

P.O. BOX 248, 1186 LOWER RIVER ROAD, NW, CHARLESTON, TN 37310-0248

(423) 336-4000 FAX: (423) 336-4166

February 6, 2007

Mr. Michael J. Hinton, P.E. Environmental Engineer II New York State Department of Environmental Conservation 270 Michigan Avenue Buffalo, New York 14203-2999

E-FILED

Subject:

Charles Gibson Site

NYSDEC Registry No. 9-32-063 Fourteenth Annual Report - 2006

Dear Mr. Hinton:

As requested by NYSDEC I have attached one hard copy and one electronic version (in Adobe PDF format) of the subject report. This report summarizes the activities performed during 2006 for the operation and maintenance of the containment remedy for the site and the ground water monitoring program outside of the containment area.

The following is a summary of major activities that occurred during 2006.

- Semi-annual groundwater sampling events were performed during April and September
- Annual sediment sampling was performed in September.
- Annual sampling and analysis of leachate was completed in April.
- There were 52,891 gallons of leachate discharged to the City of Niagara Falls Wastewater Treatment Facility.

The Semi-Annual Ground Water Sampling and Annual Sediment Sampling Report - September 2006, is included as Appendix A to this report. The Data Usability Summary Report is included in this report.

Olin requests that NYSDEC consider our 2004 request to discontinue hexachorobenzene (HCB) monitoring in ground water wells.

Please direct any comments to me at 423/336-4587. Thank you.

Sincerely,

OLIN CORPORATION

Michael J. Bellotti

Principal Environmental Specialist

Wilnhard S. Bellette

RECEIVED

FFB 1.5 2007 NYSDEC REG 5

FOIL

C. M. Richards via e-mail CC:

Brian Vain – Olin Niagara Falls via e-mail

Mike Walker – Sevenson Environmental Services via e-mail

Matthew Forcucci - NYSDOH Buffalo

FOURTEENTH ANNUAL REPORT

2006

CHARLES GIBSON SITE

(PINE AND TUSCARORA SITE)

NIAGARA FALLS, NEW YORK NYSDEC REGISTRY NO. 9-32-063

PREPARED BY OLIN CORPORATION

FEBRUARY 2007

Introduction

This is the fourteenth Annual Report from Olin Corporation (Olin) for the Charles Gibson Site (Pine and Tuscarora Site), located in Niagara Falls, New York. This report summarizes activities performed during 2006 for the operations and maintenance of the containment remedy for the Site and the ground water monitoring program outside of the containment areaThis year's data for the Semi-Annual Ground Water and Annual Sediment Sampling, collected during September 2006 has been incorporated as part of the Annual Report.

Background

The Charles Gibson Site (Site) is located approximately four miles east of downtown Niagara Falls, New York. The Site comprises an area of approximately two acres of land in Niagara County bordered on the south by private property, on the west by Tuscarora Road and on the north and east by Cayuga Creek. The Site is a fully remediated waste site currently surrounded by a fence.

Construction of the remedy on the Site concluded in 1990. The remedy consisted of rerouting Cayuga Creek around and away from the waste, installation of a fully circumscribed soil-bentonite sturry wall barrier and installation of a double flexible membrane liner cap with a perimeter collection drain system. The first year of operations and maintenance (O&M) of the containment remedy for the Site and the ground water monitoring program began in 1993.

Waters collected in the Site perimeter collection drain system are managed by direct discharge to the City of Niagara Falls Wastewater Treatment Facility. The Site is classified as a commercial/small industrial/residential user (CSIRU) and does not require a permit.

Reports are submitted as appropriate to the New York State Department of Environmental Conservation (NYSDEC). Records of all environmental monitoring are maintained by Olin Corporation. These records are available for review and inspection by the State.

Discussion

The Stipulation and Consent Judgment, CIV 83-1400, and its modification, CIV 83-1400C, (the Agreement) listed the following elements to be included in the required remediation plan for the Site (Plan C):

- 1. Quarterly ground water monitoring for 30 years (revised in 1997 to semiannual);
- Sample collection and analysis of creek water and of creek sediments annually for 30 years.
 During 1993 the creek water sampling was discontinued and sediment sampling was modified to collection during the low flow/dry season;
- 3. Establishment of an upward hydraulic gradient within the containment area, unless Olin can demonstrate by clear and convincing evidence the establishment of the same is unnecessary or inappropriate to the accomplishment of the goals set forth in paragraph 4(a) of the stipulation;
- 4. Acquisition by Olin of easements which would permit the required monitoring;
- 5. Provisions for protection of the Site from disturbance which might increase the threat of contamination migration, including regular inspection of the site;
- 6. Provisions for the design and implementation of a contingency plan in the event that migration of the contaminants occurs despite the implementation of the containment remediation plan;
- 7. Containment or removal of the contaminants deposited or caused to be deposited by Olin which have migrated off-Site consistent with the goals of paragraph 4(a);

Charles Gibson Site NYSDEC Registry No. 9-32-063 Fourteenth Annual Report -2006

8. Fiscal arrangements, guarantees, or the provision of financial assurances sufficient to ensure that Olin possess the financial ability to perform the containment remedial plan and monitoring. Olin's performance has been demonstrated and the financial assurance notification is no longer required.

The Agreement includes a provision in the event that after seven years following the delivery of a Release of Liability (issued December 15, 1992), Olin demonstrates that conditions at the Site are such that the stated frequency or duration of the requirements of elements 1, 2, or 5 are no longer necessary to determine whether the remediation is effective, Olin may reduce the frequency and duration of such monitoring or inspections. Modifications are noted in the discussion above.

The approved Operation and Maintenance Manual (O&M Manual (June 2000)) provides details on the O&M of the containment remedy on the northern portion of the site and includes provisions for site control and environmental monitoring. The O&M Manual (June 2000) reflects current activities being performed for the operation and maintenance of the containment remedy for the Site and the ground water monitoring program outside the containment area. The yearly inspection and sampling schedule for the Site is included in(*Attachment 1*.

The O&M Manual (2000) addresses the required elements as set forth in the Agreement. Element 4, acquisition of easements, is a completed task. Element 6, a contingency plan, is addressed in the O&M Manual. Element 7, containment of the contaminants, has been achieved and is being monitored for effectiveness. Element 8, provision of financial assurance, is being met. This report discusses elements 1, 2, 3, and 5 of the Agreement.

Element 1) Semi-annual ground water monitoring. Monitor wells MW-A3, MW-1R, MW-2, MW-4, and MW-5 were sampled on April 19 and on September 6 for the site compounds alpha-BHC, beta-BHC, gamma-BHC, delta-BHC. Analyses were performed using SW-846 Method 8080. During 2006, with one exception, sampling results for all BHC isomers in all wells were either undetected (U) or tentatively detected (J) at levels below 0.1 ug/l. Since 2000, monitor wells have been sampled for hexachlorobenzene (HCB) biennially. The next HCB sampling is scheduled for September 2007. NYSDEC has been asked to reconsider an Olin request to discontinue the HCB monitoring. Monitoring locations are shown on *Figure 1*.

A historic summary of semi-annual ground water monitoring data from 1997 through 2006 is provided in *Table 1*. The 1997 time period represents the start of the semi-annual events. *Table 1A* shows groundwater monitoring data for 2006. Since 2003, concentrations of site compounds being monitored have been undetected or estimated at concentrations below the detection levels, in all monitor wells.

Element 2) Annual creek sediment monitoring. Annual sediment sampling was performed on September 7, 2006A historic summary of annual sediment sampling results is presented in *Table 2*. Table 2A shows stream sediment and manhole monitoring data for 2006. Sediment monitoring was modified in 2001 from collecting a grab sample to placement of sediment traps at the upstream and downstream locations. Sediment traps were installed for the first time during the April 2001 sampling event. All detections are similar or slightly lower than detections since 2001, for both upstream and downstream samples.

Establishment of an upward (inward) hydraulic gradient. Quarterly ground water elevations were monitored at piezometer pairs P1/P2, P3/P4, and P5/P6 to document an inward hydraulic gradient in the containment area of the site. The data collected during each event are recorded on the Sampling Field Form. An evaluation of data from the piezometer pairs at the Site indicates that an inward hydraulic gradient is being maintained year round in two of the three piezometer pairs and a roughly level gradient occurs in the third pair (P1/P2) in three of four quarters. We will adjust pump intake levels to attempt to re-establish the inward gradient. Water

Charles Gibson Site NYSDEC Registry No. 9-32-063 Fourteenth Annual Report -2006

level elevations in Manhole A and Manhole B are monitored quarterly and are consistently below the 555 ff-msl level. All data are shown in *Table 3*.

There were 52,891 gallons of leachate discharged to the POTW during 2006. A summary of yearly discharge volumes for the Site is provided in *Table 4*. Since 1991 a total of 981,681 gallons of leachate were removed from the Site. Annual leachate sampling and analysis for BHC isomers began in 2000 to replace the POTW sampling that was previously performed. HCB is monitored every

five years (started in 2000). The sampling location is Manhole B. Analytical results for 2006 are provided in *Table 5*. The next scheduled sampling is 2010.

Element 5)Site protection. Quarterly site inspections were conducted to identify any potential issues with the physical structures and to ensure that the remedial measure components are operating effectively. Routine site maintenance included fertilizing, mowing, weeding and mulching the site area.

Other non-routine repairs completed in 2006 include: replacing the man gate and darkening the well markings showing well numbers. General site conditions and security status were noted on the Site Inspection Form and addressed as appropriate. All inspection forms and field notes are included in **Attachment 2**.

Conclusions/Recommendations:

The work performed for the Site during 2006 was reviewed and found to be in accordance with the approved O&M Manual (2000). Ground water monitoring indicates there are no increased concentrations of the Site compounds being monitored. Evaluation of the ground water data generated during the 2006 monitoring year indicates that the containment remedy is effective. An evaluation of data from the piezometer pairs at the Site indicates that an inward hydraulic gradient is being maintained in the containment area of the site, but will be monitored in one zone where the gradient is level (P1/P2 area) and enhanced as necessary. Data from 2006 sediment trap monitoring were similar to prior monitoring episodes.

Olin requests that NYSDEC reconsider Olin's 2004 request to discontinue hexachorobenzene (HCB) monitoring in ground water wells. The April 2005 leachate results had no detectable concentrations of HCB.

Figure 1 Site Aerial and Monitoring Points

CHARLES GIBSON SITE

(PINE AND TUSCARORA SITE)

NIAGARA FALLS, NEW YORK

NYSDEC Registry No. 9-32-063

TABLE 1 CHARLES GIBSON SITE NIAGARA FALLS, NEW YORK

ANALYTICAL SUMMARY SEMI-ANNUAL GROUND WATER SAMPLING 1997 - 2005

MONITOR WELL: MW-A3

	1997	1998	98	19	1999	2000	2	2001)1	72	2002	2(2003	72	2004	20	2005
Parameter	September*	April	October	April	October	May	October	April	October	April	September	April	September	April	September	April	September
Alpha-BHC	0.059	.016	0.12	.0043J	1	.050U	.054U	.050U	.050U	.050U	.029J	.048U	.035	.048U	.047U	.047U	.048U
Beta- BHC	.028	.012	.0092J	.053U	,	.0123	.054U	.050U	.050U	.050U	.016	.048U	.059U	.048U	.047U	.047U	.048U
Gamma-BHC	.050U	U020.	.024J	.053U	,	.050U	.054U	.050	.050U	.050U	.050U	.048U	.059U	.048U	.047U	.047U	.048U
Delta-BHC	.050U	.050	.053U	.053U		.050U	.054U	.050U	.050U	.050U	.050U	.048U	.059U	.048U	.047U	.047U	.048U
Hexachlorobenzene	100	100	·	110	,	110	N.R.	100	N.	NR	NR	NR	N.	100	N.R.	N.	NR

MONITOR WELL: MW-1R

	1997	1998	81	1999	99	2000	00	2001)1	20	2002	20	2003	20	2004	20	2005
Parameter	September*	April	October	April	October	May	October	April	October	April	September	April	September	April	September	April	September
Alpha-BHC	0.058	0.085	0.18	0.072	0.057	.028J	.054U/.052U	.050U/.050U	090'/660'	190/020	,055/.030J	.014J/.015U	.052U	.049U/.049	.026J/.048U	.0403/.049U	.047U/.048U
Beta- BHC	0.053	0.14	0.2	0.13	90.0	0.12	.038J/.052U	J38J/.052U 012J/.050U	.19/.15	.10/.050U	.13/.095	.053/.052	.052U	.049U/.065	.049U/.065 .090/.024J	.050U/.049U	.047U/.048U
Gamma-BHC	.050U	.050U	.028	.053U	LU030.	.051U	.054U/.052U	.050U.050U	2 Jesay,058U	.0501/.050U	.055U	U640.	.052U	.049U/.049U	.048U/048U	.036J/.049U	.047U/.048U
Delta-BHC	U050.	.0042J	.053U	.0054J	.050U	.051U	.054U/.052U	054U/.052U .050U/.050U .061U/.058U	.061U/.058U	.050U/.053	.055U	.049U	.052U	.049U/.049U	.048U/.048U	.050U/.049U	.047U/.048U
Hexachlorobenzene	100	100	110	110	100	100	NR	100/100	NR	NR	NR	NR	NR	100	NR	NR	NR

MONITOR WELL: MW-2

	1997	1998	8	1999	39	200	00	2001	71	20	2002	20	2003	20	2004	20	2005
Parameter	September*	April	October	April	October	May	October	April	October	April	September	April	September	April	September	April	September
Alpha-BHC	.050U	.050U	UE30.	.053U	.050U	.029J	.053U	.050U	.054U	.050U	.050U	.050U	.050U	.050U	.050U	.050	.050U
Beta- BHC	.050U	.050	UE30.	.053U	.050U	0.098	.053U	.050U	.054U	.050U	.050U	.050U	.050U	.050U	.050U	.050U	.050U
Gamma-BHC	U050.	.050U	UE30.	.053U	.050UJ	.052U	UE30.	.050	.054U	.050U	.050U	.050U	L050.	.050U	L080.	.050U	.050U
Delta-BHC	U030.	.050	UE30.	.053U	.050U	.052U	.053U	.050U	.054U	.050U	.050U	.050U	.050U	.050U	.050U	.050U	.050U
Hexachlorobenzene	1001	100	110	100	100	100	NR	100	NR	NR	NR	NR	NR	10N	NR	NR	NR

