REPORT

Frontier Chemical - Pendleton Site Semi-Annual Ground Water Monitoring Report

Pendleton Site PRP Group

September 2000

REPORT

Frontier Chemical - Pendleton Site Semi-Annual Ground Water Monitoring Report

Pendleton Site PRP Group

James R. Heckathorne, P.E. Vice President

September 2000

5000 Brittonfield Parkway Syracuse, New York 13221

Contents

1. Introduction	1
1.1. Piezometer/monitoring well inspection	
1.2. Hydraulic evaluation of capped area and collection trench	
1.3. Ground water sampling and chemistry	
2. Conclusions	9
References	11

List of Tables

- 1-1 Ground water analytical methods
- 1-2 Results of the t-test analysis

Tables located at end of report

- 1 Piezometer ground water elevation summary table
- 2 Monitoring well ground water elevation summary table
- 3 Quarry Lake surface water elevation summary table
- 4 Summary of ground water analytical data

List of Figures

1 Hydraulic potential map

List of Appendices

- A Piezometer/monitoring well inspection forms
- B Ground water sampling logs
- C Data validation report (Volumes 1 of 1 of the metals and wet chemistry and volatile organics validated analytical data packages are separately bound)

1. Introduction

This document is the first 2000/2001 Semi-Annual Ground Water Monitoring Report for the Frontier Chemical - Pendleton Site (Site), located on Town Line Road in the Town of Pendleton, Niagara County, New York. This report is prepared based on the New York State Department of Environmental Conservation (NYSDEC)-approved Operation & Maintenance (O&M) Manual (O'Brien & Gere Engineers, 1997) for the Site, which addresses, among other items, long-term ground water monitoring at the Site. This Semi-Annual Ground Water Monitoring Report presents a discussion of the following:

- Piezometer/monitoring well inspection
- Hydraulic evaluation of the capped area and collection trench
- Evaluation of ground water chemistry in the intermediate and deep ground water zones.

These items are described in the following sections.

1.1. Piezometer/monitoring well inspection

The piezometer/monitoring well inspection was conducted on August 9, 2000, and included the piezometers (P-1 through P-8), standpipe (SP-1), and ground water monitoring wells (85-5R, URS-5D, 85-7R, URS-7D, URS-9I, URS-9D, 88-12C, 88-12D, URS-14I, and URS-14D) identified as the Site monitoring network in the O&M Manual for the Site.

Results of the inspection indicated that each piezometer and monitoring well was in an acceptable condition for collecting water elevation measurements and sampling. Similar maintenance issues to those identified in previous inspection reports were noted at the Site:

- Piezometer P-6 is currently angled 20 to 30 degrees from vertical.
- Monitoring wells URS-14I and URS-14D should have fill material installed around the concrete pads.

In addition, it was noted during the inspection that SP-1 is slightly angled from vertical.

It should be noted that, at this time, these issues are not affecting the integrity of the piezometers or monitoring wells. August 2000 inspection forms are included in Appendix A.

1.2. Hydraulic evaluation of capped area and collection trench

In accordance with the O&M Manual, a complete round of static ground water elevations was collected from the piezometers (P-1 through P-8), standpipe (SP-1), and ground water monitoring wells (85-5R, URS-5D, 85-7R, URS-7D, URS-9I, URS-9D, 88-12C, 88-12D, URS-14I, and URS-14D). The ground water elevation measurements were collected on August 9, 2000. The surface water elevation of Quarry Lake was measured on August 10, 2000, by Glynn Geotechnical Engineering, Inc. The ground water elevations measured in the piezometers and standpipe, and in the monitoring wells, are summarized on Tables 1 and 2, respectively. Quarry Lake elevations are summarized on Table 3. As shown on Table 3, the August 10, 2000 surface water elevation of Quarry Lake is slightly above the outlet weir elevation of 577.2 ft.

The water level measurements collected on August 9 and 10, 2000 are illustrated on Figure 1. These measurements are the ninth round collected since remedial construction was substantially completed in August 1996. The water elevation data was used to evaluate the following:

 Whether an inward hydraulic gradient exists at the site by comparing water level measurements within the capped area (P-2, P-3, P-4, P-6, and P-7) to those measured outside the capped area (P-1, P-5, P-8, SP-1, and Quarry Lake)

Final: September 29, 2000

• The ground water flow potential inside the capped area

 Whether the ground water collection trench is effectively controlling ground water migration away from the capped area.

The data indicates that an inward hydraulic gradient exists at the Site, except in the eastern portion of the capped area in the vicinity of piezometers P-1 and P-2, where the data indicates a slight outward hydraulic gradient. The ground water elevation in piezometer P-2, located inside the capped area, is higher than the ground water elevation in piezometer P-1, installed outside the capped area. An inward hydraulic gradient exists in the northern and southern portions of the capped area, as the ground water elevations inside the capped area (P-6 and P-7) are less than the ground water elevations outside the capped area (P-5 and P-8, respectively). Along the western portion of the site, the ground water elevation at P-4 is higher than the elevation in the ground water collection trench (SP-1). The ground water elevation in piezometer P-3, installed within the center of the capped area, is greater than ground water elevations measured in piezometers P-1 and P-8, installed outside the capped area.

Although the data indicates an outward hydraulic gradient within the eastern portion of the capped area, the ground water elevations collected in the piezometers installed within the capped area (P-2, P-3, P-4, P-6, and P-7) are lower than originally measured in June 1997. This suggests that dewatering of the capped area is occurring. The fluctuations in water elevations in the piezometers located within the capped area (P-2, P-3, P-4, P-6, and P-7) may be attributed to differences in: barometric pressure during sampling events; the movement of water within the capped area; and/or the low permeability of the materials. The fluctuations in water elevations in the piezometers located outside the capped area (P-1, P-5, and P-8) may be attributed to seasonal variations.

The contrasting fluctuations of ground water levels within and outside the capped area demonstrate that ground water within the capped area has been isolated. In addition, the ground water elevation in the standpipe (SP-1) in the ground water collection trench is less than the surface water elevation of Quarry Lake, indicating that Quarry Lake is isolated from the capped area.

Ground water elevations of piezometers installed within the capped area along the northern (P-7), western (P-4), eastern (P-2), and southern (P-6) portions of the Site are higher than the invert elevations (bottom) of the ground water collection trench. The invert elevations of the ground water collection trench vary from 568.80 ft to 563.37 ft. This information indicates that the overall hydraulic gradient is to the west towards the ground water collection trench. In summary, the data

indicates that the ground water collection trench is effectively removing shallow ground water from within the capped area.

As discussed in the March 1998 monitoring report (O'Brien & Gere Engineers, 1998), based on an average daily flow rate to the ground water collection trench of 170 gallons/day and a hydraulic conductivity adjacent to the ground water collection trench of 3.3 x 10⁻⁶ cm/sec, it is estimated that approximately 110 years will be required to dewater the containment area. However, the amount of water present within the capped area and the time to dewater beneath the capped area has minimal impact on the effectiveness of the containment, since hydraulic isolation within the capped area has been established and ground water beneath the capped area is migrating towards the ground water collection trench.

1.3. Ground water sampling and chemistry

Between August 10 and 11, 2000, the seventh round of post-closure ground water samples was collected in accordance with the protocols presented in the O&M Manual. Ground water samples were obtained from the ten ground water monitoring wells identified for sampling in the O&M Manual (85-5R, URS-5D, 85-7R, URS-7D, URS-9I, URS-9D, 88-12C, 88-12D, URS-14I, and URS-14D).

Following sample collection, the ground water samples were submitted to O'Brien & Gere Laboratories, Inc., for analysis of the parameters shown in Table 1-1.

Table 1-1. Ground water analytical methods.

Parameter	Method
VOCs	USEPA Method 8260B
Inorganics	USEPA Methods 6010B/7470A/7841
Cyanide	USEPA Method 9010B/9014

Ground water sampling logs and chain of custody forms are included in Appendix B.

In accordance with the O&M Manual and as approved by the NYSDEC, sampling and analysis for target compound list (TCL) semi-volatile organic compounds (SVOCs) and polychlorinated biphenyls (PCBs)/pesticides were discontinued for the second through fifth years of monitoring. In accordance with the O&M Manual, sampling is to be continued semi-annually for TCL volatile organic compounds (VOCs) and target analyte list (TAL) metals during the second through fifth years of monitoring. In accordance with the NYSDEC-approved O&M Manual, the required sampling frequency will be re-evaluated after the fifth year of monitoring.

Purge water generated during sampling was contained, passed through a 25-micron bag filter, and discharged to manhole MH-3. The water in manhole MH-3 was conveyed through the pre-treatment system prior to discharge to the Niagara County Sewer District (NCSD) interceptor system at manhole MH-16.

The laboratory analytical data was validated by Data Validation Services of North Creek, New York. The validation was performed in accordance with guidance from the most current editions of the United States Environmental Protection Agency (USEPA) Contract Laboratory Procedures (CLP) National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA Standard Operating Procedures (SOPs) HW-2 and HW-6. Results of the validation indicated that the samples were processed and analyzed in compliance with protocol requirements, and with adherence to quality criteria. All of the analytical results are useable, although minor qualifications are needed for some of the results. A copy of the data validation report is included in Appendix C.

Results of the ground water analyses, along with a comparison of the results with New York State Class GA Standards, are summarized on Table 4. The New York State Class GA Standards presented on Table 4 have been revised to reflect revisions to the New York State water quality standards (NYSDEC, 1999). In general, the August 2000 ground water chemistry is similar to previous sampling events.

Detected constituents exceeding New York State Class GA Standards included iron at four locations (85-5R, URS-5D, 88-12C, and URS-14D) and sodium at ten locations (85-5R, URS-5D, 85-7R, URS-7D, URS-9I, URS-9D, 88-12C, 88-12D, URS-14I, and URS-14D). Concentrations of iron were detected in background well URS-14D and have previously been detected in background well URS-14I at similar concentrations. Concentrations of sodium have also been detected above the New York State Class GA Standards in background wells URS-14I and URS-14D at

similar concentrations. It is likely that the elevated concentrations of sodium are naturally occurring and are not related to previous site activities. VOCs were not detected above the New York State Class GA Standards. The database will be updated with data from future sampling events, and ground water standards will be reviewed annually to evaluate whether standards have been revised.

As specified in the O&M Manual, statistical analyses of the ground water chemistry data have been completed. A preliminary exploratory data analysis, using univariate statistics in SAS®, was performed for fifteen analytes that have been detected a total of ten or more times in various monitoring wells since the initial post-construction sampling event in June 1997. Based on the results of the preliminary exploratory data analysis, concentrations for fourteen analytes (at $\alpha = 0.10$) do not appear to be normally distributed. Magnesium appears to be normally distributed.

The August 2000 data represents the results of the seventh baseline data collection effort. A t-test analysis was conducted based on the data collected from the post-construction sampling events, between June 1997 and August 2000, to evaluate whether downgradient concentrations exceed upgradient concentrations, based on a comparison of downgradient wells with the appropriate upgradient wells, URS-14I or URS-14D. Based on the results of the t-test, Table 1-2 presents a summary of locations where constituent concentrations in downgradient wells exceeded concentrations at the appropriate upgradient comparison well, at a confidence level (α) equal to 0.05.

Table 1-2. Results of the t-test analysis.

Monitoring Well	Analytes with Higher Concentrations than in Upgradient Wells
85-5R	Calcium, Magnesium, Sodium
URS-5D	Calcium, Manganese, Sodium
85-7R	Calcium, Magnesium, Sodium
URS-7D	Calcium, Magnesium, Manganese, Potassium, Sodium
URS-9I	Calcium, Magnesium
88-12C	Calcium, Magnesium, Arsenic
88-12D	Calcium, Magnesium, Manganese, Potassium, Sodium

.Source: O'Brien & Gere Engineers, Inc.

It should be noted that there are currently no New York State Class GA Standards for calcium, magnesium, or potassium. Concentrations of arsenic and manganese have not been detected above the New York State Class GA Standards during the post-construction sampling. In addition, it is likely that elevated concentrations of calcium, magnesium, manganese, potassium, and sodium are naturally occurring and are not related to previous site activities.

Results of the t-test analysis also indicate that barium concentrations are greater in upgradient well URS-14I than in corresponding downgradient wells URS-9I and 88-12C, and greater in upgradient well URS-14D than in corresponding downgradient wells URS-9D and 88-12D, at a confidence level of α =0.05. Concentrations of barium in wells URS-9I, URS-9D, 88-12C, 88-12D, URS-14I, and URS-14D are below the New York State Class GA Standard. T-test analysis results also indicate that sodium concentrations are greater in upgradient well URS-14I than in corresponding downgradient wells URS-9I and 88-12C, at a confidence level of α =0.05. In addition, t-test analysis results indicate that calcium concentrations are greater in upgradient well URS-14D than in corresponding downgradient well URS-9D, at a confidence level of α =0.05.

2. Conclusions

Based on the data contained in this semi-annual report, the following conclusions are presented:

- The isolation of ground water within the capped area has been established.
- The ground water elevation data indicates that ground water within the capped area is migrating to the west toward the ground water collection trench.
- The ground water elevation data indicates that the ground water collection trench is effectively removing shallow ground water from within the capped area.
- The August 2000 ground water chemistry is similar to previous sampling events.
- Results of the t-test analysis indicate that concentrations of arsenic (88-12C), calcium (85-5R, URS-5D, 85-7R, URS-7D, URS-9I, 88-12C, and 88-12D), magnesium (85-5R, 85-7R, URS-7D, URS-9I, 88-12C, and 88-12D), manganese (URS-5D, URS-7D, and 88-12D), potassium (URS-7D and 88-12D), and sodium (85-5R, URS-5D, 85-7R, URS-7D, and 88-12D) exceed upgradient concentrations, based on a comparison of downgradient wells with the appropriate upgradient wells, URS-14I or URS-14D. There are currently no New York State Class GA Standards for calcium, magnesium, or potassium. Concentrations of arsenic and manganese have not been detected above the New York State Class GA Standards during the post-construction sampling. It is likely that elevated concentrations of calcium, magnesium, manganese, potassium, and sodium are naturally occurring and are not related to previous site activities.

