-2-SD-041707	A7387405	•	•	-	SW8463	_	-	-
MW-4-041707	A7387406	-	-	-	SW8463	_	_	
MW-5-041707	A7387407	•	•	-	SW8463		-	· •
MW-7-041707	A7387408	-	-	-	SW8463	-	_	-
MW-8-041707	A7387409	_	-	-	SW8463	-	_	_
MWA-3-041707	A7387410	_	-	-	SW8463	-	-	•

NYSDEC-1

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY PESTICIDE/PCB ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

<u> AB NAME: SEVERN TREI</u>	VI LADUKA	IORIES, INC.			
SAMPLE IDENTIFICATION	MATRIX	DATE COLLECTED	DATE RECEIVED AT LAB	DATE EXTRACTED	DATE ANALYZED
MHB-041707	LEACH	04/17/2007	04/17/2007	04/18/2007	04/19/2007
MW-1R-041707	GW	04/17/2007	04/17/2007	04/18/2007	04/19/2007
MW-2-041707	GW	04/17/2007	04/17/2007	04/18/2007	04/19/2007
MW-2-MS-041707	GW	04/17/2007	04/17/2007	04/18/2007	04/19/2007
MW-2-SD-041707	GW	04/17/2007	04/17/2007	04/18/2007	04/19/2007
MW-4-041707	GW	04/17/2007	04/17/2007	04/18/2007	04/19/2007
MW-5-041707	GW	04/17/2007	04/17/2007	04/18/2007	04/19/2007
MW-7-041707	GW	04/17/2007	04/17/2007	04/18/2007	04/19/2007
MW-8-041707	GW	04/17/2007	04/17/2007	04/18/2007	04/19/2007
MWA-3-041707	GW	04/17/2007	04/17/2007	04/18/2007	04/19/2007

NYSDEC-4

SAMPLE PREPARATION AND ANALYSIS SUMMARY ORGANIC ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

B NAME: SEVERN TRENT LABORATORIES, INC.						
SAMPLE IDENTIFICATION	MATRIX	ANALYTICAL PROTOCOL	EXTRACTION METHOD	AUXILIARY CLEAN UP	DIL/CONC FACTOR	
MHB-041707	LEACH	SW8463	SEPF	AS REQUIRED	AS REQUIRED	
MW-1R-041707	GW	SW8463	SEPF	AS REQUIRED	AS REQUIRED	
MW-2-041707	GW	SW8463	SEPF	AS REQUIRED	AS REQUIRED	
MW-2-MS-041707	GW	SW8463	SEPF	AS REQUIRED	AS REQUIRED	
MW-2-SD-041707	GW	SW8463	SEPF	AS REQUIRED	AS REQUIRED	
MW-4-041707	GW	SW8463	SEPF	AS REQUIRED	AS REQUIRED	
MW-5-041707	GW	SW8463	SEPF	AS REQUIRED	AS REQUIRED	
MW-7-041707	GW .	SW8463	SEPF	AS REQUIRED	AS REQUIRED	
MW-8-041707	GW	SW8463	SEPF	AS REQUIRED	AS REQUIRED	
MWA-3-041707	GW	SW8463	SEPF	AS REQUIRED	· AS REQUIRED	

STL

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- Indicates coelution.
- * Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.

- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- G Indicates a value greater than or equal to the project reporting limit but less than the laboratory quantitation limit
- Indicates the spike or duplicate analysis is not within the quality control limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

Tab Name (WIII Duffelo Contra		MHB-041707
Lab Name: STL Buffalo Contra	act:	
Lab Code: RECNY Case No.: SAS No.	.: SDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A7387401
Sample wt/vol: $\underline{1035.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID:	5A19193.TX0
% Moisture: decanted: (Y/N) N	Date Samp/Recv:	04/17/2007 04/17/2007
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted:	04/18/2007
Concentrated Extract Volume: 10000 (uL)	Date Analyzed:	04/19/2007
Injection Volume: 1.00 (uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) N pH: 6.00	Sulfur Cleanup:	(Y/N) <u>N</u>
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>	Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	0.17	

MW-1R-041707
SDG No.:
Lab Sample ID: A7387402
Lab File ID: 5A19194.TX0
Date Samp/Recv: 04/17/2007 04/17/2007
Date Extracted: 04/18/2007
Date Analyzed: 04/19/2007
Dilution Factor: 1.00
Sulfur Cleanup: (Y/N) N
CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
0.041 J 0.035 J 0.048 U 0.048 U

Tab Name (UII Duffelo	ntract:	L.	MW-2-04170) /
Lab Name: <u>STL Buffalo</u> Co	IILLACL:			
Lab Code: <u>RECNY</u> Case No.: SAS	No.: SDG N	lo.:		
Matrix: (soil/water) <u>WATER</u>	Lab	Sample ID:	A7387403	<u>.</u> .
Sample wt/vol: $\underline{1035.00}$ (g/mL) $\underline{\text{ML}}$	Lab	File ID:	5A19195.TX	00
% Moisture: decanted: (Y/N) N	Date	e Samp/Recv:	04/17/2007	04/17/2007
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date	e Extracted:	04/18/2007	2
Concentrated Extract Volume: 10000 (uL)	Date	analyzed:	04/19/2007	7
Injection Volume: 1.00 (uL)	Dilu	ution Factor:	1.00	
GPC Cleanup: (Y/N) N pH: 6.00	Sulf	fur Cleanup:	(Y/N) <u>N</u>	
CAS NO. COMPOUND	CONCENTRATION U (ug/L or ug/Kg		Q	•
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)		0.048 0.048 0.048 0.048	บ บ บ	

SIS DATA SHEET Client No.

Tale Manage COTT Dasfe		Classica and a			MW-4-041	707
Lab Name: STL Buff	alo	Contract:	***	-		
Lab Code: <u>RECNY</u>	Case No.:	SAS No.:	SDG	No.:		
Matrix: (soil/wate	er) <u>Water</u>		Lab	Sample ID:	<u> A7387406</u>	
Sample wt/vol:	<u>1030.00</u> (g/mL) <u>ML</u>	!	Lab	o File ID:	5A19198.	TXO
% Moisture:	decanted: (Y/N)	<u>N</u>	Dat	ce Samp/Recv:	04/17/20	<u>07 04/17/2007</u>
Extraction: (SepF/	'Cont/Sonc/Soxh): <u>SE</u>	PF	Dat	te Extracted:	04/18/20	<u>07</u>
Concentrated Extra	act Volume: <u>10000</u> (u	L)	Dat	ce Analyzed:	04/19/20	<u>07</u>
Injection Volume:	<u>1.00</u> (uL)		Di.	lution Factor:	1.00	
GPC Cleanup: (Y/N	I) <u>N</u> pH: <u>6.00</u>		Su	lfur Cleanup:	(Y/N) <u>N</u>	
CAS NO.	COMPOUND		NCENTRATION (ug/L or ug/l	UNITS: Kg) <u>UG/L</u>	Q	
319-85-7 319-86-8				0.042 0.033 0.048 0.048	J U	

I ab Name . Cutt Duffalo	act:
Lab Name: STL Buffalo Contr	act:
Lab Code: <u>RECNY</u> Case No.: SAS No	.: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A7387407</u>
Sample wt/vol: <u>1055.00</u> (g/mL) <u>ML</u>	Lab File ID: <u>5A19199.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv: <u>04/17/2007</u> <u>04/17/2007</u>
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 04/18/2007
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: <u>04/19/2007</u>
Injection Volume:1.00(uL)	Dilution Factor: 1.00
GPC Cleanup: (Y/N) N pH: 6.00	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	0.041 J 0.025 J 0.047 U 0.047 U

			MW-7-0417	07
Lab Name: <u>STL Buffalo</u> Cor	ntract:	L		
Lab Code: <u>RECNY</u> Case No.: SAS	No.: SD	G No.:		
Matrix: (soil/water) WATER	L	ab Sample ID:	<u> A7387408</u>	· ·
Sample wt/vol: 1050.00 (g/mL) ML	L	ab File ID:	<u>5A19200.T</u>	<u> </u>
% Moisture: decanted: (Y/N) N	D	ate Samp/Recv:	04/17/200	7 04/17/2007
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	D	ate Extracted:	04/18/200	<u>7</u>
Concentrated Extract Volume: 10000 (uL)	D	ate Analyzed:	04/19/200	<u>17</u>
Injection Volume:1.00(uL)	D	ilution Factor:	1.00	
GPC Cleanup: (Y/N) N pH: 6.00	S	ulfur Cleanup:	(Y/N) <u>N</u>	
CAS NO. COMPOUND	CONCENTRATIO (ug/L or ug	N UNITS: 1/Kg) <u>UG/L</u>	Q	
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)		0.041 0.035 0.048 0.048	1 1	

Lab Name: STL Buffalo Contrac	MW-8-041707
Lab Code: <u>RECNY</u> Case No.: SAS No.	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A7387409</u>
Sample wt/vol: <u>1045.00</u> (g/mL) <u>ML</u>	Lab File ID: <u>5A19201.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv: <u>04/17/2007</u> <u>04/17/2007</u>
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 04/18/2007
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: <u>04/19/2007</u>
Injection Volume:1.00 (uL)	Dilution Factor:1.00
GPC Cleanup: (Y/N) N pH: 5.00	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	0.048 U 0.048 U 0.048 U 0.048 U

		1	MWA-3-041	1707
Lab Name: <u>STL Buffalo</u> Cor	ntract:			
Lab Code: RECNY Case No.: SAS	No.: SDG	No.:		
Matrix: (soil/water) WATER	Lak	Sample ID:	A7387410	
Sample wt/vol: <u>1050.00</u> (g/mL) <u>ML</u>	Lab	File ID:	5A19202.'	ľXO
% Moisture: decanted: (Y/N) N	Dat	ce Samp/Recv:	04/17/20	07 04/17/2007
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Dat	te Extracted:	04/18/20	<u>07</u>
Concentrated Extract Volume: 10000 (uL)	Dat	ce Analyzed:	04/19/20	<u>07</u>
Injection Volume:1.00(uL)	Di	lution Factor:	1.00	
GPC Cleanup: (Y/N) N pH: 6.00	Sui	lfur Cleanup:	(Y/N) <u>N</u>	
CAS NO. COMPOUND	CONCENTRATION (ug/L or ug/l		Q	
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)		0.048 0.048 0.048 0.048	บ บ บ	

OLIN CORPORATION OLIN CORPORATION - CHARLES GIBSON SITE ASP 2000- METHOD 8081 BHC'S WATER SURROGATE RECOVERY

Lab Name: STL	<u>Buffalo</u>		Contract:		
Lab Code: RECN	<u>ıy</u> Case	No.:	SAS No.:	 SDG No.:	
GC Column(1):	RTX-CLPI	ID: <u>0.53</u> (mm)			

