REPORT

Frontier Chemical - Pendleton Site Semi-Annual Ground Water Monitoring Report

RECEIVED

APR 1 9 2000

NYSDEC - REG. 9 FOIL __REL__UNREL

Pendleton Site PRP Group

March 2000

REPORT

Frontier Chemical - Pendleton Site Semi-Annual Ground Water Monitoring Report

Pendleton Site PRP Group

James R. Heckathorne, P.E. Vice President

March 2000

5000 Brittonfield Parkway Syracuse, New York 13221

Contents

1. Introduction	1
1.1. Piezometer/monitoring well inspection]
1.2. Hydraulic evaluation of capped area and collection trench	2
1.3. Ground water sampling and chemistry	4
2. Conclusions	
References	9

List of Tables

- 1-1 Ground water analytical methods
- 1-2 Results of the t-test analysis

Tables located at end of report

- 1 Piezometer ground water elevation summary table
- 2 Monitoring well ground water elevation summary table
- 3 Quarry Lake surface water elevation summary table
- 4 Summary of ground water analytical data

List of Figures

1 Hydraulic potential map

List of Appendices

- A Piezometer/monitoring well inspection forms
- B Ground water sampling logs
- C Data validation report (Volume 1 of 3 of the validated analytical data-separately bound)

1. Introduction

This document is the second 1999/2000 Semi-Annual Ground Water Monitoring Report for the Frontier Chemical - Pendleton Site (Site), located on Town Line Road in the Town of Pendleton, Niagara County, New York. This report is prepared based on the New York State Department of Environmental Conservation (NYSDEC)-approved Operation & Maintenance (O&M) Manual (O'Brien & Gere Engineers, 1997) for the Site, which addresses, among other items, long-term ground water monitoring at the Site. This Semi-Annual Ground Water Monitoring Report presents a discussion of the following:

- Piezometer/monitoring well inspection
- Hydraulic evaluation of the capped area and collection trench
- Evaluation of ground water chemistry in the intermediate and deep ground water zones.

These items are described in the following sections.

1.1. Piezometer/monitoring well inspection

The piezometer/monitoring well inspection was conducted on February 7, 2000, and included the piezometers (P-1 through P-8), standpipe (SP-1), and ground water monitoring wells (85-5R, URS-5D, 85-7R, URS-7D, URS-9I, URS-9D, 88-12C, 88-12D, URS-14I, and URS-14D) identified as the Site monitoring network in the O&M Manual for the Site.

Results of the inspection indicated that each piezometer and monitoring well was in an acceptable condition for collecting water elevation measurements and sampling. Similar maintenance issues to those identified in previous inspection reports were noted at the Site:

- Piezometer P-6 is currently angled 20 to 30 degrees from vertical.
- Monitoring wells URS-14I and URS-14D should have fill material installed around the concrete pads.
- Water (in the form of ice) was observed in the annular space of monitoring well URS-14I.

It should be noted that, at this time, these issues are not affecting the integrity of the piezometers or monitoring wells. February 2000 inspection forms are included in Appendix A.

1.2. Hydraulic evaluation of capped area and collection trench

In accordance with the O&M Manual, a complete round of static ground water elevations was collected from the piezometers (P-1 through P-8), standpipe (SP-1), and ground water monitoring wells (85-5R, URS-5D, 85-7R, URS-7D, URS-9I, URS-9D, 88-12C, 88-12D, URS-14I, and URS-14D). The ground water elevation measurements were collected on February 7, 2000. Glynn Geotechnical Engineering, Inc. attempted to measure the surface water elevation of Quarry Lake on February 7, 2000. Since the lake was ice covered and could not be penetrated, the ice surface elevation was measured. The ground water elevations measured in the piezometers and standpipe, and in the monitoring wells, are summarized on Tables 1 and 2, respectively. Quarry Lake elevations are summarized on Table 3. As shown on Table 3, the February 7, 2000 ice surface elevation of Quarry Lake is slightly above the outlet weir elevation of 577.2 ft.

The water level measurements collected on February 7, 2000 are illustrated on Figure 1. These measurements are the eighth round collected since remedial construction was substantially completed in August 1996. The water elevation data was used to evaluate the following:

- Whether an inward hydraulic gradient exists at the site by comparing water level measurements within the capped area (P-2, P-3, P-4, P-6, and P-7) to those measured outside the capped area (P-1, P-5, P-8, SP-1, and Quarry Lake)
- The ground water flow potential inside the capped area
- Whether the ground water collection trench is effectively controlling ground water migration away from the capped area.

The data indicates that an inward hydraulic gradient exists at the site, except in the eastern portion of the capped area, where the data indicates a slight outward hydraulic gradient. The ground water elevation in piezometer P-2, located inside the capped area, is higher than the ground water elevation in piezometer P-1, installed outside the capped area. An inward hydraulic gradient exists in the northern and southern portions of the capped area, as the ground water elevations inside the capped area (P-6 and P-7) are less than the ground water elevations outside the capped area (P-5 and P-8, respectively). Along the western portion of the site, the ground water elevation at P-4 is higher than the elevation in

the ground water collection trench (SP-1). The ground water elevation in piezometer P-3, installed within the center of the capped area, is greater than ground water elevations measured in piezometers P-1, P-5, and P-8, installed outside the capped area.

Although the data indicates an outward hydraulic gradient within the eastern portion of the capped area, the ground water elevations collected in the piezometers installed within the capped area (P-2, P-3, P-4, P-6, and P-7) are lower than originally measured in June 1997. The slight fluctuations in water elevations in the piezometers located within the capped area (P-2, P-3, P-4, P-6, and P-7) may be attributed to differences in: barometric pressure during sampling events; the movement of water within the capped area; and/or the low permeability of the materials. The fluctuations in water elevations in the piezometers located outside the capped area (P-1, P-5, and P-8) may be attributed to seasonal variations.

The contrasting fluctuations of ground water levels within and outside the capped area demonstrate that ground water within the capped area has been isolated. In addition, the ground water elevation in the standpipe (SP-1) in the ground water collection trench is less than the ice surface elevation of Quarry Lake, indicating that Quarry Lake is isolated from the capped area.

Ground water elevations of piezometers installed within the capped area along the northern (P-7), western (P-4), eastern (P-2), and southern (P-6) portions of the Site are higher than the invert elevations (bottom) of the ground water collection trench. The invert elevations of the ground water collection trench vary from 568.80 ft to 563.37 ft. This information indicates that the overall hydraulic gradient is to the west towards the ground water collection trench. In summary, the data indicates that the ground water collection trench is effectively removing shallow ground water from within the capped area.

As discussed in the March 1998 monitoring report (O'Brien & Gere Engineers, 1998), based on an average daily flow rate to the ground water collection trench of 170 gallons/day and a hydraulic conductivity adjacent to the ground water collection trench of 3.3 x 10⁻⁶ cm/sec, it is estimated that approximately 110 years will be required to dewater the containment area. However, the amount of water present within the capped area and the time to dewater beneath the capped area has minimal impact on the effectiveness of the containment, since hydraulic isolation within the capped area has been established and ground water beneath the capped area is migrating towards the ground water collection trench.

1.3. Ground water sampling and chemistry

Between February 7 and 9, 2000, the sixth round of post-closure ground water samples was collected in accordance with the protocols presented in the O&M Manual. Ground water samples were obtained from the ten ground water monitoring wells identified for sampling in the O&M Manual (85-5R, URS-5D, 85-7R, URS-7D, URS-9I, URS-9D, 88-12C, 88-12D, URS-14I, and URS-14D).

Following sample collection, the ground water samples were submitted to O'Brien & Gere Laboratories, Inc., for analysis of the parameters shown in Table 1-1.

Table 1-1. Ground water analytical methods.

Parameter	Method
VOCs	USEPA Method 8260B
Inorganics	USEPA Methods 6010B/7470A/7841
Cyanide	USEPA Method 9010B/9014

Source: O'Brien & Gere Engineers, Inc.

Ground water sampling logs and chain of custody forms are included in Appendix B.

In accordance with the O&M Manual and as approved by the NYSDEC, sampling and analysis for target compound list (TCL) semi-volatile organic compounds (SVOCs) and polychlorinated biphenyls (PCBs)/pesticides were discontinued for the second through fifth years of monitoring. In accordance with the O&M Manual, sampling is to be continued semi-annually for TCL volatile organic compounds (VOCs) and target analyte list (TAL) metals during the second through fifth years of monitoring. In accordance with the NYSDEC-approved O&M Manual, the required sampling frequency will be re-evaluated after the fifth year of monitoring.

Purge water generated during sampling was contained, passed through a 25-micron bag filter, and discharged to manhole MH-3. The water in manhole MH-3 was conveyed through the pre-treatment system prior to discharge to the Niagara County Sewer District (NCSD) interceptor system at manhole MH-16.

The laboratory analytical data was validated by Data Validation Services of North Creek, New York. The validation was performed in accordance with guidance from the most current editions of the United States Environmental Protection Agency (USEPA) Contract Laboratory Procedures (CLP) National Functional Guidelines for Organic and

Inorganic Data Review, and the USEPA Standard Operating Procedures (SOPs) HW-2 and HW-6. Results of the validation indicated that the samples were processed and analyzed in compliance with protocol requirements, and with adherence to quality criteria. All of the analytical results are useable, although minor qualifications are needed for some of the results. A copy of the data validation report is included in Appendix C.

Results of the ground water analyses, along with a comparison of the results with New York State Class GA Standards, are summarized on Table 4. The New York State Class GA Standards presented on Table 4 have been revised to reflect revisions to the New York State water quality standards (NYSDEC, 1999). In general, the February 2000 ground water chemistry is similar to previous sampling events.

Detected constituents exceeding New York State Class GA Standards included iron at one location (URS-9I) and sodium at ten locations (85-5R, URS-5D, 85-7R, URS-7D, URS-9I, URS-9D, 88-12C, 88-12D, URS-14I, and URS-14D). Concentrations of iron have previously been detected in background wells URS-14I and URS-14D at similar concentrations. Concentrations of sodium have also been detected above the New York State Class GA Standards in background wells URS-14I and URS-14D at similar concentrations. It is likely that the elevated concentrations of sodium are naturally occurring and are not related to previous site activities. VOCs were not detected above the New York State Class GA Standards. The database will be updated with data from future sampling events, and ground water standards will be reviewed annually to evaluate whether standards have been revised.

As specified in the O&M Manual, statistical analyses of the ground water chemistry data have been completed. A preliminary exploratory data analysis, using univariate statistics in SAS®, was performed for fifteen analytes that have been detected a total of nine or more times in various monitoring wells since the initial post-construction sampling event in June 1997. Based on the results of the preliminary exploratory data analysis, concentrations for thirteen analytes (at $\alpha = 0.10$) do not appear to be normally distributed. Magnesium and 1,2-dichloroethene appear to be normally distributed.

The February 2000 data represents the results of the sixth baseline data collection effort. A t-test analysis was conducted based on the data collected from the post-construction sampling events, between June 1997 and February 2000, to evaluate whether downgradient concentrations exceed upgradient concentrations, based on a comparison of downgradient wells with the appropriate upgradient wells, URS-14I or URS-14D. Based on the results of the t-test, Table 1-2 presents a summary of locations where constituent concentrations in downgradient wells exceeded concentrations at the appropriate upgradient comparison well, at a confidence level (α) equal to 0.05.

Table 1-2. Results of the t-test analysis.

Analytes with Higher Concentrations than in Upgradient Wells
Calcium, Magnesium
Calcium, Manganese, Sodium
Calcium, Magnesium, Sodium
Calcium, Magnesium, Manganese, Sodium
Calcium, Magnesium
Calcium, Magnesium, Arsenic
Calcium, Magnesium, Manganese, Potassium, Sodium

Source: O'Brien & Gere Engineers, Inc.

It should be noted that there are currently no New York State Class GA Standards for calcium, magnesium, or potassium. Concentrations of arsenic and manganese have not been detected above the New York State Class GA Standards during the post-construction sampling. In addition, it is likely that elevated concentrations of calcium, magnesium, manganese, potassium, and sodium are naturally occurring and are not related to previous site activities.

Results of the t-test analysis also indicate that barium concentrations are greater in upgradient well URS-14I than in corresponding downgradient wells URS-9I and 88-12C, and greater in upgradient well URS-14D than in corresponding downgradient well 88-12D, at a confidence level of α =0.05. T-test analysis results also indicate that sodium concentrations are greater in upgradient well URS-14I than in corresponding downgradient wells URS-9I and 88-12C, at a confidence level of α =0.05. Concentrations of barium in URS-9I, 88-12C, 88-12D, URS-14I, and URS-14D are below the New York State Class GA Standard.

Although carbon disulfide was detected in some of the samples at levels above typical laboratory contamination, many samples show evidence of sulfur dioxide, based on a review of the analytical spectrum by the data validator, which may be related to the detection of carbon disulfide. There are currently no New York State Standards for carbon disulfide. In addition, carbon disulfide has been detected in the background wells.

Final: March 24, 2000

2. Conclusions

Based on the data contained in this semi-annual report, the following conclusions are presented:

- The isolation of ground water within the capped area has been established.
- The ground water elevation data indicates that ground water within the capped area is migrating to the west toward the ground water collection trench.
- The ground water elevation data indicates that the ground water collection trench is effectively removing shallow ground water from within the capped area.
- The February 2000 ground water chemistry is similar to previous sampling events.
- Results of the t-test analysis indicate that concentrations of arsenic (88-12C), calcium (85-5R, URS-5D, 85-7R, URS-7D, URS-9I, 88-12C, and 88-12D), magnesium (85-5R, 85-7R, URS-7D, URS-9I, 88-12C, and 88-12D), manganese (URS-5D, URS-7D, and 88-12D), potassium (88-12D), and sodium (URS-5D, 85-7R, URS-7D, and 88-12D) exceed upgradient concentrations, based on a comparison of downgradient wells with the appropriate upgradient wells, URS-14I or URS-14D. There are currently no New York State Class GA Standards for calcium, magnesium, or potassium. Concentrations of arsenic and manganese have not been detected above the New York State Class GA Standards during the post-construction sampling. It is likely that elevated concentrations of calcium, magnesium, manganese, potassium, and sodium are naturally occurring and are not related to previous site activities.
- Results of the t-test analysis indicate that barium concentrations are greater in upgradient well URS-14I than in corresponding downgradient wells URS-9I and 88-12C, and greater in upgradient well URS-14D than in corresponding downgradient well 88-12D, at a confidence level of α=0.05. Concentrations of barium in URS-9I, 88-12C, 88-12D, URS-14I, and URS-14D are below the New York State Class GA Standard.