Notes: Concentration in ug/l

Start of semi annual monitoring insufficient sample

U Undetected J Estimated value NR Not required

TABLE 1 CHARLES GIBSON SITE NIAGARA FALLS, NEW YORK

ANALYTICAL SUMMARY SEMI-ANNUAL GROUND WATER SAMPLING 1997 - 2005

MONITOR WELL: MW-4

	1997	1998	8	19	1999	2000	0	2001	9	75	2002	20	2003	2(2004	Ž	2005
Parameter	September*	April	October	April	October	May	October	April	October	April	September	April	September	April	September	April	September
Alpha-BHC	090'/050'	L0500.	.053U	L1500.	.050U	.051U/.052U	.054U	.050U	r6900'	.050U	.050U	.049U	0.056	.048U	.048U	.047U	.047U
Beta- BHC	690'/550'	.016	.045J	L710.	.066/.068	.045J/.062	.054U	.050U	.047J	.041	.033	.049U	.026J	.048U	L7E0.	.047U	0.036J
Gamma-BHC	.050U	.050U	.053U	.053U	.050U	.051U/.052U	.054U	.050U	.050U	.071	.050U	.049U	.033J	.048U	.048U	.047U	.047U
Delta-BHC	.050U	.050U	.053U	.053U	.050U	.051U/.052U	.054U	.050U	.050U	.050U	.050U	.049U	.050U	.048U	.048U	.047U	.047U
Hexachlorobenzene	100	100	1001	100	10U	100	N.	100	NR.	NR.	NR	NR	Ä.	06	Ä	NR.	NR

MONITOR WELL: MW-5

	1007	1009	a	4000	90	0000	9	2004	-	00	2002	96	2003	96	7000	20	2005
	100	001	2	ć		10.4	2	Ó		77	70	3	200	3	10	7	20
Parameter	September*	April	October	April	October	May	October	April	October	April	September	April	September	April	September	April	September
Alpha-BHC	0.059	.050U/.0066J	.053U	L1700.	.045J	.010J	.054U	.050U	LE10.	.050U	.050U	.048U	.049U	.048U	.048U	.047U	.047UJ
Beta- BHC	.050U	.0080J/.0084J	.053U	.053U	90.0	.0313	.054U	U050.	L220.	.0500	.050U	.048U	.049U	.048U	.048U	.047U	.047UJ
Gamma-BHC	.050U	.050U	.053U	0530	.0065J	.052U	.054U	.050U	.055U	.050U	.050U	.048U	.049U	.048U	.048U	.047U	.047UJ
Delta-BHC	.050U	.050	.053U	UE30.	U030.	.052U	.054U	.050U	.055U	.050U	.050U	.048U	.049U	.048U	.048U	.047U	.047UJ
Hexachlorobenzene	100	100	110	110/110	100	100	N.	100	NR	NR	NR	NR	NR	100	NR	NR	NR

Notes: Concentration in ug/l
Start of semi annual monitoring
insufficient sample
U Undetected
J Estimated value
NR Not required

Table 1A Olin Corp. Gibson Site

Groundwater Monitoring Data: 2006

Sample ID	Samp Date CAS No	Parameter	Flags	Result UM	monitor point
FIELD BLANK	4/19/2006 319-84-6	alpha-BHC	U	0.047 UG/L	field blank
FIELD BLANK	4/19/2006 319-85-7	beta-BHC	U	0.047 UG/L	field blank
FIELD BLANK	4/19/2006 319-86-8	delta-BHC	U	0.047 UG/L	field blank
FIELD BLANK	4/19/2006 58-89-9	gamma-BHC	U	0.047 UG/L	field blank
MW-1R-041906	4/19/2006 319-84-6	alpha-BHC	J	0.037 UG/L	well
MW-1R-041906	4/19/2006 319-85-7	beta-BHC	J	0.036 UG/L	well
MW-1R-041906	4/19/2006 319-86-8	delta-BHC	Ū	0.05 UG/L	well
MW-1R-041906	4/19/2006 58-89-9	gamma-BHC	Ū	0.05 UG/L	well
MW1R-090606	9/6/2006 319-84-6	alpha-BHC	J	0.032 UG/L	well
MW1R-090606	9/6/2006 319-85-7	beta-BHC	J	0.022 UG/L	well
MW1R-090606	9/6/2006 319-86-8	delta-BHC	Ū	0.048 UG/L	well
MW1R-090606	9/6/2006 58-89-9	gamma-BHC	J	0.034 UG/L	well
MW1R-090606	9/6/2006 118-74-1	Hexachlorobenzene	Ü	10 UG/L	well
MW-2-041906	4/19/2006 319-84-6	alpha-BHC	U	0.05 UG/L	well
			U	0.05 UG/L	well
MW-2-041906	4/19/2006 319-85-7	beta-BHC	U	0.05 UG/L	well
MW-2-041906	4/19/2006 319-86-8	delta-BHC	U	0.05 UG/L	well
MW-2-041906	4/19/2006 58-89-9	gamma-BHC	U		well
MW2-090606	9/6/2006 319-84-6	alpha-BHC		0.048 UG/L	
MW2-090606	9/6/2006 319-85-7	beta-BHC	U	0.048 UG/L	well
MW2-090606	9/6/2006 319-86-8	delta-BHC	U	0.048 UG/L	well
MW2-090606	9/6/2006 58-89-9	gamma-BHC	J	0.03 UG/L	well
MW2-090606	9/6/2006 118-74-1	Hexachlorobenzene	U	10 UG/L	well
MW-4-041906	4/19/2006 319-84-6	alpha-BHC	U	0.049 UG/L	well
MW-4-041906	4/19/2006 319-85-7	beta-BHC	J	0.022 UG/L	well
MW-4-041906	4/19/2006 319-86-8	delta-BHC	U	0.049 UG/L	well
MW-4-041906	4/19/2006 58-89-9	gamma-BHC	J	0.03 UG/L	well
MW4-090606	9/6/2006 319-84-6	alpha-BHC	J	0.041 UG/L	well
MW4-090606	9/6/2006 319-85-7	beta-BHC	J	0.044 UG/L	well
MW4-090606	9/6/2006 319-86-8	delta-BHC	U	0.048 UG/L	well
MW4-090606	9/6/2006 58-89-9	gamma-BHC	J	0.036 UG/L	well
MW4-090606	9/6/2006 118-74-1	Hexachlorobenzene	U	10 UG/L	well
MW-5-041906	4/19/2006 319-84-6	alpha-BHC	U	0.049 UG/L	well
MW-5-041906	4/19/2006 319-85-7	beta-BHC	U	0.049 UG/L	well
MW-5-041906	4/19/2006 319-86-8	delta-BHC	U	0.049 UG/L	well
MW-5-041906	4/19/2006 58-89-9	gamma-BHC	U	0.049 UG/L	well
MW5-090606	9/6/2006 319-84-6		J	0.032 UG/L	well
MW5-090606	9/6/2006 319-85-7	beta-BHC	J	0.015 UG/L	well
MW5-090606	9/6/2006 319-86-8		Ū	0.048 UG/L	well
MW5-090606	9/6/2006 58-89-9	gamma-BHC	J	0.03 UG/L	well
MW5-090606		Hexachlorobenzene	Ū	10 UG/L	well
MW-7-041906	4/19/2006 319-84-6	alpha-BHC	Ü	0.049 UG/L	well
MW-7-041906	4/19/2006 319-85-7	beta-BHC	Ū	0.049 UG/L	well
MW-7-041906	4/19/2006/319-86-8	delta-BHC	U	0.049 UG/L	well
			U	0.049 UG/L	well
MW-7-041906	4/19/2006 58-89-9	gamma-BHC			
MW7-090606	9/6/2006 319-84-6	alpha-BHC	U	0.05 UG/L	well well
MW7-090606	9/6/2006 319-85-7	beta-BHC		0.05 UG/L	
MW7-090606	9/6/2006 319-86-8	delta-BHC	U	0.05 UG/L	well
MW7-090606	9/6/2006 58-89-9	gamma-BHC	U	0.05 UG/L	well
MW7-090606	9/6/2006 118-74-1	Hexachlorobenzene	U	10 UG/L	well
MWA-3-041906	4/19/2006 319-84-6	alpha-BHC	U	0.049 UG/L	well
MWA-3-041906	4/19/2006 319-85-7	beta-BHC	U	0.049 UG/L	well
MWA-3-041906	4/19/2006 319-86-8	delta-BHC	U	0.049 UG/L	well
MWA-3-041906	4/19/2006 58-89-9	gamma-BHC	U	0.049 UG/L	well
MWA3-090606	9/6/2006 319-84-6	alpha-BHC	J	0.032 UG/L	well
MWA3-090606	9/6/2006 319-85-7	beta-BHC	J	0.014 UG/L	well
MWA3-090606	9/6/2006 319-86-8	delta-BHC	U	0.048 UG/L	well
MWA3-090606	9/6/2006 58-89-9	gamma-BHC	J	0.03 UG/L	well
10100A2-090000	3/0/2000 30-03-3	gariiria Di io		0.00 0	

TABLE 2 CHARLES GIBSONB SITE NIAGARA FALLS, NEW YORK

ANALYTICAL SUMMARY

ANNUAL CAYUGA CREEK SEDIMENT SAMPLING 1993 - 2005

UPSTREAM

	1993		1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Parameter	September	June	September	August	September	September	October	October	October	October*	September	September	September	September
Alpha-BHC	0.059	.016	0.12	.0043J	.050U	.050U	2.1J	8.9/7.4	3.5	22	19/90	28/22J	198/N08	23.1
Beta- BHC	.028	.012	.0092J	.053U	.0123	U050.	5.2	28/19	4.5J	49	37//6	48/30	20J/190	36
Gamma-BHC	.050U	.050U	.024J	.053U	.050U	.050U	5.5	37/31	2.3U	24	31/26	123/28	233/563	15J
Delta-BHC	.050U	.050U	UE30.	.053U	.050U	.050U	.31UJ	2.93/.423	2.3U	3.3J	5.8U/1.6U	1.9J/26U	80U/38J	26U
Hexachlorobenzene	100	100		110	110	1001	470U	480U	NR	NR	NR	NR	NR	NR.

DOWNSTREAM

	1993		1994	1995	1996	1661	1998	1999	2000	2001	2002	2003	2004	2005
Parameter	September	June	September	August	September	September	October	October	October	October*	September	September	September	September
Alpha-BHC	0.059	.016	0.12	.0043J	.050U	.050U	2.13	8.9/7.4	3.5	99	19/90	28/22J	80U/86J	NS
Beta- BHC	.028	.012J	.00923	.053U	.012	.050U	5.2	28/19	4.5J	49	37/76	48/30	201/190	NS
Gamma-BHC	.050U	.050U	.024J	.053U	.050U	.050U	5.5	37/31	2.3U	24	31/26	123/28	233/563	NS
Delta-BHC	.050U	.050U	.053U	.053U	.050U	U030.	.31UJ	2.9J/.42J	2.3U	3.3J	5.8U/1.6U	1.9J/26U	80U/38J	NS
Hexachlorobenzene	100	10U	,	110	110	100	470U	480U	NR	NR	NR	NR.	NR R	NS

Notes:

U Not Detected
J Estimated value
NR Not required
NS No sample in trap
Sediment traps installed April 2001

Table 2A Olin Corp. Gibson Site Manhole and Stream Sediment Monitoring Data: 2006

Sample ID	Samp Date	CAS No	Parameter	Flags	Result	UM	monitor point
MHB-041906	4/19/2006	319-84-6	alpha-BHC		0.065	UG/L	manhole
MHB-041906	4/19/2006	319-85-7	beta-BHC	J	0.046	UG/L	manhole
MHB-041906	4/19/2006	319-86-8	delta-BHC		0.25	UG/L	manhole
MHB-041906	4/19/2006	58-89-9	gamma-BHC	U	0.05	UG/L	manhole
DS-1-090606	9/6/2006	319-84-6	alpha-BHC		8.3	UG/KG	downstrm sediment
DS-1-090606	9/6/2006	319-85-7	beta-BHC		22	UG/KG	downstrm sediment
DS-1-090606	9/6/2006	319-86-8	delta-BHC		11	UG/KG	downstrm sediment
DS-1-090606	9/6/2006	58-89-9	gamma-BHC	J	3.7	UG/KG	downstrm sediment
MS-1-090606 (US dup)	9/6/2006	319-84-6	alpha-BHC		1 3	UG/KG	upstrm sediment
MS-1-090606 (US dup)	9/6/2006	319-85-7	beta-BHC		- 36	UG/KG	upstrm sediment
MS-1-090606 (US dup)	9/6/2006	319-86-8	delta-BHC		14	UG/KG	upstrm sediment
MS-1-090606 (US dup)	9/6/2006	58-89-9	gamma-BHC	J	4	UG/KG	upstrm sediment
US-1-090606	9/6/2006	319-84-6	alpha-BHC		/ 13	UG/KG	upstrm sediment
US-1-090606	9/6/2006	319-85-7	beta-BHC		/ 34	UG/KG	upstrm sediment
US-1-090606	9/6/2006	319-86-8	delta-BHC		./13	UG/KG	upstrm sediment
US-1-090606	9/6/2006	58-89-9	gamma-BHC	J	3.9	UG/KG	upstrm sediment

Quarterly Groundwater Elevation Summary Table 3 2006

2006 Quarterly Groundwater Elevations Summary

Piezometer Pair	2/15/2006	inward gradient	4/19/2006	inward gradient	9/6/2006	inward gradient	12/5/2006	inward gradient
P1 outside P2 inside	565.50 565.52	level	565.41 565.44	level	566.02 565.31	inward	565.45 565.54	level
P3 outside P4 inside	567.59 565.43	inward	567.00 565.38	inward	566.05 565.25	inward	567.14 565.44	inward
P5 outside P6 inside	569.52 567.97	inward	568.96 567.67	inward	568.13 567.37	inward	569.55 567.93	inward
		below 565 ft msl		below 565 ft msl		below 565 ft msl		below 565 ft msl
Manhole A Manhole B	564.02 564.08	yes yes	563.72 563.80	yes yes	563.77 563.87	yes yes	563.87 563.89	yes yes

Measurement units are in feet above MSL

Piezometers P1, P3, P5 are outside the slurry wall. Piezometers P2, P4, P6 are located within the containment area.

Manhole monitoring:

- Maintain water level below 565 feet to prevent hydrostatic pressure buildup under concrete slab. Pump Manhole B as required to maintain an inward gradient.