	Client Sample ID	Lab Sample ID		TCMX %REC #							TOT OUT
			======	======	======	======	======	======	=====	======	===
1	Matrix Spike Blank	A7B0558301	61	86	1						0
	Matrix Spike Blk Dup	A7B0558302	69	85							0
	Method Blank	A7B0558303	62	80							0
4	MHB-041707	A7387401	96	94		1		ĺ			0
5	MW-1R-041707	A7387402	96	84	l						0
6	MW-2-041707	A7387403	99	89	1		ļ				0
7	MW-2-MS-041707	A7387404	98	84	1	<u> </u>			ļ	1	0
8	MW-2-SD-041707	A7387405	96	90					1		0
9	MW-4-041707	A7387406	70	85	1					İ	0
10	MW-5-041707	A7387407	65	90					l		0
11	MW-7-041707	A7387408	85	90	1						0
12	MW-8-041707	A7387409	72	92			l	ŀ	ļ		0
13	MWA-3-041707	A7387410	86	86	<u> </u>						

QC LIMITS

(DCBP) = Decachlorobiphenyl (TCMX) = Tetrachloro-m-xylene

(15-139) (30-139)

- Column to be used to flag recovery values Values outside of contract required QC limits Surrogates diluted out

OLIN CORPORATION - CHARLES GIBSON SITE

ASP 2000- METHOD 8081 BHC'S

WATER MATRIX SPIKE BLANK/MATRIX SPIKE BLANK DUPLICATE RECOVERY

Lab Name: <u>STL Buffalo</u>	Contract:		Lab Samp ID: <u>A7B0558303</u>				
Lab Code: <u>RECNY</u> Case No	SAS No.: _		SI	G No.:			
Matrix Spike - Client Sampl	Le No.: Method B	<u>lank</u>					
COMPOUND	SPIKE ADDED UG/L	MSB CONCENTRATION UG/L	MSB % REC #	QC LIMITS REC.	.		
gamma-BHC (Lindane) alpha-BHC beta-BHC delta-BHC	0.500 0.500 0.500 0.500	0.445 0.434 0.482 0.459	89 87 96 92	46 - 120 39 - 121 39 - 138 40 - 121) L 3		
COMPOUND	SPIKE ADDED UG/L	MSBD CONCENTRATION UG/L	MSBD % REC #	1		C LIMITS	T+
gamma-BHC (Lindane) alpha-BHC beta-BHC delta-BHC	0.500 0.500 0.500 0.500	0.441 0.430 0.477 0.456	88 86 95 91	1 1 1 1	50 50 50 50	l .	
# Column to be used to flag * Values outside of QC lim RPD:0 out of4 out Spike recovery:0 out of	its cside limits		n asteris	k	<u> </u>		
Comments:							

OLIN CORPORATION OLIN CORPORATION - CHARLES GIBSON SITE ASP 2000- METHOD 8081 BHC'S METHOD BLANK SUMMARY

Inh Name-	CTI Duffalo	Contract:	1	Method Blank	
Lad Name:	STL Buffalo	COMETAGE:			
Lab Code:	RECNY Case No.:	SAS No.:	: SI	DG No.:	
Lab Sample	e ID: <u>A7B0558303</u>	Lab I	File ID: <u>5A19</u>	187.TX0	
Matrix: (soil/water) <u>WATER</u>	Extra	action:	SEPF	
Sulfur Cle	eanup: (Y/N): <u>N</u>	Date	Extracted:	04/18/2007	•
Date Analy	yzed (1): <u>04/19/2007</u>	Date	Analyzed (2)	:	
Time Analy	yzed (1): <u>14:38</u>	Time	Analyzed (2)	:	
Instrument	ID (1): <u>HP6890-5</u>	Insti	rument ID (2)	:	
GC Column	(1): <u>RTX-CLPI</u> Dia: <u>0</u> .	.53 (mm) GC Cc	olumn (2):	Dia:	(mm)
	THIS METHOD BLANK APPLIE	S TO THE FOLI	LOWING SAMPLE	S, MS AND MSD:	
	CLIENT SAMPLE NO.	LAB SAMPLE ID	DATE ANALYZED 1	DATE ANALYZED 2	
1 2 3 4 5 6 7 8 9 10 11 12	Matrix Spike Blank Matrix Spike Blk Dup MHB-041707 MW-1R-041707 MW-2-041707 MW-2-MS-041707 MW-2-SD-041707 MW-4-041707 MW-5-041707 MW-7-041707 MW-7-041707 MW-8-041707	A7B0558301	04/19/2007 04/19/2007 04/19/2007 04/19/2007 04/19/2007 04/19/2007 04/19/2007 04/19/2007 04/19/2007 04/19/2007 04/19/2007		
Commente					

Tale Name COM Duffele	Method Blank
Lab Name: STL Buffalo Contrac	ot:
Lab Code: RECNY Case No.: SAS No.	: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A7B0558303</u>
Sample wt/vol: 1000.00 (g/mL) ML	Lab File ID: <u>5A19187.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv:
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 04/18/2007
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 04/19/2007
Injection Volume:1.00(uL)	Dilution Factor:1.00
GPC Cleanup: (Y/N) N pH: _5.00	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	0.050 U 0.050 U 0.050 U 0.050 U

Sample Data Package

SDG Narrative

STL Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

ANALYTICAL REPORT

Job#: A07-3874

STL Project#: NY3A9025 Site Name: <u>OLIN CORPORATION</u> Task: Charles Gibson Site

> Mr. Mike Bellotti Olin Corporation 1186 Lower River Road Charleston, TN 37310

CC: Mr. Michael Walker

STL Buffalo

Brian J. Fischer Project Manager

> Donna Besco Analyst

> > 5/7/07

STL Buffalo Current Certifications

As of 9/28/2006

STATE	Program	Cert # / Lab ID
AFCEE	AFCEE	
Arkansas	SDWA, CWA, RCRA, SOIL	88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA,NELAP CWA, RCRA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	. M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	SDWA, CWA, RCRA, CLP	NY455
New York	NELAP, AIR, SDWA, CWA, RCRA,ASP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	NELAP CWA,RCRA	68-00281
South Carolina	RCRA	91013
Tennessee	SDWA	02970
USDA	FOREIGN SOIL PERMIT	. S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	· C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA, RCRA	998310390

Sample Data Summary Package

SAMPLE SUMMARY

			SAMPI	ED	RECEIVE	ED CE
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A7387401	MHB-041707	LEACH	04/17/2007	12:30	04/17/2007	16:45
A7387402	MW-1R-041707	GW			04/17/2007	
A7387403	MW-2-041707	GW			04/17/2007	
A7387404	MW-2-MS-041707	GW	04/17/2007	14:15	04/17/2007	16:45
A7387405	MW-2-SD-041707	GW	04/17/2007	14:15	04/17/2007	16:45
A7387406	MW-4-041707	GW	04/17/2007	15:00	04/17/2007	16:45
A7387407	MW-5-041707	GW	04/17/2007	15:30	04/17/2007	16:45
A7387408	MW-7-041707	GW	04/17/2007	11:00	04/17/2007	16:45
A7387409	MW-8-041707	GW	04/17/2007	16:00	04/17/2007	16:45
A7387410	MWA-3-041707	GW	04/17/2007	12:00	04/17/2007	16:45

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

METHODS SUMMARY

Job#: <u>A07-3874</u>

STL Project#: NY3A9025

Site Name: Olin Corporation - Charles Gibson site

PARAMETER ANALYTICAL METHOD
ASP00 8081

ASP 2000- METHOD 8081 BHC'S

References:

ASP00

"Analytical Services Protocol", New York State Department of Environmental

Conservation, June 2000.

The results presented in this report relate only to the analytical testing and conditions of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

SDG NARRATIVE

Job#: A07-3874

STL Project#: NY3A9025

Site Name: Olin Corporation - Charles Gibson site

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A07-3874

Sample Cooler(s) were received at the following temperature(s); 2.0 °C All samples were received in good condition.

GC Extractable Data

For method 8081, several compounds exhibited a percent difference greater than 15% from the expected amount in the associated continuing calibrations. The average of all analytes is within 15% and the associated laboratory quality control recoveries are compliant. No corrective action was required.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

For method 8081 pesticides, the extracts for all samples were acid treated to minimize matrix interferences. None of the target pesticide compounds reported for this job are effected by this cleanup.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Brian J. Fischer Project Manager

5-8-01

Date

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

LAB NAME: SEVERN TRENT LABORATORIES, INC.

CUSTOMER SAMPLE ID	LABORATORY SAMPLE ID		ANALYTICAL REQUIREMENTS					
		VOA GC/MS	BNA GC/MS	VOA GC	PEST PCB	METALS	TCLP HERB	WATER QUALITY
MHB-041707	A7387401	ı	-	-	SW8463	-	-	
MW-1R-041707	A7387402	. 1	•	-	SW8463	-	-	-
MW-2-041707	A7387403	<u>.</u>		- .	SW8463	-	•	
MW-2-MS-041707	A7387404		-	-	SW8463	-	.	-
MW-2-SD-041707	A7387405		•	-	SW8463	-	-	-
MW-4-041707	A7387406	-	-	-	SW8463	-	· 	•
MW-5-041707	A7387407	<u>-</u>	-	•	SW8463	_	-	-
MW-7-041707	A7387408	-	-	•	SW8463	_	-	-
MW-8-041707	A7387409	-	-	-	SW8463	-	-	**
MWA-3-041707	A7387410	-	-	-	SW8463	-	-	-

SAMPLE PREPARATION AND ANALYSIS SUMMARY PESTICIDE/PCB ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES. INC.