- Results of the t-test analysis indicate that barium concentrations are greater in upgradient well URS-14I than in corresponding downgradient wells URS-9I and 88-12C, and greater in upgradient well URS-14D than in corresponding downgradient wells URS-9D and 88-12D, at a confidence level of α=0.05. Concentrations of barium in URS-9I, URS-9D, 88-12C, 88-12D, URS-14I, and URS-14D are below the New York State Class GA Standard.
- T-test analysis results indicate that sodium concentrations are greater in upgradient well URS-14I than in corresponding downgradient wells URS-9I and 88-12C, at a confidence level of α =0.05.
- T-test analysis results indicate that calcium concentrations are greater in upgradient well URS-14D than in corresponding downgradient well URS-9D, as a confidence level of α =0.05.
- Iron was detected in four monitoring wells at concentrations above New York State Class GA Standards. Concentrations of iron were detected in background well URS-14D and have previously been detected in the background well URS-14I at similar concentrations. In addition, results of the t-test analysis indicate that concentrations of iron are not statistically higher downgradient than upgradient at the Site, indicating that the capped area is not impacting ground water.
- Sodium was detected in ten monitoring wells at concentrations above New York State Class GA Standards. It is likely that this element is naturally occurring and is not related to previous site activities.

References

- New York State Department of Environmental Conservation, 1999. Title 6, Chapter X, Subchapter A, Article 2, Part 703.5, Table 1, Water Quality Standards Surface Waters and Groundwater, Effective August 4, 1999.
- O'Brien & Gere Engineers, 1997. Operation and Maintenance Manual, Frontier Chemical Pendleton Site, Town of Pendleton, Niagara County, New York, Pendleton Site PRP Group, March 1997.
- O'Brien & Gere Engineers, 1998. Frontier Chemical Pendleton Site, Semi-Annual Ground Water Monitoring Report, Pendleton Site PRP Group, March 1998.

Table 1

Frontier Chemical - Pendleton Site
Plezometer Ground Water Elevation Summary Table

		Top of Riser	Top of Cover	Depth (ft	Screened				Groun	Ground water elevation (ft)	vation (ft)			
Piezometer	Location	Elev. (ft)	Elev. (ft)	below riser)	Elev. (ft)	6/24/97	9/30/97	2/23/98	4/28/98	86/11/6	2/3/99	8/11/99	2/7/00	00/6/8
<u>-</u> 2	(O) Eastern portion	583.21	583.30	16.4	576.8 - 566.8	579.54	60.773	579.25	579.60	575.62	572.97	575.83	573.76	576.66
P-2	(I) of capped area	582.90	583.20	15.7	577.2 - 567.2	579.60	579.24	578.20	578.37	578.76	96'929	578.27	575.59	577.60
P-3	(I) Center of capped	606.33	606.64	39.7	586.6 - 566.6	580.36	580.38	580.06	579.94	579.80	579.96	579.38	579.29	578.95
	area													
P.4	(I) Adjacent to	582.31	583.85	15.6	576.7 - 566.7	577.15	577.43	576.70	575.11	575.96	574.58	575.56	573.96	575.11
SP-1	(T) Quarry Lake	579.86	580.07	15.0	bop = 564.9	<564.9	<564.9	<564.9	<564.9	<564.9	<564.9	<564.9	<564.9	<564.9
P-5	(O) Southern portion	583.05	583.55	15.5	577.6 - 567.6	576.87	577.25	578.57	579.31	576.13	574.70	576.48	578.16	579.02
P-6	(I) of capped area	584.45	584.60	16.2	578.3 - 568.3	578.77	579.17	578.14	578.20	578.63	577.94	578.28	577.74	577.78
P-7	(I) Northern portion	580.97	582.00	15.9	575.0 - 565.0	578.33	578.62	576.45	576.17	577.15	574.43	575.55	573.02	574.97
P-8	(O) of capped area	582.83	583.00	17.3	575.5 - 565.5	577.76	578.87	578.75	579.61	576.90	574.72	576.15	576.12	578.26

Motor

- 1. Elevation based on USGS Datum.
- bop = bottom of pipe.
- 3. O = piezometer located outside of capped area.
- 4. 1 = piezometer located inside capped area.
- 5. T = standpipe located within the ground water collection trench.
- 6. The top of riser of piezometer P-4 was modified on 4/28/98 from 583.68 ft to 582.31 ft to allow clearance for the installation of a locking expansion plug beneath the flush-mounted cover.
- 7. The top of riser of piezometer P-7 was modified on 4/28/98 from 581.84 ft to 580.97 ft to allow clearance for the installation of a locking expansion plug beneath the flush-mounted cover.

Table 2
Frontier Chemical - Pendieton Site
Monitoring Well Ground Water Elevation Summary Table

Monitoring		Top of Riser	Ground	Depth (ft	Screened				Ground w	Ground water elevation (ft)	n (ft)			
Well	Location	Elev. (ft)	Elev. (ft)	below riser)	Elev. (ft)	6/24/97	9/30/97	2/23/98	4/28/98	9/17/98	2/3/99	8/11/99	2/7/00	8/9/00
URS-14I	Upgradient well nest	581.14	580.84	31.0	550.1 - 555.1	577.15	578.77	580.24	580.14	574.76	577.35	575.42	577.68	577.74
URS-14D	URS-14D in church parking lot	580.71	580.85	41.5	539.2 - 544.2	575.50	574.28	575.87	576.05	573.94	572.89	571.92	571.87	573.05
URS-9I	URS-9I Southern well nest	581.68	579.90	46.0	535.6 - 540.6	575,38	574.22	575.69	575.91	573.76	572.67	571.82	571.78	572.98
URS-9D	along Town Line Road	580.80	579.00	46.5	534.3 - 539.3	575.36	574.21	575.68	575.89	573.64	572.66	571.24	571.66	572.94
85-5R	Middle well nest	580.84	578.70	40.0	540.9 - 542.9	574.70	573.97	575.39	575.70	574.98	572.78	571.92	571.10	572.95
URS-5D	along Town Line Road	580.60	578.00	49.9	530.8 - 535.8	574.73	574.02	575.42	575.74	573.80	572.12	571.97	571.39	572.89
85-7R	North well nest	577.90	576.60	27.8	550.2 - 552.2	575.09	574.21	575.53	575.87	573.74	572.30	572.04	571.52	573.10
URS-7D	along Town Line Road	579.35	576.50	39.9	539.5 - 544.5	575.15	574.35	575.60	575.99	573.75	572.40	571.99	571.57	573.13
88-12C	Well nest outside northeast	583.12	583.70	31.3	551.8 - 553.8	576.60	574.03	576.53	577.06	572.79	571.72	571.26	571.12	573.01
88-12D	88-12D portion of capped area	582.87	583.28	54.5	528.4 - 533.4	575.72	574.54	576.17	576.33	574.00	572.97	572.36	572.33	573.53

Notes:

1. Elevation based on USGS Datum.

Table 3
Frontier Chemical - Pendleton Site
Quarry Lake Surface Water Elevation Summary Table

	Quarry Lake
Date	Surface Water Elevation (ft) (1)
26/8/6	572.3
2/23/98	578.0
4/30/98	578.26
9/21/98	577.42
2/4/99	577.97
8/4/99	577.60
2/7/00	578.16 (2)
8/10/00	578.07

Notes:

- 1. Elevation based on USGS Datum.
 2. Ice surface elevation.

August 2000 Standard 85-5R Parameter ug/L (ppb) 7/86 8/90 2/91 10/92 6/97 9/98 2/99 2/98 8/99 2/00 8/00 VOCs (ppb) Acetone NA ND R ND ND ND ND ND ND ND ND Benzene 1 ND 15 ND ND ND 0.34 J ND ND 0.10.1 ND ND 2-Butanone NA ND Bromodichloromethane ND Carbon Disulfide NA ND ND ND ND ND ND ND ND 18 ND Chlorobenzene 5 ND NA NA NA ND 0.28 J ND ND ND ND ND Chloroform ND Dibromochloromethane ND 1.1-Dichloroethane 5 ND 1.2-Dichloroethene 5 NA ND ND ND ND ND ND ND 0.17 J 0.10 J 0.11 J Ethylbenzene 5 ND ND ND ND ND 0.24 J ND ND ND ND ND Methylene Chloride 5 ND 4-Methyl-2-Pentanone NA 2.1 ND ND ND ND ND ND ND ND ND 1,1,2,2,-Tetrachloroethane 5 ND 2J ND ND ND ND ND ND ND ND ND Toluene 5 ND ND ND ND ND 0.14 J ND ND ND ND ND Total Xylenes 5 NA ND ND ND ND 0.96 ND ND ND ND ND Trichloroethene ND Vinyl Chloride 2 ND Metals (ppb) Aluminum 37.8B 1,060 214 153 ND 300 ND ND ND ND ND Antimony 3 NA ND (42.4B) ND ND ND ND ND ND ND ND Arsenic 25 NA 1B ND ND ND ND ND ND ND ND ND Barium 1000 20 73.5B 23 4R 15 40 80 50J ND 60 60 60 Beryllium ND Cadmium 5 (5) ND Calcium 380,000 355,000 378,000 321,000 270,000 220,000 220,000 130,000 220,000 200,000 90,000 Chromium 50 40 7.5B ND ND ND 30 10 ND ND ND ND Cobalt 20 ND 200 Copper 10 ND ND 11 ND ND ND ND ND ND ND Cyanide 200 ND ND ND ND ND ND. ND ND ND ND ND Iron 300 (1,020 669 915 419 140 2,300 190 ND 100 ND (420) l ead 25 150 ND ND 1.2B ND ND ND ND ND ND ND Magnesium 179,000 106,000 170,000 139,000 130 000 85.000 110,000 59,000 99,000 90,000 85,000 Manganese 300 100 40 57.5 42 50 260 40 ND 80 110 130 J Mercury 0.7 NA ND Nickel 100 10 48.1 ND ND ND ND ND ND ND ND ND Potassium 9.500 60,700 6,280 6,400 ND ND ND ND 5,000 ND ND Selenium 10 NA ND Silver 50 30. ND. ND. ND. ND. ND ND ND ND. ND. ND. Sodium 20,000 126.000 132,000 (120,000 100,000 (93,000 J 58,000 7,000 \$2,000 **9**6,000 67.000 69 000 Thallium NA ND ND ND ND 8 ND ND ND ND ND Vanadium 35 4B ND ND ND ND ND ND ND ND ND Zinc 75 12.9B 17.6B ND ND ND ND ND 10 J 10 ND

9

lo

14

R = Indicates compound rejected due to blank contamination.
 J = Indicates result is less than sample quantitation limit but greater than zero.

3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.

19

11

4. E = Estimated value due to interferences.

5. W = Post-digestion spike is out of control limits.

6. Sample data presented for 6/97 and subsequent sampling events is for cis-1,2-dichloroethene.

7. NA = Not analyzed; ND = Not detected; N = Tentative.

Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

i:\div71\5829\27084\4\13.xls

DETECTIONS

D

2

10

August 2000 Standard Parameter ug/L (ppb) 8/90 2/91 10/92 6/97 2/98 9/98 2/99 8/99 2/00 8/00 VOCs (ppb) Acetone 250 R ND ND ND ND ND ND ND ND Benzene 1 ND ND 1 ND 0.25 J 0.11 J ND 0.16 J ND ND 2-Butanone ND R ND ND ND ND ND ND ND ND Bromodichloromethane ND Carbon Disulfide ND ND ND ND ND ND ND ND 4.2 ND Chlorobenzene 5 NA NA NA ND 0.31 J ND ND ND ND ND Chloroform 7 ND Dibromochloromethane ND 1,1-Dichloroethane 5 ND 1,2-Dichloroethene 5 ND Ethylbenzene 5 ND ND ND ND 0.32 J ND ND ND ND ND Methylene Chloride 5 ND R ND ND ND ND ND ND ND ND 4-Methyl-2-Pentanone ND 1,1,2,2,-Tetrachloroethane 5 ND Toluene 5 ND 1J ND ND 0.19 J ND ND ND ND ND Total Xylenes 5 ND 0.5J ND ND 1.5 ND ND ND ND ND Trichloroethene 5 ND Vinyl Chloride 2 ND Metals (ppb) Aluminum ND ND ND ND ND ND ND ND ND 300 Antimony 3 ND 31.5B ND ND ND ND ND ND ND ND Arsenic 25 1.3B 1B ND ND ND ND ND ND ND ND Barium 1000 224 71.7B 32 20 ND ND ND 20 ND 20 Beryllium ND Cadmium 5 ND Calcium 378,000 407,000 387,000 440,000 300,000 510,000 490,000 490,000 500,000 430,000 Chromium 50 3B ND ND ND ND ND ND ND ND 20 Cobalt ND ND ND ND 61 210 850 350 59 50 Copper 200 ND ND ND 8 ND ND ND ND ND ND Cyanide 200 ND ND ND ND ND ND ND ND ND ND-Iron 300 188 143 25 ND 120 ND ND ND ND 410 Lead 25 ND 1.3B 12 ND ND ND ND ND ND ND Magnesium 33,300 2450B 570,000 100,000 24,000 87,000 76.000 93,000 97,000 52,000 Manganese 300 8.8B 3.5B ND 50 10 70 70 50 60 20 J Mercury 0.7 ND ND ND ND ND ND ND ND ND Nickel 100 11.4B ND ND 90 ND 90 80 50 ND Potassium 22,700 16 900 8,500 ND ND ND 5,000 ND ND ND Selenium 10 ND Silver 50 ND AD. ND. ND ND AP. ND ND ND ND Sodium (192,000) 160,000 20,000 194,000 14,000 88,000 93,000 (94,000 110,000 20,000 10,000 Thallium ND Vanadium 3.8B ND ND ND ND ND ND ND ND ND Zinc 19.9B 14.7B ND ND 10 ND ND 10 J 10 90

15 1. R = Indicates compound rejected due to blank contamination.

2. J = Indicates result is less than sample quantitation limit but greater than zero.

3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.