- T-test analysis results indicate that sodium concentrations are greater in upgradient well URS-14I than in corresponding downgradient wells URS-9I and 88-12C, at a confidence level of α =0.05.
- Iron was detected in one monitoring well at a concentration above New York State Class GA Standards. Concentrations of iron have previously been detected in the background wells at similar concentrations. In addition, results of the t-test analysis indicate that concentrations of iron are not statistically higher downgradient than upgradient at the Site, indicating that the capped area is not impacting ground water.
- Sodium was detected in ten monitoring wells at concentrations above New York State Class GA Standards. It is likely that this element is naturally occurring and is not related to previous site activities.
- Although carbon disulfide was detected in some of the samples at levels above typical laboratory contamination, many samples show evidence of sulfur dioxide, based on a review of the analytical spectrum by the data validator, which may be related to the detection of carbon disulfide. There are currently no New York State Standards for carbon disulfide. In addition, carbon disulfide was detected in the background wells.

References

- New York State Department of Environmental Conservation, 1999. Title 6, Chapter X, Subchapter A, Article 2, Part 703.5, Table 1, Water Quality Standards Surface Waters and Groundwater, Effective August 4, 1999.
- O'Brien & Gere Engineers, 1997. Operation and Maintenance Manual, Frontier Chemical Pendleton Site, Town of Pendleton, Niagara County, New York, Pendleton Site PRP Group, March 1997.
- O'Brien & Gere Engineers, 1998. Frontier Chemical Pendleton Site, Semi-Annual Ground Water Monitoring Report, Pendleton Site PRP Group, March 1998.

Piezometer Ground Water Elevation Summary Table Frontier Chemical - Pendleton Site

		Top of Riser	Top of Cover	Depth (ft	Screened	P			٣	Sround wat	Ground water elevation (ft)	(ft)		
Piezometer	Location	Elev. (ft)	Elev. (ft)	below riser)	Elev. (ft)		6/24/97	9/30/97	2/23/98	4/28/98	9/11/98	2/3/99	8/11/99	2/7/00
P-1	(O) Eastern portion	583.21	583.30	16.4	576.8 - 566.8		579.54	60.773	579.25	926.60	575.62	572.97	575.83	573.76
P-2	(I) of capped area	582.90	583.20	15.7	577.2 - 567.2	_	579.60	579.24	578.20	578.37	578.76	576.96	578.27	575.59
P-3	(I) Center of capped	606.33	606.64	39.7	586.6 - 566.6		580.36	580.38	580.06	579.94	579.80	579.96	579.38	579.29
	area													
P-4	(I) Adjacent to	582.31	583.85	15.6	576.7 - 566.7		577.15	577.43	576.70	575.11	575.96	574.58	575.56	573.96
SP-1	(T) Quarry Lake	579.86	580.07	15.0	bop = 564.9		<564.9	<564.9	<564.9	<564.9	<564.9	<564.9	<564.9	<564.9
P-5	(O) Southern portion	583.05	583.55	15.5	577.6 - 567.6		576.87	577.25	578.57	579.31	576.13	574.70	576.48	578.16
P-6	(I) of capped area	584.45	584.60	16.2	578.3 - 568.3	_	578.77	579.17	578.14	578.20	578.63	577.94	578.28	577.74
P-7	(I) Northern portion	580.97	582.00	15.9	575.0 - 565.0		578.33	578.62	576.45	576.17	577.15	574.43	575.55	573.02
P-8	(O) of capped area	582.83	583.00	17.3	575.5 - 565.5		577.76	578.87	578.75	579.61	276.90	574.72	576.15	576.12

Notes:

- 1. Elevation based on USGS Datum.
- bop = bottom of pipe.
- 3. O = piezometer located outside of capped area.
- 4. I = piezometer located inside capped area.
- 5. T = standpipe located within the ground water collection trench.
- 6. The top of riser of piezometer P-4 was modified on 4/28/98 from 583.68 ft to 582.31 ft to allow clearance for the installation of a locking expansion plug beneath the flush-mounted cover.
- 7. The top of riser of piezometer P-7 was modified on 4/28/98 from 581,84 ft to 580.97 ft to allow clearance for the installation of a locking expansion plug beneath the flush-mounted cover.

Table 2
Frontier Chemical - Pendleton Site
Monitoring Well Ground Water Elevation Summary Table

Monitoring		Top of Riser Ground	Ground	Depth (ft	Screened			Gr	Ground water elevation (ft)	evation (ft)			
Well	Location	Elev. (ft)	Elev. (ft)	below riser)	Elev. (ft)	6/24/97	9/30/97	2/23/98	4/28/98	9/17/98	2/3/99	8/11/99	2/7/00
URS-141	Upgradient well nest	581.14	580.84	31.0	550.1 - 555.1	577.15	578.77	580.24	580.14	574.76	577.35	575.42	577.68
URS-14D	URS-14D in church parking lot	580.71	580.85	41.5	539.2 - 544.2	575.50	574.28	575.87	576.05	573.94	572.89	571.92	571.87
URS-91	Southern well nest	581.68	579.90	46.0	535.6 - 540.6	575.38	574.22	575.69	575.91	573.76	572.67	571.82	571.78
URS-9D	URS-9D along Town Line Road	580.80	579.00	46.5	534.3 - 539.3	575.36	574.21	575.68	575.89	573.64	572.66	571.24	571.66
85-5R	Middle well nest	580.84	578.70	40.0	540.9 - 542.9	574.70	573.97	575.39	575.70	574.98	572.78	571.92	571.10
URS-5D	URS-5D along Town Line Road	580.60	578.00	49.9	530.8 - 535.8	574.73	574.02	575.42	575.74	573.80	572.12	571.97	571.39
85-7R	North well nest	677.90	576.60	27.8	550.2 - 552.2	575.09	574.21	575.53	575.87	573.74	572.30	572.04	571.52
URS-7D	URS-7D along Town Line Road	579.35	576.50	39.9	539.5 - 544.5	575.15	574.35	575.60	575.99	573.75	572.40	571.99	571.57
88-12C	Well nest outside northeast	583.12	583.70	31.3	551.8 - 553.8	576.60	574.03	576.53	577.06	572.79	571.72	571.26	571.12
88-12D	88-12D portion of capped area	582.87	583.28	54.5	528.4 - 533.4	575.72	574.54	576.17	576.33	574.00	572.97	572.36	572.33

Notes:

1. Elevation based on USGS Datum.

Table 3
Frontier Chemical - Pendleton Site
Quarry Lake Surface Water Elevation Summary Table

	Quarry Lake
Date	Surface Water Elevation (ft) (1)
6/8/97	572.3
2/23/98	578.0
4/30/98	578.26
9/21/98	577.42
2/4/99	577.97
8/4/99	577.60
2/7/00	578.16 (2)

- Notes:
 1. Elevation based on USGS Datum.
 2. Ice surface elevation.

	Standard					85-5R					
Parameter	ug/L (ppb)	7/86	8/90	2/91	10/92	6/97	2/98	9/98	2/99	8/99	2/00
VOCs (ppb)										ellerië e	e - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1
Acetone		NA	R	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	15	ND	ND	ND	0.34 J	ND	ND	0.10 J	ND
2-Butanone		NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		NA	ND	ND	ND	ND	ND	ND	ND	ND	18
Chlorobenzene	5	ND	NA	NA	NA	ND	0.28 J	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene	5	NA	ND	ND	ND	ND	ND	ND	ND	0.17 J	0.10 J
Ethylbenzene	5	ND	ND	ND	ND	ND	0.24 J	ND	ND	ND	ND
Methylene Chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		NA	2J	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5	ND	2J	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	0.14 J	ND	ND	ND	ND
Total Xylenes	5	NA	ND	ND	ND	ND	0.96	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Metals (ppb)									110		110
Aluminum		1,060	214	37.8B	153	ND	300	ND	ND	ND	ND
Antimony	3	NA.	ND	42.4B	ND	ND	ND	ND	ND	ND	ND
Arsenic	25	NA	1B	ND	ND	ND	ND	ND	ND	ND	ND
Barium	1000	20	73.5B	23.4B	15	40	80	50J	ND	60	60
Beryllium		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Calcium	1 <u> </u>	380,000	355,000	378,000	321,000	270,000	220,000	220,000	130,000	220.000	200,000
Chromium	50	40	7.5B	ND	ND	ND	30	10	ND	ND	ND
Cobalt	1 = -	20	ND	ND	ND	ND	ND	ND	ND	ND	ND
Copper	200	10	ND	ND	11	ND	ND	ND	ND	ND	ND
Cyanide	200	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
Iron	300	1,020	669	915	419	140	2,300	190	ND	100	ND
Lead	25	150	ND	1.2B	ND	ND	ND ND	ND	ND	ND	ND
Magnesium	1 = 1	179,000	106,000	170,000	139,000	130,000	85,000	110,000	59,000	99.000	90,000
Manganese	300	100	40	57.5	42	50	260	40	ND	80	110
Mercury	0.7	NA.	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND
Nickel	100	10	48.1	ND	ND	ND	ND	ND	ND	ND	ND
Potassium	 	9,500	60,700	6,280	6,400	ND	ND	ND	ND	5.000	ND
Selenium	10	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
Silver	50	30	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND
Sodium	20,000	126,000	132,000	120,000	100,000	93,000 J	58,000	87,000	52,000	96,000	67,000
Thallium	1 20,000	NA	ND	ND	ND	ND	8	ND	92,000 ND	ND	87,000 ND
Vanadium	-	35	4B	ND ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND
Zinc	╂══	75	12.9B	17.6B	ND ND	ND ND	ND	ND ND	ND ND	10 J	10
Notes:		13	12.50	17.00	ואט ו	ואף	ן אט	עאו ן	LND	103	10

Notes:

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, 2/99, 8/99, and 2/00 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

Table 4
Frontier Chemical-Pendleton Site
Summary of Ground Water Analytical Data
February 2000

	Standard				URS	-5D				
Parameter	ug/L (ppb)	8/90	2/91	10/92	6/97	2/98	9/98	2/99	8/99	2/00
VOCs (ppb)									Kalender (18	
Acetone		250	R	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	ND	1	ND	0.25 J	0.11 J	ND	0.16 J	ND
2-Butanone	1 1	ND	R	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND							
Carbon Disulfide		ND	4.2							
Chlorobenzene	5	NA	NA	NA	ND	0.31 J	ND	ND	ND	ND
Chloroform	7	ND	ND							
Dibromochloromethane		ND	ND							
1,1-Dichloroethane	5	ND	ND							
1,2-Dichloroethene	5	ND	ND							
Ethylbenzene	5	ND	ND	ND	ND	0.32 J	ND	ND	ND	ND
Methylene Chloride	5	ND	R	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		ND	ND							
1,1,2,2,-Tetrachloroethane	5	ND	ND							
Toluene	5	ND	1J	ND	ND	0.19 J	ND	ND	ND	ND
Total Xylenes	5	ND	0.5J	ND	ND	1.5	ND	ND	ND	ND
Trichloroethene	5	ND	ND							
Vinyl Chloride	2	ND	ND							
Metals (ppb)										
Aluminum		ND	ND							
Antimony	3	ND	31.5B	ND	ND	ND	ND	ND	ND	ND
Arsenic	25	1.3B	1B	ND	ND	ND	ND	ND	ND	ND
Barium	1000	224	71.7B	32	20	ND	ND	ND	20	ND
Beryllium		ND	ND							
Cadmium	5	ND	ND							
Calcium		378,000	407,000	387,000	440,000	300,000	490,000	510,000	490,000	500,000
Chromium	50	3B	ND	ND						
Cobalt		ND	ND	ND	ND	61	210	850	350	59
Copper	200	ND	ND	8	ND	ND	ND	ND	ND	ND
Cyanide	200	ND	ND							
Iron	300	188	143	25	ND	120	ND	ND	ND	ND
Lead	25	ND	1.3B	12	ND	ND	ND	ND	ND	ND
Magnesium		33,300	2450B	570,000	100,000	24,000	87,000	76,000	93,000	97,000
Manganese	300	8.8B	3.5B	ND	50	10	70	70	50	60
Mercury	0.7	ND	ND							
Nickel	100	11.4B	ND	ND	90	ND	180	90	80	50
Potassium		22,700	16,900	8,500	ND	ND	ND	5,000	ND	ND
Selenium	10	ND	ND							
Silver	50	ND	ND							
Sodium	20,000	192,000	194,000	114,000	88,000	93,000	94,000	120,000	110,000	120,000
Thallium		ND	ND							
Vanadium		3.8B	ND	ND						
Zinc	-	19.9B	14.7B	ND	ND	10	ND	ND	10 J	10

Notes

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, 2/99, 8/99, and 2/00 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