<u>AB NAME: SEVERN TREI</u>	VI LADUKA	ORIES, INC.			
SAMPLE IDENTIFICATION	MATRIX	DATE COLLECTED	DATE RECEIVED AT LAB	DATE EXTRACTED	DATE ANALYZED
MHB-041707	LEACH	04/17/2007	04/17/2007	04/18/2007	04/19/2007
MW-1R-041707	GW	04/17/2007	04/17/2007	04/18/2007	04/19/2007
MW-2-041707	GW	04/17/2007	04/17/2007	04/18/2007	04/19/2007
MW-2-MS-041707	GW	04/17/2007	04/17/2007	04/18/2007	04/19/2007
MW-2-SD-041707	GW	04/17/2007	04/17/2007	04/18/2007	04/19/2007
MW-4-041707	GW	04/17/2007	04/17/2007	04/18/2007	04/19/2007
MW-5-041707	GW	04/17/2007	04/17/2007	04/18/2007	04/19/2007
MW-7-041707	GW	04/17/2007	04/17/2007	04/18/2007	04/19/2007
MW-8-041707	GW	04/17/2007	04/17/2007	04/18/2007	04/19/2007
MWA-3-041707	GW	04/17/2007	04/17/2007	04/18/2007	04/19/2007

SAMPLE PREPARATION AND ANALYSIS SUMMARY ORGANIC ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

AB NAME: SEVERN TRE	VI LADOIGNI	ORIDO, HAO.			
SAMPLE IDENTIFICATION	MATRIX	ANALYTICAL PROTOCOL	EXTRACTION METHOD	AUXILIARY CLEAN UP	DIL/CONC FACTOR
MHB-041707	LEACH	SW8463	SEPF	AS REQUIRED	AS REQUIRED
MW-1R-041707	GW	SW8463	SEPF	AS REQUIRED	AS REQUIRED
MW-2-041707	GW	SW8463	SEPF	AS REQUIRED	AS REQUIRED
MW-2-MS-041707	GW	SW8463	SEPF	AS REQUIRED	AS REQUIRED
MW-2-SD-041707	GW	SW8463	SEPF	AS REQUIRED	AS REQUIRED
MW-4-041707	GW	SW8463	SEPF	AS REQUIRED	AS REQUIRED
MW-5-041707	GW	SW8463	SEPF	AS REQUIRED	AS REQUIRED
MW-7-041707	GW .	SW8463	SEPF	AS REQUIRED	AS REQUIRED
MW-8-041707	GW	SW8463	SEPF	AS REQUIRED	AS REQUIRED
MWA-3-041707	GW	SW8463	SEPF	AS REQUIRED	AS REQUIRED

STL

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag Indicates that a TIC is a suspected aldol-condensation product.
- Indicates coelution.
- * Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.

- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- G Indicates a value greater than or equal to the project reporting limit but less than the laboratory quantitation limit
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

Lab Name: <u>STL Buffalo</u> Contrac	t:
Lab Name: SIN BULLATO	
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A7387401</u>
Sample wt/vol: 1035.00 (g/mL) ML	Lab File ID: <u>5A19193.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv: <u>04/17/2007</u> <u>04/17/2007</u>
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 04/18/2007
Concentrated Extract Volume: _10000(uL)	Date Analyzed: <u>04/19/2007</u>
Injection Volume:1.00(uL)	Dilution Factor:1.00
GPC Cleanup: (Y/N) N pH: 6.00	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	0.056 0.082 0.17 0.039 J

Lab Name: <u>STL Buffalo</u> Contra	ct:	-1R-041707
Lab Code: RECNY Case No.: SAS No.		
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A73	387402
Sample wt/vol: 1050.00 (g/mL) ML	Lab File ID: <u>5A1</u>	L9194.TX0
% Moisture: decanted: (Y/N) N	Date Samp/Recv: 04/	<u>/17/2007</u>
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 04/	<u>/18/2007</u>
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 04,	<u>/19/2007</u>
Injection Volume:1.00(uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) N pH: 6.00	Sulfur Cleanup: (Y,	/N) <u>N</u>
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>	Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	0.041 0.035 0.048 0.048	J

Lab Name: STL Buffalo Contr	ract:
Lab Code: RECNY Case No.: SAS No	o.: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A7387403</u>
Sample wt/vol: 1035.00 (g/mL) ML	Lab File ID: <u>5A19195.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv: 04/17/2007 04/17/2007
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 04/18/2007
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: <u>04/19/2007</u>
Injection Volume:1.00(uL)	Dilution Factor:1.00
GPC Cleanup: (Y/N) N pH: 6.00	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	0.048 U 0.048 U 0.048 U 0.048 U

			MW-4-041707
Lab Name: <u>STL Buffalo</u>	Contract:	and the state of t	L
Lab Code: RECNY Case No.:	SAS No.:	SDG No.:	
Matrix: (soil/water) <u>WATER</u>		Lab Sample ID:	<u>A7387406</u>
Sample wt/vol: <u>1030.00</u> (g/mL) <u>ML</u>		Lab File ID:	<u>5A19198.TX0</u>
% Moisture: decanted: (Y/N)	<u>N</u>	Date Samp/Recv:	04/17/2007 04/17/2007
Extraction: (SepF/Cont/Sonc/Soxh): SE	<u>PF</u>	Date Extracted:	04/18/2007
Concentrated Extract Volume: _10000(ul	L)	Date Analyzed:	04/19/2007
Injection Volume:1.00(uL)		Dilution Factor:	1.00
GPC Cleanup: (Y/N) N pH: 6.00		Sulfur Cleanup:	(Y/N) <u>N</u>
CAS NO. COMPOUND		TION UNITS: ug/Kg) <u>UG/L</u>	Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)		0.042 0.033 0.048 0.048	J U

	1	MW-5-041707
Lab Name: STL Buffalo Contrac	t:	
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A7387407
Sample wt/vol: 1055.00 (g/mL) ML	Lab File ID:	5A19199.TX0
% Moisture: decanted: (Y/N) N	Date Samp/Recv:	04/17/2007 04/17/2007
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted:	04/18/2007
Concentrated Extract Volume: 10000 (uL)	Date Analyzed:	04/19/2007
Injection Volume:1.00(uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) N pH: 6.00	Sulfur Cleanup:	(A/N) <u>N</u>
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>	Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	0.041 0.025 0.047 0.047	์ บ

	MW-7-041707
Lab Name: <u>STL Buffalo</u> Contra	ct:
Lab Code: RECNY Case No.: SAS No.	: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A7387408
Sample wt/vol: 1050.00 (g/mL) ML	Lab File ID: <u>5A19200.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv: <u>04/17/2007</u> <u>04/17/2007</u>
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 04/18/2007
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: <u>04/19/2007</u>
Injection Volume:1.00(uL)	Dilution Factor:1.00
GPC Cleanup: (Y/N) N pH: 6.00	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	0.041 J 0.035 J 0.048 U 0.048 U

Lab Name: <u>STL Buffalo</u> Contra	MW-8-041707
Lab Code: RECNY Case No.: SAS No.	
Matrix: (soil/water) WATER	Lab Sample ID: <u>A7387409</u>
Sample wt/vol: <u>1045.00</u> (g/mL) <u>ML</u>	Lab File ID: <u>5A19201.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv: <u>04/17/2007</u> <u>04/17/2007</u>
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: <u>04/18/2007</u>
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 04/19/2007
Injection Volume: 1.00 (uL)	Dilution Factor:1.00
GPC Cleanup: (Y/N) N pH: 5.00	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	0.048 U 0.048 U 0.048 U 0.048 U

		MWA-3-041707
Lab Name: STL Buffalo Contrac	et:	
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A7387410
Sample wt/vol: 1050.00 (g/mL) ML	Lab File ID:	5A19202.TX0
% Moisture: decanted: (Y/N) N	Date Samp/Recv:	04/17/2007 04/17/2007
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted:	04/18/2007
Concentrated Extract Volume: 10000 (uL)	Date Analyzed:	04/19/2007
Injection Volume:1.00(uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) N pH: 6.00	Sulfur Cleanup:	(Y/N) <u>N</u>
CAS NO. COMPOUND	CONCENIRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>	Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	0.048 0.048 0.048 0.048	ָ บ

OLIN CORPORATION OLIN CORPORATION - CHARLES GIBSON SITE ASP 2000- METHOD 8081 BHC'S WATER SURROGATE RECOVERY

Lab Name: <u>STL Buffalo</u>				Contract:	****		
Lab Code: RECNY	Case	No.:		SAS No.:		SDG No.:	
GC Column(1): RTX-CLPI	_	ID: 0	.53 (mm)				

	Client Sample ID	Lab Sample ID		TCMX %REC #							TOT OUT
1	22222222222222222	==========	======	======	======	======	======	======	======	======	===
1	Matrix Spike Blank	A7B0558301	61	86	1						0
	Matrix Spike Blk Dup	A7B0558302	69	85							0
	Method Blank	A7B0558303	62	80	l						0
4	MHB-041707	A7387401	96	94	1	1					0
5	MW-1R-041707	A7387402	96	84	1						0
6	MW-2-041707	A7387403	99	89	1						0
7	MW-2-MS-041707	A7387404	98	84		1	ĺ				
8	MW-2-SD-041707	A7387405	96	90	1						0
9	MW-4-041707	A7387406	70	85	1						0
	MW-5-041707	A7387407	65	90							0
11	MW-7-041707	A7387408	85	90			İ]			0
	MW-8-041707	A7387409	72	92			1			1	0
13	MWA-3-041707	A7387410	86	86	1						0

QC LIMITS

(DCBP) = Decachlorobiphenyl (TCMX) = Tetrachloro-m-xylene

(15-139) (30-139)

- # Column to be used to flag recovery values* Values outside of contract required QC limitsD Surrogates diluted out

OLIN CORPORATION - CHARLES GIBSON SITE

ASP 2000- METHOD 8081 BHC'S

WATER MATRIX SPIKE BLANK/MATRIX SPIKE BLANK DUPLICATE RECOVERY

* Values outside of QC limits RPD:0 out of4 outside limits	Lab Name: <u>STL Buffalo</u>		Contract:		Lab Samp ID: <u>A7B0558303</u>			
SPIKE MSB MSB QC + ADDED UG/L UG/L REC # REC. R	Lab Code: <u>RECNY</u> Case No).:	SAS No.:		SDG No.:			
COMPOUND UG/L UG/L REC # REC.	Matrix Spike - Client Sampl	e No.: <u>Method B</u>	<u>lank</u>					
Gamma-BHC (Lindane)	COMPOUND	ADDED	CONCENTRATION UG/L	% REC #	LIMITS REC.			
ADDED CONCENTRATION % % QC LIMITS	alpha-BHC beta-BHC	0.500 0.500	0.445 0.434 0.482	89 87 96	46 - 120 39 - 121 39 - 138			
gamma-BHC (Lindane) 0.500 0.441 88 1 50 46 - 120 alpha-BHC 0.500 0.430 86 1 50 39 - 121 beta-BHC 0.500 0.477 95 1 50 39 - 138 delta-BHC 0.500 0.456 91 1 50 40 - 121 # Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits RPD: 0 out of 4 outside limits	COMPOUND	ADDED	CONCENTRATION	% REC #	RPD #	-		
* Values outside of QC limits RPD:0 out of4 outside limits	alpha-BHC beta-BHC	0.500 0.500	0.430 0.477	88 86 95	1 1 1	50 50	39 - 121 39 - 138	
Spike recovery:0 out of8 outside limits	* Values outside of QC limi	its cside limits		n asteris	k			
	•	of <u>8</u> outside	limits					

OLIN CORPORATION OLIN CORPORATION - CHARLES GIBSON SITE ASP 2000 - METHOD 8081 BHC'S METHOD BLANK SUMMARY

Client No.