Table 4 Olin Corp. Gibson Site Discharge Volumes

Summary of Yearly Discharge Volumes

Monthly Discharge Volumes 2006

Date	Volume (gallons)
1991	104,120
1992	76,562
1993	77,797
1994	69,724
1995	56,940
1996	77,512
1997(*)	64,687
1998	51,070
1999	140,860
2000	67,236
2001	20,855
2002	0
2003 (1)	5230
2004	65,082
2005	51,115
2006	52,891
TOTAL	981,681

	Volume
Month	(gallons)
Jan	6263
Feb	12351
Mar	0
Apr	6144
May	0
Jun	0
Jul	0
Aug	5824
Sep	0
Oct	5705
Nov	5716
Dec	10888
TOTAL	52,891

Notes:

- (*) Represents start of operation of direct discharge system
- (1) Pumped during test of system on 4/13/2003

Table 5

Annual Manhole B Sampling

CHARLES GIBSON SITE NIAGARA FALLS, NEW YORK

ANALYTICAL RESULTS SUMMARY ANNUAL LEACHATE SAMPLING

April 19, 2006

	MANHOLE B (MHB)
PARAMETER	
alpha-BHC	.065U
beta-BHC	.046J
delta-BHC	.25
gamma-BHC	.050U
Hexachlorobenzene	NR

Notes:

U Undetected

J Estimated value

NR Not Required Concentration in ug/l

Field blank was non-detect for all parameters of interest.

Data has been validated and judged acceptable as qualified.

Next hexachlorobenzene (HCB) sampling scheduled for October 2010

ATTACHMENT 1

INSPECTION AND SAMPLING SCHEDULE

CHARLES GIBSON SITE

(PINE AND TUSCARORA SITE)

NIAGARA FALLS, NEW YORK

NYSDEC Registry No. 9-32-063

GIBSON SITE NIAGARA FALLS, NEW YORK 2005 INSPECTION AND SAMPLING SCHEDULE

Quarterly Site Inspection (including Site Cover/Cap, Site Fence,

Creek Riprap, Site Structures, CPVC Drain/Sump

System).

Quarterly Piezometer and sump groundwater level elevation

measurements.

Semi-Annually Groundwater monitoring well sampling (April and

September) for BHC isomers.

Annually Cayuga Creek sediment sampling (September) for BHC

isomers.

Annually Leachate sample collection and analysis (Manhole B) for

BHC isomers (starting in 2000).

Annually Annual report to NYSDEC (1st Quarter).

Biennially Groundwater monitoring well sampling (starting in

April 2000) for HCB. The biennial sampling events following 2000 will alternate seasonally between April and September sampling. Next HCB sampling is

September 2006.

Every Five Years Leachate sample collection and analysis (Manhole B) (for HCB)

(starting in 2000). Next leachate sampling for HCB is 2010.

APPENDIX A

September-06 Semiannual Report Gibson Site

APPENDIX A

Data Usability Summary Report

October - 2006

CHARLES GIBSON SITE

(PINE AND TUSCARORA SITE)

NIAGARA FALLS, NEW YORK

NYSDEC Registry No. 9-32-063

Env. Remediation

DATA USABILITY SUMMARY REPORT SEMI-ANNUAL GROUNDWATER SAMPLING AND ANNUAL CREEK SEDIMENT SAMPLING SEPTEMBER 2006

CHARLES GIBSON SITE NIAGARA FALLS, NEW YORK

PREPARED BY: SEVENSON ENVIRONMENTAL SERVICES, INC. 2749 LOCKPORT ROAD NIAGARA FALLS, NEW YORK 14305

Report Submitted: October 4, 2006

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	1
2.0	SAMPLE HOLDING TIMES	1
3.0	SURROGATE SPIKE RECOVERIES	2
4.0	LABORATORY BLANK ANALYSES	3
5.0	MATRIX SPIKE/MATRIX SPIKE DUPLICATE ANALYSES	3
6.0	BLANK SPIKE ANALYSES	4
7.0	FIELD QA/QC 7.1 FIELD BLANKS 7.2 FIELD DUPLICATES 7.3 RINSE BLANKS	4 4 4 5
8.0	CONCLUSIONS	5

LIST OF TABLES

TABLE 1 ANALYTICAL RESULTS SUMMARY – SEMI-ANNUAL WELL

SAMPLING

TABLE 2 ANALYTICAL RESULTS SUMMARY – ANNUAL CREEK

SEDIMENT SAMPLING

LIST OF APPENDICES

APPENDIX A CHAIN OF CUSTODY FORM

APPENDIX B SUMMARY ANALYTICAL REPORT

1.0 INTRODUCTION

The following details an assessment and validation of analytical results reported by Severn Trent Laboratories, Inc. (STL) of Buffalo, New York, for groundwater samples and creek sediment samples collected in September 2006 for the Semi-Annual Groundwater Sampling and Annual Creek Sediment Sampling Program at the Charles Gibson Site in Niagara Falls, New York. The semi-annual sampling includes the collection of groundwater samples from five monitoring wells (MW-1R, MW-2, MW-4, MW-5, and MW-A3) and a field duplicate of MW-1R (designated as MW-7). Samples were collected and analyzed by the laboratory from all required groundwater sample locations during the sampling event. The annual sampling included the collection of two sediment samples (US1 and DS1) and a field duplicate of sediment sample US1 (designated as MS1). All samples were collected in accordance with the "Operation and Maintenance Manual" for the site, dated June 2000.

All aqueous and solid samples were submitted for the analysis of the pesticides alpha-BHC, beta-BHC, delta-BHC, and gamma-BHC, using US Environmental Protection Agency (USEPA) SW-846 Methods 3510 and 8081A. In addition, the groundwater samples were submitted for the analysis of hexachlorobenzene using USEPA SW-846 Methods 3510 and 8270C. Analyses are referenced from "Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods," SW-846 Third Edition, 1986 and subsequent revisions. The analytical data are presented in Tables 1 and 2 for the groundwater samples and sediment sample, respectively. A copy of the chain of custody form is included in Appendix A and the summary report from the laboratory is included in Appendix B. Data evaluation was based on information obtained from the finished data sheets, chain-of-custody forms, blank data, field duplicate data, and recovery data for matrix, blank, and surrogate spikes.

The Quality Assurance/Quality Control (QA/QC) criteria by which these data have been assessed are outlined in the analytical methods and in "National Functional Guidelines for Organic Data Review," USEPA, October 1999.

2.0 SAMPLE HOLDING TIMES

Based on the criteria outlined in the methods of analysis, the following holding time requirements were used:

Parameter	Matrix	Collection to Extraction (days)	Extraction to Analysis (days)
BHCs	Water	7	40
BHCs	Sediment	14	40
Hexachlorobenzene	Water	7	40

Based on sample chain-of-custody forms and laboratory analysis reports, groundwater samples were collected on September 6, 2006, extracted on September 7, 2006, and analyzed on September 8 and 9, 2006 for pesticides and hexachlorobenzene. Based on sample chain-of-custody forms and laboratory analysis reports, sediment samples were collected on September 6, 2006, extracted on September 12, 2006, and analyzed on September 12, 2006 for pesticides. The sample extraction and analysis was performed within the holding times specified in the "National Functional Guidelines for Organic Data Review" (USEPA, 1999).

As indicated on the chain of custody form and sample inventory form included with the laboratory analytical data report, the laboratory received the sample coolers at temperatures of 4°C, in good condition. Samples were hand delivered to the laboratory on the same day that the samples were collected.

3.0 SURROGATE SPIKE RECOVERIES

All field samples, blanks, and laboratory QC samples (e.g., matrix spike, matrix spike duplicate) analyzed for BHCs and hexachlorobenzene are spiked with surrogate compounds prior to extraction. The primary function of the surrogate spiking activity is to determine the efficiency of recovery of analytes in the samples preparation and analysis and thus the degree to which the sample matrix plays a role in the analysis. This matrix interference is measured as a percent recovery, which is then used to gauge the total accuracy of the analytical method for that sample.

All samples submitted for BHC analyses were spiked with the surrogate compounds decachlorobiphenyl and tetrachloro-m-xylene. All samples submitted for hexachlorobenzene analyses were spiked with the surrogate compounds 2-fluorobiphenyl, nitrobenzene-d5, and terphenyl-d14. All surrogate recoveries were within the laboratory control limits, demonstrating acceptable analytical efficiency, with the following exception:

The recovery of the surrogate compound nitrobenzene-d5 in groundwater sample MW-5-090606 was 4%, less than the laboratory lower acceptance criteria of 46%. Matrix interference is suspected to have caused the low bias. Nitrobenzene-d5 is not associated with the target compound (i.e., hexachlorobenzene). No qualifiers were assigned to the sample results during data validation.

4.0 LABORATORY BLANK ANALYSES

The purpose of assessing the results of laboratory blank analyses is to determine the existence and magnitude of sample contamination resulting from laboratory sample preparation and analysis activities. A method blank is a sample of non-contaminated deionized water that is subjected to all of the sample preparation (i.e., extraction) and analytical methodology applied to the samples.

Laboratory blanks were extracted and analyzed at a frequency of one per analytical batch. All BHC and hexachlorobenzene results in the method blank were non-detect, indicating that contamination from laboratory activities was not a factor for this sampling round.

5.0 MATRIX SPIKE/MATRIX SPIKE DUPLICATE ANALYSES (MS/MSD)

To assess the effects of sample matrices on analytical efficiency, samples are spiked in duplicate with known concentrations of the target compounds into a prepared portion of a sample just prior to analysis. The matrix spike recovery provides information on matrix effects encountered during analysis and indicates whether the selected analytical method is appropriate for the recovery of the contaminants of concern for the matrix. The MS/MSD recoveries are used to evaluate analytical accuracy, while the relative percent difference (RPD) values between the MS and MSD are used to evaluate analytical precision.

The MS and MSD analyses for pesticides and hexachlorobenzene were performed using groundwater samples collected from monitoring well MW-2 for this sampling event. MS/MSD recoveries and the associated RPD were within the laboratory control limits, demonstrating acceptable laboratory accuracy and precision, with the following exception:

• The RPD for hexachlorobenzene was slightly greater than the laboratory acceptance criteria (RPD=16%, acceptance limit = 15%). The individual MS and MSD recoveries were within the laboratory QC limits. No qualifiers were assigned to the hexachlorobenzene results during data validation.

MS and MSD analyses were not performed in association with the sediment samples collected during this sampling event. The omission of MS and MSD analyses is acceptable per the requirements of USEPA SW-846 Method 8081A.

6.0 BLANK SPIKE ANALYSES

Blank spikes are analyzed as samples to assess the analytical accuracy of the methods employed in the absence of matrix interference. The blank spike contains known concentrations of the analytes of concern and is carried through the entire preparation and analysis process. The actual analyte concentration and percent recovery is reported with the laboratory QC data. Blank spikes are analyzed at a minimum frequency of one per analytical batch.

All BHC and hexachlorobenzene recoveries reported by the laboratory for the blank spike analyses were within the laboratory control limits, demonstrating acceptable analytical accuracy.

7.0 FIELD QA/QC

7.1 Field Blanks

The purpose of field blank analysis is to determine the existence and magnitude of contamination resulting from sample bottles, field sampling activities, sample transport, and/or storage. Due to a field oversight, a field blank was not collected during the sampling event.

7.2 Field Duplicates

Field duplicate samples are collected in a manner that is identical to the original sample - the original field samples and its duplicate are collected at the same time, by the sample personnel, using the same procedures and sampling equipment, and is placed in the same type of containers. Field duplicates are

Data Usability Summary Report Charles Gibson Site, Niagara Falls, NY September 2006

used as a relative measure of the combined precision of the sample collection and analytical process. One field duplicate sample was collected during this sampling event and submitted as a "blind" sample to the laboratory. The field duplicates collected for this sampling event consisted of the following:

Sample ID MW-1R-090606 US-1-090606 Field Duplicate ID MW-7-090606 MS-1-090606

Results from the analysis of the primary sample were compared to the results from the duplicate sample analysis and agreement expressed in terms of relative percent difference (RPD).

The sample results for the MW-1R-090606/MW-7-090606 duplicate pair (Table 1) indicate that all parameters were not detected in sample MW-7-090606 while trace concentrations (i.e., less than the sample quantitation limit but greater than zero) of alpha-BHC, beta-BHC, and gamma-BHC were detected in sample MW-1R-090606. The duplicate sample results demonstrate acceptable reproducibility, indicating good sampling and analytical precision.

The sample results for the US-1-090606/MW-1-090606 duplicate pair (Table 2) indicate that alpha-BHC, beta-BHC, delta-BHC, and gamma-BHC were detected in both samples. RPD was calculated and found to be less than 10% for all parameters, demonstrating acceptable reproducibility and good sampling and analytical precision.

7.3 Rinse Blanks

No rinse blanks were collected for this sampling event, as dedicated equipment was used for monitoring well sample collection.

8.0 CONCLUSIONS

The analytical data package from Severn Trent was complete with all required QC information. The method blanks were free from contamination. All analyses were performed using specified methods within proper holding times. The relative percent differences, and surrogate, blank spike, and matrix spike/matrix spike duplicate recoveries were within laboratory control limits for all parameters and

analyses with the exceptions discussed above in Sections 3.0 and 5.0. Based on this assessment and validation of the laboratory report, the data produced by STL are acceptable without qualification.

TABLES

TABLE 1 ANALYTICAL RESULTS SUMMARY - SEMI-ANNUAL WELL SAMPLING CHARLES GIBSON SITE NIAGARA FALLS, NEW YORK SEPTEMBER 2006

Sample ID	MW-A3-090	MW-1R-09	90606	MW-7-090	606*	MW-2-09	0606	MW-4-09	0606	MW-5-090606		
Sample Date	09/06/06	09/06/0		09/06/0		09/06/0)6	09/06/0)6	09/06/06		
BHC Isomers in Water via Method 8081A (ug/L)												
alpha-BHC	0.032	J	0.032	J	<0.050	U	<0.048	U	0.041	J	0.032	J
beta-BHC	0.014	J	0.022	J	<0.050	υ	<0.048	U	0.044	J	0.015	Je
delta-BHC	<0.048	U	<0.048	U	<0.050	U	<0.048	U	<0.048	U	<0.048	U
gamma-BHC (lindane)	0.030	J	0.034	J	<0.050	U	0,030	J	0.036	J	0.030	J
Hexachlorobenzene in Water via Method 8270 (ug/L)												
Hexachlorobenzene	9	J	<10	U	<10	U	<10	U	<10	U	<10	U

Notes:

- * MW-7 is a field duplicate of MW-1R
- U Compound was analyzed for but not detected
- J Estimated value result is less than the sample quantitation limit but greater than zero

TABLE 2 ANALYTICAL RESULTS SUMMARY - ANNUAL CREEK SEDIMENT SAMPLING CHARLES GIBSON SITE NIAGARA FALLS, NEW YORK SEPTEMBER 2006

Sample ID	US-1-090606	MS-1-090606*	DS-1-090606
Sample Date	09/06/06	09/06/06	09/06/06
BHC Isomers in Soil via	Method 8081A (ug/k	(g)	
alpha-BHC	13	13	8.3
beta-BHC	34	36	22
delta-BHC	13	14	11
gamma-BHC (lindane)	3.9 J	4.0 J	3.7 J

Notes:

- * MS-1 is a field duplicate of US-1
- J Compound was analyzed for and determined to be present in the sample. The concentration listed is an estimated value, which is less than the specified minimum detection limit but is greater than zero.