4. E = Estimated value due to interferences.

5. W = Post-digestion spike is out of control limits.

ACTUCTION

6. Sample data presented for 6/97 and subsequent sampling events is for cis-1,2-dichloroethene.

7. NA = Not analyzed; ND = Not detected; N = Tentative.

8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

i:\div71\5829\27084\4\13.xls

Notes

September 26, 2000

8

10

12

		July 1	- Rumu	dution -		g, a Japan	Ü,	the 1	imidu	atron		
	Standard					1	85-7R	1	20.27.1.00.2			
Parameter	ug/L (ppb)	7/86	8/90	2/91	10/92	6/97	2/98	9/98	2/99	8/99	2/00	8/00
VOCs (ppb)				was took in the	Vystatistijas ir	Minus (1900)	G0 57 N 678 CA	i neka.			1 2.00	1 0/00
Acetone		NA	ND.	R	ND	ND	ND	ND	I ND	ND	ND	ND
Benzene	1	ND	(6) ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND .	ND	ND
Carbon Disulfide	-	71	ND	ND	ND	ND	ND	ND	0.93 J	ND	32	ND
Chlorobenzene	5	ND	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene	5	NA	ND	ND	ND	0.14J	0.19 J	0.14 J	0.21 J	0.40 J	0.11 J	0.14
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND
Methylene Chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	, ND
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	
Toluene	5	ND	ND	1J	ND	ND	ND	ND	ND	ND	ND	ND ND
Total Xylenes	5	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND ND	ND	ND		ND	ND
Metals (ppb)				110		IND	IND	טאו ן	חאו ד	ND	ND	ND
Aluminum		1,200	277	265	249	ND	l ND	ND	L NID	1 0 10 10 10 10 10 10 10 10 10 10 10 10	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
Antimony	3	NA	28.38	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	25	NA.	1.4B	1.7B	ND ND	ND	ND		ND	ND	ND	ND
Barium	1000	30	91B	143B	106	100	80	ND 50J	ND	ND	ND	ND
Beryllium		ND.	ND	ND ND	ND	ND	ND		ND	40	40	80
Cadmium	5	2(5)	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND
Calcium	-	490,000	354,000	298,000	389,000	350,000		ND	ND	ND	ND	ND
Chromium	50	20	ND	ND	ND	ND	350,000 ND	420,000	400,000	440,000	410,000	390,00
Cobalt		20	ND	ND	ND ND	ND	ND ND	ND ND	10	ND	ND	ND
Copper	200	10	ND	ND	8	ND ND			ND	ND	ND	ND
Cyanide	200	ND.	ND.	ND ND	,ND	ND ND	ND ND	ND	ND	ND	ND	ND
iron	300	920	(586	820	435	190	(310)	ND	ND	ND	ND	ND
Lead	25	(120)	ND	2.6B	ND ND	ND	ND	270 ND	170	90	70	210
Magnesium		131,000	119,000	42,600					ND	ND	ND	ND
Manganese	300	110	40.5	31.5	124,000 30	120,000 70	120,000	140,000	140,000	130,000	130,000	130,00
Mercury	0.7	NA.	ND	ND			80	90	80	40	40	50 J
Nickel	100	ND ND	7.4B	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND
Potassium		28,000	5,540	5,770			ND	ND	ND	ND	ND	ND
Selenium	10	28,000 NA	5,540 ND		6,700	5,000	5,000	6,000	6,000	7,000	6,000	6,000
Silver	50	10.	שא	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sodium	20,000	107,000		ND	ND	ND	_ND	ND	ND	MB	_GIA	ND
Thallium	i		(67,900	38,900	(73,100)	(66,000 J	(67,000)	(75,000)	₹4,000°	(85,000) \$2,000°) ₹1,00
Vanadium		NA 25	ND	<u> </u>	ND	ND	6	ND	ND	ND	ND	ND
vanagium Zinc		35	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Notes:		65	ND 13	21.5	ND	ND	ND	ND	ND	ND	ND	ND

1. R = Indicates compound rejected due to blank contamination.

2. J = Indicates result is less than sample quantitation limit but greater than zero.
 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.

4. E = Estimated value due to interferences.

5. W = Post-digestion spike is out of control limits.

6. Sample data presented for 6/97 and subsequent sampling events is for cis-1,2-dichloroethene.

7. NA = Not analyzed; ND = Not detected; N = Tentative.

Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

i:\div71\5829\27084\4\13.xls

DETECTIONS O EXCEEDANCE

Standard ug/L (ppb)	8/90	2/91	10/92		URS	-7D	(une			
 1		2/91	40/00							
_	120		10/92	6/97	2/98	9/98	2/99	8/99	2/00	8/00
_	120					i de la compania del compania del compania de la compania del compania del compania del compania de la compania del com	Advising 1	d		1
_		R	ND	ND	ND	61	6.0 J	ND	ND	ND
	ND	ND	ND	ND	0.11 J	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	0.5J	ND	ND	ND	ND	ND	1.3 J	ND	5.2	ND
5	NA NA	NA	NA	ND	ND	ND	ND	ND	ND	ND
7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
			ND	ND	ND	ND	ND	ND	ND	ND
		ND	ND	ND	ND	ND	ND	ND		ND
	ND	ND	ND.	ND	ND	ND	ND	ND		ND
	ND	ND	ND	ND	ND	ND	ND			ND
5	ND	ND	ND	ND	ND	ND	ND			ND
	ND	ND	ND	ND	ND	ND				ND
5	ND	ND	ND	ND	ND	ND				ND
5	ND	ND	ND	ND	ND					ND
5	ND	ND	ND	ND	0.37 J					ND
5	ND	ND	ND	ND	ND	ND				ND
2	ND	ND	ND	ND	ND	ND		-		ND
						100 Maria (100 Maria)		Maria di seria		I ND
	167B	52.5B	ND	ND	ND	ND	ND	l ND	100	ND
3	20.5B	36.3B	⊃ND	ND	ND					ND
25	ND	ND	ND	ND	ND				1	ND
1000	20.3B	47.2B	29	30						30
	ND	ND	ND	ND						ND
5	ND	ND	ND							ND
	277,000	333,000	403,000							480.00
50	ND									20
	ND						1			ND
200	ND						1			ND ND
200	_ND_									
300	387									ND 170 J
25	ND									
	96.200									ND
300	71.2									150,00
0.7	ND									50 J
										0.3 J
										ND
10										5,000
50										ND
										ND
20,000	The second second				1					X28,000
 										ND
										ND
<u> </u>				עא		טא	UND	ND	ND	ND
	5 5 5 5 5 5 5 5 5 5 5 5 5 5			ND		ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND		

2. J = Indicates result is less than sample quantitation limit but greater than zero.

3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.

4. E = Estimated value due to interferences.

5. W = Post-digestion spike is out of control limits.

6. Sample data presented for 6/97 and subsequent sampling events is for cis-1,2-dichloroethene.

7. NA = Not analyzed; ND = Not detected; N = Tentative.

8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

i:\div71\5829\27084\4\13.xls

DETECTIONS O EXCEEDANCE

		Cres	Mone	dieten			Cite	Rem	ditte	a a	
	Standard	,				URS	·91 °				
Parameter	ug/L (ppb)	8/90	2/91	10/92	6/97	2/98	9/98	2/99	8/99	2/00	8/00
VOCs (ppb)											
Acetone		R	R	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	ND	ND	0.12J	0.29 J	ND	ND	ND	ND	ND
2-Butanone		ND	2J	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	0.13 J	ND	ND	8.5	ND
Chlorobenzene	5	NA	NA	NA	ND	0.20 J	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	0.14 J	ND	ND	ND	ND	ND
Methylene Chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	0.7J	ND	ND	ND	0.11 J	ND	ND	0.16 J	ND	ND
Total Xylenes	5	ND	ND	ND	0.293	0.54	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Metals (ppb)						·		<u> </u>			
Aluminum		221	197	110	NĐ	ND	ND	200	ND	200	ND
Antimony	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	25	1.78	ND	ND	ND	ND	ND	ND	ND	ND	ND
Barium	1000	30.18	22.8B	14	30	ND	ND	ND	ND	ND	ND
Beryllium		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Calcium		106,099	143,000	123	170,000	150,000	160,000	160,000	160,000	170.000	160.000
Chromium	50	8.6B	10.1	ND	ND	ND	10	10	ND	ND	ND
Cobalt		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Copper	200	12.7B	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyanide	200	ND.	ND	ND.	NED-	NB-	ND	ND	ND	ND	ND ND
Iron	300	1,020	(1,170)	7808	(480)	(40)	290	590	100	(526-)	210
Lead	25	ND	1B.	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium		54,500	71,380	63,500	70,000	69,000	77.000	70,000	75.000	76,000	75,000
Manganese	300	67.5	80	75	50	30	40	50	40	50	40 J
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	7.69	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
Potassium		3,9108	4.250B	2.900	ND	ND	ND	ND	ND	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND
Silver	50	ND.	ND	AID.	ND	ND	ND ND	_ND	ND	ND.	ND.
Sodium	20,000	\$4.500	14000		43,000	40.00	(0,000	39,000	64.000	48,000	48,000
Thallium		ND	ND ND		ND	11		ND	ND	ND ND	
		ND ND	9.68	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
Vanadium		19.38	34.6	ND ND	ND	ND ND	20	ND ND	10.		ND
Zinc		19.35	34.5	עא ן	טא ן	טא ן	20	עא ן	103	ND	עא ו

Notes:

- notes:
 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5 W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97 and subsequent sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

i⁻\div71\5829\27084\4\13.xls

DETUCTION (CI CHEEDAHCE 9

11

		O.	ammasy on v	August 2		cai Data					
	9	Bul	n Kum	distro			Aten	Kamei	dietin	~	
	Standard	1027	/ 10/10	CONTRACTOR OF THE PARTY OF THE		URS-		11277			
Parameter	ug/L (ppb)	8/90	2/91	10/92	6/97	2/98	9/98	2/99	8/99	2/00	8/00
VOCs (ppb)	3 77		***************************************								
Acetone		R	R	ND	ND	ND .	ND	ND	ND	ND	ND
Benzene	1	ND	ND	ND	ND	(1.9)	ND	ND	ND	ND	ND
2-Butanone		ND	6.≸	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		47	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	ND	ND	ND	16	ND
Chlorobenzene	5	_NA	NA	NA	ND	0 79	ND	ND	ND	ND	ND
Chloroform	7	(8)	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochioromethane		1J	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.1-Dichloroethane	5	ND	ND	0.7	0.37J	0.34 J	0.17-J	0.16 JN	0.15 J	0.14 J	0.14 J
1.2-Dichloroethene	5	ND	ND	1	0.66	0.59	0.33 J	0.35 J	0.29 J	0.25.J	0.23 J
Ethylbenzene	5	ND	ND	ND	ND	0.44 J	ND	ND	ND	ND	ND
Methylene Chloride	5	ND	ND	2	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	0.6J	ND	ND	ND	0.51	ND	ND	ND	ND	ND
Total Xylenes	5	ND	ND	ND	ND	1.8	ND	ND	ND	ND	ND
Trichigrapthene	5	ND	ND	0.8	0 36J	0.24 J	0.20 J	0.21 J	0.14 J	ND	ND
Maryl Chloride	2	ND	ND	ND	0.26J	0.44 J	0.11 JN	ND	ND	ND	ND
Metals (ppb)	1 1		145	110	0.200	0.440					
Aluminum	- 	128	64.2B	ND	ND	ND	ND	ND	ND	ND	ND
Antimony	3	ND	288	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	25	1.68	ND	ND	ND	ND	ND	ND	ND	ND	ND
Barium	1000	110B	38.28	23	ND	ND	ND	ND	ND	ND	ND
Beryllium	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Calcium	 	56,500	146,000	120,000	200,000	190,000	190,000	200,000	210,000	220.000	210,00
Chromium	50	ND	ND	ND	ND	ND	10	ND	ND	ND	20
Cobalt		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Copper	200	5.2B	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyanide	200	ND	11,1B	ND	ND	ND	ND	ND	ND	ND	ND
Iron	300	127	2508	262	ND	70	80	70	60	50	220
Lead	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium		20,900	70-200	60,000	58,000	73,000	71,000	72,000	77,000	78,000	75.000
Manganese	300	20.1	25.5	9	ND	ND	10	10	10	10	10 J
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	15.3B	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
Potassium		9.880	4,1708	3,600	ND	ND	ND	ND	ND	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	50	ND.	ND-	NTO S	, ND	ND .	ŊD	ND	, AD	MD	, ND
Sodium	20,000		(97.000	(42,800	48,000 L	£52.000	41,000	Ø8.000	62,000	48,006	45,00
Thallium		ND	ND	ND	ND	14	ND	ND	ND	ND	ND
Vanadium		10.7B	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc		50.5	16.7B	ND	ND	ND	ND	ND	ND	ND	ND

Notes: 1 R = Indicates compound rejected due to blank contamination.

2. J = Indicates result is less than sample quantitation limit but greater than zero.

- 3 B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5 W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97 and subsequent sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

i:\div71\5829\27Q84\4\13.xls

DETECTIONS CXCEEDANCE

		Below	Remed	intim		l	Vta 1	amed	liation	٠	1
	Standard					88-1					·
Parameter	ug/L (ppb)	8/90	2/91	10/92	6/97	2/98	9/98	2/99	8/99	2/00	8/00
VOCs (ppb)											
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	DN	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	ND	ND	ND	0.84	ND
Chlorobenzene	5	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND .	ND	ND	ND
1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	0.19 J	ND
Total Xylenes	5	ND	ND	ND	ND	ND	ND	ND	ND	0.15 J	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinvl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Metals (ppb)											
Aluminum		421	1879	453	ND	900	ND	600	ND	ND	ND
Antimony	3	(10.28	(289)	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	25	10	12.38	14	9	7	10	12	11.	12	12 4
Berium	1000	11.4B	17.3	14	ND	ND	ND	ND	ND	ND	ND
Beryllium		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Calcium		62.600**		68,900	73.000	70,900	71.000	76,000	80.000	78.000	78.000
Chromium	50	21	1.6B	ND	ND	10	10	20	ND	ND	ND
Cobalt		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Copper	200	4.28	ND	5	ND	ND	ND	ND	ND	ND	ND
Cyanide	200	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND.
iron	300	(1.536	61.040	1.560	ND	2.200	330	1.600	100	200	(500
Lead	25	1.58	1.2B	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium		88.500	103,000	92,500	110,000	98,000	110,090	100,000	110,000	110,000	110,000
Manganese	300	45:4	37.8	54	10	70	10	40-	20	20.	10 J
Mercury	0.7	ND	ND	NA.	ND	ND	ND	ND	ND	ND	ND
Nickel	100	14.60	ND	ND	ND	ND	ND	ND	ND	ND	ND
Polessium		2,5208	3.200B	3.000	ND	ND	ND	ND	ND	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND.	,ND \	ND.	ND.	ND.	ND.	QIA	ND	ND.
Sodium	20,000	24.000	A1.500		47.000 D	(43,000		42,000	60,900	27.000	48,000
Thallium		ND	ND	ND	ND	13	ND	ND	ND	ND	ND
Vanadium		22.18	108	ND	ND	ND	ND	ND	ND	ND	ND
Zinc		10.1B	16.78	ND	20	20	ND ND	ND	20.1	20	ND
EII N		14:13	, , , , ,	1 140			1	1 ,40		<u> </u>	

Notes:

- 1 R = Indicates compound rejected due to blank contamination.
 2. J = Indicates result is less than 1 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3 B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97 and subsequent sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed, ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6

ı:\div71\5829\27084\4\13.xls

DETECTIONS

CARCEMANCE * TRACK

O'Brien Gere Engineers, Inc.