Tab Name	COT Duffalo	Contract.	T C	Method Blank	
Lap Name:	STL Buffalo	Contract:	D		
Lab Code:	RECNY Case No.:	SAS No.:	SI	OG No.:	
Lab Sample	e ID: <u>A7B0558303</u>	Lab E	File ID: <u>5A191</u>	L87.TX0	
Matrix: (s	soil/water) <u>WATER</u>	Extra	action:	SEPF	
Sulfur Cle	eanup: (Y/N): <u>N</u>	Date	Extracted:	04/18/2007	
Date Analy	vzed (1): <u>04/19/2007</u>	Date	Analyzed (2)		
Time Analy	zed (1): <u>14:38</u>	Time	Analyzed (2)		
Instrument	ID (1): <u>HP6890-5</u>	Insti	rument ID (2)		
GC Column	(1): <u>RTX-CLPI</u> Dia: <u>0</u>	.53 (mm) GC Cc	olumn (2):	Dia: _	(mm)
, J	THIS METHOD BLANK APPLIE	ES TO THE FOLI	LOWING SAMPLES	s, MS AND MSD:	
	CLIENT SAMPLE NO.	LAB SAMPLE ID	DATE ANALYZED 1	DATE ANALYZED 2	
1 2 3 4 5 6 7 8 9 10 11 12	Matrix Spike Blank Matrix Spike Blk Dup MHB-041707 MW-1R-041707 MW-2-041707 MW-2-MS-041707 MW-2-SD-041707 MW-4-041707 MW-5-041707 MW-7-041707 MW-8-041707 MW-8-041707	A780558301 A780558302 A7387401 A7387402 A7387404 A7387405 A7387406 A7387407 A7387407 A7387408 A7387409 A7387410	04/19/2007 04/19/2007 04/19/2007 04/19/2007 04/19/2007 04/19/2007 04/19/2007 04/19/2007 04/19/2007 04/19/2007 04/19/2007 04/19/2007		
Comments:					

OLIN CORPORATION OLIN CORPORATION - CHARLES GIBSON SITE ASP 2000- METHOD 8081 BHC'S (ANALYSIS DATA SHEET

Client No.

Lab Name: STL Buffalo Contrad	Method Blank
TAD NAME: SIN BULLATO CONCIA	<u> </u>
Lab Code: <u>RECNY</u> Case No.: SAS No.	: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: <u>A7B0558303</u>
Sample wt/vol: 1000.00 (g/mL) ML	Lab File ID: 5A19187.TX0
% Moisture: decanted: (Y/N) N	Date Samp/Recv:
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 04/18/2007
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 04/19/2007
Injection Volume:1.00(uL)	Dilution Factor:1.00
GPC Cleanup: (Y/N) N pH: _5.00	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENIRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	0.050 U 0.050 U 0.050 U 0.050 U

Sample Data Package

SDG Narrative

SAMPLE SUMMARY

· ·			SAMP	LED	RECEIVE	E D
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A7387401	MHB-041707	LEACH	04/17/2007	12:30	04/17/2007	16:45
A7387402	MW-1R-041707	GW	04/17/2007	13:15	04/17/2007	16:45
A7387403	MW-2-041707	GW	04/17/2007	14:15	04/17/2007	16:45
A7387404	MW-2-MS-041707	GW	04/17/2007	14:15	04/17/2007	16:45
A7387405	MW-2-SD-041707	GW	04/17/2007	14:15	04/17/2007	16:45
A7387406	MW-4-041707	GW	04/17/2007	15:00	04/17/2007	16:45
A7387407	MW-5-041707	GW	04/17/2007	15:30	04/17/2007	16:45
A7387408	MW-7-041707	GW	04/17/2007	11:00	04/17/2007	16:45
A7387409	MW-8-041707	GW	04/17/2007	16:00	04/17/2007	16:45
A7387410	MWA-3-041707	GW	04/17/2007	12:00	04/17/2007	16:45

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

METHODS SUMMARY

Job#: <u>A07-3874</u>

STL Project#: NY3A9025

Site Name: Olin Corporation - Charles Gibson site

ANALYTICAL METHOD

PARAMETER
ASP 2000- METHOD 8081 BHC'S

ASP00 8081

References:

ASP00

"Analytical Services Protocol", New York State Department of Environmental Conservation, June 2000.

The results presented in this report relate only to the analytical testing and conditions of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

SDG NARRATIVE

Job#: A07-3874

STL Project#: NY3A9025

Site Name: Olin Corporation - Charles Gibson site

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A07-3874

Sample Cooler(s) were received at the following temperature(s); $2.0~^{\circ}$ C All samples were received in good condition.

GC Extractable Data

For method 8081, several compounds exhibited a percent difference greater than 15% from the expected amount in the associated continuing calibrations. The average of all analytes is within 15% and the associated laboratory quality control recoveries are compliant. No corrective action was required.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

For method 8081 pesticides, the extracts for all samples were acid treated to minimize matrix interferences. None of the target pesticide compounds reported for this job are effected by this cleanup.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Brian J. Rischer Project Manager

Date

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

APPENDIX B

Field Logs

Semiannual Groundwater Monitoring and Annual Sediment Sampling and Quarterly Inspections

2007

CHARLES GIBSON SITE

(PINE AND TUSCARORA SITE)

NIAGARA FALLS, NEW YORK

NYSDEC Registry No. 9-32-063

DATE: <u>2/27/2007</u>	TIME:	1300	number of the state of the stat
INSPECTOR: W	/alker	COMPANY:	Sevenson
WEATHER: 29	9 F, Snow		
REASON FOR INSPEC	ΓΙΟΝ (QUARTER	LY OR OTHER <u>):</u>	Quarterly Inspection
GENERAL SITE CONDI	TIONS:	U=UNACCEPTAB	BLE A=ACCEPTABLE
			pare areas (number,size), cracks,
			ation, soil discoloration or seeps, of locks, gates open or damaged,
missing signs	s or evidence of v	andalism. Note any oth	ner unusual occurences.)
		COMM	MENTS .
ACCESS ROAD	<u>A</u>	Covere	ed in Snow
COVER VEGETATION	A	Covere	ed in Snow
TREES	<u>A</u>	<u>OK</u>	
LITTER	<u>A</u>		
EROSION (CAP)	<u>A</u> .	Covere	ed in Snow
EROSION (BANK)	<u>A</u>	Covere	ed in Snow
SECURITY:			•
FENCE/LOCKS	Α .		
PIEZOMETERS/LOCKS	A		÷.
MONITORING WELLS/I	OCKS A		
MANHOLES/LIDS/LOC	KS A		
ELECTRICAL PANEL	A		
ADDITIONAL COMMEN	TS.		
ADDITIONAL COMMEN	10.		

DATE: <u>4/17/2007</u>		TIME:	1000		
INSPECTOR: M.	Walker		_COMPAN	<u>(:</u>	Sevenson Environmental Svc.
WEATHER:					
REASON FOR INSPECT	TON (QUA	RTERLY	OR OTHER	₹):	Semi-Annual Inspection/GW Monitoring
subsidence (s and rodent bu	neral site o sinking), po irrows. Fo	onded wat or site sec	note existe ter, stressed urity, note a	nce of bare I vegetation bsence of lo	A=ACCEPTABLE areas (number,size), cracks, , soil discoloration or seeps, ocks, gates open or damaged, unusual occurences.)
ACCESS DOAD		٨		COMMEN	тѕ
ACCESS ROAD COVER VEGETATION	-	<u>А</u> А	-		
TREES	••••	A A	-	2 dead nin	es, Probably from October ice storm.
LITTER		A	_	∠ ucau pili	co, i robably from October Ice Storill.
EROSION (CAP)			-		
EROSION (BANK)		A A			
SECURITY:					
FENCE/LOCKS		Α			
PIEZOMETERS/LOCKS	÷	Α			
MONITORING WELLS/L	ocks -	Α	-		
MANHOLES/LIDS/LOCK	s	Α			
ELECTRICAL PANEL		Α	- -		
ADDITIONAL COMMEN	TS:				
DITION C COMMEN	_				

DATE: 8/6/2007	TIME:	800	
INSPECTOR: Wall	ker	COMPANY:	Sevenson Environmental Services
WEATHER:			
REASON FOR INSPECTIO	ON (QUARTERL	Y OR OTHER <u>):</u>	Creek bank repair, Hang signs
GENERAL SITE CONDITIO			LE A=ACCEPTABLE
			pare areas (number,size), cracks, tion, soil discoloration or seeps,
			of locks, gates open or damaged, ner unusual occurences.)
This only digital o	r cviacinoc or va	COMM	ŕ
ACCESS ROAD	Α	COIVIIV	ILIVIO
COVER VEGETATION	Α .		
TREES	A		
LITTER	<u>A</u>		
EROSION (CAP)	<u>A</u>	·······	
EROSION (BANK)	<u>A</u>		·
SECURITY:			
FENCE/LOCKS	<u>A</u>		
PIEZOMETERS/LOCKS	A	<u> </u>	
MONITORING WELLS/LO	CKS A		
MANHOLES/LIDS/LOCKS	<u>A</u>		
ELECTRICAL PANEL	<u>A</u>		
ADDITIONAL COMMENTS	S: Onsite th	is morning with an ex	cavator and operator to dig the
large stones that form a bri	dge/dam across	the creek, and repla	ce them on the shore to prevent erosion
We will also post warning s	signs on the fend	e	
Walker 8 hrs , site truck 8 h	ars excavator.8	hrs onerator 8 hrs s	ians
vvaiker o ms , site truck o i	irs, excavator o	ilis, operator o ms, s	igris.
			· · · · · · · · · · · · · · · · · · ·
			·
	•		

DATE:	9/13/2007	TIME:	800	
INSPECT	OR: M. Walk	er	COMPANY:	Sevenson Environmental Svc.
WEATHE	R: Sunny <	clear 58		
REASON	FOR INSPECTION (QUARTERLY	OR OTHER <u>):</u>	Third Quarter Insp./ GW Monitoring
GENERA	subsidence (sinking and rodent burrows	site conditions j), ponded wat . For site sec	note existence of leer, stressed vegetaurity, note absence	BLE A=ACCEPTABLE bare areas (number,size), cracks, ation, soil discoloration or seeps, of locks, gates open or damaged, her unusual occurences.)
			COM	MENTS
ACCESS COVER V	ROAD /EGETATION	A A	Vegita	tion growing through
TREES		A	Cut d	own and removed 2 dead pines on berm
LITTER	I (CAD)	A		
EROSION EROSION	•	A	<u> </u>	
SECURIT	' Y:			
FENCE/L	OCKS	Α		
PIEZOME	ETERS/LOCKS	A		
MONITO	RING WELLS/LOCKS	6 A		
MANHOL	ES/LIDS/LOCKS	Α		
ELECTRI	CAL PANEL	A	-	
ADDITIO	NAL COMMENTS:			