APPENDIX A CHAIN OF CUSTODY FORM

Chain of Custody Record

SEVERN STLL®

TRENT
Severn Trent Laboratories, Inc.

								√					_									5]	1/50	7	1
des autorisas mandridos per de describer en como en	06 Chain of Custody Number 285885	Page of			Special Instructions/	Conditions of Receipt		1 Litre Arken Glas		-Ms/mso Volume				6102 order glass		k			(A fee may be assessed if samples are retained longer than 1 month)		, Date / Time	05/4/4/2 1730	Time	Date Time	
	Date 9-6-06	Lab Number	Analysis (Attach list if more space is needed)																(A fee n Months longer ti	1		K - CA			
.,						87 71	H T	22	77	7-	7 7	2 2	7		_				Archive For _	2		とな	0		
	•	1423-336- 4166	Contact	dum Fisher		Containers & Preservatives	HOBN NaOH HCI HUO3 HZSO¢		-										Disposal By Lab	QC Requirements (Specify)	1. Received By	down	2. Явсвічед Ву	3. Received By	
	\mathcal{H}_{i}	ыг (Агөв Соді . Цб В		Number		Matrix	Sedi.	* * *	х У	X	メ	X. A.	タース	×	×	X		-	Sample Disposal Return To Client	M STANDAL D		d 1730	Time	Time	_
	Project Manage London JU	Telephon 423	Sile Contact	Carrier/Waybill			Time	5401	2///	1235	00/1	1450	1820	029/	(625	1635	•		Unknown	1	1	9 6	Баге	Date	
•		00	Соде		16.	1	Date	90/9/16								>			Poison B						
STL-4124 (0901)	OLIN CORP.	FORM DUST LOWER LIVER	1	Project Name and Location (State)	Charles Subsin Sits Mire Margalla		Sample I.D. No. and Description (Containers for each sample may be combined on one line)	MW1R - 090606	MW 7 - OGOLOG	MW -7 - 090606	MW 4 - 090606	,	Mw. A3-090606	115-1-090606	D5-1-090606	M3-1-090606			Possible Hazard Identification Non-Hazard	Time Required	1 48 HOURS C / Days		2. Aðinfquishald By	3. Relinquished By	Comments

DISTRIBUTION: WHITE . Returned to Client with Report, CANARY . Stays with the Sample, PINK . Field Copy

204.0%

STL Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

ANALYTICAL REPORT

Job#: A06-A184

STL Project#: NY3A9025 Site Name: OLIN CORPORATION Task: Charles Gibson Site

> Ms. Lorraine Miller Olin Corporation 1186 Lower River Road Charleston, TN 37310

CC: Mr. Michael Walker

STL Buffalo

Brian J Fischer Project Manager

Donna Besco

Analyst

Martha Fuller
Analyst

9/26/06

STL Buffalo Current Certifications

As of 9/12/2006

STATE	Program	Cert # / Lab ID
AFCEE	AFCEE	
Arkansas	SDWA, CWA, RCRA, SOIL	88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	SDWA, CWA, RCRA, CLP	NY455
New York	NELAP, AIR, SDWA, CWA, RCRA,ASP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	CWA, RCRA	68-00281
South Carolina	RCRA	91013
Tennessee	SDWA	02970
USACE .	USACE	•
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA	998310390

Sample Data Summary Package

SAMPLE SUMMARY

			SAMPI	ED	RECEIVE	Ð
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A6A18408	DS-1-090606	SEDIM	09/06/2006	16:25	09/06/2006	17:30
A6A18409	MS-1-090606	SEDIM			09/06/2006	
A6A18401	MW1R-090606	WATER			09/06/2006	
A6A18403	MW2-090606	WATER	09/06/2006	12:35	09/06/2006	17:30
A6A18403MS	MW2-090606	WATER	09/06/2006	12:35	09/06/2006	17:30
A6A18403SD	MW2-090606	WATER	09/06/2006	12:35	09/06/2006	17:30
A6A18404	MW4-090606	WATER	09/06/2006	14:00	09/06/2006	17:30
A6A18405	MW5-090606	WATER			09/06/2006	
A6A18402	MW7-090606	WATER	09/06/2006	11:15	09/06/2006	17:30
A6A18406	MWA3-090606	WATER	09/06/2006	15:50	09/06/2006	17:30
A6A18407	US-1-090606	SEDIM	09/06/2006	16:20	09/06/2006	17:30

METHODS SUMMARY

Job#: <u>A06-A184</u>

SIL Project#: <u>NY3A9025</u> Site Name: <u>Olin Corporation - Charles Gibson site</u>

	ANALYTICAL
PARAMETER	METHOD
ASP 2000/8270 - HEXACHLOROBENZENE ONLY	ASP00 8270
ASP 2000 - METHOD 8081 BHC'S	ASP00 8081
ASP 2000- METHOD 8081 BHC'S	ASP00 8081

References:

ASP00

"Analytical Services Protocol", New York State Department of Conservation, June 2000.

NON-CONFORMANCE SUMMARY

Job#: A06-A184

STL Project#: NY3A9025

Site Name: Olin Corporation - Charles Gibson site

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A06-A184

Sample Cooler(s) were received at the following temperature(s); 2@4.0 °C All samples were received in good condition.

GC/MS Semivolatile Data

The surrogate recovery for Nitrobenzene-D5 was below laboratory quality control limits in the sample MW5-090606. However, this surrogate is not associated with the target analyte listed. No corrective action was necessary.

The relative percent difference between the Matrix Spike MW2-090606 and the Matrix Spike Duplicate MW2-090606 exceeded quality control criteria for Hexachlorobenzene, though all individual recoveries are compliant. No action required.

GC Extractable Data

For method 8081, several compounds exhibited a percent difference greater than 15% from the expected amount in the associated continuing calibrations. The average of all analytes is within 15% and the associated laboratory quality control recoveries are compliant. No corrective action was required.

For method 8081 pesticides, all extract for samples were acid treated to minimize matrix interferences. None of the target pesticide compounds reported for this job are effected by this cleanup.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature."

Brian J. Fischer Project Manager

9-26-06

Date

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

LAB NAME: SEVERN TRENT LABORATORIES, INC.

CUSTOMER SAMPLE ID	LABORATORY SAMPLE ID		ANALYTICAL REQUIREMENTS					
		VOA GC/MS	BNA GC/MS	VOA GC	PEST PCB	METALS	TCLP HERB	WATER QUALITY
DS-1-090606	A6A18408	-	-	-	SW8463	-	- ,	-
MS-1-090606	A6A18409	-	-	-	SW8463	-	-	-
MW1R-090606	A6A18401	-	SW8463	-	SW8463	-	-	_
MW2-090606	A6A18403	-	SW8463	-	SW8463	-	-	-
MW4-090606	A6A18404	-	SW8463	_	SW8463	-		-
MW5-090606	A6A18405	-	SW8463	_	SW8463	-	-	-
MW7-090606	A6A18402	-	SW8463	-	SW8463	-		-
MWA3-090606	A6A18406	-	SW8463	-	SW8463	-	-	-
US-1-090606	A6A18407	_	-	-	SW8463	-	-	-

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY B\N-A ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

LAD NAME. SEVERN IK	DITT DIBOIG	HOIGEO, INC.			
SAMPLE IDENTIFICATION	MATRIX	DATE COLLECTED	DATE RECEIVED AT LAB	DATE EXTRACTED	DATE ANALYZED
MW1R-090606	WATER	09/06/2006	09/06/2006	09/07/2006	09/08/2006
MW2-090606	WATER	09/06/2006	09/06/2006	09/07/2006	09/08/2006
MW4-090606	WATER	09/06/2006	09/06/2006	09/07/2006	09/08/2006
MW5-090606	WATER	09/06/2006	09/06/2006	09/07/2006	09/08/2006
MW7-090606	WATER	09/06/2006	09/06/2006	09/07/2006	09/08/2006
MWA3-090606	WATER	09/06/2006	09/06/2006	09/07/2006	09/08/2006

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY PESTICIDE/PCB ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC SAMPLE MATRIX DATE DATE DATE DATE **ANALYZED IDENTIFICATION** COLLECTED **RECEIVED EXTRACTED** AT LAB 09/12/2006 09/12/2006 DS-1-090606 SEDIM 09/06/2006 9/06/2006 MS-1-090606 SEDIM 09/06/2006 09/06/2006 09/12/2006 09/12/2006 09/06/2006 09/12/2006 09/12/2006 MW1R-090606 WATER 09/06/2006 MW2-090606 WATER 09/06/2006 09/06/2006 09/07/2006 09/08/2006 MW4-090606 WATER 09/06/2006 09/06/2006 09/07/2006 09/09/2006 09/07/2006 09/09/2006 MW5-090606 WATER 09/06/2006 09/06/2006 09/08/2006 09/06/2006 09/07/2006 MW7-090606 WATER 09/06/2006 09/09/2006 MWA3-090606 WATER 09/06/2006 09/06/2006 09/07/2006 US-1-090606 09/06/2006 09/06/2006 09/12/2006 09/12/2006 SEDIM

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY ORGANIC ANALYSIS

LAB NAME: SEVERN TI	<u>KENT LABOR</u>	ATORIES, INC.			
SAMPLE IDENTIFICATION	MATRIX	ANALYTICAL PROTOCOL	EXTRACTION METHOD	AUXILIARY CLEAN UP	DIL/CONC FACTOR
DS-1-090606	SEDIM	SW8463	SONC	AS REQUIRED	AS REQUIRED
MS-1-090606	SEDIM	SW8463	SONC	AS REQUIRED	AS REQUIRED
MW1R-090606	WATER	SW8463	SEPF	AS REQUIRED	AS REQUIRED
MW2-090606	WATER	SW8463	SEPF	AS REQUIRED	AS REQUIRED
MW4-090606	WATER	SW8463	SEPF	AS REQUIRED	AS REQUIRED
MW5-090606	WATER	SW8463	SEPF	AS REQUIRED	AS REQUIRED
MW7-090606	WATER	SW8463	SEPF	AS REQUIRED	AS REQUIRED
MWA3-090606	WATER	SW8463	SEPF	AS REQUIRED	AS REQUIRED
US-1-090606	SEDIM	SW8463	SONC	AS REQUIRED	AS REQUIRED

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- Indicates coelution.
- * Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.

- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

Tah Name:	ऽग. Ruff⊇l	0	Contract.		MMTK-030000
דשה אמוב:	STE DULLAT	<u> </u>	Willact:		
Lab Code:	<u>RECNY</u> C	ase No.:	SAS No.:	SDG No.:	
Matrix: (s	soil/water)	WATER		Lab Sample ID:	<u>A6A18401</u>
Sample wt/	/vol:	1005.0 (g/mL)	<u>ML</u>	Lab File ID:	W11282.RR
Level:	(low/med)	<u>LOW</u>		Date Samp/Recv:	09/06/2006 09/06/2006
% Moisture	e:	decanted: (Y/	N) <u>N</u>	Date Extracted:	09/07/2006
Concentrat	ted Extract	: Volume: 1000 (u	L)	Date Analyzed:	09/08/2006
Injection	Volume:	1.00 (uL)		Dilution Factor:	1.00
GPC Clean	up: (Y/N)	<u>N</u> pH: <u>6.0</u>			
(CAS NO.	COMPOUND		CONCENTRATION UNITS: (ug/L or ug/Kg)	
Γ.	110 74 1	Tioner alail annala		·	70 177

Lab Name: SIL Buffalo Contract:	MW2-090606
Lab Code: RECNY Case No.: SAS No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A6A18403
Sample wt/vol: $\underline{1030.0}$ (g/mL) $\underline{\text{ML}}$	Iab File ID: W11284.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv: 09/06/2006 09/06/2006
% Moisture: decanted: (Y/N) N	Date Extracted: 09/07/2006
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: <u>09/08/2006</u>
Injection Volume: 1.00(uL)	Dilution Factor: 1.00
GPC Cleanup: (Y/N) N pH: 6.0	
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
118-74-1Hexachlorobenzene	10 U

Tab Name CTT Duffalo Contract	MW4-090606	
Lab Name: STL Buffalo Contract:		
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A6A18404	
Sample wt/vol: 1025.0 (g/mL) ML	Lab File ID: W11287.RR	
Level: (low/med) <u>LOW</u>	Date Samp/Recv: 09/06/2006 09/06/2006	2
% Moisture: decanted: (Y/N) N	Date Extracted: 09/07/2006	
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: 09/08/2006	
Injection Volume: 1.00 (uL)	Dilution Factor:1.00	
GPC Cleanup: (Y/N) N pH: 6.0		
CAS NO. COMPOUND	CONCENIRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q	
118-74-1Hexachlombenzene	10 [1]	

Lab Name: STL Bu	ffalo Contract:		MW5-090606
Lab Code: <u>RECNY</u>	Case No.: SAS No	.: SDG No.:	-
Matrix: (soil/wa	ter) <u>WATER</u>	Lab Sample II	D: <u>A6A18405</u>
Sample wt/vol:	<u>1025.0</u> (g/mL) <u>M</u> L	Lab File ID:	W11288.RR
Level: (low/me	d)- <u>LOW</u>	Date Samp/Red	ev: <u>09/06/2006</u> <u>09/06/2006</u>
% Moisture:	_ decanted: (Y/N) N	Date Extracte	ed: <u>09/07/2006</u>
Concentrated Ext	ract Volume: 1000(uL)	Date Analyzed	d: <u>09/08/2006</u>
Injection Volume	:1.00 (uL)	Dilution Fact	cor: <u>1.00</u>
GPC Cleanup: (Y	/N) <u>N</u> pH: <u>6.0</u>		
CAS NO.	COMPOUND	CONCENTRATION UNI (ug/L or ug/Kg)	ITS: <u>UG/L</u> Q
118-74-	1Hexachlorobenzene		10 U