Page 7 of 10

September 26, 2000

10

8

10

			Bulak	mulitar			ath	Runs	diation)	
-		Standard	7			8	8-12D				
١	Parameter	ug/L (ppb)	8/90	2/91	6/97	2/98	9/98	2/99	8/99	2/00	8/00
	VOCs (ppb)										
ı	Acetone		ND	ND	ND	ND	ND	ND	ND	ND	ND
-	Benzene	11		0.9J	ND	0.13 J	0.13 J	ND	0.16 J	ND	ND
	2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
	Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
	Carbon Disuifide		ND	6	ND	ND	0.56	0.70 J	ND	77.	ND
	Chlorobenzene	5	ND	ND	ND	ND_	ND	ND	ND	ND	ND
	Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND
ļ	Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
	1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1,2-Dichloroethene	5	ND	2J	ND						
i	Ethylbenzene	5	ND	ND	ND	0.11 J	ND	ND	ND	ND	ND
	Methylene Chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
	1,1,2,2,-Tetrachloroethane	5	ND	AH,	ND						
-	Toluene	5	R	(13)	ND						
	Total Xylenes	5	ND	ŊÐ-	ND_	0.48 J	ND	ND	ND	ND	ND
_	Trichioroethene	5	ND		ND						
	Vinyl Chloride	2	ND	ND	ND	ND	D	ND	ND	ND	ND
	Metals (ppb)										
ļ	Akuminum		NO	1220	ND	ND	D	ND	ND	ND	ND
_	Antimony	3	(50.7B)	(56.18	ND						
1	Arsenic	25	ND	1.3BW	ND	ND	ND	ND	ND	6.	ND
	Barium	1000	2.98	7.98	ND						
	Beryllium		ND	ND	ND	ND	ND	ND	ND	ND	ND
	Cadmium	5	ND	ND	DN	ND	ND	ND	ND	ND	ND
	Calcium		464,900	623,000€	490,000	480,000	630,000	630,000	676,000	720,000	630,000
_	Chromium	50	7.6B	27.8E	10	30	30	8	ND	20	ND
	Cobalt		ND	ND	ND	ND	ND	ND	ND	ND	ND
	Copper	200	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Cyanide	200	ND	ND	ND	ND	ND	, NO.	12	ND	ND
_	iron	300	168	250	180	480	110	(450	99	70	ND
	Lead	25	ND	1.8BW	ND						
	Magnesium		109,000	199,000E	130,000	110,000	180,000	180,000	180,000		160;000
_	Manganese	300	33.9	696	90	66	40	50	30	30	20 J
	Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	0.2 3	0,2
	Nickel	100	11.5B	25.59	ND	ND	ND	70	ND	ND	ND
	Potessium		5,310	12,000E	600	6,000	10,000	9,000	9,000	11,000	9,600
	Selenium	10	ND	ND	ND	ND	6	ND	ND	ND	ND
	Silver	50	ND-5	MD	ND.	ND	ND >	ND.	NĐ	ND	MD
	Sodium	20,000	66,400		140,000					450.80D	
	Thallium		ND	ND	ND	ND	ND	ND	ND	ND	ND
	Vanadium		51.6	2.48	ND						
	Zinc		7.98	ND	ND	10	ND	ND	10 J	10	ND
	Notes: 1. R = Indicates compound reje	cted due to b	lank contam	ination.	7	11	10	8	4	()	6

- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97 and subsequent sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

i:\div71\5829\27084\4\13.xls

DETECTION S
Page 8 of 10

September 26, 2000

O'Brien Gere Engineers, Inc.

Table 4 Frontier Chemical-Pendleton Site Summary of Ground Water Analytical Data August 2000

		,		just 2000			,			
		Cophenition Otto Kinediation								
	Standard	andard URS-14!								
Parameter	ug/L (ppb)	2/91	10/92	6/97	2/98	9/98	2/99	8/99	2/00	8/00
VOCs (ppb)										
Acetone		ND	ND	ND	ND,	ND	ND	Ŋ	ND	ND
Benzene	1	ND	ND	ND		ND	ND	D	Ð	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	D
Bromodichloromethane		ND	NĎ	ND	ND	ND	ND	D	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	ND	ND	1.2	ND
Chlorobenzene	5	NA	NA	ND	0.81	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	0.13 J	ND	ND	ND	ND	ND
Methylene Chloride	5	ND	ND	ND	ND	ND	ND	ND	0.17 J	ND
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	0.15 J	ND	ND	ND	ND	ND
Total Xylenes	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND
Metals (ppb)	1 -								<u> </u>	
Alumbum	1	7,140	1,170	1300	400	ND	300	ND	ND	ND
Antimony	3	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	25	723	ND	ND	ND	ND	₹5 .	ND	6	ND
Serium	1000	1159	47	50	~40	40.1	40	5Q	50	60
Beryllium	1	1.28	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	1	ND	ND	ND	2	ND
•a eum	<u> </u>	73,990	35,200	28,000 J	21.000	23.000	26,000	30,000	34,000	32.000
Chromium	50	30.5	ND	ND	(180)	ND	ND	ND	10	ND
Cobalt		5.8B	ND	ND	ND	ND	ND	ND	ND	ND
Copper	200	18.58	8	ND	10	ND	ND	ND	ND	ND
Cyanide	200	ND	_ND	_ND	, AID.	ND	ND	ND	ND	ND
tron	300	10,4000	2,060	1.000	(2,300	ND	(320)	ND	ND	ND
Lead	25	7.5	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium		32.800	22,300	21,000	17,000	21,000	23,000	25,000	29,000	26,900
Manganese	300	(484)	145	70	60	ND	ND	ND	ND	250 J
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mickel	100	39.48	ND	ND	179	ND	ND	ND	ND	ND
	100		5,500	ND	25,000	8,000	6.000	6.000	ND	ND ND
Potassium	10	17,180 ND	ND	ND	25,000 ND	ND	ND	ND	ND	ND ND
Selenium	50	ND				ND			ND ND	ND ND
Silver	20,000	44,700	ND Y42 500	ME OCC 1	ND		ND E4 OAO	ND 62,000	67.000	59.000
Sodium	20,000									
Thailium	-	ND	ND	ND	6	ND	ND	ND	ND	ND
Venadium	 	16.18	ND	ND	ND	ND	ND	ND .	ND 20	ND
Zinc		52.9	ND	10	30	ND	ND	30-J	20	ND

Notes:

- R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97 and subsequent sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

i:\div71\5829\27084\4\13.xls

DETECTIONS

EXCEPANCE
Page 9 of 10

September 26, 2000

O'Brien Gere Engineers, Inc.

		Blake	militin		UKA Romalista							
	Standard	URS-14D										
Parameter	ug/L (ppb)	2/91	10/92	6/97	2/98	9/98	2/99	8/99	2/00	8/00		
VOCs (ppb)							Barbert (Barbana)	e@attedes		1		
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	ND		
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND	ND		
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	ND		
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND		
Carbon Disulfide		ND	ND	ND	ND	0.47 J	1.1 J	ND	6.7	ND		
Chlorobenzene	5	NA	NA	ND	ND	ND	ND	ND	ND	ND		
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND				
Methylene Chloride	5	R	ND	ND	ND	ND	ND	ND	ND	ND		
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND	ND ND	ND	ND		
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Toluene	5	ND	ND	ND	ND	ND	ND		ND	ND		
Total Xylenes	5	ND	ND	0.11J	0.21 J	ND	1	ND	ND	ND		
Trichloroethene	5	ND	ND	ND'	ND ND	ND	ND	ND	ND	ND		
Vinyl Chloride	$\frac{3}{2}$	ND	ND	ND	ND		ND ND	ND	ND	ND		
Metals (ppb)		טוו	עאו ן	I ND	L ND	ND	ND	ND	ND	ND		
Aluminum		_99.8	ND	l ND	I ND	NE	· · · · · · · · · · · · · · · · · · ·					
Antimony	3	32.1B	ND		ND	ND	ND	ND	ND	100		
Arsenic	25	2B		ND	ND	ND	ND	ND	ND	ND		
Barium	1000	· 25.5B	ND	ND	ND	ND	ND	ND	ND	ND		
Beryllium	1000		23	20	ND	ND	40	30	30	30		
Cadmium	5	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Calcium	1 3 1	ND 055,000	ND	ND	ND	ND	ND	ND	ND	ND		
Chromium		255,000	292,000	210,000	250,000	310,000	280,000	360,000	310,000	320,000		
Cobalt	50	10.3	7.	ND	ND	10	ND	ND	ND	20		
Copper	 _	ND	ND	ND	ND	ND	ND	ND	ND	ND		
	200	ND	8	ND	ND	ND	ND	ND	ND	ND		
Cyanide Iron	200	ND	ND	ND	10	10	ND	ND	ND	AND		
	300	(357)	193	ND	ND	ND	80	ND	ND	(340-)		
Lead	25	1.1B	ND	ND	ND	ND	ND	ND	ND	ND		
Magnesium		75,200	78,000	61,000	66,000	81,000	71,000	91,000	83,000	84,000		
Manganese	300	30.8	27	ND	ND	ND	ND	10	ND	20 J		
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Nickel	100	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Potassium		4,250B	3,700	ND	ND	ND	ND	ND	ND	ND		
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Silver	50	_ DIA	ND.	₩D.	NB	ND	NB	NB	ND	ND		
Sodium	20,000	40,700	38,700	(52,000)	49,000	50,000	(48,000	(58,000)	(47,000)	(45,000		
Thallium		ND	ND	ND	ND	ND	ND	ND	ND	ND		
Vanadium		ND	ND	ND	ND	ND	ND	ND	ND	ND		
Zinc		26.8	ND	ND	10	10	ND	ND	ND	ND		
Notes:		7.2	Ü		ı,	-7		<u> </u>	I IND	ND fel		

- R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97 and subsequent sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

i:\div71\5829\27084\4\13.xls

FIGURE 1

LEGEND

URS-7D

MONITORING WELL

PIEZOMETER

WATER ELEVATION CREATED WETLAND AREA

EXISTING WETLAND AREA

6' HIGH CHAIN LINK FENCE GRADE ELEVATION CONTOUR

GROUND WATER COLLECTION TRENCH & CLEAN OUT

STANDPIPE

UTILITY POLE

FRONTIER CHEMICAL PENDLETON SITE TOWN OF PENDLETON, NIAGARA COUNTY, NY

HYDRAULIC POTENTIAL MAP (AUGUST 9, 2000)

FILE NO. 5829.27084.001 DATE: SEPTEMBER 2000

Piezometer/monitoring well inspection forms

Site Name: Frankica

Well Identification: P-1

Personnel: DECITOR

Date:

8/9/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVO

Stainless Steel

Well Diameter

2-Inch

4-inch

Depth to Ground Water:

Well Depth:

1643

WELL INTEGRITY

1. Well identification clearly marked?

yeş

no

2. Well covers and locks in good condition and secure?

ves

no

3. Is the well stand pipe vertically aligned and secure?

(yes)

no

4. Is the concrete pad and surface seal in good condition?

ves

no

5. Are soils surrounding the well pad eroded?

yes

100

3. Is the well casing in good condition?

ves

no

7. Is the measuring point on casing well marked?

ves)

no

8. Is there standing water in the annular space?

yes

(10)

3. Is the stand pipe vented at the base to allow drainage?

yes)

no

COMMENTS:

lite Name: Frontier Chemical

Well Identification: P-2

Personnel: TPP/DFZ

Date: $8/9/\infty$

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Vell Construction

PVC

Stainless Steel

Vell Diameter

2-inch

4-inch

Depth to Ground Water:

5.30

Well Depth:

1573

WELL INTEGRITY

.. Well identification clearly marked?

yes

no

Well covers and locks in good condition and secure?

yes

no

Is the well stand pipe vertically aligned and secure?

yes

no

4. Is the concrete pad and surface seal in good condition?

yes

no

Are soils surrounding the well pad eroded?

yes

(no)

Is the well casing in good condition?

yes

no

7. Is the measuring point on casing well marked?

yes)

no

8. Is there standing water in the annular space?

yes

1

Is the stand pipe vented at the base to allow drainage?

yes

20

JMMENTS:

ite Name: Frontee Chemical

Well Identification:

Personnel: TPP/DEL

Date: 8/9/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

/ell Construction

PVC

Stainless Steel

Vell Diameter

2-inch

4-inch

Depth to Ground Water:

27,38

Well Depth:

39,77

WELL INTEGRITY

.. Well identification clearly marked?

ves

no

Well covers and locks in good condition and secure?

Ves

no

3 Is the well stand pipe vertically aligned and secure?

yes

no

4. Is the concrete pad and surface seal in good condition?

ves

no

Are soils surrounding the well pad eroded?

yes

(no,

Is the well casing in good condition?

ves

no

7. Is the measuring point on casing well marked?

(yes)

no

8. Is there standing water in the annular space?

yes

(10)

Is the stand pipe vented at the base to allow drainage?

yes

U/A

JMMENTS:

ite Name: Frontiac Chemical

Well Identification: P-4

Personnel: TPP/DEZ

Date:

8/9/00

YELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Wounted

/ell Construction

EVC

Stainless Steel

/ell Diameter

2-inch

4-inch

Depth to Ground Water:

7,20

Well Depth:

16.92

WELL INTEGRITY

.. Well identification clearly marked ?

(yes)

no

Well covers and locks in good condition and secure?