DATE: <u>12/</u>	/3/2007	_TIME:	1230		
INSPECTOR:	Walker		COMPANY:	Sevenson	
WEATHER:	32F, wind	ly, cloudy, I	No Precip.		
REASON FOR	INSPECTION (C	UARTERL	Y OR OTHER <u>):</u>	Quarterly Inspection	
(No sub and	sidence (sinking) I rodent burrows.	, ponded w For site se	is note existence of ater, stressed veg curity, note absen	ABLE A=ACCEPTABLE of bare areas (number,size), cracks etation, soil discoloration or seeps, ce of locks, gates open or damaged other unusual occurences.)	
			COI	MMENTS	
ACCESS ROA COVER VEGE TREES LITTER EROSION (CA EROSION (BA SECURITY:	TATION P)	A A A A A			
FENCE/LOCKS PIEZOMETER MONITORING MANHOLES/LI ELECTRICAL	S/LOCKS WELLS/LOCKS IDS/LOCKS	A A A A			
ADDITIONAL (COMMENTS:				
·					
					<u>· </u>

RECORDED BY:	Walker		•	SAMPLE I	D:	MW-4-04	1707	***************************************
SAMPLED BY:	Walker		_	SAMPLING	EVENT/D	ATE:	4/17/2007	
COMPANY:	Sevenson		-	MONITOR	ING WELL:	MW-4		
		-		CONDITIO	N:	OK		
GROUNDWATER PI	JRGE DATA		PURGE DA	ATE:	4/17/2007			
DEPTH TO BOTTON	/I FROM TO	P OF RISEF	₹:	13.75	(FT.)		L GIBSON SI RING WELLS A	
DEPTH TO WATER	FROM TOP	OF RISER:		6.14	(FT.)	2-INCH D	IAMETER STA	N-
	WATER C				(FT.)		EEL. WELL DE	
		ELL CONST	ANT:	0.16	` '	MW-1R	12.10'	
		L VOLUME:		***************************************	(GALS)	MW-2	12.13'	
PURGE METHOD: BOTTOM OF WELL/ PURGE START TIMI PURGE OBSERVAT	SILT BUILD E:	3 vol. UP:	no STOP TIM		(3.25)	MW-A'3 MW-4 MW-5	11.95' 13.75' 15.28'	
FIELD PARAMETER	MEASURE	MENTS:						
WELL VOLUME	рН	-	SPECIFIC CONDUCT umhos/cm)		TEMP. (C OR F)	_	NOTES:	,
1	7.7		1274	***************************************	7.8	Bla	ck w/ Sulfur o	dor
2 .	7.6		1256		7.4	Ora	ange / Lt. Oran	ge
3	7.5		1243		7.3	Lig	ght Orange col	or
<u>4</u> 5					***************************************			
TOTAL VOLUME PU	RGED:	3.5 gallons						
GROUNDWATER O	R SEDIMEN	T SAMPLIN	G DATA:		SAMPLE D	DATE:	4/17/2007	
MEDIA: GROUNE CREEK S	WATER SEDIMENT	X	•		SAMPLE 7	TIME:	1500	
LOCATION:		MW-4						
SAMPLE METHOD:	***************************************	Peristaltic _I	oump using	dedicated t	ubing	·		
SAMPLING OBSER\	/ATIONS:	Light Oran	ge color / No	o Odor.	·		-	
QC SAMPLES TAKE	:N <u>:</u>							
OTHER OBSERVAT	IONS/COMN	MENTS:	Total of 2 /	1liter ambe	rs taken for	r BHC.		
Note: specific conduc	ctivity formula	a to 25 degr	ees Celcius	: SC(25)=	SC measu {{T-25)(0.0			

RECORDED BY:	Walker		-	SAMPLE	D:	MVV-A3-0	41/07	
SAMPLED BY:	Walker		_	SAMPLING	PLING EVENT/DATE: 4/17/2007			
COMPANY:	Sevenson		_	MONITOR	ING WELL	_: <u>MW-A3</u>		
				CONDITIO	N:	OK		
GROUNDWATER P	URGE DATA		PURGE DA	ATE:	4/17/200		L OUDGON OUT	
DEPTH TO BOTTOI	M FROM TOF	OF RISEF	₹:	11.95	(FT.)		L GIBSON SITE RING WELLS ARE	
DEPTH TO WATER	FROM TOP	OF RISER:		5.1	(FT.)	2-INCH D	IAMETER STAIN-	
	WATER CO	OLUMN:		6.85	(FT.)	LESS ST	EEL. WELL DEPTHS:	
	2" DIA. WE	LL CONST	ANT:	0.16	•	MW-1R	12.10'	
	ONE WELI	_ VOLUME	Annua	1.10	(GALS)	MW-2		
PURGE METHOD: BOTTOM OF WELL PURGE START TIM PURGE OBSERVAT	/SILT BUILDU E:		no STOP TIM	1200		MVV-A3 MVV-4 MVV-5		
FIELD PARAMETER	R MEASUREN	MENTS:						
WELL VOLUME	pH		SPECIFIC CONDUCT umhos/cm		TEMP. (C OR F)		NOTES:	
1	7.5		565		6.5		clear	
2	7.3		515		6.5		II .	
3	7.1	·····	513	***************************************	6.3		11	
<u>4</u> 5			-					
5			·····					
TOTAL VOLUME PU	JRGED:	3.5 gallons	3					
GROUNDWATER O	R SEDIMEN	r samplin	IG DATA:		SAMPLE	DATE:	4/17/2007	
	DWATER SEDIMENT	X	 		SAMPLE	T <u>IME:</u>	1200	
LOCATION <u>:</u>	•	MW-A3						
SAMPLE METHOD:		Peristaltic	pump using	dedicated	tubing			
SAMPLING OBSER	VATIONS:	Clear, no c	odor					
QC SAMPLES TAKI	ΞN <u>:</u>						***************************************	
OTHER OBSERVAT	TIONS/COMM	IENTS:	Total of 2 /	1liter ambe	ers taken fo	or BHC.		
Note: specific condu	ctivity formula	to 25 dear	ees Celcius	: SC(25)=	SC meas {{T-25}(0.			

RECORDED BY:	Walker			SAMPLE	D:	MW-2- 04	11707	
SAMPLED BY:	Walker		_	SAMPLING	PLING EVENT/DATE: 4/17/2007			
COMPANY:	Sevenson		-	MONITOR	ING WELL	.: <u>MW-2</u>		
				CONDITIO	N:	ОК		
GROUNDWATER F	PURGE DATA	4	PURGE D	ATE:	4/17/2007			
DEPTH TO BOTTO	M FROM TO	P OF RISEF	₹:	12.13	(FT.)		LL GIBSON SITE RING WELLS ARE	Ξ
DEPTH TO WATER	R FROM TOP	OF RISER:		3.49	_(FT.)	2-INCH D	NAMETER STAIN-	
	WATER C	OLUMN:		8.64	(FT.)	LESS ST	EEL. WELL DEPT	HS:
	2" DIA. W	ELL CONST	TANT:	0.16	_	MW-1R	12.10'	
	ONE WEL	L VOLUME	=	1.38	(GALS)	MW-2	12.13'	
PURGE METHOD: BOTTOM OF WELL PURGE START TIM PURGE OBSERVA	_/SILT BUILD /IE:		no STOP TIM	1415		MW-A3 MW-4 MW-5	11.95' 13.75' 15.28'	
FIELD PARAMETEI	R MEASURE	MENTS:						
WELL VOLUME	pН		SPECIFIC CONDUCT umhos/cm	ΓΙΥΙΤΥ	TEMP. (C OR F)		NOTES:	
1	7.8		1001	2	7.6		clear	
2	7.9		1003		7.1		17	
3	7.8		1000		6.9		11	
4								
5					·			
TOTAL VOLUME P	URGED:	4.5 GALLO	ONS					
GROUNDWATER (OR SEDIMEN	IT SAMPLIN	IG DATA:		SAMPLE	DATE:	4/17/2007	
	DWATER SEDIMENT	X			SAMPLE	T <u>IME:</u>	1415	
LOCATION:		MW-2						
SAMPLE METHOD	•	Peristaltic	pump using	dedicated	tubing			
SAMPLING OBSER	RVATIONS:	Clear, no c	odor					
QC SAMPLES TAK	EN:	MS/MSD						
OTHER OBSERVA	TIONS/COMI	MENTS:	Total of 6/	1liter gl. An	nbers taker	n, for BHC o	only	
Note: specific condu	uctivity formul	a to 25 degr	ees Celcius	s: SC(25)=	SC measi {{T-25}(0.			

RECORDED BY: Walker			SAMPLE I	D:	MW-1R-04	417-7	
SAMPLED BY: Walker			SAMPLING	EVENT/D	ATE:	4/17/2007	
COMPANY: Sevenson		•	MONITOR	ING WELL	: MW-1R		
		-	CONDITIO	N:	ОК		
GROUNDWATER PURGE DATA	1	PURGE DA	ATE:	4/17/2007	,		
DEPTH TO BOTTOM FROM TO	P OF RISEF	R:	12.1	(FT.)		L GIBSON SITE RING WELLS AR	
DEPTH TO WATER FROM TOP	OF RISER:		3.1	(FT.)	2-INCH DI	AMETER STAIN	 -
WATER C	OLUMN:		9	(FT.)	LESS STE	EL. WELL DEPT	ΓHS:
2" DIA. W	ELL CONST	ANT:	0.16	` ,	MW-1R	12.10'	
ONE WEL	L VOLUME:		1.44	(GALS)	MW-2 MW-A3	12.13' 11.95'	
PURGE METHOD: BOTTOM OF WELL/SILT BUILD PURGE START TIME: PURGE OBSERVATIONS:		no STOP TIM	1315		MW-4 MW-5	13.75' 15.28'	
FIELD PARAMETER MEASURE	MENTS:						
WELL		SPECIFIC CONDUCT		TEMP.		NOTES.	
VOLUME pH 7.34		umhos/cm) 603		(C OR F) 7.5 C	-	NOTES: clear	
2 7.86		612		7.6C		"	
3 7.95		610		7.5C		11	
4				1.00			
5		***************************************					
TOTAL VOLUME PURGED: GROUNDWATER OR SEDIMEN				SAMPLE I		4/17/2007	
OKOONDWATER OK SEDIMEN	II OAMI LII	IO DATA.		OAM LL	<u> </u>	4/1//2001	
MEDIA: GROUNDWATER CREEK SEDIMENT	X	- -	ı	SAMPLE 1	Γ <u>IME:</u>	1315	
LOCATION:	MW-1R						
SAMPLE METHOD:	Peristaltic	pump using	dedicated t	ubing		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
SAMPLING OBSERVATIONS:	Clear, no c	odor					
QC SAMPLES TAKEN:	Blind Dupli	icate sample	es taken, lal	beled "MW	7-041707"	1100	
OTHER OBSERVATIONS/COM	MENTS:	Total of 4/	1liter gl. Am	nbers taken	. (2 for MW	-15 &2 for MW-7	·)
Note: specific conductivity formul	a to 25 dear	ees Celcius	: SC(25)=	SC measu {{T-25)(0.0			