	Standard					85-7R					
Parameter	ug/L (ppb)	7/86	8/90	2/91	10/92	6/97	2/98	9/98	2/99	8/99	2/00
VOCs (ppb)									\$4400 LO	N. S. Land	in a company
Acetone		NA	ND	R	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	6	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	_	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		71	ND	ND	ND	ND	ND	ND	0.93 J	ND	32
Chlorobenzene	5	ND	NA	NA	NA	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene	5	NA	ND	ND	ND	0.14J	0.19 J	0.14 J	0.21 J	0.40 J	0.11 J
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	1J	ND	ND	ND	ND	ND	ND	ND
Total Xylenes	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Metals (ppb)											
Aluminum	-	1,200	277	265	249	ND	ND	ND	ND	ND	ND
Antimony	3	NA	28.3B	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	25	NA	1.4B	1.7B	ND	ND	ND	ND	ND	ND	ND
Barium	1000	30	91B	143B	106	100	80	50J	ND	40	40
Beryllium		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Calcium		490,000	354,000	298,000	389,000	350,000	350,000	420,000	400,000	440,000	410,000
Chromium	50	20	ND	ND	ND	ND	ND	ND	10	ND	ND
Cobalt		20	ND	ND	ND	ND	ND	ND	ND :	ND	ND
Copper	200	10	ND	ND	8	ND	ND	ND	ND	ND	ND
Cyanide	200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iron	300	· 920	586	820	435	190	310	270	170	90	70
Lead	25	120	ND	2.6B	ND	ND	ND	ND	ND	ND	ND
Magnesium		131,000	119,000	42,600	124,000	120,000	120,000	140,000	140,000	130,000	130,000
Manganese	300	110	40.5	31.5	30	70	80	90	80	40	40
Mercury	0.7	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	ND	7.4B	ND	ND	ND	ND	ND	ND	ND	ND
Potassium		28,000	5,540	5,770	6,700	5,000	5,000	6,000	6,000	7,000	6,000
Selenium	10	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	50	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sodium	20,000	107,000	67,900	38,900	73,100	66,000 J	67,000	75,000	74,000	85,000	72,000
Thallium		NA	ND	ND	ND	ND	6	ND	ND	ND	ND
Vanadium		35	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc		65	ND	21.5	ND	ND	ND	ND	ND	ND	ND

Notes:

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, 2/99, 8/99, and 2/00 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

	Standard				URS	-7D				T
Parameter	ug/L (ppb)	8/90	2/91	10/92	6/97	2/98	9/98	2/99	8/99	2/00
VOCs (ppb)						Mariana (1984).		i se a h oderski i bal	and a solitor was	
Acetone		120	R	ND	ND	ND	61	6.0 J	ND	ND
Benzene	1	ND	ND	ND	ND	0.11 J	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		0.5J	ND	ND	ND	ND	ND	1.3 J	ND	5.2
Chlorobenzene	5	NA	NA	NA	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Xylenes	5	ND	ND	ND	ND	0.37 J	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND
Metals (ppb)										
Aluminum		167B	52.5B	ND	ND	ND	ND	ND	ND	100
Antimony	3	20.5B	36.3B	ND	ND	ND	ND	ND	ND	ND
Arsenic	25	ND	ND	ND	ND	ND	ND	ND	ND	ND
Barium	1000	20.3B	47.2B	29	30	40	ND	ND	30	30
Beryllium		ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Calcium		277,000	333,000	403,000	360,000	300,000	480,000	400,000	470,000	420,000
Chromium	50	ND	ND	ND	ND	ND	10	10	ND	10
Cobalt		ND	ND	ND	ND	ND	ND	ND	ND	ND
Copper	200	ND	ND	8	ND	ND	ND	ND	ND	ND
Cyanide	200	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iron	300	387	283	63	ND	70	ND	100	ND	180
Lead	25	ND	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium		96,200	115,000	140,000	120,000	89.000	140,000	130.000	140,000	140,000
Manganese	300	71.2	140	86	40	30	40	50	50	70
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	23.5B	ND	ND	ND	ND	ND	ND	ND	ND
Potassium		5,990	8,550	8,300	5,000	ND	6,000	ND	6,000	ND
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sodium	20,000	82,700	68,900	78,900	66,000 J	54,000	79,000	74,000	81,000	68,000
Thallium	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	l	4.2B	6.7B	ND	ND	ND	ND	ND	ND	ND
Zinc		5.6B	12.2B	ND	ND	ND	ND	ND	ND	ND

Notes:

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, 2/99, 8/99, and 2/00 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

	Standard				URS	-91				<u> </u>
Parameter	ug/L (ppb)	8/90	2/91	10/92	6/97	2/98	9/98	2/99	8/99	2/00
VOCs (ppb)								MARKET E	Section 2	
Acetone		R	R	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	ND	ND	0.12J	0.29 J	ND	ND	ND	ND
2-Butanone		ND	2J	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	0.13 J	ND	ND	8.5
Chlorobenzene	5	NA	NA	NA	ND	0.20 J	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	0.14 J	ND	ND	ND	ND
Methylene Chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	0.7J	ND	ND	ND	0.11 J	ND	ND	0.16 J	ND
Total Xylenes	5	ND	ND	ND	0.29J	0.54	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND
Metals (ppb)										
Aluminum		221	197	110	ND	ND	ND	200	ND	200
Antimony	3	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	25	1.7B	ND	ND	ND	ND	ND	ND	ND	ND
Barium	1000	30.1B	22.8B	14	30	ND	ND	ND	ND	ND
Beryllium		ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Calcium		106,000	143,000	123	170,000	150,000	160,000	160,000	160,000	170,000
Chromium	50	8.6B	10.1	ND	ND	ND	10	10	ND	ND
Cobalt		ND	ND	ND	ND	ND	ND	ND	ND	ND
Copper	200	12.7B	ND	ND	ND	ND	ND	ND	ND	ND
Cyanide	200	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iron	300	1,020	1,170	808	460	440	290	590	240	520
Lead	25	ND	1B	ND	ND	ND	ND	ND	ND	ND
Magnesium		54,500	71,300	63,500	70,000	69,000	77,000	70,000	75,000	76,000
Manganese	300	67.5	80	75	50	30	40	50	40	50
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	7.6B	ND	ND	ND	ND	ND	ND	ND	ND
Potassium		3,910B	4,250B	2,900	ND	ND	ND	ND	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sodium	20,000	34,500	54,000	52,400	43,000 J	45,000	49,000	39,000	54,000	48,000
Thallium		ND	ND	ND	ND	11	ND	ND	ND	ND
Vanadium		ND	9.6B	ND	ND	ND	ND	ND	ND	ND
Zinc		19.3B	34.6	ND	ND	ND	20	ND	10 J	ND

Notes:

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, 2/99, 8/99, and 2/00 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

Table 4
Frontier Chemical-Pendleton Site
Summary of Ground Water Analytical Data
February 2000

	Standard				URS	-9D				
Parameter	ug/L (ppb)	8/90	2/91	10/92	6/97	2/98	9/98	2/99	8/99	2/00
VOCs (ppb)									Alternative 3	
Acetone		R	R	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	ND	ND	ND	1.9	ND	ND	ND	ND
2-Butanone		ND	6J	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		4J	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	ND	ND	ND	16
Chlorobenzene	5	NA	NA	NA	ND	0.79	ND	ND	ND	ND
Chloroform	7	8	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		1J	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	0.7	0.37J	0.34 J	0.17 J	0.16 JN	0.15 J	0.14 J
1,2-Dichloroethene	5	ND	ND	1	0.66	0.59	0.33 J	0.35 J	0.29 J	0.25 J
Ethylbenzene	5	ND	ND	ND	ND	0.44 J	ND	ND	ND	ND
Methylene Chloride	5	ND	ND	2	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		. ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	0.6J	ND	ND	ND	0.51	ND	ND	ND	ND
Total Xylenes	5	ND	ND	ND	ND	1.8	ND	ND	ND	ND
Trichloroethene	5	ND	ND	0.6	0.36J	0.24 J	0.20 J	0.21 J	0.14 J	ND
Vinyl Chloride	2	ND	ND	ND	0.26J	0.44 J	0.11 JN	ND	ND	ND
Metals (ppb)										
Aluminum		128	64.2B	ND	ND	ND	ND	ND	ND	ND
Antimony	3	ND	28B	ND	ND	ND	ND	ND	ND	ND
Arsenic	25	1.6B	ND	ND	ND	ND	ND	ND	ND	ND
Barium	1000	110B	38.2B	23	ND	ND	ND	ND	ND	ND
Beryllium		ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Calcium		56,500	146,000	120,000	200,000	190,000	190,000	200,000	210,000	220,000
Chromium	50	ND	ND	ND	ND	ND	10	ND	ND	ND
Cobalt		ND	ND	ND	ND	ND	ND	ND	ND	ND
Copper	200	5.2B	ND	ND	ND	ND	ND	ND	ND	ND
Cyanide	200	ND	11.1B	ND	ND	ND	ND	ND	ND	ND
Iron	300	127	506	252	ND	70	80	70	60	50
Lead	25	ND	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium		29,900	70,200	60,000	58,000	73,000	71,000	72,000	77,000	78,000
Manganese	300	20.1	25.5	9	ND	ND	10	10	10	10
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	15.3B	ND	ND	ND	ND	ND	ND	ND	ND
Potassium		9,880	4,170B	3,600	ND	ND	ND	ND	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sodium	20,000	27,400	37,000	42,800	48,000 J	52,000	41,000	38,000	52,000	48,000
Thallium	1	ND	ND	ND	ND	14	ND	ND	ND	ND
Vanadium		10.7B	ND	ND	ND	ND	ND	ND	ND	ND
Zinc	1	50.5	16.7B	ND	ND	ND	ND	ND	ND	ND

Notes:

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, 2/99, 8/99, and 2/00 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

	Standard	Standard 88-12C										
Parameter	ug/L (ppb)	8/90	2/91	10/92	6/97	2/98	9/98	2/99	8/99	2/00		
VOCs (ppb)									p propagation			
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	ND		
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND	ND		
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	ND		
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND		
Carbon Disulfide	-	ND	ND	ND	ND	ND	ND	ND	ND	0.84		
Chlorobenzene	5	NA	NA	NA	ND	ND	ND	ND	ND	ND		
Chloroform	7	ND	ND	ND	ND	ND	DD	ND	ND	ND		
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Methylene Chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND		
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	0.19 J		
Total Xylenes	5	ND	ND	ND	ND	ND	ND	ND	ND	0.15 J		
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Metals (ppb)												
Aluminum		481	187B	453	ND	900	ND	600	ND	ND		
Antimony	3	19.2B	28B	ND	ND	ND	ND	ND	ND	ND		
Arsenic	25	10	12.3B	14	9	7	10	12	11 J	12		
Barium	1000	11.4B	17.3	14	ND	ND	ND	ND	ND	ND		
Beryllium		ND	ND	ND	ND	ND	ND	ND	ND	ND		
Cadmium	5	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Calcium		62,600	68,500	68,900	73,000	70,000	71,000	76,000	80,000	78,000		
Chromium	50	21	4.6B	ND	ND	10	10	20	ND	ND		
Cobalt		ND	ND	ND	ND	ND	ND	ND	ND	ND		
Copper	200	4.2B	ND	5	ND	ND	ND	ND	ND	ND		
Cyanide	200	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Iron	300	1,530	1,040	1,560	ND	2,200	330	1,600	100	200		
Lead	25	1.5B	1.2B	ND	ND	ND	ND	ND	ND	ND		
Magnesium		88,500	103,000	92,500	110,000	98,000	110,000	100,000	110,000	110,000		
Manganese	300	45.4	37.8	54	10	70	10	40	20	20		
Mercury	0.7	ND	ND	NA	ND	ND	ND	ND	ND	ND		
Nickel	100	14.6B	ND	ND	ND	ND	ND	ND	ND	ND		
Potassium		2,520B	3,200B	3,000	ND	ND	ND	ND	ND	ND		
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Silver	50	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Sodium	20,000	34,600	41,100	41,300	47,000 J	43,000	40,000	42,000	50,000	47,000		
Thallium	T	ND	ND	ND	ND	13	ND	ND	ND	ND		
Vanadium		22.1B	10B	ND	ND	ND	ND	ND	ND	ND		
Zinc		10.1B	15.7B	ND	20	20	ND	ND	20 J	20		

Notes:

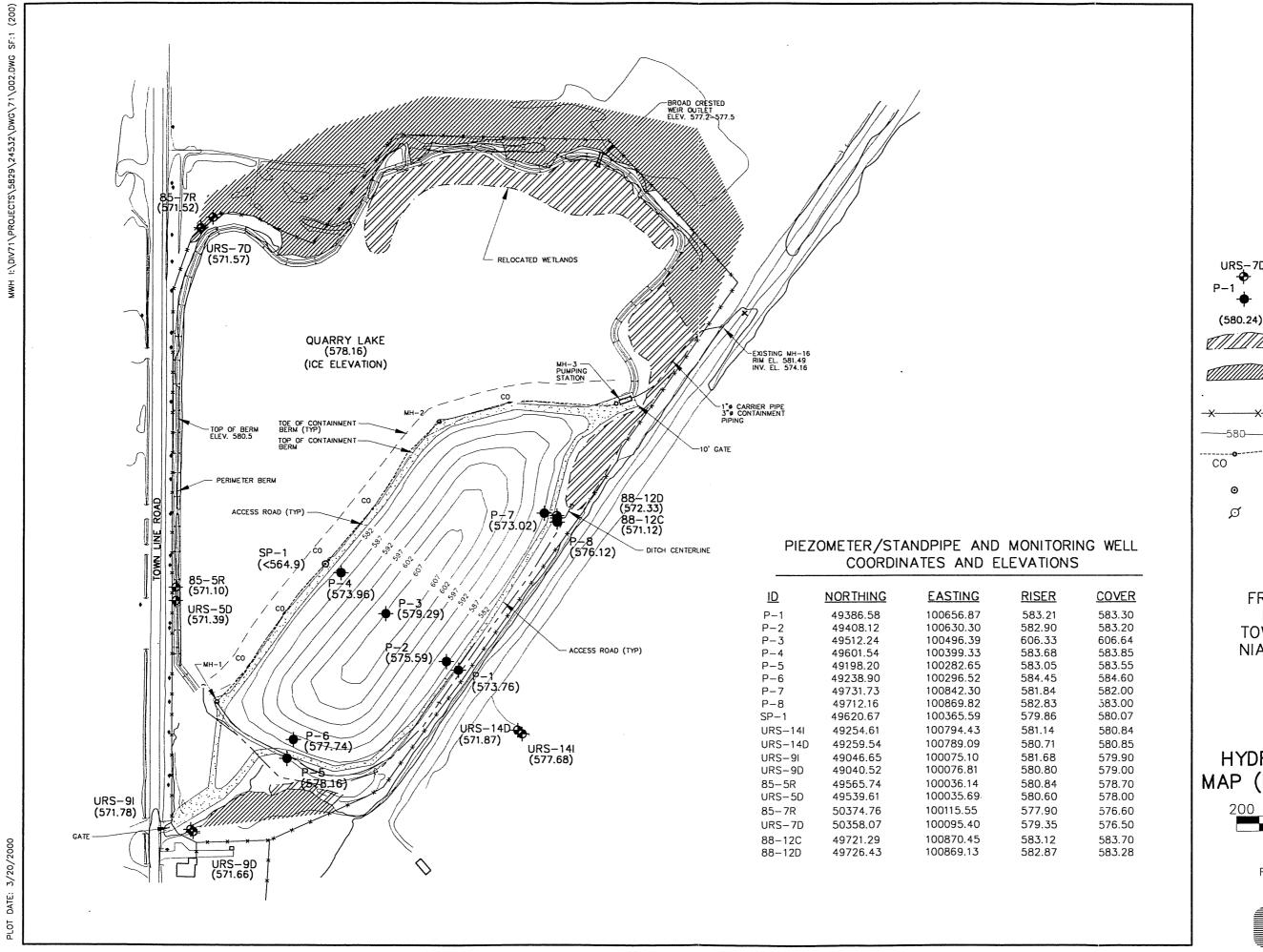
- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, 2/99, 8/99, and 2/00 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

	Standard	88-12D									
Parameter	ug/L (ppb)	8/90	2/91	6/97	2/98	9/98	2/99	8/99	2/00		
VOCs (ppb)									Sala and an Pal		
Acetone		ND	ND	ND	ND	ND	ND	ND	ND		
Benzene	1	1J	0.9J	ND	0.13 J	0.13 J	ND	0.16 J	ND		
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND		
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND		
Carbon Disulfide	—	ND	6	ND	ND	0.56	0.70 J	ND	77		
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND		
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND		
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND		
1.1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND		
1,2-Dichloroethene	5	ND	2J	ND	ND	ND	ND	ND	ND		
Ethylbenzene	5	ND	ND	ND	0.11 J	ND	ND	ND	ND		
Methylene Chloride	5	ND	ND	ND	ND	ND	ND	ND	ND		
4-Methyl-2-Pentanone	—	ND	ND	ND	ND	ND	ND	ND	ND		
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND		
Toluene	5	R	13	ND	ND	ND	ND	ND	ND		
Total Xylenes	5	ND	ND	ND	0.48 J	ND	ND	ND	ND		
Trichloroethene	5	ND	6	ND	ND	ND	ND	ND	ND		
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND		
Metals (ppb)											
Aluminum		ND	172B	ND	ND	ND	ND	ND	ND		
Antimony	3	50.7B	56.1B	ND	ND	ND	ND	ND	ND		
Arsenic	25	ND	1.3BW	ND	ND	ND	ND	ND	6		
Barium	1000	2.9B	7.9B	ND	ND	ND	ND	ND	ND		
Beryllium	T	ND	ND	ND	ND	ND	ND	ND	ND		
Cadmium	5	ND	ND	ND	ND	ND	ND	ND	ND		
Calcium		464,000	623,000E	490,000	480,000	630,000	630,000	670,000	720.000		
Chromium	50	7.6B	27.8E	10	30	30	90	ND	20		
Cobalt		ND	ND	ND	ND	ND	ND	ND	ND		
Copper	200	ND	ND	ND	ND	ND	ND	ND	ND		
Cyanide	200	ND	ND	ND	ND	ND	ND	12	ND		
Iron	300	168	250	180	480	110	650	90	70		
Lead	25	ND	1.8BW	ND	ND	ND	ND	ND	ND		
Magnesium		109,000	199,000E	130.000	110,000	180,000	160,000	180,000	210,000		
Manganese	300	33.9	696	90	60	40	50	30	30		
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	0.2 J		
Nickel	100	11.5B	25.5B	ND	ND	ND	70	ND	ND		
Potassium		5,310	12,000E	600	6,000	10,000	9,000	9,000	11,000		
Selenium	10	ND	ND	ND	ND	6	ND	ND	ND		
Silver	50	ND	ND	ND	ND	ND	ND	ND	ND		
Sodium	20,000	66,400	474.000	140,000 J	100,000	330,000	250,000	330,000	450,000		
Thallium	1	ND	ND	ND	ND	ND	ND	ND	ND		
Vanadium	1	51.6	2.4B	ND	ND	ND	ND	ND	ND		
Zinc	-	7.9B	ND	ND	10	ND	ND	10 J	10		

Notes

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, 2/99, 8/99, and 2/00 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

	Standard	URS-14I								
Parameter	ug/L (ppb)	2/91	10/92	6/97	2/98	9/98	2/99	8/99	2/00	
VOCs (ppb)										
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	
Benzene	1	ND	ND	ND	1	ND	ND	ND	ND	
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND	
Carbon Disulfide		ND	ND	ND	ND	ND	ND	ND	1.2	
Chlorobenzene	5	NA	NA	ND	0.81	ND	ND	ND	ND	
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND	
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	
1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	
Ethylbenzene	5	ND	ND	ND	0.13 J	ND	ND	ND	ND	
Methylene Chloride	5	ND	ND	ND	ND	ND	ND	ND	0.17 J	
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND	ND	ND	
1,1,2,2,-Tetrachloroethane	- 5	ND	ND	ND	ND	ND	ND	ND	ND	
Toluene	5	ND	ND	ND	0.15 J	ND	ND	ND	ND	
Total Xylenes	5	ND	ND	ND	ND	ND	ND	ND	ND	
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	
Metals (ppb)										
Aluminum		7,140	1,170	1300	400	ND	300	ND	ND	
Antimony	3	ND	ND	ND	ND	ND	ND	ND	ND	
Arsenic	25	7.2B	ND	ND	ND	ND	5	ND	6	
Barium	1000	115B	47	50	40	40J	40	50	50	
Beryllium		1.2B	ND	ND	ND	ND	ND	ND	ND	
Cadmium	5	ND	ND	ND	1	ND	ND	ND	2	
Calcium		73,900	35,200	28,000 J	21,000	23,000	26,000	30,000	34,000	
Chromium	50	30.9	ND	ND	160	ND	ND	ND	10	
Cobalt .		5.8B	ND	ND	ND	ND	ND	ND	ND	
Copper	200	18.5B	8	ND	10	ND	ND	ND	ND -	
Cyanide	200	ND	ND	ND	ND	ND	ND	ND	ND	
iron	300	10,400	2,060	1,800	2,300	ND	320	ND	ND	
Lead	25	7.5	ND	ND	ND	ND	ND	ND	ND	
Magnesium		32,800	22,300	21,000	17,000	21,000	23,000	25,000	29,000	
Manganese	300	484	145	70	60	ND	ND	ND	ND	
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND	
Nickel	100	30.4B	ND	ND	170	ND	ND	ND	ND	
Potassium		17,100	5,500	ND	25,000	8,000	6,000	6,000	ND	
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND	
Silver	50	ND	ND	ND	ND	ND	ND	ND	ND	
Sodium	20,000	44,700	42,500	58,000 J	48,000	48,000	54,000	62,000	67,000	
Thallium		ND	ND	ND	6	ND	ND	ND	ND	
Vanadium		16.1B	ND	ND	ND	ND	ND	ND	ND	
Zinc .		52.3	ND	10	30	ND	ND	30 J	20	


Notes

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, 2/99, 8/99, and 2/00 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

	Standard	URS-14D								
Parameter	ug/L (ppb)	2/91	10/92	6/97	2/98	9/98	2/99	8/99	2/00	
VOCs (ppb)										
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	
Benzene	1 1	ND	ND	ND	ND	ND	ND	ND	ND	
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND	
Carbon Disulfide		ND	ND	ND	ND	0.47 J	1.1 J	ND	6.7	
Chlorobenzene	5	NA	NA	ND	ND	ND	ND	ND	ND	
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND	
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	
1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	
Methylene Chloride	5	R	ND	ND	ND	ND	ND	ND	ND	
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND	ND	ND	
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	
Total Xylenes	5	ND	ND	0.11J	0.21 J	ND	ND	ND	ND	
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	
Metals (ppb)									ukasisa kasi	
Aluminum		99.8	ND	ND	ND	ND	ND	ND	ND	
Antimony	3	32.1B	ND	ND	ND	ND	ND	ND	ND	
Arsenic	25	2B	ND	ND	ND	ND	ND	ND	ND	
Barium	1000	25.5B	23	20	ND	ND	40	30	30	
Beryllium		ND	ND	ND	ND	ND	ND	ND	ND	
Cadmium	5	ND	ND	ND	ND	ND	ND	ND	ND	
Calcium		255,000	292,000	210,000	250,000	310,000	280,000	360,000	310,000	
Chromium	50	10.3	7	ND	ND	10	ND	ND	ND	
Cobalt		סא	ND	ND	ND	ND	ND	ND	ND	
Copper	200	ND	8	ND	ND	ND	ND	ND	ND	
Cyanide	200	ND	ND	ND	10	10	ND	ND	ND	
Iron	300	357	193	ND	ND	ND	80	ND	ND	
Lead	25	1.1B	ND	ND	ND	ND	ND	ND	ND	
Magnesium		75,200	78,000	61,000	66,000	81,000	71,000	91,000	83,000	
Manganese	300	30.8	27	ND	ND	ND	ND	10	ND	
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND	
Nickel	100	ND	ND	ND	ND	ND	ND	ND	ND	
Potassium		4,250B	3,700	ND	ND	ND	ND	ND	ND	
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND	
Silver	50	ND	ND	ND	ND	ND	ND	ND	ND	
Sodium	20,000	40,700	38,700	52,000 J	49,000	50,000	48,000	58,000	47,000	
Thallium		ND	ND	ND	ND	ND	ND	ND	ND	
Vanadium		ND	ND	ND	ND	ND	ND	ND	ND	
Zinc		26.8	ND	ND	10	10	ND	ND	ND	

Notes:

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, 2/99, 8/99, and 2/00 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

LEGEND

URS-7D

MONITORING WELL

PIEZOMETER WATER ELEVATION

CREATED WETLAND AREA

EXISTING WETLAND AREA

GRADE ELEVATION CONTOUR GROUND WATER COLLECTION

6' HIGH CHAIN LINK FENCE

TRENCH & CLEAN OUT

0

STANDPIPE

Ø

UTILITY POLE

FRONTIER CHEMICAL PENDLETON SITE TOWN OF PENDLETON, NIAGARA COUNTY, NY

HYDRAULIC POTENTIAL MAP (FEBRUARY 7, 2000)

FILE NO. 5829.24532.002 DATE: MARCH 2000

Piezometer/monitoring well inspection forms

Site Name: Frontier Chem.

Personnel: TPP /DEC

Date: z/¬/∞

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-Inch

4-inch

Depth to Ground Water:

9.45

Well Depth:

16.43

WELL INTEGRITY

1. Well identification clearly marked?

yes

no

2. Well covers and locks in good condition and secure?

€

no

3. Is the well stand pipe vertically aligned and secure?

Fes

no

4. Is the concrete pad and surface seal in good condition?

VES

no

5. Are soils surrounding the well pad eroded?

yes

10

6. Is the well casing in good condition?

yes)

no

7. Is the measuring point on casing well marked?

yes

no

8. Is there standing water in the annular space?

yes

no

9. Is the stand pipe vented at the base to allow drainage?

yes

no

Site Name: Frontier Chem

Well Identification:

Personnel: TPP/DEC

Date: 2/7/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4-inch

Depth to Ground Water:

7,31

Well Depth:

15,73

WELL INTEGRITY

1. Well identification clearly marked?

yes

no ·

2. Well covers and locks in good condition and secure?

yes

no

3. Is the well stand pipe vertically aligned and secure?

ves

no

4. Is the concrete pad and surface seal in good condition?

yes

no

5. Are soils surrounding the well pad eroded?

yes

no

6. Is the well casing in good condition?

yes

no

7. Is the measuring point on casing well marked?

yes

no

8. Is there standing water in the annular space?

yes

(10)

9. Is the stand pipe vented at the base to allow drainage?

yes

10

Site Name: Frontier Chemical

Well Identification: P = 3

Personnel: TPP/DA

Date:

2/7/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

4-inch

Depth to Ground Water: The 3977 2704

Well Depth:

3977

WELL INTEGRITY

1. Well identification clearly marked? (yes)

2. Well covers and locks in good condition and secure ?

no ves

3. Is the well stand pipe vertically aligned and secure?

res no

4. Is the concrete pad and surface seal in good condition?

VES

5. Are soils surrounding the well pad eroded?

yes

(10)

no

no

6. Is the well casing in good condition?

yes)

no

7. Is the measuring point on casing well marked?

XES)

no

8. Is there standing water in the annular space?

yes

(10)

9. Is the stand pipe vented at the base to allow drainage?

yes

Site Name: Frontier Chemical

Well Identification: P-4

Personnel: TPP/DEL

Date: 2/1/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush-Mounted

Well Construction

PVC

Stainless Steel

-857

Well Diameter

2-Inch

4-inch

Depth to Ground Water:

8,35

Well Depth:

1692

WELL INTEGRITY

Well identification clearly marked?	yes/	no
2. Well covers and locks in good condition and secure ?	YES	no
3. Is the well stand pipe vertically aligned and secure?	yes	no
4. Is the concrete pad and surface seal in good condition?	ves	no
5. Are soils surrounding the well pad eroded?	yes	(TO
6. Is the well casing in good condition?	Yes	no
7. Is the measuring point on casing well marked?	yes	no
8. Is there standing water in the annular space?	yes	no
9. Is the stand pipe vented at the base to allow drainage?	yes	no

Site Name: Frontier Chemical

Well Identification:

P-5

Personnel: TPP/DEL

Date:

2/7/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

24nch

4-inch

Depth to Ground Water:

Well Depth:

WELL INTEGRITY

1. Well identification clearly marked?

ves

no

2. Well covers and locks in good condition and secure?

ves

no

3. Is the well stand pipe vertically aligned and secure?

Yes

no

4. Is the concrete pad and surface seal in good condition?

ves

no

5. Are soils surrounding the well pad eroded?

yes

(10)

6. Is the well casing in good condition?

yes

no

7. Is the measuring point on casing well marked?

ges)

no

8. Is there standing water in the annular space?

yes

9. Is the stand pipe vented at the base to allow drainage?

yes)

no

Site Name: Frontier Chemical

Well Identification:

P-60

Personnel: TPP/DEL

Date:

2/7/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-ineh

4-inch

Depth to Ground Water:

Well Depth:

WELL INTEGRITY

1. Well identification clearly marked?

(TES)

no

2. Well covers and locks in good condition and secure?

Ves

no

3. Is the well stand pipe vertically aligned and secure?

yes

(no)

4. Is the concrete pad and surface seal in good condition?

ves

no

(no)

5. Are soils surrounding the well pad eroded?

yes

6. Is the well casing in good condition?

Yes

no

7. Is the measuring point on casing well marked?

ves)

no

8. Is there standing water in the annular space?

yes

MO

9. Is the stand pipe vented at the base to allow drainage?

yes

N/A

COMMENTS:

Standpipe leaning 20°-30° at surface.

Site Name: Fronter Chemical

Well Identification:

Personnel: TPP/DEL

Date: 2/1/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inen

4-inch

Depth to Ground Water:

7.95

Well Depth:

ا ومارها!

WELL INTEGRITY

1. Well identification clearly marked?

yes

no

2. Well covers and locks in good condition and secure?

Ves

no

3. Is the well stand pipe vertically aligned and secure?

Ves

no

4. Is the concrete pad and surface seal in good condition?

ves

no

5. Are soils surrounding the well pad eroded?

yes

100

6. Is the well casing in good condition?

VES

no

7. Is the measuring point on casing well marked?

yes)

no

8. Is there standing water in the annular space?

yes

100

9. Is the stand pipe vented at the base to allow drainage?

yes

no N/A

Site Name: Fortier Chemical Well Identification: P-8

Personnel: TPP/DEC Date: 2/7/00

WELL SPECIFICATIONS

Protective Casing Above Ground Flush Mounted

Well Construction PVC Stainless Steel

Well Diameter 2-inch 4-inch

Depth to Ground Water: 6.71

WELL INTEGRITY

	the state of the s	
	Well identification clearly marked?	yes no
•	Mollidoptitication Clearly Markett (/ VES / 110
	AANI KINKING CICALIA MANOA :	()

2. Well covers and locks in good condition and secure? yes no

3. Is the well stand pipe vertically aligned and secure?

yes no

4. Is the concrete pad and surface seal in good condition? yes no

5. Are soils surrounding the well pad eroded? yes

6. Is the well casing in good condition?

7. Is the measuring point on casing well marked?

yes no

no

no

yes

8. Is there standing water in the annular space?

9. Is the stand pipe vented at the base to allow drainage?

Site Name: Frontier Chemical

Well Identification: SP-1

Personnel: TPP/DEL

Date: 2/7/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

HDPE

Well Diameter

2-inetr

4-jach

6" Ø

Depth to Ground Water:

Dry

Well Depth:

14.9

WELL INTEGRITY

YES

no

2. Well covers and locks in good condition and secure?

yes

no

3. Is the well stand pipe vertically aligned and secure?

ves

no

4. Is the concrete pad and surface seal in good condition?

yes

no

5. Are soils surrounding the well pad eroded?

yes

10

6. Is the well casing in good condition?

Yes

no

7. Is the measuring point on casing well marked?

yes

no

8. Is there standing water in the annular space?

yes

10

9. Is the stand pipe vented at the base to allow drainage?

yes

no i

Site Name: Frontier Chemical

Well Identification: 85-5尺

Personnel:

TPP/DEL

Date: 2/1/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

24nch

4-inch

Depth to Ground Water:

9,74

Well Depth:

38,02

WELL INTEGRITY

1. Well identification clearly marked?

ves

no

2. Well covers and locks in good condition and secure?

yes

no

3. Is the well stand pipe vertically aligned and secure?

yes

no

4. Is the concrete pad and surface seal in good condition?

Yes

no

5. Are soils surrounding the well pad eroded?

yes

100

6. Is the well casing in good condition?

yes

no

7. Is the measuring point on casing well marked?

ves

no

8. Is there standing water in the annular space?

yes

(no)

9. Is the stand pipe vented at the base to allow drainage?

yes

no

Site Name: Frontier Chemical

Well Identification: ves -50

Personnel: TPP/Da

Date: $2/7/\infty$

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4-inch

Depth to Ground Water:

9.21

Well Depth:

49.84

WELL INTEGRITY

1. Well identification clearly marked?

yes

no

2. Well covers and locks in good condition and secure?

yes

no

3. Is the well stand pipe vertically aligned and secure?

E

no

4. Is the concrete pad and surface seal in good condition?

(yes)

no

5. Are soils surrounding the well pad eroded?

yes

(no)

6. Is the well casing in good condition?

yes

no

7. Is the measuring point on casing well marked?

yes

no

8. Is there standing water in the annular space?

yes

(10)

9. Is the stand pipe vented at the base to allow drainage?

(ves)

no

Site Name: Frontier Chemical

Well Identification: 85-78

Personnel: TPP/DEL

Date: 2/1/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4-inch

Depth to Ground Water:

6.38

Well Depth:

27,71

WELL INTEGRITY

1.	Well identification clearly marked?	ves	no
2.	Well covers and locks in good condition and secure?	yes	no
3.	Is the well stand pipe vertically aligned and secure?	yes	no
4.	Is the concrete pad and surface seal in good condition?	yes	no
5.	Are soils surrounding the well pad eroded?	yes	PO
6.	Is the well casing in good condition?	yes	no
7.	Is the measuring point on casing well marked?	yes	no
8.	Is there standing water in the annular space?	yes	10
9.	Is the stand pipe vented at the base to allow drainage?	yes	no

Site Name: Frontier Chemical

Well Identification: URS-70

Personnel: TPP/DEL

Date: 2/7/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

YES

yes

HES

no

6

no

Well Diameter

2-inch

4-inch

Depth to Ground Water:

1. Well identification clearly marked?

8. Is there standing water in the annular space?

9. Is the stand pipe vented at the base to allow drainage?

7,78

Well Depth:

59.84

WELL INTEGRITY

••	770.120.1.1104.100.		
2.	Well covers and locks in good condition and secure ?	Ves	no
3.	Is the well stand pipe vertically aligned and secure?	₩ES	no
4.	Is the concrete pad and surface seal in good condition?	Ves	no
5.	Are soils surrounding the well pad eroded?	yes	10
6.	Is the well casing in good condition?	yes .	no
7.	Is the measuring point on casing well marked?	Fes	no

Site Name: Frontier Chemical Well Identification: URS. 9 I

Personnel: TPP/DEC Date: 2/7/00

WELL SPECIFICATIONS

Protective Casing Above Ground Flush Mounted

Well Construction PVC Stainless Steel

Well Diameter 24 nch 4-inch

Depth to Ground Water: a, ao

Well Depth: 46.18

WELL INTEGRITY

Well identification clearly marked?
 Well covers and locks in good condition and secure?

3. Is the well stand pipe vertically aligned and secure?

4. Is the concrete pad and surface seal in good condition?

5. Are soils surrounding the well pad eroded? yes

6. Is the well casing in good condition?

7. Is the measuring point on casing well marked?

8. Is there standing water in the annular space?

yes

yes

9. Is the stand pipe vented at the base to allow drainage?

ves no

Site Name: Fronter Chemical

Well Identification: URS - 9D

Personnel: TPP/DEZ

Date: 2/7/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4-inch

Depth to Ground Water:

a.14

Well Depth:

50.89

WELL INTEGRITY

1. Well identification clearly marked?

yes

no

2. Well covers and locks in good condition and secure ?

yes)

no

3. Is the well stand pipe vertically aligned and secure?

(yes

no

4. Is the concrete pad and surface seal in good condition?

yes

no

5. Are soils surrounding the well pad eroded?

yes

no

6. Is the well casing in good condition?

yes

no

7. Is the measuring point on casing well marked?

yes

no

8. Is there standing water in the annular space?

yes

no

9. Is the stand pipe vented at the base to allow drainage?

yes

no

Site Name: Frontier Chemical

Well Identification: 85-12C

Personnel: TPP/DR

Date: 2/7/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

(Z-inch)

4-inch

Depth to Ground Water:

1200

Well Depth:

31,31

WELL INTEGRITY

1. Well identification clearly marked?

no

2. Well covers and locks in good condition and secure?

no

3. Is the well stand pipe vertically aligned and secure?

VES

no

4. Is the concrete pad and surface seal in good condition?

(yes

no

5. Are soils surrounding the well pad eroded?

yes

(no)

6. Is the well casing in good condition?

Ves

no

7. Is the measuring point on casing well marked?

(yes

no

8. Is there standing water in the annular space?

yes

(no)

9. Is the stand pipe vented at the base to allow drainage?

yes

no

COMMENTS:

Concrete pad under gravel.

Site Name: Fronter Chemical

Well Identification: 80 12D

Personnel: TPP/DE

Date: 2/7/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4-inch

Depth to Ground Water:

10,54

Well Depth:

52,38

WELL INTEGRITY

1. Well identification clearly marked?

yes

no

2. Well covers and locks in good condition and secure?

yes

no

3. Is the well stand pipe vertically aligned and secure?

yes

no

4. Is the concrete pad and surface seal in good condition?

(yes

no

5. Are soils surrounding the well pad eroded?

yes

110

6. Is the well casing in good condition?

(ves

no

7. Is the measuring point on casing well marked?

(yes

no

8. Is there standing water in the annular space?

yes

(nb)

9. Is the stand pipe vented at the base to allow drainage?

ves

no

COMMENTS:

Concrete pad under gravel.

Site Name:

Frontier Chemical

Well Identification: URS - 14 I

Personnel: TPP/DEL

Date:

2/7/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4-inch

Depth to Ground Water:

Well Depth:

WELL INTEGRITY

1. Well identification clearly marked?

no

2. Well covers and locks in good condition and secure?

no

3. Is the well stand pipe vertically aligned and secure?

yes

no

4. Is the concrete pad and surface seal in good condition?

no)

5. Are soils surrounding the well pad eroded?

yes

no

6. Is the well casing in good condition?

yes)

no

7. Is the measuring point on casing well marked?

yes

no

8. Is there standing water in the annular space?

yes

ng

9. Is the stand pipe vented at the base to allow drainage?

N/A no

Site Name: Frontier Chemical

Well Identification: UPS-14D

Personnel: TPP/DEC

Date: 2/7/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4-inch

Depth to Ground Water:

Well Depth:

WELL INTEGRITY

1. Well identification clearly marked?

yes

no

2. Well covers and locks in good condition and secure?

yes

no

3. Is the well stand pipe vertically aligned and secure?

no

4. Is the concrete pad and surface seal in good condition?

yeş

no

5. Are soils surrounding the well pad eroded?

yes

no_

6. Is the well casing in good condition?

yes

no

7. Is the measuring point on casing well marked?

yes

no

8. Is there standing water in the annular space?

yes

9. Is the stand pipe vented at the base to allow drainage?

Ground water sampling logs

O'Brien & Gere Engi	neers, Inc.		Standard Ground Water Sampling Log
Date 2800 Site Name Frontier Chem Location Pendle fon Project No. 24532 Personnel TPP/DEC	ìca		Weather Suny 3° Well # 85-5R Evacuation Method 55 Bailer Sampling Method 55 Bailer
Well Information: Depth of Well * Depth to Water * Length of Water Column Volume of Water in Well 3X Volume of Water in Well	38.02 ft. 9.74 ft. 28.28 ft. 4.6 gal	.(s) .(s)	ater Volume /ft. for: 2" Diameter Well = 0.163 X LWC 4" Diameter Well = 0.653 X LWC 6" Diameter Well = 1.469 X LWC lume removed before sampling well go dry? Gall.(s)
* Measurements taken from	We	ell Casing	(Other, Specify)
Instrument Calibration:		7.01 .aon	Conductivity Standard Readings 84 S Standard 1413 S Standard
Water parameters: Gallons Removed initial 0,5 4,5 8,0 10.0	initial S.S. 7. S. 7. 4	Rea	Conductivity Readings uS/cm 3.52 initial 959 1148 7.38 1147 7.38
Water Sample: Time Collected Physical Appearance at Star Color	545 [] Clear		Physical Appearance at Sampling Color ('Licear
Odor Turbidity (> 100 NTU) Sheen/Free Product	None 91 None		Odor Turbidity (> 100 NTU) Sheen/Free Product
Samples collected:			
Container Size #O m 1 tec 1 tec	Container Type Glass plashc plashc	# Collected	red Field Filtered Preservative Container pH No I: I+CL < 2 Yes HN03 < 7 No No H > 10
Notes:	\		