Ves

no

3 Is the well stand pipe vertically aligned and secure?

yes)

no

4. Is the concrete pad and surface seal in good condition?

Ves

no

Are soils surrounding the well pad eroded?

yes

(no

Is the well casing in good condition?

yes

no

7. Is the measuring point on casing well marked?

yes

no

8. Is there standing water in the annular space?

yes

no

 $\xi_{\rm mail}$ Is the stand pipe vented at the base to allow drainage ?

yes

no NA

C_MMENTS:

Site Name: Frontiee Chemical Well Identification: P. 5

Personnel: TPP/DEL

Date: 8/9/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVE

Stainless Steel

ves

yes

yes)

no

no

no

Well Diameter

2-Inch

4-inch

Depth to Ground Water:

1. Well identification clearly marked?

8. Is there standing water in the annular space?

9. Is the stand pipe vented at the base to allow drainage?

4.03

Well Depth:

1553

WELL INTEGRITY

1. Won tacking and crowny marked .	900	110
2. Well covers and locks in good condition and secure ?	YES	no
3. Is the well stand pipe vertically aligned and secure?	∮€ \$	no
4. Is the concrete pad and surface seal in good condition?	yes	no
5. Are soils surrounding the well pad eroded?	yes	(i)
6. Is the well casing in good condition?	(Pes)	no
7. Is the measuring point on casing well marked?	(es)	no

COMMENTS:

Site Name: Frontier Chem.

Well Identification: P- 6

Personnel: TPP/DEZ

Date: 8/9/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

RAD

Stainless Steel

Well Diameter

2-inch

4-inch

Depth to Ground Water:

6.67

Well Depth:

1615

WELL INTEGRITY

1. Well identification clearly marked?

(VES) no

2. Well covers and locks in good condition and secure?

yes

no

3. Is the well stand pipe vertically aligned and secure?

盛

no) no

4. Is the concrete pad and surface seal in good condition?

VES

(no)

5. Are soils surrounding the well pad eroded?

yes

no

3. Is the well casing in good condition?

ves)

7. Is the measuring point on casing well marked?

yes

no

8. Is there standing water in the annular space?

yes

(no)

). Is the stand pipe vented at the base to allow drainage?

yes

no N/A

COMMENTS:

Standyleaning 20-30° @ Surface

Site Name: Fronter Chemical

Well Identification:

Personnel: TPP/DEC

Date: 8/a/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4-inch

Depth to Ground Water:

6.00

Well Depth:

1665

WELL INTEGRITY

1. Well identification clearly marked?

yes

no

2. Well covers and locks in good condition and secure?

Yes

no

3. Is the well stand pipe vertically aligned and secure?

yes

no

4. Is the concrete pad and surface seal in good condition?

yes

no

5. Are soils surrounding the well pad eroded?

yes

no

3. Is the well casing in good condition?

yes

no

7. Is the measuring point on casing well marked?

Ves

no

d. Is there standing water in the annular space?

yes

1

3. Is the stand pipe vented at the base to allow drainage?

yes

no

N/A

COMMENTS:

Pite Name: Fronter Chemical

Well Identification: P/ >

Personnel: TPP/DEL

Date: 8/9/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Vell Construction

PVC

Stainless Steel

/ell Diameter

2-inch

4-inch

Depth to Ground Water:

4.57

vveil Depth:

17,22

WELL INTEGRITY

Well identification clearly marked?

yes

no

Well covers and locks in good condition and secure?

yes

no

3. Is the well stand pipe vertically aligned and secure?

VES

no

4. Is the concrete pad and surface seal in good condition?

ves

TO COM

Are soils surrounding the well pad eroded?

yes

(10)

Is the well casing in good condition?

yes

no

no

7. Is the measuring point on casing well marked?

yes

b. Is there standing water in the annular space?

yes

(AO)

Is the stand pipe vented at the base to allow drainage?

yes

no

()MMENTS:

Site Name: Frontier Charical

Well Identification:

SP-1

Personnel: TPP DEC

Date:

8/9/00

WELL SPECIFICATIONS

Protective Casing

Above Ground ,

Flush Mounted

Well Construction

Stainless Steel

Well Diameter

2-inch

Depth to Ground Water:

DRY

Well Depth:

14.9

WELL INTEGRITY

1. Well identification clearly marked?

no

2. Well covers and locks in good condition and secure ?

ves

no

3. Is the well stand pipe vertically aligned and secure ?

ves

4. Is the concrete pad and surface seal in good condition?

yes

no

5. Are soils surrounding the well pad eroded?

yes

(no)

3. Is the well casing in good condition?

(yes)

7. Is the measuring point on casing well marked?

ves

no

no

J. Is there standing water in the annular space?

yes

no

. Is the stand pipe vented at the base to allow drainage?

yes

WHOR NA DEC

OMMENTS:

Site Name: Frontier Chemical

Well Identification: 85-5R

Personnel: TPP DEC

Date: 8 9 00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4-inch

Depth to Ground Water:

7.89

Well Depth:

38.0**9**

WELL INTEGRITY

1. Well identification clearly marked?

yes

no

2. Well covers and locks in good condition and secure?

yes

no

3. Is the well stand pipe vertically aligned and secure?

yes

no

4. Is the concrete pad and surface seal in good condition?

yes

no

5. Are soils surrounding the well pad eroded?

yes

no

6. Is the well casing in good condition?

yes

no

7. Is the measuring point on casing well marked?

yes

no

8. Is there standing water in the annular space?

yes

no

9. Is the stand pipe vented at the base to allow drainage?

yes

no

COMMENTS:

Site Name: Frontier Chemical

Well Identification:

色URS-5D

Personnel: TPP | DEC

Date:

8/9/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4-inch

Depth to Ground Water:

7.71

Well Depth:

4993 49.84 JU

WELL INTEGRITY

1. Well identification clearly marked?

yes

no

2. Well covers and locks in good condition and secure?

Ves

no

3. Is the well stand pipe vertically aligned and secure?

ves

no

4. Is the concrete pad and surface seal in good condition?

9. Is the stand pipe vented at the base to allow drainage?

yes

no

5. Are soils surrounding the well pad eroded?

yes

no/

6. Is the well casing in good condition?

yes

no

7. Is the measuring point on casing well marked?

yes

no

8. Is there standing water in the annular space?

yes

ýes)

no

(no

COMMENTS:

Site Name:

Fontier Chemical

Well Identification: 85-7 R

Personnel: TPP/DEC

Date:

8/9/00

WELL SPECIFICATIONS

Protective Casing

Above Ground)

Flush Mounted

Well Construction

PVC)

Stainless Steel

Well Diameter

2-inch

4-inch

Depth to Ground Water:

4.80

Well Depth:

27.78

WELL INTEGRITY

1. Well identification clearly marked?

no

?. Well covers and locks in good condition and secure ?

(yes)

no

3. Is the well stand pipe vertically aligned and secure?

yes

no

4. Is the concrete pad and surface seal in good condition?

(yes)

no

. Are soils surrounding the well pad eroded?

yes

no

Is the well casing in good condition?

yes

no

7. Is the measuring point on casing well marked?

yes>

no

o. Is there standing water in the annular space?

yes

no

Is the stand pipe vented at the base to allow drainage?

no

OMMENTS:

Site Name: Frantice Chemical

Well Identification: URS-7

Personnel: TPP / DEC

Date: 8/9/60

WELL SPECIFICATIONS

Protective Casing Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4-inch

Depth to Ground Water:

6.22

Well Depth:

39.89

WELL INTEGRITY

1.	Well identification clearly marked?	yes) r	10
	,		,	

2. Well covers and locks in good condition and secure ? yes no

3. Is the well stand pipe vertically aligned and secure?

4. Is the concrete pad and surface seal in good condition? yes no

Are soils surrounding the well pad eroded?

yes

no

i. Is the well casing in good condition?

7. Is the measuring point on casing well marked?

ves no

o. Is there standing water in the annular space?

yes

no

Is the stand pipe vented at the base to allow drainage? yes no

OMMENTS:

Site Name: Fronter Chemical Well Identification: UPS-9I

Personnel: DEC/TPP

Date: 8/9/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4-inch

Depth to Ground Water:

8,70

Well Depth:

4Le 18

WELL INTEGRITY

1. Well identification clearly marked?

(yes)

no

2. Well covers and locks in good condition and secure?

yes)

no

3. Is the well stand pipe vertically aligned and secure?

yes

no

4. Is the concrete pad and surface seal in good condition?

ves

no

5. Are soils surrounding the well pad eroded?

yes

(no)

6. Is the well casing in good condition?

(yes)

no

7. Is the measuring point on casing well marked?

yes)

no

8. Is there standing water in the annular space?

yes

(no)

9. Is the stand pipe vented at the base to allow drainage?

yes

no

COMMENTS:

Site Name: Frontier Chemical

Well Identification: US and

Personnel: TP/DEL

Date: 8/9/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4-inch

Depth to Ground Water:

784

Well Depth:

50.89

WELL INTEGRITY

1. Well identification clearly marked?

yes

no

2. Well covers and locks in good condition and secure?

yes

no

3. Is the well stand pipe vertically aligned and secure?

yes

no

4. Is the concrete pad and surface seal in good condition?

yes

no

5. Are soils surrounding the well pad eroded?

yes

6

6. Is the well casing in good condition?

yes

no

7. Is the measuring point on casing well marked?

ves

no

8. Is there standing water in the annular space?

yes

no

9. Is the stand pipe vented at the base to allow drainage?

yes

no

COMMENTS:

ite Name: Fro ther Chemical

Well Identification: 88 12-C

Personnel: TPP/DEZ

Date:

8 9 00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

/ell Construction

PVC

Stainless Steel

/ell Diameter

2-inch

4-inch

Depth to Ground Water:

10 cl

well Depth:

31,31

WELL INTEGRITY

.. Well identification clearly marked?

yes

no

Well covers and locks in good condition and secure?

yes

no

3 Is the well stand pipe vertically aligned and secure?

(yes

no

4. Is the concrete pad and surface seal in good condition?

<yes>

no

Are soils surrounding the well pad eroded?

yes

· (na)

Is the well casing in good condition?

yes

no

7. Is the measuring point on casing well marked?

yes

по

8. Is there standing water in the annular space?

ves

(no)

Is the stand pipe vented at the base to allow drainage?

yes

no

COMMENTS:

Concrete pad under gravel

Site Name: Fronter Chemical

Well Identification: 88-12-D

Personnel: TPP DEZ

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch)

4-inch

Depth to Ground Water:

9.34

Well Depth:

52.38

WELL INTEGRITY

1. Well identification clearly marked?

(yes)

no

2. Well covers and locks in good condition and secure?

(yes)

no

3. Is the well stand pipe vertically aligned and secure?

no

4. Is the concrete pad and surface seal in good condition?

(yes)

no

5. Are soils surrounding the well pad eroded?

yes

(no

3. Is the well casing in good condition?

(yes)

no

7. Is the measuring point on casing well marked?

(yes)

no

8. Is there standing water in the annular space?

yes

no

9. Is the stand pipe vented at the base to allow drainage?

no

COMMENTS:

Concrete pad under growel

Site Name:

Fronter

Well Identification:

URS-14 I

Personnel:

DEC /TPP

Date:

8/9/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4-inch

Depth to Ground Water:

3,40

Well Depth:

31.08

WELL INTEGRITY

1. Well identification clearly marked?

yes

no

2. Well covers and locks in good condition and secure ?

yes

no

3. Is the well stand pipe vertically aligned and secure ?

yes

no

4. Is the concrete pad and surface seal in good condition?

yes

MQ)

5. Are soils surrounding the well pad eroded?

yes

no

3. Is the well casing in good condition?

yes

no

7. Is the measuring point on casing well marked?

yes

no

ਰ. Is there standing water in the annular space ?

yes

no

Is the stand pipe vented at the base to allow drainage?

yes

no NA

COMMENTS:

Site Name:

Well Identification: URS-14D

Personnel: DEC TPP

Date:

8/2/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4-inch

Depth to Ground Water:

7.66

Well Depth:

41.61

WELL INTEGRITY

1. Well identification clearly marked?

ves

no

2. Well covers and locks in good condition and secure ?

(yes)

no

3. Is the well stand pipe vertically aligned and secure ?

no

4. Is the concrete pad and surface seal in good condition?

(yes)

no

5. Are soils surrounding the well pad eroded?

yes

no

3. Is the well casing in good condition?

yes_

no

7. Is the measuring point on casing well marked?

yes

no

d. Is there standing water in the annular space?

yes

1. Is the stand pipe vented at the base to allow drainage?

yes

OMMENTS:

Ground water sampling logs

O'Brien & Gere Engineers, Inc.			Standard Gro	und Water Sar	npling Log
Date _ \$ 1 00					
Site Name Frontier Che	mi cal		Weather	Sunny 78	ب
Location Penaleto			Well#	85-5R	,
Project No. 27084			-		
-			Evacuation Method	· ·	
Personnel DEC/TP	<u> </u>		Sampling Method	S.S. Bale	<u> </u>
Well Information:					
Depth of Well *	<u>38,02</u> ft .	Wate	Volume /ft. for:		
Depth to Water *	739 ft	X	2" Diameter Well =	0 163 X I WC	
Length of Water Column	30.13 ft.		4" Diameter Well =	i	
Volume of Water in Well	<u>મ. ૧</u> gal.(s	,	_		
3X Volume of Water in Well	!		6" Diameter Well =	1.469 X LVVC	
OX VOIGING OF VVALUE IN VVCII	14-7 gal.(s)		e removed before san	nolina	gal.(s)
			eil go dry?	<u> </u>	<u>ga(s)</u>
			*	C.	/Other She
* Measurements taken from	x Well 0	Casing	Protective (Casing	(Other, Spe
1-4					
Instrument Calibration:	pH Buffer Readings		Conductivity Standar	ed Doodings	
	4.0 Standard		84 S Standard		
	7.0 Standard		1413 S Standard		
	10.0 Standard		_		
Water parameters:					
vvater parameters.					
Gallons	Temperature	рН		Conductivity	
Removed	Readings	Readi	ngs F	Readings uS/cm	
initial <u> </u>	initial 55.7	initial) l	3 ⁰ \ initial	1977	
5	_52.9		1.35	1477	
× 7.5	<u> 55.6</u>		8.10	1400	
X					
*		· · · · · · · · · · · · · · · · · · ·			
Nater Sample: Time Collected	00				
	7				
Physical Appearance at Start	J		Physical Ap	pearance at Samplir	ng
Color	the light Gray		Color		Clear
Odor	ilone		Odor		Nin
urbidity (> 100 NTU)	372 230		Turbidity (>	100 NTU)	110
Sheen/Free Product	None		Sheen/Free		None
Samples collected:					
Container Size	Container Type	# Collected	Field Filtered	Preservative	Container pl
40mi	Glass		÷[C	1:1HCL	<2
16	Plashe		1 155	111102	42
			- I		
<u>IL</u>	Plashic		NO	VacH	710