RECORDED BY:	Walker			SAMPLE	ID:	MHB-041	707
SAMPLED BY:	Walker		_	SAMPLIN	G EVENT/C	ATE:	4/17/2007
COMPANY:	Sevenson		<u>.</u>	MONITOR	RING WELL	: MHB	
****				CONDITIO	ON:	OK	
GROUNDWATE	R PURGE DATA	١	PURGE DA	ATE:	xxx		
DEPTH TO BOT	TOM FROM TO	P OF RISEF	₹:	XXX	(FT.)		L GIBSON SITE RING WELLS ARE
DEPTH TO WAT	ER FROM TOP	OF RISER:		xxx	_(FT.)	2-INCH D	IAMETER STAIN-
	WATER C	OLUMN:		XXX	(FT.)	LESS STI	EEL. WELL DEPTHS:
	2" DIA. W	ELL CONST	ANT:	0.16	<u>3</u>	MW-1R	12.10'
	ONE WEL	L VOLUME	=	xxx	(GALS)	MW-2 MW-A3	12.13' 11.95'
PURGE METHO BOTTOM OF WE PURGE START PURGE OBSERV	ELL/SILT BUILD TIME:	xxx UP: xxx xxx	STOP TIM	xxx		MW-4 MW-5	13.75' 15.28'
FIELD PARAMET	TER MEASURE	MENTS:					
WELL VOLUME	рН		SPECIFIC CONDUCT umhos/cm		TEMP. (C OR F)		NOTES:
1 .	6.7	-	426		8.5 C	-	clear
2							
3			***************************************				
4							
5	-		·····	·····			
TOTAL VOLUME	EPURGED:	GRAB SAM	MPLE				
GROUNDWATE	R OR SEDIMEN	T SAMPLIN	IG DATA:		SAMPLE I	DATE:	4/17/2007
	UNDWATER EK SEDIMENT	<u>X</u> .	- ·		SAMPLE	Г <u>ІМЕ:</u>	1230
LOCATION:		Man hole "	B" .				
SAMPLE METHO	DD:	Grab samp	ole using a p	peristaltic p	ump with de	edicated tub	oing.
SAMPLING OBS	ERVATIONS:	Clear, sligh	nt odor				
QC SAMPLES TA	AKEN <u>:</u>	XXX					
OTHER OBSERV	/ATIONS/COM	MENTS:	2/ 1 liter gla	ass ambers	s taken for E	ВНС	***************************************
Note: specific cor	nductivity formul	a to 25 dear	ees Celcius	: SC(25)=	SC measu {{T-25}(0.0		

RECORDED BA:	vvalker	*****	SAMPLE	D:	WW-1R-0	91307
SAMPLED BY:	Walker		SAMPLING	S EVENT/C	ATE:	9/13/2007
COMPANY:	Sevenson En	<u>vironmen</u> tal Service	• MONITOR	ING WELL		MW-1R
			CONDITIO	N:	Good	
GROUNDWATER PI	JRGE DATA	PURGE D	ATE:	9/13/2007		
						L GIBSON SITE
DEPTH TO BOTTON			12.1	(FT.)	MONITO	RING WELLS ARE
DEPTH TO WATER	FROM TOP OF	RISER:	8.02	(FT.)	2-INCH D	IAMETER STAIN-
	WATER COL		4.08	(FT.)	LESS ST	EEL. WELL DEPTHS:
	2" DIA. WELL	. CONST <u>ANT:</u>	0.16		MW-1R	12.10'
	ONE WELL V	OLUME=	0.6528	(GALS)	MW-2	12.13'
PURGE METHOD:	Purae 3v volu	ıma w/ naristaltic nu	mn then sa	mnle	MW-A3 MW-4	11.95' 13.75'
BOTTOM OF WELL/			inp, men sa	rripie.	MW-5	15.28'
PURGE START TIMI	E :	1000 STOP TIM	IE:	1010		
PURGE OBSERVAT	IONS:					
FIELD PARAMETER	MEASUREME	NTS:				
		SPECIFIC				•
WELL		CONDUC.		TEMP.		
VOLUME	pH	umhos/cm	-	(C OR F)	_	NOTES:
1.	7.34	1265	<u> </u>	18.2		Clear
2	7.38	1151		18.2		clear
3	7.32	1219		18.4		clear
4	7.33	1215		19)	clear
5				·		W-0-7-0-1
		•				
TOTAL VOLUME PU	RGED: 2.	25 gallons				
GROUNDWATER O	R SEDIMENT S	AMPLING DATA:		SAMPLE I	DATE:	9/13/2007
MEDIA: GROUND	WATER X			SAMPLE 7	TIME:	1010
	SEDIMENT _			O7 11111	1	
LOCATION:	MW-1R, Wel	l is near Tuscarora	rd. in front o	f the site.		
SAMPLE METHOD:	Pi	urge 3x volume usin	g peristaltic	pump and	dedicated t	ubing, Sample.
SAMPLING OBSER\	/ATIONS: <u>C</u>	ear water, no odor.				
QC SAMPLES TAKE	N <u>: BI</u>	ind duplicate sample	es taken and	d labeled M	W-7@1420	O on the Cof C.
OTHER OBSERVAT	IONS/COMMEN	NTS: 4x 1 liter g	lass bottles	taken.		

		·		SC measu	ıred	
Note: specific conduc	ctivity formula to	25 degrees Celcius	s: SC(25)=	{{T-25}(0.0		

RECORDED BY:	Walker	SAMPLE	ID:	MW-2-091	307
SAMPLED BY:	Walker	SAMPLIN	G EVENT/D	ATE:	9/13/2007
COMPANY:	Sevenson Environme	ntal Services MONITOF	RING WELL		MW-2
		CONDITIO	ON:	Good	Bee's nest under cap
GROUNDWATER PU	IRGE DATA	PURGE DATE:	9/13/2007		L GIBSON SITE
DEPTH TO BOTTOM	FROM TOP OF RISE	₹: 12.13	3 (FT.)	MONITOR	RING WELLS ARE
DEPTH TO WATER F	FROM TOP OF RISER	5.8	<u>3</u> (FT.)	2-INCH DI	AMETER STAIN-
	WATER COLUMN:	6.33	3 (FT.)	LESS STE	EL. WELL DEPTHS:
	2" DIA. WELL CONST	Γ <u>ΑΝΤ: 0.16</u>	<u> </u>	MW-1R	12.10'
PURGE METHOD: BOTTOM OF WELL/S PURGE START TIME PURGE OBSERVATI	SILT BUILDUP: E: 1035	eristaltic pump, then sa No S STOP TIME:	3 (GALS) ample. 1058	MW-2 MW-A3 MW-4 MW-5	12.13' 11.95' 13.75' 15.28'
FIELD PARAMETER	MEASUREMENTS:				
WELL VOLUME	рН	SPECIFIC CONDUCTIVITY umhos/cm)	TEMP. (C OR F)		NOTES:
1	7.27	1769	17.8		clear/sulfur odor
2	6.86	1599	18.2		11
3	6.83	1539	19.1		11
4	6.92	1524	19.2		T1
TOTAL VOLUME PU	RGED: 3.25 galloi	าร			
GROUNDWATER OF	R SEDIMENT SAMPLIN	NG DATA:	SAMPLE	DATE:	9/13/2007
MEDIA: GROUND CREEK S		- -	SAMPLE	ГІМЕ:	1050
LOCATION:	MW-2 , the well near	the Auto Zone store on	the Tuscar	ora Rd. side)
SAMPLE METHOD:	Purge 3x v	volume using peristaltic	pump and	dedicated to	ubing, Sample.
SAMPLING OBSERV	ATIONS: Clear water	e r / slight sulfur smell.			
QC SAMPLES TAKE	N: No				
OTHER OBSERVATI	ONS/COMMENTS:	2x 1 liter glass bottles	taken.		
Note: specific conduc	tivity formula to 25 deg	rees Celcius: SC(25)=	SC measu {{T-25}(0.0		-

RECORDED BY:	Walker	SA	MPLE ID:	MW-4-09	1307
SAMPLED BY:	Walker	SA	MPLING EVENT/	DATE:	9/13/2007
COMPANY:	Sevenson Environ	mental Services MC	NITORING WELI	•	MW-4
		co	NDITION:	Good	
GROUNDWATER F	PURGE DATA	PURGE DATE	9/13/200		
DEPTH TO BOTTO	M FROM TOP OF RI	SFR·	13.75 (FT.)		LL GIBSON SITE RING WELLS ARE
	R FROM TOP OF RIS				
DEPINIO WATER			8.05 (FT.)		DIAMETER STAIN-
	WATER COLUMN 2" DIA. WELL COI		5.7 (FT.)		EEL. WELL DEPTHS:
			0.16	MW-1R	12.10'
	ONE WELL VOLU		0.912 (GALS)	MW-2 MW-A3	12.13' 11.95'
	Purge 3x volume v	v/ peristaltic pump,	then sample.	MW-4	13.75'
BOTTOM OF WELL		No		MW-5	15.28'
PURGE START TIN PURGE OBSERVA		100 STOP TIME:	113	0.	
TORIOL ODOLKWA	110110.				
FIELD PARAMETE	R MEASUREMENTS:				
. A / F . I		SPECIFIC			
WELL VOLUME	рН	CONDUCTIVITumhos/cm)	ΓΥ TEMP. (C OR F)		NOTES:
1	7.17	2038	15.		Black w/ organics
2	7.22	1989	16.		11
3	6.95	2079	15.	8	Grayish, clearing
4	6.96	2083	15.	6	Gray water.
5					
TOTAL VOLUME P	URGED: 3 gallor	าร			
	ortono.				
GROUNDWATER (OR SEDIMENT SAMP	LING DATA:	SAMPLE	DATE:	9/13/2007
MEDIA. CDOUN	DWATED V			4	
	DWATER X SEDIMENT	Water Commence of the Commence	SAMPLE	I <u>IIVIE:</u>	1130
LOCATION:	MW-4, well is behi	nd auto zone. Near	small pine trees.		
SAMPLE METHOD	: Purge 3	3x volume using pe	ristaltic pump and	dedicated t	tubing, Sample.
SAMPLING OBSER					
QC SAMPLES TAK	***************************************	£		·	
,	***************************************	04.12	I		
OTHER OBSERVA	TIONS/COMMENTS:	2x 1 liter glass	pottles taken.		M
NI-1		0.1.	SC meas		,
inote: specific condu	activity formula to 25 d	egrees Celcius: SC	(25)= {{T-25}(0.	02)}+1	