O'Brien & Gere Engi	neers, Inc.		Standard Groun	d Water Samplin	g Log
Date 2 8 00 Site Name Frontier Chem Location Pendleton Project No. 24537 Personnel TPP / DEC	i) co.l		Weather Well #		- - -
Well Information: Depth of Well * Depth to Water * Length of Water Column Volume of Water in Well 3X Volume of Water in Well	49.84 ft. 9,21 ft. 40.63 ft. 6,6 gal.(s) Volume	/olume /ft. for: 2" Diameter Well = 0.1 4" Diameter Well = 0.6 6" Diameter Well = 1.4 removed before sampling of dry?	53 X LWC 69 X LWC	_gal.(s) _ (Other_Specify)
* Measurements taken from	Well	Casing	Protective Cas	sing	(Other, Specify)
Instrument Calibration:		<u>01</u> .0]	Conductivity Standard 84 S Standard 1413 S Standard	Readings	
Water parameters:					
initial	Temperature Readings	initial 1.		1747 2160 2680	
Water Sample: Time Collected	ر نار				
Physical Appearance at Start Color Odor Turbidity (> 100 NTU) Sheen/Free Product	Clear Slight 10 None,	- - -	Physical Appe Color Odor Turbidity (> 10 Sheen/Free P	5 1] grey ke/ Z
Samples collected:					
Container Size Yo m Life Life	Container Type Glas > Plas hc Plas hc	# Collected 2	Field Filtered No Yes No	Preservative I: I H Cl H NO3 Na OH	Container pH < 2. < 2. < 2. > 10
Notes:	PPM Da	@ 10 32	Sample a	2 13	-

O'Brien & Gere Engi	neers, Inc.		Stand	ard Grour	nd Water Sa	mpling	Log
Date 2/9/00							
Site Name Fronter C	hemical		Weather	5	Junny 40	to+	_
Location Pendletu			Well#		85-7R		
Project No. 24532			Evacuat	ion Method	55 Paile	r	•
Personnel TPD / DEL			Samplin	g Method	55 Baile		•
			· · · · · · · · · · · · · · · · · ·			<u> </u>	•
Well Information:	2771 ft	120	(-t) (-t 18	. f			
Depth of Well *		ľ	ater Volume /fl				
Depth to Water *	638 ft.			eter Well = 0.1	1		
Length of Water Column	3 1 33 ft.	-		eter Well = 0.6			
Volume of Water in Well		.(s)	6" Diame	eter Well = 1.4	469 X LWC		
3X Volume of Water in Well	9ai		olume removed d well go dry?	i before samp	oling -	ho 11	gal.(s)
	V .						(Other, Specify)
* Measurements taken from	We	ell Casing		Protective Ca	ising [
Instrument Calibration:							
	pH Buffer Readings			ivity Standard	l Readings		
	4.0 Standard 7.0 Standard	7.00	84 S 1413 S S	Standard Standard			
	10.0 Standard	(0,00	141000				
Water parameters:							
Gallons Removed	Temperature Readings	ρ l Re	d eadings		nductivity adings uS/cm		
initial	initial 8,7 9,9 10,2 9,9	initial	11,94 11,73 833 746	initial	2790 1896 1772 1799		
W-4							
Water Sample: Time Collected	17						
Physical Appearance at Start				Physical Appe	earance at Sam	pling	
	clew			Color		++ 6	2 m. n.
Color	Now			Odor	-		som_
Odor	20			Turbidity (> 10	 00 NTU)	65	
Turbidity (> 100 NTU) Sheen/Free Product	None			Sheen/Free F	_		None.
Samples collected:							
Container Size	Container Type	# Collecte		Filtered	Preservative		Container pH
40 ml	Glass	2		No.): 1 HCl		<u> </u>
1 liter	Plastic Plastic			Yes No	NHOH HNO3		>10
1 1.ter	lasno				1.001		
Notes:	m						

O'Brien & Gere Engir	neers, Inc.		Standard Groun	d Water Samplir	ng Log
Date 2/4/00					
Site Name Frutter	Cherical		Weather 50	nry 44°+	
Location Pendleton				URS JD	
Project No. 24532			Evacuation Method	ss. Bailer	
Personnel TPP/DEL				ss Bailer	
Well Information: Depth of Well * 39.8	34 49 84 ft.	Mator	/olume /ft. for:		
	v 5	VValei		20 7 1740	
Depth to Water * 7.7	- (U)	-~	2" Diameter Well = 0.1	1	
Length of Water Column 32.			4" Diameter Well = 0.6		
Volume of Water in Well 5,			6" Diameter Well = 1.4	59 X LVVC	
3X Volume of Water in Well ધ	5 <u>17 39 gal.(s)</u>	Volume	removed before sampl go dry?	ing 70 NO	gal.(s)
					(Other, Specify)
* Measurements taken from	Well C	Casing	Protective Cas	sing	
Instrument Calibration:					
	pH Buffer Readings		Conductivity Standard	Readings	
	4.0 Standard	.00	84 S Standard		
	7.0 Standard 7.0 Standard 10.0 Standard 10.0		1413 S Standard		
Water parameters:		•			
Gallons	Temperature Readings	pН		ductivity	
Removed	Readings	Readin	gs Rea	dings uS/cm	
initial	initial 8.6 9.0	initial 7.1 7.	(initial	1295 1435 1689	
20	9.0	_7.0	<u> </u>	676	
	47-		******		

Water Sample:					
Physical Appearance at Start]		Physical Appe	arance at Sampling	
Color	Clear		Color	cl	earl st cloudy
Odor	Slight Sulphur	•	Odor	<u>ح</u> ج	light Sulfur
Turbidity (> 100 NTU)	20	•	Turbidity (> 10		34
Sheen/Free Product	Nove		Sheen/Free Pr	roduct	None
Samples collected:					
Container Size	Container Type	# Collected	Field Filtered	Preservative	Container pH
40~1	6 less	7	No	1:1 HCl	22
1 1.10	flashe	<u> </u>	Yes	HN03 NhOH	>10
1 1, te	plastic .		No	Jukun	1 /10
Notes:	1	1			

O'Brien & Gere Engi	neers, Inc.		Standard Groun	d Water Sampling	g Log
Date 2/8/00 Site Name Fronter Cha Location Pendle from Project No. 24532 Personnel TPPIDEC			Evacuation Method	onny 3°± 1R5-9I 55 Bailer 55 Bailer	
Well Information: Depth of Well * Depth to Water * Length of Water Column /olume of Water in Well 3X Volume of Water in Well	46.18 ft. 9.90 ft. 36.28 ft. 5.91 gal.(s	S) Volume	Volume /ft. for: _2" Diameter Well = 0.1 _4" Diameter Well = 0.6 6" Diameter Well = 1.4 e removed before sampled go dry?	53 X LWC 69 X LWC	_gal.(s) (Other, Specify)
* Measurements taken from	Well	Casing	Protective Cas	sing	
Instrument Calibration:		(,0 <u>)</u>	Conductivity Standard 84 S Standard 1413 S Standard	Readings	
initial	Temperature Readings initial 8.3 8.3 9.5	initial 7;	Rea	1255 1289 1224 1233	
Water Sample: Time Collected i 3 Physical Appearance at Start Color Odor Turbidity (> 100 NTU) Sheen/Free Product	1] - [] (qreq - slight - 270 - Nove	-	Physical Appe Color Odor Turbidity (> 10 Sheen/Free Pr		t wo
Samples collected:					
Container Size YO m 1 1.to 1 1.ter Notes: PID - DDW	Container Type Glass Plastic Plastic	# Collected Z I	Field Filtered No Yes No	Preservative 11 HCl HNO3 NapH	Container pH

Location Penaleton Well Project No. 24532 Eva Personnel TPP/DC San Well Information: Depth of Well * 50.89 ft. Water Volum Depth to Water * 9,14 ft. 2" Eva Length of Water Column 4/1.75 ft. 4" Eva Volume of Water in Well 20.4 gal.(s) 3X Volume of Water in Well 20.4 gal.(s) * Measurements taken from Well Casing * Measurements taken from Well Casing Instrument Calibration: DH Buffer Readings Core 4.0 Standard	cuation Method 55 Bailer Inpling Method 55 Bailer Ine /ft. for: Diameter Well = 0.163 X LWC Diameter Well = 0.653 X LWC Diameter Well = 1.469 X LWC Diameter Well = 1.469 X LWC Oved before sampling 20.5 gal.(s) MUD (Other, Specify) Included the diameter was a second of th
Well Information: Depth of Well* Depth to Water * Depth of Water Column Volume of Water in Well SX Volume of Water in Well Wheasurements taken from Measurements taken from DH Buffer Readings 4.0 Standard 7.0 Standard 7.0 Standard 7.0 Standard 7.0 Standard 10.0 Standard 10.0 Standard Temperature Readings Initial DH Readings	isiameter Well = 0.163 X LWC isiameter Well = 0.653 X LWC isiameter Well = 1.469 X LWC oved before sampling dry? Other, Specify)
Instrument Calibration: PH Buffer Readings	Protective Casing ductivity Standard Readings 4 S Standard 3 S Standard
PH Buffer Readings Cor 4.0 Standard 7.0 Sta	3 S Standard
Gallons Removed Temperature Readings initial 0.5 initial 1.7 initial 7.87 6.5 7.71 7.94 7.94 7.48	
	initial 1436 /4/30 /4/5-9 /395
Water Sample: Time Collected 1315 Physical Appearance at Start	Physical Appearance at Sampling
Color Odor Turbidity (> 100 NTU) Sheen/Free Product Clear Clear None Clear None None	Color Odor Turbidity (> 100 NTU) Sheen/Free Product C Lear None April Color C Lear None
Samples collected: Container Size Container Type # Collected F G(655 Z	
1 liter Plastic Plastic	Preservative Container pH No 1:1 HCL 22 Voc HN03 22

JAM:ers/div76/admin/4_notes/stad9log

April 25, 199

O'Brien & Gere Engir	peers inc	Standard Group	d Water Sampling	Log
	leers, mc.	Standard Groun	iu water Sampling	Log
Site Name Frontier Chalcoation Penal Lan, N Project No. 24532 Personnel TPP, DEC	\	Weil#	unny 25°± 88-12 & C Hand Bail 55 Bailer	
Well Information:				
Depth of Well *	31,31 ft.	Water Volume /ft. for:		
Depth to Water *	12,00 ft.	2" Diameter Well = 0.1	63 X LWC	
Length of Water Column	19.31 ft.	4" Diameter Well = 0.6	53 X LWC	
Volume of Water in Well	3, 15 gal.(s)	6" Diameter Well = 1.4	69 X LWC	
3X Volume of Water in Well	9,45gal.(s)	Volume removed before sample Did well go dry?	ling (O	gal.(s)
* Measurements taken from	Well Casing	g Protective Cas		(Other, Specify)
Instrument Calibration:				
	pH Buffer Readings 4.0 Standard	Conductivity Standard 84 S Standard	Readings	
	7.0 Standard 7.00	1413 S Standard		
	10.0 Standard 1೦.೮ರ			
Water parameters:				
Gallons Removed	Temperature Readings		nductivity adings uS/cm	
initial <u>Ø</u>	initial 9.3 initial 9.5 § .8 § .9	al 8.01 initial 7.71 7.43 7.46	1158 130 1108 127	
Water Sample: Time Collected	-18_			
Physical Appearance at Start]	Physical Appe	arance at Sampling	
Color	c lear	Color	B	rowaish
Odor	sulfur	Odor		refor
Turbidity (> 100 NTU)	<u>55.4</u>	Turbidity (> 10		OUTURANCE
Sheen/Free Product	No.78	Sheen/Free Pr	roduct <u>V</u>	ne
Samples collected:				
Container Size		Pilected Field Filtered No	Preservative	Container pH
40 ml	Glass Plashc	1 Yes	HN03	27
1 liter	Plasho	i No	Na OH	>10
Notes:				
PID GPPM				

O'Brien & Gere Engi	neers, Inc.		Standard Groui	nd Water Samp	oling Log
Date 2/7/00 Site Name Frontier C Location Rendleton, A Project No. 24532 Personnel TPP, DEC	<u> </u>		Weather 5 Well # Evacuation Method Sampling Method	128 D 128 D Hand Bail 55 Bailer	
Well Information: Depth of Well * Depth to Water * Length of Water Column Volume of Water in Well 3X Volume of Water in Vell	$\begin{array}{c ccccc} 52.38 & \text{ft.} \\ \hline 10.54 & \text{ft.} \\ \hline 41.34 & \text{ft.} \\ \hline 6.82 & \text{gal.(s)} \\ \hline 20.5 & \text{gal.(s)} \\ \end{array}$	Volume	/olume /ft. for: 2" Diameter Well = 0. 4" Diameter Well = 0. 6" Diameter Well = 1. e removed before sampling dry?	653 X LWC 469 X LWC Dling	gal.(s) <u>ド</u> (Other, Specify)
* Measurements taken from	Well Ca	asing	Protective Ca	asing	(Outer, opeany)
Instrument Calibration:	pH Buffer Readings 4.0 Standard 7.0 Standard 10.0 Standard	.go	Conductivity Standard 84 S Standard 1413 S Standard		
Water parameters: Gallons Removed initial L 15 20	initial 9.1 Y,3 S,0 Y,0			4130 4130 4150 4150 4160 41950	
Water Sample: Time Collected Physical Appearance at Star Color Odor Turbidity (> 100 NTU) Sheen/Free Product	1555 Clear Stight suipher 17.7 None		Physical App Color Odor Turbidity (> 1 Sheen/Free F	ياكـ (00 NTU)	lear ght sulfor 109
Samples collected:					
Container Size 40 ml 1 lider 1 lider	Container Type Glass Plas k Plas ki	# Collected 2	Field Filtered No Ves No	Preservative 1:1 H(Q H)03 Na 0H	Container pH 22 27 70
Notes:	N.				