OlDrian & Cara Engl	acera lac						····
O'Brien & Gere Engi			Star	idard Gr	ound Water S	ampling Log	
Date 8 11 00							
Site Name Frontier C	entical		Weati	ier	Sunny	78°t_	
Location <u>Pendleton</u>			Well #	ŧ	URS - 50	>	
Project No. 고기으왕식			Evacu	ation Metho	d Hard Bai	€	
Personnel DEC/TPP					S.S. Bail		
Well Information:	48.4						
Depth of Well *		ft.	Water Volume	/ft. for:			
Depth to Water *		ft.	X 2" Dia	meter Well	= 0.163 X LWC		
Length of Water Column	4213	ft.	4" Dia	meter Well	= 0.653 X LWC		
Volume of Water in Well	6.9	gal.(s)	6" Dia	meter Well	= 1.469 X LWC		
3X Volume of Water in Well	20.6	gal.(s)				_	
			Volume remov Did well go dry	ed before s ?	ampling	10,5 gal.(s)	
						(Other, Spec	.if. ()
* Measurements taken from	X	Well Casing		Protective	e Casing	(Other, Spec	агу)
Instrument Calibration:							
	pH Buffer Readings 4.0 Standard				lard Readings	_	
	7.0 Standard		_	S Standard S Standard			
	10.0 Standard		-	Otanuaiu		-	
Water parameters:							
Gallons	Temperature		рН		Conductivity	7	
Removed	Readings		Readings		Readings uS/cm		
						-	
initial 0.5	initial 57.5	::4:1	5.25	7_147_	1830		
7	57.c	iiiiudi		iniua	7090 2090	-	
14115	55.8		70.00 7.81			-	
21					2270	-	
						-	
				_		-	
						-	
Vater Sample:	i .						
ime Collected	+5						
hysical Appearance at Start]			Physical A	Appearance at Sam	pling	
Color				Color		Clear	
Odor	Nm			Odor		Vince	
urbidity (> 100 NTU)	<u> </u>			Turbidity (> 100 NTU)	33.5	
Sheen/Free Product	Now				ee Product	Nove	
amples collected:							
ontainer Size	Container Type	# Colle	cted Field	Filtered	Preservative	Container pH	
40ml	Glass		2	NO	1:1HCL	<2	
1 <u>L</u>	Plashc Flashc			<u>/\ic</u> -1>	HNOS	22	
1-	1 mone			00	W.OH	7/0	
lotes:		1			1		

O'Brien & Gere Engineers, Inc.			Standard Ground Water Sampling Log			
Date 8/10/00		····				
Site Name Fastier Che			Weather	5-nay 70)	
Location Pendleton			Weil#	85-7R		
Project No. 27084			Evacuation Method	Hand Bail		
Personnel DEC /TPA			Sampling Method			
			Samping Metrico	33 Base		
Well Information:	27.78 R		()			
Depth of Well *		Water \	olume /ft. for:			
Depth to Water *	4.86 n	X	2" Diameter Well =	0.163 X LWC		
Length of Water Column	<u>22.98</u> n		4" Diameter Well =	0.653 X LWC		
Volume of Water in Well	gal.(s)	6" Diameter Well =	1.469 X LWC		
3X Volume of Water in Well		Volume	removed before sar go dry?	mpling	12 gal.(s)	
* Measurements taken from	X	Casing	Protective	Casing	(Other, Specify)	
nstrument Calibration:						
nsuument Canpiauon.	pH Buffer Readings		Conductivity Standa	rd Readings		
	4.0 Standard		84 S Standard			
	7.0 Standard	<u>×</u>	1413 S Standard			
	10.0 Standard					
Water parameters:		 				
	[-			Co-ductivity		
Gailons Removed	Temperature Readings	pH Readin		Conductivity Readings uS/cm		
			 			
⊀	10	1.0	4 l	~\J_\		
initial $\underline{\psi}$	initial 67		名 initial_			
	51.2		72	918		
<u>~~~</u>	51.5		19	760		
12	<u>50.3</u>		20	730		
						
Vater Sample: Time Collected	1500					
Physical Appearance at Start			Physical Ap	pearance at Samp	pling	
Color	It souder whit	7	Color		Sandy Whide	
Odor	Visite	<u> </u>	Odor	•	None	
Furbidity (> 100 NTU)	742		Turbidity (>	· 100 NTU)	270	
Sheen/Free Product	Nu-c.	-	Sheen/Free	_	Nov	
Samples collected:						
Container Size	Container Type	#Collected	Field Filtered	Preservative	Container pH	
Jontainer Size::::::::::::::::::::::::::::::::::::	Glass	2	NO	1:1HCL	<2	
1 L	Plashe		YES	HNOS	47	
14	Plashe	ı	No	Vacit	>10	
	<u> </u>					
Notes:	000	msD				

O'Brien & Gere Engi	neers inc		Standard Grou	nd Water Sai	maling Log
, ,	neers, nic.	•	Standard Grou	ilu vvalei Sai	inpling Log
Date Picloc Site Name Frontier Che	` ^	,	Veather	5 70	
Location Pendleton			Veli#	Suny 70 URS-7D	
Project No. 27084			Evacuation Method		
			Sampling Method		
Personnel DEC/TPP			Sampling Method	2.3 Bark	<u> </u>
Well Information:	39 89 n	[v			
Depth of Weil *			olume /ft. for:		
Depth to Water *	22 ft.		2" Diameter Well = 0.	1	
Length of Water Column	T 110		I" Diameter Well = 0.		
Volume of Water in Well	11	L	6" Diameter Well = 1.	469 X LWC	
3X Volume of Water in Well		Volume r Did well g	emoved before samp go dry?	oling	<u>/ ん,ち</u> gal.(s) <u></u> 人」
* Measurements taken from	xWell Ca	asing	Protective Ca	asing [(Other, Specify)
Instrument Calibration:					
	pH Buffer Readings 4.0 Standard	L	Conductivity Standard		
	7.0 Standard		84 S Standard		
	10.0 Standard				
Water parameters:					
Gallons	Temperature	рН	- Ica	onductivity	
Removed	Readings	Reading		eadings uS/cm	
initial to	initial <u>69.9</u>	initial 65		120	
initial 0.5	56. 5	initial <u>65</u>		920	
10.5	51.8	6.4		940	
16.5	56.7	<u> </u>		1510	
		<u> </u>			
Water Sample: Time Collected	45				
Physical Appearance at Start			Physical App	earance at Sampli	ng
Color	Clear		Color		Clar
Odor	None		Odor		SlightSulfar
Turbidity (> 100 NTU)	10,0		Turbidity (> 1	00 NTU)	39.8
Sheen/Free Product	None		Sheen/Free f	Product	None
Samples collected:					
Container Size	Container Type		Field Filtered		
40mi	Glass	2	NO Ne	1:1HCL	<2
<u> </u>	Plashe Plashe		<u>IVe</u> ,Vc	NACH	710
Notes:	BLIND P	UPF			

O'Brien & Gere Engi	neers, Inc.	Standard Ground Water Sampling Log	
Date \$ 1 00			
Site Name Fonter C	hemical	Weather Karty Cloudy	65°C
ocation Pendlet	m	Well# URS-9I	•
Project No. 2708U		Evacuation Method Hand Bail	
Personnel DEC IT	P	Sampling Method S.S. Boulur	
Well Information:			
Depth of Well *	46.18 R	Water Volume /ft. for:	
Depth to Water *	8.70 t	X 2" Diameter Well = 0.163 X LWC	
ength of Water Column	37.48 ft.	4" Diameter Well = 0.653 X LWC	
/olume of Water in Well	Gal.(s	 	
X Volume of Water in Well	18.3 gal.(s		
		Volume removed before sampling Did well go dry? Did well go dry? Did well go dry?	
		(Other	Specify)
Measurements taken from	X Well	Casing Protective Casing	
nstrument Calibration:			
	pH Buffer Readings	Conductivity Standard Readings	
	4.0 Standard 7.0 Standard	84 S Standard	
	10.0 Standard	<u></u>	
Vater parameters:			
Gallons	Temperature	pH Conductivity	
Removed	Readings	Readings Readings uS/cm	
initial 0.5	initial 56.4	initial 8.49 initial /357	
û û	54.9	895 1396	
- 3	54.4	7.51 \33+	
	55.6	7.47 (344	
	3 3.4		
			
Vater Sample: ime Collected	15		
Physical Appearance at Start		Physical Appearance at Sampling	
Color	1+ Brown	Color Lat Brown	n
Odor	Vine	Odor None	
Oddi	~ /1	Turbidity (> 100 NTU) 3 8 8	
	101.8		
urbidity (> 100 NTU)	101.96 Nue	Sheen/Free Product Work	
urbidity (> 100 NTU) sheen/Free Product amples collected:	Nwe	Sheen/Free Product None	
urbidity (> 100 NTU) heen/Free Product amples collected:	Container Type	Sheen/Free Product Sheen/Free Product Preservative Contain	er:pH
urbidity (> 100 NTU) Sheen/Free Product Samples collected: Container Size::::::::::::::::::::::::::::::::::::	Container Type Glass	# Collected Field Filtered Preservative Contain 2 NO 1:1HCL <2	er pH
urbidity (> 100 NTU) Sheen/Free Product Samples collected: Container Size	Container Type	Sheen/Free Product Sheen/Free Product Preservative Contain	er pH

O'Brien & Gere Eng	ineers. Inc.	Standard G	ound Water Sam	nling Log
Date 4 11/00		<u> </u>	outin statet 24111	ping Log
	0			h comp
Site Name Fronter CL		Weather	Portly Cloud	14 62 2
Location Pondleter		Well#	425-9D	·
Project No. 27084	www.manner.com	Evacuation Metho	10 Hand Bail	
Personnel DS.C. TPD		Sampling Method	SS Bailer	THE PROPERTY OF THE PROPERTY O
Well Information:	766			
Depth of Well *	7.86 ft	Water Volume /ft. for:		
Depth to Water *	50.89 ft	X 2" Diameter Well	= 0.163 X LWC	
Length of Water Column	<u>43.03</u> ft	4" Diameter Well	= 0.653 X LWC	
Volume of Water in Well	7, <u>O /</u> gal.(s)	6" Diameter Well	= 1.469 X LWC	
3X Volume of Water in Well	<u>21.0</u> gal.(s)			
		Volume removed before so Did well go dry?	ampling 2) gai.(s)
				(Other, Specify)
Measurements taken from	x Well Casing	Protective	e Casing	(Onler, Opecity)
instrument Calibration:	pH Buffer Readings			
	4.0 Standard	Conductivity Stand 84 S Standard		
	7.0 Standard ×	1413 S Standard		
	10.0 Standard	_		
Vater parameters:				
Gallons	Temperature	pH	Candination	
Removed	Readings	Readings	Conductivity Readings uS/cm	
:-:::	initial 60.0 initia			
initial <u>0.5</u>	initial 60.0 initial 56.2	ul <u>8,01</u> initial	1675	
1-1	<u> </u>	8.18 8 000	1693	
——————————————————————————————————————		-: , 0 -	1638	
	56.5	7.50	1582	
MEMORIA in company and a second a second and				
Jater Sample:				
ime Collected//	00			
hysical Appearance at Start		Physical A	ppearance at Sampling	
Color	Clear	Color		Clear
Odor	<u>Clear</u> slightsulfur	Odor		ight solfur
urbidity (> 100 NTU)	9.5		> 100 NTU)	27.4
heen/Free Product	None	Sheen/Fre		Ž~
amples collected:				
ontainer Size	Container Type # Colle	ected Field Filtered	Preservative	Container pH
40mi	Glass	2 NO	1:1HCL	<2
	Plashe	No.	HNC :	ć2
	Plastic	l No	1 4 6 1	1 >
<u> </u>	10.3%		No.CH	710

O'Brien & Gere Engi	neers. Inc.	Star	ndard Grou	nd Water Sa	mnling Log
	110010, 1110.	Jiai	idard Grou	ilu vvatei Sa	inpling Log
Date <u>8/10/00</u>	*			,	
Sile Name Frentier		Vveati	ilei <u>S</u>	66-12C	Iam
Location <u>Pendelten</u>		Weil #	<i></i>	60:12c	
Project No. 27084		Evacı	ation Method	Hand Buil	
Personnel TPP/DEL		Samp	ling Method	SS. BAILER	
Well Information:	7. 71				
Depth of Well *		Water Volume	:/ft. for:		
Depth to Water *	1011 ft.	X2" Dia	ameter Well = 0.	163 X LWC	
Length of Water Column	21.2ft.	4" Dia	meter Well = 0.	653 X LWC	
Volume of Water in Well	3. 5> gal.(s)	6" Dia	meter Well = 1.	469 X LWC	
3X Volume of Water in Well			1.10.00.110.11	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	ga(o)	Volume remov Did well go dry	/ed before samp /?	oling _	<u> </u>
					(Other Specify)
* Measurements taken from	x Well C	asing	Protective Ca	asing [(Other, Specify)
nstrument Calibration:					
	pH Buffer Readings 4.0 Standard		uctivity Standard		
	7.0 Standard		S Standard S Standard		
	10.0 Standard	<u> </u>	J Clandard		
Vater parameters:					
Gallons	Temperature	pH			
Removed	Readings	Readings		eadings uS/cm	
	o C				
		7.23		- 72	
initial 🥏 🗸	initial 59.5	initial 478	initial	1178	
	<u> 55.5</u>	7,23		1146	
8	<u> 55.7</u>	10.48		1217	
	<u> 55,2</u>	(0.51		1210	
Water Sample: Time Collected	745				
Physical Appearance at Start]		Physical App	earance at Sampl	ing
Color	it Sondy BR.		Color		1+ Milley W.t.
Odor	slight		Odor	-	Stight
Turbidity (> 100 NTU)	> 100		Turbidity (> 10		712
Sheen/Free Product	Nove		Sheen/Free P		Vone
Samples collected:					
Container Size	Container Type	# Collected Field	d Filtered	Preservative	Container pH
Jontainer Size		2	NO	1:1HCL	<2
40ml	Glass				
	Plashe	1	YES	(HNO's	42
40mi		(YES Ni	No ort	21C