T als 37-as CTT 12-66-1-	Garateur etc		MW7-090606
Lab Name: SIL Bullalo	Contract:		
Lab Code: <u>RECNY</u> Case	No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>WA'</u>	TER	Lab Sample ID:	A6A18402
Sample wt/vol: 99	5.00 (g/mL) <u>ML</u>	Lab File ID:	W11283.RR
Level: (low/med) <u>LO</u>	<u>w</u>	Date Samp/Recv:	09/06/2006 09/06/2006
% Moisture: de	canted: (Y/N) N	Date Extracted:	09/07/2006
Concentrated Extract Vo	lume: 1000 (uL)	Date Analyzed:	09/08/2006
Injection Volume: 1.	00 (uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) N	pH: <u>6.0</u>		
CAS NO.		CONCENTRATION UNITS: (ug/L or ug/Kg)	
118-74-1	Hexachlorobenzene		10 U

Lab Name: STL Buffalo Cont	ract:	MMA3-090606
Lab Code: RECONY Case No.:	The state of the s	-
Matrix: (soil/water) WATER	Lab Sample 1	ID: <u>A6A18406</u>
Sample wt/vol: $\underline{440.00}$ (g/mL) \underline{ML}	Lab File ID:	<u>W11289.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Re	ecv: 09/06/2006 09/06/2006
% Moisture: decanted: (Y/N) N	. Date Extract	ced: <u>09/07/2006</u>
Concentrated Extract Volume: 1000 (uL)	Date Analyza	ed: <u>09/08/2006</u>
Injection Volume: 1.00 (uL)	Dilution Fac	ctor: <u>1.00</u>
GPC Cleanup: (Y/N) N pH: 6.0		
CAS NO. COMPOUND	CONCENTRATION UN (ug/L or ug/Kg)	NITS: UG/L Q
118-74-1Hexachlorobenzer	æ	9 J

		DS-1-090606
Lab Name: STL Buffalo Contract:		
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) SOIL	Lab Sample ID:	A6A18408
Sample wt/vol: <u>30.82</u> (g/mL) <u>G</u>	Lab File ID:	5A05005.TX0
% Moisture: 71 decanted: (Y/N) N	Date Samp/Recv:	09/06/2006 09/06/2006
Extraction: (SepF/Cont/Sonc/Soxh): <u>SONC</u>	Date Extracted:	09/12/2006
Concentrated Extract Volume: 10000 (uL)	Date Analyzed:	09/12/2006
Injection Volume:1.00(uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) N pH: _	Sulfur Cleanup:	(Y/N) <u>N</u>
	TION UNITS: ug/Kg) <u>UG/KG</u>	Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	8.3 22 11 3.7	J

Lab Name: STL Buffalo Contra	act:	5-1-090606
Lab Code: RECNY Case No.: SAS No	.: SDG No.:	
Matrix: (soil/water) SOIL	Lab Sample ID: A6	SA18409
Sample wt/vol: 30.29 (g/mL) G	Lab File ID: 57	405006.TX0
% Moisture: 71 decanted: (Y/N) N	Date Samp/Recv: 09	9/06/2006 09/06/2006
Extraction: (SepF/Cont/Sonc/Soxh): SONC	Date Extracted: 09	9/12/2006
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 09	9/12/2006
Injection Volume:1.00(uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) N pH:_	Sulfur Cleanup: (Y	/N) <u>N</u>
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>	Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC	13 36 14	т

		MW1R-090606
Lab Name: STL Buffalo Contrac	t:	
Lab Code: RECNY Case No.: SAS No.:	: SDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A6A18401
Sample wt/vol: 1050.00 (g/mL) ML	Lab File ID:	5A-04168.TX0
% Moisture: decanted: (Y/N) N	Date Samp/Recv:	09/06/2006 09/06/2006
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted:	09/07/2006
Concentrated Extract Volume: 10000 (uL)	Date Analyzed:	09/08/2006
Injection Volume:1.00(uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) N pH: 6.00	Sulfur Cleanup:	(Y/N) <u>N</u>
CAS NO. COMPOUND	CONCENIRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>	Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9	0.032 0.022 0.048	J

	MW2-090606
Lab Name: STL Buffalo Contrad	ct:
Lab Code: RECNY Case No.: SAS No.	: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A6A18403
Sample wt/vol: $\underline{1050.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID: <u>5A-04172.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv: 09/06/2006 09/06/2006
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 09/07/2006
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 09/08/2006
Injection Volume:1.00(uL)	Dilution Factor: 1.00
GPC Cleanup: (Y/N) N pH: 6.00	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC	0.048 U 0.048 U 0.048 U

		•	MW4-090606
Lab Name: <u>STL Buffalo</u>	Contract: _		
Lab Code: <u>RECNY</u> Case No	.: SAS No.:	SDG No.:	
Matrix: (soil/water) WATER		Lab Sample ID:	<u>A6A18404</u>
Sample wt/vol: 1040.0	0 (g/mL) <u>ML</u>	Lab File ID:	5A-04175.TX0
% Moisture: decan	ted: (Y/N) N	Date Samp/Recv:	09/06/2006 09/06/2006
Extraction: (SepF/Cont/Son	c/Soxh): <u>SEPF</u>	Date Extracted:	09/07/2006
Concentrated Extract Volum	e: <u>10000</u> (uL)	Date Analyzed:	09/09/2006
Injection Volume: 1.00	(uL)	Dilution Factor	1.00
GPC Cleanup: (Y/N) N pH:	6.00	Sulfur Cleanup:	(Y/N) <u>N</u>
CAS NO. COMPOUND		CENIRATION UNITS: g/L or ug/Kg) <u>UG/L</u>	
319-84-6alpha-BH 319-85-7beta-BHC 319-86-8delta-BH 58-89-9gamma-BH	C	0.04 0.04 0.04 0.03	4 J 8 U

	•			MW5-090606	
Lab Name: STL Buffa	alo	Contract:			
Lab Code: <u>RECNY</u>	Case No.:	SAS No.:	SDG No.:		-
Matrix: (soil/water	r) <u>WATER</u>		Lab Sample ID:	A6A18405	
Sample wt/vol:	<u>1050.00</u> (g/mL) <u>ML</u>		Lab File ID:	<u>5A-04176.TX0</u>	
% Moisture:	decanted: (Y/N)	N	Date Samp/Recv:	09/06/2006 09/06/20	<u>06</u>
Extraction: (SepF/	Cont/Sonc/Soxh): <u>SE</u>	<u>PF</u>	Date Extracted:	09/07/2006	
Concentrated Extra	ct Volume: <u>10000</u> (u	L)	Date Analyzed:	09/09/2006	
Injection Volume:	1.00 (uL)	•	Dilution Factor:	1.00	
GPC Cleanup: (Y/N) <u>N</u> pH: <u>6.00</u>	•	Sulfur Cleanup:	(Y/N) <u>N</u>	
CAS NO.	COMPOUND	• • • • • • • • • • • • • • • • • • • •	RATION UNITS: or ug/Kg) <u>UG/L</u>	Q	
319-84-63 319-85-73 319-86-8	beta-BHC		0.032 0.015 0.048	5 J 3 U	

	MW7-090606
Lab Name: STL Buffalo Contract:	
Lab Code: RECNY Case No.: SAS No.:	_ SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A6A18402
Sample wt/vol: <u>1000.00</u> (g/mL) <u>ML</u>	Lab File ID: <u>5A-04171.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv: 09/06/2006 09/06/2006
Extraction: (SepF/Cont/Sonc/Soxh): <u>SEPF</u>	Date Extracted: <u>09/07/2006</u>
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 09/08/2006
Injection Volume: 1.00(uL)	Dilution Factor: 1.00
GPC Cleanup: (Y/N) N pH: 6.00	Sulfur Cleanup: (Y/N) N
	ENIRATION UNITS: /L or ug/Kg) <u>UG/L</u> Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	0.050 U 0.050 U 0.050 U 0.050 U

090606
106
177.TX0
<u>/2006 09/06/2006</u>
/2006
/2006
.00
N
<u></u>

	US-1-090606
Lab Name: <u>STL Buffalo</u> Contrac	t:
Lab Code: RECNY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID: A6A18407
Sample wt/vol:30.12 (g/mL) <u>G</u>	Lab File ID: <u>5A05004.TX0</u>
% Moisture: 72 decanted: (Y/N) N	Date Samp/Recv: 09/06/2006 09/06/2006
Extraction: (SepF/Cont/Sonc/Soxh): SONC	Date Extracted: 09/12/2006
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 09/12/2006
Injection Volume:1.00(uL)	Dilution Factor: 1.00
GPC Cleanup: (Y/N) N pH:_	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u> Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9	13 34 13 3.9

OLIN CORPORATION OLIN CORPORATION - CHARLES GIBSON SITE ASP 2000/8270 - HEXACHLOROBENZENE ONLY WATER SURROGATE RECOVERY

Lab Name: <u>STL Buffalo</u>		Ce	Contract:					
Lab	Code:	RECNY	Case No.:		SAS No.:		SDG No.:	

	Client Sample ID	Lab Sample ID	i	NBZ %REC	TPH # %REC #						TOT TUO
		=========	======	=====	= ======	======	======	======	======	======	===
1	MSB77	A6B2586301	92 -	89	58]				0
2	MW1R-090606	A6A18401	100	93	39		1				0
3	MW2-090606	A6A18403	97	89	36		1	į			0
4	MW2-090606	A6A18403MS	100	92	42	 					0
5	MW2-090606	A6A18403SD	92	82	39		1				0
6	MW4-090606	A6A18404	87	78	37	ļ	[0
7	MW5-090606	A6A18405	100	4	* 34						1
8	MW7-090606	A6A18402	88	81	33	1					0
9	MWA3-090606	A6A18406	95	88	50					1	0
10	SBLK77	A682586302	88	92	57		1				0

QC LIMITS

= 2-Fluorobiphenyl = Nitrobenzene-D5 = p-Terphenyl-d14 (44-120) (46-120) (23-143) FBP NBZ

- # Column to be used to flag recovery values
 * Values outside of contract required QC limits
- D Surrogates diluted out

OLIN CORPORATION OLIN CORPORATION - CHARLES GIBSON SITE ASP 2000- METHOD 8081 BHC'S WATER SURROGATE RECOVERY

Lab Name:	ab Name: <u>STL_Buffalo</u>			Contract:			
Lab Code:	RECNY	Case	No.:		SAS No.:	 SDG No.:	
GC Column	(1): RTX-CLPI		ID: 0	.53 (mm)			

	Client Sample ID	Lab Sample ID		TCMX %REC	¥				·	T0T TU0
1	Matrix Spike Blank	A682586102	51	44	======	======	 			0
2	Method Blank	A6B2586101	42	62	1 .			,		0
3	MW1R-090606	A6A18401	74	74	1					0
4	MW2-090606	A6A18403	70	76		1			F	0
5	MW2-090606	A6A18403MS	72	80	}		1			0
6	MW2-090606	A6A18403SD	69	80			·			0
7	MW4-090606	A6A18404	50	76	1					0
8	MW5-090606	A6A18405	25	69		ĺ				0
9	MW7-090606	A6A18402	86	74	1	1				0
10	MWA3-090606	A6A18406	70	76						0

QC LIMITS

(DCBP) = Decachlorobiphenyl (TCMX) = Tetrachloro-m-xylene (10-139) (29-130)

Column to be used to flag recovery values

* Values outside of contract required QC limits

D Surrogates diluted out

OLIN CORPORATION OLIN CORPORATION - CHARLES GIBSON SITE ASP 2000 - METHOD 8081 BHC'S SOIL SURROGATE RECOVERY

Lab Name: <u>STL Buffalo</u>	Contract:	
Lab Code: RECNY Case No.:	SAS No.: SDG No.:	
GC Column(1): RTX-CLPI ID: 0.53 (mm)		
Level (low/med): LOW		

	Client Sample ID	Lab Sample ID	l	TCMX %REC #							TOT
4	DS-1-090606	ACA48/00	07		======	======================================	======	======	======	======	===
		A6A18408	97	85	1						1 0 1
	Matrix Spike Blank	A6B2607101	92	75	ļ	i]	0
	Method Blank	A6B2607102	101	76	ł	İ	'				0 1
	MS-1-090606	A6A18409	102	89							0
5	us-1-090606	A6A18407	92	84	1						0

QC LIMITS

(DCBP) = Decachlorobiphenyl (TCMX) = Tetrachloro-m-xylene

(46-151) (38-132)

- # Column to be used to flag recovery values* Values outside of contract required QC limitsD Surrogates diluted out

OLIN CORPORATION OLIN CORPORATION - CHARLES GIBSON SITE ASP 2000/8270 - HEXACHLOROBENZENE CNLY WATER MATRIX SPIKE BLANK RECOVERY

Lab Samp ID: <u>A6B2586302</u> Lab Name: STL Buffalo Contract: _____ SDG No.: ____ Lab Code: <u>RECNY</u> Case No.: ____ SAS No.: ____ Matrix Spike - Client Sample No.: SBLK77 MSB ∞ SPIKE MSB ADDED CONCENTRATION LIMITS 各 REC # COMPOUND UG/L UG/L REC. Hexachlorobenzene 112 59 - 120 100 112 # Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits Spike recovery: ___0 out of ___1 outside limits

Comments:

OLIN CORPORATION

OLIN CORPORATION - CHARLES GIBSON SITE ASP 2000/8270 - HEXACHLOROBENZENE ONLY WATER MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: <u>STL Buffalo</u>		Contract:			Lab Samp ID: <u>A6A18403</u>			
Lab Code: <u>RECNY</u> Case No).:	SAS No.:		S	EDG No.:	•		
Matrix Spike - Client Sampl	le No.: <u>MW2-0906</u> 0	<u>06</u>						
COMPOUND	SPIKE ADDED UG/L	SAMPLE CONCENTRATION UG/L	MS CONCENTA UG/	RATION	MS % REC #	QC LIMITS REC.		
Hexachlorobenzene	96.1	0	10	7	112	59 - 120		
COMPOUND	SPIKE ADDED UG/L	MSD CONCENTRATION UG/L	MSD % REC #	% RPD #		C LIMITS REC.		
Hexachlorobenzene	96.1	91.7	95	16 *	15	59 - 120		
# Column to be used to flag * Values outside of QC lim RPD:1 out of1 out Spike recovery:0 out of	its cside limits		n asteris	ς.				
Comments:				· ·				

OLIN CORPORATION OLIN CORPORATION - CHARLES GIBSON SITE ASP 2000- METHOD 8081 BHC'S

Contract: ___

WATER MATRIX SPIKE BLANK RECOVERY

Lab Samp ID: <u>A6B2586101</u>

Lab Code: RECNY

Lab Name: STL Buffalo

Case No.: ____

SAS No.: ____

SDG No.: ____

Matrix Spike - Client Sample No.: Method Blank

COMPOUND	SPIKE ADDED UG/L	MSB CONCENTRATION UG/L	MSB % REC #	QC LIMITS REC.	+
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane)	0.500 0.500 0.500 0.500	0.358 0.384 0.345 0.366	72 77 69 73	37 - 134 44 - 135 41 - 131 32 - 127	