O'Brien & Gere Engi	neers, Inc.	Standard Ground Water Sampling Log
Date 2/8/00 Site Name From the Location Fendleter Project No. 24532 Personnel TPP/ DEZ		Weather Suncy 301 Well # URS 14 I Evacuation Method SS Pailer Sampling Method S. S Bailer
Well Information: Depth of Well * Depth to Water * Length of Water Column Volume of Water in Well 3X Volume of Water in Well	31.08 ft. 31.08 ft. 27.62 ft. 4.50 gal.(s) 13.5 gal.(s)	Water Volume /ft. for: 2" Diameter Well = 0.163 X LWC 4" Diameter Well = 0.653 X LWC 6" Diameter Well = 1.469 X LWC Volume removed before sampling Did well go dry? (Other Specific)
* Measurements taken from	Well Casing	(Other, Specify) Protective Casing
Instrument Calibration:	pH Buffer Readings 4.0 Standard 7.0 Standard 10.0 Standard (0.0)	Conductivity Standard Readings 84 S Standard 1413 S Standard
Water parameters: Gallons Removed initial 9.5 9.5	initial 6 S initial 5.5	pH Readings Conductivity Readings uS/cm al 9,04 initial 46,0 9,03 515 7,97 405
Water Sample: Time Collected	15 * 2/9/00 - (18 CV - NI ONE - 25 - NO NE	Physical Appearance at Sampling Color Odor Turbidity (> 100 NTU) Sheen/Free Product Output Dure
Samples collected:		
Container Size Yom I life Notes:	Glass Plastic Plastic	Ilected Field Filtered Preservative Container pH Z No I'-I H(Q <2 I Yes HNO3 < 7 I No No HOH >/0
PID-PPP	M Dry@ 1	o gals

OlDrian & Care Engi	noore Inc		Standard Group	d Water Samplin	alog
O'Brien & Gere Engi	neers, mc.		Standard Groun	iu water Sampini	g Log
Date <u>2/8/00</u>	<u> </u>				
Site Name Franker O			***************************************	ounny 3°±	
Location <u>Rendleton</u>			Well#	URS 14D	-
Project No. 24537			Evacuation Method	SS Bailer	-
Personnel TPP/DEZ	MARINE DE PROPERTIE DE L'ANGEL DE		Sampling Method	S.S. Bailer	
Well Information:					
Depth of Well *	41.61 ft.	Water \	/olume /ft. for:		
Depth to Water *	ft.	_X_	2" Diameter Well = 0.1	63 X LWC	
Length of Water Column	32,77 ft.		4" Diameter Well = 0.6	53 X LWC	
Volume of Water in Well			6" Diameter Well = 1.4	69 X LWC	
3X Volume of Water in Well	اله.٥٥ gal.(s)	<u> </u>			
			removed before samp		_gal.(s)
		Dia wei	go dry?	<u> 10</u> 0	
					(Other, Specify)
* Measurements taken from	Well Cas	sing	Protective Ca	sing	
Instrument Calibration:					
	pH Buffer Readings		Conductivity Standard 84 S Standard	Readings	
	4.0 Standard 7.0 Standard 7.0	1	1413 S Standard		
	10.0 Standard 10.0				
Water parameters:					
Gallons	Temperature OC	рН		nductivity	
Removed	Readings	Readin	gs Rea	adings uS/cm	
	,				
initial <u></u>	initial <u> </u>	nitial <u>၂</u> ၂ ၂ ၅		49	
<u> </u>	8.6	Q.		1128	
10	8.4	***************************************	17	1690	
	<u>e.+</u>		<u> </u>	1609	

Water Sample: Time Collected	03				
Physical Appearance at Star			Physical Appe	earance at Sampling	٦
rnysical Appearance at Star		1.			
Color	Mean/ H Greas	ects	Color		rear
Odor	Slight ilphur		Odor	<u> </u>	gh:T
Turbidity (> 100 NTU)	<u> </u>		Turbidity (> 10		- 2
Sheen/Free Product	Nive		Sheen/Free P	roduct	<u></u>
Samples collected:					
Container Size	Container Type #	Collected	Field Filtered	Preservative	Container pH
40 m l	Glass	2	No	1:1 HCL	<2
11.40	Plashe	<u> </u>	Ycs No	HNO3 NaOH	710
	Plaste	<u> </u>	780	JV4C011	
Notes:	10/100 20	. ^	\$ 00:00		
de Collect (MS/MSD 3) PI	<u> </u>	ØPPM		
JAM:ers/div/76/admin/4_notes/stad9log	الأفعال		•		April 25, 1

April 25, 1997

U'Brien & Gere Laboratories, Inc.

5000 Brittonfield Parkway

Chain of Custody

East Syracuse, New York 13057 (315) 437-0200

Client: OLIV								\\\ \ \\ \ \	nalvai	Analysis/Method	7	
Driez CAMICA	Pendle Les		1/2/22	1/2/								
Jel D. Canes	201-			1					DE SE		\ \	\
1		Æ	Phone #				\	沙 く		\		\
Sample Description	cription						200	25/24				
Sample Location	Date Time Collected Collected	Time	Sample Matrix	Comp. or Grab	No. of Containers		3 1	<u>}</u>				Comments
85-5R	2/0/00	sp51	Waster	Grab	N	n	-	-	Ļ		_	
URS - 50	2/8/0	موما	Weter	do 1 P	N.	40	-	J				
EQUIP. BLANK	2/9/00		WATE R	68AB	B	.83	-	_				
URS - 14 I	2/8/20	되치	waster	Grab	N	8	-					
85-72	2/4/0		uede	(svab	U	M	-					
URS-70	2/4/0	15 25	Water		3	છ	-					
	`											
								•				
			•									
TRIP BLANKS	2 900		Water	١	×	7						
											<u> </u>	
Relinquished by:	Da	Date:	Time:		Received by:	by:				Date:	k k	Time:
Relinquished by:		Date:	Time:		Received by:	by:				Date:		Time:
Relinquished by: Jone les E. Cauntian		Date: ₹ 9 00		:1620	Time: $ \langle_{\mathcal{O}} Z_{\mathcal{D}} $ Received by Lab:	by Lab:				Date:		Time.
Shipment Method: FEO でx					Airbill Number: 2184	nber:	787	3006		Colbt		
									١)		

Turnaround Time Required:
Routine
Rush (Specify)

Comments:

Cooler Temperature:__

Original-Laboratory Copy-Client

o'Brien & Gere Laporatories, Inc.

5000 Brittonfield Parkway

Chain of Custody

13057

East Syracuse, New York (315) 437-0200

Client: Octo									Analy	Analysis/Method	P	
E MICAL	Roberton	7,0			-				10			
<i> </i> -		trar						\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	******		\	
Client Contact: 24532		H.	Phone #				\		\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\ \		\
Sample Description	cription						15.56	STAN				
Sample Location	Date Time Collected Collected	Time Collected	Sample Matrix	Comp. or Grab	No. of Containers	7	%\ }	!\ !\				Commente
88-12C	8131 ao/r/2	1518	Wah		Ω.	3	-	-	-			
88-120	2/1/00 1595	1595	Washer	Grab	N	3						
URS-140 ms/msD	2/8/00	1003	Water Grab	Sab	15	9	3	3				
URS-9I	2/3/0	1300	water	dans	S	3		_				
URS -90	48/00	1219		المصدا	ñ	3	-			5		
	`			-						·		
			·				_					
		:										
Blind Dupe	J	1	hater	dant)	Ŋ	4					 	
True Blank			water Gab	(Jak	2	7	•				 	
Relinquished by:	Date:		Time:		Received by:	y:				Date:	k K	Time:
	Date:	; ;	Time:		Received by:	y:				Date:	UV	Time:
Relinquished by:		Date: 3 /8 /	o Time	CE Mount	Received by Lab:	y Lab:				Date:		Time.
Shipment Method: FED EX		1			Airbill Number:		1818		36h 9008	1864		

Turnaround Time Required:
Routine
Rush (Specify)

Comments:

Cooler Temperature:__

Original-Laboratory Copy-Client

Appendix C

Data validation report

Data Validation Services

120 Cobble Creek Road P. O. Box 208

North Creek, N. Y. 12853

Phone 518-251-4429

Facsimile 518-251-4428

March 21, 2000

Jennifer Smith O'Brien & Gere Engineers 5000 Brittonfield Parkway P. O. Box 4873 Syracuse, NY 13221

RE: Validation of Frontier Chemical Site Data Packages
OBG Labs Report for Samples Collected 2/07/00 through 2/09/00

Dear Ms. Smith:

Review has been completed for the data package generated by OBG Laboratories, pertaining to samples collected at the Frontier Chemical Site on February 7 through February 9, 2000. Eleven aqueous samples were analysed for TCL volatiles and TAL filtered metals/cyanide parameters. Matrix spikes/duplicates, and equipment and trip blanks were also processed. Methodologies utilized are those of the USEPA SW846.

Data validation was performed with guidance from the most current editions of the USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review and the USEPA SOPs HW-2 and HW-6. The following items were reviewed:

- * Data Completeness
- * Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Matrix Spike Recoveries/Duplicate Correlations
- * Preparation/Calibration Blanks
- * Control Spike/Laboratory Control Samples
- * Instrumental Tunes
- * Calibration Standards
- * Instrument IDLs
- * Method Compliance
- * Sample Result Verification

Those items showing deficiencies are discussed in the following sections of this report. All others were found to be acceptable as outlined in the above-mentioned validation procedures, and as applicable for the methodology. Unless noted specifically in the following text, reported results are substantiated by the raw data, and generated in compliance with protocol requirements.

In summary, sample processing was primarily conducted with compliance to protocol requirements and with adherance to quality criteria, and most reported results are usable as reported, or with minor qualification as estimated. Certain edits to, and qualification of, reported results are indicated. These issues are discussed in the following analytical sections.

The laboratory summary data package, with recommended qualifiers applied in red ink to the sample result forms is attached to this narrative, and should be reviewed in conjunction with this text.

Data Completeness

The laboratory data packages were not directly in compliance with the required NYSDEC ASP Category B deliverables, but the information needed for validation of the data was present. Volatile summary forms 2, 4, and 5 were not present, the laboratory NYSDEC Sample Preparation and Analysis Summary Forms were not provided, and no verbatim certification statement was made in the case narrative.

Volatile Analyses

Carbon disulfide was detected in some of the project samples, at levels above typical laboratory contamination. None was detected in the associated blanks, and no qualification to the reported results is made. Many samples also showed evidence of sulfur dioxide, which may be related to the detection of carbon disulfide.

The reported value for carbon disulfide in the sample 88-12D should be derived from the dilution analysis. All other analyte values can be used from the initial analysis.

Due to low response factors in the calibration standards, results for acetone, 2-butanone, 2-hexanone, and 4-methyl-2-pentanone should be considered estimated in the project samples

Matrix spikes of URS-14D involved evaluation of recoveries of all target analytes. Chloroethane produced an elevated recovery (960%) in one of the matrix spikes due to contribution to the mass fragment response from sulfur dioxide in the spiked sample. Sample reported results are unaffected. All other accuracy and precision values, and control spiked recoveries, were acceptable.

The Tentatively Identified Compounds should be qualified as estimated in value, and should be reported to one significant figure. Those identified as "solvent" or "column bleed" are analysis artifacts and should be disregarded as sample components.

Field duplicate correlation of URS-9D and X-1 was acceptable.

Metals/CN Analyses

Accuracy and precision evaluations for URS-14D were acceptable, with the exception of the recovery of selenium, which was 70%. Therefore the sample selenium results should be considered estimated ("J") in all project samples. This element also produced a low recovery in the low concentration standard (CRI) (57%). No corrective action was required of the laboratory.

Due to elevated recovery of the mercury CRI (130%), the detected value reported in sample 88-12D, which was at a concentration equal to that of the CRDL, should be regarded as estimated, possibly biased high.

The serial dilution determinations for URS-14D produced acceptable correlations.

Field duplicate correlation between URS-9D and X-1 was acceptable.

Reported results are substantiated by the raw data.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,

Judy Harry

Data Validation Services

120 Cobble Creek Road P. O. Box 208 North Creek, NY 12853 Phone (518) 251-4429 Facsimile (518) 251-4428

Facsimile Transmission

TO:

Jen Smith

COMPANY:

OBG Engineers

FAX NUMBER:

315 463 7554

FROM:

Judy Harry

DATE:

03-20-00

No. of pages (including cover):

1

COMMENTS:

RE: Frontier Chemical data packages

The spectrum that I would like to review is that pertaining to the broad peak present around retention time 3.5-4.0' in sample N9181-DL (file G7775 on 2/17). They may need to do a manual subtract of background from about 3', or after 4.5'. The early part of the response is likely due to moisture, but the latter may be the sulfur dioxide.

Hope this helps.

Thanks.

Hardcopy to follow

X Hardcopy not to follow

TELEFAX

O'BRIEN & GERE ENGINEERS, INC.

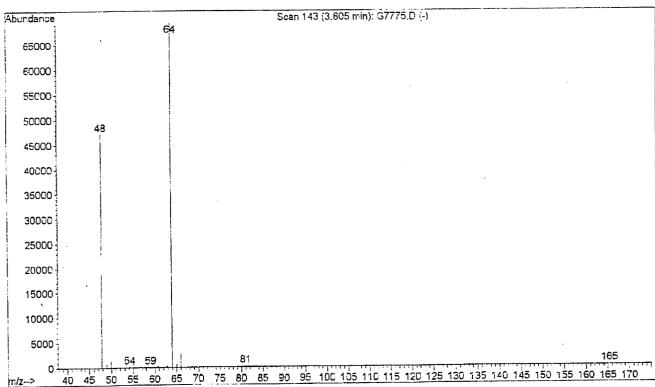
Direct Line Fax No. (315) 463-7554

CONFIDENTIALITY NOTICE

This facsimile transmission is intended only for the use of the individual or entity to which it is addressed, and may contain confidential information belonging to the sender. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, or the taking of any action in reliance on the contents of this information is strictly prohibited. If you have received this transmission in error, please immediately notify us by telephone to arrange for the return of these documents.