O'Drian & Cara Engli	income Inc			
O'Brien & Gere Engi	neers, inc.	Stan	dard Ground Water	Sampling Log
Date <u>8/10/00</u>				
Site Name Frontier (Them. cal	Weath	er Sunny 6	5° 1/- am
Location <u>Pendelfor</u>	<u>~</u>	Well#	66-12 D	
Project No. 27084		Evacua	ation Method Itand B	
Personnel TP/DEZ	The control of the co		ng Method <u>SS. Baزاد</u>	
Well Information:				
Depth of Well *	_52.38 ft	Water Volume	/ft for	
Depth to Water *	9,3+ ft			
Length of Water Column	43.04 ft		neter Well = 0.163 X LWC	
	_		neter Well = 0.653 X LWC	
Volume of Water in Well		6" Diar	neter Well = 1.469 X LWC	
3X Volume of Water in Well	gal.(s)	Volume remove Did well go dry?	ed before sampling	<u> </u>
				1011
* Measurements taken from	x Well Casir	ng	Protective Casing	(Other, Specify)
Instrument Calibration:				
,	pH Buffer Readings		ctivity Standard Readings	
	4.0 Standard 7.0 Standard	······································	Standard Standard	
	10.0 Standard		Standard	
Water parameters:				
Gallons	Temperature			·············
Removed	Readings	pH Readings	Conductivity Readings uS/cr	n
initial & S	initial うので init	:- CCO	initial 3520€	
7 6	initial <u>シロッ</u> init	ial <u>550</u>	initial3526@	
14.5	<u> </u>	<u> </u>	167	?
		5.90	<u> 730 ?</u>	,
	<u>59.c</u>	<u> (a.i.c.</u>		
Annual Control of the	- The second of			
		***************************************		_
Water Sample: Time Collected <u>(</u> C	15			
Physical Appearance at Start]		Physical Appearance at Sar	mpling
Color	Clear		Color	_((m.
Odor	Sulferoder		Odor	slight so ltur
Turbidity (> 100 NTU)	37. C		Turbidity (> 100 NTU)	77.C
Sheen/Free Product	None		Sheen/Free Product	NONE
Samples collected:				
Container Size	Container Type # Co	ollected Field	Filtered Preservativ	e Container pH
40ml	Glass	2	NO 1:1HCL	<2
<u> </u>	Plashe	, , , , , , , , , , , , , , , , , , , ,	HES HAIRS	<2
1_	<u>Aastic</u>		NE 14.0H	710
Notes:				
				<i>y</i>

Date Site Name Free product Weather	O'Brien & Gere Engi	neers Inc	Star	dard Group	d Matar Cami	nling Log
Site Name		neers, mc.	Stat	iuaru Ground	u water Sam	pling Log
Depth of Well * 3 0 8 ft.	Site Name Franker Control Pendulon Pendulon Project No. 27084		Well #	t U(-5 - i		·
Depth of Well * 3 0 8 ft.	Well Information:					
Measurements taken from	Depth of Well * Depth to Water * Length of Water Column Volume of Water in Well	3.40 ft. 27.68 ft. 4.5 gal.(s)	X 2" Dia 4" Dia 6" Dia Volume remov	imeter Well = 0.16 imeter Well = 0.65 imeter Well = 1.46 red before samplir	53 X LWC	<u>D</u> gal.(s)
Description	* Measurements taken from	X Well Car	sing	Protective Cas	ing	(Other, Specify)
Gallons Readings PH Readings Readings Readings Readings uS/cm	Instrument Calibration:	4.0 Standard 7.0 Standard	84	S Standard	Readings	
Removed Readings Readings Readings Readings us/cm initial initial 45 initial 8,52 initial 26 10 48-4 7.86 355 Water Sample: Time Collected 13 ZO Physical Appearance at Start Physical Appearance at Sampling Color Clear Color Odor Nord Odor Turbidity (> 100 NTU) 325 Turbidity (> 100 NTU) 325 Samples collected: New Sheen/Free Product Nord Sheen/Free Product No	Water parameters:					
Time Collected 13 ZO Physical Appearance at Start Color Clear Odor Nore Turbidity (> 100 NTU) Sheen/Free Product Samples collected: Container Size Container Type 40ml Glass Color Color Color Color Color Odor Nore Sheen/Free Product Nore Sheen/Free Product Field Filtered Preservative Container pH 40ml Glass 2 NO 1:1HCL 1L Physical Appearance at Sampling Color Color Color Nore Color Color Nore Sheen/Free Product Preservative Container pH 40ml Glass 2 NO 1:1HCL 2	Removed	Readings	Readings initial 8,52	Rea initial	26 360	
Color Clear Odor Nome Odor Nome Turbidity (> 100 NTU) 305 Turbidity (> 100 NTU) 139 Sheen/Free Product Nome Sheen/Free Product Nome Samples collected: Container Size Container Type # Collected Field Filtered Preservative Container pH 40ml Glass 2 NO 1:1HCL <2	Time Collected 13	<u> 520</u>				
Samples collected: Container Size Container Type # Collected Field Filtered Preservative Container pH 40ml Glass 2 NO 1:1HCL <2 IL PL::hL 1 HEC:: -2	Color Odor Turbidity (> 100 NTU)	None 305		Color Odor Turbidity (> 100		lean Ung 139
40ml Glass 2 NO 1:1HCL <2 1L Plash 1 1 1 3 1 1 2 2	Samples collected:					
Notes: Dry Clogal	40ml し し	Glass Phin Planti	2	NO	1:1HCL	<2

O'Brien & Gere Engi	ineers, Inc.		Stan	dard Gr	ound Water S	ampling	Log
Date Shelpo							
Site Name Franches (waical		Weati	iëľ	Sur 65		
Location Pendleton			Well #		5-141)		
Project No. 27084	·			_	d Hand Ba	• 6	
Personnel TPP DEC	~				<u>55 Bai</u>		
			Sampi	ing Meulou	23 1366	20	
Well Information: Depth of Well *	11, 61	_				7	
	- HI. Col	_ft.	Water Volume	/ft. for:			
Depth to Water *	<u> 7. le le</u>	_ft.	X 2" Diai	neter Well	= 0.163 X LWC		
Length of Water Column	33.95	_ft	4" Dia:	neter Well	= 0.653 X LWC		
Volume of Water in Well	5,53	_gai.(s)	6" Diar	neter Well	= 1.469 X LWC		
3X Volume of Water in Well	<u>ile.le</u>	_gal.(s)				_	
			Volume remove Did well go dry	ed before sa ?	ampling	17	_gal.(s) -
	-	7.		_			(Other, Specify)
* Measurements taken from	x	Well Casing		Protective	e Casing		
Instrument Calibration:							
	pH Buffer Readings	_			lard Readings]	
	4.0 Standard 7.0 Standard				•	-	
	10.0 Standard	$\frac{X}{Y}$	_ 1413 S	Standard		-	
			-				
Water parameters:							
Gallons	Temperature		pН	7	Conductivity	1	
Removed	Readings		Readings		Readings uS/cm		
initial 6.5	initial 59.1	initial	5.35	initial	_424		
6.0	55.5	, 1711001			1190	•	
	57.5	,	5.62	-	1670	•	
17	58.2		5.80	-	1550	•	
				-			
				-		•	
William Control on the control of th				-			
				· · · · · · · · · · · · · · · · · · ·			
Water Sample: Time Collected	220						
	-						
Physical Appearance at Start	_			Physical A	ppearance at Samp	oling	
Color	Clear			Color		Clea	1
Odor	None			Odor	-	Sul for	
Furbidity (> 100 NTU)	42			Turbidity (- > 100 NTU)		35.0
Sheen/Free Product	None			Sheen/Fre	· -	Nine	
Samples collected:							
Container Size	Container Type	# Colle	cted Field	Filtered	Preservative	I	Container pH
40ml	Glass		2	NO	1:1HCL		<2
<u> </u>	Plashe		<u>, </u>	No.	HN03		<u> ۲</u> ۷
10	Plus he		1	No	MacH		710
Notes:	1				<u> </u>		

CALIBRATION DATA SHEET O'BRIEN & GERE ENGINEERS, INC.

Equipment Name	HIDAC	TEMP. C	onductivity	,PH
Model Number	D16	PCT /DH	Comp	
Serial Number	1	0563469		
□ New	Serviced	• •	□ In Tolerance □ Out of Toleran	nce
Routine Calibration	Due Date:			
Standards Used: _	DH 7,	x H 10	pH 7	10
		start	6.28	
	•	CALIB	6.99	10.00
		END	6.99	968
TEMPERATURE = ATMOSHPHERIC PRI Comments:				
Institute of Standard	ds & Technology	(NIST) within the li	e accuracies are tracea nits of the Institutes's	ble to the National calibration service.
This equipment has Institute of Standard Calibration Perform	ds & Technology	(NIST) within the li	nits of the Institutes's	ble to the National calibration service.

CALIBRATION DATA SHEET O'BRIEN & GERE ENGINEERS, INC.

Equipment Name	HUDAC	15 WE FATURE	60,0000	TULTY PH	
Model Number	· '	PCT/PH C		•	
Serial Number	l .	63469			
□ New	Serviced	□ As Found □ As Left	0 I	n Tolerance	
Coutine Calibration	Due Date:				
tandards Used:	pid 7, p1:	1 10	PH_	7	10
		Stas	27	7.11	10.04
					10,00
Probe Nicon	. et al in				
EMPERATURE =		Suitable for Cal	ibration		
EMPERATURE = TMOSHPHERIC PRE	ESSURE =		ibration		
EMPERATURE = TMOSHPHERIC PRE	ESSURE =		ibration		
EMPERATURE = TMOSHPHERIC PRE	ESSURE =		ibration		
EMPERATURE = TMOSHPHERIC PRE	ESSURE =		ibration		
EMPERATURE = TMOSHPHERIC PRE	ESSURE =		ibration		
EMPERATURE = .TMOSHPHERIC PRE	ESSURE =		ibration		
EMPERATURE = TMOSHPHERIC PRE	ESSURE =		ibration		
TEMPERATURE = ATMOSHPHERIC PRE	ESSURE =		ibration		
TEMPERATURE = ATMOSHPHERIC PRE	ESSURE =		ibration		
Environmental Compensation of the sequipment has Institute of Standard	been calibrate	ed using standards	whose accura	acies are traceable	e to the National
This equipment has	been calibrateds & Technolo	ed using standards	whose accurate limits of t	acies are traceable	e to the National

O'Brien & Gere Laboratories, Inc.

East Syracuse, New York 13057 5000 Brittonfield Parkway (315) 437-0200

Chain of Custody

								•	Analysis/Method	Aethod	
Project: Penparon											
Ď.	Campstrari								\	\	\ \ \
Client Contact:		P	Phone #				\	*		/	\
Sample Description	cription							5/3/			
Sample Location	Date Time	Time	Sample Matrix	Comp. or Grab	No. of	, ,	W So			\	Commonte
88-120	9/10/00	94	W. Au		Ŋ	3	-			-	
98 - 17D	8/10/05	1015	Water	Grab	5	ы	_				
UES 140	00/01/8	1320	Water	Gab	Ð	3	_				Chafilton Int.
85-7R HS/HSD	8/10/vo	1200	water	Grab	18	σ	W	M			i
URS - 7D	8/1/0	1245	Water	Grah	R	W	_				Wolf Head MAL
									·		
								•			
			•				-				
Blind Dup	-	***************************************	Water	Grab	N	3	-				
Terp Blank	8/10)	Water		2	2	·				
Relinquished by:	Dat	Date:	Time:		Received by:	by:				Date:	Time:
Relinquished by:	Date:		Time:		Received by:	by:				Date:	Time:
Relinquished by:	Date:	.e	Time:		Received by Lab:	by Lab:				Date:	Time.
Shipment Method:					Akbill Number:	ber:					

Turnaround Time Required:

Comments: * Metals Freld Filtered (Torbidily > 50)

Cooler Temperature:_

Original-Laboratory Copy-Client

U'Brien & Gere Laboratories, Inc.

5000 Brittonfield Parkway East Syracuse, New York 13057

Chain of Custody

7 Comments 117.0 Tme: Analysis/Method Date: Date: Date: Received by Lab: 3 Akbill Number: Received by: Received by: No. of Containers 5 Ц (315) 437-0200 Comp. or Grab 8991 d 57329 worder (Jana 10) SEARS Time: 15.11 Time: Time: WATER Sample Matrix Phone # Date Time Collected Collected 8/11/00/11/40 0011 5111 Date: Date: Sample Description Client: Fear her Chemina BLANK Sample Location Sampled by: T. Prawel URS-IMI Project: Rendel URS-9D UR1-50 TRIP Blan UPS-9I 85-5R EQUIPMENT Client Contact: Relinquished by: Shipment Method: Relinquished by: Relinquished by:

Turnaround Time Required:
Routine
Rush (Specify)

Comments: * Metals field Filterich

LCLS 9908 1818 - x3127

Cooler Temperature:__

Original-Laboratory Copy-Client

Data validation report

Data Validation Services

120 Cobbie Creek Road P. O. Box 208

North Creek, N. Y. 12853

Phone 518-251-4429

September 25, 2000

Jennifer Smith O'Brien & Gere Engineers 5000 Brittonfield Parkway P. O. Box 4873 Syracuse, NY 13221

RE: Validation of Frontier Chemical Site Data Packages
OBG Labs Report for Samples Collected 8/10/00 and 8/11/00

Dear Ms. Smith:

Review has been completed for the data packages generated by OBG Laboratories, pertaining to samples collected at the Frontier Chemical Site on August 10 and August 11, 2000. Eleven aqueous samples were analyzed for TCL volatiles and TAL metals/cyanide parameters. Matrix spikes/duplicates, and equipment and trip blanks were also processed. Methodologies utilized are those of the USEPA SW846.