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

Spike recovery:0 c	out of <u>4</u> outside	limits	 • - 1 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	
Comments:				

OLIN CORPORATION OLIN CORPORATION - CHARLES GIBSON SITE ASP 2000 - METHOD 8081 BHC'S SOIL MATRIX SPIKE BLANK RECOVERY

Lab Name: SIL Buffalo	Contract: Lab	Samp 1D: A6B2607102
Lab Code: RECNY Case No.:	SAS No.:	SDG No.:
Matrix Spike - Client Sample No.:	Method Blank Level: (low/med)	LOW
·		

COMPOUND	SPIKE ADDED UG/KG	MSB CONCENTRATION UG/KG	MSB % REC #	QC LIMITS REC.	+
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane)	16.3 16.3 16.3 16.3	11.6 12.5 10.9 11.9	71 77 67 73	47 - 123 39 - 129 42 - 127 42 - 136	

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

	• *			* .	
Spike recovery: _	<u>0</u> out of _	4 outside limits	en e	to the second se	
Comments:					
· · · · · · · · · · · · · · · · · · ·					

OLIN CORPORATION

OLIN CORPORATION - CHARLES GIBSON SITE ASP 2000- METHOD 8081 BHC'S

WATER MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:	STL Buffa	<u>lo</u>	Contract:	Lab Samp ID: <u>A6A18403</u>
Lab Code:	RECNY	Case No.:	SAS No.:	SDG No.:
Matrix So:	ike - Clie	nt Sample No.: MW2-09060	6	V

COMPOUND	SPIKE ADDED UG/L	SAMPLE CONCENIRATION UG/L	MS CONCENTRATION UG/L	MS % REC #	QC LIMITS REC.	+
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane)	0.478 0.478 0.478 0.478	0 0 0 0.0295	0.375 0.410 0.371 0.389	78 86 78 75	37 - 134 44 - 135 41 - 131 32 - 127	

COMPOUND	SPIKE ADDED UG/L	MSD CONCENTRATION UG/L	MSD % REC #	% RPD #	QX RPD	C LIMITS REC.	+
alpha-BHC	0.476	0.375	79	1	50	37 - 134	
beta-BHC	0.476	0.410	86	0	50	44 - 135	
delta-BHC	0.476	0.372	78	0	50	41 - 131	
gamma-BHC (Lindane)	0.476	0.389	76	1	50	32 - 127	

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD:0 out of4 outside limits Spike recovery:0 out of8 outside	e limits
Comments:	· · · · · · · · · · · · · · · · · · ·

OLIN CORPORATION OLIN CORPORATION - CHARLES GIBSON SITE ASP 2000/8270 - HEXACHLOROBENZENE ONLY METHOD BLANK SUMMARY

Lab Name:	STL Buffalo	Contract:	SB	SBLK77		
Lab Code:	RECNY Case No.:	SAS No.:	SDG	No.:		
Lab File I	D: <u>W11281.RR</u>	Lab Sample ID: <u>A6B2586302</u>				
Instrument ID: <u>HP5973W</u>						
Matrix: (s	oil/water) <u>WATER</u>	Date	Analyzed: 09/	08/2006		
Level: (lo	w/med) <u>LOW</u>	Time	Analyzed: 15:	09		
1 2 3	CLIENT SAMPLE NO. MSB77 MW1R-090606 MW2-090606	LAB SAMPLE ID ======== A6B2586301 A6A18401 A6A18403	LAB FILE ID W11280.RR W11282.RR W11284.RR	DATE ANALYZED ======= 09/08/2006 09/08/2006 09/08/2006		
4 5 6 7 8	MW2-090606 MW2-090606 MW4-090606 MW5-090606	A6A18403MS A6A18403SD A6A18404 A6A18405	W11285.RR W11286.RR W11287.RR W11288.RR	09/08/2006 09/08/2006 09/08/2006 09/08/2006		
9	MW7-090606 MWA3-090606	A6A18402 A6A18406	W11283.RR W11289.RR	09/08/2006		

Tah Name.	STI. Buffalo	J (~	ntract:			SBLK77			
INCHIAT.		2			,				
Lab Code:	<u>RECNY</u> Ca	ase No.:	SAS No.:	SDG No.:					
Matrix: (soil/water)	WATER		Lab Sample	i ID:	A6B258630	<u>'2</u>		
Sample wt,	/vol:	<u>1000.0</u> (g/mL) <u>ML</u>	•	Lab File I	D:	W11281.RR) =	٠	
Level:	(low/med)	LOW		Date Samp/	'Recv:			, , , , , , , , , , , , , , , , , , ,	
% Moisture	9:	decanted: (Y/N)	N	Date Extra	cted:	09/07/200	<u>16</u>		
Concentral	ted Extract	Volume: 1000 (uL)		Date Analy	zed:	09/08/200	<u>16</u>		
Injection	Volume:	<u>1.00</u> (uL)		Dilution F	actor:	1.00			
GPC Clean	up: (Y/N) <u>1</u>	N pH: 5.0							
· · · · · · · · · · · · · · · · · · ·	CAS NO.	COMPOUND		NCENTRATION ug/L or ug/K		G/L	Q		
	118-74-1	Hexachlorobenz	ene		:	10	U .		. 1

OLIN CORPORATION OLIN CORPORATION - CHARLES GIBSON SITE ASP 2000- METHOD 8081 BHC'S METHOD BLANK SUMMARY

Tah Name.	STL_Buffalo	Contro	~+ <u>-</u>	·	Method Blank	
Lab Name:	SIL BULIATO	Contra	ال:			
Lab Code:	RECNY Case No.:	SA:	S No.	:	SDG No.:	-
Lab Sample ID: <u>A6B2586101</u>			Lab File ID: <u>5A-04160.TX0</u>			
Matrix: (soil/water) <u>WATER</u>		Extra	action:	<u>SEPF</u>	
Sulfur Cle	eanup: (Y/N): <u>N</u>		Date	Extracted:	09/07/2006	
Date Analy	yzed (1): <u>09/08/2006</u>		Date	Analyzed (2)): <u></u>	
Time Analy	yzed (1): <u>16:13</u>		Time	Analyzed (2)) :	
Instrument	ID (1): <u>HP6890-5</u>		Insti	rument ID (2)	:	-
GC Column	(1): <u>RTX-CLPI</u> Dia: <u>0</u> .	53 (mm)	GC Cd	olumn (2):	Dia:	(mm)
F	THIS METHOD BLANK APPLIE	s to th	E FOLI	LOWING SAMPLE	ES, MS AND MSD:	
artina de la composición dela composición de la composición de la composición de la composición dela composición de la composición dela composición dela composición de la composición de la composición de la composición dela composición de la composición dela composición dela composición dela composición dela composición dela composición dela composició	CLIENT SAMPLE NO.		ID .	i e	DATE ANALYZED 2	e e
1 2 3 4 5 6 7 8 9	Matrix Spike Blank MW1R-090606 MW2-090606 MW2-090606 MW2-090606 MW4-090606 MW5-090606 MW7-090606 MWA3-090606	A6B2586 A6A1846 A6A1846 A6A1846 A6A1846 A6A1846 A6A1846 A6A1846	6102 01 03 03MS 03SD 04 05	09/08/2006 09/08/2006 09/08/2006 09/09/2006		
Comments:						

	Method Blank
Lab Name: STL Buffalo Contract:	
Lab Code: RECNY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A6B2586101</u>
Sample wt/vol:	Lab File ID: <u>5A-04160.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv:
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 09/07/2006
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 09/08/2006
Injection Volume:1.00(uL)	Dilution Factor: 1.00
GPC Cleanup: (Y/N) N pH: 5.00	Sulfur Cleanup: (Y/N) N
	PATION UNITS: or ug/Kg) <u>UG/L</u> Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	0.050 U 0.050 U 0.050 U 0.050 U

OLIN CORPORATION OLIN CORPORATION - CHARLES GIBSON SITE ASP 2000 - METHOD 8081 BHC'S METHOD BLANK SUMMARY

Client No.

Lab Name: STL Buffalo	Contract:	Method	BIGIK
Lab Code: RECNY Case No.:	SAS No.:	SDG No.:	-
Lab Sample ID: <u>A6B2607102</u>	Lab File	ID: <u>5A05008.TX0</u>	
Matrix: (soil/water) <u>SOIL</u>	Extracti	on: <u>SONC</u>	
Sulfur Cleanup: (Y/N): N	Date Ext	racted: <u>09/12</u>	/2006
Date Analyzed (1): <u>09/12/2006</u>	Date Ana	lyzed (2):	· · · · · · · · · · · · · · · · · · ·
Time Analyzed (1): <u>22:56</u>	Time Ana	lyzed (2):	
Instrument ID (1): HP6890-5	Instrume	nt ID (2):	
GC Column (1): RTX-CLPI Dia: 0.	53 (mm) GC Colum	ın (2):	
THIS METHOD BLANK APPLIE	S TO THE FOLLOWI	NG SAMPLES, MS A	ND MSD:
CLIENT SAMPLE NO.	LAB SAMPLE ID AN		TE ZED 2
1 DS-1-090606 2 Matrix Spike Blank 3 MS-1-090606 4 US-1-090606	A6A18408 09 A6B2607101 09 A6A18409 09	/12/2006	
Comments:			

OLIN CORPORATION OLIN CORPORATION - CHARLES GIBSON SITE ASP 2000 - METHOD 8081 BHC'S ANALYSIS DATA SHEET

Client No.

	Method Blank
Lab Name: STL Buffalo Contract:	
Lab Code: RECNY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID: <u>A6B2607102</u>
Sample wt/vol: 30.53 (g/mL) G	Lab File ID: <u>5A05008.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv:
Extraction: (SepF/Cont/Sonc/Soxh): SONC	Date Extracted: 09/12/2006
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 09/12/2006
Injection Volume:1.00(uL)	Dilution Factor:1.00
GPC Cleanup: (Y/N) N pH: _	Sulfur Cleanup: (Y/N) N
	CENIRATION UNITS: g/L or ug/Kg) <u>UG/KG</u> Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	1.6 U 1.6 U 1.6 U 1.6 U

OLIN CORPORATION OLIN CORPORATION - CHARLES GIBSON SITE ASP 2000/8270 - HEXACHLOROBENZENE ONLY SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: <u>STL Buffalo</u>		Contract:	Labsampid: A6C0006066
Lab Code: RECNY	Case No.:	SAS No.:	SDG No.:
Lab File ID (Standard):	W11276.RR	Date	Analyzed: <u>09/08/2006</u>
Instrument ID: HP5073U		Time	Analyzade 17-05

		IS1 (ANT) AREA #	RT #	IS2 (CRY) AREA #	RT #	IS3 (DCB) AREA #	RT #
12 HOUR STD UPPER LIMIT LOWER LIMIT		198911 397822 99456	10.94 11.44 10.44	376979 753958 188490	15.53 16.03 15.03	76932 153864 38466	6.39 6.89 5.89
CLIENT SAMPLE	Lab Sample ID		======		======		======
1 MSB77 2 MW1R-090606 3 MW2-090606 4 MW2-090606 5 MW2-090606 6 MW4-090606 7 MW5-090606 MW7-090606 9 MW3-090606 10 SBLK77	AGB2586301 AGA18401 AGA18403 AGA18403MS AGA18403SD AGA18404 AGA18405 AGA18406 AGB2586302	126901 117678 122541 114198 119148 115550 113406 132001 116975 123951	10.94 10.94 10.94 10.94 10.94 10.94 10.94 10.94	232219 242043 236214 240604 235492 224437 265217	15.55 15.52 15.51 15.52 15.51 15.51 15.51 15.51	49450 46010 48319 43742 45912 46238 44356 51809 46352 48239	6.39 6.39 6.39 6.39 6.39 6.39 6.39 6.39

AREA UNIT	90	RT LIMITS	
(50-200) (50-200)	-0.50 / -0.50 /		

-0.50 / +0.50 min

(50-200)

IS1 (ANT) = Acenaphthene-D10
IS2 (CRY) = Chrysene-D12
IS3 (DCB) = 1,4-Dichlorobenzene-D4

[#] Column to be used to flag recovery values
* Values outside of contract required QC limits

OLIN CORPORATION OLIN CORPORATION - CHARLES GIBSON SITE ASP 2000/8270 - HEXACHLOROBENZENE ONLY SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: <u>STL Buffalo</u>		Co	ontract:		Labsampid:	: <u>A6C0006066</u>
Lab Code: RECNY	Case No.:		SAS No.:		SDG N	lo.:
Lab File ID (Standard):	W11276.RR			Date	Analyzed:	09/08/2006
Instrument ID: HP5973W				Time	Analyzed:	<u>13:05</u>

			IS4 (NPT) AREA #	RT #	IS5(PHN) AREA #	RT #	IS6 (PRY) AREA #	RT #
١	12 HOUR STD		329229	8.31	352611	12.89	369937	16.88
	UPPER LIMIT		658458	8.81	705222	13.39	739874	17.38
١	LOWER LIMIT		164615	7.81	176306	12.39	184969	16.38
- 1	=======================================	=========		======	==========	======	=========	======
١	CLIENT SAMPLE	Lab Sample ID						
١	_======================================	========		======				======
	MSB77	A6B2586301	212989	8.31	224878	12.89	262824	16.91
:	MW1R-090606	A6A18401	199019	8.31	208498	12.88	249416	16.86
	MW2-090606	A6A18403	206801	8.31	216647	12.88	253714	16.85
	MW2-090606	A6A18403MS	188564	8.31	202635	12.88	252540	16.85
:	MW2-090606	A6A18403SD	198433	8.31	212291	12.89	257348	16.84
,	MW4-090606	A6A18404	193414	8.31	207093	12.88	249446	16.84
1	MW5-090606	A6A18405	190201	8.31	201725	12.88	241706	16.84
3	MW7-090606	A6A18402	222203	8.31	233632	12.88	282055	16.85
,	MWA3-090606	A6A18406	197086	8.31	206566	12.88	246945	16.85
)	SBLK77	A682586302	200999	8.31	215015	12.88	254053	16.89

AREA UNIT RT QC LIMITS QC LIMITS

(50-200) -0.50 / +0.50 min (50-200) -0.50 / +0.50 min (50-200) -0.50 / +0.50 min IS4 (NPT) = Naphthalene-D8 IS5 (PHN) = Phenanthrene-D10 IS6 (PRY) = Perylene-D12

[#] Column to be used to flag recovery values* Values outside of contract required QC limits