RECORDED BY:	Walker		SAMPLE ID:		MW-5-09	1307
SAMPLED BY:	Walker		SAMPLING E	VENT/D	ATE:	9/13/2007
COMPANY:	Sevenson Env	ironmental Service	es MONITORING	G WELL:		MW-5
			CONDITION:		Good	
GROUNDWATER P	URGE DATA	PURGE D	DATÉ: 9	/13/2007		
	4 55014 705 0		45.00 (5			LL GIBSON SITE
			15.28 (F	•		RING WELLS ARE
DEPTH TO WATER			10.55_(F	-		DIAMETER STAIN-
	WATER COLU		4.73 (F	T.)		EEL. WELL DEPTHS:
	2" DIA. WELL		0.16		MW-1R	12.10'
	ONE WELL V	OLUME=	0.7568 (G	BALS)	MW-2 MW-A3	12.13' 11.95'
PURGE METHOD:	Purge 3x volur	ne w/ peristaltic pu	ımp, then samp	ole.	MW-4	13.75'
BOTTOM OF WELL					MW-5	15.28'
PURGE START TIM PURGE OBSERVAT		1145 STOP TIN	/IE:	1155		
ONOL ODOLINA	10110.					
FIELD PARAMETER	MEASUREMEN	ITS:				
A (III.)		SPECIFIC				
WELL VOLUME	pH	CONDUC umhos/cm		EMP. COR F)		NOTES:
1	6.49	2.75		14.7		Orange tint
2	6.43	2.72	2	14.9		clear
3	6.46	2.7	7	15.4		clear
4	6.44	2.72	2	15.3		clear
5		w				
TOTAL VOLUME PL		gallons		:		v/1417-1410-141
GROUNDWATER O	R SEDIMENT SA	AMPLING DATA:	SA	AMPLE D	ATE:	9/13/2007
MEDIA: GROUNE CREEK S	OWATER X SEDIMENT		SA	AMPLE T	IME:	1155
LOCATION:	MW-5, well is	oehind Auto Zone i	in the field.	w		
SAMPLE METHOD:	Pu	rge 3x volume usin	ıg peristaltic pu	mp and d	edicated t	tubing, Sample.
SAMPLING OBSER\	/ATIONS: cle	ar .			***************************************	
QC SAMPLES TAKE	N <u>: N</u>	0				
OTHER OBSERVAT	IONS/COMMEN	TS: 2x 1 liter g	lass bottles tak	en.		
Note: specific conduc	ctivity formula to	25 degrees Calcius		C measur		

RECORDED BY:	Walker	-	SAMPLI	E I <u>D:</u>	MW-A309	91307	
SAMPLED BY:	Walker	_	SAMPLI	NG EVENT/D	DATE:	9/13/2007	
COMPANY:	Sevenson Environme	ntal Service:	MONITO	RING WELL	••	MW-A3	
			CONDIT	ION:	protective) (
GROUNDWATER P	URGE DATA	PURGE DA	ATE:	9/13/2007			
DEPTH TO BOTTO	W FROM TOP OF RISE	R·	11	95 (FT.)		LL GIBSON SITE RING WELLS ARÉ	
	FROM TOP OF RISER						
DEPIN TO WATER		- A	Dry	(FT.)		DIAMETER STAIN-	10:
	WATER COLUMN:	T	0	0 (FT.)		EEL. WELL DEPTH	15:
	2" DIA. WELL CONS		<u>U.</u>	<u>16</u>	MW-1R	12.10'	
PURGE METHOD: BOTTOM OF WELL PURGE START TIM PURGE OBSERVAT	E:	:= No STOP TIM	E:	0 (GALS)	MW-2 MW-A3 MW-4 MW-5	12.13' 11.95' 13.75' 15.28'	
FIELD PARAMETER	R MEASUREMENTS:						
WELL VOLUME	рН	SPECIFIC CONDUCT umhos/cm	ΓΙVITY)	(C OR F)		NOTES:	
1	There was no water in	n the well, so	l could r	ot take a sar	nple.		
2		,					
3				· · · · · · · · · · · · · · · · · · ·			
5							
TOTAL VOLUME PU	JRGED:						
GROUNDWATER C	R SEDIMENT SAMPLII	NG DATA:		SAMPLE	DATE:	9/13/2007	
	DWATER X SEDIMENT	-		SAMPLE	T <u>IME:</u>	No	
LOCATION <u>:</u>	MW-A3, located acro	ss the creek	, behind t	he Motel.			
SAMPLE METHOD:	No sample	e was taken	, the well	was dry.			
SAMPLING OBSER	VATIONS:		***				
QC SAMPLES TAKI	EN <u>: No</u>	,					
OTHER OBSERVAT	TIONS/COMMENTS:	No sample	e taken.				
Note: specific condu	ctivity formula to 25 deg	rees Celcius	:: SC(25)=	SC measi = {{T-25}(0.		Add Andrews and Announced Add Andrews and Announced Anno	

RECORDED BY:	Walker			SAMPL	E ID:	US-1-091	307
SAMPLED BY:	Walker			SAMPLI	NG EVENT/	DATE:	9/13/2007
COMPANY:	Sevensor	Environme	ntal Services	SEDIME	NT SAMPLE		US-1
-				CONDIT	ION:		
GROUNDWATER P	URGE DAT	A	PURGE DA	ATE:			
DEPTH TO BOTTO	M FROM TO	P OF RISE	R:		(FT.)		LL GIBSON SITE RING WELLS ARE
DEPTH TO WATER	FROM TOP	OF RISER	:		(FT.)	2-INCH D	NAMETER STAIN-
	WATER (COLUMN:			0 (FT.)	LESS ST	EEL. WELL DEPTHS:
	2" DIA. W	ELL CONST	TANT:	0.	• •	MW-1R	12.10'
	ONE WE	LL VOLUME			 0 (GALS)	MW-2	12.13'
PURGE METHOD: BOTTOM OF WELL PURGE START TIM PURGE OBSERVAT	IE:	OUP:	STOP TIM	E:	, ,	MW-A3 MW-4 MW-5	11.95' 13.75' 15.28'
FIELD PARAMETER	R MEASURE	MENTS:					
WELL VOLUME 1	рН	_	SPECIFIC CONDUCT umhos/cm)		TEMP. (C OR F)	_	NOTES:
2		,					
3			***************************************				
4							
5							
TOTAL VOLUME PU		IT SAMDI IN	NG DATA:		SAMPLE	DATE	9/13/2007
GROUNDWATER	N SEDIME	II SAMELII	NG DATA.		SAMPLE	DATE.	9/13/2007
	DWATER SEDIMENT	X	-		SAMPLE '	T <u>IME:</u>	1300
LOCATION <u>:</u>	Cayuga C	reekbed, Up	ostream of th	e landfill	cap, in line w	rith the fron	t gate posts.
SAMPLE METHOD:	·	Composite	sample fro	n the sec	liment trap pl	aced last S	eptember.
SAMPLING OBSER	VATIONS:	Black and					
QC SAMPLES TAKE	ΞN <u>:</u>	Yes, Dupli	cate sample	taken, a	nd labeled M	S-1 @1330	for lab QC.
OTHER OBSERVAT	TIONS/COM	MENTS:	2 x 4 oz. G	lass jars	taken.		
Note: specific condu	ctivity formu	la to 25 degr	ees Celcius:	SC(25)=	SC measu		

RECORDED BY:	Walker	troblesce .	SAMPLI	Ε Ι <u>D:</u>	DS-1-091	307	
SAMPLED BY:	Walker		SAMPLI	NG EVENT/I	DATE:	9/13/2007	
COMPANY:	Sevenson Environm	ental Service	SEDIME	NT SAMPLE	==	DS-1	
			CONDIT	ION:			
GROUNDWATER P	URGE DATA	PURGE D	ATE:				
DEPTH TO BOTTON	M FROM TOP OF RIS	ER:		(FT.)		LL GIBSON SITE RING WELLS ARE	
DEPTH TO WATER	FROM TOP OF RISE	R:		(FT.)	2-INCH D	NAMETER STAIN-	-
	WATER COLUMN:	***************************************		0 (FT.)		EEL. WELL DEPT	
	2" DIA. WELL CON	STANT:	0.	` '	MW-1R	12.10'	
	ONE WELL VOLUM	1E=		— 0 (GALS)	MW-2	12.13'	
PURGE METHOD: BOTTOM OF WELL PURGE START TIM PURGE OBSERVAT	E:	STOP TIM	ΛE:	, ,	MW-A3 MW-4 MW-5	11.95' 13.75' 15.28'	
FIELD PARAMETER	MEASUREMENTS:						
WELL VOLUME 1	рН	SPECIFIC CONDUC umhos/cm	TIVITY	TEMP. (C OR F)	_	NOTES:	
2							
3							
4						· · · · · · · · · · · · · · · · · · ·	
5			······································	······································			
TOTAL VOLUME PL						•	
GROUNDWATER O	R SEDIMENT SAMPL	ING DATA:		SAMPLE	DATE:	9/13/2007	
MEDIA: GROUNE CREEK S	OWATER SEDIMENT X			SAMPLE	T <u>IME:</u>	No	
LOCATION:	Cayuga Creekbed, I		of the land	lfill cap, in lin	e with the 2	nd fence	
SAMPLE METHOD:	post from the corner No sample	•					
SAMPLING OBSER	VATIONS: No Sam	ple					
QC SAMPLES TAKE	EN: No					***************************************	
OTHER OBSERVAT	TIONS/COMMENTS:	No Sampl	es taken,	because the	sediment tr	ap was in	
an inverted position.	Probably due to a high	water fast c	urrent situ	ation, or flipp SC meas		debris.	
Note: specific condu	ctivity formula to 25 de	grees Celcius	s: SC(25)=				