		Job Numb	er:	5829/24532
Number of Pa	iges: 3	(including cover sheet)	Date:	March 21, 2000
		ease contact telefax operator con as possible. Thank you.		
To:	Judy Harry			
COMPANY:	Data Validati	on Services		
FAX No:	518-251-4428			
FROM:	Jennifer Smi	th		
ORIGINAL — will follow	v via regular mail	will follow via overnight	delivery	x will not follow
MESSAGE:				
	ttached is the spec ed additional info	trum for the N9181-DL sample rmation.	e. Please feel f	ree to call me if you have any
Thank you,				


File : J:\MS2\G7775.D


Operator : MSV

Acquired : 17 Feb 00 11:37 am using AcqMethod G216VOCW

Instrument : #2MS12
Sample Name: N9181DL 5x

Misc Info : Vial Number: 6

NARRATIVE

INTRODUCTION/ANALYTICAL RESULTS

This report summarizes the laboratory results for samples from Frontier Chemical - Pendleton Site, Town of Pendleton, Niagara County, NY. Immediately following the narrative is the Cross Reference Table that lists the site descriptions, sample numbers, dates collected, dates received and package numbers.

CONDITION UPON RECEIPT/CHAIN OF CUSTODY

The coolers were received intact. When the coolers were received by the laboratory, the sample custodian(s) opened and inspected the shipments for damage, custody inconsistencies and proper preservation. The chain of custody forms documenting receipt are presented in the chain of custody section. Each sample was assigned a unique laboratory number and a custody file created. The samples were placed in a secured walk-in cooler and signed in and out by the chemists performing the tests. The sign out record, or lab chronicle, is presented in the chain of custody section.

No discrepancies were noted upon receipt. The cooler temperatures upon receipt were 3 and 4°C.

METHODOLOGY

The following methods were used to perform the analyses:

PARAMETER	METHOD	REFERENCE
Volatile Organics	8260B	1
ICP Metals	6010B	1
Mercury	7470A	1
Thallium	7841	1
Cyanide	9010B/9014	1

1) Test Methods for Evaluating Solid Wastes, SW-846 Third Edition, Final Update III, December 1996.

QUALITY CONTROL

The quality control for this program includes internal standards, surrogates, matrix spike (MS), matrix spike duplicate (MSD), laboratory duplicate (D), equipment blank, laboratory control sample (LCS), prep blank and QC trip blank samples. QA/QC results are summarized in the Sample Data Summary Package and are also included in the raw data.

RAW DATA

The raw data is organized in a format similar to the US EPA Contract Laboratory Program order of data requirements.

GC/MS Volatile Organics Case Narrative

Client:

Frontier Chemical

Job Number:

5829.001.517

Package #:

4663, 4671

Methodology:

8260B

Analyzed/Reviewed by (Date/Initials):

Supervisor/Reviewed by (Date/Initials):

QA/QC Review (Date/Initials):

File Name in G/ Drive:

C:\WPWIN60\WPDOCS\V4663.NAR

GC/MS Volatile Organics

The GC/MS Volatile instruments used a J&W DB-VRX, 75 m x 0.45 mm ID capillary column and a Vocarb 3000 trap.

Holding Times and Sample Preservation

All samples were prepared and analyzed within the method and/or QAPP specified holding time requirements. Samples had a pH of less than 2.

Laboratory Control Sample

All spike recoveries met method and/or project specific QC criteria.

The following compound(s) did not meet matrix spike/matrix spike duplicate percent recovery and/or RPD criteria:

					Corrective
Sample Description URS-14D	Sample # N9182	Compound Chloroethane	% REC X	RPD X	Action 1

Due to high level sulfur dioxide in the sample N9182MSD. Ion 64 of chloroethane was coeluted with sulfur dioxide. LCS passed for this compound. No corrective action was taken. 1.

All surrogate recoveries met method and/or project specific QC criteria.

Internal Standards

All internal standard areas met method and/or project specific QC criteria.

For calibration check standard compounds that had a linear regression performed, a percent drift was calculated between the true value of the calibration check standard and the calculated value. For compounds using an average response factor, the percent difference between the average response factor and the daily response factor was calculated. Summary sheets for both calculations are included in the raw data section.

GC/MS Volatile Organics Case Narrative - Page 2

Client:

Frontier Chemical

Job Number:

5829.001.517

Package #:

4663, 4671

Methodology:

8260B

The following continuing calibration compound(s) exceeded method percent drift and/or RRF criteria:

G 111					Corrective
Calibration Date 2/17/00	Instrument MS2	Compound 1,1-Dichloroethene	% D -20.5	RRF	Action l

The compound failed high. There were no positive hits for the compound in associated 1. samples. The associated LCS met criteria. No corrective action was taken.

Preparation Blanks

All preparation blanks met method and/or project specific QC criteria.

Trace Metals Case Narrative

Client:

Job Number:

Package #:

Methodology:

Frontier Chemical

5829.001.517

4663,4671

ICP metals - 6010B

Analyzed/Reviewed by (Date/Initials):

Supervisor/Reviewed by (Date/Initials):

QA/QC Review (Date/Initials):

File Name in G/ Drive:

G:\NARRATIV\4663FRON.ICP

Trace Metals

All samples were prepared and analyzed within the method and/or QAPP specified holding time requirements.

Laboratory Control Sample

All spike recoveries met method and/or project specific QC criteria.

MS/MSD AND MS/MSD RPD

The following analytes did not meet matrix spike/matrix spike duplicate percent recovery and/or MS/MSD RPD criteria:

	* · · · · · · · · · · · · · · · · · · ·				Corrective
Sample Description	Sample #	Analyte	% REC	RPD	Action
UPS-14D (Field Filtered)	N9189	Calcium	X		2
UPS-14D (Tield Title 19)		Magnesium	X		2
		Selenium	X		1
		Potassium		<u> X</u>	3
			•		

- A post-digestion spike was performed as required. No further corrective action was taken. 1.
- The concentration of the analyte in the sample was much greater than the concentration of the spike added. A post-digestion spike was performed as required. No further corrective 2. action was taken.
- The RPD for the sample and duplicate was within control limits. No further corrective 3. action was taken.

Sample Duplicate

All sample duplicate RPD data met method and/or project specific QC criteria.

Trace Metals Case Narrative - Page 2

Client:

Frontier Chemical

Job Number:

5829.001.517

Package #:

4663,4671

Methodology:

ICP metals - 6010B

ICP Serial Dilution

All percent differences met method and/or project specific QC criteria.

.Calibrations

All calibrations and calibration verifications met method and/or project specific QC criteria.

Preparation Blanks

All preparation blanks met method and/or project specific QC criteria.

Trace Metals Case Narrative

Client:

Job Number:

Package #:

Methodology:

Analyzed/Reviewed by (Date/Initials):

Supervisor/Reviewed by (Date/Initials):

QA/QC Review (Date/Initials):

File Name in G/ Drive:

Frontier Chemical

5829.001.517

4663,4671

Mercury - 7470A

3-2-00 mT

3-2-(-)

111 2/1

G:\NARRATIV\4663FRON.HG

Trace Metals

There were no excursions to note. All QC results were within established control limits.

Trace Metals Case Narrative

Client:

Job Number:

Package #:

Methodology:

Frontier Chemical

5829.001.517

4663,4671

Thallium - 7841

Analyzed/Reviewed by (Date/Initials):

3-2-00 mg

Supervisor/Reviewed by (Date/Initials):

3-2-00 -

QA/QC Review (Date/Initials):

1/1 3/2/00

File Name in G/ Drive:

G:\NARRATIV\4663FRON.TL

Trace Metals

There were no excursions to note. All QC results were within established control limits.

Wet Chemistry Case Narrative

Client:

Job Number:

Package #:

Methodology:

Frontier Chemical

5829.001.517

4663,4671

Total cyanide - 9010B/9014

Analyzed/Reviewed by (Date/Initials):

3-2-00 mg

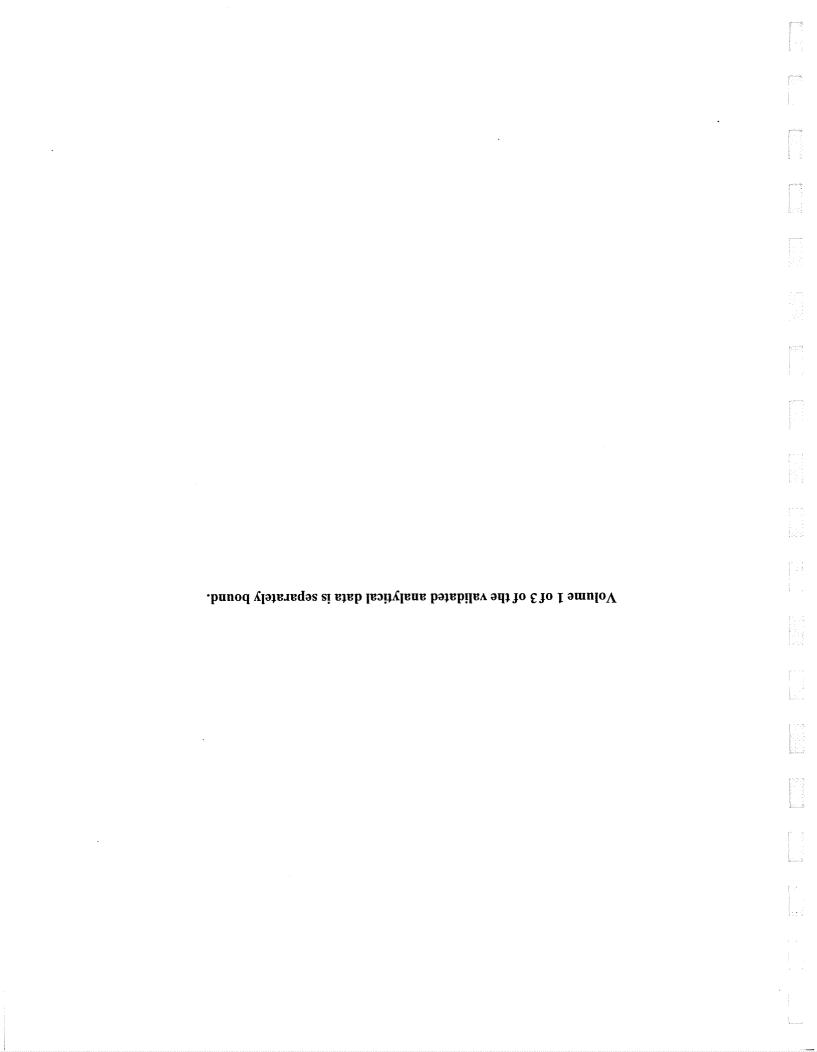
Supervisor/Reviewed by (Date/Initials):

3-2-00 mg

QA/QC Review (Date/Initials):

File Name in G/ Drive:

G:\NARRATIV\4663FRON.WC


Wet Chemistry

There were no excursions to note. All QC results were within established control limits.

CROSS REFERENCE TABLE

Site	Sample Number	Date Collected	Date Received	Pkg
88-12C	N9180	02/07/00	02/09/00	4663
88-12D	N9181	02/07/00	02/09/00	4663
URS-14D	N9182	02/08/00	02/09/00	4663
URS-14D	N9182MS	02/08/00	02/09/00	4663
URS-14D	N9182MSD	02/08/00	02/09/00	4663
URS-14D	N9182D	02/08/00	02/09/00	4663
URS-9I	N9183	02/08/00	02/09/00	4663
URS-9D	N9184	.02/08/00	02/09/00	4663
Blind Dup	N9185	02/08/00	02/09/00	4663
OC Trip Blank	N9186	02/07/00	02/09/00	4663
88-12C (Field Filtered)	N9187	02/07/00	02/09/00	4663
88-12D (Field Filtered)	N9188	02/07/00	02/09/00	4663
URS-14D (Field Filtered)	N9189	02/08/00	02/09/00	4663
URS-14D (Field Filtered)	N9189MS	02/08/00	02/09/00	4663
URS-14D (Field Filtered)	N9189MSD	02/08/00	02/09/00	4663
URS-14D (Field Filtered)	N9189D	02/08/00	02/09/00	4663
URS-9I (Field Filtered)	N9190	02/08/00	02/09/00	4663
URS-9D (Field Filtered)	N9191	02/08/00	02/09/00	4663
Blind Dup (Field Filtered)	N9192	02/08/00	02/09/00	4663
85-5R	N9219	02/08/00	02/10/00	4671
URS-5D	N9220	02/08/00	02/10/00	4671
Equip. Blank	N9221	02/09/00	02/10/00	4671
URS-14I	N9222	02/09/00	02/10/00	4671
85-7R	N9223	02/09/00	02/10/00	4671
URS-7D	N9224	02/09/00	02/10/00	4671
QC Trip Blank	N9225	02/08/00	02/10/00	4671
85-5R (Field Filtered)	N9226	02/08/00	02/10/00	4671
URS-5D (Field Filtered)	N9227	02/08/00	02/10/00	4671
Equip. Blank (Field Filtered)	N9228	02/09/00	02/10/00	4671

		02/09/00	02/10/00	4671
URS-14I (Field Filtered)	N9229		02/10/00	4671
	N9230	02/09/00		
85-7R (Field Filtered)	•	02/09/00	02/10/00	4671
URS-7D (Field Filtered)	N9231	02, 02, 0		