APPENDIX B SUMMARY ANALYTICAL REPORT

APPENDIX B

Field Logs

Semiannual Groundwater Monitoring and Annual Sediment Sampling and Quarterly Inspections

2006

CHARLES GIBSON SITE

(PINE AND TUSCARORA SITE)

NIAGARA FALLS, NEW YORK

NYSDEC Registry No. 9-32-063

CHARLES GIBSON SITE NIAGARA FALLS, NEW YORK NYSDEC REGISTRY NO. 9-32-063 SITE INSPECTION FORM

DATE: 2/15/2006	TIME:	800	
INSPECTOR: M.	Walker	COMPANY:	Sevenson
WEATHER: Wi	ndy, Cloudy, 40f	=	
REASON FOR INSPECT	ION (QUARTER	LY OR OTHER <u>):</u>	Quarterly Inspection and G/W Leve
subsidence (si and rodent but	neral site condition inking), ponded r rrows. For site s	ons note existence of twater, stressed vegeta ecurity, note absence	BLE A=ACCEPTABLE pare areas (number,size), cracks, ation, soil discoloration or seeps, of locks, gates open or damaged, her unusual occurences.)
4 COECC DO 4 D	۸		MENTS Covered
ACCESS ROAD COVER VEGETATION	A A		was visible
TREES	— <u>A</u>	VIIIat	Was Visible
LITTER	A		
EROSION (CAP)	A		
EROSION (BANK)	A		
SECURITY:		•	
FENCE/LOCKS	А	New g	ate on side facing Niagara Falls Blvd.
PIEZOMETERS/LOCKS	Α		
MONITORING WELLS/LC	***************************************	***************************************	
MANHOLES/LIDS/LOCKS			
ELECTRICAL PANEL	A		
ADDITIONAL COMMENT	-S:		
	A CONTRACTOR OF THE CONTRACTOR		

CHARLES GIBSON SITE NIAGARA FALLS, NEW YORK NYSDEC REGISTRY NO. 9-32-063 SITE INSPECTION FORM

	_TIME:	830	
INSPECTOR: Jones		COMPANY:	Sevenson
WEATHER:			
DE A CON FOR INCRECTION (C	NIA DTEDI N	(OD OTHER):	Overhank, Comi annual compling aver
REASON FOR INSPECTION (C	(UARTERL)	Y OR OTHER):	Quarterly, Semi annual sampling even
GENERAL SITE CONDITIONS:		U=UNACCEPTABLE	A=ACCEPTABLE
· · · · · · · · · · · · · · · · · · ·			areas (number,size), cracks, n, soil discoloration or seeps,
and rodent burrows.	For site sec		ocks, gates open or damaged,
mosning digital of cytic	.0.700 01 4411	COMMEN	
ACCESS ROAD	Α		
COVER VEGETATION	Α		
TREES	<u>A</u>		
ITTER	<u>A</u>	***************************************	
EROSION (CAP)	<u>A</u>		
EROSION (BANK)	<u>A</u>		
SECURITY:			
FENCE/LOCKS	<u>A</u>	- Land American Control of the Contr	
PIEZOMETERS/LOCKS	<u>A</u>		
MONITORING WELLS/LOCKS	<u>A</u>	Amend Washington Company	
MANHOLES/LIDS/LOCKS	<u>A</u>	*	
ELECTRICAL PANEL	<u>A</u>		
ADDITIONAL COMMENTS:			
Relabeled the monitoring wells v	vith a black	weather proof marker. A	Also marked the corresponding
orotective pipe bollards.			

CHARLES GIBSON SITE NIAGARA FALLS, NEW YORK NYSDEC REGISTRY NO. 9-32-063 SITE INSPECTION FORM

DATE: 12/5/2006	TIME:	1400	
INSPECTOR: M. W	/alker	COMPANY:	Sevenson
WEATHER: Wind	iy , 28 F, Cloudy,	4" of snow overni	ight
REASON FOR INSPECTIO	N (QUARTERLY	OR OTHER <u>):</u>	Quarterly Inspection and G/W Leve
subsidence (sink and rodent burro	ral site conditions king), ponded wa ows. For site sec	note existence of ter, stressed veget urity, note absence	BLE A=ACCEPTABLE bare areas (number,size), cracks, tation, soil discoloration or seeps, e of locks, gates open or damaged, ther unusual occurences.)
			MENTS
ACCESS ROAD	A		Covered
COVER VEGETATION	A	What	was visible
TREES	A		
LITTER	A	-	
EROSION (CAP)	A		
EROSION (BANK)	A	-	
SECURITY:			
FENCE/LOCKS	А		
PIEZOMETERS/LOCKS	A		
MONITORING WELLS/LOC	CKS A	-	
MANHOLES/LIDS/LOCKS	A		
ELECTRICAL PANEL	A		
ADDITIONAL COMMENTS:	: Site looke	d aood	
ADDITIONAL COMMENTS.	. Site looke	d good.	

RECORDED BY:	Chris Jones	•	_	SAMPLE	D:	090606-L	JS-1
SAMPLED BY:	Mike Walke	r	_	SAMPLING	3 EVENT/C	ATE:	9/6/2006
COMPANY:	Sevenson		_	MONITOR	ING WELL	Sediment	Trap
				CONDITIC	N:	Good	
GROUNDWATER F	PURGE DATA		PURGE DA	ATE:			
DEDTIL TO DOTTO		05 01055	_		(CT)		LL GIBSON SITE
DEPTH TO BOTTO					(FT.)		RING WELLS ARE
DEPTH TO WATER					(FT.)		NAMETER STAIN-
	WATER CC				(FT.)		EEL. WELL DEPTHS:
	2" DIA. WEI			0.16	~	MW-1R	12.10'
	ONE WELL	VOLUME			(GALS)	MW-2 MW-A3	12.13' 11.95'
PURGE METHOD: BOTTOM OF WELL PURGE START TIM PURGE OBSERVA	ΛE:	P:	STOP TIM	E:		MW-4 MW-5	13.75' 15.28'
FIELD PARAMETER	R MEASUREM	ENTS:					
WELL			SPECIFIC CONDUCT	-1\/I T V	TEMP.		
VOLUME	рН		umhos/cm)		(C OR F)		NOTES:
1				•			
2							
3							
4							
5					,		
TOTAL VOLUME PI		SAMPLIN	IG DATA:		SAMPLE I	DATE:	9/6/2006
		SAMI LIN	O DATA.		OAM LL I	<u> </u>	
	DWATER SEDIMENT	X	-		SAMPLE	Γ <u>IME:</u>	1620
LOCATION:	Center of cr	eek, upstr	eam of cap,	inline with I	arge gatep	osts	
SAMPLE METHOD:	Composite	of sedimer	nt taken from	the sedime	ent trap.		***************************************
SAMPLING OBSER	VATIONS:	Blackish s	ludge, sedin	nent trap 1/2	2 full.		
QC SAMPLES TAK	EN:	A blind dup	olicate was t	aken and la	abeled MS-	1.	
OTHER OBSERVA	TIONS/COMMI	ENTS:	2- 4 oz glas	ss jars			
Note: specific condu	uctivity formula	to 25 dear	ees Celcius	: SC(25)=	SC measu {{T-25}(0.0		_

RECORDED BY:	C. Jones		-	SAMPLE	D:	MWA3-09	90606
SAMPLED BY:	C. Jones		_	SAMPLING	G EVENT/D	ATE:	Fall 06, 9/06/06
COMPANY:	Sevenson		_	MONITOR	ING WELL:	MWA3	
				CONDITIC	N:	Good	
GROUNDWATER P	URGE DATA	4	PURGE DA	ATE:	9/6/2006		
DEPTH TO BOTTON	M EROM TO	P OF RISE	ş.	11 7	(FT.)		LL GIBSON SITE RING WELLS ARE
İ					, ,		DIAMETER STAIN-
DEPTH TO WATER			***************************************		(FT.)		
	WATER C	OLUMN: ELL CONST	~	0.79	(FT.)	MW-1R	EEL. WELL DEPTHS: 12.10'
					•••		
	ONE WEL	L VOLUME:	nuo.	0.1204	(GALS)	MW-2 MW-A3	12.13' 11.95'
PURGE METHOD: BOTTOM OF WELL, PURGE START TIM PURGE OBSERVAT	/SILT BUILD	ÚP:	NO STOP TIM			MW-4 MW-5	13.75' 15.28'
FIELD PARAMETER	R MEASURE!	MENTS:					
WELL VOLUME	n l l		SPECIFIC CONDUCT		TEMP.		NOTES:
1	<u>рН</u> 7.07	-	umhos/cm 930	•	(C OR F) 18.1	_	clear
2	7.11		926		18.1		Clear
3	7.04		930		17.9		Clear
4							
5							
TOTAL VOLUME PU		.5 gallon T SAMPLIN	IG DATA:		SAMPLE [DATE:	9/6/2006
MEDIA: GROUNI	OWATER	X			SAMPLE T	ΓIM F ∙	1550
	SEDIMENT	X	_		O, 22		
LOCATION:	MWA3						
SAMPLE METHOD:		Parastaltic	Pump with	dedicated t	ubing		***************************************
SAMPLING OBSER	VATIONS:	Clear wate	er				
QC SAMPLES TAKE	EN <u>:</u>	_ none					- Andrews
OTHER OBSERVAT	IONS/COMN	MENTS:					
2 * glass a	mber bottles	filled			00		
Note: specific condu	ctivity formul	a to 25 dear	ees Celcius	: SC(25)=	SC measu {{T-25}(0.0		

RECORDED BY:	C. Jones			SAMPLE I	D:	MW 5-09	0606
SAMPLED BY:	C. Jones			SAMPLING	G EVENT/C	ATE:	Fall 06, 9/06/06
COMPANY:	Sevenson			MONITOR	ING WELL	: <u>MW 5</u>	
				CONDITIC	N:	Good	
GROUNDWATER I	PURGE DATA	, F	PURGE DA	ATE:	9/6/2006		
DEPTH TO BOTTO	M EROM TOE	OF RISER.		15 28	(FT.)		LL GIBSON SITE RING WELLS ARE
-					, ,		DIAMETER STAIN-
DEPTH TO WATER					(FT.)		
	WATER C		NIT.	7.31 0.16	(FT.)	MW-1R	EEL. WELL DEPTH 12.10'
		ELL CONSTA	·		-		
PURGE METHOD: BOTTOM OF WELL PURGE START TIN PURGE OBSERVA	Parastaltic /SILT BUILDU ME 1420	JP: 1	dicated tubi NO STOP TIM		(GALS)	MW-2 MW-A3 MW-4 MW-5	12.13' 11.95' 13.75' 15.28'
FIELD PARAMETE	R MEASURE	MENTS:					
WELL VOLUME	pН	(SPECIFIC CONDUCT umhos/cm)		TEMP. (C OR F)		NOTES:
1	6.51		1864		18.2	2	Turbid
2	6.53		1799		17.8	3	Clear
3	6.55		1785		17.7	7	Clear
4							
5							
TOTAL VOLUME P		3.36 	DATA:		SAMPLE	DATE:	9/6/2006
	IDWATER SEDIMENT	<u>X</u>			SAMPLE	TIME:	1450
LOCATION:	MW 5						
SAMPLE METHOD		Parastaltic F	Pump with o	dedicated t	ubing		
SAMPLING OBSEF	RVATIONS:	Clear water					11111111111111111111111111111111111111
QC SAMPLES TAK	EN:	none _					
OTHER OBSERVA	TIONS/COMN	IENTS:					
4 * glass Note: specific condu	amber bottles		es Celcius:	SC(25)=	SC measu		

RECORDED BY:	C. Jones		-	SAMPLE	ID:	MW 4 -09	90606	
SAMPLED BY:	C. Jones		_	SAMPLIN	G EVENT/C	ATE:	Fall 06, 9/06	/06
COMPANY:	Sevenson		_	MONITOF	RING WELL	: <u>Mw 4</u>		
				CONDITIO	DN:	Good		
GROUNDWATER F	PURGE DATA	4	PURGE DA	ATE:	9/6/2006		LL GIBSON SI	TE
DEPTH ТО ВОТТО	M FROM TO	P OF RISEF	₹:	13.75	5 (FT.)	MONITO	RING WELLS	ARE
DEPTH TO WATER	R FROM TOP	OF RISER:		6.75	<u>5</u> (FT.)	2-INCH	NAMETER STA	AIN-
	WATER C	OLUMN:		7	(FT.)	LESS ST	EEL. WELL DE	EPTHS:
	2" DIA. W	ELL CONST	ANT:	0.16	<u>5</u>	MW-1R	12.10'	
	ONE WEL	L VOLUME	=	1.12	(GALS)	MW-2	12.13'	
PURGE METHOD: BOTTOM OF WELL PURGE START TIN PURGE OBSERVA	/SILT BUILD /IE 1310	UP:	NO STOP TIM		;	MW-A3 MW-4 MW-5	11.95' 13.75' 15.28'	
FIELD PARAMETEI	R MEASURE	MENTS:						
WELL VOLUME	рН	_	SPECIFIC CONDUCT umhos/cm)		TEMP. (C OR F)		NOTES:	
1	7.07	7	1522		20.5	<u> </u>	Black Org.	ischarge
2	7.1		1574		19.5	5	Clear	
3	7.12	2	1568		19)	Clear	
4								
5				***************************************	······································	<u>,</u>		
TOTAL VOLUME P		3.36						
GROUNDWATER (OR SEDIMEN	T SAMPLIN	IG DATA:		SAMPLE	D <u>ATE:</u>	9/6/2006	
1	DWATER SEDIMENT	X	_		SAMPLE	T <u>IME:</u>	1400	***************************************
LOCATION:	MW 4							
SAMPLE METHOD	***************************************	Parastaltic	Pump with	dedicated t	ubing			
SAMPLING OBSER	VATIONS:	Clear wate	er					
QC SAMPLES TAK	EN <u>:</u>	_ none	****					
OTHER OBSERVA	TIONS/COM	MENTS:						
4 * glass :	amber bottles	filled			00	.rod		
Note: specific condu	activity formul	a to 25 degr	ees Celcius	: SC(25)=	SC measu {{T-25}(0.0		*****	