	07	_TIME:130	0	
INSPECTOR:	Walker	_COMPANY:	Sevenson	
WEATHER:	Snowy 26 F, 10" on g	ground		
PIEZOMETER	RISER ELEVATION (INSIDE CASING)	DEPTH TO WATER (FT.)	WATER ELEVATION	COMMENTS
P-1	572.72	7.41	565.31	
P-2	574.89	9.49	565.4	Could not find due to snov
P-3	574.16	7.68	566.48	***************************************
P-4	576.14	10.86	565.28	
P-5	575.05	6.19	568.86	
P-6	578.28	10.7	567.58	
MANHOLE A	575.22	10.83	564.39	
MANHOLE B	577.34	12.88	564.46	
Niagara Tuscarora in Manhole B (and I	Road sanitary sewer line by extension Manhole A)	by a float controlled subelow an elevation of 5 not be less than 12.41	mp pump which m 65 ft. above mean ft. at Manhole B a	automatically to the Town of aintains groundwater elevations sea level. Therefore, Depth to at 10.22 ft. at Manhole A.
(Note: riser elevatio	MENTS/OBSERVATION	S:	***************************************	·
(Note: riser elevatio	. , , ,	S:		
(Note: riser elevatio	. , , ,	S:		· · · · · · · · · · · · · · · · · · ·
(Note: riser elevatio	. , , ,	S:		
(Note: riser elevatio	. , , ,	S:		

DATE:	4/17/2007	7	_TIME:1000	0	
INSPECTO	DR:	M. Walker	COMPANY:	Sevenson Enviro	onmental Svc.
WEATHE	₹:	39 F, Cloudy , Breez	y		
PIEZOME	TER	RISER ELEVATION (INSIDE CASING)	DEPTH TO WATER (FT.)	WATER ELEVATION	COMMENTS
P-1	÷	572.72	6.96	565.76	
P-2		574.89	9.41	565.48	
P-3		574.16	6.7	567.46	
P-4		576.14	10.8	565.34	
P-5		575.05	5.6	569.45	
P-6		578.28	10.45	567.83	
MANHOLE	A	575.22	11.1	564.12	
MANHOLE	В	577.34	13.16	564.18	
		pties into Manhole B by oad sanitary sewer line			aintains groundw
in Manhole water dista (Note: rise ADDITION	B (and by nce from the r elevations	extension Manhole A) ne manhole rim should s (re)surveyed Septemb ENTS/OBSERVATION level is up about 2' from	below an elevation of 5 not be <u>less</u> than 12.41 per, 1999 by Wendel Su	65 ft. above mean ft. at Manhole B ar urveyors) ce (grass) is satur	nd 10.22 ft. at Ma
in Manhole water dista (Note: rise ADDITION	B (and by nce from the r elevations	extension Manhole A) ne manhole rim should s (re)surveyed Septemb ENTS/OBSERVATION	below an elevation of 5 not be <u>less</u> than 12.41 per, 1999 by Wendel Su	65 ft. above mean ft. at Manhole B ar urveyors) ce (grass) is satur	nd 10.22 ft. at Ma
in Manhole water dista (Note: rise ADDITION	B (and by nce from the r elevations	extension Manhole A) ne manhole rim should s (re)surveyed Septemb ENTS/OBSERVATION	below an elevation of 5 not be <u>less</u> than 12.41 per, 1999 by Wendel Su	65 ft. above mean ft. at Manhole B ar urveyors) ce (grass) is satur	nd 10.22 ft. at Ma
in Manhole water dista (Note: rise ADDITION	B (and by nce from the r elevations	extension Manhole A) ne manhole rim should s (re)surveyed Septemb ENTS/OBSERVATION	below an elevation of 5 not be <u>less</u> than 12.41 per, 1999 by Wendel Su	65 ft. above mean ft. at Manhole B ar urveyors) ce (grass) is satur	nd 10.22 ft. at Ma
in Manhole water dista (Note: rise ADDITION	B (and by nce from the r elevations	extension Manhole A) ne manhole rim should s (re)surveyed Septemb ENTS/OBSERVATION	below an elevation of 5 not be <u>less</u> than 12.41 per, 1999 by Wendel Su	65 ft. above mean ft. at Manhole B ar urveyors) ce (grass) is satur	nd 10.22 ft. at Ma

DATE: <u>9/13/2</u>	007	TIME:800	0	
INSPECTOR:	M. Walker	_COMPANY:	Sevenson Enviro	onmental Svc.
WEATHER:	Sunny, clear 58 F			
PIEZOMETER	RISER ELEVATION (INSIDE CASING)	DEPTH TO WATER (FT.)	WATER ELEVATION	COMMENTS
P-1	572.72	7.91	564.81	
P-2	574.89	9.67	565.22	
P-3	574.16	9.3	564.86	
P-4	576.14	11.03	565.11	***************************************
P-5	575.05	8.06	566.99	*************************************
P-6	578.28	11.45	566.83	
MANHOLE A	575.22	<u>11.1</u>	564.12	
MANHOLE B	577.34	13.16	564.18	
Niagara Tuscarora	Road sanitary sewer line			
in Manhole B (and water distance from (Note: riser elevati	m the manhole rim should ons (re)surveyed Septemb	not be <u>less</u> than 12.41 per, 1999 by Wendel Su	ft. at Manhole B a urveyors)	
in Manhole B (and water distance from (Note: riser elevati	m the manhole rim should ions (re)surveyed Septemb	not be <u>less</u> than 12.41 per, 1999 by Wendel Su	ft. at Manhole B a urveyors)	
in Manhole B (and water distance from (Note: riser elevati	m the manhole rim should ions (re)surveyed Septemb	not be <u>less</u> than 12.41 per, 1999 by Wendel Su	ft. at Manhole B a urveyors)	
in Manhole B (and water distance from (Note: riser elevati	m the manhole rim should ions (re)surveyed Septemb	not be <u>less</u> than 12.41 per, 1999 by Wendel Su	ft. at Manhole B a urveyors)	
in Manhole B (and water distance from (Note: riser elevati	m the manhole rim should ions (re)surveyed Septemb	not be <u>less</u> than 12.41 per, 1999 by Wendel Su	ft. at Manhole B a urveyors)	
in Manhole B (and water distance from (Note: riser elevati	m the manhole rim should ions (re)surveyed Septemb	not be <u>less</u> than 12.41 per, 1999 by Wendel Su	ft. at Manhole B a urveyors)	

P-4 576.14 10.81 565.33	DATE: <u>12/3/2</u>	007	_TIME:	1230	
RISER ELEVATION DEPTH TO WATER WATER COMMENTS PIEZOMETER (INSIDE CASING) (FT.) ELEVATION P-1 572.72 8.58 564.14 P-2 574.89 9.7 565.19 P-3 574.16 10.37 563.79 P-4 576.14 10.81 565.33 P-5 575.05 8 567.05 P-6 578.28 11.73 566.55 MANHOLE A 575.22 10.82 564.4 MANHOLE B 577.34 12.86 564.48 (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundw in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Ma (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	INSPECTOR:	Walker	COMPANY:	Sevenson	
PIEZOMETER (INSIDE CASING) (FT.) ELEVATION P-1 572.72 8.58 564.14 P-2 574.89 9.7 565.19 P-3 574.16 10.37 563.79 P-4 576.14 10.81 565.33 P-5 575.05 8 567.05 P-6 578.28 11.73 566.55 WANHOLE A 575.22 10.82 564.4 WANHOLE B 577.34 12.86 564.48 Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundw in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Manhole: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	WEATHER:	Windy, cold, 32F			
P-2 574.89 9.7 565.19 P-3 574.16 10.37 563.79 P-4 576.14 10.81 565.33 P-5 575.05 8 567.05 P-6 578.28 11.73 566.55 MANHOLE A 575.22 10.82 564.4 MANHOLE B 577.34 12.86 564.48 (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundwin Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Mathote: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	PIEZOMETER				COMMENTS
P-3 574.16 10.37 563.79 P-4 576.14 10.81 565.33 P-5 575.05 8 567.05 P-6 578.28 11.73 566.55 MANHOLE A 575.22 10.82 564.4 MANHOLE B 577.34 12.86 564.48 (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundw in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Ma (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	P-1	572.72	8.58	564.14	
P-4 576.14 10.81 565.33 P-5 575.05 8 567.05 P-6 578.28 11.73 566.55 MANHOLE A 575.22 10.82 564.4 MANHOLE B 577.34 12.86 564.48 (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundw in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Ma (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	P-2	574.89	9.7	565.19	ANDERSON
P-5 575.05 8 567.05 P-6 578.28 11.73 566.55 MANHOLE A 575.22 10.82 564.4 MANHOLE B 577.34 12.86 564.48 (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to th Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundw in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Ma (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	P-3	574.16	10.37	563.79	
P-6 578.28 11.73 566.55 MANHOLE A 575.22 10.82 564.4 MANHOLE B 577.34 12.86 564.48 (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundw in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Manhole: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	P-4	576.14	10.81	565.33	
MANHOLE A 575.22 10.82 564.4 MANHOLE B 577.34 12.86 564.48 (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to th Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundw in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Ma (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	P-5	575.05	8	567.05	•
MANHOLE B 577.34 12.86 564.48 (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to th Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundw in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Ma (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	P-6	578.28	11.73	566.55	
(Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to th Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundw in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be <u>less</u> than 12.41 ft. at Manhole B and 10.22 ft. at Ma (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	MANHOLE A	575.22	10.82	564.4	****
Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundw in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be <u>less</u> than 12.41 ft. at Manhole B and 10.22 ft. at Ma (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)					
					automatically to th
	(Note: Manhole A o Niagara Tuscarora in Manhole B (and water distance fror (Note: riser elevation	empties into Manhole B by Road sanitary sewer line by extension Manhole A) n the manhole rim should ons (re)surveyed Septemb	y gravity feed and by a float controlle below an elevation not be less than 1 per, 1999 by Wend	Manhole B is pumped a ed sump pump which m n of 565 ft. above mean 2.41 ft. at Manhole B a	naintains groundw sea level. There
	(Note: Manhole A o Niagara Tuscarora in Manhole B (and water distance fror (Note: riser elevation	empties into Manhole B by Road sanitary sewer line by extension Manhole A) n the manhole rim should ons (re)surveyed Septemb	y gravity feed and by a float controlle below an elevation not be less than 1 per, 1999 by Wend	Manhole B is pumped a ed sump pump which m n of 565 ft. above mean 2.41 ft. at Manhole B a	naintains groundw sea level. There
	(Note: Manhole A o Niagara Tuscarora in Manhole B (and water distance fror (Note: riser elevation	empties into Manhole B by Road sanitary sewer line by extension Manhole A) n the manhole rim should ons (re)surveyed Septemb	y gravity feed and by a float controlle below an elevation not be less than 1 per, 1999 by Wend	Manhole B is pumped a ed sump pump which m n of 565 ft. above mean 2.41 ft. at Manhole B a	naintains groundw sea level. There
	(Note: Manhole A on Niagara Tuscarora in Manhole B (and water distance from (Note: riser elevation)	empties into Manhole B by Road sanitary sewer line by extension Manhole A) n the manhole rim should ons (re)surveyed Septemb	y gravity feed and by a float controlle below an elevation not be less than 1 per, 1999 by Wend	Manhole B is pumped a ed sump pump which m n of 565 ft. above mean 2.41 ft. at Manhole B a	naintains groundw sea level. There