Data validation was performed with guidance from the most current editions of the USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review and the USEPA SOPs HW-2 and HW-6. The following items were reviewed:

- * Data Completeness
- * Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Matrix Spike Recoveries/Duplicate Correlations
- * Preparation/Calibration Blanks
- * Control Spike/Laboratory Control Samples
- * Instrumental Tunes
- * Calibration Standards
- * Instrument IDLs
- * Method Compliance
- * Sample Result Verification

Those items showing deficiencies are discussed in the following sections of this report. All others were found to be acceptable as outlined in the above-mentioned validation procedures, and as applicable for the methodology. Unless noted specifically in the following text, reported results are substantiated by the raw data, and generated in compliance with protocol requirements.

In summary, sample processing was primarily conducted with compliance to protocol requirements and with adherence to quality criteria, and most reported results are usable as reported, or with minor qualification as estimated. Certain edits to, and qualification of, reported results are indicated. These issues are discussed in the following analytical sections.

Copies of sample report forms, with recommended qualifiers applied in red ink, are attached to this narrative, and should be reviewed in conjunction with this text.

Data Completeness

The laboratory data packages were not directly in compliance with the required NYSDEC ASP Category B deliverables, but the information needed for validation of the data was present. Volatile summary forms 2, 4, and 5 were not present, the laboratory NYSDEC Sample Preparation and Analysis Summary Forms were not provided, and no verbatim certification statement was made in the case narrative.

Volatile Analyses

Acetone, carbon disulfide, and methylene chloride were detected at levels similar to those of the samples in the associated blanks. The sample carbon disulfide detections should have been flagged as "B" by the laboratory. Sample reported detections which fall at or below the following levels are considered external contamination, and are to be edited to nondetection ("U") at either the CRDL, or the originally reported values, whichever are greater:

Analyte	Concentration, ug/L
Carbon disulfide	3
Acetone	13
Methylene chloride	9

Due to low response factors in the calibration standards, results for acetone should be considered estimated ("J") in the project samples.

Matrix spikes of 85-7R involved evaluation of recoveries of all target analytes. Those for five compounds produced low recoveries (10% to 61%), indicating that the results for these analytes in the sample itself should be considered estimated ("J" or "UJ"). They are the following: carbon disulfide, 1,1-dichloroethene, cis-1,3-dichloropropene, trans-1,3-dichloropropene, and styrene.

Sample URS-14I produced one slightly low recovery (80%) of one of the four surrogate standards. Upon evaluation of the system sensitivity and the relative difference between the reported CRDLs and the IDLs, it is determined that no qualification of the sample data (which all shows nondetection) is indicated.

The calibration standard of 8/23/00 showed low responses for five analytes (30%D to 44%D). Results for the following analytes in the associated samples, which are all project samples **except** 88-12C, \$8-14D, and 85-7R, and considered estimated ("J" and "UJ"), biased low: bromomethane, carbon disulfide, cis-1,3-dichloropropene, trans-1,3-dichloropropene, and bromoform

One of the samples was processed after a method blank which was not used, but before the method blank which was used, for the 8/23/00 analysis. This is not in compliance with the required protocol, but because the sample showed no detection of target analytes, there is no effect on the reported results.

The Tentatively Identified Compounds should be qualified as estimated in value, and should be reported to one significant figure. Those identified as "solvent" or "column bleed" are analysis artifacts and should be disregarded as sample components.

Field duplicate correlation of URS-7D and Blind Dup was acceptable.

Reported results are substantiated by the raw data.

Metals/CN Analyses

Accuracy and precision evaluations for 85-7R were acceptable, although the duplicate correlations for the elements were performed on matrix spikes rather than the sample itself.

Due to low recovery of the arsenic CRI standard (66%), the reported results in sample 88-12C, 88-12D, 85-7R, URS-14D, and URS-7D should be regarded as estimated, possibly biased low.

The serial dilution determinations for 85-7R produced acceptable correlations for all elements except manganese (14%D). Results for all samples with manganese values above 0.01 mg/L should be considered estimated, with a possible low bias.

Field duplicate correlation between URS-7D and Blind Dup showed values for iron and mercury just above validation action levels. Results for these two analytes in the two samples are therefore to be qualified as estimated. The bias is not expected to be great.

Reported results are substantiated by the raw data.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,

Judy Harry

INTRODUCTION/ANALYTICAL RESULTS

This report summarizes the laboratory results for samples from Frontier Chemical - Pendleton Site, Town of Pendleton, Niagara County, NY. Immediately following the narrative is the Cross Reference Table that lists the site descriptions, sample numbers, dates collected, dates received and package numbers.

CONDITION UPON RECEIPT/CHAIN OF CUSTODY

The coolers were received intact. When the coolers were received by the laboratory, the sample custodian(s) opened and inspected the shipments for damage and custody inconsistencies. The chain of custody forms documenting receipt are presented in the chain of custody section. Each sample was assigned a unique laboratory number and a custody file created. The samples were placed in a secured walk-in cooler and signed in and out by the chemists performing the tests. The sign out record, or lab chronicle, is presented in the chain of custody section.

No discrepancies were noted upon receipt. The cooler temperatures upon receipt were 3 and 4 C.

METHODOLOGY

The following methods were used to perform the analyses:

PARAMETER	METHOD	REFERENCE
Volatile Organics	8260B	1

1) Test Methods for Evaluating Solid Wastes, SW-846 Third Edition, Final Update III, December 1996.

Metals and wet chemistry data requested on the Chain of Custody is presented in a separate report.

QUALITY CONTROL

The quality control for this program includes internal standards, surrogates, matrix spike (MS), matrix spike duplicate (MSD), equipment blank, laboratory control sample (LCS) samples, and QC trip blanks. QA/QC results are summarized in the Sample Data Package and are also included in the raw data.

RAW DATA

The raw data is organized in a format similar to the US EPA Contract Laboratory Program order of data requirements.

GC/MS Volatile Organics Case Narrative

Client:

Job Number:

Frontier Chemical 5829.001.517

Package #: Methodology:

6532, 6542 8260B

Analyzed/Reviewed by (Date/Initials):

56 9-18-00

Supervisor/Reviewed by (Date/Initials):

(a) 9-18-00

QA/QC Review (Date/Initials):

M 9/18/00

File Name in G/ Drive:

C:\WPWIN60\WPDOCS\V6532.NAR

GC/MS Volatile Organics

The GC/MS Volatile instruments used a J&W DB-VRX, 60 m x 0.25 mm ID capillary column and a Vocarb 3000 trap.

Holding Times and Sample Preservation

All samples were prepared and analyzed within the method and/or QAPP specified holding time requirements. Samples had a pH of less than 2.

Laboratory Control Sample

All spike recoveries met method and/or project specific QC criteria.

MS/MSD

The following compound(s) did not meet matrix spike/matrix spike duplicate percent recovery and/or RPD criteria:

Sample Description	Sample #	Compound	% REC	RPD	Corrective Action
85-7R	R0179	1.1-Dichloroethene	X	KI D	Action
	110117	Methylene chloride	21	. X	2
		Carbon disulfide	X		1
		cis-1,3-Dichloropropene	X		1
		trans-1,3-Dichloropropene	X		1
		Dibromochloromethane	X		1
		Styrene	X		1

- 1. No corrective action was taken. The RPD and the associated LCS met criteria for this compound.
- 2. No corrective action was taken. The recovery and the associated LCS met criteria for this compound.

GC/MS Volatile Organics Case Narrative - Page 2

Client:

Frontier Chemical

Job Number:

5829.001.517

Package #:

6532, 6542

Methodology:

8260B

Surrogate

URS-14I

The following sample(s) did not meet surrogate recovery criteria:

Sample Description

Sample # R0362 Surrogate Toluene-d8 Corrective Action

1

1. Three of four surrogates met method QC criteria. No corrective action is required.

Internal Standards

All internal standard areas met method and/or project specific QC criteria.

Calibrations

All calibrations and calibration verifications met method and/or project specific QC criteria.

Preparation Blanks

All preparation blanks met method and/or project specific QC criteria.

NARRATIVE

INTRODUCTION/ANALYTICAL RESULTS

This report summarizes the laboratory results for samples from Frontier Chemical - Pendleton Site, Town of Pendleton, Niagara County, NY. Immediately following the narrative is the Cross Reference Table that lists the site descriptions, sample numbers, dates collected, dates received and package numbers.

CONDITION UPON RECEIPT/CHAIN OF CUSTODY

The coolers were received intact. When the coolers were received by the laboratory, the sample custodian(s) opened and inspected the shipments for damage, custody inconsistencies and proper preservation. The chain of custody forms documenting receipt are presented in the chain of custody section. Each sample was assigned a unique laboratory number and a custody file created. The samples were placed in a secured walk-in cooler and signed in and out by the chemists performing the tests. The sign out record, or lab chronicle, is presented in the chain of custody section.

No discrepancies were noted upon receipt. The cooler temperatures upon receipt were 3 and 4 C.

METHODOLOGY

The following methods were used to perform the analyses:

PARAMETER	METHOD	REFERENCE
ICP Metals	6010B	1
Mercury	7470A	1
Thallium	7841	1
Cyanide	9010B/9014	1

1) Test Methods for Evaluating Solid Wastes, SW-846 Third Edition, Final Update III, December 1996.

Volatile Organics data requested on the Chain of Custody is presented in a separate report.

QUALITY CONTROL

The quality control for this program includes internal standards, surrogates, matrix spike (MS), matrix spike duplicate (MSD), laboratory duplicate (D), equipment blank, laboratory control sample (LCS), prep blank and QC trip blank samples. QA/QC results are summarized in the Sample Data Summary Package and are also included in the raw data.

RAW DATA

The raw data is organized in a format similar to the US EPA Contract Laboratory Program order of data requirements.

Trace Metals Case Narrative

Client:

Job Number:

Package #:

Methodology:

Frontier Chemical

5829.001.517

6532,6542

ICP metals - 6010B

Analyzed/Reviewed by (Date/Initials):

11-13.00 mg

Supervisor/Reviewed by (Date/Initials):

9-13 00 000

QA/QC Review (Date/Initials):

- XX 9/15/00

File Name in G/ Drive:

G:\NARRATIV\6532FROT.ICP

Trace Metals

Holding Times

All samples were prepared and analyzed within the method and/or QAPP specified holding time requirements.

Laboratory Control Sample

All spike recoveries met method and/or project specific QC criteria.

MS/MSD AND MS/MSD RPD

The following analyte did not meet matrix spike/matrix spike duplicate percent recovery criteria:

Sample		::	·····	:	
Description			•		Corrective
***************************************	Sample #	Analyte	% REC	RPD	Action
85-7R (Field Filtered)	R0185	Calcium	Y		1101011
			ii.	i	1 :

1. The concentration of the analyte in the sample was much greater than the concentration of the spike added. A post-digestion spike was performed as required. No further corrective action was taken.

ICP Serial Dilution

The following analyte did not meet ICP serial dilution recovery criteria:

Sample Description	Sample #	Analyte	Corrective Action
85-7R (Field Filtered)	R0185	Manganese	1

1. A post-digestion spike was performed. No further corrective action was taken.

Calibrations

All calibrations and calibration verifications met method and/or project specific QC criteria.

Preparation Blanks

All preparation blanks met method and/or project specific QC criteria.

Trace Metals Case Narrative

Client:

Job Number:

Package #:

Methodology

Frontier Chemical

5829.001.517

6532,6542

Mercury - 7470A

Analyzed/Reviewed by (Date/Initials):

9-13-00 mg

Supervisor/Reviewed by (Date/Initials):

9 13 00 2257

QA/QC Review (Date/Initials):

File Name in G/ Drive:

G:\NARRATIV\6532FRON.HG

Trace Metals

There were no excursions to note. All QC results were within established control limits.

Trace Metals Case Narrative

Client:

Job Number:

Package #:

Methodology

Frontier Chemical

5829.001.517

6532,6542

Thallium - 7841

Analyzed/Reviewed by (Date/Initials):

9-13-00 mm

Supervisor/Reviewed by (Date/Initials):

9-13 VOINT

QA/QC Review (Date/Initials):

Sust 9/13/00

File Name in G/ Drive:

G:\NARRATIV\6532FRON.TL

Trace Metals

There were no excursions to note. All QC results were within established control limits.

Wet Chemistry Case Narrative

Client:

Job Number:

Package #:

Methodology:

Frontier Chemical

5829.001.517

6532, 6542

Total cyanide - 9010B/9014

Analyzed/Reviewed by (Date/Initials):

Supervisor/Reviewed by (Date/Initials):

QA/QC Review (Date/Initials):

File Name in G/ Drive:

HS 9/11/20

G:\NARRATIV\6532FRON.WC

Wet Chemistry

There were no excursions to note. All QC results were within established control limits.

CROSS REFERENCE TABLE

Site	Sample Number	Date Collected	Received	Package
88-12C	R 176	08/10/2000	08/11/2000	6532
88-120	R 177		08/11/2000	6532
URS-14D	R 178		08/11/2000	6532
85-7R	R 1790		08/11/2000	6532
85-7R	R 179MS		08/11/2000	6532
85-7R	R 179MSD		08/11/2000	6532
85-7R	R 179		08/11/2000	6532
URS-7D	R 180		08/11/2000	6532
Blind Dup	R 181		08/11/2000	6532
QC Trip Blank	R 182		08/11/2000	6532
88-120 (Field Filtered)	R 183		08/11/2000	6532
ුි 88-12D (Field Filtered)	R 184		08/11/2000	6532
85-7R (Field Filtered)	R 185D		08/11/2000	6532
85-7R (Field Filtered)	R 185MS		08/11/2000	6532
85-7R (Field Filtered)	R 185MSD		08/11/2000	6532
85-7R (Field Filtered)	R 185		08/11/2000	6532
Blind Dup (Field Filtered)	R 186		08/11/2000	6532
URS-9I	R 358	08/11/2000		6542
:: URS-90	R 359		08/12/2000	6542
85-5R	R 360		08/12/2000	6542
URS-5D	R 361	08/11/2000		6542
URS-14I	R 362		08/12/2000	6542
Equipment Blank(Equipment Blank)	R 363	08/11/2000		6542
QC Trip BLank		08/11/2000		6542
URS-9I (Field Filtered)		08/11/2000		6542
85-5R (Field Filtered)		08/11/2000		6542
URS-14I (Field Filtered)		08/11/2000		6542
		08/11/2000		6542
Filtered)(Equipment Blank)			,	

Volumes 1 of 1 of the metals and wet chemistry and volatile organics validated analytical data packages are separately bound.