RECORDED BY:	C. Jones		-	SAMPLE	D:	MW2-090	606
SAMPLED BY:	C. Jones		_	SAMPLING	G EVENT/D	ATE:	Fall 06, 9/06/06
COMPANY:	Sevenson			MONITOR	ING WELL	MW2	
				CONDITIC	N:	Good	
GROUNDWATER F	PURGE DATA	\	PURGE DA	ATE:	9/6/2006		L GIBSON SITE
DEPTH TO BOTTO	M FROM TO	OF RISEF	₹:	12.13	(FT.)	MONITO	RING WELLS ARE
DEPTH TO WATER	FROM TOP	OF RISER:		4.95	_(FT.)	2-INCH D	IAMETER STAIN-
	WATER C	OLUMN:		7.18	(FT.)	LESS ST	EEL. WELL DEPTHS
:	2" DIA. WI	ELL CONST	T <u>ANT:</u>	0.16	.	MW-1R	12.10'
PURGE METHOD: BOTTOM OF WELL PURGE START TIM PURGE OBSERVA	Parastaltic SILT BUILD/ E 11:35	ÚP:		ing 1230	(GALS)	MW-2 MW-A3 MW-4 MW-5	12.13' 11.95' 13.75' 15.28'
FIELD PARAMETER			The discriary	C			
WELL VOLUME	рН		SPECIFIC CONDUCT umhos/cm)		TEMP. (C OR F)		NOTES:
1	7.19	-)	1334	•	20.8	-	Clear
2	7.19		1363		21		Clear
3	7.2		1301		20.4		Clear
4					***************************************		
5							
TOTAL VOLUME P	URGED:	3.45 gal.					
GROUNDWATER O	OR SEDIMEN	T SAMPLIN	NG DATA:		SAMPLE (DATE:	9/6/2006
	DWATER SEDIMENT	X	-		SAMPLE -	T <u>IME:</u>	1235
LOCATION:	MW2						
SAMPLE METHOD:		Parastaltic	Pump with	dedicated t	ubing		
SAMPLING OBSER	VATIONS:	Clear wate	er				
QC SAMPLES TAK	EN <u>:</u>	_MS/MSD t	aken		······································		
OTHER OBSERVA	TIONS/COM	MENTS:					
	amber bottles		0-1-1	. 00/05)	SC measu		
Note: specific condu	ictivity formul	a to 25 degr	ees ceicius	. 30(25)=	{{ I -25}(U.U	14)}+1	

RECORDED BY:	C. Jones			SAMPLE I	<u>D:</u>	MW-1R-0	90606
SAMPLED BY:	C. Jones		_	SAMPLING	G EVENT/C	ATE:	Fall 06, 9/06/06
COMPANY:	Sevenson			MONITOR	ING WELL	: <u>MW1-R</u>	WILLIAM CONTROL OF THE CONTROL OF TH
				CONDITIC	N:	Good	
GROUNDWATER P	URGE DATA	\	PURGE DA	ATE:	9/6/2006		LL GIBSON SITE
DEPTH TO BOTTO	M FROM TO	OF RISER	₹:	12.1	(FT.)	MONITO	RING WELLS ARE
DEPTH TO WATER	FROM TOP	OF RISER:		3.21	_(FT.)	2-INCH E	NAMETER STAIN-
	WATER C	OLUMN:		8.89	(FT.)	LESS ST	EEL. WELL DEPTHS:
	2" DIA. WE	ELL CONST	ANT:	0.16	<u>-</u>	MW-1R	12.10'
PURGE METHOD: BOTTOM OF WELL. PURGE START TIM	Parastaltic /SILT BUILDI			ing	(GALS)	MW-2 MW-A3 MW-4 MW-5	12.13' 11.95' 13.75' 15.28'
PURGE OBSERVAT	TONS:	Clear Odor	less				
FIELD PARAMETER	R MEASURE!	MENTS:					
WELL VOLUME	рН		SPECIFIC CONDUCTUMHos/cm		TEMP. (C OR F)		NOTES:
1	6.52		1065	-	20.	_ [Clear
2	6.57		1069		20.3		Clear
3	6.55		1072		20.4		Clear
4							
5							
TOTAL VOLUME PU		4.5 gal.	IG DATA:		SAMPLE	DATE:	9/6/2006
	DWATER SEDIMENT	X	-		SAMPLE	I <u>IME:</u>	1045
LOCATION:	MW1R						
SAMPLE METHOD:		Parastaltic	Pump with	dedicated t	ubing		
SAMPLING OBSER	VATIONS:	Clear wate	r				
QC SAMPLES TAKE	ΞN <u>:</u>	_MW7-0906	306				
OTHER OBSERVAT	TIONS/COMN	MENTS:					
A blind d	uplicate sam				SC measi	ured	<u> </u>

RECORDED BY:	Chris Jones	SA	MPLE ID:	090606-0	DS-1
SAMPLED BY:	Mike Walker	SA	MPLING EVENT/	DATE:	9/6/2006
COMPANY:	Sevenson	M	ONITORING WELI	L: <u>Sedimen</u>	t Trap
		C	ONDITION:	Good	
GROUNDWATER I	PURGE DATA	PURGE DATE	= :		
					LL GIBSON SITE
DEPTH TO BOTTC	M FROM TOP OF RISE	ER:	(FT.)	MONITO	RING WELLS ARE
DEPTH TO WATER	R FROM TOP OF RISE	R:	(FT.)	2-INCH	DIAMETER STAIN-
	WATER COLUMN:		(FT.)	LESS ST	EEL. WELL DEPTHS:
	2" DIA. WELL CONS	ST <u>ANT:</u>	0.16	MW-1R	12.10'
PURGE METHOD:	ONE WELL VOLUM	E=	(GALS)	MW-2 MW-A3 MW-4	11.95'
BOTTOM OF WELI PURGE START TIN PURGE OBSERVA	ME:	STOP TIME:		MW-5	15.28'
FIELD PARAMETE	R MEASUREMENTS:				
WELL VOLUME	рН	SPECIFIC CONDUCTIV umhos/cm)	TY TEMP. (C OR F)	ı	NOTES:
1				******	***************************************
2					
3					
4					
5					
TOTAL VOLUME P		and the second s			
GROUNDWATER (OR SEDIMENT SAMPL	ING DATA:	SAMPLE	DATE:	9/6/2006
MEDIA: GROUN	IDWATER		SAMPLE	T <u>IME:</u>	1635
CREEK	SEDIMENT X				
LOCATION:	Downstream of the	cap. DS-1			
SAMPLE METHOD	: Composite of sedim	ent taken from th	e sediment trap.		
SAMPLING OBSEF	RVATIONS: none				West of the Control o
QC SAMPLES TAK	(EN: None				
OTHER OBSERVA	TIONS/COMMENTS:	1- 4 oz glass	ar		
Note: specific cond	uctivity formula to 25 de	grees Celcius: S	SC meas C(25)= {{T-25)(0		

RISER ELEVATION DEPTH TO WATER ELEVATION (INSIDE CASING) (FT.) P-1 572.72 7.22 565.5 OK P-2 574.89 9.37 565.52 OK P-3 574.16 6.57 567.59 OK P-4 576.14 10.71 565.43 OK P-5 575.05 5.53 569.52 OK P-6 578.28 10.31 567.97 OK	DATE:	2/15/2006	TIME:	800	
RISER ELEVATION DEPTH TO WATER WATER ELEVATION P-1 572.72 7.22 565.5 OK P-2 574.89 9.37 565.52 OK P-3 574.16 6.57 567.59 OK P-4 576.14 10.71 565.43 OK P-5 575.05 5.53 569.52 OK P-6 578.28 10.31 567.97 OK MANHOLE A 575.22 11.2 564.02 OK MANHOLE B 577.34 13.26 564.08 OK (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains grounds in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Mac (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	INSPECTOR:	M. Walker	_COMPANY:	Sevenson	
PIEZOMETER (INSIDE CASING) (FT.) ELEVATION P-1 572.72 7.22 565.5 OK P-2 574.89 9.37 565.52 OK P-3 574.16 6.57 567.59 OK P-4 576.14 10.71 565.43 OK P-5 575.05 5.53 569.52 OK P-6 578.28 10.31 567.97 OK MANHOLE A 575.22 11.2 564.02 OK MANHOLE B 577.34 13.26 564.08 OK (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains grounder in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. Therewater distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Manhole: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	WEATHER:	Windy, Cloudy, 40F			
P-2 574.89 9.37 565.52 OK P-3 574.16 6.57 567.59 OK P-4 576.14 10.71 565.43 OK P-5 575.05 5.53 569.52 OK P-6 578.28 10.31 567.97 OK MANHOLE A 575.22 11.2 564.02 OK MANHOLE B 577.34 13.26 564.08 OK (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundwin Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Mac (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	PIEZOMETER				COMMENTS
P-3 574.16 6.57 567.59 OK P-4 576.14 10.71 565.43 OK P-5 575.05 5.53 569.52 OK MANHOLE A 575.22 11.2 564.02 OK MANHOLE B 577.34 13.26 564.08 OK (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains grounds in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Mac (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	P-1	572.72	7.22	565.5	ОК
P-4 576.14 10.71 565.43 OK P-5 575.05 5.53 569.52 OK P-6 578.28 10.31 567.97 OK MANHOLE A 575.22 11.2 564.02 OK MANHOLE B 577.34 13.26 564.08 OK (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains grounder in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Mathole: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	- 2	574.89	9.37	565.52	OK
P-5 575.05 5.53 569.52 OK P-6 578.28 10.31 567.97 OK MANHOLE A 575.22 11.2 564.02 OK MANHOLE B 577.34 13.26 564.08 OK (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundwin Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Mac (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	P-3	574.16	6.57	567.59	ОК
MANHOLE A 575.22 11.2 564.02 OK MANHOLE B 577.34 13.26 564.08 OK (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundwin Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Manhole: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	P-4	576.14	10.71	565.43	ОК
MANHOLE A 575.22 11.2 564.02 OK MANHOLE B 577.34 13.26 564.08 OK (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundwin Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Manhole: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	P-5	575.05	5.53	569.52	OK
(Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundwin Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Manhole: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	P-6	578.28	10.31	567.97	ОК
(Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundwin Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Manhole: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	MANHOLE A	575.22	11.2	564.02	OK
Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundwin Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. Therewater distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Manhole riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	MANHOLE B	577.34	13.26	564.08	OK
	Niagara Tuscarora F in Manhole B (and by water distance from (Note: riser elevation	Road sanitary sewer line y extension Manhole A) the manhole rim should ns (re)surveyed Septeml	by a float controlled subelow an elevation of 5 not be less than 12.41 per, 1999 by Wendel St	imp pump which m 665 ft. above mear ft. at Manhole B a urveyors)	naintains groundw n sea level. There

DATE: 4/19/20	006	TIME:	1300	
DATE: 4/19/20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1000	
INSPECTOR:	Craig Bove	_COMPANY:	Sevenson	
WEATHER:	Sunny 55 F			
PIEZOMETER	RISER ELEVATION (INSIDE CASING)	DEPTH TO WA	TER WATER ELEVATION	COMMENTS
P-1	572.72	7.31	565.41	ОК
P-2	574.89	9.45	565.44	ОК
P-3	574.16	7.16	567	OK
P-4	576.14	10.76	565.38	ОК
P-5	575.05	6.09	568.96	OK
P-6	578.28	10.61	567.67	ОК
MANHOLE A	575.22	11.5	563.72	ОК
MANHOLE B	577.34	13.54	563.8	ОК
Niagara Tuscarora in Manhole B (and	empties into Manhole B by Road sanitary sewer line by extension Manhole A) In the manhole rim should ons (re)surveyed Septeml	by a float controll below an elevatio not be less than?	ed sump pump which n n of 565 ft. above mear 12.41 ft. at Manhole B a	naintains groundw n sea level. There
(Note: riser elevation ADDITIONAL COM	MENTS/OBSERVATION		is pushing up on the me	etal cover.
(Note: riser elevation (Note: riser elevation)			is pushing up on the me	etal cover.
(Note: riser elevation ADDITIONAL COM	MENTS/OBSERVATION		is pushing up on the me	etal cover.
(Note: riser elevation (Note: riser elevation)	MENTS/OBSERVATION		is pushing up on the me	etal cover.
(Note: riser elevation ADDITIONAL COM	MENTS/OBSERVATION		is pushing up on the me	etal cover.

DATE: 9/6/2	006	_TIME:	830	
NSPECTOR:	C. Jones	_COMPANY:	Sevenson	
WEATHER <u>:</u>	65 Sunny			
PIEZOMETER	RISER ELEVATION (INSIDE CASING)	DEPTH TO WATI	ER WATER ELEVATION	COMMENTS
P-1	572.72	6.7	566.02	ok
o ₋₂	574.89	9.58	565.31	ok
D-3	574.16	8.11	566.05	ok
P-4	576.14	10.89	565.25	ok
P-5	575.05	6.92	568.13	ok
P-6	578.28	10.91	567.37	ok
MANHOLE A	575.22	11.45	563.77	ok
MANHOLE B	577.34	13.47	563.87	ok
Niagara Tuscarora n Manhole B (and water distance fror Note: riser elevati	Road sanitary sewer line by extension Manhole A)	by a float controlled below an elevation not be less than 12 per, 1999 by Wende	d sump pump which m of 565 ft. above mear 2.41 ft. at Manhole B a	automatically to the Town or naintains groundwater elevant sea level. Therefore, Depund 10.22 ft. at Manhole A.

DATE:	12/5/2006	_TIME:	1400	
NSPECTOR:	M. Walker	_COMPANY:	Sevenson	
WEATHER:	Cloudy 28 F, windy			
PIEZOMETER	RISER ELEVATION (INSIDE CASING)	DEPTH TO WATER (FT.)	WATER ELEVATION	COMMENTS
P-1	572.72	7.27	565.45	ОК
P-2	574.89	9.35	565.54	ОК
⊃-3	574.16	7.02	567.14	ОК
P-4	576.14	10.7	565.44	ОК
P-5	575.05	5.5	569.55	ОК
P-6	578.28	10.35	567.93	ОК
MANHOLE A	575.22	11.35	563.87	ОК
MANHOLE B	577.34	13.45	563.89	OK
Niagara Tuscarora in Manhole B (and water distance fror	empties into Manhole B by Road sanitary sewer line by extension Manhole A) in the manhole rim should ons (re)surveyed Septemb	by a float controlled subelow an elevation of some standard services than 12.41 per, 1999 by Wendel S	ump pump which m 565 ft. above mear ft. at Manhole B a urveyors)	naintains groundw n sea level. There
ADDITIONAL CON	/INIEN I S/OBSERVATION	J. One looks		
ADDITIONAL COM	/IMENIS/OBSERVATION	o. One look		
ADDITIONAL COM	/IMEN I S/OBSERVATION	o. One look		
ADDITIONAL COM	/IMENTS/OBSERVATION	o. One looks		
ADDITIONAL COM	/IMEN I S/OBSERVATION	O. ORC HOOK		

₩W-A3

- Beta GW Std (0.04)

